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CHAPTER 1

Introduction

There is a theory which states that if ever
anyone discovers exactly what the
Universe is for and why it is here, it will
instantly disappear and be replaced by
something even more bizarre and
inexplicable

The Restaurant at the End of the Universe
DOUGLAS ADAMS

IN THE LAST FIFTY YEARS theoretical physics has been dominated by two ap-
parently incompatible models: the microscopic world being described by

quantum field theory and the macroscopic word by general relativity. QFT

is by far the most successful theory ever made, allowing to reach an almost
incredible level of accuracy in its measurable predictions. But gravity is dif-
ferent from all other interactions; although by far the weakest, it acts on the
very structure of the universe at a more fundamental level. Many attempts
have been made to obtain a consistent quantum theory of gravity and they all
proved unsuccessful so that it is has become clear that completely new ideas
are needed.

To this day, but this has been true for more than twenty years now, the
only promising trail we can follow in the quest for this unification is string the-
ory. Roughly speaking it postulates that the fundamental objects are not point
particles as in the standard quantum models but one-dimensional objects –
strings. Although their typical size is so small that one might even question
the very meaning of distance at this scale, the mere not being pointlike allows
to solve an enormous number of theoretical problems and in particular those
connected with the severe divergencies that gravity presents due to the local
nature of interactions. Field theory particles appear as vibration modes of the
fundamental string, spacetime is a semiclassical description for a string con-
densate, supergravity emerges as a low-energy limit, and the standard model
is the result of a compactification in presence of extended objects (D branes).

Of course this is in many ways a wish-list. In its present state string theory
is largely incomplete. To begin, only a first-quantization description is known
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2 Introduction

and as such is intrinsically perturbative, and only the S-matrix elements in
a given vacuum are accessible. So, although in principle the very geometry
should emerge from string dynamics, in practice we are forced to choose a
vacuum, which by itself clips the wings of any hope of attaining a complete
quantum gravity theory. Moreover only the perturbative regime is in principle
available, even though the existence of a web of dualities can translate strong
coupling backgrounds into ones we can deal with.

One thing nevertheless must be kept in mind. One should stay as close as
possible to the present knowledge of Nature and try to predict the outcomes
of realistic experiments beyond the standard models in particle physics or cos-
mology by using phenomenomogical models, but string theory is not supergrav-
ity. It is reassuring to find it as a low energy limit but most, if not all, of the
new physics lies in the regime where the semiclassical approximations break
down. From this point of view an important, almost essential, rôle is played
by exact models, i.e. systems in which the α′ corrections can be kept under con-
trol and a conformal field theory description is possible. Because of technical
issues, not many such backgrounds are known and they are all characterized
by a high degree of symmetry. Hence it is not surprising that they in general
do not have a direct phenomenological impact. But the reason for their fun-
damental importance lies elsewhere. They can mostly be used as laboratories
to study the extremal conditions – black hole dynamics just to name one – in
which general relativity and field theory show their limits. The very reason
why string theory was introduced.

Plan of the thesis This thesis is almost entirely devoted to studying string
theory backgrounds characterized by simple geometrical and integrability prop-
erties. This requires at the same time a good grasp on both the low-energy (su-
pergravity) description in terms of spacetime and on the CFT side controlling
all-order-in-α′ effects.

The archetype of this type of system is given by Wess-Zumino-Witten mod-
els, describing string propagation in a group manifold or, equivalently, a class
of conformal field theories with current algebras. Given their prominent rôle
we devote the whole Chapter 2 to recall their properties from different points
of view, trying to outline some of the most important features.

In Chapter 3 we enter the main subject of these notes, namely we study
the moduli space of WZW models by using truly marginal deformations ob-
tained as bilinears in the currents. A vast literature exists on this type of con-
structions, but we will concentrate on a particular class, which we dub asym-
metric deformations. They actually present a number of advantages over the
more familiar symmetric ones and in particular, although the CFT description
is slightly more involved (Sec. 3.5), they enjoy a very nice spacetime interpre-
tation. This can be completely understood in terms of the always-underlying
Lie algebra (Sec. 3.3) and can be proven to remain unchanged at all orders in
α′ (Sec. 3.4).

The following Chapter 4 illustrates some of the obvious applications for
our construction. We then start with the simplest SU(2) case, leading to a



Introduction 3

CFT on the squashed three-sphere and on the two-sphere (Sec. 4.1). Then
we deal with the considerably richer non compact SL(2, R) case (Sec. 4.2).
This leads naturally to the description of some black hole geometries such
as the near-horizon limit for the Bertotti-Robinson black hole (Sec. 4.3), and
the three-dimensional electrically charged black string (Sec. 4.4). Both can
be studied in terms of CFT, thus allowing for an evaluation of the spectrum
of string primaries. Further applications regard the possibility of introduc-
ing new compactification manifolds as part of larger, ten-dimensional back-
grounds (Sec. 4.5).

In Chapter 5 we consider an alternative description for the squashed group
geometries which are found to be T-duals of the usual type II black brane so-
lutions.

In Chapter 8 we take a slight detour from what we have seen up to this
point: instead of exact CFT backgrounds we deal with off-shell systems. Us-
ing a renormalization-group approach we describe the relaxation towards the
symmetrical equilibrium situation. This same behaviour is studied from dif-
ferent points of view, RG flow in target space (Sec. 6.1), two-dimensional renor-
malization (Sec. 6.2) and reading the flow as a motion in an extra time direc-
tion (Sec. 6.3), thus obtaining Freedman-Robertson-Walker-like metrics that in
the most simple case describe an isotropic universe with positive cosmological
constant undergoing a big-bang-like expansion (Sec. 6.4).

The final Chapter 7 marks a further deviation from the construction of ex-
act models: we consider in fact backgrounds with Ramond-Ramond fields
which still elude a satisfactory CFT interpretation. In particular we analyze di-
rect products of constant-curvature spaces and find solutions with hyperbolic
spaces sustained by RR fields.

The themes we treat here have been the subject of the following publica-
tions:

• D. Israël, C. Kounnas, D. Orlando and P. M. Petropoulos, Electric / mag-
netic deformations of S**3 and AdS(3), and geometric cosets, Fortsch.
Phys. 53, 73–104 (2005), hep-th/0405213.

• D. Israel, C. Kounnas, D. Orlando and P. M. Petropoulos, Heterotic
strings on homogeneous spaces, Fortsch. Phys. 53, 1030–1071 (2005),
hep-th/0412220.

• D. Orlando, AdS(2) x S**2 as an exact heterotic string background, (2005),
hep-th/0502213, Talk given at NATO Advanced Study Institute and EC
Summer School on String Theory: From Gauge Interactions to Cosmol-
ogy, Cargese, France, 7-19 Jun 2004.

• S. Detournay, D. Orlando, P. M. Petropoulos and P. Spindel, Three-
dimensional black holes from deformed anti de Sitter, JHEP 07, 072
(2005), hep-th/0504231.

• D. Orlando, Coset models and D-branes in group manifolds, (2005),
hep-th/0511210. Published in Phys.Lett.B
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• D. Orlando, P. M. Petropoulos and K. Sfetsos, Renormalization-group
flows and charge transmutation in string theory, Fortsch. Phys. 54,
453–461 (2006), hep-th/0512086.

Some results are on the other hand still unpublished. This concerns in partic-
ular Chapter 5 and the second half of Chapter 8 and Chapter 7.

In order to help the reader in quickly browsing through this manuscript
some indications are added on the margin:

• the symbol
�

indicates a technical part which can be skipped but for
the final results;

•

�



�
	Kli means that we report classical results.



CHAPTER 2

Wess-Zumino-Witten Models
Wess-Zumino-Witten models constitute a large class of the exact string
theory solutions which we will use as starting points for most of the anal-
ysis in the following. In this chapter we see how they can be studied from
different perspectives and with different motivations both from a target
space and world-sheet point of view.

“To paraphrase Oedipus, Hamlet, Lear,
and all those guys,” I said, “I wish I had
known this some time ago.”

Amber Chronicles
ROGER ZELAZNY

2.1 The two-dimensional point of view �
�

�
Kli

The classical theory

WESS-ZUMINO-WITTEN models were introduced by Witten in his seminal
paper [Wit84] to generalize the usual bosonization of a free fermion to

a system of N fermions. It has been known for a long time that the Lagrangian
for a free massless Dirac fermion in two dimensions can be mapped to the
Lagrangian for a free massless boson as follows: Free fermion

bosonization

L = ψ∗ı/∂ψ→ 1
2

∂µφ∂µφ, (2.1)

but the generalization to more complex systems is not straightforward. One of
the main motivations for this mapping is given by the fact that bosonic systems
admit a semiclassical limit and then allow for simpler intuitive interpretations
of their physics.

It is of course possible to rewrite the fields in one description as functions
of the fields in the other one but this requires complicated (non-local) expres-
sions. Other quantities remain simple, in particular the currents:

Jµ = ψ∗γµψ→ 1√
π

εµν∂νφ (2.2)

5



6 Wess-Zumino-Witten Models

and as such they are the convenient building blocks for a generalization. A
most useful rewriting for their expression is obtained when going to light-cone
coordinates

J =
i

2π
U−1∂U = − 1√

π
∂φ, J̄ = − i

2π
∂̄UU−1 =

1√
π

∂̄φ, (2.3)

U = exp[i
√

4πφ] being the chiral density ψ̄(1 + γ5)ψ. One then finds that the
currents are chirally conserved:

∂ J̄ = ∂̄J = 0, (2.4)

which is equivalent to ask for the bosonic field to be harmonic:

2∂∂̄φ = 0. (2.5)

The generalization of this simple system is given by the theory of 2N Dirac
fermions.

L =
1
2 ∑

k
ψ̄ki/∂ψk, (2.6)

This admits a chiral group U(N)×U(N) with vector and axial currents writ-
ten as:

Va
µ = ψ̄γµTaψ, Aa

µ = ψ̄γµγ5Taψ. (2.7)

It is more useful to define the chiral components

Jij = −iψiψj, J̄ij = −iψ̄iψ̄j, (2.8)

generating the U(N) × U(N) symmetry and obeying the same conservation
as before:

∂ J̄ = ∂̄J = 0, (2.9)

This is obviously not equivalent to a system of N bosons which would just
allow for the diagonal U(1)N symmetry. What we need is an object g ∈ U(N)
transforming under a couple (A, B) ∈ U(N)×U(N) as

g→ AgB−1, A, B ∈ U(N) (2.10)

and express the currents as functions of g just as in the Abelian case we did in
terms of the density U:

J =
i

2π
g−1∂g, J̄ = − i

2π
∂̄gg−1. (2.11)

In order for these currents to be conserved as above all we need to find is a
Lagrangian admitting the following equations of motion

∂(g−1∂̄g) = 0. (2.12)
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The first natural tentative action is given by

S0 =
1

4λ2

∫
Σ

d2x tr
[
∂µg∂µg−1

]
, (2.13)

since this is the only manifestly chirally invariant choice. Unfortunately this
can’t be the right answer for a number of reasons. In particular it describes an
asymptotically free theory with the wrong equations of motion. We are thenWess-Zumino

term forced to add another ingredient, the so-called Wess-Zumino term

Γ =
1

24π

∫
M

d3y εµνρ tr
[

g̃−1∂µ g̃g̃−1∂ν g̃g̃−1∂ρ g̃
]

, (2.14)

where M is a three-dimensional manifold admitting Σ as border ∂M = Σ and
g̃ is the extension of the mapping g : Σ → G to a mapping g̃ : M → G.
Although it might appear a bit surprising at first sight, this is precisely what is
needed since the variation of Γ gives only a local term on Σ and the equations
of motion for the action S = S0 + kΓ read:(

1
2λ2 +

k
8π

)
∂
(

g−1∂̄g
)

+
(

1
2λ2 −

k
8π

)
∂̄
(

g−1∂g
)

= 0, (2.15)

which in particular for λ2 = 4π
k yield precisely the equations we were expect-

ing. It can be shown that this is an infrared fixed point for a renormalization
group-flow, and we will expand on this aspect in Ch. 8.

At this point it is on the other hand better to deal more thoughtfully with
the interpretation and the consequences of the Wess-Zumino term Γ. First of all
it must be remarked that Γ can be put in the form of an ordinary action ie an in-
tegral over the two-dimensional space-time of a perfectly respectable although
non-manifestly chiral-invariant action (which changes by a total derivative un-
der a chiral transformation):

Γ =
∫

Σ
d2x εµνBij(φk)∂µφi∂νφj, (2.16)

where B is a (Kalb-Ramond) two-form. Another important aspect is the fact Level
quantizationthat an ambiguity is present in the definition of Γ for there are infinite topo-

logically inequivalent ways to extend g to g̃, classified by π3(G). In the case of
a compact group π3(G) = Z and we are led to the same kind of topological
argument leading to the quantization of the Dirac monopole. In fact if we con-
sider a different three-manifold M′ in the definition of Γ, the string amplitude
changes by

exp
[

ı
∫

M
H − ı

∫
M′

H
]

, (2.17)

where H = dB. This implies that the theory is consistent only if

1
2π

∫
S3

H ∈ Z, (2.18)
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having remarked that M and M′ have the same boundary and then M−M′ ∼
S3. Using the normalizations above one can show that this is equivalent to
asking k ∈ Z which can be read as a quantization condition on the radius
of the group manifold. In particular, the semiclassical limit is obtained when
k→ ∞.

For reasons that will appear evident in the following k is called level of the
model and the action is written as:

Sk[g] =
k

16π

∫
Σ

d2z 〈g−1∂g, g−1∂̄g〉+ k
24π

∫
M
〈g̃−1dg̃, [g̃−1dg̃, g̃−1dg̃]〉 , (2.19)

where 〈·, ·〉 is the Killing form on G.

An exact model
�
�

�
Kli

An important feature of WZW models is that they provide exact solutions at
all orders in α′ or, more precisely, the effective action is equal to the classical ac-
tion up to a shift in the overall normalization k → k + g∗. The argument goes asQuantum

effective action
for WZW models

follows [KZ84, LS92, Tse93]. Consider the path integral∫
Dg e−kS[g]+BJ̄[g] = e−W[B], (2.20)

where S[g] is the WZW action at level one and BJ̄[g] is the shorthand for

BJ̄[g] =
k
π

∫
dz2 〈B∂̄gg−1〉 . (2.21)

If we write B as B = u−1∂u we can use the so called Polyakov-Witten identity

S[ab] = S[a] + S[b]− 1
π

∫
d2z 〈a−1∂a∂̄bb−1〉 (2.22)

and it’s then easy to see that W doesn’t receive quantum corrections and is
simply given by the classical action evaluated on u:

W[B] = −kS[u]. (2.23)

Indeed, B is an external source coupled with the current J̄ so, the effective
action for g, Γ[g], will be given by the Legendre transformation of W[B], ie by
the path integral:∫

DB e−W[B]+BJ̄[g] = e−Γ[g]. (2.24)

This interpretation of effective action for Γ[g] is comforted by remarking that
combining Eq. (2.20) and Eq. (2.24) one finds that

e−Γ[g] =
∫

Dg′ e−kS[g′] δ( J̄[g′]− J̄[g]). (2.25)

In order to calculate the Legendre transform in Eq. (2.24) one can perform a
change of variables from B = u−1∂u to u: the corresponding Jacobian will give
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the announced shift in the effective action. More precisely, as shown in [PW83,
Pol88] we have:

DB
Du

= eg∗S[u] (2.26)

and putting this back in Eq. (2.24)

e−Γ[g] =
∫

Du e(k+g∗)S[u]+B[u] J̄[g], (2.27)

we can use the same technique as above to derive the celebrated result:

Γ[g] = (k + g∗) S[g]. (2.28)

The CFT approach
�
�

�
Kli

CFT with current algebras

Let us forget for a moment the WZW models and consider a more general CFT infinitesimal
generatorsframework, ie two-dimensional conformal field theories with current algebras.

Given the stress-energy tensor Tµν(ζ) in two dimensions one can define

T = T11 − T22 + 2ıT12 (2.29a)
T̄ = T11 − T22 − 2ıT12 (2.29b)

so that the conservation ∂µTµν = 0 and the zero trace condition Tµ
µ = 0 trans-

late into analyticity conditions

∂̄T = ∂T̄ = 0. (2.30)

It is then clear that since the stress-energy tensor is the infinitesimal generator
for translations, T and T̄ have this role for the conformal transformations.

z→ z + ε(z) (2.31a)
z̄→ z̄ + ε̄(z̄) (2.31b)

which is to say that if we take a local field A(z, z̄), this transforms under such
variations as

δε A(z, z̄) =
∮

z
T(ζ)ε(ζ)A(z, z̄)dζ (2.32)

where the contour integral is around z1.
This is just the definition of two-dimensional CFT but if the theory is at the

same time invariant under a G(z)×G(z̄) action, G being some Lie group, then
there are additional generators J(z) and J̄(z̄) allowing to express the variation
of A(z, z̄) as

δω A(z, z̄) =
∮

z
Ja(ζ)ωa(ζ)A(z, z̄)dζ (2.33)
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where ω(z) is some element in Lie G (the algebra as usual parametrizes the
infinitesimal group transformations).

The variations of those generators with respect to ε and ω stem from gen- Virasoro × Kač
Moodyeral principles and read

δεT(z) = ε(z)T′(z) + 2ε′(z)T(z) +
1
12

cε′′(z) (2.34a)

δε J(z) = ε(z)J′(z) + ε′(z)J(z) (2.34b)

δω Ja(z) = f a
bcωb(z)Jc(z) +

1
2

kωa′(z) (2.34c)

This is just a way of writing the algebra of the generators. Using the defini-
tion above in terms of contour integrals it can also be put in terms of operator
product expansions

T(z)T(w) =
c

2 (z− w)4 +
2

(z− w)2 T(w) +
1

z− w
T′(w) (2.35a)

T(z)J(w) =
1

(z− w)2 J(w) +
1

z− w
J′(w) (2.35b)

Ja(z)Jb(w) =
kδab

(z− w)2 +
f ab

c
z− w

Jc(w) (2.35c)

Any operator in the theory is characterized by a representation for the left
and right G groups and its anomalous dimensions ∆ and ∆̄, which depend
on the behaviour of the operator under dilatation z → λz. More precisely an
operator of weight (∆, ∆̄) transforms under z → λz, z̄ → λ̄z̄ as A → λ∆λ̄∆̄ A,
and in particular the primary fields are defined as those who satisfy

T(z)φ(w, w̄) =
∆

(z− w)2 φ(w, w̄) +
1

z− w
∂

∂w
φ(w, w̄) (2.36a)

Ja(z)φ(w, w̄) =
ta

z− w
φ(w, w̄). (2.36b)

Given these relations it is immediate to write the Ward identities satisfied by
the correlation functions of primary fields:

〈T(z)φ1(z1, z̄1) . . . φN(zN , z̄N)〉 =
N

∑
j=1

(
∆j(

z− zj
)2 +

1
z− zj

∂

∂zj

)
×

× 〈φ1(z1, z̄1) . . . φN(zN , z̄N)〉
(2.37a)

〈Ja(z)φ1(z1, z̄1) . . . φN(zN , z̄N)〉 =
N

∑
j=1

ta
j

z− zj
〈φ1(z1, z̄1) . . . φN(zN , z̄N)〉

(2.37b)

1In the following we will avoid to write the anti-holomorphic counterpart for each relation
since it can always be trivially derived.
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A further step can be made if one expands the operators T and J in Laurent
series obtaining respectively the modes Ln and Jn which by definition act on a
local operator to give

Ln A(z, z̄) =
∮

z
T(ζ) (ζ − z)n+1 A(z, z̄)dζ (2.38a)

Ja
n A(z, z̄) =

∮
z

Ja(ζ) (ζ − z)n+1 ta A(z, z̄)dζ (2.38b)

and in particular the primaries will satisfy

Lnφ = Ja
nφ = 0 ∀n > 0 (2.39)

L0φ = ∆φ Ja
0φ = taφ (2.40)

The commutation relations among the Ln’s and the Ja
n’s are natural conse-

quences of the OPEs in Eq. (2.35) and read

[Ln, Lm] = (n−m) Ln+m +
1
12

c
(
n3 − n

)
δn+m (2.41a)

[Ln, Ja
m] = −mJa

n+m (2.41b)

[Ja
n, Jb

m] = f a
bc Jc

n+m +
1
2

knδabδn+m,0. (2.41c)

This is again a way to write the semi-direct product of the Virasoro (Eq. (2.41a))
and Kač-Moody algebras (Eq. (2.41c)).

The WZW model

As we emphasized above the currents J and J̄ are the fundamental building WZW CFT

blocks for the construction of WZW models. Their role is even more apparent
when we study the symmetries of the theory, which takes us directly to make
contact with the conformal field theory description. Hence the importance of
these models in giving an explicit realization of the CFT outlined above (among
the classical references see e.g. [KZ84]).

The key remark is that the action in Eq. (2.19) is invariant under the trans-
formation

g(ζ) 7→ Ω(z)g(ζ)Ω̄−1(z̄) (2.42)

where Ω(z) and Ω̄(z̄) are G-valued matrices analytically depending on z and
z̄. This gives rise to an infinite set of conserved currents which are precisely
those we defined above in Eq. (2.11) and Eq. (2.33). Locally this translates into
the fact that for an infinitesimal transformation

Ω(z) = 1+ ω(z) = 1+ ωa(z)ta (2.43)

the currents change as in Eq. (2.34c)

δω J = [ω(z), J(z)] +
1
2

kω′(z) (2.44)
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which is to say that J and J̄ represent an affine Lie algebra with central charge
k.

The next step consist in identifying the stress-energy tensor. In the classical Sugawara
stress-energy

tensor
theory this is a bilinear of the currents, so it is natural to choose the so-called
Sugawara construction [Sug68, Som68, KZ84]

T(z) =
1

2 (k + g∗) ∑
a

Ja(z)Ja(z) (2.45)

where the constant factor is fixed by asking a current to be a weight one op-
erator2. Note in particular the fact that the level k is shifted to k + g∗ which is
precisely the same correction we found summing the instanton corrections in
the previous section. A simple calculation of the OPE of T with itself gives the
value for the central charge of the model

c =
k dim G
k + g∗

(2.46)

Using the definition of primary field (and in particular the fact that they
are annihilated by Ja

−1ta
l − L−1) one can easily show that each primary is de-

generate and has weight

∆ =
cl

g∗ + k
(2.47)

where cl = ta
l ta

l is the quadratic Casimir and in particular coincides with the
dual Coxeter number cl = g∗ if the field transforms in the adjoint representa-
tion.

Partition function

As one would expect, a modular invariant partition function for a WZW groupAffine characters
can be build entirely out of group theoretical objects. In particular the building
blocks are given by the affine characters, ie the generating functions of the
weight multiplicities for a given irrep Λ that take into account the conformal
dimension of the highest weight of the representation:

χΛ(τ, ν, u) = e−2ıπku trrep(Λ)

[
qL0−c/24e2ıπκ(ν,J )

]
= e2ıπτ

κ(Λ,Λ+2ρ)
2(k+g∗) −c/24chΛ (τ, ν, u)

(2.48)

where

• chΛ (τ, ν, u) is the usual character for the affine Lie algebra ĝ:

chΛ (τ, ν, u) = e−2ıπku ∑
λ̂∈Rep(Λ)

dimVλ̂ exp{2ıπτn +∑
i

νiκ
(
ei, λ̂

)
}; (2.49)

2It follows easily that a Kač-Moody primary is a Virasoro primary but not the other way
round. Pictorially Eq. (2.37b) is the “square root” of Eq. (2.41a)
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• Vλ̂ is the multiplicity of the weight λ̂ = (λ, k, n);

• 〈ei〉 is a basis in the root space;

• ρ = ∑α>0 α/2 is the Weyl vector.

An alternative way of writing the same characters is obtained in terms of theta
functions. To each weight one can assign a theta-function defined as:

Θλ̂ (τ, ν, u) = e−2ıπku ∑
γ∈ML+ λ

k

eıπτk κ(γ,γ) e2ıπkκ(ν,γ) (2.50)

where ML is the long root lattice. Then, using the Weyl-Kač formula the char-
acters are written as:

χΛ (τ, ν, u) =
∑

w∈W
ε (w) Θw(Λ̂+ρ̂) (τ, ν, u)

∑
w∈W

ε (w) Θw(ρ̂) (τ, ν, u)
, (2.51)

W being the Weyl group of the algebra and ε (w) the parity of the element w.
Knowing that the affine Lie algebra is the largest chiral symmetry of the

theory it is not surprising that the partition function can be written as

Z = ∑
Λ,Λ̄

MΛΛ̄χΛ (τ, 0, 0) χ̄Λ̄ (τ̄, 0, 0) (2.52)

where the sum runs over left and right representations of g with highest weight
Λ and Λ̄ and MΛΛ̄ is the mass matrix which is chosen so to respect the modular
invariance of Z.

A generalization that we will use in the following is obtained for heterotic
strings where the N = (1, 0) local supersymmetry requires a super-affine Lie
algebra for the left sector. The latter can anyway be decoupled in terms of the
bosonic characters above and free fermion characters as to give:

Z
[

a
b

]
= ∑

Λ,Λ̄

MΛΛ̄χΛ (τ)
(

ϑ[a
b] (τ)

η (τ)

)dim(g)/2

χ̄Λ̄ (2.53)

where (a, b) are the spin structures of the world-sheet fermions. The char-
acters of the affine algebras can be decomposed according to the generalized
parafermionic decomposition, by factorizing the abelian subalgebra of the Car-
tan torus. For example, we can decompose the left supersymmetric gk charac-
ters in terms of characters of the supersymmetric coset, given by the following
branching relation (see [KS89b]):

χΛ
(

ϑ[a
b]

η

)dim(j)/2

= ∑
λ mod (k+g∗)ML

PΛ
λ

[
a
b

]
Θλ,k+g∗

ηdim(k) (2.54)

in terms of the theta-functions associated to gk.
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2.2 The target space point of view

Supergravity appears as a low energy description of string theory, obtained
when asking for the Weyl invariance of the σ-model Lagrangian. This amounts,
at first order in α′, to the following equations of motion for the metric g, the
Kalb-Ramond field B and the dilaton Φ [CMPF85, Tse95]:

βΦ = − 1
2∇µ∂µΦ + ∂µΦ∂µΦ− 1

24 Hµρσ Hµρσ,
βg = Rµν − 1

4 Hµρσ H ρσ
ν + 2∇µ∇νΦ,

βB = ∇µHµ
νρ + 2∇µΦHµ

νρ.

(2.55)

Being a one-loop calculation, the corresponding results should always be checked
against higher order corrections in α′. On the other hand, as we have already
stressed many times above, WZW models (just like the asymmetric deforma-
tions we study in this work) only receive corrections in terms of the level of the
algebra (or, in this language, on the overall volume of the manifold). This im-
plies that the target space description at one loop in α′ is automatically correct
at all orders. From this point of view, Wess–Zumino–Witten models describe
the motion of a string on a group manifold geometry. The background fields
are completed by a NS-NS three form H = dB (Kalb-Ramond field) and a con-
stant dilaton Φ = Φ0.

The target space analysis is greatly simplified by the fact that the geometric�

quantities are all naturally expressed in terms of group theoretical objects. Let
us consider for concreteness the case of a compact group G, whose Lie algebra
is generated by 〈tα〉 and has structure constants f α

βγ. The metric for the group
manifold can be chosen as the Killing metric (the choice is unique up to a
constant in this case) and it is then natural to use the Maurer–Cartan one-forms
as vielbeins. In our conventions, then:

gµν = − 1
2g∗

f α
βγ f γ

δα Jβ
µ Jδ

ν = δβγ Jβ
µ Jδ

ν, (2.56)

where g∗ is the dual Coxeter number and

Jα
µ = 〈tαg−1∂µg〉 . (2.57)

In this basis the NS-NS 3-form field is written as

H[3] =
1
3!

fαβγ Jα ∧ Jβ ∧ Jγ. (2.58)

The connection one-forms ωα
β can be obtained by asking for the torsionGeometry of

group manifolds two-form to vanish:

dJα + ωα
β ∧ Jβ = Tα = 0, (2.59)

and out of them one defines the curvature two form Rα
β as:

Rα
β = dωα

β + ωα
γ ∧ω

γ
β. (2.60)
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which in turn is given in terms of the Riemann tensor as:

Rα
β =

1
2

Rα
βγδ Jγ ∧ Jδ. (2.61)

In a Lie algebra with structure constants f α
βγ the variation of the currents is

given by the Cartan structure equation:

dJα = −1
2

f α
βγ Jβ ∧ Jγ (2.62)

whence we can directly read the connection one-forms:

ωα
β = −1

2
f α

βγ Jγ. (2.63)

It is then immediate to write:

dωα
β =

1
4

f α
βγ f γ

δε Jδ ∧ Jε (2.64a)

ωα
γ ∧ω

γ
β =

1
4

f α
γδ f γ

βε Jδ ∧ Jε =
1
8

(
f α

γδ f γ
βε − f α

γε f γ
βδ

)
Jδ ∧ Jε =

= −1
8

f α
βγ f γ

δε Jδ ∧ Jε

(2.64b)

where we have antisimmetrized the product of the structure constants and
then used a Jacobi identity. The Riemann tensor, the Ricci tensor and the scalar
curvature are then given respectively by:

Rα
βγδ =

1
4

f α
βκ f κ

γδ, (2.65a)

Ricβδ =
1
4

f α
βκ f κ

αδ =
g∗

2
gβδ, (2.65b)

R =
g∗

2
dim G. (2.65c)

We are now in a position to show that the metric and H field satisfy the Equations of
motion(first order in α′) equations of motion in Eq. (2.55). Of course this result is

much less powerful than what we obtained in Sec. 2.1 but it is nevertheless
an interesting example of how these geometrical calculations are greatly sim-
plified in terms of the underlying algebraic structure. For a system without
dilaton the equations reduce to:

βG
αβ = Rαβ −

1
4

HαδγH δγ
β = 0, (2.66a)

βB
αβ = (∇γH)γαβ = 0. (2.66b)

The first one is trivially satisfied by using the field in Eq. (2.58); for the second
one we just need to remark that in components the Levi-Civita connection is:

Γα
βγ =

1
2

f α
βγ (2.67)
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and remember that the covariant derivative of a three-form is

(∇αH)βγδ = ∂αHβγδ − Γκ
αβHκγδ − Γκ

αγHβκδ − Γκ
αδHβγκ. (2.68)

In Sec. 6.1 we will see from a slightly different perspective how the normal-
ization for the Kalb-Ramond field H can be fixed in terms of renormalization-
group flow.



CHAPTER 3

Deformations
In this rather technical chapter we describe marginal deformations of Wess-
Zumino-Witten models. The main purpose for these constructions is to
reduce the symmetry of the system while keeping the integrability proper-
ties intact, trying to preserve as many nice geometric properties as possi-
ble.

Mr. Jabez Wilson laughed heavily. “Well,
I never!” said he. “I thought at first that
you had done something clever, but I see
that there was nothing in it, after all.”
“I begin to think, Watson,” said Holmes,
“that I make a mistake in explaining.
Omne ignotum pro magnifico, you know,
and my poor little reputation, such as it is,
will suffer shipwreck if I am so candid.”

The Red Headed League
ARTHUR CONAN DOYLE

THE POWER of WZW models resides in the symmetries of the theory. They
impose strong constraints which allow quantum integrability as well as a

faithful description in terms of spacetime fields, whose renormalization prop-
erties (at every order in α′) are easily kept under control, as we have seen in
the previous chapter.

It is hence interesting to study their moduli spaces, aiming at finding less
symmetric (and richer) structures, that will hopefully enjoy analogous integra-
bility and spacetime properties.

This chapter is devoted to introducing the construction of asymmetric de-
formations and giving the general results in a formalism adapted to group
manifold geometry. For this reason the stress is put on the more mathemati-
cal aspects. Physical examples and consequences will be illustrated in greater
detail in Ch. 4.

17
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3.1 Deformed WZW models: various perspectives

Truly marginal deformations

In this spirit one can consider marginal deformations of the WZW models ob-Truly marginal
deformations tained in terms of (1, 1) operators built as bilinears in the currents:

O(z, z̄) = ∑
ij

cij Ji (z) J̄ j (z̄) , (3.1)

where Ji (z) and J̄ j (z̄) are respectively left- and right-moving currents. It is
known [CS89] that this operator represents a truly marginal deformation, ie it
remains marginal at all orders in the deformation parameter, if the parameter
matrix cij satisfies the following constraints:

cimcjn f ij
k = 0, (3.2a)

cmicnj f̃ ij
k = 0, (3.2b)

where f and f̃ are the structure constants of the algebras generated by Ji and
J̄i. In particular one can remark that if Ji and J̄ j live on a torus then the two
equations are automatically satisfied for any value of cmn and hence we get as
moduli space, a rank(c)-dimensional hyperplane of exact models1. The proof
of this assertion proceeds as follows: we want to show thatO keeps its confor-�

mal dimensions when a term HO(z, z̄) is added to the Lagrangian, H being a
coupling constant. The two-point function forO(z, z̄) in the interacting theory
with Lagrangian L + HO can be expanded in powers of H as follows:

〈O(z, z̄)O(w, w̄)〉H =

=

∞

∑
n=0

(−H)n/n!

∫
d2z1 . . . d2zn 〈O(z, z̄)O(w, w̄)O(z1, z̄1) . . .O(zn, z̄n)〉

∞

∑
n=0

(−H)n/n!

∫
d2z1 . . . d2zn 〈O(z1, z̄1) . . .O(zn, z̄n)〉

,

(3.3)

so, in particular, the H2-order term is:

〈O(z, z̄)O(w, w̄)〉g =

=
H2

2

∫
d2z1d2z2 〈O(z, z̄)O(w, w̄)O(z1, z̄1)O(z2, z̄2)〉+

− H2

2
〈O(z, z̄)O(w, w̄)〉

∫
d2z1d2z2 〈O(z1, z̄1)O(z2, z̄2)〉 . (3.4)

1Although for special values of the level k the theory contains other operators with the right
conformal weights, it is believed that only current-current operators give rise to truly marginal
deformations, i.e. operators that remain marginal for finite values of the deformation parameter.
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Only the first term can contain logarithmic divergences that can alter the scale
dependence of O(z, z̄), so let us study it more closely, by expanding O(z, z̄) in
terms of currents:

H2

2

∫
d2z1d2z2 〈O(z, z̄)O(w, w̄)O(z1, z̄1)O(z2, z̄2)〉 =

=
H2

2

∫
d2z1d2z2 ∑

ghij
∑

lmno
cghchmcincjo 〈Jg(z)Jh(w)Ji(z1)Jj(z2)〉

〈 J̄l(z̄) J̄m(w̄) J̄n(z̄1) J̄o(z̄2)〉 . (3.5)

Rewriting the four-point functions for the currents in terms of their algebras

Ji(z)Jj(w) =
Kij

(z− w)2 +
ı f k

ij Jk(w)

z− w
, (3.6a)

J̄i(z) J̄j(w) =
K̃ij

(z− w)2 +
ı f̃ k

ij J̄k(w)

z− w
, (3.6b)

one can evaluate the integrals passing to momentum space and introducing
some ultraviolet cut-offs Λ1, Λ2, Λ. In particular, the terms which are interest-
ing from our point of view are those diverging as |z− w|−4 and they are:

8π2H2 log Λ1 log Λ2

|z− w|4 ∑
ghij

∑
lmno

∑
kp

cglchmcincjoKkkK̃pp f g
hk f i

jk f̃ l
mp f̃ n

op (3.7a)

and

6π2H2 log Λ

|z− w|4 ∑
ghij

∑
klm

cglchlcimcjmKkkK̃llK̃mm f g
ik f h

jk + clgclhcmicmjK̃kkKllKmm f̃ g
ik f̃ h

jk.

(3.7b)

Using the fact that the matrices Kij and K̃ij are positive-definite it is simple to
see that they both vanish if and only if Eq. (3.2) are satisfied (the condition is
only sufficient for general semi-simple groups).

Actually there’s another piece of information that we learn out of this con-
struction: the OPE coefficients among the currents used for the deformation do not
change with the deformation. As we will see in the next section, this implies
that the the effect of the deformation is completely captured by a transforma-
tion in the charge lattice of the theory.

Algebraic structure of current-current deformations

The result of the previous section can be recast in more abstract terms: con-
sider a conformal field theory whose holomorphic and anti-holomorphic Kac
Moody algebras correspond to Lie algebras g and ḡ, which respectively admit
the abelian subalgebras h and h̄. Then each pair u(1)d ⊆ h, u(1)d̄ ⊆ h̄ gives rise
to a new family of conformal field theory containing those algebras (the ones
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defined in Eqs. (3.6)). It is safe to assume (at least in the compact case) that
the CFT remains unitary and that its Hilbert space still decomposes into tensor
products of irreducible highest weight representations of h× h̄ (from now on
dim h = d and dim h̄ = d̄)

H = ∑
Q,Q̄

HQ,Q̄VQ ⊗ VQ̄, (3.8)

where we used the fact that those representations are completely characterized
by their charges (Q, Q̄) ∈ (h∗, h̄∗) and the corresponding conformal weights
are given by h = 1/2κ(Q, Q) and h̄ = 1/2κ̄(Q̄, Q̄), where κ and κ̄ are the Killing
forms respectively on g and ḡ restricted on h and h̄. This set of charges nat-
urally forms a lattice Λ when equipped with the pairing 〈,〉 = κ − κ̄. UsingBoost on the

charge lattice in example deformation theory as in [FR03] one can see that the effect of the
deformation is completely captured by an O(d, d̄) pseudo-orthogonal trans-
formation of this charge lattice Λ ⊂ h∗ × h̄∗, ie can be described in terms
of the identity component of the group O(d, d̄). Moreover, since the charges
only characterise the h × h̄ modules up to automorphisms of the algebras,
O(d) × O(d̄) transformations don’t change the CFT. Hence the deformation
space is given by:

Dh,h̄ ∼ O(d, d̄)/
(
O(d)×O(d̄)

)
. (3.9)

The moduli space is obtained out of Dh,h̄ after the identification of the points
giving equivalent CFTs2.

In the case of WZW models on compact groups, all maximal abelian sub-
groups are pairwise conjugated by inner automorphisms. This implies that
the complete deformation space is D = O(d, d)/ (O(d)×O(d)) where d is the
rank of the group. The story is different for non-semi-simple algebras, whose
moduli space is larger, since we get different O(d, d̄)/

(
O(d)×O(d̄)

)
defor-

mation spaces for each (inequivalent) choice of the abelian subalgebras h ⊂ g

and h̄ ⊂ ḡ. We’ll see an example of this in the next chapter where deforming
a SL(2, R) WZW model (Sec. 4.2 and Sec. 4.4) will give rise to a much richer
structure than in the SU(2) case (Sec. 4.1).

Truly marginal deformations of WZW model single out abelian subalge-Parafermion
decomposition bras of the model. It is then natural that an important tool in describing these

current-current deformations comes from the so-called parafermion decom-
position. The highest-weight representation for a ĝk graded algebra can be
decomposed into highest-weight modules of a Cartan subalgebra ĥ ⊂ ĝk as
follows [GQ87, Gep87]:

Vλ̂ '
⊕
µ∈Γk

Vλ̂,µ ⊗
⊕

δ∈Ql(g)

Vµ+kδ, (3.10)

where λ̂ is an integrable weight of ĝk, Vλ̂,µ is the highest-weight module for the
generalized ĝk/ĥ parafermion, Ql(g) is the long-root lattice and Γk = P(g)/Ql(g)

2Although we will concentrate on WZW models it is worth to emphasize that this construc-
tion is more general.
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with P(g) the weight lattice. As a consequence, the WZW model based on ĝk
can be represented as an orbifold model:

ĝk '
(
ĝk/ĥ⊗ tΛk

)
/Γk, (3.11)

where tΛk is a toroidal CFT with charge lattice, included in the ĝk one, defined
as Λk = { (µ, µ̄) ∈ P(ĝ)× P(ĝ) | µ− µ̄ = kQl(ĝ) }. In our case the advantage
given by using this representation relies on the fact that Γk acts trivially on
the coset and toroidal model algebras; then, if we identify ĥ and ¯̂h with the
graded algebras of tΛk , the deformation only acts on the toroidal lattice and
the deformed model can again be represented as an orbifold:

ĝk(O) '
(
ĝk/ĥ⊗ tOΛk

)
/Γk, (3.12)

where O is an operator in the moduli space. In other words this representa-
tion is specially useful because it allows to easily single out the sector of the
theory that is affected by the deformation. As we’ll see in the next section this
simplifies the task of writing the corresponding Lagrangian.

In the following we will separate this kind of deformations into two cat- Symmetric and
asymmetric

deformations
egories: those who give rise to symmetric deformations, i.e. the ones where
cij = δij and Ji (z) and J̃ j (z̄) represent the same current in the two chiral sec-
tors of the theory and the asymmetric ones where the currents are different and
in general correspond to different subalgebras. This distinction is somehow
arbitrary, since both symmetric and asymmetric deformations act as O

(
d, d̄
)

rotations on the background fields. It is nonetheless interesting to single out
the asymmetric case. In the special situation when one of the two currents
belongs to an internal U (1) (coming from the gauge sector in the heterotic or
simply from any U (1) subalgebra in the type II), it is in fact particularly sim-
ple to study the effect of the deformation, even from the spacetime field point
of view; there in fact, the expressions for the background fields are exact (at all
order in α′ and for every value of the level k) as we will show in Sec. 3.4.

Background fields and symmetric deformations

Before moving to the asymmetric deformations we’re interested in, let us con-
sider briefly symmetric deformations (also called gravitational) which are those
that have received by far the most attention in literature [HS93, GK94, F9̈4,
FR03, DOPS05]. Specialising Eq. (3.1) to the case of one only current we can
write the small deformation Lagrangian as:

S = SWZW + δκ2
∫

d2z J(z) J̄(z̄) (3.13)

This infinitesimal deformation has to be integrated in order to give a Lagrangian
interpretation to the CFT described in the previous section. Different approaches
are possible, exploiting the different possible representations described above.
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• A possible way consists in implementing an O(d, d) rotation on the back-
ground fields [HS93]. More precisely, one has to identify a coordinate sys-
tem in which the background fields are independent of d space dimen-
sions and metric and B field are written in a block diagonal form. In this
way the following matrix is defined:

M =
(

ĝ−1 −ĝ−1B̂
B̂ĝ−1 ĝ− B̂ĝ−1B̂

)
, (3.14)

where ĝ and B̂ are the pull-backs of the metric and Kalb–Ramond field
on the p selected directions. Then the action of the O(d, d) group on these
fields and dilaton is given by:

M→ M′ = ΩMΩt, (3.15a)

Φ→ Φ′ = Φ +
1
2

log
(

det ĝ
det ĝ′

)
, (3.15b)

where ĝ′ is the metric after the transformation (3.15a) and Ω ∈ O(d, d). It
must be emphasized that this transformation rules are valid at the low-
est order in α′ (but for finite values of the deformation parameters). So,
although the model is exact, as we learn from the CFT side, the field ex-
pressions that we find only are true at leading order in α′.

• An alternative approach uses the parafermion representation Eq. (3.12) (see
e.g. [FR03]). In practice this amounts to writing an action as the sum of
the G/H parafermion and a deformed H part and finding the appropri-
ate T-duality transformation (realizing the orbifold) such that for zero
deformation the WZW on G is recovered, in accordance with Eq. (3.11).

• Finally, another point of view (inspired by the parafermionic represen-
tation), consists in identifying the deformed model with a (G× H) /H coset
model, in which the embedding of the dividing group has a component
in both factors [GK94]. The gauging of the component in G gives the
parafermionic sector, the gauging of the component in H gives the de-
formed toroidal sector and the coupling term (originating from the quad-
ratic structure in the fields introduced for the gauging) corresponds to
the orbifold projection3.

3.2 Background fields for the asymmetric deformation

Let us now consider the less-known case of asymmetric deformations, in which
the two sets of currents Ji and J̄j come from distinct sectors of the theory. The

3An instanton-correction-aware technique that should overcome the first order in α′ limi-
tation for gauged models has been proposed in [Tse94]. In principle this can be used to get an
all-order exact background when we write the deformation as a gauged model. We will not
expand further in this direction, that could nevertheless be useful to address issues such as the
stability of the black string (see Sec. 4.4).
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archetype of such construction is what we get considering an heterotic super-
WZW model on a group G at level k and adding an exactly marginal operator
built from the total Cartan currents of g (so that it preserves the local N = (1, 0)
superconformal symmetry of the theory):

S = SWZW +
√

kkg

2π

∫
d2z ∑

a
Ha

(
Ja(z)− i

k
f a

MN : ψMψN :
)

J̄(z̄) (3.16)

where the set {Ha} are the parameters of the deformation, Ja are currents in
the maximal torus T ⊂ G and J̄(z̄) is a right moving current of the Cartan
subalgebra of the heterotic gauge group at level kg. Such a deformation is
always truly marginal since the Ja currents commute.

It is not completely trivial to read off the deformed background fields that Reading the
squashed group

fields
correspond to the deformed action. A possible way is a method involving
a Kaluza–Klein reduction as in [HT95]. For simplicity we will consider the
bosonic string with vanishing dilaton and just one operator in the Cartan sub-
algebra k. After bosonization the right-moving gauge current J̄ used for the de-
formation has now a left-moving partner and can hence be written as J̄ = ı∂̄ϕ,
ϕ (z, z̄) being interpreted as an internal degree of freedom. The sigma-model
action is recast as

S =
1

2π

∫
d2z (GMN + BMN) ∂xM ∂̄xN, (3.17)

where the xM, M = 1, . . . , d + 1 embrace the group coordinates xµ, µ = 1, . . . , d
and the internal xd+1 ≡ ϕ:

xM =
(

xµ

ϕ

)
. (3.18)

If we split accordingly the background fields, we obtain the following decom-
position:

GMN =
(

Gµν Gϕϕ Aµ

Gϕϕ Aµ Gϕϕ

)
, BMN =

(
Bµν Bµϕ

−Bµϕ 0

)
, (3.19)

and the action becomes:

S =
1

2π

∫
dz2 {(Gµν + Bµν

)
∂xµ∂̄xν +

(
Gϕϕ Aµ + Bµϕ

)
∂xµ∂̄ϕ

+
(
Gϕϕ Aµ − Bµϕ

)
∂ϕ∂̄xµ + Gϕϕ∂ϕ∂̄ϕ

}
. (3.20)

We would like to put the previous expression in such a form that spacetime
gauge invariance,

Aµ → Aµ + ∂µλ, (3.21)
Bµ4 → Bµ4 + ∂µη, (3.22)

is manifest. This is achieved as follows:

S =
1

2π

∫
d2z

{(
Ĝµν + Bµν

)
∂xµ∂̄xν + Bµϕ

(
∂xµ∂̄ϕ− ∂ϕ∂̄xµ

)
+

+Gϕϕ

(
∂ϕ + Aµ∂xµ

) (
∂̄ϕ + Aµ∂̄xµ

)}
, (3.23)
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where Ĝµν is the Kaluza–Klein metric

Ĝµν = Gµν − Gϕϕ Aµ Aν. (3.24)

We can then make the following identifications:

Ĝµν = k
(
JµJν − 2H2J̃µJ̃ν

)
(3.25a)

Bµν = kJµ ∧ Jν (3.25b)

Bµϕ = Gϕϕ Aµ = H
√

kkgJ̃µ, (3.25c)

Aµ = 2H

√
k
kg
J̃µ, (3.25d)

Gϕϕ =
kg

2
. (3.25e)

where J̃ is the Maurer-Cartan current chosen for the deformation. Let us now
consider separately the background fields we obtained so to give a clear ge-
ometric interpretation of the deformation, in particular in correspondence of
what we will find to be the maximal value for the deformation parameters Ha.

The metric. According to Eq. (3.25a), in terms of the target space metric,Metric on
squashed group

and decompactifi-
cation

limit
�

the effect of this perturbation amounts to inducing a back-reaction that in the
vielbein (current) basis is written as:

〈dg, dg〉H = ∑
M
JM⊗JM− 2 ∑

a
H2

aJa⊗Ja = ∑
µ

Jµ⊗Jµ +∑
a

(
1− 2H2

a
)
Ja⊗Ja

(3.26)

where we have explicitly separated the Cartan generators. From this form of
the deformed metric we see that there is a “natural” maximal value Ha = 1/

√
2

where the contribution of the Ja ⊗Ja term changes its sign and the signature
of the metric is thus changed. One could naively think that the maximal value
Ha = 1/

√
2 can’t be attained since the this would correspond to a degenerate

manifold of lower dimension; what actually happens is that the deformation
selects the the maximal torus that decouples in the Ha = H → 1/

√
2 limit.

To begin, write the general element g ∈ G as g = ht where h ∈ G/T, t ∈ T.
Substituting this decomposition in the expression above we find:

〈d (ht) , d (ht)〉H = 〈(ht)−1 d (ht) (ht)−1 d (ht)〉−∑
a

2H2
a 〈Ta (ht)−1 d (ht)−1〉

2
=

= 〈h−1dhh−1dh〉+ 2 〈dt t−1h−1dh〉+ 〈t−1dt t−1dt〉+

−∑
a

2H2
a

(
〈Tat−1h−1dh〉+ 〈Tat−1dt〉

)2
(3.27)

let us introduce a coordinate system
(
γµ, ψa

)
such as the element in G/T is

parametrized as h = h
(
γµ

)
and t is written explicitly as:

t = exp

{
∑

a
ψaTa

}
= ∏

a
eψaTa (3.28)
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it is easy to see that since all the Ta commute t−1dt = dt t−1 = ∑a Tadψa. This
allows for more simplifications in the above expression that becomes:

〈d (ht) , d (ht)〉H = 〈h−1dhh−1dh〉+ 2 ∑
a
〈Tah−1dh〉dψa + ∑

a
dψadψa+

−∑
a

2H2
a

(
〈Tah−1dh〉+ dψa

)2
= 〈h−1dhh−1dh〉 −∑

a
2H2

a 〈Tah−1dh〉2 +

+ 2 ∑
a

(
1− 2H2

a
)
〈Tah−1dh〉dψa + ∑

a

(
1− 2H2

a
)

dψadψa (3.29)

if we reparametrise the ψa variables as:

ψa =
ψ̂a√

1− 2Ha
(3.30)

we get a new metric 〈·, ·〉′H where we’re free to take the Ha → 1/
√

2 limit:

〈d (ht) , d (ht)〉′H = 〈h−1dhh−1dh〉 −∑
a

2H2
a 〈Tah−1dh〉2 +

+ 2 ∑
a

√
1− 2H2

a 〈Tah−1dh〉dψ̂a + ∑
a

dψ̂adψ̂a (3.31)

and get:

〈d (ht) , d (ht)〉′1/√2 =

[
〈h−1dhh−1dh〉 −∑

a
〈Tah−1dh〉2

]
+ ∑

a
dψadψa

(3.32)

where we can see the sum of the restriction of the Cartan-Killing metric4 on
ThG/T and the metric on TtT = TtU (1)r. In other words the coupling terms
between the elements h ∈ G/T and t ∈ T vanished and the resulting metric
〈·, ·〉′1/√2 describes the tangent space Tht to the manifold G/T × T.

Other Background fields. The asymmetric deformation generates a non-trivial
field strength for the gauge field, that from Eq. (3.25d) is found to be:

Fa = 2

√
k
kg

Ha dJ a = −
√

k
kg

Ha f a
µν Jµ ∧ Jν (3.33)

(no summation implied over a).
On the other hand, the B-field (3.25b) is not changed, but the physical object is
now the 3-form H[3]:

H[3] = dB−Gϕϕ Aa∧dAa =
1
3!

fMNPJ M ∧J N ∧J P−∑
a

H2
a faNP J a∧J N ∧J P,

4This always is a left-invariant metric on G/H. A symmetric coset doesn’t admit any other
metric. For a more complete discussion see Sec. 3.3
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(3.34)

where we have used the Maurer-Cartan structure equations. At the point
where the fibration trivializes, Ha = 1/

√
2, we are left with:

H[3] =
1
3!

fµνρ J µ ∧ J ν ∧ J ρ. (3.35)

So only the components of H[3] “living” in the coset G/T survive the defor-
mation. They are not affected of course by the rescaling of the coordinates on
T.

A trivial fibration. The whole construction can be reinterpreted in terms of
fibration as follows. The maximal torus T is a closed Lie subgroup of the Lie
group G, hence we can see G as a principal bundle with fiber space T and base
space G/T [Nak]

G T−→ G/T (3.36)

The effect of the deformation consists then in changing the fiber and the limit
value Ha = 1/

√
2 marks the point where the fibration becomes trivial and it is

interpreted in terms of a gauge field whose strength is given by the canonical
connection on G/T [KN69].

3.3 Geometry of squashed groups
�

In order to describe the squashed group manifolds that we obtain via asym-
metric deformation we need to generalize the discussion on group manifold
geometry presented in Sec. 2.2. Let { θ̂α } be a set of one-forms on a manifold
M satisfying the commutation relations

[θ̂β, θ̂γ] = f α
βγ θ̂α (3.37)

as it is the case when θ̂α are the Maurer–Cartan one-forms of Eq. (2.57) and
f α

βγ the structure constants for the algebra. We wish to study the geometry of
the Riemann manifoldM endowed with the metric

g = gαβ θ̂α ⊗ θ̂β. (3.38)

In general such a metric will have a symmetry G × G′ where G is the group
corresponding to the structure constants f α

βγ and G′ ⊂ G. The maximally
symmetric case, in which G′ = G is obtained when g is G-invariant, i.e. when
it satisfies

f α
βγgαδ + f α

δγgαβ = 0. (3.39)

for compact groups this condition is fulfilled by the Killing metric in Eq. (2.56).
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The connection one-forms ωα
β are uniquely determined by the compatibil-

ity condition and the vanishing of the torsion. Respectively:

dgαβ −ω
γ

αgγβ −ω
γ

βgγα = 0 (3.40)

dθ̂α + ωα
β ∧ θ̂β = Tα = 0 (3.41)

As it is shown in [MHS88], if gαβ is constant, the solution to the system can be
put in the form

ωα
β = −Dα

βγ θ̂γ (3.42)

where Dα
βγ = 1/2 f α

βγ − Kα
βγ and Kα

βγ is a tensor (symmetric in the lower
indices) given by:

Kα
βγ =

1
2

gακ f δ
κβgγδ +

1
2

gακ f δ
κγgβδ. (3.43)

Just as in Sec. 2.2 we define the curvature two-form Ri
j and the Riemann tensor Curvature tensors

on squashed
groups

which now reads:

Rα
βγδ = Dα

βκ f κ
γδ + Dα

κγDκ
βδ − Dα

κδDκ
βγ (3.44)

and the corresponding Ricci tensor:

Ricβδ = Dα
βκ f κ

αδ − Dα
κδDκ

βα (3.45)

In particular for gij ∝ δij, K = 0 so that we recover the usual Maurer–Cartan
structure equation Eq. (2.63) and the expressions in Eqs. (2.65).

Let us now specialize these general relations to the case of the conformal
model with metric given in Eq. (3.26). The θ̂i’s are the Maurer–Cartan one-
forms for the group G and the metric gAB is

gAB =

{
δµν if µ, ν ∈ G/H(

1− H2

2

)
δab if a, b ∈ H

(3.46)

where H is (a subgroup of) the Cartan torus H ⊂ G. It is quite straightforward
to show that the Ricci tensor is given by5:

RicAB =

{
1
2

(
g∗ + H2) gµν if µ, ν ∈ G/H

g∗/2
(

1− H2

2

)
gab if a, b ∈ H.

(3.48)

whence we can read the (constant) Ricci scalar

R =
g∗

2
dim G +

H2

2

(
dim G− rank G

(
1 +

g∗

2

))
(3.49)

Particular attention should be devoted to the limit case H =
√

2 in which Geometry on
G/H cosets5In the SU(2) case this would be

g =

1
1

1− H2

2

 Ric =


1 + H2

2
1 + H2 (

1− H2

2

)2

 (3.47)

where we chose J3 as Cartan generator.
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the Cartan torus decouples and we are left with the geometry of the G/T coset.
In this case it is useful to explicitly write down the commutation relations,
separating the generators of T and G/T:

[Tm, Tn] = f o
mnTo [Tm, Tν] = f ω

mνTω (3.50a)
[Tµ, Tν] = f o

µνTo + f ω
µνTω (3.50b)

Of course there are no f ω
mn terms since T is a group. G/T is said to be sym-

metric if f ω
µν ≡ 0, i.e. if the commutator of any couple of coset elements lives

in the dividing subgroup. In this case a classical theorem states that the coset
only admits one left-invariant Riemann metric that is obtained as the restric-
tion of the Cartan-Killing metric defined on G (see eg [KN69]). This is not the
case when T is the maximal torus (except for the most simple case G = SU (2)
where maximal torus and maximal subgroup are the trivial U(1)) and the coset
manifold accepts different structures. From our point of view this means that
even when considering deformations and cosets of compact groups where the
Cartan subalgebra is unique (up to inner automorphisms), in general we ex-
pect different possible outcomes depending on how the gauging is performed
(see in particular the SU(3) case studied in detail in Sec. 4.5).

These homogeneous manifolds enjoy many interesting properties. As weKähler structure
on G/H pointed out many times already, the best part of them can be interpreted as

consequence of the presence of an underlying structure that allows to recast
all the geometric problems in Lie algebraic terms. There’s however at least
one intrinsically geometric property that it is worth to emphasize since it will
have many profound implications in the following. All these spaces can be
naturally endowed with complex structures by using positive and negative
roots as holomorphic and anti-holomorphic generators. This structure doesn’t
in general correspond to a unique left-invariant Riemann metric. On the other
hand there always exists such a metric that is also Kähler. In fact one can easily
show that the (1, 1) form defined as:

ω =
ı
2 ∑

α>0
cαJ α ∧ J ᾱ (3.51)

is closed if and only if for each subset of roots { α, β, γ } such as α = β + γ, the
corresponding real coefficients cα satisfy the condition cα = cβ + cγ. Of course
this is equivalent to say that the tensor

g = ∑
α>0

cαJ α ⊗J ᾱ (3.52)

is a Kähler metric on G/T [BH58, Per87].

3.4 A no-renormalization theorem

As we’ve said many times, WZW models are exact solutions keeping their geo-
metrical description at all orders in α′, the only effect of renormalization being
a shift in the level (Sec. 2.1). Here we want to show that this same property is
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shared by our asymmetrically deformed models that hence provide a geomet-
ric solution at every order in perturbation.

As we emphasized above, in studying symmetrically deformed WZW mod-
els, i.e. those where the deformation operator is written as the product of two
currents belonging to the same sector O = λJ J̄, one finds that the Lagrangian
formulation only corresponds to a small-deformation approximation. For this
reason different techniques have been developed so to read the background
fields at every order in λ but, still, the results are in general only valid at first
order in α′ and have to be modified so to take into account the effect of instan-
ton corrections (. This is not the case for asymmetrically deformed models,
for which the background fields in Eqs. (3.25) are exact at all orders in Ha and
for which the effect of renormalization only amounts to the usual (for WZW

models) shift in the level of the algebra k→ k + g∗.
Consider in example the most simple SU(2) case (which we will review in No-

renormalization
for SU(2)

greater detain in Sec. 4.1). In terms of Euler angles the deformed Lagrangian
is written as:

S = SSU(2) (α, β, γ) + δS =
k

4π

∫
d2z ∂α∂̄α + ∂β∂̄β + ∂γ∂̄γ + 2 cos β∂α∂̄γ+

+
√

kkgH

2π

∫
d2z (∂γ + cos β∂α) Ī. (3.53)

If we bosonize the right-moving current as Ī = ∂̄φ and add a standard U(1)
term to the action, we get:

S = SSU(2) (α, β, γ) + δS (α, β, γ, φ) +
kg

4π

∫
d2z ∂φ∂̄φ =

= SSU(2)

(
α, β, γ + 2

√
kg

k
Hφ

)
+

kg
(
1− 2H2)

4π

∫
d2z∂φ∂̄φ (3.54)

and in particular at the decoupling limit H → 1/
√

2, corresponding to the S2

geometry, the action is just given by S = SSU(2)

(
α, β, γ + 2

√
kg
k Hφ

)
. This im-

plies that our (deformed) model inherits all the integrability and renormaliza-
tion properties of the standard SU(2) WZW model. In other words the three-
dimensional model with metric and Kalb–Ramond field with SU(2) × U(1)
symmetry and a U(1) gauge field is uplifted to an exact model on the SU(2)
group manifold (at least locally): the integrability properties are then a con-
sequence of this hidden SU(2) × SU(2) symmetry that is manifest in higher
dimensions.

The generalization of this particular construction to higher groups is eas-
ily obtained if one remarks that the Euler parametrization for the g ∈ SU (2)
group representative is written as:

g = eıγt3 eıβt1 eıαt2 , (3.55)

where ti = σi/2 are the generators of su(2) (σi being the usual Pauli matrices).
As stated above, the limit deformation corresponds to the gauging of the left
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action of an abelian subgroup T ⊂ SU (2). In particular here we chose T =
{ h | h = eıφt3 }, hence it is natural to find (up to the normalization) that:

h (φ) g (α, β, γ) = g (α, β, γ + φ) . (3.56)

The only thing that one needs to do in order to generalize this result to a gen-
eral group G consists in finding a parametrization of g ∈ G such as the chosen
abelian subgroup appears as a left factor. In example if in SU(3) we want to
gauge the U (1)2 abelian subgroup generated by 〈λ3, λ8〉 (Gell-Mann matrices),
we can choose the following parametrization for g ∈ SU(3) [Byr97]:

g = eıλ8φeıλ3ceıλ2beıλ3aeıλ5ϑeıλ3γeıλ2βeıλ3α. (3.57)

The deep reason that lies behind this property (differentiating symmetric
and asymmetric deformations) is the fact that not only the currents used for
the deformation are preserved (as it happens in both cases), but here their
very expression is just modified by a constant factor. In fact, if we write the
deformed metric as in Eq. (3.25a) and call K̃µ the Killing vector corresponding
to the chosen isometry (that doesn’t change along the deformation), we see
that the corresponding J̃ (H)

µ current is given by:

J̃ (H)
ν = K̃µg(H)

µν =
(
1− 2H2) J̃ (0)

ν (3.58)

The most important consequence (from our point of view) of this integrability
property is that the SUGRA action in is actually exact and the only effect of
renormalization is the k→ k + g∗ shift.

3.5 Partition functions

Studying the algebraic structure of marginal deformations we have already
stressed that they are completely determined by O(d, d̄) pseudo-rotations on
the charge lattice corresponding to the deforming operator. This means that
a modular invariant partition function is simply obtained once we write the
initial WZW one, single out those charges and apply the boost. This proves
to be a relatively simple exercise for compact groups but presents technical
problems even in the most simple non-compact example SL(2, R) which we
will study in greater detail in Sec. 4.2.

SU(2)

Instead of a general construction, for sake of clearness, we can start with the
most simple – but showing some general features – example, taking the SU(2)
group (more extensively studied in Sec. 4.1). Our computation will also in-
clude the S2 limiting geometry. To fix the ideas, we will consider the case
kG = 2, i.e. a U(1) algebra generated by one right-moving complex fermion.
As we’ve seen in Sec. 2.1 the partition function for the supersymmetric SU(2)
model can be written as

Z
[

a; h
b; g

]
=

(k−2)/2

∑
j, ̄=0

Mj ̄ χj ϑ[a
b]

η
χ̄ ̄

ϑ̄[h
g]

η̄
. (3.59)
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where the χj’s are the characters of bosonic SU(2)k−2, (a, b) are the Z2 bound-
ary conditions for the left-moving fermions6 and (h, g) those of the right-moving
– gauge-sector – ones. We can choose any matrix Mj ̄ compatible with modular
invariance of SU(2)k−2. Furthermore, the supersymmetric SU(2)k characters
can be decomposed in terms of those of the N = 2 minimal models:

χj(τ) ϑ

[
a
b

]
(τ, ν) = ∑

m∈Z2k

C j
m

[
a
b

]
Θm,k

(
τ,−2ν

k

)
, (3.60)

where the N = 2 minimal-model characters, determined implicitly by this
decomposition, are given in [Kir88, Dob87, Mat87, RY87].

Our aim is to implement the magnetic deformation in this formalism. The Boost on the
charge lattice and
partition function

deformation acts as a boost on the left-lattice contribution of the Cartan current
of the supersymmetric SU(2)k and on the right current from the gauge sector:

Θm,k ϑ̄

[
h
g

]
= ∑

n,n̄
e−ıπg(n̄+ h

2 )q
1
2

(√
2kn+ m√

2k

)2

q̄
1
2 (n̄+ h

2 )
2

−→∑
n,n̄

e−ıπg(n̄+ h
2 ) q

1
2

[(√
2kn+ m√

2k

)
cosh x+(n̄+ h

2 ) sinh x
]2

× q̄
1
2

[
(n̄+ h

2 ) cosh x+
(√

2kn+ m√
2k

)
sinh x

]2

. (3.61)

The boost parameter x is related to the vacuum expectation value of the gauge
field as follows:

cosh x =
1

1− 2H2 . (3.62)

We observe that, in the limit H2 → H2
max, the boost parameter diverges

(x → ∞), and the following constraints arise:

4 (k + 2) n + 2m + 2
√

2kn̄ +
√

2kh = 0. (3.63)

Therefore, the limit is well-defined only if the level of the supersymmetric
SU(2)k satisfies a quantization condition:

k = 2p2 , p ∈ Z. (3.64)

This is exactly the charge quantization condition for the flux of the gauge field,
Eq. (4.14). Under this condition, the constraints (3.63) lead to

m + ph ≡ 0 mod 2p =: 2pN, (3.65a)
n̄ = 2pn + N, N ∈ Z2p. (3.65b)

As a consequence, the U(1) corresponding to the combination of charges or- Decoupled
partition function

6We have removed the contribution of the fermion associated to J3 since it is neutral in the
deformation process.
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thogonal to (3.63) decouples (its radius vanishes), and can be removed. We end
up with the following expression for the S2 partition function contribution:

ZS2

[
a; h
b; g

]
= ∑

j, ̄
Mj ̄ ∑

N∈Z2p

eıπg(N+ h
2 ) C j

p(2N−h)

[
a
b

]
χ̄ ̄, (3.66)

in agreement with the result found in [BJKZ96] by using the coset construc-
tion. The remaining charge N labels the magnetic charge of the state under
consideration. As a result, the R-charges of the left N = 2 superconformal
algebra are:

QR = n +
a
2
− N − h/2

p
mod 2. (3.67)

We now turn to the issue of modular covariance. Under the transformation
τ → −1/τ, the minimal-model characters transform as:

C j
m

[
a
b

] (
− 1

τ

)
= eı π

2 ab 1
k

(k−2)/2

∑
j′=0

sin
(

π(2j + 1)(2j′ + 1)
k

)
∑

m′∈Z2k

eıπ mm′
k C j′

m′

[
b
−a

]
(τ).

(3.68)

On the one hand, the part of the modular transformation related to j is pre-
cisely compensated by a similar term coming from the transformation of χ̄ ̄, in
Eq. (3.66). On the other hand, the part of the transformation related to the spin
structure (a, b) is compensated by the transformation of the other left-moving
fermions in the full heterotic string construction. We can therefore concentrate
on the transformation related to the m charge, coming from the transformation
of the theta-functions at level k. We have

∑
N∈Z2p

e−ıπg(N+ h
2 ) C j

p(2N−h)

[
a
b

]
→ 1√

2k
∑

m′∈Z4p2

∑
N∈Z2p

e
ıπ
2

(
g−m′

p

)
he2ıπ N(m′+pg)

2p C j
m′

[
b
−a

]
;

(3.69)

summing over N in Z2p leads to the constraint:

m′ + pg ≡ 0 mod 2p := −2pN′ , N′ ∈ Z2p. (3.70)

So we end up with the sum

e−
ıπ
2 hg ∑

N′∈Z2p

e−ıπh(N′+ g
2 )C j

p(2N′−g)

[
b
−a

]
. (3.71)

combining this expression with the modular transformation of the remaining
right-moving fermions of the gauge sector, we obtain a modular invariant re-
sult.

In a similar way one can check the invariance of the full heterotic string
under τ → τ + 1.
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SU(3)

As it is often the case, the SU(2) example is illuminating but not exhaustive.
In this situation this is due to the fact that U(1) is the Cartan torus and at the
same time the maximal subgroup. For this reason we need to work out in
detail the next non-trivial example, SU(3). The main difference is that there
are two non-equivalent construction leading to the same algebraic structure
but to the two possible different metrics on the SU(3)/U(1)2 coset7.

The Kazama-Suzuki decomposition of SU(3)

We would like to decompose our WZW model in terms of Kazama-Suzuki (KS)
cosets, which are conformal theories with extended N = 2 superconformal
symmetry [KS89b, KS89a].

The simplest of those models are the N = 2 minimal models that are
given by the quotient: SU(2)k−2×SO(2)1/U(1)k, and their characters come from the
branching relation:

χ
j
k−2Ξs2

2 = ∑
m∈Z2k

C j (s2)
m

Θm,k

η
. (3.72)

For convenience, we write the contribution of the world-sheet fermions in
terms of SO(2n)1 characters.

Similarly it is possible to construct an N = 2 coset CFT from SU(3) [KS89b,
KS89a]:8

SU (3)k−3 × SO(4)1

SU(2)k−2 ×U (1)3k
. (3.73)

The characters of this theory are implicitly defined by the branching relation:

χΛ
k−3 Ξs4

4 =
k−2

∑
2j=0

∑
n∈Z6k

CΛ (s4)
j n χ

j
k−2

Θn,3k

η
. (3.74)

Therefore combining the two branching relations, we obtain the decomposi-
tion of SU (3) in terms of N = 2 KS models:

χΛ
k−3 Ξs4

4 Ξs2
2 = ∑

j,m,n
CΛ (s4)

j n C j (s2)
m

Θm,k

η

Θn,3k

η
(3.75)

This decomposition goes along the following pattern:

SU (3)k−3 × SO(8)1 →
SU (3)k−3 × SO(4)1

SU(2)k−2 ×U (1)3k
× SU(2)k−2 × SO(2)1

U (1)k
×

×U (1)3k ×U (1)k × SO(2)1 (3.76)

7We have already pointed out in Sec. 3.3 that an asymmetric coset in the mathematical
sense in general admits more than one left-invariant metric. The two possible choices for
SU(3)/U(1)2 will be extensively studied in Sec. 4.5

8 According to our conventions, the weights of a U (1) at level k are m2/4k, m ∈ Z2k.
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and we shall perform the deformation on the left lattice of U (1)3k × U (1)k.
However the deformation will also act on an appropriate sub-lattice of the
right-moving gauge sector. The last SO(2)1 factor corresponds to the fermions
which are neutral in the process so they won’t be considered afterwards.

The gauge sector To construct the model we assume that the gauge sector
of the heterotic strings contain an unbroken SO(6)1, whose contribution to
the partition function is, written in terms of SO(6)1 free fermionic characters
Ξ̄s6

6 . Since we decompose the characters of the left-moving sector according to
eq. (3.76), a natural choice for the action of the deformation in the right-moving
gauge sector is to use a similar Kazama-Suzuki decomposition, but for k = 3,
in which case the bosonic CFT is trivial:

SO(8)1 →
SO(4)1

SU(2)1 ×U (1)9
× SU(2)1 × SO(2)1

U (1)3
×U (1)3×U (1)1×SO(2)1

(3.77)

Since as quoted previously two fermions – the SO(2)1 factor – are neutral it
is enough that the gauge sector contains an SO(6)1 subgroup. To achieve this
decomposition, first we decompose the SO(6)1 characters in terms of SO(4)1×
SO(2)1:

Ξ̄s̄6
6 = ∑

s̄4,s̄2∈Z4

C [s̄6; s̄4, s̄2] Ξ̄s̄4
4 Ξ̄s̄2

2 (3.78)

where the coefficients of the decomposition SO(6) → SO(4) × SO(2) are ei-
ther zero or one. And then we perform a coset decomposition for the SO(4)1
characters:

Ξ̄s̄4
4 = ∑

`=0,1
∑

u∈Z18

v̄s̄4
` uχ̄` Θ̄u,9

η̄
(3.79)

in terms of SU(2)1 characters χ̄` and U (1) characters Θ̄u,9. It defines implic-
itly the coset characters v̄s̄4

` u. Then the SU(2)1 × SO(2)1 characters are decom-
posed as:

χ̄`Ξ̄s̄2
2 = ∑

v∈Z6

v̄`,s̄2
v

Θ̄v,3

η̄
. (3.80)

So putting together these branching relations we have the following Kazama-
Suzuki decomposition for the free fermions of the gauge sector:

Ξ̄s̄6
6 = ∑

s̄4,s̄2∈Z4

∑
`=0,1

∑
u∈Z18

∑
v∈Z6

C [s̄6; s̄4, s̄2] v̄s̄4
` u v̄`,s̄2

v
Θ̄u,9

η̄

Θ̄v,3

η̄
. (3.81)

The deformation Now we are in position to perform the asymmetric defor-
mation adding a magnetic field to the model. The deformation acts on the
following combination of left and right theta functions:

Θn,3k Θ̄u,9 ×Θm,kΘ̄v,3. (3.82)
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As for the case of SU(2) [IKOP05a], we have to assume that the level obeys the
condition:√

k
3

= p ∈N , (3.83)

to be able to reach the geometric coset point in the moduli space of CFT. Then
we have to perform O(2, 2, R) boosts in the lattices of the U (1)’s, mixing the
left Cartan lattice of the super-WZW model with the right lattice of the gauge
sector. These boosts are parametrized in function of the magnetic fields as:

cosh Ωa =
1

1− 2H2
a

, a = 1, 2. (3.84)

Explicitly we have:

∑
N1,N2∈Z

q3k(N1+ m
6k )

2

qk(N2+ n
2k )

2

× ∑
f1, f2∈Z

q̄9( f1+ u
18 )

2

q̄3( f2+ v
6 )

2

→ ∑
N1,N2, f1, f2∈Z

q
9
[

p
(

N1+ m
18p2

)
cosh Ω1+( f1+ u

18 ) sinh Ω1

]2

q
3
[

p
(

N2+ n
6p2

)
cosh Ω2+( f2+ v

6 ) sinh Ω2

]2

× q̄
9
[
( f1+ u

18 ) cosh Ω1+p
(

N1+ m
18p2

)
sinh Ω1

]2

q̄
3
[
( f2+ v

6 ) cosh Ω2+p
(

N2+ n
6p2

)
sinh Ω2

]2

.
(3.85)

After an infinite deformation, we get the following constraints on the charges:

m = p (18µ− u) , µ ∈ Zp (3.86a)
n = p (6ν− v) , ν ∈ Zp (3.86b)

and the U (1)2 CFT that has been deformed marginally decouples from the rest
and can be safely removed. In conclusion, the infinite deformation gives:

Z(s4,s2;s̄6)
F3

(τ) = ∑
Λ

∑
j

∑
µ,ν∈Zp

∑
s̄4,s̄2∈Z4

C [s̄6; s̄4, s̄2]

∑
`=0,1

∑
u∈Z18

∑
v∈Z6

CΛ (s4)
j , p(18µ−u) C

j (s2)
p(6ν−v) × χ̄Λ

k−3 v̄s̄4
4; `u v̄`,s̄2

v (3.87)

where the sum over Λ, j runs over integrable representations. This is the par-
tition function for the SU (3) /U (1)2 coset space. The fermionic charges in the
left and right sectors are summed according to the standard rules of Gepner
heterotic constructions [Gep88]. The modular properties of this partition func-
tion are the same as before the deformation, concerning the Z4 indices of the
world-sheet fermions.

Alternative approach: direct abelian coset

Here we would like to take a different path, by deforming directly the Cartan
lattice of su3 without decomposing the left CFT in terms of KS N = 2 theories.
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It is possible to perform a generalized (super)parafermionic decomposition of
the characters of the ŝu3 super-algebra at level k (containing a bosonic algebra
at level k− 3) w.r.t. the Cartan torus:

χΛ
(

ϑ[a
b]

η

)dim(j)/2

= ∑
λ∈M∗mod kM

PΛ
λ

[
a
b

]
Θλ,k

ηdim(k) (3.88)

where the theta function of the ŝu3 affine algebra reads, for a generic weight
λ = miλ

i
f :

Θλ,k = ∑
γ∈M+ λ

k

q
k
2 κ(γ,γ) = ∑

N1,N2∈Z

q
k
2 ‖N1α1+N2α2+

m1λ1
f +m2λ2

f
k ‖2

. (3.89)

To obtain an anomaly-free model (see the discussion at the beginning of Sec. 3.6)
it is natural to associate this model with an abelian coset decomposition of an
SU(3)1 current algebra made with free fermions of the gauge sector. Thus if
the gauge group contains an SU(3)1 unbroken factor their characters can be
decomposed as:

χ̄Λ̄ = ∑
λ̄=n̄iλ

i
f ∈ M∗mod M

v̄Λ̄
λ̄ Θ̄λ̄. (3.90)

Again we will perform the asymmetric deformation as a boost between the
Cartan lattices of the left ŝu3 algebra at level k and the right ŝu3 lattice algebra
at level one coming from the gauge sector. So after the infinite deformation we
will get the quantization condition

√
k = p and the constraint:

λ + pλ̄ = 0 mod p M =: p µ , µ ∈M. (3.91)

So we get a different result compared to the Kazama-Suzuki construction. It
is so because the constraints that we get at the critical point force the weight
lattice of the ŝu3 at level k to be projected onto p times the ŝu3 weight lattice
at level one of the fermions. This model does not correspond to a Kählerian
manifold and should correspond to the SU (3)-invariant metric on the flag
space. Indeed with the KS method we get instead a projection onto p times a
lattice of ŝu3 at level one which is dual to the orthogonal sub-lattice defined
by α1Z + (α1 + 2α2)Z– in other words the lattice obtained with the Gell-Mann
Cartan generators. In this case it is possible to decompose the model in KS

cosets models with N = 2 superconformal symmetry.9

3.6 The deformation as a gauging

In this section we want to give an alternative construction for our deformed
models, this time explicitly based on an asymmetric WZW gauging. The exis-
tence of such a construction is not surprising at all since our deformations can

9For the symmetrically gauged WZW models, this has been studied in [ESY03].
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be seen as a generalization of the ones considered in [GK94]. In these terms,
just like J J̄ (symmetric) deformations lead to gauged WZW models, our asym-
metric construction leads to asymmetrically gauged WZW models, which were
studied in [QS03].

A point must be stressed here. The asymmetric deformations admit as limit
solutions the usual geometric cosets that one would have expected from field
theory, as results of a gauging procedure. So, why do we need to go through
this somewhat convoluted procedure? The reason lays in the fact that string
theory is not the usual point particle field theory. A left and a right sector are
present at the same time and they cannot be considered separately if we don’t
want to introduce anomalies. Now, gauging the left action of a subgroup, i.e.
the symmetry G ∼ GH, which would directly give the geometric coset we
are studying, would precisely introduce this kind of problems. Hence we are
automatically forced to condider the adjoint action G ∼ H−1GH [Wit91]. The
key idea then, as it will appear in this section, is that when G is semisimple
and written as the product of a group and a copy of its Cartan torus, the left
and right action can be chosen such as to act on the two separate sectors and
then be equivalent to two left actions.

Instead of a general realization, for sake of clearness, here we will give the
explicit construction for the most simple case, the SU (2) model, then intro-
duce a more covariant formalism which will be simpler to generalize to higher
groups, in particular for the SU (3) case which we will describe in great detail
in the following.

To simplify the formalism we will discuss gauging of bosonic CFTs, and
the currents of the gauge sector of the heterotic string are replaced by com-
pact U(1) free bosons. All the results are easily translated into heterotic string
constructions.

