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Travailler au sein du département TSI a été une expérience unique, toutes ces années
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4 Schéma d’estimation du profil musical d’accentuation. . . . . . . . . . . . 14
5 Flux spectral pour un signal de piano . . . . . . . . . . . . . . . . . . . . . 16
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1

Synthèse des travaux exposés dans le
manuscrit

La musique est un phénomène omniprésent de nos vies quotidiennes. En fait, la plu-
part des gens ont une capacité naturelle pour l’apprécier, qu’ils aient ou non suivi une
formation musicale. Etudier comment les humains appréhendent la musique est un
sujet de recherche fascinant et le voile se lève à peine sur de nombreuses questions
afférentes. Parmi les travaux du domaine une large catégorie rassemble des méthodes
qui visent à imiter, à simuler des processus cognitifs humains, ou encore à réaliser des
taches similaires, à l’aide d’un ordinateur. Un des Graal du traitement numérique de
l’information appliqué à l’analyse musicale consiste à réaliser une transcription automa-
tique précise d’un enregistrement musical. Ce projet implique de résoudre un ensemble
de tâches phares en recherche automatique d’informations musicales (MIR1) : détection
de hauteur et de tonalité, détection des attaques, analyse du déroulement temporel, es-
timation du nombre de sources, identification des articulations et des expressions musi-
cales, ... Klapuri & Davy (2006) présentent la transcription musicale comme un problème
d’ingénierie inverse où il faut inférer le ”code source” à partir duquel le signal de musique
a été généré.

La transcription musicale automatique est ainsi un point d’intersection de plusieurs
disciplines scientifiques : informatique, acoustique, musicologie, psychoacoustique, traite-
ment du signal. Son champ d’application est vaste. Citons par exemple :

• Recherche et indexation automatique d’extraits musicaux. Le but ici est de localiser
des extraits dans une large collection de pièces selon des critères de similarité ou
selon des requêtes de l’utilisateur (genre musical, tempo, interprète,...). Un autre
versant de cette recherche concerne l’étiquetage automatique de ces pieces.

• Codage structuré de signaux musicaux. Cette application présente beaucoup de
points communs avec la précédente, mais dans ce cas le but est de développer des
codeurs audio capables de gérer simultanément des requêtes de recherche d’extraits
et la compression de ceux-ci.

• Edition musicale assistée par ordinateur. Il s’agit, par exemple, d’opérations telles
que le copier–coller de signaux audio, les effets spéciaux commandés par la musique,
la synchronisation rythmique, etc.

• Les applications où l’homme et la machine interagissent. Dans cette catégorie nous
trouvons le suivi de partition musicale ou encore l’accompagnement automatique
du musicien par l’ordinateur.

1Le terme anglais pour cette opération est connu sous le nom de Music Information Retrieval (MIR).
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Figure 1: La transcription musicale vue comme point d’intersection de plusieurs disci-
plines scientifiques. L’analyse du rythme constitue l’un des sous-ensembles.

Le but principal de ce travail de thèse est de présenter une méthode pour analyser
automatiquement le rythme des signaux musicaux à l’aide d’un ordinateur, ce qui con-
stitue une des sous-tâches nécessaires de la transcription. L’analyse du rythme s’appuie
sur les mêmes disciplines scientifiques et partage largement les directions applicatives
mentionnées ci-dessus. La Figure 1 illustre ce contexte.

Le rythme musical

Pour Carterette & Kendall (1999), la musique est formée de trois éléments essentiels : la
mélodie, l’harmonie et le rythme. Le rythme et l’harmonie sont vus en tant que parties
complémentaires, un même morceau de musique pouvant être au besoin analysé selon
un seul des deux aspects, rythmique ou harmonique.

Le rythme peut s’avérer comme un concept paradoxal : d’un côté tout un chacun peut
le ressentir, mais d’un autre côté sa définition précise se heurte à des difficultés parfois
importantes. Certains chercheurs vont jusqu’à nier l’existence d’une définition consen-
suelle. En fait, il est possible d’en trouver plusieurs selon le sujet d’intérêt. Après une
revue de la littérature liée à ce sujet, nous adoptons comme définition du rythme musical
la compilation recueillie par Parncutt & Drake (2001). Selon eux, la perception du rythme
implique une organisation perceptive et cognitive des événements temporels, de manière
à situer chaque événement sonore par rapport à ceux qui se sont déjà produits (mémoire)
et ceux à venir (attente). Maintenant, nous allons brièvement décrire les processus cogni-
tifs prenant place aux différents niveaux temporels.

? Organisation au niveau de la surface. Le signal audio est segmenté en événements
séparés correspondant aux points d’attaque des événements musicaux tels que les
débuts de notes où les changements d’accords. Dans ce contexte, nous appelons
”l’attaque perceptive” l’instant où l’événement est perçu comme se produisant.
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L’intervalle de temps entre l’attaque d’un événement et l’attaque de l’événement
suivant s’appelle l’intervalle inter-onset (IOI).

? Groupement et métrique. Les événements d’un rythme peuvent être hiérarchi-
quement organisés de deux manières différentes connues sous le nom de groupe-
ment et métrique. D’un point de vue perceptif, le rythme est caractérisé par (et est
parfois même défini comme) une combinaison de ces deux formes d’organisation.
Celles-ci peuvent être analysées séparément mais elles sont étroitement liées dans
une analyse du rythme. Le groupement traduit l’existence d’assemblage de notes
formant des motifs musicaux courts qui se combinent pour former des phrases
musicales, qui à leur tour s’agrègent pour former des passages, des mouvements
s’étendant éventuellement jusqu’à former des morceaux entiers.

La métrique traduit une forme d’organisation perceptive basée sur la régularité tem-
porelle (battement ou pulsation fondamentale) et sur les éventuels schémas d’acce-
ntuation récurrents qu’elle contient. La sensation de pulsation peut être évoquée
à n’importe quel niveau d’une séquence formée d’événements sonores et peut être
exprimée concrètement par le battement (claquement des doigts ou mouvement
synchrone, marquage du temps au pied, battue,...). Le processus perceptif d’extra-
ction de la régularité s’apparente alors à une synchronisation de notre horloge
interne avec la pièce de musique. Par exemple, lors d’un intermède de silence,
l’auditeur anticipe une continuité de la sensation de pulsation. De manière générale
son attention est dirigée sur les instants où les événements sont en rapport étroit
avec la pulsation attendue.

Notre travail de recherche s’intéresse plus particulièrement à la manière d’estimer
la métrique d’un morceau de musique.

? Prédominance. La structure métrique des signaux musicaux se décompose clas-
siquement à plusieurs niveaux hiérarchiques de pulsation, aussi appelées ”couches
rythmiques”.

Pour Lerdahl & Jackendoff (1983), ces différents niveaux de pulsation évoquent
différentes régularités temporelles dans l’esprit de l’auditeur; et ce dernier tend
à préférer un niveau de tempo modéré (période aux alentours de 500 ms) et à
percevoir les autres niveaux de façon hiérarchique (et par conséquent tous les événe-
ments) par rapport à cette couche en particulièr. Ce niveau distinctif est connu
comme le tactus.

? Accents. Souvent le terme d’accent fait référence à la notion de sonie, car l’attention
de l’auditeur est attirée par un événement audio plus fort ou plus faible que son
contexte. L’accent est ainsi vu comme synonyme de prépondérance de l’événement.
Plus généralement, d’après Jones (1987), toute propriété qui rend un événement
sonore plus remarquable que les événements adjacents peut être considéré comme
un accent. Par exemple, il peut s’agir des variations rapides et légères de la dy-
namique d’un signal (i.e., trémolo) ou des petites modulations de la hauteur d’un
son (i.e., vibrato).

? Organisation rythmique et tempo. Selon Handel (1993), la façon dont les humains
perçoivent l’organisation d’un morceau de musique dépend du tempo auquel celui-
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ci est exécuté. Le tempo peut affecter le groupement et la métrique. Handel con-
sidère que le niveau métrique auquel le tactus est situé dépend du tempo, car les
distributions des cadences de battement en musique ne sont pas liées au tempi an-
notés dans les partitions musicales. Par exemple, un auditeur pourrait taper des
croches quand un morceau est joué lentement ou des noires si le même morceau est
joué deux fois plus vite.

La structure métrique

Nous avons mentionné auparavant que le rythme est hiérarchiquement organisé de deux
manières différentes : le groupement et la métrique (Lerdahl & Jackendoff, 1983). Nous
avons aussi signalé que dans ce travail nous nous intéressons à ce dernier. Dans cette
structure hiérarchique, la notion de métrique aide à organiser la musique en une suite
d’impulsions, créant avec ceci une base de temps musical. Si le tempo est constant, la
base de temps est isochrone, i.e., l’intervalle de temps entre deux impulsions consécutives
quelconques est constant.

D’après Lerdahl & Jackendoff (1983), dans la musique occidentale traditionnelle, la
hiérarchie métrique est établie à partir de deux propriétés fondamentales :

1. chaque impulsion dans un niveau métrique donné coı̈ncide avec une impulsion à
tous les niveaux métriques inférieurs;

2. Le rapport entre deux niveaux métriques quelconques obéi une relation binaire ou
ternaire; c’est à dire, les périodes des impulsions entre deux niveaux métriques
consécutifs sont reliées par un facteur deux ou trois.

La Figure 2 présente un exemple sur les propriétés de la structure métrique et ses
niveaux hiérarchiques. Cette figure montre un arrangement de plusieurs couches métri-
ques formant une grille métrique. Les niveaux métriques sont empilés les uns sur les
autres, avec les niveaux inférieurs situés dans la partie basse et les niveaux supérieurs
dans la partie haute. Cette figure montre aussi la structure cognitive correspondant à
une métrique

(3
4

)
. Elle inclut des impulsions au niveau de noires (le tactus), des blanches

pointées (la mesure), et aussi des impulsions au niveau de la croche. Nous considérons
qu’après le tactus, le prochain niveau en importance dans la structure métrique et le
tatum. Ce terme désigne le niveau métrique le plus bas (voir Figure 2) et dans la pratique
il indique la pulsation qui coı̈ncide le mieux avec toutes les attaques.

Panorama actuel de l’informatique dans l’analyse du rythme

Quand les gens écoutent certains types de musique, ils ressentent immédiatement que
celle-ci possède un beat (battement), qu’ils peuvent claquer des doigts pour l’accompagner.
Le plus important c’est que, d’une certaine manière (consciemment ou inconsciemment),
ils perçoivent des motifs régulièrement espacés et qu’ils peuvent se synchroniser avec.
Depuis quelques années, le but d’un groupe de chercheurs en informatique musicale
a été de répéter ce processus en utilisant des machines et de leur apprendre comment
la musique est organisée en beats. Les raisons pour soutenir cette idée ont déjà été
soulignées au début de ce chapitre. De façon générale, nous pouvons définir l’analyse
automatique du rythme comme une tentative à reproduire de manière artificielle le pro-
cessus par lequel les humains appréhendent le rythme.
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Figure 2: Exemple d’une grille métrique.

D’après la définition du rythme musical présentée dans §, pour qu’un algorithme
conçu pour analyser le rythme soit complet, il doit accomplir les tâches suivantes : déco-
mposer la musique en événements sonores isolés, estimer l’importance liée à chaque
événement, séparer syntaxiquement la musique en motifs, trouver la couche métrique à
laquelle appartient chaque événement, identifier et retrouver les patrons qui se répètent
et être capable de s’adapter aux changements de tempo liés à l’interprétation musicale.
Actuellement, un tel système n’existe pas, toutefois nous considérons qu’il est envisage-
able dans un avenir proche pour la musique avec un rythme prononcé et dans plusieurs
années pour les cas plus exigeants. Tels que, les pièces de piano de Chopin ou de Mendelssohn
dont les changements de tempo sont très nombreux à l’intérieur de courts intervalles du
temps.

Les méthodes actuelles d’analyse de rythme par ordinateur peuvent être classées de
plusieurs manières différentes. Cependant, la différence la plus importante entre toutes
ces approches est la nature du signal musical qu’elles traitent. Les premières méthodes,
plus connues comme modèles symboliques, utilisaient comme entrée une représentation
symbolique du signal audio. Plus précisément, l’entrée de ces systèmes se compose
d’un ensemble de données formé des instructions qui décrivent les événements musi-
caux à interpréter et parfois cette entrée comporte aussi des informations pour rendre les
événements audibles. Sans doute, l’exemple le plus connu est celui du format MIDI. A
présent, puisque la grande majorité des signaux musicaux sont disponibles sous forme
numérique (ou plus récemment aussi en plusieurs formats compressés comme MP3 ou
AAC), la plupart des méthodes récemment développées ont opté pour traiter directement
des enregistrement musicaux. Ces méthodes sont connues comme modèles acoustiques. La
méthode que nous développons dans ce travail de thèse appartient à cette deuxième
catégorie.

Principe général de l’analyse automatique du rythme

Le principe général de l’estimation automatique du rythme est composé de quatre étapes.

? D’abord, le degré d’accentuation musical en fonction du temps doit être mesuré,
c’est-à-dire que les notes ou accords doivent être détectés. Dans le cas des méthodes
symboliques cette tâche n’est pas requise puisque toute l’information sur les événe-
ments musicaux est déjà disponible. Pour les méthodes acoustiques cette tâche est
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nécessaire.

? Deuxièmement, les périodes et les phases (emplacements) des pulsations métriques
doivent être estimées. Plusieurs méthodes ont été proposées, par exemple : la fonc-
tion d’autocorrélation, la transformée de Fourier discrète, réseaux d’oscillateurs.

? Troisièmement, le système doit être capable d’identifier les couches métriques. Ceci
peut être fait à partir d’une connaissance musicale a priori de la distribution des
pulsations ou en appliquant des techniques de reconnaissance de formes.

? Enfin, les événements musicaux (y compris leur emplacement) liés à chacun des
couches métriques doivent être sélectionnés.

Travaux précédents en analyse automatique du rythme

Modèles symboliques. A l’origine, l’analyse automatique du rythme trouve ses fonde-
ments dans les modèles cherchant à expliquer la façon dont l’auditeur humain arrive à
interpréter la métrique particulière d’un morceau de musique (Lee, 1991). Les premiers
modèles traitaient des signaux symboliques et ils étaient basés sur un ensemble de règles
utilisées pour définir le degré d’accentuation d’un événement musical et, à partir des ac-
cents, estimer la métrique du signal musical (Steedman, 1977; Longuet-Higgins & Lee,
1982; Povel & Essens, 1985; Lee, 1991; Parncutt, 1994). Desain & Honing (1999) présente
une comparaison détaillée d’une grande partie de ces modèles.

Un autre type d’approche sont les modèles à hypothèses multiples. Ils créent un certain
nombre de conjectures indépendantes (appelées agents) sur les périodes et les emplace-
ments des pulsations. Ensuite, un score dynamique est calculé de façon itérative pour
chacune des hypothèses. À la fin de l’analyse, la conjecture ayant le score le plus élevé
est considérée comme la périodicité du morceau (Allen & Dannenberg, 1990; Rosenthal,
1992; Dixon, 2001).

Une des manières les plus intuitives d’obtenir des informations sur la métrique d’un
signal de musique se base sur des oscillateurs. Les méthodes appliquant cette approche
utilisent un réseau d’oscillateurs (aussi appelé banc d’oscillateurs), où chacun d’entre eux
est construit à partir d’un prototype, mais chaque oscillateur est réglé pour fonctionner à
une périodicité différente. Puisque l’oscillateur prototype réagi seulement à une gamme
de fréquences très spécifique (en général petite), si la période du signal d’excitation est
proche de la fréquence caractéristique, l’oscillateur entre en résonance. Dans ce cas la
période est indiquée par l’oscillateur ayant l’énergie de sortie la plus élevée, i.e., celui qui
résonne le plus (Large & Kolen, 1994; Toiviainen, 1998).

Un autre type d’approche pour analyser automatiquement la métrique est basé sur
des modèles probabilistes. Ce genre de technique suppose que les accents ont une nature
stochastique et qu’il existe un modèle aléatoire qui commande le processus rythmique
dont les paramètres de contrôle doivent être estimés (Raphael, 2001; Cemgil et al., 2001).

Modèles acoustiques. Afin de rendre plus simple la description sur les modèles acous-
tiques, nous supposons qu’ils se composent de trois étapes. La première effectue la con-
version du signal du format audio à un type du signal appelé “fonction de détection”
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qui porte l’information sur les événements musicaux. La sortie de ce module est formée
d’une suite de pulsations qui indiquent les endroits où se produisent les accents. La
deuxième étape est connue comme le bloc d’induction de la pulsation et elle s’occupe
d’estimer la périodicité des accents musicaux. La dernière étape se charge de suivre les
variations temporelles des accents musicaux. Plusieurs variantes ont été proposées pour
chacune de ces étapes.

? Conversion. La manière la plus directe d’estimer le profil d’accentuation musicale
d’un enregistrement consiste à calculer son enveloppe énergétique. C’est à dire, la
somme des carrés des échantillons sur des segments courts du signal audio. Cette
méthode donne des bons résultats pour la musique percussive, mais elle s’avère
peu efficace pour traiter des cas plus complexes (Dixon, 2001; Gouyon et al., 2002;
Eck & Casagrande, 2005).

Banc de filtres. Parmi les techniques les plus utilisées pour calculer la fonction de
détection nous trouvons le banc de filtres. Cette méthode décompose le signal
d’entrée en canaux fréquentiels. Puis, dans chaque canal la dérivée de l’enveloppe
énergétique est calculée, et après toutes les enveloppés énergétiques sont intégrées
pour former le profil d’accentuation musicale. Les bancs de filtres les plus courants
effectuent des décompositions logarithmiques ou autres types de décomposition
liées à la perception humaine (Scheirer, 1998; Seppänen, 2001b; Uhle & Herre, 2003).
Dans cette catégorie on trouve aussi des approches qui utilisent la Transformée de
Fourier à Court Terme comme banc de filtres (Laroche, 2001, 2003; Klapuri et al.,
2006; Jehan, 2004).

Attributs de bas niveau. Des travaux plus récents ont exploré l’utilisation d’attributs
de bas niveau pour identifier les pulsations présentes dans les signaux musicaux.
Le principe de fonctionement qui a motivé ces méthodes se base sur les travaux
de classification développés dans le domaine de traitement de la parole (voir par
exemple (Jensen & Andersen, 2003; Sethares et al., 2005; Gouyon, 2005)).

? Estimation de la périodicité. Plusieurs types de méthodes ont été proposées pour
estimer la périodicité des pulsations. Plusieurs d’entre elles se sont inspirées des
modèles symboliques. Dans le contexte des modèles acoustiques on trouve aussi
des techniques utilisant les hypothèses multiples (Goto & Muraoka, 1994, 1997b; Dixon,
2001), les réseaux d’oscillateurs (Scheirer, 1998; Klapuri et al., 2006; Jehan, 2004) ou
des modèles probabilistes (Laroche, 2001; Hainsworth & Macleod, 2003a; Sethares et al.,
2005). D’autres méthodes se basent sur les histogrammes des intervalles inter-attaque,
où le principe est de calculer et de grouper les distances entre deux attaques. De
cette façon, les intervalles qui se ressemblent sont réunis dans une même classe. A
la fin de l’analyse, la classe contenant le plus d’éléments est considérée comme la
période.

La fonction d’autocorrélation est une autre méthode très répandue dans le cadre de
l’estmation de la périodicité (Foote & Uchihashi, 2001; Uhle et al., 2004; Peeters,
2005; Davies & Plumbley, 2005).

? Suivi des variations rythmiques. Il existe deux méthodologies différentes pour
suivre le déroulement temporel du rythme. Gouyon & Dixon (2005), appellent la
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première “suivi par induction répétée” et, comme l’indique son nom, cette méthodo-
logie consiste à répéter itérativement le processus d’induction de la périodicité en
obtenant à chaque itération une seule valeur (ou observation) pour la période des
pulsations. Dans ce cas, l’évolution du rythme est obtenue en connectant directe-
ment les observations sur la périodicité (Sethares & Staley, 2001; Foote & Uchihashi,
2001; Dixon, 2001; Alonso et al., 2004). L’inconvénient principal de cette approche
c’est le manque de continuité entre observations successives.

La deuxième méthodologie est également basée sur un processus d’induction itéra-
tive, mais au lieu d’estimer une seule valeur de la périodicité, un ensemble de
périodes potentielles est calculé. Dans ce cas, pour trouver la courbe de varia-
tion de la période “optimale” à travers le temps, il faut calculer la meilleur façon
de connecter les hypothèses successives à chaque itération. Si le problème du
suivi est développé dans un cadre déterministe, il peut être résolu par programma-
tion dynamique (Laroche, 2003; Alonso et al., 2005b). Si le problème est développé
dans un contexte probabiliste, l’algorithme de Viterbi (Klapuri, 2004; Peeters, 2005;
Klapuri et al., 2006) ou aussi des techniques de filtrage particulier peuvent être em-
ployés (Hainsworth & Macleod, 2003a; Sethares et al., 2005).

Evaluation

D’après Temperley (2004), le schéma d’évaluation pour les méthodes d’analyse automa-
tique du rythme doit accomplir quatre conditions fondamentales:

1. définir de façon claire la manière de représenter l’information à rechercher,

2. disposer d’une base de données de taille considérable qui soit suffisamment repré-
sentative de la musique à traiter,

3. conduire une annotation (manuelle) appropriée de l’information à rechercher dans
la base de données,

4. préciser la manière de comparer les résultats obtenus par les méthodes d’analyse
automatique du rythme avec les annotations manuelles.

La première étape vers l’établissement d’une méthodologie commune d’évaluation
et de comparaison pour les algorithmes d’induction de tempo a été prise en 2004 par
le comité de direction de la conférence internationale ISMIR. L’annexe A présente des
détails au sujet de cette évaluation internationale.

Bases de test

Une des premières tâches réalisées dans ce travail était le rassemblement d’une base de
données d’extraits musicaux conforme aux recommandations décrites précédemment.
Ce corpus a été extrait à partir d’enregistrements commerciaux. Pour chaque enreg-
istrement un extrait caractéristique a été choisi, qui a été alors converti en signal mono-
phonique et échantillonné à 16 kHz avec une résolution 16 bit. Ce corpus de données à
été formé après fusion de deux autres bases.

? Base de données de l’ENST. Cette base contient 961 morceaux musicaux avec une
durée globale de 18759 secondes (5 heures 12 minutes et 39 secondes). Le plus petit
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Figure 3: Système général pour l’analyse automatique du rythme.

morceau a une durée de 10 secondes, le plus long a une durée de 30 secondes et la
durée moyenne est de 19.5 secondes. Cette base contient onze genres différents et
une grande variété de tempi (voir figure page 51).

? Base de données de l’université de Tampère. Cette base contient 474 morceaux
musicaux avec une durée globale de 126595 secondes (35 heures 9 minutes et 55
secondes). Le morceau plus petit a une durée de 42 secondes, le morceau plus long
a une durée de 829 secondes et la durée moyenne est de 267 secondes. Cette base
contient sept genres différents et une grande variété de tempi (voir figure page 52).

Calcul de la fonction de détection

Dans le cadre de notre travail de recherche nous avons développé un système pour
estimer le tactus et le tatum des signaux musicaux. Une illustration graphique de ce
système est présentée dans la Figure 3.

Pré-traitement

Approche causale Afin d’obtenir une bonne estimation des paramètres fréquentiels
dans chaque sous-bande, il est nécessaire d’utiliser des filtres suffisamment réjecteurs
pour que la puissance du signal dans la bande atténuée ne dépasse jamais le niveau
de bruit dans la bande passante. Or la densité spectrale de puissance des sons émis
par de nombreux instruments de musique est une fonction décroissante de la fréquence.
Ainsi, la sélection d’une bande en hautes fréquences nécessiterait d’utiliser un filtre plus
réjecteur qu’en basses fréquences, donc un filtre plus long. Pour éviter cette distinction et
pour pouvoir appliquer la même réjection en hautes fréquences qu’en basses fréquences,
il est préférable d’égaliser approximativement la puissance du signal en entrée du banc
de filtres. Une façon simple mais suffisante de procéder consiste à appliquer un filtre
de pré-accentuation pour compenser la tendance décroissante de la Densité Spectrale de
Puissance (DSP), par exemple de fonction de transfert

H(z) = 1 − 0.98z−1. (1)

Approche non-causale La méthode causale décrite ci-dessus est une solution partielle
au problème puisque la tendance décroissante de la densité spectrale a été réduite, mais
pas entièrement compensée (voir la Figure 3.2). Des meilleurs résultats peuvent être
obtenus à l’aide d’un filtre blanchisseur.
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Supposons dans un premier temps que le signal audio x(n) soit un processus autore-
gressif ou AR (sans sinusoı̈des), obtenu en filtrant un bruit blanc de variance σ2 par un
filtre de fonction de transfert 1

H(z) , où tous les zéros deH(z) = 1+a1z
−1 + ...+apz

−p sont

à l’intérieur du cercle unité. Il est connu que les coefficients du filtreH(z) et la variance σ2

s’estiment par prédiction linéaire à partir d’un estimateur de la fonction d’autocovariance
rx(t) = E[x(u)∗x(u+ t)]. Définissons un estimateur de rx(t)

r̂x(n) =
1

N
([g̃ · x̃] ? [g · x]) (n) (2)

où g(n) est une fenêtre d’analyse de taille finie N , en plus x̃(n) = x(−n)∗ et g̃(n) =
g(−n)∗. La fonction r̂x(n), définie comme un produit de convolution, a un support
de longueur 2N − 1. Il est possible de le calculer de manière rapide par le biais de
l’algorithme FFT (Transformée de Fourier Rapide). Ainsi, r̂x(n) s’obtient en calculant
la transformée de Fourier inverse du périodogramme

R̂x(e
j2πf ) =

1

N
|X(ej2πf )|2. (3)

L’algorithme d’estimation du filtre blanchisseur se décompose en quatre étapes

1. multiplication du signal x(n) par la fenêtre g(n) ;

2. calcul du périodogramme défini dans l’Equation 3;

3. calcul de r̂x(n), obtenue par transformée de Fourier inverse;

4. estimation du filtre H(z) par prédiction linéaire à partir de r̂x(n).

Supposons maintenant que le signal x(n) soit perturbé par la présence de sinusoı̈des

qui viennent s’ajouter au processus AR. Le périodogramme R̂x(e
j2πf ) est alors perturbé

par des pics centrés aux fréquences de ces sinusoı̈des, qui se superposent à la DSP du
processus AR. Il est possible de les éliminer en introduisant une étape de lissage du
périodogramme à l’aide d’un filtre de rang utilisé entre les étapes 2 et 3. Dans la pra-
tique le pré-traitement se fait par trames. Le signal est multiplié par une fenêtre de Hann
de même longueur, et le périodogramme est calculé. Il est ensuite lissé en appliquant
un filtre de rang de longueur q. Pour calculer la valeur du périodogramme lissé en
chaque point, les q valeurs extraites sont triées par ordre croissant, puis celle d’ordre
q
3 est sélectionnée. La fonction r̂x(n) est en suite obtenue en calculant la transformée
de Fourier inverse du périodogramme filtré. Finalement, le filtre blanchisseur H(z) est
calculé par prédiction linéaire à l’ordre p = 6.

Décomposition Harmonique plus Bruit

Une des nouveautés que nous proposons dans notre recherche se base sur l’idée de déco-
mposer le signal audio en deux parties : une déterministe et l’autre stochastique. Puis,
nous analysons chacune d’entre elles de façon séparé et finalement nous combinons les
résultats. Plus spécifiquement au sujet de la décomposition, nous modelons le signal
audio x(n) comme une somme linéaire de deux éléments. La première partie (à laque-
lle nous nous sommes référés en haut comme déterministe) est constituée seulement
des composantes sinusoı̈dales et nous l’appellerons harmonique et sera notée s(n). La
deuxième partie (à laquelle nous nous sommes référés en haut comme stochastique) est
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constituée de tous les éléments provenant du signal audio original qui ne peuvent pas
être considérés comme sinusoı̈des et nous l’appellerons bruit et sera notée w(n). Donc,
w(n) = x(n) − s(n).

A notre connaissance, dans le contexte de l’analyse automatique du rythme, il n’existe
pas d’approches précédentes traitant séparément la partie harmonique et la partie bruit.
Pour cette raison, un des buts de notre recherche est d’explorer le potentiel de cette
décomposition dans le contexte de l’analyse de la métrique des signaux musicaux. Dans
notre travail nous utilisons deux méthodes de décomposition harmonique plus bruit
(H+B).

Méthode basée sur le modèle de Sinusoı̈des Modulées Exponentiellement Après le
pré-traitement, le signal audio x(n) est décomposé en P sous-bandes uniformes (sans
recouvrement) en utilisant un banc de filtres en cosinus modulé avec un filtre prototype (à
réponse impulsionelle finie) d’ordre 200 et 80 dB d’atténuation dans la bande de réjection.
L’utilisation d’un filtre très sélectif est nécessaire puisque cette méthode est très sensible
à des sinusoı̈des situées dans la bande de réjection.

Le modèle de sinusoı̈des modulées exponentiellement est basé sur une technique de
décomposition en sous-espaces, il se base sur le principe de la décomposition du signal
en deux parties.

• La partie harmonique, celle-ci est formée par la somme de M sinusoı̈des qui peu-
vent subir un affaiblissement exponentiel. Afin de prendre en compte les bruits
polyphoniques, les fréquences de ces sinusoı̈des ne sont pas contraintes à être uni-
formément distribuées.

• La partie bruit est définie comme la différence entre le signal original et la partie
harmonique.

Le principe d’analyse de cette technique est le suivant, des instantanés consécutifs
ayant un longueur de L échantillons sont extraits du signal. Ensuite, l’espace L-dimensi-
onnel engendré par ces vecteurs est décomposé en deux parties: le sous-espace signal et
le sous-espace bruit. Le sous-espace signal sert à caractériser les M sinusoı̈des et sa di-
mension est 2M . Au contraire, le sous-espace bruit contient tout ce qui ne peut pas être
considéré comme sinusoı̈dal et sa dimension est L − 2M . Dans la pratique, L doit être
beaucoup plus grand que 2M pour augmenter la robustesse de l’algorithme.

La propriété la plus remarquable de cette méthode nous permet d’éviter l’estimation
et la soustraction des sinusoı̈des, puisque la partie bruit peut être directement obtenue
en projetant le signal de chaque sous-bande sur le sous-espace bruit correspondant. Plus
précisément, soit U

S(n) une base orthonormale de la p-ème sous-bande engendrant le
sous-espace signal pour la fenêtre d’analyse [n − L + 1, n]. Pour plus de clarté nous
allons omettre l’index de sous-bande p, sachant que ce procédé est répété pour chacune
d’entre elles. Il est possible de calculer U

S(n) à l’aide d’une décomposition en valeurs
propres de la matrice de données où de la matrice d’autocovariance ou aussi à l’aide des
algorithmes de poursuite de sous-espaces (voir (Badeau, 2005)). Ensuite, un vecteur de
la partie bruit de la forme

w(n) = [w(n − L), w(n − L+ 1), . . . , w(n)]> (4)
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peut être obtenu en appliquant le projecteur de sous-espace bruit IL−U
S(n)US(n)H , où

AH indique la matrice transposée hermitienne de A, au vecteur des données

x(n) = [x(n − L), x(n− L+ 1), . . . , x(n)]>, (5)

dans ce cas nous obtenons les parties harmonique et bruit par:

s(n) = U
S(n)US(n)Hx(n) (6)

w(n) = x(n) − s(n). (7)

Afin d’obtenir ces composantes pour tout le signal nous répétons ce processus combiné
avec la méthode addition/recouvrement, de la façon suivante:

1. la trame d’analyse [n − L + 1, n] est récursivement décalée (un recouvrement de
3L/4 échantillons donne des bons résultats),

2. le sous-espace signal US(n) est poursuivi à l’aide de l’algorithme Sequential iteration
EVD présenté dans la Table 3.1 (voir aussi (Badeau et al., 2002; Badeau, 2005)),

3. le vecteur de la partie signal (s(n)) et le vecteur de la partie bruit (w(n)) sont calculés
comme indiqué par les Equations 6 et 7,

4. à chaque itération les vecteurs des parties harmonique et bruit sont multipliés par
une fenêtre de Hann et sommés aux signaux harmonique et bruit respectifs.

Pour chaque bloc, le coût de cette opération de décomposition par projection en sous-
espaces est celui de la deuxième étape, qui est la plus complexe. Badeau et al. (2002) ont
montré que sa complexité est O(Ln(n+ log(L))).

Méthode basée sur la Transformée de Fourier à Court Terme La deuxième méthode
de décomposition H+B que nous utilisons est basée sur le vocoder de phase (Portnoff,
1980). Cette technique permet d’effectuer des modifications aux amplitudes et aux phases
des composantes sinusoı̈dales spécifiques directement dans le domaine fréquentiel. Puis,
cette représentation modifiée du signal est resynthétisée dans le domaine temporel. Cette
technique est également connue comme filtrage FFT, puisqu’à l’intérieur du vocoder de
phase on trouve la Transformée de Fourier à Court Terme (TFCT).

De la même façon que la méthode précédente, cette technique effectue la décomposition
du signal d’entrée par trames. Pour chaque fenêtre d’analyse (trame), les pics les plus im-
portants dans le spectre d’amplitude sont considérés comme sinusoı̈des et sélectionnés,
le reste du spectre est éliminé. Alors, chaque trame de la partie harmonique est obtenue
en synthétisant ce spectre modifié à l’aide de la Transformée de Fourier Inverse. Chaque
trame de la partie bruit est calculée en soustrayant de la fenêtre d’analyse du signal orig-
inal la trame correspondante de la partie harmonique. Ensuite, la fenêtre d’analyse est
décalée et tout le processus est réitéré pour tout le signal d’entrée.

On suppose que le signal d’entrée à déjà été pré-traité. On calcule la TFCT du x(n)

X̃(m,k) =
N−1∑

n=−0

g(n)x(Mm+ n)e−
2π
N
kn (8)

où m ∈ Z est l’index du temps (trame), g(n) est une fenêtre de longueur finie N qui
détermine la partie de x(n) à analyser à l’instant m, M est le décalage temporel de la
fenêtre d’analyse et k = 0, . . . ,K − 1 est l’index de fréquence (bin).
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Afin d’estimer la partie harmonique, nous supposons que les maxima les plus im-
portants dans le spectre d’amplitude représentent des sinusoı̈des dans le signal d’entrée.
Soit ν`, où 0 < ` ≤ L � K, les fréquences (bins) correspondant à ces maxima. Alors,

nous définissons la représentation fréquentielle de la partie harmonique comme S̃, où

S̃(m,k) =

{
X̃(m,k) si k ∈ ν`

0 sinon.
(9)

C’est-à-dire, un nouveau signal est formé où seules sont gardées les fréquences corre-
spondants aux pics les plus significatifs (i.e., sinusoı̈des) et le reste du spectre est mis à
zéro. Á partir de ce signal modifié nous synthétisons (trame par trame) la partie har-
monique

s(n) =

∞∑

m=−∞

f(n+Mm)

(
1

K

K−1∑

k=0

S̃(m,k)e
2π
K
kn

)
. (10)

La partie bruit w(n) est obtenue en soustrayant la partie harmonique du signal d’entrée
(trame par trame)

w(n) = x(n) −
∞∑

m=−∞

f(n+Mm)

(
1

K

K−1∑

k=0

S̃(m,k)e
2π
K
kn

)
. (11)

Afin de rendre compatible la sortie de cette méthode de décomposition H+B avec la
précédente, nous filtrons les signaux s(n) et w(n) en utilisant les mêmes bancs de filtres
présentés pour la méthode d’analyse en sous-espaces.

Estimation du profil musical d’accentuation

Dans le cadre de notre travail de recherche nous avons développé un système de détection
d’attaques musicales spécifiquement adapté à l’analyse du rythme (Alonso et al., 2005c).
Néanmoins, nous considérons qu’il peut être utile pour d’autres applications dans le do-
maine du traitement de la musique par ordinateur.

La technique d’estimation du profil musical d’accentuation que nous proposons est
basée sur le principe du Flux Energétique Spectral. Cette méthode utilise un traitement
par sous-bandes, le schéma d’analyse est présenté dans la Figure 4. L’approche générale
est la suivante : d’abord la partie harmonique s(n) ou bruit w(n) de chaque sous-bande
est décomposée en canaux fréquentiels à l’aide de la TFCT. Après, cette représentation
temps–fréquence est réallouée pour améliorer sa lisibilité. Finalement, le flux spectral
dans chaque sous-bande est calculé comme indiquée dans la Figure 4.

Réallocation dans le plans temps–fréquence L’utilisation de la méthode de réallocation
améliore de manière significative l’estimation du contenu temps–fréquence d’un signal.
Cette information est très importante pour une estimation adéquate des enveloppes des
notes musicales, car c’est à partir de celles-ci que nous détectons les attaques (“onsets”).

De façon plus générale, le principe de la réallocation a souvent été utilisé pour re-
hausser plusieurs types de représentations temps–fréquence (Auger & Flandrin, 1995;
Hlawatsch & Auger, 2005). Dans le cadre de l’estimation du profil musical d’accentuation,
la réallocation a déjà été utilisée avec succès par Hainsworth & Wolfe (2001); Röbel (2003)
and Peeters (2005).
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Figure 4: Schéma d’estimation du profil musical d’accentuation.

Puisque les fondements théoriques de l’opération de réallocation se basent sur la
définition continue de la TFCT, nous commutons pendant un moment du domaine tem-
porel discret au continu. Soit sc(t) (où t ∈ R) le signal réel, la TFCT à temps continu est
définie comme :

S̃c(τ, f) =

∫ ∞

−∞
sc(t)gc(t− τ)e−2πftdt. (12)

Le handicap principal dans l’estimation de l’amplitude et de la fréquence des composantes
sinusoı̈dales de sc(t) est directement lié à la longueur et à la largeur de bande de la fenêtre
d’analyse gc(t). Il est possible d’écrire la TFCT en termes de son module et phase comme :

S̃c(τ, f) = |S̃c(τ, f)| eϕ(τ,f).

Les opérateurs de réallocation sont obtenus à partir des dérivées partielles de ϕ(t, f) par
rapport à chacune de ses variables, menant respectivement à la fréquence instantanée

Fi(τ, f) =
1

2π

∂ϕ(τ, f)

∂τ
, (13)

et au retard du groupe

Tg(τ, f) = − 1

2π

∂ϕ(τ, f)

∂f
. (14)

Ces deux équations peuvent être interprétées de la manière suivante : si nous con-

sidérons l’énergie |S̃c(τ0, f0)|2 répandue autour de la position (τ0, f0) dans le plan temps-
fréquence, son centre de gravité est le point situé à la fréquence Fi(τ0, f0) et à l’instant
τ0 + Tg(τ0, f0). Par conséquent, chaque point d’énergie est dit d’être réalloué à une nou-
velle position dans le plan temps-fréquence. Dans la pratique, cette opération a lieu dans
le domaine de temporel discret.

Flux énergétique spectral La méthode que nous avons sélectionnée pour calculer l’index
d’accentuation musicale est connue comme le flux énergétique spectral. Cette technique a
été employée précédemment dans la littérature, par exemple par Laroche (2001, 2003)
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aussi dans le contexte de l’analyse du rythme. Les fondements de cette technique re-
posent sur la supposition générale que l’apparition d’un onset (ou de façon plus générale
un événement musical) dans un signal audio provoque une variation rapide du contenu
spectral du signal audio.

Pour détecter les variations spectrales, l’approche la plus naturelle consiste à calculer
la dérivée de la représentation temps–fréquence par rapport au temps. Dans notre cas, il

faut dériver la TFCT réallouée S̃(m,k) :

E(m,k) = V (m,k) ? h(m) =
∑

l

h(m− l)V (l, k), (15)

où E(m,k) est connu comme le flux énergétique spectral et h(m) est une approximation
d’un différentiateur idéal :

H(ej2πf ) ' j2πf (16)

et

V (m,k) = F{S̃|(m,k)|} (17)

est une transformation qui sert à calculer une enveloppe énergétique perceptuelle pour
chaque canal fréquentiel k de la représentation temps–fréquence. La partie inférieure de
la Figure 4 indique les étapes associées au calcul du flux spectral.

Dans le cas idéal, le profil d’accentuation musicale (aussi connu comme “fonction de
détection” dans la communauté d’analyse du rythme) devrait être composé d’une série
d’impulsions pondérées et localisées aux instants où se trouvent les onsets, c’est à dire,
les attaques des événements musicaux.

La Figure 5 montre un exemple du calcul de la fonction de détection pour un signal
de piano. Les attaques de piano ne sont pas particulièrement difficiles à détecter, mais
notre méthode donne de bons résultats en distinguant même deux événements à peine
séparés de quelques millisecondes aux alentours de 3.25 s. Les quatre représentations de
la Figure 5 correspondent respectivement de haut en bas à :

(a) la forme d’onde du signal de piano, les attaques ont été réperées manuellement
(lignes verticales rouges) à fin de montrer une réference de la sortie souhaitée;

(b) module de la TFCT réallouée, on peut distinguer la structure harmonique de ce son;

(c) le flux énergétique spectral Ê(m,k), les points alignés en forme de traits verticaux
indiquent les régions où le flux d’énergie est grand ; et

(d) fonction de détection d(m), les attaques ont été à nouveau manuellement annotées
et elles sont marqués par les lignes verticales pointillées.
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Figure 5: Flux spectral pour un signal de piano. (a) Forme d’onde du signal de piano; (b)

module de la TFCT réallouée; (c) flux énergétique spectral Ê(m,k), les points alignés en
forme de traits verticaux indiquent les régions où le flux d’énergie est grand; (d) fonction
de détection d(m). Les attaques (onsets) ont été manuellement annotées et elles sont
marquées par les lignes verticales pointillées.
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Induction de la métrique du rythme

Une fois que le profil d’accentuation musicale a été calculé, l’étape suivante consiste à
estimer la périodicité des événements musicaux, à suivre son déroulement à travers le
temps et à trouver la localisation des battements qui constituent les couches métriques.

