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1 Introduction  

1.1 Scope  
Beech (Fagus sylvatica L.) is the most important broadleaf tree species in Germany where it 

represents 17% of the growing-stock volume1, and the second broadleaf tree species in France (Beech: 

11%, Oak: 25%)2. High value utilisation of this resource on an industrial level focuses on light-

coloured, white beechwood (i.e. free of coloured heartwood) of upper quality (e.g. low level of growth 

stresses) which can be processed for appearance products like sliced veneer and sawn timber for 

indoor applications (furniture, flooring, interior design). However, older trees of larger dimensions are 

capable of forming coloured heartwood, which is usually developed as red heart. The occurrence of 

larger red hearts reduces the value of beechwood considerably: red heartwood is poorly suitable to 

serial production of appearance products owing to its heterogeneity and instability in colour and 

appearance structure (Rathke 1996). Furthermore, tyloses and heartwood substances affect 

impregnation and drying properties [e.g. Seeling (1998)]. European Standards EN 1316-1 (CEN 

1997c) for round timber grading therefore set the maximum red heart percentage3 to 20% and 30% for 

the better quality classes A and B, respectively.  

 

Two complementary strategies emerge from this problem. On the one hand, forest research aims at 

understanding, quantifying and controlling red heart formation by silvicultural means. Based on the 

results, methods shall be developed to optimise the amount of white beechwood in the frame of 

forestry production, and downstream the forest-wood chain, in industrial processing of roundwood. On 

the other hand, wood research aims at characterising, treating and/or modifying red heartwood (Magel 

and Höll 1993; Schleier 1999; Albert et al. 2003; Koch et al. 2003; Liu et al. 2005). Using the 

outcomes, methods of processing and marketing shall be developed to valorise the high amount of red 

heartwood coming to the market each year (Schüpbach and Ruf 2000; Wagemann 2001; Verhoff and 

Wurster 2002). The present study comes mainly within the scope of the first strategy.  

 

Different concepts of silviculture and forest management are analysed (Wilhelm et al. 1999; Klädtke 

2001; Börner 2002; Knoke 2002; Seeling and Becker 2002; Knoke 2003a; Zell et al. 2004) to produce 

and select crop trees of good wood quality, containing a minimal proportion of red heartwood and 

providing the optimum economic benefit. However, variability of red heart occurrence and shape is 

high. In stem-axial direction, red heart is often spindle-shaped. The spindle can reach from the felling 

cut to the crown base, but it can be located somewhere in between as well. In stem radial-direction, red 

                                                      
1 German Federal Forest Inventory, second survey from 2001 – 2002 (BWI 2). Retrieved 13 September 2005 
from http://www.bundeswaldinventur.de/.  
2 French National Forest Inventory (IFN). Retrieved 13 September 2005 from http://www.ifn.fr/.  
3 Ratio (%) of the diameter of the circle enclosing the red heart and the diameter of the cross-section, according 
to EN 1310 (CEN 1997b).  
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heart does usually not coincide with the annual rings, but appears cloudy and composed of several 

formation zones. Since knowledge and means are lacking to determine this variability on the 

individual tree level, it has proven difficult to estimate the quality and to control the quality 

development of standing trees with respect to red heart occurrence and shape, and downstream, to 

optimise the yield of white beechwood in industrial processing of logs. Preceding studies therefore 

suggest quantifying red heart occurrence and shape in more detailed analyses (Becker et al. 2005), and 

including the resulting models into growth simulation (Nepveu et al. 2005).  

 

 

1.2 State-of-the-art  
The state-of-the-art about research relevant to the present study is reported using the following 

structure. First, types of coloured heartwood in Beech, red heart formation, and red heart shapes in 

stem-axial and stem-radial direction are characterised. Second, factors being related to red heart 

occurrence and shape are reported and discussed, including results of statistical modelling. 

Furthermore, approaches to the modelling of coloured heartwood in Beech are discussed from a 

methodological point of view. Finally, conclusions are drawn from the literature review, to introduce 

the objectives and research questions of the present study.  

 

1.2.1 Types of coloured heartwood  

While tree species like Oak always (obligatory) form coloured heartwood, the formation of coloured 

heartwood in Beech is facultative (Bosshard 1967); Beech is capable of forming coloured heartwood 

under certain conditions. Four types of coloured heartwood in Beech are distinguished by their 

appearance (Figure 1), and by possible causes and formation processes. They are red heartwood 

(synonyms: red heart, red core), wounded heartwood, splashing heartwood (synonym: dotty red heart) 

and abnormal heartwood (Sachsse 1991). Regarding cross-sections of stems, red heartwood has round 

borders, partly a cloudy appearance, and usually the outer red heart border does not coincide with the 

annual rings. The reddish-brown colour of red heartwood results from an oxidation process (described 

in more detail in section  1.2.2 below) accompanied by plugging of vessels with tyloses at the 

heartwood margins. The formation of wounded heartwood has its origin in a wound to the cambium, 

but cytological and biochemical processes are similar to that of red heart formation. However, 

wounded heartwood has a small spatial extent of about 25 cm to 75 cm above a wound (Sachsse 

1991)4, and it is usually located at the stem periphery. The other heartwood types can reach from the 

stem base to the crown base, and they are located in the stem centre. Splashing heartwood shows 

jagged  borders  on the  cross-section,  and its  maximum  extent  is  usually  located  at the  stem  base 

                                                      
4 Results are based on artificial wounds at the stem base (Sachsse and Simonsen 1981), so that the extent of 
wounded heartwood below a wound was not determined.  
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(Walter and Kucera 1991). The formation process of splashing heartwood seems complex and caused 

by several factors, which are not well known up to now. An effect of fungi was reported by Necesany 

(1960; 1969), and intensive tyloses formation at the heartwood margins is a further characteristic of 

this type (Seeling 1998). Abnormal heartwood can have jagged borders similar to splashing 

heartwood, but as a characteristic the margins of abnormal heartwood appear black and are attacked by 

bacteria. The hypothesis that abnormal heartwood formation is related to forest decline has not been 

verified (Seeling 1991). Both splashing and abnormal heartwood can develop around a central red 

heart. While in red heartwood the moisture content is lower than in sapwood, in abnormal heartwood it 

is higher (Seeling 1991).  

 

 

Figure 1. Characteristic appearance in cross-section of the four types of coloured heartwood in Beech 
according to Sachsse (1991); illustrations adopted from Seeling (1998).  

 

In the present study, only red heartwood was analysed. This choice was made since red heartwood 

usually occurs most frequently, and the formations and related factors of splashing and abnormal 

heartwood seem lesser known. Wounded heartwood was also excluded because of its small spatial 

extent. The literature review was therefore focused on red heartwood. In recent studies, the 

classification by Sachsse (1991) was adopted by many authors. However, other classifications of 

coloured heartwood (Mahler and Höwecke 1991; Walter and Kucera 1991) are used in some 

references and, especially in many older studies, different types of coloured heartwood are not clearly 

distinguished. Therefore, in the present study the general term “coloured heartwood” is used where 

most likely types other than red heart are included in the analyses cited, hypothesising that their results 

apply to red heart to a large extent.  

For example, in the study by von Büren (2002), 1017 (78%) out of 1305 observations of coloured 

heartwood are reported to show round or cloudy shape in cross-section. They correspond most likely 

to red heart according to Sachsse (1991). Compared with this, there are 201 observations (15%) of 

coloured heartwood with splashing appearance in the study by this author. These observations are 

assumingly splashing or abnormal heartwood according to Sachsse (1991). Another 87 observations 

(7%) of coloured heartwood with irregular shape (Büren von 2002) are difficult to match with the 

classification by Sachsse (1991).  
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1.2.2 Red heart formation  

Heartwood formation in general is associated with breaking down of the water transport system and 

decreasing vitality of the parenchyma tissue (Necesany 1966); radial transport processes (assimilate- 

and ion-shifting), decrease of various physiological performances (Ziegler 1968), and decomposition 

of soluble carbohydrates (Dietrichs 1964) occur; storage substances are degraded or transformed into 

heartwood substances (Bosshard 1974). The theory of red heart formation in Beech is based on 

research by Zycha (1948). According to Zycha (1948), red heart formation is initiated when 

oxygenous air can penetrate through dead branches or other entrances into the stem core of older trees, 

where water content is low and vitality of parenchyma cells is reduced. The oxygen causes 

transformation of soluble carbohydrates and starch into coloured phenol substances in the still-living 

parenchyma tissue (Bauch and Koch 2001). Additionally, the relatively vital parenchyma cells near 

the margin to the sapwood react by plugging vessels with tyloses (Necesany 1966). Since necrobiosis 

of parenchyma is slow, but heartwood substances polymerise rapidly, the substances are not deposited 

in the cell walls (Bosshard 1974). As a consequence, durability of red heartwood is low compared to 

that of tree species with obligatory heartwood formation. Nevertheless, resistance to fungi can be 

greater than in sapwood (Gäumann 1946; Baum 2000; Baum et al. 2000; Baum and Bariska 2002). 

The process of red heart formation is assumed to develop in successive phases, leading to a cloudy 

appearance of several formation zones on the cross-section (Zycha 1948; Sachsse 1991).  

Reduced water content in the inner stem parts, being replaced by gas, seems an important condition of 

red heart formation. Gas occurring in the stem is rich in carbon dioxide and low in oxygen, which 

results in an oxygen gradient between air outside and gas inside the stem; Bosshard (1967; 1974) 

explains oxygen penetration as cause of the so-called mosaic heartwood in Beech by this phenomenon. 

Zycha (1948) assumes that a suction of oxygenous air towards the stem centre develops when water 

tension in the sapwood increases and storage water is towed towards the stem periphery. Furthermore, 

“most likely (…) an indirect relation exists between the water/gas ratio (…) near the heartwood-

boundary and the vitality of parenchymatic cells” (Sachsse 1967). Torelli (1979) distinguishes a 

dehydration phase, and a subsequent discolouration phase initiated by oxygen penetration.  

 

1.2.3 Red heart shape  

Some authors make assumptions about the development of red heartwood, which may lead to 

characteristic red heart shapes in stem-axial direction. According to Zycha (1948), red heart starts at a 

middle stem height and develops towards the stem base and about up to the crown base. Keller (1961) 

states that coloured heartwood develops in the stem either downwards, mostly in the case of forks at a 

relatively low stem height, or upwards, mostly in the case of coppice shoots. Walter and Kucera 
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(1991) report that red heart5 starts mostly from dead branches and wounds, and becomes smaller 

towards the stem base. Correspondingly, red heart is reported to be spindle- or cone-shaped (Seeling 

1998; Frommhold 2001; Lux 2001). With respect to the spindle shape, the frequency of red heart6 

occurrence is low at the stem base, increases rapidly within the first few meters of stem height and is 

highest between 2 m and 10 m of stem height (Höwecke et al. 1991). Several authors analyse the 

maximum size of coloured heartwood in stem-axial direction using different variables: the maximum 

diameter of coloured heartwood7 with spindle shape is reported at 4 m of stem height (Rácz 1961), the 

maximum diameter and area at approximately 4 – 5 m of stem height (Krempl and Mark 1962), and 

the maximum volume percentage at 4 – 8 m (Vasiljevic 1974) of stem height. According to Sachsse 

(1991), red heart reaches its maximum diameter at 30 – 50% of stem height. In addition to a diameter 

maximum occurring at 1 – 4 m from the bottom end of logs, Tomaševski (1958) reports a second 

culmination point at 8 m. However, a second culmination in the upper stem part occurs very seldom 

according to the study by Krempl and Mark (1962). At the stump zone coloured heartwood can 

sharply increase in size, and it ends at the zone of the crown base (Krempl and Mark 1962). On butt-

logs8 the red heart diameter is reported to be bigger at the top end than at the bottom end, with a 

maximum in-between (Seeling and Becker 2002). Distinguishing up to three stem sections per tree, 

Zell (2002) and Zell et al. (2004) estimate for each stem section the probability that the diameter 

percentage of coloured heartwood exceeds 30%. According to the authors, the results indicate that 

coloured heartwood has the shape of a spindle.  

The red heart shape in stem-radial direction is described as round, cloudy or irregular with round 

borders (section  1.2.1). Bulging of coloured heartwood towards external wounds, rotten branches and 

the ramification zones of forks is observed on cross-sections by Krempl and Mark (1962). Similar 

observations are reported by Groß (1992) for dead branches and branch scars/buckles.  

 

 

The previous paragraphs provide background information about the characteristics of red heartwood in 

comparison with other types of coloured heartwood, about the red heart formation process, and about 

the possible development and characteristics of red heart shape. Starting from this background, factors 

being related to red heart occurrence and shape are discussed in the following: tree external traits like 

dead branches are assumed to be pathways through which oxygenous air can penetrate into the stem 

and initiate red heart formation; dendrometric characteristics like an elevated tree age are reported to 

                                                      
5 Coloured heartwood with round appearance on cross-sections according to the classification by Walter and 
Kucera (1991), which corresponds most likely to red heart according to the classification by Sachsse (1991).  
6 Coloured heartwood with round or cloudy appearance on cross-sections according to the classification by 
Höwecke et al. (1991), which corresponds most likely to red heart according to the classification by Sachsse 
(1991).  
7 Apart from Sachsse (1991), the authors cited do not distinguish between red heart and other types of coloured 
heartwood.  
8 Log between the felling cut and the first cross-cut.  
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make trees susceptible to red heart formation. Site characteristics are discussed in less detail in this 

literature review, since they were not analysed explicitly in the present study.  

 

1.2.4 External tree traits  

Relationships between external tree traits and red heart formation are reported in several studies (given 

in the following), while others do not confirm such results (Hupfeld et al. 1997; Börner 2002; Denstorf 

2004; Ebert and Amann 2004). In this respect, the following traits seem most important: dead 

branches/branch scars, forks, wounds, cracks and dead roots. Their possible effect on red heart 

formation is discussed in the following.  

 

Dead branches/branch scars and forks: in the course of natural pruning of younger branches, 

hardwoods form in the branch basis a protection zone of tyloses and inclusions (Mayer-Wegelin 1929; 

Trendelenburg and Mayer-Wegelin 1955). Torelli (1984) assumes broken branches with no previously 

formed protection zone to be most susceptible to oxygen penetration while, according to Zycha 

(1948), oxygenous air may pass the protection zone driven by suction (section  1.2.2). Similarly, red 

heart formation zones are assumed to develop if oxygenous air can pass the tyloses margin of a 

previous red heart zone (Zycha 1948), or to originate from a larger dead branch each (Jaroschenko 

1935). The formation of such protection zone seems similar to heartwood formation and requires vital 

parenchyma cells; in older and larger branches the protection zone is incomplete and limited to the 

sapwood (Aufsess von 1975; Aufsess von 1984). For this reason, larger branches may have been 

found more susceptible to rot (Mayer-Wegelin 1929; Erteld and Achterberg 1954); through rotten 

branches oxygenous air may enter the stem (Keller 1961). Furthermore, larger branches are exposed 

for a longer time to exterior influences, as the duration between branch necrosis and occlusion 

approximately increases with branch diameter (Volkert 1953). For artificially pruned branches this 

relationship is stronger, and it is shown that the duration of occlusion decreases with increasing annual 

ring width (Mayer-Wegelin 1930; Volkert 1953). Similar to larger branches, more inclined branches 

are reported to be more susceptible to rot (Mayer-Wegelin 1929; Erteld and Achterberg 1954). Steep-

angled branches and V-shaped forks with bulging ramification zones are assumed to be oxygen 

entrances owing to cracking by freezing of accumulated water or by wind-stress (Amann 2003; Knoke 

2003a), and owing to rot resulting from water accumulation in the ramification zone. Furthermore, 

relationships between knot discolouration and fungi development are analysed by Volkert (1953) and 

Buchholz (1958).  

Results of statistical modelling also suggest an effect on red heart formation by larger dead 

branches/branch scars and forks. Distinguishing trees with coarse, medium and fine knottiness (visual 

assessment), von Büren (1998; 2002) reports that the probability of occurrence of coloured heartwood 

increases with the presence of larger branch scars. In a multiple regression analysis for estimating the 

red heart diameter, Knoke and Schulz Wenderoth (2001) report a significant effect of the number of 
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dead branches and branch scars/knobs with minimum sizes of 6 cm (dead branches) and 9 cm 

(scars/knobs); including smaller traits into the analyses has led to less exact estimation results. Using 

the same criteria, a significant effect is reported of the number of dead branches and knobs/scars on 

the probability of red heart occurrence (Knoke 2003b). The probability of occurrence of coloured 

heartwood also depends on the occurrence of forks (Büren von 2002); the effect of forks seems 

stronger in younger trees (Knoke 2003a; Knoke 2003b).  

 

Wounds and cracks: embolism originating from wounds to the bark provokes a process of 

discolouration and tyloses formation similar to the process of red heart formation. The resulting 

wounded heartwood usually has a small spatial extent and is located at the stem periphery 

(section  1.2.1). Sachsse and Simonsen (1981) report wounded heartwood to be formed one year after 

the cutting of felling notches in 75 – 90 year old trees. During this period, the moisture content does 

not decrease to the low levels reported by other authors (Zycha 1948; Bauch and Koch 2001) to be 

characteristic for red heart formation. However, development from wounded heartwood to red 

heartwood may occur gradually (Sachsse and Simonsen 1981). Furthermore, observations on log 

cross-sections about a coloured zone between wounds and coloured heartwood in the stem centre 

(Krempl and Mark 1962) may indicate wounds to be initiation points of red heart formation. Between 

trees with external traits (frost cracks and bars, extended and deep wounds to the cambium, rotten 

branches, dryness of tree top) and trees with no such traits, a significant difference (t-test) in the size 

of coloured heartwood (percentage of tree and stem volume) is reported (Krempl and Mark 1962). 

Moreover, a significant effect of larger damage areas on the probability of occurrence of coloured 

heartwood is reported by von Büren (1998; 2002), who concludes that larger damage areas are 

effective entrances for air. Very small “hairline” cracks can lead to the so-called mosaic heartwood in 

Beech (Bosshard 1967), which is a small T-shape discolouration being also referred to as T-disease.  

 

Dead roots: Jaroschenko (1935), Paclt (1953) and Raunecker (1953) report dead roots to be possible 

initiation points for the formation of coloured heartwood. However, Zycha (1948) states that red heart 

formation starts at a middle stem height. Walter and Kucera (1991) differentiate between coloured 

heartwood with splashing appearance, having its maximum extent at the stem base and starting 

assumingly from the roots, and coloured heartwood with round or irregular appearance, which would 

often start from dead branches and wounds. [To match with the classification by Sachsse (1991): 

coloured heartwood with splashing appearance according to Walter and Kucera (1991) corresponds 

most likely to splashing or abnormal heartwood according to Sachsse (1991), and coloured heartwood 

with round appearance to red heart.]  

 

Altogether, there are indications in literature that relationships between external tree traits and red 

heart formation may depend on type (e.g. wound) and size (e.g. larger branch scars) of external traits. 
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However, differentiation between these characteristics is rather difficult; it is not clear which traits 

most likely have an effect on the red heart, and how traits visible on the stem surface are related to the 

red heart inside the stem.  

 

1.2.5 Dendrometric variables  

With respect to the effect of dendrometric variables it is reported that dehydration of the inner stem 

parts is related to radial and height growth and simultaneous reduction of the crown (Torelli 1985). In 

forest stands, the occurrence of coloured heartwood is low before beech trees reach an age of 

approximately 80 years (Rácz et al. 1961; Vasiljevic 1974; Pichery 2000). Below this age, water 

content in the inner stem parts is usually still high, and larger dead branches, which could be oxygen 

entrances, rarely occur (Zycha 1948).  

In general, the frequency of coloured heartwood increases with tree age (Rácz 1961; Rácz et al. 1961; 

Krempl and Mark 1962; Lanier and Le Tacon 1981; Mahler and Höwecke 1991; Walter and Kucera 

1991). Noticeable increase is reported at ages of 100 – 120 years (Krempl and Mark 1962), 120 –

 150 years (Lanier and Le Tacon 1981), and 150 years (Redde 1998)9. The diameter (Rácz et al. 1961; 

Kotar 1994) and volume percentage (Krempl and Mark 1962) of coloured heartwood increase with 

tree age, also. However, according to Walter and Kucera (1991), the increase in diameter of coloured 

heartwood stagnates at an age of about 120 years. With increasing stem diameter, the occurrence and 

size of coloured heartwood increase as well (Rácz 1961; Rácz et al. 1961; Höwecke et al. 1991; 

Mahler and Höwecke 1991). The effect of diameter was stronger than the effect of age in the studies 

by Racz et al. (1961) and Mahler and Höwecke (1991). Considering the interaction of both variables, 

the mean diameter increase, fast grown trees seem to show less frequent and less severe formation of 

coloured heartwood (Vasiljevic 1974; Knoke and Schulz Wenderoth 2001; Seeling and Becker 2002).  

These results are reflected in statistical modelling as follows. The probability of occurrence of 

coloured heartwood increases with tree age (Büren von 2002; Knoke 2003a; Knoke 2003b). Trees 

with high mean diameter increase are reported to contain less likely red heartwood (Knoke and Schulz 

Wenderoth 2001); the effect of diameter at breast height on red heart occurrence is stronger in younger 

stands than in older ones (Knoke 2003a; Knoke 2003b). Mavric (2003) and Schmidt (2004) estimate 

the probability of occurrence of red heartwood, splashing heartwood and no coloured heartwood based 

on the diameter at breast height. Börner (1998) and Zell et al. (2004) use the diameter at breast height 

to estimate the probability that coloured heartwood exceeds 30% of the cross-section diameter. An 

effect of stem diameter or stem radius, on the size (radius, radius percentage, diameter or diameter 

percentage) of coloured heartwood is reported in several studies (Torelli 1985; Höwecke et al. 1991; 

Börner 1998; Knoke and Schulz Wenderoth 2001; Börner 2002; Mavric 2003; Knoke 2003a; Schmidt 

                                                      
9 The results of Redde (1998) were obtained at the felling cut. At the zone of the stem base coloured heartwood 
can sharply increase towards the tree top (Krempl and Mark 1962), so that it cannot always be detected at the 
felling cut. Considering this, Redde (1998) might have underestimated the frequency of coloured heartwood.  
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2004). Few studies (Torelli 1985; Kotar 1994; Büren von 2002) also report an effect of age on this 

variable.  

Furthermore, the radius of coloured heartwood at one fifth of tree height is reported to be related to its 

distance to the crown base, and the radius percentage of coloured heartwood to the relative crown 

length (Torelli 1984; Torelli 1985). According to von Büren (2002), the diameter percentage of 

coloured heartwood increases with tree height class (5 m-classes) up to the class 20–25 m, and it is 

almost constant between this class and the higher classes. Also, an effect of the ratio of tree height and 

diameter at breast height (hd-ratio) on the occurrence of coloured heartwood is reported by this author.  

 

Height at an age of 100 years and top height are used as measures of site class in the studies by Torelli 

(1985) and Kotar (1994), and positive relationship with red heart radius and with red heart volume 

percentage in stands is reported, respectively. Also, an effect of mean stand height on the probability 

of occurrence of more than 30% of red heart (diameter percentage) is reported (Zell et al. 2004). 

However, according to von Büren (2002), the frequency of coloured heartwood is higher on sites with 

unfavourable nutrient supply. Kotar (1994) reports that the relationship between red heart diameter 

and tree age differs with site unit. Compared with this, tree age has the greatest effect on red heart 

probability in the model by Knoke (2003a; 2003b). However, in this model and in the model of red 

heart size by Knoke (2003a), variables of site characteristics (growing area, site unit and relief) were 

partly significant, but had little effect upon the estimation results. Altogether, it appears difficult to 

specify the effect and interaction of different site characteristics in relationship to red heart formation. 

