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Abstract. — Gas-lifted wells often present unstable behaviors that can-
not be described by hydrostatic laws. In this thesis, we aim at analyzing
the well dynamics, especially when its production is irregular. We end
up by designing control solutions.

We begin with a brief description of the gas-lift activation technique.
The negative impact of instabilities on oil production is underlined. Two
main mechanisms are at birth of the unstable behaviors. On-site real
time records serve as illustrative examples. We explain the first mech-
anism, well referenced in the literature, thanks to mass balances equa-
tions. Analyzing the vector field properties allows us to interpret the
observed phenomenon as a limit cycle. Then, we expose the main contri-
bution of this thesis. It lies in the description and analysis of the second
mechanism. We show that the instability arises from out-of-phase effects
induced by the propagation delay in the well. A distributed parameter
model is used. Then, we gather our results and present a complete and
compact model of the well dynamics. This model is a first order stable
system interconnected with a distributed parameters system. Thanks to
the small gain theorem, the instabilities root-causes appear as two pos-
sibly positive feedback loops. This model inspires the design of control
solutions that suit the physical structure of the well. Moreover, these so-
lutions fit with the operational constraints. Realistic simulation results
illustrate the efficiency of our strategies. Some of the solutions have been
tested on line on a production site. Some of the obtained results are
presented.



v

Résumé (Étude des instabilités dans les puits activés par gas-
lift)

Les puits pétroliers activés par gas-lift sont souvent sujet à des com-
portements instables qui ne peuvent être décrits par les lois de l’hydro-
statique. L’objectif du travail présenté dans ce mémoire est l’analyse
de la dynamique de ces puits, en particulier lorsqu’ils produisent par
à-coups. Elle aboutit à la conception de solutions de contrôle adaptées.

Nous commençons par décrire brièvement les principes de l’activation
des puits par gas-lift et soulignons l’impact très négatif des instabilités
sur les volumes de pétrole produits. Il existe deux principaux mécan-
ismes susceptibles d’engendrer ces productions par à-coups. Nous les
mettons en évidence à partir d’enregistrements temps-réel issus de sites
de production. Le premier mécanisme, connu dans la littérature, est
expliqué grâce à des bilans de masses. Nous montrons, grâce à une anal-
yse des propriétés du champ de vecteurs, que ce phénomène s’interprète
géométriquement comme un cycle limite. La principale contribution de
ce mémoire consiste en la description et l’analyse du second mécanisme,
très mal connu auparavant. Nous montrons que le retard lié aux temps
de propagation des fluides dans le puits induit le déphasage à l’origine
de cette instabilité. L’étude de ces deux instabilités se poursuit par
la présentation d’un modèle complet et compact de la dynamique du
puits. Il s’agit de l’interconnection d’un système du premier ordre stable
avec un système à paramètres distribués. Il permet d’attribuer, grâce
au théorème des petits gains, la cause des instabilités observées à deux
boucles de rétroaction potentiellement positives. Ce modèle nous permet
de développer des solutions de contrôle, inspirées de la structure physique
du puits et respectant les contraintes opérationnelles. L’efficacité de ces
stratégies est illustrée par des résultats de simulations réalistes. Une par-
tie des solutions a également été testée, en ligne, sur site de production.
Certains résultats obtenus, très encourageants, sont présentés.
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INTRODUCTION

Contexte. — Le pétrole est une ressource stratégique. Énergie essen-
tielle dans de nombreux secteurs tels que les transports et l’industrie,
il représente un enjeu à la fois économique et géopolitique. La crise
actuelle du marché de l’énergie, la troisième du genre, apparaît prop-
ice aux développements technologiques. La croissance de la demande en
Chine et en Inde, conjuguée à la montée des nationalismes pétroliers (tels
qu’au Venezuela et en Bolivie, par exemple) entraîne une tension accrue
sur le marché du pétrole. Le prix du baril a doublé pour atteindre plus de
soixante dollars en moins de deux ans. Cette flambée est alimentée par le
spectre du manque de réserves et par les tensions géopolitiques. Ce con-
texte est très favorable aux développements technologiques. D’un côté il
est nécessaire de produire plus et mieux. De l’autre le prix du baril aug-
mentant, les budgets alloués aux projets à long terme sont conséquents
car les investissements sont plus facilement rentabilisés.

Ordres de grandeurs. — Si les variations du prix de l’or noir et les
conséquences économiques qu’elles induisent paraissent familières, son
extraction et le fonctionnement des installations restent mystérieux sous
bien des aspects. Les formes sous lesquelles le pétrole se présente varient
beaucoup d’un champ à l’autre, la profondeur à laquelle il faut forer ou
la quantité de barils produits aussi. Il est donc assez difficile de définir
des ordres de grandeurs généraux. On peut néanmoins dire qu’un puits
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typique a une profondeur d’un à deux kilomètres et un diamètre de l’ordre
d’une dizaine de centimètres, que les pressions et les températures en jeu
au niveau du réservoir sont de l’ordre d’une ou deux centaines de bars
pour l’un et d’une centaine de degrés pour l’autre et qu’un réservoir
est supposé contenir quelques milliards de barils de pétrole. Un puits
peut produire jusqu’à plusieurs centaines de barils par jour et un champ
consiste généralement en plusieurs centaines de puits. Pour se faire une
idée correcte des enjeux il faut également savoir qu’une grande partie
des réserves estimées de pétrole se trouve en mer à plusieurs kilomètres
de profondeur et dans des régions parfois hostiles ou difficiles d’accès,
comme en mer du Nord ou en Alaska par exemple. Il faut également
insister sur les disparités. En effet le champ d’Elgin Franklin en mer du
Nord est caractérisé par un réservoir à plus de 1000 bar et 200 oC et est
donc très loin des ordres de grandeurs moyens.

Activation de la production. — Au début de la production d’un
puits la pression du réservoir suffit fréquemment à propulser les hydrocar-
bures jusqu’à la surface. C’est une phase de production dite "naturelle"
qui, suivant les caractéristiques du réservoir, peut durer de quelques à
de nombreuses années. Malheureusement en expulsant les effluents vers
la surface, le réservoir tend à se dépressuriser jusqu’à n’être plus capable
de contrebalancer le poids de la colonne de liquide dans le puits. Il faut
alors recourir à des moyens de production alternatifs, appelés moyens
d’activation. Leur but peut être de maintenir le réservoir sous pression
ou de tenter de diminuer le poids de la colonne liquide.

Gas-lift. — Parmi les moyens les plus fréquemment utilisés on trouve
l’activation par pompe. Il peut s’agir de ce que l’on appelle des "têtes
de cheval" à cause de leur forme particulière. On trouve également
l’activation par gas-lift. Le gaz est injecté au fond du puits, il peut alors
être utilisé pour pousser le liquide ou pour s’y mêler de façon à dimin-
uer la masse volumique moyenne. Au total, cette activation par gas-lift
concerne plus de 53% des puits produisant significativement, c’est-à-dire
plus de dix barils par jour (chiffres issus de [41, p6]). Dans ce mémoire,
nous nous intéressons exclusivement à ce mode de production.
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Évolution du puits. — La plupart du temps, il est possible d’estimer
l’évolution de la production d’un champ de pétrole. Dans un premier
temps, la productivité augmente jusqu’à atteindre son maximum. S’en
suit une longue période de baisse. On représente cette évolution sous
la forme d’une courbe appelée "courbe de déclin". Il est également im-
portant de noter que moins des deux tiers des réserves estimées ont été
produites quand un champ est abandonné. Augmenter ce taux, c’est-à-
dire augmenter la productivité des champs dit "matures" est un enjeu
très important.

Combattre le déclin de la production. — Il existe différents moyens
pour essayer de freiner ce déclin. La plupart concentrent leurs efforts sur
le réservoir et font en sorte de pallier la dégradation progressive des con-
ditions de production. On peut par exemple réinjecter de l’eau pour
maintenir le réservoir sous pression ou traiter chimiquement la zone de
roche située à proximité du puits pour favoriser une meilleure circula-
tion des effluents. Nous nous intéressons ici aux moyens de continuer à
produire malgré la dégradation des conditions de production. Recourir
à l’activation par gas-lift implique une complexification du mode opéra-
toire qui dans des conditions défavorables (pression faible au niveau du
réservoir, aspiration du puits faible, peu de gaz disponible) conduit à
une production dégradée. Le développement actuel de l’utilisation de
capteurs et de vannes contrôlables sur les puits ouvre un vaste champ
d’opportunités dans le domaine de l’optimisation de la production. On
peut aujourd’hui trouver des capteurs distribués de température, des
débimètres polyphasiques et des jauges qui, placés en fond de puits, per-
mettent l’accès à des mesures (en temps réel ou avec retard) telles que la
pression et la température. Les puits équipés de telles technologies sont
appelés "smart wells" (pour plus de détails voir [45]). L’accès direct aux
mesures et la compatibilité des actionneurs avec les contraintes temps-
réel permettent de développer des solutions de contrôle et d’améliorer
la conduite des puits sans modifier le mode opératoire. Le but de cette
thèse est d’exposer l’analyse et le développement de lois de commande
qui garantissent de produire plus, en terme de quantité et mieux, en
terme de régularité du débit.
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Organisation du manuscrit. — Dans le Chapitre 1 nous détaillons
le procédé de production d’huile dans le cas de l’activation par gas-lift.
Les puits ainsi activés se composent de deux parties : un tuyau central,
le tubing, dans lequel s’écoule ce qui provient du réservoir et autour un
volume annulaire, le casing. Le casing contient le gaz pressurisé prêt à
rentrer dans le tubing. Notre but est de mettre en évidence le nombre très
important de contraintes et d’objectifs souvent antagonistes qui président
au choix des conditions opératoires. Nous nous restreignons dans un pre-
mier temps à l’étude d’un puits isolé et aux contraintes qui interviennent
dans l’optimisation de son mode de production. Cette étude s’appuie en
particulier sur une relation statique (courbe de réponse) obtenue, entre
autres, grâce à la loi de Bernoulli. Ensuite nous changeons d’échelle et
nous montrons que de nombreuses contraintes apparaissent lorsque l’on
considère un ensemble de puits interconnectés. Ainsi, la production serait
globalement améliorée si les puits ne se perturbaient pas mutuellement.
La nature des interconnexions est détaillée en prenant en compte les
réseaux de gaz et de production et le réservoir. Cependant, la difficulté
du problème d’optimisation n’est pas la seule cause de manques à pro-
duire car les puits sont généralement prisonniers d’instabilités (au sens
des systèmes dynamiques). Nous détaillons enfin les préjudices causés
par ces phénomènes, tels que les diminutions notables de la production
moyenne et les dommages sur les équipements.

Dans le Chapitre 2, nous présentons notre principale contribution. Elle
consiste en la modélisation et l’analyse de stabilité de ces phénomènes
d’instabilités. Nous commençons par présenter deux modes de produc-
tion instables observés depuis de nombreuses années sur différents sites de
production. Il s’agit du "casing-heading" et de la "density-wave", aussi
appelée parfois "tubing-heading". La même démarche est appliquée pour
chacun de ces deux phénomènes. Après avoir rappelé les résultats de la
littérature, nous donnons une description phénoménologique illustrée par
des données issues de site de production ou de simulations réalistes. Des
modèles adaptés à la réalisation de lois de commande et à l’analyse des
propriétés mathématiques sont proposés. Dans le cas du casing-heading
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nous utilisons une réduction d’un modèle emprunté à [3], ce qui nous per-
met d’interpréter les oscillations observées comme le cycle limite d’un sys-
tème dynamique à deux dimensions. L’impact sur la stabilité de différents
paramètres physiques est étudié. La density-wave est un phénomène dont
l’existence ne fut démontrée qu’en 2003, dans [23] et qui est souvent mal
interprété car confondu avec d’autres causes d’oscillations dans le tubing.
Pour lever toute ambiguïté, nous donnons une définition simple, illustrée
par des données issues de site de production. La caractéristique de cette
instabilité est qu’elle peut être étudiée en ne considérant que la partie
tubing du puits. En considérant seulement la propagation dans le tubing,
on déduit l’existence d’un invariant de Riemann et finalement nous mod-
élisons ce phénomène sous forme d’un modèle à paramètres distribués.
Nous étudions ensuite sa stabilité sous la forme d’une équation à retards
distribués. Après avoir effectué cette analyse mathématique, nous met-
tons en évidence les correspondances existant entre les formules obtenues
et les règles opératoires en vigueur sur les sites. Nous évaluons ensuite la
possibilité de simplifier encore le modèle présenté. Nous prouvons qu’en
envisageant quelques hypothèses apparemment raisonnables le modèle
perd sa pertinence physique et ne peut plus représenter la density-wave.
Enfin, forts de la connaissance acquise sur chacun des deux phénomènes
nous proposons un modèle global. Comme le puits est représenté par
l’interconnexion de ses deux parties : le tubing et le casing, le modèle
proposé est le bouclage d’un système à paramètres distribués et d’un sys-
tème du premier ordre stable. Les deux régimes instables s’interprètent
alors comme deux boucles de rétroaction positives qui interviennent pour
l’une au niveau de l’interconnexion et pour l’autre au niveau du système
à paramètres distribués.

Dans le Chapitre 3, nous utilisons les modèles proposés pour mettre au
point des solutions de contrôle. Dans un premier temps, nous donnons un
bref aperçu de l’état de l’art des techniques de contrôle des puits activés
en gas-lift. Ensuite, nous nous intéressons au problème qui consiste à
stabiliser le tubing. Des simulations montrent qu’une première solution
boucle ouverte donne de bons résultats. Cela nous permet de valider la
pertinence du modèle à paramètres distribués proposés au Chapitre 2.
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Des solutions de contrôle en meilleur accord avec les contraintes opéra-
tionnelles sont ensuite proposées. La convergence du système bouclé
avec contrôleur de type PI est prouvée en utilisant la démarche qui a
permis de réaliser l’étude de stabilité au Chapitre 2. Un observateur per-
met de reconstruire les variables qui ne sont pas directement disponibles.
L’efficacité du contrôleur est illustrée par de nombreuses simulations réal-
istes.

Une grande partie de ce qui est ici proposé a été présentée lors de
conférences nationales et internationales. Ainsi le Chapitre 2 reprend des
éléments des publications [36], [39] et de [38] tandis que le Chapitre 3
correspond en partie à [37] et [35].

Context. — Oil is a required source of energy in modern societies. In
particular, transportation and numerous manufacturing industries are in
great need of petroleum derived products. Therefore, it represents a key
to economic and geopolitics issues. The late crisis in the gas price has
spurred a great interest in technological developments. The economic
growth of China and India (among others), and the rise of petroleum
nationalismes (e.g. Venezuela and Bolivia) have pushed the oil price
up. Over the last two years, crude oil price has increased by more than
100%. Shortages of oil are feared. In this context, technology is seen
as a possibility to increase the production rates and the quality of the
product. This situation also enables formerly too costly projects to be
considered again. For example, it is now economically efficient to produce
oil from the bituminous sands of Canada.

Scales. — Generally the oil production technology is quite sophisti-
cated. Operating conditions significantly vary between fields. In partic-
ular, depth and total available quantity highly depend on the considered
region. However, it is possible to sketch a typical scenario with a well
depth ranging from 1 km to 2 km, a well radius of several inches, pres-
sures and temperatures around hundred of bars and hundreds of degrees,
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with a reservoir containing several billions of barrels of oil. A single well
can produce up to several hundreds of barils per day. A field is composed
of several hundreds of wells. A vast part of estimated reserves are off-
shore, several kilometers deep under the sea level, often in hostile regions
that can be difficult to reach (e.g. North Sea, or Alaska). Finally, let
us note that there are exceptions with extreme values, e.g. the Elgin
Franklin field in the North Sea has a 1000 bar reservoir pressure with a
200 degrees temperature.

Production activation. — At the early stages of the life of a well,
the reservoir pressure is usually sufficient to push the oil up to the sur-
face facilities. This so-called “natural” production phase may last several
years. Unfortunately, the reservoir pressure tends to decrease over time
and, eventually, a point is reached when the pressure difference between
the reservoir and the surface is not sufficient to make oil naturally flow.
Then, it is necessary to use activation methods, either to keep the reser-
voir pressure above a certain level, or to lighten the liquid column in the
well.

Gas-lift. — Among these methods, the most generally considered are
pumping, e.g. using “horse-heads” as can be seen in numerous terrestrial
fields, and gas-lift. In this last method, gas is injected at the bottom of
the well, it can be used to push the liquid or to mix with it in order to
lower the average density of the mixture being produced. It appears that
this technique is used on more than 53 % of the wells that produce more
that 10 barils per day (as mentioned in [41, p.6]). This method is the
subject of our study.

Production decline. — Most of the time, it is possible to estimate
the future evolution of the production of a well. After a short period,
productivity stops rising, reaches a maximum, and start decreasing. This
decrease can last for years (e.g. in the USA more than eight oil fields
have been producing during more than a century). This trend is usu-
ally represented in a plot called “decline curve”. An important fact is
that more than a third of estimated reserves are left when the field is
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shut down. The emerging “mature fields” projects led by numerous oil
companies aim at reducing the rate of left-over oil in reservoirs.

Fighting the production decline. — Several tentative solutions are
considered. A large number of them deal with the reservoir. It is sought
to artificially maintain the operating conditions at a satisfactory level. A
prime example is to inject pressurized water into the reservoir, another
solution is to chemically treat the surroundings of the bottom of the well
(draw-down zone) to speed up liquid flow. Here, we focus on means
of producing despite the operating conditions progressive decline. gas-
lift activation implies serious complexification of operating modes. As
will appear in details later on in this report, in difficult situations (low
reservoir pressure, little gas availability), production can be negatively
impacted. Recent development of sensors embedded in the well and of
remotely controlled chokes has opened new perspectives of production
optimization. A large variety of sensors can be considered, among which
are distributed temperature sensors, polyphasic flow meters and gages
which can be placed at the bottom of the well to provide pressure and
temperature measurements. Such sensors and actuators equipped wells
are called “smart wells” (for more details see [45]). These technologies
enable real-time feedback control strategies that can yield productivity
increases. The subject of this report is the mathematical analysis and
control design for such wells. We propose a physics-based approach and
develop control oriented low-dimensional models. Thanks to this, simple
cascaded controllers are designed and shown to be compatible with the
above-mentioned technology.

The report is organized as follows.

Report organisation. — In Chapter 1, we detail the process of oil
production with gas-lift activation techniques. In these techniques the
well is composed of two connected parts: the tubing (production pipe)
and the casing (a buffer volume for the gas entering the tubing). Our
goal here is to stress the numerous objectives and constraints defining
the operating conditions. In particular, looking at a single generic well,
we explain selection rules for optimal gas-lift operations. This results in
a static model (response-curve) derived (among others) from Bernoulli’s
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law. Then, we show that the interconnection of wells results in an impor-
tant constraint and conclude that, on overall, more oil could be produced
if the wells were not negatively interacting with each other. The role of
gas and oil networks, and of reservoir is detailed. Yet, the most important
issues that should be addressed to increase the production are instabil-

ities (in the usual sense of dynamical systems). We explain how these
malicious phenomena directly impact on production. The observed slug-
gish flows result in noticeable average productivity losses, and can cause
serious facilities damages.