Estimation de la périodicité

D’après (Parncutt, 1994), le rythme musical peut être défini comme une séquence acous-
tique qui évoque chez l’auditeur une sensation de pulsation. Cette idée nous fait penser à
une répétition régulière des événements sonores qui en général est perçue sans effort par
les humains. Dans le cadre de l’analyse du rythme par ordinateur, il est nécessaire de re-
produire cette machinerie perceptuelle à l’aide d’une méthode qui cherche des périodicités
dans la fonction de détection. A ce propos, nous utilisons quatre algorithmes différents
qui ont déjà été utilisés dans le cadre de l’estimation de la périodicité dans le contexte
de la détection de hauteur : la fonction d’autocorrélation, banc de filtres en peigne, la
somme spectrale et le produit spectral.

Fonction d’autocorrélation La fonction d’autocorrélation est probablement la méthode
d’estimation la plus utilisée dans le cadre de l’analyse du rythme. En fait, c’est un outil
mathématique utilisé très fréquemment dans le traitement des signaux pour analyser des
fonctions ou des séries de valeurs. L’autocorrélation calcule le degré auquel le signal est
semblable à une version décalée de lui-même

r̂d(k) =
1

N

N−1∑

t=k

d(n)d(n − k), 0 ≤ k ≤ N − 1 (18)

où d(n) est la fonction de détection, N indique la taille de la fenêtre d’observation de la
fonction de détection {d(0), . . . , d(N − 1)} et k indique le décalage temporel.

Banc de filtres en peigne L’utilisation d’un banc de filtres en peigne pour l’analyse du
rythme des signaux acoustiques a été proposé à l’origine par Scheirer (1998, 2000). La
mise en œuvre du banc de filtres en peigne que nous utilisons dans ce travail est celle qui
a été proposée par Klapuri (2004); Klapuri et al. (2006). La sortie du filtre en peigne avec
un retard τ , avec d(n) comme entrée, est donné par

y(n) = αy(n− τ) + (1 − α)d(n) (19)

où le gain de rétroaction, qui est différent pour chaque filtre en peigne, est donné par α =
0.5τ/T0 avec T0 = 3Fs (où Fs correspond à la fréquence d’échantillonnage de la fonction
de détection). D’après Klapuri, la valeur de T0 est assez courte pour réagir rapidement
aux changements de tempo et assez large pour estimer avec précision la période des
pulsations de l’ordre de 4 secondes.

Méthodes spectrales Nous proposons aussi deux techniques fréquentielles pour ef-
fectuer l’analyse de périodicité : la somme spectrale et le produit spectral. Ces deux
méthodes ont été développées indépendamment par Noll (1970) et Wise et al. (1976) dans
le contexte de l’analyse de la parole et elles sont basées sur un critère de maximum de
vraisemblance.
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Ces méthodes se fondent sur la supposition que la densité spectrale de la fonction
de détection est constituée d’harmoniques très énergétiques situés aux multiples entiers
de la fréquence fondamentale de d(n). Pour trouver les périodicités, la densité spec-
trale de d(n) (|D(e2πkf )|2) est comprimée d’un facteur k, puis la densité obtenue est
sommée/multipliée à la densité spectrale originale, menant à une fréquence fondamen-
tale très renforcée. En termes de la fréquence réduite, la somme spectrale est donnée par:

S(e2πf ) =

Kmax∑

k=1

|D(e2πkf )|2 (20)

où Kmax est la limite supérieure de compression. De façon très similaire, le produit spec-
tral s’obtient en remplaçant la somme par un produit :

P (e2πf ) =

Kmax∏

k=1

|D(e2πkf )|2. (21)

Fusion de données L’estimation de la périodicité est répétée pour chaque sous-bande
des parties harmonique et bruit à l’aide des méthodes présentées ci-dessus. Une fois
que cette opération a été accomplie, les informations sur la périodicité du signal audio
provenant de chaque sous-bande des parties harmonique et bruit (vs,wm,p) sont fusionnées
dans un seul vecteur. Cette nouvelle opération se fait en deux étapes. D’abord, tous
les vecteurs contenant des informations sur la périodicité du signal sont normalisés en
divisant chacun par sa valeur la plus grande. Après, chacun des vecteurs est pondéré
par un coefficient (cs,wm,p) qui varie dans l’intervalle [0, 1[ et qui mesure l’importance de
l’information du vecteur de périodicité. La dernière partie de la fusion de données con-
siste à intégrer dans un seul vecteur tous les index de périodicité pondérés :

γm =
1

2P

P−1∑

p=0

csm,pv
s
m,p +

1

2P

P−1∑

p=0

cwm,pv
w
m,p (22)

où p ∈ [0, . . . , P − 1] indique le numéro de sous-bande, m la localisation temporelle et
finalement les indices s et w indiquent respectivement les parties harmonique et bruit.

La méthode de fusion de données décrite ci-dessus nous a permis de calculer le profil
de périodicité pour une seule fenêtre de la fonction de détection. Dans la pratique il faut
répéter cette opération de façon itérative. A chaque itération, nous obtenons un vecteur
colonne γm qui indique le profil de périodicité à l’instant m. Après avoir analysé tout le
signal on obtient la matrice temps–périodicité

Γ = [γ0,γ1, · · · ,γM−1]. (23)

Γ est une représentation bidimensionelle des pulsations présentes dans le signal audio.
Les lignes indiquent le degré de périodicité à plusieurs fréquences tandis que les colonnes
indiquent l’index temporel.
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Suivi des pulsations

Une fois que le profil de périodicité du signal audio a été estimé l’étape suivante consiste
à analyser les pulsations présentes dans les colonnes de Γ afin de trouver à chaque instant
m les meilleures candidats aux couches métriques et aussi pour suivre leur déroulement
temporel. La programmation dynamique (PD) est une technique qui a été intensivement
employée pour résoudre ce genre de problèmes qui demandent une analyse séquentielle.
En fait, le suivi des pulsations dans le contexte de l’analyse de rythme n’est pas une
exception et Laroche (2003), Peeters (2005) et Collins (2005b) ont employé cette technique
pour résoudre ce type de problème. Des informations plus détaillées au sujet de la mise
en œuvre de l’algorithme de PD peuvent être trouvées dans Rabiner & Juang (1993).

Dans notre application, pour chaque instant m il existe K candidats potentiels ap-
pelés Γ(m,k) où k ∈ [0, . . . ,K − 1]. Pour trouver la trajectoire “optimale”, la méthode de
PD résout ce problème de combinatoire et d’optimisation en examinant toutes les combi-
naisons possibles de façon itérative et rationnelle. La trajectoire optimale est formée par
l’enchaı̂nement d’une suite de candidats ψm sélectionnés parmi les Γ(m,k). La technique
de PD définit itérativement un score S(m,k) pour chaque trajectoire arrivant au candidat
Γ(m,k), ce score est une fonction de trois paramètres : le score de la trajectoire à l’instant
antérieur S(m−1,ψm−1) où ψm−1 représente le candidat par lequel la trajectoire vient de
passer à l’instant m− 1; l’intensité de la périodicité du candidat analysé Γ(m,k) à l’instant
m; et finalement une pénalité de transition D(m−1,ψm−1), aussi appelée contrainte locale,
qui pénalise le score pour une transition du candidat ψm−1 à l’instant m− 1 au candidat
ψm à l’instant m selon la règle indiqué par la Figure 4.9.

Une autre nouveauté de notre algorithme d’analyse du rythme consiste à modifier
le bloc de suivi de la pulsation à fin de traquer non seulement la trajectoire optimale,
mais aussi d’autres trajectoires. Dans la pratique, à l’intérieur de l’algorithme de suivi,
la meilleure trajectoire est aussi la plus énergétique. Afin de trouver une deuxième (et da-
vantage de) trajectoires, nous exécutons l’algorithme en imposant la restriction suivante :
aucune nouvelle trajectoire ne doit partager des segments de chemin ou être trop proche
(< 10 BPM) des autres trajectoires déjà trouvées par l’algorithme. Alors, il est possible de
réitérer sur cette restriction pour trouver un certain nombre de trajectoires (qui dépend
du morceau analysé) plus faibles en termes énergétiques. En général, toutes les trajec-
toires sont liées entre elles par un facteur rationnel. Deux exemples du fonctionnement
du système complet de suivi de la périodicité sont présentés dans les Figures 4.10 et 4.11
(voir pages 108 et 109).

Sélection d’une trajectoire de périodicité comme tempo

A la sortie du module de suivi des périodicités nous avons un ensemble de trajectoires
où chacune d’entre elles possède une énergie directement liée a sa prépondérance dans
l’enregistrement musical. L’étape suivante consiste à estimer parmi ces trajectoires celle
qui représente le mieux le tempo du signal audio. A ce propos, nous utilisons une distri-
bution a priori qui modèle les préférences humaines par rapport au rythme. Cette distri-
bution est utilisée sous la forme d’une courbe de pondération, c’est à dire que nous mul-
tiplions la prépondérance de chaque trajectoire de périodicité par une valeur qui dépend
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directement de la période de battement. Puis, la trajectoire avec la plus grande valeur
est considérée comme le “vrai” tempo. La courbe de pondération que nous utilisons
est celle proposée par (Moelants, 2002). Il faut noter que cette méthode de calcul du
tempo a été précédemment utilisée dans la littérature, plusieurs autres types de courbes
de pondération ont été aussi proposés (voir §4.2.3).

Performance du système proposé

Dans les sections précédentes nous avons introduit les étapes qui forment notre système
d’analyse du rythme représenté dans la Figure 3. Le but de cette partie est de présenter
une évaluation quantitative de la performance de ce système.

L’évaluation quantitative des systèmes d’analyse de la métrique des signaux musi-
caux est actuellement un problème partiellement résolu. Des méthodologies adéquates
à ce sujet ont été indépendamment proposées par Goto & Muraoka (1997a) et Temperley
(2004), toutefois elles se fondent sur un processus laborieux ou extrêmement long pour
obtenir la base de données des annotations manuelles. En raison de telles limitations
d’ordre pratique, la plupart des évaluations quantitatives décrites dans la littérature
se limitent seulement à l’estimation du tempo (en BPM) d’un morceaux de musique.
Dans notre évaluation, nous adoptons aussi cette approche. Idéalement, la procédure
d’évaluation devrait être plus approfondie et inclure dans le processus plusieurs couches
métriques ainsi que l’estimation de leur phase (localisation temporelle) à l’intérieur du
signal musical.

Pendant l’ évaluation du système, nous considérons l’analyse d’un morceau de musi-
que comme “correcte” si le tempo trouvé par le système ne varie plus de 5% par rapport
à la valeur du tempo obtenu pendant l’annotation manuelle. Nous considérons aussi
comme correctes toutes les estimations dans un rapport de moitié, double, tiers ou triple
de la valeur du tempo annoté.

Il est intéressant de savoir si la combinaison des résultats des quatre algorithmes de
périodicité que nous utilisons (SS, SP, AC, CF) peut obtenir un score plus élevé que celui
obtenu par chaque méthode de façon individuelle. Pour cette raison nous avons créé une
cinquième technique appelée Fusion de méthodes (MF) qui intègre en une seule valeur les
résultats des autres méthodes à l’aide d’un algorithme de décision.

La Figure 6 présente les résultats (par méthode de périodicité) sur l’efficacité du
système à estimer le tempo des morceaux musicaux dans les bases de test de l’ENST
et de l’université de Tampère. Ces résultats ont été obtenus en utilisant le pre-traitement
non-causal et un banc de filtres uniforme à 8 bandes (voir §3.3.1.3). Les Figures 6-(a)-(b)
indiquent respectivement la performance pour chacune des méthodes de décomposition
H+B (celle basée sur le modèle EDS et celle basée su la TFCT). La méthode EDS donne
des résultats légèrement supérieurs, mais toutes les deux présentent des performances
comparables. De la même façon, parmi les méthodes d’estimation de la périodicité la
somme spectrale obtient la meilleur performance. Toutefois, les autres méthodes mon-
trent aussi des résultats proches à l’exception de la technique de banc de filtres en peigne.
La Figure 6 compare aussi notre système avec la méthode d’analyse du rythme proposé
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Figure 6: Performance par méthode de périodicité utilisant la technique de
décomposition H+B (a) basée sur le modèle EDS et (b) basée sur la TFCT. La significa-
tion des sigles est la suivante, SS : somme spectrale, SP : produit spectral, AC : fonction
d’autocorrelation, CF : banc de filtres en peigne, et MF : fusion de méthodes.

par Scheirer (1998), on peut voir que notre approche obtient une meilleure performance.

Après l’analyse des résultats présentés dans la Figure 6, on peut se poser comme ques-
tion : quelle est l’influence de la décomposition H+B sur la performance du système? Pour trou-
ver la réponse, nous avons mesuré la performance de notre algorithme pour trois con-
figurations de la méthode H+B : décomposition basée sur le modèle EDS, décomposition
basée sur la TFCT et dans le dernier cas, pas de décomposition. Ces tests on été effectués
en utilisant la méthode de la somme spectrale pour estimer la périodicité. La Figure 7-(a)
montre les résultats obtenus sur la totalité des morceaux dans les bases de test, les barres
d’erreur indiquent l’intervalle de confiance à 95% (l’explication de la méthode de calcule
de cet intervalle est présentée dans la page 131). L’examen de ces résultats nous indique
que la faible amélioration obtenue après avoir effectué la décomposition H+B n’est pas
statistiquement significative.

Après un examen plus détaillé des résultats, nous avons découvert que la décompo-
sition H+B n’a pas la même influence sur tous les genres musicaux présents dans les
bases de test. Plus précisément, nous avons trouvé que l’impact de cette approche est
pratiquement négligeable pour la musique percussive, mais que la contribution de la
décomposition pour d’autres genres plus difficiles est bien plus importante. La Figure
7-(b) montre l’influence de la décomposition H+B dans le cas spécifique de la musique
classique. Pour ce genre musical cette influence est plus notable et l’amélioration obtenue
est très nette, mais elle ne garantit pas que la décomposition H+B soit statistiquement
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Figure 7: Influence de la décomposition H+B. Les barres montrent uniquement le résultat
pour la méthode de périodicité SS. Résultats pour (a) la totalité des morceaux dans base
et (b) pour les morceaux de musique classique.

significative2. Toutefois nous considérons ces résultats très satisfaisants, car ce genre est
particulièrement difficile à traiter.

Dans les paragraphes précédents nous avons présenté notre évaluation du système
d’analyse du rythme où il a montré une bonne performance. En outre, nous ne nous
sommes pas limités aux mesures internes et nous avons soumis notre algorithme à une
évaluation externe dans le cadre de la compétition MIREX (voir Annexe A), où nous
avons obtenu en 2005 la première place dans la catégorie d’estimation du tempo parmi
plus d’une dizaine d’algorithmes.

Conclusions et perspectives

Cette thèse a été consacrée au développement des mécanismes pour essayer de donner
aux ordinateurs la capacité de comprendre certains éléments fondamentaux du rythme
musical. Plus précisément, il s’agit de construire un système qui prend comme entrées
des enregistrements musicaux et dont la sortie doit être comparable à la réponse générée
par un auditeur humain (habitué à la musique occidentale) lorsqu’il lui est demandé de
battre avec le signal musical.

La première partie du manuscrit est consacrée à la présentation des concepts fon-
damentaux, à savoir : une définition appropriée du rythme musical et une notion de
la structure métrique couplée à l’idée de présenter le rythme sous forme de couches
métriques superposées.

Puis, une introduction au champ de l’analyse du rythme par ordinateur a été présentée.

2Il faut aussi prendre en compte que le nombre d’échantillons dans la base de musique classique est très
inférieur aux nombre de morceaux dans toute la base, ce qui provoque une augmentation considérable de la
taille des barres d’erreur.



NOTATION 23

Une contribution importante de cette thèse a été la présentation d’un panorama complet
sur l’état actuel de l’analyse automatique du rythme. Nous avons classifié les approches
existantes selon la nature du signal d’entrée dans deux catégories générales : les modèles
symboliques et les modèles acoustiques. Nous avons présenté l’état de l’art sur ces deux
approches, bien que nous avons mis plus l’accent sur les modèles acoustiques car ils con-
cernent directement l’objectif de notre travail.

Nous nous sommes exhaustivement intéressés à la question de mesurer le degré
d’accentuation musicale en fonction du temps. A notre avis, c’est de loin le problème
le plus complexe à résoudre afin de développer un système d’analyse du rythme perfor-
mant. Nous avons proposé une nouvelle méthode pour faire face aux cas plus difficiles,
i.e., ceux formés par des sons contenant des attaques faibles.

Cette méthode est basée sur l’idée de séparer dans un signal audio, la partie har-
monique et la partie bruit3 (H+B).

Le but de cette séparation est de souligner les accents musicaux en les séparant des
éléments qui les entourent et qui peuvent rendre leur détection plus compliquée. Deux
méthodes différentes ont été employées pour effectuer cette décomposition : d’une part
une technique d’analyse en sous-espaces qui exploite le modèle des sinusoı̈des amorties
exponentiellement (appelée EDS en anglais); d’autre part une approche plus tradition-
nelle qui utilise la transformée de Fourier.

Une autre contribution importante de notre travail de recherche a été l’amélioration
de la technique connue sous le nom de Flux Energétique Spectral (SEF en anglais), qui
mesure le degré de changement de la densité spectrale de puissance en fonction du
temps. Nous avons découvert qu’une bonne estimation de l’enveloppe temporelle à
l’intérieur des canaux fréquentiels est fondamentale pour les techniques de détection
d’attaques basées sur des critères énergétiques. Pour obtenir cette estimation, nous avons
proposé un filtre lissant (i.e., passe-bas) décrit par Meddis (1988) et qui imite la réponse
du nerf auditif aux stimulus sonores soudains. Nous avons discuté aussi sur l’importance
de l’utilisation d’un bon filtre différentiateur et nous avons adopté celui proposé par
Dvornikov (2003). La sortie idéale du module d’estimation du profil d’accentuation mu-
sicale consiste en un signal formé par des impulsions localisées aux emplacements des
attaques.

Ensuite, nous avons abordé le problème de l’estimation de certains paramètres ry-
thmiques des enregistrements musicaux à partir de leur profil d’accentuation musicale.
Pour trouver les périodicités les plus saillantes nous avons utilisé quatre méthodes : la
fonction d’autocorrélation, un banc de résonateurs formé de filtres en peigne, la somme
spectrale et le produit spectral. Pour traiter la sortie du module d’induction de la périodi-
cité nous utilisons une technique de suivi de la pulsation basée sur l’algorithme de pro-
grammation dynamique. Bien que des approches semblables aient déjà été proposées,
notre méthode est innovatrice car nous sommes parmi les premiers à proposer une ver-
sion modifiée capable de détecter et poursuivre simultanément plusieurs périodes.

3Par bruit nous nous référons à tous les éléments du signal audio original qui ne peuvent pas être
modélisés comme des composantes sinusoı̈dales.
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Après avoir évalué notre système, nous considérons sa performance globale comme
satisfaisante. Concernant la décomposition harmonique plus bruit (H+B), dans le cas
général elle n’a pas fourni l’amélioration attendue. Plus précisément, pour les genres
musicaux riches en sons percussifs cette technique ne semble pas apporter une grande
contribution. Cependant, nous considérons que cette décomposition H+B a montré un
gain important pour les cas plus difficiles (avec peu ou sans sons percussifs), par exemple
une amélioration moyenne de 6.4% pour la musique classique en utilisant le modèle EDS.
Le schéma que nous avons proposé peut être vu comme un système modulaire qui peut
être adapté en fonction des besoins, par exemple, en fonction de la musique à traiter ou
en termes de conditions/limitations informatiques.

Il existe plusieurs manières potentielles d’étendre le système que nous avons proposé
dans ce travail. A ce sujet, nous avons quelques idées.

? Nécessité de poursuivre la recherche pour mesurer le potentiel de la décomposition
H+B. En fait, les deux méthodes que nous utilisons actuellement n’arrivent pas à
séparer complètement les sinusoı̈des de la partie bruit. Il est possible que cette
séparation imparfaite réduise les avantages de cette méthode.

? A notre avis, le noeud du problème se trouve dans l’étape d’estimation de l’accentu-
ation musicale. En fait, cette étape est sans doute l’élément le plus important de
tout le système. L’amélioration de ce module devrait prendre en compte la non-
stationnarité de sons en utilisant les informations de plusieurs canaux fréquentiels.

? Bien que nous soyons parmi les premiers à proposer un mécanisme de fusion des
profils de périodicité dans un seul vecteur, l’approche que nous utilisons est un
peu grossière. L’utilisation des méthodes d’apprentissage pour affiner la fusion de
données est possible, ces techniques peuvent être employées pour établir si une
sous-bande donnée apporte des informations utiles ou si elle doit être rejetée.

? L’intégration des connaissances musicales de haut niveau doit améliorer les ca-
pacités du système, car la méthode actuelle a très peu exploité l’information fournie
par l’algorithme de poursuite des périodicités. L’inclusion de nouvelles étapes ten-
ant compte des informations de haut niveau et de la périodicité permettrait, par
exemple, de trouver la subdivision appropriée de beat/mesure, et d’estimer con-
jointement plusieurs couches métriques.
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Chapter 1

Introduction

Music is a ubiquitous phenomenon that we experience in our daily lives. In fact, most
humans have an intrinsic facility to enjoy music regardless of their musical background.
Human comprehension of music is an exciting and only partially unveiled field of study.
Like most areas related to perception, rationalizing and imitating the process by which
humans understand music is a highly complex endeavor. The Holy Grail of computer
music understanding is the ability to conduct an accurate transcription. As a matter
of fact, this operation embraces in a single project all of the most important tasks in
music understanding, namely: pitch and key estimation, onset detection, timing, num-
ber of sources, dynamics, articulation, recognition of phrases and so forth. According
to Klapuri & Davy (2006), music transcription can be seen as discovering the recipe, or
reverse-engineering the source code of a musical signal. Music transcription is also the
convergence point of various disciplines required in this process such as computer sci-
ence, acoustics, musicology, psychoacoustics, signal processing and music perception. In
addition, there exists a large number of applications, among which:

• Music Information Retrieval (MIR). This field is concerned with the problem of
locating pieces of music by their content, finding the best matches in a collection of
music to a particular query. That is, a search engine for music signals.

• Structured coding of music signals. This subject is related to MIR, it refers to the
development of audio codecs that specifically support content based retrieval while
also providing a compact data representation (i.e., audio compression).

• Music processing, for example, alignment of multiple instruments or musical pieces;
cut-and-paste operations in audio editing; digital audio effects, such as beat-driven
visualization, rhythm synchronized cross-fading and many other events that can be
driven by music.

• Human-computer interaction such as automatic musical accompaniment, score fol-
lowing, meta data generation, music for computer games.

The purpose of this thesis is to discuss a subtask of the all-encompassing music tran-
scription problem. More specifically, in this work we address the subject of computer-
based rhythm analysis. In a similar way to music transcription, rhythm analysis is influ-
enced by the same disciplines and also shares a large part of the applications mentioned
above, as illustrated in Figure 1.1.
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Figure 1.1: Music transcription seen as a convergence point of disciplines. Rhythm anal-
ysis can be seen as a subtask of this problem.

For Ellis & Rosenthal (1995), auditory perception can be viewed as a sequence of rep-
resentations from ”low” to ”high” where low-level representations correspond to de-
scribing an acoustic stimulus reaching the cochlea, and high-level representations are
those to which we have cognitive access, such as recognizing specific songs or musical
instruments. For them, between these two levels there is a network of possible descrip-
tions which they designate with the term mid-level representations. They also point that the
general requirements of a mid-level hearing representation are that it may be computed
efficiently from the input, and that it can readily answer the questions asked of it by the
higher levels of processing.

Lerdahl & Jackendoff (1983) consider that musical rhythm can be seen as formed of
two components: grouping and meter. In this thesis we only cover the latter and the
main emphasis is laid on the analysis and processing of mid-level representations of poly-
phonic1 music signals and not on a higher-level development which would be more fo-
cused on forming musical units/phrases. To be more precise, we propose a novel method
to conduct musical meter recognition at two metrical levels: the tactus and tatum. Where
the earlier, also known as beat, refers to the most salient level of musical meter and the
latter to the lowest metrical level. In this work we adopt a bottom-up approach and we
process acoustic audio signals without incorporating any high-level musical knowledge.

1.1 Musical rhythm

For Carterette & Kendall (1999) music is composed of three basic parts: melody, harmony
and rhythm and all musical pieces are perceived based on these elements. Rhythm and
harmony are seen as being complementary to each other in the sense that the same piece
of music can be analyzed solely from a rhythmic or a harmonic aspect, if required.

Musical rhythm is a very contrasting term: from one side it is straightforward to feel
it, and from the other side it is very difficult to define. Many authors have stressed that

1By polyphonic we refer to various sound sources playing simultaneously.
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a consensual definition of the meaning of rhythm does not exist. In fact, we can find
many of them, depending on the subject of interest. After reviewing the literature, for
the present work we adopt as musical rhythm definition the compilation gathered by
Parncutt & Drake (2001). In the following lines we outline its main parts.

According to Parncutt & Drake, the perception of rhythm involves the perceptual and
cognitive organization of events in time, by which each sound event is situated in relation
to those that have already occurred (memory) and those yet to come (expectancy). Next,
we describe the different cognitive processes that occur over short and long time-spans.

? Surface organization. The acoustical signal is first perceptually segmented into
separate events corresponding to the attack points of musical elements such as
tones and chords. In this context, we call ”perceptual onset” the moment at which
an event is perceived to occur. The time interval between the onset of one event
and the onset of its successor is called the ”inter-onset interval” (IOI). In addition,
the physical duration of an event (i.e. the time interval between its onset and offset)
may be shorter than its IOI (e.g., in staccato) or longer (e.g., in legato). Literature
shows us that rhythmic organization is generally more influenced by IOI than by
physical duration2.

? Grouping and meter. The events of a rhythm are hierarchically organized in two
distinct ways, known as grouping and meter (Lerdahl & Jackendoff, 1983). From a
perceptual standpoint, rhythm is characterized by (and may even be defined as) a
combination of these two forms of organization. These two categories also comple-
ment each other, they can be observed separately but a complete rhythm analysis
requires both. It is possible to define the grouping as follows: at the musical sur-
face, groups correspond to short motifs. Motifs combine to form phrases, which
in turn group into longer phrases, extended passages, movements and eventually
whole pieces.

On the other hand, meter is a form of perceptual organization based on tempo-
ral regularity (underlying beat or pulse). A sensation of pulse may be evoked by
temporal regularity at any level within a sound sequence, or whenever relatively
salient events (or motivic patterns) are perceived as roughly equally spaced in time.
The musical behavior that perhaps most clearly reflects the perception of pulse is
the famous term of foot-tapping to music. In fact, cognitively, the process of regular-
ity extraction may be regarded as one of synchronizing our internal time-keeper or
clock to music. For example, if a sequence abruptly stops, the listener expects the
pulse to continue; thus attention is enhanced at the temporal locations of expected
events.

At this point we can emphasize that during the present work our research is carried
out only on the ”meter” estimation problem and that we do not address the ”group-
ing” aspect of rhythm. More exactly, automatic rhythm analysis aims at providing

2In fact, to our knowledge none of the existing computer-based approaches to conduct rhythm analysis
aims at estimating the offset of musical events. The reason is mainly practical, since for a large part of these
events the offset takes place gradually and time instant where it occurs cannot be defined with adequate
precision. However, obtaining offset information would considerably improve the rhythmic analysis. For
example a series of events formed by concatenating a quarter-note followed by a quarter-rest would be
correctly detected. On the contrary, by using only onset information it would be detected as a sequence of
half-notes.
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insights into the temporal structure of a music track by analyzing its acoustical con-
tent in terms of repetitions. However, as mentioned above these repetitions do not
only exist at the ”note level”, but also take place at higher levels by clustering notes
to form groups (i.e., such as melodic phrases), and also clustering groups to form
structures at a larger time scale. It is then possible to represent a music track not
only as a series of notes, but as a set of sequences that take place at different scales.
For example, in popular Western music it is very common to consider audio tracks
as formed of different parts: first short melodic motifs which are then clustered to
form other structural parts at larger scales called introduction, verse, chorus, bridge
and others. In this work, we do not address this segmentation problem, we only
work on the metrical part of rhythm analysis.

? Salience. The perceptual salience of a pulse sensation depends on its tempo. In the
vast majority of cases, musical pulses are confined to a tempo range of roughly 30
to 300 beats per minute (BPM), or an inter-beat interval ranging from 200 millisec-
onds to 2 seconds. For Fraisse (1982), the most salient pulses usually have tempi
in the vicinity of the ”preferred tempo”, which was considered generally located
around 600 ms (100 BPM). However, a number of recent studies (Moelants, 2002;
McKinney & Moelants, 2004) suggest that a period slightly below 500 ms (120 BPM)
is probably more realistic.

A metrical structure consists of hierarchical levels of pulsation or rhythmic layers.
The multiple pulses that make up a conventional musical meter are mutually conso-
nant in the sense that every event at every level (except the fastest) corresponds to
an event at the next-faster level3. Due to their relevance in our work, we will come
back with a more detailed explanation of the hierarchical levels later.

For Lerdahl & Jackendoff (1983), whenever temporal regularity is perceived at dif-
ferent levels, listeners tend to focus on (or attend to) a single level of moderate
tempo (period near 500 ms) and perceive other levels (and hence all events) rela-
tive to this especial one. In the case of the consonant levels that make up a meter,
this particularly important layer in the metrical structure is called the tactus.

? Accents. In common usage the meaning of ”accent” is used indistinctly with loud-
ness, implying that attention is attracted to an audio event simply by playing it
more loudly (or sometimes more softly) than its adjacent events. In this case accent
is seen as a synonymous of event salience. But according to Jones (1987), anything
that makes an event sound more important than adjacent events, or which attracts
the attention of a listener to an event, may be considered as an accent. For example,
rapid and slight alterations or changes in the dynamic level (i.e., tremolo) or in the
pitch of a sound (i.e., vibrato) for expressive purposes add interest and substance to
a sustained sound.

For Lerdahl & Jackendoff (1983), the grouping and metrical structures perceived in
a piece of music depend ultimately on the timing and on the phenomenal accent of
the events at the surface. And according to Steedman (1977), the most important
contributor to phenomenal accent is typically the IOI between the event and its
successor, that is, the longer the IOI following an event, the stronger the accent.
Apart from IOI, phenomenal accents are generated by relative loudness (dynamic

3Simultaneous pulses can also be dissonant, although we do not address this variant in our work.
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accents); by articulation (e.g., by switching from legato to staccato); by timbral varia-
tion (manipulating the temporal or spectral envelope of events, for example chang-
ing of instrument); or by adjusting intonation.

? Rhythmic organization and tempo. According to Handel (1993), the perceived
organization of a piece of music depends on the tempo at which it is performed.
Tempo may affect both grouping and meter. The metrical level at which the tac-
tus is located depends on the tempo because the distributions of tapping rates to
music are practically unconstrained by the tempo annotated in the musical score.
For example, a listener might tap eighth-notes when a piece is played slowly and
quarter-notes when the same piece is played twice as fast, thus keeping the tapping
rate in the same absolute range. Clarke (1982) shows that in the case of grouping,
the number of elements in a group increases as tempo increases, keeping their ab-
solute length about constant.

As shown above, explaining and understanding musical rhythm is a complex matter.
In fact, it is also very difficult to develop a full implementation on a computer, as will be
discussed in detail in the following chapters.

1.2 Metrical structure

We mentioned in the previous section that rhythm is hierarchically organized in two
distinct ways known as grouping and meter (Lerdahl & Jackendoff, 1983), and that in
this work we focus on the latter. Along with the hierarchical (or metrical) structure, the
concept of music meter has another important contribution that consists in organizing
the music into pulses creating with this a musical time-base. If the tempo is constant,
the musical time-base (inside any given metrical level) is said to be isochronous, i.e., the
time-interval between any two consecutive pulses is constant.

According to Lerdahl & Jackendoff (1983), in traditional Western music, the metrical
hierarchy is built from two basic properties:

1. Every pulse on a given metrical level coincides with a pulse on all the lower4 metrical
levels.

2. Metrical levels obey a binary/ternary division, i.e., the periods of pulses between
any two consecutive metrical levels are related either by a factor of two or three5.

For the sake of clarity, let us illustrate the afore mentioned properties and the hier-
archical structure of metrical levels by an example. Figure 1.2 shows an arrangement of
several metrical levels forming a metrical grid. Pulses at different levels and their respec-
tive locations are denoted by black dots. As seen in the figure, metrical levels are piled-up
on top of each other with the low-ones situated in the bottom part and the high-ones on
the top. Figure 1.2 also shows the cognitive structure corresponding to a

(3
4

)
meter, it in-

cludes pulses of quarter-notes (the tactus) and dotted half-notes (the measure), and usu-
ally also includes faster pulses (e.g., eighth-notes) and slower pulses like groups of two
measures and so on. This example also shows the coexistence of both binary/ternary

4In the context of metrical levels, the term ”lower” means faster and the term ”higher” means slower.
5In practice this assumption is not valid for all kinds of music. For example, it is possible to find jazz

music with a
`

5

4

´

meter which does not obey the second property.
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Figure 1.2: Example of a metrical grid.

levels, since there is a ternary relation between the tactus and the measure levels, while
all other consecutive levels are linked by a binary relation.

Tatum. From our point of view, after the tactus, the next metrical level in importance
is the so-called tatum. This term was coined by Bilmes (1993a,b) and derives from ”tem-
poral atom”, although it was actually named after the famous jazz pianist ”Art Tatum”.
The tatum is the lowest metrical level (see the bottom part in Figure 1.2) and in practice it
refers to a rhythmic quantum, the pulsation that most highly coincides with all note onsets
(Gouyon et al., 2002). A significant aspect is that pulsation at all rhythmic levels bear an
integer-multiplicity with respect to the tatum6, making of it a perfect short-time musical
unit for segmentation and analysis purposes. This segmentation property has been out-
lined several times in the literature (Bilmes, 1993a,b; Seppänen, 2001a,b; Gouyon et al.,
2002; Jehan, 2005a).

1.3 Goals and dissertation outline

The main goals of this thesis work are the following.

? To describe the scope and objectives of computer-based rhythm analysis.

? To explore the panorama of current and previous computational approaches to
rhythm description.

? To propose an approach to perform meter analysis on audio recordings at two met-
rical levels: the tatum and the tactus.

� Introduce a novel front-end method to estimate a profile of the musical stress
present in an audio stream as a function of time. This proposal is based on the
decomposition of the audio signal in two parts: harmonic and noise. Then,
an efficient way of computing the derivative of the energy envelope for the
harmonic and noise parts is also presented.

6In practice this is not a rule, although it occurs in most cases.
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� Propose a number of methods to find the underlying periodicities present
in the musical stress profile and a technique to keep track of their evolution
through time.

? To carry out a quantitative evaluation of the efficiency (mostly in terms of accuracy,
but also of computational complexity) of our rhythm-description proposal.

? To perform a qualitative assessment of the achievements and limitations of our pro-
posal.

This report is organized as follows. In Chapter 2 we present the fundamentals and
aims of computer-based rhythm analysis, which are essential to the understanding of the
subsequent parts of this thesis. Next, we provide a survey of existing systems and we
also describe their main characteristics, we also present a table to ease the comparison
of these methods. In the end part of this chapter we address the issues of evaluating
computer-based rhythm estimation systems and we describe the test database used in
our work.

In Chapter 3 we introduce a framework to carry out metric analysis of music sig-
nals. This model is divided into two parts. The first one is presented in this chapter
and describes the components which handle the conversion of an acoustic signal (i.e.,
commercial audio recordings) to a symbol-like representation indicating the likelihood
of finding a musical accent (i.e., note onsets or chord-changes) as a function of time.

The remaining components of the metrical analysis framework are explained in Chap-
ter 4. In this part we present a number of methods to perform periodicity induction on
the symbolic representation of musical accents. We also present a method to keep track
of accents progress through time as well as a technique to obtain their respective time-
location. A method to estimate the tatum is also presented.

In Chapter 5 we use an heuristic approach to tune a number of key parameters in
our rhythm analysis framework. Then we evaluate the performance of our system at
inducing the tempo values of the test database instances. A number of different system
variants is tested and their efficacy is evaluated. The ability to locate beat positions and
to estimate the tatum are also assessed.

Then, Chapter 6 summarizes the main achievements and contributions of our re-
search work. In this part we also address system shortcomings and we also propose
potential paths for future research.

The last part of the document presents complementary information. Appendix A
describes the recently adopted methodology for a systematic assessment and compar-
ison of tempo extraction algorithms. In fact, during the second edition of this annual
evaluation one of our algorithms obtained the first place. Appendices B and C briefly in-
troduce two important components of our system, namely the differentiator and weight-
ing filters. Appendix D provides numerical values for system efficiency evaluations and
Appendix E presents the essence of two onset detection algorithms. Finally, Appendix F
lists the articles published during this research work.
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Chapter 2

A survey on computational rhythm
description

In this chapter, we introduce the key concepts required to adequately understand how
computer-based rhythm analysis systems work. More precisely, let us mention a few
of the questions that we will answer herein: what do we mean by automatic rhythm
analysis? What are its main goals? How does it work? What has been undertaken in this
area before? How are such systems evaluated? In this chapter, besides providing answers
to these questions, we also underline the principles which we believe are important when
implementing a rhythm analysis system.

2.1 Computer rhythm analysis

When people listen to certain kinds of music, they feel immediately that it has a beat, that
they can foot-tap or clap their hands to it. The most important is that, in some (conscious
or unconscious) way, they perceive the regularly spaced motifs and they can synchronize
with this sequence. Since many years, the ambitious goal of many researchers has been
to repeat this process using computers and to teach them how music is organized into
beats. There are various desirable reasons to support this idea: a computer can provide
numerous alternatives as an improvising partner, facilitate cut and paste operations in
audio editing, beat-drive special effects, transcribe live performance music and it opens
the possibility to explore many other fascinating opportunities.

In a broad way, we can define computational rhythm analysis as an attempt to artifi-
cially replicate the process by which humans’ comprehension of rhythm apparently takes
place, that is, by reproducing1 the part of the auditory information-processing functions
that have an effect in rhythm understanding. For most humans foot-tapping along with
a musical performance is generally very straightforward, that it might make us think that
writing a computer algorithm to repeat this operation will be as easy.

While computers can do a rather good job when estimating the rhythm of a large part
of modern pop music, it is indeed very common to see them fail when the turn comes
to processing classical music. This problem has several possible causes: the number of

1The physiology and neurology of the human auditory system related to the perception of rhythm is only
partly understood. These aspects of rhythm are not covered in the present work, but can be found in Moore
(1995, 1997).
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instruments playing simultaneously, the lack of clear onsets, erroneous cognitive (or cul-
tural) presumptions. As Rosenthal (1992) mentions, we forget that the mental machinery
that detects rhythm has been evolving for a long time, and has apparently become quite
sophisticated that emulating it on a machine is a highly demanding task.

From our point of view, according to the definition of musical rhythm of §1.1, a com-
plete computer algorithm designed to analyze rhythm should undertake the following
tasks: parse the music into separate events2, estimate the salience associated with each
event, syntactically separate the music into motifs, identify the underlying pulsation lev-
els, detect repeating patterns and adapt to sudden rate and timing changes representing
musical expression. At the present time such a system does not exist, however we con-
ceive its feasibility not so far in the future for music with a straightforward rhythm and
still years ahead for more challenging cases, for instance romantic piano performances
from Chopin or Mendelssohn whose timing varies very rapidly in short time segments.

As briefly mentioned, a complete computer-based implementation of musical rhythm
encompasses many tasks. Current state-of-the-art systems are more modest and most of
them aim at finding the meter or rhythmic score (explained below) of the music signal
under analysis, generally without taking into account music gestures or expression3. The
process of estimating the musical meter can be seen as a subtask of the afore mentioned
definition of a complete system.

In order to ground the meaning of rhythmic score, Figure 2.1 shows a simple but
illustrating graphical instance, which the reader might find familiar since it resembles to
that presented in the previous chapter. The inside of the dotted box contains what would
be the desirable result of rhythm analysis system: the underlying metrical levels and
periodicities are identified, as well as the intervening musical events and their respective
time locations. However, in practice it is almost never that straightforward.

Gouyon & Dixon (2005) point out that a serious drawback of automatic rhythm anal-
ysis resides on the impossibility to explicitly define the rhythm, coupled to the fact that
computer-based implementations must be formulated using precise definitions. They
also use clever arguments to put into evidence the ambiguity of rhythm and they formu-
late questions, for example: how many metrical levels are relevant? Is there one most
important level? Is there only one uniquely correct tactus? Which metrical levels de-
fine the time signature? Are the answers to these questions common to all listeners?
(Gouyon & Dixon, 2005).

Models categorization The computer-based rhythm analysis proposals found in the lit-
erature can be categorized in several different ways. However, the most straightforward
and fundamental distinction between them is, almost undoubtedly, the nature of the in-
put signal. The earliest methods, known as symbolic models, used as input a symbolic
audio representation, i.e., a structure based on tokens describing music events, their rela-
tionship and sometimes also providing information to render them audible, for example
the ubiquitous MIDI format.

Nowadays, given that the vast majority of musical signals are available in raw audio
(or since a few years now also in compressed format) and also influenced by the ever

2In its simplest form, an audio event is a musical tone. Nevertheless, the same term is used to refer to more
elaborated situations: notes, an instrument playing a chord, various instruments playing (in synchrony)
musical notes, chords or any other form of musical accentuation.