Similarly, other authors conclude from literature review that different results are reported about the 

influence of site characteristics on red heart formation (Seeling et al. 1999; Günsche 2000). Also, 

Stuber et al. (2002) state that no clear relationship between site characteristics and red heart formation 

is reported in literature. They assume that there may be overlaying by other factors.   

 

1.2.6 Approaches to the modelling of coloured heartwood in Beech 

As reported in sections  1.2.4 and  1.2.5, external traits and dendrometric variables are included as 

explanatory variables into approaches to the modelling of coloured heartwood in Beech. These 

approaches are discussed in the following from a methodological point of view. Referring to the 

characteristics of coloured heartwood reported in sections  1.2.1,  1.2.2 and  1.2.3, important 

considerations in modelling of coloured heartwood in Beech seem to be:  

(1) there are beech trees with and with no coloured heartwood (occurrence); 

(2) different types of coloured heartwood occur in Beech; the types are of different origins;  

(3) occurrence, type and size of coloured heartwood vary with stem height (shape in stem-axial 

direction);  

(4) the shape of coloured heartwood varies in stem-radial direction.  
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An overview of approaches to the modelling of coloured heartwood is provided in Table 1. In this 

table, the following characteristics are listed: model author, total number of sample trees, model type, 

target variable of coloured heartwood, differentiation by type of coloured heartwood and number of 

observations of coloured heartwood per tree/differentiation by stem height.  

 

Table 1. Overview of approaches to the modelling of coloured heartwood in Beech.  

Author Total 
number of 
trees (a) 

Model type Target variable of 
coloured heartwood 

Differentiation by type 
of coloured heartwood 

Number of observations of 
coloured heartwood per tree/ 
differentiation by stem height 

Torelli (1979; 
1984; 1985) 

100 Multiple linear 
regression 

Radius, radius 
percentage  

– 1/ 
20% of tree height 

Höwecke et al. 
(1991) 

3961 Simple linear 
regression 

Diameter, diameter 
percentage 

Round, cloudy, 
splashing, 3 types of 

irregular (b)  

2/ 
1st stem cross-section and  
2nd–4th stem cross-section 

Kotar (1994) (c) 3634 Simple linear 
regression  

Diameter  – 1/ 
1.3 m 

Probit analysis Occurrence,  
diameter ≥ 33%  

(both dichotomy) 

Exclusively red 
heartwood (d) 

2/ 
Height as continuous variable (e) 

Knoke and 
Schulz 
Wenderoth 
(2001) 

195 

Multiple linear 
regression 

Diameter, diameter 
percentage 

Exclusively red 
heartwood (d) 

2/ 
Height as continuous variable (e) 

Knoke (2003a; 
2003b) 

392 Logistic 
regression 

Occurrence 
(dichotomy) 

Exclusively red 
heartwood (f) 

2/ 
Height as continuous variable 

Knoke (2003a) 392 Multiple linear 
regression 

Diameter, diameter 
percentage 

Exclusively red 
heartwood (f) 

2/ 
Height as continuous variable 

Logistic 
regression 

Occurrence 
(dichotomy) 

– 1/ 
– 

von Büren 
(2002) (g) 

610 

Multiple 
regression  

Diameter percentage  – 1/ 
– 

Hyperbolic Diameter ≥ 30% Mainly red  
heartwood (h) 

2/ 
Maximum at 1.3 m or 7 m 

Börner (1998; 
2002) 

146 

Simple linear 
regression 

Diameter percentage Mainly red  
heartwood (h) 

2/ 
Maximum at 1.3 m or 7 m 

Multi-nominal 
logit 

Occurrence 
(3 categories) 

Red heartwood, 
splashing heartwood 

2/ 
Log bottom and top ends 

Mavric (2003) 1385 

Non-linear 
regression 

Diameter percentage Red heartwood, 
splashing heartwood 

2/ 
Log bottom and top ends 

Multi-nominal 
regression 

Occurrence 
(3 categories) 

Red heartwood, 
splashing heartwood 

2/ 
Log bottom and top ends 

Schmidt (2004) 1252 

Non-linear 
regression 

Diameter percentage Red heartwood, 
splashing heartwood 

2/ 
Log bottom and top ends 

Zell (2002); Zell 
et al. (2004) (i) 

535 Logistic 
regression 

Diameter ≥ 30% 
(dichotomy) 

– up to 3/ 
Stem-section as dummy variable 

(a) Total number of trees in the study. Depending on the analysis, the number of trees included in models can be smaller (e.g. exclusion of 
outliers, of observations with no coloured heartwood, etc.).  
(b) Red, brown/black and marbled/grey. 
(c) Kotar (1994) also reports analyses of the volume percentage of coloured heartwood on the stand level. They are not given in this table, 
since the present study focused on red heart occurrence and shape on the tree level.  
(d) Cracked heart according to Klemmt (1996) considered as no coloured heartwood (“white”).  
(e) Relative height of the cross-section in the zone of the branch-free bole.  
(f) Cracked heart according to Klemmt (1996) included.  
(g) Von Büren (2002) reports analyses of 2402 trees with respect to site characteristics and of a sub-group of 610 trees with respect to tree 
morphological characteristics.  
(h) Including 3 trees with splashing heartwood out of 146 trees.  
(i) Zell (2002) and Zell et al. (2004) use an unpublished model of Kügler (1999). 
 



  Introduction 12 

 

The occurrence (point 1) or minimum size (e.g. 30%) of coloured heartwood, being dichotomy 

variables, are estimated by generalised linear models (probit or logistic regression models) (Knoke and 

Schulz Wenderoth 2001; Büren von 2002; Zell 2002; Knoke 2003a; Knoke 2003b; Zell et al. 2004). 

Börner (1998) uses a hyperbolic model to estimate the probability that the diameter percentage of 

coloured heartwood exceeds 30%. Three categories (no coloured heartwood, red heartwood and 

splashing heartwood) are distinguished in the multi-nominal models by Mavric (2003) and Schmidt 

(2004).  

Types of coloured heartwood (point 2) other than red heart are excluded explicitly in the models of 

Knoke and Schulz Wendroth (2001) and Knoke (2003a; 2003b) for estimating red heart occurrence 

and size10. Börner (1998) includes red heartwood and splashing heartwood into the same sample, as 

very few trees show splashing heartwood. Separate models for the diameter and diameter percentage 

of six types of coloured heartwood are given by Höwecke et al. (1991). Mavric (2003) and Schmidt 

(2004) distinguish between red heartwood and splashing heartwood in their models of occurrence and 

size of coloured heartwood. However, possible differences between the formation of the two types of 

coloured heartwood are taken into account by one explanatory variable only (diameter at breast height; 

section  1.2.5).  

The size (diameter percentage) of coloured heartwood based on one observation per tree is estimated 

by von Büren (2002) using a multiple regression model. To take account of the shape of coloured 

heartwood in stem-axial direction (point 3), cross-sections at one fifth of tree height are analysed by 

Torelli (1979; 1984; 1985), hypothesising that the maximum size of coloured heartwood is located 

there. Börner (1998; 2002) analyses the larger percentage of coloured heartwood occurring at either 

1.3 m or 7 m of stem height. Further models based on one observation of coloured heartwood per tree 

are given by Kotar (1994). Descriptive models (not given in Table 1) show linear relationships 

between the diameter of coloured heartwood at 0.3 m and 1.3 m of tree height (Kotar 1994), and at 

1.3 m and 7 m of tree height (Börner 1998; Börner 2002); similar relationships are reported for the 

diameter percentage of coloured heartwood. Coming back to the predictive models given in Table 1, 

Zell (2002) and Zell et al. (2004) use up to three stem sections (logs) per tree, and the larger 

percentage of coloured heartwood at the ends of each section; stem sections are distinguished by 

dummy variables. Knoke and Schulz Wendroth (2001), and Knoke (2003a; 2003b) use two cross-

sections per tree and take account of their height in the stem. In the models by these authors, the 

probability of coloured heartwood is estimated individually for each log (Zell 2002; Zell et al. 2004) 

and cross-section (Knoke and Schulz Wenderoth 2001; 2003a; 2003b), respectively. Also, Mavric 

(2003) estimates the occurrence of red heartwood, splashing heartwood and no coloured heartwood at 

the bottom and top ends of logs separately. However, for obtaining a good prognosis at the bottom 

                                                      
10 According to Knoke (2003a), a plausible model could not be developed for splashing and abnormal 
heartwood, since they represent only 8% of the cross-sections observed in this study.  
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end, the heartwood type at the top end has to be included into the model as a dummy variable. Schmidt 

(2004) stresses correlation of the occurrence, type and size of coloured heartwood between cross-

sections of the same tree. Analysing the bottom and top ends of butt-logs, this author proposes a 

multinomial regression model distinguishing nine combinations of red heartwood, splashing 

heartwood, and no coloured heartwood. The size (diameter percentage) of coloured heartwood is 

described by non-linear regression models. However, the distance between cross-sections is not taken 

into account in the study by this author.  

To take the spindle shape of red heart into account as parabola, Knoke and Schulz Wendroth (2001), 

and Knoke (2003a; 2003b) include the height of the observed cross-sections (two per tree) and its 

square into their models of red heart occurrence and size (diameter, diameter percentage). With respect 

to sampling, a similar approach is used by these authors for modelling, and by older studies (Rácz 

1961; Höwecke et al. 1991) for describing the shape of coloured heartwood in stem-axial direction: the 

red heart size is measured on bottom and top ends of logs of different length and diameter. These are 

butt-logs and also logs from higher stem zones in the studies by Rácz (1961) and Höwecke et al. 

(1991), and butt-logs in the studies by Knoke and Schulz Wenderoth (2001) and Knoke (2003a). This 

way, observations of many trees and at various tree heights are obtained. However, the shape of 

coloured heartwood of each individual tree is only represented by few observations along the stem 

axis. Furthermore, observations come from trees with different ages and dimensions, and trees are 

taken from different stands. In this respect, Rácz (1961) comments on the issue of sampling 

optimisation: a high total number of stems could only be analysed within the framework of conditions 

in practice; but determining coloured heartwood systematically at constant intervals in all trees would 

be more exact from the point of view of natural science.  

Models quantifying the shape of coloured heartwood in different stem-radial directions (point 4), were 

not found in the literature review.  

 

1.2.7 Conclusion  

In conclusion, coloured heartwood in Beech can be of different origins (types). Normal red heartwood 

is formed in older trees when oxygenous air can penetrate into the stem centre. This process may start 

and develop at various stem heights, which may lead to characteristic red heart shapes. Different tree 

external traits may be red heart initiation points, and certain dendrometric tree characteristics like tree 

age and diameter are related to red heart formation. Using these relationships, statistical models are 

developed to estimate red heart occurrence and size. While the models are based on rather high 

numbers of sample trees, few observations of coloured heartwood per tree are analysed. Thus, the 

variability of red heart occurrence and shape within trees is poorly taken into account. Considering 

that tree external traits may indicate initiation points of red heart formation, the position (height and 

azimuth) of traits on the stem surface may be related to the red heart shape inside the stem. 

Differences between traits and their probable relationship to the red heart may depend on trait type 
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(e.g. dead branch) and dimensions (e.g. branch diameter). Furthermore, dendrometric variables (e.g. 

crown base height, diameter at breast height) may be related to the red heart shape in stem-axial and 

stem-radial direction.  

 

 

1.3 Objectives and structure of the study  
Referring to section  1.2, many scientific works indicate a high variability of red heart occurrence 

between trees and of red heart shape between and within trees. However, knowledge and means are 

lacking to determine this variability from tree morphological (macroscopic) and dendrometric 

characteristics. The overall objective of the present study therefore is to quantify relationships, and to 

develop a hypothesis about basic “mechanisms” between external and dendrometric tree 

characteristics on the one hand, and red heart occurrence and shape in stem-axial and stem-radial 

direction on the other hand. Owing to the high variability within trees, in the present study an 

approach of more detailed analyses at the intra-tree level (higher resolution of red heart shape and 

external trait measurements) based on a smaller number of sample trees was chosen (35 trees in total) 

in comparison with existing approaches to the modelling of coloured heartwood in Beech 

(section  1.2). This way, basic and complementary knowledge, and approaches to quantify the red heart 

occurrence and shape on the individual tree level should be provided, to be used and further developed 

in modelling on a larger and more general scale.  

To reach the overall objective, the following research questions were deduced from the state-of-the-art 

(section  1.2), which were analysed in the present study:  

Q1:  Which external traits can be related to the red heart inside the stem?  

Q2:  How are these external traits related to the red heart inside the stem?  

Q3:  How can this relationship (Q2) be used to estimate the occurrence (initiation) of red heart? 

Q4:  How can this relationship (Q2) be used to estimate the overall11 shape of red heart along the 

stem axis (e.g. spindle shape)?  

Q5:  How can relationships between dendrometric variables and red heart be used to estimate the 

overall shape of red heart?  

Q6:  How does the overall red heart shape vary close12 to external traits? 

 

                                                      
11 Overall red heart shape: longitudinal red heart shape between the felling cut and the crown base (rotation 
symmetry); local red heart shape: deviation from the overall red heart shape close to (near/at the location of) 
external traits.  
12 i.e. near/at the location of external traits.  
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Referring to Figure 2, the analyses were structured as follows:  

I. first, an explorative analysis (analysis I) of 4 red heart trees (group 1) was performed with the aim 

of identifying and characterising possible relationships between tree external traits and the red 

heart within the tree (Q1 and Q2). Therefore, complete mapping of traits (dead branches, branch 

scars, wounds, cracks and fork) on the stem surface was performed as well as a very detailed 

description13 of the red heart shape. This description made it possible to characterise both the 

overall red heart shape along the stem axis and the local14 red heart shape close to external traits.  

The subsequent analyses focused on particular aspects based on results of analysis I. Also, the results 

of analysis I made it possible to perform selective measurement and sampling of traits (dead 

branches/branch scars) and red heart (overall red heart shape based on discs; local red heart shape 

based on boards including knots) on a second group (group 2) of 17 red heart trees and 14 trees with 

no coloured heartwood (later referred to as white trees). Using the trees of group 2, the red heart was 

studied within and between trees as well:  

II.  using results of analysis I about relationships between external traits and red heart, the aim of 

analysis II was to estimate the probability that red heart occurs (does not occur) in individual 

standing trees (Q3). A type logistic regression model was developed based on the 17 red heart 

trees and the 14 white trees of group 2;  

III.  using the description of the overall red heart shape (analysis I), the aim of analysis III was to 

develop a statistical modelling approach to estimate this shape in standing trees between the 

felling cut and the crown base (Q4 and Q5). The approach was developed on 16 red heart trees15 

of group 2, and it was applied to the 4 red heart trees of group 1 to test its suitability for an 

independent sample;  

IV.  finally, using the 16 red heart trees of group 2, the local red heart shape close to external traits 

was analysed with the following aims. In analysis I, deviation of the local red heart shape around 

knots from the overall red heart shape was observed. In this respect, the first aim of analysis IV 

was to quantify this deviation in stem-axial direction by means of descriptive statistics (Q6). Also, 

geometric relationships between branch scars, knots and red heart were developed in analysis I. In 

this respect, the second aim of analysis IV was to test the validity of the geometric relationships 

between branch scars and knots. Furthermore, a model should be developed to estimate the link 

between knot and red heart based on both knot variables and branch scars (Q2).  

 

                                                      
13 Measurement step of red heart description: 50 cm in stem-axial direction, 1° in stem-radial direction.  
14 See footnote 11.  
15 One tree of group 2 was excluded owing to a very special red heart shape: there were two red heart zones 
separated by an inter-section of white wood.  
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In summary, based on intensive measurements of external traits and red heart shape on 4 trees 

(analysis I), hypotheses were deduced to develop models of red heart occurrence and shape. Based on 

the hypotheses, three analyses were performed: modelling of red heart occurrence (analysis II; 31 

trees), modelling of the overall red heart shape (analysis III; 16 trees) and description and estimation 

of the local red heart shape (analysis IV; 58 boards of 16 trees).  

 

 

Figure 2. Structure of the analyses of red heart occurrence and shape (reported in sections  3.1,  3.2,  3.3 
and  3.4).  

 

Referring to Figure 2, each analysis was based on trees of either group 1 or group 2, but results were 

also tested on trees of the respective other group (see above). Furthermore, samples and data of each 

group were used in several analyses. Therefore, at first an overview about materials and variables 

measured on the trees of groups 1 and 2 is provided to the reader in section  2. Methods of data 

analysis, results and discussion of analyses I–III are reported in detail in Papers I–III (section  0); they 

are summarised in sections  3.1,  3.2 and  3.3 below, respectively. Additionally, in sections  3.2 and  3.3 

complementary analyses are presented which have not been described already in Papers II and III, 

respectively. Analysis IV was not submitted for publication yet. It is described in detail in section  3.4, 

including methods, results and discussion of results. In section  4, the outcomes of this study are 

discussed in a synoptic manner, including methodological developments, interpretation of results with 

respect to red heart initiation and development, and new approaches to the modelling of red heart 

occurrence and shape. Finally, conclusions are drawn, and perspectives in the short term and in the 

medium and long term are discussed (section  5).  
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2 Materials and variables measured  

2.1 Group 1  
Group 1 consisted of 4 trees (Fagus sylvatica L.) with red heart (numbered B01, B08, C04 and C06). 

The trees were selected to represent various types of external traits (dead branch, branch scar, wound, 

crack and fork), and spindle- and cone-shaped red hearts (Paper I). They were taken in March 2002 

from two high-forest stands (B and C), located in the German federal state of Hesse; trees B01 and 

B08 came from stand B, trees C04 and C06 from stand C. Stand B was located at about 500 m of 

altitude on a medium dry, eutrophic site. Stand age amounted to approximately 140 years. Stand C 

was located at an altitude of about 340 m on a fresh, eutrophic site. Its age was approximately 

160 years. A dendrometric description of the sample trees is given in Table 2.  

 

Table 2. Dendrometric description of the sample trees of group 1. All trees contained red heart. 

Tree 
number 

dbh 
(cm) 

age 
(years) 

midbh 
(cm/year) 

htot 
(m) 

hcb 
(m) 

hcbrel 
(1) 

cl 
(m) 

clrel 
(1) 

hd 
(m/cm) 

Fork 

B01 58 95 0.61 33.7 15.5 0.46 18.2 0.54 0.58 No 
B08 48 104 0.46 34.3 21.6 0.63 12.7 0.37 0.71 Yes 
C04 62 170 0.36 30.9 14.5 0.47 16.4 0.53 0.50 No 
C06 61 154 0.40 35.4 19.3 0.55 16.1 0.45 0.58 No 
dbh: diameter at breast height (over bark; crosswise calliper measurement)  
age: single tree age (number of annual rings at tree height 0.5 – 0.8 m)  
midbh: mean increase of diameter at breast height (dbh / age) 
htot: total tree height (measured on standing tree by VERTEX device)  
hcb: height of crown base (defined as the lowest living primary branch; measured on standing tree by VERTEX 
device) 
hcbrel: relative height of crown base (hcb / htot) 
cl: crown length (htot – hcb)  
clrel: relative crown length (cl / htot) 
hd: hd-ratio (htot / dbh) 
Fork: forked stem below the crown base  
(1): no unit 
 

An original method was developed and applied to observe and analyse relationships between external 

traits on the stem surface and the shape of the red heart in the stem, as reported in Paper I. Three 

reference levels were distinguished as illustrated in Figure 3: (1) the stem of each sample tree where 

the position of logs was recorded, (2) the log (length ≈ 2 m) where the log surface and the external 

traits (dead branches, branch scars, wounds and cracks; N = 1091 traits in total) were mapped by laser 

scanning, and (3) the disc (inter-disc distance ≈ 50 cm) where the red heart shape was measured by 

digital image analysis16. The method, which was based on Constant et al. (2003), made it possible to 

reconstruct and visualise the stem surface with the external traits and the intra-tree shape of red heart 

in three dimensions, based on the measurements at each reference level.  

 

                                                      
16 Some discs were cut additionally for more detailed observation, but they were not measured.  
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≈ 2 m 

Reference level 1: mapping the position of logs in the stem of each sample tree 

Taking digital images Marking borderlines in CorelDRAW 7 Measurement in Visilog 5.3 

Branch with 

unsound zone 

Branch scar 

Wound CrackLaser scanner AMEB Stem surface with external traits 

≈ 50 cm 

Discs

Reference level 3: analysing images of discs

Reference level 2: laser scanning of logs
Link between logs 

by aligned targets

≈ 2 m 

Reference level 1: mapping the position of logs in the stem of each sample tree 

Taking digital images Marking borderlines in CorelDRAW 7 Measurement in Visilog 5.3 

Branch with 

unsound zone 

Branch scar 

Wound CrackLaser scanner AMEB Stem surface with external traits 

≈ 50 cm 

Discs

Reference level 3: analysing images of discs

Reference level 2: laser scanning of logs
Link between logs 

by aligned targets

 

Figure 3. Sequence of measurements of trees in group 1. Details about the method of measurement are 
given in Paper I.  

 

Laser scanning of logs (reference level 2) was done using the prototype apparatus of the LERFoB-

laboratory in Nancy called Appareil de Mesure de l’Enveloppe des Billons (AMEB). The following 

variables of external traits were calculated from the scanning data:  

• diameter db (mm) of dead branches17;  

• seal length ls (mm),  

• seal width ws (mm) and  

• moustache length lm (mm)  

of branch scars18; branch scar variables are illustrated in Figure 4. 

 

                                                      
17 Diameter in tangential and axial direction, based on 4 measurement points as illustrated in Figure 2 of Paper I.  
18 In forestry practice, and in accordance with European Standards EN 844-8 (CEN 1997a), the term Chinese 
moustache is used instead of branch scar.  
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Figure 4. Branch scar consisting of the “seal” and “moustache”, measured variables (Figure adopted 
from Paper II).  

 

Digital images of discs (reference level 3) were taken using equipment of the Fobawi-institute in 

Freiburg including a Nikon Coolpix 990 camera (Wernsdörfer et al. 2004). In the images, the outer red 

heart border and the disc border (under bark) were marked manually in CorelDRAW 7 (Corel 

Corporation, Ottawa, Canada)19. Using automated detection of the borderlines in Visilog 5.3 

(NOESIS, Les Ulis, France) and a calibration step, the following variables were calculated:  

• mean red heart radius rmean (mm),  

• standard deviation of the red heart radius rstd (mm) and  

• mean disc radius rdiscMean (mm under bark); 

the variables were calculated from 360 radii per disc (inter-measurement angle 1°).  

 

For visualisation purposes the software Bil3d, developed in LERFoB, was used. Bil3d makes it 

possible to display, rotate and zoom the objects measured which are partly rendered with polygonal 

facets.  

 

 

2.2 Group 2  
Group 2 consisted of 31 trees (Fagus sylvatica L.), of which 17 were red heart trees and 14 were white 

trees. All trees of group 2 were selected (according to criteria given in Paper II) in February/March 

2003 from one high-forest stand in the German federal state of Hesse (stand D). Sampling in the single 

stand situation was chosen to focus on the effect of external tree characteristics on red heart 

occurrence, and to limit the range of tree age and diameter and possible influences of site 

characteristics. The stand was located at about 520 m of altitude on a fresh, eutrophic site. Stand age 

                                                      
19 The software PHOTO-PAINT 7 of the CorelDRAW 7 suite was used.  
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amounted to approximately 120 years. A dendrometric description of the sample trees is given in 

Table 3.  

 

Table 3. Dendrometric description of the sample trees of group 2: 17 red heart trees and 14 white 
trees.  