In Chapter 2, we present our main contribution which is the model-
ing and stability analysis of these instabilities. First, we focus on two
specific oscillating modes long-time observed by production specialists.
These are the “casing-heading” and the “density-wave” (a.k.a. “tubing-

heading”). In the two cases, we propose an overview of state-of-the-art
knowledge. Then, we write a sequential presentation of the phenomenon.
These description are presented along with on-site data or simulations.
Control-oriented models are proposed. In the casing-heading case, we use
a reduction of the model proposed in [3], in order to study the observed
oscillations as a limit cycle of a two-dimensional dynamical system. A
discussion on the role of various physical parameters with respect to sta-
bility is given. In the density-wave case, we propose a new model for this
phenomenon which existence was first demonstrated in [23]. It is often
misinterpreted and confused with various oscillations occurring in the
tubing. We illustrate our definition with field data. Then, we derive a
distributed parameter model. This instability can be studied from a tub-
ing local point of view. We analyse stability of this model under the form
of a delay equation obtained by considering a Riemann invariant. After
performing a mathematical analysis, we draw parallels between obtained
formulas and well-established operations rules. Interestingly, we show
that the presented model can not be simplified further without losing its
physical relevance. We prove that an apparently reasonable simplifying
assumption completely prevents the density-wave. Finally, we propose
a global model that allows understanding of the two discussed instabili-
ties. In this model, we consider the well as the interconnection of a casing
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and a tubing. It consists of the feedback connection of a distributed pa-
rameters system and a stable first order system. It appears that both
unstable regimes stem from positive feedback loops. These take place at
the interconnection level and inside the distributed subsystem.

In Chapter 3, we propose control solutions derived from the proposed
modeling. First, we recall state-of-the-art control techniques for gas-lifted
wells. Then, we address the control problem of stabilizing the tubing sub-
system. A first open-loop solution is shown to be efficient in simulation.
It stresses the relevance of the distributed parameters model proposed in
Chapter 2. More realistic control solutions are addressed next. Following
along the lines of the stability analysis of Chapter 2, we prove convergence
of the closed loop system with a PI controller. To reconstruct unavail-
able variables, we filter measurements through an observer. Realistic
simulations prove the relevance of the proposed controller.

A large part of the material presented here has appeared at interna-
tional conferences. Publications [36], [39] and [38] refer to Chapter 2,
and publication [37] and [35] refer to Chapter 3.



CHAPTER 1

PROCESS DESCRIPTION AND

PROBLEMATIC

DESCRIPTION DU PROCÉDÉ ET
PROBLÉMATIQUE

Dans ce chapitre nous détaillons le procédé de production
d’hydrocarbure. Nous nous intéressons plus particulièrement à la tech-
nique d’activation par gas-lift. Après un certain temps, les puits ne sont
plus capables de produire de façon dite "naturelle". Il est nécessaire de
leur fournir de l’énergie, soit seulement pour amorcer la production, soit
de façon continue pendant toute la durée de l’exploitation, on a alors re-
cours à des moyens d’activation. Dans la Section 1.1, nous décrivons les
éléments du processus de production, du réservoir aux tuyaux d’export
d’huile et de gaz. Ensuite nous expliquons les principes de l’activation
par gas-lift. La production doit atteindre certains objectifs tout en re-
spectant de nombreuses contraintes, c’est ainsi que sont définis les con-
ditions d’exploitation. Il faut en particulier tenir compte des conditions
opératoires optimales pour chaque puits mais également des effets induits
par leur interconnexion. Ce compromis est présenté dans la Section 1.2.
La complexité des opérations est amplifiée par la présence d’instabilités.
Nous en donnons l’illustration à l’aide de données provenant d’un site
d’exploitation.

In this Chapter, we detail the process of oil production with the gas-lift
activation techniques. In Section 1.1, we give an overview of a typical oil
production process, which goes from the reservoir to the export pipes.
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Figure 1.1. Typical oil production process system (schematic

borrowed from [29]).

Then, we explain the principles of the gas-lift activation at the well scale.
In Section 1.2, we stress the numerous objectives and constraints defining
the operating conditions and we show an on-site example of an unstable
production regime.

1.1. Operations description

We describe the different period of a well life. In particular, we focus on
the stage where the well is not able to “naturally” produce anymore and
where it requires some help from activations techniques. We detail some
of these techniques. We also describe a typical oil production process.
Then we give a precise description of the continuous gas-lift activation
technique.

1.1.1. Artificial lifting. — Figure 1.1 shows a typical oil production
process system. Effluents from the reservoir are produced by the wells.
Then, they go through the treatment process which mainly consists in a
phases separation. At last salable oil and gas are sent for export.
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In the early stages of their lives, most wells flow naturally to the surface
and are thus called flowing wells. This assumes that the pressure in the
reservoir is sufficient to overcome the pressure gradient of the oil column.
When this assumption fails wells die.

Two causes can lead to such situations: either the pressure in the
reservoir becomes too low, or the pressure gradient in the well sharply
rises over time. The pressure in the reservoir naturally decreases when
the produced fluids are not replaced. This phenomenon is referred to
as reservoir depletion. In the meantime, total pressure losses in the col-
umn usually tend to raise: density of the fluids increases and less gas is
produced.

Artificial lifting methods are needed. They enable production from
already dead wells or help to increase productivity of flowing wells. There
exist two artificial lift methods: one solution is to artificially increase the
pressure at the bottom of the well, another mean is to artificially decrease
the pressure gradient in the well.

In the first solution, method pumps are used. Their injection point
below the liquid level and, therefore, these pumps increase the well up-
stream pressure. Periodic injection of compressed gas below the liquid
level in the well can also be considered. The expansion energy of the
gas is used to push the liquid up to the surface. Another solution is
the continuous gas-lift activation method. Here, the idea is to continu-
ously inject high pressure gas at the bottom of the well. Gas mixes with
the fluids from the reservoir and the overall density of the liquid flowing
in the well decreases. Both methods belongs to the gas-lift activation
method family. They use the same hardware, although they rely on two
completely different principles. In the first case, the flow is composed
of a succession of slugs of liquid pushed by bubbles of gas, whereas, in
the second case, the flow should be composed of an homogeneous mix of
liquid and gas. More details on this subject can be found in [41] and [11].

Gas-lift activation techniques can be used during the whole life of a
well, from the time it start to die out to its actual closing. Usually,
the continuous gas-lift method is used first and then, when reservoir
pressure and liquid flow rates eventually drop below a critical point,
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intermittent gas injection is preferred. Main advantages of gas-lift over
other activation methods are as follows (see [1] for more details) :

– In contrast to most other artificial methods, gas-lifting offers a high
degree of flexibility. In practice, this means that any gas-lift instal-
lation can be easily modified to accommodate possibly extremely
large changes in production rates

– In fields where wells produce substantial amount of gas from the
reservoir, gas-lifting is technically and economically very attractive

– Compared to other techniques, the required surface wellhead equip-
ment is not obtrusive and is little space demanding.

– gas-lift techniques can be used during the entire productive time of
the well until it is fully depleted.

Two of the main disadvantages are:

– Induced high separator pressures are very detrimental to the oper-
ation of any kind of gas-lift installations

– Gas-lifting is usually less energy efficient than the other kinds of
artificial lift methods

More than 53% of the wells producing more than 10 bpd are gas-lift
activated. Our work focuses on this technique, and, more precisely, on
the continuous gas-lift activation. This a prime solution considered to
improve wells production (in the following, intermittent techniques are
omitted).

1.1.2. Continuous gas-lift activation. — A gas-lifted well
schematic is presented in Figure 1.2. High pressure gas is injected at the
wellhead (point A in Figure 1.2) and flows down in the annular space, lo-
cated between the drilling part called casing (B) and the production pipe
called tubing (D). Then, it enters the production pipe at the bottom of
the well (point C in Figure 1.2) and mixes with the fluids produced from
the reservoir. The resulting mixture flows up to the surface. Equipment
usually consists of a flow control valve for the gas injection at the surface
(A), a simple orifice for the gas injection at the bottom of the well and
production choke at the wellhead (E). This choke is actuated(1). On some

(1)This is a very general case.
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Figure 1.2. Scheme of a gas-lift activated well.

wells, unloading valves are installed between the casing and the tubing.
They have predefined pressure operating ranges and are normally only
open at the well start up. Usually, only wellhead measurements (e.g.
tubing pressure and casing pressure) are available.
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1.2. Operating conditions and efficiency

Here, we explain the selection rules that define the optimal gas-lift op-
erating conditions for a single generic well. Then we show that numerous
interconnexions between wells prevent them from being operated at their
optimal conditions. Moreover field operations are all the more difficult
that solving this highly coupled optimal problem is not the only issue,
preventing wells from being unstable has also to be addressed.

1.2.1. Normal operating conditions. — At the single well scale, the
main idea is to derive from Bernoulli’s law the response curve, a static
equation giving the oil production with respect to the gas injection flow
rate. Defining a linear cost function depending on oil price and gas cost
let us compute the optimal gas-lift injection. At the multi-well scale,
we give some insights of the constraints arising from the interconnexions
between wells.

1.2.1.1. At the single well scale. — Given a particular gas-lifted well
and a hardware configuration, one can set-up the production rate by
acting upon two parameters (inputs), u the production choke opening
and qgi the gas injection rate. We now detail the impact of those two
parameters on the production. A nomenclature is given in Table 1. A
natural objective is to maximize the oil production while minimizing the
need of gas.

1.2.1.1.1. Gas injection impact. — To study the effect of a gas injection
rate variation, we assume that the production choke opening is constant.
From the Bernoulli equation, one can derive that the pressure gradient
in the tubing has a steady state value

pr − ps = ∆pdrawdown + ∆pchoke + ∆pgravity + ∆pfriction(1)

Parameters ∆pdrawdown, ∆pchoke, ∆pgravity and ∆pfriction represent pres-
sure gradients in the tubing due to the draw down, the production choke,
gravity and friction respectively. These four terms depend on qgi and qlp
(the injected gas flow rate and the produced liquid flow rate respectively).
Therefore, from equation (1), qlp one can predict the amount of oil pro-
duced for a given gas injection rate qgi. When gas injection is low, the
two dominant terms are ∆pdrawdown and ∆pgravity . Then, equation (1)
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reduces to

pr − ps = ∆pdrawdown(qlp) + ∆pgravity(qlp, qgi)

where pr and ps are the reservoir pressure and the well downstream pres-
sure, respectively. By the implicit function theorem, this defines φ such
that qlp = φ(qgi), and we have

φ′(qgi) = − ∂gi∆pgravity

∂lp∆pdrawdown + ∂lp∆pgravity

with the obvious notations ∂gi = ∂
∂qgi

and ∂lp = ∂
∂qlp

. The pressure

gradient due to gravity effect (∆pgravity) decreases with the gas injection
rate and increases with the liquid flow rate. The pressure gradient in the
draw-down zone (∆pdrawdown) increases with the liquid flow rate from the
reservoir. Therefore, for low amount of gas injection rate

φ′ > 0

When large gas injection rate are considered the two predominant
terms in equation (1) are ∆pdrawdown and ∆pfriction. Then equation (1)
reduces to

pr − ps = ∆pdrawdown(qlp) + ∆pfriction(qlp, qgi)

One finds

φ′(qgi) = − ∂gi∆pfriction

∂lp∆pdrawdown + ∂lp∆pfriction
< 0

since, under these conditions, the pressure gradient due to frictions effects
increases with the gas injection rate and with the liquid flow rate

In summary, at low gas flow rate, injecting more gas tends to raise the
liquid production, but at high flow rate, it decreases it. In between these
two regions there is a (possibly non unique, though unique in practice)
gas-lift optimal point where φ′ = 0.

1.2.1.1.2. Choking impact. — In a first approximation, it is usually as-
sumed that choking mainly affects the pressure gradient in the produc-
tion choke. Denoting u the choke opening and assuming qgi constant, we
define ψ such that qlp = ψ(u). From equation (1), one finds that

ψ′(u) = − ∂u∆pchoke

∂lp∆pgravity + ∂lp∆pdrawdown + ∂lp∆pfriction + ∂lp∆pchoke

> 0
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since all pressure gradients increase with the liquid flow rate, and because
the gradient in the production choke decreases with the opening u.

Therefore, wells ought to be operated at maximum production choke
opening.

1.2.1.1.3. Performance curve and economic considerations. — Thanks
to the formulas presented in the two previous paragraphs one can get
an idea of the shape of a typical performance curve, i.e. the function
expressing the oil production with respect to the gas injection rate and to
the production choke opening. More detailed computations can be found
in [11], where different methods based on the energy balance equation
are given such as the more widely accepted procedure by Poettman and
Carpenter.
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Figure 1.3 shows a typical performance curve derived from
OLGAr2000 simulations. OLGAr2000 is a Transient Multiphase Flow
Simulator. A realistic dynamic oil-gas model is used along with semi-
implicit numerical solver (see [32] for details). A complete numerical
set-up is given in Appendix A, Table 1. This curve possesses a gas injec-
tion for which the liquid production reaches an optimum. Assuming that
an infinite amount of gas is available, the optimal gas injection can be
defined as follows. It correspond to the operating point at which injecting
more or less gas will lead to less profit. Profit is defined as the price of
oil times the oil produced minus the price of gas times the amount of gas
used. Therefore, optimal gas injection is the one at which the derivative
of the performance curve equals the cost of the used gas divided by the
production profit. Usually, it is slightly less than the point cancelling the
derivative of the performance curve.

1.2.1.2. At the multi-well scale. — We have been focusing on single
wells. Yet, one also has to take into account constraints that arise from
the coupling between the wells. A single well sees the rest of its networks
through the following parameters (see Figure 1.4 for a complete view of
the system)

– the gas availability,
– the pressure of the gas network,
– the pressure of the reservoir,
– the pressure downstream the production choke.

In facts, each of the three pressures correspond to a separate network.
The amount of gas available is upper bounded by the number and the
capacities of compressors on the network. The pressure at the upstream
of the production choke must match the surface equipments constraints
(e.g. it must be higher than a defined limit allowing the flow in the
export pipe).

Bottom hole pressure variations create a local gradient in the reservoir
that propagates in a way depending on the physical properties of the
geological formation. Presence of faults, change of porosity and/or per-
meability create convoluted transient gradients that affect the reservoir
pressure at the bottom of the neighbor wells.
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Well production is globally optimized on the basis of technical con-
straints and economical and strategic objectives. Constraints such as
safety, production rules, reservoir extraction policy (maximum flow rate
per well, production quotas etc...), well-bore formation interface and ca-
pacity have to be taken into account. The optimal operating points for
a set of wells is often different from the set of optimal operating points
for each well. In practice, these constraints are handled by a team of
engineers based on geophysical parameter computations.

1.2.2. Unstable operations conditions and their cost. — As we
have seen it, finding optimal operating points can imply numerous con-
straints. Yet, a very important problem is usually forgotten and under
estimated. Wells are often not at steady state. They are often locked in
oscillating modes, called headings, which correspond to regular and/or
irregular changes in flow parameters (pressures and fluid rates) occurring
in the system. Figure 1.5 shows an on-site example of well instabilities.
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There is a slug production as can be seen on the oil flow from the separa-
tor (the oil flowing from the well could not measured). The phenomenon
seems periodic even though any absolutely repeated pattern cannot be
clearly seen.

1.2.2.1. At single well scale. — The average amount of oil produced in
unstable conditions is much lower than predicted.

Finally, let us recall that operating in unstable conditions sharply in-
creases the risk of severe reservoir damage and troubles in the draw-down
zone.

1.2.2.2. Instabilities propagation. — As described in Section 1.2.1.2 a
well is part of a highly coupled system of wells, surface installations and
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reservoirs linked by a network of pipes. In particular, each time a well
becomes unstable, there is a risk for the other wells to be contaminated.
In normal situations, because the pressure of the separator is often con-
trolled, the slugs can be absorbed and do not lead to changes of the
downstream pressures of the other wells. Yet, these margins are very
thin and if the pressure in the export pipe (see Figure ??) is close to
the separator pressure, a decentralized controllers structure is not able
to cope with the change of flow inlet. The separator pressure sharply
increases which, in turn, destabilizes the other wells. To overcome this,
predefined safety rules (e.g. to shut down a well when its downstream
pressure is above a certain constant) are used. Keeping a majority of
wells quite stable is often preferred to producing from all wells. This non
optimal strategy is very frequent in practice.

Similarly, wellhead casing variations should not propagate upstream
in the gas network because gas flow controller aims at guaranteing a
constant gas injection however the upstream or downstream pressures
may vary. Yet, if the upstream pressure in the gas network is close to
the wellhead pressure in the casing, the gas control valve cannot absorb
the oscillations anymore.

Finally, the reservoir can also be seen as a network through which
instabilities (cyclic changes of pressure and flow rates) can propagate.
This last point should not be overlooked.

In summary, instabilities have a very high cost. Not only do they lower
a single well productivity, but also they propagate and cause shut downs,
safety alarms trigger, compressor failures and eventually negatively im-
pact on the productivity of the whole field.



CHAPTER 2

A DYNAMICAL SYSTEM APPROACH

TO THE STUDY OF INSTABILITIES

UNE APPROCHE DYNAMIQUE DE
L’ANALYSE DES INSTABILITÉS

Dans ce chapitre nous présentons notre contribution principale : la
modélisation et l’analyse de la stabilité des deux instabilités les plus
répandus pour les puits activés en gas-lift. Dans un premier temps nous
nous intéressons à l’instabilité la plus référencée dans la littérature : le
casing-heading. Dans la Section 2.1 nous décrivons ce phénomène et nous
en expliquons le mécanisme. Grâce à une réduction du modèle présenté
par [3] nous montrons que le casing-heading peut être intreprêté comme le
cycle limite d’un modèle à deux dimensions. Nous en donnons une preuve
mathématique en nous plaçant dans un cadre relativement général non
Lipschitz. En résumé, le casing-heading apparaît résulter du couplage
entre les deux parties qui composent le puits.

Une idée simple pour éradiquer ce phénomène pourrait être de faire en
sorte que les deux parties du puits se comportent de façon indépendantes.
Un tel découplage est techniquement réalisable. Malheureusement, dans
le système ainsi découplé il peut apparaître un autre type d’instabilité : la
density-wave. Ce phénomène résulte de la propagation d’une succession
de bouchons liquides et de bulles de gaz dans le puits. Son étude néces-
site une modélisation spécifique sous la forme d’un modèle à paramètres
distribués, que nous présentons dans la Section 2.2. L’analyse de la sta-
bilité de ce système dynamique nous permet d’interpréter la density-wave
comme une bifurcation.

Le puits peut donc être modélisé par la combinaison des modèles
présentés aux Sections 2.1 et 2.2. Il est l’interconnexion d’un modèle
à paramètres distribués avec un système dynamique du premier ordre.
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La stabilité est alors étudiée dans la Section 2.3 grâce au théorème des
petits gains. Nous nous intéressons particulièrement à l’évolution du
comportement du puits lorsque certains paramètres évoluent. Les résul-
tats obtenus sont en accord avec les règles utilisées généralement sur site
(et vont d’ailleurs au-delà).

In this chapter lies our main contribution: the modeling and the stabil-
ity analysis of the two main unstable phenomena occurring on gas-lifted
wells. In Section 2.1, we focus on the so-called casing-heading instability.
This is the best-know unstable mechanism. We give a reduction of the
model proposed in [3] in order to analyse the casing-heading as a limit cy-
cle of a two-dimensional model with switches. In Section 2.2, we describe
the density-wave instability. The propagation in tubing is modeled as a
distributed parameters model, which let us analyse its stability. At last,
in Section 2.3, we propose a complete model for the well as the connexion
of a stable first order model (the casing) and a distributed parameters
model (the tubing). Stability analysis is performed thanks to the small
gain theorem. Well known operating rules are shown to be in accordance
with the stability properties of the model.

2.1. The casing-heading instability

In this first section, we focus on the best-known and best understood
of the unstable phenomena: the casing-heading instability. [9] lists three
types of headings that can be encountered. They are classified according
to where the free gas cyclically builds up and discharges: tubing head-
ing, formation heading and casing heading. This location-dependent ter-
minology tends to be replaced by a terminology where instabilities are
described by classes of mechanisms. Casing heading is the only one that
has kept is name, because not only has it been described for a long time
but its mechanism has also been understood in details.

