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Apercu des résultats

La dualité entre les théories de jauge et la théorie des cordes est un sujet de grande importance pour
la physique théorique d’aujourd’hui. Les connaissances actuelles suggerent que toutes les théories
des supercordes a dix dimensions peuvent étre obtenues comme les limites différentes d’une seule
théorie 11-dimensionnelle, dite la théorie M.

Bien qu’il existe plusieurs arguments en faveur de cette approche, la vraie théorie M n’est
pas encore bétie. On essaye donc de trouver des preuves indirectes confirmant (ou réfutant) cette
théorie en comparant ces prédictions avec d’autres résultats.

Parmi toutes les prédictions de la théorie M, on peut distinguer celles concernant 1’action
effective Wilsonienne |80, 27] pour la branche de Coulomb de I’extension supersymmétrique N = 2
de la theorie de Yang-Mills (N = 2 super Yang-Mills dans ce qui suit) [00]. Le terme principal,
qui contient jusqu’a deux dérivées et quatre fermions a été calculé par Seiberg et Witten [[(7, [7§]
pour le cas de SU(2). Ce terme peut étre obtenu en utilisant une fonction holomorphe F(a), qui
s’appelle le prepotentiel [39, 211, [76, [8T]. Par l'aide du formalisme des A/ = 2 superchamps ¥ le

Lagrangien pour la théorie effective peut étre écrite comme un N' = 2 F-term:

_io i 4,44
Sef = = \rm{zm,/d xd 9.7-'(\1/)}.

Le prepotentiel classique, qui donne ’action microscopique est

fclass(af) - 7Ti7-0 <CL, Cl>,

4mi O
ou Ty = 912 + 2—72, go étant la constante de couplage de Yang-Mills et O ’angle instantonique.
0

Il se trouve que pour déterminer le prépotential on a besoin d’'une courbe algébrique
C = {(y,z) € C?>: F(y,z) = 0}, d'une forme différentielle méromorphe \ sur cette courbe et
de ensemble de cycles de base A;, B;, [l =1,...,r (r étant le rang du group de jauge) qui forment
une partie des homologies premieres de la courbe. Etant donné tous les composants nécessaires
(que 'on appelle les données de Seiberg-Witten), le prépotentiel s’écrit sous la forme paramétrique

suivante:

1 1
=0ap = =7
2mi B

1 O0F(a)
W= o A A Oay

Par la suite la solution de Seiberg et Witten a été généralisée pour les autres groupes de jauge
et les multiplets de matiere différents [52, [T, B3| [T9, 63 78, B8, @T].

Le chemin de généralisation habituel est le suivant: d’abord on établit I’expression pour la
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courbe algébrique et la forme différentielle méromorphe sur cette courbe en utilisant les raison-
nements qui viennent des études des monodromies, ou de la théorie M, ou des modeles intégrables.
Apres avoir obtenu les données nécessaires on calcule les corrections instantoniques pour le terme
principal de 'action effective.

Notons que ’action Wilsonienne complete contient aussi les autres termes, par exemple, le
terme suivant qui est obtenu a l'aide de quatre dérivées et huit fermions peut étre présenté en

utilisant une fonction réelle H(a,a) comme un N = 2 D-term [&4, 20, [74l, 59, 92, O3] 26]:
S4—deriv = /d4$d40d4éH(\P7\if)

Dans [69] une nouvelle technique pour extraire les corrections instantonique a été proposée.
Elle fournit une méthode directe pour calculer le prépotentiel. Néanmoins, elle donne ’expression
comme une série sur 1’échelle dynamique A. Pour découvrir les propriétés analytiques du
prépotentiel nous avons besoin de revenir a la théorie Seiberg et Witten. Une méthode efficace qui
permet de faire cela a été proposée dans [70)].

Cette méthode est basée sur quelques propriétés spéciales de la théorie N' = 2 super Yang-Mills.

Il s’agit surtout du fait que cette théorie, apres une redéfinition appropriée des champs, devient
une théorie cohomologique [89]. Cette propriété permet de réduire Uintégrale fonctionnelle, qui
donne la valeur moyenne d’une observable, a l'intégrale sur l’espace de solutions des équations
de mouvement classiques. Pour la théorie sans matiere c’est ’espace des solutions de ’équation
auto-duale:

Fpuy — +Fp, = 0.

Cet espace est connu pour tous les groupes de jauge classiques (SU(N), SO(N) et Sp(N)) via
la construction ADHM [2, [T4].

Une autre observation importante est qu’apres avoir déformé astucieusement ’opérateur BRST
de la théorie cohomologique, la fonction de partition (dans le sens de la physique statistique)
devient I’exposant du prépotentiel. En combinant ces idées on peut exprimer les corrections non-
perturbatives pour les fonctions de Green de N = 2 super Yang-Mills comme une intégrale de
dimension finie.

La tache de trouver le prépotentiel peut étre divisée en deux parties: d’abord nous avons besoin
de construire les intégrales de dimensions finies pour tous les modeles considérés. Ensuite il faut
extraire de ses expressions les données de Seiberg et Witten: la courbe et la forme différentielle

méromorphe.
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Pour résoudre le premier probleme nous avons plusieurs outils différents. Le premier est le
plus simple a comprendre, mais le plus difficile & réaliser. L’idée est la suivante: ’espace des
solutions de I’équation auto-duale (dit espace des modules) est le facteur hyper-Kédhlerien des
solutions des équations algébrique de deuxieéme ordre (les équations ADHM) par laction d’un
groupe dual (voir [I4]). Les méthodes pour calculer ces integrales sont connues (voir le chapitre
@)). L’intégrale sur les espaces de modules peut étre calculé via localisation, en utilisant la formule
de Duistermaat-Heckman. Cette formule réduit l'intégrale en question a l'intégrale sur l’algef)re
de Cartan du groupe dual, si on connait les poids de ’action du groupe dual sur I'espace tangent.
Cet intégrale peut étre calculée par residus, et nous obtenons une expression pour les corrections

non-perturbatives de 'action effective [GY).

L’inconvénient de cette méthode est que pour chaque contenu de la matiere et pour chaque

groupe de jauge nous avons besoin de batir I’ espace des solutions de ’équation auto-duale.

Une autre méthode est beaucoup plus simple a réaliser. Cette méthode est basée sur la relation
entre les poids de I’action du groupe dual et I'indice équivariant de 'operateur de Dirac, defini sur

le fond instantonique.

Dans cette theése nous avons calculé les actions Wilsoniennes effectives pour tous les groupes
classiques et pour presque tous les contenus de la matiere qui sont compatibles avec la condition
de la libertée asymptotique. Le sens du mot “presque” dans ce contexte est le suivant: nous avons
calculé le prépotentiel pour chaque représentation du groupe de jauge qui est contenu dans une
puissance tensorielle de la représentation fondamentale. Pour le groupe de jauge SU(N) on peut
couvrir de cette maniére toutes les représentations, tandis que pour SO(N), par example, il nous

manque les représentations spinorieles pour les petits V.

L’action Wilsonienne est calculée en utilisant les deux méthodes annoncées: d’abord pour les
modeles sans matiere (et pour la représentation fondamentale de SU(N)) on trouve les corrections
non-perturbatives par un calcul direct. Dans le chapitre qui suit, avoir développé le formalisme

général, on présente les résultats pour le reste des modeles.

L’expression pour le prépotentiel peut étre mise sous la forme suivante (pour obtenir le

prépotentiel on a F(a,m,A) = lim O]—"(a7 m, A\;e)):

€1,€2—

1 ad )
exp E}'(a,m,A;s) = 7P (a,m, A;€) x ZeQmTok Aﬂka(a,m;s), (1)
k=1
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ol 3 est le coefficient de g2 dans le développement de la fonction 3 de la théorie de jauge et

rank G p d(b rankGD
(a,m;e) / H R0 I zilam gie). (2)
=1

Ici R(¢) est une fonction rationnelle des différences ¢; — ¢;. Pour les corrections qui viennent des
configurations 1-instantoniques cette fonction est égale a 1.

Les regles pour construire la fonction z1(a,m, ¢;€) peuvent étre établies aprés avoir examiné
les expressions pour tous les modeles. L’intégrale sur ¢ peut étre calculée par résidus et finalement
on obtient les regles simples pour écrire les correction 1-instantongiue.

Ces regles peuvent étre comparées avec celles qui viennent de I’analyse des courbes algébriques
prédites par la théorie M. On trouve une coincidence remarquable entre les deux approches.

L’apparition de la fonction R(¢$) pour les corrections k-instantonique, k& > 1, rend lanalyse
directe de ces expressions assez difficile. Néanmoins, la méthode de [[0] permet d’extraire les
courbes de Seiberg et Witten de ces expressions, et comme conséquence de les comparer directement
avec les prédictions de la théorie M.

Les raisonnements sont les suivants: on s’intéresse au cas ou 1,9 — 0. On peut montrer que
dans ce cas la contribution dominante a la somme ([Il) vient de Z(a, m;¢) avec k ~ ?162 Dans la
limite k — oo l'intégrale (@) devient une intégrale fonctionnelle. Le produit 15 joue le rdle de la
constante de Plank. La limite £1,e5 — 0 devient la limite classique de cette intégrale.

Il convient d’introduire la densité f(z) de ¢; deformée d’une maniére qui permet de tenir
compte des contributions perturbatives au prépotentiel. Il est possible d’établir les équations
intégrales pour cette fonction (les équations de point-selle). Les solutions de ces équations donnent
précisément les courbes de Seiberg et Witten.

Pour les trouver on introduit la primitive de la résolvante de f”(z) définie comme:

Fe) = 5 [ om (20,

Les solutions des équations de point-selle donnent la courbe apres la rédéfinition suivante

y(z) = exp 2miF(2).

Dans quelques cas simple ces équations peuvent étre résolues. Le resultat coincide avec les ex-
pressions connues. Néanmoins, pour la plupart des équations la solution exacte n’a pas été obtenue.

En revanche, on a proposé une technique qui permet d’extraire de ces équations I’approximation
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hyperelliptyque des courbes de Seiberg et Witten. Ces approximations sont suffisantes pour obtenir
les corrections a 1 instanton.

Cette démarche peut étre utilisée pour vérifier la cohérence de la méthode de point-selle qui
permet d’extraire les courbes de Seiberg et Witten. En fait, on peut comparer les corrections
l-instantonique obtenues a 1’aide des approximations des courbes avec les expressions exactes.

Pour tous les modeles on a trouvé les résultats identiques, qui montre que les équations de

point-selle donne une méthode stire pour obtenir les données de Seiberg-Witten.
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Abstract

N = 2 supersymmetric Yang-Mills theories for all classical gauge groups, that is, for SU(N),
SO(N), and Sp(N) is considered. The formal expression for almost all models accepted by the
asymptotic freedom are obtained. The equations which define the Seiberg-Witten curve are pro-
posed. In some cases they are solved. It is shown that for all considered the 1-instanton corrections
which follows from these equations agree with the direct computations. Also they agree with the
computations based on Seiberg-Witten curves which come from the M-theory consideration. It is
shown that for a large class of models the M-theory predictions matches with the direct compu-
atations. It is done for all considered models at the 1-instanton level. For some models it is shown

at the level of the Seiberg-Witten curves.

Résumé

La théorie supersymmetrique ' = 2 de Yang-Mills est considérée pour tous les groupes de jauge
classiques (SU(N), SO(N) et Sp(N)). Les expressions formelles pour I'action Wilsonienne effective
pour (presque) tous les modeles compatible avec la condition de la liberté assymptotique sont
obtenues. Les équations qui déterminent les courbes de Seiberg et Witten sont proposées. Dans
quelque cas elles sont résolues. Il est montré que pour tous les modeles considérés les corrections a
1 instanton qui viennent de ces équations sont en accord avec les caculs directs. Ainsi elles sont en
accord avec les caculs basés sur les courbes de Seiberg et Witten qui viennent de la théorie M. 11
est montré donc que pour une grande classe de modeles les prédictions de la théorie M coincident
avec les calcul directs. Ceci est fait pour toutes les modeles considérés au niveau des calculs a 1

instanton. Pour quelques modeles ceci est fait au niveau des courbes algébriques.
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Notations and conventions

The following convention will be used through the paper:

Indices:

o Greek indices y,v,... run over 0,1,2, 3,

e small latin indices i, j,... run over 1,2, 3,

e capital latin indices A, B, ... run over 1,2. They are supersymmetry indices,

e small greek indices «, 3,... run over 1,2. They are spinor indices,

e capital latin indices I, .J,... run aver 0,1,2,3,4,5,6. This is six dimensional indices.

e 7y, T and 73 are the Pauli matrices defined in the standard way (A1),

e The Euclidean o-matrices are:

O',U,,oz(')z - (127 _iTlv _iT27 _iT3)a
530‘ = (1g, +im, +iTe, +i13) = (Uu7ad¢)Ta

e in Minkowskian space two homomorphisms SL(2,C) — SO(3,1) are governed by:

Opaa = (Lo, =71, —T2, —73),

70" = (1g, 471, +72, +73).

(we apologize for the confusing notations — we can only hope that every time it will be clear

whether we work with Euclidean or Minkowski signature).

e D,, D, are covariant derivatives in superspace, see ([LH),

e Q,, Q4 are the supersymmetry operators, defined in (I3).

® 04 is the Kronecker delta. By definition d,, = 1 when a = b and d,, = 0 otherwise.
® €., u, is the d-dimensional Levi-Civita tensor. €12..q = +1,
e the spinor metric is

€= lleasll =



Notations and conventions

XV

e 1, is n X n unit matrix,

e the symplectic structure is denoted by

JQn =
-1, O

The generators of the spinor representation of SO(3,1) are

1 _ _
ot = = (U“U” — U”U“),
4
VR AR
gt = 7(g"0” — %" ),

they satisfy

Uuu,aﬂagg — %(gupgw _ g;wgup) _

L 1 )
FhvaBgPo _( Hp VO PO Vp) Zehvpo
99 g9 + 2

[e%¢] 2

In the Euclidean space the complex conjugation rises and lowers the spinor indices without

changing their dottness. In the Minkowski space the height of the index is unchanged whereas its

dottness does change.

e Mostly we denote by G the gauge group. Its Lie algebra is denoted by g = Lie(G). Sometimes

when we identify the gauge group and the group of the rigid gauge transformations, which
acts at the infinity, we denote it by G,. Its maximal torus is denoted by T C Goo. hV is
the dual Coxeter number. We use the notation a for the elements of Lie(To). The set of
positive roots for the gauge group is denoted by A™. The Dynkin index for a representation

0 is £,. The set of weights for a representation p is denoted by w,.

e We denote by Gp the dual (in the sense of [I4]) group (see the definition at the end of section
B21). Its maximal torus is denoted by Tp C Gp. The Cartan subalgebra is t = Lie(Tp).
Wp is its Weyl group.

e The flavor group is denoted by G (see the definition at the end of section EZ¥]). Its maximal

torus is Ty C Gp.

e The Killing form on the Lie algebra of the gauge group is denoted as {«, 3). In the adjoint

1
representation it is given by («, 8) = % Traqj{0} where the trace is taken over the adjoint

representation.
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In section B2l we have introduces so-called Q-background. The main object is the matrix of

the Lorentz rotations {2, which we represent as follows

It will be useful to introduce the following combinations of the parameters €1 and es:

81i€2
2 )

® £ =

o c=¢c1+eg=2¢ey.

If V is a vector space, then ITV is the vector space with changed statistics (bosons < fermions).

We study gauge theory on R*. Sometimes it is convenient to compactify R* by adding a point

oo at infinity, thus producing S§* = R* U {o0}.
We consider a principal G-bundle over S*, with G being one of the classical groups (SU(N),

SO(N) or Sp(N)). To make ourselves perfectly clear we stress that Sp(IN) means in this paper
the group of matrices 2N x 2N preserving the symplectic structure, sometimes denoted in the

literature as USp(2N).
In our notations the gauge boson field (the connection) A, are real. Therefore the covariant

derivative is defined as follows: V,, = 0, —iA,. The curvature (stress tensor) is defined by ([C3J).
Sometimes the connection A, is supposed to be antihermitian (especially in mathematical texts).

In that case the field strength is defined by
FEL =0,A) — 8VA21 + [A:f, AL
We can establish the connection with the mathematical formalism as follows

AD = —iA,, FD = —iF,.

In these notations we have the following definition of the cuvature tensor:

Vi, Vo] = —iF.

In section 22§ we will introduce twisted fields 1,0, 1,,. In order to make contact with the

topological multiplet [89] (A}2P, ¢*°P, \*OP, 7P 4)ioP y1oP) let us write the rule of correspondence
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EI13):

Alev = 4, PP = 4y,
PP = —2v2H, AP = _2VoHT,
77t0p = _41;7 XLOVp = &p.l/'

e The vacuum expectation of the field ¢ belonging to the topological multiplet will be denoted
through the paper as a.

e The vacuum expectation of an observable O over the field configurations with the fixed value

of ¢ at infinity (which is equal to a) is denoted as

O)o = / D {fields} e?tion O
) lim ¢(z) =a ¢ J

Tr—00

1
e The vacuum expectation of the Higgs field H will differ to a by the factor ———:

2v/2

1

(H), = —ﬁa

We will use the complex coupling constant 7 which is related with the Yang-Mills coupling

constant g and with the instanton number in the following way

4i n ©
g2 2

In section 24 we introduce the instanton counting parameter ¢ which is related to 7, g and © as

follows:
. _8x2
_ e27TlT — e 42 ez@ )
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Introduction

The duality between the gauge theories and the string theory is now of the great importance. The
actual knowledge suggests that all the superstring theories in ten dimensions can be obtained as
different limits of a unique eleven dimensional theory, known as M-theory [Bl [75], E6, K3].

In spite of the existence of numerous arguments in favor of this approach, the M-theory is
not yet built. Therefore one tries to find some non-direct evidences which confirm (or reject) this
theory. The main strategy is to compare its prediction with results which can be obtained in a
different (and independent of the M-theory) way.

Among other predictions which provides M-theory there are those which concern to the Wilso-
nian effective action [80), 27| along the Coulomb branch for N' = 2 super Yang-Mills theory [90).
The leading part of the non-perturbative effective action for the gauge group SU(2) which con-
tains up to two derivatives and and four fermions was computed by Seiberg and Witten [77]. After
its appearance the Seiberg-Witten solution was generalized in both directions: to other classical

groups and to various matter content [52, [, 13, 19, 63, 78, £, O1].

Till recently while generalizing one established the expression for the algebraic curve and the
meromorphic differential from the first principles and then computed the instanton corrections to
the leading part of the effective action. This part can be expressed with the help of a unique
holomorphic function F(a), referred as prepotential [39, 211 [76], 8T]. With the help of the extended

superfield formalism the Lagrangian for the effective theory can be written as an A/ = 2 F-term:

_i(\ i 4 4
Sett = - Jm{zm, /d xd 9.7—'(\1/)}.

The classical prepotential, which provides the microscopic action, is

-:Fclass(a) = 7TZ'TO <CL, a>7

4mi O
where 7 = 12 + 2—0. Note that we use the normalization of the prepotential which differs from
90 77

some other sources by the factor 2mi.

The complete Wilsonian effective action does contain other terms, for example the next one,
which contains four derivatives and eight fermions can be expressed with the help of a real function

H(a,a) as the N' =2 D-term [A4], 20 [74, K9, 92, 93, 26]:

S4fderiv = /d4$d49d4éH(qJ’\Il)
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In [69, [70] a powerful technique was proposed to follow this way in the opposite direction: to
compute first the instanton corrections and to extract from them the Seiberg-Witten geometry and
the analytical properties of the prepotential.

In [71] the solution of A/ = 2 supersymmetric Yang-Mills theory for the classical groups other
that SU(N) using the method proposed in [69, [[0] was obtained. This method consists of the
reducing functional integral expression for the vacuum expectation of an observable (in fact, this
observable equals to 1, hence we actually compute the partition function as it defined in statistical
physics) to the finite dimensional moduli space of zero modes of the theory. That is, to the

instanton moduli space, the moduli space of the solutions of the self-dual equation
F —xF,, =0

with the fixed value of the instanton number

1

167rhV/ fadj

Notation Tr,q; means that the trace is taken over the adjoint representation.

In [79] we continue to investigate the possibility to solve the N/ = 2 supersymmetric Yang-Mills
theory with various matter content (limited, of cause, by the asymptotic freedom condition).

Roughly speaking our task can be split into two parts. First part consists of the writing
the expression for the finite dimensional integral to which vacuum expectation in question can be
reduced. To accomplish this task in [69} [7T] the explicit construction for the instanton moduli space
was used. Already for the pure gauge theory its construction (the famous ADHM construction of
instantons, [2]) is rather nontrivial (see for example [T B0, 29, @9, B0, B1]). In the presence of
matter it becomes even more complicated.

Fortunately there is another method which lets to skip the explicit description of the moduli
space and to directly write the required integral. This method uses some algebraic facts about the
universal bundle over the instanton moduli space. It will be explained in section Bl Using this
method we will obtain the prepotential as a formal series over the dynamically generated scale.

The second part of the task is to extract the Seiberg-Witten geometry from obtained expres-
sions. To do this we will use the technique proposed in [f0]. It is based on the fact that in the
limit of large instanton number the integral can be estimated by means of the saddle point approx-
imation. This approximation can be effectively described by the Seiberg-Witten data — the curve

and the differential. One may wonder why the prescription obtained in this limit will provide the
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exact solution even in the region of finite k£, where the saddle point approximation certainly will
not work. The answer is that the real reason why the Seiberg-Witten prescription works is the
holomorphicity of the prepotential, pointed out in [77], whereas the saddle point approximation
just makes it evident and easy to extract.

The paper is organized as follows: in chapter [l we recall some aspects of N =1 and N = 2 su-
persymmetry. In chapter Blwe give an outline of the important facts about A/ = 2 super Yang-Mills
theories: the Seiberg-Witten theory, topological twist, and its relation to the M-theory. Chapter
is devoted to some aspects of the equivariant integration. Also we give a short introduction to
the ADHM construction. In chapter Bl we use the ADHM construction to compute the instanton
corrections for some cases. In chapter B we describe a method to write the formula for the in-
stanton corrections. In chapter Bl we reduce the problem of the instanton correction computations
to the problem of minimizing a functional. And finally in chapter [ we solve the saddle point
equations for some models. Using relations between the saddle point equation for different models
we establish the same relations between the prepotentials for these models and finally we find the
hyperelliptic approximation for the Seiberg-Witten curves for all the models. This allows us to
compute the 1-instanton corrections which comes from the algebraic curve and compare it with
the direct computations result. In each case perfect agreement between results of two approaches
is observed.

The logic of the presentation is not always linear. In order to simplify the reading we have
included a schematic roadmap of this text, figure I The word “some” near some arrow means

that the passage is possible only for some models.
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Chapter 1

Supersymmetry

In this section we will shortly describe some properties of the superspace, which is necessary to
consider super Yang-Mills theory. There are lot of well-written texts on supersymmetry [85, K6, 82
9, [611 24]. Not even trying to describe the subject in all details, we have just pick some elements

in order to make our story self-consistent.

1.1 Algebra of supersymmetry

The Coleman and Mandula theorem [IH] states that the only allowed symmetry of the S-matrix is
the Poincaré algebra plus maybe some internal symmetries which commute with it. This theorem
concerns only transformation with commuting parameters. Therefore this statement is about the
maximal allowed external symmetry Lie algebra. But if we include also some transformations with
anticommuting parameters, that is, transform the Lie algebra to a superalgebra, we can obtain a

supplementary symmetry in the theory. In this way the supersymmetry arises.

Let P, and J,, be the generators of the Poincaré algebra. Their commutation relations are

the following
[P o P, V] =0,

(Juvs Pp) = igpu Py — igpp P,
(s Jpo) = i9vpIue — i9updve — iGvoJup + iGuoJup-

1
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They can be represented by the following differential operators:

P, =id,,
S (1.1)

Ju = 12,0, — 12,0, + Sy

These operators act on the argument of scalar functions and describe their transformation under
rotations and translations of the Poincaré group. S, is the spin operator. It describes the
transformation of a function belonging to a higher spin representation of the Lorentz group. For

example, if we consider a spinor function 1(x) the spin operator takes the following form

(Suwt(@)” = io 0" (@)

The supersymmetry is realized as the largest supergroup of symmetry of the S-matrix [@2]. It
is described as follows. In addition to the operators (ILTI), which naturally have bosonic statistics,
one introduces a supplementary set of operators Q4 and Q4 4 = (Qﬁ)T, A=1,...,N, which are
fermions. They have spinor indices. The (anti)commutation relations of the enlarged Poincaré

algebra are the following (we use the standard normalization)

[Puv Qg] =0,

[Pu, Qa,4] =0,

[, Qﬁ] = i%u,aﬁQ§7

[Jys Q%] = i5,,,% 305, (1.2)
{90.955)  =200,Pu05,

{04,9F} = eapZB2,

{944, QB,E} = 6@522132-

Here ZAB is an antisymmetric matrix. A new operator Z is the central extension of the supersym-
metry algebra. It is known as the central charge. This operator commutes with all other generators
of the super Poincaré algebra.

Remark. Note that we have adopted a rule according to which hermitian conjugation swaps upper
and lower supersymmetry indices. O

Remark. The dumb spinor indices will be omitted in general. To make formulae unambiguous we
adopt the rule according to which undotted indices are summed from up-left to right-down, and

dotted — from down-left to right-up. For example ¢x = ¥ *Xa, ¥X = ¥aX®. O
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1.2 Superspace

If we wish to represent operators Q7 and Q4 , in the spirit of [[CIl) we should introduce some
additional coordinates. Namely, let us introduce A left handed spinor coordinates 6% and A
righthanded §4:%. these coordinates are anticommuting. Also introduce a boson real coordinate

z which corresponds to the central charge. The complete set of coordinates becomes therefore
2% = (x”,9§,§A7d,z) .

The space with these coordinates will be referred as the superspace.

The following differential operators satisfy the supersymmetry algebra ([L2).

)
7 =i—
Yoz
0 4G ' 0
Q4 — 505 + io" 0490, + %GQBZABegE, (1.3)

9

_ o ; .
Qua = o + 0308600 + 5e45Zap0"" —

96

Remark. Our choice of the sign of the second summand in these formulae is closely related to our
definition of the momentum operator P, [CIl). The choice P, = +i0, is, in its turn, fixed by our

choice of the Minkowskian metric ([(AJ]) and the corresponding formulae in Quantum Mechanics:

0 ]3:_2,8

0=+l 9.
or o7

a

Remark. In the opposition with the bosonic case the fermionic derivative is hermitian:

o\ __9
905 ) — opAe’

The general transformation of the super Poincaré algebra can be represented as follows:

—ia" P, — %w““JW +¢594 + 53’593,5 — itZ.

Lfor AV > 2 it does not have any practical value, since irreducible field multiplets will suffer too many constraints
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It corresponds to the following supercoordinate transformations:

= 2P+ at + wx, + iCﬁagﬁéA,ﬁ' _ i9a3‘75553767
« « « 1 7 a pPb
0% — 0% +C45 + W O 804
(1.4)

A A A 1 4
GA,oz N GA,oz + CA,oz + iwpva_pyaﬁgA,ﬂ7

v iy .
ZHZ+t+§CfZGOtBZABeg+§CA’a6dﬁ'ZZBeB7B'

1.3 Geometry of the superspace

In this section we consider some geometrical properties of the superspace. In particular, we recall
how to derive the covariant derivative from the geometrical point of view. More details can be

found, for example, in [85, K6, §4].

Four dimensional Minkowski (Euclidean) space can be seen as a coset 1SO(3,1)/ SO(S,l)H
(ISO(4)/50(4)), where ISO(3,1) (IS0O(4)) is the Poincaré group. In the same way the superspace
can be seen as a the super Poincaré group SISO(3,1) (SIS0O(4)) factor Lorentz group.

The geometrical properties of the superspace can be deduced from the fact that the Killing
vectors of the super Poincaré symmetry of the space are obtained by the group multiplication. It

allows to get the connection.

Any element of the super Poincaré group can be parametrized as follows
g(z%, W) = exp {—ix“PM +60%504 + §B7BQB’B - izZ} exp {—%w‘“’JHV} .
A representative of a conjugacy class can be given by the first factor, that is, by
g(z%) = exp {—ix“PM +60502 + éB’ﬁQB’ﬁ- - izZ} .
The vielbein e,” and the spin connection w”¥ can be obtained in the following way:

- - 3= 1
G H2M)dg(2%) = dz%, P, 4 d2%e, 598 + dz“eaB’ﬁQBﬁ +dz%,*Z + §dz“wfl“’JW.

2417 stands for “inhomogeneous”
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Computations give the following values for e,’:

al,b— P, Q4 Quy Z
da” —idk 0 0 0
Ao, | 0%7al, 0505 0 1es,ZPC0L
dgBs 9%055 0 5;:‘55 %eﬁ-ﬁZﬁcéCW
dz 0 0 0 —1

The spin connection w4" appears to be zero.

The covariant derivative can be obtained as follows:

1
Db = eilba <8a + §’UJZWSNV) .

Having inverted the vielbein matrix we get the following expressions (compare with (1) and

C3)):

Dl‘ = ia}h
0 o i 9
A_ Y orpABy L AByB 9
D% = g~ 0as? " O~ geasZ 05 5
T a 16 z ~B . 8 (1.5)
Daa= 00Aa 04550u — §6aﬁ'Z:139 )ﬂ&7
0
D, =i
e

Since the supersymmetry transformation define Killing vectors with respect to this connection
we conclude that the covariant derivatives commute with generators of the supersymmetry, that

is, with the supercharges Q4 and Q4 4. Of cause, this statement can be checked straightforwardly.