 Tree 
number 

dbh 
(cm) 

age 
(years) 

midbh 
(cm/year) 

htot 
(m) 

hcb 
(m) 

hcbrel 
(1) 

cl 
(m) 

clrel 
(1) 

hd 
(m/cm) 

Fork 

1 57 147 0.39 28.5 12.2 0.43 16.4 0.57 0.50 Yes 
2 43 108 0.40 27.5 12.1 0.44 15.5 0.56 0.64 No 
4 44 111 0.40 32.3 14.6 0.45 17.7 0.55 0.73 Yes 
15 50 117 0.43 30.2 13.1 0.43 17.1 0.57 0.60 Yes 
21 49.5 108 0.46 25.4 10.0 0.39 15.4 0.61 0.51 No 
22 49 120 0.41 32.6 13.3 0.41 19.4 0.59 0.67 No 
24 46.5 110 0.42 33.1 16.2 0.49 16.9 0.51 0.71 Yes 
29 49.5 107 0.46 28.3 10.2 0.36 18.1 0.64 0.57 No 
31 42 111 0.38 32.3 17.9 0.55 14.4 0.45 0.77 No 
35 44.5 106 0.42 27.8 10.8 0.39 17.1 0.61 0.62 Yes 
39 53.5 101 0.53 25.6 8.4 0.33 17.2 0.67 0.48 No 
41 49 109 0.45 34.1 16.9 0.50 17.2 0.50 0.70 No 
42 47 111 0.42 30.5 10.8 0.35 19.8 0.65 0.65 No 
43 56.5 117 0.48 30.2 13.5 0.45 16.7 0.55 0.53 Yes 
45 44 117 0.38 30.6 19.4 0.63 11.3 0.37 0.70 No 
47 49.5 115 0.43 35.3 16.7 0.47 18.6 0.53 0.71 No 

R
ed

 h
ea

rt
 tr

ee
s 

50 48.5 116 0.42 33.1 18.2 0.55 14.9 0.45 0.68 No 
7 42 109 0.39 31.6 12.7 0.40 18.9 0.60 0.75 No 
8 42.5 104 0.41 27.9 10.7 0.38 17.2 0.62 0.66 No 
9 42 107 0.39 31.4 12.7 0.41 18.7 0.59 0.75 No 
11 53.5 107 0.50 31.7 13.0 0.41 18.7 0.59 0.59 No 
13 41 117 0.35 32.7 16.2 0.50 16.5 0.50 0.80 No 
17 43 107 0.40 29.8 17.3 0.58 12.6 0.42 0.69 No 
19 51.5 106 0.49 28.1 10.0 0.36 18.1 0.64 0.55 No 
25 47.5 108 0.44 33.9 15.8 0.47 18.1 0.53 0.71 No 
28 40.5 108 0.38 26.9 10.3 0.38 16.6 0.62 0.66 No 
30 46.5 110 0.42 30.2 12.7 0.42 17.6 0.58 0.65 No 
44 46.5 107 0.43 31.6 14.0 0.44 17.6 0.56 0.68 No 
52 47.5 110 0.43 31.1 16.6 0.53 14.5 0.47 0.65 Yes 
55 42.5 104 0.41 31.1 16.5 0.53 14.6 0.47 0.73 No 

W
hi

te
 tr

ee
s 

56 41 104 0.39 28.1 15.3 0.54 12.8 0.46 0.69 No 
dbh: diameter at breast height (over bark; crosswise calliper measurement) 
age: single tree age (number of annual rings at tree height 0.3 m)  
midbh: mean increase of diameter at breast height (dbh / age) 
htot: total tree height (measured on standing tree by VERTEX device)  
hcb: height of crown base (defined as the lowest living primary branch; the height of the lower ends of the 
moustache (Figure 4) of this branch was measured after felling) 
hcbrel: relative height of crown base (hcb / htot) 
cl: crown length (htot – hcb)  
clrel: relative crown length (cl / htot) 
hd: hd-ratio (htot / dbh) 
Fork: forked stem below the crown base  
(1): no unit 
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For measurements and sampling the stem between the felling cut and the crown base was used; the 

crown base was defined as the lowest living primary branch.  

 

The following variables were determined on the outside of the 31 trees:  

• stem diameter sd (mm): starting at 1.3 m of tree height, the stem diameter was measured every 2 m. 

The highest diameter measurement was performed just above the crown base (crosswise calliper 

measurement).  

All dead branches (N = 49), and those branch scars corresponding to threshold values derived from 

results of Paper I/group 1 (ls ≥ 50 mm and 
ls

ws
 ≤ 2.3; N = 616), were listed for each 2 m-section: 

• branch inclination α (°): the angle α’ (°) between the axes of stem and branch was estimated using 

a protractor. The branch inclination relative to the cross-sectional (horizontal) plane was calculated 

as α = 90° – α’;  

• branch diameter db (mm): the branch diameter was measured close to the stem and in stem-

tangential direction, using callipers. For partly occluded branches, the mean of the length and width 

of the non-occluded area was calculated;  

• seal length ls (mm), 

• seal width ws (mm) and  

• moustache length lm (mm)  

of branch scars (Figure 4).  

 

From 16 red heart trees20 discs and short logs were sampled as illustrated in Figure 5: discs were taken 

at the felling cut, at 1.3 m of tree height, and above 1.3 m about every 2 m; the highest disc was taken 

just above the crown base. The discs had to be located in between external traits; if an external trait 

occurred at a foreseen disc height, the disc height was slightly changed. Furthermore, at least 4 logs 

per tree (mean length ≈ 50 cm) were sampled which included dead branches or branch scars21. The 

logs were selected from various tree heights; preferably, only one trait should occur per log; small, 

medium-sized, and large traits had to be represented; branch scars had to correspond to the threshold 

values given above. The height in the tree was recorded for the upper side of each disc, and for the 

lower and upper ends of each log.  

 

                                                      
20 Referring to footnote 15, tree number 1 of group 2 (Table 3) was excluded.  
21 Additionally, 4 stem sections including the ramification zone of forks were sampled, but they were not 
subjected to the present study.  
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Figure 5. Sampling of discs between the felling cut and the crown base at about every 2 m of tree 
height; sampling of short logs (at least 4 logs per tree, mean length ≈ 50 cm) including dead branches 
or branch scars.  

 

In the laboratory, the variables describing dead branches (α, db) and branch scars (ls, ws and lm) were 

measured manually on the outside of the logs, as described above. Each log was cut in a stem-axial 

direction, passing through the pith at both log ends and through the midpoint of the external trait to be 

analysed (Figure 6). The midpoint of dead branches was defined as the pith on the branch cross-

section, the midpoint of branch scars was located at half of the seal width22. A second cut was made to 

obtain one board per log (mean board thickness ≈ 30 mm)23.  

 

Midpoint 
of seal 

Pith 

Branch 
scarRed heart 

Log

Board

Board 
surface 

analysed 

Midpoint 
of seal 

Pith 

Branch 
scarRed heart 

Log

Board

Board 
surface 

analysed  

Figure 6. Cutting pattern of logs: the board surface to be analysed passes through the pith at both log 
ends and through the midpoint of the branch scar (or dead branch, not illustrated) to be analysed. 
Mean board thickness ≈ 30 mm.  

 

                                                      
22 Similarly, in the case of forks (footnote 21) the cutting plane passed through the pith at the lower log end, and 
through the piths of the fork branches at the upper end.  
23 Two boards per log were cut additionally, but they were not included in the present study.  



Materials and variables measured   

 

23 

Digital images were taken of the discs and boards, using the same method as for group 1 (section  2.1, 

Figure 3, Paper I; in the case of boards the camera lens was positioned on a perpendicular to the board 

surface passing through the midpoint between the pith locations at both board ends). For each disc the 

following variables were obtained from image analysis in CorelDRAW 7 and Visilog 5.3: 

• mean red heart radius rmean (mm) and  

• mean disc radius rdiscMean (mm under bark),  

calculated from the measured areas of red heart and disc using the formula for circular areas; 

• red heart radius ra (mm) and  

• disc radius rdisc_a (mm under bark) 

with a = 1 to 360; 360 radii per disc with an inter-measurement angle of 1°.  

 

The images of the boards were aligned such that the course of the bark was approximately in parallel 

to the abscissa axis of the image coordinate system. The course of the pith, the red heart borders and 

the white wood borders (the interior borders of the bark) were marked manually in CorelDRAW 7 

(Figure 7). Subsequently, the borderlines were detected and measured automatically in Visilog 5.3, 

including a calibration step. An algorithm was developed specifically to measure each borderline as a 

series of points with an inter-point distance of 4 mm in parallel to the abscissa axis.  

In stem-axial direction, three red heart zones were distinguished as illustrated in Figure 7: the knot 

zone was the zone from the junction of the piths of knot and stem to the point where the border of the 

central red heart crosses the upper side of the knot. Within the red heart below and above the knot 

zone, two zones of equal length (lzb) were defined, which were called the lower zone and the upper 

zone. The upper limit of the lower zone was the junction of the pith of knot and stem, the lower limit 

of the upper zone was the zone of branch excision and occlusion; regarding the stem from outside, the 

lower zone and the upper zone represented the red heart just below and above the branch scar, 

respectively. For each board (b), the length (lzb) was given by the shorter one of both zones, to make it 

possible to compare the lower zone and the upper zone within boards, and to use from each board as 

much information as possible.  

In stem-radial direction, the knot side and the opposite knot side were separated by the pith. On the 

knot side, the image coordinates of a straight line between the ends of the knot zone were calculated 

(red heart border excluding knot, illustrated as dashed line in Figure 7), in order to separate the central 

red heart from the red heart in the knot.  
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Figure 7. Digital image analysis of boards: three red heart zones and two board sides were 
distinguished; the course of the pith and the borders of red heart and white wood were marked 
manually in CorelDRAW 7, and detected and measured automatically in Visilog 5.3.  

 

From the image coordinates of the borderlines measured in Visilog 5.3 the following variables of 

board zones were calculated24:  

• mean red heart radius of the lower zone, including both knot sides25 rlowerZone (mm); 

• mean red heart radius of the knot zone, including both knot sides and the red heart in the knot 

rknotZoneIncl (mm); 

• mean red heart radius of the knot zone, including both knot sides, but excluding the red heart in the 

knot rknotZoneExcl (mm); 

• mean red heart radius of the upper zone, including both knot sides rupperZone (mm); 

• mean board radius of the lower zone, including both knot sides rboardLowerZone (mm under bark); 

• mean board radius of the knot zone, including both knot sides rboardKnotZone (mm under bark); 

• mean board radius of the upper zone, including both knot sides rboardUpperZone (mm under bark); 

• mean height (in the tree) of the lower zone hlowerZone (m);  

• mean height of the knot zone hknotZone (m); 

• mean height of the upper zone hupperZone (m); 

• mean height of the three zones hmoyZone = mean (hlowerZone, hknotZone, hupperZone) (m); 

• mean height of the three zones related to the height of the upper red heart end hmoyZoneRel (1), 

                                                      
24 Preliminary analyses of the red heart shape on boards did not suggest analysis of the knot side and the opposite 
knot side separately, since results were highly influenced by the curved course of the pith (e.g. Figure 7).  
25 Some boards had no lower zone. In these cases the mean of two radii (one at each side) was calculated, which 
were located at the lower limit of the knot zone/at the junction of the piths of knot and stem. Correspondingly, 
the mean of two radii was calculated for the upper zone (lzb equalled zero in this case, Figure 7).  
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where the height of the upper end of the red heart was the height of the lowest “white” disc without 

red heart26, and (1) stands for no unit.  

 

For analysing the red heart zones on boards related to the nearest discs, angular disc sections were 

defined both on the knot side and on the opposite knot side (Figure 8). Referring to the radial 

orientation (azimuth) of the cutting plane (surface) of the board, the angular sections had a width of 

± 15° on each side. This way, in total 60 out of the 360 radii per disc (ra, rdisc_a) were selected, and the 

mean radius was calculated  

• for the red heart of the disc below the board rbelow (mm), 

• for the red heart of the disc above the board rabove (mm),  

• for the disc below the board rdiscBelow (mm under bark) and  

• for the disc above the board rdiscAbove (mm under bark);  

the abbreviations of the corresponding disc heights were  

• hbelow (m) and  

• habove (m), 

respectively.  

 

Figure 8. Red heart shape on boards related to the nearest discs (inter-disc distance ≈ 2 m): on the 
discs the mean red heart radius of angular sections was calculated, having a width of ± 15° both on the 
knot side and on the opposite knot side.  

 

Furthermore, knot variables were measured manually in Visilog 5.3 as distances between specific 

pixel positions in the Cartesian coordinate system of each image (Figure 9). The following variables 

were measured27:  

                                                      
26 Tree number 47 had a second small red heart above the upper red heart end.  
27 Explanation of variable abbreviations: inclination and diameter of dead branches measured on the outside of 
the stem were abbreviated as α and db, respectively (see above). Inclination and diameter of knots measured on 
boards were abbreviated as βm and dkm, respectively; the index “m” indicates measured variable values to be 
distinguished from corresponding knot variables (β and dk) estimated from branch scars. Estimation of knot 
variables is described in Paper I and in section  3.4.1.2.1 below.  



  Materials and variables measured 26 

• knot inclination βm (rad), 

• knot diameter dkm (mm), 

• buckle thickness btm (mm over bark),  

• stem radius at the point in time of branch excision, called the knot radius rkm (mm),  

• stem radius observed rom (mm over bark) and  

• stem diameter observed dom (mm over bark).  

 

 

Figure 9. Knot variables measured manually on board images as distances between specific pixel 
positions in the image coordinate system: knot inclination (βm), knot diameter (dkm), buckle thickness 
(btm), knot radius (rkm), observed radius (rom), observed diameter (dom); the index “m” of variable 
abbreviations indicates measured variable values.  

 

Boards were eliminated if the knot to be analysed was completely included in the central red heart, or 

if more than one larger knot occurred on the same board (the larger knots had a minimum seal length 

of 50 mm, see above). Additional knots which were very small were accepted, since they hardly 

seemed to influence the shape of the red heart around the (larger) knot to be analysed. Furthermore, 

the junction of the piths of knot and stem had to be located on the board. Additionally, boards were 

eliminated if red heart boarders were not clearly enough visible owing to discolorations developed 

during storage of short logs. However, certain uncertainty in red heart identification was accepted in 

order to keep a sufficient number of samples. In total N = 60 boards were included in the analyses, the 

16 red heart trees of group 2 were represented by 2 – 5 boards each.  
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3 Analyses of red heart occurrence and shape  

3.1 Explorative analysis (Paper I) 
The aim of analysis I (Paper I) was to identify and characterise possible relationships between tree 

external traits and the red heart within the tree.  

Based on the measurements of group 1 (section  2.1, Figure 3), trees B01, B08, C04 and C06 were 

reconstructed and visualised in three dimensions. A visual assessment was carried out to identify 

systematically traits which were clearly linked to the red heart.  

The links appeared in the visualisation software Bil3d as local, one-sided bulges of the red heart 

towards some traits as illustrated in Figure 10. Figure 11 shows on disc images the development of 

two bulges. The bulges appear related to one knot each: regarding in sequence discs b, c, d and e, the 

red heart bulge on the left side of disc e appears to originate from knot 1, the bulge on the right side 

from knot 2.  

Branch with 
unsound zone

Branch 
scar

Branch with 
unsound zone

Branch 
scar

 

Figure 10. Bulging of the red heart (arrows) towards a dead branch (on the left; tree B01) and a 
branch scar (on the right; tree C06).  
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Figure 11. Development of two bulges of the red heart (from disc a to disc e), which appear related to 
one knot each (tree C04).  

 

The results of Figure 10 and Figure 11 were in accordance with observations by Krempl and Mark 

(1962) (section  1.2), who concluded that an objective, quantitative acquisition of tree traits, and an 

identification of traits influencing the size of coloured heartwood would be necessary. This was done 

in the present analysis: a complete map of traits on the stem surface was available, and bulging of the 

red heart was observed for 4 out of 5 dead branches and 27 out of 344 branch scars, while no clear 

relationships were observed for wounds and cracks. However, these results were based on visual 

assessment focusing on clearly evolved bulges of the outer red heart surface; there might have been 

other traits linked to the red heart which could not be identified by visual assessment, because bulges 

might have been overlaid in the course of the evolution of red heart extent with time, for instance.  

The knots corresponding to the branch scars which were found to be linked to the red heart (later 

referred to as the selected branch scars) had a knot inclination of β ≥ 30° (with one exception) and 

were situated close to the bark (knot depth kd ≤ 1.3)28. Furthermore, all selected branch scars had a 

seal length of ls ≥ 55 mm; the seal length is approximately related to the knot diameter (Erteld and 

Achterberg 1954). Most of the selected branch scars (93%) corresponded simultaneously to the criteria 

of β, kd and ls. However, within the bounds given by the criteria, there were still 61% of non-selected 

branch scars.  

 

Referring to the research questions asked in section  1.3, the results of Paper I contribute to answer 

questions Q1 and Q2.  

Q1:  Which external traits can be related to the red heart inside the stem?  

Q2: How are these external traits related to the red heart inside the stem?  

In response to Q1 one may say that some dead branches and branch scars/knots were related to the red 

heart inside the stem. Also, in the case of sample tree B08, relationship between the ramification zone 

                                                      
28 The calculation method of β and kd are given in Paper I.  
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of the fork and red heart was observed (Figure 7 of Paper I). However, the hypothesis of relationship 

between red heart and wounds or cracks could not be verified by the present analysis.  

The relationship between dead branches/knots and red heart seemed to depend on the geometry of the 

dead branch/knot (Q2): using geometric relationships between branch scars, knots and red heart 

(Paper I), particularly larger knots, more inclined knots and knots located close to the bark were found 

to be linked to the red heart.  

 

In addition to the local red heart shape (bulges towards external traits), the overall red heart shape 

along the stem axis was described in Paper I as the mean red heart radius versus tree height. The red 

heart shape of trees B01 and C04 was that of a spindle; the red heart below the fork of tree B08 

tapered towards the stem bottom; the red heart of tree C06 tapered towards the stem top almost in 

parallel to the bark. Using the observations on trees B01, C04 and C06, a simple hypothesis about the 

development of the overall red heart shape was derived as described in the following29. According to 

Zycha (1948) red heart starts at a middle stem height and develops towards the stem base and about up 

to the crown base. The red heart shapes of trees B01, C04 and C06 may represent stages of this 

development as illustrated in Figure 12: the spindle-shaped red heart of tree B01 just reaches the 

felling cut, and it ends below the crown base (hcb = 15.5 m, Table 2). A later stage of development 

may be represented by tree C04, where, in stem-axial direction, the red heart reaches from the felling 

cut to the crown base (hcb = 14.5 m, Table 2), and the red heart extent in stem-radial direction is 

systematically larger. Assuming that the red heart shape continues to increase in stem-axial and stem-

radial direction, at an even later stage it may run almost in parallel to the bark (tree C06). To 

generalise these observations one may hypothesise that in all stages of development the overall red 

heart shape is that of a spindle; in earlier stages the spindle is included to a large extent in the stem 

between the felling cut and the crown base (tree B01), and in later stages the spindle has increased in 

stem-axial and stem-radial direction, so that the stem between the felling cut and the crown base 

includes a section of the spindle only (trees C04 and C06).  

Using this hypothesis, an approach to describe the overall red heart shape mathematically, and to 

relate this shape to tree external and dendrometric characteristics is presented in section  3.3 below and 

in Paper III. The approach was based on 16 red heart trees of group 2, and it was tested on the 4 trees 

of group 1.  

 

                                                      
29 The red heart shape of the forked tree B08 was not taken into account at first, but is discussed in section  3.3 
below.  
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Figure 12. Hypothesised stages of development of the overall red heart shape (mean red heart radius 
versus tree height) observed on sample trees B01, C04 and C06. Mean disc radius under bark.  

 

 

3.2 Red heart occurrence (Paper II)  
The aim of analysis II was to estimate the probability that red heart occurs (does not occur) in 

individual standing trees, based on relationships between external traits and red heart. Given the 

results of the explorative analysis (section  3.1), it was hypothesised that the probability of red heart 

occurrence changes with the inclination, diameter and/or depth of a dead branch/knot.  

Paper II describes a type logistic regression model based on the 17 red heart trees and the 14 white 

trees of group 2 (section  2.2). The model estimates the probability for each tree of its being a white 

tree as the product of individual probabilities of branch scars and a probability at the dendrometric 

level. The probability of each branch scar not to initiate red heart formation was estimated from three 

so-called “mechanistic” variables, which reflected the hypothesised effect of dead branches/knots on 

red heart occurrence stated above. At the dendrometric level, a significant effect of dbh was found on 

the probability that red heart does not occur. Using this model, 27 of 31 trees were correctly classified, 

and the two groups of red heart trees and white trees were clearly distinguished by probabilities below 

0.25 and above 0.85 (with one exception).  

 

Based on Paper II, in the following a complementary analysis is presented to better understand the 

effect on the tree level, which was included in the model as effect on the dendrometric level. Referring 

to Table 3, possible effects of htot, hcb, hcbrel, cl, clrel and hd were tested (dbh, age, midbh and Fork were 

already tested in Paper II). Comparing the two groups by a t-test, a difference at the significance level 

of 10% was only found for hd (p = 0.095).  
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Using hd in the model only 2 trees (instead of 4 trees in Paper II) were falsely classified (Table 4)30. 

These trees (number 19 and 29) were also misclassified in Paper II. However, in Paper II the 

misclassified trees show probability values close to the classification threshold31 of 0.5. Furthermore, 

the ratio (hd) of htot and dbh can have the same value for very small and very big trees, so that the 

model should also be adjusted to a simple variable (dbh). However, including hd and dbh into the 

model, the slope of hd was not significant. On the one hand, interpretation of significance was limited 

owing to the small number of sample trees. On the other hand, the small number of sample trees 

suggested limiting the number of parameters. Additionally, in the t-test hd was not significant on the 

5% level, but only on the 10% level. Thus, the results should be considered as an indication that there 

may be an effect of hd, but further analyses on a larger sample would be necessary to evaluate this 

effect. Both in Paper II and in the complementary analysis the same effect of branch scars was found; 

to quantify the effect of individual branch scars on red heart occurrence was the aim of analysis II.  

 

Table 4. Probability of each tree of group 2 being a white tree (Pwhite); in comparison with Paper II, the 
probability at the dendrometric level was estimated from the hd-ratio (hd) instead of dbh; threshold 
probability Pwhite = 0.5 (dashed line).  

Tree number Observation Pwhite 
35 Red heart tree 0.000 
39 Red heart tree 0.000 
41 Red heart tree 0.000 
15 Red heart tree 0.000 
45 Red heart tree 0.000 
24 Red heart tree 0.000 
50 Red heart tree 0.000 
2 Red heart tree 0.000 
43 Red heart tree 0.000 
47 Red heart tree 0.000 
22 Red heart tree 0.000 
31 Red heart tree 0.000 
19 White tree 0.000 
42 Red heart tree 0.000 
4 Red heart tree 0.000 
1 Red heart tree 0.078 
21 Red heart tree 0.153 
11 White tree 0.788 
30 White tree 0.988 
52 White tree 0.991 
8 White tree 0.992 
28 White tree 0.994 
44 White tree 0.997 
56 White tree 0.998 
17 White tree 0.999 
25 White tree 0.99953 
55 White tree 0.99981 
9 White tree 0.99991 
7 White tree 0.99993 
13 White tree 0.99999 
29 Red heart tree 1.00000 

 

                                                      
30 Parameter estimates, approximate standard errors, significance tests and correlation matrix of parameter 
estimates of this model are given in Annex section  8.1.2.  
31 The classification threshold was chosen arbitrarily, and it was set a priori.  
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In literature, an effect of hd on the probability of occurrence of coloured heartwood was found by von 

Büren (2002), who discusses relationships to knottiness: more slender trees would have smaller branch 

scars, i.e. smaller possible entrances for air, since secondary growth would have been reduced and 

crowns would have received less light. Additionally, an effect of the presence of larger branch scars is 

reported by this author. Both variables are relatively coarse indicators of knottiness, while the model 

of the present analysis makes it possible to quantify the effect of individual branch scars on red heart 

occurrence. The results of von Büren (2002) were obtained for trees from various stands in terms of 

site characteristics, and dbh and age classes. The present model indicates an effect of hd in the 

situation of a single stand. Therefore, a possible effect of hd may be taken into account if the model is 

tested and developed in different silvicultural situations as discussed in Paper II and in section  5 

below.  

