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INTRODUCTION, RESUME ET CONCLUSION EN FRANÇAIS

Cette thèse s’appuie sur deux articles en anglais publiés dans des revues internationales,

aussi en proposons-nous une brève introduction.

Cette thèse faisait partie du projet national français Simulforge, qui réunissait plusieurs

laboratoires de recherche et partenaires industriels de la forge, ainsi que le Centre

technique des industries de la mécanique (CETIM) et Transvalor, l’éditeur du logiciel

Forge3®.

Dans la première partie, la thèse traite de la réduction de temps de calcul pour la simulation 

du forgeage des engrenages hélicoïdaux. Sur la figure 1, on observe que les engrenages

hélicoïdaux obéissent à un modèle de répétition. Il est donc possible de simuler le forgeage 

d’une seule dent. Le chapitre 2 décrit brièvement l’approche numérique du problème

thermomécanique du forgeage. Dans le chapitre 3, on s’occupe plus en détails des

conditions de symétries nécessaires pour effectuer la simulation du forgeage sur le

domaine réduit à une seule dent. Ces conditions de symétries cycliques consistent à

imposer que la matière qui sort d’une face de symétrie entre dans l’autre face. Cette

condition se traduit par l’identité entre le champ de vitesse (chapitre 3.2) et de

températures (chapitre 3.3) sur les deux surfaces de symétrie. Cette condition est très

similaire à celle de contact collant entre les corps déformables, si on fait abstraction de la 

matrice de rotation introduite en sus. Donc, pour imposer cette condition de symétrie, un

algorithme de type maître-esclave est nécessaire, semblable à celui utilisé pour traiter le

contact entre les corps déformables. Dans le chapitre 3.2 on explique comment on obtient 

les différentes variables par l’algorithme de contact standard de Forge3® multi-corps, et

comment on applique ensuite la condition de symétrie cyclique. Le chapitre 3.4 décrit

comment gérer les nœuds qui se trouvent sur l’axe de symétries, nœuds qui peuvent

seulement se déplacer sur l’axe. On bloque donc leurs degrés de liberté perpendiculaires à 

cet axe. 

Un problème particulier se pose quand on doit simuler le forgeage avec des outils

déformables. A cause de l’approche Lagrangienne utilisée, et éventuellement aussi à cause 

de la géométrie initiale, la matière d’une dent de la pièce ne sécoule pas forcement dans

une seule dent de l’outil. On explique, dans le chapitre 3.5, que multiplier la zone

discrétisée de l’outil ne résout pas le problème. On est donc obligé d’écrire des conditions 



aux limites particulières entre la pièce et l’outil. Ces conditions sont expliquées dans le

chapitre 3.6. Elles consistent à écrire le contact entre les parties « libres » de la pièce de

l’outil, en utilisant des outils virtuels qui peuvent être multipliés autant de fois qu’il faut

pour appliquer complètement les conditions aux limites nécessaires, sans alourdir les

calculs.

Le chapitre 4 est consacré à la validation de la méthode. Les premiers tests académiques 

présentés dans 4.1 montrent que la précision est tout à fait satisfaisante pour une

formulation pénalisée du problème de contact. Les temps CPU sont augmentés par rapport 

à ceux obtenus pour les symétries planes, probablement à cause de la présence des

plusieurs termes pénalisés dans les systèmes linéaires, mais la réduction de temps de calcul 

estimée par rapport une la simulation sur tout le domaine est considérable. Le test

industriel offert par Ascoforge, présenté dans le chapitre 4.2, montre une bonne précision 

globale de l’algorithme durant toute la simulation, précision évaluée en mesurant l’écart

entre une surface de symétrie et son image par rotation. Par ailleurs, ce test qui a une

cinématique particulière met en évidence l’impossibilité de traiter ce type de problème en 

utilisant les symétries planes, même si le problème vérifiait effectivement des conditions

de symétries planes. Dans le paragraphe 4.3, on présente un exemple de simulation de

forgeage avec des outils déformables, ce qui montre la fiabilité globale de la méthode.

Comme cette première partie s’appuie sur le contact maître-esclave, la suite évidente de ce 

travail est d’améliorer cette formulation, dans la deuxième partie de la thèse. Le problème 

de cette approche est que dans les cas ou le maître est discrétisé plus finement que le corps 

esclave la précision se dégrade, car il y a des nœuds en contact sans conditions aux limites 

(voir chapitre 3.1 de la deuxième partie). 

Dans le chapitre 2 on présente le problème continu du contact, la formulation faible du

problème et la discrétisation éléments finis.

Le chapitre 3 présente plusieurs algorithmes de contact proposés par la littérature. Sans

entrer en détails, on montre que l’approche symétrique (3.2) conduit à une formulation sur 

contrainte du problème. Le raccord intégral (3.3) et les éléments mortar (3.4) donnent des 

bons résultats en 2D mais en 3D ils sont difficiles á appliquer et potentiellement chers en 

temps CPU. 

Aussi, le chapitre 3.5 présente l’approche quasi-symétrique. Cette formulation est similaire 

à celle symétrique, mais les multiplicateurs de Lagrange sont calculés seulement sur la



surface esclave, et ils sont projetés sur la surface maître. Cette formulation nous permet

d’éviter de sur-contraindre le problème. Au niveau discret, il y a toujours une distinction

entre la surface maître et la surface esclave. On intègre l’équation de contact seulement sur 

la surface esclave, donc cette formulation reste dans le cadre maître-esclave, mais cette fois 

tous les nœuds des deux interfaces en contact imposent des conditions de contact qui leur 

sont associées. Le contact quasi-symétrique est implémenté dans le cadre d’une

formulation nodale pénalisée. 

Le chapitre 4 présente les diverses validations de cette méthode. En 4.1 on s’occupe

d’évaluer la vitesse de convergence de cette méthode, en utilisant une famille de maillages 

emboîtés. La formulation quasi symétrique, ainsi que celle habituelle ont une bonne vitesse 

de convergence, similaire à celle obtenu avec des maillages coïncidents. En 4.2 on présente 

un patch test défini sur un maillage non régulier qui ne pose toujours pas de problèmes de 

consistance pour la formulation standard. Toutefois, en utilisant la formulation maître

esclave, on double pratiquement la précision et on voit une amélioration nette du champs 

de pressions transmis. Le premier test du chapitre 4.3 accentue cette conclusion, et le

deuxième test de cette section montre un net avantage en termes de précisons de la

formulation quasi-symétrique quand le maillage du maître est plus raffiné que celui de

l’esclave. En effet, ce test montre que la précision ne dépend quasiment pas du choix du 

maître de l’esclave. Le test d’indentation présente dans cette partie est un test extrême de 

détection du contact qui donne des résultats corrects quand on utilise le contact quasi

symétrique, même s’il n’y a pas aucun nœud du corps esclave en contact.

Les cas d’étude industriels proposés par les partenaires de Simulforge sont regroupés dans 

le chapitre 5. Le première est le forgeage d’une pièce automobile constituée de deux

matériaux en contact bilatéral collant et qui sont remaillés plusieurs fois au cours  de la

simulation du forgeage. Les calculs tournent pratiquement aussi vite avec la formulation

quasi-symétrique qu’avec la que la version maître-esclave de base, mais à la fin de la

simulation on obtient une bien meilleure qualité des résultats. Cette conclusion est

confirmée par le deuxième test industriel, sur lequel on observe visuellement une meilleure 

distribution de la pression sur la zone en contact. Ces deux teste montrent aussi la stabilité 

et la fiabilité de l’implémentation.



Conclusions et perspectives

Les méthodes présentées dans cette thèse se montrent efficaces et fiables. Les symétries de 

répétition permettent de réduire considérablement le temps CPU pour la simulation du

forgeage des engrenages hélicoïdaux, et l’approche quasi-symétrique du contact améliore 

la précision des simulations multi-corps, et  rend le logiciel plus facile a utiliser.

En perspective, l’approche quasi-symétrique peut être utilisé aussi pour traiter les

symétries de répétition. Le frottement est un problème encore ouvert. Quelques tests

montrent qu’une approche symétrique du frottement donne des bons résultats, mais il est 

nécessaire d’une étude plus approfondie sur le sujet. Les deux méthodes présentées

peuvent également être étendues à d’autres problèmes faisant apparaître ces type de

symétries de répétition, comme le fluotournage, et à d’autres méthodes de résolution du

contact, comme les formulations intégrées.
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1. INTRODUCTION

General considerations

The forging industry in Europe had a continuous growth during the last decade, even if the 

number of forging companies diminished. The companies involved in this competition

have a constant need to increase the quality of the products and to decrease the production 

costs . The traditional design stages of a new product series imply expensive trials, on

actual forging machines, which require stopping the production. The tendency is now to

replace these tests by virtual, numerical ones. For the moment, the actual trials are not

eliminated, but their number has considerably decreased.  Using numerical simulation a

wide range of mechanical and thermal data can be obtained, allowing the numerical

optimization of the forging series, of the required forming energy, allowing to increase the 

tools life-span and making so possible to understand the reasons why a proposed design is 

not satisfactory or to improve the current one

Few years ago, numerical simulation was the domain of only few experts having a solid

background in mechanics, numerical methods and programming. On the other hand, the

computers were expensive and much slower. However, this situation is continuously

changing, the computer prices are dropping and the performances are exploding. In the

meantime, the software progressed, becoming more and more user-friendly and robust. 

The first finite element based simulations took place in early seventies. At CEMEF, in

1981 the development of Forge2® started, for running forging simulations on

axisymmetrical configurations. The studies for a fully 3D simulation code started in 1983, 

and in 1991 the first commercial version of Forge3® was launched. This software allows 

simulating forming processes with large deformations, such as forging, rolling, etc. It has a 

friendly interface, so numerical tests can be easily created and launched without requiring 

advanced knowledge of numerical methods. It provides the forming history undergone by

the workpiece i.e. strain, stress, temperature,  as well as global values such as forging force 

or energy, stresses on the tools, etc.

The frame of this work

This thesis is a part of a larger project gathering several research laboratories called

SIMULFORGE, sponsored by the French government. This project also puts together the 

efforts of 16 French forging companies, the Technical Center of Mechanical Industries

(CETIM) and TRANSVALOR, a company in charged marketing Forge3®.
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The objectives of the thesis

The purpose of this study is twofold: reducing the required computational time for the

forging simulation of helical gears by taking into account the non conventional symmetries

of the problem, and improving the contact algorithm between deformable bodies, like the 

workpiece and the tools in the forging context.

When this research was started, an academic version of Forge3® was available, which was 

capable of running simulations for multiple bodies problems. The contact between

deformable bodies was handled by a Master / Slave algorithm. This formulation was then 

used in the first part of this study, about the recurrent boundary conditions.  So, the first 

part of this thesis, which is about to be published as an article in the Special Issue of the

International Journal of Forming Processes 2004, presents the basics of Forge3®, and the 

proposed approach to handle this type of boundary conditions. The purpose is to allow

running the forging simulation of helical gears (or any such repetitive configurations) only 

on one tooth of the domain, both for the workpiece and for the dies. The recurrent

boundary conditions are regarded as the contact conditions between deformable bodies.