The SU(2)/U(1) asymmetric gauging

In this section we want to show how the S2 background described in [IKOP05a] Geometric coset
as an asymmetric

gauging
can be directly obtained via an asymmetric gauging of the SU (2)×U (1) WZW

model (a similar construction was first obtained in [Joh95]).
Consider the WZW model for the group manifold SU (2)k × U (1)k′ . A

parametrisation for the general element of this group which is nicely suited
for our purposes is obtained as follows:

g =

 z1 z2 0
−z̄2 z̄1 0

0 0 z3

 =
(

g2 0
0 g1

)
∈ SU (2)×U (1) (3.92)

where g1 and g2 correspond to the SU (2) and U (1) parts respectively and
(z1, z2, z3) satisfy:

SU (2)×U (1) = { (w1, w2, w3) | |w1|2 + |w2|2 = 1, |w3|2 = 1 } ⊂ C3.
(3.93)
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A possible choice of coordinates for the corresponding group manifold is given
by the Euler angles:

SU (2)×U (1)

=
{

(z1, z2, z3) =
(

cos
β

2
eı(γ+α)/2, sin

β

2
eı(γ−α)/2, eıϕ

) ∣∣∣∣ 0 ≤ β ≤ π, 0 ≤ α, β, ϕ ≤ 2π

}
(3.94)

In order to obtain the coset construction leading to the S2 background we
define two U (1)→ SU (2)×U (1) embeddings as follows:

εL : U (1)→ SU (2)×U (1)
eıτ 7→ (eıτ, 0, 1)

εR : U (1)→ SU (2)×U (1)
eıτ 7→ (1, 0, eıτ)

(3.95)

so that in terms of the z variables the action of these embeddings boils down
to:

g 7→ εL (eıτ) gεR (eıτ)−1 (3.96)
(w1, w2, w3) 7→

(
eıτw1, eıτw2, e−ıτw3

)
. (3.97)

This means that we are free to choose a gauge where w2 is real or, in Euler
coordinates, where γ = α, the other angular variables just being redefined.
To find the background fields corresponding to this gauge choice one should
simply write down the Lagrangian where the symmetries corresponding to
the two embeddings in (3.95) are promoted to local symmetries, integrate the
gauge fields out and then apply a Kaluza-Klein reduction, much in the same
spirit as in [IKOP05a].

The starting point is the WZW model, written as:

SWZW (g) =
k

4π

∫
dz2 〈g−1

2 ∂g2g−1
2 ∂̄g2〉+

k′

4π

∫
dz2 〈g−1

1 ∂g1g−1
1 ∂̄g1〉 .

(3.98)

Its gauge-invariant generalization is given by:

S = SWZW

+
1

2π

∫
d2z

[
kĀ 〈tL∂gg−1〉+ k′A 〈tRg−1∂̄g〉+

√
kk′AĀ

(
−2 + 〈tL g tR g−1〉

)]
(3.99)

where A and Ā are the components of the gauge field, and tL and tR are the
Lie algebra generators corresponding to the embeddings in (3.95), i.e.

tL = ı
(

σ3 0
0 0

)
, tR = ı

(
0 0
0 p

)
, (3.100)

σ3 being the usual Pauli matrix. For such an asymmetric coset to be anomaly
free, one has the following constraint on the embeddings:

k 〈tL〉2 = k′ 〈tR〉2 =⇒ k = k′p2 , with p ∈N. (3.101)
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If we pass to Euler coordinates it is simple to give an explicit expression for
the action:

S (α, β, γ, ϕ) =
1

2π

∫
d2z

k
4
(
∂α∂̄α + ∂β∂̄β + ∂γ∂̄γ + 2 cos β∂α∂̄γ

)
+

k′

2
∂ϕ∂̄ϕ+

+ ık (∂α + cos β∂γ) Ā + ık′
√

2∂̄ϕA− 2
√

kk′AĀ. (3.102)

This Lagrangian is quadratic in A, Ā and the quadratic part is constant so we
can integrate these gauge fields out and the resulting Lagrangian is:

S (α, β, γ, ϕ) =
1

2π

∫
d2z

k
4
(
∂α∂̄α + ∂β∂̄β + ∂γ∂̄γ + 2 cos β∂α∂̄γ

)
+

k′

2
∂ϕ∂̄ϕ+

+
√

2kk′

2
(∂α + cos β∂γ) ∂̄ϕ. (3.103)

Now, since we gauged out the symmetry corresponding to the U (1) embed-
dings, this action is redundant. This can very simply be seen by writing the
corresponding metric and remarking that it has vanishing determinant:

det gµν =

∣∣∣∣∣∣∣∣∣
k/4

k/4 k/4 cos β
√

2kk′/4
k/4 cos β k/4

√
2kk′/4 cos β√

2kk′/4
√

2kk′/4 cos β k′/2

∣∣∣∣∣∣∣∣∣ = 0 (3.104)

Of course this is equivalent to say that we have a gauge to fix (as we saw above)
and this can be chosen by imposing γ = α, which leads to the following action:

S (α, β, ϕ) =
1

2π

∫
d2z

k
4
(
2 (1 + cos β) ∂α∂̄α + ∂β∂̄β

)
+

k′

2
∂ϕ∂̄ϕ+

+
√

2kk′

2
(1 + cos β) ∂α∂̄ϕ (3.105)

whence we can read a two dimensional metric by interpreting the ∂α∂̄ϕ term
as a gauge boson and applying the usual Kaluza-Klein reduction. We thus
recover the two-sphere as expected:

ds2 = gµν − Gϕϕ Aµ Aν =
k
4
(
dβ2 + sin2 βdα2) (3.106)

supported by a (chromo)magnetic field

A =

√
k
k′

(1 + cos β) dα (3.107)

The current formalism

We now turn to rewrite the above gauging in a more covariant form, simpler to Asymmetric
gauging in the

current formalism
generalize. Since we are interested in the underlying geometry, we will mainly
focus on the metric of the spaces we obtain at each step and write these metrics
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in terms of the Maurer-Cartan currents10. As we have already seen, the metric
of the initial group manifold is:

ds2 =
k
2 ∑J 2

i ⊗J 2
i +

k′

2
I ⊗ I (3.108)

where { J1,J2,J3 } are the currents of the SU (2) part and I the U (1) gener-
ator. The effect of the asymmetric gauging amounts - at this level - to adding
what we can see as an interaction term between the two groups. This changes
the metric to:

ds2 =
k
2 ∑J 2

i ⊗J 2
i +

k′

2
I ⊗ I +

√
kk′J3 ⊗ I . (3.109)

Of course if we choose 〈J1,J2,J3, I〉 as a basis we can rewrite the metric in
matrix form:

g =
1
2


k

k
k

√
kk′√

kk′ k′

 (3.110)

where we see that the gauging of the axial symmetry corresponds to the fact
that the sub-matrix relative to the { J3, I } generators is singular:∣∣∣∣∣ k

√
kk′√

kk′ k′

∣∣∣∣∣ = 0 (3.111)

explicitly this correspond to:

kJ3⊗J3 +
√

kk′J3⊗I+
√

kk′J3⊗I+ k′I ⊗I =
(
k + k′

)
Ĵ ⊗ Ĵ (3.112)

where

Ĵ =
√

kJ3 +
√

k′I√
k + k′

(3.113)

is a normalized current. In matrix terms this corresponds to projecting the
interaction sub-matrix on its non-vanishing normalized eigenvector:

(√
k

k+k′

√
k

k+k′

)( k
√

kk′√
kk′ k′

)√ k
k+k′√

k
k+k′

 = k + k′ (3.114)

and the resulting metric in the 〈J1,J2, Ĵ 〉 basis is:k
k

k + k′

 (3.115)

10One of the advantages of just working on the metrics is given by the fact that in each group
one can consistently choose left or right currents as a basis. In the following we will consider
the group in the initial WZW model as being generated by the left and the dividing group by
the right ones.
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This manifold M (whose metric appears in the action (3.17)) corresponds to
an S1 fibration (the fiber being generated by Ĵ ) over an S2 base (generated by
〈J1,J2〉).

S1 −−−→ My
S2

(3.116)

It should now appear natural how to generalize this construction so to in-
clude all the points in the moduli space joining the unperturbed and gauged
model. The decoupling of the U (1) symmetry (that has been “gauged away”)
is obtained because the back-reaction of the gauge field (Eq. (3.103)) is such
that the interaction sub-matrix is precisely singular. On the other hand we
can introduce a parameter that interpolates between the unperturbed and the
gauged models so that the interaction matrix now has two non-null eigenval-
ues, one of which vanishing at the decoupling point.

In practice this is done by adding to the the asymmetrically gauged WZW

model an auxiliary U(1) free boson Y at radius R = (kk′)1/4(1/
√

2H−1)1/2. This
U(1) is coupled symmetrically to the gauge fields such that the anomaly can-
cellation condition is still given by (3.101). In particular if we choose the gauge
Y = 0, the metric reads:(

k
√

2H
√

kk′√
2H
√

kk′ k′

)
(3.117)

which is exactly the model studied above. For a generic value of H2 the two
eigenvalues are given by:

λ 1
2

(
k, k′, H

)
=

k + k′ ∓
√

k2 + k′2 + 2 (4H2 − 1) kk′

2
(3.118)

so we can diagonalize the metric in the 〈J1,J2, Ĵ , ˆ̂J 〉 basis (Ĵ and ˆ̂J being
the two eigenvectors) and finally obtain:

g =


k

k
λ1 (k, k′, H)

λ2 (k, k′, H)

 . (3.119)

Of course, in the H2 → 0 limit we get the initial WZW model and in the H2 →
1/2 limit we recover the asymmetrically gauged model, Eq. (3.115).

It is important to remark that the construction above can be directly gener-
alized to higher groups with non-abelian subgroups, at least for the asymmet-
ric coset part. This is what we will further analyse in the next chapter.





CHAPTER 4

Applications
In this chapter we present some of the applications for the construction
outlined above. After an analysis of the most simple (compact and non-
compact) examples, we describe the near-horizon geometry for the Bertotti-
Robinson black hole, show some new compactifications and see how Horne
and Horowitz’s black string can be described in this framework and gen-
eralized via the introduction of an electric field.

THE TECHNOLOGY we developed in the previous chapter allows for the con-
struction of a large class of exact string theory backgrounds which is one

of the main motivations of the present work. This chapter is devoted to the
study of some of the most interesting among them. They can be used to pro-
vide new CFT models with clear geometric interpretation (Sec. 4.1 and 4.2), to
describe near-horizon geometries of four-dimensional black holes (Sec. 4.3),
as laboratories for the study of black holes and black strings (Sec. 4.4) or to
provide new physically realistic compactification backgrounds (Sec. 4.5).

4.1 The two-sphere CFT

Spacetime fields

The first deformation that we explicitly consider is the marginal deformation
of the SU (2) WZW model. This was first obtained in [KK95] that we will
closely follow. It is anyway worth to stress that in their analysis the authors
didn’t study the point of maximal deformation (which was nevertheless iden-
tified as a decompactification boundary) that we will here show to correspond
to the 2-sphere S2 ∼ SU (2) /U (1). Exact CFT’s on this background have al-
ready obtained in [BK94] and in [Joh95]. In particular the technique used in
the latter, namely the asymmetric gauging of an SU (2)×U (1) WZW model,
bears many resemblances to the one we will describe.

Consider a heterotic string background containing the SU(2) group mani-
fold, times some (1, 0) superconformal field theoryM. The sigma model ac-
tion is:

S = kSSU(2)(g) +
1

2π

∫
d2z

{
3

∑
a=1

λa∂̄λa +
g

∑
n=1

χ̃n∂χ̃n

}
+ S(M), (4.1)
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where λi are the left-moving free fermions superpartners of the bosonic SU(2)
currents, χ̃n are the right-moving fermions of the current algebra and kSSU(2)(g)
is the WZW action for the bosonic SU(2) at level k. This theory possesses an
explicit SU(2)L × SU(2)R current algebra.

A parametrization of the SU(2) group that is particularly well suited forGauss
decomposition

for SU(2)
our purposes is obtained via the so-called Gauss decomposition that we will
later generalize to higher groups (see App. B). A general element g (z, ψ) ∈
SU(2) where z ∈ C and ψ ∈ R can be written as:

g (z, ψ) =
(

1 0
z 1

)(
1/
√

f 0
0

√
f

)(
1 w̄
0 1

)(
eıψ/2 0

0 e−ıψ/2

)
(4.2)

where w = −z and f = 1 + |z|2. In this parametrisation the matrix of invari-
ant one-forms Ω = g (z, ψ)−1 dg (z, ψ) which is projected on the Lie algebra
generators to give the expression for the Maurer-Cartan one-forms is:

Ω =
1
f

(
z̄dz− zdz̄ −e−ıψdz̄

eıψdz −z̄dz + zdz̄

)
+ ı
(

dψ 0
0 −dψ

)
(4.3)

(remark that Ω is traceless and anti-Hermitian since it lives in su (2)). From Ω
we can easily derive the Cartan–Killing metric on TgSU(2)k as:

2
k

ds2 = 〈Ω†Ω〉 = − 1
2 f 2

(
z̄2dz2 + z2dz̄2 − 2

(
2 + |z|2

)
dzdz̄

)
+

+
ı
f

(zdz̄− z̄dz) dψ +
1
2

dψ2 (4.4)

The left-moving current contains a contribution from the free fermions realiz-
ing an SU(2)2 algebra, so that the theory possesses (local) N = (1, 0) super-
conformal symmetry.

The marginal deformation is obtained by switching on a magnetic field
in the SU(2), introducing the following (1, 0)-superconformal-symmetry-com-
patible marginal operator:

δS =
√

kkgH

2π
(J3 + λ+λ−) J̄ (4.5)

where we have picked one particular current J̄ from the gauge sector, gener-
ating a U(1) at level kg. For instance, we can choose the level-two current:
J̄ = iχ̃1χ̃2. As a result the solutions to the deformed σ-model (3.26), (3.33) and
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(3.34) read1:
1
k ds2 = dzdz̄

(1+|z|2)2 +
(
1− 2H2) ( ızdz̄−ız̄dz

f + dψ
)2

dB = ık
2

1

(1+|z|2)2 dz ∧ dz̄ ∧ dψ

A =
√

k
2kg

H
(
− ı

f (z̄dz− zdz̄) + dψ
)

.

(4.7)

It can be useful to write explicitly the volume form on the manifold and the
Ricci scalar:√

det g dz ∧ dz̄ ∧ dψ =
k
2

√
k (1− 2H2)(
1 + |z|2

)2 dz ∧ dz̄ ∧ dψ (4.8)

R =
6 + 4H2

k
(4.9)

It is quite clear that H = Hmax = 1/
√

2 is a special point. In general the
three-sphere SU (2) can be seen as a non-trivial fibration of U (1) ∼ S1 as fiber
and SU (2) /U (1) ∼ S2 as base space: the parametrization in (4.7) makes it
clear that the effect of the deformation consists in changing the radius of the
fiber that naively seems to vanish at Hmax. But as we already know the story is
a bit different: reparametrizing as in Eq. (3.30):

ψ→ ψ̂√
1− 2H2

(4.10)

one is free to take the H → 1/
√

2 limit where the background fields assume Kähler structure
on CP1 modelthe following expressions:

1
k ds2 −−−−→

H→1/
√

2

dzdz̄

(1+|z|2)2 + dψ̂2

F −−−−→
H→1/

√
2

√
k

4kg
ıdz∧dz̄

(1+|z|2)2

H −−−−→
H→1/

√
2

0

(4.11)

Now we can justify our choice of coordinates: the (z, z̄) part of the metric
that decouples from the ψ part is nothing else than the Kähler metric for the
manifold CP1 (which is isomorphic to SU (2) /U (1)). In these terms the field
strength F is proportional to the Kähler two-form:

F = ı

√
k
kg

gzz̄ dz ∧ dz̄. (4.12)

1This type of structure is common to U(1) fibrations over Kähler spaces. In example, the
line element for S5 which can be seen as a U(1) fiber over CP2 is written as

ds2 = ds2(CP2) + (dψ + A)2 (4.6)

where dA is the Kähler form on CP2. We will encounter the same structure again in Sec. 4.5 for
SU(3) written as the (principal) fibration U(1)2 → SU(3)/U(1)2.
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This begs for a remark. It is simple to show that cosets of the form G/H where
H is the maximal torus of G can always be endowed with a Kähler structure.
The natural hope is then for this structure to pop up out of our deformations,
thus automatically assuring the N = 2 world-sheet supersymmetry of the
model. Actually this is not the case. The Kähler structure is just one of the pos-
sible left-invariant metrics that can be defined on a non-symmetric coset (see
Sec. 3.3) and the natural generalization of the deformation considered above
leads to C-structures that are not Kähler. From this point of view this first ex-
ample is an exception because SU(2)/U (1) is a symmetric coset since U (1)
is not only the maximal torus in SU(2) but also the maximal subgroup. It is
nonetheless possible to define an exact CFT on flag spaces but this requires a
slightly different construction, already outlined in Sec. 3.6.

We conclude this section observing that the flux of the gauge field on the
two-sphere is given by:

Q =
∫

S2
F =

√
k
kg

∫
dΩ2 =

√
k
kg

4π (4.13)

However one can argue on general grounds that this flux has to be quantized,
e.g. because the two-sphere appears as a factor of the magnetic monopole solu-
tion in string theory [KLL99]. This quantization of the magnetic charge is only
compatible with levels of the affine SU(2) algebra satisfying the condition:

k
kg

= p2 , p ∈ Z. (4.14)

4.2 SL(2, R)

Anti-de Sitter space in three dimensions is the (universal covering of the) SL(2, R)
group manifold. It provides therefore an exact string vacuum with NS back-
ground, described in terms of the SL(2, R)k WZW model, where time is embed-
ded in the non-trivial geometry. We will consider it as part of some heterotic
string solution such as AdS3 × S3 × T4 with NS three-form field in AdS3 × S3

(near-horizon NS5/F1 background). The specific choice of a background is
however of limited importance for our purpose.

The issue of AdS3 deformations has been raised in several circumstances.
It is richer2 than the corresponding S3 owing to the presence of elliptic, hy-
perbolic or parabolic elements in SL(2, R). The corresponding generators are
time-like, space-like or light-like. Similarly, the residual symmetry of a de-
formed AdS3 has U(1) factors, which act in time, space or light direction.

Marginal symmetric deformations of the SL(2, R)k WZW are driven by bi-SL(2, R) marginal
symmetric

deformations
linears J J̄ where both currents are in SL(2, R) and are of the same kind [F9̈4,
IKP03]. These break the SL(2, R)L × SL(2, R)R affine symmetry to U(1)L ×
U(1)R and allow to reach, at extreme values of the deformation, gauged SL(2, R)k/U(1)

2As we have already stressed before the Cartan subgroups are not conjugated by inner
automorphisms if the group is not simple.
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WZW models with an extra free decoupled boson. We can summarize the re-
sults as follows:

(a) J3 J̄3 These are time-like currents (for conventions see App. B) and the cor-
responding deformations connect SL(2, R)k with U(1)× SL(2, R)k/U(1)|axial or vector.
The U(1) factor stands for a decoupled, non-compact time-like free bo-
son3. The gauged WZW model SL(2, R)k/U(1)|axial is the cigar (two-
dimensional Euclidean black hole) obtained by gauging the g → hgh
symmetry with the h = exp i λ

2 σ2 subgroup, whereas SL(2, R)k/U(1)|vector
corresponds to the g→ hgh−1 gauging. This is the trumpet and is T-dual
to the cigar4. The generators of the affine residual symmetry U(1)L ×
U(1)R are both time-like (the corresponding Killing vectors are not or-
thogonal though). For extreme deformation, the time coordinate decou-
ples and the antisymmetric tensor is trade for a dilaton. The isometries
are time-translation invariance and rotation invariance in the cigar/trum-
pet.

(b) J2 J̄2 The deformation is now induced by space-like currents. So is the
residual affine symmetry U(1)L × U(1)R of the deformed model. Ex-
treme deformation points are T-dual: U(1)× SL(2, R)k/U(1) where the
U(1) factor is space-like, and the U(1) gauging of SL(2, R)k corresponds
to g → hgh(−1) with h = exp−λ

2 σ3 [DVV92]. The corresponding mani-
fold is (some sector of) the Lorentzian two-dimensional black hole with
a non-trivial dilaton.

(c) (J1 + J3)( J̄1 + J̄3) This is the last alternative, with both null currents. The
deformation connects AdS3 with R × R1,1 plus a dilaton linear in the
first factor. The U(1)L × U(1)R left-over current algebra is light-like5.
Tensorized with an SU(2)k CFT, this background describes the decou-
pling limit of the NS5/F1 setup [IKP03], where the fundamental strings
regularize the strong coupling regime.

Possible choices for the coordinate systems and the resulting fields are re-
ported in App. C.

Our purpose here is to analyze asymmetric deformations of AdS3. Follow-
ing the similar analysis of the previous section for SU(2), we expect those
deformations to preserve a U(1)L × SL(2, R)R symmetry appearing as affine
algebra from the sigma-model point of view, and as isometry group for the
background. The residual U(1)L factor can be time-like, space-like or null de-
pending on the current that has been used to perturb the WZW model.

It is worth to stress that some deformations of AdS3 have been studied in
the past irrespectively of any conformal sigma-model or string theory anal-

3The extra bosons are always non-compact.
4Actually this statement holds only for the vector coset of the single cover of SL(2, R). Oth-

erwise, from the n-th cover of the group manifold one obtains the n-th cover of the trum-
pet [IKP03].

5The isometry is actually richer by one (two translations plus a boost), but the extra gener-
ator (the boost) is not promoted to an affine symmetry of the sigma-model.
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ysis. In particular it was observed in [RS98], following [RT83] that the three-
dimensional6 Gödel solution of Einstein equations could be obtained as a mem-
ber of a one-parameter family of AdS3 deformations that precisely enters the
class we discuss here. Gödel space is a constant-curvature Lorentzian mani-
fold. Its isometry group is U(1)× SL(2, R), and the U(1) factor is generated
by a time-like Killing vector. These properties hold for generic values of the
deformation parameter. In fact the deformed AdS3 under consideration can be
embedded in a seven-dimensional flat space with appropriate signature, as the
intersection of four quadratic surfaces. Closed time-like curves as well as high
symmetry are inherited from the multi-time maximally symmetric host space.
Another interesting property resulting from this embedding is the possibility
for changing the sign of the curvature along the continuous line of deforma-
tion, without encountering any singular behaviour (see Eq. (4.16)).

It seems natural to generalize the above results to new AdS3 deformations
and promote them to exact string backgrounds. Our guideline will be the re-
quirement of a U(1) × SL(2, R) isometry group, with space-like or light-like
U(1)’s.

We will first review the time-like (elliptic) deformation of AdS3 of [RS98]
and recently studied from a string perspective in [Isr04]. Hyperbolic (space-
like) and parabolic (light-like) deformations will be analyzed in the following.
All these deformations are of the type presented in the previous chapter; fur-
ther generalizations will be obtained in Sec. 4.4. We show in the following
how to implement these deformations as exact marginal perturbations in the
framework of the SL(2, R)k WZW model embedded in heterotic string.

Elliptic deformation: magnetic background

Consider AdS3 in (t, ρ, φ) coordinates, with metric given in (B.20). In these
coordinates, two manifest Killing vectors are L3 ∼ ∂t and R2 ∼ ∂φ, time-like
and space-like respectively (see App. B, Tab. B.2).

The deformation studied in [RS98] and quoted as “squashed anti de Sitter”
reads, in the above coordinates:

ds2 =
L2

4

[
dρ2 + cosh2 ρdφ2 −

(
1 + 2H2) (dt + sinh ρdφ)2

]
. (4.15)

It preserves a U(1)× SL(2, R) isometry group. The U(1) is generated by the
time-like vector L3 of one original SL(2, R), while the right-moving SL(2, R) is
unbroken (the expressions for the { L3, R1, R2, R3 } Killing vectors in Tab. B.2
remain valid at any value of the deformation parameter). The Ricci scalar is
constant

R = − 2
L2 (3− 2H2), (4.16)

6In fact, the original Gödel solution is four-dimensional, but the forth space dimension is a
flat spectator. In the following, we will systematically refer to the three-dimensional non-trivial
factor.
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while the volume form reads:

ω[3] =
L3

8

√
|1 + 2H2| cosh ρ dρ ∧ dφ ∧ dt. (4.17)

For H2 = 1/2, this deformation coincides with the Gödel metric. It should be
stressed, however, that nothing special occurs at this value of the deformation
parameter. The properties of Gödel space are generically reproduced at any
H2 > 0.

From a physical point of view, as it stands, this solution is pathological
because it has topologically trivial closed time-like curves through each point
of the manifold, like Gödel space-time which belongs to this family. Its interest
mostly relies on the fact that it can be promoted to an exact string solution,
with appropriate NS and magnetic backgrounds. The high symmetry of (4.15),
is a severe constraint and, as was shown in [Isr04], the geometry at hand does
indeed coincide with the unique marginal deformation of the SL(2, R)k WZW

that preserves a U(1)L × SL(2, R)R affine algebra with time-like U(1)L.
It is interesting to observe that, at this stage, the deformation parameter H2 Closed time-like

curves in the
SL(2, R) elliptic

deformation

needs not be positive.: (4.15) solves the Einstein-Maxwell-scalar equations [RT83]
for any H2. Furthermore, for H2 < 0, there are no longer closed time-like
curves7. This statement is based on a simple argument8. Consider a time-
like curve xµ = xµ (λ). By definition the tangent vector ∂λ is negative-norm,
which, by using Eq. (4.15), translates into(

dρ

dλ

)2

+ cosh2 ρ

(
dφ

dλ

)2

−
(
1 + 2H2) ( dt

dλ
+ sinh ρ

dφ

dλ

)2

< 0. (4.18)

If the curve is closed, dt/dλ must vanish somewhere. At the turning point,
the resulting inequality,

(
2H2 sinh2 ρ− 1

)(dφ

dρ

)2

> 1 (4.19)

is never satisfied for H2 < 0, whereas it is for large enough9 ρ otherwise.
This apparent regularization of the causal pathology, unfortunately breaks

down at the string level. In fact, as we will shortly see, in order to be consid-
ered as a string solution, the above background requires a (chromo)magnetic
field. The latter turns out to be proportional to H, and becomes imaginary in the
range where the closed time-like curves disappear. Hence, at the string level,
unitarity is trade for causality. It seems that no regime exists in the magnetic

7As mentioned previously, the geometry at hand can be embedded in a seven-dimensional
flat space, with signature ε−−−+ + +, ε = sign(−H2) [RS98]. This clarifies the origin of the
symmetry as well as the presence or absence of closed time-like curves for positive or negative
H2.

8This argument is local and must in fact be completed by global considerations on the man-
ifold (see [RS98]).

9This means ρ > ρc where ρc is the radius where the norm of ∂φ vanishes and switches to

negative (‖∂φ‖2 = L2
(

1− 2H2 sinh2 ρ
)

/4). This never occurs for H2 < 0.
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deformation of AdS3, where these fundamental requirements are simultane-
ously fulfilled.

We now turn to the string realization of the above squashed sphere. In the
heterotic backgrounds considered here, of the type AdS3 × S3 × T4, the two-
dimensional N = (1, 0) world-sheet action corresponding to the AdS3 factor
is:

SSL(2,R)k
=

1
2π

∫
d2z

{
k
4
(
∂ρ∂̄ρ− ∂t∂̄t + ∂φ∂̄φ− 2 sinh ρ ∂φ∂̄t

)
+ ηab ψa∂̄ψb

}
,

(4.20)

where ηab = diag (+ +−), a = 1, 2, 3 and ψa are the left-moving superpartners
of the SL(2, R)k currents (see Tab. B.2). The corresponding background fields
are the metric (Eq. (B.20)) with radius L =

√
k and the NS B-field:

B = − k
4

sinh ρdφ ∧ dt. (4.21)

The three-form field strength is H[3] = dB = − 2√
k

ω[3] with ω[3] displayed in
Eq. (B.21).

The asymmetric perturbation that preserves a U(1)L × SL(2, R)R affine al-
gebra with time-like U(1)L is δS given in Eq. (4.5), where J3 now stands for
the left-moving time-like SL(2, R)k current given in App. B.2, Tab. B.2. This
perturbation corresponds to switching on a (chromo)magnetic field, like in the
SU(2)k studied in Sec. 4.1. It is marginal and can be integrated for finite values
of H, and is compatible with the N = (1, 0) world-sheet supersymmetry. The
resulting background fields, extracted in the usual manner from the deformed
action are the metric (4.15) with radius L =

√
k and the following gauge field:

A = H

√
2k
kg

(dt + sinh ρdφ) . (4.22)

The NS B-field is not altered by the deformation, (Eq. (4.21)), whereas the
three-form field strength depends explicitly on the deformation parameter H,
because of the gauge-field contribution:

H[3] = dB− kG

4
A ∧ dA = − k

4
(
1 + 2H2) cosh ρdρ ∧ dφ ∧ dt. (4.23)

One can easily check that the background fields (4.15), (4.22) and (4.23)
solve the lowest-order equations of motion. Of course the solution we have
obtained is exact, since it has been obtained as the marginal deformation of
an exact conformal sigma-model. The interpretation of the deformed model in
terms of background fields {Gab, Bab, FG

ab} receives however the usual higher-
order correction summarized by the shift k → k + 2 as we have already ex-
plained in Sec. 3.4.

Let us finally mention that it is possible to extract the spectrum and write
down the partition function of the above theory [Isr04], since the latter is an
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exact deformation of the SL(2, R)k WZW model. This is achieved by deforming
the associated elliptic Cartan subalgebra. The following picture emerges then
from the analysis of the spectrum. The short-string spectrum, corresponding
to world-sheets trapped in the “center” of the space–time (for some particu-
lar choice of coordinates) is well-behaved, because these world-sheets do not
feel the closed time-like curves which are “topologically large”. On the con-
trary, the long strings can wrap the closed time-like curves, and their spectrum
contains many tachyons. Hence, the caveats of Gödel space survive the string
framework, at any value of H2 > 0. One can circumvent them by slightly
deviating from the Gödel line with an extra purely gravitational deformation,
driven by J3 J̄3. This deformation isolates the causally unsafe region, ρ > ρc
(see [Isr04] for details). It is similar in spirit with the supertube domain-walls
of [DFS03] curing the Gödel-like space-times with RR backgrounds.

Hyperbolic deformation: electric background

The background and its CFT realization

We will now focus on a different deformation. We use coordinates (B.22) with
metric (B.23), where the manifest Killing vectors are L2 ∼ ∂x (space-like) and
R3 ∼ ∂τ (time-like) (see App. B.2, Tab. B.3). This time we perform a deforma-
tion that preserves a U(1)× SL(2, R) isometry. The U(1) corresponds to the
space-like Killing vector L2, whereas the SL(2, R) is generated by R1, R2, R3,
which are again not altered by the deformation. The resulting metric reads:

ds2 =
L2

4

[
dr2 − cosh2 rdτ2 +

(
1− 2H2) (dx + sinh rdτ)2

]
. (4.24)

The scalar curvature of this manifold is constant

R = − 2
L2

(
3 + 2H2) (4.25)

and the volume form

ω[3] =
L3

8

√
|1− 2H2| cosh2 r dr ∧ dτ ∧ dx. (4.26)

Following the argument of the previous section, one can check whether
closed time-like curves appear. Indeed, assuming their existence, the follow-
ing inequality must hold at the turning point i.e. where dt/dλ vanishes (λ
being the parameter that describes the curve):

(
2H2 − 1

) (dx
dr

)2

> 1. (4.27)

The latter cannot be satisfied in the regime H2 < 1/2. Notice that the manifold
at hand is well behaved, even for negative H2.

Let us now leave aside these questions about the classical geometry, and
address the issue of string realization of the above background. As already ad-
vertised, this is achieved by considering a world-sheet-supersymmetric marginal
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deformation of the SL(2, R)k WZW model that implements (chromo)electric
field. Such a deformation is possible in the heterotic string at hand:

δS =
√

kkGH

2π

∫
d2z

(
J2 + iψ1ψ3

)
J̄G, (4.28)

( J̄G is any Cartan current of the group G and J2 is given in App. B.2, Tab. B.3),
and corresponds, as in previous cases, to an integrable marginal deforma-
tion. The deformed conformal sigma-model can be analyzed in terms of back-
ground fields. The metric turns out to be (4.24), whereas the gauge field and
three-form tensor are

A = H

√
2k
kg

(dx + sinh rdτ) , (4.29)

H[3] =
k
4
(
1− 2H2) cosh rdr ∧ dτ ∧ dx. (4.30)

As expected, these fields solve the equations of motion.
The background under consideration is a new string solution generated as

a hyperbolic deformation of the SL(2, R)k WZW model. In contrast to what
happens for the elliptic deformation above, the present solution is perfectly
sensible, both at the classical and at the string level.

The spectrum of string primaries

The electric deformation of AdS3 is an exact string background. The corre-String primaries
for SL(2, R)

hyperbolic
deformation

sponding conformal field theory is however more difficult to deal with than
the one for the elliptic deformation. In order to write down its partition func-
tion, we must decompose the SL(2, R)k partition function in a hyperbolic ba-
sis of characters, where the implementation of the deformation is well-defined
and straightforward; this is a notoriously difficult exercise. On the other hand
the spectrum of primaries is known10 from the study of the representations
of the Lie algebra in this basis (see e.g. [VK91], and [DVV92] for the spectrum
of the hyperbolic gauged WZW model, i.e. at the extreme value of the defor-
mation parameter). The part of the heterotic spectrum of interest contains the
expression for the primaries of N = (1, 0) affine SL(2, R) at purely bosonic
level11 k + 2, together with some U(1) from the lattice of the heterotic gauge
group:

L0 = − j(j− 1)
k

− 1
2

(
n +

a
2

)2
, (4.31)

L̄0 = − j(j− 1)
k

+
1
2

(
n̄ +

h
2

)2

, (4.32)

10In the following we do not consider the issue of the spectral-flow representations. The
spectral-flow symmetry is apparently broken by the deformation considered here.

11More precisely we consider primaries of the purely bosonic affine algebra with an arbitrary
state in the fermionic sector.
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where the second Casimir of the representation of the SL(2, R) algebra,−j(j−
1), explicitly appears. The spectrum contains continuous representations, with
j = 1

2 + ıs, s ∈ R+. It also contains discrete representations, with j ∈ R+, lying
within the unitarity range 1/2 < j < (k + 1)/2 (see [MO01, Pet90]). In both
cases the spectrum of the hyperbolic generator J2 is µ ∈ R. The expression for
the left conformal dimensions, Eq. (4.31), also contains the contribution from
the world-sheet fermions associated to the ıψ1ψ3 current. The sector (R or NS)
is labelled by a ∈ Z2. Note that the unusual sign in front of the lattice is the nat-
ural one for the fermions of the light-cone directions. In the expression (4.32)
we have similarly the contribution of the fermions of the gauge group, where
h labels the corresponding sector.

We are now in position to follow the procedure, familiar from the previous
examples: we have to (i) isolate from the left spectrum the lattice of the su-
persymmetric hyperbolic current J2 + ıψ1ψ3 and (ii) perform a boost between
this lattice and the fermionic lattice of the gauge field. We hence obtain the
following expressions:

L0 = − j(j− 1)
k

− µ2

k + 2
− k + 2

2k

(
n +

a
2

+
2µ

k + 2

)2

+

+
1
2

[√
2
k

(
µ + n +

a
2

)
cosh x +

(
n̄ +

h
2

)
sinh x

]2

,

(4.33a)

L̄0 = − j(j− 1)
k

+
1
2

[(
n̄ +

h
2

)
cosh x +

√
2
k

(
µ + n +

a
2

)
sinh x

]2

.

(4.33b)

The relation between the boost parameter x and the deformation parameter H2

is given in Eq. (3.62), as for the case of the SU(2)k deformation. In particular
it is worth to remark that the first three terms of (4.33a) correspond to the left
weights of the supersymmetric two-dimensional Lorentzian black hole, i.e. the
SL(2, R)/O(1, 1) gauged super-WZW model.

This result is less striking that the whole partition function we obtained for
the compact SU(2). It is worthwhile to remark that the difference is only due
to technical reasons: in principle the very same construction could be applied
for the case at hand but it would require the decomposition of the SL(2, R)
partition function in terms of hyperbolic characters that at present is not yet
known.

Parabolic deformation: the AdS-wave background

In the deformations encountered in the previous sections one SL(2, R) isom-
etry breaks down to a U(1) generated either by a time-like or by a space-like
Killing vector. Deformations which preserve a light-like isometry do also exist
and are easily implemented in Poincaré coordinates.

We require that the isometry group is U(1)× SL(2, R) with a null Killing
vector for the U(1) factor. Following the by now familiar for the particular



54 Applications

case of light-like residual isometry, we are lead to

ds2 = L2

[
du2

u2 +
dx+dx−

u2 − 2H2
(

dx+

u2

)2
]

. (4.34)

The light-like U(1) Killing vector is L1 + L3 ∼ ∂− (see App. B.2, Tab. B.4). The
remaining SL(2, R) generators are { R1 + R3, R1 − R3, R2 } and remain unal-
tered after the deformation.

The above deformed anti-de-Sitter geometry looks like a superposition of
AdS3 and of a plane wave (whence the AdS-wave name). As usual, the sign of
H2 is free at this stage, and H2 < 0 are equally good geometries. In the near-
horizon region (|u| �

∣∣H2
∣∣) the geometry is not sensitive to the presence of the

wave. On the contrary, this plane wave dominates in the opposite limit, near
the conformal boundary.

The volume form is not affected by the deformation, and it is still given in
(B.27); neither is the Ricci scalar modified:

R = − 6
L2 . (4.35)

Notice also that the actual value of |H| is not of physical significance: it canParabolic discrete
deformation always be absorbed into a reparametrization x+ → x+/ |H| and x− → x− |H|.

The only relevant values for H2 can therefore be chosen to be 0,±1.
We now come to the implementation of the geometry (4.34) in a string

background. The only option is to perform an asymmetric exactly marginal
deformation of the heterotic SL(2, R)k WZW model that preserves a U(1)L ×
SL(2, R)R affine symmetry. This is achieved by introducing

δSelectric−magnetic = −4
√

kkGH

∫
d2z

(
J1 + J3 + i

(
ψ1 + ψ3

)
ψ2
)

J̄G,

(4.36)

(J1 + J3 is defined in App. B.2, Tab. B.4). The latter perturbation is integrable
and accounts for the creation of a (chromo)electromagnetic field

A = 2

√
2k
kG

H
dx+

u2 . (4.37)

It generates precisely the deformation (4.34) and leaves unperturbed the NS

field, H[3] = dB = − 2√
k

ω[3].
As a conclusion, the AdS3 plus plane-wave gravitational background is

described in terms of an exact conformal sigma model, that carries two extra
background fields: an NS three-form and an electromagnetic two-form. Simi-
larly to the symmetric parabolic deformation [IKP03], the present asymmetric
one can be used to construct a space–time supersymmetric background. The
SL(2, R)k-CFT treatment of the latter deformation would need the knowledge
of the parabolic characters of the affine algebra, not available at present.
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Quantum point particles in the AdS-wave background

Further insights of the physics of the AdS-wave background can be gathered
if we look at the motion of point particles. Let us start with the sigma model
Lagrangian where we keep the H parameter explicitly for sake of consistency:

S =
∫

dz2 1
u2 ∂u∂̄u +

1
u2 ∂x+∂̄x− − 2

H

u2 ∂x−∂̄ϕ +
1
2

∂ϕ∂̄ϕ, (4.38)

where all the fields are function of σ and τ. The point particle limit can be
obtained if we let the σ-dependence drop. This leads to:

Spoint =
1
2

∫
dτ

{
1
u2 u̇2 +

1
u2 ẋ− ẋ+ +

1
2

ϕ̇2 − 2
H

u2 ẋ− ϕ̇

}
, (4.39)

where the dot stands for the time derivative. The fourth dimension ϕ was Kaluza-Klein
reduction as a

partial integration
introduced as a fake direction along which perform a Kaluza–Klein reduction.
In this framework the same result is obtained if we consider ϕ as an auxiliary
variable and then substitute its equation of motion:

ϕ̇ = 2
Hẋ−

2u2 . (4.40)

The resulting effective action is then written as:

Spoint =
1
2

∫
dτ

{
1
u2 u̇2 +

1
u2 ẋ− ẋ+ − 2H2

u4

(
x−
)2
}

(4.41)

that is exactly the action for a free particle in the 3D AdS-wave metric in Eq. (4.34).
Now, out of this we can derive the Hamiltonian:

Hpoint =
1
16
(
c2 p2

+ + 2u2 (p−p+ + p2
u
))

, (4.42)

and with the usual rules of quantization this naturally translates to the Lapla-
cian of the AdS-wave geometry:

4 = ∇µ∇µ = 8H2∂2
+ + 4u2∂+∂− − u∂u + u2∂2

u. (4.43)

A quantum point particle described by the wave function Ψ (u, x−, x+) must
then obey the Klein-Gordon equation:

−4Ψ
(
u, x−, x+) = m2Ψ

(
u, x−, x+) . (4.44)

The fact that only the u variable appears explicitly suggests that we can write
the solution as:

Ψ
(
u, x−, x+) =

∫
dp−dp+ eı(p−x−+p+x+)Ψ̃ (u, p−, p+) (4.45)

so that the wave equation becomes:

u2∂2
uΨ̃ (u, p−, p+)−u∂uΨ̃ (u, p−, p+) =

(
−m2 + 8H2 p2

+ + 4u2 p−p+
)

Ψ̃ (u, p−, p+) .
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(4.46)

This is a modified Bessel equation whose canonical form is:

z2y′′ (z) + zy′ (z)−
(
z2 + ν2) y (z) = 0 (4.47)

and after some algebra we can write the general solution as:

Ψ̃ (u, p−, p+) = uIν (2
√

p−p+u) C1 (p−, p+)+ uKν (2
√

p−p+u) C2 (p−, p+)
(4.48)

where C1 (p−, p+) and C2 (p−, p+) are arbitrary functions, Iν (z) and Kν (z) are

modified Bessel functions of the first and second kind and ν =
√

1−m2 + 8 (Hp+)2.

Limiting geometries: AdS2 and H2

We have analyzed in Sec. 4.1 the behaviour of the magnetic deformation of
SU(2)k, at some critical (or boundary) value of the modulus H2, where the
background factorizes as R× S2 with vanishing NS three-form and finite mag-
netic field. We would like to address this question for the asymmetric defor-
mations of the SL(2, R)k model and show the existence of limiting situations
where the geometry indeed factorizes, in agreement with the expectations fol-
lowing the general analysis of Sec. 3.1

What can we expect in the framework of the SL(2, R)k asymmetric de-
formations? Any limiting geometry must have the generic U(1) × SL(2, R)k
isometry that translates the affine symmetry of the conformal model. If a line
decouples, it accounts for the U(1), and the remaining two-dimensional sur-
face must be SL(2, R)-invariant. Three different situations may arise: AdS2,
H2 or dS2. Anti de Sitter in two dimensions is Lorentzian with negative curva-
ture; the hyperbolic plane H2 (also called Euclidean anti de Sitter) is Euclidean
with negative curvature; de Sitter space is Lorentzian with positive curvature.

Three deformations are available for AdS3 and these have been analyzed
in Sec. 4.2. For unitary string theory, all background fields must be real and
consequently H2 > 0 is the only physical regime. In this regime, only the
hyperbolic (electric) deformation exhibits a critical behaviour at H2

max = 1/2.
For H2 < 1/2, the deformation at hand is a Lorentzian manifold with no closed
time-like curves. When H2 > 1/2, det g > 0 and two time-like directions
appear. At H2 = H2

max, det g vanishes, and this is the signature that some
direction indeed decompactifies.

We proceed therefore as in Sec. 3.1, and define a rescaled coordinate inDecompactifying
to AdS2 order to keep the decompactifying direction into the geometry and follow its

decoupling:

y =

√
k
2

(
1
2
− H2

)
x . (4.49)

The metric and volume form now read:

ds2 = dy2 +
k
4

[
dr2 −

(
1 + 2H2 sinh2 r

)
dτ2

]
+
√

k (1− 2H2) sinh r dτ dy
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(4.50)

and

ω[3] =
k
4

cosh r dr ∧ dτ ∧ dy. (4.51)

For H2 close to H2
max, the y-direction factorizes

ds2 −−−−−→
H2→H2

max

dy2 +
k
4

[
dr2 − cosh2 r dτ2

]
. (4.52)

The latter expression captures the phenomenon we were expecting:

AdS3 −−−−−→
H2→H2

max

R×AdS2. (4.53)

It also shows that the two-dimensional anti de Sitter has radius
√

k/4 and
supports entirely the curvature of the limiting geometry, R = −8/k (see ex-
pression (4.25)).

The above analysis shows that, starting from the SL(2, R)k WZW model,
there is a line of continuous exact deformation (driven by a (chromo)electric
field) that leads to a conformal model at the boundary of the modulus H2. This
model consists of a free non-compact boson times a geometric coset AdS2 ≡
SL(2, R)/U(1), with a finite electric field:

F =

√
k

kG
cosh r dr ∧ dτ (4.54)

and vanishing NS three-form background. The underlying geometric structure
that makes this phenomenon possible is that AdS3 can be considered as a non-
trivial S1 fibration over an AdS2 base. The radius of the fiber couples to the
electric field, and vanishes at H2

max. The important result is that this enables us
to promote the geometric coset AdS2 to an exact string vacuum.

We would like finally to comment on the fate of dS2 and H2 geometries,
which are both SL(2, R)-symmetric. De Sitter and hyperbolic geometries are
not expected to appear in physical regimes of string theory unless Ramond-
Ramond fields are turned on (see Ch. 7). The H3 sigma-model, for example,
is an exact conformal field theory, with imaginary antisymmetric tensor back-
ground though [Gaw91, Tes99]. Similarly, imaginary NS background is also
required for de Sitter vacua to solve the low-energy equations. It makes sense
therefore to investigate regimes with H2 < 0, where the electric or magnetic
backgrounds are indeed imaginary.

The elliptic (magnetic) deformation exhibits a critical behaviour in the re- Non-unitary H2
solutiongion of negative H2, where the geometry does not contain closed time-like

curves. The critical behaviour appears at the minimum value H2
min = −1/2,

below which the metric becomes Euclidean. The vanishing of det g at this
point of the deformation line, signals the decoupling of the time direction. The
remaining geometry is nothing but a two-dimensional hyperbolic plane H2. It
is Euclidean with negative curvature R = −8/k (see Eq. (4.16) with L2 = k).
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All this can be made more precise by introducing a rescaled time coordi-
nate:

T =

√
k
2

(
1
2

+ H2

)
t. (4.55)

The metric and volume form now read:

ds2 = −dT2 +
k
4

[
dρ2 +

(
1− 2H2 sinh2 ρ

)
dφ2

]
−
√

k (1 + 2H2) sinh ρdφdT

(4.56)

and

ω[3] =
k
4

cosh ρdρ ∧ dφ ∧ dT. (4.57)

For H2 close to H2
min, the T-direction factorizes

ds2 −−−−−→
H2→H2

max

−dT2 +
k
4

[
dρ2 + cosh2 ρdφ2

]
. (4.58)

The latter expression proves the above statement:

AdS3 −−−−−→
H2→H2

min

R× H2, (4.59)

and the two-dimensional hyperbolic plane has radius
√

k/4.
Our analysis finally shows that the continuous line of exactly marginal

(chromo)magnetic deformation of the SL(2, R) conformal model has a bound-
ary at H2 = −1/2 where its target space is a free time-like coordinate times a
hyperbolic plane. The price to pay for crossing H2 = 0 is an imaginary mag-
netic field, which at H2 = −1/2 reads:

F =

√
− k

kG
cosh ρ dφ ∧ dρ. (4.60)

The NS field strength vanishes at this point, and the geometric origin of the
decoupling at hand is again the Hopf fibration of the AdS3 in terms of an H2.

The H2 spectrum

A H2×Rt limit geometry can be reached if we allow for negative values of H2

which in turn imply the presence of an imaginary magnetic field. Although
this implies that the corresponding string theory is pathological (in example
because of unitarity problems), we obtain a perfectly respectable CFT for which
we can write, using the same technique as above, a modular-invariant parti-
tion function.

Let us start from the deformed partition function (see [Isr04]). The interest-The H2 CFT
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ing part for us is:

∫
d2t Zcigar

[
−t1

−t2

]
∑

N,W,n,n̄∈Z

eiπ(2Nt2+b(n+ a
2 )−δ(n̄+ γ

2 ))

× q−
[

cos ζ√
k+2 (

N
2 + k+4

2 (W+t1)+n+ a
2 )+ sin ζ√

2 (n̄+ γ
2 )
]2

+ k+4
2(k+2) (n+ a

2 +(W+t1)+ N
k+4 )

2

× q̄−
1

k+4 ( N
2 −

k+4
2 (W+t1))2

+
[

cos ζ√
2 (n̄+ γ

2 )− sin ζ√
k+2 (N+ k+4

2 (W+t1)+n+ a
2 )
]2

(4.61)

where

cos ζ =
1

1 + 2H2 . (4.62)

If we consider H2 < 0 the trigonometric functions became hyperbolic and there
is a critical point H2 = −1/2 where the boost diverges. Consistency then im-
poses the following constraint on the charges:

1√
k + 2

(
N
2

+
k + 4

2
(W + t1) + n +

a
2

)
+

1√
2

(
n̄ +

γ

2

)
= 0 (4.63)

introducing, for notation convenience

k = 2p2 − 2 (4.64)

where p ∈ R (there is no reason for quantization), the constraint can be rewrit-
ten as

N + 2
(

p2 + 1
)
(W + t1) + 2n + a + p (n̄ + 2γ) = 0 (4.65)

that is equivalent to asking{
N + 2n + a = Q ∈ Z

2
(

p2 + 1
)
(W + t1) + p (n̄ + 2γ) = −Q

(4.66)

whence we can rewrite t1 as

t1 = −Q + p (2n̄ + γ)
2 (p2 + 1)

−W (4.67)

and Eq. (4.61) becomes:

∫
dt2 ∑

N,Q,W,n̄∈Z

Zcigar

[Q+2p(n̄+γ/2)
2(p2+1) + W
−t2

]
eıπ(2Nt2+b Q−N

2 −δ(n̄+γ/2))×

× q
1

2(p2+1) (p Q−N
2 −(n̄+γ/2))2

q̄
− 1

2(p2+1) (
Q+N

2 +p(n̄+γ/2))2

(4.68)

or, introducing the integers A, B as:

A = Q + N (4.69)
B = Q− N (4.70)
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finally can write the H2 partition function as follows:

∫
dt2 ∑

A,B,W,n̄∈Z

Zcigar

[ A+B+4p(n̄+γ/2)
4(p2+1) + W
−t2

]
eıπ((A−B)t2+b B

2−δ(n̄+γ/2))×

× q
1

2(p2+1) (p B
2−(n̄+γ/2))2

q̄
− 1

2(p2+1) (
A
2 +p(n̄+γ/2))2

. (4.71)

It is intriguing to find that the partition function for the geometric coset H2 =
AdS3/R is related to the one for the adjoint coset cigar = AdS3/R. One may
wonder if this hints at some operation allowing to pass from the former to the
latter, but we will not speculate further in this direction.

4.3 Near horizon geometry for the Bertotti-Robinson
black hole

The AdS2 × S2 geometry appeared first in the context of Reissner–Nordström
black holes. The latter are solutions of Maxwell–Einstein theory in four dimen-
sions, describing charged, spherically symmetric black holes. For a black hole
of mass M and charge Q, the solution reads:

ds2 = −
(

1− r+

r

) (
1− r−

r

)
dt2 +

dr2(
1− r+

r

) (
1− r−

r

) + r2dΩ2
2 , (4.72a)

F =
Q
r2 dt ∧ dr with r± = G4

(
M±

√
M2 −Q2

)
; (4.72b)

r+ and r− are the outer and inner horizons, and G4 is Newton’s constant in
four dimensions.

In the extremal case, r+ = r− = r0 (M2 = Q2), and the metric approaches
the AdS2 × S2 geometry in the near-horizon12 limit r → r0. This solution can
of course be embedded in various four-dimensional compactifications of string
theory, and will be supersymmetric in the extremal case (see e.g. [You99] for a
review). In this context we are dealing with some heterotic compactification.

Notice that the AdS2 × S2 geometry also appears in type IIB superstring
theory, but with RR backgrounds [FKS95]. The black hole solution is obtained
by wrapping D3-branes around 3-cycles of a Calabi–Yau three-fold; in the ex-
tremal limit, one obtains the AdS2 × S2 solution, but at the same time the CY
moduli freeze to some particular values. A hybrid Green–Schwarz sigma-
model action for this model has been presented in [BBH+00] (see also [Ver04]
for AdS2). The interest for AdS2 × S2 space–time is motivated by the fact
that it provides an interesting simplified laboratory for AdS/CFT correspon-
dence [Mal98]. In the present case the dual theory should correspond to some
superconformal quantum mechanics [BPS98, C+98, GT99, CCKM01].

12With the near-horizon coordinates U = (1− r0/r)−1 and T = t/r0, the near-horizon ge-
ometry is

ds2 = r2
0

(
−dT2

U2 +
dU2

U2 + dΩ2
2

)
.

Both AdS2 and S2 factors have the same radius r0.
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The spectrum

As a first step in the computation of the AdS2 × S2 string spectrum, we must
determine the spectrum of the AdS2 factor, by using the same limiting proce-
dure as in Sec. 4.1 for the sphere. The spectrum of the electrically deformed
AdS3, is displayed in Eqs. (4.33a) and (4.33b). The AdS2 limit is reached for Boost on the

spectrum of AdS2
primaries

cosh x → ∞, which leads to the following constraint on the charges of the
primary fields:

n̄ +
h
2

+
√

2
k

(
µ + n +

a
2

)
= 0. (4.73)

In contrast with the S2 case, since µ is any real number – irrespectively of the
kind of SL(2, R) representation – there is no extra quantization condition for
the level to make this limit well-defined. In this limit, the extra U(1) decom-
pactifies as usual and can be removed. Plugging the constraint (4.73) in the
expressions for the dimensions of the affine primaries, we find

L0 = − j(j− 1)
k

− 1
2

(
n̄ +

h
2

)2

− 1
2

(
n +

a
2

)2
, (4.74a)

L̄0 = − j(j− 1)
k

. (4.74b)

In addition to the original AdS3 spectrum, Eqs. (4.31) and (4.32), the right-
moving part contain an extra fermionic lattice describing the states charged
under the electric field. Despite the absence of N = 2 superconformal sym-
metry due to the Lorentzian signature, the theory has a “fermion-number” left
symmetry, corresponding to the current:

J = ıψ1ψ3 +
2
k

(
J2 + ıψ1ψ3

)
. (4.75)

The charges of the primaries (4.74) are

QF = n +
a
2
−
√

2
k

(
n̄ +

h
2

)
. (4.76)

AdS2 × S2 ×M and space–time supersymmetry

Let us now consider the complete heterotic string background which consists
of the AdS2 × S2 space–time times an N = 2 internal conformal field theory
M, that we will assume to be of central charge ĉ = 6 and with integral R-
charges. Examples of thereof are toroidal or flat-space compactifications, as
well as Gepner models [Gep88].

The levels k of SU(2) and k̂ of SL(2, R) are such that the string background Supersymmetry
and level

quantization for
AdS2 × S2

is critical:

ĉ =
2(k− 2)

k
+

2(k̂ + 2)
k̂

= 4 =⇒ k = k̂. (4.77)
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This translates into the equality of the radii of the corresponding S2 and AdS2
factors, which is in turn necessary for supersymmetry. Furthermore, the charge
quantization condition for the two-sphere (Sec. 4.1) imposes a further restric-
tion on the level to k = 2p2, p ∈N.

In this system the total fermionic charge is

Q = n +
a
2
− N − h/2

p
+ n′ +

a
2
− n̄′ + h/2

p
+QM. (4.78)

Hence, assuming that the internal N = 2 charge QM is integral, further con-
straints on the electromagnetic charges of the theory are needed in order to
achieve space–time supersymmetry. Namely, we must only keep states such
that

N + n̄′ = 0 mod p. (4.79)

This projection is some kind of generalization of Gepner models. Usually, such
a projection is supplemented in string theory by new twisted sectors. We then
expect that, by adding on top of this projection the usual GSO projection on odd
fermion number, one will obtain a space–time supersymmetric background.
However, the actual computation would need the knowledge of hyperbolic
coset characters of SL(2, R) (i.e. Lorentzian black-hole characters), and of their
modular properties. We can already observe that this “Gepner-like” orbifold
keeps only states which are “dyonic” with respect to the electromagnetic field
background. Notice that, by switching other fluxes in the internal theoryM
one can describe more general projections.

4.4 The three-dimensional black string revisited

The AdS3 moduli space contains black hole geometries. This has been known
since the most celebrated of them – the two-dimensional SL(2, R)/U(1) black
hole – was found by Witten [Wit91, DVV92]. Generalisations of these con-
structions to higher dimensions have been considered in [HH92, Ger95, Hor92,
KT94]. The three-dimensional black string [HH92, HHS92, HW93] has at-
tracted much attention, for it provides an alternative to the Schwarzschild
black hole in three-dimensional asymptotically flat geometries13. In this sec-
tion we want to show how this black string can be interpreted in terms of
marginal deformations of SL(2, R), which will enable us to give an expression
for its string primary states.

In [HH92] the black string was obtained as an (SL(2, R)×R) /R gaugedThe three-
dimensional

black string as a
current-current

deformation

model. More precisely, expressing g ∈ SL(2, R)×R as:

g =

 a u 0
−v b 0
0 0 ex

 , (4.80)

13Remember that the no hair theorem doesn’t hold in three dimensions [Isr67, Heu98, GIS02].
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the left and right embeddings of the R subgroup are identical and given by:

εL/R : R→ SL(2, R)×R (4.81)

λ 7→


e

1√
λ2+2 0 0

0 e
− 1√

λ2+2 0

0 0 e
λ√

λ2+2

 . (4.82)

From the discussion in Sec. 3.1, we see that performing this gauging is just
one of the possible ways to recover the J2 J̄2 symmetrically deformed SL(2, R)
geometry. More specifically, since the gauged symmetry is axial (g → hgh), it
corresponds (in our notation) to the κ2 < 1 branch of the deformed geometry
in Eq. (C.5a)14. One can find a coordinate transformation allowing to pass
from the usual black-string solution

ds2 = k
4

[
−
(
1− 1

r

)
dt2 +

(
1− µ2

r

)
dx2 +

(
1− 1

r

)−1
(

1− µ2

r

)−1
dr2

r2

]
,

H = k
4

µ
r dr ∧ dx ∧ dt,

e2Φ = µ
r

(4.83)

to our (local) coordinate system, Eq. (C.5). The attentive reader might now
be puzzled by this equivalence between a one-parameter model such as the
symmetrically deformed model and a two-parameter one such as the black
string in its usual coordinates (in Eqs. (4.83) we redefined the r coordinate as
r → r/M and then set µ = Q/M with respect to the conventions in [HH92]).
A point that it is interesting to make here is that although, out of physical Single physical

parameter for the
black string

considerations, the black string is usually described in terms of two parameters
(mass and charge), the only physically distinguishable parameter is their ratio
µ = Q/M that coincides with our κ2 parameter. In the next section we will
introduce a different (double) deformation, this time giving rise to a black hole
geometry depending on two actual parameters (one of which being related to
an additional electric field).

As we remarked above, the axial gauging construction only applies for
µ < 1, while, in order to obtain the other κ2 > 1 branch of the J2 J̄2 deformation,
one should perform a vector gauging. On the other hand, this operation, that
would be justified by a CFT point of view, is not natural when one takes a more
geometrical point of view and writes the black string metric as in Eq. (4.83). In
the latter, one can study the signature of the metric as a function of r in the two
regions µ2 ≷ 1, and find the physically sensible regions (see Tab. 4.1).

Our observations are the following:

• The µ2 < 1 branch always has the correct (−, +, +) signature for any
value of r, with the two special values r = 1 and r = µ2 marking the
presence of the horizons that hide the singularity in r = 0.

14The R ≷ 1 convention is not univocal in literature.
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µ name dt2 dx2 dr2 range CFT interpretation

µ2 > 1
(c+) − + + r > µ2 J3 J̄3, κ3 > 1
(b+) − − − 1 < r < µ2

(a+) + − + 0 < r < 1 J3 J̄3, κ3 < 1

µ2 < 1
(a−) + − + 0 < r < µ2

J2 J̄2, κ2 < 1(b−) + + − µ2 < r < 1
(c−) − + + r > 1

Table 4.1: Signature for the black-string metric as a function of r, for µ2 ≷ 1.

• The µ2 > 1 branch is different. In particular we see that there are two
regions: (a+) for 0 < r < 1 and (c+) for r > µ2 where the signature is
that of a physical space.

A fact deserves to be emphasized here: one should notice that while for µ2 < 1
we obtain three different regions of the same space, for µ2 > 1 what we show
in Tab. 4.1 really are three different spaces and the proposed ranges for r are
just an effect of the chosen parameterization. The (a+) , κ3 < 1 and (c+) , κ3 > 1
branches are different spaces and not different regions of the same one and one
can choose in which one to go when continuing to µ > 1.

But there is more. The µ2 > 1 region is obtained via an analytic continua-
tion with respect to the other branch, and this analytic continuation is precisely
the one that interchanges the roles of the J2 and the J3 currents. As a result,
we pass from the J2 J̄2 line to the J3 J̄3 line. More precisely the (c+) region de-
scribes the “singular” κ3 > 1 branch of the J3 J̄3 deformation (i.e. the branch
that includes the r = 0 singularity) and the (a+) region describes the regular
κ3 < 1 branch that has the cigar geometry as κ3 → 0 limit. Also notice that the
regions r < 0 have to be excluded in order to avoid naked singularities (of the
type encountered in the Schwarzschild black hole with negative mass). The
black string described in [HH92] covers the regions (a−) , (b−) , (c−) , (a+).

Our last point concerns the expectation of the genuine AdS3 geometry as
a zero-deformation limit of the black-string metric, since the latter turns out
to be a marginal deformation of AdS3 with parameter µ. The straightforward
approach consists in taking the line element in Eq. (4.83) for µ = 1. It is then
puzzling that the resulting extremal black-string geometry is not AdS3. This
apparent paradox is solved by carefully looking at the coordinate transforma-
tions that relate the black-string coordinates (r, x, t) to either the Euler coor-
dinates (ρ, φ, τ) (B.13) for the J3 J̄3 line, or the hyperbolic coordinates (y, x, t)
for the J2 J̄2 line. These transformations are singular at µ = 1, which therefore
corresponds neither to κ3 = 1 nor to κ2 = 1. Put differently, µ = 1 is not part
of a continuous line of deformed models but marks a jump from the J2 J̄2 to the
J3 J̄3 lines.

The extremal black-string solution is even more peculiar. Comparing Eqs.
(4.83) at µ = 1 to Eqs. (C.6), which describe the symmetrically null-deformed
SL(2, R), we observe that the two backgrounds at hand are related by a coor-
dinate transformation, provided ν = −1.
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The black string background is therefore entirely described in terms of
SL(2, R) marginal symmetric deformations, and involves all three of them.
The null deformation appears, however, for the extremal black string only and
at a negative value of the parameter ν. The latter is the density of fundamen-
tal strings, when the deformed AdS3 is considered within the NS5/F1 system.
This might be one more sign pointing towards a Gregory-Laflamme instability
in the black string [GL93].

Notice finally that expressions (4.83) receive 1/k corrections. Those have
been computed in [Sfe93]. Once taken into account, they contribute in making
the geometry smoother, as usual in string theory.

An interesting mix

A particular kind of asymmetric deformation is what we will call in the follow-
ing double deformation [KK95, Isr04]. At the Lagrangian level this is obtained
by adding the following marginal perturbation to the WZW action:

δS = δκ2
∫

d2z J J̄ + H

∫
d2z J Ī; (4.84)

J is a holomorphic current in the group, J̄ the corresponding anti-holomorphic
current and Ī an external (to the group) anti-holomorphic current (i.e. in the
right-moving heterotic sector for example). A possible way to interpret this
operator consists in thinking of the double deformation as the superposition
of a symmetric – or gravitational – deformation (the first addend) and of an an-
tisymmetric one – the electromagnetic deformation. This mix is consistent be-
cause if we perform the κ deformation first, the theory keeps the U(1)×U(1)
symmetry generated by J and J̄ that is needed in order to allow for the H de-
formation. Following this trail, we can read off the background fields corre-
sponding to the double deformation by using at first one of the methods out-
lined in Sec. 3.1 and then applying the Kaluza-Klein reduction to the resulting
background fields.

The final result consists in a metric, a three-form, a dilaton and a gauge
field. It is in general valid at any order in the deformation parameters κ and H

but only at leading order in α′ due to the presence of the symmetric part.
Double deformations of AdS3 where J is the time-like J3 operator have been

studied in [Isr04]. It was there shown that the extra gravitational deformation
allows to get rid of the closed time-like curves, which are otherwise present
in the pure J3 asymmetric deformation (Eq. (4.15)) – the latter includes Gödel
space. Here, we will focus instead on the case of double deformation generated
by space-like operators, J2 and J̄2.

The hyperbolic double deformation

In order to follow the above prescription for reading the background fields A two-parameter
charged black

string
in the double-deformed metric let us start with the fields in Eqs. (C.5). We
can introduce those fields in the sigma-model action. Infinitesimal variation



66 Applications

of the latter with respect to the parameter κ2 enables us to reach the following
expressions for the chiral currents J2

κ (z) and J̄2
κ (z̄) at finite values of κ2:

J2
κ (z) =

1
cos2 t + κ2 sin2 t

(
cos2 t ∂ψ− sin2 t ∂ϕ

)
, (4.85)

J̄2
κ (z̄) =

1
cos2 t + κ2 sin2 t

(
cos2 t ∂ψ + sin2 t ∂ϕ

)
. (4.86)

Note in particular that the corresponding Killing vectors (that clearly are ∂ϕ

and ∂ψ) are to be rescaled as L2 = 1
κ2 ∂ψ − ∂ϕ and R2 = 1

κ2 ∂ψ + ∂ϕ. Once the
currents are known, one has to apply the construction sketched in Sec. 3.2 and
write the background fields as follows:



1
k

ds2 = −dt2 + cos2 t
(
κ2 − 2H2) cos2 t + κ4 sin2 t

∆κ(t)2 dψ2 − 4H2 cos2 t sin2 t
∆κ(t)2 dψdϕ+

+ sin2 t
cos2 t +

(
κ2 − 2H2) sin2 t
∆κ(t)2 dϕ2

1
k B = κ2−2H2

κ2
cos2 t
∆κ(t) dϕ ∧ dψ

F = 2H
√

2k
kg

sin(2t)
∆κ(t)2

(
κ2dψ ∧ dt + dt ∧ dϕ

)
e−Φ =

√
κ2−2H2

∆κ(t)

(4.87)

where ∆κ(t) = cos2 t + κ2 sin2 t as in App. C. In particular the dilaton, that
can be obtained by imposing the one-loop beta equation is proportional to the
ratio of the double deformed volume form and the AdS3 one.

A first observation about the above background is in order here. The elec-
tric field is bounded from above since H2 ≤ κ2

2 . As usual in string theory,
tachyonic instabilities occur at large values of electric or magnetic fields, which
is just a way of interpreting the decompactification boundary value for the de-
formation parameter. At the critical value of H, one dimension degenerates
and the B-field vanishes. We are left with a two-dimensional space (with non-
constant curvature) plus electric field.

The expression (4.87) here above of the metric provides only a local de-
scription of the space-time geometry. To discuss the global structure of the
whole space it is useful to perform several coordinate transformations. Firstly
let us parametrize by κ2 = λ/(1 + λ) the deformation parameter (with κ < 1
for λ > 0 and κ > 1 for λ < −1) and introduce a radial coordinate à la Horne
and Horowitz:

r = λ + cos2 t, (4.88)

which obviously varies between λ and λ + 1. The expression of the metric
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(4.87) becomes in terms of this new coordinate:

ds2 = −

(2H2 (1 + λ)2 − λ
)

+
λ
(

λ− 4H2 (1 + λ)2
)

r
+

2λ2H2 (1 + λ)2))
r2

dψ2+

− (1 + λ)

2H2 (1 + λ) + 1−
(1 + λ)

(
1 + 4H2 (1 + λ)2

)
r

+
2 (1 + λ)3 H2

r2

dϕ2+

+ 4H2 (1 + λ)2
[

1− 1 + 2λ

r
+

λ (1 + λ)
r2

]
dψdϕ +

1
4 (r− λ) (r− λ− 1)

dr2. (4.89)

This expression looks close to the one discussed by Horne and Horowitz. It
also represents a black string. However, it depends on more physical parame-
ters as the expression of the scalar curvature shows:

R = 2
2r (1 + 2λ)− 7λ (1 + λ)− 2H2 (1 + λ)2

r2 . (4.90)

Obviously this metric can be extended behind the initial domain of definition
of the r variable. But before to discuss it, it is interesting to note that the Killing
vector k = (1 + λ) ∂ψ + λ ∂φ ∝ R2 is of constant square length

k.k = λ (1 + λ)− 2H2 (1 + λ)2 := ω. (4.91)

Note that as H2 is positive, we have the inequality ω < λ (1 + λ). Moreover,
in order to have a Lorentzian signature we must impose ω > 0. The fact that
the Killing vector k is space-like and of constant length makes it a candidate to
perform identifications. We shall discuss this point at the end of this section.

The constancy of the length of the Killing vector k suggests to make a new
coordinate transformation (such that k = ∂x) :

ψ = (1 + λ) x + t, (4.92a)
ϕ = t + λx, (4.92b)

which leads to the much simpler expression of the line element:

ds2 = − (r− λ) (r− λ− 1)
r2 dt2 + ω

(
dx +

1
r

dt
)2

+
1

4 (r− λ) (r− λ− 1)
dr2.

(4.93)

This metric is singular at r = 0, λ, λ + 1; r = 0 being a curvature singularity. On
the other hand, the volume form is

√
ω/(2r)dt∧dx∧dr, which indicates that the

singularities at r = λ and r = λ + 1 may be merely coordinate singularities,
corresponding to horizons. Indeed, it is the case. If we expand the metric,
around r = λ + 1, for instance, at first order (i.e. for r = λ + 1 + ε) we obtain:

ds2 =
ω

(1 + λ)2 (dt +(1 + λ) dx)2− ε

(1 + λ)2 dt
[

dt + 2
ω

1 + λ
(dt + (1 + λ) dx)

]
+

+
1
4ε

dr2 (4.94)



68 Applications

indicating the presence of a horizon. To eliminate the singularity in the metric,
we may introduce Eddington–Finkelstein like coordinates:

t = (1 + λ)
(

u ± 1
2

ln ε

)
−ωξ, (4.95a)

x =
(

1 +
ω

1 + λ

)
ξ −

(
u± 1

2
ln ε

)
. (4.95b)

The same analysis can also be done near the horizon located at r = λ. Writing
r = λ + ε, the corresponding regulating coordinate transformation to use is
given by:

t = λ

(
u± 1

2
ln ε

)
+ ωξ, (4.96a)

x =
(

1− ω

λ

)
ξ −

(
u ± 1

2
ln ε

)
. (4.96b)

In order to reach the null Eddington–Finkelstein coordinates, we must use
null rays. The geodesic equations read, in terms of a function Σ2[E, P, ε; r] =
(Er− P)2 −

(
P2/ω

)
− ε (r− λ) (r− λ− 1):

σ =
∫ 1

4 Σ[E, P, ε; r]
dr (4.97a)

t =
∫ (Er− P) r

2 (r− λ) (r− λ− 1) Σ[E, P, ε; r]
dr (4.97b)

x = −
∫ (Er− P) + P/ω

2 (r− λ) (r− λ− 1) Σ[E, P, ε; r]
dr (4.97c)

where E and P are the constant of motion associated to ∂t and ∂x, σ is an affine
parameter and ε, equal to 1, 0,−1, characterizes the time-like, null or space-
like nature of the geodesic. Comparing these equations (with ε = 0 and P = 0)
with the coordinates introduced near the horizons, we see that regular coordi-
nates in their neighbourhoods are given by

t = T ± 1
2

((1 + λ) ln |r− λ− 1| − λ ln |r− λ|) , (4.98a)

x = X∓ 1
2

(ln |r− λ− 1| − ln |r− λ|) , (4.98b)

which leads to the metric

ds2 =
(
−1 +

1 + 2λ

r
− λ (1 + λ)−ω

r2

)
dT2 + 2

ω

r
dXdT + ωdX2 ∓ 1

r
dTdr

(4.99)

According to the sign, we obtain incoming or outgoing null coordinates; to
build a Kruskal coordinate system we have still to exponentiate them.

Obviously, we may choose the X coordinate in the metric (4.99) to be pe-
riodic without introducing closed causal curves. The question of performing
more general identifications in these spaces will be addressed below.
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We end this section by computing the conserved charges associated to the
asymptotic symmetries of our field configurations. As is well known, their
expressions provide solutions of the equations of motion derived from the low
energy effective action

S =
∫

ddx
√
−g e−2Φ

[
R + 4(∇Φ)2 − 1

12
H2 −

kg

8
F2 +

δc
3

]
, (4.100)

in which we have choosen the units such that δc = 12.
The expression (4.93) for the metric is particularly appropriate to describe

the asymptotic properties of the solution. In these coordinates, the various,
non gravitational, fields read as

F = ±
√

2H(1 + λ)
r2
√

kg
dt ∧ dr, (4.101a)

H = ∓ω

r2 dt ∧ dx ∧ dr, (4.101b)

Φ = Φ? −
1
2

ln r, (4.101c)

By setting
√

ωx = x̄ and r = e2ρ̄, near infinity (ρ̄→ ∞), the metric asymptotes
the standard flat metric: ds2 = −dt2 + dx̄2 + dρ̄2, while the fields F and H van-
ish and the dilaton reads Φ = Φ? − ρ̄. This allows to interpret the asymptotic
behavior of our solution (4.87) as a perturbation around the solution given by
F = 0, H = 0, the flat metric and a linear dilaton: Φ̄ = Φ? + fαXα, (with here
fα = (0, 0,−1)). Accordingly, we may define asymptotic charges associated to
each asymptotic reductibility parameter (see [BB02]).

For the gauge symmetries we obtain as charges, associated to the H field Asymptotic
charges for the
charged black

string
QH = ±2e−2Φ?

√
ω (4.102)

and to the F field

QF = ±2
√

2e−2Φ? H(1 + λ)√
kg

. (4.103)

The first one reduces (up to normalization) for H = 0 to the result given in
[HH92], while the second one provides an interpretation of the deformation
parameter H.

Moreover, all the Killing vectors of the flat metric defining isometries pre-
serving the dilaton field allow to define asymptotic charges. These charges are
obtained by integrating on the surface at infinity the antisymmetric tensor:

k[µν]
ξ = e−2Φ̄

(
ξσ ∂λHσλµν +

1
2

∂λξσ Hσλµν + 2(ξµhν
λ f λ − ξνhµ

λ f λ)
)

(4.104)

where

Hσλµν = h̄σνηλµ + h̄λµησν − h̄σµηλν − h̄λνησµ (4.105)
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is the well known tensor sharing the symmetries of the Riemann tensor and
h̄µν = hµν − 1

2 ηµνηαβhαβ, while the Killing vector ξ has to verify the invariance

condition ξα f α = 0. The expression of the tensor k[µν]
ξ depends only on the

perturbation hµν of the metric tensor because, on the one hand, the F and H
fields appear quadratically in the lagrangian, and their background values are
zero, while, on the other hand, the perturbation field for the dilaton vanishes:
Φ = Φ̄ .

Restricting ourselves to constant Killing vectors, we obtain the momenta
(defined for the indice σ = t and x̄)

Pσ =
∫

dx̄ e−2Φ̄
(

∂λHσλtρ̄ − 2ησthν
ρ̄

)
(4.106)

i.e. the density of mass (µ) and momentum (v) per unit length:

µ = 2e−2Φ?(1 + 2λ)and v = −2e−2Φ?
√

ω. (4.107)

Of course, if we perform identifications such that the string acquires a finite
length, the momenta (4.106) become also finite.

To make an end let us notice that the expressions of µ and v that we obtain
differ from those given in [HH92] by a normalization factor but also in their
dependance with respect to λ, even in the limit H = 0; indeed, the asymptotic
Minkowskian frames used differ from each other by a boost.

Discrete identifications

In the same spirit as the original BTZ construction reminded in the previous
section, we would like to investigate to what extent discrete identifications
could be performed in the deformed background. Necessary conditions for a
solution (4.99) to remain “viable” black hole can be stated as follows:

• the identifications are to be performed along the orbits of some Killing
vector ξ of the deformed metric

• there must be causally safe asymptotic regions (at spatial infinity)

• the norm of ξ has to be positive in some region of space-time, and chrono-
logical pathologies have to be hidden with respect to an asymptotic safe
region by a horizon.

The resulting quotient space will exhibit a black hole structure if, once the
regions where ‖ξ‖ < 0 have been removed, we are left with an almost geodesi-
cally complete space, the only incomplete geodesics being those ending on
the locus ‖ξ‖ = 0. It is nevertheless worth emphasizing an important differ-
ence with the BTZ construction. In our situation, unlike the undeformed AdS3
space, the initial space-time where we are to perform identifications do exhibit
curvature singularities.
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The BTZ black hole

In the presence of isometries, discrete identifications provide alternatives for
creating new backgrounds. Those have the same local geometry, but differ with
respect to their global properties. Whether these identifications can be im-
plemented as orbifolds at the level of the underlying two-dimensional string
model is very much dependent on each specific case.

For AdS3, the most celebrated geometry obtained by discrete identification
is certainly the BTZ black hole [BTZ92]. The discrete identifications are made
along the integral lines of the following Killing vectors (see Eqs. (B.15)):

non-extremal case : ξ = (r+ + r−) R2 − (r+ − r−) L2, (4.108a)
extremal case : ξ = 2r+R2 − (R1 − R3)− (L1 + L3) . (4.108b)

In the original BTZ coordinates, the metric reads:

ds2 = L2
[
− f 2(r) dt2 + f−2(r) dr2 + r2

(
dϕ− r+r−

r2 dt
)2
]

, (4.109)

with

f (r) =
1
r

√(
r2 − r2

+
) (

r2 − r2
−
)
. (4.110)

In this coordinate system,

∂ϕ ≡ ξ , ∂t ≡ − (r+ + r−) R2 − (r+ − r−) L2 and r2 ≡ ‖ξ‖ . (4.111)

In AdS3 ϕ is not a compact coordinate. The discrete identification makes ϕ an
angular variable, ϕ ∼= ϕ + 2π, which imposes to remove the region with r2 < 0.
The BTZ geometry describes a three-dimensional black hole, with mass M and
angular momentum J, in a space–time that is locally (and asymptotically) anti-
de Sitter. The chronological singularity at r = 0 is hidden behind an inner
horizon at r = r−, and an outer horizon at r = r+. Between these two horizons,
r is time-like. The coordinate t becomes space-like inside the ergosphere, when
r2 < r2

erg ≡ r2
+ + r2

−. The relation between M, J and r± is as follows:

r2
± =

ML
2

1±

√
1−

(
J

ML

)2
 . (4.112)

Extremal black holes have |J| = ML (r+ = r−). In the special case J = ML = 0
one finds the near-horizon geometry of the five-dimensional NS5/F1 stringy
black hole in its ground state. Global AdS3 is obtained for J = 0 and ML = −1.

