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Docteur de l’École Polytechnique

specialité: Physique
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                                                    Note Explicative 
 

 
 
 
 
 

 
 
Cette thèse est écrite en anglais et contient deux parties distinctes. La première partie s'intitule 
``Sur la Rigidité des Solides Amorphes" et la seconde ``Fluctuations des prix, Conventions et 
Microstructure des marches Financiers". Chaque partie est succédée par un article dont la  
thématique est voisine. 
 
 

Sur la Rigidité des Solides Amorphes: 
 
On comprend mal les propriétés microscopiques des solides amorphes, comme le transport, la 
propagation des forces ou la nature de leur rigidité mécanique. Ces questions semblent liées à la 
présence d'un excès de modes vibratoires à basse fréquence, le ``pic boson". On explique la 
nature de ces modes dans les systèmes répulsifs à courte portée. On argumente que cette 
description s'applique aussi aux milieux granulaires, à la silice, et aux verres colloïdaux. 
 
 
  
 

Fluctuations des prix, Conventions et Microstructure des 
marches Financiers: 
 
Les fluctuations des cours de la bourse ont des propriétés étonnantes. La volatilité (l'amplitude de 
ces fluctuations) est environ un ordre de grandeur plus grand que les prédictions de la théorie des 
marches efficients, et est corrèlee sur des échelles de temps très longs. Les agents sur réagissent 
aux informations. On montre que ces propriétés apparaissent  lorsque les agents agissent en 
fonction de leur expérience et du passé du marché. On étudie aussi la microstructure des marchés, 
qui régulent les échanges aux temps courts. On explique pourquoi le prix est diffusif bien que les 
ordres marchés (les chocs subis par les prix) soient très corrélés. On évalue la fourchette des prix 
par des arguments de symétrie. 
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Abstract

We poorly understand the properties of amorphous systems at small length
scales, where a continuous elastic description breaks down. This is apparent
when one considers their vibrational and transport properties, or the way
forces propagate in these solids. Little is known about the microscopic cause
of their rigidity. Recently it has been observed numerically that an assembly
of elastic particles has a critical behavior near the jamming threshold where
the pressure vanishes. At the transition such a system does not behave as a
continuous medium at any length scales. When this system is compressed,
scaling is observed for the elastic moduli, the coordination number, but also
for the density of vibrational modes. In the present work we derive theo-
retically these results, and show that they apply to various systems such as
granular matter and silica, but also to colloidal glasses. In particular we
show that: (i) these systems present a large excess of vibrational modes at
low frequency in comparison with normal solids, called the “boson peak” in
the glass literature. The corresponding modes are very different from plane
waves, and their frequency is related to the system coordination; (ii) rigidity
is a non-local property of the packing geometry, characterized by a length
scale which can be large. For elastic particles this length diverges near the
jamming transition; (iii) for repulsive systems the shear modulus can be much
smaller than the bulk modulus. We compute the corresponding scaling laws
near the jamming threshold. Finally, we discuss the implications of these re-
sults for the glass transition, the transport, and the geometry of the random
close packing.



1. Introduction

1.1 Anomalous properties of amorphous

solids

In the last century, the development of statistical physics revolutionized our
understanding of matter. It furnished a microscopic explanation of heat, and
gave a description of different states of matter, such as the liquid or the solid
state. Later, it explained that sudden transitions between these states can
occur when a parameter is slowly tuned, despite the microscopic interactions
staying the same. At the heart of these discoveries lie the concepts of equi-
librium and entropy. At equilibrium, all the possible states with identical
energy have an equal probability: this allows to define an entropy, and a
temperature. Nevertheless, many systems around us are not at equilibrium.
These can be open systems crossed by fluxes of matter and heat, such as
biological systems. Another case is glassy systems, such as structural glasses
or spin glasses, where the characteristic times become so slow that there are
never equilibrated on experimental time scales. Finally there are also systems
where particles are too large to be sensitive to temperature, such as granular
matter. These systems are still poorly understood, and one of the current
goal of nowadays statistical physics is to explain their original properties,
and hopefully to find generic methods to describe them.

We do not have a satisfying description of amorphous systems such as
structural glasses, colloids, emulsions or granular matter. This is particu-
larly apparent when one considers the low temperature properties of glasses
[1]. Their low-temperature specific heat has a nearly-linear temperature de-
pendence rather than varying as T 3 as would be found in a crystal [1]. The
prevailing explanation for this linear specific heat is in terms of tunneling
in localized two-level systems [2]: atoms or group of atoms switch between
two possible configurations by tunneling. This phenomenological model has
also explain the T 2 dependence of the thermal conductivity at very low tem-
perature. However, several empirical facts are still challenging the theory
[3, 4]. Furthermore, after 30 years of research there is yet no accepted pic-
ture of what these two-levels systems are. At higher temperature, around
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Fig. 1.1: Response to a monopole of force in a Lennard-Jones system of 1000
particles. Black (grey) lines correspond to compressive (tensile)
stesses. Leonforte et al. [8]

typically 10 K which corresponds to the Thz frequency range for phonons,
other universal properties of glasses are not fully understood. In particular
the thermal conductivity displays a plateau, which suggests that at these
frequencies phonons are strongly scattered. This effect is significant: for ex-
ample in silica glass, the thermal conductivity is several orders of magnitude
smaller than in the crystal of the same composition [5].

Athermal amorphous systems, such as granular matter, also display fas-
cinating properties, both in their static behavior and in their rheology. The
following puzzle underlines the subtlety of force propagation in granular mat-
ter [10]: the supporting force under a conical heap of poured sand is a mini-
mum, rather than a maximum, at the center of the pile where it is deepest.
As we shall discuss in the next Chapter, it has been proposed that in granular
medium the force propagates differently than in a continuous elastic body
[11, 12]. It turns out experimentally [13, 14] and numerically [15, 8] that an
elastic-like behavior is recovered at large distances. Curiously enough, the
cross-over length can be large in comparison with the particle size. Fig.(1.1)
shows the response to a point force in a Lennard-Jones simulations [8] at
zero temperature. The average response is similar to the one of a continu-
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ous elastic medium, but near the source the fluctuations are of the order of
the average. They decay exponentially with distance, with a characteristic
length of roughly 30 particles sizes. One may ask what determines such a
distance, below which an amorphous solid behaves as a continuous medium.
More generally, what length scales characterize these systems?

The length scales we are discussing might also affect the rheology of gran-
ular matter. An interesting question is how grains flows, or how they compact
[16]. For example if a layer of sand is inclined, an avalanche is triggered. In-
terestingly the angle θ of avalanche appears to be controlled by the width h
of the granular layer. θ decreases when h grows when h is smaller than of
the order of ten particle sizes. Similar length scales also appear in the spatial
correlations of the velocities of grains in dense flows [17].

A particularity of the amorphous state is that it is not at equilibrium.
Consequently the properties and the microscopic structure of these systems
depend much on their history. For example if a granular pile is made by a
uniform deposition, rather than by pouring sand from the top, the supporting
force does not display the minimum discussed above at the center of the pile,
but rather a flat maximum. Often amorphous solids are obtained from a fluid
phase by varying some parameters such as temperature, density or applied
shear stress until the system stops flowing: this is the jamming transition
[18]. As the dynamics greatly slows down once this transition is passed, the
structure of amorphous solids does not to differ too much from the marginally
stable state at the transition. Thus a better understanding of the microscopic
features of amorphous solids requires a better knowledge of the jamming
mechanisms. It is a hard and much studied problem. When a glass is cooled
rapidly enough to avoid crystallization, the relaxation times rapidly grow. In
some cases the relaxation times follow an Arrhenius law with temperature;
such glasses are called “strong”. If the relaxation times grow faster, the
glass is “fragile” [19]. There is no available theory to compute quantitatively
the temperature dependence of the relaxation times, and to decide a priori
which glasses are strong or fragile. Recently it was observed numerically and
experimentally that the relaxation in the super-cooled is very heterogeneous
and involves rearrangements of particles clusters [21, 20]. Althought several
models of the glass transition predict such heterogeneities, see e.g. [22] and
references therein, their cause and nature is still a much debated question.

Although they can lead to collective dynamics, most of the spatial models
of the relaxation near the jamming threshold have purely local rules. This is
the case for example for kinetically constrained models [23] where particles
are allowed to move individually if their direct neighborhood satisfies some
specific conditions. The starting point of the present work is the following
remark: the stability against individual particle displacement is much less
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demanding than the stability toward collective motions of particles. In d
dimensions, d+1 neighbors are sufficient to pin one particle. As we shall dis-
cuss in details later, Maxwell showed that 2d contacts per particle on average
are necessary to guarantee the stability of a solid [24]. The fact that the cri-
terion of stability is non-local suggests that it is so for the minimal motions
responsible for the relaxation. In any case, this underlines the importance
of understanding what guarantees the stability of an assembly of interacting
particles. In what follows we aim to furnish a microscopic description of the
rigidity characterizing amorphous solids.

The informations about the rigidity of a solid against collective particle
motions are contained in the density of the vibrational modes D(ω): a system
is stable if there are no unstable modes. In a continuous isotropic elastic
medium, the invariance by translation implies that the vibrational modes are
plane waves. As a consequence in three-dimensions the density of vibrational
modes D(ω) follows the Debye law D(ω) ∝ ω2. By contrast, at low frequency
all glasses present an excess of vibrational modes in comparison with the
Debye behavior. This excess of vibrational modes is the so-called “boson
peak” 1 which appears as a maximum inD(ω)/ω2. It is observed in particular
in scattering experiments, see Fig.(1.2). The frequency of the peak lies in
the terahertz range, that is typically between ωD/10 and ωD/100, where ωD

is the Debye frequency.
Several empirical facts suggest that the presence of these excess modes is

related to many of the original properties of amorphous solids. In most glasses
[27, 28, 29, 30], with some exceptions as silica [31], this boson peak shifts
toward zero frequency when the glass is heated, as shown in Fig(1.2). Even-
tually the peak reaches zero frequency, as it has been observed numerically
[32] and empirically [28]. This suggests that in some glasses the correspond-
ing modes take part in the relaxation of the system [33, 34]. The presence of
the boson peak also affects the low-temperature properties of glasses. The
plateau in the thermal conductivity appears at temperatures that correspond
to the boson peak frequency [1], which suggests that the excess-modes do not
contribute well to transport. Furthermore, since these modes are soft, one
expects that their non-linearities are important. Hence these modes may
form two-levels systems [35, 36]. Finally, as the linear response to any force
or deformation can be expressed in terms of the vibrational modes, it is rea-
sonable to think that the boson peak affects force propagation. The recent
simulations from which Fig.(1.1) is taken show that the length scale that
appears in the response to a point force also appears in the normal mode

1 The term “boson peak” was introduced because the amplitude of the scattering peak
varies according to the Bose-Einstein factor at low temperature.
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analysis: only for larger system sizes the lowest frequency modes are the one
expected from a continuous elastic description [6, 7].

This excess of vibrational modes has been studied with diverse approaches.
There are phenomenological models also dealing with two-levels systems such
as the “soft potential theories” [35, 37, 38], which assumes the presence of
strongly anharmonic localized soft potential with randomly distributed pa-
rameters. A second approach consists in studying the vibrations of elastic
network with disorder. Simulations of a harmonic lattice with a random dis-
tribution of force constants [39, 40] exhibit a density of states qualitatively
similar to what is observed with glasses in scattering experiments. From the
theoretical point of view, models that assume spatially fluctuating elastic
constants [41] show an excess of modes whose frequency decreases with the
amplitude of the disorder. Recently further developments were proposed us-
ing the euclidean random matrix theory [42, 43, 44], where an assembly of
particles at infinite temperature is considered. The density of states corre-
sponds to the spectrum of a disordered matrix, the dynamical matrix. When
the density ρ is infinite, the system behaves as a continuous medium. To
approximate the density of states at finite ρ one uses perturbation theory in
the inverse density. This leads to an excess of modes whose frequency goes
to zero as the density decreases toward a finite threshold, and furnishes sev-
eral exponents that describes the density of states at this transition. A third
approach uses the mode coupling theory (MCT). MCT models the dynamics
of supercooled liquids, and predicts a glass transition at finite temperature
where the relaxation time diverges. In the glass region, the structure does not
fully relax for any waiting time. Nevertheless if the mode coupling equations
are used into this glass region, the dynamic that appears is non-trivial. It can
be interpreted in terms of harmonic vibrations [45] around a frozen amor-
phous structure. The corresponding spectrum displays an excess of modes
that converges toward zero frequency at the transition.

These different approaches describe the presence of an elastic instability,
and make predictions on how the density of states behaves with some pa-
rameters when this instability is approached. Nevertheless they have several
drawbacks. In these models, disorder is the main cause for the excess den-
sity of states. This is inconsistent with scattering data that show that some
crystals also display excess vibrational modes [46, 47, 48, 49]. In particular
silica, the glass with one of the strongest boson peak, as a density of states
extremely similar to the crystals of identical composition and similar density,
see Fig.(8.2), as we shall discuss in more details in Chapter 8. Thus the cause,
and more importantly the nature of these excess modes are still unclear. In
particular one may ask what microscopic features determine the vibrational
properties of amorphous solids at these intermediate frequencies, and what
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Fig. 1.2: Reduced density of states (g(E) ≈ D(ω) following our notation) of
collective motions in toluene, ethylbenzene, dibutylphthalate, and
glycerol glasses. Arrows indicate the energy of the boson peak
estimated from the data at lowest temperature. Chumakov et al.,
[30].
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are the signatures of marginal stability at a microscopic level. In what follows
we attempt to answer these questions in weakly-connected amorphous solids
such as an assembly of repulsive, short-range particles. Then we argue that
this description also applies to other systems, such as silica glass or parti-
cles with friction. Finally we derive some properties of colloidal glasses and
discuss the possible implications of this approach for the glass transition.

1.2 Critical behavior at the jamming

transition

Recently, C.S O’Hern, L.E Silbert et al. [50, 51] exhibited a system whose
vibrational properties are dramatically different from a conventional solid.
They simulate frictionless repulsive particles with short range interactions
at zero temperature. The authors consider soft spheres. For inter-particle
distance r < σ, the particles are in contact and interact with a potential:

V (r) =
ǫ

α

(

1 − r

σ

)α

(1.1)

where σ is the particle diameter and ǫ a characteristic energy. For r > σ the
potential vanishes and particles do not interact. Henceforth we express all
distances in units of σ, all energies in units of ǫ, and all masses in units of the
particle mass, m. The simulations were done for α = 2 (harmonic), α = 5/2
(Hertzian contacts) and α = 3/2. When the packing fraction φ is low, such
system is in a gas phase, and the pressure p is zero. At high packing fraction,
it forms a solid and has a positive pressure. There is a transition between this
two phases where the pressure vanishes: this is the jamming transition. At
that point the density of states behaves as a constant instead of the quadratic
dependence expected for normal solids, see Fig(1.3). The authors also study
the solid phase when the pressure decreases toward zero. They find that
the jamming transition acts as a critical point: the microscopic structure,
the vibrational modes and the macroscopic elastic properties display scaling
behaviors with the pressure p or with φ−φc, where φc is the packing fraction
at the transition. In three dimensions φc → 0.64 which corresponds to the
random close packing 2. Concerning the structure, the coordination number
z, which is the average number of contacts per particles, is found to follow:

z − zc ∼ (φ− φc)
1

2 (1.2)

2 The parameter φ−φc is somewhat less natural than the pressure because φc can vary
from sample to sample. The distribution of φc converges to a well-defined value only when
the number of particle N diverges. Nevertheless, the parameter φ− φc has the advantage
of being purely geometrical, and following [50] we should use it in most cases.
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independently of the potential, where zc = 2d, and d is the spatial dimen-
sion. This singular increase of the coordination was already noticed in [52].
Another striking observation is the presence of a singularity in the pair cor-
relation function g(r) at the jamming threshold. g(r) has an expected delta
function of weight zc at a distance 1 that represents all particles in contact.
But it also displays the following singularity:

g(r) ∼ 1√
r − 1

(1.3)

which indicates that there are many particles almost touching. Again this is
independent of the potential. This property was observed in other situations
[53]. Note that Eq.(1.2) and (1.3) are related. A small affine compression of
the configuration is equivalent to an increase of the particle diameter of an
amount ≈ φ−φc

3φc
. At the jamming threshold this would lead to an increase in

the coordination number:

z − zc ≈ 4π
∫ 1+ φ−φc

3φc

1
g(r)r2dr ∼

∫ 1+φ−φc

1

1√
r − 1

dr ∼ (φ− φc)
1

2 (1.4)

as observed.
As we mentioned, these simulations also reveal unexpected features in the

density of states, D(ω): (a) As shown in Fig(1.3), when the system is most
fragile, at p→ 0, D(ω) has a plateau extending down to zero frequency with
no sign of the standard ω2 density of states normally expected for a three-
dimensional solid. (b) As shown in the inset to that figure, as p increases,
the plateau erodes progressively at frequencies below a frequency ω∗, which
scales in the harmonic case as:

ω∗ ∼ δz (1.5)

(c) The value of D(ω) in the plateau is unaffected by this compression. (d)
At frequency much lower than ω∗, D(ω) still increases much faster with ω
than the quadratic Debye dependence.

Finally, it was conjectured by Alexander [36] that the elastic moduli
should scale at the jamming transition. Such scaling properties where ob-
served in emulsions near the jamming transition [54], but the presence of
noise in the measure of the packing fraction makes the exponent hard to
identify. In [50], the bulk modulus B, the shear modulus G and the pressure
are found to follow:

B ∼ (φ− φc)
α−2 (1.6)

G ∼ (φ− φc)
α−3/2 (1.7)

p ∼ (φ− φc)
α−1 (1.8)
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Fig. 1.3: D(ω) vs angular frequency ω for the simulation of Ref [50]. 1024
spheres interacting with repulsive harmonic potentials were com-
pressed in a periodic cubic box to volume fraction φ, slightly above
the jamming threshold φc. Then the energy for arbitrary small
displacements was calculated and the dynamical matrix inferred.
The curve labeled a is at a relative volume fraction φ− φc = 0.1.
Proceeding to the left the curves have relative volume fractions
10−2, 10−3, 10−4, 10−8, respectively. Inset: Scaling of ω∗ vs δz. ω∗

for each (φ − φc) is determined from the data in the main panel
as the frequency where D(ω) is half of the plateau value. δz vs
(φ − φc) is obtained from the scaling measured in [50]. The line
has slope 1.
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These results raise many questions. Among others: (i) the vibrations of
a normal solid are plane waves; what are the vibrations of a random close
packing of elastic spheres? (ii) How is the behavior of the structure and
the density of states related? This critical behavior is a stringent test to
such theories. (iii) How does the microscopic structure, for example the
coordination number, depend on the the system history? (iv) What are the
different elastic properties of this system, that behaves almost as a liquid at
the transition, as the shear modulus becomes negligible compare to the bulk
modulus? For example, how does it react to a local perturbation?

1.3 Organization of the thesis

At the center of our argument lies the concept of soft modes, or floppy modes.
These are collective modes that conserve the distance at first order between
any particles in contact. They have been discussed in relation to various
weakly-connected networks such as covalent glasses [55, 56], Alexander’s
models of soft solids [36], models of static forces in granular packs[57, 60]
and rigidity percolation models, see e.g. [61]. As we will discuss below, they
are present when a system is not enough connected. As a consequence, as
Maxwell showed [24], a system with a low average coordination number z
has some soft modes and therefore is not rigid. There is a threshold value
zc where a system can become stable, such a state is called isostatic. As
we shall discuss later, this is the case at the jamming transition, if rattlers
(particles with no contacts) are excluded. There are no zero-frequency modes
except for the trivial translation modes of the system as a whole. However,
if any contact were to be removed, there would appear one soft mode with
zero frequency. Using this idea we will show in what follows that isostatic
states have a constant density of states in any dimensions. When z > zc, the
system still behaves as an isostatic medium at short length scale, which leads
to the persistence of a plateau in the density of states at high frequency.

The second concept we use is at the heart of the work of Alexander on
soft solids [36]. In continuum elasticity the expansion of the energy for small
displacements contains a term proportional to the applied stress (that we
shall also call initial stress term following [36]), as we shall discuss in the
next Chapter. It is responsible for the vibrations of strings and drumheads,
but also for inelastic instability such as the buckling of thin rods. Alexander
pointed out that this term has also strong effects at a microscopic level in
weakly-connected solids. For example, it confers rigidity to gels, even though
these do not satisfy the Maxwell criterion for rigidity. We will show that
althought this term does not affect much the plane waves, it strongly affects
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the soft modes. In a repulsive system of spherical particles it lowers their
frequency. We shall argue that this can change dramatically the density of
states at low frequency, as it will be confirmed by a comparison of simulations
where the force in any contact is present, or set to zero. We show that these
considerations lead to a inequality between the excess connectivity δz ≡ z−zc

and the pressure that guarantees the rigidity of such amorphous solids. This
relation between stability and structure will enable us to discuss how the
history affects the microscopic structure of the system. In particlar, we shall
argue that the preparation of the system used in [50] leads to a marginally
stable state, even when φ > φc. This will account for both the scaling of the
coordination, and for the divergence of the first peak in g(r) at the random
close packing.

A distinct and surprising property of the system approaching the jam-
ming threshold is the nature of the quasi-plane waves that appear at lower
frequency than the excess of modes. The peculiar nature of the transverse
waves already appears at zero wave vector, as the shear modulus becomes
negligible compared to the bulk modulus near jamming. If the response to
a shear stress were be a perfect affine displacement of the system, the cor-
responding energy would be of the same order of the energy induced by a
compression. As this is not the case, this indicates the presence of strong
non-affine displacements in the transverse plane waves. To study this prob-
lem we shall introduce a formalism that writes the responses of the system
in terms of the force fields that balance the force on every particle. This
enables us to derive the scaling of the elastic moduli, and to compute the
response to a local perturbation at the jamming threshold. We show that
this response extends in the whole system.

We study how these ideas apply to real physical systems, such as granular
matter, glasses and dense colloidal suspensions. In granular matter friction
is always present. We derive the equation of the soft modes with friction.
The main difference with frictionless particles is that rotational degrees of
freedom of grains now matter, but our results on the vibrational modes and
on the elastic properties are unchanged. Then we discuss the case of glasses.
In these systems the coordination number is not well defined, as there are
long range interactions such as Van der Waals forces. We show that if the
hierarchy of interactions strengths is large enough, our description of the
boson peak still applies. In particular we argue that the boson peak of silica
glass corresponds to the slow modes that appear in weakly connected systems.
Our argument also rationalizes why the crystal of identical composition and
similar density, the crystobalite, has a similar density of state. We propose
testable predictions to check if the same description holds for Lennard-Jones
systems. Finally we study dense hard sphere liquids. Our main achievement
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is to derive an effective potential that describes the hard sphere interaction
when the fast temporal fluctuations are averaged out. Our effective potential
is exact at the jamming threshold. It allows to define normal modes and to
derive several properties of a hard sphere glass. In particular it implies that
the jamming threshold act as a critical point both in the liquid and in the
solid phases. This suggests original relaxation processes.

The thesis is organized as follows. Chapter 2 is introductive: we define
rigidity and soft modes and discuss how these concept were used to study
covalent glasses, force propagation or gels. In the Chapter 3 we use a simple
geometric variational argument based on the soft modes to show that isostatic
states have a constant density of states. The argument elucidates the nature
of these excess-modes.In the Chapter 4 we compute the density of states when
the coordination of the system z = zc+δz increases with the packing fraction.
At that point we neglect the effect of the applied stress on the vibrations.
This approximation corresponds to a real physical system: a network of
relaxed springs. We show that such system behaves as an isostatic state for
length scales smaller than l∗ ∼ δz−1. This leads to a plateau in the density
of states for frequency higher than ω∗ ∼ δz. At lower frequency, we expect
that the system behaves as a continuous medium with a Debye behavior,
which is consistent with our simulations. We extend this result to the case of
tetrahedral networks. In Chapter 5 we study the effect of the applied pressure
on D(ω). We show that althought it does not affect much the plane waves,
the applied stress lowers the frequency of the anomalous modes. We give a
simple scaling argument to evaluate this effect, and we discuss its implication
for the density of states. Incidentally this also furnishes an inequality between
δz and the pressure which generalizes the Maxwell criterion for rigidity. We
discuss the different length scales that appear in the problem. In Chapter
6, we discuss the influence of the cooling rate and the temperature history
on the spatial structure and the density of states of the system. We show
that the scaling of the coordination and the divergence in g(r) are related to
the marginal stability of the system of [50]. Some elastic properties of this
tenuous system are computed in Chapter 7 , in particular the elastic moduli.
Chapter 8 is devoted to the applications of our arguments to granular matter
and glasses. This approach explains the qualitative shape of the density
of state of silica. In Chapter 9 we derive an effective potential for hard
spheres, and compute some properties of a hard spheres liquid near the glass
transition. To conclude in chapter 11 we discuss the possible applications of
these ideas to the low temperature properties of glasses, the glass transition
and the rheology of granular matter.



2. Soft Modes and applications

2.1 Rigidity and soft modes

More than one century ago, Maxwell [24], working on the stability of en-
gineering structures, studied the necessary conditions for the rigidity of an
assembly of interacting objects. His response is as follows: consider for ex-
ample a network of N point particles connected with Nc relaxed springs of
stiffness unity in a space of dimension d. The expansion of the energy E is:

δE =
1

2

∑

〈ij〉

[(δ ~Rj − δ ~Ri).~nij ]
2 (2.1)

where the sum is taken on every couple of particles in contact 〈ij〉, ~nij is

the unit vector going from i to j, and δ ~Ri is the displacement of particle i.
It is convenient to express Eq.(2.1) in matrix form, by defining the set of

displacements δ ~R1...δ ~RN as a dN -component vector |δR〉. Then Eq. (2.1)
can be written in the form:

δE = 〈δR|M|δR〉 (2.2)

The corresponding matrix M is known as the dynamical matrix [62], see foot-
note3 for an explicit tensorial notation. The 3N eigenvectors of the dynamical
matrix are the normal modes of the particle system, and its eigenvalues are
the squared angular frequencies of these modes. A system is rigid if it has
no soft mode, which are the modes with zero energy. Since Eq.(2.1) is a sum
of positive terms, such modes satisfy:

(δ ~Ri − δ ~Rj).~nij = 0 for all Nc contacts 〈ij〉 (2.3)

This linear equation defines the vector space of displacement fields that con-
serve the distances at first order between particles in contact. The particles
can yield without restoring force if their displacements lie in this vector space.
Fig(2.1) furnishes an example of such mode. Note that Eq.(2.3) is purely ge-
ometrical and does not depend on the interaction potential.

3 M can be written as an N by N matrix whose elements are themselves tensors of rank
d, the spatial dimension Mij = − 1

2
δ〈ij〉~nij ⊗ ~nij + 1

2
δi,j

∑

<l> ~nil ⊗ ~nil where δ〈ij〉 = 1
when i and j are in contact, the sum is taken on all the contacts l with i.
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Fig. 2.1: Illustration of a rigid and a floppy network made of 4 particles
interacting with springs. Nd−d(d+1)/2 = 5 contacts are required
to rigidify the structure. The red arrow of the floppy network
indicates the soft mode that appears when one contact from the
rigid system is removed.

Maxwell noticed that Eq.(2.3) has Nc constraints and Nd − d(d + 1)/2
degrees of freedom if we substract global translations and rotations. Each
equation restricts the dN − d(d + 1)/2-dimensional space of |δR〉 by one
dimension. In general, these dimensions are independent, so that the number
of independent soft modes is dN − d(d + 1)/2 − Nc. A rigid system must
not have any soft modes, and therefore as at least as many constraints as
it has degrees of freedom. For a large system this yields for the average
coordination z ≡ 2Nc/N :

z ≥ 2d (2.4)

This is the Maxwell criterion for rigidity. It is important to note that it is
a global criterion, as it discusses the stability toward collective motions of
particles. A local criterion that treat the motions of single particles only
leads to z > d + 1. As we shall see, some systems live on the bound of
Eq.(2.4), they are called isostatic.

If this criterion has been known for quite a long time, it is only in the
last decades that the concept of soft mode of non-rigid systems was used to
study gels, covalent glasses and force propagation in granular matter. In the
present Chapter we discuss these ideas.

2.2 Soft modes and force propagation

Recently several theories were proposed to describe the response to forces
in sand. Some [11, 12] have argued that granular matter requires a new
constitutive law: they postulate a linear relation between the components of
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the stress tensor, the “null stress law”. This leads to a continuum mechanics
different from elasticity, where forces propagate along favored directions. In
experiments, this description breaks down on large length scales [13, 14]
where an elastic-like behavior is recovered. Nevertheless, as we shall see
now, this theory was further justify for frictionless grains [57, 58, 59] using
the concept of soft modes.

There is an obvious connection between soft modes and forces: soft modes
do not have restoring force. Therefore a non-rigid system can resist to an
external force |F〉 ≡ {~Fi}, where i labels the particles, only if the external
force is orthogonal to each soft mode β, that is:

〈F|δRβ〉 ≡
∑

i

~Fi · ~δR
β

i = 0 (2.5)

If Eq.(2.5) is not satisfied, the system yields along the soft modes, which are
thus the directions of fragility of the system.

To apply this idea to granular matter, the starting point is the follow-
ing remark: an assembly of frictionless hard spheres (or equivalently elastic
spheres at the jamming transition where the pressure vanishes) is exactly
isostatic, as was shown in particular in [57, 65, 60] and confirmed in the
simulation of [50]. The argument for hard spheres is as follows: on the one
hand, it is a rigid system and therefore must satisfy the bound of (2.4). On
the other hand, the distance between hard spheres in contact must be equal
to the diameter σ = 1 of the spheres:

||~Ri − ~Rj || = 1 (2.6)

Eq.(2.6) brings exactly Nc constraints on the positions of the centers of the
particles. Once again, there are Nd − d(d+ 1)/2 degrees of freedom for the
particle positions. Therefore one must have Nd − d(d + 1)/2 ≥ Nc which
implies z ≤ 2d (note that this argument is contradicted in the case of the
crystal whose coordination is larger. In the crystal, the constraints on the
particle positions are redundant. Adding an infinitesimal poly-dispersity
destroys this effect). Finally these two bounds lead to z = 2d.

The second remark is that an isostatic state is marginally rigid: if one
contact is removed, one soft mode appears. This has the following conse-
quence: an isostatic state is very sensitive to boundary conditions. Consider
a subsystem of size L in a large isostatic system. Let Next ∼ Ld−1 be the
number of contacts of this subsystem with external beads. The number of
contacts inside the subsystem Nint is on average 〈Nint〉 = Nd−Next/2, where
the factor 1

2
shows up because a contact is shared by two particles. This im-

plies that if the Next contacts were to be removed, the subsystem would not
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be rigid. On average it will have Next/2−d(d+1)/2 soft modes. Consider now
the force field composed of the Next contact forces applied by the external
beads on the subsystem. It must be orthogonal to the Next/2−d(d+1)/2 soft
modes. This implies that roughly half of the external contact forces are free
degrees of freedom. If the contact forces are imposed on half of the bound-
ary of the subsystem, the contact forces of the other half of the boundary
are determined. This is very different from an elastic body where one can
impose any stress on the whole boundary and compute the response of the
system. In an isostatic system forces propagate from one side of the system
to the other. In [57], the authors discuss the nature of the soft modes of iso-
static anisotropic system. Using Eq.(2.5) they infer a null-stress law among
the components of the stress tensor. This leads to the hyperbolic equations
proposed to describe force propagation in granular matter [11, 12].

2.3 Covalent glasses

Phillips [55] used the soft modes, or “floppy modes”, to study the structure
of covalent glasses. The counting of degrees of freedom is slightly different
from a network of springs where only the stretching of the contacts matters.
Covalent interactions also display multi-body forces: the energy of the system
depends on the angles formed by the different covalent bonds of an atom.
These extra-terms in the energy, the “bond bending energy”, bring extra-
constraints on the soft modes. How many total constraints are there per atom
of valence v? As we discussed with Eq.(2.3), the stretching of the v bonds
leads to v/2 constrains on the soft modes (as there is one constraint per bond
and each bond is shared by two atoms). Furthermore, the covalent bonds
form v(v − 1)/2 angles, each of them corresponds to a term in the energy
expansion. Therefore the total number of constraints is v/2 + v(v − 1)/2 =
v2/2.

Consider, following [55], chalcogenide alloys such as GexSe1−x, where the
relative concentration x of Ge can vary from 0 to 1. Ge has a valence of 4
whereas Se has a valence of 2. When x = 0 the glass as a polymeric structure.
When x increases the connectivity of the covalent network increases too, until
it becomes rigid. This takes place when x · 42 + (1− x) · 22 = 2d = 6, that is
when xc ≈ 0.16.

However, although the covalent network is floppy for smaller x, the glass
is still rigid at lower concentration. In particular the shear modulus does
not vanish below xc [63]. The reason is that this counting argument neglects
the weaker interactions induced by the lone pair electrons, that lead to short
range repulsion and long range attraction (Van der Waals interaction). Nev-
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ertheless several experimental results show that the transition at x = 0.16
affects certain properties of the system. In Ge-As-Se glasses the fragility, that
quantifies how the dependence of the viscosity with temperature is different
from an Arrhenius law, is maximal at the transition [64]. Furthermore, it
was argued [55] that the composition of the best glass former should be xc, as
it appears experimentally, see Fig(2.2). A qualitative argument is as follows:
when x increases toward xc, the covalent network becomes more and more
intricate and the viscosity of the system increases. It takes therefore more
and more time to nucleate the crystal. On the other hand, if x increases
above xc, the covalent network is over-constrained, the bonds are frustrated
and have to store energy. The configuration of the crystal, where the bonds
can organize to avoid this frustration, becomes more and more favorable with
x in comparison with the amorphous state, and is thus easier to nucleate.

This description is “mean field” as it does not consider the possible spa-
tial fluctuations of the coordination. Such fluctuations may lead to a system
where rigid, high-coordinated regions coexist with floppy, weakly-coordinated
regions. To study this possibility models were proposed such as rigidity per-
colation, see e.g. [61] and reference therein. In its simplest form, this model
considers springs randomly deposited on a lattice. When the concentration
of springs increases, there is a transition when a rigid cluster percolates in
the system almost fully floppy. Such a cluster is a non-trivial fractal object
and contains over-constrained regions. In this form, this model is at infinite
temperature, as there are no correlation among the contacts deposited. It
is interesting to note the difference with the transition of jamming that we
study in what follows, which is also a transition of rigidity. At the jam-
ming threshold the correlations among particles are obviously important,
as the temperature is not infinite. The system is exactly isostatic, as we
shall discuss, and does not contain over-constrained regions. It is a normal
d-dimensional object with only very few holes of size of order unity 4, the
“rattlers”, which are isolated particles without contact [50].

4 The absence of large voids, or rattlers, has geometrical origins. Because particles are
repulsive, the rigid region surrounding a void must be convex. A large void necessitates the
creation of a vault. A flat vault is impossible as forces cannot be balanced on any particle
of the surface. A weakly curved vault imposes drastic constraints on the distribution of
angles of contact between these particles. This suggests that the probability of making a
large void decays very fast, presumably at least exponentially in the surface of the void.
If friction is present such voids might form more easily.
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Fig. 2.2: The quenching rate (or difficulty of glass formation) was plotted
as a function of x in GexSe1−x alloys. Both lines are sketched
in to guide the reader’s eye. The dashed line corresponds to the
network effect discussed in the text. Phillips [55].
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2.4 The rigidity of “soft solids”

Alexander noticed [36] the following contradiction: there are solids less con-
nected than required by the Maxwell criterion, and that are nevertheless
rigid. For example, one may describe a gel as an assembly of reticulated
point linked by springs that are the polymers. In general the coordination
of such system is less than 6. Why then a gel has a finite shear modulus?
The starting point of Alexander’s answer is the simple following remark: the
stress influences the frequency of the vibrations. At a macroscopic level the
presence of a negative stress (that is, when the system is stretched) is re-
sponsible for the fast vibrations of strings or drumheads. When a system
is compressed, the stress is positive and lowers the frequency of the modes
that can even become unstable, as for the buckling of a thin rod. To discuss
the role of stress at a microscopic level, consider particles interacting with a
potential V (r). The expansion of the energy leads to:

δE =
∑

ij

V ′(req
ij )drij +

1

2
V ′′(req

ij )dr2
ij +O(dr3

ij) (2.7)

where the sum is over all pairs of particles, req
ij is the equilibrium distance

between particles i and j. In order to get an expansion in the displacement
field δ ~Ri we use:

drij = (δ ~Rj − δ ~Ri).~nij +
[(δ ~Rj − δ ~Ri)

⊥]2

2req
ij

+O(δ ~R3) (2.8)

where (δ ~Rj − δ ~Ri)
⊥ indicates the projection of δ ~Rj − δ ~Ri on the plane or-

thogonal to ~nij . When used in Eq.(2.7), the linear term in the displacement
field disappears (the system is at equilibrium) and we obtain:

δE = {
∑

ij

V ′(req
ij )

[(δ ~Rj − δ ~Ri)
⊥]2

2req
ij

} +
1

2
V ′′(req

ij )[(δ ~Rj − δ ~Ri).~nij ]
2 +O(δ ~R3)

(2.9)
The difference from Eq.(2.1) is the term inside curly brackets. Such term
is called the “initial stress” term in [36] as it is directly proportional to the
forces V ′(req

ij ). We shall also refer to it as the applied stress term. If the
system has a negative pressure p this term increases the frequency of the
modes. As a consequence if p < 0 all the soft modes of a weakly-connected
system gain a finite positive energy: the system is rigid. This occurs in gels:
the osmotic pressure of the solvent is larger than the external pressure. This
imposes that the network of reticulated polymers carry a negative pressure
to compensate this difference: the polymers are stretched. This rigidifies the
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system. As a consequence, the shear modulus of gels is directly related to
the osmotic pressure of the solvent.



3. Vibrations of isostatic systems

3.1 Isostaticity

When a system of repulsive spheres jams at zero temperature, the system
is isostatic [57, 60, 65] (when the rattlers, or particles without contacts, are
removed). As we said above, on the one hand it must be rigid and satisfy
the bound of (2.4). One the other hand, it cannot be more connected: this
would imply that the contacts are frustrated as they cannot satisfy Eq.(2.6).
That is, there would not be enough displacements degrees of freedom to
allow particles in contact to touch each other without interpenetrating, as
we discussed for hard spheres in the last Chapter. Thus the energy of the
system, and the pressure, would not vanish at the transition. It must be
the case, since an infinitesimal pressure can jam an athermal gas of elastic
particles.

In terms of energy expansion, since the pressure vanishes at the transition,
the initial stress in bracket in Eq.(2.9) vanishes. For concreteness in the
following Chapters we consider the harmonic potential, corresponding to α =
2 in Eq.(1.1). The expansion of the energy is then given by Eq.(2.1). In
Chapter 7 we generalize our findings to other soft sphere potentials and
other types of interactions.

An isostatic system is marginally stable: if q contacts are cut, a space
of soft modes of dimension q appears. For our argument below we need
to discuss the extended character of these modes. In general when only
one contact 〈ij〉 is cut in an isostatic system, the corresponding soft mode
is not localized near 〈ij〉. This comes from the non-locality of the isostatic
condition that gives rise to the soft modes; and was confirmed in the isostatic
simulations of Ref [57], which observed that the amplitudes of the soft modes
spread out over a nonzero fraction of the particles. This shall be proved by
the calculation of Chapter 7 that shows that in an isostatic system, the
response to a local strain does not decay with the distance from the source.
When many contacts are severed, the extended character of the soft modes
that appear depends on the geometry of the region being cut. If this region
is compact many of the soft modes are localized. For example cutting all the
contacts inside a sphere totally disconnects each inner particle. Most of the
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Fig. 3.1: One soft mode in two dimensions forN ≈ 1000 particles. The rela-
tive displacement of the soft mode is represented by a line segment
extending from the dot. The mode was created from a previously
prepared isostatic configuration, periodic in both directions, fol-
lowing [50]. 20 contacts along the vertical edges were then removed
and the soften modes determined. The mode pictured here is an
arbitrary linear combination of these modes.

soft modes are then the individual translations of these particles and are not
extended throughout the system.

In what follows we will be particularly interested in the case where the
region of the cut is a hyper-plane as illustrated in Fig.(3.2). In this situation
occasionally particles in the vicinity of the hyper-plane can be left with less
than d contacts, so that trivial localized soft modes can also appear. However
this represents only a finite fraction of the soft modes. We expect that there
is a non-vanishing fraction q′ of the total soft modes that are not localized
near the hyper-plane. Rather, as when a single contact is cut, these modes
should extend over the whole system, like the mode shown in Fig.(3.1). We
shall define extended modes more precisely in the next section.
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3.2 Variational procedure

We aim to show first that the density of states of an isostatic system does not
vanish at zero frequency. Since D(ω) is the total number of modes per unit
volume per unit frequency range, we have to show that there are at least of
the order of ωLd normal modes with frequencies smaller than ω for any small
ω. As we justify later, if proven in a system of size L for ω ∼ ωL ∼ 1/L, this
property can be extended to a larger range of ω independent of L. Therefore
it is sufficient to show that there are of the order of Ld−1 normal modes
with frequency of the order of 1/L, instead of the order of one such mode
in a continuous solid: the whole translation of the system. To do so we use
a variational argument: M is a positive symmetric matrix. Therefore if a
normalized mode has an energy δE, we know that the lowest eigenmode has
a frequency ω0 ≡

√
E0 ≤

√
δE. Such argument can be extended to a set

of modes 5: if there are m orthonormal trial modes with energy δE ≤ ω2
t ,

then there are at least m/2 normal modes with frequency smaller than
√

2ωt.
Therefore we are led to find of the order of Ld−1 trial orthonormal modes
with energy of order 1/L2.

3.3 Trial modes

For concreteness we consider the three-dimensional cubic N -particle system
S of Ref [50] with periodic boundary conditions at the jamming threshold.
We label the axes of the cube by x, y, z. S is isostatic, so that the removal
of n contacts allows exactly n displacement modes with no restoring force.
Consider for example the system S ′ built from S by removing the q ∼ L2

contacts crossing an arbitrary plane orthogonal to (ox); by convention at
x = 0, see Fig.(3.2). S ′, which has a free boundary condition instead of
periodic ones along (ox), contains a space of soft modes of dimension q 6,
instead of one such mode —the translation of the whole system— in a normal
solid. As stated above, we suppose that a subspace of dimension q′ ∼ L2 of
these soft modes contains only extended modes. We define the extension
of a mode relative to the cut hyper-plane in terms of the amplitudes of
the mode at distance x from this hyper-plane. Specifically the extension

5 If mα is the α’th lowest eigenvalue of M and if eα is an orthonormal basis such that
〈eα|M|eα〉 ≡ nα then the variational bound of A. Horn [Am. J. Math 76 620 (1954)] shows
that

∑q
1
mα ≤ ∑q

1
nα. Since qnq ≥ ∑q

1
nα, and since

∑q
1
mα ≥ ∑q

q/2
mα ≥ (q/2)mq/2,

we have qnq ≥ (q/2)mq/2 as claimed.
6 The balance of force can be satisfied in S′ by imposing external forces on the free

boundary. This adds a linear term in the energy expansion that does not affect the
normal modes.
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e of a normalized mode |δR〉 is defined by
∑

i sin
2(xiπ

L
)〈i|δR〉2 = e, where

the notation 〈i|δR〉 indicates the displacement of the particle i of the mode
considered. For example, a uniform mode with 〈i|δR〉 constant for all sites
has e = 1

2
independent of L. On the other hand, if 〈i|δR〉 = 0 except for a site

i adjacent to the cut hyper-plane, the xi/L ∼ L−1 and e ∼ L−2. We define
the subspace of extended modes by setting a fixed threshold of extension e0
of order 1 and thus including only soft modes β for which eβ > e0. As we
argued at the beginning of the Chapter, we expect that a fraction of the total
soft modes are extended. Thus if q′ is the dimension of the extended modes
vector space, we shall suppose that q′/q remains finite as L→ ∞; i.e. a fixed
fraction of the soft modes remain extended as the system becomes large. The
appendix at the end of this Chapter presents our numerical evidence for this
behavior.

We use them to build q′ orthonormal trial modes of frequency of the order
1/L in the initial system S. Let us denote |δRβ〉 a normalized basis of the
vector space of such extended modes, 1 ≤ β ≤ q′. These modes are not soft
in the jammed system S because they deform the previous q contacts located
at x = 0, and therefore cost energy. Nevertheless a set of trial modes, |δR∗

β〉,
can still be formed by altering the soft modes so that they do not have an
appreciable amplitude at the boundary where the contacts were severed. We
seek to alter the soft mode to minimize the distortion at the severed contacts
while minimizing the distortion elsewhere. Accordingly, for each soft mode
β we define the corresponding trial-mode displacement 〈i|δR∗〉 to be:

〈i|δR∗
β〉 = Cβ sin(

xiπ

L
)〈i|δRβ〉 (3.1)

where the normalization constant Cβ depends on the spatial distribution of
the mode β. If for example 〈i|δR〉 = 0 except for a site i adjacent to the cut
plane, Cβ grows without bound as L → ∞. In the case of extended modes
C−2

β ≡ ∑

〈ij〉 sin
2(xiπ

L
)〈j|δRβ〉2 = eβ > e0, and therefore Cβ is bounded above

by e
− 1

2

0 . The sine factor suppresses the problematic gaps and overlaps at the
q contacts near x = 0 and x = L. Formally, the modulation by a sine is a
linear mapping. This mapping is invertible if it is restricted to the extended
soft modes. Consequently the basis |δRβ〉 can always be chosen such that
the |δR∗

β〉 are orthogonal. Furthermore one readily verifies that the |δR∗
β〉’s

energies are small, because the sine modulation generates an energy of order
1/L2 as expected. Indeed we have from Eq.(2.1):

δE = C2
β

∑

〈ij〉

[(sin(
xiπ

L
)〈i|δRβ〉 − sin(

xjπ

L
)〈j|δRβ〉) · ~nij]

2 (3.2)

Using Eq.(2.3), and expanding the sine, one obtains:
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Fig. 3.2: Illustration of the boundary contact removal process described in
the text. Eighteen particles are confined in a square box of side
L periodically continued horizontally and vertically. An isostatic
packing requires 33 contacts in this two-dimensional system. An
arbitrarily drawn vertical line divides the system. A contact is
removed wherever the line separates the contact from the center of
a particle. Twenty-eight small triangles mark the intact contacts;
removed contacts are shown by the five white circles.



3. Vibrations of isostatic systems 31

δE ≈ C2
β

∑

〈ij〉

cos2(
xiπ

L
)
π2

L2
(~nij · ~ex)

2(〈j|δRβ〉 · ~nij)
2 (3.3)

≤ e−1
0 (π/L)2

∑

〈ij〉

〈j|δRβ〉2 (3.4)

where ~ex is the unit vector along (ox). The sum on the contacts can be
written as a sum on all the particles since only one index is present in each
term. Using the normalization of the mode β and the fact that the coordi-
nation number of a sphere is bounded by a constant zmax (zmax = 12 for 3
dimensional spheres 7), one obtains:

δE ≤ e−1
0 (π/L)2zmax ≡ ω2

L (3.5)

One may ask if the present variational argument can be improved, for exam-
ple by considering geometries of broken contacts different from the surface
we considered up to now. When contacts are cut to create a vector space of
extended soft modes, the soft modes must be modulated with a function that
vanishes where the contacts are broken in order to obtain trial modes of low
energy. One the one hand, cutting many contacts increases the number of
trial modes. On the other hand, if too many contacts are broken, the mod-
ulating function must have many “nodes” where it vanishes. Consequently
this function displays larger gradients and the energies of the trial modes
increase. Cutting a surface (or many surfaces, as we shall discuss below) ap-
pears to be the best compromise between these two opposing effects. Thus
our argument gives a natural limit to the number of low-frequency states to
be expected.

Finally we have found of the order of L2 trial orthonormal modes of
frequency bounded by ωL ∼ 1/L, and we can apply the variational argument
mentioned above: the density of statesis bounded below by a constant below
frequencies of the order ωL. In what follows, the trial modes introduced
in Eq.(3.1), which are the soft modes modulated by a sine, shall be called
“anomalous modes”.

7 In a polydisperse system zmax could a priori be larger. Nevertheless Eq.(3.3) is a sum
on every contact where the displacement of only one of the two particles appears in each
term of the sum. The corresponding particle can be chosen arbitrarily. Chose the smallest
particle of each contact. Thus when this sum on every contact is written as a sum on
every particles to obtain Eq.(3.5), the constant zmax still corresponds to the monodisperse
case, as a particle cannot have more contacts with particles larger than itself.
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3.4 Argument extension to a wider

frequency range

We may extend this argument to show that the bound on the initial density
of states extends to a plateau encompassing a nonzero fraction of the modes
in the system. If the cubic simulation box were now divided into m3 sub-
cubes of size L/m, each sub-cube must have a density of states equal to the
same D(ω) as was derived above, but extending to frequencies of order mωL.
These subsystem modes must be present in the full system as well, therefore
the bound on D(ω) extends to [0, mωL]. We thus prove that the same bound
on the average density holds down to sizes of the order of a few particles,
corresponding to frequencies independent of L. Finally D(ω) does not vanish
when ω → 0, as indicates the presence of the observed plateau in the density
of states. We note that in d dimensions this argument may be repeated to
yield a total number of modes, Ld−1, below a frequency ωL ≈ 1/L, thus
yielding a limiting nonzero density of states in any dimension.

We note that the trial modes of energy δE ∼ l−1 that we introduced
by cutting in subsystems of size l are, by construction, localized to distance
scale l. Nevertheless we expect these trial modes to hybridize with the trial
modes of other subsystems, and the corresponding normal modes not to be
localized on such length scale.

3.5 Appendix: Spatial distribution of the

soft modes

In our argument we have assumed that when q ∼ Ld−1 contacts are cut
along a hyper-plane in an isostatic system, there is a vector space of di-
mension q′ = aq which contains only extended modes, such that a does not
vanish when L → ∞. A normalized mode |δR〉 was said to be extended if
∑

i sin
2(xiπ

L
)〈i|δR〉2 > e0, where e0 is a constant, and does not depend on L.

Here we show how to choose e0 > 0 so that there is a non-vanishing fraction
of extended soft modes. We build the vector space of extended soft modes
and furnish a bound on its dimension.

Let us consider the linear mapping G which assigns to a displacement
field |δR〉 the displacement field 〈i|GδR〉 = sin2(xiπ/L)δ ~Ri. For any soft
mode |δRβ〉 one can consider the positive number aβ ≡ 〈δRβ|G|δRβ〉 ≡
∑

i sin
2(xiπ/L)δ ~Rβ

2

i . We build the vector space of extended modes by recur-
sion: at each step we compute the aβ for the normalized soft modes, and we
eliminate the soft mode with the minimum aβ . We then repeat this procedure
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Fig. 3.3: The overlap function f(x) as defined in Eq.(3.6) for different sys-
tem sizes in three dimensions. Soft modes were created from iso-
static configurations as described below Fig. 3.1.

in the vector space orthogonal to the soft modes eliminated. We stop the
procedure when aβ > e0 for all the soft modes β left. Then all the modes left
are extended according to our definition. We just have to show that one can
choose e0 > 0 such that when this procedure stops, there are q′ modes left,
with q′ > aq and a > 0. In order to show that, we introduce the following
overlap function:

f(x)dx ≡ q−1
∑

β=1,...,q

∑

xi∈[x,x+dx]

[δ ~Ri,β]2 (3.6)

The sum is taken on an orthonormal basis of soft modes β and on all
the particles whose position has a coordinate xi ∈ [x, x + dx]. f(x) is the
trace of a projection, and is therefore independent of the orthonormal basis
considered. f(x) describes the spatial distribution of the amplitude of the
soft modes. The δRβ are normalized and therefore:

∫ L

0
f(x)dx = 1 (3.7)

We have examined soft modes made from configurations at the jamming
transition found numerically in [50]. The overlap function f(x) was then
computed for different system sizes L. These are shown in Fig. 3.3. It
appears from Fig.(3.3) that i) when f(x) is rescaled with the system size
it collapses to a unique curve, and ii) this curve is bounded from below
by a constant c (c ≈ 0.6). Consequently one can bound the trace of G:
trG =

∫ L
0 qf(x) sin2(x) > qc/2. On the other hand one has trG =

∑q
β=1 aβ,

where the sum is made on the orthonormal basis we just built. Introducing
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the numbers a and e0 such that there are q′ = aq extended modes, and using
that the aβ < 1, one can bound this sum and obtain trG < aq + (1 − a)qe0.
Choosing for example e0 = c/2 > 0, one finds a > c/(2 − c), which is a
constant independent of L as claimed.



4. Evolution of the modes with the

coordination

4.1 An “isostatic” length scale

When the system is compressed and moves away from the jamming transi-
tion, the simulations showed that the extra-coordination number δz ≡ z− zc

increases. In the simulation, the compression also creates forces on all con-
tacts. In this Chapter we ignore these forces, and instead only consider the
contact network created by compression, but in the absence of applied pres-
sure. Any tension or compression in the contacts is removed. The effect on
the energy is to remove the first bracketed term from Eq.(2.9) above, and
the expansion of the energy is still given by Eq.(2.1). We note that removing
these forces, which add to zero on each particle, does not disturb the equi-
librium of the particles or create displacements. In this section we ignore the
question of how δz depends on the degree of compression. We return to this
question in the next section. Compression causes ∆Nc = Nδz/2 ∼ L3δz ex-
tra constraints to appear in Eq.(2.1). Cutting the boundaries of the system,
as we did above, relaxes q ∼ L2 constraints. For a large system, q < ∆Nc

and Eq.(2.1) is still over-constrained so that no soft modes appear in the sys-
tem. However, as the systems become smaller, the excess ∆Nc diminishes,
and for L smaller than some l∗ ∼ δz−1 where ∆Nc = q, the system is again
under-constrained, as was already noticed in [57]. This allows us to build
low-frequency modes in subsystems smaller than l∗. These modes appear
above a cut-off frequency ω∗ ∼ l∗−1; they are the excess-modes that con-
tribute to the plateau in D(ω) above ω∗. In other words, anomalous modes
with characteristic length smaller than l∗ are little affected by the extra con-
tacts, and the density of states is unperturbed above a frequency ω∗ ∼ δz.
This scaling is checked numerically in Fig.4.1. It is in very good agreement
with our prediction up to δz ≈ 2.

At frequency lower than ω∗ we expect the system to behave as a disor-
dered, but not ill-connected, elastic medium, so that the vibrational modes
are similar to the plane waves of a continuous elastic body. We refer to these



4. Evolution of the modes with the coordination 36

10
-2

10
-1

10
0

δz
10

-3

10
-2

10
-1

10
0

ω
∗

10
-2

10
-1

10
010

-3

10
-2

10
-1

10
0

Fig. 4.1: ω∗ as defined in the insert of Fig.1 vs. coordination, in the system
with relaxed springs. The line as a slope one.

modes as “acoustic modes”. Thus we expect D(ω) at small ω to vary as
ω2c−3, where c(δz) is the sound speed at the given compression. This c may
be inferred from the bulk and shear moduli measured in the simulations; that
we shall derive in chapter 7. One finds for the transverse velocity ct ∼ (δz)

1

2 ,
and for the longitudinal velocity cl ∼ δz0. Thus at low frequency the D(ω) is
dominated by the transverse plane waves and at ω = ω∗ the acoustic density
of states is ω2c3t ∼ δz2δz−3/2 ∼ δz

1

2 : the acoustic density of states should be
dramatically smaller than the plateau density of states. There is no smooth
connection between the two regimes, thus we expect a sharp drop-off in D(ω)
for ω < ω∗. Such drop-off is indeed observed, as seen in Fig(4.2). In fact,
because of the finite size of the simulation, no acoustic modes are apparent
at ω < ω∗ near the transition.

Thus the behavior of such system near the jamming threshold depends on
the frequency ω at which it is considered. For ω > ω∗ the system behaves as
an isostatic state: the density of states is dominated by anomalous modes.
For ω < ω∗ we expect it to behave as a continuous elastic medium with
acoustic modes. Since the transverse and the longitudinal velocities do not
scale in the same way, the wavelengths of the longitudinal and transverse
plane waves at ω∗ are two distinct length scales ll and lt which follow ll ∼
clω

∗−1 and lt ∼ ctω
∗−1. At shorter wave lengths we expect the acoustic

modes to be strongly perturbed. Note that since cl ∼ δz0, one has ll ∼ l∗.
Interestingly, lt ∼ δz−

1

2 is the smallest system size at which plane waves can
be observed: for smaller systems, the lowest frequency mode is not a plane
wave, but an anomalous mode. lt was observed numerically in [66].
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Fig. 4.2: Log-linear plot of the density of states for N=1024 for three values
of φ− φc in the soft spheres system (dotted line) and the system
where the applied stress term has been removed (solid line).

4.2 Role of spatial fluctuations of z

Our argument ignores the spatial fluctuations of δz. If these fluctuations
were spatially uncorrelated they would be Gaussian upon coarse-graining:
then the extra number of contacts ∆Nc in a subregion of size L would have
fluctuations of order Ld/2. The scaling of the contact number that appears
in our description is ∆Nc ∼ Ld−1 and is therefore larger than these Gaussian
fluctuations for d > 2. In other terms at the length scale l∗ where soft
modes appear, the fluctuations of the number of contacts inside the bulk
are negligible in comparison with the number of contacts at the surface.
Therefore the extended soft modes that are described here are not sensitive
to fluctuations of coordination in three dimensions near the transition. In
[67] we argued that in two dimensions there are spatial anti-correlations in
z, and that the fluctuations do not affect the extended soft modes in two
dimensions either.

Note that these arguments do not preclude the existence of low-frequency
localized modes that may appear in regions of small size l ≪ l∗, and that
could be induced by very weak local coordination, or specific configuration.
The presence of such modes would increase the density of states at low-
frequency. There is no evidence for their presence in the simulations of [50].
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Fig. 4.3: Rigid unit modes model applied to silica. Trachenko et al.[68].