Therefore, after acquiring profound knowledge of the contact formulations and algorithms, 

the question of developing more symmetrical contact algorithms arose. This is the purpose 

of the second part of this thesis. Part 2 provides detailed description of the quasi-

symmetrical contact formulation, and of the several tests, both academical and industrial

that have been used to validate and evaluate this new formulation.
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ABSTRACT. In gear forging simulation, the use of symmetries is obviously an efficient solution 

to reduce the computational time. However, for helical gears, standard plane symmetry
conditions do not hold. They have to be extended to recurrent boundary conditions where the 
material flow that leaves one of the symmetry surface re-enters through the symmetric one, 
which is derived from it by a rotation of 2p/Nteeth radians, (Nteeth is the number of teeth of the 
gear). In this case, the symmetry surfaces are not necessarily plane. This paper presents a 

master-slave algorithm for imposing these conditions, both for velocities and temperatures. It 
makes it possible to carry out simulations of helical gear forging considering only one tooth. 
Using a Lagrangian mesh, the symmetry surfaces are not steady during the deformation
process, so a special treatment is required to handle the contact with deformable tools in the 
recurrent frame. Academic tests are studied to evaluate the accuracy of this approach, and 
then industrial applications show its robustness.

KEYWORDS. recurrent boundary conditions, master-slave algorithm, forging, helical gear,

contact between deformable bodies
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1. INTRODUCTION

Numerical simulation is an important step of the design process, particularly in

forging where its cost is very low compared to industrial experiments. Actual trials 

require tools manufacturing and stopping industrial production, which all together

results in high prices. Moreover, numerical simulation provides extensive
information like material flow, tool stresses and life span or elastic spring back,

information that are difficult to obtain otherwise. Therefore, it is a very attractive

alternative. It also allows process optimisation in a very simple and friendly way, for 

instance to improve the tool geometries in order to decrease the required energy and 

increase the tooling life span. However, complex 3D simulations have a significant 

computational cost that has to be acknowledged and that may reduce its

attractiveness. The purpose of this work is to reduce this computational cost for the 

simulation of helical gear forging (see figure 1) or similar processes, by reducing the 

problem size taking into consideration the natural symmetries of the process. In fact, 

it is theoretically possible to study only teethN/2π  of the problem, where Nteeth is the 

number of teeth of the gear. These symmetries are not standard, like plane

symmetries. Usually, they are not handled by finite element software, so the entire 

workpiece has to be considered, which results into very large computational time.

Figure 1. Example of helical gears.

As the process exhibits same symmetries as the gear itself, the material flow is

periodic according to a rotation of teethN/2π  along the gear axis. It allows

considering the material volume of only one tooth. Some authors call this type of 

boundary conditions “principle of repeatability” or “cyclic symmetry” (Huang et al. 
04), or qualify it as recurrent (Park et al. 97). With little modifications, this principle 

also applies to other types of recurrent boundary conditions, where, for instance,

rotation is replaced by translation, as in the forming of a composite material at a

micro scale. In (Park et al. 97), the method is presented in the limited frame of a

structured mesh with nodes coinciding by rotation of the symmetry surfaces. In

(Huang et al. 04), it is extended to unstructured meshes, without any constraint on 

the mesh, which makes it possible to apply it to both 2D and 3D problems. Here, the 



Recurrent boundary conditions 9

9

same approach is followed, and is further extended to coupled calculations with

deformable tools. This work is developed in the Forge3® finite element software

that is based on a P1+/P1, velocity and pressure formulation (Aliaga et al. 98), uses 

unstructured meshes of tetrahedra and has automatic remeshing facilities (Coupez

94). Next section presents the thermo-mechanical problem and its finite element
resolution. Section 3 introduces the recurrent boundary conditions in the frame of a 

master/slave contact algorithm between deformable bodies. Final section shows

numerical simulations of complex gear forging, both with rigid and deformable

tools.

2. PROBLEM STATEMENT

2.1. Continuous problem

The problem equations are presented in a rather simplified way for cold forging

conditions. More details about the formulation and about more complex material

models can be found in (Aliaga et al. 98, Barboza et al. 02, Pichelin et al. 01). The 

Prandl Reuss additive decomposition of the strain rate tensor ε&  is considered:

⎪⎩

⎪
⎨
⎧

=

+=
− sLe

eee

&&

&&&

1el

vpel

[1]

where elε& is the elastic part of the strain rate tensor and vpε& the viscoplastic one, σ is

the stress tensor and σ&  its time derivative, L is a 9x9 tensor containing the Lamé

coefficients λ  and µ :

Ies )(2 ελµ &&& tr+= [2]

The viscoplastic deformation follows the Norton-Hoff constitutive model.

Considering K, the material consistency and m, the strain rate sensitivity coefficient, 

we have:

vpmKp eIss &

&

1
)3(2

−=+= ε [3]

0)( =vptr e& [4]
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p
E

div
)21(3

)(
υ−−=v [5]

where s is the deviatoric stress tensor, E the Young coefficient, υ  the Poisson

coefficient, ε& the equivalent strain rate, and p the hydrostatic pressure:

)(
3

1
strp −= and ( )vpvp

ee &&

& :
3

2=ε [6]

Neglecting all external forces like gravity and inertia, at any time of the process, the 

balance and heat equations are written as: 

( ) 0=sdiv [7]

e:s &fTgradkdiv
dt

dT
c p =⋅+ ))((ρ [8]

where T is the temperature, cp  the heat capacity, k the conductivity, ? the density

and  f is a conversion rate between 0 and 1 (usually around 0.9).

2.1.1 Contact with rigid tools

Figure 2. a) Contact with rigid tool b) Contact between deformable bodies

These equations are complemented by different boundary conditions, such as

unilateral contact with the forming tools, or Signorini conditions. Considering <·> as 
the scalar product, these conditions are written as:
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( )

( )[ ]⎪
⎩

⎪
⎨

⎧

=−⋅−
≤⋅=
≤⋅−

Ω∂
0

0,on

n

contact

σδ

δ

nuu

ns ns

nuu

tool

n

tool

[9]

where u is the displacement vector, utool is the tool one, n is the ingoing normal of 

the tool surface, nσ  is the normal stress vector, and δ  is the signed distance to the 

tool surface (which is negative inside the tool, see figure 2.a). For the contact

conditions, displacement unknowns are used while velocity unknowns are preferred 

elsewhere. Several models can be used for the friction boundary conditions between 
the workpiece and the rigid tools. Neglecting the gliding threshold, equation [10]

gives the Tresca model:

t

t

v

v
t

∆
∆−

−=Ω∂
3

,on 0σ
mfriction [10]

nss nt n−= [11]

( )( )nnvvvvv tool ⋅−−−=∆ toolt [12]

where τ is the tangential component of the stress tensor on the contact surface, tv∆

is the relative tangent velocity between the bodies, m  is the friction coefficient and 

0σ  is the material flow stress.

2.1.2 Contact between deformable bodies

The contact conditions between two deformable bodies A and B (workpiece and

deformable tool, for example) are given in [13] when body B is in contact with

body A:

[ ] ( )⎪
⎩

⎪
⎨

⎧

=
≤⋅=⋅=

≤−⋅−=
∂

0

0

0)(

,on

B

AAA

BABB

u

nnsnns

nuuu

An

BBBn

BA
A

AB

h

)(h

O

σ
σ

δ
[13]

and also, symmetrically, the inequality 0)( ≤AuBh  could be considered. These

equations can be extended to any number of bodies. The friction condition between 

bodies B and A is written similarly to [10], with:

( ) BBABAB nnvvvvv ⋅−−−=∆ )()(t [14]
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As for the contact conditions, the friction equation could also be written for the body 

A with body B. In anticipation to the equations that will be necessary to handle the 

recurrent boundary conditions, we introduce here the bilateral sticking contact

equations between deformable bodies:

0)( =−−= BABB nuuu
BA

Ah δ [15]

These boundary conditions are completed with the free surface one:

0,on =Ω∂ s nfree [16]

2.1.3 Thermal boundary conditions

For the thermal problem, several boundary conditions are applied. Considering hex

the convection/radiation coefficient with the air, htool the transfer coefficient with a 

rigid tool, Tex the air temperature and Ttool the rigid die temperature, the

convection/radiation boundary conditions are written as:

( ) ( )exexfree TThTgradkO −=⋅−∂ n,on [17]

and a similar equation describes the heat exchange with a rigid tool:

( ) ( )tooltoolcontact TThTgradkO −=⋅−∂ n,on [18]

Considering hc the conductivity of the interface, the heat transfer between two

deformable bodies is given by:

( ) ( ) ( ) ( )BAcAAABcBB TThTgradkTThTgradk −=⋅−−=⋅− nn and [19]

The heat produced by the friction is also considered:

( ) vtn ⋅=⋅−Ω∂ frictionfriction hTgradk,on [20]

where hfriction is a coefficient depending on the effusivities of the two parts in contact.

2.1.4 Plane symmetry

Considering symn  the outgoing normal of the symmetry plane symΩ∂ , the following

symmetry boundary conditions are imposed respectively for the mechanical and

thermal problems:
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0,on =⋅Ω∂ symnvsym [21]

( )( ) symsymTgradk Ω∂=⋅− on0n [22]

2.2. Discrete problem and algorithm splitting:

2.2.1 Time discretization

Using an updated Lagrangian formulation, an explicit Euler time discretization

scheme is chosen for the mechanical problem. Considering t
x  the values at time t,

the values at time tt ∆+  can be approximated by:

tttttt ∆+= ∆+∆+ vxx [23]

Using this time discretization, the contact boundary conditions are written again at 

time tt ∆+  using velocities unknowns [24], so the unilateral contact with the rigid 

tools is given by [25].

tttttttt ∆=−= ∆+∆+∆+ vxxu [24]

0)( ≤
∆

−⋅− ∆+∆+

t

t
ttt

tool
tt δ

nvv [25]

Similarly, the bilateral sticking contact condition is given by:

0=
∆

−− ∆+∆+ t
t

tt
tool

tt

t
nvv

δ
[26]

From now on, the distances d and dBA as well as the normals n and nb are calculated 

at time t, so the time indexes are not written any longer. Then, the bilateral sticking 

and the unilateral contact equations between deformable bodies respectively

become:

0)( =
∆

−−= ∆+∆+
B

BA
tt

A
tt

BBA
t

h nvvu
δ

[27]

( ) 0)( ≤
∆

−⋅−= ∆+∆+

t
h

BA

B
tt

A
tt

BBA

δ
nvvu [28]
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Concerning the thermal problem, a time discretization scheme with two time steps is 

used. Without going too much into details, the thermal problem is solved at an

intermediate time [ ]it t,t t∆∈ +  and:

t

TT

t

TT

dt

dT ttttttti

∆
−+

∆
−−=

∆+∆−
γγ )1( [29]

The temperature at time t t∆+  are updated using the following equation:

)( 21

3

ttt
t

tt TT
T

T
i

αα
α

+−= ∆+∆+ [30]

where the numerical coefficients γααα ,,, 321 are given by the Dupont scheme

( 1,
4

3
,0,

4

1
321 ==== γααα ).

