
HAL Id: pastel-00002281
https://pastel.hal.science/pastel-00002281

Submitted on 23 Mar 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The SSA Representation Framework: Semantics,
Analyses and GCC Implementation

Sebastian Pop

To cite this version:
Sebastian Pop. The SSA Representation Framework: Semantics, Analyses and GCC Implementation.
domain_other. École Nationale Supérieure des Mines de Paris, 2006. English. �NNT : �. �pastel-
00002281�

https://pastel.hal.science/pastel-00002281
https://hal.archives-ouvertes.fr

Collège doctoral
ÉD no 431 : Information, communication, modélisation et simulation

No attribué par la bibliothèque:
| | | | | | | | | | |

THESE
pour obtenir le grade de

Docteur de l’Ecole des Mines de Paris
Spécialité “Automatique, Robotique, et Informatique Temps Réel”

présentée et soutenue publiquement par

Sebastian POP
le 13 Décembre 2006

La représentation SSA: sémantique, analyses
et implémentation dans GCC

The SSA Representation Framework:
Semantics, Analyses and GCC

Implementation

Directeur de thèse : François Irigoin

Jury

Philippe Clauss Président
Albert Cohen Examinateur
Matthieu Martel Rapporteur
Lawrence Rauchwerger Rapporteur
Georges-André Silber Directeur

Contents

List of Figures 4

1 Introduction 7

1.1 Motivations . 8

1.2 Contributions of this Thesis . 9

1.3 Overview of the Thesis . 10

2 Denotational Semantics of SSA 11

2.1 Definition of a Programming Language 11

2.1.1 Syntax of a Language . 12

2.1.2 Semantics of a Language . 12

2.2 The SSA Intermediate Representation 16

2.2.1 Basic Notions of Data Flow Analysis 17

2.2.2 An Informal Semantics for SSA 20

2.2.3 SSA is Functional Programming: SSA = CPS 22

2.2.4 Discussion on Related Work 26

2.3 A Denotational Semantics for SSA 27

2.3.1 IMP, an Imperative Programming Language 28

2.3.2 SSA . 32

2.3.3 Conversion to SSA . 34

2.3.4 SSA Conversion Consistency 36

2.3.5 Discussion . 45

2.3.6 Future Work . 48

2.4 Conclusion . 48

3 From SSA to ASSA in PROLOG 49

3.1 ASSA: Abstract SSA . 50

3.2 SSA to ASSA in Logic Programming 53

3.2.1 Logic Programming and PROLOG 53

3.2.2 Representing SSA in PROLOG 55

3.2.3 Condensed SSA Expressions 58

3.2.4 Abstract SSA in PROLOG 61

3.2.5 Characterizing Functions for Scalar Variables 63

3

4 CONTENTS

3.3 Conclusion . 68

4 Translation to ASSA in Practice 69

4.1 Loop Transforms on a Low-Level Representation 70
4.2 Trees of Recurrences . 77
4.3 Abstract SSA on GIMPLE . 82
4.4 Algorithm . 84
4.5 Termination and Complexity of the Algorithm 88
4.6 Application to the Introductory Examples 91
4.7 Affine loopφ Optimizations in GCC 94

4.7.1 Code Transformation Frameworks in GCC 94
4.7.2 Empirical Study . 95

4.8 Conclusion . 102

5 Conclusions and Future Work 103

5.1 Contributions to Formal Frameworks 103
5.2 Contributions to Practical Frameworks 104
5.3 Future Work . 105

Bibliography 106

List of Figures

2.1 Translation of an imperative program to CFG. 18

2.2 Reaching definitions analysis as a data flow problem. 19

2.3 Translation of a sequence to SSA form. 20

2.4 Translation problem for condition statements. 21

2.5 Syntax and semantics for an IMP program. 31

2.6 Syntax and semantics of a loop-φ expression. 34

2.7 Conversion from IMP to SSA. 37

2.8 Consistency property for translation of expressions. 37

2.9 Partial recursive functions example. 46

3.1 An SSA interpreter in PROLOG. 56

3.2 An SSA program in PROLOG. 57

3.3 Folding arithmetic expressions. 59

3.4 Finding self references. 60

3.5 A normalization equivalence. 60

3.6 Normalized SSA for the running example. 61

3.7 Definition of a mask for exponential evolutions. 61

3.8 Definition of a meet over all paths abstraction. 62

3.9 Sequences and closed forms for the running example. 64

3.10 Multivariate sequences and closed forms. 64

3.11 From a subset of the SSA language to lambda expressions. 65

3.12 Example of translation of SSA to lambda(2) expressions. 66

3.13 From a subset of the SSA language to chains of recurrences. 67

3.14 Example of translation of SSA to mcr(3) expressions. 67

4.1 The infrastructure of GCC 4. 71

4.2 Lowering to three-address code. 72

4.3 First example: polynomial functions. 74

4.4 Second example: multivariate functions. 75

4.5 Third example: wrap-around. 75

4.6 Fourth example : periodic evolution functions. 76

4.7 Fifth example: effects of types on the evolution of scalar variables. 76

4.8 Sixth example: inferring properties from undefined behavior. . . . 76

5

6 LIST OF FIGURES

4.9 Arithmetic operations on TREC . 78
4.10 Unification of a chain of recurrence. 80
4.11 Bird’s eye view of the analyzer . 84
4.12 Driver application. 84
4.13 Main analyzer. 85
4.14 SSA walker. 86
4.15 A possible filter function. 87
4.16 Computational patterns of InstantiateEvolution (IE), Ana-

lyzeEvolution (AE), and BuildUpdateExpr (BUE). 89
4.17 Application to the first example . 92
4.18 Scalar induction variables and loop trip count in SPEC CPU2000

and JavaGrande benchmarks. 97
4.19 Impact of the scalar evolutions analyzer on code transformations. . 98
4.20 Percent speed up of run time for SPEC CPU2000 on AMD64. . . . 99
4.21 Percent speed up of run time for JavaGrande on AMD64. 100
4.22 Percent speed up of run time for MiBench on ARM. 101

Chapter 1

Introduction

Programming languages appeared short after the first computing machines,
and intended to abstract machines architectural specifics. The creation of the
first programming languages revived the interest in extending the framework
used to describe languages in mathematical logic to handle the syntax and the
semantics of programming languages. The syntax of a programming language
is formally described under the form of a grammar that contains the rules for
the construction of programs. The semantics of a programming language is
formally defined by a correspondence between the syntactic constructs and
mathematical objects that describe the computation.

The compilation of programming languages, or the translation of a pro-
gramming language to another programming language, can naturally be de-
scribed based on the semantics correspondence: a compiler translates a pro-
gram written in a source programming language to a program written in
a target programming language conserving the semantics. The part of the
compiler in charge with the recognition of the source language is commonly
called the front-end. The term back-end is commonly used for the part of
the compiler that generates the target language. The term middle-end is
used for all the intermediate languages used in the compiler that are inde-
pendent of the source and of the target languages. Modern compilers can
compile several source languages to several target languages, because they
internally use several layers of languages that are computationally equivalent
to the source and to the target languages. The role of modern compilers
is not only to translate the source to the target languages, but also to effi-
ciently use the target languages, to exploit the architectural characteristics
of the target computing machine. Thus, modern compilers implement some
of the sophisticated optimizations initially introduced for supercomputing
applications [AK02]: they provide performance models and transformations
to improve fine-grain parallelism and exploit the memory hierarchy.

7

8 CHAPTER 1. INTRODUCTION

The GNU Compiler Collection (GCC) is the leading compiler suite for
the free and open source software. The large set of target architectures and
standard compliant front ends makes GCC the de facto compiler for portable
developments and system design. However, until recently, GCC was not an
option for high performance computing: it had no infrastructure neither for
data access restructuring nor for automatic parallelization. Furthermore,
until recently, the compilation research community had no robust, universal,
free, and industry-supported platform where new ideas in compiler technol-
ogy could be implemented and tested on large scale programs written in
standard programming languages. For more than a decade, the field of ad-
vanced compilation has been plagued by redundant development efforts on
short-lived projects, with little impact on production environments.

1.1 Motivations

Most of the industrial, commonly used programming languages are only de-
fined based on informal natural language descriptions. Large parts of the
semantics are intentionally left undefined, or left to be defined by the com-
piler. In turn, compilers, intermediate languages used in compilers, and
compiler algorithms are informally described in the literature: a perpetrated
tradition. This situation makes the definition of formal tools hard, especially
in the case of compilers and verification tools. In the case of free software
compilers, the source code itself provides a formal definition. In this respect,
the free software compilers improved the situation over past descriptions of
compilers. However, the source code of these compilers is too large, contain-
ing too many details and special cases. This thesis will provide an equivalent
higher-level formal overview of some of the intermediate languages used in
the free software compiler GCC. More specifically, this thesis will present
for the first time a formal definition of the Static Single Assignment (SSA)
language, and the intermediate languages that can be used for describing ab-
stract properties of scalar variables extracted from the SSA representation,
such as the envelopes of scalar evolutions.

Recent advances in compiler techniques show a preference on using higher
level representations, in lieu of low level imperative languages, for performing
code transformations and analyses: the use of single assignment languages
[SS70] in compilers originates in the mid 1980s [AWZ88, RWZ88, CFR+89,
CFR+91, Hav93, TP95b, TP95a, BP99, BP03], and as we will see in this
thesis, these languages correspond to declarative languages, in which the
notion of a store point, or memory cell, characteristic of imperative languages,
is replaced by declarations and streams of values. Based on this higher

1.2. CONTRIBUTIONS OF THIS THESIS 9

level description of programs, compilers are more apt to reorganize the code
for efficiently translating programs on new architectures, and for proposing
higher level static analysis techniques.

In opposition to dynamic analysis, testing or profiling, static analysis is
performed without knowing the context in which the program will be exe-
cuted. Thus, static analysis obtains more general solutions, but most of the
interesting questions become uncomputable: every property that is not true
or false for all the programs is undecidable, a result commonly known under
the name of Rice’s theorem [Rog87, Jon97]. In order to avoid uncomputable
properties, a static analysis uses safe approximations of the behavior of pro-
grams, a trade between the cost of static computation and the precision of the
provided answers. In some cases the abstract representations would not con-
tain enough information for allowing the static analysis to output a definitive
answer: the result is an uncertain answer, “don’t know”. Abstract interpre-
tation [CC77] provides a general theoretical framework for the approxima-
tion of the semantics of programming languages. The abstract interpretation
framework provides an automatic technique to build static analyses starting
from the most precise semantics of the programming language and targeting
some predefined abstract domain. The results of a static analysis are used
in different applications, ranging from the detection of safety properties of
programs, to validation of code transformations in loop nest optimizations
and automatic parallelization [Wol96, Muc97, AK02].

1.2 Contributions of this Thesis

The main contributions of this work are to provide formal definitions and
practical implementations of static analyses using the SSA form in industrial
compilers. More precisely, the contributions of this thesis can be summarized
in two parts: contributions to theoretical frameworks, and results from the
practical implementations of these theoretical ideas in an industrial compiler
(GCC).

The first theoretical contribution of the thesis consist in a formal defi-
nition of the SSA language under the form of a syntax and a denotational
semantics. We provide also a minimal imperative language, that we called
IMP, for which we provide the translation algorithm to the SSA language.
The number of syntactic elements composing these languages has been in-
tentionally reduced to a minimum, only preserving the vital parts of the lan-
guages that makes them computationally equivalent to any other full-fledged
language. This reduction of the number of syntactic elements reduces the
length of the proofs for the consistency theorem that states the soundness of

10 CHAPTER 1. INTRODUCTION

the translation algorithm from IMP to SSA.
The definition of the denotational semantics of the SSA language has

a direct application in the extension of the applicability of the classical ab-
stract interpretation framework to programs written in SSA form. This thesis
provides several examples that illustrate the use of classical abstractions on
the SSA representation. The thesis also presents a practical framework for
prototyping static analyses of the SSA language: the framework is based on
PROLOG and uses the full power of the unification algorithms provided by
this language for implementing an interpreter for the SSA language, provid-
ing an operational semantics of the SSA language, and for the description of
several algorithms that extract abstract views of the SSA language.

From a practical point of view, this thesis illustrates a part of the the-
oretical developments with industrial developments: the implementation of
the static analysis algorithms described in this thesis in an industrial com-
piler, the GNU Compiler Collection. The implementation is freely available
for reference in the main releases of GCC starting from versions 4.0. These
static analyses are at the heart of the new loop nest optimization framework
that we are currently developing in the GNU Compiler Collection. The the-
sis provides an evaluation of the importance of these static analyses in the
context of these loop nest optimizations on different computer architectures.

1.3 Overview of the Thesis

The thesis is organized as follows: Chapter 2 recalls the previous definitions
of the SSA, and then provides a formal definition of a syntax and a denota-
tional semantics for the SSA language, finally the chapter concludes with the
proof of a theorem stating the consistency of a translation algorithm from an
imperative language to SSA. Chapter 3 defines a set of abstractions on top
of the denotational semantics of the SSA, then more practically we will see
a possible encoding of SSA programs in logic programming using PROLOG,
and some techniques used to define static analyses on the SSA. Chapter 4
provides the imperative version of the main static analysis. This descrip-
tion of the same analysis algorithm is more practical for compiler writers
that want to adapt these static analyses in their compiler framework: this
description is closer to the implementation that I have integrated in GCC.
The chapter concludes with several experiments that show the importance
of this static analysis in the current optimization framework of GCC. Finally,
Section 5 concludes and sketches future work.

Chapter 2

Denotational Semantics of the
Static Single Assignment Form

The main contribution that I will describe in this chapter is related to the
definition of a formal syntax and semantics of the SSA representation. I will
survey different semantics that were given to the SSA language, and then, I
will present the first denotational semantics of the SSA language. I will then
describe a denotational semantics of the algorithm that converts an imper-
ative language to the SSA form, and finally I will show that the translation
is consistent with respect to a property that is conserved during the conver-
sion. For this purpose, I will use the denotational recording semantics of an
imperative language that I called IMP.

First, I will describe some formal methods that are available for defining
a programming language.

2.1 Definition of a Programming Language

Programming languages can be distinguished from natural languages in that
they are usually built using formal methods. In some cases, the use of an
informal language for speaking about algorithms is useful for conveying an
intuition, but is inappropriate for formal proofs. Programming languages
can be synthesized from mathematical objects that describe their form, com-
monly called the syntax, and their meaning, called the semantics. We find
this definition in [Rog87]:

Syntax is the study of formalized systems as pure formalisms,
apart from intended meanings. Semantics (in logic) is the study
of the relation between formalized systems and the mathematical
objects (e.g. real numbers) about which the systems appear (or are

11

12 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

intended) to speak. The distinction between syntax and semantics
is intuitively useful but difficult to make fully precise.

As the main topic of this thesis is related to programming languages, I will
use the term language exclusively for referring to a programming language.
In the remaining of this section, I survey the existing tools commonly used
to describe the syntax and the semantics of languages.

2.1.1 Syntax of a Language

In general, languages are encoded in streams of characters. A structure is
given to this stream of letters, digits and other symbols by a lexical anal-
ysis that groups characters into tokens, that are then combined into more
elaborated structures by the rules governing the syntax of the language. The
syntax of a language is defined by describing the structure of the language in
terms of a grammar. The grammar of a language contains the rules that can
be used either to build new syntactic objects belonging to the language, or
that can be used to verify the validity of a syntactic construct. The result of
the syntax analysis is an Abstract Syntax Tree, or AST, that represents the
tree structure of a part of the program that was analyzed. These notions were
formalized in the 1950s and is nowadays called the BNF, the Backus Normal
Form, or sometimes also called the Backus-Naur Form for also accounting
the contributions of Peter Naur. A detailed overview of the techniques used
to build lexical and syntax analyzers is described in [ASU86].

Once the syntax of a language is formally defined, the remaining task
for building a translator or a compiler, is to give a correspondence between
each component of the language and some other object: that can either be a
mathematical object, or the constructs of another language. In the following,
I will describe different means for defining such correspondences.

2.1.2 Semantics of a Language

Several techniques have been proposed to give a meaning to a language, as:
state transitions, mathematical objects, language translations, i.e. compil-
ers. Each of these techniques illustrates different aspects of a programming
language, and thus the different semantics should not be seen as competing
description techniques, but complementing each other.

In the following, I will give a brief overview of the different tools that are
available to describe the semantics of a language.

2.1. DEFINITION OF A PROGRAMMING LANGUAGE 13

Informal Semantics. The informal semantics gives the meaning of a lan-
guage with informal definitions written in a natural language, potentially us-
ing examples with informal discussions and explanations of the operational
mode.

Most of the introductory books for programming languages are based on
informal semantics, as this provides intuitive descriptions that are simpler to
be taught, simpler to understand, and simpler to learn than some abstract
description, or mathematical model.

As a striking example, this is the only way programming languages are
described in standards, leading to unspecified behaviors, ambiguities, and
omissions. This is a painful situation that plagues the entire software in-
dustry: the construction of compilers that comply to the standard texts are
difficult to build, as compiler engineers are faced to an interpretation problem
of the standard. Programmers are faced to a double uncertainty problem,
as they have to learn the subtleties of the wordings of the standard, and
furthermore they have to learn the observational behavior of the compil-
ers. On the other hand, from the point of view of the so called “language
lawyers”, members of a language standardization committee, this seems to
be the only viable situation, as the complete specification of the language via
the implementation in a non natural language of a “standard interpreter” or
a “standard compiler” is completely inconceivable because of the tensions
between the members of these committees that represent companies devel-
oping commercial compilers. The complete formal specification of a language
can seem to be a tedious task, for example, when looking at the complete
denotational semantics of the C language [Pap98], a tedious task that is not
justified by any concrete need coming from the industrial world.

One of the causes of this situation comes from a rather profound fis-
sion between the software industry and the language research community.
A typical example of this can be seen in one of the books that is nowadays
considered as foundational to the compiler techniques from the number of
citations that it has gathered during its first twenty years from its first pub-
lication: the so-called “Dragon Book” [ASU86]. The book clearly defines
the syntax analysis, but remains completely vague on the semantics analysis,
finishing by stating:

In this book we shall not attempt to define programming-language
semantics formally at all, since none of these methods has gained
universal acceptance. Rather we shall introduce terminology that
lets us talk about the most common choices for the meaning of
common programming constructs.

This is a quite striking remark, but can be understood, for the main purpose

14 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

of the book is to provide an informal semantics of the fundamental analysis
and transformation algorithms that constitute a compiler.

Another reason why the complete formal specification of industrial lan-
guages is difficult is due to their complexity: John Backus, one of the first
pioneers in language design, who designed among others the FORTRAN lan-
guage, has stated in the Turing Award Lecture of 1977 [Bac78] this increasing
complexity trend in language design:

Conventional programming languages are growing ever more
enormous, but not stronger. Inherent defects at the most basic
level cause them to be both fat and weak: their primitive word-
at-a-time style of programming inherited from their common an-
cestor – the von Neumann computer, their close coupling of se-
mantics to state transitions, their division of programming into
a world of expressions and a world of statements, their inability
to effectively use powerful combining forms for building new pro-
grams from existing ones, and their lack of useful mathematical
properties for reasoning about programs.

A second example of the fission between software industry and language
research is that most of the papers related to intermediate representations
of compilers are written by and for compiler engineers. They completely
overlook the fact that intermediate representations are languages, and most
of the time provide informal semantics for their algorithms. These informal
descriptions certainly are appropriate to convey some information, avoiding
implementation details, but at the same time, these descriptions are not
enough precise, and cannot be used in standard formal frameworks.

The main topic of this chapter illustrates these ideas, by proposing, for
the first time, a formal definition for the Static Single Assignment SSA form,
an intermediate representation used for more than a decade in most of the
industrial compilers. The justification of the need of such a formalism is
given with respect to the insights that the denotational semantics of the SSA

language brings to the understanding of the structure of the SSA language.

Denotational Semantics. The denotational semantics has been proposed
by Christopher Strachey [SM76], and is based on Dana Scott’s mathematical
developments of domain theory [Sco82]. Each language construct is given
a meaning using a denotation, that is a mathematical object modeling the
language constructs. The denotational semantics is similar to the syntactical
structural definition of the BNF, in that its aim is to describe the meaning
of a syntactic construct in function of the meaning of each of its syntactic

2.1. DEFINITION OF A PROGRAMMING LANGUAGE 15

components. The denotational semantics describes concepts structured as
parts of programs rather than the atomic operations that a machine could
have to execute. An often used image for the standard semantics is that of
“big steps”: meaning is given to large chunks of programs that are structured
as in an AST, potentially containing several levels of components. As these
descriptions are built hierarchically, the denotational semantics descriptions
are modular and concise.

Continuation-Passing Style. In order to encode the notion of control
flow in an imperative language, it is possible to use a “continuation” that
is in general a function that encodes the state of the system during its exe-
cution. The continuation function will hold the “returning” value once the
program has been executed. This technique is often used in denotational
semantics for dealing with complicated control flow constructs such as the
“goto statements” in imperative programs.

Operational Semantics. The operational semantics gives a very intuitive
meaning, as it is a mostly mechanical operational mode of a program: de-
scribing the effects of the execution of a command on the states of a machine.
Usually the semantics of a language is specified by a set of transition rules
that transform the state of the machine. As the specification of an opera-
tional semantics is based on the specificities of a target machine, abstract
machines have been proposed to ensure the portability of the operational se-
mantics on real machines, as for example in the case of the Java technology.
A particular kind of abstract machine is the Abstract State Machine ASM

that defines, based on the AST of the program, state transitions as evolving
algebras [Gur95]: a basis algebra is extended by the execution of a syntactic
construct of the language. The collection of all the rules that extend the
basis algebra is the semantics of the language. This provides an alternate
view of the operational semantics of the language.

Recording Semantics. The recording semantics, gathers some informa-
tion available while executing the program, under the form of traces of ex-
ecution that record all the intermediate states of the machine during the
evaluation of the program. For example, we will use such a recording se-
mantics for an imperative language, recording for each identifier and at each
store point in the program, a value. The store points in an imperative lan-
guage can be static, as in a sequence of assignments, and dynamic, as in the
successive evaluations of a same assignment in a loop.

16 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

Indirect Semantics. The indirect semantics gives the meaning of a trans-
lation specifying the relation between the semantics of the source and the tar-
get language representations. The usual example that illustrates the indirect
semantics is that of a compiler: starting from an intermediate representation
of a program, a compiler translates that program to another language, with
different syntactic constructs and different meaning.

Axiomatic Semantics. The axiomatic semantics has been proposed by
Hoare [Hoa69], and formulates the meaning of a language under the form
of transformation effects of logic propositions. The meaning of a program
is not explicitly given by the axiomatic semantics, but is the result of the
combination of several transformation rules on the given preconditions. The
information obtained in the postconditions for some language construct and
some preconditions, can be incomplete, if only a part of the transformation
rules have been applied.

Several of these semantics can be used when formalizing the meaning
of a language for describing different aspects of the same constructs. The
operational semantics would provide an interpretative view suited to the
construction of an interpreter of the language. The denotational semantics
being structural is suited to the construction of a compiler, or of a structural
analyzer. The following sections will examine different semantics of a repre-
sentation widely used in compiler technology: the Static Single Assignment
(SSA) form.

2.2 The SSA Intermediate Representation

The SSA representation has been proposed in the late 1980s [CFR+91] for
speeding up data flow analysis algorithms. Twenty years later, this interme-
diate representation has been adopted by a wide range of compilers from the
industrial optimizing compilers (GCC [GCC05], Intel CC [ICC]) to academic
compilers (LLVM [LA04], HiPE [LPS05]). At the origin, the SSA form was
primarily used in compilers for imperative languages, but after the proposi-
tion of an equivalence between the SSA representation and the continuation-
passing style [Kel95], the SSA form has also been successfully used as a target
representation for functional languages [LPS05].

In the following, we will survey the semantics of the SSA language that
have been proposed in [CFR+91, Kel95, Gle04], then we will see a completely
new semantics for the SSA form that we proposed in [PCJS06a], a conversion
algorithm from an imperative language to the SSA form, and a proof of

2.2. THE SSA INTERMEDIATE REPRESENTATION 17

correctness for this algorithm. The next section will introduce some classic
terminology that is needed in the following presentations.

2.2.1 Basic Notions of Data Flow Analysis

The main ideas used in imperative program analysis can be found in classical
textbooks [ASU86, Muc97, NNH99], and we shall review here only the basic
notions that will be extensively used in the remaining of this thesis.

The Control Flow Graph. The control structure of imperative programs
is usually represented using a directed graph, in which edges stand for pos-
sible transitions between nodes, called basic blocks, that contain the com-
mands to be executed. Inside basic blocks there is no control structure other
than the implicit sequence, that is, if the first command of a basic block is
executed, then all the other commands of the basic block are executed se-
quentially one after the other, except in the case of an error. This graph is
called the Control Flow Graph or CFG, and is a common representation in
modern compilers, where it sometimes completely replaces high level control
constructs, such as the if, switch, loop constructs and exceptions. Figure 2.1
illustrates the construction of the CFG with an example, in which an im-
perative program is first lowered to a form with jumps and labels, i.e. the
syntactic control structure is removed, and then the control flow graph is
built on top of this representation, providing a higher level structure that
can be faster traversed than the text of the unstructured program.

On top of this representation, it is usual to build other higher level rep-
resentations, such as the natural loops [ASU86], and the SSA representation
that will be described in the next sections. Another application that we
will survey next is the data flow analysis, in which data flow problems are
commonly set as equations at the boundaries of basic blocks.

Data Flow Analysis. The information extracted by a data flow analysis
represents how the program manipulates its data. There are several kinds
of data flow analysis that share the same iterative analysis framework. A
data flow problem is stated by a set of data flow equations classically repre-
sented with bit vectors. The solution to this system of equations is computed
iteratively, leading to a chain of solutions of increasing precision.

Many analysis problems can be simply formulated in the data flow frame-
work, and the SSA representation corresponds to an improvement of this in-
frastructure: the SSA intermediate representation was principally proposed
in compilers for imperative languages as a data structure that reduced the

18 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

if (B)

I = 7

J = 0

else

I = 3

J = 2

fi

while J < 10 do

J = J + I

→

if (B) goto lab0

else goto lab1

lab0:

I = 7

J = 0

goto lab2

lab1:

I = 3

J = 2

goto lab2

lab2:

if (J < 10) goto lab3

else goto lab4;

lab3:

J = J + I;

goto lab2

lab4:

→

lab4:

lab2:
 if (J < 10) goto lab3
 else goto lab4

lab3:
 J = J + I
 goto lab2

lab0:
 I=7
 J=0
 goto lab2

lab1:
 I = 3
 J = 2
 goto lab2

if (B) goto lab0
else goto lab1

Figure 2.1: Translation of an imperative program to CFG.

complexity of data flow analysis algorithms. The complexity reduction was
mainly due to a radical change in the data structures used for encoding
the data flow information: classical data flow algorithms propagate bit vec-
tors through the structure of the imperative program. The complexity of
accessing some information in bit vectors is O(log(n)) for some bit vector
containing n entries. Where a classical data flow analysis would have taken
O(n log(n)), the equivalent algorithm based on the SSA form performs the
same analysis in O(n) [CFR+91], as the algorithm based on the SSA form
performs the analysis on a single variable at a time, avoiding the use of bit
vectors for encoding the data flow information.