4.3 Application to tetrahedral networks

The nature of slow vibrations -and the possible presence of two-level systems-
has been much studied in silica, one of the main glass-forming system. In this
glass (or more generally aluminosilicates) the forces within the tetrahedra
SiO4 are much stronger than the forces that act between them [69]: it is
easier to rotate two linked tetrahedra than to distort one tetrahedron 8. This
suggests to model such glass as an assembly of linked tetrahedra loosely
connected at corners: this is the “rigid unit modes” model [70]. In this
model the tetrahedra are characterized by a unique parameter, a stiffness k
9. Recently this model was used to study the vibrations of silica [71]. The
authors first generate realistic configurations of SiO2 at different pressures
using molecular dynamics simulations. At low pressure, they obtain a perfect
tetrahedral network. When the pressure becomes large, the coordination
of the system increases with the formation of 5-fold defects. Once these
microscopic configurations are obtained, the rigid unit model is used and the
system is modeled as an assembly of rigid tetrahedra, see Fig.(4.3). Then,
the density of states of such network is computed. The results are shown

8 For example the bending energy of Si-o-Si is roughly 10 times smaller than the stretch-
ing of the contact Si-o [72].

9 In fact the rigidity of a tetrahedron induced by the covalent bonds should be char-
acterized by 3 parameters corresponding to different deformations of the tetrahedron. If
these parameters are of similar magnitude, as one expects for example for silica, this does
not change qualitatively the results discussed here.
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Fig. 4.4: Density of rigid unit modes for silicate at different pressure. Tra-
chenko et al.[71].

in Fig.(4.4). One can note the obvious similarity with the density of states
near jamming of Fig.(1.3). We argue that the cause is identical, and that
the excess-modes correspond to the anomalous modes made from the soft
modes, rather than to one-dimensional modes as proposed in [71]. Indeed,
a tetrahedral network is isostatic, see e.g. [68]. The counting of degrees of
freedom can be made as follows: on the one hand each tetrahedron has 6
degrees of freedom (3 rotations and 3 translations). On the other hand, the
4 corners of a tetrahedron bring each 3 constraints shared by 2 tetrahedra,
leading to 6 constraints per tetrahedron. Thus the system is isostatic. When
the pressure increases the coordination increases too, leading to the erosion of
the plateau in the density of states discussed earlier in this Chapter. Finally,
these predictions of the density of states fail to describe silica glass vibrations
at low frequencies, where one cannot neglect the weaker interactions anymore
nor the role of the initial stress that we discuss in the next Chapter. In
Chapter 8 we evaluate the effect of the weaker interactions. This allows us
to propose an explanation for the nature of the boson peak in such glasses.



5. Effect of the initial stress on

vibrations

In this section we describe how the above simple description of D(ω) is af-
fected by the presence of applied stress. In general when a system of particles
at equilibrium is formed, there are forces between interacting particles. For
harmonic soft spheres it leads to a non-vanishing first term in Eq.(2.9) that
becomes:

δE = {1

4

∑

〈ij〉

(req
ij − 1)[(δ ~Rj − δ ~Ri)

⊥]2} +
1

2

∑

〈ij〉

[(δ ~Rj − δ ~Ri).~nij]
2 (5.1)

where we used rij ≈ 1. This term in bracket is (a) negative for repulsive
particles (b) proportional to the transverse relative displacement between
particle in contact (c) scales as the pressure p, and is therefore vanishing at
the jamming transition. The full dynamical matrix D can be written:

D = M + M′ (5.2)

where M′ is written in tensorial notation in footnote 10. The spectrum of
D has a priori no simple relation with the spectrum of M. Because M′ is
much smaller than M near the transition, one can successfully use pertur-
bation theory for the bulk part of the normal modes of M. Nevertheless
perturbation theory fails at very low frequency, which is of most interest.
In this region the spectrum of M contains the plane waves and the anoma-
lous modes. In what follows we estimate the change of frequency induced
by the applied stress on these modes. We show that the relative correction
to the plane wave frequencies is very small, whereas the frequency of the
anomalous modes can be appreciably changed. Finally we show that these
considerations lead to a correction of the Maxwell criterion of rigidity.

10 in three dimension we have M′
ij = − 1−rij

2rij
[δ〈ij〉(~mij⊗ ~mij+~kij⊗~kij)+δi,j

∑

<l>(~mij⊗
~mij + ~kij ⊗ ~kij), where (~nij ,~mij ,~kij) is an orthonormal basis.
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5.1 Applied stress and plane waves

Consider a plane wave of wave vector k. Since the directions ~nij are random,
both the relative longitudinal and the transverse displacements are of the
same order: [(δ ~Ri − δ ~Rj)

⊥]2 ∼ [(δ ~Ri − δ ~Rj).~nij]
2 ∼ (δ ~Ri)

2k2. Consequently
the relative correction ∆E/E induced by the applied stress term is very
small:

∆E

E
≈

1
2

∑

〈ij〉(r
eq
ij − 1)[(δ ~Rj − δ ~Ri)

⊥]2

∑

〈ij〉[(δ ~Rj − δ ~Ri) · ~nij ]2
(5.3)

since req
ij −1 is proportional to the pressure p, while the others factors remain

constant as p → 0, ∆E
E

∼ p, and is thus arbitrarily small near the jamming
threshold 11. Note that when the pressure is high, this effect is non negligi-
ble. In particular elastic instabilities can occur, and can be responsible for
conformational changes, see [73] for such examples in silica crystals.

5.2 Applied stress and anomalous modes

For anomalous modes the situation is very different: we expect the transverse
relative displacements to be much larger than the longitudinal ones. Indeed
soft modes were built by imposing zero longitudinal terms, but there were no
constraints on the transverse terms. These are the degrees of freedom that
generate the large number of soft modes. The simplest assumption is that
the relative transverse displacements are of the order of the displacements

themselves, that is
∑

〈ij〉[(δ ~Rj − δ ~Ri)
⊥]2 ∼ ∑

i δ ~Ri

2
= 1 for the anomalous

modes that appear above ω∗. This estimate can be checked numerically for an
isostatic system where the sum of the relative transverse terms is computed
for all ω. The sum converges to a constant when ω → 0 as assumed, see
Fig.(5.1).

We can estimate the scaling of the correction in the energy ∆E induced
by the stress term on the anomalous modes:

11 In disordered systems the acoustic modes are not exact plane waves, see e.g. the recent
simulations in Lennard-Jones systems [6, 7, 8, 9]. As we discuss below, for transverse plane
waves the energy is reduced by a factor δz. Therefore the relative correction of energy
induced by the applied pressure is of the order of p

δz , rather than p. We have, as shown,
p
δz ≪ 1, so that we still expect the correction to be small near the jamming threshold. In
principle non-affine displacements could have other interesting effects, such as an increase
of the transverse terms amplitude. If so, the effect of applied stress on acoustic modes
would be enhanced.
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Fig. 5.1: Sum of the transverse terms (red curve) ǫ = 1
2

∑

〈ij〉[(δ ~Rj −δ ~Ri)
⊥]2

and longitudinal terms (black curve) ǫ = 1
2

∑

〈ij〉[(δ ~Rj − δ ~Ri) ·~nij]
2

for each mode of frequency ω at the jamming threshold in three
dimensions. The longitudinal term is equal to the energy of the
modes and vanish quadratically at 0 frequency. The transverse
term converges toward a constant different from 0.

∆E ∼ −
∑

〈ij〉

(1 − req
ij )[(δ ~Rj − δ ~Ri)

⊥]2 ∼ −p (5.4)

which is an absolute correction, which can be non-negligible in comparison
with the energy E.

5.3 Onset of appearance of the anomalous

modes

We can now estimate the lowest frequency of the anomalous modes. The
modes that appear at ω∗ in the relaxed springs system have an energy lowered
by an amount of order −p in the original system. Applying the variational
theorem of the last section to the collection of slow modes near ω∗ indicates
that there must be slow normal modes with a lower energy. That is, the
frequency ωAM at which anomalous modes appear verifies:

ωAM ≤ [(ω∗)2 − A2p]
1

2 ≡ [A1δz
2 −A2p]

1

2 (5.5)

where A1 and A2 are two positive constants. This indicates that the im-
portant parameters of the low frequency excitations are coordination and
stress.
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Fig. 5.2: Phase diagram of rigidity in terms of coordination and pressure.
When p > 0, the line separating the stable and unstable regions is
defined by Eq.(5.6). When the pressure is negative, any connected
system can be rigid, as it is the case for gels.

5.4 Extended Maxwell criterion

From this estimation we can readily obtain a relation among coordination
and pressure that guarantees the stability of a system. There should be no
negative frequencies in a stable system, therefore ωAM > 0. Thus in an
harmonic system the right hand side of Eq.(5.5) must be positive:

δz ≥ C0p
1

2 ≡ δzmin (5.6)

where C0 is a constant. This inequality, which must hold for any spatial
dimension, indicates how a system must be connected to counterbalance the
destabilizing effect of the pressure. A phase diagram of rigidity is represented
in Fig.(5.2). When p = 0, the minimal coordination zc corresponds to the
isostatic state: this is the Maxwell criterion. As we said earlier for spherical
particles zc = 2d. As we discuss later zc = d + 1 for particles with friction.
When p > 0, Eq.(5.6) delimits the region of rigid systems: for example
granular matter or emulsions lie above this line. When p < 0, even systems
far less connected than what the Maxwell criterion requires are rigid [36],
as we discussed in Chapter 2. These systems contain many soft modes as
defined in Eq.(2.3), but there are all stabilized by the positive bracketed term
of Eq.(2.9). Note that a similar phase diagram, with the same singularity of
δz but a different zc, was recently obtained by a mean field approach [74].

Finally the relation (5.6) is verified in the simulations of [50] where δz ∼
p

1

2 . In the next Chapter we justify why the inequality (5.6) is in fact an
equality in the system of [50] and discuss what determines the microscopic
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structure of this system.



6. Microscopic structure and marginal

stability

In the previous section we studied how the low-frequency vibrational prop-
erties were related to the microscopic structure. The applied pressure has
two antagonist effects: on the one hand, it increases the coordination num-
ber, which stabilizes the system and increase the frequency of appearance
of the anomalous modes. On the other hand, the applied pressure appears
in the expansion of the energy and lowers the frequency of the anomalous
modes. In what follows we study the relative amplitude of these two effects,
or equivalently, where such amorphous solids are located in the (z, p) plane
of Fig.(5.2).

Since these systems are out-of-equilibrium, their microscopic structures
depend on the system history. As we shall see below, the preparation of
the system of [50] leads to marginally stable systems at any φ. The two
antagonists effects of the pressure compensate 12, which leads to ω∗ ≫ ωAM ,
as it appears in Fig.(4.2), and δz ∼ p

1

2 . In what follows we propose a
simple argument to justify such a behavior. We discuss in particular (i) the
dynamic that takes place when a liquid of repulsive spheres is hyperquenched
and (ii) the decompression of a jammed solid at zero temperature. This will
also enable us to discuss the surprising geometrical property of the random
close packing evoked in the introduction: there is a divergence in the pair
correlation function g(r) ∼ 1/

√
r − 1 at close contact. We propose that this

divergence is a vestige of the marginal stability that occurs at higher packing
fraction.

6.1 Infinite quench

The simulations of [50] show δz ∼ p
1

2 , thus saturating the bound of Eq. (5.6),
so that there are excess modes extending to frequencies much less than ω∗.

12 Assuming an exact compensation of these two terms lead to ωAM = 0 in an infinite
size system. In Fig.(4.2) ωSM is slightly different from zero, as one would expect for a
finite size system.
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We start by furnishing an example of dynamics that lead to such a situation.
Consider an initial condition where forces are roughly balanced on every
particle, but such that the inequality (5.6) is not satisfied. Consequently, this
system is not stable: infinitesimal fluctuations make the system relax with
the collapse of unstable modes. Such dynamics was described by Alexander in
[36] as structural buckling events: they are are induced by a positive stress as
for the buckling of a rod, but take place in the bulk of an amorphous solid.
These events a priori create both new contacts and decrease the pressure.
When the bound of (5.6) is reached, there are no more unstable modes.
If the temperature is zero, the dynamics stops. Consequently one obtains
a system where Eq.(5.6) is an equality, therefore (i) this system is weakly
connected (ii) ωAM = 0, there are anomalous modes much different from
plane waves extending to zero frequency. A similar argument is present in
[74].

In the simulations of Ref [50] the relaxation procedes as follows. The
system is initially in equilibrium at a high temperature. Then it is hyper-
quenched to zero temperature. At short time scales the dynamics that fol-
lows is dominated by the relaxation of the stable, high frequency modes. The
main effect is to restore approximately force balance on every particle. At
this point, if inequality (5.6) is satisfied, the dynamics stops. If it is not sat-
isfied, we are in the situation of buckling described above. The pressure and
co-ordination number continue to change until the last unstable mode has
been stabilized. At this point the bound of Eq. (20) is marginally satisfied,
and there is no driving force for further relaxation.

It is interesting to discuss further which situations lead to marginal stabil-
ity. We expect that the situation of marginal stability that follows an infinite
cooling rate takes place for a domain of the parameters of initial conditions
(φ, T ), located at high temperature and low density. This domain could end
at a finite φ even when temperature is infinite, as it does in some related
systems. This was shown in simulations and theoretical work on Euclidian
random matrix [42] were most of the unstable modes vanish beyond a finite
φ even when T = ∞. When the cooling rate is finite, as in experiments,
we expect that the relaxation does not stop when all the modes are stable,
but that there are activated events that lead to further collapses of anoma-
lous modes. These events a priori increase the connectivity and decrease the
pressure beyond the bound of Eq.(5.6), leading to ωAM > 0. In agreement
with this idea, hyperquenched mineral glasses show a much stronger excess
of modes[76] in comparison with normally cooled glasses, and annealed poly-
meric glasses expectedly show a smaller excess of modes [77].
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6.2 Decompression

The data of [50] were obtained by gradually decreasing the pressure from
the above initial state of zero temperature and nonzero pressure. When
pressure is lowered, it is observed that the system remains marginally stable.
Here we propose a qualitative interpretation of these findings in the case
of harmonic particles 13. In [50], the decompression is obtained by discrete
steps. At each step, the radii of each particle is reduced by a small amount ǫ,
while the center of the particles are kept fixed. This corresponds to an affine
decompression. This new configuration is not at equilibrium in general. Then
the particles are let to relax. The affine decompression has two effects: on the
one hand it causes some contacts to open, on the other hand it reduces the
pressure. The opening of these contacts tends to destabilize normal modes
and reduce their frequencies, while the reduction in pressure tends to stabilize
them. As we argue below, the destabilizing effect dominates. Thus, the
affine decompression leads the system into the unstable region. Therefore we
expect that when the particles relax, one recovers the dynamics that follows
an infinite quench: modes buckle. As for the infinite quench of temperature
discussed above, buckling should occur as long as the relaxation of the stable
normal modes, which is faster than the collapse of unstable modes, does not
bring back the system into the stable region. If so, the buckling increases
the contact number and decreases the pressure until marginal stability is
achieved, so that the inequality of Eq. (5.6) is marginally satisfied as the
pressure decreases, as observed in the simulations of [50].

In what follows we justify the claim that the destabilizing effect of the
opening of the contacts dominate the effect of the pressure reduction. When
the particles radii decrease by an amount ǫ, a certain fraction e ∼ g(1)ǫ
of contacts opens, where g(r) denotes the radial distribution function. For
harmonic particles we expect g(1) ∼ (φ − φc)

−1 14. Hence, using that p ∼
(φ − φc) for harmonic particles [50] –as we shall demonstrate in the next
Chapter–, one obtains e ∼ ǫ

p
. On the other hand, the affine decompression

lowers the pressure by an amount δp ∼ δφ ∼ ǫ. Thus the system can only

13 To extend this argument to other potentials, for example Hertzian contacts, one should
assume that g(1) scales at least as (φ−φc)

− 1

2 when the jamming threshold is approached.
This would imply that the number of contacts lost when the system is decompressed is
large enough to generate buckling. This point is related to the evolution of the force
distribution of Hertzian particles near the isostatic point. It is a subtle issue, and we are
not aware of any numerical results of this sort.

14 This is related to well-known empirical facts of the force distribution: one has
P (F )dF ∼ g(r)dr. For harmonic particles dr ∼ dF and therefore P (F ) ∼ g(r). When
rescaled by ∼ p, P (F ) converges to a master curve with P (F/〈F 〉 = 0) 6= 0 [50, 51]. This
implies that g(1) ∼ p−1 ∼ (φ − φc)

−1 [78].



6. Microscopic structure and marginal stability 48

afford to lose a fraction f of contacts while remaining stable: according to
Eq.(5.6): f = d(δzmin)

dp
δp ∼ p−

1

2 δp ∼ ǫ

p
1

2

≪ e. Therefore f ≪ e as claimed.

Hence if an affine reduction of packing fraction ǫ is imposed, far too many
contacts open and the system is unstable.

To conclude, it was observed in the simulations of [50] that if the steps
ǫ are small, the decompression that takes place in [50] is reversible: cycles
of decompression-compression bring the system back to its initial configura-
tion. This empirical fact indicates the absence of discontinuous irreversible
events. Thus, the buckling generated by the opening of few contacts when
ǫ is small enough does not lead to rearrangements of finite amplitude much
larger than ǫ. This indicates that the dynamic of modes collapse increases
the coordination by re-closing most of the contacts that open during the
affine decompression (whose particles are separated by distance of at most
ǫ), and not by forming new contacts. It is reasonable to think that if several
cycles of compression/decompression are made, the system will end up to be
reversible. Why it is already so at the first decompression is a subtle question
that we do not try to justify here.

6.3 g(r) at the random close packing

The probability g(r) of having two particles separated by a vector of length r

displays a square root divergence g(r) ∼ (r−1)−
1

2 at the jamming transition.
In the introduction we pointed out that this divergence corresponds to the
singular increase of the excess coordination δz with the packing fraction,
as was noted in [50]. Here justify further this correspondence. We show
that, if the decompression is assumed to be adiabatic, the singularity in g(r)
is a necessary consequence of the marginal stability that characterizes the
decompression. We argue that the pair of particles almost touching at φc,
responsible for the divergence in g(r), are the vestiges of the contacts that
were present at higher φ to stabilize the system. In order to show this, we
first have to count the contacts that open for a given φ− φc. Then we shall
estimate the distance between the corresponding pairs of particles at the
jamming threshold.

As we discussed in the last section, when the system is decompressed
it remains marginally stable: the coordination follows Eq.(5.6), and z =
zc + δzmin. Thus the density of contacts n(φ) per unit φ that open for a
given φ follows exactly in the large L limit:

n(φ) ∼ d(δzmin)

dφ
∼ 1

(φ− φc)
1

2

(6.1)
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We now would like to evaluate the distance that separates such particles
at the jamming threshold. Let hφ be the random variable that corresponds to
the spacing r−1 at the jamming threshold between two neighboring particles
whose contact opened at a given φ. We want to estimate the fluctuations
of hφ. If the decompression was purely affine hφ would be single-valued and
given by haff (φ):

haff (φ) =
φ− φc

dφc
(6.2)

As we discussed in the last section the displacements that follow a decom-
pression are not affine. For our present argument we need to evaluate the
variance of the distribution of hφ. It is directly related to the variance of the
non-affine displacements that appear while decompressing. We expect that
such non-affine displacements simply lead to a variance of hφ of order of its
average haff (φ) 15. Therefore the probability Pφ(h) that two particles whose
contact opened at a given φ are at a distance 1 + h at the threshold can be
written as:

Pφ(h) ≡
1

φ− φc
f(

h

φ− φc
) (6.3)

where f is a normalized scaling function
∫

f(x)dx = 1. Thus one can compute
g(r) by summing over all the contributions of the contacts that opened at
φ > φc, as we represent on Fig.(6.1):

g(r) ∼
∫

n(φ)Pφ(h = r − 1)dφ ∼
∫

1

(φ− φc)3/2
f

(

r − 1

φ− φc

)

dφ (6.4)

g(r) ∼ 1

(r − 1)
1

2

∫

u−
1

2f(u)du (6.5)

15 More generally, if two particles (in contact or not) are at a distance r of order one at
a given φ, we expect that the fluctuations of the distance that separate them at φc due to
non-affine displacements is of order of the affine increase of their distance δr = rφ−φc

dφc
≈

φ−φc

dφc
= haff (φ). This comes from the following observation: non-affine displacements are

induced by the requirement of stability that creates correlations among particles motions.
To evaluate such correlations, consider the typical situation discussed in the last section
where particles in contact at a given φ have to stay in contact until φc, instead of spreading
apart if the displacement was affine. At φc the inter-particle distance is 1, instead of a value
r < 1 + haff (φ). Thus we evaluate the typical departure from a pure affine displacement
to be of order haff(φ).
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Fig. 6.1: Representation of typical variations of the spacing h between par-
ticles whose contacts opened at given φ > φc. The arrows are
typical trajectories. Those starting from φ1 are thicker than those
starting from φ2, indicating that the density of contacts that open
is larger as φ decreases toward φc. g(r) at φc is computed by
summing over all trajectories for all φ > φc.

We do not expect any singularity of f(u) in u = 0 16, and therefore:

g(r) ∼ 1

(r − 1)
1

2

(6.6)

6.4 Isostaticity, g(r) and thermodynamics

In our argument above the divergence in g(r) does not appear through a
minimization of a free energy or volume, but rather as a consequence of
the specific dynamics that took place to reach the jamming threshold. Em-
pirically, it turns out that the divergence in g(r) was observed in systems
obtained with different dynamics. It was first noticed in molecular dynamics
simulations of elastic spheres with friction, where the jammed states were

16 We do not exclude that there is a finite probability p0 for particles that lost their
contact at a given φ0 to recover it at a φ1 such that φc < φ1 < φ0. In our formalism such
eventuality will not create a divergence in f(u). The incoming flux of contact would be
compensated by a larger rate of contact opening, and the expression (6.1) will be corrected
by a factor 1

1−p0

.
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obtained using inelastic collisions [53]. It was also recently observed —
with possibly a slight difference in the exponent— in random close pack-
ing of hard spheres obtained by increasing continuously the packing fraction
from the liquid state [79]. In this last example thermodynamic equilibrium
is maintained until fairly high packing fractions, corresponding to typical
inter-particle spacing much smaller than the particles radii 17. On the other
hand in this hard sphere system the range of validity of Eq.(6.6) extends to
rather large distances, say r − 1 ≈ 0.3. Thus, in this system the divergence
of g(r) at φc cannot be the vestige of an interaction that would have taken
place between pairs of neighbor particles at lower φ, as the system has a fi-
nite relaxation time and neighbor particles can move arbitrary far from each
other. Instead, this suggests that the divergence of g(r) obtained in [79] is
related to thermodynamic properties of a hard sphere liquid near random
close packing.

In what follows we discuss why the properties of isostaticity and diver-
gence of g(r), which were introduced in relation with the mechanical stability
of the solid phase, may also be connected to the thermodynamic of the liquid
phase of hard spheres (see also Chapter 9). Our argument is in two steps.
We first argue that the isostaticity and the divergence in g(r) have an inter-
pretation in terms of density phase space of hard sphere packing. We shall
show that if an assembly of hard spheres is (i) sub-isostatic, that is with a co-
ordination smaller than 2d, or (ii) isostatic with a singularity of g(r) in r = 1
weaker than Eq.(6.6), then it is not a “good” local maximum of density: one
can build close configurations which are denser. In a second step, we simply
argue that in the liquid phase, the system prefers to lie in configurations
close to the denser packing, which is favorable for entropic reasons. Finally
this suggests that when φ increases toward φc, the system becomes isostatic
and display at least a square root singularity in g(r) at r = 1.

Consider a sub-isostatic configuration of hard sphere in a box. As we
discussed in earlier Chapters, this system is not rigid. Therefore, if an in-
finitesimal pressure is applied at the boundary of the box, the system cannot
resist to it and yields. Unstable modes collapse until isostaticity is recov-
ered. Consequently, the volume of the box decreases and one obtains a
denser configuration of spheres. The same kind of argument can be made if
one considers an isostatic configuration of hard spheres, again contained in
a box, that do not display the square root singularity of g(r) in r = 1. Let
assume temporally that the particles are not hard, but soft, and interact for
example with harmonic interactions. Such system is again unstable toward

17 For mono-disperse spheres thermodynamic equilibrium can be obtained below typi-
cally φ ≈ 0.58, which corresponds to an inter-particle spacing h ≈ 0.03
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Fig. 6.2: Cycle of compression-buckling-decompression starting from a
packing fraction φ1 and ending at a larger packing fraction φ2.

compression: an affine compression of strain ǫ increases the coordination by
an amount that scales as δz ∼ ∫ 1+ǫ

1 g(r)dr. If g(r) does not display the

square root singularity in r = 1, one finds δz ≪ δzmin ∼ p
1

2 ∼ ǫ
1

2 . Thus
unstable modes collapse until the system is enough coordinated, which low-
ers the pressure. Then if the pressure is brought back to 0 adiabatically, one
obtains a new isostatic state of higher density, as sketched in Fig.(6.2).

Now we argue that a liquid of hard spheres lies near the dense jammed
states. More precisely, we define the jammed state corresponding to a liquid
configuration as the solid obtained by hyperquenching the liquid, that is by
increasing rapidly the radii of the particles until a solid is formed. We argue
that the densest jammed state are favored, as they offer a larger free volume
per particle in the liquid configuration. Consider for example two jammed
states of packing fraction φa < φb, and a liquid at packing fraction φ < φa.
If the liquid lies near the jammed state a the free volume per particles varies
as φa−φ. Thus if pa is the probability for the liquid to have a as the jammed
state, one can estimate pa/pb ∼ (φa−φ

φb−φ
)N . Thus the densest jammed states

are favored as the packing fraction increases. For a quantitative treatment of
the liquid equilibrium, one should enumerate all the possible jammed states
that are accessible to the dynamics —as there are configurations such as
the crystal which are not visited in a reasonable time— and compute their
structure. A similar approach was followed recently in [80]. Our qualita-
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tive argument suggests that the isostatic states with the divergence in g(r)
evoked above are good candidates to dominate the dynamics near the glass
transition, since they are (i) good (in the sense stated above) local maxima of
density and (ii) plausibly numerous, as we exhibited a simple way to create
them. If so, g(r) in a random close packing obtained from the liquid phase
must display a square root divergence.



7. Elastic response near the jamming

threshold

In this Chapter we first derive a few properties of the response to a local
strain, such as the deformation of one contact, near the jamming threshold.
We show that at the isostatic limit, such a response spreads out uniformly
in the entire system. This implies that the soft modes of an isostatic state
obtained by cutting one contact are extended, as assumed in Chapter 3.
When the coordination increases, we show that the energy cost induced by
such a local strain grow as δz.

This suggests that the shear modulus also scales as δz, as it is observed
numerically. We confirm this behavior by computing the response of the
system to a global compression and a global shear. An assembly of repulsive
short-range particles near jamming behaves as a gel in the following sense:
the shear modulus is much smaller than the bulk modulus, as it was observed
numerically [50, 81]. In a gel, the response to compression is the one of liquid
of monomers, whereas the response to a shear is related to the stretching of
the polymer chains. The cause for the discrepancy between these two moduli
is different near jamming. If the responses to compression and shear were
purely affine, then the two moduli would scale in the same way. As we
shall show the bulk modulus is simply what one would expect from an affine
response of the system. In the case of a shear, the non-affine displacements
lower the energy dramatically, which even vanishes at the transition. This is
possible because the low-coordination allows particles to rearrange without
much energy cost. Thus this system is a useful tool to study non-affine
displacements, that might play an important role to describe material failure
[82], and that were observed in various systems such as granular matter or
biological materials, and in simulations of glasses and foams, see e.g. [83]
for references. We discuss very tentatively the possible length scales that
characterize such displacements.
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7.1 Formalism

In this section we study the relation between forces and soft modes. We show
that the equation of force balance is the dual of the equation that defines the
soft modes. This will be used in the next section to compute the response to
a strain.

7.1.1 Force propagation

Many of the properties discussed below concern the response of the system to
external forces. It proves convenient to consider our system under the influ-
ence of an arbitrary set of forces ~Fi acting on all particles i. At equilibrium
the sum of the forces on each particle i is null:

∑

〈j〉

fij~nij = ~Fi (7.1)

where fij is the compression in the contact < ij >, the sum is on the particles

in contact with particle i, and ~Fi the external force applied on i. In term of
sign convention we recall that ~nij is the unit vector going from i to j. This
linear equation can be written:

T |f〉 = |F〉 (7.2)

|f〉 is the vector of contact tensions and has Nc components. F is the vector
of external forces. Its dimension is (Nd − d(d + 1)/2). Indeed there are
d degrees of freedom for the external force on each particle, which brings
the term Nd. The term d(d + 1)/2 corresponds to the constraints on the
total torques and forces that must be zero at equilibrium (in what follows
our notations shall be lower-case for the contact space of dimension Nc, and
upper-case for the particles positions space of dimension Nd − d(d + 1)/2).
Therefore T is an Nd− d(d+ 1)/2 ×Nc matrix.

In the case where Nc > Nd − d(d + 1)/2 equation (7.2) is not sufficient
to fix the contact tensions. One must apply elasticity theory to compute
the contact forces for a set of external forces. This is done by writing the
relation between forces and distances between particles in contact (which
depends on the interaction potential), and by relating the distance among
particles to their position. This brings the necessary Nc − Nd − d(d + 1)/2
extra-constraints. When Nc < Nd−d(d+1)/2, there is in general no solution
for a given force field, and the system yields under a generic external force
field. For such a system no contact forces f can satisfy (7.2) unless F is

restricted. In the last case, when Nc = Nd − d(d+1)
2

, the system is called
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“isostatic”, and there are just enough contacts to equilibrate any external
force field. Note that in this case Eq.(7.2), which does not depend on the
interaction potential, is sufficient to determine the contact forces.

7.1.2 Duality between force propagation and soft

modes

As we discussed in earlier Chapters, the static equilibrium of the system can
be expressed in geometric terms, rather than in terms of the forces as in
Eq.(7.2). The change of distance to the first order between particles for a

given set of displacements δ ~Ri is:

(δ ~Ri − δ ~Rj).~nij = δrij (7.3)

It can be written as:
S|δR〉 = |δr〉 (7.4)

where δr ≡ {δrij} is the set of distance changes for all contacts. If one
removes the global translations or rotations from the displacement fields,
which obviously do not change any inter-particle distance, S becomes an
(Nd − d(d + 1)/2) by Nc matrix. Its kernel is the space of soft modes we
introduced in Chapter 2. When Nc < Nd − d(d + 1)/2, the displacements
are undetermined for a given change of inter-particles distances.

Now we establish the connection among soft modes and forces, which is
also present in a similar form in [58, 65]. At equilibrium for any displacement,
the net work done by external forces and the contact forces is zero: this
assures the stability of the system. Therefore for any acceptable equilibrium
force field:

∑

i

δ ~Ri · ~Fi −
∑

ij

δrijfij = 〈δR|F〉 − 〈δr · f〉 = 0 (7.5)

For a soft mode, δrij = 0 and we are left with:

〈δR|F〉 =
∑

i

~δRi · ~Fi = 0 (7.6)

The soft modes are equivalent to the constraints on the force field one would
have obtained by solving Eq.(7.1). Each soft mode represents a direction of
fragility of the system, and the external forces must be orthogonal to them
to avoid yielding. Furthermore, applying the definitions of S and T in (7.5)
we have:

〈f |S|δR〉 = 〈δR|T |f〉 (7.7)
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therefore, introducing the transpose notation, we obtain:

S = T t (7.8)

7.1.3 Relation with the Dynamical matrix

In this Chapter we shall neglect the initial stress term in the energy expan-
sion, as we did in Chapters 3 and 4. As we discussed in Chapter 5, we expect
that this term affects only weakly the plane waves. Thus it should lead to
negligible corrections in the computations of the responses at zero wave vec-
tor such as a shear or a compression. In the harmonic case we discuss, we
have then:

δE =
∑

<ij>

1

2
δr2

ij =
1

2
〈SδR|SδR〉 (7.9)

Therefore one finds for the dynamical matrix defined in Eq.(2.2):

M = StS (7.10)

7.2 Relation between the response to a

strain and forces

The response to an imposed strain is given by the minimization of the energy
with respect to the displacement fields. In this section, using simple linear
algebra and the duality between force and soft modes studied above, we show
how this minimization can be written as a sum over the vectors in the contact
force space that satisfy force balance. This will allow in the next sections to
(i) derive exact results of the response to a local strain (ii) derive the bulk and
shear moduli assuming well-known empirical fact of force properties, that we
recall at the end of this section.

As we discussed in earlier Chapters, in the approximation where the initial
stress is neglected, the system is equivalent to a set of point particles inter-
acting with springs. In order to study the elastic behavior of such system,
it turns out to be convenient to consider the responses that follow arbitrary
changes of rest length of these springs. This is in fact equivalent to imposing
dipoles of force. Consider for example two particles i and j in contact, and
increase the rest length of their spring by an infinitesimal amount yij. It
is equivalent to impose a dipole of force where opposite external forces are
imposed on i and j with ~Fj = −~Fi = yij~nij. As we shall see, the response to
shear or compression can also be easily expressed in terms of changes of rest
length.
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We impose an infinitesimal change of rest length on every contact y =
{yij}. Following Eq.(7.9) the energy and the displacement field are given by
the minimization of:

δE =
1

2
min
{δR}

〈SδR − y|SδR − y〉 (7.11)

Obviously if S was spanning its image space, we would have δE = 0 : one
could always find a displacement |δR〉 that leads to a change of distances
between particles in contact exactly equal to |y〉. As we said, S is a Nc ×
Nd − d(d + 1)/2 matrix. If Nc < Nd − d(d + 1)/2, S indeed spans its
image space, and the energy associated with any strain |y〉 is zero: the
system is floppy. In the other case, if Nc > Nd − d(d + 1)/2, there are
Nc −Nd− d(d+ 1)/2 ≡ Nδz/2 relations of dependency among the columns
of S. One can choose a basis of Nδz/2 vectors |ap〉, with 1 ≤ p ≤ Nδz/2, in
the space of |δr〉 such that:

〈ap|S = 0 (7.12)

The |ap〉 are orthogonal to all the vectors S|δR〉, for any displacement field
|δR〉. Transposing this relation we have:

T |ap〉 = 0 (7.13)

which indicates that all the vectors in the space of the |ap〉 satisfy force
balance without external force (7.1), but no others. The |ap〉 live in the
contact-force space, and henceforth we shall denote them |ap〉 ≡ |fp〉 = {f p

ij}.
In the following we consider an orthogonal unit basis:

〈fp|fp′〉 ≡
∑

ij

f p
ijf

p′

ij = δpp′ (7.14)

We can decompose any |y〉 as:

y = y⊥ +
∑

p=1...N δz
2

〈fp|y〉fp (7.15)

y⊥, the part of |y〉 orthogonal to the |fp〉, is spanned by the matrix S,
and therefore does not contribute to the energy when the minimization of
Eq.(7.11) is performed. In other words, there is a displacement field which
leads to a strain y⊥. The energy that results of the minimization of Eq.(7.11)
is then simply given by the distance square between |y〉 and the image vector
space of S, that is ||y − y⊥||2 or:

δE =
1

2

∑

p=1,.. Nδz
2

〈fp|y〉2 (7.16)
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Furthermore the response to such strain condensates an energy δEij in the
contact < ij > that follows:

δEij =
1

2
(yij − y⊥ij)

2 = [
∑

p=1,.. Nδz
2

〈fp|y〉f p
ij]

2 (7.17)

Expressions (7.16) and (7.17) furnish explicit solutions for the minimization
of Eq.(7.11). They do not give access to the displacement field δR that follows
a given strain (that can be computed in principle by inverting S), but to the
energy condensed globally or in any contact. From these expressions we shall
derive a few exact properties of the response to a localized strain or force
dipole. Furthermore, they relate the response to a strain to properties of
forces, which are well studied empirically. Making simple assumptions on
these contact force fields, we shall derive the scaling of the elastic moduli.

7.3 Response to a local perturbation

We impose a local strain corresponding to the compression or the stretching
of one contact. We implement it by increasing the separation r12 of a single
contact 12 chosen to be at the origin by an amount ǫ. This is equivalent to
impose a force dipole ~F1 = − ~F2 = ǫ~n12. We have:

yij = 0 if ij 6= 12 (7.18)

y12 = ǫ (7.19)

It is now straightforward to compute the energy cost of local strain using
Eq.(7.16). One finds:

δE =
1

2

∑

l=1,..N δz
2

(f l
12ǫ)

2 (7.20)

If one sums this expression for every possible contacts ij and use the nor-
malization of the vectors of force contact, one finds exactly N δz

4
ǫ2. Therefore

we have the following exact result for the average energy induced by such
deformation:

〈δE〉 =
δz

2z
ǫ2 (7.21)

This results can be extended to the case where several contacts are deformed.
For example, if a particle swells, all its contacts are compressed by the same
factor ǫ, and one finds that the energy still goes as δz. In a isotropic continu-
ous elastic medium with a weak shear modulus G, the energy resulting from
the swelling of a small sphere goes as G. Thus we may infer from Eq.(7.21)
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that G ∼ δz. This scaling is observed numerically [50]. In the next section
we shall justify further this scaling law by computing the response to a global
shear.

Eq.(7.21) shows that when the jamming threshold is approached, deform-
ing a contact (or imposing a force dipole) becomes softer and softer. Even-
tually, when δz → 0, the deformation of the contact becomes totally soft.
The response corresponds then exactly to the soft modes that we described
in Chapter 3 that appear when a contact (here the contact 12) is removed
in an isostatic system. A fundamental question was the extension of such
modes, that was assumed to be over the whole system at that point. In what
follows we show that this is indeed the case.

When the jamming threshold is approached, the coordination diminishes
until there is eventually only one term left in the sum of Eq.(7.20). At that
point there is one more contact than in an isostatic state 18 and δz = 2

N
.

Eq.(7.21) indicates that the energy resulting from the deformation of one
contact is of order 1/N , which vanishes as the system size increases. The
deformation becomes soft. We can use Eq.(7.17), whose sum contains only
one force field, to obtain the spatial repartition of the energy:

δEij =
ǫ2

2
(f 1

12f
1
ij)

2 (7.22)

|f1〉 is the physical set of contact forces that support the system. These
contact forces are well studied numerically and experimentally, and we shall
discuss more their properties in the next paragraph. At large distance where
the contact force are de-correlated 〈(f 1

12f
1
ij)

2〉 = 〈(f 1
ij)

2〉2 > 0: the energy
condensed in the contact ij does not vanish when the distance between ij
and 12 diverges. If the displacements that follow such a perturbation were
to vanish with the distance from the source, it would be so for the energies
condensed in the contacts. As it is not the case, these displacements spread
out in the entire system.

18 At the jamming threshold, the system is in fact not exactly isostatic: it has one extra
contact. It must be the case as there must be a non-zero contact force field to pin the
particles. The counting of degrees of freedom of Chapter 2, Nc = Nd − d(d + 1)/2, is in
fact incomplete: it must take into account the degree of freedom corresponding to the box
size. This subtle point, which does not affect the result of the previous Chapters, is trivial
in one dimension, as N particles pinned on a ring have N contacts, and not N − 1. This
was verified numerically in the simulations of [50] in 2 and 3 dimensions as removing m
contacts at the threshold creates only m − 1 soft modes instead of m.
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7.4 Elastic moduli

7.4.1 Spatial properties of the force fields |fp〉
In this paragraph we discuss the properties of the contact force fields that
we shall use to derive the scaling of the bulk and the shear moduli. Only one
vector of the vector space of the force fields |fp〉 solutions of Eq.(7.2) without
external force is the real set of contact forces that supports the system. As we
discussed at the beginning of this Chapter, it can be computed by solving the
whole elastic problem. The solution of such problem is unique. This vector
is denoted |f1〉. The rest of the basis |fp〉 with p 6= 1 are also solutions of Eq.
(7.2) without external force. Nevertheless, there are not “physical” solutions
for the interaction potential chosen. Thus we shall call them virtual .

|f1〉 verifies the following properties: (i) In a system with repulsive in-
teraction, as we consider here, all the contact forces are compressive and
therefore f 1

ij > 0 for all contacts. (ii) It is well known from simulations and
experiments that the distribution of contact forces is roughly exponential, or
compressed exponential (see for example [50] for simulations in the friction-
less case). This implies that the fluctuations of the contact forces are of order
of the average value, leading to 〈f 1

ij〉2 ∼ 〈(f 1
ij)

2〉 = 1/Nc for a normalized force
field. Thus we may introduce a constant c0 such that:

〈f 1
ij〉 = c0

1√
N c

(7.23)

Now we turn to the properties of the virtual forces |fp〉: (i) There are no
physical constraints on the sign of the contacts forces for the virtual vectors.
Furthermore, the |fp〉 must be orthogonal to |f1〉, whose signs of contact forces
are strictly positive, and where the fluctuations in the contact compression
is small. Therefore the virtual force fields have roughly as many compressive
as tensile contacts.

7.4.2 Implementation of global strain

In our framework it turns out to be convenient to study the response to shear
or compression as there are generally implemented in simulations. When
periodic boundary conditions are used, an affine strain is first imposed on
the system. Then the particles are let to relax. In general the affine strain
is obtained by changing the boundary condition. Consider a 2-dimensional
system with periodic boundary: it is a torus. For example a shear strain
can be implemented by increasing one of the principal radii of the torus
and decreasing the other. Then the distance between particles in contact



7. Elastic response near the jamming threshold 62

increases or decreases depending on the direction of the contact. In fact,
this procedure of change of boundary conditions is formally equivalent to a
change of the metric of the system. If the metric is changed from identity
I to the constant metric G = I + U , the length of a vector ~δl0 becomes δl,
such that δl2 = ~δl0 ·G · ~δl0. From this expression one deduces the change of
distance between two particles is given by the formula:

δrij = ~nij · U · ~Rij (7.24)

Near jamming ~Rij ≈ ~nij and therefore δrij ≈ ~nij · U · ~nij . Formally, such a
change of metric is strictly equivalent to a change of the rest length of the
interactions with yij = ~nij · U · ~nij . Incidentally Eq.(7.16) can be used to
compute the energy of such strain.

7.4.3 Compression

For a compression U = −ǫI where I is the identity matrix and ǫ is the
magnitude of the strain. Eq.(7.16) becomes:

δE =
1

2
(
∑

ij

−ǫf 1
ij)

2 +
1

2

∑

p=2,.. Nδz
2

(−ǫ
∑

ij

f p
ij)

2 (7.25)

In the first sum all the terms have the same signs for a purely repulsive
system, and this term leads to the strongest contribution. We have:

δE ≥ (
∑

ij

−ǫf 1
ij)

2 = ǫ2(Nc〈fij〉)2 = ǫ2c20Nc (7.26)

On the other hand, δE is certainly smaller than an affine compression
whose energy also goes as ǫ2N . Therefore we find that:

δE ∼ Nǫ2 (7.27)

B ≡ δE

Nǫ2
∼ δz0 (7.28)

The bulk modulus of an harmonic system jumps from 0 in the “gas” phase
toward a constant when the system becomes jammed, as verified in the sim-
ulations. From this result follows that p ∼ (φ − φc). Note that this result
holds only for purely repulsive systems. If there are as many tensile and
compressive contacts, one recovers for the bulk modulus the result valid for
the shear modulus, that we derive in the next section.
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7.4.4 Shear

If a pure a shear strain is imposed, the tensor U is traceless. Let be ǫ the
largest eigenvalue (in absolute value). The change of distance of two particles
in contact due to shear δrij = ~nij · U · ~nij. It is a number of zero average if
the system is isotropic, and fluctuates between +ǫ and −ǫ depending on the
orientation of ~Rij . Eq.(7.16) becomes:

δE =
1

2

∑

p=1,.. Nδz
2

(
∑

ij

f p
ijδrij)

2 (7.29)

Each term in the summation gives on average:

〈(
∑

ij

f p
ijδrij)

2〉 =
∑

ij

〈(f p
ij)

2δr2
ij〉 +

∑

mn 6=ij

〈f p
ijf

p
mnδrijδrmn〉 (7.30)

=
∑

ij

〈(f p
ij)

2〉〈δr2
ij〉 +

∑

mn 6=ij

〈f p
ijf

p
mnδrijδrmn〉 (7.31)

In principle they can be spatial correlations in the contact force ampli-
tudes that leads to 〈f p

ijf
p
mnδrijδrmn〉 6= 0 even if mn 6= ij. Nevertheless we

expect these terms to be negligible, as we argue at the end of the paragraph.
Concerning the diagonal terms, one has δr2

ij ≈ ǫ2 while
∑

(f p
ij)

2 = 1 by
construction. Thus each term in the p summation is of order ǫ2 · 1, and:

δE ∼ Nδzǫ2 (7.32)

which implies:

G ≡ δE

Nǫ2
∼ δz (7.33)

This is in agreement with the observation of [50].
We come back to the subtle question of the possible presence of spatial

force correlations. In the simulation of soft spheres of [50], the spatial corre-
lations of the real force field |f1〉 vanish for distance larger than roughly two
particle diameters at the jamming transition. This property is restituted by
simple models of force propagation such as the scalar q-model [84]. In this
model, the system is decomposed in layers, and forces propagate downward
from the top of the system to the bottom. Each particle as 2d contacts,
with d particles of the upper layer and d particles of the layer below. The
force field is builded recursively, following a local rule: when a particle re-
ceives from an upper layer a total force amplitude f = f1 + ... + fd, this
force is distributed randomly to the d contacts below. This model mimics
the fact that in an isostatic system external forces imposed at the top of a
system propagate downward, as we discussed in Chapter 2. The randomness
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of the force splitting sketches the randomness of the local configuration of
contacts. This model presumably captures some of the relevant physics, as
it leads both to a rather realistic force distribution, and does not display any
spatial correlation in the force amplitude. Extending this model, we argue
that when δz > 0 the typical virtual force fields do not display long-range
correlations. Indeed following the same line of thought a typical virtual force
fields can also be builded recursively with a similar local rule, the only differ-
ence being that some particles have more than 2d contacts. Thus the level
of randomness increases as there are sometimes more ways to split the force
between the different contacts below, accounting for the fact that there are
many possible virtual force fields. Such an increase of randomness will cer-
tainly not create long-range correlation, and this simple model justifies our
assumption that such correlations are negligible. Note that this model does
not preclude that a few force fields can display long-range correlations, but
simply supports that such correlations do not occur for the bulk part of the
set of force fields. In particular, we expect that when δz > 0, the real force
field |f1〉 displays long range correlations. Indeed this force field is solution
of the whole elastic problem, and cannot be builded from any local rule. We
expect that at large distances r, the correlation in force amplitude would
follow 〈f 1(0)f 2(r)〉 ∼ r−d as in a continuous elastic medium with random
disorder [83]. Accounting for this particular force field in Eq.(7.30) leads to

a relative correction of G that goes as ln(N)
N

which vanishes at the thermody-
namic limit. Finally, note that some subset of these virtual force fields were
studied in simulations [85], and that no long range correlations were noticed
[86].

7.5 Discussion: non-affine displacements

and length scales.

An affine shear costs an energy comparable to a compression. Thus the non-
affine displacements that follow a pure shear diminish the cost in energy by a
ratio that diverges at the jamming transition. Such non-affine displacements
|δRn.a.〉 are simply the displacements corresponding to the minimization of
Eq.(7.11). It follows that |y⊥〉 = S|δRn.a.〉. S can be made invertible if it is
restricted to its image space, and we may write:

|δRn.a.〉 = |S−1y⊥〉 (7.34)

A surprising recent observation was made in the Lennard-Jones simulations
of [6, 7]: a rather large length scale (∼ 30 particle sizes) appears in the cor-
relations of the non-affine displacements. Eq.(7.34) is a linear equation. Any
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strain |y〉 can be decomposed as the sum of individual contact deformations.
Therefore the non-linear displacements that follow a shear or a compression
can be written as the sum of the responses to a contact deformation. The
formalism of the present Chapter does not give any access to the spatial be-
havior of the response to a local deformation when δz > 0 . On the other
hand the results on the vibrational modes of Chapter 4 might bring interest-
ing insights. Since any deformation can be decomposed on the vibrational
modes, we expect the characteristic lengths l∗ and lt to characterize the non-
affine displacements that follow a global strain. It would be useful to study
these questions numerically near the jamming threshold.



8. Granular matter and Glasses

In the previous Chapters we discussed some properties of weakly-compressed
harmonic soft spheres. Our main results are that (i) anomalous modes appear
at low-frequency. They are related to the soft modes of floppy subsystems
and are characterized by a length scale l∗ (ii) there is a frequency scale ω∗

below which the system does not behave as a continuous medium, but as
in an isostatic state. In this Chapter we study the applicability of these
results to more realistic systems. We first discuss granular matter, then
glasses. The sections contained in this Chapter, apart the last one, can be
read independently since they deal with distinct matters.

At least two modifications are necessary to apply our results to granular
matter: (i) the presence of friction. Up to now we studied mostly radial
interactions, and covalent bonds in Chapters 2 and 3. In section 8.1 we
shall see that there is no conceptual difference when friction is present, apart
from a change in the equations that define the soft modes. (ii) the potential
used: In three dimensions grains do not interact harmonically. Modeling the
contact with a Hertzian potential is more realistic, even thought it might
not be perfect [87]. It corresponds to α = 5/2 in Eq.(1.1). In section 8.2
we compute the density of states for such non-harmonic interactions. Our
results agrees with the numerical findings of [50].

Then we discuss the vibrations of glasses. All glasses present attractive
forces, such as Van der Waals interactions. Therefore each particle a pri-
ori interacts with all other ones, and the coordination number is not-well
defined. In section 8.3 we show how one can deal with this problem and
compute the density of states in simple cases where there is a strong hierar-
chy in the contact stiffness. Our results apply for systems as silica, where the
covalent interactions inside the tetrahedron are the strongest as discussed in
Chapter 4. In section 8.4 we consider systems without any clear-cut hierar-
chy in the distribution of contact stiffness, such as Lennard-Jones systems.
The question is to know under which conditions our results on the vibra-
tions of weakly-connected system can apply in such situations. We propose
an improved variational argument which uses the distribution of the contact
stiffnesses to evaluate the density of states. This leads to testable predic-
tions on the nature of the excess-modes in such systems. In particular, this
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should enable to decide whether or not the length scales that appears in the
vibrations, the responses to a point force or the non-affine displacements in
some Lennard-Jones simulations [6, 7, 8, 9] corresponds to the length scales
we introduced in this thesis.

Let us specify that in this Chapter we shall not consider the effect of
initial stress: this is a separated issue, which can be treated independently,
as shown in Chapter 5.

8.1 Particles with friction

In this section we show how our results can be extended to particles with
friction. We shall assume that all the contacts lie inside the Coulomb cone:
particles in contact do not slide irreversibly for an infinitesimal perturbation.
This means that there is no plastic deformation at the surface of contact: the
contacts act as if they were “welded”. Simulations showed that the validity
of this assumption depends on the system preparation. The distribution
of the contact tangential force was observed to vanish on the edges of the
Coulomb cone in [53]. In [88], this was also observed if the dynamics that
leads to jamming is fast. Otherwise, a finite fraction of the contacts was
observed to lie on the Coulomb cone. For concreteness we consider the two
dimensional case where the notations are simpler. The same ideas apply in
higher dimensions. We consider elastic discs, whose repulsive interaction is
harmonic: α = 2. We add a term of friction, function of the shearing of
the contacts. If two particles are adjacent, and one of them rotates an angle
δθ while the other is rigidly pinned, the energy stored can be written in the
form:

δE = γδθ2 (8.1)

γ describe the energy associated with the shearing of a contact. This can be
easily generalized in 3-dimensions [89].

If a small displacement |δR〉 and a small rotation field δθ = {δθi} are
imposed, the shear between two particles in contact is characterized by the
following angle:

δθij = θi + θj + (δ ~Rj − δ ~Ri).~n
⊥
ij (8.2)

where ~n⊥
ij is obtained by rotating ~nij by +π

2
. Therefore, using (8.1), we can

write for the expansion of the energy:

δE =
∑

ij

1

2
[(δ ~Rj − δ ~Ri).~nij ]

2 + γ[θi + θj + (δ ~Rj − δ ~Ri).~n
⊥
ij ]

2 +O(δ ~R3) (8.3)
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For each contact ij there is a compression force fij and a tangential force
f⊥

ij . The system is at equilibrium when the force and the momentum are
balanced on every particle:

∑

j

fij~nij + f⊥
ij~n

⊥
ij = ~Fi for all i (8.4)

∑

j

f⊥
ij = Mi for all i (8.5)

where Mi is the external momentum applied on particle i. This set of linear
equation has 2Nc degrees of freedom and 3N − 3 constraints in two dimen-
sions. Therefore a jammed system with friction that can sustain any generic
external force field must be such that 2Nc > 3N − 3. At the isostatic point
the coordination number is given by:

zc = 2Nc/N → 3 (8.6)

In three dimensions one finds similarly zc = 4. The soft modes are modes of
null energy. In two dimensions Eq.(8.3) gives:

(δ ~Rj − δ ~Ri).~nij = 0 (8.7)

θi + θj + (δ ~Rj − δ ~Ri).~n
⊥
ij = 0 (8.8)

Again this is a linear system. Now there are 3N − 3 degrees of freedom, and
2Nc constraints. Following the procedure of Chapter 3 and 4 one can build
anomalous modes that appear at a frequency ω∗ ∼ δz, where δz = z − zc,
zc being the isostatic limit with friction. This result was recently observed
numerically in [90]. Furthermore, it is easy to show that this system (8.7) is,
as in the frictionless case, the dual of (8.4). The results on the dipole of force
and the scaling of the elastic moduli of Chapter 7 can then be recovered.

Note that contrarily to the frictionless case, this system does not need
to be isostatic when the pressure vanishes. As we discussed in Chapter 2
and 3, in frictionless systems the two conditions that (i) the system must
be rigid and (ii) the particles cannot interpenetrate lead to the unique solu-
tion for the coordination number: z = zc. In the frictional case, these two
antagonist requirements do not lead to a unique solution. The geometrical
requirement that forbids the interpenetration of particles does not change,
whereas the condition of rigidity becomes less demanding, as we just showed.
In two dimensions one finds 3 ≤ z ≤ 4, and in three dimensions 4 ≤ z ≤ 6.
Consequently the coordination of stiff frictional particles depends on the
preparation of the system [88, 53]. In three dimensions when the friction co-
efficient µ ≈ 1 the simulations of [53] leads to z ≈ 4.5 that implies δz ≈ 0.5.
We guess that this corresponds to a l∗ of few tens of particle sizes, which
could be probed by computing the vibrational modes of this system.
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8.2 Extension to non-harmonic contacts

Up to now we considered harmonic interactions. Here we discuss the general-
ization of our argument to other contact potentials. Ref.[50] explored several
other potentials, in particular the Hertzian contact potential describing the
compressive energy of two elastic bodies. It corresponds to α = 5/2 in Eq.
(1.1). Ref.[50] observed a plateau in the density of states whose height D0

scales as p−1/6. They also observed a cutoff frequency ω∗ varying as p
1

2 . In
the Hertzian case the quadratic energy of Eq. (2.1) becomes:

δE =
1

2

∑

〈ij〉

(1 − rij)
1

2 [(δ ~Rj − δ ~Ri).~nij]
2 (8.9)

The new factor (1 − rij)
1

2 amounts to a spring constant kij that depends on
compression. The contact force fij = ∂δE/∂rij evidently varies as (1−rij)

3/2.
In what follows we start by neglecting the fluctuations that exist between the
stiffnesses of the contacts. This treatment is sufficient to recover the scaling
results of [50]. Then we discuss how such fluctuations can be taken into
account to improve the bound on the density of states derived in Chapter 3.

The new factor V ′′(rij) = (1 − rij)
1

2 rescales the energy. To account for

this overall effect, we replace (1−rij)
1

2 by its average 〈(1−rij)
1

2 〉. Expressed in

terms of contact forces, this factor is proportional to 〈f 1/3
ij 〉. Again replacing

fij by its average, the factor becomes 〈fij〉1/3. This average is related to the
pressure p, via p ≈ 〈fij〉. Thus in this approximation the overall effect is to
rescale the energy by a factor k(p) ∼ p1/3.

δE =
k(p)

2

∑

〈ij〉

[(δ ~Rj − δ ~Ri).~nij ]
2 (8.10)

Apart from this prefactor, the energy and the dynamical matrix are iden-
tical to the harmonic case treated above. Thus each normal mode frequency
gains a factor k

1

2 ∼ p1/6. In the harmonic case the crossover frequency
follows ω∗ ∼ δz. In the Hertzian case, it too gains a factor k

1

2 , so that
ω∗ ∼ k

1

2 δz. When the initial stress is taken into account, the bound on the
lowest-frequency anomalous modes ωAM still has the form

ωAM
2 ≤ ω∗2 −A2p (8.11)

For a marginally-stable system we still have ωAM ≈ 0 which leads to an
unaltered relationship between ω∗ and p, namely ω∗ ∼ p

1

2 . Comparing with
our previous estimate of ω∗ yields δz ∼ p1/3. Furthermore, the plateau
density of states D0 has the dimensions an inverse frequency, and thus gains
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a factor p−1/6. Since the harmonic D0 had no dependence on p, the Hertzian
D0(p) also should vary as p−1/6. The scaling behaviors seen in [50] agree with
these expectations. These arguments may be applied to general values of the
interaction exponent α.

Additional effects could in principle alter the low-frequency modes in the
Hertzian case. When harmonic springs are replaced by Hertzian springs, the
contacts supporting different forces have different stiffnesses. The variational
argument derived in Chapters 3 and 4 does not consider such fluctuations.
If it is applied as is to the more general case with fluctuations, the energy of
the corresponding anomalous modes defined in Eq.(3.1) simply gains a factor
〈k〉, the average stiffness. This can be deduced from Eq.(3.3) by neglecting
the correlations between the soft modes displacements and the stiffnesses
amplitudes19. Thus, this variational argument corresponds to the simple
derivation of the previous paragraph where quantities are replaced by their
average. Here we propose to use the stiffness fluctuations to improve this
variational argument by a numerical factor. Instead of modulating the soft
modes by sin(xiπ

L
) to obtain the anomalous modes of Eq.(3.1), we introduce

a more general phase ψ(i) and modulate the soft modes with sin(ψ(i)). Then
we minimize the average energy of these anomalous modes with respect to
ψ, imposing ψ = 0 and ψ = π on the boundaries x = 0 and x = L. The
expression of the energy corresponds to Eq.(3.3) with sin(ψ(i)) replacing
sin(xiπ

L
) and each term of the sum multiplied by a stiffness kij. When averaged

on the soft modes amplitude, one obtains the average energy of the anomalous
modes 〈δE〉 ∼ ∑

ij kij cos2(ψ(i))[ψ(i)−ψ(j)]2. This has to be minimized with
respect to the variables ψ(i). We expect the phase ψ to vary slowly in space,
and not to differ dramatically from our previous solution φ = πx/L. Hence
for a large system we may consider that the cosines terms that appear in
the energy sum are constant locally. Then the local minimization of the
energy corresponds to the problem of conductivity in a random network
of resistors where δE =

∑

ij rij
−1[U(i) − U(j)]2, where rij is the resistor

between the vertex i and j, and U(i) is the Coulomb potential in i. Therefore
kij corresponds to the inverse of a resistance rij, and ψ(i) to the potential
U(i). Effective medium theory [91] furnishes a good approximation of the
conductivity, and therefore of the energy δE, of such a random system. For
example if the network of contacts is sketched by a square or cubic lattice,
one obtains for the effective stiffness the following equation:

〈 keff − k

(d− 1)keff + kij
〉 = 0 (8.12)

19 We expect such correlations to be very small, as the amplitudes of the stiffnesses do
not enter in the soft modes equation.
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where the average is taken on the distribution of stiffness. Because of the
convexity of the inverse function, one obtains that keff ≤ 〈k〉. Expectedly,
the energy in this improved variational argument is smaller than in our previ-
ous result, since it is proportional to keff instead of 〈k〉. For the distributions
of stiffnesses we are considering here 20 where we expect no delta function in
k = 0, nor any fat tail at large k, keff as computed in Eq.(8.12) and 〈k〉 are
of the same order of magnitude. Thus the bound on the density of states is
improved by a numerical factor when this improved argument is used.

