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CHAPTER 1

Introduction

There is a theory which states that if ever
anyone discovers exactly what the
Universe is for and why it is here, it will
instantly disappear and be replaced by
something even more bizarre and
inexplicable

The Restaurant at the End of the Universe
DOUGLAS ADAMS

N THE LAST FIFTY YEARS theoretical physics has been dominated by two ap-
parently incompatible models: the microscopic world being described by
quantum field theory and the macroscopic word by general relativity. QFT
is by far the most successful theory ever made, allowing to reach an almost
incredible level of accuracy in its measurable predictions. But gravity is dif-
ferent from all other interactions; although by far the weakest, it acts on the
very structure of the universe at a more fundamental level. Many attempts
have been made to obtain a consistent quantum theory of gravity and they all
proved unsuccessful so that it is has become clear that completely new ideas
are needed.

To this day, but this has been true for more than twenty years now, the
only promising trail we can follow in the quest for this unification is string the-
ory. Roughly speaking it postulates that the fundamental objects are not point
particles as in the standard quantum models but one-dimensional objects —
strings. Although their typical size is so small that one might even question
the very meaning of distance at this scale, the mere not being pointlike allows
to solve an enormous number of theoretical problems and in particular those
connected with the severe divergencies that gravity presents due to the local
nature of interactions. Field theory particles appear as vibration modes of the
fundamental string, spacetime is a semiclassical description for a string con-
densate, supergravity emerges as a low-energy limit, and the standard model
is the result of a compactification in presence of extended objects (D branes).

Of course this is in many ways a wish-list. In its present state string theory
is largely incomplete. To begin, only a first-quantization description is known
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and as such is intrinsically perturbative, and only the S-matrix elements in
a given vacuum are accessible. So, although in principle the very geometry
should emerge from string dynamics, in practice we are forced to choose a
vacuum, which by itself clips the wings of any hope of attaining a complete
quantum gravity theory. Moreover only the perturbative regime is in principle
available, even though the existence of a web of dualities can translate strong
coupling backgrounds into ones we can deal with.

One thing nevertheless must be kept in mind. One should stay as close as
possible to the present knowledge of Nature and try to predict the outcomes
of realistic experiments beyond the standard models in particle physics or cos-
mology by using phenomenomogical models, but string theory is not supergrav-
ity. It is reassuring to find it as a low energy limit but most, if not all, of the
new physics lies in the regime where the semiclassical approximations break
down. From this point of view an important, almost essential, role is played
by exact models, i.e. systems in which the a’ corrections can be kept under con-
trol and a conformal field theory description is possible. Because of technical
issues, not many such backgrounds are known and they are all characterized
by a high degree of symmetry. Hence it is not surprising that they in general
do not have a direct phenomenological impact. But the reason for their fun-
damental importance lies elsewhere. They can mostly be used as laboratories
to study the extremal conditions — black hole dynamics just to name one — in
which general relativity and field theory show their limits. The very reason
why string theory was introduced.

Plan of the thesis This thesis is almost entirely devoted to studying string
theory backgrounds characterized by simple geometrical and integrability prop-
erties. This requires at the same time a good grasp on both the low-energy (su-
pergravity) description in terms of spacetime and on the CFT side controlling
all-order-in-a’ effects.

The archetype of this type of system is given by Wess-Zumino-Witten mod-
els, describing string propagation in a group manifold or, equivalently, a class
of conformal field theories with current algebras. Given their prominent role
we devote the whole Chapter 2 to recall their properties from different points
of view, trying to outline some of the most important features.

In Chapter 3 we enter the main subject of these notes, namely we study
the moduli space of WzZW models by using truly marginal deformations ob-
tained as bilinears in the currents. A vast literature exists on this type of con-
structions, but we will concentrate on a particular class, which we dub asym-
metric deformations. They actually present a number of advantages over the
more familiar symmetric ones and in particular, although the CFT description
is slightly more involved (Sec. 3.5), they enjoy a very nice spacetime interpre-
tation. This can be completely understood in terms of the always-underlying
Lie algebra (Sec. 3.3) and can be proven to remain unchanged at all orders in
o« (Sec. 3.4).

The following Chapter 4 illustrates some of the obvious applications for
our construction. We then start with the simplest SU(2) case, leading to a
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CFT on the squashed three-sphere and on the two-sphere (Sec. 4.1). Then
we deal with the considerably richer non compact SL(2,IR) case (Sec. 4.2).
This leads naturally to the description of some black hole geometries such
as the near-horizon limit for the Bertotti-Robinson black hole (Sec. 4.3), and
the three-dimensional electrically charged black string (Sec. 4.4). Both can
be studied in terms of CFT, thus allowing for an evaluation of the spectrum
of string primaries. Further applications regard the possibility of introduc-
ing new compactification manifolds as part of larger, ten-dimensional back-
grounds (Sec. 4.5).

In Chapter 5 we consider an alternative description for the squashed group
geometries which are found to be T-duals of the usual type II black brane so-
lutions.

In Chapter 8 we take a slight detour from what we have seen up to this
point: instead of exact CFT backgrounds we deal with off-shell systems. Us-
ing a renormalization-group approach we describe the relaxation towards the
symmetrical equilibrium situation. This same behaviour is studied from dif-
ferent points of view, RG flow in target space (Sec. 6.1), two-dimensional renor-
malization (Sec. 6.2) and reading the flow as a motion in an extra time direc-
tion (Sec. 6.3), thus obtaining Freedman-Robertson-Walker-like metrics that in
the most simple case describe an isotropic universe with positive cosmological
constant undergoing a big-bang-like expansion (Sec. 6.4).

The final Chapter 7 marks a further deviation from the construction of ex-
act models: we consider in fact backgrounds with Ramond-Ramond fields
which still elude a satisfactory CFT interpretation. In particular we analyze di-
rect products of constant-curvature spaces and find solutions with hyperbolic
spaces sustained by RR fields.

The themes we treat here have been the subject of the following publica-
tions:

¢ D.Israél, C. Kounnas, D. Orlando and P. M. Petropoulos, Electric / mag-
netic deformations of 5**3 and AdS(3), and geometric cosets, Fortsch.
Phys. 53, 73-104 (2005), hep-th/0405213.

¢ D. Israel, C. Kounnas, D. Orlando and P. M. Petropoulos, Heterotic
strings on homogeneous spaces, Fortsch. Phys. 53, 1030-1071 (2005),
hep-th/0412220.

¢ D.Orlando, AdS(2) x 5**2 as an exact heterotic string background, (2005),
hep-th/0502213, Talk given at NATO Advanced Study Institute and EC
Summer School on String Theory: From Gauge Interactions to Cosmol-
ogy, Cargese, France, 7-19 Jun 2004.

¢ S. Detournay, D. Orlando, P. M. Petropoulos and P. Spindel, Three-
dimensional black holes from deformed anti de Sitter, JHEP 07, 072
(2005), hep-th /0504231.

* D. Orlando, Coset models and D-branes in group manifolds, (2005),
hep-th/0511210. Published in Phys.Lett.B
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¢ D. Orlando, P. M. Petropoulos and K. Sfetsos, Renormalization-group
flows and charge transmutation in string theory, Fortsch. Phys. 54,
453-461 (2006), hep-th/0512086.

Some results are on the other hand still unpublished. This concerns in partic-
ular Chapter 5 and the second half of Chapter 8 and Chapter 7.

In order to help the reader in quickly browsing through this manuscript
some indications are added on the margin:

¢ the symbol @ indicates a technical part which can be skipped but for
the final results;

4 .
. means that we report classical results.



CHAPTER 2

Wess-Zumino-Witten Models

Wess-Zumino-Witten models constitute a large class of the exact string
theory solutions which we will use as starting points for most of the anal-
ysis in the following. In this chapter we see how they can be studied from
different perspectives and with different motivations both from a target
space and world-sheet point of view.

“To paraphrase Oedipus, Hamlet, Lear,
and all those guys,” I said, “I wish I had
known this some time ago.”

Amber Chronicles
ROGER ZELAZNY

2.1 The two-dimensional point of view

The classical theory

ESS-ZUMINO-WITTEN models were introduced by Witten in his seminal
W paper [Wit84] to generalize the usual bosonization of a free fermion to
a system of N fermions. It has been known for a long time that the Lagrangian
for a free massless Dirac fermion in two dimensions can be mapped to the
Lagrangian for a free massless boson as follows:

L=y dp — %awaﬂ(p, 1)

but the generalization to more complex systems is not straightforward. One of
the main motivations for this mapping is given by the fact that bosonic systems
admit a semiclassical limit and then allow for simpler intuitive interpretations
of their physics.

It is of course possible to rewrite the fields in one description as functions
of the fields in the other one but this requires complicated (non-local) expres-
sions. Other quantities remain simple, in particular the currents:

Ju =97 — \}%eyvavﬁb (2.2)

Free fermion
bosonization



Wess-Zumino-Witten Models

and as such they are the convenient building blocks for a generalization. A

most useful rewriting for their expression is obtained when going to light-cone
coordinates

i 1 - (- 1

= —Utou = ———a9, = ——ouu'l=—

27 VT ? J 2 VT

U = expliv4mn¢] being the chiral density (1 + 5)1p. One then finds that the
currents are chirally conserved:

] d,  (23)

0] =9] =0, (2.4)
which is equivalent to ask for the bosonic field to be harmonic:
200¢ = 0. (2.5)

The generalization of this simple system is given by the theory of 2N Dirac
fermions.

L= Ly gyt (2.6)
2 k

This admits a chiral group U(N) x U(N) with vector and axial currents writ-
ten as:

Vi = 90T, Al = Py TP, (2.7)
It is more useful to define the chiral components
J7 = —iy'yl, JT=—ig'y, (28)

generating the U(N) x U(N) symmetry and obeying the same conservation
as before:

af =9 =0, (2.9)

This is obviously not equivalent to a system of N bosons which would just
allow for the diagonal U(1)N symmetry. What we need is an object ¢ € U(N)
transforming under a couple (A, B) € U(N) x U(N) as

g — AgB™!, A,B € U(N) (2.10)

and express the currents as functions of g just as in the Abelian case we did in
terms of the density U:

_i -1 -:_i- -1
J=5-89 J=—5-0988"" (2.11)

In order for these currents to be conserved as above all we need to find is a
Lagrangian admitting the following equations of motion

d(g~1ag) = 0. (2.12)



Wess-Zumino
term

2.1. The two-dimensional point of view

The first natural tentative action is given by

_ b 2 Iz -1
So = 2 /zd x tr [8 89,8 }, (2.13)

since this is the only manifestly chirally invariant choice. Unfortunately this
can’t be the right answer for a number of reasons. In particular it describes an
asymptotically free theory with the wrong equations of motion. We are then
forced to add another ingredient, the so-called Wess-Zumino term

—L 3., ~UVP ~—1n ~x—13 ~~—17 =~
r_24n/Mdy€ t [g 988 088 98|, (2.14)

where M is a three-dimensional manifold admitting > as border oM = X and
g is the extension of the mapping ¢ : ¥ — G to a mapping § : M — G.
Although it might appear a bit surprising at first sight, this is precisely what is
needed since the variation of I" gives only a local term on X and the equations
of motion for the action S = Sy + kI read:

e £l (- s oo

which in particular for A2 = 4% yield precisely the equations we were expect-
ing. It can be shown that this is an infrared fixed point for a renormalization
group-flow, and we will expand on this aspect in Ch. 8.

At this point it is on the other hand better to deal more thoughtfully with
the interpretation and the consequences of the Wess-Zumino term I'. First of all
it must be remarked that I' can be put in the form of an ordinary action ie an in-
tegral over the two-dimensional space-time of a perfectly respectable although
non-manifestly chiral-invariant action (which changes by a total derivative un-
der a chiral transformation):

r= /E d2x ' Byj(¢4)9,9'0, 9, (2.16)

where B is a (Kalb-Ramond) two-form. Another important aspect is the fact
that an ambiguity is present in the definition of I for there are infinite topo-
logically inequivalent ways to extend g to §, classified by 73(G). In the case of
a compact group 713(G) = Z and we are led to the same kind of topological
argument leading to the quantization of the Dirac monopole. In fact if we con-
sider a different three-manifold M’ in the definition of T, the string amplitude
changes by

exp [1 /MH—z/ /H} , (2.17)

where H = dB. This implies that the theory is consistent only if

1
— HeZ 2.1
2n/g3 ez, (2.18)

Level
quantization
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Quantum
effective action
for wzw models

having remarked that M and M’ have the same boundary and then M — M’ ~
S3. Using the normalizations above one can show that this is equivalent to
asking k € Z which can be read as a quantization condition on the radius
of the group manifold. In particular, the semiclassical limit is obtained when
k — co.

For reasons that will appear evident in the following k is called level of the
model and the action is written as:

k I N AV
5ilg] = 7o [ &%= (5708 1<9g>+m/M (g71dg [g71dg g 'dg]), 219)

where (-, -) is the Killing form on G.

An exact model

An important feature of WZW models is that they provide exact solutions at
all orders in &’ or, more precisely, the effective action is equal to the classical ac-
tion up to a shift in the overall normalization k — k + g*. The argument goes as
follows [KZ84, L592, Tse93]. Consider the path integral

/ g e Sl HBIls] — o~WIB], (2.20)

where S[g] is the WZw action at level one and BJ[g] is the shorthand for

BJlg] = % / dz* (Bogg™'). (2.21)
If we write B as B = u~19u we can use the so called Polyakov-Witten identity
S[ab] = S[a + S[b] — % [ =t aadbo ) (222)

and it’s then easy to see that W doesn’t receive quantum corrections and is
simply given by the classical action evaluated on u:

WIB] = —kS][u]. (2.23)

Indeed, B is an external source coupled with the current | so, the effective
action for g, I'[¢], will be given by the Legendre transformation of W[B], ie by
the path integral:

/ 9B e~ WIBI+Bls] — ,—Tls] (2.24)

This interpretation of effective action for I'[g] is comforted by remarking that
combining Eq. (2.20) and Eq. (2.24) one finds that

e T = [ g e 5(][g') ~ Tig)): (225)

In order to calculate the Legendre transform in Eq. (2.24) one can perform a
change of variables from B = u~'9u to u: the corresponding Jacobian will give



2.1. The two-dimensional point of view

the announced shift in the effective action. More precisely, as shown in [PW83,
Pol88] we have:

78
Du

and putting this back in Eq. (2.24)

— ¢85l (2.26)

o T8l — / D etkg")Sul+Blul]lg] (2.27)
we can use the same technique as above to derive the celebrated result:
Ig] = (k+g") Slg]- (2.28)

The CFT approach
CFT with current algebras

Let us forget for a moment the WZw models and consider a more general
framework, ie two-dimensional conformal field theories with current algebras.
Given the stress-energy tensor Ty, ({) in two dimensions one can define

T = T11 — T22 + 21T12 (229a)
T = T]l — T22 — 21T12 (229b)

so that the conservation 9, T"" = 0 and the zero trace condition " u = 0 trans-
late into analyticity conditions

9T =T = 0. (2.30)

It is then clear that since the stress-energy tensor is the infinitesimal generator
for translations, T and T have this role for the conformal transformations.

z—z+e€(z) (2.31a)
zZ—z+6(z) (2.31b)

which is to say that if we take a local field A(z, z), this transforms under such
variations as

6eA(z2) = § T A ) (2:32)

where the contour integral is around z!.

This is just the definition of two-dimensional CFT but if the theory is at the
same time invariant under a G(z) x G(z) action, G being some Lie group, then
there are additional generators J(z) and J(z) allowing to express the variation
of A(z,z) as

6uA(z2) = § (O (DA 2)dE (233)

CFT infinitesimal
generators
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where w(z) is some element in Lie G (the algebra as usual parametrizes the
infinitesimal group transformations).

The variations of those generators with respect to € and w stem from gen-
eral principles and read

5.T(2) = e(2)T'(2) + 2€'(2)T(2) + %ce”(z) (2.34)
6] (z) = €(2)]'(2) +€'(2)] () (2.34b)
50 (2) = FL w(2)]°(2) + %kw“’(z) (2.340)

This is just a way of writing the algebra of the generators. Using the defini-
tion above in terms of contour integrals it can also be put in terms of operator
product expansions

T(Z)T(u)) B 2 (z i w)4 ! (Z —ZZU)ZT(w) * Z —1 wT/(w) (2:352)

T(2)](w) = (Z_lw)z](w) + T (w) (2.35b)
a ab

P = 2 L) 2350

Any operator in the theory is characterized by a representation for the left
and right G groups and its anomalous dimensions A and A, which depend
on the behaviour of the operator under dilatation z — Az. More precisely an
operator of weight (A, A) transforms under z — Az, Z — Az as A — A2A2A,
and in particular the primary fields are defined as those who satisfy

TE0.0) = gt ) + oo
I (2)plw, @) = ——p(w, ), (2.36b)

zZ—w

¢(w, ) (2.36a)

Given these relations it is immediate to write the Ward identities satisfied by
the correlation functions of primary fields:

(T(2)¢1(z1,21) (z z)>—§; BRI S I
A S\ (z-z)" z—%9)  (37)
x (¢1(z1,21) ... pn (2N, 2N))
N a
(I"(z)p1(z1,21) ... pn(2n,2N)) = ) | (p1(z1,21) - .- (2N, 2N))

1% 7%

(2.37b)

n the following we will avoid to write the anti-holomorphic counterpart for each relation
since it can always be trivially derived.

Virasoro x Kac¢
Moody
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A further step can be made if one expands the operators T and | in Laurent
series obtaining respectively the modes L, and |, which by definition act on a
local operator to give

LoA(z,2) = 7{ T() (C - 2)"" A(z,2)dC (2.38a)

JiAG2) = § Q) (€ -2 Az 2)dg (2.38b)
and in particular the primaries will satisfy

L = J% =0 Vn >0 (2.39)

Lp=08¢  Jog =1 (2.40)

The commutation relations among the L,’s and the J;;’s are natural conse-
quences of the OPEs in Eq. (2.35) and read

1
[Ly, L) = (n—m) Lysm + EC (”3 - 7’1) Ontm (241a)
(L, Ji) = = (2.41b)
1
i ) = Foclnm + 5kn8" 8usmo. (2410)

This is again a way to write the semi-direct product of the Virasoro (Eq. (2.41a))
and Ka¢-Moody algebras (Eq. (2.41¢)).

The wzZw model

As we emphasized above the currents | and | are the fundamental building
blocks for the construction of WZw models. Their role is even more apparent
when we study the symmetries of the theory, which takes us directly to make
contact with the conformal field theory description. Hence the importance of
these models in giving an explicit realization of the CFT outlined above (among
the classical references see e.g. [KZ84]).

The key remark is that the action in Eq. (2.19) is invariant under the trans-
formation

g(0) — Q(2)g(0) ' (2) (2.42)

where ()(z) and Q)(z) are G-valued matrices analytically depending on z and
z. This gives rise to an infinite set of conserved currents which are precisely
those we defined above in Eq. (2.11) and Eq. (2.33). Locally this translates into
the fact that for an infinitesimal transformation

Qiz) =1+ w(z) =1+ (2)t" (2.43)

the currents change as in Eq. (2.34c)

bl = [w(2), J(2)] + 3k’ () (2.44)

WZW CFT
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Affine characters

which is to say that | and | represent an affine Lie algebra with central charge
k.

The next step consist in identifying the stress-energy tensor. In the classical
theory this is a bilinear of the currents, so it is natural to choose the so-called
Sugawara construction [Sug68, Som68, KZ84]

1

T() = 5y DA E) (245)

where the constant factor is fixed by asking a current to be a weight one op-
erator?. Note in particular the fact that the level k is shifted to k + ¢* which is
precisely the same correction we found summing the instanton corrections in

the previous section. A simple calculation of the OPE of T with itself gives the
value for the central charge of the model

kdim G
C =

_— 2.46

Using the definition of primary field (and in particular the fact that they
are annihilated by J?#/ — L_1) one can easily show that each primary is de-
generate and has weight

Cl
A =
g +k

(2.47)

where ¢; = t]t] is the quadratic Casimir and in particular coincides with the
dual Coxeter number ¢; = ¢* if the field transforms in the adjoint representa-
tion.

Partition function

As one would expect, a modular invariant partition function for a wzw group
can be build entirely out of group theoretical objects. In particular the building
blocks are given by the affine characters, ie the generating functions of the
weight multiplicities for a given irrep A that take into account the conformal
dimension of the highest weight of the representation:

(A,

—2urtku tr Lo—f/24821nK(v,j) _ 6217'[1"(2(%}2;7)*5/24

XM

cha (t,v,u)
(2.48)

T,v,u)=e rep(A) [q

where

* chp (7,v,u) is the usual character for the affine Lie algebra §:

chy (T,v,u) = e~ 27ku Y. dimVjexp{2imtn+ ) vk (e;, ;\) 1 (2.49)
AE€Rep(A) i

21t follows easily that a Kaé-Moody primary is a Virasoro primary but not the other way
round. Pictorially Eq. (2.37b) is the “square root” of Eq. (2.41a)

Sugawara
stress-energy
tensor
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e Vj is the multiplicity of the weight A = (A, k, n);
* (e;) is a basis in the root space;
* 0 =) ,-0a/2is the Weyl vector.

An alternative way of writing the same characters is obtained in terms of theta
functions. To each weight one can assign a theta-function defined as:

@}\ (T, v, 1/[) — e—kau Z emrkk('y,'y) eZznkK(v,'y) (2.50)
YEM +%

where M, is the long root lattice. Then, using the Weyl-Ka¢ formula the char-
acters are written as:

L ¢(@) 0, 3.5) (r00
A v,u) = we P .
(T,v,u) Y e (@) Oy (7,110 (2.51)

weW

X

W being the Weyl group of the algebra and € (w) the parity of the element w.
Knowing that the affine Lie algebra is the largest chiral symmetry of the
theory it is not surprising that the partition function can be written as

Z =Y MMx™(7,0,0) %" (%,0,0) (2.52)
AA

where the sum runs over left and right representations of g with highest weight
A and A and M is the mass matrix which is chosen so to respect the modular
invariance of Z.

A generalization that we will use in the following is obtained for heterotic
strings where the N = (1,0) local supersymmetry requires a super-affine Lie
algebra for the left sector. The latter can anyway be decoupled in terms of the
bosonic characters above and free fermion characters as to give:

Zm Y MM (1) (ﬁm <r>>‘ﬁm<”” oA 259

AA ;7 (T)

where (a,b) are the spin structures of the world-sheet fermions. The char-
acters of the affine algebras can be decomposed according to the generalized
parafermionic decomposition, by factorizing the abelian subalgebra of the Car-
tan torus. For example, we can decompose the left supersymmetric gx charac-
ters in terms of characters of the supersymmetric coset, given by the following
branching relation (see [KS89b]):

ﬂ[a]>dim(j)/2 a] Optg
A b A KT8
X < = ) It { } = (2.54)
n A mod (k+g* )M, b| yim(®)

in terms of the theta-functions associated to g.
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Geometry of
group manifolds

2.2 The target space point of view

Supergravity appears as a low energy description of string theory, obtained
when asking for the Weyl invariance of the c-model Lagrangian. This amounts,
at first order in &/, to the following equations of motion for the metric g, the
Kalb-Ramond field B and the dilaton ® [CMPF85, Tse95]:

Bo = —1VH,® + 3,0 P — L H,pr H'Y,
By = Ry — tHyoo H) +2V,V, @, (2.55)
Bs = V,H",, +2V,PH",,.

Being a one-loop calculation, the corresponding results should always be checked
against higher order corrections in «’. On the other hand, as we have already
stressed many times above, WZW models (just like the asymmetric deforma-
tions we study in this work) only receive corrections in terms of the level of the
algebra (or, in this language, on the overall volume of the manifold). This im-
plies that the target space description at one loop in &’ is automatically correct
at all orders. From this point of view, Wess—Zumino-Witten models describe
the motion of a string on a group manifold geometry. The background fields
are completed by a NS-NS three form H = dB (Kalb-Ramond field) and a con-
stant dilaton ® = ®y.

The target space analysis is greatly simplified by the fact that the geometric
quantities are all naturally expressed in terms of group theoretical objects. Let
us consider for concreteness the case of a compact group G, whose Lie algebra
is generated by (t*) and has structure constants f' ‘g, The metric for the group
manifold can be chosen as the Killing metric (the choice is unique up to a
constant in this case) and it is then natural to use the Maurer—Cartan one-forms
as vielbeins. In our conventions, then:

1 s s
gw = =5l W = e T (2.56)
where ¢* is the dual Coxeter number and
J4 = (t"g710,8) . (2.57)
In this basis the NS-NS 3-form field is written as
1
Hy = 5 fap T NTP AT (2.58)

The connection one-forms w®; can be obtained by asking for the torsion
two-form to vanish:

dJ* + W A JP = T* =0, (2.59)
and out of them one defines the curvature two form R* g as:
R% = dw® + ", A w”

5 (2.60)
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which in turn is given in terms of the Riemann tensor as:

R = %R"‘[M JYAJC. (2.61)

In a Lie algebra with structure constants f*s the variation of the currents is
given by the Cartan structure equation:

1
dJ* = = f P AT (2.62)

whence we can directly read the connection one-forms:

1
It is then immediate to write:
dw*s = 1 Yo f 5] A€ (2.64a)
1
w® /\w 5f7€]5/\]e_§< a{y(sf’ye_ a7€f755>]5A]€:
1
_ _gf“ﬁ’yfﬂ/&e]& A ]e
(2.64b)

where we have antisimmetrized the product of the structure constants and
then used a Jacobi identity. The Riemann tensor, the Ricci tensor and the scalar
curvature are then given respectively by:

R'g.s = f et s (2.65a)
Rl‘Cﬁts f ﬁKf s = gﬁ(;, (265b)
R= % dim G. (2.65¢)

We are now in a position to show that the metric and H field satisfy the
(first order in &) equations of motion in Eq. (2.55). Of course this result is
much less powerful than what we obtained in Sec. 2.1 but it is nevertheless
an interesting example of how these geometrical calculations are greatly sim-
plified in terms of the underlying algebraic structure. For a system without
dilaton the equations reduce to:

1
B = Rep — 3 HusyHy" =0, (2.66a)

The first one is trivially satisfied by using the field in Eq. (2.58); for the second
one we just need to remark that in components the Levi-Civita connection is:

1

Equations of
motion
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and remember that the covariant derivative of a three-form is
(VWH)/SW = aaHﬁ%; — FK“ﬁHW; — FK,WH/gK(; — F"MH;;W. (2.68)

In Sec. 6.1 we will see from a slightly different perspective how the normal-
ization for the Kalb-Ramond field H can be fixed in terms of renormalization-
group flow.



CHAPTER 3

Deformations

In this rather technical chapter we describe marginal deformations of Wess-
Zumino-Witten models. The main purpose for these constructions is to

reduce the symmetry of the system while keeping the integrability proper-

ties intact, trying to preserve as many nice geometric properties as possi-

ble.

Mr. Jabez Wilson laughed heavily. “Well,
Inever!” said he. “I thought at first that
you had done something clever, but I see
that there was nothing in it, after all.”

“I begin to think, Watson,” said Holmes,
“that I make a mistake in explaining.
Ommne ignotum pro magnifico, you know,
and my poor little reputation, such as it is,
will suffer shipwreck if I am so candid.”

The Red Headed League
ARTHUR CONAN DOYLE

HE POWER of WZW models resides in the symmetries of the theory. They
impose strong constraints which allow quantum integrability as well as a
faithful description in terms of spacetime fields, whose renormalization prop-
erties (at every order in a’) are easily kept under control, as we have seen in
the previous chapter.

It is hence interesting to study their moduli spaces, aiming at finding less
symmetric (and richer) structures, that will hopefully enjoy analogous integra-
bility and spacetime properties.

This chapter is devoted to introducing the construction of asymmetric de-
formations and giving the general results in a formalism adapted to group
manifold geometry. For this reason the stress is put on the more mathemati-

cal aspects. Physical examples and consequences will be illustrated in greater
detail in Ch. 4.

17
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3.1 Deformed WZw models: various perspectives

Truly marginal deformations

Truly marginal In this spirit one can consider marginal deformations of the wzw models ob-
deformations tained in terms of (1,1) operators built as bilinears in the currents:

O(z,2) =Y ci]' (2) ] (2), (3.1)

where ] (z) and J/ () are respectively left- and right-moving currents. It is
known [CS89] that this operator represents a truly marginal deformation, ie it
remains marginal at all orders in the deformation parameter, if the parameter
matrix c;; satisfies the following constraints:

cimcjnfijk =0, (3.2a)
emicnif’ =0, (3.2b)

where f and f are the structure constants of the algebras generated by J* and
Ji. In particular one can remark that if J' and J/ live on a torus then the two
equations are automatically satisfied for any value of c;;; and hence we get as
moduli space, a rank(c)-dimensional hyperplane of exact models!. The proof

@ of this assertion proceeds as follows: we want to show that O keeps its confor-
mal dimensions when a term HO(z, 2) is added to the Lagrangian, H being a
coupling constant. The two-point function for O(z, ) in the interacting theory
with Lagrangian L + HO can be expanded in powers of H as follows:

(0(z,2)0(w, @)y, =

3" ()" / Pz ... d%2, (O(2,2)O(w, ) O(21,21) . .. O(20, Zn))
n=0

7

3 (4" / &z %2, (O(z1,21) ... Oz, 20))

n=0

(3.3)

so, in particular, the H2-order term is:

(0(2,2)0(w, @), =

2
= %/d2z1dzzz (O(z,2)O0(w,w)O(z1,21)O(z2,22)) +
2

- (0(z,2)0(w,m)) / Eud2 (0(21,21)0(22,2)) . (3.4)

! Although for special values of the level k the theory contains other operators with the right
conformal weights, it is believed that only current-current operators give rise to truly marginal
deformations, i.e. operators that remain marginal for finite values of the deformation parameter.
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Only the first term can contain logarithmic divergences that can alter the scale
dependence of O(z,z), so let us study it more closely, by expanding O(z,2) in
terms of currents:

H; / d?z1d%z; (O(z,2)O(w, @) O(z1,21)O(22,22)) =

2
= H7/6122101222 Y ) concumcinCio (Jg(2) Jn(w)Ji(21)]i(22))
ghij Imno

(1(@2) (@) ] (21)Jo(22)) - (3.5)

Rewriting the four-point functions for the currents in terms of their algebras

.. 1 k.
Ji(z)]j(w) = = fl;u)z + f;ﬁiuw)

_ _ Kl] kal]]_k(w)

Ji(z)]j(w) = Z—w)? A— (3.6b)

, (3.6a)

one can evaluate the integrals passing to momentum space and introducing
some ultraviolet cut-offs Ay, Ay, A. In particular, the terms which are interest-

ing from our point of view are those diverging as |z — w| ~*and they are:

8712H?% log A1 log A _ S
i 14 b Y Y Y cgimCinCioKiaKpp ff i f lmpf "p  (B7a)
‘Z - w‘ ghij Imno kp

and

671°H? log A
|z — w!4 ghij klm
(3.7b)

Using the fact that the matrices K;; and Ki]- are positive-definite it is simple to
see that they both vanish if and only if Eq. (3.2) are satisfied (the condition is
only sufficient for general semi-simple groups).

Actually there’s another piece of information that we learn out of this con-
struction: the OPE coefficients among the currents used for the deformation do not
change with the deformation. As we will see in the next section, this implies
that the the effect of the deformation is completely captured by a transforma-
tion in the charge lattice of the theory.

Algebraic structure of current-current deformations

The result of the previous section can be recast in more abstract terms: con-
sider a conformal field theory whose holomorphic and anti-holomorphic Kac
Moody algebras correspond to Lie algebras g and g, which respectively admit
the abelian subalgebras h and h. Then each pair u(1)¢ C h,u(1)4 C b gives rise
to a new family of conformal field theory containing those algebras (the ones

o 7 h - 2 7h
Y Y cqrCnCimCjm KoKt Ko 55 fs 4+ CrginComiConi K Kit Konm 5 f
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Boost on the
charge lattice

Parafermion
decomposition

defined in Egs. (3.6)). It is safe to assume (at least in the compact case) that
the CFT remains unitary and that its Hilbert space still decomposes into tensor
products of irreducible highest weight representations of h x h (from now on
dimh = d and dim b = d)

H=Y HooVo®Va, (3-8)
QQ

where we used the fact that those representations are completely characterized
by their charges (Q,Q) € (b*,h*) and the corresponding conformal weights
are given by h = 1/2k(Q, Q) and h = 1/2k(Q, Q), where x and & are the Killing
forms respectively on g and g restricted on b and §. This set of charges nat-
urally forms a lattice A when equipped with the pairing (,) = x — k. Using
in example deformation theory as in [FR0O3] one can see that the effect of the
deformation is completely captured by an O(d,d) pseudo-orthogonal trans-
formation of this charge lattice A C h* x h*, ie can be described in terms
of the identity component of the group O(d,d). Moreover, since the charges
only characterise the h x h modules up to automorphisms of the algebras,
O(d) x O(d) transformations don’t change the CFT. Hence the deformation

space is given by:
Dy ~ O(d,d)/ (O(d) x O(d)) . (3.9)

The moduli space is obtained out of Dy ; after the identification of the points
giving equivalent CFTs?.

In the case of Wzw models on compact groups, all maximal abelian sub-
groups are pairwise conjugated by inner automorphisms. This implies that
the complete deformation space is D = O(d,d)/ (O(d) x O(d)) where d is the
rank of the group. The story is different for non-semi-simple algebras, whose
moduli space is larger, since we get different O(d,d)/ (O(d) x O(d)) defor-
mation spaces for each (inequivalent) choice of the abelian subalgebras ) C g
and h C g. We'll see an example of this in the next chapter where deforming
a SL(2,R) wzw model (Sec. 4.2 and Sec. 4.4) will give rise to a much richer
structure than in the SU(2) case (Sec. 4.1).

Truly marginal deformations of WZwW model single out abelian subalge-
bras of the model. It is then natural that an important tool in describing these
current-current deformations comes from the so-called parafermion decom-
position. The highest-weight representation for a §; graded algebra can be
decomposed into highest-weight modules of a Cartan subalgebra § C § as
follows [GQ87, Gep87]:

Vi@V, © @ Vi (3.10)
Hery 5€Qi(g)

where A is an integrable weight of g, Vi, is the highest-weight module for the
generalized § /b parafermion, Q)(g) is the long-root lattice and Ty = P(g)/Q;(g)

2 Although we will concentrate on WZw models it is worth to emphasize that this construc-
tion is more general.
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with P(g) the weight lattice. As a consequence, the Wzw model based on §j
can be represented as an orbifold model:

Gk~ (8k/b®ta,) /T, (3.11)

where t,, is a toroidal CFT with charge lattice, included in the §; one, defined
as Ay = {(u, 1) € P(§) x P(8) | » — 1 = kQ;(§) }. In our case the advantage
given by using this representation relies on the fact that I'y acts trivially on
the coset and toroidal model algebras; then, if we identify h and h with the
graded algebras of t, , the deformation only acts on the toroidal lattice and
the deformed model can again be represented as an orbifold:

8(0) =~ (8k/b @ ton,) /T, (3.12)

where O is an operator in the moduli space. In other words this representa-
tion is specially useful because it allows to easily single out the sector of the
theory that is affected by the deformation. As we'll see in the next section this
simplifies the task of writing the corresponding Lagrangian.

In the following we will separate this kind of deformations into two cat-
egories: those who give rise to symmetric deformations, i.e. the ones where
cij = 6; and J' (z) and J/ (Z) represent the same current in the two chiral sec-
tors of the theory and the asymmetric ones where the currents are different and
in general correspond to different subalgebras. This distinction is somehow
arbitrary, since both symmetric and asymmetric deformations act as O (d,d)
rotations on the background fields. It is nonetheless interesting to single out
the asymmetric case. In the special situation when one of the two currents
belongs to an internal U (1) (coming from the gauge sector in the heterotic or
simply from any U (1) subalgebra in the type II), it is in fact particularly sim-
ple to study the effect of the deformation, even from the spacetime field point
of view; there in fact, the expressions for the background fields are exact (at all
order in &’ and for every value of the level k) as we will show in Sec. 3.4.

Background fields and symmetric deformations

Before moving to the asymmetric deformations we’re interested in, let us con-
sider briefly symmetric deformations (also called gravitational) which are those
that have received by far the most attention in literature [HS93, GK94, F94,
FR03, DOPS05]. Specialising Eq. (3.1) to the case of one only current we can
write the small deformation Lagrangian as:

S = Sy + K2 / &z J(2)](2) (3.13)

This infinitesimal deformation has to be integrated in order to give a Lagrangian
interpretation to the CFT described in the previous section. Different approaches
are possible, exploiting the different possible representations described above.

Symmetric and
asymmetric
deformations
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* A possible way consists in implementing an O(d, d) rotation on the back-
ground fields [HS93]. More precisely, one has to identify a coordinate sys-
tem in which the background fields are independent of d space dimen-
sions and metric and B field are written in a block diagonal form. In this
way the following matrix is defined:

A A—1D

_( &' | -g'B )

M= (-8 | =& ! ) (3.14)
( B¢t | ¢—B¢'B

where ¢ and B are the pull-backs of the metric and Kalb-Ramond field
on the p selected directions. Then the action of the O(d, d) group on these
fields and dilaton is given by:

M — M = QMOY, (3.15a)
1 detg
— -
d— P —<I>~|—210g (det§’>’ (3.15b)

where ¢’ is the metric after the transformation (3.15a) and Q) € O(d, d). It
must be emphasized that this transformation rules are valid at the low-
est order in &’ (but for finite values of the deformation parameters). So,
although the model is exact, as we learn from the CFT side, the field ex-
pressions that we find only are true at leading order in «'.

* An alternative approach uses the parafermion representation Eq. (3.12) (see
e.g. [FRO3]). In practice this amounts to writing an action as the sum of
the G/ H parafermion and a deformed H part and finding the appropri-
ate T-duality transformation (realizing the orbifold) such that for zero
deformation the WZw on G is recovered, in accordance with Eq. (3.11).

¢ Finally, another point of view (inspired by the parafermionic represen-
tation), consists in identifying the deformed model with a (G x H) /H coset
model, in which the embedding of the dividing group has a component
in both factors [GK94]. The gauging of the component in G gives the
parafermionic sector, the gauging of the component in H gives the de-
formed toroidal sector and the coupling term (originating from the quad-
ratic structure in the fields introduced for the gauging) corresponds to
the orbifold projection.

3.2 Background fields for the asymmetric deformation

Let us now consider the less-known case of asymmetric deformations, in which
the two sets of currents J; and J; come from distinct sectors of the theory. The

3 An instanton-correction-aware technique that should overcome the first order in ' limi-
tation for gauged models has been proposed in [Tse94]. In principle this can be used to get an
all-order exact background when we write the deformation as a gauged model. We will not
expand further in this direction, that could nevertheless be useful to address issues such as the
stability of the black string (see Sec. 4.4).
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archetype of such construction is what we get considering an heterotic super-
WzW model on a group G at level k and adding an exactly marginal operator
built from the total Cartan currents of g (so that it preserves the local N = (1,0)
superconformal symmetry of the theory):

kk ' -
S = Swzw + \/2} / d?z ;Ha (]a(z) - i FUNEE A :> J(2) (3.16)

where the set {H,} are the parameters of the deformation, J* are currents in
the maximal torus T C G and J(2) is a right moving current of the Cartan
subalgebra of the heterotic gauge group at level k,. Such a deformation is
always truly marginal since the ], currents commute.

It is not completely trivial to read off the deformed background fields that
correspond to the deformed action. A possible way is a method involving
a Kaluza—Klein reduction as in [HT95]. For simplicity we will consider the
bosonic string with vanishing dilaton and just one operator in the Cartan sub-
algebra t. After bosonization the right-moving gauge current J used for the de-
formation has now a left-moving partner and can hence be written as | = 19¢,
¢ (z,Z) being interpreted as an internal degree of freedom. The sigma-model
action is recast as

S = 217r/d22 (Gun + Bun) 0xMoxN, (3.17)

where the x™,M = 1,...,d + 1 embrace the group coordinates x*, u =1,...,d
and the internal x¥*! = ¢:

Mm_ [ XV
x —( o ) (3.18)

If we split accordingly the background fields, we obtain the following decom-
position:

— GHV ‘ G(P€”AV — BP“’ BP“P
G = ( G‘P‘PAV ‘ G‘P(P ' Pn = _BWP 0 ' (3.19)

and the action becomes:

S =5 [ 2 {(Gu + Bun) 930" + (Gpp Ay + Byp) 93739
+ (GppAy — Bug) 090xt 4+ Gppo@dep} . (3.20)

We would like to put the previous expression in such a form that spacetime
gauge invariance,

Ay — A+ A, (3.21)
Bua — Bya + 31, (3.22)

is manifest. This is achieved as follows:
+Ggp (09 + Ayoxt) (09 + Audx)}, (3.23)

Reading the
squashed group
fields
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where GW is the Kaluza—Klein metric

Gu = Gy — Gy AyA,. (3.24)

We can then make the following identifications:
G]u/ =k (\Zujv - ZHijjv) (3.25&)
B],n/ = kjy NIy (325b)
Bup = GppAy = Hy /kkgjy, (3.25¢)
Ay =2H, |/ kjy, (3.25d)

kg
kg

Gpp = > (3.25e)

Metric on
squashed group
and decompactifi-

cation

limit

where 7 is the Maurer-Cartan current chosen for the deformation. Let us now
consider separately the background fields we obtained so to give a clear ge-
ometric interpretation of the deformation, in particular in correspondence of
what we will find to be the maximal value for the deformation parameters H,.

The metric. According to Eq. (3.25a), in terms of the target space metric,
the effect of this perturbation amounts to inducing a back-reaction that in the
vielbein (current) basis is written as:

(dg,dg)y =Y Tm@Im—2Y BT, 0T, =Y T Tu+Y, (1-282) T, ® T,
M a 2 a

(3.26)

where we have explicitly separated the Cartan generators. From this form of
the deformed metric we see that there is a “natural” maximal valueH, = 1/ V2
where the contribution of the J; ® J, term changes its sign and the signature
of the metric is thus changed. One could naively think that the maximal value
H, =1/ \/2 can’t be attained since the this would correspond to a degenerate
manifold of lower dimension; what actually happens is that the deformation
selects the the maximal torus that decouples in the H, = H — 1/ /2 limit.

To begin, write the general element ¢ € G as g = ht whereh € G/T,t € T.
Substituting this decomposition in the expression above we find:

(d(ht),d (ht))y = ((ht)~"d (ht) (ht)~"d (ht)) — Y 202 (T, (ht)"'d () ™) =

= (h~tdhh~tdh) + 2 (dt tthidh) + (¢ et ide) +

— ¥ om2 (<Tar1h*1dh> + <Tar1dt>)2 (3.27)

let us introduce a coordinate system ('yy, 1/1,1) such as the element in G/T is
parametrized as h = h (7y,,) and t is written explicitly as:

t =exp {Z%Ta} = Hell’”T“ (3.28)
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it is easy to see that since all the T, commute ldt =det 1 = Y. Tudip,. This
allows for more simplifications in the above expression that becomes:

(d (ht),d (ht)),, = (h'dhhtdh) +2) (T,h~'dh) dy. + Y dpadipa+
— ¥ om2 ((Tahfldm + dl/)a>2 — (h~'dhh~'dk) — Y212 (T, dh)” +
+2Y (1—21]) (T.h'dh) dy, + ) (1 — 2H7) dydyp,  (3.29)

if we reparametrise the i, variables as:

Yo = T
“ /1= 2H,

we get a new metric (-, -);, where we're free to take the H, — 1/+/2 limit:

(3.30)

(d (ht),d (ht));, = (b 'dhh~'dh) — Y 2H] (T,h'dn)* +
+2Y /1 —282(T,hdh) d, + Y d¢padip,  (3.31)

and get:

+ Y " dypadip,
(3.32)

a

(d (ht),d (ht)),, ;= [<h1dhh1dh> -y (T,h~1dh)’

where we can see the sum of the restriction of the Cartan-Killing metric* on
T,G/T and the metric on T;T = T;U (1)". In other words the coupling terms
between the elements 1 € G/T and t € T vanished and the resulting metric
(, )1, describes the tangent space Ty to the manifold G/T x T.

Other Background fields. The asymmetric deformation generates a non-trivial
field strength for the gauge field, that from Eq. (3.25d) is found to be:

F*'=2 kkHadJ“ = — ]fHuf“W]V ATV (3.33)
\/ g \ ks

(no summation implied over a).
On the other hand, the B-field (3.25b) is not changed, but the physical object is
now the 3-form Hjy:

Hpg = dB— Gy A" NdA" = %fMNPjM/\jN/\jP—}:HgfaNP T NINATT,

“This always is a left-invariant metric on G/H. A symmetric coset doesn’t admit any other
metric. For a more complete discussion see Sec. 3.3
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(3.34)

where we have used the Maurer-Cartan structure equations. At the point
where the fibration trivializes, H, = 1/v/2, we are left with:

1
Hi = 5ifun T VT A TP (3.35)

So only the components of Hp3 “living” in the coset G/T survive the defor-
mation. They are not affected of course by the rescaling of the coordinates on
T.

A trivial fibration. The whole construction can be reinterpreted in terms of
fibration as follows. The maximal torus T is a closed Lie subgroup of the Lie
group G, hence we can see G as a principal bundle with fiber space T and base
space G/T [Nak]

¢Lg/T (3.36)

The effect of the deformation consists then in changing the fiber and the limit
value H, = 1/+/2 marks the point where the fibration becomes trivial and it is
interpreted in terms of a gauge field whose strength is given by the canonical
connection on G/ T [KN69].

3.3 Geometry of squashed groups

In order to describe the squashed group manifolds that we obtain via asym-
metric deformation we need to generalize the discussion on group manifold
geometry presented in Sec. 2.2. Let { #* } be a set of one-forms on a manifold
M satisfying the commutation relations

[6P,07] = £%5,0° (3.37)

as it is the case when 6* are the Maurer—Cartan one-forms of Eq. (2.57) and

‘g, the structure constants for the algebra. We wish to study the geometry of

the Riemann manifold M endowed with the metric
g = gupd* @ 0P (3.38)

In general such a metric will have a symmetry G x G’ where G is the group
corresponding to the structure constants f"‘m and G’ C G. The maximally

symmetric case, in which G’ = G is obtained when g is G-invariant, i.e. when
it satisfies

f”‘mgms + f“(sygaﬁ =0. (3.39)

for compact groups this condition is fulfilled by the Killing metric in Eq. (2.56).
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The connection one-forms w4 are uniquely determined by the compatibil-
ity condition and the vanishing of the torsion. Respectively:

dgup — @"agyp — W' pg7a =0 (3.40)
d* + w*s A 6f =T* =0 (3.41)
As it is shown in [MHS88], if ¢, is constant, the solution to the system can be
put in the form
where D“m =1/2 f“m — K"‘ﬁ7 and Kaﬁv is a tensor (symmetric in the lower
indices) given by:

aK £0

1 aK £6
k870 + 58" fr 8- (343)

Just as in Sec. 2.2 we define the curvature two-form Ri]- and the Riemann tensor
which now reads:

R%g5 = D%, f% 5 + D%, D55 — D, D%, (3.44)

1
Ky = 78

and the corresponding Ricci tensor:
Ricgs = D" f's5 — D" sD"pa (3.45)
In particular for g;; « ¢;;, K = 0 so that we recover the usual Maurer-Cartan
structure equation Eq. (2.63) and the expressions in Egs. (2.65).
Let us now specialize these general relations to the case of the conformal

model with metric given in Eq. (3.26). The §"’s are the Maurer—Cartan one-
forms for the group G and the metric g5 is

S if u,v e G/H
gas =

3.46
(1—%2)% ifa,bc H (3.46)

where H is (a subgroup of) the Cartan torus H C G. It is quite straightforward
to show that the Ricci tensor is given by®:

1 * 2 :
5 +H ifu,ve G/H
Ricas = 4 2 (s )H;g" oo (3.48)
g*/Z(l—T)gub ifa,b € H.
whence we can read the (constant) Ricci scalar
* 2 *
R = %dimG—kH? <dimG—rankG<1+g2>> (3.49)

Particular attention should be devoted to the limit case H = \@ in which

5In the SU(2) case this would be

2
1 1+ i
g= 1 2 Ric = 1+ 5 (3.47)
H

2

where we chose J3 as Cartan generator.

Curvature tensors
on squashed
groups

Geometry on
G/ H cosets
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Kahler structure
onG/H

the Cartan torus decouples and we are left with the geometry of the G/ T coset.
In this case it is useful to explicitly write down the commutation relations,
separating the generators of T and G/ T:

[Tm, Tn] = fomn TO [Tm, Tv] = wml/ Tw (3.50a)
[Tll' TV] = fovaU + prwTw (3.50b)

Of course there are no f“,,, terms since T is a group. G/T is said to be sym-
metric if /¢, = 0, i.e. if the commutator of any couple of coset elements lives
in the dividing subgroup. In this case a classical theorem states that the coset
only admits one left-invariant Riemann metric that is obtained as the restric-
tion of the Cartan-Killing metric defined on G (see eg [KN69]). This is not the
case when T is the maximal torus (except for the most simple case G = SU (2)
where maximal torus and maximal subgroup are the trivial U(1)) and the coset
manifold accepts different structures. From our point of view this means that
even when considering deformations and cosets of compact groups where the
Cartan subalgebra is unique (up to inner automorphisms), in general we ex-
pect different possible outcomes depending on how the gauging is performed
(see in particular the SU(3) case studied in detail in Sec. 4.5).

These homogeneous manifolds enjoy many interesting properties. As we
pointed out many times already, the best part of them can be interpreted as
consequence of the presence of an underlying structure that allows to recast
all the geometric problems in Lie algebraic terms. There’s however at least
one intrinsically geometric property that it is worth to emphasize since it will
have many profound implications in the following. All these spaces can be
naturally endowed with complex structures by using positive and negative
roots as holomorphic and anti-holomorphic generators. This structure doesn’t
in general correspond to a unique left-invariant Riemann metric. On the other
hand there always exists such a metric that is also Kihler. In fact one can easily
show that the (1,1) form defined as:

w = % Y T AT" (3.51)

a>0

is closed if and only if for each subset of roots { &, B,y } such as a« = B + 7, the
corresponding real coefficients ¢, satisfy the condition ¢, = ¢ + ¢,. Of course
this is equivalent to say that the tensor

g=Y cJ"@J" (3.52)

a>0

is a Kdhler metric on G/ T [BH58, Per87].

3.4 A no-renormalization theorem

As we've said many times, WZW models are exact solutions keeping their geo-
metrical description at all orders in &/, the only effect of renormalization being
a shift in the level (Sec. 2.1). Here we want to show that this same property is
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shared by our asymmetrically deformed models that hence provide a geomet-
ric solution at every order in perturbation.

As we emphasized above, in studying symmetrically deformed wzw mod-
els, i.e. those where the deformation operator is written as the product of two
currents belonging to the same sector O = AJ], one finds that the Lagrangian
formulation only corresponds to a small-deformation approximation. For this
reason different techniques have been developed so to read the background
fields at every order in A but, still, the results are in general only valid at first
order in &’ and have to be modified so to take into account the effect of instan-
ton corrections (. This is not the case for asymmetrically deformed models,
for which the background fields in Egs. (3.25) are exact at all orders in H, and
for which the effect of renormalization only amounts to the usual (for wzw

models) shift in the level of the algebra k — k 4 g*.

Consider in example the most simple SU(2) case (which we will review in
greater detain in Sec. 4.1). In terms of Euler angles the deformed Lagrangian
is written as:

S = Ssu) (@ B,7) + 65 = ﬁ / 422 9ada + OAP + dydy + 2 cos PAady+

kkoH -
s / &z (97 + cospan) . (3.53)
If we bosonize the right-moving current as I = d¢ and add a standard U(1)
term to the action, we get:

k -
S = Ssuga) (@ 8,7) +65 (a,B,7,¢) + 1 [ dPza9dp =
_ 2
= Ssu(2) (a, 5,’Y+2\/%H4)> + kg(lmm) / d?z0¢o¢ (3.54)

and in particular at the decoupling limit H — 1/+/2, corresponding to the 52
geometry, the action is just given by S = Sgyy(») <zx, B,y + 2\/%Hq>> . This im-

plies that our (deformed) model inherits all the integrability and renormaliza-
tion properties of the standard SU(2) Wzw model. In other words the three-
dimensional model with metric and Kalb—-Ramond field with SU(2) x U(1)
symmetry and a U(1) gauge field is uplifted to an exact model on the SU(2)
group manifold (at least locally): the integrability properties are then a con-
sequence of this hidden SU(2) x SU(2) symmetry that is manifest in higher
dimensions.

The generalization of this particular construction to higher groups is eas-
ily obtained if one remarks that the Euler parametrization for the g € SU (2)
group representative is written as:

g — el’)/t3elﬁt1 elﬂéle (355)

where t; = 0;/2 are the generators of su(2) (0; being the usual Pauli matrices).
As stated above, the limit deformation corresponds to the gauging of the left

No-
renormalization
for SU(2)
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action of an abelian subgroup T C SU (2). In particular here we chose T =
{h | h = ¢?5 }, hence it is natural to find (up to the normalization) that:

hig)g (e, B,v)=g (B r+¢). (3.56)

The only thing that one needs to do in order to generalize this result to a gen-
eral group G consists in finding a parametrization of ¢ € G such as the chosen
abelian subgroup appears as a left factor. In example if in SU(3) we want to
gauge the U (1)* abelian subgroup generated by (A3, Ag) (Gell-Mann matrices),
we can choose the following parametrization for ¢ € SU(3) [Byr97]:

g = 61A8¢61A3C€M2bel/\3aem5ﬂel)\37€l)\2ﬁ€l)\3“. (357)

The deep reason that lies behind this property (differentiating symmetric
and asymmetric deformations) is the fact that not only the currents used for
the deformation are preserved (as it happens in both cases), but here their
very expression is just modified by a constant factor. In fact, if we write the
deformed metric as in Eq. (3.25a) and call K¥ the Killing vector corresponding
to the chosen isometry (that doesn’t change along the deformation), we see

that the corresponding jV(H) current is given by:
T = gl — (1 - 2m2) 7V (3.58)

The most important consequence (from our point of view) of this integrability
property is that the SUGRA action in is actually exact and the only effect of
renormalization is the k — k + g* shift.

3.5 Partition functions

Studying the algebraic structure of marginal deformations we have already
stressed that they are completely determined by O(d, d) pseudo-rotations on
the charge lattice corresponding to the deforming operator. This means that
a modular invariant partition function is simply obtained once we write the
initial WZW one, single out those charges and apply the boost. This proves
to be a relatively simple exercise for compact groups but presents technical
problems even in the most simple non-compact example SL(2,R) which we

will study in greater detail in Sec. 4.2.

su(2)

Instead of a general construction, for sake of clearness, we can start with the
most simple — but showing some general features — example, taking the SU(2)
group (more extensively studied in Sec. 4.1). Our computation will also in-
clude the S? limiting geometry. To fix the ideas, we will consider the case
kc = 2, ie. a U(1) algebra generated by one right-moving complex fermion.
As we've seen in Sec. 2.1 the partition function for the supersymmetric SU(2)
model can be written as

; [a; h] (k-2)/2 oy 90

b;g ]JZO n n
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where the }/’s are the characters of bosonic SU(2)x_5, (a,b) are the Z, bound-
ary conditions for the left-moving fermions® and (1, ¢) those of the right-moving
— gauge-sector — ones. We can choose any matrix M// compatible with modular
invariance of SU(2)x_,. Furthermore, the supersymmetric SU(2), characters
can be decomposed in terms of those of the N = 2 minimal models:

X (1) [Z] (t,v) =Y, Cl, [Z] Ok <T, —2]:> , (3.60)

meZyy

where the N = 2 minimal-model characters, determined implicitly by this
decomposition, are given in [Kir88, Dob87, Mat87, RY87].

Our aim is to implement the magnetic deformation in this formalism. The
deformation acts as a boost on the left-lattice contribution of the Cartan current
of the supersymmetric SU(2); and on the right current from the gauge sector:

Ok l9|: :| Ze—mg (a+5 %(\/711+\7’—k>2q-%(ﬁ+%)2
N Ze_mg % %[(fn—k%) coshx+( %)smhxr

%[( +7 )coshx—&—(\ﬁn—s-f)smhx] )

X g (3.61)

The boost parameter x is related to the vacuum expectation value of the gauge
tield as follows:

1
coshx = m (362)

We observe that, in the limit H2 — H2,,, the boost parameter diverges
(x — 0), and the following constraints arise:

4 (k+2) n + 2m + 2v/2kit + v/2kh = 0. (3.63)

Therefore, the limit is well-defined only if the level of the supersymmetric
SU(2); satisfies a quantization condition:

k=2p*, peZ. (3.64)

This is exactly the charge quantization condition for the flux of the gauge field,
Eq. (4.14). Under this condition, the constraints (3.63) lead to

m+ph=0 mod 2p =: 2pN, (3.65a)
in=2pn+ N, N &€ Zy,. (3.65b)

As a consequence, the U(1) corresponding to the combination of charges or-

5We have removed the contribution of the fermion associated to J3 since it is neutral in the
deformation process.

Boost on the
charge lattice and
partition function

Decoupled
partition function
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thogonal to (3.63) decouples (its radius vanishes), and can be removed. We end
up with the following expression for the S? partition function contribution:

ah - BY i al _-
ZSZ[ ' ] =Y M ems(Nt:) of [ ] 7, (3.66)
b;g % Nezzlzp PEN=R) b

in agreement with the result found in [BJKZ96] by using the coset construc-
tion. The remaining charge N labels the magnetic charge of the state under
consideration. As a result, the R-charges of the left N = 2 superconformal
algebra are:

O s @ N=h/2

> mod 2. (3.67)

We now turn to the issue of modular covariance. Under the transformation
T — —1/71, the minimal-model characters transform as:

fa]l [ 1 a1l B&2  rri+ 1) (2 +1) ot o [ D
C£n|:b:| (—T> =e'2 b% Z sm( . ) E e’k Cfn/[ a}(’r).

j/:O m’GZZk B

(3.68)

On the one hand, the part of the modular transformation related to j is pre-
cisely compensated by a similar term coming from the transformation of ¥/, in
Eq. (3.66). On the other hand, the part of the transformation related to the spin
structure (a,b) is compensated by the transformation of the other left-moving
fermions in the full heterotic string construction. We can therefore concentrate
on the transformation related to the m charge, coming from the transformation
of the theta-functions at level k. We have

_ Y i 1 m (gt Ny 5 Ne'ipg) o [ h
2 e zng(N+§)C] - [a:| S E Z ez(g p) ey C],[ :|,.
Nezy, PENT [ V2k m'eZ,,» NEZop "l
(3.69)

summing over N in Z,, leads to the constraint:
m' +pg=0 mod2p:=—-2pN', N' € Z;,. (3.70)

So we end up with the sum

L Cith(N'+8) A b
o~ Fhg 2 o 1h(N +2)C;7(2N’—g) [—u} . (3.71)
N/GZZP

combining this expression with the modular transformation of the remaining
right-moving fermions of the gauge sector, we obtain a modular invariant re-
sult.

In a similar way one can check the invariance of the full heterotic string
under T — T+ 1.
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SU(3)

As it is often the case, the SU(2) example is illuminating but not exhaustive.
In this situation this is due to the fact that U(1) is the Cartan torus and at the
same time the maximal subgroup. For this reason we need to work out in
detail the next non-trivial example, SU(3). The main difference is that there
are two non-equivalent construction leading to the same algebraic structure
but to the two possible different metrics on the SU(3)/U(1)? coset”’.

The Kazama-Suzuki decomposition of SU(3)

We would like to decompose our WZW model in terms of Kazama-Suzuki (KS)
cosets, which are conformal theories with extended N = 2 superconformal
symmetry [KS89b, KS89a].

The simplest of those models are the N = 2 minimal models that are
given by the quotient: SU(2)r2%50(2)1/u(1),, and their characters come from the
branching relation:

XoEr = Y Cl =k (3.72)

For convenience, we write the contribution of the world-sheet fermions in
terms of SO(2n); characters.

Similarly it is possible to construct an N = 2 coset CFT from SU(3) [KS89b,
KS89a]:8

SU (3),_5 x SO(4);

ST > % U (D), G7)

The characters of this theory are implicitly defined by the branching relation:

=S4 __ =2 CA (s4) j ®n,3k 374
Xis B =) ) G, (3.74)
2j=0 neZg; U

Therefore combining the two branching relations, we obtain the decomposi-
tion of SU (3) in terms of N = 2 KS models:

Xk 3:24:32 _ Z C]{;(M)Czn(sz) Oni Opsk (3.75)
jmn Ui
This decomposition goes along the following pattern:
Su (3 x SO(4 2)i 2
SU (3),_5 x SO(8); — (8)x5x SO SU(2)i 2 x SO2)1

SU(2)k—2 x U (1) u (1),
X U (1)5 x U (1), x SO(2); (3.76)

"We have already pointed out in Sec. 3.3 that an asymmetric coset in the mathematical
sense in general admits more than one left-invariant metric. The two possible choices for
SU(3)/U(1)? will be extensively studied in Sec. 4.5

8 According to our conventions, the weights of a U (1) at level k are m*/4k, m € Zyy.
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and we shall perform the deformation on the left lattice of U (1)4 x U (1),.
However the deformation will also act on an appropriate sub-lattice of the
right-moving gauge sector. The last SO(2); factor corresponds to the fermions
which are neutral in the process so they won’t be considered afterwards.

The gauge sector To construct the model we assume that the gauge sector
of the heterotic strings contain an unbroken SO(6);, whose contribution to
the partition function is, written in terms of SO(6); free fermionic characters
5. Since we decompose the characters of the left-moving sector according to
eqg. (3.76), a natural choice for the action of the deformation in the right-moving
gauge sector is to use a similar Kazama-Suzuki decomposition, but for k = 3,
in which case the bosonic CFT is trivial:

50(4)1 % SU(Z)l X SO(Z)l
SU@); x U (D), (D),

SO(8)1 — x U (1) x U (1); x SO(2)

(3.77)

Since as quoted previously two fermions — the SO(2); factor — are neutral it
is enough that the gauge sector contains an SO(6); subgroup. To achieve this
decomposition, first we decompose the SO(6); characters in terms of SO(4); X
SO (2) 1-

B = Y Cls654 5] E}ED (3.78)

54,50€Z4

where the coefficients of the decomposition SO(6) — SO(4) x SO(2) are ei-
ther zero or one. And then we perform a coset decomposition for the SO(4);
characters:

g=Y Y o Ous (3.79)

[:0,1 MGZlg 17

in terms of SU(2); characters %' and U (1) characters ©,9. It defines implic-
itly the coset characters @, . Then the SU(2); x SO(2); characters are decom-
posed as:

2=Y o=, (3.80)
vEZg ;7

[z}

Iz

So putting together these branching relations we have the following Kazama-
Suzuki decomposition for the free fermions of the gauge sector:

ge= Y Y Y Y Clssss ) @ ob® @7;"9 61;'3. (3.81)

54,50€Z4 (=01 ucZ1g v

The deformation Now we are in position to perform the asymmetric defor-
mation adding a magnetic field to the model. The deformation acts on the
following combination of left and right theta functions:

O3k Oy X O,y Oy 3. (3.82)
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As for the case of SU(2) [IKOP05a], we have to assume that the level obeys the
condition:

\/E —peN, (3.83)

to be able to reach the geometric coset point in the moduli space of CFT. Then
we have to perform O(2,2,R) boosts in the lattices of the U (1)’s, mixing the
left Cartan lattice of the super-wzw model with the right lattice of the gauge
sector. These boosts are parametrized in function of the magnetic fields as:

1
cosh (), 1 — 2H2 ,a=1,2. (3.84)

Explicitly we have:

Y ) k) oy () ()
N],NQEZ f],ngZ

N 18p2

Nl,Nz,fl,fzez
u m . 2 v ; . 2
9[(fi+45 ) cosh Qutp(Nit gty ) sinh O q_3[(f2+g)cosh02+p(Nz+$)sthz] '

X q
(3.85)
After an infinite deformation, we get the following constraints on the charges:

=p(18u—u), u €2, (3.86a)
n=p6v—-ov),veZ, (3.86b)

and the U (1)* CFT that has been deformed marginally decouples from the rest
and can be safely removed. In conclusion, the infinite deformation gives:

ZS45256 ZZ Z Z C [S6; 54, 52]

N ] HVEZy 3y, 52624

](52) % Sy 4,5,
Y. ) Z o) X K3 @ty @57 (3.87)
(= 0 1 HEZ]g UEZG p lg‘u u p(61/ v)

where the sum over A, j runs over integrable representations. This is the par-
tition function for the SU (3) /U (1)* coset space. The fermionic charges in the
left and right sectors are summed according to the standard rules of Gepner
heterotic constructions [Gep88]. The modular properties of this partition func-
tion are the same as before the deformation, concerning the Z, indices of the
world-sheet fermions.

Alternative approach: direct abelian coset

Here we would like to take a different path, by deforming directly the Cartan
lattice of suz without decomposing the left CFT in terms of KS N = 2 theories.

9[p(Ni+1525 ) cosh O+ (fi+45 ) sinh O q3{p(Nz+$)cosh02+(fz+g)smh02r
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It is possible to perform a generalized (super)parafermionic decomposition of
the characters of the sii3 super-algebra at level k (containing a bosonic algebra
at level k — 3) w.r.t. the Cartan torus:

a1\ dim(j)/2
X~ <l9[b]) - Y [“] O (3.88)

n AeM*mod kM b] yim(®)

where the theta function of the su; affine algebra reads, for a generic weight
A = miAy:

k k(N 2,0 MY
Q= Y M= YV gINmt N e (3.89)

YEM+4 N',N?€Z

To obtain an anomaly-free model (see the discussion at the beginning of Sec. 3.6)
it is natural to associate this model with an abelian coset decomposition of an
SU(3); current algebra made with free fermions of the gauge sector. Thus if
the gauge group contains an SU(3); unbroken factor their characters can be
decomposed as:

= Y @2 0;. (3.90)
X:ﬁ,—)\} € M*mod M

Again we will perform the asymmetric deformation as a boost between the
Cartan lattices of the left sii3 algebra at level k and the right su3 lattice algebra
at level one coming from the gauge sector. So after the infinite deformation we

will get the quantization condition vk = p and the constraint:
A4+pA=0 mod pM=:pu, ueM. (3.91)

So we get a different result compared to the Kazama-Suzuki construction. It
is so because the constraints that we get at the critical point force the weight
lattice of the su3 at level k to be projected onto p times the suz weight lattice
at level one of the fermions. This model does not correspond to a Kédhlerian
manifold and should correspond to the SU (3)-invariant metric on the flag
space. Indeed with the KS method we get instead a projection onto p times a
lattice of su3 at level one which is dual to the orthogonal sub-lattice defined
by a1 Z + (a1 + 20p) Z~ in other words the lattice obtained with the Gell-Mann
Cartan generators. In this case it is possible to decompose the model in Ks
cosets models with N = 2 superconformal symmetry.?

3.6 The deformation as a gauging

In this section we want to give an alternative construction for our deformed
models, this time explicitly based on an asymmetric WZw gauging. The exis-
tence of such a construction is not surprising at all since our deformations can

9For the symmetrically gauged WZw models, this has been studied in [ESY03].
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be seen as a generalization of the ones considered in [GK94]. In these terms,
just like JJ (symmetric) deformations lead to gauged wzw models, our asym-
metric construction leads to asymmetrically gauged WZw models, which were
studied in [QS03].

A point must be stressed here. The asymmetric deformations admit as limit
solutions the usual geometric cosets that one would have expected from field
theory, as results of a gauging procedure. So, why do we need to go through
this somewhat convoluted procedure? The reason lays in the fact that string
theory is not the usual point particle field theory. A left and a right sector are
present at the same time and they cannot be considered separately if we don’t
want to introduce anomalies. Now, gauging the left action of a subgroup, i.e.
the symmetry G ~ GH, which would directly give the geometric coset we
are studying, would precisely introduce this kind of problems. Hence we are
automatically forced to condider the adjoint action G ~ H-!GH [Wit91]. The
key idea then, as it will appear in this section, is that when G is semisimple
and written as the product of a group and a copy of its Cartan torus, the left
and right action can be chosen such as to act on the two separate sectors and
then be equivalent to two left actions.

Instead of a general realization, for sake of clearness, here we will give the
explicit construction for the most simple case, the SU (2) model, then intro-
duce a more covariant formalism which will be simpler to generalize to higher
groups, in particular for the SU (3) case which we will describe in great detail
in the following.

To simplify the formalism we will discuss gauging of bosonic CFTs, and
the currents of the gauge sector of the heterotic string are replaced by com-
pact U(1) free bosons. All the results are easily translated into heterotic string
constructions.

The SU(2)/U(1) asymmetric gauging

In this section we want to show how the $2 background described in [IKOP05a]
can be directly obtained via an asymmetric gauging of the SU (2) x U (1) Wzw
model (a similar construction was first obtained in [Joh95]).