Reaching Definitions Analysis. An example of data flow analysis is the
reaching definitions analysis. The notion of reaching definitions analysis is
proper to the imperative languages, and should more appropriately be called
“reaching assignment analysis” as its main purpose is to identify the last
assignment command that modified the value of a store. The identification
is generally based only on a syntax numbering of assignment commands.
Figure 2.2 illustrates on the CFG of the previous example the construction
of the data flow equations needed to solve the reaching definitions problem.
The notation RDexit(x) = RDentry(x)[l/v] updates to l the value associated
to the variable v in the function RDentry for basic block x. The ∪ operator
merges the sets of two branches, and more formally the RDentry and RDexit

2.2. THE SSA INTERMEDIATE REPRESENTATION 19

relations are defined as:

RDentry(x) =

{

{(i,⊥) | i ∈ Ide}, if x = init,
⋃

{RDexit(x1) | x ∈ flow(x1)}, otherwise.

RDexit(x) = RDentry(x)[x/v]v∈defx

where Ide are a set of identifiers used in the program, init represents the
entry basic block, ⊥ is the empty set, and the relation flow is defined by the
structure of the CFG. We also use the notation []v∈defx

for iterating over all
the variables v defined, or more correctly assigned to, in basic block x.

lab4:

lab2:
 if (J < 10) goto lab3
 else goto lab4

lab3:
 J = J + I
 goto lab2

lab0:
 I=7
 J=0
 goto lab2

lab1:
 I = 3
 J = 2
 goto lab2

if (B) goto lab0
else goto lab1

4

5

6

1

32

RDentry (1) = {(I, ⊥), (J, ⊥) }
RDentry (2) = RDentry (3) = RDexit (1)
RDentry (4) = RDexit (2) ∪ RDexit (3) ∪ RDexit (5)
RDentry (5) = RDentry (6) = RDexit (4)
RDexit (1) = RDexit (1)
RDexit (2) = RDentry (2) [2/I] [2/J]
RDexit (3) = RDentry (3) [3/I] [3/J]
RDexit (4) = RDexit (4)
RDexit (5) = RDentry (5) [5/J]
RDexit (6) = RDentry (6)

Figure 2.2: Reaching definitions analysis as a data flow problem.

As the above equations are recursive, it is possible to set the problem as:

(RDentry(1), . . . , RDexit(6)) = F (RDentry(1), . . . , RDexit(6))

and then, the reaching definitions data flow problem is solved by an iterative
computation as the least fixed point for function F .

A more precise definition of the reaching definition could include, in addi-
tion to the syntactic coordinate, an iteration space numbering, in which case,
there are two distinct components for the identification of an assignment: a
purely static syntactic coordinate that points in the abstract syntax tree,
and a dynamic coordinate that points to the iteration numbering of loops
[Ami04, ACF06]. One of the main innovations of the SSA technology is that
the static coordinate completely disappears, and sole remains the dynamic
part that cannot be represented statically. We shall very clearly see this

20 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

improvement in Section 2.3.4, that states the theorem of consistency of the
translation of an imperative language to SSA form.

Now that we have surveyed some notions about the classical imperative
program analysis, I will present the algorithms proposed in [CFR+91] that
first shown a fast translation into and out of the SSA, making this represen-
tation affordable in industrial compiler frameworks.

2.2.2 An Informal Semantics for SSA

Several papers have described the construction [CFR+91, BP03, BCHS98],
analyses and optimizations [AWZ88, RWZ88, WZ91] based on the SSA form.
The following presentation will mostly be based on [CFR+91].

A Rough Definition. Although many compiler textbooks describe the
SSA representation [Wol96, Muc97], no formal definition is given, so we just
provide the same informal, very crude definition of the SSA form: a program
is in SSA form if every variable used in the program appears a single time in
the left hand side of an assignment. In order to intuitively explain this defini-
tion, several examples of the translation to SSA form are provided, eventually
ending on a CFG based algorithm that constructs the SSA form. I will ex-
actly follow this informal way of presentation of the SSA form: Figure 2.3
illustrates a basic case of translation to SSA form for the sequence. The main

I = 7

I = 3
SSA
−−→

I1 = 7

I2 = 3

Figure 2.3: Translation of a sequence to SSA form.

problems in this renaming process occur at control flow merge points, where
several definitions have to be merged to a unique name that can be used in
the rest of the program. Figure 2.4 illustrates this dilemma.

φ Nodes. In order to merge the information coming from different control
flow branches, the SSA representation introduces new assignment statements,
called φ (phi) nodes. The efficient placement of these extra assignments is
extensively discussed in the literature [CFR+91, BP03], and these algorithms
are based on the notion of dominance frontiers.

2.2. THE SSA INTERMEDIATE REPRESENTATION 21

if (B)

I = 7

else

I = 3

fi

J = I

→

if (B)

I1 = 7

else

I2 = 3

fi

J = I1 or I2 ?

SSA
−−→

if (B)

I1 = 7

else

I2 = 3

fi

I3 = φ (I1, I2)
J = I3

Figure 2.4: Translation problem for condition statements.

Dominance Frontiers. The dominance frontiers is a mapping from basic
blocks to a set of basic blocks that is computed on top of the dominator tree.
The dominator tree is a data structure that provides an efficient access to the
dominance relation [Tar74] defined by X ≫ Y iff “X appears on every path
from Entry to Y” in a CFG with an initial node “Entry”. The dominance
frontiers is then defined as:

DF (X) = {Y | ∃P ∈ Pred(Y), X ≫ P ∧ ¬(X ≫ Y)}

for some basic block X, with Pred(Y) the set of predecessors of basic block
Y .

Placing φ Nodes. The φ nodes have to be placed at control flow joins,
that are blocks in the CFG where two or more distinct paths join. The set
of join points for two distinct blocks in a subset S of a CFG is given by the
function J(S). The iterated join J+(S), computed iteratively as the limit of
the increasing sequence,

J1 = J(S)

Ji+1 = J(S ∪ Ji)

is shown to be equal [CFR+91] to the iterated dominance frontiers DF+(S)
defined as the limit of the increasing sequence:

DF (S) =
⋃

X∈S

DF (X)

DF1 = DF (S)

DFi+1 = DF (S ∪DFi)

22 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

For some variable V , let S be the set of basic blocks that contain defini-
tions of V . The phi node insertion points are given by DF+(S). Once the
phi nodes have been inserted for each variable defined in the program, the
variables are renamed and that finishes the construction of the SSA form.

Discussion. As can be remarked in this presentation, as well as in almost
all the papers defining the construction of the SSA form, the semantics of the
SSA language appears only as a byproduct of the algorithms that are building
this structure. One of the characteristics of these presentations is that they
are basing their proofs on graph theory, as the CFG based language that they
consider has lost its syntactic structure. A structural based construction of
the SSA form has been described in [BM94], but the presentation remains
very practical. Furthermore, instead of defining a language, as later defined
by [Kel95], these early papers informally present the conversion algorithms,
focusing on the practical aspects, and on the ease of implementation in a
compiler.

It is possible to consider the early papers on SSA form as means to make
the SSA form widely accepted in the imperative compilers community, based
on the practical strengths that the SSA representation has shown in the early
experiments. This also explains the important impact of [CFR+91] that was
the first presentation of a fast practical algorithm to construct the SSA form,
and to translate the SSA form back to the original imperative language.

The translation algorithm is simple enough to appear intuitively correct,
and the construction of the SSA form is not proved to be consistent with
respect to some starting representation. Although a more formal presentation
would have allowed a proof of the translation correctness, the early forms of
presenting the SSA language are not proper to this kind of proofs.

In the following, we shall see a formal indirect semantics for the SSA, given
by Kelsey in [Kel95] under the form of two translation algorithms between
the continuation-passing style CPS and the SSA form. Although, the goal
of Kelsey is the compilation of functional programs, his framework could
have been appropriate to formally prove the consistency of the translation
to SSA form. So the main contribution of [Kel95] stands in improving our
knowledge of the SSA language by providing the compilers SSA→ CPS and
CPS→ SSA.

2.2.3 SSA is Functional Programming: SSA = CPS

The continuation-passing style is a technique used in functional programming
languages for specifying the control flow in a computation. A continuation

2.2. THE SSA INTERMEDIATE REPRESENTATION 23

is a function that contains the code to be executed on the result of a compu-
tation, and thus in continuation-passing style, the computation is performed
only after a trace of execution has been collected. A similar technique is
known under the name of tail call: the CPS corresponds to a tail call in
which the function to be executed, when ending the execution of the current
function, is passed as a parameter.

Using these techniques, it is possible to simulate the execution of arbitrary
control flow, and in particular, Kelsey has explicitly shown in [Kel95] the
translation algorithms that we will quickly survey in the following.

A Flowchart Syntax for SSA Representation. One of the first pre-
sentation of the SSA form as an imperative language satisfying the unique
assignment for the variables, is given by a flowchart language containing
classical imperative constructs, with the control flow explicitly expressed by
goto and if statements. In this presentation, we will see a reduced syntax
and a reduced algorithm that is enough for giving the main idea behind the
pioneering presentation of Kelsey.

The syntax of the SSA language can be defined as a collection of labels
L, followed by a sequence of phi node declarations I, that are in the head of
a basic block that contains a sequence of instructions defining the body of
the block: B. The language also contains a very restricted set of constructs
for expressions E.

L ::= l : I∗B

I ::= x← φ(E∗)

B ::= x← E; B | goto li | if(E) B else B

E ::= x | E + E

The semantics of this language is not specified in [Kel95], but is left under
the informal sentence:

The semantics is the ‘obvious’ one.

However Kelsey provides a translation algorithm from a subset of Scheme,
that gives this language an indirect semantics.

Kelsey do not intended to prove any consistency property of the conver-
sion algorithms, but the originality of the work of Kelsey stands, in fact, in
the enunciation of the translation algorithms.

24 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

A Syntax for CPS. As in the previous paragraph, we shall see a reduced
set of the syntax originally given by Kelsey: small enough for making this
presentation concise, but powerful enough for expressing the main idea be-
hind the conversion algorithms. The syntax of CPS is mostly the syntax of
a functional language, with

P ::= (λjump(x
∗)M)

M ::= (if E M M) | (let ((x E)) M) | (J E∗)

E ::= x | E + E

In this case again, Kelsey omits the definition of a semantic for this language
that is left under the informal sentence:

The semantics is the ‘obvious’ call-by-value semantics.

This indeed is the semantic of a well known construct also known under
the name of “call-by-worth”, and can be found in denotational semantics
textbooks [SM76, Sto77, Gor79]: informally, the semantics corresponds to
the evaluation of the parameters before the evaluation of the call.

The following two algorithms provide the relation between the syntactic
objects of the SSA and CPS languages.

From CPS to SSA. The function Gjump[[]] translates a jump abstraction
from CPS to a labeled basic block in SSA. The function G[[]] is used to convert
the code contained in the jump abstraction from CPS syntactic constructs
(M) to SSA syntactic constructs (B).

Gjump[[]] : J × P → L

Gjump[[J, (λjump(x . . .)M)]] = J : x← φ(E0,0, E0,1, . . .); . . .G[[M]]

G[[]] : M → B

G[[(let ((x E)) M)]] = x← E;G[[M]]

G[[(J E0,i E1,i . . .)]] = goto Ji

G[[(if E M1 M2)]] = if(E) G[[M1]] else G[[M2]]

From SSA to CPS. The function Hjump[[]] translates a labeled basic block
from SSA to a jump abstraction in CPS, using the H[[]] function that converts

2.2. THE SSA INTERMEDIATE REPRESENTATION 25

an SSA block of instructions to CPS.

Hjump[[]] : L → P

Hjump[[J : x← φ(E0,0, E0,1, . . .); . . . B]] = (λjump(x . . .)H[[B]])

H[[]] : B → M

H[[x← E; B]] = (let((xE))H[[B]])

H[[goto Ji]] = (J E0,i E1,i . . .)

H[[if(E) B1 else B2]] = (if E H[[B1]] H[[B2]])

Kelsey gives an informal definition for the labels used in the translation
algorithms:

The Ei,j on the right-hand side of the definition of H[[goto Ji]] are
those from the left-hand side of the definition of Hjump[[]].

Discussion. This presentation of the equivalence between SSA and CPS

languages has been extracted from [Kel95] in a condensed form, for illustrat-
ing the originality of this work that was the first to detach from the classical
presentations of the SSA form.

The original presentation offers a wider range of syntactic objects, and
is intended to become a starting implementation of a real compiler. Indeed,
the main motivation behind the work of Kelsey in [Kel95] is the compilation
of functional languages through the optimizing SSA compiler infrastructure.
The other way around, translating SSA to CPS, provides some inspiration for
interprocedural optimizations on SSA form, mainly based on the advanced
techniques existing in compiling functional languages.

We recognize the importance of the work of Kelsey, as it states the “folk-
lore” understanding of the connections between SSA and functional pro-
gramming [Kel95]. First, the semantics of the SSA and CPS languages are
not provided, but this is not critical since their semantics are close to those
of the flowchart and of the functional languages available in textbooks. More
difficult questions are left unsolved, as the consistency of the composition of
the translation algorithms: one could expect to obtain an idempotent opera-
tion by the application in sequence of the conversion from CPS to SSA form
and then back to CPS form. The translation algorithms also need notational
improvements, ans miss critical steps (ellipses in the original presentation).

26 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

2.2.4 Discussion on Related Work

Since the motivation for the introduction of the SSA representation is mostly
one built out of experience stemming from the implementation of compilers’
middle ends, there is scant work looking at its formal definition and prop-
erties. Yet, as we have seen, some previous work offers a couple of different
semantics for the SSA form:

• The early papers [CFR+89, CFR+91], which introduce the notation for
SSA, mostly present informal semantics and proofs for some optimiza-
tion algorithms based on the SSA representation.

• Kelsey [Kel95] studies the relationship between the SSA form and the
functional programming paradigm, providing a somewhat more formal
view of the semantic link between these two notions. He defines an in-
direct semantics that translates programs in SSA form to continuation-
passing style and back to SSA, providing a way to compile functional
languages to the SSA, and making it possible to use the SSA optimizing
technology on functional languages. In some sense, our work can be
viewed as opening a new venue for this approach by formally showing
that the imperative programming paradigm can be mapped to the SSA

form.

• A similar semantics based on continuations is given by Glesner [Gle04]:
she gives an abstract state machine semantics for the SSA, and uses an
automatic proof checker to validate optimization transformations on
SSA. Yet, there is no formal proof provided to ensure the correctness of
this mapping between ASM and SSA. In the following section, we will
see a different, denotational, semantics for SSA and use it to prove the
correctness of the SSA conversion process for imperative programs.

All the existing definitions of the SSA form in the literature are influenced
by the early papers [CFR+91] and consider the SSA as a data structure on
top of some intermediate representation, e.g., control-flow graphs augmented
with a stream of commands belonging to some imperative language, in other
words, a decoration on top of some existing compiler infrastructure. In con-
trast, the following presentation is the first to give a complete definition of
the SSA form, promoting the SSA to the rank of a full-fledged language. An
important aspect of the SSA is exposed this way: the SSA is a declarative
language, which, as such and contrarily to what its name might imply, has
nothing to do with the concept of assignments, a notion only pertinent in
imperative languages. This declarative nature can explains why the SSA

2.3. A DENOTATIONAL SEMANTICS FOR SSA 27

language is particularly well-suited to specify and implement program opti-
mizations.

2.3 A Denotational Semantics for SSA

Most modern and widely distributed compilers for imperative and even some
functional languages use the SSA form as an intermediate code representa-
tion formalism. This Static Single Assignment format [Muc97] is based on
a clear separation of control and data information in programs. While the
data model is data flow-based, in such a way that no variable is assigned
more than once, the control model traditionally is graph-based, and encodes
basic blocks linked within a control-flow graph. When more than one path
reaches a given block, values may need to be merged; to preserve the func-
tional characteristics of the data flow model, this is achieved via so-called
φ-nodes, which assign to a new identifier two possible values, depending on
the incoming flow path.

If this formalism is successfully used in both academic (e.g. GCC [GCC05],
LLVM [LA04]) and commercial (Intel CC [ICC]) compilers, we believe its
theoretical foundations are somewhat lacking: Section 2.2 surveyed some
of the earlier attempts to formally describe such a framework. One of the
main goals, in the following, is thus to provide what we believe to be a firmer
foundation for this ubiquitous intermediate representation format, addressing
both the SSA language in itself and the conversion process used to translate
imperative source code to intermediate SSA constructs.

But, our approach is also practical in that we want to address one short-
coming we see in most of the current literature on the SSA form. The original
motivation for the introduction of φ-nodes was the conditional statements
found in imperative programming languages, for which two paths need to
be merged when leaving the branches of an alternative. Thus, most of the
methods of φ-node placement present in the literature omit the related but
somewhat different φ-nodes that should also logically occur after loops. This
is, in practice, not an issue, since most compilers’ middle ends keep control-
flow information on the side (e.g., control-flow graphs or continuations) to
deal with loop exit conditions.

It is only quite recently, in the GCC community [Dvo, Zadb], that the need
to introduce such additional φ-nodes became apparent, in particular when
designing algorithms working directly on loop structures. The initial moti-
vation for the use of these extra nodes was thus mostly practical [Zada] since
they simplified the implementation of some code transformation techniques
that required insertion of new edges in the SSA graph structures. This hum-

28 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

ble beginning may actually even explain why they were overlooked in recent
surveys [BP03], as their role was yet not well understood at the time.

As we shall see in this presentation, these “loop-closing φ” expressions
are in fact crucial to the expressiveness of SSA, providing the key construct
that boosts the computational power of the “pure” SSA language, namely
a functional data flow language without additional ad-hoc control-flow in-
formation, from primitive recursion to full-fledged partial recursive functions
theory. Moreover, the structural nature of the denotational framework we
use here, in lieu of the traditional graph-based algorithms in which the dis-
tinction between conditional and loop-originating edges is lost, make this
requirement even more compelling.

2.3.1 IMP, an Imperative Programming Language

Since we are only interested by the basic principles underpinning the SSA

conversion process, we will use a very simple, yet Turing-complete, imperative
language, IMP, based on assignments, sequences and while loops. As is well-
known, conditional statements can always be encoded by a sequence of one
or two loops, and thus need not be part of our core syntax.

Syntax. IMP is defined by the following syntax:

N ∈ Cst

I ∈ Ide

E ∈ Expr ::= N | I | E1 ⊕ E2

S ∈ Stmt ::= I = E | S1; S2 | whileℓ E do S

with the usual predefined constants, identifiers and operators ⊕. Note that
each while loop is decorated with a number label ℓ that uniquely identifies it.
This labeling operation is assumed to have been performed at parsing time
in a sequential manner1; all while loops are thus numbered, say from 1 to
m, in a sequential fashion, for identification purposes. We only require that
this numbering preserves the sequential textual order of the program. In the
rest of the chapter, without loss of generality, we assume that the programs
under study have a fixed number m of while loops.

1To conform to our denotational framework, note that this global decoration of the
abstract syntax tree can also be specified as a denotational process.

2.3. A DENOTATIONAL SEMANTICS FOR SSA 29

Since the SSA semantics encodes recursive definition of expressions in a
functional manner (see Section 2.3.2)), we found it easier to define the se-
mantics for IMP as a recording semantics. It gathers, for each identifier and
program point, its value during evaluation. To keep track of such evaluation
points, we use both syntactic and iteration space information. Each state-
ment in the program tree is identified by a Dewey-like number, h ∈ N∗; these
numbers can be extended as h.x, which adds a new dimension to h and sets
its value to x. For instance, the top-level statement is 1, while the second
statement in a sequence of number h is h.2. The statement that directly
syntactically follows h is h+, and is defined as follows:

1+ = 2

(h.1)+ = h.2

(h.2)+ = h +

Walking over an abstract syntax tree can be described with operations on a
stack: for example, the successor of h.2, i.e. (h.2)+, the first operation pops
the last digit, and then takes the successor of h, i.e. h+.

To deal with the distinct iterations of program loops, we use iteration
space vectors k: their components represent the values kℓ of the m while

loop indices at a given execution point (informally, k records all loop counter
values). During evaluation, these vectors are modified, and we note k[a/ℓ]
the vector obtained from k by replacing the value at index ℓ with a.

To sum up, a program evaluation point p is a pair (h, k) ∈ P = N∗ × Nm

that represents a particular “run-time position” in a program by combining
both a syntactic information, h, and a dynamic one, k, for proper localization.

The only requirement on points is that they be lexicographically ordered,
with the infix relation <∈ N∗ × N∗ → Bool such that (h1, k1) < (h, k) =
(k1 < k ∨ (k1 = k ∧ h1 < h)). For any ordered set S, we note max<x S the
maximum element of S that is less than x (or ⊥ if no such element exists).

Different other methods for identifying points in the program execution
include traces and timestamps [Ven02]. In the following presentation we will
exclusively use the above presented technique as all these previous techniques
fail to separate program execution locations into syntactic and dynamic lo-
cations.

Semantics. As usual, the denotational semantics of IMP operates upon
functions f on lattices or cpos [Sto77]; all the domains we use thus have a
⊥ minimum element. Following a general convention, we note f [y/x] =
λa.(y if a = x, f(a) otherwise) and f [z/y/x] = λa.λb.(z if a = x ∧ b =

30 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

y, f(a, b) otherwise) the functions that extend f at a given point x. The do-
main of f , i.e., the set of values on which it is defined, is given as Dom f =
{x | f(x) 6= ⊥}.

The semantics of expressions uses states t ∈ T = Ide→ P → V; a state
yields for any identifier and evaluation point its numeric value in V, a here
unspecified numerical domain for the values. The use of points gives our
semantics its recording status; in some sense, our semantics specifies traces
of computation. The semantics I[[]] ∈ Expr → P → T → V expresses that
an IMP expression, given a point and a state, denotes a value in V (we use
inV as the injection function of syntactic constants in V):

I[[N]]pt = inV(N)

I[[I]]pt = R<p(tI)

I[[E1 ⊕ E2]]pt = I[[E1]]pt⊕ I[[E2]]pt

where the only unusual aspect of this definition is the use of the value
of the reaching definition on a given function f , that we note R<xf =
f(max<x Dom f). To obtain the current value of a given identifier, one
needs to find in the state the last program point prior to the current p at
which I has been updated; since we use a recording semantics, we need to
“search” the states for this last definition.

The semantics of statements I[[]] ∈ Stmt→ P → T → T yields the state
obtained after executing the given statement at the given program point2,
given an incoming state:

I[[I = E]]pt = t[I[[E]]pt/p/I]

I[[S1; S2]]p = I[[S2]](h.2, k) ◦ I[[S1]](h.1, k)

These definitions are rather straightforward extensions of a traditional
standard semantics to a recording case. For an assignment, we add a new
binding of Identifier I at Point p to the value of E. A sequence simply
composes the transformers associated to S1 and S2 at their respective points
h.1 and h.2. And, as usual, we specify the semantics of a while loop as the
least fixed point fix(W) of the W functional defined as:

2Remember that p = (h, k).

2.3. A DENOTATIONAL SEMANTICS FOR SSA 31

I[[whileℓ E do S]](h, k) = fix(W)(h, k[0/ℓ])

W = λw.λ(h, k).λt.

{

w(h, kℓ+)(I[[S]](h.1, k)t), if I[[E]](h.1, k)t,
t, otherwise.

where, as a shorthand, kℓ+ is the same as k, except that the value at index
ℓ is incremented by one (we use latter kℓ−, with a decrement by one).

If the value of the guarding expression E is true, we iterate the while loop
at an updated point, which uses the same syntactic label as before, i.e. the
syntactic beginning of the loop body h.1, but an iteration space vector where
the value at index ℓ has been incremented, i.e. kℓ+, since an additional loop
iteration is taking place. If the loop test is false, we simply consider the loop
as the identity function.

Example. To illustrate our results, we will use a single example; we provide
in Figure 2.5 this simple program written in (a concrete syntax of) IMP,
together with its semantics, i.e., its outgoing state when evaluated from an
empty incoming state.

I = 7;

J = 0;

while1 J < 10 do

J = J + I;

I[[]]1⊥
−−−→

I → (1.1, (0)) → 7

J →







→ (1.2.1, (0)) → 0
→ (1.2.2.1, (0)) → 7
→ (1.2.2.1, (1)) → 14

Figure 2.5: Syntax and semantics for an IMP program.

In this example, if we assume that the whole program is at syntactic lo-
cation 1, then the first statement is labeled 1.1 while the rest of the sequence
(after the first semi-column) is at 1.2; the whole labeling then proceeds re-
cursively from there. Since there is only one loop, m is 1, and the iteration
space vectors have only one component, initialized to (0). Thus, for instance,
after two loop iterations, the value of J is 14, and this will cause the loop
to terminate. The recording nature of the semantics is exemplified here by
the fact we keep track of all values assigned to each variable throughout the
whole computation.

32 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

2.3.2 SSA

In the standard SSA terminology [CFR+91, Muc97], an SSA graph is a graph
of use-to-definition chains in the SSA form. Each assignment targets a unique
variable, and φ nodes occur at merge points of the control flow to restore the
flow of values from the renamed variables.

Here, we replace this traditional graph-based approach with a program-
ming language-based paradigm; in the SSA form defined below, the φ dec-
larations are capturing the characteristics of the control flow, and the usual
control-flow primitives become consequently redundant. The use of this self-
contained format is one of the new ideas we provide in this presentation,
which paves the way to a more formal approach to SSA definition, its con-
version processes and their correctness.

Syntax. A program in SSA form is a set of declarations of SSA identifiers
Ih ∈ IdeSSA to SSA expressions E ∈ SSA. These expressions are defined as
follows:

E ∈ SSA ::= N | Ih | E1 ⊕ E2 | loopℓφ(E1, E2) | closeℓφ(E1, E2)

which extend the basic definitions of Expr with two types of φ expressions.
Note that identifiers Ih in an SSA expression are elements of IdeSSA labeled
with a Dewey-like number. Since every assignment in IMP is located at a
unique h, this trick ensures that no identifiers in an imperative program will
ever appear twice once converted to SSA form.

Since we stated that imperative control flow primitives are not part of
the SSA representation, we intendedly annotated the φ nodes with a label
information ℓ that ensures that the SSA syntax is self-contained and expres-
sive enough to be equivalent to any imperative program syntax, as we show
in the following. φ nodes that merge expressions declared at different loop
depths are called loopℓφ nodes and have a recursive semantics. closeℓφ nodes
collect the values that come either from the loop ℓ or from before the loop ℓ,
when the loop trip count is zero.

More traditional φ-nodes, also called “conditional-φ’ in GCC, are absent
from our core SSA syntax since they would only be required to handle con-
ditional statements, which are absent from the syntax of IMP; these nodes
would be handled by a proper combination of loopφ and closeφ nodes 3.

3Note that we do not advocate a restructuring of the control flow graph, as from a
purely technical point of view, a control flow restructuring operation would increase the
size of the generated code, and thus harm the benefits of using the SSA representation.

2.3. A DENOTATIONAL SEMANTICS FOR SSA 33

The set of declarations4 representing an SSA program is denoted in our
framework as a finite function σ ∈ Σ = IdeSSA → SSA mapping each iden-
tifier to its defining expression.

Semantics. The semantics of an SSA expression E [[]] ∈ SSA → Σ →
Nm → V provides, given an SSA expression and an iteration space vec-
tor, its value. The semantics of an SSA program σ is thus a function with a
finite domain, mapping identifiers Ih to the semantics of their values σIh.

We give below the denotational semantics of an SSA program5 tabulated
by σ:

E [[N]]σk = inV(N)

E [[I]]σk = E [[σI]]σk

E [[E1 ⊕ E2]]σk = E [[E1]]σk ⊕ E [[E2]]σk

E [[loopℓφ(E1, E2)]]σk =

{

E [[E1]]σk, if kℓ = 0,
E [[E2]]σkℓ−, otherwise.