Considering an elasto-viscoplastic material, and t t t t( v , p ,T , )Ω  being known, the

resolution of the thermo-mechanical problem provided by equations [7], [5], [8] and

previously described boundary conditions, allows calculating
t t t t t t t t( v , p ,T , )∆ ∆ ∆ ∆Ω+ + + + . The mechanical and thermal problems are coupled, as the

consistency of the material depends on the temperature, and the heat equation

depends on the mechanical solution. A splitting algorithm is used, so the thermo-
mechanical problem is decomposed in a mechanical problem that uses the

temperature field of the previous time step, and a thermal problem that uses the

calculated mechanical solution.

2.2.2 Finite element formulation 

Considering 1
tHΩ  a Sobolev space on tΩ , and 2

tLΩ  a Hilbert space on tΩ  , the space 

of kinematically admissible velocities is defined as:

( ) ( )

( )⎪
⎩

⎪
⎨

⎧

⎪
⎭

⎪
⎬

⎫

Ω∂=⋅Ω∂≤
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−⋅−

Ω∂≤∈=
=

ΩΩ
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ABA
CA

t

hxHH

V

t
B

t
A

on0,on0

,on0,
11

symtool

BBA

nvnvv

vv,vv

δ

and the one of the kinematically admissible to 0 as:

( )
⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

Ω∂=⋅Ω∂≤⋅

Ω∂≤⋅∈=
= ΩΩ

sym
t

contact

ABB
t
B

t
B

t
A

t

CA
t
B

t
A

xHH
V

on0,on0

,on0,11

0

sym
t

nvnv

nvv,vv
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Considering ( )22
, t

B
t
A

LLP ΩΩ= , the variational formulation of the mechanical problem 

becomes:

( ) ( )
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[31]

The variational form of the thermal problem is written as: 

∑

∫∫

∫∫∫

∫ ∫∫

=

Ω∂Ω∂

ΩΩΩ

Ω ΩΩ
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[32]

 2.2.3 Space discretization

For space discretization, an unstructured mesh of tetrahedra is used with a P1+/P1

velocity/pressure interpolation, and a P1 interpolation for the temperature (Aliaga et 
al. 98):

1 1 1

1 1

Nbn Nbn Nelts

n n n n e e l b

n n e

Nbn Nbn

n n n n

n n

X ( ) X N ( ), V( ) V N ( ) V ( ) V V ,

P( ) P N ( ), T( ) T N ( )

ζ ζ ζ ζ Φ ζ

ζ ζ ζ ζ

= = =

= =

= = + = +

= =

∑ ∑ ∑

∑ ∑
[33]

where X are the coordinates of a material point in a global reference system, Nbn is

the number of nodes of the mesh, Nelts is the number of elements, ζ are the local 
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coordinates of X, nN the linear interpolation function at node n and eΦ the

“bubble” interpolation function of element e.

2.2.4 Contact between deformable bodies

In the previous set of equations, the contact between deformable bodies is treated

with a master-slave formulation, as presented in (Barboza et al. 02, Pichelin et al.

01), and using “contact” elements. Considering B as the slave body and A as the

master one, the contact conditions [25] or [26] are only enforced for the slave body, 

in order to avoid writing an over-constrained problem (Barboza et al. 02). A contact 

element consists of a node k of the slave body B and a triangular facet k

Af of the

master surface AΩ∂  that contains the orthogonal projection )(kAπ of k on the

master body (see figure 3). Using a nodal contact formulation, the contact equation 

becomes:

( ) 0)(, ≤
∆

−⋅−=Ω∂∈∀
t

hk
BA
k

A
contact
B

δk
B(k)pkk nVVV A [34]

Figure 3. Contact element.

The velocity of )(kAπ is obtained by a linear interpolation on )(k

Af .

∑
∈

Ω∂ ⋅=
k
A

A

fl

k
AlN l(k)p

VV A )(ζ [35]

Using a penalty formulation to enforce the contact equations, the following potential 

is introduced:

Bk Ω∂∈1

Alll Ω∂∈321 ,,

k

l1

l3

l2
)(kAπ

ncontact
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[36]

where ρ is the penalty coefficient, [ ]
2

xx
x

+
=+

 is the positive part function, AN Ω∂

are the linear interpolation functions on the surface elements (triangles) of body A,
and Sk is a weightening coefficient which is equal to the averaged surface affected to 

node k: ∫
Ω∂

Ω∂=
B

B dsNS kk

For each node k of the slave body, the distances k

ABδ , the facet k

Af and the

coordinates of the projection k

Aξ  , are calculated by a contact algorithm that uses the 

2D “skin” of the master body as a fictitious tool (Barboza et al. 02). A

correspondence between the nodes ltool of this fictitious tool and the nodes lA of the 

master body is used to build the contact elements and to apply the boundary
conditions [34]. By the differentiation of equation [36], the contributions to the

gradient and Hessian matrixes are obtained. The set of the deformable bodies is

handled like a single domain. The resulting global non linear system of mechanical 

equations is solved by a Newton-Raphson algorithm. The linear systems so

generated are solved by a Preconditioned Conjugate Residual iterative method. In

order to avoid element degeneration, an automatic remeshing algorithm (Coupez 94) 

is used. It can be triggered by several criteria, such as element quality, tool

penetration, excessive incremental deformation, or remeshing period established by 

the user. The transfer of values from the initial mesh onto the new one is tackled

using a P1 interpolation. The remeshing and transfer procedures are applied

separately on each body (Barboza et al. 02).

3. RECURRENT BOUNDARY CONDITIONS

3.1. Recurrent conditions

The recurrent condition makes its possible to consider only 1/Nteeth part of the

workpiece, where Nteeth is the number of teeth of the helical gear. In fact, any

material point A  of the workpiece flows in the same way as the corresponding

point B  that is derived by rotation R with the angle
teethN

πφ 2=  (see figure 4). R
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denotes the rotation matrix of coordinates while R denotes its vectorial counterpart

that is used for vectors. When considering only one tooth of the gear, the two

symmetry (or recurrent) surfaces correspond each other by rotations R and R
t .

They are referred as SA and SB (see figure 4). This condition holds for any material 

point of the considered portion of the workpiece BS . So, the recurrent boundary

conditions are written as:

⎩
⎨
⎧

=
=

=∈∃∈∀
)()(

)()(
  then ,s.t.,

AB

AB
ABAABB

xTxT

xx
xxSxSx

Rvv
R [37]

Figure 4. Basic recurrent condition: symmetry (recurrent) surfaces. Lagrangian

approach.

3.2. Discrete recurrent conditions for velocities

At a discrete level, these conditions are applied to any node of the symmetry face SB.

Two different approaches are possible:

3.2.1 Coincident meshes

Using coincident meshes, either with structured or unstructured grids, the problem is 

perfectly symmetric: equation [37] is exactly applied to the finite element nodes.
This method is described in (Park et al. 97) and used in (Huang et al. 04) for 2D

applications. However, it is difficult to implement because the meshes should be

kept perfectly coincident any time increment, so requiring to use a special mesh

generator to maintain the coincidence of nodes. As in (Huang et al. 04), a more

simple approach that does not require introducing this constraint is preferred here.

3.2.2 Non-coincident meshes

This approach is more compatible with the existing software, its Lagrangian

formulation (see figure 4) and its remeshing algorithm. It consists in applying the

conditions [37] at a discrete level, and in considering the projection ASπ  of any node 

of the symmetry face SB onto the symmetry face SA, such that:
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The symmetry (or recurrent) surfaces AS  and BS  play symmetric roles, so an

equation symmetric to equation [38] should also be written. However, it is noticed 

that the condition [38] is very similar to a bilateral sticking contact condition

between two deformable bodies [15, 27]. It is not possible, at the discrete level, both 

to prevent body A to penetrate body B, and body B to penetrate body A. It would 

result into an over-constrained problem (Barboza et al. 02, Bathe et al. 01, Pichelin

et al. 01). Therefore, as for the contact between deformable bodies, a master / slave 

approach is used. The recurrent boundary condition [38] is only enforced for surface

BS . It is necessary to calculate the coordinates kX
~

of the corresponding point of

any node k of BS , and to interpolate the velocities )
~

( kXV at this point [39]. kf
~

represents here the facet of SA that contains kX
~

, and k

Aξ~  the projection coordinates

of the rotation of node k:

∑∑
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==∈∀
kk fl

k
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fl

k
A

l
B NNSk

~~
, )

~
()

~
(and)

~
(

~ ξξ lklkh VXVX)X(X [39]

Due to numerical errors, kX
~

can be slightly different from kR X . So, kδ~ , the

signed distance between kX
~

and kR X , and kn~ , the outgoing normal of SA in kX
~

,

has to be taken into account. The discrete boundary condition [38] is written again 

as follows:

0

~
~

, =
∆

−−∈∀ k
kk n)XRV(V

t
Sk

k

B

δ
[40]

Similarly to the bilateral sticking contact, the recurrent symmetry condition is

imposed using a penalty method. The corresponding functional is written as:

∑
∈ ∆

−−=Φ
2~

~

2

1

BSk

k
k

ksym
t

S n)XRV(V kk

δρ [41]

where symρ is the penalty coefficient for these conditions. 

The contact algorithm that has been developed for handling the contact between a

3D mesh and a tool defined by a 2D mesh (see section 2), can also be used here.

Surface SA (see figure5.b) is automatically created by considering the intersection

between the part and its image after rotation (see figure 5.a). The “skin” of the
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master surface AS is first extracted and then rotated around the symmetry axis using 

the R matrix. The rotated 2D mesh (see figure 5.c) is regarded as a tool (contact

obstacle) in the contact algorithm, so providing the distance kδ~ , the normal kn~ ,

and the interpolation factors for any node of SB.

                              a)                                  b)                              c) 

Figure 5. Fictitious tools creation: a) identification of the AS   surface, b) extraction 

of AS  surface, c) after rotation, AR S   is regarded as a tool for the contact analysis 

of the nodes of BS .