 

Referring to the research questions of section  1.3, results of analysis II contributed to answer 

question Q3.   

Q3:  How can this relationship (between dead branches/branch scars and red heart) be used to 

estimate the occurrence (initiation) of red heart?  

To respond to this question it may be said that geometric relationships between branch scars, knots 

and red heart were used to develop variables which reflected the hypotheses that red heart initiation 

changes with the inclination, diameter and/or depth of a dead branch/knot. The variables were based 

on measurements of branch scars on the outside of the stem, and they were used to estimate the 

probability of each branch scar of its being an initiation point of red heart formation. Based on 

probabilities of branch scars, the probability of red heart occurrence was estimated including an effect 

on the dendrometric level.  

 

 

3.3 Overall red heart shape (Paper III)  
The aim of analysis III was to develop a modelling approach for the overall red heart shape in standing 

trees between the felling cut and the crown base. This approach should make it possible to take into 

account factors initiating and influencing red heart formation (Paper III).  

To reach this objective, the hypothesis about stages of development of the red heart shape (section  3.1) 

was used to develop a model based on 16 red heart trees of group 2, as described in Paper III. The red 

heart shape was defined as the mean red heart radius versus tree height (measured on discs with an 

inter-disc distance of approximately 2 m, section  2.2) between the felling cut and the crown base. The 

shape was modelled by sections of bell-shaped curves, given by an exponential function with a fourth 

order polynomial term. The curves were defined by parameters for the red heart width (in stem-radial 

direction), length (in stem-axial direction) and height in the stem. First, a descriptive model was 

developed with parameter estimates of the red heart width, length and height for each tree. Second, an 
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approach of a predictive model at the standing tree level was developed for estimating these 

parameters from the diameter at breast height, the relative height of the crown base, and the height of 

the most recently occluded knot as possible red heart initiation point.  

Starting from results of Paper III, the model was tested on an independent sample which was the 4 

trees of group 1. Parameters of the descriptive model were estimated based on the data of each tree 

(mean red heart radius about every 50 cm of tree height, section  2.1)32. Parameters of the predictive 

model were adopted from Paper III.  

Figure 13 shows the observed red heart shape and the results of the descriptive and predictive model 

for each tree of group 1. The observed red heart shapes of all trees were closely described by the 

model. With respect to the predictive model, the red heart width was systematically larger than 

observed for tree B01, and slightly smaller for tree B08 (the red heart below the fork was analysed). 

Differences between the observed and predicted red heart length and height33 appeared at the top end 

(tree C04), or both at the top and bottom ends (tree C06) of the red hearts. Comparing in this way the 

observed and predicted red heart shape, the best result was obtained for tree B08. Among other things, 

this may be explained by the explanatory variable dbh of B08 (Table 2) being close to the dbh of the 

trees of group 2 which were used in Paper III to parameterise the model (Table 3, 16 red heart trees 

excluding tree number 1), while the dbh of B01, C04 and C06 were larger (Table 2). More generally 

speaking, parameterising the model based on trees representing different stages of tree growth and red 

heart development may improve its precision and widen its scope of application.  

 

                                                      
32 Parameter estimates, approximate standard errors and 95% confidence limits of this model are given in Annex 
section  8.1.3.  
33 In the predictive model a linear relationship between the red heart height and length was used (Paper III), so 
that the effect of both parameters cannot be evaluated separately.  
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Figure 13. Application to group 1 of the model of the overall red heart shape (mean red heart radius 
versus tree height) developed in Paper III. Observed (measured) values and results of the descriptive 
and predictive model are plotted for each tree (N = 110 mean radii in total). Parameters of the 
descriptive model were estimated based on the observed red heart shape (group 1), those of the 
explicative model adopted from Paper III (group 2). The red heart of tree B08 was analysed below the 
fork.  

 

The histogram of residuals and the scatter plot of residuals versus predicted values of the descriptive 

model are given in Figure 14. For small predicted values the variation of the residuals is relatively 

high. This can be explained by the red heart shape of tree B01 (Figure 13): between 9 m and 11 m of 

tree height the red heart radius estimated by the descriptive model decreases less sharply than the 

observed red heart radius.  
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Figure 14. Descriptive model (group 1): histogram of residuals and scatter plot of residuals and 
predicted values (N = 110). 

 

With the chosen modelling approach, promising results were obtained both in Paper III and in the test 

based on the trees of group 1. The model used the hypothesis that red heart starts at a middle stem 

height and develops to the stem base and up to the crown base (section  3.1). Keller (1961) assumes 

that coloured heartwood develops in the stem upwards (for coppice shoots) or downwards (for forks at 

a relatively low stem height). This may result in coloured heartwood with cone shape tapering towards 

the stem top and bottom, respectively. The model can also deal with these cases, since it defines the 

shape of coloured heartwood as a section of a bell-shaped curve which reaches from – ∞ to + ∞ in 

abscissa direction; depending on the position of the section within the entire curve, spindle or cone 

shapes are modelled (Figure 15). The parameter height defines the position of the curve in stem-axial 

direction relative to the bottom and top end of the stem analysed.  

 

 

Figure 15. Modelling of coloured heartwood with cone or spindle shape by sections of bell-shaped 
curves.  
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Tree B08 of group 1 had a cone-shaped red heart below the fork, which tapered towards the stem 

bottom. In Paper III the red heart areas occurring at the same height on the branches of a fork were 

added, and the mean radius was calculated using the formula for circular areas (trees number 4, 15, 24, 

35 and 43 of group 2, Table 3). The results showed that the red heart of forked trees can also be 

spindle shaped, if the red heart in the branches of the fork is taken into account (red heart shapes of 

group 2 are given in Figure 4 of Paper III).  

The shape of a cone tapering towards the stem top seems characteristic for the splashing heartwood. 

According to Walter and Kucera (1991), splashing heartwood34 has its maximum extent at the stem 

base and runs through the entire stem axis. Similarly, Höwecke et al. (1991) report that splashing 

heartwood occurs most frequently at the stem base. Compared with this, red heart35 occurrence 

increases rapidly within the first meters of stem height, and it is highest at 2–10 m of stem height 

(Höwecke et al. 1991). The characteristics of splashing heartwood in comparison with red heartwood 

are given in section  1.2.1. Problems in modelling of splashing (and abnormal) heartwood are discussed 

in section  4.3 below.  

The spindle shape of red heart is modelled by Knoke and Schulz Wenderoth (2001) and Knoke 

(2003a) by using the height and the height squared of stem cross-sections in multiple regression 

analyses36. With respect to sampling, a similar approach is used by these authors, and by Rácz (1961) 

and Höwecke et al. (1991) who describe the shape of coloured heartwood (section  1.2.6): the size of 

coloured heartwood is measured on bottom and top ends of logs of different length and diameter [butt-

logs in the studies by Knoke and Schulz Wenderoth (2001) and Knoke (2003a), butt-logs and also logs 

from higher stem zones in the studies by Rácz (1961) and Höwecke et al. (1991)]. In this way, 

observations at various tree heights are obtained from many trees, but the shape of coloured heartwood 

of each individual tree is only represented by few observations along the stem axis. Rácz (1961) 

remarks that it would be more exact from the point of view of natural sciences to determine coloured 

heartwood systematically at constant intervals in all trees. This was done in the present study, and as a 

consequence fewer trees were analysed. The results showed that the red heart shape in stem-axial 

direction varies considerably within trees of similar diameter, and a model based on first and second 

order polynomial terms was found not to be flexible enough to take account of this variability (in 

Paper III third and forth order terms were used additionally).  

 

                                                      
34 Splashing heartwood according to the classification by Walter and Kucera (1991) may include splashing and 
abnormal heartwood according to the classification by Sachsse (1991).  
35 Coloured heartwood with round or cloudy appearance on cross-sections according to the classification by 
Höwecke et al. (1991), which corresponds most likely to red heart according to the classification by Sachsse 
(1991). Höwecke et al. (1991) also report analyses of coloured heartwood with irregular appearance: this type 
would be frequent and relatively even distributed at all stem heights. However, it is difficult to match with the 
classification by Sachsse (1991).  
36 Knoke and Schulz Wenderoth (2001) use the relative height of cross-sections in the zone of the branch-free 
bole.  
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Referring to the research questions asked in section  1.3, results of analysis III contributed to answer 

questions Q4 and Q5.  

Q4:  How can this relationship (between dead branches/branch scars and red heart) be used to 

estimate the overall shape of red heart along the stem axis (e.g. spindle shape)?  

Q5:  How can relationships between dendrometric variables and red heart be used to estimate the 

overall shape of red heart? 

In response to questions Q4 and Q5 it may be said that geometric relationships between branch scars, 

knots and red heart, and the dendrometric variables relative height of the crown base and diameter at 

breast height, were used to estimate the parameters height, length and width of the overall red heart 

shape37. This was done by means of a statistic model based on an exponential function with a fourth 

order polynomial term. The model described the red heart shape in stem-axial direction by a section of 

a bell shaped curve.  

 

 

3.4 Local red heart shape (not yet reported in a paper)  
In Paper I, local variation (bulging) of red heart shape was observed close to dead branches/branch 

scars, and geometric relationships were developed to conclude from the stem outside (branch scar) to 

the inside (knot and red heart). In Paper II, the geometric relationships were used to estimate 

probabilities of branch scars of their being initiation points of red heart formation. In Paper III the 

height of a particular branch scar was used to estimate the height of the overall red heart in the stem. 

Results suggested that the zone of red heart close to dead branches/branch scars is important to 

estimate red heart occurrence and shape. Thus, this zone was analysed more closely in analysis IV: 

first, the red heart shape close to dead branches/knots was studied with the aim of quantifying local 

deviation from the overall red heart shape; second, the geometric relationships between branch scars, 

knots and red heart were tested and further developed.  

 

3.4.1 Methods  

3.4.1.1 Local red heart shape  

In section  3.3, the overall red heart shape of 16 trees of group 2 was analysed using discs. Deviation of 

the local red heart shape around knots from the overall red heart shape was analysed using boards of 

these trees. The boards were cut from the inter-disc sections (Figure 5 and Figure 6), and they were 

related to the nearest discs as illustrated in Figure 8. The variables for quantifying the deviation had to 

be independent of the overall red heart shape as far as possible. Thus, to quantify the deviation, the 

                                                      
37 Questions Q4 (related to external traits) and Q5 (related to dendrometric variables) were not answered 
separately for the following reason: in Paper III a linear relationship between the parameters height and length 
was used, so that the effect of branch scar height (external trait) and relative height of the crown base 
(dendrometric variable) could not be evaluated separately.  
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mean radius of each red heart zone on boards (Figure 7) was related to the mean red heart radius of the 

nearest discs (Figure 8) as illustrated in Figure 16: the coordinates tree height (abscissa) and mean red 

heart radius (ordinate) of the disc below the board [A (hbelow, rbelow)], the lower board zone 

[B (hlowerZone, rlowerZone)], the knot zone including the red heart in the knot [C (hknotZone, rknotZoneIncl)], the 

knot zone excluding the red heart in the knot (hknotZone, rknotZoneExcl; not illustrated in Figure 16), the 

upper board zone [D (hupperZone, rupperZone)] and the disc above the board [E (habove, rabove)] were used to 

calculate the deviation of  

• the lower zone dlowerZone, 

• the knot zone including the red heart in the knot dknotZoneIncl, 

• the knot zone excluding the red heart in the knot dknotZoneExcl (not illustrated in Figure 16) and 

• the upper zone dupperZone 

from the linear interpolation between the discs below and above the board (dashed line between A and 

E in Figure 16). Deviation was perpendicular to the interpolation line between A and E. It was positive 

if the respective zone (B, C or D) was located above the interpolation line, and negative below. (The 

absolute values of deviation were equal to the mathematic distance of B, C or D to the interpolation 

line.)38 

 

dupperZone

dknotZoneIncldlowerZone

A B C
D

E

dupperZone

dknotZoneIncldlowerZone

A B C
D

E

 

Figure 16. Plot of mean red heart radius versus tree height of the disc below the board 
[A (hbelow, rbelow)], the lower board zone [B (hlowerZone, rlowerZone)], the knot zone including the red heart in 
the knot [C (hknotZone, rknotZoneIncl)], the upper board zone [D (hupperZone, rupperZone)] and the disc above the 
board [E (habove, rabove)]; deviations dlowerZone, dknotZoneIncl and dupperZone of B, C and D, respectively, to the 
interpolation line (dashed) between A and E; white wood: mean radii of discs (rdiscBelow, rdiscAbove) and 
board (rboardLowerZone, rboardKnotZone, rboardUpperZone) under bark; example taken from tree 22 (board 220312 
between discs 6 and 7).  

 

                                                      
38 Referring to Figure 16, the perpendicular deviations of B, C and D from the interpolation line between A and 
E (as presented) were very similar to the corresponding deviations in parallel to the ordinate axis: the maximum 
difference accounted for less than 1 mm (N = 174; 58 boards and 3 zones per board). 
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If one of the nearest discs showed no red heart, e.g. point E in Figure 16, the slope of the interpolation 

line between A and E, and the deviations dlowerZone, dknotZoneIncl and dupperZone were not known exactly, 

since the upper red heart end might have been located between D and E. Thus, the following rule was 

defined: point E was moved to the same height as point D if the ordinate of D was smaller than 

15 mm; the corresponding algorithm was: if rupperZone ≤ 15 mm then habove = hupperZone (valid for 3 out of 

58 boards analysed; see below).  

The deviation of the local red heart shape in relation to the overall red heart shape was defined as the 

quotient between the deviation of a board zone (dlowerZone, dknotZoneIncl, dknotZoneExcl and dupperZone) and the 

mean red heart radius on discs at the height of the respective board zone (later referred to as relative 

deviation). Referring to Figure 16, the mean red heart radius on discs at the height of a board zone (B, 

C or D) was calculated by linear interpolation between A and E (dashed line). The variable 

abbreviations of the relative deviations were: 

• dlowerZoneRel, 

• dknotZoneInclRel,  

• dknotZoneExclRel and  

• dupperZoneRel.  

Differences between deviations of upper zone and lower zone were defined as:  

• ∆dupperZoneLowerZone = dupperZone – dlowerZone and 

• ∆dupperZoneLowerZoneRel = dupperZoneRel – dlowerZoneRel.  

Furthermore, using plots as given in Figure 16, each board was visually classified by its position  

• in the middle between the nearest discs (position = ’middle’; N = 26) or  

• close to one of the discs (position = ’close’; N = 32).  

Fifty-eight of 60 boards were included in the analysis. One board of tree number 15 was excluded 

since the upper disc was located in the ramification zone of the fork. Another board taken from tree 

number 43 was excluded since the red heart boarder on the opposite knot side was not clearly enough 

visible.  

 

3.4.1.2 Geometric relationships between branch scars, knots and red heart 

For testing and further developing the geometric relationships between branch scars, knots and red 

heart, first, relationships between branch scars and knots were analysed. The second part of the 

analysis focused on relationships of these branch scars and knots to the red heart.  
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3.4.1.2.1 Relationships between branch scars and knots  

For testing the geometric relationships between branch scars and knots, the knot variables inclination 

(β), diameter (dk), depth (∆r) and relative depth (kd) were estimated39 from branch scars, and the 

results were compared to the corresponding knot variables based on measurements on boards (βm, dkm, 

∆rm and kdm). The variables βm and dkm were measured directly on boards (Figure 9). The knot depth 

was defined as  

mmm rkror −=∆  Equation 1 

and the relative knot depth as  

1
rk

ro
kd

m

m
m −= ,  

Equation 2 

where rom was the observed stem radius from pith to bark, and rkm was the knot radius (the stem radius 

at the point in time of knot excision) measured on boards (Figure 9).  

The geometric relationships to estimate knot variables from branch scars are given in Figure 17. The 

original geometric relationships as developed in Paper I were specified to take into account bark 

buckles, which develop in the course of knot occlusion and occur in the case of recently occluded 

knots.  

 

Figure 17. Geometric relationships between branch scars, knots and red heart: case of no bark buckle 
(as developed in Paper I) and specification in the case of a bark buckle; branch scar consisting of the 
seal (S) and moustache (M); variables: observed radius (ro), knot radius (rk), seal length (ls), seal 
width (ws), moustache length (lm), knot inclination (β), knot diameter (dk), knot depth (∆r) and buckle 
thickness (bt).  

                                                      
39 Geometric relationships (presented below) were used to calculate knot variables from variables of branch 
scars. The term estimation is applied in this context to reflect that the geometric relationships were based on a 
simplification of the real stem geometry. However, there was no estimation by a statistic model.  
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Referring to Figure 17, in the case of a buckle the knot radius (rk) can be larger than the observed 

trunk radius (ro); the knot depth (∆r) is then negative. In the course of radial growth, ro exceeds rk and 

∆r becomes positive, which corresponds to the case of no buckle given in Figure 17. The seal of the 

branch scar is located on the buckle; since the seal length and width (ls and ws) were used to estimate 

rk and the knot variables β, dk, ∆r and kd, the buckle thickness (bt) was taken into account. In the 

following, the calculation method in the case of a buckle is described; in case of no buckle bt equalled 

zero. Based on the estimate function 
ws

ls

ro

rk ≈  of Schulz (1961)40, the knot radius was calculated as  

)btro(
ws
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Equation 3 

Using Equation 3 the knot inclination and diameter equalled:  
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respectively. The knot depth was calculated as  

)btro(
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Equation 6 

and the relative knot depth as  
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Equation 7 

The geometric relationships made it possible to estimate knot variables from the outside of the stem: 

ls, ws and lm were measured on branch scars (Figure 4); ro was set to 
2

do
ro m=  and bt was set to 

bt = btm (Figure 941). Possible sources of imprecision in the calculation of β (Equation 4) and dk 

(Equation 5) may be the already estimated variable values of rk and β, respectively; imprecision in 

estimation may accumulate. Furthermore, the calculation of ∆r (Equation 6) and kd (Equation 7) used 

                                                      
40 The estimate function uses the assumption that ws is about equal to ls right after branch occlusion (ro ≈ rk).  
41 Figure 9 shows measurements on boards. At the outside of a tree dom and btm can be measured by callipers: the 
height and azimuth of the measurement of dom are given by the lower ends of the moustache and the azimuth of 
the seal of the branch scar, respectively (Figure 17); measuring the stem diameter x on the buckle, it is  
btm = x – dom.  
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the approximation 
2

do
ro m= . However, particularly in cases with eccentric course of the pith it is 

2

do
ro m

m ≠ . Considering this, three methods of calculation of β, dk, ∆r and kd were tested:  

a. ignoring the thickness of buckles: for all branch scars, bt was set to bt = 0; this method 

corresponded to the original geometric relationships as developed in Paper I and was used as a 

reference;  

b. taking account of the buckle thickness: for all branch scars, bt was set to bt = btm [there were 

N = 23 branch scars with buckles (btm > 0) and N = 35 branch scars with no buckles (btm = 0)];  

c. using measured variables only: as opposed to a and b, method c was not completely based on 

measurements on the outside of the stem, but on measurements of branch scars and boards as well. 

The aim was to identify possible sources of imprecision in methods a and b. Therefore, β was 

calculated from Equation 4 using the measured variable rkm, and dk was calculated from Equation 

5 using the measured variable βm (calculation was the same for branch scars with buckles and for 

branch scars with no buckles). Furthermore, ∆r and kd were calculated using the measured variable 

rom in Equation 6 and Equation 7, respectively (calculation was such that the buckle thickness was 

taken into account, i.e. bt = btm).  

 

3.4.1.2.2 Relationships of branch scars and knots to the red heart 

For testing the relationships of branch scars and knots to the red heart, a visual assessment was carried 

out to identify knots linked to the red heart. The assessment was based on the assumption that red 

heart initiation results in a discoloured zone between the knot end and the central red heart. Three 

classes of knots were distinguished (Figure 18):  

1. a knot was considered as being linked to the red heart (link = ’yes’), if the necrosis at the spot of 

branch excision was located clearly outside the central red heart, and a continuous discoloured zone 

occurred between the necrosis and the central red heart (N = 20);  

2. a knot was considered as not being linked to the red heart (link = ’no’), if the necrosis at the spot of 

branch excision was located clearly outside the central red heart, and non-discoloured, white wood 

separated the necrosis and the central red heart42 (N = 18);  

3. a possible link between knot and red heart was considered as undetermined 

(link = ’undetermined’), if the spot of branch excision was located at the red heart margin43 

(N = 20).  

 

                                                      
42 Bark inclusions and the knot pith (Figure 18, images bottom left and right) were not taken into account, but 
they are discussed in section  3.4.2.2.2.2 below.  
43 Knots which were completely included in the central red heart were eliminated (section  2.2).  
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Figure 18. Visual assessment of link knot to red heart as continuous discoloured zone between knot 
necrosis and central red heart.  

 

Based on the visual assessment, it was analysed if the occurrence of link depended on the dimensions 

of the corresponding branch scar or knot. The class link = ’undetermined’ was excluded from this 

analysis, as the knots of this class were located deeper in the wood than those with determined link; 

there might have been additional factors to take into account which did not apply for the knots with 

determined link (e.g. at the point in time of knot occlusion the trees were considerably younger and 

smaller). The number of observations was considered to be too small to develop a more complex 

model which could take account of this issue. Logistic regression was used to analyse the occurrence 

of link knot to red heart. The probability qk of each knot k of its being not linked to the red heart was 

calculated from the inverse of the logit function with the parameters c0, c1, c2,… and the explanatory 

variables sk, tk,…:  
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Two models S (for scar) and K (for knot) were distinguished. In model S, the “mechanistic” variables 

of branch scars developed in Paper II were tested as explanatory variables (sk, tk,…). The 

“mechanistic” variables reflected the hypotheses that red heart initiation changes with inclination, 

diameter and/or depth of a dead branch/knot (Paper II):  
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In model K, an effect of the knot variables measured on boards was tested: 

• knot inclination (βm),  

• knot diameter (dkm), 

• knot depth (∆rm) and  

• relative knot depth (kdm). 

The model parameters were estimated by maximising the logarithm ln(L) of the likelihood function  

( )[ ]∏
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−−⋅=
n

1k

X1
k

X
k

kk q1qL , Equation 9 

using the LOGISTIC procedure in the SAS 8.2 software (SAS institute, Cary, USA). In Equation 9, it 

was Xk = 1 if knot k was not linked to the red heart, otherwise Xk = 0.  

Fifty-eight of 60 boards were included in the analysis. Two boards with dead branches were excluded 

since seals were not formed yet (trees number 31 and 47).  