3Laroche (2001) and Gouyon et al. (2003) are two exceptions. They determine the swing ratio of the signal
under analysis.
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Figure 2.1: A complete computer-based rhythm analysis system should provide the full
metric structure of the music signal under analysis, that is, the inside of the dotted box.

increasing computational power, most of the later developed methods leaned towards
direct processing of the audio recording waveform (or on a number of its time parameters
if working on the compressed domain) and are usually known as acoustic audio models or
signal processing models.

The method that will be described throughout this report belongs to the second cat-
egory. For this reason, more emphasis will be given below to this kind of approach.
Nevertheless, it is necessary to point out that symbolic models play an important role in
the consolidation of their counterparts by developing and settling many techniques later
used in the signal processing models.

2.2 General principle of computational rhythm description

After having introduced in §2.1 the main goals and definitions of computer-based rhythm
analysis, in this section we proceed to explain the general working principle from our
point of view.

The four stages approach that we present here is heavily based on the scheme pro-
posed by Klapuri (2004) and Klapuri et al. (2006). This scheme, graphically illustrated in
Figure 2.2, is explained below.

? First, the degree of musical accentuation as a function of time has to be measured,
that is, phenomenal accents must be detected. In the case of symbolic audio this
task is granted. For an audio recording input, the assignment is far from trivial
and is closely related to the problem of onset detection. Some systems measure the
likelihood of finding a phenomenal accent in a continuous manner, others extract
discrete events.

? Secondly, the periods and phases (locations) of the underlying metrical pulses have
to be estimated. Numerous methods haven been proposed, for example: autocor-
relation function, DFT, comb-filter oscillators.

? Thirdly, the system has to identify the metrical levels such as the tactus, tatum or
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Figure 2.2: Overview of the general principle used in computational rhythm description.

measure. This can be done by using a priori knowledge of pulse distributions or by
applying pattern matching techniques.

? Finally, the music events (including their respective time locations) related to each
one of the previously found metrical levels must be selected.

Our proposition to address some of these problems will be described in detail later
in chapter 3. In theory, once the afore mentioned steps have been accomplished, the
result obtained must be comparable to that presented in Figure 2.1, certainly taking into
consideration the inherent ambiguity of rhythm as pointed out by Gouyon & Dixon (see
§2.1 page 34).

2.2.1 Symbolic and acoustic models seen as complementary approaches

At first sight, rhythm analysis algorithms processing symbolic and acoustic audio can
be seen as quite similar. In effect, there are few theoretical differences between both ap-
proaches and their large discrepancies are more of practical order. The main distinctions
between them are found mainly in the first two stages of scheme presented in Figure 2.2.

The foremost contrast is that symbolic models do not require to undertake (and there-
fore are not designed to face) the difficulty of the onset-detection step preceding beat
analysis (first block in Figure 2.2). In other words, the periodicity and phase estimation
stage of symbolic models operates solely on clean data instead of dealing with informa-
tion corrupted by false detections, undetected onsets and loose attack positions. All these
difficulties are inherent when processing acoustic music signals. In fact, only few of the
algorithms processing symbolic audio have been successfully ported to signal process-
ing models, for instance the methods proposed by Dixon (2001) and Raphael (2001). The
remaining parts of the rhythm analysis procedure are rather similar for both kind of ap-
proaches. In the case of acoustic models some approaches extract discrete points indi-
cating the location of potential onsets, while others process directly an onset likelihood
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signal that behaves like a continuous function.

It is important to remark that in many aspects, the symbolic vs. acoustic compari-
son is not adequate since they have different goals. A number of the symbolic models
find their origins and are purely motivated by scientific research in fields like rhythm
perception, music cognition research and music psychology. On the contrary, the most
part of acoustic models usually obey an engineering motivation which is more related to
developing an end-user device for executing tasks such as music transcription, score fol-
lowing, music driven special effects, all of these tasks using commercial audio recordings
as input.

In addition, symbolic models (MIDI based for instance) have traditionally been a
step ”ahead” concerning rhythm analysis since they already have at their reach infor-
mation whose availability is currently under development for signal processing models
(e.g.multiple fundamental frequencies, chords changes, number of sources). A state-of-
the-art symbolic model, for example that proposed by Meudic (2004), is capable of per-
forming assignments such as: analyzing rhythm and motifs from polyphonic music with
variable tempo, explore progressively a musical piece from its lower levels (starting at the
note layer), identifying motif variations, comparing performances and extract the musi-
cal structure. Most of these tasks are still in an initial stage when dealing with audio
recordings.

2.3 Literature survey: current automatic rhythm analysis

As shown below, automatic rhythm analysis has been a very active research field in recent
years. Contrary to most literature surveys about rhythm analysis, we decided in the
present work to separately examine symbolic and acoustic models. It should be noted
that categorizations of rhythm analysis models can be, to a certain degree, subjective.
Thus, boundaries in our classification are somewhat fuzzy. For instance, the rule-based
approach can be seen as overlapping with the multiple-agent and histogramming models
category.

2.3.1 Symbolic models

A large part of the research carried out in the metrical analysis field has been done on
models that operate on a symbolic input. The main approaches can be classified as fol-
lows.

2.3.1.1 Rule-based models.

Pioneering work to develop a rhythm parsing system shared the rationale of being driven
by a reduced set of heuristic if–then procedures to find the meter of the music signal
and are thus known as rule-based models. They initially assume that the beat is equal
to the time interval between the first two onsets, and then work their way through the
incoming signal, shifting, doubling and stretching the beat. Each model postulates a state
variable (the current beat hypothesis) and a small set of rules in which the test consists
of a predicate on the rhythmic pattern and the current beat hypothesis, and the action
modifies this beat hypothesis. A detailed explanation of this kind of approach can be
found in Desain & Honing (1999).
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Steedman (1977) describes a model of perception using note durations to infer accents
and melodic repetition to infer the rhythmic structure of Bach’s “Well Tempered Clavier”
set of melodies.

Longuet-Higgins & Lee (1982) developed a model of rhythm perception that operates
on a list of onset times taken from a monophonic melody and computes the beat and other
higher metrical levels. This method successfully builds binary structures, but does not
work for ternary meters. An extension of this work is presented in Longuet-Higgins & Lee
(1984). It provides a formal description of syncopation4 and describes a preferred rhythm
interpretation as one which avoids syncopation.

Povel & Essens (1985) propose a model of perception of temporal patterns. They sup-
pose that the listener tries to induce an internal clock which best coincides with the ac-
cents in the stimulus (short repeated tone bursts patterns) and allows it to be expressed
in the simplest possible terms.

Lee (1991) summarizes and compares in a theoretical and experimental framework all
of the above mentioned methods. He states that musical rhythm obeys a canonical accent
pattern of strong and weak beats and that the listener can induce the meter by matching
the accent patterns in music to a canonical pattern of possible rhythmic interpretations,
that is, the model tries to recognize the metrical structure at several levels.

Parncutt (1994) adds two important novelties to previous models: the concept of phe-
nomenal accents and the preference for a moderate tempo, although in his proposal he
only uses durational accents. He presents a model with a direct relationship between
inter-onset intervals durational accents, moderate tempo and the perceived beat. This
model also tries to estimate perceived meter and expressive timing information.

Temperley & Sleator (1999) propose a hybrid meter–harmony recognition system heav-
ily based on Lerdahl & Jackendoff (1983) GTTM’s work. They align beats with event on-
sets and use a length rule, that is, longer notes are aligned with stronger beats. They
use dynamic programming algorithm to search the best solution in the space of possi-
ble mappings of events to a pulse. In addition, Temperley (2004) compares his model to
other methods (including some non-symbolic) and proposes an evaluation and compar-
ison framework for metrical systems.

2.3.1.2 Multiple-agent models

In this kind of approach, a number of distinct and independent conjectures (agents) about
pulse-periods and phases are made. Then a dynamic score is iteratively computed through
time for each of these agents. Since conjectures can be pruned or split at any time, the
number of agents is variable. In addition, their score increases whenever an onset coin-
cides with a pulsation belonging to the conjecture. At the end of the analysis, the agent
with the highest score wins and is considered to represent the correct pulse-period. A
drawback of this approach is that it requires an initialization stage to provide an ade-
quate number of conjectures.

4In music, syncopation consists in a temporary displacement of the regular metrical accent caused typ-
ically by stressing the weak beat. Syncopation is used only occasionally in most musical styles, but it is
fundamental in others like jazz.
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Allen & Dannenberg (1990) propose a beat-tracking system that uses beam-search5

to find the most salient hypothesis of beat-period and placement. They use a rule that
penalizes short events and event absence.

Rosenthal (1992) proposes a complete meter analysis system for polyphonic music
that attempts to model the human rhythm perception. This model produces multiple-
agents with a hierarchical structure and computes a score corresponding to the likelihood
that a human listener would choose that interpretation of the rhythm. This model is
capable of adapting to changes in tempo and meter.

Dixon’s (2001) beat-tracking system although originally developed for symbolic data,
is one of the few models that process also acoustic audio. In his approach, agents be-
havior resembles to that of Allen & Dannenberg (1990), except that he allows events to
fall close to the expected beat. The beat-period agents are initialized as in the method
proposed by Rosenthal (1992).

2.3.1.3 Oscillator models

Perhaps one of the most intuitive ways of obtaining metrical information from music sig-
nals is by using phase-locking oscillators. In most cases, this kind of approach consists of
a bank containing several oscillators, each tuned to a different periodicity and built from
a single prototype. Since a basic oscillator in general only responds to a specific frequency
range (usually small), if the period of the excitation is close to the characteristic frequency,
the oscillator output will resonate. The better the match between the excitation and the
oscillator is, the higher the resonance energy will be. Thus, pulse-period is obtained by
searching the oscillator having the highest output energy. In addition, pulse-location can
be obtained by examining the phase of the most resonating oscillator.

Large & Kolen (1994) describe a non-linear oscillator prototype that uses a gradient-
descent method to continuously adapt the oscillators characteristic frequency and phase.
The major drawback is that basic tempo and initial phase must be supplied to the algo-
rithm, since it only tracks pulse-period variations. The aim of this system is to model
the listener expectation to a regular pulse in the music. Toiviainen (1998) proposes an
extension by including short and long-term adaptation mechanisms, where the former is
intended to deal with local timing deviations and the latter to follow tempo changes.

2.3.1.4 Probabilistic models

Other kind of metrical analysis systems are based on probabilistic models. They suppose
that phenomenal accents have a stochastic nature and that there exists an underlying ran-
dom model that rules the rhythmic process whose control parameters must be estimated.

Raphael’s (2001) proposal is based on Bayesian networks and hidden Markov models.
His approach handles symbolic and acoustic audio data. The tempo and pulse location
are modeled as hidden variables and the results are obtained by using a maximum a
posteriori estimation.

Cemgil has developed two different statistical modeling approaches. The first one
(Cemgil et al., 2001) is related to the theory of linear dynamical systems and presents a

5Beam search is a heuristic search algorithm which only expands the n most promising nodes at each
depth, where n is a constant number known as the beam width. Initially, the n nodes are chosen according
to some prefixed rules The successors of these n states are all calculated. If the Goal Node is reached, the
algorithm halts. Otherwise, the best n states of these successors are taken and the steps repeated.



40 2. A SURVEY ON COMPUTATIONAL RHYTHM DESCRIPTION

beat-tracking method based on a Kalman filter who searches the smoothest path through
a local periodicity representation (computed from an onset location vector) that he calls
tempogram. Cemgil & Kappen (2003) present a probabilistic generative model for timing
deviations in expressive music performance. As in Raphael (2001), Cemgil formulates
the tempo tracking as a filtering and maximum a posteriori state estimation problem that
he solves using particle filtering and Markov Chain Monte Carlo methods.
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2.3.2 Signal processing models

During the last years there has been a considerable increase in research devoted to de-
veloping rhythm analysis models for acoustic signals. In this part we aim at providing
a general overview of the approaches commonly found in the literature. As in the sym-
bolic models case, these methods are categorized according to the broad principles they
use. Although somewhat simplistic, for the sake of clarity we suppose that the signal
processing models are composed of three stages: a front-end which estimates the degree
of musical accentuation, the periodicity estimation or pulse induction block and finally the
pulse-tracking block. In the following part we describe a number of the existing proposals
for each of these tasks.

2.3.2.1 Estimating the degree of musical accentuation

The first stage of any meter analysis system processing music recordings consists in
breaking-down the audio data into a temporal series of features which convey the pre-
dominant rhythmic information. Gouyon et al. (2006) refer to this task as the ”feature
list creation” block, we call this process the ”acoustic-to-symbolic conversion”. Various
techniques have been proposed, they can be classified as follows.

– Signal energy. This is a straightforward way of obtaining a musical stress profile
at a low computational cost, it simply consists in computing the energy envelope of
the signal as the sample-wise sum of the squares over successive and overlapping
segments of the audio signal. It displays a good performance for percussive music,
but in general it cannot cope with more challenging cases without additional pro-
cessing. It has been used by Dixon (2001), Gouyon et al. (2002) and more recently
by Eck & Casagrande (2005).

– Filter bank methods

? STFT based methods. One of the most common techniques to conduct the
acoustic to symbolic conversion is based on the use of the Short-Time Fourier
Transform (STFT) as a filter bank. That is, the STFT is merely used as an ef-
ficient way to decompose the input signal in frequency channels. Then, these
frequency bands are processed to highlight the phenomenal accents. The pro-
cessing usually consists of computing the derivative of the energy envelope
and integrating all the channels to form a single musical stress profile (Laroche,
2001, 2003; Alonso et al., 2004; Peeters, 2005).

There are also proposals which only integrate certain frequency regions and
therefore use various musical stress profiles simultaneously (Klapuri, 2003;
Klapuri et al., 2006; Alonso et al., 2005b). Others proposals also employ this
principle, but using a set of profiles for each critical band in the spectrum ac-
cording to a perceptual scale such as Bark or ERB6 (Sethares & Staley, 2001;
Jehan, 2004; Uhle et al., 2004).

Other methods, focusing more specifically on modern popular music, consider
that phenomenal accents are located at time instants where the upper part
of the spectrum is more energetic, thus they only compute a high-frequency-
content profile Dannenberg (2005).

6ERB stands for Equivalent Rectangular Bandwidth.
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A rather different approach obtains the musical stress profile by measuring
the acoustic self-similarity of the audio signal as a function of time-lag (Foote,
2000). In this case the STFT is used to obtain a sequence of feature vectors. This
information is then embedded into a 2-dimensional representation by finding
a similarity measure computed over all possible combinations of the feature
vectors (Foote & Uchihashi, 2001).

? Other filter banks. The working principle is exactly the same to that used
by the STFT methods, i.e., to decompose the audio signal in frequency bands
and then compute the derivative of the energy envelope, thus obtaining a mu-
sical stress profile for each subband signal. In general, for this kind of ap-
proach the subbands are logarithmically distributed in frequency (Scheirer,
1998; Paulus & Klapuri, 2002; Seppänen, 2001b; Uhle & Herre, 2003). The use
of a uniform frequency decomposition has also been proposed by Alonso et al.
(2003a).

Tzanetakis & Cook (2002) have proposed an equivalent approach, but using
the discrete wavelet transform as a constant–Q (center frequency/bandwidth)
filter bank with octave spacing between the centers of the filters.

Hainsworth & Macleod (2003a) have developed a hybrid accent detector. It
uses a filter bank for detecting transient events with strong energy changes
associated. Just like the afore mention models, it is obtained by computing
the energy envelope in three bands containing low, middle-high and high fre-
quencies respectively. Another part of the system aims at detecting harmonic
transitions not related to large energy changes. This is done by computing
the STFT and then measuring the cosine distance between two consecutive
frames.

Wang & Vilermo (2001) propose an algorithm for music with a very regular
rhythmic structure (pop, techno). This model has a distinctive characteristic
that makes it slightly unusual from the rest of signal processing approaches
because it processes encoded audio bit-streams in MP3 format directly in the
compressed domain. This beat detector employs directly the window-type7

data and the decoded MDCT coefficients to detect onsets.

– Low-level descriptors. Undoubtedly, the concept of phenomenal accents or onsets
as temporal events in an audio stream has a great relevance in rhythm analysis.
If we were asked to find a common property that encompasses the totality of the
front-ends previously discussed, perhaps the best answer will be that (practically)
all of them search for onset clues using methods solely based on one kind of descrip-
tor: energy variations in one or several frequency bands. This heuristic approach
has proved to be highly successful since phenomenal accents produce variations in
the loudness, pitch or timbre, which consequently yield to energy variations in the
audio signal.

In the quest for improving rhythm analysis, recent research has explored additional
alternatives by searching low-level acoustic descriptors that are adequate for iden-
tifying musical beats from a computational perspective. In fact, extracting descrip-
tors from audio recordings to characterize aspects of the audio content is by no

7The MP3 format employs four different window types: long, long-to-short, short and short-to-long. This
window size parameter is introduced to better cope with transient signals.
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means a new area of research. Much effort has been spent on descriptors extraction
in areas like speech processing and more recently on audio signal analysis. It is out
of the scope of this document to give an overview of the audio descriptors currently
employed, but a well-grounded introduction of their use for characterizing music
can be found in (Widmer et al., 2005).

To our knowledge, the research carried out by Seppänen (2001a) is the first en-
deavor to explore the use of diverse low-level audio descriptors for analyzing the
rhythmic content of music signals. This model does not use this information to
segment the audio stream or to find onsets, but as a beat recognition device meant
to model phenomenal accentuation capable of differentiating strong from weak ac-
cents in the music.

Research on the exploration and assessment of low-level audio descriptors for met-
rical analysis has been carried out by various groups (Jensen & Andersen, 2003;
Sethares et al., 2005; Gouyon, 2005). The perspective of these methods is different
from the approach taken by Seppänen (2001a), who views the classification pro-
cess as an actual method for finding beats. These methods aim at determining the
low-level descriptors (of audio signals) that best convey the rhythmic information
in music. More precisely, to select among several low-level features computed at
a regular sampling rate, those whose temporal behavior would best indicate the
presence and localization of beats.

One of the most exhaustive studies in this domain has been carried out by Gouyon
(2005), he evaluates the effectiveness of 274 singleton descriptors using a machine
learning methodology. After evaluating the quality of these descriptors, he pro-
poses a subset of 59 elements yielding good accuracy figures in the context of
rhythm analysis (see Gouyon, 2005, page 102).

Two final observations can be made concerning these methodologies of musical stress
estimation. From one part, many different frequency decompositions have been used,
yielding comparable results. However, there is a tendency towards using frequency de-
compositions related to human perception, e.g., using subbands distributed in a logarith-
mic, ERB or Bark-scale fashion.

The other important aspect is that some of these approaches carry out an explicit phe-
nomenal accent detection, producing as output a discrete musical stress profile. More
exactly, a precise list containing the time location and musical salience for each of the po-
tential onsets (Dixon, 2001; Seppänen, 2001b; Gouyon et al., 2002). On the other side, the
counter part of the discrete onset detection approaches are the so-called Detection Func-
tion models. These approaches does not aim at precisely extracting onset positions, but
rather at obtaining a smooth or continuous musical stress profile usually known as the
”detection function”. This signal indicates the possibility of finding an onset as a func-
tion of time. In addition, this profile is usually built from the subbands time waveform
envelope (Scheirer, 1998; Laroche, 2001; Klapuri, 2003).
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2.3.2.2 Pulse induction block

After obtaining the musical stress profile, the next stage consists in estimating its period-
icity. Various different methods have been proposed.

– Multiple-agent models. This approach is similar to that used in the symbolic au-
dio models, a number of distinct and independent hypothesis (called agents) about
pulse-periods and phases are made. Then a dynamic score is iteratively computed
through time for each of these agents. The beat is obtained from the agent having
the highest score. This kind of approach uses as input a discrete musical stress pro-
file. The research carried out by Goto (2001) is one of the best known multiple-agent
algorithms which process audio recordings. Dixon (2001) proposes another method
also based on the same principle.

– Histogramming models. Rhythm analysis models based on the computation of an
inter-onset interval (IOI) histogram have been proposed. The principle is to cluster
similar IOIs into a histogram-alike ”class” representation, where each IOI belongs
to one class. The beat-period is obtained by selecting the class with the highest num-
ber of elements (Seppänen, 2001b; Gouyon et al., 2002; Jensen & Andersen, 2003).

– Correlative models. The autocorrelation (AC) is an ubiquitous method for finding
periodicities in data which has been used in many fields. Hence, several rhythm
analysis approaches are based on this method (Foote & Uchihashi, 2001; Uhle et al.,
2004; Tzanetakis & Cook, 2002; Davies & Plumbley, 2005).

Peeters (2005) uses an interesting method for estimating the periodicity jointly in
frequency and time domains by combining the magnitude of the Discrete Fourier
Transform (DFT) with a frequency-mapped autocorrelation function (ACF), i.e., the
absolute value of the DFT is weighted by the frequency-mapped autocorrelation8.
The goal of this operation is to reduce the inherent tempo-octave ambiguity by
allowing peaks present in both domains to be reinforced and by undermining peaks
being present in only one domain.

Paulus & Klapuri (2002) propose a beat analysis method built around an autocor-
relation-like function called YIN, which includes a number of modifications to pre-
vent errors. This technique was originally developed by Cheveigné & Kawahara
(2002) as a fundamental frequency estimation algorithm for speech signals.

Eck & Casagrande (2005) present a system that analyzes the meter of audio signals
based on a characteristic usage of the AC. This approach computes the distribution
of the AC energy in the phase space, yielding to the so-called autocorrelation phase
matrix9. According to its authors, this method significantly improves the perfor-
mance of the standard autocorrelation by taking advantage of how energy is stored
and distributed at different lags in the autocorrelation matrix.

Laroche (2003) has developed a system to determine the beat period and position at
a given time. The solution is obtained by computing the cross-correlation between a

8In order to keep an acceptable resolution during the mapping operation, the ACF is resampled at a
considerably higher rate.

9According to Eck & Casagrande (2005), the autocorrelation phase matrix is a data structure designed to
overcome some limitations of the traditional AC. It stores phase and period information in the same data
structure. In addition, it also adds statistical measures of spread (like variance or entropy) to the information
stored for each lag.
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set of ”expected” musical stress profiles (i.e., pulse-train like signals) and the actual
stress profile obtained from the audio signal.

A common characteristic of the correlative methods cited above is that all of them
use as input a continuous musical stress profile.

– Oscillator models. Another popular method for finding the most likely pulsation
periodicity consists in using an oscillator network, or also known as an oscillator
bank. Multiple copies of a basic oscillator are used to account for different period
hypothesis. Then, the set of oscillators is excited by a continuous musical stress
signal and the filter which corresponds best to the frequency of the data receives
the highest excitation. Pulse location can be calculated by examining the phase of
the oscillator with the highest energy. This particular method is also suited for a
continuous tracking of the pulsation Scheirer (1998); Klapuri (2003); Jehan (2004);
Klapuri et al. (2006).

– Probabilistic models. The strategy used in the probabilistic approaches bears a
high resemblance with the motivation used by multiple agents methods, but in
the earlier case the reasoning employed is purely stochastic. Probabilistic mod-
els suppose that phenomenal accents have a stochastic nature and that there ex-
ists an underlying random model that rules the rhythmic process whose control
parameters must be estimated. A number of techniques have been proposed to
estimate these parameters. For example, the maximum likelihood of set of vari-
ables which best fit the audio data (Laroche, 2001) or particle filtering algorithms
(Hainsworth & Macleod, 2003b; Sethares et al., 2005).

– Other models. This kind of models cannot be characterized with a common prop-
erty, since we consider that they only apply a signal processing technique to the
problem of estimating the pulsation period.

Sethares & Staley (2001) have developed a particular pulse period induction method
using the so-called periodicity transforms (Sethares & Staley, 1999). In this case, a
continuous musical stress profile is decomposed into a sum of periodic sequences
by projecting it onto a set of periodic subspaces. The algorithm finds its own set of
non-orthogonal basis elements based on the data, rather than assuming a fixed pre-
determined basis as in the Fourier-like transforms. This approach is able to discern
the pulsation at several layers of the rhythmic structure, even measures and musical
phrases. A drawback of this method consists in its sensitivity to the sampling rate
of the stress profile, since it is primarily designed to search for integer periodicities
and it is not always possible to assure that the period will be an integer number of
samples.

Alonso et al. (2003b, 2004, 2005b) have proposed two frequency domain techniques
to carry out periodicity analysis: the spectral sum and the spectral product. These
methods were originally developed for estimating the pitch period of voiced speech
sounds. They will be explained in detail later in §4.1.1.

In the method developed by Dannenberg (2005), pulse induction is based on a pre-
defined pattern matching which models the alternating strong and weak beats in
the stress profile with a fixed period. To perform beat induction, the pattern is
stretched in small increments inside a beat period range and time-shifted. For a
given pulsation period and time-shift amount, the ”goodness of fit” is computed.
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The tempo and shift values are further refined using a gradient descent algorithm
to find the best local fit to the stress profile function.

2.3.2.3 Pulse tracking

The pulse tracking module is the last stage of the simplified rhythm analysis model that
we use to provide an overview of the field. There are two different methodologies used
in the pulse tracking stage.

Gouyon & Dixon (2005) call the first of them ”tracking as repeated induction”. As in-
dicated by the name, this methodology consists in iteratively repeating the pulse induc-
tion. More exactly, the periodicity is induced in a short analysis window of the musical
stress profile (usually of a few seconds), then the window is time-shifted to include new
data (generally by a fraction of the window length) and then the induction process is re-
peated again. In this case, observations to the tracking process are no longer stress profile
segments, but the period value (and in some implementations also the pulse phase loca-
tion). Thus, the pulse evolution is obtained by directly linking the periodicity and phase
observations at each iteration (Sethares & Staley, 2001; Foote & Uchihashi, 2001; Dixon,
2001; Alonso et al., 2004). A drawback of the tracking approach described above is the
potential lack of continuity between successive observations.

In the second, pulse tracking methodology is also based on a repeated induction pro-
cess, but this time each pulse induction iteration produces a set of potential periods (and
in some implementations also a set of potential pulse phases). Therefore, finding the
”optimal” pulse period curve and pulse locations reduces to computing the best path
that connects all the successive hypothesis. If the pulse tracking problem is developed in
a deterministic framework, the solution can be found using techniques such as dynamic
programming (Laroche, 2003; Alonso et al., 2005b). If the problem is developed in a prob-
abilistic framework, the Viterbi algorithm (Klapuri, 2004; Peeters, 2005; Klapuri et al.,
2006) or particle filtering techniques (Hainsworth & Macleod, 2003a; Sethares et al., 2005)
can be used.

2.3.3 Comparison Table

In order to provide a quick panorama of the current metrical analysis field for acoustic
signals, we have put together a number of systems. Table 2.1 lists these techniques in
chronological order as well as a number of important attributes and characteristics that
they have. This compilation is by no way an exhaustive catalog of the currently available
methods, but a record of those algorithms that we have found in the literature during the
last years.
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Table 2.1: Comparison and characteristics of various metrical analysis
systems.

Method Metrical levels Approach Musical stress Public Source code Evaluation
profile evaluation available material

1 Goto & Muraoka (1994) measure, half-note multiple agents discrete 85 pop-music
Goto (2001) and quarter-note pieces

2 Scheirer (1998, 2000) tactus network of continuous X X 60 pieces with
oscillator filters ”strong beat”

3 Laroche (2001) tactus, probabilistic discrete not
swing (GMM) available

4 Dixon (2001) tactus multiple agents, discrete X X 10 pieces
rule-based with ”strong beat”

5 Mayor (2001) tactus multiple agents, discrete not
heuristic available

6 Seppänen (2001b) tatum, IOI discrete X 50 pieces
tactus histogram various genres

7 Wang & Vilermo (2001) tactus IOI discrete 6 pop-music
histogram pieces

8 Foote & Uchihashi (2001) tactus correlative continuous 8 pieces
various genres

9 Sethares & Staley (2001) meter10 periodicity continuous X partially a few
transform pieces

10 Seppänen (2001a) meter probabilistic low-level 330 pieces
(GMM, LDA) descriptors various genres

11 Gouyon et al. (2002) tatum IOI discrete 57 short
histogram, TWM drum sequences

12 Tzanetakis & Cook (2002) tactus ACF continuous X X not
available

13 Paulus & Klapuri (2002) meter correlative continuous 365 pieces
various genres

14 Dixon et al. (2003) meter and ACF continuous X 170 pieces of
style dance music

Continues on the next page...

10tatum, tactus and measure (bar).
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Table 2.1: Comparison and characteristics of various metrical analysis
systems (second part).

Method Metrical levels Approach detection Public Source code Evaluation
function evaluation available material

15 Laroche (2003) tactus correlative continuous a few pieces of
various genres

16 Jensen & Andersen (2003) tactus IOI discrete X 2164 pieces of
histogram popular music

17 Hainsworth & Macleod (2003a) tactus probabilistic discrete 175 pieces
(particle filters) various genres

18 Klapuri (2004); Klapuri et al. (2006) meter oscillator filters continuous X 474 pieces
various genres

19 Uhle et al. (2004) meter ACF, continuous X 445 pieces
TWM various genres

20 Davies & Plumbley (2004) tactus ACF, continuous X 222 pieces
oscillators various genres

21 Jehan (2004, 2005b) tactus oscillator filters continuous X not
available

22 Chua & Lu (2004, 2005) perceptual ACF continuous 50 pieces
tactus various genres

23 Peeters (2005) tactus & meter/beat ACF, continuous X 1038 pieces
subdivision DFT various genres

24 Collins (2005b) tactus correlative continuous X 1 drum kit
sequence

25 Eck & Casagrande (2005) tactus correlative continuous X 1163 pieces
various genres

26 Sethares et al. (2005) tactus probabilistic low-level 9 pieces
(particle filters) descriptors various genres

27 Gouyon (2005) tactus and DFT, ACF, low-level X 3223
style oscillator filters descriptors various genres

28 Dannenberg (2005) tactus pattern-matching, continuous 16 pop-music
gradient-descent pieces

29 Alonso et al. (2003b, 2004, 2005b) tactus spectral sum, spectral continuous X partially 961 pieces
product, ACF various genres
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2.4 Evaluation

As presented above, many researchers in the computer music community have devoted
a large effort to developing algorithms capable of analyzing automatically the rhythm
of audio recordings. Whatever the goals and assumptions of a given analysis method,
an important and rather obvious question to ask is: “how good is it?”. There exists no
simple answer and in fact, this question has been per se subject of a number of publi-
cations or a constitutive element in others, for instance (Temperley, 2004; Cemgil et al.,
2001; Goto & Muraoka, 1997a).

Temperley (2004) states that a successful evaluation system for metrical models must
fulfill four basic requirements:

1. an agreement upon the way of representing the information to be retrieved,

2. a suitably large and representative corpus of data,

3. a correct analysis (i.e., annotation) of the corpus representing the information to
be retrieved, this process is better known as computing the ground-truth of the test
database or also as database annotation; and

4. an agreement upon the way of comparing a model’s analyses of the corpus to the
correct analyses and scoring the model on its success at matching the correct anal-
yses.

Until recently there was no consensus on these requirements and most of the work to
evaluate the algorithms described in §2.3.2 have been isolated efforts. As a result, in many
cases such methods cannot be objectively compared for a number of reasons. For exam-
ple, Temperley (2004) proposes a comprehensive framework for testing and comparing
metrical models who addresses some inefficiencies of the earlier frameworks proposed
by Goto & Muraoka (1997a) and Cemgil et al. (2001), but it has the major disadvantage
of being limited to symbolic audio input.

The proposal by Goto & Muraoka (1997a) targets audio recordings, but requires that
the input signal to be supplemented with markers, added by hand11, indicating the ex-
act location of every beat. Unfortunately, these stipulations are totally impractical from
the point of view of manual annotation if we consider using a test database containing
several hundreds (not to say thousands) of musical pieces in order to obtain performance
figures with a high degree of confidence. In reality, due to the arduousness and the in-
trinsic time-consumption of the task, almost all researchers have to content with a much
simpler way of annotating the test data.

The ubiquitous fashion of annotating the test corpus only considers one single rhyth-
mic level (the tactus) and consists in listening to each musical excerpt while tapping
along the corresponding rhythm (see for example Alonso et al. (2003b)). Simultaneously,
the tapping signal is recorded with the help of a microphone, then the average of the
inter-beat intervals is calculated and used as the ground-truth tempo value. Some re-
searchers (McKinney & Moelants, 2004; Klapuri et al., 2006) also set up a recording in-
stallation where the annotator’s tapping signal is in perfect synchrony with the musical
signal, providing also a ground-truth for the beat locations.

11To label the exact beat-positions, Goto & Muraoka (1997a) developed an editor program that enables
the annotator to mark beat positions in the digitized signals while listening to the corresponding audio and
visually inspecting its spectrogram and waveform.
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In addition to the ground-truth requirement (the third from the list presented above),
it is well known that human manners of tapping along with the music contain a strong
subjective and cognitive component12. It is, thus, reasonable to deduce that the result
produced by a given analysis method must be defined as ”correct” if it is in accordance
with the rhythm that would be inferred by a (suitable) human listener. A closely re-
lated issue is that the rhythm found by human listeners might not be unique, that is,
there might be individual differences among listeners. This topic has been studied and
documented in the literature by various researchers: McKinney & Moelants (2004), Todd
(1999), van Noorden & Moelants (1999) and others. According to McKinney & Moelants
(2004), the notated tempo is that which can be obtained from the music score. Then,
it is straightforward to attach this value to a musical excerpt. For those instances that
do not have an ”official” tempo annotation available, it is also possible to annotate the
”perceived” tempo. This is not a straightforward task and needs to be done carefully. If
someone asks a group of listeners (including musicians and non-musicians) to annotate
the tempo of musical excerpts, they can provide different answers (they tap at different
metrical levels) if they are unfamiliar with the piece. For some excerpts the perceived
pulse or tempo is less ambiguous and everyone taps at the same metrical level, but for
other excerpts the tempo can be quite ambiguous and a complete split across listeners
can be obtained (McKinney & Moelants, 2004).

Also of considerable importance in the evaluation procedure is the fact that in general,
researchers private test databases (consisting of at most a few hundreds of excerpts usu-
ally with a duration of less than a minute) are extracted from commercial audio record-
ings, which are copyrighted material. This is a legal barrier that prevents researchers
from sharing their test corpora, which also complicates quantitative comparisons be-
tween systems.

The first step towards establishing a methodology of evaluation and comparison for
tempo induction algorithms, along with several other music information retrieval (MIR)
tasks, was taken in 2004 by the steering committee of the International Conference on
Music Information Retrieval (ISMIR). See Appendix A for details about this international
evaluation.

2.5 Test corpus description

The aim of this section is to give a thorough description of the two test databases which
will provide us the ground-truth information. These corpora will be extensively used to
examine the performance of the algorithms presented in subsequent chapters.

2.5.1 Database for tempo analysis

One of the first tasks accomplished in this work was the collection of a database of musi-
cal excerpts. This corpus was extracted from commercial audio CDs. From each record-
ing a characteristic excerpt was selected, which was then converted to a monophonic sig-
nal sampled at a rate of 16 kHz with 16 bit resolution. The corpus contains 961 excerpts
with a global length of 18759 seconds (5 hours 12 minutes and 39 seconds) of music in

12For example, Drake et al. (2000) suggest that musicians have the greatest range of available metrical
layers and that they prefer to tap at slower levels than nonmusicians.
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Figure 2.3: Test database information. On top the genre distribution and in the bottom
the tempi distribution.

total. The minimum excerpt length is 10 seconds, the maximum length is 30 seconds, and
the mean length is 19.52 seconds.

This database was formed after merging a database gathered at ENST (52% of the cor-
pus) and a free database (remaining 48% of the corpus) provided by the Music Technol-
ogy Group (MTG) at Pompeu Fabra University13 (Barcelona, Spain). The audio record-
ings were selected to cover many kinds of instruments, dynamic ranges and a large tempi
region: from 36 to 240 BPM. The music included is: with and without percussions, with
and without vocals, and with live and studio recordings. In addition, the corpus repre-
sents eleven different musical genres: classical, jazz, latin, pop, rock, reggae, soul, hip-
hop (& rap), techno, other (film sound tracks, folk) and traditional greek music. The
genre categories and selection were made according to those of Amazon.com. Figure 2.3
summarizes the musical genres and tempi distribution of the test corpus.

The reader might wonder: why the signals are not sampled at 44.1 kHz? We con-
sider that for a large part of cases, the audio signal bandwidth required for an adequate
phenomenal accent detection lies in the low and middle frequency ranges, i.e., below
8 kHz. Undoubtedly, the use of upper frequencies during the accent estimation is desir-
able, however their inclusion in the analysis entails a higher computational complexity.
In this trade-off involving estimation accuracy vs. algorithm complexity, we opted for the
latter and we use signal sampled at 16 kHz.

All of the corpus instances have a clear and stable rhythm. For the fraction of the
test corpus collected at the ENST, each excerpt was meticulously manually annotated by
three skilled musicians. Separately, each annotator tapped along with the music while
the tapping signal was being recorded. The ground-truth tempo was computed in a two

13This database was also used during the first “tempo extraction contest” (Gouyon et al., 2006). It can be
obtained at: http://www.iua.upf.es/mtg/ismir2004/contest/tempoContest/node3.html.

http://www.iua.upf.es/mtg/ismir2004/contest/tempoContest/node3.html


52 2. A SURVEY ON COMPUTATIONAL RHYTHM DESCRIPTION

0

50

100

 classical

electro
nic

  hip−hop 

jazz/blues

 ro
ck/pop 

 soul/fu
nk

   o
ther  

N
um

be
r 

of
 e

xc
er

pt
s

Test database genre distribution

50 70 90 110 130 150 170 190 210 230 250
0

10

20

30

40

N
um

be
r 

of
 e

xc
er

pt
s

Tempo (BPM)

Test database tempi distribution

Figure 2.4: TUT test corpus information. On top the genre distribution and in the bottom
the tempi distribution.

step process. First, the median of the inter-beat intervals was calculated. Then, con-
cording annotations from different annotators were directly averaged, while annotations
disagreeing by a permissible integer multiple (as explained in §4.2.3) were normalized in
order to match with the majority before being averaged.

The song excerpts database provided by the MTG was annotated in a similar way. A
professional musician placed beat marks on the music instances excerpts and the ground-
truth was computed as the median of the inter-beat intervals (Gouyon et al., 2006).

2.5.2 TUT database

The second test corpus that we use was recently obtained by means of a database ex-
change with the Audio Research Group of the Tampere University of Technology (Tam-
pere, Finland). This database was created using a similar procedure as the one described
in §2.5.1. A more detailed description of this database is provided in (Klapuri, 2004;
Klapuri et al., 2006). Klapuri et al. (2006) points that this corpus was gathered for the
purpose of musical signal classification in general and the balance between genres is ac-
cording to an informal estimate of what people listen to.

This database contains 474 instances. Opposite to the test corpus mentioned above,
this one includes entire music songs and not excerpts. The total length is 126595 sec-
onds (35 hours 9 minutes and 55 seconds). The minimum instance length is 42 seconds,
the largest instance length is 829 seconds, and the mean instance length is 267 seconds.
The tempi range is from 41 to 216 BPM. Figure 2.4 shows genre statistics (taken from
(Klapuri et al., 2006)) tempi distribution of the TUT test database. Instances are format-
ted as monophonic signals sampled at a rate of 44.1 kHz and 16 bit resolution.

The corpus was provided with annotations at the tactus and tatum levels. Each in-
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stance was manually annotated for approximately one-minute, where the excerpt was
selected to represent each piece. Beat annotations were made by a musician who tapped
along with the pieces (Klapuri et al., 2006). The time position of the manual annotations
is also available, thus providing a ground-truth for the beat location.

2.6 Conclusions

In this chapter we have introduced the main goal of computer rhythm analysis as an at-
tempt to artificially replicate the process by which humans understand musical rhythm.
We have pointed out that the existing proposals to carry out automatic rhythm analysis
can be classified in several ways, but the most important characteristic concerns the na-
ture of the input signal. Under this distinction, we categorize such models as symbolic or
as acoustic, the latter are also known as signal processing models. We have also stressed
that during the present work we develop a framework which belongs to the second cat-
egory.

We have introduced the general principle of computational rhythm description as
composed of four stages:

– the degree of accentuation as a function of time has to be measured;

– the periods and phases of the underlying metrical levels have to be estimated;

– the system has to identify the metrical levels,

– the music events corresponding to each metrical level must be selected and located
in time.

We also conducted a literature survey about symbolic and acoustic models with a sig-
nificant emphasis to the latter. Table 2.1 provides a panorama of various recent proposals
on acoustic methods and it also highlights their most important characteristics.

In addition, we addressed the problem of evaluating rhythm analysis models. We
also highlighted the importance of the so-called ground-truth during this process, as an
assessment tool to verify their proper operation.

Finally, we described the composition of the ground-truth corpus that will be used
to evaluate the performance of the framework that will be presented in the following
chapters.
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Chapter 3

Estimating the degree of musical
accentuation

In the previous chapter we presented a general perspective of the automatic metrical
analysis field and we briefly outlined the main tasks involved. We also pointed out that
every system processing music recordings has a front-end that estimates the degree of
musical accentuation, i.e., a system whose input consists solely on the digitized wave-
form of an audio signal and its respective output is a profile formed of impulses repre-
senting the rhythmic activity. This output signal not only contains information about the
location of the note onsets but it also provides clues about their salience. In this chapter
we provide a detailed description of an original approach we have developed to accom-
plish this conversion task. According to the scheme presented in Figure 2.2, this chapter
only addresses the top block of the analysis.

Although intimately related with the next chapter, the method to estimate the degree
of musical accentuation presented here is independent of a full rhythm analysis system
(see Figure 3.1). In fact, it can be employed in any other application requiring a likelihood
profile of onset presence or information about the salience of the acoustic events embedded
in the audio signal.