3.3. Discrete recurrent conditions for temperatures

For the temperature field T, at the discrete level, the recurrent boundary conditions

are also formulated within a master / slave framework, which yields:

∑
∈

==Ω∂∈∀
kfl

k
A

l
lkB NTTTk

~
)

~
()

~
(, ζkX [42]

This equation is imposed using a penalty formulation, which functional is given by

[43], where therρ is a penalty coefficient:

[ ]∑
∈

−=Φ
BSk

kktherT TTS
2

)
~

(
2

1
kXρ [43]

3.4. Specificity of the symmetry axis

Similarly to the situation of plane symmetries nodes, any node kaxis belonging to the 

symmetry axis cannot leave it. These nodes are eliminated from the symmetry
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surface SB and two successive conditions are applied to prevent their displacements

in a plane perpendicular to the symmetry axis:

0,0 21 =⋅=⋅ symksymk nvnv
axisaxis

[44]

where: 2121 and, symsymaxissymaxissym nnnnnn ⊥⊥⊥

For the thermal problem, the nodes of the symmetry axis being eliminated from the 

symmetry surfaces, no heat exchange with the environment is allowed:

0))((,0))(( 21 =⋅=⋅ symksymk nTgradknTgradk
axisaxis

[45]

3.5. Deformable tools

Figure 6. Periodicity conditions for problems with deformable tools. One portion of 

tool and workpiece at time t. Loss of correspondence at time t+∆t. Same loss of

correspondence at time t+∆t with two portions of each.

One of the objectives of the finite element simulation of gear forging is to produce 

net-shape parts, so the coupled elastic deformation of the dies must be considered, 

following the method presented in (Barboza et al. 02, Pichelin et al. 01). For helical 

gears, it is important to take into account the recurrent boundary conditions [40] and 

[42], both for the workpiece and for the dies. However, because a Lagrangian

approach is been used, the symmetry surfaces SA and SB are not steady (see figure 6)

and their deformations follow the ones of the material flow. When using rigid dies, it 

is often necessary to discretize more than one tooth of the die in order to impose the 

proper boundary conditions, because very often the workpiece material flows into
more than one tooth of the tool (see figures 6, 13, 16, 17). When using deformable

dies, these deformations are not the same for the workpiece and for the dies (see last 

two examples of section 4). Therefore, it is virtually impossible to carry out the

        t                                        t+?t                                             t+?t
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simulation with only one tooth. Adding another “tooth” for the tool (yellow in figure 

6) and for the workpiece (light blue in figure 6) does not help. In fact, there is still a 

region of the workpiece and a region of the tool without any boundary conditions

(see figure 6). It order to avoid this, which would prevent us from using the

recurrent boundary conditions with deformable tools, more tricky boundary
conditions must be introduced.

3.6. Algorithm for deformable tools

The surface toolΩ∂ of the deformable tool is regarded as the master surface for the

contact algorithm with the workpiece (see section 2). In order to make it possible to 

also detect the contact in a “void” area, in which it is not desired to actually compute 

the tool deformation, the surface of the tool is first duplicated and then rotated by the 

R  rotation. So, it produces a “ghost” surface ghostΩ∂  (see figure 7) in this “void” 

area. During this rotation, the correspondence of nodes between the initial and

rotated tools is saved for the contact analysis. This construction of “ghost” surfaces 

can be repeated as many times as necessary, for instance, if the material is expected 

to flow into more than 3 teeth of the tools. Figure 7 shows only one “ghost” surface,

while figure 8 provides a 3D example with two “ghost” surfaces on each side.

Figure 7. Deformable tools. Creation of a “ghost” surface ghostΩ∂  of the tool.

Section view of a meridian plane of the symmetry axis.

Let us consider a node k of the workpiece surface that is in contact with ghostΩ∂  and 

denote by kX ' the orthogonal projection of Xk onto it: )(' k

ghost

k XX π= . Let us also 

consider kf  the facet of ghostΩ∂  that contains kX ' :
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Figure 8. Initial surface mesh (in the centre) and ghost meshes for the contact

analysis: two “ghosts” on each side of the initial mesh.

According to the construction process of ghostΩ∂ , there is a facet kf  of the original 

tool surface mesh that corresponds to kf , such that:

 s.t. k k l ' ll ' f , l f , X R X∀ ∈ ∃ ∈ = ⋅    and

k
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k k l l ' k

l f
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So, the contact boundary conditions for the “void” regions become:
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4. APPLICATIONS

4.1. Academic test: evaluation of accuracy and time reduction

A test series has been conducted to validate the method. It consists in running the 

same simulation with plane and recurrent symmetries. One test is quite academic

while the other is derived from an actual process.

The accuracy of the penalty method, which is utilised to enforce the recurrent

boundary conditions for the mechanical and thermal problems, is first evaluated. A

simple benchmark test consists in forging a quarter of a cylinder between two rigid 

dies (see figure 9). The meshes of the symmetry surfaces are coincident, with 80

nodes, so that the recurrent conditions can be perfectly imposed.

Figure 9. Upseting of a cylinder with recurrent boundary conditions. Initial and

final configurations. Isovalues of equivalent total deformation at the end.

Firstly, it can be noticed that the deformation field is identical on the both master

and slave surfaces (see figure 9), which shows a proper handling of the symmetry

conditions. Both for the mechanical and the thermal problems, the relative and

maximal errors are considered to quantify the difference between the velocities and 

temperatures values on both surfaces:
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MECHANICAL THERMAL

symρ

therρ

Nb of 

iterations

for

resolution

relmecherr _ mech_maxerr

[mm/s]

Nb of 

iterations

for

resolution

relthermerr _ therm_maxerr

[0C]

1 32 1.6*10-3 6.23

10 700 1.1*10-5 4.0*10-4 55 2.4*10-4 0.81

50 1000 2.0*10-6 8.0*10-5 104 5.0*10-5 0.16

100 1500 1.1*10-6 4.2*10-5 123 2.5*10-5 0.08

500 2600 2.3*10-7 8.5*10-6 168 5*10-6 4.2*10-5

1000 3100 1.2*10-7 4.2*10-6

Table 1. Accuracy of the penalty methods according to the penalty coefficient.
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Figure 10. Error versus the value of the penalty coefficient in logarithmic scale.

In this particular case with coincident meshes, 0=kδ  so the tk ∆/δ term does 

not appear in equations [50]. The errors are written in a similar way for the thermal 

problem.
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Figure 10 shows that there is a linear dependency between the penalty coefficients

and the mechanical and thermal errors, which is quite typical for a penalty method. 

On the other hand, table 1 shows that the CPU time (number of system resolutions) 

is increased by a factor of 2 when the errors are decreased by a factor of 10.

Practically, penalty coefficients of 100 are used, both for mechanical and thermal
problems, so providing accuracies that are consistent with the ones of the contact

algorithm.

A second test consists in forging one tooth of an actual conical straight gear. The

workpiece has a complex elasto-viscoplastic behaviour, and the tools have realistic 

geometries (see figure 11). This simulation is carried out both using plane

symmetries and recurrent boundary conditions. In figure 11, the geometries are

obtained with plane symmetries. The qualitative comparisons of figure 12 are made 

after few increments, just before the first remeshing, in order to make it possible to 

compare the values at exactly the same coordinates, and to avoid the noise caused by 

remeshing. The obtained results are almost identical with both approaches. For

example, the values of the equivalent stress (see figure 12) and of the forging effort 
differ by less than 10-4 in relative values.

Figure 11. Forging of a conical gear. Initial, intermediate and final configurations.
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Recurrent symmetry

Plane symmetry

Figure 12. Equivalent stress on symmetry surfaces after 3 % of forging with plane 
and recurrent boundary conditions.
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However, the CPU time is multiplied by a factor of 2 with recurrent conditions. This

is due to the fact that the flow is less constrained while the coupling between the

opposite sides of the domain is very severe. It results into a worsening of the

conditioning of the linear system, and consequently into an increase of the

computational time. This phenomenon is noticed in all numerical tests,
independently on the complexity of the geometries or material behaviours. So, also 

taking into account that the computational complexity of the solver is proportional to 

Ndof
3/2, it is possible to evaluate the CPU time reduction provided by recurrent

symmetries. For a helical gear with 10 teeth, the recurrent boundary conditions

allow reducing the computational time by an estimated factor of 15.

4.2. Industrial test: helical gear forging:

The actual forging of a 16 teeth helical gear is considered (see figure 13), where 

the workpiece is free to rotate around its axis during the process. Consequently

several teeth of the rigid matrix have to be considered for proper handling of the

contact surface. The material is modelled by an elasto-viscoplastic constitutive

equation.

Figures 14.a, 14.b and 14.c show that the velocity, temperature and deformation 

fields are almost identical on the master and the slave surfaces. So the velocity and 

temperature boundary conditions can be regarded as properly imposed, and the

master/slave approach as quite accurate. At the end of the process, the gap between 

the corresponding symmetry faces provides an overall measure of the cumulated

errors. It is less then 10-4 in relative values (with respect to the mesh size) (see figure 

14.d), which is consistent with the accuracy of the contact formulation. By

duplicating and rotating the obtained final part, figure 15 shows that the

corresponding surfaces match properly and that they have actually been subjected to 

the same deformations.

It is noticed that the workpiece rotates around the symmetry axis during forging, 

as it is the case in the actual process. In this case, the computational time reduction 
provided by this approach is estimated around 30.
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Figure 13. Simulation of the actual forging of a helical gear.
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                   a)  Z Velocity b) Temperature

                c)  Deformation                                  d) Contact on the slave surface

Figure 14. Isovalues on the master and slave surfaces.
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Figure 15. Final configuration: fully reproduced and only with 5 teeth of the

workpiece, while the simulation was carried out only on 1 tooth (mesh of left figure).

4.3. Gear forging with deformable dies

In order to evaluate the accuracy and the robustness of the proposed approach with 

deformable tools, an academic gear-like forging process is proposed in figure 16. A 

viscoplastic constitutive law (with a linear behaviour, mpart=mtool=1) is used for the
two bodies, workpiece and tool, in order to trigger complex velocity fields both on 

the symmetry surfaces and on the contact surfaces. However, the consistency K of 

the tool material is 10 times larger than the workpiece one: Kpart=20MPa,
Ktool=200MPa.

As it can be seen in figure 16, “ghosts” surfaces are necessary from the beginning of 

the simulation, because the symmetry surfaces are not the same for the workpiece 

and for the tool. This particular case, which corresponds to a more friendly way to 

set up simulation data, can only be handled with the proposed method. In figure 17, 

it is very clear that the workpiece is in contact with the tool, both with its actual and 

ghost descriptions.

Figures 18 and 19 show that the recurrent symmetry conditions are accurately
satisfied at the end of the calculations. Figures 18 shows that the contact conditions

between the deformable bodies are properly imposed, even in the “ghost” zones.

Both for the workpiece and for the deformable die, the gaps between the master and 

slave symmetry surfaces are very small, and can be regarded as negligible, as in

previous example.
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Figure 16. Helical gear forging with deformable dies. Different views of the initial 
configuration and of the various tools, rigid (punch and container) and deformable.
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Figure 17. Equivalent stress at two different stages of the process.
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Figure 18. Forging of a helical gear with deformable dies: deformed tool and

workpiece at the end of the process, after reconstruction of 3 teeth.

Figure 19. Forging of a helical gear with deformable dies: workpiece deformation 

after reconstruction of 3 teeth.
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5. CONCLUSIONS

Recurrent boundary conditions are an efficient way to reduce the CPU time for

helical gear simulation. The proposed implementation can be regarded like an

extension of the bilateral contact algorithm between deformable surfaces. The

utilised master / slave approach is both stable and accurate. It does not require
coincident meshes or more complex formulations like Arbitrary Eulerian Lagrangian

ones. The use of «ghost» surfaces makes it possible to extend it to multi-bodies

problems, as encountered in the forging with deformable dies.