8.3 D(ω) in systems with various interaction

types

In this section we study the density of states of systems where several types of
interactions are at play, and where the amplitude of the strongest interaction
is much larger than the others. In particular we think about tetrahedral
covalent networks such as silica. The strong interaction corresponds to the
deformation of the tetrahedra, which is much larger than the bending of the
Si-o-Si bonds or the Van der Waals attractions, as we discussed in Chapter 3.
In Chapter 3 and 4 we showed how to compute the density of states of weakly-
connected networks with only one type of interaction: no weak interactions
were present. The density of states is then described by a plateau that
appears above a frequency ω∗ ∼ δz. In this section we show how to treat the
weak interactions by simple perturbation. We simply consider the anomalous
modes that would appear at ω∗ if the weak interactions were not there. Then
we compute the change in energy induced by the weak interactions on these
anomalous modes. If these modes are on average shifted by an energy ζ , the
plateau in the density of states appears at a frequency

√
ω∗2 + ζ. In what

follows we show how to evaluate ζ and discuss some examples.

8.3.1 Model

Consider for concreteness a system with radial interactions, where “strong”
interactions with stiffness close to unity form a rigid network of coordination
z > zc, and where the weak interactions have stiffnesses of order η ≪ 1.

20 As we discussed in Chapter 7, the potential does not enter in the computation of the
force field at the isostatic threshold. Thus if the configurations obtained at threshold are
similar for the different potentials α, as it seems to be the case, the same force distribution
is obtained for any α. Such force distribution is known to be roughly exponential. From

this we can deduce the distribution of stiffnesses P (k) ∼ k
1

α−2 e−k
α−1

α−2

.
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Consider the lowest-frequency anomalous modes that appear at ω∗ in the
rigid network of coordination z. The energy correction ζ induced by the
weak interactions on such mode is:

ζ =
1

2

∑

〈ij〉

ηij [(δ ~Ri − δ ~Rj) · ~nij ]
2 (8.13)

where the sum is taken on all pairs of particles interacting with the weak
interaction of stiffness ηij . Here we consider that all pairs of particles < ij >
that appears in this sum are not in contact through the strong interaction,
since such terms would simply re-normalize the strong stiffnesses, and can be
taken into account when ω∗ is computed in the first place. To estimate 〈ζ〉 we

need to compute 〈[(δ ~Ri−δ ~Rj) ·~nij]
2〉. If the displacement of particles i and j

were uncorrelated, one would get for a normalized mode 〈[(δ ~Ri−δ ~Rj)·~nij]
2〉 =

2
dN

. We expect this to be the case when the distance rij between the two
particles is large. When the distance between the pair ij diminishes, the
displacement of particles i and j becomes correlated. Thus we may write
〈[(δ ~Ri − δ ~Rj) · ~nij ]

2〉 =
2c(rij)

dN
, where c(rij) < 1 characterizes the correlations

at distance rij . Since we are only considering pairs of particles which are not
in contact for the rigid network, we expect that for the anomalous modes
of such a network considered here, the correlation of the displacement of
particles i and j is “weak”, that is c(rij) is bounded below by a constant
c0 of order one. This is supported by our numerical result of Fig.(5.1), that
shows that if two displacement degrees of freedom are not fixed by the soft
mode condition, then the correlation between these displacements is weak,
even when these two particles are close. At the level of approximation we are
considering here we shall simply assume that c(rij) = 1. Then we obtain:

ζ =
∑

ij

ηij
1

dN
≡ 1

d

∫

ρ(η)dη (8.14)

where we introduced the number ρ(η) of pairs with stiffness η per particle
per unit stiffness.

8.3.2 Density of states of square and cubic lattices

In what follows we discuss in particular the situation where the rigid network
is isostatic z = zc. Our present argument shows that a plateau appears in the
density of states at ω ∼ √

ζ. To illustrate this idea we consider the example
of the square (or cubic) lattice of point particles where first neighbors interact
with spring at rest, see Fig.(8.1). Our argument of Chapter 3, which does
not depend on disorder but only on coordination, applies to this system.
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The square and the cubic lattice are isostatic, therefore there density of
states is constant. In this particular case the soft modes are trivial one-
dimensional object: they are the independent translations of the columns.
Thus for these systems a simpler way to prove that the density of states is
constant, instead of going through the argument of Chapter 3, is to consider
such lattices as an assembly of disconnected one dimensional lattices, which
obviously have a constant density of states. One may ask what happens to the
density of states of such system if a weak interaction is added to couple these
independent lines. As an example, we consider that the second neighbors are
now coupled: we add springs with small stiffness η as drawn in Fig.(8.1). ρ is
then a delta function at stiffness η, of amplitude 2 if one considers the square
lattice (there are two weak interactions per particles). Therefore our rough
evaluation for the appearance of the plateau of Eq.(8.14) yields ω =

√
η.

Since this system is crystalline, the normal modes are plane waves and the
density of states can be computed exactly. The density of states display a
cross over between a Debye regime and a plateau. A direct estimation of the
cross-over energy gives δE ≈ 2η which leads to ω =

√
2η 21. A cross-over

energy is arbitrarily defined, here we simply note that our two estimates are
similar. Finally, note that our argument indicates that the cubic lattice are
very floppy if the second neighbor interactions are small in comparison with
those of the first neighbors. This happens if the interactions potential decays
rapidly. In practice, there are no simple elements that crystallize in a simple
cubic crystal [25] because such structures are too floppy. For example it is
not possible to crystallize a 12-6 Lennard-Jonnes in a square lattice even at
zero pressure and zero temperature, because such a structure is mechanically
unstable 22. In general simple cubic crystals have charged particles, as in
NaCl, and the second neighbors interactions are not negligible.

21 The frequency of a plane wave of wave vector ~κ can be written ω ∼ a(~κ/κ) sin(κ),
where the function a(~κ/κ) only depends on the direction of the wave vector. If the sine is
approximated by an affine function on obtains ω ∼ a(~κ/κ)κ. Then it is straightforward to
show, by summing on all directions ~κ/κ, that in this approximation the density of states is
linear (as expected for a 2-dimensional crystal) until a frequency ω0, defined as the lowest
frequency at which some plane waves reach the edge of the Brillouin zone. These plane
waves have the smallest a(~κ/κ). In this example they correspond to the transverse waves
whose wave vector is in the direction of the axis x or y as indicated in Fig.(8.1). When
the wave vector reach the boundary of the Brillouin zone, the energy of such waves can
be computed. One finds E0 = 2η.

22 Imposing that the pressure is zero brings a condition between the forces carried by
the first neighbors and by the second neighbors. In a 12-6 Lennard-Jonnes it can be sat-
isfied only if the second neighbors are located behind the inflection point of the potential.
Therefore the second neighbors have a negative stiffness, which destabilizes the marginally
stable network constituted by the first neighbors.
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Fig. 8.1: Left: Square lattice with interaction between first neighbor of stiff-
ness 1. Right: the same lattice where interactions of stiffness
η ≪ 1 have been added between second neighbors.

8.3.3 The boson peak of silica

Silica is the most common glass, much studied in experiments and in simu-
lations. It is also known to have one of the strongest excess of low-frequency
modes, or boson peak, see [46] for a review of empirical results and mod-
els. In this paragraph we propose an explanation for its density of states
at low-frequency, and for the nature of the excess-modes. As we discussed
in Chapter 4, the strongest interactions in silica lies inside the tetrahedron
SiO4. If the other interactions are neglected, one can model the glass as an
assembly of linked tetrahedra of appropriate stiffness loosely connected at
corners, the “rigid unit modes” model [70]. This description is supported
by recent Hyper-Raman scattering experimental results that show that the
low-frequency excess modes correspond to the motion and rotation of stiff
tetrahedra [93]. As we discussed in Chapter 4 such a tetrahedral network has
a constant density of states at low frequency. Following the results of the last
section, one may evaluate the effect of the weaker interactions (in particular
the bending of the Si-o-Si bond and the Van der Waals interaction) on the
density of states by computing the energy shift ζ that they induce on the
anomalous modes. ζ can in principle be estimated from the knowledge of the
distribution of the stiffnesses of the weak interactions ρ. Using the stiffness
of the Si-O-Si bending interaction obtained ab initio [72], and the molecular
mass, we obtain a frequency 1.4 Thz, which estimates the order of magnitude
of

√
ζ. According to the previous arguments of the present section, we ex-

pect thus silica glass to display a plateau in its density of states that should
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appear at a frequency of the order of 1 Thz. This is indeed what is observed
in simulations: silica glass present a well-defined plateau in the density of
states, which appears at a frequency corresponding to the boson peak, see
e.g. Fig.15 of [94] or Fig.(8.2) for numerical results.

Our argument does not involve disorder. Thus it must also apply for
the crystals of the same composition and similar densities such as the α and
β-cristobalite, since these crystalline structures are formed, as silica, by SiO4

tetrahedra connected at the corners. β-cristobalite has the structure of the
diamond, in which the tetrahedra correspond to the 4 carbons bonded to a
central carbon, whereas α-cristobalite has a tetragonal structure. Empirically
a boson peak is observed in all these materials [95]. Numerically, a plateau
indeed appears in D(ω) at roughly the same frequency in the cristobalite α
and β [68] and in the glass, as shown in Fig.(8.2).

More generally, there are crystals showing an excess density of states at
frequencies that correspond to the typical boson peak frequency in glasses
[46, 47, 48, 49]. This implies that the disorder is not a necessary condition
to obtain excess modes. This is a crucial point as in many theories of the
boson peak disorder is the only relevant parameter. Such theory certainly
cannot explain the density of states of silica, very similar to the cristobalites.
Rather, we argue here that the key feature that determines the density of
states is weak coordination.

Note that if disorder is not relevant to compute the density of states,
it affects the nature of the vibrational modes. For example properties such
as transport are very different between silica glass, and the cristobalites.
Thus the peculiarity of the amorphous state lies in the nature of the excess-
modes, not in the density of states [46]. It is useful to note the parallel
between cristobalite and silica glass on the one hand and cubic lattice and
the jamming threshold of elastic spheres on the other hand. In both cases
the amorphous solid and the crystal have a similar density of states, but the
anomalous modes in the amorphous phase are not plane waves. Disorder
strongly affects the anomalous modes, and makes them very heterogeneous,
as it appears in Fig3.1.

There is an interesting geometrical parallel between a tetrahedral network
and an assembly of spherical particles with friction. The equation that defines
the soft modes of these two systems are the same, and corresponds to the
extension of Eq.(8.7) in three dimensions. This comes from the fact that
when friction is present, the contacts can be considered as “welded”, as
we discussed in 8.1. Similarly in a tetrahedral network the corners of each
tetrahedra in contact are attached. In both cases the soft modes corresponds
to the rigid motion of the particles that keep the contact point welded.

Finally, we considered systems in which the strong interactions form a
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Fig. 8.2: Density of states of silica glass (at temperatures of 10 and 300
Kelvins), α-cristobalite and β-cristobalite. This figure is taken
from the simulations of [68].
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rigid network, that is δz > 0. Our finding is that the density of states
can be understood in terms of the anomalous modes that we introduced in
Eq.(3.1). Note that if the concept of such anomalous mode is new, soft
modes have been used in several different fields as we discussed in Chapter
2. When the network of strong interactions is not rigid, δz < 0, and the stiff
network has got some soft modes. Consequently there is delta function in
the density of states at ω = 0 if the weak interactions are neglected. When
the weak interactions are taken into account, Thorpe and collaborators [97]
argued that these soft modes shift to higher frequency (in our notation by
an amount

√
ζ), leading to a peak in the density of states. The existence

of such peak was observed in neutron scattering data of GexSe1−x glasses.
When the composition of this glass is changed as x decreases, the covalent
network becomes less and less connected. At x = 0.24 it is isostatic. The
peak amplitude was observed to diminish as x decreases toward 0.24 [96, 97],
as predicted.

8.4 Lennard-Jones systems

In this section we discuss the vibrations of systems where (i) coordination
is not well defined a priori and (ii) there is not a clear-cut hierarchy in
the amplitudes of interactions. We have in mind Lennard-Jones systems,
or purely repulsive system with a potential of the form V (r) = r−β. In
particular, we discuss under which conditions such systems should display the
anomalous modes we introduced in Chapters 3. One important motivation is
the recent results on Lennard-Jones systems [6, 7, 8, 9] where excess-modes
are observed, and where a characteristic length scale appears, in particular
in the vibrations of the system and in the response to a local force. It is
tempting to associate the excess-modes of [6] to the anomalous modes, and
the length scale observed by the authors to the lengths we introduced in
the previous Chapters. In this section we propose an improved variational
argument, in the spirit of the last section, to evaluate the density of states
of such systems. We shall argue that this variational method is efficient
if the interaction potential decays rapidly. In this case anomalous modes
appear characterized by a length scale. We propose a numerical test to check
whether or not the excess-modes found in the Lennard-Jones system of [6]
correspond to the anomalous modes we discussed.

For concreteness we consider a system with radial interactions, and in-
troduce the density of stiffness P (k), which denotes the number of pairs of
particles whose interaction has a stiffness k per particle per unit stiffness. In
the harmonic soft sphere system that we considered in the previous Chap-
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ters P (k) = z
2
δ(k = 1). In the previous section, P (k) could be decomposed

in two well-separated distributions, one around k = 1 of amplitude z/2 for
the strong interactions, and one at much weaker k for the weak ones. Now
we consider a general distribution P (k). We propose the following family
of variational arguments to define an effective coordination and evaluate the
density of states. Let us introduce an artificial cut off λ > 0, such that the
coordination number z(λ) = zc + λ. We use this cut-off to decompose the
interactions in two groups: the z(λ)/2 strongest ones, which form a network
of “ strong” interactions of coordination z(λ), and the rest. This allows us
to repeat the argument of the previous section: we first compute the energy
ω∗2(λ) of the low-frequency anomalous modes of the “strong” network. Then
we evaluate the correction in energy ζ(λ) induced by the rest of the interac-
tion on these anomalous modes, as computed in the last section. Finally, one
obtains the energy E(λ) = ω∗2(λ) + ζ(λ) which gives a bound of the energy
of appearance of the excess-modes. Then the standard procedure consists
in minimizing E(λ) with respect to λ. If λ0 minimizes this quantity, then
√

E(λ0) gives the best estimate of the frequency of the anomalous modes.
Furthermore, one can define an effective coordination z = zc + λ0. The
length that characterizes the anomalous modes follows, according to Chap-
ter 4, l∗ ∼ λ−1

0 . In what follows we compute E(λ) and λ0, discuss the quality
of the estimate obtained by this argument, and compute other quantities
that should enable to test if the excess-modes of Lennard-Jones systems are
correctly described in terms of anomalous modes.

We first evaluate ω∗2(λ). In the harmonic case where all the stiffnesses
are 1, we had ω∗2 = A1δz, where A1 can be deduced numerically from the
data of [50]. From Fig.4.1 one has in three dimensions A1 ≈ 0.12. In the
network of coordination z(λ), the amplitude of the stiffnesses fluctuates. To
present this argument in its simplest form, we neglect these fluctuations, and
replace the stiffness of each contact by the average stiffness as we discussed
in the first part of section 8.2. We also showed there how a more accurate
argument could be made, and we shall come back to this issue later. From
our approximation follows that δE ∼ 〈k〉, and in our notation we obtain
ω∗2(λ) = A2

1〈k〉λλ2, where 〈k〉λ = 2
z(λ)

∫∞
k(λ) kP (k)dk. k(λ) is the weakest

stiffness of the network of “strong” interactions, defined as:

∫ ∞

k(λ)
P (k)dk =

z(λ)

2
(8.15)

.
We now compute E(λ) and λ0. From Eq.(8.14) we get for the correction
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in energy ζ : ζ(λ) = 1
d

∫ k(λ)
0 P (k)kdk, and finally:

E(λ) = A2
1〈k〉λλ2 +

1

d

∫ k(λ)

0
P (k)kdk (8.16)

The effective extra-coordination λ0 is defined as dE(λ)
dλ

|λ=λ0
= 0. This equa-

tion defines a non-trivial minimum in general, since (i) dE(λ)
dλ

|λ=0 = −k(0) < 0
as required by mechanical stability, and (ii) if the potential decays reasonably
fast with distance, E(λ) ∼ 〈k〉λλ2 ∼ λ → ∞ as λ → ∞. Using Eq.(8.15),
the minimization of E(λ) leads to:

2λA2
1〈k〉λ0

+ A2
1λ

2
0

d〈k〉λ
dλ

=
1

2d
k(λ0) (8.17)

A necessary condition for this variational argument to be relevant is that the
solution λ0 of Eq.(8.17) is small (at least smaller than the end of validity of
the scaling of Fig.4.1, say λ0 < 2.5 in three dimensions). Assuming that it is
the case (and checking it self-consistently later), one may neglect the term
quadratic in λ2 in Eq.(8.17) to find:

λ0 =
1

4dA2
1

k(λ0)

〈k〉λ0

(8.18)

In three dimension using the value of A1 one gets λ0 ≈ 5k(λ0)
〈k〉λ0

. Thus a first

requirement for this variational argument to apply is that k(λ0) must be
several times smaller than 〈k〉λ0

. A second requirement is that the bound
of the energy E(λ0) must be relatively small in comparison with the Debye
energy ED = ω2

D: if this bound is too large, our variational argument does
not lead to a correct estimate of the density of states, and the vibrational
modes are not well described by anomalous modes. This implies that the
correction in energy ζ(λ) must not be too large. It is clear that these two
conditions are satisfied when the interaction potential decays fast enough.
Consider for example a potential of the form V (r) = r−β. If the potential
decays slowly, β > 0 is small, then the two requirements we just evoked
are not satisfied. In three dimensions for example there are on average 12
neighbors surrounding a particle. If β is small they all interact with a similar
stiffness with the particle lying at the center, and one finds that k(λ0) is close
to 〈k〉λ0

, and not several times smaller. Furthermore the interactions with
the second, third, etc... neighbors are not negligible either, and ζ is large.
Thus our variational argument is not relevant in this case, and we expect the
vibrations of such system to correspond to plane waves, and not to display
excess-modes. If β is large enough, then the two requirements are satisfied if
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the system is amorphous. To show that we assume that g(r) does not evolve
much with the potential considered, as it is generally observed with radial
interactions in the glass phase. Then, when β becomes large, the hierarchy
among the stiffnesses diverges: if one particles has 2 neighbors at distance
r1 and r2 with r1 < r2, the ratio of the stiffnesses of these two interactions
is k1

k2

= ( r2

r1

)β+2 which diverges when β increases. It follows that ζ becomes

negligible, and that λ0 ∼ k(λ0)
〈k〉λ0

→ 0 as β → ∞.

To decide whether or not the anomalous modes that appear in this vari-
ational argument are responsible for the excess-modes observed in Lennard-
Jones systems, such as those of [6], one may consider a more precise ob-
servable that characterizes the anomalous modes. The quadratic energy
of a mode is the sum the energy condensed in every contact δE(kij) =
1
2
kij[(δ ~Ri − δ ~Rj) · ~nij]

2. Consider the average energy condensed in a con-
tact of stiffness k, that we denote 〈δE(k)〉, where the average is taken on
all the contacts of similar stiffness k. According to our variational argu-
ment, for the lowest-frequency anomalous modes 〈δE(k)〉 varies as follow: if
k < k(λ0), the displacement of the particles in contact are not correlated and
〈δE(k)〉 = 1

d
k. If k > k(λ0), the interaction belongs to the rigid network.

Then the relative longitudinal displacement between particles in contact cor-
responds to the modulation by a sine on a length scale l∗ ∼ λ−1

0 , therefore
〈δE(k)〉 ∼ kλ2

0. Thus the curve 〈δE(k)〉
k

is a step function, which jumps at
k = k(λo), as represented in Fig.(8.3). In the next paragraph we shall argue
that this result is not exact and that the step is not sharp, but smooth. In
any case, if the excess-modes observed in Lennard-Jones systems are related
to the anomalous modes describe here, they should exhibit this cross-over.
This could be verified numerically. Furthermore, from this curve k(λ0) can
be characterized: it is the stiffness at which the cross-over takes place. From
k(λ0) one can compute the effective coordination λ0 if the distribution of
stiffness P (k) is known.

To conclude, we expect that the present variational argument could be
improved in several ways. For example the fluctuations of stiffnesses could
be taken into account to estimate ω∗, as discussed at the end of section 8.2.
This leads to corrections on the quantity 〈δE(k)〉/k for k > k(λ0) that can be
estimated using effective medium theory. One finds for the anomalous modes
that the quantity 〈δE(k)〉/k is not constant for k > k(λ0), but decreases with
k, as represented in the full line curve of Fig.(8.3). Such effects smooth the
step function drawn in Fig.(8.3).
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Fig. 8.3: 〈δE(k)〉/k as defined in the text vs the stiffness k for an anomalous
mode. The red dashed curve corresponds to the variational argu-
ment presented in the text. The black continuous curve is what we
expect qualitatively when the variational argument is improved.



9. Rigidity of hard sphere liquids near

the jamming threshold

There is something mystifying about the properties of a hard sphere system.
On the one hand it is a simple system: no energy is involved, the only rule
is that particles cannot interpenetrate, and only entropy matters. On the
other hand, it displays a rich phenomenology. When the packing fraction φ
is slowly increased from the liquid phase, it crystallizes. If the φ is increased
rapidly, crystallization is avoided, and a glass transition is observed. The
time τα that characterizes the de-correlations of the density fluctuations at
some vector q grows rapidly. For a 3-dimensional monodisperse system τα
becomes inaccessible numerically above φ0 ≈ 0.59. Nevertheless the packing
fraction can be increased further until the pressure diverges, when the dis-
tance between particles vanish: it takes place at φc ≈ 0.64, the random close
packing. At packing fractions between φ0 and φc the structure of the system
is frozen, apart from the fast rattling of the particles around their average
position.

The mode coupling theory furnishes predictions for the relaxation of the
density fluctuations near the glass transition in rather good agreement with
empirical data [98]. Nevertheless there is no clear understanding of the spatial
nature of the events that relax the system, neither of the heterogeneous
dynamics that has been observed near φ0. A necessary first step to study such
questions is to understand the cause of the rigidity of a hard sphere system at
times scales t≪ τα. In the conventional picture [99], the freezing of the liquid
at times t≪ τα is interpreted with the “cage” effect. As the density increases,
the cages formed by the neighboring particles tighten, and the characteristic
time for a particle to escape its cage increases. This description considers the
stability toward the motion of one single particle. It is dangerous since, as we
discussed in the previous Chapters, the stability against collective motions
of particles is more demanding than the stability against individual particles
displacements. For example in d dimensions d + 1 particles are enough to
pin one particle. Nevertheless, a system with a coordination number d+ 1 is
unstable to cooperative motion, as shown by the Maxwell criterion.

In this Chapter we study the microscopic cause of the glass rigidity. In
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particular we study the hard sphere glass at packing fraction φ near φc, and
we derive some elastic properties of the glass phase. Following the ideas
of the previous chapters, we show that the solid-like behavior at t ≪ τα
requires the formation of a rigid structure with a sufficiently large coordina-
tion number. We argue that such structure corresponds to the network that
carries momentum between the particles, which was introduced recently to
study granular flows [100]. Our main achievement is to compute an effec-
tive potential between particles in contact through this network. We show
theoretically, after averaging over the fast fluctuations or rattling of the par-
ticles, that the hard sphere potential becomes logarithmic. This result is
exact at φc, and is in very good agreement with a direct numerical check.
This allows us to define normal modes and to apply the results we found for
soft sphere solids near the jamming threshold. In particular, the extended
Maxwell criterion applies, which yields an inequality for the network coordi-
nation. We confirm this result numerically. We compute the scaling of the
high-frequency elastic moduli near φc. More generally, this approach shows
that the jamming threshold acts as a critical point both in the solid and in
the glassy liquid phase. This suggests original relaxation processes in the
super-cooled phase.

9.1 Coordination number and force

For concreteness we consider a hard sphere system without dissipation where
particles collide elastically. We show in the next section how to generalize
our finding to the dissipative case where particles follow Brownian motion.
We consider packing fractions φ such that the typical collision time between
two neighbors τc is much smaller than τα. We introduce an arbitrary time
t1, much larger than the collision time, and much shorter than any time
scales at which the structural relaxation occurs. Two particles are said to
be in contact at a time t if they collide at least once in the time interval
[t − t1/2, t + t1/2]. This enables us to define the coordination number z as
z = 2Nc/N , where Nc is the total number of contacts. Then, we define the

contact force ~fij as the total momentum per unit time exchanged between
the two particles:

~fij =
1

t1

n=ncol
∑

n=1

∆~Pn (9.1)

where the sum is made on the total number of collisions ncol between i and j
that took place in the time interval [t−t1/2, t+t1/2], and ∆~Pn is the momen-
tum exchanged at the nth shock. These definitions were first introduced in
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a work on dense granular flows [100], and were used recently on hard sphere
systems [79, 101]. Coordination and contact forces depend a priori on an
arbitrary parameter t1. In the high-packing fraction system we studied, we
did not observe any relevant dependence of these objects with t1 as long as
τc ≪ t1 ≪ τα

22.
In Fig(9.1) we show a two-dimensional example of the contact force field

obtained with such procedure at packing fraction φ very close to φc. Note
that the forces are roughly balanced on every particle, as it must be the case
on time scales over which the structure is stable.

To obtain high packing fraction configurations such as the one of Fig.(9.1),
we proceed as follows: we consider the two-dimensional polydisperse 23 con-
figurations of [50] at the jamming threshold at packing fraction φc ≈ 0.83.
At this packing fraction the particles are in contact. Then we reduce all the
particles diameter of a relative amount ǫ. This leads to configuration of pack-
ing fraction φ = φc(1 − ǫ)2. We assign a random velocity to every particle.
A Newtownian dynamics is then computed using an event-driven simula-
tion. As we shall discuss later, such a protocol does not lead to a system
at thermal equilibrium. Nevertheless, we are not interested in thermody-
namic properties, and in practice systems with such high packing fraction
are never equilibrated in any reasonable time. We rather aim to study the
conditions that guarantee mechanical stability. Such condition should be ful-
filled whether the system is at thermal equilibrium or not, as long as it is
stable on reasonably long time scales.

Note that since there is no energy involved in such system, the temper-
ature only fixes the time unit. In what follows we impose for the average
square velocity 〈v2〉 = 1.

9.2 Effective potential

In the previous Chapters we studied the rigidity of amorphous solids by
considering their vibrational modes. It is a priori problematic to use the
same analysis to study the rigidity of contact networks such as the one of
Fig.(9.1): the hard sphere potential is discontinuous, and the energy cannot
be expanded as in Eq.(2.7). Nevertheless we shall go around this difficulty
by deriving a smooth effective potential. The trick is to average on the fast
fluctuations that take place on characteristic time smaller than some t1 ≫ τc.

22 If t1 is too small some contacts can disappear, which can lead to the appearance of
unstable modes when they are computed following the procedure bellow, even thought the
system is stable

23 Half of the particles have a diameter unity, the other half have a diameter 1.4.
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Fig. 9.1: Contact forces for N = 256, ǫ = 10−5 and t1 = 105. Black points
represent particles. Contact forces are sketch by arrows which
start from the particle center, and whose length is proportional to
the force amplitude. Note that the forces are balanced on every
particle, as it must be the case on time scales where the structure
is stable. For similar force networks see [101].
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Consider two particles i and j in contact separated by a spacing rij − ri − rj

of typical value h, where ri and rj are the radii of the particles, and rij

the distance between i and j. Such a spacing fluctuates in time between
0 (when the particles are colliding) and a few h, so that the instantaneous
value of this spacing does not give much information about the contact ij.
Nevertheless, if rij − ri − rj is averaged on large time intervals t1 ≫ τc, the
spacing hij ≡ 〈rij −ri −rj〉 converges to a well defined value. We shall define

the averaged position ~Rav(t) of particle i as:

~Rav
i (t) =

1

t1

∫ t+t 1

2

t−t 1

2

~Ri(t
′)dt′. (9.2)

In what follows we estimate the contact force fij exchanged between two

particles i and j whose spacing is hij ≈ ||~Rav
i − ~Rav

j || − ri − rj . We furnish
thermodynamic arguments, that apply both to Newtonian and Brownian
dynamics. We start by considering a one-dimensional system with beads of
diameter 1. The partition function Z is:

Z =
∏

i

∫ hi=∞

hi=0
dhie

−phi (9.3)

where hi is the spacing between particle i and i+1. If an external force dipole
pi = −pi+1 ≡ p1 is applied on i and i+ 1, the partition function becomes:

Z =
∏

j 6=i

∫ hj=∞

hj=0
dhje

−phj

∫ hi=∞

hi=0
dhie

−(p+p1)hi (9.4)

From the partition function one can compute the average spacing 〈hi〉 = 1
p+p1

.
Since the contact force fi in the contact i, i+ 1 is fi = p1 + p, one finds:

f =
1

h
(9.5)

This result can be extended to an isostatic state of any spatial dimen-
sion. A particularity of the isostatic state is that the number of displacements
degrees of freedom is precisely equal to the number of contact. Hence the
configuration of the system can be described by the set of distances between
particles in contact. If the system is at equilibrium in a meta-stable state
where the contact forces field |f〉 = {fij} is well-defined, the partition func-
tion can be written:

Z =
∏

〈ij〉

∫ hij=∞

hij=0
dhije

−fijhij (9.6)
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The argument valid for the one-dimensional line of particles is valid here,
and one obtains 〈hij〉 = f−1

ij . This shows that in an isostatic assembly of
colliding hard spheres, when the particles rattling are averaged, the hard
sphere potential converge to an effective potential. At time t≫ τc the system
behaves as an assembly of particles of positions |Rav〉 = {~Rav

i } interacting
with the potential Vij(r):

Vij(r) = ∞ if r < ri + rj

Vij(r) ∼ −ln(r − ri − rj) if i and j are in “contact”

Vij(r) = 0 if i and j are not in “contact” (9.7)

The relation force/distance is checked numerically in Fig. (9.2) at packing
fraction close to φc. At such packing fractions the system is nearly isostatic,
as we shall see in the next section. The exponent found is in very good
agreement with Eq.(9.5). Fig. (9.2) also shows that for large t1 the disper-
sion of the contact forces around their average value described by Eq.(9.5)
is extremely small. This indicates that the only relevant parameter that
characterizes the contact force amplitude is the spacing h, as predicted by
Eq.(9.7).
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Fig. 9.2: Log-log plot of the contact force amplitude versus the spacing h =

r − ri − rj for various ǫ in a system of N = 256 particles. Each dot

represents the pair of number (fij, 〈hij〉) associated with the contact

ij. Dots collapse on the dotted theoretical curve defined by Eq.(9.5).

When the coordination z increases, the hij are not independent variables
anymore. We aim to evaluate the corrections to Eq.(9.7) when the system
is at a finite distance from isostaticity, that is with δz > 0. Isolating the
contact ij we may write the partition function as follows:

Z =
∫ hij=∞

hij=0
dhije

−fijhije−F(hij) (9.8)
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where F(hij) is the free energy of the entire system conditionally to the
value of the spacing hij . It can be written as F(hij) = F0 + ∆F(hij), where
F0 does not depend on hij . To evaluate ∆F(hij), we consider as a zero
order approximation that Eq.(9.7) is true. Then ∆F(hij) corresponds to the
energy cost induced by a local strain of amplitude hij − 〈hij〉 = hij − f−1

ij

in an elastic system where particles interact with the potential (9.7). In
Chapter 7 we computed the response to a local strain of amplitude e. The
corresponding energy cost varies with the contact considered, and for small
strain its amplitude follows δE ∼ δzBe2, where B is the bulk modulus. For
an interaction given by Eq.(9.7), following chapter 7 one finds B ∼ 〈V ′′(r)〉 ∼
〈(r − ri − rj)

−2〉 ∼ p2, so that ∆F(hij) ∼ δzp2(hij − f−1
ij )2. Thus we may

write ∆F(hij) ≡ δzCijf
2
ij(hij − f−1

ij )2, where Cij is positive, of order one,
and can a priori depend on the contact considered. Using this expression in
Eq.(9.8), and expanding Z to first order in δz, we can compute the corrections
to 〈hij〉. One finds 〈hij〉 = 1

fij
(1 − 2Cijδz), so that the force-displacement

relation satisfies:

fij =
1

hij
(1 − 2Cijδz) (9.9)

This estimates the corrections to the potential of Eq.(9.7), which vanish
when the system becomes isostatic. Thus, one non trivial consequence of
these corrections is to weaken the force for a given inter-particle distance.
To test this effect we compute numerically C(δz) ≡ 〈fij〈hij〉〉ij − 1, where
〈〉ij denotes the average over all contacts. The results are represented in
Fig.(9.3). Small corrections are indeed found, which are in good agreement
with our prediction C(δz) ∼ −δz. In what follows we are mainly interested
in scaling relations near φc, where corrections of the order δz do not matter.
Thus we shall neglect them, and consider that the effective interaction is
constant and given by Eq.(9.7).

Note that Eq.(9.7) can be recovered with a simple scaling argument. We
may evaluate the collision frequency ν as ν ∼ v

hij
, where v is the average

amplitude velocity. The typical momentum exchanges during one collision
is, taking m = 1 for the particles mass, ||∆~P || ∼ v. Therefore following

Eq.(9.1) we recover that the force follows fij ∼ 〈v2〉
hij

∼ 1
hij

.

In what follows we shall only assume that the potential V (r) is differ-
entiable and that the force f(h) scales as h−1. The corrections estimated
above in Eq.(9.9) do not affect these results, therefore we neglect them and
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Fig. 9.3: Average correction C(δz) as defined in the text vs. excess coordination

δz for various φ. The line is a linear fit consistent with our predictions

at small δz. Corrections are small, of the order of 3-4 percents when

δz = 1.

use Eq.(9.7). As we shall see, this implies that φc acts also as a critical point
in the liquid phase. In particular, Eq.(9.7) enables us to define the stiffness
kij of a contact ij as:

kij = V ′′(r) ∼ 1

(r − ri − rj)2
∼ f 2

ij (9.10)

This allows to define a dynamical matrix and vibrational modes once the
average particles positions and the contacts are known. As we discussed
above, the potential of Eq.(9.7) has an entropic nature. Thus such vibrational
modes describe the local curvatures of the entropic landscape of the system.
In what follows we show that imposing the stability of these modes leads to
constraint on the coordination of the force network. Then we discuss the
elastic property of hard sphere glass, derive the elastic moduli and discuss
the length scales that appear in the response of such systems. Finally we
discuss how these modes may be related to the structural relaxation.

9.3 Stability of hard sphere systems

If the network of contact of a hard sphere system is weakly connected, we can
apply the results of Chapters 3, 4 and 5. In particular, following Eq.(5.5) and
Eq.(8.11) and the paragraph above it, we obtain that such system presents
anomalous modes that appear at a frequency ω2

AM = A1B(p)δz2 − A2p,
where B(p) is the bulk modulus of the system. The bulk modulus scales
as the average stiffness of the contacts, and following Eq.(9.10) we obtain
B(p) ∼ p2. As we discussed in Chapter 5, a rigid system does not display
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Fig. 9.4: Density of vibrational modesD(ω) versus frequency in a hexagonal
crystal of 1024 particles for ǫ = 10−4. The frequencies are rescaled
by ǫ−1. The particle positions were average in time t1 = 4×104 to
obtain |Rav〉. Eq.(9.7) was used to compute the dynamical matrix,
from which the vibrational frequencies were inferred.

**

unstable modes. Therefore we obtain that there must be a constant C0 such
that:

δz ≥ C0p
− 1

2 (9.11)

which is another realization of the extended Maxwell criterion we derived in
Chapter 5. Note that near the jamming threshold, the typical inter-particle
spacing ǫ goes as ǫ ∼ φc − φ and thus p ∼ ǫ−1 ∼ (φc − φ)−1, as was already
computed with different methods [79, 80]. Thus Eq.(9.11) indicates that δz
must scale as δz ∼ (φc − φ)β with β ≤ 1

2
, as is the case for a soft sphere

system above φc.

9.3.1 Stability of the hexagonal and the square

crystals

To test Eq.(9.11) we perform tests on three different systems in two dimen-
sions. We start by considering an hexagonal monodisperse crystal and a
monodisperse square crystal. We consider these two systems at their maxi-
mum packing fraction where hard spheres are in contact. Then we reduce the
particles diameter by a relative amount ǫ, and start the dynamics. According
to Eq.(9.11) these systems must behave very differently. In the hexagonal
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crystal, the coordination is 6, therefore δz = 2 ≫ p−
1

2 ∼ ǫ
1

2 for small ǫ.
Therefore the condition of Eq.(9.11) is satisfied and we expect the system
to be stable. On the other hand, in the square crystal, the number of first
neighbors is 4, δz = 0, and the system cannot satisfy Eq.(9.11) without large
structural rearrangements for any ǫ. Thus such a system cannot be rigid.
These predictions are verified numerically. For small ǫ, the hexagonal crystal
displays no structural changes, whereas the square crystal collapses rapidly.
Such collapse leads to an hexagonal configuration, and is generated by the
buckling of unstable modes. We show the corresponding displacements in
Fig.(9.5). The instability can be also observed in the free energy landscape
by computing the vibrational modes of the corresponding systems. Fig.(9.4)
shows the density of vibrational modes of the hexagonal crystal, which varies
linearly at low frequency, as expected for a two-dimensional crystal. No un-
stable mode are observed. In the square crystal, see Fig.(9.6), the density
does not vanish at ω → 0, as expected for an isostatic system. Furthermore,
we observe unstable modes, as implied by Eq.(9.11).

Fig. 9.5: Buckling of a square lattice.

9.3.2 Stability of hard sphere systems near the

jamming threshold

We perform the same test using the polydisperse configurations of [50] at
the jamming threshold. We study the structural stability of the system by
computing the self correlation function C(~q, t) = 〈exp[i~q · (~Rj(t) − ~Rj(0))]〉
where the average is taken on every particle j. In what follows we consider
wave vectors ~q of norm π

r1

, where r1 is the radius of the smallest particle.
Typical curves for different ǫ are represented in Fig.(9.7). For ǫ smaller that
roughly ǫ = 0.05, the system ages and dynamics is intermittent. There are
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Fig. 9.6: Same caption as Fig.(9.4) for a N=1024 square crystal. 80 un-
stable modes were observed, lying in the frequencies range ω ∈
[−0.015, 0]. There are very degenerated and therefore not appro-
priate for a plot, thus we do not represent them.

0.001 0.01 0.1 1

t
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
(t

)

ε =  0.001
ε = 0.0005
0.000005

Fig. 9.7: Examples of C(t) = C(q = 1, t) for q = π/r1 versus real time for
different ǫ in a N = 256 particles system. t = 0 corresponds to the
initial time where random velocities are assigned to the particles.
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long periods of time where the structure is stable, that appear as plateaus
in the self correlation function. Such periods ends with crashes, where the
self correlation function drops of a large amount in a very short time. These
events must correspond to sudden collective rearrangements involving a large
number of particles. During such crashes, we observe that the coordination
increases, and that the pressure drops. We also observed that the correlation
function of the force network H(t) = 〈fij(τ)fij(τ + t)〉 is constant during the
plateau, and drops when a crash occurs.

Such crashes, or “earthquakes”, were reported in other glassy systems.
They occur when a Lennard-Jones liquid is rapidly quenched at temperature
much lower than the glass transition [102]. In this case the crashes typically
involve 100 particles. Such crashes were also observed in colloidal pastes using
dynamic light scattering [103], and in the dielectric response of laponite [104].
It would be obviously interesting to understand what is the nature of these
crashes, and what triggers the sudden collapse of apparently mechanically
stable structure. These are fundamental questions of the glass transition.
In the present Chapter we study the stable structures that appear before
and after the crashes, when the system is quiet. Understanding why such
structures are rigid is certainly a necessary step to find out why and how
they can yield.

We define the quiet periods as the plateaus of C(t). To study the rigidity
of the dense hard sphere assemblies during these periods, we compute the
vibrational modes. If the rattlers are removed 24, we find that, the system
is mechanically stable: there are no unstable modes. The density of states
for ǫ = 10−4 is shown in Fig.(9.8). The main difference with the other stable
structure that we studied above— the hexagonal crystal— is the presence
of a large excess of modes at low frequency. A large amount of modes are
nearly unstable, as we expect near the jamming threshold where we must have
D(ω) → ω0 when the frequency vanishes. Note that the density of states does
not have a flat plateau as the harmonic soft spheres at the isostatic point,
despite that the coordination network is the same when ǫ is small. The main
difference between these systems is the stiffness disparity: in the amorphous
hard sphere system, the disparity of the contact force leads to a disparity in
the stiffness since k ∼ f 2. If this disparity is removed by keeping the same
contact network, but by imposing a constant stiffness in all contacts, we find
that a flat plateau is recovered.

The absence of unstable modes enables us to test Eq.(9.11), that must be

24 The rattlers do not participate to the rigidity of the structure. They can be identified
as the distance with their neighbors is much larger than for the rest of the inter-particle
distances, so that the frequency of the shocks they have with their neighbors is much
smaller than the other particles.
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Fig. 9.8: Density of vibrational modes D(ω) versus frequency in a amor-
phous hard sphere glass of 256 particles for ǫ = 10−4. The fre-
quencies are rescaled by ǫ−1. D(ω) was computed in a quiet period
preceding the first crash. No unstable modes were observed.

satisfied as the system is stable.To check this relation we computed numer-
ically both the coordination and the pressure for various packing fractions,
and for various stable periods that appear along the aging regime. As shown
in Fig.(9.9), the data are consistent with an equality of the inequality (9.11).
This suggests that a hard sphere glass is only marginally stable, as it is the
case for soft spheres slowly decompressed toward φc.

9.4 Elastic property of the hard sphere glass

We now use this approach to derive the elastic behavior of the hard sphere
glass near φc. The results of Chapter 7 apply. In this system the elastic
moduli have purely entropic causes: they describe how the number of con-
figurations is reduced under a global strain. As we already discussed, the
scaling of the bulk modulus B is:

B ∼ p2 ∼ (φc − φ)−2 (9.12)

In repulsive systems near φc the shear modulus scales as the bulk modu-
lus times the excess coordination. Thus the extension of Eq.(7.33) to non
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Fig. 9.9: Log-log plot of δz versus the average contact force 〈f〉 ∼ p. The data

were obtained for different ǫ and different time periods. The black line

corresponds to the equality of the inequality (9.11).

harmonic contacts yields:

G ∼ Bδz ∼ δzp2 (9.13)

If one assumes that the glass is marginally stable, that is to say that the
system lies on the bound of inequality (9.11), one obtains:

G ∼ p3/2 (9.14)

As in practice such glass is not at equilibrium near φc, the hypothesis of
marginal stability certainly depends on the preparation of the system. It
is reasonable to think, following the analogy with the soft spheres, that if
the system is slowly compacted toward φc the dynamics would not bring the
system far away from marginal stability. Thus we expect δz ∼ p−

1

2 to be a
good approximation and the shear modulus G not to differ to much from the
scaling law of Eq.(9.14).

Furthermore, this system present excess modes: there are the anomalous
modes we discussed in the previous Chapters. Near the jamming threshold,
when the pressure diverges, we expect D(ω) → ω0. When φ decreases, the

density of states is characterized by some frequency ω∗ ∼ B
1

2 (p)δz ∼ p−
1

2 δz.
Consequently a hard sphere glass is characterized the length l∗ ∼ δz−1 which
characterizes the anomalous modes present at low-frequency.

9.5 Discussion

In this Chapter we studied some properties of the hard-sphere glass near
the close packing at φc. We argued that the mechanical stability at time
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t ≪ τα relies on the emergence of a rigid force network. The key point
was to compute the properties of the force networks by averaging on fast
fluctuations, the particles rattling. This allows one to derive an effective
potential, exact at the isostatic limit, and to define rigorously the vibrational
modes in hard sphere systems. They characterize the entropic landscape
expansion around a configuration. This allows one to recover the main results
valid for soft sphere systems near the jamming threshold. In particular the
stability of the vibrational modes imposes a bound on the coordination of the
contact force network. More generally, we showed that φc acts as a critical
point: the elastic moduli and the coordination z scale as φ→ φc. The system
responses are characterized by l∗ that diverges at φc.

As critical points and diverging length scales are in general associated
with diverging time scales, the presence of a critical behavior at φc may be
the cause for the glass transition observed in hard sphere systems. In partic-
ular, our work suggests that the slowing-down of the dynamics is due to the
appearance of an extended rigid network of interactions, rather than to any
local properties such as the tightening of cages. This suggests an alternative
perspective for the relaxation in super-cooled liquid, at equilibrium or in an
aging regime such as the one of Fig.(9.7). The particularity of the systems
that crash, such as the square crystal or the amorphous state near isostatic-
ity, is the large amount of modes around zero frequency. As we discussed in
previous Chapters such modes are very different from plane waves, as they
have rapid spatial fluctuations, which makes them sensitive to the applied
stress term responsible for buckling. Furthermore they can be localized on
length scales larger than some l∗ without changing in their frequency. These
modes indicate a nearby elastic instability, and may well play a role in the
rigidity loss. Furthermore, whatever rearrangements occur when the system
relaxes, suddenly or not, the corresponding displacements must be similar to
the soft modes, as there are, rougly speaking, the only modes where particles
can avoid to inter-penetrate. Thus it is tempting to associate the structural
relaxation with the structural buckling of the weakest frequency modes, that
could be induced for example by pressure or coordination fluctuations. If so,
we expect the relaxation to occur on length scales of order l∗ ∼ p

1

2 , since
for smaller subsystems the frequency of the modes increases, and the elas-
tic instability goes away. Thus our work suggests an original perspective on
the possible cause of the heterogeneous dynamics that occur in super-cooled
liquids [21, 20]. Many models of the glass transition lead to heterogeneous
dynamics [22]. In most of them, a local rule describes the motion of one
or few particles, and leads to cooperative dynamics. Our work suggests an
alternative view: the rule that allows the particle motion is itself non lo-
cal, for the simple reason that rigidity is not global property, as was already
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understood by Maxwell more than one century ago.



10. Conclusion

10.1 Summary

The elastic properties of an assembly of short-range, repulsive particles dis-
play critical behaviors near the jamming transition. In particular the elastic
moduli, the frequency of the excess-modes, and the coordination number
scale. In the first part of this thesis we derived the corresponding exponents.
Then we showed how some of these results can apply to various systems,
such as silica glass or colloidal particles.

The starting point is the following variational argument: if a rigid system
of coordination z is cut in sufficiently small subsystems of size l, these sub-
systems are not rigid. This is true as long as the subsystems size is smaller
than some length l∗ ∼ δz−1 that diverges at the jamming threshold. Smaller
subsystems contain modes of zero frequency, the soft modes. From these
modes one can build what we called the “anomalous modes” which have a
frequency of order 1/l in the original system. This gives for the dependence
of the onset of excess-modes ω∗ ∼ δz, as observed numerically. The system
can be described as a continuous elastic medium only for ω ≤ ω∗. At larger
frequencies, it behaves as an isostatic state.

Then, by arguing that the soft modes have large transverse relative dis-
placements, we showed that the anomalous modes were much more sensitive
to the applied stress than the conventional acoustic modes. This has two
direct consequences: in a purely repulsive system, anomalous modes can ap-
pear at frequencies much smaller than ω∗. Furthermore, in rigid solids the
coordination number must be sufficiently large to guarantee the stability of
the anomalous modes. We find δz ≥ C0(p/B)

1

2 ∼ (φ− φc)
1

2 , where p is the
pressure and B the bulk modulus. This generalizes the Maxwell criterion
for rigidity δz ≥ 0 valid when applied stress is absent. It follows that, if
the jamming threshold φc is reached adiabatically, the pair correlation g(r)
measured at φc must display a divergence g(r) ∼ 1

(r−1)γ with γ ≥ 1
2
. This

divergence is the vestige of the excess contacts δz necessary to maintain the
rigidity of the structure at larger φ.

These arguments furnish the scalings of both the onset of excess modes
and the coordination number, but they do not enable us to compute the elas-
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tic moduli. To do so, we used the fact that the linear equation that defines
the soft modes is the dual of the force balance equation. This allows us to
derive an original formalism relating the response to a strain to the contact
force fields that satisfy force balance on each particle. This enables us to
compute the shear and the bulk modulus. We found that for a repulsive
system the ratio G/B vanishes at the jamming transition. We also obtain
exact results on the response to a local strain. The energy cost of such de-
formation vanishes at the transition as the shear modulus. At the transition,
this response extends in the entire system. Therefore this is also true for
the soft modes that appear when one contact is cut in an isostatic state, an
assumption that was essential to compute the frequency of the anomalous
modes.

In a second part we studied the applications of these concepts to glasses,
granular matter and colloids. All glasses have an excess of low-frequency
modes, the boson peak. It is especially strong in silica, one of the best
glass former. In silica the strongest interactions are those responsible for the
rigidity of the SiO4 tetrahedra. If the weaker interactions, such as Van de
Waals, are neglected, the tetrahedral network obtained is isostatic. Following
our argument, such a network must have a constant density of states at low
frequency, as it is observed numerically. When the weaker interactions are
turned on, the anomalous modes responsible for the plateau shift to higher
frequencies. This improved variational argument predict the appearance of
a plateau in the density of states. Such plateau is indeed observed in the
simulations of silica, and appears around 1 THz, the boson peak frequency.
As the key parameter of our description is coordination rather than disorder,
this argument also justifies the similarity between the density of states of
silica and the one of the corresponding crystals, which also present a plateau
at roughly the same frequency. This is certainly a strong point, as most
of the existing boson peak theories are based on disorder only, and cannot
explain the excess modes that show up in these crystals. Finally we proposed
to extend these ideas to Lennard-Jones systems.

Generally critical points display similar behavior on both sides of the
transition. We argued that it is also the case for the jamming transition. We
showed that when a hard sphere liquid approaches the jamming transition,
the contact force network, that now characterizes how particles exchange
momentum, is very similar to the one of elastic spheres above φc. The key
point was to show that when the dynamics of an isostatic system is averaged
on short time scales, the interactions among particles can be described by a
logarithmic effective potential. We evaluated the corrections of this potential
when the coordination increases. This allows to compute the normal modes
of such systems. As a consequence the results of elastic spheres solids apply
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to hard sphere liquids. In particular the extended Maxwell criterion must
be satisfied near φc, when the system is rigid on short time scales. This ap-
proach also yields the elastic moduli that characterize the system for t≪ τα,
the relaxation time. This description supports that the relaxation in super-
cooled liquid should not be described in terms of the motion of individual
particles, even if models with such local rules can lead to non-trivial cooper-
ative dynamics. Rather, it suggests that the elementary motions to consider
are themselves collective, and are related to the anomalous modes introduced
above.

10.2 Perspectives

10.2.1 Low temperature glass properties

The transport properties of glasses, but also of granular matter [105, 106],
are not understood [3]. In particular there is a plateau in the thermal con-
ductivity around 10 K, temperatures at which the heat transport can be
dramatically smaller than in the crystal phase [5]. These temperatures cor-
respond to frequencies in the Thz range, where the boson peak appears. In
repulsive, short-range systems we showed that the cause for the boson peak
is the following: above some frequency ω∗ the system behaves as an isostatic
state, whose density of states is much larger than the one of the crystal at low
frequency. We argued that these ideas are more general and apply for exam-
ple to silica and granular matter. This suggests that the transport properties
of glasses in the Thz range correspond to those of a system at the jamming
threshold. Then the question is to understand how the anomalous modes we
introduced contribute to the transport. Accordingly, it is necessary to com-
pute their spatial power spectrum E(q). For a normal mode of displacement

{δ ~Ri}, E(q) is defined as:

E(q) =
1

q2

∑

j,l

(~q · δ ~Rj)(~q · δ ~Rl)e
i~q·(~Rj−~Rl) (10.1)

∼ N

q2

∫

drd〈(~q · δ ~R(r))(~q · δ ~R(0))〉ei~q·~r (10.2)

For an acoustic mode of frequency ω, E(q) presents a peak for q = c−1ω,
where c is the longitudinal velocity of sound. If this peak has a finite width
∆q, the scattering length of the acoustic mode follows l ≈ ∆q−1. This length
enters in the computation of the thermal conductivity: the contribution of a
mode to the heat transport goes as l·c [1]. The empirical data suggests that at
frequency smaller than the boson peak, the acoustic modes have a scattering
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length l ≈ 150λ, where λ is the wavelength of the corresponding mode [3].
We expect that the anomalous modes that appear at higher frequencies will
transport much less than that, because their spatial correlations 〈δ ~R(0) ·
δ ~R(x)〉, which enter in Eq.(10.1), are presumably very small. This quantity
is similar to the spatial correlations of the soft modes. If these correlations
were zero, both the soft modes and the anomalous modes would be equally
distributed on all wave vectors. Then the anomalous modes would have a
purely diffusive behavior, corresponding to a scattering length l = 1 particle
size. Thus they would almost not contribute to the transport at all. It is
apparent from Fig.(3.1) that the spatial correlations of the soft modes are
indeed small. This observation may furnish an explanation for the observed
bad quality of the transport at the boson peak frequency. It is also consistent
with the empirical observation that the boson peak frequency depends only
weakly on wave vectors q if at all [107], indicating that the excess-modes have
a wide distribution over the wave vectors q. For a quantitative discussion it
would be of great interest to derive the spatial correlations induced by the
soft mode equation (2.3). Furthermore, other interesting effects could in
principle affect the transport. In particular, our derivation of the anomalous
modes does not preclude the presence of underlying acoustic modes, that
could hybridize with the anomalous modes, and enhance the transport.

At lower temperature, the properties of glasses are still a challenge to the-
ory. The specific heat has a nearly linear dependence with temperature, and
the thermal conductivity varies quadratically. This is in general interpreted
by the presence of two-levels systems: atoms or groups of atoms can switch
between two configurations by tunnel effect. This model is phenomenolog-
ical and there is no consensus on what these two level systems may be. It
has been often argued that the excess-modes of the boson peak are good
candidates to form two-levels systems, see e.g. [35, 36]. As these modes are
soft, non-harmonic terms are important, which could lead to the canonical
form of 2-levels systems: two wells separated by a potential barrier. If it
is so, our interpretation of the boson peak suggests that the 2-level systems
are rather extended, plausibly on the length l∗, and that the displacement of
each particle could be much smaller than a particle size. It should be possible
in principle to test this possibility. As we discussed earlier, the pressure has
two opposite effects on the anomalous modes: on the one hand it increases
the coordination, and on the other hand the applied stress term lowers their
frequency. We expect that in some systems, the destabilizing effect of pres-
sure dominates. This can even lead to an elastic instability where anomalous
modes become unstable, and where the configuration of the system changes.
Such elastic instability might occur for example in silica glass at high pressure
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[108]. If the density of anomalous modes is increased at very low temperature
by tuning the pressure, the density of two-levels systems should be enhanced
too. The latter could be directly checked by specific heat measurements.

10.2.2 The glass transition

We discuss the following possibility: in fragile glass former a fast slow down
of the dynamics occurs close to the temperature at which the system manages
to form an extended rigid network. We first study the role of temperature
on the anomalous modes in the glass phase. Then we propose a microscopic
distinction between strong and fragile glasses 26, and we discuss a possible
structural relaxation process in the fragile case.

Role of temperature

Following the results of Chapter 8, we can write for the onset of the anoma-
lous modes at zero temperature ω2

AM = A1Bδz
2 −H(p) + ζ , where B is the

bulk modulus, δz is the effective excess-coordination number, ζ quantifies the
effect of the weak interactions on the anomalous modes, and A1 is a numer-
ical constant. H(p) is the correction induced by initial stress term. For soft
spheres near the jamming threshold where the distances between particles
in contact are similar we found H ≈ A1p ∼ 〈f〉, where 〈f〉 is the average
contact force. In a system where the distance r between interacting particles
can vary, following Eq.(2.9) we have H ∼ 〈f/r〉. In the present qualitative
discussion we shall neglect these corrections and consider H ≈ A1p.

If the system is heated at constant pressure, we may extend this equation
and write:

ω2
AM(T ) = A1B(T )δz(T )2 − A2p+ ζ(T ) (10.3)

In most glasses, when the temperature increases at constant pressure, the vol-
ume grows, and B decreases. As the typical inter-particle distances grows,
we expect both the effective coordination and the effect of the weak interac-
tions to diminish. Thus all the positive terms in Eq.(10.3) decrease. On the
other hand, the pressure is constant. Hence ω2

AM(T ) decreases, as is indeed
observed in most glasses. Eventually ω2

AM(T ) reaches zero frequency, as it
has been observed numerically [32] and empirically [28]. We shall denote the
temperature at which rigidity is lost Tr. Note that in few materials, such as
silica, the volume decreases and the bulk modulus grows with temperature.

26 The relaxation time of strong glass as an Arrhenius dependence with temperature,
and grows faster in a fragile glass.
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In this case Eq.(10.3) predicts that the boson peak shifts to higher frequency,
as observed empirically, see e.g. [46].

Note that when T > Tr, there are continuously unstable modes. Interest-
ingly, such a temperature also exists in mean field spin models [109], which
were proposed as possible scenarios of the glass transition [110]. The dy-
namics of these models at higher temperature is exactly described by mode
coupling equations [111]. According to this analogy Tr = TMCT .

Fragile and strong glasses

In order to discuss the distinction between strong and fragile glasses, we
introduce a second characteristic temperature Ta. Ta corresponds to the
typical energy activation of the structural relaxation processes that do not
depend on the rigidity of the structure. In particular we think about local
rearrangements, such as the displacements of coordination defects in strongly
covalent networks [112]. The glass transition must occur around the smallest
of the two temperature Ta and Tr, since by definition the structure relaxes
easily at higher temperature. Hence if Ta ≫ Tr the glass transition occurs
in the vicinity of Tr. As the curvatures of the energy landscape dramatically
evolves with temperature near Tr, it is natural to expect the corresponding
dynamics to be super-activated. This supports the following scenario: glasses
with Ta ≫ Tr are fragile. On the other hand, if Ta ≪ Tr, the glass transition
takes place in the vicinity of Ta. As the local structure does not display
any important changes near the glass transition, we expect such glasses to
be strong. A similar discussion in terms of energy landscape is presented in
[114].

This scenario implies that strong glasses are whether (i) system with a
large coordination, where anomalous modes frequencies are high. This is
coherent with the empirical fact that strongly connected covalent networks
are strong. (ii) anomalous systems which have a strong boson peak, but where
an increase of temperature does not lower much the boson peak frequency,
or even stabilizes the system like in silica. In these two cases we expect
the rigidity of the covalent network not to do play any role at the glass
transition. This is supported by simulations that indicate that the structural
relaxation is purely local in silica glass [112], and that the covalent network
exists until 8000 K at our pressure [113], which is much larger than the
glass transition temperature. Note the elastic anomaly of silica disappears
at high pressure, which suggests that this glass might become fragile when
the pressure increases [115].