 

 

3.4.2 Results and discussion  

3.4.2.1 Local deviation from the overall red heart shape  

3.4.2.1.1 Results  

To analyse the local red heart shape around knots (boards) in relation to the overall red heart shape 

between the felling cut and the crown base (discs), the deviation was calculated of the mean red heart 

radius of board zones (dlowerZone, dknotZoneIncl, dknotZoneExcl and dupperZone) from the mean red heart radius of 

the nearest discs (section  3.4.1.1).  
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First, it was tested by a t-test44 if the calculation of deviation was biased by the fact that some boards 

were situated in the middle between the nearest discs (position = ’middle’) and others were situated 

close to one of the discs (position = ’close’). The test was not significant at the 5% level for any of the 

variables dlowerZone, dknotZoneIncl, dknotZoneExcl and dupperZone. The same result was obtained for the relative 

deviation (dlowerZoneRel, dknotZoneInclRel, dknotZoneExclRel and dupperZoneRel). Thus, boards were not distinguished 

by their position in the subsequent analysis.  

Figure 19 shows for each board zone the scatter plot of deviation and mean height relative to the upper 

red heart end (on the left: dlowerZone vs. hmoyZoneRel; in the middle: dknotZoneIncl, dknotZoneExcl vs. hmoyZoneRel; on 

the right: dupperZone vs. hmoyZoneRel). The deviations of all zones (lower zone, knot zone 

including/excluding the red heart in the knot and upper zone) increased close to the upper red heart 

end, where the highest values were found. Only the knot zone including the red heart in the knot 

showed comparably high values in the middle part of the overall red heart. The size (mean radius) of 

the overall red heart was taken into account by the relative deviation, which is plotted versus mean 

height relative to the upper red heart end in Figure 20 (on the left: dlowerZoneRel vs. hmoyZoneRel; in the 

middle: dknotZoneInclRel, dknotZoneExclRel vs. hmoyZoneRel; on the right: dupperZoneRel vs. hmoyZoneRel). Below about 

0.8 of height relative to the upper red heart end, the relative deviation of the lower zone, the knot zone 

excluding the red heart in the knot and the upper zone scattered about evenly around zero (horizontal 

line in Figure 20), and few elevated values were observed for the knot zone including the red heart in 

the knot. Above 0.8 of height relative to the upper red heart end, the increase in deviation observed in 

Figure 19 was even clearer for the relative deviation (Figure 20), since the overall red heart was small 

close to the upper red heart end owing to its spindle shape45: the relative deviations dlowerZoneRel, 

dknotZoneInclRel, dknotZoneExclRel and dupperZoneRel were calculated as the quotient of dlowerZone, dknotZoneIncl, 

dknotZoneExcl and dupperZone, and the mean radius of the overall red heart (discs), respectively.  

                                                      
44 A t-test was used even though observations were not normally distributed; according to Saporta (1990) the t-
test is robust in case of a sufficient number of observations (several multiples of ten) and stands up well against a 
change in the distribution of observations.   
45 The overall red heart shapes of the sample trees are illustrated in Figure 4 of Paper III.  
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Figure 19. Deviation of the local red shape (board zones) from the overall red heart shape (discs); on 
the abscissa axes: mean height of board zones related to the height of the upper red heart end (tree 
number 47 had a second small red heart above the upper red heart end which was represented by one 
board); on the ordinate axes: deviation of lower zone (left), knot zone including/excluding the red 
heart in the knot (middle) and upper zone (right); (1) in axis legends stands for no unit; N = 58 boards.  

 

 

Figure 20. Relative deviation of the local red shape (board zones) from the overall red heart shape 
(discs); on the abscissa axes: mean height of board zones related to the height of the upper red heart 
end (tree number 47 had a second small red heart above the upper red heart end which was represented 
by one board); on the ordinate axes: relative deviation of lower zone (left), knot zone 
including/excluding the red heart in the knot (middle) and upper zone (right); (1) in axis legends 
stands for no unit; N = 58 boards. 

 

The more homogenous red heart shape below 0.8 of height relative to the upper red heart end is 

described in the following (the height limit of 0.8 was determined visually using the plots of Figure 19 

and Figure 20). Descriptive statistics of this part of the red heart are given in Table 5. 
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Table 5. Descriptive statistics of deviation (dlowerZone, dknotZoneIncl, dknotZoneExcl and dupperZone) and relative 
deviation (dlowerZoneRel, dknotZoneInclRel, dknotZoneExclRel and dupperZoneRel) of board zones located below 0.8 of 
height related to the upper red heart end (hmoyZoneRel ≤ 0.8).  

Variable 
 

N 
 

Mean 
(mm) 

Median 
(mm) 

Std 
(mm) 

CV 
(%) 

Min 
(mm) 

Max 
(mm) 

Prob > |t| 
H0: Mean = 0 

dlowerZone 41 -0.7 -1.2 7.1 -1071 -15.8 18.2 0.5535 
dknotZoneIncl 41 6.0 3.8 10.9 182 -13.1 33.4 0.0011 
dknotZoneExcl 41 2.4 2.0 7.2 293 -16.1 20.3 0.0350 
dupperZone 41 0.7 -0.7 7.0 1024 -10.6 16.7 0.5352 
  (1) (1) (1) (%) (1) (1)  
dlowerZoneRel 41 -0.003 -0.023 0.094 -3048 -0.213 0.256 0.8347 
dknotZoneInclRel 41 0.084 0.040 0.147 174 -0.175 0.515 0.0007 
dknotZoneExclRel 41 0.034 0.020 0.100 297 -0.216 0.282 0.0370 
dupperZoneRel 41 0.008 -0.010 0.101 1184 -0.173 0.296 0.5918 

N: number of observations  
Std: standard deviation  
CV: variation coefficient  
Min: minimum 
Max: maximum 
Prob: probability  
t: t-value (Student)  
H0: null hypothesis  
(1): no unit  
 

Below 0.8 of height relative to the upper red heart end, the deviation of the lower zone, the knot zone 

excluding the red heart in the knot and the upper zone (dlowerZone, dknotZoneExcl and dupperZone) varied within 

a range of about –15 to 20 mm, which corresponded to a proportion of about –0.2 to 0.3 of the mean 

radius of the overall red heart (dlowerZoneRel, dknotZoneExclRel and dupperZoneRel; 41 of 58 boards, Table 5). The 

highest values were found in the knot zone including the red heart in the knot (Figure 19 and Figure 

20), where the maximum deviation accounted for 33 mm or 0.5 (Table 5: dknotZoneIncl and dknotZoneInclRel, 

respectively). The mean of deviations differed significantly from zero in the knot zone only (t-test46, 

α = 0.05; Table 5). 

The question if deviation from the overall red heart shape was different below and above the knot was 

analysed using the difference between the deviation of the upper zone and the deviation of the lower 

zone; the difference was calculated for each board (∆dupperZoneLowerZone; section  3.4.1.1). The scatter plot 

of this variable versus the mean height relative to the upper red heart end (hmoyZoneRel) is given in Figure 

21 (on the left). This figure also shows the scatter plot of the deviation of the upper zone versus the 

deviation of the lower zone (on the right: dupperZone vs. dlowerZone). The corresponding scatter plots of the 

relative deviation are given in Figure 22 (on the left: ∆dupperZoneLowerZoneRel vs. hmoyZoneRel; on the right: 

dupperZoneRel vs. dlowerZoneRel). Referring to Figure 21, the difference between upper zone and lower zone 

ranged between about ± 15 mm (with one exception), and there was no clear tendency with 

increasing/decreasing  height relative  to the upper  red heart end. Furthermore, the deviations of lower  

                                                      
46 See footnote 44.  
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zone and upper zone were clearly correlated (coefficient according to Pearson: r = 0.63, N = 58). The 

relative difference between upper zone and lower zone (Figure 22) scattered between about ± 0.2 

below about 0.8 of height relative to the upper red heart end (with one exception). Above this height 

the relative difference increased in absolute terms (there were higher, positive values and smaller, 

negative values), since the overall red heart was small close to the upper red heart end (see above). 

Correlation between the relative deviations of upper zone and lower zone accounted for r = 0.70 

(Pearson, N = 58). Altogether, deviation and relative deviation did not differ distinctly between upper 

zone and lower zone, apart from few single values of the relative deviation (Figure 22) which rather 

indicate small overall red heart than difference between upper zone and lower zone. The results of a t-

test confirmed this observation for all boards analysed: there was no significant difference between 

dupperZone and dlowerZone (p = 0.1733) or between dupperZoneRel and dlowerZoneRel (p = 0.3558; paired t-test47, 

α = 0.05, N = 58).  

 

Mean (x) = 2.7
Mean (y) = 4.2 
t = -1.38
Prob > |t|: 0.1733
r = 0.63
N = 58

Mean (x) = 2.7
Mean (y) = 4.2 
t = -1.38
Prob > |t|: 0.1733
r = 0.63
N = 58

 

Figure 21. Deviation of the local red heart shape from the overall red heart shape below and above the 
knot; on the left: scatter plot of the difference between the deviations of upper zone and lower zone, 
and the height relative to the upper red heart end (tree number 47 had a second small red heart above 
the upper red heart end which was represented by one board); on the right: scatter plot of the 
deviations of upper zone and lower zone, the bisector (y = x) of the coordinate axes is given as 
auxiliary line; (1) in axis legend stands for no unit; N = 58 boards.  

                                                      
47 See footnote 44.  
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Mean (x) = 0.102
Mean (y) = 0.132 
t = 0.93
Prob > |t|: 0.3558
r = 0.70
N = 58

Mean (x) = 0.102
Mean (y) = 0.132 
t = 0.93
Prob > |t|: 0.3558
r = 0.70
N = 58

 

Figure 22. Relative deviation of the local red heart shape from the overall red heart shape below and 
above the knot; on the left: scatter plot of the difference between the relative deviations of upper zone 
and lower zone, and the height relative to the upper red heart end (tree number 47 had a second small 
red heart above the upper red heart end which was represented by one board); on the right: scatter plot 
of the relative deviations of upper zone and lower zone, the bisector (y = x) of the coordinate axes is 
given as auxiliary line; (1) in axis legends stands for no unit; N = 58 boards.  

 

With respect to methodology, possible influences of other knots, having different radial orientation 

(azimuth) than the knot analysed, may have been limited by determining the local red heart shape in 

one longitudinal plane (board surface related to angular disc sections, Figure 8)48. However, the mean 

red heart radius of the entire discs (and not of angular disc sections) was used to quantify the overall 

red heart shape (section  3.3). Thus, it was verified that results about deviation from the overall red 

heart shape, based on the mean red heart radius of angular disc sections (as presented), did not lead to 

different conclusions (section  3.4.2.1.3 below) than those based on the mean red heart radius of the 

entire discs (calculated from 360 radii; presented in Annex section  8.1.4).  

 

 

3.4.2.1.2 Discussion  

Close to the upper red heart end, relatively high deviation and relative deviation from the overall red 

heart shape was found (Figure 19 and Figure 20, respectively). One reason for this result may be that 

close to the upper red heart end there may be less interference of the local red heart shape analysed by 

other red heart formation zones: hypothesising that red heart can develop downwards in the stem 

(Keller 1961), there were no red heart zones originating from higher stem parts. On the contrary, in the 

middle parts of the overall red heart, deviation from the overall red heart shape around knots may be 

overlaid by other red heart formation zones to a larger extent. Additionally, there was a numeric effect 

which emphasised this result with respect to the relative deviation (Figure 20), as described above 

(small overall red heart owing to its spindle shape). Similar relationships might have occurred close to 

the lower red heart end, but boards were not sampled there.  

                                                      
48 Furthermore, only one larger knot with a minimum seal length of 50 mm had to occur per board (section  2.2).  
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In the study by Krempl and Mark (1962) and in Paper I (trees of group 1), local red heart bulges 

towards branch scars/knots were observed. In the present analysis, which was based on another group 

of trees (group 2), this observation was confirmed. Additionally, the location of bulges in stem-axial 

direction was specified: bulges occurred particularly in the knot zone including the red heart in the 

knot and above 0.8 of height relative to the upper red heart end. Outside these parts of the red heart, 

the mean deviation and the mean relative deviation between local and overall red heart shape were not 

significantly different from zero (dupperZone, dlowerZone, dupperZoneRel and dlowerZoneRel in Table 5). 

Furthermore, there was no significant difference between the deviation of upper zone and lower zone. 

However, these results were only valid for the red heart shape close to the knot (upper zone and lower 

zone were located just above the zone of branch excision and occlusion, and just below the junction of 

the piths of knot and stem, respectively; section  2.2). Extended bulges, and differences in stem-axial 

direction occurring further away from the knot, may not have been detected.  

Despite this limitation, one may hypothesise that there is no significant bulging of the overall red heart 

shape below and above the knot (disregarding the knot zone itself and the upper red heart end). 

However, standard deviation of the deviations of upper zone and lower zone accounted for about 0.1 

of the mean radius of the overall red heart with a range of about –0.2 to 0.3 (dupperZoneRel and dlowerZoneRel 

in Table 5). In the present study, this variability was detected between longitudinal sections (boards) 

of different stem height and radial orientation; it may be a consequence of variability in stem-radial 

direction. Thus, further analyses may better explain this variability by analysing the red heart shape on 

cross-sections: the red heart shape on cross-sections is usually not circular, but appears cloudy and 

composed of several formation zones. This may lead to variability between the red heart shape of 

longitudinal sections. The red heart shape in stem-radial direction may be related to knottiness as 

illustrated in Figure 11, and its course along the stem-axis to spiral grain as reported and illustrated by 

Zycha (1948), for instance.  

 

 
3.4.2.1.3 Conclusion  

Deviation of the local red heart shape from the overall red heart shape, i.e. local bulging of the red 

heart towards the bark, was analysed on longitudinal sections (boards) passing through the piths of 

knot and stem. Results contributed to answering of question Q6 asked in section  1.3. 

Q6:  How does the overall red heart shape vary close to external traits?  

The results showed that  

• deviation around knots was rather low in stem-axial direction, apart from the upper red heart end 

and the knot zone itself;  

• if there is variation in stem-axial direction, it will occur below and above the boards analysed; that 

is between discs where, however, variation appears mainly in stem-radial direction (apart from 

discs very close to knots; analysis I); 
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• beyond the overall red heart shape, variability of red heart shape seems mainly due to variation in 

stem-radial direction; the latter may be related to the position (height and azimuth) of knots and 

spiral grain, for instance.  

 

The subsequent section  3.4.2.2 takes account of the red heart in the knot zone. Among other things the 

occurrence of a link between knot and central red heart is estimated from knot variables and branch 

scars.  

 

 

3.4.2.2 Geometric relationships between branch scars, knots and red heart  

3.4.2.2.1 Relationships between branch scars and knots 

3.4.2.2.1.1 Results  

To evaluate the geometric relationships between branch scars and knots, the scatter plots of estimated 

and measured values of the knot variables inclination, diameter, depth and relative depth are given in 

Figure 23, Figure 24, Figure 25 and Figure 26, respectively. Referring to section  3.4.1.2, the results of 

calculation methods a (ignoring the thickness of buckles), b (taking account of the buckle thickness) 

and c (using only measured variables, but no estimated variables in the calculations in order to identify 

possible sources of imprecision) are given for each knot variable. Furthermore, branch scars with 

buckles are identified in the plots to observe differences between calculation methods a and b. 

Examples of branch scars/knots with very high differences between estimated and measured values 

were selected in the plots, and their characteristics are illustrated in Figure 27.  
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Figure 23. Knot inclination (β): scatter plots of estimated and measured values for calculation 
methods a (ignoring the thickness of buckles), b (taking account of the buckle thickness) and c (using 
measured variables only); the bisector (y = x) of the coordinate axes is given as auxiliary line; 
selection of examples (branch scar/knot numbers) with very high differences between estimated and 
measured values; N = 58 knots including partly occluded knots.  
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Figure 24. Knot diameter (dk): scatter plots of estimated and measured values for calculation methods 
a (ignoring the thickness of buckles), b (taking account of the buckle thickness) and c (using measured 
variables only); the bisector (y = x) of the coordinate axes is given as auxiliary line; selection of 
examples (branch scar/knot numbers) with very high differences between estimated and measured 
values; N = 58 knots including partly occluded knots. 
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Figure 25. Knot depth (∆r): scatter plots of estimated and measured values for calculation methods a 
(ignoring the thickness of buckles), b (taking account of the buckle thickness) and c (using measured 
variables only); the bisector (y = x) of the coordinate axes is given as auxiliary line; selection of 
examples (branch scar/knot numbers) with very high differences between estimated and measured 
values; N = 52 knots excluding partly occluded knots. 
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Figure 26. Relative knot depth (kd): scatter plots of estimated and measured values for calculation 
methods a (ignoring the thickness of buckles), b (taking account of the buckle thickness) and c (using 
measured variables only); the bisector (y = x) of the coordinate axes is given as auxiliary line; 
selection of examples (branch scar/knot numbers) with very high differences between estimated and 
measured values; (1) in axis legends stands for no unit; N = 52 knots excluding partly occluded knots.  
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Figure 23 shows that knot inclination was underestimated in most cases (plots a, b and c). 

Heterogeneity within the point cloud of plot a (calculation method ignoring the thickness of buckles) 

was reduced by taking the buckle thickness into account (plot b). This can be observed by comparing 

the positions of branch scars/knots with buckles in the respective point clouds. Correlation between 

estimated and measured values was clearly stronger if the measured values of knot radius (rkm) were 

used in Equation 4 instead of the estimated values (rk; plot c compared to plots a and b). The results 

suggest correcting underestimation, e.g. by introducing a correction factor in Equation 4, and 

improving the estimation method of the knot radius. Estimation of the knot radius was based on the 

shape of the seal (ratio of ls and ws in Equation 3); the seal shape may vary depending on factors like 

the real knot shape (curved, etc.) and the way of branch excision, which are difficult to take into 

account.  

With respect to the knot diameter (Figure 24), results of calculation methods a (ignoring the thickness 

of buckles) and b (taking account of the thickness of buckles) were very similar. Very high differences 

between estimated and measured values were eliminated by using the measured values of knot 

inclination (βm) in Equation 5 instead of the estimated values (β; plot c compared to plots a and b). 

Precision may therefore be increased by improving the estimation methods of rk and β as stated above.  

Figure 25 indicates that differences between estimated and measured values of knot depth were 

slightly reduced by taking buckles into account (plot b compared to plot a). Compared with this, 

results given in plots b and c were very similar; using the approximation 
2

do
ro m=  in Equation 6 

seemed not to affect the precision of estimation. The latter also applied to the estimation of the relative 

knot depth (Figure 26): the results given in plots b and c were very similar. Comparing plots a and b 

(Figure 26), correlation between estimated and measured values was increased by taking the buckle 

thickness into account (the position of branch scars/knots with buckles changes between the respective 

point clouds). Furthermore, plot b indicates that the relative knot depth was underestimated in most 

cases, which may be reduced by introducing a correction factor in Equation 7, for instance.  

Examples of branch scars/knots with very high differences between estimated and measured values are 

illustrated in Figure 27. Knot number 220111 had the highest knot inclination of all knots analysed 

(Figure 23), and the upper part of the knot run almost in parallel to the bark. Correspondingly, the seal 

of the branch scar was very extended in stem-axial direction (ls >> ws, Figure 27), which resulted in 

underestimation of β, ∆r and kd (Equation 4/Figure 23, Equation 6/Figure 25 and Equation 7/Figure 

26, respectively), and in overestimation of dk (Equation 5/Figure 24). Similarly, extended seals may 

be the reason for the underestimation of β, ∆r and kd, and for the overestimation of dk, of knots 

number 470412 and 310412. However, in these cases extended seal shapes may result from 

interference of the occlusion process by bark inclusions (Figure 27). Underestimation of ∆r of knot 

number 350312 may be related to its relatively thick buckle of bt = 80 mm (maximum of bt = 89 mm, 

Equation 6), since the difference between estimated and measured values was smaller for calculation 
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method a (ignoring the thickness of buckles) than for method b (taking account of the buckle 

thickness; Figure 25).  

 

 

Figure 27. Examples of knots with very high differences between estimated and measured values, 
which were identified in Figure 23, Figure 24, Figure 25 and Figure 26; an example of a knot with 
very good correspondence of estimated and measured values is given as a reference; the length of the 
black line in each knot image equals 10 cm.  

 

 

3.4.2.2.1.2 Discussion  

In literature, relationships between branch scars and knots of beech trees were analysed by Mayer-

Wegelin (1929), Erteld and Achterberg (1954) and Schulz (1961). A calculation method of knot 

inclination is not given in the studies by these authors. Furthermore, the relationship reported between 

knot inclination and tree height seems not clear comparing results of Mayer-Wegelin (1929) and 

Erteld and Achterberg (1954). Mayer-Wegelin (1929) reports knot diameter to be mainly dependent on 

seal width. However, seal width increases with radial growth while the knot diameter is constant. 

Correspondingly, Erteld and Achterberg (1954) found a stronger correlation of knot diameter with seal 

length (which is constant at increasing stem radius as well), than with seal width. The present study 

showed that this relationship depends on knot inclination [Figure 17; correlation (Pearson) between 

dkm and ls: r = 0.39, p = 0.0028, N = 58; correlation between dkm and dk (calculated from ls and βm, 

Equation 5): r = 0.36, p = 0.0056, N = 58]. With respect to knot depth, negative correlation with seal 

length and moustache length is reported (Mayer-Wegelin 1929; Erteld and Achterberg 1954)49. This is 

                                                      
49 Erteld and Achterberg (1954) also analysed the relationship between knot depth and angle of the moustache, 
which was not determined in the present study. Among the variables seal length, moustache length and 
moustache angle, correlation between moustache length and knot depth was strongest in the study by these 
authors.  
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assumed to be related to stretching of the bark and fading of the lower moustache ends, which would 

lead to a decrease in moustache length (Mayer-Wegelin 1929). However, as a rule the lower 

moustache ends indicate the height of the junction of the piths of knot and stem (Burschel and Huss 

1997), so that constant moustache height after branch excision can be hypothesised. Negative 

correlation between knot depth and the lengths of seal and moustache (Mayer-Wegelin 1929; Erteld 

and Achterberg 1954) may be an effect of tree height: knot depth decreases with tree height (Burschel 

and Huss 1997), and larger branches with longer seals and moustaches are usually more frequent in 

the upper stem parts. In the present study, the knot depth was calculated independently of tree height, 

based on the estimate function of Schulz (1961) which could also be deduced from the geometric 

relationships (Figure 17). The author reports the difference between estimated and measured values of 

knot depth to be less than 3 cm for 15 out of 19 knots analysed, most of which were located very deep 

under the stem surface (10 – 20 cm). In the present study, the precision of the estimation of knot depth 

according to Schulz (1961) was specified with respect to more recently occluded knots, by taking 

buckles into account in the estimation of knot radius (Equation 3, Equation 6, Figure 17). Since the 

knot radius was used to calculate other knot variables, further studies should continue to improve the 

estimation of this variable, by analysing relationships between pith location and stem shape, for 

instance.  

 

 
3.4.2.2.2 Relationships of branch scars and knots to the red heart 

3.4.2.2.2.1 Results  

To evaluate the relationships of branch scars and knots to the red heart, the probability of each knot of 

its being not linked to the red heart (link = ‘no’) was estimated from “mechanistic” variables of branch 

scars (model S) and from knot variables measured on boards (model K).  

Model S used the “mechanistic” variables mec1 and mec2 (with no intercept). The resulting 

probabilities are given in Figure 28: the two groups of knots with link to the red heart (link = ‘yes’) 

and with no link to the red heart (link = ‘no’) were distinguished by probabilities below and above 

about 0.5, respectively. However, there were 4 knots with no link to the red heart, and 5 knots with 

link to the red heart, both of which were clearly misclassified by the model (probabilities below 0.4 

and above 0.6, respectively). Parameters of “mechanistic” variables were strongly correlated (Table 6), 

since they were based on the same measured variables of branch scars (section  3.4.1.2); using the 

geometric relationships between branch scars, knots and red heart, the variables mec1 and mec2 were 

developed in Paper II to reflect the hypotheses that red heart initiation changes with the inclination 

and/or diameter of a dead branch/knot.  
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Figure 28. Model S: probability for each knot of its being not linked to red heart, estimated from 
“mechanistic” variables mec1 and mec2 of branch scars (no intercept); N = 38 knots including partly 
occluded knots.  