Remark. There is another way to deduce (LX) which is simpler and closely related to the traditional
way to introduce “long” derivatives. Taking into account ([C]) we conclude that the derivative with

respect to 09 does not transforms covariantly:

0 _oby 9 o 0 02 0
00% 00 pgi'  00% Oxr’ 003 0
0 1w, 5 O

The requirement that the last line in this expression is absent leads us directly to ([CX). O
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The commutation rules for the covariant derivatives are the following:

{D2, Dy 5} = —2ic" ﬁ.auag‘,
9
0z’

_ _ ) ., O
{DA7d7'DB’ﬁ} = —zedﬁ-ZAB&.

(D, DEY = —icapz?

All others are trivial. They could be used to reconstruct the curvature and the torsion of the
superspace, but we will not need them.

Let us also introduce new coordinates which are covariantly constant in the #4% and z direc-
tions:

Y =t — ifa0t 02, (1.7)

It satisfies
Daay” =Dy = 0.

1.4 Supermultiplets

In this section we describe some supermultiplets which will be useful for the following.

In the spirit of field theory, where particles are seen as some irreducible representation of the
Poincaré group, we would like to describe irreducible representations of the super Poincaré group.
However, there is a difference. In the super case an irreducible multiplet contains more than one
particle. At least, it contains bosons and fermions. Therefore, we will describe families of particles
by means of irreducible representations.

As an supersymmetric extension of the Wigner theorem [87] we can say that all super multiplets
can be described by means of families of function defined on the superspace, and which transform

under an (irreducible) representation of the Lorentz group (the group we have factored out).

1.4.1 N =1 chiral multiplet.

Consider the simplest case: N/ = 1 (and therefore the central charge is absent) and the scalar
representation of the Lorentz group. That is, we consider a scalar function ®(z,6,6). Notice,
however, that this function provides a reducible representation of the super Poincaré group, since

we can impose the condition
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which commute with the supersymmetry transformation, since the covariant derivative does.

This constraint can be solved using the coordinate (7). The result is

®(y,0) = H(y) + V20¢(y) + 06 (y)
— H(x) + 60”80, H(z) — %(09)(6@)@3#1{@;)

L 00(0,1(x)0"8) + 00f (x).

+ V209 () — NG

Here H(x) is a scalar field, ¥*(z) is a Weyl spinor and f(x) is an auxiliary field which does not

have any dynamics (Lagrangian’s do not contain any of its derivatives).

1.4.2 N =1 vector multiplet.

Now consider a general scalar function defined on the N' = 1 superspace, which satisfies the reality

condition:

V(z,0,0) =V(x,6,0).

Its component expansion is

V(x,0,0) = () + V20x(z) + V20x(x) + 00g(z) + 004" (x )+00“0A (z)

—i(@0)6 (A( )+%a 0, x(x )—i—z (00) < )+ —a 1O (x ))

1 1
+50009) (Do) - 50,0%()).

The reality condition shows that ¢ (z) = ¢(x), D'(x) = D(z) and Af,(z) = A,(z). Real vector
field is naturally associated with a vector boson, which is a gauge boson of a gauge theory. Since
such bosons are in the adjoint representation of the gauge group, it is reasonable to take the vector
superfield itself in the adjoint.

In fact, this supermultiplets is not irreducible, it contains a chiral multiplet (also in the adjoint

representation). To gauge it out we can consider the following transformation:
02V, 02V — AT 2V GiA (1.8)

where

Ay, 0) =ay) +...

is a chiral multiplet. Under such a transformation the vector component A, (z) transforms as
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follows:

A, (@) = Al (1) = Au(2) = V,(Rea()),
where V, is the covariant derivative with the connection A, (z):
V=0, —i[A,, ]

This formula justifies the identification A, (x) as a gauge boson.

There is a specific gauge where the component expansion of the vector superfield becomes
quite simple. It is the Wess-Zumino gauge. In that gauge fields p(z), x*(x), Xa(z) and g(x) are

eliminated. Therefore we have the rest:

Vivz(x,0,0) = 00GA,(x) — i(08)(OA(x)) + i(00) (IA(x)) + %(99)(99)1)(3;).

Remark. Even having fixed the Wess-Zumino gauge we still have a freedom to perform the gauge

transformation (and this is the only remaining freedom). O

Remark. The Wess-Zumino gauge does not commute with the supersymmetry transformation. O

1.4.3 Supersymmetric field strength

There is another way to represent the same field content. We can find an expression which remains

unchanged under ([CF). It is given by
Wa(a:, 0, 0) _ _%@dﬁa e—zv(z,e,é) D, ezv(z,e,é) )
Its component expansion is (we use y* = x# — ifa"0):
Wa(y.0) = ~ida(y) +0aD(y) = 0" o 05 Fyu (y) — 0°050% ;7,07 ().
In this formula we see the appearance of the field strength
Fu(@) = 0, Au(2) = 0, A, (2) — i[Au(2), Ay (2)] (1.9)

which corresponds to the connection A, (z).

The superfield W, () is chiral: Dy W, (z,6,0) = 0. In the abelian case it satisfies the following
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constraint (reality condition):
DWW (x,6,0) = DW,(z,6,0)
which commute with the supersymmetry transformation. Therefore it can be seen as an another

example of the Wigner theorem (now applied to a spinor function).

The reality condition assures that D(x) is real field, and F},, (z) satisfied the Bianchi identity,

which allows us to identify it with the curvature of a connection A, (x)

In the non-abelian case these relations become more sophisticated. Namely, one should intro-

duce the superconnection A4 and replace everywhere

D Dt = DA —iAZ,
®A,a — 5A,a = ®A,a + iﬁA,d,
D, D, =D, —iA,.

The relation with the the gauge field A, is established via

Au(z,0,0 A, (x).

)‘9:0,5:0 =

Details can be found in [85 [§6].

1.4.4 N =2 chiral multiplet [4T].

The most natural superfield representation for the A" = 2 chiral multiplet is given in the extended
superspace, which has the coordinates x“,@%,@a‘-“, A = 1,2. The chirality condition for scalar

superfield ¥(z, 6,0, z) means that
Daa¥(z,0,0,2)=0.

Using the algebra of covariant derivatives we see that it implies that this superfield does not depend

on central charge coordinate z.

As usual when we consider chiral multiplets we introduce covariantly constant coordinate
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y* = z* — if0"04. The component expansion for the N' = 2 chiral multiplet is the following:

1
—O,LA 6P
7504 B(Y)

- 22 gy (0,4 {a“wB@) + Sl ), w3<y>]}) (1.10)

- 3 046)(0.10) (V1) = 11 0). D] - (0050}

U(y.0) = H(y) + V3040 () + %ew"o‘“ﬂw@) +

The matrix L5 consists of auxiliary fields. This superfield is not an arbitrary chiral N' = 2

superfield. It subjects to the following reality conditions (compare with ([(AIF]))

6ACLED6DB = LAB

This auxiliary field matrix can be expressed with the help of auxiliary fields for AV = 1 chiral and
vector multiplets as follows (we denote f(y) = f'(y) +if"(y) and f1(y) = f'(y) —if"(y))

L= [ PW YO L n - VB () + D)

V2fi(y) —iD(y)

Covariantly this restriction can be written (in the abelian case) as

DADBY(z,0,0) = DADE[W(x, 0,0)] .

In the non-abelian case we should introduce superconnection as in the case of the vector multiplet.

Using the language of the N' = 1 supermultiplets one can re-express this superfield as follows:
U(y,0) = D(y, 61) +iv26,W (y, 1) + 6265G(y, 61)

where ®(y,6) and G(y,0) are two N = 1 chiral multiplets. These two chiral supermultiplets are
not independent. The second one can be obtained from the first one and the vector superfield in

the following way:

1 _ o i
G(y.0) = —5 /d29<I>T(y — 2if09, §) 2V :0-0)

While doing the integral in the righthand side y* is supposed to be fixed.

The supersymmetry transformation for A" = 2 chiral multiplet is given by

S¢ e (x,0,0) = (CaQ™ + (*Qa)¥(x,6,0).
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The component expansion for this equation gives

6C7EH = \/§CA¢A7

54,5HT = \/igA&Aa

5Vt = o P By +iCHH, HY = iV20" .09V, H, (1.11)
Se G = 0" sCh Fyu — iC[H, H) — V2647 Ca gV, HT,

e Ay =iCouba —ipto,Ca.

Here we have come slightly ahead and used the equations of motion which follow from the action

&) of N' = 2 super Yang-Mills theory:
f=0, D=[H H.

Let us finally rewrite for further references the N' = 2 superfield (ICIQ) in less SU(2) covariant

and more tractable way. We have

U(y,0) = H(y) + vV2019" (y) + V2020 (y)
+ 0101 f(y) + 0202 f T (y) + iV20102D(y) + V200" 0, F,,,,
— iV2(6161) (020" V w102 (y)) +i(6161) (02[H (), ¥ (1)])
— iV2(0202) (0107 V w101 (y)) — i(6262) (61 [H (), ¥* ()])
— (0101)(6205) (V*V, ' — [HY, D) +iv/2{91, 9}

1.4.5 Hypermultiplet.

The matter in N' = 2 supersymmetric theory can be described with the help of the hypermultiplet
38, [12].

In a SU(2); invariant way it can be described as follows. Consider an SU(2); doublet of scalar
superfields Q4(z, 0,0, z). Its derivatives DAQE and DLQP belong to the reducible representation
1@ 3 of SU(2);. If we project out the three dimensional representation, the rest will be the

hypermultiplet. That is, we impose the following condition

1
DIQ+DEQ =0 & DIQF = ZeFDeaQ”,

_ _ _ 1 _
DIQEP+DEQA=0 < DIQP = ieABDC,dQC.
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Remark. The superfield Q4 is not chiral. Therefore, it does depend on the central charge coordinate
z. Since the matrix Z4P is antisymmetric, it is proportional to €4 when N' = 2. After an

appropriate rescaling of z we can put simply Z48 = 48 O

Consider the (infinite, thanks to the presence of the bosonic coordinate z) series which represents

this superfield. Some first terms are given by the following formula

Qx,0,0,2) = ¢ (x) + V20 x () + V204X — iz XA (x) + ...

Here (¢',q?) are an SU(2); doublet of complex scalars, x, and Y, are two spinor singlets and
(X1, X?) are an doublet of auxiliary fields. Terms contained in “...” can be expressed as spacetime

derivatives of these fields.

The on-shell supersymmetry transformations for the massive hypermultiplet coupled with the

gauge multiplet are given by

S¢.cq = V20 x + V207X,
0¢ eXa = V201,05V uq™ = 2iCS g} H + V2ma™*Ca o, (1.12)

0e eXa = V201 Vg — 2iC g} H + V2ma™ (5.

where H(z) is a Higgs field from the A' = 2 chiral multiplet, m is the massive hypermultiplet
matter. In the covariant derivative V,, = 0,, — 1A, we use the connection which is also the part of

the chiral multiplet.

Remark. The multiplication Hg* should be understood as follows: in the adjoint representation we
have H = HoT24 q = 1,...,dim G where T2 are the generators of the gauge group (structure
constants). Taking a representation g of the gauge group one considers corresponding generators
T2. The superfield Q“ is acted on by this representation. And Hg? means H®T2q* which is
well-defined. The same remark should be taken into account while considering V MqA. O

This field content can be repackaged into two A/ = 1 chiral superfield. Unfortunately, in non-
SU(2); invariant way. However, the practical computations with repackaged superfields are much

simpler. These two chiral superfields have the following form:

Q(y,0) = q(y) + V20x(y) + 00X (y),
Q(y,9) = q'(y) + V20x(y) + 06X (y),

where ¢(z) = ¢*(z), ¢ (z) = ¢*(2), X(z) = X'(z) and XT(z) = X2(z). Note that the hermitian
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conjugation in the last line does not affect on y*. Also note that the N' =1 chiral multiplet Q is

acted on by the representation ¢ of the gauge group, whereas @ — by the dual representation p*.



14

1 Supersymmetry




Chapter 2

N =2 Super Yang-Mills theory

In this chapter we give an outline of known facts about N' = 2 supersymmetric Yang-Mills the-
ory: the action, the famous Seiberg-Witten theory, which allows to compute the non-perturbative
corrections to the Green functions via the prepotential (see its definition is the section EZ3), and
the stringy tools used in this theory. Also we discuss the twist which makes it a topological field

theory and BV derivation of this topological field theory.

2.1 The field content

The field content of the pure A/ = 2 super Yang-Mills theory is described by the A/ = 2 chiral
superfield (CI0):

where
e A,(z) is a gauge boson,
e YA(x), A= 1,2 are two gluinos, represented by Weyl spinors, and
e H(x) is the Higgs field, which is a complex scalar.

We have arranged these fields in this way in order to make explicit the SU(2); symmetry. It
acts on the rows. Accordingly A, (z) and H(z) are singlets and (¢} (z), 9?2 (z)), are a doublet.

15
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Since vector bosons are usually associated with a gauge symmetry, A, (z) is supposed to be
a gauge boson corresponding to a gauge group G. It follows that it transforms in the adjoint
representation of G. To maintain the A" = 2 supersymmetry 12 (z) and H () should also transform
in the adjoint representation. Therefore, all the fields are supposed to be g = Lie(G) valued
functions.

Let us also describe the matter hypermultiplet. The field content is the following:

Xa(T)

;a(f)

where x, and Y, are two SU(2); singlets Weyl spinors. ¢ and ¢! form a doublet of complex
bosons. To couple the matter fields with the gauge multiplet we should specify a representation o
of the gauge group. Then ¢ and x are acted on by the gauge transformation in this representation,

whereas ¢ and x by the dual one o*.

2.2 The action

Let us now write the action for A/ = 2 supersymmetric Yang-Mills theory. This action is uniquely

defined by the following requirements (see, for example, [7, Bl 24])
e it contains only two derivative terms, and not higher,
e it is renormalizable.

The action which satisfies these conditions is (after integration out all the auxiliary fields)

@0 4 v
Sym = 3972V /d xTr F,, ~ F*
b /d4xTr YN L0 B (2.1)
gehY 4 " 9t :
_ i i - _
+ip AoV yha — —=a|HT A + — 4 [H, }
VoMV iba \/§¢A[ (U ﬁw [H,va]

Using N = 1 superfields one can rewrite this action as follows:

1 _
Sym = S Jm {7’0 Tr ( / dizd?0W oW, + / d*zd?0d%0a1 &2V <1>) } :
T
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dmi O

Here 7y = i; + 2—0, g being the Yang-Mills coupling constant (and the Plank constant as well)
90 ™

and Oy is the instanton angle. Its contribution to the action is given by the topological term, ©¢k

where k € Z is the instanton number:

k= —m%hv/d‘leer*F“”. (2.2)
Here hV is the dual Coxeter number. Its values for different groups are collected in the Appendix
18
The most natural form of this action can be obtained with the help of N’ = 2 chiral superfield
(CI):
Syn = ﬁ Sm {/ d4xd40§ Tr\112} . (2.3)

The coupling constant ¢ is running in the Yang-Mills theories. At high energies it can go to
infinity (Landau podle) or to zero (or, in marginal cases, remain finite). The theories with the
second and third type of behavior are referred as asymptotically free. Physically it means that the
action () better describes the model at high energies. So, if we take the high energy limit, we
will see the action becomes exact.

Therefore, for asymptotically free theories the action (EI) is the exact or bare or microscopic
one. However, when one goes from high to low energies, the bare action is getting dressed. The
perturbative and non-perturbative correction should be taken into account and we arrive to the

Wilsonian effective action.

2.3 Wilsonian effective action

By definition the Wilsonian effective action Seg is defined in a similar way as a standard effective
action, I'eg. However there are some distinctions. The latter is defined as a generating functional
of one-particle irreducible Feynman diagrams. It can be obtained from the generating functional
of all Feynman diagrams W by the Legendre transform. The former type of effective actions, the
Wilsonian one, is defined in as T'egr except that one introduces explicitly an infra-red cut-off A (often
we will call it dynamically generated scale). Therefore, the Wilsonian effective action is cut-off
dependent. There is no big difference between Seg and I'eg when there are no massless particles in
the theory. However, in the N' = 2 super Yang-Mills theory there are such particles. The property
that makes plausible to consider the Wilsonian effective action is that it is a holomorphic function

of A, which is not the case for I'og.
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If one requires that ' = 2 supersymmetry remains unbroken in low energy region, one can get
very restrictive conditions to the form of the Wilsonian effective action. Namely when one goes to

the low energies region, one observes that thanks to the term

—%[H, ? (2.4)

in the microscopic action massless Higgs fields satisfy the equation [H, H] = 0 and therefore belong
to the Cartan subalgebra of the gauge group G. The same conclusion is also valid for the gauge
field. The non-perturbative analysis shows that at low energies A/ = 2 supersymmetric Yang-Mills
theory is alway in the Coulomb branch, where one finds r = rank GG copies of the QED with photon
fields being A; ,(z), l=1,...,r.

Having integrated out all the massive fields one gets the Wilsonian effective action, which
describes the physics at low energies. The leading term of the effective action (containing up

to two derivatives and four fermions terms) can be obtained by relaxing the renormalizability

condition. The result is the following

R O 4_ 129 rlm o L/zszwz
Seff_%om{m/d P OF Q)W W o+ 5 [ dP0%0[@T 2] F(@) ¢

For this action to be A" = 2 supersymmetric the following conditions should be satisfied :

Flla) = —agél“), Fi™(a)

_ 9°F(a)
" da;0an,

Here we have introduced a holomorphic function F(a) on r variables a;, which is called the prepo-
tential.

As usual, the most compact form of the effective action can be obtained with the help of the

N = 2 superfield ([I0):
1 1
— = 4 4 N
Seft 47r\ym{2m,/d xd*0F( )}
The expression of the classical prepotential can be easily read from (23):

T

Ferass(a) = mwiTg Z a;® = mito(a, a). (2.5)
=1

Note that we use the normalization of the prepotential which differs from some other sources by
the factor 2mi.

Further analysis [76] shows that all perturbative contributions to the prepotential consist of
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the 1-loop termﬂ. The expression one gets is

o€reps AeW,

where A is the dynamically generated scale. This formula gives the prepotential for the Yang-Mills
theories with matter multiplets which belong to representations o of the gauge group and have
masses m,. In this formula the highest root is supposed to have length 2.

Remark. Term —% is not fixed by the perturbative computations. It describe the finite renormal-
ization of the classical prepotential. Our choice is made for the simplicity of further formulae.
O

The description of the positive root for classical Lie algebras are in the Appendix

2.4 Seiberg-Witten theory

Besides the classical (ZH) and the perturbative (8] parts of the prepotential, there is also a third
part, due to the non-perturbative effects and coming from the instanton corrections to the effective
action.

The classical N' = 2 syper Yang-Mills theory has internal U(2) = SU(2); x U(1)g symmetry.
Thanks to ABJ anomaly, which appears on the quantum level, the second factor is broken down
to Zg where 3 is the leading (and unique thanks to topological nature of the theory) coefficient
of the f-function. ( is an integer and for assymptotically free theories non-negative, therefore the
object Zg = Z/BZ does make sens. It is computed in Appendix [Bl According to this the general

form of the non-perturbative contribution can be represented by the follwing series over A:
Finst(aa A) = Z-:Fk(a)Akﬁ; (27)
k=1

In order to make evident that this expansion is nothing but the nonperturbative expansion
caused by contributions of different vacua let us consider the renormgroup flow for the coupling

constant 7. It can be easily obtained from (ZH) and is given by

B 5 A
T(Al) = T(A2)+ 2—7m,1nA—2.

Lthis fact is closely related to the topological nature of the A" = 2 super Yang-Mills theory, see section L3
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Let us choose the energy scale in such a way, that the renormalization group flow becomes

T(A) =710+ % In A. Introduce the instanton counting parameter

q= eQﬂ'iT — 6789_2 ez@ — 827”7'0 Aﬂ (28)

Remark. When 3 # 0 we can completely neglect 7o and in this case we have ¢ — AP. For the
conformal theories, that is, for the theories where 3 = 0, we have ¢ = €™ In both cases we can
2

_8nm .
replace AP by e” o> ¢©. O

Taking into account the fact that the value of the Yang-Mills action on the instanton background

with the instanton number k is — + 1Ok we conclude that the A? expansion in the same as

2
instanton expansion.

The non-perturbative constributions to the prepotential give rise to the instanton corrections
to the Green functions (and therefore can be extracted from them [B0, 49, [51]). However the direct
calculation of their contribution is very complicated, thus making quite useful the Seiberg-Witten
theory [, [78]. In this section we will explain some basic aspects of this theory. More detailed

explanation can be found, for example, in [8, 24].

The key observation is that the kinetic term in the effective Wilson action is proportional to
—Qm %f m(H). Since this function is analytic, it can not be positive everywhere. Therefore
such a description is valid only within a certain region of the moduli space. To find a universal
description we involve the following geometrical fact: consider an algebraic curve, let Aq,..., A,

and Bi,..., B, be its basic cycles which satisfy A;#B,, = 0;» and Aq1,..., A, be holomorphic

7{ Ao = B
Ay

differentials such that

Then the real part of the period matrix

2w B, :% A
B

is negatively defined.

Therefore, if find a meromorphic differential A, depending on the quantum moduli space of the

theory (set of vacuum expectations of the Higgs field H(x)), which we will denote a;, such that

ox B 1 0F(a)
a_al_/\h AlA—Cll, and Bl/\—% 8@1

3 (2.9)
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we could assure the positivity of the kinetic term.

Another way to get the description of the prepotential in terms of an auxiliary algebraic curve

is to account properly the monodromies of the vector

ai
ap
b=
(€28
ap
where al, = 82:;7). It allows to write a differential (Schrédinger like) equation for ag,aly. Its

solutions can be expressed with the help of hypergeometric functions, whose integral representations

reproduce the prescription ().

2.5 Topological twist

Another property of N' = 2 supersymmetric Yang-Mills theory which will be important in what

follows is its relations to so-called topological (or cohomological) field theories [89, [KS].

Namely, the action 3), up to a term, proportional to TrF),, x F#*, which is purely topological
itself, can be rewritten as a Q-exact expression for a fermionic operator Q. One can construct this

operator by twisting the usual supersymmetry generators Q A,a in the following way:

Q= EAdQA7a.

Remark. Note that in this expression we have mixed supersymmetry indices A, B,... and space-
time spinor indices &, 3, . . .. Geometrically it corresponds to the redefinition of the Lorentz group

of the theory. Indeed, the group of symmetries i
SU(?)L X SU(Q)R X SU(Q)[

Now we redefine the Lorentz group by taking SU(2)%, = diag SU(2)r x SU(2);. O

Let us see in some details how does it work. According to this prescription we redefine the

2after the Wick rotation and passing form SO(3,1) to SO(4), whose cover is SU(2)r, x SU(2)r
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fields of the theory as follows:

1 A L aar o aa
¢A,cx = §U5Aw}t) ¢A’ = §€A ¢+§U#VA ’@[JM .

By definition field " is anti-self-dual:
B = ik,
These expressions can be inverted as follows:
Y= 5’“’Aa7/)A,aa ) = eaath™ = €Ad%/;A,a, P = G g e

Remark. Previously we had the following action of the hermitian conjugation: (wg‘)T =tag. It
corresponds to the fact that in the signature SO(3,1) the complex conjugation swaps left and right
spinors. Since we have redefined the Lorentz group it is naturally to expect that this map becomes
more complicated. In particular, the action of hermitian conjugation should be accompanied by

the charge conjugation matrix (which was trivial before). O

The action (ZII) becomes

1 1
/d4x Tt F, + F* + /d4x Tr {—ZFWF‘“’ +V, H'V'H — S T

o 0
SYM = 3555

g3
+ %W‘Vwﬁ - %(vudju - vud’u)_&m[ + 'JJ[H; 'JJ] - % VW[Ha '@lﬁw]} .
(2.10)

i

22

1

;
YulH' 9] Vi

Now let us rewrite the supersymmetry transformations for these new fields. But before we
introduce all set of the twisted supercharges:

A 0 = AaQ
aQA,ou Qp,l/ = Ouv aQA,d'

Q“:O'H

Having redefined the parameters of this transformation in the same way as the gluino fields

€3, ¢ (1, (, ¢M we can easily deduce the action of operators Q, Q, and Q;w on the fields. We
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have
OH =0, Q.H =2y,
QHT =29, Q. H' =0,
Oy, =20V2V,H, Q) = —4(Fu)" +2ig,.[H, H), 2.11)
Qi = 2[H, HY, Qu  =2V2V,H',
Q&uu = —Q(Fuu)_v QMZ)M = _Qiﬁ(guvaHT o ngpHT)_’
QA, = —it,, QA = —igut — 2P,
Q.H =0,

QNVHT = \/5'@[;;“/7

QW¢/D = _Qi\/i(gupva = GupVuH) ",
Qmﬂz = Z(FHV)_a
QNV’JJPT =- (gpu(er — Gru(Fpv) + grv(Fpp) ™ — ng(Fw)i)

+ Z.(g,upgl/‘r - g,u‘rgup)7 [H7 HT];
QuuAp = _i(gupwu - gup¢u)7'

where we denote by

1 .
(F,uu)iz 5( ,uu:FZ*F,uu)

the (anti)self-dual part of the antisymmetric tensor F},,. It worth noting that 1, and Q,, are by
definition anti-selfdual.

One should not be worried about the inconsistency, which appears at first sight in two first
lines. Remember the remark before ([ZI0).

The crucial observation about the action ([ZI) (made for the first time by Witten [89] in the
context of the Donaldson invariant theory) is that it is Q exact up to a topological term (22).
More precisely we see that

Synm = Sm [Q {167:% /d% Tr ((FW)_@Z’“’ — iRV HY + i H, HT]) H . (2.12)

In this computation we have used the equation of motion for 15,“,:

(V;ﬂﬁu - Vﬂbuf = \/§[H, ’Jjuu]' (213)

This is an inevitable price to pay for the integration out auxiliary fields f(z), fT(z) and D(x) —



24 2 N =2 Super Yang-Mills theory

three degrees of freedom, therefore three equations of motion to use.

The operator Q is nilpotent up to a gauge transformation (with the parameter —2v/2H). To
see this we should use the equation of motion for 1%,, @213). Thanks to this property we can call
it the BRST-like operator. As we shall see, the suffix “like” can be, actually, removed.

Remark. The topological term (3) is Q closed. Indeed

Q/d‘*a:FW * FHV = 2i/d4a: (Vb — Vi)  F* = —4i/d4a:1/)uvp * F =0

thanks to the Bianchi identity. O

2.6 BV quantization vs. twisting

In previous section we have obtained topological action by appropriate twisting of A = 2 super
Yang-Mills action (JI). However, in order to perform some field theoretical computations we
should do some extra work.

First of all, as we have mentioned in passing by in the end of previous section the algebra of
twisted fermionic operators is closed only on-shell. And, as usual in gauge theories, in order to be
able to compute path integrals we should fix the gauge. This step requires to introduce a nilpotent
(off-shell) BRST operator Q.

An amazing property of the action (2I0) is that it can be obtained by an appropriate gauge
fixing procedure for the topological action [ T3, KA.

9o .,
Stop = m/d% Tr{FW*F“ } (2.14)

Therefore we can remove the suffix “like” and call Q the BRST operator.

The topological action is invariant under the following transformation:
Ay— Ay — Va4 oy,

where o, () is a g valued function constrained by the condition that A, (x) + o, (x) belong to the
same gauge class that A, (x), whereas a(x) is an arbitrary g valued function. The invariance with
respect to the last term is noting but the usual gauge invariance. The invariance with respect to
the first transformation is guaranteed by the Bianchi identity for the curvature Fj,, .

Following the standard BV procedure [3] one introduces the ghosts corresponding to each
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| Fields [ Aul ¢ [$u] ¢ [ [Huw|n ]| & [xw]| ]
Ghost number 0 +1 | +1 | +2| O 0 -1 -1 -1 | -2
Statistics B F F B || B B F F F B

Table 2.1: Ghost number and statistics

symmetry, ¥, and c. These fields are supposed to be fermions with associated ghost number +1.
However, the direct implementation of the gauge fixing procedure leads to the singular Lagrangian.
This is the consequence of the fact that o, and o, —V 5 (where 3 is an arbitrary g valued function)
produce the same transformation of F),,. Therefore, further gauge fixing is needed. To this extent

we introduce a ghost for ghosts ¢ which is boson with ghost number +2.

To fix the gauge we should impose the following conditions on fields (and ghosts):

VHA, =0,
(FMV)_ =0,
VHy, = 0.

To do this we will need some supplementary fields. Namely, for each gauge condition we
introduce the Lagrange multiplier: bosons b, H,,,, and fermion n. Note that H,, is anti-selfdual.
To them we associate the following ghost numbers: (0,0, —1). Moreover, we will need a set of
antighosts: ¢, x,, and A with the following ghost numbers: (—1,—1,—2). x,, is anti-selfdual. In
order to simplify the references let us put the ghost number and the statistics of the introduced

fields into the Table I

The BRST transformation for the ghosts which corresponds to this symmetry is the following:

QA, = -V,c— i,

Qe = L{e.ch -6,

Qwﬂ - _iv,u(b - i{C, w,u}a
ngﬁ = —i[c, d)]

(2.15)
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For the Lagrange multipliers and antighosts we have the following expressions:

QE = b, Qb = Oa
QXW = Hyu —i{e, X }s QHHV = —i[, xpu] — ile, Hyws (2.16)
Ax  =n—ile ], Qn = —i[p, \] — i{c,n}.

One can see that the operator Q is nilpotent. Last two lines is rather unusual for the antighost-
Lagrange multiplier transformation. However, one can check that the nilpotency condition is

fulfilled [56].