According to the present point of view, fragile glasses must display anoma-
lous modes that approach zero frequency around the glass transition. A pos-
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sible test could be done by considering particles with gaussian potentials. It
was shown theoretically and numerically [42, 43, 44] that such systems at in-
finite temperature display excess-modes. These modes become stable above
a finite density. Above this density this scenario predicts that the glass is
strong, as the stable excess-modes at infinite temperature will stay stable as
the temperature is lowered. At smaller density we expect a fragile behavior
to occur, as it is the case for soft spheres [117].

Heterogeneous relaxation in fragile glass

According to the present scenario, in a fragile glass at Tr the anomalous
modes are characterized by a finite length scale l∗. According to Eq.(10.3)
l∗ ∼ δz−1 does not diverge since the initial stress term, and the pressure, have
a finite value. Thus we also expect the shear modulus at Tr to have a finite
value, as it is the case for the marginally rigid system of [50]. As soon as
T ≥ Tr, the system displays unstable normal modes. Near Tr, only the modes
with characteristic length l∗ are unstable. The anomalous modes confined
on subsystems smaller than l∗ have higher, non-zero frequencies. Thus the
collapse of unstable modes at Tr involve rearrangements on length scale of the
order of l∗, but not smaller. As the temperature increases, modes with smaller
characteristic lengths become unstable, and rearrangements can occur on
shorter length scales. Hence this model predicts the presence of a growing
length scale l(T ) that converges toward l∗ when the temperature decreases
toward Tr. Growing dynamical length scales were observed numerically as
the temperature decreases, see e.g.[116] and ref. therein. The curve l(T )
could be measured by pinning the particles at the boundary of subsystems
of size l, and by considering the dependence of the structural relaxation time
with temperature for given l. Note that a similar test was already proposed
in [119] to test dynamical length scales.

When the temperature decreases below Tr, we expect activated events
to relax the glass structure. This is plausibely enhanced by the neighboring
elastic instability, and by the large amount of nearly unstable modes. Finding
the relaxation process of such weak structures is a necessary next step. Such
models may lead to the prediction for the super-activated dependence of the
relaxation time when the temperatures decreases and the elastic instability
goes away. Once again, rigidity is not a local criterion, but demands the
existence of a relation between coordination number and pressure on length
scale l∗. Hence it is not excluded that the fluctuations of quantities such as
pressure and coordination on such distances may trigger relaxations.
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10.2.3 Granular matter

There are open questions on the way force propagates in amorphous sys-
tems such as granular matter. At large distances, a granular pack should
behave as a continuous elastic medium, at least in a small linear regime. As
we discussed in Chapter 2, the situation is different in anisotropic isostatic
systems, whose elastic behaviors can be described by hyperbolic equations.
Nevertheless, there is as yet no description of force propagation in isotropic
isostatic systems. More importantly, we do not know how force propagation
evolves toward a normal continuous elastic behavior when the coordination
number increases, or when friction is present. It was proposed in [57] that
in anisotropic system, normal elasticity is recovered above l∗, the distance
at which soft modes disappear. Our derivation of the anomalous modes sug-
gests that the transition toward continuous elasticity could occur at distances
shorter than l∗. In particular for a force dipole, or a local strain, as we dis-
cussed in Chapter 8 it is plausible that the characteristic transverse length
lt ∼ δz−

1

2 characterizes the cross-over isostaticity/elasticity. Note that this
does not preclude that the response to a force mono-pole has a different cross-
over. It would be of much interest to investigate these subtle properties. It
could be done in simulations of elastic spheres near the jamming threshold.
Experimentally such tests would require to find efficient ways to modulate
the coordination and the distance from isostaticity [118].

The length scales we are talking about obviously depend on the system
considered, but we expect them to be typically of the order of a few tens
of particle sizes. Thus they may not affect for example the building of sand
castles, as a continuum description is expected to be valid for macroscopic
objects. Nevertheless the properties of an assembly of grains at such length
scales might play a crucial role in the rheology of these systems, both in the
solid and in the dense liquid phases. Similar length scales were observed in
the spatial correlations of dense granular flows on a slope, and are probably
related to the surprising dependence of the thickness h of the flow with the
angle of the slopeθ [17]. Bending a layer of sand toward its avalanche angle
is equivalent to imposing a shear. Thus understanding how shear affects
the anomalous modes might shed light on this problem. The presence of
a fixed boundary at a distance h of the free surface certainly increases the
anomalous modes frequency. Making the most simple assumptions that (i)
the shear decreases linearly the characteristic energy of the anomalous modes
and (ii) the presence of of a fixed boundary is equivalent to an increase of
coordination of order 1/h gives ω2

AM ∼ A1B(δz + 1/h) − A3 sin θ. Imposing
ωAM = 0 yields a dependence of h of the form h(θ) ∼ 1

θ−θ0

, which is not
inconsistent with the empirical data.
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Another interesting property of granular matter is compaction: if a con-
tainer of sand is tapped from below, the density of the system increases. The
process displays many glassy features: the dynamics becomes very slow with
time, aging and memory effect are observed [16]. When a granular pack is
tapped weakly enough to avoid fluidization, there are two main causes for
the irreversible events that lead to compaction. One the one hand, contacts
on the Coulomb cone can slide. On the other hand, the destabilizing ef-
fect of the pressure wave can cause the buckling of anomalous modes. This
structural buckling increases the coordination and the packing fraction, as
sketched in Fig.(6.2). Hence the structure becomes more and more stable,
and the compaction dynamics slows down. As the coordination rises the
length scale l∗ decreases. This may be possible to test this presiction using
X-ray microtomography.
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We compute analytically and numerically the four-point correlation function that characterizes nontrivial
cooperative dynamics in glassy systems within several models of glasses: elastoplastic deformations, mode-
coupling theory �MCT�, collectively rearranging regions �CRR’s�, diffusing defects, and kinetically constrained
models �KCM’s�. Some features of the four-point susceptibility �4�t� are expected to be universal: at short
times we expect a power-law increase in time as t4 due to ballistic motion �t2 if the dynamics is Brownian�
followed by an elastic regime �most relevant deep in the glass phase� characterized by a t or �t growth,
depending on whether phonons are propagative or diffusive. We find in both the � and early � regime that
�4� t�, where � is directly related to the mechanism responsible for relaxation. This regime ends when a
maximum of �4 is reached at a time t= t* of the order of the relaxation time of the system. This maximum is
followed by a fast decay to zero at large times. The height of the maximum also follows a power law �4�t*�
� t*�. The value of the exponents � and � allows one to distinguish between different mechanisms. For
example, freely diffusing defects in d=3 lead to �=2 and �=1, whereas the CRR scenario rather predicts
either �=1 or a logarithmic behavior depending on the nature of the nucleation events and a logarithmic
behavior of �4�t*�. MCT leads to �=b and �=1/�, where b and � are the standard MCT exponents. We
compare our theoretical results with numerical simulations on a Lennard-Jones and a soft-sphere system.
Within the limited time scales accessible to numerical simulations, we find that the exponent � is rather small,
��1, with a value in reasonable agreement with the MCT predictions, but not with the prediction of simple
diffusive defect models, KCM’s with noncooperative defects, and CRR’s. Experimental and numerical deter-
mination of �4�t� for longer time scales and lower temperatures would yield highly valuable information on the
glass formation mechanism.
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I. INTRODUCTION

The idea that the sharp slowing down of supercooled liq-
uids is related to the growth of a cooperative length scale
dates back at least to Adam and Gibbs �1�. But it is only a
few years back that this idea has started being substantiated
by convincing experiments �2–6�, numerical simulations
�7–14�, and simple microscopic models �15–25,27�. One of
the basic problems has been to find an observable that allows
one to define and measure objectively such a cooperative
length scale. An interesting quantity, proposed a few years
ago in the context of mean-field p-spin glasses �28� �see �29�
for an important early insight� and measured in simulations,
is a four-point density correlator, defined as

G4�r�,t� = ���0,0���0,t���r�,0���r�,t��

− ���0,0���0,t�����r�,0���r�,t�� , �1�

where ��r� , t� represents the density fluctuations at position r�
and time t. In practice one has to introduce an overlap func-
tion w �28� to avoid a singularity due to the evaluation of the
density at the same point or consider slightly different corre-
lation functions �30�. This quantity measures the correlation
in space of local-time correlation functions. Intuitively, if at
point 0 an event has occurred that leads to a decorrelation of
the local density over the time scale t, G4�r� , t� measures the

probability that a similar event has occurred a distance r�
away within the same time interval t �see, e.g., �31��. There-
fore G4�r� , t� is a candidate to measure the heterogeneity and
cooperativity of the dynamics. The best theoretical justifica-
tion for studying this quantity is to realize that the order
parameter for the glass transition is already a two-body
object—namely, the density-density correlation function
C�t�= ���0,0���0, t��—which decays to zero in the liquid
phase and to a constant value in the frozen phase. The four-
point correlation G4�r� , t� therefore plays the same role as the
standard two-point correlation function for a one-body order
parameter in usual phase transitions. Correspondingly, the
associated susceptibility �4�t� is defined as the volume inte-
gral of G4�r� , t� and is equal to the variance of the correlation
function �28,32,33�. The susceptibility �4�t� has been com-
puted numerically for different model glass formers and in-
deed exhibits a maximum for t= t*�	�, the relaxation time
of the system �11–14�. The peak value �4�t*� is seen to in-
crease as the temperature decreases, indicating that the range
of G4�r� , t*� increases as the system becomes more sluggish.
The dynamical correlation length 
4�t*� extracted from
G4�r� , t*� in molecular dynamics simulations grows and be-
comes of the order of roughly 10 interparticle distances when
the time scale is of the order of 105 microscopic time scales
	0 with 	0�0.1 ps for an atomic liquid. In experiments close
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to the glass transition the dynamical correlation length has
been found to be only slightly larger, between 10 and 20
interparticle distances �2,4�. This is puzzling because experi-
ments are done on systems with relaxation times that are
several orders of magnitude larger than in simulations. In
fact, extrapolating simulation results in the experimental re-
gime would lead to much larger dynamical correlation
lengths. The origin of this puzzle is still unclear; see Ref.
�18� for a recent discussion. Experiments on dynamical het-
erogeneity bridging the gap between numerical and macro-
scopic time scales would be extremely valuable to resolve
this paradox.

Several scenarios have been proposed to understand the
existence of nontrivial dynamical correlations and their rela-
tion to thermodynamical singularities. Adam and Gibbs �1�,
Kirkpatrick et al. �34� �for a different formulation, see Ref.
�35��, and Kivelson and Tarjus �36� have proposed, using
somewhat different arguments, the idea of collectively rear-
ranging regions �CRR’s�, of size 
, that increase as the tem-
perature is decreased. The evolution of the system is such
that these regions are either frozen or allowed to temporarily
and collectively unjam for a short time until a new jammed
configuration is found.

In apparent contradiction with the existence of the grow-
ing length scale, the mode-coupling theory �MCT� of glasses
states that the self-consistent freezing of particles in their
cages is a purely local process with no diverging length scale
at the transition �37�. However, this point of view is in dis-
agreement with the results found for mean-field disordered
systems �28,29� that are conjectured to provide a mean-field
description of the glass transition and display an MCT-like
dynamical transition. Indeed it was recently shown that
within MCT G4�r� , t� in fact develops long-range correlations
close to the critical MCT temperature Tc �32�. Within a
phase-space interpretation of the MCT transition, the mecha-
nism for this cooperative behavior for T�Tc is the progres-
sive rarefaction of energy lowering directions �38�. Within a
real-space interpretation, the MCT transition is due to the
formation of a large number of metastable states, each one
characterized by a surface tension that increases from zero at
Tc. As one approaches Tc from above, the relevant eigenvec-
tors of the dynamical Hessian become more and more ex-
tended, which means that the modes of motion that allow the
system to decorrelate are made of very-well-defined, collec-
tive rearrangements of larger and larger clusters of particles
�see the recent work of Montanari and Semerjian �39��. For
smaller temperatures T�Tc, “activated events” are expected
to play a crucial role. They are believed to be responsible for
the destruction of the freezing transition at Tc. This regime
has been tentatively described by adding “hopping terms” in
the MCT equations �37� or within a CRR scenario �34,35�.
Note that the random first-order theory of �34� unifies MCT
with CRR’s predicting a first temperature regime �close to
TMCT� where MCT applies and then a crossover toward
CRR’s �the mosaic state� that describe the physical behavior
close to the Kauzman temperature.

Exploiting yet a different set of ideas, models of dynami-
cal facilitation, such as the FredericksonAndersen �19� or
Kob-Andersen models �24�, have recently been proposed as
paradigms for glassy dynamics �15,20,23�. In these models,

the motion of particles is triggered by “mobility defects” that
diffuse and possibly interact within the system. As the tem-
perature is lowered or the density is increased, the concen-
tration of defects goes down and the relaxation time of the
system increases. The dynamics is obviously heterogeneous
since it is catalyzed by defects that cannot be everywhere
simultaneously. The characteristic length scale in this case is
related to the average distance between defects to some
model- and dimension-dependent exponent �15,18,20,23,25�.
The ideas behind these models are somehow similar to the
one of free-volume theories and can be traced back to the
first explanation of slow dynamics in terms of defects motion
�26�. Kinetically constrained models have the important
merit of showing how from simple local microscopic rules a
relaxation governed by the diffusion �or subdiffusion� of
nontrivial defects may arise.

Understanding the mechanism behind the growth of the
dynamical correlation length is certainly an important step—
arguably the most important one—to understand the cause of
the slowing down of the dynamics. Furthermore, the differ-
ent scenarios for the glass transition can be tested, contrast-
ing their quantitative prediction for the four-point correlation
function G4�r� , t� to the numerical, and hopefully soon experi-
mental, results. Following these premises we investigate in
this paper the analytical shape of G4�r� , t� for several simple
models. We show that G4�r� , t� indeed contains some impor-
tant information concerning the basic relaxation mecha-
nisms. However, we show that, perhaps disappointingly,
models where cooperativity is absent or trivial lead to four-
point correlation functions and dynamical susceptibilities �4
that exhibit nontrivial features. Other, more complex observ-
ables will have to be defined to really grasp the nature of the
collective motions involved in the relaxation process of
glasses �8,40�.

Let us summarize the main results of our study in terms of
the susceptibility �4�t� and time sectors. In a supercooled
liquid there are separate regimes of time scales correspond-
ing to different physical behavior �see Fig. 1�. On micro-
scopic time scales particles move ballistically if the dynam-
ics is Newtonian or diffusively if the dynamics is Brownian.
On a longer time scale, interactions start playing a role,
which can be described approximately using elasticity
theory, before a truly collective phenomenon sets in. This
nontrivial glassy regime is the � regime, within which cor-
relation functions, such as, for example, the dynamical struc-
ture factor, develop a plateau. The � regime is divided
further in an early- and a late-� regime corresponding, re-
spectively, to the approach and departure from the plateau of
the correlation function. Finally the structural relaxation time
scale on which correlation functions decay to zero is the �
regime. All previous studies have focused on the behavior of
�4�t� at times of the order of 	� which correspond to the peak
of �4�t�. We show that �4�t� has in fact a rich structure in
time and different behavior in different time sectors. In many
of these regimes, �4�t� behaves as a power law of time t�

with different values of �. During the ballistic time scale one
finds �=4 ��=2 for Brownian dynamics�, whereas during
the elastic regime �most relevant deep in the glass phase�, the
exponent becomes �=1 for ballistic phonons and �=1/2 for
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diffusive phonons. The behavior in the � and � regimes is
intimately related to the physical mechanism for relaxation
and indeed we find quite different answers depending on
which scenario we focus on. MCT predicts exponents �=a
and �=b on time scales corresponding, respectively, to the
early- and late-� regimes, where a and b are the standard
MCT exponents obtained from the study of the dynamical
structure factor. The power law tb extends until the peak in
�4�t� is reached.

The other scenarios only make predictions in the � re-
gime. In the case of CRR’s one has �4� t or �4��ln t�d+1/�

before the peak depending whether one assumes that the re-
laxation occurs via bulk nucleation events or domain wall
fluctuations; see below. For diffusing defects in dimension
d=3, the exponent is �=2. If defects have a nontrivial dif-
fusion exponent z, such that their displacement at time t
scales as t1/z, then �=2d /z for d�z and �=2 otherwise. The
overall behavior of �4�t� is summarized by Fig. 1, which
specializes to the MCT predictions for simplicity.

Another important feature of �4 is the growth of the peak
compared to the growth of the time t= t*�	� at which the
peak takes places �21�. This is found to scale as �4�t*�� t*�,
with �=0 �logarithm� for CRR’s, �=1 for freely diffusing
defects, �=d /z for anomalously diffusing defects for d�z,
and �=1 again for d�z. Note that if the defect diffusion
coefficient itself scales with t* as 1 / t*f, such as, for example,
in the one-spin facilitated FA model, there is an extra contri-
bution that gives �=1− f for d�z. Finally, one has �=1/� in
the context of MCT, where � describes the power-law diver-
gence of the relaxation time as the critical MCT temperature
is approached.

We have checked these predictions in two model systems
of glass-forming liquids: a Lennard-Jones and a soft-sphere
mixture. Concerning the behavior of �4�t� in the late-� and
-� regimes, the most interesting time sectors, we have found
reasonable agreement with the MCT predictions for four
point correlators. This agreement is by no means trivial and
is actually quite unexpected unless MCT indeed captures

some of the physics of the problem. Instead models of dif-
fusing, defects do not describe well the numerical results.
This is perhaps not very surprising since we are focusing on
two fragile liquids �at least in the numerical time window� at
temperatures well above the experimental glass transition. It
might be that the predictions of these models work only on
larger time scales. In any case, we expect instead that for
strong liquids displaying an Arrhenius behavior the predic-
tions for �4�t� obtained studying the model of simple diffus-
ing defects might hold quantitatively, since it seems quite
well established from numerical simulations that relaxation
in strong liquids is triggered by the diffusion of connectivity
defects �41,42�. Finally, the CRR picture does not agree
quantitatively with our present numerical data. However, this
picture is supposed to describe the liquid dynamics precisely
in the low-temperature and long-time regime, which is pres-
ently beyond numerical capabilities. Again, experimental re-
sults probing the behavior of �4�t� in this regime would be
highly valuable to put strong constraints on the different the-
oretical scenarios of glass formation.

The organization of the paper is as follows. In Sec. II we
discuss the behavior of �4�t� on microscopic time scales.
Then, we analyze the predictions of elasticity theory in Sec.
III. In Secs. IV and V we focus on the behavior of �4�t� in
the � and � regimes for MCT and CRR’s. In Sec. VI we
discuss the predictions of defect models analytically using an
independent defect approximation and by numerical simula-
tions of kinetically constrained models. In Sec. VII we com-
pare the different predictions to the results of numerical
simulations of models of glass-forming liquids. We present
our conclusions in Sec. VIII.

II. MICROSCOPIC DYNAMICS

On very short time scales the behavior of �4 can be com-
puted exactly. For simplicity, we characterize the dynamics
through the self-intermediate scattering function

Fs�k,t� =
1

N
	

i

�cos k� · �r�i�t� − r�i�0��� �2�

and define the dynamic susceptibility as the variance of the
fluctuations of Fs�k , t�:

�4�t� = N
�� 1

N
	

i

cos k� · �r�i�t� − r�i�0��2�
−� 1

N
	

i

cos k� · �r�i�t� − r�i�0���2� . �3�

The full intermediate four-point scattering function defined
in Eq. �1� in fact contains very similar information, even for
interacting systems—as shown by numerical simulations
�12,13�.

On a very short time scale particles move ballistically if
the dynamics is Newtonian, r�i�t�−r�i�0�=v� it+O�t2�, where v� i

is the velocity of the particle i at time t. Since the system is
in equilibrium all the v� i’s are independent Gaussian variables
with variance �v� i ·v� j�=ij3kBT /m, where T is the tempera-

FIG. 1. Sketch of the time behavior of �4�t�, with all the differ-
ent time regimes, within the MCT description that we find to be a
good description around Tc. As the temperature is lowered, we ex-
pect the elastic regime to extend up to 	�.
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ture, m the mass of the particles, and kB the Boltzmann con-
stant. Using this property it is straightforward to obtain

Fs�k,t� = exp�− k�2kBT

2m
t2 �4�

and

�4�t� = Fs�k,t�2
cosh�− 2k�2kBT

m
t2 − 1� . �5�

For an interacting particle systems this is only valid on short
time scales—for example, smaller than the collision time for
short-ranged interactions. This leads to an initial power-law
increase that reads

�4�t� =
1

2
�k�2�2� kBT

m
2

t4 + O�t6� . �6�

Note that if one had chosen Langevin dynamics �i.e., �tr�i
=�r�H+�� i� instead of Newtonian dynamics, Eqs. �5� and �6�
would have been identical except for the replacement of
kBTt2 /m by 2Tt, again for small times. Thus changing from
Newtonian to Langevin dynamics, the initial power-law in-
crease of �4�t� changes from t4 to t2. This is similar to the
change in the mean-square displacement that increases as t2

and t, respectively, for Newtonian and Langevin dynamics.
In the above example, however, it is clear that the increase

of �4 with time has nothing to do with the increase of a
correlation length, since particles are assumed to be indepen-
dent. In other words, the four-point correlation G4�r� , t� has a
trivial -function spatial dependence, but the height of the 
peak increases with time. As will be discussed later in the
paper, it is important to normalize �4�t� by the value of
G4�r�=0, t� to conclude from the four-point susceptibility that
a length scale is indeed growing in the system.

III. ELASTIC CONTRIBUTION

For longer time scales the interaction between particles
starts playing a role. Generically one expects that in the time
regime where the displacements of particles remain small, an
elastic description should be valid. In a solid or in a glass
deep below Tg, there is no further relaxation channels and the
elastic contribution to �4 should be the only relevant one. In
a supercooled liquid around the mode-coupling temperature
Tc, the elastic regime is interrupted by the collective � re-
gime, where in some sense phonon-phonon interactions com-
pletely change the physical picture. Although we expect such
a crossover, we have at present no detailed theoretical de-
scription of it.

In the following we analyze again the behavior of the
four-point self-intermediate scattering function assuming that
the dynamical behavior of the liquid can be described, within
a restricted time sector, as an elastic network �we will discuss
later how to include, in a phenomenological way, viscous
flow�. Perhaps surprisingly, we find a nontrivial structure for
G4 in this model, with an ever growing “cooperative” length
scale which comes from the dynamics of phonons, which
represents the simplest form of cooperativity.

We consider an isotropic solid immersed in a viscous ther-
mal bath. The energy of the system is given by

H =� ddr
1

2
�1
	

i

uii�2
+ �2	

i,j
ui,j

2 , �7�

where �1 ,�2 are the Lamé coefficient, ui,j =
1
2 �d�i /dxj

+d� j /dxi� is the deformation tensor, and �� the displacement

field from an undeformed reference state. Note that �� �x� is
simply the continuum limit of the displacement of each par-
ticle with respect to its equilibrium �bottom of the well� po-
sition.

As is well known, the above energy leads to three inde-
pendent phonon modes �one longitudinal and two transverse
modes�. For simplicity, we only consider one deformation
mode and write the Hamiltonian in Fourier space as

H =
1

2
�� ddk

�2��dk2�k�−k, �8�

where � is an effective elasticity modulus. The mode k has
an energy Ek=�k2�k�−k /2 and therefore we expect, in equi-
librium, ��k�−k�=T /�k2, where the Boltzmann constant has
been set to unity. Our goal is to calculate the dynamical
correlation functions of the system. We describe the dynam-
ics by a Langevin equation with a local noise:

m
�2��r�,t�

�t2 + �
���r�,t�

�t
= ����r�,t� + ��r�,t� , �9�

where ��x , t� is a Gaussian noise uncorrelated in space and
time, of variance equal to 2�T. Taking the Fourier transform

m
�2�k

�t2 + �
��k

�t
= − �k2�k + �k�t� , �10�

�k�t� is again a Gaussian noise uncorrelated for different k’s
and time.

In this section, we only consider in details the over-
damped case m=0 and set D=� /�, but also give at the end
the result for the purely propagative case �=0 �see also Ap-
pendix A�. One easily deduces the non-equal-time correla-
tion in the overdamped case:

��k�t��−k�0�� =
T

�k2e−Dk2t. �11�

Let us now define the function

F�q��r,t� = 	
i

„r − ri�0�…cos�q�ri�t� − ri�0��� , �12�

whose average equals the self-intermediate scattering func-
tion up to a constant �the particle density�.

Using the microscopic definition of �� we obtain that

C�q,t� = �F�q��r,t�� � �eiq���r�,t�−��r�,0��� = e−q2�����r�, t� − ��r�,0���2�/2,

�13�

where the last equality comes from the Gaussian nature of
the deformation field. Using the above results on the corre-
lation of the Fourier modes, we find
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����r�,t� − ��r�,0��2� =
2T

�
� 1 − e−Dk2t

k2

ddk

�2��d . �14�

As is well known, this integral behaves differently for d
�2 and for d�2, reflecting the fact that phonons destroy
translational order in low dimensions. As above, we will only
consider here the physical case d=3, relegating the discus-
sion of the other cases to Appendix A. For d=3, we need to
introduce an ultraviolet cutoff � on the wave vector k, which
is the inverse of the underlying lattice spacing a. Then, the
above integral goes to a constant �� at large times, reflect-
ing the fact that particles are localized in their “cage.” There-
fore, the self-intermediate scattering function C�q , t� decays
at small times �2Dt�1 before saturating to a “plateau”
value given by

fq � C�q,t → �� = exp�− c
T�q2

�
 , �15�

where c is a numerical constant. �Note that T�q2 /� has no
dimension and is expected, from a Lindemann criterion, to
be of the order of 0.05 at half the melting temperature and
for q=�.� In real glass-forming liquids, this plateau phase
does not persist forever, and C�q , t� finally decays to zero
beyond t=	�, in the so-called �-relaxation regime. A modi-
fication of the model to account for this decorrelation will be
discussed later. Furthermore, the above pseudo-� regime pre-
dicted by elastic theory does not explain quantitatively the �
regime in supercooled fragile liquids, except probably on
relatively short time scales—say, up to a few picoseconds.
On the other hand, at temperatures below Tg or for strong
glasses, we expect that the elastic regime will extend up to 	�
and compete with other mechanisms, such as the defect-
mediated correlation discussed in Sec. VI below.

The calculation of G4
�q��r� , t�= �F�q��r� , t�F�q��r�+r , t��c

is detailed in Appendix A. One immediately sees that
G4

�q��r� , t� is governed by a diffusive correlation length 
�t�
��Dt with D=� /�, as expected from the structure of the
Langevin equation that describes relaxational dynamics.
Clearly, in the case of propagative phonons, one finds 
�t�
�Vt with V2=� /m. The final result, see Appendix A, is

G4
�q��r�,t� = C2�q,t��cosh�2q2R�r�,t�� − 1� , �16�

where

R�r�,t� =
T

�
�Dt�1−d/2F� r

�Dt
 �17�

and we find �see Appendix A� F�z���4�z�−1 for z�1 and
F�z���2�3/2�−1 exp�−z2 /4� /z2 for z�1. Note the similarity
between the expression in Eq. �16� and the corresponding
one �5� derived in the previous section. One can check that
indeed the short-time behavior is indeed the one derived be-
fore in the case of Langevin dynamics for the particles, as
expected. Let us now focus on long times, but still within the
elastic regime, �2Dt�1, and for r�
�t�,

G4
�q��r�,t� = fq

2
cosh� Tq2

2��r
 − 1� . �18�

Suppose for simplicity that we are in a regime where the
argument of the cosh is always small, corresponding to the
limit Tq2��� �remember that by definition r�a=2� /�,
where a is the interatomic distance�. Then, G4�r� , t��r−2 for
�−1�r�
�t�. For larger scales r�
�t� decays as a
Gaussian—i.e., superexponentially fast. Note that the small-
r behavior of G4�r� , t� is not of the Ornstein-Zernike form
�1/r in d=3�. Integrating G4 over r� we find the dynamical
susceptibility

�4
�q��t� �

T2q4fq
2

�2 
�t� . �19�

This result is actually valid both for in the diffusive limit
where 
�t�=�Dt and in the propagative regime where 
�t�
=Vt. Therefore �4

�q��t� increases either as �t or as t �note that
in the limit of small times one recovers the t4 or t2 laws
obtained in the previous section�. In the general case, one
expects a crossover between a propagative regime at small
times t�m /�=D /V2 �of the order of ps in glass formers; see
�43�� and a diffusive regime for longer time scales. Thus,
looking at �4

�q��t� as a function of time in a log-log plot one
should see first a straight line corresponding to the ballistic
or diffusive motion leading, respectively, to slope �=4 or
�=2, bending over toward a smaller slope �1 or 1/2, or both,
depending on the strength of the dissipation�. The order of
magnitude of �4

�q��t�, as given by Eq. �19�, can be estimated
to be ��10−3–10−2�a2
�t� for q=�. In the propagative re-
gime with t=1 ps, V=3�103 m/s, and a=0.3 nm, one finds

=10a and �4

�q���10−2–10−1�a3—i.e., a small, but perhaps
detectable signal from the phonons. Only on much larger
time scales will the elastic contribution be significant, a re-
gime that can be reached deep in the glass phase �44�. As
mentioned above, other collective modes come into play in
supercooled fragile liquids, in particular around the mode-
coupling temperature, and give rise to the � regime where
“cages” themselves become more complex, extended objects
�32�.

The above calculation shows that in an elastic solid with
diffusive or propagative phonon modes, the dynamical sus-
ceptibility increases without bound, reflecting the presence
of Goldstone soft modes in the system. Of course, in a real
glass the correlation function C�q��t� eventually decays to
zero beyond the �-relaxation time 	�, as particles start dif-
fusing out of their cages, far away from their initial position.
If phonons were the only relevant excitations, this would
cause the dynamical susceptibility to peak around t= t*=	�.
A phenomenological model that describes the decay of
�4

�q��t� within the above elastic framework is to assume a
�Maxwell� viscoelastic local modulus:

���r�,t�
�t

= �
�
−�

t

dt�e−��t−t���
���r�,t��

�t� � + ��r�,t� , �20�

with ��	�
−1, corresponding to a frequency-dependent elastic

modulus ����= i�� / �i�+��. In this model, the dynamics of
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� becomes diffusive at times ��−1 and the dynamic struc-
ture factor therefore decays exponentially beyond that time.
Of course, the model itself becomes inconsistent at large
times, since the underlying lattice needed to define the defor-
mation field � has by then totally melted.

The conclusion of this section, however, is that since su-
percooled liquids behave at high frequencies ���� ,	�

−1� like
solids, the four-point correlation and dynamical susceptibil-
ity are expected to reveal, in a certain time domain, a non-
trivial behavior unrelated to the structure of the “collective
processes” discussed below �MCT, diffusive defects, CRR’s�
that one usually envisions to explain glassy dynamics.

IV. MODE-COUPLING THEORY

As mentioned in the Introduction the mode-coupling
theory of supercooled liquids predicts the growth of a coop-
erative length as the temperature is decreased or the density
increased �28,29,32� and makes detailed predictions on the
shape of �4�t�. The four-point correlation function becomes
critical near the mode-coupling transition temperature Tc.
The behavior of the susceptibility �4�t� is encoded in ladder
diagrams �29,32�. From the analytical and numerical results
of �32� and analyzing the ladder diagrams �32,45�, we have
found that, in the � regime,

�4�t� � f1�t�1/2a�/��, t � 	�, �21�

and in the � regime,

�4�t� � f2�t�1/2a+1/2b�/�, t � 	�, �22�

where �=T−Tc, a, b, and �=1/2a+1/2b are the MCT ex-
ponents for the dynamical structure factor, and f1�x� and
f2�x� are two scaling functions. Requiring that the depen-
dence on � drop out when t�1/2a�1 one finds that f1�x�
�xa when x�1. This leads to a power-law behavior �4
� ta in the early-� regime—i.e., when the intermediate scat-
tering functions approaches a plateau. In the same way,
matching the behavior of f1 when x�1 to the one of f2 when
x�1 one finds another power-law behavior �4� tb on time
scales between the departure from the plateau and the peak
of �4. We give in Fig. 1 a schematic summary of the shape of
�4�t� within the MCT description of supercooled liquids.

Finally, as discussed in �32�, at times t= t*�	�, �4 reaches
a maximum of height �T−Tc�−1. Using the relation 	���T
−Tc�−�, valid within MCT, one finally finds �4�t*�� t*1/�.

V. COLLECTIVELY REARRANGING REGIONS

Under the term CRR, we gather many similar scenarios
that differ in their details, as discussed in the Introduction
�1,34–36�. Within the frustration-limited domains scenario of
Ref. �36� it seems natural to envision the dynamics as the
activated motion of domains pinned by self-generated disor-
der. In the case of the random first-order theory of Refs.
�34,35�, the details of the decorrelation mechanism are not
entirely clear. There should be, on the one hand, activated
fluctuations of domain walls between different states, again
pinned by self-generated disorder. However, the fluctuations

leading to a change of state may be the nucleation of a com-
pletely different state starting from the bulk. The latter pro-
cess can be modeled as a nearly instantaneous event with a
certain �small� nucleation rate. In the following we shall ana-
lyze separately these two types of fluctuations and their con-
sequences on the shape of �4�t�.

A. Instantaneous events

Suppose that the dynamics is made of nearly instanta-
neous events that decorrelate the system in a compact “blob”
of radius 
0. The probability per unit time and volume for
such an event to appear around site r� is �. We compute the
four-body correlation of the persistence, nr�t�, defined to be
equal to one if no event happened at r� between times 0 and t
and equal to zero otherwise. The four-body correlation is
then defined as

G4�r�,t� = �nr�t�n0�t�� − �nr�t��2. �23�

Clearly, the averaged correlation function C�t�= �nr�t�� is
simply given by C�t�=exp�−��
0

dt� where � is the volume
of the unit sphere. For G4�r� , t� to be nonzero, an event must
have happened simultaneously at r� and at 0, leading to

G4�r�,t� = C2�t��exp��t
0
df�r/
0�� − 1� , �24�

where f�x� is the volume of the intersection between two
spheres of unit radius with centers at distance x apart.
Clearly, f�x�2�=0. Therefore, G4�r� , t� is nonzero only if r
�2
0, and is in fact roughly constant there. For a given r
satisfying this bound, G4 first grows linearly with time,
reaches a maximum for t= t*��−1
0

−d and decays exponen-
tially beyond that time. The same behavior is found for �4�t�,
which grows initially as t� with �=1 and reaches a maxi-
mum such that �4�t*��
0

d. Assuming finally that these events
are activated �34,35�, with a barrier growing like  
0

�, where
� is a certain exponent, one expects t*�	0 exp� 
0

� /T�, and
therefore �4�t*�� �ln t*�d/��
0

d.
The rearranging regions could have of course more com-

plicated shapes than the simple sphere assumed above. As
long as these objects are reasonably compact, the above re-
sults will still hold qualitatively. On the other hand, if these
regions are fractal with a dimension df�d /2, the above re-
sults on G4 will hold with the argument in the exponential
given by �tr2df−d; one also finds t*�1/�
0

df and �4�t*��
0
df.

B. Domain wall fluctuations

In this case the picture that we have in mind is similar to
the case of a disordered ferromagnet with pinned domain
walls, where the typical time to flip a domain is comparable
to the interevent time. In that case, an “event” is in fact the
slow fluctuation of domain walls that progressively invade
the bulk of the domain �in the follow we neglect the fast
equilibrium dynamics taking place inside the domains that
determines the evolution of �4�t� on short time scales�. The
early-time behavior of �4�t� is given by the square of the
number of particles that relax per unit volume thanks to the
same domain wall �see �31� for the same situation out of
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equilibrium in pure systems�.1 Let again 
0 be the typical size
of a domain and ��t� the length scale over which the domain
walls fluctuate during time t. Considering that on the surface
of each domain there are order �
0 /��d−1 subdomains of lin-
ear size � and that the number of particles in each of these
subdomains is proportional to �d, we get �4�t�
�
0

−d�
0 /��d−1�2d��d+1 /
0. We are descarding for simplicity
both the possibility of fractal domains and that transverse
fluctuations behave differently from longitudinal ones. As-
suming thermal activation over pinning energy barriers that
grow like  �� �46�, we finally get �4�t��
0

−1�ln t�d+1/�.
Therefore, in this case, the exponent � is formally zero and
the growth of �4�t� is only logarithmic. The maximum of �4

occurs at time t* such that ��t*��
0, which implies that the
maximum of the susceptibility also scales logarithmically
with t*, �4�t*��
0

−1�ln t*�d+1/��
0
d. The same scaling of the

maximum of the susceptibility with the typical domain size
is obtained in nondisordered coarsening systems �31�.

The conclusion of the above analysis is that if the CRR
relaxation is due to both instantaneous events and domain
wall fluctuations, the latter will dominate the time behavior
of �4 before the peak as can be readily deduced by compar-
ing their relative contributions to �4�t�. If for some reason
domain walls are particularly strongly pinned and bulk
nucleation becomes dominant, then the exponent �=1
should be observable. The height of the peak, on the other
hand, behaves identically in both models. Thus, as the tem-
perature is reduced, one should see a power-law behavior
before the peak with an exponent 0�b�1 in the MCT re-
gime followed by an effective exponent � either decreasing
toward zero or increasing toward one depending on whether
the domain wall contribution dominates or not. However, at
lower temperatures, the elastic contribution will also start
playing a role, which might completely dominate over the
CRR contribution. This suggests that other observables,
which quantify more specifically the collective dynamics,
should be devised to reveal a CRR dynamics.

VI. DEFECT-MEDIATED MOBILITY

A. Independently diffusing defects

As the simplest realization of the defect-mediated sce-
nario for glassy dynamics advocated in �15,16,19,20,24�, we
consider a lattice model in which mobility defects, or vacan-
cies, perform independent symmetric random walks. We as-
sume for the moment that these vacancies cannot be created
or destroyed spontaneously. We shall compute the same
function G4�r� , t� as in Eq. �23� above, arguing that when
such a vacancy crosses site r�, the local configuration is re-
shuffled and the local correlation drops to zero. Therefore,
nr�t� is equal to one, if no vacancy ever visited site r� between
t=0 and t, and zero otherwise. Thus, �nr�t�� represents a
density-density dynamical correlation function whereas
�n0�t�nr��t��− �n0�t��2 corresponds to G4�r� , t�.

From now on we will denote by Nv the number of vacan-
cies, by V the total volume, by �v=Nv /V=1−� the vacancy
density and by Px̄

z�t� the probability that a vacancy starts in z
at time zero and never reaches x until time t. The probability
that a vacancy starts in z at time zero and reaches for the first
time x at a time u� t is therefore Px

z�t�=1− Px̄
z�t�.

The computation of �nx�t�� is identical to the target anni-
hilation problem considered in �47�. Since we assume defects
to be independent, the defect distribution is uniform and we
have

�nx�t�� = 
 1

V
	

z,z�x

Px̄
z�t��Nv

= 
 1

V
	

z,z�x

�1 − Px
z�t���Nv

= exp
− �v − �v 	
z,z�x

Px
z�t�� . �25�

The correlation function �nx�t�ny�t�� can be also expressed
in terms of probability distributions of a single random walk
in a similar way:

�nx�t�ny�t�� = 
 1

V
	

z,z�x,y
Px̄,ȳ

z �t��Nv

= 
 1

V
	

z,z�x,y
�1 − Px

z�t� − Py,x̄
z �t���Nv

= 
1 −
2

V
−

1

V
	

z,z�x,y
Px

z�t� −
1

2V

� 	
z,z�x,y

�Py,x̄
z �t� + Px,ȳ

z �t���Nv

= exp�− 2�v − �v 	
z,z�x

Px
z�t� + �vPx

y�t�

−
�v

2 	
z,z�x,y

�Py,x̄
z �t� + Px,ȳ

z �t�� �26�

where Px̄,ȳ
z �t� is the probability that a vacancy starts in z at

time zero and never reaches either x or y until time t and
Px,ȳ

z �t� is the probability that a vacancy starts in z at time zero
and reaches x at u� t but never reaches y until time t. In Eqs.
�25� and �26� we are left with the calculation of probabilities
of the form Px

z�t�, Px,ȳ
z �t�+ Pyx̄

z �t� for a single random walk.
This can be done using Laplace transforms and, concerning
Px

z�t�, the computation has been performed a while ago �48�.
All the details can be found in Appendix B.

In the continuum limit, �x−y� /�Dt /2�O�1�; i.e., for in-
dependent Brownian motion with diffusion coefficient D, the
final expression for �nx�t�� on time scales much larger than
one is, in three dimensions,

�nx�t�� = exp�− �v − c1D�vt� , �27�

where c1 is a constant fixed by the short-length-scale
physics—i.e., the underlying lattice structure �see Appendix
B�. It is clear from this expression which is valid in all di-

1We are implicitly assuming that the variance of N�, the number
of particles that relax per unit volume thanks to the same domain
wall, equals the square of the average N�
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mensions larger than 2 that the relaxation time scale is gov-
erned by the vacancy density �v and reads 	=1/ �c1�vD�.
Physically 	 corresponds to the time such that each site has
typically been visited once by a defect.

The final expression for G4 is, for time and length scales
much larger than 1, and in the small vacancy density limit
�v→0,

G4�r�,t� =
c2

�v
exp�−

2t

	
� t

	
2�

0

1

du�
0

u

dv
e−r2/2Dvt

�2�Dvt�3/2 ,

�28�

where c2 is a constant of order unity. Note that the correla-
tion length at fixed t is given by 
�t�=�Dt. For r�
�t�,
G4�r� , t��1/r, whereas for r�
�t�, G4 decays at leading or-
der as a Gaussian—that is, much faster than exponentially.
The 1/r behavior is cut off on short-length scales, where Eq.
�28� does not hold. For r=0 one finds, when t�1,

G4�r = 0,t� = �nx�t�� − �nx�t��2 = exp�− t/	��1 − exp�− t/	�� ,

�29�

which behaves as t /	 at small times.
By integrating Eq. �28� over r� we get the dynamical sus-

ceptibility

�4�t� =
c2

2�v
� t

	
2

exp�−
2t

	
 . �30�

For short times t�	, the dynamical susceptibility is propor-
tional to t2, so that �=2. This is due to the diffusing nature
of the defects. The main contribution to �4 is given by the
square of the number of sites visited by the same defect,
which behaves as �v�Dt�2= �1/�v��t /	�2, since a random
walk in three dimensions typically visits t different sites. For
t�	, on the other hand, the correlation decreases because
sites start being visited by different vacancies. The maximum
of �4�t� is reached for t= t*=	, for which one has �4�t*�
��v

−1�Dt*. Note that because random walks are fractals of
dimension df =2, the above relation can also be written as
�4�t*��ad−df
df�t*�, where we have added the lattice spacing
a to give to �4 the dimension of a volume. If for some reason
D depends on �v, as happens, for example, for the one-spin-
facilitated Fredrickson-Andersen �FA� model where D��v,
then one finds t*��v

−2 and �4�t*�� t*1/2.
Taking the Fourier transform of G4�r , t� given by Eq. �28�,

we find the four-point structure factor S4�k , t�,

S4�k,t� = �4�t�F�Dk2t�, F�u� �
2

u2 �u − 1 + e−u� . �31�

Note that S�k=0, t�=�4�t�, as it should. Furthermore, for
large and small k, S4�k , t� behaves, respectively, as S4�k−2

and S4��4+O�k2�, just as the Ornstein-Zernike form,
though the detailed k dependence is different.

One can also study this problem in dimension d=1 or
d=2. Qualitatively, the same conclusions hold �diffusive cor-
relation length �Dt, correlation time t* set by the density of
vacancies, etc.�, although the quantitative results differ be-
cause a random walk in d�2 visits a number of sites that

grows sublinearly with time; see Appendix B 1 and B 3. One
finds in particular that �4�t*���Dt*�d/2�
d�t*�, with loga-
rithmic corrections for d=2. The above arguments can be
generalized if for some reason the vacancies have an anoma-
lous diffusion motion, in the sense that their typical excur-
sion between time t=0 and time t scales as t1/z, where z is the
dynamical exponent. When z=2, the usual diffusion is ob-
served, but many models like diffusion in random media or
kinetically constrained models may lead to subdiffusion,
where z�2 �21,49�. In this case, one expects the small-time
behavior of �4�t� to be given by �4�t�� t2d/z for d�z and t2

for d�z with logarithmic corrections for d=z. Similarly, the
behavior of �4�t*� is a power law �4�t*�� t*�, with �=d /z for
d�z and �=1 for d�z.

In the above model, mobility defects were assumed to be
conserved in time. However, it is certainly more realistic to
think that these defects can be spontaneously created and
disappear with time. Suppose that defects are created with a
rate � per unit time and unit volume and disappear with a
rate � per unit time. The equilibrium density of defects is
then �v=� /�. The above results on �4 can easily be gener-
alized. At small times, the number of pairs of visited sites
will now behave as �v�Dt�2− 2

3��Dt�3 /D. Because of the
death of vacancies, there is an extra decay of the dynamical
susceptibility. The dominant rate of decay depends on the
adimensional number �	.

A very similar model for glassy dynamics was suggested
in �50�, where free volume is described as a diffusing coarse-
grained density field ��r� , t� with a random Langevin noise
term. Mobility of particles is allowed whenever the density �
exceeds a certain threshold �0. The mobile regions are then
delimited by the contour lines of a random field, which al-
ready gives rise to a quite complex problem of statistical
geometry �51�. The particle density correlation in this model
is a simple exponential with relaxation time 	�exp��0 / �̄�,
where �̄ is the average free-volume density. One can also
compute �4�t� in this model to find, in d=3,

�4�t� � t�exp�−
t

	

1 − exp�−

t

	
�� , �32�

which behaves very much like the pointlike vacancy model
studied above, with in particular, �4�t�� t2 for t�	.

Let us finally note that from the point of view of interact-
ing particles on a lattice we have studied the persistence
dynamical susceptibility, instead of the density-density cor-
relations discussed in the Introduction. This is because for
the lattice gas problem at hand, the former does not show
any interesting properties: except when a defect passes by,
the local state is always the same—i.e., occupied. For com-
pleteness, we give the corresponding results in Appendix B
4. In a real system, however, the local configuration is going
to be affected by the passage of a mobility defect, and one
can expect that the density-density correlations will in fact
behave more like the persistence dynamical susceptibility
computed before. The correspondence between persistence
and self-intermediate scattering function is studied explicitly
in kinetically constrained models in Ref. �52�.
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B. Kinetically constrained models: Numerical results

Kinetically constrained models �KCM’s� postulate that
glassy dynamics can be modeled by forgetting about static
interactions between particles, putting all the emphasis on
dynamical aspects. Among those models are, for example,
the FA model or the Kob-Andersen �KA� model on hypercu-
bic lattices �15,25�. The dynamics of these models can be
understood in terms of diffusion of defects �17,21,25� and
the models can be classified into cooperative and noncoop-
erative models, depending on the properties of such defects.
For cooperative models the size 
0, the density, and the time
scale for motion of the defects depends on the particle den-
sity �for conservative models� or temperature �for nonconser-
vative models� and change very rapidly with increasing den-
sity or decreasing temperature �25�. KA and FA models with
more than one neighboring vacancy needed in order to allow
the motion of other vacancies belong to this class. On the
other hand, for the one-spin isotropically facilitated FA
model, a single facilitating spin is a mobile defect at all
values of temperature and the model is noncooperative. A
recent analysis �21� suggests that for these models defects
can be considered as noninteracting in d�4, while for d
�4 the role of fluctuations becomes important. Therefore we
expect that the previous results for the independent diffusing
defects model should apply exactly for FA one-spin facili-
tated in d�4. Furthermore, since the corrections to the
Gaussian exponents are not very large �21� in three dimen-
sions, we still expect a semiquantitative agreement. In par-
ticular the initial increase of the dynamic susceptibility as
�4�t��N�t�2, where N�t� is the total number of distinct vis-
ited sites, is expected to be quite a robust result. Also, we
expect a diffusive growth of the dynamical length scale 
�t�
governing the scaling of G4, at least in the limit 
�t��
0. At
smaller times, one expects a crossover between a CRR re-
gime when Dt�
0

2 �where the dynamics inside the defects
becomes relevant in cooperative models to a mobility defect
regime for longer times�. Hence, in principle, looking at the
detailed properties of G4�r , t� one should be able to extract
the defect properties—density, size, time scale—and decide
which theoretical scenario is most consistent with numerical
results.

In the following, we discuss numerical results for the one-
spin-facilitated FA model both in d=1 and d=3 and for the
d=1 East model where facilitation is anisotropic �15�. The
two models can be described, respectively, in terms of diffu-
sive and subdiffusive noncooperative defects and indeed the
numerical results are in quantitative agreement with the pre-
dictions of the previous section, as will be explained in de-
tail. We do not address the case of cooperative KCM models,
for which a more complicated behavior is expected. Indeed a
first slowing down of dynamics should occur near a dynami-
cal crossover displaying the properties of an MCT-like
avoided transition �25�. In this regime the model cannot be
approximated as a system of independent freely diffusing
defects and deriving a quantitative prediction for the behav-
ior of four-point correlation and susceptibility would deserve
further work. Such avoided transition should then be fol-
lowed at lower temperature or higher density by an
asymptotic behavior described in terms of cooperative dif-
fusing defects.

1. One dimension

Let us start with the simplest model, the d=1 FA model.
For a given temperature, we consider the time evolution of
the following quantities. The analog of the spatial four-point
correlator for this model is

G4�r,t� =
1

N
	
i=1

N

��ni�t�ni+r�t�� − n2�t�� , �33�

where n�t�=N−1	i=1
N �ni�t�� is the mean persistence, ni�t� be-

ing the persistence at site i. We also measure the correspond-
ing four-point structure factor

S4�k,t� =
1

N
	

�,m=1

N

��n��t�nm�t�� − n2�t��eik·��−m�, �34�

and as usual we get the four-point susceptibility as the k
→0 limit of the structure factor, �4�t�=S4�k=0, t�. We gen-
erally find that the results are in good agreement with the
free-defect model described above, at least at sufficiently low
temperatures.

In Fig. 2, we show the evolution of the spatial correlator
�33� at a given low temperature T=0.2 and various times. At
this temperature, the relaxation time is about 	�106, so that
the time scales presented in Fig. 2 cover a range of times
both smaller and larger than 	. The dynamic susceptibility
�4�t� has the usual shape with a maximum at a time close to
	, indicating that dynamics is maximally heterogeneous
there. This nonmonotonic behavior of �4 in fact does not
show up in the spatial correlators of Fig. 2, which display
instead a smooth monotonic evolution with time. The spatial
decay of G4�r , t� becomes slower when t increases, indicat-
ing the presence of a monotonically growing dynamic length
scale 
�t�.

One can estimate the time dependence of 
�t� by collaps-
ing the data of Fig. 2 using a form like

FIG. 2. Four-point spatial correlator �33� in the d=1 FA model
at fixed temperature T=0.2 and various times t=103,3�103, 104,
3�104,105,106,3�106,6�106 �from left to right�. The correlator is
normalized by its r=0 value. At this temperature, the relaxation
time is 	�106, so that time scales cover both regimes where t /	 is
smaller and larger than 1.
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G4�r,t� � G4�0,t�G� r



 . �35�

Doing so, we find that 
� t0.45 is a reasonable representation
of the data at T=0.2. Correspondingly, we find that the in-
crease of �4�t� for t�	 is well described by a power law
�4� t0.85, so that the expected scaling �4�
2 is reasonably
verified given the unavoidable freedom in estimating the
range of time scales where power laws apply. The values of
these exponents are not far from the ones expected from
freely diffusing defects in one dimension, although slightly
smaller. Indeed, we recall that the results in Appendix B 1
predict 
=�Dt, �4�t���
�t�2, and �4�t*�=1/�, where � is the
density of defects, D their diffusion coefficient, and t* the
time at which �4�t� reaches its maximum value. This last
prediction is also in good agreement with the numerical re-
sults �see, e.g., �20��.

Repeating the simulation at lower temperature T=0.15,
we obtain �4� t0.93, showing that deviations from theoreti-
cally expected values are partly due to preasymptotic effects
that presumably disappear at very low temperatures.

It is important to remark that the scaling form �35� is only
approximately supported by the data. The scaling in fact de-
teriorates when times become larger than 	. This can be seen
in Fig. 2 where data for large times become more and more
stretched, indicating an increasing polydispersity of the dy-
namical clusters. Note that a change in the shape of the spa-
tial correlator makes a quantitative determination of 
 prob-
lematic. Usually, one wants to collapse various curves using
a form like Eq. �35� to numerically extract 
. Strictly speak-
ing, this is not possible here if one works at fixed T and
varying t over a large time window. This difficulty provides
a second possible explanation for the small discrepancy be-
tween the measured values of exponents and the theoretical
expectations.

The observation of a monotonically growing length begs
the question: how can the correlation length increase mono-
tonically with time while the volume integral of the spatial
correlator �4 is nonmonotonic, as reported in the previous
section? This is due to the fact that we have presented in Fig.
2 results for the normalized correlator G4�r , t� /G4�r=0, t�.
By definition, G4�0, t�=n�1−n�; hence, the normalization it-
self exhibits a nonmonotonic behavior. If one considers the
normalized susceptibility �̃4= �G4�0, t�N�−1	�,m��n�nm�
−n2�t��, one indeed finds that �̃4 is monotonically growing as
well.

In numerical works, the quantities that have been studied
are in fact, most of the time, normalized, and the correspond-
ing �̃4�t� observed for realistic systems shows a peak, at
variance with what is observed in the d=1 FA model. As we
shall show below, this is due to the one-dimensional nature
of the model, and this difference is not observed in three
dimensions. This difference in the behavior of the normal-
ized dynamical susceptibility between one and three dimen-
sions is indeed in full agreement with the independent defect
diffusion computation; see the previous section and Appen-
dix B.

Results are qualitatively similar in the one-dimensional
East model. The dynamic susceptibility �4�t� develops a

peak that grows and whose position is slaved to the increas-
ing relaxation time when temperature decreases. At fixed
temperature, a monotonically growing length scale is ob-
served, while the scaling relation �4�
2 still holds within
our numerical precision. The novelty of this model lies in the
fact that exponents are now temperature dependent, as all
other dynamic exponents in this model. For instance, we find
that 
�t�� t0.28 at T=0.4, 
�t�� t0.15 at T=0.2. These results
are in agreement with the above predictions of the indepen-
dent defect model if the defect motion is subdiffusive, with a
dynamic exponent z=T0 /T, as expected from �17�. Due to
the quasi-one-dimensional nature of the relaxation process in
the three-dimensional generalization of the East model �18�,
these results most probably carry over to larger dimensions
where they would differ by numerical factors only.

2. Three dimensions

In d=3, the situation is more subtle. Results for the nor-
malized susceptibility of the one-spin-facilitated FA model
were presented in Ref. �22�, where it was found to have the
standard nonmonotonic shape already described several
times above. We find that the non-normalized �4�t� has the
same qualitative behavior. Therefore, contrary to the d=1
case normalization is not a crucial issue in three dimensions.

In the following we check the predictions for independent
diffusing defects in three dimensions for the susceptibility
and correlation length obtained above—i.e., 
�t�=�Dt,
�4�t���
�t�4, and �4�t*�=1/�, where � is the density of de-
fects, D their diffusion coefficient, and t* the time at which
�4�t� reaches its maximum value. We find a semiquantitative
agreement with above prediction, with small deviations in
the exponents that should be due to the interaction among
defects. In particular the scaling of the peak with the density
of defects was already analyzed in �22�, where the result
�4�t*��1/�1−� was obtained, with ��0.03. As for the corre-
lation length, we find 
�t�� t0.42, which shows again a small
deviation from the diffusive prediction. Regarding the in-
crease at t�	 of the susceptibility we find a power law as
predicted. As in d=1, the exponent changes slightly when
decreasing temperature because the scaling regime where the
power law applies becomes more and more extended. We
find �4� t1.4 at T=0.25, �4� t1.55 at T=0.17, and �4� t1.89 at
T=0.095. This seems to indicate that the deviation from the
scaling �4�t�� t2 calculated for the independent diffusing de-
fect model is partly due to preasymptotic effects that are less
and less important at lower temperature. Unfortunately, we
were not able to measure 
 at much lower temperatures with
sufficient accuracy. We expect that even at very low tempera-
ture a small deviation from the exponent of independent de-
fects should survive due to the interaction among defects.

In Fig. 3 we show the four-point correlations in both real
and Fourier space, Eqs. �33� and �34�. In these curves the
temperature is fixed at a low value, T=0.17, and time is
varied in a wide range that includes the relaxation time 	�T
=0.17��5�104, where the dynamic susceptibility also
peaks. For times t�	, the spatial decay of G4�r , t� is fast.
When t increases, the spatial decay becomes slower, once
again indicative of an increasing dynamic correlation length
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�t�. When t becomes larger than 	, however, spatial corre-
lations seem to become weaker. It is obvious from Fig. 3 that
the volume integral of G4�r , t� /G4�0, t� decreases when t
grows larger than 	. This is very different from the one-
dimensional case in Fig. 2, but consistent with all known
numerical results.

However, a closer look at Fig. 3 reveals that even though
the initial spatial decay of G4�r , t� is stronger at larger times,
the contrary is true at large distances. This indicates that the
topology of the dynamic clusters changes when t grows
larger than 	, but that 
�t� may keep increasing in a mono-
tonic manner. Since the spatial correlator is very small at
large distances, quantitative measurements of 
�t� are more
easily performed in Fourier space via S4�k , t�.

At short time, a fit of S4�k , t� using the functional form
given by Eq. �31� works reasonably well, but the fit quickly
deteriorates at long time. We have therefore used the follow-
ing generalization of Eq. �31�:

S4�k,t� = �4�t�F��k2
2�t��, F��u� �
22/�

u�
�u − 1 + e−u��/2.

�36�

Freely diffusing defects correspond to �=2 and 
�t���t.
Using ��t� as an additional free parameter, we are able to fit
S4�k , t� at all times; see Fig. 3. We find that � decreases from
��2.5 at small times to ��1 for the longest time scales
investigated, which corresponds to t�5	. At such large
times, the dynamic susceptibility has already decreased by a

factor of �300 from its maximum value at t=	, and corre-
lations become very weak indeed. The values for � found
from the fits are consistent with the value ��2.15 reported
in Ref. �22� where only fixed time ratio t /	�T�=1 at different
temperatures have been studied. From this fitting procedure,
we deduce a monotonically growing dynamic length 
�t�,
even beyond t=	�T�. Fitting its time dependence with a
power law, we get 
� t0.42 which appears to be slightly sub-
diffusive, but close to the value found above in the one-
dimensional case.

In conclusion we find that on small enough time scales,
one indeed has good agreement with the above calculations
based on freely diffusing defects; therefore, defect branching
and defect coagulation can be neglected. However, for longer
time scales, significant deviations appear which correspond
to the evolution of the exponent ��t� and should be respon-
sible for the small deviations of the predicted exponent for
�4. Physically, the time evolution of the exponent ��t� char-
acterizing the large-k behavior of the dynamic structure fac-
tor is reasonable. At very short times, dynamic clusters con-
sist of coils created by random walkers, and an exponent
close to �=2 can be expected. For times t�	, clusters look
critical, as described in Refs. �21,22�, and the exponent �
=2−�, ��0 is expected. At very large times, clusters are
most probably extremely polydisperse because the remaining
spatial correlations at large times are due to the largest re-
gions of space that were devoid of defects at time 0 and that
take therefore a large time to relax. But at large times, some
isolated sites that have not been visited by defects during the
relaxation might survive so that the distribution of dynamic
clusters at large times is very wide; see Ref. �18� for snap-
shots. A small value of � can therefore be expected.