Many subtleties arise, which concern e.g. the appearance of closed time-
like curves in the excised region of negative r2 (where ∂ϕ would have been
time-like) or the geodesic completion of the manifold; a comprehensive anal-
ysis of these issues can be found in [BHTZ93]. At the string-theory level, the
BTZ identification is realized as an orbifold projection, which amounts to keep-
ing invariant states and adding twisted sectors [NS98, HKV02].
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Besides the BTZ solution, other locally AdS3 geometries are obtained, by
imposing identification under purely left (or right) isometries, refereed to as
self-dual (or anti-self-dual) metrics. These were studied in [CH94]. Their
classification and isometries are exactly those of the asymmetric deformations
studied in the present chapter. The Killing vector used for the identification is
(A) time-like (elliptic), (B) space-like (hyperbolic) or (C) null (parabolic), and
the isometry group is U(1)× SL(2, R). It was pointed out in [CH94] that the
resulting geometry was free of closed time-like curves only in the case (B).

Discrete identifications in asymmetric deformations

Our analysis of the residual isometries in purely asymmetric deformations
(Sec. 3.1) shows that the vector ξ (Eq. (4.108a)) survives only in the hyperbolic
deformation, whereas ξ in Eq. (4.108b) is present in the parabolic one. Put dif-
ferently, non-extremal BTZ black holes allow for electric deformation, while in
the extremal ones, the deformation can only be induced by an electro-magnetic
wave. Elliptic deformation is not compatible with BTZ identifications.

The question that we would like to address is the following: how much
of the original black hole structure survives the deformation? The answer is
simple: a new chronological singularity appears in the asymptotic region of
the black hole. Evaluating the norm of the Killing vector shows that a naked
singularity appears. Thus the deformed black hole is no longer a viable grav-
itational background. Actually, whatever the Killing vector we consider to
perform the identifications, we are always confronted to such pathologies.

The fate of the asymmetric parabolic deformation of AdS3 is similar: there is
no region at infinity free of closed time-like curves after performing the iden-
tifications.

Discrete identifications in symmetric deformations

Let us consider the symmetric hyperbolic deformation, whose metric is given
by (4.93) with H = 0, i.e. ω = λ (1 + λ). This metric has two residual Killing
vectors, manifestly given by ∂t and ∂x. We may thus, in general, consider
identifications along integral lines of

ξ = a ∂t + ∂x. (4.113)

This vector has squared norm:

‖ξ‖2 =
(
λ (1 + λ)− a2)+

aλ (1 + λ) + a2 (1 + 2λ)
r

. (4.114)

To be space-like at infinity the vector ξ must verify the inequality λ (1 + λ) >
a2. If a > 0, or −

√
λ (1 + λ) < a < −2λ (1 + λ) / (1 + 2λ), ξ is everywhere

space-like. Otherwise, it becomes time-like behind the inner horizon (r = λ),
or on this horizon if a = −λ. In this last situation, the quotient space will ex-
hibit a structure similar to that of the black string, with a time-like singularity
(becoming light-like for a = −λ) and two horizons.
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Figure 4.1: Penrose diagram exhibiting the global structure of the double hy-
perbolic deformation. The time-like curvature singularities r = 0 are repre-
sented, as well as the horizons, located at r = λ and r = λ + 1. When perform-
ing identifications along orbits of a Killing vector allowing for a causally safe
region at infinity, there appears chronological singularities, which can be time-
like and hidden behind an outer and an inner horizon (r = r∗1), or space-like
and hidden behind a single horizon (r = r∗2), while the regions where r < r∗

have to be removed.

Discrete identifications in double deformations

The norm squared of the identification vector (4.113) in the metric (4.93) is

‖ξ‖2 =
(
ω− a2)+ 2

aω + a2 (1 + 2λ)
r

− a2 (λ (1 + λ)−ω)
r2 . (4.115)

Between r = 0 and r = ∞, this scalar product vanishes once and only once (if
a 6= 0). To be space-like at infinity we have to restrict the time component of ξ
to |a| < ω. Near r = 0 it is negative, at the outer horizon (r = λ + 1) it takes the
positive value ω (1 + λ + a)2 / (1 + λ)2 and near the inner horizon (r = λ) the
non-negative value ω (λ + a)2 /λ2. Accordingly, by performing identifications
using this Killing vector, we will encounter a chronological singularity, located
at r = r∗, with 0 < r∗ < λ + 1. When r∗ < λ, the singularity will be of the
same type as the one in the symmetric case. But when λ < r∗ < λ + 1, the
chronological singularity will be space-like, and the causal structure we get is
much like that of the Schwarschild black hole, as is shown in Fig. 4.1.
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Towards the exact spectra

Let us consider the algebraic point of view. Again as in the electric defor-
mation of SL(2, R) we can’t write the partition function but we must con-
tent ourselves with the spectrum which will generalize what we found in
Eqs. (4.33a) and (4.33b).

Deformed Spectrum

Consider the double deformation described above for a SL(2, R)k super-WZW

model where J is the hyperbolic (space-like) J2 current.
The evaluation of the spectrum for our deformed model is pretty straight-

forward once one realizes that the deformations act as O (2, 2) pseudo-orthog-
onal transformations on the charge lattice corresponding to the abelian sub-
group of the sl(2, R) heterotic model (as described in Sec. 3.1). Left and right
weights for the relevant lattices are (see Eqs. (D.20) and (D.21)):

L0 =
1
k

(
µ + n +

a
2

)2
, (4.116a)

L̄0 =
µ̄2

k + 2
+

1
kg

(
n̄ +

ā
2

)2

, (4.116b)

where the anti-holomorphic part contains the contribution coming from a u(1)
subgroup of the heterotic gauge group.

At the Lagrangian level, the infinitesimal deformation we want to describe
is given by the following marginal operator:

O = κ2

(
J2 + ıψ1ψ3

)
√

k
J̄2

√
k + 2

+ H

(
J2 + ıψ1ψ3

)
√

k
Ī√
kg

. (4.117)

This suggests that the actual O(2, 2) transformation should be obtained as a
boost between the holomorphic part and the result of a rotation between the
two anti-holomorphic components. The deformed lattices then read:

Ldd
0 =

{
1√
k

(
µ + n +

a
2

)
cosh x +

(
µ̄√

k + 2
cos α +

1√
kg

(
n̄ +

ā
2

)
sin α

)
sinh x

}2

,

(4.118a)

L̄dd
0 =

{(
µ̄√

k + 2
cos α +

1√
kg

(
n̄ +

ā
2

)
sin α

)
cosh x +

1√
k

(
µ + n +

a
2

)
sinh x

}2

,

(4.118b)

where the parameters x and α can be expressed as functions of κ and H as
follows:{

κ2 = sinh(2x) cos α,
H = sinh(2x) sin α.

(4.119)

Of course this is a generalization of the expressions in Eq. (4.33).
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Twisting

The identification operation we performed in the symmetrically and double-
deformed metric (as in Sec. 4.4) is implemented in the string theory framework
by the orbifold construction. This was already obtained in [NS98, HKV02] for
the “standard” BTZ black hole that was described as a SL(2, R)/Z orbifold.

In order to write the spectrum that will contain the twisted sectors, the first
step consists in writing explicitly the primary fields in our theory, distinguish-
ing between the holomorphic and anti-holomorphic parts (as it is natural to do
since the construction is intrinsically heterotic).

• The holomorphic part is written by introducing the charge boost of Eq. (4.118a)
in Eq. (D.16):

Φdd
jµνµ̄ν̄(z) = Ujµ(z) exp

[
ı

(√
2
k

(
µ + n +

a
2

)
cosh x +

√
2Q̄α sinh x

)
ϑ2

]
,

(4.120)

where Qα = µ̄
√

2
k+2 cos α + ν̄

√
2
kg

sin α and the dd superscript stands for
double deformed

• To write the anti-holomorphic part we need at first to implement the
rotation between the J̄3 and gauge current components:

Φ̄jµ̄ν̄(z̄) = Vjµ(z̄)eıµ̄
√

2/k+2θ̄2 eıν̄
√

2/kgX̄ =

= Vjµ(z̄)eı
√

2Q̄α(θ̄2 cos α+X̄ sin α)eı
√

2Q̄α−π/2(−θ̄2 sin α+X̄ cos α), (4.121)

and then realize the boost in Eq. (4.118b) on the involved part:

Φ̄dd
jµµ̄νν̄(z̄) = Vjµeı

√
2Q̄α−π/2(−θ̄2 sin α+X̄ cos α)×

× exp

[
ı

(√
2
k

(
µ + n +

a
2

)
sinh x +

√
2Q̄α cosh x

) (
θ̄2 cos α + X̄ sin α

)]
.

(4.122)

Now that we have the primaries, consider the operator Ww (z, z̄) defined
as follows:

Ww (z, z̄) = e−ı k
2 w∆−ϑ2+ı k+2

2 w∆+ θ̄2 , (4.123)

where w ∈ Z and θ̄2 the boson corresponding to the J̄2 current. It is easy to
show that the following OPE’s hold:

ϑ2 (z) Wn (0, z̄) ∼ −ıw∆− log zWw (0, z̄) , (4.124)
θ̄2 (z̄) Wn (z, 0) ∼ ıw∆+ log z̄Ww (z, 0) , (4.125)
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showing that Ww (z, z̄) acts as twisting operator with winding number w (ϑ2
and θ̄2 shift by 2π∆−w and 2π∆+w under z → e2πız). This means that the
general primary field in the SL (2, R)k /Z theory can be written as:

Φtw
jµµ̄νν̄w (z, z̄) = Φdd

jµµ̄νν̄ (z, z̄) Ww (z, z̄) . (4.126)

where the tw superscript stands for twisted.
Having the explicit expression for the primary field, it is simple to derive

the scaling dimensions which are obtained, as before, via the GKO decompo-
sition of the Virasoro algebra T [sl (2, R)] = T [sl (2, R) /o (1, 1)] + T [o (1, 1)].
Given that the T [sl (2, R) /o (1, 1)] part remains invariant (and equal to L0 =
−j (j + 1) /k− µ2/ (k + 2) as in Eq. (D.18)), the deformed weights read:

Ltw
0 =

{
k

2
√

2
w∆− +

1√
k

(
µ + n +

a
2

)
cosh x + Q̄α sinh x

}2

, (4.127a)

L̄tw
0 =

{
− k + 2

2
√

2
w∆+ cos α + Q̄α cosh x +

1√
k

(
µ + n +

a
2

)
sinh x

}2

+

+
{

k + 2
2
√

2
w∆+ sin α + Q̄α−π/2

}2

.

(4.127b)

4.5 New compactifications

Up to this point we have focused on the squashed and coset models under the
underlying hypothesis that they act as parts of larger ten-dimensional back-
grounds. In this section we will study other examples which are likely to
be part of physically sound models. In particular we will closely study the
SU(3)/U(1)2 coset that can be used as the six-dimensional compact counter-
part of an AdS4 background.

The SU(3)/U(1)2 flag space

Let us now consider the next example in terms of coset dimensions, SU (3) /U (1)2.
As a possible application for this construction we may think to associate this
manifold to a four-dimensional (1, 0) superconformal field theory M so to
compactify a critical string theory since dim

[
SU (3) /U (1)2

]
= 8 − 2 = 6.

Our construction gives rise to a whole family of CFT’s depending on two pa-
rameters (since rank [SU (3)] = 2) but in this case we are mainly interested to
the point of maximal deformation, where the U (1)2 torus decouples and we
obtain an exact theory on the SU (3) /U (1)2 coset. Before giving the explicit
expressions for the objects in our construction it is hence useful to recall some
properties of this manifold. The first consideration to be made is the fact that
SU (3) /U (1)2 is an asymmetric coset in the mathematical sense defined in
Sec. 3.3 (as we show below). This allows for the existence of more than one
left-invariant Riemann metric. In particular, in this case, if we just consider
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structures with constant Ricci scalar, we find, together with the restriction of
the Cartan-Killing metric on SU (3), the Kähler metric of the flag space F3.
The construction we present in this section will lead to the first one of these
two metrics. This is known to admit a nearly-Kähler structure and has already
appeared in the superstring literature as a basis for a cone of G2 holonomy
[AW03].

A suitable parametrisation for the SU (3) group is obtained via the Gauss Gauss
decomposition

for SU(3)
decomposition described in App. B.3. In these terms the general group ele-
ment is written as:

g (z1, z2, z3, ψ1, ψ2) =


eıψ1/2√

f1
− z̄1+z2 z̄3√

f 1 f 2
eı(ψ1−ψ2)/2 − z̄3−z̄1 z̄2√

f2
e−ıψ2/2

z1eıψ1/2√
f1

− 1+|z3|2−z1z2 z̄3√
f 1 f 2

eı(ψ1−ψ2)/2 − z̄2√
f2

e−ıψ2/2

z3eıψ1/2√
f1
− z2−z̄1z3+z2|z1|2√

f 1 f 2
eı(ψ1−ψ2)/2 1√

f2
e−ıψ2/2


(4.128)

where zi are three complex parameters, ψj are two real parameters and f1 =
1 + |z1|2 + |z3|2, f2 = 1 + |z2|2 + |z3 − z1z2|2. As for the group, we need also
an explicit parametrisation for the su (3) algebra, such as the one provided by
the Gell-Mann matrices in Eq. (B.40). It is a well known result that if a Lie
algebra is semi-simple (or, equivalently, if its Killing form is negative-definite)
then all Cartan subalgebras are conjugated by some inner automorphism15.
This leaves us the possibility of choosing any couple of commuting genera-
tors, knowing that the final result won’t be influenced by such a choice. In
particular, then, we can pick the subalgebra generated by k = 〈λ3, λ8〉.16

The holomorphic currents of the bosonic SU (3)k corresponding to the two
operators in the Cartan are:

J 3 = − 〈λ3g
(
zµ, ψa

)−1 dg
(
zµ, ψa

)
〉 J 8 = − 〈λ8g

(
zµ, ψa

)−1 dg
(
zµ, ψa

)
〉

(4.129)

and in these coordinates they read:

J 3 = − ı√
2


(

z̄1

f1
+

z2 (−z̄1z̄2 + z̄3)
2 f2

)
dz1 −

z̄2

(
1 + |z1|2

)
− z1z̄3

2 f2
dz2 +

(
z̄3

f1
+

z̄1z̄2 − z̄3

2 f2

)
dz3


+ c.c. +

dψ1√
2
− dψ2

2
√

2
(4.130)

J 8 = −ı

√
3
2

{
z̄1z̄2 − z̄3

2 f2
z2dz1 +

z̄2 + |z1|2 z̄2 − z1z̄3

2 f2
dz2 +

−z̄1z̄2 + z̄3

2 f2
dz3

}
+ c.c. +

1
2

√
3
2

dψ2.

15This is the reason why the study of non-semi-simple Lie algebra deformation constitutes
a richer subject. In example the SL (2, R) group admits for 3 different deformations, leading
to 3 different families of exact CFT’s with different physics properties. On the other hand the 3
possible deformations in SU (3) are equivalent.

16In this explicit parametrisation it is straightforward to show that the coset we’re consider-
ing is not symmetric. It suffices to pick two generators, say λ2 and λ4, and remark that their
commutator [λ2, λ4] = −1/

√
2λ6 doesn’t live in the Cartan subalgebra.
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(4.131)

Those currents appear in the expression of the exactly marginal operator that
we can add to the SU (3) WZW model action:

V =
√

kkg

2π
H

∫
dz2 H3

(
J3 − ı√

2k
(2 : ψ2ψ1 : + : ψ5ψ4 : + : ψ7ψ6 :)

)
J̄3+

+ H8

(
J8 − ı

k

√
3
2

(: ψ5ψ4 : + : ψ7ψ6 :)

)
J̄8 (4.132)

where ψi are the bosonic current superpartners and J̄3, J̄8 are two currents from
the gauge sector both generating a U (1)kg

.
Since rank [SU (3)] = 2 we have a bidimensional family of deformations

parametrised by the two moduli H3 and H8. The back-reaction on the metric is
given by:

ds2 = gαβ̄dzα ⊗ dz̄β +
(
1− 2H2

3
)
J 3 ⊗J 3 +

(
1− 2H2

8
)
J 8 ⊗J 8 (4.133)

where gαβ̄ is the restriction of the SU (3) metric on SU (3) /U (1)2. It is worth
to remark that for any value of the deformation parameters H3 and H8 the
deformed metric is Einstein with constant Ricci scalar.

With a procedure that has by now become familiar we introduce the fol-
lowing reparametrization:

ψ1 =
ψ̂1√

1− 2H2
ψ2 =

ψ̂2√
1− 2H2

(4.134)

and take the H3 → 1/
√

2, H8 → 1/
√

2 limit. The resulting metric is:

ds2 = gαβ̄dzα ⊗ dz̄β +
dψ̂1 ⊗ dψ̂1 − dψ̂1 ⊗ dψ̂2 + dψ̂2 ⊗ dψ̂2

2
(4.135)

that is the metric of the tangent space to the manifold SU (3) /U (1)2×U (1)×
U (1). The coset metric hence obtained has a C-structure, is Einstein and has
constant Ricci scalar R = 15/k. The other background fields at the boundary
of the moduli space read:

F = dJ 3 + dJ 8 (4.136)

H[3] = −3
√

2
{
J 1 ∧

(
J 4 ∧ J 5 −J 6 ∧ J 7

)
+
√

3J 2 ∧
(
J 4 ∧ J 5 + J 6 ∧ J 7

)}
(4.137)

If we consider the supersymmetry properties along the deformation lineSuperymmetry
properties of

SU(3)/U(1)2
we can remark the presence of an interesting phenomenon. The initial SU (3)
model has N = 2 but this symmetry is naively broken to N = 1 by the de-
formation. This is true for any value of the deformation parameter but for
the boundary point H2

3 = H2
8 = 1/2 where the N = 2 supersymmetry is re-

stored. Following [GHR84, KS89b, KS89a] one can see that a G/T coset ad-
mits N = 2 supersymmetry if it possesses a complex structure and the corre-
sponding algebra can be decomposed as j = j+ ⊕ j− such as [j+, j+] = j+ and
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[j−, j−] = j−. Explicitly, this latter condition is equivalent (in complex notation)
to fijk = f ī j̄k̄ = faij = faī j̄ = 0. These are easily satisfied by the SU (3) /U (1)2

coset (and actually by any G/T coset) since the commutator of two positive
(negative) roots can only be proportional to the positive (negative) root ob-
tained as the sum of the two or vanish.. Having N = 2 supersymmetry is
equivalent to asking for the presence of two complex structures. The first one
is trivially given by considering positive roots as holomorphic and negative
roots as anti-holomorphic, the other one by interchanging the role in one out
of the three positive/negative couples (the same flip on two couples would
give again the same structure and on all the three just takes back to the first
structure). The metric is Hermitian with respect to both structures since it is
SU (3) invariant. It is worth to remark that such background is different from
the ones described in [KS89a] because it is not Kähler and can’t be decomposed
in terms of Hermitian symmetric spaces.

Different constructions on SU(3)/U(1)2

To study the SU (3) case we will use the “current” approach of Sec. 3.6, since a
direct computation in coordinates would be impractical. As one could expect,
the study of SU (3) deformation is quite richer because of the presence of an
embedded SU (2) group that can be gauged. Basically this means that we can
choose two different deformation patterns that will lead to the two possible
Einstein structures that can be defined on the SU (3) /U (1)2 manifold.

Direct gauging.

The first possible choice leads to the same model as before by simply gauging
the U (1)2 Cartan torus. Consider the initial SU (3)k×U (1)k′ ×U (1)k′′ model.
In the 〈J1, . . . ,J8, I1, I2〉 base ({ Ji } being the SU (3) generators and { Ik }
the 2 U (1)’s), the initial metric is written as:

g =

 kI8 0

0
k′

k′′

 (4.138)

the natural choice for the Cartan torus is given by the usual 〈J3,J8〉 genera-
tors, so we can proceed as before and write the deformed metric as:

g =



kI2
λ1 (k, k′, H3)

kI4
λ1 (k, k′′, H8)

λ2 (k, k′, H3)
λ2 (k, k′′, H8)


(4.139)

where H3 and H8 are the deformation parameters and λ1 and λ2 are the eigen-
values for the interaction matrices, given in Eq. (3.118). In particular, then, in
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the H2
3 → 1/2, H2

8 → 1/2 limit two eigenvalues vanish, the corresponding di-
rections decouple and we are left with the following (asymmetrically gauged)
model:

g =

 kI6
k + k′

k + k′′

 (4.140)

in the 〈J1,J2,J4,J5,J6,J7,
√

k′I1 +
√

kJ3,
√

k′′I2 +
√

kJ8〉 basis that can be
seen as a U (1)2 fibration over an SU (3) /U (1)2 base with metric diag (1, 1, 1, 1, 1, 1)
(in the current basis). This is precisely the same result we obtained in the pre-
vious section when we read the fibration as a gauge field living on the base.

U (1)2 −−−→ My
SU (3) /U (1)2

(4.141)

As in the previous example all this construction is valid only if the asymmet-
rically gauged WZW model is anomaly-free.

The F3 flag space

Let us now turn to the other possible choice for the SU (3) gauging, namely the
one where we take advantage of the SU (2) embedding. Let us then consider
the SU (3)k3

× SU (2)k2
×U (1)k′ ×U (1)k′′ WZW model whose metric is

g =


k3I8

k2I3
k′

k′′

 (4.142)

in the 〈J1, . . . ,J8, I1, I2, I3,K1,K2〉 basis, where 〈Ji〉 generate the SU (3), 〈Ii〉
generate the SU (2) and 〈Ki〉 generate the U (1)2.

The first step in this case consists in an asymmetric gauging mixing the
{ J1,J2,J3 } and { I1, I2, I3 } currents respectively. At the gauging point, a
whole 3-sphere decouples and we obtain the following metric:

g =


k3I5

(k2 + k3) I3
k′

k′′

 (4.143)

where we have to remember that in order to have an admissible embedding
k2 = k3 = k. Our result is again – not surprisingly – a SU (2) fibration over a
SU (3) /SU (2) base (times the two U (1)’s).

SU (2) −−−→ My
SU (3) /SU (2)

(4.144)
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Of course one could be tempted to giveM the same interpretation as be-
fore, namely an SU (3) /SU (2) space supported by a chromo-magnetic SU (2)
field (or, even better, gauging an additional U (1), of a CP2 background with
an SU (2) ×U (1) chromo-magnetic field). Actually this is not the case. The
main point is the fact that this SU (3) × SU (2) model is essentially differ-
ent from the previous ones because the U (1) factors were the result of the
bosonization of the right-moving gauge current which in this way received a
(fake) left-moving partner as in Sec. 3.1. This is not possible in the non-abelian
case since one can’t obtain an SU (2) at arbitrary level k out of the fermions
of the theory17. In other words, the SU (2) factor is in this case truly a con-
stituent of the theory and there is no reason why it should be decoupled or
be given a different interpretation from the SU (3) part. This is why the struc-
ture obtained by the SU (2) asymmetric gauging is to be considered an eight-
dimensional space admitting an SU (2) → SU (3) /SU (2) fibration structure,
or, equivalently, a deformed SU (3) where an embedded SU (2) is at a level
double with respect to the other generators.

On the other hand we are still free to gauge away the two U (1) factors just
as before. This time we can choose to couple K1 with the J8 factor that was left
untouched in the initial SU (3) and K2 with the J3 + I3 generator. Again we
find a two-parameter family of deformations whose metric can be written as:

g =



kI4
µ1

2kI2
ν1

µ2
ν2

 (4.145)

where:

µ = λ
(
k, k′, H′

)
(4.146)

ν = λ
(
2k, k′′, H′′

)
. (4.147)

In particular now we can take the decoupling H′ = H′′ → 1/2 limit where we
obtain:

g =


kI4

2kI2
k + k′

2k + k′′

 (4.148)

this structure is once more a U (1)2 → SU (3) /U (1)2 fibration but in this case
it is perfectly fine to separate the space components from the gauge field ones.
So we can read out our final background fields as the Kähler metric on F3

supported by a U (1)2 (chromo)magnetic field.

17This would be of course be possible if we limited ourselves to small values of k, but in this
case the whole geometric interpretation of the background would be questionable. However
for Gepner-like string compactifications this class of models is relevant.
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To summarize our results we can say that the two Einstein structures that
one can define on SU (3) /U (1)2 are both exact string theory backgrounds:

• The first one, obtained as the asymmetric coset SU(3)×U(1)2

U(1)2 is supported

by an NS-NS field strength and a magnetic field;

• The second, corresponding to the SU(3)×SU(2)×U(1)2

SU(2)×U(1)2 asymmetric coset is

Kähler and hence supported by the (chromo-)magnetic field alone.

This Kähler structure has been deeply studied both from the mathematicalKähler form for
SU(3)/U(1)2 and physical points of view. In particular the Kähler form can be written as in

App. B.3:

K
(
γµ, γ̄µ

)
= log

[
1 + |γ1|2 + |γ3|2

]
+ log

[
1 + |γ2|2 + |γ3 − γ1γ2|2

]
.

(4.149)

It is immediate to show that this manifold is Einstein and in particular its Ricci
scalar is R = 12. Being Kähler, F3 is torsionless, that means in turn that there
is no NS-NS form18. Moreover there is no dilaton by construction19. The only
other field that supports the background comes from the U (1)2 fibration. Since
the manifold is Kähler it is useful to take advantage of the complex structure
and write our background fields in complex formalism. In these terms the
metric is written as:

g =
k
2

(
J 1 ⊗J 1̄ + J 2 ⊗J 2̄ + 2J 3 ⊗J 3̄

)
(4.150)

where J i and J̄ ī are the Maurer-Cartan corresponding to positive and nega-
tive roots respectively and the field strength is given by:

Fa =

√
k

2kg
f a

µρ̄Cρ̄σRσν̄J µ ∧ J ν̄ (4.151)

where C is the following tensor

C = ∑
α

J α ⊗J ᾱ (4.152)

New linear dilaton backgrounds of Heterotic strings

These left-coset superconformal field theories can be used to construct various
supersymmetric exact string backgrounds. The first class are generalizations
of Gepner models [Gep88] and Kazama-Suzuki constructions [KS89b] using
the left cosets as building blocks for the internal SCFT. This has already been

18To be precise one could define a B field but this would have to be closed
19The dilaton would basically measure the difference between the asymmetric coset volume

form and the homogeneous space one as it is shown in [Tse94]
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considered in [BJKZ96] for the S2 coset but can be extended using the new the-
ories constructed above. In this case there is no geometric interpretation from
the sigma model point of view since these theories have no semi-classical limit.
Indeed the levels of the cosets are frozen because their central charge must add
up to c = 9 (in the case of four-dimensional compactification). However we
expect that they correspond to special points in the moduli spaces of super-
symmetric compactifications, generalizing the Gepner points of the CY mani-
folds.

Another type of models are the left cosets analogues of the NS5-branes
solutions [CHS91, KPR91] and of their extensions to more generic supersym-
metric vacua with a dilaton background. It was shown in [GKP99] that a large
class of these linear dilaton theories are dual to singular CY manifolds in the
decoupling limit. An extensive review of the different possibilities in various
dimensions has been given in [ESY03] with all the possible G/H cosets. The
left cosets that we constructed allows to extend all these solutions to heterotic
strings, with a different geometrical interpretation since our cosets differ from
ordinary gauged WZW model. However the superconformal structure of the
left sector of our models is exactly the same as for the corresponding gauged
WZW – except that the values of the N = 2 R-charges that appear in the spec-
trum are constrained – so we can carry over all the known constructions to the
case of the geometric cosets.

In the generic case these constructions involve non-abelian cosets, and as
we showed the asymmetric deformations and gaugings apply only to the abelian
components. Thus in general we will get mixed models which are gauged
WZW models w.r.t. the non-abelian part of H and geometric cosets w.r.t. the
abelian components of H. Below we will focus on purely abelian examples, i.e.
corresponding to geometric cosets. The dual interpretation of these models, in
terms of the decoupling limit of some singular compactification manifolds, is
not known. Note however that by construction there are about

√
k times less

massless states in our models than in the standard left-right symmetric solu-
tions. Therefore they may correspond to some compactifications with fluxes,
for which the number of moduli is reduced. It would be very interesting to
investigate this issue further.

Six-dimensional model. Let us take as a first example the critical superstring
background:

R5,1 × SL(2, R)k+2 × SO(2)1

U (1)k
×
[

U (1)k
\SU(2)k−2 × SO(2)1

]
(4.153)

the first factor is an ordinary gauged model while the second one is a left coset
CFT as discussed in this paper. This is the direct analogue of the five-brane
solution, or more precisely of the double scaling limit of NS5-branes on a cir-
cle [GK99, IKPT04], in the present case with magnetic flux. This theory has
N = 2 charges but, in order to achieve spacetime supersymmetry one must
project onto odd-integral N = 2 charges on the left-moving side, as in the type
II construction [IKPT04]. This can be done in the standard way by orbifoldiz-
ing the left N = 2 charges of the two cosets.
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Four-dimensional model. A simple variation of the six-dimensional theory
is provided by

R3,1 × SL(2, R)k/2+2 × SO(2)1

U (1)2k
×
[

U (1)k
\SU(2)k−2 × SO(2)1

]
×
[

U (1)k
\SU(2)k−2 × SO(2)1

]
(4.154)

which is the magnetic analogue of the (double scaling limit of) intersecting
five-branes solution. Also here an orbifoldization of the left N = 2 charges is
needed to achieve space-time supersymmetry.

Three-dimensional models: the flagbrane©. We can construct the following
background of the G2 holonomy type, as in the case of symmetric coset [ES01]:

R2,1 ×RQ ×
[

U (1)k ×U (1)3k
\SU (3)k−3 × SO(6)1

]
(4.155)

and the non-trivial part of the metric is

ds2 = −dt2 + dx2 + dy2 +
k

4r2

[
dr2 + 4r2ds2(SU(3)/U(1)2)

]
. (4.156)

Without the factor of four it would be a direct analogue of the NS5-brane, being
conformal to a cone over the flag space.

Another possibility in three dimensions is to lift the SL(2, R)/U(1) coset
to the group manifold SL(2, R). In this case, as for the standard gauged WZW

construction [AGS00] we will get the following anti-de Sitter background:

SL(2, R)k/4+2 ×
[

U (1)3k
\SU (3)k−3 × SO(6)1

]
(4.157)

and the left moving sector of this worldsheet CFT defines an N = 3 supercon-
formal algebra in spacetime.

Two-dimensional model. In this case we can construct the background:

R1,1 × SL(2, R)k/4+2 × SO(2)1

U (1)4k
× U (1)3k

\SU (3)k−3 × SO(6)1

U (1)k
(4.158)

which corresponds in the classification of [ESY03] to a non-compact manifold
of SU(4) holonomy once the proper projection is done on the left N = 2
charges. This solution can be also be thought as conformal to a cone over
the Einstein space SU (3) /U (1). Using the same methods as for the NS5-
branes in [IKPT04], we can show that the full solution corresponding to the
model (4.158) can be obtained directly as the null super-coset:

SL(2, R)k/4 × U (1)\SU (3)k

U (1)L ×U (1)R
(4.159)

where the action is along the elliptic generator in the SL (2, R), with a nor-
malization 〈t3〉2 = −4, and along the direction α1 + 2α2 in the coset space
U(1)\SU(3), with a canonical normalization. For r → ∞ the solution asymptotes
the cone but when r → 0 the strong coupling region is smoothly capped by the
cigar.



CHAPTER 5

Squashed groups in type II
In this chapter we start deviating from the preceding ones because we will
no longer deal with WZW models but with configurations in which the
group manifold geometry is sustained by RR fields. In particular, then,
we see how the squashed geometries can be obtained in type II theories by
T-dualizing black brane configurations.

THE MODELS that we have studied so far are intrinsically heterotic. In fact it
is the very presence of a heterotic electromagnetic field that allows for the

solution of the equations of motion. On the other hand, and this is especially
true for purely asymmetric deformations that only have a constant dilaton,
we can expect them to be mapped via S-duality to type II solutions. In this
chapter we will build such solutions but using a slightly different path: in
particular we will see how using a T-duality it is possible to modify a fibration
geometry in the same way as we did before by adding a marginal operator,
thus recovering the same geometries as above, but this time in presence of
Ramond-Ramond fields.

5.1 SL(2, R)× SU(2) as a D-brane solution �
�

�
Kli

Up to this point we have considered WZW models for the sake of their self-
consistency. In other words we have used group manifolds as part of critical
string backgrounds on the ground of the existence of an underlying CFT. On
the other hand, at low energies we should obtain a SUGRA description, so it
is plausible that a description for the same geometry is available in terms of
diverse ten-dimensional sources.

The starting point is a higher-dimensional generalization of the usual four- Black brane
ansatzdimensional charged black hole. The natural, most symmetric, ansatz for the

geometry in presence of a p-dimensional extended object (a black Dp-brane)
consists in keeping the Lorentz symmetry in (p + 1) dimensions and a spher-
ical symmetry in (9− p). In other words breaking the SO(1, 9) symmetry to
SO(1, p)× SO(9− p). Moreover we expect a C[(p+1)] form naturally coupled
to the p-brane. It is possible to show [Ste98] that the solution also contains
a dilaton Φ(r) and is completely determined in terms of a harmonic function
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Hp(r):


ds2 = Hp(r)−1/2

(
−dt2 + dx2

1 + . . . + dx2
p

)
+ Hp(r)

(
dr2 + r2dΩ2

8−p

)
C[(p+1)] =

(
1− Hp(r)−1)dt ∧ dx1 ∧ . . . ∧ dxp

eΦ = Hp(r)(3−p)/4

(5.1)

where HP(r) is explicitly given by

Hp(r) = 1 +
Qp

r7−p (5.2)

More complicated solutions with intersecting branes can be studied and in
particular the solution for a D1-D5 system reads:



ds2 = H1(r)−1/2H5(r)−1/2 (−dt2 + dx2
1

)
+ H1(r)1/2H5(r)−1/2 (dx2

2 + . . . + dx2
5
)
+

+H1(r)1/2H5(r)1/2 (dr2 + dΩ2
3
)

C[2] =
(
1− H1(r)−1)dt ∧ dx1

C[6] =
(
1− H5(r)−1)dt ∧ dx1 ∧ . . . ∧ dx5

eΦ = H1(r)1/2H5(r)−1/2

(5.3)

where in this case both H1(r) and H5(r) have the same 1/r2 behaviour. It is
then simple to see that in the near-horizon limit, i.e. for r → 0, the geometry
we find is AdS3 × S3 ×R4, or SL(2, R)× SU(2), plus four flat directions.

5.2 T duality with RR fields
�

In the IIB solutions we consider in this section the rôle of sustaining the ge-
ometry previously held by the Kalb–Ramond three-form is taken by RR field
strengths. This has a number of consequences, first of all the lack of a proper
CFT description for such configurations. In particular this means also that the
usual Buscher rules [Bus87] prove insufficient and we are forced to follow a
slightly more involved path to write T-duals: derive two low-energy effective
actions and explicitly write the transformations relating them (in this we will
follow the same procedure as in [DLP98, DLP99]).

In ten dimensions, type IIA and IIB are related by a T-duality transfor-Type II action in
nine dimensions mation, stating that the former theory compactified on a circle of radius R is

equivalent to the latter on a circle of radius 1/R. This means in particular that
there is only one possible nine-dimensional N = 2 SUGRA action. The rules
of T-duality are then easily obtained by explicitly writing the two low-energy
actions and identifying the corresponding terms.

For sake of clarity let us just consider the bosonic sector of both theories.
In [LP96, LPS96] it was found that the IIA action in nine dimensions is given
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by

e−1LI IA = R− 1
2
(∂φ)2 − 1

2
(∂ϕ)2 − 1

2
(F (12)

[1] )2e
3
2 φ+

√
7

2 ϕ+

− 1
48

(F[4])
2e

1
2 φ+ 3

2
√

7
ϕ − 1

12
(F(1)

[3] )2e−φ+ 1√
7

ϕ − 1
12

(F(2)
[3] )2e

1
2 φ− 5

2
√

7
ϕ+

− 1
4
(F(12)

[2] )2e−φ− 3√
7

ϕ − 1
4
(F (1)

[2] )2e
3
2 φ+ 1

2
√

7
ϕ − 1

4
(F (2)

[2] )2e
4√
7

ϕ+

− 1
2e

F̃[4] ∧ F̃[4] ∧ A(12)
[1] −

1
e

F̃(1)
[3] ∧ F̃(2)

[3] ∧ A[3] , (5.4)

where φ is the original dilaton, ϕ is a scalar measuring the compact circle,
defined by the reduction (in string frame)

ds2 = eφ/2ds2
10 = eφ/2

(
e−ϕ/(2

√
7)ds2

9 + e
√

7ϕ/2
(

dz +A[1]

)2
)

(5.5)

and F[n] are n-form field strengths defined as

F[4] = F̃[4] − F̃(1)
[3] ∧A

(1)
[1] − F̃(2)

[3] ∧A
(2)
[1] −

1
2

F̃(12)
[2] ∧A

(1)
[1] ∧A

(2)
[1] (5.6a)

F(1)
[3] = F̃(1)

[3] − F̃(12)
[2] ∧A

(2)
[1] (5.6b)

F(2)
[3] = F̃(2)

[3] + F(12)
[2] ∧A

(1)
[1] −A

(12)
[0]

(
F̃(1)
[3] − F(12)

[2] ∧A
(2)
[1]

)
(5.6c)

F(12)
[2] = F̃(12)

[2] (5.6d)

F (1)
[2] = F (1)

[2] +A(12)
[0] F

(2)
[1] (5.6e)

F (2)
[2] = F̃ (2)

[2] (5.6f)

F (12)
[1] = F̃ (12)

[1] . (5.6g)

In the same way, starting from the IIB action one obtains the following nine-
dimensional IIB Lagrangian:

e−1LI IB = R− 1
2
(∂φ)2 − 1

2
(∂ϕ)2 − 1

2
e2φ(∂χ)2+

− 1
48

e−
2√
7

ϕF2
[4] −

1
12

e−φ+ 1√
7

ϕ(F(NS)
[3] )2 − 1

2
eφ+ 1√

7
ϕ(F(R)

[3] )2+

− 1
4

e
4√
7

ϕ(F[2])
2 − 1

4
eφ− 3√

7
ϕ(F(R)

[2] )2 − 1
4

e−φ− 3√
7

ϕ(F(NS)
[2] )2+

− 1
2e

F̃[4] ∧ F̃[4] ∧A[1] −
1
e

F̃(NS)
3 ∧ F̃(R)

[3] ∧ A[3] . (5.7)

Knowing that both describe the same theory we easily obtain the conversion
table in Tab. 5.1 which acts as a dictionary between IIA and IIB in ten dimen-
sions plus the following relation between the scalar fields(

φ
ϕ

)
I IA

=
(

3/4 −
√

7/4
−
√

7/4 −3/4

)(
φ
ϕ

)
I IB

(5.8)

This completes the T-duality relations generalizing the usual ones [Bus87] valid
in the NS-NS sector.
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IIA IIB
D = 10 D = 9 T-duality D = 9 D = 10

A3 A3 ←→ A3 B4

R-R A(2)
2 ←→ AR

2 AR
2

fields A(1)
1 A(1)

1 ←→ AR
1

A(12)
0 ←→ χ χ

NS-NS Gµν A(2)
1 ←→ ANS

1 ANS
2

fields A(1)
2 A(1)

2 ←→ ANS
2

A(12)
1 ←→ A1 Gµν

Table 5.1: T-duality dictionary with RR fields

5.3 The squashed sphere

Start with a D1−D5 system in type IIB described in Sec. 5.1. The near-horizon
geometry is

ds2
10 = AdS3 × S3 ×R4, (5.9)

with a three-form flux

F3 =
√

2m (ωAdS + ωS) , (5.10)

where ω is the volume form ans the constant m is fixed by demanding:

Ric|AdS = −m2 g|AdS (5.11)

Ric|S = m2 g|S . (5.12)

Now, introduce the coordinates (ϑ, ϕ, ψ, x) on S3 × S1 and write explicitly:

ds2
10 = AdS3 ×R3 +

1
2m2

[
dϑ2 + dϕ2 + dψ2 + 2 cos ϑdϕdψ

]
+ dx2

(5.13)

F3 = m
√

2ωAdS +
sin ϑ

2m2 dϑ ∧ dϕ ∧ dψ, (5.14)

where x is a periodic variable with period

x ∼ x +
4π

λ
n. (5.15)

If we change the variable ψ to ψ = α + λx we still have a 4π-periodic direction
α and can rewrite the metric as:

ds2
10 = AdS3 ×R3 +

1
2m2

[
dϑ2 + dϕ2 + dα2 + 2 cos ϑdϕdα

]
+
(

1 +
λ2

2m2

)
dx2+

+
λ

m2 (dα + cos ϑdϕ) dx

(5.16)

F3 = m
√

2ωAdS +
sin ϑ

2m2 dϑ ∧ dϕ ∧ dα + λ
sin ϑ

2m2 dϑ ∧ dϕ ∧ dx. (5.17)
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Redefining

z =

√
1 +

λ2

2m2 x h =
λ

2m
1√

1 + λ2/2m2
, (5.18)

the fields read

ds2
10 = AdS3 ×R3 +

1
2m2

[
dϑ2 + sin2 ϑdϕ2 +

(
1− 2h2) (dα + cos ϑdϕ)2

]
+

+
[

dz +
h
m

(dα + cos ϑdϕ)
]2

(5.19)

F3 = m
√

2ωAdS +
sin ϑ

2m2 dϑ ∧ dϕ ∧ dα +
h
m

sin ϑdϑ ∧ dϕ ∧ dz, (5.20)

and we can perform a Kaluza-Klein reduction on z and go to nine dimensions.
The metric reads:

ds2
9 = AdS3×R3 +

1
2m2

[
dϑ2 + sin2 ϑdϕ2 +

(
1− 2h2) (dα + cos ϑdϕ)2

]
,

(5.21)

and the gauge fields are obtained from:

F3 = F(3)
3 + F(3)

2 ∧ (dz + A) , (5.22)

where F(n)
m is the m-form obtained from the reduction of a n-form and A is the

one-form

A =
h
m

(dα + cos ϑdϕ) . (5.23)

Explicitly, adding the extra Kaluza-Klein two-form:

F(3)
3 = m

√
2ωAdS +

(
1− 2h2) sin ϑ

2m2 dϑ ∧ dϕ ∧ dα (5.24)

F(3)
2 =

h
m

sin ϑdϑ ∧ dϕ (5.25)

F(g)
2 = dA =

h
m

sin ϑdϑ ∧ dϕ. (5.26)

For the moment this is just a rewriting. Now, let us perform a T-duality to go
to type IIA. The fields keep their expressions but the interpretation changes
according to Tab. 5.1: F(3)

3 now comes from the reduction of a four-form in ten

dimensions, F(2)
2 from a two-form and F(g)

2 is now obtained as the result of the
reduction of the Kalb-Ramond field:

F(4)
3 = F(3)

3 F(2)
2 = F(3)

2 F(B)
2 = F(g)

3 . (5.27)
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We can oxidise back to ten dimensions and get a IIA background:

ds2
10 = AdS3 ×R3 +

1
2m2

[
dϑ2 + sin2 ϑdϕ2 +

(
1− 2h2) (dα + cos ϑdϕ)2

]
+ dξ2

(5.28)

F4 = F(4)
3 ∧ dξ =

[
m
√

2ωAdS +
(
1− 2h2) sin ϑ

2m2 dϑ ∧ dϕ ∧ dα

]
∧ dξ

(5.29)

F2 = F(2)
2 =

h
m

sin ϑdϑ ∧ dϕ (5.30)

H3 = FB
2 ∧ dξ =

h
m

sin ϑdϑ ∧ dϕ ∧ dξ. (5.31)

It is worthwhile to emphasize that by construction α is 4π-periodic and
then the geometry is the one of a respectable squashed three-sphere. A very
similar construction was considered in [DLP99]. In that case, though, the au-
thors start with the same AdS3 × S3 geometry with both RR and NS-NS fields
and then by reducing on one of the sphere isometries, find the Lens space
S3/Zp or a squashed version, where p and the squashing depend on the val-
ues of the charges. This is clearly an orbifold of the solutions above.

In principle these constructions can be extended to other group manifold
geometries (e.g. the obvious choice leading to a squashed AdS3) but in any
case one should start from a configuration with RR fields (typically S-dual to
the WZW models we described in great detail previously), since the absence
of NS-NS antisymmetric fields is the key ingredient for the trivialization of
the fiber bundle. More general geometries can be obtained by starting with a
mixed RR-NS-NS configuration.



CHAPTER 6

Out of the conformal point:
Renormalization Group Flows

This chapter is devoted to the study of the relaxation of squashed WZW

models further deformed by the insertion of non-marginal operators. The
calculation is carried from both the target space and world-sheet points of
view, once more highlighting the interplay between the two complemen-
tary descriptions. In the last part such techniques are used to outline the
connection between the time evolution and the RG-flow which is seen as a
large friction limit description; we are hence naturally led to a FRW-type
cosmological model.

STRING THEORY, at least in its world-sheet formulation, is most easily stud-
ied on-shell. Thanks to the power of conformal field theory, this permits a

profound analysis of specific backgrounds. At the same time, though, it makes
it difficult to describe more general effects that require a less local knowledge
of the theory and its moduli space. In particular it is not obvious how to de-
scribe transitions between two different solutions or even the relaxation of an
unstable background towards an on-shell solution.

In this chapter we deviate from conformality by adding non-marginal de-
formations on the top of exact solutions, such as WZW-models or squashed-
group models. The resulting RG-flow then drives those systems back to or
away from the conformal point, depending on the character of the deforma-
tion. As it is usually the case, these calculations can be faced from two com-
plementary points of view: either in terms of the target space description or
in terms of world-sheet two-dimensional theory. We will consider both ap-
proaches and show how they do really complete each other, in the sense that
they can be considered as two different series expansions of the same quan-
tity. As such, each side contains more information than the other at any given
order in perturbation. This will allow us in particular to make a prediction
on the outcome of a technically involved one-loop calculation in the WZW and
squashed group CFTs on the basis of a two-loop result on target space renor-
malization.

In the last part of this chapter we use the technology developed so far to
show how an RG-flow analysis can allow for further insights on the issue of
time-dependent solutions. More precisely we will see how for a given class of
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systems whose geometry is the warped product of a constant curvature space
and a time direction the RG-flow equations are a sort of large-friction approx-
imation with the central charge deficit playing the rôle of an effective friction
coefficient.

6.1 The target space point of view

Renormalization in a dimensional regularization scheme
�

Consider the σ-model with Lagrangian density

L =
1

2λ

(
gij + Bij

)
Ξij, (6.1)

where gij is a metric, Bij a two-form and Ξij = ∂µXi∂µX j + εµν∂µXi∂νX j. We
will say that the model is renormalizable if the corresponding counterterms at
any given order in the loop expansion can be reabsorbed into a renormaliza-
tion of the coupling constant and other parameters that appear in the expres-
sions for gij and Bij.1

The standard technique for dealing with this kind of Lagrangian consists
in incorporating the Kalb–Ramond field (or, equivalently, the WZ term) into
the geometry by reading it as a torsion. This means that instead of the usual
Levi-Civita connection one uses the connection Γ− defined as

Γ−i
jk =

{
i
jk

}
− 1

2
Hi

jk. (6.2)

where { i
jk} is the Christoffel symbol and with respect to this connection one

defines the Riemann and Ricci tensors R− and Ric−.
Now, using the background field method in a dimensional regularizationTwo-loop target

space RG-flow scheme (see [Osb90, AGFM81, Fri85, Fri80, BCZ85, HT87] and for various
applications [BFHP96, BFM+98, Sfe98, Sfe99]) we can calculate the one- and
two-loop counterterms that turn out to be:

µεL(1) =
1

πε
T(1) =

α′

2ελ
Ric−ijΞij, (6.3)

µεL(2) =
λ

8π2ε
T(2) =

α′2

16ελ
Ylmk

jR
−

iklmΞij, (6.4)

where Y is given by

Yijkl = −2R−ijkl + 3R− [kij]l +
1
2
(

H2
kigjl − H2

kjgil
)

, (6.5)

and

H2
ij = H[3]ilmH[3]

lm
j . (6.6)

1When this is not the case the model might nevertheless be renormalizable in a more general
sense, in the infinite-dimensional space of metrics and torsions
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In general the metric and the Kalb–Ramond field depend on a set of bare
parameters a(0)

k . In this case we can convert the counterterms given above into
coupling and parameter renormalizations if we write perturbatively the bare
quantities as:

λ(0) = µελ
(

1 + J1(a)
πε λ + . . .

)
= µελ

(
1 + yλ

ε + . . .
)

,

a(0)
k = ak + a(1)

k (a)
πε + . . . = ak

(
1 +

yak
ε + . . .

)
,

X(0)µ = Xµ + X(1)µ(X,a)
πε + . . . ,

(6.7)

where we allowed for a slight generalization with respect to the definition of
renormalization given above in terms of a coordinate reparametrization of the
target space2. Then the one- and two-loop β-functions are given by:

βλ =
dλ

dt
= λ2 ∂yλ

∂λ
=

λ2

π

(
J(1)(a) +

λ

4π
J(2)(a)

)
,

βak =
dak

dt
= λak

∂yak

∂λ
=

λ

π

(
a(1)

k (a) +
λ

4π
a(2)

k (a)
)

.
(6.8)

The unknown functions J(i), a(i), X(i)µ are determined by the equation

T(i) = −J(i)L+
∂L
∂ak

a(i)
k +

∂L
∂Xµ

X(i)µ. (6.9)

This corresponds to demanding the generalized quantum effective action Γ[X]
to be finite order by order.

Two-loop β equations for a WZW model.

As we have already announced in Ch. 2, the normalization for the WZ term in
a WZW action can be fixed by an RG-flow calculation. This is precisely what
we will do in the following at two-loop order using the dimensional regu-
larization scheme outlined above. In this way we will find a new apparent
non-trivial solution that doesn’t show up at first order (and which will prove
to be an artifact as we’ll see in the following, by using a CFT description in
Sec. 6.2). Moreover we will see how the roles of the IR and UV limits are in-
terchanged between the compact and the non-compact case, ie how the same
kind of deformation is relevant or irrelevant depending on the compactness of
the starting model.

Consider the following action

Sλ,H =
1

2λ

∫
Σ

d2z (gab + HBab) Ja
µ Jb

ν∂Xµ∂̄Xν (6.10)

where Ja are the Maurer–Cartan one-forms for a group G whose algebra has
structure constants fabc, gab = −1/(2g∗) f t

as f s
bt (g∗ is the dual Coxeter number)

2This redefinition is in general non-linear; in the special case when the X(i)’s depend lin-
early on X the last equation of the system 6.7 reduces to a multiplicative wavefunction renor-
malization. The only condition is that X(i) shouldn’t depend on the derivatives of X. In more
geometric terms we are just using the diffeomorphism invariance of the renormalized theory.
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and Bab is an antisymmetric matrix satisfying d
(

Bab Ja ∧ Jb) = 1/3! fabc Ja ∧
Jb ∧ Jc as in Sec. 2.2. Since the deformation (parameterized by having H 6= 1)
doesn’t affect the geometric part (but for the overall normalization) we can
still express the curvature in terms of the Lie algebra structure constants. In
particular it is easy to recover that the Riemann tensor is written as:

Ra
bcd =

1
4

f a
be f e

cd (6.11)

and the Ricci tensor is obtained by contracting:

Ricab =
g∗

2
gab. (6.12)

as in Eqs. (2.65).
In order to write the beta equations as described above we need to incorpo-

rate the WZ term (or, more precisely, the Kalb–Ramond field) into the geometry.
The most natural approach is to consider Ha

bc as a torsion and include it in the
connection [BCZ85]. We hence define:

Γ−a
bc =

{
a
bc

}
− 1

2
Ha

bc. (6.13)

The covariant derivative of a one-form is then defined as:

∇−aVb = ∂aVb − Γ−c
abVc = ∇aVb +

1
2

Hc
abVc (6.14)

where ∇a is the covariant derivative with respect to the Levi–Civita connec-
tion. Similarly we define the curvature:

[∇−a,∇−b]Vc = R− d
c abVd + Hd

ab∇−dVc (6.15)

and it is straightforward to show that:

R−abcd = Rabcd +
1
2
∇cHabd −

1
2
∇dHabc +

1
4

H f acH f
db −

1
4

H f adH f
cb. (6.16)

Let us now specialize this general relation to our particular deformation.
Since Habc = H fabc it is immediate that∇aHbcd = 0 and that the Jacobi identity
holds. We then derive:

R−abcd =
(
1− H2) Rabcd, (6.17)

whence in particular:

Ric−ab =
(
1− H2) Ricab =

(
1− H2) g∗

2
gab. (6.18)

The one-loop counterterm becomes:

T(1)
ab =

g∗

4
(
1− H2) gab. (6.19)
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The evaluation of the two-loop counterterm is lengthy but straightforward
once Rabcd is written in terms of the structure constants. The result is:

T(2)
ab =

g∗2

8
(
1− H2) (1− 3H2) gab. (6.20)

Substituting these expressions in Eq. (6.9) (and using the fact that gab and
εab are orthogonal) one sees that they become identities for the following choice
of parameters:{

J(1) = − g∗
4

(
1− H2)

a(1)
H = − g∗

4 H
(
1− H2)

{
J(2) = − g∗2

8

(
1− H2) (1− 3H2)

a(2)
H = − g∗2

8 H
(
1− H2) (1− 3H2) (6.21)

corresponding to the following beta equations:

βH = − 1
4π

λ∗H
(
1− H2) (1 +

1
8π

λ∗
(
1− 3H2)) (6.22)

βλ∗ = − 1
4π

λ∗2 (1− H2) (1 +
1

8π
λ∗
(
1− 3H2)) (6.23)

where λ∗ = g∗λ is the effective coupling constant (this is precisely the fixed
parameter in a ’t Hooft limit since for a SU(N) group g∗ = N). The difference
between a compact and a non-compact group lies in the sign of the dual Cox-
eter number that is respectively positive/negative. In both cases we remark
that H/λ∗ remains constant, which is a nice check of our construction, since
in the notation of Ch. 2 this is just the level of the model that, in the compact
case, is quantized and hence is not expected to receive any perturbative cor-
rection. On the other hand non perturbative effects do eventually lead to the
k→ k + g∗ shift which is the reason for the two-loop behaviour of the flow.

Let us analyze the flow in detail:

• The flow diagram for the compact case is drawn in Fig.6.1 where we see
the presence of three phases:

– region 1© is the basin of attraction for the WZW model (z = 1);

– the points in region 2© describe systems that flow towards asymp-
totic freedom;

– region 3© seems to be the basin of attraction for a different the-
ory, always with a group manifold geometry but with a differently-
normalized WZ term.

only a discrete set of trajectories is allowed and, in particular, region 3©
– separated from region 1© by the line λ∗ = 4πH – is only accessible for
levels k < g∗/2.

• The flow diagram for the non-compact case is drawn in Fig...; again we
see three different phases:

– region 1© describe theories flowing to asymptotic freedom;
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z

λ

z = 1

k = 1

k = 2

k =
g∗

2

1�

2�

3�

Figure 6.1: Two-loop RG-flow diagram for compact groups.

– region 2© looks like the basin of attraction for the non-trivial solu-
tion with the group manifold metric and a new normalization topo-
logical term;

– region 3© describe theories flowing to a strong coupling regime.

In particular it is interesting to remark that the roles of the UV and IR

are somehow inverted. The WZW model appears as a UV fixed point and
thus an unstable solution from the point of view of dynamical systems.

Renormalization group-flow in squashed compact groups

The models that we have presented in Ch. 3 are conformal; for this reason
we expect to find them as fixed points in an RG flow. To verify this claim let
us introduce a two-parameter family of σ models generalizing the exact back-
grounds; a possible choice consists in adding an extra magnetic field on the
top of the one responsible for the squashing, but now coming from a higher-
dimensional right sector. Explicitly



ds2 = ∑
µ∈G/T

Jµ Jµ +
(
1− H2) ∑

a∈T
Ja Ja,

H[3] = H̄
2H fµνρ Jµ ∧ Jν ∧ Jρ µ ∈ G/T,

Fa = H+H̄
2

√
k
kg

f a
µν Jµ ∧ Jν µ ∈ G/T, a ∈ T,

F̄a = H−H̄
2

√
k
kg

f a
µν Jµ ∧ Jν µ ∈ G/T, a ∈ T

(6.24)
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and in particular for SU(2):


ds2 = dθ2 + dψ2 + dφ2 + cos θdψdφ− H2 (dψ + cos θdφ)2 ,
B = H̄

H cos θdψ ∧ dφ ,
A = (H + H̄) (dψ + cos θdφ) ,
Ā = (H− H̄) (dψ + cos θdφ) ,

(6.25)

where H̄ is a new parameter, describing the deviation from the conformal
point. It is clear that the above background reduces to the one we are used
to in the H̄ → H limit. In particular we see that the metric is unchanged,
the Kalb–Ramond field has a different normalization and a new field Ā ap-
pears. This configuration can be described in a different way: the geometry
of a squashed sphere supports two covariantly constant magnetic fields with
charge Q = H + H̄ and Q̄ = H− H̄; the RG flow will describe the evolution of
these two charges from a generic (Q, Q̄) to (2H, 0), while the sum Q + Q̄ = 2H

remains constant. In this sense the phenomenon can be interpreted as a charge
transmutation of Q̄ into Q. The conservation of the total charge is in fact a
consequence of having chosen a perturbation that keeps the metric and only
changes the antisymmetric part of the background.

We can also see the background in Eq.(6.24) from a higher dimensional
perspective where only the metric and the Kalb-Ramond field are switched
on. Pictorially:

g =

 gWZW HJa

HJa 1

 B =

 H̄
H BWZW H̄Ja

−H̄Ja 0

 (6.26)

where gWZW and BWZW are the usual metric and Kalb–Ramond fields for the
WZW model on the group G. More explicitly in the SU(2) case:

g =


1 0 0 0
0 1 cos θ H

0 cos θ 1 H cos θ
0 H H cos θ 1

 B =


0 0 0 0
0 0 H̄

H cos θ H̄

0 − H̄
H cos θ 0 H̄ cos θ

0 −H̄ −H̄ cos θ 0


(6.27)

where the fourth entry represents the bosonized internal current. In particu-
lar this clarifies the stated right-sector origin for the new gauge field Ā. This
higher dimensional formalism is the one we will use in the following RG anal-
ysis.

The beta-equations at two-loop order in the expansion in powers of the
overall coupling constant λ and the field redefinitions for the internal coordi-
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nates Xi turn out to be:

βλ∗ = dλ∗

dt = −λ∗2

4π

(
1− H̄2

H2

) (
1 + λ∗

8π

(
1− 3 H̄2

H2

))
,

βH = dH
dt = λ∗H

8π

(
1− H2) (1− H̄2

H2

) (
1 + λ∗

8π

(
1− 3 H̄2

H2

))
,

βH̄ = dH̄
dt = −λ∗H̄

8π

(
1 + H2) (1− H̄2

H2

) (
1 + λ∗

8π

(
1− 3 H̄2

H2

))
,

Xi = Xi − λ∗

16

(
1− H2) (1− 4 H̄2

H2 + 3 H̄4

H4

)
,

(6.28)

where λ∗ = λg∗, g∗ being the dual Coxeter number, is the effective coupling
constant (λ∗ = Nλ for G = SU(N)). The contributions at one- and two-
loop order are clearly separated. In the following we will concentrate on the
one-loop part and we will comment on the two-loop result later. Let us then
consider the system:

βλ∗ = dλ∗

dt = −λ∗2

4π

(
1− H̄2

H2

)
,

βH = dH
dt = λ∗H

8π

(
1− H2) (1− H̄2

H2

)
,

βH̄ = dH̄
dt = −λ∗H̄

8π

(
1 + H2) (1− H̄2

H2

)
.

(6.29)

This can be integrated by introducing the parameter z = H̄/H which makes
one of the equations redundant. The other two become:{

λ̇∗ = −λ∗2

4π (1− z2),
ż = −λ∗z

4π (1− z2) .
(6.30)

By inspection one easily sees that λ̇/λ = ż/z, implying λ(t) = Cz(t), where C
is a constant. This was to be expected since C is proportional to the normaliza-
tion of the topological WZ term. Since we are dealing with a compact group it
turns out that C is, as in [Wit84], quantized with:

Ck =
2π

k
, k ∈N . (6.31)

Now it’s immediate to separate the system and find that z(t) is defined as the
solution to the implicit equation:

− t
2k

=
1
z0
− 1

z(t)
+ log

[
(z(t) + 1) (z0 − 1)
(z(t)− 1) (z0 + 1)

]
(6.32)

with the initial condition z(0) = z0. A similar expression was found in [BCZ85,
Wit84]. The reason for this is, as pointed out previously [KK95], that the con-
formal model (H̄ = H) in its higher-dimensional representation (the one in
Eq. (6.26)) coincides with a G× H WZW model after a suitable local field redef-
inition.

As it is usually the case in the study of non-linear dynamics, a better under-
standing of the solution is obtained by drawing the RG flow. In a (z, λ∗) plane,
the trajectories are straight lines through the origin and only a discrete set of
them are allowed. Moreover the line z = 1 is an IR fixed-point locus. This
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z

λ

z = 1

k = 1

k = 2

(a) (z, λ) plane

h

h̄

h = 1

h̄ = h

(b) (H, H̄) plane

Figure 6.2: Flow lines for the deformed (non-conformal) squashed WZW model
in (a) the (z, λ) and (b) the (H, H̄) planes. The arrows point in the negative t
direction, i.e. towards the infrared; in (a) we see how the squashed WZW model
z = 1 appears as an IR fixed point, in (b) how perturbing the conformal H̄ = H

model by increasing H̄ leads to a a new fixed point corresponding to a value of
H closer to 1.

situation is sketched in Fig. 6.2(a). Just as expected the z = H̄/H = 1 point,
corresponding to the initial exact model described in Ch. 3, is an IR fixed point
for the RG flow.

Further insights can be gained if we substitute the condition λ∗ = CkH̄/H

into the system (6.29) thus getting:
dH
dt = H̄

4k

(
1− H2) (1− H̄2

H2

)
,

dH̄
dt = − H̄2

4kH

(
1 + H2) (1− H̄2

H2

)
.

(6.33)

The flow diagram for this system in the (H, H̄) plane, Fig. 6.2(b), shows how
the system relaxes to equilibrium after a perturbation. In particular we can see
how increasing H̄ leads to a a new fixed point corresponding to a value of H

closer to 1.
We would like to pause for a moment and put the above results in perspec-

tive. Consider for simplicity the SU(2) case: the target-space of the sigma-
model under consideration is a squashed three-sphere with two different mag-
netic fields. Along the flow, a transmutation of the two magnetic charges oc-
curs: the system is driven to a point where one of the magnetic charges van-
ishes. This fixed point is an ordinary squashed-WZW (of the type studied in
Ch. 3), that supports a single magnetic charge.

As we pointed out in Ch. 3, in the squashed-WZW, the magnetic field is
bounded by a critical value, H = 1. As long as H ≤ 1, the geometry is a gen-
uine squashed three-sphere. For H > 1, the signature becomes Lorentzian and
the geometry exhibits closed time-like curves. Although of limited physical
interest, such a background can be used as a laboratory for investigating the
fate of chronological pathologies along the lines described above. In the case
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under consideration and under the perturbation we are considering the model
shows a symmetry between the H > 1 and H < 1 regions. The presence of
closed time-like curves doesn’t seem to effect the stability (note that regions
with different signatures are disconnected, i.e. the signature of the metric is
preserved under the RG flow). It is clear however that these results are prelim-
inary. To get a more reliable picture for the fate of closed time-like curves, one
should repeat the above analysis in a wider parameter space, where other RG

motions might appear and deliver a more refined stability landscape.

A final remark concerns the fact that we find the same RG flow behaviour
as for a compact (non-squashed) group. We have already made extensive use
of the fact that formally the squashed SU(2) behaves like a SU(2) × U(1)
WZW model, in particular in Sec. 3.4 where this was at the root of the no-
renormalization theorem. In some sense, then, the present calculation is just a
perturbative confirmation of that statement.

Renormalization group-flow in squashed anti de Sitter

As we’ve already discussed in Sec. 4.2, sigma models based on non-compact
group offer richer (i.e. more complex) phase diagrams than the compact ones.
In our particular models this is because the possible choices for a Cartan torus
are not pairwise conjugated by inner automorphisms and this is why different
choices correspond to inequivalent backgrounds, exhibiting different physical
properties. If we concentrate our attention on the SL(2, R) WZW model (that
is the only non-compact case with just one time direction), we see that the
three possible choices for the Cartan generator (elliptic, parabolic, hyperbolic)
respectively lead to the exact backgrounds we introduced in Sec. 4.2 and we
report here for convenience:

ds2 = dρ2 − dt2 + dφ2 − 2 sinh ρdtdφ− H2 (dt + sinh ρdφ)2 ,
B = sinh ρdt ∧ dφ,
A = 2H (dt + sinh ρdφ) .

(6.34)


ds2 = du2

u2 + dx+dx−
u2 − H2 dx+dx+

u4 ,
B = dx+∧dx−

u2 ,
A = 2H dx+

u2 .

(6.35)


ds2 = dr2 + dx2 − dτ2 + 2 sinh rdxdτ − H2 (dx + sinh rdτ)2

B = sinh rdx ∧ dτ,
A = 2H (dx + sinh rdτ) .

(6.36)

Since these solutions are exact CFT backgrounds, we expect them to ap-
pear as fixed points for an RG flow, like the compact configuration described
in the previous section. As we will see in the following this is actually the
case, but with a difference regarding the role of the UV and IR which is proper
to non-compact groups (as explained in Sec. 6.1). Using the same technique as
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above, the first step consists in generalizing the three backgrounds by intro-
ducing the following three families of low energy configurations:


ds2 = dρ2 − dt2 + dφ2 − 2 sinh ρdtdφ− H2 (dt + sinh ρdφ)2

B = H̄
H sinh ρdt ∧ dφ

A = (H + H̄) (dt + sinh ρdφ)
Ā = (H− H̄) (dt + sinh ρdφ)

(6.37)


ds2 = du2

u2 + dx+dx−
u2 − H2 dx+dx+

u4

B = H̄
H

dx+∧dx−
u2

A = (H + H̄) dx+

u2

Ā = (H− H̄) dx+

u2

(6.38)


ds2 = dr2 + dx2 − dτ2 + 2 sinh rdxdτ − H2 (dx + sinh rdτ)2

B = H̄
H sinh rdx ∧ dτ

A = (H + H̄) (dx + sinh rdτ)
Ā = (H− H̄) (dx + sinh rdτ)

(6.39)

The guiding principle remains the same, i.e. keep the same geometry, rescale
the KR field and introduce a new electromagnetic field, coming (in a four-
dimensional perspective) from the right-moving sector. Again we will observe
the same charge-transmutation effect as before, this time in terms of charge
density (or charge at infinity).

The backgrounds above can be equivalently described in four dimensions
by a metric and a KR field as follows:

g =


1 0 0 0
0 −1 − sinh ρ H
0 − sinh ρ 1 H sinh ρ
0 H H sinh ρ 1

 B =


0 0 0 0
0 0 H̄

H sinh ρ H̄

0 − H̄
H sinh ρ 0 H̄ sinh ρ

0 −H̄ −H̄ sinh ρ 0


(6.40)

g =


1

u2 0 0 0
0 0 1

2u2
H
u2

0 − 1
2u2 0 0

0 H
u2 0 1

 B =


0 0 0 0
0 0 H̄

H
1

2u2
H̄
u2

0 H̄
H

1
2u2 0 0

0 − H̄
u2 0 0

 (6.41)

g =


1 0 0 0
0 1 sinh r H
0 sinh r −1 H sinh r
0 H H sinh r 1

 B =


0 0 0 0
0 0 H̄

H sinh r H̄

0 − H̄
H sinh r 0 H̄ sinh r

0 −H̄ −H̄ sinh r 0


(6.42)

We must now evaluate the R− tensor (i.e. the Ricci tensor with respect to
the connection Γ− = Γ + 1/2H) and read the counterterms in a dimensional
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regularization scheme as described in Eq. (6.7):

J(1) = 1
4

(
1− H̄2

H2

)
,

a(1)
H = − 1+H2

8 H
(

1− H̄2

H2

)
,

a(1)
H̄ = 1−H2

8 H̄
(

1− H̄2

H2

)
,

X(1)
X = 1+H2

8

(
1− H̄2

H2

)
X.



J(1) = 1
4

(
1− H̄2

H2

)
,

a(1)
H = − 1

8 H
(

1− H̄2

H2

)
,

a(1)
H̄ = 1

8 H̄
(

1− H̄2

H2

)
,

X(1)
X = 1

8

(
1− H̄2

H2

)
X.



J(1) = 1
4

(
1− H̄2

H2

)
,

a(1)
H = − 1−H2

8 H
(

1− H̄2

H2

)
,

a(1)
H̄ = 1+H2

8 H̄
(

1− H̄2

H2

)
,

X(1)
X = 1−H2

8

(
1− H̄2

H2

)
X.

(6.43)

The analogies among the three configurations are clear, but become striking
when we introduce the parameter z = H̄/H and all three β-functions systems
all reduce to the following:{

λ̇ = λ2

4π (1− z2),
ż = λz

4π (1− z2).
(6.44)

This is (up to a sign) the same system we found in the compact case and it is
hence immediate to write the solution

λ(t) = Cz(t) (6.45)
Ct
4π

=
1
z0
− 1

z(t)
+ log

[
(z(t) + 1) (z0 − 1)
(z(t)− 1) (z0 + 1)

]
. (6.46)

Although, as expected, z = 1 is a fixed point (corresponding to the confor-
mal points) some differences are important. First of all the background is
non-compact, so C is not quantized and, although the flow trajectories are still
straight lines through the origin, the angular parameter is now arbitrary. The
other difference is that z = 1 is a fixed point, but it doesn’t correspond to a
IR stable configuration but to a UV stable one. This is precisely the same be-
haviour that one encounters for non-compact WZW models when varying the
normalization of the WZ term (as in Sec. 6.1). Again the flow diagram is the
same as for the original SL(2, R) group and is summarized in Fig. 6.3.

6.2 The CFT approach

In order to make contact with genuine CFT techniques, we must identify the
relevant operators which are responsible for the (H, H̄) deformation of the G×
H original WZW model (H = U(1)rank G). At lowest approximation, all we
need is their conformal dimensions in the unperturbed theory.

Following [Zam86], let S0 be the unperturbed (conformal) action and Oi
the relevant operators of conformal dimension ∆i = 1− εi. Consider the per-
turbed model,

S = S0 + giOi. (6.47)

The tree-level beta-functions read:

βi(g) = −εigi, (6.48)
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z

λ

z = 1

Figure 6.3: Flow diagram for the system in Eq. (6.44). The arrows point from
the UV to the IR and z = 1 appears as a UV stable solution locus.

where gi is supposed to be small, for the perturbative expansion of βi to hold3.
The G× H primary operator we need can be written as follows:

O = ∑
A,B
〈tAgtBg−1〉 〈tA∂gg−1〉 〈tBg−1∂̄g〉 = ∑

A,B
ΦAB JA J̄B, (6.49)

where ΦAB is a primary field transforming in the adjoint representation of the
left and right groups G. As such, the total conformal dimensions (as we’ve
seen in Sec. 2.1) are

∆ = ∆̄ = 1 +
g∗

g∗ + k
, (6.50)

where g∗ is the dual Coxeter number and as such the operator is irrelevant (in
the infrared).

Specializing this general construction to our case we find that the action for
the fields in Eq. (3.17) is:

S =
k

4π

{
S0 +

(H

H̄
− 1
)

∑
A,B

ΦAB JA J̄B +
H

H̄
(H + H̄) ∑

i
Jai J̄i +

H

H̄
(H− H̄) ∑

i,A
JiΦai A J̄A

}
.

(6.51)

where A runs over all currents, i over the internal currents (in H) and Jai is the
WZW current of the Cartan subalgebra of G coupled to the internal J̄i. The extra

3One should be very careful in the choice of signs in these formulae. In [Zam86] the time
variable, in fact, describes the evolution of the system towards the infrared and as such it is
opposite with respect to the t = log µ convention that we used in the previous section (as in
[Wit84]).
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terms can be interpreted as relevant combinations of operators in the G × H
model. The beta-functions are thus computed following Eq. (6.48):

d
dt log

[(
H
H̄ − 1

)]∣∣∣
H̄=H

= g∗
g∗+k = g∗

k −
g∗2

k2 +O
( 1

k3

)
,

d
dt log

[
H
H̄ (H + H̄)

]∣∣∣
H̄=H

= O
( 1

k3

)
,

d
dt log

[
H
H̄ (H− H̄)

]∣∣∣
H̄=H

= g∗
g∗+k = g∗

k −
g∗2

k2 +O
( 1

k3

)
.

(6.52)

Equations (6.52) agree with the results of the field-theoretical approach (up
to the overall normalization), at least in the regime where (6.52) are valid,
namely for small H and H̄ perturbations. But there’s more: as pointed out
before the conformal model (H̄ = H) is exact because it coincides with a G× H
WZW model after a suitable field redefinition for any value of H. As a con-
sequence the equations remain valid for any finite H. This is reassuring both
for the validity of the geometrical approach4 and for the conclusions on the
stability picture of the models under consideration.

The extra information that we obtain from this calculation is about the in-
terpretation for the two-loop β-function we described in the previous section.
In fact it is now clear that with the target-space approach we just describe the
Taylor expansion of the tree-level CFT result:

g∗

g∗ + k
=

g∗

k
− g∗2

k2 +O
(

1
k3

)
. (6.53)

This is not surprising since the would-be non-trivial fixed point of the two-
loop expansion lay out of the validity range for our approximation. If we really
want to go beyond the large k limit, we need to push the analysis from this,
CFT, side.

From the target space view point, the renormalization approach remainsTarget space vs
CFT

renormalization
valid in the large k limit for any value of H/H̄. This enables us to use Eq. (6.28)
and push (for k→ ∞) Eq. (6.52) at least to the next leading order in (1− H/H̄)
so to get

d
dt

(H

H̄
− 1
)∣∣∣∣

H̄=H

=
(

g∗

k
− g∗2

k2

)(H

H̄
− 1
)

+
1
2

(
− g∗

k
+ 7

g∗2

k2

)(H

H̄
− 1
)2

+ . . .

(6.54)

that obviously agrees to first order in the coupling (H/H̄− 1) with the expres-
sion above.

The extra information that we obtain from this calculation is about the in-
terpretation for the two-loop beta-function we described in the previous sec-
tion. The one-loop corrections to (6.48) are of the form Cijk gi gj, where Cijk
are related to the three-point function of the unperturbed theory [Zam86].
This coefficient is a measure of the dimension of the operator Oi in the the-
ory perturbed by the set of all operators. Eq.(6.54), based on the target-space

4There is no doubt on the method itself. It could simply fail to describe the desired phe-
nomenon due to an inappropriate ansatz for the off-criticality excursion in parameter space.
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approach, precisely predicts the coefficient of the term (H/H̄− 1)2 to second
order in the 1/k-expansion. It seems that such a computation is feasible from
the CFT viewpoint at least as a series expansion for large k. This would allow
for a genuine two-loop comparison of the two methods, and is left for future
investigation.

6.3 RG flow and friction

It has already been noted in literature [GHMS03] that a deep link exists be-
tween the equations of motion and the RG-flow. In an oversimplified toy
model one can consider the equations of motion for a system with friction:

d2r
dt2 = −V ′(r)− k

dr
dt

. (6.55)

Large friction corresponds to the k → ∞ limit where the dynamics described
by this second order equation is well approximated by a first order one:

dr
dt′

= −V ′(r), t′ =
t
k

. (6.56)

At least in some cases the same link exists between the second order equa-
tions of motion and the first order RG flow equation: the latter provide a good
approximation for the dynamics of the system in some region of the mod-
uli space. In this section we will provide a class of systems (with constant-
curvature metrics and no dilaton) where this can be explicitly verified and the
“friction” identified with the expectation value for the dilaton which appears
out of equilibrium. More precisely we will consider the RG flow for the cou-
pling constant of the metric with respect to the Kalb-Ramond field and then
show that the equations that one obtains in this way are an approximation of
those for a system in which the constant is a field depending on an extra time
direction.

The RG-flow approach

As announced above we would like to study the RG-flow for the coupling of
the metric in a system without dilaton, that is for the sigma model

S =
1

2λ

∫
d2z

(
cgµν + Bµν

)
∂Xµ∂̄Xν (6.57)

knowing that for c = 1 the model is conformal. Using the geometric RG-flow
approach developed in Sec. 6.1 we find that Riemann tensor with respect to
the connection of Eq. (6.13):

R−µ
νρσ =

(
1− 1

c2

)
Rµ

νρσ. (6.58)

It follows that the one-loop counterterm is given by

Tµν =
R
d

(
1− 1

c2

)
gµν (6.59)
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where for simplicity we supposed the manifold to be Einstein, which is consis-
tent with the fact that the conformal model with fields g and B doesn’t include
a dilaton. Hence we immediately find the parameters

J(c) = 0 a(c) =
R
d

(
1− 1

c2

)
(6.60)

and the corresponding beta equations{
βλ = 0,
βc = λ

π ac = λR
dπ

(
1− 1

c2

)
.

(6.61)

In order to compare this result with what we will find in the following we
can write

c(µ) = e2σ(µ) (6.62)

where µ is the energy scale. Then the energy evolution of σ(µ) (going towards
the infrared) gives:

dσ

dµ
= − λR

2dπ
e−2σ(µ)

(
1− e−4σ(µ)

)
= −V ′(σ(µ)) (6.63)

which admits the implicit solution

log µ = −1
4

(
2e2σ(µ) + log(tanh σ(µ))

)
. (6.64)

This is for us the equivalent of Eq. (6.56). Now we move to the (d + 1)-
dimensional spacetime to find the corresponding Eq. (6.55).

Spacetime interpretation

Equations of motion. As we said above we want to describe the same sys-
tem by introducing an extra time dimension and reading the coupling as a
time-dependent field. In other words we would like to write the equations of
motion for the following sigma model:

S =
∫

d2z
[
−∂t∂̄t +

(
c(t)gµν + Bµν

)
∂Xµ∂̄Xν

]
(6.65)

where, g and B are background fields solving the low-energy string equations
of motion. In order to write the equations of motion let us rewrite the d + 1
dimensional metric in terms of a Weyl rescaling as:

ḡMN = e2σ(t)
(
−e−2σ(t) 0

0 gµν

)
= e2σ(t)gMN (6.66)

where c(t) = e2σ(t). This means in particular that the Ricci tensor (this time
with respect to the standard Levi-Civita connection) can be written as

RicMN = RicMN − gMNK L
L − (d− 1) KMN (6.67)
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where KMN is defined as

K N
M = −∂MσgNL∂Lσ + gNL (∂M∂Lσ− ΓP

ML∂Pσ) +
1
2

gLP∂Lσ∂Pσδ N
M (6.68)

KMN = gNLB L
M (6.69)

After some algebra one finds that

Γt
tt = −σ̇(t) Γt

tµ = 0 Γt
µν = 0 (6.70)

K t
t = −e2σ(t)

(
σ̈(t) +

σ̇2(t)
2

)
K ν

µ = −1
2

e2σ(t)σ̇2(t)δ
ν

µ (6.71a)

Ktt =
(

σ̈(t) +
σ̇2(t)

2

)
Kµν = − e2σ(t)

2
σ̇2(t)gµν (6.71b)

where σ̇(t) is the notation for

σ̇(t) =
dσ(t)

dt
(6.72)

In particular this implies that

K L
L = −e2σ(t)

(
d + 1

2
σ̇2(t) + σ̈(t)

)
. (6.73)

It then easily follows that

Rictt = −d
(
σ̈(t) + σ̇2(t)

)
(6.74a)

Rictµ = 0 (6.74b)

Ricµν = Ricµν + ḡµν

(
dσ̇2(t) + σ̈(t)

)
. (6.74c)

The other terms in the equations of motion read

H̄2
µν = HµαβHνγδ ḡαγ ḡβδ = e−4σ(t)H2

µν (6.75)

∇̄M∇̄NΦ = ∂M∂NΦ− Γ̄λ
MN∂λΦ (6.76)

now, Γ̄t
µν = −σ̇(t)ḡµν so

∇̄t∇̄tΦ = Φ̈(t) (6.77a)
∇̄µ∇̄tΦ = 0 (6.77b)
∇̄µ∇̄νΦ = σ̇(t)Φ̇(t)ḡµν. (6.77c)

These are all the ingredients we need to write the equations of motion:

RicMN −
1
4

H̄2
MN + 2∇̄M∇̄NΦ = 0. (6.78)

Splitting the time component we obtain

Rictt + 2∂t∂tΦ(t) = −d
(
σ̈(t) + σ̇2(t)

)
+ 2Φ̈(t) = 0 (6.79a)

Ricµν

(
1− e−4σ(t)

)
+ ḡµν

(
dσ̇2(t) + σ̈(t)− 2σ̇(t)Φ̇(t)

)
= 0 (6.79b)



108 Out of the conformal point: Renormalization Group Flows

where we have used the equations of motion for the system in σ = 0:

Ricµν =
1
4

H2
µν (6.80)

The system admits a solution if and only if gµν is Einstein (since the original
system didn’t have any dilaton). Taking the trace with ḡMN we obtain the sys-
tem: {

d
(
σ̈(t) + σ̇2(t)

)
− 2Φ̈(t) = 0

Re−2σ(t)
(

1− e−4σ(t)
)

+ d
(
dσ̇2(t) + σ̈(t)− 2σ̇(t)Φ̇(t)

)
= 0

(6.81)

Introducing

Q(t) = −Φ̇(t) +
d
2

σ̇(t) (6.82)

the equations become:{
Q̇(t) = −dσ̇2(t)

σ̈(t) = −R
d e−2σ(t)

(
1− e−4σ(t)

)
− 2σ̇(t)Q(t)

(6.83)

This second equation has precisely the structure of the motion in a potential

V(σ)−V(0) =
R
6d

e−6σ
(

1− 3e4σ
)
∼ − R

3d
+

2R
d

σ2. (6.84)

and with a time-dependent friction coefficient Q(t). In the limit of Q→ ∞ we
clearly recover Eq. (6.63) with the same potential V(σ) when identifying the
energy scale µ for the off-shell system with the time direction here following

log µ =
πQ̄
λ

t. (6.85)

Linearization. The system (6.83) can be solved numerically and typical re-
sults for large Q(0) and small Q(0) are presented in Fig. 6.4.