Now to construct a gauge fixed action we will need the last ingredient, the gauge fermion. This

function has the ghost number —1. The appropriate choice is the following;:
1 4 Lo _ 1 i uoL - Ar

The gauge fixed action can be written now as follows Stop + AV

In order to get the action ([ZI2) we add to the gauge fixed action another Q-exact term QV’

where
/ i 14

This term does not spoil the non-singularity of the kinetic term of the Lagrangian [89]. It is only

responsible for the introduction of a potential.

In order to simplify further formulae we will slightly change the notations. Namely, instead of
using the N' = 2 gauge multiplet we will use the topological multiplet. Pragmatically it means
that we redefine our fields as follows:

¢ =—2v2H, \=-2V2HT,
) (2.18)

Xpv = iuv; n= _4¢-

Remark. Note that if we forget for a moment about the multiplet which is responsible for gauge
fixing, the multiplet (c, ¢, b), then the action of the BRST operator coincides with (ZI1I) if we use
the introduced notations and use the equations of motion for H,,: H,, = —2(F,,) . Moreover,
the BRST operator Q becomes the same as the twisted supersymmetry operator (EZI1]). However
in order to get the nilpotency of the BRST uperator up to a gaguge transformation we should use

the equation of motion for x,, EZIJ). O
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2.7 Dimensional reduction

In that follows it will be useful to keep in mind one more way to get N' = 2 supersymmetric

Yang-Mills action.

Let us start with the six dimensional Minkowskian N' = 1 super Yang-Mills theory. Suppose
that the space is compactified in the following way: R'3 x T? where T? is a two dimensional torus

described by coordinates z* and x®:
et =2t +27Ry, 25 =25+ 27Rs,
where R4 and Rj are the radii of compactification.

Consider two six dimensional Weyl spinors which we denote as ¥4, A = 1,2. We can buid
from them a single object, the symplectic Majorana spinor (see the Appendix [A] for some details)

which is defined by the following condition:
UA = ABCTUT = ABCI TV, (2.19)

where we have denoted I'l = Wé, I =0,1,2,3,4,5. The matrices Cg’ and 76’ are defined in the
Appendix [Al

The supersymmetric action can be written as follows:

1 -
SN—1,d—6 = /d4x Tr {—ZFUF” + %\I!APIVI\IJA} : (2.20)

92 hV

Now suppose that the radii of compactification of coordinates z* and 2 is so small that all the
fields can be considered as independent of them. It follows that Fj4 = V, A4 and F;5 = V,As.

Therefore if we define
_ Ay +iAs gt — Ay —iAs5

H=—5 T=—5"

(2.21)
we obtain Fy5 = [H, H'] and therefore

1 1 1
—JFr ! = <L Fu PP 4V HVMH — [, HT
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Now let us represent Weyl spinors ¥4 in the following form

vl

oA _ A
0

0

Then the symplectic Majorana condition can be recast as follows:

A = EABedB%/;Bﬂ-
Recall that for four dimensional Weyl spinors bar means the complex conuugation: ¢ = *.
Consequently we can write

1

V2

i

-
\/51/) [H,ia}.

Z' _ . —
§\I/AFIV1\I/A = iy AotV s — —=va[HT, 4] +

Therefore the N' =1, d = 6 supersymmetric Yang-Mills action (220) becomes exactly the N = 2,
d = 4 action 2.

2.8 DMatter

Let us finally describe the matter in the A' = 2 super Yang-Mills theory [B5, B8, 47]. The action
for the hypermultiplet coupled with the gauge multiplet can be written in the N/ = 1 superfield

language as follows (for the sake of simplicity we consider only one matter multiplet):

Spmat = %vg% /d%; Tr {d29d29 (QT 2V Q+Qe?V @T) + 2 Re (/ d20v2Q@Q + m@Q) } .

where m is the mass of the multiplet.
Consider first the massless case. In that situation after integration out the auxiliary fields X

and X we arrive to the following expression:

Smat = /d4x Tr {VMQLVH(]A + ix“UZquXd + iiaagavuid

hY g3
+XXa — Xad X+ V24,00 — V200G e + V208X — V2R a0

1 A e B, oa
G AR 5 (qT TP 4 ¢' T qA) CJLTé’qB}.
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For the matter multiplet the topological twist consists of the identification ¢* — ¢%. One can
see that the twisted supersymmetry transformation (LIZ) is not closed off-shell. It happens since
we have already integrated out the auxiliary fields X and X. In order to close the transformation
we introduce another set of auxiliary fields: h, and l~za. As in the case of the pure Yang-Mills

theory we see that their transformation properties differ from properties of the old ones.

In order to simplify the formulae we introduce new fields %, pg, Vo and 7% as follows:

\/5526‘ = ;dea Xa = \/§Va7

V2% = fla, X™ = V20"

Closed off-shell (up to a gauge transformations) BRST operator Q is given by the following
relations:
Q% = p, Qu = g,
Qql = fia, Qe = —qlo,
Qr* = h*, Qh* = —0%¢,

Qg = hay, Qho = Qv

Remark. The choice of the off-shell closed BRST transformation is not unique (see, for example,

E8]). However, this one makes the geometrical properties of the action clear. O

Using these formulae one can check that the matter action can be rewritten as a Q-exact

expression: Spat = QVinae where

1
hY g3
+ 207 (04, Vpa® — ha) =2 (Vualo™® = 2%) va}

1

i — UV, 3 — re% &
Vinat = /d4xTr{_§XMquJM) 50" =7 (uaAq — i )

4 (2.22)

Now consider the general case, where the mass is not zero. After integration out all the auxiliary

field in this case we obtain the following supplementary terms in the action:

1 =& ~
Smass = hv—g2 /d4 Tl" {_quLqA + ﬁquHqA + ﬁquHTqA —mx )Zd - mXaXa} .
0

The presence of the mass leads to the deformation of the supersymmetry transformation ([CT2).
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It turns to be that the proper version of the off-shell BRST transformation is given by

Q¢% = p%, Qu* = ¢g* + mq®,

|
=

- - o (2.23)
Qv = h*, Qh% = —0% — miy,,
Qg = ha, Qha = OV, + MUy,

Note that this deformation leads to a new property of the BRST operator. Before we had
Q% = §(¢)

where G(¢) is the gauge transformation with the parameter ¢. Now the new BRST operator
satisfies the new relation:

Q? = G(¢) + F(m).

Here F(m) is an operator which does not affect on the gauge multiplet, but multiplies all the fields
of the hypermultiplet by £m. This transformation can be seen as an infinitesimal version of the

following transformation:

Q- Q =e"Q, Q—Q =e™Q

Therefore, this operator can be identified with the flavor group action. In the case when we have
only one hypermultiplet, the flavor group is U(1). Note that usually one describes the U(1) action

as a multiplication by €. It can be achieved after the redefinition m — im.

Remark. The deformation of the BRST operator described before provides only the part of the
required mass term. However, the missed part can be restored after adding to to the action a

BRST exact term QViaes where

1 4 1 & 5
Vinass = hv—gé /d zTr {_Zm (qaﬂ’ + Haq )} (224)
O

Remark. Since the operator Q is not nilpotent, the fact that the full action

S = Stop + Q (VYM + V/ + Vmat + Vmass)
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is BRST invariant does not follow from the fact that it is (up to the topological term) BRST-
exact. It follows from the invariance of Vin, V7, Vinat and Vinass With respect to the transformation

generated by Q2. O

2.9 M-theory derivation of the prepotential

In this section we will briefly describe some aspects of the relation between the N' = 2 super
Yang-Mills theory and string theory. Namely, we discuss how to get the curves which are essential
element of the Seiberg-Witten theory using some stringy arguments. Also we describe the stringy
interpretation of the auxiliary algebraic curve, which appears in the Seiberg-Witten theory. The
reference is [90], see also [32, B4].

We consider a gauge theory described on the language of type ITA theory in R'?. The coordi-

nates are denoted by 2%, z!, ... 2°.

We use the following setup (see figure 2I): some NS5 branes with D4 branes suspended between

them. The worldvolume of NS5 branes is along 2°, z!, 22, 23, 2* and 2°. Their positions correspond

8

to different values of #%. They have 27 = 2% = 27 = 0. Their world volumes are described by

20, 2!, 22, 2% and 2%. Since in the 2 direction the world volume is finite, macroscopically it

is described by 2, ...23, that is, the worldvolume is four dimensional. One considers the gauge

theory on D4-branes.

The Dp-brane action which generalizes the Nambu-Goto string action is the following

_% /dP+1€\/_—,y habaaxl‘abxl’gpy(x) —Ap(p— 1)] , (2.25)

where g,,,, (x) is the external metric, 4 is the internal Dp-brane matric, A, is a constant, and T, is
the Dp-brane tension. In this section greek indices u, v, ... run over 0,1,...,9 and for a Dp-brane

small latin indices a,b,... run over 0,1,...,p.

This action implies the follwing equations of motion for the brane coordinates:
/=y Oyt + s/—'wab&lxpaba:ff’;T (£)=0

where I'f_(z) is the Cristoffel connection for the external metric.

The 2% position of an NS5 brane depends only on z* and 2°. Let us ntroduce the complex
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NS5
D4
D4
D4
Z=x%ix>
x0 x1 x2,x3
%10
X6
x7,x8,x°

Figure 2.1: M-theory setup for SU(3) gauge theory
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coordinate z = x* + iz5. The equation for % for large z becomes

azagmﬁ(z,é) = 0.

If we denote z-positions of D4 branes which are attached to an NS5 brane from the left by al(.L)

(R)

and positions of those D4 branes which are attached to it from the right by a;,”” we can get the

following solution for z5:
qr ar
x5 :CZln‘z—aEL)‘ —CZln‘z — agR)‘ )
i=1 i=1

where C is a normalization constant.

If between two NS5 branes there are N D4 branes, then the gauge theory will have SU(N)
as a gauge group (it can be shown that the U(1) factor is frozen). To find the effective coupling
constant let in the action ([Z23)) integrate out the internal Dp-brane metric. In this way we get the
induced volume action. In order to consider the gauge field which lives on this brane we should

deform this action to the Born-Infeld one:

—T Y2 / d5§\/ — det (nindueed 4 F1) &~ Constant — TA3/? / d*ad(a®) F,p F

= Constant — TyA>/? (m’6(z, z) — "%z, Z)) /d4a:FabFab

where Fyy is the field strength tensor, 2/%(z, z) and 2”/°(z, z) are the 2° positions of NS5’ and NS5”
branes respectively. Constant is proportional to the D4 brane volume. In this computation we
have used the fact that F},, is independent of 28. The coupling constant of this theory can be read

from the last expression:

3/2( 16, _ 6, -
20D = 4T4)\4/ (x’ (2,2) —a” (z,z)) :
The logarithmic divergence in large z is interpreted as a one loop g-function contribution of the
four dimensional theory.
Type IIA superstring theory can be reinterpreted as M-theory on R1? x S'. The eleventh
coordinate x'° is supposed to be compactified on a circle with radius R: z'° = 2! + 27 Ry. Then

the previous formula becomes

xﬁ —|—ia:10 qL dr
s=—p— = Zln (z — agL)) — Zln (z — agR)) )
10 i=1 i=1
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. . i O .
If we then introduces the complex coupling constant 7 = —— + or we can write
g T

—it(2) = §'(2) — §"(2).

Note that 7(z) is a holomorphic function on z.

Type ITA NS5 brane can be interpreted as an M5 brane with a fixed value of 2'°. Type ITA D4
brane can be seen as an M5 brane wrapped over S'. Therefore we arrive at the crucial observation
that NS5-D4 setup can be seen as a single M5 brane embedded in R'? x S! in a complicated way.
The worldvolume of this M5 brane can be described as follows: it fills the four dimensional space
of the gauge theory: z°, ..., 2%, it is located at 27 = 2® = 2% = 0. The intersection of the rest of
11-dimensional space and this M5 brane can be described as two dimensional subspace living in
R3 x S'. Another viewpoint to this two dimensional subspace is the following: one introduces in
the four dimensional space R? x S! a complex structure, defined in such a way that z = 2% + i2°
and s = % are holomorphic. Then the two dimensional subspace in question is an algebraic
curve. The pcl)?nt is that this curve is essentially the complex curve which appears as an auxiliary
object in the Seiberg-Witten theory.

In order to find an explicit expression for the curve we introduce a single valued complex

variable y = exp {—s}. Then the curve is described by the equation
F(y,z) =0.

The degree of F' as a polynomial on y is the number of the NS5 branes. Therefore if one considers
SU(N) theory the only quadratic polynomials are needed. If one wish to consider the pure Yang-

Mills theory this polynomial gains further restrictions and has the following form

N
F(y,2) =y’ + [z =)y + 1.
=1
And this is exactly the Seiberg-Witten curve for the SU(N) model.

One can go further and incorporate D6 branes in order to consider models with fundamental
matter. To do this one should replace R? x S! by a non-trivial S* bundle over R?\{singularities},
known as multi-Taub-NUT space.

If one wishes to incorporate non-trivial matter multiplets in the theory, such as symmetric and
antisymmetric, one should also introduce orientifold planes.

Summarizing this discussion we can say, that the M-theory provides the solutions for numerous
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models. Therefore the independent way to compute the effective action can be seen, in particular,

as a test of the M-theory.
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Chapter 3

Localization, deformation and

equivariant integration

In this chapter we describe some essential tools which will be used to compute the prepotential
for the low energy effective action. First of all we describe some aspects of the localization and
find that the functional integral is localized on the instanton moduli space. When we describe the
ADHM construction for this moduli space. After that we discuss some general properties of the
equivariant integration: we introduce Thom and Euler classes, discuss the Duistermaat-Heckman
formula. And finally we describe the deformation of the BRST charge, which will allows us to link
the prepotential with some integrals over the instanton moduli space.

Now we perform the Wick rotation and therefore lend to R*.

3.1 Localization

In this section we describe how to reduce a functional integral, which represents a vacuum expec-
tation for a quantity well chosen to a finite dimensional integral for the case of the topological field
theory.

Consider first a pure Yang-Mills theory, described by the action S = Siop + Q(VYM + V). Let
O be a Q closed observable: QO = 0. For such a quantity we define its vacuum expectation as

follows:
(©) = [ DxO e (3.1)

where DX is the measure DX = DAD¢DYDnDxDHDA. Our computations will be based on

37
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the standard observation: if we add to the action a BRST exact term, the vacuum expectation
value remain unchanged. The proof is simple taking into account the BRST closeness of both the

observable O and the action itself we get
(oY = / DXO SV _ 0y 1 / DXOeS A5V = (0) + / DXQ(0eS6V) = (0).  (3.2)

Here we have used the Leibniz rule for the BRST operator and the fact the vacuum expectation

of a BRST exact term equals zero.

Let us therefore modify the action in such a way that it becomes Siop + OV where
~ _ 1
V= /d4x Tr {—XW <t(FW) - ZH,W) +z’Av#¢“} (3.3)

(we suppose, that the measure DX is already divided by the volume of the gauge group, and we
do not worry about the gauge fixing). Here ¢ is an arbitrary parameter. The whole integral does

not depend on it provided it does not lead to new singularity of the Lagrangian.

If we integrate out the Lagrange multiplier H,, we arrive to the following expression for the

action:

S = Stop + / dz Tr {—tQ(FW)_(F“”)_ X (V by — Vo)™ + iV, + iAv#vm} .

Since the integral does not depend on ¢ we can take ¢ — oo limit. We observe that in that case

the integral localizes on the space of the solutions of the self-dual equation
F =*Fy,. (3.4)

Remark. Even though the second term seems to be negligible with respect to the first one, this is
not the case. In fact, it serves to balance the Faddeev-Popov determinant, which comes from the

first term. O

The space of the solutions of the selfdual equation is finite dimensional. Therefore the path
integral can be reduced to a finite dimensional integral, which can be (in principle) computed

exactly.
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3.2 ADHM construction

Now it is a time to describe the moduli space of the solutions of the selfdual equation, the instanton
moduli space. It is given by the ADHM construction [2] There are a number (see, for example,
[d, 41, 301, 29, 28, B1]) of introduction to the subject. We pick some important details from them.

The ADHM construction is gauge group dependent. It exists only for the classical gauge groups,
that is for SU(N), SO(N) and Sp(N). Consider first the simplest case, the case of SU(N).

3.2.1 SU(N) case

In order to construct the self-dual connection in the SU(N) case we introduce a complex structure

on R* with the help of the euclidean o-matrices:

29 —ixd —ipl — a2 21 —2

BT, = = . (3.5)

Yad = Gas 1y 2 .0 03 x
s -+ Zo 2

Moreover we need the following data: a (N + 2k) X 2k complex matrix which depends linearly

on the coordinates:

Ay = As + BZaa-

We suppose that the matrix Ay has maximal rang 2k. The next ingredient is an annihilator of
A which we denote by v(zx):
At = 0. (3.6)

v is a matrix N x (2k + N) normalized as follows:
vl =1y. (3.7)
Having this data we can write the expression for the connection A, (z) as follows:
Au(x) = v’ (2)8,0(x).

One can easily check that this connection is hermitian: Af, = A,,. Therefore it is a U(N) connection
in the fundamental representation.

Impose on A, the factorization condition:

ATAL = §9R7, (3.8)



40 3 Localization, deformation and equivariant integration

where R(x) is an invertible k& X k complex hermitian matrix.

Since the rang of the matrix A, is maximal and taking into account ([BZ) we conclude that
P = ool = Lopsn — AgRAT.
It follows that the curvature is self-dual:
Fu = 0,A, — 0,4, —i[A,, A)] = —2in!,, v B*RBLvr; ..

Remark. We have claimed before that A, is a U(N) connection. However the trace part of this
connection can be gauge out. Indeed, a solution of the self-dual equation satisfy also the Yang-Mills
equation. Therefore we have V,F'* = 0. Taking the trace of this equation we get 9, Tr F** = 0.
It follows that

0= /d%Tr{A,ﬁM Tr F*™} = —% /d‘*xTrF,w Tr .

Therefore Tr F,,, = 0 and Tr A, = O,a. Thus we can say that A,(x) is, in fact, an SU(N)

connection. O

Let us express the factorization condition ([BX) in terms of A, and B®. Having develop on x*

we get:
1
Bt ,B° = 5556%@,

BTaAd = ATdBou
. 1 . .
T — 259417 4.
A Ay = 255A Ay .
Note that the first and second conditions can be packaged in the following one: A48, = Bf A4.

The meaning of the number k can be clarified by means of the Osborn identity [73]
Trtuna Flu * F* = —(9,0")* Indet R. (3.9)
The factorization condition (B8] implies
IR = AT A+ AT B + 2t Bl A + T BI B
It follows that in the limit x+ — oo we have the following assymptotics:

R — %szlBa.



3.2 ADHM construction 41

Therefore exploiting the asymptotic expansion for R(x) we get

4k
0,0" TrpynaIn'R — —— when  z — oo.
x

Taking into account that for SU(N) we have 2N Treyng Fj * F#*Y = Tr F,, * F*, and using

the formula ([Z2) we conclude that k is nothing but the instanton number.

Neither (BF) nor (BX) changes under the transformation
Ay — AL =UA;M and wv—v' =Uv (3.10)

with U being a (N + 2k) x (N + 2k) unitary matrix and M being an invertible one. This freedom

can be used to put the matrix B = (B!, B?) into the canonical form

0
1, ®1,

B:

Then the relevant data is contained in the matrices A4 and v which can be represented as follows:

Si Sy T
A= (Aj, A) = , v=
XN®O-H Qa

Matrices Sy transform under the space-time rotations as righthand spinor, X* as a vector, T' is a

scalar, and @ is a lefthanded spinor.

Having fixed the form of the matrix B we still have a freedom to perform a transformation

BI0) which can be read as

S = Sh =UnSaU, Y, XM — XM = U X'U, Y,
(3.11)
T+ T = UNT, Qo Q= UrQq

where U, € U(k) and Uy € U(N).
The factorization condition ([BR) requires the matrices X#* to be hermitian: X wt = X# and

also the following non-linear conditions to be satisfied:
= AT A, =0,

These conditions are known as the ADHM equations. They are usually written in slightly
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different notations. Namely, let
J=S;, I=5Ss", Bi=X"-iX® and By=—iX'+X2
Then the ADHM equation are

MR:—,U,B:IIT—JTJ"‘[BLBI]"'_[B?’B;]:07
L (3.12)
pe = 5(p' —ip®) = p~ = 17+ By, Bs] = 0.

If we consider two vector spaces V = CF and W = CV then I, J, B; and By become linear operators
acting as

I-wW—-vV, J:V—-W, and By,By:V — ).

The space of such operators modulo transformations (BITl) is the instanton moduli space.

The residual freedom (BII) corresponds to the freedom of the framing change in V and W.
Framing change in W corresponds to the rigid gauge transformation, which change, in particular,
the gauge at infinity. Sometimes we will denote the group of the rigid gauge transformations as
Go.

The change of frame in V becomes natural when one considers the instanton moduli space as a
hyper-Kéhler quotient. Indeed, the space of all (unconstrained) matrices A, has a natural metric
dA'*d A, and the hyper-Kihler structure which consists of the triplet of linear operators Z* which
together with the identity operator is isomorphic to the quaternion algebra. These operators act

as follows:

T'As = —imia" Ag.

The action of the unitary group U(k) described by (BII) is Hamiltonian with respect to each
symplectic structure. The Hamiltonian (moment), corresponding to the i-th symplectic form and

the algebra element £ € Lie(U(k)) is

pe = —imia” Tr(EAT* Ap).

Hence the ADHM equations together with residual transformation can be interpreted as the hyper-
Kéhler quotient [45]:
My, = p~1(0)/U (k).

We call the group which is responsible to the change of frame in V the dual group. In the case
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of U(N) the dual group is U(k).

3.2.2 Solutions for the Weyl equations

Before exploring other classical groups SO(N) and Sp(N) let us pause and consider the solutions

for the Weyl equations in the instanton background. That is, consider the following equation:
vda"r/)a = 5M7dav,u¢oz- (313)

For the fundamental representations of the gauge group we can get a simple formula for the &

independent solutions which can be arranged to the N X k matrix [2]
P =vTB R = QR. (3.14)
One can show that thanks to the identity [I8]
Yap® = RBT 0! B*R = —iauam
the following statements hold [T7:

/d%&ﬂﬁa = 21, /d4a:1/;a1/)0‘3:“ = —7m2X*, and
(3.15)
VPV Tas — ——25’@ when z — oo.
T

Taking these equations as the definitions of X# and Sg one recovers both the ADHM constraints
and the fact that the matrices X* are hermitian.

Let us look closely to the equations (BH),B). The first equation can be solved for Q,:
Qal(z) = —(X +2) H(X +2),45T ().
The second equation gives the following condition for T'(x):
T(z)t (le S (X + a;)”sfd) T(z) = Lyy. (3.16)

The matrix in the brackets is positively defined and therefore there exists a matrix M (z) such
that
M(z) M(x) = 1y + Sa(X +2)2sTe. (3.17)
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It follows that g(x) = M (z)T(x) € U(N). Otherwise here we have found the explicit dependence
on the gauge group.
Remark. When we consider group SO(N) or Sp(N) the equations (BH), BI0) and BID) are still

valid (modulo some minor changes) provided the following convention is accepted:
e for SO(N) we replace (-)7 — ()T,
e for Sp(N) we replace (-)' — (-) Jan.

In particular the equation (BI) implies g(x) = M (z)T(x) € G. O
Let us also briefly describe the solutions for the Weyl equation in the adjoint representation.

Let us use the following ansatz:
Yo = iv' (CRBY, — BoRCT) v (3.18)

where C is a complex k x (N + 2k) matrix with constant coefficients. It follows by definition that
eamﬁﬁ = 1), therefore it belongs to the adjoint representation.
Computation shows that 1, will be solution of the Weyl equation if the matrix C satisfies the
following condition At%C +CTA% =0, that is
ATC+Cf A% =0,
(3.19)
BfoC—C'B, =0.
Lefthand sides of these equations are hermitian and anthihermitian matrices k£ x k. Therefore
they give 4k? real conditions on C. Matrix C has 2k(2k + N) = 4k? + 2kN real coefficients.
Therefore the rest is 2kN solutions of the Weyl equation as it should be.

3.2.3 SO(N) case

The extension to the SO(N) case can be obtained with the help of the reciprocity construction
B13).

Note that according to the Table [BJl we have loq; = 2k lgyna for SU(N) and Sp(N) whereas
lagj = hYlguna for SO(N). Therefore formula [2) together with ([BJ) shows that in the case of
SO(N) to obtain the solution of the self-dual equation with the instanton number k& we should
replace k by 2k in the construction for SU(N).

Let us choose the Darboux basis in V = C?*, which corresponds to the split C?* = C? @ Ck.

Correspondingly, we split the index which runs over 1,..., 2k into two: the first, A = 1,2, and the
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second over 1,...,k. Thus the solution for the Weyl equation can be written as the set of four

N X k matrices 1, 4. These matrices can be represented as follows:
1bozA = wMO'ZA'

The twisted index p that appears in the righthand side does not correspond to a Lorentz vector.

The Weyl equation can be rewritten now as a set of four equations:
V9, =0 and (Vi) =0. (3.20)

It worth noting that these conditions mean that i, is orthogonal to the gauge transformations

and that it satisfies the linearized self-dual equation.

The condition that —iA,, belongs to the algebra of SO(NNV) implies that it is real antisymmetric
matrices. Hence the equation for 1, has real coefficients and its solutions can be chosen real as
well. The fact that 1, are real means that ¢,0 , can be considered as a quaternion. We recover
here the quaternion construction introduced in [4]. The possibility of this expansion with real

coefficients implies that S; can also be expanded as Sa4 = Spaf; + Where S, are real.

Using then the definition of X* [BIH) we derive the following statement:
ccaXMApeBl = (X1 P,
or, if we introduce the symplectic structure Jo this can be written as

JQkXHJ;fk — x+T

The dual group is a subgroup of U(2k) which preserves this condition. It is the group
Sp(k) C U(2k).

The matrices X* and S4 can be represented as follows:

yr  zet ,
XH = : Si=J=(K,K') and S;=1I"=(-K* K*) (3.21)
zrn yr?t

where Y# is an hermitian matrix and Z* is an antisymmetric one.
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Let
Pia Qip

By = .
Qi2 Piy

(3.22)

where Q12 and Q] , are antisymmetric matrices. The ADHM equations for SO(N) becomes:

M, N/ M, N/
pe = : ¢ =0 and pr= 8 ® =0 (3.23)
N(C _Mg NR —M]g
where
Mg = [P, Py] + Q1Q2 — Q4Q1 — K 'K,
N(C:Q1P2_P;Q1+PFQ2—Q2P1+KTK,
N = Qi Py — PQ4 + PiQy — Q4P — KK,
and ,
Mz=Y" ([PS, P+ Q. Q. — QS'QS’*) L KT - KK,
s=1
2
Ng = Z (QSPST — PQs + Qs Ps — PSTQS'*) ~ KTK"™ - KK,
s=1
2
Ne =3 (/P - PIQ + @ PT - PQS) - KK - KK

Il
-

S

Note that N¢, N, Ng and Ny are symmetric matrices.

3.2.4 Sp(N) case

The group Sp(N) is a subgroup of U(2N) which preserves the symplectic structure Jon. The
ADHM construction for Sp(N) can be obtained by imposing some constraints on the ADHM
construction for SU(2N). A quick look at the Table [BJl shows that in this case there is no
doubling of the instanton charge.

Let us choose the Darboux basis in €2V, which corresponds to the split C?¥ = C? @ CV,
Jon = J2 ® Jn. Correspondingly, we split the index which runs over 1,...,2N into two: the first,
A =1,2, and the second: [ =1,..., N.

We can expand the solution of the Weyl equation as follows ¢4 = ¥,0% 4. The fact that —iA,
belongs to the Lie algebra of Sp(IN) imposes the following condition:

Jon A Jon = —A,.
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| G || Gp | Size of Ag | Size of v | Yy | w |
UN) | UR) | kxN+2k | NxNt2k [CF[CY
ON) || Sp(k) [2kx N+ 4k | NxN 14k | CF | RY
Sp(N) || O(k) | kx2N +2k | 2N x 2N +2k | R*¥ | C?V

Table 3.1: Spaces, matrices, groups

The solutions ), can be chosen to be real. Thus the reciprocity formulae ([EI3) show that in that

case the matrices X* are not only hermitian, but also real and consequently symmetric. The dual

group should preserve this condition and we arrive to the conclusion that this is O(k) C U(k).
The reality of 1, implies also that the matrices S; can be expanded as Saq = S0, where

S, are real. Hence for the matrices I and J we have

J= and [T = : (3.24)

Hence the ADHM equation for Sp(N) take the following form

pc = K'K' — K''K + [By, By,

pr = KTK* — KK + K"K — K''K' + By, B}] + B2, Bj)].

Here the matrices Bj 2 are symmetric. We see that puc and pg are antisymmetric matrices.

3.2.5 Spaces, matrices and so on

To simplify further references we have put in the Table BI]) some relevant information about the

ADHM data. In that follows we will denote the dual group (in the sense of [T4]) by Gp.

3.3 Equivariant integration

In the previous section we have seen that the instanton moduli space, where the functional integral
localizes to, can be seen as a space of linear operators I, J, By and Bs satisfying the ADHM
equation ([BI2) and considered up to transformations generated by Go, X Gp. The non-linear
ADHM equations can not be solved for k > 3. Therefore, we should find a way to perform required
integration without introducing local coordinates on 9.