VII. NUMERICAL RESULTS ON ATOMISTIC MODEL
SYSTEMS

In this section, we study numerical results for the dynamic
susceptibility and structure factor of a supercooled liquid
simulated by molecular dynamics simulations. The model we
study is mainly the well-known binary Lennard-Jones �LJ�
mixture as first defined and studied in Ref. �53�, but we
report also some results for a soft-sphere mixture studied in
�38,55,56�. We do not give details about our numerical pro-
cedures since these were given several times in the literature
�21,30,53�.

A. Dynamical susceptibility

In previous works on various realistic liquids, the dy-
namic susceptibility was reported several times �9,10,12,28�.
It is known to exhibit at peak at a time scale enslaved to the
quantity chosen to quantify local dynamics. Typically, par-
ticle displacements are chosen, and one computes therefore
the variance of some dynamical correlation,

�4�t� = N��F2�t�� − �F�t��2� , �37�

with

FIG. 3. Four-point correlations in the d=3 one-spin-facilitated
FA model in both real space �left� and Fourier space �right� at fixed
temperature T=0.17 and various times indicated in the figures. In
Fourier space, points represent numerical data, while solid lines are
fits to the form �36� with fitting parameters described in the text.
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F�t� =
1

N
	
i=1

N

Fi�t� . �38�

The dynamic quantity Fi�t� can be chosen as some “persis-
tence” function, in which case �F�t�� resembles the overlap
function usually measured in spin systems �10,12,28�. Other
choices are �21,30�

Fi�t� = cos�q� · r�i�t�� , �39�

where q� is a wave vector chosen in the first Brillouin zone
and r�i�t� is the displacement of particle i in a time interval t.
In the limit of small �k��, it is better to study Fi�t�
= �r�i�t�� /��r2�t�, where �r2�t� is the mean-square displace-
ment of the particles �9,11�.

Whereas the general shape of �4�t� is well documented in
the literature, its precise time dependence was never dis-
cussed. In Fig. 4, we present the time dependence of �4�t� in
the binary Lennard-Jones mixture at two different tempera-
tures. The data are presented in a log-log scale, in order to
emphasize the existence of several time regimes that are gen-
erally hidden in the existing reports. To build these curves,
we choose Eq. �39� as the local observable, for a wave vector
that corresponds roughly to the typical interparticle distance.

In the ballistic regime at very short times, we find that
�4�t�� t4, as described in Sec. II. The system then enters the
time regime where dynamic structure factors typically ex-
hibit plateaus, as a result of particle caging. As seen in Fig. 4,
this is also the case for �4�t�. Finally, �4�t� reaches a maxi-
mum located close to the relaxation time extracted from the
time dependence of �F�t�� and then rapidly decays to its
long-time limit, equal to 1/2 in the present case. In Fig. 4,
we fitted the time dependence of the increase of �4�t� to-
wards its maximum with power law �4� t�. The fits are sat-
isfactory, although they only hold on restricted time win-
dows. We find a slight temperature dependence of the
exponent �. For instance, we find ��0.9 at T=0.47 and �
�0.73 at T=0.42. As already discussed in the case of kineti-
cally constrained models above, it is not clear how the re-
stricted time window used to determine the exponents might
affect their values. However, the data in the Lennard-Jones
system behave quantitatively very differently from both the-

oretical results obtained from freely diffusing defects and
numerical results in the one-spin-facilitated d=3 FA model,
where �=2. The small temperature evolution in the LJ liquid
differs even qualitatively from the one-spin-facilitated d=3
FA model where the exponent was found to increase when
decreasing temperature. These observations tend to discard a
description of this supercooled liquid via a scenario with
simple independently diffusing defects, even interacting
ones. The above value of � is in principle compatible with
the predictions of elasticity theory, which yields �=1/2 or
�=1 depending on the damping of phonons. However, the
time scale in which the above-mentioned power-law behav-
ior holds in the Lennard-Jones mixture corresponds to the �
regime where the displacement of particles is no longer small
and the elastic description unjustified. Within MCT, on the
other hand, �4 should increase in that regime with an expo-
nent �=b that is known from previous analysis, b�0.63
�54�. The values found above are somewhat larger, but it is
hard to know how preasymptotic effects influence the nu-
merical data. Moreover, the value closest to b, ��0.73, is
obtained for T=0.42, a temperature already lower than the
mode-coupling singularity located at Tc�0.435 in this sys-
tem �a linear interpolation between the values at T=0.47 and
T=0.42 gives ��0.78 at T=0.435�. MCT also provides a
prediction for the height of the peak, �4

*� t*1/�, where � was
predicted to be �2.3, leading to �=1/��0.43. This predic-
tion is in good agreement with the results of Ref. �21� where
�4�t*�� t*0.4 was reported. It is important to remark, how-
ever, that the MCT exponents are not very well determined.
The exponents we reported are the ones computed theoreti-
cally in �54�. The exponents obtained from the fits of the
numerical data based on MCT are a bit different �53�, in
particular b�0.5 and 1/��0.37.

If one insists on using a noncooperative kinetically con-
strained model to describe the Lennard-Jones liquid, the
small value of the short time exponent � forces one to
choose a “fragile” KCM model, such as the East model de-
scribed above, where the exponent for the dynamic suscep-
tibility is found to be much smaller than the diffusive value
�=2, and indeed to decrease when temperature is decreased.
On the other hand, the large dynamic length scales observed
in the Lennard-Jones system are not expected for fragile
KCM’s such as the East model �18�. Our results do not dis-
card the possibility that cooperative KCM’s �in a proper den-
sity or temperature regime� display a four-point correlation
and susceptibility quantitatively similar to the one of the
Lennard-Jones liquid. Indeed, as stressed, in e.g., �25�, for
these models one expects a first regime of slowing down of
dynamics due to an avoided mode-coupling transition. The
susceptibility and four-point correlation could then well be
quantitatively comparable to that of Lennard-Jones liquids.
Concerning these comparisons between theoretical scenarios
and molecular dynamics simulation results it is important to
notice that the the relevance of supposedly “fragile” numeri-
cal models for supercooled liquids in shedding light on real
fragile glass formers has been questioned �57�.

Finally, it is of course a natural question to ask whether
the above agreement between MCT predictions and numeri-
cal results is only restricted to the Lennard-Jones system.
Using the unpublished data of Ref. �56� for a soft-sphere

FIG. 4. Time dependence of the dynamic susceptibility in the
binary LJ mixture at two different temperatures. The lines are
power-law fits with exponents indicated in the label.
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binary mixture where Tc�0.22–0.24 �38,55� we actually
found very similar results. Close to Tc a power-law behavior
of �4 as a function of time can again be observed. For in-
stance, �4� t0.63 for T=0.26. In Fig. 5 we plot �4, defined as
in Ref. �28�, as a function of time. We also display the
power-law behavior predicted by MCT before the peak with
the exponent b�0.59 taken from Ref. �55�. There is a simi-
lar agreement between the exponent � measured from the
height of the peak and the value of 1 /� extracted from an
MCT analysis of the data. �As in the previous case we used
the theoretical MCT exponents computed in �55�. In the case
of the soft-sphere system the MCT exponents from numeri-
cal fits have probably a large error bars; see the discussion in
�54�.�

The fact that the predictions of MCT for the four-point
susceptibility are in reasonable agreement with numerical
simulations in both systems is significant, since the expo-
nents b and 1/� are measured on �local� two-point functions
and � and � on four-point functions. The relation between
these exponents test a rather deep structural prediction of
MCT that relates time scales to length scales �32�. More
numerical work, on other model systems with different val-
ues of b, for example, would be needed to establish more
firmly whether the coincidence observed in the present paper
is or not accidental.

B. Growing length scale?

We focus now more directly on the dynamic length scale.
In previous works, the dynamic length scale 
 extracted from
four-point correlations was measured either at fixed tempera-
ture for various times t where it was found to be nonmono-
tonic �12,13,27�, but monotonic in �11�, or at fixed time t
=	�T�, for different temperatures, where it is found to be
increasing when the temperature decreases �9,12,21�. In
practice, to extract 
�t ,T� from the four-point correlation
function either in real space or in Fourier space, one needs to
postulate a specific functional form of G4. In this respect, the
results of the previous section on simple lattice KCM’s with

no underlying liquid structure prove instructive. It is clear
that with data similar to Fig. 3, but obtained with much
smaller system sizes, with much less statistics, and polluted
by the underlying structure of the liquid, the precise extrac-
tion of dynamical length scales from molecular dynamics
simulations is not an easy task. More fundamentally, extract-
ing 
 from fitting either G4�r , t� or S4�k , t� to a time-
independent scaling form necessarily biases the data as dis-
cussed above. This also shows that it is a much easier and
safer procedure to work, say, at t=	�T� and different tem-
perature to observe the growth of a cooperative length 
�	 ,T�
when decreasing T. On the other hand, it is not a priori
granted that the growth law of 
 with t=	�T� when changing
T is identical to that of 
�t ,T� with t at a given temperature T.
We will not be able to answer this question with our numeri-
cal data.

With the above caveats in mind, we present in Fig. 6 some
numerical data in the binary Lennard-Jones mixture at a
fixed temperature T=0.5 and three different times which fall
before, at, and after the peak in �4�t�. The difficulty of get-
ting clear-cut quantitative determinations for 
 is obvious
from Fig. 6. One would need much larger system sizes to
properly measure S4�k , t� at small wave vectors, large times,
and low temperatures. The system simulated here contains
1372 particles. One could possibly increase the number of
particles by a factor of 10, but the increase in linear size
would be very modest, a factor of 101/3�2.15. Nonetheless,

FIG. 5. Dynamic susceptibility �4�t� at T=0.3 and 0.26 �from
left to right� in a log-log plot as a function of time for the soft-
sphere binary mixture of Refs. �38,56�. The data were kindly pro-
vided to us by D. Reichman and R. A. Denny. The straight line
represents the MCT prediction for the power-law behavior before
the peak.

FIG. 6. Left: dynamic susceptibility at T=0.5 and q=4.21. The
vertical lines indicate the times at which S4�k , t� is evaluated in the
bottom figure. Right: the corresponding three S4�k , t� �the last two
have been multiplied by 2 for clarity�. Lines are fits to the form
�40�, the k→0 limit being fixed by the value of �4�t�, with a mono-
tonically growing length scale 
�t�.
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we have fitted the data in Fig. 6 with a simple empirical form

S4�k,t� =
�4�t� − C

1 + �k
��
+ C �40�

for 0�k�k0, k0�7.21 being the position of the first peak in
the static structure factor. As for the d=3 FA model, the
exponent ��t� and the dynamic length 
�t� are fitting param-
eters. There is an additional free parameter, the additive con-
stant C in Eq. �40�, which accounts for the fact that the
structure of the liquid starts to be visible and creates some
signal in S4�k , t� when k→k0. The results of the fitting pro-
cedure are presented in Fig. 6 with lines going through the
data. Note that the fits in Fig. 6 are constrained at low k by
the value of the dynamic susceptibility �4�t�. The most im-
portant result from Fig. 6 is that if the functional form of
S4�k , t� is given some freedom, here via the time-dependent
exponent ��t�, the extracted dynamic length scale 
�t� indeed
continues to grow monotonically after the peak of the dy-
namic susceptibility, contrary to reported previously
�12,13,27�, but in agreement with �11�. We emphasize once
more that this result physically makes sense. At times much
larger than t*, only very rare but very large dynamical do-
mains contribute to the dynamic structure factor, so that spa-
tial correlations are weak, but extremely long ranged. The
existence of an ever growing length scale is supported by
any model with an hydrodynamical limit �such as the phonon
or defect models studied here� and is in a sense trivial. The
really interesting piece of information is the value of this
length scale for t=	�—i.e., when the relevant relaxation pro-
cesses take place.

We conclude that our numerical data are not inconsistent
with a monotonically growing length scale even for t�	,
although addressing more quantitative issues such as func-
tional form at the growth law and its temperature dependence
would require quite an important, but certainly worthwhile,
numerical effort.

VIII. CONCLUSION AND FINAL COMMENTS

Let us summarize the results and various points made in
this rather dense paper. First, we have computed numerically
and analytically, exactly or approximatively, the four-point
correlation function designed to characterize nontrivial coop-
erative dynamics in glassy systems within several theoretical
models: mode-coupling theory, collectively rearranging re-
gions, diffusing defects, kinetically constrained models, and
elastic and plastic deformations. The conclusion is that the
behavior of �4�t� is rather rich, with different regimes sum-
marized in the Introduction and in Fig. 1. We have computed
the early time exponent � and the peak exponent � for quite
a few different models of glass-forming liquids and shown
that the values of these exponents resulting from these mod-
els are quite different, suggesting that the detailed study of
�4�t ,T� should allow one to eliminate or confirm some of the
theoretical models for glass formation.

In this spirit, we first simulated some noncooperative
KCM’s as the one-spin-facilitated FA model in d=1 and d
=3 and the East model. The assumption of pointlike defects

that diffuse, possibly with an anomalous diffusion exponent,
gives a good account of the shape of the four-point correla-
tion function and of the four-point susceptibility which are in
quantitative agreement with the above results for the inde-
pendent defect model. For strong glasses such as SiO2, our
results might lead to quantitative predictions if the relaxation
is indeed due to defect diffusion. It would be very interesting
to reconsider numerical simulations of the dynamics of SiO2
under the light of the present paper to check in more detail
that the defect picture is indeed correct in this case �note that
our results should enable one to extract, in principle, the
properties, density, and relaxation times of defects from the
four-point correlation function�. For the d=3 one-spin-
facilitated FA model, we see clear indications of the interac-
tions between defects as time increases. This leads to small
deviations of the numerically obtained exponents with re-
spect to those predicted by our analysis of the independent
defect model, which does not account for interactions be-
tween defects. As far as the identification of a growing length
scale 
�t� from numerical data, we have seen that even within
this simplified lattice model, this can be a rather difficult
task. Our results point toward a dynamical correlation length
that grows forever and a behavior of S4�k , t� different from
the Ornstein-Zernike form but with similar asymptotic be-
havior. We leave the study of cooperative KCM’s, for which
a more complicated behavior should occur, for future work.
In particular, the detailed form of S4�k , t� should contain in-
formation about the inner structure of the corresponding de-
fects.

We have also analyzed the four-point susceptibility of
both a Lennard-Jones system and a soft-sphere system, and
shown that the initial exponent � of the four-point suscepti-
bility is decreasing with the temperature and rather small,
��1. We have found, perhaps unexpectedly, a reasonable
agreement for � and � with the predictions of MCT but not
with other theoretical scenarios, such as simple diffusive or
subdiffusive defects, strong KCM’s, or CRR’s �although this
might be a question of temperature and time scales, since
both CRR and cooperative KCM’s are supposed to apply
closer to the glass transition temperature�. Finally we con-
firm that the extraction of the growth law of 
�t� at a given
temperature is difficult, and we can only say at this stage that
the data are not incompatible with the idea that 
�t� grows
monotonically, even beyond t=	�, in the Lennard-Jones sys-
tem.

As for further work and perspectives, we think that the
following points would be worth investigating. First, it
would be very interesting to develop a detailed theory of the
crossover between the elastic regime described in Sec. III
and the mode-coupling � relaxation regime. Is it possible, in
particular, to describe approximately the “melting” of the
glass as one approaches the mode-coupling transition tem-
perature from below? Second, we only considered systems in
equilibrium. One in fact expects that the four-point suscepti-
bility also contains very useful information in the aging re-
gime �see �31,59��. Detailed predictions in this regime may
enable one to probe the mechanisms for slow dynamics and
the issue of the cooperative length at low temperature in the
aging regime �59�. In particular, the elastic contribution
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should not age whereas the CRR contribution �characterized
by the same exponent �� should exhibit some aging, possibly
allowing one to separate the two effects. Third, since it is
clear from the present paper that simpler KCM’s
�Fredrickson-Andersen one-spin-facilitated, East model and
its generalization� seem to fail at describing quantitatively
�4�t� obtained by molecular dynamics simulations of �at least
two� fragile systems, it would be important to understand if it
is possible to find a generalization of these KCM’s that can
be in agreement with numerics. For the same reason a quan-
titative study of four-point functions in cooperative KCM’s
where defects have a complex inner structure would be in-
teresting. Fourth, it would be important to define more com-
plicated correlation functions—for example, a fully general
four point function or higher-order correlation functions—in
order to test in a more stringent way the idea of cooperativity
in glassy systems and distinguish systems where the growth
of �4�t� is trivial, such as elastic solids, from those in which
a truly nontrivial cooperativity governs the dynamics. Fi-
nally, it seems clear that this issue of cooperativity and its
associated length scale can only be convincingly settled if
long-time scales and low-temperature regimes can be probed
quantitatively in experimental systems. We hope that the
present paper will motivate ways to directly access four-
point functions experimentally in glassy systems �see �31��;
natural candidates for this are colloids �3� and granular ma-
terials �58,60�, although there might be ways to investigate
this question in molecular glasses and spin glasses as well
�61�.
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APPENDIX A: DYNAMICS OF ELASTIC
NETWORKS

1. Four-point correlation function: Overdamped case

We will define G4�r� , t� for the elastic model defined in the
text as

G4�r�,t� = �cos q���r�,t� − ��r�,0��

�cos q���r� = 0,t� − ��r� = 0,0��� − C2�q,t� ,

�A1�

which is equivalent to

G4�r�,t� =
1

2
�cos q���r�,t� − ��r�,0� + ��r� = 0,t� − ��r� = 0,0���

+
1

2
�cos q���r�,t� − ��r�,0� − ��r� = 0,t�

+ ��r� = 0,0��� − C2�q,t� .

Using the fact that the field � is Gaussian, we finally find

G4�r�,t� = C2�q,t��cosh�2q2R�r�,t�� − 1� , �A2�

where

R�r�,t� = ����r�,t� − ��r�,0�����r� = 0,t� − ��r� = 0,0���

=
T

�
� ddk

�2��dk2e−ik�·r��1 − e−�k2t� . �A3�

Hence,

R�r�,t� =
T

�
��t�1−d/2F� r

��t
 , �A4�

with

F�z� = z2−d�I��� − I�z��, I�z� =� ddw

�2��dw2e−iw1−w2/z2
.

�A5�

We thus see immediately that G4�r� , t� will be governed by a
“diffusive” correlation length 
�t����t, as expected from
the structure of the Langevin equation that describes relax-
ational dynamics. Note that for underdamped dynamics,
sound waves would change this scaling.

It is useful to consider the following quantity:

J�z� =
�I�z�

�� 1

z2 =� ddw

�2��de−iw1−w2/z2
. �A6�

In d=3, after integrating over dw1, one has

J�z� =
1

8�3/2z3e−z2/4 �A7�

and

I�z� =
1

4�3/2�
z

�

e−u2/4du . �A8�

Therefore, for z�1, one finds F�z���4�z�−1 and R�r� , t�
�T / �4��r�, whereas for z�1,

F�z� � �2�3/2�−1 exp�− z2/4�/z2.

Thus, for r�
�t� and ��2t�1, the four-point correlation
function behaves as

G4�r�,t� = fq
2
cosh� Tq2

2��r
 − 1� . �A9�

2. Four-point correlation function: Underdamped case

We have now

DYNAMICAL SUSCEPTIBILITY OF GLASS FORMERS:… PHYSICAL REVIEW E 71, 1 �2005�

1-15

  PROOF COPY [EZ9017] 086504PRE  



  PROOF COPY [EZ9017] 086504PRE  

  PRO
O

F CO
PY [EZ9017] 086504PRE  

m
�2��r�,t�

�2t
= ����r�,t� , �A10�

which has for solutions in Fourier space

�k�t� = exp�ikVt��k�0� , �A11�

with V= �� /m�1/2. We now have

����r�,t� − ��r�,0��2� =
2T

�
� �exp�ikVt� − 1�2

k2

ddk

�2��d

=
4T

�
� �1 − cos�Vkt��dk . �A12�

In d=3, we find obviously the same result for fq and G4 as
above, but R�r� , t� is now equal to

R�r�,t� =
T

�
� ddk

�2��dk2e−ik�·r��1 − cos�kVt�� , �A13�

which we write

R�r�,t� =
T

�
�I�r�,0� − I�r�,t�� , �A14�

where

I�r�,t� =� ddk

�2��dk2e−ik�·r� cos�kVt� . �A15�

By introducing z=Vt /r and changing the variable q�rk and
also u=cos ! and integrating over u, one finds

I�r�,t� =
2�

r
� dqq−1�sin�q�1 + z�� + sin�q�1 − z��� .

�A16�

Consider the first term

I�r�,t� =
2�

r
� dqq−1 sin�q�1 + z�� . �A17�

Changing variable v=q�1+z� directly shows that this inte-
gral do not depend on z, as long as �1+z� is positive. This is
true for the other integral, which does not depend on z as
long as 1−z is positive. If 1−z is negative, then the integral
changes sign. Therefore we have that I�r� , t�= I�r� ,0� if z�1
and I�r� , t�=0 if z�1. Therefore R�r� , t�=0 if z�1 and
R�r� , t�=T /4��r when z�1. The result is very intuitive:
when z�1 the information does not have time to travel the
distance r and there are no correlation. For z�1 the two
regions are “connected” and one finds the free-field correla-
tions. Brownian and Newtownian dynamics furnish the same
correlation for a given r when the time diverges, as we ex-
pect. Finally, it is straightforward to obtain the result quoted
in the text for �4�t�.

3. Low-dimensional case

We give here, without much detail, the results for elastic
networks in d=1 and d=2. In d=1, as is well known, each
particle wanders arbitrary far from its initial position but in

an anomalous, subdiffusing way, as t1/4. Correspondingly, the
dynamical structure factor decays as a stretched exponential:

ln C�q,t� �
T

�
q2t1/2. �A18�

Note that the t1/4 comes from a collective displacement of the
cages and is similar to the anomalous diffusion observed for
hard spheres in one dimension, since the latter problem can
be mapped onto the Edwards-Wilkinson problem in one di-
mension �60,62�. We expect that the results obtained here for
G4 should also hold for this case as well. In fact, this model
was recently discussed in the context of a simple d=1 granu-
lar compaction model, see �60�.

In d=2, the displacement grows logarithmically with
time, leading to a power-law decay of the dynamical struc-
ture factor with a q-dependent exponent:

C�q,t� � t−y, y =
q2T

8��
. �A19�

Turning now to �4�t�, we find that after a short transient,
�4�t� grows as t1/2 in d=1 and behaves as t1−2y in d=2.

APPENDIX B: CALCULATIONS FOR THE DEFECT
MODEL

In Sec. VI we have reduced the computation of G4�r , t�
and �4�t� to probability distributions of a single random
walk. In the following we shall show how these quantities
can be computed in any spatial dimension.

Let us call Fx
z�u� be the probability that a random walk

starting in z reaches x for the first time at time u. Px
z�t�, the

probability that a vacancy starts in z at time zero and reaches
for the first time x at a time less than t, reads

Px
z�t� = �

0

t

Fx
z�u�du . �B1�

Therefore, we need to calculate Fx
z�u�. The trick to do that

is writing a linear equation relating Fx
z, which we want to

compute, to Pz�x , t�, the probability that a random walk with
self-diffusion coefficient D, starting in z, is in x at time t,
which is well known. This linear equation is

Pz�x,t� = x,zt,0 + �
0

t

Fx
z�u�Px�x,t − u�du . �B2�

By taking the Laplace transform �from now on s is the vari-
able conjugated to t and L indicates the Laplace transform�
we obtain

Fx
z�t� = L−1�LPz�x,s� − x,z

LPx�x,s� �t� �B3�

and

Px
z�t� = �

0

t

L−1�LPz�x,s� − x,z

LPx�x,s� �t��dt� �B4�

=L−11

s

LPz�x,s� − x,z

LPx�x,s�
. �B5�
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A similar strategy can be used to calculate Px,ȳ
z �t�. Indeed

the following equality holds:

Px,ȳ
z �t� = �

0

t

Fx,ȳ
z �t��Pȳ

x�t − t��dt�,

Py,x̄
z �t� = �

0

t

Fx̄,y
z �t��Px̄

y�t − t��dt�, �B6�

where Fx̄,y
z �t� is the probability that a random walk starting in

z at time zero reaches y for the first time at t but never
touches x at s� t. Therefore, in order to calculate Px,ȳ

z �t�
+ Py,x̄

z �t� we need to calculate Fx,ȳ
z �t�+Fy,x̄

z �t�. It is immediate
to check that the following equations hold for any choice of
x,z,y:

Fx
z�t� = x,zt,0 + �

0

t

dsFx̄,y
z �s�Fx

y�t − s� + Fx,ȳ
z �t� ,

Fy
z�t� = y,zt,0 + �

0

t

dsFx,ȳ
z �s�Fy

x�t − s� + Fx̄,y
z �t� , �B7�

which implies, again by Laplace transform �z is always dif-
ferent from x and y in the following so we will skip the
Kronecker ’s�,

Fx̄,y
z �t� + Fx,ȳ

z �t� = L−1
LFx

z�s� + LFy
z�s�

LFy
x�s� + LFx

x�s�
. �B8�

Using the expression �B3� for Fy
x�s� we get

Fx̄
z�y,t� + Fȳ

z�x,t� = L−1
LPz�x,s� + LPz�y,s�
LPx�y,s� + LPx�x,s�

. �B9�

Furthermore, Px̄
y�t�=1− Px

y�t�. Hence we obtain

LPx̄
y�s� =

1

s
− LPx

y�s� =
1

s
�1 −

LPy�x,s�
LPx�x,s� . �B10�

Finally, we obtain the expression for

L�Px,ȳ
z �s� + Py,x̄

z �s�� =
LPz�x,s� + LPz�y,s�
LPx�y,s� + LPx�x,s�

1

s
�1 −

LPy�x,s�
LPx�x,s� .

�B11�

A useful way to rewrite this expression is obtained by
summing and subtracting the Laplace transform of Px

z�t�
+ Py

z�t�:

Px,ȳ
z �t� + Py,x̄

z �t� = Px
z�t� + Py

z�t�

− 2L−1
LPz�x,s� + LPz�y,s�
LPx�y,s� + LPx�x,s�

1

s

LPy�x,s�
LPx�x,s�

.

�B12�

Finally putting together all the different terms we have

�nx�t�ny�t�� = exp�− 2�v − 2�vN�t� + 2�vPx
y�t� + �vG�t,x − y�� ,

�B13�

where N�t�=	z�xPx
z�t� is the average number of distinct sites

�minus 1� visited by a random walk during the interval of
time t and

G�t,x − y� = L−1
 	
z�x,y

LPz�x,s� + LPz�y,s�
LPx�y,s� + LPx�x,s�

1

s

LPy�x,s�
LPx�x,s�� .

�B14�

Since

�nx�t��2 = exp�− 2�v − 2�vN�t�� , �B15�

the expression of G4 is

G4�x − y,t� = exp�− 2�v − 2�vN�t��

��exp�2�vPx
y�t� + �vG�t,x − y�� − 1� .

�B16�

In the following we shall analyze separately the one-
dimensional case, the three- or higher-dimensional case, and
the two-dimensional case.

1. One dimension

Consider a symmetric random walk on a one-dimensional
lattice with lattice spacing a. By Laplace transforming the
master equation

dPz�x,t�
dt

=
Pz�x + a,t� + Pz�x − a,t� − 2Pz�x,t�

2
, �B17�

one immediately obtains

LPz�x,s� = �
−�/a

�/a dk

2�

eik�x−z�

��k� + s
, �B18�

where ��k�= �1−cos k�. In the continuum limit a→0, �x
−y��a�Dt /2�a2, the above integral can be solved with the
well-known result

LPz�x,s� =
1

�4Ds
e−�s�x−z�/�D, �B19�

which correspond to the solution of the diffusion equation
for a one-dimensional Brownian motion with diffusion coef-
ficient D—i.e.,

dP

dt
= D

d2P

dx2 . �B20�

Let us now compute all the functions needed to get G4.
First,

N�t� = 	
z�x

Px
z�t� = 	

z�x

L−1�1

s

LPz�x,s�
LPx�x,s��t� ,

where we used Eq. �B4�. When t�1 we get

N�t� = 4
�Dt
��

.

DYNAMICAL SUSCEPTIBILITY OF GLASS FORMERS:… PHYSICAL REVIEW E 71, 1 �2005�

1-17

  PROOF COPY [EZ9017] 086504PRE  



  PROOF COPY [EZ9017] 086504PRE  

  PRO
O

F CO
PY [EZ9017] 086504PRE  

Second, using the expression �B14� of G in terms of
LPz�x ,s� we get

LG�s,x − y� = 2
�D

s3/2

e−�s�x−y�/�D

e−�s�x−y�/�D + 1
.

Changing variable in the inverse Laplace transform we
get

G�t� = 4�Dtf� �x − y�
�2Dt

 ,

where f(��x−y�� /�2Dt) equals

f� �x − y�
�2Dt

 = �
−i�−�

+i�−� e−�2s�x−z�/�Dt

e−�2s�x−z�/�Dt + 1
e−s ds

s3/2 .

Finally Px
y�t� can be computed easily but it is always

much smaller than the other terms in the exponential, so we
are going to neglect it. The resulting expression for G4 is

G4�x − y,t� = exp�− 2�v −
8�v

��
�Dt

��exp
�v2�Dtf� �x − y�
�2Dt

� − 1� . �B21�

Note that the typical time scale is 	=1/�v
2D, and since we

focus on �v→0, we can rewrite the above expression as

G4�x − y,t� = exp�−
�8
��

�t/	
��exp
2�t/	f��v

�x − y�
�2t/	

� − 1� .

�B22�

Integrating over x−y to get the �4 we find

�4�t� =
2

�v
exp�−

8
��

�t/	�2t/	�
0

+�

dx�exp�2�t/	f�x�� − 1� .

�B23�

In particular when t /	�1 we have

�4�t� �
1

�v
�t/	� . �B24�

The interpretation of this result is that at short times the
defects do not intersect and the �4 is just the square of the
number of average sites visited by a random walk until time
t. We will see that this interpretation is indeed correct in any
dimension.

Finally, after some algebra it is possible to obtain from
Eq. �B24� that �4�t���c /�v�exp��−4/����t /	� at very large
times �c is a numerical constant�. Thus, as found in simula-
tions, the normalized �4 does not go to zero as it happens in
three dimensions.

2. Three dimensions and higher

Consider a symmetric random walk on a cubic lattice. The
general expression for Pz�x ,s� is

Pz�x,s� = �
BZ

ddk

�2��d

eik�x−z�

��k� + s
, �B25�

where BZ means Brillouin zone and ��k�=	i=1
d �1−cos ki� for

a hypercubic lattice �ki is the component of k� in the direction
i�. Also in this case we consider the continuum limit �x
−y� /�Dt /2�O�1� and look for times t much larger than 1.

Let us again compute all the needed quantities: first, N�t�.
In this case for t�1 we find that

N�t� = D��
BZ

ddk

���k�−1

L−1 1

s2 .

Hence N�t�=c1tD where c1= ��BZddk /���k��−1.
Again, we neglect the Px

y�t� term and we focus on G in the
continuum limit, for t�a. We get

LG =
1

s2

�
BZ

ddk

�2��d

eik�x−z�

Dk2 + s

��
BZ

ddk

�2��d

1

Dk22 .

Changing variable in the inverse laplace transform we get

G�t� = D2�
−i�−�

+i�−�

ets�
BZ

ddk

�2��d

eik�x−z�

Dk2 + s

exp�ts�
C2s2 ds .

Since we know the inverse laplace transform of the func-
tion resulting from the integral over k �it is simply Py�x , t��
and each 1/s adds an integral, we finally get

G�t� = c2�Dt�2�
0

1

du�
0

u

dv
e−�x − y�2/2Dtv

�2�Dtv�d/2 ,

where c2 is a numerical constant of order unity. From this
expression, we finally obtain

G4�x − y,t� = exp�− 2�v − 2�vc1Dt�
exp��v�c2Dt�2

��
0

1

du�
0

u

dv
e−�x − y�2/2Dtv

�2�Dtv�3/2  − 1� �B26�

and the results quoted in the main text.

3. Two dimensions

In two dimensions things are a bit tricky because of loga-
rithmic corrections. Briefly, we obtain that

G4�x − y,t� = exp�− 2
c3t

	 ln t
 1

�v
c4

2�t/	�2 1

�ln tD�2�
0

1

du

��
0

u

dv
e−�x − y�2/2Dvt

�2�Dvt�
, �B27�

with c3 and c4 constants of order unity. Hence, integrating
over x−y, we get

�4�t� = exp�− 2
c3t

	 ln t
 1

2�v
c4

2�t/	�2 1

�ln tD�2 . �B28�
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In particular when t /	�1 we have

�4�t� �
1

�v
� t

	 ln t
2

. �B29�

Again, since the number of sites visited on average by a RW
in two dimensions goes like t / ln t, at short times �4 is the
square of the number of average sites visited until time t.

4. Density-density correlations

We now sketch the calculation for the density four point
correlation, defined as

G4
d�x − y,t� � ���x�t��x�0� − �2���y�t��y�0� − �2��

− ��x�t��x�0��c
2, �B30�

with �x�t�=0,1 if the site x is empty or occupied at time t,
respectively. We start from

��x�t��x�0��c
2 = �
 1

V
	

z,z�x

�1 − Pz�x,t���Nv

− �22

.

Using that 	zP
z�x , t�=1 we get

��x�t��x�0��c
2 = exp�− 4�v��exp��vPx�x,t�� − 1�2.

�B31�

In the limit �v→0 we have

��x�t��x�0��c
2 = ��vPx�x,t��2. �B32�

Similarly we find that

��x�t��x�0��y�t��y�0�� = � 1

V
	

z,z�x,y
�1 − Pz�x,t� − Pz�y,t��Nv

= exp�− 4�v + 2�vPx�x,t�

+ 2�vPy�x,t�� .

Collecting all the pieces together we finally get, at leading
order in �v,

G4
d�x − y,t� = 2�vPy�x,t� �B33�

for x�y. The interpretation of this equation is that the dy-
namical correlation between x and y is due to the fact that the
same vacancy was in x at time 0 and t at time t or vice versa.
Integrating over x−y one finds that at long times �4�t�
�1/ td/2, showing no interesting structure.
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Abstract

The price fluctuations of the stock market display fascinating properties. The
volatility is around one order of magnitude too large than what is predicted
by the efficient market theory, and is correlated on very large time scales.
Agents overreact to new pieces of information. We show that such properties
spontaneously appear when agents use their experience and the past behavior
of the market to take decisions. We also study the price formation and the
microstructure of financial markets, at the level of the order book which
organizes transactions. We explain why the price is diffusive despite the fact
that market orders (the shocks that impact price) are long-range correlated
in time. We evaluate the spread using symmetry arguments, and show that
it is directly proportional to the volatility per trade.
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1. Introduction

As statistical physics, economics aims at describing the equilibrium and dy-
namics of a large number of entities, such as agents or companies, that are
interacting with each other. In both cases these interactions can lead to
sudden collective phenomena. In economics, crashes occur where agents act
collectively and sell their stocks. Sometimes there is no obvious external
reason for such event, as in October 1987 where the stock market lost more
than 20 percents in one single day. Collective behavior is also apparent dur-
ing bubbles, or to explain many fads and fashions that affect markets at
large, with a much wider scope than financial markets.

One of the main goal of economics is to understand the decision making
problem: how do agents take decisions. Neoclassical theory posits that agents
are fully rational (Mirowski, 1989). It is much debated today whether the
market behavior, for example the presence of crashes or bubbles can be well
understood in this framework (Shiller, 2000, 2002; Shleifer, 2000). Further-
more the neoclassical method itself has been criticized (White, 2004): when-
ever empirical data differs from the equilibrium predictions of the neoclassical
theory (the so-called ‘anomalies’), extra degrees of freedom are added, some-
times without parsimony, to account for these variations. Among others, the
“econophysics” approach is not axiomatical, but empirical, and aims to ratio-
nalize the empirical data with parsimonious (even if sometimes unrealistic)
models.

The stock market is a very convenient setting to study how agents take
decisions, firstly because agents are supposed to be highly concerned and to
act reasonably when money is involved, and secondly because recently the
quantity of available data has become huge. The most direct observable is the
price. Below a certain time scale, which depends on the market considered
(for liquid markets it is of the order of the day), the microscopic organization
of the market, the ‘microstructure’, plays an important role. The two regimes
(short times and longer times) reflect interesting aspects of the behavior of
agents. In what follows we study both, respectively in Chapters 2 and 3. In
the present chapter we introduce the two topics, and we start with the long
time regime.
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1.1 Price fluctuations

One hundred years ago, a few years before Einstein introduced it to explain
the Brownian motion, the random walk theory was established by Bache-
lier to describe price fluctuations. The fact that properly anticipated prices
fluctuate randomly, which was already quite understood by Bachelier, was
latter justified by Samuelson (Samuelson, 1965). The explanation given was
as follows: in the efficient market theory (Fama, 1970), where agents are fully
rational, the price is fair, or “efficient”: it represents perfectly the fundamen-
tal reality of the economy. In particular the price contains all the informa-
tions available on the market: when it is not the case, smart agents can use
these informations to forecast the price. They can buy or sell according to
their forecast, which moves the price to its fair value. Hence price changes
can only correspond to new informations. By definition, new informations
are de-correlated from the past, therefore the price must fluctuate randomly.
Empirically, temporal correlations in the sign of the price fluctuations are
rather small, at least on average, as we shall see in Chapters 2 and 3. Never-
theless this does not support that prices are efficiency and equal to their true,
fundamental value, as simpler mechanism can destroy possible correlations 1.
Furthermore, there are important differences between the behavior of price
fluctuations and a classical random walk. All of them should be explained
by any eligible theory of financial markets: (i) The distribution of absolute
price changes x = |Pt − P0| for small time (say less than one day) is highly
non Gaussian. Its tails are well described by a Pareto law P (x) ∼ x−1−µ,
where the value µ ≈ 3 seems to be universal. The far tail of this distribution
corresponds to the crashes mentioned above. (ii) The diffusion constant of
the price, the volatility, is itself a random variable that displays very long,
power law correlations in time, analogous to fluctuations in turbulent flows.
This reflects the intermittent nature of the market that displays bursts of ac-
tivities and calm periods at many different time scales. This effect is called
volatility clustering (iii) In a famous study Shiller showed that the volatility
is at least a factor of 5 too large compared to what is expected in the effi-
cient market theory (Shiller, 1981) (iv) the market over-reacts to new pieces
of information (de Bondt and Thaler, 1985).

In Chapter 2 we aim to relate some of these facts to the problem of de-
cision making of agents, and to the interactions that exist between them.

1 In particular, the ‘smart agents’ could simply be arbitrageurs who take decisions only
on the past price fluctuations, and not on the fundamental value of the stocks. This is
the behavior of most of the hedge funds, who represents a non-negligible fraction of the
trades in financial markets. If correlations were there, simple strategies could use them to
make profit. These strategies would diminish these correlations.
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We shall propose a simple model (Wyart and Bouchaud, 2003) close in spirit
to a well known metaphor of Keynes. The market is compared to a beauty
contest where the players, instead of voting for the girl they prefer, try to
vote for the one who will be elected. This emphasizes that some participants
are more interested to guess the opinion of others than to discover the fun-
damental value of a stock. Our model describes agents who try to foresee
how a new piece of information (that could be a financial index, an economic
indicator, or the past price itself) will impact the price. To do so, they study
the past statistical correlations between this information and the price. Then
they use this correlation to devise active trading strategies. Obviously, the
impact of these strategies on the price modifies the observed correlations.
This positive feedback generates both excess volatility and over-reaction to
information. Furthermore, when the proportion of these active agents in-
creases, the system undergoes a phase transition and two stable states arise.
Such states are examples of self fulfilling prophecies (Woodford, 1990), or
conventions (Orléan, 1999). The dynamics of the market is then dominated
by rare switches between these conventions, where the correlations change
value. Empirical evidences show that such dynamics does indeed take place;
a striking example is the correlation between bonds and equities that sud-
denly changed sign in the 90’s as we shall document here. This dynamics
also generate long term correlations in the volatility as observed in financial
markets. This illustrates that some of the rules that govern the market can
evolve in time, in stark contrast with the predictions of the efficient mar-
ket theory. As these rules are not universal, they can also differ between
continents: employment affects the US market more than in Europe, where
inflation is the prevailing information (Briere, 2005).

1.2 Microstructure

At short time scales, say of the order of the day, the price fluctuations depend
on the microscopic organization of the market, the so-called ‘microstructure’.
How much the microstructure details affect prices is an important practical
question. In particular, the microstructure might influence the overall mar-
ket volatility. This idea is at the center of the Tobin tax, which posits that
increasing the transaction costs will diminish speculation, and will therefore
lower the volatility. The microstructure is also of primordial theoretical in-
terest, since it rules how offer and demand interact to form a price, a basic
question in economics. In what follows we will be particularly interested in
one type of microstructure: “continuous double-auction”, which is the stan-
dard mechanism of the price formation in most modern electronic financial
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markets. We shall detail the organization of electronic markets in Chapter
3. It is a completely self-organized process, where all agents act under the
same rules. In particular there are no official market makers (even though
some agents may act as market makers and furnish liquidity). A continuous
double-auction is organized with an order-book, that makes the inventory of
all available offer and demand, as we shall detail more in Chapter 3. Offer
and demand are expressed by limit orders. These are propositions made by
agents, the “liquidity providers”, to buy or sell stocks at a price they fix. At
any given time there is a best (lowest) offer, or ask, to sell with price a(t),
and a best (highest) bid to buy at price b(t). Transaction occurs when market
orders are emitted by impatient agents, the “liquidity takers”. The price of
the transaction is a(t) if the market order is to buy, b(t) if the market order
is to sell. Sketches of order-books are presented in Fig.(3.1), and empirical
average of half order-books are shown in Fig.(1.3).

Only recently a huge amount of data became available on this topic. Sev-
eral empirical works were done to observe if universal laws emerge from this
extremely strategic, self-organized world. An important micro-structural fea-
ture is the market liquidity, which quantifies transaction costs. Liquidity is
characterized by the spread S(t) = a(t) − b(t), which is the cost associated
with the buying, and the following instantaneous selling of one share. The
spread can vary by one order of magnitude between different stocks. There
is yet no accepted theory on what fixes it. Recently, empirical data of stocks
with small “ticks” ( the tick is the minimal increment of price, see Chapter 3)
show that the spread depends linearly with the volatility per trade, which is
the root mean square of the price increment between two trades (Zumbach,
2004; Kockelkoren et. al, 2005). New results are shown for France-Telecom in
Fig1.1. There is not yet explanation for this fundamental law. This empirical
relation was not observed before in the microstructure litterature, where the
correlation between spread and volatility per unit time is considered in gen-
eral. This leads to inconclusive results (Pastor & Stambaugh, 2003; Chordia
et al., 2001).

Another characteristic of the liquidity is the price impact function R(V ),
which is the average change of price following the buying of a volume V
of shares. It was observed that when the volume and the price impact are
properly rescaled by some powers of the stock capitalization, the price impact
functions of the different stocks of the New York Stock Exchange collapse
on a single curve (Lillo, Farmer and Mantegna 2002), as shown in Fig.(1.2).
Somewhat surprisingly, this curve is strongly concave, and it can be reason-
ably well fitted by a logarithm (Potters and Bouchaud, 2003) or by two power
laws with small exponents (Lillo, Farmer and Mantegna, 2002). As we shall
see later, R(V ) also has a non-trivial time-structure.



1. Introduction 9

0 0.0005 0.001 0.0015 0.002
σ

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

S

Fig. 1.1: Spread versus volatility per trade for France Telecom in 2002.
Each dot corresponds to a pair (〈S〉, 〈σ〉) computed by averag-
ing over 10000 trades , which is roughly two days of trading.
S and σ are in relative value. The line is a fit and leads to
y = 0.00027 + 1.44 ∗ x. The tick size is, in this unit, 0.0006.
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Fig. 1.2: Price shift vs. transaction size, for buy orders in 1995 (a), 1996 (b),
1997 (c) and 1998(d), renormalized by powers of the capitalization
in order to make the data collapse roughly onto a single curve.
Results for sell orders are very similar. Lillo et al.

Another interesting observable is the order-book itself. In Fig.1.3 half
of the averaged order-books (the limit orders to sell) of several stocks of
the Paris Bourse are presented. Using an appropriate re-scaling of the axis,
this curves collapse (Bouchaud, Mézard and Potters 2002). Interestingly,
the volume in the order-book varies markedly sub-linearly with the stock
capitalization—maybe as a power law with an exponent 0.76 (Zumbach,
2004).

The market order flow also displays unexpected properties. As we shall
detail later, the market order signs (the sign is positively defined is the market
order is to buy, negative otherwise) are extremely correlated in time: the
correlation decays as a power law with an exponent smaller than 1. Thus
it is a long-memory process, in the sense that the integral of the correlation
function diverges. This correlation is observable for days. By contrast with
the super-diffusion that would characterize a Brownian motion with such
correlated shocks, we shall explain that the correlated flow of market orders
do not lead to a over-diffusion in the price fluctuations.

It is unclear if all these properties are universal and necessary laws stem-
ming from some strategic equilibrium between agents, or if these are conven-
tions, that may evolve in time. In the latter case, trying to derive these laws
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Fig. 1.3: Average volume of the queue in the order book for three stocks,
as a function of the distance ∆ from the current bid (or ask)
in a log-linear scale. Both axis have been rescaled in order to
collapse the curves corresponding to the three stocks (The thick
dots correspond to a numerical model). Inset: same data in log-log
coordinates (Bouchaud, Mézard, Potters 2002).
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is hopeless. Then a respectable goal would be to establish necessary relations
between the quantities that characterize the electronic market; which would
restrict the possible micro-structural market properties. In what follows we
aim to show that requiring the absence of simple statistical arbitrage enables
one to understand some of these.

Microstructure has been studied with various perspectives, and by sci-
entists of diverse origins. Economists proposed models to account for the
existence and the value of the spread S (Biais, Foucault, Hillion, 1997). In
these models the spread is in particular fixed by the risk aversion of liquidity
providers, the “inventory control” explanation, and/or the quantity of infor-
mation contained in the market orders, the “adverse selection” explanation.
The drawback of these approaches is that the information content of trades,
as the risk aversion of liquidity providers, are abstract notions which cannot
be measured directly. Recently artificial intelligence and computer science
researchers got interested in electronic markets: see for example the Penn-
Lehman Trading Project (Kearns and Ortiz, 2003). This uses a software
simulator for automated stock trading, the Penn Exchange Simulator, which
merges automated clients orders with real-world, real-time orders. This soft-
ware enables to test various strategies during open competitions (Kearns
and Ortiz, 2003; Sherstov and Stone, 2004). This is thus a powerful tool
to study the dynamics generated by an ecology of interacting (and possibly
learning) strategies. In the future this might bring an interesting point of
view to understand what determines market liquidity. In particular it would
be instructive to determine what minimal set of strategies lead to a realis-
tic market behavior. Finally, in the last few years physicists and economists
have proposed to study, as a starting point, zero-intelligence models were liq-
uidity providers and liquidity takers are mimicked by random flows, see e.g
(Mendelson, 1982; Maslov, 2000; Bouchaud, Mézard, Potters 2002; Farmer
et al., 2004). As we shall see, these models lead to non-trivial dynamics.
Nevertheless we shall argue that they are too naive to capture the important
properties of the electronic market.

Our work on microstructure is presented in Chapter 3. It contains three
distinct parts:

• After describing the continuous double-auctions, we study theoretically
some “zero intelligence” models previously proposed. These models
were mostly studied in simulations, because they are hard to track an-
alytically. They lead to a non-trivial price dynamics, volatility and
spread. In section 2 we furnish simple qualitative arguments to esti-
mate these quantities, and we propose a new and more realist model.
We show that in zero-intelligence models the very price definition is fun-
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damental. We study this question empirically. Finally, we shall argue
that the zero-intelligence approach is not appropriate to describe price
formation. In particular it misses the fact that imposing the absence
of simple statistical arbitrage strategies constrain much the order-book
properties.

• In section 3 we show that the market displays long memory: the cor-
relation of the market order signs decay in time as a power-law with
an exponent smaller than 1. Such correlation extends over days. This
implies that the diffusive nature of price is extremely subtle: if the
impact of each trade was permanent, the price would be extremely
super-diffusive. We show that, since it is not the case, the impact of an
isolated single trade must be almost completely transient, and decays
slowly in time. We propose an explanation for such behavior, and we
supports this claim with empirical results on the time structure of the
price impact function and price diffusion. We show how the average
price impact and the volatility are related — an obvious result only
when the market order flow is not correlated in time.

• In section 4, we study how liquidity and volatility are related. Our
main result is to show that, without assuming any underlying model
on agents risk aversion, nor on the information content of trades, it is
possible to relate formally spread and the average price impact. Our
single assumption is that the market is competitive, and that the gain
of market makers is zero. This is equivalent to impose that market
orders and limit orders have on average an equal cost. We expect that
it is the case in a continuous double-auctions set-up where all agents
can emit both types of order. We check empirically this relation, and
we find a very good agreement with our predictions.

Since, as we show in Section 3, the impact function and the volatility
are related, we obtain an equation between spread and volatility. We
argue that this equation leads to a linear dependence between spread
and volatility per trade, as observed empirically (see Fig1.1). This
explains how volatility, liquidity and trading activity are related, which
are long-standing questions of the microstructure literature.



2. Effect of self-referential behavior

on price dynamics

2.1 Introduction

2.1.1 Aim of the chapter

The Efficient Market Hypothesis (EMH) posits that prices contain all avail-
able information at a given instant of time (for more precise statements, see
Fama 1970). The argument invoked to support this claim is arbitrage: if
prices differed from their informationally efficient value, an arbitrageur pos-
sessing some information not reflected in the price would be able to make a
profit, and doing so would bring the price closer to its true value. In this
framework, price changes can only be triggered by some new, unpredictable
piece of information. Therefore, as shown by Samuelson, properly anticipated
prices fluctuate randomly (prices should follow a random walk). This theory
relies on the assumption that the influence of rational agents, who seek to
discover the ‘true’, fundamental value of a stock, outweighs that of noise
traders and anchors the price to its rational value. Market efficiency is of
paramount importance for policy making and strategic corporate decisions
and, of course, for investing in stock markets.

However, the assumptions underlying EMH are in fact rather dubious on
many accounts and have been fiercely criticized by many authors in the last
two decades (see, e.g. Shiller 2000 & 2002, Shleifer 2000). 1 It seems clear
that agents do not act as postulated by the proponents of EMH. Apart from
psychological and cognitive biases (Kahneman & Tversky 1986, Shiller 2000),
herding effects (Banerjee 1992, Bikhchandani & al. 1992, Kirman 1993, Cont
& Bouchaud 2000) and risk aversion that limits arbitrage (Schleifer 2000), a
crucial reason, in our opinion, is that the number of objective factors that
can affect the value of a stock is extremely large. The interpretation to be
given to some piece of ‘information’ is often very ambiguous, even for agents

1 for a recent interesting forum on this debate, see: http:// webreprints.djreprints.com
/1092121283858.html and http:// www.westga.edu/ bquest /2002/market.htm.
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doing their best to be rational. For example, expert financial analysts them-
selves are known to fare rather badly at forecasting the next earning of firms
(Trueman 1994, Guedj & Bouchaud 2005). With such fragile, “gossamer”
information to rely upon, market participants are more interested in guess-
ing the opinion of the market than discovering the fundamental value of the
stock. This was first emphasized by Keynes 1936 (see also Orléan 1999 for
more recent work), and illustrated by his famous beauty contest, where the
goal is to anticipate correctly what other participants themselves anticipate.
This self-referential behavior can lead to markets that differ strongly from
the predictions of EMH. An interesting example is provided by a simple
game that encapsulates the basic message of Keynes’ beauty concept. In this
game, participants must each choose a number between 0 and 100, and the
winner(s) are those whose choice is closest to one-half of the average choice
(Nagel 1995). Of course, the fully rational choice is that all players choose 0.
On the other hand, if agents are all totally irrational, the optimal choice is
25 = 50/2, but if a fraction f1 follows this first level reasoning, the optimal
choice becomes [25f1 +50(1−f1)]/2, and so on. Empirical studies show that
the average is close to 25 and that 30% of the players predict a number close
to 12.5.

In the context of repeated games (such as financial markets), a natural
strategy is to study empirically the statistical behavior of the other agents
and to play accordingly. (Agents doing this will be called ‘chartist’ in the
following discussion.) A common temptation is to compare the present sit-
uation with similar situations from the past and posit that what already
happened is more likely to happen again. As Brian Arthur puts it: “As the
situation is replayed regularly, we look for patterns, and we use these to con-
struct temporary expectational models or hypotheses to work with” (Arthur
1995). As an anecdotal example, prices tend to decline before a war is de-
clared and to rise again once the war has actually started (as the 2003 events
again sadly confirmed). Often some plausible story is given to understand
why such a pattern should exist. This convinces more participants that the
effect is real, and their resulting behavior reinforces (or even creates) the
effect (Woodford 1990): this is a self-fulfilling prophecy. A large consensus
among economic agents about the correlations between a piece of informa-
tion and the market reaction can be enough to establish these correlations.
Such a ‘condensation’ of opinions leads to what Keynes and Orléan call a
convention, a common lore on which uncertain agents can rely on and that
supplements gossamer information. A convention may concern the overall
mood of the market (bullish or bearish, for example), but it may also con-
cern the way a piece of information is interpreted by the market. We will
primarily focus on this second type of convention. The information we will
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consider can either be exogenous to the market (such as the interest rate,
inflation and other macro-economic figures, or geopolitical issues), or endoge-
nous to the market (such as price patterns that feedback on the price itself
including trends leading to bubbles, or ARCH-like volatility feedback, etc.)

A striking feature is that not only can these conventions spontaneously
appear, but they can also disappear or even invert the purported correlation.
For example, as we document in Section V below (see in particular Fig.
5), the correlation between bond markets and stock markets was positive
in the past (because low long term interest rates should favor stocks), but
has recently quite suddenly become negative as a new ‘Flight To Quality’
convention set in: selling risky stocks and buying safe bonds has recently
been the dominant pattern.

The aim of the present work is to analyse a parsimonious model for the ap-
pearance and dynamics of conventions and their consequence on the statistics
of price changes. As is now well known, price returns exhibit several statis-
tical features that cannot be related to the fluctuations of any fundamental
value, as should be if markets were efficient (Fama 1970). One of the biggest
puzzle of EMH is the so-called ‘excess volatility’: Shiller (1981) showed in a
famous study that the actual volatility of markets is far too large (by at least
a factor 5) compared to what is expected within the efficient market theory
from the volatility of dividends (see also Shiller 2000). Many (sometimes
ad-hoc) attempts to reconcile this finding with EMH have been proposed,
for example by adding a time dependent risk aversion factor, risk free rate,
or consumption habits (Cochrane 1991, Cochrane & Campbell 1999, Black
& Fraser 2000) that can be tuned to account for the observed level of volatil-
ity. However, the puzzle is not only that the market volatility level is too
high, but that this volatility level itself wildly fluctuates in time, exhibit-
ing self-similar clustering and power-law temporal autocorrelations with a
small exponent. The volatility is therefore a process with long term memory
(i.e. with a non-integrable correlation function), with dynamics spanning at
least three decades of time scales (from hours to years).2 The EMH descrip-
tion would then require in addition the news process itself to reveal such a
complex, multiscale, temporal structure.

This behavior, akin to velocity fluctuations in turbulent flows (Ghashgaie
& al. 1996, Mandelbrot 1997, Fisher & al. 1997, Muzy & al. 2000, Lux 2001),
is remarkably universal across markets and epochs, suggesting that volatility
is endogeneous to market activity and speculation, rather than governed by

2 On this point, see: Lo 1991, Ding & al. 1993, Guillaume & al. 1997, Liu & al. 1997,
Potters & al. 1998, Cont 2001, Le Baron 2001, Muzy & al. 2000, Bouchaud & Potters
2004.
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external, news related shocks. Other anomalous effects (from the point of
view of EMH) are worth mentioning, including the excess cross-correlations,
both between domestic stocks and between international markets, that can-
not be explained in terms of fundamental, economic correlations (Shiller 2000,
Longin & Solnik, 2001, Ang & Bekaert 2002).

Our model is an example of a self-fulfilling process; trying to extract
correlations between information and price from past observations, market
participants tend to create and/or reinforce them. Using the language of
physics, the model has a phase transition: above a certain threshold in feed-
back strength, the market can be in two distinct states, or two conventions.
We find that this mechanism naturally leads to some excess volatility and a
kind of long term memory. In the case where information is endogenous,
these two states correspond to trend following or contrarian conventions
where the autocorrelations are either positive (trend) or negative (contrar-
ian). The market however switches between the two conventions on a certain
time scale (that can be very long) such that on average the autocorrelation
is zero, although locally the autocorrelation has a well-defined sign. These
phases correspond to the market folklore: markets are indeed thought by
many investors to be alternatively trending or mean-reverting in strong op-
position with the prediction of EMH. Besides anecdotal evidence, we provide
in this Chapter empirical evidence for the existence of these long-lived excess
correlations (or anticorrelations) in stock markets (see Section V, Figs. 6, 7,
8).

2.1.2 Relation with other work and organization of

the Chapter

The existence of trends and anti-trends has been broadly documented in
the economic literature (see e.g. De Bondt & Thaler 1985, Hong & Stein
1999, Shleifer 2000, and references therein) where it is described as overre-
action and underreaction to news. In the first case, the overreaction is later
compensated by a mean reversion, whereas underreaction corresponds to an
anomalously slow adjustment of the price and the appearance of a trend.
A well-known study of De Bondt and Thaler that we will further discuss
in the conclusion shows that over-performing stocks tend to mean-revert on
the scale of 5 years, and vice-versa. Several behavioral models have recently
been proposed to understand these effects (see Shleifer 2000, chapters 5 &
6, Barberis & al. 1998, Hong & Stein 1999). We follow here the same goal
of articulating a simple and generic model for these pricing anomalies. Al-
though some ingredients are common to these models and ours, there are
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also major differences, both in the concepts and in their technical implemen-
tation. For example, in the ‘investor sentiment’ model of Barberis & al.,
investors postulate the existence of alternating trending and mean-reverting
phases that they try to identify from observation. In our framework, on
the other hand, these phases dynamically appear as agents attempt to learn
the statistics of price changes from past observations. This learning aspect,
much emphasized in Arthur 1995, Woodford 1990, and in the context of the
Minority Game (Challet & al. 2001, 2004) is actually absent from the model
presented in Barberis & al. The model of Hong and Stein postulates that
some momentum traders use (but only for a limited amount of time) the
positive temporal correlations created by the slow diffusion of information
among news-watchers. The effect of these momentum traders is to reinforce
the trend and to convert an initial underreaction into overreaction. In or-
der to observe mean reversion effects, another category of contrarian traders
must be included in the model. In our model, on the other hand, trends can
appear without any fundamental news.