A further step can be made by linearization. Introduce

Σ(t) = σ̇(t) (6.86)

the system becomes a first order one:
Q̇(t) = −dΣ2(t)
σ̇(t) = Σ(t)
Σ̇(t) = −V ′(σ(t))− 2Σ(t)Q(t)

(6.87)

which has a fixed point for (Q, σ, Σ) = (Q̄, 0, 0) where Q̄ is a constant. Around
this point the equations read:

Q̇(t) = 0
σ̇(t) = Σ(t)
Σ̇(t) = −V ′′(0)σ(t)− 2Q̄Σ(t) = − 4R

d σ(t)− 2Q̄Σ(t)
(6.88)
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Figure 6.4: Typical behaviour for σ(t) in the system (6.83) for (a) small and
(b) large (positive) initial values of Q(t).

so, Q decouples (and remains constant) and the equation of motion around the
fixed point is

d2σ(t)
dt2 = −4R

d
σ(t)− 2Q̄

dσ(t)
dt

, (6.89)

which can be integrated giving

σ(t) = C1 exp

[
−
(

Q̄ +

√
Q̄2 − 4R

d

)
t

]
+ C2 exp

[
−
(

Q̄−
√

Q̄2 − 4R
d

)
t

]
(6.90)

with C1 and C2 integration constants.
For positive Q̄ the solution converges to σ = 0 with or without oscillations

if Q̄2 ≶ 4R/d. In terms of σ(t) and Φ(t) this limit solution is

σ(t) −−→
t→∞

0 Φ(t) ∼ −Q̄t, (6.91)

which is not surprisingly the initial conformal model in Eq. (6.57) plus a linear
dilaton.

The meaning of Q̄. Q̄ is linked to the dilaton: larger values correspond to
negative and larger absolute values for Φ, i.e. moving further inside the per-
turbative regime. On the other hand, negative values of Q̄ give diverging solu-
tions, but in this case the dilaton grows (see Eq. 6.82) and the very underlying
perturbative approach collapses. It is worth to remark that if we make an
hypothesis of uniqueness for the system (6.83), Q can’t change sign because
Q(t) = 0, σ(t) = 1 is a solution (the starting conformal model with constant
dilaton).

A better understanding of the actual meaning of this parameter can be ob-
tained if we consider the limiting situation of linear dilaton. In this case, in
fact, it is immediate to derive the central-charge of the overall system:

c = (d + 1)− 3Q̄2 − cd + cI = 0, (6.92)
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where cd is the central-charge of the conformal system in Eq. (6.57) (e.g. 6/ (k + 2)
for the SU(2) WZW model) and cI is the internal central-charge. If follows that
for a critical model

Q̄2 =
1
3

(d + 1− cd + cI) (6.93)

and Q̄ is essentially a measure of the deficit.
A final remark regards the consistency of the approximation for the dy-

namics one obtains from the RG-flow equation (6.63), corresponding to a Q→
∞ limit. The linearized system (6.88) provides a justification for such limit:
in fact the time scale for Q(t) is comparably larger than σ(t)’s – to the point
that the former decouples around the fixed point. For this reason it can be
taken as a constant (fixed by the initial conditions) if we just concentrate on
the evolution of the warping factor σ(t).

6.4 Cosmological interpretation

The type of backgrounds we are studying are time-dependent and as such
can have a cosmological interest. For this reason, since there is a non-trivial
dilaton, one should better move to the Einstein frame (as opposed to the string
frame we’ve been using thus far). This means that the metric is written as:

g̃MN = e−Φ(t)/2 ḡMN (6.94)

and after a coordinate change

τ(t) =
∫

e−Φ(t)/4dt (6.95)

can be put back to the same warped product form as in Eq. (6.66):

d̃s2 = g̃MNdxMdxN = −dτ2 + e2σ(t)−Φ(t)/2
∣∣∣
t=t(τ)

(
gµνdxµdxν

)
=

= −dτ2 + w(τ)
(

gµνdxµdxν
)

. (6.96)

Cosmologically interesting solutions are obtained when d = 3. In this case
the H field is proportional to the volume form on g. This implies that H2

µν ∝ gµν

and then the equations reduce to

Ricµν = Λ2gµν (6.97)

ie gµν is to be the metric of an Einstein three-manifold (the most simple case
being a three-sphere). What we get then is a typical example of Friedmann-
Robertson-Walker (FRW) spacetime such as those already studied in [Tse92b,
Tse92a, GP94, CLW94]. As such it describes the time evolution of an isotropic
spacetime (or more in general of a spacetime with the symmetries of the con-
formal theory in Eq. (6.57)). Some intuition about the time evolution can be
developed if we take the linearized system in Eq. (6.88) and consider the large
t limit. In fact, as remarked above the solution asymptotically approaches a
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linear dilaton background (which was already studied from this point of view
in [ABEN89]):

σ(t) −−→
t→∞

0 Q(t) = Q̄ Φ(t) ∼ −Q̄t (6.98)

hence one verifies that the metric in the Einstein frame is asymptotically

d̃s2 ∼ −dτ2 + Q̄2τ2 (gµνdxµdxν
)

(6.99)

which corresponds to an expanding universe with curvature

R̃ ∼ R + Q̄2d (d− 1)
Q̄2τ2 . (6.100)

A similar result, with a polynomial expansion is found if we consider an
exponential decrease for σ(t), or better for c(t) (in the linear limit c(t)− 1 obeys
the same equations as σ(t)). After a redefinition of the variables we can let

c(t) = e−t + 1. (6.101)

It is easy to check that in general5

τ(t) =
∫

c(t)−d/16e1/4
∫

Q(t′)dt′dt (6.102)

and in this linearized approximation the latter becomes

τ(t) =
∫ (

e−t + 1
)−d/16 eQ̄t/4dt. (6.103)

This integral can be solved analytically:

τ(u) =
16

d + 4Q̄

(
1 +

1
u

)−d/16

uQ̄/4 (1 + u)d/16
2F1

(
d

16
,

d + 4Q̄
16

;
d + 4Q̄

16
+ 1,−u

)
,

(6.104)

where u = et and 2F1 is an hypergeometric function6. It is better however to
consider the asymptotic behaviours. For u → ∞ one finds that τ(u) and the
warping factor w(u) go like:

τ(u) ∼ 4
Q̄

uQ̄/4, w(u) ∼ uQ̄/2, (6.107)

5On a side note, since c(t) > 0 by construction the relation τ = τ(t) is always invertible.
6The hypergeometric function 2F1 is defined as follows:

2F1(a, b; c, u) =
∞

∑
k=0

(a)k (b)k
(c)k

zk

k!
(6.105)

where (a)k is the Pochhammer symbol

(a)k =
Γ(a + k)

Γ(a)
(6.106)
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and consistently with the results above for the linear dilaton case (which is
precisely the large-u limit):

w(τ) ∼ τ2; (6.108)

similarly for small u:

τ(u) ∼ 16
d + 4Q̄

u(d+4Q̄)/16, w(u) ∼ ud/4+2+Q̄/2 (6.109)

and then

w(τ) ∼ τ4+8(4−Q̄)/(d+4Q̄). (6.110)

Note that this behaviour precisely measures the effect of a finite value for Q̄
and in fact for Q̄ → ∞ we recover again w(τ) ∼ τ2. Summarizing, just as
advertised, we get again a polynomially expanding universe (a so-called big-
bang solution).

The analysis for the small-Q̄ regime is clearly more difficult to be car-
ried out analytically. Apart from numerical solutions (see Fig. 6.5), in gen-
eral we can study w(τ) as a parametric curve in the (w, τ) plane defined by
(w(t), τ(t)). Then τ(t) appears to be a monotonically increasing function since
c(t) > 0 which implies that w(τ) has an extremum for each extremum in w(t).
This means that we expect the superposition of a polynomial expansion and a
damped oscillation. The limiting situation is obtained when Q̄ is small (but not
vanishing), and for large t, τ(t) ∼ t so that w(τ) slowly converges, oscillating,
to a constant value.
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Figure 6.5: Typical behaviour for the warping factor in the small-Q̄ regime. We
consider (a) Q̄ very small but not vanishing, (b) small Q̄ and (c) larger Q̄ (but
still compatible with oscillations).





CHAPTER 7

Hyperbolic Spaces
In this chapter we investigate type II and M-theory geometries written as
direct products of constant-curvature spaces. We find in particular a class
of backgrounds with hyperbolic components and we study their stability
with respect to small fluctuations.

THIS CHAPTER does in some sense deviate from the main theme we devel-
oped in this thesis. In fact we will deal with type II theories in presence

of Ramond-Ramond fields, that – to this moment – still elude a precise CFT

treatment. For this reason our analysis will be mostly confined to supergrav-
ity considerations. On the other hand we still continue to follow one of the
main guiding threads, i.e. look for backgrounds with simple geometric in-
terpretation, which in this case means (maximally) symmetric spaces, with
special emphasis on hyperbolic, negative curvature, Poincaré spaces. We will
show in fact that these spaces can be used as building blocks for M-theory and
type II backgrounds, in genuinely perturbative configurations or in presence
of D branes, both in the non-compact and in the compact part after discrete
identifications. In particular we find a series of M-theory solutions that can be
obtained starting with the usual AdS7 × S4 by splitting the anti-de Sitter in a
AdS× H product and verify their stability with respect to small fluctuations.
Finally we also show how obtaining negative-curvature Euclidean signature
spaces is not in general an easy task and in particular show that the presence
of orientifold planes, giving a negative contribution to the stress-energy tensor
is not enough to allow for H3 spaces in type IIB theories.

7.1 M-theory solutions

Let us start with the action of the bosonic sector of eleven-dimensional super-
gravity:

S =
1

2κ2
11

∫
d11x

√
−g
(

R− 1
2

∣∣∣F[4]

∣∣∣2)+
1

12κ2
11

∫
A[3] ∧ F[4] ∧ F[4], (7.1)

and the corresponding equations of motion

Rµν −
1
2

Rgµν −
1
2

∣∣∣F2
[4]

∣∣∣
µν

+
1
4

∣∣∣F2
[4]

∣∣∣ gµν = 0, (7.2)
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where with the notation
∣∣∣F[n]

∣∣∣2 we mean

∣∣∣F[p]

∣∣∣2 =
1
p!

Fµ1µ2...µp Fµ1µ2 ...µp . (7.3)

The ansatz we want to study is the following. We consider direct products
of symmetric spaces of the form M11 = M0×M1×M2× . . . where M0 has sig-
nature−, +, . . . , + and all the other spaces are Riemann. Since we assume that
they are all symmetric spaces, we can split the Ricci tensor in blocks and each
block will be proportional to the metric of the corresponding submanifold. To
fix the notation we can introduce the parameters Λi as

Rµν

∣∣
i = Λi gµν

∣∣
i , (7.4)

so that the Ricci scalars are given by

Ri = Λi dim Mi = Λidi. (7.5)

In particular we can raise an index and rewrite

Rµ
ν

∣∣
i = Λi δ

µ
ν

∣∣
i . (7.6)

The Poincaré invariance constraint fixes the allowed gauge fields to be pro-
portional to the volume form of each submanifold. It is always possible to per-
form an electric/magnetic duality so that there’s no field on the Minkowskian
submanifold. This means that we can consider gauge fields having the form:

F[di ] = Fi = Qiω̃i, (7.7)

where Fi is a di-form, Qi ∈ N and ω̃i = ω̃Mi is the volume form on Mi, nor-
malized to one. It is useful to rewrite the expression above as

Fi =
√

2kiQi |Λi|di/2 ωi (7.8)

where ωi is the volume form on Mi and ki is a constant whose value is

• ki = Γ(i/2)/
(

2
√

2πi/2
)

for a sphere Si

• ki = 1/ (4π (g− 1)) for a genus g Riemann surface H2/Γ

• some value that completely identifies the lattice in a H3/Γ compactifica-
tion (rigidity theorem for three-manifolds [Thurston]).

In coordinates

Fi|µ1 ...µdi
= kiQiΛ

di/2
i

√
2 det giεµ1...µdi

(7.9)

which implies (as one can verify in a non-coordinate basis):

Fi|µµ2...µdi
Fi|νµ2...µdi = 2 (n− 1)!k2

i Q2
i Λdi δ

µ
ν (7.10)
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Furthermore∣∣F2
i
∣∣µ

ν
= 2k2

i Q2
i |Λi|di δ

µ
ν (7.11)∣∣F2

i
∣∣ = 2k2

i Q2
i |Λi|di . (7.12)

We are now in position to write the equations of motion that will simply
translate into an algebraic system for the (Λ0, Λi):

Λ0 − 1
2 R = − 1

2∑
j

k2
j Q2

j
∣∣Λj
∣∣dj ,

Λi − 1
2 R = − 1

2∑
j

(−)δij k2
j Q2

j
∣∣Λj
∣∣dj ,

(7.13)

where

R = d0Λ0 + ∑
i

diΛi. (7.14)

Let us now turn to study some particular examples.

M1,6−d ×Md ×M4

Let us consider as an example the case M11 = M0×M1×M2 where (d0, d1, d2) =
(7− d, d, 4). If we turn F2 in the equations of motion read:

Λ0 − 1
2 R = − 1

2 k2
2Q2

2Λ4
2,

Λ1 − 1
2 R = − 1

2 k2
2Q2

2Λ4
2,

Λ2 − 1
2 R = 1

2 k2
2Q2

2Λ4
2,

(7.15)

with R = (7− d) Λ0 + dΛ1 + 4Λ2. The solution is:

Λ0 = Λ1 = −1
2

(
3
2

)1/3 1

(k2Q2)
2/3 , Λ2 =

(
3
2

)1/3 1

(k2Q2)
2/3 , (7.16)

and given the curvatures, this describes an AdS7−d × Hd × S4 space.
A few remarks are in order. First of all, the result doesn’t depend on d and

in particular it would be the same for d = 0 (which is some sort of limit case).
In other words, at the level of the equations of motion, we can’t distinguish
between an AdS7 space and any product of the form AdS7−d × Hd once the
respective curvatures are such as

RAdS

7− d
=

RH

d
. (7.17)

This calculation is generalizable to any product of the form M0 ×M1 × . . .×
Mn with dimensions (d0, d1, . . . , dn−1, 4). In fact the equations of motion read

Λ0 − 1
2 R = − 1

2 k2
nQ2

nΛ4
n,

Λ1 − 1
2 R = − 1

2 k2
nQ2

nΛ4
n,

. . .
Λn−1 − 1

2 R = − 1
2 k2

nQ2
nΛ4

n,
Λn − 1

2 R = 1
2 k2

2Q2
2Λ4

2,

(7.18)
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with R = d0Λ0 + d1Λ1 + . . . + dnΛn. From the system above we conclude that
Λ0 = Λ1 = . . . = Λn−1 and then we are back to the situation above:

Λ0 = Λ1 = . . . = Λn−1 = −
(

3
2

)1/3 1

2 (knQn)
2/3 , Λn =

(
3
2

)1/3 1

(knQn)
2/3 .

(7.19)

We have thus found a series of possible M-theory backgrounds where the anti-
de Sitter component is split into two or more subspaces of the form

AdSn → AdSn−p × Hp, (7.20)

with Ricci scalars obeying

R(n)

n
=

R(n−p)

n− p
=

R(p)

p
. (7.21)

In particular we get the direct products AdS2× H2× H3× S4, AdS2× H5× S4,
AdS3 × H2 × H2 × S4, AdS3 × H4 × S4, AdS4 × H3 × S4, AdS5 × H2 × S4.

M1,3 ×Md ×M7−d

The dual situation is obtained for (d0, d1, d2) = (4, d, 7− d). In this case we can
turn on the 7-form field

F[7] =
√

2k0Q0Λd/2
1 Λ(7−d)/2

2 (7.22)

and the equations of motion read:
Λ0 − 1

2 R = − 1
2 k2

0Q2
0

∣∣∣Λd
1Λ7−d

2

∣∣∣ ,

Λ1 − 1
2 R = 1

2 k2
0Q2

0

∣∣∣Λd
1Λ7−d

2

∣∣∣ ,

Λ2 − 1
2 R = 1

2 k2
0Q2

0

∣∣∣Λd
1Λ7−d

2

∣∣∣ ,

(7.23)

with R = 4Λ0 + dΛ1 + (7− d) Λ2. Again the solution is easily found

Λ0 = −2
31/6

(k0Q0)
2/3 Λ1 = Λ2 =

31/6

(k0Q0)
2/3 . (7.24)

Just as before this does not depend on d and shows that at this level an AdS4×
Sd × S7−d space is not distinguishable from a AdS4 × S7 one. Again we can
consider more general configurations with dimensions (4, d1, . . . , dn) to find
that the solution remains the same

Λ0 = −2
31/6

(k0Q0)
2/3 , Λ1 = Λ2 = . . . = Λn =

31/6

(k0Q0)
2/3 . (7.25)

This describes a second series of solutions in which a sphere is split into
the product of two smaller spheres according to

Sn → Sn−p × Sp (7.26)
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with Ricci scalars obeying as above

R(n)

n
=

R(n−p)

n− p
=

R(p)

p
, (7.27)

and then we recover AdS4× S2× S2× S3, AdS4× S2× S5, AdS4× S3× S2× S2,
AdS4 × S3 × S4, AdS4 × S5 × S2.

Finally we can combine the two types of splitting and put AdS2 × H2 in-
stead of AdS4 and S2 × S2 instead of S4 in the former series.

The key ingredient to these constructions is the fact that with a careful
choice of radii the product spaces still remain Einstein and this is all one needs
to satisfy the equations of motion. This means of course that in general one can
use any Einstein manifold with the proper curvature. In particular, then, in-
stead of the five-sphere S5 one can put a generalization of the S3× S2 product,
such as any of the representatives of the two-parameter class of spaces Tp,q ob-
tained as S1 fibrations over S2×S2 or equivalently as the coset (SU(2)× SU(2)) /U(1),
the parameter being the embedding indexes of U(1) in the SU(2)’s1. Similarly,
instead of AdS5 one can put a space written as a time-fibration over H2 × H2
or as the coset (SL(2, R)× SL(2, R)) /R. The metric of such LQ1,Q2 space can
be written as

ds2 = Q1

(
dx2

1 + x2 +
(
1 + x2)du2

)
+ Q2

(
dy2

1 + y2 +
(
1 + y2)dv2

)
+

+
2Q1 (Q1 − 2Q2)

Q2

(
dt + xdu +

Q2

Q1

√
Q2 − 2Q1

Q1 − 2Q2
ydv

)2

. (7.28)

Such cosets were studied in [PZT00] where they were found to be exact
string backgrounds by using a construction very close to the asymmetric cosets
of Ch. 3.

Of course since in general these geometries don’t preserve any supersym-
metry we should address the problem of their stability, which we do in the
following section.

7.2 Stability

The set of solutions we found above are not in general protected by supersym-
metry. This implies in particular that we should care about their stability. In
our analysis we will deal with the breathing modes of the compact Hn and Sn

internal manifolds which, in an effective action, are to be described by scalar
fields. The stability (with respect to small fluctuations) will then translate intro
the positivity of the squared mass for such fields, condition that can be relaxed
into the respect of a Breitenlohner-Freedman bound when the spacetime is of
the anti-de Sitter type.

1This clearly is the basis of the conifold.
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First of all then we give an explicit derivation for the bound, so to com-
pletely fix the notation and then construct the general expression for the space-
time effective action for the breathing modes – hence finding again the same
solutions as above as stationary points for a potential whose Hessian matrix
encodes the stability for the background.

Breitenlohner-Freedman bound

Anti-de Sitter Consider an action of the kind

S =
∫

ddx
√
−gd

(
R− 1

2
∂µφ∂µφ−V(φ)

)
(7.29)

the equation of motion for φ reads

−∇µ∂µφ = −∂V
∂φ

(7.30)

The relations that we obtain are all tensorial so we can just choose a suitable
coordinate system, knowing that the result will remain invariant. In AdSd a
good choice would be

ds2 = dr2 + e2Hr (−dt2 + dx2
1 + · · ·+ dx2

d−2
)

(7.31)

and we can consider a potential V with a minimum in φ = 0:

V(φ) = V0 +
m2

2
φ2. (7.32)

The equation of motion for an r-dependent field φ reads

φ′′ + (d− 1) Hφ′ −m2φ = 0. (7.33)

Solving it one can see that the presence of the friction term effectively changes
the mass to

M2 =
(

d− 1
2

H
)2

+ m2 ≥ 0 (7.34)

or, given that R = −d (d− 1) H2

M2 = −d− 1
4d

R + m2 ≥ 0 (7.35)

or, again, in terms of minimum of the potential:

M2 = − d− 1
4 (d− 2)

〈V〉+ m2 ≥ 0. (7.36)

Positivity of the effective mass squared, and thus stability, translate there-
fore into a less stringent constraint for m2. This is the BF bound.



7.2. Stability 121

LQ1,Q2 spaces. The presence of the bound is due to the curvature of the man-
ifold. It can be restated by saying that in an appropriate coordinate system the
Klein–Gordon equation can be put in the form

−�φ + m2φ =
(
−�̃ + ∆

)
φ + m2φ = −�̃φ + M2φ = 0, (7.37)

where � is the d’Alembertian for the curved space, �̃ is the d’Alembertian for
flat Minkowski space and ∆ is some constant depending on the curvature and
other details of the geometry (∆ = − (d− 1) / (4d) R in the case of AdSd). It is
natural to expect a similar behaviour for other negative-curvature spaces, but
the precise value of ∆ will depend on the details. In particular it is interest-
ing to consider the LQ,1,Q2 spaces introduced above. Again, as before, we can
choose a coordinate system and then use the fact that the equations we get are
tensor relations and hence invariant. Take into example the following metric:

ds2 = Q1

(
dx2

1 + x2 +
(
1 + x2)du2

)
+ Q2

(
dy2

1 + y2 +
(
1 + y2)dv2

)
+

+
2Q1 (Q1 − 2Q2)

Q2

(
dt + xdu +

Q2

Q1

√
Q2 − 2Q1

Q1 − 2Q2
ydv

)2

, (7.38)

which describes an LQ1,Q2 space with Ricci scalar

R = −5
3

Q1 + Q2

Q1Q2
. (7.39)

The d’Alembertian on φ(x, y) gives:

�φ(x, y) =
1

Q1

[(
1 + x2) φxx + 2xφx

]
+

1
Q2

[(
1 + y2) φyy + 2yφy

]
. (7.40)

This is the same expression we would have got by considering the d’Alembertian
in an AdS3 ×AdS3 space with coordinates

ds2 =
1

Q1

[
dx2

1 + x2 − dt2 − 2xdtdu + du2
]
+

1
Q2

[
dy2

1 + y2 − dτ2 − 2ydτdv + dv2
]

.

(7.41)

The two subspaces have curvature

Ri = − 3
2Qi

(7.42)

and since the shifts compose linearly this gives an overall shift

M2 = m2 +
1

4Q1
+

1
4Q2

= m2 +
1
4

Q1 + Q2

Q1Q2
, (7.43)

which is therefore the BF bound for LQ1,Q2 space. This can be compared with
an AdS5 space with the same curvature as in Eq. (7.39), where the shift would
be given by

M2 = m2 +
1
3

Q1 + Q2

Q1Q2
. (7.44)
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In this case the shift is larger: in some sense then, as one might have expected,
an anti de-Sitter space is more stable with respect to small fluctuations than a
LQ1,Q2 space with the same scalar curvature.

Effective low-dimensional description

We want to write the d-dimensional effective action for a AdSd × M1 × M2
background, where Mi are constant curvature spaces, starting from the fol-
lowing sector of the M-theory action

S =
1

2κ2
11

∫
d11x

√
−g(11)

(
R11 −V

)
(7.45)

where V takes into account the presence of the fluxes. In order to study the sta-
bility of the product background at hand let us consider the following ansatz:

ds2
11 = ds2(M(d)) + e2ϕ1(x)ds2(M(1)) + e2ϕ2(x)ds2(M(2)) (7.46)

where the fields ϕi depend only on the coordinates of M(d). The strategy is the
following:

(a) write the curvature R(11) in terms of the curvature for M(d)

(b) separate the determinant g(11) in its compact and non-compact part

(c) Weyl-rescale the four-dimensional metric to get a canonical Einstein-Hilbert
action

(d) rescale the scalar fields ϕi to get a canonical kinetic term

(e) study the potential and verify the stability taking into account the BF

bound.

Step a For a warped product

ds2 = ds2(M(d)(x)) + e2ϕ(x)ds2(M(1)) (7.47)

where M(1) has dimension d1, the Ricci scalar is

R = R(1) + e−2ϕ(x)R(2)− 2d1∇µ∂µ ϕ(x) + d1 (d1 − 1) ∂µ ϕ(x)∂µ ϕ(x) (7.48)

where the covariant derivative and the raising is done with the warped prod-
uct metric. Note that the result only depends on d1 and not on d. This easily
generalizes to a warped product with three factors like the ones we study

ds2 = ds2(M(d)(x)) + e2ϕ1(x)ds2(M(1)) + e2ϕ2(x)ds2(M(2)) (7.49)

and one obtains

R(11) = R(d) + e−2ϕ1(x)R(1) + e−2ϕ2(x)R(2) − 2d1∇µ∂µ ϕ1(x)+
+ d1 (d1 − 1) ∂µ ϕ1(x)∂µ ϕ1(x) +−2d2∇µ∂µ ϕ2(x)+

+ d2 (d2 − 1) ∂µ ϕ2(x)∂µ ϕ2(x) + 2d1d2∂µ ϕ1(x)∂µ ϕ2(x) (7.50)
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where di = dim M(i).
Since the covariant derivative is with respect to the whole g(11) metric, two

of the terms above are total derivatives and the action is then equivalent to:

S =
1

2κ2
11

∫
d11x

√
−g(11)

(
R(11) −V

)
∼

∼ 1
2κ2

11

∫
d11x

√
−g(11)

(
R(d) + e−2ϕ1(x)R(1) + e−2ϕ2(x)R(2)+

+ d1 (d1 − 1) ∂µ ϕ1(x)∂µ ϕ1(x) + d2 (d2 − 1) ∂µ ϕ2(x)∂µ ϕ2(x)+

2d1d2∂µ ϕ1(x)∂µ ϕ2(x)−V
)

(7.51)

Step b The eleven-dimensional determinant can be written as

det g(11) = det g(1) det g(2) det g(d)ed1 ϕ1+d2 ϕ2 (7.52)

in particular we can integrate over the internal coordinates and get:

S =
V1V2

2κ2
11

∫
ddx

√
−g(d)ed1 ϕ1+d2 ϕ2

(
R(d) + e−2ϕ1(x)R(1) + e−2ϕ2(x)R(2)+

+ d1 (d1 − 1) ∂µ ϕ1(x)∂µ ϕ1(x) + d2 (d2 − 1) ∂µ ϕ2(x)∂µ ϕ2(x)+

+ 2d1d2∂µ ϕ1(x)∂µ ϕ2(x)−V
)

(7.53)

We will introduce

Ψ = d1 ϕ1 + d2 ϕ2 (7.54)

for future purposes.

Step c The action above is not in the usual Hilbert-Einstein form because of
the ed1 ϕ1+d2 ϕ2 factor. For this reason we perform a Weyl rescaling

ḡµν = e2σ(x)gµν (7.55)

under which the curvature becomes:

R̄ = e−2σ(x)R− 2 (d− 1) ∇̄µ∂µσ(x) + (d− 1) (d− 2) ∂µσ(x)∂µσ(x) (7.56)

where ∇̄ is the covariant derivative with respect to ḡ and µ is raised with ḡ.
In d dimensions a term

√
det geΨR is brought to the standard form by the

Weyl rescaling

ḡµν = exp
[

2
d− 2

Ψ
]

gµν (7.57)

and

√
geΨR =

√
ḡ
(

R̄ + 2
d− 1
d− 2

∇̄µ∂µΨ− d− 1
d− 2

∂µΨ∂µΨ
)

. (7.58)
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Discarding the total derivatives, the action now reads

S =
V1V2

2κ2
11

∫
ddx

√
−ḡ(d)

[
R̄(d) − d− 1

d− 2
∂µΨ∂µΨ+

+ d1 (d1 − 1) ∂µ ϕ1(x)∂µ ϕ1(x) + d2 (d2 − 1) ∂µ ϕ2(x)∂µ ϕ2(x)+

+2d1d2∂µ ϕ1(x)∂µ ϕ2(x) + e−2Ψ1/(d−2)
(

e−2ϕ1(x)R(1) + e−2ϕ2(x)R(2) −V(ϕ1, ϕ2)
)]

(7.59)

where indices are raised with ḡ(d).

Step d Now let us collect all the ϕ terms in the action:

S =
V1V2

2κ2
11

∫
ddx

√
−ḡ(d)

[
R̄(d) − d1

(
d1

d− 2
+ 1
)

∂µ ϕ1∂µ ϕ1+

−d2

(
d2

d− 2
+ 1
)

∂µ ϕ2∂µ ϕ2 −
2d1d2

d− 2
∂µ ϕ1∂µ ϕ2 − V̄(ϕ1, ϕ2)

]
(7.60)

where

V̄(ϕ1, ϕ2) = e−2(d1 ϕ1+d2 ϕ2)/(d−2)
(
−e−2ϕ1(x)R(1) − e−2ϕ2(x)R(2) + V(ϕ1, ϕ2)

)
.

(7.61)

To bring the kinetic terms to the standard form we introduce:Φ1 =
√

2(D−2)
(d1+d2)(d−2) (d1 ϕ1 + d2 ϕ2)

Φ2 =
√

2d1d2
d1+d2

(ϕ1 − ϕ2)
(7.62)

or, the other way round:
ϕ1 = 1√

2(d1+d2)

(√
d−2
D−2 Φ1 +

√
d2
d1

Φ2

)
ϕ1 = 1√

2(d1+d2)

(√
d−2
D−2 Φ1 −

√
d1
d2

Φ2

) (7.63)

where D = d + d1 + d2 = 11, and we finally obtain

S =
V1V2

2κ2
11

∫
ddx

√
−g(d)

[
R(d) − 1

2
∂µΦ1∂µΦ1 −

1
2

∂µΦ2∂µΦ2 − V̄(Φ1, Φ2)
]

(7.64)

Step e The type of backgrounds we obtain after compactification are AdS.
Therefore, negative-m2 modes are not tachyonic if they don’t cross the Breitenlohner-
Freedman bound.

Using the results of the previous section this means:

M2 = − d− 1
4 (d− 2)

〈V〉+ m2 ≥ 0 (7.65)
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that must be respected by each eigenvalue m2 of the Hessian matrix

m2
ij =

∂2V
∂Φi∂Φj

∣∣∣∣
V=V0

(7.66)

These general considerations apply to any choice of background gauge
fields. Then one should write the potential for each case at hand in terms
of Φ1 and Φ2 (and possibly the dilaton in type II) and check the mass matrix
against the BF bound.

AdS4 × H3 × S4

As a first example let us consider AdS4×H3× S4. The potential V in Eq. (7.45)
is due to the presence of a four-form field on the S4 part.

V(ϕ1, ϕ2) =
Q2

2
e−8ϕ2 (7.67)

the dimensions are d = 4, d1 = 3 and d2 = 4 and the curvatures read R(1) =
−3/2 and R(2) = 2, so the expression in Eq. (7.61) becomes:

V̄(ϕ1, ϕ2) = e−3ϕ1−4ϕ2

(
3
2

e−2ϕ1 − 2eϕ2 +
Q2

2
e−8ϕ2

)
. (7.68)

To get the canonical scalar fields Φi and Φ2 we can use Eq. (7.63):ϕ1 = 1
3
√

7

(
Φ1 +

√
6Φ2

)
ϕ2 = 1

12
√

7

(
4Φ1 − 3

√
6Φ2

) (7.69)

and this leads to the effective potential

V(Φ1, Φ2) =
1
2

e−5Φ1/
√

7−2Φ2
√

2/21
(

3e2Φ1/
√

7 − 4e2Φ1/
√

7+Φ2
√

7/6 + Q2e8Φ2
√

2/21
)

(7.70)

which has a minimum for

Φ1 =
√

7 log
28/7Q√

3
Φ2 =

√
6
7

log 2 (7.71)

and in correspondence of this point

〈V〉 = − 3
√

3
16Q3 . (7.72)

The Hessian matrix on the minimum is:

∂2V
∂Φi∂Φj

=
3

28Q3

 15
√

3
4 − 9√

2

− 9√
2

17
√

3
2

 . (7.73)

Both eigenvalues are positive

m2∣∣
1 =

3
√

3
16Q3 m2∣∣

2 =
9
√

3
8Q3 (7.74)

and the solution is stable.
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d1 〈Φ1〉 〈Φ2〉 〈V〉 m2|1
|〈V〉|

m2|2
|〈V〉|

2 log 4Q2

3

√
2
3 log 2 − 9

8×22/3Q2 2/3 4

3
√

7
2 log 48/7Q2

3

√
6
7 log 2 − 3

√
3

16Q3 1 6

4 2 log 4
√

2Q2

3 log 2 − 27
512Q6 2 12

Table 7.1: Minima and masses for AdS× H backgrounds

AdS7−d1 × Hd1 × S4

All the backgrounds of the form AdS7−d1 × Hd1 × S4 can be treated similarly.
The potential in Eq. (7.61) becomes:

V̄(ϕ1, ϕ2) = e−2(d1 ϕ1−4ϕ2)/(5−d1)
(
−d1

2
e−2ϕ1 − 2eϕ2 +

Q2

2
e−8ϕ2

)
(7.75)

and one finds that in each case there is a minimum (stable) solution. The actual
values are in Tab. 7.1. In any case, not surprisingly one can see that for any d1
the warping factors ϕ1 and ϕ2 always take the values

ϕ1 =
1
6

(
log

16Q2

3

)
ϕ2 =

1
6

(
log

3Q2

2

)
(7.76)

which agrees with Λ2 and Λ3 being

Λ2 = −
(

3
2

)1/3 1
2Q2/3 Λ3 =

(
3
2

)1/3 1
Q2/3 (7.77)

as we have already seen by directly solving the equations of motion in eleven
dimensions.

AdS4 × S3 × S4

Consider now AdS4 × S3 × S4. The potential V in Eq. (7.45) is due to the pres-
ence of a seven-form field on the S3 × S4 factor.

V(ϕ1, ϕ2) =
Q2

2
e−6ϕ1−8ϕ2 . (7.78)

The dimensions are d = 4, d1 = 3 and d2 = 4 and the curvatures read R(1) =
3/2 and R(2) = 2, so the expression in Eq. (7.61) becomes:

V̄(ϕ1, ϕ2) = e−3ϕ1−4ϕ2

(
−3

2
e−2ϕ1 − 2eϕ2 +

Q2

2
e−6ϕ1−8ϕ2

)
. (7.79)

To get the canonical scalar fields Φi and Φ2 we can use Eq. (7.63):ϕ1 = 1
3
√

7

(
Φ1 +

√
6Φ2

)
ϕ2 = 1

12
√

7

(
4Φ1 − 3

√
6Φ2

) (7.80)
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and this leads to the effective potential

V(Φ1, Φ2) =
1
2

e−
√

7Φ1
(
−3e4Φ1/

√
7−2Φ2

√
2/21 − 4e4Φ1/

√
7+Φ2

√
3/14 + Q2

)
.

(7.81)

In this case there is an extremum for

Φ1 =
√

7
4

log
Q2

3
Φ2 = 0 (7.82)

and in correspondence of this point:

〈V〉 = −2
33/4

Q3/2 . (7.83)

To verify the stability we write the Hessian matrix:

∂2V
∂Φi∂Φj

= 2
33/4

Q3/2

(
3 0
0 − 1

2

)
(7.84)

which possesses a negative eigenvalue

m2∣∣
1 = 3 |〈V〉| m2∣∣

2 = −1
2
|〈V〉| . (7.85)

This must be confronted with the BF bound we found in Eq. (7.65):

M2 =
3
8
|〈V〉|+ m2 =

(
3
8
− 1

2

)
|〈V〉| = −1

8
|〈V〉| < 0. (7.86)

The mode, corresponding to the ratio of the two radii Φ2, is actually unsta-
ble. This is not so surprising since in this case the flux is proportional to the
total volume of the compact directions and the system is intrinsically unstable
with respect to a perturbation that woukd keep this volume constant while
changing the ratio between the two radii.

AdS4 × Sd1 × S7−d1

The field choice we made above proves to be very useful when dealing with
general AdS4 × Sd1 × S7−d1 backgrounds. In fact the potential reads:

V(Φ1, Φ2) =
1
2

e−
√

7Φ1
(
−d1e4Φ1/

√
7−Φ2
√

(−2d1+14)/(7d1)+

− (7− d1) e4Φ1/
√

7+Φ2
√

2d1/(7(d1−7)) + Q2
)

(7.87)

where d1 appears only as a coefficient for Φ2. Therefore the solution is inde-
pendent of the dimension d1 and the stationary point is again

Φ1 =
√

7
4

log
Q2

3
Φ2 = 0 (7.88)
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with

〈V〉 = −2
33/4

Q3/2 . (7.89)

This solution is again unstable, since the square masses are again

m2∣∣
1 = 3 |〈V〉| m2∣∣

2 = −1
2
|〈V〉| (7.90)

and the BF bound is always for −3/8 |〈V〉| since it only depends on the non-
compact dimensions that are d = 4.

7.3 Type IIB backgrounds

Some of the solutions we found thus far can be naturally reduced to type II.
This is the case when they contain factors of AdS3 or odd-dimensional spheres
for they can be respectively written as space-like fibrations over AdS2 or com-
plex projective planes and as such, when compactified on the fiber don’t give
rise to dilaton fields.

On the other hand one might also directly look for type II solutions with
the same type of geometry factorized in constant curvature spaces. In this
section we will in particular concentrate on type IIB solutions with structure
V4 × M3 × M̃3. Before starting one can try to make some educated guesses
about the expected kind of solutions. It would then appear rather natural to
expect perturbative AdS4 × S3 × S3 solutions that might prove to be unstable
(in the same spirit as in [DFG+02]) and one might further imagine that adding
non-perturbative objects with negative tension – orientifold planes – the no-go
theorem for de Sitter [MN01] can be contoured, thus allowing for internal hy-
perbolic manifolds and for de Sitter solutions (as it was suggested in [SS06]). In
fact we will prove that both guesses are ultimately wrong by carefully study-
ing the effective potential in four dimensions obtained by taking into account
dilaton, RR zero-form and the two breathing modes for the internal manifolds.
More precisely we will show that:

• no truly perturbative solution exists, i.e. the presence of D-branes is nec-
essary;

• in presence of orientifolds the only possible compactification happens on
a T6;

• no solution is allowed with hyperbolic or de Sitter components;

• the only allowed solution is AdS4 × S3 × S3 and this solution is pertur-
batively stable, thanks to the BF bound, although it can’t be completely
trusted since it belongs to an intermediate-coupling regime.
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Let us consider a type IIB background of the form V4 × M3 × M̃3. The
action in Einstein frame reads:

S = S0 + Sloc =
1

2κ2
10

∫
d10x

√
−g(10)

[
R(10) −

∂µτ∂µτ̄

2 (Im τ)2 −
1
2

MijFi
3Fj

3+

−1
2

C4 ∧ F1
3 ∧ F2

3

]
+ Sloc (7.91)

where we didn’t include the 1-form and the 5-form which are not compati-
ble with the symmetries of the metric ansatz. As usual τ = C0 + ıe−Φ is the
dilaton-axion field, Mij is

Mij =
1

Im τ

(
|τ|2 −Re τ
−Re τ 1

)
(7.92)

and Sloc is the contribution due to D3-branes and O3-planes:

Sloc = NT3

∫
d4x

√
−g(4). (7.93)

As before we look for a solution of the kind

ds2
(10) = ds2

(4) + e2ϕ(x)ds2
3 + e2ϕ̃(x)ds2

(3) (7.94)

where for the moment being the two internal manifolds can have positive or
negative curvature. With respect to the M-theory situation, in this case we will
have to pay attention to the extra τ complex scalar field and to the extra-term
in the action Sloc.

Let’s start with the latter. This already has the form of a four-dimensional
integral, so to evaluate the corresponding contribution to the potential we only
need to take into account the Weyl rescaling in Eq. (7.57) and the presence of
the internal volumes and Newton constant:

Sloc = NT3

∫
d4x

√
−g(4) =

V3Ṽ3

2κ2
10

2NT3κ2
10

V3Ṽ3

∫
d4x e−2Ψ1

√
ḡ(4) (7.95)

and then

Vloc =
2NT3κ2

10

V3Ṽ3
e−6ϕ−6ϕ̃. (7.96)

For reasons that will appear more clear in the following let us rescale the τ
field as:

z =
τ

k
(7.97)

k being a real constant. This does not affect the kinetic term:

∂µτ∂µτ̄

2 (Im τ)2 =
∂µz∂µ z̄

2 (Im z)2 (7.98)
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but makes it canonical when studying the small perturbations around the equi-
librium solutions.

The most general three-field configuration compatible with the symmetries
is

Fi
3 = 4π2α′ (niω3 + ñiω̃3) (7.99)

where ni and ñi are integers and ω3 and ω̃3 are the normalized volume forms.
The subscript 1 stands for RR field, 2 for NS. The corresponding potential reads:

VF =
(
4π2)2

α′2

2k Im zV2
3
|n1kz− n2|2 e−6ϕ +

(
4π2)2

α′2

2k Im zṼ2
3
|ñ1kz− ñ2|2 e−6ϕ̃ (7.100)

in order to clean the notation let us write the volumes as

V3 = 2xπ2 Ṽ3 = 2x̃π2. (7.101)

Adding the contribution from the curvatures of the internal manifolds:

R =
3
2

ε R̃ =
3
2

ε̃ (7.102)

where ε = 1 for spheres and ε = −1 for hyperbolic spaces, we can write the
potential as

V(ϕ, ϕ̃, z) = e−3ϕ−3ϕ̃

(
−3ε

2
e−2ϕ − 3ε̃

2
e−2ϕ̃ +

2α′2

x2k Im z
|n1kz− n2|2 e−6ϕ+

+
2α′2

x2k Im z
|ñ1kz− ñ2|2 e−6ϕ̃

)
+

2NT3κ2
10

xx̃ (2π2)2 e−6ϕ−6ϕ̃. (7.103)

As a first step we normalize the scalars ϕ and ϕ̃:

ϕ =
Φ1 + 2Φ2

4
√

3
ϕ̃ =

Φ1 − 2Φ2

4
√

3
(7.104)

so to rewrite the potential as

V(Φ1, Φ2, z) = e−Φ1
√

3/2
(
−3

2
εe−(Φ1+2Φ2)/(2

√
3) − 3

2
εe−(Φ1−2Φ2)/(2

√
3)+

+
2α′2

x2k Im z
|n1kz− n2|2 e−(Φ1+2Φ2)

√
3/2+

2α′2

x2k Im z
|ñ1kz− ñ2|2 e−(Φ1−2Φ2)

√
3/2
)

+
2NT3κ2

10

xx̃ (2π2)2 e−Φ1
√

3. (7.105)

We have to take into account the anomaly cancellation condition

N = n1ñ2 − n2ñ1 (7.106)

and express all the constants in terms of α′:

T3 = |µ3| =
1

(2π)2 α′2
2κ2

10 = (2π)7 α′4 (7.107)
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so that 2κ2
10T3 = (2π)4 α′2.

Up to this moment the sign of N is arbitrary, so one might think that differ-
ent kinds of solution are possible. Actually this is not the case. If we differen-
tiate with respect to Im z and Re z we obtain the values corresponding to the
stationary point

Im z =
eΦ2
√

3 |N| xx̃

k
(

e2Φ2
√

3ñ2
1x2 + n2

1 x̃2
) Re z =

e2Φ2
√

3ñ1ñ2x2 + n1n2 x̃2

k
(

e2Φ2
√

3ñ2
1x2 + n2

1 x̃2
) . (7.108)

Putting these back into the potential one gets:

V(Φ1, Φ2) =
e(3Φ1+Φ2)/

√
3

2xx̃

(
8eΦ2/

√
3 (N + |N|)− 3xx̃eΦ1/

√
3
(

ε + ε̃e(Φ1+2Φ2)/
√

3
))

(7.109)

and for N ≷ 0 this gives respectively:

V+(Φ1, Φ2) =
e(3Φ1+Φ2)/

√
3

2xx̃

(
16eΦ2/

√
3N − 3xx̃eΦ1/

√
3
(

ε + ε̃e(Φ1+2Φ2)/
√

3
))

(7.110)

V−(Φ1, Φ2) = −3
2

e−(2Φ1+Φ2)/
√

3
(

ε + ε̃e2Φ2/
√

3
)

. (7.111)

The second potential only admits a solution if ε = ε̃ = 0, but this corresponds
to a flat internal space (Polchinski).

Choosing the first N > 0 case one finds a stationary point for

〈Φ1〉 =
√

3 log
4Nα′2

xx̃ε̃

√
ε̃

ε
〈Φ2〉 =

√
3

2
log

ε

ε̃
(7.112)

which imposes ε = ε̃ = 1, ie the only solution has an internal S3 × S3 space, as
advertized above.

To summarize, the stationary point corresponds to:

〈Im z〉 =
Nxx̃

k
(
ñ2

1x2 + n2
1 x̃2
) 〈Re z〉 =

ñ1ñ2x2 + n1n2 x̃2

k
(
ñ2

1x2 + n2
1 x̃2
) (7.113)

〈Φ1〉 =
√

3 log
4Nα′2

xx̃
〈Φ2〉 = 0 (7.114)

now we can choose

k =
Nxx̃

ñ2
1x2 + n2

1 x̃2
(7.115)

and putting x = x̃ = 1 (as we must in the case of spheres) we have

〈Im z〉 = 1 〈Re z〉 =
ñ1ñ2 + n1n2

n1ñ2 − n2ñ1
〈Φ1〉 =

√
3 log

(
4Nα′2

)
〈Φ2〉 = 0

(7.116)
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and the corresponding potential is

〈V〉 = − 1
16N2α′4

. (7.117)

To check the stability we write the Hessian matrix and compute its eigen-
values. They turn out to be

m2∣∣
1 = |〈V〉| m2∣∣

2 = 2 |〈V〉| (7.118)

m2∣∣
3 =
√

13 + 3
2

|〈V〉| m2∣∣
4 = −

√
13− 3

2
|〈V〉| (7.119)

and the only negative one m2
∣∣
4 doesn’t cause any instability since it doesn’t

cross the BF bound:

m2∣∣
4 +

3
8
|〈V〉| = 15− 4

√
13

8
|〈V〉| > 0 (7.120)

This result about the stability of the product of two three-spheres can at first
sight be puzzling since, after analyzing the results of Sec. 7.2, we’ve grown
to expect such configurations to be unstable under the mode in which one
of the two spheres shrinks and the other grows, keeping constant the overall
volume. Here it is not the case and this can be easily understood in terms of
gauge fields. In the M-theory configurations, in fact, only one field was turned
on and it spanned over the whole internal manifold, so that it effected only
the total volume. Here, on the other hand, RR and NS-NS fields are turned on
separately on the two submanifolds, thus contributing to the stabilization of
each of the radii.



CHAPTER 8

Conclusions and further perspectives

Beauty is truth, truth beauty, – that is all
Ye know on earth, and all ye need to know.

Ode on a Grecian Urn
JOHN KEATS

The search for exact string solutions is a fascinating subject by itself. It is
based, as most of the wonders of string theory, on the interplay between the
two-dimensional conformal field theory description on the world-sheet and
the ten-dimensional low-energy interpretation in terms of spacetime fields.

In this thesis we have dealt with a new class of string backgrounds living
in the moduli space of WZW models. They enjoy at the same time nice su-
pergravity properties, all geometrical quantities being naturally expressed in
terms of algebraic invariants, and a clear CFT characterization, inherited from
the beautiful theory of group manifolds.

Apart from their intrinsic elegance, those new backgrounds also find in-
teresting physical applications as compactification manifolds, laboratories for
the analysis of string propagation in classically pathological backgrounds with
closed time-like curves, in black hole configurations with non-trivial topology.
Laboratories in which we can keep higher order effects under control and write
down a modular-invariant partition function, or at least the spectra of primary
operators.

Starting from this solid CFT ground we are then allowed to peep into the
off-shell physics using RG techniques, both from a two-dimensional and field-
theoretical perspective. We can thus observe the relaxation of out-of-equilibrium
vacua described by charge transmutation, i.e. two gauge fields eventually col-
lapsing into a single one, while the total charge is conserved. A new change
of viewpoint then allows us to recast the problem in terms of a cosmological
time-dependent solution. The RG dynamics becomes an approximate descrip-
tion – valid in a certain region of the moduli space depending on the central
charge deficit – for the behaviour of a Big-bang-like isotropic FRW universe.

We have emphasized many times the importance of having a CFT descrip-
tion and exact models, but this is not possible in general. For example we

133



134 Conclusions and further perspectives

completely lack such a kind of interpretation for type II string or M-theory,
but – and maybe for this very reason – it is important to look for new insights
in these frameworks. In this spirit we have studied compactifications involv-
ing maximally symmetric spaces which in general do not preserve supersym-
metry, looking in particular for hyperbolic solutions, in the not-too-concealed
hope of reaching de Sitter-like spacetimes.

So, what remains to do? By its very nature this is a work in progress. The
path to further developments is full of technical and conceptual obstacles but
one can easily name some of the natural possible directions. First of all it
would be interesting to have a non-Abelian counterpart for our asymmetric
gauging. This would be allowed by the heterotic string framework and it does
indeed work at the supergravity level; on the other hand it is not clear how
it could be implemented in a CFT framework – the evidence at hand point-
ing towards a discrete structure for the deformations. Then, one would like
to reach a better understanding of non-rational CFTs and, in particular, of the
SL(2, R) WZW model; this would allow us to write the partition function for
AdS2 spacetime, Bertotti-Robinson black hole and (charged) black string. This,
in turn, might prove useful for obtaining a non-trivial microscopic description
for the thermodynamics of such singular objects. Another more phenomeno-
logical direction would be to study the low energy field theory consequence of
a compactification on geometric cosets, again using the complete knowledge
which we have of the spectrum and partition function in this case. As soon
as we move away from the familiar CFT framework things become more dif-
ficult and much more interesting. Even if a theory for the two-dimensional
RG flow is established, there are very few cases in which one can really work
out non-trivial examples such as the flow one expects to link WZW models at
different levels. The spacetime description might then prove useful for getting
new hints at the world-sheet physics.



APPENDIX A

Table of conventions

Christoffel symbol { κ
µν}

1
2 gκλ

(
∂µgλν + ∂νgλµ − ∂λgµν

)
covariant derivative ∇ ∇νt

λ1 ...λp
µ1 ...µq = ∂νt

λ1 ...λp
µ1 ...µq + Γλ1

νκt
κλ2 ...λp
µ1 ...µq + . . .− Γκ

νµ1
t
λ1 ...λp
κµ2 ...µq − . . .

dual Coxeter number g∗ g∗ = 1
2 dim G fαβγ f αβγ

exterior derivative d dω = 1
n!

∂ωµ1µ2...µn
∂xλ dxλ ∧ dx1 ∧ dx2 ∧ . . . ∧ dxn

Maurer-Cartan one-form J a J a = 〈tag−1dg〉
n-form ω ω = 1

n! ωµ1µ2 ...µn dx1 ∧ dx2 ∧ . . . ∧ dxn

structure constants f α
βγ [tα, tβ] = f αβ

γtγ

trace 〈〉 〈Mij〉 = ∑i Mii
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APPENDIX B

Explict parametrizations for some Lie
groups

In this appendix we collect the explicit parametrizations used for the SU(2),
SL(2, R), SU(3) and USp(4) groups.

B.1 The three-sphere

The commutation relations for the generators of SU(2) are

[J1, J2] = ıJ3 [J2, J3] = ıJ1 [J3, J1] = ıJ2. (B.1)

A two-dimensional realization is obtained by using the standard Pauli matrices1σa:
Ja = σa/2.

The Euler-angle parameterization for SU(2) is defined as:

g = eı γ
2 σ3

eı β
2 σ1

eı α
2 σ3

. (B.2)

The SU(2) group manifold is a unit-radius three-sphere. A three-sphere can be em-
bedded in flat Euclidean four-dimensional space with coordinates (x1, x2, x3, x4), as
(x1)2 + (x2)2 + (x3)2 + (x4)2 = L2. The corresponding SU(2) element g is the follow-
ing:

g = L−1
(

x4 + ıx2 x3 + ıx1

−x3 + ıx1 x4 − ıx2

)
. (B.3)

In general, the invariant metric of a group manifold can be expressed in terms of
the left-invariant Cartan–Maurer one-forms. In the SU(2) case under consideration
(unit-radius S3),

J 1 =
1
2

tr
(

σ1g−1dg
)

, J 2 =
1
2

tr
(

σ2g−1dg
)

, J 3 =
1
2

tr
(

σ3g−1dg
)

(B.4)

and

ds2 =
3

∑
i=1
J i ⊗J i (B.5)

1The normalization of the generators with respect to the Killing product in su (2): κ (X, Y) =
tr (XY) is such that κ

(
Ja, Jb

)
= 1/2 and correspondingly the root has length squared ψ = 2.
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The volume form reads:

ω[3] = J 1 ∧ J 2 ∧ J 3. (B.6)

In the Euler-angle parameterization, Eq. (B.5) reads (for a radius-L three-sphere):

ds2 =
L2

4

(
dα2 + dγ2 + 2 cos βdαdγ + dβ2

)
, (B.7)

whereas (B.6) leads to

ω[3] =
L3

8
sin βdα ∧ dβ ∧ dγ. (B.8)

The Levi–Civita connection has scalar curvature R = 6/L2.
The isometry group of the SU(2) group manifold is generated by left or right

actions on g: g → hg or g → gh ∀h ∈ SU(2). From the four-dimensional point of
view, it is generated by the rotations ζab = i (xa∂b − xb∂a) with xa = δabxb. We list
here explicitly the six generators, as well as the group action they correspond to:

L1 =
1
2

(−ζ32 + ζ41) , g→ e−ı λ
2 σ1

g, (B.9a)

L2 =
1
2

(−ζ43 − ζ12) , g→ eı λ
2 σ2

g, (B.9b)

L3 =
1
2

(−ζ31 − ζ42) , g→ eı λ
2 σ3

g, (B.9c)

R1 =
1
2

(ζ41 + ζ32) , g→ geı λ
2 σ1

, (B.9d)

R2 =
1
2

(−ζ43 + ζ12) , g→ geı λ
2 σ2

, (B.9e)

R3 =
1
2

(ζ31 − ζ42) , g→ geı λ
2 σ3

. (B.9f)

Both sets satisfy the algebra (B.1). The norms squared of the Killing vectors are all
equal to L2/4.

The currents of the SU (2)k WZW model are easily obtained as:

Ji = −k tr
(

ıσi∂gg−1
)

J̄i = −k tr
(

ıσig−1∂̄g
)

, (B.10)

where L =
√

k, at the classical level. Explicit expressions are given in Tab. B.1.

B.2 AdS3

The commutation relations for the generators of the SL(2, R) algebra are

[J1, J2] = −ıJ3 [J2, J3] = ıJ1 [J3, J1] = ıJ2. (B.11)

The sign in the first relation is the only difference with respect to the SU(2) in Eq. (B.1).
The three-dimensional anti-de-Sitter space is the universal covering of the SL(2, R)

group manifold. The latter can be embedded in a Lorentzian flat space with signature
(−, +, +,−) and coordinates (x0, x1, x2, x3):

g = L−1
(

x0 + x2 x1 + x3

x1 − x3 x0 − x2

)
, (B.12)



B.2. AdS3 139

sector Killing vector Current
le

ft
m

ov
in

g sin γ

sin β
∂α + cos γ∂β −

sin γ

tan β
∂γ

cos γ

sin β
∂α − sin γ∂β −

cos γ

tan β
∂γ

∂γ

k (sin β sin γ∂α + cos γ∂b)

k (cos γ sin β∂α− sin γ∂β)

k (∂γ + cos β∂α)

ri
gh

tm
ov

in
g

− sin α

tan β
∂α + cos α∂β +

sin α

sin β
∂γ

cos α

tan β
∂α + sin α∂β −

cos α

sin β
∂γ

∂α

k
(
cos α∂̄β + sin α sin β∂̄γ

)
k
(
sin α∂̄β− cos α sin β∂̄γ

)
k
(
∂̄α + cos β∂̄γ

)
Table B.1: Killing vectors {ıL1, ıL2, ıL3} and {ıR1, ıR2, ıR3}, and holomorphic
and anti-holomorphic currents for SU(2) in Euler angles.

where L is the radius of AdS3. On can again introduce Euler-like angles

g = eı(τ+φ)σ2/2eρσ1eı(τ−φ)σ2/2, (B.13)

which provide good global coordinates for AdS3 when τ ∈ (−∞, +∞), ρ ∈ [0, ∞),
and φ ∈ [0, 2π).

An invariant metric (see Eq. (B.5)) can be introduced on AdS3. In Euler angles, the
latter reads:

ds2 = L2
[
− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dφ2

]
. (B.14)

The Ricci scalar of the corresponding Levi–Civita connection is R = −6/L2.
The isometry group of the SL(2, R) group manifold is generated by left or right

actions on g: g → hg or g → gh ∀h ∈ SL(2, R). From the four-dimensional point
of view, it is generated by the Lorentz boosts or rotations ζab = i (xa∂b − xb∂a) with
xa = ηabxb. We list here explicitly the six generators, as well as the group action they
correspond to:

L1 =
1
2

(ζ32 − ζ01) , g→ e−
λ
2 σ1

g, (B.15a)

L2 =
1
2

(−ζ31 − ζ02) , g→ e−
λ
2 σ3

g, (B.15b)

L3 =
1
2

(ζ03 − ζ12) , g→ eı λ
2 σ2

g, (B.15c)

R1 =
1
2

(ζ01 + ζ32) , g→ ge
λ
2 σ1

, (B.15d)

R2 =
1
2

(ζ31 − ζ02) , g→ ge−
λ
2 σ3

, (B.15e)

R3 =
1
2

(ζ03 + ζ12) , g→ geı λ
2 σ2

. (B.15f)

Both sets satisfy the algebra (B.11). The norms of the Killing vectors are the fol-
lowing:

‖ıL1‖2 = ‖ıR1‖2 = ‖ıL2‖2 = ‖ıR2‖2 = −‖ıL3‖2 = −‖ıR3‖2 =
L2

4
. (B.16)
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Moreover Li · Lj = 0 for i 6= j and similarly for the right set. Left vectors are not
orthogonal to right ones.

The isometries of the SL(2, R) group manifold turn into symmetries of the SL(2, R)k
WZW model, where they are realized in terms of conserved currents2:

J1 (z)± J3 (z) = −k tr
((

σ1 ∓ ıσ2
)

∂gg−1
)

, J2 (z) = −k tr
(

σ3∂gg−1
)

,

(B.17a)

J̄1 (z̄)± J̄3 (z̄) = k tr
((

σ1 ± ıσ2
)

g−1∂̄g
)

, J̄2 (z̄) = −k tr
(

σ3g−1∂̄g
)

.

(B.17b)

At the quantum level, these currents, when properly normalized, satisfy the fol-
lowing affine SL(2, R)k OPA3:

J3(z)J3(0) ∼ − k
2z2 , (B.18a)

J3(z)J±(0) ∼ ± J±

z
, (B.18b)

J+(z)J−(0) ∼ 2J3

z
− k

z2 , (B.18c)

and similarly for the right movers. The central charge of the enveloping Virasoro
algebra is c = 3 + 6/(k− 2).

We will introduce three different coordinate systems where the structure of AdS3
as a Hopf fibration is more transparent. They are explicitly described in the following.

• The (ρ, t, φ) coordinate system used to describe the magnetic deformation is
defined as follows:

x0
L = cosh ρ

2 cosh φ
2 cos t

2 − sinh ρ
2 sinh φ

2 sin t
2

x1
L = − sinh ρ

2 sinh φ
2 cos t

2 − cosh ρ
2 sinh φ

2 sin t
2

x2
L = − cosh ρ

2 sinh φ
2 cos t

2 + sinh ρ
2 cosh φ

2 sin t
2

x3
L = − sinh ρ

2 sinh φ
2 cos t

2 − cosh ρ
2 cosh φ

2 sin t
2 .

(B.19)

The metric (B.5) reads:

ds2 =
L2

4

(
dρ2 + dφ2 − dt2 − 2 sinh ρdtdφ

)
(B.20)

and the corresponding volume form is:

ω[3] =
L3

8
cosh ρ.dρ ∧ dφ ∧ dt (B.21)

Killing vectors and currents are given in Tab. B.2. It is worth to remark that this
coordinate system is such that the t-coordinate lines coincide with the integral
curves of the Killing vector ıL3, whereas the φ-lines are the curves of ıR2.

2When writing actions a choice of gauge for the NS potential is implicitly made, which
breaks part of the symmetry: boundary terms appear in the transformations. These must be
properly taken into account in order to reach the conserved currents. Although the expressions
for the latter are not unique, they can be put in an improved-Noether form, in which they have
only holomorphic (for Li’s) or anti-holomorphic (for Rj’s) components.

3In some conventions the level is x = −k. This allows to unify commutation relations for
the affine SL(2, R)x and SU(2)x algebras. Unitarity demands x < −2 for the former and 0 < x
with integer x for the latter.
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• The (r, x, τ) coordinate system used to describe the electric deformation is de-
fined as follows:

x0
L = cosh r

2 cosh x
2 cos τ

2 + sinh r
2 sinh x

2 sin τ
2

x1
L = − sinh r

2 cosh x
2 cos τ

2 + cosh r
2 sinh x

2 sin τ
2

x2
L = − cosh r

2 sinh x
2 cos τ

2 − sinh r
2 cosh x

2 sin τ
2

x3
L = sinh r

2 sinh x
2 cos τ

2 − cosh r
2 cosh x

2 sin τ
2 .

(B.22)

For { r, x, τ } ∈ R3, this patch covers exactly once the whole AdS3, and is regular
everywhere [CH94]. The metric is then given by

ds2 =
L2

4

(
dr2 + dx2 − dτ2 + 2 sinh rdxdτ

)
(B.23)

and correspondingly the volume form is

ω[3] =
L3

8
cosh rdr ∧ dx ∧ dτ. (B.24)

Killing vectors and currents are given in Tab. B.3. In this case the x-coordinate
lines coincide with the integral curves of the Killing vector ıR2, whereas the
τ-lines are the curves of ıR3.

• The Poincaré coordinate system used to obtain the electromagnetic-wave back-
ground is defined by

x0 + x2 = L
u

x0 − x2 = Lu + Lx+x−
u

x1 ± x3 = Lx±
u .

(B.25)

For { u, x+, x− } ∈ R3, the Poincaré coordinates cover once the SL(2R) group
manifold. Its universal covering, AdS3, requires an infinite number of such
patches. Moreover, these coordinates exhibit a Rindler horizon at |u| → ∞; the
conformal boundary is at |u| → 0. Now the metric reads:

ds2 =
L2

u2

(
du2 + dx+dx−

)
(B.26)

and the volume form:

ω[3] =
L3

2u3 du ∧ dx− ∧ dx+. (B.27)

In these coordinates it is simple to write certain a linear combination of the
Killing vector so to obtain explicitly a light-like isometry generator. For this rea-
son in Tab. B.4 we report the { L1 + L3, L1 − L3, L2, R1 + R3, R1 − R3, R2 } isom-
etry generators and the corresponding { J1 + J3, J1 − J3, J2, J̄1 + J̄3, J̄1 − J̄3, J̄2 } cur-
rents.

Finally, another useful although not global, set of coordinates is defined by

g = e
ψ−ϕ

2 σ3
eıtσ1

e
ψ+ϕ

2 σ3
, (B.28)

(ψ and ϕ are not compact coordinates). The metric reads:

ds2 = L2
[
cos2 tdψ2 − dt2 + sin2 t dϕ2

]
, (B.29)

with volume form

ω[3] =
L3

2
sin 2tdt ∧ dψ ∧ dϕ. (B.30)

Now L2 = 1
2
(
∂ψ − ∂ϕ

)
and R2 = 1

2
(
∂ψ + ∂ϕ

)
.
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sector Killing vector Current

le
ft

m
ov

in
g cos t∂ρ +

sin t
cosh ρ

∂φ − sin t tanh ρ∂t

− sin t∂ρ +
cos t

cosh ρ
∂φ − cos t tanh ρ∂t

−∂t

k (cos t∂ρ + cosh ρ sin t∂φ)
k (cos t cosh ρ∂φ− sin t∂ρ)
k (∂t + sinh ρ∂φ)

ri
gh

tm
ov

in
g

cosh φ∂ρ − sinh φ tanh ρ∂φ −
sinh φ

cosh ρ
∂t

∂φ

sinh φ∂ρ − cosh φ tanh ρ∂φ −
cosh φ

cosh ρ
∂t

−k
(
cosh φ∂̄ρ + cosh ρ sinh φ∂̄t

)
k
(
∂̄φ− sinh ρ∂̄t

)
k
(
cosh ρ cosh φ∂̄t + sinh φ∂̄ρ

)
Table B.2: Killing vectors {ıL1, ıL2, ıL3} and {ıR1, ıR2, ıR3}, and holomorphic
and anti-holomorphic currents for the (ρ, t, φ) coordinate system (elliptic base).

sector Killing vector Current

le
ft

m
ov

in
g

cosh x∂r − sinh x tanh r∂x +
sinh x
cosh r

∂τ

∂x

− sinh x∂r + cosh x tanh r∂x −
cosh x
cosh r

∂τ

k (cosh x∂r− cosh r sinh x∂τ)
k (∂x + sinh r∂τ)
k (cosh r cosh x∂τ − sinh x∂r)

ri
gh

tm
ov

in
g

− cos τ∂r +
sin τ

cosh τ
∂x − sin τ tanh τ∂τ

(cos τ + sin τ tanh r) ∂x +
(
cos τ sinh r− sin τ

cosh r
)

∂τ

cosh r
−∂τ

k
(
− cos τ∂̄r + cosh r sin τ∂̄r

)
k
(
cos τ cosh r∂̄x + sin τ∂̄r

)
k
(
∂̄τ − sinh r∂̄x

)
Table B.3: Killing vectors {ıL1, ıL2, ıL3} and {ıR1, ıR2, ıR3}, and holomorphic
and anti-holomorphic currents for the (r, x, τ) coordinate system (hyperbolic
base).

B.3 SU (3)
To obtain the the Cartan-Weyl basis {Ha, Eαj } for the su (3) algebra we need to choose
the positive roots as follows:

α1 = [
√

2, 0] α2 = [−1/
√

2,
√

3/2] α3 = [1/
√

2,
√

3/2] (B.31)

The usual choice for the defining representation is:

H1 = 1√
2

1 0 0
0 −1 0
0 0 0

 H2 = 1√
6

1 0 0
0 1 0
0 0 −2

 E+
1 =

0 1 0
0 0 0
0 0 0


E+

2 =

0 0 0
0 0 1
0 0 0

 E+
3 =

0 0 1
0 0 0
0 0 0

 (B.32)

and E−j =
(

E+
j

)t
.
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sector Killing vector Current

le
ft

m
ov

in
g −∂−

ux−∂u − u2∂+ +
(
x−
)2

∂−

u
2

∂u + x−∂−

−2k
∂x+

u2

2k
(

2x−
∂u
u
− ∂x− + (x−)2 ∂x+

u2

)
2k
(

∂u
u

+ x−
∂x+

u2

)
ri

gh
tm

ov
in

g ∂+

−ux+∂u −
(
x+)2

∂+ + u2∂−

u
2

∂u + x+∂+

2k
∂̄x−

u2

2k
(
−2x+ ∂̄u

u
+ ∂̄x+ − (x+)2 ∂̄x−

u2

)
2k
(

∂̄u
u

+ x+ ∂̄x−

u2

)
Table B.4: Killing vectors, and holomorphic and anti-holomorphic currents
in Poincaré coordinates (parabolic base). The {ıL1 + ıL3, ıL1 − ıL3, ıL2, ıR1 +
ıR3, ıR1 − ıR3, ıR2} isometry generators and the corresponding {J1 + J3, J1 −
J3, J2, J̄1 + J̄3, J̄1 − J̄3, J̄2} currents are represented so to explicitly obtain light-
like isometry generators.

A good parametrisation for the SU (3) group can be obtained via the Gauss de-
composition: every matrix g ∈ SU (3) is written as the product:

g = b−db+ (B.33)

where b− is a lower triangular matrix with unit diagonal elements, b+ is a upper
triangular matrix with unit diagonal elements and d is a diagonal matrix with unit
determinant. The element g is written as:

g (z1, z2, z3, ψ1, ψ2) = exp
[
z1E−1 + z2E−3 +

(
z3 −

z1z2

2

)
E−2
]
×

× e−F1 H1−F2 H2 exp
[

w̄1E+
1 + w̄2E+

3 +
(

w̄3 −
w̄1w̄2

2

)
E+

2

]
eıψ1 H1+ıψ2 H2 (B.34)

where zµ are 3 complex parameters, ψi are two real and F1 and F2 are positive real
functions of the zµ’s:F1 = log f1 = log

(
1 + |z1|2 + |z3|2

)
F2 = log f2 = log

(
1 + |z2|2 + |z3 − z1z2|2

) (B.35)

By imposing g
(
zµ, ψa

)
to be unitary we find that the wµ’s are complex functions of

the zµ’s:
w1 = − z1+z̄2z3√

f 2

w2 =
z̄1z3−z2(1+|z1|2)√

f1

w3 = − (z3 − z1z2)
√

f1
f2

(B.36)
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and the defining element g
(
zµ, ψa

)
can then be written explicitly as:

g (z1, z2, z3, ψ1, ψ2) =

 1 0 0
z1 1 0
z3 z2 1




1√
f1

0 0

0
√

f1/ f2 0
0 0

√
f2

×
×

1 w̄1 w̄3
0 1 w̄2
0 0 1

eıψ1/2 0 0
0 e−ı(ψ1−ψ2)/2 0
0 0 eıψ2/2

 (B.37)

Now, to build a metric for the tangent space to SU (3) we can define the 1-form
Ω (z,  ) = g−1 (z,  ) dg (z,  ) and write the Killing-Cartan metric tensor as gKC =
tr
(
Ω†Ω

)
= − tr (ΩΩ) where we have used explicitly the property of anti-Hermiticity

of Ω (that lives in the su (3) algebra). The explicit calculation is lengthy but straight-
forward. The main advantage of this parametrization from our point of view is that
it allows for a “natural” embedding of the SU (3) /U (1)2 coset (see e.g. [GK98] or
[KT00]): in fact in these coordinates the Kähler potential is

K
(
zµ, z̄µ

)
= log

(
f1
(
zµ

)
f2
(
zµ

))
=

= log
[(

1 + |z1|2 + |z3|2
) (

1 + |z2|2 + |z3 − z1z2|2
)]

(B.38)

and the coset Kähler metric is hence simply obtained as:

gαβ̄ dzα ⊗ dz̄β =
∂2

∂zα∂z̄β
K
(
zµ, z̄µ

)
dzα ⊗ dz̄β (B.39)

Another commonly used su (3) basis is given by the Gell-Mann matrices:

γ1 = 1√
2

0 ı 0
ı 0 0
0 0 0

 γ2 = 1√
2

 0 1 0
−1 0 0
0 0 0

 γ3 = 1√
2

 ı 0 0
0 −ı 0
0 0 0


γ4 = 1√

2

0 0 ı
0 0 0
ı 0 0

 γ5 = 1√
2

 0 0 1
0 0 0
−1 0 0

 γ6 = 1√
2

0 0 0
0 0 ı
0 ı 0


γ7 = 1√

2

0 0 0
0 0 1
0 −1 0

 γ8 = 1√
6

 ı 0 0
0 ı 0
0 0 −2ı


(B.40)

which presents the advantage of being orthonormal κ
(
λi, λj

)
= δij. In this case the

Cartan subalgebra is generated by k = 〈λ3, λ8〉.

B.4 USp (4)
The symplectic group Sp (4, C) is the set of 4× 4 complex matrices that preserve the
symplectic form J:

J =
(

0 I2×2
−I2×2 0

)
(B.41)

that is

Sp (4, C) = { g | gt Jg = J } (B.42)
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The unitary symplectic group USp (4, C) is the compact group obtained as the inter-
section of Sp (4, C) with U (4):

USp (4, C) = Sp (4, C) ∩U (4) (B.43)

It follows easily that the Lie algebra usp (4) is the set of complex matrices X such that:

usp (4) = {X | Xt J + JXt = 0 } (B.44)

To obtain the the Cartan-Weyl basis {Ha, Eαj }we need to choose the positive roots

α1 = [
√

2/2,−
√

2/2] α2 = [0,
√

2] α3 = [
√

2/2,
√

2/2] α4 = [
√

2, 0] (B.45)

α1

α3
α2 = α1 + α3

(a) SU(2)

α
1

α
3
=α

1
+α

2

α
2

α
4
=α

1
+α

3

(b) USp(4)

Figure B.1: Root system for su (3) and sp(4).

and the Nµ,ν coefficients:

N1,2 = 1 N1,3 = 2 (B.46)

The defining realization is given by the following choice:

H1 = 1√
2


1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0

 H2 = 1√
2


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1

 E+
1 =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 −1 0


E+

2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 E+
3 =


0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

 E+
4 =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0


(B.47)

and E−αµ = (Eαµ)t.
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Just like in the case of SU (3), the general element in USp (4) is written as:

g
(
γµ, ψa

)
= exp

[
γ1E−1 +

γ2√
2

E−2 +
2γ3 − γ1γ2

2
E−3 +

γ2
1γ2 − γ1γ3 + γ4√

2
E−4

]
e−F1 H1−F2 H2

exp

[
β̄1E+

1 +
β̄2√

2
E+

2 +
2β̄3 − β̄1 β̄2

2
E+

3 +
β̄2

1 β̄2 − β̄1 β̄3 + β̄4√
2

E+
4

]
eıψ1 H1+ıψ2 H2 =

=


1 0 0 0

γ1 1 0 0
γ4 −γ1γ2 + γ3 1 −γ1
γ3 γ2 0 1




f1 0 0 0
0 f2 0 0
0 0 1/ f1 0
0 0 0 1/ f2




1 β̄1 β̄4 β̄3
0 1 −β̄1 β̄2 + β̄3 β̄2
0 0 1 0
0 0 −β̄1 1

×

×


eıψ1 0 0 0

0 eıψ2 0 0
0 0 e−ıψ1 0
0 0 0 e−ıψ2

 (B.48)

A orthonormal basis for the usp (4), similar to the Gell-Mann matrices system is
given by the following set of matrices:

T1 = 1√
2


ı 0 0 0
0 0 0 0
0 0 −ı 0
0 0 0 0

 T2 = 1√
2


0 0 0 0
0 ı 0 0
0 0 0 0
0 0 0 −ı

 T3 = 1
2


0 ı 0 0
ı 0 0 0
0 0 0 −ı
0 0 −ı 0


T4 = 1

2


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 T5 = 1√
2


0 0 0 0
0 0 0 ı
0 0 0 0
0 ı 0 0

 T6 = 1√
2


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0


T7 = 1

2


0 0 0 ı
0 0 ı 0
0 ı 0 0
ı 0 0 0

 T8 = 1
2


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 T9 = 1√
2


0 0 ı 0
0 0 0 0
ı 0 0 0
0 0 0 0


T10 = 1√

2


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0


(B.49)



APPENDIX C

Symmetric deformations of SL(2, R)

The group manifold of SL(2, R) is anti de Sitter in three dimensions. Metric and anti-
symmetric tensor read (in Euler coordinates, see App. B):

ds2 = L2
[
dρ2 + sinh2 ρ dφ2 − cosh2 ρ dτ2

]
, (C.1a)

H[3] = L2 sinh 2ρdρ ∧ dφ ∧ dτ, (C.1b)

with L related to the level of SL(2, R)k as usual: L =
√

k + 2. In the case at hand,
three different lines of symmetric deformations arise due to the presence of time-like
(J3, J̄3), space-like (J1, J̄1, J2, J̄2), or null generators [FR03, F9̈4, IKP03]. The residual
isometry is U(1)×U(1) that can be time-like (L3, R3), space-like (L2, R2) or null (L1 +
L3, R1 + R3) depending on the deformation under consideration.

The elliptic deformation is driven by the J3 J̄3 bilinear. At first order in α′ the back-
ground fields are given by1:

ds2 = k

[
dρ2 +

sinh2 ρ dφ2 − κ2
3 cosh2 ρ dτ2

Θκ3(ρ)

]
, (C.2a)

H[3] = k
κ2

3 sinh 2ρ

Θκ3(ρ)2 dρ ∧ dφ ∧ dτ, (C.2b)

eΦ =
Θκ3(ρ)

κ3
. (C.2c)

where Θκ3(ρ) = cosh2 ρ − κ3 sinh2 ρ. At extreme deformation (κ2
3 → 0), a time-like

direction decouples and we are left with the axial2 SL(2, R)k/U(1)time. The target
space of the latter is the cigar geometry (also called Euclidean two-dimensional black
hole):

eΦ ∼ cosh2 ρ, (C.3)

ds2 = k
[
dρ2 + tanh2 ρ dφ2

]
, (C.4)

(0 ≤ ρ < ∞ and 0 ≤ φ ≤ 2π).

1The extra index “3” in the deformation parameter κ reminds that the deformation refers
here to J3 J̄3.