In this section, we first describe this phenomenon, then we recall the
finite-dimensional modeling of [24]. Thanks to this model, we derive a
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complete description of the known oscillating mode under the form of a
limit cycle of a 2D model with switches. Mathematical proof is given
with relatively few hypotheses on the model properties. This stresses
what, in the physical structure of the well, leads to the casing-heading
phenomenon.

2.1.1. Casing-heading description. — This cyclic phenomenon has
been described in many publications such as [43], [42] and [26]. Orig-
inally, its sequence was divided into 4 phases in [43] and in seven in
[26]. Figure 2.2 shows an example of casing-headings obtained with
the OLGAr2000 simulator. We choose to describe casing-heading as a
four stages phenomenon (shown in Figure 2.2). One should report to
Figure 2.1 for an illustration of the terms involved in the following de-
scription, notations are given in Appendix B, Table 1.

1. Starting with a downhole annulus pressure that is lower than the
bottom-hole pressure, there is no gas flow through the gas injection

valve into the tubing. As the gas flow rate at the surface is kept
constant the pressure in the casing builds up.

2. After some time, the annulus pressure exceeds the downstream pres-
sure in the tubing. Gas is injected into the tubing. The injected
gas lowers the tubing gradient. The bottom-hole pressure begins
to decrease. Simultaneously, the production rate and the wellhead

tubing pressure begin to increase.
3. Gas now flows from the annulus into the tubing at an increasing

rate. Because insufficient gas can be supplied, the pressure in the
casing sharply decreases. Oil and gas are produced through the
production choke at a high rate. Wellhead tubing pressure reaches
a maximum and the bottom-hole pressure reaches its minimum.

4. With decreasing annulus pressure, the gas flow rate entering the
tubing drops. Therefore, the gradient in the tubing gets heavier, and
the bottom-hole pressure starts to increase again. The production
rate and the wellhead pressure decrease again. The bottom-hole
pressure equals the annulus pressure, the gas injection in the tubing
stops. The whole system reaches Phase 1 of the description
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2.1.2. Modeling. — Different types of models have been developed
to represent this instability. For example in [43], a complete and very
detailed model is presented. It not only takes into account the one di-
mensional propagation in the production pipe, but also the shape of the
bubble of gas entering the tubing and the liquid film fall-back. The
results of this very precise modeling are compared with measurements
obtained from a laboratory-scaled experiments. The aim of such a fine
mathematical description is to predict the well behavior so that optimal
operations set point can be designed. Such an approach relies on the idea
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with qgi = 0.2kg/s simulated with OLGAr2000 (numerical set

up given in Appendix A, 2). The four main stages of the phe-

nomenon are highlighted.
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that it is possible to prevent instabilities by a better design of installa-
tions. Here, we aim at showing that it is possible, thanks to feedback
control laws based on a better understanding of the physical mechanism,
to alleviate instabilities while operating in the same conditions.

For control and mathematical analysis purposes, we seek the simplest
model capturing the well dynamics. In [18], [19] and [3], the following
three balance ordinary differential equations model is shown to accurately
represent the casing-heading dynamics

(2)











ṁ1 = qgi − qg
ṁ2 = qg − qgp

ṁ3 = ql − qlp
Where m1 andm2 are the masses of gas in the casing and in the tubing,

respectively, and m3 is the mass of liquid in the tubing. Respectively,
qgi, qg and qgp represent the flow rates of gas at the wellhead, into the
tubing at the injection depth, and the flow rate of gas produced through
the production choke. ql and qlp represent the flow rate of liquid coming
from the reservoir and produced at the wellhead. All those flow rates are
described by the following laws

qgi = constant flow rate of gas

qg = Cg

√

ρc(L) max{0, pc(L)− pt(L)}
qpc = Cpc

√

ρm(0) max{0, pt(0)− ps}Ψ

qgp =
m2

m2 +m3
qpc

qgl =
m3

m2 +m3
qpc

qr = PI(pr − pt(H))

Cg, Cpc and PI are constants. Ψ is the production choke opening, it
ranges from 0 to 1. H is the well depth and L the injection depth.
Notice that the liquid flow rate from the reservoir is proportional to the
term pr − pt(0), (usually referred to as draw-down). This constant PI
characterizes the reservoir response and stands for Productivity Index.
pc(L), pt(L) represent the pressures at the injection depth on the two
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Figure 2.3. Scheme of the well and notations used in equa-

tion (2) (the casing and the tubing part have been artificially

separated to improve readability).

sides of the valve. pc(L) is the upstream pressure in the casing, and
pt(L) is the downstream pressure in the tubing. ρc(L) is the gas density
in the casing at the injection depth. pt(0) is the pressure in the tubing
at the wellhead and ps the pressure in the separator.

2.1.3. Stability study. — With the exception of the part located
between the bottom-hole and the gas injection point which is filled with
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Figure 2.4. Unstable well behavior, casing heading, obtained

with qgi = 0.2kg/s simulated with equation (2)

liquid, we assume that the flow in the tubing is homogeneous. Using the
ideal gas law and following [3], densities can be computed as follows
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ρc(L) =
M

RTc
pc(L)

ρm(0) =
m2 +m3 − ρl(H − L)St

LSt

We also get the pressure expressions from the following equations

pc(L) =

(

RTc

VcM
+
gLc

Vc

)

m1(3)

pt(0) =
RTt

M

m2

HSt − ν0m3

(4)

pt(L) = pt(0) +
g

St

(m2 +m3 − ρl(H − L)St)

pt(H) = pt(L) + ρlg(H − L)

M , R, g represent the molar mass of the gas, the ideal law constant and
the gravity respectively. St, Lc, Vc are the tubing section, the casing
length and the casing volume. The casing and tubing temperatures are
denoted Tc and Tt respectively.

Equation (4) giving pc(L) is a first order approximation of an atmo-
spheric model.

Figure 2.4 shows an unstable behavior of the casing heading type sim-
ulated for qgi = 0.2kg/s with equation (2). As in Figure 2.2 we see that
there is a first phase with no injection. Then injection begins as the an-
nular pressure builds up to the tubing pressure. Oil and gas are produced
at the well head. At last the casing can not face the gas demand and
the annular pressure decreases. Gas injection and liquid production stop.
Model (2) capture the main dynamics of the casing heading phenomenon.

This model allows us to give here some insights on the well stability
(this point will be developed further in Section 2.3). Figure 2.5 and 2.6
illustrate the stability. One sees that for low values of the gas injection
rate the well will be unstable. Roots crossing the imaginary axis are at
birth of this instability (see Figure 2.6).

2.1.4. Casing-heading as a limit cycle. — We now show that the
casing-heading phenomenon can be depicted as the limit cycle of a two-
dimensional model with switches. This study has been published in the
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model (2) with gas injection rate qg ranging from 0.01 to 7 kg/s
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points are represented in green and unstable in red.

IFAC world congress in Praha (see [36]). The proof is given for a system
of the form (2) under a limited set of hypotheses on the flow rate.

Studies reveal that, around a casing-heading set-point, the system is
well modeled by a two dimensional approximation (the masses of oil and
gas in the tubing are highly correlated). This representation is handy to
interpret the casing-heading oscillations as a limit cycle. Our contribu-
tion is to explain the observed planar limit cycle (e.g Figure 2.2 for a sam-
ple OLGAr2000 well simulation) through the Poincaré-Bendixon theo-
rem. This system is related to other work on hybrid systems, such as the
two-tank system addressed in [22], or the generalization of the Poincaré-
Bendixon theorem to planar hybrid systems by [33]. Yet, several specific
issues have to addressed here. The model includes two switching curves.
These model the flow rate through the two valves (A and E on Figure 1.2).
According to classic Saint-Venant laws (refer to [2]) the flow rate is non
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Figure 2.6. Roots of model (2) are represented in the complex

plane for gas injection ranging from 0.01 to 7 kg/s. Color axis
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differentially smooth around zero. The model is thus non differentially
smooth across the switching curves. Therefore, proving existence and
uniqueness of the trajectories requires special care and does not directly
derive from a Lipschitz-continuity assumption.

2.1.4.1. Dynamics definition and hypotheses. —

Physical hypotheses. — We assume that during the casing-heading
phases the oil mass is proportional to the gas mass in the tubing. There-
fore, we only need two ordinary differential equations to describe the
system. For sake of simplicity, we denote x = m1 and y = m2.

We represent the behavior of the well around an unstable set point by
the following dynamics over [x, x]× [y, y] ⊂ R

+ × R
+

(5)

(

ẋ

ẏ

)

=

(

εqgi(x)− qg(x, y)
qg(x, y)− µqgp(y)

)
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We note X , [x, x], Y , [y, y], X , (x, y)t and

Ẋ = F (X) = (F1(x), F2(x))
T .

The positive parameters ε and µ stand for the openings of valves A and E.
φ(·, X0) denote the solution of equation (5) with X0 as initial condition.

Mathematical hypotheses and physical justifications. — We assume that
both qg and qgp vanish over their definition intervals. Let ∂F o

g and ∂F o
gp

be the boundaries of the sets q−1
g (0) and q−1

gp (0). We assume the following
hypotheses hold.

(H1) : qgi : R→ R is C1, strictly decreasing and does not vanish.
(H2) : qg = gg ◦ τg

– τg : R
2 → R, is C2, and strictly increasing w.r.t x and y.

– gg : R → R
+, is C0, strictly increasing over R

+, C1 over
R/{0}, and non Lipschitz at 0. gg(0) = 0. g′g is decreasing
over R

+\{0}. g′g ∼ tλ with −1/2 < λ < 0.
(H3) : qgp = ggp ◦ τgp

– τgp : R
2 → R, is C1, strictly increasing w.r.t. y, and does not

depend on x.
– ggp : R → R

+, is C0, strictly increasing over R
+ and C1 over

R/{0}, non Lipschitz at 0. ggp(0) = 0.
(H4) : τg and τgp vanish over X × Y . We define ∂F o

g , τ−1
g (0) and

∂F o
gp , τ−1

gp (0).

In order to construct a polygon P such as defined later on in Sec-
tion 2.1.5.1, we need some further assumptions.

(H5) : ∀x ∈ X , ẏ(x, y) < 0

(H6) : ẋ(x, ygp) < 0

(H7) : ∀x ∈ X , τg(x, y) ≤ 0

(H8) : ∀y ∈ Y , τg(x, y) ≤ 0

where, thanks to the continuity of qgp, ygp , max{y/qgp(y) = 0}.
One last assumption (H9) is that a constant K, uniquely defined later

on (equation (20)) in Section 2.1.6.3 by the functions above, is not zero.

Existence conditions of a limit cycle. — Let Ω(φ) be the limit set of φ.
According to the Poincaré-Bendixon theorem as expressed in [31], the
fact that Ω(φ) contains no critical point combined to the uniqueness of
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the solution of equation (5) is sufficient to guarantee the existence of
a limit cycle. On the other hand, exhibiting a positive invariant set
containing no stable equilibrium implies that Ω(φ) contains no critical
point. Therefore we can simply check that

– there exists a positive invariant set (this is shown in Section 2.1.5),
– given a particular initial condition the solution is uniquely defined

(this is addressed in Section 2.1.6).

2.1.5. Positive invariance. —

2.1.5.1. Some useful lemmas. — Let P be a polygon ((Pi)i∈[1,N ] its verte-
ces) such that

(6) ∀i ∈ [1, N ], ∃λ such that
−−−−→
PiPi+1 = λF (Pi)

Classically, P is a positive invariant set if and only if

(7) ∀X0 ∈ ∂P, ∃t > 0 s.t. ∀ε ∈ [0, t] : φ(ε,X0) ∈ P

Lemma 1. — Assume that F is Cn on a neighborhood of X0, with X0 ∈
[Pi, Pi+1]. Define u = P1×P2

‖P1×P2‖
. If there exists k ∈ [1, n] s.t.















F (Pi)×
djφ

dtj
(0, X0) · u = 0, j = 1..k − 1

F (Pi)×
dkφ

dtk
(0, X0) · u > 0

then condition (7) holds.

Proof. — A sufficient condition for condition (7) to be satisfied is that
−−−−→
PiPi+1 ×

−−−−−−→
Piφ(ε,X0) · u > 0

This is equivalent to

(8) A(ε,X0) = F (Pi)×
−−−−−−−→
X0φ(ε,X0) · u > 0

Since F is Cn on a neighborhood of X0, an expansion of A(·, X0) is

A(ε,X0) = εk−1(F (Pi)×
dkφ

dtk
(0, X0) · u+ o(1))

Therefore A(·, X0) is strictly positive and condition (7) is satisfied.

Similarly one can prove that
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Lemma 2. — Let X0 ∈ [Pi, Pi+1] and (j, l) ∈ {(1, 2); (2, 1)}. Assume

that Fj(Pi) = 0. If Fl is continuous around X0 and Fj is C1, a sufficient

condition leading to (7) is

(9)

(−1)j ẋl(Pi)ẋj(X0) > 0 or
{

ẋl(Pi)ẋj(X0) = 0

(−1)j ẋl(Pi)ẍj(X0) > 0















Corollary 1. — If Fj(Pi) = 0 and if Fj and Fl are only C0, a more

restrictive condition is

(−1)jẋl(Pi)ẋj(X0) > 0

2.1.5.2. Positive invariant set candidate. — Two curves play a key role
in the construction of the candidate rectangle P = (P1P2P3P4). These
are the set {(x, y)/ ẋ = 0} and the set {(x, y)/ ẏ = 0}. We show that
this rectangle, which is illustrated in Figure 2.7, satisfies equation (6).

Construction of P1, P2 and P3. — Let ψ be defined by

ψ(x) , εqgi(x)− qg(x, ygp)

From (H6) and (H8), ψ(x) > 0 and ψ(x) < 0. Since ψ is continuous,
increasing, we can uniquely define

x1 = max{x/ψ(x) = 0}

We note P1 , (x1, ygp). At that point, both ẋ and qgp vanish. Further,
similar arguments relying on (H5), and (H2)-(H8) respectively, uniquely
define P2 , (x1, y2) with y2 , min{y/ẏ(x1, y) = 0} and P3 , (x3, y2)

with x3 , max{x/ẋ(x, y2) = 0}.
Construction of P4. — Let P4 , (x3, ygp). [P3, P4] is tangent to the field
at P3. Further, [P4, P1] is tangent to the field at P4. This arises from
the following argument. Since qg is cancelling at (x, ygp) and strictly
positive at P1, we can choose ε parameter in equation (5) such that
[P4, P1] ∩ ∂F o

g 6= ∅. Therefore qg(P4) = 0. As a consequence, ẋ(P4) >

0 and ẏ(P4) = 0.
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2.1.5.3. Intersections with switching lines. — Let X2
g , (xg, ygp) with

xg = max{x/(x, ygp) ∈ [P4, P1] ∩ ∂F o
g }. Remembering that qg(P3) =

εqgi(P3) > 0, we conclude [P3, P4] ∩ ∂F o
g 6= ∅. We note X1

g , (x3, yg)

with yg , max{y/(x3, y) ∈ [P3, P4] ∩ ∂F o
g }.

2.1.5.4. Positive invariance. — Let X0 be a point on the side of the
rectangle. We want to prove that the trajectory φ(·, X0) = (φx, φy)

t

starting at X0 remains inside P for t > 0. We assume that trajectories
are uniquely defined, this is proven at Section 2.1.6.

Using Lemma 2 at points where F2 is not C1. — Let X0 ∈ [P1, P2].
F1 vanishes at P1, so F1 being C1 and F2 only continuous around X0

will complete the list of hypotheses needed to apply Lemma 2. F2 is
continuous by definition and F1 is C1, because ∀X0 ∈ [P1, P2]

qg(X0) ≤ qg(P1) = εqgi(P1) > 0

Therefore, checking condition (9) of Lemma 2 will prove that the trajec-
tory starting at X0 goes inside (P). If X0 ∈]P1, P2] the condition rewrites
−ẏ(P1)ẋ(X0) > 0. As −qg is decreasing w.r.t. y, ẋ(X0) < 0. Adding
that ẏ(P1) > 0 ensures that the condition holds. If X0 = P1 the condi-
tion rewrites −ẏ(P1)ẍ(X0) > 0. As ẍ(X0) = −∂yqg(X0)ẏ(X0) < 0 this
condition holds. Following along the same lines it is easy to check that
Lemma 2 can be applied at every point of ∂P except X1

g and [P4, P1].
At these points the C1 condition is not verified. Notice also that at each
vertex two conditions have to be verified, one for each side.

Using Corollary 1 at points where F1 and F2 are only C0. — When X0

is an element of X1
g∪]X2

g , P1] none of F coordinates vanish, therefore we
can simply use the fact that F is continuous to apply Corollary 1. So for
X0 = X1

g the condition is −ẋ2(P3)ẋ1(X0) > 0 which is easily checked. At
X0 ∈]X2

g , P1] the condition is ẋ1(P4)ẋ2(X0) > 0.

A proof by contradiction when X0 ∈ [P4, X
2
g ]. — Neither Lemma 2 (F2

is not C1) nor Corollary 1 (ẏ(X0) = 0) can be used here. Yet, we can
prove that a solution starting at X0 cannot go below y = ygp. Assume
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that there exists t2 such that φy(t2) < xgp
2 , define t1 such that

(10)

{

∀t ∈]t1, t2], φy(t) < xgp
2

φy(t1) = xgp
2

Refering to the mean value theorem φy(t2) = φy(t1)+(t2− t1)φ′
y(tc) with

tc ∈ [t1, t2]. φ′
y(tc) = 0 implies φy(t2) = φy(t1) which contradicts (10).

Finally, as the trajectory starting at X0 ∈ ∂P satisfies condition (7), P
defines a positive invariant set.

2.1.6. Existence and uniqueness of the trajectories. — The first
hypothesis required by the Poincaré-Bendixon theorem is the existence
and forward uniqueness of the solutions. Existence of a solution of (5)
starting at X0 ∈ X × Y follows from the continuity of F . Uniqueness of
a solution of (5) starting at X0 ∈ (X ×Y)/(∂F o

g ∪∂F o
gp) follows from the

differentiable continuity of F around X0.

2.1.6.1. Decoupling. — Consider X0 ∈ [P4, X
2
g [⊂ ∂F o

gp. qg is null at
P1 and increasing with respect to x, so it cancels over [P4, X

2
g ]. In a

neighborhood of any point of this segment the system is decoupled. At
this point the system writes

{

ẋ(X0) = εqgi(x0)

ẏ(X0) = −µqgp(y0)

Both right hand sides are decreasing functions because qgp is increasing
and qgi is decreasing. Thus the solution starting at X0 is unique (see
[10]).

Let X0 ∈ ∂F o
g , such that F (X0) · ∇τg(X0) < 0. Let φ be a solution

starting at X0. F being continuous and bounded in a neighborhood of
X0, we can define T > 0 such that ∀t < T , X0φ(t) · ∇τg(X0) > 0.
Therefore the solutions of (5) are the solutions of the decoupled system

{

ẋ = εqgi(x)

ẏ = −µqgp(y)

Each equation has a unique solution, so there exists a unique solution
starting at X0.