In some particular cases, this approach may suffer from some of the usual

limitations of the master / slave method, if it happens that the symmetry surfaces

exhibit very different mesh refinements. In these cases, it is possible that no

recurrent boundary condition is imposed to some nodes of the master surface, which 

would provide locally wrong solutions. In order to avoid this, a more accurate

contact formulations should be used, like the quasi-symmetric approach proposed in 

(Fourment et al. 04) or similar approaches.
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Abstract

A quasi-symmetric formulation is proposed for contact between deformable bodies to avoid 

the shortcomings of standard master / slave approaches when the master body is more finely 

meshed than the slave body. It uses a double pass algorithm for symmetric contact detection 

and a projection of slave body contact pressures onto the master surface. This method applies 

either to integral or nodal contact formulations, the latter being used for applications. It is

compared to the standard formulation for different numerical tests and on complex 3D forging 

applications.

Keywords: Finite elements, Contact, Non matching meshes, Large deformations

1. INTRODUCTION

This paper investigates a quasi-symmetric formulation for contact between deformable

bodies, which has been developed to avoid the usual shortcomings of standard master / slave 

formulations without too many complications. It is well known that when the meshes of the 

contact interfaces do not match after finite element discretization, which is the most general

case, the contact conditions cannot be handled symmetrically. The symmetric two-pass

algorithms, where the contact conditions between body A and body B are super-imposed to 

the conditions between body B and A, produce over-constraint formulations with numerical

locking of the contact interface [1-3]. In the standard master / slave approach, only the

selected slave body is prevented from penetrating the master body. It so avoids locking. This 

approach is quite satisfactory when the bodies have meshes of consistent refinements on the 

contact interface. When they are matching, the formulation is perfectly symmetric. On the

other hand, when the mesh of the master body is much finely refined than the mesh of the

slave body, the formulation loses its symmetry, so the non-penetration condition is not

properly imposed for the master surface. Consequently, it may occur that parts of this surface 

are numerically regarded as being free, which may allows significant and unacceptable

penetrations. From a numerical point of view, the convergence rate of the finite element

method is not only lower in this case, but the accuracy of the solution decreases when the

number of the master nodes increases. This standard approach paradoxically provides worse

and worse solutions when the master body is more finely refined.

* Corresponding author. Tel. : +33 4 93 95 75 95 ; fax : +33 4 92 38 97 52

E-mail address: lionel.fourment@ensmp.fr
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This problem has motivated the development of several enhanced formulations, handling any 

of the three terms of the contact integral: the gap function, the integration surface and the

Lagrange multiplier (i.e. the contact normal stress). All of these works, but the present one,

have been developed in a facet-to-facet framework. In [4, 5], it is proposed to better compute 

the gap function by using a more accurate interpolation of the master displacement field on

the slave surface. A global L
2
 projection provides this enhanced displacement field. It quite 

efficiently solves the discussed issues, but the computational cost of this approach is not

negligible in 2D, and refrains from directly using it in 3D. In [2, 3, 6-8], it is preferred to

better integrate the gap function by using a mortar surface, which is the merging of both

master and slave discretized contact surfaces. In 2D, this construction is not too complex, and 

the method solves the contact issues [2, 6, 7]. In 3D, it requires building a new interface mesh 

that merges the two contacting meshes. It can be done locally, but it is a much more complex 

issue [3, 8].

Our motivation is to develop a formulation that reaches the same objectives, but also that can 

be more easily implemented into existing software, that can be utilized with a node-to-facet

contact formulation, and that does not significantly increase the computational cost of the

contact analysis. This approach is based on handling the third term of the contact integral, the 

Lagrange multiplier. After introducing the problem equations in section 2, the above

mentioned contact formulations are presented in section 3. The proposed Quasi-Symmetric

approach is then evaluated for several numerical contact tests proposed in other papers, before 

being utilized for complex 3D forging applications.

2. DEFORMABLE BODIES: CONTACT FORMULATIONS

Algorithms and equations are presented in the case of two deformable domains in contact,

which are noted A and B. They can easily be extended to any number of parts. All the used l
indexes refer to a node of the A master body, while all the k indexes refer to a node of B slave 

body. These conventions are used all along this paper.

2.1. Contact equations

When body B is in contact with body A, the contact equations are given by the Signorini

conditions, on the potential contact surface contact

BΩ∂ :

0

on , 0

0

A

contact

B n A A A B B B

n A

h

n n n n

h

σ σ σ
σ

≤⎧
⎪∂Ω = ⋅ = ⋅ ≤⎨
⎪ =⎩

(1)

where Aσ  and Bσ  respectively are the stress tensors on AΩ  and BΩ , An  and Bn  the outward 

normals to AΩ  and BΩ . Ah  is the gap function, which is negative for a  point of contact

BΩ∂ if it 

does not penetrate body A, and else positive. For a velocity formulation, Ah is a function of

Av  and is written as:

( )( ) ( ) ( , )
BA

A B B A B A B Ah v v v n h v v
t

δ= − ⋅ − =
∆

(2)

where Av  and Bv  respectively are the velocity fields on A and B, t∆  is a time step of the time 

discretization scheme, BAδ  is the signed distance between B and A (see Figure 1), which is

negative if a B point penetrates body A, and else positive. The symmetric contact equations 
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between A and B can similarly be written on contact

A∂Ω :

0

on , 0

0

B

contact

A n

n B

h

h

σ
σ

≤⎧
⎪∂Ω ≤⎨
⎪ =⎩

(3)

Figure 1: Contact between deformable bodies.

2.2. Problem statement

The mechanical problem equations are written for elastic and viscoplastic bodies, using a

velocity formulation. They consist in finding the velocity fields v  that minimize either the

elasticity potential ( )elast vΦ or the viscoplasticity potential ( )visco vΦ  under the constraint of

being cinematically admissible (i.e. belonging to aC ):

( ) ( )
a

elast elast

u C
v Min u

∈
Φ = Φ (4)

( ) ( )
a i

visco visco

u C C
v Min u

∈ ∩
Φ = Φ (5)

where aC  is the space of velocity fields that satisfy the contact constraints and iC  the space 

of incompressible fields. ( )visco vΦ  is given by:

( ) ( )
1

3
1

m

visco K
v d

m
ε ω

+

Ω

Φ =
+∫ & (6)

where K is the material consistency, m the strain rate coefficient, 2 :
3

ε ε ε=& & &  is the

equivalent strain rate and ε&  is the strain rate tensor. The incompressibility constraint is

handled by a mixed velocity / pressure ( ),v p  formulation and by solving a Max/Min

problem:

( ) ( ), ,
a

visco visco

q u C
v p Max Min u q

∈
Λ = Λ (7)

where: ( ) ( ), ( )visco viscov p v p div v dω
Ω

Λ = Φ + ∫ (8)
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The contact constraint requires introducing contact Lagrange multipliers λ  (i.e the normal

contact stresses), writing new Lagrangians and solving new Max/Min problems:

( )
( )

( )
0

, ,elasto elasto

u
v Max Min u

µ
λ µ

≤ −
Λ = Λ (9)

where: ( ) ( ) ( ), ,elasto elastov v vλ λΛ = Φ + Λ (10)

( )
( )

( )
0

, , , ,visco visco

q u
v p Max Max Min u q

µ
λ µ

≤ −
Λ = Λ (11)

where: ( ) ( ) ( ), , , ,visco viscov p v p vλ λΛ = Λ + Λ (12)

The contact Lagrangian introduced in (10) and (12) is given by:

( ), ( )
contact
B

B

B A B Bv h v dsλ λ
∂Ω

Λ = Λ = ∫ (13)

or else : ( ), ( )
contact
A

A

A B A Av h v dsλ λ
∂Ω

Λ = Λ = ∫ (14)

where Aλ  and Bλ  respectively are the contact Lagrange multipliers on bodies A and B. At the 

continuous level, both Lagrangians are equivalent, so:

BA Λ=Λ=Λ (15)

2.3. Finite element discretization

For space discretization, an unstructured mesh of tetrahedra is used with a P1+/P1

velocity/pressure interpolation.

1

( ) ( )

Nbn

n n

n

x X Nζ ζ
=

=∑ (16)

1 1

( ) ( ) ( )

Nbn Nelt

n n e e l b

n e

v V N V v vζ ζ ζ
= =

= + Φ = +∑ ∑ (17)

where Nbn is the number of nodes of the mesh, Nelt is the number of elements, ζ  are the

local coordinates of X, nN  the linear interpolation function at node n and eΦ  the linear

“bubble” interpolation function of element e ( eΦ  vanishes on the surface).

This work has been carried out in the frame of the FORGE3® software, where a nodal (node-

to-facet) contact formulation is utilized. Therefore, the discretized form of the equations are

presented in this specific case.
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3. CONTACT FORMULATIONS

3.1. Master / slave 

The master/slave method consists in computing a single Lagrangian, BΛ :

∫
Ω∂

=Λ=Λ
contact
B

B

B

BAB

SM dsvh )(/ λ (18)

For the nodal (node-to-facet) contact formulation, the contact conditions (1) are written for

any node of the potential contact surface, contact

BΩ∂ , and the Lagrangian (13) yields:

/
( )

contact
B

M S B

A k k k

k

h V Sλ
∈∂Ω

Λ = ∑ (19)

where: ( )( )
, ( ) A

BA
contact k k
B A k k Bk

k h V V V n
tπ

δ∀ ∈∂Ω = − ⋅ −
∆

(20)

)(kAπ is the orthogonal projection of node k on the master body A. kS  is a surface associated 

to node k that is calculated by:

∫
Ω∂

=
B

dsNS B

kk (21)

The velocity of )(kAπ  is obtained by using the finite element interpolation on the master

facet k

Af  that contains the projection )(kAπ :

∑
∈

⋅=
k
A

A

fl

l

k

A

A

lk
VNV )(

)(
ζπ (22)

where k

Aζ are the local coordinates on k

Af of the projection )(kAπ .

This method has several advantages and some shortcomings. It is easy to implement and it is 

not expensive in terms of CPU time for 3D formulations. However, due to a bad treatment of 

the contact interface, its convergence rate is not always satisfactory and can be decreased with 

respect to the usual rate of the finite element method without contact conditions. Moreover,

when the master body has a finer mesh than the slave one, some nodes of the contact interface 

may not have contact boundary conditions, as shown in Figure 2. So, rather than finding a

better solution with a finer mesh of the master body, the contrary is obtained.

slave

master

free nodes

slave

master

free nodes

Figure 2: Finer mesh for the master body. Some nodes of the contact surface have no contact 

boundary condition.
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An extreme case is presented in Figure 3. The indented slave body is too coarse to detect the 

contact event, because there is not any slave node k in contact with the indenter master body. 