3.1 Introduction

We have stated beforehand that the goal of this work is the design of mechanisms con-
tributing to the estimation and recognition of the rhythmic structure in musical signals at
two metric levels: the tatum and the tactus. For that purpose we found our research on
the somewhat abstract scheme laid down in Figure 2.2. To ground it we have developed
a block-wise framework, which is graphically illustrated in Figure 3.1. This diagram out-
lines the main stages involved in our approach. For the sake of clarity the whole system
has been divided into two parts. Only the stages truly processing audio signals and re-
quired during the estimation of musical accents (i.e., pre-processing, harmonic-plus-noise
decomposition and musical stress estimation) are described in this chapter. The literature
shows that there exist many ways of accomplishing these assignments, hence compar-
isons to state-of-the-art systems will be made and whenever possible a set of potential
solutions will be explored.

With the intention of building a system capable of dealing with a large music variety,
our approach avoids as far as possible the use of any high-level information about the
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Figure 3.1: Flow diagram of the rhythm analysis framework

input audio. Such as, for example, data concerning the number or kinds of intruments
playing in the recording being analysed.

The reader might notice that under certain configurations, the system shown in Fig-
ure 3.1 duplicates components. This redundancy was preferred over efficiency in order
to privilege a full modularity and independence between blocks and thus ease the explo-
ration of more possibilities1. In addition, we provide specific details about the causality
of every block and in some cases also about the computational requirements.

3.2 Pre-processing

The first stage of the system consists in a preliminary processing of the audio data to
prepare it for the harmonic-plus-noise (H+N) decomposition. There exists a ubiquitous
assumption that the average power spectral density (PSD) of most audio signals behaves
as a decreasing function of frequency. For example, Figure 3.2-a shows the average spec-
tral density computed using a 20 s audio recording. The decreasing trend in magnitude as
frequency increases is very noticeable. In order to ensure an appropriate harmonic-plus-
noise separation and a correct estimation of the music signal parameters, it is important
to assure that the noise-level power at low-frequencies does not exceed the signal level
at high-frequencies. It is then necessary to compensate this power slope in frequency
by whitening the music signal before continuing the analysis. To perform this task we
propose two different techniques as explained below.

3.2.1 Causal approach

The first technique refers to the case where causality constrains are imposed to the rhythm
analysis system. Under those requirements, a straightforward and computationally sim-
ple method yet producing acceptable results consists in filtering the input signal using
an equalization filter which tries to level the signal power in the passband. In practice a
simple preaccentuation filter can be used

H(z) = 1 − a1z
−1

where a1 is smaller than 1 but very close to it. Figure 3.2 presents an example for a1 = 0.97.
The top part shows (blue trace) the average spectrum of the input signal and the fre-

1As the mathematician Donald E. Knuth once stated: “Premature optimization is the root of all evil (or at
least most of it)”.
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Figure 3.2: Causal pre-processing example. (a) average spectrum of the input signal (blue
trace) and (b) detrended spectrum by filtering the audio signal with H(z).

quency response of H(z) (red trace). The bottom part shows the detrended average spec-
trum. We observe that an increase of about 20 dB was obtained in the upper part of the
spectrum.

3.2.2 Non-causal approach

The causal method described above is a partial solution to the problem since the decreas-
ing trend was reduced, but not entirely compensated. Much better results can be ob-
tained by lifting the causality constraint and by using an approach originally proposed
by Badeau (2005, page 153). This procedure is based on the assumption that the audio
signal can be modeled as an autoregressive (AR) process plus a sum of sinusoid compo-
nents.

3.2.2.1 Whitening of an AR process

Let us suppose that the audio signal x(n) is stationary and thus it can be modeled as an
AR process obtained after filtering a white noise signal (with variance σ2) using a filter
with transfer function 1

H(z) , where all the zeros of

H(z) = 1 + a1z
−1 + . . .+ apz

−p

are located inside the unit circle, thus x(n) is a centered stationary process. Linear predic-
tion is a widely used technique to compute the filter coefficients of H(z) and the variance
σ2 using an estimator of the autocorrelation function rx = E{x(u)∗x(n + u)} (Scharf,
1991; Hayes, 1996). Let g(n) be an analysis window of finite support N , and let us de-
fine an estimator of the autocorrelation function r̂x(n) = 1

N ([g̃ · x̃] ? [g · x]) (n), where
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x̃(n) = x(−n)∗ and g̃(n) = g(−n)∗ are the respective time-inverted and conjugated ver-
sions2. The estimator r̂x(n), of support 2N − 1, is defined as a convolution and thus can
be efficiently computed using the Fast Fourier Transform (FFT). In other words, let N ′ be
the next higher power of 2 bigger than 2N − 1. Then, the 2N − 1 non-zero samples of
Nr̂x(n) are extracted from the circular convolution between x′ and x̃′, where x′ of length
N ′ is the zero padded version of the (non-zero) windowed signal g(n)x(n) of length N
and x̃′(n) = x′(−n)∗. The circular convolution is obtained by computing the inverse FFT
of the square of the absolute value of the FFT of x′, |X(ei2πf )| where f ∈ 1

N ′ Z. Thus, r̂x(n)
is obtained by computing the inverse Fourier transform of the periodogram

R̂x(e
j2πf ) =

1

N
|X(ej2πf )|2. (3.1)

The estimation of the whitening filter can be summarized in five stages:

1. windowing of x(n) using the analysis window g(n),

2. forward Fourier transform (with the respective zero padding),

3. calculation of the periodogram defined in Eq. (3.1),

4. calculation of r̂x(n) using the inverse Fourier transform,

5. estimation of H(z) by linear prediction using r̂x(n) as observation (Scharf, 1991).

This method has two advantages:

� the estimator of 1
H(z) obtained by linear prediction is a stable3 filter (Scharf, 1991),

� there are no restrictions in the selection of the analysis window g(n).

3.2.2.2 Whitening of a signal carrying sinusoids

Now, let us suppose that the audio signal x(n) is formed of an AR process plus a sum

of sinusoids. The periodogram of R̂x(e
j2πf ) is altered by the presence of peaks, centered

around the frequencies of sinusoids, superimposed over the PSD of the AR process. It
is possible to eliminate those peaks by performing a smoothing operation of the peri-
odogram. A straightforward way to implement the periodogram smoothing is to use
an order filter4 (Bovik et al., 1983; Tagare & Figueiredo, 1985). In the frequency domain,
the shape of the peaks corresponds to the Fourier transform of the analysis window
1
N (g̃ ? g)(n). Thus, it is important to select g(n) having in mind the trade-off between
the main lobe width and the side lobe height.

In practice, we apply this whitening technique to long audio sequences. Since cal-
culating the periodogram for a signal of several tens of seconds might be computation-
ally expensive, to estimate the PSD we use the method proposed by Welch (1967) that

2In fact, r̂x(n) can be seen as the standard biased autocorrelation function with expected value
E{rx(n)} = 1

N
[g̃(n) ? g(n)] · rx(n), where g(n) is a rectangular window and 1

N
[g̃(n) ? g(n)] is a Bartlett

(or triangular) window.
3The estimator is also causal, although this property is not really necessary for our purposes since the

estimation of the periodogram requires full access to the whole signal beforehand. The stability property is
guaranteed by the biased estimator of r̂x(n) (Scharf, 1991).

4Also called “order statistic filter”. Bovik et al. (1983) present a description of order filters as a general-
ization of the median filter concept.
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Figure 3.3: Non-causal pre-processing example. (a) Average spectral density in blue trace,
order filter output (or smoothed periodogram) in black trace and AR model response in
red trace. (b) Whitened spectral density.

consists in segmenting the signal in a number of (overlapping) small excerpts, comput-
ing their respective periodograms and averaging them. This technique not only reduces
the number of operations and storage requirements but also computes an average PSD
estimation with smaller variance (Welch, 1967; Stoica & Moses, 1997). We carry out the
analysis over windows of sizeN = 16000 samples (1 second for Fs=16 kHz) with an over-
lapping of 4000 samples, g(n) is a Hann window. The periodograms are calculated using
N ′ = 214 = 16384 points. It is then smoothed using an order filter of length q = N ′

128 = 128
points covering approximately 125 Hz, which is significantly larger that the average si-
nusoidal peak-width. The point-wise values of the smoothed periodogram are obtained
by arranging the q samples inside the order filter in increasing order and then taking the
sample located at q3 (≈ 43 samples) of the order filter length. This value was found using
a heuristic approach. The autocorrelation estimator r̂x(n) is then obtained by computing
the inverse Fourier transform of the smoothed periodogram. Finally, the coefficients of
the whitening filter H(z) are obtained by linear prediction using a filter order p = 6.

Figure 3.3 presents an example for of this approach using the same audio signal of
Figure 3.2. The top part shows (blue trace) the input signal average spectral density,
superimposed the smoothed periodogram (order filter output in black trace) and the AR
model response (with red trace). The bottom part shows the detrended average spectral
density. We can note a significant increase of about 55 dB obtained in the upper part of
the spectrum and a much flatter frequency profile.
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3.3 Harmonic-plus-Noise decomposition

One of the novelties of our research relies on the idea of decomposing the audio signal
into two parts, one deterministic and the other stochastic; then we analyze each of them
separately and the results are finally fused. More specifically about the decomposition,
we model the audio signal x(n) as the linear sum of two elements. The first part, to
which we referred above as deterministic, is constituted solely of sinusoidal components
it will be hereinafter called harmonic and denoted as s(n)5. The second part, to which we
referred above as stochastic, is formed of all the elements in the audio signal that cannot
be modeled as sinusoidal and it will be subsequently called noise and denoted by w(n),
therefore, w(n) = x(n) − s(n).

To our knowledge, in the context of beat analysis there exists no previous approach
processing separately the harmonic and noise components6. For this reason, one of the
goals of our research is to explore the potential of this decomposition in the scope of
metrical analysis of music signals.

Our main motivation to decompose the music signal is the idea of emphasizing phe-
nomenal accents by separating them from the surrounding disturbing events, we explain
this idea using an example. When processing a piano signal (percussive or plucked string
sounds in general) the sinusoidal components could hamper the detection of the non-
stationary mechanical noise of the attack, in this case the sound of the hammer hitting
the cords. Conversely, when processing a violin signal (bowed strings or wind instru-
ment sounds in general) the non-stationary friction noise of the bow rubbing the cords
hampers the detection of the sinusoidal components.

In this section we explain two different harmonic plus noise (H+N) decomposition
procedures used throughout the present work. In the context of the rhythm analysis
framework mentioned in §3.1, both of these techniques refer to the second block of the
scheme presented in Figure 3.1. In addition, both procedures share the characteristic of
being causal. The first approach is based on the Exponentially Damped Sinusoidal (EDS)
model. The second one has not been previously published in detail, but the theoretical
principle used to perform the decomposition is more classical and is based on the Fourier
transform (FT). Henceforth, to differentiate these H+N decomposition techniques they
will be referred to as the ”EDS” and ”FT” respectively.

3.3.1 Exponentially Damped Sinusoidal model

The H+N model described in this part is based on a subspace analysis technique (some-
times referred to as high resolution methods) and it is founded on the Exponentially
Damped Sinusoidal (EDS) model (Badeau et al., 2002). If the reader is interested about
the potential of this technique, a comprehensive mathematical formulation on subspace
analysis models and their application to digital music processing is provided in (Badeau,
2005). The use of this method has given place to two articles in the ambit of rhythm
analysis (Alonso et al., 2003a, 2005b).

For the sake of clarity, the EDS model is described in three stages. First, the subspace
analysis problem is posed and solved for a small data excerpt (one frame). Then, it is

5No hypothesis is made on the relationship between the different frequencies present in the audio signal.
6Paulus & Klapuri (2002) have developed a system to measure the similarity of rhythmic patterns which

uses a harmonic-plus-noise decomposition to extract audio features. Contrary to our approach, theirs does
not use this information to carry out metrical analysis.
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generalized to the whole signal by introducing the concept of subspace tracking. Finally, it
is applied to the audio signal context.

3.3.1.1 Subspace filtering

The first of the separation techniques used in this work belongs to the so-called subspace
filtering methods (De Moor, 1993; Ephraim & Van Trees, 1995). This kind of approach has
the notable advantage that the estimation of the signal parameters is not required to per-
form the H+N decomposition. Although subspace filtering methods do not succeed to
completely separate the noise and the theoretical harmonic part, they have been success-
fully applied in speech processing as a denoising mechanism (Hermus & Wambacq, 2004;
Wang et al., 2004).

Let x(n), n ∈ Z, be the real signal7 under analysis. By definition, we suppose that it
can be written as the sum:

x(n) = s(n) + w(n), (3.2)

where

s(n) =

2M∑

i=1

αiz
n
i (3.3)

is referred to as the deterministic part of x, and where w(n) is a real valued wide-sense
stationary white gaussian noise8 (WGN) with zero-mean and variance σ2

w, and is denoted
as the noise part of x.

In Eq. (3.3), the αi are the complex amplitudes bearing magnitude and phase informa-
tion and the zi are the complex poles zi = edi+j2πfi where fi ∈ [−1

2 ,
1
2 [ are the frequencies

with fi 6= fk for all i 6= k and di ∈ R are the damping factors. It should be noticed that
since s is a real sequence, the zi’s and αi’s can be grouped in M pairs of conjugate values.

Let us define L-dimensional data vector

s(n) = [s(n− L+ 1), . . . , s(n)]T

where usually 2M � L. Subspace analysis techniques rely on the property that s(n)
belongs to the 2M -dimensional subspace spanned by the basis V, given by the Vander-
monde matrix

V =




1 1 · · · 1
z1 z2 · · · z2M
...

...
. . .

...

zL−1
1 zL−1

2 · · · zL−1
2M


 .

This subspace is the so-called signal subspace. As a consequence, V ⊥ span(W⊥)
where W denotes a L× 2M matrix spanning the signal subspace and W⊥ an N × (N −
2M) matrix spanning its orthogonal complement, referred to as the noise subspace . The
H+N decomposition is performed by projecting the signal x respectively onto the signal
subspace and the noise subspace.

7We take for granted that x(n) has already been preprocessed as explained in §3.2 and it is a zero-mean
signal.

8As a reminder: a zero-mean white gaussian noise w(n) with variance σ2
w is a sequence of independent

and identically distributed random variables with probability density function p(w) = 1

πσ2 e
−

w
2

σ
2 having a

constant PSD over the passband.
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Let the symmetric L× L real Hankel matrix Hs be the data matrix:

Hs =




s(0) s(1) · · · s(L− 1)
s(1) s(2) · · · s(L)

...
...

. . .
...

s(L− 1) s(L) · · · s(N − 1)


 , (3.4)

where N = 2L − 1, with 2M ≤ L. Since each column of Hs belongs to the same 2M -
dimensional subspace, the matrix is of rank 2M and thus is rank deficient. Its eigenvalue
decomposition (EVD) yields

Hs = UΛsU
H (3.5)

where U is an orthonormal matrix, Λs is the L × L diagonal matrix of the eigenvalues,
of which L− 2M are zero-valued. U

H denotes the Hermitian transpose of U. The 2M -
dimensional space spanned by the columns of U corresponding to the non-zero entries
of Λs is the signal subspace.

Because of the surrounding additive white noise Hx is full rank and the signal sub-
space, US , is formed by the 2M -dominant eigenvectors of Hx, i.e., the column of U asso-
ciated to the 2M eigenvalues having the highest magnitudes.

Using as observation the noisy sequence x(n), the underlying harmonic part can be
obtained by projecting x(n) onto its signal subspace as follows:

s = USU
H
S x (3.6)

where x(n) = [x(n − L + 1), . . . , x(n)]T is the input data vector. As mentioned above, a
remarkable property of subspace filtering methods is that for calculating the noise part
of the signal, the estimation and subtraction of the sinusoids is not required explicitely.
Thus, the noise part is obtained by projecting x(n) onto the noise subspace as follows:

w = x− s = (I − USU
H
S )x. (3.7)

In reality, the H+N model of Eq. (3.2) does not fully hold for a number of practical
order difficulties (e.g., s(n) is not formed of pure sinusoids, neither w(n) is a WGN). For
this reason the harmonic and noise parts obtained in Eqs. (3.6) and (3.7) respectively, are
only approximations. In fact s(n) can be seen as a least squares estimation, defined as the
best 2M -rank approximation to the data vector x(n). There exists the possibility to use
other subspace filtering methods such as singular values adaptation and minimal variance,
but in practice the procedure described above is the most straightforward to implement
yielding a good compromise between signal distorsion and noise level (Badeau, 2005,
page 158).

3.3.1.2 Subspace tracking

Since the harmonic plus noise decomposition of x(n) involves the calculation of one EVD
of the data matrix Hx at every time step, decomposing the whole signal would require
a too highly demanding computational burden. In order to reduce this cost, there exist
adaptive methods that avoid the computation of the EVD, a survey of such methods can
be found in (Badeau, 2005). For the present work, we use an iterative algorithm called
sequential iteration (Badeau et al., 2002), shown in Table 3.1. Assuming that it converges
faster than the variations of the signal subspace, the algorithm operation involves two
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Initialization: US =

[
I2M

0(N−2M)×2M

]

For each time step m iterate:
1- A(n) = Hx(n)US(n − 1) fast matrix product
2- A(n) = US(n)R(n) skinny QR factorization

Table 3.1: Sequential Iteration EVD algorithm.

auxiliary matrices at every time step A(n) and R(n), in addition of a skinny QR fac-
torization. The harmonic and noise parts of the whole signal x(n) can be computed by
means of an overlap-add method:

1. the analysis window is recursively time-shifted. In practice, we choose an overlap
of 3L/4,

2. the signal subspace US is tracked by means of the previously mentioned sequential
iteration algorithm presented in Table 3.1.

3. the harmonic, s, and noise, w, vectors are computed according to Eqs. (3.6) and
(3.7),

4. finally, consecutive harmonic and noise vectors are multiplied by a Hann window
and respectively added to the harmonic and noise parts of the signal.

The overall computational complexity of this decomposition method for each analysis
block is that of step 2, which is in fact the most computationally demanding task of the
whole metrical analysis system. Its complexity is O(LM(M + log(L)).

3.3.1.3 Implementation

As mentioned before, the theory of the subspace analysis model that we use relies on
the principle that w(n) is a WGN. In §3.2 we described two methods for whitening the
smoothed average periodogram of x(n), but it is still not sufficient, especially for the
causal approach. In practice, additional signal conditioning must be conducted to sat-
isfy the WGN property as much as possible. One simple way to flatten even more the
smoothed PSD is by splitting the audio signal in frequency bands, in this way the WGN
assumption becomes true inside each subband and the EDS model can be applied indi-
vidually to all bands. The frequency decomposition also assures that the average power
discrepancies in the subband boundaries are small. Moreover, when using a bandwise
processing approach there are less sinusoids per subband (compared to the full band
signal) which allows to significantly reduce the overall computational complexity, this
problem is revisited below.

In the metrical analysis community there exists an implicit consensus about decom-
posing the music signal in frequency bands. Some experiments carried out by Scheirer
(1998, page 591) show the importance of this operation, although he claims that there
exists no optimal frequency decomposition since many subband layouts lead to compa-
rable satisfactory results. On the other side, during his research Gouyon (2005, page 147)
argues “the superiority of the ERB9 frequency subband decomposition over others (pro-

9ERB (Equivalent Rectangular Bandwidth) is a critical band scale proposed by Moore (1995).
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posed in the literature) as the basis for the computation of effective energy feature sets”.
For this reason, we have decided to investigate ourselves the impact of the frequency
decomposition by comparing two different ways of breaking-down the signal’s spectral
content. The first one uses a uniform frequency decomposition and the second one is
based on a logarithmic decomposition.
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Figure 3.4: Uniform filter bank.

Uniform filter bank For the uniform frequency decomposition we use a maximally dec-
imated cosine modulated filter bank (Vaidyanathan, 1992, page 353) with P = 8 bands
and where the prototype filter is implemented as a 180th order FIR filter with at least 80
dB of rejection in the stop band. Using such a highly selective filter is important because
subspace filtering methods are sensitive to spurious sinusoids outside the passband. Fig-
ure 3.4 shows the uniform filter bank layout and Figure 3.5 shows an example of the
respective output corresponding to 1 s of a piano chord. We can see that the noise floor
is fairly stable with small oscillations around -30 dB. As mentioned above, an advantage
of using a uniform frequency decomposition is that further processing in the subbands is
the same for all channels.

Until now, we have introduced the EDS model assuming that we know the number
of sinusoidal components present in x(n), as shown by Eqs. (3.2) and 3.3. Unfortunately
in practice this assumption is far from true and in fact estimating the exact value of M
is indeed a difficult task which has attracted much attention in various research fields.
Badeau et al. (2006) review various solutions proposed in the literature and presents a
new and promising method. However, these procedures remain highly expensive in
computational terms.

To circumvent this problem, we adopted a more pragmatic solution for estimating
M . Let us call r the true number of sinusoidal components in the harmonic part of x(n).
Badeau (2005, page 55, theorem 4.2.2) formally shows that underestimating the model
order, that is choosing M < r, perturbs the position of the zi and in general does not
guarantee that the true pole values are found. On the contrary, if the model order is over-
estimated M > r, it can be shown (Badeau, 2005, page 54, proposition 4.2.1) that the r
correct pole values are contained among the M poles found. Even if the overestimation
has the unwanted side effect of producing a higher computational cost, it remains per-
fectly tractable in the practical case. However, this choice leads to a dilemma: what is the
smallest M that we can choose in order to overestimate the number of sinusoids and at the same
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Figure 3.5: Uniform filter bank output corresponding to the first four bands of a piano
chord. From top to bottom, as frequency increases, we can see that the noise floor is fairly
stable with small oscillations around -30 dB.

time keep the computational burden as low as possible? There is not a unique answer, since it
totally depends on the nature of the audio input.

Our goal is to remain as general as possible concerning the audio source. We opted for
a heuristic solution to the problem of evaluating the number of sinusoids: we estimated
the average number of components present in another data corpus. This operation was
carried out on the ”RWC music database: music genre” gathered by Goto et al. (2003). We
consider that this set is well balanced, it contains 100 instances from ten different musical
genres. The operation was conducted as follows: every signal in the set is pre-processed,
then its respective PSD was computed every 30 ms, thresholded using an order filter10,
next all maxima were located and those having a bandwidth larger than 33 Hz (and not
having other larger peaks in the vicinity) were selected11 as sinusoids. Figure 3.6 shows
an example, in blue trace the PSD corresponding to one frame of a violin signal, in red
trace the threshold and in black circles the maxima selected as sinusoids. After repeating
this procedure for whole database and counting the number of sinusoids, we obtained the
results presented in Table 3.2. This table presents the number of components rounded to
the closest integer, the second row indicates the average maximum number of sinusoids
and the third row the average mean number of sinusoids.

The value of M in every subband was fixed to that shown in the second row of table
3.2. We opted for the average maximum since this value provides a higher degree of con-
fidence that the noise part will not contain sinusoidal components. One of the advantages
of using a uniform frequency decomposition is that further processing in the subbands is

10This order filter is very similar to that described before, but it was tuned to keep the spectral peaks and
to trim off the rest.

11To compute the PSD we use a Hann window whose side-lobes have a bandwidth of 33 Hz, thus we
consider that a true sinusoid should have a larger bandwidth.
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Range 0 to 1000 to 2000 to 3000 to 4000 to 5000 to 6000 to 7000 to
(Hz) 1000 2000 3000 4000 5000 6000 7000 8000
max.

sinusoids 14 13 11 11 8 9 9 8

mean
sinusoids 6 6 6 6 6 6 5 5

Table 3.2: Average number of sinusoids per band. These values have been rounded to
the closest integer.
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Figure 3.6: In blue trace the PSD of a violin signal, in red trace the dynamic threshold and
in black circles the maxima selected as sinusoids.

the same for all channels.

The output of the H+N decomposition stage consists of two signals per subband:
sp(n) carrying the harmonic and wp(n) the noise part of xp(n) respectively, where p ∈
[1 P ] indicates the band number. Figure 3.7 shows an illustrative example: (a) presents
the spectrogram for x1(n) corresponding to a piano signal, only the first subband (0 Hz
to 1 kHz) is considered, where it is possible to see the appearance of 12 onsets. (b) shows
the harmonic part s1(n), there is no much visual difference between this image and the
previous one. On the contrary, (c) depicts the noise part w1(n) where all sinusoids have
disappeared, but the twelve onset attacks can be seen as vertical stripes located at the
same place where notes begin in the two earlier images.

Logarithmic filter bank This filter is built in two steps. First, a P = 16-band uniform
filter bank is designed using the same cosine modulated technique (Vaidyanathan, 1992,
page 353). In this case the prototype filter is a 270th order FIR filter with at least 80 dB of
rejection in the stopband12. Then, the filter outputs are merged as explained in Table 3.3
to produce a filter bank with P ′ = 5 subbands, as illustrated in Figure 3.8-(a).

Figure 3.8-(b–e) shows an example of the filter bank output corresponding to the same
piano signal used in the example of Figure 3.5. As in the uniform filter bank case, we can
see that the noise floor is fairly stable with small oscillations around -30 dB.

A logarithmic filter bank has the disadvantage that the analysis window length of the
EDS model depends on the subband under analysis. The values of L, derived from the

12Compared to the 8-band uniform filter bank, since the passband of this filter is narrowed, the filter order
must increase to keep constant the rejection ratio.
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Figure 3.7: EDS model output, the input corresponds to a piano signal. Only the first
frequency band (0 Hz to 1 kHz) is presented. (a) spectrogram of the original signal, (b)
spectrogram of the harmonic part and (c) spectrogram of the noise part.

Subband number 1 2 3 4 5
Merged bands 1 2 3–4 5–8 9–16

Range (Hz) 0–500 500–1000 1000–2000 2000–4000 4000–8000
decimation factor 16 16 8 4 2

Table 3.3: Logarithmic filter bank structure.
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Figure 3.8: Logarithmic filter bank.

Subband number 1 2 3 4 5
Range (Hz) 0–500 500–1000 1000–2000 2000–4000 4000–8000
L (samples) 32 32 64 128 256
M (sinusoids) 7 7 13 22 34

Table 3.4: EDS parameters for the logarithmic filter bank.

uniform filter bank case, are presented in Table 3.4. In addition, this table also indicates
the number of sinusoids (M ) extracted in each subband, the values were obtained from
those of Table 3.2.

In a similar way to the uniform filter bank, the output of the decomposition stage
consists of two signals per subband: sp(n) carrying the harmonic and wp(n) the noise
part of xp(n) respectively, where p ∈ [1 P ′] indicates the band number. Figure 3.9 shows
an example with the same piano signal that we used before, but a different subband:
(a) presents the spectrogram for x4(n) (the same piano signal), only the fourth subband
(2 kHz to 4 kHz) is considered. Once again, it is possible to see the appearance of 12
onsets. (b) shows the harmonic part s4(n), with a high visual resemblance to the original
signal image shown above. (c) depicts the noise part w4(n), we can appreciate how the
note attacks have been emphasized by isolating them from the sinusoidal part.
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Figure 3.9: EDS model logarithmic filter bank output, the input corresponds to the same
piano signal used in the uniform bank case. Only the fourth frequency band (2 kHz
to 4 kHz) is presented. (a) spectrogram of the original signal, (b) spectrogram of the
harmonic part and (c) spectrogram of the noise part. In this particular case, the decom-
position presented in this figure using the logarithmic bank seems to work better than
that using the uniform filter bank (in Figure 3.7). However, no concluding remarks can
be made based solely on this example. The filter bank comparison will be addressed in
the forthcoming chapters.

3.3.2 Decomposition based on the Fourier transform

The second H+N model used in this work is based on the phase vocoder principle which
allows modifications to the amplitudes or phases of specific sinusoidal components of
the audio signal in the frequency domain. Then, this modified representation is resyn-
thesized into the time domain. This technique is also known as FFT filtering, since at the
heart of the phase vocoder lies the Short Time Fourier Transform (STFT).

The theoretical principle of this decomposition model bears some resemblance to
those developed by McAuley & Quatieri (1986) or Serra (1989); Serra & Smith (1990), ex-
cept that we do not carry out the trajectory matching in the frequency domain. In addi-
tion, this technique has a lower computational burden compared to the subspace analysis
approach.

This method analyzes the input signal in a frame-wise fashion as follows. For every
analysis window (frame), the salient peaks in the magnitude spectrum are considered
as sinusoids and selected, and the rest of the spectrum is discarded. A frame of the
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Figure 3.10: Scheme of analysis/synthesis based on the STFT.

harmonic part, given by the modified spectrum, is synthesized and subtracted from the
input-signal window. This subtraction produces a frame of the noise part. The analysis
window is shifted in time and the whole process is iterated. The details of this mechanism
are described below.

3.3.2.1 Short-time Fourier transform analysis/synthesis

The short-time Fourier transform (STFT) consists in computing the DFT over a set of
regularly-spaced windowed signal segments (called signal frames) which are obtained
by weighting the input signal with a window of length N and then shifting the window
M samples. For each frame the FFT is computed, providing frequency representation of
the signal between two consecutive time instants. To synthesize a signal from its STFT,
the inverse FFT (iFFT) of every frame is computed. Then the reconstructed signal is ob-
tained using a technique called OverLap-Add (OLA) where every frame is weighted by a
synthesis window, which is then added to the overlapping portion of the previous-frame.
Perhaps the most important characteristic of the signal description provided by the STFT
is its capability to allow signal modifications between the forward and the inverse Fourier
transform. We exploit this attribute to separate the signal into harmonic and noise parts.
A descriptive image of the STFT analysis/synthesis principle can be seen in Figure 3.10.

Once again, we suppose that the audio signal has been pre-processed beforehand as
described in §3.2. We start by computing the analysis part of the STFT of x(n) defined as
follows13

X̃(m,k) =

N−1∑

n=−0

g(n)x(Mm+ n)e−
2π
N
kn (3.8)

where m ∈ Z is the time (frame) index, g(n) is a real window of finite length N which
determines the portion of x(n) that is under analysis at a particular time instant m, M is

13There exist two different conventions for describing the STFT, the so-called band-pass representation and
low-pass representation (Portnoff, 1980). In this work we use the band-pass representation.
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Figure 3.11: In blue trace the magnitude spectrum of piano signal frame. In red circles
the peaks considered as sinusoids.

defined as the hop-size or time-shift for the window and k = 0, . . . ,K−1 is the frequency
(bin) index.

As we can see, the STFT X̃(m,k) is a function of two variables, but for the mo-
ment we prefer to consider m as constant, that is, to see X̃ as the DFT of the finite
sequence g(n)x(Mm+ n). Our goal is to detect the sinusoidal part of this windowed
signal segment, and for this purpose we rely on the assumption that the maxima in the
magnitude spectrum represent sinusoids in the input signal. Now let us call ν`, where
0 < ` ≤ L � K, the set of frequencies (bins) corresponding to those maxima. In Figure
3.11 we present an example of this hypothesis. This figure shows in blue trace the magni-
tude spectrum of a pitched frame of a piano signal, in addition the peaks located at the νi
frequencies and considered as sinusoids are marked by red circles. In practice, a robust
peak-detection algorithm was implemented to assure that only those maxima having a
bandwidth larger than 33 Hz are selected.

Then, we define the frequency representation of the harmonic part as S̃, where

S̃(m,k) =

{
X̃(m,k) if k ∈ ν`

0 otherwise.
(3.9)

That is, a new signal is formed where only the frequencies corresponding to the selected
maxima (i.e., sinusoids) are kept and the rest of the components are set to zero. From this
modified signal we synthesize frame-by-frame the harmonic part s(n) as

s(n) =

∞∑

m=−∞

f(n−Mm)

(
1

K

K−1∑

k=0

S̃(m,k)e
2π
K
kn

)
. (3.10)

From this expression we see that the reconstructed signal is calculated by adding overlap-
ping frames obtained by inverse Fourier transform and weighted by a synthesis window
f(n). Then, the noise part w(n) is obtained directly by subtracting the harmonic part
from the input signal in a frame-by-frame basis

w(n) = x(n) −
∞∑

m=−∞

f(n+Mm)

(
1

K

K−1∑

k=0

S̃(m,k)e
2π
K
kn

)
. (3.11)
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Figure 3.12: Uniform filter bank output of the Fourier based H+N model. First frequency
band (0 Hz to 1 kHz) corresponding to a piano signal. Spectrograms of the (a) original
signal, (b) harmonic part, and (c) noise part.

We have already mentioned the importance of decomposing the audio signal in fre-
quency bands in the context of metrical analysis. We also saw how naturally this fre-
quency decomposition fits with the requirements of the subspace analysis method to
locally whiten the noise floor. In order to render the output of this method compatible
with the model explained above, we filter the signals s(n) and w(n) using the same two
filter banks described above. In this way both H+N models have a similar output: a set
of sixteen signals sp(n) and wp(n), with p ∈ [1 8], when using the uniform filter bank;
and a set of ten signals sp(n) and wp(n), with p ∈ [1 5] when using the logarithmic filter
bank.

In Figures 3.12 and 3.13 we present two examples of the H+N decomposition based
on the STFT. The first one is the counterpart of Figure 3.7 and corresponds to the first fre-
quency band (0 Hz to 1 kHz) of the uniform filter bank output. The bottom graph shows
the spectrogram of the noise part. Figure 3.13 presents the fourth subband (2000 Hz to
4000 Hz) of the logarithmic filter-bank. Although less explicit at first sight, compared to
the EDS model graphs, the presence of the twelve note attacks is still noticeable in the
noise part spectrograms of the Fourier based H+N model.

3.3.3 Comparing the H+N decomposition algorithms

In this part we compare the performance of the H+N decomposition algorithms pre-
sented in the previous sections. This comparison is based on two different criteria: the
separation quality and the computational requirements.
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Figure 3.13: Log filter bank output of the Fourier based H+N model. Third frequency
band (2 kHz to 4 kHz) corresponding to a piano signal. Spectrograms of the (a) original
signal, (b) harmonic part, and (c) noise part.

Decomposition performance To evaluate the separation quality of the decomposition
algorithms we have designed a scenario which accentuates the situations that the meth-
ods have to deal with. We have set up a synthetic signal xs(n) of unitary power composed
of three different elements (modulated chirps) which have a time varying frequency re-
sponse, additionally, this signal is immersed in complex white Gaussian noise (WGN)
with a signal-to-noise ratio of 40 dB. Figure 3.14-(a) ilustrates the frequency behavior of
the three components, one of them has a piece-wise constant frequency, another one is a
piece-wise linear modulated chirp, and the last one is a cosine-modulated chirp. Towards
the end of xs(n) all the components have a constant frequency.

Figure 3.14-(b) shows the magnitude of the estimation error e1(n) = |xs(n) − x̂1(n)|,
where x̂1(n) is the harmonic part of xs(n) obtained by the EDS method. As argued be-
fore, for this test the model order was slightly overestimated and we set M = 4, i.e., the
number of components to extract is eight. The large error at the left end of the figure is
related to an algorithm boundary effect. From the figure it can be seen that this method
handles well smooth frequency variations, on the contrary it, has more difficulty dealing
with abrupt transitions as shown by the error overshots. The average error magnitude
(without considering the boundaries) is -24.4 dB, and the average error magnitude in the
last part (where the components have constant frequencies) is -29.1 dB.

In a similar way, Figure 3.14-(c) shows the magnitude of the estimation error e2(n) =
|xs(n) − x̂2(n)|, where x̂2(n) is the harmonic part of xs(n) obtained by the FT method.
Although this method shows a better response to the abrupt frequency transitions, it also
exhibits a higher average error magnitude of -19.9 dB (without considering the bound-
aries). The average error magnitude in the region where the chirp components have a
constant frequencies reduces to -25.3 dB. It is interesting to see that this method exhibits
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Figure 3.14: Assesing the separation quality of the H+N algorithms. (a) Frequency be-
havior of the synthetic signal xs(n) used to test the decomposition methods. (b) Error
magnitude (e1(n)) between the noiseless synthetic signal and the harmonic part obtained
by the EDS method. (c) Error magnitude (e2(n)) between the noiseless synthetic signal
and the harmonic part obtained by the method based on the STFT.

an error peak around n = 9000, where one of the components of xs(n) takes frequency
values very close to the Nyquist frequency.

However, the afore mentioned test does not guarantee that a proper separation was
made, i.e., that the noise part is free of sinusoidal components. To inspect if the noise
parts contain sinusoids we have computed their spectrograms, Figures 3.15-(a)–(b) show
the outcomes for the EDS and FT methods respectively. From the top Figure we can see
that the noise part obtained by the EDS model is practically free of sinusoidal compo-
nents. The abrupt frequency transitions can be seen as vertical stripes. Towards the end,
some low-energy sinusoidal components can be distinguished at low frequencies. The
noise part obtained with the FT model (3.15-(b)) shows traces of sinusoidal components,
especially in the parts where the chirps vary and to a lesser extent towards the end of the
analysis. In addition, the background noise is more energetic.

Based on the results obtained by both decomposition approaches, we can suggest that
in our implementantions the EDS method outperforms, in terms of separation quality, the
FT method.

Computational complexity In any real world application, upon the necessity of choos-
ing among two or more alternatives, the computational burden of a given algorithm plays
a fundamental role. In this part we present a brief analysis examining the computation
time of the H+N methods described above. Since both algorithms were implementend
under Matlab using a number of built-in functions14, a meticulous evaluation of the com-

14For instance fft, ifft, qr.
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Figure 3.15: (a) Spectrogram of the noise part for the EDS method e1(n), and (b) spectro-
gram of the noise part for the FT method e2(n).

Method Bandwise computation time (s) Total
EDS uniform FB 2.32 2.31 2.26 2.27 1.99 1.84 1.79 1.80 16.58

EDS log FB 0.73 0.73 2.26 9.81 42.75 56.28
STFT & OLA 9.24 9.24

Table 3.5: H+N models and their computation time when processing a 10 s length audio
signal.

putational burden appears to be rather complex. The approach we adopted to estimate
the computational burden is not the most, but it is very straightforward and helps to
provide a tangible opinion about the computational requirements of the algorithm. We
measured just the time it takes to both algorithms to calculate the decomposition when
processing a 10 s music signal sampled at 16 kHz on a Pentium IV computer running
at 2.4 GHz with 1 GB of RAM. The time it takes to decompose the signal in subbands
(uniform or logarithmic) was not taken into account. Table 3.5 presents the effective com-
putation time for both algorithms and for both filter bank (FB) variants.

The EDS model performing a logarithmic subband decomposition is by far the most
time consuming task among the three listed above. Especially when processing the last
subband (4 kHz to 8 kHz), but this is not a surprise since the EDS model complexity is
O(LM(M + log(L)), where M is the model order.

3.4 Calculation of the musical stress profile

Perhaps the most critical part in any rhythm analysis system processing acoustic signals
is that of extracting acoustic events from a music stream. In fact, this block is in charge of
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converting the raw audio signal into a symbolic representation indicating the exact location
of the beginning of a musical event (a single note in simple cases, but more generally a
whole pack of them).

In Chapter 1, we pointed out the importance of phenomenal accents as discrete sound
events playing a fundamental role in metrical analysis (Lerdahl & Jackendoff, 1983). Hu-
mans hear them in a hierarchical structure, that is, a phenomenal accent is related to a
motif, several motifs are clustered into a pattern and a musical piece is formed of several
patterns that may be different or not. In the present work, we attempt to be acute (in a
computational sense) to the physical events in an audio signal related to the moments
of musical stress, such as magnitude changes, harmonic changes and pitch leaps. That
is, acoustic effects that can be heard and are musically relevant for the listener. The at-
tribute of being sensitive to these events does not necessarily imply the need of a specific
algorithm for detecting harmonic or pitch changes, but solely a method which reacts to
variations in these characteristics.

In the computer music community, phenomenal accents are better known as onsets.
Therefore, calculating the profile of the musical stress present in a music signal as a func-
tion of time is intimately related to the task of detecting onsets. One of the goals of this
stress profile is to simplify the decomposition of the input signal into musically relevant
segments. This operation plays a significant role not only for rhythm analysis, but also
for a large number of computer music applications. For instance, automatic transcription,
score following, music retrieval, audio editing and special effects.

According to the framework illustrated in Figure 3.1, this section stands for the third
block from the left. We start by providing a brief description about the nature of musical
notes followed by a general overview of the onset detection methods available in the lit-
erature. Then we present our approach. Although based on earlier work, it considerably
improves preceding methods based on the same principle.

3.4.1 The nature of a musical note

Before describing our proposal, it is important to understand the structure of musical
notes. Natural sounds, including those coming from acoustic instruments, do not just
instantly switch from on to off or vice versa. They are almost never static but change their
”character” through time, they always have a fade-in and fade-out period. To take an ex-
ample, a drum hit begins very sharply as the drumstick hits the skin and also fades away
quite fast. The sound volume of a note on the piano will also rise rather quickly, but will
dampen much more slowly. The sound of some (especially bowed string) instruments
like the violin can last for a long time, while the sound of a drum inevitably fades away
after each stroke, this behavior is the so-called envelope of the sound.

Figure 3.16 illustrates this simplistic model of the nature of a musical note. In practice,
this is just a coarse description of the true envelope curve since the real ones from acoustic
sounds are considerably more complex than this. However, from this abstraction we can
still identify the main parts of an envelope15:

� attack: is characterized by an increase in the envelope’s magnitude and marks the per-
ceptual beginning of the sound,

15In the literature, this kind of representation is often called the ”ADSR envelope model”. The acronym
is obtained from the name of the different parts: Attack, Decay, Sustain and Release. Although apparently
reductive, this model has been widely applied in sound synthesis.
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Figure 3.16: Structure of the envelope of a musical note.

� decay: is the first fading of the sound,

� sustain: this envelope part only exists in instruments where the excitation is continuous
(e.g., bowed string) and refers to the level at which the sound is held as long as there
is a stimulus,

� release: indicates the fade-out of the sound.