2.1. THE CASING-HEADING INSTABILITY 41

(14)
{

ż = ∂xτg(ξ(y, z), y)(εqgi(ξ(y, z))− gg(z)) + ∂yτg(ξ(y, z), y)(gg(z)− µqgp(y))

ẏ = gg(z)− µqgp(y)

2.1.6.2. Transversality argument. — Let

X0 ∈ {X ∈ ∂F o
g/F (X) · ∇τg(X) > 0} ∪ [X2

g , P1]

Rewriting dynamics (5) in the (y, z) coordinates, with z = τg(x, y), yields

(11)

{

ż = F (ξ(y, z), y) · ∇τg(ξ(y, z), y)
ẏ = gg(z)− µqgp(y)

where ξ is a C2 function defined from the implicit function theorem
applied to z = τg(ξ(y, z), y). The decoupling argument does not hold
anymore, but we can use the transversality property at 0, ż is strictly
positive, therefore ∃α−, α+, T ∈ R

+\{0} such that ∀t ∈ [0, T ]

(12) z0 + α−t ≤ z(t) ≤ z0 + α+t

When y0 = y and z0 6= 0, ẏ(0) is strictly positive which allow us to define
β−, β+, T ∈ R

+\{0}

(13) y0 + β−t ≤ y(t) ≤ y0 + β+t

Now, consider two distinct solutions (y1, z1) and (y2, z2), let ey , y2− y1

and ez , z2 − z1. The key of the proof is to use equation (12) to define
an upper-bound to |e| = |(ey, ez)|. From (12) and (13) we deduce that
∀t ∈]0, T ] y(t) > y0 and z(t) > 0. Therefore the solution of (11) starting
at that point is unique. In the case of (y0, z0) = (y, 0) this property still
holds. The two solutions (y1, z1) and (y2, z2) cannot split but at t = 0.
Furthermore we define T ′ such that ey, ez and their derivatives remain
positive over ]0, T ′]. The dynamics rewrites as equation (14). We replace
the C1 functions ∂xτg, ∂yτg and qgi by their first order expansion around
X0 in the first equation of (14)

ż = A−Bgg(z)− Cµqgp(y) +Dz + Ey +R(y, z)(15)
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With A > 0, C > 0 and

lim
(y,z)→(y0,0)

R(y, z)

|(y, z)− (y0, 0)| = 0(16)

Using the mean value theorem, we can define (yc, y
′
c, y

′′
c ) ∈ [y1, y2] and

(zc, z
′
c, z

′′
c ) ∈ [z1, z2] such that the dynamics of e is

(17)











ėy =− µw′
gp(yc)ey + g′g(zc)ez

ėz =(−Cµw′
gp(y

′
c) + E + ∂yR(y′′c , z2))ey

+ (−Bg′g(z′c) +D + ∂zR(y1, z
′′
c ))ez

Recalling (16) one can define T ′, k and k′ such that over ]0, T ′]

ėz ≤ (−Cµw′
gp(y

′
c) + kE)ey + (−Bg′g(z′c) + k′D)ez

To define the upper-bound of (17), we recall the transversality argument.
g′g being monotonous, we deduce

(18)

{

0 ≤ ėy ≤g′g(z0 + α±t)ez

0 ≤ ėz ≤kEey + (−Bg′g(z0 + α±t) + k′D)ez

Notice that for z0 > 0 we do not need the linear bounds of (12) to derive
a proper upper-bound in (18). Yet, for z0 = 0 the upper-bound goes to
infinity, therefore we use that ż(0) is not zero. Remark also that this
kind of hypothesis is not required for ẏ. Integrating between s and t

(t < min(t′, t′′) and s > 0) gives

e(t) ≤
∫ t

s

A(u)e(u)du+ e(s)

with A(t) =

(

0 g′g(z0 + α±t)

kE (−Bg′g(z0 + α±t) + k′D)

)

Using |A| =
∑2

i,j=1|aij | we deduce

|e(t)| ≤
∫ t

s

|A(u)||e(u)|du+ |e(s)|

Therefore, the Gronwall inequality theorem([10]) yields

|e(t)| ≤|e(s)| exp

(
∫ t

s

|A(u)|du
)

(19)
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As the exponential term is bounded, the limit of the right-hand side of
equation (19) is also 0 when s goes to 0 which concludes the proof.

2.1.6.3. Non transverse case. — Define X0 such that X0 ∈ ∂F o
g and

F (X0) · ∇τg(X0) = 0. The initial conditions of equation (11) become
ż(0) = z(0) = 0, ẏ(0) < 0 and y(0) > ygp. In inequality (12), ż(0) = 0

yields α± = 0. The upper-bound |A(u)| goes to infinity as u goes to
zero. System (18) does not give further result. Yet, using y ∼ y0 + ẏ(0)t,
equation (15) yields

ż ∼ Kt−Bgg(z)

with

K = (E − Cµw′
gp(y0))(20)

The role of assumption (H9) appears here as a substitute to the transver-
sality property of Section 2.1.6.2. It implies that when the field is tangent
to the switching curve there exists a non vanishing higher order forcing
term (which actually arises from the coupling of the y dynamics onto the
z dynamics). Using L’Hospital’s rule, we find that Kt is the predomi-
nant term. Thus, for a given K, the solutions are positive or negative
exclusively. Therefore, if K < 0 we use the decoupling argument to con-
clude to uniqueness. If K > 0 we use z ∼ Kt2/2 instead. As t 7→ g′g(t

2)

is integrable around 0 the exponential term of the right-hand side of
equation (19) is bounded, therefore letting s go to zero yields e(t) = 0.

2.1.6.4. Conclusion. — Away from ∂F o
g ∪ ∂F o

gp uniqueness follows from
the differentiable continuity of F . Points at which the field points to-
ward the τg < 0 zone were studied in Section 2.1.6.1 where a decoupling
argument was used. Otherwise, when available, transversality was used
(see Section 2.1.6.2). Finally, the case of a field tangential to ∂F o

g was
addressed in Section 2.1.6.3. All cases being addressed, uniqueness is
proven.

2.1.7. A case study. — While appearing as a limit case of our result
(see (H2)), square roots are often used for valve modeling. Uniqueness
proof follows along the exact same lines except for the final points ad-
dressed in Section 2.1.6.3. Instructively, an alternative study leads to the
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Figure 2.7. Limit cycle (in blue) and positive invariant set

(rectangle P1P2P3P4) for the sample problem. Switching curves

∂Fo
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gp are represented.

conclusion. Let X = Y , [5/4−
√

13/8, 5/4], ε = 0.1 and µ = 2. Let

qgi(x, y) ,
√

2− x
τg(x, y) , 13/8− (x− 5/4)2 − (y − 5/4)2

τgp(x, y) , y
3

2

with gg = ggp ,
√

max(0, ·). Equilibrium points are unstable with pos-
itive real part complex conjugate poles. Hypotheses (H1), (H2), (H3),
(H4) are verified. Let us check hypotheses (H5), (H6), (H7) and (H8)
(with ygp = 0)

(H5) : ∀x ∈ X , ẏ(x, 5
4
) =

√

13
8
−
(

x− 5
4

)2 − 2
(

5
4

)
3

4 < 0
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(H6) : ẋ(5/4, 0) = 0.1
√

3/2− 1/4 < 0

(H7) : ∀x ∈ X , τg
(

x, 5
4
−
√

13
8

)

= −(x− 5
4
)2 ≤ 0

(H8) : ∀y ∈ Y , τg
(

5
4
−
√

13
8
, y
)

= −(y − 5
4
)2 ≤ 0

These hypotheses are also verified. Yet, α = 1/2, thus we substitute
Section 2.1.6.3 with the following study. Around X0 = (y0, 0) where the
field is tangent to ∂F o

g we have, y ∼ y0 + ẏ(0)t (ẏ(0) < 0). Equation (15)
now yields

ż ∼ −B
√
z +Kt

With B = −1.93 and K = (E − Cµ3/4y
−1/4
0 )ẏ(0) = 0.503. Us-

ing L’Hospital’s rule we compute: z(t) ∼ at2, with a = 1.38. As
|e(s)| = ◦(s2), equation (16) becomes

|e(t)| ≤ ◦(1)e
b(t−s)+(2− 1−B

2
√

a
) ln t

s

As 2 − (1 − B)/(2
√
a) = 0.757, letting s go to 0 implies that e(t) = 0.

Uniqueness is proven. Figure 2.7 shows the construction of the positive
invariant set and the limit cycle.

2.2. The Density wave instability

As predicted in Section 2.1, the casing-heading takes its origin from
the coupling of the tubing and casing dynamics through the gas-lift in-
jection. A simple idea to alleviate this phenomena is to keep the gas
injection critical, i.e. independent from the downstream pressure varia-
tions. This decoupling can be achieved thanks to a hardware upgrade
(new gas-lift gas design). In [42], it is advocated that such newly devel-
oped gas-lift valves ensure constant gas flow rate (at constant pressure in
the casing) even when tubing pressure is only 10% less than casing pres-
sure. The laterally asymmetric internal geometry of the nozzle-Venturi
creates an injection valve that reaches critical flow velocity with pressure
differential of only 10%. In [20], engineers from PDVSA report an in-
teresting case study on the installation of such NOVA valves on gas-lift
wells. The authors present interesting results in the case of simultane-
ous variations of casing and tubing pressures. Yet, this technology does
not address all possibly encountered cases. Cases where only significant
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tubing pressure variations are observed remain unsolved. In [15], some
“slugging problem in Brage wells” that “is not casing heading‘” is also
reported. This problem has not been solved by the use of Venturi-type
gas-lift valve.

This underlines that, even with a constant gas-lift injection, the dy-
namics of the well can be unstable. This instability cannot be predicted
by the model described by equation (2). The main assumption we have
used for its derivation is though very common. It states that the pressure
gradient reaches its steady state instantaneously. This is what is also im-
plicitly assumed in [8], [9], [5] and [4]. Yet, this assumption prevents
us from representing instabilities characterized by a fluctuation of the
gas/liquid ratio in the tubing, such as the one which has been pointed
out in [20] and [15]: the density-wave. In this instability, which exis-
tence was first demonstrated in [23], oscillations are confined in the tub-
ing while the gas injection rate is constant. Out-of-phase effects between
the well influx and the total pressure drop along the tubing are usually
reported at the birth of this phenomenon. Figure 2.8 shows an example
of a density-wave occurring on a well. This phenomenon is highly peri-
odic, a repeated pattern can be clearly recognized. The observed cycle
undoubtedly discards the hypothesis of casing-heading. The pressure at
the casing head is almost constant.

In this section, we propose an interpretation of the observed oscilla-
tions in the tubing of gas-lifted wells. A distributed parameter model
is derived for the propagation of pressure (system (35)). It describes
the dynamics as a transport phenomenon with state dependent bound-
ary condition. This equation is shown to be equivalent to a saturated
linear delay model (equation (37)) involving the gas fraction. Analysis
of the underlying characteristic equation is performed (for unsaturated
solutions) and show that the critical parameter is the amount of injected
gas. This is consistent with state-of-the-art and suggests a simple control
strategy which is developed in Section 3.2.

In Section 2.2.1, we detail the observed density-wave oscillating phe-
nomenon. In Section 2.2.2, we derive a reference distributed delay model
for the density propagation in the tubing. Main assumptions and the
use of Riemann invariant are explicited along with boundary conditions.
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Figure 2.8. Density wave occurring on a well. Casing-head

and tubing-head pressures (respectively pc(0) and pt(0)) are

represented as well as oil flow from the separator (Qls). Notice

that the casinghead pressure is almost constant, which demon-

strates that the gas injection is constant. Scales are omitted for

confidentiality reasons (courtesy of TOTAL).

In Section 2.2.3, stability analysis of the corresponding characteristic
equations is performed. Comparisons with OLGAr2000 are conducted
and stress the role of the amount of injected gas. This study has been
published in the Conference on Decision and Control, 2005, in Seville
(see [39]).

2.2.1. Density-wave description. — Figure 2.9 shows an example
of density wave instability simulated with the transient multiphase flow
simulator OLGAr2000. Typically, the depth of the well is 2500 m and the
reservoir pressure is 150 bar. Oil production has an oscillating behavior
consisting of 3 phases.
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Figure 2.9. Density wave simulated with OLGAr2000 (nu-

merical set up is given in Appendix A, Table 3).

1. There is no oil production at the surface but pL, the pressure at the
bottom of the well, is less than the reservoir pressure. Oil enters the
pipe, letting pt(L) get closer to 150 bar. This is the self regulating
mechanism of the well: the more is produced from the reservoir, the
greater pt(L) becomes and eventually the less is produced. pt(L) is
going to reach a constant which, in this case, is greater than 150 bar.

2. This phase is characterized by zero oil production at the surface and
from the reservoir (saturation of the oil flow rate at the bottom of
the well). The gas mass fraction, which is close to 0 in phase 1, gets
to a strictly positive constant in phase 2. Finally, the oil produced
from the reservoir in phase 1 reaches the surface creating a pressure
drop in the well.
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3. The pressure pL decreases below 150 bar, oil flow rate at the bottom
of the well increases and brings the fall of the gas mass fraction.

In words, the density wave can be interpreted as the propagation of the
mass fraction at the bottom of the well which is a result of a switching
boundary condition. We now propose a mathematical model.

pt(L)

pt(H)

0

H

z

L
qg

qlpqgp

ql

pt(0)

ps

pr

Figure 2.10. Scheme of

the tubing.

2.2.2. Proposed Model. — We pro-
pose to study the density wave instabil-
ity as a two phases flow problem in an
one-dimensional vertical pipe filled with
a mixture of liquid and gas (see Fig-
ure 2.10). The pressure at both ends pr,
the reservoir pressure and ps, the pres-
sure downstream the production choke are
considered constant. Liquid flows (oil and
water) enter the pipe at the bottom. The
flow rate is given by the difference of pres-
sure between the bottom of the pipe and
the reservoir. The gas injection rate is
considered constant (its value can be arbi-
trary updated for control purposes). No-
tations are given in Table 1. Thanks to
the choice of the slip velocity law (follow-
ing [17]), we demonstrate the existence of
a Riemann invariant, the gas mass frac-
tion, which we denote x in the following .
This lets the evolution of the distributed
variables be summarized by the evolution
of a single variable: this gas mass fraction,
x, or equivalently by the evolution of the
pressure at the bottom of the pipe, pL(t).
Therefore the well is represented by two
equivalent modelings. For sake of simplicity, depending on the studied
cases, we switch from one to the other modeling.
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2.2.2.1. Physics reduction. — We first summarize the main assumptions
which are used in the following:

(H’1) : We consider that the friction term in Bernoulli’s equation can
be neglected in comparison with the gravity term.

(H’2) : The gas velocity is assumed to be constant.
(H’3) : The productivity index is assumed to be also constant, which

means that the effluents mass flow rate from the reservoir is propor-
tional to the difference of pressure between the bottom of the well
and the reservoir.

(H’4) : The gas volume fraction is close to the gas mass fraction.
This assumption arises from the fact that in the density-wave case,
at a given depth in the tubing pipe, the mixture is either composed
almost only by oil or almost only by gas.

(H’5) : The slip velocity is defined by

vg − vl =
v∞
rl

as in [17]. Where rl is the oil volume fraction and vg and vl the gas
and oil velocities.

Pressure law. — Using Bernoulli’s law we get

p(t, z) = ps +

∫ z

0

ρm(t, ζ)gdζ(21)

In (21), using assumption (H’1), we have neglected the friction term, it
is consistent with the observed low flow rates for density wave instability
(see [23]). Density of the mixture is given by

1/ρm = x/ρg + (1− x)/ρl

To work with a linear expression of ρm, we use assumption (H’4) and we
get that

ρm ∼ xρg + (1− x)ρl(22)

This approximation is quite false for medium values of x but since we
are working with values of x close to 0 or 1 this assumption is valid.
Further, in the derivation of the gas density, gas is considered perfect
and the temperature T is constant. Besides, we assume that the pressure
gradient between the injection point and the wellhead is constant and
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computed from boundary condition. Notice that pt(·, H) = pt(·, L) +

ρlg(H − L). Therefore, we denote p̄r = pr − ρlg(H − L) the appearing
reservoir pressure. The pressure gradient is thus assumed to be equal
to p̄r−ps

L
. Simulations have shown that this simplification improves the

numerical tractability while saving the oscillatory behavior. Using the
expressions in (22) and after substitution in (21), we get

p(t, z) = ps + ρlgz +

∫ z

0

x(t, ζ)g

(

(L− ζ)ps + ζp̄r

LRTt
− ρl

)

dζ(23)

Slip velocity and Riemann invariant. — We use assumption (H’5) to
define the slip velocity law. Mass conservation laws write

∂ρgrg

∂t
+
∂Φg

∂z
= 0(24)

∂ρlrl

∂t
+
∂Φl

∂z
= 0(25)

where Φg and Φl are respectively the gas and oil mass flux and rg the gas
volume fraction. Since

x =
rgρg

rgρg + rlρl
(26)

one can combine (24), (25) and (26), to obtain

∂x

∂t
+ vg

∂x

∂z
= 0

This proves that x is a Riemann invariant (see [13]). For sake of simplic-
ity we use assumption (H’2) and assume that vg is constant. On real wells
it is not as simple and we shall discuss the implications of this hypothesis
in Section 3.2.1.3. This implies

x(t, z) = x

(

t− L− z
vg

, L

)

= xL

(

t− L− z
vg

)

Therefore, knowing bottom well gas mass fraction t 7→ xL(t), we get
the profile (t, z) 7→ x(t, z) in the tubing. Replacing this expression in
equation (23) and denoting pL(t) = P (t, L), we find

p(t, L) = p?
L +

∫ t

t−δ

k(t− ζ)xL(ζ)dζ(27)
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with

δ = L/vg(28)

p?
L = ps + ρlgL(29)

and

[0, δ] 3 t 7→ k(t) , Vgg

(

tps + (δ − t)pr

δRTt
− ρl

)

< 0(30)

Notice that k is a strictly decreasing affine function.

Boundary condition. — Classically, (see [11]), the oil rate ql is given
at the reservoir boundary by the constant Productivity Index (PI, see
assumption (H’3)) through

ql(t, H) =PImax(pr − pt(t, H), 0)(31)

=PImax(p̄r − pt(t, L), 0)

By definition,

xL(t) =
1

1 + PI/qg max(p̄r − pL(t), 0)
(32)

We want to simplify this last expression in the case of large PI. On
one hand, as p̄r − pt(L) begins to be positive, xL goes to zero. Let β
denote a threshold parameter. In particular xL < β is equivalent to
pt(L) < p̄r − qg

IP
(1/β − 1). We denote

λ ,
1

PI
(1/β − 1)(33)

On the other hand, when pt(L) > p̄r, xL = 1. Therefore, we consider xL

as constant, equal to 1 when p̄L > p̄r and equal to 0 when pt(L) < p̄r−λqg.
Finally, the considered expression of xL reduces to

xL = h (X) , X , 1− p̄r − pt(L)

λqg
(34)

with

h(·) = max(min(1, ·), 0)

equation (34) is the definition we use instead of equation (32) from now
on.
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2.2.2.2. Density-wave as a distributed delay model. — We now gather
equations (27) and (34), and consider an initial condition [−δ, 0] 3 t 7→
φ(t) ∈ R. The following model represents the density wave phenomenon
by the evolution of the pressure at the bottom of the well pL

(35)











pt(t, L) = p?
L +

∫ t

t−δ

k(t− ζ)h
(

1− p̄r − pt(ζ, L)

λqg(ζ)

)

dζ

pt(t, L) = φ(t), t ∈ [−δ, 0]

where δ is the transport delay defined in (28), p?
L, given in (29), is the

pressure at the bottom of the pipe when it is full of oil and pr is the
pressure of the reservoir. k is an affine function, given in (30). It depends
on the considered fluids. qg considered is one of the control variable.