There is not any contact contribution, so the bodies penetrate each other without detecting

their respective presences. This extreme configuration is a benchmark to evaluate the

robustness of the contact algorithm.

Figure 3: Indentation of a coarse part (slave) with a fine indenter (master). Initial and final 
configurations. No contact is detected between the two bodies

3.2. Two pass

An easy way to avoid such shortcomings is to use a two-pass algorithm, by sequentially or

simultaneously imposing contact conditions between B and A, using the BΛ  Lagrangian, and 

between A and B, using the AΛ  Lagrangian. It so provides a perfectly symmetric formulation, 

as presented for instance in [9], where the contact equations are integrated on the two body

interfaces using the following Lagrangian:

( )1 1
( ) ( )

2 2
contact contact
B A

SYM B A

B A A B B B A Ah v ds h v dsλ λ
∂Ω ∂Ω

⎛ ⎞
⎜ ⎟Λ = Λ +Λ = +
⎜ ⎟
⎝ ⎠
∫ ∫ (23)

However, with non matching meshes, this method provides an over-constrained problem [1, 

2, 8] as shown in the following example. In Figure 4a, the meshes match so the symmetric

approach is identical to the master / slave one. There are 2n+2 contact conditions, which are 

identical two by two, so they reduce to actually n+1 distinct conditions. In this 2D example, 

there are 2n+2 degrees of freedom, so the surface does not lock. However, in Figure 4b the 

meshes do not match, so the number of contact equations is not reduced. There are 2n distinct 

equations. If they are all satisfied, there are only 4 remaining degrees of freedom for the

deformation of the interface (instead of n+1 in the previous case). Therefore, this deformation 

can only be linear: the contact surface is artificially stiff. In other words, the number of

degrees of freedom for the interface deformation does not depend on the number of interface 

nodes. It corresponds to a finite element discretization with only 2 nodes. On the other hand,

it should be noticed that when the master and slave surfaces have a very different level of

discretization, for instance as in Figure 3, the added unnecessary constraints do not introduce 

important locking. In such cases, the two-pass method provides a better solution than the

master /slave one.
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Figure 4: Over constraint problem with the symmetrical approach. In b), the nodes are 
slightly moved by a small displacement.

Therefore, almost all the methods that have been developed to circumvent these shortcomings 

have been carried out in the master / slave paradigm.

3.3. Integral joint

In [4], a different method is proposed. It consists in integrating the contact equation on the

slave body and using a global L
2
 projection to interpolate the velocity field on the master

body. As previously, the contact Lagrangian (13) has to be integrated, but it now writes:

( )
contact
B

IJ B

A Bh v dsλ
∂Ω

Λ = ∫ % (24)

where: ( ) ( ).
BA

A B B A Bh v v v n
t

δ= − −
∆

%

% (25)

Av~  is interpolated on the B∂Ω  surface by:
contact
B

k B

A A k

k

v v N

∈∂Ω

= ∑% % (26)

In order that Av~  be a global L
2
 projection of vA onto B∂Ω , ( )

k

k

Av~  minimizes the following

least square functional:

( )( ) ( )2

contact
B

IJ k

A A Ak

O

v v v ds

∂

Π = −∫% % (27)

This interpolation ensures boundary conditions for all master nodes, so preventing the master 

body to penetrate the slave one, and provides a better convergence rate to the finite element 

method [4, 10]. On the other hand, the resolution of (27) and the increase of the problem

bandwidth, which results from (25) and (26), quite significantly increase the problem

complexity and the resulting computational time.

B - Slave

A - Master

n+1

n+1

B - Slave

A - Master

a) b)
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3.4. Mortar method

The Mortar method offers another efficient way to answer the contact issues. It can be

regarded as an improved way to compute the BΛ  integral (13), using the best possible

integration surface from the finite element standpoint. An improved discretization of contact

BΩ∂ ,

CΓ  is built, which results from the merge of contact

BΩ∂  and the projection of contact

A∂Ω  onto

B∂Ω . It so contains both the nodes of contact

BΩ∂  and the projections of the nodes of contact

A∂Ω
onto BΩ∂  (see Figure 5):

 ,

,

 , ( )

contact

B

c

contact B

A

k c k

c or

l c lπ

⎧∃ ∈∂Ω =
⎪∀ ∈Γ ⎨
⎪∃ ∈∂Ω =⎩

(28)

and then: ( )
C

C

mortar B

A Bh v dsλ Γ

Γ

Λ = ∫ (29)

Integrating
mortarΛ  on CΓ  allows an accurate calculation of )( BA vh  on both surfaces, contact

BΩ∂
and contact

AΩ∂ . In fact, any node of CΓ  either belongs to contact

BΩ∂ , and so )( BA vh  is easily

calculated, or is the projection of a node of contact

AΩ∂  onto contact

BΩ∂ , and so )( AB vh  is known. 

Therefore, )( BA vh  can be interpolated using the nodal interpolation functions of CΓ . On the

other hand, as CΓ  contains contact

BΩ∂ , Bλ  is naturally interpolated using the BΩ∂  interpolation 

functions.

Figure 5: Mortar surface CΓ  for an accurate integration of the gap function )( BA vh .

All implementations have been carried out in the frame of a segment-to-segment (or facet-to-

facet in 3D) frame. The Mortar method provides very nice results in 2D [2, 6, 7]. In 3D, the 

construction of CΓ  is much more complex, but recent papers [3, 8] show that it is quite

feasible.

cΓ

B - Slave

A - Master



47

3.5. Quasi-Symmetric formulation

On the one hand, the Quasi-Symmetric formulation can be regarded as a more rigorous way to 

utilize the two-pass algorithm. On the other hand, it can be considered as simplified way to 

approach both the Mortar and the Integral Joint methods by focusing the analysis on the

Lagrange multipliers rather than on the gap function or on the integration surface. Being

based on the projection of the Lagrange multiplier Bλ  on AΩ∂ , it so provides a counterpart to 

the projection of Av  on B∂Ω  in the Integral Joint formulation. Finally, contrary to the Mortar 

method, it is not restricted to integral (facet-to-facet) contact formulations and can easily

extended to nodal (node-to-facet) contact formulations.

In the two-pass symmetric formulation presented in section 3.2., the locking phenomenon

actually arises from the utilization of Lagrange multipliers, λ  on both contact surfaces, AΩ∂
and B∂Ω . This locking can be avoided if the Lagrange multipliers are defined on a single

body, the slave one, B∂Ω . This can be done by using the projection of Bλ  onto AΩ∂ , instead 

of Aλ  in equation (23). The Quasi-Symmetric method is then summarized in the following

equations:

( )
contact
A

B

A A B A Ah v dsλ
∂Ω

Λ ≈ Λ = ∫ (30)

and then: ( )1 1
( ) ( )

2 2
contact contact
B A

QS B B

B A A B B B A Ah v ds h v dsλ λ
∂Ω ∂Ω

⎛ ⎞
⎜ ⎟Λ = Λ +Λ = +
⎜ ⎟
⎝ ⎠
∫ ∫ (31)

where Bλ  is the projection of the normal stress multiplier Bλ  onto AΩ∂ . It can be noticed that 

equation (31) is very similar to equation (23). The replacement of Aλ  by Bλ  in (30) brings the 

necessary and sufficient enhancement that allows eliminating the unnecessary contact

conditions that result into locking.

With an integral, facet-to-facet, contact formulation, the finite element discretization of

equation (30) is straightforward. In fact, it is only necessary to compute Bλ , which is a

continuous fields like Bλ . Both are interpolated with the velocity finite element functions as:

( ) ( )
contact
B

B B B

k k

k

Nλ ζ λ ζ
∈∂Ω

= ∑    and ( ) ( )
contact
A

B B A

l l

l

Nλ ζ λ ζ
∈∂Ω

= ∑ (32)

where B

kN  and A

lN  are the linear interpolation functions. Here, it is not necessary to use an

enhanced L
2
 projection operator as in the integral joint method. A simple orthogonal

projection is sufficient. The interpolation parameter B

lλ  of Bλ  is the value of Bλ  at point

( )B lπ , the projection of node l  onto B∂Ω . It is so given by:

( )( ) ' '

'

, ( )
l
B

contact B B B B B l

A l k k B

k f

l l Nλ λ π λ ζ
∈

∀ ∈∂Ω = =∑ (33)

where l

Bf  denotes the facet of BΩ∂  that contains the orthogonal projection )(lBπ , and l

Bζ  are 

the coordinates of this projection. So:
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' '

'

( ) ( ) ( )
contact l
A B

B A B B l

l k k B

l k f

N Nλ ζ ζ λ ζ
∈∂Ω ∈

= ∑ ∑ (34)

For the utilized nodal (node-to-facet) contact formulation, in a rigorous way, the construction 

of Bλ  is not as straightforward, because Bλ  and Bλ  are not continuous fields. First, equation 

(31) is written as:

1 1
( ) ( )

2 2contact contact
B A

QS B B B A
lA k k k B l l

k l

h V S h V Sλ λ
∈∂Ω ∈∂Ω

Λ = +∑ ∑ (35)

As in equation (19), it is preferred to weight the contribution of any node k or l with the

surface kS or lS  (see equation (21)), in order to better control the material flow through the

obstacle. The definition of the “gap” function (20) is written again for any node belonging to 

BΩ∂  or AΩ∂ :
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where i denotes the directions of space. The main issue is now to define Bλ  on contact

AΩ∂ , and 

more precisely for any nodes of contact

AΩ∂ . First, following what has been done with the

integral contact formulation, at any node l  of contact

AΩ∂ , the value of Bλ  is approximated by

the value of Bλ  at ( )B lπ , the projection of node l  onto B∂Ω :

( )
( )B

B B B

l l
l πλ λ λ= ≈ (38)

However, with the nodal contact formulation, Bλ  is not a continuous field; it is only defined 

for the nodes of contact

BΩ∂ . Rigorously, we could use the dual mesh of the contact surface, with 

a piecewise interpolation of Bλ , but we prefer using a more continuous interpolation and

carry on as with the integral contact formulation. The second approximation then consists into 

extrapolating Bλ  at any point of contact

BΩ∂ , assuming that Bλ  is interpolated with the velocity 

functions:

' '( )

'

( )B

l
B

B B B B l

l k k Bl

k f

N
π

λ λ λ ζ
∈

= =∑ (39)

Finally, equation (35) yields:

( )' '

'

1
( ) ( )

2 contact contact l
B A B

QS B B A B B l

k k A k l B l k k B

k l k f

S h V S h V Nλ λ ζ
∈∂Ω ∈∂Ω ∈

⎛ ⎞
⎜ ⎟Λ = +
⎜ ⎟⎝ ⎠
∑ ∑ ∑ (40)

Equation (40) clearly shows that the Quasi-Symmetric formulation is actually a master/slave 

one, because the Lagrange multipliers are defined only on B∂Ω . In this sense, it is similar to 
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its standard master/slave counterpart (19). However, the second member of (40) is

significantly different from (19). It is an average of non-penetration conditions for nodes of

both contact

BΩ∂  and contact

AΩ∂ . This formulation is Quasi-Symmetric in the sense that the two

bodies contribute in a balanced way to this condition. If the discretization of contact

AΩ∂  is finer 

that the one of contact

BΩ∂ , then all nodes of contact

AΩ∂  will be taken into account, which was not 

the case with the standard master/slave formulation. Even in the extreme example of Figure 3,

the Lagrange multipliers of contact

BΩ∂  have a non-zero contribution, so making it possible to

handle the contact event. The Quasi-Symmetric unilateral contact condition is now derived

from equation (40), and written for any node of contact

BΩ∂  as:

( )
. .