E [[closeℓφ(E1, E2)]]σk = E [[E2]]σk[min{x | ¬E [[E1]]σk[x/ℓ]}/ℓ]

Constants such as N are denoted by themselves. As can be seen from
the definition for identifiers I, we use the traditional syntactic “call-by-text”
approach [Gor79] to handle the fixed point nature of an SSA program6.

loopℓφ expression, by their very iterative nature, are designed to represent
the successive values of variables successively modified in imperative loop
bodies. The first expression of a loopℓφ represents the initial value while the
second expression represents the expression inductively defined in the loop
ℓ. The loopℓφ expression represents an infinite stream of values, and it is the
expression needed for the declaration of primitive recursive functions.

closeℓφ expression compute the final value of such inductive variables in
loops guarded by a test expression E1. The value of the closeℓφ expression
is that of E2 taken for the first iteration of the loop ℓ that makes E1 false.
Of course, when a loop is infinite, there is no iteration that exits the loop,

4There is no need to order the declarations, as in a declarative language the notion
of sequence is inexistent. As we shall see in the IMP to SSA compiler, the information
contained in statement sequence is completely transformed in the translation.

5Remember that k designates an iteration vector, kℓ the value contained at index ℓ,
and kℓ− the decrement of the value at index ℓ.

6Strictly speaking, this denotational semantics is in fact an operational one since it
doesn’t use proper structural induction for identifiers (see [Sto77], p.338). A strictly
denotational approach could have been defined as a semantical fixed point on a store
mapping identifiers to values, but we found that the current formulation leads to a more
intuitive wording of our main theorem and proof.

34 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

i.e., there is no k such that ¬E [[E1]]σk, and thus the set {x | ¬E [[E1]]σk[x/ℓ]}
is empty. In such a case, min ∅ corresponds to ⊥. The closeℓφ expression
provides the SSA the full power of the partial recursive functions.

Example. We informally illustrate in Figure 2.6 the semantics of SSA using
an SSA program intended to be similar to the IMP program provided in
Figure 2.5.

σ:

I1 → 7

J1 → 0

J2 → loop1φ(J1, J3)

J3 → J2 + I1

J4 → close1φ(J2 < 10, J2)

E[[]]σ
−−→

I1 → λk.7

J1 → λk.0

J2 → λk.

{

J1(k) for k = 0
J3(k − 1) for k > 0

J3 → λk.J2(k) + I1(k) for k ≥ 0

J4 → λk.14

Figure 2.6: Syntax and semantics of a loop-φ expression.

We use a different identifier (i.e., subscript) for each declared identifier
(see for instance J) in the IMP program. Of course, all values are functions
mapping iteration vectors to constants. To merge the two paths reaching in
IMP the loop body, we use a loopφ expression to combine the initial value
of J and its successive iterated values within the loop. A closeφ expression
“closes” the iterative function associated to J2 to retrieve its final value,
obtained when the test expressions evaluates to false; in this case, this yields
14.

2.3.3 Conversion to SSA

We are now ready to specify how imperative constructs from IMP can be
translated to SSA expressions. We use a denotational framework to specify
formally this transformation process.

Specification. As any denotational specification, our transformation func-
tions use states. These states θ = (µ, σ) ∈ T = M × Σ have two com-
ponents: µ ∈ M = Ide → N∗ → IdeSSA maps imperative identifiers to
SSA identifiers, yielding their latest SSA names (these can vary since a
given identifier I can be used in more than one IMP assignment statement);

2.3. A DENOTATIONAL SEMANTICS FOR SSA 35

σ ∈ Σ = IdeSSA → SSA simply collects the SSA definitions associated to
each identifier in the image of M .

The translation semantics C[[]] ∈ Expr → N∗ → M → SSA for impera-
tive expressions yields the SSA code corresponding to an imperative expres-
sion:

C[[N]]hµ = N

C[[I]]hµ = R<h(µI)

C[[E1 ⊕ E2]]hµ = C[[E1]]hµ⊕ C[[E2]]hµ

As in the standard semantics for SSA, we need to find the reaching definition
of identifiers, R<h, although this time, since this is a compile-time translation
process, we only look at the syntactic order corresponding to Dewey numbers.

The translation semantics of imperative statements C[[]] ∈ Stmt→ N∗ →
T → T maps conversion states to updated conversion states. The cases for
assignments and sequences are straightforward:

C[[S1; S2]]h = C[[S2]]h.2 ◦ C[[S1]]h.1

C[[I = E]]h(µ, σ) = (µ[Ih/h/I], σ[C[[E]]hµ/Ih])

since, for sequences, conversion states are simply propagated. For assign-
ments, µ is extended by associating to the imperative identifier I the new
SSA name Ih, to which the converted SSA right hand side expression is bound
in σ, thus enriching the SSA program with a new binding for Ih.

As expected, most of the work is performed in while loops:

C[[whileℓ E do S]]h(µ, σ) = θ2 with

θ0 = (µ[Ih.0/h.0/I]I∈Dom µ,

σ[loopℓφ(R<h(µI),⊥)/Ih.0]I∈Dom µ),

θ1 = C[[S]]h.1θ0,

θ2 = (µ1[Ih.2/h.2/I]I∈Dom µ1
,

σ1[loopℓφ(R<h(µI), R<h.2(µ1I))/Ih.0]

[closeℓφ(C[[E]]h.1µ1, Ih.0)/Ih.2]I∈Dom µ1
)

36 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

where we note θi = (µi, σi). We also used the notation f [y/x]x∈S to represent
the extension of f to all values x in S with y.

As usual, the conversion process is, by induction, applied on the loop
body S located at h.1. Yet, this cannot be performed in the original con-
version state (µ, σ), since any imperative variable could be further modified
in the loop body, creating a new binding which would be visible at the next
iteration. To deal with this issue, a new Dewey number is introduced, h.0,
preceding h.1, via which all variables7 are bound to loopφ nodes (note that
only the SSA expressions corresponding to the control flow coming into the
loop can be expressed at that point). It is now appropriate to convert the
loop body in this updated conversion state; all references to variables will be
to loopφ nodes, as expected.

Similarly, after the converted loop body, a new Dewey number, h.2, fol-
lowing h.1, is introduced to bind all variables to closeφ nodes that represent
their values when the loop exits (or ⊥ if the loop is infinite, as we will see).
All references to any identifier once the loop is performed are references to
these closeφ expressions located at h.2, which follows, by definition of the
lexicographic order on points, all other points present in the loop.

At this time, we are able to provide the entire definition for loopφ ex-
pressions bound at level h.0, in particular the proper second subexpression
within each loopφ corresponds to the value of each identifier after one loop
iteration.

Example. We find in Figure 2.7 the result of the conversion algorithm on
our running example; as expected, this SSA program is the same code as
the one in Figure 2.6, up to the renaming of the SSA identifiers. Note that
all control-flow information has been removed from the IMP program, thus
yielding a “pure”, self-contained SSA form, without any need for additional,
on-the-side control-flow data structure.

2.3.4 SSA Conversion Consistency

We are finally equipped with all the material required to express our main
theorem. Our goal is to prove that our conversion process maintains the
memory states consistency between the imperative and SSA representations.
This relationship is expressed in the following definition:

7In fact, only the variables modified in the loop body need to be managed this way.
We do not worry about such optimization here.

2.3. A DENOTATIONAL SEMANTICS FOR SSA 37

I = 7;

J = 0;

while1 J < 10 do

J = J + I;





y
C[[]]1⊥

σ:

I1.1 → 7

J1.2.1 → 0

J1.2.2.0 → loop1φ(J1.2.1, J1.2.2.1)

J1.2.2.1 → J1.2.2.0 + I1.1

J1.2.2.2 → close1φ(J1.2.2.0 < 10, J1.2.2.0)

Figure 2.7: Conversion from IMP to SSA.

Definition 2.3.1 (Consistency) A conversion state θ = (µ, σ) is consis-
tent with the memory state t at point p = (h, k), noted P(θ, t, p), iff

∀I ∈ Dom t, I[[I]]pt = E [[C[[I]]hµ]]σk

which specifies that, for any identifier, its value at a given point in the stan-
dard semantics is the same as its value in the SSA semantics when applied
to its translated SSA equivalent (see Figure 2.8).

Expr
C[[]]hµ
−−−→ SSA

I[[]](h,k)t





y





y

E[[]]σk

v ∈ V v ∈ V

Figure 2.8: Consistency property P((µ, σ), t, (h, k)) for the translation of
expressions.

This consistency requirement on identifiers can be straightforwardly ex-
tended to arbitrary expressions:

Lemma 2.3.1 (Consistency of Expression Conversion) Given a con-
sistent state P(θ, t, p), and an expression E ∈ Expr,

I[[E]]pt = E [[C[[E]]hµ]]σk

Proof. By induction on the structure of Expr:

38 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

• When E = N , trivial.

• When E = I, trivial.

• When E = E1 ⊕ E2, by induction, applying the lemma to E1 and E2,
both I[[E1]]pt = E [[C[[E1]]hµ]]σk and I[[E2]]pt = E [[C[[E2]]hµ]]σk hold.

I[[E1 ⊕ E2]]pt = I[[E1]]pt⊕ I[[E2]]pt

= E [[C[[E1]]hµ]]σk ⊕ E [[C[[E2]]hµ]]σk

= E [[C[[E1]]hµ⊕ C[[E2]]hµ]]σk

= E [[C[[E1 ⊕E2]]hµ]]σk

So, the lemma also holds for E1 ⊕ E2, finishing the proof. �

This directly leads to our main theorem, which proves the semantic cor-
rectness of the conversion process from imperative constructs to SSA expres-
sions (as a shorthand, we note p+ = (h, k)+ = (h+, k)):

Theorem 2.3.2 (Consistency of Statement Conversion) Given any
statement S and for all θ, t, p that verify P(θ, t, p), if θ′ = C[[S]]hθ and t′ =
I[[S]]pt, the property P(θ′, t′, p+) holds.

This theorem basically states that if the consistency property is satisfied for
any point before a statement, then it is also verified for the statement that
syntactically follows it.

Proof. By induction on the structure of Stmt, assuming P(θ, t, p):

• for the assignment [[I = E]]:

(µ′, σ′) = C[[I = E]]hθ = (µ[Ih/h/I], σ[C[[E]]hµ/Ih]),

t′ = I[[I = E]]pt = t[I[[E]]pt/p/I]

2.3. A DENOTATIONAL SEMANTICS FOR SSA 39

I[[I]]p + t′ = R<p+(t′I) (def I[[]])

= I[[E]]pt (def t′)

= E [[C[[E]]hµ]]σk (Lemma 2.3.1)

= E [[C[[E]]hµ]]σ′k (extension of σ′)

= E [[σ′Ih]]σ
′k (def σ′)

= E [[Ih]]σ
′k (def E [[]])

= E [[µ′Ih]]σ′k (def µ′)

= E [[R<h+(µ′I)]]σ′k (def R<)

= E [[C[[I]]h + µ′]]σ′k (def C[[]])

The extension to σ′ is possible because it does not modify the reaching
definitions: R<p. So the property holds for I, but it also trivially holds
for any I ′ 6= I, I ′ ∈ Dom t. So, P(θ′, t′, p+) holds.

• for the sequence [[S1; S2]]:

Since there are no new bindings between h and h.1, R<p = R<(h.1,k)

and thus P(θ, t, (h.1, k)) holds.

By induction, using the result of the theorem on S1 with θ1 = C[[S1]]h.1θ
and t1 = I[[S1]](h.1, k)t, the property P(θ1, t1, (h.1+, k)) holds.

Since h.1+ = h.2, by induction, using the result of the theorem on S2,
with θ2 = C[[S2]]h.2θ1, and t2 = I[[S2]](h.2, k)t1, then P(θ2, t2, (h.2+, k))
holds.

So, the property P(θ2, t2, p+) holds, since h.2+ = h+.

• for the loop [[whileℓ E do S]]:

The recursive semantics for while loops suggests to use fix point induc-
tion ([Sto77], p.213), but this would require us to define new properties
and functionals operating on (θ, t, p) as a whole while changing the
definition of P to handle ordinals. We prefer to keep a simpler profile
here, and give a somewhat ad-hoc but more intuitive proof.

We will need a couple of lemmas to help us build the proof. As a
shorthand, we note θij = (µi, σj).

Lemma 2.3.3 With t = t0, P0 = P(θ12, t0, h.1, k[0/ℓ]) holds.

This lemma states that if P is true at loop entry, then it remains true
just before the loop body of the first iteration, at point (h.1, k[0/ℓ]).

40 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

Proof. ∀I ∈ Dom t:

I[[I]](h.1, k[0/ℓ])t =

= R<(h.1,k[0/ℓ])(tI) (def I[[]])

= R<p(tI) (def t)

= I[[I]]pt (def I[[]])

= E [[C[[I]]hµ]]σk (P(θ, t, p))

= E [[R<h(µI)]]σk (def C[[]])

= E [[R<h(µI)]]σk[0/ℓ] (first iteration)

= E [[R<h(µI)]]σ0k[0/ℓ] (extension to σ0)

= E [[loopℓφ(R<h(µI),⊥)]]σ0k[0/ℓ] (def loopℓφ)

= E [[σ0Ih.0]]σ0k[0/ℓ] (def σ0)

= E [[Ih.0]]σ0k[0/ℓ] (def E [[]])

= E [[µ0Ih.0]]σ0k[0/ℓ] (def µ0)

= E [[R<h.1(µ0I)]]σ0k[0/ℓ] (def R<)

= E [[C[[I]]h.1µ0]]σ0k[0/ℓ] (def C[[]])

So, P(θ0, t, h.1, k[0/ℓ]) holds. The extension of θ0 to θ12 concludes the
proof of the Lemma 2.3.3. �

Lemma 2.3.4 Given Px−1 = P(θ12, tx−1, (h.1, k[x− 1/ℓ])) for some
x ≥ 1, Px = P(θ12, tx, (h.1, k[x/ℓ])) holds.

This second lemma ensures that if P is true at iteration x− 1, then it
stays the same at iteration x. Note that the issue of whether we will
indeed enter the loop again or exit it altogether is no factor here.

Proof. Let tx = I[[S]](h.1, k[x − 1/ℓ])tx−1. By induction, applying
the theorem to S, we know that the property

P ′
x−1 = P(θ12, tx, (h.2, k[x− 1/ℓ]))

holds, since h.1+ = h.2, and θ12 = C[[S]]h.1θ12, as C[[]] is idempotent.

2.3. A DENOTATIONAL SEMANTICS FOR SSA 41

I[[I]](h.1, k[x/ℓ])tx =

= R<(h.1,k[x/ℓ])(txI) (def I[[]])

= R<(h.2,k[x−1/ℓ])(txI) (def R<)

= I[[I]](h.2, k[x− 1/ℓ])tx (def I[[]])

= E [[C[[I]]h.2µ1]]σ2k[x− 1/ℓ] (P ′
x−1)

= E [[R<h.2(µ1I)]]σ2k[x− 1/ℓ] (def C[[]])

= E [[loopℓφ(R<h(µI), R<h.2(µ1I))]]σ2k[x/ℓ] (def loopℓφ)

= E [[σ2Ih.0]]σ2k[x/ℓ] (def σ2)

= E [[Ih.0]]σ2k[x/ℓ] (def E [[]])

= E [[µ1Ih.0]]σ2k[x/ℓ] (def µ1)

= E [[R<h.1(µ1I)]]σ2k[x/ℓ] (def R<)

= E [[C[[I]]h.1µ1]]σ2k[x/ℓ] (def C[[]])

This concludes the proof of Lemma 2.3.4. �

We are now ready to tackle the different cases that can occur during
evaluation. These three cases are:

1. when the loop is not executed, that is when the exit condition is
false before entering the loop body: ¬I[[E]]t(h.1, k[0/ℓ]). Based
on Lemma 2.3.3, P(θ′, t′, p+) holds, as θ′ = θ2 that extends θ12,

42 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

t = t′ as defined by the exit of the whileℓ in I[[]], and k[0/ℓ] = k:

I[[I]](p+)t =

= R<p+(tI) (def I[[]])

= R<p(tI) (def t)

= I[[I]]pt (def I[[]])

= E [[C[[I]]hµ]]σk (P)

= E [[R<h(µI)]]σk (def C[[]])

= E [[R<h(µI)]]σ2k (extension to σ2)

= E [[loopℓφ(R<h(µI), R<h.2(µ1I))]]σ2k (def loopℓφ)

= E [[σ2Ih.0]]σ2k (def σ2)

= E [[Ih.0]]σ2k (def E [[]])

= E [[closeℓφ(C[[E]]h.1µ1, Ih.0)]]σ2k (def closeℓφ)

= E [[σ2Ih.2]]σ2k (def σ2)

= E [[Ih.2]]σ2k (def E [[]])

= E [[µ2Ih.2]]σ2k (def µ2)

= E [[R<h+(µ2I)]]σ2k (def R<)

= E [[C[[I]]h + µ2]]σ2k (def C[[]])

2. when the loop is executed a finite number of times, that is when
the loop body is executed at least once: let ω > 0 be the first
iteration on which the loop condition becomes false:

ω = min{x | ¬I[[E]]tω(h.1, k[x/ℓ])}

= min{x | ¬E [[C[[E]]h.1µ1]]σ2k[x/ℓ]} (Lemma 2.3.1)

By Lemma 2.3.3 and 2.3.4, P ′
ω = P(θ12, tω, h.2, k[ω − 1/ℓ]) holds,

2.3. A DENOTATIONAL SEMANTICS FOR SSA 43

and then, P(θ′, tω, p+) holds:

I[[I]](p+)tω =

= R<p+(tωI) (def I[[]])

= R<(h.2,kω)(tωI) (def R<)

= I[[I]](h.2, kω)tω (def I[[]])

= E [[C[[I]]h.2µ1]]σ2k[ω − 1/ℓ] (P ′
ω)

= E [[R<h.2(µ1I)]]σ2k[ω − 1/ℓ] (def C[[]])

= E [[loopℓφ(R<h(µI), R<h.2(µ1I))]]σ2kω (def loopℓφ)

= E [[σ2Ih.0]]σ2kω (def σ2)

= E [[Ih.0]]σ2kω (def E [[]])

= E [[closeℓφ(C[[E]]h.1µ1, Ih.0)]]σ2k (def closeℓφ)

= E [[σ2Ih.2]]σ2k (def σ2)

= E [[Ih.2]]σ2k (def E [[]])

= E [[µ2Ih.2]]σ2k (def µ2)

= E [[R<h+(µ2I)]]σ2k (def R<)

= E [[C[[I]]h + µ2]]σ2k (def C[[]])

Finally, using Kleene’s Fixed Point Theorem [Sto77], we can relate
the least fixed point fix(W) used to define the standard semantics
of while loops and the successive iterations W i(⊥) of the loop
body:

t′ = fix(W)(h, k[0/ℓ])t

= lim
i→∞

W i(⊥)(h, k[0/ℓ])t

= W ω(⊥)(h, k[0/ℓ])t

= tω

and so P(θ′, t′, p+) holds.

3. when the loop is infinite: t′ = limi→∞ W i(⊥)(h, k[0/ℓ])t = ⊥.
Thus:

44 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

I[[I]](p+)⊥ = ⊥ = (def I[[]])

= E [[closeℓφ(C[[E]]h.1µ1, Ih.0)]]σ2k (min ∅ = ⊥)

= E [[σ2Ih.2]]σ2k (def σ2)

= E [[Ih.2]]σ2k (def E [[]])

= E [[µ2Ih.2]]σ2k (def µ2)

= E [[R<h+(µ2I)]]σ2k (def R<)

= E [[C[[I]]h + µ2]]σ2k (def C[[]])

So, P(θ′, t′, p+) holds.

thus completing the proof of our main theorem, and ensuring the consistency
of the whole SSA conversion process. �

We are left with the simple issue of checking that state consistency is
satisfied for the initial states.

Lemma 2.3.5 P(⊥,⊥, (1, 0m)) holds.

Proof.

I[[I]](1, 0m)⊥ =

= R<1.1(⊥I) (def I[[]])

= ⊥

= E [[R<1(⊥I)]]⊥0m (def R<)

= E [[C[[I]]1⊥]]⊥0m (def C[[]])

�

The final theorem wraps things up by showing that after evaluating an
SSA-converted program from consistent initial states, we end up in states that
remain consistent. Note that this remains true even if the whole program
loops.

Theorem 2.3.6 Given S ∈ Stmt, with θ = C[[S]]1⊥, and t = I[[S]](1, 0m)⊥,
the property P(θ, t, (2, 0m)) holds.

Proof. Trivial using Lemma 2.3.5 and Theorem 2.3.2. �

2.3. A DENOTATIONAL SEMANTICS FOR SSA 45

2.3.5 Discussion

Even though the initial purpose of our work is to provide a firm foundation
to the use of SSA in modern compilers, our results also yield an interesting
theoretical insight on the computational power of SSA.

Recursive Partial Functions Theory. The mathematical wording of the
Consistency Property 2.3.1 underlines a key aspect of the SSA conversion
process. While p only occurs on the left hand side of the consistency equality,
the syntactic location h and the iteration space vector k are uncoupled in
the right-hand side expression. Thus, via the SSA conversion process, the
standard semantics gets staged, informally getting “curryied” from Stmt→
(N∗ × Nm) → T → T to Stmt → N∗ → Nm → T → T ; this is also visible
on Figure 2.8 where the pair (h, k) is used on the left arrow, while h and
k occur separately on the top and on the right arrows. This perspective
change is rather profound, since it uncouples syntactic sequencing from run
time iteration space sequencing.

There exists a formal computing model that is particularly well suited
to describing iteration behaviors, namely Kleene’s theory of partial recursive
functions [Sto77]. In fact, the SSA appears to be a syntactic variant of such
a formalism. We provide below a rewriting of SSA bindings to recursive
function definitions.

First, to each SSA identifier I, we associate a function I(k), and translate
any SSA expression involving neither loopφ nor closeφ nodes8 as function
calls:

K[[N]]k = N

K[[I]]k = I(k)

K[[E1 ⊕ E2]]k = ⊕(E [[E1]]k, E [[E2]]k)

Then, to collect partial recursive function definitions corresponding to
an SSA program σ, we simply gather all the definitions for each binding,
⋃

I∈Dom σK[[I, σI]]. Basically, for loopφ expressions, we simply rewrite the
two cases corresponding to their standard semantics. For closeφ expressions,
we add an ancillary function that computes the minimum value (if any) of the
loop counter corresponding to the number of iterations required to compute

8Without loss of generality, we assume that φ nodes only occur as top-level expression
constructors.

46 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

the final value, and plug it into the final expression. This is formally defined
as follows, using kp,q as a shorthand for kp, kp+1, ..., kq−1, kq:

K[[I, loopℓφ(E1, E2)]]k =

{I(k1,ℓ−1, 0, kℓ+1,m) = K[[E1]](k1,ℓ−1, 0, kℓ+1,m),

I(k1,ℓ−1, x + 1, kℓ+1,m) = K[[E2]](k1,ℓ−1, x, kℓ+1,m)}

K[[I, closeℓφ(E1, E2)]]k =

{minI(k1,ℓ−1, kℓ+1,m) =

(µy.K[[E1]](k1,ℓ−1, y, kℓ+1,m) = 0),

I(k) = K[[E2]](k1,ℓ−1, minI(k1,ℓ−1, kℓ+1,m), kℓ+1,m)}

K[[I, E]]k = {I(k) = K[[E]]k}

where µ is Kleene’s minimization operator. We also assumed that boolean
values are coded as integers (false is 0).

Example. As an example of this transformation to partial recursive func-
tions, we provide below the translation of our running example (see Fig-
ure 2.9) into partial recursive functions. For increased readability, we re-
named variables to use shorter indices.

I1(k1) = 7

J1(k1) = 0

J2(0) = J1(0)

J2(x + 1) = J3(x)

J3(k1) = +(J2(k1), I1(k1))

minJ4
() = (µy. < (J2(y), 10) = 0)

J4(k1) = J2(minJ4
())

Figure 2.9: Partial recursive functions example.

Our conversion process from IMP to SSA can thus be seen as a way of
converting any Random Access Machine (RAM) program [Jon97] to a set of
Kleene’s partial recursive functions, thus providing a new proof of Turing’s
Equivalence Theorem between these two computational models, previously
typically proven using simulation.

2.3. A DENOTATIONAL SEMANTICS FOR SSA 47

Assignments versus SSA. Based on the denotational semantics of the
SSA it is possible to see that the SSA is a declarative language: a language
that is radically different compared to the imperative languages. A strange
consonance occurs when considering the original name of the SSA, the Static
Single Assignment, in the perspective of the definition of the SSA that we
have seen in this chapter: indeed, declarative languages do not contain as-
signments, and this sounds even stranger if we consider the definition and
the purpose of assignments that modern languages have inherited from the
early programming languages, as described by John Backus in the Turing
Award Lecture of 1977 [Bac78]:

[. . .],
the assignment statement splits programming into two worlds.
The first world comprises the right sides of assignment state-
ments. This is an orderly world of expressions, a world that has
useful algebraic properties (except that those properties are often
destroyed by side effects). It is the world in which most useful
computation takes place.

The second world of conventional programming languages is the
world of statements. The primary statement in that world is the
assignment statement itself. All the other statements of the lan-
guage exist in order to make it possible to perform a computation
that must be based on this primitive construct: the assignment
statement.

This world of statements is a disorderly one, with few useful math-
ematical properties. Structured programming can be seen as a
modest effort to introduce some order into this chaotic world, but
it accomplishes little in attacking the fundamental problems cre-
ated by the word-at-a-time von Neumann style of programming,
with its primitive use of loops, subscripts, and branching flow of
control.

This chapter provides a paradigmatic shift for the SSA language: it is no
longer possible to speak about assignments in the SSA form, as assignments
are part of a purely imperative programming language. We will continue to
use the SSA name for this language even if this name is not appropriate. The
SSA is a first step into abstracting the imperative language semantics under
the form of a higher level language: a language of declarations. In this lan-
guage, the notion of store disappears, replaced by the notion of declarations
and stream of values.

48 CHAPTER 2. DENOTATIONAL SEMANTICS OF SSA

2.3.6 Future Work

We only looked at the IMP- to-SSA conversion process. A natural dual prob-
lem of course arises, namely the so-called “out-of-SSA” [CFR+91, BCHS98,
SJGS99] issue: a way of pretty-printing SSA programs using imperative-like
programming language syntax such as IMP. This is of utmost importance
when one considers for instance the issues of debugging or code generation.
In GCC, this is dealt with using a graph algorithm [GCC] operating on the
control-flow data structure decorated with the SSA annotations used in its
middle end.

For our approach, this technique could also be used in a similar fashion,
assuming we kept around the control-flow graph from which our SSA code has
been generated. A more intriguing question is whether such an out-of-SSA

IMP code generator could be designed using only our self-contained SSA syn-
tax. In a perfect world, one would indeed want to get back the original IMP

code from which SSA has been generated. This requires reconstructing the
while loop structure using data dependence within SSA code, together with
an intelligent ordering of code generation for each binding in σ to minimize
code duplication.

2.4 Conclusion

We successively have seen several descriptions of the SSA: the original prac-
tical description of the construction of the SSA, and then other formalizing
attempts. The main contribution described in this chapter is the denotational
semantics of the SSA together with the translation of a minimal imperative
language to the SSA and the consistency proof for this translation. We then
have seen some of the implications of this formal definition: the impact of the
translation algorithm on the recursive partial functions, and the insight on
the classification of the SSA language in the family of declarative languages.

Although the SSA compiler technology was born in imperative language
compilers from the need of abstracting the store semantics of the von Neu-
mann programming style, the SSA has the potential to unify several program-
ming paradigms, and provide a common compiler infrastructure for translat-
ing languages to von Neumann architectures.