This task can be accomplished with the help of the equivariant integration [G8, [[6]. Math-
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ematically the problem can be formulated as follows. Let X be a manifold. Let G be a group
which acts on this manifold. We denote the left action by g-x, g € G, x € X. Let M C X be a
submanifold of X on which the group G acts freely. Then we wish to express the integral over the

factor N = M/G in terms of the integral over X.

3.3.1 Integration over zero locus

Let us do it step-by-step. Suppose we have a closed form « defined on M. How to express / «
as an integral over X? We will only need the case where M = s71(0), where s € ['(E) is a Sec‘évijon
of a vector bundle with a fiber F: F — E 5 X.

Let {x“}ﬂi:mlx be set of coordinates of X in a local patch. In order to make our discussion

sound field theoretically let us introduce an alternative notation for the base 1-forms: dx* = ¥*

and for de Rham differential d = Q. Then we have:

Qut =, Qut = 0.

Let F be a vector space such that 7~!(z) ~ F for a point 2 € M. We should introduce a
multiplet (x, H) € IIF* & F* (x is a fermion, therefore it belongs to F* with changed statistics,
X € IIF*). In order to make the transformations for this multiplet covariant we should introduce

a connection on the bundle E. Let us denote it I',. Then we have
_ _ 1
QX =H— FM¢“X7 QH = _FNQ/JMH + §RW¢”¢VX'

where R,,, is a curvature for the connection I';,. One can check that Q2 = 0. In order to see that

Q2H = 0 one should use the Bianchi identity for R,

Remark. When the bundle FE is trivial (this is the case of the twisted N' = 2 supersymmetric
Yang-Mills theory) one has simply

Qy =H, QH =0.

Then we required formula is

/ a= / DaDYDHD " o e X (5(@) =3¢ H) (3.25)
M X
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where ¢ : M — X is the inclusion map, D(-) is a standard measure and we have used the fact that

if we formally replace in a form o = a(z,dz) all differentials dz* by Grassman variables ¥* we

/a = /Daﬂ)wa(x,z/)).

Taking into account the discussion in the section Bl we can see that the righthand side of

can write

BZ3) does not depend on ¢. Therefore one can compute the integral in the large ¢ limit. It gives
precisely the lefthand side.

3.3.2 Integration over factor

Let M be a manifold on which a group G acts freely. We wish to to express an integral over a
factor M /G as an integral over M. To do this we use the fact that de Rham cohomologies of M/G

are isomorph to so-called G-equivariant cohomologies of M (which we denote by HE(M)):
H*(M/G) ~ H:(M).

The latter can be described as follows. Let Q*(M) be the de Rham complex of M. Denote by
Fun(g) an algebra of function on g = Lie(G). These function will be graded in such a way that
n-th power homogeneous polynomial have the degree 2n.
Remark. Such an assignation is done in order to the Cartan differential (see few lines below) have
a definite degree. It can be understood from the physical point of view if we consider the degree
as the ghost number. Recall from the section B0l that ¢* = da* has ghost number +1 and ¢ € g
has the ghost number +2. O

Let the group G acts on the functions from Fun(g) by the adjoint representation, and on forms

G-action be induced by left action on M. When one introduces another complex
* * G
Qe(M) = (" © Fun(g))

where ()G means G-invariant part. Denote by V(¢) = ¢*V, a vector field on M corresponding to

¢ € Fun(g) and introduce the Cartan differential

Q= d+iy(g)-

Its square is the Lie derivative with respect to V(¢). Hence Q% = 0 on elements of Q5 (M). The
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cohomology of the Cartan differential Q are called G-equivariant cohomology of M:

HE(N) =1ImQ/ Ker Q.

Taking into account the isomorphism between H*(N) and H (M) we can identify correspond-
ing classes. Let a(¢) = a(¢,z,1) be a representative of the class which contains &. Then the
required formula can be obtained as follows. Let (-,-) be a G-invariant metric on M. In coor-
dinates we have (v,w) = g, v*w”. With the help of this metric we can raise and lower indices.

Then the required formula is

DrDYDFDADY .4
/ g= [ DrDYDIDADN iav, oy a(é, z, ). (3.26)
N=M/G M

Vol(G)

where we have introduced the projection multiplet (A, 7). The Cartan differential acts on it and
on (z,1) as follows:
Q= gk, Q' = VH(¢),
QX =1, 9n = [¢, .

Note that
AV (ANY* = Vo b + A ((Va, V)@ + 0 Va0 .

Therefore the A integral provides a delta function localized on

11
0" = (Vo Vo) 7' 5 OuVa = 0V ) 940"

Formula (BZ0) can be recast in more elegant form if we introduce the equivariant integration.
Let us choose a Haar measure on G. And let dg1des . . . déqim(g) coincides with the Haar measure

at the identity of G. Then we define a equivariant integration as follows:

dim G

fo= v /, 11 o [ alo)

1

Remark. In general, when the form «a(¢) is a polynomial on ¢, the integral does not converge. To
cure this one introduces a convergence factor e~2=(%:%) where (-, ) is a Killing form on g and ¢ is
a positive parameter. We will not need it since the form we wish to integrate is proportional to

delta function on ¢. O
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With this definition the formula [B20) takes the following form

/ a= j{ /DT]D/\ 1V (VY o
s71(0)/G s71(0)

3.3.3 Synthesis

Now let us put things together. In the general case which are interested in here the solution exists
when s is an equivariant section of E. It means that for any g € G we have s(g-x) = 0(g)s(z) where
0(g) is the image of ¢ in the representation ¢ of G which acts on F. This condition guarantees
that s71(0) is G-invariant.

We wish to express the integral of a closed form & € H*(N) over N = s71(0)/G as an integral

over X. Now Q means the Cartan differential. Therefore, it acts as follows:

Qat = y*, Qu = VH(¢),
_ _ 1
Qx=H -Ty'x, QH =¢*Tix —T,Y"H + §RWW¢”X,

QX =, Qn = [\ 9.

If, as before a(¢, x, 1) belongs to the same class as a then

/ _ DaDYDHDXDEDNDY 63540,V (.. )
s~1(0)/G

=/ Vol(G)

It can be rewritten with the help of the equivariant integration as follows:

/ o :f{ / DyDAXDHDy e’ 00V () 20 (6, 2, 4p).
s-1(0)/G X

3.3.4 Euler and Thom classes

Consider again (B2H). Since the integral does not depend on ¢ we can set, for example, ¢ = 4. Let

us compute the exponent. We have
~ i 1 o 1, 1 L1
1Qx | s+ §H = _i(H —1is)" — 28 +ixVsypr + ZxRWw“d) X + §X¢ T

where V,, = 0, + I', is the covariant derivative with the connection I',.

Let us now integrate out H. The integral is Gaussian and we arrive to

_ 1 1 1
iQxs —552 +ix Vst + ZXR#V"/)N"/)NX + §x¢“T£X-
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Using the general arguments we can show that (B22H) does not depend on s(x) (see [B2)).

Therefore we can simply set s(z) = 0. It leads to the following formula

/ a:/ DxD@[JDHDXL*aeiQ(XH%H) :/ faBugy(E) (3.27)
M X X

where g = e? € G and

1

Euy(E) = W

/H Dx e FX R W WX+ X6 TEX (3.28)

is the equivariant Euler class for a bundle F — F 5 X.

Remark. If Q is the de Rham differential when it becomes an ordinary Euler class

1

1 YR %
: Dy e X "9 x

Eu(F) =

If F=TX, and dim X = 2m then one can show using formulae for the Berezin integrals

1

Bu(TX) = fsm

Pf(R)
1
where R = §RWW‘¢” is the curvature form. Then thanks to the Gauss-Bonnet-Hopf theorem

/ Eu(TX) = xx,
X
the Euler characteristic of X. O

The integral (B2Z7) does not depend on s. Therefore we can introduce another version of the

Euler class:

1

| Dye S HiXVusdtF xR P X+ Exe TEX
dim /2 Xe :
(2m) nr

Euy(E,s) =
It can be seen as a pullback of s : X — FE of a universal equivariant Thom class ®4(E) € Q*(E).

The definition is the following. Denote by pair (z*, &%) the local coordinates of p € E. Let dz# = yH
) 1
and d¢* be the basis of 1-forms on E. Define I' =I',9* and R = §RWW‘@/J”. Then

1

1¢2 ) o 1 1 arpe
: Dy e~ 28 FX(AEFTE) F o xRix+ 5 xd" Tx
(27T)dlmF/2 nF

(I’g(E) =
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It is clear that Eu,(E, s) = s*®4(E).

Remark. Usually in mathematical texts the Thom class is defined in a slightly different way.
Consider the most explicit and simple example of the situation where dim F' = 2. In that case the

general formula for the Thom class is the following [66, [10]

Og(B) = p'(€%) (A€ +T€) A (d€ +T€) — p(€?) Euy(E, 0).

where the function p(t) is such that / P (€2)d%¢ = 1. It is clear that our construction corresponds
R2

p<t>=—§exp{—§}.

to the particular case

3.3.5 The Duistermaat-Heckman formula

Another useful tool which we are going to exploit is the Duistermaat-Heckman formula. It allows
us to express an integral over a symplectic manifold which is acted on by a torus T as a sum over

the T-stable points. Let us describe some relevant details.

Let M be a 2n dimensional symplectic manifold, w be its symplectic form. Let T acts symplecti-
cally, and suppose that its action can be described by a Hamiltonian (momentum) map g : M — t*,
t = Lie(T). The choice of £ € t defines the Hamiltonian h(£) = (u,£) and the action. It means
that the dh(§) = iy (gw. Let 2y € M be a fixed point of this action and we (7f) € t* a weight of
this action on the tangent space to xy. It means that on the tangent space to a fixed point z s the

T action can be represented by a block diagonal matrix with blocks

€os 2wy (§)  sin27mwq(€)

—sin2mw, (§)  cos2mwq (€)

Then the Duistermaat-Heckman formula states that

W' () _ e
/4 2 Mlon@) @ (3.29)

In that follows we will basically use the shorthand notation (wq(zy), &) = wa.

To prove the formula we note that if we introduce the Cartan differential Q = d + iv(¢) then
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Q(w — h(€)) = 0, therefore w — h() is an equivariantly closed form. Note also that for any form

/Qaz/da—i—/ iy =0
M M M

(the second term vanished since it is not a top form). It follows that for any Q closed form a and

[a=] ac,
M M

If we choose 8 = —tV,(&)y* (cf @ZH)) and o = e~ then using

for any T invariant form § we have

0B = —10, V" y” = 1(V(£), V(€))
and the standard localization arguments we arrive to (B2Zd).

Remark. When we deal with supermanifolds, which contain supercoordinates, the Duistermaat-
Heckman formula should be modified as follows: [] wa — [, wa® where €, = £1 depends on

the statistics of coordinate it comes from. O

It turns out to be easier to compute first the character of the torus element g € T:

Ind, = Z €q €Y.

This can be done with the help of the equivariant analog of the Atiyah-Singer index theorem taking
into account that the same quantity can be seen as the equivariant index of the Dirac operator.
It worth noting that when Ind, is derived equivariantely, the signs €, comes from the alternated

summation over cohomologies, and not from boson-fermion statistics.

Once we have Ind,, the passage to the Duistermaat-Heckman formula can be done with the

help of the following transformation (which can be seen as a proper time regularization, see section
E3):
> eae o [Jwa™. (3.30)
« «

This transformation is performed in two steps: first we perform an integral transformation which

converces €”* to Inw,. Then the exponent of the expression we have obtained Zea Inw, is

(0%
precisely the rifgthand side of the announced formula.
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3.4 Back to Yang-Mills action

Now it is time to look back at the action for super Yang-Mills. Consider first the pure Yang-
Mills theory. Having compared B1), &I7), B3), BZH), EZ) and &I we conclude that if O
is a gauge invariant BRST closed operator, when (O) can be considered as an integral over the
instanton moduli space of 61: € H*(9My,), which belongs to the same cohomology class as O. More

precisely

(0), => e [ O (3.31)
k=0 M

This is so since we have identified s = (F},,,)” and the group which we factor by is the gauge group
G={g:R* - G:g(x)=1g}. Note that the full gauge group is Grun = G X Goo, Where Go is
the group of the rigid gauge transformations, that is, the transformations at infinity.

Looking back to (ZII) and (ZZJ) we see that Q2 produces the gauge transformation with
the parameter ¢. From () it follows that if the supersymmetry is unbroken then at infinity

¢(x) — a, where a € g. The notation (-), means that the vacuum expectation is taken with

a
respect to such field configurations. Therefore, among others transformations, Q% produces the
rigid gauge transformations with parameters a;, [ = 1,...,r. Taking into account the discussion
in section and the finite dimensional construction of the instanton moduli space we can

schematically say that the full group of gauge transformations becomes the product G x Gp.

The finite dimensional version of the Cartan differential squares, therefore, to
9% = G(a) + F(m) + D(¢), (3.32)

where D(¢) is a dual group transformation.

Using the finite dimensional model for the instanton moduli space we can re-express the required
vacuum expectation as a sum of the finite dimensional integrals. And therefore make the problem
(in principle) doable.

In the presence of matter the situation is slightly different. First of all we note that if add to

the pure Yang-Mills action terms which correspond to (222) and 24 then we can identify
s=((Fuw) + iqg@wd;‘aqﬁa e Viud®):

the multiplet (v, hq) with (x, H) and (¢%, u®) with (z,%). When the vacuum expectation can

be localized to the moduli space of Seiberg-Witten monopoles, that is, to the solutions of the
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monopole equations
(Fu)™ +igho,, ga” =0,
e e (3.33)
b Vug* =0
up to a gauge transformation.

Another way to see the things is the following. First of all let us deform the action in such a

way that the first equation becomes
A
(Fuv) + EQLJNVanﬁ =0

with an arbitrary ¢. In the ¢ — oo limit the equation reduces to the self-dual equation. Therefore
the integral over the gauge multiplet localizes as before on the instanton moduli space.

To deal with matter we observe that after integration out field h* in [ZZ2) the action becomes
the equivariant Euler class [B28) for a bundle Dy, over 9 of the solutions for the Weyl equation.
Indeed, the action which follows from [EZZ2) forces fields to localize on the solutions of the Weyl

equation
o V,.q* =0,
ol V.t =0,
6“""‘0‘pr0¢ =0.
There are no solutions for the first two equations. The solutions for the third are given by (BI4)
for the fundamental representation and ([BI8) for the adjoint. The action on these solutions takes

the following form:

Sinat = —% /d4x Tr {7 (¢ + m) v + h%ha } (3.34)

The equation (B3] becomes

(0), = cribr / Oy Eu, (D) (3.35)

k=0 My

where g = (e™,e? e%) € Gr X Gp X Goo.

3.5 Lorentz deformation and prepotential

We have learned how to reduce the vacuum expectation to the finite dimensional integral. However

in order to get access to the prepotential it is not sufficient. We should further deform our BRST
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operator Q. Tt is already deformed in such a way that it squares induces Gp X Gp X G trans-
formation. We have another group with respect to which the action of the Yang-Mills theory is
invariant. This is the Lorentz group. The deformed Yang-Mills action can be naturally described

in the terms of so-called 2-background.

3.5.1 Q-background

In section 7 we have learned how to produce N = 2 super Yang-Mills action via dimensional
reduction of N' = 1, d = 6 super Yang-Mills action. While compactifying we have used the following
flat metric:

ds2 = g datda” — (da*)” — (d2®)>.

Now let the torus T? act on R"3 by Lorentz rotations. Its action is governed by the following
vectors:

Mo v Mo v
V4 _Q4Mllx 9 ‘/5 _Q5Mllx 9

where Q,",, a = 4,5 are matrices of Lorentz rotations. Since m;(T?) is commutative we conclude
that the Lie bracket of V" and V' should vanish. It is equivalent to say that matrices 4 and Q5

commute. Let us define the following metric [60), [Z0]:

ds? = g, (da" + VI da®) (da” + Vyda?) — (da*)® — (da)?

= Gyydalda’.
We have
Guv = Guv, G" =g = VIV,
Ga,u = Va,ua G = Vaﬂv

Gap = —0up + VIVy ., G = 5.

One can also check that G = det G;; = —1. Computation shows that this metric is flat when the

matrices 4 and 5 commute.

In that follows we will use the six dimensional vielbein eg‘]) which satisfies

ds% = guuegﬂ)esy)dxlde — ega)ef]a)dxlde.
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It can be represented as follows:

el =0, el = —Vd',
e =08 el =op.

Let us write the action (ZZ0) in this background, keeping the compactification.

vielbein we get

1 1
—Z\/—GFUFKLGIKG"L = —ZF(,)(J)FU)(J).
Computation shows that
Foywy) = Fus

Flaywy = Fap = Vi Fpp,

F(a)(b) = VaNV;)VFMV - FaVVE;V - Vaqu,b + Fab-

Let us introduce the complex combination of V* and Q,*, keeping in mind EZI):

1 . _ 1 .
V“:E(Vf—HV;), V“:E(Vf—zV;),
1 _ 1
Qt, = — (UH, +iQ57,), Q) = — (H, — Q5%
\/5(4 5"0) \/5(4 5"0)

The bosonic part of the action can be written as follows:

1 1 ) _
—1V —GFFr GG = B P+ (VuH + VPE,) (VHY + VPE,")

Using the

1 e , i
— S{[H H) = iV'VE,, —i (V*V,H - VIV, H) )

Note that when Q and © commute the last line can be rewritten as [H, H]* where

H=H—iV'V,, H'=H"—iViV,.

This shift can be explained as follows. Consider a function ¢ belonging to the adjoint representation

of the gauge group and to a representation of the Lorentz group. Let S,,,, be the spin operator for
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this representation. In the non-deformed case we had

L

Vo= s

(Va+1iV5) ¢ = —i[H, g].
In the Q-background this expression is deformed as follows

) 1 .
Vo=— (Vi +iV) ¢ = — (e{4)v1 + Zefmvf) ¢

1
V2 V2
= —i[H,¢] = V¥V ,¢+ %Q*‘”Sﬂuqs = —i[H, d].

Since H itself is a scalar for this field the spin opertator is trivial. However it becomes non-trivial

when acts on spinors. Therefore in the general case the shift is the following

His  H=H=iVV,+ Q"5

H' v H =H —iVrv, - %QWS*W.

Also note that when Q and Q commute, the whole expression can be written up to a total

derivative, which is irrelevan, as follows:

1 1 1 1
o VEGF FrGIEGIE = —2F, PP 4 2 {9, H), [V HY — <[ H
4 4 2 2 (3.36)

1_- 1
— ZQ””FWH — ZQWFMLHT
The fermionic term can be written as follows:
Lo I A
5 \IJAF 6(1) VJ\I/ 5

where in order to define the covariant derivative we should use the spin connection which can be

written with the help of the Ricci coefficients:
1
VIL,JK = 56% (egVMeL(K) - e(LK)VMeL(J)) = eévjj)e(LJ)VMeL(K)'
Computation shows that when 4 and 25 commute the only nonvanishing coefficient is

Ya,uv = ~Ya,vp = _Qa7uu~
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For the covariant derivative we have the following expression:

1 1
ViU =0,V — i[AI, \I/] + §ZPQ’)/I7PQ\II =V¥ + §ZPQ’)/I7PQ\I/,

1
where P9 = —[I‘P ,I‘Q] are the generators of the six dimensional Lorentz group in the spinor

representation.

The calculation shows that the fermionic part of the Lagrangian can be represented as follows:

S VAT el VoA = a0V, = a0+ =0, g

) (3.37)
QMVQ/JA §UNV¢A'

1 - — 1
— QT — ——
2\/5 12 Q/J wA 2\/5
Having compared the initial action (2I) with the deformed one, which is the sum of (B38]) and
B31D), we can note that there are only distingtion is coming from the formal shift H — H and

from the additional terms which can be written as follows

1= 1 1 “A—pu T 1 - v, A
— Qo H — ZQWF”“HT - Z—ﬁgwwaﬂ Ya— Z—ﬁgwwaﬂ P
Topological term should also be modified. Putting all things together we can see that the
whole effect of the introducing of the Q-background consists of the shift H — H and the following
modification of the complex coupling constant:
i

5 (0) 0,

T 7(x,0) =7 —

where we have used twisted supercoordinates: 8* = 6“7‘4“9,4,0‘.

3.5.2 Getting the prepotential

In order to use the powerful machinery of the equivariant integration we should be sure that the

action in the Q-background is still BRST exact with some BRST (or BRST-like) operator.

Being inspired by the formula [ZI2) we perform some computations. First of all we have

oo

4 2/JPVPHT + i@[H, HT]} = —V2x FNPVPHT — iV (JJMTJJPT) :

When using the equations of motion for ¢, and 15,“,, which are modified in the Q-background we
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can show that the Yang-Mills action in the Q-background is Qq exact where

_ _ 1 v
QQ :Q— 2—\/§Quy$ Q#,

provided we further shift the complex coupling constant:

7

2v2

1

= @)oo+

T 7(2,0) =7 — QWQ“px’)x”

This modification changes only the topologica term, which have not yet been discussed.

Note that thanks to the supersymmetry algebra which yields {Q,Q,} = 4iV,, we get up to a
gauge transformation

(90)* = V20r, 270,

It worth noting that the superspace dependent complex coupling constant is annihilated by the

following operator:
9 .
Ro =0/ —— — —_ Qg

ozt 24/2

provided the matrices Q and  commute.

9
61"

This observation allows us to get access to the prepotential [69]. Indeed, taking into account
the relation between the dynamically generated scale and the complex coupling constant (EF])
we conclude that in the Q-background A becomes effectively x and 6 dependent. Moreover, this

dependence is such that this new A is annihilated this operator:

RoA(z,0) = Raes 0 = (3.38)

The second observation is that since the action is Qq exact we can localize it on the zero-modes

of the superfield ¥(x,0) = H(z) + ... = () + .... Therefore the functional integral for

1
2v/2

the partition function of the theory on the Q-background becomes

Z(a;9) = (1), = exp i Sm {2% /d4xd46]-'(—2—\1/§a, Alz, 9))} .

The integral at the exponent on the righthand side can be computed using the localization
i
arguments. The operator R can be seen as the Cartan differentail: Rq = d — ——=14y. Therefore

22

we can apply the Duistermaat-Heckman formula.
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Let us choose the coordinate system on R* where the matrix Q has the canonical form:

This choice corresponds to the complex structure introduced in ([BI).

The weights which correspond to the action of the operator at the lefthand side of (B3X) are
i i
-1 and -—eq.
gcr e g

Remark. With this definition the weights of the action (QQ)2 are £1 and e9. This fact will be used

in the next chapter. O

Therefore using the localization and the fact that the prepotential is a homogenious function
of the degree 2 we get

1
Z(a,m,\;e) = exp —F(a,m, A; €), (3.39)
£1€2

where the prepotential can be obtained from the function F(a, m, A;¢) by taking 1,2 — 0 limit:

Fla,m,A) = lim F(a,m,A;e).

61,62—>0
Now combining (B3] (or in general case ([B3H)) with [B39) we get a way compute the prepo-

tential:

exp—]—'amAe Zq / Euy (D),

£1€2
where g = (e™,e?,e? €¥) € Tp x Tp x To x Tp.

Note that through the discussion of this chapter we have not say a word about the gauge fixing
procedure, which should be performed in order to compute properly the functional integral. The
proper accounting of this procedure leads to a supplementary factor for ZP®*(a,m,A;e). This
factor leads, in particular, to the perturbative contribution to the prepotential (). See the
discussion in sections B0 and

Therefore the formula for the prepotential takes the following form:

Z(a,m, ;) = ZP(a,m, A;e) x kZ a,m;e) = ex —famAz—:
(a,m, A; ) = 207 kzoq la,mie) = exp ——Fla,m, Ase)
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where ZP"(a,m, A;€) is the perturbative contribution to the partition function and

Zx(a,m;e) :/m Euy(Dy). (3.40)
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Chapter 4

Finite dimensional reduction

In this chapter we derive the expression for the prepotential using the finite dimensional model for
the instanton moduli space. We obtain formula which express Zi(a,m,A;¢) in (BZ0) as a finite
dimensional integral. After that we will rederive them in the spirit of the Duistermaat-Heckman

formula.

4.1 Direct computations: SU(N) case

Let us obtain the formulae for SU(N) model without matter. We will follow [64], 65, 69).

First of all let us introduce the finite dimensional analog of the BRST operator Q. The instanton
moduli space is the subset of the space of linear operators By, By, I and J factored by the dual
group. This subset can be described by the ADHM equation (BI2) pr = 0 and puc = 0. The
general discussion of the section shows that in order to take into account this fact we should

introduce the following supplementary multiplets:

(xr, Hr) and (xc, Hc).

The transformation properties of the matrices By, Ba, I, J and the ADHM equation with

respect to Ty, are
By — €' By, By e'"? By,

T—se ] Je =+
HR > UR, pic — € g,

65
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1 1
where e =¢1 +e9 and ey = 5€= 5(51 + &9). Taking into account (ZII), (B32) and the Lorentz

deformation of the BRST operator we can write
OB12 =112, Q1,2 = [, Bya] +ic1,2B1 2,
QI =y, Qpy = ¢I — Ta —ie I,

QJ =y, Qpy = —Jp+aJ —icyJ,

_ _ (4.1)
Qxr = Hgr,  QHg = [¢, xg],
Oxc = He,  QHc = [, xc] + iexc,
Qn =\, QX = [¢, .
The finite dimensional version of ([BZ0) is

D 5

Zy(a;e) = / iDnDADHDXDBmBgDIDJW et QOcttx-HAy-V(N) (4.2)
VOI(GD)

where )
X p="Tr {XRMR +35 (X?cuc + x«:ufc)} :
1
X H="Tr {X]RH]R —+ 5 (X(TCH(C + X@Hg:)} s

(note the torus action on xg and xc is chosen in such a way that x - 4 be invariant) and V() is

the dual group flow vector field:
¢v-V(A) =Tr {1/)1 [\, BI] + [, BY] + €1 [, B] + X, Ba] + 1A — ITAgy — Ty + ¢J/\JT} :

Let us consider two way to do this integral: straightforwardly and using the Duistermaat-

Heckman formula.

4.1.1 Straightforward computation

To compute this integral we add to the exponent two BRST-exact terms, which should not change

the integral:

2
iQt' Tr xrA — Q%t” Tr {Z (Bltbs — s Bs) — Iy + 11 — Ty + %J} : (4.3)

s=1
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The term, proportional to ¢’ produces
t' Tr Hg A + t' Tr xgr7.

Therefore if we take first the limit ' — oo we can first integrate out Hr which gives the delta
1
function of ¢’A. Then we integrate out A which gives the factor WEE And finally when we do the
t
integral over yr and 1 we remove this factor.
Now let us compute the contribution of terms which proportional to ¢. They can be written as

follows:

t Tr Hg Hg + tHe H: + ¢ Tr xr[¢, x&] + t Tr x- ([¢, xc] + iexc) -

Note that the first term in fact, does not present, since it is already integrated out (when ¢’ > ¢ it
can be neglected). The third term does not contribute neither since in the ¢ — oo limit all terms

which are proportional to a power Tr xr[®, xg] will be suppressed.

27 In order

Now we take the ¢ — oo limit. H¢ integral is Gaussian and produces the factor
to compensate it we integrate out yc. But first let us reduce the ¢ integral from the Lie algebra
of Gp to the Lie algebra of its maximal torus. The price we pay is the Vandermond and the order
of the Weyl group. In section EE2 we treat this question in the general framework. Let us here just

cite the result for Gp = U(k):

1 £ do
i 2
v 1112 T -0
=1 i<j<k
The advantage is that now the matrix ¢ can be seen as the diagonal one with eigenvalues i¢;:
¢ = dlag{lqsla s 7i¢k}'

It follows that when we integrate out X(’r& ij and xc,;; we get factor ¢; — ¢; +e. Therefore when

we integrate out X(TC and xc completely we get
2
& T ((6i—05) +22)
i<j<k

Remark. Note that this contribution formally looks like the Vandermond if one set ¢ = 0 (and
remove the factor e¥). However, we cannot integrate out yg and Hy before introducing ¢’ term.

The reason is the presence of zero modes in the expression Tr yr[¢, xg]. Besides, even if we
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forget about these zero modes and integrate out xg we would get only the square root of the
Vandermond. However, this similarity can be used to get the expression for the Vandermond using

the transformation rules for yg (see below). O

Let us finally sent t” — oo and integrate out the rest of “fields” (but ¢). The contribution to

the exponent is the following:

— " Tr {1ep1 + hotho + Yripr + b}

{Z Bl ([¢, Bs] + ies S)—ﬂ(¢1-1a—ia+1)—JT(—J¢+aJ—z‘s+)J}. (4.4)

When we integrate out By (recall that it is complex) we get the following contributions (up to

the factor which can be killed by 15 integration):

t//k2

1 1
o 1l

5 .
& ij<k ((¢z‘ —¢j)" — 53)
Let in now remember that a € To,. That is, has the following form:
a = diag{iay,...,lan}.

Taking this observation into account one can see that the same procedure applied to I and J (as

usual, accompanied by the integration over ¢; and ;) leads to the factor

1
1 (((bi —a)’ - 81) .

o

Il

i=1

~

Now let us combine all pieces. In order to simplify formulae we introduce the following nota-

tions:

Ar()= [T ((6i¢))* %)
i<j<k
N (4.5)

Px) = H(a: —ap).