Ideally we should always detect the leftmost point of the envelope indicating the start
of the sound and marked as ”onset” in Figure 3.16, but in the all-inclusive case it is very
difficult to define its precise location. Moreover, in general the moment at which we
perceive the onset often coincides with the ”true onset”, although this is not a rule but a
parameter related to the sound source (Gordon, 1987). In practice, it is very difficult to
detect the ”true onsets” and in most cases detection algorithms only aim at locating the
onset within the attack duration window ta, shown in Figure 3.16. The attack duration
parameter heavily depends upon the nature of the musical instrument and to a lesser
extent to the stress applied to a given note. Gordon (1987) presents a quantitative study
on the perceptual attack time of musical tones for a number of instruments.

A closely related concept, but more difficult to define, is that of audio transient. For
our purposes, a transient can be informally described as locally distinctive short-duration
behaviour in a sound. It contains a high degree of non-periodic frequency components
and regularly covers the whole signal bandwidth or a at least a significant part of it.

3.4.2 Overview of current onset detection methods

In a realistic situation dealing with polyphonic signals, robust onset detection becomes
a very challenging task due to the large variety of instruments that can be employed,
whether they play simultaneously or not and the different kinds of attacks and dynamic
ranges that they can produce. In recent years a considerable effort has been invested to
solve this problem, and a large step into a systematic showcase and evaluation of new
proposals has been taken by the MIREX16 committee. Bello (2003); Bello et al. (2005) and
Collins (2005a) provide an in-depth survey and evaluate a number of commonly used

16Further information on MIREX or concerning the onset detection contest is available at
http://www.music-ir.org/mirexwiki/index.php/Audio Onset Detection.

http://www.music-ir.org/mirexwiki/index.php/Audio_Onset_Detection
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methods. In general, onset detection approaches can be divided into two broad categories
according to the working principle:

? deterministic techniques, they use time–frequency or time–scale features of the audio
signal,

? statistical techniques, lie on the assumption that the onset appearance can be de-
scribed by a probabilistic model.

Several onset detection systems have been proposed since the dawn of computer mu-
sic research in the early 80’s. The first endeavors to detect note onsets in music signals
used to process the amplitude envelope of the waveform as a whole. This approach has
proved to be very vulnerable since note onsets can be easily masked in the bulk signal
by continuous tones of higher amplitude. For instance, effects such as heavy dynamic
compression (widely used in modern popular music) tend to reduce the attack sharp-
ness. In the following part we briefly describe a few, but representative onset detection
algorithms according to their working principle.

Deterministic methods Most of these techniques use a time–frequency representation
(TFR) to compute onsets. Amongst the most common approaches are filter banks (Klapuri,
1999), the STFT magnitude (Masri, 1996; Hainsworth & Macleod, 2003b; Collins, 2005a),
phase (Bello & Sandler, 2003), or both (Bello et al., 2004). Compound systems using both
filter-banks and the STFT magnitude have also been proposed (Duxbury et al., 2002;
Hainsworth & Macleod, 2003a). Other onset detection methods improve their perfor-
mance by using an enhanced time-frequency representation, i.e., a reassigned spectro-
gram which considerably improves the more conventional STFT (Hainsworth & Wolfe,
2001; Röbel, 2003, 2005; Peeters, 2005). Practically all of these systems find the onsets by
computing the difference between successive frames. The use of time–scale representa-
tions has also been explored (Daudet, 2001) displaying interesting properties for transient
detection.

Statistical methods As mentioned above, statistical methods for onset detection are
based on the assumption that the music signal can be described by some probability
model, i.e., they use the available observations to guess about the potential moments
when abrupt changes have place in the audio signal. Obviously, the success of this
approach entirely depends on the goodness of fit between the model’s premise and the
”real” behaviour of the observations. Perhaps the best known approach is based on the
sequential probability ratio test who has been successfully used in speech segmentation
applications (André-Obrecht, 1988; Di Francesco, 1990). This technique has also been pro-
posed for audio transient detection (Jehan, 1997; Thornburg & Gouyon, 2000) but very
few application examples have been presented. Comparable models, but using Indepen-
dent Component Analysis (ICA) instead of a Bayesian framework have been proposed
(Abdallah & Plumbley, 2003; Bello et al., 2005). Good results are obtained for percussive
sounds. Unfortunately, in the context of onset detection and musical recordings segmen-
tation, the lack of publications presenting tangible and successful results suggest (at least
so far) that statistical methods have not found much acceptance. From our point of view
the reason is rather practical, since in music the simple and tractable model assumptions
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merely do not hold and any attempts to improve them produces too complex formula-
tions17 that discourage their use.

More recent research (Davy & Godsill, 2002; Desobry et al., 2005) has opened new al-
ternatives by using Machine Learning techniques and constructing a novelty function
using Support Vector Machines (SVM). In this case the SVM measure the dissimilarity
between two consecutive feature vectors corresponding to a discretized Cohen’s class
TFR (Hlawatsch & Auger, 2005, chapter 6). A rather similar approach based on SVM
who uses as input features the frame-wise fundamental frequency, amplitude, and the
relative strengths of the first three harmonics has also been tested (Kapanci & Pfeffer,
2004).

Onset detectors based on other machine learning methods have also been proposed.
In fact, a technique based on artificial neural networks and using features derived from
the STFT obtained the first place in the MIREX’05 annual contest in the ”onset detec-
tion” category (Lacoste & Eck, 2006). Another technique based on a similar principle has
been proposed but it has not been exhaustively evaluated yet, but tested on a few speech
and music signals (Smith & Fraser, 2004). In spite of their appeal, ML methods present
some drawbacks compared to more conventional STFT based methods, namely: a high
computational cost, and the need of a large and well-annotated corpus for training.

3.4.3 Our approach to estimate the musical stress profile

Within the scope of our research we have developed an onset detection system to specifi-
cally fit our rhythm analysis requirements (Alonso et al., 2005c). Nevertheless, we believe
it can be used for various other computer music applications too. This algorithm has
proven to be fairly effective when processing a wide range of music signals (Alonso et al.,
2005a). Our approach falls in the category of deterministic methods and its principles
are founded on previous work carried out by Klapuri (1999), Duxbury et al. (2002) and
Laroche (2003). Figure 3.17 displays the flow diagram of our proposal.

This method uses a band-wise processing rationale, as motivated by many approaches
encountered in the literature. The general approach is as follows: first the harmonic s(n)
or noise w(n) subband signal18 is decomposed into frequency channels, for computa-
tional convenience we use the STFT merely as a filter bank. Then, this Time–Frequency
Representation (TFR) is reassigned in order to produce a sharper description. Next, each
frequency band is processed as depicted in the lower part of Figure 3.17 to find the time-
location and intensity of its onset components. Finally, contributions from all frequencies
are summed producing the system output, the so-called detection function. This is a signal
that bears peaks with magnitude and location related to the onsets’ perceptual intensity
and position.

3.4.3.1 Reassignment: a method to sharpen time–frequency representations

The use of the reassignment method significantly improves the estimation of the time and
frequency content of a given signal, which is fundamental for an effective computation

17For example, consider modeling the number of possible sources (musical instruments), the number of
different ways to generate musical notes (onsets), the combinations that can be made. The number of poten-
tial combinations is just too large.

18for convenience we drop the subband index p since the processing principle is identical for all bands
regardless of the filter bank and H+N decomposition under consideration
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Figure 3.17: Spectral Energy Flux (SEF) flow diagram.

of the musical note envelopes required in our onset detection approach. Although origi-
nally called the modified moving window method and developed in the context of the STFT
(Kodera et al., 1978), the reassignment finds its origins in the Principle of Stationary Phase
(Papoulis, 1962, chapter 7). In fact, this method has been used to sharpen various time–
scale and TFR’s in order to make them more intelligible as developed in Auger & Flandrin
(1995) and Hlawatsch & Auger (2005). As pointed before, Hainsworth & Wolfe (2001),
Röbel (2003, 2005) and Peeters (2005) have used this method to enhance their onset de-
tection algorithms. Below we provide a brief description outlining the main concepts and
advantages of the reassignment procedure.

Let us remember the definition of the conventional STFT stated in Eq. (3.8) as:

S̃(m,k) =

∞∑

n=−∞

g(n +Mm)s(n)e−
2π
N
kn (3.12)

where m ∈ Z is the time (frame) index, g(n) is a real window of finite length N which
determines the portion of the signal19 s(n) that is under analysis at a particular time in-
stant m, M is defined as the hop-size or time-shift for the window and k = 0, . . . ,K − 1
is the frequency (bin) index. In this definition, the data is sampled at a rate equal to the
analysis window hop size (M ), so information in the resulting TFR is stored in a regu-
lar temporal grid corresponding to the (geometrical) centers of the short-time analysis
windows. We can make the sampling of this frame-based representation as dense as de-
sired by choosing an appropiate hop-size (under the limitation M ≥ 1). Nevertheless the
temporal smearing due to long analysis window needed to achieve a high-resolution in
frequency estimations (especially at low-frequencies) cannot be relieved by this denser
sampling.

Although it is widely accepted that the STFT phase component bears important tem-
poral information, it is typically discarded and only the magnitude part is considered
in the representation. On the contrary, the so-called method of reassignment computes

sharpened time and frequency estimates for each spectral component in S̃(m,k) from

19For the sake of clarity, we drop the subband index and we only refer to s(n) knowing that the very same
procedure is applied to all subbands in both signal components.
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the partial derivatives of the short-time phase spectrum. Instead of locating the time–
frequency components at the geometrical center of the analysis window (m,k), as in the
conventional STFT, the components are reassigned to the center of gravity of their com-
plex spectral energy distribution.

Continuous time STFT Since the theoretical foundation of the reassignment operation
relies on the continuous definition of the STFT, we switch for a moment from the discrete-
time domain to continuous time. Let sc(t), with t ∈ R, be the real signal under analysis,
the associated STFT is formulated as:

S̃c(τ, f) =

∫ ∞

−∞
sc(t)gc(t− τ)e−2πftdt. (3.13)

The main handicap in the estimation of the magnitude and frequency of the sinusoidal
components of sc(t) is directly related to the length and bandwidth of gc(t) (perhaps
better known as the time–frequency Heisenberg box). As mentioned before, the reassign-
ment improves the estimation of the TF content by using the phase information. Let us
write the STFT in terms of its magnitude and phase as:

S̃c(τ, f) = |S̃c(τ, f)| eϕ(τ,f).

The reassignment operators are derived from the partial derivatives of ϕ(t, f) with re-
spect to each of its variables, leading respectively to the instantaneous frequency

Fi(τ, f) =
1

2π

∂ϕ(τ, f)

∂τ
, (3.14)

and to the group delay

Tg(τ, f) = − 1

2π

∂ϕ(τ, f)

∂f
. (3.15)

Eqs. (3.14) and (3.15) can be interpreted as follows: if we consider the energy |S̃c(τ0, f0)|2
smeared around a given position (τ0, f0) in the time–frequency plane, its center of gravity
is the point with normalized frequency Fi(τ0, f0) and time location τ0 + Tg(τ0, f0). There-
fore, each energy spot is said to be reassigned to a centroid, i.e., the time-frequency signal
content is re-mapped on the plane.

Discrete-time implementation Let us rewrite Eq. (3.12) in its polar form as:

S̃(m,k) = |S̃(m,k)| eϕ(m,k) (3.16)

Since the derivative of functions given in discrete points are not defined, we must find a
way to approximate the partial derivatives of Eqs. (3.14) and (3.15) by means of numerical
processing. A clever way to circumvent this limitation is by using a FIR differentiator
filter. In this work we decided to use a differentiator based on the formulae for central
differentiation developed by Dvornikov (2003), the reason will be justified later.

ϕ(m,k) is then extracted and unwrapped for each channel k, then its derivative is
computed to obtain the instantaneous frequency, that is:

Fi(m,k) = ϕ(m,k) ? h(m) for a fixed value of k, (3.17)
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Figure 3.18: STFT reassignment: piano example. (a) Conventional STFT and (b) reas-
signed STFT.

where h is the differentiator filter. The same procedure is applied along the frequency
axis, yielding the group delay:

Tg(m,k) = ϕ(m,k) ? h(k) for a fixed value of m. (3.18)

As described above, the spectral content in S̃(m,k) is then remapped according to Fi and

Ti. Hereinafter, we denote as S̃(m,k) the reassigned STFT.

Figures 3.18 and 3.19 show two reassignment examples. The first one presents a piano
signal of 5 s, on top the conventional STFT and in the bottom the reassigned version.
In both representations, the dynamics have been normalized and limited to the range
[−60 dB 0 dB]. We can notice that a significant amount of the spectral debris present
in the conventional TFR has been removed in its reassigned counterpart. Additionally,
the spectral leakage has been removed and now the spectral components have a precise
localization. The second example presents a 5 s violin signal and the same observations
can be made.

3.4.3.2 Spectral Energy Flux

The method that we use to compute the musical stress profile is the so-called Spectral
Energy Flux. It has been used before in the literature, for instance by Laroche (2001, 2003)
also in the context of metrical analysis. This technique resides on the general assumption
that the appearance of an onset (event) in an audio stream leads to a variation in the sig-
nal’s frequency content. For example, in the case of a violin producing pitched notes, the



3.4. CALCULATION OF THE MUSICAL STRESS PROFILE 83

F
re

qu
en

cy
 (

H
z)

(b)

Time (s)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

1000

2000

3000

4000

F
re

qu
en

cy
 (

H
z)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

4000

−60

−50

−40

−30

−20

−10

0

Figure 3.19: STFT reassignment: violin example. (a) Conventional STFT and (b) reas-
signed STFT.

resulting signal will have a strong fundamental frequency as well as the related harmonic
components at integer multiples of the fundamental attenuating as frequency increases.
In the case of a percussive instrument, the resulting signal will tend to have sharp energy
boosts.

To detect the above mentioned variations in the frequency content of the audio signal,
the most natural approach is to compute the derivative of the TFR with respect to time.

In our case that means computing the derivative of the reassigned STFT S̃(m,k):

E(m,k) = V (m,k) ? h(m) =
∑

l

h(m− l)V (l, k) (3.19)

and whereE(m,k) is known as the Spectral Energy Flux (SEF), h(m) is an approximation
to an ideal differentiator where

H(ej2πf ) ' j2πf (3.20)

and

V (m,k) = F{S̃|(m,k)|} (3.21)

is a transformation that accentuates some of the psychoacoustically relevant properties

of S̃(m,k). The precise details about this operation are given below.

Digital differentiator In solving many physical problems by means of numerical meth-
ods, it is a challenge to seek derivatives of functions given in discrete points. Due to its
considerable relevance in many disciplines, this subject has attracted much attention and
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Figure 3.20: Digital FIR differentiators comparison. (a) Differentiator approximation to
an ideal filter and (b) accuracy of the approximation.

in consequence a large number of digital differentiators have been proposed in the litera-
ture. A comprehensive search of the available methods is beyond the scope of our work,
but in the context of our research we have evaluated four different FIR digital differentia-
tors. The first one is the classical first-order difference where h = [1, −1]. This differen-
tiator has been employed in several metrical analysis systems, for instance Klapuri (1999,
2003), Laroche (2001, 2003), Peeters (2005) and Alonso et al. (2003a). The second method
is based on the Remez-Parks-McClellan (RPM) optimisation procedure which leads to the
best approximation to Eq. (3.20) in the minimax sense (Proakis & Manolakis, 1996, page
652). In (Alonso et al., 2004) we have used this method to carry out metrical analysis.
The third differentiator proposal is based on the formulae of numerical differentiation
proposed by Dvornikov (2003). The fourth method has been developed by Kavanagh
(2001) and was especially conceived for quantized signals differentiation. The underly-
ing principle of these last two differentiation methods is the calculation of interpolating
polynomials passing through discrete points.

Figure 3.20 compares the performance of all these digital differentiators in approxi-
mating Eq. (3.20). Based on heuristic tests, we concluded that a differentiator filter of
order20 2L = 10 was the best compromise of accuracy vs. memory and computational
requirements. Our differentiation requirements do not demand a computationally ex-
pensive and less performant full-band rectifier. In fact, the sampling frequency (or frame
rate) of the STFT is well above the frequency range of the rhythmic phenomena (< 25 Hz)
we wish to detect. For this reason we focus our attention in the low-frequency region
0 ≤ f ≤ ∆f , where ∆f = 0.15.

With the exception of the first-order difference, strictly speaking, the other digital

20Due to their design principle, the Kavanagh and Dvornivok filters are obliged to be of even order, i.e., to
have an odd filter-length equal to 2L + 1.
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Method First order Remez-Parks-McClellan Dvornikov (2003) Kavanagh (2001)
difference (Proakis & Manolakis, 1996)

MSE 0.4913e-6 0.0097e-6 < 0.0001e-6 < 0.0001e-6

Table 3.6: Digital differentiators mean-square error. It was computed in the normalized
frequency interval 0 ≤ f ≤ ∆f .

differentiators are not causal. Nevertheless, if real-time requirements are imposed by
the application, the use of these differentiators can be considered since the future data
demand goes as far as L STFT frames ahead (usually below 30 ms).

Under the settings mentioned above, the differentiator proposed by Dvornikov (2003)
gives the best results. It has the smallest mean-square error (MSE) (see Table 3.6)

MSE =
1

∆f

∫ ∆f

0
[Hi(f) −H(f)]2df (3.22)

in the frequency range 0 ≤ f ≤ ∆f , where Hi(f) is the frequency response of an ideal
differentiator and H(f) is frequency response of any of the filter differentiators under
analysis.

In addition, Dvornikov (2003) differentiator also displays the best performance in a
set of heuristic tests we carried out. The first-order difference was ranked last among the
four differentiators we evaluated. This is not a surprise since the time span of the other
filters is considerably larger. In other words, additional information coming from several
analysis frames is taken into account, while the plain spectral difference only uses the
information from two consecutive analysis frames.

As justified above, we opted for using a digital differentiator h(m) of order 2L (thus
of length 2L+ 1) based on the formulae for central differentiation (Dvornikov, 2003), see
Appendix B. The analytical expression of the first L coefficients of the antisymmetric FIR
digital differentiator is given by

γ(l) =
1

lα(l)

where

α(l) =

L∏

k = 1
k 6= l

(
1 − l2

k2

)
(3.23)

and l = 1, . . . , L. The coefficients of h(m) are then given by

h = [−γ(L), . . . , 0, . . . , γ(L)]. (3.24)

Figure 3.21 shows the waveform of a tenth order (L = 5) digital differentiator.

Perceptual transformation In our onset detection proposal, the transformation V (m,k)
calculates a perceptually plausible power envelope for frequency channel k and is formed
of two steps. First, psychoacoustic research on computational models of mechanical to
neural transduction (Meddis, 1988) shows that the auditory nerve adaptation response



86 3. ESTIMATING THE DEGREE OF MUSICAL ACCENTUATION

−5 −4 −3 −2 −1 0 1 2 3 4 55
−1

−0.5

0

0.5

1

Time (samples)

Figure 3.21: Digital differentiator waveform obtained by the method proposed by
Dvornikov (2003) with L = 5.

following a sudden stimulus change can be characterized as the sum of two exponential
decay functions:

φ(m) = αe−m/T1 + βe−m/T2 for m ≥ 0 (3.25)

formed by a rapid decline component with time constant (T1) in the order of 15 ms and a
slower short-term decline with a time constant (T2) in the region of 70 ms. This adaptation
function performs energy integration, emphasizing the most recent stimulus but mask-
ing rapid modulations. From a signal processing standpoint, this can be viewed as two
smoothing low-pass filters whose impulse response has a discontinuity that preserves
edge sharpness and avoids dulling signal attacks. In practice, the smoothing window is
implemented as a 2nd-order IIR filter with z-transform

Φ(z) =
α+ β − (αz2 + βz1) z

−1

1 − (z1 + z2)z−1 + z1z2 z−2
. (3.26)

where α = 1, β = 5, z1 = e−1/T1 , z2 = e−1/T2 T1 = 15 ms, and T2 = 75 ms. Several authors
have pointed the importance of this low-pass or smoothing step prior to computing the
derivative. For instance, some approaches use a half-Hann window (descending-part),
this was originally proposed by Todd (1994) and then used by Scheirer (1998), Klapuri
(1999), Alonso et al. (2003a) and Jehan (2004). On the other side, Paulus & Klapuri (2002)
and Klapuri et al. (2006) use a 6th order low-pass Butterworth filter and Peeters (2005)
opted for a 5th order low-pass elliptic filter, in these last three examples the filters were
designed to have a cut-off frequency f = 10 Hz.

Figure 3.22 presents the frequency response of the four smoothing filters mentioned
above. We suppose that the inter-frame distance in the STFT is 5.6 ms, this is equivalent to
stating that the TFR is sampled at 180 Hz. Undoubtedly, the smoothing filters proposed
by Paulus-Klapuri and Peeters are more effective for removing the high-frequency signal
content.

Now, let us take a closer look at the duty that those low-pass filters are exposed to.
Figure 3.23-(a) shows a quite typical situation found in onset detection, it displays a (nor-
malized) pitched channel of the TFR corresponding to a piano signal. We can see that the
rapid variations in the power-envelope are very pronounced yielding true note attacks
not easily detectable, even for the human eye (true onsets are marked by a red vertical
dashed-line).
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Figure 3.23-(b)–(e) show how the afore mentioned smoothers react under this stimu-
lus. Figure 3.23-(b) presents our approach using the two exponential decay functions
Alonso et al. (2005c). Figure 3.23-(c) presents that using a half-Hann window (of length
200 ms) proposed by Todd (1994) and others. Figure 3.23-(d) shows the output of the
elliptic filter proposed by Peeters (2005) and finally Figure 3.23-(e) the output of the But-
terworth filter proposed by Klapuri et al. (2006).

Although at first sight all of the output envelopes look rather similar, there exist some
significant distinctions. For example (d) and (e) have completely cleared the high fre-
quency variations, but they display low-frequency oscillations of significant power after
every attack which might produce important peaks after taking the derivative and even-
tually yielding to false note onsets. Plots (b) and (c) are very similar with the latter slightly
smoother. Both still exhibit small amplitude high-frequency oscillations after every note
onset, but their derivative is small compared to that of the signal attacks. In terms of
computational resources, (b) has the lowest requirements since it is a 2nd-order all-pole
IIR filter21

Concerning the power envelope smoothing, we consider that the time-domain aspect
of the smoother plays a more important role than its frequency behaviour.

The second part of the envelope extraction consists in a logarithmic compression, this
operation was originally proposed by Klapuri (1999). Similarly to the smoother filter, this
procedure also has a perceptual relevance since the logarithmic difference function gives
the amount of change in a signal’s intensity in relation to its level, that is

d

dt
log I(t) =

∆I(t)

I(t)
. (3.27)

The perceived increase in signal level is in relation to its level, in other words, this
means that the same amount of increase is more prominent in a quiet signal. According
to Moore (1995), the smallest detectable change in intensity is approximately proportional
to the intensity of the signal, i.e., the Weber fraction (∆I

I ) is a constant (Klapuri, 1999).

21In the figure, (c) is a FIR filter with 36 coefficients (200 ms length), (d) is an IIR filter with 5-poles and
5-zeros and (e) is also an IIR filter with 6-poles and 6-zeros.
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Figure 3.23: Smoothing effects corresponding to different low-pass filters. (a) noisy en-
velope of a pitched STFT channel belonging to a piano signal. Envelope obtained after
smoothing with (b) two exponential decay functions, (c) a half-Hann window, (d) an el-
liptic low-pass filter, and (e) a Butterworth low-pass filter.

Implementation In practice, the algorithm implementation is straightforward and is
carried out step by step exactly as presented in the Figure 3.17. The TFR in Eq. (3.12)
is computed using an N point Fast Fourier Transform (FFT) and its reassigned version
is obtained using Eqs. (3.17) and (3.18). Then the square of the absolute value of every
frequency channel, |S̃(m,k)| is convolved with the low-pass filter φ(m). The smooth-
ing operation is followed by a logarithmic compression. The resulting compressed and
smoothed envelope V (m,k) is given by

V (m,k) = 20 log10

(
∑

i

|S̃(i, k)|φ(m − i)

)
. (3.28)

Then the SEF is computed as indicated by Eq. (3.19). Every frequency channel k
is time-convolved with the differentiator filter h(m). At those time instants where the
frequency content of s(t) changes and new frequency components appear,E(l, k) exhibits
positive peaks whose amplitude is proportional to the energy and rate of change of the
new components. In a similar way, when frequency components disappear from s(t),
the SEF exhibits negative peaks, marking the offset of a musical event. Since we are only
interested in onsets, we apply a half-wave rectification (HWR) to E(m,k), i.e., we only
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keep positive values

Ê(m,k) =

{
E(m,k) if E(m,k) > 0

0 otherwise.

Before integrating the contributions from all frequency channels, we must keep in
mind that during the pre-processing stage the power level of frequency componentes was
altered. In order to counterbalance this effect and to obtain a detection function which
takes into account some psychoacoustic principles, we decided to weight E(l, k) by a
perceptual curve. A possible candidate is the familiar A-weighting curve (IEC268-1, 1968)
which is said to reflect the equal-loudness contours. However, Dolby et al. (1979) are critic
with respect to these curves, they argue that they only relate to the subjective loudness
of pure tones and not to broad-band audio signals. For this reason, we opted for a more
recent and perceptually plausible weighting curve usually known as the ”ITU-R ARM”
(average response meter) derived from the standard ITU-R468 (1986). According to its
developers (Dolby et al., 1979) this weighting curve has better agreement with subjective
assessments and is widely employed in professional and commercial audio-level meter
equipment. Appendix C presents the mathematical expression to compute the respective
weighting curve W(k) . In addition, Figure 3.24 presents the frequency-shape of the ITU-
R ARM weighting function along with that of A-weighting.

To obtain the so-called onset detection function d(m), contributions from all channels
are weighted and integrated across frequency

d(m) =
∑

k

Ê(m,k)W(k). (3.29)

Finally, d(m) should ideally display sharp peaks at transients and note onsets, those in-
stants where the positive energy flux is large. In addition, the peaks amplitude bears a
relation with the loudness of the acoustic events.

Figure 3.25 shows an example using a piano signal. Although it is a rather simple
case, our onset detection method exhibits a good performance even distinguishing two
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very close events at about 3.25 s. The four plots of Figure 3.25 respectively correspond
from top to bottom to:

(a) the waveform under analysis where the hand-annotated onsets are marked by dot-
ted vertical lines;

(b) the respective modulus of the reassigned-STFT, the signal’s harmonic structure is
visible;

(c) the SEF Ê(m,k), the dotted points aligned indicate the regions where the positive
energy flux is large; and

(d) presents the corresponding detection function d(m), the note onset instants and a
perceptually-related intensity are indicated by the location and the height of the
peaks respectively, true onsets are also marked by red vertical lines.

For onset detection developers, bowed string instruments are the bogeyman, since they
can produce notes with soft and long attacks which can easily pass undetected by the
stress estimation block. Moreover, the frequency partials that these instruments produce
can also be non-stationary (e.g., when playing vibrato) and such behavior might cause the
appearance of false onsets in the detection function. Now we present a more challenging
example using a violin signal. The four plots of Figure 3.26 respectively correspond from
top to bottom to:

(a) the waveform under analysis where the hand-annotated onsets are marked by dot-
ted vertical lines;

(b) the modulus of the reassigned-STFT, we can see that the signal’s frequency struc-
ture exhibits strong vibratos at about 0.75 s and 3.75 s;

(c) the SEF Ê(m,k), since the attacks are not very sharp the image is more difficult to
interpret; and

(d) the corresponding detection function d(m), in this signal only the peaks of six (out
of seven) note attacks were detected by the algorithm. Although in this case d(m)
is less suitable for a direct peak-picking like onset detection, it is still fairly useful for
periodicity induction in its present state.

Ideally, the musical stress profile should be as close as possible to a series of weighted
impulses positioned at onset locations. The detection function corresponding to the pi-
ano example (Figure 3.25) has a good resemblance to this theoretical appearance. In this
case, onset positions can be distinguished in the time-waveform as sudden changes in
the amplitude going from low-energy to higher-energy values. In the violin example
(Figure 3.26), conducting onset detection by visual inspection of the time-waveform is
less evident since onsets are located in low-energy regions. However, the detection func-
tion correctly resolved most of the onsets as prominent impulses. In this second case the
problem is that the algorithm also produced false onsets, i.e., prominent peaks that do not
belong to an onset.

The computation of the detection function is the final stage, this signal provides the
degree of musical accentuation as a function of time. musical. The output of this front-
end blocks is formed of two groups of signals: the band-wise detection functions of the
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harmonic part called dsp(m), and the band-wise detection functions of the noise part ref-
ered as dwp (m). Where p ∈ [1, . . . , 8] for the uniform filter bank and p ∈ [1, . . . , 5] for the
logarithmic filter bank.

3.5 Conclusions

Throughout this chapter we have described a novel method which analyzes audio record-
ings in order to compute the so-called musical stress profile. This profile can be seen as a
signal bearing “symbols” pulsations which indicate the likeliness22 of finding a musical
accent (or note onset). The novelty of our method resides on the idea of separating the
audio signal in order to emphasize the phenomenal accents that they contain. This sep-
aration consists in decomposing the audio input into a harmonic (or deterministic) part
and a “noise” part which contains all the elements from the original signal that cannot be
modeled as sinusoidal components.

We have proposed two different methods to conduct this decomposition. The first
one uses a subspace analysis technique (sometimes referred to as high resolution meth-
ods) based on the Exponentially Damped Sinusoidal (EDS) model. The second one is
based on a more traditional Fourier-based method. Then, we introduced a technique
to calculate the musical stress profile of the harmonic and noise components. In fact,
this procedure is a significant improvement of a previously existing method called the
Spectral Energy Flux (SEF) or also Spectral Difference (SD). This method is founded on
the idea of measuring the rate of change of the power-spectrum as a function of time.
These enhancements consists of computing a reassigned Short Time Fourier Transform
(STFT). Next, a perceptually motivated method to calculate the smoothed power enve-
lope of each STFT channel is presented. Then, the derivative of frequency components
is computed using an efficient differentiator filter. Finally, contributions from individual
components are added to create the stress profile. This signal displays sharp maxima at
transients and note onsets, i.e., those instants where the energy flux is large.

In order to reduce the computational complexity of the stress estimation block, it is
possible to disable some of its components at the expense of reducing its efficiency. For
example, when processing strong beat music, a fairly accurate detection function can be
obtained at a lower cost by disabling the H+N decomposition block. Another way to
reduce even more the computational burden consists in using a traditional STFT instead
of a reassigned version.

Given the distinctive nature of musical instruments, an important question to ask is:
is it better to estimate the stress profile using various algorithms adapted to a number of potential
sound sources or to develop a single algorithm to handle all of them? In this work we opted
for the latter, i.e., one algorithm using the same set of parameters for processing all kinds
of music signals. While the earlier idea of developing source-specific algorithms might
seem theoretically advantageous, a very important and highly sensitive problem is how
to fuse the information from each of these methods when processing a musical instance
containing multiple and different sound sources. More precisely, how to prevent false
onsets produced by any of the algorithms from damaging the others? Otherwise, the
applicability of these algorithms would be considerably restricted to solo performances.

22By likeliness we mean “the possibility of occurring” and not the probabilistic sense of the word.
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Chapter 4

Inducing rhythm metrics

In this chapter, we exploit a symbolic representation input to induce the periodicity of
music accents (e.g., note onsets, chord changes), to track their evolution through-time
and to estimate the individual locations of metrical pulses at the tactus level. According
to the framework depicted in Figure 4.1, in this chapter of the system description we
cover the following blocks: periodicity analysis and data fusion, tracking of the rhythmic
paths and pulse phase location. In addition, we also present a method to estimate the
tatum.

As seen from above, this chapter is intimately related to the musical stress profile
computed in the previous part. We must point out that other methods for computing
the detection function can be used, as will be shown during the evaluation chapter. In
other words, there exists no strict dependence between the elements introduced in the
previous chapter and our approach to induce rhythm metrics presented hereafter.

4.1 Periodicity analysis

In §1.1 musical rhythm was defined as an acoustic sequence evoking a sensation of pulse
(Parncutt, 1994). This statement makes us think of a regular recurrence of sound events,
which is in general effortlessly detected by humans. In computer-based metrical analysis
of music, this machinery has to be reproduced by an algorithm which searches for periodic
behaviors in the detection function. For this purpose, a large number of researchers have
called upon methods developed in the more mature field of fundamental frequency (or
f0) estimation, usually referred to as ”pitch detection” methods. In §2.3.3 can be found
an exhaustive list containing those procedures currently used in the context of rhythm
analysis.

In this section we describe four methods to estimate the periodicities inherent in the
detection function as well as their integration into the context of our analysis framework
(see Figure 4.1).

4.1.1 Predominant f0 estimation

We must grasp and fully understand that our experiments are very often an imperfect
representation of an idealized world. In our case, we model the detection function as a
perfectly periodic signal although we know that in practice it is not true. Nevertheless,
we exploit the fact that in cases where the tempo remains relatively stable the detection
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Figure 4.1: Flow diagram of the rhythm analysis framework. The dotted box gathers the
building blocks discussed in this chapter.

function exhibits a quasi-periodic nature and modelling errors do not compromise the
admissibility of the results.

During our research we use four periodicity estimation algorithms. Two of them can
be classified as time-domain methods and the two others as frequency-domain methods.
Detailed explanations are provided below.

4.1.1.1 Temporal methods

The temporal methods that we use to conduct periodicity analysis are the ubiquitous
autocorrelation function (ACF) and a bank of comb-filter resonators. Both techniques
have already been proposed a number of times in the rhythm analysis literature. For
instance the ACF by Foote & Uchihashi (2001) and Dixon et al. (2003) and the comb-filter
bank by (Scheirer, 1998) and Klapuri (2004).

Autocorrelation function As illustrated in Table 2.1, the biased estimator of the auto-
correlation function (ACF) is probably the most used periodicity induction method in
the context of metrical analysis of music signals. In fact, it is a mathematical tool used
very frequently in signal processing for analyzing functions or series of values. The ACF
computes the degree to which the signal is similar to a time-shifted version of itself. The
deterministic sample ACF, also called sample autocovariance sequence, is usually de-
fined as the cross-correlation of a signal with itself

r̂d(k) =
1

N

N−1∑

n=k

d(n)d(n − k), 0 ≤ k ≤ N − 1 (4.1)

where d(n) is the real-valued detection function under analysis, N is the length of the
analysis window and k indicates the time lag. The sample correlations for negative lags
are constructed using the property r̂(−k) = r̂(k) for k = 0, . . . , N − 1. The expression
in Eq. (4.1) is called the standard biased ACF estimate. This operator is usually pre-
ferred than the non-biased version since it is likely to be a more accurate estimator of the
r(k) for relatively large values of k (compared to N ) and it is guaranteed to be positive
semidefinite.

As an example, Figure 4.2-(a) displays the detection function corresponding to 5 s
of the song Le bruit du frigo1, the annotated tempo for this excerpt is 185 BPM (i.e., a

1Composed and performed by the group Mano Negra, album ”King of Bongo” (french pop-rock).
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Figure 4.2: (a) An example detection function and (b) the corresponding periodicity pro-
file computed via the ACF.

fundamental period of approximately 0.32 s). Figure 4.2-(b) presents the corresponding
ACF computed in the range from 0.25 s (240 BPM) to 1.5 s (40 BPM). The ACF exhibits
prominent peaks located at the first four integer multiples of the fundamental period
(approximately 0.32 s, 0.65 s, 0.97 s and 1.29 s).

Bank of comb-filter resonators In the context of rhythm analysis, the use of a bank
of comb-filter resonators with a constant half-time was originally proposed by Scheirer
(1998). The comb-filters that we use here were developed by Klapuri (2004); Klapuri et al.
(2006). They have an exponentially-decaying impulse response where the half-time term
refers to the delay during which the response decays to a half of its initial value. The
output of a comb-filter with delay τ when processing a detection function d(n) is given
by

y(n) = αy(n− τ) + (1 − α)d(n) (4.2)

where the feed-back gain (distinct for each comb-filter) is given by α = 0.5τ/T0 and is
calculated based on a selected half-time T0 in samples. We use the value indicated by
Klapuri (2004), which corresponds to a half-time equivalent to 3 s, i.e., T0 = 3Fs, where
Fs corresponds to the sampling frequency of the detection function. This value is short
enough to react to tempo changes but long enough to reliably estimate pulse-periods of
up to 4 s in length.

The prototype comb-filter of Eq. (4.2) has the following frequency response:

|H(e2πf )|2 =
(1 − α)2

1 + α2 − 2α cos(2πfτ)
. (4.3)



98 4. INDUCING RHYTHM METRICS

This filter has the maxima (resonates)

|H(e2πfmax)|2 = 1 for fmax =
l

τ

where l = 0, . . . , bτ/2c. In addition, it has the minima

|H(e2πfmin)|2 =

(
1 − α

1 + α

)2

for fmin =
2l + 1

2τ

where l = 0, . . . , b τ−1
2 c. To obtain the overall power ϕα of a comb-filter with feed-back

gain α, we integrate over the squared-impulse response, which yields

ϕα =
1 − α

1 + α
. (4.4)

In order to obtain a periodicity profile, we use a bank of such resonators where the
delay gets values ranging from τmin corresponding to .25 s (240 BPM) up to τmax corre-
sponding to 1.5 s (40 BPM). The instantaneous output energy for the prototype resonator
of Eq. (4.2) at time n is given by

Ey(n) =
1

τ

n∑

i=n−τ+1

y(i)2. (4.5)

This operation is equivalent to convolving the square of the resonator output with a rect-
angular window, i.e., Ey(n) = 1

τ (y
2 ? g)(n), where g(n) = 1, t ∈ [0, . . . , τ − 1] and zero

everywhere else.
Instead of using Eq. (4.5) as the output of the comb-filter bank, Klapuri (2004) im-

proves the performance by proposing a normalization step

ŷ(n) =
1

1 − ϕα

(
Ey(t)

d̂(n)
− ϕα

)
(4.6)

where d̂(n) is the energy of the detection function computed by applying a leaky-integrator,
i.e., a resonator which has τ = 1 and the same half-time response:

d̂(n) = αd̂(n − 1) + (1 − α)d(n)2.

This normalization compensates for the differences in the overall power responses, given
by Eq. (4.4), for different values of α. This guarantees a unity response at the peak fre-
quencies, while removing a τ -dependent trend. Figure 4.3 presents an example using the
detection function depicted in Figure 4.2-(a). On topEy(n), given by Eq. (4.5), containing
a τ -dependent trend. In the bottom, the normalized energy ŷ(n).

Klapuri (2004) evaluated a number of periodicity induction methods, most of them
performing equally well in terms of accuracy. The computational complexity of the comb-
filters is O(1) per input sample per resonator.

4.1.1.2 Spectral methods

We propose two spectral techniques to carry out periodicity analysis: the spectral sum
and the spectral product. These methods were independently developed by Noll (1970)
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Figure 4.3: Periodicity profile obtained using a comb-filter bank. In (a) energy Ey(n)
containing a τ -dependent trend and (b) normalized energy ŷ(n).

and Wise et al. (1976), for estimating the pitch period of voiced speech sounds and are
based on a maximum likelihood formulation. Although more expensive in computa-
tional terms when compared to the comb-filter approach, the spectral sum and product
are two highly reliable methods. In addition, to our knowledge they have not been ap-
plied elsewhere in the context of rhythm analysis.

Spectral sum We are interested in analyzing a periodic discrete time signal with period
T , i.e., a(n + T ) = a(n) and n ∈ Z. In practice, we do not have direct access to a(n). For
that reason, we suppose that the observed signal (in our case the detection function), is a
deterministic periodic signal surrounded by additive white Gaussian noise

d(n) = a(n) + w(n) (4.7)

where the noise power is σ2
w. Let us consider only a realization inside an analysis window

n ∈ [0, . . . , N − 1]. In addition, we also suppose that N is an integer multiple of T , i.e.,
∃K ∈ N

∗ |N = KT . This assumption does not affect the applicability of the algorithm,
but reduces the mathematical development of the solution2. If we write Eq. (4.7) as
w(n) = d(n) − a(n), knowing that it is a sequence of i.i.d. random variables, then the
likelihood function can be written as

p(d|T, a, σ2
w) =

1

(2πσ2
w)N/2

e−
1

2σ2

PN−1

n=0
(d(n)−a(n))2 .

2If the reader is interested, Wise et al. (1976, page 419) show how to obtain the same result without making
this assumption.
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Figure 4.4: Orthogonal projection of d over the space of complex signals with period T
given by span{E(f0)}.

And the log-likelihood as

L(T, a, σ2
w) = −N

2
ln(2πσ2

w) − 1

2σ2

N−1∑

n=0

(d(n) − a(n))2. (4.8)

For a fixed value of T and σ2, maximizing L with respect to a(n) is equivalent to min-
imizing the square of the distance between d(n) and a(n). That is, to find the signal
a(n) of period T having the shortest Euclidean distance to d(n). This means that the
vector a = [a(0), . . . , a(N − 1)]> is the orthogonal projection of d = [d(0), . . . , d(N − 1)]>

over the space of complex signals with period T , as depicted in Figure 4.4. Now, for all
k ∈ [0, . . . , T − 1]>, let

ek(f0) = [1, e2πkf0 , . . . , e2πkf0(N−1)]>

where f0 = 1
T , and

E(f0) = [e0(f0) . . . eT−1(f0)]N×T .

The N -dimensional vector space of complex signals with period T is span{E(f0)}, and
the orthogonal projection over this space is given by

a =
1

N
E(f0)E(f0)

H
d. (4.9)

Then, putting Eq. (4.9) into (4.8)

L(T,a, σ2
w) = −N

2
ln(2πσ2

w) − 1

2σ2
w

(
‖d − 1

N
E(f0)E(f0)

H
d‖2

)

= −N
2

ln(2πσ2
w) − 1

2σ2
w

(
‖d‖2 − 1

N
‖E(f0)

H
d‖2

)
. (4.10)

For a fixed f0, L is maximum when

σ̂2
w =

1

N

(
‖d‖2 − 1

N
‖E(f0)

H
d‖2

)
(4.11)



4.1. PERIODICITY ANALYSIS 101

1 1.5 2 2.5 3 3.5 4
−20

−15

−10

−5

0

Frequency (Hz)

P
ow

er
 (

dB
)

Figure 4.5: Periodicity profile computed via the spectral-sum method.

then

L(T ) = −N
2

ln(2πeσ̂2
w).