After this very high level presentation of the SSA, we will consider more
pragmatic aspects of program analysis: the next chapter presents the con-
struction of static analyzers on the SSA form, for extracting interesting con-
structs that are simple enough to be handled in several compiler techniques.

Chapter 3

From SSA to Abstract SSA in
PROLOG

One of the most interesting practical aspects of the SSA representation comes
from the observation that data flow problems are described atomically: in the
classical data flow analysis for imperative programs, the analysis has to be
performed on all the scalar variables modified in the program, whereas once
the imperative program has been translated to SSA form, the resolution of the
same data flow problem will determine the solution based only on a subset of
the variables modified in the program, on which there is a data dependence.
The SSA automatically clusters the declarations following the scalar data
dependences. When all the scalar variables involved in such a cluster have
statically known initial values, it sometimes is possible to give precise values
to each of the variables members of that cluster. However, when some of the
initial conditions are unknown, it is still possible to characterize the cluster’s
members, but only using some approximation: this chapter introduces the
notion of Abstract SSA, or ASSA, obtained from SSA by an approximation.
For obtaining the ASSA, I have proposed two versions of an algorithm that
translates programs written in SSA to ASSA. The first algorithm will use
PROLOG for representing the source and target representations [PCJS06b],
and the translation algorithm uses the unification engine of PROLOG. The
next chapter will describe a second algorithm [PCS05] using a more informal
imperative language, that is more intuitive for engineers that would like to
adapt this algorithm in their compiler infrastructure.

49

50 CHAPTER 3. FROM SSA TO ASSA IN PROLOG

3.1 ASSA: Abstract SSA

After having seen, in the last chapter, an exact semantics of the SSA language,
we would like to use this precise description of the semantics of the SSA

language for building static analyzers. We will see in this section a survey of
the existing tools used in static analysis and will propose the Abstract SSA

form, a representation that can practically be used for static analyses, and
for avoiding static uncomputable properties.

Static Analysis. In opposition to code instrumentation, testing or profil-
ing, the static analysis is performed without knowing the context in which
the program will be executed. Thus, static analysis obtains more general so-
lutions, but most of the interesting questions become uncomputable: every
property that is not true or false for all the programs is undecidable, a re-
sult commonly known under the name of Rice’s theorem [Rog87, Jon97]. In
order to avoid uncomputable properties, a static analyzer uses safe approx-
imations of the behavior of the program, a trade between the cost of static
computation and the precision of the provided answers: in some cases the
abstract representations would not contain enough information for allowing
the static analyzer to output a definitive answer, in which case the result is
an uncertain answer, “don’t know”.

Concrete and Abstract Semantics. The precise semantics of the pro-
gram is also named the concrete semantics. Approximations of the concrete
semantics lead to abstract semantics: a part of the information encoded in
the concrete semantics is lost in a process that can guarantee some safety
properties. In general the concrete and the abstract elements are encoded
using some ordered set, or domain, and the approximation operation, or ab-
straction, is a total function mapping elements from the concrete domain
to elements of the abstract domain. A safe abstraction function conserves
informational order properties in the starting and target domains.

Theories of Abstraction. The theory of abstraction has independently
evolved in the abstract interpretation and artificial intelligence domains as
practical methods for dealing with either large amounts of data, or for repre-
senting uncertainty in static analyses of programs. In practice, abstractions
are defined by a mapping between two sets that preserves some properties
and that reduces the complexity.

Definition 3.1.1 (Abstraction) An abstraction is a triplet (Σ1, Σ2, α),
with Σ1 and Σ2 two sets with Σ2 ⊆ Σ1, and a total function α : Σ1 → Σ2

3.1. ASSA: ABSTRACT SSA 51

called the abstraction function, that maps the elements of Σ1 onto that of Σ2.

The usefulness of abstractions arises from the fact that it sometimes is
simpler to work on the abstract set, Σ2, that potentially contains fewer el-
ements than Σ1, and on which some properties may be decidable. Based
on the results of the computation in the abstract set, it is then possible to
infer an over-approximation for the result of the computation on Σ1 using a
concretization function.

Definition 3.1.2 (Concretization) Let (Σ1, Σ2, α) be an abstraction. A
function γ : Σ2 → P(Σ1) is called a concretization function. It maps elements
from Σ2 to sets of elements of Σ1.

Abstract Interpretation. The semantics of a programming language can
be more or less precise, depending on the degree of detail captured by the
description of program execution. The framework of abstract interpretation
[CC77, CC79] can be used to automatically define several semantics layers,
corresponding to different levels of precision. Each semantics layer is rep-
resented by a partially ordered set, or domain. The relation between two
semantics layers is defined using an approximation translation, which maps
elements of the concrete domain to elements of the abstract domain. In order
to guarantee the conservation of concrete semantics properties, the approxi-
mation and concretization functions have to satisfy the following properties,
for some given elements from the concrete domain c1, c2 ∈ Σ1, and for some
elements of the abstract domain a1, a2 ∈ Σ2:

• α monotone: c1 ⊆ c2 ⇒ (α(c1) ⊆ α(c2)),

• γ monotone: a1 ⊆ a2 ⇒ (γ(a1) ⊆ γ(a2)),

• γ ◦ α extensive: c1 ⊆ γ(α(c1)),

• α ◦ γ reductive: α(γ(a1)) ⊆ a1.

A coarse approximation of a concrete domain leads to a less precise ab-
stract domain on which the semantics can be practically computable. It is
sometimes the case that the operations on the abstract domain are exact,
i.e. computing on the abstract set produces exactly the same result, without
loss of precision, as in the concrete set. In this case the order is trivially
preserved, as the abstraction and concretization functions are bijections on
some subsets of the abstract and concrete sets.

52 CHAPTER 3. FROM SSA TO ASSA IN PROLOG

Theory of Abstract Domains. As we have seen, approximation func-
tions map elements from a concrete semantics domain to an abstract domain.
Once an abstract domain is formalized, it is possible to use the abstract in-
terpretation framework for automatically defining the static analyzer corre-
sponding to the translation of the concrete semantics domain to the abstract
domain. The importance of abstract domains in the framework of abstract
interpretation is illustrated by the number of abstract domains that have
been formalized:

• signs,

• intervals [Moo66],

• the polyhedral domain [CH78],

• the simple and linear congruence domains [Gra91, Cla96b, Mei04],

• the trapezoidal linear congruence domains [Mas92, Mas93],

• the octagon domain [Min01],

• the ellipsoid domain [Fer04, Fer05].

All these abstract domains can naturally be used in the framework of ab-
stract interpretation for representing approximated semantics. We now will
see how to use this abstract interpretation framework to represent approxi-
mations of run-time behaviors of programs in SSA form.

Abstractions from SSA Programs. By representing parts of the exact
semantics of SSA programs with elements belonging to one of the abstract
domains presented above, one can obtain several abstraction views of the
behavior of the program at run-time. This SSA representation with declara-
tions containing elements in an abstract domain will be called the Abstract
SSA, or ASSA, and we will describe several algorithms that use this represen-
tation for statically computing properties of the program, and for building
other static analyses.

The selection of the proper abstraction level is a difficult task, and cannot
be performed automatically: it depends on the precision of the information
required by a computation. For example, the value range propagation [Pat95]
is able to infer useful information from integer intervals, whereas such infor-
mation would probably be useless in the computation of the exact loop trip
count, that would require a more precise information under the form of a
symbolic expression. For this reason, it is impossible to provide a unique,

3.2. SSA TO ASSA IN LOGIC PROGRAMMING 53

perfect abstraction view, in terms of computability and of information pre-
cision, for all the users of the information extracted by a static analyzer.
Instead, the interface to the static analyzer can provide a mechanism for
filtering the representation through several abstraction functions, allowing
the users of this information to select an appropriate abstraction level. As
we will see in much more details in Section 4.4, we will use the notion of
instantiation of SSA declarations in some abstract domain for practically
implementing such a mechanism.

In the following we consecutively will see two different, practical ways
to work with abstract domains instead of the precise semantics of the SSA:
first we will use a logic programming language for describing SSA programs,
and for defining abstract SSA semantics, then we will use an imperative
language for describing the same static analyzers, and finally we will see
how I integrated these static analyzers in a real compiler, the GNU Compiler
Collection: GCC.

3.2 SSA to ASSA in Logic Programming

After a short description of the specificities of logic programming and PRO-

LOG, we will see how to represent SSA programs in PROLOG, and how to
handle SSA programs containing abstract elements. Finally we will see a con-
venient representation for self declarations that will provide a compressed non
recursive form of the SSA declarations.

3.2.1 Logic Programming and PROLOG

Logic programming was first proposed by John McCarthy in 1958 as a means
of computing using mathematical logic: programs are defined by a tuple con-
taining a set of assertions or declarations, and a query that has to be satisfied
in this base of facts. One of the most popular logic programming languages,
PROLOG, was created by Alain Colmerauer and Robert Kowalski in 1972,
and later standardized, in 1995, by the International Organization for Stan-
dardization [ISO95]. For all the following experiments, we will use standard
PROLOG. In particular, I have used a free implementation of PROLOG, the
GNU PROLOG [GNU]. In the following, we will use its syntax, as well as its
unification and Horn clause resolution semantics.

GNU PROLOG. The GNU PROLOG is a compiler written by Daniel Diaz.
As many other PROLOG compilers, the GNU PROLOG uses an intermedi-
ate representation commonly called the Warren Abstract Machine, or WAM

54 CHAPTER 3. FROM SSA TO ASSA IN PROLOG

[AK99]. The assembly code destined to be transformed into an executable for
the target machine is then generated from the WAM code. The WAM model
contains a memory architecture and an instruction set suited to translate
PROLOG programs to common von Neumann computer architectures.

Syntax of PROLOG Programs. A PROLOG program is defined by a set
of declarations composed of first order terms, that are composed of:

• variables denoted by a capitalized identifier, or by the “ ” syntactic
element that designates an anonymous variable,

• constants denoted by an identifier starting with a lower-case letter,

• and functors of the form f(t1, . . . , tn), with t1, . . . , tn first order terms,
n is called the arity of the functor. The functor is also simply referred
to as f(n), as functors with different arity are not equal. Constants are
special cases of functors with arity 0.

A predicate is syntactically defined with the “ :- ” construct, that can be
read “if”, and that separates the left hand side predicate to be defined from
the fact that has to be satisfied on its right hand side. Facts are defined by
conjunctions and disjunctions of first order terms. Syntactically, conjunctions
are represented by a comma “, ”, and disjunctions are represented by a semi-
column “;”. A fact ends with a point “.”. A PROLOG program is constituted
of a list of facts evaluated in the sequential order in which they appear in
the text.

Semantics of PROLOG Programs. A query is a first order term that
is not a variable. The semantics of a tuple “program-query” is the most
general unifier of the program and the query. The operational semantics of
a PROLOG program is given by some unification algorithm, like the linear
unification algorithm presented in [PW78].

Abstractions as Herbrand Universes. A logic framework for abstrac-
tions can be described in terms of Herbrand universes: the concrete set can
be defined as the set of all ground terms constructed from functors and con-
stants; the abstraction mapping can be defined as a functor transforming
every ground term from the starting set to other ground terms composed of
constants and functors in the abstract set.

3.2. SSA TO ASSA IN LOGIC PROGRAMMING 55

PROLOG as Prototyping Language. As we will see in this section, the
tools provided by PROLOG suit the needs of prototyping SSA transforma-
tions: the execution of PROLOG programs are query driven similarly to the
query driven access to the definitions of scalar variables in the SSA represen-
tation. PROLOG’s unification engine provides a natural, practical technique
to describe complex algorithms that transform the SSA language. The com-
plex description of the algorithms that we have described in [PCS05], and
that we will see in Section 4.4, is mainly due to the description of a unification
algorithm similar to the algorithm presented in [PW78].

3.2.2 Representing SSA in PROLOG

We will see a possible encoding of the SSA language using PROLOG: relations
between scalar variables are described with PROLOG predicates. Then we
will specify a small interpreter for SSA expressions on top of the unification
engine of PROLOG, that will provide an exact meaning to each PROLOG

predicate.

Definition of SSA Predicates. An SSA program tabulated by a relation
σ, defined as in the previous chapter1, can be represented in PROLOG using
a binary predicate: sig(2). The SSA expressions are then composed of
names declared in the σ mapping, boolean and integer variables, and a mix
of classical binary operators +, −, ≤, ∧, and ¬. As in the previous chapter,
conditional phi expressions will not be represented, as theoretically they do
not bring any expressiveness and can be represented by loops. Predicates
lphi(3), and cphi(3) will represent respectively loopφ and closeφ nodes:

lphi(loopIndex, initValue, nextValue): represents the flow of values
in a well structured loop with virtual counter loopIndex, initial value
initValue and iteration value nextValue.

cphi(loopIndex, exitExpr, loopVariable): represents the value of some
variable loopVariable after crossing a loop identified by loopIndex

that has an exit condition exitExpr.

An Interpreter for SSA Expressions. An interpreter for expressions
recorded in sig(2) can be implemented using the denotational semantics of
the SSA that we have seen in the previous chapter: Figure 3.1 provides a

1Remember that we used σ as a container for the declarations in an SSA program: to
an SSA identifier σ associates an SSA expression.

56 CHAPTER 3. FROM SSA TO ASSA IN PROLOG

PROLOG predicate int(ssaExpression, iteration, result) that imple-
ments a small interpreter for the SSA. It associates an integer result to an
ssaExpression, for a given iteration vector. The first rule in Figure 3.1
is satisfied if the given SSA expression is an integer. In this case the result
is the same integer. Otherwise, the second fact is tried. This second fact
succeeds only if the given SSA expression is the name of a variable that oc-
curs in sig(2), and then the result is given by interpreting the expression
of the declaration. Third and fourth facts are performing arithmetic on in-
tegers, fifth fact is satisfied only when the iteration vector contains a zero in
the varying loop, that is the initial value in that loop, sixth fact computes
the value for all the other iterations in the varying loop by decrementing
the iteration vector, and finally the last fact defines the exit value using a
minimization operation.

int(A, , A) :- integer(A).

int(A, K, R) :- sig(A, E), int(E, K, R), !.

int(A + B, K, R) :- int(A, K, R1), int(B, K, R2), R is R1 + R2, !.

int(A - B, K, R) :- int(A, K, R1), int(B, K, R2), R is R1 - R2, !.

int(lphi(L, A,), vect(K, L, 0), R) :- int(A, K, R), !.

int(lphi(L, , B), vect(K, L, V), R) :- N is V - 1, int(B, vect(K, L, N), R), !.

int(cphi(L, E, A), K, R) :- pmin(K, L, 0, N, E), int(A, N, R), !.

Figure 3.1: An SSA interpreter in PROLOG.

This SSA interpreter uses some helper predicates that we now define:

vect(vector, index, value) is used for both constructing vectors and for
accessing the value at index in vector,

pmin(vector, index, newVector, expression) computes a vector with
the smallest value for index that makes the expression become false,
informally, this vector represents the iteration exiting the loop, and cor-
responds to the minimization expression k[min{x | ¬E [[E1]]σk[x/ℓ]}/ℓ]
defined in the semantics of the SSA presented in the previous chapter.
A possible implementation in PROLOG is as follows:

pmin(K, L, V, vect(K, L, V), E) :- int(E, vect(K, L, V), 0).

pmin(K, L, V, R, E) :- pmin(K, L, N, R, E), N is V + 1.

3.2. SSA TO ASSA IN LOGIC PROGRAMMING 57

Note that this implementation of the pmin(5) predicate would produce
an infinite loop if the expression E never evaluates to zero. This matches
the infinite behavior of the program containing such a closeφ expression.

We presented this basic interpreter for illustrating the semantics of the
PROLOG predicates that we will use in the remaining of this presentation.
We avoided the informal semantics by describing the semantics of the SSA

in the PROLOG language, making this operational semantics of the SSA an
indirect semantics. The following paragraphs illustrate this semantics with
a simple running example.

Distinct Data Circuits. Figure 3.2 provides an SSA program mixing in-
teger values in two cycles: {a1, a2, a3, a4, a5, a6} and {b1, b2, b3}.
The values contained in one of these cycles do not enter in the computa-
tion of the values of the other cycle, and thus, these two cycles compute
distinct scalar value evolutions, or scalar value streams. This example shows
an important aspect of the SSA: scalar variables not belonging to some data
stream are completely isolated from the rest of the data streams definitions,
and their values can independently be determined.

a = 2;

whilel1 a - 5 do

a = a + 1;

b = 0;

whilel2 b - 42 do

b = b + 1

SSA
−−→

sig(a1, 2).

sig(a2, lphi(l1, a1, a3)).

sig(a3, a2 + 1).

sig(a4, cphi(l1, a2 - 5, a2)).

sig(a5, lphi(l2, a4, a5)).

sig(a6, cphi(l2, b1 - 42, a5)).

sig(b1, lphi(l2, 0, b2)).

sig(b2, b1 + 1).

sig(b3, cphi(l2, b1 - 42, b1)).

Figure 3.2: An SSA program in PROLOG.

An Illustration of the SSA Operational Semantics. For illustrating
the operational mode of the SSA, we will follow some steps of the interpreter
on the running example. Suppose that we want to know the value for variable
a4, then the query to the interpreter predicate would be int(a4, 0, R), in
other words, the query is “what is the value R of variable a4 at iteration
0”. PROLOG tries to apply the first rule in the definition of int(3), see
Figure 3.1, and fails as a4 is not an integer. Then the second rule is tried,
and the first part of the rule succeeds with the following substitutions:

58 CHAPTER 3. FROM SSA TO ASSA IN PROLOG

int(a4, 0, R) :- sig(a4, cphi(l1, a2 - 5, a2)), int(cphi(l1, a2 - 5, a2), 0, R).

at this point, the second part of the rule int(cphi(l1, a2 - 5, a2), 0,

R) has to be evaluated to true for the first rule to succeed. This triggers an-
other instance of int(3) resolution, as follows: the first rule does not match
int(cphi(l1, a2 - 5, a2), 0, R), as there is no relation in sig(2) start-
ing with a symbol cphi(3). Next rules are successively tried, and fail as
cphi(3) is not of the form “a+b”, or “lphi(3)”. The last rule partially
succeeds with:

int(cphi(l1, a2 - 5, a2), 0, R) :- pmin(0, l1, 0, L, a2 - 5), int(a2, L, R).

The unification continues with the proof of the right hand side of this equa-
tion: the search for a substitution that satisfies pmin(0, l1, 0, L, a2 -

5). After more unification steps, for which we will not give the details, the
unification yields the substitution “L = 15” that is applied to the second
predicate to be satisfied: int(a2, L, R). The predicate int(a2, 15, R) is
satisfied with the substitution “R = 17”, that satisfies int(cphi(l1, a2 -

5, a2), 0, 17), and that in turn provides the substitution “R = 17” that
ends the proof: int(a4, 0, 17).

Once an SSA program is represented in PROLOG, it is possible to use
PROLOG for defining symbolic transformations on these predicates. One of
the motivations for defining such symbolic transformations is the definition
of some optimizing transformation, such as constant propagation, or partial
redundancy elimination. In the following we will not discuss these classical
optimizing techniques, but we will describe a pattern matching technique
that we proposed for eliminating self references from the declarations of SSA

variables. For selecting one of the syntactical forms appropriate for our
pattern matching algorithm, we define a symbolic transformation that will
map SSA syntactic objects with identical meaning to a unique SSA syntactic
object.

3.2.3 Condensed SSA Expressions

To define a normal form for SSA expressions, it is possible to define a trans-
formation algorithm that maps different syntactic constructs with equivalent
semantics to an identical syntactic object. A PROLOG predicate that imple-
ments such a transform contains two arguments: for example transform(A,

B), the first argument A containing the original expression, and the second
argument B containing the transformed expression. Given some expression
expr, it is possible to use this predicate in two different query forms:

3.2. SSA TO ASSA IN LOGIC PROGRAMMING 59

• asking for the transformed expression: transform(expr, B),

• or asking for the inverse transform, that is the expression from which
this expression has been obtained: transform(A, expr).

Thus, the implementation of the transform(2) predicate provides both the
transformation algorithm and its inverse, and following the algorithm, a
query can generate a family of possible answers, also called a Herbrand
universe. The characteristic of a normal form is that the transformation
predicate provides a unique idempotent answer in one way, while when em-
ployed in the other way, the predicate possibly generates a family of answers:
this is illustrated with an example in the following paragraph.

Folding Arithmetic Expressions. In compilers, the role of an arithmetic
expression folder is to perform arithmetic computations on statically known
scalar operations. A folded arithmetic expression is in its normal form if its
size cannot be further reduced. A very primitive arithmetic expression folder
is illustrated by the implementation of the fold(2) predicate in Figure 3.3.

fold(+ unknown, unknown).

fold(unknown + , unknown).

fold(L + R, Res) :-

integer(L), fold(R, ResR), integer(ResR), Res is L + ResR, !;

integer(R), fold(L, ResL), integer(ResL), Res is ResL + R, !.

fold(L + R, ResL + ResR) :- fold(L, ResL), fold(R, ResR), !.

fold(Default, Default).

Figure 3.3: Folding arithmetic expressions.

The first two rules work on undefined elements, and they illustrate the
absorbing property of the unknown element: used in one way these first two
rules of the fold(2) predicate define a contraction of the size of expressions,
while the other way around, they generate a large family of expressions. The
third rule also defines a reduction from left to right, as expressions size is
reduced, this time in a statically determined way. The last two rules leave
the size of expressions unchanged. Applying any of these rules from left to
right guarantees that the expressions size is a monotone decreasing function.
This ensures the termination of the computation defined by the fold(2)

predicate.

Detecting Self Referring Declarations. For defining our non self refer-
ring normal form, we need a predicate that detects the self referring decla-
rations in the SSA program. For this, the predicate hasAself(variable,

60 CHAPTER 3. FROM SSA TO ASSA IN PROLOG

expression, remainder) is defined in Figure 3.4, in a way to ease the con-
struction of the normal form transform: the first argument variable is the
name of the variable for which we try to find an occurrence in expression.
If an occurrence is found, then remainder contains the starting expression

that was transformed by the fold(2) predicate, omitting the first reference
to variable.

hasAself(X, X, 0).

hasAself(X, Name, Step) :-

sig(Name, Expr), hasAself(X, Expr, Step).

hasAself(X, A + B, Step) :-

(hasAself(X, A, StepA), fold(StepA + B, Step), !);

(hasAself(X, B, StepB), fold(A + StepB, Step), !).

Figure 3.4: Finding self references.

Normal Form for Self Declarations. Using the previous predicates,
we can now define the normalization predicate: Figure 3.5 defines an al-
gorithm trNorm(ssaDecl, normalForm) that transforms a declaration of
the SSA program ssaDecl to its normal form declaration normalForm, us-
ing the hasAself(3) predicate from Figure 3.4 for determining whether the
BackEdge has a self reference to X. If a self reference is found, BackEdge is re-
placed by an equivalent expression X + Step where X appears in front of the
expression, such that it can be simpler matched. The expression obtained in
Step is the result of the fold(2) functor defined in Figure 3.3 that reduces
the size of arithmetic expressions by performing basic arithmetic operations
on scalar constants.

trNorm(sig(X, lphi(LoopId, Init, BackEdge)),

sig(X, lphi(LoopId, Init, X + Step))) :-

hasAself(X, BackEdge, Step), !.

trNorm(Default, Default).

Figure 3.5: A normalization equivalence.

Illustration. It is possible to apply this normalization transformation to
all the declarations of the SSA program. The result of the normalization on
the running example, Figure 3.2, is illustrated in Figure 3.6.

It still is possible that Step contains self definitions to X as the third rule
of hasAself(3) does not check for self definitions in B, if a self reference has

3.2. SSA TO ASSA IN LOGIC PROGRAMMING 61

sig(a1, 2).

sig(a2, lphi(l1, 2, a2 + 1)).

sig(a3, a2 + 1).

sig(a4, cphi(l1, a2 - 5, a2)).

sig(a5, lphi(l2, a4, a5)).

sig(a6, cphi(l2, b1 - 42, a5)).

sig(b1, lphi(l2, 0, b1 + 1)).

sig(b2, b1 + 1).

sig(b3, cphi(l2, b1 - 42, b1)).

Figure 3.6: Normalized SSA for the running example.

been found in A: it directly builds the result StepA + B. Thus, the expression
obtained in Step can be quite difficult to handle in general. For avoiding
these difficult SSA declarations, we define an algorithm that filters out all
these self referring expressions that could produce exponential behaviors.

3.2.4 Abstract SSA in PROLOG

The principal idea behind the use of abstractions when working with the
SSA comes from practice: whenever the expression is too complex or not
computable at compile time, the use of approximations can help reducing
the compiler time, or provide a safe over approximation of the solution. We
will illustrate the main ideas by using two classical abstractions: the masking
abstractions and the use of abstract elements.

Masking Abstractions. Masks or filters are the most intuitive forms of
approximations: a part of the starting representation is destroyed, mapped
to an “unknown” element. The masking abstraction is based on a discrete
order, that does not relate elements of the representation to each other. For
this reason, when a part of the information is replaced by a safe “unknown”
approximation, the remaining parts of the representation are still exact. In
practice, the techniques of information masking can provide gradual detail
levels by defining mask functions that progressively abstract away constructs
that are irrelevant for a computation.

removeMixers(sig(X, lphi(, , X + Step)), sig(X, unknown)) :- hasAself(X, Step,).

removeMixers(Default, Default).

Figure 3.7: Definition of a mask mapping exponentials to an “unknown”
element.

62 CHAPTER 3. FROM SSA TO ASSA IN PROLOG

Figure 3.7 illustrates the definition of a mask on the declarations of an
SSA program: it defines a map of exponential evolutions, for example sig(x,
lphi(l1, 1, x + x)), matched by the first rule, to an “unknown” element.
The last rule identically translates all the remaining constructs not matched
by the first rule.

Replacing Symbols with Abstract Elements. The other classical ab-
straction that we illustrate consists in replacing symbols with a safe descrip-
tion of the values that they represent during the execution of the program.
We illustrate this with the translation of the representation of the meet over
all paths in terms of an abstract value in Figure 3.8.

meetOverAllPaths(sig(X, lphi(, A, B)), sig(X, meet(A, B))).

meetOverAllPaths(Default, Default).

Figure 3.8: Definition of a meet over all paths abstraction.

The first rule replaces the lphi(3) predicate in the target representation
with the meet(2) predicate. The information contained in the loop index
disappears, and is replaced by a conservative information that symbolically
merges the information contained in both branches of the loopφ expression.

The meet(2) predicate can be defined using classical abstractions, such
as for example integer intervals, or sets of values, the choice of the right
abstraction being guided by the needs of the computation that uses the ab-
straction. The number of iterations in the loop containing the loopφ expres-
sion can safely be approximated and the meet(2) operation can contain this
approximation, in which case it is possible to define a slightly more precise
meet(3) predicate that takes the approximation of the number of iterations
as an extra argument. In the case of self referring variable declarations, the
meet operation has to merge symbolic expressions, accounting the number
of iterations into the abstraction, whereas in the case of loops with a single
iteration, representing condition expressions, the loopφ expression does not
contain self referring symbols, and the meet is a simple operation on values.

We next define a translation technique that replaces self referring loopφ
nodes with an equivalent form, either under the form of lambda functions,
or other representations used for polynomial functions.

3.2. SSA TO ASSA IN LOGIC PROGRAMMING 63

3.2.5 Characterizing Functions for Scalar Variables

Another possible way to eliminate self references in a precise way, is to trans-
late lphi(3) predicates to another representation, called a closed form, that
characterizes the sequence of values taken during the execution of the loop.
We will define two possible representations for polynomial functions: the
lambda function representation, and the chains of recurrences. These repre-
sentations can then be practically used for data dependence testing, or more
generally in restructuring the information in a form that can more systemat-
ically be processed. In a next chapter, we will illustrate the use of the closed
form descriptions in several applications.