=1

Then the integrand for the partition function is given by

k

zk(a qi)'e)—l et A0
BT T R A (en) A (e2) LA P4+ e )P(di — 1)
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The formula for Z(a;e) is

- [TT% 0 o
zuwe) = [ 5069
Remark. The integral on ¢ seems to pass through the poles of the integrand. However this is not the
case. To see this we should consider the expression ([EZl). The integral over B, has schematically
the form d fR dz e, Tn order to make it convergent we should introduce the shift €5 — &4 + 30.
Therefore this integral can be computed by residues. Note that another way to get this shift is
to consider —e5 as an infrared regularizer (the mass) for the B, integral (which is needed for zero

modes of Tr Bi[#, B,]). The shift is then nothing but the Feynman rule of bypassing the poles. O

4.1.2 Stable points computation

Now let us describe another way to understand formula ().

Suppose that we have already integrated out ygr, Hg and the projection multiplet (A, 7). Con-
sider the superspace spanned by By, Bs, I, J, and xc. Formulae ) suggests that ¢y, s, ¥,
1y and Hc should be their differentials. On this space the torus Tp X To, X T, acts as follows:

By — e? Bye e

I—e?Te %eio+
(4.7)

J et Je P el

xc — e?xce Pe .

This action has the only stable point, the origin. Therefore the integral over By, I, J and xc
can be computed with the help of [B29) provided we know the weights w,. However, they can be
easily read from the infinitesimal form of [EX). We have:

¢i — ¢j +es  for B j,
¢; —a; — ey for Iy,
a; — ¢; —eq  for Jy,
¢i — ¢ —e  for xc,ij-

Applying then the Duistermaat-Heckman formula [B29) and taking into account the statistics
of the coordinates we get ().
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Remark. Note that if one applies the same recipe for xr one gets the following weights

If we include them into the Duistermaat-Heckman formula we get precisely the Vandermond. O

4.2 Haar measures

Even though the Haar measure can be obtained considering the weight for yr let us describe its
standard group theoretical derivation.

The general formula for the Haar measure reduced to the maximal torus of the group is given

by:

rank G 2

1
dMGZW H

i=1

doi

I1 (e%<a,¢> _ e,%m,@)

aeAt

This measure gives a measure on the Lie algebra (it corresponds to the limit of small ¢;)

rank G

1 do;
g =57 11 5 IT te0)”

i=1 acAt

Using the root systems of algebras of type B, C' and D we can write the measures:

1 e ddi 110 02 1T .0
dp,Bk = 2k—]g|H o H((bz _(bj) H(bz’
i=1 i<j i=1
k
e, = e TS T2 - 63 T
1<j =1
dNDk = 2k 1]€' H d(bl H ¢2 ¢2
z<]

The detailed investigation of the Haar measure can be found for example in [I1], and in [53, B4].

4.3 SO(N) and Sp(N) gauge groups

Let us find the analog of ([0 for pure Yang-Mills theories with the gauge groups SO(N) and
Sp(N). Since we have already described the finite dimensional model for the instanton moduli

space for these groups the only thing we need is to find the weights of the Tp x T, x Ty action.
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4.3.1 SO(N) case

Let us choose the matrices from the Cartan subalgebra of SO(N) and Sp(k) in the standard forms:

. 0 —aq 0 —an ]
a = diag ey ,$ p € Lie(SO(N)),
“+aq 0 +an, 0
¢ 0 . S ‘
¢ = _ | € Lie(Sp(k)) where ¢ = diag{i¢s,...,idx}.
0 —9
Here ¢ = 0 for odd N and is absent for even N. The eigenvalues ai,...,a, and ¢1,...,¢; are

assumed real.

Now we have to rewrite the Tp x To, x Ty, action in terms of the building blocks for matrices

Bs: B22) Mc and N¢ (B2Z3). We have (s =1,2):

P, — e? P,e 9eles, Mc — e® Mce ®ei

QS = e_q; QS e_¢; eiss, N(C — e_q; N(C e_q; eiss7

QL= e Qe NE s of Npol ol
In order to diagonalize a let us introduce the following N x N matrix

U = di 1 b 1 ) x (4.8)
=diag { — e, —— , .
Ve \ =i Vel i

where X = 1 for odd N and is absent for even N. One sees that

a=U'aU = diag {iay, —iay, ias, —iay, . . ., iy, —ia,, O}

We have the following action for K = UTK and K’ = UTK’, where K and K’ are defined in
B21):

Kt Ke9e i K/s el K'e?eict
For even N the weights for K;; and K, are:

ap— ¢; — ey, —a;—Q; —eq,

a +¢; — ey, —ai+ Qs — ey,
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where [ =1,...,nand ¢ =1,...,k. For odd N we have as well
i —ey, —¢i—e4.

The weights which correspond to P ;;, Qs,ij, Q. ,; for all N are:

5,1j

¢i_¢j+855 ivj:17"'ak7
_¢i_¢j+655 Z<.]7

Oi + 05 +es, P <]

The same procedure applied to xc ;; gives:

¢i_¢j+87 imj:]-v"’akv
—pi— ¢ +e, i<y,

i+ +e, 1<

Here we have taken into account that the matrices Qs and Q' are antisymmetric, whereas x¢ is

symmetric (since pc is).

4.3.2 Sp(N) case

Now let us consider the group Sp(N). As in the previous section we choose the matrices from

Cartan subalgebras of G, and Gp in the standard form:

a 0
a= ¢ € Lie(Sp(N)) where a = diag{iay,...,ian},
0 a
0 - 0 — Oy,
¢ = diag A N P Lie(SO(k)),
+¢1 0 +¢n 0

where n = [k/2], and { = 0 if k is odd and is absent if k is even. As before, ¢1,...¢, and

ai,...,an are supposed to be real.

For matrices K and K’ from ([B24) the Tp X To, x Ty action becomes

K—e"Ke %e et K 1se 0K e Peiet,
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After introducing the k x k dimensional version of [@R) for K = KU and K’ = K'U we obtain

Hence the weight for the matrix elements of Kj; and K, for even k are

a —¢;i —e4, @+ di—eqy
—a—¢i—eq, —a+di—ey
where [ =1,...,nand ¢ =1,..., N. For odd k we have a supplementary pair of weight:
a — &4, —ap—&4.

Now let us obtain weight for By, s = 1,2. Consider the case of even k. The By transformation

is the same as in the SU(N) case. Therefore we arrive to the following weight for i # j:

5s+¢i_¢ja Es+¢i+¢j7
5s_¢i_¢ja Es_¢i+¢j'

And fori=j
€s, E€s+2¢;, and g5 — 2¢;.

For odd k we get additional wights:

€s, Es+ @i, and &5 — ¢;.

The same procedure gives for x¢ the following weights for even k and i # j :

e+ ¢y — ¢5, €+ ¢i + 9y,
€— ¢y — Pj, €— ¢+ ;.

For ¢ = j the only weight we get is ¢ (we remember that uc (and therefore x¢) is antisymmetric).

For odd k the following weights appear:

e, €+ ¢;, and e — ¢;.
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4.4 Expression for the partition function

Let us finally combine all pieces and obtain expressions for Zi(a, A;e) which allows us to get the

prepotential according to ([B39).
4.4.1 SO(N) case
Let N = 2n + x where n = [N/2], x = N (mod 2). Denote

A@) = TT ((6:+ 0% = 22) (61 = 0)* ~ 2),

i<j<k

n (4.9)
P(z) = ¥ H(a:2 —a?).
1=1
When for the partition function integrand we have the following expression:
b AOAE) Ty 467497 —<?)
L bie) = i 70 . 4.10
(059 = o 8 eae Upe reope -0 (4.10)
4.4.2 Sp(N) case
Now consider the Sp(N) case. Let k = 2n+ x, n = [k/2], x = k (mod 2). Introduce
Az) = H ((¢i +¢;)% - 332) ((Q% —¢;)° — 332),
i<j<n
N (4.11)
P(x) = H(x2 —a}).
=1
Then N
L s
wiladie) = ——
+ ) e1el |erea [, (€2 — a?) 11;[1 (7 — 1) (9] —€3) (4.12)

A(0)A(e) ﬁ 1
A(e1)A(e2) 11 P(¢i — e )P (¢ + 1) (497 — €3) (497 — €3)

=1
4.4.3 Matter

Let us say some words about the matter. Using the fact that in the presence of matter fields
we should consider the equivariant integral of the equivariant Euler class of ®; we can write
corresponding contributions. Consider first the fundamental representation of SU(N).

As we have already seen the integral localizes on the solutions of the Weyl equation (B34).
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All The solutions for the Weyl equation in the fundamental representation are given by (BI4). In
order to specify one solution we should introduce a vector x € ¥V = C*. Then the solution for the

Weyl equation which corresponds to this vector is
P = Q°Ru.

It gives the boson solution. If we wish to have a fermion solution we should consider a fermion
vector ¢ € IV = IIC*. Then taking into account ([BI5) we can rewrite the contribution of (B34
as follows

/ DaDE e~ 1P tE(g+m—ic )¢ (4.13)
Note that the integral does not depend on t.

Remark. In that follows we redefine the mass: m — im. O

The integral is Gaussian, therefore we can compute it exactly and the result is the following
supplementary factor of z:
k

A p,mie) = [[(dr +m —ey). (4.14)

=1

In the spirit of the Duistermaat-Heckman formula this expression can be understood as follows.
We introduce the supplementary fermion coordinate £ € IIV, z being its differential. On the space

IIV the torus Tp x Tr x T, acts as follows:
£ ePelmgeTior

The last factor will be explained in the next chapter. Anyway, one can consider it as a redefinition
of the mass. Note that the physical value of m is pure imaginary with Smm < 0. If we add —e

this condition can not be violated since Sme > 0.

The BRST operator acts on £ and x as follows:
Ot =, Qu=[p,€] +im& —ie £,
Note that the exponent in (T3] can be written as (cf {3)), ¢ terms)

—%Q (o +21¢).
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The torus action has the unique stable point, the origin. It allows also to deduce the weights
of the torus action. They are

¢i+m—cy, 1=1,... k.

Thus we arrive to ([ET).

The matter in the adjoint representation can be considered in the same way. The only difference
is that now for a solution for the Weyl equation we have supplementary condition to be satisfied
BId). One can do so in the spirit of the section B3Il The required ingredient is the pair of
supplementary coordinates with the opposite statistics. The final answer will be obtained in the

next chapter in more general context.

4.5 Example: Sp(NN) instanton corrections

In previous sections we have shown how to get the partition function. However, the thing we are
looking for is the prepotential. Let us show how it can be extracted from the partition function.

For the simplicity reason we consider the case of the pure Sp(IN) theory.

Looking at [I2) we see that in the case of Sp(N) to obtain k-th instanton correction we have
to compute only [k/2]tiple integral. In particular to get F1(a), F2(a) and Fs(a) we should compute

a single ¢ integral.
For Zi(a;e), Za(a;e) and Z3(a;e) we have:

1 1
Z 3 = - )
1(ase) 2169 zl;[1 af — el

Zs(a;€)

> (Sita )Dlar ) + Silaf YD)

T 2eqe
162 =

n 1 EQT(€1/2) - 81T(52/2)
8(6152)2 €2 — €1 ’
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N

1
ZB(a;E) = H o2 D)
1

4(5182)2 o1 4 T e

N
x {Z (Siar)Diar ) Ear) + Silaf) Dlaf ) E(af))

=1
1 {_ T(e1/2) + T(e2/2) + 2T (1) + 2T (e2)
128162 6
er o) (_ 2(T(e1) — T(en)) ; 3 (52(51 /2) = T(e2/2))
81 (T(e2/2) —T(e1)) 862 (T(e1/2) — T(es)) )} }
3(61 - 252) 3(62 - 261)
where
ali =a; teq,
D(t) = !
KN [T
(% — (e1 4 €2)?)
FO=mam—a)
_ 1 I1 1
dti i (e —ag] [0 —e)? —af]
T(t) = !

P(EJr + t)’P(EJr - t) '

Using the definition ([B33d) we get the prepotential:

181
A =-3115
=1 1t
1 (L Sila) 1 02T(t)
F@) =G| X" T2 | |
=1 t=0
N N ~
1 1 l(al) 1 84T(t)
f?’(“)ZTGHﬁ( T on
=1 ¢ \i=1 l t=0

where the tilde over S and T means that we set €1 = €5 = 0 in the definition of these functions.
For the case N = 1, that is, for the group Sp(1) = SU(2) we have the following expression for
the prepotential: ) ) b
27~ G~ g+ OA)
which coincides with both Seiberg-Witten [22] and direct computations [69] for SU(2). Zi(a;e),

k =1,2,3 can also be checked against the corresponding quantities for SU(2) [69)].
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Chapter 5

Instanton corrections in the

general case

As we have seen, to write the expression for the partition function integrands we should have in
hands a model for the instanton moduli space. In particular, to incorporate the matter we should
find solutions for the Weyl equation for all interesting representations. However, we can avoid this
work and find directly the weights which appear in the Duistermaat-Heckman formula. In this

chapter we present some methods which will allow us to do that.

5.1 Universal bundle

It is well known [66] that a manifold M equipped by an almost complex structure and a hermitian
metric allows to define a Spin®-structure. Moreover in that case the complexified tangent bundle
can be view as TM ® C ~ Hom(S; ® L,S_ ® L). Here Sz is the spinor bundles of positive and
negative chiralities, and L is the determinant bundle. Even if S1 and L do not exist separately

their tensor product S+ ® L does. That is why Si and L is called sometimes virtual bundles.

On the sections of S; and S_, that is, on dotted and undotted spinors, the maximal torus of

the Lorentz group T, acts as follows:

Yo — Xa' =Ups™X? and o = ¢, =U_ s

79
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where

e+ 0 et 0 €1t eq
Uy = , U_= , Where ey =—-—-.
0 e—is+ 0 e—is_ 2

The complex coordinates transform as:

21 2 =21€"0 and 2z 2h = 29€"2,

and the sections of L as s +— s e+,

Remark. As an illustration we consider the four dimensional manifold. Then (1,dz; A dz3) trans-

forms as “s x dotted spinor” and (dz1,dz2) as “s x undotted spinor”. O

Taking into account these properties the ADHM construction can be represented by a following

complex:
Vol t-LyvesS . eow-5VeLl (5.1)
where
B
T=| By |, o=(Bs,—B1,J),
1

where £ and S_ can be viewed as fibers of L and S_ respectively. The ADHM equations ([BI2)

assure that this is indeed a complex.

Now we recall the construction of the universal bundle. Let 9% be the instanton moduli
space, given by the ADHM construction. Let us introduce local coordinates on 9: {m!},
I =1,...,dim91. The tangent space to a point m € 9 is spanned by solutions of the lin-
earized self-dual equation (B). Let us fix a basis of such a solutions: {a/,(x,m)}. Consider now

a family of instanton gauge fields parametrized by points of M: A, (z, m). We can write

0A,
oml

h[L]CLi + Vuog

where ay is a compensating gauge transformation. We can combine it with the connection A, into
a one form on R* x 9: A = Apdat + o ydm! which can be seen as a connection of the vector

bundle € over R* x 9t with the fiber W. This bundle is called the universal bundle.

Let g be generic element of the torus T = Tp X Too X T, X Tr. The equivariant Chern character

of £ depending on ¢ can be computed as an alternating sum of traces over the cohomologies of the
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complex [&T)) (see [69), 60] for some details). Then we come to the formula

Chy (€) = Tre(a) = Trw(q) + Trv(a) ( Trs_(a) = Trela) = Tre-1(a))

= Tryy(q) — (! —1)(e®2 —1) e+ Try(q)

(5.2)

where Chg(€) is the equivariant Chern character.

The equivariant analog of the Atiyah-Singer theorem allows us to compute the equivariant

index of the Dirac operator. It has the following form
Ind, = za: €qele = . Ch,(€) Td,(C?),

where the sum is taken over all fixed points of the T action and all T action invariant subspaces
of the tangent space to a fixed point, w, being a weight of this action. In this formula Td,(C?) is
the equivariant analogue of the Todd clasﬂ, which for C? ~ R* has the simple form:

€1€2

Td,(C2) = T D)

The integration can be performed with the help of the Duistermaat-Heckman formula ([B29).
The Hamiltonian of Ty, action is ic1|21]? + ig2|22|?. The only fixed point of this action on C? is

the origin. The weights are ie; and icy. Consequently we arrive at

Chq(g)|z1222:0 . (53)

fund __ Wo
Ind,™ = Z €a® " = (efer —1)(eie2 —1)

Let us denote the elements of T, Tp and Tx as follows:

qc = diag{iay,...,ian} € T
qp = diag{i¢1, R ,i¢k} S TD

qr = diag{imh .- 'Jime} € TF

where a1,...an,¢1,..., ¢k, m1,...,mpy, arereal, Ny being the number of flavors. Then combining

f

Ithe fact that we should use the Todd class, and not the A-polynomial7 as one could think, follows from the
close relation between solutions of the Dirac equation and Dolbeaut cohomologies, discussed at the beginning of the
section
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E2) and B3) we get for Ny =1,m=0

fund __ Wa ia i —ie
Ind{" =) "eq e = (eifl—l TeE Ze : Ze *, (5.4)

[e3

The generalization to Ny > 1 is straightforward and we obtain:

Nf N
Indfund,Nf _ i 2 : § ezal—i-sz E E ez¢1—zs++sz )
q (ewl _1 elEz _
f 11=1 f=114=1

5.2 Alternative derivation for Ch,(&)

The derivation of (B4 presented in previous section, yet quite general, may seem to be too abstract.
Here we present an alternative way to get it. In particular this method allows us to see the origin
of all terms which appears in the formula.

Before starting let us recall the relation between Dirac operator on complex manifolds and 0
operator. Define

0= dz1V1 + dzeVs.

Thanks to the self-dual equation equations (4} this operator is nilpotent 9> = 0. Indeed, the

self-dual equation is equivalent to

V1, Vi] + Va2, V3] =0,

[V1,Va] = 0.

The solutions of the Weyl equation ([BI3) can be naturally associated with Dolbeaut coho-
mology. The only thing that should be taken into account is the twist by the square root of the
determinant bundle.

Now let us recall the discussion of the section A solution for the fermionic Dirac equation
can be parametrized by ¢ € IIV. Now we remember that we have a freedom to perform a gauge
transformations which are trivial at infinity. Therefore we see that a solution of the Weyl equation
are labeled by G & IV, where G = {g : S* — G}.

We stress that it is not the moduli space, since we do not factor out the group of local gauge
transformations G.

Now we have enough information to reconstruct the equivariant index of the Dirac operator.

It is given by the sum of T action weights to fixed points.
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Since the gauge transformation g should be O-closed, that is, holomorphic, we conclude that

_ ni na
9= E 9nino?y 227

ni,n22>0

The weights of the T action on g are
Wq = ta; +inie1 +inges, I=1,...,N, ni,ng > 0.

The T action on IIV is given by & — e~ *+ gpé where qp € Tp. It follows that the weights are
given by

Wy =1¢; —iey, t=1,...,k.

Now we recall that the contribution of the fermionic variables comes with €, = —1 (see remark

below B2Z)). It implies that the equivariant index equals to

N k
Indfund — 2 : 2 eial+in1€1+in2€2 _ E ei(i)ifiaJr
q
i=1

=1 n17n220

which is equivalent to (B2 after applying [B3).

5.3 Equivariant index for other groups

In a similar way we can find the equivariant index for the fundamental representation of SO(N)

and Sp(N).

5.3.1 SO(N) case

Let N =2n+ x where n = [N/2] and x = N (mod 2). Then

(ei¢¢7i€+ + e*i¢¢*i€+) . (5.5)

k
—1

un 1 S ia —ia
Indg d _ @ D)= D) <X + Z (e t+e L)) —

=1 %

5.3.2 Sp(N) case

Let k = 2n + x where n = [k/2] and x =k (mod 2). Then

N n
un. 1 ia —ia ip; —i¢;
Ind[" = = D= D) D (e e =3 (e e 4y ). (5.6)
=1 i=1
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5.4 Equivariant index for other representations

Having computed the equivariant index for the fundamental representation let us turn to others

representations.

5.4.1 SU(N) case

As it was explained in [60] the equivariant index for the adjoint representation of SU(N) can be

obtained as follows:

Imdi¥ =) e, e = [ Chy(€ ®E£7) Tdy(C?)
CQ
@ (5.7)

— [ Chy(e) Ony(e) Tay(c2) = Lol PalE N, ey
e ! q q = (eter —1)(efez —1)

We can use the expression (B2) to compute this index. The result is

N
) 1 o
adj __ 1a] —10m
Ind,™ = (eir —1)(ei2 —1) N+ Ze L
l#m

k N

_ ZZ (eimfi@rfial +e*i¢i+ill17i€+) + ]f(]. _ efial)(l _ efiaz) (58)
=1 1l=1
k

+ Z (ei%*iqﬁj 4 elPi—ipj—ic1—ic2 _ qidi—igj—ie1 _ ei¢i*i¢j*i€2) .
i£]

At the same way the indices for symmetric and antisymmetric representations can be obtained.

Denote
Ch¥Y™ (&) = Chy(Sym?*€),

Ch2™ (&) = Chy(A%€).

If Chi™ (&) = 3, ea € then

Chzym,ant(g) _ % [(Chgund)z + Chg%nd] _ % [(Zea eWa )2 + Zea ezwa] . (5.9)

We can now apply the analog of () to compute the equivariant index for these representations.



5.4 Equivariant index for other representations 85

The result is the following:

Indsym — 2 ezal—i-mm
q (ei€1 _ ezaz _]_
l<m<N

N k k
_ Z Z eial +ipi—tey Z (e2i¢i7i€1 + e?ldn 71‘82) (5.10)
i=1

=1 i=1
+ § (ei¢i+i¢j 4 elpitigj—ie1—ies _ igitidj—icr _ qiditid; *i82) ,

1<j<k
ant __ 1a;+iam,
fndg™ = (e%’sl—1 Y(eiez —1) 2, o
l<m<N
_Zzezalerﬁ, et +Z 21¢1+621¢>1 ig1— zag) (511)

=1 1=1
+ § (ei¢i+i¢j +ei¢i+i¢j*i€1*i82 _ elpitigj—ier _ ei¢i+i¢j*i€2) .

i<j<k

5.4.2 SO(N) case

Using Table [B] we see that the adjoint representation of SO(N) is the antisymmetric one. So
using ([0 together with (B9) we get

1

(eial _1)(e52 _1) Z (eialJriam _’_eialfiam _|_efial+iam _’_efialfiam)

I<m<n

Indf’;dj =

n k
4 % Z (eial + e—ial) +n| + X Z (ei¢i—i6+ + e—i¢i—i6+)
=1

=1
k n
4 Z Z (ei¢i+ial—is+ 4 emiditiar—icy | gidi—iai—ieq | e—i¢i—ial—is+) (5.12)
i=1 I=1
k
+ Z (e2i¢i + e*2i¢i + e2i¢i7ia + 6721'@71'5) + k‘(l _ efial)(l _ efiaz)
i=1

4 (1 _ efié“l)(l o e*i&z) Z (ei¢¢+i¢j + e’i¢i71‘¢)j + e*i¢i+i¢j + e*id)i 7i¢j)
i<j<k
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5.4.3 Sp(N) case

Table [Bl shows that the adjoint representation of Sp(N) is the symmetric representation. Using

ED) and BE3) we get:

adj _ 1a; 410, 1a] —1Qm —ia;+iam —1a] —1Am
Ind;® = = D= 1) Z (e +e +e +e )
l<m<N
N N
+ Z ( 2zal teo 2zal + N XZ zalfiaur _’_efialfiaur)
=1 =1
N n
Z Z zal+i¢i—i5+ + eial—i¢i—i€+ + e—’ial+i¢i—’i6+ + e—ial—’i¢i—’i6+)
=1 i=1 (5.13)
n
—y (efzal _’_efl&‘g) +(1—e ) (1—e"2) |n+ XZ (eldn _’_e*l(ﬁi)
i=1
+ (1 _ e*i81)(1 _ e*iaz) Z (ei¢i+i¢j + elPi—id; + e~ ibitio; + e*i¢i*i¢j)
i<j<n
n
_( e—ie1 _|_e—162 Z 21¢i _|_e—2i¢i).
=1

Another case that we will be interested in is the antisymmetric representation of Sp(N). Using

ED) and B3) we get

1

I ant __ i i
nd, (€1 —1)(eie2 —1)

E (eial+1'am +eial—iam _|_e—ial+1'am
I<m<N

N
+ e—ial—iam) + N} —x Z (eial—i5+ + e—ial—is+) +x (1 + e—is)

=1
N n
_ Z Z (eial+i¢i7i€+ + eia17i¢'i7i€+ + e*iarkid)i —ie4 + efialfid)i 71‘64,)
=1 i=1 (5.14)
n
+(l—e )1 —e2) In+x Y (e e )
=1
+ (1 _ efié“l)(l _ e*ié‘z) Z (ei¢i+i¢j + eifi’i*id)j 4 e*i¢'i+1‘¢j + e*’i(bi*’i(bj)
1<j<n

n

1+e i Z 2l¢i+e*2i¢i)'
i=1
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5.5 Partition function

Now we are ready to write the expression for the pertition function ([B3d). First we note that since
the tangent space to a point belonging to bundle is a direct sum of the tanget space to the point
of the base and the tangent space to the point of the fiber. Taking into account the statistics of
the fields (recall that the Yang-Mills connection A, belongs to the adjoint representation of the

gauge group) we can write

Ind, = Indj™&28 — 3~ Ind2™mer, (5.15)
o€reps
The transformation ([B30) converts the sum to a product. In order to get the k-instanton partition
function Zx(a,m;e) we should integrate over t = Lie(Tp). We have to keep in mind the order of
the Weyl group which we should divide the integral on.

Let us realize this program step-by-step. Compute first the weights products ([B30) for (almost)
all cases allowed by the asymptotic freedom. We will consider all the matter representations
contained in a tensor power of the fundamental one. For SU(IN) we can get all the representations
in such a way. However, for other groups this is not the case. For example for SO(N) we will
miss some spinor representations. We should find all the solutions of the equation § > 0 where
is defined by the righthand side of (Bl). Using Table [Bl we get the following list (Table Bl of
asymptotically free models.

Here we give the expression for the building blocks which are necessary to construct all the

cases listed above.

5.5.1 SU(N) case

As it was noticed in the end of the section ([BX) the partition function is the product of the

perturbative part ZP°*(a, m, A;e) and

0o k

do;
2 : k I I ? .
kzoq /i_l 27Tizk(a7¢7m7€)'

Remark. The term ZP°"*(a, m, A;¢) comes from the first terms in (54), (8), &I0), II) respec-
tively. Under the transformation ([B30) these terms become the infinite products to be regularized.
It can be shown [69, [70] that after the proper time regularization they give precisely the perturba-
tive contribution to the prepotential ([Z8) (in the £1,e2 — 0 limit, see section B3). In that follows
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e SU(N):

— Ny fundamental multiplets, Ny < 2N,

— 1 antisymmetric multiplet and Ny fundamental, Ny < N + 2,
— 1 symmetric multiplet and Ny fundamental, Ny < N — 2,

— 2 antisymmetric and Ny fundamental, Ny < 4,

— 1 symmetric and 1 antisymmetric multiplet,

1 adjoint multiplet.
e SO(N):

— Ny fundamental multiplet, Ny < N — 2,
— 1 adjoint multiplet.

e Sp(N):

— Ny fundamental multiplet, Ny < N + 2,
— 1 antisymmetric multiplet and N; fundamental, Ny < 4,
— 1 adjoint multiplet.

Table 5.1: Models allowed by the asymptotic freedom

we will drop this term in all calculations and restore it, if ever, only in the final result. O

We use the definition (). Then

k

Zliund(a7¢7m;5) = H(¢i+m_6+)v (516)

k

adj,gauge . _ 8k A*(O)A*(E) 1
A0 = R e o) Upe T em@ e (517
adj,matter o\ (m_gl)k(m_EQ)k A_(m—61)A_(m—€2)
5 (a,¢,m;€) = (m —e)kmk A_(m)A_(m —¢)
(5.18)

k
X H P(gi—m+ey)P(¢i +m —ey),
k=1

Ay(m—e)Ar(m —e2)

Ay (m)Ay(m—e)
. (5.19)
X H(2¢i +m —e1)(2¢; + m —e2)P(—pi —m +e4),

i=1

2" (a, f,mie) =
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A+( m—e& A+ —52 ﬁ P m+€+)

A @ 0.mi) = =T A 2¢1+m o T m =2

(5.20)

=1

To find similar expressions for SO(N) and Sp(N) we use (EH), E12), &), EI4) and @I3).

The result is the following.