2.2.2.3. Simulation results. — Figure 2.11 shows the simulations results
of (35). When pr = 150 bar and λqg = 10 bar, we get an oscillating
trajectory which presents similarities with Figure 2.9. Indeed, the peri-
odic behavior consist of 3 phases. Alternatively, out of phase switches of
h(X(t)) and h(X(t−δ)) result in 4 slope changes of pL. These reproduce
the 3 phases observed in Figure 2.9: oil production from the reservoir
(zone 1), followed by a pressure buildup (zone 2), and an eventual pres-
sure drop (zone 3).

2.2.2.4. Reference model for stability analysis. — Model (35) is used in
Section 3.2.1.1 to design a stabilizing control law λqg. To study stabil-
ity, it is equivalent (but more convenient) to consider X as defined in
equation (34). It follows from (35) that

X(t) = 1− p̄r − p?
L

λqg
+

1

λqg

∫ t

t−δ

k(t− τ)h(X(ζ))dζ(36)

By derivation (assuming λqg constant), we get

λqgẊ(t) = k(0)h(X(t))− k(δ)h(X(t− ζ)) + k′(0)

∫ t

t−ζ

h(X(ζ))dζ

(37)
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Figure 2.11. Density wave simulated with equation (35). The

reservoir pressure Pr is 150 bar and λqg is set at 10 bar.

We consider system (37) with an initial condition φ, defined and contin-
uous over [−δ, 0], satisfying

φ(0) = 1− p̄r − p?
L

λqg
+

1

λqg

∫ 0

0−δ

k(t− ζ)h(φ(ζ))dζ

For this class of initial conditions, equations (36) and (37) have the same
solutions.

2.2.3. Stability. — We first study the stability of the trivial solution
of the following saturation-free model derived from equation (37). We
denote

τ , δ/λqg(38)
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and C the (Banach) space of continuous function mapping the interval
[−τ, 0] into R. We define xt ∈ C as

[−τ, 0] 3 θ 7→ xt(θ) = x(t+ θ)

By derivation and time scaling, equation (37) rewrites under the form

(39)

{

ẋ(t) = f(xt) for t ≥ 0

x(t) = φ(t) for t ∈ [−τ, 0]

with φ ∈ C and f : C → R defined as

f(xt) =ax(t) + bx(t− τ) +
c

τ

∫ t

t−τ

x(ζ)dζ(40)

with a + b + c = 0, b > 0, c < 0 and b + c > 0 (by equation (30)).
Referring to the formulation used in [21], one can rewrite equation (39)
as

f(xt) =

∫ 0

−τ

d(η(θ))xt(θ)(41)

with










η(θ) = (c/τ)θ, θ ∈]− τ, 0[

η(0) = a

η(−τ) = −(c+ b)

As η is continuous on ] − τ, 0[ and has bounded variation on [−τ, 0],
given any φ ∈ C, there exists a unique function xt, continuous, that
satisfies system (39). We now study stability of (39) through the solutions
of its characteristic equation. As will appear, stability depends on τ .

2.2.3.1. Characteristics equation solutions. — The characteristic equa-
tion associated with (39) writes

s = a+ be−sτ +
c

sτ
(1− e−sτ )(42)

This equation is well defined by continuity at 0 and for all τ ≥ 0, 0 is an
isolated solution. Referring to the necessary condition expressed in [40],
as, for all τ ≥ 0

det(η(−τ)− η(0)) = −(a + b+ c) = 0 ≤ 0,

the trivial solution is not asymptotically stable.
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In the following, we characterize the location of the non zero roots
when τ increases. In Proposition 1, we exhibit a family (τk)k∈N at which
two roots simultaneously hit the imaginary axis. Then, we show that, for
small τ , roots are lying on the left half plane (Proposition 2). Further,
proving that the roots cross the imaginary axis from left to right, we
conclude towards the existence of τ ? > 0 (Proposition 3) such that

– for τ ∈ [0, τ ?[, all roots except 0 have strictly negative real part
– for τ > τ ?, there is at least one root with strictly positive real part.

Proposition 1. — Consider the following system

ẋ(t) = ax(t) + bx(t− τ) +
c

τ

∫ t

t−τ

x(ζ)dζ(43)

with a+ b+ c = 0, b > 0, c < 0, b+ c > 0 and τ > 0. Let γ = c/b. There

exists (τk, ωk)k∈N ∈ R
+ × R

+ such that, for τ = τk, besides 0 which is

always a solution, the pure imaginary roots of the characteristic equation

of (43) are ±jωk. This family (τk, ωk) is defined by

(44)































cos(ωkτk) = 1 +
γσk

σk − (2 + γ)

ωk sin(ωkτk) =
cσk(2 + γ)

σk − (2 + γ)

ω2
k = b2(2 + γ)2

( −γ
2 + γ

σk

σk − 2

)

with σk = (2b+ c)τk + 2 > 3 + γ.

Proof. — We are now looking for pure imaginary roots of equation (42).
If there exists τ ≥ 0 such that jω is solution then −jω is also a solution.
Therefore, we restrict our study to (τ, ω) ∈ R

+×R
+\{0}. Equation (42)

yields

(45)







b cos(ωτ) +
c

τω
sin(ωτ) = b+ c

c

τω
cos(ωτ)− b sin(ωτ) = ω +

c

τω

This implies

ω2 = − c
τ

(2bτ + cτ + 2)(46)
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By construction, γ ∈]− 1, 0[. Note σ = (2b+ c)τ + 2 ≥ 0. Equation (45)
leads to

(47) cos(

√

− γ

2 + γ
σ(σ − 2)) = 1 +

γσ

(σ − 2)− γ

(48) sin(

√

− γ

2 + γ
σ(σ − 2)) =

1

ω

cσ(2 + γ)

σ − 2− τ < 0

We derive from inequality (48) that

σ ∈
⋃

k∈N

[

1 +

√

1 +
2 + γ

−γ (2k + 1)2π2, 1 +

√

1 +
2 + γ

−γ 4k2π2

]

Right hand side of equation (47) approaches 0 < 1 + γ < 1 as σ goes
to infinity. The left hand side is oscillating thanks to the cos function
and equation (47) has an infinite number of solutions. Among these, we
keep those compatible with equation (48) and gather them in (σi)i∈N, an
increasing sequence. By construction,

lim
i→∞

σi = +∞

and

σi ∼i+∞

√

2 + γ

−γ 2iπ

Further, for all k ∈ N

1 +

√

1 +
2 + γ

−γ (2k + 1)2π2 > 1 +
√

1 + π2 > 3 + γ

The set (σi)i∈N is thus bounded by below as follows

∀k ∈ N, σk > 3 + γ(49)

This set defines a family of solutions of equation (45), (τk, ωk)k∈N using
equation (46), defined by

τk =
σk − 2

2b+ c

ω2
k = b2(2 + γ)2

( −γ
2 + γ

σk

σk − 2

)
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Lemma 3. — Define s(τ) a non zero root of the characteristic equa-

tion (42). For all α > −1, β > 0 and τα > 0 there exists τ ≤ τα such

that

|s(τ)| > βτα

Proof. — By contradiction, assume that one can find (α, τα, β) (α > −1,
β > 0 and τα > 0) such that for all τ ≤ τα

|s| ≤ βτα

Thus, |sτ | → 0 as τ → 0. A second order development of (42) yields

1

τ
= −b− c

2
+

(

b

2
+
c

6

)

sτ + o(sτ)

The right hand side of this development goes to −b− c/2 as τ → 0 and
the left hand side to +∞. This cannot be. Therefore, the assumption is
false. This concludes the proof.

Lemma 4. — Define s a non zero root of the characteristic equa-

tion (42). For all τr, there exists τ ≤ τr such that

Re(s(τ)) < 0

Proof. — Assume that there exists τr such that for all τ ≤ τr

Re(s(τ)) ≥ 0

It follows that |e−sτ | ≤ 1 and that |1−e−sτ

sτ
| ≤ 1. Using equation (42) we

get

|s(τ)| ≤ |a|+ |b|+ |c|
which is in contradiction with Lemma 3.

Proposition 2. — There exists τ > 0 such that for all τ ≤ τ the roots

of the characteristic equation (42) that are not zero are strictly lying on

the left half plane.

Proof. — Consider a non zero root. From Proposition 1, we know that,
for τ < τ1, it does not intersect the imaginary axis. Further, we know,
from Lemma 4, that there exists τ < τ1 such that the root lies on the left
half plane. Since the real part of the root is continuous with respect to τ
(by the implicit function theorem), the root cannot go to the right part
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without crossing the imaginary axis. This implies that, for all τ < τ1 the
root is in the left half plane. Finally, for all τ ∈ [0, τ1[, all roots except 0

have strictly negative real part. This concludes the proof.

Proposition 3. — There exists τ ∗ such that for all τ ∈ [0, τ ∗[ the char-

acteristic equation (42) has one root at 0 and all other roots strictly in

the left part of the complex plane. For all τ > τ ∗, there exists at least

one root lying strictly on the right half plane.

Proof. — Let τ be positive. As proven in Proposition 2, for small τ
all roots except 0 lie in the left half plane. To know whether these
roots become unstable or come back to the left hand side, we compute
Re ∂s

∂τ |±jωk
. We use equations (44) and after some computations we get

∂s

∂τ |s=jω
=

−bω2e−jωτ + c
τ2 (1− e−jωτ )− cjω

τ
e−jωτ

−2jω − b− c+ be−jωτ − bjωτe−jωτ + ce−jωτ

and

Re
∂s

∂τ |±jωk

= − γb2(2 + γ)3(σk − 3− γ)
(σ2

k + (2γ2 − 2 + 5γ)σk − 2γ(3 + γ)2)(σk − 2)

From (49) and noticing that σ2
k + (2γ2 − 2 + 5γ)σk − 2γ(3 + γ)2 > 0 for

σk > 2, we have

Re
∂s

∂τ |±jωk

> 0

Therefore, after crossing the imaginary axis the roots always go to the
right half plane. Thus simply, τ ∗ = τ1 = σ1−2

2b+c
.

2.2.3.2. Conclusion. — Parameter τ has a direct impact on the roots
location of the characteristic equation. Increasing the time delay τ or
letting the roots be unstable are equivalent. Recalling τ = δ

λqg
, this

last remark means that there exists a minimal gas injection rate that
guarantees stability of the roots. Study of the characteristic equation is a
key to the interpretation of the observed oscillating behavior. Depending
on λqg trajectories of model (37) behave as follows. Unstable solutions
of the model (37), which, initially match with unstable solutions of a
linear system of type (40), finally reach saturation yielding behaviors
depicted in Figure 2.11. Stable solutions remain bounded and if the
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initial condition is well chosen (e.g. constant) they do not reach the
saturation.

2.2.4. Physical interpretation: the role of the gas expansion.
— We now give some physical insights on equation (40). The three
parameters of this equation are closely related with the difference of
gas and oil density between the top and the bottom of the well. More
precisely, we demonstrate that without the gas density gradient in the
tubing, i.e. the gas expansion, the density wave would not exist.

Coefficients a, b and c of the characteristic equation (42) express in
term of physical parameters. Recalling (30),

a = k(0) = vgg

(

pr

RTt
− ρl

)

b = −k(δ) = vgg

(

ρl −
ps

RTt

)

c = δk′(0) = vgg

(

ps

RTt

− pr

RTt

)

We notice that the key parameters of equation (42) all are proportional
to difference of densities. This implies, from the analysis presented in
Section 2.2.3 that stability depends on difference of densities between oil
and gas and on the gas expansion.

We now show the key role played by the gas expansion term. Let us
completely ignore it. This means that ρg(0) ∼ ρg(H) or equivalently that
a = b and c = 0. In these circumstances, the dynamics of the gas mass
fraction at the bottom of the well is described by

x(t) = x0 − a
∫ t

t−τ

h(x(θ))dθ(50)

Where a, x0 and τ are strictly positive real numbers.

Change of variable. — A change of variable yields (t← at, τ ← aτ and
x(t)← x(t/a).

x(t) = x0 −
∫ t

t−τ

h(x(θ))dθ(51)

Following [21], it is possible to rewrite this equation under the form
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(52)

{

ẋ(t) = −h(x(t)) + h(x(t− τ))
x(t) = φ(t) for t ∈ [−τ, 0]

provided

φ(0) +

∫ 0

−τ

h(φ(θ))dθ = x0

Let us note xt: [−τ, 0] 3 0 7→ xt(θ) = x(t+ θ) ∈ R and

f(xt) , −h(x(t)) + h(x(t− τ))(53)

We now study the properties of solutions of equation (52).

Existence and uniqueness of solutions. — Let us show that f is a Lips-
chitz function. We define the following norm over the set of continuous
functions mapping φ [−τ, 0] 7→ R

‖φ‖ =

∫ 0

−τ

|φ(θ)|dθ + |φ(0)|+ |φ(−τ)|(54)

Since h is a Lipschitz function (its Lipschitz constant equals one), we
deduce that f is also Lipschitz through the following simple calculations

‖f(xt)− f(x′t)‖ = |h(x(t))− h(x(t′))|+ |h(x(t− τ))− h(x(t′ − τ))|

+

∫ 0

−τ

|h(x(θ))− h(x(θ − τ))|dθ

≤|x(t)− x(t′)|+ |x(t− τ)− x(t′ − τ)|+
∫ 0

−τ

|x(θ)− x(θ − τ)|dθ

≤‖xt − x′t‖
Then, uniqueness of solutions follows from [21, 2.3]. In particular, notice
that, given φ such as φ ≥ 1, the trajectory x(t) = φ(0) is a solution.
We conclude that, if the trajectory remains saturated longer than τ , it
remains saturated forever.

We now show that, for any given initial condition, the trajectory con-
verges to a constant equilibrium point. We first show that the trajectory
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is either after some times between 0 and 1 (which means that equa-
tion (53) is simply linear) or, permanently, above 1 (and thus always
saturated). The proof consists in two cases depending on the initial con-
dition. Convergence is proven by use of Lyapunov function.

We first show that if the trajectory enters the (0, 1) interval it remains
there.

Lemma 5. — Assume that there exists a > 0 such that x(a) ∈ (0, 1),

then, for all t ≥ a, x(t) ∈ (0, 1)

Proof. — Assume that the trajectory exits (0, 1). First assume the exit
point is 1 and consider b such that x(b) = 1 and, for all t ∈ (a, b),
x(t) ∈ (0, 1).

ẋ(t) ≤ −x(t) + 1

Then, applying Gronwall’s lemma one gets

x(t) ≤ x(a)ea−t +

∫ t

a

eθ−tdθ

So,

x(t) ≤ 1− (1− x(a))ea−t < 1

In particular for, t = b,

x(b) < 1

This contradiction shows that the trajectory can not exit the (0, 1) inter-
val by passing through 1. Following along the same lines, one can show
that there does not exist b > a such that x(b) = 0.

Now, we exhibit a condition under which a trajectory, such that φ(0) ≥ 1,
ends in the (0, 1) interval.

Lemma 6. — Let φ be an initial condition of equation (52) such that

φ(0) ≥ 1. There exists a such that x(a) ∈ (0, 1) if and only if
∫ 0

−τ

(1− h(φ(θ))dθ > φ(0)− 1(55)
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Proof. — Assume that, for all t ∈ [0, τ ], x(t) ≥ 1. Thus h(x(t)) = 1.
This assumption is consistent with φ(0) ≥ 1. Compute

x(τ) =x0 −
∫ τ

0

h(x(θ))dθ

=φ(0)−
∫ τ

0

h(x(θ))dθ +

∫ 0

−τ

h(φ(θ))dθ

=φ(0)−
∫ 0

−τ

1− h(φ(θ))dθ

Referring to the inequality (55), we get x(τ) < 1, which prevents x

from remaining above 1 over the interval [0, τ ]. Therefore, there exists
t0 ∈ (0, τ ] such that x(t0) < 1. Since x is a continuous function, x(0) ≥ 1

and x(t0) < 1 imply that there exists a ∈ (0, τ ] such that x(a) ∈ (0, 1).
Conversely, let us assume that inequality (55) does not hold. Then

∫ 0

−τ

(1− h(φ(θ))dθ ≤ φ(0)− 1(56)

Assume that there exists b ∈ (0, τ ] such that x(b) < 1. We have

x(b) = φ(0)−
∫ b−τ

−τ

1− h(x(θ))dθ

= φ(0) +

∫ 0

b−τ

1− h(x(θ))dθ −
∫ 0

−τ

1− h(φ(θ))dθ

Applying inequality (56) one gets

x(b) ≥ 1 +

∫ 0

b−τ

1− h(x(θ))dθ ≥ 1

Again, this is in contradiction with our assumption, thus, for all b ∈ (0, τ ],
x(b) ≥ 1. This concludes the proof.

At last we prove that for any initial condition the trajectory converges
to an equilibrium value.

Proposition 4. — For any initial condition φ, the trajectory x of equa-

tion (53) asymptotically converges to x̄ when t goes to +∞.

1. More precisely, if φ(0) ∈ (0, 1), then x̄ = x0/(1 + τ)
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2. If φ(0) ≥ 1

(a) If
∫ 0

−τ

(1− h(φ(θ))dθ ≥ φ(0)− 1

then

x̄ = x0 − τ ≥ 1

(b) else

x̄ =
x0

1 + τ

with x0 = φ(0) +
∫ 0

−τ
h(φ(θ))dθ

Proof. — According to Lemma 5, we know that in the (2.a) case, since
x(t) always remains greater or equal to 1 during a period at least equal to
τ , the trajectory reaches a constant value x̄. This value can be computed
thanks to the integral expression (51). One easily gets x̄ ≥ 1.

According to Lemma 6, we know that in the (2.b) case, one can find a
such that x(a) ∈ (0, 1). This proves that, for all t > a, x(t) ∈ (0, 1).
Equation (53) is autonomous, therefore we can address this case together
with case (1).

Assuming that φ(0) ∈ (0, 1), after some time, equation (55) reduces to

ẋ = −x(t) + x(t− τ)
Using this last form, we can show that the trajectory eventually converges
towards x̄ = x0/(1 + τ). The proof relies on the following Lyapunov
function candidate

V (φ) = (φ(0)− x̄)2 +

∫ 0

−τ

(φ(θ)− x̄)2dθ

Simple calculation gives

V̇ (φ) =− 2X(X − Y ) +X2 − Y 2

=− (X − Y )2 ≤ 0

where X = φ(0) − x̄ and Y = φ(−τ) − x̄. According to [21, The-
orem 2.1], x̄ is stable. To show asymptotic stability, we use LaSalle’s
Theorem. We know that the trajectory eventually converges towards
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Figure 2.12. Case (1) : φ(0) ∈ (0, 1). The trajectory con-

verges towards a constant also comprised between 0 and 1.

the largest invariant set included in {φ\V̇ (φ) = 0}, i.e. the set of con-
stant trajectories. Moreover, the only constant consistent with the initial
condition φ is x̄. We conclude that x̄ is asymptotically stable.

We have proven that without gas expansion the well would not suffer
from instability. The integral term in the equation (36) is thus necessary
for proper modeling of the density-wave.

Further studies have been done on this subject. Based on the same
Lyapunov approach, [30] has derived a sufficient condition for the com-
plete linearized equation (43) to be stable. This result is in accordance
with what is presented in paragraph 2.2.3. Moreover, this approach give
some insight to a possible extension to nonlinear equation (37).

2.3. Global study of unstable phenomena

In this section we finally study the well as an interconnected system
without neglecting neither the propagation phenomenon in the tubing (as
was done in Section 2.1) nor the buffer effect of the casing (as was done
in Section 2.2). We exhibit and justify the impact of design parameters
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(a) φ(0) ≥ 1. Condition (55) is not satisfied. The

trajectory converges towards a constant greater

than 1.
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(b) φ(0) < 1. Condition (55) is satisfied. The tra-

jectory converges towards a constant comprised be-

tween 0 and 1.