This means that maximizing L with respect to f0 is equivalent to minimizing σ̂2
w. For that

purpose, we must maximize the second term on the right side of Eq. (4.11),

‖E(f0)
H
d‖2 =

T−1∑

k=0

|ek(f0)
H
d|2 =

T−1∑

k=0

|D(e2πkf0)|2 (4.12)

where |D(e2πf )|2 is the PSD of d(n). The last term of Eq. (4.12) represents the sum of
the PSD values corresponding to integer multiples of f0. For this reason this method
is usually known as the “spectral sum”. In this function, the predominant periodicities
are visible as salient peaks. Since in practice we must avoid aliasing, the spectral sum is
computed as follows

S(e2πf ) =

Kmax∑

k=1

|D(e2πkf )|2 (4.13)

where Kmax is an upper limit who ensures that half the sampling frequency is not ex-
ceeded, i.e., fKmax <

1
2 .

Figure 4.5 shows a periodicity profile computed using the spectral sum method, it
corresponds to the detection function of Figure 4.2-(a). The most salient periodicity is
noticeable as the largest peak at approximately 3.1 Hz.

Spectral product This method is quite similar to the above mentioned spectral sum, the
only difference consists in substituting the sum in Eq. (4.13) by a product, that is

P (e2πf ) =

Kmax∏

k=1

|D(e2πkf )|2. (4.14)

The spectral product is also a robust technique, Figure 4.6 shows the periodicity profile
computed using this technique when applied to the detection function of Figure 4.2-(a).
This method has the largest dynamic range among the four procedures presented.
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Figure 4.6: Periodicity profile computed via the spectral-product method.

4.1.2 Implementation

In the context of our analysis framework, the output of the sound-to-symbol conversion
is a set of signals (see §3.4) corresponding to the band-wise detection functions of the har-
monic (dsp(n)) and noise (dwp (n)) parts. The next step in the analysis consists in estimating
the periodicities embedded in those signals using the methods presented in §4.1.1. For
this purpose, the signals are processed as indicated in Figure 4.1.

For a given periodicity induction method, the procedure is repeated 2p times to ac-
count for the harmonic and noise detection functions in all subbands. Where p ∈ [1, . . . , 8]
if the uniform filter bank is used or p ∈ [1, . . . , 5] if it is the logarithmic filter bank. After
the periodicity induction in every channel has been calculated, profiles from all subbands
are merged into a single periodicity vector. A detailed explanation is provided below.

Block-wise induction From the four periodicity induction methods described above,
the ACF, the spectral sum (SS) and the spectral product (SP) operate in a block-wise fash-
ion. More exactly, these methods use as input a series of contiguous and overlapping seg-
ments taken from the detection function. Figure 4.7 illustrates this process, the detection
function3 d(n) is decomposed into a series of data vectors um where m ∈ [0, . . . ,M − 1].
Each vector has a length of ` samples and between two consecutive blocks there exists
and overlapping of ρ samples. Then, periodicity induction for every block um is com-
puted producing a vector signal

vm = T {um}
where T {·} stands for any of the three methods mentioned above (ACF, SS, and SP). For
the large majority of cases, rhythmic phenomena take place at relatively low-frequencies
(<12 Hz, i.e., periods beyond 0.08 s). For this reason, periodicity induction vectors vm

are trimmed, so that they only contain information in the frequency (or period) range of
interest.

For every frequency channel in the harmonic or noise parts (ds,wp ), we can see the
output of the periodicity induction as a time–period (for the ACF) or time–frequency (for
the SS and SP) matrix formed by the concatenation of the periodicity vectors:

[u0,u1, . . . ,uM−1]K×M (4.15)

3Since this process is exactly the same for all ds,w
p (n), for the sake of simplicity we drop the subscript and

superscript indexes.
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Figure 4.7: Block-wise decomposition and periodicity processing of d(n).

where K indicates the number of frequencies or periods considered during the periodic-
ity analysis.

Continuous induction Contrary to the rest of the methods, the bank of comb-filter res-
onators does not operate in a block-wise, but rather in a continuous fashion. In fact, this
method provides better instantaneous read-outs about periodicity behavior than the oth-
ers. There is a resonator filter hk(n) tuned for every periodicity we want to analyze and
its respective output has the same sampling frequency as the input signal d(n). Since the
total number of resonators is in the order of a few hundred4, the data size at the filter
bank output seriously increases when compared to the input size. In order to reduce the
data amount and to render this periodicity estimation method compatible with the afore
mentioned block-wise procedures, the filter bank output is decimated by a factor `

`−ρ .
This process is illustrated in Figure 4.8. Then, periodicity induction vectors are obtained
by decimation as follows

vm = [ŷ0(ˆ̀m), ŷ1(ˆ̀m), . . . , ŷK−1(ˆ̀m)]T for ˆ̀= `− ρ.

where the comb-filter output transformation ŷk(n) = T {(d ? hk)(n)} is given by Eq. (4.6)
and k ∈ [0, . . . ,K − 1].

4To be more precise: in a “typical” situation a subband signal d(n) is sampled at ≈200 Hz. Then, to
cover the periodicity range from 0.1 s (600 BPM) to 1.5 s (40 BPM) at least 250 resonator filters are required
for each subband. Based on this estimation, we can suggest that this technique has large storage memory
requirements.
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Figure 4.8: Continuous periodicity induction of d(n).

Periodicity data fusion In practice, the periodicity estimation methods described be-
fore operate in a sequential (and causal) fashion. It means that at every time instant m, a
total of 2P periodicity vectors v

s,w
p are computed, where P ∈ [5, 8] depends on the filter

bank in use and p ∈ [0, . . . , P − 1]. They represent the pulse salience of the ds,wp different
detection functions. The next part consists in merging all periodicity analysis profiles
into a single vector providing comprehensive pulse salience information.

This operation is carried in a two step process. First, every periodicity vector coming
from the harmonic and noise parts is normalized by its largest value and weighted by a
peakness coefficient cs,wm,p calculated over the corresponding v

s,w
m,p.

It is important to notice that after normalizing and during the data fusion, all vectors
have the same weight regardless of their effective contribution to the general periodicity
profile. During the merge, if a subband signal (from the noise or harmonic part) does
not contain any periodicity information (i.e., it has a rather ”flat” profile) it should not
have the same weight of a subband conveying a larger amount of useful information.
Therefore, the objective of this coefficient is to penalize flat profiles (vm bearing little
information) by a low weighting coefficient. On the contrary, a peaky profile leads to a
high-valued coefficient. We obtain this peakness coefficient as c = 1 − φ where

φ =

(∏K
k=1 vm(k)

) 1

K

1
K

∑K
k=1 vm(k)

.

Since the ratio of the geometric mean to the arithmetic mean is a flatness measure bounded
to the region 0 < φ ≤ 1, when c ≈ 1 means that vm has a peaked-shape. On the contrary,
if c ≈ 0, means it has a flat-shape.

The second step consists in adding information from all subbands coming from both
harmonic and noise parts:

γm =
1

2P

P−1∑

p=0

csm,pv
s
m,p +

1

2P

P−1∑

p=0

cwm,pv
w
m,p (4.16)

where the superscript s and w on the right side indicate the harmonic and noise part
respectively. Since this frame-wise process is repeated M times, then all the resulting γm
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are arranged as the column vectors to form a periodicity matrix of size K ×M as follows

Γ = [γ0,γ1, · · · ,γM−1]. (4.17)

Γ can be seen as a time–periodicity representation of the pulsations present in the audio
stream, since columns provide periodicity information while rows indicate the time po-
sition. Further analysis will be carried on this signal representation.

A natural question to ask is: why dealing with Γ and not selecting directly the most
salient pulse periods by performing a frame-wise peak-picking operation on the period-
icity profile? By adopting this approach it would be possible to throw away the rest of
the periodicity information. At first sight it might seem more advantageous from the
point of view of algorithm complexity. For example, by visual inspection of the period-
icity profiles in §4.1.1 it is possible to identify the peak corresponding to the most salient
period or frequency. In fact, we adopted this approach in (Alonso et al., 2004), by taking
frame-wise decisions using only a single scalar for representing the periodicity profile at
a given instant. While there is no noticeable difference when processing strong beat mu-
sic, we found this approach more vulnerable when dealing with challenging instances.
To render a meter analysis system more robust, we consider it is much preferable to avoid
local decisions about pulse periods and instead gather periodicity salience information
from a longer time-span prior to determining any period values. Additionally, with more
periodicity data available it is possible to search for interconnections between metrical
pulses at different levels.

4.2 Pulse-period tracking

At this point of the analysis, we have a series of metrical level candidates whose salience
over time is registered in the columns of Γ. The next stage consists in parsing through
the successive columns to find at each time instant m the best candidates and thus track
their evolution. During the present work we use the concept of Dynamic program-
ming to carry out this task. In fact, this technique has been extensively used to handle
many kinds of situations where sequential decisions are required. Actually, pulse-periods
tracking in the context of rhythm analysis is not an exception, Laroche (2003), Peeters
(2005) and Collins (2005b) have used this technique for solving the same task. Other
techniques have also been proposed, for instance Hidden Markov models (Klapuri, 2004;
Klapuri et al., 2006) and particle filters (Hainsworth & Macleod, 2003a; Hainsworth, 2003;
Sethares et al., 2005).

4.2.1 Dynamic programming

As briefly mentioned, Dynamic Programming (DP) is a mathematical concept used for
the analysis of sequential-decision problems. The basic principle has been applied through-
out the history of mathematics, but DP was popularized as we know it today by the
mathematician Richard Bellman in the early 1950’s. The Principle of Optimality, as Bellman
called the fundamental idea behind DP, has been applied since then to analyze hundreds
of optimization problems in areas such as engineering and economics, among others. Ac-
cording to Silverman & Morgan (1990), the name of DP was probably affixed because, at
that time, decision-making, mathematical methods which could be solved on early digi-
tal computers often had the word ”programming” in their name, such as linear program-
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ming. Decision making for dynamical systems, or feedback decision making, probably
implied ”dynamic programming”.

The principle of optimality Traditionally, DP has been used to find ”optimal” solutions
to series of related events structured in a logical order. We consider an ”optimal” solution
as one that minimizes or maximizes a performance or cost function. Optimization over
time can often be regarded as ”optimization in stages”. In general, during optimization
we must trade off our desire to obtain the lowest possible cost at a given present stage
against the implication this would have for costs at future stages. The best action mini-
mizes the sum of the cost incurred at the current stage and the least total cost that can be
incurred from all subsequent stages, consequent on this decision. This is known as the
Principle of Optimality.

Definition 4.1 (Principle of optimality). An optimal sequence of decisions has the property
that whatever the initial state and initial decision are, the remaining decisions must constitute
an optimal policy with regard to the state resulting from the first decision (Bellman & Dreyfus,
1962).

If the reader is interested, general purpose details about implementing the DP algo-
rithm can be found in Rabiner & Juang (1993) and Cormen et al. (2001), in this part we
provide the insights about its operational principle and then we adapt it to our context.

Our periodicity tracking problem amounts to selecting a sequence of track states
(θm, θm−1, ..., θ0) that maximizes a scoring function S reflecting the local pulse salience
for different periodicity values. In the general case, an exhaustive brute-force search over
all possible candidates has a too large computational cost and in some cases it is even
intractable. Our DP approach formulates the problem as a first-order Markov process,
i.e., the scoring function is separable into the sum of functions

S(θm, θm−1, . . . , θ0) = Sm(θm, θm−1) + Sm−1(θm−1, θm−2) + · · · + S1(θ1, θ0) (4.18)

where the set θm represents the pulse-salience state vectors at each observation interval
m. Because each function Sm(θm, θm−1) depends only on a subset of the pulse-salience
state variables, the optimization can be carried out in stages. In this case, the result of
each progressive stage depends only on the results of the previous stage (the Markov
process principle), a single reduced-dimension function (which we will call later local
constraint), and the current pulse-salience observations. This procedure forms the basis
for DP, which can be summarized by the nested expression

S̃(θ̃m, θ̃m−1, . . . , θ̃0) =

max
θm

[
max
θm−1

[
Sm(θm, θm−1) + max

θm−2

[
Sm−1(θm−1, θm−2) + · · · + max

θ0
[S1(θ1, θ0)]

]]]

(4.19)

where S̃ denotes the maximum achievable value of the track-scoring function, and the
set of θ̃t are the state values (i.e., pulse-saliences) producing this maximum.

The DP maximization procedure is carried out by forming a sequence of intermediate
one-dimensional functions ht−1(θt) that represent the maximum partial sum (or score) of
Sl(θl, θl−1) for l = 1, 2, . . . , t. Beginning at the innermost nesting level, h0 is created by
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Figure 4.9: Dynamic Programming local constraint for path tracking.

locating the maximum value of θ0 that maximizes S1 for each possible discrete value of
θ1:

h0(θ1) = max
θ0

[S1(θ1, θ0)]. (4.20)

Both the maximizing value of θ0 and the corresponding maximum value h0(θ1) are
stored for each θ1. In the second and every subsequent t-th DP processing stage, the
value of θt−1 that maximizes the partial sum, along with the achieved maximum value,
is chosen and stored for each possible value of θt:

ht−1(θt) = max
θt−1

[ht−2(θt−1) + St(θt, θt−1)]. (4.21)

At some stagem where a decision is required, the end-state θm providing the optimal
solution is found by maximizing hm−1 over all candidate θm:

S̃(θ̃m, θ̃m−1, . . . , θ̃0) = max
θm

[hm−1(θm)]. (4.22)

In our implementation, using Γ as the DP input data (see Eq. (4.17)), the maximization

procedure is performed M times, with only K̂ candidate state transitions evaluated (as
explained below) for each of the K possible states (potential pulse-saliences) in θt. The

computational load for DP is of KK̂M operations, where K̂ � K.

4.2.2 Finding and tracking the best paths

During the implementation, we restrain the range of variation of the metrical pulses. This
restriction is based on the fact that in conventional music the periods of the metrical levels
generally vary slowly in time, and sharp speed or rhythm transitions are less frequent.
For this reason, instead of evaluating (with a higher computational cost)K×K potential

transitions when going from a state in θt−1 to a state in θt, we only allow a total of K × K̂

potential transitions. Moreover, from those K̂ allowed transitions for each possible state
in θt−1, we introduce a penalization that very lightly discourages period variations and
favors horizontal paths (i.e., metrical levels with constant periods).

In practice we deal with the columns of ΓK×M , given by Eq. (4.17), as the observations
θt. Motivated by heuristical reasons, we have implemented Γ such that a displacement of
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Figure 4.10: Tracking of the three most salient pulsation paths for the song Le bruit du
frigo (by the french pop-rock group ”Mano Negra”). The relationship between periodicity
paths is 1 : 3

2 : 3.

one position in the periodicity (vertical) axis corresponds to about 1 BPM, the exact value
depending on the method used to estimate the periodicity. Based on this considerations,
in practice we control the transitions going from the state θt−1 to the state θt using the

constraint illustrated in Figure 4.9. That is, we fix K̂ = 5 and we only allow any sudden
accelerando or ritardando of slightly above 2 BPM between two successive time instants5.

In addition, the DP stage has been designed to track not only the best path, but also
others. Inside the tracking algorithm, the best path is seen as the most energetic trajectory
from t = 0 to t = M . To search for a second and other paths we impose the following
restriction: any path sharing segments with or being too close (< 10 BPM) to another
more energetic paths is pruned. It is possible to iterate upon this restriction and this
operation will outline other secondary high-energy paths, which are (practically always)
related to the most energetic path by a rational factor.

Next we present two examples of how the DP algorithm detects and smoothly tracks
the periodicity paths while avoiding abrupt transitions. This examples were calculated
using the SS method, with an analysis window of size ` = 4 s and ρ = 7

8`, that corre-
sponds to a time step of 0.5 s between consecutive observations. In addition, a displace-
ment of one position in the vertical axis corresponds to an increase/decrease of 1.22 BPM
in the periodicity index.

First we present a pop-music example, the music signal has a
(3
4

)
time-signature. The

name of the song under analysis is Le bruit du frigo performed by the french group ”Mano
Negra”, it is the same signal that we used for the detection function example back in
Figure 4.2-(a). The annotated tempo for this excerpt is 185 BPM, additionally for this
particular example the tactus and the tatum are represented by the same metrical level. In
Figure 4.10 we can see the respective time–periodicity matrix, where strong pulse salience

5In practice, there exists no universal step size. This value entirely depends on the nature of the signal
under analysis. If it has a fairly stable tempo, large windows (` > 6 s and ρ < 1

2
`) can be used, i.e., a time

step of 3 seconds. If the tempo is likely to change, smaller values should be employed (e.g., ` ≈ 4 s and
ρ < 7

8
`), corresponding to a time step around 0.5 s.
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Figure 4.11: Tracking of the three most salient pulsation paths for Mozart’s Rondo Alla
Turca. The relationship between levels is 1 : 4

3 : 2 : 4

locations are indicated by red tones and dark-blue zones indicate the periods for which
there exists no activity. In the upper part of the figure, pictured in black-trace we can see
the most energetic path detected by the DP algorithm. During most part of the analysis
it perfectly coincides with the annotated tempo and only exhibits small fluctuations. In
a similar way, the DP algorithm identifies the second most salient periodicity at about
62 BPM and the third most salient at 92 BPM. From the bottom path to the top, the relation
between the periodicity levels is 1 : 3

2 : 3.

The second example is a more challenging case, the music signal has a
(
2
4

)
time-

signature and its name is Sonate Opus KV–331 Rondo Alla Turca from W. A. Mozart. As
in the previous case, we analyze an excerpt of 30 s length, but opposite to the earlier
example this one has a tempo that varies through time, as can be seen from the time–
periodicity matrix of Figure 4.11. The average of the tempo annotation for this excerpt
is 125 BPM. By visual inspection we could expect that the most salient periodicity is the
thick red-line, in the upper part, oscillating around 254 BPM. Nevertheless the DP al-
gorithm considers it is the thinner and less energetic path with average periodicity of
126 BPM. The reason is that the tracking algorithm hooks-up better with this trajectory
since the other one displays large variations (for example at 8 s, 15 s, 25 s) that it cannot
follow. And in fact, this oscillating path is second most salient periodicity. The third one
is located at 84 BPM and the fourth most salient at 63 BPM. From the bottom path to the
top, the relation between the periodicity levels is 1 : 4

3 : 2 : 4.

4.2.3 Selecting a periodicity path as the tempo

At this point of the analysis, we have a set containing the most energetic periodicity
paths and their respective salience. The next step consists in estimating which is the
”best” tempo candidate from this list. For this purpose, we use an approximate a priori
distribution of beat period hypotheses as a weighting curve to find the most likely beat
period , i.e., we multiply the salience of each element in the periodicity path by a value
which directly depends on the beat period, then the path having the largest value is
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considered as the actual tempo. This method has been previously used in the literature
and a number of weighting curves have been proposed as shown below.

According to Moelants (2002), the borders of the ”existence region” of tempo lie be-
tween 40 and 300 BPM (periods between 200 and 1500 ms). However, Moelants points
that these numbers are approximate and should be interpreted as labels for a small
’tempo zone’. Determining the borders exactly is difficult, mainly because the transition
is not abrupt, but gradual: tempi near the edges of the existence region are still not so
easy to perceive or to perform. This implies that somewhere in the middle there must be
a point or a zone where tempo perception is optimal, the so-called preferred tempo. Based
on his experiments, Moelants suggests that the preferred tempo is close to 120 BPM.
Then, using as premise the existence of this optimal region for periodicity perception, he
develops a resonance model for pulse perception which is given by the expression:

WR(f) =
1√

(f2
0 − f2)2 + β f2

− 1√
f4
0 + f4

, (4.23)

whereWR is the effective resonance amplitude, f is the beat frequency (in Hertz) f0 is the
resonant frequency (or preferred tempo, also in Hertz) and β is a constant which controls
the damping of the function: with higher damping the distribution gets broader, the peak
becomes less prominent and slightly moves to a slower tempo than the actual resonance
frequency. Figure 4.12 shows an example whereWR has been plotted for β = 1 and β = 4
for f0 = 125 BPM.

Parncutt (1994) models prior distribution of beat period hypotheses as a two-parameter
log-normal distribution given by

WL(τ) =
1

τσ
√

2π
e
− 1

2σ2

“

ln
“

τ
µ

””2

(4.24)

where τ is the beat period, σ and µ are the shape and scale parameters respectively. Figure
4.12 presents the beat frequency aspect6 of this weighting curve for µ = 0.55 s (109 BPM)
and σ = 0.28 s. The value of these parameters were estimated by Klapuri et al. (2006) by
fitting the log-normal distribution to the TUT hand-labeled test database (see §2.5.2).

Davies & Plumbley (2005, 2006) use as weighting function the Rayleigh distribution
function

WG(τ) =
τ

µ2
e
− τ2

2µ2 (4.25)

where the µ parameter sets the strongest point of the weighting and τ indicates the beat
period. Figure 4.12 shows the beat frequency aspect of WG for µ = 0.48 s (125 BPM).

As seen from Figure 4.12, all these weighting functions have highly resembling shapes.
Nevertheless, we opted for the resonance model developed by Moelants (2002) with
β = 0.4, since it has proved to have a close fit to the perception of tempo in a wide
variety of cases (McKinney & Moelants, 2004).

4.3 Beat location

Throughout the previous sections of this chapter we have solely focused on estimating
the periodicities of the acoustic events that constitute the audio signal. In practice it is

6Notice that it is not the Fourier transform of WL(τ ), but a plot in terms of beat frequency (in BPM)
instead of the beat period.
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Figure 4.12: Weighting curves representing the prior distribution of beat period hypothe-
ses.

fundamental to know not only the rate at which these events occur, but also to identify
their precise location (see for example Figure 2.1). This operation is usually known as beat
phase location or simply beat location. During our development, we suppose that a specific
pulse period (e.g., the tempo) has been selected from the list of periodicities obtained in
§4.2.3 and we use this information to locate the instants where the related acoustic events
occur or should occur. Expressed in pragmatic terms: given an audio signal and a selected
periodicity level, our intention is to play the inverse role of a metronome by placing a
beep at every time instant where a musical onset is detected if there exists one nearby,
or simply mark the position where it would have had place in case there is no acoustic
event detected in neighboring zone. Furthermore, positions are always calculated as the
elapsed time from the beginning of the analysis until the instant where an event has or
should have place.

We have developed two different methods to perform beat location. The first one is
causal, has a minimal computational complexity and is based on the idea of predicting
beats. The second one is non-causal, has a higher computational cost than its above
mentioned counter part and is based on the idea of time-alignment of data sequences.

Although it is possible to carry out the beat location for every detection function in
the set (remember that we have a total of 2P subband signals) and then fusion the re-
sults, based on our heuristical experience we consider that it is not necessary. On the
contrary, band-wise beat location would increase the already non-neglectable computa-
tional load of our system. Thus, we obtain a new signal by summing the contributions of
the detection functions from all subbands in the harmonic and noise parts, that is:

d(n) =
P−1∑

p=0

(dsp(n) + dwp (n)). (4.26)

Both of the methods described in this section use d(n) as input signal. In addition, we
call T the period at which the beat location is performed.
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4.3.1 Causal beat-location

This proposal is based on a cross-correlation between a comb-like signal and the detection
function. A rather similar approach to find beat locations was independently developed
by Davies & Plumbley (2004). In addition, this model also bears resemblance to the beat-
tracking system developed by Laroche (2003). For the development, the signal analysis
is carried out in a block-wise fashion.

This method mainly targets signals with strong and stable beat, thus it uses fairly
large analysis windows (` ≥ 5 s and an overlapping factor ρ < 1

2`), since T is not likely
to change abruptly between successive frames.

First, we create an artificial pulse-train q(n) of length 1
2` and tempo τ0 = 60

T0
, where

T0 is the beat period for the first analysis window. Figure 4.13 depicts the aspect of q(n).
Next, we compute the cross-correlation between this comb-signal and the first analysis
window d̂(n), that is:

rd̂q(n) =
∑

τ

d̂(τ)q(n + τ). (4.27)

Let n0 be the time-index where this cross-correlation is maximal, from now we will con-
sider as the initial beat location. Based on the premise that the tempo of the signal under
analysis is fairly constant, for the second and successive beats in the jth analysis win-
dow a beat period Tj is added to the previous beat location, i.e., ni = bni−1 + Tjc, for
i = 1, 2, . . ., j = 1, 2, . . . and a corresponding peak in q(n) is searched within the ex-
pectancy region ni ± ∆. We consider that ∆ ≈ 0.15Tj is a reasonable value to tolerate
non-intentional deviations. If no peak is found, the beat is placed in its expected position
ni. When the last beat in the current analysis windows occurs, its location is stored in
order to assure the continuity with respect to the first beat of the new analysis window.
If the tempo of the new analysis window (Tj+1) differs by more than 10% with respect to

the previous value, i.e.,
|Tj+1−Tj |

Tj
≥ 0.1, a new ”initial” beat is estimated using the same

process described above. The subsequent beat locations are searched using the new beat
period and no reference is made to the previous value.

Figure 4.14 presents an example of this method, the excerpt under analysis was taken
from Le bruit du frigo. From top to bottom, the first plot shows the cross-correlation be-
tween d̂(n) (blue trace) and q(n) (red) trace). In the second one, the initial beat phase
location (marked with a black line) is used to detect the regularly spaced beats (marked
as red diamonds), the last location (at about 4.8 s) is stored. The bottom plot uses last
beat location in the previous analysis window as the initial phase (marked with a black
line) who is used to detect the upcoming beats (marked with a black line). It can be seen
that one beat was missed at about 7 s, because the peak was located off the search region.
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Figure 4.14: Causal beat location example using the signal Le bruit du frigo. (a) Cross-
correlation between d(n) (blue trace) and q(n) (red trace). (b) Initial beat phase location
(black trace) and detected beats (red trace). (c) Second analysis frame: initial beat phase
(black trace) and detected beats (red).

Nevertheless the algorithm hooked up at the next beat position.
This method has the advantage of having a very low computational complexity yet it

displays a rather good performance if the required conditions are met. On the contrary,
it lacks of robustness if they are not properly satisfied. For this reason we decided to
implement another method more robust to tempo variations.

4.3.2 Non-causal beat-location

This method is based on the idea of aligning two data series. For this purpose we import a
technique called Correlation Optimize Warping7 (COW) which was originally proposed
by Nielsen et al. (1998) in the context of chromatography8 as an analysis tool to compare
the profiles of chemical substances. In fact, the visual resemblance between our detection
functions and chromatographic profiles is remarkable, see Figure 4.15 for an example of
the alignment of two chromatographic profiles. This technique can be seen as a high-
performance block-wise Dynamic Time Warping (DTW). In fact, Tomasi et al. (2004) con-
duct a functional comparison of both methods and they argue that COW is much more
efficient in computational terms since it has a smaller search space.

7The source code of this algorithm is available in the author’s website.
8Chromatography is a common form of mass spectrometry which is often used in physical and analytical

chemistry for the identification of substances, through the spectrum emitted or absorbed.
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Figure 4.15: An example using Correlation Optimized Warping (COW) to align two chro-
matographic profiles (reproduced from (Nielsen et al., 1998)).

In our context, the alignment involves d(n) as one of the sequences and the other
one is the pulse train q(n) , where T is the distance between two consecutive pulses
and is considered to be constant. Both signals have the same length and our goal is to
independently move every “rigid” pulse in q(n) and to match it with a beat pulse in d(n).

Initialization Since the COW algorithm has been designed to match shapes, we must
create a pulse train q̂(n) whose pulses look like the beat pulses in d(n). The best way
to assure the likeness is by extracting the pulse shape from d(n), hence let g(n) be the
average pulse-shape as depicted in Figure 4.16, extracted from 20 s of Le bruit du frigo.
We consider that g(n) has a width of approximately 11 samples (≈ 60 ms), since any
additional samples are close to zero and it is important to keep the pulse-width as short
as possible. Then we form q̂(n) as

q̂(n) =

Kmax∑

k=0

g(n) ? δ(n − kT ), (4.28)

where Kmax is merely an upper limit to ensure that the length of d(n) is not exceeded.
The time warping algorithm is based on an optimization procedure. If we manage to
bring nearer the pulses in q̂(n) to the pulses in the detection function, we will provide a
good initialization clue to the warping algorithm9. Let q(n) be the time-shifted version
of q̂(n) whose pulses best match those in d(n), and where both signals have the same
length. Now we are ready to start warping individually each pulse in q(n) to match one
(if it exists) in d(n).

Correlation Optimized warping The COW method (Nielsen et al., 1998) aims at align-
ing two data sequences by piecewise linear stretching and compression (better known

9It can be done by computing cross-correlation between d(n) and q̂(n). In fact it is only necessary to
calculate this correlation in one period, i.e., 0 ≤ τ < T .



4.3. BEAT LOCATION 115

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Time (samples)

A
m

pl
itu

de

Figure 4.16: Average pulse-shape in d(n).
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Figure 4.17: Schematic presentation of the warping problem.

as warping) of the time axis of one of the signals. Aligning by piecewise linear warp-
ing involves dividing the signals into a number of blocks that are each warped linearly.
Because the number of sections and the number of ways each section can be warped is
finite, the number of possible solutions is also finite. The algorithm sets up the question
of finding the optimal warpings as a combinatorial optimization problem, which is later
solved by DP.

For the sake of clarity, the same notation from (Nielsen et al., 1998) will be used in this
part. For the rest of the explanation d(n) will be known as the target signal T , q(n) as the
profile P to align with it, yielding the aligned profile P ′ . We suppose that P and T have
L + 1 data points and L sample intervals. These signals can be divided into sections of
length m as shown in Figure 4.17. The number of sections is N = L

m . Each section may
be warped to a smaller or greater length. The end-points of the sections are referred to as
the nodes and the position of the starting point of section i after warping is denoted xi.
Node 0 is the starting point of the first section (x0 = 0) and node N is the end point of
the entire profile after warping (xN = L). The warpings examined consist of the integer
values from 0 to t, where t will be referred to as ”the slack” (see Figure 4.17).

Determining the optimal alignment is now a question of finding the optimal combina-
tion of warpings of the N sections where no section may be warped more than t sample
intervals. The warping of section i is called ui. The quality of the alignment is determined
separately for each section i by calculating the correlation coefficient10 ρ between section
i after warping and the corresponding segment of the target. Nielsen et al. (1998) justifies

10The correlation coefficient ρ(x, y) indicates the strength of the linear relationship between two data sets
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the use of the correlation coefficient arguing that it provides a good measurement of the
covariations in data sets, thus making of it a good choice for calculations of similarity.
The alignment quality function (ρ in this case) is termed the benefit function f , using the
short notation f(I) = ρ(IP , IT ), where I denotes an interval between two node positions.
By defining the optimal combination of warpings as the one that gives the largest value
of the summed correlation coefficients, this problem now directly solvable by DP.

The optimal combination of warpings defines the optimal set of node positions after
warping x

∗. The problem is then described by the constraint intervals x0 = 0 < x1 <
· · · < xN−1 < xN = L and ui ∈ [−t; t], i = 0, . . . , N − 1, then for all xi+1 = xi +m+ ui

x
∗ = arg max

x

(
N−1∑

i=0

f([xi;xi+1])

)

= arg max
x

(
N−1∑

i=0

ρ(P ′[xi;xi+1], T [xi;xi+1])

)
. (4.30)

This problem is then solved using a DP algorithm to examine all possible combina-
tions of the variables in a rational fashion: for each section i the optimal warping ui is
calculated for possible node xi.

Once the pulse alignment between both signals has finished, we can detect the beat
locations by just searching the closest peak (within a small range) in T to every pulse
in P ′. In case there exists no acoustic event at given position, the beat location will still
be marked due to the pulse spacing constraints. One way to reduce the computational
complexity and to speed-up calculations is by conducting a block-wise alignment. This
operation reduces not only reduces the search space in the DP algorithm, but also allows
larger tempo deviations.

Below, we present an alignment example. To compute it, the section size was set to
m = 15 and the slack to t = 3. The intention of these values is to favor similarities
between blocks who contain whole pulses.

Figure 4.18 shows an example with the same signal used in the causal location case.
The top plot shows the initialization step. We can see that some pulses are practically
aligned (towards the end), while others are in between. In the bottom shows that all
pulses in both signals are perfectly aligned.

4.4 Tatum estimation

In Chapter 1 we highlighted that the tatum can be a perfect short-time musical unit for
segmentation and analysis purposes. As a reminder, the term tatum refers to the lowest
metrical level, i.e., a regular pulse train that a listener intuitively infers from the timing
of the musical events. For Bilmes (1993b) and Gouyon et al. (2002), it is roughly equiva-
lent to the time division that most highly coincides with note onsets: a sort of trade-off
between how well a regular grid explains the onsets, and how well the onsets fit to that

x and y of n points (Weisstein, 1999). It is calculated as:

ρ(x, y) =
(
P

xy − nx̄ȳ)2

(
P

x2 − nx̄2)(
P

y2 − nȳ2)
. (4.29)
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Figure 4.18: Non-causal beat location by aligning two data sequences. The signal under
analysis is Le bruit du frigo. (a) Non-aligned signals P (red dotted trace) and target signal
T (blue line trace). (b) Output of the COW, aligned profile P ′ (red dotted trace) and T
(blue line trace).

grid. In the last part of our research we have focused on developing a tatum estima-
tion system. Although the technique described below is still preliminary work, we have
decided to include it in this report since it has produced encouraging results.

A number of tatum estimation techniques have been proposed in the literature. One
of the first algorithms was proposed by Seppänen (2001b), it uses a time-varying IOI
histogram with an exponentially decaying window for past data, enabling the tracking
of accelerandos and ritardandos. Gouyon et al. (2002) proposed later a comparable sys-
tem also based on an adaptive IOI histogram, in both cases the tatum period is found
by calculating the greatest common divisor (GCD) integer that best estimates the his-
togram harmonic structure. To find the tatum, Gouyon et al. (2002) and Uhle et al. (2004)
introduced a two-way mismatch (TWM) error procedure which was originally proposed
for the estimation of the fundamental frequency in audio signals (Maher & Beauchamp,
1994). The principle of this method is as follows: two error functions are computed,
one that illustrates how well the grid elements of period candidates explain the peaks
of the measured histogram, another one illustrates how well the peaks explain the grid
elements. The TWM error function is a linear combination of these two functions. The
proposal of Klapuri et al. (2006) is based on a comb-filter resonator and a probabilistic
back-end11. The method developed by Jehan (2005a) is built around a moving autocorre-
lation computed on the detection function. To refine that estimation and detect the phase,
the moving autocorrelation is aligned against a set of templates (or patterns).

In this section, we introduce a non-causal technique to calculate the tatum period.
We suppose that the tempo of the instance under analysis is stable during the tatum

11This method jointly computes three metrical levels: the measure, the tactus and the tatum.
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p(t)

T

d(t)

Figure 4.19: Detection function d(t) seen as digital message.

estimation procedure. Our proposal considers the problem of estimating the tatum as
peculiar digital communications situation. In fact, the detection function can be modeled
as a baseband Pulse-Amplitude Modulated (PAM) signal. In addition, let us suppose that
the detection function is a continuous time signal d(t) where t ∈ R. This idea is illustrated
in Figure 4.19 and can be explained by the expression

d(t) =
∑

n

an p(t− nT ), (4.31)

where {an} is an arbitrary and stationary data sequence, p(t) is the elementary pulse-
shape and T is the tatum period. Contrary to the traditional case in digital communica-
tions, our goal is not to detect the data sequence but to determine the rate ( 1

T ) at which
the information is transmitted. We must point that this model represents a reductive
panorama of the actual situation in metrical analysis: the elementary pulse-shape (p(t))
representing the onsets is unknown and may vary from attack to attack; in addition, this
scheme does not take into account the presence of additive and impulsive (false onsets)
noise. However, we consider it is adequate enough to estimate the tatum period.

The spectral occupancy and composition of many digital signaling techniques have
attracted much attention in the literature. These spectral properties can be derived from
the knowledge of the Power Spectral Density (PSD) of the line code. In Win (1998);
Proakis (2000) and Simon et al. (1995), it has been shown that the PSD, Sd(f), of Eq. (4.31)
is formed of continuous as well as discrete components

Sd(f) = Scd(f) + Sdd(f), (4.32)

where the continuous part is

Scd(f) =
1

T
|P (f)|2(Ra(0) − µ2

a) +
2

T
|P (f)|2

∑

n 6=0

[Ra(n) − µ2
a] cos(2πnTf), (4.33)

where |P (f)|2 is the PSD of the pulse-shape p(t), µa and Ra(n) are the mean and autocor-
relation function of the sequence {an}; and the discrete part is given by

Sdd(f) =
1

T 2

∑

n

∣∣∣P
(n
T

)∣∣∣
2
µ2
a δ

(
f − 1

T

)
. (4.34)

It is difficult to manipulate the pulse-shape p(t), since it entirely depends on the na-
ture of the audio signal and it is susceptible to change from attack to attack for a given
signal. For this reason we opted for an easier task: control the {an}.
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Figure 4.20: Detection function transformation. (a) Input signal (blue trace) d(n) and
(in dashed red-trace) the adaptive threshold θ(n). (b) the uniform-amplitude pulse train

d̂(n).

In fact, one of the reasons which makes the tatum rather difficult to detect is that short
notes (bearing the tatum) are less energetic than notes having a larger time-span. For that
reason, to ease the tatum estimation we have decided to reinforce the low-energy short
notes and to level all of the acoustic events at a single amplitude level.

Now, let us consider again the detection function as a discrete signal d(n) where
n ∈ Z. The first step is to distinguish the true onset peaks in d(n). For that purpose,
we assume that the noise and the unwanted peaks are considerably smaller in amplitude
compared to true note attack peaks. A peak-picking algorithm that selects peaks above
a dynamic threshold calculated with the help of a median filter is a simple and efficient
solution to this problem. This solution (very similar to that used in §3.2 to whiten the au-
dio signal) has already been proposed in the literature to solve this problem (Bello, 2003).
The median filter is a nonlinear technique that computes the pointwise median inside a
sliding window of length 2L+1, formed by a subset of d(n). The median threshold curve
θ(n) is given by the expression

θ(n) = C · median(gm) (4.35)

where gm = {dn−L, . . . , dn, . . . , dn+L} and C is a predefined scaling factor to artificially
rise the threshold curve slightly above the steady state level of the detection function. To
ensure accurate detection, the length of the median filter must be longer than the average
width of the peaks of the detection function. In practice, we set the median filter length
to 150 ms. An example of this operation can be seen in Figure 4.20-(a), in blue trace is
the detection function d(n) and in the lower part of the figure in red trace the dynamic
threshold.

A peak-processing stage selects as potential onset peaks those above the adaptive
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Figure 4.21: (a) Power Spectral Density of the detection function d(n). (b) Power Spectral

Density of the uniform-amplitude pulse-train d̂(n)

threshold and discards those having a too small width (<20 ms), considering them as
artifacts. That is, we compute the signal d̃(n), whose negative part is discarded:

d̃(n) =

{
d(n) − θ(n) if d(n) − θ(n) > 0
0 otherwise.

(4.36)

Then, each peak shape in d̃ is divided by its maximum value to obtain the uniform-

amplitude pulse train d̂(n). An example is illustrated in Figure 4.20-(b).

The last stage of the algorithm requires the calculation of the PSD of d̂(n). To im-
prove the PSD estimation, we use the method proposed by Welch (1967), which consists
in decomposing the pulse train signal in several short-windows, computing their peri-
odograms and in calculating their time average. The frequency corresponding to the
tatum rate should coincide with the largest peak of the power spectrum. The accuracy
of this method heavily depends on the quality of d(n). In the presence of a defective de-
tection function (containing dull peaks and/or many false onsets), this technique is not
very useful.

Figure 4.21 presents and example using a pop/rock music signal. Figure 4.21-(a)
shows the PSD of d(n), we can see that the largest maximum is located at the tempo

frequency at about 2.5 Hz (≈150 BPM). Figure 4.21-(b) presents the PSD of d̂(n), this time
we can see that the tatum frequency at about 10 Hz (≈600 BPM) is indicated by the largest
peak of the power spectrum.

4.5 Conclusion

During this chapter, we addressed the problem of estimating certain rhythmic parame-
ters from the musical stress profile. In fact, we know that this signal is formed of recurrent
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pulses conveying the rhythm information of the musical piece under analysis. To induce
rhythmic metrics, the first step consists in estimating the underlying periodicities in the
detection function d(n). In this part, we have proposed four different procedures. Two
of them are time-domain methods that have been previously used in the literature: the
Autocorrelation Function (ACF) and a bank of comb-filter resonators (CF). The two oth-
ers are spectral methods and are known as the spectral sum (SS) and the spectral product
(SP). These techniques have not been used in the context of rhythm analysis before, how-
ever they were developed and have been applied as pitch estimation procedures. We
have also showed how these approaches can be used to carry out block-wise periodicity
induction (ACF, SS and SP) or continuous periodicity induction (CF).

Most of the systems proposed in the literature carry out the periodicity data fusion
by directly summing information from all subbands. This operation has an inherent risk
since it is not possible to guarantee that all subbands are informative and in some cases
they might negatively affect the result. Two possible situations must be considered:

? subbands carrying little periodicity information should have less influence during
the data fusion;

? a highly energetic subband containing many false onsets must not bias the period-
icity description.

In order to reduce these potential problems, before integrating the periodicity vectors we
have introduced a bandwise normalization and weighting stage.