Consider the wzw model for the group manifold SU (2), x U (1),,. A
parametrisation for the general element of this group which is nicely suited
for our purposes is obtained as follows:

Z1 Z 0 0
g=|-z z o= < goz > € Su(2)x U(1) (3.92)
0 0 z 81

where g7 and g correspond to the SU (2) and U (1) parts respectively and
(21,22, 23) satisfy:

SU (2) x U (1) = { (w1, wp,w3) | [w1]* + [wa]* =1, |ws)* =1} c C°.
(3.93)

Geometric coset
as an asymmetric

gauging
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A possible choice of coordinates for the corresponding group manifold is given
by the Euler angles:

SU (2) x U (1)
= { (z1,22,23) = (cos ge’(7+“)/2,sin gelw"‘)/z,el‘P) ‘ 0<B<m0<upB¢< 27'(}
(3.94)

In order to obtain the coset construction leading to the S? background we
define two U (1) — SU (2) x U (1) embeddings as follows:

e :U (1) = SU(2) xU(1) er:U(1) = SU((2) xU(1)

el‘[ — (elT/ 0, 1) elT — (1, 0, eZT) (395)

so that in terms of the z variables the action of these embeddings boils down
to:

g e (e7)ger (e7)7 (3.96)
(w1, wp, w3) — (eTwy, eTwy, e Tws) . (3.97)

This means that we are free to choose a gauge where w; is real or, in Euler
coordinates, where v = a, the other angular variables just being redefined.
To find the background fields corresponding to this gauge choice one should
simply write down the Lagrangian where the symmetries corresponding to
the two embeddings in (3.95) are promoted to local symmetries, integrate the
gauge fields out and then apply a Kaluza-Klein reduction, much in the same
spirit as in [IKOP05a].
The starting point is the WZw model, written as:

k TR K s
Swaw (8) = ;- / dz* (3,828, 982) + / dz* (g1 108181981 -

(3.98)
Its gauge-invariant generalization is given by:
S = Swzw
1 . - ~
o / d%z [kA (t19gg~ 1) + K A (trg~13g) + ViK' AA (—2 +(tLgtr g—1>)]
(3.99)

where A and A are the components of the gauge field, and t; and ¢y are the
Lie algebra generators corresponding to the embeddings in (3.95), i.e.

(o]0 ~(o0]o
tL—l( O O), tR—l(T‘T), (3.100)

03 being the usual Pauli matrix. For such an asymmetric coset to be anomaly
free, one has the following constraint on the embeddings:

k(t)> =K (tg)> — k=Kp?, withp e N. (3.101)
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If we pass to Euler coordinates it is simple to give an explicit expression for
the action:

1 k = = - - K_ -
S(a,B,7,¢) = 7 /d2z 1 (0ada 4 0BAP + 0y0y + 2 cos fondy) + an)a(pjt
+ 1k (da + cos Boy) A + 1K' V209 A — 2VkK' AA.  (3.102)

This Lagrangian is quadratic in A, A and the quadratic part is constant so we
can integrate these gauge fields out and the resulting Lagrangian is:

1 k = = = = K_ -
S(a,B,7, ¢) = 5 /dzz 1 (0ada 4 9BAP + 0y0y + 2 cos fondy) + Eacpa(pjt

V2kk'

T3

(da + cos BOy) dg. (3.103)

Now, since we gauged out the symmetry corresponding to the U (1) embed-
dings, this action is redundant. This can very simply be seen by writing the
corresponding metric and remarking that it has vanishing determinant:

k/4

k/4 k/4cos B V2kK' /4|

k/4cos p k/4 V2kk' /4 cos B|
V2kk' /4 \/2kK' /4 cos B K /2

detg,, = 0 (3.104)

Of course this is equivalent to say that we have a gauge to fix (as we saw above)
and this can be chosen by imposing v = &, which leads to the following action:

1 k K
S (. ¢) = 5- / a2 7 (2(1+ cos B) dade + IPI) + - dpde-+

v 2kk!

T3

(1+ cos ) dadg (3.105)
whence we can read a two dimensional metric by interpreting the dad¢ term

as a gauge boson and applying the usual Kaluza-Klein reduction. We thus
recover the two-sphere as expected:

ds? = guv — GppAuAy = ’; (dB? + sin® Bda?) (3.106)

supported by a (chromo)magnetic field

A= \/E (14 cosB) da (3.107)

The current formalism

We now turn to rewrite the above gauging in a more covariant form, simpler to
generalize. Since we are interested in the underlying geometry, we will mainly
focus on the metric of the spaces we obtain at each step and write these metrics

Asymmetric
gauging in the
current formalism
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in terms of the Maurer-Cartan currents!?. As we have already seen, the metric
of the initial group manifold is:

k K
ds? = 5 Y TP Jr+ SI®T (3.108)

where { J1, J», J3 } are the currents of the SU (2) part and Z the U (1) gener-
ator. The effect of the asymmetric gauging amounts - at this level - to adding
what we can see as an interaction term between the two groups. This changes
the metric to:

/
= Y o+ S1e T VRGO L. (3109

Of course if we choose (71, J>, J3,Z) as a basis we can rewrite the metric in
matrix form:

k

kk' K
where we see that the gauging of the axial symmetry corresponds to the fact
that the sub-matrix relative to the { 73,7 } generators is singular:

/
”If,k =0 (3.111)

k
| vV kk'
explicitly this correspond to:
kT3 @ T+ VK T +Vkk @ T+KI®T = (k+K) T o J (3.112)

where

j_\/EJB‘f’\/PI
- Vk+K

is a normalized current. In matrix terms this corresponds to projecting the
interaction sub-matrix on its non-vanishing normalized eigenvector:

_k
(Ve Vo) (\/’]‘Tw \/kk,?> @ — k4K (3.114)

k+k'

(3.113)

and the resulting metric in the (J1, J2, J) basis is:

k
k (3.115)
k+K

190ne of the advantages of just working on the metrics is given by the fact that in each group
one can consistently choose left or right currents as a basis. In the following we will consider
the group in the initial WZw model as being generated by the left and the dividing group by
the right ones.
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This manifold M (whose metric appears in the action (3.17)) corresponds to
an S! fibration (the fiber being generated by J) over an S? base (generated by
(1, J2))-

sl — M
l (3.116)
52

It should now appear natural how to generalize this construction so to in-
clude all the points in the moduli space joining the unperturbed and gauged
model. The decoupling of the U (1) symmetry (that has been “gauged away”)
is obtained because the back-reaction of the gauge field (Eq. (3.103)) is such
that the interaction sub-matrix is precisely singular. On the other hand we
can introduce a parameter that interpolates between the unperturbed and the
gauged models so that the interaction matrix now has two non-null eigenval-
ues, one of which vanishing at the decoupling point.

In practice this is done by adding to the the asymmetrically gauged wzw
model an auxiliary U(1) free boson Y at radius R = (kk’)"/*(1/v2u-1)"2. This
U(1) is coupled symmetrically to the gauge fields such that the anomaly can-
cellation condition is still given by (3.101). In particular if we choose the gauge
Y = 0, the metric reads:

( k ﬁHW) (3.117)

V2HV kK K

which is exactly the model studied above. For a generic value of H? the two
eigenvalues are given by:

k4K F 2 k2 42 (412 — 1) kK

5 (3.118)

Ay (kK1) =

so we can diagonalize the metric in the (71, 7>, g, j ) basis (j and j being
the two eigenvectors) and finally obtain:

g= A (K1) (3.119)

)\2 (k, k’, H)

Of course, in the H2 — 0 limit we get the initial WZw model and in the H2 —
1/2 limit we recover the asymmetrically gauged model, Eq. (3.115).

It is important to remark that the construction above can be directly gener-
alized to higher groups with non-abelian subgroups, at least for the asymmet-
ric coset part. This is what we will further analyse in the next chapter.
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Applications

In this chapter we present some of the applications for the construction
outlined above. After an analysis of the most simple (compact and non-
compact) examples, we describe the near-horizon geometry for the Bertotti-
Robinson black hole, show some new compactifications and see how Horne
and Horowitz's black string can be described in this framework and gen-
eralized via the introduction of an electric field.

HE TECHNOLOGY we developed in the previous chapter allows for the con-
struction of a large class of exact string theory backgrounds which is one
of the main motivations of the present work. This chapter is devoted to the
study of some of the most interesting among them. They can be used to pro-
vide new CFT models with clear geometric interpretation (Sec. 4.1 and 4.2), to
describe near-horizon geometries of four-dimensional black holes (Sec. 4.3),
as laboratories for the study of black holes and black strings (Sec. 4.4) or to
provide new physically realistic compactification backgrounds (Sec. 4.5).

4.1 The two-sphere CFT

Spacetime fields

The first deformation that we explicitly consider is the marginal deformation
of the SU (2) wzw model. This was first obtained in [KK95] that we will
closely follow. It is anyway worth to stress that in their analysis the authors
didn’t study the point of maximal deformation (which was nevertheless iden-
tified as a decompactification boundary) that we will here show to correspond
to the 2-sphere S?> ~ SU (2) /U (1). Exact CFT’s on this background have al-
ready obtained in [BK94] and in [Joh95]. In particular the technique used in
the latter, namely the asymmetric gauging of an SU (2) x U (1) wzw model,
bears many resemblances to the one we will describe.

Consider a heterotic string background containing the SU(2) group mani-
fold, times some (1,0) superconformal field theory M. The sigma model ac-
tion is:

1 3 - g
S = kSSU(Z)(g) +E/dzz {2A”8A“+ Z)E"E)X”} +S(M), (4:1)
a=1 n=1

43
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Gauss
decomposition
for SU(2)

where A’ are the left-moving free fermions superpartners of the bosonic SU(2)
currents, ¥" are the right-moving fermions of the current algebra and kSs;(2) (g)
is the WZw action for the bosonic SU(2) at level k. This theory possesses an
explicit SU(2);, x SU(2)g current algebra.

A parametrization of the SU(2) group that is particularly well suited for
our purposes is obtained via the so-called Gauss decomposition that we will
later generalize to higher groups (see App. B). A general element g (z, ) €
SU(2) where z € C and ¢ € R can be written as:

w=(YCV HEDE L) e

where w = —z and f = 1+ |z|% In this parametrisation the matrix of invari-

ant one-forms Q) = ¢ (z,9) ' dg (z,¢) which is projected on the Lie algebra
generators to give the expression for the Maurer-Cartan one-forms is:

1 /zdz—zdz —eWdz dy 0
Q= f < e¥dz  —zdz —|—de> + ( 0 —dl/)) (43)

(remark that ) is traceless and anti-Hermitian since it lives in su (2)). From Q)
we can easily derive the Cartan—Killing metric on T,SU(2)y as:

Z4s? = (OQ'Q) = —2}2 (2dz? + 22422 =2 (2+ |2 ) dzdz) +

1
+ } (2dz — 2dz) dy + Sdy®  (44)

The left-moving current contains a contribution from the free fermions realiz-
ing an SU(2); algebra, so that the theory possesses (local) N = (1,0) super-
conformal symmetry.

The marginal deformation is obtained by switching on a magnetic field
in the SU(2), introducing the following (1, 0)-superconformal-symmetry-com-
patible marginal operator:

B kkgH

3 .
05 =~ (P+ATAT)]T (4.5)

where we have picked one particular current | from the gauge sector, gener-
ating a U(1) at level ky. For instance, we can choose the level-two current:
J = ix'%%. As a result the solutions to the deformed o-model (3.26), (3.33) and
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(3.34) read:
ldSZ — _ dzdz + (1 . 2H2) <zzd2712dz + dl[])z
k (1+]z2)° f
B=1% (1+\1z\2)2dz Adz A dy (4.7)

A=,[kn (—; (2dz — zdz) +d¢) .

It can be useful to write explicitly the volume form on the manifold and the
Ricci scalar:

_ 2
\/detgdz/\dZ/\dlp:l;vkquz) dz Adz A dy 4.8)
(1+12F)
64412

K k

(4.9)

It is quite clear that H = Hpax = 1/+/2 is a special point. In general the
three-sphere SU (2) can be seen as a non-trivial fibration of U (1) ~ S! as fiber
and SU (2) /U (1) ~ S? as base space: the parametrization in (4.7) makes it
clear that the effect of the deformation consists in changing the radius of the
fiber that naively seems to vanish at Hyax. But as we already know the story is
a bit different: reparametrizing as in Eq. (3.30):

Py — \/1I—PW (4.10)

one is free to take the H — 1/+/2 limit where the background fields assume
the following expressions:

1d52 dzdz +d "2
k H—>1/\/§ (1+|Z|2)2 ll)

r k_idzndz

oy VI (1efaf)? (10
H—0

H—1/v2

Now we can justify our choice of coordinates: the (z,z) part of the metric
that decouples from the ¥ part is nothing else than the Kéhler metric for the
manifold CIP! (which is isomorphic to SU (2) /U (1)). In these terms the field
strength F is proportional to the Kéhler two-form:

F=1,4/ kgzz dz Adz. (4.12)
kg

I This type of structure is common to U(1) fibrations over Kahler spaces. In example, the
line element for S° which can be seen as a U(1) fiber over CP? is written as

ds? = ds?(CP?) + (dyp + A)? (4.6)

where dA is the Kihler form on CP?. We will encounter the same structure again in Sec. 4.5 for
SU(3) written as the (principal) fibration U(1)% — SU(3)/U(1)>2.

Kahler structure
on CP! model
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This begs for a remark. It is simple to show that cosets of the form G/H where
H is the maximal torus of G can always be endowed with a Kéahler structure.
The natural hope is then for this structure to pop up out of our deformations,
thus automatically assuring the N = 2 world-sheet supersymmetry of the
model. Actually this is not the case. The Kahler structure is just one of the pos-
sible left-invariant metrics that can be defined on a non-symmetric coset (see
Sec. 3.3) and the natural generalization of the deformation considered above
leads to C-structures that are not Kéhler. From this point of view this first ex-
ample is an exception because SU(2)/U (1) is a symmetric coset since U (1)
is not only the maximal torus in SU(2) but also the maximal subgroup. It is
nonetheless possible to define an exact CFT on flag spaces but this requires a
slightly different construction, already outlined in Sec. 3.6.

We conclude this section observing that the flux of the gauge field on the
two-sphere is given by:

k k
0= F= @/mz - \/;m (4.13)

However one can argue on general grounds that this flux has to be quantized,
e.g. because the two-sphere appears as a factor of the magnetic monopole solu-
tion in string theory [KLL99]. This quantization of the magnetic charge is only
compatible with levels of the affine SU(2) algebra satisfying the condition:

k_ p*, peZ. (4.14)
kg

42 SL(2,R)

Anti-de Sitter space in three dimensions is the (universal covering of the) SL(2, R)
group manifold. It provides therefore an exact string vacuum with NS back-
ground, described in terms of the SL(2, R); WzZw model, where time is embed-
ded in the non-trivial geometry. We will consider it as part of some heterotic
string solution such as AdSz x S3 x T* with NS three-form field in AdS; x S°
(near-horizon NS5/F1 background). The specific choice of a background is
however of limited importance for our purpose.
The issue of AdSs deformations has been raised in several circumstances.
It is richer? than the corresponding S® owing to the presence of elliptic, hy-
perbolic or parabolic elements in SL(2,R). The corresponding generators are
time-like, space-like or light-like. Similarly, the residual symmetry of a de-
formed AdS; has U(1) factors, which act in time, space or light direction.
SL(2,R) marginal Marginal symmetric deformations of the SL(2,IR); WZW are driven by bi-
symmetric Jinears J] where both currents are in SL(2,IR) and are of the same kind [F94,
deformations 1gp3] " These break the SL(2,R)p x SL(2,R)R affine symmetry to U(1) x
U(1)r and allow to reach, at extreme values of the deformation, gauged SL(2,R);/U(1)

2As we have already stressed before the Cartan subgroups are not conjugated by inner
automorphisms if the group is not simple.
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WZW models with an extra free decoupled boson. We can summarize the re-
sults as follows:

(a) J?J? These are time-like currents (for conventions see App. B) and the cor-
responding deformations connect SL(2, R); with U(1) x SL(2,R),/U(1)]
The U(1) factor stands for a decoupled, non-compact time-like free bo-
son®. The gauged Wzw model SL(2,R);/U(1)],,;, is the cigar (two-
dimensional Euclidean black hole) obtained by gauging the ¢ — hgh
symmetry with the h = exp i50? subgroup, whereas SL(2, R)i/U(1)]ector
corresponds to the ¢ — hgh~! gauging. This is the trumpet and is T-dual
to the cigar*. The generators of the affine residual symmetry U(1); x
U(1)g are both time-like (the corresponding Killing vectors are not or-
thogonal though). For extreme deformation, the time coordinate decou-
ples and the antisymmetric tensor is trade for a dilaton. The isometries
are time-translation invariance and rotation invariance in the cigar/trum-

pet.

(b) J?J? The deformation is now induced by space-like currents. So is the
residual affine symmetry U(1);, x U(1)g of the deformed model. Ex-
treme deformation points are T-dual: U(1) x SL(2,R);/U(1) where the
U(1) factor is space-like, and the U(1) gauging of SL(2, R), corresponds
tog — hgh(_l) with h = exp —%0’3 [DVV92]. The corresponding mani-
fold is (some sector of) the Lorentzian two-dimensional black hole with
a non-trivial dilaton.

() (J'+J?)(J' + J?) This is the last alternative, with both null currents. The
deformation connects AdS; with R x R plus a dilaton linear in the
first factor. The U(1)y x U(1)g left-over current algebra is light-like®.
Tensorized with an SU(2); CFT, this background describes the decou-
pling limit of the NS5/F1 setup [IKP03], where the fundamental strings
regularize the strong coupling regime.

Possible choices for the coordinate systems and the resulting fields are re-
ported in App. C.

Our purpose here is to analyze asymmetric deformations of AdSs. Follow-
ing the similar analysis of the previous section for SU(2), we expect those
deformations to preserve a U(1);, x SL(2,R)r symmetry appearing as affine
algebra from the sigma-model point of view, and as isometry group for the
background. The residual U(1)y, factor can be time-like, space-like or null de-
pending on the current that has been used to perturb the wzw model.

It is worth to stress that some deformations of AdS; have been studied in
the past irrespectively of any conformal sigma-model or string theory anal-

3The extra bosons are always non-compact.

4 Actually this statement holds only for the vector coset of the single cover of SL(2,R). Oth-
erwise, from the n-th cover of the group manifold one obtains the n-th cover of the trum-
pet [IKPO3].

5The isometry is actually richer by one (two translations plus a boost), but the extra gener-
ator (the boost) is not promoted to an affine symmetry of the sigma-model.

axial or vector*
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ysis. In particular it was observed in [RS98], following [RT83] that the three-
dimensional® Godel solution of Einstein equations could be obtained as a mem-
ber of a one-parameter family of AdS; deformations that precisely enters the
class we discuss here. Godel space is a constant-curvature Lorentzian mani-
fold. Its isometry group is U(1) x SL(2,R), and the U(1) factor is generated
by a time-like Killing vector. These properties hold for generic values of the
deformation parameter. In fact the deformed AdS; under consideration can be
embedded in a seven-dimensional flat space with appropriate signature, as the
intersection of four quadratic surfaces. Closed time-like curves as well as high
symmetry are inherited from the multi-time maximally symmetric host space.
Another interesting property resulting from this embedding is the possibility
for changing the sign of the curvature along the continuous line of deforma-
tion, without encountering any singular behaviour (see Eq. (4.16)).

It seems natural to generalize the above results to new AdS3 deformations
and promote them to exact string backgrounds. Our guideline will be the re-
quirement of a U(1) x SL(2,R) isometry group, with space-like or light-like
U(1)’s.

We will first review the time-like (elliptic) deformation of AdS3 of [RS98]
and recently studied from a string perspective in [Isr04]. Hyperbolic (space-
like) and parabolic (light-like) deformations will be analyzed in the following.
All these deformations are of the type presented in the previous chapter; fur-
ther generalizations will be obtained in Sec. 4.4. We show in the following
how to implement these deformations as exact marginal perturbations in the
framework of the SL(2, R); Wzw model embedded in heterotic string.

Elliptic deformation: magnetic background

Consider AdS; in (t,p, ¢) coordinates, with metric given in (B.20). In these
coordinates, two manifest Killing vectors are L3 ~ d; and Ry ~ dy, time-like
and space-like respectively (see App. B, Tab. B.2).

The deformation studied in [RS98] and quoted as “squashed anti de Sitter”
reads, in the above coordinates:

2
ds? = LZ [d0? + cosh? pdg? — (1 +212) (dt + sinh pd)?] (4.15)

It preserves a U(1) x SL(2,R) isometry group. The U(1) is generated by the
time-like vector L3 of one original SL(2, R), while the right-moving SL(2, R) is
unbroken (the expressions for the { Ls, R1, Ry, R3 } Killing vectors in Tab. B.2
remain valid at any value of the deformation parameter). The Ricci scalar is
constant

_ 2

R 2

(3 —2H?), (4.16)

6In fact, the original Godel solution is four-dimensional, but the forth space dimension is a
flat spectator. In the following, we will systematically refer to the three-dimensional non-trivial
factor.
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while the volume form reads:

L3
W = o |1+ 2H2| coshpdp Ad¢ A dt. (4.17)

For H? = 1/2, this deformation coincides with the Godel metric. It should be
stressed, however, that nothing special occurs at this value of the deformation
parameter. The properties of Godel space are generically reproduced at any
H? > 0.

From a physical point of view, as it stands, this solution is pathological
because it has topologically trivial closed time-like curves through each point
of the manifold, like Godel space-time which belongs to this family. Its interest
mostly relies on the fact that it can be promoted to an exact string solution,
with appropriate NS and magnetic backgrounds. The high symmetry of (4.15),
is a severe constraint and, as was shown in [Isr04], the geometry at hand does
indeed coincide with the unique marginal deformation of the SL(2, R); Wzw
that preserves a U(1), x SL(2,R)R affine algebra with time-like U(1)y.

It is interesting to observe that, at this stage, the deformation parameter H2
needs not be positive.: (4.15) solves the Einstein-Maxwell-scalar equations [RT83]
for any H2. Furthermore, for H> < 0, there are no longer closed time-like
curves’. This statement is based on a simple argument®. Consider a time-
like curve x* = x (A). By definition the tangent vector d, is negative-norm,
which, by using Eq. (4.15), translates into

dp\? 2 (do\? 2 (At o dg)’
(d)\) + cosh p<d)\> — (1+21°) d—/\—i—smhpd—/\ <0. (4.18)

If the curve is closed, dt/dA must vanish somewhere. At the turning point,
the resulting inequality,

d 2
<2H2 sinh? p — 1) (le)’) >1 (4.19)

is never satisfied for H?> < 0, whereas it is for large enough’ p otherwise.

This apparent regularization of the causal pathology, unfortunately breaks
down at the string level. In fact, as we will shortly see, in order to be consid-
ered as a string solution, the above background requires a (chromo)magnetic
tield. The latter turns out to be proportional to H, and becomes imaginary in the
range where the closed time-like curves disappear. Hence, at the string level,
unitarity is trade for causality. It seems that no regime exists in the magnetic

7 As mentioned previously, the geometry at hand can be embedded in a seven-dimensional
flat space, with signature e — — — + + +, e = sign(—H?) [RS98]. This clarifies the origin of the
symmetry as well as the presence or absence of closed time-like curves for positive or negative
H2.

8This argument is local and must in fact be completed by global considerations on the man-
ifold (see [RS98]).

9This means p > p. where p¢ is the radius where the norm of dyp vanishes and switches to

negative (|9 |? = L? <1 — 212 sinh? p) /4). This never occurs for H? < 0.

Closed time-like
curves in the
SL(2,R) elliptic
deformation
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deformation of AdSz, where these fundamental requirements are simultane-
ously fulfilled.

We now turn to the string realization of the above squashed sphere. In the
heterotic backgrounds considered here, of the type AdS; x S® x T4, the two-
dimensional N = (1,0) world-sheet action corresponding to the AdS; factor
is:

SSL2R), / d?z { (9pdp — 0tot + PP — 2 sinh p dPot) + 1, P oy’ }
(4.20)

where 11,, = diag (++ —),a = 1,2,3 and ¢” are the left-moving superpartners
of the SL(2,R); currents (see Tab. B.2). The corresponding background fields
are the metric (Eq. (B.20)) with radius L = vk and the NS B-field:

B = —i sinh pd¢ A dt. (4.21)
The three-form field strength is Hjz) = dB = —ﬁ w3 with wyg) displayed in
Eq. (B.21).

The asymmetric perturbation that preserves a U(1);, x SL(2,R)y affine al-
gebra with time-like U(1) is 8S given in Eq. (4.5), where J* now stands for
the left-moving time-like SL(2,R); current given in App. B.2, Tab. B.2. This
perturbation corresponds to switching on a (chromo)magnetic field, like in the
SU(2) studied in Sec. 4.1. It is marginal and can be integrated for finite values
of H, and is compatible with the N = (1,0) world-sheet supersymmetry. The
resulting background fields, extracted in the usual manner from the deformed
action are the metric (4.15) with radius L = v/k and the following gauge field:

A= H\/iik (dt + sinh pd¢) . (4.22)
g

The NS B-field is not altered by the deformation, (Eq. (4.21)), whereas the
three-form field strength depends explicitly on the deformation parameter H,
because of the gauge-field contribution:

k k
Hpy = dB — ZGA ndA =7 (14 2H2) cosh pdp A dg A dt. (4.23)

One can easily check that the background fields (4.15), (4.22) and (4.23)
solve the lowest-order equations of motion. Of course the solution we have
obtained is exact, since it has been obtained as the marginal deformation of
an exact conformal sigma-model. The interpretation of the deformed model in
terms of background fields { G, B, Pa(i} receives however the usual higher-
order correction summarized by the shift k — k + 2 as we have already ex-
plained in Sec. 3.4.

Let us finally mention that it is possible to extract the spectrum and write
down the partition function of the above theory [Isr04], since the latter is an
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exact deformation of the SL(2, R); Wzw model. This is achieved by deforming
the associated elliptic Cartan subalgebra. The following picture emerges then
from the analysis of the spectrum. The short-string spectrum, corresponding
to world-sheets trapped in the “center” of the space-time (for some particu-
lar choice of coordinates) is well-behaved, because these world-sheets do not
feel the closed time-like curves which are “topologically large”. On the con-
trary, the long strings can wrap the closed time-like curves, and their spectrum
contains many tachyons. Hence, the caveats of Godel space survive the string
framework, at any value of H> > 0. One can circumvent them by slightly
deviating from the Godel line with an extra purely gravitational deformation,
driven by J°J°. This deformation isolates the causally unsafe region, p > p.
(see [Isr04] for details). It is similar in spirit with the supertube domain-walls
of [DFS03] curing the Godel-like space-times with RR backgrounds.

Hyperbolic deformation: electric background
The background and its CFT realization

We will now focus on a different deformation. We use coordinates (B.22) with
metric (B.23), where the manifest Killing vectors are L, ~ d (space-like) and
R3 ~ 0 (time-like) (see App. B.2, Tab. B.3). This time we perform a deforma-
tion that preserves a U(1) x SL(2,R) isometry. The U(1) corresponds to the
space-like Killing vector Ly, whereas the SL(2,R) is generated by Ry, Ry, R,
which are again not altered by the deformation. The resulting metric reads:

LZ

ds? = T [dr2 — cosh?rd7? + (1 — 2H?%) (dx + sinh rdr)z} . (4.24)
The scalar curvature of this manifold is constant
2 2
R = ~72 (3 + 2H ) (4.25)
and the volume form
L3
W) = o |1 — 2H2| cosh? rdr A dt A dx. (4.26)

Following the argument of the previous section, one can check whether
closed time-like curves appear. Indeed, assuming their existence, the follow-
ing inequality must hold at the turning point i.e. where d¢/dA vanishes (A
being the parameter that describes the curve):

2
(2u? —1) (j’:) > 1. (4.27)

The latter cannot be satisfied in the regime H> < 1/2. Notice that the manifold
at hand is well behaved, even for negative H2.

Let us now leave aside these questions about the classical geometry, and
address the issue of string realization of the above background. As already ad-

vertised, this is achieved by considering a world-sheet-supersymmetric marginal
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deformation of the SL(2,R); WZW model that implements (chromo)electric
tield. Such a deformation is possible in the heterotic string at hand:

55 = % / &z (2 +iy'y?) o, (4.28)
(J is any Cartan current of the group G and J? is given in App. B.2, Tab. B.3),
and corresponds, as in previous cases, to an integrable marginal deforma-
tion. The deformed conformal sigma-model can be analyzed in terms of back-
ground fields. The metric turns out to be (4.24), whereas the gauge field and
three-form tensor are

A =H,| ik (dx + sinhrdT), (4.29)
8

Hp) = Z (1 —2#0?) coshrdr Adt Adx. (4.30)

As expected, these fields solve the equations of motion.

The background under consideration is a new string solution generated as
a hyperbolic deformation of the SL(2,R); Wzw model. In contrast to what
happens for the elliptic deformation above, the present solution is perfectly
sensible, both at the classical and at the string level.

The spectrum of string primaries

The electric deformation of AdSs is an exact string background. The corre-
sponding conformal field theory is however more difficult to deal with than
the one for the elliptic deformation. In order to write down its partition func-
tion, we must decompose the SL(2,R); partition function in a hyperbolic ba-
sis of characters, where the implementation of the deformation is well-defined
and straightforward; this is a notoriously difficult exercise. On the other hand
the spectrum of primaries is known!? from the study of the representations
of the Lie algebra in this basis (see e.g. [VK91], and [DVV92] for the spectrum
of the hyperbolic gauged Wzw model, i.e. at the extreme value of the defor-
mation parameter). The part of the heterotic spectrum of interest contains the
expression for the primaries of N = (1,0) affine SL(2,R) at purely bosonic
level!! k + 2, together with some U(1) from the lattice of the heterotic gauge

group:

Lo = —j(jzl) —% (n+ %)2 (4.31)
i/ 2
Lo = —](];1) +% (ﬁ+ Z) , (4.32)

1Tn the following we do not consider the issue of the spectral-flow representations. The
spectral-flow symmetry is apparently broken by the deformation considered here.

More precisely we consider primaries of the purely bosonic affine algebra with an arbitrary
state in the fermionic sector.
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where the second Casimir of the representation of the SL(2,R) algebra, —j(j —
1), explicitly appears. The spectrum contains continuous representations, with
j = 3 +1s,s € Ry. It also contains discrete representations, with j € R, lying
within the unitarity range 1/2 < j < (k+1)/2 (see [MOO1, Pet90]). In both
cases the spectrum of the hyperbolic generator J? is u € R. The expression for
the left conformal dimensions, Eq. (4.31), also contains the contribution from
the world-sheet fermions associated to the 1!y current. The sector (R or NS)
islabelled by a € Z,. Note that the unusual sign in front of the lattice is the nat-
ural one for the fermions of the light-cone directions. In the expression (4.32)
we have similarly the contribution of the fermions of the gauge group, where
h labels the corresponding sector.

We are now in position to follow the procedure, familiar from the previous
examples: we have to (i) isolate from the left spectrum the lattice of the su-
persymmetric hyperbolic current J? + 1¢'¢® and (i7) perform a boost between
this lattice and the fermionic lattice of the gauge field. We hence obtain the
following expressions:

e 2 2
Ly = jG—1) 1 k—|—2< a 2u > n

K kr2 2% \"Tatio

2
1 2 a _ L hy
—1—5 \/;<y+n+2)coshx+<n+2>smhx] ,
(4.33a)
2
= AG=D 11 h \F AP
Lo = ? +2 n—l—2 coshx + k<y+n+2)smhx .
(4.33b)

The relation between the boost parameter x and the deformation parameter H?
is given in Eq. (3.62), as for the case of the SU(2), deformation. In particular
it is worth to remark that the first three terms of (4.33a) correspond to the left
weights of the supersymmetric two-dimensional Lorentzian black hole, i.e. the
SL(2,R)/0O(1,1) gauged super-wZw model.

This result is less striking that the whole partition function we obtained for
the compact SU(2). It is worthwhile to remark that the difference is only due
to technical reasons: in principle the very same construction could be applied
for the case at hand but it would require the decomposition of the SL(2,R)
partition function in terms of hyperbolic characters that at present is not yet
known.

Parabolic deformation: the AdS-wave background

In the deformations encountered in the previous sections one SL(2,R) isom-
etry breaks down to a U(1) generated either by a time-like or by a space-like
Killing vector. Deformations which preserve a light-like isometry do also exist
and are easily implemented in Poincaré coordinates.

We require that the isometry group is U(1) x SL(2,R) with a null Killing
vector for the U(1) factor. Following the by now familiar for the particular
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case of light-like residual isometry, we are lead to

du? dxtdx~ dxt\?
212 2
ds® =1L 2 +7u2 —2H <u2 > ] (4.34)

The light-like U(1) Killing vector is L1 + L3 ~ d_ (see App. B.2, Tab. B.4). The
remaining SL(2,R) generators are { R; + R3, R; — R3, Ry } and remain unal-
tered after the deformation.

The above deformed anti-de-Sitter geometry looks like a superposition of
AdS; and of a plane wave (whence the AdS-wave name). As usual, the sign of
H? is free at this stage, and H2 < 0 are equally good geometries. In the near-
horizon region (|u| > |H?|) the geometry is not sensitive to the presence of the
wave. On the contrary, this plane wave dominates in the opposite limit, near
the conformal boundary.

The volume form is not affected by the deformation, and it is still given in
(B.27); neither is the Ricci scalar modified:

6
R = ~12 (4.35)
Notice also that the actual value of |H| is not of physical significance: it can
always be absorbed into a reparametrization x© — x*/ |H| and x~ — x~ |H]|.
The only relevant values for H? can therefore be chosen to be 0, +1.

We now come to the implementation of the geometry (4.34) in a string
background. The only option is to perform an asymmetric exactly marginal
deformation of the heterotic SL(2,R); Wzw model that preserves a U (1)1, X
SL(2,R)r affine symmetry. This is achieved by introducing

5Selectricfmagnetic = —4 kkGH / dZZ (]1 + ]3 +1i (lpl + l[J3> lPZ) ]_G/
(4.36)

(J! + J? is defined in App. B.2, Tab. B.4). The latter perturbation is integrable
and accounts for the creation of a (chromo)electromagnetic field

2k dx*t
A=2—H—. 4.37
ke (4.37)
It generates precisely the deformation (4.34) and leaves unperturbed the NS
. g _2
fleld, Hm =dB = _W wm
As a conclusion, the AdS3 plus plane-wave gravitational background is
described in terms of an exact conformal sigma model, that carries two extra
background fields: an NS three-form and an electromagnetic two-form. Simi-
larly to the symmetric parabolic deformation [IKP03], the present asymmetric
one can be used to construct a space-time supersymmetric background. The
SL(2,R),-CFT treatment of the latter deformation would need the knowledge

of the parabolic characters of the affine algebra, not available at present.
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Quantum point particles in the AdS-wave background

Further insights of the physics of the AdS-wave background can be gathered
if we look at the motion of point particles. Let us start with the sigma model
Lagrangian where we keep the H parameter explicitly for sake of consistency:

S = /dz2 %auéu + %axﬂ?x_ — Zgax_éq) + %8(/}34}, (4.38)

where all the fields are function of ¢ and 7. The point particle limit can be
obtained if we let the o-dependence drop. This leads to:

Spoint = /dr{u +—x X +2(p Hx(p}, (4.39)

where the dot stands for the time derivative. The fourth dimension ¢ was
introduced as a fake direction along which perform a Kaluza—Klein reduction.
In this framework the same result is obtained if we consider ¢ as an auxiliary
variable and then substitute its equation of motion:

Hx

p=2—. 4.40
qo 21/[2 ( )
The resulting effective action is then written as:
1 1 ,, 1. . 26
Spoint = 5 / drt {uzuz + g% Xt — vy (x7) } (4.41)

that is exactly the action for a free particle in the 3D AdS-wave metric in Eq. (4.34).
Now, out of this we can derive the Hamiltonian:

1
Hpoint = 7¢ (¢'P% +20% (p-p +p2)) (4.42)

and with the usual rules of quantization this naturally translates to the Lapla-
cian of the AdS-wave geometry:

A =V, V¥ =8H%% +4u?0,0_ — ud, + u’d?. (4.43)

A quantum point particle described by the wave function ¥ (1, x~, x") must
then obey the Klein-Gordon equation:

—AY (u,x7,xt) = m?¥ (u,x,x"). (4.44)

The fact that only the u variable appears explicitly suggests that we can write
the solution as:

Y(u,x,xt /dp dpy &P HP0F (4, p py) (4.45)
so that the wave equation becomes:

WY (u,p—, pr) —udu¥ (u,p—, py) = (—m* + 8H°p% +4up_p. )Y (u,p—, p+).

Kaluza-Klein
reduction as a

partial integration
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(4.46)
This is a modified Bessel equation whose canonical form is:
2y (2) +zy (z) — (22 +v*) y(z) =0 (4.47)

and after some algebra we can write the general solution as:

Y (u,p-, p+) = uly (2y/p=psu) C1 (p—, p+) + uky (2y/p=psu) C2 (p-, p+)
(4.48)

where C; (p—, p+) and C, (p—, p+) are arbitrary functions, I, (z) and K, (z) are

modified Bessel functions of the first and second kind and v = \/ 1—m?+8(Hp+ )%

Limiting geometries: AdS, and H;

We have analyzed in Sec. 4.1 the behaviour of the magnetic deformation of
SU(2), at some critical (or boundary) value of the modulus H?, where the
background factorizes as R x S? with vanishing NS three-form and finite mag-
netic field. We would like to address this question for the asymmetric defor-
mations of the SL(2,R); model and show the existence of limiting situations
where the geometry indeed factorizes, in agreement with the expectations fol-
lowing the general analysis of Sec. 3.1

What can we expect in the framework of the SL(2,R); asymmetric de-
formations? Any limiting geometry must have the generic U(1) x SL(2,R);
isometry that translates the affine symmetry of the conformal model. If a line
decouples, it accounts for the U(1), and the remaining two-dimensional sur-
face must be SL(2, R)-invariant. Three different situations may arise: AdS,,
H; or dS;. Anti de Sitter in two dimensions is Lorentzian with negative curva-
ture; the hyperbolic plane H; (also called Euclidean anti de Sitter) is Euclidean
with negative curvature; de Sitter space is Lorentzian with positive curvature.

Three deformations are available for AdS; and these have been analyzed
in Sec. 4.2. For unitary string theory, all background fields must be real and
consequently H? > 0 is the only physical regime. In this regime, only the
hyperbolic (electric) deformation exhibits a critical behaviour at H2,, = 1/2.
For H? < 1/2, the deformation at hand is a Lorentzian manifold with no closed
time-like curves. When H? > 1/2, detg > 0 and fwo time-like directions
appear. At H? = H2,,, detg vanishes, and this is the signature that some
direction indeed decompactifies.

We proceed therefore as in Sec. 3.1, and define a rescaled coordinate in
order to keep the decompactifying direction into the geometry and follow its
decoupling;:

y=1/k (; _ Hz> . (4.49)

The metric and volume form now read:

ds? = di? + Z [drz - (1 + 262 sinh? r) drz] +4/k (1 — 202) sinh r dt dy
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(4.50)
and
k
W = 4 coshrdr Adt Ady. (4.51)
For H? close to H2 ,,, the y-direction factorizes
k
ds? ———— dy? + = |dr? — cosh? rdt?|. (4.52)
H2_>H1gr\ax 4
The latter expression captures the phenomenon we were expecting:
AdS; ——— R x AdS,. (4.53)

H2—HZ

max

It also shows that the two-dimensional anti de Sitter has radius v/k/4 and
supports entirely the curvature of the limiting geometry, R = —8/k (see ex-
pression (4.25)).

The above analysis shows that, starting from the SL(2,R); WZW model,
there is a line of continuous exact deformation (driven by a (chromo)electric
field) that leads to a conformal model at the boundary of the modulus H?. This
model consists of a free non-compact boson times a geometric coset AdS, =
SL(2,R)/U(1), with a finite electric field:

F = k£ coshrdr Adt (4.54)
\/ G

and vanishing NS three-form background. The underlying geometric structure
that makes this phenomenon possible is that AdS; can be considered as a non-
trivial S! fibration over an AdS, base. The radius of the fiber couples to the
electric field, and vanishes at H2 ,,. The important result is that this enables us
to promote the geometric coset AdS, to an exact string vacuum.

We would like finally to comment on the fate of dS, and H; geometries,
which are both SL(2, R)-symmetric. De Sitter and hyperbolic geometries are
not expected to appear in physical regimes of string theory unless Ramond-
Ramond fields are turned on (see Ch. 7). The H3 sigma-model, for example,
is an exact conformal field theory, with imaginary antisymmetric tensor back-
ground though [Gaw91, Tes99]. Similarly, imaginary NS background is also
required for de Sitter vacua to solve the low-energy equations. It makes sense
therefore to investigate regimes with H2 < 0, where the electric or magnetic
backgrounds are indeed imaginary.

The elliptic (magnetic) deformation exhibits a critical behaviour in the re-
gion of negative H?, where the geometry does not contain closed time-like
curves. The critical behaviour appears at the minimum value H2, = —1/2,
below which the metric becomes Euclidean. The vanishing of detg at this
point of the deformation line, signals the decoupling of the time direction. The
remaining geometry is nothing but a two-dimensional hyperbolic plane H,. It
is Euclidean with negative curvature R = —8/k (see Eq. (4.16) with L? = k).

Non-unitary Hj
solution
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All this can be made more precise by introducing a rescaled time coordi-
nate:

k(1
_ R 2
T=\/5 <2+H ) t. (4.55)

The metric and volume form now read:

ds? = —dT? + g |dp? + (1— 202 sinh? ) dg?| — /k (1 +2042) sinh pdpd T

(4.56)
and
k
Wi = 7 coshpdp A d¢ A dT. (4.57)
For HZ close to Hrznin, the T-direction factorizes
k
ds? ——— —dT? + 7 |dp? + cosh® pdg?| . (4.58)
Hz_)Hrzr\ax 4
The latter expression proves the above statement:
AdS; —— R X Hy, (4.59)

2 2
H _>Hmin

and the two-dimensional hyperbolic plane has radius v/k/4.

Our analysis finally shows that the continuous line of exactly marginal
(chromo)magnetic deformation of the SL(2,R) conformal model has a bound-
ary at H2 = —1/2 where its target space is a free time-like coordinate times a
hyperbolic plane. The price to pay for crossing H> = 0 is an imaginary mag-
netic field, which at H2 = —1/2 reads:

F= _kﬁ coshpd¢ A dp. (4.60)
ke

The Ns field strength vanishes at this point, and the geometric origin of the
decoupling at hand is again the Hopf fibration of the AdS; in terms of an H,.

The H; spectrum

A Hj x R; limit geometry can be reached if we allow for negative values of H?
which in turn imply the presence of an imaginary magnetic field. Although
this implies that the corresponding string theory is pathological (in example
because of unitarity problems), we obtain a perfectly respectable CFT for which
we can write, using the same technique as above, a modular-invariant parti-
tion function.

Let us start from the deformed partition function (see [Isr04]). The interest-
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/d2t Zcigar [—tl] Z ei?‘[(ZNf2+b(n+%)—(5(ﬁ+%))

—2] NwWaaez
. 2

» q—[“‘,’jfZ(%+";—4(W+t1)+n+%)+%(ﬁ+%)] ot (g (W) + 2 )

. 2
" q—klj(g—k“(wwl)) +[ 2 (7 +3) - L (N+ 52 (W) +n+) (4.61)

where
1

= —. 4.62
cos( o (4.62)

If we consider H? < 0 the trigonometric functions became hyperbolic and there
is a critical point H?> = —1/2 where the boost diverges. Consistency then im-
poses the following constraint on the charges:

1 N k+4 a 1 /. v
—_— =+ — (W +t - — -] =0 4.63
?+2<2+ —( +])+n+2>+\6<n+2> (4.63)
introducing, for notation convenience
k=2p*—2 (4.64)

where p € R (there is no reason for quantization), the constraint can be rewrit-
ten as

N+2(p*+1)(WH+H)+2n+a+p(i+2y) =0 (4.65)

that is equivalent to asking

{N#Qn+a:QEZ (166)

2(PP+1) (W+t)+p(a+2y)=-Q
whence we can rewrite t; as

Q+pQ@aty)
2(p?+1)

and Eq. (4.61) becomes:

t =

(4.67)

Q+2p(n+7/2)

i - tW N s
/dt2 Z Zeigar [ 2(p2+1) :|em(2Nt2+szN—o(n+v/2)) %
N,QW,i€Z —t

X qZ(leﬂ) <pQ;7N’(ﬁ+7/2))Zq* ; (%ﬂ’(ﬁﬂ/z))z

(4.68)
or, introducing the integers A, B as:

A=Q+N (4.69)
B=Q-N (4.70)
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finally can write the H? partition function as follows:

A+B+4p(i+7/2)

— o W _

/dt2 2 Zeigar A(p2H0) eln((AfB)t2+b§f(5(n+w/2)> y
: A,BW,icZ —t

] (p%—(ﬁ+v/z>)zq_ oy (44 p(rt72)°

% qZ(p2+l) 2(p2+1) (4.71)

It is intriguing to find that the partition function for the geometric coset Hy =
AdS3 /R is related to the one for the adjoint coset cigar = AdS;/IR. One may
wonder if this hints at some operation allowing to pass from the former to the
latter, but we will not speculate further in this direction.

4.3 Near horizon geometry for the Bertotti-Robinson
black hole

The AdS, x S? geometry appeared first in the context of Reissner-Nordstrom
black holes. The latter are solutions of Maxwell-Einstein theory in four dimen-
sions, describing charged, spherically symmetric black holes. For a black hole
of mass M and charge Q, the solution reads:

2 _ (1 _ -\ g dr? Y
ds? = ( r)(1 r)dtJr( _%)(1_%)+rd0, (4.72a)
F= % dt Adr with ry =Gy (Mj: \/W) p (4.72b)

r4 and r_ are the outer and inner horizons, and G4 is Newton’s constant in
four dimensions.

In the extremal case, 7y = r_ = ro (M? = Q?), and the metric approaches
the AdS, x S2 geometry in the near-horizon!? limit r — rq. This solution can
of course be embedded in various four-dimensional compactifications of string
theory, and will be supersymmetric in the extremal case (see e.g. [You99] for a
review). In this context we are dealing with some heterotic compactification.

Notice that the AdS, x S? geometry also appears in type IIB superstring
theory, but with RR backgrounds [FKS95]. The black hole solution is obtained
by wrapping D3-branes around 3-cycles of a Calabi—Yau three-fold; in the ex-
tremal limit, one obtains the AdS, x 5% solution, but at the same time the CY
moduli freeze to some particular values. A hybrid Green-Schwarz sigma-
model action for this model has been presented in [BBH00] (see also [Ver04]
for AdS;). The interest for AdS, x S? space-time is motivated by the fact
that it provides an interesting simplified laboratory for AdS/CFT correspon-
dence [Mal98]. In the present case the dual theory should correspond to some
superconformal quantum mechanics [BPS98, C*98, GT99, CCKMO01].

12With the near-horizon coordinates U = (1 —ro/r) ™! and T = t/ro, the near-horizon ge-
ometry is
dT? | dUu?

Both AdS; and 2 factors have the same radius 7.
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The spectrum

As a first step in the computation of the AdS; x S? string spectrum, we must
determine the spectrum of the AdS; factor, by using the same limiting proce-
dure as in Sec. 4.1 for the sphere. The spectrum of the electrically deformed
AdS;z, is displayed in Egs. (4.33a) and (4.33b). The AdS; limit is reached for
coshx — oo, which leads to the following constraint on the charges of the
primary fields:

_h 2 a\
n+2+\/;<y+n+2>—0. 4.73)

In contrast with the S? case, since y is any real number — irrespectively of the
kind of SL(2,R) representation — there is no extra quantization condition for
the level to make this limit well-defined. In this limit, the extra U(1) decom-
pactifies as usual and can be removed. Plugging the constraint (4.73) in the
expressions for the dimensions of the affine primaries, we find

(VA VO WA A S DT
Lo = . 5 n+2 Z(n—i—z) , (4.74a)

Lo = —](];1). (4.74D)

In addition to the original AdSs; spectrum, Egs. (4.31) and (4.32), the right-

moving part contain an extra fermionic lattice describing the states charged

under the electric field. Despite the absence of N = 2 superconformal sym-

metry due to the Lorentzian signature, the theory has a “fermion-number” left
symmetry, corresponding to the current:

2
J =g+ 2 (P+w'y?). (4.75)
The charges of the primaries (4.74) are
a 2(_ h

AdS; x §? x M and space-time supersymmetry

Let us now consider the complete heterotic string background which consists
of the AdS, x S? space—time times an N = 2 internal conformal field theory
M, that we will assume to be of central charge ¢ = 6 and with integral R-
charges. Examples of thereof are toroidal or flat-space compactifications, as
well as Gepner models [Gep88].
The levels k of SU(2) and k of SL(2, R) are such that the string background
is critical:
2(k—2)

e = + - =4 = k
k k

|
=

(4.77)

Boost on the
spectrum of AdS,
primaries

Supersymmetry
and level
quantization for
AdS, x §2
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dimensional
black string as a
current-current
deformation

This translates into the equality of the radii of the corresponding S? and AdS;
factors, which is in turn necessary for supersymmetry. Furthermore, the charge
quantization condition for the two-sphere (Sec. 4.1) imposes a further restric-
tion on the level to k = 2p?, p € IN.

In this system the total fermionic charge is

a N-h/2 , a @ +h/2
— g _ L ) 4.7
Q=n+; ; +n' 43 ; + QM (4.78)
Hence, assuming that the internal N = 2 charge QO is integral, further con-
straints on the electromagnetic charges of the theory are needed in order to
achieve space-time supersymmetry. Namely, we must only keep states such
that

N+n'=0 mod p. (4.79)

This projection is some kind of generalization of Gepner models. Usually, such
a projection is supplemented in string theory by new twisted sectors. We then
expect that, by adding on top of this projection the usual GSO projection on odd
fermion number, one will obtain a space-time supersymmetric background.
However, the actual computation would need the knowledge of hyperbolic
coset characters of SL(2, R) (i.e. Lorentzian black-hole characters), and of their
modular properties. We can already observe that this “Gepner-like” orbifold
keeps only states which are “dyonic” with respect to the electromagnetic field
background. Notice that, by switching other fluxes in the internal theory M
one can describe more general projections.

4.4 The three-dimensional black string revisited

The AdSz; moduli space contains black hole geometries. This has been known
since the most celebrated of them — the two-dimensional SL(2,R)/U(1) black
hole — was found by Witten [Wit91, DVV92]. Generalisations of these con-
structions to higher dimensions have been considered in [HH92, Ger95, Hor92,
KT94]. The three-dimensional black string [HH92, HHS92, HW93] has at-
tracted much attention, for it provides an alternative to the Schwarzschild
black hole in three-dimensional asymptotically flat geometries!. In this sec-
tion we want to show how this black string can be interpreted in terms of
marginal deformations of SL(2, R), which will enable us to give an expression
for its string primary states.

In [HH92] the black string was obtained as an (SL(2,R) x R) /R gauged
model. More precisely, expressing ¢ € SL(2,R) x R as:

a u 0
g=|-ov b 0], (4.80)
0 0 ¢

1BRemember that the 1o hair theorem doesn’t hold in three dimensions [Isr67, Heu98, GIS02].
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the left and right embeddings of the R subgroup are identical and given by:

er/r :R — SL(2,R) x R (4.81)
e\/Alzﬁ 0 0
A 0 e ves o |- (4.82)
0 0 e\/ﬁ

From the discussion in Sec. 3.1, we see that performing this gauging is just
one of the possible ways to recover the J?J> symmetrically deformed SL(2,R)
geometry. More specifically, since the gauged symmetry is axial (g — hgh), it
corresponds (in our notation) to the x, < 1 branch of the deformed geometry
in Eq. (C.5a)!%. One can find a coordinate transformation allowing to pass
from the usual black-string solution

— -1
a=f|-(-hars (1-)ars -3 (1-8) 7 &),
H=YldrndxAdt,
e2® — I

!

(4.83)

to our (local) coordinate system, Eq. (C.5). The attentive reader might now
be puzzled by this equivalence between a one-parameter model such as the
symmetrically deformed model and a two-parameter one such as the black
string in its usual coordinates (in Eqs. (4.83) we redefined the r coordinate as
r — r/M and then set y = Q/M with respect to the conventions in [HH92]).
A point that it is interesting to make here is that although, out of physical
considerations, the black string is usually described in terms of two parameters
(mass and charge), the only physically distinguishable parameter is their ratio
# = Q/M that coincides with our x; parameter. In the next section we will
introduce a different (double) deformation, this time giving rise to a black hole
geometry depending on two actual parameters (one of which being related to
an additional electric field).

As we remarked above, the axial gauging construction only applies for
u < 1, while, in order to obtain the other x, > 1 branch of the | 22 deformation,
one should perform a vector gauging. On the other hand, this operation, that
would be justified by a CFT point of view, is not natural when one takes a more
geometrical point of view and writes the black string metric as in Eq. (4.83). In
the latter, one can study the signature of the metric as a function of r in the two
regions 2 = 1, and find the physically sensible regions (see Tab. 4.1).

Our observations are the following:

* The y?> < 1 branch always has the correct (—, +,+) signature for any
value of r, with the two special values r = 1 and r = u? marking the
presence of the horizons that hide the singularity in r = 0.

14The R = 1 convention is not univocal in literature.

Single physical
parameter for the
black string
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] u \ name \ d#? \ da? \ dr? \ range \ CFT interpretation ‘
(c) | = | + | + r>u? PP, k3 > 1
wp>1 | 07 | - | - [ - J1<r<p?
@) | +] — ] +]0<r<1 PP, x<1
(@) |+ - [+ ]0<r<yp?
wp<1| ) [+ + [ - [p<r<i 22, k0 < 1
)| — | + | + r>1

Table 4.1: Signature for the black-string metric as a function of r, for y? = 1.

e The > > 1 branch is different. In particular we see that there are two
regions: (a7) for 0 < r < 1 and (c") for r > u? where the signature is
that of a physical space.

A fact deserves to be emphasized here: one should notice that while for y? < 1
we obtain three different regions of the same space, for > > 1 what we show
in Tab. 4.1 really are three different spaces and the proposed ranges for r are
just an effect of the chosen parameterization. The ("), x3 < land (¢*),x3 > 1
branches are different spaces and not different regions of the same one and one
can choose in which one to go when continuing to y > 1.

But there is more. The u? > 1 region is obtained via an analytic continua-
tion with respect to the other branch, and this analytic continuation is precisely
the one that interchanges the roles of the J?> and the J? currents. As a result,
we pass from the J2J? line to the J*J2 line. More precisely the (c*) region de-
scribes the “singular” k3 > 1 branch of the J*J° deformation (i.e. the branch
that includes the r = 0 singularity) and the (a™) region describes the regular
k3 < 1 branch that has the cigar geometry as x3 — 0 limit. Also notice that the
regions r < 0 have to be excluded in order to avoid naked singularities (of the
type encountered in the Schwarzschild black hole with negative mass). The
black string described in [HH92] covers the regions (a~),(b™),(c™), (a™).

Our last point concerns the expectation of the genuine AdS; geometry as
a zero-deformation limit of the black-string metric, since the latter turns out
to be a marginal deformation of AdS; with parameter y. The straightforward
approach consists in taking the line element in Eq. (4.83) for u = 1. It is then
puzzling that the resulting extremal black-string geometry is not AdSs. This
apparent paradox is solved by carefully looking at the coordinate transforma-
tions that relate the black-string coordinates (r, x,t) to either the Euler coor-
dinates (p, ¢, T) (B.13) for the J*J? line, or the hyperbolic coordinates (y, x, t)
for the J2J? line. These transformations are singular at ¢ = 1, which therefore
corresponds neither to k3 = 1 nor to x; = 1. Put differently, = 1 is not part
of a continuous line of deformed models but marks a jump from the J2J? to the
J3J? lines.

The extremal black-string solution is even more peculiar. Comparing Egs.
(4.83) at u = 1 to Egs. (C.6), which describe the symmetrically null-deformed
SL(2,R), we observe that the two backgrounds at hand are related by a coor-
dinate transformation, provided v = —1.
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The black string background is therefore entirely described in terms of
SL(2,R) marginal symmetric deformations, and involves all three of them.
The null deformation appears, however, for the extremal black string only and
at a negative value of the parameter v. The latter is the density of fundamen-
tal strings, when the deformed AdS; is considered within the NS5/F1 system.
This might be one more sign pointing towards a Gregory-Laflamme instability
in the black string [GL93].

Notice finally that expressions (4.83) receive 1/k corrections. Those have
been computed in [Sfe93]. Once taken into account, they contribute in making
the geometry smoother, as usual in string theory.

An interesting mix

A particular kind of asymmetric deformation is what we will call in the follow-
ing double deformation [KK95, Isr04]. At the Lagrangian level this is obtained
by adding the following marginal perturbation to the WZw action:

5S = 612 / Pz)+H / a2z J1; (4.84)

J is a holomorphic current in the group, | the corresponding anti-holomorphic
current and I an external (to the group) anti-holomorphic current (i.e. in the
right-moving heterotic sector for example). A possible way to interpret this
operator consists in thinking of the double deformation as the superposition
of a symmetric — or gravitational — deformation (the first addend) and of an an-
tisymmetric one — the electromagnetic deformation. This mix is consistent be-
cause if we perform the x deformation first, the theory keeps the U(1) x U(1)
symmetry generated by | and ] that is needed in order to allow for the H de-
formation. Following this trail, we can read off the background fields corre-
sponding to the double deformation by using at first one of the methods out-
lined in Sec. 3.1 and then applying the Kaluza-Klein reduction to the resulting
background fields.

The final result consists in a metric, a three-form, a dilaton and a gauge
field. It is in general valid at any order in the deformation parameters x and H
but only at leading order in &’ due to the presence of the symmetric part.

Double deformations of AdS; where J is the time-like J* operator have been
studied in [Isr04]. It was there shown that the extra gravitational deformation
allows to get rid of the closed time-like curves, which are otherwise present
in the pure J? asymmetric deformation (Eq. (4.15)) — the latter includes Godel
space. Here, we will focus instead on the case of double deformation generated
by space-like operators, J and J2.

The hyperbolic double deformation

In order to follow the above prescription for reading the background fields
in the double-deformed metric let us start with the fields in Egs. (C.5). We
can introduce those fields in the sigma-model action. Infinitesimal variation

A two-parameter
charged black
string
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of the latter with respect to the parameter x> enables us to reach the following
expressions for the chiral currents J? (z) and J2 () at finite values of x*:

20\ _ 1 2 . 2
Ji(z) = NCTS " (cos” t 0y — sin” tdg) , (4.85)
J2(z) = ! (cos?t 3y + sin’ t dg) . (4.86)

cos? t + k2 sin®

Note in particular that the corresponding Killing vectors (that clearly are d,,
and dy) are to be rescaled as L, = Klzal,, —dyand Ry = K%Bw + dp. Once the

currents are known, one has to apply the construction sketched in Sec. 3.2 and
write the background fields as follows:

1 (k? —2H2%) cos? t + x* sin t cos? tsin? t
—ds? = —d#? 2t dy? —4n*—""_ "dud
? S + cos A2 P At Ppde+
2 2 2\ wipn2
. 5 cos?t+ (k? —2H%)sin*t
t d
—+ sin AK(t)z
2 2 2
b= 252 g nay
_ 2k sin(2t 2
F=2n,/ESES (dp Adt + dt A dg)
e ® — Vx2—2H2
T A()
(4.87)

where A,(t) = cos?t + x*sin’t as in App. C. In particular the dilaton, that
can be obtained by imposing the one-loop beta equation is proportional to the
ratio of the double deformed volume form and the AdS; one.

A first observation about the above background is in order here. The elec-
tric field is bounded from above since HZ < "72 As usual in string theory,
tachyonic instabilities occur at large values of electric or magnetic fields, which
is just a way of interpreting the decompactification boundary value for the de-
formation parameter. At the critical value of H, one dimension degenerates
and the B-field vanishes. We are left with a two-dimensional space (with non-
constant curvature) plus electric field.

The expression (4.87) here above of the metric provides only a local de-
scription of the space-time geometry. To discuss the global structure of the
whole space it is useful to perform several coordinate transformations. Firstly
let us parametrize by x> = A/ (1 + A) the deformation parameter (with x < 1
for A > 0and x > 1 for A < —1) and introduce a radial coordinate a la Horne
and Horowitz:

r = A+cos’t, (4.88)

which obviously varies between A and A + 1. The expression of the metric
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(4.87) becomes in terms of this new coordinate:

A (/\ — 4% (1+ )»)2) 2SS (12+ M)
r r

ds? = — [(2H2 (1+A)%— /\) + ] dy?+

42 (1+42(1427) 214 2P
+

_(1+/\) 7 r2

20 (1+A)+1— de*+

) o[, 1420 A(1+2) 1 )
+4n2 (14 ) {1— e ]dlpd<p+4(r_A)(r_A_1)dr. (4.89)

This expression looks close to the one discussed by Horne and Horowitz. It
also represents a black string. However, it depends on more physical parame-
ters as the expression of the scalar curvature shows:

2r (142A) =7A (1+A) =202 (1 +A)?

R=2 >

(4.90)

Obviously this metric can be extended behind the initial domain of definition
of the r variable. But before to discuss it, it is interesting to note that the Killing
vector k = (14 A) dy + A9y Ry is of constant square length

kk=A(1+A)—20% (14 1) :=w. (4.91)

Note that as H? is positive, we have the inequality w < A (1+ A). Moreover,
in order to have a Lorentzian signature we must impose w > 0. The fact that
the Killing vector k is space-like and of constant length makes it a candidate to
perform identifications. We shall discuss this point at the end of this section.

The constancy of the length of the Killing vector k suggests to make a new
coordinate transformation (such that k = d,) :

p=>01+A)x+t, (4.92a)
p=t+Ax, (4.92b)

which leads to the much simpler expression of the line element:

(r=A)(r—A-1)
2

1.\? 1
2 1 2
dt +w(dx—|—rdt> +4(r—)\)(r—)&—1)dr'

(4.93)

ds? = —

This metricis singularat7 = 0,A, A 4+ 1; r = 0 being a curvature singularity. On
the other hand, the volume form is vw/(2r)dt A dx A dr, which indicates that the
singularities at 7 = A and r = A + 1 may be merely coordinate singularities,
corresponding to horizons. Indeed, it is the case. If we expand the metric,
around r = A + 1, for instance, at first order (i.e. forr = A 4+ 1 + €) we obtain:

ds? = —2(dt+ (1+A) dx)? — ——dt |df +2—— (dt + (14 A) dx) | +

(1+ A7) 1+A
1
+ Eer (4.94)

(1+A)
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indicating the presence of a horizon. To eliminate the singularity in the metric,
we may introduce Eddington-Finkelstein like coordinates:

t=(1+A2) <u + ilne) — wg, (4.95a)
X = <1+1:L_)A>§—(ui;lne>. (4.95b)

The same analysis can also be done near the horizon located at r = A. Writing
r = A + ¢, the corresponding regulating coordinate transformation to use is
given by:

t=A (u + %ln e> + wi, (4.96a)

x = (1 - %) E— <u + ;lne?) . (4.96b)

In order to reach the null Eddington—Finkelstein coordinates, we must use
null rays. The geodesic equations read, in terms of a function X2[E, P,¢;r] =

(Er — P)> — (P*/w) —e(r —A) (r— A —1):

1
o= / SER (4.97a)

B (Er—P)r
e O 2T

_ (Er—P)+P/w
= _/2(T—)L) (1’—/\—1) Z[E,P,g;r]dr (497C)

where E and P are the constant of motion associated to 9; and 9y, ¢ is an affine
parameter and ¢, equal to 1,0, —1, characterizes the time-like, null or space-
like nature of the geodesic. Comparing these equations (with e = 0 and P = 0)
with the coordinates introduced near the horizons, we see that regular coordi-
nates in their neighbourhoods are given by

t:Tj:%((1+/\)ln|r—}\—1]—)\ln|r—/\|), (4.98a)
x:X:F%(ln\r—A—H—ln\r—/\]), (4.98b)

which leads to the metric

1420 A(14A) —w
2
ds —<—1+ P )

> dT? + Z%dXdT +wdX? T %der
(4.99)

According to the sign, we obtain incoming or outgoing null coordinates; to
build a Kruskal coordinate system we have still to exponentiate them.

Obviously, we may choose the X coordinate in the metric (4.99) to be pe-
riodic without introducing closed causal curves. The question of performing
more general identifications in these spaces will be addressed below.
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We end this section by computing the conserved charges associated to the
asymptotic symmetries of our field configurations. As is well known, their
expressions provide solutions of the equations of motion derived from the low
energy effective action

k
S = /ddx e [R F (VPR — L2 S O

= . 5| . @100

in which we have choosen the units such that éc = 12.

The expression (4.93) for the metric is particularly appropriate to describe
the asymptotic properties of the solution. In these coordinates, the various,
non gravitational, fields read as

V2H(1+ A)

F=+Y2U TN g ndr, 4101
N r (4.101a)
H= :F;U—zdt Adx Adr, (4.101b)
=, — %m ) (4.101¢)

By setting v/wx = % and r = e, near infinity (5 — o0), the metric asymptotes
the standard flat metric: ds* = —dt? + dx? + dp?, while the fields F and H van-
ish and the dilaton reads ® = ®, — p. This allows to interpret the asymptotic
behavior of our solution (4.87) as a perturbation around the solution given by
F =0, H = 0, the flat metric and a linear dilaton: & = ®, + £, X*, (with here
fa = (0,0, —1)). Accordingly, we may define asymptotic charges associated to
each asymptotic reductibility parameter (see [BB02]).
For the gauge symmetries we obtain as charges, associated to the H field

Qn = +2e 2% /w (4.102)
and to the F field
2v/2e 22 H(1 + A)

Vs
The first one reduces (up to normalization) for H = 0 to the result given in
[HH92], while the second one provides an interpretation of the deformation
parameter H.

Moreover, all the Killing vectors of the flat metric defining isometries pre-
serving the dilaton field allow to define asymptotic charges. These charges are
obtained by integrating on the surface at infinity the antisymmetric tensor:

Qr =+ (4.103)

k[g‘l/] _ e—2<i> <€U aAHU/\;u/ + %a/\gg Hcr)\;w + 2(€Vh1)/\f)\ o théif/\)>
(4.104)
where

HOMY — flm/;?/\]l 4 ]Tl/\H,?VV — }_IUP’U)W — E)‘VW‘T?’ (4.105)

Asymptotic
charges for the
charged black
string
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is the well known tensor sharing the symmetries of the Riemann tensor and
h*" = h*" — %n?’vryﬂ‘ﬁhaﬁ, while the Killing vector ¢ has to verify the invariance

condition ¢,f* = 0. The expression of the tensor ! depends only on the

perturbation ,, of the metric tensor because, on the one hand, the F and H
tields appear quadratically in the lagrangian, and their background values are
zero, while, on the other hand, the perturbation field for the dilaton vanishes:
O=07.

Restricting ourselves to constant Killing vectors, we obtain the momenta
(defined for the indice o = t and %)

P — / dre 2 (8,17 — 29°th) (4.106)
i.e. the density of mass (i) and momentum (@) per unit length:
p = 2e?®(1+2))and @ = —2e % \/w. (4.107)

Of course, if we perform identifications such that the string acquires a finite
length, the momenta (4.106) become also finite.

To make an end let us notice that the expressions of y and @ that we obtain
differ from those given in [HH92] by a normalization factor but also in their
dependance with respect to A, even in the limit H = 0; indeed, the asymptotic
Minkowskian frames used differ from each other by a boost.

Discrete identifications

In the same spirit as the original BTZ construction reminded in the previous
section, we would like to investigate to what extent discrete identifications
could be performed in the deformed background. Necessary conditions for a
solution (4.99) to remain “viable” black hole can be stated as follows:

¢ the identifications are to be performed along the orbits of some Killing
vector ¢ of the deformed metric

¢ there must be causally safe asymptotic regions (at spatial infinity)

¢ thenorm of ¢ has to be positive in some region of space-time, and chrono-
logical pathologies have to be hidden with respect to an asymptotic safe
region by a horizon.

The resulting quotient space will exhibit a black hole structure if, once the
regions where ||¢|| < 0 have been removed, we are left with an almost geodesi-
cally complete space, the only incomplete geodesics being those ending on
the locus ||¢]| = 0. It is nevertheless worth emphasizing an important differ-
ence with the BTZ construction. In our situation, unlike the undeformed AdSs
space, the initial space-time where we are to perform identifications do exhibit
curvature singularities.



4.4. The three-dimensional black string revisited

71

The BTZ black hole

In the presence of isometries, discrete identifications provide alternatives for
creating new backgrounds. Those have the same local geometry, but differ with
respect to their global properties. Whether these identifications can be im-
plemented as orbifolds at the level of the underlying two-dimensional string
model is very much dependent on each specific case.