5.5.2 SO(N) case

We will use the notations introduced in (EZJ)). Then

k

720, ¢,mie) = [T((m —e4)* = 6), (5.21)
i=1
adj,gauge . _ 8k u 4¢2(4¢2 )
B () — 6,1%2 Hlp CER T (5.22)
adj,matter . _ (m B gl)k(m - 52)k A(m — 51)A(m — 52)
2 (a,p,m;e) = mF(m — e)F A(m)A(m — ¢)
N (5.23)
y HP (i +m —ey)P(pi —m+eq)
1 (497 —m?) (497 — (m—e€)?)
5.5.3 Sp(N) case
We use the definition (IT]). Then
A0, 0,m3¢) = (m — )Y [ (0m — 2002 = ), 5.24)
i=1
adj,gauge e" 1 - ¢2 ¢2 )
% (@, ¢:) = €763 | eqen Hz 1(E3 —af) zl;[l —e1)(#7 —€3)

(5.25)

H 1
Ale1)A(e2) 37 Ploi —e)P(i + 1) (467 — 1) (47 — €3)’
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adj,matter L) (m - El)n(m - EQ)TL A(m — El)A(m — 52)
zkd (a, ¢, m;e) = m"(m —e)" A(m)A(m — )

2

n

o e (67 — (m — £1)*)(éF — (m — €2)?)
x| m e [[( &) )H ¢2—m2><¢ —(m— )

n

2
x [TP(6i +m —e)P(¢i —m+ey) [[(467 — (m —e0)?),
s=1

i=1

(5.26)
ant v (m—=e1)"(m —e2)" A(m —e1)A(m — e2)
e gymie) = A(m)A(m —e)
1Y, (m—e4)? —a}) H (62 — (m —1)2)(@? — (m —2)) | o)

m(m — )

U )@ - m o)
TP +m— e )P(di —m+e)
= -

Now we should perform the integration over Tp. The orders of the Weyl group of the dual group

|[Wp| can be found in Table [BJl Finally for a theory with some matter multiplets we get the

following expression:

d 1 a au, e matter
Zn(a,mse) = |WD|fH O ptiemse(q o) [ 0™ (a,mp die)  (5.28)

2m
o€reps

Remark. The expressions for the adjoint representation integrand zx(q) for SO(N) and Sp(N)

coincides with the expressions which can be obtained from the direct analysis of the instanton

moduli space for these groups EH), 1), EIA), EID) 69, 1. O

To compute the contour integral we need a contour bypassing prescription. It can be
obtained, as explained in [71], by considering the four dimensional theory as a limit of a
five dimensional theory, where the complexified torus T¢ acts on. As a result we obtain
(e1,62,m) — (g1 + 30,2 4+ 10, m — 40) prescription. It worth noting that the prescription for
masses m coincides with the Feynman prescription for bypassing the physical poles. See also the
remark at the end of section LTIl The contour can be closed on the upper or lower complex

halfplain. The choice is irrelevant since the residue at infinity of the integrand vanishes.
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| Group | Multiplet || Factor of S(x)
1
Adjoint, gauge —_——
[15 (2~ a)”
Fundamental x+m
SU(N) Symmetric (22 +m)* Hl]il (x+a;+m)
1
Antisymmetric m Hl]\il (ﬂj +a; + m)
Adjoint, matter T, (x — a))” — m?)
JJ4_2X
Adjoint, gauge —_—
1, (=% —af)
SO(2n+x) | Fundamental 2 —m?
s s (IQ - mQ)X n 2 2 2 2
(x =0,1) | Adjoint, matter prcp—e [ ((x+m)" —a})((x —m)” —aj)
- 1
Adjoint, gauge " Hfil R a?)g
Sp(N) Fundamental 2% —m?
N
R [, (G ) =) (@ —m)" =)
(422 — m?)?

Adjoint, matter || (422 — m2)’ Hf\il((ﬁc +m)® —a?)((x —m)” — a?)

Table 5.2: S(x) building blocks

5.6 1-instanton corrections and residue functions

Formula ([228), yet far from the final result, allows, however, to perform various checks. In

particular, we can check this formula against the known one instanton corrections.

After the work of Seiberg and Witten [7] the l-instanton corrections was computed for
numerous combinations of (classical) groups and matter content. In particular, in references
[67, B6, B5, B7, 22, 23, 25, B3] it was done for all cases allowed by asymptotic freedom.

In 37, B4, B3 B2] it was pointed out that in all cases the one instanton corrections can be
described with the help of a rational function S(x) referred as a master function or residue function.

This function appears in the hyperelliptic truncation of the Seiberg-Witten curve as follows:

y(z) + = . (5.29)

The rules to construct such a function was proposed in [33, B2]. We have put them to the Table

W

The residue function has double and quadratic poles. Denote the corresponding “residues” as
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follows:
-~ Sy (Z/O)

o SO~
T — Yo

T 7

Then in many cases the one instanton corrections are given by

N
Fi(a,m) =Y Sa(ar). (5.30)

=1
If the model contains one antisymmetric representation of SU(N) or the adjoint of SO(N)
one should add to (30) term —2S3(—m/2), where m is the mass of corresponding matter
multiplet. For two antisymmetric multiplets of SU(N) with masses m; and my one adds

—252(—7711/2) — 252(—m2/2).

Finally for the group Sp(N) we have a quite different expression. One instanton corrections

for all matter multiplets is given by
Fi(a,m) = /54(0).

The aim of this section is to show how the notion of the master function naturally appears in
our approach. This analysis allows us to state that one instanton corrections computed by our

method match with one instanton corrections computed from M-theory curves.

Put k£ = 1. The 1-instanton contribution to the partition function ([E28) is given by

Zi(a,m;e) = j{ %zl(a,m,qﬁ; €). (5.31)

The l-instanton correction to the prepotential can be extracted from Z;(a,m,e) according to

1
Zi(a,m;e) = E}H(a, m)+..., (5.32)

“

where “...” denotes all terms containing nonnegative powers of €1,e2. Combining these two

formulae we get

Fi(a,m) = lim slazfd—(b,zl(a,m, o;¢€).

€1,e2—0 211

Analysis of (£10), EI7), GI¥), G20, 619, R20), 622), 23, G2, BZ), (E26), and
BE20) together with ([E2]) shows that one can establish the rule to construct z1(a,m,e, @) (see

Table B3).
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| Group | Multiplet || Factor of z1(a, m, ¢;¢)
€ 1
Adjoint, gauge
192 [T}, (6 —a)? — &})
Fundamental o+m—ey
SU(N) Symmetric 2p+m—e))2p+m —ea) [[1y(d+ar+m—ey)
N
. . (pt+a+m—ce
Antisymmetric 1?21(;51_’(_ ) (2 + m = ;))
. (m—e)(m—co) on (o Ny
Adjoint, matter (m —)m [[L,(¢—ar)? = (m—eyq)?)
- £ 49°(4¢% — €%)
Adjoint, gauge 7
1O BT | e (P N I (B + )2 — a) (6 —2)” —af)
SO(2n+x) | Fundamental (m—e)?—¢?
(x =0,1) | Adjoint, matter (m :ni;i(f;; 2) (¢? — (m —£2)?)x
% (0 +m—e4)? —af)((¢ —m +e4)* — af)
(492 — m?)(49% — (m —€)?)
1
Adjoint, gauge
erea ][, (e3 — ap)
Sp(N) Fundamental (m—ey)
N _ 2 2
Antisymmetric Hl_l(s;n(m 5_+€)) ar)
Adjoint, matter (m—e1)(m —e2) Hfil((m —e1)? —a})

Table 5.3: z1(a, m, ¢; ) building blocks
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First observation is that that for SU(N) and SO(N) the following equality holds:

lim 2522 (a,m, d:¢) = S(o).

e1,e2—0 €

Hence one can call z1(a, m, ¢; ) a deformed residue function. Using the properties of the contour

integration

d¢ 1 1
%%(¢—$0—8+)(¢—5€0+5+) e
we arrive to the rule announce after ([E30).
Remark. For Sp(N) the integrand does not depend on ¢. It means that for Sp(N) the one instanton
corrections are given by

Fi(a,m) = 51Egn_}0 e1e221(a, m;e).

The rule for the residue function proposed in [33, B2] are such that

S4(0) = lim e1e921(a,m;e).
61,52—>0

This proves the validity of our formulae in the case of Sp(N). O

The method of residue function, yet simple for k = 1 case, seems to be difficult to generalize
to other (k > 1) cases. The reason is both the complexity of (BE31)) and (E32) when k£ > 1. For
example (B3] generalizes as follows (for SU(N) and SO(N), the Sp(IN) case should be considered
separetely):

211

k k
Ziamie) = [T 52R0) [T ar(am. 00
=1 =1

where R(¢) is a ratio of A’s products. The integral can be computed by hands in low k case. For
example, it was done in [62] for £ < 3 for SO(N) and Sp(NN) pure Yang-Mills theories and for
k < 2 for symmetric and antisymmetric representations of SU(N). Also these integrals can be
computed for general k in the case of SU(N) (fundamental and adjoint representations, [69]). See

the discussion in [62] of what happens in the case of other classical groups.



Chapter 6

Saddle point equations

The formal expression (B28) allows, in principle, to compute all the instanton correction. However,
there are two objection: first, for general group and representation this is not known how to rewrite
this integral as a sum over the residues of the deformed residue function zi(a,m, @;e). Second
objection comes from the fact, that the representation of the prepotential as of the formal series
on A makes its analytical properties obscure. In particular, it is not clear how the prepotential
could be analytically continued beyond the convergence radius.

Fortunately, the Seiberg-Witten theory [7] can answer to the second question. Our goal in

this section is to explain how the Seiberg-Witten data can be extracted from (B22F).

6.1 Thermodynamic (classical) limit

In [70] the general method to extract the Seiberg-Witten data was proposed. The idea is the
following. The prepotential can be obtained from the partition function Z(a,m, A;¢) in the limit
e1,62 — 0 (see (B39)). One can show that in this limit the main contribution to the partition
function comes from k ~ % It follows that in order to extract Seiberg-Witten data we don’t
need to examine the whole 1seiies B39). It is sufficient to consider the expression (B2J) taken in
the limit k£ — oo.

In this limit the multiple integral on ¢; becomes Feynman integral over the density of ¢;’s. Each
¢; can be seen as a physical quantity which corresponds to a “particle”. The instanton number k
plays the role of the number of such a “particles”. Another point of view is to consider the inverse

instanton number as a Plank constant in a quantum mechanical problem. The expression (25)

becomes the partition function of a system, described by a Hamiltonian, depending of the ¢;’s

95
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density.

In the thermodynamic (classical) limit & — oo this partition function can be computed by
the saddle point approximation. It means that the main contribution is given by a classical
configuration (we put aside the question of existence and uniqueness of such a configuration). The
prepotential appears as the “free energy” in this context. As we shall see the Seiberg-Witten data

appears naturally when we solve the equation of motion (saddle point equation).

After this short introduction let us pass to the concrete computations. First we note that the
thermodynamic (or quantum mechanical) problem is formulated by means of the action (Hamil-
tonian). The integrand in the Feynman integral generically has the form e~mis | Therefore we
should convert the integrand of (E28)) into the similar form. Keeping in mind the origin of this
integrand (formula [B30)) we can obtain a mnemonic rule to compute the Hamiltonian H directly

from the equivariant index of the Dirac operator:

Ind, = g €q €V — Hwof“ = exp{ E €a lnwa} — He o, = —€1€2 g €o 10 |Wwe |-
(e} « « «

However, the Hamiltonian defined above contains much more information we need. Namely it
can be represented as a series over the nonnegative powers of €1 and €5. The only contribution
relevant in the thermodynamic limit comes from the terms independent of €1 and €2. Therefore
the expression for the Hamiltonian can be rewritten as follows:

Ind, = Zea e’ 1 H=— lim LE1€2 Zea In |wy. (6.1)

£1,€2—

Taking into account the additivity of the equivariant index (IH) we conclude that

H = Hadj,gauge+ E Hg,matter

o€reps

Remark. We have just established a rule to represent Zy(a,m;e) given by ([B28) as an exponent
of a sum of In |w,|’s. We can ask now what will change if we multiply Z(a,m;e) by A, The

answer is that we should replace In |wq| with In ‘ % . O
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6.2 A trivial model example

To illustrate the phenomenon, where the series is evaluated by the saddle point we take the following
trivial example:
k=0
A . : .
Suppose — € R, and A > e. Then the series is dominated by the single term, where k = k, ~ A/e.
€
Stirling’s formula gives:

Z(Ae) ~ef ~ expg.

Now this formula can be analytically continued to aritrary A € C, and by expanding the answer

in powers of A we get correctly the terms in the original series for small k.

6.3 SU(N) case, pure Yang-Mills theory

Let us consider in some details the simplest case: the SU(N) theory without matter multiplets.
The weights are given by ([8).

Let us show how the first term in (BEJ) gives the perturbative correction to the prepotential
.

As we have already mentioned, the transformation (B30) can be seen as the proper time
regularization. It is given by the formula

A /°° At s gittawae) _ 1

eitzwa @), 4

ds A

o)

It follows that the contribution of the first term of (E8) to the Hamiltonian (G1I) is given by

N
lim 05152 Z Vei1,e2 (Cll - a’va)

€1,€2—
l,m=1

where

d

Yei,e2 ($7 A) = &

AS /oo ﬁ s eitw
s:OF(S) 0 t (1 — eiflt)(l _ eisgt)'

The ¢ expansion of v.,., is given by

1
Ver,e0 (X, A) = Ek,\(x) + ...,
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« R

are terms finite in the thermodynamic limit and

ka(z) = %xg (ln‘%‘ - %) .

For more properties of 7., ¢, (x, A) see Appendix A in [0].

where

Finally the contribution to the Hamiltonian of the first term is given by
1 2 ap—am| 3
ZkA(al_a’m):Z§(a’l_am) <ln T‘_§>

l#m l#m
In this expression we can recognize the perturbative part of the prepotential (28). It explains

the remark after (B20).

To handle the last line in (B8)) we use the following identity:

f0) + fler +e2) — f(e1) — f(e2) = ereaf"(0) + ...,

“ b2

where are the higher e-terms. It gives

1

In(¢; — ¢;) +In(¢; — ¢j —¢) —In(¢; — @5 —e2) —In(¢; — ¢j —€1) = —c162—5
(¢ — 95)

+...

Finally with the help of (G2) we have the following expression for the Hamiltonian:

k
H=— Z ka(a; — am) + 26129 Zln

l#m i=1

P(¢5) ‘ 2 Z 1
+ (8182) P EE——
AN 7 (00— 0i)
In the thermodynamic limit £ — oo the number of ¢;’s becomes infinite. It is natural to introduce

its density which is normalizable in the limit. In order to keep the normalizability we define:

k
,0(33) = £1€2 Z(S(JE — ¢z) (62)

In the thermodynamic limit this function becomes smooth. With the help of the density function

the Hamiltonian can be rewritten as follows:

xr — aj

. de dyp(ar)p(y)

5
T#Y (x—y)

+

N
H=—- Z ka(ar — am) —|—22/da}p(aj) In
1=1

l#m

The obtained expression is rather suggestive. After integration by parts and introducing the
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profile functimﬂ
f(@) = =2p(x) + Z o~ al (6.3)
the Hamiltonian can be rewritten in a nice form:
H(f) =~ [ dodys" (@) Wka (e ). (64)
The partition function [B3J) can be represented as follows:
Z(a,m, ;) ~ /Df e T Heveal] (6.5)

We are interested in the classical approximation of this integral only.

6.4 SU(N), matter multiplets

In this section we obtain expressions for the Hamiltonians similar to (E4) for the matter multiplets

using the rule (E1]) and formulae (E16), EI8), (I9), and G20).

6.4.1 Matter in the fundamental representation.

. & ¢ +m
H€1,€2 :ZkA(al+m)—€1€QZh1 ZA
=1 i=1

xr+m

I
=
-

Alap +m) — /da:p(a:) In

With the help of the profile function we can rewrite the Hamiltonian as follows:

H(f) = 5 [ dodys"(@ka(a +m)

6.4.2 Matter in the symmetric representation

We have
H. ., = Z ka(a; + am +m) —elegzln (bl_m)‘
I<m<N
(bi +m/2‘ 2 1
— 2e169 In | ——| — (e182) _.
Z A [SmZSN ((bz + ¢j + m)Q

i=1

lin the SU(N) case this function is closely related to the profile of the Young tableaux, as defined in [Z0]]

(6.6)
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The density function lets us to rewrite this expression as follows:

P(—x —m)

l<mZ<NkA(al+am+m)—/dxp(x) In T‘
B () Iy | EM/2| L p(z)p(y)

2/dp()1 0 ‘ 2/dd7(x+y+m).

Using the profile function we get finally

H(f) =5 [ dedys @ Whalo+y+m) + [ dof@kata+m/2)

6.4.3 Matter in the antisymmetric representation

51,52: Z k/\ al+am+m —51822111

I<m<N

+ 2e169 Zln

i=1

¢z+m/2‘ 2 1
ST E  (e1e0) -
A " lSmZSN (¢i+¢j+m)2

The density function lets us to rewrite this expression as follows:

Z kala; + am +m) — /dxp ln )’

A
I<m<N
z+m/2| 1 (:v)p(y)

Using the profile function we get finally

H(f] = [ dedys @ Wkl +y+m) ~ [ dof(@kata+m/2).

6.4.4 Matter in the adjoint representation

H61,€2 = Z kA(al — Qm + m) + NkA(m)
l#m

— &£1€&2 Zln

AQN(@ +m) ‘ (e122)” ) :

I#m ((bz - ¢j + m)Q'
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The density function lets us to rewrite this expression as follows:

H= Z ka(a; — am +m) + Nkpa(m)
l#m

-j/dxpcwln

Using the profile function we get

Pz —m)P(z +m) p(@)p(y)
- Py

H(f] = [ dedys" (@) Wkata ~ -+ m), (69)

6.5 SO(N) case

Now let us apply the rule (B to the orthogonal group.

6.5.1 Pure gauge theory

Formulae (221]), (£22) and &2Z3F) lead to the following expression for the Hamiltonian

He e, =2 Z (kA(al — am) + kalar + am)) - Zi ka(ar)

l<m<n =1

2 1 !
+2(e129) 12216 <(¢i ~ o) + (¢ +¢j)2>

+ 2e1€9 Z In —4ere9 Z In (bl

A2n+x

As in the SU(N) case we introduce the density function as follows:
—51522 ( (z — ¢i) +5(I+¢)1)) (6.10)
Simple computation shows that

1 p(z)p(y) 2 1 1
d - )
2J[ ey Gy~ .Z ((@—«ﬁj)”(@wﬁ)

/da:p )In (z) 251522111

A2n+x

A2n+x
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Using these formulae we get

H=-2 Z (k:A(al —am)—|—kA(al —+ am, ) —ZZ’CA al

l<m<n
|
/da:p |

][ddp /dxp )In

Introducing the profile function

A2n+)(

f@) = =20(@) + xlo] + Y (o =il + o+ al (6.11)

=1

we rewrite the expression for the Hamiltonian as follows:

H(f) =~ [ dody" @1 @kale =)+ [ daf"@ha(a (6.12)

6.5.2 Matter in the fundamental representation

Formula (2] gives

¢2
A2

H., e, 2":< +kA(al+m)) —61622111

=1

i( +kAal+m /dxp ln

=1

With the help of the profile function (EIT]) it can be rewritten as follows:

= i/dmf”(x)k/x(x—km)—ki/dxf”(a:)k/\(x—m). (6.13)
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6.5.3 Matter in the adjoint representation

Applying the rule (1)) to (E2Z3) we get (for the perturbatif terms we use directly (BI2)):

Hecy= (kA(al + am +m) + ka(ar — am +m) + ka(—a; + an +m)
l<m<n

+ka(—a; —am + m)) + XZ (k:A(al +m) + ka(—a; + m)) + nka(m)
=1

2 2 2 2
— 2(e169)? < (pi — )" +m n (pi + ;)" +m )
RPN s R

i<j<k
—slsgzln P9 +/:Zi+2(ji_m)‘+251sgzk:ln W‘
i=1
Using the following algebraic identity
1 L a® 4+ b? (6.14)

(a+b)? * (a—0b)? (a2 —b2)?

we can write using the density function ([EI0):

1 p()oly) : Gt 6)* 4 m® (96" +m? )
— [ dedy———F—=5 =2 .
3 [ = 2, ((m o e (6 0y)? - )

Thus the Hamiltonian can be rewritten as follows:

Z (kA(al + am +m) + kala; — am +m) + ka(—a; + am +m)
l<m<n

+ k:A(—al —Qm +m ) +XZ (kA ay +m) + kA(—al +m)) —|—nk¢A(m)

x+m/2
2
/dd a:—|—y+m /da:p ‘ AZnix ‘—i— /dxp N ‘
Using the profile function we get
1
HUf) = 5 [ dodys @ @kata+y+m) — [dof@haetmi2). (615)

6.6 Sp(N) case

Let us finally apply the rule (1) to the theories with the symplectic gauge group. We start with
the pure Yang-Mills theory.



104 6 Saddle point equations

6.6.1 Pure gauge theory

Applying the rule 1)) to formulae (B24), (E2H), (20), and (&Z7) we obtain:

N N
H61,52 = —Z (kA(CLl —am) +k/\ al +ap, ) Zk/\ 2al

1
+2 1
< ¢J ((bz + ¢J) ) e Z !
1

2"
1¢1

P(6:) 67

A2N+2

+ 2 6162

2

MS \/\M

+ 2x(e1€2)

1=

In order to reduce the sum to the integral introduce the density of ¢;’s as follows:
pla) =c1e2 (6(;10 — i)+ 6(z + qbi)). (6.16)

It follows that the relevant in the thermodynamic limit Hamiltonian is

N
H:—Z(k,\(al—am)—i—k:/\ al—i—am) Zk)A 2al

l,m
2?P(x
+ %][dxd fg(c ip;)) /dxp( )In A5V(+2)
N

I
tlﬁz

(k:A(al—am)—i—kA a; + am, ) Z 2al

3

s

N
+ %][dxdy% + %/dxp(x) ; (ln
+2/d3}p(aj)ln‘%’.

Remark. It worth noting that in the thermodynamic limit the last y-dependent term becomes

x4+ ap

! +1n

)

irrelevant and therefore can be dropped. It seems naturals since in the &k — oo limit the difference

between k-even and k-odd cases disappears. O

Further simplification can be achieved after the integration twice by part and introducing the

following analogue of the profile function:

N
F@)==2p(x) + > (e = al + [z +a). (6.17)

=1
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Note that this function (as well as ([EI0)) is explicitly symmetric. Then
HIf] = -+ /dxdyf”( V" (g (x — /dxf” e (6.18)
6.6.2 Matter in the fundamental representation
Formula (B24) give
N
Hepey =Y (kA (s —m) + ka(a + m))
I=1
— €182 Zlﬂ |67 —m?|
i=1
=—Z<kA a; — —|—kA(al—|—m))
:——/da:p )In x—|—m’ /da:p ln m’.
With the help of the profile function ([EI7) we obtain
1 1 1 "
=1 dz f (a:)kA(x—m)—&—Z dzf"(x)ka(x +m). (6.19)

6.6.3 Matter in the antisymmetric representation

We have (for the perturbative term we use directly (B.14))

Heycy =) (kA(az + am +m) + ka(a — am +m)
I<m

+Eka(—a; + am +m) + ka(—a; — am + m)) + Nka(m)

(61— &) +m> (St )"+ m? )
— 2(e122)” ( ! + ;
Z <<¢-—¢j>2—m2>2 (6 + 65" — m2)”

—2X5152 Z ¢ + m? 55221 ' ¢1+m) (qﬁz—m)’

AAN

f—m2/4‘

¢
A2

+ 2e169 Zln
=1
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Using the algebraic identity (GI4)) we can rewrite obtained expression with the help of the density
function (ET4) as follows:

H = Z (kA(al + am +m) + kala; — am +m)

<m

+ka(—ar+ am +m) + ka(—a; — am +m)) + Nkp(m)
I P CIVAC) ool (1 |E=/2
Z/dd%x+y+mf+/Hlm)Q

A
N
— % /dxp(;v) Z <ln

=1

+ In

22
)

H(f) =5 [ dodys " @F Whaa+y+m) ~ [ dof @hate+m/D. (620

(x+m)* —af
A

(x —m)* — af

+ In n

It can be rewritten using the profile function as well:
6.6.4 Matter in the adjoint representation

After examination (B28) we get

H., ., = Z (k:A(al +am +m)+ kala; — am +m) + ka(—a; + am +m)
I<m<N

N
+ka(—a;—am+m ) +Z (kA (2a; +m) + ka(—2a; —l—m)) + Nka(m)
=1

(¢: — ¢;)° +m? (¢ + ¢5)° +m?
—2(e1e2)” ( ’ + ’ )
a@igg (6 — ) —m2) (¢ + ¢5)° — m2)°

~ 2x(eres) §j¢+m gggp' (¢ +m)P @—mw

AAN
— 26169 Z In
=1

qbf —m2/4
A2 '
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| Group | Multiplet || Contribution to H[f] |
1
Adjoint, gauge 1 [ dady " (z) " (v)ka(z —y)
1
Fundamental 3 Jdaf"(x)ka(x+m)

SU(N) Symmetric %fda:dyf”(a:)f”(y)kA(x—|—y—|—m) + [daf"(z)ka(z +m/2)

Antisymmetric % Jdadyf"(z) f"(y)ka(z +y +m) — [daf’(x)ka(z +m/2)

Adjoint, matter i Jdadyf"(z)f"(y)ka(z —y +m)

Adjoint, gauge —% Jdazdyf" (z) f"(y)ka(z +y) + [daf” (z)ka(z)
SO(N) | Fundamental % Jdaf"(x)ka(z+m)

Adjoint, matter % Jdadyf"(z) f"(y)ka(z +y +m) — [daf"(x)ka(z +m/2)

Adjoint, gauge —% Jdazdyf"(z) f"(y)ka(z +y) — [daf”(z)ka(z)
Sp(N) Fundamental % Jdaf"(x)ka(z+m)

Antisymmetric % Jdazdyf" (z) f"(y)ka(z +y +m) — [daf"’(x)ka(z +m/2)

Adjoint, matter % Jdazdyf" (z) f"(y)ka(z +y +m) + [daf’(x)ka(z +m/2)

Table 6.1: Hamiltonians

With the help of the density function ([EIH) it can be rewritten as
H= Z (kA(al + am +m) + kala; — apm +m) + ka(—a; + am +m)
N
+ka(—a; — an + m)) + Z (k:A(2al +m) + ka(—2a; + m)) + Nk (m)

] s

x4y +m)’
H(f) = 5 [ dof @ kst y+m)+ [ daf"@kale+m/2) (6.21)

~

x—m/2 o

(z —m)* —af

N
- %/dxp(:r) ; (111

In terms of f(z) it becomes
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6.7 Hamiltonians

Let us put the result obtained above to the table. Recall the definitions (62), {€3), (E10), ([E1),
([ET6) and @.TD):

e SU(N):

k
T) = 616225(96—@),
f(z) = —2p(x +Z|’£—az|

e SO(2n + x):

—61622( (z — ¢s) +5(l‘+¢1))

f(z) =—2p(x +Z(|x—az|+|x+az|)+x|x|,
1=1

e Sp(N): Let k=2n+yx, x =0, 1.

—61522( (x — ;) + 6(x +¢i)),

N
f(z) = —2p(z +Z(|x—al|+|$+al|).

=1

Note that in the case of SO(N) and Sp(N) the density function and the profile function are
symmetric.
The Table Bl contains formulae (£4), E4), EF), @), €9), E12), E13), EI5), @21,

6.8 Profile function properties

Let us briefly discuss some properties of the profile function f(x).

First of all we note that since p(x) has a compact support f(z) behaves like d|z| when  — +oo,
where d is the number of connected pieces of the support of f(x). It equals to the dimension of
the fundamental representation.

In general when |a; — a,| > A, | # m, the support of p(z) is a union of d disjoint intervals.
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Each of them contains one of a;’s. Let [o , ;'] be such an interval: a; € [o", a;]. Then

+
@
S

/jl+ f(z)dz = 2/ (6(z — ar) = p"() ) do = 2. (6.22)

It follows that

/ ' (z)dx = 2d.
R

" xf’(z)dx = 2 " z(6(x —a) — p'(z))dx
/az_ /az_ ( v +) (6.23)

:ZZGL

=2a; — 2 (mp’(x) - p(z))

R

The sum Zld:l a; equals zero for all group we consider and therefore we have

Using the definition of p(z) for SU(N) (&2) we have

N
/Rm f (x)da::2/Rx (;5@—6”)—/) (a:)) dz

(6.24)
N N
= 2Zal2 — 4/Rp(x)da: = QZ a;® — deieqk.

=1 =1

1
It follows that this integral fixes the relation between the instanton number k£ and —.
E1E2

The equation (G224 can be used to represent the factor ¢* in the form similar to (fH). Indeed,

we have
1 T
k . 2 : 2 2 el
= eXp —— § 7T a; — —— X x)dz
q p €169 i 1 2 f ( )

] .
= A" exp — {m‘m(m a) — 70 fo”(x)dx} :
£1€2 2 R

(6.25)

The first term in the curly brackets can be identified with the classical prepotential (EZH). The
second term in general should be added to the Hamiltonian. However, for the non-conformal
theories, as it was already mentioned, 7y can be neglected, and so this term is irrelevant. It

becomes relevant only in the conformal theories.
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6.9 Lagrange multipliers

In (EX) the integration is taken only over the functions satisfying the condition (E23)). This
condition is rather complicated to be considered as the definition of the domain of the functional
integration.

However we can extend this domain to all the functions after introducing the Lagrange mul-
tipliers. The standard way is the following: let &;,...,&; be the multipliers. Then instead of the

Hamiltonian H|[f] we should minimize the following (Lagrange) functional:

d 1 er
L(f,¢] :H[f]+Zfl <§/_ xf”(ac)dx—m)
=1 o

1

y (6.26)
= S[f,¢ =) &Gar
=1
where
1., o
S[f.¢l=H[f]+ B Zﬁz /7 zf" (z)dz. (6.27)
=1 @

Having found the minimizer f,(z) of L[f,&] we should also find the stationary point with respect

to &. This provide the condition (E23)). In other words S[f,£] should satisfy

OS[fx, €]

8{1 = aj. (6.28)

f«=const

where the ¢-dependence of f,(z) can be neglected since the derivative of the functional with respect
to function is zero at the minimizer. This equation determines &; as some functions of a;. Plugging
back these functions into ([E26) we obtain the value of the Hamiltonian at the critical point. That
is, the (minus) prepotential. Otherwise the function S|fy, £] is nothing but the Legendre transform
of —F(a,m).

Note that since Zld:l a; = 0 the sum of & is not fixed by this procedure.