In this respect, it is useful to mention the work on ‘sunspots’ (Woodford
1991) and information cascades (Banerjee 1992, Bikhchandani & al. 1992),
which also describe situations where a symmetry between different possible
outcomes can be broken by a small initial (random) bias, amplified by a
subsequent self-referential and reinforcing decision process. In Woodford’s
sunspot learning model, for example, a priori irrelevant sunspot variables be-
come increasingly important for determining the behavior of economic agents
through a reinforcing mechanism. This leads to an equilibrium where these
variables de facto become relevant. The model proposed below does share
some features with sunspot models, although it differs from them in many re-
spects. These latter models concern production and consumption in a model
economy, whereas our model focuses on the dynamics of price in a financial
market. More importantly, the equilibrium reached in Woodford’s model is,
once reached, stable over time and conventions are eternal. Our model, on
the contrary, is a model of ‘punctuated equilibrium’ (Bak 1996): conventions
are temporary, and fluctuations can always drive the system to another state.
The reason for the difference lies in the finiteness of the agent’s memory in
our model; introducing a similar feature in Woodford’s model would presum-
ably lead to a very interesting punctuated equilibrium situation, richer than
the two-state situation described below.

Finally, several families of models where trading strategies use the price
past history have recently been investigated, for example, in the schematic
inductive rationality models (El Farol bar model, Arthur 1995 or Minority
Games, Challet & al. 2001, 2004) or in agent based models where a fraction
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of agents base their trading decision on the recent behavior of the price itself.3

The present model is interesting because the self-referential feedback is much
simpler, and its consequences can be analytically investigated in full details.

The organization of the Chapter is as follows. We describe and analyze
the model in full generality in Section II, featuring agents who try to use
some correlations between the price and a certain information indicator that
can be exogenous or endogenous. We motivate our Langevin description
of the feedback dynamics and explain how non-trivial equilibria can appear
when the self-referential tendency increases. We discuss the appearance of
super-long time scales for regime switching (Section III). We then move to
the particular case where traders use the past price changes as a source of
information (Section IV) and where the above mentioned trend following or
contrarian conventions (or market sentiments) appear. We then analyze some
empirical data that qualitatively support the predictions of the model (Sec-
tion V). Finally, some applications and extensions of the model are proposed,
and our findings are contrasted with the predictions of EMH.

2.2 Set up of the model

We will call Pt the (log-)price of a certain asset at time t, and δPt the return
between t and t + 1. Here, ∆t = 1 is the elementary time step over which
agents revise their strategies, which might be one day or one week, although
in some case smaller time scales such as minutes could also be usefully consid-
ered. We now argue that some agents base their strategy on the observation
of the temporal change of a certain index It, which might be a financial
index or an economic indicator (for example, dividends, interest rates, infla-
tion, confidence, unemployment, etc.), or even, as will be considered below,
the price Pt itself. We will denote as δIt the change of this indicator between
t and t + 1. Note that δIt could in fact be a binary variable, representing
a qualitative piece of information, and that the interval ∆t might not be
uniform, but be the time interval between news announcements.

Suppose that there exists a causal correlation between the change of It

and that of Pt in the sense that the correlation between δIt and δPt+1 is

E [δItδPt+1] ≡ C. (2.1)

(We suppose for simplicity that all correlations for larger time lags are zero.)

3 For a selection of papers, see Kirman 1993, Palmer & al. 1994, Bouchaud & Cont
1998, Lux & Marchesi 1999, 2000, Iori 1999, Brock & Hommes 1997, Hommes 2001,
Farmer 2002, LeBaron 2002, Chiarella & He 2001, Kirman & Teyssière 2002, Giardina &
Bouchaud 2002.
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It is then a well known result of linear filtering that the best estimate (in
a quadratic sense) of δPt+1 knowing δIt is given by (see e.g. Bouchaud &
Potters 2004, p. 132):

δP ∗
t+1 =

C

E [δI2
t ]

δIt. (2.2)

Now, we consider two types of agents, those who act randomly or based on
some information uncorrelated with It and those who try to take advantage of
the possible correlations between δIt and δPt+1. Since the true, fundamental
value of the correlation C is in fact not known (and might actually be zero),
agents of the second type attempt to extract this value from past history,
from which they try to learn the value of C. It is natural to assume that
these agents give more weight to the recent past. A convenient framework is
that of exponential moving averages, such that the estimated value of C at
time t is given by

Ct =
1 − α

α

t−1
∑

t′=−∞

αt−t′δIt′δPt′+1, (2.3)

where α sets the memory time T of the agents, as T = 1/| lnα|. Other
memory kernels could be considered (such as a flat window, for example),
with only minor quantitative consequences on the following conclusions (at
least in the limit T ≫ 1).

Equation (2.3) is equivalent to the following Markovian update of the
estimated correlation:

Ct = αCt−1 + (1 − α)δIt−1δPt. (2.4)

We now suppose that the agents neglect the possible fluctuations of the
volatility of It and assume E [δI2

t ] is a constant (that we set in the following
equal to unity unless stated otherwise). Relaxing this hypothesis would again
lead to minor changes in the following. The expected return between t and
t + 1 is therefore CtδIt. We assume that chartist agents will then buy (or
sell) a quantity Vt that is an odd function of this expected return,

Vt = G (CtδIt) . (2.5)

In general one expects the demand function G to be linear for small arguments
and to saturate for large arguments. In the context of an exponential utility
function (called CARA in the literature) and Gaussian returns, the quantity
to be maximized is r − Λσ2, where r is the expected return, Λ a certain
risk aversion coefficient and σ2 the variance of the return. In this case, the
function G is found to be strictly linear. The saturation comes from both
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the limited resources of the agents and their limited ability to borrow and
from an increased risk aversion for tail events. Both effects tend to limit the
invested quantity even if the signal is very strong, as is intuitive.

These chartist orders add to all other ones and impact the price as

δPt+1 = F (Ωt + NVt) , (2.6)

where N is the number of chartist agents that try to exploit this correlation
and Ωt the total volume of other agents, which we assume to be a random
variable of zero mean and variance σ2. (In fact, as we will discuss below, these
other agents could base their decision on different, uncorrelated information
sources). The impact function F describes how a given order volume affects
the price and has been the subject of many recent empirical studies (Kempf
& Korn 1998, Plerou & al. 2002, Lillo & al. 2003, Potters & Bouchaud 2003).
Provided the elementary time step ∆t is large enough, this function is linear
for small arguments and bends down for larger order imbalance. Here, we
will neglect higher order contributions to F and simply posit, as in Beja &
Goldman 1980,

F(u) =
u

λ
, (2.7)

where λ is a measure of the liquidity of the asset. Non linear corrections
would only change some details of the following discussion, but our main
conclusions are robust against the detailed form of both F and G. Therefore,

δPt+1 =
Ωt

λ
+

N

λ
G (CtδIt) , (2.8)

where Ct is self-consistently expressed as in Eq. (2.3).
As will be clear below, many of the following results only rely on the

general shape of G (i.e. linear for small arguments with a negative curvature,
possibly saturating, for larger arguments). In order to keep the mathematics
simple, we expand G for small arguments and retain only the first two terms, a
procedure that is justified in the small signal limit. Since G is odd, its generic
expansion for small arguments reads G(u) = au− bu3 + ... with a, b > 0. We
therefore obtain the following central equation:

δPt+1 =
Ωt

λ
+ gCtδIt − hC3

t δI
3
t + O(C5), (2.9)

where g ≡ Na/λ, h ≡ Nb/λ. The above equations basically describe the
self fulfilling process that we study in detail now. The parameter g will turn
out to be crucial in the following; note that g increases with the number of
chartist agents.
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2.3 Analytic results: spontaneous

appearance of conventions

2.3.1 A Langevin equation

In the absence of chartist agents (g = 0), there are no feedback effects, and
we assume that the dynamics of the price is a simple random walk (but not
necessarily Brownian) of volatility Σ0 = σ/λ. The apparent correlation Ct

will describe any deviation from this trivial behavior. Using Eqs. (2.3,2.9)
one finds

Ct+1 − Ct = ǫ
(

−Ct + gCtδI
2
t − hC3

t δI4
t + ξt

)

, (2.10)

where we have set 1−α = ǫ, and ξt ≡ δItΩt/λ is another white noise (because
Ωt is supposed to be independent of δIt) of zero mean and variance σ2/λ2.

Now, we will write;

δI2
t = E(δI2

t )+ ηt = 1 + ηt, and δI4
t = E(δI4

t )+ η′
t = (3 +κ)+ η′

t, (2.11)

where ηt and η′
t are two correlated noises of zero mean, and κ the excess

kurtosis of the index fluctuations. Therefore the evolution of Ct contains a
deterministic part and a random part. In the case ǫ ≪ 1 considered in this
Chapter, where the memory time T ≈ 1/ǫ becomes much larger than the
elementary time step, one can neglect, in a first approximation, the influence
of ηt and η′

t (but see below). In the limit ǫ → 0, the discrete time equation
(2.10) is such that Ct+1−Ct → 0. Therefore one can write Ct+1−Ct ≈ dC/dt
and take the continuum time limit to construct a Langevin-Ito stochastic
differential equation for Ĉt = Ct/Σ0 in rescaled time ǫt = t̂:

dĈ = −dV

dĈ
dt̂ +

√
ǫdξ, (2.12)

where dξ is a Brownian noise of unit variance and we have introduced a
‘potential’ V given by

V (Ĉ) =
1

2
(1 − g)Ĉ2 +

1

4
(3 + κ)ĥĈ4, (2.13)

with ĥ ≡ hΣ2
0. This is the so-called Landau potential that describes phase

transitions (Goldenfeld 1992). For g < 1 this potential has an absolute
minimum at Ĉ = 0, whereas for g > 1, Ĉ = 0 becomes a local maximum and

two stable minima appear for Ĉ = ±C∗ = ±
√

(g − 1)/(3 + κ)ĥ. Note that
retaining more terms in the expansion of G would change the detailed shape
of V (Ĉ), but not the above crucial qualitative feature. It is enough to know
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that G(u) is monotone and increases slower than linearly for large arguments
to insure that V (Ĉ) has the shape shown in Fig. 1. From now on, we will
drop the hat on Ĉ.

2.3.2 The appearance of stable conventions

From the Langevin-Ito equation for C one deduces, using standard methods
(Chandrasekhar 1943, Gardiner 1996), the equilibrium distribution P (C) of
the Boltzmann-Gibbs form:

P (C) =
1

Z
exp

(

−2V (C)

ǫ

)

, (2.14)

where Z is a suitable normalization. Therefore, for g < 1 (weak feedback),
P (C) is unimodal and has a maximum at C = 0, whereas for g > 1 (strong
feedback), the most probable values for C are ±C∗. This means that for
strong feedback, a non zero correlation between the price and the indicator
spontaneously appears. This correlation can be either positive or negative,
corresponding to the two possible conventions. However, on average, the
correlation is still zero for g > 1, since C randomly flips between ±C∗. In
order to do so, a ‘barrier’ ∆V has to be crossed (see Fig. 1); the average
switching time τ is well known to be given, for T∆V ≫ 1, by the Arrhenius
law (Chandrasekhar 1943, Gardiner 1996):

τ ≈
(

T

g − 1

)

exp [2T∆V ] , (2.15)

with ∆V = (g − 1)2/4ĥ(3 + κ) and T = 1/ǫ. Because of the exponential
term in the above equation, the average switching time can be much larger
than the memory time T ; one non-trivial consequence of a phase transition
is to generate time scales that are unrelated to the natural time scale of the
problem. The convention can therefore persist for very long times. This
is because the random event that would invert the signal and nucleate a
new convention occurs only with exponentially rare probability. Note how-
ever that the above formula is only correct when the noise dξ is Gaussian;
non-Gaussian events do accelerate the crossing of the barrier (Bouchaud &
Hasareesing 2000, Lenzi & al. 2001). We will see in empirical data that
extreme events may indeed be a cause of abrupt convention changes.

When g < 1, the distribution of C is a distorted Gaussian around C = 0.
Neglecting the non-linear term leads to

Ct = ǫ
∫ t

0
dξ(t′) eǫ(g−1)(t−t′), (2.16)
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Fig. 2.1: Effective potential V (C) for g < 1 and for g > 1. In the latter
case, one observes two non-trivial minima at ±C∗ and a ‘barrier’
∆V separating them.

where we have assumed for simplicity Ct=0 = 0. Hence the typical value of

C (defined, e.g., as the root mean square of C) is C ∼
√

ǫ/(1 − g). The

typical time for the variations of C (defined from the temporal correlations
of Ct) is given by τ = T/(1 − g), which diverges when g gets close to 1. The
chartist agents thus amplify the excursions of C, but the most probable value
of C is still zero. Strictly speaking, there is no stable point or convention
in this case, although when g → 1− the excursions are of larger amplitude
and of longer duration, which corresponds to what can be coined a ‘floating
convention’.4

It is interesting to give to the threshold value g = 1 a more intuitive
interpretation. Recall that g = Na/λ, where N is the number of chartist
agents and a the coefficient that relates the strength of the (apparent) signal
to the investment volume. It is clear that to form a trading signal, the
prediction of the future return must be compared to the volatility of the
asset; therefore a ∼ v0/Σ0, where v0 is the average volume of investment for
an individual agent. On the other hand, if the number of all other agents
is N0, one expects that the root mean square of Ωt should vary like

√
N0.

4 We should add here a remark on the rôle of the multiplicative noise term gCtηt ne-
glected in the above analysis. Since Ωt and ηt are uncorrelated, the Langevin noise has a
variance now given by ǫ[1 + (2 + κ)g2C2]. Going to the Fokker-Planck equation (Chan-
drasekhar 1943, Gardiner 1996), one can show that for small ǫ, the rôle of this extra term
is to shift the value of the critical threshold to g = 1 + 2(2 + κ)ǫ.
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Therefore Σ0 ∼
√

N0v0/λ (assuming that all agents invest a similar volume
v0). Finally,

g ∼ N√
N0

, (2.17)

independently of both v0 and λ. The conclusion is that the market enters
the convention phase as soon as N >

√
N0. Hence 100 correlation-hunting

traders are enough to change qualitatively, or even destabilize, a market with
10000 participants.

2.3.3 Overreaction to news

Suppose now that there indeed exists a small objective correlation between
δPt+1 and δIt, justified by some real economic mechanism relating the two
quantities. This means that the term Ωt+1, which models the impact of news
and governs the price dynamics in the absence of chartist traders, and δIt

have a non-zero objective correlation coefficient:

E[
Ωt+1

λ
δIt] = βE[δI2

t ]. (2.18)

We conform here to the common usage of calling this particular correlation
coefficient the ‘beta’. The effect of such a term is to add a linear contribution
to the effective potential V (C) of the Langevin equation that breaks the
symmetry C → −C:

V (C) −→ V (C) − βC. (2.19)

For g < 1 and β small, the most probable value of C is β/(1 − g) (= β for
g = 0, as it should). Therefore, C is of the same order as its true cause
whenever g < 1. However, in the limit g → 1−, the apparent correlation that
arises becomes much larger than its true cause: the sensitivity of the market
to external information is anomalously amplified. For g > 1, the term βC
breaks the symmetry between the two conventions ±C∗. In the limit ǫ → 0,
the most probable value of C is given by +C∗ for β → 0+ and by −C∗ for
β → 0− (see Equation 2.14). Therefore, in the convention phase, the am-
plitude of the apparent correlation is totally unrelated to that of the true
correlations, although the sign of the correlation reflects the underlying eco-
nomic reality. One observes here a typical example of overreaction to news
leading to excess correlations that are well documented in the literature (De
Bondt & Thaler 1985). For example, the correlations between the stocks be-
longing to an index and the index itself are too strong to be explained by the
intrinsic correlations between the stocks (Shiller 2000, p. 186-189). The first
quarter of 2003 offers a good illustration of this effect: the cross correlations
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between U.S. stocks was at a historical high; a possible interpretation is that
due to the large uncertainty, traders’ hunt for useful information was more
acute, and the influence of the index on individual stocks was expected to
be anomalously large. In our model, this corresponds to the case where the
indicator It is the stock index, a case detailed in section 2.4.4. Another well
known example explores the excess correlation (in particular in crisis periods)
between emerging country markets belonging to different geographic regions
(Longin & Solnik 2001). In order to understand the relation between these
effects and the present model, we need to stress that although Ct is a lagged
correlation between unequal times, the equal time correlation between δP
and δI measured on a coarser time scale will reflect the value of the lagged
correlation C. In other words, causal correlations on a fine time scale do
generate equal time correlations on a coarser time scale. More precisely, one
has, for the coarse-grained covariance,

E [(Pt+n − Pt)(It+n − It)] = E

[

t+n−1
∑

t′=t

δPt′

t+n−1
∑

t′=t

δIt′

]

=
t+n−2
∑

t′=t+1

Ct′ ≈ (n − 1)Ct

(2.20)
where the last equality holds if n∆t ≪ τ (i.e. when the coarse time incre-
ment n∆t is small compared to the convention shift time τ). Therefore, if
strong causal correlations are established intra-day, as is the case between
individual stocks and the index, a normalized excess same-day correlation
between stocks ≈ Ct will also appear; see section 2.4.4.

2.3.4 Consequences for the price fluctuations: excess

volatility

The feedback effect leads to an increase of the volatility of the price, since
the instantaneous volatility is given by

Σ2
t = E[(δPt)

2] = Σ2
0(1 + g2C2

t ) + O(C4). (2.21)

The non-trivial dynamics of C therefore leads to a volatility increase that
can be substantial in the convention phase. This mechanism, interestingly,
also leads to volatility fluctuations (or ‘heteroskedasticity’). These volatility
fluctuations are characterized by the correlation time τ , which become large
when g approaches or exceeds the threshold value g = 1 (see Eq. (2.15)).

The above mechanism can easily be extended to the case where agents
scrutinize M different sources of information, say Ik

t , with k = 1, ...M . If the
variation of these different indices are uncorrelated, it is easy to see that the
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simultaneous effect of all the different feedbacks leads to a volatility given by

Σ2
t = Σ2

0

(

1 +
M
∑

k=1

g2
kC

2
k,t

)

+ O(C4) (2.22)

(with obvious notations). Therefore, the volatility can be substantially in-
creased if a large number of information sources are overly interpreted. Within
the context of efficient markets theory, all decisions are based on some real
information. This corresponds, in the above formula, to gk ≡ 0 and Σ2

0 =
∑M

k=1 β2
k where βk describes the true causal relation between the economic

indicator Ik and P . What we have shown here is that because of the feedback
loop, gk > 0, the empirical correlations (which are the only way to learn the
value of the βks in the absence of any firmly grounded theoretical model) are
distorted and amplified, leading to a much larger apparent Ck,t, and there-
fore to a potentially considerable increase of the volatility as compared to its
fundamental value.

We believe that the above scenario for self-referential speculation is generic.
When strategies are built using the outcome of past random events, a feed-
back loop can appear and destabilize the market from its putatively efficient
behavior. If the feedback is strong enough, a non-trivial equilibrium can set in
where self-fulfilling prophecies can establish and survive. These conventions
can have no rational basis whatsoever or be the result of the amplification of
a very small, but indeed objective correlation.

2.4 Price based strategies and market

phases

2.4.1 Motivations

As recalled in the introduction, the basic tenet of the theory of efficient
market is that prices instantaneously reflect all useful information. However,
since all market participants face impact and slippage issues (due to the
finite liquidity of any traded asset), those who believe that they have some
useful information about future price changes must use it in such a way that
their very action does not perturb the market too much. Otherwise, the
potential gain associated with this information cannot be realized or only
using small volumes. Therefore, informed investors must, to some extent,
dilute their order in time (Kyle 1985). Doing so, they create positive temporal
correlations, see the next Chapter; the slow incorporation of information into
price is the underreaction phenomenon described in Shleifer 2000, Hong &
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Stein 1999. Other participants that see an increase of price can believe that
it is due to some information not yet available to them, but that is reflected
by the recent price change. These participants will be tempted to ‘jump in
the bandwagon’ and act as trend followers; this is at the heart of the models
developed in Shleifer 2000, Hong & Stein 1999. Conversely, large orders in
temporarily illiquid markets might affect the price too much (overreaction),
and some restoring trades will later on move the price back to more realistic
values.

Hence, there might indeed be deep reasons why it is useful to watch past
price changes and be influenced by them. That this is the case in practice
is beyond any doubt and is confirmed by casual observation of traders in
market rooms and by several formal surveys (Shiller 2000, p. 47). In fact,
it seems that price itself is, for many traders, the most relevant source of
information (if not the only one, in the case of some hedge funds using
statistical methods). As in many previous models, we thus consider that the
information used by some agents to predict future prices is the past price
change itself. However, at variance with some of these models, the economic
reality of the correlations is in fact not needed, since in the strong feedback
phase these correlations may spontaneously appear.

2.4.2 Trend following and contrarian conventions

In this section we study the model where δIt = δPt. In this case, the
above correlation coefficient Ct becomes the autocorrelation of successive
price changes. The above analysis is almost unchanged, up to a renormal-
isation of the coefficient h that appears in the non linear term hC3

t . This
comes from the fact that the denominator in the linear filter, namely E[δP 2

t ],
is now itself affected by the feedback effect. Hence, the phase transition
found above for g = 1 is also present in this case. In the convention phase
g > 1, the two states of the markets correspond to positive autocorrelations
(C = +C∗), which can be called a trend follower phase where past price
changes tend to be followed by a change of the same sign or to negative au-
tocorrelations (C = −C∗) in the contrarian phase, where past price changes
tend to be followed by a change of opposite sign. Let us emphasize that a
trend following period is not necessarily a period where the price steadily
increases (or decreases), but rather a period where successive price changes
have a large probability to be of the same sign (see the central period in Fig.
2.2, corresponding to C > 0).

We show in Fig. 2.3 the histogram of Ct from the numerical simulation
of Eq.(2.9) with Ωt a white Gaussian noise and for two values of g. Note
that without a symmetry breaking term, the average autocorrelation is zero
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Fig. 2.2: Example of a synthetic price history, with two convention changes,
for g = 1.2 and ǫ = 0.01. Note that the coarse grained volatility is
smaller in contrarian phases (C < 0) and larger in trend following
phases (C > 0).

even for g > 1. We have here an interesting statistical process: the long time
autocorrelation is zero, but local trends or anti-trends can appear and remain
for quite long periods. As mentioned in the introduction, this corresponds to
the market folklore: practitioners often talk about market phases where trend
following strategies are supposed to be profitable and market phases where
contrarian (mean reverting) strategies are supposed to work. Interestingly,
any long term analysis of the average correlation coefficient would fail to
reveal such phases.

2.4.3 Consequence on the volatility

An important consequence of the existence of conventions is that the coarse-
grained volatility can be different from the instantaneous one. As above, the
instantaneous volatility is increased compared to its bare value Σ0 and given
by Σ2 = Σ2

0(1 + g2C2
t ). On the other hand, the coarse-grained volatility Σcg,

defined on an intermediate time scale T ∗ such that 1 ≪ T ∗ ≪ τ (such that
Ct itself has not evolved significantly), is easily calculated. From Eq. (2.9),
we deduce that

E[δPt+nδPt] = (gCt)
nΣ2; (2.23)
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Fig. 2.3: Left: Correlation histogram P (C) for g = 0.9 < 1 and ǫ = 0.01.
Right: Correlation histogram P (C) for g = 1.3 > 1 and ǫ = 0.01.
Insets: Effective potential V (C) = − ln P (C).

therefore for large N ,

NΣ2
cg,t ≡ E[(

N
∑

i=1

δPi)
2] = Σ2

(

N + 2
N−1
∑

i=1

(N − i)(gCt)
i

)

≈ NΣ2 1 + gCt

1 − gCt
.

(2.24)
Therefore,

Σ2
cg,t ≈ Σ2 1 + gCt

1 − gCt
. (2.25)

This shows that the volatility is increased in the trend following convention
and decreased in the contrarian convention. This is illustrated in Fig. 2.2,
where we show the result of a simulation corresponding to g = 1.2 and
ǫ = 0.01, with a Gaussian noise term Ωt. Note that the true long time square
volatility is equal to the time average of Σcg,t and is dominated by the trend
following phases.

Equation (2.25) shows that the volatility can have large fluctuations and
long term correlations; in particular, in the g > 1 phase, there are two time
scales that govern the evolution of Ct. A relatively short one governs the
fluctuations of Ct around the dominant convention ±C∗; the other that can
be much longer is given by the flip time τ between the two conventions,
Eq. (2.15). It might be tempting to relate this to the well known fact that
empirical volatility fluctuations reveal non-exponential, multiscale relaxation
in time, although other interpretations exist, see e.g. (Giardina & Bouchaud
2002).

Suppose that one is in the trend following convention. The average du-
ration T of a trend can be obtained by comparing the value of the coarse
grained volatility to the instantaneous one. A random walk with a persis-
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tence length T and local volatility Σ has a coarse-grained volatility given by
Σ2

cg,t = T Σ2. Using the above result, this leads to

T ≈ 1 + gC∗

1 − gC∗
. (2.26)

Hence, one can observe two types of dynamics when g > 1. If the change of
convention is faster than the typical duration of a trend (i.e. if τ ≪ T ) one
obtains the dynamics shown in Figure ??-b, where a period of low volatility
is followed by a few sudden trends, which can be of either sign. Note that
this can only occur if ǫ is large enough, which corresponds to a very short
memory time (in other words that agents over-focus on very recent events).
The phenomenology is in this case quite different from that shown in Fig.
2.2, where the price displays many trends before changing conventions.

2.4.4 A special case: regressing on the index

It is interesting to discuss the special case where the information It is the
stock index itself. It is clear that in practice, the evolution of stock prices on
short time scales is strongly affected by the index, which is an immediately
available piece of relevant information for all market participants. Let us call
P j

t (j = 1, ..., M) the price of the j-th stock belonging to the index. Then,
assuming the index is computed as a equi-weight average over all the stocks,
one has

δIt ≡
1

M

M
∑

j=1

δP j
t . (2.27)

On the other hand, the feedback effect of the index on the stock price can
be written as

δP j
t+1 = Ω̃j

t + gjCj,t
δIt

Σ2
I

+ O(C3
j ), (2.28)

where Ω̃j
t = Ωj

t/λ results from the trading not based on the index, Cj,t is the
empirical covariance between δP j

t+1 and δIt, and ΣI is the index volatility.
Using Equation (2.27) one therefore finds, in the simple case where all gj are
equal,

δIt+1 =
1

M

M
∑

j=1

Ω̃j
t + gCt

δIt

Σ2
I

, (2.29)

where Ct =
∑

j Cj,t/M is the covariance between δIt+1 and δIt.
In the case of the index, the analysis of tick by tick data shows that the

feedback takes place at very high frequencies and ∆t = 1 corresponds here to
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a few minutes. Summing (2.27) from t to t+n defines the return on a coarse-
grained scale ∆It. Assuming that n∆t ≪ τ , such that Ct is approximately
constant, leads to

∆It =
1

M

M
∑

j=1

Ω̂j
t + gĈt∆It, (2.30)

which is valid when n ≫ 1. In the above equation, Ω̂j is the aggregate of the
noise Ω̃j over the time interval [t, t + n], and Ĉt = Ct/Σ2

I . Finally,

∆It =
1

M(1 − gĈt)

M
∑

j=1

Ω̂j
t . (2.31)

If the Ωj
t were uncorrelated from one stock to the next and in the absence of

feedback, the index volatility would be very small compared to that of stocks
(of order 1/

√
M). Empirically, though, the S&P 500 index volatility is found

to be as high as a third of the individual stock volatility. Of course, one
expects that the Ωj

t are somewhat correlated, reflecting a common sensitivity
to news. However, as noted in Shiller 2000, the correlation between stocks
expected from fundamental analysis is insufficient to explain the observed
correlation (and therefore the volatility of the index). The model presented
here shows that a high frequency positive feedback leads to an increase of the
index volatility by a factor 1/(1− gĈt), which can be large. This increase is
actually larger than the increase of the volatility of individual stocks induced

by the above feedback (the factor is in that case only
√

1 + g2Ĉ2
t ).

2.4.5 Statistical Arbitrage?

As the chartists create correlations in the price, one may ask if other agents
could use these correlations to make statistical arbitrages. In practice, such
arbitrages are possible only if (i) the signal is strong enough in comparison
with transactional costs and (ii) the time scale where correlations exist is large
(because transactional costs increase at high-frequency). If the information
is exogenous and continuous, as is the bond price for the stock market, we ex-
pect correlations to be established quasi-instantaneously (that is, on the time
scale of the minute), possibly without transaction. In this case, even if the
signal is strong, see for example Fig.2.4, no consequent statistical arbitrage
can occur. As we discuss in the present section the information can also be
endogenous. In Fig.2.5 we show the daily correlations of the Dow-Jones dur-
ing the last century. Since the signal is daily, statistical arbitrage is possible
if the signal is strong. It was the case before 1985. A possible explanation
is that transactional costs were much larger at that time, and quantitative
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Fig. 2.4: Left: Normalized correlation between the Dow-Jones daily returns
and the daily returns of a U.S. bond index with 7 to 10 years bonds,
computed with ǫ = 0.01. Note the convention change occurring
at the end of 1997. Inset: Evolution of the Dow-Jones and the
bond index in the last quarter of 1997. Right: Time dependent
correlation Ct in our model, for g = 1.2 and ǫ = 0.01.

data less easily available. Nowadays, transactional costs are much smaller,
and this signal almost disappeared on average.

2.5 Empirical evidence

The aim of this section is present some empirical data that qualitatively
support our contention that some anomalous correlations exist in financial
markets with persistence times which can be very long (ten years or so). We
first present the case of the bond index vs. stock index correlation, which
is interesting from the point of view of the present model because it might
represent an empirical realization of the convention shift scenario predicted
above. We then turn to the analysis of the (daily) lagged autocorrelations
of the Dow Jones index during the 20th century, which are clearly found to
be significant and time dependent (positive – trend following, or negative –
contrarian). Finally, we turn to single stocks cross-correlations and also find
evidence for different regimes.

2.5.1 The bond/stock cross correlation

A very interesting example of rapid convention change has taken place in
the 90s and concerns the correlation between stock markets and bond mar-
kets. The usual argument is that as long term rates fall, not only does holding
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bonds becomes less profitable (bond prices rise) but also borrowing long term
money becomes cheaper. Therefore stock markets become more attractive,
and stock prices rise; this leads to a positive correlation between bond price
changes and stock price changes. We compute the time dependent autocor-
relation Ct as an exponential moving average, as given in Eq. (2.3), where It

is the bond index and Pt is the log price of the Dow-Jones. This correlation is
indeed found to be positive and very strong (≈ 0.5), in the beginning of the
nineties (see Fig. 2.4). However, another story now seems to be dominant:
a fall in stock markets signals an increased anxiety of the operators who sell
their risky paper and buy non-risky Government bonds. This has been called
Flight to Quality (ftq). The result is a negative correlation between stock
prices and bond prices. Fig. 2.4 shows very clearly that a change of conven-
tion has taken place in late 1997; the negative correlation was even stronger
in early 2003. Quite interestingly, this convention shift has taken place very
abruptly due to a series of extreme events both on the stock market and
on the bond market (see the inset of Fig 2.4), in qualitative agreement with
the model discussed in this Chapter. [Note that we consider here equal time
correlations of daily returns; using the argument presented in section 2.3.3,
we expect a high frequency causal correlation to manifest itself as an equal
time correlation on a coarser time scale.]

2.5.2 The Dow Jones

We considered the detrended Dow-Jones index in the period 1900-2003, when
the average return was subtracted. We have actually first fitted the log Dow-
Jones as a second order polynomial in time, since the average return itself
seems to have significantly increased between 1900 and 2000. 5 We again
compute the time dependent autocorrelation Ct as an exponential moving
average, as given in Eq. (2.3), with now δIt = δPt, and where Pt is the
log price. Since the returns are non-Gaussian, we compared all our results
with a null hypothesis benchmark where all returns are multiplied by random
independent signs, such as to keep the correct statistics of the amplitudes
but remove all serial correlations. (Note however that in this procedure, the
strong serial correlations in the volatility are preserved.)

We show in Fig. 2.5 the time evolution of Ct computed for ǫ = 0.001
for the real time series. One clearly sees that (i) Ct can be substantially
larger than expected if no correlations were present and (ii) the time scale
for the evolution of Ct can be much larger than 1/ǫ ≈ 3 years. Plateaus that

5 Taking the raw returns without detrending in fact leads to the same conclusions. The
reason is that the typical daily returns are much larger than the average trend anyway.
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last several decades can be observed. The histogram of different values of Ct

is shown in Fig. 2.4 and is markedly different from the one corresponding
scrambled series, for which all correlations are killed. (For example, the
hypothesis that the two distributions are the same is strongly rejected by
the Kolmogorov-Smirnov test). The century was dominated by a positive
correlation convention, especially between the 50s and the 80s. Nevertheless
the negative correlation convention seems to appear after 1929 during the
Great Depression. There are also regimes where Ct is close to zero. This
suggests that in fact g has varied over the years, with periods where g < 1,
with no clear trends nor anti-trends appearing, and periods where g > 1,
during which the market is temporarily locked in one convention or the other.
In order to check whether the plateau values appearing in Fig. 2.4 do indeed
correspond to conventions, we have determined the probability distribution
of Ct with a smaller averaging time of 100 days (ǫ = 0.01), and in restricted
periods of time: (a) at the beginning of the 30s (contrarian convention) and
(b) between the 1950 and 1980 (trend following convention); see Fig. 2.6.
The comparison with scrambled data indeed shows a clear assymetry in both
cases that should not exist if all serial correlations were zero.

These curves show that conventions can persist up to 30 years. The
change in convention can be rather smooth, as during the second part of the
century. As we saw before, the value of the most probable value C∗ is related
to g, that is to the number of agents using a self-referential strategy. Then
these smooth changes may be due to a continuous change in the number
of these agents. A change of convention can also occur suddenly, triggered
by an extreme event, as it did after 1929. It can be explained as suggested
above: before the crash, g is smaller than unity, and no clear convention
exists. The crash induces an enormous uncertainty about the true value of
stocks and encourages agents to pay more attention to past price variations.
This may have led to a substantial increase of g that favored the appearance
of a contrarian convention.

From the data, it appears that there might be a systematic bias towards
the trend following convention. One in fact expects that some symmetry
breaking term, favoring C > 0, should exist in general. First, as mentioned in
section 2.4.1, there might be good reasons to think that positive correlations
are indeed created by the time dilution of large orders or other mechanisms.
Also, for purely psychological reasons, trend following strategies are more
likely to be learnt and adopted than contrarian strategies because the pattern
is much more obvious. This can be modeled by postulating that g depends
on the sign of Ct, with g+ > g−. Therefore, nicely symmetric histograms such
as those presented in Fig. 2.3 are unlikely to be observed in real markets.
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Fig. 2.5: Left: Historical time series of the daily autocorrelation Ct of the
Dow-Jones index, computed with ǫ = 0.001. Right: Correlation
histogram P (C) for the Dow-Jones with ǫ = 0.001, compared to
the histogram computed with the same data and the same value
of ǫ but with returns multiplied by random signs (dotted line).
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Fig. 2.6: Left: Correlation histogram P (C) for the Dow-Jones in the post-
crash period 1929-1937, with ǫ = 0.01, compared to the ‘zero
correlation’ histogram computed by multiplying the returns by
random signs (dotted line). Right: Correlation histogram P (C)
for the Dow-Jones in the trend following period 1950-1980, with
ǫ = 0.01, again compared to ‘zero correlation’ histogram (dotted
line).
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2.5.3 Stock cross-correlations

Finally, we have studied the cross-correlations between pairs of stocks, or
between a stock and the index, for the S&P 500 stocks in the period 1996-
2003. We have studied daily returns and chosen an averaging time of 20 days
(ǫ = 0.05). Since different pairs of stocks have different average correlations,
we have studied a centred, rescaled correlation, defined as

C̃t =
Ct − C

σC
, (2.32)

where C is the average (over time) correlation between the two stocks under
consideration (or a stock and the index), and σC the root-mean-square of this
correlation. We then pool together all stocks to generate a single histogram
of the values of C̃t. We again generate, for comparison, surrogate data sets
where the average correlation between stocks is kept, but where the residuals
have random signs. The result is that the empirical distribution of C̃t is
markedly different from the surrogate data; see Fig. 2.7. The empirical
distribution has a clear negative skewness, whereas the surrogate data is
very close to Gaussian. Restricting to highly correlated stocks (C > 0.3,
σC < 0.2), the distribution is seen to acquire a double hump structure (see
Fig. 2.7, inset) that suggests the coexistence of periods where stocks are more
correlated with periods during which this correlation is less. We have checked
that many different pairs (not all containing the same stock) contribute to
the secondary hump. This effect is probably due to a sectorial change of
correlation.

2.5.4 Discussion

The conclusion of this section is that several financial market stylized facts do
indeed support, in a qualitative way, the predictions of our model, although
of course other explanations may exist. It would be interesting to devise
more rigorous statistical tests, although we know that these usually require
strong assumptions that we do not necessarily wish to make. For example, as
we have emphasized above, there are many reasons to believe that the very
parameters of the model (in particular g) should be time dependent. Still,
with the possibility of a systematic analysis of the impact of news (economic
figures) on the dynamics of financial markets, in the future one might be able
to test more critically our statistical convention model.
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Fig. 2.7: Main figure: log-Histogram − ln[P (C̃)] of the centred and rescaled
correlation between stocks of the S&P 500 and the index, during
the period 1996-2003, measured with ǫ = 0.05. The dotted line
corresponds to ‘zero correlation’ surrogate data. The plain line is
a fit with a biaised quartic potential V (C) = −βC + αC2 + γC4.
Inset: log-Histogram of the centred and rescaled correlation C̃
between pairs of highly correlated stocks (C > 0.3, σC < 0.2),
suggesting a bimodal structure.
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2.6 Conclusion and Perspectives

In this Chapter, we have defined and studied a generic, parsimonious model
that describes the feedback effect of self-referential behavior. If sufficiently
strong, this feedback destabilizes the market, and non-trivial correlations can
spontaneously appear or be anomalously amplified. In this case the market
enters a new equilibrium state where strong correlations between a priori
uncorrelated quantities might self-consistently establish. These anomalous
correlations lead to both excess volatility (that may display long memory)
and excess cross correlations. An interesting outcome of our model is (i)
the existence of correlations with an amplitude unrelated with any rational
value, and (ii) the appearance of a very long switching time scale, unrelated
with the natural time scales of the dynamics (i.e. the decision time scale ∆t
or the memory time T ). Therefore, our model displays regime switching over
long times scales, which by the way justifies why agents should use a finite
memory time in order to measure correlations in an ever changing environ-
ment. It is also worthwhile emphasizing that if the price itself is used as a
source of information, some linear autocorrelations do appear on interme-
diate time scales, but average out on time scales larger than this switching
time. In other words, the price process has zero average linear correlations,
but non-zero local autocorrelations (trending or mean reverting). We have
presented rather convincing empirical evidence that such conventions may
indeed exist in financial markets. One of the most compelling cases concerns
the correlation between stock markets and bond markets where both market
states can be observed; the correlation appears to have rapidly shifted in the
last decade from being strongly positive to being negative. An interesting
application of the model could be to understand quantitatively the dynamics
of inter-stock correlations, which is of crucial importance for asset allocation,
risk control, and index option pricing.

Our theoretical model could be extended in several directions. First, one
could consider serial correlations beyond the elementary time lag ∆t, say
between increments lagged by n∆t. At the linear level, the stability criteria
is easily shown to be gn < 1, where gn is the feedback strength corresponding
to lag n∆t. However, interesting non-linear effects can appear. For example,
with two lags n = 1 and n = 2, one can observe a ‘first order’ phase transition
where the most probable value of C discontinuously jumps from C = 0
to ±C∗, with C∗ > 0 even close to the transition. This is distinct from
the ‘second order’ scenario explored in the present Chapter, where C∗ ∼√

g − 1. Second, the case where the different sources of informations δIk
t

are themselves asset prices is quite interesting since the feedback loop also
affects the cross-correlation between the different assets. Non-trivial coupled
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convention dynamics can set in, in particular when the number of assets is
small.

An ingredient that should be implemented is the feedback between the
values of the coupling parameter g and memory time 1/ǫ, and the past price
dynamics itself. As we have seen above, the value of g is related to the num-
ber of agents (or more precisely the total volume of orders) that act in a
self-referential way. It is clear that both in periods of large uncertainty (after
a crash, for example) or within a speculative bubble where the trend follow-
ing strategy appears to be successful, one expects the value of gt to grow.
(A similar mechanism was recently considered within the ‘Grand Canonical’
version of the Minority Game; see Jefferies & al. 2000, Bouchaud & al. 2001,
Challet & Marsili 2003). It would be interesting to study a precise model
where the dynamics of gt and that of the price and volatility are explicitly
coupled, in the spirit of Bouchaud & Cont 1998. One can expect that such
a model would be able to capture a lot of the financial markets phenomenol-
ogy. Along similar lines, if there are several sources of information δIk

t , one
should expect that the feedback of successful strategies onto the value of
the couplings gk,t will be unstable in the sense that one of the gk will grow
at the expense of the others because the coordination of strategies leads to
stronger self-fulfilling prophecies and therefore larger potential profits. In
other words, this feedback between the tendency to follow a pattern and its
predictability leads to a condensation of the strategies in a few prominent
conventions, with abrupt transitions between those.

Finally, we need to discuss the above model from the point of view of
Efficient Markets and show how it should be modified to describe the long
term behavior of market prices. If the information is systematically over-
interpreted and the volatility much too large compared to that of the funda-
mental value, the price should go on long time scales to completely unrealistic
values. More precisely, the difference between the fair price and the market
price would typically grow as

√
T . (In mathematical terms, the market price

and the fundamental price would not cointegrate.) The answer to that para-
dox is, we believe, the following: nobody knows the fair price of a stock more
accurately than within, say, a factor of two or three. This was actually pro-
posed by Black 1986 (somewhat humoristically) as an operational definition
of an efficient market, and this view seems to us to be fundamentally correct.
For example, the historical analysis presented in Shiller 2000 (p. 8), shows
that the price to earning ratio of U.S. stocks has indeed fluctuated, from
1900 to 2000, between 10 and 40, so it is reasonable to think that there is
a wide band of prices across which arbitrage cannot take place because of
the lack of a reliable estimate of what the true price should be. As empha-
sized by Shleifer and others, arbitrage only makes sense if one can compare
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the relative price of two assets, but becomes very dodgy if one speaks about
absolute values. Therefore, one expects that as long as the price is within
a factor two of the true price, no extra mean reversion term needs to be
added to our dynamical equation for the price, Eq. (2.9). Mathematically,
this mean reversion effect can be described by adding to the right hand side
of Eq. (2.9) a term proportional to −κ log(Pt/P0), where κ measures the
strength of the demand driven by fundamental considerations and P0 the
true fair price. On short time scales, or if κ is sufficiently small, this term
can be neglected and the analysis presented above should be valid. On long
time scales, however, such that the random fluctuations become of the order
of (say) 100 %, one should expect these mean reversion effects to become
relevant (on this point, see also Föllmer et al. 2005). For a typical stock
with a daily volatility of 3%, this corresponds to 1000 days, or four years.
Such a time scale corresponds to the typical reversion time scale discovered
by De Bondt and Thaler in their paper on overreaction in stock markets.
Hence, in a world where absolute references are lacking, one expects that the
short to medium time scale dynamics of markets will be dominated by the
self-referential effects described in the present chapter.



3. Microstructure

We now focus on much shorter time scales, where the price formation takes
place, and we study in particular continuous double-auctions. As we dis-
cussed in introduction, in this setting price formation is a self-organized pro-
cess, where regularities and empirical power laws are observed. The goal
is to understand some of these relations. In particular, what fixes liquid-
ity, and how does it depends on volatility? After describing the continuous
double-auction in section 3.1, we study some zero-intelligence models that
were proposed to study it. In these models expressions of the spread and
the volatility can be derived. Such models are helpful to get used to the
“kinematics” of the problem, and underline important questions such as the
very definition of price, that we also study empirically. Nevertheless we shall
argue that they are far too naive to describe actual price formation. In sec-
tion 3.3 we provide empirical results, in particular on the statistics of the
market order flow, on the price diffusion and on the time behavior of the
price impact function. One striking fact is that the market order flow (and,
incidentally, the order-book itself) is a long-memory process. We show how
to re-conciliate these long-memory correlations with the almost perfectly dif-
fusive nature of price fluctuations. This implies that the impact of one single
trade is almost completely transient. In section 3.4, we show that it is pos-
sible to express the gain of liquid orders versus market orders. This leads to
a necessary relation between spread and price impact. We use this relation
to show that volatility per trade and spread are proportional.

3.1 Continuous double-auction description

The description of the order-book below is taken from (Farmer, Gillemot
et al. 2004). The double continuous auction is the standard mechanism for
price formation in most modern financial markets. Agents can place different
types of orders, which can be grouped into two categories: Impatient traders
submit market orders, which are requests to buy or sell a given number of
shares immediately at the best available price. More patient traders submit
limit orders, or quotes which also state a limit price, corresponding to the
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Fig. 3.1: A schematic illustration of the continuous double auction mecha-
nism. Limit orders are stored in the limit order book. The arbi-
trary convention that buy orders are negative and sell orders are
positive was adopted. As a market order arrives, it has transac-
tions with limit orders of the opposite sign, in order of price (first)
and time of arrival (second). The best quotes at prices a(t) or
b(t) move whenever an incoming market order has sufficient size
to fully deplete the stored volume at a(t) or b(t), when new limit
orders are placed inside the spread (when the limit price p satis-
fies b(t) < p < a(t)) or when all the orders at the best prices are
canceled. Bids and offers that fall inside the spread become the
new best bids and offers. (Farmer, Gillemot et al. 2004).
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worst allowable price for the transaction. (Note that the word quote can be
used either to refer to the limit price or to the limit order itself.) Limit orders
often fail to result in an immediate transaction, and are stored in a queue
called the limit order book. Buy limit orders are called bids, and sell limit
orders are called offers or asks. At any given time there is a best (lowest) offer
to sell with price a(t), and a best (highest) bid to buy with price b(t). These
are also called the inside quotes or the best prices. The price gap between
them is called the spread S(t) = a(t) − b(t). Prices are not continuous, but
rather change in discrete quanta called ticks, of size δp. The number of shares
in an order is called either its size or its volume. As market orders arrive
they are matched against limit orders of the opposite sign in order of first
price and then arrival time, as shown in Fig.(3.1). Because orders are placed
for varying numbers of shares, matching is not necessarily one-to-one. For
example, suppose the best order is for 200 shares at $60 and the the next
best is for 300 shares at $60.25; a buy market order for 250 shares buys 200
shares at $60 and 50 shares at $60.25, moving the best order a(t) from $60
to $60.25. A high density of limit orders per price results in high liquidity
for market orders, i.e., it implies a small movement in the best price when
a market order is placed. When a market order arrives it can cause changes
in the best prices. This is called market impact or price impact. Note that
the price changes are always in the same direction: a buy market order will
either leave the best ask the same or make it bigger, and a sell market order
will either leave the best bid the same or make it smaller. The result is that
buy market orders can increase the midprice m(t) = (a(t) + b(t))/2, and sell
orders can decrease it. Note that the arrival of three kinds of events can
cause the midprice to change (i) Market orders. A market order bigger than
the opposite best quote widens the spread by increasing the best ask if it is
a buy order, or decreasing the best bid if it is a sell order (ii) Limit orders.
A limit order that falls inside the spread narrows it by increasing the best
bid if it is a buy order, or decreasing the best ask if it is a sell order. (iii)
Cancellations. A cancellation of the last limit order at the best price widens
the spread by either increasing the best ask or decreasing the best bid.

3.2 Zero-intelligence model

In the neoclassical approach of microstructure, price formation emerges from
a strategic equilibrium between fully-rational agents, who are on the one-
hand market makers who furnish liquidity, whose incomes come from the
spread, on the other hand informed agents trying to use their information
to forecast future price changes. From the empirical point of view, to our
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knowledge the neoclassical approach has not yet being able to account for
the linear relation between spread and volatility per trade (Zumbach, 2004;
Kockelkoren, 2005), which stands as a fundamental question of the field.

Taking the opposite direction, some economists and physicists have pro-
posed zero-intelligence models, where the behavior of agents is mimicked by
random flows of limit and market orders. In this section we aim to present
this approach. We discuss the general method and a few models, and justify
the value of spread and volatility in this framework. This should provide
intuition about order-book geometry to the reader unfamiliar with electronic
markets. This also underlines interesting questions, such as the price def-
inition. Nevertheless, we shall ultimately argue that this point of view is
too naive to describe price formation. In particular zero-intelligence mod-
els miss the fact that imposing the absence of simple statistical arbitrage
opportunities strongly constrain the order-book properties.

Zero intelligence models are in general not easily tractable analytically.
These models were mostly studied numerically, and the numerical results
were compared with empirical data. Here our goal is to furnish simple qual-
itative argument to rationalize the price dynamics they generate. Some of
our results underline the inadequacy of these descriptions.

In the sections 3.3 and 3.4 our approach shall be more “data driven”, and
considers the constraints that the absence of statistical arbitrage impose to
the price formation.

3.2.1 Modeling the order book

We shall denote the tick size—the elementary increment of price— δp (in
dollars). In the simplest form of these models, the order flows are Poisson
processes, and all orders are emitted with the same size γ. The market order
flows (to buy and to sell) have identical rate µ (in shares per seconds). The
flow rate of limit orders emitted on one tick is α (in shares per seconds per
dollars). In the models we shall discuss, the regions where limit orders to
buy and to sell fall is function of the instantaneous order-book geometry. We
will see that the price dynamics depends much of this choice. Finally limit
orders are cancelled randomly with a rate δ (per seconds).

In what follows we shall choose δp as the unit of price, δ−1 as the unit of
time, and γ as the unit of volume of shares. Thus all results can be expressed
in terms of the two unit-less parameters α̂ = α[δp]δ−1γ−1 and µ̂ = µδ−1γ−1.
For now on we shall drop the hats, and explore all the possible regimes of
the following model by varying α and µ.

In what follows we use the notation “c ∼ d” to indicate that limd→∞c/d →
C0 6= 0, where C0 is a numerical constant. In such circumstances we say that
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c “scales” with d.

3.2.2 Maslov’s model

Maslov (Maslov, 2000) proposed a simple model of order-book. This model is
to simple too describe the order-book at the spread level, but displays curious
price fluctuations at large time scales. It is defined as follows: at each time
step, either a limit order is emitted with a probability 1/2, or a market order
is emitted with the same probability. The order can be to sell or to buy,
with a probability 1/2. When a market order to buy (to sell) is emitted, a
transaction takes place at the bid (ask). If a limit orders is emitted, it falls
at a price P (t) + 1 if it is a limit order to buy (P (t) − 1 if the limit order is
to sell), where P (t) is the last transaction price. If there are no more limit
orders in the order-book, limit orders only can be emitted. Maslov studied
this model without limit orders cancellation, that is δ = 0. In our notation
this corresponds to α = µ = ∞ . Such a model displays surprising features:
(i) the distribution P (r) of the price return r = p(t+1)−p(t)

p(t)
has fat tails:

P (r) ∼ r−(1+x). ii) there are long range correlation in volatility and (iii) the
price sub-diffuses as t1/4. Maslov noted that (i) and (ii) are indeed observed
in the price fluctuations, while (iii) is wrong: the price in fact diffuses as t1/2.
Nevertheless, this behavior is related to unrealistic market assumptions. In
Maslov’s model, price formation is not a stationary process. The order-book
displays in fact aging: in particular, it is straightforward to show that the
volume contained in the order-book follows a random walk. Therefore this
volume grows as t1/2, and the order-book never reaches any stationary limit.

3.2.3 Farmer’s model

Farmer et al. (Farmer, Patelli, et al. 2004) proposed a model belonging to
the same class, but with more realistic rules. This enables to generate more
reasonable order-books, spreads and to recover a diffusive behavior at large
time scales. The model is identical to Maslov’s, except that: (i) cancellations
do occur and (ii) the deposition rule of limit order is different. Limit orders
to buy fall uniformly on all ticks of price p such that p < a(t). Reciprocally,
limit order to sell fall uniformly for p > b(t). Note that (i) limit orders of both
types fall inside the spread. In fact the limit order deposition is symmetrical
around the mid-point m(t) = 1

2
(a(t) + b(t)), whereas in Maslov’s model this

symmetry is around the last transaction price. (ii) the limit order flow does
not decay far away from the price, as it does in real market (Bouchaud,
Potters & Mèzard, 2002). Nevertheless this issue is not relevant, since in this
model limit orders far away from the price are in general cancelled before
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they can participate to a transaction. Thus they do not affect the price
dynamics.

The dynamics generated by this model is in fact quite complex and non-
linear. In particular, each time a limit order falls inside the spread, the region
of deposition for the limit orders of the other sign is changed. We shall see
that it has very strong effect. A mean-field theory was proposed (Smith et
al., 2003), which studies the order-book in the mid-point referential. This
approximation does not work well in general, notably to explain the price
diffusion D, or volatility square, which scales (i.e varies as a power-law for
large µ) in the simulation as µ3/2 for a large domain of parameters. In what
follows we show that this approach fails because the mid-point is not the good
referential to consider. Furthermore, we argue that the peculiar dependence
of volatility with the market order flow is not a robust property of the model,
and is generated by an unrealistic choice of limit order deposition.

Spread and order-book depth

We define the order-book depth h(p) as the volume of limit orders at price
p. For all parameters regimes, the depth h(∞) of the order-book far away
from the price results from the balance between the flow of limit orders and
cancellations, since market orders are never executed there. This balance
yields on average:

dh

dt
= α − h (3.1)

Thus at equilibrium h = α. Note that Eq.(3.1) also shows that the “relax-
ation time” of the order-book is δ−1 ≡ 1: if there is a small fluctuation from
the average depth value h(0) = α + δh0, then h(t) − α = δh0 exp(−t).

Another simple result concerns the dependence of the average spread
S = 〈S(t)〉. Inside the spread, the limit order flow Sα is compensated by
cancellation and market orders. When market orders dominate cancellations,
that is when µ ≫ 1, one finds (Farmer, Patelli, et al. 2004) Sα = µ, or:

S ∼ µ

α
(3.2)

See Fig.3.4 for a numerical simulation of the corresponding order-book. When
cancellation dominates µ ≪ 1 and the limit order rate is small α ≪ 1, one
finds that the spread goes like the distance between two limit orders of same
sign 1/h, see Fig.3.3 for a numerical simulation:

S ∼ 1

α
(3.3)
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Fig. 3.2: Snapshot of the depth profile of a simulated order-book vs. price
for α = 100, µ = 50. The mid-point is 6. The bids are below 6,
the offers are above.

Note that when α ≫ µ and α ≫ 1, the average spread S is minimum and
equal to 1 tick: S = 1, see Fig.3.2.

These results assume that the deposition of limit orders is constant inside
the spread. Nevertheless empirically this is not at all the case (Farmer,
Gillemot et al., 2004). In particular, there are roughly as many limit orders
to sell falling inside the spread than exactly at the ask, in disagreement with
the model assumption as soon as the spread is larger than one tick. Thus
there is no reason to think that spread and order-book depth are related by
Eq.(3.2), as proposed by (Farmer, Patelli & Zovko, 2004). Empirical results
(Zumbach, 2004) support that it is indeed not the case 1.

In what follows we study the more subtle question of the volatility de-
pendence for different regions of parameters.

α ≫ µ, α ≫ 1: Limit order dominated

In this parameters domain S = 1, and the order-book shape is as follows: the
volumes at b(t) and a(t) are on average α−µ, elsewhere the order-book depth
is on average α, see Fig.(3.2). The price changes are rare, they take place
when the volume at the bid or at the ask fluctuates down to zero. When
this happens, with a probability 1/2 the price changes of one tick, otherwise
the price recovers its previous value. Thus in the domain of parameters the
diffusion constant defined as:

D ≡ 〈1
t
(p(t) − p(0))2〉 ≡ σ2 (3.4)

1 The characteristic depth of the order-book in unit of value per transaction is, according
to Zumbach, h = α ∼ C0.76C−0.44 ∼ C0.3. The frequency of trade follows µ ∼ C0.39.
Applying Eq.(3.2) leads the to S ∼ C0.09 instead of the observed S ∼ C−0.25.
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follows D ∼ τ−1, where τ is the average time between two changes of price.
A similar result applies to a discrete random walk which makes jumps of
amplitude 1 every time τ . In what follows we aim to evaluate the order of
magnitude τ . To do so we consider the total volume of limit order at the
bid (or at the ask). We denote by fk the probability of having a volume k.
The probability per time unit to change price is 1

2
f0µ, thus τ = 2µ−1f−1

0 .
To determine fk, we write a master equation. A master equation lists the
probability for a volume k to increase by 1 when a limit order is emitted
(this happens at a rate αfk), and the probability to decrease by one when a
market order is emitted, or when a cancellation occurs (rate fk(µ + k)). By
taking into account all these events, it is possible to write an equation for
the evolution of probabilities fk(t) for all k:

dfk

dt
= (µ + (k + 1))fk+1 − (µ + α + k)fk + αfk+1 for k ≤ 1 (3.5)

df0

dt
= (µ + 1)f1 − αf0 (3.6)

It is possible to solve such problem by introducing the generating function
H(x) =

∑∞
k=1 xkfk we obtain:

(1 − x)H ′(x) + (
µ

x
− (µ + α) + xα)H(x) − (1 + µ)(x − 1)f1 = 0 (3.7)

H(1) = 1 − f0 = 1 − µ + 1

α
f1 (3.8)

which can be solved to obtain:

H(x) = f1(1 + µ)
∫ x

0

(

t

x

)µ

eα(x−t)dt (3.9)

and

f1 = [
µ + 1

α
+ (1 + µ)

∫ 1

0
tµeα(1−t)dt]−1 (3.10)

We use the saddle point method to approximate the integral. This approx-
imation is used when large exponential pre-factors are involved, as it is the
case here since α ≫ 1. We find, neglecting the pre-factors in comparison
with the exponential term:

D ∼ (µf0) ∼ f1 ≍ exp[α − µ + µ ln(
µ

α
)] (3.11)

where the notation c ≍ d means ln(c)
ln(d)

→ 1 as d → ∞. In practice, there are
stocks for which S = 1, they are said to have “big” ticks. This is the case for
example for the Swedish market. In this situation, as we showed here, this
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Fig. 3.3: Snapshot of the order-book depth profile vs. price for α = 0.2, µ =
0.1. Asks are presented with positive values, bids are presented
with negative values.

model leads to a very low volatility: an “activated event”, that is a rare fluc-
tuation, must takes place for the price to move. This leads to exponentially
large time scale and small volatility. Neverthless, this phenomenon is not
observed in real markets, where the price does not “stick” to discrete values.
In particular, empirically the probability P (V ) that the volume at the bid
(or at the ask) at small V is not small. This suggests that the agents do not
consider only the midpoint as an indicator to place their limit orders, but
also the volume at the bid and at the ask. It is possible to propose models
which use this idea to recover a normal, non-activated dynamics.