For AdSs, the most celebrated geometry obtained by discrete identification
is certainly the BTZ black hole [BTZ92]. The discrete identifications are made
along the integral lines of the following Killing vectors (see Egs. (B.15)):

non-extremal case: ¢ = (r4 +7- )Ry — (r4 —r_) Lo, (4.108a)
extremal case : ¢ =2r Ry — (R1 — R3) — (L1 + L3). (4.108b)

In the original BTZ coordinates, the metric reads:

2
ds? = 12 [— )2+ f2(r) dr? + 1 (dqo - “;Z‘ dt) } , (4.109)
with
1
f(r) = ;\/(1,2 —r3) (r2—7r2). (4.110)
In this coordinate system,
dp=C, y=—(rp+r_)Rp—(ry —r_) L, and r* = || . (4.111)

In AdS; ¢ is not a compact coordinate. The discrete identification makes ¢ an
angular variable, ¢ & ¢ + 27, which imposes to remove the region with r> < 0.
The BTZ geometry describes a three-dimensional black hole, with mass M and
angular momentum J, in a space-time that is locally (and asymptotically) anti-
de Sitter. The chronological singularity at » = 0 is hidden behind an inner
horizon at» = r_, and an outer horizon at r = r. Between these two horizons,
r is time-like. The coordinate t becomes space-like inside the ergosphere, when

r < rgrg = r%_ + 2. The relation between M, | and r+ is as follows:
2o ML L (L ’ (4.112)
) ML) |~ '

Extremal black holes have |J| = ML (r4 = r_). In the special case ] = ML =0
one finds the near-horizon geometry of the five-dimensional NS5/F1 stringy
black hole in its ground state. Global AdSj3 is obtained for | = 0 and ML = —1.

Many subtleties arise, which concern e.g. the appearance of closed time-
like curves in the excised region of negative r? (where 9, would have been
time-like) or the geodesic completion of the manifold; a comprehensive anal-
ysis of these issues can be found in [BHTZ93]. At the string-theory level, the
BTZ identification is realized as an orbifold projection, which amounts to keep-
ing invariant states and adding twisted sectors [NS98, HKV02].
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Besides the BTZ solution, other locally AdS; geometries are obtained, by
imposing identification under purely left (or right) isometries, refereed to as
self-dual (or anti-self-dual) metrics. These were studied in [CH94]. Their
classification and isometries are exactly those of the asymmetric deformations
studied in the present chapter. The Killing vector used for the identification is
(A) time-like (elliptic), (B) space-like (hyperbolic) or (C) null (parabolic), and
the isometry group is U(1) x SL(2,R). It was pointed out in [CH94] that the
resulting geometry was free of closed time-like curves only in the case (B).

Discrete identifications in asymmetric deformations

Our analysis of the residual isometries in purely asymmetric deformations
(Sec. 3.1) shows that the vector ¢ (Eq. (4.108a)) survives only in the hyperbolic
deformation, whereas ¢ in Eq. (4.108b) is present in the parabolic one. Put dif-
ferently, non-extremal BTZ black holes allow for electric deformation, while in
the extremal ones, the deformation can only be induced by an electro-magnetic
wave. Elliptic deformation is not compatible with BTZ identifications.

The question that we would like to address is the following: how much
of the original black hole structure survives the deformation? The answer is
simple: a new chronological singularity appears in the asymptotic region of
the black hole. Evaluating the norm of the Killing vector shows that a naked
singularity appears. Thus the deformed black hole is no longer a viable grav-
itational background. Actually, whatever the Killing vector we consider to
perform the identifications, we are always confronted to such pathologies.

The fate of the asymmetric parabolic deformation of AdS; is similar: there is
no region at infinity free of closed time-like curves after performing the iden-
tifications.

Discrete identifications in symmetric deformations

Let us consider the symmetric hyperbolic deformation, whose metric is given
by (4.93) with H = 0, i.e. w = A (1+ A). This metric has two residual Killing
vectors, manifestly given by J; and d,. We may thus, in general, consider
identifications along integral lines of

¢ =0a0;+ 0. (4.113)
This vector has squared norm:

2
lEP = (A(1+A) ) 4 AOEY t” (1+24) (4.114)

To be space-like at infinity the vector ¢ must verify the inequality A (1 +A) >
a®. Ifa > 0,or —\/A(1+A) <a < —2A(1+A)/(1+2A), ¢ is everywhere
space-like. Otherwise, it becomes time-like behind the inner horizon (r = A),
or on this horizon if 2 = —A. In this last situation, the quotient space will ex-
hibit a structure similar to that of the black string, with a time-like singularity
(becoming light-like for 2 = —A) and two horizons.
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Figure 4.1: Penrose diagram exhibiting the global structure of the double hy-
perbolic deformation. The time-like curvature singularities » = 0 are repre-
sented, as well as the horizons, located at r = A and r = A 4+ 1. When perform-
ing identifications along orbits of a Killing vector allowing for a causally safe
region at infinity, there appears chronological singularities, which can be time-
like and hidden behind an outer and an inner horizon (r = r]), or space-like
and hidden behind a single horizon (r = r3), while the regions where r < r*
have to be removed.

Discrete identifications in double deformations

The norm squared of the identification vector (4.113) in the metric (4.93) is

1212 = (w - @) +2aw+a2r(1 +21) a2(A(1 —ri—z)x) — w)' (4.115)

Between r = 0 and r = oo, this scalar product vanishes once and only once (if
a # 0). To be space-like at infinity we have to restrict the time component of ¢
to |a| < w. Near r = 01itis negative, at the outer horizon (r = A + 1) it takes the
positive value w (14 A +a)* / (14 A)? and near the inner horizon (r = A) the
non-negative value w (A + a)* /A2, Accordingly, by performing identifications
using this Killing vector, we will encounter a chronological singularity, located
atr = r*, with 0 < r* < A+ 1. When r* < A, the singularity will be of the
same type as the one in the symmetric case. But when A < r* < A +1, the
chronological singularity will be space-like, and the causal structure we get is
much like that of the Schwarschild black hole, as is shown in Fig. 4.1.
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Towards the exact spectra

Let us consider the algebraic point of view. Again as in the electric defor-
mation of SL(2,R) we can’t write the partition function but we must con-
tent ourselves with the spectrum which will generalize what we found in
Egs. (4.33a) and (4.33b).

Deformed Spectrum

Consider the double deformation described above for a SL(2,R); super-wWzw
model where ]| is the hyperbolic (space-like) ], current.

The evaluation of the spectrum for our deformed model is pretty straight-
forward once one realizes that the deformations act as O (2, 2) pseudo-orthog-
onal transformations on the charge lattice corresponding to the abelian sub-
group of the s[(2,R) heterotic model (as described in Sec. 3.1). Left and right
weights for the relevant lattices are (see Egs. (D.20) and (D.21)):

1 ay\?2

LO—E(pH—n%—E) , (4.116a)
) _\ 2

7o K 1/(..a

L=+ <n+2> , (4.116b)

where the anti-holomorphic part contains the contribution coming from a u(1)
subgroup of the heterotic gauge group.

At the Lagrangian level, the infinitesimal deformation we want to describe
is given by the following marginal operator:

(Ptowpnys) P U2 wiys) T

Vk Vki2 NN

This suggests that the actual O(2,2) transformation should be obtained as a
boost between the holomorphic part and the result of a rotation between the
two anti-holomorphic components. The deformed lattices then read:

O =x> (4.117)

2
1 a fl 1 ay . .

=2 — (yu+n+-)coshx+ cosoc—l—(ﬁ—l—)snzx sinhx ; ,
; {\@(” ) N RV S REY A
(4.118a)

i 1 q 1 ?

[dd — K COSOC+<17l+a>SiI’IOC coshx + — +n+E sinhx 3 ,

0 {(\/kﬁ-z Vks 2 \/%(y 2>

(4.118b)

where the parameters x and a can be expressed as functions of x and H as
follows:

2 _ .
{K = sinh(2x) cos &, (4.119)

H = sinh(2x) sina.

Of course this is a generalization of the expressions in Eq. (4.33).
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Twisting

The identification operation we performed in the symmetrically and double-
deformed metric (as in Sec. 4.4) is implemented in the string theory framework
by the orbifold construction. This was already obtained in [NS98, HKV02] for
the “standard” BTZ black hole that was described as a SL(2,R)/Z orbifold.

In order to write the spectrum that will contain the twisted sectors, the first
step consists in writing explicitly the primary fields in our theory, distinguish-
ing between the holomorphic and anti-holomorphic parts (as it is natural to do
since the construction is intrinsically heterotic).

¢ The holomorphic partis written by introducing the charge boost of Eq. (4.118a)
in Eq. (D.16):

2 _
q’?p?vﬁv(z) = Uju(z) exp [1 (\/; <H +n+ %) cosh x + v/2Q, sinh x) 192] ,
(4.120)

where Q, = ji4/ k%z cosx+7,/ é sin« and the dd superscript stands for
double deformed

¢ To write the anti-holomorphic part we need at first to implement the
rotation between the J° and gauge current components:

Bjp(2) = Vi (2)elMV/ei202g T/ 2/ KX —

— vV (Z)ezﬁQ_,x (92 cosa+)_(sina)61\/§@a,n/2(f§2 sinzx+)_(cosoc)

jn , (4.121)

and then realize the boost in Eq. (4.118b) on the involved part:

Gdd _(2) _ ijelﬁQafn/z(f@sina+)_(cosa) %

X exp |1 <\/§ (y +n+ %) sinh x + v2Q, coshx) (62 cosa + Xsintx)] .
4.122)

Now that we have the primaries, consider the operator Wy, (z,z) defined
as follows:

Wy (z,2) = e '20A-0t P 0By (4.123)

where w € Z and 6, the boson corresponding to the ], current. It is easy to
show that the following OPE’s hold:

% (z2) Wy (0,2) ~ —1wA_logzW, (0,2), (4.124)

0> (2) Wy (2,0) ~ 1wA 4 log zWy, (2,0), (4.125)

]



76

Applications

showing that Wy, (z,Z) acts as twisting operator with winding number w (¢,
and 0 shift by 27A_w and 27tA;w under z — €*™z). This means that the
general primary field in the SL (2,R), /Z theory can be written as:

qD};tvﬁvﬁw (Z' Z) = q>?ydﬁv17 (Zr Z) Ww (Z, 2) . (4-126)
where the tw superscript stands for twisted.

Having the explicit expression for the primary field, it is simple to derive
the scaling dimensions which are obtained, as before, via the GKO decompo-
sition of the Virasoro algebra T [sl (2,R)] = T [sl(2,R) /o (1,1)] + T [0 (1,1)].
Given that the T [s[(2,R) /o (1,1)] part remains invariant (and equal to Ly =
—j(j+1) /k —u?/ (k+2) as in Eq. (D.18)), the deformed weights read:

2
Ly = { z\kﬁwA_ + \}I? (;4 +n+ g) cosh x + Q, sinh x } , (4.127a)

- k+2 - 1 a 2
Ltw:{—wA cos & + coshx + — +n+ = sinhx} +
0 2y A oSt s letne3)
k+2 - 2
+ { ZjﬁwAjL sina + Qy—n/s } .
(4.127b)

4.5 New compactifications

Up to this point we have focused on the squashed and coset models under the
underlying hypothesis that they act as parts of larger ten-dimensional back-
grounds. In this section we will study other examples which are likely to
be part of physically sound models. In particular we will closely study the
SU(3)/U(1)? coset that can be used as the six-dimensional compact countet-
part of an AdS4 background.

The SU(3)/U(1)? flag space

Let us now consider the next example in terms of coset dimensions, SU (3) /U (1)

As a possible application for this construction we may think to associate this
manifold to a four-dimensional (1,0) superconformal field theory M so to
compactify a critical string theory since dim [S u@)/u (1)2] =8-2=06.
Our construction gives rise to a whole family of CFT’s depending on two pa-
rameters (since rank [SU (3)] = 2) but in this case we are mainly interested to
the point of maximal deformation, where the U (1)* torus decouples and we
obtain an exact theory on the SU (3) /U (1)* coset. Before giving the explicit
expressions for the objects in our construction it is hence useful to recall some
properties of this manifold. The first consideration to be made is the fact that
Su3)/u (1)2 is an asymmetric coset in the mathematical sense defined in
Sec. 3.3 (as we show below). This allows for the existence of more than one
left-invariant Riemann metric. In particular, in this case, if we just consider

2
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structures with constant Ricci scalar, we find, together with the restriction of
the Cartan-Killing metric on SU (3), the Kéhler metric of the flag space F°.
The construction we present in this section will lead to the first one of these
two metrics. This is known to admit a nearly-Kéahler structure and has already
appeared in the superstring literature as a basis for a cone of G, holonomy
[AWO03].

A suitable parametrisation for the SU (3) group is obtained via the Gauss
decomposition described in App. B.3. In these terms the general group ele-
ment is written as:

e'1/2 _ 21273 (Y1) /2 _ 0D /2
NG ,/{1/‘2 N
zqe¥1/2 1+|z3"—212023 i(py—1pp) /2 2 p—1a/2
= - € ——¢
g (Zl/ 23,23, lpll lPZ) \/jTl w/flfz . \/jTZ
2e 2 m—nhizmdnial (g —¢)/2 1 _oiypp/2

Vi V12 Vi
(4.128)

where z; are three complex parameters, i; are two real parameters and f; =
1+ |z1)* + |z, fo = 1+ |22|* + |23 — 2122|%. As for the group, we need also
an explicit parametrisation for the su (3) algebra, such as the one provided by
the Gell-Mann matrices in Eq. (B.40). It is a well known result that if a Lie
algebra is semi-simple (or, equivalently; if its Killing form is negative-definite)
then all Cartan subalgebras are conjugated by some inner automorphism'.
This leaves us the possibility of choosing any couple of commuting genera-
tors, knowing that the final result won’t be influenced by such a choice. In
particular, then, we can pick the subalgebra generated by € = (A3, Ag).10

The holomorphic currents of the bosonic SU (3), corresponding to the two
operators in the Cartan are:

T == (Asg (2 9a) " dg (2 ¥a))  T® = — (Asg (2 %) ' dg (2, )
(4.129)

and in these coordinates they read:

5 _ 5.5 5 Zy 1+|Z]‘2 — 2123 5 5 5. _ 5

= (Zl Zz<2122+23>) dzy — ( ) dzs + (23 Mpatohak
V2 |\ A 2f, 2f fi 2f,
bec+ S dye (4.130)

V2 2V2

2 2

Gauss
decomposition
for SU(3)

) dZ3

3|21z, —2 Z 2z — 212 —Z1Z+ Z 1 /3
J8 = —1 {W’sz21+22+|21| b7 Z1Z3dZZ+W’dZ3}+C.c.+\/;d¢2.

2fy 2f> 2f>

15This is the reason why the study of non-semi-simple Lie algebra deformation constitutes
a richer subject. In example the SL (2, R) group admits for 3 different deformations, leading
to 3 different families of exact CFT’s with different physics properties. On the other hand the 3
possible deformations in SU (3) are equivalent.

16Tn this explicit parametrisation it is straightforward to show that the coset we’re consider-
ing is not symmetric. It suffices to pick two generators, say A, and A4, and remark that their
commutator [y, Ay] = —1/+/2A¢ doesn’t live in the Cartan subalgebra.
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Superymmetry
properties of
SU(3)/U(1)?

(4.131)

Those currents appear in the expression of the exactly marginal operator that
we can add to the SU (3) Wzw model action:

v/ kk _
V= #H/dZZHS <]3_\ék(231/)21/71 S Psthy 4 Prs )> P+
+ Hg (18 - i g (: sta 4+ = Pripe :)) 7 (4.132)

where gbi are the bosonic current superpartners and J3, J® are two currents from
the gauge sector both generating a U (1), .

Since rank [SU (3)] = 2 we have a bidimensional family of deformations
parametrised by the two moduli Hz and Hg. The back-reaction on the metric is
given by:

ds? = gpdz* ©dzP + (1-203) TP @ J° + (1-2H3) TP © J°  (4.133)

where g, is the restriction of the SU (3) metric on SU (3) /U (1)2. It is worth
to remark that for any value of the deformation parameters Hz and Hg the
deformed metric is Einstein with constant Ricci scalar.
With a procedure that has by now become familiar we introduce the fol-
lowing reparametrization:
¥ 2
LV T RV (1139

and take the H3 — 1/v/2, Hg — 1/+/2 limit. The resulting metric is:

di ® dgpy — dy; @ dip + dipr @ dipy
2

that is the metric of the tangent space to the manifold SU (3) /U (1)* x U (1) x
U (1). The coset metric hence obtained has a C-structure, is Einstein and has
constant Ricci scalar R = 15/k. The other background fields at the boundary
of the moduli space read:

ds? = g,5dz" © dzPf + (4.135)

F=d7%+d78 (4.136)
Hy = =3V2{T' A (T A5 = TN TT) + VBTN (TN TP+ T 0 T7) }
(4.137)

If we consider the supersymmetry properties along the deformation line
we can remark the presence of an interesting phenomenon. The initial SU (3)
model has N = 2 but this symmetry is naively broken to N = 1 by the de-
formation. This is true for any value of the deformation parameter but for
the boundary point H = HZ = 1/2 where the N = 2 supersymmetry is re-
stored. Following [GHR84, KS89b, KS89a] one can see that a G/T coset ad-
mits N = 2 supersymmetry if it possesses a complex structure and the corre-
sponding algebra can be decomposed as j = j. @ j_ such as [j+,j+] = j+ and
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[i—,)—] = j—. Explicitly, this latter condition is equivalent (in complex notation)
to fiik = fi = faij = faj = 0. These are easily satistied by the SU (3) /U (1)
coset (and actually by any G/T coset) since the commutator of two positive
(negative) roots can only be proportional to the positive (negative) root ob-
tained as the sum of the two or vanish.. Having N = 2 supersymmetry is
equivalent to asking for the presence of two complex structures. The first one
is trivially given by considering positive roots as holomorphic and negative
roots as anti-holomorphic, the other one by interchanging the role in one out
of the three positive/negative couples (the same flip on two couples would
give again the same structure and on all the three just takes back to the first
structure). The metric is Hermitian with respect to both structures since it is
SU (3) invariant. It is worth to remark that such background is different from
the ones described in [KS89a] because it is not Kdhler and can’t be decomposed
in terms of Hermitian symmetric spaces.

Different constructions on SU(3)/U(1)?

To study the SU (3) case we will use the “current” approach of Sec. 3.6, since a
direct computation in coordinates would be impractical. As one could expect,
the study of SU (3) deformation is quite richer because of the presence of an
embedded SU (2) group that can be gauged. Basically this means that we can
choose two different deformation patterns that will lead to the two possible
Einstein structures that can be defined on the SU (3) /U (1)* manifold.

Direct gauging.

The first possible choice leads to the same model as before by simply gauging
the U (1)* Cartan torus. Consider the initial SU (B)x U (1) x U(1);, model.
In the (J1,...,Js,11,1s) base ({ J; } being the SU (3) generators and { Z }
the 2 U (1)’s), the initial metric is written as:

KIS| 0
g = % (4.138)
O k//

the natural choice for the Cartan torus is given by the usual (73, Jg) genera-
tors, so we can proceed as before and write the deformed metric as:

kl2
Al (k, k/, Hg)
B kI4
3= /\1 (k, k”, Hg)
Ay (k, k', H3)
As (k, k”, Hg)
(4.139)

where H3 and Hg are the deformation parameters and A; and A; are the eigen-
values for the interaction matrices, given in Eq. (3.118). In particular, then, in
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the H% —1/2, H% — 1/2 limit two eigenvalues vanish, the corresponding di-
rections decouple and we are left with the following (asymmetrically gauged)
model:

kl6 |
g= k+ K (4.140)
k_|_ k//

in the <\71/ jZ/ j4/ t75/ \.76/ j7/ \/PZI + \/]zj:i/ \/WIZ + \/I;j8> basis that can be

seenasa U (1) fibration over an SU (3) /U (1)* base with metric diag (1,1,1,1,1,1)

(in the current basis). This is precisely the same result we obtained in the pre-
vious section when we read the fibration as a gauge field living on the base.

u)y?* — M
l (4.141)
SU (3) /U (1)*
As in the previous example all this construction is valid only if the asymmet-
rically gauged WZw model is anomaly-free.
The F; flag space

Let us now turn to the other possible choice for the SU (3) gauging, namely the
one where we take advantage of the SU (2) embedding. Let us then consider
the SU (3), x SU (2);, x U (1) x U (1);» WZW model whose metric is

k318
- kall3 . (4.142)

k//
inthe (J1,...,Js,11,12,13, K1, Ky) basis, where (7;) generate the SU (3), (Z;)
generate the SU (2) and (K;) generate the U (1)

The first step in this case consists in an asymmetric gauging mixing the

{N, T2, T3} and {11,7,,73 } currents respectively. At the gauging point, a
whole 3-sphere decouples and we obtain the following metric:

ksll5
- (k2 + ks) I3 . (4.143)

kl/

where we have to remember that in order to have an admissible embedding
ky = k3 = k. Our result is again — not surprisingly —a SU (2) fibration over a
SU (3) /SU (2) base (times the two U (1)’s).

SU(2) —— M
l (4.144)
SU (3) /SU (2)
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Of course one could be tempted to give M the same interpretation as be-
fore, namely an SU (3) /SU (2) space supported by a chromo-magnetic SU (2)
field (or, even better, gauging an additional U (1), of a CIP? background with
an SU (2) x U (1) chromo-magnetic field). Actually this is not the case. The
main point is the fact that this SU (3) x SU (2) model is essentially differ-
ent from the previous ones because the U (1) factors were the result of the
bosonization of the right-moving gauge current which in this way received a
(fake) left-moving partner as in Sec. 3.1. This is not possible in the non-abelian
case since one can’t obtain an SU (2) at arbitrary level k out of the fermions
of the theory'”. In other words, the SU (2) factor is in this case truly a con-
stituent of the theory and there is no reason why it should be decoupled or
be given a different interpretation from the SU (3) part. This is why the struc-
ture obtained by the SU (2) asymmetric gauging is to be considered an eight-
dimensional space admitting an SU (2) — SU (3) /SU (2) fibration structure,
or, equivalently, a deformed SU (3) where an embedded SU (2) is at a level
double with respect to the other generators.

On the other hand we are still free to gauge away the two U (1) factors just
as before. This time we can choose to couple K; with the Js factor that was left
untouched in the initial SU (3) and KC; with the J3 + Z3 generator. Again we
find a two-parameter family of deformations whose metric can be written as:

kl4
H1
g= 22 (4.145)
41
H2
1%
where:
p=A(kK H) (4.146)
v=A(2k K H"). (4.147)

In particular now we can take the decoupling H' = H” — 1/2 limit where we
obtain:

k4

2k12

g= T (4.148)

2k + k"

this structure is once more a U (1)* — SU (3) /U (1) fibration but in this case
it is perfectly fine to separate the space components from the gauge field ones.
So we can read out our final background fields as the Kahler metric on F;

supported by a U (1) (chromo)magnetic field.

7This would be of course be possible if we limited ourselves to small values of k, but in this
case the whole geometric interpretation of the background would be questionable. However
for Gepner-like string compactifications this class of models is relevant.
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To summarize our results we can say that the two Einstein structures that
one can define on SU (3) /U (1)? are both exact string theory backgrounds:

2
¢ The first one, obtained as the asymmetric coset % is supported

by an NS-Ns field strength and a magnetic field;

(3)xSU(2)xU(1)?
SU(2)xU(1)?
Kéhler and hence supported by the (chromo-)magnetic field alone.

¢ The second, corresponding to the U asymmetric coset is

Kéhler form for This Kéhler structure has been deeply studied both from the mathematical
SU@3)/u(1)? and physical points of view. In particular the Kéhler form can be written as in
App. B.3:

K (1) = log [14 P + |3l ] +log [1+ [2* + |75 = 1172l
(4.149)

It is immediate to show that this manifold is Einstein and in particular its Ricci
scalar is R = 12. Being Kéhler, F3 is torsionless, that means in turn that there
is no NS-Ns form!8. Moreover there is no dilaton by construction!®. The only
other field that supports the background comes from the U (1) fibration. Since
the manifold is Kéahler it is useful to take advantage of the complex structure
and write our background fields in complex formalism. In these terms the
metric is written as:

gzg(J1®Ji+j2®Jz+2J3®J3) (4.150)

where 77 and J7 are the Maurer-Cartan corresponding to positive and nega-
tive roots respectively and the field strength is given by:

F* = k. fhCP Rop TH N TV (4.151)

where C is the following tensor

C = Zjﬂt QT (4.152)

New linear dilaton backgrounds of Heterotic strings

These left-coset superconformal field theories can be used to construct various
supersymmetric exact string backgrounds. The first class are generalizations
of Gepner models [Gep88] and Kazama-Suzuki constructions [KS89b] using
the left cosets as building blocks for the internal SCFT. This has already been

18To be precise one could define a B field but this would have to be closed
9The dilaton would basically measure the difference between the asymmetric coset volume
form and the homogeneous space one as it is shown in [Tse94]
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considered in [BJKZ96] for the S? coset but can be extended using the new the-
ories constructed above. In this case there is no geometric interpretation from
the sigma model point of view since these theories have no semi-classical limit.
Indeed the levels of the cosets are frozen because their central charge must add
up to ¢ = 9 (in the case of four-dimensional compactification). However we
expect that they correspond to special points in the moduli spaces of super-
symmetric compactifications, generalizing the Gepner points of the CY mani-
folds.

Another type of models are the left cosets analogues of the NS5-branes
solutions [CHS91, KPR91] and of their extensions to more generic supersym-
metric vacua with a dilaton background. It was shown in [GKP99] that a large
class of these linear dilaton theories are dual to singular CY manifolds in the
decoupling limit. An extensive review of the different possibilities in various
dimensions has been given in [ESY03] with all the possible G/H cosets. The
left cosets that we constructed allows to extend all these solutions to heterotic
strings, with a different geometrical interpretation since our cosets differ from
ordinary gauged WZw model. However the superconformal structure of the
left sector of our models is exactly the same as for the corresponding gauged
WZW — except that the values of the N = 2 R-charges that appear in the spec-
trum are constrained — so we can carry over all the known constructions to the
case of the geometric cosets.

In the generic case these constructions involve non-abelian cosets, and as
we showed the asymmetric deformations and gaugings apply only to the abelian
components. Thus in general we will get mixed models which are gauged
WZW models w.r.t. the non-abelian part of H and geometric cosets w.r.t. the
abelian components of H. Below we will focus on purely abelian examples, i.e.
corresponding to geometric cosets. The dual interpretation of these models, in
terms of the decoupling limit of some singular compactification manifolds, is
not known. Note however that by construction there are about v/k times less
massless states in our models than in the standard left-right symmetric solu-
tions. Therefore they may correspond to some compactifications with fluxes,
for which the number of moduli is reduced. It would be very interesting to
investigate this issue further.

Six-dimensional model. Let us take as a first example the critical superstring
background:

L(2,R X 2
RO« SLZ )LT(Zl)k SO0@) [u (1)k\5U(2)k72 X 50(2)1} (4.153)
the first factor is an ordinary gauged model while the second one is a left coset
CFT as discussed in this paper. This is the direct analogue of the five-brane
solution, or more precisely of the double scaling limit of NS5-branes on a cir-
cle [GK99, IKPT04], in the present case with magnetic flux. This theory has
N = 2 charges but, in order to achieve spacetime supersymmetry one must
project onto odd-integral N = 2 charges on the left-moving side, as in the type
IT construction [IKPT04]. This can be done in the standard way by orbifoldiz-
ing the left N = 2 charges of the two cosets.
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Four-dimensional model. A simple variation of the six-dimensional theory
is provided by

R3! « SL(zr]R)lIiI/?JSZ: 50(2h % [u(1>k\su(2)k_2 X SO(Z)l}

X [u (1)k\su(2)k—2 X 50(2)1} (4.154)
which is the magnetic analogue of the (double scaling limit of) intersecting

tive-branes solution. Also here an orbifoldization of the left N = 2 charges is
needed to achieve space-time supersymmetry.

Three-dimensional models: the flagbrane®. We can construct the following

background of the G, holonomy type, as in the case of symmetric coset [ES01]:
R x Ro x [11/(1), x U (1)5,\SU (B)ia % SO(6)1] (4.155)

and the non-trivial part of the metric is
ds* = —dt* +dx® + dy* + T’; [dr? + 4rds? (SUB)/uy)] . (4.156)

Without the factor of four it would be a direct analogue of the NS5-brane, being
conformal to a cone over the flag space.

Another possibility in three dimensions is to lift the SL(2,R)/U(1) coset
to the group manifold SL(2,R). In this case, as for the standard gauged wWzw
construction [AGS00] we will get the following anti-de Sitter background:

SL(2,R)g a2 X [u (1), \SU (s x 50(6)1} (4.157)

and the left moving sector of this worldsheet CFT defines an N = 3 supercon-
formal algebra in spacetime.

Two-dimensional model. In this case we can construct the background:

SL(2,R)ijasr x SOQ2)1 U (1)U Bis X SOON
U (1)4 U (1)

which corresponds in the classification of [ESY03] to a non-compact manifold
of SU(4) holonomy once the proper projection is done on the left N = 2
charges. This solution can be also be thought as conformal to a cone over
the Einstein space SU (3) /U (1). Using the same methods as for the NS5-
branes in [IKPT04], we can show that the full solution corresponding to the
model (4.158) can be obtained directly as the null super-coset:

SL(2,R)ia x y (1)\SU Bk
Ul), xu(l)g

where the action is along the elliptic generator in the SL (2,R), with a nor-

RY x

(4.158)

(4.159)

malization (t3)2 = —4, and along the direction a; + 2, in the coset space
u(1)\SU@), with a canonical normalization. For r — co the solution asymptotes
the cone but when r — 0 the strong coupling region is smoothly capped by the
cigar.



CHAPTER D

Squashed groups in type 11

In this chapter we start deviating from the preceding ones because we will
no longer deal with WZW models but with configurations in which the
group manifold geometry is sustained by RR fields. In particular, then,
we see how the squashed geometries can be obtained in type II theories by
T-dualizing black brane configurations.

HE MODELS that we have studied so far are intrinsically heterotic. In fact it
is the very presence of a heterotic electromagnetic field that allows for the
solution of the equations of motion. On the other hand, and this is especially
true for purely asymmetric deformations that only have a constant dilaton,
we can expect them to be mapped via S-duality to type II solutions. In this
chapter we will build such solutions but using a slightly different path: in
particular we will see how using a T-duality it is possible to modify a fibration
geometry in the same way as we did before by adding a marginal operator,
thus recovering the same geometries as above, but this time in presence of
Ramond-Ramond fields.

51 SL(2,R) x SU(2) as a D-brane solution

Up to this point we have considered Wzw models for the sake of their self-
consistency. In other words we have used group manifolds as part of critical
string backgrounds on the ground of the existence of an underlying CFT. On
the other hand, at low energies we should obtain a SUGRA description, so it
is plausible that a description for the same geometry is available in terms of
diverse ten-dimensional sources.

The starting point is a higher-dimensional generalization of the usual four-
dimensional charged black hole. The natural, most symmetric, ansatz for the
geometry in presence of a p-dimensional extended object (a black D,-brane)
consists in keeping the Lorentz symmetry in (p + 1) dimensions and a spher-
ical symmetry in (9 — p). In other words breaking the SO(1,9) symmetry to
SO(1,p) x SO(9 — p). Moreover we expect a Cj(,,1) form naturally coupled
to the p-brane. It is possible to show [Ste98] that the solution also contains
a dilaton ®(r) and is completely determined in terms of a harmonic function

85

Black brane
ansatz



Squashed groups in type II

H,(r)~1/2 <—dt2 +dx?+...+ dx%) + Hy(r) (dr2 + rzdﬂg_p)
pﬂ :(1 )dt/\dx AL AdxP
Hy(r)®r

(5.1)
where Hp(r) is explicitly given by
Q
Hy(r) =1+ 75 (5.2)

More complicated solutions with intersecting branes can be studied and in
particular the solution for a D1-D5 system reads:

ds? = Hy(r)~1/2Hs(r) /2 (=df2 + dx?) + Hy (r)V/2Hs(r)"V/2 (dx2 + ... + da2) +
+Hy(r)!/2Hs(r)'/? (dr® + d03)

Cpy= (1= Hy(r)") dt Adx!

Clg) = (1 - Hs(i’)*l) dt Adx! AL AdR

® — H,(r)V/2Hs(r)"1/2

(5.3)

where in this case both H;(r) and Hs(r) have the same 1/7? behaviour. It is
then simple to see that in the near-horizon limit, i.e. for r — 0, the geometry
we find is AdS; x S x R%, or SL(2,R) x SU(2), plus four flat directions.

5.2 T duality with RR fields

@ In the IIB solutions we consider in this section the rdle of sustaining the ge-
ometry previously held by the Kalb-Ramond three-form is taken by RR field
strengths. This has a number of consequences, first of all the lack of a proper
CFT description for such configurations. In particular this means also that the
usual Buscher rules [Bus87] prove insufficient and we are forced to follow a
slightly more involved path to write T-duals: derive two low-energy effective
actions and explicitly write the transformations relating them (in this we will
follow the same procedure as in [DLP98, DLP99]).

Type Il action in In ten dimensions, type IIA and IIB are related by a T-duality transfor-

nine dimensions mation, stating that the former theory compactified on a circle of radius R is
equivalent to the latter on a circle of radius 1/R. This means in particular that
there is only one possible nine-dimensional N = 2 SUGRA action. The rules
of T-duality are then easily obtained by explicitly writing the two low-energy
actions and identifying the corresponding terms.

For sake of clarity let us just consider the bosonic sector of both theories.
In [LP96, LPS96] it was found that the IIA action in nine dimensions is given
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by
ia = R 5 00 =00 =5 A el o
- %(Fw)ze%wz%(p - 11—2(1-"[(31}))2 —9+ 59 %(Pg))ze%tﬁfﬁfp+
a 1(1:[(21]2))2“37(%%(1) - i(f[(;]))ze%"’*zl?"’ _ %(;[(22]))26%4)4_
- %eﬁ[‘ﬂ Mg A Ay = %F[(sl}) NEG) AN Ag), (54)

where ¢ is the original dilaton, ¢ is a scalar measuring the compact circle,
defined by the reduction (in string frame)

2
ds? = e?/2ds?, = ¢?/? (e—(p/(zﬁ) ds2 + ¢V79/2 (dz + Am) ) (5.5)
and Fp,) are n-form field strengths defined as
_E D ) @ 4@ 1 pa2) (2)
F[4] = P[4] — F[3] A .Am - F[3] A ./4[1] 2 [2] /\ ./4[1] .A[ 1] (56a)
1 _ p1) _ p(12) ()
Fy =By —Fy NAg, (5.6b)
2 _ #() (12) (1) (12) (1) _ 12
Ry = By + Ry n Al - A (B - By n ) (5.60)
(12) _ &(12)
Fy = Pm (5.6d)
1
F) = F) + A7 B58)
Fy = FY (5.6f)
(12) _ #=(12)
Fa = Fo (5.6g)

In the same way, starting from the IIB action one obtains the following nine-
dimensional IIB Lagrangian:

e Lyp =R — 1(a¢)2 _ 1(a¢)2 _ 1e24>(a;()2+

L -2 1 o0t g2 Lot oe p(®)y2
_@e F[4] Vi7(F 3] ) 5¢ V7 (F[B})+

1 4+ 1 _3 1 o3
_16ﬁ¢(f[2})2_16¢ 7¢<F[(21]{))2—16 ¢ \[7(P(F(NS))2+

1. - 1), 2
— 5Bl Ay N Ay = < B AED A AL (57)

Knowing that both describe the same theory we easily obtain the conversion
table in Tab. 5.1 which acts as a dictionary between IIA and IIB in ten dimen-
sions plus the following relation between the scalar fields

().~ 520, o9

This completes the T-duality relations generalizing the usual ones [Bus87] valid
in the NS-NS sector.
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A 1B
D=10] D=9 | T-duality | D=9 [ D = 10
As As — As B,
R-R Al — AR AR
fields A%l) .Agl) — A}
A(()lZ) - X X
NSNS | Gu | AP | — | a@ | A
fields | Al | Al — | A
Agu) — Ay Gu

Table 5.1: T-duality dictionary with RR fields

5.3 The squashed sphere

Start with a D; — Ds system in type IIB described in Sec. 5.1. The near-horizon
geometry is

ds?, = AdS; x % x RY, (5.9)
with a three-form flux

F3 = V2m (waqs + ws), (5.10)
where w is the volume form ans the constant m is fixed by demanding;:

Ric|zgs = =1 &| ags (5.11)
Ric|g = m* gs. (5.12)

Now, introduce the coordinates (¢, ¢, 1, x) on S* x S! and write explicitly:

dsfy = AdS; x R + 21? [d®? + d¢* + dy?® + 2 cos 9dpdy] + dx?

(5.13)
F3 = mv2wags + %dﬁ Ade Ady, (5.14)

where x is a periodic variable with period
X~ x+ 4—7rn. (5.15)

A

If we change the variable i to ¢ = a + Ax we still have a 477-periodic direction
« and can rewrite the metric as:

1 2
ds?y = AdS; x R® + e [d6* + d* + da’® + 2 cos 9dpda] + <1 + 2);2> dx?+
+ % (da 4 cos 9d¢) dx
(5.16)
in¢ sin ¢

sin in
F3 = mV2waqs + 5,z d0Ade Ada+A--do AdeAdx. (5.17)
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Redefining
A2 A 1
the fields read

ds?, = AdS; x R® + 1 [dﬁz + sin® 9d¢?* + (1— 2h2) (da + cos 19dq))2] +

2m?
b 2
+ [dz + (da + cos 19dq))]
(5.19)
sin ¢

F3 = mv2wags + Wdﬁ ANde Ada + % sinddd Ade Adz, (5.20)

and we can perform a Kaluza-Klein reduction on z and go to nine dimensions.
The metric reads:

ds? — AdSs x R® 4 [ch +sin® 0dg? + (1 — 2h%) (da + cos 19dgo)2} ,

2m?
(5.21)
and the gauge fields are obtained from:
Fo=F¥ +FP A (dz+ A), (5.22)

where F,sf) is the m-form obtained from the reduction of a n-form and A is the
one-form

A= % (da + cos vde) . (5.23)

Explicitly, adding the extra Kaluza-Klein two-form:

EY = mv2wpgs + (1 —202) 8'21:1 fd& Adg A da (5.24)
® = % sin 0do A dg (5.25)
F¥ =da = % sin 9do A dg. (5.26)

For the moment this is just a rewriting. Now, let us perform a T-duality to go
to type IIA. The fields keep their expressions but the interpretation changes

according to Tab. 5.1: F3§3) now comes from the reduction of a four-form in ten

dimensions, F2(2) from a two-form and Fz(g ) is now obtained as the result of the

reduction of the Kalb-Ramond field:

E® — £ E® — EB) = E®). (5.27)
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We can oxidise back to ten dimensions and get a IIA background:

dsfy = AdS; x R® + 21? [dl‘/’z +sin® 9dg? + (1 — 2%) (da + cos 19dq0)2] +d@

(5.28)
F=FYndz = [M\fzwAds +(1-2r?) Szi::lfdﬁ Adg A dtx] AdE

(5.29)

K=r?= :1 sin 0dd A dg (5.30)

Hy = FP AdE = Z sinddd A de A dE. (5.31)

It is worthwhile to emphasize that by construction « is 477-periodic and
then the geometry is the one of a respectable squashed three-sphere. A very
similar construction was considered in [DLP99]. In that case, though, the au-
thors start with the same AdS; x S® geometry with both RR and NS-Ns fields
and then by reducing on one of the sphere isometries, find the Lens space
S3/Z, or a squashed version, where p and the squashing depend on the val-
ues of the charges. This is clearly an orbifold of the solutions above.

In principle these constructions can be extended to other group manifold
geometries (e.g. the obvious choice leading to a squashed AdS3) but in any
case one should start from a configuration with RR fields (typically S-dual to
the Wzw models we described in great detail previously), since the absence
of NS-NS antisymmetric fields is the key ingredient for the trivialization of
the fiber bundle. More general geometries can be obtained by starting with a
mixed RR-NS-NS configuration.



CHAPTER 6

Out of the conformal point:
Renormalization Group Flows

This chapter is devoted to the study of the relaxation of squashed WZwW
models further deformed by the insertion of non-marginal operators. The
calculation is carried from both the target space and world-sheet points of
view, once more highlighting the interplay between the two complemen-
tary descriptions. In the last part such techniques are used to outline the
connection between the time evolution and the RG-flow which is seen as a
large friction limit description; we are hence naturally led to a FRW-type
cosmological model.

TRING THEORY, at least in its world-sheet formulation, is most easily stud-
S ied on-shell. Thanks to the power of conformal field theory, this permits a
profound analysis of specific backgrounds. At the same time, though, it makes
it difficult to describe more general effects that require a less local knowledge
of the theory and its moduli space. In particular it is not obvious how to de-
scribe transitions between two different solutions or even the relaxation of an
unstable background towards an on-shell solution.

In this chapter we deviate from conformality by adding non-marginal de-
formations on the top of exact solutions, such as WzZw-models or squashed-
group models. The resulting RG-flow then drives those systems back to or
away from the conformal point, depending on the character of the deforma-
tion. As it is usually the case, these calculations can be faced from two com-
plementary points of view: either in terms of the target space description or
in terms of world-sheet two-dimensional theory. We will consider both ap-
proaches and show how they do really complete each other, in the sense that
they can be considered as two different series expansions of the same quan-
tity. As such, each side contains more information than the other at any given
order in perturbation. This will allow us in particular to make a prediction
on the outcome of a technically involved one-loop calculation in the wzw and
squashed group CFTs on the basis of a two-loop result on target space renor-
malization.

In the last part of this chapter we use the technology developed so far to
show how an RG-flow analysis can allow for further insights on the issue of
time-dependent solutions. More precisely we will see how for a given class of
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Two-loop target
space RG-flow

systems whose geometry is the warped product of a constant curvature space
and a time direction the RG-flow equations are a sort of large-friction approx-
imation with the central charge deficit playing the role of an effective friction
coefficient.

6.1 The target space point of view

Renormalization in a dimensional regularization scheme

Consider the c-model with Lagrangian density

L gii + Bij) 27, 6.1)

1
=51 (
where g;; is a metric, B;; a two-form and Z/ = 8;,Xi8VXj + e,waﬂxiavxf . We
will say that the model is renormalizable if the corresponding counterterms at
any given order in the loop expansion can be reabsorbed into a renormaliza-
tion of the coupling constant and other parameters that appear in the expres-
sions for g;; and B;;.!

The standard technique for dealing with this kind of Lagrangian consists
in incorporating the Kalb—-Ramond field (or, equivalently, the Wz term) into
the geometry by reading it as a torsion. This means that instead of the usual
Levi-Civita connection one uses the connection I'” defined as

where { ]lk} is the Christoffel symbol and with respect to this connection one
defines the Riemann and Ricci tensors R~ and Ric™.

Now, using the background field method in a dimensional regularization
scheme (see [Osb90, AGFMS81, Fri85, Fri80, BCZ85, HT87] and for various
applications [BFHP96, BEM 98, Sfe98, Sfe99]) we can calculate the one- and
two-loop counterterms that turn out to be:

1 a, ..
ep(l) — = (1) = 2 p; -1y .
UL nsT ZsARlC =7, (6.3)
e r(2) A ) &2k o =i
KL = gz T = qgen (R aan o4

where Y is given by
_ _ 1
Yij = —2R" jjrg + 3R™ i + 5 (Hkigji — H*kigin) » (6.5)
and

Im
H?j = Hp3),, Hpg); - (6.6)

ilm

1When this is not the case the model might nevertheless be renormalizable in a more general
sense, in the infinite-dimensional space of metrics and torsions
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In general the metric and the Kalb-Ramond field depend on a set of bare
parameters algo). In this case we can convert the counterterms given above into
coupling and parameter renormalizations if we write perturbatively the bare

quantities as:

AO = per (14 BEA 4 ) = A (1 2+,
)
a,(c‘)):ak+”"n£”)+..-=ak(1+y%+---), (6.7)
xWr(x,
XOn = xp 4 XX
where we allowed for a slight generalization with respect to the definition of

renormalization given above in terms of a coordinate reparametrization of the
target space?. Then the one- and two-loop B-functions are given by:

_dA A2y A
pr=2 aA—n(] @)+ 12,

_day s, A (1) A2
Po =g =M = - | % (a) t % (a) ).

(6.8)

The unknown functions (), a(), X()# are determined by the equation

; : oL iy dL
(i) — _ () oL (i)
T JVW L+ aak”k + X

X, (6.9)

This corresponds to demanding the generalized quantum effective action I'[ X]
to be finite order by order.

Two-loop B equations for a WZw model.

As we have already announced in Ch. 2, the normalization for the Wz term in
a WZW action can be fixed by an RG-flow calculation. This is precisely what
we will do in the following at two-loop order using the dimensional regu-
larization scheme outlined above. In this way we will find a new apparent
non-trivial solution that doesn’t show up at first order (and which will prove
to be an artifact as we’ll see in the following, by using a CFT description in
Sec. 6.2). Moreover we will see how the roles of the IR and UV limits are in-
terchanged between the compact and the non-compact case, ie how the same
kind of deformation is relevant or irrelevant depending on the compactness of
the starting model.
Consider the following action

1 _
ShH = 5 /Z &z (g + HBgy) J4J20X" X" 6.10)

where |* are the Maurer-Cartan one-forms for a group G whose algebra has
structure constants fope, gop = —1/(28%) flos /% (¢* is the dual Coxeter number)

2This redefinition is in general non-linear; in the special case when the X (i)rg depend lin-
early on X the last equation of the system 6.7 reduces to a multiplicative wavefunction renor-
malization. The only condition is that X(!) shouldn’t depend on the derivatives of X. In more
geometric terms we are just using the diffeomorphism invariance of the renormalized theory.
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and By, is an antisymmetric matrix satisfying d (BgJ" A J?) = 1/3!fuc]" A
JP A J¢ as in Sec. 2.2. Since the deformation (parameterized by having H # 1)
doesn’t affect the geometric part (but for the overall normalization) we can
still express the curvature in terms of the Lie algebra structure constants. In
particular it is easy to recover that the Riemann tensor is written as:

1
Rubcd = 1 abefecd (611)

and the Ricci tensor is obtained by contracting:

*

Ric,y = %gab. (6.12)

as in Egs. (2.65).

In order to write the beta equations as described above we need to incorpo-
rate the WZ term (or, more precisely, the Kalb-Ramond field) into the geometry.
The most natural approach is to consider H?, _ as a torsion and include it in the
connection [BCZ85]. We hence define:

_ a 1
r-,. = {bc} = 5 He. (6.13)
The covariant derivative of a one-form is then defined as:
_ _ 1
VoaVy =0,V =T, V. = V.V, + EHCabVC (6.14)

where V, is the covariant derivative with respect to the Levi-Civita connec-
tion. Similarly we define the curvature:

_ _ _d _
V=0,V Ve =RV + HL V4V, (6.15)

and it is straightforward to show that:
_ 1 1 1 1
R™ aped = Raped + ivcHabd - EvdHabc + ZHfﬂCHfdb - AIHf”dHbe' (616)

Let us now specialize this general relation to our particular deformation.
Since H,p. = Hf . it is immediate that V,Hy; = 0 and that the Jacobi identity
holds. We then derive:

R™ gped = (1 - H2) Raped, (6-17)

whence in particular:
Ric™yy, = (1—H2) Ricgy = (1 — H?) %gab. (6.18)
The one-loop counterterm becomes:

*

T, = (1- 1) gu (6.19)
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The evaluation of the two-loop counterterm is lengthy but straightforward
once R .4 is written in terms of the structure constants. The result is:

%2

T =5 (1- 1) (1-317) gu. (6.20)

Substituting these expressions in Eq. (6.9) (and using the fact that g,, and
€,p are orthogonal) one sees that they become identities for the following choice
of parameters:

W= - )= i (1) (1)
1) g 2 2) %2 (6.21)
ay’ = —%H(1—-H?) alt) = =51 (1—12) (1—312)
corresponding to the following beta equations:
1., 1.
u=— AH(1- H?) <1 +g A (1= 3H2)> (6.22)
_ _i *2 12 L * _ 2
B = — A (1 1) (1 At (1-3m )) (6.23)

where A* = ¢*A is the effective coupling constant (this is precisely the fixed
parameter in a 't Hooft limit since for a SU(N) group ¢* = N). The difference
between a compact and a non-compact group lies in the sign of the dual Cox-
eter number that is respectively positive/negative. In both cases we remark
that H/A* remains constant, which is a nice check of our construction, since
in the notation of Ch. 2 this is just the level of the model that, in the compact
case, is quantized and hence is not expected to receive any perturbative cor-
rection. On the other hand non perturbative effects do eventually lead to the
k — k 4 g* shift which is the reason for the two-loop behaviour of the flow.
Let us analyze the flow in detail:

¢ The flow diagram for the compact case is drawn in Fig.6.1 where we see
the presence of three phases:

- region (D is the basin of attraction for the Wzw model (z = 1);

— the points in region 2 describe systems that flow towards asymp-
totic freedom;

- region Q) seems to be the basin of attraction for a different the-
ory, always with a group manifold geometry but with a differently-
normalized Wz term.

only a discrete set of trajectories is allowed and, in particular, region 3
— separated from region (D) by the line A* = 47tH - is only accessible for
levels k < g*/2.

¢ The flow diagram for the non-compact case is drawn in Fig...; again we
see three different phases:

- region (D) describe theories flowing to asymptotic freedom;
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Figure 6.1: Two-loop RG-flow diagram for compact groups.

- region (2) looks like the basin of attraction for the non-trivial solu-
tion with the group manifold metric and a new normalization topo-
logical term;

- region (3) describe theories flowing to a strong coupling regime.

In particular it is interesting to remark that the roles of the Uv and IR
are somehow inverted. The WZw model appears as a UV fixed point and
thus an unstable solution from the point of view of dynamical systems.

Renormalization group-flow in squashed compact groups

The models that we have presented in Ch. 3 are conformal; for this reason
we expect to find them as fixed points in an RG flow. To verify this claim let
us introduce a two-parameter family of ¢ models generalizing the exact back-
grounds; a possible choice consists in adding an extra magnetic field on the
top of the one responsible for the squashing, but now coming from a higher-
dimensional right sector. Explicitly

2= Y e+ (1-w%) YU

ueG/T acT
Hia) = gy fuwe]" NV A JF peG/T, (6.24)
Fa:HTH\/kT?fatu/\]V peG/T,acT,
\FQIHT_H\/%fHMuV/\]V peG/T,aecT
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and in particular for SU(2):

ds? = d6? + dy? + d¢p? + cos Odpdg — H2 (dy + cos Ode)* ,
= Hcosfdy Ad¢,
H+ A) (d¢ + cos0d¢) ,

: (6.25)
(H—1) (d¢ + cos 0d¢) ,

B
A
A

where H is a new parameter, describing the deviation from the conformal
point. It is clear that the above background reduces to the one we are used
to in the H — H limit. In particular we see that the metric is unchanged,
the Kalb-Ramond field has a different normalization and a new field A ap-
pears. This configuration can be described in a different way: the geometry
of a squashed sphere supports two covariantly constant magnetic fields with
charge Q = H+ H and Q = H — H; the RG flow will describe the evolution of
these two charges from a generic (Q, Q) to (2H,0), while the sum Q + Q = 2H
remains constant. In this sense the phenomenon can be interpreted as a charge
transmutation of Q into Q. The conservation of the total charge is in fact a
consequence of having chosen a perturbation that keeps the metric and only
changes the antisymmetric part of the background.

We can also see the background in Eq.(6.24) from a higher dimensional
perspective where only the metric and the Kalb-Ramond field are switched
on. Pictorially:

¢= Swzw HJ, B—

HJ, ‘ 1 —HJa ‘ 0

(6.26)

where gwzw and Bwzw are the usual metric and Kalb—-Ramond fields for the
WZW model on the group G. More explicitly in the SU(2) case:

1 0 0 0 0 0 0 0
10 1 cos 0 H 10 0 B cos H
8= 0 cos 1 H cos 0 “ |0 —Hcoso 0 ficos 6
0 H Hcosb 1 0 —H —Hcos 0 0
(6.27)

where the fourth entry represents the bosonized internal current. In particu-
lar this clarifies the stated right-sector origin for the new gauge field A. This
higher dimensional formalism is the one we will use in the following RG anal-
ysis.

The beta-equations at two-loop order in the expansion in powers of the
overall coupling constant A and the field redefinitions for the internal coordi-
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nates X' turn out to be:
_odar /\*2 ~2 * 2
Pr = = 4= (1—%> 1+8*<1—3%>)f
d * ~2
Bu=S =48 (1-12) (1-5)
IBH —= %—I;I — _A*H (1+H2)

Xi=Xi— & (1-1?) (1—4%}3%1),

where A* = Ag*, ¢* being the dual Coxeter number, is the effective coupling
constant (A* = NA for G = SU(N)). The contributions at one- and two-
loop order are clearly separated. In the following we will concentrate on the
one-loop part and we will comment on the two-loop result later. Let us then
consider the system:

* *2 52
pro=%=-5%(-%)
* 2
pu= =5 0-w) (1-5), 6:29)
_ . 2
pr= =40 (1 +w) (1-5)

This can be integrated by introducing the parameter z = H/H which makes
one of the equations redundant. The other two become:

3k )\*2
M=—gm-2), (6.30)
z=—42(1-2%).

By inspection one easily sees that A/A = 2/z, implying A(t) = Cz(t), where C
is a constant. This was to be expected since C is proportional to the normaliza-
tion of the topological WZ term. Since we are dealing with a compact group it
turns out that C is, as in [Wit84], quantized with:
2

Cp = 7” keN. (6.31)
Now it’s immediate to separate the system and find that z(t) is defined as the
solution to the implicit equation:

t 11 (z(t) +1) (z0 — 1)

R RECER IECEDIEES)

(6.32)

with the initial condition z(0) = z¢. A similar expression was found in [BCZ85,
Wit84]. The reason for this is, as pointed out previously [KK95], that the con-
formal model (H = H) in its higher-dimensional representation (the one in
Eq. (6.26)) coincides with a G x H WzwW model after a suitable local field redef-
inition.

As it is usually the case in the study of non-linear dynamics, a better under-
standing of the solution is obtained by drawing the RG flow. In a (z, A*) plane,
the trajectories are straight lines through the origin and only a discrete set of
them are allowed. Moreover the line z = 1 is an IR fixed-point locus. This
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Figure 6.2: Flow lines for the deformed (non-conformal) squashed Wzw model
in (a) the (z,A) and (b) the (H, H) planes. The arrows point in the negative f
direction, i.e. towards the infrared; in (a) we see how the squashed Wzw model
z = 1 appears as an IR fixed point, in (b) how perturbing the conformal A = H
model by increasing H leads to a a new fixed point corresponding to a value of
H closer to 1.

situation is sketched in Fig. 6.2(a). Just as expected the z = A/H = 1 point,
corresponding to the initial exact model described in Ch. 3, is an IR fixed point
for the RG flow.

Further insights can be gained if we substitute the condition A* = C;H/H
into the system (6.29) thus getting:

= =2
F=fo-m) (1-5),

P=—d ) (1-52).

The flow diagram for this system in the (H, H) plane, Fig. 6.2(b), shows how
the system relaxes to equilibrium after a perturbation. In particular we can see
how increasing H leads to a a new fixed point corresponding to a value of H
closer to 1.

We would like to pause for a moment and put the above results in perspec-
tive. Consider for simplicity the SU(2) case: the target-space of the sigma-
model under consideration is a squashed three-sphere with two different mag-
netic fields. Along the flow, a transmutation of the two magnetic charges oc-
curs: the system is driven to a point where one of the magnetic charges van-
ishes. This fixed point is an ordinary squashed-wzw (of the type studied in
Ch. 3), that supports a single magnetic charge.

As we pointed out in Ch. 3, in the squashed-wzw, the magnetic field is
bounded by a critical value, H = 1. As long as H < 1, the geometry is a gen-
uine squashed three-sphere. For H > 1, the signature becomes Lorentzian and
the geometry exhibits closed time-like curves. Although of limited physical
interest, such a background can be used as a laboratory for investigating the
fate of chronological pathologies along the lines described above. In the case

(6.33)
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under consideration and under the perturbation we are considering the model
shows a symmetry between the H > 1 and H < 1 regions. The presence of
closed time-like curves doesn’t seem to effect the stability (note that regions
with different signatures are disconnected, i.e. the signature of the metric is
preserved under the RG flow). It is clear however that these results are prelim-
inary. To get a more reliable picture for the fate of closed time-like curves, one
should repeat the above analysis in a wider parameter space, where other RG
motions might appear and deliver a more refined stability landscape.

A final remark concerns the fact that we find the same RG flow behaviour
as for a compact (non-squashed) group. We have already made extensive use
of the fact that formally the squashed SU(2) behaves like a SU(2) x U(1)
WZW model, in particular in Sec. 3.4 where this was at the root of the no-
renormalization theorem. In some sense, then, the present calculation is just a
perturbative confirmation of that statement.

Renormalization group-flow in squashed anti de Sitter

As we've already discussed in Sec. 4.2, sigma models based on non-compact
group offer richer (i.e. more complex) phase diagrams than the compact ones.
In our particular models this is because the possible choices for a Cartan torus
are not pairwise conjugated by inner automorphisms and this is why different
choices correspond to inequivalent backgrounds, exhibiting different physical
properties. If we concentrate our attention on the SL(2,R) Wzw model (that
is the only non-compact case with just one time direction), we see that the
three possible choices for the Cartan generator (elliptic, parabolic, hyperbolic)
respectively lead to the exact backgrounds we introduced in Sec. 4.2 and we
report here for convenience:

ds? = dp? — di? + d¢? — 2sinh pdtd¢ — 12 (dt + sinh pd¢)?,

B = sinh pdt A d¢, (6.34)
A = 2H (dt + sinh pd¢) .

ds? = %f + dxfdx~ H2dx+dx+

12 ur
B = didc (6.35)
A =2nd’
- u?
ds? = dr? + dx? — dt2 4 2sinh rdxdt — H2 (dx 4 sinh rd7)?
B = sinhrdx A dT, (6.36)

A = 2H (dx + sinh rdT).

Since these solutions are exact CFT backgrounds, we expect them to ap-
pear as fixed points for an RG flow, like the compact configuration described
in the previous section. As we will see in the following this is actually the
case, but with a difference regarding the role of the UV and IR which is proper
to non-compact groups (as explained in Sec. 6.1). Using the same technique as
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above, the first step consists in generalizing the three backgrounds by intro-
ducing the following three families of low energy configurations:

(ds? = dp? — dt? 4+ d¢? — 2 sinh pdtd¢ — H2 (df 4 sinh pd¢)*
B = Bsinhpdt A d¢

6.37
A= (H + H) (dt + sinh pd¢) (6.37)
A = (H— A) (dt + sinh pd¢)
(dS _ TL; + dx:;glx — g2 dx;ilx‘*'
B = ﬁdx*/\zdx’
i 629
A= (- d’”

ds? = dr? 4 dx? — d7? + 2sinh rdxdt — H2 (dx + sinhrdT)?
Bz%sinhrdx/\dT. (639)
A (H+ A) (dx + sinh rd7)

(

H — f) (dx + sinh rd7)

The guiding principle remains the same, i.e. keep the same geometry, rescale
the KR field and introduce a new electromagnetic field, coming (in a four-
dimensional perspective) from the right-moving sector. Again we will observe
the same charge-transmutation effect as before, this time in terms of charge
density (or charge at infinity).

The backgrounds above can be equivalently described in four dimensions
by a metric and a KR field as follows:

1 0 0 0 0 0 0 0
10 -1 —sinhp H _ 10 0 Hsinhp 3
8= 10 —sinhp 1  Hsinhp ~ o —Hsinhp 0 fisinh p
0 H Hsinhp 1 0 ! —Hsinhp 0
(6.40)
L0 0 0 o 0 0 0
0 o L I o o oL #
— 2u2 u? B = A H2u? 6.41
£ 10 -4 0 o0 o 81 0 o ©4
o 4 o0 1 o -% 0 o0
1 0 0 0 0 0 0 0
10 1 sinhr H g_ |0 0 Hsinhr A
§=10 sinhr -1  Hsinhy “|o —Hsinhr 0 fisinhr
0 H Hsinhr 1 0 —H —Hsinhr 0
(6.42)

We must now evaluate the R™ tensor (i.e. the Ricci tensor with respect to
the connection '™ = I' + 1/2H) and read the counterterms in a dimensional
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regularization scheme as described in Eq. (6.7):

7 _ J =1 (12, JO =1 (112,
924&}‘2;2)1 i) ag)=4gH<H2)H§)f ag):4gH2§2>1H§
W -rEa(eg), |l ga(i-%), | - e (-8,
y-ﬂgﬁ( wix. [xP-p(-m)x (X0 -mE(-m)x
(6.43)

The analogies among the three configurations are clear, but become striking
when we introduce the parameter z = H/H and all three B-functions systems
all reduce to the following:

A=201-22),
{Z _ 2;(1 2 (6.44)

This is (up to a sign) the same system we found in the compact case and it is
hence immediate to write the solution

At) = Cz(8) (6.45)
ct_1_ 1 . [EH+) (-1
= T8 | () =) (20 + 1)

4t zo  z(t)

Although, as expected, z = 1 is a fixed point (corresponding to the confor-
mal points) some differences are important. First of all the background is
non-compact, so C is not quantized and, although the flow trajectories are still
straight lines through the origin, the angular parameter is now arbitrary. The
other difference is that z = 1 is a fixed point, but it doesn’t correspond to a
IR stable configuration but to a UV stable one. This is precisely the same be-
haviour that one encounters for non-compact WzZw models when varying the
normalization of the WZ term (as in Sec. 6.1). Again the flow diagram is the
same as for the original SL(2,R) group and is summarized in Fig. 6.3.

(6.46)

6.2 The CFT approach

In order to make contact with genuine CFT techniques, we must identify the
relevant operators which are responsible for the (H, i) deformation of the G x
H original wzw model (H = U(1)™"kC). At lowest approximation, all we
need is their conformal dimensions in the unperturbed theory.

Following [Zam86], let Sy be the unperturbed (conformal) action and O;
the relevant operators of conformal dimension A; = 1 — €;. Consider the per-
turbed model,

S=Sy+40,. (6.47)
The tree-level beta-functions read:

Bl(g) = —eig’, (6.48)
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Figure 6.3: Flow diagram for the system in Eq. (6.44). The arrows point from
the UV to the IR and z = 1 appears as a UV stable solution locus.

where g is supposed to be small, for the perturbative expansion of 8’ to hold®.
The G x H primary operator we need can be written as follows:

O =) (tgt°™") (tagg™") (t°g~'ag) = ) @ J*T", (6.49)

where ®*? is a primary field transforming in the adjoint representation of the
left and right groups G. As such, the total conformal dimensions (as we’ve
seen in Sec. 2.1) are

*

A g
A=A=1 ,
Jrg’”rk

(6.50)

where g* is the dual Coxeter number and as such the operator is irrelevant (in
the infrared).

Specializing this general construction to our case we find that the action for
the fields in Eq. (3.17) is:

k

(6.51)

where A runs over all currents, i over the internal currents (in H) and |% is the
WZzW current of the Cartan subalgebra of G coupled to the internal J'. The extra

30ne should be very careful in the choice of signs in these formulae. In [Zam86] the time
variable, in fact, describes the evolution of the system towards the infrared and as such it is
opposite with respect to the t = log y convention that we used in the previous section (as in
[Wit84]).

S:47.[{SO+(;_1)g®AB]A]_B+:(H+H);]ui]_i+;(H_I:I)g]iq)aiA]_A}'
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Target space vs
CFT
renormalization

terms can be interpreted as relevant combinations of operators in the G x H
model. The beta-functions are thus computed following Eq. (6.48):

*2
Slog (-] ==t -Tro),
%bﬂ%m+HHkH=O@Q, (6.52)
_ * * *2
Slog[d(-R)| = A =% -0k

Equations (6.52) agree with the results of the field-theoretical approach (up
to the overall normalization), at least in the regime where (6.52) are valid,
namely for small H and H perturbations. But there’s more: as pointed out
before the conformal model (A = H) is exact because it coincides witha G x H
WZW model after a suitable field redefinition for any value of H. As a con-
sequence the equations remain valid for any finite H. This is reassuring both
for the validity of the geometrical approach* and for the conclusions on the
stability picture of the models under consideration.

The extra information that we obtain from this calculation is about the in-
terpretation for the two-loop B-function we described in the previous section.
In fact it is now clear that with the target-space approach we just describe the
Taylor expansion of the tree-level CFT result:

* *2
g _8& 8 1
ik kR +0<k3>- (6.53)

*

This is not surprising since the would-be non-trivial fixed point of the two-
loop expansion lay out of the validity range for our approximation. If we really
want to go beyond the large k limit, we need to push the analysis from this,
CFT, side.

From the target space view point, the renormalization approach remains
valid in the large k limit for any value of H/H. This enables us to use Eq. (6.28)
and push (for k — o) Eq. (6.52) at least to the next leading order in (1 — H/H)
so to get

(i)

* *2 % <2 )
_H:<i_§£>G;’O+;<—i+7%>(g—g-+”

(6.54)

H

that obviously agrees to first order in the coupling (H/H — 1) with the expres-
sion above.

The extra information that we obtain from this calculation is about the in-
terpretation for the two-loop beta-function we described in the previous sec-
tion. The one-loop corrections to (6.48) are of the form C;j gi gj, where Cijx
are related to the three-point function of the unperturbed theory [Zam86].
This coefficient is a measure of the dimension of the operator O; in the the-
ory perturbed by the set of all operators. Eq.(6.54), based on the target-space

“There is no doubt on the method itself. It could simply fail to describe the desired phe-
nomenon due to an inappropriate ansatz for the off-criticality excursion in parameter space.
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approach, precisely predicts the coefficient of the term (H/H — 1)2 to second
order in the 1/k-expansion. It seems that such a computation is feasible from
the CFT viewpoint at least as a series expansion for large k. This would allow
for a genuine two-loop comparison of the two methods, and is left for future
investigation.

6.3 RG flow and friction

It has already been noted in literature [GHMSO03] that a deep link exists be-
tween the equations of motion and the RG-flow. In an oversimplified toy
model one can consider the equations of motion for a system with friction:
2

% — V() — k%. (6.55)
Large friction corresponds to the k — oo limit where the dynamics described
by this second order equation is well approximated by a first order one:

% — V() ¢ = % (6.56)
At least in some cases the same link exists between the second order equa-
tions of motion and the first order RG flow equation: the latter provide a good
approximation for the dynamics of the system in some region of the mod-
uli space. In this section we will provide a class of systems (with constant-
curvature metrics and no dilaton) where this can be explicitly verified and the
“friction” identified with the expectation value for the dilaton which appears
out of equilibrium. More precisely we will consider the RG flow for the cou-
pling constant of the metric with respect to the Kalb-Ramond field and then
show that the equations that one obtains in this way are an approximation of
those for a system in which the constant is a field depending on an extra time
direction.

The RG-flow approach

As announced above we would like to study the RG-flow for the coupling of
the metric in a system without dilaton, that is for the sigma model

S = % / d’z (cguw + Buy) 0X"0X" (6.57)

knowing that for ¢ = 1 the model is conformal. Using the geometric RG-flow
approach developed in Sec. 6.1 we find that Riemann tensor with respect to
the connection of Eq. (6.13):

_ 1
R vao = <1 - C2> R‘uvpm (6.58)

It follows that the one-loop counterterm is given by

R 1
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where for simplicity we supposed the manifold to be Einstein, which is consis-
tent with the fact that the conformal model with fields g and B doesn’t include
a dilaton. Hence we immediately find the parameters

J(c) =0 al) =5 (1 - ;) (6.60)

and the corresponding beta equations

{mf N (6.61)

ﬁc_naC:%(l_c%)'

In order to compare this result with what we will find in the following we
can write

c(u) = e (6.62)

where j1 is the energy scale. Then the energy evolution of o(u) (going towards
the infrared) gives:

do AR

2 AR () (e —
a5 = ot (1 e ) V(o)) (6.63)

which admits the implicit solution

logu = —i (262‘7(”) + log(tanha(y))) . (6.64)

This is for us the equivalent of Eq. (6.56). Now we move to the (d 4 1)-
dimensional spacetime to find the corresponding Eq. (6.55).

