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Abstract 
 

Development and Validation of a 3D Computational Tool to 
describe Damage and Fracture due to Alkali-Silica Reaction in 

Concrete Structures 
 
 

Isabelle Combya,b 

 
a Centre de Mise en Forme des Matériaux, Ecole des Mines de Paris ; UMR 7635 CNRS, BP 207, 06904 Sophia-

Antipolis Cedex, France 
b Ecole des Mines de Douai, 941, avenue Charles Bourseul, BP 938, 59508 Douai Cedex, France 

 
 

The Alkali-Silica Reaction (ASR) induces aggregates swelling leading to irreversible 
degradation of concrete structures. Modelling damage and cracks in a 3D concrete structure 
submitted to ASR is hence of prime importance in civil engineering. FEMCAM (Finite 
Element Model for Concrete Analysis Method) software has been developed within this 
framework to model 3D numerical concrete. In this thesis, we have developed a mesoscale 
approach where concrete is considered as a heterogeneous material with two main phases: the 
mortar paste and aggregates. An elastic damage law has been successfully implemented to 
take into account the mortar paste behavior. The non local Mazars model with an implicit 
formulation is hence used to deal with damage. This model requires determining elastic and 
damage parameters. In this way, an experimental campaign has been carried out at the Civil 
Engineering Department of the Ecole des Mines de Douai to identify concrete material 
parameters. These experimental results have been compared with numerical ones through the 
inverse analysis modulus RheOConcrete.  Applications on concrete (compression tests, three 
point bending tests and “Brazilian” splitting tests) have been also performed.  The influence 
of the distribution, diameters and volume of aggregates on concrete behavior has been 
studied. The comparison between the numerical global responses of a concrete sample 
submitted to ASR and experimental ones are available. These comparisons are based on 
previous experimental works carried out at the Ecole des Mines de Douai. It leads to compare 
numerical and experimental approaches and to better understand the mechanism of ASR 
under the control of some parameters.  

Finally, we have underlined the importance of describing macrocracks in concrete 
sample with a great accuracy to improve the model. The last part of this project concerns the 
implementation and the validation of a 3D Discrete Crack Propagation technique to model 
explicitly 3D crack propagation.  
 
 
 
 
 
 
Keywords: Numerical modelling, Concrete, Alkali-Silica Reaction, Damage mechanics, Fracture 
mechanics, 3D Discrete Crack Approach, Inverse Analysis method, Multi-material structure. 
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Développement et Validation d’un Outil Numérique 
Tridimensionnel pour décrire l’Endommagement et la Fissuration 
causés par la Réaction Alcali-Silice dans les Structures en Béton 
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La Réaction Alcali-Silice (RAS) est une réaction chimique de dégradation des bétons 
occasionnant des désordres irréversibles au niveau de l’ouvrage. La modélisation de 
l’endommagement et de la fissuration d’une structure en béton tridimensionnelle victime de la 
RAS est donc de première importance en génie civil. Le logiciel FEMCAM (Finite Element 
Model for Concrete Analysis Method) a été développé dans ce cadre, afin de modéliser le 
comportement mécanique tridimensionnel des matériaux quasi-fragiles tels que les bétons. 
Dans cette thèse, nous avons développé une approche mésoscopique où le béton est considéré 
comme un matériau biphasé en présence de granulats et d’une pâte de mortier. Le modèle non 
local de Mazars avec formulation implicite a ainsi été implémenté et validé dans notre code 
Eléments Finis pour rendre compte du comportement élastique endommageable de la pâte de 
mortier. Nous abordons ensuite l’identification des paramètres élastiques et 
d’endommagement de ce modèle.  Une attention particulière est portée à la campagne 
expérimentale menée au département Génie Civil de l’Ecole des Mines de Douai. Ces 
résultats expérimentaux ont été comparés aux résultats numériques via le module d’analyse 
inverse «RheOConcrete ». Des tests de compression, flexion trois points, essais brésiliens ont 
été ainsi réalisés. Les exemples d’applications proposés montrent l’influence du volume, de la 
répartition et du diamètre des granulats sur le comportement du béton. Nous utilisons ces 
résultats pour analyser les conséquences mécaniques de la RAS sur une éprouvette en béton. 
Les résultats numériques d’un béton soumis à un gonflement granulaire sont comparés aux 
résultats expérimentaux obtenus à l’Ecole des Mines de Douai. Cela permet de vérifier non 
seulement la cohérence du modèle numérique mais aussi de mieux comprendre l’influence de 
certains paramètres sur le mécanisme de la RAS. Enfin, nous soulignons l’importance de 
décrire avec précision les macrofissures générées par la réaction chimique. La dernière partie 
du mémoire concerne l’implémentation et la validation de la fissuration discrète en trois 
dimensions. 
 
 
 
 
 
 
 
Mots-clefs: Modélisation numérique, Béton, Réaction Alcali-Silice, Mécanique de l’Endommagement, 
Mécanique de la Rupture, Approche de fissuration discrète en 3D, matériau composite, méthode 
d’analyse inverse. 
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CHAPTER 1 : GENERAL INTRODUCTION 
 

1.1 Context 
 

he discovery of the Alkali-Aggregate Reaction (AAR) goes back to the 
40’s in the United States in concrete pavements. In 1935 Holde observed the 
existence of chemical reactions between cements and certain aggregates in 
concrete. Stanton specified in 1940 the nature of the reagents at the origin of 

the disorders observed. This phenomenon was identified in France only since 1976. In 1993, 
Hornain classed the AAR in three major types: 

T 
- alkali-carbonate reactions; 
- alkali-silica reactions (ASR); 
- alkali-silicate reactions.  

The most frequent reaction is the Alkali-Silica Reaction (ASR). This study will focus on this 
specific reaction. 

The ASR product is a gel that increases in volume. The swelling forces generated may be 
sufficient to disrupt aggregate and the surrounding concrete, causing expansion, cracking, and 
associated deterioration. Typically, ASR results in the formation of map-pattern cracking of 
the concrete. It leads to the following consequences at a macroscopic scale: 

- strain and displacement; 
- network of cracks or cracks parallel to the armatures; 
- Fragments breaking out of the surface (pop-out)  [Bournazel 1997]; 
- A drop in the mechanical properties (mechanical strength  and Young modulus); 
- The disappearance of lichens and mosses along cracks.  

These reactions have the particularity to be localised and distributed randomly in concrete. 
 
Concrete deterioration caused by the ASR is generally slow, but progressive. Cracking 
generally becomes visible when concrete is five to ten years old. ASR has been implicated in 
the deterioration of various types of massive concrete structures, including dams, pavements, 
bridges, and other structures. The ASR is a major damage phenomenon for dams; this is due 
to the high humidity rate, the important mass of the structure and to the fact that dams do not 
usually contain steel reinforcement to restrain the expansion. Cracks facilitate the entry of de-
icing salt solutions that may cause corrosion of the reinforcing steel, thereby accelerating 
deterioration and weakening of the structure.  

 
Even though there are no documented cases of concrete structures failing due to ASR, it is a 
serious form of deterioration. Even since the problem was recognised, everything possible has 
been done to prevent it, adding mixtures for instance. So far over the last twenty or so years 
there have been no more major signs of the concrete “cancer” appearing in the newer 
buildings which have been produced, but there is always time.  

 
Figure 1-1 presents two example of structures submitted to ASR.  
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a) b) 

Figure 1-1. a) Thomas E. Stanton next to a wall submitted to ASR - California, 1936; b) Chambon’s Dam (first 
French dam where RAS has been discovered in France, 1976) 

 
Preventive solutions (limitation of the alkali content of concrete, the use of 

supplementary cementing materials, the use of non reactive aggregates: but we have to be sure 
that the subject aggregates to be used are, in fact, nonreactive etc.) and curative solutions 
(waterproofing of concrete, injection of epoxides resins in cracks in order to limit the effects 
of the ASR etc.) exists. Moreover some recommendations have been made to avoid ASR as 
long as possible.  But all these methods are inefficient and cost a lot. Only preventive 
action could lead to an eradication of this pathology.   
 

1.2 Study development 
 

The objective of the whole projects is: 
 
- To understand the coupling relationship between the chemical reaction and the 

mechanical consequences on the structures; 
 

- To improve diagnosis tools by defining a methodology based on the quantitative 
relationship between the chemical advancement of the reaction and the induced 
swelling. 

 
Works have been already led by the Ecole des Mines de Douai (GC-Douai) on flint 

aggregates from almost ten years. The used methodology has clarified the coupling 
relationship between the chemical advancement and the macroscopic swelling. Now it is time 
to consider a numerical approach of this phenomenon. This modelling is developed within the 
framework of collaboration between the CEMEF (“Ecole des Mines de Paris”) and the GC-
Douai of the Ecole des Mines de Douai. This type of modelling induces a coupling between 
the chemical reaction and the swelling, knowledges on the mechanical degradation of the 
material, concept of cracks and multicracks. The aim of the numerical approach is to 
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understand the mechanism of the ASR under the controls of some parameters 
(hydration, number of aggregates, shapes of the aggregates, formulation etc.) which is 
difficult to analyse from the experimental side. In this way it is important to define in a first 
time the framework of this work. 
 
1.2.1 Which scale can be used to describe the mechanical consequences 
of the ASR with the best accuracy? 
 
 Figure  1-2 divides the three main scales in concrete. With the type of computer 
facilities available today it is impossible to describe the reaction from the micro to the macro 
scale. It is then necessary to do some hypotheses.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Macroscopic scale Mesoscopic scale Microscopic scale 

 

 
Figure 1-2. From the mascrocopic scale (Millaud viaduct, France) to the microscopic scale. 

 
 At a macroscopic scale, the heterogeneous aspect of concrete is neglected. This level 
is useful in the framework of study of behavior concrete at a structural level.  
 
 At a microscopic scale local properties and type of cement (water-cement ratio, 
temperature, porosity, moisture content and hydration degree) are studied to understand the 
complex physical, chemical and mechanical behavior of the hardened cement paste.  
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At a mesoscopic scale, three main phases appear [Bentz et al. 1995]:  
 
 
 

aggregate 

Mortar paste 

a) b) 
Figure 1-3. a) The Concrete composition. Two main components are visible: the aggregates and the mortar paste 

[Mehta et al. 1993], b) Modelling of the Interfacial Transition Zone (ITZ) 
 

1.2.1.1 The cement paste 
 

The cement paste (mixture of cement and water) fill the existing vacuums between the 
grains. The paste plays the role of lubricant and adhesive. 
 

1.2.1.2 Aggregates 
 

The aggregates are natural materials of varying size and shape. Types of aggregates 
(geometry, physicochemical characteristics) are defined by standards. The term “coarse 
aggregates” refers to aggregate particles larger than 4.5 mm. The term “fine aggregate” takes 
into account aggregates with a diameter between 0.75 and 4.5 mm. Sand is commonly used 
for fine aggregate with a diameter lower than 0.75 mm.  

The aggregates are not very deformable. They improve the tensile strength of the mortar 
paste by limiting microcracks of concrete.  
 

1.2.1.3 The Interfacial Transition Zone (ITZ) 
 

It has been discovered in 1956 by Farran [Farran 1956]. The Interfacial Transition 
Zone (ITZ) has mechanical properties very different from the mortar paste. The ITZ refers to 
the mortar paste located in the immediate vicinity of the coarse aggregate particles (as shown 
in figure 1-3.b). Its size ranges from 20 to 50 mμ  depending on the mineralogical origin of the 
aggregate, the Water/Cement (W/C) ratio, the cement type etc.  

It plays a fundamental role in the cracking process. Because the ITZ typically has a 
slightly higher W/C ratio than is observed in the entire mortar paste and because of the 
physical boundary between the different materials, the ITZ is weaker than the remainder of 
the mortar paste.  

 
 1-4



Chapter 1– General introduction 
 
 
 
In this definition the contact between the aggregate and the mortar paste (possible decohesion, 
friction etc.) and the weaker zone around each aggregate are merged under the term of ITZ. 
The manuscript will distinguish clearly the contact and the weaker zone, which we will call 
ITZ, around the aggregate. Figure  1-3 describes the concrete composition at a mesoscopic 
scale. 
     

**** 
 
The heterogeneous character of concrete is thus introduced. In the manuscript the 
mortar paste denotes the homogenization of the cement paste, with sand and fine 
aggregates, and the ITZ. We will consider the consequences in concrete at a mesoscopic 
scale as analysis appears to be the most practicable and useful approach for evaluating the 
composite behavior of concrete.  Furthermore aggregates play a major role in the ASR:  

- This chemical reaction is not localised and affect randomly aggregates in the structure; 

-  It also induces micro and macro cracks in the sample. The aggregates location will 
determine the crack path in the sample. It is thus important to describe as well as 
possible the aggregates locations and the mortar paste. It will also be important to 
quantify the number of reactive aggregates by representing them; 

- It is also important to take into account the ITZ which is the privileged place of cracks 
initiation. 

 
1.2.2 Which size adopts to be representative of a massive structure?  
 

In the classical approximations of heterogeneous materials the representative volume 
element (RVE) is usually considered to be infinitively large in comparison to the length scales 
of the microstructure. But the RVE size depends on the studied mechanical behavior. This 
size will be so much higher than the mechanical behavior will be complex. For concrete the 
RVE is about three times the size of the larger aggregates [La Borderie 2003]. The CSTB 
(Centre Scientifique et Technique du Bâtiment) has shown that computations converge when 
the size is ten times higher than the most larger aggregate, or when the volume is ten times 
higher than the volume of the largest aggregate [Mounajed 2002]. In fact it ensures that the 
tools of the continuum mechanics are available. In this way for an aggregate with a diameter 
of 20 mm, a study at a mesoscopic scale will be lead on sample with a 100 mm size. It 
corresponds in fact of the range size of samples used commonly for classical tests on 
concrete.  
 
1.2.3 How link the results at a mesoscale with the micro and macro 
scales?  
  

A macroscale description of the heterogeneous concrete is limited by the power of 
computations. However on the future a good description of the material will be necessary to 
understand the effect of the ASR on concrete at a macro scale. The approach of the 
“equivalent homogeneous continuum” considers the heterogeneous volume has a 
homogeneous volume when the studied volume is rather than a physical scale. The objective 
of this method is to determine the global mechanical fields of the material using the 
knowledge of the local properties of the material components. In this way the main interest is 
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to compute a relation between the mesoscopic strains with the macroscopic mechanical 
behavior. A method for obtaining such a relation is referred to homogenisation or theory of 
effective properties, by which the heterogeneous material is replaced by an equivalent 
homogeneous continuum. The method is performed on a statistically representative sample of 
material, referred to as a representative volume element (RVE).  Early approximations for the 
effective properties of heterogeneous materials were first developed by Voigt [Voigt 1889], 
Reuss [Reuss 1929] and Hill [Hill 1963]. In 1957, Eshelby [Eshelby 1957] obtained a 
relatively compact solution which has been a basis for many approximation methods. One of 
the most efficient numerical methods is the Finite Element Method, whereby the effective 
response can be obtained by volumetrically averaging numerical solutions of RVEs. From the 
micro to the mesoscopic scale a coupling with other software would be used. Some advanced 
softwares give us a state of the microstructure in durability problems. The software VCCTL 
(Virtual Cement and Concrete Testing Laboratory) [Bentz et al. 2002] is applied to predict a 
variety of physical properties of cement pastes. In our work these aspects will be not studied.  
 

1.3 PhD manuscript outline 
 

The manuscript is divided in eight chapters. 
 

The starting point of this study is a review of models for concrete. We analyse the 
numerical methods which enables to model this behavior and we also analyse the different 
ways to represent the heterogeneous aspects of concrete. 
 

The third chapter is devoted to the numerical implementation of the model in 
FEMCAM (Finite Element Model for Concrete Analysis Method) selected to simulate the 
degradation of concrete. We describe the model and the equations used in the software. The 
numerical model is then validated and justified. 
 

The fourth and fifth chapters underline the method we have used to identify the model 
parameters. We explain the experimental campaign we have carried out and the inverse 
analysis module “RheOConcrete” we have used to identify material parameters. Parameters 
are identified on compression and three point bending tests. We validate the parameters 
identification on the “Brazilian” splitting test. A sensitivity analysis concludes on the 
influence of the aggregates on the global response. 
 

In chapter six, we focus on applications about the mechanical consequences of the 
ASR. We examine the numerical results and compared them to the experimental ones. 
Furthermore some tests will be made to understand the impact of the repartitions or the size of 
the aggregates on the swelling. This underlines also how we shall improve this numerical tool. 
 

The seventh chapter describes a way to improve the numerical tool by developing an 
efficient crack module in order to describe cracks in the sample with a great accuracy. We 
present the “Discrete crack approach” we have developed and validated. 
 

Conclusions are drawn and suggestions for further investigations are proposed. 
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2.1 Introduction 
 

A bibliographic study on different experimental results is first presented to underline 
different possible modelling of mechanical behavior of concrete under various loadings. 

 
The second part deals with the constitutive laws which aim at describing the behavior 

of quasi-brittle material as concrete or mortar*. Many theories describe the macroscopic 
behavior of these materials. We present a bibliographic study of these models describing the 
mechanical behavior of concrete. For the constitutive modelling, the focus here is mainly on 
continuum theories such as plasticity theory and continuum damage mechanics. We will 
underline how some of these models should be improved, thanks to the non local approaches. 
Advantages and drawbacks of constitutive models will be examined in this chapter to provide 
a general background and motivation for this study.  

 
The different ways of modelling concrete are discussed in the fourth part. Two very 

different models appear: homogeneous models in order to simplify the numerical approach 
versus heterogeneous models. We will detail these different models. 
 
 We will conclude on the model we have chosen to describe the mechanical behavior of 
concrete. Special attention is given to starting hypotheses for this model. 
 

2.2 Experimental behavior 
 

Classical uniaxial tests (tension, compression) give us some important information on 
the mechanical behavior of concrete. Hence it is very useful to understand the role of the 
micro and macro cracks, friction, viscosity etc. We present here classical uniaxial and 
multiaxial tests for monotonic and cyclic loadings. Dynamic loadings will not be considered 
here since they do not have any impact on ASR.  
 
2.2.1 Uniaxial compression test 
 

Damage behavior is often studied for compressive stress states because of their 
importance at the industrial level. It is usually characterized using a uniaxial compression test 
on a cylindrical sample. The load-displacement curve obtained for such a test enables to 
identify the yield stress cσ  in compression. Figure  2-1 shows results obtained by Ramtani. 
We can observe four stages in the material behavior. We first have a linear behavior of the 
material up to 50% of the cσ  value (stage 1). From 50% to 80% of the cσ  value, interfacial 
cracks start to grow and the behavior stops being linear (stage 2). From 80% to 90% of cσ , 
interfacial cracks start to join, thus leading to macro-cracks initiation (stage 3). In the last 
stage, there is a fast degradation of mechanical characteristics which is related to the fast 
evolution of microcracks (stage 4).  

                                                 
* Quasi-brittle means materials that show small plastic deformation after full fracture and relatively exhibit a 
relatively large cohesive process zone ahead of a pre-existing macrocrack where the interdependence between 
stresses and strains is nonlinear. 
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stage 4 
 
stage 3 
 
 
stage 2 
 
 
 
 
stage 1 
 
 
stage 0 

2ε  

σ

ε

Cσ  

1ε  

Figure 2-1. Stress-strain curve for a compression test.ε1 is the principal maximal strain. [Ramtani 1990,  as 
presented by Menou 2004] 

 
 
2.2.2 Uniaxial tension test 
 

Strength in tension is measured by tests such as Brazilian splitting test, three point 
bending test, and direct tensile tests.  

The results in figure 2-2 clearly display two main stages, with a fracture zone much 
more localised than in compression. The behavior is linear almost up to the peak. Tests 
monitored by sound emission confirm that almost no degradation takes place before reaching 
the peak-value. In the post-peak stage, material degradation gets faster. Non-linearity and 
damage correspond to the initiation and growth of microscopic cracks which, when the 
peak load is reached, are located in a material band and end up being organized in macro-
cracks. The stress drops quickly and becomes stable after a certain strain level. By the end of 
the test, the specimen stiffness is ten times smaller than the initial one. 
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Figure 2-2. Stress-strain curve for a direct tensile test. [Terrien 1980] 

 
2.2.3 Multi-axial behavior 
 

Under combinations of biaxial compressive stress, quasi-brittle materials exhibits 
strengths and stress-strain behavior which are different from that under uniaxial loading 
conditions. Concrete behavior under biaxial loading is characterized by an increase of the 
strength in comparison with the uniaxial behavior. We can quote the experimental tests of 
Kupfer [Kupfer et al. 1969]. Figure  2-3 shows the biaxial strength envelope of concrete 
under proportional loading. 

 

 
Figure 2-3. Strength failure envelope under biaxial stress [Kupfer et al. 1969]. pβ  is the correspondent 

unconfined uniaxial compressive strength. 
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Under biaxial compression the quasi-brittle materials exhibits an increase in compressive 
strength up to 16% of the uniaxial compressive strength, when the stress ratio 21 /σσ  is 0.5. 
The applied boundary conditions, during the tests, have a great importance, on experimental 
results. These tests lead to the determination of envelopes areas in the principal stress space 
( 321 ,, σσσ ). 
 
2.2.4 Crack closure effects 

 
This phenomenon appears when the material is subjected to alternated loads. The 

uniaxial cyclic tensile tests underline the unilateral behavior of concrete. This phenomenon 
consists in a recovery of the stiffness between the tensile loading (damage and microcracks 
initiation) and a compression loading. The microcracks creation does not change material 
characteristics in compression. And it leads to a closure of microcracks and thus to a 
restoration of the material stiffness. Figure  2-4 underlines the unilateral behavior of concrete. 
 

1σ  

1ε  

tσ  

cσ  

0E  

0E  
Tensile test 

Compressive test 

Crack closure 

Inelastic strain 

 
Figure 2-4. Unilateral behavior of a quasi-brittle material under uniaxial test.  is the initial material stiffness.  0E

 
A specific test on concrete with metallic bars glued on the lateral surfaces of the sample to 
generate a distributed state of damage during the direct tensile test [Mazars et al. 1989] has 
underlined the unilateral characteristic of concrete. 
 
 

The experimental behavior of concrete is rather complex. It is important to underline 
the different behaviors in compression and in tension. It is in fact a combination of 
phenomena such as linear elasticity, viscosity, microslidings (leading to permanent strains) 
and microcrackings (inducing a lower stiffness of the material). The relative importance of 
such phenomena depends on the type of solicitation. Modelling of concrete will have to take 
into account these aspects. 
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2.3 A State of the art review on models describing the mechanical 
behavior of cement-based materials (mortar or concrete) 
 

Quasi-brittle materials, such as concrete, belong to a heterogeneous material class 
whose non-linear behavior is rather complex. There is a very wide literature on experimental 
aspects of the mechanical behavior of these materials. The standard uniaxial tests provide 
information for modelling. Damage impacts the mechanical behavior of concrete in several 
ways: 

- Modification of the elastic behavior which results in a change of the mechanical 
characteristics;  

- Modification of the plastic behavior (for concrete, these microstructural changes 
correspond to decohesion in aggregate or in the mortar paste, or between them, slips 
along surface of decohesion). 

Many theories describe the macroscopic behavior of quasi-brittle materials. Various models 
of gradually increasing complexity have been proposed (see figure 2-5): 
 

- Plastic models, in which the permanent unrecoverable strains appear after unloading; 
 

- Damage models divided into two main groups: 
 

o Elastic-brittle, in which irreversible strains are negligible; 
o Plastic-brittle, in which the permanent unrecoverable strains appear after 

unloading, in addition to the modification of elastic properties (modelled with 
damage model). 

 

 

σ  σ  σ

pε  
ε ε

pε  
a) b) c) 

Figure 2-5. Typical stress-strain diagrams a) elastic-plastic material; b) elastic-damage material; c) elastic-plastic 
damage material. 

 
Some models of these two main groups are going to be detailed and we will then focus on the 
Mazars model. Fracture in quasi-brittle materials such as mortar or concrete is a difficult issue 
because it induces localization and discontinuity in the displacement field. During the test, the 

stress-strain curve presents a negative slope: 0<
ε
σ

d
d  (Hill criterion). Pijaudier-Cabot explains 

why this behavior leads to important numerical problems: the differential equations which 
govern equilibrium do not have any more the adapted mathematical form [Pijaudier-Cabot et 
al. 1997]. Therefore the stability criterion proposed by Hill is violated. Several models have 
been proposed. We will present in a second part models developed to avoid any mesh 
dependency.   
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2.3.1 Elastic plastic models  
 

Elastic plastic models provide a description of the development of plastic strain after 
the elastic stage. The first approach of the mechanical behavior of concrete supposes concrete 
as elastic perfectly plastic. We can quote several authors who have developed this approach. 
Lin and Scordelis [Lin et al. 1975] have largely developed this approach. The concrete is 
assumed to be elastic plastic in compression, but brittle in tension (see figure 2-6). 

 

  

tσ  

ε  

σ

Cσ  

ε

0E  

σ  

a) Concrete in compression b) Concrete in tension 

Figure 2-6.  Assumed stress-strain diagram for concrete [Lin et al. 1975]. 

 
Reynouard [Reynouard 1974], Frantzeskakis [Frantzeskakis 1987] consider concrete 

as perfectly elastic in tension until fracture, and elastic plastic with hardening in compression.  
Fracture criterion dependent on pressure, as the Rankine criterion can describe crack in 

tension. In compression several criteria can be used such as the Mohr-Coulomb (1911) or the 
Drucker-Prager (1952) criterion (see figure 2-7). 

 

 
Figure 2-7.  Representation of the Drucker-Prager and Mohr-Coulomb criteria in the stress deviator plane 

( )321 ,, σσσ . 

 
Some of these models have been already implemented in FE code such as Adina 

(1982), Castem (1988) or Abaqus (1989). 
 
2.3.2 Damage models  
 

The concept of damage applied to quasi-brittle materials behavior was initially 
introduced by Kachanov in 1958 [Kachanov 1958] then developed by many other authors 
[Lemaître et al. 1992]. Damage mechanics is a theory describing the progressive reduction of 
the mechanical properties of material due to initiation, growth and coalescence of microscopic 
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cracks. These internal changes lead to the degradation of mechanical properties of the 
material.  
 The distinction between a sound and a damaged material, at the base of this theory, 
has led to the concept of effective stress, defined by Kachanov. S denotes the section surface 
of one volume element, n  being the outer normal, and  the damaged surface (voids, 
cracks). 

r
DS

S~  denotes the effective resistant surface  ( S~ < ) and takes into account the 
geometrical discontinuities and stress concentrations: 

S

  
DSSS −=

~  (2-1) 
 
 

nr  

Damage surface DS  
Total surface S  

Figure 2-8. Uniaxial damage according to Kachanov. 

 
The measure of the damage tensor , with respect to the normal n , is given by the 
following relationship: 

nD
r

 

S
SS

S
SD D

n

~
−

==  (2-2) 

 
If we consider that the defaults are uniformly distributed in each direction (isotropic damage), 
damage  does not depend on nr : nD
 

DDn =  (2-3) 
 
D is a scalar such as , with D = 0 (undamaged material) and D = 1 (completely 
damaged material). The damage variable D links damage and the mechanical behavior 
through the effective characteristic of the material. By definition: 

10 ≤≤ D
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( )

D

DEE

−
=

−=

1

1

0

0

σ
σ

 (2-4) 

 
E and σ  are respectively the effective Young modulus and the effective stress. E0 and  are 
respectively the initial Young modulus and the initial stress. The effective stress concept 
introduced by Kachanov has been successfully applied to concrete by Mazars [Mazars 1984]. 

0σ

2.3.2.1 Elastic damage model  
 

The Mazars model (Mazars 1984) aims at modelling the modification of the elastic 
behavior; in this model, the damage variable is isotropic: it is modelled using the scalar 
variable D which affects stiffness. 
 

a) The equivalent strain in the Mazars model 
 

The concept of the equivalent strain introduced by Mazars takes into account the state 
and the intensity of local extension. The Mazars model thus considers only positive principal 
strains. This choice is well suited for quasi-brittle materials - and thus for mortar and concrete. 
The expression of the equivalent strain ε~  with respect to positive principal strains is given 
by: 
 

∑
=

+
=

3

1

2~
i

iεε  (2-5) 
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+
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ε  and ( ) [ ]3,1∈iiε  denote the principal strain components. 

 

b) Damage threshold 
 

An evolutive threshold is introduced, depending on the damage variable D. Thus for a 
given damage state D, the form of the loading function is: 
 

( ) KDf −= εε ~,  (2-6) 
 
where K represents the variable related to the history of the damage. Damage D grows when 
the equivalent strain reaches a threshold K initialized at 0Dε .  
 

( )  ~
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 then 0~, If
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⎧

=
=

=−=
ε

εε
K

KDD
KDf  (2-7) 

 
Figure  2-9 illustrates the threshold area in the stress plane: 
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ε~  
ε~  

Figure 2-9. Mazars model - Plot of the threshold area in the stress plane ),( 21 σσ . [Mazars 1984] 

 

c) Damage decomposition 
 

It has been experimentally found that the response of concrete is different in tension and 
in compression. Damage D defined by Mazars is thus split into two parts:  
 

CCTT DDD ββ αα +=  (2-8) 
 
The parameter β  is fitted from the response of the material to shear. It is usually considered 
as a constant. This coefficient is very sensitive. When 1=β , the shear strength is 
underestimated (here 05.1=β ). DT  and  are respectively the tensile and compressive parts 
of the damage variable D.  

CD
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CA , ,  and  are four material parameters. The weights TA CB TB Tα  and Cα  are defined such 

that: 
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and the principal strains ( ) [ ]3,1∈iiε check:  
 

CiTii εεε +=  (2-11)
 

1=iH  if 0≥iε , otherwise . For pure tension cases, 0=iH Cα = 0 and D tends towards DT; 
for pure compression, Tα = 0 and D tends towards DC; for mixed loads, the values of  and TD
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CD  depend on the amplitude of tensile and compressive stresses and Tα + Cα =1 if 1=β . Let 
us note that if all principal strains are positive or null, 01 == CT ,αα  and . Reversely, 

 and 
TDD =

10 == CT ,αα CDD = . Figure  2-10 presents the results obtained by Mazars in 2D for a 
uniaxial tension test and a uniaxial compression test. These plots have been obtained with 
specific material parameters. 
 

Figure 2-10. Mazars model in tension and in compression. [Mazars 1984] 

 
The Mazars model is quite popular (easy to implement, robust etc.).  However this model 
does not take into account the permanent strains and the unilateral effect. Most other damage 
models are an extension of this model (improvements for permanent strains, unilateral effect, 
anisotropic damage). 
 

2.3.2.2 Damage-plasticity coupling  
 

Damage models are motivated by the gradual initiation and propagation of 
microcracks and microvoids, and they describe the corresponding stiffness reduction. If the 
basic material between the defects remains elastic and the defects can close perfectly, the 
unloading branch of the stress-strain curve returns to the origin; real materials usually exhibit 
both permanent strain and a reduction of stiffness, and the unloading branches are somewhere 
between these two extremes. This induces the development of models that combine the 
frameworks of damage and plasticity. Bazant and Kim [Bazant et al. 1979] have proposed a 
damage-plasticity coupling (“Plastic-Fracturing”). It associates the damage theory with the 
fracture mechanism based on Dougill theory [Dougill 1976]. The La Borderie model adds a 
supplementary term  to describe permanent strains. We assume here that only the elastic 
modulus is decreased by material damage according to the theory of continuum damage 
mechanics. The stress-strain relationship is the following: 

pε

 
( ) )(1 0

pED εεσ −−=  (2-12)
 
And the damage criterion includes permanent strains, by adopting the assumption of small 
strains: 
 

( ) ( ) ( )∑∑ ++ +=+=−=
i
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where 
+

e
iε et 

+

p
iε are the principal parts of the elastic and plastic strain tensor. The La 

Borderie  model has been implemented in the FE code Castem 2000. 

 

2.3.3.3 Damage model with induced anisotropy  
 

If an initially isotropic material is subjected to a general loading that leads to 
microcracks propagation, stiffness degradation is usually faster in specific directions. 
Consequently, the macroscopic properties of the material become anisotropic. Some theories 
take into account this property. To generalize the concept, the damage value becomes a fourth 
order tensor. The generalized relation gives [Ramtani 1990]:  
 

0)1( σσ nD−=  (2-14)
 

One of the major difficulties of this model is to keep the stress tensor symmetric. 

 

2.3.3.4 Unilateral damage model  
 

When damage D takes place under a cyclic loading, the previous formulation cannot 
capture the stiffness recovery observed during the stress reversal [La Borderie 1991]. This 
model distinguishes damage due to tension from damage due to compression. Since damage 
cannot decrease two independent scalars, damage  andTD  CD  are used. If loadings are 
complex, damage may be a combination of  and . We use a decomposition of the stress 
tensor into a positive part 

TD CD

+
σ~  and a negative part 

−
σ~ . The effective stress tensor can be 

written: 
 

−+
+= σσσ ~~~  (2-15)

 
In which 

+
σ~  is built with the positive eigenvalues and 

−
σ~  with the negative ones, which 

leads to  
 

( )
−+

+= σσσ ~~~ TrTrTr  (2-16)
 
The La Borderie model enables to introduce unilateral effect according to the sign change and 
the anelastic strain part. The main difficulty of this model is that this formulation is very 
difficult to implement in a FE code. The reason is that the behavior law has to be inversed at 
each loading step. Furthermore it is not very well adapted to shearing effects.  
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2.3.3 Localization and mesh sensitivity 
 

Damage model for quasi-brittle materials can lead to a fast growth of damage after 
reaching the elastic limit in order to describe the softening behavior observed in experiments. 
As a consequence of this fast damage growth, local loss of ellipticity of partial differential 
equations governing equilibrium occurs immediately after reaching the damage threshold in 
quasi-brittle damage models (see example in 1D in appendix A.1). The loss of ellipticity of 
partial differential equations corresponds to a situation in which the number of linearly 
independent solutions to the equilibrium equations is infinite. This convergence of the finite 
element approximation to the actual, non physical solution of the problem is the origin of the 
apparent mesh sensitivity of damage models and other discontinuous descriptions of 
fracture. 

We call “regularisation” methods the methods used to avoid the pathological 
localisation of deformation and damage growth by improving the continuum model. These 
techniques consist in introducing a "characteristic length" which enables to specify the 
localization zone width while preventing possible numerical problems which are dependent 
on it. The characteristic length can be introduced under various formulations:   

- Nonlocal theories; 
- gradient based formulation; 
- Viscous or time-dependant terms in the constitutive model may prevent the loss of 

ellipticity of the original, time-independent behavior of solids [Needleman et al. 
1988], [Sluys et al. 1994]); 

- Cossera’s continua introduce micro-rotations as degrees of freedom, in addition to 
the conventional displacements. However this method does not lead to results in 
good agreement with experiment in the case of mode I loading [Mülhaus et al. 
1987]. 

The non local and gradient approaches, which are closely related, are the most generally 
applicable techniques. 
 

2.3.3.1 Non local damage mechanics 
 

We denote ε  the average of ε~  in a representative volume surrounding a point x. It is 
this variable which will control damage growth at point x: 
 

( )

( )∫

∫
=
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V
r

Vr

dsxsxV

dsxss
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,)(~
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1

α

αεε
 (2-17)

 
V is the volume of the structure, ε~  is the equivalent strain at point s. ( )xs,α  is a homogeneous 
and isotropic weight standardized function which depends on the distance xs −  between the 
points  and s x .   represents the material internal length.  is proportional to the smallest 
size of the damaged zone [Pijaudier-Cabot et al. 1993].  

Cl Cl
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Figure 2-11. Weighted average for an irregular microstructure 

 
Several functions have been considered in the literature to expressα . Among them, the 
Gaussian function is the most popular: 
 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−= 2

²4
exp,

cl
xs

xsα  (2-18)

 
The ε  value - which can be considered as the non local equivalent strain - is the variable that 
controls the growth of damage in accordance with the following conditions: 
 

KKf −= εε ),(  (2-19)
 

2.3.3.2 Gradient formulations 
 

For sufficiently smooth ε -fields, the integral relation Eq. ( 2-17) can be rewritten in 
terms of gradient of ε~  by expanding ε~  into a Taylor series [Peerlings et al. 1996]: 
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Neglecting terms of order four and higher in Eq. ( 2-20), definition of Eq. ( 2-16) of 

the non local equivalent strain can be replaced by: 
 

εεε ~~~ ∇+= c  (2-21)
 

In Eq. ( 2-21) the derivative of order second of the local equivalent strain introduce a 
spatial interaction in the numerical model (dependence of ε  on the Laplacian of the local 
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equivalent strain). Nevertheless the explicit dependence of  ε  in relation to ε~  and its 
Laplacien reduces the distance of interaction to an infinitesimal volume. The variation of 
( )yε~ , to a finite distance from x, has no effect on ( )xε~  and ( )xε~∇  and so on ( )xε  . This 

disadvantage can be avoided as follows: 
 

εεε ~²~ =∇− c  (2-22)
 
The non local strain is not given explicitly in terms of ε~  and its derivatives but as the solution 
of the boundary value problem: 
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ε

εεε
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nr  denotes the external normal unit vector. The boundary condition must therefore be 

defined not only on the boundary of the problem domain but also on the internal boundary 
which surrounds the crack area. The physical interpretation of this type of boundary 
conditions remains an unresolved issue. 