µ ≪ 1, α ≪ 1: Cancellation dominated markets

In this case, even far from the price the order-book depth is smaller than
1 on average, see Fig.(3.3). Because µ ≪ 1, the diffusion is dominated by
the cancellation and the emission of limit orders. Cancellation occurs with a
characteristic time equal to unity, and the jumps of price are of the order of
the spread α−1. It follows that:

D ∼ 1

α2
(3.12)

1 ≪ µ, α ≪ µ: Market order dominated markets

This is the most subtle case. In what follows we shall only sketch an expla-
nation for the volatility, and explain why the referential of the mid-point is
not natural. The diffusion constant D found numerically (Farmer, Patelli,
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Fig. 3.4: Average order-book depth vs. price in the referential of b∗ for
α = 10, µ = 2000. Note that in this referential the order-book
depth is not symmetric: the interface b∗ is much sharper than
in a∗. The interface in b∗ is similar to the “typical interface”
that one can observe by taking a snapshot of the depth profile,
without averaging. By contrast, the interface in a∗, seen from b∗,
is smoothed by the fluctuations of the effective spread S∗, which
represents the distance between the two interface.

2004) is:

D ∼ µ3/2

α2
(3.13)

This is a surprising result. A naive argument gives a different diffusion con-
stant. Indeed, the order-book receives market orders, or “shocks”, with a
frequency µ. A volume V of market order moves one side of the order-book
by an amount of roughly V

h
, where h is the characteristic order-book depth.

We may take for h the value of the depth of the order-book at infinity h = α.
Thus the mid-point changes by an amount V

2α
. In this simple picture, each

unit market order changes the price by an amount 1
2α

. This price dynamics
is then equivalent to a Brownian motion where shocks appear with a rate
µ and an amplitude 1

2α
, which leads to D ∼ µ

α2 , in contradiction with the
simulations.

A direct numerical inspection of the order-book shape shows that, in
this regime of parameters, a “slow” and persistent structure appears in the
order-book. The order-book displays two interfaces, see Fig.(3.4). These
interfaces delimits a region where the order-book depth is nearly the depth
at infinity h = α ≫ 1 from a region where the depth is suddenly much lower.
We shall denote a∗(t) and b∗(t) the position of these two interfaces, defined
for example as the prices where the order-book depth become larger than
half the depth at infinity 2. It is convenient to introduce an effective spread

2 For simplicity we shall consider α ≥ 1, but the same argument can be easily extended
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S∗ = a∗ − b∗ and an effective mid-point m∗(t) = 1/2(a∗(t) + b∗(t)). Fig 3.4
shows the average order-book in the referential of b∗(t). This structure moves
much more slowly than the mid-point m(t) itself: the mid-point makes jumps
of the order the spread with a time scale µ−1. This observation indicates
why trying to describe the order-book in the referential of m(t) fails: it is
inadequate to describe a slow-moving structure in a fast-moving referential.

We aim to describe the motion of this slow structure. First we evaluate
S∗. We introduce ra = a∗−a and rb = b− b∗, the distances between effective
ask and ask, and between effective bid and bid. By symmetry ra and rb have
equal distributions. We have S∗(t) = S(t) + ra(t) + rb(t). Now we repeat
an argument of flow balance: the flow of limit orders to sell falling between
b and a∗ must compensate the market orders to buy. Although b displays
fast fluctuations, this balance must be verified on average. Thus we obtain
〈ra〉 + S = µ

α
. Therefore S∗ = µ

α
+ 〈ra〉. To evaluate 〈ra〉 we shall provide

a simple model with one interface. It predicts 〈ra〉 ≈ µ
2α

. Thus we find, in
good agreement with the simulations, see Fig.3.4:

〈S∗(t)〉 ≈ 3

2

µ

α
(3.14)

Thus the spread S is a fraction (roughly 2/3) of S∗. Since the limit orders
density is small in S∗, S rapidly diffuses on the segment S∗. The motion of
m(t), the center of S, is therefore strongly anti-correlated: S “bounces” back
on the two interfaces a∗ and b∗. Such strong (and as we shall comment later,
unrealistic) anti-correlations are observed numerically (Farmer, Patelli et al.,
2004).

This suggests the following explanation for the surprisingly large long-
time diffusion, corresponding to the motion of the slow structure: the fluctu-
ations of S create fluctuations of the limit order flow, much larger than the
fluctuation in market orders. We shall denote τS the characteristic time of
the fluctuations of S in S∗, defined for example as the average time for S to
go from one interface to the opposite one. τS is to be determined . Fig.(3.5)
shows a snapshot of the order-book where the spread is bouncing on the in-
terface a∗. During the time τS, the imbalance between the two opposite limit
order flows falling in S∗ is of the order of τSSα = τSµ. This imbalance leads
directly to an imbalance on the market orders which impact the interfaces.
Since on average each market order which reach an interface changes the
interface position by an amount α−1, during τS the interfaces center moves
by a random amount of the order τSµ/α. This leads to a diffusion constant

to the region α ≤ 1, with more care for the definition of a∗ and b∗
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Fig. 3.5: Snapshot of the order-book depth vs. price for α = 30, µ = 1000.
Asks are presented with positive values , bids with negative values.
We have b∗ = 95 and a∗ = 143. For p ∈ [b∗, a∗], there are around
30 bids present, and no asks.

scaling as:

D ≈
(

µτS

α

)2 1

τS
=

µ2τS

α2
(3.15)

Following (Farmer, Patelli et al., 2004) we may also define a diffusion constant
at small time scales D0, which describes the sub-diffusive motion of the mid-
point at short times t ≪ τS. Since in a time τS a distance of order S is
covered, one obtains:

D0 ∼
µ2

α2τS
∼ D/τ 2

S (3.16)

The numerical results of (Farmer, Patelli et al., 2004) for D and D0 are
consistent with τS = µ−1/2. In this paragraph we propose a hand-waving
argument for the dependence of τS. Consider that there are typically N
limit orders inside S∗. The time scale to remove one order by a market order
is µ−1, so that τS ∼ Nµ−1. The fluctuations of the market order flow during
the relaxation time 1 of the order-book time are of order N ∼ µ1/2. This
leads to τS = µ−1/2 as observed numerically. This rationalizes the scaling of
both D and D0.

Relation with real markets

Here we argue that the present model is inadequate to describe market volatil-

ity. In particular, the peculiar scaling of the diffusion constant D ∼ µ3/2

α2

comes from a subtle non-linear effect: when limit orders fall inside the spread,
they affect the deposition of the limit orders of the other signs. This effect
is not robust against changes in the rules of spatial repartition of limit or-
ders. In real markets, as we said above, there are roughly the same number
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of limit orders deposited on the bid and ask than inside the spread. In the
present model, if the deposition flow of limit orders inside the spread de-
creases, the non-linear effect disappears and D becomes proportional to µ.
Furthermore, the signature of this non-linear effect is the anti-correlation of
the mid point. This is not observed on real market, where the mid-point
dynamics is well-described by pure diffusion, even at short time (for small
tick size).

The present model underlines the interesting question of the very price
definition, that we shall study empirically in what follows. Here the zero-
intelligent agents emit limit orders symmetrically around the mid-point m.
Doing so they do not realize that the dynamics of m is highly anti-correlated,
and that m fluctuates rapidly around m∗, which represents the slow “center
of mass” of the order-book. In this model m∗(t) is a much better estimate
of the future mid-point than the instantaneous mid-point itself. Rational
agents should use this information to place their orders. In other words,
in the present model simple statistical arbitrage opportunities exist. For
example, since some limit orders to buy are deposited above m∗, and some
limit orders to sell are deposited above, a simple strategy with positive profit
is to emit market orders against all these limit orders.

In the next paragraph we present, for completeness, an alternative model
where limit orders are placed symmetrically around m∗. In this model the
arbitrage discussed above is not possible, and a normal diffusion constant
D ∼ µ

α2 is recovered.

3.2.4 Alternative model with effective price

The model we propose is identical to the previous one, with the only difference
that limit orders are now deposited relatively to the effective mid-point m∗.
Limit order to buy flows with a rate α for p ≥ m∗, the symmetric rule
defines the flow of limit orders to sell. We focus on the case where α ≪ µ1/2,
µ ≫ 1. As we shall see this model is simpler than the previous one. In the
referential of m∗, it corresponds to the interaction of two distinct interfaces
whose properties are only determined by the arrival of limit orders of one
single sign, and market orders of the other sign.

Problem with one interface

We consider the dynamics of the upper part of the order-book (the offer) in
the referential of m∗. It is, at a good level of approximation, equivalent to
fix m∗ = 0, and to consider the price segment [0,∞]. Limit order flow at
each price unit with a rate α. Market order flow with a rate µ. When a
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Fig. 3.6: The black curve is the average depth profile vs price in the refer-
ential a∗. The red curve is the average depth profile in the non
moving referential. These curves correspond to α = 5 and µ = 300.

market order is emitted, the transaction takes place for the limit order with
the lowest price. Limit orders are cancelled with a rate 1. A typical interface
is shown in Fig.(3.6).

A simple balance of flows gives for the average position of the interface
〈a∗〉 ≈ µ

α
. It is also possible to furnish a qualitative argument to evaluate

the fluctuations of a∗. As we discussed in Eq.(3.1), the order-book relaxes
with a characteristic time equal to 1. Thus the fluctuations of a∗ are given
by the fluctuations of the number of market orders during that time interval,
divided by the order-book depth above m∗, which is approximately α. This
lead to 〈(a∗ − 〈a∗〉)2〉1/2 ∼

√
µ

α
.

Furthermore, we find that the average position ra of the first limit order
is ra = C0

µ
α
, where C0 ≈ 1/2. In Appendix 1 we justify further these results

using simple approximations.

Price diffusion

During a time unit, each interface has moved randomly of an amount ∆ ∼
√

µ

α
.

Thus ∆ characterizes both the fluctuation of the effective spread, but also
the fluctuation of the effective mid-point position. In a good approximation
price follow a random walk with random steps of size ∆ per time unit. This
leads to a diffusion constant:

D ∼ ∆2 ∼ µ

α2
(3.17)
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Fig. 3.7: Dx(ℓ) ≡ 1
ℓ
〈(x(ℓ)−x(0))2〉 vs. ℓ for x = m (red curve) and x = m∗

(black curve). Simulations were done with µ = 12 and α = 6.

It is interesting to consider in more details the diffusion of the effective
mid-point m∗ and of the mid-point m in this model. We compute the quantity
Dx(ℓ) ≡ 1

ℓ
〈(x(ℓ) − x(0))2〉, where ℓ is the number of transaction that took

place during the time interval t. When ℓ → ∞, Dx converges to the diffusion
constant. We compute this quantity for x = m and x = m∗. Fig.(3.7)
shows that both m∗ and m are sub-diffusive. Nevertheless this effect is much
smaller for m∗. By contrast, m sub-diffuses more: this is the signature of
the fast anti-correlated motion of m, which oscillates around the center of
mass of the order-book m∗. Note that the simple statistical arbitrage that
was possible in the model of Farmer et al. is very reduced here, because the
limit orders to buy (to sell) are emitted above (below) m∗, which is a good
estimator of the future mid-point.

3.2.5 Discussion

To conclude on this subject, we argue that zero-intelligence models are not a
good starting point to study price formation. The reason is that, as we shall
see in section 3.4, forbidding the existence of simple statistical arbitrages
much constrains the order-book and the price dynamics. Zero-intelligence
models completely miss this point. In particular, such models do not lead
to a correct estimation of the order-book properties, such as the spread.
These models were also used to justify the concavity of the price impact.
The argument uses that in these models the average depth profile increases
away from the price, before saturating toward a constant. Thus, when a
market order with a large volume V is emitted, its impact on price R(V ) is
sub-linear with V . More precisely, assuming that the order-book equal its
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average value, the impact function satisfies:

V =
∫ 2R(V )

0
h(p)dp (3.18)

For example if the order-book average depth increases linearly, this argument
would yield a square root for the price impact. Nevertheless it turns out
empirically that the cause of the impact function concavity is different. In
practice there are almost no market orders that “penetrate” in the order-
book (Farmer et al., 2004), that would lead to transaction further from the
bid or the ask. The concavity of the price impact has rather to do with
a strong positive correlation between market orders volume and the limit
orders volume at the bid, or at the ask.

Such models are not realistic either to compute the price dynamics and
the volatility. As we shall see, the price diffusion emerges from a subtle com-
pensation of two strong antagonist effects: the long-memory of the market
order flow, and the long memory of the order-book. Such effects are not
contained in zero-intelligence models.

These models could certainly be improved by adding more and more re-
alism, for example by conditioning the order flow to the past, or to details
of the order-book shape. Nevertheless this would not do better than repro-
ducing real markets. Zero-intelligence approach could bring insights to the
price formation only if the regularities observed on financial market stemmed
from zero-intelligence, or complete disorder. Simple arbitrage strategies are
sufficient to invalidate this hypothesis.

3.2.6 Empirical results on “effective” price

One interesting outcome of zero-intelligence models is that the mid-point
m(t) is not the most appropriate definition of price. It does not take into
account the whole order-book shape, but simply the bid and ask positions.
We may define rigorously the “efficient” price meff (t) as the best estimate
of the future mid-point knowing the (observable) instantaneous order-book:
meff (t) is defined such that 〈(m(t′) − meff(t))

2〉 is minimum when t′ − t is
large (say of the order of the hour). In our zero-intelligence model, meff is
roughly at the middle of the two interfaces meff ≈ m∗ ≡ 1

2
(a∗ + b∗). It is

reasonable to think that on real markets also, one may find a better estimate
of the future mid-point than the mid-point itself.

In what follows we test this hypothesis and propose a simple estimation
of meff that uses the order-book shape. We show that there exists indeed a
better estimation of the future mid-point that the mid-point itself. It turns
out to be a linear combination of the mid-point m and the center of mass of
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Fig. 3.8: Plots of 1
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ℓ
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m∗(0)]2〉 as defined in the text vs the number trades ℓ for As-
trazeneca.

the order-book m∗
c , that we shall define more precisely for real order-books in

what follows. Nevertheless, we show empirically that there are importance
differences between the center of mass in real order-book m∗

c and in zero
intelligence models: in particular we find that m∗

c fluctuates more than the
mid-point m. We also show that m − m∗

c furnish indications on the future
market order flow.

We consider the five best bid prices and ask prices where limit orders are
present (only these can be observed in electronic markets). We introduce a∗

and b∗, the center of mass of limit orders to buy and to sell. For example, a∗ =
1
Va

∑5
i=1 Vipi, where Va is the total volume of limit orders to sell observable,

Vi the volume of limit orders at the ith best ask, whose price is pi. Then, we
define m∗

c as m∗
c = 1

2
(a∗ + b∗).

Then we consider the estimator meff = ym+(1−y)m∗
c. For Astrazeneca,

by choosing y = 0.8, we show that meff is a better estimator of the future
mid-point than the mid-point itself. Indeed we find that 〈[m(ℓ) −m(0)]2〉 <
〈[m(ℓ) − meff (0)]2〉 as can be seen in Fig.3.8. ℓ is the lag in trade time.

In our zero-intelligence model, the dynamics of m∗ correspond to the
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slow motion of the center of mass of the order-book, whereas m has fast,
anti-correlated motions inside the spread. Thus, m∗ estimates better the
future mid-point than m, which “oscillates” around m∗. As a consequence,
m presents an anti-persistence, or sub-diffusive, effect much larger than the
one of m∗, which is almost diffusive, as it is apparent in the numerical result
of Fig.(3.7). To test if this scenario is correct to describe real order-books,

we compute D(ℓ)
ℓ

= l−1〈(x(ℓ) − x(0))2〉 for x = m∗
c and x = m. The results

are shown in Fig.(3.8). In stark contrast with the zero-intelligence model, we
observe that m∗

c is more sub-diffusive than m.
We found empirically another interesting difference between real markets

and zero-intelligence models: meff−m is a good predictor because it furnishes
an information on the future flow of market orders, in contrast with the
previous models where the market order flow is purely random. Fig.(3.9)
shows the correlation C(ℓ) = 〈ǫ(ℓ)(m(0)−meff (0))〉, where ǫ(ℓ) is the market
order sign, chosen positive if the market order is to buy. C(t) is indeed
found to be negative at short time (up to 7 transactions time). A possible
explanation for this is that when a piece of new arrives on the market, some
liquidity providers remove their limit orders before market orders can be
emitted. This would lead to the observed correlation.

To conclude, our empirical results show that, as it is the case for zero
intelligence models, the very definition of price is rather subtle. It is possible
to define an efficient price which predicts better the future mid-point than the
mid-point itself. This efficient price takes into account the order-book shape.
Nevertheless the analogy with zero-intelligence models is not perfect. In such
models the efficient price is simply the mass center of the order book, around
which the mid-point oscillates. In contrast, the center of mass of the order-
book fluctuates more than the mid-point in real market. Furthermore the
effective price contains another information, on the flow of incoming market
orders.

3.2.7 Appendix: Computation of the average depth

profile of one single interface

It is possible to compute exactly the average order-book depth of one single
interface, shown in Fig.3.6, as follows: consider the first p ticks. In this
interval, the rate of the total limit order flow is αp. In our previous argument
which follows Eq.(3.5), we computed the volume distribution for one tick with
a limit order rate α. We can use the same argument here by changing α in
αp to compute the average number of limit orders k(p) located in the interval
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[0, p]. Then the average depth h(p) of the order-book would simply follow:

h(p) =
dk

dp
(3.19)

In the framework that follows Eq.(3.5) we have:

k(p) =
∞
∑

k=1

fkk =
dH

dx
|x=1 (3.20)

where α must be replace by αp in the expression of H . Then Eqs.(3.9-3.10)
enables to compute exactly k(p). These equations can be solved numerically
to obtain the quantities we are looking for. Here we rather provide simple
approximations.

We estimate first the fluctuations of a∗. Fig.(3.6) shows the simulated
average and typical depth profile, which was computed by averaging the
order-book in the referential of a∗. The average profile is much smoother
than the typical interface, because it is softened by the fluctuations of a∗.
To evaluate these fluctuations in the regime p > µ/α, we note that the
probability for a∗ > p is related to f0(p): if the interface is further than p,
market orders must have reached at least p, which is possible only if there was
no limit order at lower price. Thus we expect the characteristic decay length
of f0(p) as p increases to describe the fluctuation of the interface position.
From Eq.(3.11), after few lines of calculations, on obtains that at the leading
order:

f0 ≍ (
1

µ

1/2

) exp[−(p − µ/α)2α2

2µ
] (3.21)

which shows that the characteristic length L = p − α/µ above which f0(p)

vanishes follows L ∼
√

µ

α
. From this we can deduce that 〈(a∗−〈a∗〉)2〉1/2 ∼

√
µ

α

as stated.
We now evaluate ra. At small p ≪ µ

α
, the probability fn(p) to have n

limit orders in the interval [0, p] satisfies fn(p) ≪ fn−1(p). Thus we may
neglect fn for n ≥ 2. Using Eq.(3.5), and f0(p) + f1(p) = 1, we obtain
f0(p) = 1

1+pα/µ
and f1 ≈ αp

µ
. In this approximation the probability that

ra > p is P (ra > p) = f0(p), thus P (ra = p) = α/µ, which leads to ra = 1/2.
This results approximates well numerical results.

3.3 The long-memory of financial markets

In this section we provide empirical data to show that the market order
flow is a long-memory process. The market order signs ǫ are correlated in
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time. This correlation decays very slowly, as a non-integrable power law:
〈ǫ(ℓ)ǫ(0)〉 ∼ ℓ−γ with γ < 1 . It is observable for days. It seems paradoxical
that such temporal correlations do not lead to a super-diffusive price dynam-
ics. Indeed if the market orders impact were permanent, one would obtain
1
ℓ
〈(P (ℓ)−P (0))2〉 ∼ ℓ1−γ. We want to argue, based on a series of detailed em-

pirical results obtained on trade by trade data, that the random walk nature
of prices is in fact highly non trivial and results from a fine-tuned competi-
tion between two populations of traders, liquidity providers (who emit limit
orders) on the one hand, and liquidity takers (who emit market orders). For
reasons that we explain in more details below, liquidity providers act such
as to create anti-persistence (or mean reversion) in price changes that would
lead to a sub-diffusive behavior of the price, whereas liquidity takers’ action
leads to long range persistence and super-diffusive behavior. Both effects
very precisely compensate and lead to an overall diffusive behavior, at least
to a first approximation, such that (statistical) arbitrage opportunities are
absent, as expected. However, one can spot out the vestiges of this subtle
compensation from the temporal structure of the market impact function.
A surprising outcome of our work is that the response to one single trade
decays slowly in time, and is almost completely transient.

The organization of this section is as follows. We first present (subsection
3.3.1) our empirical results on the statistics of trades, market impact and
fluctuations. We show in particular that the order flow exhibits long range
(power-law) autocorrelations in time, but that this does not lead to any
predictability in price changes, as also recently noticed (Hopman, 2002).
Then, we introduce in Subsection 3.3.2 a simple model that expresses the
price as a linear superposition of the impact of each trade. We show that
this model allows to rationalize our empirical findings, provided a specific
relation between the temporal autocorrelation of the sign of the trades (i.e.
buyer initiated or seller initiated) and the temporal response to a single
trade is satisfied. Finally, in subsection 3.3.3, we give intuitive arguments
that allow one to understand the market forces at the origin of this subtle
balance between two opposite effects, which dynamically leads to absence of
statistical arbitrage opportunities.

3.3.1 Market impact and fluctuations

Presentation of the data and definitions

In this study, we have analyzed trades and quotes data from liquid French
stocks in the years 2001 and 2002, although qualitatively similar results were
also obtained on British stocks as well. The advantage of the French market,
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however, is that it is fully electronic whereas only part of the volume is traded
electronically in the London stock exchange. We will illustrate our results
mainly using the France-Telecom stock, which is one of the most actively
traded stocks, for which statistics are particularly good.

There are two data files for each stock: one gives the list of all successive
quotes, i.e. the best buy (bid, b) and sell (ask, a) prices, together with the
available volume, and the time stamp accurate to the second. A quote can
change either as a result of a trade, or because new limit orders appear, or
else because some limit orders are cancelled. The other data file is the list of
all successive trades, with the traded price, traded volume and time stamp,
again accurate to the second. Rarely, several trades are recorded at the very
same instant but at different prices: this corresponds to a market order of a
size which exceeds the available volume at the bid (or at the ask), and hits
limit orders deeper in the order book. In the following, we have grouped all
these trades together as a single trade. This allows one to create chronological
sequences of trades and quotes, such that between any two trades there is at
least one quote.

The last quote before a given trade allows one to define the sign of each
trade: if the traded price is above the last midpoint m = (a + b)/2, this
means that the trade was triggered by a market order (or marketable limit
order) to buy, and we will assign to that trade a variable ε = +1. If, one the
other hand the traded price is below the last midpoint m = (a + b)/2, then
ε = −1. With each trade is also associated a volume V , corresponding to
the total number of shares exchanged.

Trades appear at random times, the statistics of which being itself non
trivial (there are intra-day seasonalities and also clustering of the trades in
time). We will not be interested in this aspect of the problem and always
reason in terms of trade time, i.e. time advances by one unit every time
a new trade (or a series of simultaneous trades) is recorded. We have also
systematically discarded the first ten and the last ten minutes of trading in
a given day, to remove any artifacts due to the opening and closing of the
market. Many quantities of interest in the following are two-time observables,
that is, compare two observables at (trade) time n and n + ℓ. In order to
avoid overnight effects, we have restricted our analysis mostly to intra-day
data, i.e. both n and n + ℓ belong to the same trading day. We have also
assumed that our observables only depend on the time lag ℓ.

On the example of France-Telecom, on which we will focus mostly, there
are on the order of 10 000 trades per day. For example, the total number of
trades on France-Telecom during 2002 was close to 2. 106; this allows quite
accurate statistical estimates of various quantities. The volume of each trade
was found to be roughly log-normally distributed, with 〈ln V 〉 ≃ 5.5 and a
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root mean square of ∆ lnV ≃ 1.8. The range of observed values of ln V is
between 1 and 11.

Price fluctuation and diffusion

The simplest quantity to study is the average mean square fluctuation of
the price between (trade) time n and n + ℓ. Here, the price pn is defined
as the mid-point just before the nth trade: pn ≡ mn−. In this section, we
always consider detrended prices, such that the empirical drift is zero. We
thus define D(ℓ) as:

D(ℓ) =
〈

(pn+ℓ − pn)2
〉

. (3.22)

D(ℓ) is the diffusion per transaction time, and must be distinguished from
the diffusion per unit time D discussed in the previous section. As is well
known, in the absence of any linear correlations between successive price
changes, D(ℓ) has a strictly diffusive behavior, i.e.

D(ℓ) = Dℓ, (3.23)

where D is a constant. In the presence of short-ranged correlations, one
expects deviations from this behavior at short times. However, on liquid
stocks with relatively small tick sizes such as France-Telecom (FT), one finds
a remarkably linear behavior for D(ℓ), even for small ℓ. The absence of linear
correlations in price changes is compatible with the idea that (statistical)
arbitrage opportunies are absent, even for high frequency trading. In fact,
in order to emphasize the differences from a strictly diffusive behavior, we

have studied the quantity
√

D(ℓ)/ℓ (which has the dimension of Euros). We
show this quantity in Fig. 3.10 for FT, averaged over three different periods:
first semester of 2001 (where the tick size was 0.05 Euros), second semester
of 2001, and the whole of 2002 (where the tick size was 0.01 Euros). One
sees that D(ℓ)/ℓ is indeed nearly constant, with a small ‘oscillation’ on which
we will comment later. Similar plots can be observed for other stocks (see
Fig. 3.11). We have noted that for stocks with larger ticks, a slow decrease
of D(ℓ)/ℓ is observed, corresponding to a slight anti-persistence (or sub-
diffusion) effect. Note that since we study the mid-point, the anti-correlations
reported here are not related to the trivial bid-ask bounce.

The conclusion is that the random walk (diffusive) behavior of stock prices
appears even at the trade by trade level, with a diffusion constant D which
is of the order of the typical bid-ask squared. From Fig. 3.10, one indeed

sees that
√

D(1) ∼ 0.01 Euros, which is precisely the tick size, whereas FT
has an average bid-ask spread equal to two ticks. Hence, each transaction
typically moves the mid-point by half the bid-ask.



3. Microstructure 65

1 10 100 1000 10000
 Time (Trades)

0

0.01

0.02

0.03

0.04

 [D
(l

)/
l]

1/
2  (E

ur
os

)

 FT (2001 − 1st semester)
 FT (2001 − 2nd semester)
 FT (2002)

Fig. 3.10: Plot of
√

D(ℓ)/ℓ as a function of ℓ for France-Telecom, during

three different periods. The variation of D(ℓ)/ℓ with ℓ is very
small, in particular in the small tick (0.01 Euros) period (July
2001 – December 2002). For the large tick size period (0.05 Eu-
ros; January 2001 – June 2001), there is a systematic downward
trend: see also Fig. 3.11.
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Fig. 3.11: Plot of
√

D(ℓ)/ℓ as a function of ℓ for other stocks during the

year 2002, except Barclays (May-June 2002). The y-axis has
been rescaled arbitrarily for clarity. We note that stocks with
larger tick size tend to reveal a stronger mean-reverting effect.
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Response function and market impact

In order to better understand the impact of trading on price changes, one
can study the following response function R(ℓ), defined as:

R(ℓ) = 〈(pn+ℓ − pn) · εn〉 , (3.24)

where εn is the sign of the n-th trade. The quantity R(ℓ) measures how
much, on average, the price moves up conditioned to a buy order at time
0 (or a sell order moves the price down) a time ℓ later. As will be clear
below, this quantity is however not the market response to a single trade,
a quantity that will later be denoted by G0. A more detailed object can in
fact be defined by conditioning the average to a certain volume V of the n-th
trade:

R(ℓ, V ) = 〈(pn+ℓ − pn) · εn〉|Vn=V . (3.25)

Previous empirical studies have mostly focused on the volume dependence
of R(ℓ, V ), and established that this function is strongly concave as a func-
tion of the volume (Hasbrouck, 1991; Barra, 1997; Kempf & Korn, 1998;
Plerou et al., 2002, Hopman, 2002. In (Lillo et al., 2003), a thorough anal-
ysis of U.S. stocks was analyzed in terms of a piecewise power-law depen-
dence for R(ℓ = 1, V ) ∝ V α, with an exponent α ≃ 0.4 for small volumes,
and a smaller value (α ≃ 0.2) for larger volumes; see also (Lillo & Farmer,
2003). It has been proposed (Potters & Bouchaud, 2003) that this depen-
dence might in fact be logarithmic (see also a footnote in (Plerou et al.,
2002)): R(ℓ = 1, V ) = R1 ln V (where R1 is a stock dependent constant), a
law that seems to satisfactorily account for all the data that we have ana-
lyzed. The empirical determination of the temporal structure of R(ℓ, V ) has
been much less investigated (although one can find in (Plerou et al., 2002)
somewhat related results on a coarse-grained version of R(ℓ, V )). R(ℓ, V ) can
be written in a factorized form (Potters & Bouchaud, 2003) (first suggested
on theoretical grounds in (Daniels et al., 2001)):

R(ℓ, V ) ≈ R(ℓ)f(V ); f(V ) ∝ ln V, (3.26)

where R(ℓ) is a slowly varying function that initially increases up to ℓ ∼
100 − 1000 and then is seen to decrease back, with a rather small overall
range of variation. The initial increase of R(ℓ) was reported in (Hasbrouck,
1991) and has also recently been noticed by Lillo and Farmer (Lillo & Farmer,
2003). Here, we provide much better data that supports both the above
assertions. We show for example in Fig. 3.12 the temporal structure of R(ℓ)
for France Telecom, for different periods. Note that R(ℓ) increases by a
factor ∼ 2 between ℓ = 1 and ℓ = ℓ∗ ≈ 1000, before decreasing back. Similar
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Fig. 3.12: Average response function R(ℓ) for FT, during three different
periods (black symbols). We have given error bars for the 2002
data. For the 2001 data, the y−axis has been rescaled to best
collapse onto the 2002 data. Using the same rescaling factor,
we have also shown the data of Fig. 1. The fact that the same
rescaling works approximately for D(ℓ) as well will be dwelled on
further in section 3.3.1 below.

results have been obtained for many different stocks as well: Fig. 3.13 shows
a small selection of other stocks, where the non monotonous behavior of R(ℓ)
is shown. However, in some cases (such as Pechiney), the maximum is not
observed. One possible reason is that the number of daily trades is in this
case much smaller (∼ 1000), and that ℓ∗ is beyond the maximum intra-day
time lag. On the other hand, the model discussed below does also allow for
monotonous response functions.

The existence of a time scale ℓ∗ beyond which R(ℓ) decreases is thus both
statistically significant, and to a large degree independent of the considered
stock. On the other hand, the amplitude of the change of R(ℓ) seems to be
stock dependent. As will be clear later, the fact that R(ℓ) slowly increases
before decreasing back to negative values is a non trivial result that requires
a specific interpretation.

Turning now to the factorization property of R(ℓ, V ), Eq. (3.26), we
illustrate its validity in Fig. 3.14, where R(ℓ, V )/f(V ) is plotted as a function
of ℓ for different values of V . The function f(V ) was chosen for best visual
rescaling, and is found to be close to f(V ) = ln V , as expected. Note that for
the smallest volume (open circles), the long time behavior of R(ℓ, V ) seems
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Fig. 3.13: Average response function R(ℓ) for a restricted selection of
stocks, during the year 2002.

to be different, which is probably due to the fact that small volumes are in
fact more likely to be large volumes chopped up into small pieces.

Fraction of informed trades

One has to keep in mind that the response function R(ℓ) captures a small,
but systematic effect that relates the average price change to the sign of a
trade. The fluctuations around this small signal are large, and increase with
ℓ. A way to see this is to introduce the random variable uℓ = (pn+ℓ − pn).εn.
By definition, R(ℓ) is the average of uℓ, and D(ℓ) is the average of u2

ℓ . Since
R(ℓ) is roughly constant whereas D(ℓ) grows linearly with ℓ, one sees that
the impact of a given trade (as measured by R(ℓ)) rapidly becomes lost in
the fluctuations.

In Fig. 3.15, we show the whole empirical distribution P (uℓ) of uℓ for
ℓ = 128 (other values of ℓ will be discussed below). This distribution is
found to be only slightly skewed in the direction of positive uℓ. In fact, if one
considers the shifted variable uℓ − ν, where ν = 0.01 Euros, the distribution
becomes nearly symmetric. Note that 0.01 Euros is equal to half the typical
bid-ask spread and can therefore be seen as the minimal cost of a market
order.

Empirical price changes are known to be highly kurtic, with sudden jumps
separated by less volatile, random walk like periods. Market orders, that in-
cur an immediate cost, are usually interpreted as ‘informed’ trades. This pre-
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Fig. 3.14: Average response function R(ℓ, V ), conditioned to a certain vol-
ume V , as a function of ℓ. Data for different V ’s have been
divided by f(V ) ∝ ln V such as to obtain good data collapse.
The thick line corresponds to R(ℓ) (unscaled).

sumably means that these trades correctly anticipate significant price changes
as a result of some private information, that justifies paying a liquidity cost
for immediate execution. Therefore, in this picture, the non zero value of
〈uℓ〉 should mostly be due to the fraction of informed trades. Noise induced
trades, on the other hand, should only temporarily move the price, and be
uncorrelated with the future value of the stock. Hence, the positive tail of the
distribution P (uℓ) (corresponding to informed trades) should be significantly
fatter than the negative tail.

Now, the nearly symmetric shape of P (uℓ − ν) in Fig. 3.15 shows that
one can hardly detect the statistical presence of such trades that correctly
anticipate the sign of the price change on a short term basis, such as to cover
at least minimal trading costs.

A Fluctuation-Response relation

In the study of Brownian particles, a very important result that dates back
to Einstein relates the diffusion coefficient D to the response of the particle
to an external force. That a similar relation might also hold in financial
markets was first suggested by Rosenow (Rosenow, 2002), and substantiated
there by some empirical results. We have performed an analysis related
to, but different from that of Rosenow. For any given trading day, one can
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Fig. 3.15: Probability distribution P (uℓ) of the quantity uℓ = (pn+ℓ−pn).εn

(in Euros), for ℓ = 128. The data is again FT during 2002. The
negative part of the distribution has been folded back to positive
uℓ in order to highlight the small positive skew of the distribution
(which is seen to increase slightly with |uℓ|). The average value
R(ℓ) = 〈uℓ〉 is shown as the vertical dashed line. The dashed-
dotted line corresponds to the distribution of uℓ−ν with ν = 0.01
Euros. This curve has been shifted upwards for clarity.
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Fig. 3.16: Average diffusion constant D = D(ℓ)/ℓ, computed for ℓ = 128,
and conditioned to a certain value of R2(ℓ), also computed for
ℓ = 128 (FT). The open symbols correspond to 2002, whereas
the black symbols are computed using the first semester of 2001,
where the tick size was 5 times larger. Correspondingly, the x-
axis was rescaled down by a factor 25 and the y-axis by a factor
five for this data set.

compute the average local diffusion constant D(ℓ) over a given time scale, say
ℓ = 128, and the average local price response R(ℓ) over the same time scale.
Rosenow, on the other hand, computes a ‘susceptibility’ as the slope of the
average price change over a given time interval versus the volume imbalance
during the same time interval (see (Plerou et al., 2002)), and relates this
susceptibility to the diffusion constant. The analogue of Rosenow’s result
(Rosenow, 2002) (which was motivated by a Langevin equation for price
variations – see (Bouchaud & Cont, 1998)), is a linear relation between R2(ℓ)
and D(ℓ), which we illustrate in Fig. 3.17 for FT, for two different periods
(first semester of 2001, and 2002). A similar result can also be read from Fig.
3.12. As will be clear in the following, such a relation will appear naturally
within the simple model that we introduce in Section 3.

Long term correlation of trade signs

Here is our main empirical result. Although, as mentioned above, the statis-
tics of price changes reveals very little temporal correlations, the correlation
function of the sign εn of the trades, on the other hand, reveals very slowly
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decaying correlations as a function of trade time. This correlation has been
mentioned in some papers before, see e.g. (Hasbrouck, 1991; Hopman, 2002).
Here, we propose that these correlations decay as a power-law of the time
lag, at least up to ℓ ≈ 15000 (two trading days) beyond which we do not
have sufficiently accurate data.

More precisely, one can consider the following correlation function:

C0(ℓ) = 〈εn+ℓεn〉 − 〈εn〉2 (3.27)

If trades were random, one should observe that C0(ℓ) decays to zero beyond
a few trades. Surprisingly, this is not what happens: on the contrary, C0(ℓ)
is strong and decays very slowly toward zero, as an inverse power-law of ℓ
(see Fig. 9):

C0(ℓ) ≃
C0

ℓγ
, (ℓ ≥ 1). (3.28)

The value of γ seems to be somewhat stock dependent. For example, for
FT, one finds γ ≈ 1/5, whereas for Total γ ≈ 2/3. In their study, Lillo
and Farmer found a somewhat larger value of γ ≈ 0.39 for Vodafone (Lillo
& Farmer, 2003). In any case, the value of γ is found to be smaller than
one, which is very important because the integral of C0(ℓ) is then divergent.
This is in fact the precise definition of ‘long-term’ correlations. Now, as
will be shown more precisely in the next section, the integral of C0(ℓ) can
intuitively be thought of as the effective number Ne of correlated successive
trades. Hence, out of – say – 1000 trades, one should group together

Ne ≃ 1 +
1000
∑

ℓ=1

C0(ℓ) ≈ 1 +
C0

1 − γ
10001−γ (3.29)

‘coherent’ trades. For FT, γ ≈ 1/5 and C0 ≈ 0.2, which means that the
effect of one trade should be amplified, through the correlations, by a factor
Ne ≈ 50 ! In other words, both the response function R and the diffusion
constant should increase by a factor 50 between ℓ = 1 and ℓ = 1000, in stark
contrast with the observed empirical data. This is the main puzzle that one
should try to elucidate: how can one reconcile the strong, slowly decaying
correlations in the sign of the trades with the nearly diffusive nature of the
price fluctuations, and the nearly structureless response function?

Before presenting a mathematical transcription of the above question and
proposing a possible resolution, let us comment on two related correlation
functions that will naturally appear in the following, namely:

C1(ℓ) = 〈εn+ℓ εn ln Vn〉, (3.30)
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Fig. 3.17: Volume weighted sign autocorrelation functions as a function of
time lag: C0, C1, C2 (see text for definitions). The straight line
corresponds to ℓ−γ with γ = 1/5. The dotted lines correspond
to the simple approximation given by Eqs. (3.32). Using data
across different days allows one to extent the power-law dacay at
least up to 15000 trades.

and
C2(ℓ) = 〈εn+ℓ ln Vn+ℓ εn ln Vn〉. (3.31)

We have found empirically that these two ‘mixed’ correlation functions are
proportional to C0(ℓ) (see Fig 8):

C1(ℓ) ≈ 〈ln V 〉C0(ℓ); C2(ℓ) ≈ 〈ln V 〉2C0(ℓ). (3.32)

There are however small systematic deviations, which indicate that (i) small
volumes contribute more to the long range correlations that larger volumes
and (ii) ln V −〈ln V 〉 is a quantity exhibiting long range correlations as well.

3.3.2 A micro-model of price fluctuations

Set up of the model

In order to understand the above results, we will postulate the following trade
superposition model, where the price at time n is written as a sum over all
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past trades, of the impact of one given trade propagated up to time n: 3

pn =
∑

n′<n

G0(n − n′) εn′ ln Vn′ +
∑

n′<n

ηn′ + ǫn, (3.33)

where G0(.) is the ‘bare’ impact function (or propagator) of a single trade,
that we assume to be a fixed, non random function that only depends on
time differences (which is a rather strong assumption, see (Lillo & Farmer,
2003)). The ηn are also random variables, assumed to be independent from
the εn and model all sources of price changes not described by the direct
impact of the trades: the bid-ask can change as the result of some news, or
of some order flow, in the absence of any trades. We will in the following
assume that the ηn are also uncorrelated in time, although this assumption
can easily be relaxed. Finally, the ǫn are independent (zero mean) random
variables that can be seen as a high frequency noise on the position of the bid
and of the ask, inducing some noise on the determination of the midpoint.

The bare impact function G0(ℓ) represents by definition the average im-
pact of a single trade after ℓ trades. It could be in principle measured em-
pirically by launching on the market a sequence of real trades of totally
random signs, and averaging the impact over this sample of trades (a po-
tentially costly experiment!).4 As will be clear below, the difference between
the quantity R(ℓ) introduced in the previous Section and G0(ℓ) in fact comes
from the strong autocorrelation of the sign of the trades. In order to under-
stand the temporal structure of G0(ℓ), note that a single trade first impacts
the midpoint by changing the bid (or the ask). But then the subsequent
limit order flow due to that particular trade might either center on average
around the new midpoint (in which case G0(ℓ) would be constant), or, as
we will argue below, tend to mean revert toward the previous midpoint (in
which case G0(ℓ) decays with ℓ).

Using this representation, the price increment between an arbitrarily cho-
sen initial time 0 and time ℓ is:

pℓ − p0 =
∑

0≤n<ℓ

G0(ℓ − n)εn ln Vn +
∑

n<0

[G0(ℓ − n) − G0(−n)] εn lnVn

+
∑

0≤n<ℓ

ηn + ǫℓ − ǫ0. (3.34)

If the signs εn were independent random variables, both the response function
and the diffusion would be very easy to compute. For example, one would

3 A similar model, but linear in Vn and truncated beyond only a few trades in the past,
was discussed in (Hasbrouck, 1991).

4 However, such an experimental protocol might induce ‘copy-cat’ trades and still lead
to a difference between the measured response function and G0
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have:5

Rt(ℓ) = 〈ln V 〉G0(ℓ), (3.35)

i.e. the observed impact function and the bare response function would be
proportional. Similarly, one would have:

Dt(ℓ) = 〈ln2 V 〉




∑

0<n≤ℓ

G2
0(n) +

∑

n>0

[G0(ℓ + n) − G0(n)]2


+ Dηℓ + 2D0,

(3.36)
where Dη is the variance of the η’s and D0 is the variance of the ǫ’s. In the
simplest case of a constant bare impact function, G0(ℓ) = Γ0 for all ℓ > 0,
one then finds (for D0 = 0) a pure diffusive behavior, as expected:

Dt(ℓ) = ℓ
[

〈ln2 V 〉Γ2
0 + Dη

]

. (3.37)

This case (no correlations between the ε’s and a constant bare impact func-
tion) corresponds to the simplest possible zero intelligence market, where
agents are memoryless. However, we have seen that in fact the ε’s have long
range correlations. In this case, the average response function reads:

Rt(ℓ) = 〈lnV 〉G0(ℓ) +
∑

0<n<ℓ

G0(ℓ − n)C1(n) +
∑

n>0

[G0(ℓ + n) − G0(n)] C1(n).

(3.38)
Note in passing that our trade superposition model, Eq. (3.33), together with
Eq. (3.32) leads to the factorization property mentioned above (see Fig. 5):

Rt(ℓ, V ) =
ln V

〈lnV 〉Rt(ℓ). (3.39)

Now, one sees more formally the paradox discussed in the previous Section:
assuming that the impact of each trade is permanent, i.e. G0(ℓ) = Γ0, leads
to:

Rt(ℓ) = Γ0



〈ln V 〉 +
∑

0<n<ℓ

C1(n)



 . (3.40)

If C1(n) decays as a power-law with an exponent γ < 1, then the average
impact R(ℓ) should grow like ℓ1−γ, and therefore be amplified by a very large
factor as ℓ increases, at variance with empirical data. The only way out of
this conundrum is (within the proposed model) that the bare impact function
G0(ℓ) itself should decay with time, in such a way to offset the amplification
effect due to the trade correlations.

5 In the following, we will use the subscript ‘t’ to denote the theoretical expressions for
the response function or diffusion.



3. Microstructure 76

A relation between the bare propagator and the sign correlation

function

In order to get some guidance, let us now look at the general formula for the
diffusion. After a few lines of calculations, one finds:

Dt(ℓ) = 〈ln2 V 〉




∑

0≤n<ℓ

G2
0(ℓ − n) +

∑

n>0

[G0(ℓ + n) − G0(n)]2


 (3.41)

+ 2∆(ℓ) + Dηℓ + 2D0, (3.42)

where ∆(ℓ) is the correlation induced contribution:

∆(ℓ) =
∑

0≤n<n′<ℓ

G0(ℓ − n)G0(ℓ − n′)C2(n
′ − n) (3.43)

+
∑

0<n<n′

[G0(ℓ + n) − G0(n)] [G0(ℓ + n′) − G0(n
′)] C2(n

′ − n)

+
∑

0≤n<ℓ

∑

n′>0

G0(ℓ − n) [G0(ℓ + n′) − G0(n
′)] C2(n

′ + n). (3.44)

The constraint from empirical data is that this expression must be ap-
proximately linear in ℓ. As shown in the section 3.3.3, the requirement that
Dt(ℓ) is strictly linear in ℓ for all ℓ in fact allows one to express G0(ℓ) as a
function of C2(ℓ). Here, we present a simple asymptotic argument. If we make
the ansatz that the bare impact function G0(ℓ) also decays as a power-law:

G0(ℓ) =
Γ0ℓ

β
0

(ℓ0 + ℓ)β
(ℓ ≥ 1) (3.45)

then one can estimate Dt(ℓ) in the large ℓ limit. When γ < 1, one again finds
that the correlation induced term ∆(ℓ) is dominant, and all three terms
scale a ℓ2−2β−γ , provided β < 1. In other words, the Hurst exponent of
price changes is given by 2H = 2 − 2β − γ. Therefore, the condition that
the fluctuations are diffusive at long times (H = 1/2) imposes a relation
between the decay of the sign autocorrelation γ and the decay of the bare
impact function β that reads:

2β + γ = 1 −→ βc =
1 − γ

2
(3.46)

For β > βc, the price is sub-diffusive (H < 1/2), which means that price
changes show anti-persistence; while for β < βc, the price is super-diffusive
(H > 1/2), i.e. price changes are persistent. For FT, γ ≈ 1/5 and therefore
βc ≈ 2/5.
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As shown in the section 3.3.3 , one can in fact obtain an exact relation
between G0(ℓ) and C2(ℓ) if one assumes that price changes are strictly uncor-
related (i.e. that D(ℓ) is linear in ℓ for all ℓ). The asymptotic analysis of this
relation leads, not surprisingly, to the same exponent relation βc = (1 − γ)/2
as above.

At this stage, there seems still to be a contradiction with empirical data,
for if one goes back to the response function given by Eq. (3.38), one finds
that whenever β +γ < 1 (which is indeed the case for β = βc and γ < 1), the
dominant contribution to Rt(ℓ) should behave as ℓ1−β−γ and thus grow with
ℓ. For example, for γ ≈ 1/5 and β ≈ 2/5, one should find that Rt(ℓ) ∝ ℓ2/5,
which is incompatible with the empirical data of Figs. 3.12 and 3.13. But
the surprise comes from the numerical prefactor of this power law. One finds,
for large ℓ:

Rt(ℓ) ≃ 〈ln V 〉Γ0C0
Γ(1 − γ)

Γ(β)Γ(2 − β − γ)

[

π

sin πβ
− π

sin π(1 − β − γ)

]

ℓ1−β−γ .

(3.47)
Therefore, only when β = βc, is the prefactor exactly zero, and leads to the
possibility of a nearly constant impact function! For faster decaying impact
functions (larger β’s), this prefactor is negative, whereas for more slowly
decaying impact functions this prefactor is positive.6 Interestingly, even if
the bare response function G0(ℓ) is positive for all ℓ, the average response
Rt(ℓ) can become negative for large enough β’s, as a consequence of the
correlations between trades.

Fitting the average response function

Since the dominant term is zero for the ‘critical’ case β = βc, and since we
are interested in the whole function Rt(ℓ) (including the small ℓ regime), we
have computed Rt(ℓ) numerically, by performing the discrete sum Eq. (3.38)
exactly, and fitted it to the empirical response R. The results are shown in
Fig. 3.18. We have fixed the parameters γ and C0 to the values extracted
from the behavior of C1(ℓ) (see Fig. 8): γ = 0.24 and C0 = 0.20. The overall
scaling parameter Γ0 is adjusted to match the value of R(ℓ = 1).7 The
values of β and ℓ0 are fitting parameters: we show in Fig. 3.18 the response
function computed for different values of β in the vicinity of βc = 0.38, and
used ℓ0 = 20.

6 Note that although this prefactor increases (in absolute value) with β for β > βc, the
power of ℓ decreases, which means that for large ℓ the amplitude of Rt(ℓ) decreases with
β, as intuitively expected.

7 The numerical value of Γ0 is found to be such that: Γ0ℓ
β
0

= 2.8 10−3 Euros.
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Fig. 3.18: Theoretical impact function Rt(ℓ), from Eq. (3.38), and for dif-
ferent values of β close to βc = 0.38. The shape of the empir-
ical response function can be quite accurately reproduced using
β = 0.42. The only remaining free parameter is ℓ0 = 20. The
thick plain line is Rt(ℓ) computed using the ‘pure diffusion’ prop-
agator G∗

0 determined in the section 3.3.3, Eq. (3.54).

The results are compared with the empirical data for FT, showing that
one can indeed satisfactorily reproduce, when β ≈ βc, a weakly increasing
impact function that reaches a maximum and then decays. One also sees,
from Fig. 3.18, that the relation between β and γ must be quite accurately
satisfied, otherwise the response function shows a distinct upward trend (for
β < βc) or a downward trend (β > βc).

8 We have tried other simple forms
for G0(ℓ), such as a simple exponential decay toward a possibly non zero
asymptotic value, but this leads to unacceptable shapes for R(ℓ). Of course,
a more precise fit of the initial increase of R(ℓ) seen in Fig. 3.18 could be
achieved by choosing a more complicated function G0(ℓ), that first increases
slightly before decaying to zero.

It is also interesting to use the propagator G∗
0 determined in the section

3.3.3 from the assumption of a purely diffusive price process for all ℓ’s. This
propagator is plotted in Fig. 3.19, and compared to the G0 determined above
from the fit of R(ℓ). As shown in Fig. 3.18, the use of G∗

0 does not lead to
a very good fit of R(ℓ). Since the latter quantity is in fact very sensitive
to the chosen shape for G0, it does reveal small, but systematic deviations

8 The former scenario might actually explain the different behavior of Pechiney seen in
Fig.3.13.
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Fig. 3.19: Shape of the bare propagator G0, determined either by the fit
of R, with β = 0.42 and ℓ0 = 20, or using the exact relation,
Eq. (3.54), derived in the subsection 4 from the assumption of a
purely diffusive process.

from a purely diffusive price process. [Note that if one had C2(ℓ) = C1(ℓ), the
resulting R(ℓ) should be strictly constant.]

Back to the diffusion constant

As we showed above, the reason for the fine tuning of β is the requirement
that price changes are almost diffusive. We can therefore also compute Dt(ℓ)
for all values of ℓ using the very same values of γ, β, C0, ℓ0 and Γ0. Now, in
order to fit the data one has two extra free parameters: Dη and D0 (see Eq.
(3.41)). With these two extra parameters, one can reproduce the empirical
determination of D(ℓ)/ℓ (see Fig. 3.20). The small deviations of this quantity
from a horizontal line at finite ℓ are due to the difference between G0 and
G∗

0 and/or to the possible autocorrelations between the ηn variables, which
we have neglected here. Note that the contribution of the term Dη turns out
to be a factor two larger than that of the impact contribution, Eq. (3.41),
which means that the small increase of the ‘impact contribution’ with ℓ (lower
graph of Fig. 3.19) is hardly detectable in D(ℓ)/ℓ.

Coming back to the Fluctuation-Response relation discussed in section
3.3.1, we see that our model predicts, for ℓ ≫ 1 where the effect of D0 can
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Fig. 3.20: Diffusion constant D(ℓ)/ℓ, using Eq. (3.41), with the values of γ,
β, C0, ℓ0 and Γ0 determined from R(ℓ). Two extra parameters
were used: Dη = 10−4 and D0 = 3.3 10−5 (both in Euro squared).
The lower graph is the ‘impact contribution’ to Dt(ℓ), given by
Eq. (3.41) with Dη = 0. The ‘oscillations’ at long times is a
numerical artefact.

be neglected:

Dt(ℓ)

ℓ
= Z〈ln V 〉2C0Γ

2
0 + Dη, Rt(ℓ) = Z ′〈lnV 〉Γ0C0, (3.48)

where Z, Z ′ are numerical constants. Assuming that from one day to the next
both the average (log-)traded volume and the impact Γ0 of each individual
trade might change, while C0 is fixed, immediately leads to the affine relation
between D and R2 reported in section 3.3.1.

Discussion

The conclusion of this Section is that our ‘micro-model’ of prices, Eq. (3.33),
can be used as a theoretical canvas to rationalize and interpret the empirical
results found in the previous Section. Most surprising is the constraint that
the empirical results impose on the shape of the ‘bare’ response function G0,
which is found to be a slowly decaying power law which must precisely cancel
the slowly decaying autocorrelation of the trades, but reveals systematic
deviations from a pure diffusion process, hardly noticeable on the diffusion
constant itself. The fact that the bare impact function decays with time
(at least on intra-day time scales), in a finely tuned way to compensate
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Fig. 3.21: Scatter plot of the exponents β, γ extracted from the fit of G0

and C. These exponents are seen to lie in the vicinity of the
critical line β = (1 − γ)/2 (dotted line), as expected from the
nearly diffusive behavior of prices.

the long memory in the trades, is the central result of this section. This
effect is lost in the zero intelligence models of Poisonnian order flows, where,
after decreasing during a short transient, the impact of each trade becomes
permanent: G0(ℓ) → G∞ > 0. In fact, both the long time memory of the
trades and the slowly relaxing impact function reported here must be the
consequence of the strategic behavior of market participants, that we discuss
below in order to get an intuitive understanding of the mechanisms at play.

Although our detailed analysis concerns FT, it is clear that our conclu-
sions are more general, since both the strong autocorrelations in the trade
signs, the near constancy of the average response function and the diffusive
nature of price changes have been observed on all stocks, with only quanti-
tative changes (see Figs. 3.11 and 3.13). Fig.(3.21), taken from (Bouchaud,
Kockelkoren & Potters, 2004), shows the fitting of the exponent γ and β
for other stocks: Credit Agricole, Danone, Carrefour, Alcatel, Bouygues,
Vivendi, Total, France-Telecom, Societe Generale, LVMH, Vivendi Env.

Finally, it would be very interesting to know whether the bare response
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function levels off to a finite value for large time lags; this will require more
data to go beyond the analysis of the present section to enlarge the available
range of ℓ values. However, it seems reasonable to expect that G0(ℓ) should
indeed reach a finite asymptotic value for values of ℓ corresponding to a few
days of trading.9

3.3.3 Critical balance of opposite forces: Market

orders vs. limit orders

Stylized Market

Although trading occurs for a large variety of reasons, it is useful to recognize
that traders organize in two broad categories:

• One is that of ‘liquidity takers’, that trigger trades by putting in mar-
ket orders. The motivation for this category of traders might be to
take advantage of some ‘information’, and make a profit from correctly
anticipating future price changes. Information can in fact be of very
different nature: fundamental (firm based), macro-economical, polit-
ical, statistical (based on regularities of price patterns), etc. Since
market orders allows one to be immediately executed, many impatient
investors, who want to liquidate their position, or hedge, etc. might
be tempted to place market orders, even at the expense of the bid-ask
spread S(t) = a(t) − b(t). Note that this definition is not strict, as
agents willing to use private informations may also use limit orders.

• The other category is that of ‘liquidity providers’ (or ‘market mak-
ers’, although on electronic markets all participants can act as liquidity
providers by putting in limit orders), who offer to buy or to sell but
avoid taking any bare position on the market. Their profit comes from
the bid-ask spread S: the sell price is always slightly larger than the
buy price, so that each round turn operation leads to a profit equal
to the spread S, at least if the midpoint has not changed in the mean
time.

Long-memory in the market order flow

In order not to trigger a sudden increase of the ask a (or bid b) that would
make their trade costly, liquidity takers obviously need to put on not too

9 Hopman quotes three days as the time beyond which the autocorrelation of the trades
sign falls to zero (Hopman, 2002), whereas we find that the power-law decay of this
correlation persists up to at least two days of trading.
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large orders. This is the rationale for dividing one’s order in small chunks
and disperse these as much as possible over time so as not to appear on the
‘radar screens’. Doing so liquidity takers necessarily create some temporal
correlations in the sign of the trades. Since these traders probably have a
somewhat broad spectrum of volumes to trade (Gabaix et al., 2003), and
therefore of trading horizons (from a few minutes to several weeks), this
can explain the slow, power-law decay of the sign correlation function C0(ℓ)
reported above.

Antagonist Forces

Our hypothesis is the following: when a chunk of market orders of same sign
appears in the market order flow, limit orders of opposite sign are emitted.
This effect reduces the impact of the correlated market orders. Formally, this
leads to a decaying bare function, whose decay corresponds to the impact of
the limit orders emitted in response to each market order. This description
is supported by recent empirical data. In (Bouchaud, Kockelkoren, Potters,
2004) it is observed that the impacts of limits orders are anti-correlated
with the market orders signs. Weber et al. (Weber, Rosenow, 2004) show
empirically that the future limit order flow is anti-correlated with the price
change: if the price goes up, more limit orders to sell are emitted. Their data
is shown in Fig.(3.22).

This antagonist force may have several causes. Fig.(3.22) suggests the
presence of a “latent” order-book: only after the price starts going up, some
agents who were willing to sell emit limit orders. Acting this way they place
limit orders little by little, and avoid the risk and the costs associated with
large limit orders.

Such resting force may also be induced by the presence of market makers
(Bouchaud, Gefen, Potters, Wyart, 2003), who have, by definition, a con-
trarian role. As we shall see in the next section, their gains diminish with
volatility, and with the presence of trends in the price dynamics. Therefore
they may be also be responsible for the opposition between market orders
and limit order flows.

A striking aspect of these two antagonist forces is that they exactly com-
pensate. This is true at the level of the exponents: the exponent of the
bare impact is such that the price dynamics is diffusive (H = 1/2). More

surprisingly, the compensation occurs also at the coefficients level, as D(ℓ)
ℓ

is
extremely flat, see Fig.(3.10). This is a necessary condition imposed by the
absence of obvious statistical arbitrages: if the price was not perfectly diffu-
sive, information would be contained in the past price dynamics, that could
be used. In the following paragraph, inspired by a remark of Xavier Gabaix,
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Fig. 3.22: Correlation functions between return (relative price change) and
signed flow (buy minus sell orders). (a) Market orders and
returns show strong positive equal time correlations decaying
slowly to zero. (b) Limit orders preceding returns have weak
positive correlations with them, while equal time correlations are
strongly negative.
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we show how such an arbitrage could take place. Imposing that all past in-
formation of the market order flow is implemented by the liquidity providers
in the price leads to a perfectly diffusive behavior, and to the appearance of
a bare impact function purely transient (if the correlation of market orders
has no cut-off) with the correct exponent.