Enriching the Information and Masking Abstractions. Using a dif-
ferent representation than the SSA allows us to modify the semantics of the
elements of the SSA that match some extra restrictions, as for example the
assumptions of statically decidable non overflowing sequences. The resulting
information is more rich than the starting representation, as it can contain
the result of a static computation, as for example the determination of the
number of iterations in a loop, or the value taken by a variable after crossing
a loop. As only a reduced part of the information can be statically translated
to the new intermediate form, this translation contains a masking abstrac-
tion. The masking abstraction cannot be avoided in this translation to the
representation containing a richer information, as the properties needed to a
complete translation can be statically undecidable.

We now will analyze a practical example of translation from the SSA

expressions to a polynomial form. The resulting representation removes self
declarations of loopφ nodes, and enriches the representation with the result
of the static computation of the number of iterations.

Illustration. We use again the running example from Figure 3.2 for illus-
tration. Each one of its scalar variables is associated with a function from
loop iteration vectors (i1, i2) to integers; as shown in Figure 3.9, these func-
tions can be represented as closed polynomial forms.

Figure 3.10 provides a more complex illustration: variables b and c are
univariate, they only depend on one loop counter (i3), whereas d and e

are multivariate. The purpose of induction variable recognition [GSW95]
is to statically compute such closed form representations. To compute the
evolution of f, one must know the trip count of the outer loop, i.e., the exact
exit value of i3. To statically evaluate this value, one must already understand
the evolutions of b and c. This example might seem quite artificial: this is
due to the fact that the only exit condition that we have chosen to represent

64 CHAPTER 3. FROM SSA TO ASSA IN PROLOG

sig(a1, 2).

sig(a2, lphi(l1, a1, a3)).

sig(a3, a2 + 1).

sig(a4, cphi(l1, a2 - 5, a2)).

sig(a5, lphi(l2, a4, a5)).

sig(a6, cphi(l2, b1 - 42, a5)).

sig(b1, lphi(l2, 0, b2)).

sig(b2, b1 + 1).

sig(b3, cphi(l2, b1 - 42, b1)).

a1 = 2
a2 = 2, 3, 4, . . . = i1 + 2
a3 = 3, 4, 5, . . . = i1 + 3
a4 = 5
a5 = 5
a6 = 5
b1 = 0, 1, 2, . . . = i2
b2 = 1, 2, 3, . . . = i2 + 1
b3 = 42

Figure 3.9: Sequences and closed forms for the running example.

is the test against zero. If the outer loop l3 in Figure 3.10 runs one more
iteration, i.e., the closing phi node is cphi(l3, b - 4, b), the inner loop
would not exit in a simple way, as it is exiting in the current example: d would
be initialized to 4 and would grow by steps of 4, that does not divide 42, and
thus, the test against zero of d - 42 would not be verified. Following the
semantics of wrapping types, the inner loop might end, or loop indefinitely:
we will discuss this kind of behaviors in Section 4.2, where we will consider
a precise semantics of typed operations for machine integers.

sig(a, 2).

sig(b, lphi(l3, a, c)).

sig(c, b + 1).

sig(d, lphi(l4, b, e)).

sig(e, d + b).

sig(f, cphi(l3, b - 3, b)).

sig(g, cphi(l4, d - 42, d)).

a = 2
b = 2, 3 = i3 + 2
c = 3, 4 = i3 + 3
d = 2, 4, 6, . . . , 42, 3, 6, 9, . . . , 42 = (i3 + 2)(i4 + 1)
e = 4, 6, 8, . . . , 42, 6, 9, 12, . . . , 42 = (i3 + 2)(i4 + 2)
f = 3
g = 42

Figure 3.10: Multivariate sequences and closed forms.

As we have seen in this example, the SSA declarations have partitioned
the problem such that the resolution only depends on the variables used to
define the exit condition, independently of the existence of the inner loop,
or any other constructs. The resulting representation under the form of
polynomials contains more information than the original SSA form, as for
determining this form we have had to prove the termination of the inner
loop l4, and the non wrapping behavior of the values in the polynomial
sequences for every scalar variable.

We now define a more formal representation for polynomial sequences,
and the algorithms that construct these representations starting from a pro-
gram written in SSA form.

3.2. SSA TO ASSA IN LOGIC PROGRAMMING 65

Lambda Functions Representation. The first representation of poly-
nomial functions that we will use is based on the lambda expressions, and is
represented in PROLOG with the lambda(2) predicate: the first argument is
the name of the abstraction variable, and the second argument is the expres-
sion in which the variable occurs. The translation of a part of the SSA to
this representation is implemented by the fromSSAtoLambda(2) predicate in
Figure 3.11, the first argument is the SSA declaration to be translated, and
the second argument is the SSA declaration in which the SSA expression has
been replaced by a lambda(2) expression.

fromSSAtoLambda(sig(X, lphi(, , X + Step)), sig(X, unknown)) :- hasAself(X, Step,).

fromSSAtoLambda(sig(X, lphi(LoopId, Init, X + Step)), sig(X, Init + Result)) :-

sumNFirst(LoopId, LoopId, Step, Result).

% compute the symbolic sum of the first N iterations of loop Lid: from 0 to N - 1

sumNFirst(, N, Cst, Cst*lambda(N, binom(N, 1))) :- integer(Cst).

sumNFirst(Lid, N, Cst*lambda(Lid, binom(Lid, K)), Cst*lambda(N, binom(N, ResK))) :-

integer(Cst), fold(K + 1, ResK).

sumNFirst(Lid, N, A + B, ResA + ResB) :-

sumNFirst(Lid, N, A, ResA), sumNFirst(Lid, N, B, ResB).

sumNFirst(Lid, N, lambda(Lid, A + B), lambda(Lid, ResA + ResB)) :-

sumNFirst(Lid, N, A, ResA), sumNFirst(Lid, N, B, ResB).

Figure 3.11: From a subset of the SSA language to lambda expressions.

The definition of the fromSSAtoLambda(2) predicate uses a helper pred-
icate sumNFirst(4) that computes the symbolic sum of the values of the
first iterations of a loop by using binomial coefficients in rewriting rules. For
detailing the behavior of the sumNFirst(4) predicate, we have to consider
the following two cases:

• when the Step is a constant in the SSA expression that has to be
translated: sig(X, lphi(l, Init, X + Step)), the first rule of the
predicate sumNFirst(4) is triggered, yielding:

X(i) = Init +
i−1
∑

j=0

Step(j)

= Init +

(

i

1

)

× Step

• when Step is a polynomial of degree n − 1 with respect to the vary-
ing loop l in the SSA expression sig(X, lphi(l, Init, X + Step)),

66 CHAPTER 3. FROM SSA TO ASSA IN PROLOG

and having already determined that Step is written under the form
Step(j) = c0 ×

(

j
0

)

+ . . . + cn−1 ×
(

j
n−1

)

, the second rule of the predi-

cate sumNFirst(4) applies, and performs the rewriting rule
∑x−1

j=0

(

j
k

)

=
(

x
k+1

)

. The resulting expression of the translation ends to be a polyno-
mial of degree n in loop l, as illustrated by the following computation:

X(i) = Init +
i−1
∑

j=0

Step(j)

= Init +

i−1
∑

j=0

(c0 ×

(

j

0

)

+ . . . + cn−1 ×

(

j

n− 1

)

)

= Init +

i−1
∑

j=0

n−1
∑

k=0

(ck ×

(

j

k

)

)

= Init +

n−1
∑

k=0

(ck ×
i−1
∑

j=0

(

j

k

)

)

= Init +
n−1
∑

k=0

(ck ×

(

i

k + 1

)

)

= Init + c0 ×

(

i

1

)

+ . . . + cn−1 ×

(

i

n

)

Figure 3.12 illustrates the translation algorithm to lambda expressions:
in the first query the updating expression of the SSA is a simple self refer-
ring expression with a step constant in the varying loop; the second query
illustrates the effect of applying the fromSSAtoLambda(2) predicate on an
updating expression that has a step varying in the loop l1, and the resulting
lambda expression is a polynomial function of degree 2.

% | ?- fromSSAtoLambda(sig(a, lphi(l1, 2, a + 2)), Q).

% Q = sig(a, 2+2*lambda(l1,binom(l1,1)))

% | ?- fromSSAtoLambda(sig(a, lphi(l1, 3, a + (4 + 5*lambda(l1,binom(l1,1))))), Q).

% Q = sig(a, 3+(4*lambda(l1,binom(l1,1))+5*lambda(l1,binom(l1,2))))

Figure 3.12: Example of translation of SSA to lambda(2) expressions.

Chains of Recurrences. Optimizing the storing of the above lambda ex-
pressions leads to a representation that only stores the coefficients leading the

3.2. SSA TO ASSA IN LOGIC PROGRAMMING 67

binomial coefficients: this representation is called the chains of recurrences
[BWZ94, KMZ98, Zim01]. The algorithm that translates a subset of the
SSA expressions to this form is defined by the predicate fromSSAtoMCR(2)

in Figure 3.13: the chains of recurrences are obtained by an exact rewriting
of a subset of the SSA language. This remark justifies the use of the chains
of recurrences instead of the SSA representation [vE01, vEBS+04] when the
SSA representation is not available, or is difficult to be constructed.

fromSSAtoMCR(sig(X, lphi(, , X + Step)), sig(X, unknown)) :- hasAself(X, Step,).

fromSSAtoMCR(sig(X, lphi(LoopId, Init, X + Step)), sig(X, mcr(LoopId, Init, Step))).

Figure 3.13: From a subset of the SSA language to chains of recurrences.

Figure 3.14 uses the exactly same examples as in Figure 3.12 for illustrat-
ing the translation to mcr(3) expressions.

% | ?- fromSSAtoMCR(sig(a, lphi(l1, 2, a + 2)), Q).

% Q = sig(a,mcr(l1,2,2))

% | ?- fromSSAtoMCR(sig(a, lphi(l1, 3, a + mcr(l1, 4, 5))), Q).

% Q = sig(a,mcr(l1,3,mcr(l1,4,5)))

Figure 3.14: Example of translation of SSA to mcr(3) expressions.

Chains of recurrences are an alternative representation of polynomial ex-
pressions. Previous work [vE01, vEBS+04] try to promote this intermediate
representation in static analysis as innovative with respect to anterior tech-
niques, but as we have seen in the previous paragraphs, there is no major
improvement over classical lambda expressions: at most, it is possible to ac-
knowledge that the chains of recurrences have the advantage of shortening
the expressions size by including the binomial coefficients in their semantics,
a useful advantage when analyzing programs with paper and pencil. Thus,
there is a single element in favor of preferring chains of recurrences in lieu of
their equivalent lambda expressions: chains of recurrences are syntactically
shorter than their equivalent lambda expressions.

We shall use the chains of recurrences syntax in the next chapter, for
describing a more detailed, yet informal, translation algorithm from the SSA

to ASSA based on an imperative language. This informal description will
shift our focus from formal definitions of the abstract SSA to more practical
questions: the implementation of these static analyzers in a real compiler, the
effectiveness of the execution time and memory space needed by the static

68 CHAPTER 3. FROM SSA TO ASSA IN PROLOG

analysis, and the use of the information extracted by static analysis in code
transformations. These questions are discussed in detail in the next chapter.

3.3 Conclusion

In this chapter we have seen a first definition of the Abstract SSA, or ASSA, a
representation that can be built on top of the SSA representation by replacing
parts of the SSA with safe approximations. As we will see in the next chapter,
this representation will be practical for building other static analyzers, and
for statically computing properties of the program. We have seen several
algorithms that convert scalar variable declarations in SSA programs to the
ASSA representation.

I have proposed a practical way to encode SSA programs using PROLOG

predicates, and I have provided an interpreter written in PROLOG for defin-
ing the operational semantics of the SSA language. Based on this PROLOG

representation of the SSA, I have provided several predicates that translate
parts of the SSA to abstract elements. The resulting representation is poten-
tially enriched by the result of static computations, translated to a normal
form, and some recursive constructs are translated to practical representa-
tions defined under the form of polynomial expressions.

In the next chapter, we will put all these techniques in application, by
first providing a high level imperative description of the analysis framework
implemented in GCC and then an evaluation of the performances of the im-
plemented static analyses.

Chapter 4

Translation to ASSA in Practice

This section provides a description of the translation algorithm from the SSA

form as represented in a compiler to the abstract SSA form. More precisely,
the chains of recurrences representation will be used as a target represen-
tation. This low level description of the analysis algorithms is practical to
compiler engineers that would like to implement a similar analyzer in their
compiler framework1. This description follows the high level lines of the an-
alyzer that I have implemented and integrated in GCC2. In the last part of
this chapter, I will try to describe the role of this analyzer in GCC, and I will
spot several difficult parts, related to the scalar type system, that have to be
carefully implemented. We will successively see the compiler infrastructure
in which this analyzer can be implemented, the translation algorithm, an
illustration of the analyzer when running on two simple examples, and an
experimental evaluation of the implementation in GCC.

After the very high level descriptions of the induction variable detection
algorithm seen in the previous chapter, I have to warn the reader that the
implementation of this same algorithm, which has been integrated in GCC, is
written in the C language. This has its drawbacks, as illustrated by the size of
the resulting implementation, some 3000 lines of C code3. Compared to the
implementation in PROLOG that we have seen earlier in this presentation,
the C version is much more verbose, handling much more corner cases. The
C version of the analyzer is also more efficient in terms of execution time
than an equivalent program written in PROLOG. Yet, the most important

1A similar analyzer has also been implemented in the LLVM compiler [Lat, LA04], based
on one of my first descriptions of the algorithm [PCC+04].

2The analyzers have been developed in the loop nest optimizer branch, also known as
the lno-branch, and then integrated in the main version of GCC during the summer of
2004. The first official version containing these developments is GCC 4.0, released April
20, 2005.

3Interested readers can find an implementation in GCC: tree-scalar-evolution.c.

69

70 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

point is that the C language is more portable, a strategic point for GCC.
In the last part of the chapter, I will describe some experiments that show
the central role of the analyzer on optimizations in GCC, and that show the
effectiveness and language independence of the implementation. This study
will also provide an overview of the code transformations and other static
analyzers that have been developed on top of the information extracted by
the static analysis of the evolutions of scalar variables.

4.1 Loop Transforms on a Low-Level Repre-

sentation

Previous work demonstrated the interest of enriched low-level representa-
tion [ADvF01, LA04]. They build on the normalization and simplicity of
three address code, adding data types, Static Single-Assignment form (SSA)
[CFR+91, Muc97] to ease data-flow analysis and scalar optimizations, and
control and data annotations (loop nesting, heap structure, etc.). Starting
from version 4.0, GCC [GCC05] uses such a representation called GIMPLE

[Nov03, Mer03], a three-address code derived from SIMPLE, an intermedi-
ate representation of the McCAT compiler [HDE+93]. Diego Novillo, from
RedHat, and I have proposed the GIMPLE representation in 2001 [Nov] for
minimizing the effort in the development and the maintenance of new analy-
ses and transformations. GIMPLE is used for building the SSA representation
that is then used by the analyzers and the scalar and loop nest optimizers.
After these optimizations, the intermediate representation is translated into
the Register Transfer Language (RTL), where machine-specific informations
are added to the representation.

Structure of GCC. Figure 4.1 presents the overall structure of GCC. The
front-ends C, C++, Java, Fortran95 and Ada are translating their interme-
diate representation to a common representation called GENERIC [Mer03].
GENERIC contains a set of the imperative language constructs needed to
efficiently translate any imperative specific construct used by the front-end
languages. At the moment of this writing, there is no formal description
of the semantics of GENERIC. The translation of each front-end language
to GENERIC provides the only precise, indirect definition4 of the GENERIC

4The maps between front-end constructs with known semantics and the GENERIC

constructs formally define GENERIC constructs in an indirect way, as the semantics of
GENERIC is defined in function of the semantics of the constructs of the front-end lan-
guages semantics. Furthermore, the current implementations of the translation of front-

4.1. LOOP TRANSFORMS ON A LOW-LEVEL REPRESENTATION 71

GENERIC

GIMPLE

C C++ Java F95 Ada

Asm

GIMPLE − SSA

GIMPLE

Machine Description

Induction variable analysis
Data dependence analysis
Scalar and Loop Nest Optimizations

Front−ends

Middle−end

Back−end
RTL

Figure 4.1: The infrastructure of GCC 4.

language. This definition of GENERIC is not the best documentation for the
implementation of new language front-ends, but it is the only accurate formal
description.

Continuing our description of the flow of information inside GCC, the
GENERIC language is then translated to the GIMPLE language by decompos-
ing expressions into a three-address code, and replacing loop constructs with
their goto equivalent constructs. The control flow graph, CFG, is built on
top of this low level representation, and the SSA form is then built on top
of this representation. The natural loops [ASU86] are discovered as strongly
connected components on top of the CFG, and these loop structures are used
for the analysis of induction variables that we will describe in this section.
Natural loops are represented as annotations in the examples of code that
we will see through this chapter, but they actually are implemented as a
data structure on top of the CFG, containing pointers to the header of the
loop, to the back edge, and to the exit edge. A variable ik will represent
the implicit counter5 associated with the loop number k, loop (ik). Loop
annotations are enriched with the results of the static computation of the
number of iterations: corresponding to the smallest value of the loop counter

ends abstract syntax trees to GENERIC are written in the C language. Thus, the semantics
of the translation is also relative to the semantics of the C language.

5There is no correspondence between the variables that we will use for loop counters
and the variables declared in the analyzed program.

72 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

j = 3

n = 123

for (i=1; i<n; i+=5) {
j += i + 7

A[j] = i

}

→

i = 1

j = 3

n = 123

loop (i1)
if (i>=n) goto end

t = i + 7

j = j + t

A[j] = i

i = i + 5

end:

Figure 4.2: Lowering to three-address code.

for which one of the loop exit conditions become true. Practically this could
be implemented as the resolution of a constraints system, but for the moment
GCC uses a very restrictive algorithm that considers only single exit loops.

After several analyses and code transformations have been performed on
this representation, the code is rewritten out of the SSA form, and then GIM-

PLE representation is eventually translated to RTL that finally is translated
to assembler based on the machine instructions patterns.

Specificities of the GIMPLE Representation. In a three-address rep-
resentation like GIMPLE, subscript expressions, loop bounds and strides are
spread across a number of instructions and basic blocks, possibly far away
from the original location in the source code. This is due to the lowering itself
and to intermediate optimization phases, such as dead-code elimination, par-
tial redundancy elimination, optimization of the control flow, invariant code
motion, etc. Figure 4.2 illustrates this increased variability and complexity.

A three-address representation like GIMPLE could seem not suitable to
implement program transformations for high performance: classical loop nest
transformations were described on FORTRAN DO loop programs as source
to source transformations, whereas in GIMPLE, control flow is represented
by only two primitives, a conditional expression if, and a goto expression
goto. Loops have to be discovered from the control flow graph [ASU86].
Although the number of iterations is not captured by the GIMPLE syntax, it
is often discovered by analyzing the scalar variables involved in the loop exit
conditions; this allows to compute precise information lost in the translation
to a low-level representation, but it may also be useful when the source level
does not expose enough syntactic information, e.g., in while loops, or loops
with irregular control constructs such as break or exceptions. Even if in
GIMPLE, subscript expressions, loop bounds and strides are spread across
several elementary instructions and basic blocks, the SSA form provides fast

4.1. LOOP TRANSFORMS ON A LOW-LEVEL REPRESENTATION 73

practical ways to extract information concerning values of scalar variables.

Induction Variable Analyses. Lowering the loop to three-address code
makes the inductive definitions more intricate as shown on the right-hand
side of Figure 4.2. Looking at the original loop in the left-hand side, vari-
able j is inductively updated with a non-negative value, meaning it is a
strictly increasing function of the loop counter i. Indeed, i takes the values
1, 6, 11, . . . , 126 and j is successively evaluated to 3, 11, 24, . . . , 1703. This
observation is sufficient to prove there are no dependences on array A. The
evolution of i and j may also be characterized as closed form expressions,
parameterized by the number of iterations i1 of the enclosing loop.

i = 5i1 + 1,

j =
5

2
i1

2 +
11

2
i1 + 3.

Although the evolution of j is not an affine (or linear) expression, several
analyses would retrieve enough information to detect the absence of data de-
pendence [Wol92, GSW95, HP96, WCP01, vE01, vEBS+04, RZR04, CT04].
The presentation of all these analyses is informal: the starting language is
either a subset of a programming language, such as FORTRAN or C, or is
not defined at all. In all the cited papers, the translation between the start-
ing language and the target language uses informal semantics, presenting an
informal algorithm for the translation between two informally defined lan-
guages, and illustrating the translation process with a running example. The
target language receives the most attention, and is regarded as the original
part of the work: one of the metrics used for comparing against the previ-
ous work is the expressiveness of the target language. However, making the
target language more and more expressive is contrary to the goal of static
analysis.

The originality of the work that I present in this thesis is based on the
more classical point of view on the induction variable analysis: starting from
a formal semantics of the source representation, the SSA language, filtering
out several difficult elements, or selecting only a part of the SSA constructs,
produces a subset of the SSA called TREC, a language enough expressive for
capturing frequent programming constructs. A second abstracting process
translates the TREC into less expressive representations such as the affine
functions. We have seen a formal presentation of these abstracting processes
in the previous chapter. The following presentation is intendedly an informal
description of the abstracting algorithms presented in the previous chapter.
These abstracting processes are performed on the demand of a user pass of

74 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

this information, like the data dependence analysis or the vectorizer. Fi-
nally, speed, robustness of the implementation and language-independence
are natural benefits of using a low-level static single assignment language.

SSA Form. In the reminder of this chapter, we will use a definition of
the SSA that is much closer to the informal definition given in the seminal
papers on the SSA, than the definition of the SSA that we have seen in the last
chapter, see [CFR+91, Muc97] for details: the SSA graph is the graph of use
to definition chains in the SSA representation; φ nodes (or functions) occur
at merge points and restore the flow of values from the renamed variables;
the φ arguments are variables listed in the order of the associated control
flow edges; φ nodes are split into the loopφ — nodes whose second argument
correspond to a back-edge in the control flow graph — and condφ categories.
We sometimes will note loop1φ for a loopφ node defined in loop 1.

As we have seen in Chapter 2, in the SSA representation a part of the
statically available information contained in the Dewey-like numbers was
transformed. Although the loop nesting information should be intrinsic to the
SSA, in the classical SSA form it is not easy to reconstruct this information
only from the SSA representation, and thus for practical reasons, we will use
the loop nesting information in conjunction with the SSA representation for
presenting the algorithms working on SSA. In particular, in order to identify
in the classical SSA representation the loop that contains some loopφ node,
we use the loop hierarchy.

Introductory Examples. To illustrate the main issues and concepts, we
now will consider several examples. The closed-form expression for f in
Figure 4.3 is not affine (a second degree polynomial).

a = 3

b = 1

loop (i1)
c = loop1φ (a, f)

d = loop1φ (b, g)

if (d>=123) goto end

e = d + 7

f = e + c

g = d + 5

end:

At each step of the loop, an integer value following
the sequence 1, 6, 11, . . . , 126 is assigned to d, that is
the affine function 5i1 + 1; a value in the sequence
3, 11, 24, . . . , 1703 is assigned to f , that is a polyno-
mial of second degree: 5

2
i1

2 + 11
2
i1 + 3.

Figure 4.3: First example: polynomial functions.

In Figure 4.4, apart from d, all variables are univariate: they only depend
on one loop counter; d is called multivariate. To compute the evolution of c,
x and d in the second example, one must know the trip count of the inner

4.1. LOOP TRANSFORMS ON A LOW-LEVEL REPRESENTATION 75

a = 3

loop (i1)
c = loop1φ (a, x)

loop (i2)
d = loop2φ (c, e)

e = d + 1

t = d - c

if (t>=9) goto end2

end2:

x = e + 3

if (x>=123) goto end1

end1:

The successive values of c are 3, 17, 31, . . . , 115, that
is the affine univariate function 14i1 + 3. The suc-
cessive values of x in the loop are 17, 31, . . . , 129
that is 14i1 + 17. The evolution of variable d,
3, 4, 5, . . . , 13, 17, 18, 19, . . . , 129 depends on the iter-
ation number of both loops: that is the multivariate
affine function 14i1 + i2 + 3.

Figure 4.4: Second example: multivariate functions.

loop, here ten iterations. Yet, to statically evaluate the trip count of i2 one
must already understand the evolutions of c and d.

loop (i1)
a = loop1φ (1, b)

if (a>=100) goto end1

b = a + 4

loop (i2)
c = loop2φ (a, e)

e = loop2φ (b, f)

if (e>=100) goto end2

f = e + 6

end2:

end1:

The sequence of values taken by a is
1, 5, 9, . . . , 101 that can be written in a condensed
form as 4i1 + 1. The values taken by variable
e are 5, 11, 17, . . . , 95, 101, 9, 15, 21, . . . , 95, 101
and generated by the multivariate function
6i2 + 4i1 + 5. These two variables are used to
define the variable c, that will contain the succes-
sive values 1, 5, 11, . . . , 89, 95, 5, 9, 15, . . . , 89, 95:
the first value of c in the loop i2 is the value
coming from a, while the subsequent values are
those of variable e.

Figure 4.5: Third example: wrap-around.

In the third example, Figure 4.5, variables a and e have simple affine
evolutions, but c is a typical case of wrap-around variable [Wol92], a variable
that takes a special value at the first iteration and becomes an inductive
variable with a regular evolution in further iterations. Such variables are
defined by loopφ nodes appearing in strongly-connected components of the
SSA graph that hold other loopφ nodes. The classification by Wolfe et al.
[GSW95] does not handle wrap-around variables in nested loops where the
initial value is varying in the outer loops. Indeed, the closed form repre-
sentation for such multivariate variables are more complex than the affine,
polynomial or exponential cases considered in [Wol92, GSW95]. Here the
value of c is reinitialized to a different value at each iteration of the outer
loop: in the first iteration of i1, its values in the inner loop are 1, 5, 11, 17,
then in the second iteration of i1, its values are 5, 9, 15, 21, . . ., etc. We will see

76 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

the closed form of c in Section 4.2, after the introduction of a representation
that captures such evolutions.

Some complex SSA graphs with multiple loopφ nodes in a cycle do not
match the wrap-around class. They define more general induction variables
that include the periodic or exponential classes [Wol92], or may not even have
a known closed form.6

loop (i1)
a = loop1φ (0, d)

b = loop1φ (0, c)

if (a>=100) goto end

c = a + 1

d = b + 1

end:

Both a and b have affine evolutions: 0, 1, 2, . . . , 100,
because they both have the same initial value. How-
ever, if their initial value is different, their evolution
can only be described by a periodic evolution.

Figure 4.6: Fourth example : periodic evolution functions.

Figure 4.6 presents an example where a and b have a linear closed form
but derive from an intricate inductive definition scheme.

loop (i1)
a = (unsigned char) loop1φ (0, c)

b = (int) loop1φ (0, d)

c = (unsigned char) (a + 1)

d = (int) (b + 1)

if (d >= 1000) goto end

T[b] = U[a]

end:

The C programming language defines modulo
arithmetics for unsigned typed variables. In
this example, the successive values of variable
a are periodic: 0, 1, 2, . . . , 255, 0, 1, . . ., or in
a condensed notation i1 (mod 256).

Figure 4.7: Fifth example: effects of types on the evolution of scalar variables.

loop (i1)
a = (char) loop1φ (0, c)

b = (int) loop1φ (0, d)

c = (char) (a + 1)

d = (int) (b + 1)

if (d > N) goto end

end:

Signed types overflow are not defined in C. The
behavior is only defined for the values of a in
0, 1, 2, . . . , 126, consequently d is only defined for
1, 2, 3, . . . , 127, and the loop is defined only for the
first 127 iterations.