This is a local model in a mathematical sense, because the non local strain in a point 
depends only on the local strain and its gradient in the same point. Spatial interactions are 
therefore limited to the immediate neighbourhood in this model. This remark will influence 
the choice of the non local model in our code, more particularly for the modelling of 
problem with heterogeneous materials or with cracks. Compared to a classical model with 
an integral formulation, which directly modifies the equivalent strain (in the case of the 
Mazars model), this method can be used with any constitutive law. Indeed it is based on the 
computation of a non local strain tensor and used to evaluate any invariant (isotropy, 
anistotropy, plasticity etc.). The difficulty of this method is the evaluation of strain tensors 
instead of a scalar for the integral formulation.  

2.3.3.3 Internal length value 
 

Regarding the choice of the internal length value, it has a physical meaning: with the 
starting of the macroscopic fracture, the microscopic cracks coalesce, which is characteristic 
of a non-linear behavior, to form macrocracks or a Fracture Process Zone (FPZ) surrounded 
by a damaged material zone. A localization band is created when the strains cannot be 
described locally but have to take into account the interactions with the nearest points. 

 

 
Figure 2-12. Section inside a FPZ; 1) « sound zone », 2) « damage zone »: some microcracks appear; 3) 

« Crack-damage zone »: the crack is visible on the surface but a part of the internal section is still active; 4) 
« Crack zone »: the fracture is complete. 
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From a modelling point of view, this localisation band cannot be described with 
classical continuous models. The non local approach enables to describe this FPZ. Its shape is 
controlled by the strain softening response of the material and by the internal length. Different 
methods exist: integral formulation, implicit gradient formulation etc. Each of them includes a 
non local parameter to identify. But the internal length is an additional parameter which is 
difficult to obtain directly by experiments.  

 
A new theory of “fictitious crack” has been introduced by Hillerborg in 1976 and by 

Bazant [Bazant et al. 1983] with the “Crack Band Model” to idealise the behavior of a crack. 
The crack opening law is governed by three parameters: tensile strength, fracture energy , 
and the shape of the softening curve. The model is based on the assumption that   is 
considered as a constant internal parameter of the material. It leads hence to consider that the 
smooth part of the stress strain curve in tension depends on the characteristic leng h Cl . In 
this formulation the crack strain is related to the mesh size used.  A first simple estimation 
was proposed by Rots for 2D configurations [Rots 198

fG

fG

t

8]: 
 

FEC Arl =  (2-24)
 

Where is the area of the considered finite element and r is a parameter which is 
function of the finite element used. It is fixed to 

FEA
2  for linear finite elements. In the case of a 

3D study: 
 

3 VlC =  2-25) 
 
Where V is the volume of the finite element. It means that the non local parameter depends on 
the mesh size, the type of finite elements, and their position in the mesh. This approach is 
very easy to use but is insufficient for non regular meshes. 

 
[Bazant 1989] have linked the internal length  to the FPZ with a proportional 

relationship (see figure 2-13). If we consider that the area under the “a” curve is the same 
than the “b” curve, the following relationship can be established: 

Cl

 
CFPZ ll ×=α  (2-26)

 
The value 93.1=α  has been established by many authors. 
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Figure 2-13. Schematic profile of strain obtained analytically. [Pijaudier-Cabot et al. 1987, as presented by 
Haidar 2002] 

 
Hence it is possible to measure the displacement field with a great accuracy in this 

zone and compare it to a numerical model [Geers et al. 1996]. The most accurate way of 
reaching the internal length is by a semi-inverse technique which is based on computations on 
size effect tests. The complete explanation of this effect is described in [Bazant et al. 1998]. 
This is due to the redistribution of the stored strain energy inside the structure where the size 
of each specimen can change but where the FPZ is constant. Hence scale effect tests can 
indirectly determine the parameter of the non local model.  These tests are carried out on 
geometrically similar specimens on different sizes. But such identification requires many 
computations. 
 

An approximation of the internal length  l  was obtained by Bazant and Pijaudier-C

Cabot. Physically it is thus generally assumed that the  value is between 3 dCl max  and 5 dmax  
[Bazant et al. 1983], where dmax  is the diameter of the larger aggregate. Relationships between 
the internal length  for the integral non local model and cCl ~  for the gradient approaches have 
been discussed by many authors. Theorically, Peerlings considers the following relationship: 
 

2
~

2
Clc =  (2-27)

 
Jason [Jason 2004] has carried out a numerical campaign where he has compared load-

displacement curves on three points bending tests between the results obtained with an 
integral non local model and a gradient approach. He found: 
 

16
9~

2
maxd

c ≈  (2-28)
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Concrete exhibits a quasi-brittle behavior and the degradation process is linked to the 

macrocracks initiation and evolution in the sample. It induces a loss of stiffness, a strain 
localisation and irreversible strains. It is thus important to take into account this non-linear 
behavior.  

Among the different numerical approaches, the elastic plastic and damage-elastic 
approaches are commonly used if we consider monotonic loading. We have chosen to use the 
classical Mazars model. This model is robust. It is also well adapted in the framework of this 
first 3D numerical description of the degradation of concrete submitted to the ASR as we 
consider a monotonic swelling of the sample. 

We have also noticed the importance of introducing “regularization” methods to avoid 
localization of deformation. Two main approaches exist. The gradient approach seems to be 
more adapted for the description of heterogeneous material as concrete.  

 
 

Experiments and numerical models reflect the complexity of the material. Whereas 
these numerical models try to model the global mechanical behavior of concrete as accurately 
as possible, they neglect the strong heterogeneity of concrete and consider it as a 
homogenised material. However figure 2-14 shows differences between the mechanical 
behaviors of the main concrete components. It underlines hence that aggregates induce a 
modification of the mechanical behavior of the mortar paste and that ductility has its origin in 
the bond between the aggregates and the mortar paste. 

 

 Principal strain ε 

Principal stress σ 

Figure 2-14. Typical stress-strain curves for aggregates, mortar paste and concrete. 

 
The properties of complex composite material are not equal to the sum of the 

components. Aggregates are generally linear elastic and the mortar paste has an elastic 
damage behavior. We will detail in the next part some of these models. However these 
approaches are: 

 
- Unsuitable to characterise the entire fracture process from initiation to propagation 

and coalescence of macrocracks in concrete (fracture is often initiated at the ITZ 
and its evolution depends on the heterogeneity of the structure); 

 

 
 2-24



Chapter 2 – A review of models for concrete 
 

- Unsuitable to model the randomness of concrete mesostructures and consequently 
insufficient to understand the fracture process of concrete. 

 
Hence different numerical models for the simulation of the fracture process in concrete at a 
mesoscopic scale have been proposed in recent years. Taking into account the heterogeneous 
aspect of concrete, they have the advantages to: 
 

- estimate and understand local mechanisms of deformation; 
 

- better simulate mechanisms of damage (damage is piloted by local values as the 
ITZ); 

 
- become a precious tool for concrete formulations; 

 
- describe accurately chemical degradation involving changes in mesostructures. 

 

2.4 State of the art review on heterogeneous models 
 

Few studies take into account the heterogeneous aspect of concrete, because of its 
complexity.  We recall the three main phases which appear at a mesoscopic scale: 

- The hydrated mortar paste; 
- The aggregates; 
- The Interfacial Transition Zone (ITZ). 

Numerical simulations of concrete are generally based on homogenization techniques in order 
to simplify the numerical approach. However only a few models exist (mainly for 2D 
configurations) because of computer storage, computation time, difficulties to represent 3D 
structures etc. We present them hereafter.  
 
2.4.1 Statistical approach 
 

A way to take into account the heterogeneous aspect of concrete is to distribute randomly 
the Young modulus and the strength on the mesh elements. The 2D Cesar LCPC probabilistic 
model is based on this concept. This randomly distribution leads to simulate the material 
heterogeneity and so a random cracking mode. This distribution follows a normal law, where 
the mean and the standard deviation are empiric functions of experimentally identified 
parameters. They depend on two parameters: 
 

- The compressive strength Cσ ; 
 

- The ratio 
g

T
V

V  where VT is the sample volume and Vg is the volume of the most 

larger grain. 
 

This model takes into account scale effects due to the heterogeneity of concrete [Rossi et 
al. 1992]. The aggregates shape plays an important role on the stress distribution and fracture 
energy of heterogeneous materials (they can be spherical or angular depending on their origin). 
However this model does not respect the aggregates geometry. Furthermore the ITZ is not 
taken into account. The contact is considered as perfect. 
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2.4.3 Aggregates particles generation algorithms 
 

An interesting method consists in building the microstructure directly from an image 
(by the use of the scanning electron micrograph of a concrete specimen) of a real piece of 
material. Using image processing techniques the image can be splitted into three phases: 
mortar paste, aggregates and ITZ. But this method is very limited as it needs to ever have an 
experimental concrete sample and the microtomographic techniques requires using samples 
with standard (usually very small) dimensions. First simulations were considering aggregates 
as perfectly spherical. We can quote the model developed by Schlangen and Van Mier 
[Schlangen et al. 1992], Mounajed [Mounajed 2002] in the Symphonie code (CSTB). Figure 
 2-15 shows a few examples of modelling of aggregates in 2D and 3D. The 2D mechanical 
computation imposes a big hypothesis: we consider an identical aggregate repartition in the 
whole volume. This is hence the major drawback of the 2D aspect as we miss the random 
position of aggregates in the volume. 

 

   
a) b) c) 

Figure 2-15. Modelling of  spherical aggregates in 2D-CSTB (a) or 3D (b) [Mounajed 2002]; c) Modelling of a 
granular skeleton in a cube of 24 mm size. [Lilliu 2002] 

 
 Other models ([Leite et al. 2003], [Häfner et al. 2006]) have been developed 
considering spherical or ellipsoidal aggregates (figure 2-16).  
 

 
 

a) b) 

Figure 2-16. a) Generated 3-D specimen with 60% aggregate content [Leite et al. 2003]; b) View on the section 
of a three-dimensional geometrical mesoscale model. [Häfner et al. 2006]. 

 
One of the drawbacks of this model is the spherical or ellipsoidal shape of the cells 

which is not compatible with reality. Wang [Wang et al. 1999] developed a procedure for 
generating a random structure for spherical and angular aggregates (figure 2-17).  
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Figure 2-17. Random aggregate structures generated for different elongation and finite element mesh 
generated [Wang et al. 1999] on a 150×150 mm square or 150 mm diameter circles. 

 
All these models are based on random generation algorithms of aggregates such as 

Monte Carlo method or a random number generator. There are different techniques to 
generate these particles.  

We can mention the take-and-place methods ([Wang et al. 1999], [Schlangen et al. 1992], 
[Mounajed 2002], [Wittmann et al. 1993]). This method is commonly used and consists in 
placing aggregates one by one. If an aggregate overlaps another aggregate, the random 
generation is used and another place is found until the complete generation. The mechanism 
to generate the whole grain structure is the following: 

- Particle generation: determination of the size and shape of all aggregates particles in 
order to match the precise size distribution and aggregate content; 

- Particle allocation: the allocation of the particles in the 3D Euclidian space. 
 

Alternatively a stochastic-heuristic algorithm can be used [Leite et al. 2003]. The big 
difference with the take-and-place method is that the allocation of particles is performed 
successively starting with the largest ones. Initially, a random position of the particle is 
obtained. If the particle is completely inside the specimen and does not overlap previously 
placed ones, the position is fixed. In the other case, the particle is shifted or rotated in order to 
get away from the specimen boundary or overlapping particles. If this procedure does not 
solve the conflict, then the procedure can be repeated. Direction and magnitude of the 
movement are calculated by using a specific algorithm. 

 
Other algorithms as a random particle drop method can be also noticed [Vervuurt 

1997]. It consists in generating all the particles with a random generator first. Then they are 
dropped into the volume and they find the deepest position. A disadvantage of this effective 
algorithm is that the obtained meso-level structure is quite different from those observed in 
real concrete samples.  

 
2.4.4 Real microstructure based on mesh generation 
 

2.4.4.1 Projecting a specific mesh to the random aggregate structure  
 

A method of direct construction consists in starting from a real microstructure picture. 
The coordinates of the boundary (to define the frontier) and inside the domain (interior points) 
are obtained by choosing directly some digitalized point on the picture [Wang 1994]. The 
automatic Delaunay triangulation begins to connect the interior points and the boundary 
points to create elements.  
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Another way is to project a mesh on the random aggregate structure and assign 
different material properties, respectively to the elements according their locations [Wittmann 
et al. 1993]. 

The 2D « Numerical Concrete » has been developed by Wittmann and his coworkers 
[Sadouki et al. 1988]. The random structure of the material is created with an appropriate 
assembly of finite elements and particular properties of evolution. The inclusions follow a 
grain size distribution and are shaped according to the morphological law of Rhône Valley 
gravel. The mortar paste has an elastic behavior until stress reaches the tensile strength tσ . 
The material parameters have been identified with experiments and they are distributed 
statistically to represent concrete inhomogeneities. The fictitious crack model (see chapter 7 
for more details) is then used to simulate crack propagation in concrete according to two 
possible modes: mode I and mode II. The matrix-aggregate interface is also taken into account 
with the creation of interfacial elements between the nodes of the elements belonging to the 
mortar paste and the nodes of the aggregates.  

Roelfstra has also developed this approach in 3D as we can see in figure 2-18. 
 

  
a) b) 

Figure 2-18. a)  Computer generated finite element mesh of the analyzed concrete structure [Sadouki et al. 
1988]; b) Aggregate volume content of 0.28 in a 160×160×160 mm3 cube. 100 aggregates have been generated 

thanks to the Fuller curve. [Roelfstra 1989] 

 
However the quality of these generated meshes generated is not very good because 

many poor quality elements are contained in the mesh. Wang [Wang et al. 1999] has 
improved this technique by using an “advancing front method” (figure 2-19).  

 

  
Figure 2-19. Finite element mesh generated (thick lines represent interface elements). 

 
The possible decohesion between mortar paste and aggregate (the weak zone of 

concrete) can be also considered to model crack initiation. The interface elements used are 

 
 2-28



Chapter 2 – A review of models for concrete 
 

“zero-thickness” isoparametric elements. They are inserted between standard continuum finite 
elements to discretize the interface between the matrix and aggregates discretization [Lopez et 
al. 2001], [Wang et al. 1999]. 
 

The nodes belonging to the aggregate phase and the corresponding nodes belonging to 
the mortar matrix have the same coordinates. They are, however, treated as different nodes. In 
this way these models have the capacity to simulate crack initiations at the interface between 
matrix and aggregates. 
 

2.4.4.2 Projection of a regular mesh on the random aggregate structure  
 

Another method consists in realizing a mean of the local properties at the scale of the 
finite element [Mounajed 2002]. If Ce and Cg are the values of the element and the aggregate 
property and Ve and Vg the associated volume, the new value of the property on the whole 
element can be written as: 
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Figure  2-20 shows the elements affected by the mechanical behavior of the aggregates 
according to the above equations.  
 

 
 

Figure 2-20. Example of elements affected by the mechanical behavior of the aggregates. [Mounajed 2002]. 
 
Other methods are largely used to model concrete at a mesoscopic scale. They have 

been developed first by physicists [Hermann et al. 1989].  The 2D Lattice model with beam 
element is one of the most popular to explain fracture in concrete at a mesoscopic scale. A 
network of beams is projected on the generated grain structure. Some square, triangular or 
random lattices can be generated. The beam stiffness and the strength are chosen in such a 
way to represent the different phases of concrete material, namely, aggregate, matrix and 
interface. The tensile stress in each beam is calculated. When the tensile stress is larger than 
the strength of the material constituent, the beam element is supposed to break and is removed 
from the network.  

The lattice model is close to the truss model developed by Bazant et al. [Bazant et al. 
1990] and the framework model developed by Schorn and Rode [Schorn et al. 1991].  

 

 
 2-29



Chapter 2 – A review of models for concrete 
 

Figure 2-21. « Numerical  Concrete » model, Microlab, Delft University of Technology. [Lilliu 2002] 

 
Figure  2-21 shows that it is also possible to take into account the ITZ. The equivalent 

elastic modulus is evaluated in function of the elastic modulus of the aggregate, the mortar 
and the ITZ and in function of the associated length la, lm, lb. However we have not found in 
3D applications using this technique in the literature. The contact is here considered as perfect. 
 

 
2D analyses suffer from a number of limitations. We have described some methods to 

represent aggregates particles in 3D. We have noticed that a good generation of aggregates is 
strongly linked to its capacity to physically represent the grains. Some methods, based on 
microtomography, exist but are often limited. We have hence noticed the advantage of the 
“take and place” method which can represent angular aggregates.  

We have also presented the methods to integrate this grain size distribution into a 
mesh: the use of lattice models is easy but it cannot describe complex mechanical behaviors. 
One other solution is the average of the mechanical properties of the aggregates and the 
mortar paste on the finite element mesh but this technique cannot lead to represent physically 
aggregates. Therefore we have chosen to use the “take and place” method based on a 3D 
existing mesh. It enables to obtain a physical grain size distribution and to model complex 
mechanical behaviors for each phase of the numerical concrete. Each finite element will have 
hence a specific mechanical property corresponding to its location in the mesh (into the 
aggregates, the ITZ or the mortar paste). We do not consider in this study the contact between 
aggregates and the mortar paste.  
 

 

2.5 Conclusions 
 

In order to describe as well as possible concrete, our numerical model will be developed at 
a mesoscopic scale. The good knowledge of concrete is of prime importance to describe the 
evolution of damage and cracks in the sample.  

We have noticed that many numerical models can describe the mechanical behavior of 
concrete with more or less accuracy. For our study the non local Mazars model is then very 
well adapted as it is easy to implement, robust and gives a good description of concrete 
behavior for uniaxial loadings.  
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The non local approach is a convenient way to avoid mesh dependency. Quantitatively the 
differences between the implicit and non local approaches are limited. The integral 
formulation is well adapted for homogeneous material as mortar. When cracks and 
heterogeneous aspects intervene we have noticed that the implicit model becomes more 
interesting to use. The next chapter develops the implementation of this one in our FE code 
FEMCAM. We will explain also the choice of the non local model based on numerical tests. 

 
We have underlined the importance to represent the active components of concrete. Three 

main phases appear: mortar paste, aggregates and the ITZ. The ITZ is important as it is in 
general the location of cracks initiation. But the thickness of this zone is very low compared 
to the sample size. It is thus difficult to mesh such a thin geometrical zone. In the following 
work, we have decided to represent concrete using two main parts: the mortar paste and the 
aggregates.  The contact between the mortar paste and the aggregates will be considered as 
perfect. The multi-domain version of FEMCAM should be used to account for possible 
friction between aggregates and the mortar paste, but this would require high CPU time. 

 
Few models take into account the heterogeneous aspects of concrete. The state of the art 

review on these models has shown that there were most of the time limited to 2D 
configurations. Consequently we have decided to develop a new model based on the “take 
and place” method, where concrete is considered as a 3D heterogeneous material. This 
model, developed in our FE code FEMCAM, is presented in the next chapter. 
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 3.1 The FEMCAM software  
 

The FEMCAM software (Finite Element Method for Concrete Analysis Model) is 
derived from the commercial software Forge3® developed by CEMEF. Forge3® is a process 
simulation tool, based on the Finite Element Method. It was initially dedicated to simulate 
forging. It predicts material and thermal flow during 3D forming processes. The flexible 
Forge3® tool kinematic structure enables to simulate a large range of complex processes such 
as shape rolling, floating dies etc. Forge3® is based on an updated Lagrangian formulation 
and can deal with a 3D thermo-mechanical coupled computation. Figure  3-1 shows an 
example of the hot forging process of an automotive part.  

 

 
Figure 3-1. A hot forging of an automotive part with Forge3®. 

 
This software is also well adapted to civil engineering problems.  

 
Forge3® enables to simulate a large range of material behaviors as elastic, elastic 

plastic, elastoviscoplastic, damageable material or with a thermo-dependant behavior. This 
aspect is important as it indicates that Forge3® is initially an efficient tool to take into 
account the non-linear mechanical behavior of quasi-brittle materials. A Newton Raphson 
algorithm with Pre-conditionned Conjugate Gradient Solver is used to solve the discretized 
system.  

Forge3® can handle self contact and contact between multiple deformable bodies 
automatically; It can model sliding, bilateral sticking contact or friction contact. We use 
bilateral sticking contact to simulate a perfect contact with adhesion between two bodies. If 
we want to model friction (strong or low) between the tools and the sample (unilateral 
contact) we can use various friction laws (see appendix A.2 for more details). 

 
A fully automatic tetrahedral meshing and remeshing enables to simulate very 

complex shapes. This other aspect shows this numerical tool is powerful enough to model 
even if it is a complex case with cracks. This point is very important in our study to model 
concrete samples fracture. Forge3® can deal with multimaterial bodies, which is interesting in 

 3-33



Chapter 3– Implementation and validation of a 3D heterogeneous elastic damage problem for 
concrete 

 
 

 

our case to model concrete at the mesoscopic scale (matrix and aggregates). A completely 
parallel solver enables faster and more accurate computations. 

Forge3® has been recently extended to a multi-domain version in order to deal with 
the effect of the contact between different bodies. 
 

3.2 Modelling of concrete  
 

To model the granular skeleton, we consider two different parts: the mortar paste and 
the aggregates. The complex contact between the aggregates and the mortar paste is neglected 
to simplify the problem. So we consider a perfect contact between all finite elements. 
Furthermore the algorithm, that we have implemented, takes into account the following 
features: 

- The aggregates position must be absolutely random;  
- Grain size can be provided by a real grain size distribution;  
- Spacing between coarse grains.  

 
Based on these rules, an algorithm has been set up in FEMCAM in order to model and 

position aggregates in concrete. The algorithm provides a specific rheology for each finite 
element in the mesh, based on whether this element belongs to the mortar paste or to the 
aggregate. Thus contact between the aggregate and the mortar paste will be considered as 
bilateral sticking.  
 
3.2.1 Physical aspects 
 

Two main physical aspects are taken into account in our algorithm: distance of 
exclusion and edge effects. 
 

3.2.1.1 Distance of exclusion 
 

The distance between the largest aggregates is called the “Maximum Paste Thickness” 
(MPT). It represents the mean distance between two aggregates, considering that each 
aggregate is surrounded by a paste layer, whose thickness is proportional to the aggregate 
diameter. The MPT may be chosen to describe the maximum effective area of such model 
element. The MPT can be calculated as follows: 
 

 
Figure 3-2. Concrete defined as a dry stacking injected with the mortar paste. [de Larrard 1999] 

 
Caquot law provides this distance [Caquot 1937]: 
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where dmax is the maximum size of the aggregate, g is the aggregate volume in a volume unit 
of concrete. For rounded aggregate, g* can be calculated with the following equation [de 
Larrard 1999]: 
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where dmin  is the aggregates minimum size. 
 

3.2.1.2 Edge effects 
 

pV  is the volume located between the edge and the distance d/2, where d is the 
aggregate diameter considered. The compactness in the volume  is thus weaker than the 
compactness α in the centre of the sample.  

pV

 

 
Figure 3-3. Wall attachment effect on a stacking of grains of unique size. [de Larrard 1999] 

 
The mean compactness α  in the whole volume is equal to [de Larrard 1999]: 

 
( ) ααα wpp kVV +−= 1  (3-3) 

 

with kw = 0.88 for rolled aggregates and kw = 0.73 for crushed aggregates. It enables to know 
how aggregates will be generated for each aggregate size range in the volume Vp.  
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3.2.2 Random generation of aggregates 
 

3.2.2.1 Algorithm for random aggregates generation 
 

a) The algorithm 
 

An algorithm has been implemented in the code FEMCAM. It generates completely 
randomly a granular skeleton. To distinguish aggregates from the mortar paste, a table gives a 
different behavior for each phase. We consider aggregates as a sphere with a radius R given 
by the grain-size distribution. Figure  3-4 details the random algorithm for aggregates 
generation. 

Starting from the largest one, aggregates are sequentially placed into the mortar paste. 
In fact it is generally easier to pack the particles into the concrete.  

It is also essential to have no contact between aggregates (nodes in common) in the 
aggregates skeleton. If some nodes belong to two aggregates at the same time, the code cannot 
handle the concrete degradation due to the damage evolution in the mortar paste located 
between aggregates. The aim is hence to have free spaces between aggregates to take into 
account the mortar paste and the ITZ between aggregates. 

Furthermore the algorithm stops when the number of aggregates to generate is reached 
or when the volume of the previous granular skeleton is also reached. It enables to obtain a 
granular skeleton with a very accurate global volume compared to the experiments. 

 
The mesh plays an important role in the generation of this skeleton. The mesh size 

must exceed the radius of the aggregate to generate. A fine mesh enables the insertion of a 
maximum number of aggregates. On the contrary if the sample is discretized with few finite 
elements, the algorithm will not be able to generate the granular skeleton because of a lack of 
elements. To generate this skeleton, the discretization depends on: 

 
- The size of the sample; 

 
- The number of aggregates to generate; 

 
- The edges effects and the MPT. 

 
Furthermore we have tested the influence of the mesh size on the sphere volume to generate. 
Indeed a small mesh size leads to a sphere with a volume nearest from the experiment than a 
sphere in a coarse mesh. 
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Research of finite elements belonging to the sphere of radius R 
 

Data: Grain-size distribution 
         Mesh of the sample 

Does this “virtual” aggregates respect the edges effects? 
Does this “virtual” aggregates respect the “Maximum 

Thickness of Paste”? 

YES

NO 

Random localization of nodes associated with a radius  R 

Are all aggregates generated?  
Or 

Is the volume of the previous granular skeleton reached?  
 

END OF THE GENERATION 

NO 

YES

Do i = 1, number of elements 
Does the finite element of this sphere overlap 

the finite elements of already generated 
aggregates? 

If (YES) then 
The finite element is not taken into account. 

End if 
End Do 

Generation of the aggregate. 

Does the volume of the granular skeleton  ≥  (the theoretical 
volume of the previous granular skeleton) 

NO 

YES

 
Figure 3-4. Random algorithm of aggregates generation. 
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b) Discussion 
 

We presently face a problem of storage capacity when a lot of aggregates with a very 
fine diameter have to be generated. Moreover the meshing stage is not yet parallelized. So two 
solutions emerge:  

 
- Reduce the size of the sample;  

 
- Consider larger aggregates embedded in a mortar paste constituted of sand grains, 

small aggregates and a cement paste. 
 
The first solution is not efficient. Indeed, with a number of constant finite elements, a 
reduction by eight of the volume of the sample divides the size of the mesh only by two. 
Consequently we choose the second approach. A minimal aggregate diameter must be set. 
This threshold depends on the smoothness of the generated mesh and the granular skeleton to 
generate. 
 

3.2.2.2 Representation in FEMCAM 
 

The sample is parallelepipedic with a size of 280×70×70 mm. Table  3-1 represents 
the selected grain-size distribution based on experimental data: 

 
Average diameter of aggregates (mm) 18 14.25 11.25 9 7.15 

Number of aggregates 38 101 162 244 389 
Table 3-1. Selected grain-size distribution with 935 aggregates. 

 
The maximum diameter of the grains generated being of 18 mm, MPT is evaluated to 2.6 
mm. About 65 million grains should be modelled in this sample to represent the sand grains. 
The second approach which considers two phases, aggregates embedded in a mortar paste, is 
thus well justified. So only the aggregates with a diameter between 7.15 and 18 mm are 
represented. The following mesh corresponds to the actual limit of the generation of a mesh 
by a standard computer (Intel Xeon Machine, 1.7 GHz, 512 Mo Ram). The mesh size is about 
2 mm. The time needed to generate this skeleton is about one hour.  
 
 

 
Figure 3-5. a) Heterogeneous sample generated in FEMCAM - 165 669 nodes; 902 826 elements; b) zoom on one 

aggregate in the sample. 
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Figure  3-5 shows numerical aggregates do not have a very regular shape, depending 

on the mesh structure. Thus contrary to other models considering aggregates as perfectly 
spherical (see chapter 2, section 2.4), this method generates a sufficiently realistic granular 
skeleton in comparison with the real aggregates observed.  
 
 
The generation algorithm of the granular skeleton is based on three main aspects:  
 
- The algorithm takes into account physical parameters as the edges effects and the “MPT”;
  
- This generation is mesh dependent. A very fine mesh allows obtaining a result closer to the 
desired grain-size distribution. Conversely the consequences of a coarse mesh are obtaining a 
sample whose grains have sizes values far away from the desired initial sizes; 
 
- The algorithm generates aggregates whose size is superior to a minimal diameter. This 
hypothesis is necessary because of the limitation of the storage capacity of a standard 
computer.  
 

 
Now we use this 3D multi field code to simulate concrete behavior. In the next part we 
introduce mechanical behaviors attributed to mortar paste and to aggregates. 
 

3.3 The elastic damage model using a mixed-velocity pressure 
formulation 
 
 At the mesoscale, we distinguish two behaviors to simulate concrete specimen: 
 

- Aggregates behavior; 
 

- Mortar paste behavior. 
 
 Aggregates are considered as purely elastic. We have studied the different possibilities 
to simulate mortar paste behavior (see chapter 2, section 2.3). We have chosen here the elastic 
damage behavior with the Mazars model. This section deals with the implementation of the 
Non Local Mazars model in the 3D FE code FEMCAM.  A specificity of this code is its 
mixed velocity-pressure formulation. 
 
3.3.1 The equilibrium equations 
 

3.3.1.1 The dynamic equilibrium 
 

Let us consider a 3D domainΩ . The classical equilibrium equations for a solid subject 
to a mechanical load can be expressed in a local form by:  
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( ) ργρσ =+ fdiv  (3-4) 
 
where σ  denotes the stress field in the solid, f the body forces per mass unit, ρ  is the 
volumic mass and γ  is the acceleration. The problem to be solved is expressed in FEMCAM 
using a velocity-pressure formulation. Thus the stress field tensor is classically expressed as 
the sum of its deviatoric part s and its spherical part p: 
 

pIds −=σ  (3-5) 
 

Id is the identity tensor and ( ) 
3
1 σTrp −

= . s is evaluated using a local resolution of the 

behavior law. The classical equilibrium equations for a solid submitted to a mechanical load 
can be expressed by:  
 

( )
( ) ( )⎩

⎨
⎧

=+− ργρfpGradsdiv
:assuch  pv, Find

 (3-6) 

 

3.3.1.2 The incompressibility condition 
 

In addition to Eq. ( 3-6), we introduce the incompressibility condition on the velocity 
field v: 
 

( ) 0=vdiv  (3-7) 
 
This condition will be modified to be adapted for concrete behavior. 

3.3.1.3 The boundary conditions 
 

We also prescribe some boundary conditions on the surface τΩ∂∪Ω∂=Ω∂ v . 
 
- A surface load impτ  or an imposed velocity  can be applied to impv Ω  on its boundary τΩ∂  : 
 

τ

ττστ

Ω∂=

Ω∂==

onvv
or

onn

imp

imp.

 (3-8) 

 
in which   is the normal to the part. nr

 
- One of the boundaries of  can be in contact with a tool.  The contact can be defined 
with: 

vΩ∂ Ω

-  a friction condition: 
 

( )nnn ... σστ −=  (3-9) 

 3-40



Chapter 3– Implementation and validation of a 3D heterogeneous elastic damage problem for 
concrete 

 
 

 

 
  -   or a non penetration condition between a slave node and a master triangular face. It 
corresponds to the Signorini conditions: 

 
( )

( )[ ] 0.
0

0.

≤−
≤

≤−

ntool

n

tool

nvv

nvv

σ
σ  (3-10)

 
where  is the tool velocity and toolv nnn .σσ =  is the contact pressure at the normal of 
the surface of the part. More details on these techniques can be found in [Pichelin et al. 
2001]. 

 
3.3.2 Constitutive equations 
 

A classical one step Euler scheme is used to compute the solution at time  when 
the solution at t  is known. In the case of a pure elastic behavior, the Young modulus E 
remains constant during simulation. In this case, there is no variation of the shear modulus

tt Δ+

μ  
and the compressibility modulus χ  between t and tt Δ+ . In the case of an elastic damage 
model, the Young modulus E depends on the damage value. It thus affects the values of μ  
and χ  which can change between time t and time tt Δ+ .  

The material is assumed to be an elastic damage material. The elastic strain ε  is related 
to the stress field tensor σ  through the Hooke law:  
 

( )IdTr ελμεσ += 2  (3-11)
 

with 
( )

( )( )⎪
⎪
⎩

⎪⎪
⎨

⎧

+−
=

+
=

tcoefficien Lamé: with 
121
)(

modulusshear  :  with 
12

)(

λ
νν

νλ

μ
ν

μ

DE

DE

 

 
D denotes the damage which affects the Young modulus value E in order to the model 
material degradation. Using the Hooke law, we thus obtain the expression of the deviatoric 
part p and the spherical part s: 
 

( )

( ) ( ) ( ) ( )⎩
⎨
⎧

−=
=

⇒
⎪⎩

⎪
⎨
⎧

+=

−=
εχ

μ

ελμσ

σσ
Trp

es

TrTr

IdTrs 2

32
3
1

 (3-12)

 

with ( ) modulusility compressib: with 
213
)( χ
ν

χ
−

=
DE  and ( )IdTre εε

3
1

−=  is the deviatoric 

part of the strain tensor. The following paragraphs give the expressions of the deviatoric part s 
and the spherical part p if we consider their possible evolutions between t and . tt Δ+
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3.3.2.1 Deviatoric part 
 
 By definition: 
 

tttttt es Δ+Δ+Δ+ = μ~2  (3-13)
Furthermore: 
 

ttttt

ttttt

eee Δ+Δ+

Δ+Δ+

Δ+=

Δ+= μμμ ~~~
 (3-14)

 
Expressing s as a function of time t, we get: 
 

( )( )
tttttttttttttt

tttttttt

eeees
ees

Δ+Δ+Δ+Δ+Δ+

Δ+Δ+Δ+

ΔΔ+Δ+Δ+=

Δ+Δ+=

μμμμ

μμ
~2~2~2~2

~~2
 (3-15)

 
which can be rewritten: 
 

tttttttttt eess Δ+Δ+Δ+Δ+ Δ+Δ+= μμ ~2~2  (3-16)
 
which is equivalent to the following system: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+Δ+=

Δ+
Δ+Δ+Δ+ tttt

t

tt
ttttttt eeetss μμ

μ
μμ ~2~

~
~

2~2 &  (3-17)

 
Eq. ( 3-17) thus becomes: 
 

ttttt
t

tt
tt etss Δ+Δ+

Δ+
Δ+ Δ+= &μ

μ
μ ~2~
~

 (3-18)

 

with 
t

ee
t

ee
ttttt

Δ
−

=
Δ

Δ
=

Δ+Δ+

& . We draw your attention on the fact that the term t

tt

μ
μ

~
~ Δ+

 is: 

- equal to 1 within the framework of a pure elastic material.  
- lower or equal to 1 within the framework of an elastic damaged material. 
 

3.3.2.2 Spherical part 
 

In the same way that above, it can be shown that at time tt Δ+ : 
 

( )vtdivpp ttt
t

tt
tt Δ−= Δ+

Δ+
Δ+ χ

χ
χ

 (3-19)
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In the same way, the term 
t

tt

χ
χ Δ+  is: 

- equal to 1 within the framework of a pure elastic material.  
- lower or equal to 1 within the framework of an elastic damaged material. 