2The deformation parameter has two T-dual branches. The extreme values of deformation
correspond to the axial or vector gaugings. The vector gauging leads to the trumpet. For the
SU(2)k/U(1), both gaugings correspond to the bell.
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Similarly, with J2 J̄2 one generates the hyperbolic deformation. This allows to reach
the Lorentzian two-dimensional black hole times a free space-like line. Using the
coordinates defined in Eq. (B.28), we find:

ds2 = k

[
−dt2 +

sin2 t dϕ2 + κ2
2 cos2 t dψ2

∆κ2(t)

]
, (C.5a)

H[3] = k
κ2

2 sin 2t
∆κ2(t)2 dt ∧ dψ ∧ dφ, (C.5b)

eΦ =
∆κ2(t)

κ2
, (C.5c)

where ∆κ2(t) = cos2 t + κ2
2 sin2 t. This coordinate patch does not cover the full AdS3.

We will expand on this line in Sec. 4.4.
Finally, the bilinear

(
J1 + J3) ( J̄1 + J̄3) generates the parabolic deformation. Using

Poincaré coordinates in Eq. (B.26)3 we obtain:

ds2 = k
[

du2

u2 +
dX2 − dT2

u2 + 1/ν

]
, (C.6a)

H[3] = k
2u

(u2 + 1/ν)2 du ∧ dT ∧ dX, (C.6b)

eΦ =
u2 + 1/ν

u2 . (C.6c)

The deformation parameter is 1/ν. At infinite value of the parameter ν, we recover
pure AdS3; for ν → 0, a whole light-cone decouples and we are left with a single
direction and a dilaton field, linear in this direction.

The physical interpretation of the parabolic deformation is far reaching, when
AdS3 is considered in the framework of the NS5/F1 near-horizon background, AdS3×
S3 × T4. In this physical set-up, the parameter ν is the density of F1’s (number of fun-
damental strings over the volume of the four-torus T4) [IKP03, KKPR03]4. At infinite
density, the background is indeed AdS3 × S3 × T4. At null density, the geometry be-
comes R1,2 × S3 × T4 plus a linear dilaton and a three-form on the S3.

3Note that x± = X± T.
4Our present convention for the normalization of the dilaton results from Eq. (3.15b). It

differs by a factor −2 with respect to the one used in those papers.



APPENDIX D

Spectrum of the SL(2, R) super-WZW
model

In this appendix we give a reminder of the superconformal WZW model on SL (2, R)k
(for a recent discussion see [GKPS03]). The affine extension of the sl (2, R) algebra
at level k is obtained by considering two sets of holomorphic and anti-holomorphic
currents of dimension one, defined as

JM (z) = k 〈TM, Adgg−1∂g〉 , J̄M (z̄) = k 〈TM, g−1∂̄g〉 , (D.1)

where 〈·, ·〉 is the scalar product (Killing form) in sl (2, R), { TM } is a set of generators
of the algebra that for concreteness we can choose as follows:

T1 = σ1, T2 = σ3, T3 = σ2. (D.2)

Each set satisfies the OPE

JM (z) JN (w) ∼ kδMN

2 (z− w)2 +
f MN

P JP (w)
z− w

, (D.3)

where f MN
P are the structure constants of the sl (2, R) algebra. The chiral algebra con-

tains the Virasoro operator (stress tensor) obtained by the usual Sugawara construc-
tion:

T (z) = ∑
M

: JM JM :
k− 2

. (D.4)

A heterotic model is built if we consider a left-moving N = 1 extension, obtained
by adding 3 free fermions which transform in the adjoint representation. More explic-
itly:

T (z) = ∑
M

: JM JM :
k− 2

+ : ψM∂ψM :, (D.5)

G (z) =
2
k

(
∑
M

JMψM −
ı

3k ∑
MNP

f MNP : ψMψNψP :

)
. (D.6)

On the right side, instead of superpartners, we add a right-moving current with total
central charge c = 16.
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Let us focus on the left-moving part. The supercurrents are given by ψM + θ
√

2/kJM

where:

JM = JM − ı
2 ∑

NP

εMNPψNψP; (D.7)

it should be noted that the bosonic JM currents generate an affine sl (2, R) algebra at
level k + 2, while the level for the total JM currents is k.

Let us now single out the operator that we used for both the deformation (Eqs. (4.87))
and the identifications (Sec. 4.4):

J2 = J2 + ıψ1ψ3. (D.8)

Let us now bosonize these currents as follows:

J2 = −
√

k
2

∂ϑ2, (D.9)

J2 = −
√

k + 2
2

∂θ2, (D.10)

ψ1ψ3 = ∂H, (D.11)

and introduce a fourth free boson X so to separate the ϑ2 components both in θ2 and
H:

ıH =
√

2
k

ϑ2 + ı

√
k + 2

k
X, (D.12)

θ2 =
√

2
k

(√
k + 2

2
ϑ2 + ıX

)
. (D.13)

A primary field Φjµµ̃ of the bosonic SL (2, R)k+2 with eigenvalue µ with respect to
J2 and µ̄ with respect to J̄2 obeys by definition

J2 (z) Φjµµ̄ (w, w̄) ∼
µΦjµµ̄ (w, w̄)

z− w
, (D.14a)

J̄2 (z̄) Φjµµ̄ (w, w̄) ∼
µ̄Φjµµ̄ (w, w̄)

z̄− w̄
. (D.14b)

Since Φjµµ̄ is purely bosonic, the same relation holds for the supercurrent:

J2 (z) Φjµµ̄ (w, w̄) ∼
µΦjµµ̄ (w, w̄)

z− w
. (D.15)

Consider now the holomorphic part of Φjµµ̄ (z, z̄). If Φjµ is viewed as a primary in the
SWZW model, we can use the parafermion decomposition as follows:

Φjµ (z) = Ujµ (z) eıµ
√

2/kϑ2 , (D.16)

where Ujµ (z) is a primary of the superconformal SL(2,R)k/U(1). On the other hand, we
can just consider the bosonic WZW and write:

Φjµ (z) = Vjµ (z) eıµ
√

2/(k+2)θ2 = Vjµ (z) eı 2m
k+2

√
k+2

k X+ıµ
√

2/kϑ2 , (D.17)

where now Vjµ (z) is a primary of the bosonic SL(2,R)k+2/U(1). The scaling dimension
for this latter operator (i.e. its eigenvalue with respect to L0) is then given by:

∆
(
Vjµ
)

= − j (j + 1)
k

− µ2

k + 2
. (D.18)
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An operator in the full supersymmetric SL (2, R)k theory is then obtained by adding
the ψ1ψ3 fermionic superpartner contribution:

Φjµν (z) = Φjµ (z) eıνH = Vjµ (z) eı
(

2µ
k+2 +ν

)√
k+2

k Xeı
√

2/k(µ+ν)ϑ2 (D.19)

that is an eigenvector of J2 with eigenvalue µ + ν where µ ∈ R and ν can be decom-
posed as ν = n + a/2 with n ∈N and a ∈ Z2 depending on whether we consider the
NS or R sector. The resulting spectrum can be read directly as:

∆
(
Φjµn (z)

)
= − j (j + 1)

k
− µ2

k + 2
− k + 2

2k

(
2µ

k + 2
+ n +

a
2

)2
+

1
k

(
µ + n +

a
2

)2
=

= − j (j + 1)
k

− 1
2

(
n +

a
2

)2
. (D.20)

Of course the last expression was to be expected since it is the sum of the sl (2, R)k+2
Casimir and the contribution of a light-cone fermion. Nevertheless the preceding con-
strucion is useful since it allowed us to isolate the J2 contribution to the spectrum
(µ + ν)2 /k.

The right-moving part of the spectrum is somewhat simpler since there are no
superpartners. This means that we can repeat our construction above and the eigen-
value of the L̄0 operator is simply obtained by adding to the dimension in Eq. (D.18)
the contribution of the J̄2 operator and of some U (1) coming from the gauge sector:

∆̄
(
Φ̄jµ̄n̄ (z̄)

)
= − j (j + 1)

k
− µ̄2

k + 2
+

{
µ̄2

k + 2
+

1
kg

(
n̄ +

ā
2

)2
}

, (D.21)

where again n̄ ∈N and ā ∈ Z2 depending on the sector.
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1. Introduction

Near-horizon geometries of NS5-branes [CHS91], NS5/F1 or S-dual versions of those [ABS90,
BPS98] have been thoroughly analyzed over the past years. These involve AdS3 or S3

spaces and turn out to be exact string backgrounds, tractable beyond the supergravity
approximation. They offer a unique setting in which to analyze AdS/cft correspondence,
black-hole physics, little-string theory, . . .
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An important, and not yet unravelled aspect of such configurations is the investigation
of their moduli space. String propagation in the above backgrounds is described in terms
of some exact two-dimensional conformal field theory. Hence, marginal deformations of
the latter provide the appropriate tool for exploring the moduli of the corresponding string
vacua.

A well-known class of marginal deformations for wzw models are those driven by left-
right current bilinears [CS89, FR03]:

∫
d2zJJ̄ . These can be “symmetric” in the sense

that both J and J̄ are generators of the affine algebra of the model. However, asymmetric
deformations can also be considered, where either J or J̄ correspond to some other U(1),
living outside of the chiral algebra of the model. These deformations describe the response
of the system to a finite (chromo) electric or magnetic background field and since these
deformations are exactly marginal, the gravitational back-reaction is properly taken into
account at any magnitude of the external field [KK95].

The purpose of this note is to report on the asymmetric deformations of the SL(2,R)k

heterotic string background. Since SL(2,R) has time-like, null and space-like generators,
three distinct asymmetric deformations are possible, corresponding respectively to mag-
netic, electromagnetic and electric field backgrounds. The former case has been recently
analyzed from this perspective [Isr04] and the corresponding deformation was shown to
include Gödel space–time, which is therefore promoted to an exact string background (de-
spite the caveats of closed time-like curves). The latter case, on the other hand, corresponds
to a new deformation, which connects AdS3 with R×AdS2.

This observation is far reaching: while symmetric deformations usually connect wzw

models to some U(1)-gauged version of them [GK94], asymmetric deformations turn out to
connect the original theory to some geometric coset, with electric or magnetic background
fields. This holds for the SU(2)k, where the limiting magnetic deformation has R × S2

geometry, and can be generalized to any wzw model: geometric cosets with electric or
magnetic background fields provide thus exact string vacua. Here we focus on the S2 and
AdS2 examples, previously discussed as heterotic coset constructions in [Joh95] (see also
[LS94]). Moreover, they both enter in the near-horizon geometry of the four-dimensional
Reissner–Nordström extremal black hole, AdS2 × S2, which is here shown to be an exact
string vacuum. We also show how H2 appears as an exact cft, although this background
is of limited interest for string theory because of lack of unitarity.

The paper is organized as follows. First we review the magnetic deformation of S3,
appearing in the framework of the SU(2)k wzw model. The appearance of the two-
sphere plus magnetic field as exact string background is described in Sec. 2, where we also
determine the corresponding partition function. The AdS3 case is analyzed in Sec. 3, where
its asymmetric deformations are described in detail from geometrical and two-dimensional-
cft points of view. We also investigate their spectra. Limiting deformations are discussed
in Sec. 4. There, we show how to reach the AdS2 = SL(2,R)/U(1) geometric coset with
electric field. These backgrounds are consistent and exact string vacua.

The H2 geometric coset of AdS3 is also shown to appear on the line of magnetic
deformation, with imaginary magnetic field though. The near-horizon geometry of the four-
dimensional Reissner–Nordström extremal black hole is further discussed in Sec. 5. Section
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6 contains a collection of final comments, where we sort various geometries that should
be investigated in order to get a comprehensive picture of the general AdS3 landscape,
and its connection to other three-dimensional geometries. Four appendices provide some
complementary/technical support. Appendix A sets the general framework for geometric
deformations of a metric, designed to keep part of its original isometry. Appendices B
and C contain material about SU(2) and SL(2,R) groups. A reminder of low-energy field
equations for the bosonic degrees of freedom of heterotic string is given in App. D.

2. Magnetic deformation of S3

SU(2)k wzw model magnetic deformations were analyzed in [KK95], for both type II and
heterotic string backgrounds. For concreteness, we will concentrate here on the latter case.
In contrast to what happens in flat space–time, these deformations are truly marginal
in the background of a three-sphere plus ns flux, and preserve N = (1, 0) world-sheet
supersymmetry.

Consider heterotic string on R1,3 × S3 × T 4. The theory is critical provided we have
a linear dilaton living on the R1,3, with background charge Q = 1/

√
k + 2, where k is the

level of the SU(2)L×SU(2)R affine algebra. The target-space geometry is the near-horizon
limit of the solitonic NS5-brane [CHS91].

The two-dimensional N = (1, 0) world-sheet action corresponding to the S3 factor is

SSU(2)k
=

1
2π

∫
d2z

{
k

4
(
∂α ∂̄α+ ∂β ∂̄β + ∂γ ∂̄γ + 2 cosβ ∂α ∂̄γ

)
+

3∑
a=1

ψa ∂̄ψa

}
, (2.1)

where ψa are the left-moving free fermions, superpartners of the bosonic SU(2)k currents,
and (α, β, γ) are the usual Euler angles parameterizing the SU(2) group manifold (see
App. B for a reminder). In this parameterization, the chiral currents of the Cartan subal-
gebra read:

J3 = k ( ∂γ + cosβ ∂α) , J̄3 = k
(
∂̄α+ cosβ ∂̄γ

)
(2.2)

(Tab. 1) with the following short-distance expansion:

J3(z)J3(0) =
k

2z2
+ reg. (2.3)

and similarly for the right-moving one. The left-moving fermions transform in the adjoint
of SU(2). There are no right-moving superpartners but a right-moving current algebra
with total central charge c = 16 (realized e.g. in terms of right-moving free fermions). The
currents of the latter are normalized so that the Cartan generators J̄ i

G of the group factor
G satisfy the following short-distance expansion:

J̄ i
G(z)J̄ j

G(0) =
kGh

ij

2z̄2
+ reg. , i, j = 1, . . . , rank(G) (2.4)

with hij = f ik
` f

`j
k

/
g∗, f ij

k and g∗ being the structure constants and dual Coxeter number
of the group G.
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The background metric and NS two-form are read off directly from (2.1):

ds2 =
k

4

[
dβ2 + sin2 β dα2 + ( dγ + cosβ dα)2

]
, (2.5)

B =
k

4
cosβ dα ∧ dγ. (2.6)

They describe a three-sphere of radius L =
√
k and a ns three-form whose field strength

is dB = 2√
k
ω[3] (ω[3] stands for the volume form given in Eq. (B.8)).

A comment is in order here. In general, the background fields Gab, Bab, . . . receive
quantum corrections due to two-dimensional renormalization effects controlled by α′ (here
set equal to one). This holds even when the world-sheet theory is exact. Conformal
invariance requires indeed the background fields to solve Eqs. (D.11) that receive higher-
order α′ corrections. The case of wzw models is peculiar in the sense that the underlying
symmetry protects Gab and Bab from most corrections; these eventually boil down to the
substitution k → k + 2 in Eqs. (2.5) and (2.6), see e.g. [Tse94].

Notice finally that the SU(2)k plus linear dilaton background introduces a mass gap
with respect to flat space: µ2 = 1/(k + 2). This plays the role of infra-red regulator,
consistent with all string requirements including supersymmetry.

2.1 Squashing the three-sphere

We now turn to the issue of conformal deformations. As already advertised, we will not
consider left-right symmetric ones, which are purely gravitational. Instead, we will switch
the following N = (1, 0) world-sheet supersymmetry compatible perturbation on

δSmagnetic =
√
kkGH

2π

∫
d2z

(
J3 + ıψ1ψ2

)
J̄G; (2.7)

J̄G being any Cartan current of the group factor G.
Although one may easily show the integrability of this marginal perturbation out of

general arguments (see e.g. [CS89]) it is instructive to pause and write an explicit proof.
If we limit ourselves to the bosonic sector, we can bosonize the J̄G current as J̄G = ı∂̄ϕ

and interpret ϕ (z, z̄) as an internal degree of freedom (see App. D for a more precise
discussion). Incorporating the kinetic term for the ϕ field, the deformed action reads:

S = SSU(2)k
(α, β, γ) + δSmagnetic +

kG

4π

∫
d2z ∂ϕ∂̄ϕ, (2.8)

where SSU(2)k
(Eq. (2.1)) now contains the bosonic degrees of freedom only. The terms in

previous expression can be recollected so to give:

S = SSU(2)k

(
α, β, γ +

√
kG

k
Hϕ

)
+
kG

(
1− 2H2

)
4π

∫
d2z ∂ϕ∂̄ϕ, (2.9)

which is manifestly exact. As a corollary, we observe that in the present setting, O (α′)
solutions of Eqs. (D.11) are automatically promoted to all-order exact solutions by simply
shifting k → k + 2, just like for an “ordinary” wzw model.

– 4 –
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The effect of the deformation at hand is to turn a (chromo)magnetic field on along
some Cartan direction inside G, which in turn induces a gravitational back-reaction on
the metric and the three-form antisymmetric tensor. Following the previous discussion
and App. D (i.e. by using Kaluza–Klein reduction), it is straightforward to read off the
space–time backgrounds from (2.1) and (2.7). We obtain:

ds2 =
k

4

[
dβ2 + sin2 β dα2 +

(
1− 2H2

)
( dγ + cosβ dα)2

]
(2.10)

and

A =
√

2k
kG
H ( dγ + cosβ dα) (2.11)

for the metric and gauge field, whereas neither the B-field nor the dilaton are altered. The
three-form field strength is however modified owing to the presence of the gauge field (see
Eqs. (D.11)):

H[3] = dB − kG

4
A ∧ dA =

k

4
(
1− 2H2

)
sinβ dα ∧ dβ ∧ dγ (2.12)

(the non-abelian structure of the gauge field plays no role since the non-vanishing compo-
nents are in the Cartan subalgebra1).

The deformed geometry (2.10) is a squashed three-sphere: its volume decreases with
respect to the original S3 while its curvature increases. These properties are captured in
the expressions of the volume form and Ricci scalar:

ω[3] =
(
k

4

)3/2√
|1− 2H2| sinβ dα ∧ dβ ∧ dγ, (2.13)

R =
2
k
(3 + 2H2). (2.14)

The latter is constant and the background under consideration has U(1)×SU(2) isometry
generated by the Killing vectors {L3, R1, R2, R3} whose explicit expression is reported in
App. B, Tab. 1.

This situation should be compared to the symmetric deformation generated by the the
marginal operator

(
J3 + iψ1ψ2

)
J̄3. This is purely gravitational and alters the metric, the

B-field and the dilaton [GK94]. The isometry is in that case broken to U(1) × U(1) and
the curvature is not constant.

At this point one might wonder to what extent the constant curvature of the asym-
metric deformation is due to the large (almost maximal) residual isometry U(1)× SU(2).
This question is answered in App. A, where it is shown, in a general framework, that the
isometry requirement is not stringent enough to substantially reduce the moduli space of
deformations. In particular, the resulting curvature is in general not constant.

In the case under consideration, however, the geometric deformation is driven by an in-
tegrable marginal perturbation of the sigma-model. Combined with the left-over isometry,
this requirement leads to the above geometry with constant curvature, Eq. (2.14). From

1Similarly, the (chromo)magnetic field strength is given by F = dA.
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a purely geometrical point of view (i.e. ignoring the CFT origin), such a deformation
joins the subclass of one-parameter families described in App. A, obtained by demanding
stability i.e. integrability on top of the symmetry.

Notice finally that the U(1) × SU(2) isometry originates from an affine symmetry at
the level of the sigma-model. The asymmetric marginal deformation under consideration
breaks the original affine SU(2)L down to U(1)L, while it keeps the affine SU(2)R unbroken.

It is worthwhile stressing that this asymmetric and the previously quoted symmetric
deformations of the three-sphere background are mutually compatible. They can be per-
formed simultaneously, although in that case the magnetic field can lead to (tachyonic)
instabilities before reaching its maximal value [KK95].

All the above discussion about integrability, geometry and isometries of the SU(2)k

magnetic perturbation is valid for the various asymmetric deformations of SL(2,R) that
will be analysed in Sec. 3.

2.2 Critical magnetic field and the geometric coset

It was made clear in [GK94] that the symmetric deformation of SU(2)k wzw is a well-
defined theory for any value of the deformation parameter. For an infinite deformation,
the sigma-model becomes a gauged wzw model SU(2)k/U(1) (bell geometry) times a
decoupled boson. In some sense, the two U(1) isometries present on the deformation line
act, for extreme deformation, on two disconnected spaces: the bell and the real line.

As already stressed, the magnetic deformation of SU(2)k preserves a larger symmetry,
namely a U(1) × SU(2), and has constant curvature. We are in the framework discussed
in App. A, Eqs. (A.1) and (A.3) with h = 2H2. This deformation has an end-point where
the space is expected to factorize into a line with U(1) isometry and a two-dimensional
constant-curvature space with SU(2) isometry, which can only be a two-sphere.

These statements can be made more precise by considering the background (2.10).
The deformation parameter H2 is clearly bounded: H2 ≤ 1/2 (the boundary H2

max = 1/2
of the moduli space is reminiscent of the Im (U)→∞ limit in a two-dimensional toroidal
compactification). In general, a three sphere can be seen as a S1 Hopf fibration over a base
S2. It is clear from expressions (2.10) and (2.13) that the effect of the magnetic field consists
in changing the radius of the fiber. At H2 = H2

max, this radius vanishes and the states
coupling to the magnetic field become infinitely massive and decouple. The corresponding
dimension decompactifies, and factorizes from the three-dimensional geometry:

S3 −−−−−−−→
H2→H2

max

R× S2, (2.15)

where S2 is the geometric coset SU(2)/U(1). The MH → SU(2)/U(1) fibration trivializes
in this limit. This can be made more transparent by introducing a new coordinate:

y =

√
k

2

(
1
2
−H2

)
γ. (2.16)

– 6 –
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The metric and volume form now read:

ds2 =
k

4
[
dβ2 + sin2 β dα2

]
+ dy2 +2

√
k

2

(
1
2
−H2

)
cosβ dα dy+

k

2

(
1
2
−H2

)
cos2 β dα2

(2.17)
and

ω[3] =
k

4
sinβ dα ∧ dβ ∧ dy. (2.18)

For H2 close to H2
max, the y-direction factorizes

ds2 −−−−−−−→
H2→H2

max

dy2 +
k

4
[
dβ2 + sin2 β dα2

]
, (2.19)

while the curvature (R→ 8/k) is entirely supported by the remaining two-sphere of radius√
k/4. The other background fields read:

F =
√

2k
kG
H sinβ dα ∧ dβ −−−−−−−→

H2→H2
max

√
k

kG
sinβ dα ∧ dβ, (2.20)

H[3] =

√
k

2

(
1
2
−H2

)
sinβ dα ∧ dβ ∧ dy −−−−−−−→

H2→H2
max

0. (2.21)

The above analysis deserves several comments. Our starting point was a marginal
deformation of the SU(2)k wzw model embedded in heterotic strings and induced by a
space–time (chromo)magnetic field. Our observation is here that the corresponding moduli
space has a boundary, where the background is R × S2, with finite magnetic field and
no three-form NS background. Being a marginal deformation, this background is exact,
showing thereby that the geometric coset is as good as a gauged wzw model background.
The latter appears similarly as the end-point of a purely gravitational deformation; it
carries neither magnetic field nor H[3], but has a non-trivial dilaton.

Notice also that it was observed in the past that S2 could provide part of a string
vacuum in the presence of rr fluxes [FKS95], but as usual when dealing with rr fluxes,
no exact conformal field theory description is available.

The procedure we have developed so far for obtaining the two-sphere as an exact
background in the presence of a magnetic field is easily generalizable to other geometric
cosets of compact or non-compact groups. We will focus on the latter case is Sec. 3, and
analyze the electric/magnetic deformations of AdS3.

Our last comment concerns the quantization of the magnetic flux. At the limiting
value of the deformation, the flux of the gauge field through the two-sphere is given by:

Q =
∫

S2

F =
√

k

kG

∫
S2

ω̂2 =
√

k

kG
4π, (2.22)

where ω̂2 stands for the volume form of a unit-radius two-sphere. Therefore, a quantization
of the magnetic charge is only compatible with levels of the affine algebras such that:

k

kG
= p2 , p ∈ Z. (2.23)
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Actually, it was shown in [Joh95] that the model corresponding to the critical magnetic
field can be obtained directly with the following asymmetric gauged wzw model:

SU(2)k × U(1)kG

U(1)
, (2.24)

where the left gauging lies in the SU(2)k wzw model and the right gauging in the U(1)kG

of the gauge sector. The cancellation of the anomalies of the coset dictates a condition on
the level of SU(2)k similar to (2.23).

2.3 Character formulas and modular invariance

We will here construct the contribution of the squashed three-sphere to the partition func-
tion. This contribution is modular-covariant, and combines with the remaining degrees
of freedom into a modular-invariant result. Our computation will also include the S2

limiting geometry. We will consider the case kG = 2, i.e. a U(1) algebra generated by
one right-moving complex fermion. We begin with the following combination of SU(2)k−2

supersymmetric characters and fermions from the gauge sector:

Z

[
a;h
b; g

]
=

(k−2)/2∑
j,̄=0

M j̄ χj ϑ
[
a
b

]
η

χ̄̄
ϑ̄
[
h
g

]
η̄

. (2.25)

where the χj ’s are the characters of bosonic SU(2)k−2, (a, b) are the Z2 boundary conditions
for the left-moving fermions2 and (h, g) those of the right-moving – gauge-sector – ones. We
can choose any matrix M j̄ compatible with modular invariance of SU(2)k−2. Furthermore,
the supersymmetric SU(2)k characters can be decomposed in terms of those of the N = 2
minimal models:

χj(τ) ϑ
[
a

b

]
(τ, ν) =

∑
m∈Z2k

Cj
m

[
a

b

]
Θm,k

(
τ,−2ν

k

)
, (2.26)

where the N = 2 minimal-model characters, determined implicitly by this decomposition,
are given in [Kir88, Dob87, Mat87, RY87].

Our aim is to implement the magnetic deformation in this formalism. The deformation
acts as a boost on the left-lattice contribution of the Cartan current of the supersymmetric
SU(2)k and on the right current from the gauge sector:

Θm,k ϑ̄

[
h

g

]
=
∑
n,n̄

e−ıπg(n̄+h
2 )q

1
2

“√
2kn+ m√

2k

”2

q̄
1
2(n̄+h

2 )2

−→
∑
n,n̄

e−ıπg(n̄+h
2 ) q

1
2

h“√
2kn+ m√

2k

”
cosh x+(n̄+h

2 ) sinh x
i2

× q̄
1
2

h
(n̄+h

2 ) cosh x+
“√

2kn+ m√
2k

”
sinh x

i2

. (2.27)

2We have removed the contribution of the fermion associated to J3 since it is neutral in the deformation

process.
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The boost parameter x is related to the vacuum expectation value of the gauge field as
follows:

coshx =
1

1− 2H2
. (2.28)

We observe that, in the limit H2 → H2
max, the boost parameter diverges (x → ∞),

and the following constraints arise:

4(k + 2)n+ 2m+ 2
√

2kn̄+
√

2kh = 0. (2.29)

Therefore, the limit is well-defined only if the level of the supersymmetric SU(2)k satisfies
a quantization condition:

k = 2p2 , p ∈ Z. (2.30)

This is exactly the charge quantization condition for the flux of the gauge field, Eq. (2.23).
Under this condition, the constraints (2.29) lead to

m+ ph ≡ 0 mod 2p =: 2pN, (2.31a)

n̄ = 2pn+N, N ∈ Z2p. (2.31b)

As a consequence, the U(1) corresponding to the combination of charges orthogonal to (2.29)
decouples (its radius vanishes), and can be removed. We end up with the following expres-
sion for the S2 partition function contribution:

ZS2

[
a;h
b; g

]
=
∑
j,̄

M j̄
∑

N∈Z2p

eıπg(N+h
2 ) Cj

p(2N−h)

[
a

b

]
χ̄̄, (2.32)

in agreement with the result found in [BJKZ96] by using the coset construction. The
remaining charge N labels the magnetic charge of the state under consideration. As a
result, the R-charges of the left N = 2 superconformal algebra are:

QR = n+
a

2
− N − h/2

p
mod 2. (2.33)

We now turn to the issue of modular covariance. Under the transformation τ → −1/τ ,
the minimal-model characters transform as:

Cj
m

[
a

b

](
−1
τ

)
= eı π

2
ab 1
k

(k−2)/2∑
j′=0

sin
(
π(2j + 1)(2j′ + 1)

k

) ∑
m′∈Z2k

eıπ mm′
k Cj′

m′

[
b

−a

]
(τ). (2.34)

On the one hand, the part of the modular transformation related to j is precisely compen-
sated by a similar term coming from the transformation of χ̄̄, in Eq. (2.32). On the other
hand, the part of the transformation related to the spin structure (a, b) is compensated by
the transformation of the other left-moving fermions in the full heterotic string construc-
tion. We can therefore concentrate on the transformation related to the m charge, coming
from the transformation of the theta-functions at level k. We have∑

N∈Z2p

e−ıπg(N+h
2 ) Cj

p(2N−h)

[
a

b

]
→ 1√

2k

∑
m′∈Z4p2

∑
N∈Z2p

e
ıπ
2

“
g−m′

p

”
he2ıπ

N(m′+pg)
2p Cj

m′

[
b

−a

]
;

(2.35)
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summing over N in Z2p leads to the constraint:

m′ + pg ≡ 0 mod 2p := −2pN ′ , N ′ ∈ Z2p. (2.36)

So we end up with the sum

e−
ıπ
2

hg
∑

N ′∈Z2p

e−ıπh(N ′+ g
2 )Cj

p(2N ′−g)

[
b

−a

]
. (2.37)

combining this expression with the modular transformation of the remaining right-moving
fermions of the gauge sector, we obtain a modular invariant result.

In a similar way one can check the invariance of the full heterotic string under τ → τ+1.

3. Electric/magnetic deformations of AdS3

Anti-de-Sitter space in three dimensions is the (universal covering of the) SL(2,R) group
manifold. It provides therefore an exact string vacuum with ns background, described in
terms of the SL(2,R)k wzw model, where time is embedded in the non-trivial geometry.
We will consider it as part of some heterotic string solution such as AdS3 × S3 × T 4 with
ns three-form field in AdS3 × S3 (near-horizon ns5/F1 background). The specific choice
of a background is however of limited importance for our purpose.

The issue of AdS3 deformations has been raised in several circumstances. It is richer
than the corresponding S3 owing to the presence of elliptic, hyperbolic or parabolic elements
in SL(2,R). The corresponding generators are time-like, space-like or light-like. Similarly,
the residual symmetry of a deformed AdS3 has U(1) factors, which act in time, space or
light direction.

Marginal symmetric deformations of the SL(2,R)k wzw are driven by bilinears JJ̄
where both currents are in SL(2,R) and are of the same kind [For94, IKP03]. These
break the SL(2,R)L × SL(2,R)R affine symmetry to U(1)L × U(1)R and allow to reach,
at extreme values of the deformation, gauged SL(2,R)k/U(1) wzw models with an extra
free decoupled boson. We can summarize the results as follows:

(a) J3J̄3 These are time-like currents (for conventions see App. C) and the corresponding
deformations connect SL(2,R)k with U(1)× SL(2,R)k/U(1)|axial or vector. The U(1)
factor stands for a decoupled, non-compact time-like free boson3. The gauged wzw

model SL(2,R)k/U(1)|axial is the cigar (two-dimensional Euclidean black hole) ob-
tained by gauging the g → hgh symmetry with the h = exp iλ2σ

2 subgroup, whereas
SL(2,R)k/U(1)|vector corresponds to the g → hgh−1 gauging. This is the trumpet and
is T-dual to the cigar4. The generators of the affine residual symmetry U(1)L×U(1)R
are both time-like (the corresponding Killing vectors are not orthogonal though). For
extreme deformation, the time coordinate decouples and the antisymmetric tensor is
trade for a dilaton. The isometries are time-translation invariance and rotation in-
variance in the cigar/trumpet.

3The extra bosons are always non-compact.
4Actually this statement holds only for the vector coset of the single cover of SL(2,R). Otherwise, from

the n-th cover of the group manifold one obtains the n-th cover of the trumpet [IKP03].

– 10 –

Bibliography 173



(b) J2J̄2 The deformation is now induced by space-like currents. So is the residual affine
symmetry U(1)L × U(1)R of the deformed model. Extreme deformation points are
T-dual: U(1) × SL(2,R)k/U(1) where the U(1) factor is space-like, and the U(1)
gauging of SL(2,R)k corresponds to g → hgh(−1) with h = exp−λ

2σ
3 [DVV92]. The

corresponding manifold is (some sector of) the Lorentzian two-dimensional black hole
with a non-trivial dilaton.

(c) (J1 + J3)(J̄1 + J̄3) This is the last alternative, with both null currents. The defor-
mation connects AdS3 with R × R1,1 plus a dilaton linear in the first factor. The
U(1)L × U(1)R left-over current algebra is light-like5. Tensorized with an SU(2)k

CFT, this background describes the decoupling limit of the NS5/F1 setup [IKP03],
where the fundamental strings regularize the strong coupling regime.

Our purpose here is to analyze asymmetric deformations of AdS3. Following App. A
and the similar analysis of Sec. 2.1 for S3, we expect those deformations to preserve a
U(1)L × SL(2,R)R symmetry appearing as affine algebra from the sigma-model point of
view, and as isometry group for the background. The residual U(1)L factor can be time-
like, space-like or null depending on the current that has been used to perturb the wzw

model.
It is worth to stress that some deformations of AdS3 have been studied in the past

irrespectively of any conformal sigma-model or string theory analysis. In particular it was
observed in [RS98], following [RT83] that the three-dimensional6 Gödel solution of Einstein
equations could be obtained as a member of a one-parameter family of AdS3 deformations
that precisely enters the class we discuss in App. A. Gödel space is a constant-curvature
Lorentzian manifold. Its isometry group is U(1)×SL(2,R), and the U(1) factor is generated
by a time-like Killing vector. These properties hold for generic values of the deformation
parameter. In fact the deformed AdS3 under consideration can be embedded in a seven-
dimensional flat space with appropriate signature, as the intersection of four quadratic
surfaces. Closed time-like curves as well as high symmetry are inherited from the multi-
time maximally symmetric host space. Another interesting property resulting from this
embedding is the possibility for changing the sign of the curvature along the continuous
line of deformation, without encountering any singular behaviour (see Eq. (3.2)).

It seems natural to generalize the above results to new AdS3 deformations and pro-
mote them to exact string backgrounds. Our guideline will be the requirement of a
U(1) × SL(2,R) isometry group, with space-like or light-like U(1)’s, following the pro-
cedure developed in App. A.

We will first review the time-like (elliptic) deformation of AdS3 of [RS98] and recently
studied from a string perspective in [Isr04]. Hyperbolic (space-like) and parabolic (light-
like) deformations will be analyzed in Secs. 3.2 and 3.3. All these deformations are of
the type (A.1) and (A.3) or (A.4). We show in the following how to implement these

5The isometry is actually richer by one (two translations plus a boost), but the extra generator (the

boost) is not promoted to an affine symmetry of the sigma-model.
6In fact, the original Gödel solution is four-dimensional, but the forth space dimension is a flat spectator.

In the following, we will systematically refer to the three-dimensional non-trivial factor.
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deformations as exact marginal perturbations in the framework of the SL(2,R)k wzw

model embedded in heterotic string.

3.1 Elliptic deformation: magnetic background

Consider AdS3 in (ρ, t, φ) coordinates, with metric given in (C.10). In these coordinates,
two manifest Killing vectors are L3 ∼ ∂t and R2 ∼ ∂φ, time-like and space-like respectively
(see App. C, Tab. 2).

The deformation studied in [RS98] and quoted as “squashed anti de Sitter” reads, in
the above coordinates:

ds2 =
L2

4

[
dρ2 + cosh2 ρdφ2 −

(
1 + 2H2

)
( dt+ sinh ρdφ)2

]
. (3.1)

It preserves a U(1) × SL(2,R) isometry group. The U(1) is generated by the time-like
vector L3 of one original SL(2,R), while the right-moving SL(2,R) is unbroken (the ex-
pressions for the {L3, R1, R2, R3} Killing vectors in Tab. 2 remain valid at any value of the
deformation parameter). The Ricci scalar is constant

R = − 2
L2

(3− 2H2), (3.2)

while the volume form reads:

ω[3] =
L3

8

√
|1 + 2H2| cosh ρ dρ ∧ dφ ∧ dt. (3.3)

For H2 = 1/2, this deformation coincides with the Gödel metric. It should be stressed,
however, that nothing special occurs at this value of the deformation parameter. The
properties of Gödel space are generically reproduced at any H2 > 0.

From a physical point of view, as it stands, this solution is pathological because it has
topologically trivial closed time-like curves through each point of the manifold, like Gödel
space-time which belongs to this family. Its interest mostly relies on the fact that it can be
promoted to an exact string solution, with appropriate ns and magnetic backgrounds. The
high symmetry of (3.1), is a severe constraint and, as was shown in [Isr04], the geometry
at hand does indeed coincide with the unique marginal deformation of the SL(2,R)k wzw

that preserves a U(1)L × SL(2,R)R affine algebra with time-like U(1)L.
It is interesting to observe that, at this stage, the deformation parameter H2 needs

not be positive.: (3.1) solves the Einstein-Maxwell-scalar equations [RT83] for any H2.
Furthermore, for H2 < 0, there are no longer closed time-like curves7. This statement is
based on a simple argument8. Consider a time-like curve xµ = xµ (λ). By definition the
tangent vector ∂λ is negative-norm, which, by using Eq. (3.1), translates into(

dρ
dλ

)2

+ cosh2 ρ

(
dφ
dλ

)2

−
(
1 + 2H2

)( dt
dλ

+ sinh ρ
dφ
dλ

)2

< 0. (3.4)

7As mentioned previously, the geometry at hand can be embedded in a seven-dimensional flat space,

with signature ε−−−+ + +, ε = sign(−H2) [RS98]. This clarifies the origin of the symmetry as well as

the presence or absence of closed time-like curves for positive or negative H2.
8This argument is local and must in fact be completed by global considerations on the manifold

(see [RS98]).
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If the curve is closed, dt/dλ must vanish somewhere. At the turning point, the resulting
inequality, (

2H2 sinh2 ρ− 1
)( dφ

dρ

)2

> 1 (3.5)

is never satisfied for H2 < 0, whereas it is for large enough9 ρ otherwise.
This apparent regularization of the causal pathology, unfortunately breaks down at

the string level. In fact, as we will shortly see, in order to be considered as a string
solution, the above background requires a (chromo)magnetic field. The latter turns out
to be proportional to H, and becomes imaginary in the range where the closed time-like
curves disappear. Hence, at the string level, unitarity is trade for causality. It seems that no
regime exists in the magnetic deformation of AdS3, where these fundamental requirements
are simultaneously fulfilled.

In the heterotic backgrounds considered here, of the type AdS3 × S3 × T 4, the two-
dimensional N = (1, 0) world-sheet action corresponding to the AdS3 factor is

SSL(2,R)k
=

1
2π

∫
d2z

{
k

4
(
∂ρ ∂̄ρ− ∂t ∂̄t+ ∂φ ∂̄φ− 2 sinh ρ ∂φ ∂̄t

)
+ ηab ψ

a ∂̄ψb

}
, (3.6)

where ηab = diag (+ + −), a = 1, 2, 3 and ψa are the left-moving superpartners of the
SL(2,R)k currents (see Tab. 2). The corresponding background fields are the metric (Eq.
(C.10)) with radius L =

√
k and the NS B-field:

B = −k
4

sinh ρdφ ∧ dt. (3.7)

The three-form field strength is H[3] = dB = − 2√
k
ω[3] with ω[3] displayed in Eq. (C.11).

The asymmetric perturbation that preserves a U(1)L × SL(2,R)R affine algebra with
time-like U(1)L is δSmagnetic given in Eq. (2.7), where J3 now stands for the left-moving
time-like SL(2,R)k current given in App. C, Tab. 2. This perturbation corresponds to
switching on a (chromo)magnetic field, like in the SU(2)k studied in Sec. 2. It is marginal
and can be integrated for finite values of H, and is compatible with the N = (1, 0) world-
sheet supersymmetry. The resulting background fields, extracted in the usual manner from
the deformed action are the metric (3.1) with radius L =

√
k and the following gauge field:

A = H

√
2k
kg

( dt+ sinh ρdφ) . (3.8)

The NS B-field is not altered by the deformation, (Eq. (3.7)), whereas the three-form field
strength depends explicitly on the deformation parameter H, because of the gauge-field
contribution:

H[3] = dB − kG

4
A ∧ dA = −k

4
(
1 + 2H2

)
cosh ρdρ ∧ dφ ∧ dt. (3.9)

9This means ρ > ρc where ρc is the radius where the norm of ∂φ vanishes and switches to negative

(‖ ∂φ‖2 = L2
`
1− 2H2 sinh2 ρ

´
/4). This never occurs for H2 < 0.
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One can easily check that the background fields (3.1), (3.8) and (3.9) solve the lowest-
order equations of motion (D.11). Of course the solution we have obtained is exact, since
it has been obtained as the marginal deformation of an exact conformal sigma-model. The
interpretation of the deformed model in terms of background fields {Gab, Bab, F

G
ab} receives

however the usual higher-order correction summarized by the shift k → k + 2 as we have
already seen for the sphere in Sec. 2.1.

Let us finally mention that it is possible to extract the spectrum and write down the
partition function of the above theory [Isr04], since the latter is an exact deformation of
the SL(2,R)k wzw model. This is achieved by deforming the associated elliptic Cartan
subalgebra. The following picture emerges then from the analysis of the spectrum. The
short-string spectrum, corresponding to world-sheets trapped in the center of the space–
time (for some particular choice of coordinates) is well-behaved, because these world-sheets
do not feel the closed time-like curves which are “topologically large”. On the contrary,
the long strings can wrap the closed time-like curves, and their spectrum contains many
tachyons. Hence, the caveats of Gödel space survive the string framework, at any value of
H2 > 0. One can circumvent them by slightly deviating from the Gödel line with an extra
purely gravitational deformation, driven by J3J̄3. This deformation isolates the causally
unsafe region, ρ > ρc (see [Isr04] for details). It is similar in spirit with the supertubes
domain-walls of [DFS03b] curing the Gödel-like space-times with RR backgrounds.

As already stressed, one could alternatively switch to negative H2. Both metric and
antisymmetric tensor are well-defined and don’t suffer of causality problems. The string
picture however breaks down because the magnetic field (Eq. (3.8)) becomes imaginary.

3.2 Hyperbolic deformation: electric background

3.2.1 The background and its CFT realization

We will now focus on a different deformation. We use coordinates (C.12) with metric (C.13),
where the manifest Killing vectors are L2 ∼ ∂x (space-like) and R3 ∼ ∂τ (time-like) (see
App. C, Tab. 3). This time we perform a deformation that preserves a U(1) × SL(2,R)
isometry. The U(1) corresponds to the space-like Killing vector L2, whereas the SL(2,R) is
generated by R1, R2, R3, which are again not altered by the deformation. This is achieved
by implementing Eqs. (A.1) and (A.3) in the present set up, with ξ = ∂x and h = 2H2.
The resulting metric reads:

ds2 =
L2

4

[
dr2 − cosh2 r dτ2 +

(
1− 2H2

)
( dx+ sinh r dτ)2

]
. (3.10)

The scalar curvature of this manifold is constant

R = − 2
L2

(
3 + 2H2

)
(3.11)

and the volume form

ω[3] =
L3

8

√
|1− 2H2| cosh2 r dr ∧ dτ ∧ dx. (3.12)
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Following the argument of Sec. 3.1, one can check whether closed time-like curves
appear. Indeed, assuming their existence, the following inequality must hold at the turning
point i.e. where dt/dλ vanishes (λ being the parameter that describes the curve):

(
2H2 − 1

)( dx
dr

)2

> 1. (3.13)

The latter cannot be satisfied in the regime H2 < 1/2. Notice that the manifold at hand
is well behaved, even for negative H2.

Let us now leave aside these questions about the classical geometry, and address the
issue of string realization of the above background. As already advertised, this is achieved
by considering a world-sheet-supersymmetric marginal deformation of the SL(2,R)k wzw

model that implements (chromo)electric field. Such a deformation is possible in the het-
erotic string at hand:

δSelectric =
√
kkGH

2π

∫
d2z

(
J2 + iψ1ψ3

)
J̄G, (3.14)

(J̄G is any Cartan current of the group G and J2 is given in App. C, Tab. 3), and cor-
responds, as in previous cases, to an integrable marginal deformation. The deformed
conformal sigma-model can be analyzed in terms of background fields. The metric turns
out to be (3.10), whereas the gauge field and three-form tensor are

A = H

√
2k
kg

( dx+ sinh r dτ) , (3.15)

H[3] =
k

4
(
1− 2H2

)
cosh r dr ∧ dτ ∧ dx. (3.16)

As expected, these fields solve Eqs. (D.11).
The background under consideration is a new string solution generated as a hyperbolic

deformation of the SL(2,R)k wzw model. In contrast to what happens for the elliptic
deformation (magnetic background analyzed in Sec. 3.1), the present solution is perfectly
sensible, both at the classical and at the string level.

3.2.2 The spectrum of string primaries

The electric deformation of AdS3 is an exact string background. The corresponding con-
formal field theory is however more difficult to deal with than the one for the elliptic defor-
mation. In order to write down its partition function, we must decompose the SL(2,R)k

partition function in a hyperbolic basis of characters, where the implementation of the
deformation is well-defined and straightforward; this is a notoriously difficult exercise. On
the other hand the spectrum of primaries is known10 from the study of the representations
of the Lie algebra in this basis (see e.g. [VK91], and [DVV92] for the spectrum of the hy-
perbolic gauged wzw model). The part of the heterotic spectrum of interest contains the

10In the following we do not consider the issue of the spectral-flow representations. The spectral-flow

symmetry is apparently broken by the deformation considered here.
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expression for the primaries of N = (1, 0) affine SL(2,R) at purely bosonic level11 k + 2,
together with some U(1) from the lattice of the heterotic gauge group:

L0 = −j(j − 1)
k

− 1
2

(
n+

a

2

)2
, (3.17)

L̄0 = −j(j − 1)
k

+
1
2

(
n̄+

h

2

)2

, (3.18)

where the second Casimir of the representation of the SL(2,R) algebra, −j(j−1), explicitly
appears. The spectrum contains continuous representations, with j = 1

2 + ıs, s ∈ R+.
It also contains discrete representations, with j ∈ R+, lying within the unitarity range
1/2 < j < (k + 1)/2 (see [MO01, Pet90]). In both cases the spectrum of the hyperbolic
generator J2 is µ ∈ R. The expression for the left conformal dimensions, Eq. (3.17), also
contains the contribution from the world-sheet fermions associated to the ıψ1ψ3 current.
The sector (r or ns) is labelled by a ∈ Z2. Note that the unusual sign in front of the lattice
is the natural one for the fermions of the light-cone directions. In the expression (3.18)
we have similarly the contribution of the fermions of the gauge group, where h labels the
corresponding sector.

We are now in position to follow the procedure, familiar from the previous examples:
we have to (i) isolate from the left spectrum the lattice of the supersymmetric hyperbolic
current J2 + ıψ1ψ3 and (ii) perform a boost between this lattice and the fermionic lattice
of the gauge field. We hence obtain the following expressions:

L0 = −j(j − 1)
k

− µ2

k + 2
− k + 2

2k

(
n+

a

2
+

2µ
k + 2

)2

+

+
1
2

[√
2
k

(
µ+ n+

a

2

)
coshx+

(
n̄+

h

2

)
sinhx

]2

,

(3.19)

L̄0 = −j(j − 1)
k

+
1
2

[(
n̄+

h

2

)
coshx+

√
2
k

(
µ+ n+

a

2

)
sinhx

]2

. (3.20)

The relation between the boost parameter x and the deformation parameter H2 is given in
Eq. (2.28), as for the case of the SU(2)k deformation. In particular it is worth to remark
that the first three terms of (3.19) correspond to the left weights of the supersymmetric
two-dimensional Lorentzian black hole, i.e. the SL(2,R)/O(1, 1) gauged super-wzw model.

3.3 Parabolic deformation: electromagnetic-wave background

In the deformations of Secs. 3.1 and 3.2, one SL(2,R) isometry breaks down to a U(1) gen-
erated either by a time-like or by a space-like Killing vector. Deformations which preserve
a light-like isometry do also exist and are easily implemented in Poincaré coordinates.

We require that the isometry group is U(1)×SL(2,R) with a null Killing vector for the
U(1) factor. Following the deformation procedure described in App. A for the particular

11More precisely we consider primaries of the purely bosonic affine algebra with an arbitrary state in the

fermionic sector.
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case of light-like residual isometry, Eq. (A.4) with h = 2H2, we are lead to

ds2 = L2

[
du2

u2
+

dx+ dx−

u2
− 2H2

(
dx+

u2

)2
]
. (3.21)

The light-like U(1) Killing vector is L1 + L3 ∼ ∂− (see App. C, Tab. 4). The remaining
SL(2,R) generators are {R1 +R3, R1 −R3, R2} and remain unaltered after the deforma-
tion.

The above deformed anti-de-Sitter geometry looks like a superposition of AdS3 and of
a plane wave. As usual, the sign of H2 is free at this stage, and H2 < 0 are equally good
geometries. In the near-horizon region (|u| �

∣∣H2
∣∣) the geometry is not sensitive to the

presence of the wave. On the contrary, this plane wave dominates in the opposite limit,
near the conformal boundary.

The volume form is not affected by the deformation, and it is still given in (C.17);
neither is the Ricci scalar modified:

R = − 6
L2
. (3.22)

Notice also that the actual value of |H| is not of physical significance: it can always be
absorbed into a reparameterization x+ → x+/|H| and x− → x−|H|. The only relevant
values for H2 can therefore be chosen to be 0,±1.

We now come to the implementation of the geometry (3.21) in a string background.
The only option is to perform an asymmetric exactly marginal deformation of the heterotic
SL(2,R)k wzw model that preserves a U(1)L×SL(2,R)R affine symmetry. This is achieved
by introducing

δSelectric−magnetic = −4
√
kkGH

∫
d2z

(
J1 + J3 + i

(
ψ1 + ψ3

)
ψ2
)
J̄G, (3.23)

(J1 + J3 is defined in App. C, Tab. 4). The latter perturbation is integrable and accounts
for the creation of an (chromo)electromagnetic field

A = 2
√

2k
kG
H

dx+

u2
. (3.24)

It generates precisely the deformation (3.21) and leaves unperturbed the ns field, H[3] =
dB = − 2√

k
ω[3].

As a conclusion, the AdS3 plus plane-wave gravitational background is described in
terms of an exact conformal sigma model, that carries two extra background fields: a
ns three-form and an electromagnetic two-form. Similarly to the symmetric parabolic
deformation [IKP03], the present asymmetric one can be used to construct a space–time
supersymmetric background. The SL(2,R)k-cft treatment of the latter deformation would
need the knowledge of the parabolic characters of the affine algebra, not available at present.

As already stressed for the elliptic deformation (end of Sec. 3.1), the residual affine
symmetry leaves the possibility for an extra, purely gravitational, symmetric marginal
deformation. Although the systematic analysis of the full AdS3 landscape is beyond the
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present scope, we would like to quote the effect of such a deformation on the parabolic line.
The perturbation which is turned on is ∼

∫
d2z J+J̄+ (the currents are given in Eqs. (C.7)

and Tab. 4), with parameter 1/M2. In the absence of electromagnetic background [IKP03],
this deformation connects the ns5/F1 background to the pure ns5 dilatonic solution. Here
it is performed on top of the asymmetric one, which introduces an electromagnetic wave,
and we find:

ds2 = k

[
du2

u2
+

dx+ dx−

u2 + 1/M2
− 2H2

(
dx+

u2 + 1/M2

)2
]
, (3.25a)

B =
k

2
1

u2 + 1/M2
dx+ ∧ dx−, (3.25b)

e2Φ = kg2
s

u

u2 + 1/M2
, (3.25c)

plus an electromagnetic field:

A =
√

2k
kG
H

dx+

u2 + 1/M2
. (3.25d)

At M2 → ∞, we recover the solution (3.21) and (3.24), whereas at M2 → 0 the present
solution asymptotes the linear dilaton background. Therefore, in an ns5/F1 setup, the
deformation at hand may be relevant for investigating the holography of little string theo-
ries [ABKS98].

3.4 A remark on discrete identifications

Before closing the chapter on AdS3, we would like to discuss briefly the issue of discrete
identifications. So far we have focused on continuous deformations as a procedure for
generating new backgrounds. It appeared that under specific symmetry and integrability
requirements, the moduli of such deformations are unique, and the corresponding back-
grounds are described in terms of exact two-dimensional conformal models.

In the presence of isometries, discrete identifications provide alternatives for creating
new backgrounds. Those have the same local geometry, but differ with respect to their
global properties. Whether these identifications can be implemented as orbifolds, at the
level of the underlying two-dimensional model is very much dependent on each specific
case.

For AdS3, the most celebrated geometry obtained by discrete identification is certainly
the btz black hole [BTZ92]. The discrete identifications are made along the integral lines
of the following Killing vectors (defined in Eqs. (C.5)):

extremal case : ξ = 2ır+R2 − ı (R1 −R3)− ı (L1 + L3) , (3.26a)

non-extremal case : ξ′ = ı (r+ + r−)R2 − ı (r+ − r−)L2, (3.26b)

where r+ and r− are the outer and inner horizons, coinciding for the extremal black hole.
Many subtleties arise, which concern e.g. the appearance of closed time-like curves; a
comprehensive analysis of these issues can be found in [BHTZ93]. At the string theory
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level, this projection is realized as an orbifold, which amounts to realize the projection of
the string spectrum onto invariant states and to add twisted sectors [NS98, HKV02].

Besides the btz solution, other locally AdS3 geometries are obtained, by imposing
identification under purely left (or right) isometries, refereed to as self-dual (or anti-self-
dual) metrics. These were studied in [CH94]. Their classification and isometries are exactly
those of the asymmetric deformations studied in the present chapter. The Killing vector
used for the identification is (A) time-like (elliptic), (B) space-like (hyperbolic) or (C) null
(parabolic), and the isometry group is U(1)× SL(2,R). It was pointed out in [CH94] that
the resulting geometry was free of closed time-like curves only in the case (B).

We could clearly combine the continuous deformations with the discrete identifications
– whenever these are compatible – and generate thereby new backgrounds. This offers
a large variety of possibilities that deserve further investigation (issue of horizons, closed
time-like curves . . . ). One can e.g. implement the non-extremal btz identifications (3.26b)
on the hyperbolic continuous deformation (3.10) since the isometry group of the latter
contains the vectors of the former.

Furthermore, it can be used to generate new interesting solutions of Einstein equations
by performing discrete identifications in the spirit of [CH94]. In the latter, the residual
isometry group was precisely the one under consideration here, so that our deformation is
compatible with their discrete identification.

Similarly, the extremal btz identifications (3.26a) are compatible with the isometries
of the parabolic deformation (3.21). One could thus create extremal black holes out of this
AdS/plane-wave solution.

4. Limiting geometries: AdS2 and H2

We have analyzed in Sec. 2.2 the behaviour of the magnetic deformation of SU(2)k, at
some critical (or boundary) value of the modulus H2, where the background factorizes as
R × S2 with vanishing ns three-form and finite magnetic field. We would like to address
this question for the asymmetric deformations of the SL(2,R)k model and show the exis-
tence of limiting situations where the geometry indeed factorizes, in agreement with the
expectations following the general analysis of App. A.

In general, exact deformations of string backgrounds as those we are considering here,
are carried by a modulus that controls the string spectrum. The modulus might exhibit
critical or boundary values, where a whole sector of states becomes massless or infinitely
massive, and decouples. Such a phenomenon corresponds to the decompactification of some
compact coordinate, which decouples from the remaining geometry. This is exactly what
happens for the magnetic deformation of SU(2)k wzw where the S3 is more and more
squashed, and eventually shrinks to a R × S2. Not only is the geometry affected, but the
antisymmetric tensor disappears in this process, and the S2 is left with a finite magnetic
field that ensures the consistency of the string theory.

What can we expect in the framework of the SL(2,R)k asymmetric deformations?
Any limiting geometry must have the generic U(1) × SL(2,R)k isometry that translates
the affine symmetry of the conformal model. If a line decouples, it accounts for the U(1),
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and the remaining two-dimensional surface must be SL(2,R)-invariant. Three different
situations may arise: AdS2, H2 or dS2. Anti de Sitter in two dimensions is Lorentzian
with negative curvature; the hyperbolic plane H2 (also called Euclidean anti de Sitter) is
Euclidean with negative curvature; de Sitter space is Lorentzian with positive curvature.

Three deformations are available for AdS3 and these have been analyzed in Sec. 3. For
unitary string theory, all background fields must be real and consequently H2 > 0 is the
only physical regime. In this regime, only the hyperbolic (electric) deformation exhibits a
critical behaviour at H2

max = 1/2. For H2 < 1/2, the deformation at hand is a Lorentzian
manifold with no closed time-like curves (see Sec. 3.2). When H2 > 1/2, det g > 0 and
two time-like directions appear. At H2 = H2

max, det g vanishes, and this is the signature
that some direction indeed decompactifies.

We proceed therefore as in Sec. 2.2, and define a rescaled coordinate in order to keep
the decompactifying direction into the geometry and follow its decoupling:

y =

√
k

2

(
1
2
−H2

)
x . (4.1)

The metric and volume form now read:

ds2 = dy2 +
k

4
[
dr2 −

(
1 + 2H2 sinh2 r

)
dτ2
]
+
√
k (1− 2H2) sinh r dτ dy (4.2)

and
ω[3] =

k

4
cosh r dr ∧ dτ ∧ dy. (4.3)

For H2 close to H2
max, the y-direction factorizes

ds2 −−−−−−−→
H2→H2

max

dy2 +
k

4
[
dr2 − cosh2 r dτ2

]
. (4.4)

The latter expression captures the phenomenon we were expecting:

AdS3 −−−−−−−→
H2→H2

max

R×AdS2. (4.5)

It also shows that the two-dimensional anti de Sitter has radius
√
k/4 and supports entirely

the curvature of the limiting geometry, R = −8/k (see expression (3.11)).
The above analysis shows that, starting from the SL(2,R)k wzw model, there is a

line of continuous exact deformation (driven by a (chromo)electric field) that leads to a
conformal model at the boundary of the modulus H2. This model consists of a free non-
compact boson times a geometric coset AdS2 ≡ SL(2,R)/U(1), with a finite electric field:

F =
√

k

kG
cosh r dr ∧ dτ (4.6)

and vanishing ns three-form background. The underlying geometric structure that makes
this phenomenon possible is that AdS3 can be considered as a non-trivial S1 fibration over
an AdS2 base. The radius of the fiber couples to the electric field, and vanishes at H2

max.
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The important result is that this enables us to promote the geometric coset AdS2 to an
exact string vacuum.

We would like finally to comment on the fate of dS2 and H2 geometries, which are
both SL(2,R)-symmetric. De Sitter and hyperbolic geometries are not expected to appear
in physical regimes of string theory. The H3 sigma-model, for example, is an exact confor-
mal field theory, with imaginary antisymmetric tensor background though [Gaw91, Tes99].
Similarly, imaginary ns background is also required for de Sitter vacua to solve the low-
energy equations (D.11). It makes sense therefore to investigate regimes with H2 < 0,
where the electric or magnetic backgrounds are indeed imaginary.

The elliptic (magnetic) deformation studied in Sec. 3.1 exhibits a critical behaviour in
the region of negative H2, where the geometry does not contain closed time-like curves.
The critical behaviour appears at the minimum value H2

min = −1/2, below which the
metric becomes Euclidean. The vanishing of det g at this point of the deformation line,
signals the decoupling of the time direction. The remaining geometry is nothing but a
two-dimensional hyperbolic plane H2. It is Euclidean with negative curvature R = −8/k
(see Eq. (3.2) with L2 = k).

All this can be made more precise by introducing a rescaled time coordinate:

T =

√
k

2

(
1
2

+H2

)
t. (4.7)

The metric and volume form now read:

ds2 = −dT 2 +
k

4
[
dρ2 +

(
1− 2H2 sinh2 ρ

)
dφ2

]
−
√
k (1 + 2H2) sinh ρdφdT (4.8)

and
ω[3] =

k

4
cosh ρdρ ∧ dφ ∧ dT. (4.9)

For H2 close to H2
min, the T -direction factorizes

ds2 −−−−−−−→
H2→H2

max

−dT 2 +
k

4
[
dρ2 + cosh2 ρdφ2

]
. (4.10)

The latter expression proves the above statement:

AdS3 −−−−−−→
H2→H2

min

R×H2, (4.11)

and the two-dimensional hyperbolic plane has radius
√
k/4.

Our analysis finally shows that the continuous line of exactly marginal (chromo)magnetic
deformation of the SL(2,R) conformal model, studied in Sec. 3.1, has a boundary at
H2 = −1/2 where its target space is a free time-like coordinate times a hyperbolic plane.
The price to pay for crossing H2 = 0 is an imaginary magnetic field, which at H2 = −1/2
reads:

F =
√
− k

kG
cosh ρ dφ ∧ dρ. (4.12)

The ns field strength vanishes at this point, and the geometric origin of the decoupling at
hand is again the Hopf fibration of the AdS3 in terms of an H2.
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5. AdS2 × S2

The AdS2× S2 geometry appeared first in the context of Reissner–Nordström black holes.
The latter are solutions of Maxwell–Einstein theory in four dimensions, describing charged,
spherically symmetric black holes. For a black hole of mass M and charge Q, the solution
reads:

ds2 = −
(
1− r+

r

)(
1− r−

r

)
dt2 +

dr2(
1− r+

r

) (
1− r−

r

) + r2 dΩ2
2 , (5.1a)

F =
Q

r2
dt ∧ dr with r± = G4

(
M ±

√
M2 −Q2

)
; (5.1b)

r+ and r− are the outer and inner horizons, and G4 is Newton’s constant in four dimensions.
In the extremal case, r+ = r− = r0 (M2 = Q2), and the metric approaches the

AdS2 × S2 geometry in the near-horizon12 limit r → r0. This solution can of course
be embedded in various four-dimensional compactifications of string theory, and will be
supersymmetric in the extremal case (see e.g. [You99] for a review). In this paper we are
dealing with some heterotic compactification.

Notice that the AdS2 × S2 geometry also appears in type IIB superstring theory, but
with rr backgrounds [FKS95]. The black hole solution is obtained by wrapping D3-branes
around 3-cycles of a Calabi–Yau three-fold; in the extremal limit, one obtains the AdS2×S2

solution, but at the same time the CY moduli freeze to some particular values. A hybrid
Green–Schwartz sigma-model action for this model has been presented in [BBH+00] (see
also [Ver04] for AdS2). The interest for AdS2×S2 space–time is motivated by the fact that it
provides an interesting candidate for AdS/cft correspondence [Mal98]. In the present case
the dual theory should correspond to some superconformal quantum mechanics [BPS98,
C+98, GT99, CCKM01].

5.1 The spectrum

As a first step in the computation of the AdS2 × S2 string spectrum, we must determine
the spectrum of the AdS2 factor, by using the same limiting procedure as in Sec. 2.3 for
the sphere. The spectrum of the electrically deformed AdS3, is displayed in Eqs. (3.19) and
(3.20). The AdS2 limit is reached for coshx→∞, which leads to the following constraint
on the charges of the primary fields:

n̄+
h

2
+

√
2
k

(
µ+ n+

a

2

)
= 0. (5.2)

In contrast with the S2 case, since µ is any real number – irrespectively of the kind of
SL(2,R) representation – there is no extra quantization condition for the level to make

12With the near-horizon coordinates U = (1− r0/r)
−1 and T = t/r0, the near-horizon geometry is

ds2 = r20

„
− dT 2

U2
+

dU2

U2
+ dΩ2

2

«
.

Both AdS2 and S2 factors have the same radius r0.
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this limit well-defined. In this limit, the extra U(1) decompactifies as usual and can be
removed. Plugging the constraint (5.2) in the expressions for the dimensions of the affine
primaries, we find

L0 = −j(j − 1)
k

− 1
2

(
n̄+

h

2

)2

− 1
2

(
n+

a

2

)2
, (5.3a)

L̄0 = −j(j − 1)
k

. (5.3b)

In addition to the original AdS3 spectrum, Eqs. (3.17) and (3.18), the right-moving part
contain an extra fermionic lattice corresponding to the states charged under the electric
field. Despite the absence of N = 2 superconformal symmetry due to the Lorentzian
signature, the theory has a “fermion-number” left symmetry, corresponding to the current:

J = ıψ1ψ3 +
2
k

(
J2 + ıψ1ψ3

)
. (5.4)

The charges of the primaries (5.3) are

QF = n+
a

2
−
√

2
k

(
n̄+

h

2

)
. (5.5)

5.2 AdS2 × S2 × M and space–time supersymmetry

Let us now consider the complete heterotic string background which consists of the AdS2×
S2 space–time times an N = 2 internal conformal field theory M, that we will assume to
be of central charge ĉ = 6 and with integral R-charges. Examples of thereof are toroidal
or flat-space compactifications, as well as Gepner models [Gep88].

The levels k of SU(2) and k̂ of SL(2,R) are such that the string background is critical:

ĉ =
2(k − 2)

k
+

2(k̂ + 2)

k̂
= 4 =⇒ k = k̂. (5.6)

This translates into the equality of the radii of the corresponding S2 and AdS2 factors,
which is in turn necessary for supersymmetry. Furthermore, the charge quantization con-
dition for the two-sphere (Sec. 2.2) restricts further the level to k = 2p2, p ∈ N.

In this system the total fermionic charge is

Q = n+
a

2
− N − h/2

p
+ n′ +

a

2
− n̄′ + h/2

p
+QM. (5.7)

Hence, assuming that the internal N = 2 charge QM is integral, further constraints on the
electromagnetic charges of the theory are needed in order to achieve space–time supersym-
metry. Namely, we must only keep states such that

N + n̄′ = 0 mod p. (5.8)

This projection is some kind of generalization of Gepner models. Usually, such a projection
is supplemented in string theory by new twisted sectors. We then expect that, by adding on
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top of this projection the usual GSO projection on odd fermion number, one will obtain a
space–time supersymmetric background. However, the actual computation would need the
knowledge of hyperbolic coset characters of SL(2,R) (i.e. Lorentzian black-hole characters),
and of their modular properties. We can already observe that this “Gepner-like” orbifold
keeps only states which are “dyonic” with respect to the electromagnetic field background.
Notice that, by switching other fluxes in the internal theory M one can describe more
general projections.

6. Outlook

The main motivation of this work was to analyze the landscape of the S3 and AdS3 defor-
mation. This analysis is performed from the geometrical viewpoint with the symmetry as
a guideline. The deformations obtained in that way are then shown to be target spaces of
exact marginal perturbations of the SU(2)k and SL(2,R)k wzw models.

An important corollary of our analysis is that geometric cosets like S2 = SU(2)/U(1)
or AdS2 = SL(2,R)/U(1)space−like can be realized, with appropriate (chromo) magnetic or
electric fields, as exact conformal models, which hence provide new string backgrounds.
They appear as limiting asymmetric marginal deformations of wzw models, and are there-
fore tractable conformal field theories leading to unitary strings.

The two-dimensional hyperbolic space H2 = SL(2,R)/U(1)time−like does also appear
in the same manner, although the accompanying magnetic field is imaginary. We display
in Fig. 1 the summary of the various situations analyzed here.

Figure 1: We have summarized the various regimes appearing in magnetic/electric deformations
of the SU (2)k and SL (2,R)k wzw models. Lighter bars indicate the signature, darker ones the
sign of the curvature. Regions with H2 < 0 have well-defined geometries with imaginary gauge
field. Their string interpretation is therefore questionable.

We have presented the spectrum and the partition function of the SU(2)k magnetic
deformation with S2 × R as extreme target space reached at H2

max = 1/2. At this value
the fiber S1 decompactifies, as we have seen in Sec. 2.2. We can go across and explore the
deformation for H2 > 1/2. The geometry (metric given in Eq. (2.10)), is now Lorentzian
and all other fields are real. This exact solution is still a marginal deformation of S3, of
a peculiar type though: it appears after a signature flip, has positive constant curvature
(see Fig. 1) and U(1) × SU(2) isometry, where some of the SU(2) Killing vectors are
time-like13. In order to avoid trivial closed time-like curves, we must promote the angle
γ to γ ∈ R. Unfortunately this is not enough to ensure consistency, and closed time-like
curves à la Gödel appear whenever cos2 β > 1/2H2, as one can check by using standard
arguments (Sec. 3).

The space–time under consideration is a compact Gödel universe (“compact” refers to
the angle β), already discussed in the context of general relativity [DFS03a]. Our approach

13In the regime H2 > 1/2, ∂γ is time-like since ‖ ∂γ‖2 = −k
`
2H2 − 1

´
/4, whereas ∂α becomes time-like

for cos2 β > 1/2H2.
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promotes it to the level of exact string background, and we have in principle the tools to
investigate its spectrum. The latter may be obtained from the partition function (2.27)
with the replacement:

coshx =
ı

2H2 − 1
, sinhx = ı

√
2H2

2H2 − 1
. (6.1)

Such a straightforward approach is however questionable since it involves a sort of analytic
continuation. We’ll not expand further on this issue.

The hyperbolic deformation of SL(2,R)k, leading precisely to AdS2, is an important
achievement of this work. It is however technically involved: no description is presently
available for quantities like the partition function, and our handling over the spectrum
remains incomplete14. For the elliptic deformation, the partition function is available in
the “Gödel regime” (H2 > 0) where the geometry is spoiled by closed time-like curves.
The continuation to the negative-H2 region, free of closed time-like curves, is not straight-
forward since it requires an analytic continuation to imaginary magnetic field. The string
theory is no longer unitary, but it might still be useful to investigate this regime for pure
cft purposes.

Several other non-unitary regimes appear in the deformed geometries at hand, either
with Euclidean or with Lorentzian signature, and positive or negative curvature (see Fig. 1).
Whether these could be connected to the H3 or dS3 spaces is an open question. Three-
dimensional hyperbolic plane, H3, and de Sitter, dS3, are respectively negative and positive
constant-curvature symmetric spaces, with Euclidean and Lorentzian signatures. The dif-
ferences with respect to the S3 or AdS3 are that they have the opposite signature/curvature
combination, and are not group manifolds: H3 and dS3 are SL(2,C) cosets. A non-unitary
conformal sigma model can be defined on H3, and considerable progress has been made to
understand its structure. In the case of dS3, nothing similar is available, despite the growing
interest for cosmological applications. Any hint in that direction could be important.

Connections of our families of spaces to H3 or dS3 could arise by introducing extra
deformations. Since the residual affine symmetry of the asymmetric marginal deformations
is U(1)L × SL(2,R)R, there is room, at any point, for a extra modulus generated by a
U(1)L × U(1)R ⊂ U(1)L × SL(2,R)R bilinear. This freedom has been used e.g in [Isr04]
in order to cure the causal problem of the magnetic deformation, by slightly deviating
from the pure magnetic line. One can readily repeat this analysis in the new regimes we
have presented here, as already sketched for the parabolic deformation – end of Sec. 3.3 –
and further investigate the AdS3 landscape and its connections to other three-dimensional
constant-curvature spaces of physical interest.

Our analysis deserves some extra comments. We are in position now to describe
AdS2×S2 as the target space of a two-dimensional conformal model. This supersymmetric
setting is the near-horizon geometry of the extremal Reissner–Nordström four-dimensional

14Much like in the compact Gödel universe quoted previously, one may try to give sense to the electric

deformation for H2 > 1/2. There, we have two times (see Fig. 1). We can however perform an overall flip

to reverse the signature {− −+} → {+ +−} and obtain a well-defined geometry. As usual, the important

issue is to implement all the sign flips and analytic continuations at the level of the cft.
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black hole. In our approach, this geometry arises as a marginal deformation of the near-
horizon geometry of the NS5/F1 set up (AdS3×S3). The crucial question that remains to
be answered is how to deviate from this supersymmetric geometry towards a non-extremal
configuration of the charged four-dimensional black hole.

We should also stress that the new string backgrounds we have constructed may have
interesting applications for holography. For example, the AdS/plane-wave background
(3.21) is a superposition of two solutions with known holographic interpretation. The line
of geometries relating AdS3 and AdS2 (hyperbolic deformation), which are both candidates
for AdS/cft, can possibly have some holographic dual for all values of the modulus H2.
It is important to remark that all the families of conformal field theories considered in this
paper preserve one chiral SL(2,R) affine algebra, hence allow to contruct one space–time
Virasoro algebra by using the method given in [GKS98].

Finally, concerning the general technique that we have used, it clearly opens up new
possibilities for compactifications. Asymmetric deformations can be performed on any
group-G manifold. The high residual symmetry G× U(1)rank G forces the geometry along
the line as well as at the boundary of the modulus. There, we are naturally led to the
geometric coset G/U(1)rank G times rank G decoupled, non compact, free bosons. A mag-
netic field drives this asymmetric deformation in the case of compact groups, whereas in
non-compact cases a variety of situations can arise as we showed for the SL(2,R).
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A. Geometric deformations

In this appendix, we would like to present some selected results about geometric defor-
mations. Since most of the material discussed in this paper deals with deformations of
backgrounds that preserve part of the original isometries, it is interesting to understand
how such deformations can be implemented in a controllable way. Whether these are the
most general, or can be promoted to exact marginal lines in the underlying two-dimensional
sigma model, are more subtle issues that we analyze in the main part of the paper for S3

and AdS3.
Consider a manifold with metric ds2 = gαβ dxα dxβ. We assume the existence of an

isometry generated by a Killing vector ξ. The components of its dual form are $α = gαβξ
β.

We will consider the following family of geometries:

gdef
αβ = gαβ + f

(
‖ξ‖2

)
$α$β (A.1)

with f an arbitrary function of the norm of the Killing vector. Each member of the family
corresponds to a specific choice of f .

Deformation (A.1) provides a simple and straightforward recipe for perturbing a back-
ground in a way that keeps under control its isometries. Indeed, the vector ξ is still an
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isometry generator (Lξ‖ξ‖2 = 0; Lξ$ = 0). So are all Killing vectors which commute

with ξ, whereas for a general f
(
‖ξ‖2

)
those of the original isometry group which do not

commute with ξ are no longer Killing vectors. Therefore, the “deformed” isometry group
contains only a subgroup of the simple component to which ξ belongs, times the other
simple components, if any. These symmetry properties hold for generic functions f

(
‖ξ‖2

)
.

Accidental enhancements can occur though, where a larger subgroup of the original group
is restored (at least locally).

The deformed dual form of ξ is computed by using (A.1):

$def
α = $α

(
1 + ‖ξ‖2f

(
‖ξ‖2

))
. (A.2)

Clearly, the symmetry requirement is not strong enough to reduce substantially the freedom
of the deformation. We would like to focus on a specific subset of deformations for which

h = −‖ξ‖2f
(
‖ξ‖2

)
(A.3)

is a real constant. This family is interesting for several reasons. It is stable under repetition
of the deformation: by repeating this deformation we stay in the same class, but reach a
different point of it. This is a sort of integrability property that leads to a one-parameter
family of continuous deformations. The value h = 1 is a critical value of the deformation
parameter. At this value the metric degenerates. This is a sign for the decoupling of
one dimension. For h > 1, the signature flips and the decoupled dimension reenters the
geometry, with reversed signature though.

In the presence of Lorentzian geometries, light-like Killing vectors can also be used.
For those, Eq. (A.1) is necessarily of the form

gdef
αβ = gαβ − h$α$β if ‖ξ‖2 = 0. (A.4)

The symmetry constraint is here very powerful. Furthermore, since now $def
α = $α, no

critical phenomenon occurs in this case, at least for finite values of h.
Deformations of the kind (A.1) with (A.3) arise naturally as background geometries

of integrable marginal deformations of wzw models. The integrability requirement for
the cft deformation selects the above one-parameter family of geometries. In turn, these
families exhibit limiting spaces.

It is useful to notice that deformations (A.1) with (A.3) become trivial if ξ is of the
form ξ = ∂1 with gαβ block diagonal: gα1 = g11 δα1. In this case, $ = g11 dx1, and
gαβ is unaffected for (α, β) 6= (1, 1), whereas gdef

11 = g11 (1− h). The net effect of the
deformation is a rescaling of the coordinate x1. The isometry group remains unaltered, at
least locally. In fact, if x1 is an angle (ξ is a compact generator), the deformation amounts
to introducing an angle deficit, which brakes globally the original isometry group to the
subgroup described previously and introduces a conical singularity.

We can illustrate the latter “degenerate” situation with a simple example: the case
of the two-dimensional Euclidean plane. The isometry group has three generators: one
rotation and two translations. Consider the rotation and perform the deformation as in
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(A.1), (A.3). The resulting manifold is a cone. Although translation generators do not
commute with the rotation generator, translation invariance is still a symmetry, locally –
since the only effect of the rotation is to rescale the polar angle. Translation is however
broken globally. The critical value of the deformation (h = 1) corresponds to the maximal
angle deficit, where the cone degenerates into a half-line.

Many deformations driven by ξ(1), ξ(2), . . . can be performed simultaneously along the
previous lines of thought. In order to keep ξ(1), ξ(2), . . . in the isometry group of the de-
formed metric, these must commute, hence must belong to the Cartan subgroup of the
original isometry group. The full deformed group also contains those among the original
Killing vectors, which commute with the set {ξ(1), ξ(2), . . .}.

Curvature tensors (Riemann, Ricci, Gauss) can be computed for the deformed geome-
tries under consideration (Eq. (A.1)), in terms of the original ones. How much they are
altered depends on the left-over symmetry and on the function f . We will not expand
further in this direction.

B. The three-sphere

The commutation relations for the generators of SU(2) are[
J1, J2

]
= ıJ3

[
J2, J3

]
= ıJ1

[
J3, J1

]
= ıJ2. (B.1)

A two-dimensional realization is obtained by using the standard Pauli matrices15σa: Ja =
σa/2.

The Euler-angle parameterization for SU(2) is defined as:

g = eı γ
2
σ3

eı β
2
σ1

eı α
2

σ3
. (B.2)

The SU(2) group manifold is a unit-radius three-sphere. A three-sphere can be embedded
in flat Euclidean four-dimensional space with coordinates (x1, x2, x3, x4), as (x1)2 +(x2)2 +
(x3)2 + (x4)2 = L2. The corresponding SU(2) element g is the following:

g = L−1

(
x4 + ıx2 x3 + ıx1

−x3 + ıx1 x4 − ıx2

)
. (B.3)

In general, the invariant metric of a group manifold can be expressed in terms of
the left-invariant Cartan–Maurer one-forms. In the SU(2) case under consideration (unit-
radius S3),

J 1 =
1
2

tr
(
σ1g−1 dg

)
, J 2 =

1
2

tr
(
σ2g−1 dg

)
, J 3 =

1
2

tr
(
σ3g−1 dg

)
(B.4)

and

ds2 =
3∑

i=1

J i ⊗ J i (B.5)

15The normalization of the generators with respect to the Killing product in su (2): κ (X,Y ) = tr (XY )

is such that κ
`
Ja, Jb

´
= 1/2 and correspondingly the root has length squared ψ = 2.
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The volume form reads:
ω[3] = J 1 ∧ J 2 ∧ J 3. (B.6)

In the Euler-angle parameterization, Eq. (B.5) reads (for a radius-L three-sphere):

ds2 =
L2

4
(
dα2 + dγ2 + 2 cosβ dα dγ + dβ2

)
, (B.7)

whereas (B.6) leads to

ω[3] =
L3

8
sinβ dα ∧ dβ ∧ dγ. (B.8)

The Levi–Civita connection has scalar curvature R = 6/L2.
The isometry group of the SU(2) group manifold is generated by left or right actions

on g: g → hg or g → gh ∀h ∈ SU(2). From the four-dimensional point of view, it is
generated by the rotations ζab = i (xa∂b − xb∂a) with xa = δabx

b. We list here explicitly
the six generators, as well as the group action they correspond to:

L1 =
1
2

(−ζ32 + ζ41) , g → e−ı λ
2
σ1
g, (B.9a)

L2 =
1
2

(−ζ43 − ζ12) , g → eı λ
2
σ2
g, (B.9b)

L3 =
1
2

(−ζ31 − ζ42) , g → eı λ
2
σ3
g, (B.9c)

R1 =
1
2

(ζ41 + ζ32) , g → geı λ
2
σ1
, (B.9d)

R2 =
1
2

(−ζ43 + ζ12) , g → geı λ
2
σ2
, (B.9e)

R3 =
1
2

(ζ31 − ζ42) , g → geı λ
2
σ3
. (B.9f)

Both sets satisfy the algebra (B.1). The norms squared of the Killing vectors are all equal
to L2/4.