Figure 4.8: Sixth example: inferring properties from undefined behavior.

Figure 4.7 illustrates an unusual data dependence problem. Variable a

is incremented at each iteration of i1, however the unsigned char type con-
straints its evolution to the range [0, 255]. When language standards define

6A complete algebra does not exist for the Turing-complete computation model of scalar
evolutions.

4.2. TREES OF RECURRENCES 77

modulo arithmetics for a type, the compiler has to handle the effects of
wrapping overflows on induction variables. When the effect of overflowing
operations is not defined by the language as wrapping, then based on the
defined part of the domain, the compiler is allowed to deduce constraints on
the values of scalar variables, or to infer safe bounds for loops, as illustrated
in Figure 4.8.

4.2 Trees of Recurrences

In this section, we introduce the notion of Tree of Recurrences (TREC), a
closed-form that captures the evolution of induction variables as a function
of iteration indices and allows an efficient computation of values at given
iteration points. This formalism extends the expressive power of Multivariate
Chains of Recurrences (MCR) [BWZ94, KMZ98, Zim01, vE01] by symbolic
references. MCR are obtained by an abstraction operation that instantiate all
the varying symbols: some evolutions are mapped to a “don’t know” symbol
⊤.

Let F (i1, i2, . . . , im), or F (~ℓ), represent the evolution of a variable in-
side a loop of depth m as a function of i1, i2, . . . , im. F can be written as
a closed form Θ, called TREC, that can be statically processed by further
analyses and efficiently evaluated at compile-time. The syntax of a TREC is
derived from MCR and inductively defined as: Θ = {Θa, +, Θb}k or Θ = c,
where Θa and Θb are trees of recurrences and c is a constant or a variable
name, and subscript k indexes the dimension. As a form of syntactic sugar,
{Θa, +, {Θb, +, Θc}k}k = {Θa, +, Θb, +, Θc}k.

Evaluation of TREC. The value Θ(i1, i2, . . . , im) of a TREC Θ is defined

as follows: if Θ is a constant c then Θ(~ℓ) = c, else Θ is {Θa, +, Θb}k and

Θ(~ℓ) = Θa(~ℓ) +

ik−1
∑

l=0

Θb(i1, . . . , ik−1, l, ik+1, . . . , im) .

The evaluation of {Θa, +, Θb}k for a given ~ℓ matches the inductive updates
across ik iterations of loop k: Θa is the initial value, and Θb the increment in
loop k. This is an exponential algorithm to evaluate a TREC, but [BWZ94]
gives a linear time and space algorithm based on Newton interpolation series.
Given a univariate MCR with c0, c1, . . . , cn, constant parameters (either
scalar constants, or symbolic names defined outside loop k):

{c0,+, c1,+, c2,+, . . . ,+, cn}k(~ℓ) =
n

∑

p=0

cp

(

ℓk

p

)

. (4.1)

78 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

This result comes from the following observation: a sum of multiples of
binomial coefficients — called Newton series — can represent any polyno-
mial. The closed form for f in the first example of Figure 4.3 is the second
order polynomial F (i1) = 5

2
i1

2 + 11
2
i1 + 3 = 3

(

i1
0

)

+ 8
(

i1
1

)

+ 5
(

i1
2

)

, and is
written {3, +, 8, +, 5}1. The coefficients of a TREC derive from a finite dif-
ferentiation table: for example, the coefficients for the TREC associated with
5
2
i1

2 + 11
2
i1 + 3 can be computed either by differencing the successive values

[HP96]:
i1 0 1 2 3 4
c0 3 11 24 42 65
c1 8 13 18 23
c2 5 5 5
c3 0 0

or, by directly extracting the coefficients from the code [vE01]. Section 4.4
will present the algorithm for extracting TREC from an SSA representation.

The fast evaluation of a TREC is illustrated on the second introduc-
tory example, in Figure 4.4, where the evolution of d is the affine equation
F (i1, i2) = 14i1 + i2 +3. A TREC for d is Θ(i1, i2) = {{3, +, 14}1, +, 1}2, that
can be evaluated for i1 = 10 and i2 = 15 as follows:

Θ(10, 15) = {{3,+, 14}1,+, 1}2(10, 15) = 3 + 14 ·

(

10

1

)

+

(

15

1

)

= 158 .

Arithmetic Operations. Arithmetic operations on MCR are defined as
rewriting rules [vE01]. They trivially derive from the arithmetic operations
on polynomials. A reduced set of these rewriting rules are defined in Fig-
ure 4.9.

x + {Θa, +, Θb}k = {x + Θa, +, Θb}k

x× {Θa, +, Θb}k = {x×Θa, +, x×Θb}k

{Θa, +, Θb}k + {Θc, +, Θd}k = {Θa + Θc, +, Θb + Θd}k

{Θa, +, Θb}k × {Θc, +, Θd}k = {Θa ×Θc, +, {Θa, +, Θb}k ×Θd

+ {Θc, +, Θd}k ×Θb + Θb ×Θd}k

Figure 4.9: Arithmetic operations on TREC: Θa, Θb, Θc and Θd are trees of
recurrences, and x is a constant.

4.2. TREES OF RECURRENCES 79

Instantiation of TREC and Abstract Envelopes. In order to be able
to use the efficient evaluation scheme presented above, symbolic coefficients
of a TREC have to be analyzed: the role of the instantiation pass is to limit
the expressive power of TREC to MCR. Difficult TREC constructs such as
exponential self referring evolutions are either translated to some appropriate
representation, or discarded7.

Because a large class of optimizers and analyzers are expecting simpler
cases, TREC information is filtered using an instantiation pass. Several ab-
stract views can be defined by different instantiation passes, such as mapping
every non polynomial scalar evolution to ⊤, or even more practically, map-
ping non affine functions to ⊤. In appropriate cases, it is natural to map
uncertain values to an abstract value: we have experimented instantiations
of TREC with intervals, in which case we obtain a set of possible evolutions
that we call an envelope. Allowing the coefficients of TREC to contain ab-
stract scalar values is a more natural extension than the use of maximum
and minimum functions over MCR as proposed by van Engelen in [vEBS+04]
because it is then possible to define other kinds of envelopes using classical
scalar abstract domains, such as polyhedra, octagons [Min01], or congruences
[Gra91].

Peeled trees of recurrences. A frequent occurring pattern consists in
variables that are initialized to a value during the first iteration of a loop,
and then is replaced by the values of an induction variable for the rest of
iterations. We have chosen to represent these variables by explicitly listing
the first value that they contain, and then the evolution function that they
follow. The peeled TREC are described by the syntax (a, b)k whose semantics
is given by:

(a, b)k(x) =

{

a if x = 0,

b (x - 1) for x ≥ 1,

where a is a TREC with no evolution in loop k, b is a TREC that can have an
evolution in loop k, and x is indexing the iterations in loop k. Most closed
forms for wrap-around variables [Wol92] are peeled TREC. Indeed, back to the
introductory example in Figure 4.5, the closed form for c can be represented
by a peeled multivariate affine TREC: ({1, +, 4}1, {{5, +, 4}1, +, 6}2)2.

A peeled TREC describes the first values of a closed form chain of recur-
rence. In some cases it is interesting to replace it by a simpler MCR, and vice
versa, to peel some iterations out of a MCR. For example, the peeled TREC

(0, {1, +, 1}1)1 describes the same function as {0, +, 1}1. This last form is

7Optimizers such as symbolic propagation could handle such difficult constructs, how-
ever they lead to problems that are difficult to solve in practice.

80 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

a unique representative of a class of TREC that can be generated by peel-
ing one or more elements from the beginning. Simplifying a peeled TREC

amounts to the unification of its first element with the function represented
in the right-hand side of the peeled TREC. A simple unification algorithm
tries to add a new column to the differentiation table without changing the
last element in that column. Since this first column contains the coefficients
of the TREC, the transformation is possible if it does not modify the last
coefficient of the column, as illustrated in Figure 4.10.

i1 0 1 2 3 4
c0 3 11 24 42 65
c1 8 13 18 23
c2 5 5 5
c3 0 0

i1 0 1 2 3 4 5
c0 0 3 11 24 42 65
c1 3 8 13 18 23
c2 5 5 5 5
c3 0 0 0

Figure 4.10: Adding a new column to the differentiation table of the chain
of recurrence {3, +, 8, +, 5}1 leads to the chain of recurrence {0, +, 3, +, 5}1.

This technique allows the unification of 29 wrap around loop-φ in the
SPEC CPU2000, 337 on the GCC code itself, and 5 on the JavaGrande.

Finally, we formalize the notion of peeled TREC equivalence class: given
integers v, a1, . . . , an, a TREC c = {a1, +, . . . , +, an}1, a peeled TREC p =
(v, c)1, and a TREC r = {b1, +, . . . , +, bn−1, +, an}1, with the integer coeffi-
cients b1, . . . , bn−1 computed as follows: bn−1 = an−1−an, bn−2 = an−2−bn−1,
. . ., b1 = a1 − b2, we say that r is equivalent to p if and only if b1 = v.

Periodic trees of recurrences. Periodic sequences may be generated by
flip-flop operations, that are special cases of self referenced peeled TREC.
Variables in a flip-flop exchange their initial values over the iterations, for
example:

flip→ (3, 5, f lip)k(x) = [3, 5]k(x) =

{

3 if x = 0 (mod 2),

5 if x = 1 (mod 2).

Typed trees of recurrences. Most compilers handle ad-hoc type schemes
for induction variables. We will see a typed extension of the TREC that is
both sound and accurate, by delaying the interpretation of complex type
annotations and conversions to the point where the nature of the needed
abstraction is known (intervals, affine forms, etc.). First, we will see an
intuitive idea of the behavior of typed sequences, then we will see a more
formal definition as an algorithm that converts typed sequences to congruence
relations.

4.2. TREES OF RECURRENCES 81

One of the solutions for preserving the semantics of wrapping types on
TREC operations is to type the TREC and to map the effects of types from the
SSA representation to the TREC representation. For example, the conversion
from unsigned char to unsigned int of TREC {(uchar)100, +, (uchar)240}1 is
{(uint)100, +, (uint)0xfffffff0}1, such that the original sequence remains
unchanged (100, 84, 68, . . .). The first step of a TREC conversion proves that
the sequence does not wrap. In the previous example, if the number of
iterations in loop 1 is greater than 6, the converted TREC should also con-
tain a wrap modulo 256, as illustrated by the first values of the sequence:
100, 84, 68, 52, 36, 20, 4, 244, 228,

When it is impossible to prove that a sequence does not wrap, it is safe
to assume that it wraps, and it is possible to propose several solutions for
representing sequences that potentially wrap: the exact description of the
sequence, and several abstractions.

The first solution is to use a periodic TREC, that lists all the values in
a period: in the previous example we would have to store 15 values. Using
periodic TREC for sequences wrapping over narrow types can seem practical,
but this method is not practical for arbitrary sequences over wider types.

Instead of using an exhaustive description of the sequence, it is possible
to use an approximated representation: the interval representation of an
overflowing sequence would be the whole range of the type: in the previous
example, [0, 255]. This precision is not sufficient for proving that the values
of the sequence cannot be zero. However, on a more precise representation,
such as the congruence relations [Gra91], it is possible to prove that no value
of the sequence can be zero: the sequence is represented as the set of integers
x ∈ [0, 255] that verify x = 4 (mod 16).

The most accurate representation is close to the source representation,
and contains the cast operations: (uint)({(uchar)100, +, (uchar)240}1). Be-
cause the right abstract representation can only be determined based on the
precision of a computation, the computation of these casts are delayed.

More formally, we now will see a denotational semantics for typed TREC

as mappings from integer sequences to sequences over Z/nZ for some integer
n. A language for typed TREC is defined by including a cast operation:

(Sequences)

Seq ::= (Type)Seq | TREC

(Types)

Type ::= char | uchar

In this presentation, the considered types char and unsigned char will

82 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

have a wrapping semantics, matching the semantics of these types in the
Java language. The denotational semantics for this language is:

S[[(uchar)a]] = λx.S[[a]](x) (mod 28)

S[[(char)a]] = λx.(S[[a]](x) + 27) (mod 28)− 27

In general, the semantics of a sequence over a wrapping type with a range
[min, max] is λx.((S[[a]](x) − min) (mod max − min)) + min. Conversion
from a type to another is performed using arithmetic modulo the width of
the type: max−min. In the algorithm presented in Section 4.4 we will use
a Convert function defined following the semantics of type conversion for
the programming language.

In practice, it is not convenient to work with the above definition of
the overflowing types, as the precision of the target types might exceed the
precision of the available integers on the machine that hosts the compiler.
A possible solution is the use of multiple precision library, but the cost of
arithmetic in multiple precision mode is not affordable in practice. The
implementation of conversion of sequences in GCC is based on an ad-hoc
handling of integer types conversions, such that any operation on typed value
do not exceed the precision of two double integers.

Exponential Trees of Recurrences. The exponential MCR [BWZ94]
used by [vE01] and then extended to handle sums or products of polynomial
and exponential evolutions [vEBS+04] are useless in compiler technology for
typed integer sequences, as integer typed arithmetic has limited domains of
definition. Any overflowing operation either has defined modulo semantics,
or is not defined by the language standard. The longer exponential integer
sequence that can exist for an integer type of size 2n is n−1: left shifting the
first bit n − 2 times. Storing exponential evolutions as peeled TREC seems
efficient, because in general n ≤ 64.

Next, we will see an efficient algorithm that translates a part of the SSA

dealing with scalar variables to TREC.

4.3 Abstract SSA on GIMPLE

I now present an algorithm that implements the scalar evolutions analyzer:
this algorithm computes closed-form expressions for some inductive scalar
variables. The interface to this analyzer is designed as an interface to a
database that contains, for a given variable definition, its evolution function

4.3. ABSTRACT SSA ON GIMPLE 83

under the form of a TREC. For example, when the data dependence analyzer
needs the evolution function of a variable that indexes an array, it simply
queries the database that either returns the cached previously computed evo-
lution function, or otherwise triggers the analysis of the asked variable, trig-
gering the analysis of all the variables, loop counts, etc., needed to determine
the evolution function.

Several constraints have led the design of this analyzer:

• first, the algorithm does not assume a particular control flow structure
and makes no restriction on the recursive intricate variable definitions.
It however fails to detect any meaningful induction variable on irre-
ducible control flow graphs that cannot be analyzed into natural loop
structures [ASU86]. For all the variables defined in one of the basic
blocks of an irreducible region, the answer of the analyzer will be the
value ⊤ that stands for an uncomputable evolution,

• another characteristic of this algorithm is that it does not use the syn-
tactic information of the analyzed SSA representation. In other words,
it makes no distinction between the names of variables defined in the
source code and those that are introduced by the lowering to three-
address code, or by other optimizers,

• furthermore, the algorithm is able to delay a part of the analysis until
more information is known, by leaving symbolic names in the represen-
tation. The representation that is obtained from AnalyzeEvolution

function is the most instantiated with respect to the instantiation con-
text, that is, no early approximations have been performed. Based on
this representation, symbolic solvers, as for example the computation
of the number of iterations in a loop, may produce safe and precise in-
formations that improve the information available in the instantiation
context,

• the last constraint that is important for the inclusion of an implemen-
tation of the algorithm in a production compiler is that the analyzer
should be linear in time and space. In order to satisfy this constraint
and to allow further possible refinements, an interface provides views
of different levels of abstractions. This can practically be implemented
by several procedures that instantiate TREC.

The structure of the analysis algorithm is quite complex because it is
based on a double recursion as sketched in Figure 4.11. It presents similarities
with the algorithm for linear unification [PW76], where the double recursion
is hidden behind a single recursion with a stack structure.

84 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

Analyze Evolution BuildUpdateExprInstantiateEvolutionComputeLoopPhiEvolutions

Figure 4.11: Bird’s eye view of the analyzer

4.4 Algorithm

Figure 4.12 presents a driver application ComputeLoopPhiEvolutions,
that computes a TREC for every variable whose value is alive across loop iter-
ations. In practice, the computation of closed form expressions are triggered
by applications like the dependence analysis or the evaluation of loop-trip
count. As illustrated in this driver, the applications call the analyzer Ana-

lyzeEvolution, presented in Figure 4.13, for a given loop and a variable
name. The results are then filtered through an abstraction function Instan-

tiateEvolution presented in Figure 4.15.

Algorithm: ComputeLoopPhiEvolutions

Input: SSA representation of the procedure
Output: a TREC for every variable defined by loopφ nodes

For each loop l in a depth-first traversal of the loop nests
For each loopφ node n in loop l

InstantiateEvolution(AnalyzeEvolution(l,n), l)

Figure 4.12: Driver application.

The first step of AnalyzeEvolution is a query to the database for
the evolution function of the analyzed variable. The database is only visible
to the AnalyzeEvolution function and is accessed using the construct,
Evolution[n], for an SSA name definition n. The value contained initially
in the database for a non analyzed variable name is ⊥. The database en-
sures that the analysis is performed only once for a given variable name.
The main part of the analyzer consists in a pattern matching of five com-
mon expressions occurring in a three-address SSA representation, with the
corresponding associated action. The first pattern, “v = constant”, is the
simplest one: the resulting evolution is constant. The second pattern, “v =

a”, propagates the evolution function by copy. If the analyzer is restricted to
these two patterns, the analyzer has the same role and expressive power as a
constant propagation pass. To these basic patterns is added an interpreter,

4.4. ALGORITHM 85

Algorithm: AnalyzeEvolution(l, n)
Input: l the current loop, n the definition of an SSA name
Output: TREC for the variable defined by n within l

v ← variable defined by n
ln ← loop of n
If Evolution[n] 6= ⊥ Then res ← Evolution[n]
Else If n matches ”v = constant” Then res ← constant

Else If n matches ”v = a” Then res ← AnalyzeEvolution(l, a)
Else If n matches ”v = (type) a” Then

res ← Convert(type, AnalyzeEvolution(l, a))
Else If n matches ”v = a ⊙ b” (with ⊙ ∈ {+,−, ∗}) Then

res ← AnalyzeEvolution(l, a) ⊙ AnalyzeEvolution(l, b)
Else If n matches ”v = loopφ(a, b)” Then

(notice a is defined outside loop ln and b is defined in ln)
Search in depth-first order a path from b to v:
(exist, update) ← BuildUpdateExpr(n, definition of b)
If not exist (if such a path does not exist) Then

res ← (a, b)l: a peeled TREC

Else If update is ⊤ Then res ← ⊤
Else res ← {a, +, update}l: a TREC

Else If n matches ”v = condφ(a, b)” Then
eva ← InstantiateEvolution(AnalyzeEvolution(l, a), ln)
evb ← InstantiateEvolution(AnalyzeEvolution(l, b), ln)
res←Meet(eva, evb)

Else res ← ⊤
Evolution[n] ← res
Return res

Figure 4.13: Main analyzer.

the third pattern ”v = a ⊙ b”, that maps the arithmetic operations of the
source language onto the arithmetic operations of the target language. Note
that cast operations can be implemented as part of this interpreter, but are
not presented in Figure 4.13 for simplifying the presentation. With this ex-
tension, the analyzer is slightly more expressive than the classical constant
propagation because it is also able to fold some of the arithmetic expressions
into constants.

The cornerstone of the analyzer is in the fourth pattern, ”v = loopφ(a,
b)”, that analyses φ nodes whose arguments are defined at different loop

86 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

Algorithm: BuildUpdateExpr(h, n)
Input: h the halting loopφ, n the definition of an SSA name
Output: (exist, update), exist is true if h has been reached,
update is the reconstructed expression for the overall effect in loop of h

If (n is h) Then Return (true, 0)
Else If n is a statement in an outer loop Then Return (false, ⊥),
Else If n matches ”v = a” Then

Return BuildUpdateExpr(h, definition of a)
Else If n matches ”v = (type) a” Then

(exist, update) ← BuildUpdateExpr(h, a)
If exist Then Return (true, Convert(type, update))

Else If n matches ”v = a + b” Then
(exist, update) ← BuildUpdateExpr(h, a)
If exist Then Return (true, update + b),
(exist, update) ← BuildUpdateExpr(h, b)
If exist Then Return (true, update + a)

Else If n matches ”v = loopφ(a, b)” Then ln ←loop of n
(notice a is defined outside ln and b is defined in ln)
If a is defined outside the loop of h Then Return (false, ⊥)
s ← Apply(ln, AnalyzeEvolution(ln, n),

NumberOfIterations(ln))
If s matches ”a + t” Then

(exist, update) ← BuildUpdateExpr(h, a)
If exist Then Return (exist, update + t)

Else If n matches ”v = condφ(a, b)” Then
(exist, update) ← BuildUpdateExpr(h, a) If exist Return (true, ⊤)
(exist, update) ← BuildUpdateExpr(h, b) If exist Return (true, ⊤)

Return (false, ⊥)

Figure 4.14: SSA walker: reconstructs symbolic update expressions from a
three-address SSA code.

levels. The recursively defined expression is searched and reconstructed from
the low level three-address SSA representation using BuildUpdateExpr.
This algorithm is presented in Figure 4.14 and it corresponds to a depth-first
search algorithm in the SSA graph with each step composed of a look-up of an
SSA definition, and then followed by a recursive call of the search algorithm
on the symbolic operands. The search halts when the starting loopφ node is

4.4. ALGORITHM 87

Algorithm: InstantiateEvolution(trec, l)
Input: trec a symbolic TREC, l the instantiation loop
Output: an instantiation of trec

If trec is a constant c Then Return c

Else If trec is a variable v Then
If v has not been instantiated Then

Mark v as instantiated and Return AnalyzeEvolution(l, v)
Else v is in a mixer structure, Return ⊤

Else If trec is of the form {e1, +, e2}x Then
i1 ← InstantiateEvolution(e1, l)
i2 ← InstantiateEvolution(e2, l)
Return {i1, +, i2}x

Else If trec is of the form (e1, e2)x Then
i1 ← InstantiateEvolution(e1, l)
i2 ← InstantiateEvolution(e2, l)
Return Unify((i1, i2)x)

Else Return ⊤

Figure 4.15: A possible filter function.

reached. When analyzing an assignment whose right-hand side is a sum, the
search algorithm examines the first operand, and if the starting loopφ node is
not reachable through this path, it examines the second operand. When one
of the operands contains a path to the starting loopφ node, the other operand
of the sum is added to the update expression, and the result is propagated
to the lower search steps together with the reconstructed update expression.
If the starting loopφ node cannot be found by depth-first search, i.e., when
BuildUpdateExpr returns (false, ⊥), the definition does not belong to a
cycle of the SSA graph: a peeled TREC is returned.

The overall effect of an inner loop may only be computed when the exit
value of the variable is a function of the entry value. In such a case, the
whole loop is behaving as a macro-increment operation. The function Num-

berOfIterations computes the number of iterations of the loop by solv-
ing a constraint system. As a practical implementation, one can choose the
Omega solver [Pug92], but it is also possible to use a solver restricted to
univariate affine constraint systems for avoiding any exponential behavior.
Then, Apply is used to evaluate the overall effect of the inner loop. Apply

implements the efficient evaluation scheme for MCR based on Newton inter-
polation series presented in Section 4.2. Once the overall effect of an inner

88 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

loop on a scalar variable has been computed, the information is propagated
after the loop, extending the limits of a classical constant propagation engine
after loop structures.

Finally, in the last pattern of AnalyzeEvolution and BuildUpdate-

Expr, ”v = condφ(a, b)”, it is possible to plug the TREC envelope exten-
sion by defining the Meet operation.

InstantiateEvolution substitutes symbolic parameters in a TREC. It
computes their statically known value, i.e., a constant, a periodic function,
or an approximation with intervals, possibly triggering other computations
of TREC in the process. The call to InstantiateEvolution is postponed
until the end of the depth-first search, ensuring termination of the recursive
nesting of depth-first searches, and avoiding early approximations in the com-
putation of update expressions. Combined with the introduction of symbolic
parameters in the TREC, postponing the instantiation alleviates the need for
a specific ordering of the computation steps.

The termination and complexity of this algorithm are presented in the
next subsection, then the algorithm is illustrated with two examples in Sec-
tion 4.6. The next chapter presents several applications of this static ana-
lyzer, and Section 4.7.2 provides experimental results, on standard bench-
mark programs, of the analyzer that has been integrated in GCC.

4.5 Termination and Complexity of the Al-

gorithm

When analyzing the code of the algorithm, we can briefly sketch its call
graph, as shown in Figure 4.11. The algorithm is initiated by a call to
AnalyzeEvolution, then finishes with the analysis of all the symbols left
in the representation, by calling InstantiateEvolution.

An overview of the ideas that lead to the proof of the termination consists
in remarking that:

• AnalyzeEvolution does not analyze twice the same variable, be-
cause after each complete analysis, the evolution is stored in a database
that is checked on entry of AnalyzeEvolution,

• InstantiateEvolution does not instantiate twice the same variable,
otherwise a mixer is detected, and the recursion is stopped either by
returning ⊤ as in Figure 4.15, or by translating the mixer in an appro-
priate abstraction, like a periodic function,

4.5. TERMINATION AND COMPLEXITY OF THE ALGORITHM 89

• BuildUpdateExpr terminates once it has reached its halting loopφ
node, or once it has walked over all the SSA edges connected to the
starting loopφ node, in the limits of the analyzed loop.

Consequently, in the worst case, the analyzer stops after having analyzed
once all the variables of the program. For giving an idea of the worst case
complexity of the analyzer, we will describe with more details the termination
process. We will consecutively consider the worst case complexity of each
of the building blocks of the algorithm. We deduce from this the overall
complexity of the algorithm in the worst case, then the termination of the
algorithm in terms of number of basic operations. Figure 4.16 sketches the
computational patterns behind each of the components of the algorithm.

op0 op1

1

AE

2

3

IE: expr
2

31

loop−phi node BUEAE:
loop−phi node

1

2BUE:

Figure 4.16: Computational patterns of InstantiateEvolution (IE), An-

alyzeEvolution (AE), and BuildUpdateExpr (BUE).

Complexity of InstantiateEvolution. The worst case for Instantia-

teEvolution corresponds to an expression with n operands, and among
them appear all the SSA names defined in the program. Let m stand for the
number of SSA names in the program. In the worst case n > m. The total
cost of instantiating such an expression involves a recursive visit of each leaf:
that produces n steps, then for each leaf, a call to AnalyzeEvolution.
The total number of operations is equal to n decompositions of the given
expression, n calls to AnalyzeEvolution, followed by n − 1 folds of the
obtained subexpressions: the total amounts to 3n− 1 basic operations.

Complexity of AnalyzeEvolution. The cost of AnalyzeEvolution

for a constant is equal to 1. For an SSA name, the cost is equal to the look-
up in the database plus, when the scalar variable was not yet analyzed, the
cost of its analysis. Because the first part of this algorithm consists in walking
up the definitions to known values or to loop-phi nodes, the algorithm may
end as soon as all the needed scalar definitions have values already computed.

In the worst case, the total number of steps is equal to 5m: at each
analysis of an SSA name there are at most 3 reads in the database: for

90 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

a = b op c, a read for a, then supposing that the variable has not yet been
analyzed, a read for each of the operands, then a fold operation on the TREC

of the operands, and finally a write of the result in the database.
Because in the worst case n > m, the difference n − m corresponds to

the number of queries from InstantiateEvolution that hit the cached
value in the database. Thus, the total number of basic operations for Ana-

lyzeEvolution is equal to 4m + n.
When AnalyzeEvolution ends on a loopφ node whose evolution is not

yet analyzed, AnalyzeEvolution calls BuildUpdateExpr.