 
 
3.3.3 The weak formulation 
 

We only consider the case of a quasi-static analysis. The inertia terms are thus 
neglected. We use the constitutive equations (see Eq. ( 3-19)) to rewrite the equation of 
behavior and the equation of incompressibility of the elastic damage strain part in the 
following way: 
 

( ) ( )

( )⎪⎩

⎪
⎨

⎧

=+−

=−

0

0

2 ppvdiv

pGradsdiv

χ
χ

χ
&&  (3-20)

 
This constitutes the strong formulation of the problem. In order to solve this problem, let us 
consider its weak formulation by introducing the following virtual fields*: 
 

( ){ } ( ){ }
( ){ }{

( )Ω=

Ω∂≤Ω∈=

Ω∂≤−Ω∈=

2
v

31
0

v
31

on  0.,,

on  0.,,

LP

nvHvvV

nvvHvvV tool

}  (3-21)

 
Thanks to the Virtual Work Principe (VWP), we get the weak velocity–pressure formulation 
associated to the mechanical problem: 
 

( )
( ) ( )

( )

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

×∈∀

=Ω+−−

=−Ω−Ω

×∈

∫

∫∫∫

Ω

Ω∂ΩΩ

PVpv

dppvdivp

dSvdvpdivdvvs

PVpvFind

imp

0

2

*)*,(

0][*

0*.**:)(

,

χ
χ

χ

τε

&&

&

 (3-22)

 
3.3.4 Discretization 
 

Let us consider a finite element discretization of the 3D domain Ω .  
 

Neee ⊂Ε∈Ω=Ω ,U  (3-23)

                                                 
*  is the space of the functions which are square integrable on( )Ω2L Ω  and 1H  is the Sobolev space of  
integrable functions. 

2L
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3.3.4.1 Choice of the finite element 
 

We use here P1+/P1 elements [Coupez 1991]. These are linear tetrahedral elements. 
"+" means we use an additional degree of freedom for velocity interpolation, at the centre of 
the element. This additional degree of freedom enables to comply with the Brezzi-Babuska 
compatibility relation between spaces for discretization of velocity and pressure [Babuska 
1973]: the associated shape function is the bubble function. Velocity and pressure are 
interpolated linearly on the element and the degrees of freedom are located at each node of the 
element. The pressure field is linear and continuous. 
 

 

velocity pressure 

Figure 3-6. Representation of the P1+/P1 element. 

 

3.3.4.2 Discrete weak formulation 
 

We consider and . The  space stands for the bubble function 
discretization.  

VVh ⊂ PPh ⊂ hB

 
( )( ) ( )( ){ }
( ) ( ){ }
( )( ) ( )( ){ }4...1,, ,on  0b ,,

,p and ,

,v and ,

3
1/eh

30

1h
0

3
1h

30

∈Ω∈Ε∈∀Ω∂=Ω∈=

Ε∈∀Ω∈Ω∈=

Ε∈∀Ω∈Ω∈=

Ω

Ω

Ω

iPbeCbbB

ePCppP

ePCvvV

iie

e

e

ehhhh

ehhh

ehhh

 (3-24)

 
( )( 30 ΩC ) is the space of continuous functions on the field .3ℜ∈Ω ( )( )31

eP Ω  denotes the 
space of linear functions on the element 3ℜ⊂Ωe

*. 
 
The velocity field v interpolated on element P1+/P1 is decomposed: 
 

hhhhhh BVWbvw ⊕=∈+= h  w where,  (3-25)
 
where  is the linear component of the velocity field and  the bubble-related component. 
Let Nbnoe and Nbelt be respectively the number of nodes and of elements associated to the 

hv hb

                                                 
* 

4,..,1=
Ω

iei
 represents all the tetrahedra  of the triangulation, the sub-tetrahedra for which the tetrahedron 

centre is a classical node. 
eΩ
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space triangulation withΩ . Consequently, the velocity field can be expressed at any point x of 
space through the finite element approximation: 
 

∑∑
==

+=
nbelt

k
j

b
j

nbnoe

k
k

l
kh BxNVxNxw

11
)()()(  (3-26)

where .  hh Ww ∈ ( ) hnbnoek
l
k VN ∈= ...1  are related to interpolation of the linear element associated 

the node k and ( ) hnbeltj
b
j BN ∈

= ...1
, the bubble function associated with the element j.  

 
Pressure can be expressed at any point x by: 
 

∑
=

=
nbnoe

k
k

l
kh PxNxp

1
)()(

 
(3-27)

 
Based on these approximation spaces, it is now possible to write the discrete elastic damage 
problem: 
 

( )
( ) ( )

( )

( )

( )⎪
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⎪
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⎩

⎪
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***
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 (3-28)

 

3.3.4.3 Resolution of the finite element problem 
 

The problem Eq. (3-28), after using a time integration scheme on time step , gives a 
nonlinear system of equations where the unknowns are . 

tΔ
hhh pbv ,,

 
( )
( )
( )⎪

⎩

⎪
⎨

⎧

=+++=

=+++=

=+++=

0,,v
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0,,v

h

h

h

ppppbpl
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p

bbpbbbl
hb

b

llplbll
hb

l

RRRRpbR

RRRRpbR

RRRRpbR

 (3-29)

 
where 
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The nonlinear system Eq. ( 3-29) is solved using a Newton-Raphson iterative method. The 
stiffness matrix is assembled from the local matrices: 
 

y
RK

xy
xy

∂
∂

=  (3-31)

 
where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } { }hh pbpppbplbpbbbllplbllxy ,,vy and ;;;;;;;; h== . This matrix is 
symmetrical. Thus for each iteration of the Newton-Raphson method, the linear system to be 
solved has the following form: 
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pbv δδδ ,,  are the iterative corrections of fields v, b and p. 
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According to the definition of space B, the bubble is an internal degree of freedom to the 
element. It is indeed equal to zero on the edges. Consequently, it can be determined in the 
system at the element level.  At each Newton-Raphson iteration, the resolution gives the nodal 
corrections pv δδ ,  in order to compute and  from  and . The determination of  
is then carried out at the element level. These steps are carried out until convergence. 

1+nv 1+np nv np 1+nb

 
3.3.5 General outline of an elastic damage problem resolution in 
FEMCAM 
 

Figure  3-7 shows a schematic diagram of the algorithm used to solve an elastic 
damage problem in FEMCAM. The strain  is updated at each time step. The stress deviator 
s and the tangent modulus L are then calculated, the tangent modulus is used in the Newton-

iε
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Raphson algorithm. The loading is then incremented. Damage can be weakly or strongly 
coupled to the material behavior. 
 

Input of initial data 
Fields initialisation  

YES 

k
t
k

tt
k

kk

δεεε +=

+=
Δ+

1
 NO

Final results 

ttt
k

Δ+=
= 1  

tt
k

ttt
k

Δ+Δ+ Δ+= εεε  

Convergency ? 

End of 
simulation ? 

YES 
NO 

Weak damage 
coupling 

Strong damage 
coupling 

Mechanical computations: 
For each element: 

- Computation of the stress deviator )(Ds tt Δ+  
- Computation of the tangent modulus      

ttsL
Δ+

∂
∂

=
ε&

 

 
 

Figure 3-7. Resolution of an elastic damage problem. 
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3.3.5.1 Weak coupling 
 

Damage is evaluated at the beginning of the time step using strains and stresses 
computed at the previous time step. The damage value D calculated at the end of the previous 
time step affects the Young modulus E for the following time step. 
 

3.3.5.2 Strong coupling 
 

Once the strain has been computed, a corresponding damage D is evaluated at the 
same time. The Young modulus E is then affected. Weak coupling does not lead to a 
mechanical balance of the problem. In a strong coupling procedure, the strains are thus 
corrected within the Newton-Raphson loop. Once the equilibrium has been reached, the 
loading is incremented and the process continues. 
 
The tangent modulus is also affected by an additional term within the framework of a strong 
coupling. At time : tt Δ+
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Where 0~μ  denotes the initial shear modulus and  the reactualized one. Hence, we can 
obtain: 

tt Δ+μ~
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(a) (b)  
 
As the term (a) is nonlinear with respect to the strains, the bubble tangent modulus remains 
identical to those calculated within the framework of a purely elastic problem (linear part of 
the tangent modulus). The assumption that part (b) is negligible leads us to use a tangent 
modulus identical to the pure elastic case. This assumption is justified as long as it does not 
prevent convergence. 
 

3.4 Selection of the model and numerical strategy 
 

The constitutive law is now going to be validated. We shall check the efficiency of the 
non local model and we test the two possible implementations of this model (weak or strong 
coupling). 
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3.4.1 Local versus non local model 
 

3.4.1.1 Numerical test 
 

We wish to underline here the interest of the nonlocal model with an integral 
formulation (see chapter 2, section 2.3.2.2). A 3D tensile specimen with a centred hole has 
been simulated using both non local and local Mazars model. Dimensions of the specimen are 
200×200×2.5 mm. Due to symmetry only a quarter of the sample is discretized as shown in 
figure 3-8. 
 

100 mm

2.5 mm

50 mm

A

 
Figure 3-8. Tensile specimen. 

 
The behavior corresponds to an elastic damage law. We have used the following arbitrary 
parameters for these simulations (see table 3-2). 
 

E (GPa) υ  CA  CB  TA  TB  0Dε  Critε~  β  lC (mm) 

30 0.2 1.4 1700 0.8 20000 1.10-4 1.10-3 1.05 15 
Table 3-2.Material parameters. 

 
We study here the mesh dependency of results using the local and non local Mazars 

model. Figure  3-9 shows the five different meshes h used for this study. When the 
equivalent strainε~  reaches , the “Kill element” method is used; the element mechanical 
contribution to the stiffness matrix is set to zero. 

Critε~
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h = 10 mm, 686 elements h = 5 mm, 1693 elements 

 
h = 2.5 mm, 9771 elements 

Figure 3-9. Finite element meshes with different mesh sizes h. 

 
We test here the effect of the non local model on the material response.  
 

We have plotted at location A the damage evolution versus displacement predicted by 
Mazars model in its local version (figure 3-10.a) and the non local version (figure 3-10.b). 
Points on the different curves are arbitrary placed and do not correspond to the time step of 
the simulation. 

This tensile test shall physically induce crack initiation of the sample at point A. The 
local model gives a damage which evolves with different velocity to 1 for h = 10 mm and h = 
2.5 mm. However we can see that the local model gives a damage response for h = 5 mm 
which does not converge to 1. How can we explain this behavior? The sample first damages at 
point A. Then a crack initiates in the sample - but not at point A. The local model is thus 
responsible of this non-physical behavior. Consequently damage is distributed differently and 
stagnates (  at the end of the simulation). 5.0≈D
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Figure 3-10. Damage evolution: a) local model, b) non local model. 

 
Figure  3-11 compares the load-displacement curves obtained using different mesh 

refinements for a classical damage model (figure 3-11.a) and for the non local damage model 
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(figure 3-11.b) with an integral formulation. Points on the different curves are arbitrary placed 
and do not correspond to the time step of the simulation. 
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Figure 3-11. Load-displacement curves: a) local model, b) non local model. 

 
In the case of the local Mazars model, damage evolution in point A (figure 3-10) 
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differs according to the mesh size h. Moreover we can see that the load-displacement curve is 
unstable in the damaged part. For example, the load-displacement curve, corresponding to the 
mesh size equal to 1.25 mm, evolves very differently in the damaged part in comparison with 
the other curves. It underlines the different evolutions of damage in the whole sample 
according to the mesh size. On the contrary, the nonlocal model shows its effectiveness 
whatever the mesh refinement:  

 
-     Damage evolution in A is insensitive with respect to the mesh size; 
 
- The load-displacement curve is stable in the damaged part;  

 
- It can be seen that damage increase is more important with a finer mesh. Mesh 

dependency of the results is clearly less sensitive for the non local approach. 
 
Mesh dependency is thus clearly less important for the non local approach. 

3.4.1.2 Choice of the non local model 
 

We have noticed the mesh independence of the non local model with an integral 
formulation. But, associated to the “Kill element” method, the integral formulation may give 
unaccurate results. The area used to regularize the solution (based on the characteristics 
length) for a node close to the crack, may include a node located on the other side of the crack, 
which is non realistic. This problem is shown figure 3-12. 
 

 
Figure 3-12. A 2D case where the evaluation of the finite elements belonging to the representative volume for 

the non local model with an integral formulation leads to a problem when it is associated to a crack. 

 
There are some solutions to this problem: the distance between elements can be 

evaluated differently. We can estimate the “real” distance by circumventing the crack. 
However this method is heavy to integrate in a finite element code.  

Furthermore it leads to a dependence of the computation time in function of the 
number of finite elements. Figure  3-13 compares the computation time between a local 
model (LM), a non local model with an integral formulation (NLM) and a non local model 
with an implicit model (NLIM) for different numbers of elements. Each test is performed on a 
standard computer (Intel Xeon Machine, 1.70 GHz, 1 Go RAM). 
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Figure 3-13. Comparison of the computation times between local and non local models  

 
We notice that the computation time increases linearly with the number of elements for the 
local model (LM) and for the non local model with an implicit formulation (NLMI). The CPU 
time of the local model is the faster. For the non local model with an integral formulation 
(NLM) this increase is exponential with the number of finite elements. For 100 000 elements, 
the CPU time is multiplied by almost 100, which is gigantic. Nevertheless it could be 
interested to optimize the algorithm to decrease CPU time. A solution is to use the Evolutive 
Non Local Model (ENLM):  The integral formulation is used at the beginning of the 
simulation and stops being used once damage has reached a critical value in the sample. The 
“ENLM” model provides a good balance between CPU time requirements and results 
accuracy. In this way the “ENLM” model is smaller than for the NLM almost 2.5 times faster 
than the classical non local model (NLM) but almost fifteen times higher than for the local 
model (LM). 
 

But the implicit formulation leads to the best result in term of CPU time. Whereas this 
method is an approximation of the non local approach, it is also well adapted to 3D multi-
materials simulations as we have demonstrated that the calculus time is not so high than for a 
non local approach. Furthermore the evaluation of ε~  is independent of the behavior of the 
neighbouring elements. It is so well adaptive for heterogeneous materials and for simulations 
which used fracture mechanics. We have thus selected this implicit model for our future 
numerical tests. 
 

3.4.1.3 Choice of the internal length for the non local model 
 

A three point bending test has been performed with the non local model associated to 
an implicit formulation (more details on this test will be given in section 4.5.1.1). Table  3-3 
shows the arbitrary parameters we have chosen: 
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ME  (GPa) Mν  0Dε  AT BBT Critε~  
30 0.2 1.29 25 316 410.385.1 −  510.4625.3 −

Table 3-3. Second set of parameters used to verify the objective function. 

 
Numerically, we have observed that the use of a non local model leads to an 

independence on the mesh choice in the linear part and during the damage initiation in the 
sample (see section 3.4.1.1). And the internal length is an important parameter since the 
maximal load reached depends on its value. For different internal lengths values, different sets 
of parameters can be found. Here we have evaluated the effect of the parameter c~  on the 
load-displacement curve. We use here the same mesh (the mesh size used is equal to 2.5 mm) 
to compare numerical results.  
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Figure 3-14. Comparison of the load-displacement curve for a three point bending test for different internal 

length. 

 
Figure  3-14 underlines the importance of the choice of the internal parameter c~ . The 

introduction of this one modifies the damage evolution and the maximum load reached. When 
the c~  value is small with respect to the mesh size, the non local model has no effect on the 
global response. We are thus close to the local model. It is then important to correlate the c~  
value and the mesh used. When the c~  value increases, the non local model has an influence 
on the global response. We do not converge to a unique solution. It is therefore necessary to 
adapt parameters identification in function of c~ . 
 
3.4.2 Weak coupling versus strong coupling 
 

The influence of coupling on the material response is investigated here. In order to 
simplify interpretation of results, we work on a single element submitted to tension (figure 3-
15). Three symmetries are imposed on the three faces of the tetrahedron in order to prevent 
any rigid body motion. 
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Figure 3-15. Single element submitted to a tensile test. 

 
The constitutive law is an elastic damage law. Table  3-4 gives the material parameters. 

 
E (GPa) υ  CA CB  TA TB  0Dε  β  

30 0.2 1.4 1700 0.8 20000 1.10-4 1.05 
Table 3-4. Material parameters. 

 
Here the influence of the time step on the material global response is tested. Figure  3-16 
shows the load-displacement curves for each time step using a weak coupling (figure 3-16.a) 
or a strong coupling (figure 3-16.b).It can be noted that results are less dependent on the time 
step for strong coupling. However a strong coupling leads to higher computation times. It can 
become unacceptable for large multimaterial cases. In this case, it can be thus preferable to 
use a weak coupling in conjunction with an adaptive time step. 
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Figure 3-16. a) Weak coupling, b) Strong coupling. 
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3.4.3 Adaptive time step 
 

In order to improve the convergence of the Mazars model without decreasing the time 
step over the whole time interval we have developed a specific procedure module in the 
FEMCAM software enabling time step adaptation with respect to damage evolution.  

3.4.3.1 Local approach 
 

The first method is based on the damage evolution in each finite element (Adaptive 
Time Step n° 1). In Mazars model case, the first solution is to compute the time step  using 
the following formula:  

ndt
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 (3-36)

 
calcε~ corresponds to the value on the element for which the equivalent strain is the nearest 

to 0Dε ; 0Dε  is the equivalent strain threshold in the Mazars model and  is the equivalent 
strain beyond which damage is initiated.  corresponds to the initial time step. The polynom 
has been specifically chosen to integrate these important data. It enables to reduce time step 
when the equivalent strain is close to the equivalent strain threshold. 

Critε~

0dt

Figure  3-17 shows the 
evolution of the time step for  and . 4

0 10−=Dε
310~ −=Critε

 
Figure  3-17 shows that the time step decreases when the equivalent strain  

becomes close to the equivalent strain threshold
calcε~

0Dε . When  is equal to calcε~ 0Dε  there is a 
minimum value for the global time step. If  exceedscalcε~ 0Dε , time step increases linearly until 
it reaches a maximal value. However this local approach can be inappropriate in the case of 
complex problems where damage does not evolve with the same rate in different areas of the 
sample. Consequently it leads to a very fine time step during almost all the simulation. 
Though it may give good results, the method can be improved in order to save on computation 
time. Thus we introduce a global approach. 
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3.4.3.2 Global approach 
 

The other possibility to adapt the time step is based on the global response of the 

material (Adaptive Time Step n° 2). We test the current slope 
d
F

tt ∂
∂

=Δ+α of the load-

displacement curve for the solution a time tt Δ+  compared to the previous slope at time t . 
Then the time step is adjusted with the following formulae: ndt
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The parameter p controls the weight of the time step decrease.  
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3.4.3.3 Comparison of the methods 
 

We first compare these methods on the case of a single element subject to tension. The 
load–displacement curves for classical and adaptive time step (n° 1 and n° 2) are compared 
(figure 3-18). The initial time step of the adaptive time step case is one second. The behavior 
law is an elastic damage law. The parameters used for these simulations are those of table 3-4. 
We have set p to 20 for the second approach. 
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Figure 3-18. Comparison of load-displacement curves in function of the type of time step. 

 
We see that adaptive time step n° 1 gives good results; the maximal load is as accurate as 
when using a very small constant time step.  CPU time results with this approach and a small 
time step are also compared in table 3-5. 
 

 Very small time step Adaptive time step n°1 
Time (s) 150 51.80 

Table 3-5. CPU time for the two methods. 

 
The “Adaptive time step” procedure is almost three times faster than the classical time step 
one. On the contrary the adaptive time step n° 2 is not efficient in this case. Indeed as the test 
is only on one element, the smooth part of the load-displacement curve is too fast and this 
approach cannot help out.  
 

Now we test these approaches on a 3D tensile specimen with a centred hole subject to 
a tension test with the implicit formulation ( )2mm 15~ =c . We use the same damage 
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parameters as in table 3-4. Figure  3-19 shows the load-displacement curves corresponding to 
each method. 
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Figure 3-19. Load-displacement curve for a compression test. 

 
Figure  3-19 shows the good results of the “Adaptive Time Step” compared to the small time 
step. Furthermore we notice that the “Adaptive Time Step” n°2 describes better the smooth 
part of the curve as the code can control the weight of the parameter p in order to decrease the 
time step (here p = 40). This method would be more appropriated to describe the behavior of 
quasi-brittle material as mortar and concrete. Table  3-6 notices the computation time for 
each method. 
 

 Large Time Step Small Time Step ATS n°1 ATS n°2 
Time (s) 9 77 28 50 

Table 3-6. CPU time for the two methods 

 
We notice that it is also more interesting to use the second method for computation time 
reasons. For this problem, the difference does not appear clearly between the two methods. 
But we can estimate that for a complex behavior (concrete for example), the second method 
will be more adapted as the time adaptation is global and does not take into account local 
variation of damage which may decrease the time step.  
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First the correlation between the model and the mesh size is established. It is shown 

that a non local model leads to results independent on the mesh size. Three types of non local 
model can be chosen: a non local model with an integral formulation, an “evolutive non local 
model” and a non local model with an implicit formulation. It appears that the implicit model 
is the most adapted model for concrete. 

Furthermore for strong coupling, the model is completely independent on time 
discretization. For the weak coupling a small time step is necessary. However, for matters of 
convergency and CPU time, the weak coupling procedure will be used. In order to get the 
most accurate maximum load value, we shall use an adaptive time step which enables to 
remain accurate and to reduce the CPU time.  
 
 

3.5 Conclusions 
 

The model we have implemented in the FE code FEMCAM enables to model concrete 
as a heterogeneous material. The algorithm we have implemented can generate randomly 
aggregates from a real grain size distribution. We consider aggregates have a purely elastic 
behavior. We assume also mortar paste to have an elastic damage behavior. We have chosen 
to model it with a non local version of the Mazars model. The specificity of this code is its 
velocity-pressure formulation.  

The damage model can be implemented through a weak or a strong coupling. Whereas 
accuracy is lower than for strong coupling, we can adapt automatically the time step 
without losing accuracy.  

The non local model has shown its advantages. Compared to a classical local model, 
the main drawback of the non local model is its high CPU time. We are currently working on 
the optimization of the procedure devoted to the research of the neighbours of each element; 
we will use the non local model with an implicit formulation. Indeed this formulation 
seems to be more appropriate for problems with a large number of finite elements as the 
heterogeneous problems. 

Now we have validated the model on mortar and on concrete. The next chapter will 
explain in detail how we have determined elastic and damage parameters to use this model in 
the specific framework of the ASR. An experimental campaign has been carried out to 
provide data for the identification procedure. 
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4.1 Introduction 
 

A fine simulation requires material parameters to be determined with a great accuracy. We 
have seen in the previous sections that concrete is a very heterogeneous material, basically 
made out of two main components: the mortar paste and aggregates. We shall consider here 
the mortar paste as an elastic damage material, whereas aggregates will be considered as 
purely elastic. We use the Mazars model to represent damage behavior of the mortar paste of 
concrete. This model requires us to determine the Young modulus, the Poisson ratio and 
damage parameters as TTCCD BABA ,,,,0ε  and . Therefore, we shall have to determine 
as exactly as possible the elastic and damage behavior parameters for these two components 
in order to model the consequences of the ASR with accuracy.  

Critε~

 
We shall use an inverse analysis tool “RheOConcrete”, developed at CEMEF. The 

inverse analysis consists in minimizing an objective function. Let M be a vector in ℜNbMeas, 
with a number of measures Nbmeas for the physical system, and ℑ an application from 
ℜNbParam to ℜNbMeas. We suppose that ℑ is obtained from a numerical simulation which aims at 
modelling this physical system. The inverse problem consists in finding the set of parameters 
λ such as ℑ (λ) gets as close as possible to M (in a least squares meaning). Figure  4-1 shows 
how this modulus works. 
 

 

Initial set of values P0 

New set of values 
Pi 

End of the 
computation 

Experimental 
values 

Simulation 
S(Pi)=Ri 

 
||Ri – Rexp|| < ε 

NO YES 

Minimisation  
algorithm 

Figure 4-1. Inverse analysis modulus. 

 
This modulus has the advantage that it can be coupled with various software tools 

(Abaqus, Forge3®, FEMCAM etc.). Different methods used to identify material parameters 
can be used. We can classify them in two main methods:  

 
- determinist approaches; 

 
- stochastic methods. 
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The identification of model parameters plays a crucial part in the development of constitutive 
models for concrete. Consequently the inverse analysis has to be: 
 

- robust: the minimisation method needs to ensure that the algorithm converges to the 
real solution whatever the initial set of parameters used;  

 
- Accurate: it is highly important to obtain very accurate parameters; however this 

accuracy is often set by the convergence rate in the algorithm. So the accuracy 
depends on this value and has to be well adapted to the incertitude of the problem. In 
this way we have to choose a good balance between computation time and accuracy. 

 
We shall then explain in detail parameters to identify. The parameter identification is not 

an easy process especially for complicated constitutive models such as non local or gradient 
enhanced damage models. It is hence important to check the system identifiability and the 
objective function stability.   

The parameters identification will be carried out independently in tension and in 
compression, thanks to the capability of the proposed Mazars model in distinguishing tensile 
and compressive responses. In order to get the physical measures, an experimental campaign 
has been led at the Ecole des Mines de Douai (GC-Douai). A sensitivity study, for parameters 
to be identified, is presented. Friction parameters are first tested on a three point bending test. 
we analyse the influence of damage parameters on the global response of the material.  
 

4.2 Inverse analysis modulus 

4.2.1 Identification procedure 
  

The identification process enables to find a good approximation of the numerical value 
that we search to identify. This process is based on experimental data, which are compared to 
numerical data. At each simulation, a criterion is used to estimate if it is necessary to improve 
the accuracy of numerical parameters. The problem consists in iterating the process in order to 
minimize this criterion. 

4.2.2 Analysis inverse models and methods used 
 

Many methods exist to identify experimental parameters. Forestier [Forestier 2004] 
presents in detail these methods. Two methods are used in the inverse analysis modulus 
“RheOConcrete”. We present them here. 

5.2.2.1 Determinist approach 
 

It is the most commonly used method in identification problems. These determinist 
methods follow this algorithm: 

a) Choice of a first admissible solution i; 
b) Generation of a solution j in the neighbourhood of i; 
c) If ℑ (j) is better than ℑ (i) then j is chosen and we return to step b). 
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The algorithm stops when there is no more improvement of the current solution. There are 
many determinist approaches: gradient approach, simplex algorithm, “tunnelling” method etc. 
One of the algorithms of “RheOConcrete” is based on the gradient approach. 
 
The gradient approach is one of the oldest methods and it requires the objective function to be 
at least differentiable up to the first order. We chose a starting point and we evaluate the 
gradient  in x)( 0x∇ℑ 0. As the gradient indicates the direction of strongest increase for ℑ, we 
decrease of a quantity λ0 in the opposite sense of the gradient. And we define x1: 
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This process is repeated and we create the point x0, x1, x2,…,xk. Thus at each stage we 
approach the solution: 
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kλ  can be constant (predetermined step) or can be changed during the algorithm. These 

methods have the properties to converge quickly. However it may end up on a local 
minimum. It is thus very dependant of the initial set of value. An alternative to this problem is 
the multistart method. More details are given in [Berro 2001]. 

4.2.2.2 Stochastic methods 
 
The stochastic methods are based on a creation of random point in the state space. We can 
quote the Monte-Carlo algorithms, the evolution algorithms etc. The main advantages of these 
methods are: 
 

- their easy implementation; 
 

- the good quality of the approximate solution. 
 
The evolution algorithm is used in the modulus “RheOConcrete” [Rechenberg 1973]. The 
evolution algorithms are research algorithms based on the mechanisms of natural selection. 
They are based on Darwin evolution law: survival of the fittest. The genetic pool of a given 
population potentially contains the solution, or a better solution, to a given adaptive problem. 
This solution is not "active" because the genetic combination on which it relies is split 
between several subjects. Only the association of different genomes can lead to the solution. 
During reproduction and crossover, new genetic combination occurs and, finally, a subject 
can inherit a "good gene" from both parents. The best individual represents the optimal 
solution. The evolution algorithms are different from standard optimization and search 
procedures in four ways (see figure 4-2). 
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Initial population 

Evaluation 

Selection 

Operator (Crossover,  mutation) 

Is the tested population the best? 

End of the algorithm 

NO 

 
YES 

 
Figure 4-2. Organigram of the evolution algorithm. 

 
The specificities of the stochastic methods are the following ones: 
 

- The evolution algorithm works with a coding of the parameter set, not the 
parameters themselves; 

 
- The evolution algorithm searches the solution out of a population of points, not a 

single point; 
 

- They can treat simultaneously several individuals and are inherently parallel. Thus, 
the probability of reaching only a local minimum is reduced with respect to direct 
search methods. The evolution algorithms are thus more robust than direct search 
methods; 

 
- The evolution algorithms use the information of the objective function, not 

derivatives or other auxiliary knowledge; 
 

- The evolution algorithms use probabilistic transition rules, not deterministic rules. 
 
Unlike many methods, the evolution algorithm use probabilistic transition rules to guide their 
search. The fact that they use a random choice is a tool to guide a search toward regions of the 
search space with likely improvement. The identification of the elastic and damage 
parameters will be done with the evolution algorithms. 
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4.3 Parameters identification 

4.3.1 Parameters 
 

The previous section shows that we need to identify twelve parameters if we wish to 
characterize fully the material behavior. We can divide them in two groups: the elastic and 
the damage parameters (tensile parameters, compression parameters and damage threshold) 
and an internal length. We have specified that the lc value is between 3 dmax and 5 dmax. So it 

means that the c~  value is between 2

400
9

Cl  and 
16

2
Cl  (see chapter 2, section 2.3.3.3). As we 

considered that the larger grains for the mortar paste are about equal to 5 mm, we have chosen 
to set the c~ value to 15 mm2. Table  4-1 shows the other parameters and how to identify 
them: 
 

Parameters to identify Meaning 
C
MPE  Young modulus of the mortar paste of concrete 
C
MPν  Poisson ratio of the mortar paste of concrete 

C
AE  Young modulus of the aggregates 
C
Aν  Poisson ratio of the aggregates 

AC Related  to damage evolution in compression 

BBC Related  to damage evolution in compression 
AT Related  to damage evolution in tension 
BBT Related  to damage evolution in tension 
εD0 damage threshold 

Crit
C

Crit
T εε ~,~  fracture threshold 

Table 4-1. Parameters to identify. 

 
Crit

Cε
~  and  are respectively the damage to fracture threshold in compression and in 

tension. The macrocracks threshold for a test combining compression and tension is evaluated 
as following: 

Crit
Tε

~

 
10,~)1(~~ ≤≤−+= T

Crit
CT

Crit
TT

Crit αεαεαε  (4-3) 

  
Where Tα  is defined as in Eq. (2-10) (see chapter 2, section 2.3.2.1). It appears that two types 
of tests need to be carried out in order to identify the mortar paste and aggregates behavior: 
 

- Compression tests; 
 

- Three point bending tests. 
 
These tests have been made on mortar and on concrete to identify material parameters on 
concrete on compression and on tension. Each test has been carried out on after 7, 14 and 28 
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days. Tests on concrete, but also on mortar, induce two possible ways to identify material 
parameters and we will explain in details why we have carried out an experimental campaign 
on these two materials (see chapter 5 for more details). “Brazilian” splitting test have been 
also carried out at ages of 7 and 28 days to validate our numerical model on concrete, using 
the material parameters we will have identified with the compression tests and the three point 
bending tests. 
 

Compression tests 

Three point bending test 

« Brazilian » splitting test 

Figure 4-3. Test to identify and validate the 3D numerical model for concrete. 

 

4.3.2 Numerical tests 

4.3.2.1 Model identifiability  
 

The first step is to check that we can identify elastic parameters with the experimental 
data. We can define the identifiability of a system by: the numerical system is all the more 
identifiable that the observables have a maximal sensitivity to parameters to be identified. 
However the identification of the non local damage model is correlated with the difficulty of 
getting at the same time the parameters involved in the damage evolution. Le Bellego has 
shown the lack of objectivity of the model [Le Bellego 2003].  

4.3.2.2 Stability of the objective function 
 

We can adopt a local approach to check the stability of the objective function. We 
choose an initial set of value λ0 and we simulate the uniaxial tests. We then carry out the same 
computations with a slight variation on parameters. We have tested the stability of the 
objective function on a mortar submitted to a three point bending test. The material has an 
elastic damage behavior.  
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The initial parameters we have used are listed in table 4-2. 
 

ME  (GPa) Mν  0Dε  AT BBT 0Dε  
30 0.2 410.1 −  0.8 20 000 310.1 −  

Table 4-2. Parameters used to check the objective function. 

( ME , Mν ) denote the Young modulus and the Poisson ratio of mortar. We then make a 
variation of 1% on these parameters and we evaluate the Gauss-Newton matrix G. We recall 
that the components of the Gauss-Newton matrix are defined as: 
 

j

k

k i

k

ji
ij dP

dF
dP
dF

dP
dF

dP
dFG ∑== .,  (4-4) 

 
where F  is the load  reached  during each simulation and { }Crit

DTT BAP εε ~,,, 0=  the set of 
parameters to identify. It thus consists in calculating, all values ( )PFk , using the first set of 
parameters, as well as perturbed values )( iPPF δ+ , where iPδ  represents a small perturbation 
of the corresponding parameter P: 
 

i

i

i P
PFPPF

dP
dF

δ
δ )()( −+

=  (4-5) 

 
We obtain the following symmetric matrix: 
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10.24.1
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13.014.1310.07.4

10.710.42.110.8.41.875

G  (4-6) 

 
First of all we notice that this matrix is not very well conditioned. After the 

computation of the eigenvalues we obtain a condition number equal to , which 
means that a small perturbation of the system may lead to a very different global response of 
the material. Furthermore the matrix G can lead to the evaluation of the parameters correlation 
with the calculation of: 

1110.15.1=ρ
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We obtain these values: 
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We can see that some parameters are strongly correlated, as their associated vectors 

are almost collinear. For instance the parameter 0Dε  is strongly correlated with the damage 
threshold  and . It means that the identification of the damage parameters will be very 
difficult and it will be necessary to adapt the research to a specific set of range. On the 
contrary  is less correlated with other parameters. 

TA TB

Critε~
We can go even further with a second verification: we can choose an initial set of 

value 01 λλ ≠ . If the final results are the same than for λ0, we will consider that the problem is 
well identifiable. Table  4-3 shows the parameters we have chosen for this second study: 

 
ME  (GPa) Mν  0Dε  AT BBT Critε~  

30 0.2 1.29 25 316 410.385.1 −  510.4625.3 −

Table 4-3. Second set of parameters used to verify the objective function. 

 
We can evaluate the Gauss-Newton matrix G: 
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We notice that the conditioning of this matrix is equal to  which is very similar 
to the condition number evaluated before. Furthermore we can evaluate the correlation 
between parameters. It gives: 

1210.41.1=ρ
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The correlation between parameters is stronger in this case for each parameter. This result 
proves even more the need for defining an adapted range for each material parameter before 
starting the identification. 

4.4 Experimental campaign 

4.4.1 Components 
 

Materials used for this formulation are: 
- Cement of Heming; 
- Aggregates from “Boulonnais” with its fines ;  
- Aggregates from “Savreux”. 

4.4.1.1 Cement 
 

We have used cement CEM I 42,5 R from Heming, supplied by the Obourg 
corporation. We have chosen this cement because of its high alkaline content (it is the 
equivalent of 0.99%) which speeds up the ASR development (see appendix A.3 for the 
chemical analysis of the cement). 

4.4.1.2 Sand [non reactive limestone (0-4 mm)] 
 

This sand is commonly called sand from “Boulonnais”. It is a 90% limestone sand 
which contains few silica (7%). The particle size distribution of the sand has been 
experimentally determined. The percentage of fines is then equal to 5.2% (7% is specified in 
the technical document). This sand can be fall into sands tended to fines. 
 

Figure 4-4. Particle size distribution of sand. 
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This sand has a fineness modulus equal to 2.3. It is thus well adapted to the preparation of 
standard concrete (2.1< fineness modulus < 2.9). This is the same sand, which is used, to 
make mortar and concrete samples. 

4.4.1.3 Aggregates 
 

We use two types of aggregates: 
 

- The aggregates from « Boulonnais » (4/20 mm). This aggregate is composed with 
non reactive limestone (98%); 

 

 
Figure 4-5. Particle size distribution of limestone aggregate. 

 
- The aggregates from Savreux (0/22.5 mm): Aggregates from « Savreux » come 

from the Crotoy area and they are extracted from flint shingle and sea sand. They 
are composed of rolled and crushed flints. It is made out of silica (87%) for the 
main part.  
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Figure 4-6. Particle size distribution of flint aggregate. 

 

4.4.2 Formulation 
 

We have carried out some experiments on mortar and on concrete. Mortar formulation 
is based on concrete formulation. The following tables show the formulation used for each of 
them: 

 
 Composition (kg/m3) Density (g/cm3) 

Cement CPA CEM I 
42,5 d’Heming 500 3.16 

Sand 
(0-4 mm) 552 2.65 

Water 200  
Table 4-4. Mortar formulation. 