 

Table 6. Model S: parameter estimates, standard error, significance test and correlation of parameter 
estimates. 

Correlation Parameter 
(Variable) Estimate Standard error Prob > χ2 c1 
c1 (mec1) 2.5383 1.0268 0.0134 1 
c2 (mec2) -0.0156 0.00599 0.0095 -0.9573 
 

 

Figure 29 shows the probabilities of no link to the red heart estimated from knot variables (model K). 

In accordance with model S, a significant effect of knot inclination (βm) and knot diameter (dkm) was 

found. Thirteen knots with a link to the red heart were clearly separated from the other knots by 

probabilities below 0.3. However, the probabilities of 7 knots with a link to the red heart were about 

evenly distributed among the probabilities of the knots with no such link. Parameter estimates and 

correlation matrix of model K are given in Table 7.  
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Figure 29. Model K: probability for each knot of its being not linked to red heart, estimated from the 
knot variables βm and dkm measured on boards; N = 38 knots including partly occluded knots.  

 

Table 7. Model K: parameter estimates, standard error, significance test and correlation matrix of 
parameter estimates.  

Correlation matrix Parameter 
(Variable) 

Estimate 
 

Standard error 
 

Prob > χ2 

 c0 c3 
c0 9.1670 3.3827 0.0067 1  
c3 (βm) -5.6221 2.8225 0.0464 -0.8989 1 
c4 (dkm) -0.0592 0.0253 0.0193 -0.5139 0.1055 
 

 

3.4.2.2.2.2 Discussion  

The results about the relationships of branch scars and knots to the red heart were based on a relatively 

coarse visual assessment (section  3.4.1.2), hypothesising that the penetration of oxygenous air results 

in a discoloured zone between knot necrosis and central red heart. Other imaginable ways of oxygen 

penetration were not taken into account, e.g. by necrotised bark inclusions or the knot pith, as 

illustrated in Figure 18 by the images at the bottom left and right, respectively. Furthermore, possible 

secondary discolouration caused by fungi (Volkert 1953) could not be identified by visual assessment. 

However, only one longitudinal plane (board) of each knot was analysed, and information was not 

easily accessible to perform a more detailed assessment in a systematic manner; the knot pith was not 

visible on all boards, for instance. Furthermore, more detailed analyses on other than the macroscopic 

level would not have been in the scope of the overall objective of the present study (section  1.3); in the 

present study resolution of measurements was high in comparison with existing approaches to quantify 

red heart occurrence and size (section  1.2.6). Also, statistic results of logistic regression were coarse 

owing to the small number of samples.  
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In literature, the probability of occurrence of discolouration in relation to variables of naturally and 

artificially pruned knots was analysed by Hein (2004) on beech trees aged 24 – 42 years. The author 

distinguishes discolouration within the stem and within the knot. In comparison with results of the 

present study it should be considered that the trees of Hein (2004) were probably too young to form a 

central red heart. For naturally pruned knots having a diameter range of 6 – 42 mm, no significant 

relationship was found between occurrence of discolouration and knot variables (diameter, duration of 

occlusion, years since termination of occlusion, height in the stem); the frequency of discolouration 

within the stem was 2.4%, within the knot 4.8%. Knots analysed in the present study (natural pruning) 

had larger diameters (range: 29 – 107 mm), and an effect of knot diameter and inclination on the 

probability of no link between knot and red heart was found for larger and more inclined knots in 

particular (the slopes of dkm and βm were negative, Table 7). For artificially pruned knots (diameter 

range: 2 – 59 mm), Hein (2004) found a significant effect of knot diameter on the probability of 

occurrence of discolouration in stem and knot, and knot inclination had such an effect on 

discolouration in the knot. However, using both knot diameter and inclination in a multiple logistic 

model, the effect of knot inclination was not significant in the study by this author; the author stresses 

correlation between knot inclination and diameter (r = –0.54, α ≤ 0.0001, N = 149, correlation 

coefficient according to Pearson), which was weaker in the present study (r = 0.28, α = 0.09, N = 38; 

correlation between parameters c3 and c4 of knot diameter and inclination accounted for 0.11, Table 

7)50. The result of the present study that particularly larger knots had most likely a discoloured zone 

between knot and red heart may be explained by the protection zone in the bases of larger branches 

being incomplete (Aufsess von 1975; Aufsess von 1984). Furthermore, larger and more inclined 

branches (having a relatively small angle between the axes of branch and stem) seem more susceptible 

to rot (Mayer-Wegelin 1929; Erteld and Achterberg 1954), which may also facilitate oxygen 

penetration. Very inclined branches may be oxygen entrances due to cracking by freezing of 

accumulated water (at the upper side of the junction between branch and stem) and by wind-stress, 

which was stated similarly by Amann (2003) and by Knoke (2003a) for forks, respectively.  

Furthermore, Hein (2004) found no significant relationship between duration of occlusion of 

artificially pruned knots and frequency of discolouration, but reports increasing frequency of 

discolouration with increasing time since the termination of knot occlusion. The latter would not have 

been expected assuming discolouration in Beech to be caused by the penetration of air through dead 

branches (Zycha 1948). Considering this, further studies on larger and naturally pruned knots may 

evaluate the effect of duration of occlusion on the probability of red heart initiation and occurrence. In 

Paper I, relationships between branch scars/knots and outer red heart formation zones were found for 

recently occluded knots (given by a small relative knot depth). Including interior/earlier formed red 

                                                      
50 Signs of correlation coefficients: Hein (2004) measured knot inclination as the angle between the axes of knot 
and stem, while in the present study knot inclination was defined as the angle between knot axis and a radial 
(horizontal) axis (Figure 9).  
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heart zones into the analysis may be a starting point to further analyses about red heart formation over 

time (discussed in more detail in section  4.3 below).  

 

 
3.4.2.2.3 Conclusion  

In analysis I/Paper I geometric relationships were developed between branch scars, knots and red 

heart. In the present analysis IV the geometric relationships were tested using the assumption that red 

heart initiation by dead branches results in a discoloured zone between knot necrosis and central red 

heart, which was called “the link between knot and red heart”. Results contributed to answer 

question Q2 asked in section  1.3.  

Q2:  How are these external traits (dead branches/branch scars) related to the red heart inside the 

stem?  

The results showed that 

• particularly larger and more inclined knots were most likely to be linked to the red heart, which 

was in accordance with results of Paper I;  

• the probability of a link could also be estimated from external tree characteristics by using 

geometric relationships between branch scars and knots; a significant effect of “mechanistic” 

variables was found which reflected the effect of knot inclination and diameter as well;  

• the choice was supported to use the “mechanistic” variables to conclude from branch scars to the 

red heart, since they were developed in Paper II for being simple variables which reflect basic 

“mechanisms” between branch scars, knots and red heart; the evaluation of the geometric 

relationships revealed the geometric model (Figure 17) being a simplification of the real stem and 

knot geometry, which is rather complex for tree species like Beech;  

• the precision of the geometric relationships could be increased by taking the thickness of bark 

buckles into account, and other possible sources of imprecision were identified.  

 

Further analyses may use this information to further develop the geometric relationships. They should 

include a higher number of branch scars/knots, and knots representing a diameter range below that of 

the knots analysed in the present study (including smaller and younger trees). Besides the assessment 

of red heart, geometric relationships between branch scars and knots may also be of interest in other 

applications in forestry to obtain more precise information about knottiness, in the course of quality 

assessment in standing trees or roundwood, for instance.  
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4 Synoptic discussion  

The starting point of the present study was the problem that red heart occurrence and shape vary 

considerably within and between trees, so that it appears difficult to estimate and control the quality of 

beechwood with respect to red heartwood (section  1.1). Research questions, based on the state-of-the 

art (section  1.2), were about relationships between external and dendrometric tree characteristics and 

the occurrence and shape of red heart (section  1.3). Results referring to the research questions were 

presented and discussed separately in section  3. In the present section, analyses I – IV are put together, 

and they are discussed in a synoptic manner. Discussion in context of literature includes 

methodological developments for measuring red heart shape in relation to external tree characteristics, 

interpretation of results with respect to red heart initiation and development, and new approaches to 

the modelling of red heart occurrence and shape.  

 

 

4.1 Methodological developments  
Paper I describes an original method to obtain three-dimensional data about traits on the stem 

surface and red heart shape inside the stem. The method was based on Constant et al. (2003); major 

development in the course of the present study was performed in cooperation with Constant and 

Mothe who are co-authors of both papers [Constant et al. (2003) and Paper I]. Development included 

the mapping of link between logs after felling (Figure 1 of Paper I; performed by Constant and 

Wernsdörfer) as an alternative to the mapping of the spatial position of logs on the standing tree. 

Development also included the standardised mapping of external traits by specific points (Figure 2 of 

Paper I; performed by Constant and Wernsdörfer). To visualise external traits and the stem surface, the 

software Bil3d was specially adapted by Mothe. Using this method, high resolution data for scientific 

analyses was provided. However, given this aim, measurements may be too time-consuming for 

application to serial use in forestry or wood industry. Similar to the AMEB device used in the present 

study (Figure 3), the stem surface can be mapped using terrestrial laser scanning (Thies et al. 2004). 

However, measurements of terrestrial scanners are not specific; thus far it appears difficult to extract 

information about dimensions of relatively small traits like branch scars from the outputted point 

clouds. (May be high resolution scans of single branch scars could provide this information. But 

compared with this, it seems easier to measure branch scars by few specific points, as it was done in 

Paper I.) For scientific analyses, the suitability of photogrammetry (Fürst and Nepveu 2005) may be 

analysed as an alternative to measure branch scars on standing trees.  

 

The red heart shape inside logs was measured and visualised in three dimensions by Seeling and 

Becker (2002), using several cross-sections per log and eight red heart radii (oriented in cardinal 

directions) per cross-section. In the present study, methods of digital image analysis (Badia 2003; 
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Wernsdörfer et al. 2004) were further developed and applied to increase measurement resolution in 

stem-radial direction (inter-measurement angle of 1°; analyses I and IV). Development also included 

red heart measurement on longitudinal sections (inter-measurement step of 4 mm in stem-axial 

direction; analysis IV). However, image analysis was semi-automatic. Developing an automatic 

method to detect the outer red heart border may reduce time of image processing.  

 

In the present study, the measurements of red heart were destructive, so that the limiting factor of 

resolution was the number of wood samples which had to be handled. Non-destructive methods like 

computer tomography do not have this limitation51. Studies on red heart detection in trees by computer 

tomography (Schwartz-Spornberger 1990; Isenmann 1999; Seeling et al. 1999) report that mainly 

differences in water (moisture) content between red heartwood and sapwood are detected. Compared 

with this, there are only small differences in density (Bauch and Koch 2001). The problem with red 

heart detection is that there seems an indirect relationship rather than a direct relationship 

(determinism) between water content and red heart occurrence (Sachsse 1967). However, information 

from computer tomography may be used in a modelling approach. An important aim of such approach 

would be to deduce information about red heart development over time, using repeated measurements 

in standing trees, for instance.  

 

 

4.2 Interpretation of results with respect to red heart initiation and development  
According to Zycha (1948), red heart formation is initiated by the penetration of oxygenous air into 

the stem core of older trees, where water content usually is low (gas content is high) compared to the 

sapwood. Torelli (1985) distinguishes an initial dehydration phase and a subsequent discolouration 

phase, dehydration in cross-section being more important for trees with shorter crowns and larger 

stems. Relationship with reduction of water content may be an interpretation of the effect of diameter 

at breast height at the dendrometric level in the model of red heart occurrence (the probability of red 

heart occurrence increased with diameter at breast height; Paper II). However, the condition of red 

heart formation with respect to water content in cross-section may have been similar for white trees 

and red heart trees of group 2: ranges of diameter at breast height of white trees and red heart trees 

were relatively small and they were largely overlapping (Table 3). Furthermore, crown variables (hcb, 

hcbrel, cl and clrel) had no clear effect on the probability at the dendrometric level in the model of red 

heart occurrence (analysis II). Also, there was no significant difference between crown variables of 

white trees and red heart trees (t-test; analysis II). However, between red heart trees, there may have 

been  relationship  between  water  content  variation  and  red heart  extent  in stem-axial  direction: in  

                                                      
51 Using computer tomography, slices (cross-section images) can be obtained with an inter-slice distance of 
10 mm, for instance.  
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Paper III, the length of the overall red heart was related to the relative height of the crown base, where 

water content within stems is reported to be highest (Seeling and Sachsse 1992). Furthermore, in stem-

radial direction, the width of the overall red heart shape was related to the diameter at breast height 

(Paper III). In this respect, it may be interesting to include the stem-axial and stem-radial distribution 

of water content into further analyses of red heart occurrence and shape. 

 

Results of Paper II supported the assumption that red heart formation in trees of group 2 depended on 

the possibility of penetration of oxygenous air by dead branches; their effect on red heart initiation 

was estimated after occlusion based on branch scars. Keeping in mind the small number of sample 

trees, but the relatively high number of measurements per tree, results of Paper II and of analysis IV 

suggested the probability of red heart initiation being higher for larger and more inclined branches. 

Such branches may be particularly susceptible to oxygen penetration owing to incomplete protection 

zone (Aufsess von 1975; Aufsess von 1984), rot (Mayer-Wegelin 1929; Erteld and Achterberg 1954) 

and/or cracking at the ramification zone of branch and stem, the latter being assumed similarly for 

forks (Amann 2003; Knoke 2003a). The effect of knot depth on red heart initiation (Paper II) may 

reflect the conditions of red heart formation (section  1.2) changing with tree age and diameter: deeper 

knots had been possible oxygen entrances on younger and smaller trees, and recently occluded knots 

had been possible oxygen entrances on older and larger trees.  

 

In Paper I, local red heart bulges towards some dead branches/branch scars were observed. 

Analysis IV suggested that bulging in stem-axial direction mainly occurs in the zone of the knot, and 

no significant difference in deviation (relative deviation) below and above the knot was found. 

Hypothesising that red heart formation started from traits with red heart bulges, the direction of red 

heart development along the stem axis may be upwards and downwards as well. In literature, 

discoloration is reported to form below and above artificial wounds (Dujesiefken and Liese 1990; 

Torelli et al. 1994), while it seems not clear whether the larger extent occurs below or above a wound. 

Altogether, these results supported the hypothesis that red heart can start at a middle stem height and 

develop to the stem base and up to the crown base (Zycha 1948), which was used in Paper III to 

estimate the overall red heart shape.  

 

 

4.3 New approaches to the modelling of red heart occurrence and shape   
Relationships between external traits and red heart were taken into account in the models by Knoke 

and Schulz Wenderoth (2001), von Büren (2002) and Knoke (2003a; 2003b). The authors report an 

effect of the presence of larger branch scars and damage areas (Büren von 2002), and of the number of 

dead branches and knobs/scars with minimum sizes of 6 cm and 9 cm, respectively (Knoke and Schulz 

Wenderoth 2001; Knoke 2003a; Knoke 2003b). Furthermore, an effect of the occurrence of forks 
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related to tree age is reported by Knoke (2003a; 2003b). In comparison, there was no clear effect of 

the trait “fork” in the model of Paper II. However, only a small number of trees was analysed, so that a 

possible effect of this trait should be kept in mind for further analysis. This is also suggested by 

Paper I, where a relationship between the ramification zone of a fork and red heart was observed in the 

particular case of tree B08. Based on results of Paper I, wounds and cracks to the bark were not taken 

into account in the models of the present study. On the one hand, an effect of wounds or cracks could 

not be excluded in general, since only 4 trees were analysed in Paper I, and taking account of results 

by von Büren (2002). On the other hand, the choice of focusing on dead branches/branch scars in 

modelling was based on a visual assessment of link between these traits and red heart (Paper I), while 

other models are not based on such an explorative analysis52. Results of the explorative analysis and 

those of the models of Paper II and analysis IV suggested an effect of larger dead branches/knots on 

red heart initiation. This was in accordance with results by Knoke and Schulz Wenderoth (2001), von 

Büren (2002) and Knoke (Knoke 2003a; Knoke 2003b). However, in the present study, this effect was 

specified: the model of Paper II made it possible to quantify the effect of individual branch scars on 

the probability of red heart occurrence. Moreover, estimation of this effect was based on hypothesised, 

basic “mechanisms” of red heart initiation (the probability of red heart initiation was hypothesised to 

change with inclination, diameter and/or depth of a dead branch/knot; Paper II). Also, relationships 

between the stem outside and inside were quantified using geometric relationships between branch 

scars, knots and red heart as developed in Paper I, which may reflect red heart initiation being related 

to the outside of the stem (penetration of oxygenous air).  

 

The model of red heart occurrence was based on sample trees with a relatively small range of age and 

diameter at breast height, in order to focus on the effect of external traits (Paper II, section  2.2). 

However, there was an effect on the dendrometric level in this model. Similar to Paper II, an effect of 

diameter at breast height on the probability of occurrence of coloured heartwood is included in other 

models (Knoke and Schulz Wenderoth 2001; Börner 2002; Büren von 2002; Zell 2002; Mavric 2003; 

Knoke 2003a; Knoke 2003b; Schmidt 2004; Zell et al. 2004)53; an effect of hd-ratio (analysis II) is 

included in the model by von Büren (2002). Keeping in mind the small number of sample trees, it may 

be interesting for further analyses that results of the present study about effects on the dendrometric 

level were found in the single stand situation presented.  

 

Models to estimate the shape of the outer red heart boarder in continuity along the stem axis are 

reported by Knoke and Schulz Wenderoth (2001) and Knoke (2003a). The models are based on two 

observations of red heart diameter per tree, which are measured at the bottom and top ends of butt-logs 

                                                      
52 Larger damage areas did not occur on the trees of group 2, which were used to develop the models of Papers II 
and III.  
53 In the models by Knoke (2003a; 2003b), the ratio of diameter at breast height and tree age is included.  
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of different lengths. The authors use a second order parabola to describe the diameter and diameter 

percentage of red heart along the stem axis, so that the overall shape of a spindle is modelled. In the 

present study, the mean red heart radius was measured systematically about every 2 m of tree height 

between the felling cut and the crown base. Thus, more detailed information about variation of the 

overall red heart shape within individual trees was obtained. The overall red heart shape could be 

described closely, using an exponential function with a fourth order polynomial term (Paper III). 

Description included an extended middle section and a sharp decrease in mean red heart radius at the 

lower and upper red heart ends. These characteristics of the overall red heart shape were not taken into 

account in modelling thus far. However, another model structure using a more robust (but less 

flexible) function (e.g. arctangent function) was not already tested, since the model was difficult to 

adjust owing to the small number of sample trees. As a further new aspect, the model structure 

presented in Paper III reflected a hypothesis of red heart initiation and development in stem-axial and 

stem-radial direction (analysis I). The corresponding parameters height, length and width of the 

overall red heart shape could be estimated from tree traits and dendrometric variables, using the height 

of a possible red heart initiation point (branch scar), the relative height of the crown base and the 

diameter at breast height (Paper III). The explanatory variables diameter at breast height and relative 

height of the crown base are discussed in comparison with literature in Paper III. In this paper, the 

height of a particular branch scar (one per tree) as possible red heart initiation point was identified 

using a simple rule. To improve this, branch scars which are most likely red heart initiation points may 

be identified by the model of Paper II. However, thus far results of this model were coarse 

(“caricatured”) with respect to the effect of individual branch scars (as explained in Paper II). 

Furthermore, a possible effect of the trait “fork” may be included into the models (this effect was not 

clear thus far; see above): in the model of red heart occurrence (Paper II), a fork may be included as 

special case of a branch. In the model of overall red heart shape (Paper III), the fork height may 

contribute to estimate the parameter height of the overall red heart in the stem (a fork may be located 

about in the middle of spindle-shaped red heart, if the red heart in the branches of the fork is taken into 

account; section  3.3). This way, the models of Papers II and III may be linked to estimate red heart 

occurrence and, based on the results, to estimate the overall red heart shape. Starting from these 

reflections, perspectives of model validation and development are given in section  5 below.  

 

In the chain of models by Schmidt (2004), the occurrence of red heartwood or splashing heartwood is 

estimated at the ends of butt-logs, using the diameter at breast height as independent variable. Based 

on this, the diameters of red heartwood and splashing heartwood are modelled. The author stresses 

correlation between the occurrences of coloured heartwood on cross-sections of the same tree. 

Compared with this, in the present study red heart occurrence was analysed between trees: white trees 

and red heart trees were distinguished (Paper II). Differentiation between heartwood types within trees 

(i.e. differentiation by stem height) may be taken into account, if other types of coloured heartwood 
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(splashing or abnormal heartwood) shall be included into the model; since splashing and abnormal 

heartwood can develop around (parts of) a central red heart. However, not only for this reason the 

formation processes of splashing and abnormal heartwood seem more complex, and related factors 

seem lesser known than those of red heartwood (Sachsse 1991; Seeling and Sachsse 1992). Thus, 

further research should be performed in this respect, before other types of coloured heartwood may be 

included into the model of Paper II.  

 

Especially the formations of splashing and abnormal heartwood (Walter and Kucera 1991)54, but also 

red heart formation may be related to the tree roots (Raunecker 1953). The trait “dead root” was not 

analysed in the present study, and it was not included into other approaches to the modelling of 

coloured heartwood in Beech (section  1.2.6). Thus, an explorative analysis, similar to Paper I, may 

reveal quantitative information about possible relationships between dead roots and red heart. 

However, there is the difficulty to access the root system for data acquisition, regarding both model 

development, and model application in particular.  

 

In the present study, the outer red heart surface was focused, which is also the case for the other 

approaches to the modelling of coloured heartwood in Beech (section  1.2.6). However, based on 

results of Paper I, another approach might have been envisaged: knots located close to the bark were 

found to be linked to outer red heart formation zones, and there was indication that interior red heart 

formation zones were related to knots located deeper in the wood (Figure 3 of Paper I). This might 

have been a starting point to further analyses of red heart development in stem-radial direction/over 

time. Hypothesising that red heart formation zones are linked to dead branches/knots, development 

and successive overlaying of red heart zones might have been estimated based on individual 

probabilities of branch scars to initiate red heart formation (Paper II). This way, both red heart 

development and the outer red heart surface at a given stage of development might have been 

modelled. However, there were several difficulties which made this approach appearing too ambitious, 

so that it was not chosen in the present study: first, it has proven difficult to clearly distinguish red 

heart zones on longitudinal sections or cross-sections (an attempt was made in the course of 

analysis I), in order to measure their extent and position in the stem. Second, little is known about the 

dynamic of red heart formation, the progress of the discolouration and related factors which can be 

used in statistical modelling. Third, an adopted mathematical approach would have to be developed. 

Maybe a multidisciplinary project (physiology, botany, wood quality modelling) could come back to 

this approach.  