The currents of the SU (2)k wzw model are easily obtained as:

J i = −k tr
(
ıσi ∂gg−1

)
J̄ i = −k tr

(
ıσig−1 ∂̄g

)
, (B.10)

where L =
√
k, at the classical level. Explicit expressions are given in Tab. 1.

C. AdS3

The commutation relations for the generators of the SL(2,R) algebra are[
J1, J2

]
= −ıJ3

[
J2, J3

]
= ıJ1

[
J3, J1

]
= ıJ2. (C.1)

The sign in the first relation is the only difference with respect to the SU(2) in Eq. (B.1).
The three-dimensional anti-de-Sitter space is the universal covering of the SL(2,R)

group manifold. The latter can be embedded in a Lorentzian flat space with signature
(−,+,+,−) and coordinates (x0, x1, x2, x3):

g = L−1

(
x0 + x2 x1 + x3

x1 − x3 x0 − x2

)
, (C.2)
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sector Killing vector Current

le
ft

m
ov

in
g sin γ

sinβ
∂α + cos γ ∂β −

sin γ
tanβ

∂γ

cos γ
sinβ

∂α − sin γ ∂β −
cos γ
tanβ

∂γ

∂γ

k (sinβ sin γ ∂α+ cos γ ∂b)

k (cos γ sinβ ∂α− sin γ ∂β)

k ( ∂γ + cosβ ∂α)

ri
gh

t
m

ov
in

g − sinα
tanβ

∂α + cosα∂β +
sinα
sinβ

∂γ

cosα
tanβ

∂α + sinα∂β −
cosα
sinβ

∂γ

∂α

k
(
cosα ∂̄β + sinα sinβ ∂̄γ

)
k
(
sinα ∂̄β − cosα sinβ ∂̄γ

)
k
(
∂̄α+ cosβ ∂̄γ

)
Table 1: Killing vectors {ıL1, ıL2, ıL3} and {ıR1, ıR2, ıR3}, and holomorphic and anti-holomorphic
currents (as defined in Eqs. (B.9) and (B.10)) in Euler angles.

where L is the radius of AdS3. On can again introduce Euler-like angles

g = eı(τ+φ)σ2/2eρσ1eı(τ−φ)σ2/2, (C.3)

which provide good global coordinates for AdS3 when τ ∈] − ∞,+∞[, ρ ∈ [0,∞[, and
φ ∈ [0, 2π].

An invariant metric (see Eq. (B.5)) can be introduced on AdS3. In Euler angles, the
latter reads:

ds2 = L2
[
− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dφ2

]
. (C.4)

The Ricci scalar of the corresponding Levi–Civita connection is R = −6/L2.
The isometry group of the SL(2,R) group manifold is generated by left or right actions

on g: g → hg or g → gh ∀h ∈ SL(2,R). From the four-dimensional point of view, it is
generated by the Lorentz boosts or rotations ζab = i (xa∂b − xb∂a) with xa = ηabx

b. We
list here explicitly the six generators, as well as the group action they correspond to:

L1 =
1
2

(ζ32 − ζ01) , g → e−
λ
2
σ1
g, (C.5a)

L2 =
1
2

(−ζ31 − ζ02) , g → e−
λ
2
σ3
g, (C.5b)

L3 =
1
2

(ζ03 − ζ12) , g → eı λ
2
σ2
g, (C.5c)

R1 =
1
2

(ζ01 + ζ32) , g → ge
λ
2
σ1
, (C.5d)

R2 =
1
2

(ζ31 − ζ02) , g → ge−
λ
2
σ3
, (C.5e)

R3 =
1
2

(ζ03 + ζ12) , g → geı λ
2
σ2
. (C.5f)

Both sets satisfy the algebra (C.1). The norms of the Killing vectors are the following:

‖ıL1‖2 = ‖ıR1‖2 = ‖ıL2‖2 = ‖ıR2‖2 = −‖ıL3‖2 = −‖ıR3‖2 =
L2

4
. (C.6)
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Moreover Li ·Lj = 0 for i 6= j and similarly for the right set. Left vectors are not orthogonal
to right ones.

The isometries of the SL(2,R) group manifold turn into symmetries of the SL(2,R)k

wzw model, where they are realized in terms of conserved currents16:

J1 (z)± J3 (z) = −k tr
((
σ1 ∓ ıσ2

)
∂gg−1

)
, J2 (z) = −k tr

(
σ3 ∂gg−1

)
, (C.7a)

J̄1 (z̄)± J̄3 (z̄) = k tr
((
σ1 ± ıσ2

)
g−1 ∂̄g

)
, J̄2 (z̄) = −k tr

(
σ3g−1 ∂̄g

)
. (C.7b)

At the quantum level, these currents, when properly normalized, satisfy the following
affine SL(2,R)k opa17:

J3(z)J3(0) ∼ − k

2z2
, (C.8a)

J3(z)J±(0) ∼ ±J
±

z
, (C.8b)

J+(z)J−(0) ∼ 2J3

z
− k

z2
, (C.8c)

and similarly for the right movers. The central charge of the enveloping Virasoro algebra
is c = 3 + 6/(k − 2).

We will introduce three different coordinate systems where the structure of AdS3 as a
Hopf fibration is more transparent. They are explicitly described in the following.

• The (ρ, t, φ) coordinate system used to describe the magnetic deformation in Sec. 3.1
is defined as follows:

x0
L = cosh ρ

2 cosh φ
2 cos t

2 − sinh ρ
2 sinh φ

2 sin t
2

x1
L = − sinh ρ

2 sinh φ
2 cos t

2 − cosh ρ
2 sinh φ

2 sin t
2

x2
L = − cosh ρ

2 sinh φ
2 cos t

2 + sinh ρ
2 cosh φ

2 sin t
2

x3
L = − sinh ρ

2 sinh φ
2 cos t

2 − cosh ρ
2 cosh φ

2 sin t
2 .

(C.9)

The metric (B.5) reads:

ds2 =
L2

4
(
dρ2 + dφ2 − dt2 − 2 sinh ρdt dφ

)
(C.10)

and the corresponding volume form is:

ω[3] =
L3

8
cosh ρ.dρ ∧ dφ ∧ dt (C.11)

Killing vectors and currents are given in Tab. 2. It is worth to remark that this
coordinate system is such that the t-coordinate lines coincide with the integral curves
of the Killing vector ıL3, whereas the φ-lines are the curves of ıR2.

16When writing actions a choice of gauge for the ns potential is implicitly made, which breaks part of

the symmetry: boundary terms appear in the transformations. These must be properly taken into account

in order to reach the conserved currents. Although the expressions for the latter are not unique, they can

be put in an improved-Noether form, in which they have only holomorphic (for Li’s) or anti-holomorphic

(for Rj ’s) components.
17In some conventions the level is x = −k. This allows to unify commutation relations for the affine

SL(2,R)x and SU(2)x algebras. Unitarity demands x < −2 for the former and 0 < x with integer x for the

latter.
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• The (r, x, τ) coordinate system used to describe the electric deformation in Sec. 3.2
is defined as follows:

x0
L = cosh r

2 cosh x
2 cos τ

2 + sinh r
2 sinh x

2 sin τ
2

x1
L = − sinh r

2 cosh x
2 cos τ

2 + cosh r
2 sinh x

2 sin τ
2

x2
L = − cosh r

2 sinh x
2 cos τ

2 − sinh r
2 cosh x

2 sin τ
2

x3
L = sinh r

2 sinh x
2 cos τ

2 − cosh r
2 cosh x

2 sin τ
2 .

(C.12)

For {r, x, τ} ∈ R3, this patch covers exactly once the whole AdS3, and is regular
everywhere [CH94]. The metric is then given by

ds2 =
L2

4
(
dr2 + dx2 − dτ2 + 2 sinh r dxdτ

)
(C.13)

and correspondingly the volume form is

ω[3] =
L3

8
cosh r dr ∧ dx ∧ dτ. (C.14)

Killing vectors and currents are given in Tab. 3. In this case the x-coordinate lines
coincide with the integral curves of the Killing vector ıR2, whereas the τ -lines are
the curves of ıR3.

• The Poincaré coordinate system used in Sec. 3.3 to obtain the electromagnetic-wave
background is defined by 

x0 + x2 = L
u

x0 − x2 = Lu+ Lx+x−

u

x1 ± x3 = Lx±

u .

(C.15)

For {u, x+, x−} ∈ R3, the Poincaré coordinates cover once the SL(2R) group man-
ifold. Its universal covering, AdS3, requires an infinite number of such patches.
Moreover, these coordinates exhibit a Rindler horizon at |u| → ∞; the conformal
boundary is at |u| → 0. Now the metric reads:

ds2 =
L2

u2

(
du2 + dx+ dx−

)
(C.16)

and the volume form:

ω[3] =
L3

2u3
du ∧ dx− ∧ dx+. (C.17)

In these coordinates it is simple to write certain a linear combination of the Killing
vector so to obtain explicitly a light-like isometry generator. For this reason in Tab. 4
we report the {L1 + L3, L1 − L3, L2, R1 +R3, R1 −R3, R2} isometry generators and
the corresponding {J1 + J3, J1 − J3, J2, J̄1 + J̄3, J̄1 − J̄3, J̄2} currents.
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sector Killing vector Current
le

ft
m

ov
in

g cos t ∂ρ +
sin t

cosh ρ
∂φ − sin t tanh ρ ∂t

− sin t ∂ρ +
cos t

cosh ρ
∂φ − cos t tanh ρ ∂t

− ∂t

k (cos t ∂ρ+ cosh ρ sin t ∂φ)

k (cos t cosh ρ ∂φ− sin t ∂ρ)

k ( ∂t+ sinh ρ ∂φ)

ri
gh

t
m

ov
in

g

coshφ∂ρ − sinhφ tanh ρ ∂φ −
sinhφ
cosh ρ

∂t

∂φ

sinhφ∂ρ − coshφ tanh ρ ∂φ −
coshφ
cosh ρ

∂t

−k
(
coshφ ∂̄ρ+ cosh ρ sinhφ ∂̄t

)
k
(
∂̄φ− sinh ρ ∂̄t

)
k
(
cosh ρ coshφ ∂̄t+ sinhφ ∂̄ρ

)
Table 2: Killing vectors {ıL1, ıL2, ıL3} and {ıR1, ıR2, ıR3}, and holomorphic and anti-holomorphic
currents (as defined in Eqs. (C.5) and (C.7)) for the (ρ, t, φ) coordinate system (elliptic base).

sector Killing vector Current

le
ft

m
ov

in
g coshx ∂r − sinhx tanh r ∂x +

sinhx
cosh r

∂τ

∂x

− sinhx ∂r + coshx tanh r ∂x −
coshx
cosh r

∂τ

k (coshx ∂r − cosh r sinhx ∂τ)

k ( ∂x+ sinh r ∂τ)

k (cosh r coshx ∂τ − sinhx ∂r)

ri
gh

t
m

ov
in

g − cos τ ∂r +
sin τ

cosh τ
∂x − sin τ tanh τ ∂τ

(cos τ + sin τ tanh r) ∂x +
(
cos τ sinh r − sin τ

cosh r

)
∂τ

cosh r
− ∂τ

k
(
− cos τ ∂̄r + cosh r sin τ ∂̄r

)
k
(
cos τ cosh r ∂̄x+ sin τ ∂̄r

)
k
(
∂̄τ − sinh r ∂̄x

)

Table 3: Killing vectors {ıL1, ıL2, ıL3} and {ıR1, ıR2, ıR3}, and holomorphic and anti-holomorphic
currents (as defined in Eqs. (C.5) and (C.7)) for the (r, x, τ) coordinate system (hyperbolic base).

D. Equations of motion

The general form for the marginal deformations we have studied is given by:

S =
1
2π

∫
d2z

(
Gwzw

µν +Bwzw
µν

)
∂xµ∂̄xν +

√
kkGH

2π

∫
d2z JJ̄G. (D.1)

It is not completely trivial to read off the deformed background fields that correspond to
this action. In this appendix we will present a method involving a Kaluza–Klein reduction,
following [HT95]. For simplicity we will consider the bosonic string with vanishing dilaton.
The right-moving gauge current J̄G used for the deformation has now a left-moving partner
and can hence be bosonized as J̄G = ı∂̄ϕ, ϕ (z, z̄) being interpreted as an internal degree
of freedom. The sigma-model action is recast as

S =
1
2π

∫
d2z (Gmn +Bmn) ∂xm∂̄xn, (D.2)
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sector Killing vector Current
le

ft
m

ov
in

g − ∂−

ux− ∂u − u2 ∂+ +
(
x−
)2
∂−

u

2
∂u + x− ∂−

−2k
∂x+

u2

2k
(

2x−
∂u

u
− ∂x− + (x−)2

∂x+

u2

)
2k
(
∂u

u
+ x−

∂x+

u2

)

ri
gh

t
m

ov
in

g ∂+

−ux+ ∂u −
(
x+
)2
∂+ + u2 ∂−

u

2
∂u + x+ ∂+

2k
∂̄x−

u2

2k
(
−2x+ ∂̄u

u
+ ∂̄x+ − (x+)2

∂̄x−

u2

)
2k
(
∂̄u

u
+ x+ ∂̄x

−

u2

)
Table 4: Killing vectors, and holomorphic and anti-holomorphic currents (as de-
fined in Eqs. (C.5) and (C.7)) in Poincaré coordinates (parabolic base). The
{ıL1 + ıL3, ıL1 − ıL3, ıL2, ıR1 + ıR3, ıR1 − ıR3, ıR2} isometry generators and the corresponding
{J1 + J3, J1 − J3, J2, J̄1 + J̄3, J̄1 − J̄3, J̄2} currents are represented so to explicitly obtain light-like
isometry generators.

where the xm,m = 1, . . . , 4 embrace the group coordinates xµ, µ = 1, 2, 3 and the internal
x4 ≡ ϕ:

xm =

(
xµ

x4

)
. (D.3)

If we split accordingly the background fields, we obtain the following decomposition:

Gmn =

(
Gµν Aµ

Aµ Gϕϕ

)
, Bmn =

(
Bµν Bµ4

−Bµ4 0

)
, (D.4)

and the action becomes:

S =
1
2π

∫
dz2

{
(Gµν +Bµν) ∂xµ ∂̄xν + (Aµ +Bµ4) ∂xµ ∂̄ϕ

+(Aµ −Bµ4) ∂ϕ ∂̄xµ +Gϕϕ ∂ϕ ∂̄ϕ
}
. (D.5)

We would like to put the previous expression in such a form that space–time gauge
invariance,

Aµ → Aµ + ∂µλ, (D.6)

Bµ4 → Bµ4 + ∂µη, (D.7)

is manifest. This is achieved as follows:

S =
1
2π

∫
d2z

{(
Ĝµν +Bµν

)
∂xµ ∂̄xν +Bµ4

(
∂xµ∂̄ϕ− ∂ϕ∂̄xµ

)
+Gϕϕ (∂ϕ+Aµ∂x

µ)
(
∂̄ϕ+Aµ∂̄x

µ
)}
, (D.8)
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where Ĝµν is the Kaluza–Klein metric

Ĝµν = Gµν −GϕϕAµAν . (D.9)

Expression (D.2) coincides with (D.1) after the following identifications:

Ĝµν = Gwzw
µν − kG

2
AµAν , (D.10a)

Bµν = Bwzw
µν , (D.10b)

Aµ = Bµ4 = H

√
k

2kG
Jµ, (D.10c)

Gϕϕ =
kG

2
. (D.10d)

The various backgrounds we have found throughout this paper correspond to truly
marginal deformations of wzw models. Thus, they are target spaces of exact cft’s. They
solve, however, the lowest-order (in α′) equations since all higher-order effects turn out
to be captured in the shift k → k + 2. These O (α′) equations are obtained by using the
bosonic action (D.2), or equivalently by writing the heterotic string equations of motion
for the fields in (D.10). They read [FT85]:

δc = −R+
kG

16
F µνF

µν , (D.11a)

βG
µν = Rµν −

1
4
HµρσH

ρσ
ν − kG

4
FµρF

a ρ
µ = 0, (D.11b)

βB
νρ = ∇µHµνρ = 0, (D.11c)

βA
µ = ∇νFµν −

1
2
F νρHµνρ = 0, (D.11d)

where

Fµν = ∂µAν − ∂νAµ, (D.12)

Hµνρ = ∂µBνρ −
kG

4
AµFνρ + cyclic. (D.13)
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We construct heterotic string backgrounds corresponding to families of homogeneous spaces as exact con-
formal field theories. They contain left cosets of compact groups by their maximal tori supported by ns-ns
2-forms and gauge field fluxes. We give the general formalism and modular-invariant partition functions,
then we consider some examples such as SU(2)/U(1) ∼ S2 (already described in a previous paper) and the
SU(3)/U(1)2 flag space. As an application we construct new supersymmetric string vacua with magnetic
fluxes and a linear dilaton.
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1 Motivations and summary

The search for exact string backgrounds has been a major motivation in the field for many years. Gravitational
backgrounds with a clear geometric interpretation are even more important since they may provide a handle
on quantum gravitational phenomena, black holes, and ultimately cosmology – for those which are time-
dependent. Wess–Zumino–Witten models provide such a class of solutions, with remarkable properties. The
target space is in that case a group manifold and, together with the metric, the Neveu–Schwarz antisymmetric
tensor is the only background field. Both of these fields are exactly known to all orders in α′. So are the
spectrum, partition function, two- and three-point functions, . . .

Wess–Zumino–Witten models appear in many physical set-ups, as near-horizon geometries of specific
brane configurations. The three-sphere is part of the near-horizon geometry of N5 NS5-branes. This is the
target space of an SU(2)k super-wzw model at bosonic level k = N5 − 2. Another celebrated example is
that ofAdS3. The latter appears in the NS5-brane/fundamental-string background, together withS3, at equal
radius L =

√
α′N5; it is realized in terms of the SL(2,R)k̃ wzw at level k̃ = k + 4. These are important

examples because of their role in the study of decoupling limits, little-string theory, holographic dualities
etc. The knowledge of exact spectra, amplitudes, . . . is crucial for better understanding of these issues.

Despite the many assets of wzw models, the major limitation comes from the dimension and signature of
their target spaces. When dealing with compact groups, the dimension often exceeds six (e.g.SU(3) is eight-
dimensional), while for non-compact groups, SL(2,R)k̃ is the only example with a single time direction.

In order to reduce the dimensionality and the number of symmetries of the target space, while keeping two-
dimensional conformal invariance and tractability, the usual procedure is the gauging. Gauged wzw models
are realized algebraically, at the level of the chiral currents and energy–momentum tensor, by following the
gko construction [1].Alternatively, one can work directly on the action and gauge symmetrically a subgroup
H ⊂ G. For H = U(1), the gauged model can even be obtained as an extreme marginal deformation of
the original model, driven by a

∫
d2zJJ̄ perturbation, where J and J̄ are the currents associated with

the U(1) ⊂ G.
Target spaces of gauged wzw models are not usual geometric cosetsG/H . Firstly, the background fields

of gauged wzw receive non-trivial α′ corrections1, while geometric cosets can be assigned a well-defined
metric. Secondly, the isometry groups are different. For geometric cosets, the isometry group is G, while it
is H for the target space of the gauged wzw.

1 The higher-orderα′ corrections are trivial for wzw models: they boil down to shifting k → k+g� in the classical backgrounds
(g� is the dual Coxeter number of the group G).
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1032 D. Israël et al.: Heterotic strings on homogeneous spaces

Geometric cosets could provide alternative backgrounds, with different properties and new possibilities
for accommodating six or less space dimensions, or a single time direction (in the non-compact case).
Unfortunately, they have not been systematically analyzed, and were even thought to be, at most, leading-
order solutions to the string equations. Although some exact solutions were identified in the past [2–4], no
generic pattern for generalization was known.

The issue of geometric cosets as exact backgrounds has been recently revisited in [5]. There, it was
shown that S2 ≡ SU(2)/U(1) and AdS2 ≡ SL(2,R)/U(1)space, with magnetic and electric fluxes and no
dilaton, can be obtained as extreme marginal deformations of the SU(2)k and SL(2,R)k̃ wzw models. In
this case the background fields are exact up to the usual finite renormalization of the radius (k → k+2 and
k̃ → k̃−2) and spectra, partition functions, . . . are within reach. The marginal deformations are asymmetric
because the right current that appears in the bilinear does not belong to the right-moving affine algebra of
the group at hand.

Asymmetric marginal deformations apply to any group. The aim of the present paper is to investigate
on several interesting generalizations of this method, in the case of compact groups, and make contact with
asymmetrically gauged wzw models. We will focus in particular on the SU(3) group. In this case the
asymmetric marginal deformation leads to the SU(3)/U(1) geometric coset, with magnetic fluxes and no
dilaton. In turn, this coset is identified with the asymmetric gauging of aU(1)2 in the original wzw models.

In the cases under consideration, however, more possibilities exist, which we further exploit. We examine
the asymmetric gauging of the full Cartan torus U(1)2. The geometric cosets obtained in this way, can be
assigned two different metrics depending on the precise manner the gauging is performed, in combination
with the extreme asymmetric marginal deformation. One is Kählerian and consequently no NS form survives:
we obtain the flag space F3 = SU(3)/U(1)2, recognized many years ago [6] to be a leading-order solution,
thanks to its Kählerian structure. The other metric is not Kählerian, and the background has both magnetic
and NS fluxes. It enters into the construction of non-compact manifolds of G2 holonomy [7].

All our solutions are exact sting backgrounds with no dilaton – contrary to the usual symmetrically
gauged wzw models. We can determine their spectra as well as their full partition functions.

The paper is organized as follows: first we fix the notation by reviewing some known facts about wzw
models and then show how to read the background fields corresponding to an asymmetric marginal defor-
mation of such models. We emphasize in particular the decompactification of the Cartan torus that takes
place at the extremal points in moduli space (Sect. refsec:geom-constr). This formalism is then used to
study the deformation of the SU(2) and SU(3) models (Sect. 3). In the following we introduce a different
construction in which the limit deformations are identified to asymmetrically gauged wzw models [8] and
the deformation is generalized so to reach the different constant-curvature structures admitted by an asym-
metric G/T coset, with particular emphasis on the SU(3)/U(1)2 case (Sect. 4). The next section (Sect. 5)
deals with the computation of the one-loop partition functions for the asymmetric deformations leading
to geometric cosets. Two different methods are proposed, one using the Kazama–Suzuki decomposition
in terms of Hermitian symmetric spaces, the other via the direct deformation of the Cartan lattice of the
Lie algebra corresponding to the group. In the final section (Sect. 6) we give an example of application by
using these scft’s to construct other supersymmetric exact string backgrounds such as the left-coset ana-
logues of the NS5-branes solutions [9,10]. They provide new holographic backgrounds of the Little String
Theory type [11–13], and may be dual to non-trivial supersymmetric compactifications on manifolds with
singularities. The concluding appendices contain some facts about the geometry of coset spaces, partition
functions, and characters of affine Lie algebras.

2 Compact coset spaces: general formalism

In this section we will fix the notation by reviewing some well known facts about conformal field theories
on group manifolds (wzw models) and give the general formalism for the truly marginal deformations
leading to exact cft’s on left coset spaces.

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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2.1 String theory on group manifolds: a reminder

Let g be the (semi-simple) Lie algebra of the (compact) group G and { Tm } a set generators that satisfy
the usual commutation relations [Tm, Tn] =

∑
p f

mn
pTp and are normalized with respect to the Killing

product κ (Tm, Tn) = − tr (TmTn) = δmn. We can always write g as the direct sum g = j ⊕ k where k is the
Cartan subalgebra and correspondingly distinguish between the Cartan generators { Ta } and the generators
of j,

{
Tµ
}

.
The generators are in one-to-one correspondence with the Maurer–Cartan left-invariant one-forms de-

fined by

Jm = κ
(
Tm, g

−1 dg
)

= − tr
(
Tmg

−1 dg
)

(2.1)

where g is the general element of the group G. It is a well known fact that the scalar product on g naturally
induces a scalar product 〈·, ·〉 on the tangent space Tg to G that can be written by decomposing the induced
metric (the so-called Cartan–Killing metric) in terms of the currents as follows:

〈 dg, dg〉 = κ
(
g−1 dg,g−1 dg

)
=
∑

mn

δmnκ
(
Tm, g

−1 dg
)
κ
(
Tn, g

−1 dg
)

=
∑

mn

δmnJ m ⊗ J m . (2.2)

Now let us consider the affine extension of the Lie algebra ĝk, at level k. We have two sets of holomorphic
and anti-holomorphic currents of dimension one, naturally related to the Maurer–Cartan right- and left-
invariant one-forms

Jm(z) = −kκ
(
Tm, ∂g g

−1) , J̄m (z̄) = kκ
(
Tm, g

−1 ∂̄g
)
. (2.3)

Each set satisfies the following operator product expansion

Jm(z)Jn(w) =
kδmn

2(z − w)2
+
fmn

p Jp(w)
z − w

+ O
(
(z − w)0

)
. (2.4)

This chiral algebra contains the Virasoro operator, given by the Sugawara construction

T (z) =
∑

m

: JmJm :
k + g∗ (2.5)

where g∗ is the dual Coxeter number and the corresponding central charge is given by

c =
k dim(g)
k + g∗ . (2.6)

An N = 1 superconformal extension is obtained by adding (dim g) free fermions transforming in the
adjoint representation

T (z) =
∑

m

: JmJm :
k + g∗ + : ψm ∂ψm : , (2.7)

G(z) =
2
k

(
∑

m

Jmψm − i

3k

∑

mnp

fmnp : ψmψnψp :

)

. (2.8)

An heterotic model is provided by considering a left-moving N = 1 current algebra and a right-moving
N = 0 one. The Lagrangian (σ-model) description of this model is given by the linear combination of the
following wzw-model and the action for free fermions transforming in the adjoint representation
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1034 D. Israël et al.: Heterotic strings on homogeneous spaces

S =
k

4π

∫

∂B
Tr
(
g−1 dg ∧ ∗g−1 dg

)
+

k

12π

∫

B
Tr
(
g−1 dg

)3
+

1
2π

∫
d2zψm ∂̄ψm (2.9)

(the exterior derivative is here understood as acting on the worldsheet coordinates). The background fields
corresponding to this action are the Cartan-Killing metric eq. (2.2) and the ns-ns two-form field, coming
from the wz term

H = dB = Tr
(
g−1 dg

)3
= 1

2 fmnpJ m ∧ J n ∧ J p . (2.10)

2.2 Asymmetric deformations

Truly marginal deformations of wzw models were already studied in [14, 15]. In particular in heterotic
strings we can consider a deformation obtained with the following exactly marginal operatorV built from the
total Cartan currents of g (so that it preserves the localN = (1, 0) superconformal symmetry of the theory)

V =
∫

d2z
∑

a

√
k kag
2π

ha

(

Ja(z) − i

k
famn : ψmψn :

)

Īa (z̄) (2.11)

(where the set {ha} are the parameters of the deformation and Īa(z̄) are right moving currents of the Cartan
subalgebra of the heterotic gauge group at level kag ). Such a deformation is always truly marginal since the
Ja currents commute.

It is not completely trivial to read off the deformed background fields that correspond to the S + V
deformed action. A possible way is a method involving a Kaluza–Klein reduction as in [16]. For simplicity
we will consider the bosonic string with vanishing dilaton and just one operator in the Cartan subalgebra k.
The right-moving gauge current J̄ used for the deformation has now a left-moving partner and can hence
be bosonized as J̄ = ı∂̄ϕ, ϕ (z, z̄) being interpreted as an internal degree of freedom. The sigma-model
action is recast as

S =
1
2π

∫
d2z (Gmn +Bmn) ∂xm∂̄xn , (2.12)

where the xm,m = 1, . . . , 4 embrace the group coordinates xµ, µ = 1, 2, 3 and the internal x4 ≡ ϕ:

xm =

(
xµ

x4

)

. (2.13)

If we split accordingly the background fields, we obtain the following decomposition

Gmn =

(
Gµν GϕϕAµ

GϕϕAµ Gϕϕ

)

, Bmn =

(
Bµν Bµ4

−Bµ4 0

)

, (2.14)

and the action becomes

S =
1
2π

∫
dz2{(Gµν +Bµν

)
∂xµ ∂̄xν +

(
GϕϕAµ +Bµ4

)
∂xµ ∂̄ϕ

+
(
GϕϕAµ −Bµ4

)
∂ϕ ∂̄xµ +Gϕϕ ∂ϕ ∂̄ϕ

}
. (2.15)
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We would like to put the previous expression in such a form that space–time gauge invariance,

Aµ → Aµ + ∂µλ , (2.16)

Bµ4 → Bµ4 + ∂µη , (2.17)

is manifest. This is achieved as follows:

S =
1
2π

∫
d2z
{(
Ĝµν +Bµν

)
∂xµ ∂̄xν +Bµ4

(
∂xµ∂̄ϕ− ∂ϕ∂̄xµ

)

+Gϕϕ
(
∂ϕ+Aµ∂x

µ
) (
∂̄ϕ+Aµ∂̄x

µ
)}
, (2.18)

where Ĝµν is the Kaluza–Klein metric

Ĝµν = Gµν −GϕϕAµAν . (2.19)

We can then make the following identifications

Ĝµν =
k

2

(
JµJν − 2h2J̃µJ̃ν

)
, (2.20a)

Bµν =
k

2
Jµ ∧ Jν , (2.20b)

Bµ4 = GϕϕAµ = h

√
kkg
2

J̃µ , (2.20c)

Aµ = h

√
2k
kg

J̃µ , (2.20d)

Gϕϕ =
kg
2
. (2.20e)

Let us now consider separately the background fields we obtained so to give a clear geometric interpre-
tation of the deformation, in particular in correspondence of what we will find to be the maximal value for
the deformation parameters ha.

The metric. According to eq. (2.20a), in terms of the target space metric, the effect of this perturbation
amounts to inducing a back-reaction that in the basis of eq. (2.2) is written as

〈 dg, dg〉h =
∑

M

JM ⊗ JM − 2
∑

a

h2
aJa ⊗ Ja =

∑

µ

Jµ ⊗ Jµ +
∑

a

(
1 − 2h2

a

)
Ja ⊗ Ja , (2.21)

where we have explicitly separated the Cartan generators. From this form of the deformed metric we see that
there is a “natural” maximal value ha = 1/

√
2 where the contribution of the Ja⊗Ja term changes its sign

and the signature of the metric is thus changed. One could naively think that the maximal value ha = 1/
√

2
can’t be attained since the this would correspond to a degenerate manifold of lower dimension; what actually
happens is that the deformation selects the the maximal torus that decouples in the ha = h → 1/

√
2 limit

as it was shown in [5] for the SU(2) and SL (2,R) algebras.
To begin, write the general element g ∈ G as g = ht where h ∈ G/T , t ∈ T . Substituting this

decomposition in the expression above we find
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1036 D. Israël et al.: Heterotic strings on homogeneous spaces

〈 d (ht) , d (ht)〉h = tr
(
(ht)−1 d (ht) (ht)−1 d (ht)

)
−
∑

a

2h2
a tr
(
Ta (ht)−1

d (ht)−1
)2

= tr
(
h−1 dhh−1 dh

)
+ 2 tr

(
dt t−1h−1 dh

)
+ tr

(
t−1 dt t−1 dt

)

−
∑

a

2h2
a

(
tr
(
Tat

−1h−1 dh t
)

+ tr
(
Tat

−1 dt
))2

. (2.22)

Let us introduce a coordinate system
(
γµ, ψa

)
such as the element in G/T is parametrized as h = h

(
γµ
)

and t is written explicitly as

t = exp

{
∑

a

ψaTa

}

=
∏

a

eψaTa . (2.23)

It is easy to see that since all the Ta commute t−1 dt = dt t−1 =
∑
a Ta dψa. This allows for more

simplifications in the above expression that becomes

〈 d (ht) , d (ht)〉h = tr
(
h−1 dhh−1 dh

)
+ 2
∑

a

tr
(
Tah

−1 dh
)

dψa +
∑

a

dψa dψa

−
∑

a

2h2
a

(
tr
(
Tah

−1 dh
)

+ dψa
)2

= tr
(
h−1 dhh−1 dh

)
−
∑

a

2h2
a

(
tr
(
Tah

−1 dh
))2

+ 2
∑

a

(
1 − 2h2

a

)
tr
(
Tah

−1 dh
)

dψa +
∑

a

(
1 − 2h2

a

)
dψa dψa . (2.24)

If we reparametrise the ψa variables as

ψa =
ψ̂a√

1 − 2ha
(2.25)

we get a new metric 〈·, ·〉′
h where we’re free to take the ha → 1/

√
2 limit

〈 d (ht) , d (ht)〉′
h = tr

(
h−1 dhh−1 dh

)
−
∑

a

2h2
a

(
tr
(
Tah

−1 dh
))2

+ 2
∑

a

√
1 − 2h2

a tr
(
Tah

−1 dh
)

dψ̂a +
∑

a

dψ̂a dψ̂a (2.26)

and get

〈 d (ht) , d (ht)〉′
1/

√
2 =

[

tr
(
h−1 dhh−1 dh

)
−
∑

a

(
tr
(
Tah

−1 dh
))2
]

+
∑

a

dψa dψa (2.27)

where we can see the sum of the restriction of the Cartan-Killing metric2 on ThG/T and the metric on
TtT = TtU(1)r. In other words the coupling terms between the elements h ∈ G/T and t ∈ T vanished
and the resulting metric 〈·, ·〉′

1/
√

2 describes the tangent space Tht to the manifold G/T × T .

2 This always is a left-invariant metric onG/H .A symmetric coset doesn’t admit any other metric. For a more complete discussion
see App.A.
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These homogeneous manifolds enjoy many interesting properties. The best part of them can be interpreted
as consequence of the presence of an underlying structure that allows to recast all the geometric problems in
Lie algebraic terms (seeApp.A for some constructions). There’s however at least one intrinsically geometric
property that it is worth to emphasize since it will have many profound implications in the following. All
these spaces can be naturally endowed with complex structures by using positive and negative roots as
holomorphic and anti-holomorphic generators. Moreover for each space there is not in general only one of
these structures (but for the lowest dimensional SU(2) case) and there always exists one of them which is
Kähler [17].

Other background fields. The asymmetric deformation of eq. (2.11) generates a non-trivial field strength
for the gauge field, that from eq. (2.20d) is found to be

F a =
∑

a

√
2k
kg

ha dJ a = −
∑

a

√
k

2kg
hafaµνJ

µ ∧ Jν (2.28)

(no summation implied over a).
On the other hand, theB-field (2.20b) is not changed, but the physical object is the modified field strength

H[3] = dB − 1
kg
Aa ∧ dAa = 1

2 fmnpJ m ∧ J n ∧ J p − 2
∑

a

h2
a fanp J a ∧ J n ∧ J p , (2.29)

where we have used the Maurer-Cartan structure equations. At the point where the fibration trivializes,
ha = 1/

√
2, we are left with

H[3] = 1
2 fµνρ J µ ∧ J ν ∧ J ρ . (2.30)

So only the components of H[3] “‘living” in the coset G/T survive the deformation. They are not affected
of course by the rescaling of the coordinates on T .

A trivial fibration. The whole construction can be reinterpreted in terms of fibration as follows. The
maximal torus T is a closed Lie subgroup of the Lie group G, hence we can see G as a principal bundle
with fiber space T and base space G/T [18]

G T−→ G/T . (2.31)

The effect of the deformation consists then in changing the fiber and the limit value ha = 1/
√

2 marks the
point where the fibration becomes trivial and it is interpreted in terms of a gauge field whose strength is
given by the canonical connection on G/T [19].

2.3 Equations of motion

In this section we want to explicitly show that the background fields we found on the left coset space are
solution to the first order (in α′) equations of motion [20].

For a vanishing dilaton they read

δc = −R+
kg
16
F aµνF

aµν , (2.32a)

β(G)
µν = Rµν − 1

4HµρσH
ρσ

ν − kg
4
F aµρF

a ρ
ν = 0 , (2.32b)

β(B)
νρ = ∇µHµνρ = 0 , (2.32c)
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β(A)
µ = ∇νF aµν − 1

2F
aνρHµνρ = 0 , (2.32d)

after applying the proper normalizations3 our fields are given by

gµν =
k

2
δµν , (2.33a)

F aµν = −
√

2k
kg
faµν , (2.33b)

Hµνρ = − k

2
fµνρ . (2.33c)

• The β(B) = 0 equation (2.32c) is just the restriction of the same equation for the initial wzw model,

• the two terms in the β(A) = 0 equation (2.32d) vanish separately: the first one because F is closed (or,
equivalently because faµν seen as a two form in G/T satisfies the condition stated below eq. (A.13));
the second because it is proportional to

∑

ν,ρ∈g/h

faνρfµνρ =
∑

m,r∈g

famrfµmr = 2g∗δaµ = 0 , (2.34)

• to solve the β(G) = 0 equation (2.32b) we need some more work. Using the results in App. B.1, for a
general algebra, we obtain

Rµν = 1
4

∑

ρ,σ

fµρσfνρσ +
∑

a,ρ

faµρfaνρ (2.35)

that is consistent with the result in eq. (A.12).

If we introduce the orthonormal basis described in (B.1) the Ricci tensor can be explicitly written as

Rµν = 1
4

∑

ρ,σ

fµρσfνρσ +
∑

a,ρ

faµρfaνρ = 1
2 g

∗δµν + 1
2 δµν






∣
∣α(µ+1)/2

∣
∣2 if µ is odd ,

∣
∣αµ/2

∣
∣ if µ is even .

(2.36)

In particular for a simply laced algebra reduces to

Rµν =
g∗ + 2

2
δµν =

g∗ + 2
k

gµν . (2.37)

This result can be read by saying that the metric we obtain on a simply laced algebra is Einstein with
the following Ricci scalar

R =
g∗ + 2
k

(dim g − dim k) . (2.38)

For example in the case of G = SU(N), g∗ = N , (dim g − dim k) = N (N − 1) and then

R =
(N + 2)N (N − 1)

k
. (2.39)

3 Unless explicitly stated we consider α′ = 1 and the highest root ψ = 2.
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3 Some examples

In this section we will give some explicit examples of our construction. In particular we will consider the
deformation leading from the SU(2) background to the SU(2)/U(1) ∼ S2 coset (which already appeared
in [5] as part of the AdS2×S2 background) and the superconformal field theory onSU(3)/U(1)2.Although
our construction is quite general and can in principle be applied to any group there is a limited number
of examples giving critical heterotic string theory backgrounds with a clear geometrical meaning. This is
just because of dimensional reasons: SU(2)/U(1) is two-dimensional, SU(3)/U(1)2 is 6-dimensional and
USp(4)/U(1)2 is 8-dimensional; higher groups on the other hand would lead to cosets of dimension greater
than 10 (in exampleSU(4)/U(1)3 has dimension 15−3 = 12). On the other hand these higher-dimensional
cosets can be used e.g. to obtain non-trivial compactifications generalizing the constructions of [21,22], if
the level of these cfts are kept small.

3.1 The two-sphere CFT

The first deformation that we explicitly consider is the marginal deformation of the SU(2) wzw model.
This was first obtained in [23] that we will closely follow. It is anyway worth to stress that in their anal-
ysis the authors didn’t study the point of maximal deformation (which was nevertheless identified as a
decompactification boundary) that we will here show to correspond to the 2-sphere S2 ∼ SU(2)/U(1).
Exact cft’s on this background have already obtained in [24] and in [2]. In particular the technique used
in the latter, namely the asymmetric gauging of a SU(2) ×U(1) wzw model, bears many resemblances to
our own.

Consider an heterotic string background containing the SU(2) group manifold, times some (1, 0) super-
conformal field theory M. The sigma model action is

S = kSSU(2)(g) +
1
2π

∫
d2z

{
3∑

a=1

λa ∂̄λa +
g∑

n=1

χ̃n ∂χ̃n

}

+ S(M) , (3.1)

where λi are the left-moving free fermions superpartners of the bosonic SU(2) currents, χ̃n are the right-
moving fermions realizing the current algebra in the gauge sector and kSSU(2)(g) is the wzw action for
the bosonic SU(2) at level k. This theory possesses an explicit SU(2)L × SU(2)R current algebra.

A parametrization of the SU(2) group that is particularly well suited for our purposes is obtained via
the so-called Gauss decomposition that we will later generalize to higher groups (see App C). A general
element g (z, ψ) ∈ SU(2) where z ∈ C and ψ ∈ R can be written as

g (z, ψ) =

(
1 0
z 1

)(
1/

√
f 0

0
√
f

)(
1 w̄

0 1

)(
eıψ/2 0

0 e−ıψ/2

)

(3.2)

where w = −z and f = 1 + |z|2. In this parametrisation the matrix of invariant one-forms Ω =
g (z, ψ)−1 dg (z, ψ) appearing in the expression for the Maurer-Cartan one-forms (2.1) is

Ω11 =
z̄ dz − z dz̄ + ıf dψ

2f
, Ω12 = − e−ıψ

f
dz̄ , (3.3)

Ω21 = −Ω̄12 , Ω22 = −Ω11 (3.4)

(remark that Ω is traceless and anti-Hermitian since it lives in su(2)). From Ω we can easily derive the
Cartan–Killing metric on TgSU(2)k as
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2
k

ds2 = tr
(
Ω†Ω

)

= − 1
2f2

(
z̄2 dz ⊗ dz + z2 dz̄ ⊗ dz̄ − 2

(
2 + |z|2

)
dz ⊗ dz̄

)

+
ı

f
(z dz̄ − z̄ dz) ⊗ dψ +

1
2

dψ ⊗ dψ . (3.5)

The left-moving current contains a contribution from the free fermions realizing an SU(2)2 algebra, so that
the theory possesses (local) N = (1, 0) superconformal symmetry.

The marginal deformation is obtained by switching on a magnetic field in the SU(2), introducing the
following (1, 0)-superconformal-symmetry-compatible marginal operator

δS =

√
kkgh
2π

(
J3 + λ+λ−) J̄ (3.6)

where we have picked one particular current J̄ from the gauge sector, generating a U(1) at level kg . For
instance, we can choose the level two current: J̄ = iχ̃1χ̃2. As a result the solutions to the deformed
σ-model (2.21), (2.28) and (2.29) read

1
k

ds2 =
dz ⊗ dz̄
(
1 + |z|2

)2 +
(
1 − 2h2) 1

f2 (ız dz̄ − ız̄ dz + f dψ) ⊗ (ız dz̄ − ız̄ dz + f dψ) ,

(3.7)

dB =
ık

2
1

(
1 + |z|2

)2 dz ∧ dz̄ ∧ dψ , (3.8)

A =

√
k

2kg
h
(

− ı

f
(z̄ dz − z dz̄) + dψ

)

. (3.9)

It can be useful to write explicitly the volume form on the manifold and the Ricci scalar

√
det g dz ∧ dz̄ ∧ dψ =

k

2

√
k (1 − 2h2)
(
1 + |z|2

)2 dz ∧ dz̄ ∧ dψ , (3.10)

R =
6 + 4h2

k
. (3.11)

It is quite clear that at h = hmax = 1/
√

2 something happens as it was already remarked in [23]. In general
the three-sphere SU(2) can be seen a non-trivial fibration of U(1) ∼ S1 as fiber and SU(2)/U(1) ∼ S2

as base space: the parameterization in (3.7) makes it clear that the effect of the deformation consists in
changing the radius of the fiber that naively seems to vanish at hmax. But as we already know the story is a
bit different: reparameterising as in eq. (2.25)

ψ → ψ̂√
1 − 2h2

(3.12)

one is free to take the h → 1/
√

2 limit where the background fields assume the following expressions

1
k

ds2 −−−−−→
h→1/

√
2

dz ⊗ dz̄
(
1 + |z|2

)2 + dψ̂ ⊗ dψ̂ , (3.13)
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F −−−−−→
h→1/

√
2

√
k

4kg
ı dz ∧ dz̄
(
1 + |z|2

)2 , (3.14)

H −−−−−→
h→1/

√
2

0 . (3.15)

Now we can justify our choice of coordinates: the (z, z̄) part of the metric that decouples from the ψ
part is nothing else than the Kähler metric for the manifold CP

1 (which is isomorphic to SU(2)/U(1)). In
this terms the field strength F is proportional to the Kähler two-form

F = ı

√
k

kg
gzz̄ dz ∧ dz̄ . (3.16)

This begs for a remark. It is simple to show that cosets of the form G/H where H is the maximal torus
of G can always be endowed with a Kähler structure. The natural hope is then for this structure to pop up
out of our deformations, thus automatically assuring the N = 2 world-sheet supersymmetry of the model.
Actually this is not the case. The Kähler structure is just one of the possible left-invariant metrics that can be
defined on a non-symmetric coset (seeApp.A) and the obvious generalization of the deformation considered
above leads to C-structures that are not Kähler. From this point of view this first example is an exception
because SU(2)/U(1) is a symmetric coset since U(1) is not only the maximal torus in SU(2) but also the
maximal subgroup. It is nonetheless possible to define exact an cft on flag spaces but this will require a
slightly different construction, that we will introduce in Sect. 4.

We conclude this section observing that the flux of the gauge field on the two-sphere is given by

Q =
∫

S2
F =

√
k

kg

∫
dΩ2 =

√
k

kg
4π . (3.17)

However one can argue on general grounds that this flux has to be quantized, e.g. because the two-sphere
appears as a factor of the magnetic monopole solution in string theory [25]. This quantization of the magnetic
charge is only compatible with levels of the affine SU(2) algebra satisfying the condition

k

kg
= p2 , p ∈ Z . (3.18)

3.2 The SU(3)/U(1) flag space

Let us now consider the next example in terms of coset dimensions,SU(3)/U(1)2.As a possible application
for this construction we may think to associate this manifold to a (1, 0) superconformal field theory M
with 3+1 dimensional target space so to compactify a critical string theory since dim

[
SU(3)/U(1)2

]
=

8 − 2 = 6. Our construction gives rise to a whole family of cft’s depending on two parameters (since
rank [SU(3)] = 2) but as before we are mainly interested to the point of maximal deformation, where
the U(1)2 torus decouples and we obtain an exact theory on the SU(3)/U(1)2 coset. Before giving the
explicit expressions for the objects in our construction it is hence useful to remember some properties of
this manifold. The first consideration to be made is the fact that SU(3)/U(1)2 is an asymmetric coset in the
mathematical sense defined in App.A (as we show below). This allows for the existence of more than one
left-invariant Riemann metric. In particular, in this case, if we just consider structures with constant Ricci
scalar, we find, together with the restriction of the Cartan-Killing metric on SU(3), the Kähler metric of
the flag space F 3. The construction we present in this section will lead to the first one of these two metrics.
This is known to admit a nearly-Kähler structure and has already appeared in the superstring literature as a
basis for a cone of G2 holonomy [7].
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A suitable parametrisation for the SU(3) group is obtained via the Gauss decomposition described in
App. C. In these terms the general group element is written as

g (z1, z2, z3, ψ1, ψ2) =









eıψ1/2√
f1

− z̄1+z2z̄3√
f1f2 eı(ψ1−ψ2)/2 − z̄3−z̄1z̄2√

f2
e−ıψ2/2

z1eıψ1/2√
f1

− 1+|z3|2−z1z2z̄3√
f1f2 eı(ψ1−ψ2)/2 − z̄2√

f2
e−ıψ2/2

z3eıψ1/2√
f1

− z2−z̄1z3+z2|z1|2√
f1f2 eı(ψ1−ψ2)/2 1√

f2
e−ıψ2/2









(3.19)

where zi are three complex parameters, ψj are two real parameters, and f1 = 1 + |z1|2 + |z3|2, f2 =
1 + |z2|2 + |z3 − z1z2|2. As for the group, we need also an explicit parameterisation for the su(3) algebra,
such as the one provided by the Gell-Mann matrices in eq. (C.10). It is a well known result that if a Lie
algebra is semi-simple (or, equivalently, if its Killing form is negative-definite) then all Cartan subalgebras
are conjugated by some inner automorphism4. This leaves us the possibility of choosing any couple of
commuting generators, knowing that the final result won’t be influenced by such a choice. In particular,
then, we can pick the subalgebra generated by k = 〈λ3, λ8〉.5

We can now specialize the general expressions given in Sect. 2. The holomorphic currents (2.3) of the
bosonic SU(3)k corresponding to the two operators in the Cartan are

J 3 = − tr
(
λ3g
(
zµ, ψa

)−1 dg
(
zµ, ψa

))
, J 8 = − tr

(
λ8g
(
zµ, ψa

)−1 dg
(
zµ, ψa

))
, (3.20)

that in these coordinates read

J 3 = − ı√
2






(
z̄1
f1

+
z2(−z̄1z̄2 + z̄3)

2f2

)

dz1 −
z̄2

(
1 + |z1|2

)
− z1z̄3

2f2
dz2 +

(
z̄3
f1

+
z̄1z̄2 − z̄3

2f2

)

dz3






+ c.c. +
dψ1√

2
− dψ2

2
√

2
, (3.21)

J 8 = −ı
√

3
2

{
z̄1z̄2 − z̄3

2f2
z2 dz1 +

z̄2 + |z1|2 z̄2 − z1z̄3
2f2

dz2 +
−z̄1z̄2 + z̄3

2f2
dz3+ c.c. +

1
2

√
3
2

dψ2 ,

(3.22)

they appear in the expression of the exactly marginal operator (2.11) that we can add to the SU(3) wzw
model action is

V =

√
kkg

2π
h
∫

dz2 h3

(

J3 − ı√
2k

(2 : ψ2ψ1 : + : ψ5ψ4 : + : ψ7ψ6 :)
)

J̄3

+ h8

(

J8 − ı

k

√
3
2

(: ψ5ψ4 : + : ψ7ψ6 :)

)

J̄8 (3.23)

where ψi are the bosonic current superpartners and J̄ are two currents from the gauge sector both generat-
ing a U(1)kg .

4 This is the reason why the study of non-semi-simple Lie algebra deformation constitutes a richer subject. In example the
SL (2,R) group admits for 3 different deformations, leading to 3 different families of exact cft’s with different physics
properties. On the other hand the 3 possible deformations in SU(3) are equivalent.

5 In this explicit parameterisation it is straightforward to show that the coset we’re considering is not symmetric. It suffices to pick
two generators, say λ2 and λ4, and remark that their commutator [λ2, λ4] = −1/

√
2λ6 doesn’t live in the Cartan subalgebra.
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Since rank [SU(3)] = 2 we have a bidimensional family of deformations parameterised by the two
moduli h3 and h8. The back-reaction on the metric is given by

ds2 = gαβ̄ dzα ⊗ dz̄β +
(
1 − 2h2

3
)
J 3 ⊗ J 3 +

(
1 − 2h2

8
)
J 8 ⊗ J 8 (3.24)

where gαβ̄ is the restriction of the SU(3) metric on SU(3)/U(1)2. It is worth to remark that for any value
of the deformation parameters h3 and h8 the deformed metric is Einstein with constant Ricci scalar.

With a procedure that has by now become familiar we introduce the following reparametrisation

ψ1 =
ψ̂1√

1 − 2h2
, ψ2 =

ψ̂2√
1 − 2h2

(3.25)

and take the h3 → 1/
√

2, h8 → 1/
√

2 limit. The resulting metric is

ds2 = gαβ̄ dzα ⊗ dz̄β +
dψ̂1 ⊗ dψ̂1 − dψ̂1 ⊗ dψ̂2 + dψ̂2 ⊗ dψ̂2

2
, (3.26)

that is the metric of the tangent space to the manifold SU(3)/U(1)2 × U(1) × U(1). As shown in App.A
the coset metric hence obtained has a C-structure, is Einstein, and has constant Ricci scalarR = 15/k. The
other background fields at the boundary of the moduli space read

F = dJ 3 + dJ 8 , (3.27)

H[3] = −3
√

2
{

J 1 ∧
(
J 4 ∧ J 5 − J 6 ∧ J 7)+

√
3J 2 ∧

(
J 4 ∧ J 5 + J 6 ∧ J 7)

}
. (3.28)

If we consider the worldsheet supersymmetry properties along the deformation line we can remark the
presence of an interesting phenomenon. The initial SU(3) model hasN = 2 superconformal symmetry but
this symmetry is naively broken toN = 1 by the deformation. This is true for any value of the deformation
parameter but for the boundary point h2

3 = h2
8 = 1/2 where the N = 2 supersymmetry is restored.

Following [22,26,27] one can see that aG/T coset admitsN = 2 supersymmetry if it possesses a complex
structure and the corresponding algebra can be decomposed as j = j+ ⊕ j− such as [j+, j+] = j+ and
[j−, j−] = j−. Explicitly, this latter condition is equivalent (in complex notation) to fijk = fīj̄k̄ = faij =
faīj̄ = 0. These are easily satisfied by the SU(3)/U(1)2 coset (and actually by any G/T coset) since the
commutator of two positive (negative) roots can only be proportional to the positive (negative) root obtained
as the sum of the two or vanish, as shown in eq. (B.3). HavingN = 2 supersymmetry is equivalent to asking
for the presence of two complex structures. The first one is trivially given by considering positive roots as
holomorphic and negative roots as anti-holomorphic, the other one by interchanging the role in one out of
the three positive/negative couples (the same flip on two couples would give again the same structure and
on all the three just takes back to the first structure). The metric is hermitian with respect to both structures
since it is SU(3) invariant. It is worth to remark that such background is different from the ones described
in [27] because it is not Kähler and can’t be decomposed in terms of Hermitian symmetric spaces.

4 Gauging

In this section we want to give an alternative construction for our deformed models, this time explicitly
based on an asymmetric wzw gauging. The existence of such a construction is not surprising at all since our
deformations can be seen as a generalization of the ones considered in [28]. In these terms, just like JJ̄ (sym-
metric) deformations lead to gauged wzw models, our asymmetric construction leads to asymmetrically
gauged wzw models, which were studied in [8].

First of all we will give the explicit construction for the most simple case, the SU(2) model, then
introduce a more covariant formalism which will be simpler to generalize to higher groups, in particular
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1044 D. Israël et al.: Heterotic strings on homogeneous spaces

for the SU(3) case, whose gauging will lead, this time, to two different exact models corresponding to the
two possible Einstein complex structures admitted by the SU(3)/U(1)2 manifold.

To simplify the formalism we will discuss gauging of bosonic cfts, and the currents of the gauge sector
of the heterotic string are replaced by compact U(1) free bosons. It is obvious that all the results are easily
translated into heterotic string constructions.

4.1 The SU(2)/U(1) asymmetric gauging

In this section we want to show how the S2 background described in [5] can be directly obtained via an
asymmetric gauging of the SU(2) × U(1) wzw model (a similar construction was first obtained in [2]).

Consider the wzw model for the group manifold SU(2)k × U(1)k′ . A parametrisation for the general
element of this group which is nicely suited for our purposes is obtained as follows

g =






z1 z2 0
−z̄2 z̄1 0
0 0 z3




 =

(
g2 0
0 g1

)

∈ SU(2) × U(1) (4.1)

where g1 and g2 correspond to the SU(2) and U(1) parts respectively and (z1, z2, z3) satisfy

SU(2) × U(1) = {(w1, w2, w3) | |w1|2 + |w2|2 = 1, |w3|2 = 1} ⊂ C
3 . (4.2)

A possible choice of coordinates for the corresponding group manifold is given by the Euler angles:

SU(2) × U(1) =
{

(z1, z2, z3) =
(

cos
β

2
eı(γ+α)/2, sin

β

2
eı(γ−α)/2, eıϕ

)

|0 � β � π, 0 � α, β, ϕ < 2π .

(4.3)

In order to obtain the coset construction leading to the S2 background we define two U(1) → SU(2) ×
U(1) embeddings as follows

εL : U(1) → SU(2) × U(1) , εR : U(1) → SU(2) × U(1) ,

eıτ �→ (eıτ , 0, 1) , eıτ �→ (1, 0, eıτ ) ,
(4.4)

so that in terms of the z variables the action of these embeddings boils down to

g �→ εL (eıτ ) gεR (eıτ )−1
,

(w1, w2, w3) �→
(
eıτw1, eıτw2, e−ıτw3

)
.

(4.5)

This means that we are free to choose a gauge where w2 is real or, in Euler coordinates, where γ = α, the
other angular variables just being redefined. To find the background fields corresponding to this gauge choice
one should simply write down the Lagrangian where the symmetries corresponding to the two embeddings
in (4.4) are promoted to local symmetries, integrate the gauge fields out, and then apply a Kaluza-Klein
reduction, much in the same spirit as in [5].

The starting point is the wzw model, written as

Swzw(g) =
k

4π

∫
dz2 Tr

(
g−1
2 ∂g2g

−1
2 ∂̄g2

)
+

k′

4π

∫
dz2 Tr

(
g−1
1 ∂g1g

−1
1 ∂̄g1

)
+ wz term . (4.6)

Its gauge-invariant generalization is given by

S = Swzw +
1
4π

∫
d2z
[
2kĀTr

(
tL∂gg

−1)+ 2k′ATr
(
tRg

−1∂̄g
)

− 2kAĀTr(tLg−1
1 tRg1)
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− 2k′AĀTr(tLg−1
2 tRg2) + kAĀTr1(tL)2 + k′AĀTr2(tR)2

]
(4.7)

where A and Ā are the components of the gauge field, and tL and tR are the Lie algebra generators
corresponding to the embeddings in (4.4), i.e.

tL = ı

(
σ3 0
0 0

)

, tR = ı
√

2

(
0 0
0 p

)

, (4.8)

σ3 being the usual Pauli matrix. For such an asymmetric coset to be anomaly free, one has the following
constraint on the embeddings

kTr(tL)2 = k′ Tr(tR)2 =⇒ k = k′p2, with p ∈ N . (4.9)

If we pass to Euler coordinates it is simple to give an explicit expression for the action

S (α, β, γ, ϕ) =
1
2π

∫
d2z

k

4
(
∂α∂̄α+ ∂β∂̄β + ∂γ∂̄γ + 2 cosβ∂α∂̄γ

)
+
k′

2
∂ϕ∂̄ϕ

+ k (∂α+ cosβ∂γ) Ā+ k′√2p∂̄ϕA− 2kAĀ . (4.10)

This Lagrangian is quadratic in A, Ā and the quadratic part is constant so we can integrate these gauge
fields out and the resulting Lagrangian is

S (α, β, γ, ϕ) =
1
2π

∫
d2z

k

4
(
∂α∂̄α+ ∂β∂̄β + ∂γ∂̄γ + 2 cosβ∂α∂̄γ

)
+
k′

2
∂ϕ∂̄ϕ

+

√
2kk′

2
( ∂α+ cosβ ∂γ) ∂̄ϕ . (4.11)

Now, since we gauged out the symmetry corresponding to the U(1) embeddings, this action is redundant.
This can very simply be seen by writing the corresponding metric and remarking that it has vanishing de-
terminant

det gµν =

∣
∣
∣
∣
∣
∣
∣
∣
∣

k/4
k/4 k/4 cosβ

√
2kk′/4

k/4 cosβ k/4
√

2kk′/4 cosβ√
2kk′/4

√
2kk′/4 cosβ k′/2

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 . (4.12)

Of course this is equivalent to say that we have a gauge to fix (as we saw above) and this can be chosen by
imposing γ = α, which leads to the following action

S (α, β, ϕ) =
1
2π

∫
d2z

k

4
(
2 (1 + cosβ) ∂α∂̄α+ ∂β∂̄β

)
+
k′

2
∂ϕ∂̄ϕ+

√
2kk′

2
(1 + cosβ) ∂α ∂̄ ϕ

(4.13)

whence we can read a two dimensional metric by interpreting the ∂α ∂̄ϕ term as a gauge boson and applying
the usual Kaluza-Klein reduction. We thus recover the two-sphere we expect.

ds2 = gµν −GϕϕAµAν =
k

4
(
dβ2 + sin2 β dα2) (4.14)

supported by a (chromo)magnetic field

A =

√
k

k′ (1 + cosβ) dα . (4.15)
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As advertised above we now turn to rewrite the above gauging in a more covariant form, simpler to
generalize. Since we’re interested in the underlying geometry, we’ll mainly focus on the metric of the
spaces we obtain at each step and write these metrics in terms of the Maurer-Cartan currents6. As we’ve
already seen in eq. (2.2), the metric of the initial group manifold is

ds2 =
k

2

∑
J 2
i ⊗ J 2

i +
k′

2
I ⊗ I (4.16)

where {J1,J2,J3} are the currents of theSU(2) part and I theU(1) generator. The effect of the asymmetric
gauging amounts - at this level - to adding what we can see as an interaction term between the two groups.
This changes the metric to

ds2 =
k

2

∑
J 2
i ⊗ J 2

i +
k′

2
I ⊗ I +

√
kk′J3 ⊗ I . (4.17)

Of course if we choose 〈J1,J2,J3, I〉 as a basis we can rewrite the metric in matrix form

g = 1
2








k

k

k
√
kk′

√
kk′ k′








(4.18)

where we can see that the gauging of the axial symmetry corresponds to the fact that the sub-matrix relative
to the {J3, I} generators is singular

∣
∣
∣
∣
∣
k

√
kk′

√
kk′ k′

∣
∣
∣
∣
∣
= 0 (4.19)

explicitly this corresponds to

kJ3 ⊗ J3 +
√
kk′J3 ⊗ I +

√
kk′J3 ⊗ I + k′I ⊗ I =

(
k + k′) Ĵ ⊗ Ĵ (4.20)

where

Ĵ =

√
kJ3 +

√
k′I√

k + k′ (4.21)

is a normalized current. So we project the interaction sub-matrix on its non-vanishing normalized eigenvector

(√
k

k+k′

√
k

k+k′

)
(

k
√
kk′

√
kk′ k′

)



√
k

k+k′
√

k
k+k′



 = k + k′ (4.22)

and the resulting metric in the 〈J1,J2, Ĵ 〉 basis is





k

k

k + k′




 . (4.23)

6 One of the advantages of just working on the metrics is given by the fact that in each group one can consistently choose
holomorphic or anti-holomorphic currents as a basis. In the following we will consider the group in the initial wzw model as
being generated by the holomorphic and the dividing group by the anti-holomorphic ones.
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This manifold M (whose metric appears in the action (2.12)) corresponds to a S1 fibration (the fiber being
generated by Ĵ ) over a S2 base (generated by 〈J1,J2〉).

S1 −−−−→ M


,

S2

. (4.24)

It should now appear obvious how to generalize this construction so to include all the points in the
moduli space joining the unperturbed and gauged model. The decoupling of the U(1) symmetry (that
has been “gauged away”) is obtained because the back-reaction of the gauge field eq. (4.11) is such that
the interaction sub-matrix is precisely singular. On the other hand we can introduce a parameter that
interpolates between the unperturbed and the gauged models so that the interaction matrix now has two
non-null eigenvalues, one of which will vanish at the decoupling point.

In practice this is done by adding to the the asymmetrically gauged wzw model an auxilliary U(1) free
boson Y at radius R = (kk′)1/4(1/

√
2h − 1)1/2. This U(1) is coupled symmetrically to the gauge fields

such that the anomaly cancellation condition is still given by (4.9). In particular if we choose the gauge
Y = 0, the metric reads

(
k

√
2h

√
kk′

√
2h

√
kk′ k′

)

(4.25)

which is exactly the model studied above. For a generic value of h2 the two eigenvalues are given by

λ1
2

(
k, k′,h

)
=
k + k′ ∓

√
k2 + k′2 + 2 (4h2 − 1) kk′

2
(4.26)

so we can diagonalize the metric in the 〈J1,J2, Ĵ , ˆ̂J 〉 basis (Ĵ and ˆ̂J being the two eigenvectors) and
finally obtain

g =








k

k

λ1 (k, k′,h)
λ2 (k, k′,h)







. (4.27)

Of course, in the h2 → 0 limit we get the initial wzw model and in the h2 → 1/2 limit we recover the
asymmetrically gauged model eq. (4.23).

It is important to remark that the construction above can be directly generalized to higher groups with
non-abelian subgroups, at least for the asymmetric coset part. This is what we will do in the next section.

4.2 SU (3) /U(1)2

To study the SU(3) case we will use the “current” approach, since a direct computation in coordinates
would be impractical. As one could expect, the study of SU(3) deformation is quite richer because of the
presence of an embedded SU(2) group that can be gauged. Basically this means that we can choose two
different deformation patterns that will lead to the two possible Einstein structures that can be defined on
the SU(3)/U(1)2 manifold (see App.A).
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4.2.1 Direct gauging

The first possible choice consists in the obvious generalization of the SU(2)/U(1) construction above, i.e.
simply gauging the U(1)2 Cartan torus. Consider the initial SU(3)k × U(1)k′ × U(1)k′′ model. In the
〈J1, . . . ,J8, I1, I2〉 base ({Ji} being the SU(3) generators and {Ik} the 2 U(1)’s), the initial metric is
written as

g =






k�8×8 0

0
k′

k′′




 , (4.28)

the natural choice for the Cartan torus is given by the usual 〈J3,J8〉 generators, so we can proceed as before
and write the deformed metric as

g =













k�2×2

λ1 (k, k′,h3)
k�4×4

λ1 (k, k′′,h8)
λ2 (k, k′,h3)

λ2 (k, k′′,h8)













(4.29)

where h3 and h8 are the deformation parameters and λ1 and λ2 are the eigenvalues for the interaction
matrices, given in eq. 4.26. In particular, then, in the h2

3 → 1/2, h2
8 → 1/2 limit two eigenvalues vanish,

the corresponding directions decouple and we’re left with the following (asymmetrically gauged) model

g =






k�6×6

k + k′

k + k′′




 (4.30)

in the 〈J1,J2,J4,J5,J6,J7,
√
k′I1 +

√
kJ3,

√
k′′I2 +

√
kJ8〉 basis that can be seen as aU(1)2 fibration

over a SU(3)/U(1)2 base with metric diag (1, 1, 1, 1, 1, 1) (in the notation of App A). This is precisely the
same result we obtained in Sect. 3.2 when we read the fibration as a gauge field living on the base.

U(1)2 −−−−→ M


,

SU(3)/U(1)2

. (4.31)

As in the previous example all this construction is valid only if the asymmetrically gauged wzw model is
anomaly-free. This will be explained in detail in Sect. 5.

4.2.2 The F3 flag space

Let us now turn to the other possible choice for theSU(3) gauging, namely the one where we take advantage
of the SU(2) embedding. Let us then consider the SU(3)k3 × SU(2)k2 × U(1)k′ × U(1)k′′ wzw model
whose metric is

g =








k3�8×8

k2�3×3

k′

k′′








(4.32)
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in the 〈J1, . . . ,J8, I1, I2, I3,K1,K2〉 basis, where 〈Ji〉 generate the SU(3), 〈Ii〉 generate the SU(2) and
〈Ki〉 generate the U(1)2.

The first step in this case consists in an asymmetric gauging mixing the {J1,J2,J3} and {I1, I2, I3}
currents respectively. At the gauging point, a whole 3-sphere decouples and we obtain the following metric

g =








k3�5×5

(k2 + k3) �3×3

k′

k′′








(4.33)

where we have to remember that in order to have an admissible embedding k2 = k3 = k. Our result is
again – not surprisingly – a SU(2) fibration over a SU(3)/SU(2) base (times the two U(1)’s).

SU(2) −−−−→ M


,

SU(3)/SU(2)

. (4.34)

Of course one could be tempted to give M the same interpretation as before, namely a SU(3)/SU(2)
space supported by a chromo-magnetic SU(2) field (or, even better, gauging an additional U(1), of a CP

2

background with a SU(2) × U(1) chromo-magnetic field). Actually this is not the case. The main point is
the fact that this SU(3) × SU(2) model is essentially different from the previous ones because the U(1)
factors were the result of the bosonisation of the right-moving gauge current which in this way received
a (fake) left-moving partner as in Sect. 2.2. This is not possible in the non-abelian case since one can’t
obtain a SU(2) at arbitrary level k out of the fermions of the theory7. In other words, the SU(2) factor is
in this case truly a constituent of the theory and there is no reason why it should be decoupled or be given a
different interpretation from the SU(3) part. This is why the structure obtained by the SU(2) asymmetric
gauging is to be considered a 8-dimensional space admitting a SU(2) → SU(3)/SU(2) fibration structure,
or, equivalently, a deformed SU(3) where an embedded SU(2) is at a level double with respect to the
other generators.

On the other hand we are still free to gauge away the two U(1) factors just as before. This time we can
choose to couple K1 with the J8 factor that was left untouched in the initial SU(3) and K2 with the J3 +I3
generator. Again we find a two-parameter family of deformations whose metric can be written as

g =













k�4×4

µ1

2k�2×2

ν1
µ2

ν2













(4.35)

where

µ = λ
(
k, k′,h′) (4.36)

ν = λ
(
2k, k′′,h′′) . (4.37)

7 This would be of course be possible if we limited ourselves to small values ofk, but in this case the whole geometric interpretation
of the background would be questionable. However for Gepner-like string compactifications this class of models is relevant.
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In particular now we can take the decoupling h′ = h′′ → 1/2 limit where we obtain

g =








k�4×4

2k�2×2

k + k′

2k + k′′







, (4.38)

this structure is once more a U(1)2 → SU(3)/U(1)2 fibration but in this case it is perfectly fine to separate
the space components from the gauge field ones. So we can read out our final background fields as the
Kähler metric on F3 (see App .A) supported by a U(1)2 (chromo)magnetic field.

To summarize our results we can say that the two Einstein structures that one can define onSU(3)/U(1)2

are both exact string theory backgrounds

• The first one, obtained as the asymmetric coset SU(3)×U(1)2

U(1)2 is supported by an ns-ns field strength
and a magnetic field;

• The second, corresponding to the SU(3)×SU(2)×U(1)2

SU(2)×U(1)2 asymmetric coset is Kähler and hence supported
by the (chromo-)magnetic field alone.

These two backgrounds are obtained from two different marginal deformations of SU(3).
This Kähler structure has been deeply studied both from the mathematical and physical points of view.

In particular the Kähler form on F3 can be written as in App. C:

K
(
γµ, γ̄µ

)
= log

[
1 + |γ1|2 + |γ3|2

]
+ log

[
1 + |γ2|2 + |γ3 − γ1γ2|2

]
. (4.39)

It is immediate to show that this manifold is Einstein and in particular its Ricci scalar is R = 12. Being
Kähler, F3 is torsionless, that means in turn that there is no ns-ns flux8. Moreover there is no dilaton by
construction9. The only other field that supports the background comes from the U(1)2 fibration. Since the
manifold is Kähler it is useful to take advantage of the complex structure and write our background fields
in complex formalism. In these terms the metric is written as

g =
k

2

(
J 1 ⊗ J 1̄ + J 2 ⊗ J 2̄ + 2J 3 ⊗ J 3̄

)
(4.40)

where J i and J̄ ī are the Maurer-Cartan corresponding to positive and negative roots respectively and the
field strength is given by

F a =

√
k

2kg
faµρ̄C

ρ̄σRσν̄J µ ∧ J ν̄ (4.41)

where C is the following tensor

C =
∑

α

J α ⊗ J ᾱ . (4.42)

In Sect. B.2 we show that the metric and (chromo)magnetic field solve the first order in α′ equations
of motion.

8 To be precise one could define a B field but this would have to be closed.
9 The dilaton would basically measure the difference between the asymmetric coset volume form and the homogeneous space

one as it is shown in [29].
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5 Exact construction: partition functions

In this section we will compute the one-loop partition functions for the various asymmetric deformations
leading to geometric cosets. We consider the part of the partition function of the cft affected by the
deformation. We have holomorphic supersymmetric characters and anti-holomorphic bosonic characters of
the affine Lie algebra ĝk, times some anti-holomorphic fermionic characters from the gauge sector

Z

[
a; {h}
b; {g}

]

=
∑

Λ,Λ̄

MΛΛ̄χΛ(τ)

(
ϑ
[
a
b

]
(τ)

η(τ)

)dim(g)/2

χ̄Λ̄
∏

�

ϑ̄

[
h�
g�

]

(5.1)

where (a, b) and (h�, g�) are the spin structures of the (left and right) worldsheet fermions. Useful formulas
about characters are provided in appendix D. Starting from the cfts defined by these partition functions
we will perform the asymmetric deformation that has been discussed in the previous sections from the
geometrical point of view.

5.1 The SU(3)/U(1)2 flag space CFT

The partition function for the asymmetric deformation of SU(2) has already been given in [5]. We can
hence begin with the next non-trivial example of SU(3). In this case we will compare explicitly two
possible constructions, the Kazama-Suzuki method and the direct deformation along the Cartan torus to
show that they give the two inequivalent metrics on the geometric coset.

5.1.1 The Kazama-Suzuki decomposition of SU(3)

We would like to decompose our wzw model in terms of Kazama-Suzuki (ks) cosets, which are conformal
theories with extended N = 2 superconformal symmetry [22,27].

The simplest of those models are theN = 2 minimal models that are given by the quotient: SU(2)k−2 ×
SO(2)1/U(1)k, and their characters come from the branching relation

χjk−2Ξ
s2
2 =

∑

m∈Z2k

Cj (s2)
m

Θm,k

η
. (5.2)

For convenience, we write the contribution of the worldsheet fermions in terms of SO(2n)1 characters, see
appendix D.

Similarly it is possible to construct an N = 2 coset cft from SU(3) [22,27]:10

SU(3)k−3 × SO(4)1
SU(2)k−2 × U(1)3k

. (5.3)

The characters of this theory are implicitly defined by the branching relation

χΛ
k−3 Ξs44 =

k−2∑

2j=0

∑

n∈Z6k

CΛ (s4)
j n χjk−2

Θn,3k

η
. (5.4)

Therefore combining the two branching relations, we obtain the decomposition of the SU(3) supersym-
metric wzw model in terms of N = 2 ks models

χΛ
k−3 Ξs44 Ξs22 =

∑

j,m,n

CΛ (s4)
j n Cj (s2)

m

Θm,k

η

Θn,3k

η
. (5.5)

10 According to our conventions, the weights of a U(1) at level k are m2/4k, m ∈ Z2k .
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This decomposition follows the following pattern

SU(3)k−3×SO(8)1 → SU(3)k−3 × SO(4)1
SU(2)k−2 × U(1)3k

× SU(2)k−2 × SO(2)1
U(1)k

×U(1)3k×U(1)k×SO(2)1 (5.6)

and we shall perform the deformation on the left lattice of U(1)3k ×U(1)k. However the deformation will
also act on an appropriate sub-lattice of the right-moving gauge sector. The last SO(2)1 factor corresponds
to the fermions which are neutral in the process so they won’t be considered afterwards.

5.1.2 The gauge sector

To construct the model we assume that the gauge sector of the heterotic strings contain an unbrokenSO(6)1,
whose contribution to the partition function is, written in terms of SO(6)1 free fermionic characters Ξ̄s̄66 ,
see App. D. Since we decompose the characters of the left-moving sector according to eq. (5.6), a natural
choice for the action of the deformation in the right-moving gauge sector is to use a similar Kazama-Suzuki
decomposition, but for k = 3, in which case the bosonic cft is trivial

SO(8)1 → SO(4)1
SU(2)1 × U(1)9

× SU(2)1 × SO(2)1
U(1)3

× U(1)3 × U(1)1 × SO(2)1 . (5.7)

Since as quoted previously two fermions – the SO(2)1 factor – are neutral it is enough that the gauge sector
contains an SO(6)1 subgroup. To achieve this decomposition, first we decompose the SO(6)1 characters
in terms of SO(4)1 × SO(2)1

Ξ̄s̄66 =
∑

s̄4,s̄2∈Z4

C [s̄6; s̄4, s̄2] Ξ̄s̄44 Ξ̄s̄22 (5.8)

where the coefficients of the decomposition SO(6) → SO(4) × SO(2) are either zero or one. And then
we perform a coset decomposition for the SO(4)1 characters

Ξ̄s̄44 =
∑

�=0,1

∑

u∈Z18

�̄s̄4
� uχ̄

� Θ̄u,9

η̄
(5.9)

in terms of SU(2)1 characters χ̄� and U(1) characters Θ̄u,9. It defines implicitly the coset characters �̄s̄4
� u

of SO(4)1/SU(2)1 × U(1)9. Then the SU(2)1 × SO(2)1 characters are decomposed as

χ̄�Ξ̄s̄22 =
∑

v∈Z6

�̄�,s̄2
v

Θ̄v,3

η̄
, (5.10)

in terms of coset characters of SU(2)1 ×SO(2)1/U(1)3. So putting together these branching relations we
have the following Kazama-Suzuki decomposition for the free fermions of the gauge sector

Ξ̄s̄66 =
∑

s̄4,s̄2∈Z4

∑

�=0,1

∑

u∈Z18

∑

v∈Z6

C [s̄6; s̄4, s̄2] �̄s̄4
� u �̄

�,s̄2
v

Θ̄u,9

η̄

Θ̄v,3

η̄
. (5.11)

5.1.3 The deformation

Now we are in position to perform the asymmetric deformation adding a magnetic field to the model. The
deformation acts on the following combination of left and right theta functions

Θn,3k Θ̄u,9 × Θm,kΘ̄v,3 . (5.12)
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As for the case of SU(2) [5], we have to assume that the level obeys the condition

√
k

3
= p ∈ N , (5.13)

to be able to reach the geometric coset point in the moduli space of cft. Then we have to performO(2, 2,R)
boosts in the lattices of the U(1)’s, mixing the left Cartan lattice of the super-wzw model with the right
lattice of the gauge sector. These boosts are parameterized in function of the magnetic fields as

cosh Ωa =
1

1 − 2h2
a

, a = 1, 2 . (5.14)

Explicitly we have

∑

N1,N2∈Z

q3k(N1+ m
6k )

2

qk(N2+ n
2k )

2

×
∑

f1,f2∈Z

q̄9(f1+
u
18 )2

q̄3(f2+
v
6 )2

→
∑

N1,N2,f1,f2∈Z

q
9
[
p
(
N1+ m

18p2

)
cosh Ω1+(f1+ u

18 ) sinh Ω1

]2

q
3
[
p
(
N2+ n

6p2

)
cosh Ω2+(f2+ v

6 ) sinh Ω2

]2

× q̄
9
[
(f1+ u

18 ) cosh Ω1+p
(
N1+ m

18p2

)
sinh Ω1

]2

q̄
3
[
(f2+ v

6 ) cosh Ω2+p
(
N2+ n

6p2

)
sinh Ω2

]2

. (5.15)

After an infinite deformation, we get the following constraints on the charges

m = p (18µ− u) , µ ∈ Zp , (5.16a)

n = p (6ν − v) , ν ∈ Zp , (5.16b)

and the U(1)2 cft that has been deformed marginally decouples from the rest and can be safely removed.
In conclusion, the infinite deformation gives

Z
(s4,s2;s̄6)
F3

(τ) =
∑

Λ

∑

j

∑

µ,ν∈Zp

∑

s̄4,s̄2∈Z4

C [s̄6; s̄4, s̄2]

∑

�=0,1

∑

u∈Z18

∑

v∈Z6

CΛ (s4)
j , p(18µ−u) Cj (s2)

p(6ν−v) × χ̄Λ
k−3 �̄

s̄4
4; �u �̄

�,s̄2
v (5.17)

where the sum over Λ, j runs over integrable representations, see appendix D. This is the partition function
for the SU(3)/U(1)2 coset space. The fermionic charges in the left and right sectors are summed according
to the standard rules of Gepner heterotic constructions [21]. The modular properties of this partition function
are the same as before the deformation, concerning the Z4 indices of the worldsheet fermions.