 

 Composition (kg/m3) Density (g/cm3) 
Cement CPA CEM I 42,5 

d’Heming 500 3.16 

Sand 
(0-4 mm) 552 2.65 

Flint aggregates “Savreux” 583 2.6 
Limestone aggregates 

“Boulonnais” 583 2.65 

Water 200  
Table 4-5. Concrete formulation. 
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The ratio 

Cement
Water (W/C) is equal to 0.4. This formulation is issued from the Dehaudt 

study [Dehaudt 2000]. He has shown that this formulation corresponds to the most 
reactive formulation for the ASR without adding adjuvant. The high content of cement 
allows a greater reactivity. 

4.4.3 Preparation of samples 
 

Samples have all been prepared at the same time in order to avoid any bias. For the 
three point bending tests, the samples geometries are: 

- 40×40×160 mm parallelelepipedic samples of mortar; 
- 70×70×280 mm parallelelepipedic samples of concrete. 

For the compression and Brazilian splitting tests, the samples geometries are: 
- 110×220 mm cylindrical samples of mortar; 
- 160×320 mm cylindrical samples of concrete. 

4.4.3.1 Experiments 
 

Mortar is a mixture of sand, cement and water. Mortar components are introduced in 
the following order: water, then cement and sand. For concrete, sand is first introduced, then 
cement and aggregates and eventually water. To make concrete and mortar samples, we have 
used: 

 
a) A small mixer to make mortar beams: materials have been mixed mechanically. Cement is 
first poured in. It is then mixed at slow speed during thirty seconds. Sand is then added in 
during one minute. The mixer then runs ninety seconds at slow and at medium speed. After 
the mixing, two steps are carried out (according the ASTCM C 305 Mortar mixing schedule): 

- We fill the mould up to 2/3 and we use the stacking method (24 stacking per filling) 
in order to homogenise and delete air bubbles in mortar; 
- We fill all the mould and we reuse the stacking method. 

 
b) A bigger mixer to make cylindrical samples of mortar and all the samples for concrete. 
Coarse aggregates, sand and cement are first introduced. The mixing starts with the add of 
water. The mixer runs during about three minutes, then stops for two minutes and then runs 
for two minutes. We use the stacking method in order to homogenise the matter. There are 
two fillings. For concrete beams, we use a vibrating table. 
 

  
a) Small mixer to make mortar samples b) Big mixer 

Figure 4-7. Materials used to make mortar and concrete samples. 
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After 48 hours, they are stored in saturated water (100% hygrometry) in a temperature 
regulated room.  

4.4.3.2 Strain gauges and displacement sensors 
 

Two types of strain gauges are glued after the sample surface has been cleaned with 
chemical cleaners and sand paper: 
 

- unidirectional strain (type Kyowa, 30 mm length, gauge resistance = 120 MPa); 
 

- strain rosettes: we can measure simultaneously in a point of the sample, the strains 
in different directions (type Kyowa, 10 mm ray, gauge resistance = 120.2 MPa).  

 
The protocol used is the following one: one day before each test, samples are settled in an 
oven to dry. The temperature is 40°C. This is not a high temperature in order to avoid some 
effects due to temperature and microcracks initiation for instance. 

a) Compression tests 
 

Four strain gauges are applied on cylinder samples:  
- two longitudinal gages; 
- two rosettes. 

They are used to measure strains in different directions at the same point. In this way we 
choose a surface enough smooth to apply theses strain gages.  The surface is cleaned and the 
strain gage is glued with the “M Bond 2000” glue and a catalyst to improve results.  
 

  

SULPHUR 

LONGITUDINAL GAGE ROSETTE 

Figure 4-8. Location of the strain gages on a 11×22 cm mortar  samples. 
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b) Three point bending tests 
 

One longitudinal strain gauge is glued under the prismatic sample. A displacement 
sensor is also placed to measure the deflection of the beam submitted to the three point 
bending test (see figure 4-9). 

 

 
a) b) 

 

displacement sensor  

Figure 4-9.a) Displacement sensor; b) Strain gauge is located horizontally on the concrete beam for the three 
point bending test. 

 

4.4.3.3 Data given by strain gauges and displacement sensors 
 

In this experimental campaign, we estimate that the strain gauges give us the global 
displacement field of the sample (for the compression tests and the “Brazilian” splitting tests) 
based on the local strain field. Indeed it is impossible to use the displacement given by the 
upper tool of the presses: movement and possible rotations of the mechanism, inside the upper 
tool, disturb the measured displacement. The use of these strain gauges leads then to two 
major questions: 
 

- Can this information be used to evaluate the global mechanical behavior of mortar 
and of concrete? 

 
- Is the size representative of the mechanical behavior of the whole volume? 

 
This hypothesis is even more questionable if the strain gage is considered too small 

compared to the aggregate diameter. Indeed if a strain gage is glued facing a coarse aggregate, 
the measured strain can be strongly influenced locally by this aggregate. On the contrary if the 
strain gauge is bigger than the aggregate size, the approximation stays right and we can obtain 
representative strains of the whole volume. If the strain gauge is too large, we will loose 
accuracy in the high strain gradient areas. 

  
This question is hence linked to the second one. If we consider the height of the 

concrete sample in compression (H = 320 mm), we notice that the longitudinal strain gage is 
ten times smaller (30 mm), and if we consider the diameter of the larger grain 

mm, the longitudinal strain gage has approximatively the same length. It would be 
better to use larger strain gauge to have a more representative strain state of the material. But 
we have used four strain gauges on each sample for the compression tests. We consider that 
the mean value gives a sufficiently good approximation of the global displacement. Another 
solution has been the use of displacement sensors to obtain the displacement field with a 
direct measure. Displacement measures are made with three sensors (LVDT type). They are 

5.22max =d
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setted every 60° at the exterior of the sample. These measures give us the Young modulus in 
the elastic phase. 

Furthermore, in the case of test with localized damage (three point bending test for 
example) too large gages could have negative consequences as it leads to an average value 
over a too large area and so it does not highlight the damage zone.  

4.4.4 Testing procedure 
 

Compression tests have been performed after 7, 14 and 28 days. Three point bending 
tests and “Brazilian” splitting tests have been performed after 7 and 28 days. The testing 
device should not introduce any additional loads on the specimens.  For the three point 
bending tests, it may be sufficient to increase specimen size so that boundary conditions do 
not contribute to the stress state at the critical section. However, for some tests, it may be 
necessary to apply loads using brushes or to lubricate the contact surface of the specimens in 
order to reduce the undesirable stresses introduced at the specimen-load frame interface. 
Cylinder samples are planished and lubricated (with sulphur) to obtain parallel faces and in 
order to obtain better results.  

 
Loading is conducted using displacement control with a closed-loop system in order to 

maintain a uniform rate of loading. During tests, we can measure the maximal load , 
corresponding displacement (with the strain gauges and displacement sensors), 
longitudinal and transverse strains. We carry out compression tests and Brazilian splitting 
tests with a 100 tons press (Instron, 8505 piloted with some jacks and a pivot). The three point 
bending tests are realized with a 15 tons press (Instron, 8500). 

maxF

 

  
Figure 4-10. left) 100 t. press, type INSTRON 8505 (compression test); right) 15 t. press type INSTRON 8500. 
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Data are collected on a system of data acquisition (5110, Vishay). It records the press 

load and the strain of the gages. Tests are carried out up to complete fracture (the results at 
ages of 14 and 28 days are presented in the appendix A.4). Three samples are tested for each 
test; the black curve corresponds to a mean of the three tests.  
 

We will show the load-displacement curves for each test at seven days. Stress-strain 
curves would be also interesting to use as it give local information of the material 
degradation. And material parameters would be easier to identify as material parameters have 
a physical meaning at the scale of the stress-strain curves. However the inverse analysis 
modulus “RheOConcrete” enables now to compare automatically experimental and numerical 
load displacement curves. In the future, it would be interesting to compare automatically 
numerical and experimental stress-strain curves in some specific area of the sample (more 
particularly with the three point bending test). 
 

4.4.4.1 Tests on mortar 
 

a) Compression tests 
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Figure 4-11. Load displacement curves for compression tests on mortar after seven  days. 

 

The elastic stage is almost the same for all three samples. The press velocity is equal 
to . Strain gauges give the value of the Young modulus for the elastic stage. 
Finally macro cracks increase and fracture occurs.  

13 .10.8 −− smm

After the elastic stage, the non-linear load increases in the sample is related to the 
microcracks initiation stage: damage appears and the Young modulus is affected by the 
damage evolution in the sample. We can see that results are non homogeneous in the 
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smoothening part. For this damage stage, the press velocity is equal to  which is 
the lower limit of the testing machine. This velocity has been chosen to observe the fracture 
zone with a great accuracy.  

13 .10.5 −− smm

We see here a fast fracture development due to the fact that the strain gauges are 
damaged during the macrocracks propagation. This brittle behavior is probably due to the 
high cement content. The dispersion on maximum load is characteristic of a brittle behavior. 
The picture next to the load-displacement curve shows us the vertical cracks at the end of the 
experiment. Figure  4-12 shows the Young modulus evolution in function of the samples age. 
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Figure 4-12. Evolution of the Young modulus E in mortar. 

 

Results are dispersed between different ages. We notice here that mortar behavior evolves 
with respect to age. The measured Poisson ratio is roughly to 0.2. 

b) Three point bending tests 
 

Direct tension testing of concrete requires specialized equipment, procedures and 
consideration of boundary conditions. As a result, it is rarely performed. Instead, either the 
three point bending test or the splitting tension test is used to estimate mortar parameters in 
tension.  
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Figure 4-13. Load displacement curves for three point bending tests on mortar at 7 days. 

 
For the elastic and the damage stage, the press velocity is equal to  

which is the lower limit of the press. We observe first a linear response then damage and 
cracks evolve quickly in the sample and lead to the ruin of the sample. The load displacement 
curves show also that it is very difficult to obtain homogeneous results for three point bending 
tests in the smooth part.  

13 .10.5 −− smm

4.4.4.2 Tests on concrete 

a) Compression test 
 

Figure  4-14 shows the load-displacement curve for concrete at age of seven days. 
The evolution of the load-displacement curves is identical for each sample in the elastic and 
the damage elastic part. The press velocity is equal to . Very small velocities 
(  and ) for the upper tool have been used to describe 
respectively the damage and the fracture stage with a great accuracy. However we have 
spread out results for the fracture zone. 

12 .10.8 −− smm
13 .10.2 −−= smmv 14 .10.5 −−= smmv

Table  4-6 summarizes the maximal stress 1σ  for 
each test: 
 

Samples 7 days 14 days 28 days 
1σ  for S 1 (MPa) 35.46 39.36 36.52 

1σ  for S 2 (MPa) 35.96 42.31 39.29 

1σ  for S 3 (MPa) 26.25 27.46 40.15 

Mean of 1σ (MPa) 32.56 36.38 38.65 

Table 4-6. Evolution of the maximal stress (in MPa) at different ages. 
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Figure 4-14. Load-displacement curve for the concrete under compression at 7 days. 

 
We notice that the maximal stress increases between 7 and 14 days by more than 11%. 

Between 14 and 28 days the evolution is of only 6%. It means that the concrete hardening is 
very fast with this specific formulation. At 28 days the maximal stress 1σ  classified our 
concrete in moderate-strength concrete. It is also possible to observe the evolution of the 
Young modulus. Figure  4-15 presents this evolution: 
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Figure 4-15. Evolution of the Young modulus E in concrete. 
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We can note the less dispersion obtained on concrete sample. It is probably due to a lower 
mortar paste content than in mortar.  

b) Three point bending tests 
 

Figure  4-16 shows the correspondent load-displacement curves. 
 

 
Figure 4-16. Load deflection curves for three point bending tests on concrete at 7 days. 

 
We would like to underline that the strength value obtained is higher than the one 

obtained through uniaxial tension test (compression effects etc.). Moreover, it is observed that 
the three point bending test is dependent on the size of the beam tested. An empirical 
expression relates tensile strength to the beam size [CEB 1990]. 
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Where tσ  is the tensile strength, flt ,σ  the value of the flexural tensile strength, D the beam 
depth and  is the reference size equal to 100 mm. This expression is applicable to beam 
depths of more than 50 mm.  

0D

c) Brazilian splitting test 
 

Figure  4-17 shows the load-displacement curve for two of the three tests. We notice 
first the elastic behavior and then the fast evolution of damage and cracks during the 
experiment. 
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Figure 4-17. Load-displacement curve for the Brazilian test at seven  days. 

 
 Figure  4-17 shows the state of one of the cylinders tested at the end of the 
experiment. We see that the fracture is very clear and this figure shows the two parts of the 
cylinder at the end of the experiment. 
 
 
This experimental campaign aims at identifying damage parameters for our numerical model. 
We shall now test the sensitivity of the material parameters to evaluate the quality of the 
parameters identification. 
 
 

4.5 Sensitivity analysis 
  
 A sensitivity study has first been carried out on experimental procedure and 
numerical parameters. We test the numerical influence of the contact between the tool and the 
sample and we also evaluate the influence of the “Kill element” method on the parameters 
identification. A sensitivity analysis has then been carried out to study the influence of 
damage parameters.  
 All numerical tests are performed under displacement control, by prescribing a 
displacement rate to the upper loading plate. For each configuration presented, damage is 
associated to the “Kill element” method to simulate macrocracks propagation. 
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4.5.1 Influence of friction 
  
 A sensitivity study has been carried out the friction effects in tension. We test here a 
mortar beam submitted to a three point bending test. 

4.5.1.1 Model configuration 
 
 We first present the model configuration. Figure  4-18 shows the geometry and an 
example of the mesh used.  
 

 
z 
     x 

 
z 
     x 

Figure 4-18. Mesh of the 40 × 40 × 160 mm three points-bending test; 7 394 nodes; 36 261 elements. The average 
element size is roughly to 2 mm. 

 
The contact between the upper tool and the sample is bilateral sticking. We use the 

non local Mazars model with an implicit formulation. The internal parameter c~  is equal to 15 
mm2. And we use arbitrary damage parameters, which are already defined in table 4-3. 
Furthermore we use the adaptive time step n°2 (see chapter 3 section 3.4.3.2 for more details) 
to adapt automatically time in function of the damage initiation. The upper tool goes down 
very slowly to capture with the best accuracy damage initiation ( mm per numerical step 
at the beginning of the simulation). 

410.1 −

4.5.1.2 Numerical test 
 
We modify friction between the lower tools and the sample in order to study its 

influence on the global response. We test the influence of a sliding contact, a friction contact 
(strong) and a bilateral sticking contact. Concerning the friction law, a Coulomb law limited 
by the Tresca law is used (with these arbitrary parameters 2.0,4.0 == Fm μ ) corresponding 
physically to a strong friction. Figure  4-19 shows the results obtained for different types of 
contacts.  

The bilateral contact imposes a higher stress in the beam. It induces a greater rigidity. 
In the case of friction or sliding contact the damage evolution is almost the same. The higher 
the friction, the higher the peak load and the lower the slope of the softening curve after the 
peak. The small difference observed between these two types of contacts is due to the more or 
less high dissipation of energy during the three point bending test.  
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Figure 4-19. Load-displacement curve of the beam submitted to a three point bending test in function of the 

contact. 

 
 
Even if we do not consider bilateral sticking contact, which is not very realistic, these 

results show that contact still has an influence on the global response of the test. The 
parameter identification will be hence influenced by the friction conditions. Friction needs to 
consider being representative of the experiments. It is also more appropriate than the bilateral 
contact as this can enable a possible movement of the beam in the (x,z) axes. Figure  4-20 
shows the displacement vector on the beam during the loading when a friction contact is 
imposed between the lower tool and the sample. 
 

 

 

z 
 
 
   x 

Figure 4-20. Displacement vector during the simulation with friction between the lower tools and the sample. 
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4.5.2 Influence of the “Kill element” method 
 

We test the influence of the “Kill element” method on the load-displacement curve and 
so on the parameters identification. We consider a mortar sample submitted to a three point 
bending test. We use the same configuration and data than in section 4.5.1.1. Damage 
isovalues are displayed in figure 4-21. 
 

  
Tool displacement = 0 mm Tool displacement =  mm 310.71.7 −

  
Tool displacement =  mm 310.8 − Tool displacement = mm 210.1 −

 
Figure 4-21. Damage evolution for different values of displacement of the upper tool. 

 
The macrocrack is initiated at the location where the equivalent strain ε~  reaches the critical 
equivalent strain Crit

Tε
~ . It corresponds also to the location where the maximal principal stress 

1σ  reaches the critical tensile strength tσ . 
 

 
 
Figure  4-22 underlines the influence on the load-displacement curves using or not 

the “Kill element” method. The first part of the curve and the load peak are equally described. 
We can see that the identification of the elastic parameters will be not influenced by the “Kill 
element” method. But we can observe some significant differences during the post-peak stage. 
When we do not use the “Kill element” method, the load does not return to zero. We also 
notice a difference in the post-peak part. One reason can explain this difference. We use the 
“Kill element” method which is mesh dependent, whereas the mesh is relatively fine in this 
test. This means that a coarse mesh will provide an abrupt post-peak stage since big elements 
are deleted when damage reaches the critical value. This numerical test shows the difficulty to 
model a quasi-brittle material and to identify with a great accuracy the damage parameters in 
the post-peak part of the load-displacement curve. 
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Figure 4-22.  Load-displacement curve of mortar submitted to a three point bending test. 

 

4.5.3 Material parameters 
 
 The identification of the  value underlines the degradation velocity of the material in 
compression. The higher , the faster the degradation of the material. The 

B
B A  value means 

that the load-displacement returns to zero at the end of the simulation ( A  is closed to 1).  
These conclusions are based on the paper of Mazars [Mazars 1984] who has studied the effect 
of each parameter on the stress-strain curve (see figure 4-23). 
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Figure 4-23. Influence of the A and B parameters 

 
 We check now these conclusions in tension with our numerical model. We 

consider a mortar sample submitted to a three point bending test. We use the same 
configuration and data than in section 4.5.1.1.  
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a) Influence of  0Dε   
 

We test the influence of the threshold of the equivalent strain 0Dε . 0Dε  controls the 
damage initiation. Its role is so very important. Figure  4-24 underlines the role of 0Dε for 
several values. 

b) Influence of  TA
 
 We test the influence of AT on the response of material. We compare the model 
when AT = 0.7, AT = 1.29 and AT = 1.5 (see figure 4-25). The AT parameter controls the 
starting point of the smooth part of the curve. The higher the parameter AT, the more brittle 
the material behavior. We observe a difference with results obtained by Mazars (see figure 4-
23). Indeed we use  in our model (return to zero of the load-displacement curves). Critε~

c) Influence of  TB
 

We study the influence of the parameter BBT on the load-displacement curves. We test 
three cases with: BTB  = 1000, BBT = 25316, BTB  = 100 000. Figure  4-26 shows the great 
influence of the parameter BBT on the global response. It influences at the same time the peak 
load and the slope of the curve in the smooth part. It also explains why inverse analysis has 
some difficulties to converge because of this strong correlation.   

d) Influence of  Crit
Tε

~

 
Usually macro cracks appear before damage becomes complete (D=1). We test here 

the influence of  on the global response of the elastic damage material. Crit
Tε

~ Figure  4-27 
underlines the fact that our model is dependent on this value. It is hence necessary to identify 
with a great accuracy the  parameter in order to describe as well as possible damage and 
cracks evolution. 

Critε~
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Figure 4-24. Influence of 0Dε  on the load-displacement curves. 
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Figure 4-25. Influence of  on the load-displacement curves. TA
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Figure 4-27. Load-displacement curves for different Crit
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The sensitivity study has shown that all parameters do not have the same effect on the 
numerical model. We have seen that friction plays an important role in the identification of 
the material parameters. The “Kill element” technique influences the smooth part of the load-
displacement and consequently influences the identification of the material parameters. We 
have also seen that material parameters do not have the same influence on the load-
displacement curves.  has indeed a great influence on the global response of the material. TB
 
 

4.6 Conclusion 
 

We have carried out the experimental campaign and introduced the inverse analysis 
model on mortar and on concrete. 

The experimental campaign has been carried on mortar and on concrete at the Ecole 
des Mines de Douai. For each case, three tests have been made at ages of 7, 14 and 28 days to 
be able to identify material parameters in compression and in tension. These tests include 
compression tests, three point bending tests and “Brazilian” tests.  

 
The evolution algorithm of the “RheOConcrete” modulus has been used to identify 

automatically the elastic and damage parameters. This identification will be difficult as we 
have noticed that the inverse analysis problem is not easy to identify. 

This study has underlined first the influence of external parameters as the conditions 
of contact, the influence of “Kill element” technique to simulate macrocracks, the correlation 
between material parameters and the importance of some damage parameters as the  
parameter in the model.  

CTB ,

 
The next chapter will explain in detail how we have identified the elastic and the 

damage parameters on the basis of this experimental campaign. We have used in this study 
experimental data given at age of seven days. A sensitivity study is also carried out to study 
the aggregates influence (repartition, volume) on the global response. 
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5.1 Introduction  
 
We have identified two ways to identify material parameters of concrete. On the one 

hand concrete can be identified based on the results obtained on the mortar and on concrete. 
In this way it can be assumed that the mortar paste of concrete has the same mechanical 
behavior than mortar. Once we have identified the mechanical behavior of the mortar paste, 
the mechanical behavior of the aggregates can be identified on the experimental results on 
concrete by knowing the mechanical behavior on the mortar paste. On the other hand, we can 
adopt the following methodology: the mechanical behavior of aggregates is known a priori. In 
this way the mechanical behavior of the mortar paste is directly deduced from the 
experimental campaign on concrete. And so in this last case the experimental results on 
mortar are not necessary. 

We present first the parameters we have identified. We use here the same notations 
used in chapter 4, table 4-1. In a second part we present the validation on concrete with a 
“Brazilian” splitting test. The third part is devoted to the sensitivity analysis on the effect of 
inclusions within a concrete sample.  

5.2 Starting hypotheses 
 

In order to avoid localization of strains and damage, the mechanical model is enriched 
with a non local approach. As explained previously, it is more convenient to use the non local 
Mazars model (see chapter 2, section 2.3.2.1) implemented in FEMCAM with an implicit 
gradient formulation where the internal parameter c~  is fixed to 15 mm2 for the whole chapter. 
We also use for each test of this chapter the Adaptative Time Step n°2 (see chapter 3 section 
3.4.3.2). 

Tools are considered as infinite rigid bodies. All numerical tests are performed using a 
constant displacement rate prescribed on the upper loading plate. In the framework of the 
parameters identification, we consider that tools displacement corresponds to the experimental 
displacement in the sample. We underline also that experimental displacements on load 
displacement curves are given by strain gauges (compression and “Brazilian” splitting tests) 
and sensor displacements (three point bending tests).  
 

5.3 Concrete parameters: first technique 
 

This first approach consists in identifying the mechanical behavior of mortar in a first 
time. We shall then assume that: the mechanical behavior of the mortar paste (of concrete) 
is the same than the mechanical behavior of mortar alone. Figure  5-1 summarizes this 
approach: 
 

 5-94



Chapter 5 – Identification of concrete behavior: results and sensitivity analysis on aggregates 
parameters 

 
 

 

 
Elastic parameters identification 

( )MME ν, on mortar

Mazars parameters identification on 
mortar for tensile tests 

=> Identification of AT, BT, εD0, Crit
Tε

~  

Identification of the elastic parameters ( C
A

C
AE ν, ) of 

aggregates by considering that the mortar paste of 
concrete (MP) has the same elastic properties than 

mortar ( MC
MP

MC
MP EE νν == ; ) 

Mazars parameters identification on 
mortar for compression tests 

=> Identification of AC, BC, Crit
Cε

~   

VALIDATION ON CONCRETE 

MECHANICAL PROPERTIES 
OF THE MORTAR PASTE 

 
Figure 5-1. First approach to identify the mechanical behavior of concrete. 

 
Thus we know the mechanical behavior of one of the main part of concrete. We still have to 
identify the mechanical behavior of the aggregates. We will consider that flint and limestone 
aggregates have the same purely elastic behavior. 
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5.3.1 Verification of the method on a compression test  
 

5.3.1.1 Mortar paste identification 
 

a) Model configuration 
 

A compression test on a quasi-brittle material has been performed. In this case, the 
load is applied via uniform prescribed displacement on the top side of the specimen while 
lateral displacements are allowed. The specimen is a cylinder with a diameter of 110 mm and 
a height of 220 mm. Due to symmetry conditions, only a quarter of the sample is discretized. 
Figure  5-2 presents the mesh used for this simulation. 

 

 
Figure 5-2. Simulation of a compression test on mortar; 10 066 nodes, 47 941 elements. The average  element 

size is approximatively  5.2 mm. 

 
The contact between the tools and the sample is considered as frictional to be as close as 
possible to experimental conditions. We use the Coulomb law ( )02.0,05.0 == Fm μ  which 
corresponds to a low friction.  
 

b) Elastic parameters 
 

Two parameters characterize the material behavior in the elastic phase: the Young 
modulus and the Poisson ratio. It is possible to evaluate: 

 
- The mean value of the three Young modulus with the experimental stress-strain curves. 
Table  5-1 shows the experimental evolution of the Young modulus for mortar we have 
tested in this experimental campaign (see chapter 4, figure 4-12): 
 

Elastic parameters 7 days 14 days 28 days 
ME (GPa) 22.9 23.99 26.33 

Table 5-1. Experimental evolution of the Young modulus for mortar. 
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- The mean value of the Poisson ratio can be determined experimentally by measuring  the 
radial or circumferential expansion of a standard concrete cylinder subjected to compression 

loading (thanks to the rosette gages which gives us the information:
xx

yy

ε
ε

). A common used 

value is 0.2. The trend of the Poisson ratio evolution, based on our experiments, indicates a 
decreasing evolution from 7 to 28 days. 
 

Elastic parameters 7 days 14 days 28 days 
Mν  0.22 0.21 0.18 

Table 5-2. Experimental evolution of the Poisson ratio for mortar.  
 
In this way we try to bear out the experiment with the inverse analysis modulus. We identify 
these two parameters in the elastic part of the load-displacement curves in a set of range, 
between 17 and 30 GPa for the Young modulus ME and between 0.15 and 0.35 for the 
Poisson ratio Mν . The initial set of values for this test is: = 20 GPa, ME Mν  = 0.2. The set of 
parameters, for a seven days mortar, has been obtained after one hundred iterations of 
“RheOConcrete”; the CPU time is roughly two hours. 
 

ME = 20.3 GPa (20272.9 MPa) 
Mν  = 0.24 

(5-1) 

 
Figure  5-3 shows the estimated least squares error e~  at the mean for each “RheOConcrete” 
iteration: 
 

( )∑
=

−=
N

i

ii
num

FFe
1

2

exp

~  (5-2) 

 
Where N is the number of points on the considered load-displacement curve.  and  are 
respectively the experimental and numerical loads. This figure shows the good convergence 
of the problem. 

iF
exp

i
num

F
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Figure 5-3. Estimated error in function of the RheOConcrete iterations at age of seven days. 

 
Table  5-3 summarizes the identified values and the correspondent estimated error: 

 
Elastic parameters for 

mortar 7 days 14 days 28 days 
ME (MPa) 20272.9 20582.1 20785.1 

Mν  0.24 0.28 0.27 
The estimated error 510.36.1 −  610.87.5 −  510.49.1 −  

Table 5-3.Identification of the elastic parameters of mortar. 

 
Table  5-3 shows that the Young modulus does not evolve so much between 7 and 28 days. 
However the Poisson ratio evolves between 7 and 14 days and stays stable after 14 days. 
Furthermore these values are far away from the values deduced from the experimental results. 
It would mean that the Poisson ratio identification is impossible with the only data given by 
the load-displacement curves. We are going to verify the objectivity of this solution with a 
sensitivity study. The objective of this analysis is to test which parameters influence the more 
the global response. We use the experimental test at age of 28 days. 
 

We prescribe first the Young modulus. The aim is to better analyze the influence of 
the Poisson ratio on the global response of the material. We test the model for three different 
Young modulus: = 15 GPa, = 22 GPa and = 29 GPa at the same age (28 days). 
The Poisson ratio can evolve between 0.15 and 0.3 which are admissible values for mortar. 

ME ME ME

Table  5-4 shows the minimum estimated error reached during the simulation and the 
correspondent Poisson ratio. 
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 ME = 15 GPa ME  = 22 GPa ME  = 29 GPa 
Mν  0.299415 0.152295 0.1522 

The estimated error 410.86.4 −  510.52.3 −  410.62.9 −  
Table 5-4. Estimated error when the Poisson ratio is unknown. 

 
Figure  5-4 shows that “RheOConcrete” has some difficulties to converge for each 

value of the Young modulus. The best result is obtained for  = 22 GPa, which is much 
closer from the result obtained with “RheOConcrete” when the research has been lead on the 
both two parameters. However the Poisson ratio obtained (

ME

15.0=Mν ) is far away from the 
value found by the inverse analysis.  

 

 

 
Figure 5-4. Estimated error for the identification of the Poisson ratio. 
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Figure  5-4 underlines the lack of objectivity of the identification. We can now run 
the same tests by prescribing the Poisson ratio in order to observe the influence of the Young 
modulus ME   on the inverse analysis. 
 

We now set the Poisson ratio. We study the influence of the Young modulus   on 

the global response of the material. We test the model for three different Poisson ratios: 

ME
Mν = 

0.15, Mν  = 0.2 and Mν  = 0.3 at the same age (28 days). The Young modulus  can evolve 
between 15 and 30 GPa which are also admissible values for mortar. 

ME
Table  5-5 shows the 

minimum estimated error reached during the simulation and the correspondent Young 
modulus. 
  

 
Mν  = 0.15 

 
Mν  = 0.2 

 
Mν = 0.3 

 
ME  (GPa) 20.80 20.79 20.78 

The estimated error 510.48.1 −  510.48.1 −  510.49.1 −  
Table 5-5. Estimated error when the Young modulus is unknown. 

 
We plot then the estimated error versus the “RheOConcrete” iterations (see figure 5-5). 
Eventually it appears that the parameter, which influences results the most, is the Young 
modulus . In this way, we can retain the values obtained by the inverse analysis for the 

Young modulus. So from now we will consider that 

ME
Mν  = 0.2 for the mortar paste, which 

is the experimental value we have measured after seven days. 
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Figure 5-5. Estimated error for the identification of the Young modulus for  υ = 0.15 and   υ= 0.2. 

 

 5-100



Chapter 5 – Identification of concrete behavior: results and sensitivity analysis on aggregates 
parameters 

 
 

 

Now the Young modulus and the Poisson ratio ( ,ME Mν ) are known. Some other 
parameters characterize the mechanical behavior in the damage elastic damage part. The 
process is the following: we identify first damage in tension with the three point bending test. 
Then we identify damage in compression with the compression test. We now present results 
of parameters identification in compression. 

c) Parameters identification on mortar 
 
 We shall identify:  in this set of range: Crit

CDOCC BA εε ~,,,
 

 ];5.10[1.10~
 ]10 ;3.5[1.10

000] [200;2
][1;1.5

3-4-

4-5-
0

∈

∈

∈
∈

Crit
C

D

C

C

B
A

ε

ε
 (5-3) 

 
This set of range has been defined thanks to a preliminary study. During this study the set of 
range was very wide corresponding to a classical set of range defined by Mazars 
( )255

0
553 10.1~10.3;10.310.1;1010.3;5.15.0 −−−− ≤≤≤≤≤≤≤≤ Crit

CDCC BA εε . Hence we 
have determined the set of range defined in Eq. ( 5-3) by cancelling the parameters which 
lead to load-displacements which are too far from the experimental results. Moreover this 
study enables to improve (in term of computation time) in the research of parameters to 
identify.  Table  5-6 presents the set of parameters after one hundred “RheOConcrete” 
iterations.  
 

CA  CB  0Dε  Crit
Cε

~  
1.27879 457.085 510.3 −  310.52.1 −  

Table 5-6. Damage identification of mortar parameters in compression. 

 
 The CPU time required to identify these parameters is about five hours. It corresponds 
to an estimated error of . 510.1.8 − Figure  5-6 shows the difficulties that encounter the inverse 
analysis to converge.  
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Figure 5-6. Estimated error on the identification of damage parameters on a compression test for mortar. 

 

d) Global response of the material 
 

Figure  5-7 shows the evolution of damage. Damage does not take place uniformly 
over the whole cylinder due to the frictional contact between the upper tool and the sample. 
Damage is initiated preferentially near the contact with the tools and then evolves equally in 
the sample. Indeed we can separate the cylinder in three zones: two zones, which are near to 
the tools and a third zone in the middle of the cylinder without any effect of the contact on the 
response of the material. Once damage has reached a specific critical value, fracture 
intervenes in the middle of the sample. 

 

  
 

Tool displacement = -0.39 mm Tool displacement = -0.41 mm  

Damaged zone 

Mazars damage 

Figure 5-7. Damage evolution for different values of displacement of the tools. 

 
Figure  5-8 presents the corresponding load-displacement curve. Simulation results 

are in good agreement with experimental observations on a mortar at seven days. The 
evolutive trends of elasticity, damage and fracture are shown on this load-displacement curve. 
The experimental mean load reaches about 285 kN - which corresponds to a global 
strength of 29.9 MPa for a mortar after seven days. 
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Figure 5-8. Load-displacement curve for a compressive test. 

 
 

Damage does not take place uniformly over the whole cylinder due to the frictional 
nature of contact between the tools and the sample. Hence we do not observe clearly the X-
shaped diagonal shear band which we would observe in the case of a bilateral sticking contact. 
It would be interesting to test the influence of contact conditions on the damage distribution. 
Figure  5-9 presents the damage distribution, in the mortar sample under uniaxial 
compression, near the upper tool and at the end of the simulation. Only an eighth of the 
sample is represented. We notice that damage initiates at the centre of the sample with an 
amplitude depending on the type of contact used. 
 

To improve this model, we have to consider a statistical distribution of voids and 
micro cracks in the sample before the loading starts. These defects would orient preferentially 
damage and macrocracks during the compression test.  
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a) sliding contact – We notice that damage is distributed very 

homogenously in the sample. It means that the “Kill 
element” method result in a deletion of all finite elements of 

the sample in the same time. 

b) low friction – We notice that damage is 
distributed inhomogeneously but there are no 

macrocracks yet. 

  

c) strong friction – Macrocracks propagate in the sample. 
d) bilateral contact – Macrocracks propagate in 

the sample with a specific orientation of the 
bilateral sticking contact (X-shape). 

 
Figure 5-9. Damage repartition in the quarter of the sample in function of the contact between the tools 

and the mortar sample for the same displacement tool (h = -0.3956 mm). 
 

5.3.1.2 Identification of the elastic parameters of the aggregates 
 

The “trisphere” model [de Larrard et al. 1999] can lead to evaluate the Young modulus 
of the mortar paste (MP)  in function of the Young modulus of the aggregates (A)  
and the homogenised Young modulus of concrete 

C
MPE C

AE
E : 
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Where g denotes the granular concentration. If we considers 43=E GPa according to the 
experimental results (see Eq. ( 5-4)), = 20 GPa for the mortar paste (we consider here 
that ) and  g*= 0.61 according to the grain size distribution (the minimum diameter 
in the mortar paste is 4 mm) then the “trisphere” model gives a Young modulus for the 
aggregates paste equal to = 65 GPa. 

C
MPE

MC
MP EE =

C
AE

The inverse  analysis gives us = 50 GPa, for the Young modulus of the aggregate 
if we consider = 20 GPa. This result is low in comparison with results that can be found in 
literature. Indeed it is commonly stated that  is close to 70-80 GPa. 

C
AE

C
MPE

C
AE

 

5.3.1.3 Validation on concrete 
 

We now test on concrete the model with the identified parameters. We use the 
compression tests. The “Kill element” technique has not been used in this case as this method 
has some difficulties to converge. This difficulty is directly linked to the compression test 
which induces contacts between the finite elements and some conflicts between the “Kill 
element” method and the current geometry of the sample. Figure  5-10 shows the stress-
strain curves for a compression test. The initial time step is fixed to 0.1 mm per step and the 
upper tool has an initial velocity of 0.1 . The stress has been obtained by dividing the 
load by the initial section. 

1. −smm

 
The numerical compression strength is about =maxσ 55 MPa versus about 34 MPa 

experimentally obtained. Damage effects are underestimated. It means that damage 
parameters on compression are well identified on mortar but it does not represent the physical 
mechanical behavior of the mortar paste. The CPU time to simulate this compression test is 
about sixteen hours.  
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Figure 5-10. Comparison of the experimental and numerical load-displacement curves for a compression test 
on concrete. 