 

                                                      
54 Coloured heartwood with splashing appearance according to Walter and Kucera (1991) corresponds most 
likely to splashing or abnormal heartwood according to Sachsse (1991).  
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In summary, the advantage and the original characteristics of the models of the present study were 

their level of detail with respect to red heart initiation and description of red heart shape. Furthermore, 

the models were well adapted to the observed variability of red heart occurrence and shape. The main 

limitation of the models was the small number of sample trees, so that results were only valid in the 

situation presented. In contrast, models reported in literature (section  1.2.6) are based on a high 

number of trees from various stands, but on few observations of coloured heartwood per trees. Thus, 

they have a much wider scope of application. However, they seem less adapted to account for the 

variability of occurrence and intra-tree shape of red heart.  
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5 Conclusions and perspectives  

5.1 Conclusions  
Based on results of the present study, the following conclusions can be drawn about relationships 

between external and dendrometric tree characteristics and the occurrence and shape of red heart in 

beech trees:  

 

(1) an original method based on log laser scanning and digital image analysis, was developed and 

applied to 4 sample trees. The method, based on Constant et al. (2003), made it possible to 

obtain three dimensional data about traits on the stem surface and red heart shape inside the 

stem (Paper I). While the method was time consuming and destructive, its advantage was the 

close link between measurements on the stem outside and inside. The data measured was 

suitable to visualisation and geometric/statistic analysis. Using this method, relationships 

between tree external traits and red heart could be observed and characterised;  

(2) geometric relationships were developed between branch scars, knots and red heart (Paper I). 

Using these relationships, a simple hypothesis was deduced about basic “mechanisms” of red 

heart initiation depending on dead branch/knot dimensions (inclination, diameter and depth); 

(3) based on the hypothesis of red heart initiation, a type logistic regression model was developed 

which made it possible to quantify the effect of individual external traits (branch scars) on the 

probability of red heart occurrence (Paper II). Red heart initiation being related to the outside 

of the stem (penetration of oxygenous air), relationships between the stem outside and inside 

were quantified using geometric relationships. Using this model, a good discrimination of red 

heart trees and white trees was obtained (only 4 out of 31 trees were misclassified). However, 

the scope of the results was restricted owing to the small number of sample trees and the single 

stand situation presented;  

(4) the overall red heart shape in stem-axial direction between the felling cut and the crown base 

(mean red heart radius versus tree height) was closely described using an exponential function 

with a fourth order polynomial term (Paper III). Model structure was such that a simple 

hypothesis of red heart initiation and development in stem-axial and stem-radial direction 

was reflected, using the parameters height, length and width of the red heart shape. Results 

indicated that, at a given stage of red heart development, these parameters could be estimated 

from external tree characteristics. Estimation was based on branch scars, the relative height of 

the crown base and the diameter at breast height. Remaining issues concerning the model 

structure (model function, local problems for predicted values close to zero; Paper III) could not 

be analysed owing to the small number of 16 sample trees. Application to an independent 

sample of 4 trees showed promising results;  
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(5) deviation of the local red heart shape around knots from the overall red heart shape was 

limited to the zone of the knot and to the upper red heart end (analysis IV). Further analyses, 

aiming at modelling local variations of the overall red heart shape, should focus on variations in 

different stem-radial directions;  

(6) results of the test of the geometric relationships [point  (2)] were coarse, but they basically 

supported the hypothesised relationships between branch scars, knots and red heart 

(analysis IV).  

 

 

5.2 Perspectives  
There are two complementary analyses which can be envisaged in the short term, based on data 

and results of the present study:  

 

(7) referring to point  (4) in section  5.1, the model of the overall red heart shape could be developed 

for estimating the number of annual rings with red heart at a given height in the stem. 

Therefore, the number of annual rings containing red heart and white wood, respectively, was 

counted on discs of 16 red heart trees (group 2)55. Using the number of annual rings containing 

red heart as target variable in the model of red heart shape (Paper III), promising results were 

already obtained in preliminary analyses;  

(8) referring to point  (5) in section  5.1, the red heart shape in different stem-radial directions 

could be analysed. As examples, the red heart shapes of two trees (number 31 and 35, group 2) 

are illustrated in Figure 30 using matrices of grey values. In the matrices, each row represents 

one disc. Within a row, the grey value of a square represents the median length of the red heart 

radii (ra; section  2.2) within an angular disc section of 10° (36 angular section per disc), where 

black is the minimum length (zero) and white is the maximum length56.  

 

                                                      
55 Counting was in two directions per disc, which were the directions of the red heart radii with the median and 
maximum lengths. 
56 Calibration of grey values was based on the minimum and maximum of all median radii (N = 684) of the two 
trees displayed, so that grey values can be compared within and between trees. Calibration and visualisation was 
done using ImageJ 1.34s (Wayne Rasband, National Institutes of Health, USA).  
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Figure 30. Examples (trees 31 and 35 of group 2) of variability of red heart shape illustrated as 
matrices of grey values: each row represents one disc, and each square represents the median 
length of the red heart radii within an angular disc section of 10° (36 angular sections per disc), 
where black is the minimum length (zero) and white is the maximum length; distance between 
matrix rows (discs) was approximately 2 m starting from 1.3 m of tree height towards the crown 
base.  

 

Figure 30 suggests that the red heart shape in stem-radial direction can be similar within 2 m of 

tree height (discs 3 and 4 of tree 31; Figure 30), and more variable in other stem parts. There 

could also be very low variation in stem-radial direction at a given stem height (round red heart 

shape on disc 3 of tree 35), adjacent to higher variation in stem parts below and above.  

The red heart shape in different stem-radial directions was measured for 20 red heart trees (4 

trees of group 1 and 16 trees of group 2; section  2). In a first step, characteristic red heart shapes 

could be described geometrically in cross-section, including variation of these shapes along the 

stem axis. Subsequently, possible relationships to external and dendrometric tree characteristics 

may be analysed, using the position (height and azimuth) of branch scars, for instance (a 

complete map of branch scars on the stem surface is only available for the 4 trees of group 1).  

 

Referring to points  (3) and  (4) in section  5.1, two statistic models were developed in the present study: 

the model to estimate red heart occurrence (Paper II) and the model to estimate the overall red heart 

shape (Paper III). The models were parameterised based on few sample trees (31 and 16 trees, 

respectively), since in the present study an approach of more detailed analyses on a smaller number of 

trees was chosen in comparison with existing approaches to the modelling of coloured heartwood in 

Beech (section  1.3; existing approaches focus on a high number of trees, but on few observations of 

coloured heartwood per tree). Consequently, model validation and development should be the next 
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step to continue the present study in the short term [this step and the analyses of points  (7) and  (8) 

can be performed independently]:  

 

(9) the aim of model validation should be to provide robust models, which are suitable to estimate 

red heart occurrence and shape in different silvicultural situations. In this respect, important 

considerations of sampling would be:  

• to represent red heart trees of different stages of red heart development, and white reference 

trees;  

• to widen the range of tree age and diameter;  

• to represent different levels of spacing;  

• to test an effect of site characteristics (starting with basic site characteristics given in forest 

inventory data);  

(10) development of the model of red heart occurrence (Paper II) should focus on the effect on the 

dendrometric level and a possible effect of forks. With respect to the model of red heart shape 

(Paper III), remaining issues concerning the model structure (section  4.3, Paper III) should be 

taken into account. Development of both models should aim at linking the models, so that the 

output of the model of red heart occurrence can be used as input for the model of red heart 

shape.  

 

 

Assuming successful validation and development of the models of the present study, perspectives in 

the medium and long term may include linking of the models to a growth model for Beech. As an 

example, linking to the growth model Fagacées (Dhôte 1998; Dhôte and Le Moguédec 2005) is 

discussed in the following. Fagacées is developed and used in the LERFoB-laboratory in Nancy.  

 

Fagacées is a distance-independent tree model for Beech (Fagus sylvatica L.) in Northern France. In 

the framework of pure even-aged stands, various thinning regimes can be simulated. For given stand 

fertility, initial stand age and density, Fagacées simulates height and diameter growth of individual 

trees, using age-steps of 3 years57. At each step, trees are described by their age, height, diameter and 

status (living, felled, dead or disappeared). Additional models for description of individual trees can be 

linked  to Fagacées  such  that  model  output  is  provided  a posteriori  for a group  of trees,  which is  

                                                      
57 From a statistical point of view it is realistic to simulate tree growth up to an age of about 200 years.  
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generated by Fagacées and which corresponds to specified criteria. For example, an estimation of 

stem profile was introduced (Vallet 2005) based on Trincado and von Gadow (1996)58.  

 

Similar to the stem profile, an estimation of red heart occurrence and shape at different steps of tree 

growth may be provided using the models of the present study (after model validation). However, an 

additional model of natural pruning would have to be developed and linked to Fagacées as well. The 

pruning model should provide dead branch/knot inclination, diameter, depth and status (dead branch 

or knot) to estimate red heart occurrence (Paper II). It should additionally provide dead branch/knot 

height to estimate the overall red heart shape (Paper III)59. An estimation of red heart percentage at a 

given stem height may be provided using the models of overall red heart shape and stem taper.  

 

Fagacées is developed under the platform of Computer-Aided Projection for Strategies In Silviculture 

(CAPSIS), which “aims at integrating several types of forest growth and dynamics models (…) and 

providing forest management tools to establish and compare different silvicultural scenarios” (De 

Coligny et al. 2002). Linking red heart models to Fagacées would come within this aim. Referring to 

the scope given in section  1.1, different silvicultural concepts may be tested and evaluated for 

optimising the yield (volume percentage) of white beechwood and other criteria (e.g. wood quality, 

monetary) of virtual logs, which may be defined by a rule of bucking. Downstream the forest-wood 

chain, using the red heart shape in virtual logs, the yield of white and red heart beechwood in 

simulated manufacturing of sliced or peeled veneer may be analysed using the model SidGeo (Mothe 

et al. 2002). Sawing simulation by Ohnesorge (2004) hypothesises cylindrical red heart shape and may 

be further developed using an approximation of the “real” red heart shape.  

 

For forestry practice it seems important that the input variables of the models of red heart occurrence 

and shape [dead branch/knot dimensions and height, diameter at breast height (hd-ratio), relative 

height of the crown base] can be controlled (to a certain extent) by silvicultural treatment: for given 

site conditions, natural pruning and crown base height at a given stage of tree growth depend on how 

concurrence by neighbouring trees is managed in tending and thinning. The related live crown size 

controls diameter growth, and thus hd-ratio and duration of knot occlusion/knot depth. In this respect, 

beech trees growing under very wide spacing, which is suggested by recent silvicultural concepts 

(Bastien 1997; Wilhelm et al. 1999), are reported to contain relatively small red hearts up to target 

                                                      
58 The model is also developed for Oak (Quercus petraea [Matt.] Liebl.). For this tree species, the stem profile 
(Dhôte et al. 2000) (crown base height, relative crown length and stem taper) and several tree compartments 
(bark thickness, sapwood/heartwood limit, knotty core and wood volume) can be reconstructed. Reconstruction 
is based on tree growth description (age, height, diameter and status) generated by the growth model, using an 
allometric procedure. 
59 The models of Papers II and III also used the diameter at breast height, which is generated by Fagacées. The 
model of Paper III used the relative height of the crown base, which may be estimated by the model of stem 
profile or the pruning model. 
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diameters of 60 cm [Klädtke (2002), Seeling and Becker (2002)]. An instrument to analyse 

possibilities of controlling red heart occurrence and shape by silvicultural treatment may be 

provided by linking the respective models to growth models. Coming back to the example of 

Fagacées, strategic decisions about silvicultural concepts (thinning sequence and intensity, number of 

crop trees, etc.) may be derived from simulations rather than decision tools to select trees to be cut in 

thinning and felling operations. Therefore, growth prediction of individual trees should be closely 

linked to estimation of red heart occurrence and shape, so that information about red heart 

development can be deduced (Knoke 2002; Knoke 2003a). The development of decision tools may 

take advantage of the models of the present study (after model validation), which provide 

complementary knowledge about relationships between external and dendrometric tree characteristics 

and the occurrence and shape of red heart.  

 

In view of an application of the models of the present study in forestry, further development may also 

reveal if the effect of branch scars can be assessed by a simpler rule. Based on this, an assessment of 

red heart occurrence and shape in forestry inventory may be analysed, for instance. For this purpose, 

methods like terrestrial laser scanning are under development (Thies et al. 2003; Schütt et al. 2004). 

Among other things, development aims at detecting external traits like branch scars on standing trees 

to conclude on the inner wood quality. The possibility to use laser scanner measurements as input for 

the models of the present study would depend on the precision of scanner measurements (section  4.1) 

and the possible simplification of assessment of the effect of branch scars. Measurement of the input 

variables diameter at breast height (Papers II and III) and relative height of the crown base (Paper III) 

seems less difficult (Thies et al. 2004).  

 

Developing an instrument to assess red heart occurrence and shape in standing trees may also be of 

interest for foresters and wood buyers to negotiate stumpage prices when beechwood is sold before 

felling. Most of the French beechwood is sold this way, while in Germany roundwood quality is 

usually assessed after felling and bucking. According to European Standards EN 1316-1 (CEN 1997c), 

the diameter percentage60 of red heart on log cross-sections is used to determine roundwood quality 

with respect to the size of red heartwood (or splashing heartwood). However, to assess the volume 

percentage of red heartwood, the red heart shape between the ends of logs would have to be taken into 

account. Providing this information would also be useful in wood industry to determine patterns of 

sawing and veneering for optimising the yield of white beechwood. In this respect, the model of red 

heart shape may be developed to using explicitly the red heart size on cross-sections of logs as an 

explanatory variable. In wood industry, red heart detection and measurement of red heart size on wood 

                                                      
60 Ratio (%) of the diameter of the circle enclosing the red heart and the diameter of the cross-section, according 
to EN 1310 (CEN 1997b).  
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surfaces may be based on optoelectronic methods. The development of such methods is part of an 

applied research project under participation and coordination of the Fobawi-institute61. 

  

                                                      
61 CRAFT project “Innovation for Beech”, refer to http://www.innobeech.uni-freiburg.de/objectives.htm (visited 
20 October 2005).  
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6 Summary  

6.1 English summary  
Beech (Fagus sylvatica L.) is a tree species that is capable of forming coloured heartwood (facultative 

formation of coloured heartwood), which is most frequently developed as red heart. The occurrence of 

large red hearts reduces the value of Beech roundwood considerably, since industrial processing, 

which aims at high added value, focuses on appearance products of light-coloured, “white” 

beechwood. Consequently, foresters are interested in estimating red heart occurrence and controlling 

its formation in standing trees. To approach this aim, statistical models are developed.  

However, variability of red heart occurrence between trees and of red heart shape between and within 

trees is high. In stem-axial direction, red heart is often spindle-shaped. The spindle can reach from the 

felling cut to the crown base, but it can be located somewhere in between as well. In stem-radial 

direction, red heart does usually not coincide with the annual rings, but appears cloudy and composed 

of several formation zones. In contrast to existing models, the present study proposes a closer 

examination of this variability within trees. Therefore, a special focus was set on possible relationships 

between tree external traits and red heart occurrence and shape; external traits like dead branches are 

assumed to be possible initiation points of red heart formation. Furthermore, there is relationship 

between dendrometric variables like the diameter at breast height and red heart formation. In this 

context, the overall objective of the present study was to quantify relationships between external and 

dendrometric tree characteristics and the occurrence and shape of red heart in stem-axial and stem-

radial direction. To reach this objective, four analyses were performed.  

The study started with an explorative analysis (analysis I) of four trees with the aim of identifying and 

characterising possible relationships between tree external traits and red heart within the tree. 

Therefore, complete mapping of traits (dead branches, branch scars, wounds, cracks and fork) on the 

stem surface was performed as well as detailed description of the red heart shape. For the mapping of 

traits and the description of red heart shape, an original method of log laser scanning and digital image 

analysis was developed and applied. The method made it possible to reconstruct and visualise the 

external traits on the stem surface and the red heart shape inside the stem. Based on results of a visual 

assessment of link between external traits and red heart, a simple hypothesis of red heart initiation 

depending on the dimensions of dead branches/branch scars was developed, using geometric 

relationships between branch scars, knots and red heart. Furthermore, a simple hypothesis was 

developed of red heart development in stem-axial and stem-radial direction. The hypotheses were used 

in subsequent analyses to develop models of red heart occurrence and shape.  

Using the hypothesis of red heart initiation, a type logistic regression model was developed 

(analysis II). The model made it possible to quantify the effect of individual external traits (branch 

scars) on the probability of red heart occurrence. Also, it included an effect on the dendrometric level 
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(diameter at breast height). Using this model, 15 out of 17 red heart trees and 12 out of 14 trees with 

no coloured heartwood (“white trees”) were correctly classified.  

Based on the hypothesis of red heart development, the overall red heart shape was modelled at a given 

stage of development (analysis III). Therefore, the overall red heart shape was measured on 16 trees as 

the mean red heart radius versus tree height between the felling cut and the crown base (the inter-

measurement distance was approximately 2 m). Using a non-linear model, the observed red heart 

shapes were closely described. Results of a predictive model at the standing tree level suggested that 

model parameters could be estimated from external traits and dendrometric variables (branch scars, 

relative height of the crown base and diameter at breast height). Application of the model to an 

independent sample of four trees (analysis I) showed promising results.  

Finally, local deviations from the overall red heart shapes of the 16 trees were studied using boards cut 

from these trees (N = 58; analysis IV). The analysis focused on the local red heart shape in stem-axial 

direction below and above branch scars/knots. Results showed that deviation was limited to the zone 

of the knot and to the upper red heart end. Furthermore, the geometric relationships between branch 

scars, knots and red heart (developed in analysis I) were tested and further developed. Results were 

rather coarse, but they basically supported the hypothesis of red heart initiation developed in 

analysis I.  

Perspectives were about further analyses in the short term, based on data and results of the present 

study: modelling of the overall red heart shape based on the number of annual rings containing red 

heart in about every 2 m of stem height; and analysing of the local red heart shape in different stem-

radial directions. Furthermore, the importance of model validation was stressed. As perspectives in the 

medium and long term, linking of the models of red heart occurrence and shape (analyses II and III) to 

models of Beech growth and roundwood processing is discussed as well as application of the models 

in practice of forestry and wood industry.  

 

 

6.2 French summary (Résumé) 
Le Hêtre (Fagus sylvatica L.) est une essence qui forme facultativement un cœur coloré. Dans la 

plupart des cas, le cœur développé est un cœur rouge. La transformation industrielle favorise le bois 

clair du Hêtre, notamment pour les produis pour lesquels l’aspect est important. L’occurrence de 

cœurs rouges de tailles élevées diminue ainsi considérablement la valeur des bois ronds. Pour cette 

raison, les forestiers aimeraient pouvoir estimer l’occurrence du cœur rouge et contrôler sa formation 

dans l’arbre sur pied. En vue d’atteindre cet objectif, des modèles statistiques sont développés. 

Cependant, la variabilité de l’occurrence du cœur rouge au niveau inter-arbre, et de sa forme au niveau 

inter- et intra-arbre est importante. Dans la direction longitudinale, le cœur rouge a souvent une forme 

de noyau, qui peut s’étendre de la coupe d’abattage jusqu’à la base du houppier, ou alors se trouver 

complètement inclus entre ces deux extrémités. Dans la direction radiale, souvent, le cœur rouge ne 
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suit pas les limites de cerne, mais il a une apparence « nuageuse », composée de plusieurs vagues de 

formation. Par rapport aux travaux existants dans la littérature, cette étude se propose de décrire de 

façon très précise la variabilité intra-arbre du cœur rouge (échantillonnage de haute résolution). Pour 

cela, un point important était les relations possibles entre les défauts apparents sur le tronc et 

l’occurrence et la forme du cœur rouge à l’intérieur de celui-ci ; des défauts tels que des branches 

mortes sont supposés être des points d’initiation possible de la formation du cœur rouge. De plus, un 

effet des variables dendrométriques telles que le diamètre à 1.3 m sur la présence du phénomène est 

reconnu. Dans ce contexte, l’objectif principal de cette étude était de quantifier des relations entre les 

défauts externes de l’arbre, des caractéristiques dendrométriques et l’occurrence et la forme du cœur 

rouge dans les directions longitudinale et radiale. Pour atteindre cet objectif, quatre analyses ont été 

menées.  

Dans un premier temps, une analyse exploratoire (analyse I) réalisée de façon intensive à partir de 

quatre arbres avait pour objectif d’identifier et de caractériser des relations possibles entre les défauts 

externes et le cœur rouge au niveau intra-arbre. Pour ce faire, les défauts (branches mortes, cicatrices 

de branche, blessures, fentes et fourche) visibles sur l’écorce ont été cartographiés, et la forme locale 

du cœur rouge au voisinage des défauts a été décrite en détail ainsi que sa forme globale dans la 

direction longitudinale. La carte des défauts a été établie par un scanner optique à billon et la 

description du cœur rouge par analyse d’image sur des rondelles. A partir des résultats obtenus, une 

hypothèse simple sur l’initiation du cœur rouge a été développée basée sur des dimensions des 

branches mortes/cicatrices de branche, en utilisant des relations géométriques entre des cicatrices de 

branche, les nœuds correspondants et le cœur rouge. Une autre hypothèse simple portait sur le 

développement du cœur rouge dans les directions longitudinale et radiale. Ces hypothèses ont été 

utilisées dans les analyses suivantes pour développer des modèles d’occurrence et de forme du cœur 

rouge.  

A partir de l’hypothèse portant sur l’initiation du cœur rouge, un modèle de type logistique a été 

développé (analyse II). Le modèle permettait de quantifier individuellement l’effet des défauts 

(cicatrices de branche) sur la probabilité d’occurrence du cœur rouge ; il incluait aussi un effet au 

niveau dendrométrique (diamètre à 1.3 m). En utilisant ce modèle, 15 parmi 17 hêtres avec un cœur 

rouge et 12 parmi 14 hêtres « blancs » (sans cœur coloré) ont été classés correctement.  

La forme globale du cœur rouge à un stade de développement donné a été modélisée à partir de 

l’hypothèse sur le développement du cœur rouge (analyse III). Pour cela, le rayon moyen du cœur 

rouge a été mesuré sur 16 arbres, environ tous les deux mètres entre la coupe d’abattage et la base du 

houppier. Par un modèle non linéaire, la forme globale des cœurs rouges observés a pu être décrite 

avec une précision jugée plutôt satisfaisante. Les résultats d’une approche de modèle prédictif au 

niveau de l’arbre sur pied indiquaient que les paramètres du modèle pourraient être estimés à partir des 

défauts et des variables dendrométriques (cicatrices de branche, hauteur relative de la base du 
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houppier et diamètre à 1.3 m). L’application du modèle à l’échantillon indépendant portant sur les 4 

arbres de l’analyse I donnait des résultats encourageants. 

Enfin, l’analyse IV portait sur des déviations locales de la forme globale de 16 cœurs rouges. Plus 

particulièrement, la forme longitudinale du cœur rouge en dessous et au dessus des cicatrices de 

branche/nœuds a été analysée. Les résultats obtenus indiquaient que les déviations sont limitées à la 

zone du nœud et à l’extrémité du cœur rouge coté apical. De plus, les relations géométriques entre les 

cicatrices de branche, les nœuds et le cœur rouge (mises en place dans l’analyse I) ont été testées et 

développées. Les résultats étant assez grossiers, ils soulignaient cependant l’hypothèse sur l’initiation 

du cœur rouge développée dans l’analyse I. 

En perspectives à court terme, les analyses suivantes peuvent être envisagées à partir des résultats de 

cette étude : la modélisation de la forme globale du cœur rouge à partir du nombre de cernes contenant 

du cœur rouge environ tous les deux mètres le long du tronc, et une analyse de la forme locale du cœur 

rouge dans des différentes directions radiales. En perspectives à plus long terme, les possibilités de lier 

les modèles de l’occurrence et de la forme du cœur rouge à des modèles de croissance ou de la 

transformation des bois ronds sont discutées, ainsi que l’application des modèles dans la pratique 

forestière et dans l’industrie du bois.  

 

 

6.3 German summary (Zusammenfassung)  
Die Buche (Fagus sylvatica L.) gehört zu den Baumarten, die fakultativ farbiges Kernholz ausbilden. 