Figure 2.13. Cas 2. Depending on whether the Condi-

tion (55) is satisfied the trajectory converge betweens 0 and

1 or above 1.
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such as well depth, tubing diameter, and the role of physical parameters
such as reservoir pressure of Productivity Index.

Understanding the implications of choices made at the design-stage in
the development of instability has concentrated a lot of research efforts.
General stability criteria have been proposed. Some, such as [44], rely
on steady state curves but most of the published work is based on a
dynamical system study.

In [6], the key assumption is that stability is guaranteed if an increase
of downhole tubing pressure causes a drop of mixture density and if the
gas pipe depletes faster than the tubing pressure. Then, differential equa-
tions are used to derive a criterion taking the form of a set of inequalities.
A more dynamical system oriented approach can be found in [8]. The
analysis relies on Routh’s criterion and a detailed study of the root lo-
cations of a third order transfer function when physical parameters of
interest vary. In [4], a unified criteria based on previous studies of [8]
and [6] is proposed. In all these works the oil column is considered ho-
mogenous, which implicitly neglects the propagation phenomenon in the
tubing. These models are mainly devoted to the study of casing-heading
for which this simplifying assumption is particularly valid.

Our contribution here is to show that the well can be modeled as the
feedback connection of a distributed parameter system (the tubing con-
sidered in Section 2.2) and a stable first order system (the casing as a
buffer tank, considered in Section 2.1). This approach aims at encompass-
ing both casing-heading and density-wave phenomena. The connection
of casing and tubing subsystems is achieved through the injection valve,
which is modeled with a saturation function. This seemingly cascaded
system contains feedback loops at two different levels. The first loop
appears in the tubing itself through the gravity terms in Bernoulli’s law.
The second loop takes place by means of the state dependent connect-
ing term (injection valve) which serves as an input for the propagation
equation. Stability of each subsystem is characterized. Additionally,
input-output gains are computed and the small gain theorem allows us
to conclude towards stability of the whole system when the asymptotic
condition of large amount of injected gas holds. This analysis is in accor-
dance to experimental observations. It stresses the contribution of each
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subsystem design parameters and operating points to the stability of the
global system.

In Section 2.3.1, we study the tubing subsystem and conclude on a
sufficient condition for stability. In particular, we detail the role of var-
ious parameters in our proposed model and show the consistency with
some state of the art wells production knowledge. In Section 2.3.2, we
connect the casing dynamics to the tubing, and study the obtained inter-
connection’s stability through the small gain theorem. We propose the
interpretation of well-known phenomena at the light of our model. In
conclusion, the density-wave phenomenon is interpreted as the stability
loss due to the internal tubing feedback loop. Besides, the casing-heading
phenomenon arises from the interconnection of the two systems.

The work in this section has appeared at the American Control Con-
ference, in June 2006 under the title ”Predicting instabilities in gas-lifted
wells simulation” ([38]).

2.3.1. Tubing Analysis. —

2.3.1.1. Equilibrium point and stability analysis. — Remembering that
the parameter u in equation (35) is proportional to the gas injection flow
rate in the tubing qg, one gets

(57)

{

pt(t, L) = p?
L +

∫ δ

0

k(ζ)h

(

1− p̄r − p(t− ζ, L)

λqg(t− ζ)

)

dζ

Given a constant input qg, the unsaturated equilibrium pt(L) can be
computed through the integral equation (57).

pt(L) = p?
L +

(

1− p̄r − pt(L)

λqg

)
∫ τ

0

k(ζ)dζ

yielding

pt(L) =
λqg

(

p?
L +

∫ τ

0
k(ζ)dζ

)

− p̄r

∫ τ

0
k(ζ)dζ

λqg −
∫ τ

0
k(ζ)dζ

(58)

Linearization of the dynamics of (57) around the steady value of the
input and state (qg, pt(L)) yields
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p̄r−pt(L)

λq2
g

δqg δpt(L)e1

e21
λqg

Figure 2.14. Block scheme of the tubing subsystem linearized

around an equilibrium point. Gravitational effects of the non-

homogeneous fluid column take the form of an inner positive

feedback loop.

δpt(t, L) =
1

λqg

∫ τ

0

k(ζ)δpt(t− ζ, L)dζ +
p̄r − pt(L)

λq2
g

∫ τ

0

k(ζ)δqg(t− ζ)dζ

(59)

Denoting δp̃t(L) and δq̃g the Laplace transforms of δpt(L) and δqg
respectively, one gets

δp̃t(s, L) = G(s)δq̃g(s)(60)

with

G(s) =
p̄r − pt(L)

λq2
g

k̃(s)

1− k̃(s)
λqg

, k̃(s) =

∫ τ

0

k(ζ)e−sζdζ(61)

Through this rewriting, the linearized dynamics of the tubing appears
as a positive feedback connection (see Figure 2.14) which stands for the
gravitational effects of the nonhomogeneous fluid column. To study its
stability, we first note the finite gain stability of k̃(s) and then conclude
using the small gain theorem.

In the following, we denote ‖ · ‖ any Lp norm.

Proposition 5. — With the notations given in Figure 2.14, there exists

a positive constant γk such that

‖y‖ ≤ γk‖e1‖(62)
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Proof. — We compute

‖k‖L1
=
|k1|τ 2

2
+ |k2|τ < +∞

Denoting γk = ‖k‖L1
and referring to [14][Lemma A.6.5] we directly

derive equation (62).

Proposition 6. — With the notations given in Figure 2.14, there exists

a positive constant qmin
g and γ′ : [qmin

g ,+∞[3 qg 7→ R
+\{0}, bounded and

continuous, such that

‖δpt(L)‖ ≤ γ′(qg)‖δqg‖(63)

Moreover, lim+∞ γ′ = 0.

Proof. — Recalling notations given in Figure 2.14, we get

e1(t) = δqg(t) +
1

λqg

y(t)

Proposition 5 yields

‖e1‖ ≤ ‖δqg‖+
1

λqg

γk‖e1‖(64)

Define qmin
g > γk

λ
. For all qg > qmin

g , we can write ‖e1‖ ≤ 1
1−

γk
λqg

‖δqg‖ and

thus,

‖pt(L)‖ ≤ p̄r − pt(L)

λq2
g

γk

1− γk

λqg

‖δqg‖

Finally, replacing pt(L) by its expression (58) and noting that γk =

−
∫ τ

0
k(ζ)dζ gives

‖pt(L)‖ ≤
(
∫ τ

0

−λk
)

p̄r − pt(L)? −
∫ τ

0
k

(

λqg

)2 −
(∫ τ

0
k
)2 ‖δqg‖

Therefore, we get the desired result with

γ′(qg) =

(
∫ τ

0

−λk
)

p̄r − pt(L)? −
∫ τ

0
k

(

λqg

)2 −
(∫ τ

0
k
)2(65)

And lim+∞ γ′ = 0.
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2.3.1.2. Conclusion and discussion on stability of the tubing. — Clearly,
the preceding derivation follows along the lines of the proof of the small-
gain theorem (as exposed in [27]). If two systems are finite-gain stable
and if the product of their gain is small enough (smaller than 1) the
system resulting from their connection is also finite gain stable. Recalling
that γk derives from the integration of equation (30), here, the condition
that guarantees stability is

γk

λqg

=
Lg

RTλqg

(

RTρl −
1

2
(p̄r + ps)

)

< 1(66)

From this, we can analyze the impact of several parameters on the be-
havior of the subsystem.

Increasing qg tends to lower the gain. Therefore, there exists a lower
bound on gas injection rate that guarantees stability. This is consistent
with the experimental conclusions found in [23]. These are based on
OLGAr2000 simulations. In the same study, it also appears that an
increase of reservoir pressure leads to more stability. Again, from equa-
tion (66), we conclude to the same result. We report in Figure 2.15, tests
done with values for p̄r ranging from 150 to 220 bar. At Pr = 220 bar,
the system is eventually stable. We note that it is a marginal effect com-
pared to an increase of the gas injection rate. This analysis provides
some insights for middle to long-term aging phenomenon of reservoirs
when pressure tends to decrease with time.

Further studies reveal that a decrease of ρl or L provides more sta-
bility. On the other hand, an increase of λ achieved through a decrease
of PI tends to improve stability. These parameters are known for their
stabilizing effects and can be taken into account at the design stage, e.g.
to forecast instability issues.

We notice that the well-known fact that choking has a stabilizing effect
is once again verified (see [16] and [23]): by increasing ps we can let the
gain in (66) be smaller than 1. This is one of the key idea behind the
FCW controller (see Chapter 3 for more details). In fact, choking can be
used in open loop or closed loop to reach unstable points (see [37]).

Quite surprisingly, parameters such as velocity and tubing diameter do
not appear in equation (66). This is due to our simplifying assumptions.
In fact, both impact on stability through the definition of flow regimes,
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Figure 2.15. Simulation in OLGAr2000 of the impact of the

pressure reservoir on the stability of the well.

e.g. bubbly or slug flow (see [12]). We have restricted our study to a sin-
gle slip velocity law. Our model does not represent changes in flow regime
and thus does not address hydrodynamic slug instability (see [12]). This
could be a direction of future work.

Moreover, using the small gain theorem is a conservative approach. It
does not provide an exact value for the turning point from stability to
instability. A closer study of the location of the roots of the characteristic
equation underlying (59) is needed. Such a study is performed in [39],
dealing with the impact of the gas injection rate and quantitatively show-
ing that below a computable limit the roots are located in the left half
plane.

2.3.2. Stability analysis with a connected casing. — Casing and
tubing, presented in Figure 1.2 are connected according to the scheme
in Figure 2.17. While each of these blocks can independently be stable,
the resulting connected system may be unstable. Therefore, even un-
der the formal assumption that guarantees the absence of density-wave
instability, casing-heading can still occur. Again, feedback connection
plays a key role. For the casing, we use a simple first order model (the
first equation of the 3D model exposed in (2) and perform an analysis.
Among several conclusions, it appears that large amounts of gas prevent
casing-heading instability.
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Figure 2.16. (a) Outline of the casing. (b) The inputs of the

system are the gas mass injection rate qgi and the boundary

condition pt(L) (the downhole pressure). The output is the gas

rate entering the tubing: qg.

2.3.2.1. Casing model. — A casing can be considered as an annular
buffer filled with gas from a gas network (see Figure 2.16).

Assuming that the gas is ideal and that the column is at equilibrium,
we get

ρc(0) , αm1 and pc(0) , βm1(67)

where α, β are defined by

αRT =
g

Sc

1

1− exp
(

−gLc

RT

) = β(68)
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We consider as model the mass balance equation in the annulus volume

(69)

{

ṁ1 = qgi − qg(m1, pt(L))

qg(m1, pt(L)) = Cg

√

αm1 max(βm1 − pt(L), 0)

2.3.2.1.1. Stability analysis and equilibrium point definition. — We as-
sume normal flowing conditions, i.e. the pressure in the casing is suf-
ficient to counteract pt(L) and to let the gas flow out. Given constant
input values qgi and pt(L), the equilibrium point is

m1 =
1

β

(

pt(L) +

√

pt(L)2 + 4
q2

gi

αβC2
g

)

(70)

Linearization of equation (69) yields, for constant input qgi,

(71)















δṁ1 = − ∂qg
∂m1

(qgi, pt(L))δm1 −
∂qg

∂pt(L)
(qgi, pt(L))δpt(L)

δqg =
∂qg
∂m1

(qgi, pt(L))δm1 +
∂qg

∂pt(L)
(qgi, pt(L))δpt(L)

with

∂qg
∂m1

(qgi, pt(L)) =
C2

gα

2qgi

√

pt(L)2 +
4β

α

q2
gi

C2
g

(72)

∂qg
∂pt(L)

(qgi, pt(L)) = −
C2

gα

4βqgi

(

pt(L) +

√

pt(L)2 +
4β

α

q2
gi

C2
g

)

(73)

Proposition 7. — For qgi > 0 the equilibrium point of (71) is exponen-

tially stable. Therefore, the linearized system (71) is finite gain stable.

One can find (γ, µ) : (R\{0})2 7→ (R+\{0})2, bounded and continuous,

such that

‖δqg‖ ≤ γ(qgi, pt(L))‖pt(L)‖ + µ(qgi, pt(L))(74)
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δpt(L)

δqg
δqgi

tubing

casing

Figure 2.17. Block scheme of the interconnected systems lin-

earized around an equilibrium point.

These functions are

γ =
C2

gα

2qgi

√

pt(L)2 +
4β

α

q2
gi

C2
g

(75)

µ = m1(0)

√

√

√

√

C2
gα

8βqgi

(

pt(L) +

√

pt(L)2 +
4β

α

q2
gi

C2
g

)

(76)

Proof. — By assumption, the equilibrium point is such that qgi > 0, then

− ∂qg
∂m1

(qgi, pt(L)) < 0

Using explicit formulas given in [27][Corollary 5.2] for linear systems, we
can write (74) with

γ(qgi, qg) = 2

∣

∣

∣

∣

∂qg
∂pt(L)

(qgi, pt(L))

∣

∣

∣

∣

µ(qgi, qg) =
1√
2
m1(0)

√

∂qg
∂m1

(qgi, pt(L))

which concludes the proof.

2.3.3. Stability analysis of the connected system. —
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2.3.3.1. Stability criterion. — We now consider the connected linearized
system defined by

(77)























































δṁ1 = − ∂qg
∂m1

(qgi, pt(L))δm1 −
∂qg

∂pt(L)
(qgi, pt(L))δpt(L)

δqg =
∂qg
∂m1

(qgi, pt(L))δm1 +
∂qg

∂pt(L)
(qgi, pt(L))δpt(L)

δpt(L)(t) =

∫ τ

0

k(ζ)
1

λqg

δpt(L)(t− ζ)dζ

+

∫ τ

0

k(ζ)
p̄r − pt(L)

λq2
g

δqg(t− ζ)dζ

In Proposition 6 and 7 respectively, we derived the gain of the tubing and
casing subsystems. Gathering and connecting these requires to match
their equilibrium points. This defines a constraint on pt(L) and qg. For
qgi > 0, equilibria are defined by (78). New expressions for gains through
the connections are given in (79), (80) and (81).

(78)











qg = qgi

pt(L) =
λqgi

(

pt(L)? +
∫ τ

0
k(ζ)dζ

)

− p̄r

∫ τ

0
k(ζ)dζ

λqgi −
∫ τ

0
k(ζ)dζ

γ̂(qgi) = γ(qgi, pt(L))(79)

µ̂(qgi) = µ(qgi, pt(L))(80)

γ̂′(qgi) = γ′(qg)(81)

Proposition 8. — There exists a positive constant qmin
gi such that for

all qgi > qmin
gi system (77) is finite-gain stable.

Proof. — From equations (63), (74) and (79), (80) and (81) we get

‖δqg‖ ≤ γ̂(qgi)‖δpt(L)‖+ µ̂(qgi)

‖δpt(L)‖ ≤ γ̂′(qgi)‖δqg‖
Notice that lim+∞ γ̂′ = 0 and lim+∞ γ̂ > 0. Therefore, there exists qmin

gi

such that for all qgi > qmin
gi

γ̂(qgi)γ̂
′(qgi) < 1(82)
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The small gain theorem implies that the connected system (77) is finite
gain stable.

Using the fact that
∫ τ

0

k(ζ)dζ = Lg

(

ps + p̄r

2RT
− ρl

)

(83)

We compute

pt(L) =
λqgi

(

ps + Lg ps+p̄r

2RT

)

− p̄rLg
(

ps+p̄r

2RT
− ρl

)

λqgi − Lg
(

ps+p̄r

2RT
− ρl

)(84)

Therefore,

γ̂′ =

(

ps + p̄r

2RT
− ρl

)

λLg(ps − p̄r + Lg ps+p̄r

2RT
)

(λqgi)
2 − (Lg)2

(

ps+p̄r

2RT
− ρl

)2(85)

and

γ̂(qgi) =
C2

gα

2qgi

√

pt(L)2 +
4β

α

q2
gi

C2
g

(86)

2.3.3.2. Conclusion and discussion. — From equations (82), (85), and
(86), we can analyze the influence of several parameters on the intercon-
nected system. The best known effect is the role of the Cg parameter.
As reported in [23], it is necessary for stability to maintain the flow
through the injection valve critical. This is guaranteed by a choice of a
small diameter injection valve, which corresponds in our model to a small
Cg. Indeed, reducing Cg lowers γ̂ in equation (86), and thus ultimately
guarantees inequality (82) and provides stability. Other important pa-
rameters are α and β (defined in equation (67)) through which Sc, the
section of the casing, plays a key role. Increasing Sc decreases α and
β. Eventually, γ̂ provides stability through inequality (82). In physi-
cal terms, the stabilizing buffer effect is emphasized by increasing the
volume, therefore a bigger section lowers the coupling effect.





CHAPTER 3

CONTROL SOLUTIONS

SOLUTIONS DE CONTRÔLE

Les résultats du chapitre précédent ont permis de comprendre les mé-
canismes d’instabilité ainsi que le rôle des paramètres physiques. Partant
de ce constat, deux solutions sont envisageables. Pour éliminer les in-
stabilités on peut déduire des critères de stabilité établis un protocole
de définition des conditions opératoires. On peut également développer
une solution de contrôle permettant de stabiliser le puits même dans des
conditions a priori instables. En vue de l’application industrielle nous
ne considérons que la seconde solution. En effet le système physique est
trop complexe et la connaissance quantitative qu’on en a est trop ténue
pour envisager de pouvoir calculer précisément des conditions opératoires
valides. En outre il est probable que l’optimum économique se situe dans
une zone instable.

Dans la Section 3.1.2.2, nous rappelons certaines solutions proposées
antérieurement dans la littérature. Elles forment deux catégories. Cer-
taines proposent d’utiliser du matériel plus performant pour éviter le
développement d’instabilité. D’autres utilisent une approche algorith-
mique. Ces dernières modifient automatiquement les consignes des
vannes d’injection de gaz et/ou de production en fonction d’indicateurs,
tels que la température en tête de puits, la pression...

Nous présentons ensuite une première solution de type boucle-ouverte.
Ainsi dans la Section 3.2 nous supposons que le débit de gaz injecté au
fond du puits est contrôlé. Nous proposons une loi de commande de
débit, calculée à partir de la mesure de la pression de fond, qui permet
de maintenir la fraction massique en gaz constante au fond du puits.
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L’efficacité de cette solution est démontrée grâce à des simulations réal-
istes. Ceci souligne la pertinence du modèle à retards distribués présentés
au Chapitre 2.

Nous présentons une solution plus réalistes vis à vis des contraintes
opérationnelles à la Section 3.3. La faible disponibilité en gaz incite à
préférer utiliser comme commande la vanne de production. En s’inspirant
de l’analyse de stabilité présentée au Chapitre 2 nous démontrons la
convergence du système bouclé avec un contrôleur de type Proportionnel-
Intégral.

La loi de commande proposée utilise la mesure de la pression de fond.
Ce capteur est très rarement disponible et en outre souvent sujet à des
pannes. Nous montrons qu’il est possible de filtrer les mesures de pres-
sions en tête de casing de façon à reconstruire la pression de fond. Cette
solution est exposée à la Section 3.4 et illustrée par des résultats de sim-
ulation. L’efficacité de l’observateur de pression de fond est démontrée
par les résultats de son application à un puits sur un site d’exploitation.