 
 

5.3.1.4 Discussion 
 

The analysis of this result shows that this first approach is not well adapted to model 
concrete. It shows that it is impossible to consider the mortar paste of concrete with the 
same mechanical behavior as mortar. Several hypotheses can explain this result.  
 
- Damage parameters may be not very well adapted. These damage parameters have been 
identified using an inverse analysis modulus. However this method has its limitations. We 
consider here that the mortar paste has the same mechanical behavior than mortar. But the 
reality is different. When concrete is made, a network of microcracks is initiated due to a 
prevention of internal shrinkage by aggregates. These important phenomena need to be taken 
into account: 

- Formation of microcracks due to a shrinkage phenomenon; 
 

- Creation of an ITZ between the aggregates and the mortar paste. By identifying the 
mortar paste (of concrete) with mortar only, we do not consider the mechanical 
effect of the ITZ; 

 
- We consider a perfect sticking contact between the aggregates and the mortar paste 

which can be questionable. 
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Whereas we use the same formulation, these phenomena induce a mechanical behavior of the 
mortar paste different from mortar. The ITZ is not represented through the mechanical 
behavior of the mortar paste. However it is considered as a weaker zone where cracks are 
often initiated. In the same way porosity and cleavage between aggregates and the mortar 
paste has not been taken into account. It also explains why inverse analysis gives us a Young 
Modulus of aggregates very low compared with results in the literature (about 30% of 
variation). The possible explanations show that the mechanical behavior of the mortar paste is 
over estimated. Consequently the identified aggregates mechanical behavior rigidity embeds 
microcracks effects, cleavage etc. 
 

5.4 Concrete parameters identification: Second technique 
 

The approach we have chosen considers concrete as aggregates included in a 
mortar paste. We identify the mechanical behavior of the mortar paste on concrete. Figure 
 5-11 summarizes this approach: 

 

 
Elastic parameters identification 

( C
MP

C
MPE ν, ) on concrete

Mazars parameters identification on 
concrete for tensile tests 

=> Identification of AT, BT, εD0, Crit
Tε

~  

The literature gives the elastic parameters ( C
A

C
AE ν, ) of 

aggregates 

Mazars parameters identification on 
concrete for compression tests 
=> Identification of AC, BC, Crit

Cε
~  

MECHANICAL PROPERTIES OF 
THE MORTAR PASTE 

 
Figure 5-11. Second approach to identify the mechanical behavior of concrete. 
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We consider aggregates as purely elastic with these commonly used parameters: 
 

C
AE  (GPa) C

Aν  
70 0.2 

Table 5-7. Elastic parameters for aggregate. 

We want to identify now the behavior of the mortar paste. So the process is as 
following: 

 
- we identify the elastic parameters with a compression test;  
 
- we then use the elastic parameters to identify damage parameters in tension with a 

three point bending test; 
 

- we identify damage parameters in compression with an uniaxial compression test. 
 
This way of identification enables homogenize the mechanical behavior of the mortar 
paste, the ITZ and the contact between aggregates. As we dissociate the aggregates from 
the rest of the concrete, we consider that the numerical mortar paste is constituted of the 
mortar paste (of concrete) with a weaker zone around each aggregate and a specific contact 
around each of them. Nevertheless the identification of the material properties of the ITZ and 
the contact used is global and is not considered at the grain scale (see figure 5-12). 
 

+ = 

Identification of the 
mechanical properties 

of the aggregates 

Identification of the mechanical 
properties of the mortar paste, 

the homogenised ITZ and 
contact. 

Identification of the 
mechanical properties of 

concrete 

Figure 5-12. Identification of the mechanical properties of concrete with the second approach. 

5.4.1 Identification of the elastic parameters of the mortar paste  
 

We first identify the mechanical behavior of the mortar paste in the elastic part. During 
the hydration period the concrete mix undergoes a gradual phase change: from plastic to a 
rigid consistency. At the plastic state, the Poisson ratio has been found to be between 0.4 and 
0.45. The material is quasi-incompressible. During the change in phase, the Poisson ratio has 
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to be gradually changed. [Germann and al. 1998] has proposed a relation between the Poisson 
ratio and time: 
 

( ) 425.0)11.1ln(05.0 ++−= ttν  (5-5) 
 

Where t is concrete age after setting (in hours). For instance after 80 hours, the 
Poisson ratio is estimated to be equal to ( ) 20.080 ==tν . At age of seven days, 
( ) 17.080 ==tν . But if we consider the mortar paste, the Poisson ratio becomes higher ([0.24-

0.27]). We observe it on our experiment where 22.0=ν  at age of seven days. Furthermore 
the prediction of the Poisson ratio evolution is very dependant on the formulation used. Hence 
a mortar with a high cement content has a different compressibility evolution than a mortar 
with a formulation poor in cement content. We consider Poisson ratio of the mortar paste 
equal to the Poisson ratio of the aggregates: . 2.0=C

MPυ

5.4.1.1 Theoretical analysis 
 

The Young modulus of concrete is influenced by elastic properties of aggregates, 
conditions of curing, age of concrete, mix proportion, type of cement. A common value is 30 
GPa. The “trisphere” model (see Eq. ( 5-4)) leads to evaluate  in function of  and the 
Young modulus of concrete

C
MPE C

AE
E . If we considers E = 43 GPa according to the experiments, 

= 70 GPa and g*= 0.61 according to the grain size distribution (the minimum diameter in 
the mortar paste is 4 mm) then the “trisphere” model gives a Young modulus for the mortar 
paste equal to = 18.69 GPa. 

C
AE

C
MPE

5.4.1.2 Inverse analysis 
 

The inverse analysis identifies the Young modulus  to 18.69 GPa. The research 
has been lead between 15 GPa and 40 GPa. It confirms the theoretic analysis of the 
“trisphere” model. This is the value we will use to identify the other parameters. 

C
MPE

 

5.4.2 Identification of the damage parameters of the mortar paste in 
tension 

5.4.2.1 Model configuration 
 

A three point bending test on a quasi-brittle material has been performed (see figure 5-
13). The contact between the upper tool and the sample is bilateral sticking. And the contact 
between the lower tool and the sample is frictional. A Coulomb law limited by the Tresca law 
(with arbitrary parameters 2.0,4.0 == Fm μ ) corresponds physically to a strong friction. The 
upper tool displacement is equal to  mm per step. For this test, a particle size 
distribution is considered with a maximum grain size of 

310.5.2 −

5.22max =d mm and a volumetric 
density of 40 %. It corresponds to the specific formulation used for the study of the ASR. 
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Average diameter (mm) 22.5 18 14.25 11.25 9 7.15 
Number of aggregates 8 62 106 91 128 236 

Table 5-8. Particle size distribution with 631 aggregates. 

 

 

 

175 mm

280 mm

70 mm

70 mm 

 
z 
     y 

 
z 
     x 

Figure 5-13. Geometry of the three point bending test. 36 178 nodes, 186 314 elements. 

 
 

The aggregates random generation algorithm presented in chapter 3 has been used. 
Figure  5-14 shows the heterogeneous aspect of the sample. 

 

 
Figure 5-14. Heterogeneous aspect of the work piece. 
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5.4.2.2 Identification of tensile parameters 
 

The identification of these parameters is made within the following range: 
 

 ];1.10[1.10~
 ];5.10[1.10

000] 000;110 [10
][0.7;1.5

3-4-

4-5-
0

∈

∈

∈
∈

Crit
T

D

T

T

B
A

ε

ε
 (5-6) 

 
Results of the identification have been obtained after about seventeen days. It corresponds to 
about one hundred simulations. The computation time to obtain this simulation is about four 
hours for a non local implicit model. With the same mesh, this simulation requires about 
twenty hours of computation time with a non local model with an integral formulation. The 
best results obtained are the following:  
 

TA  TB  0Dε  Crit
Tε

~  
1.18 50 000 9.1.10-5 1.63.10-4

Table 5-9. Damage parameters in tension for the mortar paste. 

 
The estimated error associated is presented in figure 5-15. It shows the incapacity of 

the inverse analysis model to tend to a unique solution. 0Dε  is twice lower than the value 
identified for mortar.  

 

0

0,005

0,01

0,015

0 20 40 60 80 100

Es
tim

at
ed

 e
rro

r

RheOConcrete iterations

0

0,0001

0,0002

0,0003

0,0004

0,0005

0,0006

0,0007

0,0008

0 20 40 60 80 100

Es
tim

at
ed

 e
rro

r

RheOConcrete iterations

Figure 5-15. Estimated error in function of the "RhEOConcrete iterations". 
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5.4.2.2 Global response 
 

Iso values of damage during the simulation for an implicit model associated with the 
“Kill element” method are given in figure 5-16. 
 

 
Tool displacement = 0 mm Tool displacement = 0.02 mm 

  
Tool displacement =  mm 210.12.2 − Tool displacement =  mm 210.62.2 −

  

Tool displacement =  mm 210.87.2 − Tool displacement =  mm 210.3 −

 
Figure 5-16. Damage evolution for a three point bending test on concrete. 

 
The macrocrack is initiated at the location where the equivalent strain reaches the 

critical equivalent strain Crit
Tε

~ . Damage initiates on the lower part of the beam and evolves 
along the load axis. We notice also that the damage evolution is non symmetric on the lower 
part of the beam. It is due to the aggregates skeleton which imposes a specific path for the 
damage and the macrocracks evolution. Figure  5-17 shows a comparison between numerical 
and experimental results on concrete at seven days. The difference from the two numerical 
curves comes from the initial time step (lower for the brown curve). 
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Damage and fracture 
occurs in the sample Elastic part 

Error bars 

Figure 5-17. Load-displacement curve for the three point bending test on concrete 

 
Figure  5-17 shows first a linear response up to the peak. Despite this linear aspect 

damage and cracks have already begun to propagate in the sample. The numerical peak load 
is reached at 6.82 kN which corresponds to a principal maximal stress equal to 5.21 MPa. 
It is quite well correlated to the experimental one which is equal to 4.37 MPa. After the 
peak, damage and cracks grow quickly in the sample. It is very difficult to obtain the same 
smooth part than the experimental result. However we notice that the decrease of the initial 
time step leads to a better description of the smooth part. Many reasons can explain this 
difference: 

 
- We use the “Kill element” technique. We have shown in chapter 4 (see section 4.5.2) 
that this technique is mesh dependent and leads to a more abrupt post-peak part than in 
the experiment; 
 
- We do not consider the frictional effects and the progressive energy dissipation due 
to contact between the tool and the sample; 
 
- We do not take into account the heterogeneous aspect of the mortar paste which can 
also change the crack evolution; 
 
- It is also important to notice the dispersion of the experimental results (see error bars 
in figure 5-17) more particularly in the smooth part. It underlines also the difficulty to 
obtain uniform results in the smooth part. Indeed the brittle behavior of mortar and its 
initial microcracks state can induce a macrocrack evolution more or less quickly. 
Furthermore the experimental data come from the displacement sensor under the load 
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axis (see chapter 4, section 4.4.3.2). As the crack starts from this location, we are not 
sure of the perfect measure of this system. 

 
In this context, we have considered this model in good agreement with the experience 

as soon as the elastic stage has been well described and the maximum load has been reached. 
It underlines the great difficulty to identify material parameters in this stage.  
 

5.4.4 Identification of the damage parameters of the mortar paste in 
compression  
 
 Now we identify material parameters in compression.  

5.4.4.1. Model configuration 
 

A compression test on this quasi-brittle material is performed. The dimensions of the 
cylinder are 160 mm diameter and 320 mm height. The contact between the tool and the 
sample is frictional. We use the Coulomb law with a Tresca limit with specific parameters 
corresponding to a low friction ( 2.0,4.0 )== Fm μ . Table  5-10 shows the particle size 
distribution. 
 

Average diameter (mm) 22.5 18 14.25 11.25 9 7.15 
Number of aggregates 40 294 502 428 604 1110 

Table 5-10. Particle size distribution with 2978 aggregates. 

 
Only aggregates with a diameter greater than 7 mm are plotted. Figure  5-18 shows the 
heterogeneous aspect of the concrete sample. 
 

 
 

Figure 5-18. Heterogeneous aspect of the work piece; 46987 number of nodes; 250 033 number of elements. 
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5.4.4.2 Identification of parameters in compression 
 
The identification of these parameters is made within the following range: 

 ];5.10[5.9.10~
[200;2000]

][0.7;1.5

3-4-∈
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∈

Crit
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C
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B
A

ε

 (5-7) 

 
The best results obtained are the following:  

 
 

Table 5-11. Damage parameters in compression for the mortar paste. 

AC CB  Crit
Cε

~  
1.012 657.012 410.7.8 −  

 
These parameters are far from damage parameters identified on mortar. The BBc value is 

greater than the identified parameter on mortar. The  value is lower than in mortar in 
order to initiate macrocracks sooner than in mortar.  

Crit
Cε

~

 

5.4.4.3 Global response of the material 
 

Figure  5-19 shows a comparison between numerical and experimental results on 
concrete at 7 days. 
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Figure 5-19. Load-displacement curve for the compression test 
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The CPU time for this simulation is about four hours. We first see a quasi linear 

response before the peak due to the fact that damage and macrocracks evolve slowly in the 
sample. At the end of the simulation, we observe a very fast drop of the load. It corresponds to 
the generation of many macrocraks in the sample. The numerical load reaches a value of 
756.15 kN compared to an experimental maximum load of 686.3 kN. It corresponds to a 
numerical compressive strength cσ  equal to 37.6 MPa (34.13 MPa for the experimental one). 
The isovalues presented in figure 5-19 show the damage evolution (figure 5-19: white 
corresponds to damage equal to 0 and black corresponds to damage equal to 1). We notice 
that damage is homogeneous at the surface of the sample.  

 
Figure  5-20 shows the macrocracks evolution in the sample through the Kill element 

technique.  
 

 
  

Tool displacement =  mm 210.9 − Tool displacement = 0.19 mm Tool displacement = 0.29 mm 

  
Tool displacement = 0.39 mm Tool displacement = 0.49 mm 

Figure 5-20. Macrocracks initiation and propagation in concrete. 
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We notice that the “killed” elements are initiated preferentially near to the contact with 
tools as the friction leads to more damage. Then they diffuse in the whole sample without a 
preferentially direction due to a homogeneous repartition of the aggregates which induce 
local stresses. It confirms the experiments as microcracks and voids are distributed 
homogeneously in the sample. 

At the end of the simulation the number of “killed” elements is more important at the 
surface of the sample. However it is difficult to assimilate these “killed” elements with 
macrocracks as no privileged crack paths are identified. This homogeneous distribution is not 
observed in reality at the end of the simulation. We observe generally a failure surface 
develops at about 20 to 30° from the direction of the load (see figure 5-21).  

 

 
Figure 5-21. Typical failure of a concrete in compression. [Mehta et al. 1993] 

 
In this way we consider that damage distribution is in good agreement with the 

experiment. Nevertheless the numerical model does not simulate correctly crack distribution. 
Many phenomena can explain this particular distribution: 

 
- First the hypotheses made on concrete can explain it: we do not take into account a 

specific contact between aggregates and the mortar paste (it is considered as perfect). 
This contact needs to be modelled as it undoubtedly plays an important role on the 
crack pattern; 

 
- Then we suppose the material has no damage at the beginning of the simulation which 

is not the case in reality. Heterogeneous materials may contain many potential fracture 
sites in a given volume. It should be important to consider: 

o  a statistical approach to consider aggregates with different elastic properties; 
o a statistical and a local approach of the ITZ for each considered aggregate. 

Indeed the ITZ has a  size which differs according the aggregate size and 
composition; 

o a non-zero damage state at the beginning of the simulation to model initial 
microcracks and voids present in the sample. 

 

5.4.4.4 Local behavior of concrete 
 

Figure  5-22 corresponds to the stress-strain relation by putting a numerical sensor at 
the surface of the sample. This process is discutable in the case of heterogeneous materials. It 
could be more appropriate to measure stress by using the load divided by the initial section in 
order to be independent on heterogeneities. However the goal here is to test the coherence 
between the local stress and the global load.  
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We notice that the maximal principal stress reached in compression is almost ten times 
higher than in tension. For the compression test, the local maximal principal stress is here 
evaluated to 6.371 =σ MPa compared to 32.9 MPa obtained on the global load-displacement 
curve (see section 5.4.4.3) and to 32.56 MPa obtained experimentally (see figure 5-19). In 
tension the maximal principal stress is evaluated to 86.41 =σ  MPa in figure 5-17 and it 
corresponds also to the value of experimental peak stress established in chapter 4 where it was 
equal to 4.37 MPa. 

Moreover the damage threshold in tension corresponds to . In 
compression this damage threshold corresponds to  which is exactly ten times 
higher than the damage threshold in tension. This gap is very typical of the difference of 
behavior in compression and in tension. 

410.46.1~ −=ε
310.46.1~ −=ε

 

 
Figure 5-22. Stress-strain curves in a concrete sample under a compression test or a tensile test. 

 

5.4.4.5 Comparison between the mechanical behavior of mortar and of the 
mortar paste (of concrete) 
 

We test now the material parameters we have obtained with the second approach. We 
use it to simulate a compression test on a homogeneous material. We compare thus these 
numerical results with experimental results obtained on mortar to the mechanical behavior of 
the mortar paste (of concrete).  

Figure  5-23 shows the stress-strain curves of mortar and of the mortar paste (of 
concrete). The numerical stress is evaluated by computing the load divided by the initial 
section. It underlines that damage evolves more slowly in mortar and the reached strength is 
greater. Macrocracks are initiated sooner in the mortar paste as the macrocrack threshold is 
lower than for mortar only. It stresses hence that the numerical mechanical behavior of the 
mortar paste (of concrete) takes into account the cement paste, the ITZ and the contact 
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between the aggregates and the matrix with possible decohesions, voids, initial microcracks 
through its material parameters. It shows once again that mortar and the mortar paste of 
concrete have two distinct mechanical behaviors. 
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Figure 5-23. Stress-strain curves to compare the mechanical behavior of the mortar paste (of concrete) with 
mortar only. 

 
 
 
           The identification of concrete parameters has been directly performed on concrete. It 
enables to take into account the ITZ and the contact through the mechanical behavior of the 
mortar paste. It has led to the following parameters (see table 5-12).  

 
Material 

Parameters 
C
MPE  (GPA) C

AE (GPA) υ 0Dε   TA

 18.69 70 0.2 9.1.10-5 1.18 
Material 

Parameters TB CA CB Crit
Tε   ~ Crit

Cε
~   

 50 000 1.01 657.08 1.63.10-4 8.72.10-4

Table 5-12. Identification of damage parameters on concrete. 

We have also underlined the difference of mechanical behavior between mortar and the 
mortar paste. 
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5.5 Application to the “Brazilian” splitting test  
 

Now we have identified damage parameters on tension and on compression on 
concrete, we test the numerical model on the “Brazilian” splitting test and compare it to 
experimental stress-strain curves.  

 
Due to the difficulty in applying direct tension to concrete, the split cylinder tensile 

test has gained with popularity. A 16×32 cm cylinder is diametrically loaded in compression 
between two plates. The contact is correctly taken into account with the use of two fine rods 
out of timber put between the plates and the cylinder. This test is very important to validate 
our numerical model. Indeed we use the parameters we have identified in tension and in 
compression (through compression and three point bending tests), and we use it to test the 
“Brazilian” splitting test.  

 
For this test, the particle size distribution is the same than for the compression test as 

we use the same volume. Figure  5-24 shows the geometry and the mesh used for this 
simulation. We suppose a bilateral contact between the tool and the sample. The 
parallelepipedic part of the cylinder in contact with the upper and the lower tool enables a 
better contact. Each of these parts of the sample is modelled with an elastic behavior whereas 
the rest of the sample has an elastic damage behavior. It can be considered as the rods out of 
timber which are used in the experiments. 

 

 

 

 

Parallelepipedic sample 
(purely elastic) 

ELASTIC DAMAGE 
BEHAVIOR 

tools 

Figure 5-24. Geometry of the "Brazilian Splitting test", 139 130 nodes, 741 829 elements. 

 
Figure  5-25 shows the granular skeleton in the cylindrical sample. 
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Figure 5-25. repartition of the aggregates in the sample. 

 
According to the elasticity theory, this loading produces a nearly uniform maximum 

principal tensile stress along the diameter, which causes the cylinder to fail by splitting (figure 
5-26). The numerical simulation confirms it as we notice stress in compression near the tools, 
and positive stress along the vertical axis. 
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Figure 5-26. a) Determination of the tensile strenght of concrete with the "Brazilian" test; b) Distribution  of the stress x 
on the numerical test. 
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For this simulation we do not use the “Kill Element” method which can lead to some 
numerical problems. We use the damage parameter identified in compression and in tension. 
Figure  5-27 shows the damage state in the volume. 

 

 
Displacement tool = 0 mm Displacement tool = 7.49.10-2 mm 

 
 

Displacement tool = 7.99.10-2  mm Displacement tool = 9.85.10-2  mm 

 
Figure 5-27. Damage evolution for the "Brazilian" Splitting test. 

 
We notice that damage is not initiated at the centre of the cylinder but at some distance 

of the centre. It confirms results obtained in 2D by Saouridis [Saouridis 1988]. Then the 
damage reaches a critical value at the centre of the sample and generates cracks along the load 
axis. The evaluation of the general displacement, based on data given strain gauges, is 
complex as it includes the geometry of the sample, the complex boundary conditions etc. In 
this way, we prefer to use directly the stress-strain relation. The theoretical relationship 
between the load peak  and the maximal principal stress maxF 1σ  is obtained as following: 
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Rb
F

..
max

1 π
σ =  (5-8) 

 
Where b is the depth of the sample and R is the radius of the cylinder. The experiment leads to 

73.21 =σ  MPa. Figure  5-28 presents the stress-strain curve based on the mean of some 
points placed at the centre of the sample. The maximal principal stress reached is equal to 
2.33 MPa. It represents a gap of 15%. We notice a good correlation of the two curves in the 
post-peak part. This one was difficult to obtain with simulations on three point bending tests. 
It confirms that the measure system used (with a displacement sensor under the load axis of 
the three point bending test) is questionable. 
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Figure 5-28. Stress-strain curve for the "Brazilian" splitting test. 

 
The good correlation between the numerical and experimental curves permits to validate our 
numerical model. 

5.6 Sensitivity analysis on aggregates parameters 
 

Aggregates (coarse, fine grains and sand) represent 80% of the total volume of 
concrete. Their characteristics affect the performance of concrete. Aggregate characteristics of 
shape, texture, maximum size, number, mineralogy and coating, absorption and grading 
influence workability, finishability, bleeding, pumpability and segregation of concrete and 
affect strength, stiffness, shrinkage, creep, density, permeability, and durability of hardened 
concrete. An optimal mixture proportioning will produce good-quality concrete with a 
minimum amount of cement.  

 
Here the main objectives of this study is to test the influence of the distribution of 

aggregates and the influence of the particle size distribution on the mechanical behavior for 
concrete when we consider concrete as a biphasic material. The numerical test is performed 
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with the material parameters, we have identified on concrete. We use again the non local 
Mazars model with an implicit gradient formulation ( ). 2mm 15~ =c
 

5.6.1 Influence of the aggregates distribution 
 
We test first the influence of the aggregates distribution on the global response of the 

material. Three concrete samples are submitted to a three point bending test. The model is 
configured as described in section 5.4.2.1. Figure  5-29 shows the load-displacement curves 
corresponding to three different randomly repartition of aggregates. We notice that aggregates 
distribution does not really influence load-displacement curves. It means that all results we 
have obtained in this work can be generalized to all concrete samples with the same 
formulation. 
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Figure 5-29. Load-displacement curves with different aggregates repartition. 
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5.6.2 Influence of the volume of aggregates 
 

Erntroy and Shacklock [Erntroy et al. 1955] have correlated the increase of the 
strength to the increase of aggregates volume for standard concrete. Stock and coworkers 
[Stock et al. 1979] have deduced from experimental data that: 

 
“- The addition of 20% by volume of graded aggregate to a cement paste leads to a 

reduced tensile strength, which remains unchanged at 40%, but increases significantly with 
further additions of aggregate to 60% and 80%. 

-The addition of 20% by volume of graded aggregate to a cement paste also reduces 
the compressive strength, which remains sensibly constant up to 60% and then increases 
significantly.” 

 
The reason may be found in a perturbation of the structure of the linking phase as the 

aggregate concentration increases (porosity increases and reduces the Young modulus). 
Figure  5-30 shows these relationships in compression and in tension. The free W/C ratio 
chosen was 0.5. The maximal aggregate diameter is of 19 mm size. The aggregates keep the 
same diameter for each test but their quantities increase. Compressive strengths were 
measured on cylindrical specimens (100 mm diameter by 300 mm long) and uniaxial tensile 
strength was measured by using the friction grip system on waisted specimens [Johnston 
1968].  

 

Figure 5-30. Relationship between compressive (left) / tensile (right) strength and aggregate volume from  experimental test 
results. [Stock 1979] 

 
Figure  5-30 shows that the relationship between the compressive and tensile strength 

varies no uniformly in function of the aggregate volume. The higher variability with cement 
paste is attributed to the difficulty of testing fine-grained material and the difficulty to control 
fracture in tension tests in spite of the waists formed in the specimen.  

We test the influence of the volume of (coarse) aggregates generated on the 
compression strength. We use the same model configuration than in section 5.4.4.1. The 
material parameters are those we have identified (see table 5-12). Different meshes have been 
used to generate the granular skeleton. The more there are aggregates to generate, the finer is 
the mesh.  

Table  5-13 shows the particle size distribution used for each distribution. At the end 
of the table, the volume of coarse aggregates generated in the sample is evaluated. Special 
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attention will be made to not confuse this last value with the aggregate volume presented in 
figure  5-30. To compare our numerical results with results obtained by Stock and coworkers, 
we have to add aggregates, with a diameter between 4 and 7.15 mm and sand.  

In this way, we have already presented the concrete formulation (see chapter 4, section 
4.4.2). It gives the sand content (20.8%) in a concrete sample. The volume of aggregates with 
a diameter between 4 and 7.15 mm corresponds to approximately 23%. So we have to add 
these two percents to obtain the whole aggregate volume and to compare compressive 
strength versus each whole aggregate skeleton. 
 
 

Average diameter (mm) Number of aggregates 
22.5 40 40 40 40 
18 294 294 294 

14.25 502 502 502 
11.25 428 428 

9 604 
7.15 

 
  1110 

TOTAL 40 836 1264 2978 

Theoretical Volume  of aggregates generated ( ) TV 3cm 238.5 1 896.9 2 215.9 2 658.9 

Real Volume  RV
of coarse aggregates generated in FEMCAM ( ) 3cm

249.5 1897.2 2216.2 2659.2 

T

RT

V
VV −

(%) 4.6 0.018 0.013 0.011 

Real coarse aggregate volume (%) in the sample 3.87 29.4 34.44 41.3 
Real aggregate volume (%) in the sample (coarse 

aggregates, fine aggregates and sand) 47.8 73.46 78.4 85.3 

Table 5-13. Particle size distribution. 

 
The (coarse) aggregate volume varies in fact from 3.5 to 40 % (corresponding to 2978 
aggregates) which corresponds at the end to a standard concrete. We compare the strength 
evolution versus the cumulative volume aggregates. Figure  5-31 shows the linearity between 
the maximal load evolution and the volume of generated aggregates. It leads to the following 
deduction: the strength is directly linked to the volume of aggregates in the sample for 
our numerical model for an aggregate volume between 40 and 90%. 
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Figure 5-31. Evolution of the maximum load reached in function of the number of aggregates in the sample 

 
For a volume of aggregates between 0 and 40%, Stock and coworkers observe a 

decrease of the compressive strength. It means that the more there are aggregates in the 
sample, the lower the mechanical properties of the mortar paste (creation of voids and 
microcracks in the mortar paste) [Wittmann 1993]. This is of course an indication that the 
volume of generated aggregates influences indirectly the maximal compressive strength. In 
this set of range, our numerical model is not able to give information as we consider only 
aggregates larger than a minimal diameter (7.5 mm here). But even if our 3D numerical model 
would be able to take into account fine aggregates and sand, a difference would be also 
observed. Indeed it comes from a major difference: by including more aggregates 
experimentally, the mechanical properties of the mortar paste are modified (creation of voids 
and microcracks, more ITZ around aggregates etc.). On the contrary the add of more 
aggregates in our numerical model cannot modify the initial mechanical properties of the 
mortar paste. 

 
Beyond a critical aggregate concentration, properties depend on concentration. This 

conclusion is in good agreement with the results obtained by Stock (see figure 5-30). The 
rigidity given by the aggregates are more important than the mortar paste behavior and then 
the maximal compressive strength increases. The aggregates avoid macrocracks propagation. 
Hence the maximal strength and the durability of concrete are greater. It confirms the 
importance to identify the mechanical properties of the mortar paste for a specific 
formulation of concrete in our numerical model. It underlines thus that the 
identification of the mortar paste depends on the aggregate size distribution. 
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5.6.3 Influence of the maximal diameter of aggregates 
 

Some studies have been carried out on the effect of the maximal diameter of 
aggregates to show the existence of an optimal maximal diameter to improve the compressive 
strength. The maximum size of aggregate influences workability, strength, shrinkage, and 
permeability. Mixtures with large maximum size of coarse aggregate tend to produce concrete 
with better workability, probably because of the decrease in specific surface [Washa 1998].   

Cordon and coworkers [Cordon et al. 1963] have tested a change in the maximum size 
of a given aggregate volume. Experimentally they show that the increase of the maximal 
aggregate diameter has a negative impact on the compressive strength for low water to cement 
ratio (W/C).  

 
 

 
Figure 5-32. Evolution of the compressive strength in function of the maximum size of aggregate.  

[Cordon et al. 1963] 

 
We also notice in figure 5-32 that the compressive strength is linked to the W/C ratio. 

This relationship has been represented by the Abram rule as follows: 
 

CWC k
k

/
2

1=σ  (5-9) 

 
In which  and  are empirical constants. Several reasons explain the link between 

the strength decrease with the maximal diameter: 
1k 2k

 
- The bigger is the aggregate, the more the stress concentration is important around the 

considered aggregate and so, the more damage evolves quickly and reduces strength; 
 

- The ITZ has a size which is different according to the aggregate size. The increase of 
the aggregates diameter engenders a greater zone of weakness which induces a lower 
compression strength.  
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Now we test the numerical influence of the dimensions of the aggregates on the load-

displacement curves for a compression test. Table  5-14 shows the number of aggregates to 
generate for each diameter to reach the same volume in aggregates (about 381.7 cm3). If we 
consider the volume of generated aggregates, the maximal difference of volume is equal to 
1.6%. 
 

Average 
diameter (mm) 22.5 11.25 7.125 

Number of aggregates 64 506 2000 
RV  (mm3) 383.8 377.57 378.7 

Table 5-14. Particle size distribution for the same volume of generated aggregates. 

 
The particle size distribution corresponds to the following repartition (figure 5-33). 
 

 
 

diameter = 22.5 mm diameter = 11.25 mm diameter = 7.125 mm 

Figure 5-33. Repartition of different granular skeleton in a concrete sample. 

 
We study the evolution of the global strength (load divided by the initial section) curve for 
each case. 
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Figure 5-34. Load-displacement curves on concrete with different formulations submitted to a compression test 

 
Figure  5-34 shows that for diameter, between 7 and 22.5 mm, the aggregate size has 

no effect on strength. It goes in the same way than figure 5-32 where the strength is much 
more influenced by the W/C ratio than by the maximal aggregate. The numerical response 
shows that the mechanical generated damage is equivalent for several fine aggregates and for 
some coarse aggregates. One hypothesis can be formulated to explain why we do not observe 
any change. The maximal aggregate size should influence a modification in the mechanical 
properties of the mortar paste. It should induce hence a modification in damage evolution. 
Here we have used the same material properties than identified before with a classical 
concrete (where the grain size comes from 7 mm to 22.5 mm).  So we have no considered a 
modification of the material properties of the ITZ (it becomes larger with larger grains)! As 
these mechanical properties modifications are not taken into account in our simulations, this 
phenomenon does not appear in the numerical load-displacement curves. 

The impossibility of our numerical model to consider a local representation of the ITZ 
(and so specific material parameters of the ITZ for each aggregate size) would require an 
identification of the material parameters for each of the three tests presented in figure 5-33).  

However this deduction has to be balanced with the fact that when the diameters of the 
aggregates increase, less aggregates are in the sample and then the ITZ volume decreases! 
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The sensitivity study on the influence of aggregates has shown: 
 

- The distribution of the aggregates has no influence on the global response of the   
    material; 
 
- The compressive strength increases linearly with the aggregates volume. In the  
   numerical test, we do not detect a possible decrease of the maximal compressive  
   strength. Our numerical model do not consider a modification of the mechanical  
   properties of the mortar paste with the introduction of aggregates. The mechanical  
   behavior of the mortar paste is thus dependent on the number of aggregates in the  
    sample; 
 
- The aggregate diameter has no influence on the global response when it is between  
   7.15 and 22.5 mm. 
 

 

5.7 Conclusions 
 

The experimental campaign, we have carried out, lead to the identification of material 
parameters. We have used in this study experimental mechanical properties of concrete given 
after seven days. The evolution algorithm has been used to identify automatically the elastic 
and damage parameters.  

We have shown that the mortar paste of concrete cannot be identified with a study on 
mortar. Indeed, even if the mortar paste has the same formulation than mortar, the 
microcracks and voids generated by aggregates during the hardening of concrete, leads to 
different mechanical behaviors between the mortar paste and mortar. In a good set of range, 
admissible results have been found. We have also noticed the great difficulty to describe the 
post crack stage of load-displacement curves. Some hypotheses have been formulated to 
explain this difference. We have validated the model on a “Brazilian” splitting test by using 
the identified parameters on tension and on compression. 

 
Moreover we have tested the effect of the grain size distribution on load-displacement 

curves. One conclusion emerges: the diameters and the number of grains for a constant 
volume of aggregates do not influence clearly the global response of the material. Hence we 
have noticed that for an elastic damage model at a mesoscopic scale, the volume of aggregates 
is the only parameter which influences the global response of the material. The model needs 
to be improved to take into account mechanical modifications of the ITZ in function of the 
grain size generated. Another interesting study would be to evaluate the effect of the 
aggregate grading on the concrete strength. 
 

We can now use these material parameters in a concrete sample submitted to ASR. 
The aim is to check some relations between experimental results and numerical ones.  
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6.1 Introduction 
 

ASR is a chemical reaction between certain types of aggregates and hydroxyl ions (OH-) 
associated with alkalis in the cement. Usually, the alkalis come from the portland cement but 
they may also come from other ingredients in the concrete (mixing water, adjuvant etc.) or 
from the environment. Figure  6-1 shows an example of a thin-section cut of ASR damaged 
concrete. 

 

 
Figure 6-1. Thin-Section cut of ASR-damaged concrete showing ASR gel (through aggregate). [TFHRC 2003] 

 
This chapter aims at modelling the mechanical effects of the ASR in concrete. 

Such a reaction is difficult to model accurately because of the complexity of the reaction: 
random localisation of the reactive sites, imperfect knowledge of the reaction mechanisms etc. 
The ASR can be described at two levels:  

 
- The modelling at a microscale is interesting since the chemical reaction 

mechanism is local. A direct correlation can be made to study the 
consequences of the material swelling on the microstructures. These models 
are based on the description of the chemical kinetic of the reactions. They try 
to take into account all the chemical process of the ASR (transport 
mechanism of the different chemical species and kinetic). But they do not 
treat the mechanical consequences of the ASR. We can quote the work of 
Furuzawa [Furuzawa et al. 1994], Xi and coworkers [Xi et al. 1999], 
Capra and Sellier [Sellier 1995].  

 
- The modelling at a meso and a macro level does not take into account 

chemical aspects of the reactions and model its mechanical consequences 
(damage, cracks) on the structure. They include parameters as temperature, 
ambient humidity, the reactivity potentiality of the aggregate and the imposed 
stress. We can quote the work of Chatterji and Christensen [Chatterji et al. 
1990], Capra and Sellier [Sellier et al. 1997], Larive and Coussy [Larive et 
al. 1996] who have developed more or less complex models. The Larive 
model describes with a quite good accuracy the volume swelling of the 
aggregates. However this model depends on three new parameters to identify. 

 
All these models suffer from the lack of a physical link between the chemical aspects 

of the reaction (microscale approach) and its mechanical consequences at a mesoscale. 
Another type of approach has hence been developed by the Ecole des Mines de Douai (GC-
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Douai). This approach models the mechanical consequences of the ASR (damage, cracks) 
based on a chemical study.  We will first present this model.  