We have also proposed a method to keep track of the most salient pulse periods
present in the detection function. This approach is based on a multi-path dynamic pro-
gramming algorithm which provides temporal stability as well as a robust multi-periodi-
city tracking, even in the presence of arrhythmic or quiet musical passages. The output
of the tracking stage only provides information about the periodicities of the potential
metrical levels. Next, we showed how the tempo can be estimated by weighting the
saliences of the periodicities calculated by the tracking stage. The weighting function
that we used is based on a priori knowledge of the tempo preferred by humans. Then
we introduced two methods to conduct beat location. The first one is causal and is based
on the idea of ”predicting” beat locations. The second method is a novel technique in
the context of rhythm analysis and is based on the alignment of an artificial pulse train.
This approach is formulated as an optimization problem which is solved by dynamic
programming. Finally, we introduced a tatum estimation algorithm based on the idea of
pruning (thresholding) and modifying the amplitude of the peaks present in the detec-
tion function.

If the musical stress profile bears adequate rhythmic information, estimating and, to
a lesser extent12, tracking the most salient periodicities is only a partial solution to the
metrical analysis problem stated in §2.2. The open question remains selecting and connect-
ing certain of these salient pulsations into valid metrical levels. However, this process
would require to build into the system a minimal musical knowledge. This additional
information would help to estimate the time signature and the measure (or bar) period.
Although these problems are not addressed in the present work, mainly because of the
lack of the appropriate evaluation material, it is perfectly feasible to extend the current
system capabilities to include them.

12We do not address the problem of tracking large timing deviations. As mentioned in §2.5, we suppose
that the musical instance under analysis has a stable tempo.
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Chapter 5

System performance: results and
discussion

During the previous chapters we have introduced the constituent blocks of a modular
system which carries out metrical analysis for audio recordings. The aim of this chapter
is to present a quantitative evaluation of the algorithm performance, giving results for
a number of different configurations that can be derived from the general system illus-
trated in Figures 3.1 and 4.1. In addition, we discuss the insights obtained from these
results, highlighting the limitations of our approach as well as its advantages.

An exhaustive evaluation testing all the potential combinations of the internal pa-
rameters and blocks of the system proves to be computationally expensive and perhaps
redundant. For this reason, only the efficacy of those configurations that we consider
as most relevant and illustrative will be explored. First, §5.1 presents the effect of vary-
ing the (rhythm) analysis window-length and its overlapping factor, followed by §5.2
which provides a more detailed analysis by examining the results according to the musi-
cal genres present in the test database. Then, §5.4 discusses the effect of carrying out the
harmonic plus noise decomposition on the input signal. In §5.5, we measure the impact
of the frequency decomposition in the results by testing a number of different alterna-
tives. In addition, §5.6 compares the performance of our proposal to estimate the musical
stress profile to other methods found in the literature. §5.7 evaluates the computational
complexity for a number of different variations of the general system. Then, §5.8 ex-
amines the accuracy of the beat-phase estimation methods and finally §5.9 evaluates the
effectiveness of the tatum estimation procedure.

The quantitative evaluation of metrical analysis systems is an open issue. Appropri-
ate methodologies have been independently proposed by Goto & Muraoka (1997a) and
Temperley (2004), however they rely on an arduous or extremely time-consuming pro-
cess to obtain the ground-truth database. Due to such limitations, the first part of our
quantitative evaluation is confined to the task of estimating only the scalar value of the
tactus (in BPM) of a given excerpt, instead of an exhaustive evaluation at several metrical
levels involving beat-rates and phase locations.

As mentioned in §2.4, a first step towards benchmarking metrical analysis systems
has been proposed by Gouyon et al. (2006). In our analysis, we adopt a similar approach
to evaluate the output of our system by using two different metrics:

? Accuracy 1: the tactus estimation must lie within a 5% precision window of the
ground-truth tactus,
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? Accuracy 2: the tactus estimation must lie within a 5% precision window of the
ground-truth tactus or half, double, three times or one-third of the ground-truth
tactus.

The reason for using the second metric is motivated by the fact that the ground-truth used
during the evaluation does not necessarily represent the metrical level that most human
listeners would choose (Gouyon & Dixon, 2005), even if a perceptual weighting curve to
find the most likely beat period is used (see §4.2.3). This is a widespread assumption
among beat-trackers and it is largely employed during the evaluation of metric systems.

Throughout this chapter, whenever possible the results will be presented in separated
fashion according to the test database. The reader must remember that we have access to
two different test corpus as explained in §2.5. The first one is the ENST database which
contains 961 instances and the second one is the TUT database containing 474 instances,
both of them covering various musical genres.

Standard configuration As mentioned above, a full test for each of the parameters in
our framework would require a too demanding computational cost and we do not con-
sider it essential to explore the system capabilities and efficacy. For this reason, during
the first two sections of this chapter the block corresponding to the preprocessing stage is
configured to use the non-causal method (§3.2), the H+N decomposition technique em-
ployed is the EDS model (introduced in §3.3.1) using the uniform filter bank. The main
motivation to select this particular configuration is that it displays satisfactory results
compared to other settings, as will be shown in the forthcoming sections.

It is interesting to know if the combination of the four periodicity algorithms that we
use (SS, SP, AC and CF) would reach a score higher than individual entries. For this rea-
son we created a fifth entrant called Method-Fusion (MF) that combines results from the
four other methods using a majority rule. This procedure takes as input the two most
energetic tempi from each periodicity method and selects as tempo the candidate (entry)
with most occurrences. For example, if the most energetic tempo from each periodicity
method is different, but three of these methods have a common second most energetic
tempo, then this candidate will be selected as tempo for the method-fusion (MF) pro-
cedure. If there exists no agreement between candidates and methods, preference was
given to the first entry of the spectral sum (SS).

5.1 On the effect of the window length and overlapping

In the first part of this section, we study the effect of varying the parameter `. This vari-
able indicates the length of the analysis window (see Figure 4.7) for the block-wise peri-
odicity methods: the Spectral Sum (SS), the Spectral Product (SP) and the Autocorrelation
Function (ACF). When computing the periodicity in a continuous fashion, i.e., using the
bank of Comb-Filter (CF) resonators, the parameter ` controls the decimation factor1 (see
Figure 4.8).

To measure the impact of the window length `, the overlapping factor was fixed to
ρ = 0.5`. Then, several values of ` were tested as shown in Figure 5.1 for the ENST
database and in Figure 5.2 for the TUT database. These values were obtained using the

1In fact, the decimation factor is simultaneously controlled by ` and ρ, see page 103 for details.
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Figure 5.1: On the influence of window length for the ENST test database. This figures
were obtained using the Accuracy 2 evaluation metric.
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Figure 5.2: On the influence of window length for the TUT test database. This figures
were obtained using the Accuracy 2 evaluation metric.

Accuracy 2 criterion and the numerical figures can be found in Tables D.1 and D.2 in
Appendix D.

For the ENST database, the spectral methods display a performance gain as ` in-
creases, this improvement is more important for the SP approach. In the case of the time
domain methods (AC and CF), increasing ` was not as productive. For small window
values the performance of the AC remains rather constant and for the CF case accuracy
gradually decays as the window length increases. Except for the leftmost point (` = 3 s),
the MF was not able to outperform the SS. The small decrease in performance that ex-
hibit all the methods for large window values (` ≥ 7) is caused by the reduction in the
number of (detection function) frames used to track the periodicity paths in the dynamic
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Figure 5.3: On the influence of the window overlap for the ENST test database.

programming (DP) stage. For example if ` = 8 the matrix Γ will only contain 4 columns2,
which seems to be a rather small horizon to let periodicity paths settle, specially if the
detection function contains an important number of spurious peaks.

System performance using the TUT database shows comparable behavior to that dis-
played on the ENST data. The spectral methods and the MF display a performance gain
as ` increases, specially the SP approach. For the time domain methods (AC and CF),
increasing ` does not seem to have a large impact on the accuracy. It is noteworthy that
the CF method collapsed on the TUT data, it exhibited a performance drop of about 7%
compared to its performance on the ENST data, this aspect will be examined in more
detail during the next section.

There exists a trade-off between window length and adaptability to rhythmic fluctua-
tions. From Figures 5.1 and 5.2 it can be seen that accuracy for the SS, SP and MF methods
is close to its maximum when ` = 5 s. Now, we focus on the influence of the overlapping
(ρ) parameter on the overall performance for a fixed window length (` = 5 s).

A number of overlapping values as a function of the window length were tested:
ρ = k` with k ∈ [0, 0.1, . . . , 0.9]. Results are shown in Figures 5.3 and 5.4 for the ENST
and the TUT databases respectively. These values were obtained using the Accuracy 2
criterion and the numerical figures can be found in Tables D.3 and D.4 in Appendix D.

Concerning the ENST database, the figure shows that introducing redundancy in the
time–periodicity matrix Γ (by increasing the overlapping) produces a small but consis-
tent gain in performance for the SP and CF, and to a lesser extent on the SS. The same
impact is barely noticeable for the MF strategy, and we can say that ρ does not play any
important role for the AC. The performance improvement can be explained by the fact
that the DP stage has a larger data horizon and adapts better to metrical levels paths.
Ironically, too large overlapping values (ρ > 0.8) also seem counter productive. Af-
ter inspecting this small degradation in performance, we found that for those instances
(mostly classical music) lacking of clear onset attacks during passages of several seconds,
the small advance step in the analysis fills the time–periodicity matrix with ambiguous
information which in certain cases lead the DP algorithm to lose track of the rhythm.

2If ` = 8, the average number of columns per instance (for the ENST database) is four.
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Figure 5.4: On the influence of the window overlap for the TUT test database.

When analyzing the system efficacy on the TUT database, we found that the over-
lapping parameter presents a rather different behavior. It appears to have no impact on
the results and we think this is directly related to the audio signal length (amount of in-
formation) available during the decision process. In fact, the largest signal in the ENST
database is smaller than the shortest signal in the TUT database. Therefore, even if ρ
is small the amount of data available still allows to correctly resolve the instance under
analysis.

Just like the window-length parameter, large ρ values bring a loss in adaptability
coupled to an increase in the computational complexity. The overlapping factor appears
to have a minor influence if a large amount of audio data is available, however it displays
a small but consistent positive-influence in the presence of a limited data size, as shown
for the ENST database. We decided to fix the value ρ = 0.6`, since we consider that it
provides a ”good” trade-off between accuracy and tracking capability.

In the remaining of this chapter the window length (`) and the overlapping (ρ) pa-
rameters are respectively fixed to ` = 5 seconds and ρ = 0.6`.

5.2 Efficacy of the system by musical genre

The system performance by musical genre is presented in Figures 5.5 and 5.6 in the form
of bars, showing accuracy vs. musical genre for the ENST and TUT databases respec-
tively. These values were computed using the Accuracy 1 criterion. In addition, Fig-
ures 5.7 and 5.8 also present the performance by musical genre for the ENST and TUT
databases, but this time using the Accuracy 2 criterion3. Numerical values describing
the average performance by periodicity method and accuracy criteria are presented in
Table D.5. While inspecting the results obtained under the Accuracy 1 and Accuracy 2
criteria, we have found that for those excerpts which were only correctly estimated in
the latter case, the periodicity estimation algorithms have a tendency towards estimat-
ing faster tempi that those manually annotated. In other words, it is more likely to find
the double or triple of the ground-truth than finding one-third or half of its value. This

3The numerical values of this four graphs are given in Tables D.6 to D.9 in Appendix D.
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Figure 5.5: Performance under the Accuracy 1 criterion ENST test database.

phenomenon is particularly more noticeable in those instances containing pulsations at
lower (i.e., faster) metrical levels.

For the ENST database the lowest performance was obtained when processing greek
music yielding an average score of 76%, and to a lesser extent classical music with an av-
erage score of 84%. For the TUT database, the lowest score corresponds to classical music
with a method average slightly above 70%. For the other genres in both databases, the
average score is close to or above 90%. Moreover, for certain genres like reggae, soul and
hip-hop the system attains a success rate of 100%. All these figures were computed under
the Accuracy 2 criterion. Nevertheless, such favorable results must be taken with cautious
optimism since these genres are not particularly difficult and their representation in the
database is rather limited (see §2.5).

For enhancement purposes, it is more interesting to analyze the instances where the
algorithm failed. Perhaps one of the first questions to arise is: what happens with the CF
method which exhibits remarkable results in the algorithm developed by Klapuri et al.
(2006) and presents meager results in our implementation? This contrasting behavior
can also be seen in Table D.5 where the CF method displays the best performance for
the Accuracy 1 criterion and then abruptly falls to the last position under the Accuracy
2 criterion. After inspecting the instances where this method failed, we found that it
has a strong tendency towards selecting tempi that bear an integer-ratio relation to the
ground-truth, typical values are 2

3 , 3
4 and 4

3 . In fact, Klapuri et al. point out this behavior
”that all resonators that are in rational-number relations to the period of the impulse
train show response to it”. The actual system proposed by Klapuri et al. overcomes this
issue with a back-end that carries out a joint estimation of three metrical levels (tatum,
beat and measure) through probabilistic modeling of their relationships and temporal
evolutions. Our implementation of the CF method still requires further work to cope
with this problem.

In the case of the spectral methods, the SS displayed a slightly better performance
in most of the cases compared the SP. While inspecting some of instances where these
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Figure 5.6: Performance under the Accuracy 1 criterion TUT test database.

methods failed we found that they can be sensitive to the degree of aperiodicity in the
detection function PSD, producing results slightly outside the 5% precision window. Just
like the CF, spectral methods also suffer from selecting tempi that bear a rational-number
relation to the ground-truth. The AC showed a fair performance although this method
hardly ever outperformed their spectral counterparts.

In general the MF procedure displayed a performance comparable (although slightly
below) to that of the SS4, however in some particular cases combining the results from
all the methods did payoff. For example, in both databases under the Accuracy 1 criterion
when processing jazz music the tempi combination was more successful than individual
entries. Another example is when processing classical music from the ENST database
under the Accuracy 2 criterion, the MF achieved a higher score of about 3% above that of
the SS. Finally, a particularly noteworthy example is when processing world/folk music
from the TUT database, in this case the MF outperform the other methods by at least 6%.

It is also interesting to explore by musical genre the instances where the system did
not succeed. Undoubtedly the most complicated and challenging case is when processing
classical music. In our case, for a large part of these excerpts the SEF algorithm (see §3.4)
in charge of computing the musical stress profile merely did not work. In that case, no
matter how good the periodicity estimation and path-tracking blocks are, the algorithm
is doomed to fail. The problems with classical music are numerous. For example, smooth
attacks are very frequent and they are usually produced by bowed-string or wind in-
struments. Moreover, timing variations are natural in classical interpretations. Another
problem is that for some excerpts a wrong metrical level was chosen, i.e., one with a
value having rational-number relation to the ground-truth. In the jazz/blues case, most
failures are related to poly-rhythmic excerpts where the tactus found by the algorithm dif-
fered from the one selected by the annotators. For genres like latin, pop/rock, soul/funk,
“other” and traditional greek music, the large majority of the errors are found in ex-

4As a reminder for the reader, in case there exists no agreement between periodicity methods, the MF
takes the value of the SS.
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Figure 5.7: Performance under the Accuracy 2 criterion ENST test database.
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Figure 5.8: Performance under the Accuracy 2 criterion TUT test database.
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cerpts with a strong vocals foreground or having large chorus regions, both incorrectly
managed by the SEF algorithm. For the traditional greek music, poly-rhythmic excerpts
with a peculiar time-signature are also the cause of failure. In techno/electronic music,
we have found that some digital audio effects (chirp-like signals with a non-stationary
frequency behavior) lead to false onsets. Most of these issues suggest that the crucial
problem in metrical analysis remains the estimation of an accurate musical stress profile,
well above other difficulties such as path-tracking and periodicity estimation.

5.3 Influence of the H+N decomposition

A natural question arises when we inquire about the influence on the accuracy directly
related to separating and processing the audio signal as harmonic and noise parts. In
Chapter 3 were presented two different techniques to carry out the harmonic-plus-noise
(H+N) decomposition, the first one is based on the Exponentially Damped Sinusoidal
(EDS) model and the second one on the more classical Fourier Transform (FT). In this
section, we compare the difference in performance between both of these methods to a
third variant of the algorithm that does not use (or bypasses) the H+N block. This evalu-
ation uses the uniform frequency decomposition, additionally, the effect of the causal (C)
and non-causal (NC) preprocessing schemes (see §3.2) is also tested.

Figures 5.9 and 5.10 present the results for the ENST and TUT databases respectively5.
In addition, we also compared the above mentioned system variations to the well-known
classical method proposed by Scheirer6. A minor modification of his algorithm was car-
ried out, contrary to our implementation it was conceived to produce a set of beat times
rather than an overall scalar estimate of the tactus. For this reason, the tempo was com-
puted from the median of the inter-beat intervals.

From Figures 5.9 and 5.10 we can see that for most cases (regardless of the prepro-
cessing scheme used) carrying out the H+N decomposition yielded a small but consis-
tent improvement in the results. The only exception being the AC method in the TUT
database.

Precision of the results For the evaluations comparing various different configurations,
it is important to include error-bars in the analysis with the intention to find whether the
differences between algorithm variants are statistically significant or not. It is also impor-
tant to notice that while computing this significance test we assume that our databases
are truly random samples of Western music. Otherwise this significance test may over-
state the accuracy of the results, because it implicitly considers the algorithm errors as
random, i.e., the test cannot consider biases resulting from a non-random error (a badly
selected test corpus). According to Schwartz (1963, Page 47), if a percentage po (consid-
ered in the [0, 1] range) is observed for a sample of size N , we can assign to the unknown
true percentage p the 95% confidence interval

po ± 1.96

√
poqo
N

(5.1)

5The corresponding numerical values can be found in Tables D.10 and D.11 in Appendix D.
6Although the method developed by Scheirer (1998) is free software, the version that we used was ported

from the Dec Alpha platform to GNU/Linux by Anssi Klapuri.
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Figure 5.9: Performance comparison between using the causal and non-causal prepro-
cessing (ENST database).
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(TUT database).
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where qo = 1 − po. This precision interval7 can be presented in the form of error-bars as
illustrated by Figures 5.9 and 5.10. Due to the small difference in performance and the
size of the test database, these results suggest that carrying out the H+N decomposition
is not statistically significant at the 5% level, even if a general trend (slightly above 2%
in average) indicating a better performance is perceived. Under the supposition that the
tendency exhibited by the results holds as the corpus size increases, it would be necessary
to use a database containing at least 2380 samples to guarantee that for the SS (using NC-
EDS) the H+N decomposition is statistically significant.

After taking a closer look at the results, we have noticed that the H+N decomposi-
tion does not affect in the same way the different musical styles present in the database.
For example, when dealing with musical genres like reggae, soul, hip-hop and elec-
tronic/techno, we found that the decomposition did not have any noticeable influence
at all8. For the jazz and rock/pop music, the H+N decomposition had a small and
mostly positive influence, although for some periodicity methods the decomposition was
slightly counterproductive. The most outstanding enhancement produced by the H+N
decomposition concerns the classical music. For this genre, the average improvement
was 6.4% (for the EDS decomposition), as illustrated in Figure 5.11. Although such per-
formance still does not guarantee that carrying out the decomposition is statistically sig-
nificant, we consider these results as satisfactory since this musical genre is particularly
difficult and these results exhibit a clear progression. It is important to keep in mind that
the statistical significance concept is tightly connected to the number of elements in the
database. For the classical music case, due to the sample size reduction the error-bars
have more than doubled their span.

In general, we remarked that the improvement brought by the H+N decomposition
is mainly formed of excerpts containing weak attacks such as bowed-string and wind
instruments, and to a lesser extent of signals with a rather clear rhythm but with a salient
speech foreground (vocals). Ironically, when we examined the excerpts for which none of
the algorithms succeeded, we practically found the same kind of signals: bowed-strings
with large vibratos and weak attacks, orchestral pieces and signals with chorus and/or a
strong vocals foreground. As mentioned before, the weakness of the algorithm lies in the
musical stress estimation module. This can be seen as a single problem formed of two
different facets:

? the incapability of detecting soft attacks mainly seen in classical pieces, while visual
inspecting the set of detection functions we noticed that true attacks do not surpass
the noise level;

? the presence of too many false attacks in the detection function, mainly provoked
by the appearance of local frequency variations seen in vibratos and speech signals.

Finally, from the results presented in this section it is possible to state that in the
context of rhythm analysis the H+N decomposition based on the EDS model generally
outperforms its counterpart based on the Fourier Transform.

7The precision interval was not computed in the previous section since for some of the genres in the test
database it is not possible to satisfy the large sample size condition which states that np and nq � 5

8However this is not a concluding remark since such genres a rather underrepresented in our databases.
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Figure 5.11: Influence of the H+N decomposition on classical music. (a) Results obtained
using the ENST database and (b) the TUT dataset, both were computed using the non-
causal preprocessing scheme.

5.4 Impact of the harmonic and noise parts in the accuracy

Since we already have access to the harmonic and noise parts of the audio signal, it is in-
teresting to find out which of these constituents has a stronger influence on the accuracy.
For that purpose we use the same analysis framework illustrated in Figure 4.1, but dur-
ing the periodicity induction block only the information coming from the harmonic or
noise part was considered. These algorithm variants were compared to the version that
does not compute the H+N decomposition. Figures 5.12 and 5.13 present the outcome
for the ENST and TUT databases respectively9. These results were computed using the
non-causal preprocessing scheme.

The afore mentioned results do not provide any compelling evidence supporting the
idea (given either a decomposition or periodicity method) of any specific signal part
being more influent than the other. A closer inspection shows that for the percussion-
driven music (rock/pop/latin, hip-hop and to a lesser extent jazz) the noise part works
slightly better, however other musical genres sharing this characteristic (like soul and
techno/electronic) do not show this tendency. On the other side, for classical music, the
harmonic part exhibits a moderate predominance in the results.

5.5 Influence of the frequency decomposition

For many years, researchers working on musical rhythm processing have wondered if
there exists an optimal frequency decomposition for beat analysis. For example, Scheirer
(1998, page 591) argues that ”empirical studies of the use of various filter banks (...) have
demonstrated that” his ”algorithm is not particularly sensitive to the particular bands or
implementations used”, in other words, the key is to decompose the signal in frequency

9The corresponding numerical values can be found in Tables D.13 and D.14.
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Figure 5.12: On the influence of the signal and noise parts in the analysis (ENST
database).
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Figure 5.13: On the influence of the signal and noise parts in the analysis (TUT database).
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bands regardless of the layout used. On the other side, Gouyon (2005, page 174) advo-
cates for ”the superiority of the ERB frequency subband decomposition over others (pro-
posed in the literature) as the basis for the computation of effective energy feature sets”.
The goal of this section is to investigate the influence of the frequency decomposition on
the performance of our system. The analysis is divided in two sections, first §5.5.1 ex-
plores the influence of the filter bank together with the H+N decomposition. Then, §5.5.2
drops the H+N part and only considers the influence of the frequency decomposition on
the system performance.

5.5.1 Filter bank and H+N decomposition

In Chapter 3 we introduced two different filter banks that can be used together with the
H+N decomposition: the eight-band uniform filter bank (U-FB) and the five-band log-
arithmic filter bank (log-FB) (see §3.3.1.3), but until now we have only considered the
former one in our analysis. Figures 5.14 and 5.15 present the performance for both kinds
of filter banks for the ENST and the TUT databases respectively, these values were ob-
tained using the non-causal preprocessing scheme. Although this test only considers two
distinct filter banks, the results obtained strongly suggest that the overall performance of
our algorithm is not particularly sensitive to a specific frequency decomposition. That is,
a very similar performance is displayed if the uniform filter bank is replaced by the log-
arithmic filter bank. During a closer inspection by musical genre we found that the log-
arithmic frequency decomposition had a slightly higher significance on classical music,
this phenomenon is especially noticeable in the TUT database10, as illustrated in Figure
5.16. Perhaps the most noteworthy case is that of the ”EDS log-FB” which almost attained
an accuracy of 85% (TUT database) for the MF periodicity procedure, exceeding by more
than 8% the uniform filter bank variant. The rest of the genres do not exhibit any relevant
behavior directly linked to the filter bank structure.

In order to conduct the H+N decomposition using the EDS model combined with
the logarithmic filter bank, the user should keep in mind the non-neglectable increase
in computational complexity entailed by the upper bands of the logarithmic frequency
decomposition (see §3.3.3). This practical order issue makes the uniform filter bank more
attractive.

5.5.2 Frequency decomposition

In this section we investigate the influence of the frequency decomposition without using
the H+N decomposition. In addition, we have included in the analysis an entry called
”single band” where the Spectral Energy Flux (SEF) algorithm is directly applied to the
bulk audio signal (actually after passing it through the non-causal preprocessing block).
Figures 5.17 and 5.18 present the results.

As in the previous case, selecting between the uniform or the logarithmic frequency
decomposition yields a fairly similar overall performance. That is, classical music still
exhibits an improvement, although it is less pronounced than that described above. The
rest of the genres do not display any important modifications.

In addition, computing one single musical stress profile for the whole passband proves
to be less advantageous. The results obtained suggest that those passages containing a
strong singing voice component or other non-stationary constituents causing false onsets

10See Table D.17 for numerical values.
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Figure 5.14: Comparison of the filter bank influence on the system’s performance to-
gether with the H+N decomposition. The first two bars of each periodicity induction
method correspond to the uniform filter bank (U-FB) and the last two to correspond to
the logarithmic filter bank (log-FB). These results were obtained on the ENST database.
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Figure 5.15: Filter bank comparison as in Figure 5.14, but using the TUT database.
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Figure 5.16: Influence of the filter bank on classical music. For (a) the ENST and (b) TUT
databases respectively.
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Figure 5.17: On the influence of the frequency decomposition on the system’s perfor-
mance (ENST database). In this case, the H+N decomposition is disabled and three dif-
ferent configurations are studied: the uniform filter bank (U FB), the logarithmic filter
bank (log FB) and one single band (i.e., accent detection is performed on the bulk signal).
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Figure 5.18: Same as Figure 5.17, but using the TUT database.

are affected by this “single band” analysis. By separating the computation of the musical
stress profile in frequency bands it is possible to attenuate the propagation of these spu-
rious detections to other spectral regions. On the other hand, Figure 5.18 indicates that
computing a single stress profile for long data sequences is close in performance to using
a filter bank (uniform or logarithmic) but has a lower computational cost.

5.6 Detection function comparison

In this section we compare our musical stress estimation module to two other reference
systems frequently cited in the literature: the Spectral Difference (SD) proposed by Masri
(1996) and later by Duxbury et al. (2002), and the Complex Spectral Difference (CSD)
developed by Bello et al. (2004). These algorithms11, as well as ours, share a common
general approach based on measuring the rate of change of the power-spectrum. In fact,
these methods compute the detection function as a ”distance” between successive short-
term Fourier spectra, treating them as points in an N -dimensional space, a more detailed
description can be found in Appendix E.

To carry out the detection function comparison, the block corresponding to the SEF
(see Figure 3.1) was replaced by the SD and CSD algorithms, the rest of the system re-
mains unaltered. The configuration for this test uses the non-causal preprocessing and
the uniform filter bank. Figures 5.19 and 5.20 present the performance using the ENST
and TUT databases respectively. These results exhibit a contrasting variation for the CSD
and SD methods, while for the ENST database their accuracy is somewhat low, for TUT
database it considerably improved (in average) by 5.6% and 7.2% respectively. We be-
lieve that the difference in signal-length12 in each base is at the origin of this variation
between databases. We consider that the performance of SEF algorithm as satisfactory.

11The SD and CSD algorithms were implemented by Pierre Leveau, who generously made his source code
available for comparison purposes.

12The major difference between test corpora is the length of the signals that they contain, this parameter
is much larger for the TUT database, see §2.5.
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Figure 5.19: Detection function comparison: the Spectral Energy Flux (SEF) method pro-
posed in §3.4, the Complex Spectral Difference developed by Bello et al. (2004) and the
traditional Spectral Difference (Masri, 1996; Bello et al., 2005). These values were ob-
tained on the ENST database.
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Figure 5.20: Same as Figure 5.19 but using the TUT database.
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5.7 Computational complexity

A key attribute of any metrical analysis system is its computational complexity. During
this work, we have developed our framework under the Matlab (7.0.1 R14) environment.
Since our implementation uses a mixture of various built-in functions as well as an im-
portant number of scripts, a meticulous evaluation appears to be rather complicated. For
this reason, we adopt again the same principle used in §3.3.3 consisting in measuring the
time it takes to each stage of the algorithm to process a 20 s excerpt taken from the test
database. Although this approach does not provide the algorithm complexity, it gives a
fairly good idea of the computational requirements.

During this test three different system configurations were used. Figure 5.21 presents
their respective results in the form of slices showing the time consumption for each stage
as a fraction of the total time. From left to right, the system configuration mnemonics
stand for ”uniform filter bank using the EDS decomposition model” (U-FB & EDS), ”log-
arithmic filter bank using the EDS decomposition model” (log-FB & EDS) and ”uniform
filter bank using the FT decomposition model”.

For each of the configuration variants, the total computation time for analyzing a 20 s
excerpt was 32.5 s, 92.3 s and 24.2 s respectively. In addition, Table D.22 in Appendix D
presents the exact values.

The three configurations shown above use the non-causal preprocessing, the spectral
sum for periodicity analysis and the same path-tracking parameters. These figures were
obtained using a Pentium 4 machine running at 3 GHz with 1 GB of memory under
Debian GNU/Linux 3.1 (Sarge) using the ”Profiler” utility of Matlab.

However, the results presented in Figure 5.21 can be somewhat misleading concern-
ing the complexity of estimating the musical stress profile. Taking a closer look at this
module, we found that about 85% of the time spent on this block corresponds to the ”re-
assignment loop”. Actually, this loop sweeps through every single element of the STFT
time–frequency matrix used by the Spectral Energy Flux (SEF) algorithm. Moreover, this
process is repeated for all subbands used in the analysis. Implementing this function
outside the Matlab environment (i.e., coded in a faster and lower level language such as
C/C++) should considerably reduce the running time.
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log−FB & EDSU−FB & EDS U−FB & FT

38%
H+N

Filter bank< 1%

 Preprocessing 1%

Tracking < 1%
5%
Periodicity

52%
H+N

Filter bank< 1%

Tracking < 1%
3%

Periodicity

stress profile
44%

Periodicity
8%< 1%Tracking

1%

2% stress profile

70%

Preprocessing

Filter bank

H+N

19%

stress profile

55%

Figure 5.21: Algorithm complexity.

In fact, the most computationally demanding task of our system is the subspace fil-
tering operation, which is particularly expensive for signals with a large bandwidth (e.g.,
the upper bands of the log-FB & EDS configuration). In this case, a large running-time
improvement seems more difficult to obtain since we already use a highly optimized C-
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coded version13. Table D.22 also provides information on how many times each module
is executed for a given configuration.

5.8 Beat-phase estimation

In this part we test the performance of the beat location methods introduced in §4.3. The
evaluation was carried out using the beat annotations of TUT database. In fact, all the
instances in this corpus, the tactus pulses were manually annotated for approximately
one-minute long excerpts which were selected to represent each piece. As described in
§2.5.2, these annotations were made by a musician who tapped along while listening
at each piece. Then, the tapping signal was recorded and the tapped beat times were
automatically detected.

Before testing the beat location algorithms, we estimated the tempo for each piece
using the system configuration employed in §5.2 under the Accuracy 2 criterion. Then,
beat location was conducted only for those pieces whose tempo was correctly estimated.
Table 5.1 shows the composition of the data corpus used in this test.

Genre
Total

classic electronic hip-hop jazz/blues rock/pop soul/funk other

number of
68 60 36 85 120 52 11 432

instances

Table 5.1: Beat location is conducted only for those pieces whose tempo was correctly
estimated. Genre distribution of the test corpus employed during the evaluation.

According to Lerdahl & Jackendoff (1983), finding the beat involves matching a reg-
ular grid to the accent structure of a musical piece. The assumption, borne out in tradi-
tional Western music, is that beats tend to fall on more accented/salient events. In fact,
when humans perform beat-tracking they use knowledge and memory in addition to the
pitch and timing information produced by the audio signal. In our implementation, we
only have access to the detection function and we rely on the assumption that salient
moments appear on this stress profile as prominent peaks.

Our tempo estimation criterion considers as correct not only the ground-truth value,
but also other accepted multiples and sub-multiples. In §5.2 we noticed that our system
has a stronger tendency towards overestimating the tempo than towards undervaluing
it. To avoid putting at disadvantage this faster tempi trend by penalizing unmatched14

beats, we evaluate the ability of the beat location algorithm to match all the manually
annotated beats. That is, we penalize only unmatched beats in the ground-truth, but
not unmatched beats in the beat location output. This criterion is more severe regarding
tempo underestimations, however this scenario is rather infrequent compared to the total
number of correct estimations and overestimations.

The criterion to consider if a correct beat match was found (i.e., to know if a beat
in the ground-truth and an estimated beat coincide), is that both of them should lie in-

13This function was developed and kindly provided by Olivier Gillet.
14By unmatched beats me wean beats located by the algorithm which do not coincide with the ground-

truth beats because they occur at a higher rate. For example, if an excerpt is manually annotated at 80 BPM,
but tempo estimation is 160 BPM, in the best case only 50% of the beats located by the algorithm will match
those in the ground-truth.
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side an acceptance window. The length of the acceptance window was fixed according
to the precision requirement suggested by Goto & Muraoka (1997a). This criterion indi-
cates that a correct beat position must not deviate from the annotated beat by more than
0.175 times (i.e., 17.5%) the annotated period length. According to Klapuri et al. (2006),
who also used this specification, inaccuracies in the manually annotated beat times allow
meaningful comparison of only up to that precision.

Table 5.2 presents the performance figures for the causal and non-causal beat location
methods. Both methods show a moderate performance, with the non-causal algorithm
displaying better results. As in most previous tests, the lowest performance was obtained
when processing classical music. In fact, this kind of music has the highest rate of false
note attacks. We have noticed that such spurious peaks in the detection function cons-
iderably complicate the beat detection task for both methods. This problem is especially
annoying during the beat initialization process, since the location of the starting beat is
only based on the information provided by the autocorrelation function.

Concerning the causal algorithm, if it is properly initialized and the rhythm is fairly
stable it displays acceptable results, for example when processing hip-hop or soul/funk
music. However, we have noticed that in some cases the algorithm loses the beat syn-
chrony and starts tracking the offbeat. This situation usually occurs during a musical
transition, for example when changing from verse to chorus or vice-versa. We have found
that in certain cases, the algorithm loses track of the beat if a false attack stronger than
the actual beat appears inside the acceptance window. In that case, this artifact is used as
new reference producing erroneous beat locations.

The problems found with non-causal algorithm are different. Contrary to the afore
mentioned technique, this one is more sensitive to the initialization process. If the start-
ing beat is a valid offbeat, this method will never hook-up. On the other side, since it is
based on a rather rigid pulse train, it also has the advantage of not losing beat synchrony.
We consider this technique as very promising for beat alignment, however under its cur-
rent form it is affected by long-term tempo variations. For example, if the estimation
algorithm considers that the tempo of a musical piece is 125 BPM, and in the middle of
the performance it accelerates or slows down, it will produce some alignment issues. The
problem is that the Correlation Optimized Warping algorithm aligns each beat individu-
ally and if there are more beats in the pulse train than in the actual signal, some of them
will not be properly aligned (or will be aligned to false attacks). On the contrary, if there
are more beats in the audio signal than in the pulse train, some of the actual beats will
not be detected. A possible solution to this problem is to decompose the audio signal in
shorter segments and to align them separately using a locally more precise tempo value.

Method
Genre

Total
classic electronic hip-hop jazz/blues rock/pop soul/funk other

causal 35.1 78.9 85.4 72.1 77.1 84.1 55.6 70.5

non-causal 42.8 87.6 90.1 78.8 82.4 89.2 67.7 77.1

Table 5.2: Beat location results for both causal and non-causal algorithms. Performance
results (in %) are presented by musical genre.
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5.9 Tatum estimation

In this part we evaluate the tatum estimation algorithm introduced in §4.4. To be more
specific, we only estimate the tatum rate (in BPM), phase information is ignored during
our analysis. As a reminder, the term tatum (introduced in Chapter 1) refers to a time
quantum. It can be defined as the lowest metrical level, i.e., a regular pulse train that
a listener intuitively infers from the timing of the musical events. For Bilmes (1993b)
and Gouyon et al. (2002), it is roughly equivalent to the time division that most highly
coincides with note onsets: a sort of trade-off between how well a regular grid explains
the onsets, and how well the onsets fit to that grid.

Since we do not have tatum values for the ENST dataset and only a number of in-
stances of the TUT database were manually annotated at this level, to conduct this test a
different corpus (a subset of the TUT data) was used. Its composition by musical genre
and size is depicted in Table 5.3.

Genre
Total

classic electronic hip-hop jazz/blues rock/pop soul/funk other

number of
68 47 22 70 114 42 12 375

instances

Table 5.3: Genre distribution for the tatum database.

For the tatum, estimating the pulse period is difficult. According to Klapuri et al.
(2006, page 352) ”this is because the temporally atomic pulse rate typically comes up
only occasionally, making temporally stable analysis hard to attain”. In other words, this
pulse rate is not always present. Moreover, at any moment a new pulsation at a higher
rate (in western music usually the double or triple) might appear.

Table 5.4 presents the performance figures for the tatum rate estimation algorithm.
For evaluation purposes we used three different benchmarks. The first one is called Ac-
curacy 1 and only considers as correct an exact ground-truth period match within a 5%
precision window. The second is Accuracy 2 and takes into account correct values as well
as ”correct overestimations”, i.e., erroneous tatum estimations which match 2 or 3 times
the ground-truth period. Finally, the Accuracy 3 is quite similar to its predecessor, but it
takes into account ”correct underestimations” , i.e., erroneous tatum estimations which
match 1

2 or 1
3 of the ground-truth period.

From the first row of Table 5.4, we see that in general (with the exception of rock/pop
music) the performance obtained is lower than that obtained for tempo estimation. If the
requirements are slacken and correct overvalues are accepted, the performance of the al-
gorithm becomes fairly admissible (not including classical music). In fact, by comparing
rows two and three we can see that our algorithm has stronger tendency towards over-
estimating the tatum. We consider this behavior preferable than undervaluing, since a
faster tatum will still capture all the potential events, which is not guaranteed by a lower
frequency value. During the evaluation we noticed that overestimations are often related
to low tatum values (close to or below 100 BPM). On the other side, underestimations
are often associated to a tatum pulsation which is not prevalent enough and rather ap-
pears only during sporadic time intervals. Finally, in the presence of a deficient detection
function the algorithm totally fails the tatum estimation.

The score obtained under the Accuracy 1 criterion suggests that there is still a consid-
erable amount of research required on this topic of automatic metric analysis. However,
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we consider these results encouraging for a technique still in an early stage of develop-
ment. In addition, these results are comparable in performance to those obtained by the
renowned system developed by Klapuri et al. (2006).

Criterion
Genre

Average
classic electronic hip-hop jazz/blues rock/pop soul/funk other

Accuracy 1 48.5 74.7 45.5 68.6 79.8 66.7 66.7 67.5

Accuracy 2 57.4 85.1 81.8 77.1 92.1 81.0 75.0 79.7

Accuracy 3 58.8 83.0 45.5 74.3 83.3 69.1 75.0 73.1

Table 5.4: Performance (in %) for the tatum rate estimation algorithm. Three different
criteria were tested, for Accuracy 1 an exact period match is required. Accuracy 2 contem-
plates the over-estimation case and 1, 2 and 3 period multiples are accepted. Accuracy 3
contemplates the under-estimation case and 1, 1

2 and 1
3 period multiples are accepted.

5.10 Conclusions

This chapter addressed the task of testing our meter analysis system. Most of it was
devoted to evaluating the tempo induction algorithm. In the first part we investigated
the influence of the length of the periodicity analysis window (`) and of the overlapping
factor (ρ), we fixed these parameters using a trade-off criterion between accuracy and
tracking capability.

Then, to provide a more detailed perspective of the system performance, we analyzed
the results by musical genre. Our method displays good results for music with a rather
clear rhythm, however performance drops when dealing with more challenging material
(e.g., from classical music). After examining those instances where the algorithm did
not succeed, we conclude that the bottleneck of our system lies in the musical stress
estimation module. This block requires further reinforcement to properly process smooth
and long attacks (especially those created by bowed-string and wind instruments) and
musical passages with a strong vocal (singing voice or chorus) foreground.

Next, we analyzed the influence of the H+N decomposition on the system’s perfor-
mance. We found that this operation does not affect in the same way all the musical
genres. In fact, it was encouraging to discover that this decomposition was particularly
productive when dealing with difficult instances such as classical music. Our system was
also compared to the well-known algorithm proposed by Scheirer (1998).

We also studied the influence of the harmonic and noise components, when processed
separately and the results were compared. We did not find any convincing evidence
supporting that a specific component is more influent on a particular genre.

Researchers working on automatic rhythm analysis have wondered in many occa-
sions about the influence of the frequency decomposition on the system’s performance.
To address this question, we tested three different frequency structures: the uniform and
logarithmic filter banks proposed in §3.3.1.3 and another variant which proceeds directly
to the musical stress estimation without decomposing the signal in subbands. The results
obtained suggest that our proposal is not sensitive to a particular frequency decomposi-
tion, however we found that splitting the audio signal in subbands yields better results.

For some experiments, the results on both databases were noticeably different which
raises the question about the universality of these results. However, we believe that this
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contrast is merely due to the discrepancy in size between the instances in the TUT and
ENST test corpora. As a matter of fact, performance significantly raises when longer and
stable musical excerpts are used.