, ( ) ( ) 0

A
l
B

A
contact B ll
B A k k B B lB

kl

s t k f

S
k h V N h V

S
ζ

∈∂Ω
∈

∀ ∈∂Ω + ≤∑ (41)

For the applications, a penalty formulation is utilized to enforce the contact conditions.

Therefore, the equations (10) and (12) in the elastic and viscoplastic cases, are replaced by the 

following functional and Lagrangian:

( ) ( ) ( )elasto elasto contactv v vρ ρΦ = Φ + Φ (42)

( ) ( ) ( ), ,visco visco contactv p v p vρ ρΛ = Λ + Φ (43)

where ρ  is a large penalty parameter and ( )contact vΦ  is given by:

( ) ( )
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where [ ]
2

xx
x

+
=+

 is the positive part function.

4. VALIDATIONS

In order to evaluate the efficiency of the Quasi-Symmetrical formulation, several numerical

tests are considered. Some are classical ones that are extracted from literature, like the contact 

patch test and the constant pressure test, while others are new or derived from other papers.

4.1. Convergence rate

This upsetting test aims at numerically estimating the convergence rate of the Quasi-

Symmetrical formulation. Two identical bars are flattened between two rigid dies under plane 

deformation conditions (see Figure 6) with a prescribed uniform displacement. They have a

linear elastic behavior, with a Poisson coefficient 3.0=υ  and a Young modulus

E=3*10
4

MPa (for the lower master body) and E=1.3*10
4

MPa (for the upper slave body).

The contact with the rigid tools and between the deformable bodies is perfectly sticking.
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Figure 6: Boundary conditions and meshes (case n°3) for the convergence test.

The approximated problem solution is calculated on a reference mesh, which is four times

finer than the finest studied mesh. The relative error, rE , is then defined by the difference

between the calculated forging force F , and the value calculated on the reference mesh, refF :

ref

r

ref

F F
E

F

−
= (45)

Mesh size Reference Case n°1 Case n°2 Case n°3 Case n°4 Case n°5

Matching 1 4 8 16 32 64

Master 1.33 5.3 10.6 21.3 42.6 xNon

matching Slave 2 8 16 32 64 x

Table 1: Sizes of the different studied meshes in the convergence test both for matching 

(master is similar to slave) and non matching set-ups.

The studied set of embedded meshes is presented in Table 1. They are produced from the

coarsest mesh (which is denoted as case n°5 in the set of matching meshes and as case n°4 in 

the set of non matching ones, by a uniform refinement procedure of a factor 2 in each space 

direction (see Figure 7 and Figure 8). When the meshes of the master and slave bodies are

similar (see Figure 7), the discrete contact surfaces are matching. Both formulations, Standard 

and Quasi-Symmetric, provide the same results, and the calculated convergence rate is the one 

of the finite element method. For the non matchings embedded meshes (see Figure 8), the

master body is more finely meshed than the slave body with a ratio 3
2

.
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Figure 7: Matching meshes for the convergence test: cases n°1, n°3, and n°5

Figure 8: Non matching meshes for the convergence test: cases n°1, n°2, n°3, n°4

Figure 9 shows the obtained relative error versus the total number of degrees of freedom, with 

both Standard and Quasi-Symmetric contact formulations. With matching meshes, both

formulations provide the same results, which are regarded as the reference ones. Globally, the 

obtained results are also quite similar to the ones with non matching meshes: it shows that

both methods are quite satisfactory for this level of incompatibility of contact surfaces. This 

test is not very severe, but shows that the Quasi-Symmetric method behaves similarly to the 

Standard one and its results are always better.
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Figure 9: Convergence rates of the Standard and Quasi-Symmetrical formulations for the 

studied upsetting test: error versus number of degrees of freedom in logarithmic scale.

4.2. Contact patch test

The studied contact patch test is described in [2]. Two cubes are piled up on a plane. The

contact between them is bilateral and sticking. The lower cube is the slave body and has a

uniform mesh, while the upper one is the slave body and has a refined mesh with same

number of elements, as shown in Figure 10 and Figure 11. Either a constant stress field

( zzσ =65 MPa) or a constant displacement ( zd =1 mm) is imposed on the upper cube, in the

vertical direction. With the first type of boundary condition, the cubes are elastic with

different Young moduli, masterE  =3*10
4

MPa and slaveE =1.3*10
4
 MPa, but same Poisson

coefficients 0master slaveν ν= = , so that the stress at the interface is constant. The problem exact 

solution, a constant stress field in the z direction and in particular on the contact interfaces, is 

easily obtained with matching meshes (see Figure 13). As the meshes of both bodies have only 

one element in the vertical direction, the constant stress value is properly imposed on the

master side of the contact interface. The mean and maximum relative errors are then

calculated only for the slave elements as:

_
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ref
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r ref

zz

slave elts

E

σ σ

σ

−
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∑
∑
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_max

_

M ax

M ax

ref

zz zz
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r ref
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slave elts

E
σ σ

σ

−
= (46)
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Figure 10: Contact patch test.

Figure 11: Contact patch test: master and slave contact interfaces.

In the second case, the cubes are Newtonians (viscoplastic with m=1) with same

consistencies, master slaveK K= =200 MPa. The reference solution is calculated on a single cube, 

resulting from the merge of the two cubes.

Figure 12 summarizes the obtained results in the different cases for the mean error. They are

quite similar to the obtained for the maximum error. They show that the Quasi-Symmetric

formulation is always twice better than the Standard one. It also allows a much better

transmission of the stress field through the interface, which can be qualitatively appreciated in 

Figure 14 and Figure 15, in comparison with the reference solution presented in Figure 13.

However, it must be noticed that these figures have been obtained with a linear smoothing of 

the finite element stress field, which is actually constant by element. Although the finite

element values are constant on the upper master body, because the Gauss points are not

located at the same z coordinates, the nodal smoothing produces non uniform isovalues. On

the contrary, the Gauss points of the lower slave body being vertically aligned, the visualized 

isovalues variations actually correspond to non uniform finite element values. Therefore, the

analysis of these results must focus on the lower slave body and not take into account the

artificial variations of the upper master one.
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Figure 12: Relative error in the normal stress field transmission for the contact patch test 
using either the Standard or the Quasi-Symmetric formulation: in the elastic case, 

respectively for pressure (1) and velocity boundary conditions(2), and in the Newtonian case, 
respectively for pressure(3) and velocity boundary conditions(4).

Figure 13: Contact patch test: perfectly constant stress field in the (0x,0z) plane for the 

reference solution with matching meshes, respectively with elastic and Newtonian materials.
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Figure 14: Contact patch test: stress field in the (0x,0z) plane for the elastic materials, 

respectively with the Standard and Quasi-Symmetric formulations.

Figure 15: Contact patch test: stress field in the (0x,0z) plane for the Newtonian material, 

respectively with the Standard and Quasi-Symmetric formulations.

As mentioned in [2], it should be noticed that this test is not a sufficient indicator to assess the 

contact algorithm quality. In fact, an over-constraint symmetrical formulation, like the two

pass one, provides good results [2], because an artificially too stiff interface accurately

transfer the stress field.

4.3. Qualitative tests

In order to go further with the study of the stress field transmission, more qualitative studies 

have been carried out. The first one consists in upsetting two identical elastic cubes, with E =

3*10
5
MPa and ν = 0.0, and which dimensions are: 20 mm x 20 mm x10 mm. A constant

stress field of 200 MPa is imposed on the upper cube (master) in the z vertical direction. As in 

the previous example, the stress field is constant at the interface and everywhere in the cubes, 

which is easily obtained with matching meshes. However, here, the master mesh is slightly

finer than the slave one, as shown in Figure 16. This test is very similar to the convergence 

test of section 4.1, but rather than studying global values, such as the forging force, we more 
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precisely look to the contact interface. It results that the value of 200 MPa is not perfectly

obtained, as can be seen in Figure 17 and Figure 18. The Standard formulation, although quite 

satisfactory when looking at global values (see section 4.1), exhibits significant

discontinuities of the stress field near the contact interface (see Figure 17-left) and on the

contact interface (see Figure 18-left) where a chessboard pattern is observed. These defects

are quite significantly reduced with the Quasi-Symmetric formulation (see Figure 17-right),

even on the interface itself (see Figure 18-right), so providing a much better and almost

perfect solution, both locally and globally.

Figure 16: Constant normal pressure test: configuration and meshes.

Figure 17: Constant normal pressure test: zzσ  isovalues in the (Ox,Oz) plane using the 

Standard and Quasi-Symmetric formulations

Master

Slave

s
zz

 =200Mpa

z
y

xo
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Figure 18: Constant normal pressure test: zzσ  isovalues in the (Ox,Oy) interface plane using 

the Standard and Quasi-Symmetric formulations

Figure 19: Configuration for the upsetting of a small cube into a larger one.

The next test consists into upsetting a small cube (40 mm x 40 mm x 10 mm) against a larger 

one ( 80 mm x 80 mm x 10 mm), as presented in Figure 19. Both cubes are made of

Newtonian materials (viscoplastic with m=1), the smaller being two times stiffer than the

larger one: Ksmall= 200 MPa and Klarge=100 MPa. The contact at their interface is perfectly

sliding without friction. The reference solution in terms of forging effort is calculated with

matching meshes, which size is h= 0.5 mm: refF = 1.393 kgf. Then, the smaller cube is

discretized with a mesh size h= 1.0 mm, and the larger one with h= 3.0 mm. The relative error 

is calculated as in equation (45). The forging efforts are calculated alternatively with the

smaller cube as master and as slave (the larger one being consequently slave and master) with 

both contact formulations. Results are summarized in Table 2.
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Mesh size
Fine Master

Masterh = 1.0 mm; Slaveh = 3.0 mm

Fine Slave

Masterh = 3.0 mm; Slaveh = 1.0 mm

Formulation QS Standard QS Standard

Force 1.42 1.09 1.44 1.44

Error 2.0 % 22 % 2.6 % 2.7 %

Table 2: Forging efforts and relative errors for the upsetting of the Newtonian cubes of 

different mesh sizes with different contact formulations and exchanging the functions of 
master and slave.