Spacetime interpretation

Equations of motion. As we said above we want to describe the same sys-
tem by introducing an extra time dimension and reading the coupling as a
time-dependent field. In other words we would like to write the equations of
motion for the following sigma model:

S = [ &z [~0tdt + (c(t)gun + Buw) OX3X'] (6.65)

where, ¢ and B are background fields solving the low-energy string equations
of motion. In order to write the equations of motion let us rewrite the d 4-1
dimensional metric in terms of a Weyl rescaling as:

—_e~20(t)

- e

Fun = o2 (t) < 0 ) _ 620(t)gMN (6.66)
Sy

where c(t) = ¢2(*). This means in particular that the Ricci tensor (this time

with respect to the standard Levi-Civita connection) can be written as

EMN - RiCMN - gMNKLL - (d - 1) KMN (667)
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where Ky is defined as

KN = —onmogN oo + ¢ (0m0Lo — Ty 0p0) + %gLPaLUBPUJMN (6.68)

Kvn = gaiBy" (6.69)
After some algebra one finds that
22
K, = —e*® <(T(t) +7 2(t)> K, = —%esz“)#(t)(sy” (6.71a)
.. a2 (t eZU(t) )
Ky = <‘7(t) + 2( )> Ky = — 5 U’Z(t)gw (6.71b)
where ¢ (t) is the notation for
do(t)
= 72
In particular this implies that
K" = —e2® <d;10'2(t) + &(t)) : (6.73)
It then easily follows that
Ricy = —d (5(t) + 0>(t)) (6.74a)
Ricy, =0 (6.74b)
Ricyy = Ricyy + Zuv (d0>(t) + 5(t)) - (6.74c)

The other terms in the equations of motion read

H2, = HyapHyps8'87 = e HS, (6.75)
VuVn® = dyon® — T, 0, @ (6.76)

now, I, = —&(t)guv so
ViVi® = d(t) (6.77a)
V. Vi® =0 (6.77b)
ViV ® = ()P () G- (6.77¢)

These are all the ingredients we need to write the equations of motion:

— 1. o

Ricyy — ZHﬁN +2Vy Vi@ = 0. (6.78)
Splitting the time component we obtain

Ricy +20;0,®(t) = —d (6 (t) +0°(t)) +2d(t) =0 (6.79a)
Ricu (1= e7470) + g (d02(1) + (1) — 20 (1)) = 0 (6.79b)
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where we have used the equations of motion for the system in o = 0:
, 1
Ricy, = 1Hﬁy (6.80)

The system admits a solution if and only if g, is Einstein (since the original
system didn’t have any dilaton). Taking the trace with g™~ we obtain the sys-
tem:

d (o(t) +02(t)) —2d(t) =0 .
Re~2(1) (1 — e*4‘7<f>> +d (do?(t) + o(t) —20(H)D(t)) =0 (6.81)
Introducing
Q(t) = —d(t) + ;Z(T(t) (6.82)
the equations become:
Q(t) = —do*(t)
{if(t) = B2 (14 0) —25()Q() (6.83)

This second equation has precisely the structure of the motion in a potential

V(o) —V(0) = %e*“ (1 — 3e4") ~ —% + %02. (6.84)

and with a time-dependent friction coefficient Q(t). In the limit of Q — oo we
clearly recover Eq. (6.63) with the same potential V(o) when identifying the
energy scale y for the off-shell system with the time direction here following

log it = %t. (6.85)

Linearization. The system (6.83) can be solved numerically and typical re-
sults for large Q(0) and small Q(0) are presented in Fig. 6.4.
A further step can be made by linearization. Introduce

S(t) = o (t) (6.86)

the system becomes a first order one:

QF) = —dz(t)
ROES0) (6.87)
() = =V'(o(t)) - 22(H)Q(t)

which has a fixed point for (Q, 0, X) = (Q,0,0) where Q is a constant. Around
this point the equations read:

o(t) = 2(t) (6.88)
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N
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Figure 6.4: Typical behaviour for o(t) in the system (6.83) for (a) small and
(b) large (positive) initial values of Q(#).

(a) Small Q(0) (b) Large Q(0)

so, Q decouples (and remains constant) and the equation of motion around the
fixed point is

d?c(t) 4R _do(t)

a2~ o205~

(6.89)

which can be integrated giving
o(t) = Crexp [— (Q—i— \/ Q% — 45) t

with C; and C; integration constants.
For positive Q the solution converges to o = 0 with or without oscillations
if 0> < 4R/d. In terms of o'(t) and ®(t) this limit solution is

+ Cyexp [— (Q— \/Qz—i{)t

(6.90)

o(t) —0 D(t) ~ —Qt, (6.91)
which is not surprisingly the initial conformal model in Eq. (6.57) plus a linear
dilaton.

The meaning of Q. Q is linked to the dilaton: larger values correspond to
negative and larger absolute values for ®, i.e. moving further inside the per-
turbative regime. On the other hand, negative values of Q give diverging solu-
tions, but in this case the dilaton grows (see Eq. 6.82) and the very underlying
perturbative approach collapses. It is worth to remark that if we make an
hypothesis of uniqueness for the system (6.83), Q can’t change sign because
Q(t) = 0, o(t) = 11is a solution (the starting conformal model with constant
dilaton).

A better understanding of the actual meaning of this parameter can be ob-
tained if we consider the limiting situation of linear dilaton. In this case, in
fact, it is immediate to derive the central-charge of the overall system:

c=(d+1)-3Q*>—c;+cr =0, (6.92)
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where c; is the central-charge of the conformal system in Eq. (6.57) (e.g. 6/ (k + 2)
for the SU(2) wzw model) and cj is the internal central-charge. If follows that
for a critical model

Q* = % (d+1—cg+cp) (6.93)

and Q is essentially a measure of the deficit.

A final remark regards the consistency of the approximation for the dy-
namics one obtains from the RG-flow equation (6.63), corresponding toa Q —
co limit. The linearized system (6.88) provides a justification for such limit:
in fact the time scale for Q(t) is comparably larger than o(t)’s — to the point
that the former decouples around the fixed point. For this reason it can be
taken as a constant (fixed by the initial conditions) if we just concentrate on
the evolution of the warping factor o (t).

6.4 Cosmological interpretation

The type of backgrounds we are studying are time-dependent and as such
can have a cosmological interest. For this reason, since there is a non-trivial
dilaton, one should better move to the Einstein frame (as opposed to the string
frame we’ve been using thus far). This means that the metric is written as:

Sun = e_q)(t)/zg_MN (6.94)

and after a coordinate change
o(t) = / e~ ®(0/4q; (6.95)
can be put back to the same warped product form as in Eq. (6.66):

ds? = GundaMdxN = —d7? + 62‘7(”’@(”/2‘ gudxtdx’) =

t=t(T) (
= —d7® + w(7) (gudx"dx"). (6.96)

Cosmologically interesting solutions are obtained when d = 3. In this case
the H field is proportional to the volume form on g. This implies that Hﬁv X Quv
and then the equations reduce to

Ricyy = A*gu (6.97)

ie gy is to be the metric of an Einstein three-manifold (the most simple case
being a three-sphere). What we get then is a typical example of Friedmann-
Robertson-Walker (FRW) spacetime such as those already studied in [Tse92b,
Tse92a, GP94, CLW94]. As such it describes the time evolution of an isotropic
spacetime (or more in general of a spacetime with the symmetries of the con-
formal theory in Eq. (6.57)). Some intuition about the time evolution can be
developed if we take the linearized system in Eq. (6.88) and consider the large
t limit. In fact, as remarked above the solution asymptotically approaches a
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linear dilaton background (which was already studied from this point of view
in [ABEN89]):

o(t) ——0 Q(t) =Q ®(t) ~ —Qt (6.98)

t—o0

hence one verifies that the metric in the Einstein frame is asymptotically
ds? ~ —d7? + Q*? (guvdxtdx’) (6.99)
which corresponds to an expanding universe with curvature

z . RE Q%d(d—-1)
~ Q212 :
A similar result, with a polynomial expansion is found if we consider an

exponential decrease for o (t), or better for c(t) (in the linear limit c(¢) — 1 obeys
the same equations as o (t)). After a redefinition of the variables we can let

(6.100)

c(t)=e 41 (6.101)

It is easy to check that in general®

o(t) = / o(£) /16,14 Q)Y gy (6.102)
and in this linearized approximation the latter becomes

w(t) = [ (e 1) et (6.103)

This integral can be solved analytically:

—d/16 ~ .
S p— <1+1> uQ/% (14 u)*18 ,F, <d d+4Q;d+4Q+1,—u>,

16" 16 16

(6.104)

:d+4Q u

where u = ¢! and »F; is an hypergeometric function®. It is better however to
consider the asymptotic behaviours. For # — co one finds that T(u) and the
warping factor w(u) go like:

4 — -
T(u) ~ éuQ“, w(u) ~ u?’?, (6.107)

50n a side note, since c(t) > 0 by construction the relation T = 7(t) is always invertible.
The hypergeometric function ,Fj is defined as follows:

= (a)y (b)y 2

2k (a,b;c,u) = (6.105)
( ) kg%) () K
where (a),, is the Pochhammer symbol

I['(a+k)

(a)k = l"(u) (6106)
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and consistently with the results above for the linear dilaton case (which is
precisely the large-u limit):

w(t) ~ 1% (6.108)

similarly for small u:

T(u) ~ di64Q_u(d+4Q)/16, w(u) -~ ud/4+2+Q/2 (6.109)
and then
w(T) ~ TH8(E-Q)/(d+4Q) (6.110)

Note that this behaviour precisely measures the effect of a finite value for Q
and in fact for Q — oo we recover again w(t) ~ T?. Summarizing, just as
advertised, we get again a polynomially expanding universe (a so-called big-
bang solution).

The analysis for the small-Q regime is clearly more difficult to be car-
ried out analytically. Apart from numerical solutions (see Fig. 6.5), in gen-
eral we can study w(7) as a parametric curve in the (w, T) plane defined by
(w(t), 7(t)). Then T(t) appears to be a monotonically increasing function since
c(t) > 0 which implies that w(7) has an extremum for each extremum in w(t).
This means that we expect the superposition of a polynomial expansion and a
damped oscillation. The limiting situation is obtained when Q is small (but not
vanishing), and for large t, T(t) ~ f so that w(7) slowly converges, oscillating,
to a constant value.
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@ Q~0 (b) Small Q

(c) Medium Q

Figure 6.5: Typical behaviour for the warping factor in the small-Q regime. We
consider (a) Q very small but not vanishing, (b) small Q and (c) larger Q (but
still compatible with oscillations).






CHAPTER 7

Hyperbolic Spaces

In this chapter we investigate type 1l and M-theory geometries written as
direct products of constant-curvature spaces. We find in particular a class
of backgrounds with hyperbolic components and we study their stability
with respect to small fluctuations.

HIS CHAPTER does in some sense deviate from the main theme we devel-
oped in this thesis. In fact we will deal with type II theories in presence
of Ramond-Ramond fields, that — to this moment — still elude a precise CFT
treatment. For this reason our analysis will be mostly confined to supergrav-
ity considerations. On the other hand we still continue to follow one of the
main guiding threads, i.e. look for backgrounds with simple geometric in-
terpretation, which in this case means (maximally) symmetric spaces, with
special emphasis on hyperbolic, negative curvature, Poincaré spaces. We will
show in fact that these spaces can be used as building blocks for M-theory and
type II backgrounds, in genuinely perturbative configurations or in presence
of D branes, both in the non-compact and in the compact part after discrete
identifications. In particular we find a series of M-theory solutions that can be
obtained starting with the usual AdS; x S* by splitting the anti-de Sitter in a
AdS x H product and verify their stability with respect to small fluctuations.
Finally we also show how obtaining negative-curvature Euclidean signature
spaces is not in general an easy task and in particular show that the presence
of orientifold planes, giving a negative contribution to the stress-energy tensor
is not enough to allow for Hj spaces in type IIB theories.

7.1 M-theory solutions

Let us start with the action of the bosonic sector of eleven-dimensional super-
gravity:

1 1 1 2 1
and the corresponding equations of motion
1 1), 1., B
R = 3Raw =5 [Fy| -+ [F sw =0 @.2)
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2

where with the notation ‘FM we mean

2 1
‘F[P]‘ - EFHWZ-ﬂpFMM'"HP' (7.3)

The ansatz we want to study is the following. We consider direct products
of symmetric spaces of the form Mj; = My x M; x M, x ... where M has sig-
nature —, +,. .., + and all the other spaces are Riemann. Since we assume that
they are all symmetric spaces, we can split the Ricci tensor in blocks and each
block will be proportional to the metric of the corresponding submanifold. To
fix the notation we can introduce the parameters A; as

Rul; = Ai gul;, (7.4)

so that the Ricci scalars are given by
R,’ = A,‘ dim Mi = Aidi. (75)
In particular we can raise an index and rewrite

R, | = A 6| (7.6)

it

The Poincaré invariance constraint fixes the allowed gauge fields to be pro-
portional to the volume form of each submanifold. It is always possible to per-
form an electric/ magnetic duality so that there’s no field on the Minkowskian
submanifold. This means that we can consider gauge fields having the form:

Fa) = F = Qiw, (7.7)

where F; is a d;-form, Q; € IN and @; = wyy, is the volume form on M;, nor-
malized to one. It is useful to rewrite the expression above as

Fi = V2K Qi | A" w; (7.8)
where w; is the volume form on M; and k; is a constant whose value is
e ki=T(i/2)/ (Zﬁni/z) for a sphere S'
* kj=1/ (4t (g — 1)) for a genus g Riemann surface H?/T

* some value that completely identifies the lattice in a H? /T compactifica-
tion (rigidity theorem for three-manifolds [Thurston]).

In coordinates
4i/2 /oy 3
Fi|ﬂ1~--ﬂdi = kiQiAi 2det8i€y1...ydi (79)
which implies (as one can verify in a non-coordinate basis):

11—, E["F2t = 2 (n — 1)1 Q2 A% 6", (7.10)
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Furthermore
F2Y, = 222 A" o, 7.11)
|F?| = 202QF | Al (7.12)

We are now in position to write the equations of motion that will simply
translate into an algebraic system for the (Ao, A;):

1 1 212 d;

]

6 d, (7.13)
A= 1R = 1Y () B Al
]
where
R =doNo+ ) _diA,. (7.14)
i

Let us now turn to study some particular examples.

M6~ M x MH

Let us consider as an example the case M1 = My x M x M, where (dy, dq,dp) =
(7—d,d,4). If we turn F, in the equations of motion read:

A — 1R = —1IBQ2A4, (7.15)
A2 1R = JE03AS,
with R = (7 —d) Ao + dA1 + 4A;. The solution is:

1/3\"% 1 3\% 1
A =—=(= S =(2 - - @
Ao =1\ 5 <2> (602 Ay <2> (0 02) (7.16)

and given the curvatures, this describes an AdS;_; x H; x S* space.

A few remarks are in order. First of all, the result doesn’t depend on d and
in particular it would be the same for 4 = 0 (which is some sort of limit case).
In other words, at the level of the equations of motion, we can’t distinguish
between an AdS; space and any product of the form AdS;_; x H; once the
respective curvatures are such as

Rags Ry

R (7.17)
This calculation is generalizable to any product of the form My x My x ... X
M,, with dimensions (do, d1, . ..,d,—1,4). In fact the equations of motion read

Ao — 3R = =3k Q5A;,
(7.18)

An— AR = JK3Q3A3,

N
N|—=
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with R = doAo +d1Aq + ... + d, Ay, From the system above we conclude that
Ag = A1 = ... = A,_1 and then we are back to the situation above:

3 1/3 1 3 1/3 1
A0:A1=...:An_1:_<> B An=<> -
2 2 (ann)2/3 2 (ann)2/3
(7.19)

We have thus found a series of possible M-theory backgrounds where the anti-
de Sitter component is split into two or more subspaces of the form

AdS,;, — AdS,_, x Hy, (7.20)
with Ricci scalars obeying
(n) (n—p) (p)
KT _K _X . (7.21)
n n—p p

In particular we get the direct products AdS, x Hp x Hz X S* AdS, x Hs x S%,
AdSs x Hy x Hy x S* AdSs x Hy x S*, AdS, x H3 x S*, AdSs x Hy x S*.

M3 x M x M7~

The dual situation is obtained for (dy, d1,d2) = (4,d,7 — d). In this case we can
turn on the 7-form field

Fiy) = V2koQoAY2AY " (7.22)

and the equations of motion read:

Ao — iR = —1GQE|AYAT,
A — 1R = 1K3QE |AIAT, (7.23)
Ao~ 4R = P3G} [AAT ],

with R = 4A¢ + dA; + (7 — d) Ap. Again the solution is easily found
31/6 31/6

_ A] = A2 = 3 7a-

(koQo)*"? (koQo)*"?

Just as before this does not depend on d and shows that at this level an AdS, x
S% x §7~4 space is not distinguishable from a AdSs x S” one. Again we can
consider more general configurations with dimensions (4,4, ...,d,) to find
that the solution remains the same

Ao = —2 (7.24)

31/6 31/6
A() = —ZW, Al - A2 i An - W (725)

This describes a second series of solutions in which a sphere is split into
the product of two smaller spheres according to

S" s §"P x SF (7.26)
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with Ricci scalars obeying as above

() R(—p) (p)
R _KR _ K (7.27)
n n—p p

and then we recover AdS; x S x 2 x S3, AdSs x S? x S°, AdSs x S3 x S? x §2,
AdS; x S3 x §*, AdS, x S° x S2.

Finally we can combine the two types of splitting and put AdS, x H? in-
stead of AdS; and S? x S? instead of S* in the former series.

The key ingredient to these constructions is the fact that with a careful
choice of radii the product spaces still remain Einstein and this is all one needs
to satisfy the equations of motion. This means of course that in general one can
use any Einstein manifold with the proper curvature. In particular, then, in-
stead of the five-sphere S° one can put a generalization of the S® x S? product,
such as any of the representatives of the two-parameter class of spaces T"*1 ob-

tained as S! fibrations over S? x 5% or equivalently as the coset (SU(2) x SU(2)) /U(1),

the parameter being the embedding indexes of U (1) in the SU(2)’s!. Similarly,
instead of AdS® one can put a space written as a time-fibration over Hy x Hy
or as the coset (SL(2,R) x SL(2,R)) /R. The metric of such Lp, o, space can
be written as

2 2
2
2Q1 (Q1 —2Q2) Q [Q2—20Q
+ 0 (dt + xdu + o\ 01 =20, ydv> . (7.28)

Such cosets were studied in [PZT00] where they were found to be exact
string backgrounds by using a construction very close to the asymmetric cosets
of Ch. 3.

Of course since in general these geometries don’t preserve any supersym-
metry we should address the problem of their stability, which we do in the
following section.

7.2 Stability

The set of solutions we found above are not in general protected by supersym-
metry. This implies in particular that we should care about their stability. In
our analysis we will deal with the breathing modes of the compact H,, and S"
internal manifolds which, in an effective action, are to be described by scalar
tields. The stability (with respect to small fluctuations) will then translate intro
the positivity of the squared mass for such fields, condition that can be relaxed
into the respect of a Breitenlohner-Freedman bound when the spacetime is of
the anti-de Sitter type.

I This clearly is the basis of the conifold.
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First of all then we give an explicit derivation for the bound, so to com-
pletely fix the notation and then construct the general expression for the space-
time effective action for the breathing modes — hence finding again the same
solutions as above as stationary points for a potential whose Hessian matrix
encodes the stability for the background.

Breitenlohner-Freedman bound

Anti-de Sitter Consider an action of the kind

5= / dfxy/—gd <R - %aycpamp - V(cp)> (7.29)

the equation of motion for ¢ reads
~Vyop = ——- (7.30)

The relations that we obtain are all tensorial so we can just choose a suitable
coordinate system, knowing that the result will remain invariant. In AdS; a
good choice would be

ds? = dr? + 2 (—dt? +dxd + - - +dx3_,) (7.31)

and we can consider a potential V with a minimum in ¢ = 0:
m* ,
V() =W+ 74) : (7.32)
The equation of motion for an r-dependent field ¢ reads

¢" 4+ (d —1)Hp' —m?¢p = 0. (7.33)

Solving it one can see that the presence of the friction term effectively changes
the mass to

2 d—1 2 2
M= (=5—H) +m’ >0 (7.34)

or, given that R = —d (d — 1) H?

d—1
M? = 7 R+ m* >0 (7.35)

or, again, in terms of minimum of the potential:

d—1
M=——"_(V 2>0. 7.36
g V) et 7.36)
Positivity of the effective mass squared, and thus stability, translate there-
fore into a less stringent constraint for m2. This is the BF bound.
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Lo, 0, spaces. The presence of the bound is due to the curvature of the man-
ifold. It can be restated by saying that in an appropriate coordinate system the
Klein—Gordon equation can be put in the form

—0¢ +m?p = (-0O+A) ¢ + m*p = —O¢ + M*¢p = 0, (7.37)

where [ is the d’Alembertian for the curved space, [J is the d’ Alembertian for
flat Minkowski space and A is some constant depending on the curvature and
other details of the geometry (A = — (d — 1) / (4d) R in the case of AdSy). Itis
natural to expect a similar behaviour for other negative-curvature spaces, but
the precise value of A will depend on the details. In particular it is interest-
ing to consider the Lg 1,0, spaces introduced above. Again, as before, we can
choose a coordinate system and then use the fact that the equations we get are
tensor relations and hence invariant. Take into example the following metric:

dSZ — Q dixz + (1 +x2) duZ + Q dyZ + (1 +y2) de +
\1+a2 2\1+2
2
L2 (Q1 —2Q,) Q2 [Q2—20
dt + xdu + == do) , (7.38
Q2 o1\ o 20,7 739
which describes an L, o, space with Ricci scalar
S+ Qe

R = 7.39
3 QA 739

The d’Alembertian on ¢(x,y) gives:

1 1
C0) = - [(1+57) s+ 220+ 5 [(1497) 9+ 2090] - (740

This is the same expression we would have got by considering the d’Alembertian

in an AdS3 x AdSz space with coordinates

1 [ d«? dy?
2 4 a2 Y 2 2
ds® = o |it 2 dt — 2xdtdu + du ] 0 [ 2ydtdo + do
(7.41)
The two subspaces have curvature
3
R; = ~20, (7.42)
and since the shifts compose linearly this gives an overall shift
1 1 I+
M =m’4 —+ — =mP ===, 7.43
1071 "1 o 74)

which is therefore the BF bound for Lg, o, space. This can be compared with
an AdSs space with the same curvature as in Eq. (7.39), where the shift would
be given by

M=y LT 2 (7.44)

3 Q1
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In this case the shift is larger: in some sense then, as one might have expected,
an anti de-Sitter space is more stable with respect to small fluctuations than a
Lo, 0, space with the same scalar curvature.

Effective low-dimensional description

We want to write the d-dimensional effective action for a AdS; x M; x M,
background, where M; are constant curvature spaces, starting from the fol-
lowing sector of the M-theory action

1
S— / dlx /- (R — v (7.45)
21{%1 . ( )

where V takes into account the presence of the fluxes. In order to study the sta-
bility of the product background at hand let us consider the following ansatz:

ds?, = ds?(M@) 4+ 291 @ ds?(MW) 4 2220 4s? (M @) (7.46)

where the fields ¢; depend only on the coordinates of M(?). The strategy is the
following:

(11)

(a) write the curvature RV in terms of the curvature for M@

(11)

(b) separate the determinant ¢'*"/ in its compact and non-compact part

(c) Weyl-rescale the four-dimensional metric to get a canonical Einstein-Hilbert
action

(d) rescale the scalar fields ¢; to get a canonical kinetic term

(e) study the potential and verify the stability taking into account the BF
bound.

Stepa For a warped product

ds? = ds? (M@ (x)) 4 e2?®)ds?(MD) (7.47)

where M) has dimension d;, the Ricci scalar is

R =RW 4+ 2R 24,V ,0"p(x) +dy (d1 — 1) 9, 9(x)" p(x) (7.48)

where the covariant derivative and the raising is done with the warped prod-
uct metric. Note that the result only depends on d; and not on d. This easily
generalizes to a warped product with three factors like the ones we study

ds? = ds2 (M@ (x)) 4+ 291 ds2(MM)) 4 220 g2 (M) (7.49)

and one obtains

R = RW 4 o200 RMW) 4 ¢=22(0)R(2) 24, V7,0 gy (x)+
+dy (d1 — 1) 0491 (x)0" @1 (x) + —2d2V 10" @2 (x) +
+ds (d2 — 1) ayqoz(x)af‘ (pz(x) + 2d1d28yq)1 (x)8”¢2(x) (7.50)
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where d; = dim M),
Since the covariant derivative is with respect to the whole g('") metric, two
of the terms above are total derivatives and the action is then equivalent to:

1
g — /dll o) (ROD _ /) ~
2K11 § ( )

= / dlx /=) (R<d>+@—2¢1<x>R(1>+e—z(pz<x>R(2>+
21<11

+ dq (dl — 1) ayfpl(x)aﬂq)l(x) +ds (dz — 1) a;,qu(x)ayq)z(x)—i-
2d1d20,,¢1(x)0" pa(x) — V) (7.51)

Step b The eleven-dimensional determinant can be written as
det g") = det gV det g det g4 et #1+d292 (7.52)

in particular we can integrate over the internal coordinates and get:

VlVZ /dd d1<P1+d2§02 (R(d) + e 291(x) (1) + 6*2402(9‘)1{(2)_}_
21c11

+d1 (d1 — 1) 9u1(x)0" @1(x) + d2 (d2 — 1) 9ua(x) 9" @a(x)+
+ 2d1d50,, 91 (x) 9" o (x) — v) (7.53)

We will introduce
Y =dip1 +dag2 (7.54)

for future purposes.

Step ¢ The action above is not in the usual Hilbert-Einstein form because of
the ef191+4292 factor. For this reason we perform a Weyl rescaling

G =gy, (7.55)

under which the curvature becomes:
R=e?MR—-2(d-1) Voo (x) 4+ (d—1) (d —2) 9,0 (x)d"o(x) (7.56)

where V is the covariant derivative with respect to § and u is raised with §.
In d dimensions a term /det ge* R is brought to the standard form by the
Weyl rescaling

2
Suv = exp [H‘P] S (7.57)

and

V8 R= /3 <R+2Z:;%aw ;l_a Yo ‘I’) (7.58)
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Discarding the total derivatives, the action now reads

V1V2 / d |: ( ) d - 1
dx —0, Y'Y
2K11 da—2"" +

+dq (dl — 1) 8y¢1(x)8“g01(x) +ds (dz — 1) ay(pz(x)ay(pz(x)—i—
+2d1d20, 1 (x)0" o (x) 4 211/ (32) <e—2¢1<X>R<1> + e 22 RE) _ (g, q)z)”

where indices are raised with g%).
Stepd Now let us collect all the ¢ terms in the action:

_ V1V [ gay R _ g, (4 p

d 2d,d
—d> <d—22 + 1) 020" g2 — - - Zauq)la} @2 — V (g1, qu)] (7.60)

where

V((Pll q)z) = g_z(d1€01+d2(l’2)/(d_2) <_e_2(P1(x)R(1) — 6_2(/’2(x)R(2) + V(q)ll @2)) .

(7.61)
To bring the kinetic terms to the standard form we introduce:
2(D—2
1=\ @iy (D191 + dap2) (7.62)
Dy = \/ 4% (1 — o)
or, the other way round:
_ 1 d—2 dy
1= —7——=(\/p2P1 t /2 P2
—_— = “U—< — 41
P = ad) (V p—2% dz@z)
where D = d +d; + d, = 11, and we finally obtain
Ve [ g _1 e, 1 i, _ T
s JEE: [ SO P10 Dy — 0, D20 — V (D1, o)
(7.64)

Step e The type of backgrounds we obtain after compactification are AdS.
Therefore, negative-m? modes are not tachyonic if they don’t cross the Breitenlohner-
Freedman bound.

Using the results of the previous section this means:

d—1

M=—1a—y

(VY +m? >0 (7.65)
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that must be respected by each eigenvalue m? of the Hessian matrix
%
m:

_ 7.66
T 00, ,_, (7.66)

These general considerations apply to any choice of background gauge
fields. Then one should write the potential for each case at hand in terms
of ®; and ¥, (and possibly the dilaton in type II) and check the mass matrix
against the BF bound.

AdS, x H® x §*

As a first example let us consider AdS, x H3 x S*. The potential V in Eq. (7.45)
is due to the presence of a four-form field on the S* part.

— Q2 *8([72
Vigr ¢2) = —-e (7.67)

the dimensions are d = 4, d; = 3 and d, = 4 and the curvatures read RV =
—3/2and R = 2, 50 the expression in Eq. (7.61) becomes:

2
V(pq, p) = e 3917492 (;ez"’l — 2e%2 4 QzeS‘PZ) . (7.68)

To get the canonical scalar fields ®; and ®, we can use Eq. (7.63):
91 = 51 (@1 + Vo,) 769
92 = 15 (401~ 3V6,) |

and this leads to the effective potential

V(®y, ®y) — %875c1>1/\ﬁ72c1>2\/2/21 (3ezq>1/ﬁ 420 V76 Q268<I>2\/2/21>

(7.70)
which has a minimum for
28/7Q \f
1 = V7log —== P =4/ - log2 7.71
and in correspondence of this point
3V3
(V) = ~160° (7.72)
The Hessian matrix on the minimum is:
2 153 9
aqz‘;/@ - 28?;23 PRV AE (7.73)
1977 —2 2
Both eigenvalues are positive
3v3 9v/3
2] _ 2| _
m ‘1_16Q3 m ‘2_87Q3 (7.74)

and the solution is stable.
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m? m?

o] @) | @) | W ||

2
2| log* | \f3log2 | — gt | 2/3 | 4
8/72
3 ? log 473(2 \/élog 2| - 136‘53 1 6
2
4| 2l0g™2L | g2 | —Z5 | 2 | 12

Table 7.1: Minima and masses for AdS x H backgrounds

AdS7_d1 X I—Id1 X 54

All the backgrounds of the form AdS; 4, x H% x S* can be treated similarly.
The potential in Eq. (7.61) becomes:

2
V(g1 ¢2) = e 2(h91—4g2)/ (5-dn) (—dzle_Z(P1 —2e%2 + %e_S(PZ) (7.75)

and one finds that in each case there is a minimum (stable) solution. The actual
values are in Tab. 7.1. In any case, not surprisingly one can see that for any d;
the warping factors ¢ and ¢, always take the values

1 16Q? 1 30Q?
¢1 = 6 <10g 3 > Q2 = 5 <log2 (7.76)
which agrees with A; and A3 being
3\'° 1 3\'° 1
Ay = — <2> 20773 A3 = <2> o] (7.77)

as we have already seen by directly solving the equations of motion in eleven
dimensions.

AdS, x §3 x §4

Consider now AdSy x S x S*. The potential V in Eq. (7.45) is due to the pres-
ence of a seven-form field on the S® x S* factor.

_ g —6¢1—8¢
V(gr ¢2) = Z-¢ : (7.78)

The dimensions are d = 4, d; = 3 and d; = 4 and the curvatures read R(t) =
3/2and R?® = 2, so the expression in Eq. (7.61) becomes:

_ 3 2
Vg1, g2) = e 20142 <—2e2"’1 — 292 4 %669”189”2> . (7.79)

To get the canonical scalar fields ®; and ®, we can use Eq. (7.63):

P11 = %[ (Cbl + \@sz)
{qu = l{; (4@1 _ 3\@%) (7.80)
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and this leads to the effective potential

1
V(®y, ;) = Eeﬂﬁcpl (_3e4q>1/\ﬁfzq>2\/z/21 . 4e4©1/ﬁ+¢2\/3/14 + Qz) .

(7.81)
In this case there is an extremum for
V7 2
and in correspondence of this point:
33/ 4
To verity the stability we write the Hessian matrix:
9’V 3%/4
= 3 01 (7.84)
0D;0P; Q¥/2\0 —3
which possesses a negative eigenvalue
1
m*|, =3 |(V)] m2’2:—§|<V>|. (7.85)
This must be confronted with the BF bound we found in Eq. (7.65):
3 3 1 1
29 2_ (2 _ 1 _ 2
M2 =SV -+ = (§ - 3) 1)1 = 5 [ <o, 756

The mode, corresponding to the ratio of the two radii ®,, is actually unsta-
ble. This is not so surprising since in this case the flux is proportional to the
total volume of the compact directions and the system is intrinsically unstable
with respect to a perturbation that woukd keep this volume constant while
changing the ratio between the two radii.

AdS, x S8 x §7—

The field choice we made above proves to be very useful when dealing with
general AdS; x §% x S7~% backgrounds. In fact the potential reads:

V(cpl,q)z) = %e—\ﬁ% (_dle@l/ﬁ—% (—2d1+14)/(7d1)+
—(7—dy) AP/ VT @221/ (7(d1-7)) Qz) (7.87)

where d; appears only as a coefficient for ®,. Therefore the solution is inde-
pendent of the dimension d; and the stationary point is again

V7, @
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with
33/4
This solution is again unstable, since the square masses are again
2 2 1
m?|, = 3|(V)| m?l, = =5 (V)] (7.90)

and the BF bound is always for —3/8|(V)| since it only depends on the non-
compact dimensions that are d = 4.

7.3 Type IIB backgrounds

Some of the solutions we found thus far can be naturally reduced to type II.
This is the case when they contain factors of AdS; or odd-dimensional spheres
for they can be respectively written as space-like fibrations over AdS, or com-
plex projective planes and as such, when compactified on the fiber don’t give
rise to dilaton fields.

On the other hand one might also directly look for type II solutions with
the same type of geometry factorized in constant curvature spaces. In this
section we will in particular concentrate on type IIB solutions with structure
Vi X Mz x M3. Before starting one can try to make some educated guesses
about the expected kind of solutions. It would then appear rather natural to
expect perturbative AdS; x S® x S® solutions that might prove to be unstable
(in the same spirit as in [DFG"02]) and one might further imagine that adding
non-perturbative objects with negative tension — orientifold planes — the no-go
theorem for de Sitter [MNO1] can be contoured, thus allowing for internal hy-
perbolic manifolds and for de Sitter solutions (as it was suggested in [SS06]). In
tfact we will prove that both guesses are ultimately wrong by carefully study-
ing the effective potential in four dimensions obtained by taking into account
dilaton, RR zero-form and the two breathing modes for the internal manifolds.
More precisely we will show that:

* no truly perturbative solution exists, i.e. the presence of D-branes is nec-
essary;

¢ in presence of orientifolds the only possible compactification happens on
aTs;

* no solution is allowed with hyperbolic or de Sitter components;
o the only allowed solution is AdS; x S x S® and this solution is pertur-

batively stable, thanks to the BF bound, although it can’t be completely
trusted since it belongs to an intermediate-coupling regime.
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Let us consider a type IIB background of the form V, x M3 x M;. The
action in Einstein frame reads:

3, TN -
S = Sp+ Sioc = / d10x /(10 [R“O) _ T LRy

2k7 2(Im7)*> 2

10

1
—§C4/\F31/\F§ + Sl (7.91)

where we didn’t include the 1-form and the 5-form which are not compati-
ble with the symmetries of the metric ansatz. As usual T = Cp + 16~ ?® is the
dilaton-axion field, M;; is

1 T —Ret
= 7.92
Ll e <—ReT 1 7.92)

and Sy, is the contribution due to D3-branes and Osz-planes:

Soc = NT; / dhxy/—g. (7.93)

As before we look for a solution of the kind
dstyg) = dsty) + €2 ds3 + 27 ds?y (7.94)

where for the moment being the two internal manifolds can have positive or
negative curvature. With respect to the M-theory situation, in this case we will
have to pay attention to the extra T complex scalar field and to the extra-term
in the action Sj,..

Let’s start with the latter. This already has the form of a four-dimensional
integral, so to evaluate the corresponding contribution to the potential we only
need to take into account the Weyl rescaling in Eq. (7.57) and the presence of
the internal volumes and Newton constant:

" V3‘73 2NT3K2 _ _
Swe = NT. / dbx [ — o) = B73ZN 190 / dixe 21, /o) 7.95

and then

_ 2NT3K§O€

= > 10 ,=6¢—6¢ 7.96
loc V3 VS ( )

For reasons that will appear more clear in the following let us rescale the T
tield as:

z=1 (7.97)

k being a real constant. This does not affect the kinetic term:

9, To'T d,z0"z
2~ 2 (7.98)
2(Im7) 2(Imz)
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but makes it canonical when studying the small perturbations around the equi-
librium solutions.

The most general three-field configuration compatible with the symmetries
is

F, = 4% (njws + 1;@03) (7.99)

where n; and #i; are integers and w3 and @3 are the normalized volume forms.
The subscript 1 stands for RR field, 2 for NS. The corresponding potential reads:

(472)% a2 (472)% a2 Y e
V —— |mk O 4 2 jinkz — 7 ~6¢ (7100
F= okimzvz Mk ml e+ 2KImz72 ke = mlfe ™t (7.100)

in order to clean the notation let us write the volumes as
Vs = 2x71° Vs = 2872, (7.101)

Adding the contribution from the curvatures of the internal manifolds:

3 ~ 3
R = € R = ¢ (7.102)
where € = 1 for spheres and € = —1 for hyperbolic spaces, we can write the

potential as

3e 3¢ 55 20"
~39-3 -2 -2 2 6
Vg, ¢,z) =e %" 9”( ¢ "’—?e ‘P+m\n1k2—nz\ e P+
20" 2NT
+2k0;|ﬁ1kz—ﬁ2|ze_6‘?> — 30,6967 (7.103)
x°klmz XX (2712)

As a first step we normalize the scalars ¢ and §:
o b + 2P, N b — 2P,
43 ? 43

so to rewrite the potential as

(7.104)

V(®y, P, z) = e~ P1V3/2 <—3ee(¢1+2®2)/(2‘/§) - %ee*(®1*2¢2)/(2‘/§)+

2
20" 2 = (®1+202)v3/2
+ szll’n |7’11kZ — 1’12| —(®1+2%2)v3/
2 2
22“/ |firkz — nz‘z —(P1— 2<I>2)f/2> + Me*%ﬁ_ (7.105)
x*kImz X% (272)

We have to take into account the anomaly cancellation condition
N = nqiip — npfiy (7.106)
and express all the constants in terms of a’:
1

_ - - 2 7 14
T3 = |pus| = 2 2k3, = (27) « (7.107)
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so that 2k3,T; = (271)* a’2.

Up to this moment the sign of N is arbitrary, so one might think that differ-
ent kinds of solution are possible. Actually this is not the case. If we differen-
tiate with respect to Im z and Re z we obtain the values corresponding to the
stationary point

e®2V3 |IN| xx 62¢2\/§ﬁ1ﬁ2x2 + nyny 2
Imz = Rez =

k <ezq’2\@ﬁ%x2 + n%JZZ) k (ez‘bz\/gﬁ%xz + n%ﬂ)

(7.108)

Putting these back into the potential one gets:

g(3¢’1+¢2)/\/§
V(q)l, q)z) =

2x%
(7.109)

and for N = 0 this gives respectively:

3d+d,)/V/3
V@, D)) = B <16e‘1’2/\@N ~ 3xge®/V3 (e+ée(q’1+2¢2)/\/§>>
! 2xX
(7.110)
V= (@1, ®5) = —ge*@q’ﬁ@z)/ﬁ (e +ée2¢2/ﬁ) . (7.111)

The second potential only admits a solution if € = € = 0, but this corresponds
to a flat internal space (Polchinski).
Choosing the first N > 0 case one finds a stationary point for

4Nu'"? \/E V3. €
®;) = V31 - ;) = —log = 7.112
(1) \/gog xxé Ve (®2) 2 Bz ( )
which imposes € = & = 1, ie the only solution has an internal S% x S3 space, as
advertized above.
To summarize, the stationary point corresponds to:

- 5o 02 =2
R
(®1) = V3log 411;‘/2 (@) =0 (7.114)
now we can choose
o N (7.115)

i2x2 + n3x2
and putting x = £ = 1 (as we must in the case of spheres) we have

_ fyfip +nyny

I =1 (R
(Im z) (Rez) P ——

(@) = V3log (4Na?) (@7) =0
(7.116)

(86‘1’2/\/§ (N+|N|) - 3xxe®/ V3 (e + ée(q>1+2q>z)/ﬂ>>
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and the corresponding potential is

1

To check the stability we write the Hessian matrix and compute its eigen-
values. They turn out to be

], = (V)] wl—21(v)
wly= YB3y e = By g

and the only negative one m
cross the BF bound:

2|, doesn’t cause any instability since it doesn’t

_15-4V13

s (V)] >0 (7.120)

w4 2 1))
This result about the stability of the product of two three-spheres can at first
sight be puzzling since, after analyzing the results of Sec. 7.2, we’ve grown
to expect such configurations to be unstable under the mode in which one
of the two spheres shrinks and the other grows, keeping constant the overall
volume. Here it is not the case and this can be easily understood in terms of
gauge fields. In the M-theory configurations, in fact, only one field was turned
on and it spanned over the whole internal manifold, so that it effected only
the total volume. Here, on the other hand, RR and NS-NS fields are turned on
separately on the two submanifolds, thus contributing to the stabilization of
each of the radii.
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Conclusions and further perspectives

Beauty is truth, truth beauty, — that is all
Ye know on earth, and all ye need to know.

Ode on a Grecian Urn
JOHN KEATS

The search for exact string solutions is a fascinating subject by itself. It is
based, as most of the wonders of string theory, on the interplay between the
two-dimensional conformal field theory description on the world-sheet and
the ten-dimensional low-energy interpretation in terms of spacetime fields.

In this thesis we have dealt with a new class of string backgrounds living
in the moduli space of WZW models. They enjoy at the same time nice su-
pergravity properties, all geometrical quantities being naturally expressed in
terms of algebraic invariants, and a clear CFT characterization, inherited from
the beautiful theory of group manifolds.

Apart from their intrinsic elegance, those new backgrounds also find in-
teresting physical applications as compactification manifolds, laboratories for
the analysis of string propagation in classically pathological backgrounds with
closed time-like curves, in black hole configurations with non-trivial topology.
Laboratories in which we can keep higher order effects under control and write
down a modular-invariant partition function, or at least the spectra of primary
operators.

Starting from this solid CFT ground we are then allowed to peep into the
off-shell physics using RG techniques, both from a two-dimensional and field-
theoretical perspective. We can thus observe the relaxation of out-of-equilibrium
vacua described by charge transmutation, i.e. two gauge fields eventually col-
lapsing into a single one, while the total charge is conserved. A new change
of viewpoint then allows us to recast the problem in terms of a cosmological
time-dependent solution. The RG dynamics becomes an approximate descrip-
tion — valid in a certain region of the moduli space depending on the central
charge deficit - for the behaviour of a Big-bang-like isotropic FRW universe.

We have emphasized many times the importance of having a CFT descrip-
tion and exact models, but this is not possible in general. For example we
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completely lack such a kind of interpretation for type II string or M-theory,
but — and maybe for this very reason — it is important to look for new insights
in these frameworks. In this spirit we have studied compactifications involv-
ing maximally symmetric spaces which in general do not preserve supersym-
metry, looking in particular for hyperbolic solutions, in the not-too-concealed
hope of reaching de Sitter-like spacetimes.

So, what remains to do? By its very nature this is a work in progress. The
path to further developments is full of technical and conceptual obstacles but
one can easily name some of the natural possible directions. First of all it
would be interesting to have a non-Abelian counterpart for our asymmetric
gauging. This would be allowed by the heterotic string framework and it does
indeed work at the supergravity level; on the other hand it is not clear how
it could be implemented in a CFT framework — the evidence at hand point-
ing towards a discrete structure for the deformations. Then, one would like
to reach a better understanding of non-rational CFTs and, in particular, of the
SL(2,R) wzw model; this would allow us to write the partition function for
AdS; spacetime, Bertotti-Robinson black hole and (charged) black string. This,
in turn, might prove useful for obtaining a non-trivial microscopic description
for the thermodynamics of such singular objects. Another more phenomeno-
logical direction would be to study the low energy field theory consequence of
a compactification on geometric cosets, again using the complete knowledge
which we have of the spectrum and partition function in this case. As soon
as we move away from the familiar CFT framework things become more dif-
ficult and much more interesting. Even if a theory for the two-dimensional
RG flow is established, there are very few cases in which one can really work
out non-trivial examples such as the flow one expects to link WZw models at
different levels. The spacetime description might then prove useful for getting
new hints at the world-sheet physics.
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APPENDIX B

Explict parametrizations for some Lie

In this appendix we collect the explicit parametrizations used for the SU(2),
SL(2,R), SU(3) and USp(4) groups.

B.1 The three-sphere

The commutation relations for the generators of SU(2) are

UL P2 = % Pl =17 P11 =%, (B.1)
A two-dimensional realization is obtained by using the standard Pauli matrices!c”:
a_ a
! 7Tie/EzL.11er—angle parameterization for SU(2) is defined as:
g = P3P bt 5 (B.2)

The SU(2) group manifold is a unit-radius three-sphere. A three-sphere can be em-

bedded in flat Euclidean four-dimensional space with coordinates (xl, x2, x3, x4), as

(x1)2 + (x2)? + (x®)? + (x*)? = L2. The corresponding SU(2) element g is the follow-
ing:

4 2 3 1
o1 XFHaux xX° +ix
g=L <—x3 ol lxz) : (B.3)

In general, the invariant metric of a group manifold can be expressed in terms of

the left-invariant Cartan-Maurer one-forms. In the SU(2) case under consideration
(unit-radius S%),

J = %tr (algfldg) , Jr= %tr (Uzgfldg> , TP = %tr (U3g*1dg) (B.4)
and

3 . .
d52 — Z jl ® jl (85)
i=1

1=

IThe normalization of the generators with respect to the Killing product in su (2): x (X,Y) =
tr (XY) is such that « (]”, Jb > = 1/2 and correspondingly the root has length squared ¢ = 2.
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The volume form reads:
wp =T NT*ATC (B.6)

In the Euler-angle parameterization, Eq. (B.5) reads (for a radius-L three-sphere):

2
ds? = LZ (dzxz + d’yz + 2 cos fdady + d,Bz) , (B.7)

whereas (B.6) leads to

3
wp) = % sin Bda A dB A dy. (B.8)

The Levi-Civita connection has scalar curvature R = 6/L2.

The isometry group of the SU(2) group manifold is generated by left or right
actions on g: ¢ — hg or g — gh VYh € SU(2). From the four-dimensional point of
view, it is generated by the rotations {,, = i (x,9, — x49,) with x; = J,,x?. We list
here explicitly the six generators, as well as the group action they correspond to:

L = % (=032 +Ca1), g—e i, (B.9a)
L, = % (—Ca3 — C12), g— e, (B.9b)
Ly = % (—Cs1 — Q) g— e, (B.9¢)
Ry =5 (G + ), g — gt (B94)
Ry =3 (~Gas+ ), g — ge'i, (B.9¢)
Ry = 5 (G~ w), g — gt (B9

Both sets satisfy the algebra (B.1). The norms squared of the Killing vectors are all
equal to L2 /4.
The currents of the SU (2),, WZwW model are easily obtained as:

i = —ktr (10iagg™") J' = —ktr (10g713g), (B.10)

where L = V/k, at the classical level. Explicit expressions are given in Tab. B.1.

B.2 AdS;

The commutation relations for the generators of the SL(2,R) algebra are
UL 7)== % Pl =1 P 1 =12, (B.11)

The sign in the first relation is the only difference with respect to the SU(2) in Eq. (B.1).
The three-dimensional anti-de-Sitter space is the universal covering of the SL(2, R)
group manifold. The latter can be embedded in a Lorentzian flat space with signature

—,+,4,—) and coordinates (x0, x!, x2, x3):
( )

0 2 1 3
1 (X +x x +x
§=L (xl_x3 xo_xz>, (B.12)
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| sector | Killing vector \ Current

b0 siny siny ] )
E mazx + cos ydg — mav k (sin B sin yoa + cos yob)
S
& o875, —sin g — ST, k (cos 1y sin Boa — sin ydp)
& sin B P tan g7
< 2, k (97 + cos Bon)
0 _sirwca + cosad +sinaa L 5 i 83
.g anp cos adg sing? (cos @0 + sina sin foy)
g COSA5 +sin wdg — cos “av k (sinadB — cos asin fd7y)
z tan 8 sin B B
2 3, k (da + cos poy)

Table B.1: Killing vectors {i1L;,1Ly,1L3} and {iR;,1Ry,1R3}, and holomorphic
and anti-holomorphic currents for SU(2) in Euler angles.

where L is the radius of AdS;. On can again introduce Euler-like angles
g = e!(TH9)02/ 25001 61(T—¢)72 /2. (B.13)

which provide good global coordinates for AdSz when T € (—o0,+00), p € [0,00),
and ¢ € [0,27).

An invariant metric (see Eq. (B.5)) can be introduced on AdSs. In Euler angles, the
latter reads:

ds? = L2 {— cosh? pdt? + dp? + sinh? p dgbz} . (B.14)

The Ricci scalar of the corresponding Levi-Civita connection is R = —6/L2.

The isometry group of the SL(2,R) group manifold is generated by left or right
actions on g: § — hg or § — gh Yh € SL(2,R). From the four-dimensional point
of view, it is generated by the Lorentz boosts or rotations ,;, = i (x,9p — x30,) with
Xz = 1px". We list here explicitly the six generators, as well as the group action they
correspond to:

Li= 3 (G2~ Con), g—e ity (B.152)
L= 5 (0o — o), g—e ity (B.15b)
Ly = 5 ({os— o), g— i, (B.150)
Ri = 5 (o + ), g — gl (B.154)
Ro =3 (G — o), g—ge i, (B.150)
R3 = % (Cos + C12) g — ge'?? (B.15f)

Both sets satisfy the algebra (B.11). The norms of the Killing vectors are the fol-
lowing:

L2
ILal|? = [[1Ra]|* = [[tLa||* = [[1R2]|* = — [JsLs]|* = — [[1Rs]|* = e (B.16)
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Moreover L; - Lj = 0 for i # j and similarly for the right set. Left vectors are not
orthogonal to right ones.

The isometries of the SL(2, R) group manifold turn into symmetries of the SL(2, R)
Wzw model, where they are realized in terms of conserved currents?:

Y (2) £ P (z) = —ktr ((01 F 1(72) E)gg_l) , J? (z) = —ktr (Usagg_l) ,
(B.17a)

TP £P(2) =ktr ((01 + 1(72) gilf_)g) , J?(2) = —ktr (0‘3g*15g) :
(B.17b)

At the quantum level, these currents, when properly normalized, satisfy the fol-
lowing affine SL(2, R); opra>:

P(2)P(0) ~ =5, (B.18a)
37y 7+ J=
F(2)]7(0) ~ £, (B.18b)
_ 273k
J(z)]7(0) ~ - Tz (B.18¢c)

and similarly for the right movers. The central charge of the enveloping Virasoro
algebraisc =3+6/(k —2).

We will introduce three different coordinate systems where the structure of AdS;
as a Hopf fibration is more transparent. They are explicitly described in the following.

e The (p,t,¢) coordinate system used to describe the magnetic deformation is
defined as follows:

% — cosh § cosh § cos § — sinh § sinh § sin £
N = —sinh §sinh § cos § — cosh § sinh ¢ sin £ (B.19)
2 = —cosh §sinh § cos £ + sinh § cosh ¢ sin £
% = —sinh 4 sinh § cos § — cosh § cosh ¥ sin £.
The metric (B.5) reads:
LZ
ds? = —- (dp2 +dg¢? — df? — 2sinh pdtd(p) (B.20)
and the corresponding volume form is:
L3
wp =g coshp.dp A d¢ A dt (B.21)

Killing vectors and currents are given in Tab. B.2. It is worth to remark that this
coordinate system is such that the t-coordinate lines coincide with the integral
curves of the Killing vector 1L3, whereas the ¢-lines are the curves of 1R;.

2When writing actions a choice of gauge for the NS potential is implicitly made, which
breaks part of the symmetry: boundary terms appear in the transformations. These must be
properly taken into account in order to reach the conserved currents. Although the expressions
for the latter are not unique, they can be put in an improved-Noether form, in which they have
only holomorphic (for L;’s) or anti-holomorphic (for R;’s) components.

3In some conventions the level is x = —k. This allows to unify commutation relations for
the affine SL(2,R)y and SU(2), algebras. Unitarity demands x < —2 for the former and 0 < x
with integer x for the latter.
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e The (r,x,T) coordinate system used to describe the electric deformation is de-
fined as follows:

X _ r x T ik L oginh £ qin T

> = cosh 5 cosh 3 cos 5 + sinh 5 sinh 7 sin 3

X _anh © X T I ginh £ qin T

T = sinh 5 cosh 5 CoS 5 + cosh 5 sinh 5 8in 5

X2 7 a3 X T : r X o3 T (Bzz)
7 = —cosh 5sinh 5 cos 5 — sinh 5 cosh 5 sin 5

¥ _— cinh £ cinh £ T _ r Xgin T

= sinh 5 sinh 5 cos 5 — cosh 5 cosh 5 sin 5.

For{r,x,T7} € R3, this patch covers exactly once the whole AdS3, and is regular
everywhere [CH94]. The metric is then given by

2
ds? = LZ (dr? +dx® — dr? + 2sinh rdxdr ) (B.23)
and correspondingly the volume form is
I3
Wi = 5 coshrdr Adx Adr. (B.24)

Killing vectors and currents are given in Tab. B.3. In this case the x-coordinate
lines coincide with the integral curves of the Killing vector 1Ry, whereas the
T-lines are the curves of 1R3.

® The Poincaré coordinate system used to obtain the electromagnetic-wave back-

ground is defined by
04 = ;L[
W0 -2 =Ly (B.25)
Atad =L

u

For {u,x*,x~ } € R3, the Poincaré coordinates cover once the SL(2IR) group
manifold. Its universal covering, AdS3z, requires an infinite number of such
patches. Moreover, these coordinates exhibit a Rindler horizon at |u| — oo; the
conformal boundary is at || — 0. Now the metric reads:

LZ
2 L7 2 R
ds® = 2 (du +dx"dx ) (B.26)
and the volume form:
3
W) = ZL?du Adx™ AdxT. (B.27)

In these coordinates it is simple to write certain a linear combination of the
Killing vector so to obtain explicitly a light-like isometry generator. For this rea-
son in Tab. B.4 we report the { L1 + L3, L1 — L3, Lo, Ry + R3, Ry — R3, Ry } isom-
etry generators and the corresponding { J1 + J3,J1 — J3, ]2, J1 + J3,J1 — J3, J2 } cur-
rents.

Finally, another useful although not global, set of coordinates is defined by

v—¢ 3 1 $+¢ 3
Sto° ito ETU‘

g=e'2" ) (B.28)

(¥ and ¢ are not compact coordinates). The metric reads:

ds? = L2 {cos2 tdy? — d* + sin? tdqﬂ , (B.29)
with volume form
3
wg) = % sin2tdt A dy A de. (B.30)

Now L, = 1 (9y —9y) and Ry = J (3y + ).
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| sector | Killing vector \ Current ‘
b0 sint .
E cos t9p + cosh p dp — sinttanh poy k (cos tdp + cosh p sin to¢)
S .
E _sintd, + Cc;(;;t 9 — cos I tanh pdy k (cost c.osh po¢p — sin top)
& P k (ot + sinh pd¢)
— _at
50 ;
c . sinh _ _
'g cosh ¢dy — sinh ¢ tanh pdy — coshi Ot —k_(cosh $p —_i— cosh p sinh ¢ot )
g 9 k (0¢ — sinh pot)
< k (cosh p cosh ¢9t + sinh ¢dp)
ob . cosh ¢ P ¢ $ap
2 sinh ¢d, — cosh ¢ tanh pdy — coshp ot

Table B.2: Killing vectors {iL;,1Ly,1L3} and {iRj,1Ry,1R3}, and holomorphic
and anti-holomorphic currents for the (p, f, ¢) coordinate system (elliptic base).

| sector | Killing vector \ Current
I . sinh x
E cosh xd; — sinh x tanh roy + coshr dr k (cosh xdr — cosh r sinh x9T)
g O k (9x + sinh rdT)
= k h h x0T — sinh x0
k> _ sinhxd, + cosh x tanh 7, — cosh x i (cosh 7 cosh xdT — sinh xdr)

coshr

2| —costa+ T3 _sinttanhtd
'E COSTOr T ehrox — SmTh T k (— cos Tdr + coshr sin T9r)
g (cos T+ sinTtanhr) 9y 4 (cos Tsinhr — 0T ) 9| (cos T cosh rax + sin Tr)
< coshr k (37 — sinh rax)
2 9,

Table B.3: Killing vectors {iL;,1Ly,1L3} and {iR;,1Ry,1R3}, and holomorphic
and anti-holomorphic currents for the (r,x, T) coordinate system (hyperbolic
base).

B3 SU(3)

To obtain the the Cartan-Weyl basis { H,, E* } for the su (3) algebra we need to choose
the positive roots as follows:

a = [V2,0] ay = [~1/v2,V/3/2] a3 = [1/v2,V3/2] (B.31)

The usual choice for the defining representation is:

1 0 0
_ 1 _ _ L
H =2 8 O1 8 H = J

0 0
Ef = |0 Ef =|0
0 0

and E]-_ = <E;')t.

o O O
O = O
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| sector | Killing vector \ Current ‘
g ux~9, —uPdy + (x)"a- 2k <2x_?—ax‘+(x_)za:f;>
CH P (22
g o+ Zk%
R
ED %au +xto, ok (E_); 4 x+5uxz)

Table B.4: Killing vectors, and holomorphic and anti-holomorphic currents
in Poincaré coordinates (parabolic base). The {i1Ly + 1L3,1L1 — 1L3,1L;,1R; +
1R3,1R; — 1R3,1Ry} isometry generators and the corresponding {J; + J3,J1 —
J3,J2,J1 + J3,J1 — Ja, J2} currents are represented so to explicitly obtain light-
like isometry generators.

A good parametrisation for the SU (3) group can be obtained via the Gauss de-
composition: every matrix ¢ € SU (3) is written as the product:

g=>b_dby (B.33)
where b_ is a lower triangular matrix with unit diagonal elements, b, is a upper

triangular matrix with unit diagonal elements and d is a diagonal matrix with unit
determinant. The element g is written as:

_ _ Z1Z _
8 (21,22,23, 1, P2) = exp [zlEl +2E; + (23 - %) E, } X

x e~ fiH1=BH: oy {lef + WoES + <w3 - lewz> E;} eVt (B.34)

where z;, are 3 complex parameters, §; are two real and F; and F, are positive real
functions of the z;,’s:

{Fl =log f1 = log El + |Zl\2 + |Z?>‘2) (B.35)

F, =logf, =log 1+ |Zz‘2 +|z3 — Z]Zz|2>

By imposing g (zy, ) to be unitary we find that the w,’s are complex functions of
the z,,’s:
M

—_z +Z723

E
3

o 2_123_22(1‘”21‘2) (B36)

Wy = \/71

w3 = — (23 — 2122) \/%
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and the defining element g (z,, s) can then be written explicitly as:

1 0 0 ﬁ 0 0
g(z1,20,z3,%1,¥2) = |z1 1 0 0 VA/s 0 |X
Z3  Zp 1 0 0 \/]72

1 w1, W3 e /2 0 0
x 10 1 @ 0 etz (B.37)
0 0 1 0 0 el¥2/2

Now, to build a metric for the tangent space to SU (3) we can define the 1-form
Q(z,-) = g '(z,-)dg(z,-) and write the Killing-Cartan metric tensor as gxc =
tr (QTQ) = — tr (QQ) where we have used explicitly the property of anti-Hermiticity
of Q) (that lives in the su (3) algebra). The explicit calculation is lengthy but straight-
forward. The main advantage of this parametrization from our point of view is that

it allows for a “natural” embedding of the SU (3) /U (1)% coset (see e.g. [GK98] or
[KT00]): in fact in these coordinates the Kahler potential is
K (z3,2,) =log (f1 (zx) f2 (zu)) =
=10g [ (14 21/ + [z5") (1+ |22 + |25 = 2122*) | (B39)

and the coset Kahler metric is hence simply obtained as:

82

_7 = w =B
9.9, K (zy,zy) dz* ® dz (B.39)

8up dz* ® dzf =

Another commonly used su (3) basis is given by the Gell-Mann matrices:

0 10 0 10 1 0 0
1 1 1
Y1=—=11 0 0 Y2=-—=1-1 0 0 3=—7=10 —1 0
210 0 0 210 0 0 2 0 0 o0
0 0 1 0 0 1 000
1 1 1
=510 00 B5=-510 00 Y6=-==10 0 1
2\ 0 0 2 21 0 0 20 1 0
0 0 0 1 0 0
77=%001 78:%010
0 -1 0 0 0 —2

(B.40)

which presents the advantage of being orthonormal « (A;, Aj) = &j;. In this case the
Cartan subalgebra is generated by ¢ = (A3, Ag).

B4 USp(4)

The symplectic group Sp (4,C) is the set of 4 x 4 complex matrices that preserve the
symplectic form J:

] :( 0 HZOX2> (B.41)

—Ihyo

that is

Sp(4,C)={gl&'Ig=T} (B42)
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The unitary symplectic group USp (4,C) is the compact group obtained as the inter-
section of Sp (4,C) with U (4):

USp (4,C) =Sp(4,C)NnU (4) (B.43)

It follows easily that the Lie algebra usp (4) is the set of complex matrices X such that:
usp (4) = {X | X'J+ X' =0} (B.44)

To obtain the the Cartan-Weyl basis { H,, E% } we need to choose the positive roots

0y =[V2/2,—V2/2]  ay=1[0,V2] w3=[V2/2,v2/2] ay=[V2,0] (B45)

A
a:
o =0, +a,
o=, +a,
O(l
Y
(a) SU(2) (b) USp(4)

Figure B.1: Root system for su (3) and sp(4).

and the Ny, coefficients:
Nip =1 Niz=2 (B.46)

The defining realization is given by the following choice:

10 0 0 000 0 01 0 0
00 0 O 010 0 00 0 O
Hi=7100 -1 0] =%oo0o0 o B 00 0 O
00 0 O 000 -1 00 -1 0
0000 000 1 0010
pr_ |00 01 pr_ |00 10 pr_ [0 000
2 0000 3 0000 4 0000
0000 0000 0000
(B.47)

and E~% = (E*)".
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Just like in the case of SU (3), the general element in USp (4) is written as:

27v3 — 20, — +
g(vwwﬂ-—en)knE1+—3%Ez+-7327f”E3+f“72 3%” 'ME4]elﬂhHm

_ B 2B+ — 3488
oo [+ B BB

V2

B%Bz - 5153 + 54 EI] elllel"'leHZ —

1 0 0 0 fi 0 0 0 1 Bl ‘B4 Bg
_ 1 1 0 0 0 f2 0 0 0 1 *131‘32 + ‘33 ‘Bz
Y4 —mr2tr 1 -m) |0 0 1/ 0 0 0 L 0
Y3 Y2 0 1 0 0 0 1/f> 0 0 —B1 1
e 0 0 0
0 ¢ 0 0

(B.48)
0 0 0 e

A orthonormal basis for the usp (4), similar to the Gell-Mann matrices system is
given by the following set of matrices:

1 0 0 0 000 O 01 0 O
7 _ 1|00 0 0 7o_ 1|0 10 0 ._1|t 0 0 0
=20 0 =1 0 27210 00 O 37210 0 0 —
00 0 O 000 —1 00 — 0
0 1 0 0 0000 0 0 0 O
71|10 0 0 7._ 1|00 0 ro_ 1|0 0 01
47210 0 0 1 5210 0 0 0 6 210 0 0 0
0 0 -1 0 0100 0 -1 0 0
00 0 1 0 0 01 00 10
1lo o0 1 0 1o o 10 1o o0 o0 o0
7=210 1 0 0 Ts=210 -1 00| ®=%|: 00 0
1 0 0 0 -1 0 0 0 000 0
0 010
m:i—o 000
V2|l-1 0 0 0
0 000

(B.49)



APPENDIX C

Symmetric deformations of SL(2,R)

The group manifold of SL(2,R) is anti de Sitter in three dimensions. Metric and anti-
symmetric tensor read (in Euler coordinates, see App. B):

ds? =12 {Clp2 + sinh? p d¢? — cosh? p de} , (C.1a)
Hp3) = L?sinh2pdp A d¢ A dT, (C.1b)

with L related to the level of SL(2,R); as usual: L = v/k+ 2. In the case at hand,
three different lines of symmetric deformations arise due to the presence of time-like
(J3, ?), space-like (J!, J1, J2, J?), or null generators [FR03, F94, IKP03]. The residual
isometry is U(1) x U(1) that can be time-like (L3, R3), space-like (Lp, Ry) ornull (L, +
L3, Ry + R3) depending on the deformation under consideration.

The elliptic deformation is driven by the J°J° bilinear. At first order in a’ the back-
ground fields are given by

sinh? p d¢? — K3 cosh? p d72

dSZ —kld 2+ , (C.2a)
g O ()
K3 sinh 2p
Hyg = k—2"—"Fdp Ad¢p AdrT, (C.2b)
3 O, (0)? P ¢
@ — Onl0) (C.20)
K3

where Oy, (p) = cosh? p — k3 sinh? p. At extreme deformation (k3 — 0), a time-like
direction decouples and we are left with the axial?> SL(2,R);/U(1)gme. The target
space of the latter is the cigar geometry (also called Euclidean two-dimensional black
hole):

e® ~ cosh? 0, (C.3)

ds? = k[dp2+tanh2pd<p2, (C4)

0<p<ooand 0 < ¢ <2m).

IThe extra index “3” in the deformation parameter x reminds that the deformation refers
here to J3J°.

2The deformation parameter has two T-dual branches. The extreme values of deformation
correspond to the axial or vector gaugings. The vector gauging leads to the trumpet. For the
SU(2),/U(1), both gaugings correspond to the bell.
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Similarly, with J?J? one generates the hyperbolic deformation. This allows to reach
the Lorentzian two-dimensional black hole times a free space-like line. Using the
coordinates defined in Eq. (B.28), we find:

sin t dg? + x3 cos? t dip?

ds? =k |—df? + , C5
0 (59
2 .
K5 sin 2t
H[3] = kmdt Ady Ade, (C.5b)
2
e® = B (t) (C.5¢)
Ko !

where Ay, (t) = cos? t + x3 sin? t. This coordinate patch does not cover the full AdSs.
We will expand on this line in Sec. 4.4.

Finally, the bilinear (J' 4 J?) (J' + J°) generates the parabolic deformation. Using
Poincaré coordinates in Eq. (B.26)* we obtain:

du? dx?%-—dr?

2 _ _
ds’ =k | <+ S | (C.6a)
Hpy = kziuzdu AdT AdX, (C.6b)
(u2+1/v)
w2+ 1/v
e? — an (C.60)

The deformation parameter is 1/v. At infinite value of the parameter v, we recover
pure AdSs; for v — 0, a whole light-cone decouples and we are left with a single
direction and a dilaton field, linear in this direction.

The physical interpretation of the parabolic deformation is far reaching, when
AdS; is considered in the framework of the NS5 /F1 near-horizon background, AdS3 x
S% x T*. In this physical set-up, the parameter v is the density of F1’s (number of fun-
damental strings over the volume of the four-torus T4) [IKP03, KKPRO3]*. At infinite
density, the background is indeed AdS; x S3 x T#. At null density, the geometry be-
comes R x $% x T* plus a linear dilaton and a three-form on the S5.

Note that x* = X + T.
4Q0ur present convention for the normalization of the dilaton results from Eq. (3.15b). It
differs by a factor —2 with respect to the one used in those papers.



APPENDIX D

Spectrum of the SL(2,IR) super-wzw

In this appendix we give a reminder of the superconformal wWzw model on SL (2, R),
(for a recent discussion see [GKPS03]). The affine extension of the s[(2,IR) algebra
at level k is obtained by considering two sets of holomorphic and anti-holomorphic
currents of dimension one, defined as

M (z) = k(TV, Adgg™'9g), ™ (2) =k(T™, g '0g), (D.1)

where (-, -) is the scalar product (Killing form) in s[(2,R), { T™ } is a set of generators
of the algebra that for concreteness we can choose as follows:

T! =o', T? = 03, T3 = o2 (D.2)
Each set satisfies the OPE

k&MN + MNP]P (w)
2(z—w)? z—w

" () T (w) ~

, (D.3)

where fMN, are the structure constants of the sl (2, R) algebra. The chiral algebra con-
tains the Vlrasoro operator (stress tensor) obtained by the usual Sugawara construc-
tion:

JAIAE
D

T(z)= PR

(D.4)

M

A heterotic model is built if we consider a left-moving A/ = 1 extension, obtained
by adding 3 free fermions which transform in the adjoint representation. More explic-
itly:

M .

'+ D PMOPy ¢, (D.5)

=L
2
y (ZIM v — *hé)fMNP PPNy > . (D.6)

On the right side, instead of superpartners, we add a right-moving current with total
central charge ¢ = 16.
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Spectrum of the SL(2,R) super-wzw model

Let us focus on the left-moving part. The supercurrents are given by ¢y + 60+v/2/kJu
where:

Iu = ]M - %ZeMNpl,UNlPP} (D-7)
NP

it should be noted that the bosonic J™ currents generate an affine sl (2,R) algebra at
level k + 2, while the level for the total Jy currents is k.