Meist ist der Farbkern als so genannter Rotkern ausgeprägt. Das Vorkommen größerer Rotkerne führt 

bei dem Rundholz zu deutlichen Preisabschlägen, da im Hinblick auf eine industrielle Verarbeitung zu 

hochwertigen Produkten für den sichtbaren Bereich vor allem das helle, „weiße“ Buchenholz 

nachgefragt wird. Daher besteht in der Forstwirtschaft großes Interesse an Verfahren zur Abschätzung 

des Rotkernvorkommens und zur Steuerung der Rotkernentstehung im stehenden Baum. Um sich 

diesem Ziel anzunähern werden statistische Modelle entwickelt.  

Jedoch variiert das Vorkommen des Rotkerns stark zwischen den Bäumen. Weiterhin weißt die Form 

des Rotkerns eine große Variabilität zwischen den Bäumen und innerhalb von Einzelbäumen auf. In 

stammaxialer Richtung verläuft der Rotkern häufig spindelförmig. Dabei kann er sich vom Fällschnitt 

bis zum Kronenansatz erstrecken, oder aber sich zwischen diesen Grenzen befinden. In stammradialer 

Richtung folgt der Rotkern in der Regel nicht dem Jahrringverlauf, sondern er besitzt häufig eine 

wolkige Form, die sich aus mehreren Bildungszonen zusammensetzt. Im Gegensatz zu bestehenden 

statistischen Modellen soll in der vorliegenden Untersuchung diese Variabilität des Rotkerns innerhalb 

von Einzelbäumen genauer analysiert und quantifiziert werden. Dabei wird besonderes Augenmerk 

auf mögliche Zusammenhänge zwischen äußeren Stammmerkmalen und dem Vorkommen und der 

Form des Rotkerns gelegt; denn es wird angenommen, dass äußere Stammmerkmale wie z.B. Totäste 

Ausgangspunkte der Rotkernbildung sein könnten. Des Weiteren stehen dendrometrische Variablen 
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wie z.B. der Brusthöhendurchmesser in Zusammenhang mit der Rotkernbildung. Vor diesem 

Hintergrund ist es das übergeordnete Ziel dieser Arbeit, Zusammenhänge zwischen äußeren 

Stammmerkmalen und dendrometrischen Variablen einerseits, und dem Vorkommen und der Form 

des Rotkerns andererseits, zu quantifizieren. Um dieses Ziel zu erreichen wurden vier Untersuchungen 

durchgeführt.  

Das Ziel der ersten Untersuchung ist es, mögliche Zusammenhänge zwischen äußeren 

Stammmerkmalen und dem Rotkern zu identifizieren und zu charakterisieren. Im Rahmen dieser 

Zielsetzung wurde eine originäre Methode entwickelt und an vier Buchen getestet: Die 

Stammmerkmale (Totäste, Astnarben, Wunden, Risse und Zwiesel) sowie der Stammmantel wurden 

mittels Laser-scanning vermessen. Die Erfassung der Form des Rotkerns erfolgte an Stammscheiben 

mittels digitaler Bildanalyse. Anhand der gemessenen Daten konnten die Versuchsbäume 

dreidimensional rekonstruiert und visualisiert werden. Ausgehend von den Ergebnissen dieser 

Untersuchung wurden einfache Hypothesen abgeleitet, die in dem Folgenden für die Entwicklung von 

statistischen Modellen zur Abschätzung des Vorkommens und der Form des Rotkerns im stehenden 

Baum verwendet wurden: Es konnte eine einfache Hypothese über die Auslösung der Rotkernbildung 

in Zusammenhang mit Variablen von Totästen und Astnarben abgeleitet werden. Des Weiteren wurde 

eine einfache Hypothese hinsichtlich des Ausgangspunkts und der Entwicklung des Rotkerns in 

stamm-axialer und stamm-radialer Richtung aufgestellt.  

Ausgehend von der Hypothese über die Auslösung der Rotkernbildung wurde eine logistisches 

Regressionsmodell entwickelt (Untersuchung II). Das Modell ermöglicht es, den Einfluss von äußeren 

Stammmerkmalen (Astnarben) auf das Vorkommen des Rotkerns einzeln zu schätzen. Des Weiteren 

wurde der Einfluss des Brusthöhendurchmessers auf die Rotkernwahrscheinlichkeit in dem Modell 

berücksichtigt. Unter Anwendung des Modells konnten 15 von 17 rotkernigen Buchen und 12 von 14 

„weißen“ Buchen ohne Farbkernholz richtig klassifiziert werden.  

Das Modell für die so genannte Grundform des Rotkerns (Untersuchung III) fußt auf der Hypothese 

über die Rotkernentwicklung in stammaxialer und stammradialer Richtung. Für die Parametrisierung 

des Modells wurde der mittlere Rotkernradius an 16 Bäumen gemessen, und zwar in Abständen von 

ungefähr 2 m vom Fällschnitt bis zum Kronenansatz. Der auf diese Weise ermittelte Verlauf des 

Rotkerns entlang der Stammachse konnte mittels eines nichtlinearen Modells genau beschrieben 

werden. Im Hinblick auf eine Prognose am stehenden Baum wurden die Modellparameter anhand von 

Stammmerkmalen und dendrometrischen Variablen (Astnarben, relative Kronenansatzhöhe und 

Brusthöhendurchmesser) geschätzt. Bei dieser Schätzung und bei der Anwendung des Modells auf 

einen unabhängigen Datensatz (vier Bäume aus der ersten Untersuchung) konnten viel versprechende 

Ergebnisse erzielt werden.  

In der vierten Untersuchung wurden schließlich anhand von Längsschnitten lokale Abweichungen von 

der Rotkerngrundform im Bereich von Ästen quantitativ beschrieben. Aus den Ergebnissen geht 

hervor, dass die Abweichungen vor allem in unmittelbarem Bereich des untersuchten Astes und am 



Summary   

 

79 

oberen Ende des Rotkerns auftreten. In dem zweiten Teil dieser Untersuchung wurden geometrische 

Zusammenhänge zwischen Astnarben, den entsprechenden Ästen und dem Rotkern (Untersuchung I) 

geprüft und weiterentwickelt. Auch wenn zum Teil grobe Ergebnisse erzielt wurden, so stützten sie 

doch die Hypothese über die Auslösung der Rotkernbildung.  

Als kurzfristig mögliche Folgeuntersuchungen werden die Modellierung der Rotkerngrundform 

innerhalb des Jahrringprofils (Anzahl der Jahrringe mit Rotkern in verschiedenen Schafthöhen) und 

die Beschreibung und Modellierung der lokalen Rotkernform in stammradialer Richtung diskutiert. 

Weiterhin wird die Bedeutung der Modellvalidierung betont. Als mittel- bis langfristige Perspektiven 

werden eine Verbindung der vorgestellten, statistischen Rotkernmodelle mit einem 

Wachstumssimulator für Buche ebenso diskutiert wie die Anwendung der Modelle in der forst- und 

holzwirtschaftlichen Praxis.  
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8 Annex  

8.1 Complementary information  

8.1.1 Explorative analysis (analysis I) 

---- 

 

8.1.2 Red heart occurrence (analysis II) 

Referring to section  3.2, Table 8 gives the parameter estimates, approximate standard errors and 

significance tests of the model of red heart occurrence which used hd as explanatory variable at the 

dendrometric level. The correlation matrix of parameter estimates of this model is given in Table 9.  

 

Table 8. Model of red heart occurrence using hd as explanatory variable at the dendrometric level. 
Parameter estimates, approximate standard errors and significance tests.  

Parameter  
(variable) Estimate 

Approximate  
standard error 

Approximate  
Prob > |t| 

a0’  -27.32 9.04 0.006 
a1’ (hd) 49.02 15.91 0.005 
b0’ 6036.62 231.14 1.2 · 10 –19 
b1’ (mec2) -13.90 0.53 1.1 · 10 –19 
b2’ (mec3) 97.72 3.74 1.1 · 10 –19 
b3’ (ro) -63.46 2.43 1.1 · 10 –19 
 

 

Table 9. Model of red heart occurrence using hd as explanatory variable at the dendrometric level. 
Approximate correlation matrix of parameter estimates.  

 a0‘ a1‘ b0‘ b1‘ b2‘ 
a0‘ 1     
a1‘ -0.98833 1    
b0‘ -0.04399 0.04636 1   
b1‘ 0.04367 -0.04602 -0.99992 1  
b2‘ -0.04360 0.04595 0.99990 -0.99999 1 
b3‘ 0.04373 -0.04609 -0.99996 0.99997 -0.99998 
Determinant = 1.5 · 10 –16     
Matrix has 6 positive eigenvalue(s) 
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8.1.3 Overall red heart shape (analysis III) 

Referring to section  3.3, Table 10 gives the parameter estimates, approximate standard errors and 95% 

confidence limits of the descriptive model of the overall red heart shape for the trees of group 1.  

 

Table 10. Descriptive model of the overall red heart shape for the trees of group 1: parameter 
estimates, approximate standard errors and 95% confidence limits.  

Tree 
number 

Parameter Estimate Approximate 
standard error 

Approximate 95% confidence limits 

k* 1 (1) -0.0399 0.00540 -0.0506 -0.0292 
k* 2 (1) 0.0365 0.0149 0.00691 0.0662 
k* 3 (1) 0.1579 - - - 

 
 
all 

k* 4 (1) -0.3135 - - - 
B01 wB01 (1) -4.5412 0.0195 -4.5799 -4.5026 
B01 lB01 (m) 4.8897 0.1013 4.6886 5.0907 
B01 hB01 (m) 5.2363 0.0665 5.1042 5.3684 
B08 wB08 (1) -4.6061 0.0182 -4.6421 -4.5700 
B08 lB08 (m) 8.3699 1.6786 5.0379 11.7020 
B08 hB08 (m) 6.2107 1.0071 4.2117 8.2097 
C04 wC04 (1) -4.8683 0.0121 -4.8923 -4.8443 
C04 lC04 (m) 8.3709 0.2252 7.9239 8.8178 
C04 hC04 (m) 5.9626 0.1216 5.7213 6.2039 
C06 wC06 (1) -5.0274 0.00981 -5.0468 -5.0079 
C06 lC06 (m) 12.0019 0.5216 10.9665 13.0373 
C06 hC06 (m) 6.3430 0.3480 5.6523 7.0338 

(1): no unit 
 

8.1.4 Local red heart shape (analysis IV) 

This section gives results about deviation and relative deviation of the local red heart shape on boards 

from the overall red heart shape on the nearest discs. The results refer to section  3.4.2.1.1. In 

section  3.4.2.1.1, results were based on one longitudinal plane, which was the board surface related to 

angular disc sections (Figure 8). At the end of section  3.4.2.1.1 it is discussed that, however, the mean 

red heart radius of the entire discs (and not of angular disc sections) was used to quantify the overall 

red heart shape (section  3.3). To evaluate if this makes a difference, deviation and relative deviation 

were also calculated using the mean red heart radius of the entire discs: referring to methods given in 

section  3.4.1.1, deviation and relative deviation were calculated using r’below and r’above instead of rbelow 

and rabove, where r’below and r’above were the mean of 360 red heart radii [mean(ra) with a = 1 to 360; 

section  2.2] of the disc below and above the board, respectively. Results are given in the following: 

Figure 31, Figure 32, Figure 33 and Figure 34 refer to Figure 19, Figure 20, Figure 21 and Figure 22 

of section  3.4.2.1.1, respectively; Table 11 refers to Table 5.  
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Figure 31. Deviation of the local red shape (board zones) from the overall red heart shape (discs); on 
the abscissa axes: mean height of board zones related to the height of the upper red heart end (tree 
number 47 had a second small red heart above the upper red heart end which was represented by one 
board); on the ordinate axes: deviation of lower zone (left), knot zone including/excluding the red 
heart in the knot (middle) and upper zone (right); (1) in axis legends stands for no unit; N = 58 boards. 

 

 

Figure 32. Relative deviation of the local red shape (board zones) from the overall red heart shape 
(discs); on the abscissa axes: mean height of board zones related to the height of the upper red heart 
end (tree number 47 had a second small red heart above the upper red heart end which was represented 
by one board); on the ordinate axes: relative deviation of lower zone (left), knot zone 
including/excluding the red heart in the knot (middle) and upper zone (right); (1) in axis legends 
stands for no unit; N = 58 boards. 
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Table 11. Descriptive statistics of deviation (dlowerZone, dknotZoneIncl, dknotZoneExcl and dupperZone) and relative 
deviation (dlowerZoneRel, dknotZoneInclRel, dknotZoneExclRel and dupperZoneRel) of board zones located below 0.8 of 
height related to the upper red heart end (hmoyZoneRel ≤ 0.8). 

Variable 
 

N 
 

Mean 
(mm) 

Median 
(mm) 

Std 
(mm) 

CV 
(%) 

Min 
(mm) 

Max 
(mm) 

Prob > |t|; 
H0: Mean = 0 

dlowerZone 41 -1.3 -2.9 7.7 -594 -14.8 15.2 0.2878 
dknotZoneIncl 41 5.4 1.8 11.5 211 -12.5 41.2 0.0042 
dknotZoneExcl 41 1.9 2.0 7.9 421 -15.5 16.7 0.1362 
dupperZone 41 0.3 -0.9 8.1 3195 -18.0 18.2 0.8422 
  (1) (1) (1) (%) (1) (1)  
dlowerZoneRel 41 -0.014 -0.036 0.099 -722 -0.193 0.205 0.3806 
dknotZoneInclRel 41 0.074 0.025 0.157 211 -0.168 0.529 0.0041 
dknotZoneExclRel 41 0.024 0.022 0.108 448 -0.209 0.301 0.1611 
dupperZoneRel 41 0.002 -0.013 0.116 6235 -0.262 0.346 0.9187 

N: number of observations  
Std: standard deviation  
CV: variation coefficient  
Min: minimum 
Max: maximum 
Prob: probability  
t: t-value (Student)  
H0: null hypothesis  
(1): no unit  
 

Mean (x) = 2.2 
Mean (y) = 4.0 
t = 1.53
Prob > |t|: 0.1310
r = 0.64
N = 58

Mean (x) = 2.2 
Mean (y) = 4.0 
t = 1.53
Prob > |t|: 0.1310
r = 0.64
N = 58

 

Figure 33. Deviation of the local red heart shape from the overall red heart shape below and above the 
knot; on the left: scatter plot of the difference between the deviations of upper zone and lower zone, 
and the height relative to the upper red heart end (tree number 47 had a second small red heart above 
the upper red heart end which was represented by one board); on the right: scatter plot of the 
deviations of upper zone and lower zone, the bisector (y = x) of the coordinate axes is given as 
auxiliary line; (1) in axis legend stands for no unit; N = 58 boards.  
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Mean (x) = 0.098 
Mean (y) = 0.128
t = 0.96
Prob > |t|: 0.3402
r = 0.72
N = 58 

Mean (x) = 0.098 
Mean (y) = 0.128
t = 0.96
Prob > |t|: 0.3402
r = 0.72
N = 58 

 

Figure 34. Relative deviation of the local red heart shape from the overall red heart shape below and 
above the knot; on the left: scatter plot of the difference between the relative deviations of upper zone 
and lower zone, and the height relative to the upper red heart end (tree number 47 had a second small 
red heart above the upper red heart end which was represented by one board); on the right: scatter plot 
of the relative deviations of upper zone and lower zone, the bisector (y = x) of the coordinate axes is 
given as auxiliary line; (1) in axis legends stands for no unit; N = 58 boards. 

 



 



 



 

Abstract  
In this work, quantitative relationships were studied between external and dendrometric characteristics of beech trees on the one hand, and red 
heartwood occurrence and shape in stem-axial and stem-radial direction on the other hand. Four analyses were performed:  
I. Explorative analysis – Tree external traits (dead branches, branch scars, wounds, cracks and fork) and the red heart shape were described 

three-dimensionally and in detail on four trees. Based on visual and geometric relationships, hypotheses were deduced about red heart 
initiation depending on branch scar/knot dimensions, and about stages of development of the red heart shape.  

II.  Red heart occurrence – Using the hypotheses of red heart initiation, a type logistic regression model was developed. It allowed quantifying 
the effect of individual branch scars on the probability of red heart occurrence. It included an effect on the dendrometric level. Using this 
model, 27 out of 31 trees were correctly classified.  

III.  Overall red heart shape – This shape (mean red heart radius versus height in the tree) was modelled at a given stage of red heart 
development based on the hypothesis of the explorative analysis. The red heart width, length and height in the tree were controlled by 
model parameters. The parameters could be estimated from external traits and dendrometric variables. The model was parameterised 
based on 16 trees and applied to an independent sample which consisted of the four trees of analysis I.  

IV.  Local red heart shape – Deviation from the overall red heart shape in stem-axial direction below and above knots was analysed on boards 
(N=58) taken from the 16 trees of analysis III. Deviation was limited to the zone of the knot and to the upper red heart end. Furthermore, 
geometric relationships between branch scars, knots and red heart, as developed in the explorative analysis, were tested and further 
developed.  

Perspectives in the short term include modelling of the number of annual rings containing red heart, and quantifying the local red heart shape 
in different stem-radial directions. Furthermore, the importance of model validation is stressed. Perspectives in the medium and long term 
include linking of red heart models to models of tree growth and roundwood processing.  
Keywords: Fagus sylvatica, beech, red heart, model, initiation, occurrence, shape, development, branch scar, geometric relationship, 
mechanism, probability, standing tree  
 
Résumé  
Dans le cadre de ce travail, des relations quantitatives ont été étudiées, chez le Hêtre, entre les singularités externes de l’arbre, des caractéris-
tiques dendrométriques et l’occurrence et la forme du cœur rouge dans les directions longitudinale et radiale. Quatre analyses ont été menées :  
I. Analyse exploratoire – Des singularités externes (branches mortes, cicatrices de branche, blessures, fentes et fourche) et la forme du cœur 

rouge ont été décrites de façon tridimensionnelle détaillée pour quatre arbres. En se basant sur des relations visuelles et géométriques, des 
hypothèses ont été développées d’une part sur l’initiation du cœur rouge basées sur des dimensions des cicatrices de branche/nœuds et 
d’autre part sur des stades de développement de la forme du cœur rouge.  

II.  Occurrence du cœur rouge – En utilisant les hypothèses sur l’initiation du cœur rouge, un modèle de type logistique a été développé. Il 
permettait de quantifier individuellement l’effet des cicatrices de branche sur la probabilité d’occurrence du cœur rouge ; il incluait 
également un effet dendrométrique. A l’aide de ce modèle, 27 parmi 31 hêtres ont été classés correctement.  

III.  Forme globale du cœur rouge – Cette forme (rayon moyen du cœur rouge le long de l’axe du tronc) a été modélisée à un stade de 
développement donné en se basant sur l’hypothèse de l’analyse exploratoire. La largeur, la longueur et la hauteur du cœur rouge dans 
l’arbre étaient contrôlées par les paramètres du modèle. Ces derniers ont pu être estimés à partir des singularités externes et des variables 
dendrométriques. Le modèle a été paramétré en utilisant 16 hêtres ; il a été appliqué à l’échantillon indépendant constitué des quatre arbres 
de l’analyse I.  

IV.  Forme locale du cœur rouge – Des déviations locales de la forme globale du cœur rouge et plus particulièrement la forme longitudinale en 
dessous et au dessus des nœuds ont été analysées sur des planches (N=58) provenant des 16 arbres de l’analyse III. Les déviations étaient 
limitées à la zone du nœud et à l’extrémité du cœur rouge côté apical. De plus, des relations géométriques entre les cicatrices de branche, 
les nœuds et le cœur rouge, mises en place dans l’analyse exploratoire, ont été testées et développées.  

Des perspectives à court terme incluent de modéliser le nombre de cernes de cœur rouge et de quantifier la forme locale du cœur rouge dans 
les différentes directions radiales. De plus, l’importance de la validation des modèles de cœur rouge est soulignée. A plus long terme, ces 
modèles pourraient ainsi être couplés à des modèles de croissance ou de transformation des bois ronds.  
Mots clés : Fagus sylvatica, hêtre, cœur rouge, modèle, initiation, occurrence, forme, développement, cicatrice de branche, relation 
géométrique, mécanisme, probabilité, arbre sur pied  
 
Zusammenfassung  
In der vorliegenden Arbeit werden im Rahmen von vier Teiluntersuchungen quantitative Zusammenhänge zwischen äußeren Stamm-
merkmalen und dendrometrischen Variablen von Buchen einerseits, und dem Vorkommen und der Form des Rotkerns andererseits, analysiert:  
I. „Pilotstudie“ – Äußere Stammmerkmale (Totäste, Astnarben, Wunden, Risse und Zwiesel) sowie die Form des Rotkerns wurden anhand 

von vier Bäumen im Detail dreidimensional beschrieben. Ausgehend von visuellen und geometrischen Zusammenhängen zwischen 
Stammmerkmalen und Rotkern wurden Hypothesen abgeleitet, und zwar zum einen über die Auslösung der Rotkernbildung in 
Abhängigkeit von den Dimensionen von Totästen/Astnarben und zum anderen über Entwicklungsstadien der Rotkernform.  

II.  Vorkommen des Rotkerns – Ausgehend von den Hypothesen über die Auslösung der Rotkernbildung wurde ein logistisches 
Regressionsmodell entwickelt. Mit diesem Modell konnte der Einfluss von Astnarben auf die Rotkernwahrscheinlichkeit einzeln 
quantifiziert werden, und es wird der Einfluss von dendrometrischen Variablen berücksichtigt. Unter Anwendung des Modells wurden 27 
von 31 analysierten Buchen richtig klassifiziert.  

III.  Grundform des Rotkerns – Darunter wird der mittlere Rotkernradius in verschiedenen Höhen entlang der Stammachse verstanden. Die 
Modellierung eines bestimmten Entwicklungsstadiums der Rotkerngrundform erfolgte ausgehend von der in der „Pilotstudie“ auf-
gestellten Hypothese. Dabei wurden die Breite, Länge und Höhe des Rotkerns im Stamm durch entsprechende Modellparameter gesteuert. 
Die Parameter konnten anhand von äußeren Stammmerkmalen und dendrometrischen Variablen geschätzt werden. Das Modell wurde für 
16 Buchen parametrisiert und mittels eines unabhängigen Datensatzes überprüft, der die vier Bäume aus Untersuchung I umfasste.  

IV.  Lokale Abweichungen von der Rotkerngrundform – Es wurden Abweichungen in stammaxialer Richtung unter- und oberhalb von Ästen 
analysiert. Dies erfolgte anhand von Längsschnitten (N=58), die den 16 Buchen aus Untersuchung III entnommenen wurden. Wesentliche 
Abweichungen traten im unmittelbaren Bereich von Ästen und am oberen Ende des Rotkerns auf. Des Weiteren wurden die in der 
„Pilotstudie“ aufgestellten geometrischen Zusammenhänge zwischen Astnarbe, Ast und Rotkern getestet und weiterentwickelt.  

Kurzfristig mögliche Folgeuntersuchungen könnten sich mit der Modellierung der Rotkerngrundform innerhalb des Jahrringprofils oder mit 
lokalen Abweichungen von der Grundform in verschiedenen stammradialen Richtungen befassen. Des Weiteren wird betont, dass die 
entwickelten Rotkernmodelle noch validiert werden sollten. Davon ausgehend wäre längerfristig eine Verknüpfung der Rotkernmodelle mit 
Modellen für das Baumwachstum und den Rundholzeinschnitt denkbar.  
Schlagwörter: Fagus sylvatica, Buche, Rotkern, Modell, Auslösung, Vorkommen, Form, Entwicklung, Astnarbe, geometrischer 
Zusammenhang, Mechanismus, Wahrscheinlichkeit, stehender Baum  

 