Complexity of BuildUpdateExpr. BuildUpdateExpr is called only
from AnalyzeEvolution, when analyzing a loopφ node. The loopφ edge
exiting the loop is left under a symbolic form, while the edge pointing in the
loop is the one followed by BuildUpdateExpr in a depth first search order
until the starting loopφ node is reached. The number of operations triggered
by one call to BuildUpdateExpr is equal to the number of edges explored
during this depth first search. Once all the paths reachable by following SSA

edges in the analyzed loop are explored and the halting loopφ node is still
not found, BuildUpdateExpr ends by returning a peeled TREC.

In the particular case where the SSA edges enter an inner loop, the anal-
ysis of the definition in the inner loop is triggered. But because we are
computing the total number of steps in the worst case, we have already
counted these definitions in the input expression to InstantiateEvolu-

tion. Thus, we can consider all these parts already analyzed, and their cost
to the BuildUpdateExpr function is equal to a read in the database, if
we count the cost of computing the number of iterations for all the loops
separately.

BuildUpdateExpr is called only on the loopφ nodes not yet analyzed,
in other words, once per loopφ node. Thus, in the worst case, the overall
complexity of BuildUpdateExpr is equal to

∑

i∈loopφ ei, where ei is the
number of SSA edges reachable from the analyzed loopφ , not exiting the
loop.

Cost of the Whole Algorithm. Putting all together, we obtain the fol-
lowing worst case complexity:

4n− 1 + 4m +
∑

i∈loopφ

ei + l

• n is the number of basic components in TREC to be instantiated,

• m is the number of SSA names in the program,

4.6. APPLICATION TO THE INTRODUCTORY EXAMPLES 91

• ei is the number of SSA edges reachable from the analyzed loopφ, and
not exiting the loop,

• l is the number of steps required to solve the constraint systems for
determining the number of iterations for all the loops. l is linear if the
solver is restricted to uniquely deal with univariate affine evolutions.
In the case of the Omega solver [Pug92], l is exponential in the worst
case.

If the algorithm used for computing the number of iterations is reduced to
solving only a single affine equation, the complexity of the scalar evolutions
analysis is in O(n).

We have proved that the algorithm is terminating on any input SSA rep-
resentation, and we have analyzed the worst case complexity of the analysis
algorithm. The overall cost of the analyzer highlights its structure: it is
composed of two preprocessing passes followed by the analysis of the loopφ
nodes. The complexity of the algorithm depends on the quality of the ex-
pected answer: using an exact solver for constraint systems might not be
practical for production compilers. However, in development mode, the plan
is to use exact solvers for improving the overall quality of the compiler by
assessing regressions with respect to an optimal behavior.

4.6 Application of the Analyzer to the Intro-

ductory Examples

We will take the first two introductory examples from Figure 4.3 and Fig-
ure 4.4, and will observe the behavior of the analysis algorithm while ana-
lyzing these programs. In addition to clarifying the depth-first search and
instantiation phases of the algorithm, this will exercise the recognition of
polynomial and multivariate scalar evolutions.

First Example. The depth-first search is best understood with the anal-
ysis of c = loop1φ(a, f) in the first example. The SSA edge of the initial
value exits the loop, as represented in Figure 4.17.(1). Here, the initial value
is left in a symbolic form, but GCC would replace it by 3 through constant
propagation.

To compute the parametric evolution function of c, the analyzer starts
a depth-first search algorithm, as illustrated in Figure 4.17.(2). The update
edge c→f is followed to the definition of f in the loop body: assignment f

= e + c. The depth-first algorithm follows the first operand, f→e, reaching

92 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

a = 3
b = 1
loop (i1)
c = loop1φ(a, f)
d = loop1φ(b, g)
if (d ≥ 123)

goto end
e = d + 7
f = e + c
g = d + 5

end

(1) Initial value edge

a = 3
b = 1
loop (i1)
c = loop1φ(a, f)
d = loop1φ(b, g)
if (d ≥ 123)

goto end
e = d + 7
f = e + c
g = d + 5

end

(2) Searching for “c”

a = 3
b = 1
loop (i1)

c = loop1φ(a, f)
d = loop1φ(b, g)
if (d ≥ 123)
goto end

e = d + 7
f = e + c
g = d + 5

end

(3) Found the halting phi

a = 3
b = 1
loop (i1)

c = loop1φ(a, f)
d = loop1φ(b, g)
if (d ≥ 123)
goto end

e = d + 7
f = e + c
g = d + 5

end

(4) On the “return
path”

Figure 4.17: Application to the first example

the assignment e = d + 7, and finally follows the edge e→d that leads to a
loopφ node of the same loop. Since this is not the loopφ node from which
the analyzer has started the depth-first search, the search continues on the
other operands that were not yet analyzed: back on e = d + 7, operand 7 is
a scalar and there is nothing more to do, then back on f = e + c, the edge
f→c is followed to the starting loopφ node, as illustrated in Figure 4.17.(3).

At this point, the analyzer has found the strongly connected component
that corresponds to the path of iterative updates. Following this path in
execution order, as illustrated in Figure 4.17.(4), the analyzer builds the
update expression as an aggregation of the operands that are not on the
updating path: in this example, the update expression is just e. As a result,
the analyzer assigns to the definition of c the parametric evolution function
{a, +, e}1.

The instantiation of {a, +, e}1 starts with the substitution of the first
operand: a = 3, then the analysis of e is triggered. First the assignment
e = d + 7 is analyzed, and since the evolution of d is not yet known, the
edge e→d is taken to the definition d = loop1φ(b, g). Since this is a loopφ
node, the depth-first search algorithm is used as before and yields the evolu-
tion function of d, {b, +, 5}1, and after instantiation, {1, +, 5}1. Finally the
evolution of e = d + 7 is computed: {8, +, 5}1, and replacing e with its evo-
lution finishes the instantiation of the TREC of c that yields {3, +, 8, +, 5}1.

Second Example. We now will compute the evolution of x in the second
example, Figure 4.4, to illustrate the recognition of multivariate induction

4.6. APPLICATION TO THE INTRODUCTORY EXAMPLES 93

variables and the computation of the trip count of a loop. The first step
consists in following the SSA-edge to the definition of x. Consider the right-
hand side of the definition: since the evolution of e along loop 1 is not yet
analyzed, the edge e→d is followed to its definition in loop 2, ending on the
definition of a loopφ node.

At this point, d is known to be updated in loop 2. The initial value c is
kept under a symbolic form, and the iteration edge d→e is followed in the
body of loop 2. The depth-first search algorithm starts from right-hand side
of the assignment e = d + 1: the edge e→d is followed to the loopφ node
from which the search has started. Back on the path d→e→d, the analyzer
gathers the evolution of d along the whole loop, an increment of 1, and ends
on the following symbolic TREC: {c, +, 1}2.

From the evolution of d in the inner loop, the analyzer determines the
overall effect of loop 2 on d, that is the evaluation of function f(i) = c + i
for the number of iterations of loop 2. Fortunately, the exit condition is
the simple expression t>=9, and the TREC for t (or d - c) is {0, +, 1}2, an
affine (non-symbolic) expression. It comes that 10 iterations of loop 2 will
be executed for each iterations of loop 1. Calling Apply(2, {c, +, 1}2, 10)
yields the overall effect d = c + 10.

The analyzer does not yet know the evolution function of c, and conse-
quently it follows the SSA-edge to its definition: c = loop1φ(a, x). Since
this is a loopφ node, the analyzer must determine its evolution in loop 1. The
edge to the initial value is ignored, and the update edge is taken, searching
for a path from c to itself.

First, edge c→x leads to the statement x = e + 3, then following the
SSA-edge x→e, ending on a statement of the loop 2. Again, edge e→d

is followed, ending on the definition of d that has already been analyzed:
{c, +, 1}2. The depth-first search selects the edge d→c, associated with the
overall effect statement d = c + 10 that summarizes the evolution of the
variable in the inner loop. Finally, the starting loopφ node c is reached.
From this point, the path is walked back gathering the stride of the loop: 10
from the assignment d = c + 10, then 1 from the assignment e = d + 1,
and 3 from the last assignment on the return path. The symbolic TREC of
c has been computed: {a, +, 14}1.

The last step consists in propagating this information from the loopφ
node of c to the node where the computation has started: x. Back from c

to d, the TREC for d can partially be instantiated: d→ {{a, +, 14}1, +, 1}2.
Then back to e = d + 1, e→ {{a + 1, +, 14}1, +, 1}2; and finally back to x

= e + 3, x→ {a+ 14, +, 14}1. A final instantiation yields x→ {17, +, 14}1
As it can be seen in these examples, the scalar evolution information

gathered on demand is reused several times, and for this reason it is stored

94 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

in a cache for avoiding the computation in later queries. This is an impor-
tant practical design because the scalar evolution information is used by all
the loop nest optimizers, from the scalar variable optimizations to the data
dependence analyzers whose results are later used in auto-vectorization or
loop transforms.

A drawback of using a database is that a part of the information might
be invalidated by the loop optimizers: when one of the variables is removed
or renamed in the SSA graph, all the scalar evolutions that contain this name
have to be invalidated and analyzed again. In practice, it is faster to erase
all the results and to start the analysis again. This is not a final result, and
we probably will use incremental updates for saving results more difficult
to obtain, as for example the results of an interprocedural extension of the
analyzer.

4.7 Affine loopφ Optimizations in GCC

In this section, we survey several applications that use the information ex-
tracted under the form of affine evolution functions. We will analyze the im-
pact of the extracted information on the transformation framework of GCC.

4.7.1 Code Transformation Frameworks in GCC

Several transformation passes that use the scalar evolutions analysis have
been integrated in GCC: we quickly survey these frameworks and then we
will see the importance of the static analysis results in these passes.

Induction Variable Optimizations. Based on the scalar evolutions anal-
ysis, several scalar optimizations have been contributed by Zdeněk Dvořák
from SuSE: strength reduction, induction variable canonicalization and elim-
ination, loop invariant code motion [ASU86] enabled by default with the
option -O2.

Data Dependence Analysis. For the development of classical loop op-
timization techniques, I have implemented several classical data dependence
tests on top of the static analysis of scalar evolutions. The dependence tests
are organized from the cheapest ones, such as the gcd test, to more complete
tests, as the extended Banerjee test and the Omega test [Pug92] that solves
affine systems of constraints.

4.7. AFFINE LOOPφ OPTIMIZATIONS IN GCC 95

Vectorization. The data dependence analyzer is used in the vectorization
phase, targeting the SIMD extensions of modern microprocessors. In order
to use the vector units, the “simdization” pass [EWO04] recognizes loop
patterns that can be rewritten using SIMD instructions for Altivec, SSE or
MMX. This pass is enabled with the option -ftree-vectorize and has been
contributed by Dorit Nuzman [Nai04, NZ06, NH06, NRZ06] from IBM Haifa.

Selection of SIMD instructions require more efforts than tagging parallel
loops. It requires accurate loop-trip count information and well behaved
stride array access patterns. The scalar evolutions algorithm can provide
some of the required information, in addition to the detection of loop-carried
dependences. We have also begun the implementation of the fission-based
Kennedy and Allen algorithm [AK87, DRV00] to extract more vectorizable
loops from reduced dependence graphs.

Linear Loop Transformations. Daniel Berlin from IBM Research and I
have contributed the linear loop transformation framework [BEP04, LP94].
This framework enables a set of classical transformations applicable to perfect
loop nests. However for the moment the only loop transformation that con-
tains the static profitability analysis is the loop interchange transformation.
Even though the linear loop transformation framework provides a simple
interface for translating loop nests, the full power of the framework is not
used: more advanced static analysis algorithms have to be implemented for
enabling more transformations.

Value Range Propagation. A pass of value range propagation [Pat95]
enabled by default at -O2 has been contributed by Diego Novillo from Red
Hat. This value range propagation is based on a generic propagation engine
that was described in [Nov05]. This propagation engine is generic enough to
be used not only for the propagation of value ranges, but also for other kind
of abstractions. We have planned to use this propagation engine to improve
the precision of the data dependence analysis in interprocedural mode by
propagating accessed array regions represented by sets of affine constraints.

4.7.2 Empirical Study

To show the robustness and language-independence of the implementation of
the scalar evolution analyzer integrated in GCC, and to evaluate the accuracy
of the algorithm, the analyzer is asked to determine a compact representation
of all variables defined by loopφ nodes in the SPEC CPU2000 [Spe00] and
JavaGrande [Jav00] benchmarks. We have also included the total number of

96 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

loops per benchmark, together with the results for the static analysis of the
number of iterations for all the loops, as the information provided by the
scalar evolutions analyzer depends on the precision of the results obtained
from the analyzer of the number of iterations. Then, for determining the
effect of the scalar evolutions information on the loop nest optimizer, we
have completely disabled the scalar evolutions analyzer and measured the
performance loss with respect to the same unmodified version of GCC.

Computation of Scalar Evolutions. This first experiment is based on
gcc 4.2.0 20060908 (experimental), in which the code for classifying the re-
sults of the scalar evolutions analysis has been enabled. Figure 4.18 sum-
marizes the results of this experiment: affine univariate variables are very
frequent because well structured loops are most of the time using simple
constructs, affine multivariate are also quite frequent because they are used
for iterating over multi dimensional arrays. As one could expect, difficult
to understand, or even to read, constructs such as polynomials of degree
greater or equal to two occur very rarely: the analyzer detected only eight
occurrences in SPEC CPU2000, and none in JavaGrande. For the 254.gap

benchmark, that contains the code for an interpreter in group theory com-
putations, the scalar evolutions analyzer detects seven polynomials of degree
two. One of the explanations might be that the author of this benchmark
has used differentiation mechanisms for computing discrete successive values
for polynomials of degree two. The “Cast” column contains the number of
evolutions containing cast operations. These evolutions potentially represent
wrap around zero evolutions, as the static information is not enough pre-
cise to prove their non wrapping behavior. The “⊤” column gathers all the
evolutions that were discarded as too difficult to handle by the analyzer: con-
taining exponentials, evolutions depending on values instantiated only at run
time, etc. A column for other kinds of evolutions, such as unfolded additions
(e.g. “a + b”) and symbolic parameters, is not represented in Figure 4.18,
and explains why the sum per line does not match 100% of the number of
scalar evolutions presented in the “Scevs” column.

Loop Trip Count. The last four columns in Figure 4.18 show the preci-
sion of the detector of the number of iterations. For the moment, only the
single-exit loops are exactly analyzed, excluding a big number of loops that
contain irregular control flow (probably containing exception exits) such as
in the case of Java programs. The effectiveness of the loop transforms is
reduced because a large number of loops are not correctly analyzed. In some
cases an approximation of the loop count can enable aggressive loop trans-

4.7. AFFINE LOOPφ OPTIMIZATIONS IN GCC 97

CINT2000 AU AM G Cast ⊤ Scevs ⊤l Sym Stat ≤ Loops

164.gzip 14.03 0.09 0 2.34 81.50 3421 25.67 25.22 16.21 53.60 222
175.vpr 21.27 0.02 0 2.49 73.95 10523 37.90 20.76 4.44 66.33 496
176.gcc 6.41 0.06 0 0.83 91.40 76424 29.18 7.83 9.84 37.93 3385
181.mcf 9.70 0 0 0.59 88.52 845 26.38 19.44 1.39 33.33 72

186.crafty 5.92 0.18 0 1.07 90.24 12940 40.00 7.17 23.91 44.34 460
197.parser 11.95 0.16 0 1.14 84.29 6686 41.72 7.96 0.39 27.08 779

252.eon 19.05 0 0 0.49 75.51 1013 14.28 18.09 23.80 58.09 105
253.perlbmk 4.52 0 0 2.45 91.80 8912 32.20 13.22 2.03 24.06 295

254.gap 10.30 0.18 0.01 3.41 84.39 54980 33.97 17.08 1.97 40.57 2137
255.vortex 6.32 0 0 4.18 87.73 11566 20.36 4.56 1.22 31.91 329
256.bzip2 17.74 0.43 0 3.50 75.65 2575 32.63 23.15 16.31 60.00 190
300.twolf 9.98 0.35 0 1.48 86.85 27397 61.16 10.48 1.84 43.98 1030

CFP2000 AU AM G Cast ⊤ Scevs ⊤l Sym Stat ≤ Loops

168.wupwise 30.35 3.31 0 1.05 61.50 1904 1.22 82.92 1.22 84.14 82
171.swim 30.44 2.47 0 1.24 59.81 647 3.13 78.12 0 78.12 32

172.mgrid 33.33 22.26 0 0.25 41.52 1599 5.80 63.76 8.70 79.71 69
173.applu 26.88 7.18 0 0.29 53.95 6166 6.00 49.45 31.52 83.15 184
177.mesa 17.11 0.16 0 4.88 73.91 33640 13.54 56.20 5.01 71.67 1137

178.galgel 26.99 3.44 0 1.30 62.40 15567 6.72 72.26 5.35 81.84 804
179.art 31.66 0.30 0 1.75 64.84 1317 28.28 37.37 4.04 59.59 99

183.equake 24.91 0.72 0 0.91 72.53 2079 21.90 8.57 43.80 83.80 105
187.facerec 22.37 4.03 0 0.99 66.45 7155 7.01 71.96 3.27 86.91 214

188.ammp 6.69 0.43 0 0.54 90.05 11930 9.29 27.68 2.37 45.71 549
189.lucas 12.65 1.35 0 0.36 80.50 5776 11.00 45.87 33.94 90.82 109
191.fma3d 9.56 0.15 0 3.91 83.09 80356 17.75 28.71 40.87 73.62 2828

200.sixtrack 10.59 1.06 0 0.22 85.75 93258 23.38 48.06 9.09 59.33 1783
301.apsi 31.15 5.62 0.01 0.82 55.65 8739 3.88 71.05 2.33 74.93 387

JavaGrande AU AM G Cast ⊤ Scevs ⊤l Sym Stat ≤ Loops

section1 0.31 2.67 0 0 96.82 5772 39.05 23.07 0 39.64 169
section2 3.32 11.63 0 0 82.38 2226 2.83 1.89 0 48.11 106
section3 0.25 5.01 0 0 92.80 6848 4.07 0 0.58 33.72 172

Figure 4.18: Scalar induction variables and loop trip count in SPEC CPU2000

and JavaGrande benchmarks. Percentage of scalar evolutions “Scevs” classi-
fied into: “AU” affine univariate, “AM” affine multivariate, “G” polynomials
of degree greater or equal to two, “Cast” evolutions modified by a cast op-
eration, and “⊤” undetermined evolutions. The second half of the table
classifies in column “⊤l” the percentage of loops for which the number of
iterations cannot be determined, column “Sym” represents the percentage of
loops for which a symbolic number of iterations exists, “Stat” the percentage
of loops for which the number of iterations has been statically proven to be
a constant integer, “≤” the percentage of loops for which an integer upper
bound has been computed, and “Loops” the number of natural loops.

98 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

CINT2000 all +scev vect +scev interch +scev ivopts +scev ivcanon +scev prefetch +scev vrp +scev

164.gzip 1215 1228 1221 1223 1222 1219 1220 1234 1205 1239 1200 1222 1203 1222
175.vpr 1036 1036 1096 1090 1092 1091 1086 1093 1087 1085 1029 1039 1086 1091
181.mcf 603 604 603 605 608 601 606 604 606 604 604 605 606 604

186.crafty 2189 2163 2195 2188 2140 2147 2135 2128 2127 2138 2184 2189 2196 2192
197.parser 897 891 920 921 921 918 921 915 922 919 895 893 920 921
253.perlbmk 1491 1479 1544 1546 1537 1544 1538 1545 1541 1542 1493 1500 1544 1542

254.gap 1186 1187 1191 1162 1192 1186 1188 1178 1178 1172 1194 1190 1173 1179
256.bzip2 1135 mis 1149 mis 1150 1149 1151 1156 1158 1157 1140 1140 1152 1153
300.twolf 1171 1182 1236 1238 1249 1244 1245 1248 1240 1228 1149 1161 1244 1242

CFP2000 all +scev vect +scev interch +scev ivopts +scev ivcanon +scev prefetch +scev vrp +scev

168.wupwise 1241 1430 1276 1274 1275 1277 1275 1416 1272 1273 1237 1238 1275 1275
171.swim 1100 1329 1099 1099 1102 1325 1104 1103 1105 1103 1104 1104 1104 1103
172.mgrid 727 837 786 727 801 800 800 1031 800 801 727 726 799 799
173.applu 775 850 772 844 776 857 776 910 840 772 848 789 864 786
177.mesa 1633 1066 1649 1680 1637 1685 1638 1636 1690 1638 1280 1596 1662 1680

178.galgel 915 945 883 898 900 898 892 942 899 893 912 911 904 896
179.art 1070 1081 1079 1083 1095 1066 1041 1063 1074 1074 1042 1077 1085 1096

183.equake 1111 1118 1097 1099 1112 1100 1100 1116 1095 1101 1116 1113 1107 1102
187.facerec 933 978 952 954 954 955 953 983 952 950 925 929 956 956

188.ammp 1317 1329 1343 1331 1353 1344 1343 1318 1343 1339 1316 1311 1348 1345
189.lucas 1119 1152 1114 1122 1118 1121 1114 1149 1118 1116 1117 1119 1117 1119
191.fma3d 982 983 955 956 960 948 955 961 986 992 961 960 947 936

200.sixtrack 618 634 654 654 655 653 654 646 656 652 618 615 655 653
301.apsi 1122 1205 1183 1194 1190 1191 1189 1261 1192 1190 1126 1124 1197 1199

Figure 4.19: Impact of the scalar evolution analyzer of GCC version 4.1 from
2006-12-18 on code transformations for the SPEC CPU2000 benchmarks on
AMD64. First two columns “all +scev” represent the overall effect of the com-
piler, with the following flags “-O3 -msse2 -ftree-vectorize -ftree-loop-linear
-fivopts -ftree-loop-ivcanon -fprefetch-loop-arrays -ftree-vrp”, first with the
scalar evolution analyzer disabled then with the analyzer enabled. The val-
ues correspond to the SPEC CPU2000 normalized numbers: reference run
time divided by the measured run time multiplied by 100, high values cor-
responding to better performance results. Using the same presentation pat-
tern, next columns give more details on the effect of the scalar evolution
analyzer on a single code transformation: “vect” represent the vectorization
pass, “interch” the loop interchange, “ivopts” the induction variable opti-
mizations, “ivcanon” the induction variable canonicalization, “prefetch” the
array prefetching pass, and “vrp” the value range propagation pass.

4.7. AFFINE LOOPφ OPTIMIZATIONS IN GCC 99

formations as is the case of the 171.swim test in SPEC CPU2000: the size
of data accessed in the loop is used to provide an upper bound estimation
of the number of iterations, allowing the dependence analyzer to correctly
refine the dependence relations, and the loop interchange to be performed.
Further refinements of this analyzer will either provide more hints for ap-
proximating the number of iterations, or use an integer programming solver,
such as Pugh’s Omega solver [Pug92], or a polyhedral library like the Polylib
[LW97, Cla96a], for precisely computing or approximating the number of
iterations in multiple-exit loops.

Impact of Scalar Evolutions Analysis on GCC. For evaluating the im-
portance of the induction variable analysis on existing optimizations in GCC,
I used two compilers based on gcc version 4.1.0 20051104 (experimental)
with the following options “-O3 -msse2 -ftree-vectorize -ftree-loop-linear”:
the peak compiler is the compiler without modifications; in the base com-
piler I disabled the analysis of induction variables, by making the analyzer
systematically return “don’t know” for every query.

-5

 0

 5

 10

 15

 20

 25

164.gzip

175.vpr

181.m
cf

186.crafty

197.parser

254.gap

300.twolf

168.wupwise

171.swim

172.m
grid

173.applu

177.m
esa

178.galgel

179.art

183.equake

187.facerec

188.am
m

p

189.lucas

191.fm
a3d

200.sixtrack

301.apsi

Percent Improvement for SPEC CPU2000 on AMD64

improvement

Figure 4.20: Percent speed up of run time for SPEC CPU2000 on AMD64.

100 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

-10

 0

 10

 20

 30

 40

 50

 60

 70

Series

LUFact

HeapSort

Crypt

FFT
SOR

SparseM
atm

ult

Euler-Init

Euler-Run

Euler-Total

M
olDyn-Run

M
olDyn-Total

RayTracer-Run

RayTracer-Total

M
onteCarlo-Run

M
onteCarlo-Total

AlphaBetaSearch-Run

Percent Improvement for JavaGrande v2.0 Sections 2 and 3 on AMD64

SizeA
SizeB
SizeC

Figure 4.21: Percent speed up of run time for JavaGrande on AMD64.

Figures 4.20 and 4.21 present the percent improvement for execution
time for the SPEC CPU2000 and for the JavaGrande benchmarks on an AMD

Athlon(tm) 64 Processor 3700+ with 128 Kb of L1 cache, 1024 Kb of L2,
and 1 GB of RAM, on SuSE with a Linux kernel 2.6.13. Figure 4.19 illus-
trates the impact of the scalar evolution analyzer separately on each code
transformation that potentially uses this information.

The 171.swim benchmark is written in FORTRAN. The SPEC CPU2000

developers have included a verification loop that is iterating over the data of
a table following the lines. Iterating following the lines of a multi dimensional
array in FORTRAN is not as efficient as iterating over the columns elements:
accessing to two adjacent line elements can potentially produce a cache miss,
a long delay needed to fetch the data from the main memory into the caches,
as the successive accessed elements are separated by the number of elements
contained in a column that might be larger than the size of the cache line
containing the first accessed element. This cache miss phenomenon is not
occurring when the accessed elements are adjacently stored in memory. This
kind of anomaly is not language specific, as it can as well occur in other
languages. The problem is detected in a language-independent way in the

4.7. AFFINE LOOPφ OPTIMIZATIONS IN GCC 101

loop nest optimizer by computing the data access strides for each array. The
problem is solved by modifying the iteration order over the table, reducing
the number of cache misses, that improves the overall execution time of the
loop. In the case of the 171.swim benchmark we can see an improvement of
21% by enabling the loop interchange transformation.

-10

-5

 0

 5

 10

 15

 20

bitcount

qsort
susan

jpeg
dijkstra

stringsearch

sha
CRC32

gsm
adpcm

FFT

Percent Improvement for MiBench on ARM XScale 133

small-data
large-data

Figure 4.22: Percent speed up of run time for MiBench on ARM.

Figure 4.22 presents the percent improvement of execution time for a part
of the MiBench on an ARM XScale-IXP42x processor at 133 MHz with 32 Mb
of RAM on Debian with Linux kernel 2.6.12. It is possible to remark that
knowing more information about the compiled program can produce slower
executing programs, as some of the transformations are applied systemat-
ically without statically analyzing the effect of the transformation on the
target machine. However, it is possible to remark that overall, the informa-
tion provided by the scalar evolutions analysis is crucial for the validation of
aggressive code transformations.

Compilation Time. Looking at compilation time issues, a possible tech-
nique for stressing and measuring the compilation time of the scalar evolu-

102 CHAPTER 4. TRANSLATION TO ASSA IN PRACTICE

tions analyzer is to look at an optimizer that uses this analyzer: the vectorizer
is based on a pattern matching of the instructions contained in loops, and
on the data dependence information. The vectorizer uses both the scalar
evolutions analyzer and the data dependence analyzer. The results of the
data dependence tests are obtained on demand for a loop nest, and thus,
the analysis can be restricted to the loop to be optimized. Furthermore, the
dependence tests are ordered such that the fastest tests are executed first,
then more expensive analyses are triggered if the previous ones fail. In order
to show the effectiveness of the analysis framework, we have measured the
compilation time of the vectorization pass. For the SPEC CPU2000 bench-
marks, the vectorization pass does not exceed 1 second per compiled file,
nor 5 percent of the compilation time per file, showing that the dependence
analyzer is fast in practice.