In this chapter, we propose control solutions derived from the pro-
posed modeling. First, in Section 3.1.2.2, we recall state-of-the-art con-
trol techniques for gas-lifted wells. Then, we address the control problem
of stabilizing the tubing subsystem. A first open-loop solution is shown
to be efficient in simulation (see Section 3.2). It stresses the relevance of
the distributed parameters model proposed in Chapter 2. More realistic
control solutions are addressed in Section 3.3. Following along the lines
of the stability analysis of Chapter 2, we prove convergence of the closed
loop system with a PI controller. At last, in Section 3.4, for sake of im-
plementation, we filter measurements through an observer to reconstruct
unavailable variables.
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production valve

gas inlet

u

pt(0)

(a) Control of the tubing head pres-

sure (pt(0)) by applying a PID con-

troller on the production choke (u).

production valve

gas inlet

Tt

u

pt(0)

qg

FCW

(b) Sequential control based on tem-

perature (Tt) and pressure (pt(0))

measurements at the tubing head. Ma-

nipulated variables are the gas injec-

tion (qg) and the choke opening (u)

Figure 3.1. Some of the control solutions proposed in the literature.

3.1. State of the art

Results of the previous Chapter gives us clues to a better understand-
ing of instability mechanisms and on the impact of physical parameters.
However, while the proposed models are well suited for control design
purpose, it seems quite hazardous to extrapolate quantitative stability
criteria. Three phases (gas, oil, water) flow are too complex to be accu-
rately modeled with our approach. Therefore, it is necessary to develop
stabilizing solutions robust to changes of operating conditions.
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production valve

gas inlet

u

pc(0)

(a) Control of the casing head pressure

(pc(0)) with a PID controller on the

production choke (u).

production valve

gas inlet

u

pt(H)

(b) Control of the bottom hole flowing

pressure (pt(H)) with a PID controller

on the production choke (u).

Figure 3.2. More control solutions proposed in the literature.

As described in Section 2.2 a hardware solution consists of using
Venturi-Nozzle valve as injection valve. This let the injected flow rate
be critical for pressure delta (i.e. the difference of pressure at the inlet
and outlet of the valve) down to 10%. This solution is based on the idea
that decoupling the casing from the tubing suppresses casing-heading
instability. To suppress this coupling, one can also use feedback control.

Originally, the first proposed feedback controls aimed at getting rid of
casing-heading. One method is exposed in [7] and in [9]. The idea is
to control the tubing head pressure by applying a PID control on the
production choke adjustments (see Figure 3.1(a)). In these publications,
stability analysis is performed on the characteristic equation of the closed
loop system. In [9], a root locus analysis is used for the design of the
PID parameters. However, since no simulation nor actual test have been
performed and because the model considered in [9] does not take into
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account the propagation in the tubing, it is assumed homogeneous, we
believe that more attention should be paid on other feedback methods.
We now detail these approach in sections 3.1.1 and 3.1.2.

Publications [26], [15], [19] and [16] propose methods based on feed-
back control using production choke opening as input and sometimes also
the gas injection rate.

3.1.1. Steady state based feedback control. — In [26], a system
developed by TOTAL, the FCW (Full Control of Wells), is presented.
This system schedules the opening of the production choke and the gas
injection rate following a sequential logic algorithm which steers the sys-
tem to a prescribed set-point (see Figure 3.1(b)). It is partly based on
the facts that increasing the gas injection rate or decreasing the produc-
tion choke opening tends to stabilize the well (see [16] or Section 2.3).
Successful field results are exposed in [28], use of the FCW leads to a
sharp increase in gas-lift efficiency with an increase in oil production and
a decrease in gas injection. A tuning methodology for this algorithm is
presented in [34].

3.1.2. Dynamic feedback control. —

3.1.2.1. Use of casing head pressure measurements. — In [16], casing
head pressure measurements are used to stabilize casing-headings. Also
based on the idea that casing heading can be simply suppressed by de-
coupling the annular dynamics from the pressure variations in the tubing,
the control strategy assumes that the gas injection in the casing is con-
stant. Therefore, controlling the the casing head pressure is sufficient
to maintain the gas injection in the tubing constant (see Figure 3.2(a)).
Two cascaded PID control loops are used. The inner one stabilizes the
casing head pressure and the other one defines the casing head pressure
set-point. This set-point is derived from the desired liquid production
flow rate. This structure has been implemented and tested on the exper-
imental gas-lift model in Rijswijk.

3.1.2.2. Use of BHFP measurements. — Engineers from the Norwegian
oil company Norsk Hydro and from ABB present in [15] results obtained
at the Brage field in the North Sea. Several pressures are measured, such
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as casing head pressure, tubing head pressure, pressure downstream the
production choke and bottom hole pressure. This last pressure seems to
be the key measurement because the input from the operator to the well
controller is reported to be“typically a set point for e.g. the downhole
pressure” (see Figure 3.2(b)).

The use of the downhole pressure measurements can be somewhat dif-
ficult. Sensors located at such depth are often subject to damages or
failures. Therefore, researchers from the Norwegian Institute of Technol-
ogy have proposed in [19] a control solution based on the work presented
in [25]. The idea is to use a state feedback control coupled with a state
estimation. A Kalman filter is used to reconstruct the masses of oil and
gas in the well from pressure measurements at the tubing head, casing
head and bottom-hole. This strategy has been tested with OLGAr2000
and is proven to be robust to downhole measurements failures.

All these solutions aim at stabilizing casing headings. In [23] a control
solution focused on the density-wave instability problem is mentioned.
This phenomenon is reported to be alleviated by use of a PI structure
controlling the downhole pressure with production choke opening as in-
put.

3.2. Controlling the tubing dynamics using gas inlet as input

The solution proposed in this section uses the gas injection flow rate
as an input. The goal is to underline the relevance of the modeling of
Section 2.2.

3.2.1. Control. — In this section, we design control laws to steer sys-
tem (35) to a predefined steady state.

3.2.1.1. Control laws definition. — We look for control laws u = λqg

such that pL converges to a chosen constant pref ∈
]

p?
L +

∫ δ

0
k(τ)dτ, p?

L

[

.

The corresponding steady state value of X defined in (34) is

Xref = − p?
L − pref
∫ δ

0
k(τ)dτ

∈]0, 1[(87)
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X

pt(L)
qg

pr

f(pt(L), pr, Xref)

Figure 3.3. Control strategy using gas inlet as input. We

feed the tubing with a computed gas flow rate qg such that the

gas mass fraction at the bottom of the tubing is equal to Xref .

This computation takes the bottom-hole pressure pt(L) and the

reservoir pressure pr into account.

We note uref the value of u at steady state. It satisfies

Xref(uref) =
p?

L − p̄r + uref

uref −
∫ δ

0
k(τ)dτ

(88)

Our (closed-loop) control law is, simply,

u(t) =
p̄r − pL(t)

1−Xref

(89)

Figure 3.3 illustrates this strategy.
This control strategy feeds system (35), which has finite memory δ,

with a constant term. By direct computation, this straightforward ap-
proach provides convergence. We can state the following proposition.

Proposition 9. — With control law (89), pL which dynamics is defined

by system (35) converges to pref in finite time δ for any initial condition

[−δ, 0] 3 t 7→ φ(t) ∈ R.
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Yet, the expression u defined in (89) does not take into account actu-
ation saturations. Here, the most limiting factor in practice is a lower
bound umin > 0 on the control. In facts, some simulations show that this
constraint is often reached with this naive approach. We now propose
the saturated control law

(90)







u =
p̄r − pL(t)

1−Xref

, for pL < p̄r − umin(1−Xref)

u = umin, for pL ≥ p̄r − umin(1−Xref)

Proposition 10. — Assume that

Xref ≥
p?

L − p̄r + umin

umin −
∫ δ

0
k(τ)dτ

(91)

With the (saturated) control law (90), pL which dynamics is defined by

system (35), converges to pref in finite time 2δ for any initial condition

[−δ, 0] 3 t 7→ φ(t) ∈ R.

Proof. — We now show that, for t ≥ δ, the control law is unsaturated.
Indeed, for t > 0

h

(

1− p̄r − pL(t)

u(t)

)

≥ Xref

Therefore, for all t ∈ [δ,+∞[,

pL(t) ≤ p?
L +Xref

∫ δ

0

k(τ)dτ

Assuming (91), a simple computation yields

∀t ≥ δ, pL(t) ≤ p̄r − umin(1−Xref)

By equation (90), we get that, for all t ≥ δ, u is simply defined by

u =
p̄r − pL(t)

1−Xref

The control is thus unsaturated and, by Proposition 9, we conclude that
system (35) converges towards pref in 2δ.

In practice, one must choose pref in accordance to the minimum
value umin such that equation (88) holds. This choice implies that as-
sumption (91) holds.
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Figure 3.4. Stabilization of equation (35) using the saturated

control law (90). Control is switched on after approximatively

3.4 hours of open loop. pL reaches pref and X reaches Xref in

finite time 2δ.

Indeed, if p̄r > p?
L +

∫ δ

0
k(τ)dτ , which simply means that the pressure

at the bottom of pipe when it is full of gas is less than the reservoir
pressure, then uref 7→ Xref(uref), given in (88), is increasing. Therefore, if
u > umin

X >
p?

L − p̄r + umin

umin −
∫ δ

0
k(τ)dτ

In short, assumption (91) states that one should not define pref outside
the range of X that can be reached with u > umin.

3.2.1.2. Simulation. — Figure 3.4 shows an example of stabilization
with the saturated control law (90). Choosing u = 10 bar and using
equations (87) and (88) we compute the corresponding steady states
pref = 145 bar and Xref = 0.464. We define umin = 0.1. Assumption (91)
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P0

qgqgqgqg
Xref

x(t, z)

xL(t)

qlqlqlql

Pr

Figure 3.5. Comparison of open loop (3 schemes on the left)

and closed loop behavior.

holds. Until tc the system is left open loop. At t = tc, the controller is
turned on. From tc to tc + δ, the gas mass fraction h(X(t)) remains
between Xref and 1. Therefore, for t > tc + δ, Pl(t) remains below
Pmax = p̄r − umin(1 − Xref) = 150 bar and h(X(t)) = Xref. Pressure
pL converges to pref in finite time.

An alternative view is given in Figure 3.5. Left three snapshots de-
scribe the open-loop behavior. Gas mass fraction profile (x(t, z)) is repre-
sented in white (complementary black part stands for oil mass fraction).
Boundary condition qg is constant and ql is defined by equation (31).
Finally, the right scheme represents the transient obtained with closed
loop control. The feeds keep the gas mass ratio constant at Xref. During
the transient, qg is permanently adapted to counteract the effect of the
state x(t, z), z ∈ [0, L], onto ql. This yields a constant X(t, L) which
progressively steers the system to steady state through the transport
equation.
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3.2.1.3. Stabilization of the well simulated in OLGAr2000. — The
closed loop control law can be tested in OLGAr2000. In Section 2.2.2.1,
we assume the gas velocity to be constant, i.e. we neglect the impact of
the gas mass fraction on the gas velocity. Therefore, when the gas mass
flow rate is high enough, this assumption only results in a time scaling.
But, when the gas inlet is too low, the well production eventually stops,
which is not represented by the simple model. Therefore, we want the
gas injection rate to remain above a minimum, qmin

g , guaranteeing that
an actual flow takes place in the pipe. This defines a lower bound for our
control law. Following the same lines as in the section 3.2.1.1, we define
the control qg, corresponding to u (see equation (33)), to keep xL at a
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g

Figure 3.6. Stabilization of density wave instability simulated

in OLGAr2000 (numerical set up given in Appendix A, Ta-

ble 3). Xref = 0.0568 and qmin
g = 0.3.
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predefined constant, Xref . Using xL given in equation (32), our control
law writes

qg(t) = max

(

Xref

1−Xref

IP (p̄r − pL(t)), qmin
g

)

Figure 3.6 represents an example of stabilization of the density wave
instability. We define qmin

g = 0.3 kg/s and Xref = 0.0568. The controller
is switched on at approximatively tc = 3.4 hour and steers the well to the
steady state corresponding to the initial gas injection rate. The period of
the oscillations approximatively equals the travel time δ. One can see in
Figure 3.6 that the well is stabilized in 2δ. As stated in Proposition 10, 2δ

corresponds to the time needed by the well to forget its initial condition.

3.3. Controlling the tubing dynamics using the production
choke as input

production valve

gas inlet

u

pt(H)

Figure 3.7. Control of the

bottom hole flowing pressure

(pt(H)) with a PID controller

on the production choke (u).

There exists a strong obstacle
to the previously presented con-
trol technique. As discussed in
Section 1.2.1.2, gas is allocated
scarcely between the wells. Be-
cause the casing acts as a large
buffer tank located at the input of
the tubing subsystem, any control
law using the gas inlet as input
potentially demands large peaks
during transients. To compen-
sate the very slow casing dynam-
ics, high gas flow rate variations
must be considered. The induced
variations need high gas availabil-
ity. These requirements are incom-
patible with the above mentioned
constraints. In practice, even for
reasonably scaled transients, it is
not uncommon to punctually need
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Figure 3.8. Block scheme of the OLGAr2000 simulation

setup. First case (top) with a production choke, second case

(bottom).

more than twice the nominal amount of gas. This issue prevents the gas
inlet from being considered as an manipulated input (except for very low
frequency signals).

Therefore, in this section, we propose a control strategy using the
production choke as input (see Figure 3.7). The main advantage of this
choice is that it has a direct impact on the dynamics, unfortunately it
also has a counter part: the choke has a very small active range.

3.3.1. Manipulated variable definition. — In a first approxima-
tion, we model the production choke opening variations as tubing head
pressure variations. Therefore, we investigate the role of the tubing well
head pressure as input variable. With OLGAr2000 we consider two se-
tups to simulate the flow in a single vertical pipe (see Figure 3.8). Oil
is supplied by a reservoir and gas is injected at the bottom of the pipe.
In the first setup, the pipe is equipped with a production choke that we
progressively open. In the second setup, there is no production choke.
Instead, the tubing is modeled as a pipe with a downstream pressure
boundary condition. Gradually, we decrease this boundary pressure,
simulating a reduction of the well head pressure. This section is part
of a work that appeared in the International Symposium on Advanced
Control of Chemical Processes, 2006 (see [35]).

Figure 3.10(a) shows the steady state well head pressure values as
a function of the production choke opening. Classically, our focus is
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Figure 3.9. Comparison of the step responses to an increase

of the well head pressure and to a decrease of the production

choke opening.

on comparing the oil and gas velocities histories obtained from the two
simulation setups. Figure 3.10(b) reports the static values of the oil and
gas velocities as a function of the well head pressure. Over almost the
whole well head pressure operating range (from 23 to 29 bar, i.e. from
0.2 to 1 choke opening), the curves coincide. It is only when the choke is
almost closed that differences appear. Figure 3.9 shows the comparison
of the step responses to an increase of the well head pressure and to a
consistent decrease of the production choke opening, respectively. We
notice similar undershoots of approximately 0.02 m/s. It takes between
four and five noticeable oscillations for both systems to settle. This
experiment suggests it is valid to consider pt(0) as our input variable.
From now on, we denote u , pt(0).

3.3.2. Open loop stability analysis. — Recall equation (35)

pt(t, L) = pt(0) + cst+

∫ t

t−δ

k(t− ζ)h
(

1− p̄r − pt(ζ, L)

λqg(ζ)

)

dζ(92)

We assume that the gas injection in the tubing is constant. Linearization
yields
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δpt(t, L) = δu+

∫ δ

0

k(ζ)
δpt(ζ − δ, L)

λqg
dζ(93)

In Laplace coordinates,

δp̃t(s, L) =
1

1− k̃(s)
λqg

δũ(s)(94)

Where k̃,the Laplace transform of k, writes

k̃(s) = k2
1− e−δs

s
+
k1

δ

1− e−δs − δse−δs

s2
(95)

Using Nyquist criterion we know that the stability of the system which
transfert writes as equation (95) is determined by the shape of the curve
defined by −k̃(jω)/(λqg) for ω ∈ [0,+∞). Since k̃(s) has no zero, if the
Nyquist plot does not encircle −1 the tubing dynamics is stable. We
will not go through the complete stability analysis as it has already been
performed in Section (2.2.3). We simply notice that the role of the gas
injection qg is played by as an homothety of the Nyquist plot. Besides,one
should also notice notice that k̃(s, αδ) = αk̃(αs, δ), which means that an
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Figure 3.11. Nyquist plot corresponding to the linearization

equation (35) for qg=0.2kg/s. The tubing dynamics is unstable.
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Figure 3.12. Control of the bottom hole pressure pt(L) with

the well head pressure pt(0).

increase of the delay also plays the role of an homothety. Figure 3.11
represents the Nyquist plot corresponding to the transfer function (95)
for qg = 0.2 kg/s. One notice that the tubing dynamics is unstable but
close to be stable, for qg = 0.3 kg/s it would be stable.

3.3.3. Closed loop stability analysis. — We will now show that,
for all gas injection rate, the tubing dynamics can be stabilized either
with a P controller or with an IP controller (see Figure 3.12). In the IP
controller case, the reference is only taken into account in the integral
term. It allows smooth responses when the reference is updated.

3.3.3.1. P controller. — Let us define the input u = pt(0) as follows

u = u0 − kp(pt(L)− pref
t (L))

The closed loop transfer writes

δp̃t(s, L) =
kp/(1 + kp)

1− k̃(s)
(1+kp)λqg

δp̃ref
t (s)(96)
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Proposition 11. — For all qg > 0 there exists kp > 0 such that the

closed loop system defined by equation (96) is stable.

Proof. — Recalling computations done in Section 2.2.3, we know that
there exist a minimum gas injection qmin

g such that for all qg > qmin
g , the

corresponding Nyquist plot does encircle -1. If qg < qmin
g we just have to

define kp >
qmin
g

qg
− 1.

3.3.3.2. Use of an IP controller. — Let us define the input u = pt(0) as
follows

u = u0 − kppt(L)− kp

Ti

∫ t

0

pt(L)− pref
t (L)(97)

with u0 defined such that pt(0
+, 0) = pt(0

−, 0). It follows

u0 = pt(0, 0) + kppt(0, L)

In Laplace coordinates,

δũ = −kp

(

1 +
1

sTi

)

δp̃t(L) +
1

sTi
δp̃ref

t (L)

The closed loop transfert writes

δp̃t(L) =
kp/Ti/s

1− k̃(s)/(λqg) + kp

(

1 + 1
sTi

)δp̃ref
t (L)(98)

=
1

1 + Tis
(

1 + 1
kp

(

1− k̃(s)
λqg

))δp̃ref
t (L)

Proposition 12. — For each qg one can find kp > 0 and Ti > 0 such

that the system which transfer writes as equation (98) is stable.

Proof. — Let G be defined by

G(s) = Tis

(

1 +
1

kp

(

1− k̃(s)

λqg

))

Stability of the transfer (98) can be analyzed through the Nyquist plot
of G(jω). Its real and imaginary parts are

Re(G(jω)) =
Ti

kpλqg
Im(ωk̃(jω))
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Figure 3.13. Nyquist plot of the closed loop tubing dynamics.
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equation (99).

and

Im(ωk̃(jω)) = (k1 + k2) cos(ωδ)− k2 − k1
sin(ωδ)

ωδ

Remembering that k1 and k2 are both strictly negative, we get the fol-
lowing lower bound

Re(G(jω)) > 2k1
Ti

kpλqg
(99)

Therefore, choosing Ti > 0 and kp > 0 such that the following inequality
is verified guarantees the stability

Ti

kp
< −λqg

2k1
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3.4. Controlling the well dynamics using production choke as
input

Up to this point we have shown that it is possible to control the tubing
dynamics using the tubing head pressure as input and the bottom hole
pressure as output (as summarized in Figure 3.7). Unfortunately there is
often no sensor at the bottom of the well, and, when there are some, they
are usually subject to recurrent failures. It is a common thought that we
cannot rely on such measurements. Therefore we have to complement the
analysis of the previous section with solutions to implementation issues.
As shown in Figure 3.14 we propose to use the casing head pressure to
estimate the bottom hole pressure.