The second part is devoted to the implementation of this swelling model in FEMCAM. 
We detail herein the equations used to describe the ASR in the FE model.  

The last part concerns a comparison between experimental results and the response of 
the numerical model. We use a 3D multi material modelling with material parameters 
identified in chapter 5. The grain size distribution used in the numerical model corresponds to 
the concrete formulation used by Dehaudt [Dehaudt 2002] already presented in chapter 4. The 
objective is to check the effect of the aggregates swelling on the global sample swelling. We 
test also the influence of the diameters and the number of reactive aggregates on the global 
swelling of the sample. Finally we conclude on the responses given by the model to better 
understand the mechanical effects of the ASR. Furthermore we underline the way to improve 
our model and obtain a more accurate description of this chemical reaction. 
 

6.2 Description of the model proposed by the Civil Engineering 
Department of the Ecole des Mines de Douai 
 

The mechanisms of the reaction have been described by various authors (Dent Glasser 
and Kataoka, Poole, Chatterji et al., Bulteel et al.) [Dent-Glasser et al. 1981] and an extensive 
literature review is given by Dehaudt [Dehaudt 2002]. This knowledge is essential to know 
the exact role of all the components of concrete in the ASR. For most authors, the ASR 
process is divided into two main steps: 
 

- This first stage corresponds to the formation of , with the hydrolysis of the 
reactive silica by  to form an alkali-silica gel as indicated in Eq. 

−
2/5SiO

−OH ( 6-1).  
denotes the reaction velocity. 

1v

 
−− +→+ 2/52/52

1

2 SiOHSiOOHOS
v

i  (6-1) 

 
- This second stage corresponds to the dissolution of silica by the absorption of water 

(see Eq. ( 6-2)).  denotes the reaction velocity. 2v
 

−−− →++ 2
4222/5

2

2
1 SiOHOHOHSiO

v

 (6-2) 

 
Afterwards precipitation of silicate ions   (also called  tetrahedrons) by 

the cations of the pore solution of concrete leads to the formation of C-S-H and/or C-N-S-H 
phases.  

−2
42SiOH 0Q

 
 Many divergences appear concerning the role of each component in the swelling 

mechanism. Many approaches consider that the swelling mechanism is mainly due to the 
creation of C-S-H and/or C-N-S-H phases, i.e. the second stage (see Eq. ( 6-2)) of the 
chemical reaction is expansive. It is thus generally assumed that there exists a porous zone 
around the aggregates and that the expansion is initiated only when the volume of the reaction 
exceeds the volume of the porous zone (see figure 6-2). 
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a) Reaction initiated b) No expansion (Pt<Pabs) c) Expansion initiated (Pt>Pabs) 

Porous zone Bulk cement paste 

Aggregate 

Figure 6-2. Schematic representation of an absorbing zone around the aggregate and its effect on delayed 
expansion initiation. [Furuzawa et al. 1994] 

 
We know now that the two stages of the chemical reaction are at the origin of the 

sample swelling (see [Dehaudt 2002] for more details). In this way the degradation of the 
aggregates submitted to the ASR has been demonstrated. However these phenomena have not 
been yet quantified. 

 
For some years, the ASR belongs to the main research field of the Civil Engineering 

Laboratory of the Ecole des Mines de Douai (GC-Douai). Researches have been carried out 
with cement manufacturers in order to develop experimental methods to follow the reaction. It 
has led to several publications [Bulteel et al. 2002], [Riche et al. 2002], [Garcia-Diaz et al. 
2003]. 

 
The GC-Douai has developed a powerful experimental method which leads to the 

knowledge of the swelling of the reactive aggregate versus time. An experimental method 
measures the different reaction degrees with an acid attack of the reactive sample at 
different ages of the chemical reaction [Garcia-Diaz et al. 2003]. The sample is crushed to 
obtain a fine concrete powder which can be used to perform a chemical treatment through an 
acid attack [Bulteel et al. 2002]. This model describes the chemical reaction from the 
microscale to a mesoscale by giving a relationship between the mortar paste swelling versus 
the swelling of the granular skeleton. They proposed hence a new methodology to quantify: 

 
- the number of moles of  (or Q−

2/5SiO 3 tetrahedrons) formed by Eq. (6-1) and 
consumed by Eq. (6-2); 
 
- the number of moles of dissolved silica formed by Eq. (6-2). 
 
This experimental methodology has been carried out to better understand the initiation 

and process of swelling.  This approach is the most physically realistic as it is based on 
experimental data. Some major conclusions emerge from this study and leads to the 
proposed mechanism, illustrated in figure 6-3: 
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Figure 6-3. Schematic subdivision of the swelling curve – Evolution of the swelling of the mortar paste versus 

time. [Garcia-Diaz 2000] 

 
- Period I: C-S-H/C-K-S-H phases are created. The two stages of the chemical reactions have 
the same velocity ( ) . The  tetrahedrons are produced and consumed in the same time.  
The mortar bar does not swell during this period; 

21 vv = 3Q

 
- Period II and III: the reaction velocity  of the first stage (see Eq. (1v ( 6-1)) is faster than 
the reaction velocity  of the second step (see Eq. (6-2)): more  tetrahedrons are formed 
than consumed by stage 2. It means that the stage 1 is expansive:  tetrahedrons are at the 
origin of the creation of C-S-H/C-K-S-H phases which leads to a swelling process of the 
reactive aggregates (see figure 6-4). 

2v 3Q

3Q

 

 
Figure 6-4. SEM. Polished section. 1) Altered flint aggregate by the creation of the chemical gel; 2) unreacted 

aggregate. [Bulteel 2000]. 

 
It leads then to damage and cracks in the sample. These cracks are probably at the origin of 
the volume amplification of the mortar bar. This is underlined in figure 6-5. It represents the 

volume variation of the sample 
V

DV (direct measure), measured at different time with a 

hydrometric weighing, versus the volume variation of the granular skeleton 
g

g

V
DV

 (indirect 

measure), given by the experimental method based on an acid attack [Bulteel et al. 2002]. 
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Period III corresponds to a competition between the two stages. In this way the mortar paste 
swells but not as fast as during period II; 
 

 
Figure 6-5. Volume variation of a sample as a function of the volume variation of the aggregates skeleton for a 

specific concrete formulation. [Riche 2003] 

 
- Period IV: the swelling is asymptotic even though the two stages of the reactions continue. 
It corresponds in fact to the fill up of the reaction produces in cracks created by the ASR 
(cicatrisation period). 

 
This approach confirms that the first stage of the chemical reaction (the  
tetrahedrons, i.e.  to  transition) is responsible of the swelling mortar. 
Furthermore recent papers have confirmed the presence of Q

4Q

2OSi 3Q
3 tetrahedrons in expansive gel. 

We can quote the work of Mitchell and coworkers [Mitchell et al. 2004]. It confirms also the 
initiation of the gel inside aggregates. All these experimental conclusions have led to a 
swelling model which establishes a link between the volume variation of the aggregates 
skeleton and the volume variation of the sample. Figure  6-5 plots the experimental results 
obtained. It leads to the following conclusion: the creation of micro and macro cracks during 
the expansion of the gel is possibly the reason which explains this amplification. 
 
 

The GC-Douai proposed a complex model based on experimental data. It makes the 
link between chemical aspects and their mechanical consequences at a mesoscale. In this way 
the model describes the linear relation between the volume variation of the granular skeleton 
and the volume variation of the sample. The numerical model would enable to check it. The 
volume variation of the granular skeleton will be an input data of our numerical code.  They 
are two main advantages to use it. We can directly use the experimental values of this 
expansion curve. Furthermore no new material parameter has to be identified and the input 
data correspond perfectly to the experiments. We will check the degradation and the volume 
variation of the reactive sample 
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6.3 The selected model in FEMCAM 
 

We consider the aggregates as purely elastic. Consequently we do not consider any 
damage term in this section as we work on the aggregate, which is considered as purely 
elastic. The user’s software introduces the experimental data: the value of the volume 

variation of the grain ⎟
⎠
⎞

⎜
⎝
⎛

V
DV  versus experimental time in FEMCAM. An interpolation is 

realized on these experimental values to obtain the volume variation of the granular skeleton 
at each time step (which can be adaptive) fixed by the user’s software.  

 
We consider herein that the experimental data gives us the exact free expansion of the 

aggregates. This hypothesis is not totally correct. Indeed the aggregate extraction method 
could induce instantaneous or differed elastic relaxation. It would mean that the measured 
volume variation is overestimated. However we consider that this phenomenon is very small 
compared to the swelling induced by the ASR.  
 
6.3.1 The chemical-elastic problem for reactive aggregates 
 

We use the same notation than in chapter 2. Our code is based on a velocity-pressure 
formulation. We have hence modified the constitutive equations to take into account the 
pressure generated by the aggregates swelling. These modifications affect only the finite 
elements which belong to reactive aggregate. Equilibrium equations are written in the 
following way: 

 

( ) ( )⎩
⎨
⎧

=− 0
:assuch  p)(v, Find

pGradsdiv
 (6-3) 

 
with inertia terms neglected. We add the incompressibility condition on the velocity field v : 

 
( ) 0=vdiv  (6-4) 

 
Using the Hooke law, we thus obtain the expression of the deviatoric part and the spherical 
part : 

p
s
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=

εχ
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 (6-5) 

 
in which  is the incompressibility modulus of the reactive aggregate. In order to simplify 
the notations, we consider in section 6.3.1 and 6.3.2 that all parameters , 
corresponding to elastic parameters for the reactive aggregate will be noticed

C
Aχ

C
Aχ

C
A

C
A λμ ,  

χ , λμ , . We 
take into account the chemical swelling by introducing now a chemical term in the total strain:  

 
ASR
ij

el
ijij εεε &&& +=  (6-6) 
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where  corresponds to elastic strain velocity and  corresponds to the strain velocity 
induced by the chemical swelling in the aggregate. If the finite element belongs to a reactive 
aggregates, . Otherwise, . Additional terms intervene in the expression of Eq. 

el
ijε&

ASR
ijε&

0≠ASR
ijε& 0=ASR

ijε&
( 6-5). We develop now the expression of the pressure induced by the chemical reaction. 
 
 
6.3.2 Expression of the pressure induced by the chemical reaction 
 
We consider that the free swelling of the reactive grain is proportional to the reaction 
advancementξ . If  ξ  is equal to zero, no gel has been created. If ξ  is equal to 1, all gel has 
been created. In our model, ξ  corresponds to the experimental data given by the volume 

variation of the grain ⎟
⎠
⎞

⎜
⎝
⎛

V
DV .  The behavior law for an isotropic elastic-chemical behavior 

is written as following: 
 

ijijkkijij χξδεδλεμεσ ∞−+= 32  (6-7) 
 
where 0>χ  and  is the asymptotic strain for a free swelling. In the case of a free 
expansion (i.e. 

∞ε
σ  = 0), there is a linear relationship between the reaction advancement ξ  and 

the observable strain in the material. We inverse the Eq. ( 6-7) and we obtain the following 
strain associated to the chemical reaction: 
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which can be rewritten: 
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If we replace the expression of iiε  in the Eq. ( 6-7), we obtain: 
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which can be rewritten as following: 

 

ij
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ijij δξε
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We denote: 

 

ij
ASR
ij δξε

μ
χξε

μ
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2
3

2
3  (6-12)
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After reducing the expression, we obtain the following relation: 

 
ij

ASR
ij δξεε ∞=  (6-13)

 
Eventually: 

 
( ) ξεε && ∞= 3ASR

ijTr  (6-14)
 
where  is the chemical reaction kinetic. As the tensor  is purely spherical, it induces a 
supplementary term in the hydrostatic pressure in FEMCAM to describe the swelling of the 
finite elements in the reactive aggregates: 

ξ& ASR
ijε
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The weak velocity-pressure formulation associated to the chemical-elastic problem is then 
modified (Eq. (3-25)): 
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 (6-16)

 
The following of the resolution is the same as described in chapter 3 (see chapter 3, section 
3.3.4.3). 
 
6.3.3 Remark on the resolution of the whole mechanical problem 
 

Our general 3D numerical tool models the swelling of concrete through two different 
behavior laws:  

 
- an elastic damage law for finite elements belonging to the mortar paste; 

 
- an elastic chemical law for finite elements belonging to the reactive aggregates.  

 
Consequently the general weak velocity-pressure formulation associated to the whole 
problem combines Eq. ( 6-16) and Eq. (3-25) and can be written as following: 
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In the mechanical contribution of each finite element to the local matrices, some 

conditions intervene to distinguish the behavior of the finite elements of the mortar paste and 
the finite elements of the aggregates. In this way a finite element, belonging to the mortar 
paste, does not have chemical strain ( ). A finite element belonging to the aggregate will 
have a purely elastic behavior (consequently, ). 

0=ζ&

0=C
Aχ&

6.4 Modelling of the consequences of the ASR after seven days 
 

6.4.1 Experimental data 
 

We use the experimental results obtained by Dehaudt on a concrete with a specific 
formulation submitted to ASR [Dehaudt 2002]. The formulation of this concrete has been 
largely detailed in chapter 4. 50% of aggregates are flint aggregates. They are considered as 
reactive even if this hypothesis is strong as flint aggregates are not systematically reactive. 
These experiments have been carried out on 7×7×28 cm parallelepipedic samples, at 60°C and 
100% of humidity (see figure 6-6) to accelerate ASR under controlled temperature. Concrete 
beams have been stored in autoclaves after seven days of hardening. It is thus important to 
note that concrete has not yet reached its maximal strength. It explains also why our 
identification on mechanical parameters has been carried out on concrete after seven days (see 
chapter 5). 

 

 
Figure 6-6. Autoclave curing of concrete samples to accelerate the ASR. 

 
After each given time (during 26 weeks), the concrete bars length and volume have been 
measured. Figure  6-7 presents the evolution of the global swelling of the sample. 
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Figure 6-7. Evolution of the longitudinal strain DL/L and the volumic strain DV/V on samples submitted to ASR 
at 7 days. Time “0” corresponds to a concrete of seven days old [Riche 2003]. 

 
In the same time reaction degrees have been evaluated to measure the global swelling of the 
sample and the swelling of the aggregate skeleton (see section 6.2 for more details). Figure 
 6-8 presents the volume variation of the whole sample in function of the volume variation of 

the granular skeleton ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

g

g

V
DV *. 

Figure 6-8. Volume variation of mortar core in function of  the relative volume variation of the flint aggregates 
[Riche 2003]. 

 

                                                 

* The volume variation of the granular skeleton ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

g

g

V
dV

 is the product of the volume variation of a 

grain
GrainV

DV
⎟
⎠
⎞

⎜  by the volume percent of reactive aggregates. 
⎝
⎛
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We notice that the amplification coefficient is equal to 3.07. It shows that the mortar 
increases the effect of the expansion of the granular skeleton.  
 
6.4.2 Numerical data 
 

We consider a 3D multi-material model. The aggregates are purely elastic and the 
mortar paste has a damage elastic behavior. Table  6-1 summarizes material parameters 
obtained in chapter 5. We use them for this study. 
 

Material parameters C
MPE  (GPa) C

AE  (GPa)  υ  β  c~  (mm2) 0Dε  
 18.7 70 0.2 1.05 15 9.1.10-5

Material parameters TA  TB  CA  CB  Crit
Cε

~  Crit
Tε

~  
 1.18 50000 1.012 657.08 8.72.10-4 1.63.10-4

Table 6-1. Material parameter to model the mortar paste behavior. 

 
Table  6-2 presents once again the grain size distribution used to simulate the consequences 
of the ASR on a concrete sample. 
 

Average diameter (mm) 22.5 18 14.25 11.25 9 7.15 
Number of aggregates 8 62 106 91 128 236 

Table 6-2. Particle size distribution for ASR with 631 aggregates. 

 
ASR induces generally macrocracks in our sample. We could model these 

macrocracks propagation using the “Kill element” method. However, as explained before this 
technique does not permit to have a volume conservation (elements are killed during the test 
and induce a volume lost). So this method has not been used and we consider that 
macrocracks are initiated when damage D reaches D = 0.99. Furthermore we consider in our 
study an isotropic swelling and we make the hypothesis that aggregates have the same 
swelling at the same time.   
 
6.4.3 Mechanical consequences of the ASR 
 
 We present now the mechanical consequences of the ASR on the sample. Figure  6-9 
presents the experimental evolution of the volume variation of a grain versus time. It 
constitutes the input data of the software FEMCAM. As we have already explained it, an 
interpolation is realized on these experimental values to obtain the volume variation of the 
grain at each time step (see section 6.3). And the mechanical problem is solved. 
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Figure 6-9. Free swelling curve of the grain versus time. 

 
We notice thus the “S” shape of the macroscopic strain evolution. Four phases are 

clearly identified. This evolution first displays a fast swelling, before generally reaching a 
stage at the end of the reaction.  The beginning of the curve corresponds to a progressive 
swelling period due to the creation of gel. The last phase is an asymptotic phase 
corresponding to a decrease of the efficiency of the products of the reactions due to an 
increase of the porous spaces linked to the creation of macrocracks. It corresponds exactly to 
the schematic model proposed by GC-Douai (as shown in figure 6-3). 

6.4.3.1 Experiment versus numerical results 
 
 For this simulation only one half of the aggregates are reactive (the experimental 
conditions imposes that one half of the aggregates are reactive flints). Figure  6-10 shows the 
reactive aggregates among the whole granular skeleton. The choice of the reactive 
aggregates is completely random and it is uniformly present on each grain size. The 
nature of the swelling is isotropic.  
 

 
Figure 6-10. Position of the reactive aggregates (in blue) into the aggregate skeleton. 
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Figure  6-11 presents the volume variation of the sample submitted to ASR versus time. We 
distinguish clearly five different zones. To plot this figure, we have used the numerical 
volume variation of the sample in ordinate and the experimental volume variation of the grain 

in abscissa. To obtain the volume variation of the granular skeleton ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

g

g

V
DV

, we have made: 

 -  For the numerical curve: the product of the experimental volume variation of the grain 

⎟
⎠
⎞

⎜
⎝
⎛

V
DV  by the real numerical reactive aggregates volume (generated with our random 

algorithm of granular skeleton); 
 
-  For the experimental curve: the product of the experimental volume variation of the grain 

⎟
⎠
⎞

⎜
⎝
⎛

V
DV  by the real experimental reactive aggregates volume (given by the concrete 

formulation). 
 

Figure 6-11. Volume variation of the sample versus time. 

 
 The first part of the curve (from 0 to 1 week) is unstable. We notice that the sample 
volume decreases whereas the ASR has already begun. One numerical reason could explain 
this phenomenon: damage induces a fast modification of the mechanical properties of the 
finite element and the mechanical problem has some difficulties to conserve the 
incompressibility condition. For instance we have measured the relative volume variations of 
some damaged finite elements in the mortar paste as shown in figure 6-12 for the first 
swelling steps. 
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Figure 6-12. Volume variation of several damaged finite elements in the mortar paste. 

 
Once the element is totally damaged, the sample has no other possibility than to swell. But 
this instability could have some physical origins. However no experimental data are available 
concerning the first days of the chemical reaction. 
 
Then the following parts of the curve (period I to IV) show the swelling of the sample. These 
swellings are symmetrically and it validates the 3D numerical modelling. 
 
 We test now the volume variation of the sample versus the volume variation of the 
granular skeleton (figure 6-13). We compare thus this volume variation to the experimental 
result given in figure 6-8. We notice in figure 6-13 that points in abscissa of the numerical and 
experimental curves are close. It means that the random algorithm for aggregates generation 
gives accurate results in term of generated volume (we use the numerical method already 

described in this section to evaluate the volume variation of the granular skeleton ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

g

g

V
DV

 in 

function of the volume variation of the grain and the reactive aggregates volume). We have 
made a correspondence between damage evolution in the sample versus time (from 0 to 4 
weeks). 
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Figure 6-13. Volume variation of the sample in function of volume variation of the granular skeleton. 

 
 The experimental model shows, in a first approach, a linear relation between the volume 
variation of the sample and the volume variation of the granular skeleton (see figure 6-8). The 
numerical model distinguishes in fact two main phases: 
 

- The beginning of the reaction corresponds to a fast volume variation of the 
sample. This phase is correctly modelled by our 3D numerical model (from 0 to 4 
weeks). The instability (from 0 to 1 week) we have, observed in the previous figure is 

not represented. We notice that the 
N

E

A
A  ratio ( amplification coefficient of the 

experimental curve;  amplification coefficient of the numerical curve) is close to 
1 ( ). Concerning damage, the sample is sound (damage in blue corresponds 
to ) at the beginning. Then it evolves in the sample due to the swelling of some 
aggregates and its value is nearby

:EA

:NA
44.6=NA

0=D
99.0=D after four weeks; 

 
- The second part of the reaction describes a slower volume variation of the 

sample. The amplification coefficient is equal to 6.44 in the first phase and then 
decrease to  in the second phase. This phase is not correctly described 
(after four weeks) by our numerical model. The evolution of the sample volume is 
not representative of the experiments. Some main reasons explain this difference: 

60.2=EA

 
o Aggregates are considered as purely elastic in our numerical model. 

Nevertheless some experimental studies [Bulteel 2002] have demonstrated 
aggregate degradation (under the effect of the creation of the chemical gel) 
which can induce the decrease of its mechanical properties (decrease of the 
Young modulus for example). At four weeks the grain swelling is equal to 

 
 6-147



Chapter 6 – Modelling of the mechanical effects of the ASR 
 

0.2% (see figure 6-9). If we suppose that the aggregate has a damage threshold 
0Dε  about equal to 0.2% (de Larrard [de Larrard 1999] considers a Young 

Modulus  equal to 78 GPa and a compressive strength equal to 160 MPa 
for aggregates from “Savreux”), the isotropy condition leads to a volume 
variation threshold of 0.6% of the aggregate. This threshold is reached during 
period II in figure 6-9. Numerical developments will integrate an elastic 
damage behavior to simulate the mechanical properties of the aggregates.  

C
AE

 
o It appears that damage evolution is overestimated in the sample. The second 

period corresponds to macrocracks initiation in the sample. Once damage 
initiates and evolves in the sample, numerical macrocracks should intervene. 
Stress and strains would be distributed differently after the cracks initiation. 
Consequently damage would evolve differently. 

 
o We have seen that we do not take into account macrocracks evolution. It is 

thus possible that we do not take into account possible creation of voids where 
the gel would go. It could have for direct consequences to slow down the 
whole swelling and increase the sample stiffness. In this way we notice clearly 
the impact of the macrocracks initiation and evolution in the sample and the 
role of the chemical part.  

 
o Concrete is a “living” material. After seven days, the mortar paste continues to 

harden. This effect can induce a slower evolution of the sample swelling. 
Indeed aggregates swelling is constrained by the mortar paste hardening.  

 
The first and the second points can be dealt with in our numerical model. In this way, the next 
chapter present an approach to take into account macrocracks contribution. The third and 
fourth points require including a chemical component in the model. More particularly the 
fourth point shows the interest to carry out the same swelling experiments with a concrete of 
28 days old. 
 

Figure  6-14 shows a cutting plane in the sample after 14 days of chemical reaction. 
We notice in blue the aggregates, which have a purely elastic behavior (D=0) and in red the 
completely damaged mortar matrix (D=0.99). We have observed on the simulations that the 
damage tends to be more important when it reaches the faces of the sample.  
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Mortar paste 

Aggregate 

Figure 6-14. Cuting plane in the sample submitted to the ASR - Blue corresponds to the aggregates. 

 
This result is representative that what can be observed experimentally: whereas 

damage evolves progressively inside, we observe a map cracking at concrete surface. 
Typically the crack pattern developed forms irregular polygons. An example of this map 
cracking is shown in figure 6-15. 

 

 
 

 

a) A portion of concrete road pavement, Cape Town. 
Length of the pencil is 125 mm. [Swamy 1992] 

b) Damage evolution at the surface with our 3D 
numerical model at the beginning of the chemical 

reaction. 

Damage 

Figure 6-15. Crack pattern developed at the surface of a concrete submitted to ASR. Comparison Experimental-
Numerical results. 

 
 Swellings amplitude is characteristic of more or less anisotropy which could be 
explained by cracks initiation and orientation. [Clark 1991]. Indeed, on the same concrete, the 
amplitude of measured swellings is strongly influenced by the measurement direction. This 
anisotropic character was noticed on several experiments [Smaoui et al. 2003]. Regarding the 
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longitudinal swelling, some experimental measures have been made during the Dehaudt study 
[Dehaudt 2002] to estimate the anisotropic character of the swelling. 
 
 Figure  6-16 shows the quasi linear correlation between the transversal swelling and 
the longitudinal one for the experimental curves. We do not represent first numerical points 
which correspond to an instable zone. We notice that numerical results are in the same set of 
range than experimental ones. However we do not observe the same slope as in the 
experiment. The numerical transversal swelling is less important than the numerical 
longitudinal one whereas the algorithm generates randomly the granular skeleton and the 
swelling is isotropic. But the mechanism is complex as many phenomena intervene at the 
same time: the initial numerical instability (it can modify the volume of damaged finite 
elements and consequently modify the longitudinal and the transversal variations at the 
beginning), edges effect etc... 
 

 
Figure 6-16. Correlation between transversal swelling and longitudinal ones. 

 
Several studies have shown a decrease of 50% for the compressive strengths of 

concretes developing an ASR, compared to healthy concretes. In an experimental study, 
Swamy showed a 25% fall of the maximal load of beams presenting ASR compared to "pilot" 

beams subjected to three point bending tests [Swamy 1992]. Here we can evaluate 
0E

E  versus 

time, where E is the homogenised Young modulus and  is the initial Young modulus. A 
compression test has been performed after swelling. We use the same friction conditions than 
already described chapter 5, section 5.4.4.1. The stiffness evolution can be divided into three 
parts: 

0E

 
- From 0 to 2 weeks, the chemical process is not yet active. The Young modulus 

increases. Concrete can get harder as we test it after 7 days. This phase can not be 
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described by our numerical model as it leads to the modifications of the mechanical 
properties of concrete; 

 
- From 2 to 8 weeks, concrete is submitted to ASR. The homogenised Young modulus 

decreases. This phase is correctly described by our numerical model. Figure  6-17 
shows that after eight weeks, we get a decrease of the homogenised Young modulus E 
of 31 % which is the same set of range that what we can observe during experiments; 

 
- After 8 weeks, the homogenised Young modulus increases. This increase can be 

linked to the asymptotic phase of the swelling curve.  
 
 

 
Figure 6-17. Evolution of the homogenised Young modulus versus time. 

 
 The evolution of the homogenized Young modulus validates the numerical model. 
It means that the damage model describes the mechanical consequences of the ASR on the 
sample with accuracy. Now we test the influence of the inert aggregates, the reactive 
aggregates diameters and the number of reactive aggregates on the volume variation of the 
sample.  

6.4.3.2 Influence of the inert aggregates 
 

We test here the influence of the inert aggregates on the global response of the sample. 
A test has been performed in which only a half of the total granular skeleton is generated and 
we consider that they are all reactive. The global swelling of the sample will then be 
compared to the previous result. If the inert aggregates have no role during the mechanical 
swelling, the curves will be completely superimposed.  
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Figure  6-18 compares the volume variation of the sample containing inert aggregates 
with the volume variation of the sample without any inert aggregates for a period of 8 weeks 
(0 to 8 weeks). We observe two main phases: 
 

- Period I corresponds to a great zone of instabilities (more important than for the 
swelling test with inert aggregates). We observe thus that the sample without inert 
aggregates is more submitted to contraction phenomenon induced by damage in the 
mortar paste. When damage occurs it leads to a contraction of each damaged finite 
element at the beginning of the simulation. Its volume decreases but this decrease is 
stopped by the presence of aggregates. These contractions are then assisted by higher 
mortar paste content in concrete. The more there are aggregates in the sample, the 
more the amplitude of this contraction is small. Even if some phenomena are 
observed in experiments (the chemical swelling is impeded by inert aggregates), it is 
difficult for the moment to analyse it as a physical phenomenon. 

 
- Period II underlines that the two samples (with or without inert aggregates) evolve 

with the same velocity. It seems that the volume of the sample with inert aggregates 
swells a bit more than the sample without inert aggregates (the amplification 
coefficient is equal to 1.24). However we consider equal amplitude between the two 
samples. This value comes in fact from the instabilities period, which is longer for the 
sample without inert aggregates. 

 

 
Figure 6-18. Comparison of the global swelling depending on the presence or absence of inert aggregates. 

 
Eventually the numerical model has underlined that inert aggregates leads to strengthen 
the structure. 
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6.4.3.3 Influence of the number and the sizes of reactive aggregates 
 

We test the number of reactive aggregates on the global response of the material in 
terms of volume variation of the sample. Figure  6-19 shows the volume variation of the 
sample in function of the volume variation of the grain. We notice that the curves have not the 
same evolution. Swelling evolution of the sample depends directly on the number of 
reactive aggregates. However the amplitudes, corresponding to the different curves in figure 
6-19, evolve non linearly. For 10% reactive aggregates, the slope of the curve is equal to 0.3, 
whereas the slope is equal to 1.9 for 100% reactive aggregates. The mechanism is here very 
complex to analyse as the swelling of reactive aggregates induces two contrary phenomena: 
possible contraction of the mortar paste between two reactive aggregates or possible 
dilatation. These two opposite phenomena are amplified with more reactive aggregates in the 
sample. Furthermore when few aggregates are reactive, little damage is generated locally 
around the reactive aggregates. It induces less contraction of whole sample, in which less 
finite element are completely damaged (it is the phenomenon we have explained in section 
6.4.3.1) and so a bigger measured volume of the sample. On the contrary, when 100% of the 
aggregates are reactive, more finite element in the mortar paste, are affected by a damage 
mechanism which induces a contraction phenomenon. Consequently the measured volume of 
the sample is lower.  

 

 
Figure 6-19. Volume variation of the sample versus volume variation of the granular skeleton according to the 

volume percent of reactive aggregates. 

 
This numerical test cannot be treated easily experimentally. It could be hence very 

interesting to carry out an experimental campaign in which the number of reactive aggregates 
would be controlled. Now we want to test the effect of the diameters of reactive aggregates on 
the global swelling of the sample.  
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By using the same initial formulation, we control now which size of aggregates can be 
reactive. We test separately the 7.15 mm, 11.25 mm, 14.25 mm and 18 mm diameters and we 
compare the mechanical consequences in terms of global volume variation of the sample 
versus the volume variation of the granular skeleton to a classical formulation where any 
types of grain size can swell. In this test, in order to respect experimental conditions where 
50% of the aggregates are from “Boulonnais” and non reactive, we consider than only 50% of 
aggregates of the same size are reactive. So we have modified the grain swelling in order to 
obtain the same volume variation of the granular skeleton. For example, if we consider the 
diameters mm, 118 aggregates can be reactive among the 236 aggregates of this size. 
It represents a reactive volume  equal to 22.6 cm

15.7=d
15.7

reactiveV 3. For a classical formulation, we 
know that the reactive volume  is approximatively equal to 279.8 cmreactiveV 3. In this way to 

obtain the same swelling of the granular skeleton we adapt the grain swelling 
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Figure 6-20. Volume variation of the sample in function of the volume variation of the granular skeleton for 

different sizes of reactive aggregates. 

 
Figure  6-20 shows the volume variation of the sample versus the type of reactive 

aggregates.  The diameter of reactive aggregates influences the global response. The greater 
aggregates size, the greater the volume variation of the reactive sample. Furthermore we 
notice an asymptotic zone which means that the global swelling do not increase beyond a 
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diameter (here the threshold seems to be set to 14.25 mm). Eventually we observe that the 
classical model, which takes into account all sizes of aggregates, leads to the greater volume 
variation of the sample. But this conclusion has to be balanced with the fact that the volumic 
fraction of reactive aggregates is modified for each test. It is thus difficult to analyse the 
diameters effect and the volumic fraction effect on the global response. This test could be 
improved by keeping the same volumic fraction of reactive aggregates in each test. 

 
Now we use the results obtained in figures 6-19 and 6-20. We compare the evolution 

of the slopes of each swelling sample versus the percentage of volume of reactive aggregates 
in the two cases. Figure  6-21 shows that the sample swelling does not evolve linearly versus 
the volume percent of reactive aggregates. There are two major different evolutions for a 
percentage of volume of reactive aggregates inferior or superior to 20%. The numerical 
model underlines that the volume of reactive aggregates controls the velocity of the 
sample swelling in our numerical model. Figure 6-21 shows that the velocity of the sample 
swelling is more important when the percentage of volume of reactive aggregates is inferior to 
20%. It is then interesting to underline that the classical test (with 20.5% of reactive 
aggregates) is at the border between the two evolutions. 
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Figure 6-21. Slopes of the swelling samples versus percentage of volume of reactive aggregates. 

6.5 Conclusions 
 

ASR is a chemical reaction which induces mechanical consequences at a mesoscopic 
and macroscopic scale. The principal consequences are cracks propagation and swelling of the 
sample. This chapter deals with the modelling of these consequences. 

 
In this way we have used the model developed at the Ecole des Mines de Douai (GC-

Douai). This model considers ASR as an expansion of some reactive aggregates. To model it, 
we use the experimental data on the volume variation of the granular skeleton, which 
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can be used as input data in FEMCAM. And we compare the experimental and numerical 
volume variation of the sample. 

 
The numerical results (volume variation of the sample) are in the same set of range 

than experimental results during the first phase of the chemical reaction. Furthermore the 
stiffness evolution of the concrete sample, submitted to ASR, gives good results. It leads to 
validate the numerical model. Moreover the 3D numerical tool contributes to improve the 
analysis of the mechanical consequences of the ASR. The numerical model has hence leads to 
describe the volume variation of the sample in two phases where the first one corresponds to a 
fast volume variation of the sample. However the numerical model has some limits which can 
lead to a bad description of the second phase of the chemical reaction. Some further numerical 
developments (mechanical law to describe aggregates with accuracy, macrocracks evolution 
in the sample) could improve the numerical tool. 

 
We have also noticed the importance of inert aggregates which modify the global 

swelling of the sample. Due to these inert aggregates, the whole sample is less sensitive to 
contraction and thus induces an increase of the swelling phenomenon. Furthermore the effects 
of the number and the diameters of reactive aggregates have been studied. We have deduced 
that the velocity of the volume variation of the sample is function of the volume percent of 
reactive aggregates. The results presented here proved that numerical simulation is clearly 
helpful both to understand the mechanical consequences of the ASR on concrete structures 
and to improve concrete formulation by analysing the effect of the aggregates on the global 
response of the sample.  

 
The next chapter is dedicated to the modelling of macrocracks in a sample through the 

Discrete Crack Approach. The aim is to be able to introduce macrocracks and observe their 
evolution and influence of a sample submitted to ASR.  
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7.1 Introduction 
 

Fracture of concrete is a very complex phenomenon that involves the initiation, 
growth and propagation of micro and macrocracks*. This complexity arises principally from 
the heterogeneous nature of the material. Initial cracks are generally initiated at the interface 
between the aggregates and the mortar paste. Then they can evolve and be localized in three 
main zones: 

 - At the interface between the aggregate and the mortar paste; 
 
 - In the mortar paste; 

 
 - In the aggregate. 

 
This evolution depends mainly on the geometry and the mechanical properties of the 
aggregates. If the stiffness of the aggregate is weaker than the mortar paste (case of high 
performance concrete) or if the inclination of the interface is close to 90°, the crack might 
propagate through the inclusion. If the aggregate is much stronger than the mortar paste or the 
inclination of the interface is small with respect to the crack direction, then the crack will run 
along the inclined interface (see figure 7-1). 
 

Figure 7-1. A crack path starting from an interface; a) The crack meets the second aggregate, b) and finally the 
crack will propagate along the interface. [Wittmann et al. 1993] 

 
In the framework of our study the numerical modelling of macrocracks can lead to a 

better comprehension of the degradation of a concrete sample submitted to ASR. In this way 
concrete fracture has been approached from different points of view, and literature on this 
subject is rich of models, each claiming partial success.  These models aim at describing the 
stages of initiation and propagation of a crack.  

 We present here a review of 3D numerical approaches of fracture. We will conclude 
on the choice of the “Discrete Crack Approach”, that we have chosen to implement. The 
second part of this chapter deals with the details of the algorithm we have implemented in 
FEMCAM. We will end the section by validating the algorithm and underlining the effect of 
the heterogeneities on the crack path. 