According to expectations, significant errors are obtained when the Standard formulation is

used with a master body that has a much finer mesh. The error is 22%, about 8 times larger 

than when the functions of master and slave are exchanged (then only 2.7%). Figure 20 shows

that the error comes from a high level of discontinuity of the velocity field on the contact

interface, as several nodes of the master body are not loaded and wish to penetrate the slave 

body. With the Quasi-Symmetrical formulation, the results hardly depend on the choice of

master and slave (errors of 2.0% and 2.6%). In the worst case, Figure 21 shows that there is 

still a high level of continuity of the velocity field on the interface, so providing a quite

significant improvement with respect to Figure 20. On the other hand, it is noticed that when 

the master body is finer, the CPU time is notably increased.

Figure 20: Isovalues of the velocity field in the vertical direction obtained with the Standard 

formulation, showing alternations of continuity and discontinuity on the contact interface.
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Figure 21: Isovalues of the velocity field in the vertical direction obtained with the Quasi-
Symmetric formulation, showing high level of continuity on the contact interface.

Figure 22: Indentation of a finely refined master body into a coarsely meshed slave body: 
configuration and meshes

The extreme case presented in Figure 3, for which the difference of mesh sizes between

master and slave is very large, is recalled in Figure 22. The contact between the bodies is

perfectly sliding, without friction. Both bodies are Newtonian, and the consistency of the
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master body, the upper indenter, is 5 times larger the consistency of the slave one: Kmaster=

100 MPa and Kslave= 20 MPa. With this particular geometry and discretization, the Standard 

formulation fails completely, not being able to detect any contact phenomenon (see Figure 3-

right and Figure 23-left). All nodes of the slave body are too far from the master obstacle to 

be regarded as belonging to the contact surface, which so is void. On the other hand, the

Quasi-Symmetric formulation makes it possible to compute very large deformations (see

Figure 23-right). It so provides proper loads on interface nodes, as shown by the high level of 

continuity of the velocity field in the vertical direction (Figure 24). In this case, all boundary 

conditions are coming from the contact analysis of the master surface, so only the additional

term of equation (41) is active.

Figure 23: Simulation of the indentation process, respectively using the Standard and Quasi-

Symmetric formulations

Figure 24: Cut in the middle of the parts showing the isovalues of the vertical velocity field 

obtained with the Quasi-Symmetric formulation.
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5. APPLICATIONS

Figure 25: Forging between flat dies of a component made of two embedded materials for the 
car industry.

The Quasi-Symmetric formulation is then compared to the standard one for more complex

applications that have been provided by the car industry. The first one, presented in Figure 25,

consists in the upsetting of two embedded cylinders that are modeled by a rigid visco-plastic

law with thermal softening. The exterior part, the master body, is stiffer than the interior one, 

the slave body, and the contact between them is regarded as perfectly sticking. The process

simulation requires several remeshings of both bodies. Initially the slave mesh is finer, but

latter on, the master mesh becomes finer (see Figure 26 and Figure 27). The integrated values, 

like the forging force and the numerical volume loss, that are obtained with both contact

formulations are almost identical. The computational time is 93 minutes with the Standard

formulation and 101 minutes with the Quasi-Symmetric one. The added value of this small

increase of cost can be seen in Figure 28: the contact interface is much more accurately

modeled without any detectable penetration of the master mesh into the slave one. This

example shows the robustness of the Quasi-Symmetric formulation for taking into account the 

possible variations of relative mesh refinements, at a very low cost.
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Figure 26: Isovalues of total deformation: beginning and middle of the process.

Figure 27: Isovalues of total deformation during forging: end of the process.
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Figure 28: Zoom on the contact interfaces respectively obtained with the Standard and 

Quasi-Symmetric formulations.

Figure 29: Simulation of the forging of a car component in order to study the die life: meshes 
of the workpiece and the part.
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Figure 30: Normal stress on the forging tools (master bodies) respectively with the Standard 

and Quasi-Symmetric formulations.

In the second hot forging example, presented in Figure 29, the objective is to study the tool

life due to the thermo-mechanical cycles during the mass production process. The workpiece 

is supposed to obey a rigid thermo-visco-plastic law while the tools are thermo-elastic. In this 

case, it is natural to select the workpiece as the slave body, because it undergoes the most

severe deformations, and the upper and lower tools as master bodies. However, in order to

accurately compute the thermo-mechanical stresses on the ribs of the tools, the dies are

locally more finely meshed than the workpiece. As a matter of fact, when using the standard 

contact formulation, the stress distribution is not correct of the tool, as shown in the left part

of Figure 30, where classical oscillations of the stress field are observed. Using the Quasi-

Symmetric formulation allows computing a stress field that is quite satisfactory (see the right 

part of Figure 30).

6. CONCLUSIONS

The proposed Quasi-Symmetric contact formulation is rather easy to implement into an

existing finite element software. It can be equally utilized with an integral (facet-to-facet) or a 

nodal (node-to-facet) formulation, our numerical tests having been done with the latter in the 

FORGE3® software. It basically requires two analysis of the contact conditions, in a

symmetric way, which so results in a small increase of the computational time with respect to 

the standard formulation. The additional cost is about 10% in the studied industrial

applications. A noticeable increase of CPU time has been only observed in a very particular 

test case, with a very fine master body. It is due to the increase of the system local bandwidth 

and to the consequent deterioration of the matrix conditioning caused by these extra diagonal 

terms.

The numerical tests clearly demonstrate the superiority of the Quasi-Symmetric contact

formulation over the Standard one. When the Standard formulation provides satisfactory

results, the Quasi-Symmetric formulation exhibits a similar convergence rate with a better

accuracy. Its results are almost identical to the ones obtained with other methods, like the

Integral Joint formulation or the Mortar approach. Moreover, they are almost independent on 

the choice of the master and slave body, even when the discretisation of the two contacting 

bodies are very different, which so validates its Quasi-Symmetric attribute. It so allows

solving all the encountered shortcomings of the standard formulation, with a reduced increase 

of computational time: accurate calculations on a finely meshed master body and detection of 

small obstacles with a coarse slave mesh.
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CONCLUSIONS AND PROSPECTS

Conclusions

This study intends to increase the performances and accuracy of the Forge3® simulation software. The first 

part of this work provides a practical CPU time reduction strategy for a particular class of problems having 

repetitive configurations.

Firstly, the recurrent boundary conditions have been imposed only for the workpiece, both for the mechanical 

and thermal problems, using a Master/Slave algorithm derived from deformable bodies contact. The

applications show that using this approach the recurrent boundary conditions can be properly imposed, even 
if the standard usual Master/Slave algorithm have limitations. When forging helical gears, it is not very likely 

to have very different refinements of the meshes of the two symmetry surfaces, so the drawbacks of the

Master/Slave algorithm are not critical.

Then this algorithm have been extended to several bodies, using the “ghosts” tool strategy. It so allows to 

carry out simulations on only one tooth of the workpiece and one tooth of the deformable tool even if a

Lagrangian formulation is used and the two parts can have different deformations.

The second part of the thesis offers a reliable solution to avoid the problems of the standard Master/Slave 

contact formulation, without obtaining a prohibitive CPU time. The quasi-symmetrical approach seems a

very promising solution to handle deformable bodies contact in 3D. It provides good accuracy both of

imposing a velocity field or a stress field, almost independent of the mesh sizes of the contact interfaces of 
the bodies in contact.

After implementing and testing the contact approach, the symmetrical friction was the natural strategy to

complete the mechanical boundary conditions between deformable bodies.

Prospects

Any improvement of the contact formulations can ameliorate the recurrent boundary conditions, so, putting 

together the two parts of this thesis, applying recurrent boundary conditions using a quasi-symmetrical

algorithm becomes an obvious task for the future developments. 

As for the quasi-symmetrical contact, the thermal problem is to be handled. Also, the symmetrical friction 

has only been evaluated qualitatively, so a rigorous test series should be designed and carried out to
investigate it more precisely.

Also, all the developments done in parallel in our laboratory should be integrated. Especially, the adaptive 

remeshing developed by Mr. Ramzy Boussetta can use the quasi-symmetrical contact handling, knowing that 

an excessive refinement of the master body can be obtained in order to minimize the estimated error. In this 

case, at the next time step, the stress field of the master interface is not accurate and the error estimators can 

provide wrong results leading to a improper mesh adaptation of the next increment. 
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Résumé 
 
La simulation numérique de la mise en forme est un outil indispensable pour réduire les coûts 
de conception dans l'industrie. Le logiciel d’analyse éléments finis FORGE3® fut créé dans 
ce but et il est capable de résoudre des problèmes thermomécaniques des grandes 
déformations complexes, en prenant en comptes des lois de comportement non-linéaires et 
plusieurs corps déformables.  
Dans la première partie de cette thèse on présente les travaux effectuées pour prendre en 
compte les symétries cycliques de répétition afin de réduire le temps CPU pour la simulation 
thermomécanique du forgeage des engrenages hélicoïdaux. Ce type de symétrie est traité 
comme une condition de contact bilatéral collant particulière entre deux faces de symétrie 
appartenant au même corps, à travers d’un algorithme maître-esclave. Ensuite une technique 
similaire est utilisée pour traiter le contact entre la pièce et les outils déformables tout en 
gardant un domaine réduit sur lequel on effectue les calculs. Une première série des tests 
montre la fiabilité de la méthode.  
La deuxième partie se focalise sur l’amélioration du traitement du contact entre les corps 
déformables, dont les maillages sont non coïncidents. On utilise une formulation nodale, 
quasi-symétrique pénalisée de la condition de contact. Cette approche nous permet 
d’appliquer des conditions aux limites sur tous les nœuds des interfaces sans surcontraindre le 
problème. Une deuxième série d’exemples académiques et industriels montre les avantages en 
terme de précision et de vitesse de convergence de la nouvelle méthode, d’une part, et la 
robustesse du code pour résoudre des problèmes industriels d’autre part.  
 
Mots cléfs : mise en forme des matériaux, maître-esclave, symétries cycliques de répétition, 
outils déformables, contact quasi symétrique.   
 

*** 
Abstract 
 
In industry, the numerical simulation of material forming processes is a powerful method of 
cutting development costs. The finite element analysis software FORGE3® was created to 
solve large deformations thermo mechanical problems with non-linear material behavior and 
several deformable bodies.  
The first part of this thesis presents the application of the repetitive symmetries necessary to 
reduce the CPU time for the helical gear forging simulation. This type of boundary condition 
is handled as a special bilateral sticking contact condition between the two symmetry surfaces 
of the same body, using a master-slave algorithm. Then a similar method is used to apply the 
contact conditions between the workpiece and the deformable tools, also running the 
simulation on a reduced domain.  A first test series proves the reliability of this method. 
The second part deals with the improvement of the deformable bodies contact condition with 
non-coincident meshes. A nodal penalized quasi-symmetric formulation is used to apply the 
contact equation. This approach allows applying proper boundary conditions on all the nodes 
of the two surfaces in contact without providing an over constraint problem. A second test 
series, both academic and industrial shows on one hand the improved accuracy and 
convergence rate of the new method, and on the other hand the reliability of the software 
when solving industrial problems.  
 
Keywords: material forming, master-slave, recurrent symmetries, deformable tools, quasi-
symmetric contact. 
 
 