Let us now single out the operator that we used for both the deformation (Egs. (4.87))
and the identifications (Sec. 4.4):

Jo = J% + 113 (D.8)

Let us now bosonize these currents as follows:

T = —\/58192, (D.9)
JF=—y/ k%zaez, (D.10)

Y1¢3 = 0H, (D.11)

and introduce a fourth free boson X so to separate the ¢ components both in 6, and

H:
2 k+2
IH= /20, + 1,/ 22X, (D.12)
K k
@:ﬁ( k;2192+zx>. (D.13)

A primary field ®;,; of the bosonic SL (2, R),, , with eigenvalue p with respect to
J? and i with respect to J? obeys by definition

N i (w, )

2 _
J7(2) Djun (w, ) T a_w (D.14a)
_ 1P, (w, )
2 (3 o) o P \ W
@iy ~— D.14b
J7(2) Pjyup (w, @) P ( )
Since @, is purely bosonic, the same relation holds for the supercurrent:
Dy (w, @
T2 (2) @jyu (w, @) ~ #Djup (@, D) (D.15)

zZ—w

Consider now the holomorphic part of ®;,; (z,2). If ®;,, is viewed as a primary in the
SWZW model, we can use the parafermion decomposition as follows:

D, (z) = Uj, (z) V2R, (D.16)

where U}, (z) is a primary of the superconformal SL(2R);/u(1). On the other hand, we
can just consider the bosonic WZW and write:

2m k+2
q)j]l (z) = V]']i (2) o2/ (k+2)6y _ ij (2) == 2 Xty 2/k192/ (D.17)

where now Vj, (z) is a primary of the bosonic SL(2R);2/u(1). The scaling dimension
for this latter operator (i.e. its eigenvalue with respect to Ly) is then given by:

k k+2

» )
A(VW)ZJ(JH) p (D.18)
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An operator in the full supersymmetric SL (2,IR), theory is then obtained by adding
the !¢ fermionic superpartner contribution:

2 k2
q)jl”V (Z) = CDW (z) evH — ij (z) el<k+2 +V) k Xel 2/k(u+v)dy (D.19)

that is an eigenvector of [/, with eigenvalue i + v where y € R and v can be decom-
posed as v =n+a/2 withn € N and a4 € Z; depending on whether we consider the
NS or R sector. The resulting spectrum can be read directly as:

4 _ Gty @2 k+2( 2u a\* 1 a2 _
A (P (2)) = k k12 2k \kxz2 "3 +k(”+”+2)_

_ _@ — % (n n %)2 (D.20)

Of course the last expression was to be expected since it is the sum of the s[(2,R); ,
Casimir and the contribution of a light-cone fermion. Nevertheless the preceding con-
strucion is useful since it allowed us to isolate the [, contribution to the spectrum
(4 +v)* /k.

The right-moving part of the spectrum is somewhat simpler since there are no
superpartners. This means that we can repeat our construction above and the eigen-
value of the Ly operator is simply obtained by adding to the dimension in Eq. (D.18)
the contribution of the J? operator and of some U (1) coming from the gauge sector:

N (R VI { 2o ( ﬁ)z}
A q)"”?l (Z) - — - + +i Vl+* 7 (Dz]')
(i (2)) K kr2 (k2 ki \"T2

where again 71 € N and 4 € Z; depending on the sector.
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1. Introduction

Near-horizon geometries of NS5-branes [CHS91], NS5/F1 or S-dual versions of those [ABS90,
BPS98] have been thoroughly analyzed over the past years. These involve AdSz or S°

spaces and turn out to be exact string backgrounds, tractable beyond the supergravity

approximation. They offer a unique setting in which to analyze AdS/CFT correspondence,

black-hole physics, little-string theory, ...
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An important, and not yet unravelled aspect of such configurations is the investigation
of their moduli space. String propagation in the above backgrounds is described in terms
of some exact two-dimensional conformal field theory. Hence, marginal deformations of
the latter provide the appropriate tool for exploring the moduli of the corresponding string
vacua.

A well-known class of marginal deformations for wzw models are those driven by left-
right current bilinears [CS89, FRO3]: [ d?2JJ. These can be “symmetric” in the sense
that both .J and J are generators of the affine algebra of the model. However, asymmetric
deformations can also be considered, where either .J or .J correspond to some other U(1),
living outside of the chiral algebra of the model. These deformations describe the response
of the system to a finite (chromo) electric or magnetic background field and since these
deformations are exactly marginal, the gravitational back-reaction is properly taken into
account at any magnitude of the external field [KK95].

The purpose of this note is to report on the asymmetric deformations of the SL(2,R)
heterotic string background. Since SL(2,R) has time-like, null and space-like generators,
three distinct asymmetric deformations are possible, corresponding respectively to mag-
netic, electromagnetic and electric field backgrounds. The former case has been recently
analyzed from this perspective [Isr04] and the corresponding deformation was shown to
include Gédel space—time, which is therefore promoted to an exact string background (de-
spite the caveats of closed time-like curves). The latter case, on the other hand, corresponds
to a new deformation, which connects AdS3 with R x AdSs.

This observation is far reaching: while symmetric deformations usually connect wzw
models to some U (1)-gauged version of them [GK94], asymmetric deformations turn out to
connect the original theory to some geometric coset, with electric or magnetic background
fields. This holds for the SU(2)y, where the limiting magnetic deformation has R x 52
geometry, and can be generalized to any wzw model: geometric cosets with electric or
magnetic background fields provide thus ezact string vacua. Here we focus on the S? and
AdSy examples, previously discussed as heterotic coset constructions in [Joh95] (see also
[LS94]). Moreover, they both enter in the near-horizon geometry of the four-dimensional
Reissner-Nordstrém extremal black hole, AdSy x S2, which is here shown to be an exact
string vacuum. We also show how Ha appears as an exact CFT, although this background
is of limited interest for string theory because of lack of unitarity.

The paper is organized as follows. First we review the magnetic deformation of S3,
appearing in the framework of the SU(2); wzw model. The appearance of the two-
sphere plus magnetic field as exact string background is described in Sec. 2, where we also
determine the corresponding partition function. The AdSs case is analyzed in Sec. 3, where
its asymmetric deformations are described in detail from geometrical and two-dimensional-
CFT points of view. We also investigate their spectra. Limiting deformations are discussed
in Sec. 4. There, we show how to reach the AdSy = SL(2,R)/U(1) geometric coset with
electric field. These backgrounds are consistent and exact string vacua.

The Hs geometric coset of AdSs is also shown to appear on the line of magnetic
deformation, with imaginary magnetic field though. The near-horizon geometry of the four-
dimensional Reissner-Nordstrom extremal black hole is further discussed in Sec. 5. Section
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6 contains a collection of final comments, where we sort various geometries that should
be investigated in order to get a comprehensive picture of the general AdSs landscape,
and its connection to other three-dimensional geometries. Four appendices provide some
complementary/technical support. Appendix A sets the general framework for geometric
deformations of a metric, designed to keep part of its original isometry. Appendices B
and C contain material about SU(2) and SL(2,R) groups. A reminder of low-energy field
equations for the bosonic degrees of freedom of heterotic string is given in App. D.

2. Magnetic deformation of S3

SU(2)r, wzw model magnetic deformations were analyzed in [KK95], for both type IT and
heterotic string backgrounds. For concreteness, we will concentrate here on the latter case.
In contrast to what happens in flat space-time, these deformations are truly marginal
in the background of a three-sphere plus Ns flux, and preserve N = (1,0) world-sheet
supersyminetry.

Consider heterotic string on R x §3 x T%. The theory is critical provided we have
a linear dilaton living on the R%3, with background charge Q@ = 1/v/k + 2, where k is the
level of the SU(2)1, x SU(2)r affine algebra. The target-space geometry is the near-horizon
limit of the solitonic NS5-brane [CHS91].

The two-dimensional N = (1,0) world-sheet action corresponding to the S* factor is

a=1

1 k _ _ - _ 3 _
Ssuan = 5 /d22{4 (9ada+ 0B IB+ vy Dy + 2cos B Da ) +Zwawa}, (2.1)

where ¥* are the left-moving free fermions, superpartners of the bosonic SU(2); currents,
and («,3,7) are the usual Euler angles parameterizing the SU(2) group manifold (see
App. B for a reminder). In this parameterization, the chiral currents of the Cartan subal-
gebra read:

JP=k(0y+cosBda) , J*=k(da+cospB D) (2.2)

(Tab. 1) with the following short-distance expansion:
J3(2)J3(0) = . + reg. (2.3)
222

and similarly for the right-moving one. The left-moving fermions transform in the adjoint
of SU(2). There are no right-moving superpartners but a right-moving current algebra
with total central charge ¢ = 16 (realized e.g. in terms of right-moving free fermions). The
currents of the latter are normalized so that the Cartan generators jé of the group factor
G satisfy the following short-distance expansion:

kah'
272

Té(2)JL(0) =

+reg., i,j=1,...,rank(G) (2.4)

with h/ = f"'k'[ f[jk / g, 1  and g* being the structure constants and dual Coxeter number
of the group G.
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The background metric and NS two-form are read off directly from (2.1):
k
ds? = 1 dp? +sin? Bda? + (dy + cosﬁda)2 , (2.5)
k
B= Zcosﬁda/\ dy. (2.6)

They describe a three-sphere of radius L = vk and a Ns three-form whose field strength
is dB = % wg) (wyg) stands for the volume form given in Eq. (B.8)).

A comment is in order here. In general, the background fields Gu, Bgp, - . .receive
quantum corrections due to two-dimensional renormalization effects controlled by o' (here
set equal to one). This holds even when the world-sheet theory is exact. Conformal
invariance requires indeed the background fields to solve Egs. (D.11) that receive higher-
order o' corrections. The case of WzZw models is peculiar in the sense that the underlying
symmetry protects Gy, and By from most corrections; these eventually boil down to the
substitution k — k + 2 in Eqgs. (2.5) and (2.6), see e.g. [Tse94].

Notice finally that the SU(2); plus linear dilaton background introduces a mass gap
with respect to flat space: p? = 1/(k+2). This plays the role of infra-red regulator,
consistent with all string requirements including supersymmetry.

2.1 Squashing the three-sphere

We now turn to the issue of conformal deformations. As already advertised, we will not
consider left-right symmetric ones, which are purely gravitational. Instead, we will switch
the following N = (1,0) world-sheet supersymmetry compatible perturbation on

/ . H _
0 Smagnetic = k;i: /(122 (J3 + 11/111/)2) Ja: (2.7)

Jg being any Cartan current of the group factor G.

Although one may easily show the integrability of this marginal perturbation out of
general arguments (see e.g. [CS89]) it is instructive to pause and write an explicit proof.
If we limit ourselves to the bosonic sector, we can bosonize the Jg current as Jg = zécp
and interpret ¢ (z,z) as an internal degree of freedom (see App. D for a more precise
discussion). Incorporating the kinetic term for the ¢ field, the deformed action reads:

k _
S = SSU(Q),‘_ (a’ ﬁv’y) + 5Smagn(:tic + ﬁ / dQZ 8998(,9, (28)

where Sgp(2), (Eq. (2.1)) now contains the bosonic degrees of freedom only. The terms in
previous expression can be recollected so to give:

k. ke (1 —2H? _
S = Ssu(2), (Oé, B+ kGHgo> + %/ A2z 9pdep, (2.9)

which is manifestly exact. As a corollary, we observe that in the present setting, O (a)
solutions of Egs. (D.11) are automatically promoted to all-order ezact solutions by simply
shifting k — k + 2, just like for an “ordinary” wzw model.




168 Bibliography

The effect of the deformation at hand is to turn a (chromo)magnetic field on along
some Cartan direction inside G, which in turn induces a gravitational back-reaction on
the metric and the three-form antisymmetric tensor. Following the previous discussion
and App. D (i.e. by using Kaluza-Klein reduction), it is straightforward to read off the
space—time backgrounds from (2.1) and (2.7). We obtain:

ds? = % [dﬁz +sin? Bda® + (1- 2H2) (dv + cos Bda)? (2.10)

2
A= 1/k—kH(dA/+cosﬁda) (2.11)
€]

for the metric and gauge field, whereas neither the B-field nor the dilaton are altered. The

and

three-form field strength is however modified owing to the presence of the gauge field (see
Egs. (D.11)):

k k .
Hyy = dB - IGA ndA= 7 (1-2H?)sinfda A dB A dy (2.12)

(the non-abelian structure of the gauge field plays no role since the non-vanishing compo-
nents are in the Cartan subalgebral).

The deformed geometry (2.10) is a squashed three-sphere: its volume decreases with
respect to the original S3 while its curvature increases. These properties are captured in
the expressions of the volume form and Ricci scalar:

3/2
wpg) = (g) V|1 =2H?|sinfda A dS A dv, (2.13)

R= %(3+2H2). (2.14)
The latter is constant and the background under consideration has U(1) x SU(2) isometry
generated by the Killing vectors {Ls, R, R2, R3} whose explicit expression is reported in
App. B, Tab. 1.

This situation should be compared to the symmetric deformation generated by the the
marginal operator (J3 + iwlz/JQ) J3. This is purely gravitational and alters the metric, the
B-field and the dilaton [GK94]. The isometry is in that case broken to U(1) x U(1) and
the curvature is not constant.

At this point one might wonder to what extent the constant curvature of the asym-
metric deformation is due to the large (almost maximal) residual isometry U(1) x SU(2).
This question is answered in App. A, where it is shown, in a general framework, that the
isometry requirement is not stringent enough to substantially reduce the moduli space of
deformations. In particular, the resulting curvature is in general not constant.

In the case under consideration, however, the geometric deformation is driven by an in-
tegrable marginal perturbation of the sigma-model. Combined with the left-over isometry,
this requirement leads to the above geometry with constant curvature, Eq. (2.14). From

!Similarly, the (chromo)magnetic field strength is given by F = dA.
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a purely geometrical point of view (i.e. ignoring the CFT origin), such a deformation
joins the subclass of one-parameter families described in App. A, obtained by demanding
stability i.e. integrability on top of the symmetry.

Notice finally that the U(1) x SU(2) isometry originates from an affine symmetry at
the level of the sigma-model. The asymmetric marginal deformation under consideration
breaks the original affine SU(2);, down to U(1)1,, while it keeps the affine SU(2)g unbroken.

It is worthwhile stressing that this asymmetric and the previously quoted symmetric
deformations of the three-sphere background are mutually compatible. They can be per-
formed simultaneously, although in that case the magnetic field can lead to (tachyonic)
instabilities before reaching its maximal value [KK95].

All the above discussion about integrability, geometry and isometries of the SU(2)
magnetic perturbation is valid for the various asymmetric deformations of SL(2,R) that
will be analysed in Sec. 3.

2.2 Critical magnetic field and the geometric coset

It was made clear in [GK94] that the symmetric deformation of SU(2);, wzw is a well-
defined theory for any value of the deformation parameter. For an infinite deformation,
the sigma-model becomes a gauged wzw model SU(2),/U(1) (bell geometry) times a
decoupled boson. In some sense, the two U(1) isometries present on the deformation line
act, for extreme deformation, on two disconnected spaces: the bell and the real line.

As already stressed, the magnetic deformation of SU(2); preserves a larger symmetry,
namely a U(1) x SU(2), and has constant curvature. We are in the framework discussed
in App. A, Egs. (A.1) and (A.3) with h = 2H2. This deformation has an end-point where
the space is expected to factorize into a line with U(1) isometry and a two-dimensional
constant-curvature space with SU(2) isometry, which can only be a two-sphere.

These statements can be made more precise by considering the background (2.10).
The deformation parameter H? is clearly bounded: H? < 1/2 (the boundary H2,, = 1/2
of the moduli space is reminiscent of the Im (U) — oo limit in a two-dimensional toroidal
compactification). In general, a three sphere can be seen as a S Hopf fibration over a base
S2. Tt is clear from expressions (2.10) and (2.13) that the effect of the magnetic field consists
in changing the radius of the fiber. At H? = H2

faxs this radius vanishes and the states

coupling to the magnetic field become infinitely massive and decouple. The corresponding
dimension decompactifies, and factorizes from the three-dimensional geometry:
3

5% ———RxS? (2.15)
H?—H.

max

where S? is the geometric coset SU(2)/U(1). The My — SU(2)/U(1) fibration trivializes
in this limit. This can be made more transparent by introducing a new coordinate:

y = mv. (2.16)
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The metric and volume form now read:

k k(1 k(1
ds® = 1 [d,@2 +sin26doz2] +dy?+2 5 (5 - H2) cos 3 dady+§ (5 — HZ) cos? B da?
(2.17)
and P

Wy = sin Bda A dB A dy. (2.18)

For H? close to H2,,, the y-direction factorizes

k

ds? ———— dy? + = [dB* +sin? Bda?], (2.19)

H2 K2 4

max

while the curvature (R — 8/k) is entirely supported by the remaining two-sphere of radius
\/k/4. The other background fields read:

F= /2 Henpdan df ——— /- sinpdan s, (2.20)
ka H2— i,V ko
Y
H[3] = 5 5 —H smﬂda A d,3 A dy m 0. (221)

The above analysis deserves several comments. Our starting point was a marginal
deformation of the SU(2);, wzw model embedded in heterotic strings and induced by a
space-time (chromo)magnetic field. Our observation is here that the corresponding moduli
space has a boundary, where the background is R x S?, with finite magnetic field and
no three-form NS background. Being a marginal deformation, this background is ezact,
showing thereby that the geometric coset is as good as a gauged wzw model background.
The latter appears similarly as the end-point of a purely gravitational deformation; it
carries neither magnetic field nor Hpsj, but has a non-trivial dilaton.

Notice also that it was observed in the past that S? could provide part of a string
vacuum in the presence of RR fluxes [FKS95], but as usual when dealing with RR fluxes,
no exact conformal field theory description is available.

The procedure we have developed so far for obtaining the two-sphere as an exact
background in the presence of a magnetic field is easily generalizable to other geometric
cosets of compact or non-compact groups. We will focus on the latter case is Sec. 3, and
analyze the electric/magnetic deformations of AdSs.

Our last comment concerns the quantization of the magnetic flux. At the limiting
value of the deformation, the flux of the gauge field through the two-sphere is given by:

[k .|k
Q:/SQFZ %/52(,(12— %471'7 (2.22)

where wy stands for the volume form of a unit-radius two-sphere. Therefore, a quantization
of the magnetic charge is only compatible with levels of the affine algebras such that:

k
— =p?, pel. (2.23)
ka
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Actually, it was shown in [Joh95] that the model corresponding to the critical magnetic
field can be obtained directly with the following asymmetric gauged wzw model:

SU(2) x U(1)k,

— om0 (2.24)

where the left gauging lies in the SU(2); wzw model and the right gauging in the U (1),
of the gauge sector. The cancellation of the anomalies of the coset dictates a condition on
the level of SU(2), similar to (2.23).

2.3 Character formulas and modular invariance

We will here construct the contribution of the squashed three-sphere to the partition func-
tion. This contribution is modular-covariant, and combines with the remaining degrees
of freedom into a modular-invariant result. Our computation will also include the S?
limiting geometry. We will consider the case kg = 2, i.e. a U(1) algebra generated by
one right-moving complex fermion. We begin with the following combination of SU(2)j_2
supersymmetric characters and fermions from the gauge sector:

(k—2)/2 » 5 rh
[ } Z M7 i 19“ v M. (2.25)

J,7=0 1
where the x7’s are the characters of bosonic SU(2)x_2, (a, b) are the Zs boundary conditions
for the left-moving fermions? and (h, g) those of the right-moving — gauge-sector — ones. We
can choose any matrix M 7 compatible with modular invariance of SU (2)g—2. Furthermore,
the supersymmetric SU(2); characters can be decomposed in terms of those of the N = 2
minimal models:

() 9 m (=Y ¢ m Ok (T, —3]:) : (2.26)
meLoy,
where the N = 2 minimal-model characters, determined implicitly by this decomposition,
are given in [Kir88, Dob87, Mat87, RY87].
Our aim is to implement the magnetic deformation in this formalism. The deformation
acts as a boost on the left-lattice contribution of the Cartan current of the supersymmetric
SU(2), and on the right current from the gauge sector:

~[h (i L(V2kn+ _1(p4h)?
0,1 3| = S emalars) 3 (VI ) ()
-5 g

n,n

. Z e,m—q(nJr % [(\/771-%— n ) cosh z+(ﬁ+%) sinh z} :
mn, n

% [(fH» ) cosh z+ (\/7n+ \}L) sinh z] 2

x q (2.27)

2We have removed the contribution of the fermion associated to J* since it is neutral in the deformation
process.
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The boost parameter x is related to the vacuum expectation value of the gauge field as

follows:
ollows 1

1-2H?%
We observe that, in the limit H? — H2

max’

coshz = (2.28)

the boost parameter diverges (z — 00),
and the following constraints arise:

4(k 4 2)n + 2m + 22k + V2kh = 0. (2.29)

Therefore, the limit is well-defined only if the level of the supersymmetric SU(2); satisfies
a quantization condition:
k=2p*, peZ (2.30)

This is exactly the charge quantization condition for the flux of the gauge field, Eq. (2.23).
Under this condition, the constraints (2.29) lead to

m+ph=0 mod 2p =: 2pN, (2.31a)
fi=2pn+N, N €L, (2.31b)

As a consequence, the U(1) corresponding to the combination of charges orthogonal to (2.29)
decouples (its radius vanishes), and can be removed. We end up with the following expres-
sion for the S? partition function contribution:

ash B . N+BY A a .
Zg2 {b;g} = JXJ; M7 Ngzz om9(N+5) Cp(QN—h) {b} , (2.32)
J 2p

in agreement with the result found in [BJKZ96] by using the coset construction. The
remaining charge N labels the magnetic charge of the state under consideration. As a
result, the R-charges of the left N = 2 superconformal algebra are:

a N-—h/2

QR=n+§ Y mod 2. (2.33)

We now turn to the issue of modular covariance. Under the transformation 7 — —1/7,
the minimal-model characters transform as:

(k-2)/2

cl m (%) :ez%ab% 3 sin (%@3'“)) 3 el Lba} (7). (2.34)

3'=0 m' €Zay,

On the one hand, the part of the modular transformation related to j is precisely compen-
sated by a similar term coming from the transformation of ¥/, in Eq. (2.32). On the other
hand, the part of the transformation related to the spin structure (a,b) is compensated by
the transformation of the other left-moving fermions in the full heterotic string construc-
tion. We can therefore concentrate on the transformation related to the m charge, coming
from the transformation of the theta-functions at level k. We have

. N(m/+pg)

—ur h 1 o 7@7’ v j b
Z e Q(N+Z) C;(QN—/’L) |:Z:| — E Z Z e? (y P )}82 2p ern’ |:_a:|7

N€Za, m'€Ly 5 NELyy

(2.35)
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summing over N in Zg, leads to the constraint:
m' +pg=0 mod 2p:=—2pN’', N' € Zg,. (2.36)
So we end up with the sum

ef%hg Z efwrh(N’+%)cZ

b
} . (2.37)
N'€Zap

(2N'—g) La
combining this expression with the modular transformation of the remaining right-moving
fermions of the gauge sector, we obtain a modular invariant result.

In a similar way one can check the invariance of the full heterotic string under 7 — 7+1.

3. Electric/magnetic deformations of AdS;

Anti-de-Sitter space in three dimensions is the (universal covering of the) SL(2,R) group
manifold. It provides therefore an exact string vacuum with NS background, described in
terms of the SL(2,R); wzw model, where time is embedded in the non-trivial geometry.
We will consider it as part of some heterotic string solution such as AdSz x S x T* with
NS three-form field in AdS3 x S (near-horizon Ns5/F1 background). The specific choice
of a background is however of limited importance for our purpose.

The issue of AdSs deformations has been raised in several circumstances. It is richer
than the corresponding S® owing to the presence of elliptic, hyperbolic or parabolic elements
in SL(2,R). The corresponding generators are time-like, space-like or light-like. Similarly,
the residual symmetry of a deformed AdSs has U(1) factors, which act in time, space or
light direction.

Marginal symmetric deformations of the SL(2,R); Wzw are driven by bilinears J.J
where both currents are in SL(2,R) and are of the same kind [For94, IKP03]. These
break the SL(2,R)r, x SL(2,R)g affine symmetry to U(1);, x U(1)r and allow to reach,
at extreme values of the deformation, gauged SL(2,R);/U(1) wzw models with an extra
free decoupled boson. We can summarize the results as follows:

(a) J3J3 These are time-like currents (for conventions see App. C) and the corresponding
deformations connect SL(2,R); with U(1) x SL(2,R)x/U(1)|axial or vector- The U(1)
factor stands for a decoupled, non-compact time-like free boson?. The gauged wzw
model SL(2,R)x/U(1)]axial is the cigar (two-dimensional Euclidean black hole) ob-
tained by gauging the g — hgh symmetry with the h = expi%a2 subgroup, whereas
SL(2,R)x/U(1)|vector corresponds to the g — hgh~! gauging. This is the trumpet and
is T-dual to the cigar®. The generators of the affine residual symmetry U (1), x U(1)g
are both time-like (the corresponding Killing vectors are not orthogonal though). For
extreme deformation, the time coordinate decouples and the antisymmetric tensor is
trade for a dilaton. The isometries are time-translation invariance and rotation in-
variance in the cigar/trumpet.

3The extra bosons are always non-compact.
4 Actually this statement holds only for the vector coset of the single cover of SL(2,R). Otherwise, from
the n-th cover of the group manifold one obtains the n-th cover of the trumpet [IKP03].

~10 -
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(b) J2J? The deformation is now induced by space-like currents. So is the residual affine
symmetry U(1);, X U(1)g of the deformed model. Extreme deformation points are
T-dual: U(1) x SL(2,R);/U(1) where the U(1) factor is space-like, and the U(1)
gauging of SL(2,R); corresponds to g — hgh(™1) with h = expf%03 [DVV92]. The
corresponding manifold is (some sector of ) the Lorentzian two-dimensional black hole
with a non-trivial dilaton.

(¢) (J' 4 J3)(J' + J?) This is the last alternative, with both null currents. The defor-
mation connects AdS3 with R x R! plus a dilaton linear in the first factor. The
UL x U(1)R left-over current algebra is light-like®. Tensorized with an SU(2)y,
CFT, this background describes the decoupling limit of the NS5/F1 setup [IKP03],
where the fundamental strings regularize the strong coupling regime.

Our purpose here is to analyze asymmetric deformations of AdSs. Following App. A
and the similar analysis of Sec. 2.1 for S3, we expect those deformations to preserve a
U(1)r, x SL(2,R)r symmetry appearing as affine algebra from the sigma-model point of
view, and as isometry group for the background. The residual U(1)y, factor can be time-
like, space-like or null depending on the current that has been used to perturb the wzw
model.

It is worth to stress that some deformations of AdSs have been studied in the past
irrespectively of any conformal sigma-model or string theory analysis. In particular it was
observed in [RS98], following [RT83] that the three-dimensional® Godel solution of Einstein
equations could be obtained as a member of a one-parameter family of AdSs deformations
that precisely enters the class we discuss in App. A. Godel space is a constant-curvature
Lorentzian manifold. Its isometry group is U(1)x.SL(2,R), and the U(1) factor is generated
by a time-like Killing vector. These properties hold for generic values of the deformation
parameter. In fact the deformed AdS3 under consideration can be embedded in a seven-
dimensional flat space with appropriate signature, as the intersection of four quadratic
surfaces. Closed time-like curves as well as high symmetry are inherited from the multi-
time maximally symmetric host space. Another interesting property resulting from this
embedding is the possibility for changing the sign of the curvature along the continuous
line of deformation, without encountering any singular behaviour (see Eq. (3.2)).

It seems natural to generalize the above results to new AdSs deformations and pro-
mote them to exact string backgrounds. Our guideline will be the requirement of a
U(1) x SL(2,R) isometry group, with space-like or light-like U(1)’s, following the pro-
cedure developed in App. A.

We will first review the time-like (elliptic) deformation of AdSs3 of [RS98] and recently
studied from a string perspective in [Isr04]. Hyperbolic (space-like) and parabolic (light-
like) deformations will be analyzed in Secs. 3.2 and 3.3. All these deformations are of
the type (A.1) and (A.3) or (A.4). We show in the following how to implement these

®The isometry is actually richer by one (two translations plus a boost), but the extra generator (the
boost) is not promoted to an affine symmetry of the sigma-model.

S1n fact, the original Godel solution is four-dimensional, but the forth space dimension is a flat spectator.
In the following, we will systematically refer to the three-dimensional non-trivial factor.

— 11 —
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deformations as exact marginal perturbations in the framework of the SL(2,R); wzw
model embedded in heterotic string.

3.1 Elliptic deformation: magnetic background

Consider AdSs in (p,t, ¢) coordinates, with metric given in (C.10). In these coordinates,
two manifest Killing vectors are L3z ~ 0; and Ry ~ 0y, time-like and space-like respectively
(see App. C, Tab. 2).

The deformation studied in [RS98] and quoted as “squashed anti de Sitter” reads, in
the above coordinates:

2
ds? = LI dp? + cosh? pde? — (14 2H?) (dt + sinh pdg)?| . (3.1)

It preserves a U(1) x SL(2,R) isometry group. The U(1) is generated by the time-like
vector Lg of one original SL(2,R), while the right-moving SL(2,R) is unbroken (the ex-
pressions for the {Ls, R, Ro, R} Killing vectors in Tab. 2 remain valid at any value of the
deformation parameter). The Ricci scalar is constant

2
while the volume form reads:
L3
wig) = §\/|1+2H2\ coshp dp A do A dt. (3.3)

For H? = 1/2, this deformation coincides with the Godel metric. It should be stressed,
however, that nothing special occurs at this value of the deformation parameter. The
properties of Godel space are generically reproduced at any H? > 0.

From a physical point of view, as it stands, this solution is pathological because it has
topologically trivial closed time-like curves through each point of the manifold, like Gédel
space-time which belongs to this family. Its interest mostly relies on the fact that it can be
promoted to an exact string solution, with appropriate NS and magnetic backgrounds. The
high symmetry of (3.1), is a severe constraint and, as was shown in [Isr04], the geometry
at hand does indeed coincide with the unique marginal deformation of the SL(2,R);, wzw
that preserves a U(1)r, x SL(2,R)g affine algebra with time-like U(1)r,.

It is interesting to observe that, at this stage, the deformation parameter H? needs
not be positive.: (3.1) solves the Einstein-Maxwell-scalar equations [RT83] for any H2.

7

Furthermore, for H? < 0, there are no longer closed time-like curves’. This statement is

based on a simple argument®. Consider a time-like curve z# = z# (\). By definition the
tangent vector J) is negative-norm, which, by using Eq. (3.1), translates into

do\* o (de)’ oy (At do)?
(a) + cosh” p D — (1+42H?) aerthPa <0. (34)

"As mentioned previously, the geometry at hand can be embedded in a seven-dimensional flat space,

with signature € — — — + + +, ¢ = sign(—H?) [RS98]. This clarifies the origin of the symmetry as well as
the presence or absence of closed time-like curves for positive or negative H?.

8This argument is local and must in fact be completed by global considerations on the manifold
(see [RS98]).

— 12 —
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If the curve is closed, dt/dA must vanish somewhere. At the turning point, the resulting
inequality, ,
(2H?sinh? p — 1) (%) >1 (3.5)
p
is never satisfied for H? < 0, whereas it is for large enough” p otherwise.

This apparent regularization of the causal pathology, unfortunately breaks down at
the string level. In fact, as we will shortly see, in order to be considered as a string
solution, the above background requires a (chromo)magnetic field. The latter turns out
to be proportional to H, and becomes imaginary in the range where the closed time-like
curves disappear. Hence, at the string level, unitarity is trade for causality. It seems that no
regime exists in the magnetic deformation of AdSs, where these fundamental requirements
are simultaneously fulfilled.

In the heterotic backgrounds considered here, of the type AdSz x S3 x T*, the two-
dimensional N = (1,0) world-sheet action corresponding to the AdSs factor is

1 koo _ _ _ i,
SSL(2’R)IC = g/dzz {Z (Bpapf Ot ot + 0¢p O — 2sinh p 8¢8t) + Nap P* 8wb} , (3.6)

where 7, = diag (+ + —), a = 1,2,3 and ¢® are the left-moving superpartners of the
SL(2,R); currents (see Tab. 2). The corresponding background fields are the metric (Eq.
(C.10)) with radius L = vk and the NS B-field:

B= —g sinh pde A dt. (3.7)

The three-form field strength is Hz = dB = —% wig) with wyz displayed in Eq. (C.11).
The asymmetric perturbation that preserves a U(1)r, x SL(2,R)g affine algebra with
time-like U(1)1, is dSmagnetic given in Eq. (2.7), where J? now stands for the left-moving
time-like SL(2,R); current given in App. C, Tab. 2. This perturbation corresponds to
switching on a (chromo)magnetic field, like in the SU(2); studied in Sec. 2. It is marginal
and can be integrated for finite values of H, and is compatible with the N = (1,0) world-
sheet supersymmetry. The resulting background fields, extracted in the usual manner from
the deformed action are the metric (3.1) with radius L = vk and the following gauge field:

A= Hﬁ(dt+sillhpd¢). (3.8)
9

The NS B-field is not altered by the deformation, (Eq. (3.7)), whereas the three-form field
strength depends explicitly on the deformation parameter H, because of the gauge-field
contribution:

ke k
Hy = dB - —FANdA= -2 (1+2H?)coshpdp A dg A dt. (3.9)

9This means p > p. where p. is the radius where the norm of 9, vanishes and switches to negative
(I19g]I> = L* (1 — 2H? sinh? p) /4). This never occurs for H* < 0.

~ 13—
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One can easily check that the background fields (3.1), (3.8) and (3.9) solve the lowest-
order equations of motion (D.11). Of course the solution we have obtained is exact, since
it has been obtained as the marginal deformation of an exact conformal sigma-model. The
interpretation of the deformed model in terms of background fields {G up, Bap, Fg} receives
however the usual higher-order correction summarized by the shift £ — k& + 2 as we have
already seen for the sphere in Sec. 2.1.

Let us finally mention that it is possible to extract the spectrum and write down the
partition function of the above theory [Isr04], since the latter is an exact deformation of
the SL(2,R); wzw model. This is achieved by deforming the associated elliptic Cartan
subalgebra. The following picture emerges then from the analysis of the spectrum. The
short-string spectrum, corresponding to world-sheets trapped in the center of the space—
time (for some particular choice of coordinates) is well-behaved, because these world-sheets
do not feel the closed time-like curves which are “topologically large”. On the contrary,
the long strings can wrap the closed time-like curves, and their spectrum contains many
tachyons. Hence, the caveats of Gddel space survive the string framework, at any value of
H? > 0. One can circumvent them by slightly deviating from the Godel line with an extra
purely gravitational deformation, driven by J2J2. This deformation isolates the causally
unsafe region, p > p. (see [Isr04] for details). It is similar in spirit with the supertubes
domain-walls of [DFS03b] curing the Godel-like space-times with RR backgrounds.

As already stressed, one could alternatively switch to negative H2. Both metric and
antisymmetric tensor are well-defined and don’t suffer of causality problems. The string
picture however breaks down because the magnetic field (Eq. (3.8)) becomes imaginary.

3.2 Hyperbolic deformation: electric background
3.2.1 The background and its CFT realization

We will now focus on a different deformation. We use coordinates (C.12) with metric (C.13),
where the manifest Killing vectors are Ly ~ 8, (space-like) and R3 ~ 9, (time-like) (see
App. C, Tab. 3). This time we perform a deformation that preserves a U(1) x SL(2,R)
isometry. The U(1) corresponds to the space-like Killing vector Lo, whereas the SL(2,R) is
generated by Ry, R, Rs, which are again not altered by the deformation. This is achieved
by implementing Eqs. (A.1) and (A.3) in the present set up, with & = 9, and h = 2H2.
The resulting metric reads:

ds? = = | dr? — cosh? rdr? + (1- 2H2) (da + sinhrdT)Q] . (3.10)

The scalar curvature of this manifold is constant

2 2
R=-13 (3+2H?) (3.11)
and the volume form
L3
Wy = 5V [T — 2H?| cosh?r dr A d7 A da. (3.12)

— 14 —
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Following the argument of Sec. 3.1, one can check whether closed time-like curves
appear. Indeed, assuming their existence, the following inequality must hold at the turning
point i.e. where dt/d\ vanishes (A being the parameter that describes the curve):

(2H% —1) (%)2 > 1. (3.13)

The latter cannot be satisfied in the regime H? < 1/2. Notice that the manifold at hand
is well behaved, even for negative H2.

Let us now leave aside these questions about the classical geometry, and address the
issue of string realization of the above background. As already advertised, this is achieved
by considering a world-sheet-supersymmetric marginal deformation of the SL(2,R); wzw
model that implements (chromo)electric field. Such a deformation is possible in the het-
erotic string at hand:

0 Selectric = @ / d*z (J? +iv'y?) Ja, (3.14)
(Jg is any Cartan current of the group G and J? is given in App. C, Tab. 3), and cor-
responds, as in previous cases, to an integrable marginal deformation. The deformed
conformal sigma-model can be analyzed in terms of background fields. The metric turns
out to be (3.10), whereas the gauge field and three-form tensor are

A:Hﬂi—k(dx—ksinhrdr), (3.15)
9

Hy = Z (1- 2H2) coshrdr A dr A daz. (3.16)

As expected, these fields solve Egs. (D.11).

The background under consideration is a new string solution generated as a hyperbolic
deformation of the SL(2,R); wzw model. In contrast to what happens for the elliptic
deformation (magnetic background analyzed in Sec. 3.1), the present solution is perfectly
sensible, both at the classical and at the string level.

3.2.2 The spectrum of string primaries

The electric deformation of AdSs is an exact string background. The corresponding con-
formal field theory is however more difficult to deal with than the one for the elliptic defor-
mation. In order to write down its partition function, we must decompose the SL(2,R)
partition function in a hyperbolic basis of characters, where the implementation of the
deformation is well-defined and straightforward; this is a notoriously difficult exercise. On
the other hand the spectrum of primaries is known'® from the study of the representations
of the Lie algebra in this basis (see e.g. [VK91], and [DVV92] for the spectrum of the hy-
perbolic gauged wzw model). The part of the heterotic spectrum of interest contains the

01y the following we do not consider the issue of the spectral-flow representations. The spectral-flow
symmetry is apparently broken by the deformation considered here.
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expression for the primaries of N = (1,0) affine SL(2,R) at purely bosonic level'l k + 2,
together with some U(1) from the lattice of the heterotic gauge group:

_ Ju-1 1 a)?

Lo = : 2<n+2) , (3.17)
_ JG=1) 1/ h\?

Lo=-22 2 4+ = - 1
0 Tt ntg) (3.18)

where the second Casimir of the representation of the SL(2, R) algebra, —j(j—1), explicitly
appears. The spectrum contains continuous representations, with j = % +1s, s € Ry.
It also contains discrete representations, with j € R4, lying within the unitarity range
1/2 < j < (k+1)/2 (see [MOO1, Pet90]). In both cases the spectrum of the hyperbolic
generator J2 is u € R. The expression for the left conformal dimensions, Eq. (3.17), also
contains the contribution from the world-sheet fermions associated to the 2)11/® current.
The sector (R or Ns) is labelled by a € Zy. Note that the unusual sign in front of the lattice
is the natural one for the fermions of the light-cone directions. In the expression (3.18)
we have similarly the contribution of the fermions of the gauge group, where h labels the
corresponding sector.

We are now in position to follow the procedure, familiar from the previous examples:
we have to (7) isolate from the left spectrum the lattice of the supersymmetric hyperbolic
current J2 + 214 and (i) perform a boost between this lattice and the fermionic lattice
of the gauge field. We hence obtain the following expressions:

G- k42 a 2u\?
Lo=— - - L. R
0 K kr2 ok \"T2Trae) T
2 (3.19)
41 2<+ + ) cosha + a4 ) sinh
N - N sh — | sin
5 % 12 n B SN T n 2 S T ,
2
- j(j—1 1 h 2
LO:_%—i_i (ﬁ+§) cosha:ﬁ-\/;(u—&-n—i-%) sinhx} . (3.20)

The relation between the boost parameter = and the deformation parameter H? is given in
Eq. (2.28), as for the case of the SU(2); deformation. In particular it is worth to remark
that the first three terms of (3.19) correspond to the left weights of the supersymmetric
two-dimensional Lorentzian black hole, i.e. the SL(2,R)/O(1,1) gauged super-wzw model.

3.3 Parabolic deformation: electromagnetic-wave background

In the deformations of Secs. 3.1 and 3.2, one SL(2,R) isometry breaks down to a U(1) gen-
erated either by a time-like or by a space-like Killing vector. Deformations which preserve
a light-like isometry do also exist and are easily implemented in Poincaré coordinates.
We require that the isometry group is U(1) x SL(2, R) with a null Killing vector for the
U(1) factor. Following the deformation procedure described in App. A for the particular

"'More precisely we consider primaries of the purely bosonic affine algebra with an arbitrary state in the
fermionic sector.
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case of light-like residual isometry, Eq. (A.4) with h = 2H?, we are lead to

— 2
as? = 12 | W2y detdan (—dﬁ)

u? u? u? (3:21)

The light-like U(1) Killing vector is Ly 4+ L3z ~ d_ (see App. C, Tab. 4). The remaining
SL(2,R) generators are {R; + Rs, R1 — R3, Ro} and remain unaltered after the deforma-
tion.

The above deformed anti-de-Sitter geometry looks like a superposition of AdSs and of
a plane wave. As usual, the sign of H? is free at this stage, and H? < 0 are equally good
geometries. In the near-horizon region (|u| > }H 2|) the geometry is not sensitive to the
presence of the wave. On the contrary, this plane wave dominates in the opposite limit,
near the conformal boundary.

The volume form is not affected by the deformation, and it is still given in (C.17);
neither is the Ricci scalar modified:

R— f%, (3.22)
Notice also that the actual value of |H| is not of physical significance: it can always be
absorbed into a reparameterization ™ — 2%/|H| and 2= — 2~ |H|. The only relevant
values for H? can therefore be chosen to be 0, £1.

We now come to the implementation of the geometry (3.21) in a string background.
The only option is to perform an asymmetric exactly marginal deformation of the heterotic
SL(2,R); wzw model that preserves a U(1)1, x SL(2,R)g affine symmetry. This is achieved
by introducing

6Selectric7magnetic =—4 Vv kkGH/ d2Z (Jl + J3 +i (wl + ¢3) ¢2) jGa (323)

(J' + J3 is defined in App. C, Tab. 4). The latter perturbation is integrable and accounts
for the creation of an (chromo)electromagnetic field

2k dat
A=24/—H . 3.24
ko u? ( )
It generates precisely the deformation (3.21) and leaves unperturbed the Ns field, Hg =
__2

As a conclusion, the AdSs plus plane-wave gravitational background is described in
terms of an exact conformal sigma model, that carries two extra background fields: a
NS three-form and an electromagnetic two-form. Similarly to the symmetric parabolic
deformation [IKP03], the present asymmetric one can be used to construct a space-time
supersymmetric background. The SL(2,R);-CFT treatment of the latter deformation would
need the knowledge of the parabolic characters of the affine algebra, not available at present.

As already stressed for the elliptic deformation (end of Sec. 3.1), the residual affine
symmetry leaves the possibility for an extra, purely gravitational, symmetric marginal
deformation. Although the systematic analysis of the full AdSs landscape is beyond the
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present scope, we would like to quote the effect of such a deformation on the parabolic line.
The perturbation which is turned on is ~ [ d?z J*J* (the currents are given in Egs. (C.7)
and Tab. 4), with parameter 1/M2. In the absence of electromagnetic background [IKP03],
this deformation connects the Ns5/F1 background to the pure Ns5 dilatonic solution. Here
it is performed on top of the asymmetric one, which introduces an electromagnetic wave,

and we find:
du? dztdz~ dz ™t 2
ds? =k | — + 5 —2H? [ 3.25
’ [uz R RSV (u2+1/M2) ] (3:25)
k 1
= dzt Adx .25%
SYCERVIVE A daT, (3.25b)
20 2 u
=k ——75 2
€ kgs U2 T 1/]\/[27 (3 5C)
plus an electromagnetic field:
2k dz™
A= Zg— = (3.25d)

ke w?+1/M?

At M? — oo, we recover the solution (3.21) and (3.24), whereas at M2 — 0 the present
solution asymptotes the linear dilaton background. Therefore, in an Ns5/F1 setup, the
deformation at hand may be relevant for investigating the holography of little string theo-
ries [ABKS98].

3.4 A remark on discrete identifications

Before closing the chapter on AdSs, we would like to discuss briefly the issue of discrete
identifications. So far we have focused on continuous deformations as a procedure for
generating new backgrounds. It appeared that under specific symmetry and integrability
requirements, the moduli of such deformations are unique, and the corresponding back-
grounds are described in terms of exact two-dimensional conformal models.

In the presence of isometries, discrete identifications provide alternatives for creating
new backgrounds. Those have the same local geometry, but differ with respect to their
global properties. Whether these identifications can be implemented as orbifolds, at the
level of the underlying two-dimensional model is very much dependent on each specific
case.

For AdSs, the most celebrated geometry obtained by discrete identification is certainly
the BTz black hole [BTZ92]. The discrete identifications are made along the integral lines
of the following Killing vectors (defined in Egs. (C.5)):

extremal case: & =2 Ry —1(Ry — R3) —1(L1+ L), (3.26a)
non-extremal case: & =1 (ry +7r_) Ry —1(ry —7_) Lo, (3.26b)

where r; and r_ are the outer and inner horizons, coinciding for the extremal black hole.
Many subtleties arise, which concern e.g. the appearance of closed time-like curves; a
comprehensive analysis of these issues can be found in [BHTZ93]. At the string theory
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level, this projection is realized as an orbifold, which amounts to realize the projection of
the string spectrum onto invariant states and to add twisted sectors [NS98, HKV02].

Besides the BTz solution, other locally AdSs geometries are obtained, by imposing
identification under purely left (or right) isometries, refereed to as self-dual (or anti-self-
dual) metrics. These were studied in [CH94]. Their classification and isometries are exactly
those of the asymmetric deformations studied in the present chapter. The Killing vector
used for the identification is (A) time-like (elliptic), (B) space-like (hyperbolic) or (C) null
(parabolic), and the isometry group is U(1) x SL(2,R). It was pointed out in [CH94] that
the resulting geometry was free of closed time-like curves only in the case (B).

We could clearly combine the continuous deformations with the discrete identifications
— whenever these are compatible — and generate thereby new backgrounds. This offers
a large variety of possibilities that deserve further investigation (issue of horizons, closed
time-like curves ... ). One can e.g. implement the non-extremal BTz identifications (3.26b)
on the hyperbolic continuous deformation (3.10) since the isometry group of the latter
contains the vectors of the former.

Furthermore, it can be used to generate new interesting solutions of Einstein equations
by performing discrete identifications in the spirit of [CH94]. In the latter, the residual
isometry group was precisely the one under consideration here, so that our deformation is
compatible with their discrete identification.

Similarly, the extremal BTz identifications (3.26a) are compatible with the isometries
of the parabolic deformation (3.21). One could thus create extremal black holes out of this
AdS/plane-wave solution.

4. Limiting geometries: AdS,; and H,

We have analyzed in Sec. 2.2 the behaviour of the magnetic deformation of SU(2), at
some critical (or boundary) value of the modulus H?, where the background factorizes as
R x S? with vanishing NS three-form and finite magnetic field. We would like to address
this question for the asymmetric deformations of the SL(2,R); model and show the exis-
tence of limiting situations where the geometry indeed factorizes, in agreement with the
expectations following the general analysis of App. A.

In general, exact deformations of string backgrounds as those we are considering here,
are carried by a modulus that controls the string spectrum. The modulus might exhibit
critical or boundary values, where a whole sector of states becomes massless or infinitely
massive, and decouples. Such a phenomenon corresponds to the decompactification of some
compact coordinate, which decouples from the remaining geometry. This is exactly what
happens for the magnetic deformation of SU(2), Wzw where the S3 is more and more
squashed, and eventually shrinks to a R x S2. Not only is the geometry affected, but the
antisymmetric tensor disappears in this process, and the S? is left with a finite magnetic
field that ensures the consistency of the string theory.

What can we expect in the framework of the SL(2,R); asymmetric deformations?
Any limiting geometry must have the generic U(1) x SL(2,R); isometry that translates
the affine symmetry of the conformal model. If a line decouples, it accounts for the U(1),
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and the remaining two-dimensional surface must be SL(2,R)-invariant. Three different
situations may arise: AdSse, Hy or dS;. Anti de Sitter in two dimensions is Lorentzian
with negative curvature; the hyperbolic plane Hy (also called Euclidean anti de Sitter) is
Euclidean with negative curvature; de Sitter space is Lorentzian with positive curvature.
Three deformations are available for AdS3 and these have been analyzed in Sec. 3. For
unitary string theory, all background fields must be real and consequently H? > 0 is the
only physical regime. In this regime, only the hyperbolic (electric) deformation exhibits a
critical behaviour at H2,, = 1/2. For H? < 1/2, the deformation at hand is a Lorentzian
manifold with no closed time-like curves (see Sec. 3.2). When H? > 1/2, detg > 0 and
two time-like directions appear. At H? = H?

ax, det g vanishes, and this is the signature

that some direction indeed decompactifies.
We proceed therefore as in Sec. 2.2, and define a rescaled coordinate in order to keep
the decompactifying direction into the geometry and follow its decoupling:

y = g(%—HQ)x (4.1)

The metric and volume form now read:
k
ds? = dy? + 1 [er -1+ 2H? sinh? T) dTQ} + k(1 —2H?)sinhr dr dy (4.2)

and &
W = coshr dr A dr A dy. (4.3)

For H? close to H?

faxs the y-direction factorizes

k
ds? P dy? + 1 [dr? — cosh?r dr?] . (4.4)

max

The latter expression captures the phenomenon we were expecting:

AdS3 R x Ad82 (45)

H2—H2

max

It also shows that the two-dimensional anti de Sitter has radius \/m and supports entirely
the curvature of the limiting geometry, R = —8/k (see expression (3.11)).

The above analysis shows that, starting from the SL(2,R); wzw model, there is a
line of continuous exact deformation (driven by a (chromo)electric field) that leads to a
conformal model at the boundary of the modulus H2. This model consists of a free non-
compact boson times a geometric coset AdSs = SL(2,R)/U(1), with a finite electric field:

F = Uicoshr dr A dr (4.6)
ka

and vanishing NS three-form background. The underlying geometric structure that makes
this phenomenon possible is that AdS3 can be considered as a non-trivial S' fibration over
an AdSy base. The radius of the fiber couples to the electric field, and vanishes at Hgl

ax*
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The important result is that this enables us to promote the geometric coset AdSs to an
exact string vacuum.

We would like finally to comment on the fate of dSe and Hy geometries, which are
both SL(2,R)-symmetric. De Sitter and hyperbolic geometries are not expected to appear
in physical regimes of string theory. The Hj sigma-model, for example, is an exact confor-
mal field theory, with imaginary antisymmetric tensor background though [Gaw91, Tes99].
Similarly, imaginary Ns background is also required for de Sitter vacua to solve the low-
energy equations (D.11). It makes sense therefore to investigate regimes with H? < 0,
where the electric or magnetic backgrounds are indeed imaginary.

The elliptic (magnetic) deformation studied in Sec. 3.1 exhibits a critical behaviour in
the region of negative H?, where the geometry does not contain closed time-like curves.
The critical behaviour appears at the minimum value H2; = —1/2, below which the
metric becomes Euclidean. The vanishing of det g at this point of the deformation line,
signals the decoupling of the time direction. The remaining geometry is nothing but a
two-dimensional hyperbolic plane Hs. It is Euclidean with negative curvature R = —8/k
(see Eq. (3.2) with L? = k).

All this can be made more precise by introducing a rescaled time coordinate:

k(1

T=\/3 (5 + H2> t. (4.7)

The metric and volume form now read:

ds? = —dr? + g [dp® + (1 —2H?sinh? p) d¢?] — \/k (1 + 2H?)sinhpdpdT  (4.8)

and k
Wy = o coshpdp A do A dT. (4.9)
For H? close to HZ, , the T-direction factorizes
k
A5t s AT 4 [0 4 cosi pg?] (4.10)

max

The latter expression proves the above statement:

Ade; R x HQ, (411)

2

2
H2—HE 5,

and the two-dimensional hyperbolic plane has radius /k/4.

Our analysis finally shows that the continuous line of exactly marginal (chromo)magnetic
deformation of the SL(2,R) conformal model, studied in Sec. 3.1, has a boundary at
H? = —1/2 where its target space is a free time-like coordinate times a hyperbolic plane.
The price to pay for crossing H? = 0 is an imaginary magnetic field, which at H? = —1/2

F = \/—ﬁcoshp d¢ A dp. (4.12)
ke

The ns field strength vanishes at this point, and the geometric origin of the decoupling at

reads:

hand is again the Hopf fibration of the AdSs in terms of an Hs.
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5. AdS, x S?

The AdS; x S? geometry appeared first in the context of Reissner—Nordstrém black holes.
The latter are solutions of Maxwell-Einstein theory in four dimensions, describing charged,
spherically symmetric black holes. For a black hole of mass M and charge @, the solution

reads:
2= = _= 2 d—TQ 2 102
ds? = (1 T)(1 r)dt+(1_%+)(1_%)+rd927 (5.1a)

r4 and r_ are the outer and inner horizons, and G4 is Newton’s constant in four dimensions.

In the extremal case, 7. = r_ = rg (M? = Q?), and the metric approaches the
AdSy x S? geometry in the near-horizon'? limit r — 7. This solution can of course
be embedded in various four-dimensional compactifications of string theory, and will be
supersymmetric in the extremal case (see e.g. [You99] for a review). In this paper we are
dealing with some heterotic compactification.

Notice that the AdSs x S? geometry also appears in type IIB superstring theory, but
with RR backgrounds [FKS95]. The black hole solution is obtained by wrapping D3-branes
around 3-cycles of a Calabi-Yau three-fold; in the extremal limit, one obtains the AdSs x S?
solution, but at the same time the CY moduli freeze to some particular values. A hybrid
Green—Schwartz sigma-model action for this model has been presented in [BBH'00] (see
also [Ver04] for AdSs). The interest for AdSg x S? space-time is motivated by the fact that it
provides an interesting candidate for AdS/CFT correspondence [Mal98]. In the present case
the dual theory should correspond to some superconformal quantum mechanics [BPS98,
C*98, GT99, CCKMO1].

5.1 The spectrum

As a first step in the computation of the AdSy x S? string spectrum, we must determine
the spectrum of the AdSs factor, by using the same limiting procedure as in Sec. 2.3 for
the sphere. The spectrum of the electrically deformed AdSs, is displayed in Egs. (3.19) and
(3.20). The AdSs limit is reached for coshz — oo, which leads to the following constraint
on the charges of the primary fields:

_ . h 2 a
n+5+\/;(u+n+§>—0 (5.2)

In contrast with the S? case, since p is any real number — irrespectively of the kind of
SL(2,R) representation — there is no eztra quantization condition for the level to make

12With the near-horizon coordinates U = (1 — ro/r) "' and T = t/ro, the near-horizon geometry is

ar? = au?
ds* =g <7ﬁ+?+ do3 ) .

Both AdSs and S? factors have the same radius 7.
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this limit well-defined. In this limit, the extra U(1) decompactifies as usual and can be
removed. Plugging the constraint (5.2) in the expressions for the dimensions of the affine
primaries, we find

k 2 2

_ (7 —1
L)

LOZ,M,E(ﬁJﬂ)Q*l(nJﬂ)Q, (5.3a)
(5.3b)

In addition to the original AdS; spectrum, Egs. (3.17) and (3.18), the right-moving part
contain an extra fermionic lattice corresponding to the states charged under the electric
field. Despite the absence of N = 2 superconformal symmetry due to the Lorentzian
signature, the theory has a “fermion-number” left symmetry, corresponding to the current:

E 2 .
J = uwp'd + z (J2 +w'y?) . (5.4)
The charges of the primaries (5.3) are

QF:n+g— %(ﬁ—i—g) (5.5)

5.2 AdS; x §2 x M and space-time supersymmetry

Let us now consider the complete heterotic string background which consists of the AdSy x
S? space-time times an N = 2 internal conformal field theory M, that we will assume to
be of central charge ¢ = 6 and with integral R-charges. Examples of thereof are toroidal
or flat-space compactifications, as well as Gepner models [Gep88].

The levels k of SU(2) and k of SL(2, R) are such that the string background is critical:

2(k72)+2(1%+2) _

4 = k. .
2 p = k=k (5.6)

¢ =

This translates into the equality of the radii of the corresponding S? and AdS, factors,
which is in turn necessary for supersymmetry. Furthermore, the charge quantization con-
dition for the two-sphere (Sec. 2.2) restricts further the level to k = 2p?, p € N.

In this system the total fermionic charge is

N —h/2 n' + h/2
E,i/+n'+g,u+

9=nta P 2 p

Qm- (5.7)

Hence, assuming that the internal N = 2 charge Q¢ is integral, further constraints on the
electromagnetic charges of the theory are needed in order to achieve space-time supersym-
metry. Namely, we must only keep states such that

N+n'=0 mod p. (5.8)

This projection is some kind of generalization of Gepner models. Usually, such a projection
is supplemented in string theory by new twisted sectors. We then expect that, by adding on
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top of this projection the usual GSO projection on odd fermion number, one will obtain a
space-time supersymmetric background. However, the actual computation would need the
knowledge of hyperbolic coset characters of SL(2,R) (i.e. Lorentzian black-hole characters),
and of their modular properties. We can already observe that this “Gepner-like” orbifold
keeps only states which are “dyonic” with respect to the electromagnetic field background.
Notice that, by switching other fluxes in the internal theory M one can describe more
general projections.

6. Outlook

The main motivation of this work was to analyze the landscape of the S® and AdSsz defor-
mation. This analysis is performed from the geometrical viewpoint with the symmetry as
a guideline. The deformations obtained in that way are then shown to be target spaces of
exact marginal perturbations of the SU(2); and SL(2,R); wzw models.

An important corollary of our analysis is that geometric cosets like S2 = SU(2)/U(1)
or AdSy = SL(2,R)/U(1)space—like Can be realized, with appropriate (chromo) magnetic or
electric fields, as exact conformal models, which hence provide new string backgrounds.
They appear as limiting asymmetric marginal deformations of wzw models, and are there-
fore tractable conformal field theories leading to unitary strings.

The two-dimensional hyperbolic space Ho = SL(2,R)/U(1)time—like does also appear
in the same manner, although the accompanying magnetic field is imaginary. We display
in Fig. 1 the summary of the various situations analyzed here.

Figure 1: We have summarized the various regimes appearing in magnetic/electric deformations
of the SU (2), and SL(2,R), wzw models. Lighter bars indicate the signature, darker ones the
sign of the curvature. Regions with H? < 0 have well-defined geometries with imaginary gauge
field. Their string interpretation is therefore questionable.

We have presented the spectrum and the partition function of the SU(2); magnetic
deformation with S? x R as extreme target space reached at H2,, = 1/2. At this value
the fiber S' decompactifies, as we have seen in Sec. 2.2. We can go across and explore the
deformation for H? > 1/2. The geometry (metric given in Eq. (2.10)), is now Lorentzian
and all other fields are real. This exact solution is still a marginal deformation of S2, of
a peculiar type though: it appears after a signature flip, has positive constant curvature
(see Fig. 1) and U(1) x SU(2) isometry, where some of the SU(2) Killing vectors are
time-like!®. In order to avoid trivial closed time-like curves, we must promote the angle
v to v € R. Unfortunately this is not enough to ensure consistency, and closed time-like
curves a la Godel appear whenever cos? 3 > 1/2H?, as one can check by using standard
arguments (Sec. 3).

The space—time under consideration is a compact Géodel universe (“compact” refers to
the angle 3), already discussed in the context of general relativity [DFS03a]. Our approach

*In the regime H? > 1/2, 0, is time-like since || 9, |> = —k (2H? — 1) /4, whereas do becomes time-like
for cos® B > 1/2H>.
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promotes it to the level of exact string background, and we have in principle the tools to
investigate its spectrum. The latter may be obtained from the partition function (2.27)
with the replacement:

2
coshx = ﬁ , sinhz =1 % (6.1)
Such a straightforward approach is however questionable since it involves a sort of analytic
continuation. We’'ll not expand further on this issue.

The hyperbolic deformation of SL(2,R), leading precisely to AdSs, is an important
achievement of this work. It is however technically involved: no description is presently
available for quantities like the partition function, and our handling over the spectrum
remains incomplete'®. For the elliptic deformation, the partition function is available in
the “Géodel regime” (H? > 0) where the geometry is spoiled by closed time-like curves.
The continuation to the negative-H? region, free of closed time-like curves, is not straight-
forward since it requires an analytic continuation to imaginary magnetic field. The string
theory is no longer unitary, but it might still be useful to investigate this regime for pure
CFT purposes.

Several other non-unitary regimes appear in the deformed geometries at hand, either
with Euclidean or with Lorentzian signature, and positive or negative curvature (see Fig. 1).
Whether these could be connected to the Hs or dSs spaces is an open question. Three-
dimensional hyperbolic plane, Hs, and de Sitter, dSs, are respectively negative and positive
constant-curvature symmetric spaces, with Euclidean and Lorentzian signatures. The dif-
ferences with respect to the S® or AdS3 are that they have the opposite signature/curvature
combination, and are not group manifolds: Hs and dSs are SL(2,C) cosets. A non-unitary
conformal sigma model can be defined on Hj, and considerable progress has been made to
understand its structure. In the case of dS3, nothing similar is available, despite the growing
interest for cosmological applications. Any hint in that direction could be important.

Connections of our families of spaces to Hs or dSs could arise by introducing extra
deformations. Since the residual affine symmetry of the asymmetric marginal deformations
is U(1)r, x SL(2,R)g, there is room, at any point, for a extra modulus generated by a
Ul x U(l)gr € U(1)L, x SL(2,R)R bilinear. This freedom has been used e.g in [Isr04]
in order to cure the causal problem of the magnetic deformation, by slightly deviating
from the pure magnetic line. One can readily repeat this analysis in the new regimes we
have presented here, as already sketched for the parabolic deformation — end of Sec. 3.3 —
and further investigate the AdSs landscape and its connections to other three-dimensional
constant-curvature spaces of physical interest.

Our analysis deserves some extra comments. We are in position now to describe
AdS; x 52 as the target space of a two-dimensional conformal model. This supersymmetric
setting is the near-horizon geometry of the extremal Reissner-Nordstrom four-dimensional

" Much like in the compact Gédel universe quoted previously, one may try to give sense to the electric
deformation for H? > 1/2. There, we have two times (see Fig. 1). We can however perform an overall flip
to reverse the signature {— — +} — {+ + —} and obtain a well-defined geometry. As usual, the important
issue is to implement all the sign flips and analytic continuations at the level of the CFT.
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black hole. In our approach, this geometry arises as a marginal deformation of the near-
horizon geometry of the NS5/F1 set up (AdSz x S3). The crucial question that remains to
be answered is how to deviate from this supersymmetric geometry towards a non-extremal
configuration of the charged four-dimensional black hole.

We should also stress that the new string backgrounds we have constructed may have
interesting applications for holography. For example, the AdS/plane-wave background
(3.21) is a superposition of two solutions with known holographic interpretation. The line
of geometries relating AdSs and AdSs (hyperbolic deformation), which are both candidates
for AdS/cFT, can possibly have some holographic dual for all values of the modulus H?2.
It is important to remark that all the families of conformal field theories considered in this
paper preserve one chiral SL(2,R) affine algebra, hence allow to contruct one space-time
Virasoro algebra by using the method given in [GKS98].

Finally, concerning the general technique that we have used, it clearly opens up new
possibilities for compactifications. Asymmetric deformations can be performed on any
group-G manifold. The high residual symmetry G x U(1)*"K & forces the geometry along
the line as well as at the boundary of the modulus. There, we are naturally led to the
geometric coset G/U(1)™"% & times rank G' decoupled, non compact, free bosons. A mag-
netic field drives this asymmetric deformation in the case of compact groups, whereas in
non-compact cases a variety of situations can arise as we showed for the SL(2,R).
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A. Geometric deformations

In this appendix, we would like to present some selected results about geometric defor-
mations. Since most of the material discussed in this paper deals with deformations of
backgrounds that preserve part of the original isometries, it is interesting to understand
how such deformations can be implemented in a controllable way. Whether these are the
most general, or can be promoted to exact marginal lines in the underlying two-dimensional
sigma model, are more subtle issues that we analyze in the main part of the paper for S°
and AdS;

Consider a manifold with metric ds? = Gap dz® dzf®. We assume the existence of an
isometry generated by a Killing vector £&. The components of its dual form are w, = gagfﬂ .
We will consider the following family of geometries:

955 = Gog + f (I€1*) wawy (A1)

with f an arbitrary function of the norm of the Killing vector. Each member of the family
corresponds to a specific choice of f.

Deformation (A.1) provides a simple and straightforward recipe for perturbing a back-
ground in a way that keeps under control its isometries. Indeed, the vector ¢ is still an
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isometry generator (L¢||€||> = 0; Leww = 0). So are all Killing vectors which commute
with &, whereas for a general f (||§ ||2) those of the original isometry group which do not
commute with & are no longer Killing vectors. Therefore, the “deformed” isometry group
contains only a subgroup of the simple component to which £ belongs, times the other
simple components, if any. These symmetry properties hold for generic functions f (||£||2)
Accidental enhancements can occur though, where a larger subgroup of the original group
is restored (at least locally).
The deformed dual form of £ is computed by using (A.1):

@i = w, (L1112 (I€11°)) - (A.2)

Clearly, the symmetry requirement is not strong enough to reduce substantially the freedom
of the deformation. We would like to focus on a specific subset of deformations for which

h=—llgl*f (ll€l) (A.3)

is a real constant. This family is interesting for several reasons. It is stable under repetition
of the deformation: by repeating this deformation we stay in the same class, but reach a
different point of it. This is a sort of integrability property that leads to a one-parameter
family of continuous deformations. The value h = 1 is a critical value of the deformation
parameter. At this value the metric degenerates. This is a sign for the decoupling of
one dimension. For h > 1, the signature flips and the decoupled dimension reenters the
geometry, with reversed signature though.

In the presence of Lorentzian geometries, light-like Killing vectors can also be used.
For those, Eq. (A.1) is necessarily of the form

Jai = Jap — hwawy if €] =0. (A.4)

def __
o = wWa, NO

The symmetry constraint is here very powerful. Furthermore, since now w,
critical phenomenon occurs in this case, at least for finite values of h.

Deformations of the kind (A.1) with (A.3) arise naturally as background geometries
of integrable marginal deformations of wzw models. The integrability requirement for
the CFT deformation selects the above one-parameter family of geometries. In turn, these
families exhibit limiting spaces.

It is useful to notice that deformations (A.1) with (A.3) become trivial if £ is of the
form & = 01 with gop block diagonal: go1 = g110q1. In this case, w = gn1 dz!, and
gap is unaffected for (o, B) # (1,1), whereas ¢ff = g,, (1 —h). The net effect of the
deformation is a rescaling of the coordinate x!. The isometry group remains unaltered, at
least locally. In fact, if 2! is an angle (£ is a compact generator), the deformation amounts
to introducing an angle deficit, which brakes globally the original isometry group to the
subgroup described previously and introduces a conical singularity.

We can illustrate the latter “degenerate” situation with a simple example: the case
of the two-dimensional Euclidean plane. The isometry group has three generators: one
rotation and two translations. Consider the rotation and perform the deformation as in
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(A.1), (A.3). The resulting manifold is a cone. Although translation generators do not
commute with the rotation generator, translation invariance is still a symmetry, locally —
since the only effect of the rotation is to rescale the polar angle. Translation is however
broken globally. The critical value of the deformation (h = 1) corresponds to the maximal
angle deficit, where the cone degenerates into a half-line.

Many deformations driven by §(1y,§(2),- .. can be performed simultaneously along the
previous lines of thought. In order to keep &(1),§(2),. .. in the isometry group of the de-
formed metric, these must commute, hence must belong to the Cartan subgroup of the
original isometry group. The full deformed group also contains those among the original
Killing vectors, which commute with the set {&(1),§2),--}-

Curvature tensors (Riemann, Ricci, Gauss) can be computed for the deformed geome-
tries under consideration (Eq. (A.1)), in terms of the original ones. How much they are
altered depends on the left-over symmetry and on the function f. We will not expand
further in this direction.

B. The three-sphere
The commutation relations for the generators of SU(2) are
[J',J?] =J? [J2, 73] =" [J3, 0] =% (B.1)

A two-dimensional realization is obtained by using the standard Pauli matrices'®c®: J¢ =
o /2.