                                                 
* A crack is an internal boundary of the material which leads to material discontinuities.
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7.2 State of the art review on 3D numerical approaches of fracture 
 

During these last thirty years, numerous recognized theories have been already 
proposed and developed to model the phenomenon of cracking in concrete [Jirasek 1999]. 
Among the most interesting approaches, we can quote the “Element free Galerkin Method” 
proposed by Belytschko [Belythscko et al. 1994], the “Arbitrary Local Mesh Resplacement 
Method” [Rashid 1998] which consists in overlapping two meshes. More recently the 
Extended Finite Element Method (X-FEM) has also been presented [Sukumar 2000]. But the 
classical finite element method remains the most used method as we can use an extensive data 
base of material behaviors. However few works were completed in 3D. We classify methods 
for modelling discontinuities into three categories:  

- continuous approaches; 

- mixed approaches; 

- discrete approaches. 

 

Figure 7-2. a) continuous approach, b) discrete approach, c) mixed approach. [Jirasek 1999] 

 

After having detailed each of these approaches, we will show their advantages and 
their drawbacks.  

 

7.2.1 Smeared crack approach 
 

The basis of continuous models is that cracks are introduced by modifying the 
materials mechanical properties. A crack is therefore not represented explicitly, but modelled 
as a “smeared crack” by modifying the constitutive relation [De Borst et al. 2002]. Hence the 
remeshing process is not needed. These models allow a description of the concrete 
degradation due to cracking in terms of tensor relation between stress and strains. Hence, 
cracking laws and concrete behavior laws can be treated separately. The methodology is 
relatively simple to implement. Such models have been developed by Rashid (1968), 
Hillerborg and coworkers (1976), Gopalaratnam and Shah (1985), Bazant and Oh (1983) and 
Gran (1985). There are some alternatives: concepts of fixed cracks, rotating crack, multiple 
fixed crack, adaptative fixed crack models, statically constrained microplane model. 
Ohmenhaüser et al. [Ohmenhaüser et al. 1999] detail all these approaches. We present here 
the two main models. 
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7.2.1.1 Concept of fixed cracks  
 

One of the earliest models for concrete has been the concept of fixed crack proposed 
by Rashid [Rashid 1968], who triggered fracture by the maximum tensile stress in the 
element: once it exceeds a critical value, the element is considered cracked. Traditionally the 
non cracked material is regarded as isotropic, elastic linear. If the crack propagates at point x 
of the sample, concrete becomes anisotropic and the principal axes of the material are aligned 
with the crack axes. The constitutive equation is then modified so that the stress normal to the 
discontinuity vanishes. The behavior law for the fixed cracks links the stress to the strain as 
following: 

 

[ ] locloc D εσ Δ=Δ  (7-1) 
 
Where and  are respectively the local stress and strains in the crack referential (see 
figure 7-3). [  is damage tensor concrete linking stress and total strains in the axis of crack 
and defined by nine independent modulus.  

locσ locε
]D

 

 

concrete 

crack 

Figure 7-3. Local referential linked to the crack. 

 

This approach is appropriated for many applications but it has some disadvantages. 
Initially, it is impossible to correctly combine the crack with other nonlinear phenomena 
(heating effects, creep etc.). A remedy for this deficiency is to cut the total strain of the 
cracked material into a cracking strain  and an elastic strain  [Simons et al. 1997]. CRε COε

 
CRCOT εεε +=  (7-2) 

 
Where is the total strain. The concept of the "multiple fixed cracks” divides  into 
several parts representing each crack:  

Tε CRε

 

...4321
CRCRCRCRCR εεεεε +++=  (7-3) 
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The fixed crack model is well accepted for very brittle materials. However this model 

can lead to a bad prediction of the crack direction. Indeed once the crack is initiated and 
evolves in the sample, we suppose that the crack direction is the same during all the 
simulation. It is not really physical since most of the time, the direction of the maximal 
principal strain is different from the crack axis, especially when dealing complex loading. 
This involves a phenomenon of "stress locking". It produces a too stiff response compared to 
the experimental results because of an excessive rotation of the stress. In this way, a solution 
consists in introducing the possibility of several planes (normal or not to the first plane). 

 

7.2.1.2 Concept of rotating crack models   
 

This model was proposed by De Borst and Nautain 1980 and introduced by Gupta 
[Gupta et al. 1984]. It is based on the same approach than the fixed crack model. However the 
crack can reorient during crack propagation and remains normal to the major principal stress 
during further loading. Results are often more realistic than the first concept. The tensile 
strength will never be exceeded in the rotating crack model. In addition the cracks 
automatically reflect the anisotropy induced by cracking. One can thus interpret them like 
particular models of anisotropic damage. Traditional finite element modelling forces the mesh 
to conform to the geometry of the crack lips. In the event of propagation remeshing is 
necessary. These concepts thus contributed to the simplification of remeshing. But, they 
remain hard to implement especially in 3D [Walter 1999].  

 

7.2.1.3 Microplane models   
 

Initially applied to metallic materials, the original idea of this approach is due initially 
to Taylor (1938) and was generalized in 1985 by Bazant and Oh [Bazant et al. 1985] to 
heterogeneous materials like concrete. It consists in discretizing behavior laws following a 
certain number of planes (microplanes), oriented by their normal, where i represents the 
components of the Cartesian co-ordinates of ( ) 3,2,1=iix . Physically these planes can be 
interpreted as the weakest material planes, represented by the interface between the 
aggregates and the mortar paste. The material is hence characterized by a relation between the 
stress and the strain tensors on planes with various orientations (see figure 7-4). Those are 
then superimposed to obtain macroscopic stress and strains tensors. 

 

 

Figure 7-4. A microplane and the associated stress-strain relation [Saouridis 1988] The normal stress to a 
microplane is exclusively related to the normal strain to this plane. 
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The global stress is then obtained by integration [Jirasek 1999]:  

 

∫ Ω⊗⎟
⎠
⎞

⎜
⎝
⎛= nn dnn rrσ
π

σ
4
3  (7-4) 

 

with an element of volume around the normal. This last stage is the most difficult but when 
several planes are activated, one must consider them simultaneously.  

This model has been implemented into two and three dimensional nonlocal FE code 
(Castem 2000 for example [Fichant 1996]). The computation cost in the FE code [Fichant 
1996] makes it almost unusable on classical computers for 3D calculations. This cost is 
mainly due to the calculation of the integrals. In addition, the greatest difficulty is the choice 
of the number of microplanes in order to find the global behavior laws. But this model has 
some advantages:  

- It is simple, as it requires only the stress-strain relation for each of these microplanes 
to define the macroscopic material behavior; 

 - It is interesting to model anisotropic damage. Indeed one of the difficulties in the 
development of anisotropic damage models is the formulation of a law associated to the 
tensor of damage. Instead of deducing the stress-strain relationship starting from a complex 
damage law, this model makes it possible to deduce it from the damage tensor on each 
microplane starting from an equation connecting the stress to the strain; 

- It gives good results with respect to experimental concrete observations.  

 

7.2.1.4 The X-FEM method (eXtended Finite Element Method)   
 

The numerical modeling of crack propagation requires numerous expensive remeshing 
stages which gives raise to complex numerical difficulties in 3D. During the last ten years, 
many studies have been performed to dissociate the displacement discontinuity due to the 
crack, from the mesh topology. Meshless methods have been proposed, but they are not as 
robust and flexible as the FE method. The key idea of the X-FEM, suggested initially by 
Belytschko, is to deal with these discontinuities using an advanced enrichment technique of 
the shape functions. Conceptually this new technique to model discontinuities can be 
considered as a particular case of the partition-of-unity method [Melenk et al. 1996], 
[Babuska et al. 1997]. 

When a crack crosses an element, the nodes belonging to this element are located, and 
additional degrees of freedom are added to the element [Sukumar et al. 2000]. In this way, X-
FEM extends the capabilities of the FE method without losing its advantages. The following 
figure shows an example of propagation without any mesh modification.  
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Figure 7-5. Regular and not regular meshes containing a crack and using the X-FEM. The circled nodes are 
enriched by the jump function H whereas the squared nodes are enriched by the branch tip function F.  [Moes 

et al.  2002]. 

 

The square nodes correspond to the nodes of elements containing the crack tip, while 
circle nodes correspond to the nodes of the elements crossed by this crack. The finite element 
approximation is then enriched by two additional terms in order to highlight the presence of a 
crack: 
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Where: 

- I is the set of all nodes in the mesh; 
- is the classical degree of freedom (vectorial) at node i ; iu
- Ni is the shape function (scalar) associated with node i ; 
 
- The H(.) function is defined as following: 
 

⎩
⎨
⎧

<+
>−

=
0 xif 1
0 xif 1

)(xH  (7-6) 

 
- f(x) is the function “distance to the crack”. To evaluate H(f(x)) we have to check the 
position of point x with respect to the crack location. To reach this goal, we use level 
functions ("level sets"). 
 
- IL ⊂ is the subset of nodes that are enriched by the crack discontinuity and the 
coefficient ai are the correspondent degree of freedom (vectorial). A node belongs to L if its 
element is crossed by the crack but also if it does not contain any one of the tips of the crack 
(circled nodes in figure 7-5). 
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- K1, K2, … I are the subset of nodes that are enriched for the first and second crack front 
respectively. The corresponding degree of freedom are  A node belongs to K

⊂

.4..1,, 2,1, =mbb m
i

m
i 1, 

K2,... if its element belong to the tip 1,2,… of the crack (square nodes in figure 7-5). The near-
tip functions ( ) [ ]4,11 )( ∈m

m xF  model hence the crack front : 
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Where ( )θ,r  are the polar co-ordinates in the local axis at the crack front. 
 

 
Figure 7-6. Co-ordinates configuration for crack front enrichment functions. [Sukumar et al. 2000]. 

 
The X-FEM method has three important advantages:  

- It is not related to a particular behavior model (elastic, plastic etc.);  

- It is no more necessary to adapt the mesh to surfaces of discontinuities;  

- Enrichment is valid whatever the dimension of the problem: 1D, 2D, 3D and 
whatever the type of elements used.  

 

Practically, this method presents however some difficulties: it is necessary to add degrees of 
freedom during simulation and to refine the diagram of integration in the zone enriched 
around the crack.  

 
7.2.2 Mixed models 
 

Linear Fracture Mechanics (LFM) is not sufficient for quasi-brittle materials like 
concrete, because of the presence of relatively large fracture process zone (FPZ) or 
microcrack zone, where we considered that microcracks are uniformly spread, ahead of a pre-
existing macrocrack. In this zone the relation between stresses and strains is non-linear. This 
non-linear zone is very large in concrete compared to ductile materials. This difference comes 
from the heterogeneities of concrete and the large size of the aggregates. In this way, the 
energy dissipation is underestimated when the FPZ is neglected and consequently the material 
strength is overestimated. Bazant and coworkers [Bazant et al. 2002] differentiate three 
models depending on the structure size D, and the FPZ length wf. It is generally assumed that 
wf  is proportional to the size of the aggregate: 
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- For : we consider that the structures is very large (compared to the aggregate 
size) and the theory becomes equivalent to the LEFM; 

100/ ≥wfD

- For : Non-linear quasi-brittle material; 100/5 <≤ wfD

- For : Non local damage, discrete element methods, plasticity. 5/ <wfD

 

  
a) b) 

Figure 7-7. Non-linear behavior  in a) brittle-ductile material, b) quasi-brittle material (concrete) 

L: linear behavior, N: non-linear behavior, f: fracture process zone [Bazant et al. 2002] 

 

The non-linear approach was initiated by Hillerborg et al. [Hillerborg et al. 1976] with the 
"fictitious model" (or "cohesive zone model") and it is widely accepted as the constitutive 
model to describe the mechanical behavior of quasibrittle material as concrete. Instead of 
considering an abrupt stress drop, this model introduces a tension - separation law which 
controls the progressive loss of cohesion along the line of fracture due to progressive 
microcracking. One then adopts a non-linear relation between the stress and the opening of 
the crack. Two relations are then essential to describe the behavior of concrete:  

- The stress-strain relationship, which characterizes the zone away from the crack;  
 
- The stress-displacement relationship that governs the crack opening (Crack Opening 

Displacement).  
 

It is thus considered that the nonlinear behavior is located around the crack, while the 
material remains elastic linear elsewhere. The behavior law is no longer written in terms of 
stresses and strains but rather by defining a relation between the normal stress on the crack 
face and the normal opening of the crack. According to Hillerborg, a crack in a concrete 
specimen is thus characterized by two zones:  

- A real crack ("traction free crack") where crack faces are fully separated; obviously 
a macro crack is formed when the energy driving the development of this crack 
reaches the fracture energy Gf (energy consumed in the formation and opening of all 
microcracks per unit area); 

-A damage zone ("fracture process zone") in which the softening function is defined 
and where stresses are transferred due to frictional effects and other phenomena such 
as aggregate interlock. 

The stress transfer normal to the crack direction can still take place. The transmitted 
stress (often called a "cohesive stress") is a function of the history of the opening of the crack. 
These cohesive traction-separation laws are based on the initial work of Dugdale [Dugdale 
1960] and Barenblatt [Barenblatt 1962]. Several shapes, for the function f(), including linear, 
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bilinear, poly-linear and exponential, can be used to represent concrete. For a mode I crack 
opening, the transferred stress is normal to the face of the crack and is a function of the crack 
opening :  w

 
)(wf=σ  (7-8) 

  
This means that the cohesive forces are function of the crack width w. f(w) is 

considered as a material constant that can be determined by experiments. This equation is 
strictly valid for monotonic crack opening only.  

 

 

Figure 7-8. Schematic representation of the cohesive crack model and its associated shape function.  

[Li et al. 2003] 

 

For concrete and other cementitious materials a general bilinear function as a softening 
function, is appropriated. This function is completely characterized such by the following five 
parameters, known by measurements: the direct tensile strength tσ , the specific fracture 
energy Gf, w ,  and  which is the critical crack opening (see figure 7-9). The 
identification of  is difficult and the RILEM (International Union of Laboratories and 
Experts in Construction Materials, Systems and structures) recommends to evaluate indirectly 

  by measuring the external work required to break a notched beam specimen during a 
stable test. One interesting result demonstrates that  is strongly dependent on the 
roughness of the inclusions [Wittmann 1993]. The determination of the softening function is 
the main issue for these models. 

1w Cw

fG

fG

fG
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tσ  

w  

Figure 7-9. General bilinear function.[Elices et al. 2002] 

 

The fracture energy  and the curve are considered as material properties and are 
dependent through the concept of "characteristic length"  (in mm):  

fG
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l

σ
=  (7-9) 

  
The smaller the , the more brittle the material. Early applications in the area of 

concrete fracture were limited to Mode I situations. This model was consequently inadapted 
to multiaxial stress field applications. An extension to cracks and interfaces opening under 
mixed-mode conditions was developed by Cervenka [Cervenka 1994], who used a loading 
function in the space of normal and shear tractions. These CZM models are available in FE 
code Cesar developed at LCPC (1998). This approach is interesting but some limits remain 
[Bazant et al. 2002]:  

cl

- It is convenient for the finite element analysis, especially when the fracture path is 
not known in advance; 

- The identification of parameters of the stress-displacement curve with tensile tests 
are extremely difficult to obtain (multiple crack can occur in heterogeneous materials, 
unstable tests). We note then a great difference between the evaluated fracture energy 

 and the experimental one.  fG
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           a)                                          b)                            c) 

Figure 7-10. a) Multiple cracking in tensile specimens; b) Rotation of crack faces in pre-cracked specimen; 
c) crack overlapping. [Elices et al. 2002] 

 
 

7.2.3 Discrete approaches 
 

7.2.3.1 The “Kill element” method 
 

This technique is largely used to model crack propagation. It is usually coupled to 
damage evolution. When the damage variable reaches a critical damage value within an 
element, the “kill element” technique is activated for 3D configurations. The element is then 
eliminated and its mechanical contribution is deleted. This method is rather coarse and 
depends on the mesh refinement. However, when the fracture process does not require the 
computation of accurate stress field in the fracture area, this technique is very useful to 
perform 3D computation up to the end of fracture. This method has been implemented in 
Forge3® and makes it possible to model successfully specific forming processes such as 
cutting, shearing etc. (see figure 7-11). The main limits of this technique are: when an element 
is deleted, there is a loss of volume equivalent to that of the element. Moreover, the shape of 
the elements deleted at a crack tip does not correspond to real crack tip shape. The stress field 
at the crack tip is thus depending also on the elements shape.  

 

 
Figure 7-11. Cold forging of an hexagonal nut: the Lemaitre damage model enables to highlight the initiation 

of small cracks on the external part of the nut. It is also used with the “kill element” technique to model 
fracture during the fifth forging stage. Forming stages have been slightly modified to avoid cracks initiation in 

the last stage. [Bouchard 2005]  
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7.2.3.2 The Discrete Crack Approach 
 

The first models used to model concrete fracture were discrete crack models. This 
approach was initially developed by Ngo and Scorledis [Ngo et al. 1967]. The cracks are 
modelled by a separation between the originally connected borders of elements. The FE 
model is then reconstructed at each step so that the element surfaces correspond to the crack. 
In the first approaches, crack propagation was based on a simple node splitting, meaning that 
crack path were dependent on the mesh topology. In order to improve the model, this 
approach has been modified. Automatic remesher and adaptative mesh refinement allow a 
better description of the crack front as well as non mesh dependent crack path. 

 

a) b) 

Figure 7-12. a) Crack initiation for 2D configurations [Bouchard et al. 2003], b) Decomposition of a 3D-crack tip. 
[Tabiei et al. 2003] 

 

Bouchard [Bouchard et al. 2000] developed numerical tools in the code Forge2® 
Multimaterial making it possible to manage automatically and with accuracy the crack 
propagation in a 2D mesh. The following example we present cracks propagation on a pre-
cracked part with two holes (see figure 7-13.a). The two cracks can be propagated with the 
same length since they are symmetric. Figure 7-13.b presents the Von Mises equivalent stress 
field in the sample and shows the influence of each crack on the other. 

 

Figure 7-13. a) Crack trajectory in a pre-cracked part with two holes, b) Correspondent equivalent stress in the sample. 
[Bouchard et al. 2003] 

 

Up to now, very few software tools enable discrete crack propagation in 3D. Indeed, 
3D crack propagation induces numerous difficulties (two angles to estimate, generation of a 
3D crack front and new free surfaces instead of a crack tip in 2D for example). The major 
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numerical difficulty for this 3D configuration is the continuous change of the 3D crack front 
which induces new free surfaces creation and modifications of surfacic and volumic mesh 
connectivity. Few labs are hence capable to simulate real fracture in 3D with the Discrete 
Crack Approach. First results obtained in 3D configurations where obtained with EPIC (Lim 
1996), FRANC3D [Carter 2000] which is a three-dimensional fracture mechanics code 
developed by the Cornell Fracture Group for simulating arbitrary non-planar 3D crack growth, 
WARP3D (Koppenhoefer 1998). We can also quote the works of University of Paderborn 
with AdapCrack3D which uses an incremental approach with the Discrete Crack Approach 
[Schöllmann et al. 2003]. Figure  7-14 shows us a mode I crack propagation in a L-shape 
structure.  

 

  

Figure 7-14. Crack growth simulation of a knee-lever with AdapCrack 3D, (a) 1st step, (b) 10th step, (c) 25th 
step. [Schöllmann et al. 2003] 

 

The concept of discrete crack arises as being the approach which reflects the best the 
state of final damage of a concrete structure because it is based on a real geometrical 
description of cracks. It can also model the crack path of one or several cracks even in large 
strains. The automatic remesher can preserve a great accuracy of the mechanical fields around 
the crack front. It is also well adapted to study the influence of heterogeneities on the crack 
path, which is our goal in this study. 

 

 

Each of these methods has substantial disadvantages. The major disadvantage of the 
Discrete Crack Approach method is remeshing which involves a considerable amount of 
engineering effort. Therefore most of the methods developed try to model crack without 
modification of the mesh topology. The continuous models do not make intervene the mesh 
topology. However these models cost a lot (in term of computation time) and are difficult to 
implement. Methods such as X-FEM are interesting but very recent and still require studies 
before being usable. The Fictitious Crack Model enables to take into account the progressive 
decohesion of the free surfaces of a crack. However this method is limited as it is uniaxial.  

The Discrete Crack Approach thus remains the most realistic models and has reached a 
high state of maturity.  
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7.3 Implementation of the Discrete Crack Approach in the finite 
element code FEMCAM 
 
7.3.1 Introduction on the 3D crack modulus 
 

Two types of fracture mechanisms can be used to model fracture: The Linear 
Fracture Mechanism (LFM) or The Non Linear Fracture Mechanism (NLFM). The LFM 
is used to describe the fracture of brittle and quasi-brittle material. But it can consider a plastic 
zone ahead of the crack front only if this zone stays confined and with constant dimensions. 
The NLFM integrates the possibility of plasticity around the crack front.  

In our study, we will only consider LFM and model concrete using an elastic damage 
behavior. For more than two decades special purpose FE codes have been used to model 
crack growth. This chapter outlines the algorithm of the 3D automatic Crack Modulus in 
FEMCAM. Figure  7-15 describes how damage and crack propagation are used in FEMCAM 
and the location of the 3D crack modulus in the code. We will detail this algorithm: 

 

Initial data: 
volumic mesh, boundary conditions, Critical Equivalent Strain Critε~ , number of 

maximal increment incrmax etc. 

MECHANICAL COMPUTATION 

Critεε ~~ ≥  

3D CRACK MODULUS 

Damage state in the sample (use of a damage model) 

maxincrincr ≥  

NO 

END OF THE SIMULATION 

YES 

NO 

YES 

incr = incr + 1 

Figure 7-15. Resolution of a problem with 3D crack propagation. 
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At each increment, crack progress through a continuous change of the elements connectivity 
and the mesh topology in the crack front. It leads to the creation of new crack fronts. The 
generated area is thus a plane surface depicted by a number of finite element faces.  
 

 
Figure 7-16. Progression of the crack front. 

 
Four steps model the crack process to generate and propagate a crack as shown in figure 7-16: 
 
- The initialization step consists in reusing the nodes of the previous crack front. If it is the 

first crack increment, it is then important to know where and when the crack is initiated to 
locate the initial nodes; 

 
- The opening step wich includes the evaluation of the length da and the opening dw of the 

crack during each crack propagation increment; 
 
- The bifurcation step corresponds to the evaluation of the crack direction. We have thus to 

know in which direction the crack evolves; 
 
- The propagation step focuses on the modification of the mesh topology in order to create 

a new crack front. It also integrates the remeshing step, which consists in a volumic 
remeshing of the sample for the next increment. 

 
7.3.2 “Initialization” step  
 

This step considers two cases whether the crack has already propagated in the sample 
or not. Many criteria can be used to predict when and where cracks initiate and propagate. We 
can use some critical value of the material, for example a critical stress or a critical damage 

CritD . Crack extensions can be provoked by these previous critical value and also through a 
critical stress intensity factor  , the Crack Tip Opening Angle CTOA, or a critical energy 
release rate . When these critical values are satisfied or are exceeded, the crack can 
propagate.  

ICK

CG

 
In chapter 2 we have presented the Mazars damage model. We have identified damage 

parameters and have found a critical equivalent strain  which induces macrocracks in the 
sample in compression and in tension. We use this value as a macrocrack threshold for the 
crack initiation and propagation. When the threshold is exceeded in one or more elements 

Critε~
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belonging to the crack front, they are affected by the extension (topology, nodes allocation 
…) of the crack front. 

 
Concerning the location of initiation it is more difficult to introduce a crack anywhere 

in the sample than to propagate it. In our 3D numerical model, we have used two possible 
methods: 

 
- The first method consists in prescribing the initial nodes. The method used determines a 

volume V (with arbitrary lengths) in which nodes are possibly located. When crack occurs, 
the method searches all nodes belonging to this volume V. In the future, an initiation 
criterion, based on damage for example, should be added to our model to evaluate 
physically the location of the initial crack; 

 
- The second method, generally proposed, consists in introducing one or several pre-cracks 

in the sample. Then, our method evaluates all nodes belonging to the pre-crack with the 
previous method. 

 
However these methods are efficient only if they are combined to a nodes selection of the 
surfaces as shown in figure 7-17. We notice that the volume can contain other nodes than the 
nodes of the crack front. It is then useful to use the data on the finite elements in which nodes 
are (orientation of the faces) to obtain the good set of initial nodes. 
 

 

01 >nr  

02 <nr  

a) b) 
crack to locate nodes of tFigure 7-17. a) Volume V arround the pre- he initial crack front; b) orientation of the 
faces of the crack front. 

.3.3 “Opening” step 
 

etermined based on the Paris crack growth relationship and used stress 
tensity factors (SIF): 

 

 
 
7

Fracture is characterized by two dimensions: the crack length da and the crack opening 
dw. Given a maximum crack increment maxa , the amount of crack extension ia  at each node i 
of the crack front was d
in
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b

I

I
i K

Kaa ⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛
=

max,
max  (7-10)

  
Where max  was the maximum defined crack extension along the crack front defined the 
software’s user, max,IK  is the maximum value of I  along the crack front and b corresponds 
to the Paris material exponent. It underlines that the extremum nodes propagates lower than 
the interior nodes of the crack front (see figure 7-18). 

a
K

 

 
Figure 7-18. Crack extension rule. [Ingraffea 2004] 

 
However this technique requires a particular attention concerning the mesh refinement. In 
these conditions most studies considered these two lengths as given parameters (sometimes 
defined in function of the mesh size). These two dimensions are not predicted by our 3D 
numerical model and must be given by the user.  

 
Then, the essential tools to predict crack propagation are a propagation criterion 

(when is the crack going to propagate?) and a direction criterion (in which direction is the 
crack going to propagate?). This part focuses on the different alternatives for these criteria. 
 
7.3.4 “Bifurcation” step 
 

Cracks do not always grow straight ahead; sometimes they reorient. Three dimensional 
loading conditions often occur along crack fronts of real-world structures. All loading 
combinations can be described by a superposition of the basic fracture modes as introduced 
by Irwin (see figure 7-19). It includes opening (mode I), sliding (mode II), and tiring (mode 
III) modes. 
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Figure 7-19. Basic fracture modes by Irwin (1957) that can be applied to a crack. 

 
When concrete is submitted to a tensile test, the consequences are the presence of cracking in 
mode I. Compression test leads to cracks in mode II and mode III. However, the numerical 
modelling of crack propagation in concrete at a mesoscale involves a combination of the three 
fracture modes. Even for pure traction, the heterogeneities due to the location of aggregates 
lead to crack reorienting. Cracks at the interface between aggregates and mortar paste evolve. 
They are generally parallel to the load axis and are mainly due to the friction between the 
mortar paste and the aggregate [Mac Creath et al. 1696].  The stress field ijσ for the 
superposition of all three fracture modes can be described by the near-field solutions: 
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Where and  are the stress intensity factors (SIF) for the fracture in modes I, II and 
III, 

III KK , IIIK
),,( zr ϕ  are the cylinder coordinates originated at the crack front and ν  is the Poisson 

ratio (see figure 7-20). The expression of ijσ  denotes the singularity of the stress tensor near 
the crack front (see figure 7-20). Stress concentration surrounding the crack front is dependant 
upon the direction and geometry of the crack. It can be seen that the stress decreases when 
getting farther from the crack. In order to capture this singularity, special elements are 
required [Barsoum 1976], [Bouchard et al. 2000].
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a) b) 

Figure 7-20. Stress components and cylinder co-ordinates near the crack front  in a) 3D; b) 2D. 

 
Two kinds of methods exist in 2D to predict the macrocracks direction: the global 

approaches or the local ones. The global (or energetic) approach is based on the study of the 
maximum strain energy release rate in a cracked sample. The local approach uses the stress 
and strain fields in the vicinity of the crack front. 

7.3.1 The Maximum strain energy release rate  
 

In their original model, Erdogan and Sih noted that “if we accept Griffith (energy) 
theory as the valid criteria to explain crack growth, then the crack will grow in the direction 
along which the elastic energy release per unit crack extension will be maximum […]”. The 
angle of crack propagation 0ϕ  is found by maximising ( )ϕG  : 
 

( ) ( ) 00 2
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<
∂

∂
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ϕ
ϕ

ϕ
ϕ GandG  (7-12)

 
Bouchard [Bouchard et al. 2000] has used an innovative technique, initially proposed 

by Destuynder: the Gθ method [Destuynder 1983] in Forge2®. A virtual field θ is defined on 
a ring surrounding the crack tip (figure 7-21) and is used to describe a virtual crack extension. 
An infinitesimal perturbation of the mechanical fields in a ring surrounding the crack tip 
enables to compute G. This method is accurate and enables a fast computation of the 
parameter G. It is then possible to compute G for different direction of crack extension. The 
good direction is the one that maximises the strain energy release rate.  
 

 
Figure 7-21. Mesh structure and ring of elements at the crack tip: special quarter-points elements have been 
implemented to deal with the stress singularity at the crack tip and the mesh structure is flexible enough to 

represent a circular ring of elements surrounding the crack tip. Different kinds of rings (real, semi-real, virtual) 
have been compared to check the accuracy of the strain energy release rate computation [Bouchard 2005]. 

 
The 2D automatic remeshing is then used to model the automatic crack propagation for 
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different configurations.  

7.3.2 The Circumferential Stress Criterion  
 

For Linear Elastic Fracture Mechanics, the circumferential stress criterion developed 
by Erdogan and Sih [Erdogan et al. 1963] enables to compute the crack propagation direction 
ϕ . This criterion is based on local stress fields and it states that crack propagates in the 
perpendicular direction of the maximum circumferential stress. So we have to solve a system 
based on SIF in order to find the angle for the crack extension: 
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Currently the SIF are calculated using the displacement field ( )wvu ,,  for each node. Indeed 
we obtain more accurate results as the displacement field is obtained directly on each node, 
whereas the stress field is given, in FEMCAM within an element at an integration point. It 
requires then an extrapolation to obtain the field for each node. For instance, for the mode I 
and in 2D, we have: 
 

A 
B 

C

I 

J 

π  

π−  

crack 

 
Figure 7-22. I and J are two points on each side of  the crack lips for a P1+/P1 finite element. 

 
To localize the B and C nodes in the mesh, we use the following algorithm: 
___________________________________________________________________________ 
Algorithm 7-1. Localization of nodes to evaluate displacement fields. 
 All triangles which contains the node A (corresponding to figure 7-22) are stored in a table; 
 A list  is created with all nodes belonging to these triangles and different from the node A; ℑ
 We search node B such as ( ) ( ) { }( )frontcrack upper ,min, ∩ℑ∈= xxAdBAd  

 We search node C such as ( ) ( ) { }( )frontcrack lower ,min, ∩ℑ∈= xxAdCAd  
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For the mode I for example, we have: 
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Where r is the distance to the crack front,  μ  is the shear modulus and 
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More generally the SIF implementation is given by: 
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Solution of the Eq. ( 7-13) gives the angle of crack extension 0ϕ : 
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Under pure mode I, the crack goes straight ahead. At the opposite, when  is null, IK ϕ  is 
equal to -70.53° for positive  and 70.53° for negative  independently of the magnitude 
of . In these conditions we suppose that the propagation is plane so we exclude a 
possible propagation according to three axes. In this way we have only one angle to 
determinate;  

IIK IIK

IIK

 This method predicts relatively well the propagation direction of a crack in a (quasi-) 
brittle material. 
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7.3.3 Schöllmann, Richard et al. criterion [Schöllmann et al. 2002] 
 
 This criterion is a 3D extension of the maximum circumferential stress criterion. The 
description of the direction of the crack propagation is provided by the definition of two 
deflections angles 0ϕ  and 0ψ  (see Eq. ( 7-21) and Eq. ( 7-22)).  
 

 
Figure 7-23. Definition of the crack deflection angles 0ϕ  and 0ψ .  [Fulland et al. 2003] 

 
The angle 0ϕ  describes the local crack front kinking, which is closely related to the mode II 
portion of each point of the crack front and it is characterized by the following relation:  
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In which: 
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zz ϕϕ τσσ ,,  are given in cylinder coordinates (see figure 7-20). The angle 0ψ  defines the 
crack front twisting predominantly influenced by mode III.  It is given by: 
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Eq. ( 7-18) and Eq. ( 7-20) leads to the following system. The resolution of these equations 
is not easy as we can see Eq. ( 7-21) and ( 7-22).  Some specific tables exist to give the 0ϕ  
values versus  and  (see appendix A.5). III KK , IIIK
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The equation Eq. (( 7-21) cannot be solved in a closed form explicitly. To simplify the 
problem, 0ϕ  and 0ψ  are rewritten as follows: 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++
+

++
±=

2

0
IIIIII

II

IIIIII

II

KKK
K

B
KKK

K
Aϕ  (7-23)

  

With 0ϕ <0° with  and  0>IIK 0ϕ >0° with 0<IIK  and . 0≥IK
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With 0ψ <0° with  and  0>IIIK 0ψ >0° with 0<IIIK  and . When A=140°, B=-70°, 
C=78° and D=33°, angles give good approximations. So this criterion provides unique 
propagation directions at any point of the crack front in dependence of the local mixed mode 
situation [Richard et al. 2003]. 

0≥IK

 
 This technique has been implemented in FEMCAM to predict crack direction. But 
today we have no possibility to have real 3D crack propagation. Indeed the geometric 
difficulties are numerous to do that (possible overlapping of the finite element in the case of a 
possible propagation of nodes at the surface into the volume sample). Therefore we use 
partially this technique as we have only the Eq. ( 7-22) to solve in order to find angle 0ϕ  
which corresponds to a fracture in mode I+II only. We evaluate the propagation direction 
for each node of the crack front with a crack growth criterion. This evaluation is based on the 
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stress and displacement fields evaluated during the mechanical computation. A fine mesh is 
recommended at the crack front since the accuracy of the computation of the crack direction 
depends on the accuracy of displacement or stress fields in the vicinity of the crack front. 
 
7.3.5 “Propagation” step 
 

The mesh topology is modified. This step is the most difficult in the “Discrete crack” 
method. It consists in modifying automatically the geometric and topologic transformations 
due to the crack propagation in the sample. This algorithm is based on four steps: 
 
Step 1 consists in extracting the surfacic mesh from a volumic mesh. This step creates new 
tables in which the nodes and the elements number of the initial surfacic mesh are recorded. It 
records also the connectivity between nodes. The number of the nodes belonging to the crack 
front and their coordinates are also recorded. We differentiate herein the extremum nodes and 
the internal nodes. 
 

  

Figure 7-24. Initial nodes submitted to a future crack propagation. 

 
 
Step 2 concerns crack propagation. At each point of the crack front, a new front is computed. 
This step focuses on the extremum nodes: 
 

a) First the algorithm evaluates the position of the new extremes nodes. If the distance 
between the new and the old crack front is too long, in term of number of faces to 
cross, the problem is divided and some intermediary crack fronts are created. The 
aim is to obtain a new surfacic mesh with good quality elements (see figure  7-27);  

 
b) A new node  is added in the table corresponding to the new crack front. The 

main difficulty is to correctly identify the face which contains this new node . 
Hence if a load is applied on the sample, the nodes can move and it is thus very 
difficult to identify them. It is then important to use the orientation of each face to 
add a supplementary mean to localize this face. 

1+in

1+in

 
c) The initial node  is splitted into two nodes,  and , to open the crack.  in a

in b
in
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Displacement 
of the initial 

node 
New node 
for the new 
crack front b

in  

1+in  
a
in  

Creation of a 
new node  

Figure 7-25. Insertion of new external nodes in the mesh for the beginning of the crack front. 

  
 
The b) and c) points induce the modification of the surfacic mesh topology in order to create 
new surfacic elements. Once the new nodes  and  are created, a new topology is made. 
To do that: 

1+in b
in

 
- We evaluate the faces which are located between the old and the new front and. It 
consists in using the sign of the dot product (see Algorithm  7-2). 

 

Algorithm 7-2 : Algorithm of research of the location of nodes 

 

 

B 

1+in  C 

A 

Figure 7-26. Research of the location of a node in the table of faces. 

 
 We test all faces. Let (ABC) be a selected face; 
 We test the position of , by evaluates the dot product 1+in α  between the vector products 

 and ,  ,  respectively. If 
→→

∧ ACAB
→

+

→

∧ 1iAnAB
→

+

→

∧ 1iBnBC
→

+

→

∧ 1iCnCA α >0 in the thee case, we 
consider that  belongs to the face (ABC); 1+in
 A line is plotted between the two extrema nodes  and  ; a

in 1+in
 Knowing the face in which  is, we determine all faces crossed by the line (the technique 

consists in finding the intersection point between this line and the segments of the faces). 
1+in

 
- The connectivity between these faces is deleted and we only keep the nodes 
corresponding to these faces as shown in figure 7-27. These nodes are placed in a table 
and arranged in order to keep the same orientation than the other faces of the mesh. 
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- We use a technique in “star” to generate a new connectivity and create other 
elements. 