The last term in ([E27) requires the knowledge of the support of the minimizer f,(z) which itself
is to be found. Hence the constraints can not be imposed in the form presented above. However

another way exists [[0]. Note that f'(—o0) = —d, f'(+00) = d and thanks to ([G22)
af
flah == [ =2

Hence we can introduce a piecewise linear function (the surface tension function) o(t) such that
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o'(t) = & when t = f'(z),x € [a; , )], that is, t € (—d +2(I — 1), —d + 21). With the help of this

function we can rewrite the last term in ([E217) as follows
1 o 1
5 > & / wf(x)dz = —5][ o(f'(z))dzx (6.29)
=1 R R

provided o(d) + o(—d) = 0. Together with the definition of o(t) it implies 3>, & = 0 and all the
&’s are now defined.
The discussion presented above implies that in order to determine the prepotential we have

proceed the following steps:

e find the minimizer f,(z) of the Lagrange functional:

SU7.€l = A = 5 £ o @) (6:30)

where the Hamiltonian H[f] is defined for each model with the help of Table Gl

e in order to obtain the prepotential we need to perform the Legendre transform with respect

to & of S[f,&].

As we shall see in the next section the Seiberg-Witten curves appear naturally while performing

these steps.
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Chapter 7

Seiberg-Witten geometry

In this chapter we consider some examples of the saddle point equations and their solution. Let
start with an example of SU(N): pure Yang-Mills theory and matter in fundamental representation

[l

7.1 Example: SU(N), pure Yang-Mills and fundamental

matter

Let Nf be the number of flavors. With the help of the Table £l we can write the Hamiltonian of
the model:

Ny
H[f] = —i/dxdyf”(x)f”(y)kA(ﬁc —y)+ Z % /dxf"(x)kA(x +my).
F=1

In order to minimize the functional ([E30) we note, that it naturally depends not on f(z), but

rather on f’(x). The saddle point (Euler-Lagrange) equations for f’(z) are

Ny

- / dyf" )k (z —y) — S Kp (@ +my) — o' (f(z)) =0. (7.1)
f=1

65[f.¢]
of"(x)

2

Using the definition of o(t) we conclude that o’(f'(z)) = & when = € [a;, o;f]. When z is outside
of the support of f”(z), say = € (o, @;4,), we can not determine o’(f'(x)). The only thing we

can say is that in this case & < o’ (f'(x)) < &41.

113
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Figure 7.1: Conformal map for SU(3), Ny =2

Taking the derivative we obtain:

[ v

N
r—y —iln T+ my
A ] A

In order to go further we exploit the primitive of the Sokhotski formula:

In(z +40) = In|z| — in s (—x),

where J#(x) is the Heaviside step function:

Define the primitive of the resolvent of f”(x):

P = [ anrwm (S52).

For F(x) we obtain the following equation:

Ny

F@) =Y gt (25 = ol

a=1

=0, z¢€la,a].

\{

%

(7.2)

(7.3)

where the complex map ¢(x) maps the real axis to boundary of the domain on the figure [Il It

is holomorphic (since the lefthand side is). It follows that ¢(z) maps the upper half-plane to the

domain. Suppose that |a; — an,| > A if [ # m and my > q; for all f and [. This information is



7.1 Example: SU(N), pure Yang-Mills and fundamental matter 115
sufficient to reconstruct this map. One gets (up to an additive constant):
1 P
p(z) = —— arccos i, (7.4)
2w 2AB/2 Q(z)
where according to (Bl) 5 = 2N — Ny and
Ny N
Q) = [[@+my), Pl)=]]@—a).
f=1 =1

We have introduces parameters o; € [ , ;"] which are the classical values of the Higgs vevs.

Define y(z) = exp 2miF'(z). Then the solution we have obtained can be written as an equation

for y(z):
y*(2) = P(2)y(2) + A”Q(z) = 0.

The endpoints of f”(x)’s support satisfy the equation

P*(0j") = APQ(of") = 0.

(7.5)

The Riemann surface of the function y(z) is the two-fold covering of the Riemann sphere. It

has cut which connect these two folds along the support of the profile function. Let us define the

basic cycles of this Riemann surface (figure [[2)). We see that the intersection number satisfies

Al#Bm = 5l7m~

Using some resolvent properties and (B23]) one shows that

O[+
%/ l xf”(x)dgc:f 2dF(z) = de_y = a.

v A, A, 2m oy

Using the saddle point equation ([ZI]) we conclude that

Ny

Sp1—& /al—l 1 z+my
w2 |G 2w —% dz

i f=1

Ny

-1 1 d 1
=—2/ z |dF(z) — — : :—j{ —z—.
ot = 4dmi z +my Biiy—B; 2Tl
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Figure 7.2: Basic cycles

Performing the Legendre transform inverse to ([£28) we obtain

oOF . 1 dy
— =2m —z—.
day B, 2T Y

It follows that the prepotential for this theory can be reconstructed with the help of the Seiberg-
Witten data: the curve (CH) and the meromorphic differential

1 dy
= —— = F . .
A 5% ) 2dF(z) (7.6)

7.2 Fundamental matter for SO(NN) and Sp(N)

In this section we extend the previous analysis for the matter in fundamental representation to

other classical groups: SO(N) and Sp(N).

7.2.1 SO(N) case

With the help of the Table we obtain the Hamiltonian. In order to obtain the saddle point

equation we should take the variation with respect to the symmetric functions. The function o(t)
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is also supposed to be symmetric. The equation we get is

Ny
/dyf”(y)k'A(x —y) — 4k (2) = Y (Ki(z +my) + k(@ —my)) = 20'(f'(z)) = 0.
f=1
We see that this equation coincides with (ZII) for 2Ny + 4 fundamental multiplets with masses
(0,0,0,0,m1, —ma,...,mys,—my). It follows that the same should be true for the prepotential
3.

Remark. One could be worried about N-odd case, where one of the Higgs field vevs, which is equals
to zero, matches with the zero mass coming form from the term 2k, (x). However already from

the expression (BE2Z2) and (BZI)) it is seen that they painless annihilate each other [[Z1]. O

We define F(z), y(z) and X at the same way as in the SU(N) case. We are able to write the
Seiberg-Witten curve (as usual we define N = 2n+y, x = 0, 1; according to (Bl § = 2N —2N;—4):

n Ny
y2(2) 4 2X H(22 —ad)y(z) + A°2* H(z2 — m?) =0.
=1 F=1

7.2.2 Sp(N) case

In order to solve the saddle point equation for this model it is convenient to introduce another

profile function defined as follows:

F(@) = f(@) +2lal = ~2p(@) + Y (Jo = aul + |2 + aif ) + 2z, (7.7)

=1

The new profile function is also symmetric. We also should redefine the surface tension function

o(t) as follows:
-&, te(=20,-20-2), I=1,...,N

Gt)y=¢ 0 te(-22)

+&, te(+2,420+2), 1=1,...,N

The Hamiltonian for the gauge multiplet is

(7| = 1] =~ [ dody" @) 7" @ka(e )
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And finally the saddle point equation for the model can be written as follows:

Ny

/dyf”(y)k'/\(w —y) = (Kh(z+my) + Ky (z —my)) =25 (f () = 0.
f=1

This equation looks like (ZZT)). However we should remember that the support of f”(x) contains

the interval o, ] 2 0. Using the definitions (EI6) and (EIZ) we get

af
/ F(2)dz = 4. (7.8)
It follows that for the primitive of the resolvent of f(z) defined by ([Z3) we obtain the following
equation
N L+
z mpg Z—Mmg
F(z) - — (1 1 =
=2 g (i (55 (572)) = vt

where ¢(z) is a holomorphic function which maps the upper halfplain to the domain on the figure
In order to construct the map we use the reflection principle. Function ¢(z) maps first
quadrant to the half of the domain. It follows that together with the square map function ¢(z)
maps upper halfplain to the half of our domain. Hence we can use the result for SU(N). The map
P(z) is given by

N ~ 2
1 z[[1L,(z— @& m
P(z) = = arccos =1 ) , My =—0, — it

- N N
™ IAN+1-N;/2 Hfi1(z+mf)

The endpoints of the intervals [&; , &, satisfy the equation:

Ny
(6" —a) = 220NN TT W af + iy
=1

Using this condition we can rewrite the composition of ¢(z) and z — 22/A + &, as follows:

Jos
Qg

=

~

1

22 Hl]\il(z2 —a}) + A2 H}\Zl img
o(z) = 5, arceos = ,
T
202\ T2, (2 — m3)

where 8 = 4N +4 — 2Ny.
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%-on ¢
@ A
o -1 s

Figure 7.3: Conformal map for Sp(1), Ny =1
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It follows that the curve can be written as

N Ny Ny
y?(2) + |22 1_[(22 —af) + NP2 H imy | y(z) + A° H(22 - m?) =0.
=1 f=1 f=1

7.3 Symmetric and antisymmetric representations of

SU(N): equal masses

Another model for which the curve can be obtained with the help of the analysis of the saddle point
equation is the SU (V) gauge theory with symmetric and antisymmetric representations which have
equal masses m. The Table 1] shows that the same equation describes the SU(N) gauge theory
with two antisymmetric representations with the same masses m and four fundamental multiplets
with masses m/2.

Taking into account the discussion after (G2H) we can write the Hamiltonian of the model as

follows

H(f) =~ [ dodys” @1 @kale =)+ 7 [ dedys" (@) ko + -+ m)
T

" 1 !
—— dxz? ' (x) — §/dxo(f (x)).

The saddle point equation is

/dyf”(y)k’A(w —y) — /dyf”(y)k’A(x +y+m) = 2mingx + o' (f'(z)).

Taking the derivative we arrive to
/dyf”(y) In|x —y| — /dyf”(y) In |z +y+m| = 2mitg, € [a),q;]. (7.9)

The crucial observation is that the function on the lefthand side is antisymmetric under the
reflection with respect to —m/2:  — —x —m. So the righthand side is also antisymmetric. Hence

the difference of the logarithms equals to —2immy when x € [—a;” —m, —a; — m]. Define

F(z) = ﬁ/Rdmf”(a:) In (%) . (7.10)

The saddle point equation states that F(z) maps the real axis to the boundary of the boundary
of the domain on the figure [4 So the upper halfplain is mapped to the whole domain. Such a
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-1/2

Figure 7.4: Conformal map for SU(2), and matter in symmetric and antisymmetric representation

map is known and given by the formula

F(Z) _ L Sn—l 193(0) P(Z)

2w 92(0) P(—z —m)’ (7.11)

where we have defined P(z) = Hfil(z — o). In this formula sn(x) is the Jacobi elliptic sinus, 2w,

is its real period. It satisfies [40]

U3(0) V1 (x )
sn(wix) = 92(0) 9 (z)
Ii(x+1/2) = da(x) = Y ¢" /2™
n€odd
19($+1/2 Z qn/2 7,7T’I’L:E.
neeven

The endpoints of the support of f(z) satisfy the equation

’P(ali) =4 P(—m—ali).

Using these formulae we can rewrite the expression for F'(z) as follows:
94(2F)YP(2) — 91 (2F)P(—2z —m) = 0.

This expression can be checked in various ways. First let us consider the limit 79 — co. In such

a limit we have 93(0)/92(0) ~ ¢~ /2, sn(z) ~ sin(z), and w; ~ 7. The expression ([ZI1]) becomes

N 1 =1 P(Z)
F(Z) ~ % Sin m
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If we also take a limit m — oo in such a way that m?Vg = 4A%V stays finite we obtain the
expression ([ for pure SU(N) gauge theory, which is consistent with the fact that in this limit
the massive representations decouple.
Another way to check this expression is to consider the hyperelliptic truncation of the curve,
given by
1 P(z)

T e e

where y(z) = iexp 2miF (z). Comparing this expression with (E29)) and referring to the Table

we see that the one instanton corrections are correctly described by this curve.

7.4 Mapping to SU(N) case

As another application, the saddle point equations help to establish the connection between dif-
ferent models. Some of them have been already found after examination the Seiberg-Witten curve
[23] and the 1-instanton corrections [33]. In this section we will examine the saddle point equations.
If for two theories they match (after the appropriate identification the parameters of curves) it is
natural to expect that the prepotentials will be the same.

As an example consider the SU(N) theory with the symmetric and antisymmetric matter and
some fundamental matter. We have the following saddle point equations:

Antisymmetric matter.

" r—y _1 " x+y+m(a) x+m(a)/2
/dyf (y)In A ‘ 2/dyf (y)In S — +21In — K
N
— Z In |20 +Amf' =2mitg + o' (f'(x)), €[, 0] (7.12)
f=1

Symmetric matter

z+y+mb)

A —2In

/ dyf”(y)In

x_y_l "
i ‘ 2/dyf (y)In

z+m)/2
A

N(S)

f
— Z In
f=1

*‘ = 2mito + o' (f'(z)), =€ [al_,ocf].

The analysis of these two expressions leads us to the conclusion that the matter in the symmetric

representation with mass m is equivalent to the matter in antisymmetric representation with the
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same mass together with four fundamental multiplets with masses m/2.

In this section we establish such an equivalence between the models containing different groups
and matter content. For each model we find its SU(N) partner. We use the following notation:

a=(a1,...,an) for SO(2n + x) models and @ = (a1, ...,an) for Sp(N) models.

7.4.1 SO(N), pure gauge

The saddle point equation is

—Y
A

/ dy " (y)In | =

‘—4111‘%‘:27”‘70.

We conclude that this model is equivalent to the SU(N) model with 4 massless fundamental
multiplets. This fact was already used in the section [Z21]

7.4.2 SO(N), matter in fundamental representation

The contribution to the lefthand side of the saddle point equation is

T —myg

A

—In

’—ln

T+ my
A .

It follows that each fundamental representation of SO(NN) is equivalent to two SU(N) fundamental

representations with masses +m; and —mj.

7.4.3 SO(N), matter in adjoint representation

The contribution to the lefthand side of the saddle point equation is

— %/dyf”(y) In

m_l/ "
1 ‘ 5 dyf"(y)In

r+y—m
A

+2In +2In

A

a:+m/2‘

a:—m/2‘

Comparing with [ZI2) we see that the adjoint representation with mass m in the SO(N) case is

equivalent to the two antisymmetric representation of SU(N) with masses +m and —m.
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7.4.4 Sp(N), Pure gauge

The saddle point equation in this case is

r—y
A

[ v

‘+4ln‘%‘:2ﬂi7‘o.

We conclude that Sp(N) pure gauge theory with 4 massless fundamental matter multiplets is

equivalent to the SU(2N) theory with Higgs vevs (&, —a).

There is another way to establish a map to the SU(N) case which use the definition ([Z7) of

the profile function. The saddle point equation is

r—y
A

/ dyf(y)In

‘ = 27iTy.

We see that the model is equivalent to the SU(2N + 2) pure gauge model with the following
values of the Higgs vevs: (0,0,d, —a).
Remark. We should stress that in the case of embedding Sp(N) C SU(2N + 2) the two of 2N + 2

Higgs vevs matches. This case should be treated carefully as shows the example of the section

22 o

7.4.5 Sp(N), matter in the fundamental representation

The contribution to the lefthand side of the saddle point equation is the same as in the SO(N)

case:

I x—mf

‘—ln

T+ my
A .

So the fundamental representation for Sp(NN) is equivalent to the fundamental representation for

SU(2N).

7.4.6 Sp(N), matter in the antisymmetric representation

With the help of the profile function (L) the Hamiltonian can be rewritten as follows:

H(f) = H1f) = § [ dodyf" @)@ kata -+ m) [ dof'(@)ka(o+m/2)
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The lefthand side of the saddle point equation is

——/dyf” x+y+m‘——/dyf”

x+y—m‘

+21In +21In

x—l—m/Q‘

x—m/2
|

It follows that the Sp(/N) model with antisymmetric matter representation with mass m and
two massless fundamental multiplets is equivalent to the SU(2N) model with two antisymmetric

representations with masses +m/2 and —m/2 and with moduli (@, —@).

7.4.7 Sp(N), matter in the adjoint representation
Using the profile function ([Z7) one can rewrite the Hamiltonian of the model as follows:

H[f| = dedy " (2) " ()ka(x +y +m) + / Ao " (@)ken ( + m/2).

The contribution to the lefthand side of the saddle point equation is

— %/dyf”(y) In

r+y+m 1 ~
serenl L Lo pn

x+y—m‘

x+m/2

—21In A

A

‘—2ln

x—m/Q‘

We conclude that the matter in the adjoint representation of Sp(N) is equivalent to two symmetric
multiplets with masses +m and —m.
In the Table [Tl we have collected these results. As usual, for the orthogonal group SO(N)

notation < means 0 when N is odd and it is absent when N is even.

7.5 Hyperelliptic approximations

In this section we show how to extract the hyperelliptic approximation to the Seiberg-Witten curve
from the saddle point equation. This allows us to prove that the 1-instanton correction which will
be obtained from the curves matches with our computation presented in section B

In B we have shown that our computations match with the algebraic curve computation
provided the curve is given by (EZ9) and the residue function have been constructed with the help
of the Table It follows that the only thing we should show is that when solving the saddle

point equation in hyperelliptic approximation we obtain the correct rules for the residue function.
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| Group | Multiplet || Higgs | Fund. | Anti. |
| SUN) | Symmetric, m || a | m/2,m/2,m/2, m/2 ] m |
Adjoint, gauge (O, a, —a) 0,0,0,0 —
SO(N) | Fundamental, m (O, a, —a) —m, +m —
Adjoint, m (¢, a, —a) — +m, —m
Adjoint, gauge (0,0,a, —a) — —
Adjoint, gauge
Sp(N) | +2fund., m=0 (@, —a) — —
Fundamental, m (@, —a) +m, —m —
Antisymmetric, m (@ —a) — +m, —m
Adjoint, m (d,—a) +m/2,4m/2,—m/2,—m/2 | +m, —m

Table 7.1: Mapping to SU(N)

Note that for all (classical) groups and fundamental matter the hyperelliptic approximation is
exact. It follows that the task is already accomplished for these models.

Consider the first non-trivial case, the antisymmetric representation for SU(N) model.

7.5.1 SU(N), antisymmetric matter and some fundamentals

The saddle point equation for this model is given by ([[LIZ). In order to obtain the hyperelliptic
approximation to the Seiberg-Witten curve we will simplify the second term.
To do that we note that the approximation to the profile function which leads to the perturbative

prepotential is the following (see (E3)):

N

foert(@) = 3" |z — .

=1

The second derivative of this function has a pointwise support. The support of the exact solution

is the union of intervals which has length of order A <« m. Consider the primitive of the resolvent

of f"(x):
P = [ anrm (S52).

The primitive of fpere-resolvent is

1 N zZ—a
Fpert(z) = %Zln A .

=1

The exact expression for F'(z) will be different. However, if |z —a;| > A for alll = 1,...,N
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we can still use this approximation. In particular when we compute integral over the cycles A; or
Bj+1— B; we can use for F(—z —m) the perturbative approximation. Coming back to the equation
[CI2) we conclude that in order to obtain 1-instanton correction we can put in the second term

f(x) = fpert(x). After this identification the equation becomes:

/ dyf"(y) In

g

x+m+m}

+2In =2mitg, € [a;, 0]

Ny
x+m/2
cmp 3L,

f=1

x+mf‘

To solve this equation let us define another profile function

f(@) = f(z) + |z +m/2].

For this function we have the following saddle point equation:

/dyf” ln

This  equation looks like @) if we identify a — (—m/2,d), and

T+ my

T

Ny
$+al+m' Zln
f=1

‘ = 2mity, € [0 ,q].

my +— (-=m —ai,...,—m — ay,mi,...,my;). Using the result of the section [LT we can
immediately write the solution ([ZH):

y(z) + —— = (22 4 m) Iz (= — o) . (7.13)

y(z2) A(N+27Nf)/2\/]_[f\;1(z+m—&-az)H;\Zl(z‘me)

Remark. Since we have identified the mass of the antisymmetric multiplet with one the Higgs vevs
we should, in principle, write its contribution to the nominator as (2z+pu), where 1 = m+O(A?/2).
However in order to compute the prepotential we will not need to compute any contour integral
where contour passes near the point —m/2. It follows that the shift u — m will take effect only in

the higher instanton corrections which we are not interested in here. O

The equation ([CT3) is the same as (E2Z9) provided we set

[y (4 m o+ a) [ (@ 4+ my).
(22 +m)? Hfifl (z —ay)?

S(x) =

This expression matches with the value of the residue function which can be build with the help
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of the Table The last observation proves that the solution of the saddle point equation ([ZI2)
gives the correct prediction for the 1-instanton correction.

The procedure presented above can be easily converted to the mnemonic rule to build the

residue function which appears in (BE29). It can be formulated as follows: any term of the form

r — X

A

eln

leads to the (x — x¢)”  factor of the S(z).

7.5.2 SU(N), matter in the symmetric representation

In order to obtain the hyperelliptic approximation for the case of symmetric representation we can
either use the same technique as in the case of the antisymmetric multiplet or directly apply the

result of the section [[4l Anyway the result for the simplified saddle point equation is

/dyf” ln

Applying our rule we get the following contribution to the residue function:

r+m/2
A

‘ =2mity, T € [0y, )]

w-xn

x+al+m‘_21n

2

=

(2z +m) (z+m+a)

l

1

which is in the agreement with the Table

7.5.3 SU(N), matter in the adjoint representation

The contribution to the simplified saddle point equation is

N

—Zln

=1

Tr—a;+m

A

It follows that the contribution to the residue function is

1
Hl]\il(m—al —|—m)'

It agrees with the Table
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7.5.4 SO(N) models

In order to establish the same results for the SO(N) models we can apply the result of the section

[l The result for the adjoint gauge multiplet is:

x472x

Sz)= ————"—.
) [T (@ — )

For the adjoint matter multiplet we get the following contribution to the residue function:
( 2 Q)X N

C T+ m)? = ad) (@ —m)* —a}).
=1

42 — m2

These expression are in agreement with the Table

7.5.5 Sp(N) models

Using the result of the section [l we get the following residue function for the gauge multiplet:

1

= N 2
2 [[=; (22 - 0‘12)

S(x)

The contribution which comes from the antisymmetric representation is defined by the following

contribution to the saddle point equation

1 " w_l/ " r+y—m
5 [ om| 2 fagm |2
x+m x—m x+m/2 x—m/2

Plugging into this expression the perturbative approximation of the profile function
N
foert(@) =Y (7 — ai] + |z + @) + 2]z

=1

we obtain the following contribution to the residue function:

1Y, (@ +m)* = ad) (@ —m)* —ad)’
(422 — m?2) '
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The contribution to the residue function which comes from the adjoint representation is

N
(42 — ) [ (@ + m)* = ad) (& — m)* — a})”.

=1

Obtained expressions is in agreement with the Table



Chapter 8

Open questions and further

directions

In this paper have derived the method which allows us to compute the low-energy effective action
for N’ = 2 supersymmetric Yang-Mills theories. We have considered almost all models allowed by
the asymptotic freedom. Using the results of [37, 34, B3| B2] we have shown in section B that the
equivariant deformation method provides the results which in the 1-instanton level agree with the
previous computations.

Also we have written the saddle point equation for each models and we have shown that in
all cases when we can it solve obtained expressions for the Seiberg-Witten data agree with known
results.

We have shown that the saddle point equation technique is self-consistent: in spite of the fact
that the curves and the differentials are obtained under rather strong condition k& — oo, the final
answer is nevertheless correct even if k is low.

In section [ZH we obtained the hyperelliptic approximation to the Seiberg-Witten curve. Pre-
sumably, one can develop the method presented there and obtain the mathematically rigorous
recursion scheme which will give all the instanton corrections. It would be interesting to establish
its relation with other recursion schemes (such as, for example, [6]).

Another direction would be the generalization of the moduli space singularities counting. Close
relation between these singularities and Young tableaux allows us to compute the integral (225
(see [69]). It would be interesting to generalize this approach to other models.

An important question which remains unsolved in the present paper is about the exact solutions

131
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for saddle point equations for all considered models. It seems, that the method of conformal map,
used in [70, [71} [79] is limited by the models, considered in this paper. However, another methods
exist. Their implementation whould be an interesting branch of investigations.

Another question which appears is the following. We have started from the exact microscopic
action. Therefore the effective action we obtain should also be exact. We know how to extract
from the integrals over the instanton moduli space the leading part of this action, the part, which
can be reconstructited with the help of the prepotential. The question if it is possible and how to
extract the subleading terms remains open.

And finally let us mention another direction for generalization. All the presented results are
based on the ADHM construction which is known only for the classical groups. A way to perform
the computations which does not use it would provide the effective action for all groups. It would

be interesting to find it.



Appendix A

Spinor properties

In this section we give a brief review of some properties of 4-dimensional spinors, related formulae
and common notations. In order to build N' = 2 super Yang-Mills theory we will need consider

Minkowski space, that is, R1»3. The choice of the metric is the following:

uv = . (A].)

However to be capable to treat its instanton expansion we should preform a Wick rotation and
therefore get in Euclidean space, R*, where the metric equals to the Kronecker delta: Guv = O
The spinor properties are different for these two spaces. We will mostly consider the euclidean

spinors.

A.1 Spinors in various dimensions

A.1.1 Clifford algebras

We will start with some generalities about the Clifford algebras.
Let us consider the d dimensional space with the diagonal metric with signature (p, q), p+q = d.
Otherwise

Gy = diag{+1,+1,...,+1,-1,-1,..., -1}

p times q times

133
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The Clifford algebra is generated by symbols {’yz’f +q} L satisfying the following anticommuta-

d
=
tion relations:

{2} =g (A.2)

Thanks to this relation an arbitrary element of the Clifford algebra can be written as follows

1 1
w = UJ(O) + wfj,l)’y# + 5”;(121);127#1#2 4+ 4 Ewl(ﬁ)uk,-yﬂlﬂk + ... ,

where y#1--#k ig the antisymmetric part of the product v#* ...~vy#**. The dimension of the Clifford

algebra is therefore 1 + C% + - = 24,

Let us introduce the orientation operator

1
Iy= Eem---u(ﬂm syt

Where are two possible signs in this definition, the choice corresponds to the sighn of the Levi-
Civita tensor, which in its turn is defined by the choice of the orientation. The square of the
orientation operator can be easily computed with the help of the defining relations ([(A2)). Indeed,
since

d—1,.d_1

T2 = Ala2 . Ad=lydy 72.”7d717d:(_l)d—l(,yd)Q,yl,)g. =112 d-d

St S A
It is easy to guess the following recurrent relation: I'2 = (—l)d_l(fyd)QI‘flfl. It follows that

(d—1)
I = (- o = ()T

In the following we will be interested in the representations of the Clifford algebras. It is clear
that if matrices v* satisfy the basic relation (AZ) then the conjugated matrices 7* = U~*U !
also satisfy these relations.

We will say that a matrix representation of the Clifford algebra is generated by the Dirac

matrices. The space on which these matrices act is the space of the Dirac spinors Vp.
Example. Consider a trivial example d = 1 and the signature of the matric is (0,1). The Clifford
algebra has only one generator satisfying 7 = —1. Therefore 7; = 4 and in this case the Clifford
algebra is ismorphe to C. Note that the representation of one dimensional Clifford algebra is also
one dimensional.

Remark. It is clear that multiplying the generators by ¢ we can chnage the signature of the metric.

a
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A.1.2 Recurrent relations

Now suppose that we have constructed a representation of the Clifford algebra for the d dimensional

case. How to construct the representation for the dimension d + 17 There are two possibilities.

If d is even then it is easy to see that {I',v#} = 0 Vu. It follows that if we define

R d+1 _
Yar1 = VYa> Yag1 =1Ld

when it will be representation of the d + 1 dimensional Clifford algebra. Note that in this case the

dimension of the representation does not grow up.

If d is odd then we can consider the following set of generators:

0 — 0 1
75+1 = u ) 'V;liill = . (A.3)
vy 0 10

There are another realization of this construction. Indeed, we can define the following generators:

0 vy 0 1
75+1 = u ’ ’75111 = . (A4)
vy 0 -1 0

Both of this construction lead to the representation of d + 1 dimensional Clifford algebra. Note
that in this case the dimension of the metrices is doubled. These two constructions are conjugated

by the matrix

1+
Vol

It follows from this recurrent procedure that the dimension of the matrices of representation

where ¢ = e =
we have constructed is 2[2]. Therefore these matrices have 2¢ components if d is even and 29!
components if d is odd. It suggests that in the even dimensional case we have a faithful repre-
sentation, whereas in the odd dimensional case this is not true. The way out is to note that in
the odd dimensional case the complex conjugated representation is not equiavalent to the initial
one. These two representations together have 2 x 2¢=1 = 2¢ independent components, which is the
dimension of the Clifford algebra.

Now let us apply the recurrent procedure to get some representation of the Clifford algebra for

some d. The one dimensional representation is already considerred. Therefore we start with the
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case d = 2.

d = 2. Applying directly the prescription [A3)) we get

This choice corresponds to the signature (2,0). If we wish to consider the Minkowski space (with

sinature (1, 1)) we ahould multiply the second matrix by a factor i. Therefore we get

Therefore the generators of the three dimensional Clifford algebra with the eucledian signature

(3,0) can be choosen as follows:

Note that this is nothing but the Pauli matrices (A).

d = 4. Applying once again the prescription (A3) we get for the Minkowkian signature (1,3) the

following representation:

0 ]lg . 0 —T; 0 ot
]lg 0 Ti 0 at 0

2
[ )
Il
=
I
)
o~
I

where o-matrices are defined in ([AT9).

d = 5. The orientation operator for the previous case is

—ily O
0 11y

Ty = 74737 =
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Since I'> = —1, we conclude that the following set of generators

V=~ =Ty

provides the representation of five dimensional Clifford algebra with the signature (1,4).
d = 6. Let us finally consider the six dimensional case. In order to get the representation of the

Clifford algebra for the signature (1,5) we use the prescription ([AZ]). The result is the following:

0 vff 0 P4 0 ]].4
’}/Z 0 F4 0 —]].4 0

2R

The schemas (A4l and ([A33) show that in the Euledian signature the matrices v, where p is
even odd can be choosen to be real whereas v for v even can be choosen pure imaginary (recall that
in the Eucledian case u = 1,2, ...,d whereas in the Minkowskian p = 0,1,...,d — 1). Moreover
all the Dirac matrices are hermitian. Since multiplying them by ¢ we can change the signature we

conclude that the following relation holds
('VH)T =Y = G’

Note that these two properties are stable under the conjugation by unitary matrices.