The Euler-angle parameterization for SU(2) is defined as:
1 3

L L (B.2)

The SU(2) group manifold is a unit-radius three-sphere. A three-sphere can be embedded
in flat Euclidean four-dimensional space with coordinates (2!, 22, 23, 24), as ()2 + (22)2 4+
(2%)2 + (2%)% = L2. The corresponding SU(2) element g is the following:

at + w? a? + !
=r! . B.3
g (1’3 + ozt 2t —ax? ( )

In general, the invariant metric of a group manifold can be expressed in terms of
the left-invariant Cartan-Maurer one-forms. In the SU(2) case under consideration (unit-
radius S%),

T = %tr (o'g'dg), T*= %tr (o®g'dg),  T= %tr (0% 'dg) (B4

and

3
i =3 e T (B.5)

i=1

®The normalization of the generators with respect to the Killing product in su (2): x (X,Y) = tr (XY)
is such that  (J,J%) = 1/2 and correspondingly the root has length squared 1) = 2.
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The volume form reads:

A ANVAS (B.6)
In the Euler-angle parameterization, Eq. (B.5) reads (for a radius-L three-sphere):
L2
ds? = - (da?® + dy* +2cos Bdady + df?), (B.7)
whereas (B.6) leads to
L3
W = 5 sin fda A dB A dy. (B.8)

The Levi-Civita connection has scalar curvature R = 6/L2.

The isometry group of the SU(2) group manifold is generated by left or right actions
on g: g — hg or g — gh Vh € SU(2). From the four-dimensional point of view, it is
generated by the rotations Cup = i (240 — 240,) With x4 = dgpz?. We list here explicitly
the six generators, as well as the group action they correspond to:

1

Ly = 3 (—Ca2 + Ca1), g—e 2%, (B.9a)
1 A2

Ly = 3 (—=Ca3 — C12), g—e27g, (B.9b)
1 WAg3

Ls = 3 (=31 — Ca2), g—e27g, (B.9c¢)
1

Ry = 3 (Car + G32) g— g2, (B.9d)
1

Ry = 5 (—Ca3 + C12), g— gel%027 (B.9e)
1

R3 = 3 (C31 — Ca2) g— ge'27". (B.9f)

Both sets satisfy the algebra (B.1). The norms squared of the Killing vectors are all equal
to L?/4.
The currents of the SU (2),, wzw model are easily obtained as:

Ji=—ktr (wi 89971) Jh=—ktr (wigf1 59) , (B.10)

where L = vk, at the classical level. Explicit expressions are given in Tab. 1.

C. AdS;

The commutation relations for the generators of the SL(2,R) algebra are
[J', J?] = —uJ? [J2, 73] =" [J3, 0] = g2 (C.1)
The sign in the first relation is the only difference with respect to the SU(2) in Eq. (B.1).
The three-dimensional anti-de-Sitter space is the universal covering of the SL(2,R)

group manifold. The latter can be embedded in a Lorentzian flat space with signature
(=, +,+,—) and coordinates (20, z!, 22, 23):

$O +I2 :L'l _|_$3
=r! , C.2
g (.’El — :E3 :EO — :E2 ( )
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‘ sector ‘ Killing vector ‘ Current ‘

o0 siny sin~y

Ou Op — S
E sin 8 +cosydg tang k (sin Bsin~y da + cosy Ob)
S . .
g C,Osvﬁafsinfyf)ﬂfwaﬁl k (cosysin B 0a — siny §3)
& sin tan 3
< d, k (0y + cos 3 0a)
o0 sin o sin av _ _
= ———0a sadg + —— 0 in asi
.g tan +cosadg + sng k (cos 9B + sin avsin 3. 0)
E E:z; 0o +sinadpg — ZTS; y k (sin adf — cosasin 3 é'y)
= — _
&b S
- N k (00{4—005587)

Table 1: Killing vectors {2L1,2L2,1L3} and {1R1,2R3,1R3}, and holomorphic and anti-holomorphic
currents (as defined in Egs. (B.9) and (B.10)) in Euler angles.

where L is the radius of AdS3. On can again introduce Euler-like angles

g= ez('r-%—¢5)z72/Zepcr1ez(7'—<¢>)tf2/27 (03)

which provide good global coordinates for AdS; when 7 €] — 0o, +00[, p € [0,00][, and
¢ € [0,2n].
An invariant metric (see Eq. (B.5)) can be introduced on AdS3. In Euler angles, the
latter reads:
ds? = L2 [- cosh? p dr? + dp® + sinh? p d¢2] . (C4)

The Ricci scalar of the corresponding Levi-Civita connection is R = —6/L2.

The isometry group of the SL(2,R) group manifold is generated by left or right actions
on g: g — hg or g — gh Vh € SL(2,R). From the four-dimensional point of view, it is
generated by the Lorentz boosts or rotations Cup = 7 (2,0 — 230,) With 2, = nga’. We
list here explicitly the six generators, as well as the group action they correspond to:

Ly = % (G2 = Cot) g—e 2y, (C.5a)
Ly = % (=Ga1 = Co2) g—e 37y, (C.5b)
Lz = % (o3 — C12), g— 37, (C.5¢)
Ry = % (Co1 + ¢32), g gei”, (C.5d)
Ry = % (Gs1 — Co2) g—ge 37, (C.5e)
R3 = % (Co3 + C12) g — ge'27’. (C.5f)

Both sets satisfy the algebra (C.1). The norms of the Killing vectors are the following:

L2
1L ll* = eBa]|* = leLol* = [[1Re* = — [Ls||* = — [l1Rs|* = - (C.6)
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Moreover L;-L; = 0 for i # j and similarly for the right set. Left vectors are not orthogonal
to right ones.
The isometries of the SL(2,R) group manifold turn into symmetries of the SL(2,R)
wzw model, where they are realized in terms of conserved currents!:
JL(2) £ T3 (2) = —ktr ((0’1 F 102) aggfl) , J?(2) = —ktr (03 ngfl) , (C.7a)
JL(Z)+ T3 (3) = ktr ((01 + 202) gt dg), J?(Z) = —ktr (03971 dg) . (C.7b)
At the quantum level, these currents, when properly normalized, satisfy the following
affine SL(2,R);, oral’:

P)I0) ~ —55, (C0)
) J*t

J3(2)JE(0) ~ £, (C.8b)

raro~ 2Lk (C.50)

and similarly for the right movers. The central charge of the enveloping Virasoro algebra
isc=3+6/(k—2).

We will introduce three different coordinate systems where the structure of AdSs as a
Hopf fibration is more transparent. They are explicitly described in the following.

e The (p,t,¢) coordinate system used to describe the magnetic deformation in Sec. 3.1
is defined as follows:

20 = cosh £ cosh § cos £ — sinh £sinh & sin £
2= 7sinh§sinhgcos% — coshgsinh%sin% (C.9)
% = —cosh §sinh % cos & + sinh £ cosh % sin £ .
% = —sinh §sinh % cos £ — cosh & cosh % sinL.
The metric (B.5) reads:
L? .
ds? = T (dp® + d¢* — dt* — 2sinh pdt do) (C.10)
and the corresponding volume form is:
L3
W = 5 coshp.dp A do A dt (C.11)

Killing vectors and currents are given in Tab. 2. It is worth to remark that this
coordinate system is such that the ¢-coordinate lines coincide with the integral curves
of the Killing vector L3, whereas the ¢-lines are the curves of 1Ra.

16When writing actions a choice of gauge for the Ns potential is implicitly made, which breaks part of
the symmetry: boundary terms appear in the transformations. These must be properly taken into account
in order to reach the conserved currents. Although the expressions for the latter are not unique, they can
be put in an improved-Noether form, in which they have only holomorphic (for L;’s) or anti-holomorphic
(for R;’s) components.

"In some conventions the level is # = —k. This allows to unify commutation relations for the affine
SL(2,R), and SU(2). algebras. Unitarity demands < —2 for the former and 0 <  with integer « for the
latter.
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e The (r,z,7) coordinate system used to describe the electric deformation in Sec. 3.2
is defined as follows:

r

— T z T i inh Z sin T
= cosh 5 cosh § cos § + sinh 5 sinh § sin §

— _sinh”cosh & T sh T sinh & sin
= —sinh 5 cosh F cos § + cosh 5 sinh g sin 5 (C.12)

— _coshZsinh & T _ginh” cosh £ sin ©
= — cosh 5 sinh § cos § — sinh § cosh § sin 5

~E E HE E

= sinh § sinh § cos § — cosh 5 cosh § sin 7.
For {r,z,7} € R3, this patch covers exactly once the whole AdSs3, and is regular
everywhere [CH94]. The metric is then given by
L2
ds? = - (dr? + d2® — dr® + 2sinhrda dr) (C.13)
and correspondingly the volume form is
3

wig = % coshrdr A dz A dr. (C.14)

Killing vectors and currents are given in Tab. 3. In this case the z-coordinate lines
coincide with the integral curves of the Killing vector 1Ry, whereas the 7-lines are
the curves of 1R3.

e The Poincaré coordinate system used in Sec. 3.3 to obtain the electromagnetic-wave
background is defined by

20 4 22 :%
0 2 _ Lata—
2’ —2® = Lu+ =L (C.15)
b+’ = E.
u

For {u,z%, 2~} € R3, the Poincaré coordinates cover once the SL(2R) group man-
ifold. Its universal covering, AdSs, requires an infinite number of such patches.
Moreover, these coordinates exhibit a Rindler horizon at |u| — oco; the conformal
boundary is at |u| — 0. Now the metric reads:

L2
ds® = = (du® + dztda™) (C.16)
u
and the volume form: .
L _
wig) = 273(1“/\ dz™ A da™. (C.17)

In these coordinates it is simple to write certain a linear combination of the Killing
vector so to obtain explicitly a light-like isometry generator. For this reason in Tab. 4
we report the {Ly + L3, L1 — L3, Lo, Ry + R3, Ry — R3, R} isometry generators and
the corresponding {Jy + Js, Jy — J3, Jo, Jy + J3, Jy — J3, Jo} currents.
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‘ sector ‘ Killing vector ‘ Current ‘
o0 sint .
E costd, + cosh p 0p — sinttanh p &, k (cost dp + cosh psint dg)
Qo t .
g —sintd, + 700? 0p — costtanh p d; k (cost cosh p O — sint dp)
= coshp k (Ot + sinh p 0¢)
—~ _ 6t
00 X sinh ¢ _ _
~§ cosh ¢ J, — sinh ¢ tanh p 9y — coshp —k (cosh qb_ap + cosh p_sinh 1) Bt)
g D4 k(@d)—sinhp@t)
+ _ _
= h k (cosh p cosh ¢ Ot + sinh ¢ 0
ED sinh ¢ 8, — cosh ¢ tanh p 9 — cosh ¢ A ( r ¢ ¢ p)

cosh p

Table 2: Killing vectors {1L1,2L2,1L3} and {tR1,2R3,1R3}, and holomorphic and anti-holomorphic
currents (as defined in Egs. (C.5) and (C.7)) for the (p,t,¢) coordinate system (elliptic base).

‘ sector ‘ Killing vector ‘ Current ‘
o0 . sinh x
.g coshz d, —sinhz tanhr d, + coshr o7 k (coshz Or — coshrsinhz 97)
= Oy k (Ox + sinhrdr)
2 osh z 3 : o p
= —sinhx 0, + cosha tanhr d, — COS1T ¢ - ki (coshr coshz 07 — sinh z Jr)

coshr

on sin T .
g —cos T 0, Oy — 8 tanh 7 0. = .=
i~ COSTOr coshr O¢ T ST IAMAT Cr k (= cos T dr + coshrsinT dr)
5 . . _ _
= (cosT +sin7 tanhr) J, + (cos Tsinhr — C’O‘i%) o k (Cos 7coshrdz + sinT 0r)
e?ﬁ coshr k (Ot — sinhr Ox)
2 —a,

Table 3: Killing vectors {2L1,2L2,1L3} and {1R1,2R3,1R3}, and holomorphic and anti-holomorphic
currents (as defined in Egs. (C.5) and (C.7)) for the (r,2,7) coordinate system (hyperbolic base).

D. Equations of motion

The general form for the marginal deformations we have studied is given by:

1 2 WZW
S = g/ d z (G”V

+ ByY) 0at' 0z +

\/ H - _
]“2’“7:/ 2z JJg. (D.1)

It is not completely trivial to read off the deformed background fields that correspond to

this action. In this appendix we will present a method involving a Kaluza—Klein reduction,

following [HT95]. For simplicity we will consider the bosonic string with vanishing dilaton.

The right-moving gauge current Jg used for the deformation has now a left-moving partner

and can hence be bosonized as Jg = 19y, ¢ (2, 2) being interpreted as an internal degree

of freedom. The sigma-model action is recast as

1

:271"

S

/ dZZ (GMI\‘ + BMI\‘) 81’“51’”,
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‘ sector ‘ Killing vector ‘ Current ‘
i
o0 —0_ 72k8x2
E u
g u ozt
Q - N2 - — _
=] ux au—u26++(z ) o_ 2k (29: 77(99: +(z )27>
5(9“-"-1‘ o_ 2k<u+x 2
Ox~
Ef 0+ 2%
E ou - ox~
g —uzt 0, — (ac"')2 Oy +u?a_ | 2k (—2,7:*'7 +dat — (m+)27>
= - _
oo u ou Oz~
= §6u+ﬂ’5+6+ 2k <Z +I+7u2 )

Table 4: Killing vectors, and holomorphic and anti-holomorphic currents (as de-
fined in Egs. (C.5) and (C.7)) in Poincaré coordinates (parabolic base). The
{1L1 +1L3,2L1 —1L3,1L9,2Ry +1R3,1R1 — 1R3,1R2} isometry generators and the corresponding
{1 + I3, J1y — J3, Jo, Jy + J3, J1 — J3,Jo} currents are represented so to explicitly obtain light-like
isometry generators.

where the zM, M = 1,..., 4 embrace the group coordinates =, = 1,2,3 and the internal

oM = ( f; ) (D.3)

If we split accordingly the background fields, we obtain the following decomposition:

G A B By
Ghax = d L Bux = ik =, DA
MN ( Au GWP MN _B/L4 0 ( )

and the action becomes:

ot =

1 . - _
S=5- / d2? {(Gyu + Buw) 0x# da” + (A, + Bua) Ozt D

+(Ay — Bua) 09 0z + Gy, 000} . (D.5)

We would like to put the previous expression in such a form that space-time gauge

invariance,

Ay — A+ O\, (D.6)
BH4 — BH4 + au’l]., (D7)

is manifest. This is achieved as follows:

T o

S i/ a2z {(éw + Bu,,> Ozt dx¥ + B (Ox"égp — &péx“)

+Gpp (Dp + A 02) (Dp + A,02#) ), (D.8)
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where é/w is the Kaluza—Klein metric

G = Gu — GopALA,. (D.9)

Expression (D.2) coincides with (D.1) after the following identifications:

. ke
G =G =244, (D.10a)
B,, = BY™, (D.10b)
k
Ay = Bus = Hy[ 5y (D.10c)
ko
oo = - (D.10d)

The various backgrounds we have found throughout this paper correspond to truly
marginal deformations of wzw models. Thus, they are target spaces of exact CFT’s. They
solve, however, the lowest-order (in o') equations since all higher-order effects turn out
to be captured in the shift & — k + 2. These O (a/) equations are obtained by using the
bosonic action (D.2), or equivalently by writing the heterotic string equations of motion
for the fields in (D.10). They read [F'T85]:

kg

dc= =R+ JcF wF", (D.11a)
1 ko
B, =R, — ZHMMH,/"’ - TFWF‘IJ =0, (D.11b)
pP,,=V"'H,,, =0, (D.11c)
1
By =V"E,, - 5F"H,,, =0, (D.11d)
where
Fu = 9,4, — 9,4, (D.12)
k

Hypp = 0,By, — TGA,LF,,,, + eylic. (D.13)
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‘We construct heterotic string backgrounds corresponding to families of homogeneous spaces as exact con-
formal field theories. They contain left cosets of compact groups by their maximal tori supported by NS-NS
2-forms and gauge field fluxes. We give the general formalism and modular-invariant partition functions,
then we consider some examples such as SU(2)/U (1) ~ S? (already described in a previous paper) and the
SU(3)/U(1)? flag space. As an application we construct new supersymmetric string vacua with magnetic
fluxes and a linear dilaton.
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1 Motivations and summary

The search for exact string backgrounds has been a major motivation in the field for many years. Gravitational
backgrounds with a clear geometric interpretation are even more important since they may provide a handle
on quantum gravitational phenomena, black holes, and ultimately cosmology — for those which are time-
dependent. Wess—Zumino—Witten models provide such a class of solutions, with remarkable properties. The
target space is in that case a group manifold and, together with the metric, the Neveu—Schwarz antisymmetric
tensor is the only background field. Both of these fields are exactly known to all orders in o/. So are the
spectrum, partition function, two- and three-point functions, . ..

Wess—Zumino—Witten models appear in many physical set-ups, as near-horizon geometries of specific
brane configurations. The three-sphere is part of the near-horizon geometry of N5 NS5-branes. This is the
target space of an SU(2), super-wzw model at bosonic level & = N5 — 2. Another celebrated example is
that of AdS3. The latter appears in the NS5-brane/fundamental-string background, together with S?, at equal
radius L = /a’Ns; it is realized in terms of the SL(2,R); wzw at level & = k + 4. These are important
examples because of their role in the study of decoupling limits, little-string theory, holographic dualities
etc. The knowledge of exact spectra, amplitudes, . . . is crucial for better understanding of these issues.

Despite the many assets of Wzw models, the major limitation comes from the dimension and signature of
their target spaces. When dealing with compact groups, the dimension often exceeds six (e.g. SU (3) is eight-
dimensional), while for non-compact groups, SL(2, R);, is the only example with a single time direction.

In order to reduce the dimensionality and the number of symmetries of the target space, while keeping two-
dimensional conformal invariance and tractability, the usual procedure is the gauging. Gauged Wzw models
are realized algebraically, at the level of the chiral currents and energy—momentum tensor, by following the
GKO construction [1]. Alternatively, one can work directly on the action and gauge symmetrically a subgroup
H C G.For H = U(1), the gauged model can even be obtained as an extreme marginal deformation of
the original model, driven by a [ d?zJ.J perturbation, where J and J are the currents associated with
the U(1) C G.

Target spaces of gauged wzw models are not usual geometric cosets G/ H. Firstly, the background fields
of gauged Wzw receive non-trivial o’ corrections', while geometric cosets can be assigned a well-defined
metric. Secondly, the isometry groups are different. For geometric cosets, the isometry group is G, while it
is H for the target space of the gauged Wzw.

! The higher-order o’ corrections are trivial for Wzw models: they boil down to shifting k& — k+ g* in the classical backgrounds
(g* is the dual Coxeter number of the group G).
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Geometric cosets could provide alternative backgrounds, with different properties and new possibilities
for accommodating six or less space dimensions, or a single time direction (in the non-compact case).
Unfortunately, they have not been systematically analyzed, and were even thought to be, at most, leading-
order solutions to the string equations. Although some exact solutions were identified in the past [2—4], no
generic pattern for generalization was known.

The issue of geometric cosets as exact backgrounds has been recently revisited in [5]. There, it was
shown that $? = SU(2)/U(1) and AdS, = SL(2,R)/U(1)pace, with magnetic and electric fluxes and no
dilaton, can be obtained as extreme marginal deformations of the SU(2); and SL(2,R); wzw models. In
this case the background fields are exact up to the usual finite renormalization of the radius (k — & + 2 and
k — k—2)and spectra, partition functions, . .. are within reach. The marginal deformations are asymmetric
because the right current that appears in the bilinear does not belong to the right-moving affine algebra of
the group at hand.

Asymmetric marginal deformations apply to any group. The aim of the present paper is to investigate
on several interesting generalizations of this method, in the case of compact groups, and make contact with
asymmetrically gauged Wzw models. We will focus in particular on the SU(3) group. In this case the
asymmetric marginal deformation leads to the SU(3)/U (1) geometric coset, with magnetic fluxes and no
dilaton. In turn, this coset is identified with the asymmetric gauging of a U (1)? in the original wzw models.

In the cases under consideration, however, more possibilities exist, which we further exploit. We examine
the asymmetric gauging of the full Cartan torus U(1)2. The geometric cosets obtained in this way, can be
assigned two different metrics depending on the precise manner the gauging is performed, in combination
with the extreme asymmetric marginal deformation. One is Kihlerian and consequently no NS form survives:
we obtain the flag space F3 = SU(3)/U(1)?, recognized many years ago [6] to be a leading-order solution,
thanks to its Kédhlerian structure. The other metric is not Kéhlerian, and the background has both magnetic
and NS fluxes. It enters into the construction of non-compact manifolds of G holonomy [7].

All our solutions are exact sting backgrounds with no dilaton — contrary to the usual symmetrically
gauged wWzw models. We can determine their spectra as well as their full partition functions.

The paper is organized as follows: first we fix the notation by reviewing some known facts about wzw
models and then show how to read the background fields corresponding to an asymmetric marginal defor-
mation of such models. We emphasize in particular the decompactification of the Cartan torus that takes
place at the extremal points in moduli space (Sect.refsec:geom-constr). This formalism is then used to
study the deformation of the SU(2) and SU(3) models (Sect. 3). In the following we introduce a different
construction in which the limit deformations are identified to asymmetrically gauged wzw models [8] and
the deformation is generalized so to reach the different constant-curvature structures admitted by an asym-
metric G/T coset, with particular emphasis on the SU(3)/U(1)? case (Sect.4). The next section (Sect. 5)
deals with the computation of the one-loop partition functions for the asymmetric deformations leading
to geometric cosets. Two different methods are proposed, one using the Kazama—Suzuki decomposition
in terms of Hermitian symmetric spaces, the other via the direct deformation of the Cartan lattice of the
Lie algebra corresponding to the group. In the final section (Sect. 6) we give an example of application by
using these SCFT’s to construct other supersymmetric exact string backgrounds such as the left-coset ana-
logues of the NS5-branes solutions [9, 10]. They provide new holographic backgrounds of the Little String
Theory type [11-13], and may be dual to non-trivial supersymmetric compactifications on manifolds with
singularities. The concluding appendices contain some facts about the geometry of coset spaces, partition
functions, and characters of affine Lie algebras.

2 Compact coset spaces: general formalism
In this section we will fix the notation by reviewing some well known facts about conformal field theories

on group manifolds (Wzw models) and give the general formalism for the truly marginal deformations
leading to exact CFT’s on left coset spaces.

(© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2.1 String theory on group manifolds: a reminder

Let g be the (semi-simple) Lie algebra of the (compact) group G and { T\, } a set generators that satisfy
the usual commutation relations [Ty, Ty] = >, f*T; and are normalized with respect to the Killing
product k (T, Ty) = — tr (TuTx) = dux. We can always write g as the direct sum g = j @ € where € is the
Cartan subalgebra and correspondingly distinguish between the Cartan generators { 7, } and the generators

of . { T, }
The generators are in one-to-one correspondence with the Maurer—Cartan left-invariant one-forms de-
fined by
Ju=r (T, g™" dg) = —tr (Tug ™" dg) @1

where g is the general element of the group G. It is a well known fact that the scalar product on g naturally
induces a scalar product (-, -) on the tangent space Ty, to G that can be written by decomposing the induced
metric (the so-called Cartan—Killing metric) in terms of the currents as follows:

(dg, dg) =k (97" dgg" dg) = b (T, 97 dg) 5 (Tn, g7 dg) = Y mn TV @ T (22)

MN MN

Now let us consider the affine extension of the Lie algebra gy, at level k. We have two sets of holomorphic
and anti-holomorphic currents of dimension one, naturally related to the Maurer—Cartan right- and left-
invariant one-forms

JM(Z) = —kk (Tl\h dg gil) s jM (5) =kk (TMagil 50) . (2.3)

Each set satisfies the following operator product expansion

R T Jo() o (0~ ) 2.4)

TR) = 52 + S

This chiral algebra contains the Virasoro operator, given by the Sugawara construction

sy
T(z) =)~ 2.5)
" k+g

where g* is the dual Coxeter number and the corresponding central charge is given by

oo k dim(g)

2.6
k+g* 6

An N = 1 superconformal extension is obtained by adding (dim g) free fermions transforming in the
adjoint representation
B0 A

T() = k+g*

M

9 .
G(Z) = % (Z Juthn — é mexp HRUNTUNL IS :> . (2.8)

MNP

+: 'l/)m 01/)1\1 Yy (27)

An heterotic model is provided by considering a left-moving N = 1 current algebra and a right-moving
N = 0 one. The Lagrangian (c-model) description of this model is given by the linear combination of the
following wzw-model and the action for free fermions transforming in the adjoint representation
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S = Li / Tr (97" dg A =g dg) + LS / Tr (g7* olg)3 + S /d%w o (2.9)
4m Jog 127 Jp o M )

(the exterior derivative is here understood as acting on the worldsheet coordinates). The background fields
corresponding to this action are the Cartan-Killing metric eq.(2.2) and the NS-NS two-form field, coming
from the Wz term

H=dB=Ti(g " dg)" = L fuwT" AT NT". 2.10)

2.2 Asymmetric deformations

Truly marginal deformations of WzZw models were already studied in [14, 15]. In particular in heterotic
strings we can consider a deformation obtained with the following exactly marginal operator V' built from the
total Cartan currents of g (so that it preserves the local N = (1, 0) superconformal symmetry of the theory)

k MN

kK ke i _
V:/d2z; Vo, (J“(z)fi SRR ) I*(2) @11

(where the set {1, } are the parameters of the deformation and % (Z) are right moving currents of the Cartan
subalgebra of the heterotic gauge group at level k7). Such a deformation is always truly marginal since the
J, currents commute.

It is not completely trivial to read off the deformed background fields that correspond to the S + V'
deformed action. A possible way is a method involving a Kaluza—Klein reduction as in [16]. For simplicity
we will consider the bosonic string with vanishing dilaton and just one operator in the Cartan subalgebra &.
The right-moving gauge current .J used for the deformation has now a left-moving partner and can hence
be bosonized as J = 1y, ¢ (2, Z) being interpreted as an internal degree of freedom. The sigma-model
action is recast as

1 . _
S=o- / d?z (Gyy + Byy) 8202 (2.12)

where the 2, M = 1, ... ,4 embrace the group coordinates z*, » = 1,2, 3 and the internal z* = :

M= (2:) . (2.13)

If we split accordingly the background fields, we obtain the following decomposition

GMN = Gu” GWPAH ) B]\IN = BIW BH4 ) (2- 14)
GswAu GWP _Bu4 0

and the action becomes

S = % / dz*{ (G + Buv) 02" 0" + (GppAy + Bua) 0+ dp

+ (GW,A# - B,L4) O Ozt + Gy 0p 54,9} . (2.15)

(© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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We would like to put the previous expression in such a form that space—time gauge invariance,

Ay — Ay + OuA, (2.16)
By — B+ 0un, (2.17)

is manifest. This is achieved as follows:

S . / dzz{ (G,“, —+ B,“,) Azt dz¥ + B (81“599 - 65051‘")

- 27
+ Gy (0 + Au00") (D + AuDa) } 2.18)
where G v is the Kaluza—Klein metric
él“’ =G — GepApAy . (2.19)

‘We can then make the following identifications

N k -
G =5 (J;J,, - 2H2J,Jy) , (2.20a)
k
B, = §Ju Ny, (2.20b)
kk, -~
B = Gopdy =1\ 52T (2.20¢)
A, =1 %j“ , (2.20d)
kU
Gopp = %ﬂ . (2.20e)

Let us now consider separately the background fields we obtained so to give a clear geometric interpre-
tation of the deformation, in particular in correspondence of what we will find to be the maximal value for
the deformation parameters H,.

The metric. According to eq.(2.20a), in terms of the target space metric, the effect of this perturbation
amounts to inducing a back-reaction that in the basis of eq. (2.2) is written as

(dg,dg)y =Y Tu @I =2 MeTa®Ta=» Ju@Tu+> (1-212)Ja®@Ta,  (221)
M a I a

where we have explicitly separated the Cartan generators. From this form of the deformed metric we see that
there is a “natural” maximal value H, = 1/ /2 where the contribution of the Ju ® J, term changes its sign
and the signature of the metric is thus changed. One could naively think that the maximal value H, = 1/+/2
can’t be attained since the this would correspond to a degenerate manifold of lower dimension; what actually
happens is that the deformation selects the the maximal torus that decouples in the H, = H — 1/+/2 limit
as it was shown in [5] for the SU(2) and SL (2, R) algebras.

To begin, write the general element g € G as g = ht where h € G/T,t € T. Substituting this
decomposition in the expression above we find

(© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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(d(ht), d(ht)), = tr ((ht)_l d (ht) (ht)™* d(ht) Zm tr( (ht)” 1d(ht)"1)2

=tr (h=tdhh™ dh) + 2tr (dttT R dR) +tr (¢ de e de)

= 2m2 (tr (Tot = A~ dht) + tr (Tut " dt))” . (2.22)

Let us introduce a coordinate system ("/w u’/a) such as the element in G/7 is parametrized as h = h ('yu)
and ¢ is written explicitly as

t=exp {Z waTa} =" (2.23)

It is easy to see that since all the T, commute t~*dt = dtt™! = Y o Ta dip,. This allows for more
simplifications in the above expression that becomes

(d(ht), d(ht)), = tr (=" dhh~" dh) + 2> tr (T,h™" dR) dibg + Y diba dibg
=" 2u (6 (T.h~ dh) + des,)’
=tr (b dhh~ dh) = 202 (tr (T.h ™" dh))
+2> (1—202) tr (Toh ™" dh) dpa + Y (1 - 262) dipadipg . (2.24)

If we reparametrise the 1, variables as

Ya
= 2.25
Ya vI=2H, (2.25)
we get a new metric (-, -)!, where we’re free to take the H, — 1/+/2 limit
(d(ht), d(ht)), = tr (A~ dhh~" dh) — 3" 202 (tr (T,h =" dh))”
+2 Z 1= 282 tr (T,h ™" dh) ddbe + Y | dibg dd, (2.26)

and get
(d(ht), d(ht))}, 5 = |tr (b~ ' dhh~" dh) =Y (tr (Tuh™" dh)) +Z dtpg dip, (2.27)

where we can see the sum of the restriction of the Cartan-Killing metric’ on 7},G/7 and the metric on
T:T = T;U(1)". In other words the coupling terms between the elements h € G/7 and t € T vanished
and the resulting metric (-, -); /2 describes the tangent space T}, to the manifold G/T x 7.

2 This always is a left-invariant metric on G/ H. A symmetric coset doesn’t admit any other metric. For a more complete discussion
see App.A.

(© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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These homogeneous manifolds enjoy many interesting properties. The best part of them can be interpreted
as consequence of the presence of an underlying structure that allows to recast all the geometric problems in
Lie algebraic terms (see App. A for some constructions). There’s however at least one intrinsically geometric
property that it is worth to emphasize since it will have many profound implications in the following. All
these spaces can be naturally endowed with complex structures by using positive and negative roots as
holomorphic and anti-holomorphic generators. Moreover for each space there is not in general only one of
these structures (but for the lowest dimensional SU(2) case) and there always exists one of them which is
Kahler [17].

Other background fields. The asymmetric deformation of eq.(2.11) generates a non-trivial field strength
for the gauge field, that from eq. (2.20d) is found to be

2k [k ,
Fe=>%" EHQ dge=-> EH Jo Tt AT (2.28)

(no summation implied over a).
On the other hand, the B-field (2.20b) is not changed, but the physical object is the modified field strength

1 . .
Hiy = dB — A" A A" = § fuwe T NI AT =23 1, fae T ANTYAT", (229)
9 a

where we have used the Maurer-Cartan structure equations. At the point where the fibration trivializes,
Ho = 1//2, we are left with

Higp = L funp TNTYNTP. (2.30)

So only the components of Hjz “‘living” in the coset G/T survive the deformation. They are not affected
of course by the rescaling of the coordinates on 7.

A trivial fibration. The whole construction can be reinterpreted in terms of fibration as follows. The
maximal torus 7 is a closed Lie subgroup of the Lie group G, hence we can see G as a principal bundle
with fiber space 7 and base space G/T [18]

g Lig/T. 31

The effect of the deformation consists then in changing the fiber and the limit value H, = 1//2 marks the
point where the fibration becomes trivial and it is interpreted in terms of a gauge field whose strength is
given by the canonical connection on G/7T [19].

2.3 Equations of motion

In this section we want to explicitly show that the background fields we found on the left coset space are
solution to the first order (in o) equations of motion [20].
For a vanishing dilaton they read

k
de=—R+ JEF, P, (2.32a)
B = Ry — [ Hyupe H,”" — %F“WF“Vp =0, (2.32b)
BB, =V H,,, =0, (2.32¢)
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B, =VYF,, — 3F" Hyyy =0, (2.32d)

after applying the proper normalizations® our fields are given by

k
v = 56;% (2.33a)
2k
P =— % r (2.33b)
k
Hyp = —§fw . (2.33¢c)

o The 3(B) = 0 equation (2.32c) is just the restriction of the same equation for the initial wzw model,

o the two terms in the 3(4) = 0 equation (2.32d) vanish separately: the first one because F is closed (or,
equivalently because f,,, seen as a two form in G /T satisfies the condition stated below eq. (A.13));
the second because it is proportional to

Z faupfu,l/p = Z faMRfuMR = 29*611;1 = 07 (234)

v,p€g/b M.REQG

to solve the (%) = 0 equation (2.32b) we need some more work. Using the results in App.B.1, for a
general algebra, we obtain

Ry =5 fupofooo + Y fappave (233)
PO

a,p

that is consistent with the result in eq. (A.12).

If we introduce the orthonormal basis described in (B.1) the Ricci tensor can be explicitly written as

2
. . " aq, if v is odd,
RH” = i Z fltptffupu + Z fappfaup = %g fsm/ + %5;11/ } b +1)/2} . . (236)
p,o a,p au/g} if pis even.
In particular for a simply laced algebra reduces to
42 42
R = 'qT&W = ‘(]Tg,w. (2.37)

This result can be read by saying that the metric we obtain on a simply laced algebra is Einstein with
the following Ricci scalar

g*

]:2 (dimg — dim€) . (2.38)

For example in the case of G = SU(N), g* = N, (dimg — dim ¢) = N (N — 1) and then

R =

_(N+2)NWN -1

R k

(2.39)

3 Unless explicitly stated we consider o/ = 1 and the highest root 1) = 2.
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3 Some examples

In this section we will give some explicit examples of our construction. In particular we will consider the
deformation leading from the SU (2) background to the SU(2)/U (1) ~ S? coset (which already appeared
in [5] as part of the AdS» x S? background) and the superconformal field theory on SU(3) /U (1)2. Although
our construction is quite general and can in principle be applied to any group there is a limited number
of examples giving critical heterotic string theory backgrounds with a clear geometrical meaning. This is
just because of dimensional reasons: SU(2) /U (1) is two-dimensional, SU(3)/U (1)? is 6-dimensional and
USp(4)/U(1)? is 8-dimensional; higher groups on the other hand would lead to cosets of dimension greater
than 10 (in example SU (4) /U (1) has dimension 15—3 = 12). On the other hand these higher-dimensional
cosets can be used e.g. to obtain non-trivial compactifications generalizing the constructions of [21,22], if
the level of these CFTs are kept small.

3.1 The two-sphere CFT

The first deformation that we explicitly consider is the marginal deformation of the SU(2) wzw model.
This was first obtained in [23] that we will closely follow. It is anyway worth to stress that in their anal-
ysis the authors didn’t study the point of maximal deformation (which was nevertheless identified as a
decompactification boundary) that we will here show to correspond to the 2-sphere S? ~ SU(2)/U(1).
Exact CFT’s on this background have already obtained in [24] and in [2]. In particular the technique used
in the latter, namely the asymmetric gauging of a SU(2) x U(1) wzw model, bears many resemblances to
our own.

Consider an heterotic string background containing the SU (2) group manifold, times some (1, 0) super-
conformal field theory M. The sigma model action is

3 g
_ 1 2 a jya ~n 9=n
kaSSU(g)(g)jL%/d z {;)\ 1)) +nz=:1x ox }+S(M), (3.1

where A’ are the left-moving free fermions superpartners of the bosonic SU(2) currents, " are the right-
moving fermions realizing the current algebra in the gauge sector and kSsy(2)(g) is the Wzw action for
the bosonic SU(2) at level k. This theory possesses an explicit SU(2)r x SU(2)r current algebra.

A parametrization of the SU(2) group that is particularly well suited for our purposes is obtained via
the so-called Gauss decomposition that we will later generalize to higher groups (see App C). A general
element g (z,1) € SU(2) where z € C and ¢ € R can be written as

1 0\ (1 0\ (1 @\ [e¥/2 0
9(=9) = (z 1) ( /(;/7 \/7) (o 1)( 0 ewn) 3.2

where w = —zand f = 1+ |z\2. In this parametrisation the matrix of invariant one-forms Q =
g(z, 1/))_1 dg (z,) appearing in the expression for the Maurer-Cartan one-forms (2.1) is

zZdz —zdz+of dy e~
2f
Qo1 = o, Qoo = -0y 3.4

Q11 dz, (3.3)

(remark that (2 is traceless and anti-Hermitian since it lives in su(2)). From 2 we can easily derive the
Cartan—Killing metric on Ty, SU(2), as
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2 9 i

~ds? = (2'0)
g v de 2 (24 1) de o as
=—3p (z dz® dz+2°dz® dz 2(2+|z\>dz®dz)
+%(zd2—2dz)®dw+%dw®d¢. 3.5)

The left-moving current contains a contribution from the free fermions realizing an SU (2)5 algebra, so that
the theory possesses (local) N = (1, 0) superconformal symmetry.

The marginal deformation is obtained by switching on a magnetic field in the SU(2), introducing the
following (1, 0)-superconformal-symmetry-compatible marginal operator

55 = L;frgﬂ (JP+AA7) T (3.6)

where we have picked one particular current J from the gauge sector, generating a U(1) at level k. For
instance, we can choose the level two current: J = i¥'%2. As a result the solutions to the deformed
o-model (2.21), (2.28) and (2.29) read

%ds2 = dZLdZZ + (1 - 2H2) % (1zdz —1zdz + fdY) ® (1zdz —12dz + fdy)
(1+ 1) /
3.7
1k _ )
dB:? sdzAdzA dy, 3.8)

(1+12P)

A=1/2k7'g1-[ (—%(Edz—zd2)+ dq/}) . (3.9)

It can be useful to write explicitly the volume form on the manifold and the Ricci scalar

k \/k(1— 212
Vdetgdz A dzA dy = 5(7}12) dz A dZA dyp, (3.10)
(1+1F)
4 2
R:“kH , 3.1

Itis quite clear that at H = Hy,x = 1/+/2 something happens as it was already remarked in [23]. In general
the three-sphere SU(2) can be seen a non-trivial fibration of U(1) ~ S as fiber and SU(2)/U(1) ~ S?
as base space: the parameterization in (3.7) makes it clear that the effect of the deformation consists in
changing the radius of the fiber that naively seems to vanish at Hy,,x. But as we already know the story is a
bit different: reparameterising as in eq. (2.25)

)
V1 — 212

one is free to take the H — 1/+/2 limit where the background fields assume the following expressions

b= (.12)

1 5 N N
Lo &0 i ad, (3.13)

k H—1/v/2 <1+|Z‘2>
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k wdzAdz

1dz z2 ’ (3.14)
H—1/V2 4k, (1 + ‘Z‘2>

H——0. (3.15)

H—1/v/2

Now we can justify our choice of coordinates: the (z, z) part of the metric that decouples from the ¢
part is nothing else than the Kihler metric for the manifold CP* (which is isomorphic to SU(2)/U(1)). In
this terms the field strength F' is proportional to the Kahler two-form

F= ﬁgzg dz A dz. (3.16)
V kg

This begs for a remark. It is simple to show that cosets of the form G/H where H is the maximal torus
of G can always be endowed with a Kéhler structure. The natural hope is then for this structure to pop up
out of our deformations, thus automatically assuring the N = 2 world-sheet supersymmetry of the model.
Actually this is not the case. The Kéhler structure is just one of the possible left-invariant metrics that can be
defined on a non-symmetric coset (see App. A) and the obvious generalization of the deformation considered
above leads to C-structures that are not Kihler. From this point of view this first example is an exception
because SU(2)/U(1) is a symmetric coset since U (1) is not only the maximal torus in SU(2) but also the
maximal subgroup. It is nonetheless possible to define exact an CFT on flag spaces but this will require a
slightly different construction, that we will introduce in Sect. 4.
We conclude this section observing that the flux of the gauge field on the two-sphere is given by

[k [ k
Q:/S2F: E/sz: E47r. (3.17)

However one can argue on general grounds that this flux has to be quantized, e.g. because the two-sphere
appears as a factor of the magnetic monopole solution in string theory [25]. This quantization of the magnetic
charge is only compatible with levels of the affine SU(2) algebra satisfying the condition

E_». ez (3.18)

9

3.2 The SU(3)/U(1) flag space

Let us now consider the next example in terms of coset dimensions, SU(3) /U (1)2. As a possible application
for this construction we may think to associate this manifold to a (1,0) superconformal field theory M
with 3+1 dimensional target space so to compactify a critical string theory since dim [S U(3)/U (1)2] =
8 — 2 = 6. Our construction gives rise to a whole family of CFT’s depending on two parameters (since
rank [SU(3)] = 2) but as before we are mainly interested to the point of maximal deformation, where
the U(1)? torus decouples and we obtain an exact theory on the SU(3)/U(1)? coset. Before giving the
explicit expressions for the objects in our construction it is hence useful to remember some properties of
this manifold. The first consideration to be made is the fact that SU(3) /U (1)? is an asymmetric coset in the
mathematical sense defined in App.A (as we show below). This allows for the existence of more than one
left-invariant Riemann metric. In particular, in this case, if we just consider structures with constant Ricci
scalar, we find, together with the restriction of the Cartan-Killing metric on SU(3), the Kéhler metric of
the flag space F®. The construction we present in this section will lead to the first one of these two metrics.
This is known to admit a nearly-Kéhler structure and has already appeared in the superstring literature as a
basis for a cone of G5 holonomy [7].
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A suitable parametrisation for the SU(3) group is obtained via the Gauss decomposition described in
App.C. In these terms the general group element is written as

etv1/2 _ Z1tEas (i —12)/2 _Z3=Z1Z) o—19h2/2
Vit F1f2 vz
_ | et 2 IhlmsPomaas a(i—e)/2  _ Ea a—uba/2
g (21, 22, 23,91, %2) = NG e v A (3.19)
23e"¥1/2  zy—Zizgtes|zn|? et(P1—12)/2 L e—u2/2
Vit VIir2 V2

where z; are three complex parameters, 1); are two real parameters, and f; = 1+ \z1|2 + \23|2, fo =
1+ |22)® + |23 — z122|*. As for the group, we need also an explicit parameterisation for the su(3) algebra,
such as the one provided by the Gell-Mann matrices in eq.(C.10). It is a well known result that if a Lie
algebra is semi-simple (or, equivalently, if its Killing form is negative-definite) then all Cartan subalgebras
are conjugated by some inner automorphism®*. This leaves us the possibility of choosing any couple of
commuting generators, knowing that the final result won’t be influenced by such a choice. In particular,
then, we can pick the subalgebra generated by £ = ()3, \g).’

We can now specialize the general expressions given in Sect.2. The holomorphic currents (2.3) of the
bosonic SU(3)y, corresponding to the two operators in the Cartan are

\73 =—tr ()\5(/ (Z;uwu)71 dg (%u"/h)) s jg =—tr (/\s!} (%u@a)il dg (Zuawa)) , (3.20)

that in these coordinates read

z (=% 5 + 3- Z2 (1+ \Zl|2 — 2123 z. 3150 — 2
o )(a, atantz) dzl,% e (B ARoE) g
V2 |\ fi 2f2 2f2 fi 2f2
+cc. + % - % (3.21)

3 2152—53 52+|21‘222—2153 —2152+53 1\/3
8
=—1\/ = ————2d d d c.+ -/ - d
J 7 2{ 2% zodzy + 7 2z + 20 Z3+cc+2 3 P2,

(3.22)

they appear in the expression of the exactly marginal operator (2.11) that we can add to the SU(3) wzw
model action is

kk " 1 ~
V= gH/d‘ZH <J3772:)r I L 1 R :>J3
op [ de7Hs 3k (21 Yot Ysis PYrids ©)
s_t /3 78
+Hg | J°— V3 (:sva s + 2 Prds ) | J (3.23)
where 1" are the bosonic current superpartners and .J are two currents from the gauge sector both generat-
ingaU(1)g,.
4

This is the reason why the study of non-semi-simple Lie algebra deformation constitutes a richer subject. In example the
SL (2,R) group admits for 3 different deformations, leading to 3 different families of exact CFT’s with different physics
properties. On the other hand the 3 possible deformations in SU (3) are equivalent.

In this explicit parameterisation it is straightforward to show that the coset we’re considering is not symmetric. It suffices to pick
two generators, say A2 and A4, and remark that their commutator [A2, \a] = —1/+/2\g doesn’t live in the Cartan subalgebra.
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Since rank [SU(3)] = 2 we have a bidimensional family of deformations parameterised by the two
moduli H3 and Hg. The back-reaction on the metric is given by

ds* = ggde®® dz? + (1-203) 7P @ 7% + (1 — 203) T @ J° (3.24)

where g,, 5 is the restriction of the SU(3) metric on SU(3)/U(1)2. It is worth to remark that for any value
of the deformation parameters Hz and Hg the deformed metric is Einstein with constant Ricci scalar.
With a procedure that has by now become familiar we introduce the following reparametrisation

1 )
_ . Y 3.25
¥ V1-—2n2 v2 V1 — 212 @25
and take the H3 — 1/1/2, Hg — 1/+/2 limit. The resulting metric is
dify ® diy — ddy @ iy + dipy @ dib
ds? = 0a d2° ® 4 + Y1 ® diy U1 ? Yo + dipp ® dipo 7 (3.26)

that is the metric of the tangent space to the manifold SU(3)/U(1)? x U(1) x U(1). As shown in App.A
the coset metric hence obtained has a C-structure, is Einstein, and has constant Ricci scalar R = 15/k. The
other background fields at the boundary of the moduli space read

F=d7%+ 478, (3.27)
Hig = 73\@{% NIWNT? =T NT)+ VBT AT AT+ T° Aj7)} . (328)

If we consider the worldsheet supersymmetry properties along the deformation line we can remark the
presence of an interesting phenomenon. The initial SU(3) model has N = 2 superconformal symmetry but
this symmetry is naively broken to /N = 1 by the deformation. This is true for any value of the deformation
parameter but for the boundary point H3 = H3Z = 1/2 where the N = 2 supersymmetry is restored.
Following [22,26,27] one can see thata G /T coset admits N = 2 supersymmetry if it possesses a complex
structure and the corresponding algebra can be decomposed as j = j; @ j_ such as [j4,j+] = j+ and
[i—,j—] = j—. Explicitly, this latter condition is equivalent (in complex notation) to fi;x = fijz = faij =
faij = 0. These are easily satisfied by the SU(3)/U(1)? coset (and actually by any G /T coset) since the
commutator of two positive (negative) roots can only be proportional to the positive (negative) root obtained
as the sum of the two or vanish, as shown in eq. (B.3). Having N = 2 supersymmetry is equivalent to asking
for the presence of two complex structures. The first one is trivially given by considering positive roots as
holomorphic and negative roots as anti-holomorphic, the other one by interchanging the role in one out of
the three positive/negative couples (the same flip on two couples would give again the same structure and
on all the three just takes back to the first structure). The metric is hermitian with respect to both structures
since it is SU(3) invariant. It is worth to remark that such background is different from the ones described
in [27] because it is not Kihler and can’t be decomposed in terms of Hermitian symmetric spaces.

4 Gauging

In this section we want to give an alternative construction for our deformed models, this time explicitly
based on an asymmetric WZWw gauging. The existence of such a construction is not surprising at all since our
deformations can be seen as a generalization of the ones considered in [28]. In these terms, just like J.J (sym-
metric) deformations lead to gauged Wzw models, our asymmetric construction leads to asymmetrically
gauged WZw models, which were studied in [8].

First of all we will give the explicit construction for the most simple case, the SU(2) model, then
introduce a more covariant formalism which will be simpler to generalize to higher groups, in particular
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for the SU (3) case, whose gauging will lead, this time, to two different exact models corresponding to the
two possible Einstein complex structures admitted by the SU(3)/U(1)? manifold.

To simplify the formalism we will discuss gauging of bosonic CFTs, and the currents of the gauge sector
of the heterotic string are replaced by compact U (1) free bosons. It is obvious that all the results are easily
translated into heterotic string constructions.

4.1 The SU(2)/U(1) asymmetric gauging

In this section we want to show how the S2 background described in [5] can be directly obtained via an
asymmetric gauging of the SU(2) x U(1) wzw model (a similar construction was first obtained in [2]).

Consider the wzw model for the group manifold SU(2)) x U (1), . A parametrisation for the general
element of this group which is nicely suited for our purposes is obtained as follows

zZ1 Z9 0 0
g=1-% z o0]= (92 ) € SU(2) x U(1) 4.1
0| o
O 0 z3

where g1 and g correspond to the SU(2) and U (1) parts respectively and (21, 22, z3) satisfy
SU(2) x U(1) = {(w1, wa, ws) | |ur|® + [wa|* = 1, |ws|> = 1} € C. 4.2)

A possible choice of coordinates for the corresponding group manifold is given by the Euler angles:

SU(2)xU(1) = {(21722723) = <cos ge’(7+“)/27si11 gelw’”)/z,ew> <8< 0<a,fBp<2n.

(4.3)

In order to obtain the coset construction leading to the S2 background we define two U (1) — SU(2) x
U (1) embeddings as follows

er :U(1) = SU2) xU1), er:U(1)—SU2)xU(1),

) ) (4.4)
e (e'7,0,1) , e — (1,0,e'7) ,
so that in terms of the z variables the action of these embeddings boils down to
g e (e) ger (€))7,
4.5

(w1, wa, w3) — (e”wl,e”wz,e’”wg) .

This means that we are free to choose a gauge where ws is real or, in Euler coordinates, where v = a, the
other angular variables just being redefined. To find the background fields corresponding to this gauge choice
one should simply write down the Lagrangian where the symmetries corresponding to the two embeddings
in (4.4) are promoted to local symmetries, integrate the gauge fields out, and then apply a Kaluza-Klein
reduction, much in the same spirit as in [5].

The starting point is the WzZw model, written as

7

k : _ 135 4 : _ _15
Swmi(9) = o~ / d? T (95" 09205 " 092) + / d2? Tr (97" 0grg7 ' Og1) + Wz term.  (4.6)
Its gauge-invariant generalization is given by

S = Swuw + % / d2z[2k.21 Tr (tLE)ggfl) +2K' AT (th’lgg) —2kAATr(trg; "tro1)
Uy D
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— 2k AATe(tLg; 'trge) + kKAATY (tL)? + K AATro(tr)?] (A7)

where A and A are the components of the gauge field, and ¢; and ¢g are the Lie algebra generators
corresponding to the embeddings in (4.4), i.e.

tL—z<‘BS 8) N ) (8 2) , @58)

o3 being the usual Pauli matrix. For such an asymmetric coset to be anomaly free, one has the following
constraint on the embeddings

ETr(tr)? = K Tr(tg)? = k= k'p?, withp € N. (4.9)

If we pass to Euler coordinates it is simple to give an explicit expression for the action

/
S, B,7,¢) = % / d?z % (0ada + 0BOB + vy + 2 cos BOady) + %&pé@

+ k (Da + cos BAv) A+ K'V2pdpA — 2k AA. (4.10)

This Lagrangian is quadratic in A, A and the quadratic part is constant so we can integrate these gauge
fields out and the resulting Lagrangian is
1

!
S (a, 8,7, 0) = o / d?z g (0ado + 0BOB + 07Dy + 2 cos BOadY) + %8@5@

+ 22kk (Oa+ cos 30) Dy . 4.11)

Now, since we gauged out the symmetry corresponding to the U (1) embeddings, this action is redundant.
This can very simply be seen by writing the corresponding metric and remarking that it has vanishing de-
terminant

k/4
k/4 k/4cos V2K /4|
k/4cos B k/4 V2kE J4cos B
V2kE' J4  \/2kK /4 cos 3 k' /2

Of course this is equivalent to say that we have a gauge to fix (as we saw above) and this can be chosen by
imposing 7 = «, which leads to the following action

det g, = (4.12)

V2kk!

k (2(1 + cos B) Dada + 9BIB) + %&pé@ + (1+cosB) ad ¢

S(a0p) = 5 [ &5

(4.13)

whence we can read a two dimensional metric by interpreting the dor O term as a gauge boson and applying
the usual Kaluza-Klein reduction. We thus recover the two-sphere we expect.

45 = g~ GppAudy = & (457 + sin? o) @.14)

supported by a (chromo)magnetic field

A= \/g(l +cosf) da. (4.15)
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As advertised above we now turn to rewrite the above gauging in a more covariant form, simpler to
generalize. Since we’re interested in the underlying geometry, we’ll mainly focus on the metric of the
spaces we obtain at each step and write these metrics in terms of the Maurer-Cartan currents®. As we’ve
already seen in eq. (2.2), the metric of the initial group manifold is

k K
ds2:52$2®$2+51®2 (4.16)
where {71, J», J3} are the currents of the SU (2) part and 7 the U (1) generator. The effect of the asymmetric

gauging amounts - at this level - to adding what we can see as an interaction term between the two groups.
This changes the metric to

k o o K
ds? = 52]ﬁ®ff + 5T+ ViK1, (4.17)

Of course if we choose (J1, J2, J3,Z) as a basis we can rewrite the metric in matrix form

1
=3z 4.18
9=3 k o (4.18)
kk' K
where we can see that the gauging of the axial symmetry corresponds to the fact that the sub-matrix relative
to the {73, Z} generators is singular

k kk'
vkE K

explicitly this corresponds to

-0 (4.19)

k@ T + VK T @ T+ VEK BT+ KI®I= (k+k) T J (4.20)
where
. VET+VIT
_ : 4.21
J k+ K @20

isanormalized current. So we project the interaction sub-matrix on its non-vanishing normalized eigenvector

k VEkk'
[k [k ) _ /
( k+E E+E ( [k’ 1% ) =k+k (422)
and the resulting metric in the (71, Jo, j) basis is
k
k . (4.23)

k4K

© One of the advantages of just working on the metrics is given by the fact that in each group one can consistently choose
holomorphic or anti-holomorphic currents as a basis. In the following we will consider the group in the initial wzZw model as
being generated by the holomorphic and the dividing group by the anti-holomorphic ones.

(© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim




222 Bibliography

Fortschr. Phys. 53, No. 9 (2005) / www.fp-journal.org 1047

This manifold M (whose metric appears in the action (2.12)) corresponds to a S* fibration (the fiber being
generated by J) over a S? base (generated by (71, J2)).

St —— M
l ) (4.24)
SQ

It should now appear obvious how to generalize this construction so to include all the points in the
moduli space joining the unperturbed and gauged model. The decoupling of the U(1) symmetry (that
has been “gauged away”) is obtained because the back-reaction of the gauge field eq.(4.11) is such that
the interaction sub-matrix is precisely singular. On the other hand we can introduce a parameter that
interpolates between the unperturbed and the gauged models so that the interaction matrix now has two
non-null eigenvalues, one of which will vanish at the decoupling point.

In practice this is done by adding to the the asymmetrically gauged wzw model an auxilliary U (1) free
boson Y at radius R = (kk")'/4(1/+/20 — 1)!/2. This U(1) is coupled symmetrically to the gauge fields
such that the anomaly cancellation condition is still given by (4.9). In particular if we choose the gauge
Y = 0, the metric reads

< k ﬂHm) (4.25)

V2uvVEkEk K

which is exactly the model studied above. For a generic value of H? the two eigenvalues are given by

ko R b2 2 (42— 1) ke

2 (4.26)

s (kK ) =

so we can diagonalize the metric in the (71, J2, j , j ) basis (j and j being the two eigenvectors) and
finally obtain

= . 4.27
g Ar (kK 11) @20

>\2 (k~ k/v H)

Of course, in the H2 — 0 limit we get the initial WZw model and in the 02 -1 /2 limit we recover the
asymmetrically gauged model eq. (4.23).

It is important to remark that the construction above can be directly generalized to higher groups with
non-abelian subgroups, at least for the asymmetric coset part. This is what we will do in the next section.

4.2 SU3)/U(1)?

To study the SU(3) case we will use the “current” approach, since a direct computation in coordinates
would be impractical. As one could expect, the study of SU(3) deformation is quite richer because of the
presence of an embedded SU(2) group that can be gauged. Basically this means that we can choose two
different deformation patterns that will lead to the two possible Einstein structures that can be defined on
the SU(3)/U(1)? manifold (see App.A).
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4.2.1 Direct gauging
The first possible choice consists in the obvious generalization of the SU(2)/U (1) construction above, i.e.
simply gauging the U(1)? Cartan torus. Consider the initial SU(3); x U(1)g x U(1)g~ model. In the
(T, -, Ts,I1,Ts) base ({J;} being the SU(3) generators and {Z;,} the 2 U(1)’s), the initial metric is
written as

klgys 0

9= K ; (4.28)
0 k//

the natural choice for the Cartan torus is given by the usual (75, Jgs) generators, so we can proceed as before
and write the deformed metric as

k ]12><2
A (kK Hs)
k 14><4 (429)
A1 (K, k", Hg)
Ao (K, k', H3)
Az (k, k", Hs)
where H3 and Hg are the deformation parameters and A\, and \s are the eigenvalues for the interaction

matrices, given in eq.4.26. In particular, then, in the 3 — 1/2, u2 — 1/2 limit two eigenvalues vanish,
the corresponding directions decouple and we’re left with the following (asymmetrically gauged) model

kg |
g= ‘k+W (4.30)

k+ k"

inthe (J1, T2, J1, T5, T, T7, VET + VETs, VE' Ty + \/Ejg) basis that can be seen as a U (1)? fibration
over a SU(3)/U(1)? base with metric diag (1,1,1,1,1, 1) (in the notation of App A). This is precisely the
same result we obtained in Sect. 3.2 when we read the fibration as a gauge field living on the base.

U1)? —— M
J . “31)
SU(3)/U(1)?
As in the previous example all this construction is valid only if the asymmetrically gauged wzw model is

anomaly-free. This will be explained in detail in Sect. 5.

4.2.2 The Fj flag space

Let us now turn to the other possible choice for the SU (3) gauging, namely the one where we take advantage
of the SU(2) embedding. Let us then consider the SU(3)x, X SU(2)k, X U(1)p x U(1)g» Wzw model
whose metric is

kslgyg
g= FaLss 4.32)
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inthe (J1,...,Js, 21,12, 23, K1, Ko) basis, where (J;) generate the SU (3), (Z;) generate the SU(2) and
(KC;) generate the U (1)2.

The first step in this case consists in an asymmetric gauging mixing the {71, J2, J3} and {Z1,Z>,Z5}
currents respectively. At the gauging point, a whole 3-sphere decouples and we obtain the following metric

ks ]15x5

= (k2 +k3) 155 x (4.33)

k://

where we have to remember that in order to have an admissible embedding k2 = k3 = k. Our result is
again — not surprisingly — a SU(2) fibration over a SU(3)/SU(2) base (times the two U(1)’s).

SU(2) —— M
l . (4.34)
SU(3)/SU(2)

Of course one could be tempted to give M the same interpretation as before, namely a SU(3)/SU(2)
space supported by a chromo-magnetic SU (2) field (or, even better, gauging an additional U (1), of a CP?
background with a SU(2) x U(1) chromo-magnetic field). Actually this is not the case. The main point is
the fact that this SU(3) x SU(2) model is essentially different from the previous ones because the U (1)
factors were the result of the bosonisation of the right-moving gauge current which in this way received
a (fake) left-moving partner as in Sect.2.2. This is not possible in the non-abelian case since one can’t
obtain a SU(2) at arbitrary level & out of the fermions of the theory’. In other words, the SU(2) factor is
in this case truly a constituent of the theory and there is no reason why it should be decoupled or be given a
different interpretation from the SU(3) part. This is why the structure obtained by the SU(2) asymmetric
gauging is to be considered a 8-dimensional space admitting a SU (2) — SU(3)/SU (2) fibration structure,
or, equivalently, a deformed SU(3) where an embedded SU(2) is at a level double with respect to the
other generators.

On the other hand we are still free to gauge away the two U (1) factors just as before. This time we can
choose to couple Ky with the Js factor that was left untouched in the initial SU (3) and K5 with the 75+ Z;5
generator. Again we find a two-parameter family of deformations whose metric can be written as

k14><4
M1
9= 2k 132 (4.35)
%5
H2
V2
where
p=A(k K 1) (4.36)
v=A(2k K" H") . (4.37)

7' This would be of course be possible if we limited ourselves to small values of k, but in this case the whole geometric interpretation
of the background would be questionable. However for Gepner-like string compactifications this class of models is relevant.
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In particular now we can take the decoupling # = H” — 1/2 limit where we obtain

kﬂ4><4

2k71]-2><2

. 4.38
E+E *3%)

2k + k"

this structure is once more a U(1)? — SU(3)/U(1)? fibration but in this case it is perfectly fine to separate
the space components from the gauge field ones. So we can read out our final background fields as the
Kihler metric on F (see App.A) supported by a U(1)? (chromo)magnetic field.
To summarize our results we can say that the two Einstein structures that one can define on SU(3) /U (1)?
are both exact string theory backgrounds
o The first one, obtained as the asymmetric coset %ﬁgmz is supported by an Ns-Ns field strength
and a magnetic field;

e The second, corresponding to the %W asymmetric coset is Kihler and hence supported

by the (chromo-)magnetic field alone.

These two backgrounds are obtained from two different marginal deformations of SU (3).
This Kihler structure has been deeply studied both from the mathematical and physical points of view.
In particular the Kéhler form on F3 can be written as in App. C:

K (Y, 7,) = log {1 +ml?+ \73\2] +log [1 +al® + s — el - (4.39)

It is immediate to show that this manifold is Einstein and in particular its Ricci scalar is R = 12. Being
Kiihler, F; is torsionless, that means in turn that there is no Ns-Ns flux®. Moreover there is no dilaton by
construction’. The only other field that supports the background comes from the U (1)? fibration. Since the
manifold is Kéhler it is useful to take advantage of the complex structure and write our background fields
in complex formalism. In these terms the metric is written as

9= g (Fred' + e +27’ 0 5% (4.40)

where 7 and J* are the Maurer-Cartan corresponding to positive and negative roots respectively and the
field strength is given by

[k _ _
Fo = a _po - i v 4.41
—Qky W,C Rog THNT ( )

where C'is the following tensor

c=) J"eJ". (4.42)
«
In Sect.B.2 we show that the metric and (chromo)magnetic field solve the first order in o’ equations
of motion.

8 Tobe precise one could define a B field but this would have to be closed.
9 The dilaton would basically measure the difference between the asymmetric coset volume form and the homogeneous space
one as it is shown in [29].
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5 Exact construction: partition functions

In this section we will compute the one-loop partition functions for the various asymmetric deformations
leading to geometric cosets. We consider the part of the partition function of the CFT affected by the
deformation. We have holomorphic supersymmetric characters and anti-holomorphic bosonic characters of
the affine Lie algebra §j, times some anti-holomorphic fermionic characters from the gauge sector

{n} AR A 79[2} (r) e A 5| he
2ot = 2 ( 0(r) ) X WLJ e-b

where (a, b) and (hg, g¢) are the spin structures of the (left and right) worldsheet fermions. Useful formulas
about characters are provided in appendix D. Starting from the CFTs defined by these partition functions
we will perform the asymmetric deformation that has been discussed in the previous sections from the
geometrical point of view.

5.1 The SU3)/U(1)? flag space CFT

The partition function for the asymmetric deformation of SU(2) has already been given in [5]. We can
hence begin with the next non-trivial example of SU(3). In this case we will compare explicitly two
possible constructions, the Kazama-Suzuki method and the direct deformation along the Cartan torus to
show that they give the two inequivalent metrics on the geometric coset.

5.1.1 The Kazama-Suzuki decomposition of SU(3)

We would like to decompose our wzw model in terms of Kazama-Suzuki (KS) cosets, which are conformal
theories with extended N = 2 superconformal symmetry [22,27].
The simplest of those models are the N = 2 minimal models that are given by the quotient: SU(2)_2 X
0(2)1/U(1), and their characters come from the branching relation

i(s @m
XLoEy = Y gl =k 5.2)
meLak n

For convenience, we write the contribution of the worldsheet fermions in terms of SO(2n); characters, see
appendix D.
Similarly it is possible to construct an N = 2 coset CFT from SU (3) [22,27]:'°

SU(3)_3 x SO(4)

. 53
SU(2)k—2 x U(1)3x 3
The characters of this theory are implicitly defined by the branching relation
A =s A (94 @n,Sk
Xi-3Ei* Z > ¢ m—y (54)

2j=0n€Zei

Therefore combining the two branching relations, we obtain the decomposition of the SU(3) supersym-
metric WZW model in terms of N = 2 KS models

. Oumi ©
XbaEyEr = Y e erl ’;’“ ’;3’“. (5.5)

Jsm,n

10 According to our conventions, the weights of a U (1) at level k are m? /4k, m € Zoy.
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This decomposition follows the following pattern

SU(3)]€,3 X 50(4)1 SU(?)R,Q X 50(2)1
SV SO0®h = G55y, = 0w O(0n

xU(1)3xU(1)p xSO(2)1 (5.6)

and we shall perform the deformation on the left lattice of U (1)3, x U(1)s. However the deformation will
also act on an appropriate sub-lattice of the right-moving gauge sector. The last SO(2); factor corresponds
to the fermions which are neutral in the process so they won’t be considered afterwards.

5.1.2 The gauge sector

To construct the model we assume that the gauge sector of the heterotic strings contain an unbroken SO(6)1,
whose contribution to the partition function is, written in terms of SO(6); free fermionic characters Egs,
see App. D. Since we decompose the characters of the left-moving sector according to eq.(5.6), a natural
choice for the action of the deformation in the right-moving gauge sector is to use a similar Kazama-Suzuki
decomposition, but for £ = 3, in which case the bosonic CFT is trivial

SOU: _ SU@) x SO@)
SU)1 x U(1)y U1

SO(S)1 — X U(1)3 X U(1)1 X 50(2)1 . (5.7)

Since as quoted previously two fermions — the SO(2); factor — are neutral it is enough that the gauge sector
contains an SO(6); subgroup. To achieve this decomposition, first we decompose the SO(6); characters
in terms of SO(4); x SO(2)y

Z C (363 54, 52] ES*E5? (5.8)

54,52€%4

where the coefficients of the decomposition SO(6) — SO(4) x SO(2) are either zero or one. And then
we perform a coset decomposition for the SO(4); characters

’“54 —

=1k (5.9)

£=0,1 u€Z1s

in terms of SU(2), characters x* and U (1) characters ©,, 9. It defines implicitly the coset characters %,
of SO(4)1/SU(2)1 x U(1)y. Then the SU(2)1 x SO(2); characters are decomposed as

ey = Y e (5.10)

in terms of coset characters of SU(2); x SO(2)1/U(1)s. So putting together these branching relations we
have the following Kazama-Suzuki decomposition for the free fermions of the gauge sector

= Y Y XY Cliwe sl wfyat O 0“3- (5.11)

54,82€7%4 £=0,1 u€Z15 vELg n

5.1.3 The deformation

Now we are in position to perform the asymmetric deformation adding a magnetic field to the model. The
deformation acts on the following combination of left and right theta functions

@n,Sk (:)11,,9 X (_)m,k(;)ﬂ,;% . (512)
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As for the case of SU(2) [5], we have to assume that the level obeys the condition

\/gzpeN, (5.13)

to be able to reach the geometric coset point in the moduli space of CFT. Then we have to perform O(2, 2, R)
boosts in the lattices of the U(1)’s, mixing the left Cartan lattice of the super-wzw model with the right
lattice of the gauge sector. These boosts are parameterized in function of the magnetic fields as

1
coshﬂufm, a=1,2. (5.14)

Explicitly we have

Z ) (et 2)" Z Plhris)’ plrari)”
N1,N2€Z f1,f2€Z

N qg [p(N1+ s ) cosh @ +(f1+ 1% ) sinh Ql} 2q3 [p(N2+6:2 ) cosh Qa+(f2+% ) sinh 92]2

N1,N2, f1.f2€L

[(fl+ﬁ)coshﬂ1+p(1\71+ )sinth] [(f2+%)coshﬁ2+p(N2+#)sinhﬂz}2. (5.15)

2
_3
q

m
18p2

9
xXq

After an infinite deformation, we get the following constraints on the charges
m=p(18u—u), p€Z,, (5.16a)
n=p6v—uv),vel,, (5.16b)

and the U(1)2 CFT that has been deformed marginally decouples from the rest and can be safely removed.
In conclusion, the infinite deformation gives

Z}(;‘?"S%%) (’7’) = ZZ Z Z C [56; 547 52]
A

J MVEZL, 54,52€74

A (s J (s A — 54 — 0,55
Z Z Z Cj 7(1)(11)8;1—11) C‘l])((ﬁj)—U) X Xk—3 W y; u o' G.17)

0=0,1 u€Z15 vVEZLg

where the sum over A, j runs over integrable representations, see appendix D. This is the partition function
for the SU(3)/U (1)? coset space. The fermionic charges in the left and right sectors are summed according
to the standard rules of Gepner heterotic constructions [21]. The modular properties of this partition function
are the same as before the deformation, concerning the Z, indices of the worldsheet fermions.