Model of perfect diffusion

Since the market order flow is correlated, each market order can be decom-
posed in two parts: a predictable part, that can be anticipated from the
past market orders, and an unpredictable part, which represents the “new”
information contained in the order flow. Here we show that if the liquidity
providers change the price only according to the unpredictable part of the
market order, then the price is perfectly diffusive at all times (rather than
only asymptotically). This leads to an expression between the response to a
single trade, the bare propagator G0, and the sign correlation function C2(ℓ).
In order to show this, let us assume that the random variable qn ≡ εn ln Vn

can be written as:
qn =

∑

m≤n

K(n − m)ξm, (3.49)

where ξn are uncorrelated random variables (〈ξnξm〉 = 〈ln2 V 〉δn,m), and K(.)
a certain kernel. In order for the qn to have the required correlations, the
kernel K(.) should obey the following equation:

C2(n) = 〈ln2 V 〉
∑

m≥0

K(m + n)K(m). (3.50)

In the case where C2 decays as ℓ−γ with 0 < γ < 1, it is easy to show that the
asymptotic decay of K(n) should also be a power-law n−δ with 2δ − 1 = γ.
Note that 1/2 < δ < 1.

Inverting Eq. (3.49) allows one to obtain a set of uncorrelated random
variables ξn from a set of correlated variables qn:

ξn =
∑

m≤n

Q(n − m)qm, (3.51)

where Q is the matrix inverse of K, such that
∑n

m=0 K(n−m)Q(m) = δm,n.
Eqs. (3.49,3.51) in fact form the basis of linear filter theories, and ξn can be
seen as the prediction error on the next variable qn. ξn is the new information
of the last market order, which cannot be deduced from the past.

Introducing discrete Laplace transforms:

̂K(E) =
∑

n≥0

K(n)e−nE
̂Q(E) =

∑

n≥0

Q(n)e−nE , (3.52)
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one finds ̂K(E) ̂Q(E) = 1. For a power-law kernel K(.), one obtains: ̂Q(E) ∝
E1−δ for E → 0, and therefore Q(n) ∝ nδ−2 for large n. It is useful to note
that in this case ̂Q(E = 0) =

∑

n≥0 Q(n) = 0.
Now, it is clear that if agents only react to new informations, which is

equivalent to define the price process pn as:

pn =
∑

m<n

ξm, (3.53)

then pn is a diffusion process with a strictly linear D(ℓ), since the ξ’s are by
construction uncorrelated. The price defined in this way can also be written,
using Eq. (3.51), as a linear combination of past qm’s, as assumed in our
micro-model Eq. (3.33), with:

G∗
0(ℓ) ≡

ℓ−1
∑

m=0

Q(m). (3.54)

This is an exact relation between C2 (that allows one to compute in turn K
and Q) and the response function G∗

0 for all ℓ’s, where the star indicates that
strict diffusion is imposed.

In the case of power-law kernels, one finds from the above relation and
from Q(n) ∝ nδ−2 for large n:

G∗
0(ℓ) ∝ ℓδ−1 −→ β = 1 − δ =

1 − γ

2
, (3.55)

which is, not surprisingly, the relation obtained in the main text from the
assumption that prices are diffusive on long time scales.

3.3.4 Summary and Conclusion

The aim of this section was to study in details the statistics of price changes
at the trade by trade level, and to analyze the interplay between the impact
of each trade on the price and the volatility. Empirical data shows that (a)
the price (midpoint) process is close to being purely diffusive, even at the
trade by trade scale (b) the temporal structure of the impact function first
increases and reaches a maximum after 100− 1000 trades, before decreasing
back, with a rather limited overall variation (typically a factor 2) and (c)
the sign of the trades shows surprisingly long range (power-law) correlations,
at least up to 15000 trades (two trading days). The paradox is that if the
impact of each trade was permanent, the price process should be strongly
super-diffusive and the average response function should increase by a large
factor as a function of the time-lag.
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As a possible resolution of this paradox, we have proposed a micro-model
of prices, Eq. (3.33) where the price at any instant is the causal result of all
past trades, mediated by what we called a bare impact function, or propa-
gator G0, which describes the response to a single trade. All the empirical
results can be reconciled if one assumes that this bare propagator also de-
cays as a power-law in time, with an exponent which is precisely tuned to
a critical value, ensuring simultaneously that prices are diffusive on long
time scales and that the response function is nearly constant. Therefore,
the seemingly trivial random walk behavior of price changes in fact results
from a fined-tuned competition between two opposite effects, one leading to
super-diffusion (the autocorrelation of trades) and the other leading to sub-
diffusion (the decay of the bare impact function, induced by the emission
of contrarian limit orders). The cancellation is however not exact: the non
trivial behavior of the average response function allows one to detect small,
but systematic deviations from a purely diffusive behavior, deviations that
are hardly detectable on the price fluctuations themselves.

Then, we furnished an example of agents behavior that leads to a perfectly
diffusive price. This takes place if the liquidity providers only change the
price with respect to the unpredictable information contained in the market
order flow. In this model too, the response to a single isolated trade, or bare
propagator, decays in time. Such response is purely transient if the power
law correlation of the market order signs does not display a cut-off at large
times.

In what follows we shall use in particular Eq.(3.48), which indicates that
despite markets order signs are correlated, a relation exists between the av-
erage square impact function and volatility.

3.4 Liquidity vs Volatility

The results presented in this section are preliminary 10. Our main result is to
show that if the average gain of limit orders and market orders are equal (and
therefore zero)— as we expect in an electronic market where each agent can
emit both types of order— then the spread is related to the average impact
function. This relation has no fitting parameter, and is, as we shall see, in
good agreement with empirical data. Furthermore, this relation does not
rely on any extra assumptions on the agents behavior. In particular we do
not need to assume any risk aversion from agents, nor a fraction of informed
trades.

10 We thank Julien Kockelkoren with whom this work is being done.



3. Microstructure 88

Then, using that the impact function is related to the volatility, as derived
in Eq.(3.48), we relate volatility and spread. Using simple assumptions we
show that this leads to the observed linear relation between volatility per
trade and spread.

3.4.1 Market Making

In this section, we show that for a market making strategy to be profitable,
there must be a relation between the spread and the response to market
orders:

〈SV 〉V ≥ 2〈V R(V )〉V (3.56)

where the average 〈〉V is made on the distribution of the trading volume. The
term 〈SV 〉V is not a priori equal to 〈S〉V 〈V 〉V since the market order size can
be correlated with S. In a competitive environment, this relation must be an
equality. If so, the costs associated with a limit order and a market order are
equal. We expect that it is the case for a continuous double-auctions where
any agent can emit both types of orders. This relation is valid even when
the market order signs are correlated. It applies only for stocks where the
spread is somewhat larger than the tick size.

We consider a market maker with a time horizon T (where T is in transac-
tion time unit) who provides an infinitesimal fraction γ of the total available
liquidity. The market maker puts limit orders both at the bid and at the ask.
We assume that he participates to a fraction γ of every transaction volume
11. His gains come from the spread. On the other hand, a market maker must
have a balanced inventory at the end of some time horizon T . As we show
now, this has a cost. We impose that at time T , the market maker must sell
(or buy if he is short) the volume V that he has obtained during the trading
period [0, T ], with V = −γ

∑T
i=1 ǫiVi, where Vi is the absolute value of the ith

market order. As γ is small, V is small too, and we may neglect the market
maker impact, who trades back the volume V at the current price PT . This
is costly in general, because ∆PT is anti-correlated with V . For example if
the majority of the market orders were to buy, ∆PT > 0 and V < 0. As we
shall see balancing this cost with the gain leads to Eq.(3.56).

When a market order of absolute size Vi is emitted at a time i, the mid-
point price change at time i + l is the random variable (Pi+l − Pi). On
average 〈ǫi(Pl+i − Pi)〉|Vi

≡ R(l, Vi). If ǫi is the sign of the market order,

the transaction price is Pi + ǫi
S
2
, where Pi is the mid-point price just before

11 Assuming that he participates alone to a fraction γ of the trades number lead to the
same conclusions.
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the market order Vi is emitted. The gain G of the market maker can thus be
written:

G = γ
T
∑

i=1

ǫiVi(Pi + ǫi
Si

2
) − γ(

T
∑

i=1

ǫiVi)PT (3.57)

= γ
1

2

T
∑

i=1

ViSi − γ
T
∑

i=1

ǫiVi(PT − Pi) (3.58)

Using that 〈ǫi(Pℓ+i − Pi)〉|Vi
≡ R(ℓ, Vi), one obtains after averaging:

〈G〉
γ

=
1

2
〈V S〉V T −

T
∑

i=1

ViR(T − i, Vi) (3.59)

We introduce the notation
∑T

i=1〈R(T − i, Vi)〉V ≡ TRT . If the average
impact function R(ℓ, V ) did not vary with the trading time ℓ, we would
obtain that 〈V RT (V )〉V = 〈V R(V )〉V . Then Eq.(3.59) becomes:

〈G〉
γ

=
1

2
〈V S〉V T − T 〈V R(V )〉V (3.60)

Imposing that the gain is positive leads to Eq.(3.56).
As we showed empirically 〈R(ℓ, V )〉V ≡ R(ℓ) is in fact not constant. It

varies non-monotonically with time: it starts at a finite value R(ℓ = 1), grows
roughly by a factor 2, and then decays again, see for example Figs.3.12 and
3.13. Thus the market maker average gains a priori depend on his horizon
T , and Eq.(3.56) must be written using RT instead of R. In what follows
we aim to test Eq.(3.56) using empirical data. In order to do this, we define
λ(T ) = RT /R(ℓ = 1). Since empirically R(1) < R(ℓ) < 2R(1) for all ℓ, one
has 1 < λ(T ) < 2. Thus we predict that:

〈SV 〉V ≥ 2λ(T )〈V R(ℓ = 1, V )〉V with 1 < λ(T ) < 2 (3.61)

To test Eq.(3.61), we average 〈SV 〉V /〈V 〉V and 〈R(ℓ = 1, V )V 〉V /〈V 〉V
every 10000 trades (2 days) for France Telecom 2002. Doing so we obtain
quantities which vary by a factor 5. This allows us to test the linear de-
pendence of Eq.(3.61). Our result shown in Fig.3.23 is in good agreement
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Fig. 3.23: 〈SV 〉V /〈V 〉V vs 〈RV 〉V /〈V 〉V for France Telecom in 2002. Each
dot corresponds to a pair (〈SV 〉V /〈V 〉V , 〈RV 〉V /〈V 〉V ) com-
puted by averaging on 10000 trades. S and R are in relative
value. The line is a fit and leads to y = 0.00022 + 2.38x. The
tick size is, in this unit, 0.0006.
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with the theoretical prediction. We find a clear linear dependence, and a
slope 2.38 corresponding to γ = 1.19. The fit has a finite value at the origin,
as expected since the spread cannot be smaller than the tick size, equal to
0.0006 in this unit.

We also test Eq.(3.61) using 60 different stocks of Paris Bourse with
different capitalization. The relative values of the spread and the average
impact can vary by a factor 5 between the different stocks, which enables
to test the linear relation (3.61). Once again we find a good agreement
with the predicted linear dependence, as shown in Fig.3.24. The fit leads to
y = 3.08x − 0.0002. This corresponds to γ = 1.5.
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Fig. 3.24: 〈SV 〉V /〈V 〉V vs 〈RV 〉V /〈V 〉V for 60 stocks of Paris Bourse
in 2002. Each dot corresponds to a pair (〈SV 〉V /〈V 〉V ,
〈RV 〉V /〈V 〉V ) computed for one stock over the year by aver-
aging. S and R are in relative value. The line is a fit and leads
to y = 3.08x − 0.0002.

A simplified version of Eq.(3.56) can be recovered with a “local” argu-
ment which does not involve any time-horizon. We consider another market
making strategy where limit orders are deposited alternatively. At the begin-
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ning there are deposited at the ask only, until a market order to buy comes.
Then limit orders are deposited only at the bid. More generally, each time
limit orders from the market maker are traded, limit orders are put only on
the other side of the order-book. With this strategy there are no inventory
problems. Assuming for simplicity that all volumes have the same size, and
that there are no sign correlations in the market orders, it is simple to com-
pute the gain of this strategy. There is a probability 1/2 that a sell market
order follows a buy market order (ǫ1, ǫ2) = (+,−) , in which case the gain is
S −R (in this simple model R does not display time dependence). With a
probability 1/4, we have (+,+,-) and the gain is S − 2R. Generalizing we
have:

〈G〉 =
∑

n≥1

(S − nR){1

2
}n = S − 2R (3.62)

which corresponds to Eq.(3.56) when fluctuations of volume are absent. In
economical terms, the equality corresponding to Eq.(3.62) has a very simple
meaning: it indicates that on average, the new price PF = Pi +R is the last
transaction price Pi + S/2.

3.4.2 Liquidity vs. volatility

In section 3.3, by assuming that the price dynamics was diffusive —as it is
the case—, we obtained the relation (3.48) between the diffusion constant
and the price impact function, that we may write:

D(ℓ)

ℓ
= A0〈R2(V )〉V + Dη (3.63)

where Dη corresponds to the part of the price diffusion that does not involve
market orders, and A0 is a constant that depends on the temporal correlation
of the market order flow. In what follows we aim to use Eq.(3.63) and
Eq.(3.56) to show that volatility per trade and spread are proportional, and
that this linear dependence can be observed by considering stocks of different
capitalization, or by considering the time evolution of the spread of a single
stock. In order to do so, we must also discuss how A0 and Dη can depend on
capitalization or time.

In what follows we shall assume that the diffusion induced by limit orders
Dη contributes to a fixed fraction of the total diffusion constant: Dη =
A3〈R2(V )〉V , where A3 is a constant. For FT, Dη represents of the order
of 1/2 of the total price diffusion, as it appears to be from Fig.(3.20). We
assume that it is also the case for other stocks.

A possible justification for this is the following: our empirical results
support that limit and market orders have similar costs. This suggests that
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both are used equivalently by agents, and that limit orders and market orders
impact prices in a similar way and are responsible each for roughly half of
the total volatility. Note that this assumption can be relaxed: if the fraction
of the total volatility that Dη represents differs between stocks, but does not
depend systematically of the spread nor the volatility per tick, then the term
Dη would simply add noise to our results below.

Concerning A0, we shall assume for simplicity that it does not vary be-
tween stocks. Our results hold as long as this quantity does not display sys-
tematical dependence with the spread. In the framework of a perfectly diffu-
sive price discussed at the end of the section 3.3.3, one finds that A0 ∼ K(0)2.
K(0) depends on the market order sign correlation C0(ℓ), and mostly of the
difference C0(0)−C0(1). In what follows we shall assume that this quantity
does not vary systematically with the capitalization.

For the volatility per trade σ1 ≡
√

D(1) we have, following these approx-

imations and introducing B =
√

A0 + A3:

σ1 = B〈R2(V )〉1/2 (3.64)

As we discussed in the last paragraph, in a competitive market (if ticks
are not too large) another constraint appears, which characterizes the spread:
〈V S〉V = 2〈R(V )V 〉V . It turns out to be convenient to use this expression
to write:

σ1 = S{2B 〈R2(V )〉1/2
V 〈V S〉V

〈R(V )V 〉V S
} (3.65)

This equation relates liquidity (S) and volatility. We argue below that the
term in bracket behaves as a constant for stocks with different capitalization,
or when the order-book evolves in time. In a simple model where all market
orders have the same size, the distribution of volume is a delta-function and
we find obviously the desired linear dependence between S and σ:

σ1 = 2BS (3.66)

Note that the same assumption applied to Eq.(3.56) leads to S = 2R.
Fig.3.25 shows that this assumption gives the right linear dependence, but
not the right slope. In what follows we aim to show that this statement is
also true for Eq.(3.65), and that the term into bracket is indeed constant,
and does not vary with capitalization nor time.
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Fig. 3.25: 〈S〉 vs 〈R〉 for France Telecom in 2002. Each dot corresponds
to a pair (〈S〉, 〈R〉) computed by averaging on 10000 successive
trades. 〈S〉 and 〈R〉 are in relative value. The line is a linear fit
and leads to y = −0.0003 + 6.4 ∗ x.
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In order to show this, we make the following hypothesis of “universal-
ity”: if one uses the proper re-scaling (or change of units) of the variables
that characterize different continuous double-auctions, these systems display
identical properties. As we discussed in the introduction, this universality
was supported empirically for the price impact and the average order-book
depth. In practice, we shall assume here that for all quantities that depends
on the market order volume V , such as the price impact or the size dis-
tribution of market orders, the dependence with V only appears as V/V̄ ,
where V̄ is the average market order size, which contains the dependence on
capitalization (Zumbach, 2004) and time.

Specifically, we assume that the distribution of market order size P (V )
can be written as :

P (V ) =
1

V̄
f(V/V̄ ) (3.67)

where V̄ is the characteristic size of the market orders, and f is a function
which does not depend on the stock considered, and is called a “scaling
function”. For the price impact we write:

R(V ) =
1

L
g(V/V̄ ) (3.68)

where g is a scaling function, and L = L(C, t) characterizes the liquidity of a
stock, and can depend a priori of capitalization and time. Finally we assume
that the probability P (S; V ) of finding S and V writes:

P (V ; S) = h(S/S̄; V/V̄ ) (3.69)

where S̄ is the average spread, which can vary with capitalization or time. It
is straightforward to show that this equations leads to 〈SV 〉 = A1S̄V̄ where
A1 is a numerical factor. Computing Eq.(3.65) by introducing u = V/V̄ , one
obtains:

σ1

S̄
= 2BA1

(
∫∞
0 f(u)g2(u)du)1/2

∫∞
0 f(u)ug(u)du

≡ A2 (3.70)

which shows that the ratio σ1/S̄ does not depend on λ(C) nor on V̄ , and
therefore does not depend on the market capitalization. Thus the average
spread S̄ is therefore directly proportional to the volatility per trade:

σ1 = A2S̄ (3.71)

as observed (see Fig 1.1). The two constraints that the price must be dif-
fusive, and that the gain of limit and market orders are equal, lead to this
relation between liquidity and volatility. This result shed lights on long-
standing questions of the microstructure literature. It shows that if both
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the trading activity and the volatility per unit time increase, the spread can
remain the same if the volatility per trade is constant. Conversely, if the
trading frequency ν increases, while the volatility per unit time is constant,
then the spread decreases as S ∼ ν−1/2, and the liquidity improves. This
situation occurs for example with the FTSE 100: the spread diminishes with
the different stock capitalization C because (i) the volatility per unit time
does not vary much with C and (ii) the trading frequency ν increases with
capitalization as ν ∼ C0.44 (Zumbach, 2004). According to our result this
leads to S ∼ C−0.22, in good agreement with the empirical data.

3.5 Conclusion and Perspectives

3.5.1 Summary

In this work we focused on three distinct points of market microstructure.
We studied theoretically some “zero intelligence” models where agents

behavior are mimicked by random flows of order. In particular we fur-
nished qualitative arguments to rationalize the behavior of price diffusion
and spread, that were previously computed numerically (Farmer, Patelli, et
al., 2004). We proposed a new, more realistic model. An interesting question
that comes out of this approach is the very definition of price. We showed em-
pirically that it is indeed possible to build a proxy of the price more natural
than the mid-point, which takes into account the instantaneous repartition
of offer and demand. Concerning other market properties, we ultimately ar-
gued that the zero-intelligence approach is not appropriate to describe price
formation. It completely misses the fact that forbidding simple statistical
arbitrage strategies constrains much the order-book properties.

Our second point was to show that the market displays long memory:
the correlation of the market order signs decay in time as a non-integrable
power-law, which lasts days. This implies that the price impact of one single
trade is not permanent, but rather almost completely transient, and decays
slowly in time. This is a necessary condition for the price to be diffusive.
We argued that this decay is induced by the emission of “contrarian” limit
orders. We showed how a simple liquidity providers strategy can lead to
a purely diffusive price. Such equilibrium between market orders and limit
orders is reached if liquidity providers change price proportionally to the
innovation, i.e. the unpredictable content of the last market order.

Finally, we studied how liquidity and volatility are related. Our main
result is to show that, without assuming any underlying model for the risk
aversion of agents, nor for the information content of trades , it is possible to
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relate analytically spread and average price impact. Our single assumption
is to impose that market orders and limit orders have on average an equal
gain, as it should be the case in a continuous double-auctions set-up where
both types of order can be emitted by any agent. We checked empirically this
relation, and found a good agreement with our predictions. Since volatility
and market impact are related, we obtained that volatility per tick and spread
are proportional. We furnished new data on this relation. Our work enables
to understand how liquidity, volatility and trading activity are related, a
much debated question in the microstructure literature.

3.5.2 Perspectives

Other scaling properties?

It is tempting to try to derive other relations among micro-structural prop-
erties. To discuss this possibility, we introduce the following parameters: ν is
the frequency of market orders, σ is the volatility per unit time, σ1 = σν−1/2

is the volatility per trade, Vl is the volume of limit orders in the order-book,
Vm is the volume of market orders, S is the spread and R is the price impact.
Previously we established that:

σ ≡ σ1ν
1/2 ∼ R1/2ν1/2 (3.72)

S ∼ R (3.73)

σ ∼ Sν1/2 (3.74)

Recently, Zumbach (2004) studied empirically how the different quantities
we introduced above scale with the company size, or capitalization C in the
FTSE 100. He finds, by using power law fits:

ν ∼ C0.39 (3.75)

Vm ∼ C0.44 (3.76)

Vl ∼ C0.76 (3.77)

σ ∼ C0 (3.78)

S ∼ C−0.23 (3.79)

Vmν ∼ C0.9 (3.80)

S ∼ σ0.94
1 (3.81)

Similar exponents (although with some differences, in particular for the
dependence of ν) can be observed with Paris Bourse stocks (Kockelkoren et
al., 2005). Eq.(3.78) indicates that small and large companies have similar
volatility. It is a surprising result since the fluctuation of the company growth
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decay with capitalization (Wyart & Bouchaud, 2003). Eq.(3.80) indicates
that the volume traded is roughly proportional to the capitalization. Why
it should be so is not entirely obvious. A possible justification is that a
fraction of the agents manage portfolios, and track the index. Doing so
they trade proportionally to the capitalization of each stock. If Eq.(3.80) is
accepted, Eq.(3.75) leads to (3.76). Finally, Eq.(3.79) and (3.81) are good
approximations of our results (3.72), once (3.75) and (3.78) are accepted.

Obviously a useful result to understand how price forms, and in particular
what fixes the absolute value of the spread, would be to derive Eqs.(3.75)
and (3.77). Nevertheless these relations are probably not strict constraints
stemming from the absence of simple statistical arbitrage, such as those of
Eqs.(3.72): if it were so, the order-book would be completely constrained,
and would not evolve with time. Some of these relations might also be related
to market features exogenous of the microstructure, such as the dependence
with C of the average repartition of a company between its share holders.
Finally, they could be pure conventions, in the sense of Chapter II.

Order-book dynamics

Our description above is purely static. Another curious feature of the con-
tinuous double-auctions order-books is the fact that they fluctuate a lot with
time. In what follows we document the “seasonal” evolution of the order-
book: every day, the properties of price formation, such as the parameters
discussed in the last paragraph, display regular patterns. For example, the
volatility and the traded volume of the Paris Bourse stocks are high in the
morning and the evening, and much smaller at noon. Such patterns exist,
and differ, in all markets. There existence is interesting for the following rea-
son: they furnish a way to study which constraints characterize order-books.
For example, Eqs.(3.72) must be satisfied throughout the day: if not, sta-
tistical arbitrage would be possible. Thus quantities that evolve differently
during the day are not bound to each other.

Fig.(3.26) shows the daily patterns of FT. We observe that: (i) the spread
and volatility per tick display very similar curves, as expected. These quan-
tities decrease by a factor 2 between 9 and 10 a.m, and then stay nearly
constant throughout the day. (ii) The average transaction volume Vm is
constant, whereas the volume in the order-book increases of a factor 2. This
implies that, somewhat surprisingly, these 2 quantities are not bound to each
other. This also shows that, curiously enough, the order-book depth can in-
crease, while the market order size and the spread, and therefore the price
impact, stay constant. (iii) The volatility per unit time σ strongly changes,
and is roughly 4 times larger at the market closing and opening than at
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Fig. 3.26: Daily patterns of the volatility σ, the volatility per trade σ1, the
spread S, the total volume exchanged Ve, the average transaction
volume Vm, and the characteristic volume in the order-book Vl =
Va + Vb (Va and Vb are the volume at ask and bid) vs time for
France Telecom. These quantities are computed every 5 minutes,
and the curves obtained are averaged over one year. The day
starts at 9 a.m. and ends at 5 p.m, which leads to 102 points.
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noon. (iv) the volume exchanged per unit time Vl is qualitatively similar to
the volatility: it decreases by a factor 4 in the morning and increases again
in the afternoon.

This results indicate that the seasonal fluctuations of volatility are mostly
induced by fluctuations in the trading frequency, since the volatility per
trade stays almost constant (except in the morning). Thus most of the
seasonal volatility fluctuations could be flatten by a proper rescaling of time.
Nevertheless, such a rescaling does not explain (i) the morning change of
volatility per trade or spread and (ii) the growth of the order-book depth
during the day. These two effects correspond to distinct distortions of the
order-book.

To conclude, the quantitative understanding of the order-book is in its
infancy. In particular it is yet unclear if other constraints, such as those of
between spread, volatility, and response, exist between the other quantities
that characterize price formation. The observed distortions of the order-book
rather suggest that it has several unfixed degrees of freedom. It would be
interesting to determine the class of order-book distortions which are allowed
without generating statistical arbitrage opportunities.
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Abstract9

We study Sutton’s ‘microcanonical’ model for the internal organization of 3rms, that leads to
non-trivial scaling properties for the statistics of growth rates. We show that the growth rates are11
asymptotically Gaussian in this model, whereas empirical results suggest that the kurtosis of the
distribution increases with size. We also obtain the conditional distribution of the number and13
size of sub-sectors in Sutton’s model. We formulate and solve an alternative model, based on the
assumption that the sector sizes follow a power-law distribution. We 3nd in this new model both15
anomalous scaling of the variance of growth rates and non-Gaussian asymptotic distributions.
We give some testable predictions of the two models that would di6erentiate them further. We17
also discuss why the growth rate statistics at the country level and at the company level should
be identical.19
c© 2003 Published by Elsevier Science B.V.
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1. Introduction23

The annual growth rate of a company is :uctuating both across companies and from
year to year. It is, therefore, tempting to study the statistics of this growth rate. It has25
been known for many years that the average growth rate is, to a good approximation,27

∗ Corresponding author. Service de Physique de l’Etat Condense, CEA-Saclay, Orme des Merisiers, Gif
sur Yvette Cedex 91191, France.

E-mail address: bouchaud@spec.saclay.cea.fr (J.-P. Bouchaud).

0378-4371/03/$ - see front matter c© 2003 Published by Elsevier Science B.V.
doi:10.1016/S0378-4371(03)00267-X

mailto:bouchaud@spec.saclay.cea.fr


UNCORRECTED P
ROOF

2 M. Wyart, J.-P. Bouchaud / Physica A ( ) –

PHYSA7522

ARTICLE IN PRESS

independent of the size of the company. This is known as Gibrat’s proportionality law:1
since the growth rate is the relative size increase of a company (where the size refers
to the sales, the number of employees, etc.), the fact that the average growth rate is3
independent of the size means that on average a company grows proportionally to its
size.5

A very interesting question, that was only addressed recently, concerns the :uctua-
tions of the growth rate, and the size dependence of these :uctuations. Quite remark-7
ably, Stanley et al. found that the standard deviation � of the growth rate r decreases
with the size S of the company as �(S) ∼ S−�, with � ≈ 0:15 [1,2]. This power-law9
scaling holds over six decades, and can be extended to larger sizes by considering
countries as ‘companies’ and taking the GNP as a measure of the size [3]. More11
precisely, the distribution of the rescaled growth rate v = r=�(S), with �(S) ∼ S−�,
appears to be size independent. This rescaled distribution 	(v) is furthermore found13
to be non-Gaussian. A further investigation of the empirical evidence by Sutton gives
a value of � that :uctuates in the interval [0:15; 0:21] [4].15

This remarkable result is puzzling because one could have naively expected that large
companies (or countries for that matter) would aggregate di6erent independent ‘shocks’17
that would lead, using the central limit theorem, to a S−1=2 decrease of the volatility
of its growth rate, which would furthermore be Gaussian for large S’s. This however19
assumes that a company can be thought of as a collection of K ‘sub-companies’ of
average size S0 and weakly correlated activities. In this case, K=S=S0 and if the shocks21
a6ecting each sector of activity have a 3nite second moment, the central limit theorem
applies.23

The fact that �¡ 1
2 suggests otherwise. Obviously, if all the sectors of activity of

a given company had strong cross-correlations, one would 3nd the extreme result that25
�=0. However, this is not the case: Sutton has shown some empirical data that support
the idea that the growths of di6erent sectors are to a good approximation uncorrelated27
[4]. This is what Sutton called the ‘scaling puzzle’, which lead him to propose a simple
model for the internal organization of 3rms that predicts asymptotically �= 1

4 , not very29
far from the empirical result [4]. Actually, Sutton shows that for 3nite S, his model
predicts an e6ective value of � is slightly below 1

4 .31
The aim of this note is threefold. In the 3rst part which we intend to be also of

pedagogical interest, we revisit Sutton’s model using methods from statistical physics,33
and obtain a number of complementary predictions of this model that can be compared
with empirical data, in particular the distribution of rescaled growth rate 	(v), which35
we 3nd to be asymptotically Gaussian. This must be contrasted with empirical results
that suggest that the kurtosis of the distribution (that measures the distance from the37
Gaussian) increases with size. Second, we introduce and study an alternative model
where we argue that the distribution of sizes of the sub-sectors is a power-law, and39
derive analytically the value of � and the shape of 	(v), which in some regime is
found to be strongly non-Gaussian. We then compare our results to the 3ndings of41
Stanley et al. and discuss the plausibility of our alternative model. Finally, we discuss
the interesting fact that GNP growth and company growth behave similarly. This means43
that the microeconomical and macroeconomical levels are strongly interconnected. We
show that our model is indeed stable upon aggregation.

45
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2. Sutton’s model1

We 3rst recall Sutton’s model. In the absence of more information, Sutton postulates
that all partitions of a company of size S in smaller sub-pieces are equiprobable [4].3
This is a kind of ‘microcanonical’, minimum information assumption, similar to the
corresponding hypothesis in statistical physics where all microstates are equiprobable.5
For physical systems, this is justi3ed by the Liouville theorem that is itself a conse-
quence of Hamiltonian dynamics; it would be interesting to 3nd an analogue of this7
theorem for the (stochastic) dynamics underlying the organization of 3rms.

More precisely, Sutton assumes that S is a large integer, and uses known mathemat-9
ical results on the number of partitions to compute �(S). Let us show how his results
can be recovered directly. For this, we introduce the following quantity: 111

N(R; K; S) =
∞
∑

s1=1

∞
∑

s2=s1

· · ·
∞
∑

sK=sK−1

�

(

S −
K
∑

i=1

si

)

∫ K
∏

i=1

P(�i) d�i

× �

(

R−
K
∑

i=1

si�i

)

: (1)

This quantity counts the number of partitions of the integer S in exactly K integers
s1; s2; : : : ; sK , and such that the total absolute growth rate R is given by the sum of13
independent random variables �i (that we suppose of 3nite variance), each weighted
by the size si of the sub-sector. This assumes a proportionality e6ect at the sub-sector15
level. It will be convenient to introduce the Fourier–Laplace transform of this quantity
(or generating function), de3ned as17

N̂(q; �; �) =
∞
∑

S=1

∞
∑

K=1

∫ ∞

−∞
dR exp[iqR− �K − �S]N(R; K; S) : (2)

The quantity N̂(q=0; �=0; �) is therefore the Laplace transform of the total number
of partitions, and is given by19

N̂(q = 0; � = 0; �) =
∞
∑

K=1

∞
∑

s1=1

∞
∑

s2=s1

· · ·
∞
∑

sK=sK−1

exp

(

−�
K
∑

i=1

si

)

(3)

and be computed explicitly as

N̂(q = 0; � = 0; �) =
∞
∑

K=1

e−�K

∏K
i=1 (1 − e−i�K)

: (4)

For � → 0, the sum over K can be approximated by an integral21

N̂(q = 0; � = 0; �) ≈
∫ ∞

0
dK exp

(

−�K −
∫ K

0
dx ln(1 − e−�x)

)

: (5)

1 In the following equation, � refers to the Dirac delta for continuous variables and to the Kronecker delta
for discrete variables.
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Now the integral over K can be estimated using Laplace’s saddle-point method. The1
saddle point K∗ obeys the following equation:

� = −ln(1 − e−�K∗
) ; (6)

which for small � gives3

K∗ ≈ 1
�

ln
1
�

: (7)

Plugging this result in Eq. (5) leads to

N̂(q = 0; � = 0; � → 0) ∼ exp
(

1
�

∫ ∞

0
dv ln(1 − e−v)

)

= exp
(

�2

6�

)

; (8)

where we have neglected preexponential corrections, that can also be computed. Now,5
it is easy to check that the inverse Laplace transform of N̂(q = 0; � = 0; � → 0)
behaves, for large S, as7

N(S) ∼ exp[b
√
S]; b = �

√

2
3 ; (9)

which is the Hardy–Ramanujan result at large S [5]. In the course of the calculation,
one also discovers that, as far as scaling is concerned, � ∼ S−1=2. One could extend9
the computation to get the exact prefactor, equal to (4

√
3S)−1.

One can easily extend the computation to � �= 0. The saddle point is now at11

K∗ ≈ 1
�

ln
1

� + �
: (10)

Now, setting � = x�=|ln �|, one 3nds, in the limit � → 0,

N̂(q = 0; x�=|ln �|; �)

N̂(q = 0; 0; �)
≈ e−x : (11)

Having noted that e−x is the Laplace transform of �(u − 1), we conclude that when13
S → ∞, the variable K=

√
S ln S tends to unity with probability one. One can also study

how the :uctuations behave for large S. Setting K =
√
S ln S +y

√
S, one 3nds that the15

Laplace transform P̂(z) of the distribution P(y) of the random variable y reads, for
S → ∞:17

P̂(z) =
∫

dye−zyP(y) = exp[ − z + (1 + z) ln(1 + z)] ; (12)

which shows that the distribution of y is non-Gaussian, even in the limit S → ∞. For
example, the skewness of P(y) is found to be equal to −1. In summary, we 3nd that19
the average number of ‘sub-entities’ is equal to

√
S ln S, with relative (non-Gaussian)

:uctuations which go to zero as 1=ln S. The average size of a sub-piece is clearly equal21
to

√
S=ln S.
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Therefore, the most probable partition of a large integer S is to break it in
√
S1

parts of size
√
S (neglecting logarithms). 2 In fact, as we now show, this is not really

correct. A better description is to say that one has
√
S pieces of size 1;

√
S=2 pieces3

of size 2; : : : and one piece of size
√
S. More precisely, what is the average number

of occurrences N (s|S) of a piece of size s, given the total size S? A little re:ection5
tells us that this is given by

N (s|S) ≡ N(S)〈O(s|S)〉 =
∞
∑

k=1

N(S − ks) ≡
∞
∑

k=1

kQ(S − ks) ; (13)

where Q is the probability of occurrence that the number s appears exactly k times in7
the partition, de3ned by the above equation. For 1�s�S, N (s|S) can be approximated
by9

N (s|S) ≈ N(S)
∞
∑

k=1

exp
(

− bks

2
√
S

)

∼ N(S)

exp(bs=2
√
S) − 1

: (14)

One therefore 3nds the following interesting result: the size distribution of sub-sectors
follows, in Sutton’s model, a Bose–Einstein distribution. This distribution behaves as a11
power law 1=s, for s�

√
S and decays exponentially fast for s�

√
S. This is a directly

testable prediction of Sutton’s model. One can furthermore check directly that13
∑S

s=1 sN (s|S)
N(S)

≈ 4S
b2

∫ ∞

0
du

u
eu − 1

= S ; (15)

as it should.
As noticed by Sutton, the quantity N (s|S) is interesting because it allows us to15

compute the variance �2
R(S) of the absolute growth rate R, de3ned as

�2
R(S) = 〈R2|S〉 ; (16)

where the brackets means an average over the random growth rates �i and the overline17
is an average over all partitions of S. Using the fact that the �i’s are independent and
of variance equal to �2

0, one has19

〈R2|S〉 = �2
0

∑

s

s2 N (s|S)
N(S)

≈ �2
0

∑

s

s2

exp(bs=2
√
S) − 1

=
25=233=2 (3)

�3 �2
0S

3=2 = 1:13955::::�2
0S

3=2 : (17)

This is Sutton’s result: the conditional variance of the absolute return grows as S3=2,
therefore the variance of the relative return r=R=S decays as S−1=2, which is equivalent21

2 The
√

S scaling found here for the typical size of sub-pieces allows to shed light on a totally unrelated
problem, that of ‘branched polymers’ in high dimensions [6,7]. In the absence of steric constraints, the
end-to-end distance of branched polymers grows like N 1=4, where N is the total number of monomers. The
scaling comes from the fact that a typical linear strand of the polymer contains ∼ N 1=2 monomers, each of
which behaving as a random walk in space. The analysis given here suggests that the number of independent
linear strands (that plays the role of K) scales as N 1=2 ln N , with relative :uctuations that tend to zero, and
that the size distribution of these strands should decay as 1=n for n�N 1=2.
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to the statement that �= 1
4 [4]. In intuitive terms, the total absolute return is the random1

sum of ∼ √
S di6erent terms, all of order ∼ √

S, which gives a random number of
order

√
S
√√

S ∼ S3=4. This rough (and slightly incorrect) argument actually suggests3
that the absolute growth rate is the sum of a large number (

√
S) of random variables,

and therefore should be Gaussian for large S. We can show this more precisely by5
computing the kurtosis " of R, de3ned as

" =
〈R4|S〉
〈R2|S〉2 − 3 : (18)

We assume that the individual growth rates � have a 3nite kurtosis given by "0.7
Therefore,

〈R4|S〉 = �4
0



(3 + "0)
∑

i

s4
i + 3

∑

i �=j

s2
i s

2
j



= �4
0

[

"0

∑

i

s4
i + 3

∑

i; j

s2
i s

2
j

]

:

(19)

The 3rst term is easy to compute using N (s|S) and one 3nds9

∑

i

s4
i =

∑

s

s4 N (s|S)
N(S)

≈ 211=237=2

�5  (5)S5=2 = 7:17114::::S5=2 : (20)

The second term is more subtle since one needs to know the correlation of the number
of occurrences of two integers s; s′ involved in the partition of S; 〈O(s|S)O(s′|S)〉. This11
quantity can be obtained similarly to N (s|S). For s = s′, one has

N(S)〈O(s|S)2〉 ≡
∞
∑

k=1

k2Q(S − ks) =
∞
∑

k=1

(2k − 1)N(S − ks) ; (21)

which can be again be approximated as13

〈O(s|S)2〉 ≈
∞
∑

k=1

(2k − 1) exp
(

− bks

2
√
S

)

=
exp(bs=2

√
S) + 1

(exp(bs=2
√
S) − 1)2

: (22)

Therefore,

S
∑

s=1

s4[〈O(s|S)2〉 − 〈O(s|S)〉2] ≈
(

2
√
S

b

)5
∫ ∞

0
duu4 eu

(eu − 1)2

=
29=233=2

5�
S5=2 = 7:48509::::S5=2 : (23)

The terms with s �= s′ can be computed from15

〈O(s|S)O(s′|S)〉 ≈
∞
∑

k=1;‘

exp
(

− bks

2
√
S
− b‘s′

2
√
S
− b

8S3=2 (ks + ‘s′)2 + · · ·
)

:

(24)
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The reason we took one extra term in the above expansion is that 〈O(s|S)O(s′|S)〉 −1
〈O(s|S)〉〈O(s′|S)〉 is zero to 3rst order. The non-zero correlation comes from the term
k‘ss′ in the above expression. To lowest order, one 3nally 3nds3

S
∑

s �=s′=1

s2s′2[〈O(s|S)O(s′|S)〉 − 〈O(s|S)〉〈O(s′|S)〉]

≈ −219=235=2

�5 [ (3)]2S3=2 = −53:2953 : : : S3=2 : (25)

This contribution is a factor S smaller than the other two contributions, but has a rather
large prefactor. To leading order in S, the 3nal result reads5

" ≈ 1√
S

[5:52232 : : : "0 + 5:76408 : : : ] : (26)

The conclusion is that even if the growth rates of the sub-sectors are non-Gaussian, the
kurtosis of the aggregate growth rate decreases as 1=

√
S for large S. This is expected on7

general grounds, since we have seen above that the number of independent sub-entities
is of order

√
S, and the kurtosis of a sum decreases as the inverse of the number of9

independent terms in a sum. The second contribution comes from the :uctuations of
the numbers of terms in the sum.11

Therefore, asymptotically, the rescaled aggregate growth rate rS1=4 is found to be
Gaussian in Sutton’s model. However, for 3nite S, there are important corrections to13
this asymptotic result: suppose that the initial kurtosis of � is equal to 3, which is the
case when � is distributed according to a symmetric exponential. Take a reasonable15
value S = 100. Then the residual kurtosis of the growth rate is still quite large, ∼ 2:2.
Hence, signi3cant deviations from a Gaussian distribution may be observed in reality,17
but should diminish as S becomes large, at variance with empirical results. We shall
come back to this issue in Section 4.19

3. An alternative model

3.1. De:nition of the model21

We now discuss another model, where we assume that companies are formed by
aggregating entities that have a certain a priori distribution of sizes, that we choose to23
be a power-law in its tail. The motivation for this is two-fold. First, the distribution of
company sizes in a country is known to follow a Pareto (power-law) distribution. Since25
the scaling law for the variance of the growth rate also seems to hold at the country
level, one could indeed argue that the actual distribution of company sizes should play27
a role. Second, there is a quite general and plausible dynamical model that leads to
a power-law distribution of sizes. Assume, as in Sutton’s model, that each sub-entity29
in a company has a random growth rate. The role of the business management is, to
a certain extent, to redistribute the income of each sector of activity such as to help31
the less performing ones to catch up. Therefore, a reasonable dynamical model for the33
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size si(t) of a given sub-entity is1

dsi
dt

= &





1
K

K
∑

j=1

sj(t) − si(t)



+ �i(t)si(t) ; (27)

where the 3rst two terms describe redistribution of resources among the sub-entities,
and the last term the random growth rate. The parameter & measures the strength of3
the redistribution policy. It can be shown that the stationary distribution for such a
stochastic process has a power-law tail, p(s) ∼ s−1−�, with � = 1 + &=�2

0. (See the5
detailed discussion and generalization in Ref. [8], and also Refs. [9,10] for alternative
models.) The above ‘redistribution’ model is only meant to be an illustration of how7
Pareto tails could emerge dynamically, but is not logically related to the following
discussion, where we only assume that the a priori distribution of the size of sub-entities9
has a power-law tail:

p(s) ≈ �s�0
s1+� (s → ∞) : (28)

We also assume that a company is composed of an arbitrary number K of such11
sub-entities, with a certain a priori weight Q(K). This means that if one chooses ran-
domly a company in a country, there is a probability proportional to Q(K) for this13
company to contain exactly K sectors. We will see below that Q(K) can be inferred
from empirical data. The unnormalized distribution of growth rates for a given company15
size S reads, in this new model:

N(R; S) =
∞
∑

K=1

Q(K)
∫ K
∏

i=1

p(si) dsi�

(

S −
K
∑

i=1

si

)

∫ K
∏

i=1

P(�i) d�i

×�

(

R−
K
∑

i=1

si�i

)

: (29)

3.2. Distribution of company sizes17

Let us 3rst establish some results on the size distribution of companies N(S) =
∫

dRN(R; S), a quantity much studied in a di6erent context in Ref. [11]. This will19
also enable us to relate Q(K) to this empirically observable quantity. We 3rst study
the case the simplest case Q(K) = 1. The following results are obtained using Laplace21
transforms, as above. We write

N̂(q; �) =
∫ ∞

0
dS
∫ ∞

−∞
dR exp[iqR− �S]N(R; S)

=
∞
∑

K=1

[
∫

ds d�p(s)P(�)eiqs�−�s
]K

: (30)
23
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For simplicity, we assume that P(�) is Gaussian with unit variance, and introduce the1
quantity g(q; �) as

g(q; �) =
∫

dsp(s)[1 − e−q2s2=2−�s] ; (31)

in terms of which one 3nally has3

N̂(q; �) =
1

g(q; �)
: (32)

All the following asymptotic results will only depend on the behaviour of g(q; �) in the
limit q; � → 0. If we 3rst study the case q= 0 from which N(S) is deduced, one 3nds5
that one has to distinguish the cases �¡ 1 and �¿ 1 [11]. The small � behaviour of
g is found to be7

g(q = 0; �) ≈ *(1 − �)(s0�)� (�¡ 1); g(q = 0; �) ≈ �〈s〉 (�¿ 1) :
(33)

For �¿ 1, the average size of a sub-entity is 3nite and equal to 〈s〉. Inverting the
Laplace transform then leads to9

N(S) ≈ 1
〈s〉 ; (34)

for �¿ 1, whereas for �¡ 1, one has

N(S) ≈ sin ��
�

1
s0

( s0

S

)1−�
: (35)

The case �=1 is special and involves logarithmic corrections. Intuitively, the di6erence11
of behaviour comes from the fact that when �¿ 1, the typical number of sub-entities
behaves as K ∼ S=〈s〉, whereas when �¡ 1, a single sub-entity represents a sizeable13
fraction of the whole company and K ∼ S��S.

Assuming now that Q(K) decays as a power-law Q(K) ∼ K−1−+ and that �¿ 1,15
we 3nd, using the same method, the following result for P(S):

N(S) ∼ 1
S1++ (+6 �); N(S) ∼ 1

S1+� (+¿ �) : (36)

The case +¿ � corresponds to a situation where large companies only contain a small17
number of sectors (see below). This is not very plausible; furthermore, this would
lead to a variance of the growth rate R that grows proportionally to size S, i.e., � = 0,19
which is not compatible with empirical data. Therefore, we will assume in the following
+6 �. In this case, there is a direct relation between the tail, of Q(K) and the tail21
of the size distribution of companies. Empirically, + is found to be close to unity:
+ ≈ 1:05 [12].23

3.3. Fluctuations of the growth rate

We now turn to the prediction of this model for the growth rate :uctuations. One25
need to consider three cases: �¿ 2; 1¡�¡ 2; �¡ 1. The case 1¡�¡ 2 is, as we
will show, the interesting one. In the relevant situation where +6 �, one can show27
that the value of � and the shape of the rescaled distributions are independent of the
value of +, and we choose in the following, for simplicity Q(K) to be constant.29
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We now need to study N̂(q; �) with q �= 0, that gives access to the distribution of1
the growth rate. This case can be treated by identifying the correct scaling region in
the q; � plane, which means, in concrete terms, the scaling relation between R and S.3
For example, when �¿ 2, one expects the Central Limit Theorem to hold, suggesting
R ∼ √

S. So we set q = ,
√
�, and take the limit � → 0. If �¿ 2, one 3nds5

g(q; �) ≈ �
[

〈s〉 +
, 2

2
〈s2〉
]

+ · · · ; (37)

where the · · · refers to higher-order terms in �, the precise form of which depend on
the value of �. Therefore, in this regime,7

N̂(q; �) ≈ 1
�[〈s〉 + (, 2=2)〈s2〉] : (38)

Now, we introduce the probability P(R|S) to observe a certain growth R given S. Then,
by de3nition,9

N̂(q; �) =
∫ ∞

0
dS
∫ ∞

−∞
dR exp[iqR− �S]N(S)P(R|S) : (39)

Assuming that P(R|S) = S−1=2	(RS−1=2) and using the above result for N(S) leads
to11

N̂
(

q = ,
√
�; �
) ≈ 1

�〈s〉
∫ ∞

0
du
∫ ∞

−∞
dv exp

[

i,v
√
u− u

]

	(v) ; (40)

where we have set �S = u and R= v
√
S. It is now easy to see that Eqs. (38) and (40)

are satis3ed if13

	(v) =
1√

2��2
exp
(

− v2

2�2

)

; �2 =
〈s2〉
〈s〉 : (41)

Therefore, in the case �¿ 2, the variance of the relative growth rate decreases as S−1=2

(i.e., � = 1
2 ), and the distribution of growth rates is Gaussian.15

More interesting is the case 1¡�¡ 2. It turns out that in this regime, the correct
scaling is P(R|S) = S−1=�	(RS−1=�) and q = ,�1=�. In this regime, one now has, for17
small �

g(q; �) ≈ �[〈s〉 + �|s0,|�I(�)] + · · · ; (42)

where19

I(�) =
∫ ∞

0

dt
t1+� (1 − e−t2=2) = −2−1−�=2*

(

−�
2

)

: (43)

Now, it is easy to show that the scaling function 	(v) is now precisely a symmetric
Levy stable distribution of index �; L�(v). This comes from the fact that the Fourier21
transform of L�(v) gives exp(−Au|,|�), where A is a constant, so that the integral over
u in Eq. (40) now reproduces Eq. (42).23

However, this is not the whole story. The reason is that a direct computation of the
variance of R (from the derivative of g(q; �) with respect to q2 at q = 0) leads an25
apparently contradictory scaling, since

〈R2|S〉˙ S3−� (44)
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instead of S2=� as one might have naively expected from the scaling form of P(R|S).1
One should now remember that LTevy stable distributions L�(v) with �¡ 2 have tails
decaying as v−1−�, and thus a formally in3nite variance. This means that 〈R2|S〉 is3
actually dominated by the region where R is of order S, such that indeed:

〈R2|S〉 ≈ S
∫ +S

−S

R2 dR
|R|1+� ∼ S3−� : (45)

Therefore, the LTevy stable distribution only holds in the scaling region R ∼ S1=�. For5
R ∼ S�S1=� the distribution is truncated. When � → 1, the truncation ‘invades’ the
scaling regime, and the result becomes again di6erent for �¡ 1, see below.7

The conclusion of this analysis is that the variance of the relative growth rate r=R=S
scales in this regime with an exponent � = (� − 1)=2, that interpolates between the9
standard value � = 1

2 for � = 2 and � = 0 for � = 1 (although these marginal cases are
a6ected by logarithmic corrections). However, the surprising result is that in this regime11
the distribution of R does not re-scale as a function of rS� but rather as rS(�−1)=�. 3

We will discuss this in relation with empirical results in the next section.13
When �¡ 1, it is easy to show that now R ∼ S, i.e., � = 0, which disagrees with

empirical results. Furthermore, the result one 3nds for the scaling function 	 is no15
longer universal. When �¿ 1, the scaling function was universal in the sense that its
shape only relied on the 3niteness of the variance of �. When �¡ 1, on the other17
hand, only a 3nite number of terms (sub-entities) contribute to the sum R, and one
cannot expect a Central Limit Theorem to hold. When P(�) is Gaussian of variance19
�2

0, all moments of P(R|S) can be computed using the method of Ref. [15]. One 3nds
for example21

〈R2|S〉 =
1 − �
1 + �

�2
0S

2 (46)

and

〈R4|S〉 = 3
[

(3 − �)(2 − �)(1 − �) + 2�(1 − �)2

(3 + �)(2 + �)(1 + �)

]

�4
0S

4 : (47)

Numerically, we have found that P(R|S) could be rather well 3tted by a ‘stretched23
Gaussian’ form, exp−(R=S)+ with +¡ 2. For example, for �= 1

2 , we found + ≈ 4
3 . This

cannot be exact, however, since the exact kurtosis is found to be 1.37143, whereas the25
kurtosis of the stretched Gaussian with + = 4

3 is 1.22219. Note that 〈R4|S〉 would have
a di6erent value if P(�) was non-Gaussian: this shows that for �¡ 1 the distribution27
	(v) is non-universal.

3.4. Conditional distribution of sector sizes29

Finally, one can also compute in this model the conditional distribution of sector
sizes, P(s|S), which depends on the value of +. When +6 �, we 3nd that P(s|S) is31
the sum of two contributions: one power-law regime s−1−� for s�S which re:ects

3 For other situations where this ‘anomalous scaling’ occur, see Refs. [13,14].
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the a priori distribution of sector sizes, and a small ‘hump’ for s ∼ S of height which1
vanishes for large S:

P(s|S) ≈ �s�0
s1+� (s�S); P(s|S) ≈ F(s=S)

S1+�−+ (s ∼ S) ; (48)

where F(:) is a certain scaling function of order unity, that vanishes for s¿S. For3
�¡+, on the other hand, the hump survives when S → ∞ whereas the power-law
regime disappears. In other words, when + is larger than �, the typical number of5
sectors K∗ tends to be small and the typical size of the sectors is of the order of S
itself.7

3.5. Stability upon aggregation

As mentioned in the introduction, the scaling of GNP growth rates is empirically9
found to be very similar to the scaling of company growth [3]. In this respect, it
is worth noting that Sutton’s construction is not stable upon aggregation: aggregating11
companies characterized by an exponent �= 1

4 using Sutton’s prescription at the country
level, leads to an exponent � = 3

8 . In our model, on the other hand, stability upon13
aggregation is by construction satis3ed. The argument is very simple, and relies on
the fact that the results are independent of the value of the company size exponent15
+, provided +¡�. The idea is to consider the GNP itself as the sum of independent
sectors, i.e., to remove the ‘shells’ that de3ne companies, which are an intermediate17
level of clustering. A country is therefore in this description a ‘super-company’ with
many sectors. The sectors are the same than previously, so they have the very same19
Pareto tail of exponent � for their size distribution. Now we just have to assume that
there is a given distribution Q′(K) that describes the distribution of the number of21
independent sectors in di6erent countries. If Q′(K) has a Pareto tail with exponent
+′ with +′ ¡�, we can repeat the above arguments and 3nd the same value for the23
exponent � = (� − 1)=2 at the country level.

4. Discussion—comparison with empirical data25

We have shown how several interesting asymptotic predictions of Sutton’s model
could be derived. Apart from Sutton’s central result, namely that the root mean square27
of the growth rate decreases with the company size S as S−1=4 (i.e., � = 1

4 ), we have
shown that the distribution of growth rate should be asymptotically Gaussian, with a29
kurtosis that decays as S−1=2. The 3rst result is, as noticed by Sutton, in rather good
agreement with the empirical results of Stanley et al. [1], although the value of the31
exponent � is slightly smaller. The second result is however problematic, since in
this model one should 3nd a rescaled distribution of growth rates that progressively33
deforms with S as to become Gaussian for very large S, whereas the data indicates
that the rescaled distribution is actually to a good approximation independent of S35
and non-Gaussian. A closer look at the data of Stanley et al. in fact suggests that
non-Gaussian tails are more pronounced for larger companies [2].37
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Fig. 1. Distribution 	(v) of the rescaled returns for v¿ 0 (in a linear-log representation) and for two values
of S: S ≈ 500 and 5000, and for � = 1:3. A simple exponential form, as suggested in Ref. [1], is shown for
comparison. Note that for this range of S, the distributions do not re-scale, except in the ‘central’ region.
For large values of S, the distribution should converge towards a LTevy distribution of index � = 1:3: one
can clearly see the tails getting fatter as S increases, as is also the case for empirical data.

We have then explored an alternative to Sutton’s model, where the size of the1
‘sub-entities’ is postulated to be asymptotically a power-law (Pareto) with an unknown
exponent �, that we relate to �—we thus abandon the idea of directly predicting �. Our3
model is motivated by the ubiquitous observation of Pareto distributions for company
sizes, and by a simple dynamical model that indeed leads to a stationary power-law5
distribution of sizes. In this respect, it is not obvious how one would write a natural
dynamics for sector growth that leads to Sutton’s ‘microcanonical’ ensemble where7
all partitions are equiprobable. As a function of �, we have found three qualitatively
di6erent regimes. In particular, when 16 �6 2, we 3nd that � = (� − 1)=2. The9
empirical value �= 0:15 corresponds to �= 1:30, which is indeed larger than the value
of + ≈ 1:05 reported for 3rm sizes in Ref. [12], as required for the consistency of our11
analysis. Our model then predicts an S independent distribution for the growth rate
multiplied by S(�−1)=� (and not by S�), which is a symmetric LTevy stable distribution.13
Note however that these are asymptotic results that require S(�−1)=��1, such that the
scaling region is not a6ected by truncation e6ects (see the discussion after Eq. (44)).15
For 3nite S and � close to one, one expects strong 3nite size e6ects, and a very
slow convergence towards the asymptotic value. This is why numerical simulations are17
needed to explore the moderate S regime. We show in Fig. 1 the distribution of rescaled
returns obtained from a numerical simulation for � = 1:30, a Gaussian P(�) and for19
S ∼ 500 and S =5000. Notice 	(v) can be very roughly approximated by a symmetric
exponential for small enough S: 	(v) = exp(−|v|=v0), as suggested by the empirical21
data—at least in a restricted range of v. The systematic deviations from this form both
at small values of v and at large v are qualitatively similar to the ones observed on the23
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data (see Ref. [2]): the empirical 	(v) is actually parabolic for small values of v and1
decays slower than exponentially at large v. One also observes 3nite size e6ects on the
empirical data [2]: as S increases, the tail of the distribution becomes fatter and fatter.3
This is expected in our model since asymptotically 	(v) should converge to a LTevy
distribution with a power-law tail, which is indeed fatter than an exponential. Note5
that we expect only qualitative agreement with empirical data, since the assumption
that P(�) is Gaussian at the sector level is probably incorrect and does in:uence the7
detailed shape of 	(v) for 3nite S.

It would be extremely interesting to obtain direct empirical information on the con-9
ditional distribution of the size s and total number K of the sub-entities for a 3xed
S. We have seen that Sutton’s model predicts a Bose–Einstein distribution for s, that11
behaves as 1=s for s�

√
S, and beyond which it falls rapidly, whereas K becomes

peaked around the value
√
S ln S. In our model, on the other hand, the conditional13

distribution of s is, as soon as �¿ + and for s�S, identical to the a priori distribution
p(s) ∼ s−1−�, and the total number K peaks around the value S=〈s〉. Therefore, a tan-15
gible di6erence between the two models is that the power-law regime has an exponent
1 in the Sutton model and the size of the sectors rarely exceeds

√
S, whereas the distri-17

bution is a power-law with exponent 1 +� ≈ 2:35 up to S in our model (with possibly
a small hump for s ∼ S, see Eq. (48)). We hope that these falsi3able predictions of19
the two descriptions, as well as the quantitative description of the rescaled distribution
of growth rates given above, will motivate further empirical and theoretical research,21
and help elucidate the ‘scaling puzzle’ of company growth.

Note added: While completing this work, X. Gabaix sent us a very interesting23
preprint where related arguments (although in details quite di6erent from ours) are
discussed. See: X. Gabaix, Power-laws and the origin of the business cycle, working25
paper, October 2002.
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