5.1.4 Alternative approach: direct abelian coset

Here we would like to take a different approach, by deforming directly the Cartan lattice of ŝu3 without
decomposing the left cft in terms of ks N = 2 theories. As explained in the App. D, it is possible to
perform a generalized (super)parafermionic decomposition of the characters of the ŝu3 super-algebra at
level k (containing a bosonic algebra at level k − 3) w.r.t. the Cartan torus

χΛ

(
ϑ
[
a
b

]

η

)dim(j)/2

=
∑

λ∈M∗ mod kM

PΛ
λ

[
a

b

]
Θλ,k

ηdim(k) (5.18)
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where the theta function of the ŝu3 affine algebra reads, for a generic weight λ = miλ
i
f (see App. D):

Θλ,k =
∑

γ∈M+ λ
k

q
k
2 κ(γ,γ) =

∑

N1,N2∈Z

q

k
2

∥∥∥∥∥N
1α1+N2α2+

m1λ
1
f+m2λ

2
f

k

∥∥∥∥∥
2

. (5.19)

To obtain an anomaly-free model it is natural to associate this model with an abelian coset decomposition of
an SU(3)kg current algebra made with free fermions of the gauge sector. Thus if the gauge group contains
e.g. an SU(3)1 unbroken factor their characters can be decomposed as

χ̄Λ̄ =
∑

λ̄=n̄iλif ∈ M∗ mod M

�̄Λ̄
λ̄ Θ̄λ̄ . (5.20)

Again we will perform the asymmetric deformation as a boost between the Cartan lattices of the left ŝu3
algebra at level k and the right ŝu3 lattice algebra at level one coming from the gauge sector. So after the
infinite deformation we will get the quantization condition

√
k = p and the constraint

λ+ pλ̄ ≡ 0 mod pM =: pµ , µ ∈ M . (5.21)

So we get a different result compared to the Kazama-Suzuki construction. It is so because the constraints
that we get at the critical point force the weight lattice of the ŝu3 at level k to be projected onto p times
the ŝu3 weight lattice at level one of the fermions. This model does not correspond to a Kählerian manifold
and should correspond to the SU(3)-invariant metric on the flag space. With the ks method we get instead
a projection onto p times a lattice of ŝu3 at level one which is dual to the orthogonal sublattice defined by
α1Z+(α1 +2α2)Z – in other words the lattice obtained with the Gell-Mann Cartan generators. In this case
it is possible to decompose the model in ks cosets models corresponding to Hermitean symmetric spaces.11

We have seen in Sect. 4 that, in the gauging approach, ones obtains the Kähler metric automatically when
one starts from the SU(2) fibration over SU(3)/SU(2) rather than from the wzw model SU(3). It is now
very easy to understand why it is the case. Indeed once the SU(2) has been taken out of the SU(3), the
only U(1) that can be gauged (or deformed) is the U(1) orthogonal to the root α1 of the SU(2) subalgebra,
thus must be along α1 + 2α2. This allows to decompose the abelian coset into ks models for Hermitean
symmetric spaces, and the model corresponds to the Kählerian metric on the flag space.

5.2 Generalization

The previous construction can be easily generalized to any affine Lie algebra, but the formalism gets a little
bit bulky. We will consider separately all the families of simple Lie algebras, since the construction differ
significantly. We will mainly focus below on the ks decomposition method.

5.2.1 An algebras

For anSU(n+1)wzw model we use the following decomposition in terms ofN = 2 Kazama-Suzuki mod-
els:

SU(n+ 1)k−n−1 × SO(n2 + 2n)1

→ SU(n+ 1)k−n−1 × SO(2n)1
SU(n)k−n × U(1)n(n+1)k/2

× SU(n)k−n × SO(2(n− 1))1
SU(n− 1)k−n+1 × U(1)(n−1)nk/2

×. . .× SU(2)k−2 × SO(2)1
U(1)k

× SO(n)1 × U(1)n(n+1)k/2 × U(1)(n−1)nk/2 × . . .× U(1)k . (5.22)

11 For the symmetrically gauged wzw models, this has been studied in [30].
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So the left worldsheet fermions of SO(n2 + 2n)1 are decomposed into

SO(n2 + 2n) → SO(2n)1 × SO(2(n− 1))1 × . . .× SO(2)1 × SO(n)1 (5.23)

where n fermions, corresponding to the SO(n)1 factor, are neutral. The Kazama-Suzuki decomposition of
the characters reads

χΛΞs2n2n Ξs2(n−1)

2(n−1) . . .Ξ
s2
2 Ξs1n =

∑

Λ1,Λ2,...,j

∑

m1∈Zn(n+1)k

∑

m2∈Z(n−1)nk

. . .
∑

mn∈Z2k

(5.24)

CΛ,(s2n)
Λ1,m1

CΛ1,(s2(n−1))
Λ2,m2

. . . Cj,(s2)mn Ξs1n ×
Θ
m1,

n(n+1)k
2

η

Θ
m2,

(n−1)nk
2

η
. . .

Θmn,k

η

where the sum on Λ1,Λ2, . . . , j is taken over integrable representations (see App. D) of SU(n), SU(n −
1), . . . , SU(2). For the right fermions of the gauge sector the story is the same as for the SU(3) example.
We will need n(n+1) free fermions realizing an SO(n2 +n)1 algebra, in order to use the Kazama-Suzuki
decomposition for the An model at level k = n+ 1, such that the bosonic part trivializes

SO(n2 + n)1

→ SO(2n)1
SU(n)1 × U(1) n(n+1)2

2

× SU(n)1 × SO(2(n− 1))1
SU(n− 1)2 × U(1) (n−1)n(n+1)

2

×. . .× SU(2)n−1 × SO(2)1
U(1)n+1

× U(1) n(n+1)2
2

× U(1) (n−1)n(n+1)
2

×. . .× U(1)n+1 . (5.25)

So we can write the decomposition in terms of coset characters as

Ξ̄s̄n(n+1)

n(n+1) =
∑

s̄2n,s̄2(n−1)...s̄2∈Z4

C
[
s̄n(n+1); s̄2n, s̄2(n−1), . . . , s̄2

] ∑

u1∈Zn(n+1)2

∑

u2∈Z(n−1)n(n+1)

. . .
∑

un∈Z2(n+1)

�̄
s̄n(n+1)

Λ̄1, u1
�̄Λ̄1, s̄2n

Λ̄2,u2
. . . �̄j, s̄2

un ×
Θ
u1,

n(n+1)2
2

η̄

Θ
u2,

(n−1)n(n+1)
2

η̄
. . .

Θun,n+1

η̄
. (5.26)

For the left coset to exist one has to assume the following constraint on the level of the An affine algebra
√

k

n+ 1
= p ∈ Z . (5.27)

Then the decomposition can be carried out straightforwardly, by mixing the lattices of the holomorphic
theta function for the decomposition (5.24) and the decomposition (5.25). We get the following constraints






m1 = p
[
n(n+ 1)2µ1 − u1

]
, µ1 ∈ Zp ,

m2 = p [(n− 1)n(n+ 1)µ2 − u2] , µ2 ∈ Zp ,

. . .

mn = p [2(n+ 1)µn − un] , µn ∈ Zp .

(5.28)

So at the end we can remove the U(1)n free cft contribution and we get the following “partition
function” for the SU(n+ 1)/U(1)n left coset, with N = 2 worldsheet superconformal symmetry

Z
(s2n,...,s2;s̄n(n+1))
Fn+1

(τ)

=
∑

Λ

∑

Λ1,Λ2,...,j

∑

m1∈Zn(n+1) k

∑

m2∈Z(n−1)nk

. . .
∑

mn∈Zk
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∑

s̄2n,s̄2(n−1)...s̄2∈Z4

C
[
s̄n(n+1); s̄2n, s̄2(n−1), . . . , s̄2

] ∑

u1∈Zn(n+1)2

∑

u2∈Z(n−1)n(n+1)

. . .
∑

un∈Z2(n+1)

∑

µ1,...,µn∈Zp

CΛ, (s2n)
Λ1, p[n(n+1)2µ1−u1]

CΛ1, (s2(n−1))
Λ2, p[(n−1)n(n+1)µ2−u2]

. . . Cj, (s2)p[2(n+1)µn−un]

× χ̄Λ�̄
s̄n(n+1)

Λ̄1, u1
�̄Λ̄1, s̄2n

Λ̄2,u2
. . . �̄j, s̄2

un . (5.29)

As in the previous example this characters combination behaves covariantly under modular transformation,
i.e. is modular invariant up to the transformation of the fermionic indices {si} and s̄n(n+1). The modular
invariance of the complete heterotic string background will be ensured by an appropriate Gepner construc-
tion.

Now let us consider the other simple Lie algebras. For sake of brevity we will only sketch the method,
which is quite parallel to the present case.

5.2.2 Bn algebras

In this case, the relevant Kazama-Suzuki N = 2 coset model is

SO(2n+ 1)k−2n+1 × SO(4n− 2)1
SO(2n− 1)k−2n+3 × U(1)2k

(5.30)

therefore the decomposition in N = 2 models of the group manifold is

SO(2n+ 1)k−2n+1 × SO(n(2n+ 1))1

→ SO(2n+ 1)k−2n+1 × SO(4n− 2)1
SO(2n− 1)k−2n+3 × U(1)2k

× SO(2n− 1)k−2n+3 × SO(4n− 6)1
SO(2n− 3)k−2n+5 × U(1)2k

× . . .× SO(3)k−1 × SO(2)1
U(1)2k

× SO(n)1 × (U(1)2k)
n
. (5.31)

So there are no specific constraints on the right fermions of the gauge sector. We only need to pick up
n complex fermions with arbitrary boundary conditions, realizing an [SO(2)1]

n algebra12. The level of
the SO(2n + 1) has to be quantized as

√
k ∈ N. Under this condition the deformation can be carried

out straightforwardly.

5.2.3 Cn algebras

We consider here the ks cosets

Sp(2n)k−n−1 × SO(n(n+ 1))1
SU(n)2k−n × U(1)nk

. (5.32)

So apart from the first step the decomposition follows the pattern for An algebras

Sp(2n)k−n−1 × SO(n(2n+ 1))1

→ Sp(2n)k−n−1 × SO(n(n+ 1))1
SU(n)2k−n × U(1)nk

× SU(n)2k−n × SO(2(n− 1))1
SU(n− 1)2k−n+1 × U(1)(n−1)nk

12 Of course this algebra may be enhanced in the specific model at hand but this is not necessary. Note also that there is another
construction when ones starts with and SO(2n2)1 algebra in the gauge sector and decompose it in terms of the Bn Kazama-
Suzuki model at level 2n− 1.
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× . . .× SU(2)2k−2 × SO(2)1
U(1)2k

× SO(n)1 × U(1)nk × U(1)(n−1)nk × U(1)(n−2)(n−1) k × . . .× U(1)2k . (5.33)

Then one need in the gauge sector an SO(2n2)1 algebra that will be split according to the purely fermionic
Kazama-Suzuki decomposition for Cn, together with the quantization condition

√
k

n+ 1
∈ N . (5.34)

Then the deformation will lead to the partition function for the abelian coset space.

5.2.4 Dn algebras

We consider here the ks cosets

SO(2n)k−2n+2 × SO(n(n− 1))1
SU(n)k−n × U(1)2nk

. (5.35)

This case is very close to the last one. We have the decomposition

SO(2n)k−2n+2 × SO(n(2n− 1))1

→ SO(2n)k−2n+2 × SO(n(n− 1))1
SU(n)k−n × U(1)2nk

× SU(n)k−n × SO(2(n− 1))1
SU(n− 1)k−n+1 × U(1)(n−1)nk/2

× . . .× SU(2)k−2 × SO(2)1
U(1)k

× SO(n)1 × U(1)2nk × U(1)(n−1)nk/2 × U(1)(n−2)(n−1)k/2 × . . .× U(1)k . (5.36)

So the fermions of the gauge sector have to realize an SO[2n(n− 1)]1 algebra, together with the quantiza-
tion condition

√
k

2n− 2
∈ N . (5.37)

5.2.5 Exceptional algebras

The two exceptional algebras corresponding to wzw models that can be decomposed into ks models are
E6 and E7. In the first case, we have the decomposition

(E6)k−12 × SO(78)1

→ (E6)k−12 × SO(32)1
SO(10)k × U(1)6k

× SO(10)k × SO(20)1
SU(5)k+3 × U(1)10(k+8)

× SU(5)k+3 × SO(8)1
SU(4)k+4 × U(1)10(k+8)

× . . .× SU(2)k+6 × SO(2)1
U(1)k+8

× SO(6)1 × U(1)6k × U(1)10(k+8)

× U(1)10(k+8) × U(1)6(k+8) × U(1)3(k+8) × U(1)k+8 . (5.38)

However we would need an SO(72)1 algebra from the gauge sector, which doesn’t “fit” into the SO(32)
or E8 ×E8 algebra of the heterotic strings. The same holds fo E7; in this case we have the decomposition

(E7)k−18 × SO(133)1 → (E7)k−18 × SO(54)1
(E6)k × U(1)3k

× (E6)k × SO(32)1
SO(10)k+12 × U(1)6(k+12)

× . . . . (5.39)
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5.3 Kazama-Suzuki decomposition vs. abelian quotient

In this section we would like to stress the ambiguity in defining an abelian coset of wzw models. We will
consider theAn case in the discussion, although it’s pretty much the same for the other classical Lie algebras.

An abelian super-cosetG×SO(#g−d)/U(1)d, (with ĝ at level k−g∗) must be supplemented with the
definition of the action of the abelian subgroup in g, corresponding to a choice of a particular sub-lattice of
Γ ∈

√
kM (these issues have been discussed in [30] for symmetric supercosets of type II superstrings). In

our construction, the left-coset structure will require that, in order to achieve modular invariance, the lattice
behaves covariantly as some combination of right-moving fermions of the gauge sector of the heterotic
string. It will be possible only if the level of the ĝ affine algebra obeys a special quantization condition.
In the ks construction we define with these right-moving fermions an orthogonal lattice; therefore we
have also to choose an orthogonal sub-lattice of the root lattice for the wzw model in order to make this
construction possible.

For the An algebra, the relevant orthogonal basis is written as follows13:





ν1 =
√
kα1 (ν1, ν1) = 2k ,

ν2 =
√
k (α1 + 2α2) (ν2, ν2) = 6k ,

ν3 =
√
k (α1 + 2α2 + 3α3) (ν3, ν3) = 12k ,

. . .

νn =
√
k (α1 + 2α2 + . . .+ nαn) (νn, νn) = n (n+ 1) k ,

(5.40)

and is of course a sub-lattice of the complete root lattice. More precisely it corresponds to

√
kΓ =

√
k

n⊕

a=1

aZαa ⊂
√
k

n⊕

a=1

Zαa . (5.41)

Then the associated theta-functions of ŝun+1can be written as a product of usual ŝu2 theta functions

Θ(Γ)
λ,k =

n∏

a=1

Θma,a(a+1)k/2 with λ =
∑

maν
∗
a . (5.42)

This choice of orthogonal basis allows actually to decompose the abelian coset into a chain of N = 2
Kazama-Suzuki models. Indeed we have to choose the lattice of the U(1) in SU(n + 1)/SU(n) × U(1)
to be Zνn, such that it will be orthogonal to the root lattice of sun−1 given by

∑n−1
a=1 Zαa, thus allowing to

gauge it.
The left coset corresponding to this choice of abelian subgroup is obtained by a marginal deformation

with the operator
⊕

a(νa,h). Its partition function is composed of the coset characters obtained through
the branching relation

χΛ
n2+n∏

r=1

Θsr,2 =
∑

λ=λaν∗
a ∈ Γ∗ mod kΓ

C
Λ (s1,...,sn2+n)
λ

n∏

a=1

Θλa,a(a+1)k/2 . (5.43)

On the other hand, in the standardN = 1 abelian coset construction the characters of the affine Lie algebra
are decomposed according to the full

√
kM lattice. The left coset is obtained by a marginal deformation

with the operator ⊕a(αa,h). The relevant coset characters are given by

χΛ
n2+n∏

r=1

Θsr,2 =
∑

λ=∈M∗ mod kM

C̃
Λ (s1,...,sn2+n)
λ Θλ,k . (5.44)

13 In the case of A2, we find the Gell-Mann matrices of SU(3) (C.10).
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As in the A3 case, we can show that the left cosets corresponding to these two classes of models are
different. They are in correspondence with the different possible metrics (Kählerian and non-Kählerian) on
asymmetric cosets spaces discussed in appendix A.

6 New linear dilaton backgrounds of heterotic strings

These left-coset superconformal field theories can be used to construct various supersymmetric exact string
backgrounds. The first class are generalizations of Gepner models [21] and Kazama-Suzuki construc-
tions [22] using the left cosets as building blocks for the internal scft. For instance to construct a four-
dimensional string theory one takes a product of left cosets such that the central charges add up to c = 9.
This has already been considered in [3] for the S2 coset14 but can be extended using the new theories con-
structed above. In this case there is no geometric interpretation from the sigma model point of view since
these theories have no semi-classical limit. Indeed the levels of the cosets are frozen because their central
charge must add up to c = 9 (in the case of four-dimensional compactification). However we expect that
they correspond to special points in the moduli spaces of supersymmetric compactifications, generalizing
the Gepner points of the CY manifolds.

Another type of models are the left cosets analogues of the NS5-branes solutions [9, 10] and of their
extensions to more generic supersymmetric vacua with a dilaton background. It was shown in [13] that
a large class of these linear dilaton theories are dual to singular CY manifolds in the decoupling limit.
An extensive review of the different possibilities in various dimensions has been given in [30] with all
the possible G/H cosets. The left cosets that we constructed allow to find new solutions of this type in
heterotic strings, with a different geometrical interpretation since our cosets differ from ordinary gauged
wzw model. However the superconformal structure of the left sector of our models is exactly the same as for
the corresponding gauged wzw – except that the values of the N=2 R-charges that appear in the spectrum
are constrained – so we can carry over all the known constructions to the case of the geometric cosets.

In the generic case these constructions involve non-abelian cosets, and as we showed the asymmetric
deformations and gaugings apply only to the abelian components. Thus in general we will get mixed models
which are gauged wzw models w.r.t. the non-abelian part of H and geometric cosets w.r.t. the abelian
components ofH . Below we will focus on purely abelian examples, i.e. corresponding to geometric cosets.
The dual interpretation of these models, in terms of the decoupling limit of some singular compactification
manifolds, is not known. Note however that by construction there are about

√
k times less massless states

in our models than in the standard left-right symmetric solutions. Therefore they may correspond to some
compactifications with (NS-NS and magnetic) fluxes, for which the number of moduli is reduced. It would
be very interesting to investigate this issue further.

Six-dimensional model. We consider here the critical superstring background

R
5,1 × SL(2,R)k+2 × SO(2)1

U(1)k
×
[
U(1)k\SU(2)k−2 × SO(2)1

]
(6.1)

the second factor being a left coset cft as discussed in this paper. This is the direct analogue of the five-brane
solution, or more precisely of the double scaling limit of NS5-branes on a circle [12,31], in the present case
with magnetic flux. This theory has N = 2 charges but, in order to achieve spacetime supersymmetry one
must project onto odd-integral N = 2 charges on the left-moving side, as in the type II construction [31].
This can be done in the standard way by orbifoldizing the left N = 2 charges of the two cosets.

14 Only in the simplest case kg = 2.
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1060 D. Israël et al.: Heterotic strings on homogeneous spaces

Four-dimensional model. A simple variation of the six-dimensional theory is given by

R
3,1 ×

SL(2,R)k/2+2 × SO(2)1
U(1)2k

×
[
U(1)k\SU(2)k−2 × SO(2)1

]
×
[
U(1)k\SU(2)k−2 × SO(2)1

]

(6.2)

which is the magnetic analogue of the (deformation of) intersecting five-branes solution. Also here an
orbifoldization of the left N = 2 charges is needed to achieve space-time supersymmetry.

Three-dimensional models: the flagbrane. We can construct the following background of theG2 holon-
omy type, as in the case of symmetric coset [32]

R
2,1 × RQ ×

[
U(1)k × U(1)3k\SU(3)k−3 × SO(6)1

]
(6.3)

and the non-trivial part of the metric is

ds2 = − dt2 + dx2 + dy2 +
k

4r2
[
dr2 + 4r2 ds2(SU(3)/U(1)2)

]
. (6.4)

Without the factor of four it would be a direct analogue of the NS5-brane, being conformal to a cone over
the flag space.

Another possibility in three dimensions is to lift theSL(2,R)/U(1) coset to the group manifoldSL(2,R).
In this case, as for the standard gauged wzw construction [33] we will get the following anti-de Sitter back-
ground

SL(2,R)k/4+2 ×
[
U(1)3k\SU(3)k−3 × SO(6)1

]
(6.5)

and the left moving sector of this worldsheet cft allows to construct an N = 3 superconformal algebra
in spacetime.

Two-dimensional model. In this case we can construct the background

R
1,1 ×

SL(2,R) k+2
4

× SO(2)1
U(1)4k

× U(1)3k\SU(3)k−3 × SO(6)1

U(1)k
(6.6)

which corresponds in the classification of [30] to a non-compact manifold of SU(4) holonomy once the
proper projection is done on the left N = 2 charges. This solution is asymptotically conformal to a cone
over the Einstein space SU(3)/U(1). Using the same methods are for the NS5-branes in [31], we can show
that the full solution corresponding to the model (6.6) can be obtained directly as the null super-coset

SL(2,R)k/4 × U(1)\SU(3)k

U(1)L × U(1)R
(6.7)

where the action is along the elliptic generator in the SL (2,R), with a normalization Tr[(t3)2] = −4, and
along the direction α1 +2α2 in the coset space U(1)\SU(3), with a canonical normalization. For r → ∞ the
solution asymptotes the cone but when r → 0 the strong coupling region is smoothly capped by the cigar.
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A Coset space geometry

Coset spaces have been extensively studied in the mathematical literature of the last fifty years. In this
appendix we limit ourselves to collect some classical results mainly dealing with the geometric interpretation.
In particular we will follow the notations of [34].

Let G be a semisimple Lie group and H ∈ G a subgroup. As in the rest of the paper, upper-case indices
{m,n,o} refer to the whole group (algebra) G, lower-case indices {m,n, o} to the subgroup (subalgebra)
and Greek indices {µ, ν, ω} to the coset.

It is useful to explicitly write down the commutation relations, separating the generators ofH andG/H

[Tm, Tn] = fomnTo , [Tm, Tν ] = fωmνTω , (A.1a)
[
Tµ, Tν

]
= foµνTo + fωµνTω . (A.1b)

Of course there are no fωmn terms since H is a group. G/H is said to be symmetric if fωµν ≡ 0, i.e. if the
commutator of any couple of coset elements lives in the dividing subgroup. In this case a classical theorem
states that the coset only admits one left-invariant Riemann metric that is obtained as the restriction of the
Cartan-Killing metric defined onG (see e.g. [19]). This is not the case whenH is the maximal torus (except
for the most simple case G = SU(2)) and the coset manifold accepts different structures.

Any metric (or, more generally, any degree-2 covariant tensor) on G/H can be put in the form

g = gµν(x)Jµ ⊗ Jν . (A.2)

One can show that the G invariance of g is equivalent to

fκaµgκν(x) + fκaνgκµ(x) = 0 , (A.3)

and the homogeneity imposes

gij = constant . (A.4)

Both conditions are easily satisfied by gµν ∝ δµν (this is the metric onG/H that we obtained in eq. (2.27)).
The Levi-Civita connection 1-forms ωµν of g are determined by

dgµν − ωκµgκν − ωκνgκµ = 0 , (A.5a)

dJµ + ωµν ∧ Jν = 0 , (A.5b)

and are explicitly written in terms of the structure constants as

ωµν = fµaνJ
a +Dµ

ρνJ
ρ (A.6)

where Dµ
ρν can be separated into its symmetric and antisymmetric parts as follows

Dµ
ρν = 1

2 f
µ
ρν +Kµ

ρν , (A.7a)

Kµ
ρν = 1

2

(
gµσfωσρgων + gµσfωσνgωρ

)
. (A.7b)

We can then derive the curvature 2-form Ω = dω + ω ∧ ω

Ωµν =
(
Dρ

σνD
µ
κρ −Dρ

κνD
µ
σρ − faκσf

ν
aν − fρκσD

µ
ρν

) Jκ ∧ Jσ
2

. (A.8)

the Riemann tensor

Rµνκσ = −faκσfµaν − 1
2 f

ρ
κσf

µ
ρν + 1

4 f
ρ
νκf

µ
σρ + 1

4 f
ρ
νσf

µ
κρ + 1

2 f
ρ
νκK

µ
σρ + 1

2 f
ρ
νσK

µ
κρ
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− 1
2 f

µ
ρκK

ρ
σν − 1

2 f
µ
ρσK

ρ
κν − fρκσK

µ
ρν +Kρ

σνK
µ
κρ −Kρ

κνK
µ
σρ (A.9)

and the Ricci tensor

Ricνσ = Rµνµσ = −faµνfµaν − 1
2 f

ρ
µσf

µ
ρν + 1

4 f
ρ
νµf

µ
σρ + 1

2 f
ρ
νµK

µ
σρ + 1

2 f
µ
ρσK

ρ
µν

− 1
2 f

ρ
µσK

µ
ρν − 1

2K
ρ
µνK

µ
σρ . (A.10)

In particular, in the case of gµν = δµν the expressions are greatly simplified because the antisymmetric
part Kµ

νρ vanishes and then the Riemann and Ricci tensors are respectively given by

Rµνκσ = −faκσfµaν − 1
2 f

ρ
κσf

µ
ρν + 1

4 f
ρ
νκf

µ
σρ + 1

4 f
ρ
νσf

µ
κρ , (A.11)

Ricνσ = −faµσfµaν − 1
4 f

ρ
µσf

µ
ρν . (A.12)

Another fact that we used in the paper about G/H cosets is a construction due to Borel [17, 35] of a
Kähler structure over G/T where T is the maximal torus. First of all we remark that such a coset can be
given a C structure when associating holomorphic and anti-holomorphic sectors to positive and negative
roots respectively. One can then show that the (1, 1) form defined as

ω =
ı

2

∑

α>0

cαJ α ∧ J ᾱ (A.13)

is closed if and only if for each subset of roots {α, β, γ} such as α = β + γ, the corresponding real
coefficients cα satisfy the condition cα = cβ + cγ . Of course this is equivalent to say that the tensor

g =
∑

α>0

cαJ α ⊗ J ᾱ (A.14)

is a Kähler metric on G/T .
In particular, if we consider the SU(3) group, for the su(3) algebra we can choose the Gell-Mann λ

matrices (C.10) as a basis. In this case if we divide by the U(1)×U(1) subgroup generated by 〈λ3, λ8〉, the
most general metric satisfying (A.3) has the form g = diag {a, a, b, b, c, c} i.e. SU(3)/U(1)×U(1) admits
a three parameter family of metrics. Among them, the moduli space lines a = b = c (the metric obtained
in Sect. 3.2) and a = b = c/2 (the metric in Sect. 4.2) represent Einstein structures (with Ricci scalar 15/a
and 12/a respectively). In both cases the manifold can be endowed with complex structures (positive and
negative roots respectively generating the holomorphic and anti-holomorphic sectors) but only the latter
admits a Kähler structure (in this way we obtain the so-called flag space F3).

B Equations of motion

B.1 Explicit derivation of some terms

In this appendix we explicitly derive the expressions for the F aµρF a
ρ
ν and HµρσH

ρσ
ν terms appearing in

the equations of motion (2.32b).

Gauge field strength. Consider the term coming from the gauge field strength. First of all we can build
an orthonormal basis out of the Weyl-Cartan basis by complexifying the Cartan generators and combining
opposite ladder operators as follows






T a = ıHa ,

T 2µ−1 = ı

∣
∣αµ
∣
∣

2
(
Eαµ − E−αµ) ,

T 2µ =

∣
∣αµ
∣
∣

2
(
Eαµ + E−αµ) ,

(B.1)
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if we write explicitly the
(
F 2
)
µν

term as follows

(
F 2)

µν
∝
∑

m,ω

fmνωf
m
πω =

∑

m,ω

κ (Tm, [T ν , Tω])κ (Tm, [Tπ, Tω]) . (B.2)

We can see why rewriting everything this choice of basis simplifies the calculation: the only commutators
that will give a non-vanishing result when projected on the Cartan generators are the ones involving opposite
ladder operators15, that is

[
T 2µ−1, T 2µ

]
which are explicitly given by

[
T 2µ−1, T 2µ] = ı

∣
∣αµ
∣
∣2

4
2
[
Eαµ , E−αµ] = αµ · (ıH) , (B.4)

this means that




κ (Tm, [T ν , Tω]) = αµ

∣
∣m δν+1,ω if ν = 2µ− 1 ,

κ (Tm, [T ν , Tω]) = −αµ
∣
∣m δν−1,ω if ν = 2µ ,

(B.5)

putting this back in eq. (B.2) we find

∑

m,ω

fmνωf
m
πω = δνπ






∣
∣α(ν+1)/2

∣
∣2 if ν is odd ,

∣
∣αν/2

∣
∣2 if ν is even ,

(B.6)

if g is simply laced then we can fix the normalizations to
∣
∣αµ
∣
∣2 = ψ2 ≡ 2 and the above expression is

greatly simplified

∑

m,ω

fmνωf
m
πω = 2δνπ (B.7)

and by applying the right normalizations (see eq. (2.33)) we find that for a general algebra

Fmνωg
ω�Fmπ� =

4
kg
δνπ






∣
∣α(ν+1)/2

∣
∣2 if ν is odd ,

∣
∣αν/2

∣
∣2 if ν is even ,

(B.8)

and for a simply laced one

Fmνωg
ω�Fmπ� =

8
kg
δνπ . (B.9)

15 We remember that the Cartan-Weyl basis is defined by

[Hm, Hn] = 0 , (B.3a)

[Ha, Eαµ ] = αµ|a Eαµ , (B.3b)

[Eαµ , Eαν ] =






Nµ,νEαµ+αν if αµ + αν ∈ ∆ ,

2
|αµ|2 αµ ·H if αµ = −αν ,

0 otherwise .

(B.3c)
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NS-NS flux. From the definition of Casimir of the algebra we easily derive that

Q = −
∑

m

∑

o

fm
nof

m
op = 2g∗δnp (B.10)

where g∗ is the dual Coxeter number. Limit n and p to j (and call them ν and π) and separate the two sums
(that span over the entire algebra) into the components over j and k

∑

m∈k




∑

o∈k

fmνof
m
oπ +

∑

ω∈j

fmνωf
m
ωπ



+
∑

µ∈j




∑

o∈k

fµνof
µ
oπ +

∑

ω∈j

fµνωf
µ
ωπ



 = −2g∗δνπ (B.11)

now,

• the term with two elements in the Cartan is identically vanishing fmνo ≡ 0 (for two generators in k
always commute)

• the terms with one component in k can be collected an interpreted as field strengths
∑

m,ω

fmνωf
m
ωπ +

∑

o,µ

fµνof
µ
oπ (B.12)

and at the end of the day
∑

µ,ω

fνµωfπµω = 2g∗δνπ − 2
∑

m,ω

fmνωf
m
πω (B.13)

so that for a general algebra, using (B.6)

∑

µ,ω

fνµωfπµω = 2g∗δνπ − 2δνπ






∣
∣α(ν+1)/2

∣
∣2 if ν is odd ,

∣
∣αν/2

∣
∣ if ν is even ,

(B.14)

that reduces in the simply laced case to
∑

µ,ω

fνµωfπµω = 2 (g∗ − 2) δνπ (B.15)

and with the proper normalizations

Hνµωg
µνgω�Hπν� = 2g∗δνπ − 2δνπ






∣
∣α(ν+1)/2

∣
∣2 if ν is odd ,

∣
∣αν/2

∣
∣2 if ν is even ,

(B.16)

which reads in the simply laced case

Hνµωg
µνgω�Hπν� = 2 (g∗ − 2) δνπ . (B.17)

B.2 Equations of motion for the F3 flag space

To verify that the background fields that we obtained in Sect. 4.2 solve the equations of motion at first order
in α′ it is convenient to consider the complex structure defined on the SU(3)/U(1)2 coset by considering
positive and negative roots as holomorphic and anti-holomorphic generators respectively.

To fix the notation let the two simple roots be

α1 =
[√

2, 0
]
, α2 =

[
−1/

√
2,
√

3/2
]
, (B.18)
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and the third positive rootα3 = α1+α2 =
[
1/

√
2,
√

3/2
]
. We already know that in the complex formalism

the metric is diagonal and the coefficient relative to the non-simple root is given by the sum of the two
others as in eq. (A.14). With the right normalization we have the following metric and Ricci tensor

gµν̄ =
k

2






1
1

2




 , Rµν̄ =






2
2

4




 . (B.19)

To write the structure constants we just have to remember the defining relations for the Cartan–Weyl
basis eq. (B.3): it is immediate to see that f1

µν and f2
µν are non-vanishing only if αµ and αν are opposite

roots (which means in turn that in our complex formalism they are represented by diagonal matrices) and,
given the above choice of roots, we have

f1
µν̄ =






√
2

−1/
√

2
1/

√
2




 , f2

µν̄ =






0 √
3/2 √

3/2




 . (B.20)

Let us now introduce a new tensor C that in this basis assumes the form of the unit matrix (this is indeed
shown to be a tensor in App.A)

Cµν̄ =






1
1

1




 . (B.21)

We can use this tensor to define the U(1)2 gauge field that supports the F3 background as16

F aµν̄ =

√
k

2kg
faµρ̄C

ρ̄σRσν̄ . (B.22)

The only non-trivial equation of motion is βG = 0 (2.32b)

βG = Rµν̄ − kg
4
F aµσ̄g

σ̄ρF aρν̄ (B.23)

in our basis all the tensors are diagonal matrices. For this reason it is useful to pass to matrix notation. Let

G =






1
1

2




 (B.24)

so that the metric and the Ricci tensor are given by g = k
2 G and R = 2G. In this notation the above

equation reads

βG = R − kg
4

2∑

a=1

√
k

2kg
faRg−1

√
k

2kg
faR = R − k

8

2∑

a=1

fa (2G)
(

2
k
G−1

)

faR

= R − 1
2

2∑

a=1

fafaR = 0 , (B.25)

since
∑2
a=1 fafa = 2�3×3 as one can see by direct inspection.

16 One can read this additional term with respect to the expression in eq. (2.28) as a way to keep track of the fact that the embedded
SU(2) subalgebra is at a different level with respect to the remaining currents. Actually this expression can be seen just as a
generalisation of the initial one where we were restricting to cosets in which the currents played the rôle of vielbeins, i.e. in
this formalism the metric was proportional to the unit matrix.
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Fig. 1 Root system for su(3).

C The SU(3) group: an explicit parametrization

In this section we summarize some known facts about the representation of the SU(3) group so to get a
consistent set of conventions.

To obtain the the Cartan-Weyl basis {Ha, E
αj} (defined in eq. (B.3)) for the su(3) algebra we need to

choose the positive roots as follows:

α1 =
[√

2, 0
]
, α2 =

[
−1/

√
2,
√

3/2
]
, α3 =

[
1/

√
2 ,
√

3/2
]
. (C.1)

The usual choice for the defining representation is

H1 =
1√
2






1 0 0
0 −1 0
0 0 0




 , H2 =

1√
6






1 0 0
0 1 0
0 0 −2




 ,

E+
1 =






0 1 0
0 0 0
0 0 0




 , E+

2 =






0 0 0
0 0 1
0 0 0




 , E+

3 =






0 0 1
0 0 0
0 0 0




 ,

(C.2)

and E−
j =

(
E+
j

)t
.

A good parametrisation for the SU(3) group can be obtained via the Gauss decomposition: every matrix
g ∈ SU(3) is written as the product

g = b−db+ (C.3)

where b− is a lower triangular matrix with unit diagonal elements, b+ is a upper triangular matrix with unit
diagonal elements, and d is a diagonal matrix with unit determinant. The element g is written as

g (z1, z2, z3, ψ1, ψ2) = exp
(
z1E

−
1 + z2E

−
3 +

(
z3 − z1z2

2

)
E−

2

)
exp (−F1H1 − F2H2)

× exp
(

w̄1E
+
1 + w̄2E

+
3 +

(

w̄3 − w̄1w̄2

2

)

E+
2

)

exp (ıψ1H1 + ıψ2H2) (C.4)

where zµ are 3 complex parameters, ψi are two real, and F1 and F2 are positive real functions of the zµ’s:






F1 = log f1 = log
(
1 + |z1|2 + |z3|2

)
,

F2 = log f2 = log
(
1 + |z2|2 + |z3 − z1z2|2

)
.

(C.5)
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By imposing g
(
zµ, ψa

)
to be unitary we find that the wµ’s are complex functions of the zµ’s






w1 = − z1+z̄2z3√
f2 ,

w2 =
z̄1z3−z2(1+|z1|2)√

f1
,

w3 = − (z3 − z1z2)
√

f1
f2
,

(C.6)

and the defining element g
(
zµ, ψa

)
can then be written explicitly as

g (z1, z2, z3, ψ1, ψ2)

=






1 0 0
z1 1 0
z3 z2 1











1√
f1

0 0

0
√
f1/f2 0

0 0
√
f2











1 w̄1 w̄3

0 1 w̄2

0 0 1











eıψ1/2 0 0
0 e−ı(ψ1−ψ2)/2 0
0 0 eıψ2/2




 . (C.7)

Now, to build a metric for the tangent space toSU(3)we can define the 1-formΩ(z, ψ) = g−1(z, ψ) dg(z, ψ)
and write the Killing-Cartan metric tensor as gkc = tr

(
Ω†Ω

)
= − tr (ΩΩ) where we have used explicitly

the property of anti-Hermiticity of Ω (that lives in the su(3) algebra). The explicit calculation is lengthy
but straightforward. The main advantage of this parametrization from our point of view is that it allows for
a “natural” embedding of the SU(3)/U(1)2 coset (see e.g. [36] or [37]): in fact in these coordinates the
Kähler potential is

K
(
zµ, z̄µ

)
= log

(
f1
(
zµ
)
f2
(
zµ
))

= log
[(

1 + |z1|2 + |z3|2
)(

1 + |z2|2 + |z3 − z1z2|2
)]

(C.8)

and the coset Kähler metric is hence simply obtained as

gαβ̄ dzα ⊗ dz̄β =
∂2

∂zα∂z̄β
K
(
zµ, z̄µ

)
dzα ⊗ dz̄β . (C.9)

Another commonly used su(3) basis is given by the Gell-Mann matrices

γ1 =
1√
2






0 ı 0
ı 0 0
0 0 0




 , γ2 =

1√
2






0 1 0
−1 0 0
0 0 0




 , γ3 =

1√
2






ı 0 0
0 −ı 0
0 0 0




 ,

γ4 =
1√
2






0 0 ı

0 0 0
ı 0 0




 , γ5 =

1√
2






0 0 1
0 0 0

−1 0 0




 , γ6 =

1√
2






0 0 0
0 0 ı

0 ı 0




 ,

γ7 =
1√
2






0 0 0
0 0 1
0 −1 0




 , γ8 =

1√
6






ı 0 0
0 ı 0
0 0 −2ı






(C.10)

which presents the advantage of being orthonormal κ
(
λi, λj

)
= δij . In this case the Cartan subalgebra is

generated by k = 〈λ3, λ8〉.

D Characters of affine Lie algebras

In this section we will recall some facts about the partition functions and characters of affine Lie algebras.
The characters of an affine Lie algebra ĝ are the generating functions of the weights multiplicities in a given
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irreducible representation of highest weight Λ

chΛ (τ, ν, u) = e−2ıπku
∑

λ̂∈Rep(Λ)

dimVλ̂ exp

{

2ıπτn+
∑

i

νiκ
(
ei, λ̂

)
}

, (D.1)

where dimVλ̂ is the multiplicity of the affine weight λ̂ = (λ, k, n) and {ei} an orthonormal basis of the root
space. In the framework cft we define slightly different characters, weighted by the conformal dimension
of the highest weight of the representation

χΛ (τ, ν, u) = e−2ıπku Trrep(Λ)

[
qL0−c/24e2ıπκ(ν,J )

]
= e2ıπτ κ(Λ,Λ+2ρ)

2(k+g∗) −c/24chΛ (τ, ν, u) (D.2)

where ρ =
∑
α>0 α/2 and g∗ the dual Coxeter number. To each affine weight λ̂ we shall assign a theta-

function as follows

Θλ̂ (τ, ν, u) = e−2ıπku
∑

γ∈Ml+ λ
k

eıπτk κ(γ,γ) e2ıπkκ(ν,γ) (D.3)

with Ml the the long roots lattice. We can write the affine characters in terms of the theta-function with the
Weyl-Kač formula

χΛ (τ, ν, u) =

∑

w∈W

ε(w)Θw(Λ̂+ρ̂) (τ, ν, u)

∑

w∈W

ε(w)Θw(ρ̂) (τ, ν, u)
, (D.4)

W being the Weyl group of the algebra and ε(w) the parity of the element w.
These affine characters are the building blocks of the modular invariant partition function for the wzw

model, since the affine Lie algebra is the largest chiral symmetry of the theory

Z =
∑

Λ,Λ̄

MΛΛ̄χΛ (τ, 0, 0) χ̄Λ̄ (τ̄ , 0, 0) (D.5)

where the sum runs over left and right representations of g with highest weight Λ and Λ̄. The representations
appearing in this partition function are the integrable ones, which are such that

Rep (Λ) integrable ⇐⇒ 2
κ (θ, θ)

[k − κ (Λ, θ)] ∈ N , (D.6)

where θ is the highest root. The matrix MΛΛ̄ is such that the partition function of gk is modular invariant;
at least, the diagonal δΛ,Λ̄ exists since the characters form an unitary representation of the modular group.

In the heterotic strings, the worldsheet has a local N = (1, 0) local supersymmetry so the left algebra is
lifted to a super-affine Lie algebra. However the characters can be decoupled as characters of the bosonic
algebra times characters of free fermions

Z

[
a

b

]

=
∑

Λ,Λ̄

MΛΛ̄χΛ (τ)

(
ϑ
[
a
b

]
(τ)

η (τ)

)dim(g)/2

χ̄Λ̄ (D.7)

where (a, b) are the spin structures of the worldsheet fermions.
The characters of the affine algebras can be decomposed according to the generalized parafermionic

decomposition, by factorizing the abelian subalgebra of the Cartan torus. For example, we can decompose
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the left supersymmetric gk characters in terms of characters of the supersymmetric coset, given by the
following branching relation (see [22])

χΛ

(
ϑ
[
a
b

]

η

)dim(j)/2

=
∑

λ mod (k+g∗)Ml

PΛ
λ

[
a

b

]
Θλ,k+g∗

ηdim(k) (D.8)

in terms of the theta-functions associated to gk.

D.1 The example of SU(3)

In an orthonormal basis, the simple roots of SU(3) are

α1 =
(√

2, 0
)
, α2 =

(
−1/

√
2,
√

3/2
)
. (D.9)

The dual basis of the fundamental weights, defined by
(
λif , αj

)
= δij is given by

λ1
f =

(
1/

√
2, 1/

√
6
)
, λ2

f =
(
0,
√

2/3
)
. (D.10)

As they should the simple roots belong to the weight lattice

α1 = 2λ1
f − λ2

f , α2 = 2λ2
f − λ1

f . (D.11)

The theta function of the ŝu3 affine algebra reads, for a generic weight λ = miλ
i
f :

Θλ,k =
∑

γ∈M
q
k
2 ‖γ+ λ

k ‖2

=
∑

n1,n2

q
k
2

∥∥∥∥n1α1+n2α2+
m1Λ1+m2Λ2

k

∥∥∥∥
2

. (D.12)

So the vector appearing in the theta function is
{√

k
(
2n1 − n2)+

m1√
k

}
e1
2

+
{√

kn2 +
m1 + 2m2

3
√
k

} √
3

2
e2 . (D.13)

D.2 Modular transformations

We have the following modular transformations for the theta-functions

Θλ,k (−1/τ) = (−iτ)dim(k)/2
∣
∣
∣
∣
M∗

kMl

∣
∣
∣
∣

−1/2 ∑

µ∈M∗ mod kMl

e2iπ(λ,µ)/kΘµ,k (τ) , (D.14)

where M∗ is the lattice dual to Ml, |Ml| is the size of the basic cell of Ml and for the affine characters

χΛ (−1/τ) =
∣
∣
∣
∣

M∗

(k + g∗)Ml

∣
∣
∣
∣

−1/2

i|∆+|
∑

Λ′

∑

w∈W
ε(w) e

2iπ
k+g∗ (Λ+ρ)w(Λ′+ρ) χΛ′

(τ) . (D.15)

In this formula, |∆+| is the number of positive roots. From these two formulas we deduce the modular
transformation of the characters of the super-coset under τ → −1/τ :

CΛ
λ

[
a

b

]

(−1/τ) (D.16)

= e
iπ
4 ab dim(j)i|∆+|

∑

µ∈M∗ mod kMl

e2iπ (λ,µ)
k+g∗

∑

Λ′

∑

w∈W
ε(w)e

2iπ
k+g∗ (Λ+ρ)w(Λ′+ρ)CΛ′

µ

[
b

−a

]

(τ) .
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D.3 Fermionic characters

For an even number of fermions it is possible to express the characters in terms of representations of the
SO(2n)1 affine algebra. The characters are labelled by s = (0, 1, 2, 3) for the trivial, spinor, vector, and
conjugate spinor representations

Ξ0
2n =

1
2ηn

[
θ
[0
0

]n
+ θ
[0
1

]n]
trivial ,

Ξ2
2n =

1
2ηn

[
θ
[0
0

]n − θ
[0
1

]n]
vector ,

Ξ1
2n =

1
2ηn

[
θ
[1
0

]n
+ ı−nθ

[1
1

]n]
spinor ,

Ξ3
2n =

1
2ηn

[
θ
[1
0

]n − ı−nθ
[1
1

]n]
conjugate spinor .

(D.17)

Their modular matrices are

T = e−ınπ/12








1 0 0 0
0 −1 0 0
0 0 eınπ/4 0
0 0 0 eınπ/4








(D.18)

and

S = 1
2








1 1 1 1
1 1 −1 −1
1 −1 ı−n −ı−n
1 −1 −ı−n ı−n







. (D.19)
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Abstract An exact heterotic string theory on an AdS2 × S2 background is found
as deformation of an SL (2,R)× SU (2) wzw model. Based on ?.

1. INTRO

Anti de Sitter in three dimensions and S3 are among the most simple
and yet interesting string backgrounds. They are exact solutions to
the string equations beyond the supergravity approximation and, at the
same time, are simple to deal with although non-trivial thanks to the
presence of non-vanishing curvatures. For this reason they constitute an
unique setting in which to analyze AdS/cft correspondence, black-hole
physics, little-string theory.

String propagation in these backgrounds is described in terms of wzw
models for the SL (2,R) and SU (2) groups, hence marginal deformations
of such models allow to study moduli space of the string vacua. In
particular well-known class of marginal deformations for wzw models are
those driven by left–right current bilinears ?; ?. On the other hand S3

and AdS3 are embedded in larger structures so one can consider marginal
deformations where just one of the currents belongs to the SU (2) or
AdS3 algebra, the other belonging to some other U (1) corresponding to
an internal magnetic or electric field.

This kind of deformation generates a continuous line of exact cft’s. In
this note we will show how with an appropriate choice for the deforming
current we obtain a boundary in moduli space and that this boundary
can be given a simple geometric interpretation in terms of the AdS2×S2

near-horizon geometry of the Bertotti-Robinson black hole ?; ?.

1
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2

2. SU (2) ASYMMETRIC DEFORMATION

In the SU (2) case, there exists just one possible choice for the deform-
ing current the two other being related by inner automorphisms, since
the group has rank one, is compact and its Lie algebra simple. Take the
wzw model for SU (2):

SSU(2)k =
1

2π

Z
d2z

(
k

4

`
∂α∂̄α + ∂β∂̄β + ∂γ∂̄γ + 2 cos β ∂α∂̄γ

´
+

3X

a=1

ψa∂̄ψa
)

(1.1)

where ψa are the left-moving free fermions, superpartners of the bosonic
SU(2)k currents, and (α, β, γ) are the usual Euler angles parameterizing
the SU(2) group manifold. The left-moving fermions transform in the
adjoint of SU (2); there are no right-moving superpartners but a right-
moving current algebra of total charge c = 16 can be realized in terms of
right-moving free fermions. This means that we can build a N = (1, 0)
world-sheet supersymmetry-compatible deformation given by:

δSmagnetic =

√
kkGH

2π

∫
d2z

(
J3 + ıψ1ψ2

)
J̄G; (1.2)

where J3 belongs to the SU (2) algebra and J̄g is the current of the
algebra at level kg realized by the right-moving free fermions. An exact
cft is obtained for any value of the deformation parameter H.

2.1 GEOMETRY

These new backgrounds all present a constant dilaton, a magnetic
field, a ns-ns field proportional to the unperturbed one and a metric
retaining a residual SU (2) × U (1) isometry ?. The most remarkable
property is that the deformation line in moduli space has a boundary
corresponding to a critical value of the deformation parameter H 2 =
1/2. At this point the U (1) subgroup decompactifies and the resulting
geometry is the left coset SU (2) /U (1) ∼ S2 which is thus found to be
an exact cft background only supported by a magnetic field (the dilaton
remains constant and ns field vanishes). A geometrical interpretation
for this process can be given as follows: the initial S3 sphere is a Hopf
fibration of an S1 fiber generated by the J 3 current over an S2 base; the
deformation only acts on the fiber, changing its radius up to the point
where this seems to vanish, actually marking the trivialization of the
fibration:

S3 −−−−−−−→
H2→H2

max

R× S2, (1.3)

If we turn our attention to the gauge field one can show that a quanti-
zation of the magnetic charge is only compatible with levels of the affine
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AdS2 × S2 as an exact heterotic string background 3

algebras such that k
kG

= p2 , p ∈ Z. We will find the same condition in
terms of the partition function for the boundary deformation.

Although this construction has been implicitly carried on for first
order in α′ background fields, it is important to stress that the resulting
metric is nevertheless exact at all orders since the renormalization boils
down to the redefinition of the level k that is simply shifted by the dual
Coxeter number (just as in the wzw case).

2.2 PARTITION FUNCTION

Consider the case of kg = 2 (one right-moving C fermion). The
relevant components of the initial partition funciton are given by a
SU(2)k−2-modular-invariance-compatible combination of SU(2)k−2 su-
persymmetric characters and fermions from the gauge sector. For our
pourposes it is useful to further decompose the supersymmetric SU(2)k
characters in terms of those of the N = 2 minimal models:

χj(τ) ϑ

[
a

b

]
(τ, ν) =

∑

m∈Z2k

Cjm
[
a

b

]
Θm,k

(
τ,−2ν

k

)
. (1.4)

The deformation acts as a boost on the left-lattice contribution of the
Cartan current of the supersymmetric SU(2)k and on the right current
from the gauge sector:

Θm,k ϑ̄

[
h

g

]
=
∑

n,n̄

e−ıπg(n̄+h
2 )q

1
2

“√
2kn+ m√

2k

”2

q̄
1
2(n̄+h

2 )
2

−→
∑

n,n̄

e−ıπg(n̄+h
2 ) q

1
2

h“√
2kn+ m√

2k

”
cosh x+(n̄+h

2 ) sinhx
i2

× q̄
1
2

h
(n̄+h

2 ) cosh x+
“√

2kn+ m√
2k

”
sinhx

i2
, (1.5)

where the boost parameter x is given by cosh x = 1
1−2H2 .

Although an exact cft is obtained for any value of the deforma-
tion parameter H we will concentrate, as before, on the boundary value
H2 = 1/2. In this case the boost parameter diverges thus giving the
following constraints: 4(k + 2)n+ 2m+ 2

√
2kn̄+

√
2kh = 0. Therefore,

the limit is well-defined only if the level of the supersymmetric SU(2)k
satisfies the quantization condition k = 2p2 , p ∈ Z i.e. the charge
quantization for the flux of the gauge field. Under these constraints the
U(1) corresponding to the combination of charges orthogonal our con-
dition decouples and can be removed. In this way we end up with the
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expression for the S2 partition function:

ZS2

[
a;h

b; g

]
=
∑

j,̄

M j̄
∑

N∈Z2p

eıπg(N+h
2 ) Cjp(2N−h)

[
a

b

]
χ̄̄ (1.6)

in agreement with the result found in ? by using the coset construction.
The remaining charge N labels the magnetic charge of the state under
consideration.

3. SL (2, R) DEFORMATION

The same construction as above can be repeated for the SL (2,R)
wzw model. In this case the moduli space is somewhat richer for it
is possible to realize three different asymmetric deformations using the
three generators of the group. These are not equivalent (SL (2,R) is
not compact) and in fact they lead to three physically different back-
grounds. The elliptic deformation line, in example, contains the Gödel
universe ?, the parabolic deformation gives the superposition of AdS3

and a gravitational plane wave. Two of these deformation lines present
the same boundary effect as the SU (2) deformation. In particular the
elliptic deformation leads to the hyperbolic space H2 = SL (2,R) /U (1)
supported by an immaginary magnetic field, ie an exact but non-unitary
cft. The hyperbolic deformation, on the other hand, leads to AdS2 =
SL (2,R) /U (1) supported by an electric field. No charge quantization
is present in this case, because of the non-compact nature of the back-
ground.

In this latter case it is not yet possible to give the same construction for
the partition function as for the SU (2) case since this would require the
decomposition of the initial partition function in a basis of hyperbolic
characters which is not a simple exercize. Nevertheless by following
the same procedure as before it is possible to evaluate the effect of the
deformation on the spectrum of primaries and hence give the resulting
AdS2 background spectrum.

4. ADS2 × S2

The S2 and AdS2 backgrounds can be combined so to give an exact
cft corresponding to the AdS2 × S2 near-horizon geometry of the br
black-hole.

Let us now consider the complete heterotic string background which
consists of the AdS2×S2 space–time times an N = 2 internal conformal
field theory M, that we will assume to be of central charge ĉ = 6 and
with integral R-charges. The levels k of SU(2) and k̂ of SL(2,R) are
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such that the string background is critical:

ĉ =
2(k − 2)

k
+

2(k̂ + 2)

k̂
= 4 =⇒ k = k̂. (1.7)

This translates into the equality of the radii of the corresponding S2

and AdS2 factors, which is in turn necessary for supersymmetry. Fur-
thermore, the charge quantization condition for the two-sphere restricts
further the level to k = 2p2, p ∈ N.

The combined AdS2×S2 background can give new insights about the
physics of the br black hole in particular by analizing the Schwinger-
pair production in such background, or the study of the stability and
propagation of D-branes.

Research partially supported by the EEC under the contracts HPRN-
CT-2000-00131, HPRN-CT-2000-00148, MEXT-CT-2003-509661, MRTN-
CT-2004-005104 and MRTN-CT-2004-503369.
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1. Introduction

The search for exact string backgrounds has been pursued over the past years from various

perspectives. Those investigations are motivated by phenomenology, background-geometry

analysis or, more recently, for understanding holography beyond the usual supergravity

approximation.

– 1 –
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Anti-de Sitter backgrounds have played an important role in many respects. Together

with the spheres, they are the only maximally symmetric spaces appearing naturally in

string theory. They arise as near-horizon geometries of distinguished brane configurations

and offer the appropriate set up for studying little-string theory, black-hole physics, . . .

The realization of anti-de Sitter spaces or spheres as string backgrounds requires non-

vanishing fluxes, which account for the cosmological constant term in the low-energy equa-

tions of motion. In general, those fluxes are of the Ramond-Ramond type, hence no two-

dimensional sigma-model is available. This happens indeed for AdS5 × S5 in type IIB or

AdS4 × S7 in M-theory. For AdS3 × S3 × T 4 (type IIA, B or heterotic), however, we have

the option to switch on a Neveu-Schwarz antisymmetric tensor only. In this framework,

the AdS3×S3 is the target space of the SL(2, R)×SU(2) Wess-Zumino-Witten model. The

latter has been studied extensively [1 – 6].

Three-dimensional anti-de Sitter space provides a good laboratory for studying many

aspects of gravity and strings, including black-hole physics. Locally anti-de Sitter three-

dimensional black holes are obtained by performing identifications in the original AdS3

under discrete isometry subgroups [7 – 10]. Those black holes (btz) have mass and angular

momentum. Generically, two horizons (inner and outer) mask the singularity, which turns

out to be a chronological singularity rather than a genuine curvature singularity.

The two-dimensional sigma-model description of the AdS3 plus Kalb-Ramond field

background allows for exact conformal deformations, driven by integrable marginal oper-

ators [11 – 14, 6, 15 – 17]. In general, a subgroup of the original isometry group survives

along those lines. Identification under discrete isometries is thus legitimate and provides

a tool for investigating new and potentially interesting “deformed btz” geometries. The

latter may or may not be viable black holes, whereas black holes may also appear by just

deforming AdS3 without further surgery [18].

The aim of the present work is to clarify those issues, and reach a global point of view

on the geometries that emerge from the SL(2, R) WZW model, by using the above tech-

niques. This will allow us to introduce new three-dimensional black hole backgrounds that

in general involve the presence of an electric field. For these theories we give a complete

cft description, including an explicit expression for the spectrum of string primaries. In

particular, the usual black string background [18] will appear in this terms as a special

vanishing-field limit. Carrying on identifications à la btz on these geometries will let us

obtain more black string and/or black hole backgrounds, generalizing the one in [7] and

in [18], for which we again provide a cft description. Not all the backgrounds could be

adapted to support the discrete identifications. This will be stated in terms of a consis-

tency condition that has to be satisfied in order to avoid the presence of naked (causal)

singularities.

We will start with a quick overview of various distinct methods based on Wess-Zumino-

Witten models and aiming at generating new exact cfts, that turn out to be equivalent to

each other. We will in particular exhibit their effect on the SL(2, R) WZW model. These

results enable us to recast in section 3 the three-dimensional black-string solution of [18],

as a patchwork of marginal deformations of the SL(2, R) WZW model. We clarify in this

way the role of the mass and charge parameters of the black string.
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Section 4 is devoted to a two-parameter deformation of SL(2, R). This leads to a new

family of black strings, with NS-NS and electric field. We study the causal structure of

these black holes as well as their various charges. They exhibit genuine curvature singularity

hidden behind horizons. In section 5 we proceed with discrete identifications as a solution-

generating procedure applied to the deformed AdS3 — wherever it is allowed by residual

symmetries.

After having stated the consistency conditions to be fulfilled in order to avoid naked

singularities, we find that time-like chronological singularities protected by two horizons

are possible, while light-like singularities with only one horizon appear as a limiting case.

Finally, in section 6 we determine the spectrum of primaries, using standard cft techniques.

2. Deformed wzw models: various perspectives

The power of wzw models resides in the symmetries of the theory. Those impose strong

constraints which allow quantum integrability as well as a faithful description in terms of

space-time fields whose renormalization properties (at every order in α′) are easily kept

under control [19 – 21].

It is hence interesting to study the moduli space for these models, aiming at find-

ing less symmetric (and more interesting) structures, that will hopefully enjoy analogous

integrability and space-time properties.

2.1 Algebraic structure of current-current deformations

In this spirit one can consider marginal deformations of the wzw models obtained in terms

of (1, 1) operators built as bilinears in the currents:

O(z, z̄) =
∑

ij

cijJ
i (z) J̃ j (z̄) , (2.1)

where J i (z) and J̃ j (z̄) are respectively left- and right-moving currents. It is known that

this operator represents a truly marginal deformation if the parameter matrix cij satisfies

appropriate constraints [11], which are automatically satisfied for any value of cij , whatever

the algebra, if J i and J̃ j live on a torus. Hence, we get as moduli space continuous surfaces

of exact models.1

From the cft point of view, it is known [14] that the effect of the deformation is

completely captured by an O(d, d̄) pseudo-orthogonal transformation of the charge lattice

Λ ⊂ h∗ × h̄∗ of the abelian sector of the theory (h ⊂ g and h̄ ⊂ ḡ being abelian subalgebras

of the undeformed wzw model g×ḡ algebra). Moreover, since the charges only characterize

the h× h̄ modules up to automorphisms of the algebras, O(d)×O(d̄) transformations don’t

1Although for special values of the level k the theory contains other operators with the right conformal

weights, it is believed that only current-current operators give rise to truly marginal deformations, i.e.

operators that remain marginal for finite values of the deformation parameter.
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change the cft. Hence the deformation space is given by:

Dh,h̄ ∼ O(d, d̄)/
(

O(d) × O(d̄)
)

. (2.2)

The moduli space is obtained out of Dh,h̄ after the identification of the points giving

equivalent cfts.2

In the case of wzw models on compact groups, all maximal abelian subgroups are

pairwise conjugated by inner automorphisms. This implies that the complete deformation

space is D = O(d, d)/ (O(d) × O(d)) where d is the rank of the group. The story is

different for non-semisimple algebras, whose moduli space is larger, since we get different

O(d, d̄)/
(

O(d) × O(d̄)
)

deformation spaces for each (inequivalent) choice of the abelian

subalgebras h ⊂ g and h̄ ⊂ ḡ.

An alternative way of describing current-current deformations comes from the so-

called parafermion decomposition. The highest-weight representation for a ĝk graded al-

gebra can be decomposed into highest-weight modules of a Cartan subalgebra ĥ ⊂ ĝk as

follows [22, 23]:

Vλ̂ '
⊕

µ∈Γk

Vλ̂,µ ⊗
⊕

δ∈Ql(g)

Vµ+kδ , (2.3)

where λ̂ is an integrable weight of ĝk, Vλ̂,µ is the highest-weight module for the generalized

ĝk/ĥ parafermion, Ql(g) is the long-root lattice and Γk = P (g)/Ql(g) with P (g) the weight

lattice. As a consequence, the wzw model based on ĝk can be represented as an orbifold

model:

ĝk '
(

ĝk/ĥ ⊗ tΛk

)

/Γk , (2.4)

where tΛk
is a toroidal cft with charge lattice, included in the ĝk one, defined as Λk =

{(µ, µ̄) ∈ P (ĝ) × P (ĝ)|µ − µ̄ = kQl(ĝ)}. The advantage given by using this representation

relies on the fact that Γk acts trivially on the coset and toroidal model algebras; then, if we

identify ĥ and
¯̂
h with the graded algebras of tΛk

, the deformation only acts on the toroidal

lattice and the deformed model can again be represented as an orbifold:

ĝk(O) '
(

ĝk/ĥ ⊗ tOΛk

)

/Γk , (2.5)

where O is an operator in the moduli space. This representation is specially useful because

it allows to easily single out the sector of the theory that is affected by the deformation. As

we’ll see in the next section this simplifies the task of writing the corresponding lagrangian.

In the following we will separate (somehow arbitrarily) this kind of deformations into

two categories: those who give rise to symmetric deformations, i.e. the ones where cij = δij

and J i (z) and J̃ j (z̄) represent the same current in the two chiral sectors of the theory

and the asymmetric ones where the currents are different and in general correspond to

different subalgebras. In some ways this distinction is arbitrary, since both symmetric

and asymmetric deformations act as O
(

d, d̄
)

rotations on the background fields. It is

nonetheless interesting to single out the asymmetric case. In the particular situation,

2Although we will concentrate on wzw models it is worth to emphasize that this construction is more

general.
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when one of the two currents belongs to an internal U(1) (coming from the gauge sector in

the heterotic or simply from any U(1) subalgebra in the type II), it is particularly simple

to study the effect of the deformation, even from the space-time field point of view; there,

the expressions for the background fields are exact (at all order in α′ and for every value

of the level k) [16].

2.2 Background fields and symmetric deformations

General construction. Symmetric deformations (also called gravitational) are those

that have received by far the most attention in literature. Specializing eq. (2.1) to the case

of one only current we can write the small deformation lagrangian as:

S = Swzw + δκ2

∫

d2z J(z)J̄(z̄) . (2.6)

This infinitesimal deformation has to be integrated in order to give a lagrangian inter-

pretation to the cft described in the previous section. Different approaches are possible,

exploiting the different possible representations described above.

• A possible way consists in implementing an O(d, d) rotation on the background

fields [12]. More precisely, one has to identify a coordinate system in which the

background fields are independent of d space dimensions and metric and B field are

written in a block diagonal form. In this way the following matrix is defined:

M =

(

ĝ−1 −ĝ−1B̂

B̂ĝ−1 ĝ − B̂ĝ−1B̂

)

, (2.7)

where ĝ and B̂ are the pull-backs of the metric and Kalb-Ramond field on the p

selected directions. Then the action of the O(d, d) group on these fields and dilaton

is given by:

M → M ′ = ΩMΩt , (2.8)

Φ → Φ′ = Φ − 1

4
log

(

det ĝ

det ĝ′

)

, (2.9)

where ĝ′ is the metric after the transformation (2.8) and Ω ∈ O(d, d). It must be

emphasized that this transformation rules are valid at the lowest order in α′ (but at

all orders in the deformation parameters). So, although the model is exact, as we

learn from the cft side, the field expressions that we find only are true at leading

order in α′.

• An alternative approach uses the parafermion representation eq. (2.5) (see e.g. [14]).

In practice this amounts to writing an action as the sum of the G/H parafermion and

a deformed H part and finding the appropriate T-duality transformation (realizing

the orbifold) such that for zero deformation the wzw on G is recovered, in accordance

with eq. (2.4).
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• Finally, another point of view (inspired by the parafermionic representation), consists

in identifying the deformed model with a (G × H) /H coset model, in which the

embedding of the dividing group has a component in both factors [13]. The gauging

of the component in G gives the parafermionic sector, the gauging of the component

in H gives the deformed toroidal sector and the coupling term (originating from

the quadratic structure in the fields introduced for the gauging) corresponds to the

orbifold projection.3

The SL (2, R) case. In the present work, we want to concentrate on the deformations of

SL(2, R). Symmetric deformations of this wzw model are known in the literature. The

group manifold of SL(2, R) is anti de Sitter in three dimensions. Metric and antisymmetric

tensor read (in Euler coordinates, see appendix A.2):

ds2 = L2
[

dρ2 + sinh2 ρ dφ2 − cosh2 ρ dτ2
]

, (2.10a)

H[3] = L2 sinh 2ρ dρ ∧ dφ ∧ dτ , (2.10b)

with L related to the level of SL(2, R)k as usual: L =
√

k + 2. In the case at hand,

three different lines of symmetric deformations arise due to the presence of time-like (J3,

J̄3), space-like (J1, J̄1, J2, J̄2), or null generators [14, 25, 6]. The residual isometry is

U(1) × U(1) that can be time-like (L3, R3), space-like (L2, R2) or null (L1 + L3, R1 + R3)

depending on the deformation under consideration.

The elliptic deformation is driven by the J3J̄3 bilinear. At first order in α′ the back-

ground fields are given by:4

ds2 = k

[

dρ2 +
sinh2 ρ dφ2 − κ2

3 cosh2 ρ dτ2

Θκ3
(ρ)

]

, (2.11a)

H[3] = k
κ2

3 sinh 2ρ

Θκ3
(ρ)2

dρ ∧ dφ ∧ dτ , (2.11b)

e−2Φ =
Θκ3

(ρ)

κ3
. (2.11c)

where Θκ3
(ρ) = cosh2 ρ−κ2

3 sinh2 ρ and, of course, Φ is defined up to an additive constant.

At extreme deformation (κ2
3 → 0), a time-like direction decouples and we are left with the

axial5 SL(2, R)k/ U(1)time. The target space of the latter is the cigar geometry (also called

euclidean two-dimensional black hole):

e−2Φ ∼ cosh2 ρ , (2.12)

ds2 = k
[

dρ2 + tanh2 ρ dφ2
]

, (2.13)

(0 ≤ ρ < ∞ and 0 ≤ φ ≤ 2π).

3An instanton-correction-aware technique that should overcome the first order in α′ limitation for gauged

models has been proposed in [24]. In principle this can be used to get an all-order exact background when

we write the deformation as a gauged model. We will not expand further in this direction, that could

nevertheless be useful to address issues such as the stability of the black string (see section 3).
4The extra index “3” in the deformation parameter κ reminds that the deformation refers here to J3J̄3.
5The deformation parameter has two T-dual branches. The extreme values of deformation correspond to

the axial or vector gaugings. The vector gauging leads to the trumpet. For the SU(2)k/ U(1), both gaugings

correspond to the bell.
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Similarly, with J2J̄2 one generates the hyperbolic deformation. This allows to reach the

lorentzian two-dimensional black hole times a free space-like line. Using the coordinates

defined in eq. (A.8), we find:

ds2 = k

[

−dβ2 +
sin2 β dϕ2 + κ2

2 cos2 β dψ2

∆κ2
(β)

]

, (2.14a)

H[3] = k
κ2

2 sin 2β

∆κ2
(β)2

dβ ∧ dψ ∧ dφ , (2.14b)

e−2Φ =
∆κ2

(β)

κ2
, (2.14c)

where ∆κ2
(β) = cos2 β +κ2

2 sin2 β. This coordinate patch does not cover the full AdS3. We

will expand on this line in section 3.

Finally, the bilinear
(

J1 + J3
) (

J̄1 + J̄3
)

generates the parabolic deformation. Using

Poincaré coordinates (eqs. (A.11)–(A.13))6 we obtain:

ds2 = k

[

du2

u2
+

dX2 − dT 2

u2 + 1/ν

]

, (2.15a)

H[3] = k
2u

(u2 + 1/ν)2
du ∧ dT ∧ dX , (2.15b)

e−2Φ =
u2 + 1/ν

u2
. (2.15c)

The deformation parameter is 1/ν. At infinite value of the parameter ν, we recover pure

AdS3; for ν → 0, a whole light-cone decouples and we are left with a single direction and

a dilaton field, linear in this direction.

The physical interpretation of the parabolic deformation is far reaching, when AdS3 is

considered in the framework of the ns5/f1 near-horizon background, AdS3 × S3 × T 4. In

this physical set-up, the parameter ν is the density of f1’s (number of fundamental strings

over the volume of the four-torus T 4) [6, 26]. At infinite density, the background is indeed

AdS3×S3×T 4. At null density, the geometry becomes R
1,2×S3×T 4 plus a linear dilaton

and a three-form on the S3.

2.3 Background fields and asymmetric deformations

General construction. Consider the case of G = G′ × U(1)r, H = U(1)r where r =

rank (G) embedded such as εl (H) ⊂ G′ and εr (H) = G′′ = U(1)r. To clarify the notation

we can write the deformation operator as:

O(z, z̄) =
r

∑

a=1

haJ
a (z) ∂̄Xa (2.16)

where Xa (z, z̄) results from the bosonisation of the right current. Using e.g. Kaluza-Klein

reduction [27, 28, 17], one shows that the effect of the deformation on the background fields

6Note that x± = X ± T .
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(identified as those living in the G′ sector) is the following:

Gµν = G̊µν − 2
r

∑

i=a

h2
aJ

a
µJa

ν , (2.17a)

Bµν = B̊µν , (2.17b)

Aa
µ = ha

√

2k

kg
Ja

µ , (2.17c)

where G̊µν and B̊µν are the initial, unperturbed background fields that are expressed in

terms of the g ∈ G′ group element as follows:

G̊µν dxµ dxν = 〈g−1 dg, g−1 dg〉 , (2.18a)

B̊µν dxµ ∧ xν = g−1 dg ∧ g−1 dg . (2.18b)

No dilaton is present (as a consequence of the fact that the Ricci scalar for these deformed

systems remains constant) and these semiclassical solutions can be promoted to exact ones

just by remarking that the effect of the renormalisation simply boils down to the shift

k → k + cG′ where cG′ is the dual Coxeter number, just as in the case of the unperturbed

wzw model.

The SL (2, R) case. We now apply the above to the SL(2, R) case. As previously, three

asymmetric deformations are available: the elliptic, the hyperbolic and the parabolic.

The elliptic deformation is generated by a bilinear where the left current is an SL(2, R)k

time-like current. The background field is magnetic and the residual symmetry is U(1)time×
SL(2, R) generated by {L3, R1, R2, R3} (see appendix A.2). The metric reads (in elliptic

coordinates):

ds2 =
k

4

[

dρ2 + cosh2 ρ dφ2 −
(

1 + 2h2
)

( dt + sinh ρ dφ)2
]

, (2.19)

where ∂t is the Killing vector associated with the U(1)time. This AdS3 deformation was

studied in [29] as a squashed anti de Sitter and in [15, 16] from the string theory point of

view. It has curvature

R = −2

k
(3 − 2h2) . (2.20)

Here, it comes as an exact string solution (provided k → k + 2) together with an NS

three-form and a magnetic field:

H[3] = dB − kg

4
A ∧ dA = −k

4

(

1 + 2h2
)

cosh ρ dρ ∧ dφ ∧ dt , (2.21a)

A = h

√

2k

kg
( dt + sinh ρ dφ) . (2.21b)

For h2 > 0 (unitary region), the above metric is pathological because it has topologically

trivial closed time-like curves passing through any point of the manifold. Actually, for

h2 = 1/2 we recover exactly the Gödel space, which is a well-known example of pathological

solution of Einstein-Maxwell equations.
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The hyperbolic deformation can be studied in a similar fashion, where the left current

in the bilinear is an SL(2, R)k space-like current. In hyperbolic coordinates:

ds2 =
k

4

[

dr2 − cosh2 r dτ2 +
(

1 − 2h2
)

( dx + sinh r dτ)2
]

, (2.22)

where ∂x generates a U(1)space. The total residual symmetry is U(1)space × SL(2, R), gen-

erated by {L2, R1, R2, R3}, and

R = −2

k

(

3 + 2h2
)

. (2.23)

The complete string background now has an NS three-form and an electric field:

H[3] =
k

4

(

1 − 2h2
)

cosh r dr ∧ dτ ∧ dx , (2.24a)

A = h

√

2k

kg
( dx + sinh r dτ) . (2.24b)

The background at hand is free of closed time-like curves. The squashed AdS3 is now

obtained by going to the AdS3 picture as an S1 fibration over an AdS2 base, and modifying

the S1 fiber. The magnitude of the electric field is limited at h2
max = 1/2, where it causes

the degeneration of the fiber, and we are left with an AdS2 background with an electric

monopole; in other words, a geometric coset SL(2, R)/ U(1)space.

The string spectrum of the above deformation is accessible by conformal-field-theory

methods. It is free of tachyons and a whole tower of states decouples at the critical values

of the electric fields. Details are available in [16].

Finally, the parabolic deformation is generated by a null SL(2, R)k current times some

internal right-moving current. The deformed metric reads, in Poincaré coordinates:

ds2 = k

[

du2

u2
+

dx+ dx−

u2
− 2h2

(

dx+

u2

)2
]

, (2.25)

and the curvature remains unaltered R = −6/k. This is not surprising since the resulting

geometry is a plane-wave like deformation of AdS3. The residual symmetry is U(1)null ×
SL(2, R), where the U(1) null is generated by ∂− = −L1 − L3.

The parabolic deformation is somehow peculiar. Although it is continuous, the de-

formation parameter can always be re-absorbed by a redefinition of the coordinates:7

x+ → x+/ |h| and x− → x− |h|. Put differently, there are only three truly different options:

h2 = 0, 1. No limiting geometry emerges in the case at hand.

As expected, the gravitational background is accompanied by an NS three-form (un-

altered) and an electromagnetic wave:

A = 2

√

2k

kg
h

dx+

u2
. (2.26)

7This statement holds as long as these coordinates are not compact. After discrete identifications have

been imposed (see section 5.1)), h becomes a genuine continuous parameter.
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A final remark is in order here, which holds for all three asymmetric deformations

of SL(2, R). The background electric or magnetic fields that appear in these solutions

(eqs. (2.21b), (2.24b) and (2.26)) diverge at the boundary of the corresponding spaces.

Hence, these fields cannot be considered as originating from localized charges.

3. The three-dimensional black string revisited

The AdS3 moduli space contains black hole geometries. This has been known since the

most celebrated of them — the two-dimensional SL(2, R)/ U(1) black hole — was found

by Witten [30, 31]. Generalisations of these constructions to higher dimensions have been

considered in [18, 32 – 34]. The three-dimensional black string [18, 35, 36] has attracted

much attention, for it provides an alternative to the Schwarzschild black hole in three-

dimensional asymptotically flat geometries.8 In this section we want to show how this

black string can be interpreted in terms of marginal deformations of SL(2, R), which will

enable us to give an expression for its string primary states (section 6).

In [18] the black string was obtained as an (SL(2, R) × R) /R gauged model. More

precisely, expressing g ∈ SL(2, R) × R as:

g =







a u 0

−v b 0

0 0 ex






, (3.1)

the left and right embeddings of the R subgroup are identical and given by:

εL/R : R → SL (2, R) × R (3.2)

λ 7→











e
1√

λ2+2 0 0

0 e
− 1√

λ2+2 0

0 0 e
λ√

λ2+2











. (3.3)

From the discussion in section 2.2, we see that performing this gauging is just one of

the possible ways to recover the J2J̄2 symmetrically deformed SL (2, R) geometry. More

specifically, since the gauged symmetry is axial (g → hgh), it corresponds (in our notation)

to the κ2 < 1 branch of the deformed geometry9 in eq. (2.14a). One can find a coordinate

transformation allowing to pass from the usual black-string solution

ds2 =
k

4

[

−
(

1 − 1

r

)

dt2 +

(

1 − µ2

r

)

dx2 +

(

1 − 1

r

)−1 (

1 − µ2

r

)−1
dr2

r2

]

, (3.4a)

H =
k

4

µ

r
dr ∧ dx ∧ dt , (3.4b)

e2Φ =
µ

r
(3.4c)

8Remember that the no hair theorem doesn’t hold in three dimensions [37 – 39].
9The R ≷ 1 convention is not univocal in literature.
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µ name
dt2 dx2 dr2

range
cft

interpretation−
(

1 − 1
r

)

1 − µ2

r

(

1 − 1
r

)−1
(

1 − µ2

r

)−1

µ2 > 1

(c+) − + + r > µ2 J3J̄3, κ3 > 1

(b+) − − − 1 < r < µ2

(a+) + − + 0 < r < 1 J3J̄3, κ3 < 1

µ2 < 1

(a−) + − + 0 < r < µ2

J2J̄2, κ2 < 1(b−) + + − µ2 < r < 1

(c−) − + + r > 1

Table 1: Signature for the black-string metric as a function of r, for µ2 ≷ 1.

to our (local) coordinate system, eq. (2.14). The attentive reader might now be puzzled by

this equivalence between a one-parameter model such as the symmetrically deformed model

and a two-parameter one such as the black string in its usual coordinates (in eqs. (3.4) we

redefined the r coordinate as r → r/M and then set µ = Q/M with respect to the conven-

tions in [18]). A point that it is interesting to make here is that although, out of physical

considerations, the black string is usually described in terms of two parameters (mass and

charge), the only physically distinguishable parameter is their ratio µ = Q/M that coin-

cides with our κ2 parameter. In section 4 we will introduce a different (double) deformation,

this time giving rise to a black hole geometry depending on two actual parameters (one of

which being related to an additional electric field).

As we remarked above, the axial gauging construction only applies for µ < 1, while,

in order to obtain the other κ2 > 1 branch of the J2J̄2 deformation, one should perform a

vector gauging. On the other hand, this operation, that would be justified by a cft point

of view, is not natural when one takes a more geometrical point of view and writes the

black string metric as in eq. (3.4a). In the latter, one can study the signature of the metric

as a function of r in the two regions µ2 ≷ 1, and find the physically sensible regions (see

table 1).