 
In the schematic representation below, we present only the connectivity change induced by 
the creation of the node . 1+in
 

 
 

a) Evaluation of the allocation of the new node and the 
faces crossed between the old and the new node. 

b) Creation of an intermediate node between the old 
and the node  for the new crack front. 1+in

  
c) First stage of deletion of the connectivity for nodes 
belonging to the crossed elements - Creation of a new 

topology to integrate the intermediate node. 

d) Second stage of deletion of the connectivity for 
nodes belonging to the crossed elements  - Creation 

of a new topology to integrate the new node. 
Figure 7-27. Schematic representation in 2D of the steps to create the new crack front. 

 
Step 3 consists in generating the crack front by adding the interior nodes. We create new 
nodes in the sample and connect them to the old crack front to generate new free surfaces. 
Figure  7-28 presents a state of crack propagation.  
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a) b) 

2b
in  

Figure 7-28. a) Schematic representation of the new faces of the crack front; b)Creation of new free surfaces to simulate 
the crack propagation into the volume. 

 
The connection between the old and the new nodes can lead to geometrical problems. 
Sometimes the upper surface crossed the lower one. In this case, we have added a 
supplementary condition to change the face connectivity. Figure  7-28.a represents this 
problem. If we consider that the connection between   and  leads to geometrical 
problem, we inverse the connection and connect  to  (represented by the dotted line in 
green). 

1b
in 2

1+in
2b

in 1
1+in

 
Step 4 is necessary to use the new created mesh, containing the crack propagation, for a new 
mechanical computation. We use all the data we have recorded, to generate a new volumic 
mesh. In this way we use the powerful remesher developed at CEMEF with specific 
conditions as new nodes and elements have been generated. First mechanical variables are 
transported from the old mesh to the new one.  

 
Furthermore the user can specify several requirements to the automatic remesher in 

order to improve elements quality through a data file: add or block nodes, refine the mesh in a 
specific area etc. We have hence transformed the “classical” remesher of FEMCAM to an 
adaptive remesher specific for fracture. We could obtain a better accuracy on mechanical 
fields closed to the crack front. Today the algorithm activates the remeshing on the whole 
sample. It could be optimized by reducing this remeshing to the crack zone in order to 
decrease the computation time. 
 

1
1+in  

1b
in  2

1+in  
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a) Initial mesh. We notice that our initial mesh is 

structured. This is only to have an initial linear crack 
front. 

 

b) Remeshing of the sample to introduce the new 
crack front. 

Crack propagation 

Figure 7-29. Remeshing of the sample for the next increment. 
 

The success of this method is very dependent on two factors: the mesh we give to the 
remesher must be valid (connection between nodes has to be coherent). Moreover the mesh 
quality has to be “sufficient”. Indeed the risk is to obtain a bad quality mesh which would lead 
to the end of the computation.  

 
It is thus important, before this step, to pay attention to the quality of the generated 

elements. This problem is mainly due to the fact that a crack insertion increases the number of 
nodes in the vicinity of the crack front much more than necessary for a correct geometrical 
description. To avoid this problem, it is useful to modify their position or erase some nodes 
from the mesh if necessary.  

 
Figure  7-30 presents a mesh in which one of the faces is completely degenerated; so 

the algorithm moves the corresponding node to the highest angle of the degenerated element 
and places it at the barycentre of the considered elements. 
 

Algorithm 7-3.  Barycentrage technique 

 List all neighbouring nodes n of   ; 1+in
 For each node n do: 

 List all neighbouring nodes of the node n; 
 Evaluate the barycentre of all these nodes 
 Displace the node n to the barycentre 
  End 
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Figure 7-30. Schematic representation in 2D of a modification of the position of a node to improve the elements 
quality.  

 
 
Another method consists in improving it by inversing the diagonals (see figure 7-28). The 
quality of the method depends on the measured angles α . If  , the diagonal of the 
faces is inversed. This method leads to a better equilibrium in the distribution of the triangle 
angles. 

Critαα >

 

  

Critαα >  

Figure 7-31. Example of a modification of the diagonal of an element in 2D to improve the elements quality.  

 
This technique improves the elements quality but permit also to continue the crack 
propagation.  Figure  7-32 presents the mesh problem which is solved with the inversion of 
diagonals. 
 

 
Figure 7-32.  Mesh problem. 
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This section deals with the implementation of the algorithm used. It is based on four 
major points: location of initial nodes, estimation of the length, opening and direction of the 
crack and actually the propagation step. The last point requires specific attention as it 
concerns the main difficulty of the “Discrete Crack Approach”: remeshing of the volumic 
mesh. We have hence focused on the way to transform connectivity and the mesh topology. 

  

 

7.4 Validation of the 3D crack model 
 

In this part, three examples are presented to validate the algorithm: a uniaxial tension 
test, a L-shape submitted to a tension test and a three point bending test. 
 
7.4.1 3D Crack propagation on a tensile test 
 

7.4.1.1 Model configuration 
 

We test first this algorithm on a uniaxial tensile test. The behavior of the sample is 
completely elastic and we know exactly where and when fracture occurs (the mesh of the 
sample is initially structured). The sample is parallelepipedic (25×50×50 mm). The contact is 
bilateral sticking between the upper tool and the sample. Table  7-1 sums up the mechanical 
parameters used for this simulation. 
 

E (GPa) ν da (mm) dw(mm)
30 0.2 1.5 0.1 

Table 7-1. Parameters used for the 3D crack propagation of a sample submitted to a tensile test. 

 

7.4.1.2 Crack path on a uniaxial tensile test 
 

Figure  7-33 shows the final step of the crack propagation. We notice that the crack 
propagation is correct as the crack propagates in the normal direction of the load axis. 
Furthermore we notice the good qualities of the generated elements along the crack front. 
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Figure 7-33. Crack path in a sample submitted to a tensile test. 

 
 
We illustrate the relevance of the maximal circumferential stress criterion with the analysis of 
the stress field in the vicinity of the crack front. We notice that the stress field is maximal 
around the crack front as shown in figure 7-34. 

 

 
Figure 7-34. Principal maximal stress field 1σ . 
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7.4.1.3 Sensitivity study on the SIF 
 
We test now the mesh refinement on the stress state near the crack front. In this way, a 

tensile test has been performed. Figure  7-35 presents the three types of meshes used for this 
simulation.  
 

   
a) Coarse mesh: 343 nodes, 1296 
elements, mesh size = 7.01 mm. 

b) Fine mesh: 2197 nodes, 10368 
elements, mesh size = 3.54 mm. 

c) Very fine mesh: 15700 nodes, 
83 000 elements. 

Figure 7-35. Representation of the mesh used for a tensile test. 
 
 
A crack propagates in this sample with the discrete crack approach. Then we constrain 

the crack to stop. We examinate hence the SIF evolution versus time (i.e. increments). The 
theory gives us a simple relationship between the maximal principal stress 1σ  in function of 

the distance to the crack front, where the stress is proportional to 
r

K I

π2
 for pure mode I. r is 

the polar coordinate of the node in the local reper where  is evaluated. IK Figure  7-36 
presents the numerical evaluation of the  values for each node of the crack front [Li Cham 
Yon 2005].  

IK
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Figure 7-36. Evolution of the maximal principal stress with respect to the increments. 
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We notice the mesh influence in the evaluation of the SIF and so in the bifurcation 
angles. The finer the mesh is, the homogeneous the behavior of the crack front is. For a very 
fine mesh, all nodes go in the same direction. A fine mesh improves the numerical results 
however it is not sufficient to capture the singularity of ahead the crack front. Indeed even if 
the behavior of the numerical curves are identical to the theory, linear and rising, (in the case 
of a very fine mesh), the slopes are different. This difference comes from the  finite 
element used which cannot lead to a singular stress field closed to the crack front. In order to 
obtain a stress field which agrees with the theoretical stress singularity of LFM at the crack 
front, a mid-side node at the quarter points of the side [Barsoum 1976] should be added. 

11 / PP +

 

 
Figure 7-37. 2D triangular element with mid-sides nodes at the quarter points [Barsoum 1976]. 

 
But in the context of FEMCAM it would require the use of quadratic elements (with middle 
nodes) whereas we only use linear elements. It would be then interesting to develop further a 
numerical mesh independent method ( θG  method for instance). 
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7.4.2 3D Crack propagation in a L-Shape structure 
 

Now we model a L-shape structure submitted to a tensile test. Displacement can be 
applied in different directions. Dimensions are given in centimetres and the material is elastic 
with the same mechanical properties as in the previous example. 

 

  

Figure 7-38. 2D representation of the crack initiation in a L-shape structure. 

Stress 
concentration 

Crack 
initiation 

Stress field 
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For the first simulation, the displacement prescribed is the same in direction x and 

z ( )111 . 5.0;. 0;. 5.0 −−− === smmvsmmvsmmv zyx . The first direction of propagation 
(corresponding to initiation) is given by the user since no SIF computation is possible before 
crack initiation. The maximal circumferential stress evaluates the direction of each node of 
the crack front. At each step of the crack propagation, the crack propagates with a length da = 
0.9 mm and an opening dw = 0.05 mm. Figure  7-39 presents the cracking state at the end of 
the simulation. We observe that the crack propagates very uniformly during the simulation 
and at 45°. Furthermore we notice that the maximal principal stress is maximal ahead of the 
crack zone. 
 

 

Vx 
 
Vz 

Figure 7-39. State of the maximal principal stress during the crack propagation in a L-shape structure submitted to 
a tension test. 

 
Now we test the circumferential stress criterion. In this way we study the crack path according 
to the direction of the loads. Figure  7-40 shows the crack path for different configurations. 
In the first case,  is equal to zero, so that the crack propagates horizontally (figure 7-40.a). 
In the last case,  is equal to zero and this time the crack propagates vertically (figure 7-

zv

xv
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40.c). When  (figure 7-40.b), we refind the previous results. These directions follow 
the stress distribution on the sample. It underlines the ability of the bifurcation criterion to 
give a good prediction of the crack path. 

zx vv =

 

 

Stress distribution 

Crack propagation 

Stress distribution 

Crack propagation 

Crack propagation

Stress distribution 

a)  0=zv b) zx vv =  c) 0=xv  

Figure 7-40. Different crack path according the load axis. 

 
 
7.4.3 3D Crack propagation in a three point bending test 
 

We test this algorithm on a three point bending test (40×40×160 mm, 29 000 nodes 
and 60 000 elements).  

 
We test first the crack path according to the location of the crack initiation. 

Mechanical parameters are the same than those used in table 7-1. We test a case where the 
crack initiates under the load axis and another test is performed with an initial decentred crack 
initiation. Figure  7-41 presents the crack path in each case. Case a) shows that the crack 
propagates in the same direction than the load axis. Furthermore each node of the crack front 
evolves regularly in the same direction. It validates the implementation of the crack growth 
criterion for uniaxial loading. Case b) validates also the model as it shows that the crack 
reorients in the direction of the load axis. 
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a) The crack is initiated under the load axis. b) The initial crack is decentred. 

Figure 7-41. Crack path and maximal stress distribution in a three point bending test according to the location of the 
initial crack. 

 
Now the beam has an elastic damage behavior. The crack is initiated under the load 

axis. Table  7-2  shows the material parameters used for this simulation: 
 

ME  
(GPa) 

Mν  εd0
Crit

Tε
~  β c~  AT BBT AC BBC

30 0.2 510.25.2 −  510.3 −  1.05 15 0.8 20000 1.4 1700 
Table 7-2. Material parameters. 

The crack initiates once damage reaches a critical value on the lower part of the beam. 
Afterwards the crack propagates automatically at each increment of the simulation. The crack 
length (da = 1.2 mm) and the crack opening (dw = 0.3 mm) are prescribed at each stage. 
These values are prescribed in function of the mesh size. Figure  7-42 shows damage 
evolution and crack propagation. 
 

 

Damage 

Figure 7-42. Damage evolution in a beam submitted to a three point bending test. 
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For the time being once the crack is initiated, the crack propagates at each increment of the 
simulation. This means that damage is not driven by damage evolution yet. After some 
loading steps damage is almost null on the crack front. Figure  7-42 shows that the crack has 
propagated faster than damage evolution. We are working on the coupling of damage 
evolution and crack propagation to improve our methodology. This improvement requires 
adding a loop in the finite element code corresponding to a condition on the damage state on 
the nodes of the crack front. And it can lead to problems as nodes would evolve with different 
velocity. From a geometrical view point, it is not an easy process as we are confronted to 
geometrical issues. For example, if the crack stops propagating, the classical remesher of 
FEMCAM continues to work. This could induce a modification of the shape of the crack front 
which is very dangerous for the crack propagation.  
 
7.4.4 Influence of heterogeneities 
 

Concrete is a very heterogeneous material. This heterogeneity induces consequences 
on the crack path in the sample: arrest, branching, deviation and so on. Actually the stress 
distribution in the sample depends on the aggregates tensile strength, aggregate size, 
aggregate volume fraction and matrix fracture toughness KIC. Cracks initiate preferentially in 
the ITZ and propagate in the mortar paste. However, when a crack propagates up to an 
aggregate, two solutions exist: 
- If the matrix/aggregate interface is weaker than the aggregate strength, the crack reorients 

towards the interface. They are thus two possible paths for its further propagation. The 
direction of this crack has been studied by Wang [Wang 1992]; 

-  On the contrary, the crack will propagate through the aggregate if the aggregate has lower 
stiffness.  

 
With this technique, we can study the influence of inclusion/aggregates on the crack path. A 
first example is presented with one inclusion. We study here the influence of one 
heterogeneity on the crack path in a parrallelepipedic sample 25×50×50 mm submitted to a 
tensile test [Comby et al. 2005]. Here we consider a mortar with a purely elastic behavior (see 
table 7-1 for the mechanical parameters). We simulate the heterogeneity by modifying the 
Young modulus in a specific spherical zone in the sample. Figure  7-43 shows the crack path 

that we obtain for different rigidity ratios
inclusion

matrix

E
E

R = . 
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R = 1 R = 15 R = 1/15 

  heterogeneity 

Figure 7-43. Evolution of the crack path for different mechanical property of the heterogeneity. 

 
We observe that the crack was propagating in the direction of the inclusion when this 
inclusion was less rigid than matrix. Indeed the maximal principal stress is oriented at 45° and 
the crack is attracted by the inclusion. Once the inclusion has been passed, crack reorients 
horizontally. On the contrary the crack moves away from the inclusion if this inclusion is 
more rigid than the matrix. These results confirm the experiments and underline clearly the 
effect of heterogeneities in the sample on the crack path. 

Concerning the CPU time, about six minutes are necessary to simulate the crack 
propagation on this tensile specimen. So the computation is very fast and the algorithm of the 
3D Crack Modulus does not take much time. But compared to the homogeneous sample 
which necessities about forty seconds, it is almost ten times higher. This increase is mainly 
due to the remeshing modulus (step 4 of the 3D Crack Propagation Algorithm) which is 
performed on the whole sample. We can improve this CPU time by remeshing only a local 
volume surrounding the crack front. 
 
 Now we test the crack path in a sample, submitted to a tensile test, with two inclusions 
in the volume. R is the ratio between the matrix rigidity and the inclusion rigidity. On the left 
side, R=1/15. On the right side, R=15. We observe a real 3D shape of this numerical crack. 
This is due to the fact that the direction of the crack propagation is computed at each node of 
the crack front. It shows us the possibility for each node to evolve independently and in 
function of local stresses nearby of each node. Results are quite similar to what was obtained 
for one inclusion.  
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Figure 7-44. Tensile specimen – Evolution of the crack path with two spherical inclusions with different 

rigidities. 

 
 
 

The numerical tests have validated the 3D crack modulus. Direct tensile test, tension 
on an L-shape structure, and a three point bending tests have tested the robustness of the crack 
propagation. The study of the SIF around the crack front has shown a mesh dependency due 
to the choice of the finite element in P1+/P1. Furthermore a test on a composite material 
underlines the great influence of the heterogeneities on the crack path. 

 
 

7.5 Conclusions  
 

Numerical modelling of crack propagation has given rise to a large number of 
methodologies such as X-FEM or Smeared Crack Approach. In order to simulate explicitly 
cracks we have chosen the Discrete Crack Approach, which is well suited to our concrete 
application at the mesoscale. This choice is completely justified. First the Discrete Crack 
Approach can evaluate with accuracy the crack path via the efficient mesher and remesher of 
FEMCAM. In the framework of this project, this accuracy is important for two reasons: 
cracks are often initiated at the interface (between matrix and aggregates) and the crack path 
depends on heterogeneities in a composite material. 

The validation on tensile specimen has shown the robustness of this modulus which 
can predict with accuracy the crack path. We have also noticed the great influence of the 
heterogeneities on the crack behavior. It underlines once again the importance to take into 
account the heterogeneous aspect of concrete to simulate accurately crack propagation in such 
a heterogeneous material. 
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CHAPTER 8  : GENERAL CONCLUSION AND 
PERSPECTIVES 

 

8.1 Conclusions 
 

he Alkali Silica Reaction induces concrete degradation. This chemical reaction 
has been largely studied in literature. The chosen mechanism is described 
according to the model developed at the Ecole des Mines de Douai. The 

concrete expansion is the consequence of the granular skeleton swelling resulting from a gel 
creation in siliceous aggregates. It leads to a modification of the mechanical behavior of 
concrete and creation of cracks and macro cracks. If we can consider that the preventive 
aspect is solved, we cannot dispose of satisfactory methods in terms of diagnostic and 
repairing of structures submitted to ASR. The final goal is hence to contribute to the 
concrete formulation and to understand the role of each component in a concrete 
submitted to ASR in the framework of durability issues. 

T 

The objective of this work was to describe the mechanical consequences of the ASR 
on a concrete sample. It induces the description of the concrete degradation with cracks 
initiation. Moreover it brings us to the description of the chemical swelling process. 

We have hence developed a new software, FEMCAM, based on the Forge3® finite 
element software package. This new numerical model enables to describe the mechanical 
aspects of the swelling process and its mechanical consequences on a 3D concrete 
sample.  

 
An extensive bibliographic study has been first performed to evaluate existing data in 

literature on the numerical description of a 3D concrete sample. Different behavior laws can 
be used to describe its mechanical behavior. The Mazars model has been chosen as it is well 
appropriated for our study. This model has been improved to take into account strain 
localization. We have chosen the non local Mazars model with an implicit formulation. It 
can hence describe the mechanical behavior of the mortar paste in concrete, whereas 
aggregates are considered with a purely elastic mechanical behavior. The bibliographic study 
has also studied the ways to represent a concrete sample. Two main ways have been 
identified. The numerical concrete can be considered as a homogeneous material or as a 
heterogeneous one. Whereas most of 3D modelling considers concrete as a homogeneous 
material, modelling concrete as a heterogeneous material has been chosen as it enables to 
keep the primary role of aggregates in the chemical reaction and to describe the local aspect 
of the swelling process (stress concentration, crack initiation etc.). Concrete is hence 
considered as a biphasic 3D material with aggregates embedded in a mortar paste.  

 
The third section describes the algorithm which generates aggregates in a concrete 

sample. This innovative description is based on a random generation of aggregates, based on a 
real grain size distribution given by the software’s user and take into account of physical 
aspects in the aggregates repartition. This third section also concerned the description of the 
implementation of this 3D numerical model in FEMCAM. The specificity of this code is 
its velocity-pressure formulation. We have implemented the non local Mazars model. This 
elastic damage model can be implemented through a weak or a strong coupling. We have 
noticed that the weak coupling induces a faster computation only if it is associated with an 

 
 8-198



Chapter 8 - General conclusion and perspectives 
 

adaptive time step which can describe with a great accuracy damage initiation. This weak 
coupling has been hence implemented to describe the mechanical behavior of the mortar 
paste. Using this 3D numerical model, we have validated and justified the choice and the 
implementation of the model. 

 
The fourth part focuses on the parameters identification. The “RheOConcrete” 

software has been used to do it. This inverse analysis modulus compares experimental and 
numerical global response with an evolution algorithm to adjust material parameters. Twelve 
parameters have been identified corresponding to parameters do describe the elastic and the 
elastic damage part of the load-displacement curve for the mortar paste and the aggregates of 
concrete. These experimental data have been obtained at the Ecole des Mines de Douai (GC-
Douai). We have chosen to use a specific formulation which is the most reactive to the 
ASR. The numerical model takes into account of the grain size distribution of this specific 
formulation and has chosen specific material parameters to describe concrete. Actually a 
sensitivity study has been led to test the influence of the parameters on the global response.  

 
In the fifth part, we have supposed unknown the mechanical behavior of the 

aggregates and deduced the mechanical behavior of the mortar paste of concrete in 
comparison with the experiments. The computation time is very long and requires a first study 
to reduce the set of range of each parameter to identify. Compression tests, three point 
bending tests and a “Brazilian” splitting test have been performed and global responses have 
been compared with experimental results. A sensitivity study has permit to conclude on the 
effect of the volume of the aggregates on the global response. We have hence noticed that the 
maximal strength increases linearly with the aggregates volume.  
 

Now we have validated our 3D numerical model and identify all parameters for a 
specific formulation of a concrete sample particularly reactive to ASR. The next part is an 
application of the mechanical consequences of the ASR.  In this way a bibliographic study has 
been carried about the swelling process induced by the ASR. We have chosen to use an 
isotropic dilatation phenomenon of each reactive to describe the chemical reaction. Our 
choice is based on the aggregate swelling experimental curve versus time, given point by 
point by the sofware’s user. The 3D numerical tool has been validated on the first phase of the 
chemical reaction. Furthermore it enables to describe the progressive loss of stiffness in the 
material with accuracy. Some supplementary numerical tests have proved the great effect of 
the inert aggregates which strengthen the mortar paste and decrease some contraction effect 
due to damage in the mortar paste. Another conclusion emerges from this numerical study: the 
volume percent of reactive aggregates influences the velocity of swelling of the sample.Our 
model has one major drawback: we cannot describe the cracks initiation and propagation in 
the mortar paste with the “Kill element” method, already present in FEMCAM. We have 
hence developed in FEMCAM a method to describe macrocrack initiation and propagation. 

 
 The last chapter describe a method to physically describe cracks initiation and 

evolution in a concrete sample. A bibliographic study has lead to conclude on the efficiency 
of the Discrete Crack Approach. We have hence developed an algorithm to change the mesh 
topology and introduce new surfaces. First validations have been realized on a mortar sample 
submitted to a three point bending test. We have hence underlined the necessity to take into 
account concrete heterogeneities to simulate crack propagation. This knowledge is all the 
more so important that these macrocracks are privileged paths for water and material transport 
which can induce an acceleration of the chemical degradation. 
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8.2 Perspectives 
 
The knowledges obtained during this first work have shown the major interest of this 

3D numerical tool. Results are promising and the perspectives are numerous to describe 
durability issues of concrete and more generally, of heterogeneous materials. This work has 
also underlined the great complexity of the material. The final goal would be to couple this 
numerical tool describing concrete at a micro level and another at a macro level in order to 
obtain a very large description of concrete. 
 

Concerning the mechanical behavior of concrete, some previous conclusions underline 
a behavior law taking into account viscosity aspect, and a non-linear behavior by including 
permanent strains could improve the global response of the material. The viscosity aspect is 
all the more so justified than the ASR is a very long reaction and the aspect of creep 
effects and strain relaxations could be modelled. Our 3D numerical model can also be 
improved on one major point. It would consist in considering aggregates as an elastic damage 
material. Here we present briefly the effect of the mechanical behavior or the aggregates on 
the global response of the sample. A swelling test is performed in the same conditions than 
already presented in chapter 6 (section 6.4.3). The difference is in the mechanical behavior of 
the aggregates. To simplify the problem, we consider an elastic behavior up to four weeks of 
swelling, and then only reactive aggregates are considered with an elastic damage behavior 
(we have fixed arbitrary a constant damage value (D = 0.5) in all the aggregates after four 
weeks).  Figure  8-1 compares the swelling curve. We notice that the modification of the 
behavior law for aggregates has an influence on the swelling sample: the swelling slows down 
after four weeks. This preliminary study confirms the importance to account for a more 
accurate mechanical behavior (including damage) for aggregates. Nevertheless it induces 
more damage parameters to identify our 3D numerical model. 

 

 
Figure 8-1. Volume variation of the sample versus volume variation of the granular skeleton according to the 

mechanical behavior law of the aggregates. 
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We have considered initial concrete without voids and possible initial cracks. An 

extension of this model could account for a statistic distribution of possible defaults in the 
initial concrete sample. Figure  8-2 compares the load-displacement curves of two 16×32 cm 
concrete samples submitted to a compression test. For the concrete with initial defaults, 2.5% 
of the mortar paste has been initially transformed into voids. The non local Mazars model 
with a fixed time step is used. We do not use the “Kill element” method. It underlines the 
important effect of the initial micro voids on the concrete behavior and the state of damage 
seems to be more realistic as it seems to be preferentially oriented along the z axis. 

 

a) b) 
Figure 8-2. a) Comparison of load-displacement curves for a sound concrete and a concrete with initial micro voids; b) 
State of damage in the concrete with initial voids. The damage distribution is homogeneous and oriented to the z axis. 

 
Our study concerning ASR has been carried out at 7 days. However concrete hardens 

during a minimum period of 28 days. To avoid a competition between these hardening 
phenomena and the swelling phenomenon a second experimental campaign could be carried 
out at 28 days to improve the comparison between experimental and numerical results. 
Furthermore some samples with specific grain size distribution or a specific distribution of 
aggregates in the sample could be compared with the numerical model. Other techniques 
could also be used as the vibration analysis. This non destructive technique follows damage of 
the same sample during the dilatation phenomenon induced by the ASR. On the other hand 
the numerical description of the ASR could be improved. A more accurate kinetic model 
could be developed where the initial data could be directly linked to the products of the 
chemical reaction.  
 

This 3D numerical model has the possibility to be improved with a description still 
more accurate by taking into account the contact and the ITZ between the mortar paste and 
the aggregate. Some ways could be explored thanks to the large possibilities of FEMCAM.  

 
The contact could be treated with the multi-domain version of this software. This 

multi-domain version introduces two separate bodies: a meshed cubic with a centred hole to 
simulate the mortar paste of concrete, and a meshed spherical body to simulate the aggregate. 
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Figure  8-3 shows us the comparison of load-displacement curves of a cubic concrete sample 
with one aggregate, submitted to a tensile test, according to the contact used.  

We have first compared the two versions of FEMCAM with the same type of bilateral 
sticking contact: the single-domain that we have used in this work and the multi-domain 
version. For the single-domain version, the aggregate has been simulated with the algorithm 
we have developed in this work. We notice that the load-displacement curves are equivalent 
and the difference, that we notice, is linked to the difference of shape of the aggregate for the 
two versions of FEMCAM and so a minimal difference of aggregate size. The peak load, 
between a sliding or a friction contact and a bilateral contact, is multiplied by ten. The 
observed differences underline the importance of the contact used. More particularly it shows 
the importance of the type of contact (bilateral versus unilateral contact).  However this is a 
critical test with a very large aggregate, which means that the differences we could observe on 
the real concrete sample we have already tested should be not so important.  
 

 
a) b) 

Figure 8-3.  a) Geometry of the 100*100 mm cubic sample: 4100 nodes, 17890 finite elements. We use the Non 
Local Mazars model with an implicit formulation 

(AC = 1.4, BC = 3500, AT = 0.8, BT= 20000, εD0 = , 410.1 − 15~ =c mm²). 

b) Load-displacement curves of a cubic specimen in tension. 

 
These observations show also the importance of the contact in the parameters 

identification. It may induce that the first method used to identify material parameters 
(identification on mortar and on concrete) should be efficient with a multi-domain version of 
FEMCAM by considering the contact between the aggregates and the mortar paste. 

The use of this multi-domain version presents some drawbacks. We have to adapt it to 
not miss the random aspect of the aggregate repartitions. Furthermore the simulation of a 
whole concrete sample containing almost one thousand aggregates with the multi-domain 
version would be too much consuming in computation time. Some other ways could be 
envisaged. The use of zero thickness finite elements between aggregate and the ITZ could 
simulate the progressive decohesion at the interface.  

The ITZ could be modelled by introducing initial voids at the interface between the 
aggregates and the mortar paste. 
 

But as these techniques are time consuming, it would require the use of a parallel 
version of the code, already validated with Forge3®. 
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The knowledge of the macrocracks initiation and propagation induces some further 
efforts to improve the 3D crack modulus. The final goal is here to simulate multi cracks which 
should constitute a significative advance in the modelling of Fracture Mechanics. Concerning 
the possible evolutions of the 3D Crack Modulus, some aspects can be treated without 
difficulty. The first aspect consists in remeshing only the crack zone to improve computation 
time. It does not necessary mean additional computation time as this mesh refinement could 
be limited around the crack front and not on the whole structure. The second aspect would 
consist in improving the refinement in the crack zone to get a more accurate computation of 
the stress field near the crack front. This is of prime importance since the accuracy of the 
computation of the crack propagation direction depends on the accuracy of these stress and 
displacement fields. It would be interesting to integrate a method, which would be less mesh 
dependent as the θG  method. 

Other aspects as the initiation of crack inside the volume, the creation of multi cracks, 
the coupling of damage and crack evolution, the possible evolution of nodes in 3D (with two 
bifurcation angles to realize 3D crack propagation), a good representation of the ITZ and the 
contact at the interface of the aggregates which undoubtedly have an influence on the crack 
path would be interesting to improve our knowledge on concrete and the consequences of the 
ASR.  

 
 
 
 
 

**** 
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Appendix 
 

A.1 One dimensional strain-localization problem 
 
 

Let us consider the one dimensional problem of the bar in figure 1. The constitutive 
model is an elastic model. A uniform bar, of length L and cross section A, is considered and 
characterized by a Young modulus E, an elastic strength tσ  and softening parameter 0<H . 

 

 
Figure 1. One dimensional bar problem 
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2- Elastic damage regime ⎟
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At the peak stress ( )tσσ =  let us consider that loading ( )εσ && TE=  takes place in the domain 

bΩ , of length Lb β=  [ ]( )1,0∈β , whereas unloading ( )εσ && E=  occurs at the rest of the bar 
(domain aΩ ). Let aε&  and bε&  ( ba εε && ≠ ) the rate of the strains at both domains. The 
equilibrium equation considers the homogeneous distribution stress in the whole bar: 
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Equilibrium requires that: 
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And compatibility requires: 
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It gives the following relation: 
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It results in an infinite number of solutions of the problem after bifurcation at the peak-load. 
The undetermination of the size of the strain localization (β  is undetermined) is responsible 
for that. 

 
Figure 2. Solution of the 1D localization problem 
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A.2 Friction laws in Forge3® code 
 
Tresca law (1865): It derives from the incompressive plastic behavior law.  
 

g

g

v

v
m

∆

∆
−= maxττ  (7) 

 
where m is the Tresca friction factor ( 10 << m ), maxτ  the shear stress of the 
deformed material and gv the sliding velocity. 
 

 

Figure 3. Representation of the Tresca's law with plastic relation 
3
0σ

τ ≤C  

 
- Coulomb law (1781): nFC σµτ =  
 

slip :
g

g
C v

v

∆

∆
−= ττ  (8) 

   
where τ is the tangential stress, nσ  the normal stress and µ the Coulomb 
friction coefficient. 
 

 
Figure 4. Representation of the Coulomb's law with von Mises plasticity limit 
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A.3 Analysis of the cement used 

A.3.1 Chemical analysis 
 
1.   Chemical composition    
    
      
Nature   CEM I CEM I 
Productor   Heming Heming 
Date   02/11/04 23/11/2004 
Reference test   REC 136 REC 136 
Sample number   04-2451 04-2650 
        
SiO2 % 20.14 19.96 
AL2O3 % 4.92 4.74 
Fe2O3 % 3.06 3.32 
CaO % 59.71 60.70 
Na2Ofx % 0.21 0.16 
K2Ofx % 1.08 1.07 
MgO % 4.55 4.76 
S SO3 total % 3.51 3.34 
Mn2O3 % 0.10 0.11 
TiO2 % 0.24 0.22 
P2O5 % 0.31 0.32 
Clfx % 0.030 0.010 
SrO % 0.060 0.060 
Perte au Feu % 1.41 0.61 
Total % 99.33 99.38 
Na2Oeq % 1.04 0.86 
NaO ICP % 0.27 0.25 
K2O ICP % 1.16 1.13 
Na2O eq ICCP % 1.04 1.00 
CL pot % 0.04 0.01 
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A.3.2 Granulometric analyse 
 

 

A.3.3 Mechanical characteristic 
 
 Paste and mortar characteristic  
     
 Nature   CEM I CEM I 
 Productor   Héming Héming 
 Date   02/11/2004 23/11/2004 
 Number   042451 042650 
 1.   Paste (EN 196-3)   
     
 Consistance % 28.2 28 
 DP min 200 220 
 FP min 285 310 
 Stability mm 1 0 
 2.   Compression strength (EN196-1)  
     
 1d N/mm² 22.2 18.6 
 2d N/mm² 36.1 34.1 
 7d N/mm² 54.6 52.1 
 28d N/mm² 66.9 64.4 
 3.   Volumic mass and Blaine (EN 196-6)  
     
 MV g/cm³ 3.12 3.16 
 Blaine cm²/g 4414 3944 
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A.4 Test on mortar at 14 days 
 

 

 

Figure 5. Compression tests at ages of 14 and 28 days. 
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A.4 Test on concrete at ages of 14 and 28 days 

A.4.1 Compression tests 
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A.4.2 Three point bending tests 
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A.5 Table to determine crack deflection  
 
 

n
IIK  n

IIIK  
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1 
0 0 0 0 0 0 0 0 0 0 0 

0.05 5.99 6.63 7.25 7.79 8.21 8.5 8.7 8.82 8.89 8.92 
0.1 12.38 13.71 14.97 16.04 16.84 17.39 17.73 17.92 18 18.01
0.15 18.92 20.89 22.72 24.22 25.29 25.98 26.38 26.56 26.61  
0.2 25.33 27.81 30.06 31.83 33.04 33.78 34.16 34.29 34.26  
0.25 31.37 34.2 36.68 38.58 39.84 40.56 40.88 40.94   
0.3 36.87 39.89 42.47 44.39 45.63 46.31 46.58 46.57   
0.35 41.78 44.85 47.43 49.33 50.52 51.15 51.37    
0.4 46.09 49.14 51.66 53.49 54.63 55.22 55.4    
0.45 49.85 52.82 55.25 57.01 58.1 58.66     
0.5 53.13 55.99 58.31 59.99 61.04 61.58     
0.55 55.99 58.72 60.93 62.54 63.56      
0.6 58.48 61.09 63.2 64.73 65.72      
0.65 60.67 63.15 65.16 66.63       
0.7 62.6 64.96 66.87 68.29       
0.75 64.31 66.55 68.38        
0.8 65.84 67.87 69.72        
0.85 67.2 69.23         
0.9 68.42 70.36         
1 70.53          

Table 1. Crack deflection angle (in degrees) 0ϕ . n
IIK  and n

IIIK  depends on the SIF. [Schöllmann et al. 
2002] 
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n
IIK  n

IIIK  
 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 1 
0 0 6.26 13.28 20.3 31.72 35.78 38.95 41.44 43.41 45 

0.05 0 6.58 13.93 21.2 32.68 36.66 39.74 42.13 44.02  
0.1 0 6.82 14.41 21.81 33.23 37.12 40.11 42.43 41.99  
0.15 0 6.97 14.67 22.07 33.34 37.16 40.08 42.36   
0.2 0 7.02 14.70 22.02 33.09 36.84 39.73 41.99   
0.25 0 6.98 14.53 21.69 32.56 36.28 39.16    
0.3 0 6.86 14.22 21.19 31.84 35.54 38.43    
0.35 0 6.69 13.82 20.56 31.02 34.71     
0.4 0 6.49 13.36 19.87 30.13 33.81     
0.45 0 6.27 12.87 19.16 29.21      
0.5 0 6.05 12.38 18.44 28.3      
0.55 0 5.82 11.90 17.74       
0.6 0 5.6 11.43 17.06       
0.65 0 5.39 10.99 16.41       
0.7 0 5.18 10.56 15.80       
0.75 0 4.99 10.16        
0.8 0 4.81 9.78        
0.85 0 4.63         
0.9 0 4.47         
1 0          

Table 2. Crack deflection angle 0ψ  (in degrees). n
IIK  and n

IIIK  depends on the SIF. [Schöllmann et al. 
2002]. 
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