These experiments show that the scalar evolutions analysis framework
and the data dependence analysis that I integrated to GCC are robust for
a large set of benchmarks written in several programming languages (C,
C++, Java, Fortran) and have a low overhead compilation time. However
several experiments have shown some degradations of the execution time
after transformations enabled by the scalar evolutions analysis results. These
cases have to be carefully analyzed and improved by integrating more static
analysis results on the profitability of code transformations.

4.8 Conclusion

In the first part of this chapter we have seen an informal description of the
scalar evolutions analyzer that we have formally described in the previous
chapter. In the current chapter we focused on the description of this analyzer
from an engineering point of view: this presentation is suited to be integrated
in industrial compilers. The analyzer extracts from the SSA language several
more abstract intermediate representations: the TREC are instantiated to
MCR, from which affine scalar evolutions are selected. We have also ana-
lyzed the complexity of this analyzer, a linear time in terms of the number
of SSA declarations in the program, and on the time needed to compute the
number of iterations in the analyzed loops. This imperative version of the
scalar evolution analyzer has been integrated in the main versions of GCC

starting with version 4.0. We have seen the results of several experimenta-
tions that measured the precision of the extracted information, the compile
time overhead due to the static analysis, the impact of the scalar evolutions
analysis on the GCC’s transformation frameworks, and the robustness and
efficiency of the implementation.

Chapter 5

Conclusions and Future Work

This thesis contributed to the formal definition of the Static Single Assign-
ment (SSA) form and to the understanding of static program analysis based
on the SSA language. An important part of these advances comes from
practice, where these ideas have been in use for some time now: this the-
sis collected and formalized several of these ideas that appeared in the GCC

community. Thus, the contributions of this thesis contain extensions to both
formal and practical frameworks, as detailed below.

5.1 Contributions to Formal Frameworks

This thesis presents the first denotational semantics of the SSA language.
Previous attempts to formalize this ubiquitous compiler representation were
not entirely satisfactory for defining and providing correctness proofs for the
translation of imperative languages to the SSA form. This thesis provides the
definitions of the SSA language, under the form of a syntax and a denotational
semantics, and the conversion algorithm from the imperative language IMP to
SSA, together with the consistency theorem and its proof. The formalization
of this translation process provided some deep insights in the nature of the
SSA language: the SSA was misnamed, as it is a language of declarations,
while assignments are language constructs that occur uniquely in imperative
languages. Indeed, the notion of assignment is only relevant in programming
languages that contain the notion of store, that also implies the existence
of operations of rewriting the same store location. In the case of the SSA

language, the notion of store does not exist, as it is replaced by the notion
of declaration, and stream of values.

The values taken by a recursively declared variable can equivalently be
viewed as an infinite stream of values, or as an evolving scalar value, justifying

103

104 CHAPTER 5. CONCLUSIONS AND FUTURE WORK

the name that we have commonly used in practice: the scalar evolution of
a variable. The expressiveness power of a language of infinite streams is
equivalent to primitive recursive functions. The addition of a minimization
operation, corresponding to the semantics of the closeφ element in the SSA

language, boosts the expressiveness power of the SSA language to the full
rank of partial recursive functions equivalent to Random Access Machines
(RAM). The compilation function from the imperative language IMP to the
SSA language provides thus another way of converting any RAM program
to a set of Kleene’s partial recursive functions, thus providing a new proof
of Turing’s Equivalence Theorem between these two computational models,
previously typically proven using simulation.

As an exercise of style, we have seen a possible way to work with the
denotational semantics of the SSA in the classical abstract interpretation
framework. For illustrating the SSA abstract interpretation framework, we
have seen a possible definition of the SSA language in terms of PROLOG pred-
icates, and then we have seen the definition of several abstraction functions
that extract abstract views of the program as abstract domains.

We have also seen an imperative description of the static analysis algo-
rithms described earlier in PROLOG. This imperative version of the analysis
is the closest to the implementation of this analyzer that I have implemented
and integrated to GCC. From a theoretical point of view, the originality of the
work on induction variable analysis that I present in this thesis is based on a
classical perspective on induction variable analysis: starting from a formal se-
mantics of the source representation, the SSA language, filtering out difficult
elements, or selecting only a part of the SSA constructs, produces a subset
of the SSA called TREC, from which other abstracting processes translate
the TREC into a less expressive representations, such as the affine functions.
These abstracting processes are performed on the demand of a user pass of
this information, like the data dependence analysis or the vectorizer.

5.2 Contributions to Practical Frameworks

From a practical point of view, this thesis has provided several code contri-
butions to an industrial compiler. Among these contributions, several of the
formal ideas developed in the first parts of this thesis have been implemented
and integrated in the main versions of the GNU Compiler Collection (GCC)
starting with version 4.0.

This thesis has presented an evaluation of the practical contributions: we
have seen several code transformation frameworks that have been developed
around the information extracted by the scalar evolution analyses. We then

5.3. FUTURE WORK 105

have presented some experiments that show the effectiveness and the impact
of the scalar evolutions analysis on the code transformation passes that are
using the informations provided by this analyzer. We have seen that the
compilation time overhead of the scalar evolutions analysis in the context of
a real optimization pass, the vectorizer, is minimal, and is acceptable in an
industrial compiler framework. We remarked that the impact of the scalar
evolutions analysis on the generated code was not always positive: in several
cases the effect of code transformations enabled by a more precise knowledge
resulted in a degradation of the execution time. We finally pointed out
several directions for improving the quality of the generated code on which
we have already started to work: the guideline ideas that we proposed are
the implementation of more precise static profitability analyses.

5.3 Future Work

We have left several points for future work, both in the theoretical and in
the practical frameworks.

In the theoretical part, we still have not addressed the translation of
the SSA language back to the IMP language. This point was not critical
for our presentation of the scalar evolution analysis under the framework of
abstract interpretation and thus it received less attention, but is nevertheless
an important problem for the theoretical description of compilers. We have
tried to define this conversion function, but the main difficulty that we have
not yet solved is to recover the loop structures from the SSA representation.
Indeed the SSA language stores this structure uniquely in the declarations of
scalar variables, from which one has to deduce the original or an equivalent
loop nesting.

In the practical part, the results of the scalar evolution analysis pave
the way to more advanced static analyses, and to more code transformation
frameworks. We have several future plans and directions that will improve
the quality of GCC’s frameworks, and will be further areas of investigation
in future research: the GRAPHITE project [PCB+06] aims at extending the
existing loop nest optimizer to more operations on polyhedral representation.
The automatic parallelization project will provide a code generation frame-
work targeting the OpenMP runtime library, and a project on static machine
models aims at describing more precisely the underlying architectures for
improving the static profitability analyses. Finally, we think that more prof-
itability analyses will need to be implemented and then tuned. They will
have to be built simultaneously with a performance regression testsuite that
will ensure the performance enhancement on several different architectures.

Bibliography

[ACF06] P. Amiranoff, A. Cohen, and P. Feautrier. Beyond iteration vec-
tors: Instancewise relational abstract domains. In Static Analysis
Symposium (SAS’06), Seoul, Corea, August 2006.

[ADvF01] W. Amme, N. Dalton, J. von Ronne, and M. Franz. SafeTSA:
a type safe and referentially secure mobile-code representation
based on static single assignment form. In ACM Symp. on
Programming Language Design and Implementation (PLDI’01).
ACM Press, 2001.

[AK87] J. Allen and K. Kennedy. Automatic translation of Fortran pro-
grams to vector form. ACM Trans. on Programming Languages
and Systems, 9(4):491–542, October 1987.

[AK99] Hassan Äıt-Kaci. Warren’s Abstract Machine a Tutorial Re-
construction. http://www.isg.sfu.ca/∼hak/documents/wam.

html, 1999.

[AK02] R. Allen and K. Kennedy. Optimizing Compilers for Modern
Architectures. Morgan and Kaufman, 2002.

[Ami04] P. Amiranoff. Analyse de programmes par instances par le biais
des transducteurs. PhD thesis, 2004.

[ASU86] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Tech-
niques and Tools. Addison-Wesley, 1986.

[AWZ88] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality
of values in programs. In POPL ’88: Proceedings of the 15th ACM
SIGPLAN-SIGACT symposium on Principles of Programming
Languages, pages 1–11, New York, NY, USA, 1988. ACM Press.

[Bac78] John Backus. Can programming be liberated from the von Neu-
mann style? a functional style and its algebra of programs. Com-
mun. ACM, 21(8):613–641, 1978.

106

BIBLIOGRAPHY 107

[BCHS98] Preston Briggs, Keith D. Cooper, Timothy J. Harvey, and L. Tay-
lor Simpson. Practical improvements to the construction and de-
struction of static single assignment form. Software Practice and
Experience, 28(8):859–881, 1998.

[BEP04] Daniel Berlin, David Edelsohn, and Sebastian Pop. High-level
loop optimizations for GCC. In Proceedings of the 2004 GCC
Developers Summit, pages 37–54, 2004. http://www.gccsummit.
org/2004.

[BM94] Marc M. Brandis and Hanspeter Mossenbock. Single-pass gener-
ation of static single-assignment form for structured languages.
ACM Trans. Program. Lang. Syst., 16(6):1684–1698, 1994.

[BP99] Gianfranco Bilardi and Keshav Pingali. The static single assign-
ment form and its computation. Technical report, Department
of Computer Science, Cornell University, Jul 1999.

[BP03] Gianfranco Bilardi and Keshav Pingali. Algorithms for comput-
ing the static single assignment form. J. ACM, 50(3):375–425,
2003.

[BWZ94] Olaf Bachmann, Paul S. Wang, and Eugene V. Zima. Chains
of recurrences a method to expedite the evaluation of closed-
form functions. In Proceedings of the international symposium on
Symbolic and algebraic computation, pages 242–249. ACM Press,
1994.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction of
approximation of fixpoints. In 4thACM Symp. on Principles of
Programming Languages, pages 238–252, Los Angeles, California,
January 1977.

[CC79] P. Cousot and R. Cousot. Systematic design of program anal-
ysis frameworks. In Conference Record of the Sixth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 269–282, San Antonio, Texas, 1979. ACM
Press, New York, NY.

[CFR+89] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. An efficient method of computing static single as-
signment form. In POPL ’89: Proceedings of the 16th ACM

108 BIBLIOGRAPHY

SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 25–35, New York, NY, USA, 1989. ACM Press.

[CFR+91] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck. Efficiently computing static single assignment form and
the control dependence graph. ACM Trans. on Programming
Languages and Systems, 13(4):451–490, October 1991.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In 5thACM Symp.
on Principles of Programming Languages, pages 84–96, January
1978.

[Cla96a] P. Clauss. Counting solutions to linear and nonlinear constraints
through Ehrhart polynomials: Applications to analyze and trans-
form scientific programs. In ACM Int. Conf. on Supercomputing,
pages 278–295. ACM Press, 1996.

[Cla96b] Ph. Clauss. Counting solutions to linear and nonlinear con-
straints through ehrhart polynomials: Applications to analyze
and transform scientific programs. In ICS ’96: Proceedings of the
10th international conference on Supercomputing. ACM Press,
1996.

[CT04] Ph. Clauss and Irina Tchoupaeva. A symbolic approach to bern-
stein expansion for program analysis and optimization. In 13th
International Conference on Compiler Construction, CC 2004,
number 2985 in LNCS. Springer-Verlag, 2004.

[DRV00] A. Darte, Y. Robert, and F. Vivien. Scheduling and Automatic
Parallelization. Birkhaser, Boston, 2000.

[Dvo] Zdenek Dvorak. [lno] Enable unrolling/peeling/unswitching
of arbitrary loops. http://gcc.gnu.org/ml/gcc-patches/

2004-03/msg00212.html.

[EWO04] Alexandre E. Eichenberger, Peng Wu, and Kevin O’Brien. Vec-
torization for simd architectures with alignment constraints. In
PLDI ’04: Proceedings of the ACM SIGPLAN 2004 conference
on Programming language design and implementation, pages 82–
93. ACM Press, 2004.

BIBLIOGRAPHY 109

[Fer04] Jérôme Feret. Static analysis of digital filters. In European
Symposium on Programming (ESOP’04), number 2986 in LNCS.
Springer-Verlag, 2004. Springer-Verlag.

[Fer05] Jérôme Feret. The arithmetic-geometric progression abstract do-
main. In Verification, Model Checking and Abstract Interpreta-
tion (VMCAI’05), number 3385 in LNCS, pages 42–58. Springer-
Verlag, 2005. Springer-Verlag.

[GCC] GCC implementation of ”out of SSA”. http://gcc.gnu.org/

viewcvs/trunk/gcc/tree-outof-ssa.c.

[GCC05] The GNU Compiler Collection, 2005. http://gcc.gnu.org.

[Gle04] Sabine Glesner. An ASM semantics for SSA intermediate repre-
sentations. In Proceedings of the 11th International Workshop on
Abstract State Machines, volume 3052. Springer Verlag, Lecture
Notes in Computer Science, Mai 2004.

[GNU] GNU Prolog. http://pauillac.inria.fr/∼diaz/

gnu-prolog/.

[Gor79] Michael J. C. Gordon. The denotational description of program-
ming languages. Springer Verlag, 1979.

[Gra91] Philippe Granger. Static analysis of linear congruence equalities
among variables of a program. In TAPSOFT ’91: Proceedings
of the international joint conference on theory and practice of
software development on Colloquium on trees in algebra and pro-
gramming (CAAP ’91): vol 1, volume 493, pages 169–192, New
York, NY, USA, 1991. Springer-Verlag New York, Inc.

[GSW95] M. P. Gerlek, E. Stoltz, and M. J. Wolfe. Beyond induction
variables: detecting and classifying sequences using a demand-
driven ssa form. ACM Trans. on Programming Languages and
Systems, 17(1):85–122, January 1995.

[Gur95] Yuri Gurevich. Evolving algebras 1993: Lipari guide. In Specifi-
cation and Validation Methods, pages 231–243. Oxford University
Press, 1995.

[Hav93] Paul Havlak. Construction of thinned gated single-assignment
form. In Proceedings of the 6th International Workshop on Lan-
guages and Compilers for Parallel Computing, volume 768 of Lec-
ture Notes in Computer Science, pages 477–499. Springer, 1993.

110 BIBLIOGRAPHY

[HDE+93] L. Hendren, C. Donawa, M. Emami, G. R. Gao, Justiani, and
B. Sridharan. Designing the McCAT compiler based on a fam-
ily of structured intermediate representations. In Proceedings
of the 5th International Workshop on Languages and Compilers
for Parallel Computing, number 757 in LNCS, pages 406–420.
Springer-Verlag, 1993.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[HP96] M. Haghighat and C. Polychronopoulos. Symbolic analysis for
parallelizing compilers. ACM Trans. on Programming Languages
and Systems, 18(4):477–518, July 1996.

[ICC] Intel compilers. http://intel.com/.

[ISO95] Information technology - programming languages - prolog -
part 1: General core. ISO/IEC 13211-1. http://www.logic-
programming.org/prolog std.html, 1995.

[Jav00] Java grande forum, 2000. http://www.javagrande.org.

[Jon97] Neil D. Jones. Computability and complexity: from a program-
ming perspective. MIT Press, Cambridge, MA, USA, 1997.

[Kel95] Richard A. Kelsey. A correspondence between continuation pass-
ing style and static single assignment form. ACM SIGPLAN
Notices, 30(3):13–22, 1995.

[KMZ98] V. Kislenkov, V. Mitrofanov, and E. Zima. Multidimensional
chains of recurrences. In Proceedings of the 1998 international
symposium on symbolic and algebraic computation, pages 199–
206. ACM Press, 1998.

[LA04] C. Lattner and V. Adve. LLVM: A compilation framework for
lifelong program analysis & transformation. In ACM Symp. on
Code Generation and Optimization (CGO’04), Palo Alto, Cali-
fornia, March 2004.

[Lat] Chris Lattner. Scalar evolutions. Personal communication.

[LP94] W. Li and K. Pingali. A singular loop transformation framework
based on non-singular matrices. Intl. J. of Parallel Programming,
22(2):183–205, April 1994.

BIBLIOGRAPHY 111

[LPS05] Daniel Luna, Mikael Pettersson, and Konstantinos Sagonas. Ef-
ficiently compiling a functional language on AMD64: the HiPE
experience. In PPDP ’05: Proceedings of the 7th ACM SIGPLAN
international conference on Principles and practice of declarative
programming, pages 176–186, New York, NY, USA, 2005. ACM
Press.

[LW97] V. Loechner and D. Wilde. Parameterized polyhedra and their
vertices. Int. J. of Parallel Programming, 25(6), December 1997.
http://icps.u-strasbg.fr/PolyLib.

[Mas92] François Masdupuy. Array abstractions using semantic analysis
of trapezoid congruences. In ICS ’92: Proceedings of the 6th
international conference on Supercomputing, pages 226–235, New
York, NY, USA, 1992. ACM Press.

[Mas93] F. Masdupuy. Semantic analysis of interval congruences. In
D. Brner, M. Broy, and I. V. Pottosin, editors, Intl. Conf. on
Formal Methods in Programming and their Applications, volume
735 of LNCS, pages 142–155, Academgorodok, Novosibirsk, Rus-
sia, June 1993. Springer-Verlag.

[Mei04] Benôıt Meister. Stating and Manipulating Periodicity in the Poly-
tope Model. Applications to Program Analysis and Optimization.
PhD thesis, Université Louis Pasteur, 2004.

[Mer03] Jason Merill. GENERIC and GIMPLE: a new tree representation
for entire functions. In Proceedings of the 2003 GCC Develop-
ers Summit, pages 171–180, 2003. http://www.gccsummit.org/
2003.

[Min01] Antoine Miné. The octagon abstract domain. In AST 2001 in
WCRE 2001, IEEE, pages 310–319. IEEE CS Press, October
2001.

[Moo66] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs
N. J., 1966.

[Muc97] S. S. Muchnick. Advanced Compiler Design & Implementation.
Morgan Kaufmann, 1997.

[Nai04] Dorit Naishlos. Autovectorization in GCC. In Proceedings of
the 2004 GCC Developers Summit, pages 105–118, 2004. http:

//www.gccsummit.org/2004.

112 BIBLIOGRAPHY

[NH06] Dorit Nuzman and Richard Henderson. Multi-platform auto-
vectorization. In Proceedings 4th Annual International Sympo-
sium on Code Generation and Optimization. ACM Press, 2006.

[NNH99] F. Nielson, H. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag, 1999.

[Nov] Diego Novillo. SIMPLE: A language-independent tree IR. http:
//gcc.gnu.org/ml/gcc/2002-01/msg00082.html.

[Nov03] Diego Novillo. Tree SSA - a new optimization infrastructure for
GCC. In Proceedings of the 2003 GCC Developers Summit, pages
181–193, 2003. http://www.gccsummit.org/2003.

[Nov05] Diego Novillo. A propagation engine for GCC. In Proceedings of
the 2005 GCC Developers Summit, pages 175–185, 2005. http:

//www.gccsummit.org/2005.

[NRZ06] Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-vectorization of
interleaved data for SIMD. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementa-
tion (PLDI). ACM Press, 2006.

[NZ06] Dorit Nuzman and Ayal Zaks. Autovectorization in GCC – two
years later. In Proceedings of the 2006 GCC Developers Summit,
pages 145–158, 2006. http://www.gccsummit.org/2006.

[Pap98] Nikolaos S. Papaspyrou. A Formal Semantics for the C Pro-
gramming Language. PhD thesis, National Technical University
of Athens, Feb 1998.

[Pat95] Jason R. C. Patterson. Accurate static branch prediction by value
range propagation. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 67–78. ACM Press,
1995.

[PCB+06] Sebastian Pop, Albert Cohen, Cédric Bastoul, Sylvain Girbal,
Georges-André Silber, and Nicolas Vasilache. Graphite: Poly-
hedral analyses and optimizations for GCC. In Proc. of the 4th

GCC Developper’s Summit, Ottawa, Canada, June 2006.

[PCC+04] Sebastian Pop, Philippe Clauss, Albert Cohen, Vincent Loech-
ner, and Georges-André Silber. Fast recognition of scalar evolu-
tions on three-address SSA code. Technical Report A/354/CRI,

BIBLIOGRAPHY 113

Centre de Recherche en Informatique (CRI), École des mines
de Paris, 2004. http://www.cri.ensmp.fr/classement/doc/

A-354.ps.

[PCJS06a] Sebastian Pop, Albert Cohen, Pierre Jouvelot, and Georges-
André Silber. Denotational semantics for SSA conversion. Tech-
nical Report A/379/CRI, Centre de Recherche en Informatique
(CRI), École des mines de Paris, 2006. http://www.cri.ensmp.
fr/classement/doc/A-379.pdf.

[PCJS06b] Sebastian Pop, Albert Cohen, Pierre Jouvelot, and Georges-
André Silber. The new framework for loop nest optimization in
GCC: from prototyping to evaluation. In Proc. of the 12th Work-
shop on Compilers for Parallel Computers (CPC’06), A Coruña,
Spain, January 2006.

[PCS05] Sebastian Pop, Albert Cohen, and Georges-André Silber.
Induction variable analysis with delayed abstractions. In
(HiPEAC’05), number 3793 in LNCS, pages 218–232, Barcelona,
Spain, November 2005. Springer-Verlag.

[Pug92] W. Pugh. A practical algorithm for exact array dependence anal-
ysis. Communications of the ACM, 35(8):27–47, August 1992.

[PW76] M. S. Paterson and M. N. Wegman. Linear unification. In STOC
’76: Proceedings of the eighth annual ACM symposium on Theory
of computing, pages 181–186, New York, NY, USA, 1976. ACM
Press.

[PW78] M. S. Paterson and M. Wegman. Linear unification. Journal of
Computer and System Sciences, 16:158–167, 1978.

[Rog87] Hartley Rogers. Theory of Recursive Functions and Effective
Computability. MIT Press, Cambridge, MA, USA, 1987.

[RWZ88] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value
numbers and redundant computations. In POPL ’88: Proceedings
of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of Programming Languages, pages 12–27, New York, NY, USA,
1988. ACM Press.

[RZR04] Silvius Rus, Dongmin Zhang, and Lawrence Rauchwerger. The
value evolution graph and its use in memory reference analysis.

114 BIBLIOGRAPHY

In Proceedings of the 2004 Conference on Parallel Architectures
and Compilation Techniques. IEEE Computer Society, 2004.

[Sco82] Dana S. Scott. Domains for denotational semantics. In Proceed-
ings of the 9th Colloquium on Automata, Languages and Pro-
gramming, pages 577–613, London, UK, 1982. Springer-Verlag.

[SJGS99] Vugranam C. Sreedhar, Roy Dz-Ching Ju, David M. Gillies, and
Vatsa Santhanam. Translating out of static single assignment
form. In SAS ’99: Proceedings of the 6th International Sym-
posium on Static Analysis, pages 194–210, London, UK, 1999.
Springer-Verlag.

[SM76] Christopher Strachey and Robert Milne. A theory of program-
ming language semantics. Chapman and Hall, 1976.

[Spe00] Standard performance evaluation corporation, 2000. http://

www.spec.org.

[SS70] R. M. Shapiro and H. Saint. The representation of algorithms.
Technical Report CA-7002-1432, Massachusetts Computer Asso-
ciates, Feb 1970.

[Sto77] Joseph E. Stoy. Denotational Semantics: the Scott-Strachey Ap-
proach to Programming Languages Theory. MIT Press, 1977.

[Tar74] R. E. Tarjan. Finding dominators in directed graphs. SIAM J.
Computing, 3(1):62–89, 1974.

[TP95a] P. Tu and D. Padua. Gated SSA-Based demand-driven symbolic
analysis for parallelizing compilers. In ACM Int. Conf. on Su-
percomputing, pages 414–423, Barcelona, Spain, July 1995.

[TP95b] Peng Tu and David Padua. Efficient building and placing of gat-
ing functions. In Proceedings of the ACM SIGPLAN 1995 Con-
ference on Programming Language Design and Implementation,
pages 47–55, 1995.

[vE01] R. A. van Engelen. Efficient symbolic analysis for optimizing
compilers. In Proceedings of the International Conference on
Compiler Construction (ETAPS CC’01), pages 118–132, 2001.

[vEBS+04] Robert van Engelen, Johnnie Birch, Yixin Shou, Burt Walsh,
and Kyle Gallivan. A unified framework for nonlinear depen-
dence testing and symbolic analysis. In Proceedings of the ACM

BIBLIOGRAPHY 115

International Conference on Supercomputing (ICS), pages 106–
115, 2004.

[Ven02] Arnaud Venet. Nonuniform alias analysis of recursive data struc-
tures and arrays. In Proceedings of the 9th International Sym-
posium on Static Analysis SAS’02, number 2477 in LNCS, pages
36–51. Springer-Verlag, 2002. Springer-Verlag.

[WCP01] P. Wu, A. Cohen, and D. Padua. Induction variable analysis
without idiom recognition: Beyond monotonicity. In Workshop
on Languages and Compilers for Parallel Computing (LCPC’01),
volume 2624 of LNCS, Cumberland Falls, Kentucky, August
2001. Springer-Verlag.

[Wol92] M. J. Wolfe. Beyond induction variables. In ACM Symp. on
Programming Language Design and Implementation (PLDI’92),
pages 162–174, San Francisco, California, June 1992.

[Wol96] M. J. Wolfe. High Performance Compilers for Parallel Comput-
ing. Addison-Wesley, 1996.

[WZ91] M. N. Wegman and F. K. Zadeck. Constant propagation with
conditional branches. ACM Trans. on Programming Languages
and Systems, 13(2):181–210, 1991.

[Zada] F. Kenneth Zadeck. Loop closed SSA form. Personal communi-
cation.

[Zadb] F. Kenneth Zadeck. Static single assignment form, 2004
GCC Summit keynote. http://naturalbridge.com/

GCC2004Summit.pdf.

[Zim01] Eugene V. Zima. On computational properties of chains of recur-
rences. In Proceedings of the 2001 international symposium on
symbolic and algebraic computation, pages 345–352. ACM Press,
2001.

116 BIBLIOGRAPHY

Résumé

Le langage d’assignation statique unique, SSA, est l’une des représenta-
tions intermédiaires les plus communément utilisées dans les compilateurs
industriels. Cependant l’intérêt de la communauté d’analyse statique de pro-
grammes est minime, un fait dû aux faibles fondations formelles du langage
SSA.

Cette thèse présente une sémantique dénotationelle du langage SSA, per-
mettant des définitions formelles des analyses statiques du langage SSA en se
basant sur les méthodes classiques de l’interprétation abstraite. D’un point
de vue pratique, cette thèse présente l’implémentation des analyseurs sta-
tiques définis formellement dans un compilateur industriel, la Collection de
Compilateurs GNU, GCC.
Mots-clés : analyse statique de programmes, langage d’assignation
statique unique, SSA, sémantique dénotationelle, GCC, interpréta-
tion abstraite

Abstract

The Static Single Assignment (SSA) language is one of the intermediate
representations commonly used in industrial compilers. However, there was
little interest from the static program analysis community in this intermedi-
ate representation due to the weak formal grounds of the SSA.

This thesis presents a denotational semantics of the SSA language, allow-
ing formal definitions of static analyses on the SSA language based on the
classical abstract interpretation framework. From a practical point of view,
we present the implementation of the formally described static analyses on
the SSA in an industrial compiler: the GNU Compiler Collection (GCC).
Keywords: program static analysis, static single assignment lan-
guage, SSA, denotational semantics, GCC, abstract interpretation