5.1.4 Alternative approach: direct abelian coset
Here we would like to take a different approach, by deforming directly the Cartan lattice of sui3 without
decomposing the left CFT in terms of KS N = 2 theories. As explained in the App.D, it is possible to
perform a generalized (super)parafermionic decomposition of the characters of the sug super-algebra at
level k (containing a bosonic algebra at level k£ — 3) w.r.t. the Cartan torus

dim(j)/2
Ul al Oxg
A b _ A Ak
o[y p e

AEM* mod kM
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where the theta function of the sui3 affine algebra reads, for a generic weight A\ = mi)\’} (see App.D):

2
my )\} +m,2)\2f
3

N1 +N?az+

(5.19)

Oxg = Z g= ) = Z q

A 1 2
YeEM+ 2 N1, N%ez

To obtain an anomaly-free model it is natural to associate this model with an abelian coset decomposition of
an SU(3)y, current algebra made with free fermions of the gauge sector. Thus if the gauge group contains
e.g. an SU(3); unbroken factor their characters can be decomposed as

&= > &205. (5.20)
;\:ﬁLA} € M* mod M

Again we will perform the asymmetric deformation as a boost between the Cartan lattices of the left sug
algebra at level k and the right sug lattice algebra at level one coming from the gauge sector. So after the
infinite deformation we will get the quantization condition v/k = p and the constraint

A+pA=0 mod pM =:pu, p€ M. (5.21)

So we get a different result compared to the Kazama-Suzuki construction. It is so because the constraints
that we get at the critical point force the weight lattice of the sug at level & to be projected onto p times
the suz weight lattice at level one of the fermions. This model does not correspond to a Kihlerian manifold
and should correspond to the SU (3)-invariant metric on the flag space. With the KS method we get instead
a projection onto p times a lattice of sug at level one which is dual to the orthogonal sublattice defined by
a1Z+ (a1 + 2a2)Z - in other words the lattice obtained with the Gell-Mann Cartan generators. In this case
it is possible to decompose the model in K$ cosets models corresponding to Hermitean symmetric spaces.!!

‘We have seen in Sect. 4 that, in the gauging approach, ones obtains the Kéhler metric automatically when
one starts from the SU (2) fibration over SU(3)/SU (2) rather than from the wzw model SU (3). It is now
very easy to understand why it is the case. Indeed once the SU(2) has been taken out of the SU(3), the
only U(1) that can be gauged (or deformed) is the U (1) orthogonal to the root oy of the SU(2) subalgebra,
thus must be along a; + 2. This allows to decompose the abelian coset into KS models for Hermitean
symmetric spaces, and the model corresponds to the Kahlerian metric on the flag space.

5.2 Generalization

The previous construction can be easily generalized to any affine Lie algebra, but the formalism gets a little
bit bulky. We will consider separately all the families of simple Lie algebras, since the construction differ
significantly. We will mainly focus below on the Ks decomposition method.

5.2.1 A, algebras

For an SU (n+1) wzw model we use the following decomposition in terms of N = 2 Kazama-Suzuki mod-
els:

SUn+ 1)k—n—1 X SO(n? 4 2n),

SUn 4 1)k—n—1 x SO(2n)1 o SUN)g—n x SO(2(n —1))1 o5 SU(2)k—2 x SO(2)1
SU(’I’I,)IC," X U(l)n(n+1)k/2 SU(T] — 1)k—n+1 X U(l)(n—l)nk/Z o U(l)k
X SO(n)1 X U(l)n(n+1)k/2 X U(l)(n—l)nk/Q X ... X U(l)k (522)

11 For the symmetrically gauged Wzw models, this has been studied in [30].
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So the left worldsheet fermions of SO(n? + 2n); are decomposed into
SO(n? +2n) — SO(2n); x SO(2(n —1))1 X ... x SO(2); x SO(n); (5.23)

where n fermions, corresponding to the SO(n); factor, are neutral. The Kazama-Suzuki decomposition of
the characters reads

XAB BN . EPES = Y > ooy (5.24)

AV A2 m1€Ly(ng1)k M2€L(n—1)nk My €2Lak

(C] (C] —1)nk O
ml,n(n;l)k‘ ma, &2 Zl)nk Om,",k

Au(san) oA (S200-1)  ji(s2) s
CAl‘ml CA2,7n,2 Cmn =n X

n n oo

where the sum on A, A2,. .. j is taken over integrable representations (see App.D) of SU(n), SU(n —
1),...,SU(2). For the right fermions of the gauge sector the story is the same as for the SU(3) example.
We will need n(n + 1) free fermions realizing an SO(n? +n); algebra, in order to use the Kazama-Suzuki
decomposition for the A,, model at level £ = n + 1, such that the bosonic part trivializes

SO(n® +n);

N SO(2n), « SU(n); x SO(2(n—1))1 % SU(2)p—1 x SO(2)1
SU(’I’L)l X U(l) r,<r,‘+1)2 SU(n— 1)2 X U(l)(n—l)g,(n+l) U(l)n+1
X U(l) ,,(,,fl)z X U(]) ('n,—l);(n+l) X... X U(l)n+1 . (525)

So we can write the decomposition in terms of coset characters as

Ei’g;ﬁf;: Z C [3n(n+1); 52n5 S2(n—1)s - - - » 52 Z Z Z

S2n,82(n—1)---52€2a U1€Zy, (1 41)2 W2E€L(n—1)n(n+1) UnEL2(nt1)
O, wmin2 O
- . ) (n+1) (n=1)n(n+1) [e)
_S _ A4, 5 _ j, 5 U1, Uz p Uy ,n+1
Sn(n+1) - Ay 52n..-w:l]q 52y 2 —] n 1 (5.26)
Ay, ug Ao jug U, 7 7 7

For the left coset to exist one has to assume the following constraint on the level of the A,, affine algebra

k
A 7. 2
Vg1 =P€ .27

Then the decomposition can be carried out straightforwardly, by mixing the lattices of the holomorphic
theta function for the decomposition (5.24) and the decomposition (5.25). We get the following constraints
mi =p[n(n+1)%u — ), 1 €Ly,

me =pl(n—1nn+ 1) —us], p2 €7, (5.28)

My =p2(n+ 1) pn — un] , tn € Ly .

So at the end we can remove the U(1)™ free CFT contribution and we get the following “partition
function” for the SU (n 4+ 1)/U(1)™ left coset, with N = 2 worldsheet superconformal symmetry

I(j2m7--'152;§u(u+1)) (7_)
n1

=2 2 X > X

A AV A2 My €Ly (ng1) k M2€L(n_1)n k My, €Zy
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§ C [Sp(n+1); 5205 S2(n—1)s - - - » 52] E § E
S2n,52(n—1)...52€Zs U1E€Zy (y1)2 U2EL(n—1)n(nt+1)  Un€La(ni1)
Z CA,(SM) Al (s2(n—1)) J, (s2)
AL, pln(n+1)2p1 —ua [ VA2, p[(n—1)n(n+1)pa—uz] *** Vp[2(n+1)pn —un]
seeosfin €2y
A =Sn(n+1) = Ay, 52p — j, 82
X XCw R Ty (5.29)

As in the previous example this characters combination behaves covariantly under modular transformation,
i.e. is modular invariant up to the transformation of the fermionic indices {s;} and 5, (,,4.1). The modular
invariance of the complete heterotic string background will be ensured by an appropriate Gepner construc-
tion.

Now let us consider the other simple Lie algebras. For sake of brevity we will only sketch the method,
which is quite parallel to the present case.

5.2.2 B, algebras

In this case, the relevant Kazama-Suzuki N = 2 coset model is

SO(Q?’L + 1)k—2n+1 X SO(4TL — 2)1

5021 — Dians x U(L)an 630
therefore the decomposition in N = 2 models of the group manifold is
SO@2n + 1)j—2n+1 X SO(n(2n +1))1
SO2n + 1)g—2n41 X SO(4n — 2)y « SO2n — 1)g—2n+43 X SO(4n — 6)1
SO2n — 1)k—2n+43 X U(1)2p SO(2n — 3)k—2n+5 X U(1)2k
x.. x SO0B1 x SO SO(n); x (U(1)ax)" . (5.31)

U(1)2x

So there are no specific constraints on the right fermions of the gauge sector. We only need to pick up
n complex fermions with arbitrary boundary conditions, realizing an [SO(2),]" algebra'?. The level of
the SO(2n + 1) has to be quantized as vk € N. Under this condition the deformation can be carried
out straightforwardly.

5.2.3 C, algebras
‘We consider here the KS cosets

Sp(2n)g—pn—1 x SO(n(n + 1))
SUM)ok—n X UWne

(5.32)

So apart from the first step the decomposition follows the pattern for A,, algebras

Sp(2n)g—n—1 X SO(n(2n +1));

Sp(2n)g—n—1 x SO(n(n+ 1)), o SU(n)2k—n x SO(2(n —1));
SU(n)og—n X U(1)pk SU = 1)ag—ns1 X UL)(n-1)n

12 Of course this algebra may be enhanced in the specific model at hand but this is not necessary. Note also that there is another
construction when ones starts with and SO(2n2); algebra in the gauge sector and decompose it in terms of the B;, Kazama-
Suzuki model at level 2n — 1.
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SU(2)2]€72 X 50(2)1
U(1)op
X SO(?L)1 X U(l)nk X U(l)(n,—l)nk X U(]-)(n—2)(n—l)k X ... X U(l)gk . (533)

X ... X

Then one need in the gauge sector an SO(2n?); algebra that will be split according to the purely fermionic
Kazama-Suzuki decomposition for C,,, together with the quantization condition

k
n-+1

Then the deformation will lead to the partition function for the abelian coset space.

eN. (5.34)

524 D, algebras
‘We consider here the KS cosets
SO(2n)k—2n42 X SO(n(n —1))1

5.35
SU(’I’L)k,n X U(l)znk ( )
This case is very close to the last one. We have the decomposition
SO(Qn)k,2n+2 X SO(’H(?’I’L — 1))1
SO(2n)k—2n+t2 x SO(n(n—1)); y SU(n)g—n X SO(2(n —1))1
SU(n)kfn X U(1)2nk SU(” - 1)k771,+1 X U(l)(nfl)nk/Q
SU(Q)k_Q X 50(2)1
w 22 \HIk=2 2 AL
ULk

X SO(T])l X U(l)gnk X U(l)(n—l)nk/2 X U(l)(n—Z)(n—l)k/Z X ... X U(l)k . (536)

So the fermions of the gauge sector have to realize an SO[2n(n — 1)]; algebra, together with the quantiza-
tion condition

k
2n — 2

eN. (5.37)

5.2.5 Exceptional algebras

The two exceptional algebras corresponding to Wzw models that can be decomposed into KS models are
FEg and E7. In the first case, we have the decomposition

(Eﬁ)k,lg X 50(78)1
(Eg)k,,lg X 50(32)1 « SO(lO)k X 50(20)1 « SU(5)]¢+3 X 80(8)1
SO(lO)k X U(l)(;k SU(5)k+3 X U(l)lo(k+8) SU(4)k¢+4 X U(l)lO(k+8)
SU(2)rs6 x SO@2):
U(D)k+s
x U(D1ok+8) X U(D)s(krg)y X U(D3rs) X U(Dk+s - (5.38)

However we would need an SO(72); algebra from the gauge sector, which doesn’t “fit” into the SO(32)

or Eg x Eg algebra of the heterotic strings. The same holds fo E7; in this case we have the decomposition

(E7)k_1g X SO(54)1 % (Eb)k X 50(32)1
(Eo)r x U(1)sk SO(10)k+12 X U(1)g(k+12)

x 8O(6)1 x U(L)ek x U(1)10(k+8)

(E7)k—18 X 50(133)1 —

X ... (539
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5.3 Kazama-Suzuki decomposition vs. abelian quotient

In this section we would like to stress the ambiguity in defining an abelian coset of Wzw models. We will
consider the A,, case in the discussion, although it’s pretty much the same for the other classical Lie algebras.

An abelian super-coset G x SO(#g —d)/U(1)4, (with g at level k — g*) must be supplemented with the
definition of the action of the abelian subgroup in g, corresponding to a choice of a particular sub-lattice of
I' € VEM (these issues have been discussed in [30] for symmetric supercosets of type Il superstrings). In
our construction, the left-coset structure will require that, in order to achieve modular invariance, the lattice
behaves covariantly as some combination of right-moving fermions of the gauge sector of the heterotic
string. It will be possible only if the level of the g affine algebra obeys a special quantization condition.
In the Ks construction we define with these right-moving fermions an orthogonal lattice; therefore we
have also to choose an orthogonal sub-lattice of the root lattice for the wzZw model in order to make this
construction possible.

For the A,, algebra, the relevant orthogonal basis is written as follows'>:

vy = Vkay (v1,11) =2k,
vy = \/E(Ctl +2sz) (1/2,1/2) :6k
vz = \/E((l/l + 2(1/,2 + 3()/2) (1/3, 1/3) = 12]{', (540)

vp =Vk (a1 4209+ ... +na,) Wp,vn)=nn+1)k,

and is of course a sub-lattice of the complete root lattice. More precisely it corresponds to
n n
Vil = V@ aZao ¢ VEED Za . (5.41)
a=1 a=1
Then the associated theta-functions of su,,11can be written as a product of usual su, theta functions
n
T . *
(—)g\,a = H Omg,aaryk/2 With A= Zmaua . (5.42)
a=1

This choice of orthogonal basis allows actually to decompose the abelian coset into a chain of N = 2
Kazama-Suzuki models. Indeed we have to choose the lattice of the U(1) in SU(n + 1)/SU(n) x U(1)
to be Zvy,, such that it will be orthogonal to the root lattice of su,,_; given by 22;11 Zovg, thus allowing to
gauge it.

The left coset corresponding to this choice of abelian subgroup is obtained by a marginal deformation
with the operator @, (v4, ). Its partition function is composed of the coset characters obtained through
the branching relation

n2+n

n

A(siyens,24,)

X T s 2= > Cy T T Oy a2 - (5.43)
r=1 A=Aav} € I'* mod kT a=1

On the other hand, in the standard N' = 1 abelian coset construction the characters of the affine Lie algebra
are decomposed according to the full v/&M lattice. The left coset is obtained by a marginal deformation
with the operator &, («ay, H). The relevant coset characters are given by

71,2+n

A (518,20
XM a2 = ) e C N (5.44)
r=1 A=€M* mod kM

13 In the case of As, we find the Gell-Mann matrices of SU(3) (C.10).
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As in the A3 case, we can show that the left cosets corresponding to these two classes of models are
different. They are in correspondence with the different possible metrics (Kéhlerian and non-Kihlerian) on
asymmetric cosets spaces discussed in appendix A.

6 New linear dilaton backgrounds of heterotic strings

These left-coset superconformal field theories can be used to construct various supersymmetric exact string
backgrounds. The first class are generalizations of Gepner models [21] and Kazama-Suzuki construc-
tions [22] using the left cosets as building blocks for the internal SCFT. For instance to construct a four-
dimensional string theory one takes a product of left cosets such that the central charges add up to ¢ = 9.
This has already been considered in [3] for the S? coset!* but can be extended using the new theories con-
structed above. In this case there is no geometric interpretation from the sigma model point of view since
these theories have no semi-classical limit. Indeed the levels of the cosets are frozen because their central
charge must add up to ¢ = 9 (in the case of four-dimensional compactification). However we expect that
they correspond to special points in the moduli spaces of supersymmetric compactifications, generalizing
the Gepner points of the CY manifolds.

Another type of models are the left cosets analogues of the NS5-branes solutions [9, 10] and of their
extensions to more generic supersymmetric vacua with a dilaton background. It was shown in [13] that
a large class of these linear dilaton theories are dual to singular CY manifolds in the decoupling limit.
An extensive review of the different possibilities in various dimensions has been given in [30] with all
the possible G/H cosets. The left cosets that we constructed allow to find new solutions of this type in
heterotic strings, with a different geometrical interpretation since our cosets differ from ordinary gauged
wzw model. However the superconformal structure of the left sector of our models is exactly the same as for
the corresponding gauged wWzw — except that the values of the N=2 R-charges that appear in the spectrum
are constrained — so we can carry over all the known constructions to the case of the geometric cosets.

In the generic case these constructions involve non-abelian cosets, and as we showed the asymmetric
deformations and gaugings apply only to the abelian components. Thus in general we will get mixed models
which are gauged wzw models w.r.t. the non-abelian part of H and geometric cosets w.r.t. the abelian
components of H. Below we will focus on purely abelian examples, i.e. corresponding to geometric cosets.
The dual interpretation of these models, in terms of the decoupling limit of some singular compactification
manifolds, is not known. Note however that by construction there are about vk times less massless states
in our models than in the standard left-right symmetric solutions. Therefore they may correspond to some
compactifications with (NS-NS and magnetic) fluxes, for which the number of moduli is reduced. It would
be very interesting to investigate this issue further.

Six-dimensional model. We consider here the critical superstring background

s1 SL(2,R)gyn x SO(2
R SU )rkjﬁ)f @h U(1)\SU @2 X 50(2)1] 6.1)

the second factor being a left coset CFT as discussed in this paper. This is the direct analogue of the five-brane
solution, or more precisely of the double scaling limit of NS5-branes on a circle [12,31], in the present case
with magnetic flux. This theory has N = 2 charges but, in order to achieve spacetime supersymmetry one
must project onto odd-integral N = 2 charges on the left-moving side, as in the type II construction [31].
This can be done in the standard way by orbifoldizing the left N = 2 charges of the two cosets.

14 Only in the simplest case kg = 2.
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Four-dimensional model. A simple variation of the six-dimensional theory is given by

SL(QI R)k/2+2 X 50(2)1

R x
U(1)as

% [U(l)k\SU(Q)k,2 x 50(2)1] % [U(l)k\SU(Q)k,2 x SO(2),
(6.2)

which is the magnetic analogue of the (deformation of) intersecting five-branes solution. Also here an
orbifoldization of the left N = 2 charges is needed to achieve space-time supersymmetry.

Three-dimensional models: the flagbrane. We can construct the following background of the G5 holon-
omy type, as in the case of symmetric coset [32]

R>! x Rg x U(1) x U(1)3k\SU(3)’“*3 X 50(6)1} 6.3)
and the non-trivial part of the metric is

ds? = —dt* + da?® + dy* + Fka [dr? +4r?ds®(SU(3)/U(1)?)] . (6.4)

Without the factor of four it would be a direct analogue of the NS5-brane, being conformal to a cone over
the flag space.

Another possibility in three dimensions is to lift the SL(2, R) /U (1) coset to the group manifold SL(2, R).
In this case, as for the standard gauged wzw construction [33] we will get the following anti-de Sitter back-
ground

SL(2,R)) /a2 % [U(l)gk\SU(B)’“—i‘ x S0(6): (6.5)

and the left moving sector of this worldsheet CFT allows to construct an N = 3 superconformal algebra
in spacetime.

Two-dimensional model. In this case we can construct the background

SL(Q,R)% X 50(2)1 U(l)gk\SU(:g)k*S X 50(6)1

RV x X
U(1)ak U(D)g

(6.6)

which corresponds in the classification of [30] to a non-compact manifold of SU(4) holonomy once the
proper projection is done on the left NV = 2 charges. This solution is asymptotically conformal to a cone
over the Einstein space SU(3)/U(1). Using the same methods are for the NS5-branes in [31], we can show
that the full solution corresponding to the model (6.6) can be obtained directly as the null super-coset

SL(2,R)rsa x y(1)\SU B
U(l)L X U(l)R

6.7)

where the action is along the elliptic generator in the SL (2, R), with a normalization Tr[(#%)?] = —4, and
along the direction a1 + 2av in the coset space U(1)\SU(3), with a canonical normalization. For r — oo the
solution asymptotes the cone but when r — 0 the strong coupling region is smoothly capped by the cigar.
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A Coset space geometry

Coset spaces have been extensively studied in the mathematical literature of the last fifty years. In this
appendix we limit ourselves to collect some classical results mainly dealing with the geometric interpretation.
In particular we will follow the notations of [34].

Let G be a semisimple Lie group and H € G a subgroup. As in the rest of the paper, upper-case indices
{M,N,0} refer to the whole group (algebra) G, lower-case indices {m, n, o} to the subgroup (subalgebra)
and Greek indices {4, v,w} to the coset.

It is useful to explicitly write down the commutation relations, separating the generators of H and G/H

(T Tn) = fomnTo s (To. 1) = T, (A.1a)

[T;m Tu] = fOMuTo + fwlew . (A.1b)

Of course there are no ¢, terms since H is a group. G/ H is said to be symmetric if f,,, = 0, i.e. if the
commutator of any couple of coset elements lives in the dividing subgroup. In this case a classical theorem
states that the coset only admits one left-invariant Riemann metric that is obtained as the restriction of the
Cartan-Killing metric defined on G (see e.g. [19]). This is not the case when H is the maximal torus (except
for the most simple case G = SU(2)) and the coset manifold accepts different structures.

Any metric (or, more generally, any degree-2 covariant tensor) on G/H can be put in the form

9= gu(x)J"eJ". A.2)
One can show that the G invariance of g is equivalent to

Franrw (@) + 0 gru(z) =0, (A3)
and the homogeneity imposes

gij = constant. (A.4)

Both conditions are easily satisfied by g,.,, o 0, (this is the metric on G/ H that we obtained in eq. (2.27)).
The Levi-Civita connection 1-forms w*,, of g are determined by

dg;w - wnung - wnygnu = 07 (A5a)
dJ* +wh, ATV =0, (A.5b)

and are explicitly written in terms of the structure constants as
wh, = fr,J*+ D" J° (A.6)

where D¥, can be separated into its symmetric and antisymmetric parts as follows

Dl = 5[ + K, (A7a)
K*,, = 3 (guo.fwﬁpng + gwfwwgwp) . (A.7b)
We can then derive the curvature 2-form Q = dw +w Aw
JENJ
@, = (D0, Dy = DOy Dy = [ f s = fug D" ) 5 (A38)
the Riemann tensor
Ry = = ol e = 5 ol on + 2l o+ 5 0a e + 5 P K + 5110 Ky
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_ Lgn P Llyrp PP H 4 n P 1z
2 /mK ov zf paK KV f naK pu+K UIIK Kp K M/K op (A9)
and the Ricci tensor
i — K — _fa wo _1opp l; 1pp 3 1 pp " 1rp 14
Ricye = R, = = "0 M = 50ty + 2 F0u " ep + 5 10 K 5y + 5 1100 K2
_Llygp wo _ lgpop 1z
3 wK ov s K ;wK op - (A.10)

In particular, in the case of g, = J,,, the expressions are greatly simplified because the antisymmetric

part K*, , vanishes and then the Riemann and Ricci tensors are respectively given by
1 1 1
R g = =L ol ar = 5 ko + 18 0k op + 25 0e s (A.1D)
Ricye = =0 fta — if”lwf“py, (A.12)

Another fact that we used in the paper about G/H cosets is a construction due to Borel [17,35] of a
Kihler structure over G/T where T is the maximal torus. First of all we remark that such a coset can be
given a C structure when associating holomorphic and anti-holomorphic sectors to positive and negative
roots respectively. One can then show that the (1, 1) form defined as

w= % 3 T A T" (A.13)

a>0

is closed if and only if for each subset of roots {a, 3,7} such as &« = (3 + ~, the corresponding real
coefficients c,, satisfy the condition c, = cg + c,. Of course this is equivalent to say that the tensor

9=> cJ*®J" (A.14)
a>0
is a Kihler metric on G/T.

In particular, if we consider the SU(3) group, for the su(3) algebra we can choose the Gell-Mann A
matrices (C.10) as a basis. In this case if we divide by the U (1) x U(1) subgroup generated by (A3, As), the
most general metric satisfying (A.3) has the form g = diag {a, a, b, b, ¢, ¢} i.e. SU(3)/U(1) x U(1) admits
a three parameter family of metrics. Among them, the moduli space lines @ = b = ¢ (the metric obtained
in Sect.3.2) and @ = b = ¢/2 (the metric in Sect.4.2) represent Einstein structures (with Ricci scalar 15/a
and 12/a respectively). In both cases the manifold can be endowed with complex structures (positive and
negative roots respectively generating the holomorphic and anti-holomorphic sectors) but only the latter
admits a Kéhler structure (in this way we obtain the so-called flag space F3).

B Equations of motion

B.1 Explicit derivation of some terms

In this appendix we explicitly derive the expressions for the F'*,,,F'* P and H,,,, H,”’ terms appearing in
the equations of motion (2.32b).

Gauge field strength. Consider the term coming from the gauge field strength. First of all we can build
an orthonormal basis out of the Weyl-Cartan basis by complexifying the Cartan generators and combining
opposite ladder operators as follows

T =1H*,
20— @ « —a
TZ[J 1:Z|2ﬂ| (E“—E M)7 (B])
T2 = ‘6“2”' (B® + E-)
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if we write explicitly the (Fz)w term as follows
(F2) 1 0 D S i M = D (T [T, T) (T, [T, T (3.2)

‘We can see why rewriting everything this choice of basis simplifies the calculation: the only commutators
that will give a non-vanishing result when projected on the Cartan generators are the ones involving opposite
ladder operators'®, that is [72#~!, T%*] which are explicitly given by
|O‘u }2
[T2#=1, 7% = T2 [E*,E~*] = o, - (uH) , (B.4)
this means that

K(T™ T, T) = ap|" 6110 ifv=2u-1,

m (B.5)
K (T™, [T, T%]) = —ay|" 0p-10 ifv=2p,
putting this back in eq. (B.2) we find
o laqiny|” ifvisodd,
Z'f rvw W = 6’/” 2 . . (B.6)
mw ‘0@,/2! if v is even,
if g is simply laced then we can fix the normalizations to }au‘z = 9% = 2 and the above expression is
greatly simplified
Z fm,wamﬁw _ 261/7( (B.7)

and by applying the right normalizations (see eq.(2.33)) we find that for a general algebra

2
4 «@ if v is odd
F™ug* " x = 20 | )/ d SR (B.3)
9 |al,/2} if v is even,
and for a simply laced one
. 8 .
F"Lngwamfrw — FOVW A (B9)
9
15 We remember that the Cartan-Weyl basis is defined by
[H™ H"] =0, (B.3a)
[HY, E®H] = au|* B (B.3b)
NyyEntev ifa, + oy €A,
(B, o] = ﬁa,j CH ifay =-—a, (B.3¢)
"

0 otherwise .
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NS-NS flux. From the definition of Casimir of the algebra we easily derive that
Q==Y Moflor = 200w (B.10)
M o

where ¢* is the dual Coxeter number. Limit N and P to j (and call them v and 7) and separate the two sums
(that span over the entire algebra) into the components over j and £

ST o A D i | A DD o o D P | = 20700, (B.1D)

mek \ oct wEj KE) o€t wE€j

now,

o the term with two elements in the Cartan is identically vanishing ™, = O (for two generators in £
always commute)

o the terms with one component in € can be collected an interpreted as field strengths

I A Ao N L L (B.12)
m,w o,
and at the end of the day
fu wf’rr w = 2g*5v7r -2 f"L/ m (B.13)
e H vw W
Hw m,w

so that for a general algebra, using (B.6)

R ) if 1 is odd,,
D fono Frpo = 29" 00m — 20, [yl ifviso (B.14)
w |oz,,/2} if v is even,

} 2

that reduces in the simply laced case to
> Foneo Frpo = 2(9" = 2) bur (B.15)
W

and with the proper normalizations

I* ifvisodd,

Hypog"" 4% Hupeo = 20" 80 — 200m |12 (B.16)

2 e
|a,,/2‘ if v is even
which reads in the simply laced case

Huy,wg/’“,gwme/m =2 (9* - 2) (sufr . (Bl7)

B.2 Equations of motion for the F3 flag space

To verify that the background fields that we obtained in Sect. 4.2 solve the equations of motion at first order
in o it is convenient to consider the complex structure defined on the SU(3)/U(1)? coset by considering
positive and negative roots as holomorphic and anti-holomorphic generators respectively.

To fix the notation let the two simple roots be

a = [\/5,0] . an= [71/\/57 \/?72] 7 (B.18)
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and the third positive root ag = oy +ag = {1/\/5, \/ 3/2} . We already know that in the complex formalism
the metric is diagonal and the coefficient relative to the non-simple root is given by the sum of the two
others as in eq. (A.14). With the right normalization we have the following metric and Ricci tensor

L (1 2
Gup = 5 1 . Ry = 2 . (B.19)
2 4

To write the structure constants we just have to remember the defining relations for the Cartan—Weyl

basis eq. (B.3): it is immediate to see that f l;u/ and f 2,“, are non-vanishing only if v, and «,, are opposite

roots (which means in turn that in our complex formalism they are represented by diagonal matrices) and,
given the above choice of roots, we have

V2 0
Flun = -1/V2 N 3/2 : (B.20)
1/v/2 3/2

Let us now introduce a new tensor C' that in this basis assumes the form of the unit matrix (this is indeed
shown to be a tensor in App.A)

Cup = 1 . (B.21)

We can use this tensor to define the U(1)? gauge field that supports the F3 background as'®

a k a po
Fe, = /% 07 Ro . (B.22)

The only non-trivial equation of motion is 3% = 0 (2.32b)
k

B¢ = R — Z"F“Mg‘?”F"'p,7 (B.23)

in our basis all the tensors are diagonal matrices. For this reason it is useful to pass to matrix notation. Let
1

G= 1 (B.24)

2

so that the metric and the Ricci tensor are given by g = %G and R = 2G. In this notation the above
equation reads

by~ [ k k o 2
3G _ _ Mg M ea -1 [ % epap _ M a ‘-1 a
i 42 o TR %(fR R SZf (2G)<kG )fR
a=1 9 9 a=1
2
=R-}) f'f"R=0, (B.25)
a=1

. 2 S .
since y ., £*f* = 21 5, 4 as one can see by direct inspection.

16 One can read this additional term with respect to the expression in eq. (2.28) as a way to keep track of the fact that the embedded
SU(2) subalgebra is at a different level with respect to the remaining currents. Actually this expression can be seen just as a
generalisation of the initial one where we were restricting to cosets in which the currents played the role of vielbeins, i.e. in
this formalism the metric was proportional to the unit matrix.
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03
0= 0ty + Oy

o

Fig.1  Root system for su(3).

C The SU(3) group: an explicit parametrization

In this section we summarize some known facts about the representation of the SU(3) group so to get a
consistent set of conventions.

To obtain the the Cartan-Weyl basis { H,, £ } (defined in eq. (B.3)) for the su(3) algebra we need to
choose the positive roots as follows:

ar= V2,0, ax=[-1VIVER|,  as= (12,372 . 1

The usual choice for the defining representation is

1 0 0 10 0
H—lolo H2—1010
1= - ) == )
2
\[000 \/60072
(C2)
010 000 0 0 1
Ef=l0 00|, Ef=|0 o0 1], Ef=[0 0 0f,
000 000 000

t
and By = (Ef) .

A good parametrisation for the SU (3) group can be obtained via the Gauss decomposition: every matrix
g € SU(3) is written as the product

g=b_db, (C3)

where b_ is a lower triangular matrix with unit diagonal elements, b is a upper triangular matrix with unit
diagonal elements, and d is a diagonal matrix with unit determinant. The element g is written as

_ _ 212 _
g (21, 22, 23,91,12) = exp (zlE1 + 2E; + (Zr; - %) E; ) exp (—F1Hy — FyH>)
_ + _ + _ ’ITJITDQ +
x exp | B + we By + | w3 — 5 E5 ) exp (w1 H1 + 1poHa) (C4)
where z,, are 3 complex parameters, 1); are two real, and Fy and F; are positive real functions of the z,,’s:

Fy=log fi = log (1+ |1* + |f*) |

) ) (C.5)
F2 = lngz = lOg (1 + ‘Zzl + |23 - 2122‘ ) .
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By imposing g (zm Ua) to be unitary we find that the w,,’s are complex functions of the z,,’s

wy = 7“;;%:3 7| ‘)

. _ Zrzz—z2( 14|z 2

wp = 2ETRUHAT) (C.6)

w3 = — (23 — 2122) % )

and the defining element g (zw wa) can then be written explicitly as

g (21, 22, 23,1, P2)
100\ (s O 0 1w w3\ [er/? 0 0

=|l=n10 0 Vfi/f2 0 0 1 wy 0 e i—¥2)/2 . (C.7)
z3 23 1 0 0 Vfz/\0O0 1 0 0 eW2/2

Now, to build ametric for the tangent space to SU (3) we can define the 1-form Q(z, ) = g~ 1(z,v) dg(z, ¥)
and write the Killing-Cartan metric tensor as gyxc = tr (Q*Q) = — tr (Q2€2) where we have used explicitly
the property of anti-Hermiticity of § (that lives in the su(3) algebra). The explicit calculation is lengthy
but straightforward. The main advantage of this parametrization from our point of view is that it allows for
a “natural” embedding of the SU(3)/U(1)? coset (see e.g. [36] or [37]): in fact in these coordinates the
Kéhler potential is

K (24, 24) =10g (f1 (2u) f2 (24)) = log Kl + |z f® + |ZS\2) <1 +|z2]” + |23 — z1z2|2)} (C.8)

and the coset Kéhler metric is hence simply obtained as
2

8,2(!62[,

Gop d2° ® d2° = K (24,2,) d2*® dz°. (C.9)

Another commonly used su(3) basis is given by the Gell-Mann matrices

1 0 2 0 1 0 1 0 1 0 0
M1=—7=12 0 0f, Y2=—7=|-1 0 0 Y3=—7=110 — 0],

2 2 2

V2 0 0 0 V2 0 0 0 V2 0 0 0

0 0 0 0 1 0 0 0

L1o 0o =10 00|, w=—sl00 €10
V4= = s 5 = = s 6= = 3 .

2 2 2

V2 0 0 V2 -1 0 0 V2 0 2 0
)
7= 7= ) 8= —7= 3

2 6

V2 0 -1 0 V6 0 0 —2

which presents the advantage of being orthonormal (/\i7 )\j) = 0;;. In this case the Cartan subalgebra is
generated by £ = ()3, \g).

D Characters of affine Lie algebras

In this section we will recall some facts about the partition functions and characters of affine Lie algebras.
The characters of an affine Lie algebra g are the generating functions of the weights multiplicities in a given
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irreducible representation of highest weight A
cha (1,v,u) = e~ 2mku Z dimV5 exp {ZWTTL + Z Vik <ei, /\) } , D.1)
AERep(A) i

where dim V7 is the multiplicity of the affine weight XA = (A, k,n) and {e;} an orthonormal basis of the root
space. In the framework CFT we define slightly different characters, weighted by the conformal dimension
of the highest weight of the representation

. . . K(AA+2p)
A (v, ) = o= 2mku Ttyep () |:qL07(:/24eZ7,7rK,(1/“7):| _ 2T /20 (r,v,0) (D.2)

where p = > ., «/2 and g* the dual Coxeter number. To each affine weight X we shall assign a theta-
function as follows

ej\ (7_’ v, U) — e—2177ku E e'ank ~(7,7Y) eZurk/»c(z/,'y) (D3)
YEM, + 2

with M, the the long roots lattice. We can write the affine characters in terms of the theta-function with the
Weyl-Ka¢ formula

Z E(w)G)w(;Hﬁ) (r,v,u)

weW

Z €(w)Oy(p) (T, v,u)

wEW

A

Xt (r,v,u) = (D.4)

W being the Weyl group of the algebra and ¢(w) the parity of the element w.
These affine characters are the building blocks of the modular invariant partition function for the wzw
model, since the affine Lie algebra is the largest chiral symmetry of the theory

Z=3" M (r,0,0)x* (7,0,0) (D.5)
AA

where the sum runs over left and right representations of g with highest weight A and A. The representations
appearing in this partition function are the integrable ones, which are such that

2

Rep (A) integrable <= £ (6.9)

k—k(AO)]EN, (D.6)

where 6 is the highest root. The matrix M*? is such that the partition function of gy, is modular invariant;
at least, the diagonal J, ; exists since the characters form an unitary representation of the modular group.

In the heterotic strings, the worldsheet has a local N = (1, 0) local supersymmetry so the left algebra is
lifted to a super-affine Lie algebra. However the characters can be decoupled as characters of the bosonic
algebra times characters of free fermions

al_ AR A ﬁm (r) dim(g)/2 .
zM *AZ;M X (r)< (7 ) X o

where (a, b) are the spin structures of the worldsheet fermions.
The characters of the affine algebras can be decomposed according to the generalized parafermionic
decomposition, by factorizing the abelian subalgebra of the Cartan torus. For example, we can decompose
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the left supersymmetric g characters in terms of characters of the supersymmetric coset, given by the
following branching relation (see [22])

dim(j)/2
o[3 W] ©rsiy
A b. _ A A k+g
e (-, bl

7
1 A mod (k+g*)M,

in terms of the theta-functions associated to gj.

D.1 The example of SU(3)

In an orthonormal basis, the simple roots of SU(3) are
o= (\/5 o) . az= (—1/\/5, \/3/2) ‘ (D.9)

The dual basis of the fundamental weights, defined by ()\jc, aj) = 61']- is given by

A= (1/\/5,1/\/6) . A= (o, \/%) . (D.10)

As they should the simple roots belong to the weight lattice
a1 =20 — A7, =207 - )}, (D.11)
The theta function of the i3 affine algebra reads, for a generic weight A = mi)\if:

2

k my Al fmon2
k mA tma AT

Ori= 3 gl = 37 gl (D.12)
yeM nl,n?
So the vector appearing in the theta function is
. ) J . 2m. 3
vk (2”1 — nz) + mta +{VEkn? + ma + 2ma £ €. (D.13)
Vi) 2 3k 2
D.2 Modular transformations
‘We have the following modular transformations for the theta-functions
im M e i
Ok (~1/7) = (i)™ | o O, (), (D14
L

pEM*  mod kM,

where M* is the lattice dual to M, [M,| is the size of the basic cell of M, and for the affine characters

—1

M*

/2 1% ’ ’
Grgn| R X dwem e Ny @)
L

= ' A weWw

In this formula, AL | is the number of positive roots. From these two formulas we deduce the modular
transformation of the characters of the super-coset under 7 — —1/7:

cl m (=1/7) (D.16)

D D 90 SRS e e

—a
pEM* mod kM, A weWw

(© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim




Bibliography 245

1070 D. Israél et al.: Heterotic strings on homogeneous spaces

D.3 Fermionic characters

For an even number of fermions it is possible to express the characters in terms of representations of the
SO(2n) affine algebra. The characters are labelled by s = (0, 1, 2, 3) for the trivial, spinor, vector, and
conjugate spinor representations

1 n n

== 5 [0 +0[2)"] wrivial

:2 _ 1 9 O n 0 (1]} n

—2n — 27771 [0} - [1} vector,
1 (D.17)

E%n = % {6 [(ﬂn + z’"ﬂﬁ]"] spinor,

—3 1 1n _n 1" . .

o = ﬁ {9 [0} —1 '9[1] ] conjugate spinor .

Their modular matrices are
1 0 0 0
_ o—mrj2 |0 -1 0 0
T=e 0 0 em7r/4 0 (D.18)
00 0 et
and
1 1 1 1
1 1 -1 -1
_1

5= 2 1 —1 7 —n .19
1 -1 —= ™ "
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Abstract  An exact heterotic string theory on an AdSs x S? background is found
as deformation of an SL (2,R) x SU (2) wzw model. Based on ?.

1. INTRO

Anti de Sitter in three dimensions and S® are among the most simple
and yet interesting string backgrounds. They are exact solutions to
the string equations beyond the supergravity approximation and, at the
same time, are simple to deal with although non-trivial thanks to the
presence of non-vanishing curvatures. For this reason they constitute an
unique setting in which to analyze AdS/CFT correspondence, black-hole
physics, little-string theory.

String propagation in these backgrounds is described in terms of wzw
models for the SL (2, R) and SU (2) groups, hence marginal deformations
of such models allow to study moduli space of the string vacua. In
particular well-known class of marginal deformations for wzw models are
those driven by left-right current bilinears ?; ?. On the other hand S3
and AdS3 are embedded in larger structures so one can consider marginal
deformations where just one of the currents belongs to the SU (2) or
AdSj algebra, the other belonging to some other U (1) corresponding to
an internal magnetic or electric field.

This kind of deformation generates a continuous line of exact CFT’s. In
this note we will show how with an appropriate choice for the deforming
current we obtain a boundary in moduli space and that this boundary
can be given a simple geometric interpretation in terms of the AdSs x 52
near-horizon geometry of the Bertotti-Robinson black hole 7; 7.

1




250 Bibliography

2

2. SU (2) ASYMMETRIC DEFORMATION

In the SU (2) case, there exists just one possible choice for the deform-
ing current the two other being related by inner automorphisms, since
the group has rank one, is compact and its Lie algebra simple. Take the
wzw model for SU (2):

3
Ssv(e), = % /dzz {g (0ada + BB + 07dy + 2 cos BDady) + 21 P o”
- (11)
where 1)* are the left-moving free fermions, superpartners of the bosonic
SU(2), currents, and («, 8,7) are the usual Euler angles parameterizing
the SU(2) group manifold. The left-moving fermions transform in the
adjoint of SU (2); there are no right-moving superpartners but a right-
moving current algebra of total charge ¢ = 16 can be realized in terms of
right-moving free fermions. This means that we can build a ' = (1,0)
world-sheet supersymmetry-compatible deformation given by:
5Smagn(:tic = % /d2Z (Jd + Zwle) JG (12)
where J3 belongs to the SU (2) algebra and jg is the current of the
algebra at level kg realized by the right-moving free fermions. An exact
CFT is obtained for any value of the deformation parameter H.

2.1 GEOMETRY

These new backgrounds all present a constant dilaton, a magnetic
field, a Ns-Ns field proportional to the unperturbed one and a metric
retaining a residual SU (2) x U (1) isometry ?. The most remarkable
property is that the deformation line in moduli space has a boundary
corresponding to a critical value of the deformation parameter H? =
1/2. At this point the U (1) subgroup decompactifies and the resulting
geometry is the left coset SU (2) /U (1) ~ S2? which is thus found to be
an exact CFT background only supported by a magnetic field (the dilaton
remains constant and Ns field vanishes). A geometrical interpretation
for this process can be given as follows: the initial S® sphere is a Hopf
fibration of an S! fiber generated by the J? current over an S? base; the
deformation only acts on the fiber, changing its radius up to the point
where this seems to vanish, actually marking the trivialization of the
fibration:

S — R xS (1.3)
H2 - H2

max

If we turn our attention to the gauge field one can show that a quanti-
zation of the magnetic charge is only compatible with levels of the affine
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algebras such that % =p?, p& Z. We will find the same condition in
terms of the partition function for the boundary deformation.

Although this construction has been implicitly carried on for first
order in o/ background fields, it is important to stress that the resulting
metric is nevertheless exact at all orders since the renormalization boils
down to the redefinition of the level k that is simply shifted by the dual
Coxeter number (just as in the wzw case).

2.2 PARTITION FUNCTION

Consider the case of k; = 2 (one right-moving C fermion). The
relevant components of the initial partition funciton are given by a
SU (2)j—2-modular-invariance-compatible combination of SU(2)r_o su-
persymmetric characters and fermions from the gauge sector. For our
pourposes it is useful to further decompose the supersymmetric SU(2)
characters in terms of those of the N' = 2 minimal models:

X(r) 9 m ()= c, m Omi (7‘, —%”> : (1.4)

meELay,

The deformation acts as a boost on the left-lattice contribution of the
Cartan current of the supersymmetric SU(2) and on the right current
from the gauge sector:

m 2 —
O ”m = 3 el ) B (V) g (e
n,n
. Z e_lﬂg(ﬁ+%) q% [(\/ﬁn+ \72%) cosh z+(ﬁ+%) sinh .L} :

n,n

« gl cosnas (VB ) sinne]” (g g

where the boost parameter x is given by coshx = ﬁ

Although an exact CFT is obtained for any value of the deforma-
tion parameter H we will concentrate, as before, on the boundary value
H? = 1/2. In this case the boost parameter diverges thus giving the
following constraints: 4(k + 2)n + 2m + 2v/2kfi + v/2kh = 0. Therefore,
the limit is well-defined only if the level of the supersymmetric SU(2)
satisfies the quantization condition k = 2p®> , p € Z i.e. the charge
quantization for the flux of the gauge field. Under these constraints the
U(1) corresponding to the combination of charges orthogonal our con-
dition decouples and can be removed. In this way we end up with the
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4

expression for the S? partition function:

ayh - - RY L al _;
S-S 5 e ff on
37 N€ZLayp

in agreement with the result found in ? by using the coset construction.
The remaining charge N labels the magnetic charge of the state under
consideration.

3. SL (2, R) DEFORMATION

The same construction as above can be repeated for the SL (2,R)
wzZW model. In this case the moduli space is somewhat richer for it
is possible to realize three different asymmetric deformations using the
three generators of the group. These are not equivalent (SL(2,R) is
not compact) and in fact they lead to three physically different back-
grounds. The elliptic deformation line, in example, contains the Godel
universe ?, the parabolic deformation gives the superposition of AdSs
and a gravitational plane wave. Two of these deformation lines present
the same boundary effect as the SU (2) deformation. In particular the
elliptic deformation leads to the hyperbolic space Hy = SL (2,R) /U (1)
supported by an immaginary magnetic field, ie an exact but non-unitary
CFT. The hyperbolic deformation, on the other hand, leads to AdS, =
SL(2,R) /U (1) supported by an electric field. No charge quantization
is present in this case, because of the non-compact nature of the back-
ground.

In this latter case it is not yet possible to give the same construction for
the partition function as for the SU (2) case since this would require the
decomposition of the initial partition function in a basis of hyperbolic
characters which is not a simple exercize. Nevertheless by following
the same procedure as before it is possible to evaluate the effect of the
deformation on the spectrum of primaries and hence give the resulting
AdS, background spectrum.

4. AD82 x S§2

The S2? and AdS, backgrounds can be combined so to give an exact
CFT corresponding to the AdS; x S2 near-horizon geometry of the BR
black-hole.

Let us now consider the complete heterotic string background which
consists of the AdSs x S? space-time times an A/ = 2 internal conformal
field theory M, that we will assume to be of central charge ¢ = 6 and
with integral R-charges. The levels k of SU(2) and k of SL(2,R) are
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such that the string background is critical:

2m72y+mk+m

iy k=k. 1.
A k = (1.7)

é=
This translates into the equality of the radii of the corresponding S2
and AdS, factors, which is in turn necessary for supersymmetry. Fur-
thermore, the charge quantization condition for the two-sphere restricts
further the level to k = 2p?, p € N.

The combined AdSs x S? background can give new insights about the
physics of the BR black hole in particular by analizing the Schwinger-
pair production in such background, or the study of the stability and
propagation of D-branes.

Research partially supported by the EEC under the contracts HPRN-
CT-2000-00131, HPRN-CT-2000-00148, MEXT-CT-2003-509661, MRTN-
CT-2004-005104 and MRTN-CT-2004-503369.
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1. Introduction

The search for exact string backgrounds has been pursued over the past years from various

perspectives. Those investigations are motivated by phenomenology, background-geometry

analysis or, more recently, for understanding holography beyond the usual supergravity

approximation.
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Anti-de Sitter backgrounds have played an important role in many respects. Together
with the spheres, they are the only maximally symmetric spaces appearing naturally in
string theory. They arise as near-horizon geometries of distinguished brane configurations
and offer the appropriate set up for studying little-string theory, black-hole physics, ...

The realization of anti-de Sitter spaces or spheres as string backgrounds requires non-
vanishing fluxes, which account for the cosmological constant term in the low-energy equa-
tions of motion. In general, those fluxes are of the Ramond-Ramond type, hence no two-
dimensional sigma-model is available. This happens indeed for AdS5 x S® in type IIB or
AdSy x ST in M-theory. For AdS3 x S3 x T* (type IIA, B or heterotic), however, we have
the option to switch on a Neveu-Schwarz antisymmetric tensor only. In this framework,
the AdS3 x S is the target space of the SL(2, R) x SU(2) Wess-Zumino-Witten model. The
latter has been studied extensively [1-6].

Three-dimensional anti-de Sitter space provides a good laboratory for studying many
aspects of gravity and strings, including black-hole physics. Locally anti-de Sitter three-
dimensional black holes are obtained by performing identifications in the original AdSs
under discrete isometry subgroups [7—10]. Those black holes (BTz) have mass and angular
momentum. Generically, two horizons (inner and outer) mask the singularity, which turns
out to be a chronological singularity rather than a genuine curvature singularity.

The two-dimensional sigma-model description of the AdSs plus Kalb-Ramond field
background allows for exact conformal deformations, driven by integrable marginal oper-
ators [11—-14, 6, 15—-17]. In general, a subgroup of the original isometry group survives
along those lines. Identification under discrete isometries is thus legitimate and provides
a tool for investigating new and potentially interesting “deformed BTZ” geometries. The
latter may or may not be viable black holes, whereas black holes may also appear by just
deforming AdS; without further surgery [18].

The aim of the present work is to clarify those issues, and reach a global point of view
on the geometries that emerge from the SL(2,R) WZW model, by using the above tech-
niques. This will allow us to introduce new three-dimensional black hole backgrounds that
in general involve the presence of an electric field. For these theories we give a complete
CFT description, including an explicit expression for the spectrum of string primaries. In
particular, the usual black string background [18] will appear in this terms as a special
vanishing-field limit. Carrying on identifications @ la BTZ on these geometries will let us
obtain more black string and/or black hole backgrounds, generalizing the one in [7] and
in [18], for which we again provide a CFT description. Not all the backgrounds could be
adapted to support the discrete identifications. This will be stated in terms of a consis-
tency condition that has to be satisfied in order to avoid the presence of naked (causal)
singularities.

We will start with a quick overview of various distinct methods based on Wess-Zumino-
Witten models and aiming at generating new exact CFTs, that turn out to be equivalent to
each other. We will in particular exhibit their effect on the SL(2,R) WZW model. These
results enable us to recast in section 3 the three-dimensional black-string solution of [18],
as a patchwork of marginal deformations of the SL(2,R) WZW model. We clarify in this
way the role of the mass and charge parameters of the black string.
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Section 4 is devoted to a two-parameter deformation of SL(2,R). This leads to a new
family of black strings, with NS-NS and electric field. We study the causal structure of
these black holes as well as their various charges. They exhibit genuine curvature singularity
hidden behind horizons. In section 5 we proceed with discrete identifications as a solution-
generating procedure applied to the deformed AdSs; — wherever it is allowed by residual
symmetries.

After having stated the consistency conditions to be fulfilled in order to avoid naked
singularities, we find that time-like chronological singularities protected by two horizons
are possible, while light-like singularities with only one horizon appear as a limiting case.
Finally, in section 6 we determine the spectrum of primaries, using standard CFT techniques.

2. Deformed wzw models: various perspectives

The power of Wzw models resides in the symmetries of the theory. Those impose strong
constraints which allow quantum integrability as well as a faithful description in terms of
space-time fields whose renormalization properties (at every order in o) are easily kept
under control [19-21].

It is hence interesting to study the moduli space for these models, aiming at find-
ing less symmetric (and more interesting) structures, that will hopefully enjoy analogous
integrability and space-time properties.

2.1 Algebraic structure of current-current deformations

In this spirit one can consider marginal deformations of the wzw models obtained in terms
of (1,1) operators built as bilinears in the currents:

O(z,2) =Y et (2) ] (), (2.1)
j

where J¢(z) and J7 (%) are respectively left- and right-moving currents. It is known that
this operator represents a truly marginal deformation if the parameter matrix c;; satisfies
appropriate constraints [11], which are automatically satisfied for any value of ¢;;, whatever
the algebra, if J¢ and J7 live on a torus. Hence, we get as moduli space continuous surfaces
of exact models.!

From the CFT point of view, it is known [14] that the effect of the deformation is
completely captured by an O(d, d) pseudo-orthogonal transformation of the charge lattice
A C b* x b* of the abelian sector of the theory (h C g and b C g being abelian subalgebras
of the undeformed wzw model g x g algebra). Moreover, since the charges only characterize
the b x h modules up to automorphisms of the algebras, O(d) x O(d) transformations don’t

! Although for special values of the level k the theory contains other operators with the right conformal
weights, it is believed that only current-current operators give rise to truly marginal deformations, i.e.
operators that remain marginal for finite values of the deformation parameter.
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change the crT. Hence the deformation space is given by:
Dy ~ 0(d,d)/ (O(d) x O(d)) . (2.2)

The moduli space is obtained out of Dy after the identification of the points giving
equivalent CFTs.2

In the case of wzw models on compact groups, all maximal abelian subgroups are
pairwise conjugated by inner automorphisms. This implies that the complete deformation
space is D = O(d,d)/ (O(d) x O(d)) where d is the rank of the group. The story is
different for non-semisimple algebras, whose moduli space is larger, since we get different
O(d,d)/ (O(d) x O(d)) deformation spaces for each (inequivalent) choice of the abelian
subalgebras h C g and b C g.

An alternative way of describing current-current deformations comes from the so-
called parafermion decomposition. The highest-weight representation for a g graded al-
gebra can be decomposed into highest-weight modules of a Cartan subalgebra hc gr. as
follows [22, 23]:

V}\ ~ @ VS\,,u ® @ V”Jrk(;, (2.3)

Hely d€Qi(9)

where A is an integrable weight of gy, V;w is the highest-weight module for the generalized
gr /b parafermion, Q;(g) is the long-root lattice and T'y, = P(g)/Q;(g) with P(g) the weight
lattice. As a consequence, the Wzw model based on g can be represented as an orbifold
model:

6~ (1/6 9 ta,) /T (2.4)

where ¢, is a toroidal CFT with charge lattice, included in the gj one, defined as Ay, =
{(u, ) € P(§) x P(g)|x — it = kQi(§)}. The advantage given by using this representation
relies on the fact that I';, acts trivially on the coset and toroidal model algebras; then, if we
identify 6 and 6 with the graded algebras of ¢, , the deformation only acts on the toroidal
lattice and the deformed model can again be represented as an orbifold:

9:(0) ~ (ék/fi ®t(’)Ak> /Tk, (2.5)

where O is an operator in the moduli space. This representation is specially useful because
it allows to easily single out the sector of the theory that is affected by the deformation. As
we’ll see in the next section this simplifies the task of writing the corresponding lagrangian.

In the following we will separate (somehow arbitrarily) this kind of deformations into
two categories: those who give rise to symmetric deformations, i.e. the ones where c;; = d;;
and J?(z) and J7 (Z) represent the same current in the two chiral sectors of the theory
and the asymmetric ones where the currents are different and in general correspond to
different subalgebras. In some ways this distinction is arbitrary, since both symmetric
and asymmetric deformations act as O (dJZ) rotations on the background fields. It is
nonetheless interesting to single out the asymmetric case. In the particular situation,

2 Although we will concentrate on wzw models it is worth to emphasize that this construction is more
general.
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when one of the two currents belongs to an internal U(1) (coming from the gauge sector in
the heterotic or simply from any U(1) subalgebra in the type II), it is particularly simple
to study the effect of the deformation, even from the space-time field point of view; there,
the expressions for the background fields are exact (at all order in o’ and for every value
of the level k) [16].

2.2 Background fields and symmetric deformations

General construction. Symmetric deformations (also called gravitational) are those
that have received by far the most attention in literature. Specializing eq. (2.1) to the case
of one only current we can write the small deformation lagrangian as:

S = Swaw + 0> / d?z J(2)J(Z). (2.6)

This infinitesimal deformation has to be integrated in order to give a lagrangian inter-
pretation to the CFT described in the previous section. Different approaches are possible,
exploiting the different possible representations described above.

e A possible way consists in implementing an O(d,d) rotation on the background
fields [12]. More precisely, one has to identify a coordinate system in which the
background fields are independent of d space dimensions and metric and B field are
written in a block diagonal form. In this way the following matrix is defined:

M:( g | g8 ) 2.7)

where § and B are the pull-backs of the metric and Kalb-Ramond field on the p
selected directions. Then the action of the O(d, d) group on these fields and dilaton

is given by:
M — M' = QMQ!, (2.8)
1 det g
® - =3 -1 2.9
- 18 (detg')’ (2.9)

where ¢ is the metric after the transformation (2.8) and Q € O(d,d). It must be
emphasized that this transformation rules are valid at the lowest order in o/ (but at
all orders in the deformation parameters). So, although the model is exact, as we
learn from the CFT side, the field expressions that we find only are true at leading
order in «.

e An alternative approach uses the parafermion representation eq. (2.5) (see e.g. [14]).
In practice this amounts to writing an action as the sum of the G/H parafermion and
a deformed H part and finding the appropriate T-duality transformation (realizing
the orbifold) such that for zero deformation the wzw on G is recovered, in accordance
with eq. (2.4).
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e Finally, another point of view (inspired by the parafermionic representation), consists
in identifying the deformed model with a (G x H)/H coset model, in which the
embedding of the dividing group has a component in both factors [13]. The gauging
of the component in G gives the parafermionic sector, the gauging of the component
in H gives the deformed toroidal sector and the coupling term (originating from
the quadratic structure in the fields introduced for the gauging) corresponds to the
orbifold projection.?

The SL (2,R) case. In the present work, we want to concentrate on the deformations of
SL(2,R). Symmetric deformations of this wzw model are known in the literature. The
group manifold of SL(2,R) is anti de Sitter in three dimensions. Metric and antisymmetric
tensor read (in Euler coordinates, see appendix A.2):

ds? = L* [dp® + sinh? p d¢? — cosh? p d7?] (2.10a)

Hpy = L?sinh2pdp A dp A dr, (2.10b)
with L related to the level of SL(2,R); as usual: L = vk+2. In the case at hand,
three different lines of symmetric deformations arise due to the presence of time-like (J3,
J3), space-like (J', J', J2, J?), or null generators [14, 25, 6]. The residual isometry is
U(1) x U(1) that can be time-like (L3, R3), space-like (La, Ra) or null (L + L3, R1 + R3)
depending on the deformation under consideration.

The elliptic deformation is driven by the J3J3 bilinear. At first order in o the back-
ground fields are given by:*

sinh? p d¢? — K3 cosh? p dr?

ds? =k | dp® + o () , (2.11a)
K3
k2 sinh 2p
Hi = 327721 2.11
3] k o )2 dp A do A dr, ( b)
=20 _ OmalP) (2.11c)
K3

where O, (p) = cosh? p— K2 sinh? p and, of course, ® is defined up to an additive constant.
At extreme deformation (k2 — 0), a time-like direction decouples and we are left with the
axial® SL(2,R)x/ U(1)yime. The target space of the latter is the cigar geometry (also called
euclidean two-dimensional black hole):

e 2® ~ cosh?p, (2.12)
ds? = k[dp® + tanh? p d¢?] (2.13)

(0<p<ooand 0< ¢ < 2m).

3 An instanton-correction-aware technique that should overcome the first order in o limitation for gauged
models has been proposed in [24]. In principle this can be used to get an all-order exact background when
we write the deformation as a gauged model. We will not expand further in this direction, that could
nevertheless be useful to address issues such as the stability of the black string (see section 3).

4The extra index “3” in the deformation parameter x reminds that the deformation refers here to J*J°.

5The deformation parameter has two T-dual branches. The extreme values of deformation correspond to
the axial or vector gaugings. The vector gauging leads to the trumpet. For the SU(2),/ U(1), both gaugings
correspond to the bell.
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Similarly, with J2.J? one generates the hyperbolic deformation. This allows to reach the
lorentzian two-dimensional black hole times a free space-like line. Using the coordinates
defined in eq. (A.8), we find:

sin? 8 dp? + k3 cos? B dy?

2 |42
ds* =k |—dg° + ) , (2.14a)
k2 sin 26
Hyg = km dBA v A do, (2.14b)
e~20 — BmalB) : (2.14c)
K2

where A, (8) = cos? B+ /1% sin? 8. This coordinate patch does not cover the full AdS;. We
will expand on this line in section 3.

Finally, the bilinear (Jl + J3) (Jl + j3) generates the parabolic deformation. Using
Poincaré coordinates (eqs. (A.11)—(A.13))5 we obtain:

du?  dX? - dT?

2=k | — 4+ =], 2.1
ds* =k 2 + Eriy ] (2.15a)
Hyg =k————dundT A dX, (2.15b)

(u*+1/v)
2
o2 L LY (2.15¢)

w2

The deformation parameter is 1/v. At infinite value of the parameter v, we recover pure
AdSs; for v — 0, a whole light-cone decouples and we are left with a single direction and
a dilaton field, linear in this direction.

The physical interpretation of the parabolic deformation is far reaching, when AdSs is
considered in the framework of the N$5/F1 near-horizon background, AdSs x S x T%. In
this physical set-up, the parameter v is the density of F1’s (number of fundamental strings
over the volume of the four-torus 7%) [6, 26]. At infinite density, the background is indeed
AdS3 x 83 x T*. At null density, the geometry becomes R x 3 x T plus a linear dilaton
and a three-form on the S3.

2.3 Background fields and asymmetric deformations

General construction. Consider the case of G = G’ x U(1)", H = U(1)" where r =
rank (G) embedded such as ¢, (H) C G’ and e (H) = G” = U(1)". To clarify the notation
we can write the deformation operator as:

0(z,2) = iHaJa (z) 0X° (2.16)
a=1

where X (z, Z) results from the bosonisation of the right current. Using e.g. Kaluza-Klein
reduction [27, 28, 17], one shows that the effect of the deformation on the background fields

SNote that ¥ = X + T.
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(identified as those living in the G’ sector) is the following:
T
Guv =Gy =2 HZILIL (2.17a)
i=a

By = By, (2.17h)

2k
AL =11, /EJ57 (2.17¢)

where (D}’,“, and éw are the initial, unperturbed background fields that are expressed in
terms of the g € G’ group element as follows:

CUJW detda” = (g7t dg,g ' dg) , (2.18a)
é,w det Aa¥ =g tdgngtdyg. (2.18b)

No dilaton is present (as a consequence of the fact that the Ricci scalar for these deformed
systems remains constant) and these semiclassical solutions can be promoted to exact ones
just by remarking that the effect of the renormalisation simply boils down to the shift
k — k + cgr where c¢r is the dual Coxeter number, just as in the case of the unperturbed
wzw model.

The SL (2,R) case. We now apply the above to the SL(2,R) case. As previously, three
asymmetric deformations are available: the elliptic, the hyperbolic and the parabolic.

The elliptic deformation is generated by a bilinear where the left current is an SL(2,R)y,
time-like current. The background field is magnetic and the residual symmetry is U(1)gime X
SL(2,R) generated by {Ls, R1, R, R3} (see appendix A.2). The metric reads (in elliptic
coordinates):

ds? = g dp? + cosh? pde? — (1+ 2H2) (dt + sinhpdd))Q] , (2.19)

where 9; is the Killing vector associated with the U(1)¢ime. This AdS3 deformation was
studied in [29] as a squashed anti de Sitter and in [15, 16] from the string theory point of
view. It has curvature 9

R=-203- 2n?). (2.20)

Here, it comes as an ezact string solution (provided k — k + 2) together with an NS
three-form and a magnetic field:

k k
Hpy = dB — ZgA A dA = -1 (1+28%) coshpdp A do A dt, (2.21a)

A=H i—k (dt +sinh pdo) . (2.21b)
\ g

For u? > 0 (unitary region), the above metric is pathological because it has topologically
trivial closed time-like curves passing through any point of the manifold. Actually, for
12 = 1/2 we recover exactly the Godel space, which is a well-known example of pathological
solution of Einstein-Maxwell equations.
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The hyperbolic deformation can be studied in a similar fashion, where the left current
in the bilinear is an SL(2,R) space-like current. In hyperbolic coordinates:

k
ds? = 1 dr? — cosh®rdr? + (1- 2H2) (da +sinhr dT)Q] , (2.22)

where 0, generates a U(1)space- The total residual symmetry is U(1)space % SL(2,R), gen-
erated by {Lo, R1, Ra, R3}, and

2
R=-+(3+ 21%) . (2.23)

The complete string background now has an NS three-form and an electric field:

k
Hpy = 1 (1- 2H2) coshrdr A dr A dz, (2.24a)
2k .
A=H T (da +sinhrdr). (2.24b)
g

The background at hand is free of closed time-like curves. The squashed AdSs is now
obtained by going to the AdSs3 picture as an S' fibration over an AdS, base, and modifying
the S fiber. The magnitude of the electric field is limited at HZ = 1/2, where it causes
the degeneration of the fiber, and we are left with an AdSy background with an electric
monopole; in other words, a geometric coset SL(2,R)/ U(1)space-

The string spectrum of the above deformation is accessible by conformal-field-theory
methods. It is free of tachyons and a whole tower of states decouples at the critical values
of the electric fields. Details are available in [16].

Finally, the parabolic deformation is generated by a null SL(2,R); current times some
internal right-moving current. The deformed metric reads, in Poincaré coordinates:

du?  dztda~ dzt\?
2 _ 2
and the curvature remains unaltered R = —6/k. This is not surprising since the resulting

geometry is a plane-wave like deformation of AdSs. The residual symmetry is U(1)pm X
SL(2,R), where the U(1) yuy is generated by - = —L; — Lg.

The parabolic deformation is somehow peculiar. Although it is continuous, the de-
formation parameter can always be re-absorbed by a redefinition of the coordinates:”
2t — 27/ |1 and 2~ — 2z~ |H|. Put differently, there are only three truly different options:
u2 = 0,1. No limiting geometry emerges in the case at hand.

As expected, the gravitational background is accompanied by an NS three-form (un-
altered) and an electromagnetic wave:

+
A=2 %H—dl .

2.2
b (2.26)

"This statement holds as long as these coordinates are not compact. After discrete identifications have
been imposed (see section 5.1)), H becomes a genuine continuous parameter.
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A final remark is in order here, which holds for all three asymmetric deformations
of SL(2,R). The background electric or magnetic fields that appear in these solutions
(egs. (2.21b), (2.24b) and (2.26)) diverge at the boundary of the corresponding spaces.
Hence, these fields cannot be considered as originating from localized charges.

3. The three-dimensional black string revisited

The AdSs moduli space contains black hole geometries. This has been known since the
most celebrated of them — the two-dimensional SL(2,R)/U(1) black hole — was found
by Witten [30, 31]. Generalisations of these constructions to higher dimensions have been
considered in [18, 32-34]. The three-dimensional black string [18, 35, 36] has attracted
much attention, for it provides an alternative to the Schwarzschild black hole in three-
dimensional asymptotically flat geometries.® In this section we want to show how this
black string can be interpreted in terms of marginal deformations of SL(2,R), which will
enable us to give an expression for its string primary states (section 6).

In [18] the black string was obtained as an (SL(2,R) x R) /R gauged model. More
precisely, expressing g € SL(2,R) x R as:

a u 0
g=|—-vb 0], (3.1)
0 0e”

the left and right embeddings of the R subgroup are identical and given by:

er/r iR — SL(2,R) x R (3.2)
e\/*lz_+2 0 0
A | 0 e o | (3.3)
0 0 e\/ﬁ

From the discussion in section 2.2, we see that performing this gauging is just one of
the possible ways to recover the J2.J? symmetrically deformed SL (2, R) geometry. More
specifically, since the gauged symmetry is axial (¢ — hgh), it corresponds (in our notation)
to the k2 < 1 branch of the deformed geometry? in eq. (2.14a). One can find a coordinate
transformation allowing to pass from the usual black-string solution

1 2 1 -1 2\ —1 2
d's?:i{(lr)dt2+<1li)d‘r2+(lr) (17”7) O:;} (3.4a)

k
H= ZH dr A dz A dt, (3.4b)
T
20 _ M
_H 4
e . (3.4c)

8Remember that the no hair theorem doesn’t hold in three dimensions [37—39].
9The R = 1 convention is not univocal in literature.

- 10 —
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de? da? dr? CFT
. Hame (1-1|1- u (1- l)*l <1 _ /ﬁ)f1 range interpretation
™ T T T
() - + + r> u? J3T3, kg > 1
@21 0t [ - - - 1<r<pu?
(a™) + - + 0<r<1| J3J3 k3<1
(a™) + - + 0<r<p?
<1 () |+ + — w<r<1| J2J% ko<1
(¢7) — S + r>1

Table 1: Signature for the black-string metric as a function of r, for y? = 1.

to our (local) coordinate system, eq. (2.14). The attentive reader might now be puzzled by
this equivalence between a one-parameter model such as the symmetrically deformed model
and a two-parameter one such as the black string in its usual coordinates (in egs. (3.4) we
redefined the r coordinate as r — r/M and then set p = Q/M with respect to the conven-
tions in [18]). A point that it is interesting to make here is that although, out of physical
considerations, the black string is usually described in terms of two parameters (mass and
charge), the only physically distinguishable parameter is their ratio p = Q/M that coin-
cides with our ko parameter. In section 4 we will introduce a different (double) deformation,
this time giving rise to a black hole geometry depending on two actual parameters (one of
which being related to an additional electric field).