CasingTubing
pt(L) pc(0)

p̂t(L)

pt(0)

IP
pt(L)ref

Estimator

Figure 3.14. Scheme of the proposed control and estimation architecture.

3.4.1. Bottom hole pressure estimation. — The casing head pres-
sure is related to the bottom hole pressure through the gas volume con-
tained in the annular part. Given the input gas flow rate and the mass
variation (given by the pressure variations), one can easily derive the
output gas flow. The last step consists in computing the pressure down-
stream the gas injection valve, knowing the upstream pressure and the
flow rate. This part presents the principles of an estimator software that
has been deposited on the “Agence pour la Protection des Programmes”
under the Inter Deposit Number

IDDN.FR.001.340008.000.R.P.2006.000.30400
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3.4.1.1. Estimator definition. — We recall equation (69)
{

ṁ1 = qgi − qg(m1, pt(L))

qg(m1, pt(L)) = Cg

√

µm1 max(νm1 − pt(L), 0)

We just have to express m1 in term of pc(0) through the ideal gas law

pc(0) =
RTc

VcM
m1 = ξ′m1

Assuming that the bottom hole pressure is slowly varying compared
to the casing dynamics, we estimate pt(L) thanks to the following model







ṗc(0) = ξ′
(

qgi − Cg

√

µ′pc(0) max(ν ′pc(0)− pt(L), 0)
)

ṗt(L) = 0

with µ′ = µ
ξ′

and ν ′ = ν
ξ′

.
We define the following estimator

(100)






˙̂pc(0) = ξ′
(

qgi − Cg

√

µ′pc(0) max(ν ′pc(0)− p̂t(L), 0)
)

− l1(p̂c(0)− pc(0))

˙̂pt(L) = −l2(p̂c(0)− pc(0))

3.4.1.2. Estimator physical interpretation. — Linearization of equa-
tion (100) yield

(

δ ˙̂pc(0)

δ ˙̂pt(L)

)

=

(

−r t

0 0

)(

δp̂c(0)

δp̂t(L)

)

−
(

l1
l2

)

(δp̂c(0)− δpc(0))

where r and t are two positive constants. Therefore, considering that this
estimator is a filter which input is δpc(0) and which output is δp̂t(L), its
transfer writes

δp̂t(s, L) =
s+ r

s2

l2
+ l1s

l2
+ t

δp̂c(s, 0)(101)

Using a high gain l2, this transfer reduces to

s+ r

t
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which means that this filter locally inverts the casing dynamics. Notice
that this transfer is not causal (while transfert (101) is), which will lead
to some implementation issues.

3.4.1.3. Impact of modeling errors. — Denote ec = p̂c(0) − pc(0) and
et = p̂t(L) − pt(L) the coordinates of the error vector between the real
trajectory and the estimated one. The dynamics of the error writes

(

ėc

ėt

)

=

(

−ξ′(qg(pc(0), p̂t(L))− qg(pc(0), pt(L)))− l1ec

−l2ec

)

This means that the estimator dynamics converges towards a trajectory
(p̄c(0), p̄t(L)) which verifies

qg(pc(0), ˆ̄pt(L)) = qg(pc(0), p̄t(L))

As qg is a bijective function with respect to its second variable for pt(L) <

ν ′pc(0) this defines, in this region, p̄t(L) as

p̄t(L) = pt(L)

Now assume that the qg function is not perfectly known and that the
constant ν ′ and µ′ are linear biased. We define

q̂g = Cg

√

µ̂′pc(0) max(ν̂ ′pc(0)− pt(0))

with ν̂ ′ = (1 + ε)ν, µ̂′ = (1 + ε)µ and ε a small constant error. The
trajectory (p̄c(0), p̄t(L)) is now defined by

q̂g(pc(0), ˆ̄pt(L)) = qg(pc(0), p̄t(L))

Assuming that qg and q̂g are not equal to zero, we get that

p̂t(L) =
1

1 + ε
pt(L)− ε(2 + ε)

1 + ε
pc(0)

This means that the estimator probably reconstructs an affine biased
value of p̂t(L). This is not an issue. We do not need a precise value for
pt(L), we just need to get enough information of the system behavior to
be able to stabilize it. An affine biased reconstruction is enough.

We can easily get rid of the constants. As we define the reference for
pt(L) based on its estimation we do as if we knew the value of the biases.
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Therefore in the definition of the IP controller (97) becomes

u = u0 − kp
1

1 + ε
pt(L) + kp

ε(2 + ε)

1 + ε
pc(0)− kp

Ti

1

1 + ε

∫ t

0

pt(L)− pref
t (L)

with

u0 = pt(0, 0) + kp
1

1 + ε
pt(0, L)− kp

ε(2 + ε)

1 + ε
pc(0, 0)(102)

In practice the term ε(2+ε)
1+ε

(pc(0, t)− pc(0, 0)) is very close to 0 and does
not perturb the convergence of the controller.

3.4.1.4. Simulations results. — Figure 3.15 shows simulations example
of bottom hole estimation. The scenario is the following: at first the
choke opening is set to 0.2, which correspond to a stable set point. The
well tends to stabilize. Then, at time t=300 min, the choke is opened
up to 0.34. This corresponds to an unstable set point. In both cases the
estimator correctly reconstructs the bottom hole pressure. Notice that,
while convergence is almost instantaneous for p̂c(0), it takes a bit more
time for p̂t(L) to settle. Moreover the behavior of p̂t(L) is not as smooth
as the one of the reconstructed casing head pressure. In this case, the
convergence is perfect because we perfectly know the function qg.

3.4.2. Experimental results. — Figure 3.16 shows experimental re-
sults obtained on a TOTAL operated well. The bottom hole pressure
P̂t(L) is derived, thanks to the observer, from the casing head pressure
measurements, Pc(0) and from the gas injection flow rate measurements,
Qg. The estimated pressure is compared with the tubing head pressure,
Pt(0), to validate the relevance of the approach. In Figure 3.16 the well
is unstable. The oscillations are very regular and their period is close to
the propagation time. The tubing head pressure is used to monitor the
expulsions of the liquid slugs, which correspond to the pressure peaks.
Each of these peak is followed by a drop of the estimated bottom hole
pressure, this is relevant with the description of the density-wave phe-
nomenon. The bottom hole pressure estimation behaves as predicted:
it decreases when the tubing head pressure increases which corresponds
to the arrival of the liquid-rich slug and then it increases as the tubing



102 CHAPTER 3. CONTROL SOLUTIONS

0 100 200 300 400 500 600
120.2

120.4

120.6

0 100 200 300 400 500 600
130

131

132

133

0 100 200 300 400 500 600
24

25

26

27

0 100 200 300 400 500 600
0.2

0.3

0.4

P
t
(0

)
[b

a
r]

P
c
(0

)
[b

a
r]

Q
g

[k
S
m

3
/
j]

Time [min]

Ψ
[−

]

estimated
real

Figure 3.15. Estimation of the bottom hole pressure using

the casing head pressure in OLGAr2000 simulation (numerical

set up is given in Appendix A, Table 4). Solid blue (reference

from OLGAr2000), dotted red estimation.

head pressure drops, at the end of the liquid-rich slug. Moreover the
reconstructed values of P̂t are coherent with steady state computations.

3.4.3. Controller results. — Figure 3.17 shows simulations example
of a closed loop stabilization. The scenario is the following: at first
the choke opening is set to 0.2, which corresponds to a stable set point.
The well tends to stabilize. Then, at a time less than t=100 min, the
controller is switched on. The reference for the pressure pt(L) is set to
131.7 bar which corresponds to an unstable point. In both cases the
estimator correctly reconstructs the bottom hole pressure. The well is
stabilized.
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OLGAr2000 simulation (numerical set up is given in

Appendix A, Table 4). The choke opening Ψ is first set to

0.2 which corresponds to a stable equilibrium. The tubing

pressure downstream the injection valve (Pt(L)) is equal to

131.7 bar. The reference for Pt(L) is set to 131.5 bar. After

approximately 100 min the controller is switched on. All

pressures converge towards constant values. Notice that the

estimator is well behaving: the estimation of Pt(0) and of the

casing head pressure, Pc(0), are relevant.



CONCLUSION

Dans ce mémoire consacré à l’étude des puits pétroliers activés en
gas-lift nous avons cherché à apporter des solutions au problème pra-
tique des instabilités d’écoulement fréquemment constaté sur les instal-
lations. Principalement, il a été constaté qu’en vieillissant les puits ont
tendance à produire moins et moins bien. Leur production, constituée
d’une succession de bouchons dont la répartition gaz/liquide est haute-
ment fluctuante, est alors qualifiée d’instable. Ce type de comportements
est préjudiciable. Il diminue la production moyenne du puits concerné,
risque de se propager aux puits connectés sur les mêmes réseaux et égale-
ment de créer des arrêts de production. Ces instabilités étant à la source
de nombreux manques à produire, il est crucial de savoir les éviter, les
supprimer ou du moins les gérer. C’est le thème principal de notre étude.

Dans une première approche nous ne nous autorisons pas d’autres ac-
tions sur le puits que le choix des conditions opératoires. Il s’agit de
définir un critère garantissant la stabilité du système en boucle ouverte.
Nous acceptons de sacrifier l’accès à certaines zones à fort rendement.
Dans une seconde approche nous choisissons de nous placer délibérément
dans ces zones en recourant à des contrôleurs en boucle fermée.

Dans l’étude en boucle ouverte nous proposons des modèles dont
l’analyse nous permet de définir des critères de stabilité. Dans la littéra-
ture, la dynamique de l’écoulement est généralement négligée ce qui per-
met de réduire le système à un modèle à trois dimensions. Dans la thèse
nous avons commencé par montrer que l’un des mécanismes d’instabilité,
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le casing-heading, pouvait effectivement être analysé de cette façon. La
dynamique peut en fait se restreindre à deux dimensions et le phénomène
s’interpréter comme un cycle limite dans un plan. Malheureusement cette
approche ne couvre pas tous les cas pratiques. En effet un deuxième mé-
canisme, la density-wave, provient justement (comme nous l’avons dé-
montré) de l’écoulement dans le puits et du retard lié à la propagation
des effluents du réservoir à la surface. Une des contributions principales
de cette thèse est de proposer un modèle à paramètres distribués qui
permet de modéliser le puits et d’analyser le phénomène d’instabilité par
l’étude des racines d’une équation du type

s = a+ be−sτ +
c

sτ
(1− e−sτ )

où τ est le temps de propagation dans le puits. Il est possible d’unifier
les deux approches. Nous proposons un modèle global, constitué du cou-
plage de l’équation à paramètres distribués et d’un système dynamique
du premier ordre. Nous faisons apparaître, dans le système physique,
deux boucles de rétroaction (représentées sur la Figure 3.18) qui peu-
vent être positives . L’impact des principaux paramètres physiques sur
la stabilité a été étudié et ainsi un certain nombre de règles opératoires
empiriques ont pu être théoriquement validées. Les critères que nous
proposons sont qualitatifs et non quantitatifs. En effet, les paramètres
physiques du puits sont connus avec trop d’imprécision et varient telle-
ment que ce critère n’aurait pas de sens.

Ce modèle nous sert de référence pour la conception de stratégies de
contrôle en boucle fermée. Nous proposons une loi de commande. Les ré-
sultats obtenus en simulation sont probants. Les puits simulés en boucle
fermée sont capables de produire de façon stable lorsque la vanne de pro-
duction est très ouverte, ce qui est impossible en boucle ouverte. Les
zones à haut rendement sont donc accessibles.

La pertinence de l’approche et des modèles proposés a été validée grâce
aux résultats obtenus en simulation et surtout grâce aux résultats partiels
obtenus sur site de production (présentés dans ce document). De nom-
breux problèmes d’implémentation doivent être résolus. En particulier,
nous avons montré sur site qu’il était possible d’estimer la pression de
fond en n’utilisant que des mesures obtenues à la surface.
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Figure 3.18. Représentation du puits sous forme d’un schéma

bloc. Les instabilités correspondent aux boucles de rétroaction

potentiellement positives représentées par les flèches rouges.

Aujourd’hui, ces résultats nous ouvrent l’accès à des essais sur site de
la loi de commande. Les résultats préliminaires sont très satisfaisants.
Dans ce cadre d’industrialisation, un travail complémentaire d’analyse
de robustesse est nécessaire, de façon à garantir l’efficacité dans le plus
grand nombre de configurations possibles.

This report is dedicated to the study of gas lift activated oil wells. We
aimed at bringing solutions to the recurrent problem of flow instabili-
ties. It has been noticed, in the literature, that, over time, wells tend
to produce less in quantity and quality. Eventually, their production
flow consists of a succession of slugs, whose gas/liquid ratio is highly
fluctuating. This behavior should be avoided: it decreases the average
production rate of the well, it might propagate to other connected wells
and possibly cause production stops. These instabilities yield important
production losses and it is interesting to know how to avoid them, get
rid of them or at least how to handle them. This is the goal of our study.
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In a first approach we decided not to consider any other actions besides
choosing operating conditions. We defined a criterion which guarantees
the open-loop system stability. This approach has a cost, because high
return zone are most likely unreachable. In a second approach we chose
to precisely pick operating conditions in the high return zone. The sta-
bilization is achieved thanks to closed loop controller.

In the open-loop setup, we propose models from which stability criteria
were derived. In the literature, the flow dynamics is often neglected. This
allows to reduce the system dynamics to a three-dimensional model. In
this report we first showed that one of the unstable mechanisms, the
casing-heading, could be analyzed using this reduction. The phenomenon
was interpreted as a limit cycle in the plane. Unfortunately, this approach
does not address all issues. In the case of the second mechanism, the
density-wave, the instability arises (as we have explained it) from the
flow regime and from the propagation delay between the bottom of the
well and the surface. Our main contribution is to interpret the system as
a distributed parameters model and to analyse the density-wave thanks
to the study of the roots of the equation

s = a+ be−sτ +
c

sτ
(1− e−sτ )

where τ is the propagation time in the well. Finally, these two approaches
can be combined. We proposed a global model, which consists in the
coupling of the distributed parameters equation and a first order dy-
namical system. We highlighted the existence of two possibly positive
feed-forward loops (represented on Figure 3.19). We studied the impact
on the stability of the main physical parameters. Our results are in accor-
dance with operating rules-of-the-thumb. We propose qualitative (and
non quantitative) criteria. Deriving quantitative criteria from imprecise
and possibly not up-to-date data records did not appear to us as a robust
solution.

Rather, this model suggested a closed loop control strategy design.
We proposed a control law. The results obtained in simulations stress
the relevance of this approach. The closed loop simulated wells are able
to produce steadily, even of large production choke openings. This is



CONCLUSION 109

Bottom hole pressure

Gas

Injected gas

tubing

casing

Figure 3.19. Block scheme the well as an interconnected sys-

tem. The possibly positive feedback loops are in red.

not doable in open-loop. With feedback control, high return zones are
reachable.

The relevance of the approach and of the proposed models has been
validated thanks to simulations results and also mainly thanks to on-site
results (presented in this document). Several implementations issues had
to be solved. In particular, we showed, on site and in real time, how to
reconstruct the bottom hole pressure measurements, using only surface
measurements.

Now, this results give us access to broad field tests. Preliminary results
are very promising. In the context of industrial use, a complementary
study on the robustness of the solution is needed to guarantee the effi-
ciency in the widest range of possible configurations.





APPENDIX A

OLGA
r
2000 SIMULATIONS SETTINGS

Table 1. Numerical set-up for Figure 1.3

Symb. Description Values Units
φ injection valve orifice diameter 15.5/64 inch
Qgi gas injection flow rate 28-220 kSm3/j
qgi gas injection flow rate 0.01-7 kg/s
PI Productivity Index 10−5

pr Reservoir pressure 150 bar

Table 2. Numerical set-up for Figure 2.2

Symb. Description Values Units
φ injection valve orifice diameter 17.2/64 inch
Qgi gas injection flow rate 25 kSm3/j
qgi gas injection flow rate 0.2 kg/s
PI Productivity Index 10−6

pr Reservoir pressure 180 bar
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Table 3. Numerical set-up for Figure 2.9 and Figure 3.6

Symb. Description Values Units
φ injection valve orifice diameter 12.8/64 inch
Qgi gas injection flow rate 62.5 kSm3/j
qgi gas injection flow rate 0.6 kg/s
PI Productivity Index 4−6

pr Reservoir pressure 150 bar

Table 4. Numerical set-up for Figure 3.15 and Figure 3.17

Symb. Description Values Units
φ injection valve orifice diameter 12.8/64 inch
Qgi gas injection flow rate 25 kSm3/j
qgi gas injection flow rate 0.2 kg/s
PI Productivity Index 10−5

pr Reservoir pressure 150 bar
Ψ Choke opening 0.2-0.317 -

Remark: The injection valve diameter is computed from OLGAr2000
simulations to fit the following rule of the thumb, based on two assump-
tions :

– if φ = 8/64 inch and if the flow is critical and if the upstream
pressure is equal to 70 bar, then the flow rate will be 8 kSm3/j

– critical flow is obtained when the downstream pressure is less than
half the upstream pressure.

Qg = 2 ∗ 8/70

(

φ

8

)2
√

Pt(L)(Pc(L)− Pt(L))(103)
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NOMENCLATURE

Symb. Description Units
a, b, c parameters of the distributed parame-

ters equation
-

Cg constant of the gas valve S.I
Cpc constant of the production choke S.I
g gravity constant 9.81 m/s2

H reservoir depth m
L injection depth m
M molar mass of air 0.029 kg/mol
m1 mass of gas in the casing kg
m2 mass of gas in the tubing kg
m3 mass of liquid in the tubing kg
pc(L) pressure in the casing at the injection

point
Pa

pr reservoir pressure Pa
p̄r appearing reservoir pressure Pa
ps separator pressure Pa
pt(0) pressure at the tubing wellhead Pa
pt(H) pressure at the bottom-hole Pa
pt(L) pressure in the tubing at the injection

point
Pa

pt(L)ref reference set point for the pressure in the
tubing at the injection point

Pa
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Symb. Description Units
pt(0)con reference set point for the pressure in the

tubing at the wellhead
Pa

PI productivity index 4e− 6 kg/s/Pa
qg gas mass flow rate injected in the tubing kg/s
qgi gas mass flow rate injected at the casing

wellhead
kg/s

qmin
g saturation value of qg 0.3 kg/s
qlp liquid mass flow rate produced at the

wellhead
kg/s

ql liquid mass flow rate produced from the
reservoir

kg/s

qls liquid mass flow rate from the separator kg/s
R ideal gas constant 287 S.I.
rg(t, z) gas volume fraction -
rl(t, z) oil volume fraction -
Sc equivalent section of the casing m2

St tubing section m2

Tt temperature of the tubing 293 K
Tc temperature of the casing 293 K
x(t, z) gas mass fraction -
xL(t) gas mass fraction at z = L

Vc casing volume m3

vl(t, z) oil velocity m/s
v∞ slip velocity constant m/s
vg gas velocity 0.8 m/s
β threshold parameter 0.03
δ tubing propagation time s
Φl(t, z) oil mass flux kg/s/m2

Φg(t, z) gas mass flux kg/s/m2

Ψ production choke opening -
ρc(H) gas density in the casing at the injection

point
kg/m3

ρg(t, z) gas density kg/m3

ρl density of oil 800 kg/m3
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Symb. Description Units
ρm(t, z) mixture density kg/m3

Table 1: Nomenclature

All symbols in small letters have S.I. units. c indice denotes variables
relating to the casing, t the tubing g the gas and l the oil, respectively.
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