The numerical complexity is a significant characteristic of any computer-based algo-
rithm. In this chapter we have measured the computational load in terms of execution
time for three different system configurations. We found that under the current imple-
mentation, estimating the stress profile is one of the most time consuming stages. How-
ever, the most computationally demanding block is the H+N decomposition when the
EDS method is used.

Finally beat location techniques and tatum estimation were tested. Highly encourag-
ing results were obtained in these tasks, but further research is required to obtain more
robust estimations.
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Chapter 6

Concluding remarks and
perspectives

This dissertation was devoted to the development of mechanisms to make computers
“understand” certain aspects of musical rhythm. The goal is to create a system who
uses as input commercial audio recordings and whose output should be comparable to
the response produced by a human listener acquainted with traditional Western music if
she/he was asked to tap along with a musical passage.

6.1 Conclusions

The first part of this dissertation focused on the presentation of fundamental concepts,
namely: a suitable definition of musical rhythm and the notion of metrical structure cou-
pled to the central abstraction of metrical levels.

Then, an introduction to the field of computer based rhythm analysis was provided.
We highlighted that the primary goal of this area consists in developing a system to artifi-
cially replicate the process by which humans understand musical rhythm. An important
contribution of this thesis is the comprehensive survey on the current state of automatic
rhythm analysis. We classified the existing approaches according to the nature of their
input signal into two broad categories: symbolic models and acoustic models. A review of
many existing methods for both kind of approaches was presented, although more em-
phasis was given to the second kind of models since they directly concern the objectives
of the present work. Table 2.1 gives a highly illustrative panorama. It presents a rather
inclusive list of the available acoustic models and evidences how the field has consider-
ably grown during the last years. As a matter of fact, the current trend is towards dealing
with audio recordings rather than processing symbolic signals.

The evaluation problem was also addressed and special attention was given to the
recent initiative of systematic benchmarking and comparison of tempo induction algo-
rithms headed by a group of researchers working on Music Information Retrieval (see
Appendix A). The composition of the evaluation material used in this work was also
discussed. Actually this database has considerably evolved during the last years.

We have exhaustively covered the question of measuring the degree of musical accent
as a function of time. In our opinion, this is by far the most complex task to accomplish
during the development of an automatic rhythm description system. We have proposed
a novel method to cope with challenging sounds. It is based on the idea of separating
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the audio signal in harmonic and noise parts1 (H+N). The motivation to conduct this
separation is to highlight phenomenal accents by separating them from the surrounding
and potentially disturbing events. Two different methods were used to carry out this
decomposition: one uses a subspace analysis technique that exploits the Exponentially
Damped Sinusoidal (EDS) model; the other one is based on a more traditional Fourier-
based approach.

In addition, this research work also contributed to the computer music field with a
major improvement of a previously existing technique called the Spectral Energy Flux
(SEF), which measures the degree of change of the power spectrum as a function of time.
We have discovered that obtaining a proper estimation of the power envelope inside the
frequency channels is central for energy-based onset detection techniques. For this pur-
pose, a novel low-pass smoothing filter was proposed. The rationale behind this decision
consist in using a smoothing filter which mimics the auditory nerve response to a sud-
den stimulus. Of considerable importance is also the use of a good differentiator filter.
Instead of following the traditional approach, which computes a poor approximation of
the power envelope derivative using the first order difference, we tested several differ-
entiator filters and we opted for one with remarkable characteristics. The combination
of these techniques (H+N coupled to SEF) produces a highly accurate estimation of the
degree of musical stress as a function of time and proved to be pretty successful for a
wide range of audio material.

A drawback of this method is that it has a somewhat elevated computational burden.
However, it is possible to disable some of the components to reduce the complexity at
the expense of reducing its efficiency. For example, when processing strong beat music,
a fairly accurate detection function can be obtained without using the H+N decompo-
sition. Another way to reduce even more the computational burden consists in using a
traditional STFT instead of a reassigned version.

Then we addressed the problem of estimating some metrical aspects of the audio sig-
nal from the musical stress profile. To estimate the underlying periodicities four different
methods were used: the autocorrelation function, a bank of comb-filter resonators, the
spectral sum and the spectral product. To process the output of the periodicity induction
stage, an efficient pulse tracking module based on the dynamic programming algorithm
was developed. Although this method has already been proposed in context of metri-
cal analysis, we are the first to propose a modified version capable of tracking the most
salient periods of the musical stress profile.

At low frequencies (<10 Hz), only part of these tracked periodicities correspond to
valid metrical levels, while the others correspond to aliases intrinsically created by the
periodicity induction algorithms. An open and highly sensitive question consists in se-
lecting from this list of pulsations only those containing significant metrical information
and to discard the others. However, this process requires a high-level musical knowledge
which is not embedded into the current system.

In the present work we estimated the main tempo by weighting the saliences of the
most important periodicity paths using an a priori knowledge of the tempo preferred by
humans. The principal drawback of this approach is that it does not exploit the hierarchi-
cal relationship between metrical levels. Indeed, while periodicity tracking can be done
separately for each path, their linking into metrical levels should be carried out jointly.

We proposed two methods to locate the position of beats inside the audio signal.

1By ”noise” we refer to all the elements from the original audio signal that cannot be modeled as sinu-
soidal components.
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The first one is based on the idea of predicting beat positions. The second approach
was borrowed from the field of chemometric analysis (where it is used to conduct pattern
matching) and works by aligning an artificial pulse train with the detection function. This
last method displayed encouraging results.

During the development of a tatum estimation algorithm we have discovered that
the shape of the detection function peaks has a large influence on the behavior of the
respective Power Spectral Density (PSD). In fact, we consider that the influence of the
peak-shape is even larger than the effect provoked by small fluctuations in the timing of
the musical piece. Our tatum estimation algorithm is based on the idea of pruning and
modifying the amplitude of the peaks present in the detection function. The results of
preliminary tests suggest that this method has a large potential.

After numerous evaluation tests, we consider the overall performance of our metri-
cal analysis system as satisfactory. First, we investigated the influence of the analysis
window length and overlapping factor2. For the case of our rhythm analysis system, we
have shown that medium-size windows (≈5 s) with a relatively important overlapping
factor (60%) yields good results. Although using very long analysis windows with a large
overlapping factors seems to yield a small gain, it also requires an important increase in
computational complexity. Moreover, such configuration might be counter productive
for the tracking capabilities of the system since it entails a large rhythmic inertia.

Then, a more detailed analysis by musical genre was presented. The proposed sys-
tem displays highly acceptable results when dealing with ”strong beat” music, however
performance drops noticeably when processing classical music.

Concerning the harmonic plus noise (H+N) decomposition, for most cases it does not
seem to provide a significant gain in performance to adequately justify the considerable
increase in computational complexity. In fact, for percussion-based music this technique
does not seem to contribute. However, we believe that the gain displayed when process-
ing classical music (6.4% for the EDS H+N), which is a particularly complicated genre,
justifies its use when dealing with more challenging music material not driven by per-
cussive instruments. In addition, we did not find any convincing evidence supporting
that a specific signal component (i.e., harmonic or noise) has more influence on the per-
formance.

With respect to the frequency decomposition, we presume that the system developed
in the present work is not sensitive to the use of a particular filter bank. As suggested
by the results, we consider that the important is to create some sort of redundancy by
decomposing the signal in frequency bands. In that case, if artifacts appear in one or
more subbands, they will only affect the stress profile computed using information from
those frequency regions. Ideally, the nuisance of the artifacts should be canceled when
fusing the periodicity information coming from all subbands.

The framework that we have proposed can be seen as modular and scalable system
and can be adapted in function of the music material to be processed or in terms of the
computational requirements/limitations. If the causal preprocessing scheme is selected,
the system described can be used for on-line real-time tempo estimation even at a rea-
sonable computational cost if the H+N block is disabled.

2In fact, a number of methods in the literature fix those parameters in a rather arbitrarily manner, thus
we wanted to examine their real effect on the performance.
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6.2 Perspectives

There are many potential ways of extending the system proposed in this work. In addi-
tion, there are some tasks that should be fulfilled.

? More research is required to measure the influence of decomposing the signal into
harmonic and noise parts. In fact, the two methods currently employed do not
completely remove the sinusoids from the noise part. It is possible that this imper-
fect separation hampers the advantages of this method. Both approaches can be
enhanced to improve the separation.

? The bottleneck of our framework lies on the musical stress estimation stage. Indeed,
this block is the core of the whole system. An erroneous and implicit assumption
of the current Spectral Energy Flux (SEF) algorithm is the calculation of the enve-
lope and its derivative only using information from one STFT channel at the time.
Due to their non-stationary nature, the frequency components in audio signals hop
from one channel to the other at any moment. To take account of this effect, and
significantly reduce false detections, the energy flux should be calculated on fre-
quency trajectories rather than on frequency channels. One potential solution to
this problem is to use a pitch tracker before computing the flux. Nevertheless, cur-
rent state-of-the-art in frequency tracking may not allow to satisfactory get around
this problem.

? Although we are among the first to propose a mechanism to fuse periodicity infor-
mation into a single periodicity vector (from the subbands and/or the H+N com-
ponents), the current approach is rather crude. A machine learning perspective can
be used to establish if a given subband is informative or if it should be discarded.
This selection process could improve the periodicity profile.

? High-level musical knowledge must be embedded into the system. So far we have
barely exploited all the information provided by the tracking algorithm. By adding
new stages making use of this periodicity information combined with a priori knowl-
edge, it would be possible to extend the current system capabilities. For example, to
find the appropriate beat/meter subdivision, to jointly estimate the metrical levels
and so forth.

? The use of high-level musical knowledge combined with statistical classification
methods can be used to categorize music instances according to their specific rhyth-
mic patterns. This would allow to conduct rhythm-adapted metrical analysis.

? The beat location stage could also exploit certain aspects of high-level musical knowl-
edge such as pitch or harmony changes. As already suggested in the literature by
Goto & Muraoka (1997b) and Dixon & Cambouropoulos (2000), such information
would help to avoid tracking the offbeat. In addition, the beat alignment algorithm
based on the Correlation Optimized Warping method should be implemented to
work on shorter windows rather than on the whole signal.

? It is practically impossible to know the effectiveness of any rhythm analysis sys-
tems without a large and well annotated test corpus. Research advancement in the
field of automatic rhythm analysis (and in its applications, such as MIR) is clearly
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limited by the lack of public ground-truth data. However, the annotation of musi-
cal excerpts is a painstaking job that should be repeated by many people in order to
have highly reliable information. In the particular case of this research, some of the
issues that could be immediately addressed with new and/or better annotations
are the following.

� The criterion defined as Accuracy 2 should be refined to take into account the
beat/meter subdivision (i.e., simple duple, compound duple, simple triple and
compound triple). In that case, the current system performance would surely
be reduced, however the results would be more realistic.

� The automatic rhythm analysis community should “move on” from process-
ing short signal segments (tens of seconds) to process entire songs of several
minutes. This action would approach current research a step closer to real-life
applications. In addition, we have seen that the amount of data available dur-
ing the analysis might play a significant role in system’s performance. This
problem has not been address in the literature and could reveal interesting
results.



152 6. CONCLUDING REMARKS AND PERSPECTIVES



153

Appendix A

Methodological benchmarking of
tempo extraction algorithms

The first step towards establishing a methodology of evaluation and comparison for
tempo induction algorithms, along with several other Music Information Retrieval (MIR)
tasks, was taken in 2004 by the steering committee of the International Conference on
Music Information Retrieval (ISMIR). Although called ”Audio Description Contest” at
that time, the year after it officially became the ”Music Information Retrieval Evaluation
eXchange”, or more succinctly MIREX1. This is a contest run in conjunction with the IS-
MIR Conference and it emerged as a response to the intention of the MIR community to
establish formal evaluation frameworks and metrics with which researchers could sci-
entifically compare and contrast their wide variety of approaches to solving MIR tasks
(Downie et al., 2005).

A.1 Tempo induction competition during the first Audio Description Contest

The first ”tempo extraction contest” was organized by Fabien Gouyon during ISMIR
2004, held at the University Pompeu Fabra in Barcelona, Spain, in October 2004. Specific
details and information are provided in (Gouyon et al., 2006). The goal of this contest
was to evaluate some state-of-the-art algorithms in the task of inducing the basic tempo
(as a scalar, in beats per minute) from musical audio signals. It was not required to find
individual beat positions or any other rhythmic description.

Participants were invited to submit algorithms to the contest organizer. No train-
ing data was provided. A total of 12 algorithms (representing the work of seven re-
search teams) were evaluated. We submitted two closely related entries described in
(Alonso et al., 2004). The test database contained 3199 annotated instances2 in three dif-
ferent data sets: 2036 sound library drum loops, 698 excerpts of ballroom dance music
(styles like cha-cha, rumba, samba, tango) and 465 song excerps containing various music
genres.

Table A.1 presents the results for this contest ordered by rank.

1Further information on MIREX is available at http://www.music-ir.org/mirexwiki/index.php.
2Part of this data is available for free download at http://ismir2004.ismir.net/ISMIR Contest.html.

http://www.music-ir.org/mirexwiki/index.php
http://ismir2004.ismir.net/ISMIR_Contest.html
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Rank Participant Score (in %)

1 Klapuri et al. (2006) 85.0
2 Dixon et al. (2003) 82.3
3 Anonymous 81.2
4 Uhle et al. (2004) 76.1
5 Dixon (2001) 74.3
6 Dixon (2001) 73.6
7 Alonso et al. (2004) 69.8
8 Scheirer (1998) 68.1
9 Alonso et al. (2004) 57.9

10 Tzanetakis & Cook (2002) 55.5
11 Tzanetakis & Cook (2002) 54.7
12 Tzanetakis & Cook (2002) 50.7

Table A.1: Results of the first tempo extraction contest.

A.2 MIREX’05: Audio tempo extraction contest

In the second edition of the contest, officially known as MIREX, the organizers of the
tempo extraction contest was organized by Martin McKinney & Dirk Moelants3.

Contrary to the previous contest, in this edition there was a distinction between no-
tated tempo and perceptual tempo. The goal was to test the different methods for the
extraction of the perceptual tempo.

If the notated tempo is available (e.g., from the score) it is straightforward to attach a
tempo annotation to an excerpt and run a contest for algorithms to predict this notated
tempo. For excerpts for which there is no ”official” tempo annotation, it is possible to
annotate the ”perceived” tempo. This is not a straightforward task and needs to be done
carefully. If someone asks a group of listeners (including skilled musicians) to annotate
the tempo of music excerpts, they can provide different answers (they tap at different
metrical levels) if they are unfamiliar with the piece. For some excerpts the perceived
pulse or tempo is less ambiguous and everyone taps at the same metrical level, but for
other excerpts the tempo can be quite ambiguous and it is possible to get a complete split
across listeners.

There are several reasons to examine the perceptual tempo, either in place of or in
addition to the notated tempo. For many applications of automatic tempo extractors, the
perceived tempo of the music is more relevant than the notated tempo. An automatic
playlist generator or music navigator, for instance, might allow listeners to select or fil-
ter music by its (automatically extracted) tempo. In this case, the ”feel”, or perceptual
tempo may be more relevant than the notated tempo. An automatic DJ apparatus might
also perform better with a representation of perceived tempo rather than notated tempo.
A more pragmatic reason for using perceptual tempo rather than notated tempo as a
ground truth for our contest is that we simply do not have the notated tempo of our test
set. If we notate it by having a panel of expert listeners tap along and label the excerpts,
we are by default dealing with the perceived tempo. The handling of this data as ground
truth must be done with care.

During this contest, the test database was much smaller and only contained 140 song

3A comprehensive description of the methodology of this contest can be found on the WWW at the
address http://www.music-ir.org/mirex2005/index.php/Audio Tempo Extraction

http://www.music-ir.org/mirex2005/index.php/Audio_Tempo_Extraction


A. METHODOLOGICAL BENCHMARKING OF TEMPO EXTRACTION ALGORITHMS 155

excerpts. On the other side, the ground-truth was highly reliable since it was obtained
after averaging the annotations carried about by dozens of listeners.

The competition consisted in four different tasks:

i) extraction of the most salient perceptual tempo, T1 (scalar in BPMs),

ii) extraction the second most salient perceptual tempo, T2 (scalar in BPMs),

iii) temporal location of the first beat for T1,

iv) temporal location of the first beat for T2.

Table A.2 presents the results for this contest ordered by rank4. Algorithm information
for those participants without reference can be consulted on the contest web page.

Rank Participant Score

1 Alonso et al. (2005b) 0.689

2 Uhle, C. 0.675
3 Uhle, C. 0.675
4 Gouyon & Dixon (1) 0.670
5 Peeters (2005) 0.656
6 Gouyon & and Dixon (2) 0.649
7 Gouyon & Dixon (4) 0.645
8 Eck & Casagrande (2005) 0.644
9 Davies & Brossier 0.628

10 Gouyon & Dixon (3) 0.607
11 Sethares 0.597
12 Brossier 0.583
13 Tzanetakis 0.538

Table A.2: Results of the second tempo extraction contest.

4A comprehensive description of the results can be found on the WWW at the address:
http://www.music-ir.org/evaluation/mirex-results/audio-tempo/index.html.

http://www.music-ir.org/evaluation/mirex-results/audio-tempo/index.html
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Appendix B

Formulae of numerical
differentiation

In solving many mathematical and physical problems by means of numerical methods
one is often challenged to seek derivatives of various functions given in discrete points.
In such cases, when it is difficult or impossible to take derivative of a function analyti-
cally one resorts to numerical differentiation. This appendix briefly resumes the so-called
”formulae of numerical differentiation” developed by Dvornikov (2003).

Without loss of generality we suppose that the derivative is taken in the zero point,
i.e., x0 = 0. Let us consider the discrete function f(x) given in equidistant points xm =
±mh, where m = 0, . . . , n and h is a constant value. It is possible to pass a polynomial of
order 2n through these points

P2n(x) =

2n∑

k=0

ckx
k, (B.1)

where the values of the function coincide with the interpolation points: P2n(xm) = fm
and fm = f(xm). Let us define as dm the differences of the values of the function f(x) in
diametrically opposite points xm and x−m, i.e., dm = fm − f−m. We can write dm in the
form

dm = 2

n−1∑

k=0

c2k+1h
2k+1m2k+1. (B.2)

To find the coefficients c2k+1, k = 0, . . . , n− 1, we must solve a system of inhomogeneous
linear equations using the terms dm. Instead of solving Eq. (B.2) directly, we proceed as
follows

c2k+1 =
1

2h2k+1

n∑

m=1

dmα
(2k+1)
m (n), (B.3)

where the α
(2k+1)
m (n) are the undetermined coefficients satisfying the condition

n∑

m=1

α(2l+1)
m (n)m2k+1 = δlk, (B.4)

where l, k = 0, . . . , n − 1. The system of Eq. (B.4) is equivalent to that of Eq. (B.2), but
simpler to solve, in which for each k = 0, . . . , n − 1 it is necessary to find the coefficients
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α
(2l+1)
m (n). This system can be solved according to Cramer’s rule:

α(2l+1)
m (n) =

∆
(2l+1)
m (n)

∆0(n)
(B.5)

where

∆0(n) =

∣∣∣∣∣∣∣∣∣

1 2 · · · n
1 23 · · · n3

...
...

. . .
...

1 22n−1 · · · n2n−1

∣∣∣∣∣∣∣∣∣

= n!
∏

1≤i≤j≤n

(j2 − i2) 6= 0 (B.6)

and

∆(2l+1)
m (n) =

∣∣∣∣∣∣∣∣∣∣∣∣

1 2 · · · m− 1 0 m+ 1 · · · n
...

...
. . .

...
...

...
. . .

...
1 22l+1 · · · (m− 1)2l+1 0 (m+ 1)2l+1 · · · n2l+1

...
...

. . .
...

...
...

. . .
...

1 22n−1 · · · (m− 1)2n+−1 0 (m+ 1)2n−1 · · · n2n−1

∣∣∣∣∣∣∣∣∣∣∣∣

. (B.7)

In Eqs. (B.6) and (B.7) we used the formula for the calculation of the Vandermonde deter-

minant. The simplest expression for ∆
(2l+1)
m (n) is obtained for l = 0, which corresponds

to a calculation of the first-order derivative

∆(1)
m (n) = (−1)m+1

(
n!

m

) ∏

1≤i≤j≤n
i,j 6=m

(j2 − i2). (B.8)

From Eq. (B.5) and using Eqs. (B.6)–(B.8) we obtain the expression for the coefficients

α(1)
m (n) =

1

mπm(n)
, (B.9)

where

πm(n) =

n∏

k=1
k 6=m

(
1 − m2

k2

)
. (B.10)

Finally, using Eqs. (B.1)–(B.3) we get the formula for the first derivative of the discrete
function f(x)

f ′(0) ≈ P ′
2n(0) =

1

2h

n∑

m=1

α(1)
m (n)(fm − f−m). (B.11)
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Appendix C

Perceptual weighting filter: ITU-R
ARM

It has been known for years that human hearing does not have the same response at all
frequencies in the audible range (Fletcher & Munson, 1933). The purpose of weighting
filters is to account for this issue. In fact, this kind of filters are designed to weight or give
more attention to the upper midrange frequency region, where hearing is more sensitive.
The goal is to obtain measurements that correlate well with the subjective perception of
sound intensity1.

For the present work, instead of using the widespread and more familiar A-weighting
curve (IEC268-1, 1968) we opted for a more recent and perceptually plausible weighting
curve usually known as the ”ITU-R ARM” (average response meter) derived from the
standard ITU-R468 (1986). According to its developers (Dolby et al., 1979) this weighting
curve has better agreement with subjective assessments and is widely employed in pro-
fessional and commercial audio equipment. The electrical circuit to physically implement
this filter is presented in Figure C.1. After computing the respective transfer function we
obtained the following equation:

W(s) =
N1s

(s2 +D1s+D2)(s2 +D3s+D4)(s2 +D5s+D6)
(C.1)

where s = 2πf represents the complex frequency, and the values of the constants are:

N1 = 1.05973883e24 D1 = 8.85788709e04 D2 = 1.62351886e09
D3 = 4.72310705e04 D4 = 1.88119128e09 D5 = 3.74874935e04
D6 = 4.25259918e09

The frequency shape of this weighting filter can seen on page 89.

1However, this sensitivity variation is not only frequency dependent, but also depends on sound in-
tensity. For this reason, some researchers consider that the idea that a single filter can represent this phe-
nomenon at all intesity levels is wrong.
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Figure C.1: Circuit of the Weighting Filter ITU-R ARM.
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Appendix D

Numerical values of the results given
in Chapter 5

This Appendix presents the numerical values of the results presented in Chapter 5. Un-
less otherwise stated, the figure that appear the tables in of this Appendix were computed
using the Accuracy 2 criterion.

On the impact of the window length parameter

P
P

P
P

P
P

PP
Method

`
3 s 4 s 5 s 6 s 7 s 8 s

SS 89.9 91.5 91.3 91.6 90.7 91.1
SP 88.0 89.5 90.4 90.8 90.0 90.6
AC 89.3 88.9 89.1 89.4 87.6 88.1
CF 83.8 83.0 82.9 82.4 82.1 82.5
MF 90.5 91.1 91.2 91.5 90.1 90.6

Table D.1: Accuracies (in %) by periodicity method depending on the window length (`)
value (in seconds) for the ENST database.

P
P

P
P

P
P

PP
Method

`
3 s 4 s 5 s 6 s 7 s 8 s

SS 88.2 90.9 91.4 91.6 92.0 91.8
SP 86.5 90.7 91.8 92.0 92.4 93.9
AC 89.5 88.4 88.6 88.4 89.9 89.2
CF 74.7 75.7 75.9 75.9 75.9 75.7
MF 89.2 90.7 92.0 91.6 92.2 92.6

Table D.2: Accuracies (in %) by periodicity method depending on the window length (`)
value (in seconds) for the TUT database.
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On the impact of the overlapping parameter

P
P

P
P

P
P

PP
Method

ρ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SS 91.1 91.7 90.9 91.5 91.5 91.3 92.1 91.9 92.1 91.8
SP 88.9 89.4 89.2 89.9 90.1 90.4 90.4 90.8 91.7 91.5
AC 88.8 88.8 89.0 88.6 89.1 89.1 88.9 88.8 89.3 88.4
CF 82.4 82.0 82.1 82.1 82.3 82.9 83.0 83.2 83.9 83.5
MF 90.5 91.4 90.5 91.3 90.7 91.2 91.2 91.2 92.0 91.2

Table D.3: Accuracies (in %) by periodicity method depending on the overlapping factor
ρ as a function of the window length (figures computed for ` = 5). Values obtained on
the ENST database.

P
P

P
P

P
P

PP
Method

ρ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SS 90.3 91.4 90.9 91.6 91.4 91.4 91.8 90.9 89.9 91.1
SP 90.5 92.2 90.7 89.9 92.0 91.8 91.4 93.0 92.0 91.6
AC 89.0 88.4 88.2 89.9 88.4 88.6 88.2 88.8 88.6 87.6
CF 76.2 75.7 75.3 76.2 75.9 75.9 76.8 75.3 74.7 75.1
MF 90.9 92.2 90.7 92.0 91.4 92.0 92.2 91.1 91.4 91.6

Table D.4: Accuracies (in %) by periodicity method depending on the overlapping factor
ρ as a function of the window length (figures computed for ` = 5). Values obtained on
the TUT database.
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Database
Method

Criterion
SS SP AC CF MF

ENST 47.8 43.7 38.5 47.6 46.6
Accuracy 1

TUT 52.1 49.8 40.7 58.7 56.1

ENST 92.1 90.4 88.9 83.0 91.2
Accuracy 2

TUT 91.8 91.4 88.2 76.8 92.1

Table D.5: Performance (in %) by periodicity method using both criteria.

Efficacy of the system by musical genre

Method
Genre

classical jazz latin pop rock reggae soul hip-hop techno other greek

SS 41.4 62.5 50.4 61.5 45.1 26.7 62.5 35.0 42.9 51.0 41.4
SP 40.4 62.5 45.2 58.3 45.1 30.0 29.2 30.0 42.9 46.9 30.0

AC 30.5 68.2 46.1 53.1 45.1 26.7 37.5 20.0 26.8 39.8 20.0
CF 33.5 63.6 54.8 68.8 49.5 46.7 87.5 70.0 58.9 59.2 13.6

MF 39.9 71.6 53.0 61.5 45.1 33.3 54.2 35.0 42.9 55.1 25.0

Table D.6: Performance (in %) by genre using the Accuracy 1 criterion. Results obtained
on the ENST database.

Method
Genre

classical electronic hip-hop jazz/blues rock/pop soul/funk other

SS 34.5 77.3 29.7 56.4 55.6 50.0 46.7

SP 38.1 71.2 18.9 56.4 53.2 40.7 60.0
AC 39.3 34.8 10.8 50.0 48.4 35.2 46.7

CF 33.3 66.7 67.6 60.6 64.5 64.8 60.0

MF 39.3 74.2 32.4 63.8 62.9 46.3 60.0

Table D.7: Performance (in %) by genre using the Accuracy 1 criterion. Results obtained
on the TUT database.

Method
Genre

classical jazz latin pop rock reggae soul hip-hop techno other greek

SS 86.2 96.6 92.2 97.9 98.9 100.0 100.0 100.0 96.4 98.0 79.3
SP 85.2 95.5 89.6 97.9 97.8 100.0 100.0 100.0 94.6 95.9 75.0

AC 85.2 95.5 88.7 96.9 97.8 93.3 100.0 95.0 87.5 87.8 76.4

CF 75.4 92.0 77.4 93.8 87.9 93.3 100.0 95.0 89.3 84.7 72.1
MF 89.2 95.5 89.6 97.9 98.9 93.3 100.0 100.0 89.3 95.9 77.1

Table D.8: Performance (in %) by genre using the Accuracy 2 criterion. Results obtained
on the ENST database.
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Method
Genre

classical electronic hip-hop jazz/blues rock/pop soul/funk other

SS 73.8 95.5 97.3 94.7 94.4 100.0 93.3

SP 71.4 95.5 97.3 96.8 94.4 98.1 86.7
AC 72.6 86.4 86.5 91.5 96.0 92.6 86.7

CF 57.1 74.2 86.5 81.9 78.2 94.4 66.7

MF 76.2 92.4 97.3 95.7 94.4 100.0 100.0

Table D.9: Performance (in %) by genre using the Accuracy 2 criterion. Results obtained
on the TUT database.

Influence of the pre-processing and the H+N decomposition method

The meaning of the initials in the tables shown below is the following: the names
NC and C refer to the pre-processing scheme (see §3.2) and stand for ”non-causal” and
”causal” respectively. The names EDS and FT stand for ”Exponetially Damped Sinusoid”
and ”Fourier Transform” respectively and refer to harmonic-plus-noise (H+N) decompo-
sition method (see §3.3).

Configuration
Method

SS SP AC CF MF Scheirer

NC-EDS 92.1±1.7 90.4±1.9 88.9±2.0 83.0±2.4 91.2±1.8

72.4±2.8
NC-FT 91.3±1.8 89.1±2.0 89.9±1.9 81.6±2.5 90.4±1.9
C-EDS 90.5±1.9 87.7±2.1 86.3±2.2 80.7±2.5 88.8±2.0
C-FT 89.5±1.9 89.2±2.0 86.8±2.1 79.4±2.6 89.3±2.0

Without H+N 89.8±1.9 88.8±2.0 86.8±2.1 78.6±2.6 89.1±2.0

Table D.10: On the impact in the performance (in %) of different pre-processing and H+N
decomposition configurations. The success rate of Scheirer’s algorithm is also presented.
Figures computed on the ENST database.

Configuration
Method

SS SP AC CF MF Scheirer

NC-EDS 91.8±2.5 91.4±2.5 88.2±2.9 76.8±3.8 92.2±2.4

79.1±3.7
NC-FT 90.5±2.6 89.5±2.8 88.8±2.8 72.8±4.0 91.1±2.6
C-EDS 90.5±2.6 91.1±2.6 88.4±2.9 75.7±3.9 90.9±2.6
C-FT 90.7±2.6 90.5±2.6 88.2±2.9 72.8±4.0 90.9±2.6

Without H+N 88.6±2.7 89.5±2.8 90.3±2.7 72.2±4.0 90.9±2.6

Table D.11: Similar as Table D.10, but using the TUT database.



D. NUMERICAL VALUES OF THE RESULTS GIVEN IN CHAPTER 5 165

Database Config. SS SP AC CF MF

ENST
EDS 86.2±4.7 85.2±4.9 85.2±4.9 75.4±5.9 89.2±4 .3
FT 83.7±5.1 78.8±5.6 84.7±4.9 71.4±6.2 84.2±5.0
No H+N 80.8±5.4 75.9±5.9 81.3±5.4 64.5±6.6 80.8±5.4

TUT
EDS 73.8±9.4 71.4±9.7 72.6±9.5 57.1±10.6 76.2±9.1
FT 66.7±10.1 61.9±10.4 73.8±9.4 48.8±10.7 72.6±9.5
No H+N 63.1±10.3 65.5±10.2 77.4±8.9 48.8±10.7 70.2±9.8

Table D.12: Influence of the H+N decomposition on classical music. These figures were
computed using the non-causal preprocessing.

Configuration
Method

SS SP AC CF MF

EDS signal 90.3±1.9 88.0±2.1 85.2±2.2 81.5±2.5 90.1±1.9
EDS noise 87.7±2.1 84.9±2.3 85.5±2.2 80.2±2.5 87.8±2.1
FT signal 88.1±2.0 86.7±2.1 86.8±2.1 78.0±2.6 88.4±2.0
FT noise 91.1±1.8 88.0±2.1 87.7±2.1 78.1±2.6 89.8±1.9

Without H+N 89.8±1.9 88.8±2.0 86.8±2.1 78.6±2.6 89.1±2.0

Table D.13: On the influence (in %) of the signal and noise parts for both H+N decompo-
sition methods. Figures obtained on the ENST database.

Configuration
Method

SS SP AC CF MF

EDS signal 91.6±2.5 92.0±2.4 88.2±2.9 74.7±3.9 91.8±2.5
EDS noise 89.2±2.8 90.1±2.7 86.9±3.0 70.9±4.1 89.9±2.7
FT signal 90.7±2.6 88.8±2.8 86.9±3.0 73.6±4.0 90.5±2.6
FT noise 90.7±2.6 91.4±2.5 87.3±3.0 70.7±4.1 91.6±2.5

Without H+N 88.6±2.9 89.5±2.8 90.3±2.7 72.2±4.0 90.9±2.6

Table D.14: Same as Table D.13 but using the TUT database.

Configuration
Method

SS SP AC CF MF

EDS UFB 92.1±1.7 90.4±1.9 88.9±2.0 83.0±2.4 91.2±1.8
FT UFB 91.3±1.8 89.1±2.0 89.9±1.9 81.6±2.5 90.4±1.9

EDS logFB 92.0±1.7 90.5±1.9 88.4±2.0 81.8±2.4 90.7±1.8
FT logFB 90.9±1.8 88.7±2.0 88.7±2.0 79.4±2.6 90.0±1.9

Table D.15: On the influence of the filter bank and the H+N decomposition method.
Figures obtained using the ENST database.

Configuration
Method

SS SP AC CF MF

EDS UFB 91.8±2.5 91.4±2.5 88.2±2.9 76.8±3.8 92.2±2.4
FT UFB 90.5±2.6 89.5±2.8 88.8±2.8 72.8±4.0 91.1±2.6

EDS logFB 92.2±2.4 92.2±2.4 90.5±2.6 74.5±3.9 92.6±2.4
FT logFB 88.8±2.8 90.5±2.6 88.2±2.9 72.8±4.0 89.0±2.8

Table D.16: Same as Table D.15 but using the TUT database.
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Database Config. SS SP AC CF MF

ENST

EDS U-FB 86.2±7.2 85.2±7.4 85.2±7.4 75.4±9.0 89.2±6.5
FT U-FB 83.7±7.7 78.8±8.5 84.7±7.5 71.4±9.4 84.2±7.6
EDS log-FB 88.2±6.7 85.7±7.3 88.2±6.7 70.9±9.5 89.2±6.5
FT log-FB 83.7±7.7 77.8±8.7 83.3±7.8 69.0±9.7 84.2±7.6

TUT

EDS U-FB 73.8±9.4 71.4±9.7 72.6±9.5 57.1±10.6 76.2±9.1
FT U-FB 66.7±10.1 61.9±10.4 73.8±9.4 48.8±10.7 72.6±9.5
EDS log-FB 77.4±8.9 76.2±9.1 79.8±8.6 52.4±10.7 84.5±7.7
FT log-FB 69.0±9.9 72.6±9.5 76.2±9.1 57.1±10.6 72.6±9.5

Table D.17: Influence of the filter bank on classical music.

Configuration
Method

SS SP AC CF MF

UFB 89.8±1.9 88.8±2.0 86.8±2.1 78.6±2.6 89.1±2.0
logFB 90.0±1.9 88.3±2.0 86.5±2.2 78.1±2.6 89.8±1.9

Single-band 85.3±2.2 83.8±2.3 82.9±2.4 76.7±2.7 84.6±2.3

Table D.18: On the influence of the filter bank without H+N method. Figures obtained
using the ENST database.

Configuration
Method

SS SP AC CF MF

UFB 88.6±2.9 89.5±2.8 90.3±2.7 72.2±4.0 90.9±2.6
logFB 89.2±2.8 89.5±2.8 89.5±2.8 71.7±4.1 89.0±2.8

Single-band 86.2±3.1 87.6±3.0 84.5±3.3 66.5±4.2 86.4±3.1

Table D.19: Same as Table D.18 but using the TUT database.

Configuration
Method

SS SP AC CF MF

SEF 89.8±1.9 88.8±2.0 86.8±2.1 78.6±2.6 89.1±2.0
CSD 79.2±2.6 76.4±2.7 79.4±2.6 68.0±3.0 79.1±2.6
SD 77.1±2.7 75.5±2.7 73.6±2.8 69.6±2.9 77.8±2.6

Table D.20: Comparing algorithms to compute the musical stress profiles. The Spectral
Energy Flux (SEF), the Complex Spectral Difference (CSD) and the Spectral Difference
(SD).Figures obtained using the ENST database.

Configuration
Method

SS SP AC CF MF

SEF 88.6±2.9 89.5±2.8 90.3±2.7 72.2±4.0 90.9±2.6
CSD 85.9±3.2 84.2±3.4 85.3±3.3 67.8±4.2 86.8±3.1
SD 84.2±3.3 86.3±3.1 81.5±3.5 72.2±4.0 85.5±3.2

Table D.21: Same as Table D.20, but using the TUT database.
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Stage
Configuration

UB-EDS LB-EDS UB-FT
iterations time (s) iterations time (s) iterations time (s)

Preprocess ×1 1.2 ×1 0.8 ×1 1.5
Filter bank ×1 0.7 ×1 0.5 ×2 1.8

H+N ×8 38.0 ×5 52.0 ×1 18.6
Musical stress ×16 54.6 ×10 43.8 ×16 67.5

Periodicity ×16 5.1 ×10 2.6 ×16 7.6
Tracking ×1 0.4 ×1 0.3 ×1 0.4

Table D.22: Computation time.



168 D. NUMERICAL VALUES OF THE RESULTS GIVEN IN CHAPTER 5



169

Appendix E

SD and CSD algorithms to compute
the musical stress profile

In this section we present a brief description of the Spectral Difference (SD) and Complex
Spectral Difference (CSD) algorithms used in §5.6. Both of them share a common general
approach based on measuring the rate of change of the power-spectrum. In fact, these
methods compute the detection function as a ”distance” between successive short-term
Fourier spectra, treating them as points in an N -dimensional space.

E.3 Spectral Difference

The Spectral Difference procedure has been proposed by Masri (1996) and later also by
Duxbury et al. (2002). This method relies on the assumption that the introduction of a
new acoustic event leads to an increase in the energy of the signal. This energy method
has proved to be popular since it is straightforward and it has a low computational cost.
Besides, it is efficient to detect percussive notes. Let us consider the discrete time signal
x(n), its short time Fourier transform (STFT) is given by

Xk(m) =

N−1∑

n=0

g(n)x(n+m)e−
2π
N
kn (E.1)

where g(n) is an analysis window, m is the time-frame index and k the frequency bin
index. The SD algorithm is defined as:

d(m) =
N−1∑

k=0

(|Xk(m)| − |Xk(m− 1)|)2 (E.2)

E.4 Complex Spectral Difference

The Complex Spectral Difference algorithm was developed by Bello et al. (2004). Ac-
cording to them, energy-based onset detection schemes perform well for pitched and
nonpitched music with significant percussive content. On the other hand, phase-based
onset detection approaches provide better results for strongly pitched signals (even for
”softer” onsets), while being less robust to distortions in the frequency content and to
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noise. In the complex domain, both phase and amplitude information work together, of-
fering a generally more robust onset detection scheme. This method is also based on the
STFT of x(n).

Let us assume that during steady state regions of the audio signal, the magnitude
spectrum should remain approximately constant. Then we can predict that the magni-
tude spectrum R̂k at frame m is given by the magnitude of the previous frame

R̂k(m) = Rk(m− 1) (E.3)

whereRk(m) = |Xk(m)|. In addition we apply an assumption about the properties of the
phase spectrum, that during steady state regions the phase velocity at the kth frequency
bin should ideally be constant.

φ̃k(m) − φ̃k(m− 1) ≈ φ̃k(m− 1) − φ̃k(m− 2) (E.4)

We adopt a short-hand notation for the left hand side of equation ∆φ̃k(m) = φ̃k(m) −
φ̃k(m − 1). Then, rearranging terms in Eq. E.4, we can predict the phase of the kth fre-
quency bin for frame m given the observation of the two previous frames:

φ̂k(m) = princarg[φ̃k(m− 1) + ∆φ̃k(m− 1)] (E.5)

where ”princarg” unwraps the phase value, mapping it into the range [−π, π]. The pre-
dictions of the magnitude spectrum R̂k(m) and the phase spectrum φ̂k(m) can be repre-
sented in polar form to give a spectral prediction X̂k(m) in the complex domain

X̂k(m) = R̂k(m)eφ̂k(m) (E.6)

which we compare to the observed complex spectrum Xk(m). To derive the complex
spectral difference (CSD) detection function d(m) at we compute the sum of the Euclidean
distance between the predicted and observed spectra for all k frequency bins, i.e.,

d(m) =

N−1∑

k=1

|Xk(m) − X̂k(m)|2. (E.7)
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Publications

Conference papers

? Alonso M., Richard G. and David B., ”Extracting note onsets from audio record-
ings”, IEEE International Conference on Multimedia & Expo (ICME), Amsterdam,
The Netherlands. July 2005.

? Alonso M., David B. and Richard G. ”Tempo and beat estimation of music sig-
nals”, Proc. of International Conference on Music Information Retrieval (ISMIR),
Barcelona, Spain. October 2004.

? Alonso M., Badeau R., David B. and Richard G., ”Musical tempo estimation using
noise subspace projections”, IEEE Workshop on applications of signal processing
to audio and acoustics (WASPAA), New Paltz, New York. October 2003.

? Alonso M., David B. and Richard G., ”A study of tempo tracking algorithms from
polyphonic music signals”, 4-th European Cooperation in the field of Scientific and
Technical Research (COST) Workshop, Bordeaux, France. March 2003.

Journal papers

? Alonso M., Richard G., and David B., ”Accurate tempo estimation based on har-
monic+noise decomposition”, EURASIP Journal on Advances in Signal Processing
(JASP), 2006 (in press).

.

? Gouyon F., Klapuri A., Dixon S., Alonso M., Tzanetakis G., Uhle C., and Cano P.,
”An experimental comparison of audio tempo induction algorithms”, IEEE transac-
tions in Speech and Audio Processing, Vol. 14(5), pp. 1832–1844, 2006.

Distinctions

? Winner algorithm in the ”Audio Tempo Extraction” category during the Music In-
formation Retrieval Evaluation eXchange (Mirex) contest. September 2005.
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