As we remarked above, the axial gauging construction only applies for u < 1, while,
in order to obtain the other kg > 1 branch of the J2.J? deformation, one should perform a
vector gauging. On the other hand, this operation, that would be justified by a CFT point
of view, is not natural when one takes a more geometrical point of view and writes the
black string metric as in eq. (3.4a). In the latter, one can study the signature of the metric
as a function of r in the two regions ;2 = 1, and find the physically sensible regions (see
table 1).

Our observations are the following:

o The p? < 1 branch always has the correct (—, +, +) signature for any value of 7, with
the two special values 7 = 1 and r = p? marking the presence of the horizons that
hide the singularity in r = 0.

o The p?2 > 1 branch is different. In particular we see that there are two regions: (a™)
for 0 <7 < 1 and (¢t) for r > % where the signature is that of a physical space.

A fact deserves to be emphasized here: one should notice that while for > < 1 we obtain
three different regions of the same space, for y?> > 1 what we show in table 1 really
are three different spaces and the proposed ranges for r are just an effect of the chosen
parameterization. The (a™),x3 < 1 and (¢*), k3 > 1 branches are different spaces and not
different regions of the same one and one can choose in which one to go when continuing
to pu > 1.

— 11 —
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But there is more. The p? > 1 region is obtained via an analytic continuation with
respect to the other branch, and this analytic continuation is precisely the one that inter-
changes the roles of the J2 and the J3 currents. As a result, we pass from the J2J? line
to the J3J3 line. More precisely the (c¢*) region describes the “singular” k3 > 1 branch
of the J3.J® deformation (i.e. the branch that includes the 7 = 0 singularity) and the (a™)
region describes the regular k3 < 1 branch that has the cigar geometry as k3 — 0 limit.
Also notice that the regions r < 0 have to be excluded in order to avoid naked singularities
(of the type encountered in the Schwarzschild black hole with negative mass). The black
string described in [18] covers the regions (™), (b7),(c7), (a™).

Our last point concerns the expectation of the genuine AdSs geometry as a zero-
deformation limit of the black-string metric, since the latter turns out to be a marginal
deformation of AdSs with parameter pu. The straightforward approach consists in taking
the line element in eq. (3.4a) for p = 1. It is then puzzling that the resulting extremal
black-string geometry is not AdSs. This apparent paradox is solved by carefully looking
at the coordinate transformations that relate the black-string coordinates (r,z,t) to ei-
ther the Euler coordinates (p, ¢,7) (A.5) for the J3.J3 line, or the hyperbolic coordinates
(y,z,t) (A.8) for the J2J? line. These transformations are singular at p = 1, which there-
fore corresponds neither to k3 = 1 nor to ko = 1. Put differently, p = 1 is not part of a
continuous line of deformed models but marks a jump from the J2J? to the J3.J° lines.

The extremal black-string solution is even more peculiar. Comparing eqs. (3.4) at
=1 to egs. (2.15), which describe the symmetrically null-deformed SL(2,R), we observe
that the two backgrounds at hand are related by a coordinate transformation, provided
v=-—1

The black string background is therefore entirely described in terms of SL(2, R) margi-
nal symmetric deformations, and involves all three of them. The null deformation appears,
however, for the extremal black string only and at a negative value of the parameter v. The
latter is the density of fundamental strings, when the deformed AdSs is considered within
the NS5/F1 system. This might be one more sign pointing towards a possible instability
in the black string [40].

Notice finally that expressions (3.4) receive 1/k corrections. Those have been computed
in [41]. Once taken into account, they contribute in making the geometry smoother, as
usual in string theory.

4. The two-parameter deformations

4.1 An interesting mix

A particular kind of asymmetric deformation is what we will call in the following double
deformation [15, 42]. At the lagrangian level this is obtained by adding the following
marginal perturbation to the wzw action:

55:5/@2/ d%,].ﬂﬂ/ d2z JT, (4.1)

J is a holomorphic current in the group, J is the corresponding anti-holomorphic current
and I an external (to the group) anti-holomorphic current (i.e. in the right-moving heterotic

- 12 —
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sector for example). A possible way to interpret this operator consists in thinking of the
double deformation as the superposition of a symmetric — or gravitational — deformation
(the first addend) and of an antisymmetric one — the electromagnetic deformation. This
mix is consistent because if we perform the x deformation first, the theory keeps the
U(1) x U(1) symmetry generated by J and J that is needed in order to allow for the H
deformation. Following this trail, we can read off the background fields corresponding to
the double deformation by using at first one of the methods outlined in section 2.2 and
then applying the reduction in eq. (2.17) to the resulting background fields.

The final result consists in a metric, a three-form, a dilaton and a gauge field. It is
in general valid at any order in the deformation parameters £ and H but only at leading
order in o/ due to the presence of the symmetric part.

Double deformations of AdS3 where J is the time-like J® operator have been studied
in [15]. It was there shown that the extra gravitational deformation allows to get rid of the
closed time-like curves, which are otherwise present in the pure J? asymmetric deformation
(eq. (2.19)) — the latter includes Godel space. Here, we will focus instead on the case of
double deformation generated by space-like operators, J2 and J2.

4.2 The hyperbolic double deformation

In order to follow the above prescription for reading the background fields in the double-
deformed metric let us start with the fields in egs. (2.14). We can introduce those fields in
the sigma-model action. Infinitesimal variation of the latter with respect to the parameter
k% enables us to reach the following expressions for the chiral currents J2 (z) and J2 (%) at

finite values of k2:

1 .
JE (Z) = m (COS2 /8 81[) - Sll’l2 6 agzz) s (42)
J2(%) = v (cos® B0 + sin® 3 9yp) . (4.3)

cos? B+ k2sin g8

Note in particular that the corresponding Killing vectors (that clearly are 9, and 9y) are
to be rescaled as Ly = ,leaw — 0, and Ry = ,712(% + 0. Once the currents are known, one
just has to apply the construction sketched in section 2.3 and write the background fields

as follows:
% 05 = — A + co? g 2H2)AC‘:?;[;2+ L 4H2% Ay dp+

ARy i (Zi (;;HQ) LIPS (4.4a)

%B = # 2’5(25 dp A dip (4.4D)

F= QH\/% S:l %’2 (K2d A dB + dB A dy) (4.4c)

&2 = L;E;;{Q , (4.4d)

- 13 —
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where A, (8) = cos? 8+ k?sin? § as in section 2.2. In particular the dilaton, that can be
obtained by imposing the one-loop beta equation is proportional to the ratio of the double
deformed volume form and the AdS3 one.

A first observation about the above background is in order here. The electric field is
bounded from above since H2 < "2—2 As usual in string theory, tachyonic instabilities occur
at large values of electric or magnetic fields, and we already observed that phenomenon
in section 2.3, for purely asymmetric (k2 = 1) deformations. At the critical value of the
parameter H, one dimension degenerates and the B-field vanishes. We are left with a
two-dimensional space (with non-constant curvature) plus electric field.

The expression (4.4a) here above of the metric provides only a local description of
the space-time geometry. To discuss the global structure of the whole space it is useful to
perform several coordinate transformations. Firstly let us parametrize by k2 = A\/(1 + \)
the deformation parameter (with x < 1 for A > 0 and k > 1 for A < —1) and introduce a
radial coordinate ¢ la Horne and Horowitz:

r=\+cos?f3, (4.5)

which obviously varies between A and A + 1. The expression of the metric (4.4a) becomes
in terms of this new coordinate:

A ()\ —4n? (14 >\)2) 22212 (1 + \)?))

2 _ 2 2 2
ds® = (QH (1+2) A)+ - ¥ 5 dy
(T+A) (14482 (1+0))  9(1 4 032
— (14N |282Q+N) +1— ( . )+ ( J;Z) de®+
1+2)  A(1+2) 1
2 2|4 _ 2
+ 41 (14 X) {1 g }dwd¢+4(r_/\)(r_>\_1)dr . (4.6)

This expression looks close to the one discussed by Horne and Horowitz. It also represents
a black string. However, it depends on more physical parameters as the expression of the
scalar curvature shows:

2r (14 2X) —TA (1 + A) — 262 (1 + A)?

R=2
r2

(4.7)

This result may seem strange at first sight since, for k = 1 and H = 0, the metric (4.4a)
is of constant Ricci (and thus scalar) curvature, corresponding to a local patch of AdSs
while here, in the same limit, the curvature vanishes for large r. The absence of contra-
diction follows from the definition of the r-coordinate, becoming ill-defined for k = 1, as it
corresponds to A = oc.

Obviously this metric can be extended behind the initial domain of definition of the
r variable. But before to discuss it, it is interesting to note that the Killing vector k =
(14 X) 0y + A0y x Ry is of constant square length

kk=XA1+X)—-202(1+)?=w. (4.8)

— 14 —
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Note that as 2 is positive, we have the inequality w < X (1 4+ \). Moreover, in order to
have a lorentzian signature we must impose w > 0. The fact that the Killing vector k is
space-like and of constant length makes it a candidate to perform identifications. We shall
discuss this point at the end of this section.

The constancy of the length of the Killing vector k suggests to make a new coordinate
transformation (such that k = 9,):

Pp=014+Nz+t, (4.9a)
p=t+ Az, (4.9b)

which leads to the much simpler expression of the line element:

(r=XN)(r—Xx-1)

1.\? 1
2 _ 2 -
ds* = ———————=dt +w(dx+rdt) +4(7"—/\)

(r—=XA—-1)
This metric is singular at » = 0, \, A+ 1; 7 = 0 being a curvature singularity. On the other
hand, the volume form is v/w/ (2r) d¢ A dz A dr, which indicates that the singularities at
r = A and r = A+ 1 may be merely coordinate singularities, corresponding to horizons.

dr?. (4.10
2 re. (4.10)

Indeed, it is the case. If we expand the metric, around r = A+ 1, for instance, at first order
(i.e. for = A+ 1 + €) we obtain:

ds? = —2_(dt + (1 + 1)) da)? —

€ w 1
— dt |dt+2—— (dt+(1+ M) d — dr?
1+ N 2 [ T2 (A (A do) | odr

(1+X)
(4.11)

indicating the presence of an horizon. To eliminate the singularity in the metric, we may
introduce Eddington-Finkelstein like coordinates:

t=(14+\) (ui%lne) —wg, (4.12a)

1
= (1+li—)\>57(ui§1ne). (4.12b)

The same analysis can also be done near the horizon located at » = X. Writing r = A + ¢,
the corresponding regulating coordinate transformation to use is given by:

tzA(u:l:%lne) + wg, (4.13a)
w 1
zf(l—x)g—(uiglne). (4.13b)
In order to reach the null Eddington-Finkelstein coordinates, we must use null rays. The
geodesic equations read, in terms of a function ¥*[E, P,e;r] = (Er — P)* — (P?/w) —
e(r=XN)(r—X—-1):
1
g = ./ m dr , (414&)
' (Er—P)r
t= d 4.14b
/Q(T—)\)(r—)\—l)E[E,P,E;T] " ( )
(Er — P)+ Pjw
=— d 4.14
’ /Q(T—)\)(r—/\—l)E[E,P,s;r] " (4-14c)
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where F and P are the constant of motion associated to 9y and 9,, o is an affine parameter
and €, equal to 1,0, —1, characterizes the time-like, null or space-like nature of the geodesic.
Comparing these equations (with e = 0 and P = 0) with the coordinates introduced near
the horizons, we see that regular coordinates in their neighbourhoods are given by

1

t:Tii((1+)\)ln|r—)\—1|—)\ln|7'—)\|), (4.15a)
1

:L’:X:Fi(hl‘rf)\fu7h’l|’7'7)\|), (4.15Db)

which leads to the metric

142 1 - 1
ds* = (—1+ t A_ XM ti) “’) dT2+2%dXdT+de2:F;der. (4.16)

According to the sign, we obtain incoming or outgoing null coordinates; to build a Kruskal
coordinate system we have still to exponentiate them.

Obviously, we may choose the X coordinate in the metric (4.16) to be periodic without
introducing closed causal curves. The question of performing more general identifications
in these spaces will be discussed addressed now.

We end this section by computing the conserved charges associated to the asymptotic
symmetries of our field configurations (4.4). As is well known, their expressions provide
solutions of the equations of motion derived from the low-energy effective action

S = /d% —ge2? {R +4(VD)? — Ly koo, e , (4.17)
12 8 3
in which we have choosen the units such that dc = 12.

Expression (4.10) for the metric is particularly appropriate to describe the asymptotic

properties of the solution. In these coordinates, the various non-gravitational fields read as

L V2H(L+))

F=2Y0 TV gin dr, 418
e (4.18)
H=F—datAdzAdr, (4.19)
T
1
=&, — 3 Inr. (4.20)

By setting \/wr = 7 and r = €%, near infinity (5 — oc), the metric asymptotes the
standard flat metric: ds? = —dt? 4 dz? + dp?, while the fields F' and H vanish and
the dilaton reads ® = &, — p. This allows to interpret the asymptotic behavior of our
solution (4.4) as a perturbation around the solution given by F = 0, H = 0, the flat metric
and a linear dilaton: ® = &, + f, X (here f, = (0,0,—1)). Accordingly, we may define
asymptotic charges associated to each asymptotic reductibility parameter (see [43]).

For the gauge symmetries we obtain as charges, associated to the H field

Qp = +272 (4.21)

- 16 —




276 Bibliography

and to the F' field
jE2\/§e*2<1’*H(1 +)

Vg

The first one reduces (up to normalization) for H = 0 to the result given in [18], while the

Qr = (4.22)

second one provides an interpretation of the deformation parameter H.

Moreover, all the Killing vectors of the flat metric defining isometries that preserve the
dilaton field allow to define asymptotic charges. These charges are obtained by integrating
the antisymmetric tensor on the surface at infinity:

v o9& 1
R = o2 (gf, ONHTNY 4 2036 O 42 (ens* — g"hf;f*)) : (4.23)

where
Ho'/\;w _ EO‘VT])\M + B)\MT]O'V _ BO’;LT])\L/ _ EAVnau (424)

is the well known tensor sharing the symmetries of the Riemann tensor and h*¥ = h#* —
%n“”naﬁ hag, while the Killing vector £ has to fulfill the invariance condition &, f* = 0. The
expression of the tensor ké” vl depends only on the perturbation h,, of the metric tensor
because, on the one hand, the F' and H fields appear quadratically in the lagrangian, and
their background values are zero, while, on the other hand, the perturbation field for the
dilaton vanishes: ® = @ .

Restricting ourselves to constant Killing vectors, we obtain the momenta (defined for
the indice o =t and )

P = / dze 2% (ammﬁ - 2770%;) (4.25)
i.e. the density of mass () and momentum (o) per unit length:
o= 2e"2% (14 2)) and w=—2e"2% /0. (4.26)

Of course, if we perform identifications such that the string acquires a finite length, the
momenta (4.25) become also finite.

To make an end let us notice that the expressions of u and w that we obtain differ
from those given in [18] by a normalization factor but also in their dependance with respect
to A, even in the limit H = 0; indeed, the asymptotic minkowskian frames used differ from
each other by a boost.

5. Discrete identifications

In the same spirit as the original BTZ construction reminded in appendix B, we would like
to investigate to what extent discrete identifications could be performed in the deformed
background. Necessary conditions for a solution (4.16) to remain “viable” black hole can
be stated as follows:

e the identifications are to be performed along ‘the orbits of some Killing vector & of
the deformed metric

e there must be causally safe asymptotic regions (at spatial infinity)
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e the norm of ¢ has to be positive in some region of space-time, and chronological
pathologies have to be hidden with respect to an asymptotic safe region by a horizon.

The resulting quotient space will exhibit a black hole structure if, once the regions
where ||£]] < 0 have been removed, we are left with an almost geodesically complete space,
the only incomplete geodesics being those ending on the locus ||¢]| = 0. It is nevertheless
worth emphasizing an important difference with the BTZ construction. In our situation,
unlike the undeformed AdSs space, the initial space-time where we are to perform identi-
fications do exhibit curvature singularities.

5.1 Discrete identifications in asymmetric deformations

Our analysis of the residual isometries in purely asymmetric deformations (section 2.3)
shows that the vector £ (eq. (B.1a)) survives only in the hyperbolic deformation, whereas
& in eq. (B.1b) is present in the parabolic one. Put differently, non-extremal BTZ black
holes allow for electric deformation, while in the extremal ones, the deformation can only
be induced by an electro-magnetic wave. Elliptic deformation is not compatible with BTz
identifications.

The question that we would like to address is the following: how much of the original
black hole structure survives the deformation? The answer is simple: a new chronological
singularity appears in the asymptotic region of the black hole. Evaluating the norm of
the Killing vector shows that a naked singularity appears. Thus the deformed black hole
is no longer a viable gravitational background. Actually, whatever the Killing vector we
consider to perform the identifications, we are always confronted to such pathologies.

The fate of the asymmetric parabolic deformation of AdSs is similar: there is no region
at infinity free of closed time-like curves after performing the identifications.

5.2 Discrete identifications in symmetric deformations

Let us consider the symmetric hyperbolic deformation, whose metric is given by (4.10) with
H=0,ie w=A(1+\). This metric has two residual Killing vectors, manifestly given by
0; and 0,. We may thus, in general, consider identifications along integral lines of

E=ad +0,. (5.1)

This vector has squared norm:

2 2aX (1 + \) +a? (1+2/\). (5.2)

1P = (A1 +3) o :
To be space-like at infinity the vector &€ must verify the inequality a® < A (14 A). For defi-
niteness, we will hereafter consider A > 0 and 7 > 0 (the case A < —1, 7 < 0 leads to similar
conclusions, while the two other situations have to be excluded in order to avoid naked
singularities, see eq. (4.10)). If a > 0, or —\/A(1+X) <a < =2X(14+X)/(14+2X)), £ is
everywhere space-like. Otherwise, it becomes time-like behind the inner horizon (r = \),
or on this horizon if @ = —A. In this situation, the quotient space will exhibit a structure
similar to that of the black string, with a time-like chronological singularity (becoming
light-like for @ = —\) hidden behind two horizons (or a single one for a = —\).
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Figure 1: Penrose diagram exhibiting the global structure of the double hyperbolic deformation.
The time-like curvature singularities » = 0 are represented, as well as the horizons, located at r = A
and r = A+ 1. When performing identifications along orbits of Killing vectors that allow for a
causally safe region at infinity, a time-like chronological singularity may appear at r = r*, with
0<r <A

5.3 Discrete identifications in double deformations

The norm squared of the identification vector (5.1) in the metric (4.10) is

aw a2 a2 — W

Between r = 0 and r = oo, this scalar product vanishes once and only once (if a # 0).
To be space-like at infinity we have to restrict the time component of £ to |a| < w. Near
r = 0 it is negative, while near the inner horizon (r = ) it takes the non-negative value
wA+ a)2 /A2. Accordingly, by performing identifications using this Killing vector, we will
encounter a chronological singularity, located at r» = r*, with 0 < r* < A, the singularity
being of the same type as the one in the symmetric case (see figure 1).
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6. Towards the exact spectra

The main guideline for exploring the black hole geometries that we have so far considered
has been the presence of an underlying CFT description. This allows us to identify the
background fields as the lagrangian counterparts of exact conformal field theories. In this
section we will give a look to the other — algebraic — aspect of these models, showing
how it is possible to write an explicit expression for the spectrum of primary operators.

Since this kind of contruction has already been carried on in [15] for the J3 double
deformation of SL (2,R), here we will focus of the J; deformations, giving the spectrum
for the deformed theory (section (6.1)) and for a deformed theory with discrete identifi-
cations (section (6.2)). We will limit ourselves to giving the spectrum for the theory: the
evaluation of the partition function, although straightforward in principle, would require
the decomposition of the SL (2,R) partition function in a hyperbolic basis of characters, a
still unresolved problem.

6.1 Deformed spectrum

Consider the double deformation described in section 4 for a SL(2,R); super-wzw model
where J is the hyperbolic (space-like) Jo current.

The evaluation of the spectrum for our deformed model is pretty straightforward once
one realizes that the deformations act as O (2,2) pseudo-orthogonal transformations on
the charge lattice corresponding to the abelian subgroup of the s[(2, R) heterotic model (as
described in section 2). Left and right weights for the relevant lattices are (see egs. (C.20)

and (C.21)):
1 a\2
LOZE(/L+n+§> , (6.1a)
oo o 1 a
=5+ (n+3) . (6.1b)

where the anti-holomorphic part contains the contribution coming from a u(1) subgroup
of the heterotic gauge group.

At the lagrangian level, the infinitesimal deformation we want to describe is given by
the following marginal operator:

(P twbys) S (S wis) T
VE k12 VE kg

This suggests that the actual O(2,2) transformation should be obtained as a boost be-

O=k (6.2)

tween the holomorphic part and the result of a rotation between the two anti-holomorphic
components. The deformed lattices then read:

_ _ 2
Ly = { % (,u+n+g> cosha + <\/%cosa+ ﬁ <ﬁ+ %) Sina) sinhm} ;
(6.3a)
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2

= iL 1 a 1 a

Ldd = ’ cosa + —= (ﬁ-i— 7> sina | coshx + — ( +n+ 7> sinhz » |
0 { (\/k+2 N Vi 2

(6.3b)
where the parameters = and « can be expressed as functions of ¢ and ¢ as follows:
2 .
Kk* = sinh(2x) cos o,
(2z) (6.4)
H = sinh(2z)sina .

6.2 Twisting

The identification operation we performed in the symmetrically and double-deformed met-
ric (as in section 5) is implemented in the string theory framework by the orbifold con-
struction. This was already obtained in [44, 45] for the “standard” BTz black hole that
was described as a SL(2,R)/Z orbifold.

In order to write the spectrum that will contain the twisted sectors, the first step
consists in writing explicitly the primary fields in our theory, distinguishing between the
holomorphic and anti-holomorphic parts (as it is natural to do since the construction is
intrinsically heterotic).

e The holomorphic part is simply written by introducing the charge boost of eq. (6.3a)
in eq. (C.16):

é}iﬁl/ﬂﬂ(z) = U]/L(z) €xXp

1 (\/g (u +n+ g) coshz + v2Q, sinha:) 192] ,  (6.5)

where Qo = fi4/ ki” cosa + U, /k% sina and the dd superscript stands for double
deformed

e To write the anti-holomorphic part we need at first to implement the rotation between
the J3 and gauge current components:

éjﬂﬁ(g) _ VJ,M(Z)ezﬁ\/Z/k+2§QezD 2/kg X _

_ Vj,u (2)92\/5@“ (92 cosa+X sina)ezﬂQa—w/z(fﬁ_Q sin a+X cos a) (66)
and then realize the boost in eq. (6.3b) on the involved part:

6dd

0o (2) = ViV ams/2(Basinat X cosa) (6.7)

X exp [z(@(u +n+ g) sinhz + v2Q. coshm) (52 cosa + Xsina)}.

Now that we have the primaries, consider the operator Wy, (z, z) defined as follows:

Ww (Z, 2) _ efzgwA,ﬁTH%wAJr% , (68)
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where w € Z and 65 the boson corresponding to the Jy current. It is easy to show that the
following OPE’s hold:

P2 (2) Wy, (0, 2) ~ —wA_log zW,, (0,2) , (6.9)
0o (2) W, (2,0) ~ wwA, log ZWy, (2,0), (6.10)

showing that W, (2, ) acts as twisting operator with winding number w (92 and 6, shift
by 2rA_w and 27rA,w under z — €2™z). This means that the general primary field in
the SL (2,R),, /Z theory can be written as:

q>tw

Jppvvw (Z7 2) = (I’dd (Z7 2) Ww (272) . (611)

Jupvy
where the tw superscript stands for twisted.

Having the explicit expression for the primary field, it is simple to derive the scaling
dimensions which are obtained, as before, via the GKO decomposition of the Virasoro
algebra T [s[(2,R)] =T [s[(2,R) /o (1,1)] + T [0 (1,1)]. Given that the T [s[(2,R) /o (1,1)]
part remains invariant (and equal to Lo = —j (j + 1) /k — 2/ (k +2) as in eq. (C.18)), the
deformed weights read:

e 1 - ?
Ly = { mwA, + W (,u +n+ g) coshz + Qg sinh x } , (6.12a)
_ k+2 _ 1 ay . 2
Ly = { 72—\/§wA+cosa+Qacoshx+ ﬁ <u+n+ 5) sinh z } +
k42 - 2
+ 4 —=wAysina+ Qy_x . 6.12b
{ Wk Q /2} ( )

7. Summary

The main motivation for this work has been a systematic search of black-hole structures
in the moduli space of AdSs, via marginal deformations of the SL (2,R) wzw model and
discrete identifications. This allows to reach three-dimensional geometries with black-
hole structure that generalize backgrounds such as the BTz black hole [7] or the three-
dimensional black string [18].

The backgrounds under consideration include a (singular) metric, a Kalb-Ramond field,
a dilaton and an electric field. The latter is always bounded from above, as usual in string
theory, where tachyonic instabilities are expected for large electric or magnetic fields.

We have computed parameters such as mass or charge. For backgrounds obtained
by performing marginal deformations, those parameters are related to the deformation
parameters. Singularities are true curvature singularities, hidden behind horizons. This is
to be opposed to the BTZ black-holes, where masses and momenta are introduced by the
Killing vector of the discrete identification, and where the singularity is a chronological
singularity.

Discrete identifications a la BTZ can be superimposed to the black holes obtained by
continuous deformations of AdSs. Extra chronological singularities appear in that case,
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which force us to excise some part of the original space. This part turns out to contain
the locus of the curvature singularity. It is worth stressing that for certain range of the
deformation parameters, naked singularities appear.

Although the geometrical view point has been predominating, the guideline for our
study comes from the underlying CFT structure. This has enabled us to provide both a
geometrical and an algebraical description in terms of the spectrum of the string primaries.

Since we are dealing with the extension of AdS; one may wonder about a possible
holographic interpretation for the exact string backgrounds at hand, aiming at generalizing
the usual AdS/CFT correspondence. A major obstruction to this is due to the asymptotic
flatness of the geometries. Hence, it is not clear how to find a suitable boundary map.

Interesting questions that we did not address, which are in principle within reach, are
those dealing with the thermodynamical properties of the above black holes, for which a
microscopic interpretation in terms of string states should be tractable.
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A. AdS;3 coordinate patches

A.1 AdS; SL(2,R)

The commutation relations for the generators of the SL(2,R) algebra are
[Jh72] = —g® (TR =0t [T Y] =g (A.1)

The three-dimensional anti-de Sitter space is the universal covering of the SL(2,R) group
manifold. The latter can be embedded in a lorentzian flat space with signature (—, +, +, —)

and coordinates (z°, 2!, 2%, 23):

0 2 .1 3
g frtxt o
=r! . , A2
9 <I1_I3 Io_x2> (A2)
where L is the radius of AdSs.

The isometry group of the SL(2, R) group manifold is generated by left or right actions
on g: g — hg or g — gh Vh € SL(2,R). From the four-dimensional point of view, it is
generated by the Lorentz boosts or rotations (up = @ (2,0 — 2p0,) wWith z, = Napx?. We
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list here explicitly the six Killing vectors, as well as the group action they correspond to:

L= % (G2 — Co1) g—e2%g, (A.3a)
Ly = % (~G1 —G2),  g—e27g, (A.3b)
L = % (Co3 — C12) g— 37, (A.3¢)
Ry = % (Co1 + C32) g ge37, (A.3d)
Ry = % (Gs1 — Co2) g—ge 37, (A.3e)
Rs = % (o3 + C12) g — g3 (A.3f)

Both sets satisfy the algebra (A.1) (once multiplied by —z). The norms of the Killing
vectors are the following:
L2

IZAI* = 1Rall” = | Lall” = | Ro* = — | Ls]1* = — || Rsl|* = - (A.4)

Moreover L;-L; = 0 for i # j and similarly for the right set. Left vectors are not orthogonal
to right ones.

The isometries of the SL(2,R) group manifold turn into symmetries of the SL(2,R)
wzw model, where they are realized in terms of conserved currents.!? The reader will find
details on those issues in the appendices of [16].

A.2 “Symmetric” coordinates
One introduces Euler-like angles by
g=¢"2 T2 7 (A.5)

which provide good global coordinates for AdSs when 7 €] — oo, +00[, p € [0,00[, and
¢ € [0, 27]. In Euler angles, the invariant metric reads:

ds? = L? [f cosh? p d72 + dp?® +sinh? p dqﬁz} . (A.6)

The Ricci scalar of the corresponding Levi-Civita connection is R = —6/L2. The volume
form reads: )
LS

W) = sinh2pdp A d¢ A dT, (A7)

whereas Ly = 5 (0- + 0,) and R = 5 (0- — 0,).
Another useful, although not global, set of coordinates is defined by

Y= 3 1 ¥+ 3
g=e 2 Tl (A.8)

10When writing actions a choice of gauge for the NS potential is implicitly made, which breaks part of
the symmetry: boundary terms appear in the transformations. These must be properly taken into account
in order to reach the conserved currents. Although the expressions for the latter are not unique, they can
be put in an improved-Noether form, in which they have only holomorphic (for L;’s) or anti-holomorphic
(for R;’s) components.
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(¢ and ¢ are not compact coordinates). The metric reads:
ds? = L? [cos® Bdy? — dB? +sin? B dp?] (A.9)
with volume form 5
L
W = 5 sin28dg8 A dy A de. (A.10)
Now Ly = 1 (9y — 9,,) and Ry = 3 (0y + 0,).
Finally, the Poincaré coordinate system is defined by
L
0 +a? ==
u Lota
o —a? = Lu+ =2 , (A.11)
5 La*
o’ = = .
w

For {u,z 2~} € R3, the Poincaré coordinates cover once the SL(2R) group manifold.
Its universal covering, AdSs, requires an infinite number of such patches. Moreover, these
coordinates exhibit a Rindler horizon at |u| — oo; the conformal boundary is at |u| — 0.
Now the metric reads:

L2
ds? = =5 (du? + da*da7), (A.12)
U
and the volume form: 3
L _
wpz) = 203 du A dat A da™. (A.13)

We also have Ly + Ly = —0_ and Ry + R3 = 0.

A.3 “Asymmetric” coordinates

The above three sets of AdSs coordinates are suitable for implementing symmetric parabo-
lic, elliptic or hyperbolic deformations, respectively driven by (Jl + ,73) (.71 + ,73)7 J3J3 or
J2J2. For asymmetric elliptic or hyperbolic deformations, we must use different coordinate
systems, where the structure of AdSs as a Hopf fibration is more transparent. They are
explicitly described in the following.

e The coordinate system used to describe the elliptic asymmetric deformation is defined

as follows: . .
o _ cosh P cosh ? cos — — sinh P sinh ? sin — ,
L 2 2 2 2 2 2
t t
no_ sinh P sinh ? cos — — cosh P sinh ? sin — ,
L 2 2 2 2 2 (A.14)
2_ cosh L sinh ? cos i + sinh L cosh ? sin L s
L 2 2 2 2 2 2°
s _ sinh L sinh ? cos E — cosh L cosh ? sin E .

L 2 2 2 2 2 2
The metric now reads:

L2
ds? = T (dp2 + d¢? — dt? — 2sinh pdt dg), (A.15)
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and the corresponding volume form is
I3
W = 5 coshpdp A do A dt. (A.16)

This coordinate system is such that the ¢-coordinate lines coincide with the integral
curves of the Killing vector Ly = — 0;, whereas the ¢-lines are the curves of Ry = 0y.

e The coordinate system used to describe the asymmetric hyperbolic deformation is
defined as follows:

L0 _ cosh = cosh < cos + sinh T sinh Z sin Z R

L 2 2 2 2 2 2

no_ sinh r cosh r cos T + cosh r sinh z sin T ,

L 2 2 2 2 2 2 (A.17)
T ro. . x T .. T . T :
— = —cosh = sinh = cos = — sinh = cosh — sin — ,

L 2 2 2 2 2 2

% = sinh g sinh g cos % — cosh % cosh g sin % .

For {r,z,7} € R3, this patch covers exactly once the whole AdS3, and is regular
everywhere [46]. The metric is then given by

2 L?

d
T

(dr? + dz® — dr? + 2sinhrdzdr), (A.18)

and correspondingly the volume form is

3
Wiz = % coshrdr A dx A dr. (A.19)

In this case the z-coordinate lines coincide with the integral curves of the Killing
vector Lo = O,, whereas the 7-lines are the curves of R3 = — 0;.

B. The BTZ black hole

In the presence of isometries, discrete identifications provide alternatives for creating new
backgrounds. Those have the same local geometry, but differ with respect to their global
properties. Whether these identifications can be implemented as orbifolds at the level of
the underlying two-dimensional string model is very much dependent on each specific case.

For AdSs, the most celebrated geometry obtained by discrete identification is certainly
the BTZ black hole [7]. The discrete identifications are made along the integral lines of the
following Killing vectors (see egs. (A.3)):

non-extremal case: & = (ry +7r_) Ry — (ry —7r_) Lo, (B.1a)
extremal case: & =2r Ry — (R1 — R3) — (L1 + L3). (B.1b)

In the original BTZ coordinates, the metric reads:

ds? = .2 _fQ(r) de? + f*Z(r) dr? + 72 <d<p - T4;27 dt) 2:| R (B.2)
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with 1
_ = 22 (2 _ 2
f) =2 =) (2 =), (B3)
In this coordinate system,
Dy, =&, Oh=—(ry+r_)Re—(ry —r_) Ly and r2 =€ . (B.4)

In AdS3 ¢ is not a compact coordinate. The discrete identification makes ¢ an angular
variable, ¢ = ¢ + 27, which imposes to remove the region with 2 < 0. The BTz geometry
describes a three-dimensional black hole, with mass M and angular momentum J, in a
space-time that is locally (and asymptotically) anti-de Sitter. The chronological singularity
at 7 = 0 is hidden behind an inner horizon at » = r_, and an outer horizon at r = r.
Between these two horizons, r is time-like. The coordinate ¢ becomes space-like inside the
ergosphere, when 72 < rgrg = 7’3— + r2. The relation between M, J and r4 is as follows:

ML J\?
2 _
ri= |1 17(ML) ) (B.5)

Extremal black holes have |J| = ML (r; =r_). In the special case J = ML = 0 one finds
the near-horizon geometry of the five-dimensional Ns5/F1 stringy black hole in its ground
state. Global AdSj3 is obtained for J =0 and ML = —1.

Many subtleties arise, which concern e.g. the appearance of closed time-like curves in
the excised region of negative 72 (where 0, would have been time-like) or the geodesic
completion of the manifold; a comprehensive analysis of these issues can be found in [8].
At the string-theory level, the BTz identification is realized as an orbifold projection, which
amounts to keeping invariant states and adding twisted sectors [44, 45].

Besides the BTZ solution, other locally AdSs geometries are obtained, by imposing
identification under purely left (or right) isometries, refereed to as self-dual (or anti-self-
dual) metrics. These were studied in [46]. Their classification and isometries are exactly
those of the asymmetric deformations studied in the present chapter. The Killing vector
used for the identification is (A) time-like (elliptic), (B) space-like (hyperbolic) or (C) null
(parabolic), and the isometry group is U(1) x SL(2,R). It was pointed out in [46] that the
resulting geometry was free of closed time-like curves only in the case (B).

C. Spectrum of the SL (2,R) super-wzw model

In this appendix we give a reminder of the superconformal wzw model on SL (2, R),, (for a
recent discussion see [47]). The affine extension of the sl (2, R) algebra at level k is obtained
by considering two sets of holomorphic and anti-holomorphic currents of dimension one,
defined as

TV (2) = k(T", Adgg~'0g) , TV (2) = k(T™, g7 8g) . (C.1)

where (-,-) is the scalar product (Killing form) in s[(2,R), {T™} is a set of generators of
the algebra that for concreteness we can choose as follows:

Tt =5t T? = 63, T3 =52, (C.2)
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Each set satisfies the OPE

k:(SMN + fI\INPJP ('I,U)

P T )~ e

, (C.3)
where fMY, are the structure constants of the sl (2, R) algebra. The chiral algebra contains
the Virasoro operator (stress tensor) obtained by the usual Sugawara construction:

s JMJM

T(2)= =5

(C.4)

M

A heterotic model is built if we consider a left-moving AN/ = 1 extension, obtained by
adding 3 free fermions which transform in the adjoint representation. More explicitly:

I 7™M .

T (Z) = Z ﬁ+ : 1/)]\181/}]\1 i) (C.5)

G(z) = % (Z JMpy — é Z R VNI Z) . (C.6)

M MNP

On the right side, instead of superpartners, we add a right-moving current with total central

charge ¢ = 16.
Let us focus on the left-moving part. The supercurrents are given by 9y + 61/2/kJu
where:

Fu= I = 53 (©7)

NP
it should be noted that the bosonic J™ currents generate an affine s[(2, R) algebra at level
k + 2, while the level for the total 7y, currents is k.
Let us now single out the operator that we used for both the deformation (egs. (4.4a))
and the identifications (section 5.3):

Jo = J* + w1y (C.8)

Let us now bosonize these currents as follows:

P
T = —\@fwg, (C.9)
7= w#gye% (C.10)

Y1py = 0H, (C.11)

and introduce a fourth free boson X so to separate the ¥ components both in 6, and H:
2 k+2
o = \/;92 +a %X., (C.12)

92:\/3( k;2192+ZX>. (013)
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A primary field ®;,,5 of the bosonic SL (2,R),, , with eigenvalue i with respect to J?
and ji with respect to J2 obeys by definition

P
T2 (2) g (w, @) ~ %(Z?w) ; (C.14a)
- ® - (w. W

T2 (2) Djup (w, @) ~ M;Mf(:;w) (C.14b)

Since @,z is purely bosonic, the same relation holds for the supercurrent:

D (w,w
T2 (2 i w, 0) ~ 122201, (c.15)
Consider now the holomorphic part of ®;,z (z,2). If ®;, is viewed as a primary in the

swzw model, we can use the parafermion decomposition as follows:

D, (2) = Ujy (2) et V2RO (C.16)
where Uj, (z) is a primary of the superconformal SL (2,R), /U(1). On the other hand, we
can just consider the bosonic wzw and write:

By (2) = Vi () V2 EF20 — 7 () @88V S5 X /2 k02 (C.17)

where now Vj, (2) is a primary of the bosonic SL (2,R), 5/ U(1). The scaling dimension
for this latter operator (i.e. its eigenvalue with respect to Lg) is then given by:
i+
A(V,)=— - .
(Vi) k k+2
An operator in the full supersymmetric SL (2,R), theory is then obtained by adding the

(C.18)

1193 fermionic superpartner contribution:
2p k+2 /:
D (2) = D, (2) et = Viu (2) ez( )V X eV 2/ k(i) o2 (C.19)

that is an eigenvector of Jo with eigenvalue u + v where p € R and v can be decomposed
as v = n+a/2 with n € N and a € Zy depending on whether we consider the NS or R
sector. The resulting spectrum can be read directly as:

i(j+1 2 k42/ 2 2 2
A @y () = —2UTD w7 kT ( s +n+g> + 4 (ntn+3)

k k+2 2k \k+2 2
j+1 1 a\2
:74( 3 ) -3 <n+§) . (C.20)

Of course the last expression was to be expected since it is the sum of the s[(2,R),
Casimir and the contribution of a light-cone fermion. Nevertheless the preceding constru-
cion is useful since it allowed us to isolate the J contribution to the spectrum (u + v)? /k.

The right-moving part of the spectrum is somewhat simpler since there are no super-
partners. This means that we can repeat our construction above and the eigenvalue of the
Lg operator is simply obtained by adding to the dimension in eq. (C.18) the contribution
of the J? operator and of some U(1) coming from the gauge sector:

o Co - - a2
A(éjﬁﬁ(z)):J(Jl:rl)—k’iz+{k’12+kiy(ﬁ+§) } (C.21)

where again 7 € N and @ € Zy depending on the sector.
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‘We conjecture the existence of a duality between heterotic closed strings on homogeneous spaces
and symmetry-preserving D-branes on group manifolds, based on the observation about the coinci-
dence of the low-energy field description for the two theories. For the closed string side we also give
an explicit proof of a no-renormalization theorem as a consequence of a hidden symmetry and infer
that the same property should hold true for the higher order terms of the DBI action.

One of the main technical advantages provided by the
study of models on group manifolds is that the geometri-
cal analysis can be recast in Lie algebraic terms. At the
same time the underlying conformal symmetry makes it
possible to explicitly study the integrability properties
that, in general, allow for extremely nice behaviours un-
der renormalization. Wess-Zumino-Witten models can
be used as starting points for many interesting models:
the main challenge in this case consists in partially re-
moving the symmetry while retaining as many algebraic
and integrability properties as possible.

In this note we aim at pointing out an analogy (or,
as we will say, a duality) between two — in principle dis-
connected — constructions based on wzw models: closed
string (heterotic) backgrounds obtained via asymmet-
ric deformations and symmetry-preserving D-branes on
group manifolds. As we will show, in fact, the low-energy
field contents for both theories are the same, although
they minimize different effective actions (SUGRA for the
former and DBI for the latter). For one of the sides of the
duality (the closed string one) we will also show a no-
renormalization theorem stating that the effect of higher-
order terms can be resummed to a shift in the radii of the
manifold. A similar behaviour can also be conjectured
from the D-brane side, and this would be consistent with
some remark in literature about the coincidence between
the DBI and CFT results concerning mass spectra, ...up
to the said shift [1, 2].

Let us start with the open-string side of this duality,
by reminding some known facts about the geometric de-
scription of D-branes in wzw models on compact groups,
pointing out in particular the low-energy field configura-
tion. Natural boundary conditions on Wzw models are
those in which the gluing between left- and right-moving

TUnité mixte du CNRS et de I'Ecole Polytechnique, UMR 7644.
$Unité mixte du CNRS et de I'Ecole Normale Supérieure, UMR
8549.

currents can be expressed in terms of automorphisms w
of the current algebra. The corresponding world-volumes
are then given by (twisted) conjugacy classes on the
group [3]:

C¥(g) = { hgw(h™Y) | heG } . (1)

As it was pointed out in [1], one can use Weyl’s theory
of conjugacy classes so to give a geometric description of
C“(g). For a given automorphism w we can always find
an w-invariant maximal torus T C G (such as w(T) =
T). Let T% C T be the set of elements ¢ € T' invariant
under w (T¥ = {t €T |w(t)=t}) and Ty C T% the
connected component to the unity. When w is inner 7' =
T* = T§ while in general (i.e. if we allow w to be outer)
dim(7y’) < rank G.

Let w be inner. Define a map:

q:G/TxT— G
(lgl,t) = a([g],t) = gtg™". (2)

One can show that this map is surjective, so that each
element in G is conjugated to some element in 7". This
implies in particular that the conjugacy classes are char-
acterized by elements in 7', or, in other words, fixing
t € T (so to take care of the action of the Weyl group),
we find that the (regular) conjugacy classes C¥(g) are
isomorphic to the homogeneous space G/T. A similar
result holds for twisted classes, but in this case

C*(g9) ~ G/Tg". ®3)

The description of the D-brane is completed by the
U (1) gauge field that lives on it. The possible U(1) fluxes
are elements in H2(G/TY,R) and one can show that

H(GQT) ~ 29715, (4)

Summarizing we find that the gauge content of the low
energy theory is given by:
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e the metric on G/T§ (in particular G/T for un-
twisted branes),

o the pull-back of the Kalb-Ramond field on G/T§,

e dim 7 independent U(1) fluxes (rankG for un-
twisted branes).

These fields extremize the DBI action
S=/d:c Vdet (g + B + 27F). (5)

and according to some coincidence with known exact CFT
results there are reasons to believe that the fields only
receive a normalization shift when computed at all loops.

Let us now move to the other — closed string — side
of the advertised duality. A good candidate for a defor-
mation of a Wzw model that reduces the symmetry, at
the same time preserving the integrability and renormal-
ization properties, is obtained via the introduction of a
truly marginal operator written as the product of a holo-
morphic and an antiholomorphic current

O = ZC“J7JJ (6)
v
|

As it was shown in [4], a necessary and sufficient con-
dition for this marginal operator to be integrable is that
the left and right currents both belong to abelian groups.
If we consider the heterotic super-wzw model, a possible
choice consists in taking the left currents in the Cartan
torus and the right currents from the heterotic gauge sec-
tor [5, 6]:

N
0=> H,JI" (7)
a=1

where J* € H C T, T being the maximal torus in G.

Using a construction bearing many resemblances to a
Kaluza—Klein reduction it is straightforward to show that
the background fields corresponding to this kind of de-
formation consist in a metric, a Kalb-Ramond field and
a U(1)V gauge field. Their explicit expressions are sim-
ply given in terms of Maurer-Cartan one-forms on G as
follows:

k _ .
9= 50" ® T — kT ® J", (8a)

1 k . .
Hyg = dB - ?Aa AdA" =3 Fae TNA TN AT — kB2 faoun T4 ATV A TV, (8b)

9
2k -~ . . .
A® =H, k—] ® (no summation over a implied), (8¢)
g

where j;f are the currents that have been selected for
the deformation operator. In this way we get an N-
dimensional space of exact models. Here we will con-
centrate on a special point in this space, namely the
one that corresponds to {H, = 1/v/2,Va =1,2,...,N }.
This point is remarkable for it corresponds to a de-
compactification limit where N dimensions decouple and
we're left with the homogeneous G/H space times N non-
compact dimensions[]. More precisely, when H coincides
with the maximal torus 7', the background fields read:

k . ’
G=y2. el (99)
1
Hiy = dB = 5 funpJ" NI NT*, (9b)

[k
F = [ Haf, T AT (9¢)
"9

(no summation over a). Geometrically:

e g is the metric on G/T obtained as the restriction
of the Cartan-Killing metric on G

e Hpg is the pullback of the usual Kalb-Ramond field
present in the wzw model on the group G

e F% are rank(G) independent U (1) gauge fluxes that
satisfy some quantization conditions and hence nat-
urally live in H2(G/T,Z)

Having chosen a truly marginal operator for the de-
formation we know that this model is conformal. This
implies in particular that the background fields solve the
usual 3 equations that stem from the variation of the
effective SUGRA action:

" 1 k oc
= - mpo V9 rha apr
S / dx\/g(R 12HM,(,H 5 Fo, P + 3)
(10)
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In example if we consider G = SU(2), then T' = U(1)
and the decompactification limit H — 1/4/2 we get the
exact S? = SU(2)/U(1) background supported by a U(1)
magnetic monopole field (see e.g. [7, 8]).

Our conjecture stems precisely from this: the gauge
field above exactly match the ones we found before for
symmetry-preserving D-branes. Moreover both sides of
the duality are derived from wzw models that enjoy a
no-renormalization property which would make this cor-
respondence true at all orders. In this spirit we now pass
to prove that a similar theorem holds for closed heterotic
strings on coset models infering that the duality, when
proven, would give a direct way to deduce the same fea-
ture for the D-brane action.

In studying symmetrically deformed wzw models, i.e.
those where the deformation operator is written as the

product of two currents belonging to the same sector
O = AJJ, one finds that the Lagrangian formulation
only corresponds to a small-deformation approximation.
For this reason different techniques have been developed
so to read the background fields at every order in A [9—
13] but, still, the results are in general only valid at first
order in o and have to be modified so to take into ac-
count the effect of instanton corrections. In this section
we want to show that this is not the case for asymmet-
rically deformed models, for which the background fields
in Egs. (8) are exact at all orders in H, and for which the
effect of renormalization only amounts to the usual (for
wzw models) shift in the level of the algebra k — k+cg
where cg is the dual Coxeter number.

Consider in example the most simple SU(2) case. In
terms of Euler angles the deformed Lagrangian is written
as:

S = Ssue) (o, 8,7) +05 = 4£ / d%z dador+ OB S + By Dy + 2 cos §da Dy+
.

kkgH
2

+ /d22 (0y+cosBoa)l. (11)

If we bosonize the right-moving current as I = d¢ and add a standard U(1) term to the action, we get:

9
™

k _
S = Ssuw (@.6:9) + 85 (0,0,7.60) + 12 [ 2 0650 =

k ko (1 —202) [ ~
= Ssu(2) <a757"/+2\/gﬂ¢> +¥/ d*20¢0¢ (12)

and in particular at the decoupling limit H — 1/4/2, cor-
responding to the S? geometry, the action is just given

by S = Ssu) <(Y,ﬁ,’7+ 2«/%%). This implies that

our (deformed) model inherits all the integrability and
renormalization properties of the standard SU(2) wzw
model. In other words the three-dimensional model with
metric and Kalb-Ramond field with SU(2) x U(1) sym-
metry and a U (1) gauge field is uplifted to an exact model
on the SU(2) group manifold (at least locally): the inte-
grability properties are then a consequence of this hidden
SU(2) x SU(2) symmetry that is manifest in higher di-
mensions.

The generalization of this particular construction to
higher groups is easily obtained if one remarks that the
Euler parametrization for the g € SU (2) group represen-
tative is written as:

ts 1Bty it
g =e"MBehreltz, (13)

where t; = 0;/2 are the generators of su(2) (o; being

the usual Pauli matrices). As stated above, the limit
deformation corresponds to the gauging of the left action
of an abelian subgroup 7' C SU (2). In particular here
we chose T'= { h | h = ¢'¥*3 } hence it is natural to find
(up to the normalization) that:

h(#)g(a,B,7)=g(,B,7+9¢). (14)

The only thing that one needs to do in order to gener-
alize this result to a general group G consists in finding
a parametrization of g € G such as the chosen abelian
subgroup appears as a left factor. In example if in SU(3)
we want to gauge the U (1)2 abelian subgroup generated
by (A3, As) (Gell-Mann matrices), we can choose the fol-
lowing parametrization for g € SU(3) [14]:

g= 01)\5¢>Cz)\3001)\2bcz)\gacz)\sﬁcl)\g'ycl)\g/icl)\ga. (15)
The deep reason that lies behind this property (differ-

entiating symmetric and asymmetric deformations) is the
fact that not only the currents used for the deformation
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are preserved (as it happens in both cases), but here their
very expression is just modified by a constant factor. In
fact, if we write the deformed metric as in Eq. (8a) and
call K* the Killing vector corresponding to the chosen
isometry (that doesn’t change along the deformation),
we see that the corresponding j;EH) current is given by:

G = gl = (1 - 2u%) GO (16)
The most important consequence (from our point of
view) of this integrability property is that the SUGRA
action in Eq. (10) is ezact and the only effect of renor-
malization is the k — k + cg shift.

It is very tempting to exend this no-renormalization
theorem to the D-brane side. Of course this would re-
quire an actual proof of the duality we conjecture. Nev-
ertheless we think that this kind of approach might prove
(at least for these highly symmetric systems) more fruit-
ful than adding higher loop corrections to the DBI action,
which on the other hand remains an interesting directions
of study by itself.

Is this duality just a coincidence, due to the underlying
Lie algebraic structures that both sides share, or is it a
sign of the presence of some deeper connection? Differ-
ent aspects of the profound meaning of the DBI effective
action are still poorly understood and it is possible that
this approach — pointing to one more link to conformal
field theory — might help shedding some new light.

I would like to thank C. Bachas, C. Kounnas and
S. Ribault for illuminating discussions and especially
thank M. Petropoulos for encouragement during differ-
ent stages of this work and for the careful reading of the
manuscript.
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‘We analyze the behaviour of heterotic squashed-Wess—Zumino—Witten backgrounds under renormalization-
group flow. The flows we consider are driven by perturbation creating extra gauge fluxes. We show how
the conformal point acts as an attractor from both the target-space and world-sheet points of view. We also
address the question of instabilities created by the presence of closed time-like curves in string backgrounds.

© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The purpose of this note is to analyze the behavior of certain string backgrounds under world-sheet
renormalization-group flows. In our set-up, these flows are driven by world-sheet operators, which cre-
ate, in the target space—time, extra U (1), electric or magnetic, gauge fields and push the string off criticality.

World-sheet renormalization group has been investigated both from the general conformal field theory
(CFT) and from the geometrical, target space viewpoints [1,2]. The motivations are diverse: study the stability
of the background against off-critical excursions, search for new critical string backgrounds, eventually
explore string theory off-shell, etc.

In the presence of “impurities” such as branes or orbifold fixed points in non-compact target spaces,
or when background electric or magnetic fields are switched on, tachyons may in general appear [3,4].
World-sheet renormalization-group techniques are then useful for investigating the relaxation process of
the original unstable vacuum, towards a new, stable infrared fixed point. Such relaxation is usually a tachyon
condensation [5-7], that can be accompanied by emission of particles (in the form e.g. of charged pairs) [8,9].

The presence of closed time-like curves can also trigger decays. It was argued years ago [10] that
gravitational solutions with such chronological pathologies might naturally evolve towards chronologically
safe backgrounds. This has been recast more recently in the framework of string vacua [11,12] with some
preliminary results. It is clear that one would gain insight by studying renormalization-group flows in an
appropriately chosen parameter space for families of string backgrounds.

World-sheet renormalization group can be studied directly at the level of the two-dimensional CFT.
Any relevant operator can be used to leave the conformal point, and the necessary tools are in principle
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available for computing the beta-functions and determining the flows. This procedure is usually perturbative.
It turns out that it is trustful [1] in determining the new conformal point in the IR only when the operators
responsible for the flow are marginally relevant (conformal dimensions A = A = 1, but only at first order
in the deformation parameter), or almost relevant (conformal dimensions A = A = 1 — ¢). In the case
of deformations with irrelevant operators we return back to the conformal point towards the IR. In the
framework of Wess—Zumino—Witten (Wzw) models [13] (which capture e.g. the S’ 3 and AdS3 spaces with
NS background fluxes), such operators exist only at large level k. Hence, their operator product expansions
involve a plethora of fields, and the actual computation of their beta function is very intricate. In order
to overcome this difficulty, we will here use an alternative method, more geometric and based on target-
space techniques.

This note is organized as follows. In Sect.2 we present a quick review of the heterotic squashed Wzw
models [14,15]. Then in Sect.3 we introduce a perturbation and study the system as the RG flow, in the
corresponding two-dimensional o-model, takes it back to the conformal point. In Sect. 4 we show that this
is consistent with the CFT results.

2 Squashed wzw models

One of the most appealing properties of wzw models is that they allow for both an exact CFT bidimensional
description and a simple spacetime interpretation in terms of group manifolds. Current-current deformations
allow to explore their moduli space, leading in general to models that keep the integrability properties but
may lack a nice spacetime description. Special attention is deserved by the asymmetric deformations in
which the two currents come from different sectors of the theory; in this case, in fact, together with the nice
CFT properties, the spacetime geometry remains simple to describe in terms of squashed groups.

To be more concrete consider a heterotic SWzZw model on a group G of dimension d and rank r. The
asymmetric current-current deformation is realized by adding the operator

VkE - j .
0= 79 /dzz Z Cab <J“(z) - % ‘IMNL/)Mi/)N> Jb(z), €Y}

a,b=1

where J¢ are currents in the Cartan torus T C G, 9™ are the fermionic superpartners and .J® are anti-
holomorphic currents belonging to the gauge sector. The engineering dimension of the operator is obviously
(1,1) and, as it has been shown in [16], O is truly marginal (i.e. at every order in deformation) for any value
of the parameter matrix cp, since the currents commute. In other words, with the aid of O, we reach an
r-dimensional space of exact CFT’s.

As described in [15], the background fields corresponding to the new sigma—model can be read using a
technique bearing many resemblances to a Kaluza—Klein reduction' and consist in a metric, a Kalb-Ramond
field and a U(1)" (chromo-)magnetic field. As announced above the description remains simple and the
all-order exact expression can be given in terms of Maurer—Cartan currents J on G as follows:

ds?= Y Jrgr 4 (1-h?) > g0,
neG/T a€T

Hig = L fupd" AT A TP, weG/T, @)

[k
Fe=h k—q NI nweG/T,aeT,

where we chose ¢,, = hdqp. In particular we see that the metric is the one of a squashed group i.e. we still
have the structure of a T" fibration over G/T but the radius of the fiber changes with h. A special value

' It would be a genuine reduction if we had done the construction in type II or in a bosonic theory. In this case the current J¢

would just be the anti-holomorphic derivative of an internal coordinate X .
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of the deformation parameter is singled out: for h < 1 the metric is positive definite, while for 2 > 1 the
signature changes. The apparently singular 4 = 1 value can nevertheless be reached by a limiting procedure
whose geometrical interpretation is the trivialization of the fiber. We end up with an exact CFT on a G/T
background sustained by a (chromo-)magnetic field.

The simplest example is given by G = SU(2) where we have (in Euler coordinates) the following
background fields:

ds? = d6? + dy? + d¢? + cos Odypdg — h? (dip + cos 0dg)? |
B =cosfdy Adg, 3
A = 2h (dyp + cos6de) ,

corresponding, in the i — 1 limit, to a S? geometry.

3 RG-flows for compact groups: geometric approach

‘We present here the geometric, target-space techniques for analyzing RG flows in two-dimensional theories.
These techniques apply to any compact group. We will however expand on the case of SU(2) since it
captures all the relevant features.

3.1 The parameter space

The model that we have presented in the previous section is conformal; for this reason we expect to find
it as a fixed point in an RG flow. To verify this claim let us introduce a two-parameter family of o models
generalizing the exact backgrounds of eq.(2); a possible choice consists in adding a new magnetic field,
this time coming from a higher dimensional right sector. Explicitly

ds? = Y Jrgr 4 (1-h%) > g0,
neG/T a€T
h
H[S] = #f#vp']u/\'lu/\&]p: weG/T,
_ @
h+h [k
Fa:L 2 JENTY weG/T, acT,
2 kg !
- h—h [k
pe= R e e peGT, aeT
2 kg !

and in particular for SU(2):

ds? = d6? + dy? + d¢? + cos Odypdg — h? (dip + cos 0dg)? |

? cos@dy Ado,
)

(h+ R) (dv + cos6dg) ,
(h - 71) (d9) + cos6do) ,

(&)

B
A
A

where h is a new parameter, describing the deviation from the conformal point. It is clear that the above
background reduces to the one in eq. (3) in the h — h limit. In particular we see that the metric is unchanged,
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the Kalb—Ramond field has a different normalization and a new field A appears. This configuration can be
described in a different way: the geometry of a squashed sphere supports two covariantly constant magnetic
fields with charge Q = h + h and Q = h — h; the RG flow will describe the evolution of these two charges
from a generic (Q, Q) to (21, 0), while the sum Q+@Q = 2h remains constant. In this sense the phenomenon
can be interpreted as a charge transmutation of Q) into Q. The conservation of the total charge is in fact a
consequence of having chosen a perturbation that keeps the metric and only changes the antisymmetric part
of the background.

We can also see the background in eq. (4) from a higher dimensional perspective where only the metric
and the Kalb-Ramond field are switched on. Pictorially:

B = % BWZV\ BJ(L

©

—hJ, 0

where gw,w and By, are the usual metric and Kalb—-Ramond fields for the wzw model on the group G.
More explicitly in the SU(2) case:

1 0 0 0 0 0 0 0
0 1 cosf h 0 0 hocos o h
9= B= . n . 0
0 cosf 1 hcosf 0 —ycosf 0 hcos6
0 h hcosf 1 0 —h —hcosf 0

where the fourth entry represents the bosonized internal current. In particular this clarifies the stated right-
sector origin for the new gauge field A. This higher dimensional formalism is the one we will use in the
following RG analysis.

3.2 The renormalization group flow
The o-model in eq. (6) is not conformal for generic values of the parameters A and h; this is why it makes
sense to study its behaviour under the RG flow. Following a dimensional-regularization scheme (see [2,17,18]
and for various applications [19-22]) we consider the action

1 _

5= o / % (gus + Bun) OXMOX ®)
where g and B are the fields in eq. (6). The beta-equations at two-loop order in the expansion in powers of
the overall coupling constant [ and the field redefinitions for the internal coordinates X turn out to be:

dX* A2 h? A* h?
e T (“ﬁ) (”s? (1*3;?)) ’
dh  A*h 9 h? A* h?
=X )(17}72) <1+87r (173ﬁ>> ,
dh A*h h? A h? ®
= — = — 1+ (1-= ) (1+=(1-3=
=g 87T(+ )< h2><+87r( 3h2>>’
. i 2* EZ B4
X=XxX"_-Z_(1-hm)(1-4—= +3—
16 ( h)< h2+3h4>’
where \* = Ag*, ¢g* being the dual Coxeter number, is the effective coupling constant (\* = N for

G = SU(N)). The contributions at one- and two-loop order are clearly separated. In the following we will
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concentrate on the one-loop part and we will comment on the two-loop result later. Let us then consider

the system:
dr\* )\*2 BQ
Bar = = <1 > s

dt ~  am U w2
dh  A*h h?
=== 1-r%)(1- — 10
Pn dt  8m (1—h )< hz)7 (19)

dh M*h ) h?
ﬁ,ﬁaffg(lJrh)(lfﬁ).

This can be integrated by introducing the parameter z = h/h which makes one of the equations redundant.
The other two become:

) *2
/\*:72 (1-2%),
T (n
PR )
- 47

By inspection one easily sees that \/\ = Z/z, implying A(£) = Cz(¢), where C' is a constant. This was to
be expected since C' is proportional to the normalization of the topological Wz term. Since we are dealing
with a compact group it turns out that C' is, as in [13], quantized with:

ck:%, keN. (12)

Now it’s immediate to separate the system and find that z(¢) is defined as the solution to the implicit equation:

_ 1 () +1) (-1

t i 1 o
EORRCOEDICES

2k - 20 (13)
with the initial condition z(0) = zo. A similar expression was found in [13,23]. The reason for this is, as
pointed out previously [24], that the conformal model (k. = k) in its higher-dimensional representation (the
one in eq. (6)) coincides with a G x H wzw model after a suitable local field redefinition.

As it is usually the case in the study of non-linear dynamics, a better understanding of the solution is
obtained by drawing the RG flow. In a (z, \*) plane, the trajectories are straight lines through the origin and
only a discrete set of them are allowed. Moreover the line z = 1 is an IR fixed-point locus. This situation
is sketched in Fig. 1a. Just as expected the 2 = h/h = 1 point, corresponding to the initial exact model
described in Sect. 2, is an IR fixed point for the RG flow.

Further insights can be gained if we substitute the condition \* = Cyh/h into the system (10) thus getting:

dh R ) h?
E_—k(l—h)(l—ﬁ>,

dh h? h?
— =1+ (1-= ).
&= 00 (1 )

(14)

The flow diagram for this system in the (h, fl) plane, Fig. 1b, shows how the system relaxes to equilibrium
after a perturbation. In particular we can see how increasing h leads to a a new fixed point corresponding
to a value of h closer to 1.

We would like to pause for a moment and put the above results in perspective. The target-space of the
sigma-model under consideration is a squashed three-sphere with two different magnetic fields. Along the
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Fig.1 (online colour at: www.fp-journal.org) Flow lines for the deformed (non-conformal) squashed wzw
model in a the (2, \) and b the (h, k) planes. The arrows point in the negative ¢ direction, i.e. towards the
infrared; in a we see how the squashed wzw model z = 1 appears as an IR fixed point, in b how perturbing
the conformal i = h model by increasing h leads to a a new fixed point corresponding to a value of h closer
to 1.

flow, a transmutation of the two magnetic charges occurs: the system is driven to a point where one of the
magnetic charges vanishes. This fixed point is an ordinary squashed-wzw (of the type studied in Sect.2),
that supports a single magnetic charge.

As we pointed out in Sect.?2, in the squashed-wzw, the magnetic field is bounded by a critical value,
h = 1.Aslongas h < 1, the geometry is a genuine squashed three-sphere. For i > 1, the signature becomes
Lorentzian and the geometry exhibits closed time-like curves. Although of limited physical interest, such
a background can be used as a laboratory for investigating the fate of chronological pathologies along the
lines described above. In particular we see that under the perturbation we are considering the model shows
a symmetry between the » > 1 and h < 1 regions. In fact the presence of closed time-like curves doesn’t
seem to make any difference, but for the fact that regions with different signatures are disconnected, i.e. the
signature of the metric is preserved under the RG flow. It is clear that these results are preliminary. To get a
more reliable picture for closed time-like curves, one should repeat the above analysis in a wider parameter
space, where other RG motions might appear and deliver a more refined stability landscape.

4 RG-flows for compact groups: CFT approach

In order to make contact with genuine CFT techniques, we must identify the relevant operators which are
responsible for the (h, h) deformation of the G x H original wzw model (H = U(1)™*k %), At lowest
approximation, all we need is their conformal dimensions in the unperturbed theory.

Following [1], let £ be the unperturbed (conformal) action and O; the operators of conformal dimension
A,. Consider the perturbed model, with Lagrangian

L=Lo+g0;. s
The tree-level beta-functions read:
B'(g) = (i —1)g", (16)
where g is supposed to be small, for the perturbative expansion of 37 to hold?.
2 One should be very careful in the choice of signs in these formulae. In [1] the time variable, in fact, describes the evolution of

the system towards the infrared and as such it is opposite with respect to the ¢ = log p convention that we used in the previous
section (as in [13]).
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The G x H primary operator we need can be written as follows:

O => (tgt"g~") (t*0gg™") (t°g "D g) = D @JT", a7
A.B

AB

where ®** is a primary field transforming in the adjoint representation of the left and right groups G. As
such, the total conformal dimensions are [25]

5

X g9
A=A=1+ , 18
oy (18)
where g* is the dual Coxeter number and as such the operator is irrelevant (in the infrared).
Specializing this general construction to our case we find that the action for the fields in eq. (6) is:
JRLED N DI PP b (h+h)> JuJ + b (h—h)> " Jiems (19)
4m h — h h — ’

where A runs over all currents, ¢ over thg internal currents in A and J% is the wzw current of the Cartan
subalgebra of G coupled to the internal .J*. The extra terms can be interpreted as combinations of operators
in the G x H model. The beta-functions are thus computed following eq. (16) with the coupling g = h/h—1.

We obtain
A (S I (A N (P (20)
gtk \R T\ k k)R

d (h
5(71)
h=h

where the dots after the first equality denote higher order terms in the (h/h — 1)-expansion and after the
second equality, in addition to that, higher order terms in the 1/k-expansion. This result is the same as the
one in [25] since, as we have mentioned, there is the a local field redefinition that maps this model at the
conformal point to the G x H wWzw model. The above result is to be compared with the results following
from eq. (20) when they are expanded around A = h. We obtain:

d (h g g\ (h N Y A
By (L _ LU RIS O (A D) o4 21
dt(h > - (k k2 ) \h e | TRt h * @b

h=h
We see that these results agree to first order in the coupling h/h — 1.

The extra information that we obtain from this calculation is about the interpretation for the two-loop beta-
function we described in the previous section. The one-loop corrections to (16) are of the form Cj; gt g,
where C;j, are related to the three-point function of the unperturbed theory [1]. This coefficient is a measure
of the dimension of the operator O; in the theory perturbed by the set of all operators. Such a computation
goes beyond the scope of the present note. Nevertheless, (21) predicts the coefficient of the term (h/h —1)?
to second order in the 1 /k-expansion and it seems that such a computation is feasible from the CFT viewpoint
at least as a series expansion in 1/k.

5 Conclusions

In this work, we have analyzed the phase space of squashed Wzw models, away from the original conformal
point. Our analysis is given in detail for the compact group SU(2) and can be generalized to any compact
group. We have restricted ourselves to deviations from the conformal point, generated by switching on
simultaneously two distinct magnetic (or electric) fields. The corresponding backgrounds may have inter-
esting interpretation in terms of NS5-branes. We have investigated the phase diagram using geometrical,
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target-space techniques, as well as standard CFT renormalization-group methods. Our results can be sum-
marized as follows: the squashed-wzw models are found, as expected, as IR fixed points in the RG flow,
and this result is confirmed from both a target space and world-sheet point of view. The field theory inter-
pretation of this flow consists in what we have called charge transmutation. One U (1) charge transforms
into another U (1) while the total charge is conserved. For large values of the parameter / the backgrounds
under consideration contain closed time-like curves. These do not seem to change the behaviour of the flow
and the model remains stable, at least under the deformation we consider.

This charge transmutation enters the class of phenomena that are expected to take place when a metastable
string background jumps to a stable one through a non-critical path. These include tachyon condensation,
particle production and other interesting physical phenomena: the RG flow around the conformal point is a
tool to get information on the dynamics of the relaxation. Our geometrical tools are well-fitted to describe
the latter provided we allow for more parameters in the phase space. A generalization of our approach may
also allow to address more thoroughly the issue of instabilities triggered by the presence of closed time-like
curves. Of course this is all very preliminary and in particular much still remains to be done in clarifying the
link between energy minimization and time evolution in non-compact and time-dependent backgrounds.
A first step in this direction consists in investigating non-compact groups, like SL(2,R), for which some
aspects (e.g. related to Zamolodchikov’s C-theorem) of the underlying theory remain obscure.
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