Our observations are the following:

• The µ2 < 1 branch always has the correct (−, +, +) signature for any value of r, with

the two special values r = 1 and r = µ2 marking the presence of the horizons that

hide the singularity in r = 0.

• The µ2 > 1 branch is different. In particular we see that there are two regions: (a+)

for 0 < r < 1 and (c+) for r > µ2 where the signature is that of a physical space.

A fact deserves to be emphasized here: one should notice that while for µ2 < 1 we obtain

three different regions of the same space, for µ2 > 1 what we show in table 1 really

are three different spaces and the proposed ranges for r are just an effect of the chosen

parameterization. The (a+) , κ3 < 1 and (c+) , κ3 > 1 branches are different spaces and not

different regions of the same one and one can choose in which one to go when continuing

to µ > 1.
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But there is more. The µ2 > 1 region is obtained via an analytic continuation with

respect to the other branch, and this analytic continuation is precisely the one that inter-

changes the roles of the J2 and the J3 currents. As a result, we pass from the J2J̄2 line

to the J3J̄3 line. More precisely the (c+) region describes the “singular” κ3 > 1 branch

of the J3J̄3 deformation (i.e. the branch that includes the r = 0 singularity) and the (a+)

region describes the regular κ3 < 1 branch that has the cigar geometry as κ3 → 0 limit.

Also notice that the regions r < 0 have to be excluded in order to avoid naked singularities

(of the type encountered in the Schwarzschild black hole with negative mass). The black

string described in [18] covers the regions (a−) , (b−) , (c−) , (a+).

Our last point concerns the expectation of the genuine AdS3 geometry as a zero-

deformation limit of the black-string metric, since the latter turns out to be a marginal

deformation of AdS3 with parameter µ. The straightforward approach consists in taking

the line element in eq. (3.4a) for µ = 1. It is then puzzling that the resulting extremal

black-string geometry is not AdS3. This apparent paradox is solved by carefully looking

at the coordinate transformations that relate the black-string coordinates (r, x, t) to ei-

ther the Euler coordinates (ρ, φ, τ) (A.5) for the J3J̄3 line, or the hyperbolic coordinates

(y, x, t) (A.8) for the J2J̄2 line. These transformations are singular at µ = 1, which there-

fore corresponds neither to κ3 = 1 nor to κ2 = 1. Put differently, µ = 1 is not part of a

continuous line of deformed models but marks a jump from the J2J̄2 to the J3J̄3 lines.

The extremal black-string solution is even more peculiar. Comparing eqs. (3.4) at

µ = 1 to eqs. (2.15), which describe the symmetrically null-deformed SL(2, R), we observe

that the two backgrounds at hand are related by a coordinate transformation, provided

ν = −1.

The black string background is therefore entirely described in terms of SL(2, R) margi-

nal symmetric deformations, and involves all three of them. The null deformation appears,

however, for the extremal black string only and at a negative value of the parameter ν. The

latter is the density of fundamental strings, when the deformed AdS3 is considered within

the ns5/f1 system. This might be one more sign pointing towards a possible instability

in the black string [40].

Notice finally that expressions (3.4) receive 1/k corrections. Those have been computed

in [41]. Once taken into account, they contribute in making the geometry smoother, as

usual in string theory.

4. The two-parameter deformations

4.1 An interesting mix

A particular kind of asymmetric deformation is what we will call in the following double

deformation [15, 42]. At the lagrangian level this is obtained by adding the following

marginal perturbation to the wzw action:

δS = δκ2

∫

d2z JJ̄ + h

∫

d2z JĪ; (4.1)

J is a holomorphic current in the group, J̄ is the corresponding anti-holomorphic current

and Ī an external (to the group) anti-holomorphic current (i.e. in the right-moving heterotic
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sector for example). A possible way to interpret this operator consists in thinking of the

double deformation as the superposition of a symmetric — or gravitational — deformation

(the first addend) and of an antisymmetric one – the electromagnetic deformation. This

mix is consistent because if we perform the κ deformation first, the theory keeps the

U(1) × U(1) symmetry generated by J and J̄ that is needed in order to allow for the h

deformation. Following this trail, we can read off the background fields corresponding to

the double deformation by using at first one of the methods outlined in section 2.2 and

then applying the reduction in eq. (2.17) to the resulting background fields.

The final result consists in a metric, a three-form, a dilaton and a gauge field. It is

in general valid at any order in the deformation parameters κ and h but only at leading

order in α′ due to the presence of the symmetric part.

Double deformations of AdS3 where J is the time-like J3 operator have been studied

in [15]. It was there shown that the extra gravitational deformation allows to get rid of the

closed time-like curves, which are otherwise present in the pure J3 asymmetric deformation

(eq. (2.19)) – the latter includes Gödel space. Here, we will focus instead on the case of

double deformation generated by space-like operators, J2 and J̄2.

4.2 The hyperbolic double deformation

In order to follow the above prescription for reading the background fields in the double-

deformed metric let us start with the fields in eqs. (2.14). We can introduce those fields in

the sigma-model action. Infinitesimal variation of the latter with respect to the parameter

κ2 enables us to reach the following expressions for the chiral currents J2
κ (z) and J̄2

κ (z̄) at

finite values of κ2:

J2
κ (z) =

1

cos2 β + κ2 sin2 β

(

cos2 β ∂ψ − sin2 β ∂ϕ
)

, (4.2)

J̄2
κ(z̄) =

1

cos2 β + κ2 sin2 β

(

cos2 β ∂ψ + sin2 β ∂ϕ
)

. (4.3)

Note in particular that the corresponding Killing vectors (that clearly are ∂ϕ and ∂ψ) are

to be rescaled as L2 = 1
κ2 ∂ψ − ∂ϕ and R2 = 1

κ2 ∂ψ + ∂ϕ. Once the currents are known, one

just has to apply the construction sketched in section 2.3 and write the background fields

as follows:

1

k
ds2 = −dβ2 + cos2 β

(

κ2 − 2h2
)

cos2 β + κ4 sin2 β

∆κ(β)2
dψ2 − 4h2 cos2 β sin2 β

∆κ(β)2
dψ dϕ+

+ sin2 β
cos2 β +

(

κ2 − 2h2
)

sin2 β

∆κ(β)2
dϕ2 , (4.4a)

1

k
B =

κ2 − 2h2

κ2

cos2 β

∆κ(β)
dϕ ∧ dψ , (4.4b)

F = 2h

√

2k

kg

sin (2β)

∆κ(β)2
(

κ2 dψ ∧ dβ + dβ ∧ dϕ
)

, (4.4c)

e2Φ =

√
κ2 − 2h2

∆κ(β)
, (4.4d)
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where ∆κ(β) = cos2 β + κ2 sin2 β as in section 2.2. In particular the dilaton, that can be

obtained by imposing the one-loop beta equation is proportional to the ratio of the double

deformed volume form and the AdS3 one.

A first observation about the above background is in order here. The electric field is

bounded from above since h2 ≤ κ2

2 . As usual in string theory, tachyonic instabilities occur

at large values of electric or magnetic fields, and we already observed that phenomenon

in section 2.3, for purely asymmetric (κ2 = 1) deformations. At the critical value of the

parameter h, one dimension degenerates and the B-field vanishes. We are left with a

two-dimensional space (with non-constant curvature) plus electric field.

The expression (4.4a) here above of the metric provides only a local description of

the space-time geometry. To discuss the global structure of the whole space it is useful to

perform several coordinate transformations. Firstly let us parametrize by κ2 = λ/(1 + λ)

the deformation parameter (with κ < 1 for λ > 0 and κ > 1 for λ < −1) and introduce a

radial coordinate à la Horne and Horowitz:

r = λ + cos2 β , (4.5)

which obviously varies between λ and λ + 1. The expression of the metric (4.4a) becomes

in terms of this new coordinate:

ds2 = −





(

2h2 (1 + λ)2 − λ
)

+
λ

(

λ − 4h2 (1 + λ)2
)

r
+

2λ2h2 (1 + λ)2))

r2



 dψ2−

− (1 + λ)



2h2 (1 + λ) + 1 −
(1 + λ)

(

1 + 4h2 (1 + λ)2
)

r
+

2 (1 + λ)3 h2

r2



 dϕ2+

+ 4h2 (1 + λ)2
[

1 − 1 + 2λ

r
+

λ (1 + λ)

r2

]

dψ dϕ +
1

4 (r − λ) (r − λ − 1)
dr2 . (4.6)

This expression looks close to the one discussed by Horne and Horowitz. It also represents

a black string. However, it depends on more physical parameters as the expression of the

scalar curvature shows:

R = 2
2r (1 + 2λ) − 7λ (1 + λ) − 2h2 (1 + λ)2

r2
. (4.7)

This result may seem strange at first sight since, for κ = 1 and h = 0, the metric (4.4a)

is of constant Ricci (and thus scalar) curvature, corresponding to a local patch of AdS3

while here, in the same limit, the curvature vanishes for large r. The absence of contra-

diction follows from the definition of the r-coordinate, becoming ill-defined for κ = 1, as it

corresponds to λ = ∞.

Obviously this metric can be extended behind the initial domain of definition of the

r variable. But before to discuss it, it is interesting to note that the Killing vector k =

(1 + λ) ∂ψ + λ ∂φ ∝ R2 is of constant square length

k.k = λ (1 + λ) − 2h2 (1 + λ)2 := ω . (4.8)
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Note that as h2 is positive, we have the inequality ω < λ (1 + λ). Moreover, in order to

have a lorentzian signature we must impose ω > 0. The fact that the Killing vector k is

space-like and of constant length makes it a candidate to perform identifications. We shall

discuss this point at the end of this section.

The constancy of the length of the Killing vector k suggests to make a new coordinate

transformation (such that k = ∂x):

ψ = (1 + λ) x + t , (4.9a)

ϕ = t + λx , (4.9b)

which leads to the much simpler expression of the line element:

ds2 = −(r − λ) (r − λ − 1)

r2
dt2 + ω

(

dx +
1

r
dt

)2

+
1

4 (r − λ) (r − λ − 1)
dr2 . (4.10)

This metric is singular at r = 0, λ, λ + 1; r = 0 being a curvature singularity. On the other

hand, the volume form is
√

ω/ (2r) dt ∧ dx ∧ dr, which indicates that the singularities at

r = λ and r = λ + 1 may be merely coordinate singularities, corresponding to horizons.

Indeed, it is the case. If we expand the metric, around r = λ+1, for instance, at first order

(i.e. for r = λ + 1 + ε) we obtain:

ds2 =
ω

(1 + λ)2
( dt + (1 + λ) dx)2 − ε

(1 + λ)2
dt

[

dt + 2
ω

1 + λ
( dt + (1 + λ) dx)

]

+
1

4ε
dr2

(4.11)

indicating the presence of an horizon. To eliminate the singularity in the metric, we may

introduce Eddington-Finkelstein like coordinates:

t = (1 + λ)

(

u ± 1

2
ln ε

)

− ωξ , (4.12a)

x =

(

1 +
ω

1 + λ

)

ξ −
(

u ± 1

2
ln ε

)

. (4.12b)

The same analysis can also be done near the horizon located at r = λ. Writing r = λ + ε,

the corresponding regulating coordinate transformation to use is given by:

t = λ

(

u ± 1

2
ln ε

)

+ ωξ , (4.13a)

x =
(

1 − ω

λ

)

ξ −
(

u ± 1

2
ln ε

)

. (4.13b)

In order to reach the null Eddington-Finkelstein coordinates, we must use null rays. The

geodesic equations read, in terms of a function Σ2[E, P, ε; r] = (Er − P )2 −
(

P 2/ω
)

−
ε (r − λ) (r − λ − 1):

σ =

∫

1

4 Σ[E, P, ε; r]
dr , (4.14a)

t =

∫

(Er − P ) r

2 (r − λ) (r − λ − 1)Σ[E, P, ε; r]
dr , (4.14b)

x = −
∫

(Er − P ) + P/ω

2 (r − λ) (r − λ − 1)Σ[E, P, ε; r]
dr , (4.14c)
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where E and P are the constant of motion associated to ∂t and ∂x, σ is an affine parameter

and ε, equal to 1, 0,−1, characterizes the time-like, null or space-like nature of the geodesic.

Comparing these equations (with ε = 0 and P = 0) with the coordinates introduced near

the horizons, we see that regular coordinates in their neighbourhoods are given by

t = T ± 1

2
((1 + λ) ln |r − λ − 1| − λ ln |r − λ|) , (4.15a)

x = X ∓ 1

2
(ln |r − λ − 1| − ln |r − λ|) , (4.15b)

which leads to the metric

ds2 =

(

−1 +
1 + 2λ

r
− λ (1 + λ) − ω

r2

)

dT 2 + 2
ω

r
dX dT + ω dX2 ∓ 1

r
dT dr . (4.16)

According to the sign, we obtain incoming or outgoing null coordinates; to build a Kruskal

coordinate system we have still to exponentiate them.

Obviously, we may choose the X coordinate in the metric (4.16) to be periodic without

introducing closed causal curves. The question of performing more general identifications

in these spaces will be discussed addressed now.

We end this section by computing the conserved charges associated to the asymptotic

symmetries of our field configurations (4.4). As is well known, their expressions provide

solutions of the equations of motion derived from the low-energy effective action

S =

∫

ddx
√−g e−2Φ

[

R + 4(∇Φ)2 − 1

12
H2 − kg

8
F 2 +

δc

3

]

, (4.17)

in which we have choosen the units such that δc = 12.

Expression (4.10) for the metric is particularly appropriate to describe the asymptotic

properties of the solution. In these coordinates, the various non-gravitational fields read as

F = ±
√

2h(1 + λ)

r2
√

kg

dt ∧ dr , (4.18)

H = ∓ ω

r2
dt ∧ dx ∧ dr , (4.19)

Φ = Φ? −
1

2
ln r . (4.20)

By setting
√

ωx = x̄ and r = e2ρ̄, near infinity (ρ̄ → ∞), the metric asymptotes the

standard flat metric: ds2 = −dt2 + dx̄2 + dρ̄2, while the fields F and H vanish and

the dilaton reads Φ = Φ? − ρ̄. This allows to interpret the asymptotic behavior of our

solution (4.4) as a perturbation around the solution given by F = 0, H = 0, the flat metric

and a linear dilaton: Φ̄ = Φ? + fαXα (here fα = (0, 0,−1)). Accordingly, we may define

asymptotic charges associated to each asymptotic reductibility parameter (see [43]).

For the gauge symmetries we obtain as charges, associated to the H field

QH = ±2e−2Φ?
√

ω (4.21)
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and to the F field

QF = ±2
√

2e−2Φ?h(1 + λ)
√

kg

. (4.22)

The first one reduces (up to normalization) for h = 0 to the result given in [18], while the

second one provides an interpretation of the deformation parameter h.

Moreover, all the Killing vectors of the flat metric defining isometries that preserve the

dilaton field allow to define asymptotic charges. These charges are obtained by integrating

the antisymmetric tensor on the surface at infinity:

k
[µν]
ξ = e−2Φ̄

(

ξσ ∂λHσλµν +
1

2
∂λξσ Hσλµν + 2

(

ξµhν
λfλ − ξνhµ

λfλ
)

)

, (4.23)

where

Hσλµν = h̄σνηλµ + h̄λµησν − h̄σµηλν − h̄λνησµ (4.24)

is the well known tensor sharing the symmetries of the Riemann tensor and h̄µν = hµν −
1
2ηµνηαβhαβ , while the Killing vector ξ has to fulfill the invariance condition ξαfα = 0. The

expression of the tensor k
[µν]
ξ depends only on the perturbation hµν of the metric tensor

because, on the one hand, the F and H fields appear quadratically in the lagrangian, and

their background values are zero, while, on the other hand, the perturbation field for the

dilaton vanishes: Φ = Φ̄ .

Restricting ourselves to constant Killing vectors, we obtain the momenta (defined for

the indice σ = t and x̄)

P σ =

∫

dx̄ e−2Φ̄
(

∂λHσλtρ̄ − 2ησthν
ρ̄

)

(4.25)

i.e. the density of mass (µ) and momentum ($) per unit length:

µ = 2e−2Φ?(1 + 2λ) and $ = −2e−2Φ?
√

ω . (4.26)

Of course, if we perform identifications such that the string acquires a finite length, the

momenta (4.25) become also finite.

To make an end let us notice that the expressions of µ and $ that we obtain differ

from those given in [18] by a normalization factor but also in their dependance with respect

to λ, even in the limit h = 0; indeed, the asymptotic minkowskian frames used differ from

each other by a boost.

5. Discrete identifications

In the same spirit as the original btz construction reminded in appendix B, we would like

to investigate to what extent discrete identifications could be performed in the deformed

background. Necessary conditions for a solution (4.16) to remain “viable” black hole can

be stated as follows:

• the identifications are to be performed along ‘the orbits of some Killing vector ξ of

the deformed metric

• there must be causally safe asymptotic regions (at spatial infinity)
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• the norm of ξ has to be positive in some region of space-time, and chronological

pathologies have to be hidden with respect to an asymptotic safe region by a horizon.

The resulting quotient space will exhibit a black hole structure if, once the regions

where ‖ξ‖ < 0 have been removed, we are left with an almost geodesically complete space,

the only incomplete geodesics being those ending on the locus ‖ξ‖ = 0. It is nevertheless

worth emphasizing an important difference with the BTZ construction. In our situation,

unlike the undeformed AdS3 space, the initial space-time where we are to perform identi-

fications do exhibit curvature singularities.

5.1 Discrete identifications in asymmetric deformations

Our analysis of the residual isometries in purely asymmetric deformations (section 2.3)

shows that the vector ξ (eq. (B.1a)) survives only in the hyperbolic deformation, whereas

ξ in eq. (B.1b) is present in the parabolic one. Put differently, non-extremal btz black

holes allow for electric deformation, while in the extremal ones, the deformation can only

be induced by an electro-magnetic wave. Elliptic deformation is not compatible with btz

identifications.

The question that we would like to address is the following: how much of the original

black hole structure survives the deformation? The answer is simple: a new chronological

singularity appears in the asymptotic region of the black hole. Evaluating the norm of

the Killing vector shows that a naked singularity appears. Thus the deformed black hole

is no longer a viable gravitational background. Actually, whatever the Killing vector we

consider to perform the identifications, we are always confronted to such pathologies.

The fate of the asymmetric parabolic deformation of AdS3 is similar: there is no region

at infinity free of closed time-like curves after performing the identifications.

5.2 Discrete identifications in symmetric deformations

Let us consider the symmetric hyperbolic deformation, whose metric is given by (4.10) with

h = 0, i.e. ω = λ (1 + λ). This metric has two residual Killing vectors, manifestly given by

∂t and ∂x. We may thus, in general, consider identifications along integral lines of

ξ = a ∂t + ∂x . (5.1)

This vector has squared norm:

‖ξ‖2 =
(

λ (1 + λ) − a2
)

+
2aλ (1 + λ) + a2 (1 + 2λ)

r
. (5.2)

To be space-like at infinity the vector ξ must verify the inequality a2 < λ (1 + λ). For defi-

niteness, we will hereafter consider λ > 0 and r > 0 (the case λ < −1, r < 0 leads to similar

conclusions, while the two other situations have to be excluded in order to avoid naked

singularities, see eq. (4.10)). If a > 0, or −
√

λ (1 + λ) < a < −2λ (1 + λ) / (1 + 2λ), ξ is

everywhere space-like. Otherwise, it becomes time-like behind the inner horizon (r = λ),

or on this horizon if a = −λ. In this situation, the quotient space will exhibit a structure

similar to that of the black string, with a time-like chronological singularity (becoming

light-like for a = −λ) hidden behind two horizons (or a single one for a = −λ).
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Figure 1: Penrose diagram exhibiting the global structure of the double hyperbolic deformation.

The time-like curvature singularities r = 0 are represented, as well as the horizons, located at r = λ

and r = λ + 1. When performing identifications along orbits of Killing vectors that allow for a

causally safe region at infinity, a time-like chronological singularity may appear at r = r∗, with

0 < r∗ ≤ λ.

5.3 Discrete identifications in double deformations

The norm squared of the identification vector (5.1) in the metric (4.10) is

‖ξ‖2 =
(

ω − a2
)

+ 2
aω + a2 (1 + 2λ)

r
− a2 (λ (1 + λ) − ω)

r2
. (5.3)

Between r = 0 and r = ∞, this scalar product vanishes once and only once (if a 6= 0).

To be space-like at infinity we have to restrict the time component of ξ to |a| < ω. Near

r = 0 it is negative, while near the inner horizon (r = λ) it takes the non-negative value

ω (λ + a)2 /λ2. Accordingly, by performing identifications using this Killing vector, we will

encounter a chronological singularity, located at r = r∗, with 0 < r∗ ≤ λ, the singularity

being of the same type as the one in the symmetric case (see figure 1).
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6. Towards the exact spectra

The main guideline for exploring the black hole geometries that we have so far considered

has been the presence of an underlying cft description. This allows us to identify the

background fields as the lagrangian counterparts of exact conformal field theories. In this

section we will give a look to the other — algebraic — aspect of these models, showing

how it is possible to write an explicit expression for the spectrum of primary operators.

Since this kind of contruction has already been carried on in [15] for the J3 double

deformation of SL (2, R), here we will focus of the J2 deformations, giving the spectrum

for the deformed theory (section (6.1)) and for a deformed theory with discrete identifi-

cations (section (6.2)). We will limit ourselves to giving the spectrum for the theory: the

evaluation of the partition function, although straightforward in principle, would require

the decomposition of the SL (2, R) partition function in a hyperbolic basis of characters, a

still unresolved problem.

6.1 Deformed spectrum

Consider the double deformation described in section 4 for a SL(2, R)k super-wzw model

where J is the hyperbolic (space-like) J2 current.

The evaluation of the spectrum for our deformed model is pretty straightforward once

one realizes that the deformations act as O (2, 2) pseudo-orthogonal transformations on

the charge lattice corresponding to the abelian subgroup of the sl(2, R) heterotic model (as

described in section 2). Left and right weights for the relevant lattices are (see eqs. (C.20)

and (C.21)):

L0 =
1

k

(

µ + n +
a

2

)2
, (6.1a)

L̄0 =
µ̄2

k + 2
+

1

kg

(

n̄ +
ā

2

)2

, (6.1b)

where the anti-holomorphic part contains the contribution coming from a u(1) subgroup

of the heterotic gauge group.

At the lagrangian level, the infinitesimal deformation we want to describe is given by

the following marginal operator:

O = κ2

(

J2 + ıψ1ψ3

)

√
k

J̄2

√
k + 2

+ h

(

J2 + ıψ1ψ3

)

√
k

Ī
√

kg

. (6.2)

This suggests that the actual O(2, 2) transformation should be obtained as a boost be-

tween the holomorphic part and the result of a rotation between the two anti-holomorphic

components. The deformed lattices then read:

Ldd
0 =

{

1√
k

(

µ + n +
a

2

)

cosh x +

(

µ̄√
k + 2

cos α +
1

√

kg

(

n̄ +
ā

2

)

sin α

)

sinhx

}2

,

(6.3a)
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L̄dd
0 =

{ (

µ̄√
k + 2

cos α +
1

√

kg

(

n̄ +
ā

2

)

sinα

)

cosh x +
1√
k

(

µ + n +
a

2

)

sinhx

}2

,

(6.3b)

where the parameters x and α can be expressed as functions of ζ and ξ as follows:

{

κ2 = sinh(2x) cos α ,

h = sinh(2x) sin α .
(6.4)

6.2 Twisting

The identification operation we performed in the symmetrically and double-deformed met-

ric (as in section 5) is implemented in the string theory framework by the orbifold con-

struction. This was already obtained in [44, 45] for the “standard” btz black hole that

was described as a SL(2, R)/Z orbifold.

In order to write the spectrum that will contain the twisted sectors, the first step

consists in writing explicitly the primary fields in our theory, distinguishing between the

holomorphic and anti-holomorphic parts (as it is natural to do since the construction is

intrinsically heterotic).

• The holomorphic part is simply written by introducing the charge boost of eq. (6.3a)

in eq. (C.16):

Φdd
jµνµ̄ν̄(z) = Ujµ(z) exp

[

ı

(

√

2

k

(

µ + n +
a

2

)

cosh x +
√

2Q̄α sinhx

)

ϑ2

]

, (6.5)

where Qα = µ̄
√

2
k+2 cos α + ν̄

√

2
kg

sin α and the dd superscript stands for double

deformed

• To write the anti-holomorphic part we need at first to implement the rotation between

the J̄3 and gauge current components:

Φ̄jµ̄ν̄(z̄) = Vjµ(z̄)eıµ̄
√

2/k+2θ̄2eıν̄
√

2/kgX̄ =

= Vjµ(z̄)eı
√

2Q̄α(θ̄2 cos α+X̄ sin α)eı
√

2Q̄α−π/2(−θ̄2 sin α+X̄ cos α), (6.6)

and then realize the boost in eq. (6.3b) on the involved part:

Φ̄dd
jµµ̄νν̄(z̄) = Vjµeı

√
2Q̄α−π/2(−θ̄2 sin α+X̄ cos α)× (6.7)

× exp

[

ı

(

√

2

k

(

µ + n +
a

2

)

sinhx +
√

2Q̄α cosh x

)

(

θ̄2 cos α + X̄ sinα
)

]

.

Now that we have the primaries, consider the operator Ww (z, z̄) defined as follows:

Ww (z, z̄) = e−ı k
2
w∆−ϑ2+ı k+2

2
w∆+θ̄2 , (6.8)
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where w ∈ Z and θ̄2 the boson corresponding to the J̄2 current. It is easy to show that the

following ope’s hold:

ϑ2 (z)Wn (0, z̄) ∼ −ıw∆− log zWw (0, z̄) , (6.9)

θ̄2 (z̄)Wn (z, 0) ∼ ıw∆+ log z̄Ww (z, 0) , (6.10)

showing that Ww (z, z̄) acts as twisting operator with winding number w (ϑ2 and θ̄2 shift

by 2π∆−w and 2π∆+w under z → e2πız). This means that the general primary field in

the SL (2, R)k /Z theory can be written as:

Φtw
jµµ̄νν̄w (z, z̄) = Φdd

jµµ̄νν̄ (z, z̄) Ww (z, z̄) . (6.11)

where the tw superscript stands for twisted.

Having the explicit expression for the primary field, it is simple to derive the scaling

dimensions which are obtained, as before, via the gko decomposition of the Virasoro

algebra T [sl (2, R)] = T [sl (2, R) /o (1, 1)] + T [o (1, 1)]. Given that the T [sl (2, R) /o (1, 1)]

part remains invariant (and equal to L0 = −j (j + 1) /k−µ2/ (k + 2) as in eq. (C.18)), the

deformed weights read:

Ltw
0 =

{

k

2
√

2
w∆− +

1√
k

(

µ + n +
a

2

)

cosh x + Q̄α sinhx

}2

, (6.12a)

L̄tw
0 =

{

−k + 2

2
√

2
w∆+ cos α + Q̄α cosh x +

1√
k

(

µ + n +
a

2

)

sinhx

}2

+

+

{

k + 2

2
√

2
w∆+ sinα + Q̄α−π/2

}2

. (6.12b)

7. Summary

The main motivation for this work has been a systematic search of black-hole structures

in the moduli space of AdS3, via marginal deformations of the SL (2, R) wzw model and

discrete identifications. This allows to reach three-dimensional geometries with black-

hole structure that generalize backgrounds such as the btz black hole [7] or the three-

dimensional black string [18].

The backgrounds under consideration include a (singular) metric, a Kalb-Ramond field,

a dilaton and an electric field. The latter is always bounded from above, as usual in string

theory, where tachyonic instabilities are expected for large electric or magnetic fields.

We have computed parameters such as mass or charge. For backgrounds obtained

by performing marginal deformations, those parameters are related to the deformation

parameters. Singularities are true curvature singularities, hidden behind horizons. This is

to be opposed to the btz black-holes, where masses and momenta are introduced by the

Killing vector of the discrete identification, and where the singularity is a chronological

singularity.

Discrete identifications à la btz can be superimposed to the black holes obtained by

continuous deformations of AdS3. Extra chronological singularities appear in that case,
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which force us to excise some part of the original space. This part turns out to contain

the locus of the curvature singularity. It is worth stressing that for certain range of the

deformation parameters, naked singularities appear.

Although the geometrical view point has been predominating, the guideline for our

study comes from the underlying cft structure. This has enabled us to provide both a

geometrical and an algebraical description in terms of the spectrum of the string primaries.

Since we are dealing with the extension of AdS3 one may wonder about a possible

holographic interpretation for the exact string backgrounds at hand, aiming at generalizing

the usual AdS/cft correspondence. A major obstruction to this is due to the asymptotic

flatness of the geometries. Hence, it is not clear how to find a suitable boundary map.

Interesting questions that we did not address, which are in principle within reach, are

those dealing with the thermodynamical properties of the above black holes, for which a

microscopic interpretation in terms of string states should be tractable.
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A. AdS3 coordinate patches

A.1 AdS3 SL(2, R)

The commutation relations for the generators of the SL(2, R) algebra are

[

J1, J2
]

= −ıJ3
[

J2, J3
]

= ıJ1
[

J3, J1
]

= ıJ2 . (A.1)

The three-dimensional anti-de Sitter space is the universal covering of the SL(2, R) group

manifold. The latter can be embedded in a lorentzian flat space with signature (−, +, +,−)

and coordinates (x0, x1, x2, x3):

g = L−1

(

x0 + x2 x1 + x3

x1 − x3 x0 − x2

)

, (A.2)

where L is the radius of AdS3.

The isometry group of the SL(2, R) group manifold is generated by left or right actions

on g: g → hg or g → gh ∀h ∈ SL(2, R). From the four-dimensional point of view, it is

generated by the Lorentz boosts or rotations ζab = i (xa∂b − xb∂a) with xa = ηabx
b. We
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list here explicitly the six Killing vectors, as well as the group action they correspond to:

L1 =
ı

2
(ζ32 − ζ01) , g → e−

λ
2
σ1

g, (A.3a)

L2 =
ı

2
(−ζ31 − ζ02) , g → e−

λ
2
σ3

g, (A.3b)

L3 =
ı

2
(ζ03 − ζ12) , g → eı λ

2
σ2

g, (A.3c)

R1 =
ı

2
(ζ01 + ζ32) , g → ge

λ
2
σ1

, (A.3d)

R2 =
ı

2
(ζ31 − ζ02) , g → ge−

λ
2
σ3

, (A.3e)

R3 =
ı

2
(ζ03 + ζ12) , g → geı λ

2
σ2

. (A.3f)

Both sets satisfy the algebra (A.1) (once multiplied by −ı). The norms of the Killing

vectors are the following:

‖L1‖2 = ‖R1‖2 = ‖L2‖2 = ‖R2‖2 = −‖L3‖2 = −‖R3‖2 =
L2

4
. (A.4)

Moreover Li ·Lj = 0 for i 6= j and similarly for the right set. Left vectors are not orthogonal

to right ones.

The isometries of the SL(2, R) group manifold turn into symmetries of the SL(2, R)k

wzw model, where they are realized in terms of conserved currents.10 The reader will find

details on those issues in the appendices of [16].

A.2 “Symmetric” coordinates

One introduces Euler-like angles by

g = eı τ+φ
2

σ2

eρσ1

eı τ−φ
2

σ2

, (A.5)

which provide good global coordinates for AdS3 when τ ∈] − ∞, +∞[, ρ ∈ [0,∞[, and

φ ∈ [0, 2π]. In Euler angles, the invariant metric reads:

ds2 = L2
[

− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dφ2
]

. (A.6)

The Ricci scalar of the corresponding Levi-Civita connection is R = −6/L2. The volume

form reads:

ω[3] =
L3

2
sinh 2ρ dρ ∧ dφ ∧ dτ , (A.7)

whereas L3 = 1
2 ( ∂τ + ∂φ) and R3 = 1

2 ( ∂τ − ∂φ).

Another useful, although not global, set of coordinates is defined by

g = e
ψ−ϕ

2
σ3

eıβσ1

e
ψ+ϕ

2
σ3

, (A.8)

10When writing actions a choice of gauge for the ns potential is implicitly made, which breaks part of

the symmetry: boundary terms appear in the transformations. These must be properly taken into account

in order to reach the conserved currents. Although the expressions for the latter are not unique, they can

be put in an improved-Noether form, in which they have only holomorphic (for Li’s) or anti-holomorphic

(for Rj ’s) components.
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(ψ and ϕ are not compact coordinates). The metric reads:

ds2 = L2
[

cos2 β dψ2 − dβ2 + sin2 β dϕ2
]

, (A.9)

with volume form

ω[3] =
L3

2
sin 2β dβ ∧ dψ ∧ dϕ . (A.10)

Now L2 = 1
2 ( ∂ψ − ∂ϕ) and R2 = 1

2 ( ∂ψ + ∂ϕ).

Finally, the Poincaré coordinate system is defined by























x0 + x2 =
L

u
,

x0 − x2 = Lu +
Lx+x−

u
,

x1 ± x3 =
Lx±

u
.

(A.11)

For {u, x+, x−} ∈ R
3, the Poincaré coordinates cover once the SL(2R) group manifold.

Its universal covering, AdS3, requires an infinite number of such patches. Moreover, these

coordinates exhibit a Rindler horizon at |u| → ∞; the conformal boundary is at |u| → 0.

Now the metric reads:

ds2 =
L2

u2

(

du2 + dx+ dx−)

, (A.12)

and the volume form:

ω[3] =
L3

2u3
du ∧ dx+ ∧ dx− . (A.13)

We also have L1 + L3 = − ∂− and R1 + R3 = ∂+.

A.3 “Asymmetric” coordinates

The above three sets of AdS3 coordinates are suitable for implementing symmetric parabo-

lic, elliptic or hyperbolic deformations, respectively driven by
(

J1 + J3
) (

J̄1 + J̄3
)

, J3J̄3 or

J2J̄2. For asymmetric elliptic or hyperbolic deformations, we must use different coordinate

systems, where the structure of AdS3 as a Hopf fibration is more transparent. They are

explicitly described in the following.

• The coordinate system used to describe the elliptic asymmetric deformation is defined

as follows:










































x0

L
= cosh

ρ

2
cosh

φ

2
cos

t

2
− sinh

ρ

2
sinh

φ

2
sin

t

2
,

x1

L
= − sinh

ρ

2
sinh

φ

2
cos

t

2
− cosh

ρ

2
sinh

φ

2
sin

t

2
,

x2

L
= − cosh

ρ

2
sinh

φ

2
cos

t

2
+ sinh

ρ

2
cosh

φ

2
sin

t

2
,

x3

L
= − sinh

ρ

2
sinh

φ

2
cos

t

2
− cosh

ρ

2
cosh

φ

2
sin

t

2
.

(A.14)

The metric now reads:

ds2 =
L2

4

(

dρ2 + dφ2 − dt2 − 2 sinh ρ dt dφ
)

, (A.15)
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and the corresponding volume form is

ω[3] =
L3

8
cosh ρ dρ ∧ dφ ∧ dt. (A.16)

This coordinate system is such that the t-coordinate lines coincide with the integral

curves of the Killing vector L3 = − ∂t, whereas the φ-lines are the curves of R2 = ∂φ.

• The coordinate system used to describe the asymmetric hyperbolic deformation is

defined as follows:






































x0

L
= cosh

r

2
cosh

x

2
cos

τ

2
+ sinh

r

2
sinh

x

2
sin

τ

2
,

x1

L
= − sinh

r

2
cosh

x

2
cos

τ

2
+ cosh

r

2
sinh

x

2
sin

τ

2
,

x2

L
= − cosh

r

2
sinh

x

2
cos

τ

2
− sinh

r

2
cosh

x

2
sin

τ

2
,

x3

L
= sinh

r

2
sinh

x

2
cos

τ

2
− cosh

r

2
cosh

x

2
sin

τ

2
.

(A.17)

For {r, x, τ} ∈ R
3, this patch covers exactly once the whole AdS3, and is regular

everywhere [46]. The metric is then given by

ds2 =
L2

4

(

dr2 + dx2 − dτ2 + 2 sinh r dxdτ
)

, (A.18)

and correspondingly the volume form is

ω[3] =
L3

8
cosh r dr ∧ dx ∧ dτ. (A.19)

In this case the x-coordinate lines coincide with the integral curves of the Killing

vector L2 = ∂x, whereas the τ -lines are the curves of R3 = − ∂τ .

B. The BTZ black hole

In the presence of isometries, discrete identifications provide alternatives for creating new

backgrounds. Those have the same local geometry, but differ with respect to their global

properties. Whether these identifications can be implemented as orbifolds at the level of

the underlying two-dimensional string model is very much dependent on each specific case.

For AdS3, the most celebrated geometry obtained by discrete identification is certainly

the btz black hole [7]. The discrete identifications are made along the integral lines of the

following Killing vectors (see eqs. (A.3)):

non-extremal case : ξ = (r+ + r−) R2 − (r+ − r−) L2 , (B.1a)

extremal case : ξ = 2r+R2 − (R1 − R3) − (L1 + L3) . (B.1b)

In the original btz coordinates, the metric reads:

ds2 = L2

[

−f2(r) dt2 + f−2(r) dr2 + r2
(

dϕ − r+r−
r2

dt
)2

]

, (B.2)
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with

f(r) =
1

r

√

(

r2 − r2
+

) (

r2 − r2
−
)

. (B.3)

In this coordinate system,

∂ϕ ≡ ξ , ∂t ≡ − (r+ + r−) R2 − (r+ − r−) L2 and r2 ≡ ‖ξ‖ . (B.4)

In AdS3 ϕ is not a compact coordinate. The discrete identification makes ϕ an angular

variable, ϕ ∼= ϕ + 2π, which imposes to remove the region with r2 < 0. The btz geometry

describes a three-dimensional black hole, with mass M and angular momentum J , in a

space-time that is locally (and asymptotically) anti-de Sitter. The chronological singularity

at r = 0 is hidden behind an inner horizon at r = r−, and an outer horizon at r = r+.

Between these two horizons, r is time-like. The coordinate t becomes space-like inside the

ergosphere, when r2 < r2
erg ≡ r2

+ + r2
−. The relation between M, J and r± is as follows:

r2
± =

ML

2



1 ±
√

1 −
(

J

ML

)2


 . (B.5)

Extremal black holes have |J | = ML (r+ = r−). In the special case J = ML = 0 one finds

the near-horizon geometry of the five-dimensional ns5/f1 stringy black hole in its ground

state. Global AdS3 is obtained for J = 0 and ML = −1.

Many subtleties arise, which concern e.g. the appearance of closed time-like curves in

the excised region of negative r2 (where ∂ϕ would have been time-like) or the geodesic

completion of the manifold; a comprehensive analysis of these issues can be found in [8].

At the string-theory level, the btz identification is realized as an orbifold projection, which

amounts to keeping invariant states and adding twisted sectors [44, 45].

Besides the btz solution, other locally AdS3 geometries are obtained, by imposing

identification under purely left (or right) isometries, refereed to as self-dual (or anti-self-

dual) metrics. These were studied in [46]. Their classification and isometries are exactly

those of the asymmetric deformations studied in the present chapter. The Killing vector

used for the identification is (A) time-like (elliptic), (B) space-like (hyperbolic) or (C) null

(parabolic), and the isometry group is U(1)× SL(2, R). It was pointed out in [46] that the

resulting geometry was free of closed time-like curves only in the case (B).

C. Spectrum of the SL (2, R) super-wzw model

In this appendix we give a reminder of the superconformal wzw model on SL (2, R)k (for a

recent discussion see [47]). The affine extension of the sl (2, R) algebra at level k is obtained

by considering two sets of holomorphic and anti-holomorphic currents of dimension one,

defined as

Jm (z) = k 〈Tm, Adgg
−1∂g〉 , J̄m (z̄) = k 〈Tm, g−1∂̄g〉 , (C.1)

where 〈·, ·〉 is the scalar product (Killing form) in sl (2, R), {Tm} is a set of generators of

the algebra that for concreteness we can choose as follows:

T 1 = σ1 , T 2 = σ3 , T 3 = σ2 . (C.2)
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Each set satisfies the ope

Jm (z)Jn (w) ∼ kδmn

2 (z − w)2
+

fmn
pJ

p (w)

z − w
, (C.3)

where fmn
p are the structure constants of the sl (2, R) algebra. The chiral algebra contains

the Virasoro operator (stress tensor) obtained by the usual Sugawara construction:

T (z) =
∑

m

: JmJm :

k − 2
. (C.4)

A heterotic model is built if we consider a left-moving N = 1 extension, obtained by

adding 3 free fermions which transform in the adjoint representation. More explicitly:

T (z) =
∑

m

: JmJm :

k − 2
+ : ψm∂ψm : , (C.5)

G (z) =
2

k

(

∑

m

Jmψm − ı

3k

∑

mnp

fmnp : ψmψnψp :

)

. (C.6)

On the right side, instead of superpartners, we add a right-moving current with total central

charge c = 16.

Let us focus on the left-moving part. The supercurrents are given by ψm + θ
√

2/kJm

where:

Jm = Jm − ı

2

∑

np

εmnpψnψp ; (C.7)

it should be noted that the bosonic Jm currents generate an affine sl (2, R) algebra at level

k + 2, while the level for the total Jm currents is k.

Let us now single out the operator that we used for both the deformation (eqs. (4.4a))

and the identifications (section 5.3):

J2 = J2 + ıψ1ψ3 . (C.8)

Let us now bosonize these currents as follows:

J2 = −
√

k

2
∂ϑ2 , (C.9)

J2 = −
√

k + 2

2
∂θ2 , (C.10)

ψ1ψ3 = ∂H, (C.11)

and introduce a fourth free boson X so to separate the ϑ2 components both in θ2 and H:

ıH =

√

2

k
ϑ2 + ı

√

k + 2

k
X, (C.12)

θ2 =

√

2

k

(
√

k + 2

2
ϑ2 + ıX

)

. (C.13)
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A primary field Φjµµ̃ of the bosonic SL (2, R)k+2 with eigenvalue µ with respect to J2

and µ̄ with respect to J̄2 obeys by definition

J2 (z) Φjµµ̄ (w, w̄) ∼ µΦjµµ̄ (w, w̄)

z − w
, (C.14a)

J̄2 (z̄) Φjµµ̄ (w, w̄) ∼ µ̄Φjµµ̄ (w, w̄)

z̄ − w̄
. (C.14b)

Since Φjµµ̄ is purely bosonic, the same relation holds for the supercurrent:

J2 (z)Φjµµ̄ (w, w̄) ∼ µΦjµµ̄ (w, w̄)

z − w
. (C.15)

Consider now the holomorphic part of Φjµµ̄ (z, z̄). If Φjµ is viewed as a primary in the

swzw model, we can use the parafermion decomposition as follows:

Φjµ (z) = Ujµ (z) eıµ
√

2/kϑ2 , (C.16)

where Ujµ (z) is a primary of the superconformal SL (2, R)k / U(1). On the other hand, we

can just consider the bosonic wzw and write:

Φjµ (z) = Vjµ (z) eıµ
√

2/(k+2)θ2 = Vjµ (z) e
ı 2m
k+2

q

k+2

k
X+ıµ

√
2/kϑ2 , (C.17)

where now Vjµ (z) is a primary of the bosonic SL (2, R)k+2 / U(1). The scaling dimension

for this latter operator (i.e. its eigenvalue with respect to L0) is then given by:

∆ (Vjµ) = −j (j + 1)

k
− µ2

k + 2
. (C.18)

An operator in the full supersymmetric SL (2, R)k theory is then obtained by adding the

ψ1ψ3 fermionic superpartner contribution:

Φjµν (z) = Φjµ (z) eıνH = Vjµ (z) e
ı( 2µ

k+2
+ν)

q

k+2

k
X

eı
√

2/k(µ+ν)ϑ2 (C.19)

that is an eigenvector of J2 with eigenvalue µ + ν where µ ∈ R and ν can be decomposed

as ν = n + a/2 with n ∈ N and a ∈ Z2 depending on whether we consider the ns or r

sector. The resulting spectrum can be read directly as:

∆ (Φjµn (z)) = −j (j + 1)

k
− µ2

k + 2
− k + 2

2k

(

2µ

k + 2
+ n +

a

2

)2

+
1

k

(

µ + n +
a

2

)2

= −j (j + 1)

k
− 1

2

(

n +
a

2

)2
. (C.20)

Of course the last expression was to be expected since it is the sum of the sl (2, R)k+2

Casimir and the contribution of a light-cone fermion. Nevertheless the preceding constru-

cion is useful since it allowed us to isolate the J2 contribution to the spectrum (µ + ν)2 /k.

The right-moving part of the spectrum is somewhat simpler since there are no super-

partners. This means that we can repeat our construction above and the eigenvalue of the

L̄0 operator is simply obtained by adding to the dimension in eq. (C.18) the contribution

of the J̄2 operator and of some U(1) coming from the gauge sector:

∆̄
(

Φ̄jµ̄n̄ (z̄)
)

= −j (j + 1)

k
− µ̄2

k + 2
+

{

µ̄2

k + 2
+

1

kg

(

n̄ +
ā

2

)2
}

, (C.21)

where again n̄ ∈ N and ā ∈ Z2 depending on the sector.
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[17] D. Israël, C. Kounnas, D. Orlando and P.M. Petropoulos, Heterotic strings on homogeneous

spaces, hep-th/0412220.

[18] J.H. Horne and G.T. Horowitz, Exact black string solutions in three-dimensions, Nucl. Phys.

B 368 (1992) 444 [hep-th/9108001].

[19] V.G. Knizhnik and A.B. Zamolodchikov, Current algebra and Wess-Zumino model in two

dimensions, Nucl. Phys. B 247 (1984) 83.

[20] H. Leutwyler and M.A. Shifman, Perturbation theory in the Wess-Zumino-Novikov-Witten

model, Int. J. Mod. Phys. A 7 (1992) 795.

– 30 –

Bibliography 289



J
H
E
P
0
7
(
2
0
0
5
)
0
7
2

[21] A.A. Tseytlin, Effective action of gauged WZW model and exact string solutions, Nucl. Phys.

B 399 (1993) 601 [hep-th/9301015].

[22] D. Gepner and Z.-A. Qiu, Modular invariant partition functions for parafermionic field

theories, Nucl. Phys. B 285 (1987) 423.

[23] D. Gepner, New conformal field theories associated with Lie algebras and their partition

functions, Nucl. Phys. B 290 (1987) 10.

[24] A.A. Tseytlin, Conformal sigma models corresponding to gauged Wess-Zumino-Witten

theories, Nucl. Phys. B 411 (1994) 509 [hep-th/9302083].

[25] S. Förste, A truly marginal deformation of SL(2, R) in a null direction, Phys. Lett. B 338

(1994) 36 [hep-th/9407198].

[26] E. Kiritsis, C. Kounnas, P.M. Petropoulos and J. Rizos, Five-brane configurations, conformal

field theories and the strong-coupling problem, hep-th/0312300.

[27] G.T. Horowitz and A.A. Tseytlin, A new class of exact solutions in string theory, Phys. Rev.

D 51 (1995) 2896 [hep-th/9409021].

[28] E. Kiritsis and C. Kounnas, Infrared regularization of superstring theory and the one loop

calculation of coupling constants, Nucl. Phys. B 442 (1995) 472 [hep-th/9501020].

[29] M. Rooman and P. Spindel, Goedel metric as a squashed anti-de Sitter geometry, Class. and

Quant. Grav. 15 (1998) 3241 [gr-qc/9804027].

[30] E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314.

[31] R. Dijkgraaf, H.L. Verlinde and E.P. Verlinde, String propagation in a black hole geometry,

Nucl. Phys. B 371 (1992) 269.

[32] D. Gershon, Exact solutions of four-dimensional black holes in string theory, Phys. Rev. D

51 (1995) 4387 [hep-th/9202005].
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We conjecture the existence of a duality between heterotic closed strings on homogeneous spaces
and symmetry-preserving D-branes on group manifolds, based on the observation about the coinci-
dence of the low-energy field description for the two theories. For the closed string side we also give
an explicit proof of a no-renormalization theorem as a consequence of a hidden symmetry and infer
that the same property should hold true for the higher order terms of the dbi action.

One of the main technical advantages provided by the
study of models on group manifolds is that the geometri-
cal analysis can be recast in Lie algebraic terms. At the
same time the underlying conformal symmetry makes it
possible to explicitly study the integrability properties
that, in general, allow for extremely nice behaviours un-
der renormalization. Wess-Zumino-Witten models can
be used as starting points for many interesting models:
the main challenge in this case consists in partially re-
moving the symmetry while retaining as many algebraic
and integrability properties as possible.

In this note we aim at pointing out an analogy (or,
as we will say, a duality) between two – in principle dis-
connected – constructions based on wzw models: closed
string (heterotic) backgrounds obtained via asymmet-
ric deformations and symmetry-preserving D-branes on
group manifolds. As we will show, in fact, the low-energy
field contents for both theories are the same, although
they minimize different effective actions (sugra for the
former and dbi for the latter). For one of the sides of the
duality (the closed string one) we will also show a no-
renormalization theorem stating that the effect of higher-
order terms can be resummed to a shift in the radii of the
manifold. A similar behaviour can also be conjectured
from the D-brane side, and this would be consistent with
some remark in literature about the coincidence between
the dbi and cft results concerning mass spectra, . . . up
to the said shift [1, 2].

Let us start with the open-string side of this duality,
by reminding some known facts about the geometric de-
scription of D-branes in wzw models on compact groups,
pointing out in particular the low-energy field configura-
tion. Natural boundary conditions on wzw models are
those in which the gluing between left- and right-moving

†Unité mixte du CNRS et de l’École Polytechnique, UMR 7644.
‡Unité mixte du CNRS et de l’École Normale Supérieure, UMR
8549.

currents can be expressed in terms of automorphisms ω
of the current algebra. The corresponding world-volumes
are then given by (twisted) conjugacy classes on the
group [3]:

Cω(g) =
{

hgω(h−1)
∣∣ h ∈ G

}
. (1)

As it was pointed out in [1], one can use Weyl’s theory
of conjugacy classes so to give a geometric description of
Cω(g). For a given automorphism ω we can always find
an ω-invariant maximal torus T ⊂ G (such as ω(T ) =
T ). Let Tω ⊂ T be the set of elements t ∈ T invariant
under ω (Tω = { t ∈ T | ω(t) = t }) and Tω

0 ⊂ Tω the
connected component to the unity. When ω is inner T =
Tω = Tω

0 while in general (i.e. if we allow ω to be outer)
dim(Tω

0 ) ≤ rank G.
Let ω be inner. Define a map:

q : G/T × T → G

([g], t) 7→ q([g], t) = gtg−1. (2)

One can show that this map is surjective, so that each
element in G is conjugated to some element in T . This
implies in particular that the conjugacy classes are char-
acterized by elements in T , or, in other words, fixing
t ∈ T (so to take care of the action of the Weyl group),
we find that the (regular) conjugacy classes Cω(g) are
isomorphic to the homogeneous space G/T . A similar
result holds for twisted classes, but in this case

Cω(g) ' G/Tω
0 . (3)

The description of the D-brane is completed by the
U(1) gauge field that lives on it. The possible U(1) fluxes
are elements in H2(G/Tω

0 , R) and one can show that

H2(G/Tω
0 ) ' Zdim T ω

0 . (4)

Summarizing we find that the gauge content of the low
energy theory is given by:
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• the metric on G/Tω
0 (in particular G/T for un-

twisted branes),

• the pull-back of the Kalb–Ramond field on G/Tω
0 ,

• dim Tω
0 independent U(1) fluxes (rank G for un-

twisted branes).

These fields extremize the dbi action

S =
∫

dx
√

det (g + B + 2πF). (5)

and according to some coincidence with known exact cft
results there are reasons to believe that the fields only
receive a normalization shift when computed at all loops.

Let us now move to the other – closed string – side
of the advertised duality. A good candidate for a defor-
mation of a wzw model that reduces the symmetry, at
the same time preserving the integrability and renormal-
ization properties, is obtained via the introduction of a
truly marginal operator written as the product of a holo-
morphic and an antiholomorphic current

O =
∑
ij

cijJ
iJ̄j . (6)

As it was shown in [4], a necessary and sufficient con-
dition for this marginal operator to be integrable is that
the left and right currents both belong to abelian groups.
If we consider the heterotic super-wzw model, a possible
choice consists in taking the left currents in the Cartan
torus and the right currents from the heterotic gauge sec-
tor [5, 6]:

O =
N∑

a=1

haJaĪa. (7)

where Ja ∈ H ⊂ T , T being the maximal torus in G.

Using a construction bearing many resemblances to a
Kaluza–Klein reduction it is straightforward to show that
the background fields corresponding to this kind of de-
formation consist in a metric, a Kalb–Ramond field and
a U(1)N gauge field. Their explicit expressions are sim-
ply given in terms of Maurer–Cartan one-forms on G as
follows:

g =
k

2
δmnJ m ⊗ J n − kδabh

2
aJ̃ a ⊗ J̃ b, (8a)

H[3] = dB − 1
kg

Aa ∧ dAa =
k

2
fmnpJ m ∧ J n ∧ J p − kh2

afamnJ a ∧ J m ∧ J n, (8b)

Aa = ha

√
2k

kg
J̃ a (no summation over a implied), (8c)

where J̃ a
µ are the currents that have been selected for

the deformation operator. In this way we get an N -
dimensional space of exact models. Here we will con-
centrate on a special point in this space, namely the
one that corresponds to {ha = 1/

√
2,∀a = 1, 2, . . . , N }.

This point is remarkable for it corresponds to a de-
compactification limit where N dimensions decouple and
we’re left with the homogeneous G/H space times N non-
compact dimensions[]. More precisely, when H coincides
with the maximal torus T , the background fields read:

G =
k

2

∑
µ

J µ ⊗ J µ, (9a)

H[3] = dB =
1
2
fµνρJ µ ∧ J ν ∧ J ρ, (9b)

F a = −

√
k

2kg
hafa

µνJ µ ∧ J ν (9c)

(no summation over a). Geometrically:

• g is the metric on G/T obtained as the restriction
of the Cartan–Killing metric on G

• H[3] is the pullback of the usual Kalb–Ramond field
present in the wzw model on the group G

• F a are rank(G) independent U(1) gauge fluxes that
satisfy some quantization conditions and hence nat-
urally live in H2(G/T, Z)

Having chosen a truly marginal operator for the de-
formation we know that this model is conformal. This
implies in particular that the background fields solve the
usual β equations that stem from the variation of the
effective sugra action:

S =
∫

dx
√

g

(
R− 1

12
HµρσHµρσ − kg

8
F a

µνF aµν +
δc

3

)
(10)
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In example if we consider G = SU(2), then T = U(1)
and the decompactification limit H → 1/

√
2 we get the

exact S2 = SU(2)/U(1) background supported by a U(1)
magnetic monopole field (see e.g. [7, 8]).

Our conjecture stems precisely from this: the gauge
field above exactly match the ones we found before for
symmetry-preserving D-branes. Moreover both sides of
the duality are derived from wzw models that enjoy a
no-renormalization property which would make this cor-
respondence true at all orders. In this spirit we now pass
to prove that a similar theorem holds for closed heterotic
strings on coset models infering that the duality, when
proven, would give a direct way to deduce the same fea-
ture for the D-brane action.

In studying symmetrically deformed wzw models, i.e.
those where the deformation operator is written as the

product of two currents belonging to the same sector
O = λJJ̄ , one finds that the Lagrangian formulation
only corresponds to a small-deformation approximation.
For this reason different techniques have been developed
so to read the background fields at every order in λ [9–
13] but, still, the results are in general only valid at first
order in α′ and have to be modified so to take into ac-
count the effect of instanton corrections. In this section
we want to show that this is not the case for asymmet-
rically deformed models, for which the background fields
in Eqs. (8) are exact at all orders in ha and for which the
effect of renormalization only amounts to the usual (for
wzw models) shift in the level of the algebra k → k + cG

where cG is the dual Coxeter number.
Consider in example the most simple SU(2) case. In

terms of Euler angles the deformed Lagrangian is written
as:

S = SSU(2) (α, β, γ) + δS =
k

4π

∫
d2z ∂α ∂̄α + ∂β ∂̄β + ∂γ ∂̄γ + 2 cos β ∂α ∂̄γ+

+

√
kkgh

2π

∫
d2z ( ∂γ + cos β ∂α) Ī . (11)

If we bosonize the right-moving current as Ī = ∂̄φ and add a standard U(1) term to the action, we get:

S = SSU(2) (α, β, γ) + δS (α, β, γ, φ) +
kg

4π

∫
d2z ∂φ ∂̄φ =

= SSU(2)

(
α, β, γ + 2

√
kg

k
hφ

)
+

kg

(
1− 2h2

)
4π

∫
d2z ∂φ ∂̄φ (12)

and in particular at the decoupling limit h→ 1/
√

2, cor-
responding to the S2 geometry, the action is just given

by S = SSU(2)

(
α, β, γ + 2

√
kg

k hφ

)
. This implies that

our (deformed) model inherits all the integrability and
renormalization properties of the standard SU(2) wzw
model. In other words the three-dimensional model with
metric and Kalb–Ramond field with SU(2)× U(1) sym-
metry and a U(1) gauge field is uplifted to an exact model
on the SU(2) group manifold (at least locally): the inte-
grability properties are then a consequence of this hidden
SU(2) × SU(2) symmetry that is manifest in higher di-
mensions.

The generalization of this particular construction to
higher groups is easily obtained if one remarks that the
Euler parametrization for the g ∈ SU (2) group represen-
tative is written as:

g = eıγt3eıβt1eıαt2 , (13)

where ti = σi/2 are the generators of su(2) (σi being

the usual Pauli matrices). As stated above, the limit
deformation corresponds to the gauging of the left action
of an abelian subgroup T ⊂ SU (2). In particular here
we chose T = {h | h = eıφt3 }, hence it is natural to find
(up to the normalization) that:

h (φ) g (α, β, γ) = g (α, β, γ + φ) . (14)

The only thing that one needs to do in order to gener-
alize this result to a general group G consists in finding
a parametrization of g ∈ G such as the chosen abelian
subgroup appears as a left factor. In example if in SU(3)
we want to gauge the U (1)2 abelian subgroup generated
by 〈λ3, λ8〉 (Gell-Mann matrices), we can choose the fol-
lowing parametrization for g ∈ SU(3) [14]:

g = eıλ8φeıλ3ceıλ2beıλ3aeıλ5ϑeıλ3γeıλ2βeıλ3α. (15)

The deep reason that lies behind this property (differ-
entiating symmetric and asymmetric deformations) is the
fact that not only the currents used for the deformation
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are preserved (as it happens in both cases), but here their
very expression is just modified by a constant factor. In
fact, if we write the deformed metric as in Eq. (8a) and
call K̃µ the Killing vector corresponding to the chosen
isometry (that doesn’t change along the deformation),
we see that the corresponding J̃ (h)

µ current is given by:

J̃ (h)
ν = K̃µg(h)

µν =
(
1− 2h2

)
J̃ (0)

ν (16)

The most important consequence (from our point of
view) of this integrability property is that the sugra
action in Eq. (10) is exact and the only effect of renor-
malization is the k → k + cG shift.

It is very tempting to exend this no-renormalization
theorem to the D-brane side. Of course this would re-
quire an actual proof of the duality we conjecture. Nev-
ertheless we think that this kind of approach might prove
(at least for these highly symmetric systems) more fruit-
ful than adding higher loop corrections to the dbi action,
which on the other hand remains an interesting directions
of study by itself.

Is this duality just a coincidence, due to the underlying
Lie algebraic structures that both sides share, or is it a
sign of the presence of some deeper connection? Differ-
ent aspects of the profound meaning of the dbi effective
action are still poorly understood and it is possible that
this approach – pointing to one more link to conformal
field theory – might help shedding some new light.
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We analyze the behaviour of heterotic squashed-Wess–Zumino–Witten backgrounds under renormalization-
group flow. The flows we consider are driven by perturbation creating extra gauge fluxes. We show how
the conformal point acts as an attractor from both the target-space and world-sheet points of view. We also
address the question of instabilities created by the presence of closed time-like curves in string backgrounds.

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The purpose of this note is to analyze the behavior of certain string backgrounds under world-sheet
renormalization-group flows. In our set-up, these flows are driven by world-sheet operators, which cre-
ate, in the target space–time, extraU(1), electric or magnetic, gauge fields and push the string off criticality.

World-sheet renormalization group has been investigated both from the general conformal field theory
(cft) and from the geometrical, target space viewpoints [1,2]. The motivations are diverse: study the stability
of the background against off-critical excursions, search for new critical string backgrounds, eventually
explore string theory off-shell, etc.

In the presence of “impurities” such as branes or orbifold fixed points in non-compact target spaces,
or when background electric or magnetic fields are switched on, tachyons may in general appear [3, 4].
World-sheet renormalization-group techniques are then useful for investigating the relaxation process of
the original unstable vacuum, towards a new, stable infrared fixed point. Such relaxation is usually a tachyon
condensation [5–7], that can be accompanied by emission of particles (in the form e.g. of charged pairs) [8,9].

The presence of closed time-like curves can also trigger decays. It was argued years ago [10] that
gravitational solutions with such chronological pathologies might naturally evolve towards chronologically
safe backgrounds. This has been recast more recently in the framework of string vacua [11,12] with some
preliminary results. It is clear that one would gain insight by studying renormalization-group flows in an
appropriately chosen parameter space for families of string backgrounds.

World-sheet renormalization group can be studied directly at the level of the two-dimensional cft.
Any relevant operator can be used to leave the conformal point, and the necessary tools are in principle

∗ Partially supported by the EU under the contracts MEXT-CT-2003-509661, MRTN-CT-2004-005104 and MRTN-CT-2004-503369
∗∗ Corresponding author E-mail: domenico.orlando@cpht.polytechnique.fr, Phone: +00 331 69 33 47 21
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available for computing the beta-functions and determining the flows. This procedure is usually perturbative.
It turns out that it is trustful [1] in determining the new conformal point in the IR only when the operators
responsible for the flow are marginally relevant (conformal dimensions ∆ = ∆̄ = 1, but only at first order
in the deformation parameter), or almost relevant (conformal dimensions ∆ = ∆̄ = 1 − ε). In the case
of deformations with irrelevant operators we return back to the conformal point towards the IR. In the
framework of Wess–Zumino–Witten (wzw) models [13] (which capture e.g. the S3 and AdS3 spaces with
NS background fluxes), such operators exist only at large level k. Hence, their operator product expansions
involve a plethora of fields, and the actual computation of their beta function is very intricate. In order
to overcome this difficulty, we will here use an alternative method, more geometric and based on target-
space techniques.

This note is organized as follows. In Sect. 2 we present a quick review of the heterotic squashed wzw
models [14, 15]. Then in Sect. 3 we introduce a perturbation and study the system as the rg flow, in the
corresponding two-dimensional σ-model, takes it back to the conformal point. In Sect. 4 we show that this
is consistent with the cft results.

2 Squashed wzw models

One of the most appealing properties of wzw models is that they allow for both an exact cft bidimensional
description and a simple spacetime interpretation in terms of group manifolds. Current-current deformations
allow to explore their moduli space, leading in general to models that keep the integrability properties but
may lack a nice spacetime description. Special attention is deserved by the asymmetric deformations in
which the two currents come from different sectors of the theory; in this case, in fact, together with the nice
cft properties, the spacetime geometry remains simple to describe in terms of squashed groups.

To be more concrete consider a heterotic swzw model on a group G of dimension d and rank r. The
asymmetric current-current deformation is realized by adding the operator

O =

√
kkg

2π

∫
d2z

r∑

a,b=1

cab

(

Ja(z) − i

k
famnψ

mψn
)

J̄b(z̄) , (1)

where Ja are currents in the Cartan torus T ⊂ G, ψm are the fermionic superpartners and J̄a are anti-
holomorphic currents belonging to the gauge sector. The engineering dimension of the operator is obviously
(1, 1) and, as it has been shown in [16], O is truly marginal (i.e. at every order in deformation) for any value
of the parameter matrix cab, since the currents commute. In other words, with the aid of O, we reach an
r-dimensional space of exact cft’s.

As described in [15], the background fields corresponding to the new sigma–model can be read using a
technique bearing many resemblances to a Kaluza–Klein reduction1 and consist in a metric, a Kalb–Ramond
field and a U(1)r (chromo-)magnetic field. As announced above the description remains simple and the
all-order exact expression can be given in terms of Maurer–Cartan currents Jm on G as follows:






ds2 =
∑

µ∈G/T
JµJµ +

(
1 − h2)∑

a∈T
JaJa ,

H[3] = 1
2 fµνρJ

µ ∧ Jν ∧ Jρ , µ ∈ G/T,

F a = h

√
k

kg
faµνJ

µ ∧ Jν , µ ∈ G/T , a ∈ T ,

(2)

where we chose cab = hδab. In particular we see that the metric is the one of a squashed group i.e. we still
have the structure of a T fibration over G/T but the radius of the fiber changes with h. A special value

1 It would be a genuine reduction if we had done the construction in type ii or in a bosonic theory. In this case the current J̄a

would just be the anti-holomorphic derivative of an internal coordinate Xa.
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of the deformation parameter is singled out: for h < 1 the metric is positive definite, while for h > 1 the
signature changes. The apparently singular h = 1 value can nevertheless be reached by a limiting procedure
whose geometrical interpretation is the trivialization of the fiber. We end up with an exact cft on a G/T
background sustained by a (chromo-)magnetic field.

The simplest example is given by G = SU(2) where we have (in Euler coordinates) the following
background fields:






ds2 = dθ2 + dψ2 + dφ2 + cos θdψdφ− h2 (dψ + cos θdφ)2 ,

B = cos θdψ ∧ dφ ,

A = 2h (dψ + cos θdφ) ,

(3)

corresponding, in the h → 1 limit, to a S2 geometry.

3 RG-flows for compact groups: geometric approach

We present here the geometric, target-space techniques for analyzing rg flows in two-dimensional theories.
These techniques apply to any compact group. We will however expand on the case of SU(2) since it
captures all the relevant features.

3.1 The parameter space

The model that we have presented in the previous section is conformal; for this reason we expect to find
it as a fixed point in an rg flow. To verify this claim let us introduce a two-parameter family of σ models
generalizing the exact backgrounds of eq. (2); a possible choice consists in adding a new magnetic field,
this time coming from a higher dimensional right sector. Explicitly






ds2 =
∑

µ∈G/T
JµJµ +

(
1 − h2)∑

a∈T
JaJa ,

H[3] =
h̄

2h
fµνρJ

µ ∧ Jν ∧ Jρ , µ ∈ G/T,

F a =
h+ h̄

2

√
k

kg
faµνJ

µ ∧ Jν , µ ∈ G/T , a ∈ T ,

F̄ a =
h− h̄

2

√
k

kg
faµνJ

µ ∧ Jν , µ ∈ G/T , a ∈ T

(4)

and in particular for SU(2):






ds2 = dθ2 + dψ2 + dφ2 + cos θdψdφ− h2 (dψ + cos θdφ)2 ,

B =
h̄

h
cos θdψ ∧ dφ ,

A =
(
h+ h̄

)
(dψ + cos θdφ) ,

Ā =
(
h− h̄

)
(dψ + cos θdφ) ,

(5)

where h̄ is a new parameter, describing the deviation from the conformal point. It is clear that the above
background reduces to the one in eq. (3) in the h̄ → h limit. In particular we see that the metric is unchanged,
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the Kalb–Ramond field has a different normalization and a new field Ā appears. This configuration can be
described in a different way: the geometry of a squashed sphere supports two covariantly constant magnetic
fields with charge Q = h+ h̄ and Q̄ = h− h̄; the rg flow will describe the evolution of these two charges
from a generic

(
Q, Q̄

)
to (2h, 0), while the sumQ+Q̄ = 2h remains constant. In this sense the phenomenon

can be interpreted as a charge transmutation of Q̄ into Q. The conservation of the total charge is in fact a
consequence of having chosen a perturbation that keeps the metric and only changes the antisymmetric part
of the background.

We can also see the background in eq. (4) from a higher dimensional perspective where only the metric
and the Kalb-Ramond field are switched on. Pictorially:

g =








gwzw hJa

hJa 1







, B =








h̄
hBwzw h̄Ja

−h̄Ja 0








(6)

where gwzw and Bwzw are the usual metric and Kalb–Ramond fields for the wzw model on the group G.
More explicitly in the SU(2) case:

g =








1 0 0 0
0 1 cos θ h

0 cos θ 1 h cos θ
0 h h cos θ 1







, B =








0 0 0 0
0 0 h̄

h cos θ h̄

0 − h̄
h cos θ 0 h̄ cos θ

0 −h̄ −h̄ cos θ 0








(7)

where the fourth entry represents the bosonized internal current. In particular this clarifies the stated right-
sector origin for the new gauge field Ā. This higher dimensional formalism is the one we will use in the
following rg analysis.

3.2 The renormalization group flow

The σ-model in eq. (6) is not conformal for generic values of the parameters h and h̄; this is why it makes
sense to study its behaviour under the rgflow. Following a dimensional-regularization scheme (see [2,17,18]
and for various applications [19–22]) we consider the action

S =
1
2λ

∫
d2z (gmn +Bmn) ∂Xm∂̄Xn , (8)

where g and B are the fields in eq. (6). The beta-equations at two-loop order in the expansion in powers of
the overall coupling constant l and the field redefinitions for the internal coordinates Xi turn out to be:






βλ∗ =
dλ∗

dt
= −λ∗2

4π

(

1 − h̄2

h2

)(

1 +
λ∗

8π

(

1 − 3
h̄2

h2

))

,

βh =
dh
dt

=
λ∗h

8π
(
1 − h2 )

(

1 − h̄2

h2

)(

1 +
λ∗

8π

(

1 − 3
h̄2

h2

))

,

βh̄ =
dh̄
dt

= −λ∗h̄

8π
(
1 + h2)

(

1 − h̄2

h2

)(

1 +
λ∗

8π

(

1 − 3
h̄2

h2

))

,

Xi = Xi − λ∗

16
(
1 − h2)

(

1 − 4
h̄2

h2 + 3
h̄4

h4

)

,

(9)

where λ∗ = λg∗, g∗ being the dual Coxeter number, is the effective coupling constant (λ∗ = Nλ for
G = SU(N)). The contributions at one- and two-loop order are clearly separated. In the following we will
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concentrate on the one-loop part and we will comment on the two-loop result later. Let us then consider
the system:






βλ∗ =
dλ∗

dt
= −λ∗2

4π

(

1 − h̄2

h2

)

,

βh =
dh
dt

=
λ∗h

8π
(
1 − h2 )

(

1 − h̄2

h2

)

,

βh̄ =
dh̄
dt

= −λ∗h̄

8π
(
1 + h2)

(

1 − h̄2

h2

)

.

(10)

This can be integrated by introducing the parameter z = h̄/h which makes one of the equations redundant.
The other two become:






λ̇∗ = −λ∗2

4π
(1 − z2) ,

ż = −λ∗z

4π
(1 − z2) .

(11)

By inspection one easily sees that λ̇/λ = ż/z, implying λ(t) = Cz(t), where C is a constant. This was to
be expected since C is proportional to the normalization of the topological wz term. Since we are dealing
with a compact group it turns out that C is, as in [13], quantized with:

Ck =
2π
k
, k ∈ N . (12)

Now it’s immediate to separate the system and find that z(t) is defined as the solution to the implicit equation:

− t

2k
=

1
z0

− 1
z(t)

+ log
[

(z(t) + 1) (z0 − 1)
(z(t) − 1) (z0 + 1)

]

(13)

with the initial condition z(0) = z0. A similar expression was found in [13,23]. The reason for this is, as
pointed out previously [24], that the conformal model (h̄ = h) in its higher-dimensional representation (the
one in eq. (6)) coincides with a G×H wzw model after a suitable local field redefinition.

As it is usually the case in the study of non-linear dynamics, a better understanding of the solution is
obtained by drawing the rg flow. In a (z, λ∗) plane, the trajectories are straight lines through the origin and
only a discrete set of them are allowed. Moreover the line z = 1 is an ir fixed-point locus. This situation
is sketched in Fig. 1a. Just as expected the z = h̄/h = 1 point, corresponding to the initial exact model
described in Sect. 2, is an ir fixed point for the rg flow.

Further insights can be gained if we substitute the conditionλ∗ = Ckh̄/h into the system (10) thus getting:






dh
dt

=
h̄

4k
(
1 − h2)

(

1 − h̄2

h2

)

,

dh̄
dt

= − h̄2

4kh
(
1 + h2)

(

1 − h̄2

h2

)

.

(14)

The flow diagram for this system in the
(
h, h̄

)
plane, Fig. 1b, shows how the system relaxes to equilibrium

after a perturbation. In particular we can see how increasing h̄ leads to a a new fixed point corresponding
to a value of h closer to 1.

We would like to pause for a moment and put the above results in perspective. The target-space of the
sigma-model under consideration is a squashed three-sphere with two different magnetic fields. Along the
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z

λ

z = 1

k = 1

k = 2

a (z, λ) plane

h

h̄

h = 1

h̄ = h

b (h, h̄) plane

Fig. 1 (online colour at: www.fp-journal.org) Flow lines for the deformed (non-conformal) squashed wzw
model in a the (z, λ) and b the (h, h̄) planes. The arrows point in the negative t direction, i.e. towards the
infrared; in a we see how the squashed wzw model z = 1 appears as an ir fixed point, in b how perturbing
the conformal h̄ = h model by increasing h̄ leads to a a new fixed point corresponding to a value of h closer
to 1.

flow, a transmutation of the two magnetic charges occurs: the system is driven to a point where one of the
magnetic charges vanishes. This fixed point is an ordinary squashed-wzw (of the type studied in Sect. 2),
that supports a single magnetic charge.

As we pointed out in Sect. 2, in the squashed-wzw, the magnetic field is bounded by a critical value,
h = 1.As long as h ≤ 1, the geometry is a genuine squashed three-sphere. For h > 1, the signature becomes
Lorentzian and the geometry exhibits closed time-like curves. Although of limited physical interest, such
a background can be used as a laboratory for investigating the fate of chronological pathologies along the
lines described above. In particular we see that under the perturbation we are considering the model shows
a symmetry between the h > 1 and h < 1 regions. In fact the presence of closed time-like curves doesn’t
seem to make any difference, but for the fact that regions with different signatures are disconnected, i.e. the
signature of the metric is preserved under the rg flow. It is clear that these results are preliminary. To get a
more reliable picture for closed time-like curves, one should repeat the above analysis in a wider parameter
space, where other rg motions might appear and deliver a more refined stability landscape.

4 RG-flows for compact groups: CFT approach

In order to make contact with genuine cft techniques, we must identify the relevant operators which are
responsible for the (h, h̄) deformation of the G × H original wzw model (H = U(1)rankG). At lowest
approximation, all we need is their conformal dimensions in the unperturbed theory.

Following [1], let L0 be the unperturbed (conformal) action and Oi the operators of conformal dimension
∆i. Consider the perturbed model, with Lagrangian

L = L0 + giOi . (15)

The tree-level beta-functions read:

βi(g) = (∆i − 1)gi , (16)

where gi is supposed to be small, for the perturbative expansion of βi to hold2.

2 One should be very careful in the choice of signs in these formulae. In [1] the time variable, in fact, describes the evolution of
the system towards the infrared and as such it is opposite with respect to the t = log µ convention that we used in the previous
section (as in [13]).

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.fp-journal.org

306 Bibliography



Fortschr. Phys. 54, No. 5 – 6 (2006) 459

The G×H primary operator we need can be written as follows:

O =
∑

a,b

〈tagtbg−1〉 〈ta∂gg−1〉 〈tbg−1∂̄ g〉 =
∑

a,b

ΦabJaJ̄b , (17)

where Φab is a primary field transforming in the adjoint representation of the left and right groups G. As
such, the total conformal dimensions are [25]

∆ = ∆̄ = 1 +
g∗

g∗ + k
, (18)

where g∗ is the dual Coxeter number and as such the operator is irrelevant (in the infrared).
Specializing this general construction to our case we find that the action for the fields in eq. (6) is:

L =
k

4π





L0 +

(
h

h̄
− 1
)∑

a,b

ΦabJaJ̄b +
h

h̄

(
h+ h̄

)∑

i

Jai J̄ i +
h

h̄

(
h− h̄

)∑

i,a

J iΦaiaJ̄a





, (19)

where a runs over all currents, i over the internal currents in H and Jai is the wzw current of the Cartan
subalgebra ofG coupled to the internal J̄ i. The extra terms can be interpreted as combinations of operators
in theG×H model. The beta-functions are thus computed following eq. (16) with the coupling g = h/h̄−1.
We obtain

d
dt

(
h

h̄
− 1

) ∣∣
∣
∣
∣
h̄=h

=
g∗

g∗ + k

(
h

h̄
− 1
)

+ . . . =
(
g∗

k
− g∗2

k2

)(
h

h̄
− 1
)

+ . . . (20)

where the dots after the first equality denote higher order terms in the (h/h̄ − 1)-expansion and after the
second equality, in addition to that, higher order terms in the 1/k-expansion. This result is the same as the
one in [25] since, as we have mentioned, there is the a local field redefinition that maps this model at the
conformal point to the G×H wzw model. The above result is to be compared with the results following
from eq. (20) when they are expanded around h = h̄. We obtain:

d
dt

(
h

h̄
− 1
) ∣∣
∣
∣
∣
h̄=h

=
(
g∗

k
− g∗2

k2

)(
h

h̄
− 1
)

+ 1
2

(

−g
∗

k
+ 7

g∗2

k2

)(
h

h̄
− 1
)2

+ . . . . (21)

We see that these results agree to first order in the coupling h/h̄− 1.
The extra information that we obtain from this calculation is about the interpretation for the two-loop beta-

function we described in the previous section. The one-loop corrections to (16) are of the form Cijk g
i gj ,

whereCijk are related to the three-point function of the unperturbed theory [1]. This coefficient is a measure
of the dimension of the operator Oi in the theory perturbed by the set of all operators. Such a computation
goes beyond the scope of the present note. Nevertheless, (21) predicts the coefficient of the term (h/h̄−1)2

to second order in the 1/k-expansion and it seems that such a computation is feasible from the cft viewpoint
at least as a series expansion in 1/k.

5 Conclusions

In this work, we have analyzed the phase space of squashed wzw models, away from the original conformal
point. Our analysis is given in detail for the compact group SU(2) and can be generalized to any compact
group. We have restricted ourselves to deviations from the conformal point, generated by switching on
simultaneously two distinct magnetic (or electric) fields. The corresponding backgrounds may have inter-
esting interpretation in terms of NS5-branes. We have investigated the phase diagram using geometrical,
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target-space techniques, as well as standard cft renormalization-group methods. Our results can be sum-
marized as follows: the squashed-wzw models are found, as expected, as ir fixed points in the rg flow,
and this result is confirmed from both a target space and world-sheet point of view. The field theory inter-
pretation of this flow consists in what we have called charge transmutation. One U(1) charge transforms
into another U(1) while the total charge is conserved. For large values of the parameter h the backgrounds
under consideration contain closed time-like curves. These do not seem to change the behaviour of the flow
and the model remains stable, at least under the deformation we consider.

This charge transmutation enters the class of phenomena that are expected to take place when a metastable
string background jumps to a stable one through a non-critical path. These include tachyon condensation,
particle production and other interesting physical phenomena: the rg flow around the conformal point is a
tool to get information on the dynamics of the relaxation. Our geometrical tools are well-fitted to describe
the latter provided we allow for more parameters in the phase space. A generalization of our approach may
also allow to address more thoroughly the issue of instabilities triggered by the presence of closed time-like
curves. Of course this is all very preliminary and in particular much still remains to be done in clarifying the
link between energy minimization and time evolution in non-compact and time-dependent backgrounds.
A first step in this direction consists in investigating non-compact groups, like SL(2,R), for which some
aspects (e.g. related to Zamolodchikov’s C-theorem) of the underlying theory remain obscure.
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