A.1.3 Weyl and Majorana spinors

Let us discuss the existence of the Weyl spinors. It is easy to see that if the dimension is even then

the orientation operator I'g (multiplied by =i, if necessary) has the following form:

T, =
0 -1

It allows us to define the projection operators to the space of the left and right handed spinors:

pE _ 1+Iy
2

operator is proportional to the unit matrix and does not allow to define chirality.

. Therefore in even dimensions the Weyl spinors exist. If d is odd the orientation

Before discussing the Majorana spinors let us define the Dirac conjugation. It is easy to see

that the following matrices

1

1
S = 1 ['Y,ua'yu] = 1 (’YM'VV - 'YV'Y,u)
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satisfy the commutation relations for the Lorentz group O(p, q):
[Spvs Spol = 19upSve + ivaSup — i9uoSvp — i19upSuc-

The infinitesemal Lorentz rotation is defined on spinors as follows:
i
Vp 29— <Jl + §Sww’“’> P

where w¥ are parameters of this rotation. The Dirac conjugation is defined as ¢ = 1T A where A
is a unitary matrix (to assure 1Z = 1)) choosen in such a way that 1 is a scalar. This condition

can be recast as follows:

A_l [’Y,uv 71/] A = I:rﬁu ’Yl}

and indeed will be satisfied if A™'y,A = +4) = £4#. Therefore we can take either
Ay =412 . 4P or A_ = APH1AP+2  APF4 In the Eucledian case we can take A = A_ =1, and
in the Mikowskian case A = A, = +°. Note that since AHT =~k for uw=1...,pand APt = —yh
foru=p+1,...,p+q we get AE =A; and AT = (-1)74_.

Consider the Dirac equation for the massive spinors in the external gauge field A, which is
supposed to be real:

[(Vuy* —m] = [(i0, + Ap) " —m] ¢ = 0.

The complex conjugated equation is
(=0, + A )" —m]y* =0.

If we wish the Dirac conjugated spinor T = AT4* to satisfy the same equation as the initial one,
but have the opposite charges (A4, — —A,) we should identify 1 and ¢¢ = C~9T = C~ATy*

where C~ satisty the following condition:
(C7) e = — ATy AT (A.5)

This matrix together with the complex conjugation ¢ defines an antilinear operation C~ = C~ATc.
In the even dimensional case the projection operator I' anticommutes with the generators v*. It
follows that the Clifford algebra is simple and threfore the representation generated by matrices

~* and the complex conjugated matrices should be equivalent.



A.1 Spinors in various dimensions 139

Therefore the square of the antilinear operator is proportional to 1 thanks to Schur lemma.
2

Since C™(C7)" = (67)2C7 we conclude that (Cf)2 =C~AT(C~AT)" = a1 where a € R. If we

rescale C~ by a number A € C we get a — a|A|*. Therefore we can put either o« = —1 or o = +1.
c-

In the last case it is possible to define the projection operators Pci_ = 5 splitting the space

of spinors into the selfconjugated and anti-selfconjugated. The space of self conjugated spinors, if
exists, is called the space of Majorana spinors.

If the spinors are massless there is another option: we may find a matrix C* satisfying
€ Iyret = 4 AT AT (A.6)

Combining this matrix with the copmplex conjugation we get the following antilinear operator
1+c*

CT =CTATc. When (CJF)2 = +1 we can construct the projection operators ’Pé =G which
splits the space of Dirac spinors into two subspaces of Majorana spinors.
Note that if (C*)* = C*AT(C*AT)" = —1 there is still a way out to define a version of

Majorana spinors, the symplectic Majorana spinors. To this extent we should enlarge the space of
Dirac spinors Vp — Vp ® W where W is a vector space equipped by a symplectic form €. When

we can define a projection operotor as follows

]]_VD ®]]-WZ|:C®Q

+

Pragmatically it means that instead of one Dirac (or Weyl) spinor 1 we consider a set of such a
spinors: 1,%s9,.... And the symplectic Majorana spinors are those which satisfy the following

condition:

Y = Qz'ﬂ/)f = in‘jCATﬂ);-

Consider some examples of the matrices Cfit in the Mikowski spaces (spaces with the signature
(1,d —1)). To this extent we note that according to schemas (A4l and ([A3) in this signature the
matrices 7°,7', 73, ... are real whereas 72,7%,... are imaginary. Recall that A = +°. Therefore

the conditions (A0) and ([AXH) are satisfied by the following matrices

C, =74 A%t and Cf =9993...99 if d=2 (mod 4),

C;=913...74 and Cf=7973...95 if d=0 (mod 4).

It is easy to write corresponding matrices for all other types of signature.

Consider some examples of these matrices.
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d = 2. Applying the rules we get

0 1 0 1

-1 0

We see that (Czi)2 = +1,. Therefore in 1+ 1 there are spinors of Majorana of two types.
d=4. We get

_ e 0 —e 0
L =i = | =i = ,
0 —te 0 —e
where the 2 X 2 matrix ¢ is defined in ((AJ0). In this case (C4_)2 = +14 whereas (01)2 = —14.
Therefore in the four dimensional case there are only spinors of Majorana of type “—” (which

respect the mass) can exist.

d = 6. We obtain

_ 0 cf 0 —Cf
Co =878 = . , CF =7 = .
In both cases (Cﬁi)2 = —15. Therefore the Majorana spinors can not exist in 1 4+ 5 dimensions.

However it is possible to define a symplectic Majoarana spinors.

A.2 Pauli matrices

Define the Pauli matrices in the standard way:

(A7)

T1 , T2 = , T3
They have naturally one upper and one lower spinor index: Tiyaﬂ . This convention makes
possible to multiply them. We have

5Tj,57 = 0300 + i€ijkTh,a” (TiTj =010 + ieijka). (A.8)

Ti,o

Together with the unit matrix they form a basis of all 2 x 2 complex matrices. This fact can be
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expressed as the Fierz identity:
5§6§ + Ti)aﬂTiﬁé = 25?52 (]lg RIL,+7, 1 = 2]12><2), (AQ)

where 1542 is the unit matrix in the vector space of all 2 x 2 matrices. The Fierz identity is nothing

but the completeness condition for the Pauli matrices.

The Pauli matrices are all hermitian:

TiT = T;.
Consider the matrix:
0 -1 0 1
€aB = , P = (e_l)aﬁ = . (A.10)
1 0 -1 0
One can check that the Pauli matrices satisfy the equation:
T %3 = —60‘773775655 (T;‘ = —e_lTie). (A.11)

The meaning of this relation can be discovered as follows. Consider a matrix X,P. It can be

developed as X,° = Xoég + iXka,aﬁ. The reality of Xy and X is equivalent to
X* = 'Xe.
This equation is called the reality condition.
For any U € SU(2) we have U = ¢'Ti where ¢ are real. Thus AT yields
(U5 = €U, %¢s,, (U* = e_er).
It follows that ¢ is stable under the SU(2) transformations. Indeed
€ap = Ua"Upey5 = €ap.

Hence the “metric” e can be used to rise and lower the spinor indices.
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A.3 ’t Hooft symbols

In this section we consider selfdual and anti-selfdual forms in the Euclidean space. According to
this we can make no difference between upper and lower spatial indices. The standard reference is

[82], however some details can be found in [57].

Any antisymmetric tensor in four dimensions F),, can be represented by means of two three

dimensional vectors a; and b;:

Remark. The triples a; and b; will transform as vectors with respect to the subgroup SO(3) of
SO(4) which preserves the vector (1,0,0,0). However if we extend this subgroup to O(3) by
including the reflections z* — —z we find that a; is a vector whereas b; is a pseudo (or axial)

vector. O

Using the Hodge star one can define for this tensor the dual tensor as follows:

1
*F,, = (*F);w = ge,wngpg,

where €,,,5 is four dimensional Levi-Civita tensor defined as €pi23 = +1. Calculation shows that
the following identity holds:
*(a, b);w = (b, a)W.

We see, that all tensors of form (a, a) L Satisfy the selfdual equation:
*(a,a),, = (a,a),,,
and all the tensors which can be written as (—a, a),, satisfy the anti-selfdual equation:
H(-a,a),, = (a,-0),,, = ~(~a,a),,,

Note that applying x twice we get the same tensor: *2F;w =F..

Remark. In the general case when we apply x to an antisymmetric tensor with m lower indices in
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d dimensions we get:

¥2 = (=1)™"™ gign(det g).

It follows that in Minkowski space the self-dual and anti-self-dual equations can have only trivial

solution. Indeed if xF),, = £F),, when applying » and using *x2 = —1 we get
_Fp,l/ = *QFNV = :l:*FMIJ — FMV'

We can however introduce the imaginary unit ¢ in the definition of x. This enables us to obtain
nontrivial solution of the self-dual and anti-self-dual equations in the Minkowski space. This

solution will be in general complex. O

One says that a tensor satisfying selfdual equation is selfdual, and the tensor satisfying anti-
selfdual equation is anti-selfdual. We can find a basis of selfdual and anti-selfdual tensors as

follows:

(a,a),, = amfw, (—a,a),, = aiﬁfw.

One says that nfw are selfdual t’Hooft symbols and ﬁfw are anti-selfdual t’Hooft symbols [82].

These symbols can be represented by six 4 X 4 matrices as follows:

0 1 0 O 0 01 0 0 0 01
1 -1 0 0 O ) 0 00 -1 3 0 0 1 0
N = o My = » My = )
0 0 0 1 -1 0 0 O -1 0 0
0 0 -1 0 0 1 0 O -1 0 00
(A.12)
and
0 -1 0 0 0 0 -1 0 0 0 0 -1
n 1 0 0 0 L 00 0 -1 5 0 0 1 0
77;w = ) 77;w = ) 77;w =
0 0 0 1 10 0 O 0 -1 0 0
0 0 -1 0 01 0 O 1 0 0 O
(A.13)
One can check that the t"Hooft symbols satisfy the following multiplication rule:
niy = =691y — ekt (nﬁynip = =676, — e”kﬁfm),
(A.14)

= =01 — i (i, = 696, — ik, ).
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It follows that they form the representation of the SU(2) group. Indeed from ([ATd) we get

This fact can be easily seen from the representation theory point of view: the vector represen-
tation of SO(4) ~ SU(2) x SU(2)/Zs is (%, 3). It follows from the properties of Clebesh-Gordon
coefficients for SU(2) that

(%%) % (%%) = (0,0)® (1,1) & (1,0) @ (0,1).

The first term in the righthand side is the trace of a rang-2 tensor, the second is its symmetric
traceless part and third and fourth are the decomposition of its antisymmetric part onto self-dual

and anti-self-dual components.

A.4 Euclidean spinors

In this section we will mostly speak about spinors in the Euclidean space. Sometimes we will stress

differences with the Minkowski space.

The double covering group for SO(4) is Spin(4) ~ SU(2) x SU(2). Thus we have two inde-
pendent spinor representation each of them is isomorph to SU(2). According to this the spinors
in four dimensional euclidean space can have one doted or one undotted spinor index running over
1,2 and 1,2 respectively. For the combinations 1y, and 14 x% are supposed to be invariants we

conclude that (y,)" transforms as 1. And the same rule for a doted index.

Remark. Here and below the following rule will be held: the undotted indices follow form left-up

to right-down and the doted — from left-down to right-up. O

Three Pauli matrices and the unit one can be arranged to one four dimensional vector defined
as

Op,ace = (]].2, —iTl, —iTg, —iT3) (A].5)

The homomorphism from SU(2) x SU(2) to SO(4) can be constructed as follows: consider a four
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vector x#. We can build a matrix

0 ‘3 2

29 —ixd  —ax? — izt

(A.16)
x? —izt  —z0 4 4ad

satisfying zfz = 2?1, where 22 = z,z,. Thus if we take two SU(2) matrices U; and U, and

transform x — 2/ = UyzUs’ we get

33‘/2]12 = JE/TZ‘/ = UQxTUlTUlmUQT = 332]].2. (Al?)

Hence this transformation generates an SO(4) transformation of xz# (since the group SU(2)
is simply connected we see that the determinant of z# transformation should be equal to 1).
According to this four o-matrices have one undotted and one doted index. Our convention is that

they are both lower.

Remark. We see that the following rule holds: when complex conjugated, the indices rise and low
without changing their dotness. Mention the difference with the Minkowski case: there the indices
rise and low together with the changing of their dotness. This can be explained as follows: though
in the euclidean case the both SU(2) are independent, in the Minkowski case they are related by

means of the complex conjugation. O

The o-matrices are not all hermitian, but rather satisfy the following conjugation rule:
UOJr = 0y, O’iT = —0;.
The reality condition for them can be expressed as follows:
Uzo‘d = eo‘ﬁed‘gauﬁﬁ (Uu* = e_laue). (A.18)

For any matrix which can be developed as Xog = XMoo the reality condition X* = e !Xe

means that the coefficients X# are real.

Remark. In Minkowski space the definition of o-matrices misses i:

Opaa = (12, =71, —T2, —T3),

(A.19)

70" = (1,471, +72, +73).

This set of matrices governess an isomorphism SL(2,C) — SO(3,1). There is another set of such
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matrices:

5‘”’6‘& = (127 +T17 +T27 +7_3).

Its analogue in the Euclidean space is just the hermitian conjugate of Euclidean o-matrices:
Faa — (UT)u,da. 0

The o-matrices also satisfy a version of the Fierz identity (A8]) which has the following form:

T é = 2€av€s:

7, (01)™ = 25057 420
a8 \" p a’g’

Note that thanks to the doted-undotted convention we can not directly multiply o, and o,.

However we can multiply it by &, (or o,7). We get:

Opaaty’ = 0,00 + i7i a1, (%61, =0l + iTiﬁfw)’
| o | (A.21)
030 0 = O+ 17 i (Gu0s = Sula +imi, ).

Here we see the appearance of selfdual [AT2)) and anti-selfdual [(AT3) t’Hooft symbols .
Remark. If we swap o-matrices and g-matrices we get the equations ([AZI]) but with the selfdual
symbols replaced by anti-selfdual and vice versa. Notice going ahead that in this way we can
construct the anti-instantons instead of the instantons. O

Let us introduce the Clebsch-Gordon coefficients which govern the spinor transformation with

respect to the space rotation. Using [A2])) we get

1 . . i .
T’ = 7 (01,0390 = 00,03,7) = 5700 M
‘11 2@ (A.22)
T = 1 (5gvau,vﬁ' N 6370Nw5) - §Tiaﬁ'ﬁ:w'

The appearance of 't Hooft symbols on the lefthand side allows us to call o,, and &,, 't Hooft
projectors.
Remark. In Minkowski space they satisfy

G;w,aﬁapoaﬁ — % (gHPg"T — gho g¥P) — %euvrxf



Appendix B

Lie algebras

Here we cite some group theoretical data which is used (implicitly or explicitly) in our discussion
of the derivation of prepotential. Since the derivation of the prepotential is based on the ADHM
construction, which is known only for the classical groups, we consider only Lie algebras for SU(N),

SO(N) and Sp(N) groups. All details can be found, for example, in [I].

Apart from the standard group theoretical data, such as a root system, or the Weyl group
description we also give the Dynkin indices for various representations and the coefficient 8 which

appears in the A expansion of the prepotential.

Recall the Dynkin index definition. Since for the simple groups the Killing metric is unique up
to multiplicative factor we conclude that for all representations £,4; Traqj = £, Tr, where ¢, is the
Dynkin index of this representation. Through the paper we normalize indices in such a way that

Liang = 1 for all groups.

The coefficient 3 is equal to

B=¢ <€adj - > @) : (B.1)

o€reps
Remark. One could, of cause, renormalize the Dynkin index in order to absorb the parameter (.

To do this one can simply pose ffng = ¢. O

We denote by At the set of all positive roots. h and h" the Coxeter and dual Coxeter number.

We have collected some data in the Table [B11

147
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|Algebra | h | AV | W] | Adjoint | fag; | fsym | fant | ]
A, n+l | n+1 | (n+1)! | fund®@fund™ | 2n+2 | 2n + 4 2n 1
B, 2n 2n —1 2™n! A2fund 2n—1 | 2n+3 | 2n—1 | 2
Chn 2n n+1 2™n! Sym? fund 2n+2 | 2n+2 | 2n—2 | 2
D, 2n—212n—21 27 1Inl A2fund 2n—2|2n+2 | 2n—2 | 2

Table B.1: Group theoretical data

B.1 Algebra A,

The algebra A, is the Lie algebra for the group SU(n+1), n > 1. The root system can be describes
as follows. Denote by {e;}, i =1,...,n + 1 an orthonormal base of the R"*1. The set of positive
roots is

AJF:{ei—ej}7 1<i<ji<n+1.

The adjoint representation lies in the tensor product of the fundamental and antifundamental

representations.

B.2 Algebra B,

This is the Lie algebra of the group SO(2n + 1), n > 2. We denote by {e;}, i = 1,...,n the base

of R™. The set of positive roots is

AT = e, —e;, 1<i<y<n,

The adjoint representations is the antisymmetric one.

B.3 Algebra C),

The Lie algebra of the group Sp(n) is called Cy,, n > 2. {¢;}, i = 1,...,n is the base of R™. The

set of positive roots is
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The adjoint representation is the symmetric one.

B.4 Algebra D,

This is the Lie algebra of the group SO(2n), n > 3. {e;}, i = 1,
of positive root is
e;—ej, 1<i<y<mn,

AT =S e +e, 1<i<n,
ei+e, 1<i<j<n

The adjoint representations is antisymmetric one.

...,n is the base of R™. The set



150 B Lie algebras




Bibliography

1]

Ph. C. Argyres and A. E. Faraggi, The vacuum structure and spectrum of N' = 2 supersym-
metric SU(N) gauge theory, Phys.Rev.Lett. 74 (1995), 3931-3934, |arXiv:hep-th/9411057.

M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld, and Yu. I. Manin, Construction of instantons,
Phys.Lett. 65A (1978), 185.

I. A. Batalin and G. A. Vylkovisky, Quantization of gauge theories with linearly dependent
generators, Phys.Rev. D28 (1983), 2567-2582.

L. Baulieu and I. M. Singer, Topological Yang-Mills symmetry, Nucl.Phys.Proc.Suppl. 5B
(1988), 12-19.

E. Bergshoeff, E. Sezgin, and P. K. Townsend, Properties of the eleven-dimensional super

membrane theory, Ann.Phys. 185 (1988), 330.

G. Bertoldi, S. Bolognesi, M. Matone, L. Mazzucato, and Yu Nakayama, The Liou-
ville geometry of N' = 2 instantons and the moduli of punctured spheres, JHEP (2004),
arXiv:hep-th/0405117.

A. Bilal, Duality in N' = 2 SUSY gaguge theories, larXiv:hep-th/0106246.

, Duality in N'=2 SUSY SU(2) Yang-Mills theory: A pedagogical introduction to the
work of Seiberg and Witten, arXiv:hep-th/9601007.

, Introduction to supersymmetry, arXiv:hep-th/0101055.

Raoul Boot and Loring W. Tu, Differential forms in algebraic topology (graduate texts in
mathematics), Springer Verlag, 1995.

N. Bourbaki, Eléments des mathématiques. Livre IV. Groupes and algébres de Lie, Masson,

Paris, 1981.

151


http://arxiv.org/abs/hep-th/9411057
http://arxiv.org/abs/hep-th/0405117
http://arxiv.org/abs/hep-th/0106246
http://arxiv.org/abs/hep-th/9601007
http://arxiv.org/abs/hep-th/0101055

152 BIBLIOGRAPHY

[12] Peter Breitenlohner and Martin F. Sohnius, Superfields, auziliary fields, and tensor calculus

for N' =2 extended supergravity, Nucl.Phys. B165 (1980), 483.

[13] Roger Brooks, David Montano, and Jacob Sonnenschein, Gauge fizing and renormalization in

topological quantum field theory, Phys.Lett. B214 (1988), 91.

[14] N. H. Chris, E. J. Weinberg, and N. K. Stanton, General self-dual Yang-Mills solition,
Phys.Rev. D18 (1978), no. 6, 2013.

[15] S. Coleman and J. Mandula, All possible symmetries of the S-matriz, Phys.Rev. 159 (1967),
1251-1256.

[16] Stefan Cordes, Gregory W. Moore, and Sanjaye Ramgoolam, Lectures on 2-d Yang-Mills
theory, equivariant cohomology and topological field theories, Nucl.Phys.Proc.Suppl. 41 (1995),
184-244, larXiv:hep-th/9411210.

[17] E. Corrigan and P. Goddard, Construction of instantons and monopole solutions and reci-

procity, Annals Phys. 154 (1984), 253.

[18] E. Corrigan, P. Goddard, H. Osborn, and S. Templeton, Zeta function regularization and
multi - instanton determinants, Nucl.Phys. B159 (1979), 469.

[19] Ulf H. Danielsson and Bo Sundborg, The moduli space and monodromies of N = 2
supersymmetric SO(2r + 1) Yang-Mills theory, Phys.Lett. B358 (1995), 273-280,
arXiv:hep-th/9504102.

[20] B. de Wit, Marcus T. Grisaru, and M. Rocek, Nonholomorphic corrections to the one-loop
N =2 super Yang-Mills action, Phys.Lett. B374 (1996), 297-303, arXiv:hep-th/9601115.

[21] B. de Wit, P. G. Lauwers, R. Philippe, S. Q. Su, and A. Van Proeyen, Gauge and matter
fields coupled to N = 2 supergravity, Phys.Lett. B134 (1984), 37.

[22] E. D’Hoker, I. M. Krichever, and D. H. Phong, The effective prepotential of N = 2 supersym-
metric SU(N.) gauge theories, [arXiv:hep-th/9609041.

, The effective prepotential of N' = 2 supersymmetric SO(N.) and Sp(N.) gauge theo-
ries, Nucl. Phys. B489 (1997), 211, larXiv:hep-th/96091485.

[23]

[24] E. D’'Hoker and D. H. Phong, Lectures on supersymmetric Yang-Mills theory and integrable
systems, arXiv:hep-th/9912271.


http://arxiv.org/abs/hep-th/9411210
http://arxiv.org/abs/hep-th/9504102
http://arxiv.org/abs/hep-th/9601115
http://arxiv.org/abs/hep-th/9609041
http://arxiv.org/abs/hep-th/9609145
http://arxiv.org/abs/hep-th/9912271

BIBLIOGRAPHY 153

[25]

[26]

[27]

[28]

[32]

[33]

[34]

[38]

, Calogero-Moser systems in SU(N) Seiberg- Witten theory, Nucl.Phys. B513 (1998),
405-444, arXiv:hep-th/9709053.

Michael Dine and Nathan Seiberg, Comments on higher derivative operators in some SUSY

field theories, Phys.Lett. B409 (1997), 239244, larXiv:hep-th/9705057.

Michael Dine and Yuri Shirman, Some explorations in holomorphy, Phys.Rev. D50 (1994),
5389-5397, arXiv:hep-th/9405155.

N. Dorey, T. J. Hollowood, V. V. Khoze, and M. P. Mattis, The calculus of many instatons,
arXiv:hep-th/0206063.

N. Dorey, V. V. Khoze, and M. P. Mattis, Multi-instaton calculus in N' = 2 supersymmetric
gauge theory II. Coupling to matter, arXiv:hep-th/9607202.

, Multi-instaton calculus in N' = 2 supersymmetric gauge theory, Phys.Rev. D54

(1996), 2921, larXiv:hep-th/9603136.

N. Dorey, V. V. Knoze, and M. P. Mattis, Supersymmetry and the multi-instanton measure,

arXiv:hep-th/9708036.

I. Ennes, C. Lozano, S. Naculich, H. Rhedin, and H. Schnitzer, M-theory tested by N = 2
Seiberg- Witten theory, arXiv:hep-th/0006141.

I. Ennes, C. Lozano, S. Naculich, and H. Schnitzer, Flliptic models and M-theory,
arXiv:hep-th/9912133.

I. Ennes, S. Naculich, H. Rhedin, and H. Schnitzer, Tests of M-theory from N = 2 Seiberg-
Witten theory, arXiv:hep-th/9911022.

, One-instanton predictions for mnon-hyperelliptic curves derived from M-theory,

Nucl.Phys. B536 (1998), 245, arXiv:hep-th/9806144.

, One instanton predictions of a Seiberg-Witten curve from M-theory: the symmetric

representation of SU(N), Int.J.Mod.Phys. A14 (1999), 301, arXiv:hep-th/9804151.

, Two antisymmetric hypermultiplets in N = 2 SU(N) gauge theory: Seiberg-Witten

curve and M-theory interpretation, Nucl. Phys. B558 (1999), 41, larXiv:hep-th/9904078.

P. Fayet, Fermi Bose hypersymmetry, Nucl.Phys. B113 (1976), 135.


http://arxiv.org/abs/hep-th/9709053
http://arxiv.org/abs/hep-th/9705057
http://arxiv.org/abs/hep-th/9405155
http://arxiv.org/abs/hep-th/0206063
http://arxiv.org/abs/hep-th/9607202
http://arxiv.org/abs/hep-th/9603136
http://arxiv.org/abs/hep-th/9708036
http://arxiv.org/abs/hep-th/0006141
http://arxiv.org/abs/hep-th/9912133
http://arxiv.org/abs/hep-th/9911022
http://arxiv.org/abs/hep-th/9806144
http://arxiv.org/abs/hep-th/9804151
http://arxiv.org/abs/hep-th/9904078

154 BIBLIOGRAPHY

[39] Jr. Gates, S. James, Superspace formulation of new nonlinear sigma models, Nucl.Phys. B238

(1984), 349.

[40] 1. S. Gradstein and I. M. Ryzhik, Table of integrals, series, and products. Fifth edition, Aca-
demic Press, 1994.

[41] R. Grimm, M. Sohnius, and J. Wess, Extended supersymmetry and gauge theories, Nucl.Phys.
B133 (1978), 275.

[42] R. Haag, J. Lopuszanski, and M. Sohnius, All possible generators of supersymmetries of the
S-matriz, Nucl.Phys. B88 (1975), 257-274.

[43] A. Hanany and Y. Oz, On the quantum moduli space of vacua of N = 2 supersymmetric
SU(N.) gauge theories, Nucl.Phys. B452 (1995), 283-312.

[44] Mans Henningson, Extended superspace, higher derivatives and SL(2,Z) duality, Nucl.Phys.
B458 (1996), 445455, [arXiv: hep-th/9507135.

[45] N. J. Hitchin, A. Karlhede, U. Lindstron, and M. Rocek, Hyperkdhler metric and supersym-
metry, Comm.Math.Phys. 108 (1987).

[46] Petr Horava and Edward Witten, Heterotic and type I string dynamics from eleven dimensions,

Nucl.Phys. B460 (1996), 506-524, larXiv:hep-th/9510209.

[47] Seungjoon Hyun, Jaemo Park, and Jae-Suk Park, N = 2 supersymmetric QCD and four
manifolds; (I) the Donaldson and the Seiberg- Witten invariants, larXiv:hep-th/9508162.

, Topologocal QCD, Nucl.Phys. B453 (1995), 199-224, |arXiv:hep-th/9503201.

[49] K. Ito and N. Sasakura, One-instanton calculations in N' = 2 supersymmetric SU(N.) Yang-
Mills theory, Phys. Lett. B382 (1996), 95-103, larXiv:hep-th/9602073.

, Exact and microscopic one-instanton calculations in N' = 2 supersymmetric Yang-

Mills theories, Nucl.Phys. B484 (1997), 141-166, arXiv:hep-th/9608054.

[51] , One-instanton calculations in N' = 2 SU(N.) supersymmetric QCD, Mod.Phys.Lett.

A12 (1997), 205-216, larXiv:hep-th/9609104.

[52] A. Klemm, W. Lerche, S. Theisen, and S. Yankielowicz, Simple singularities and N = 2 su-
persymmetric Yang-Mills theory, Phys.Lett. B344 (1995), 169-175, larXiv:hep-th/9411048.


http://arxiv.org/abs/hep-th/9507135
http://arxiv.org/abs/hep-th/9510209
http://arxiv.org/abs/hep-th/9508162
http://arxiv.org/abs/hep-th/9503201
http://arxiv.org/abs/hep-th/9602073
http://arxiv.org/abs/hep-th/9608054
http://arxiv.org/abs/hep-th/9609104
http://arxiv.org/abs/hep-th/9411048

BIBLIOGRAPHY 155

[53]

[57]

[58]

[61]

[62]

[65]
[66]

[67]

W. Krauth and M. Staudacher, Yang-Mills integrals for orthogonal, symplectic and exceptional
groups, larXiv:hep-th/0004076.

—, Finite Yang-Mills integrals, Phys.Lett. B435 (1998), 350, larXiv:hep-th/9804199.

J. M. F. Labastida and C. Lozano, Lectures on topological quantim field theory,
arXiv:hep-th/9709192.

J. M. F. Labastida and M. Pernici, A gauge invariant action in topological quantum field

theory, Phys.Lett. B212 (1988), 56.

L. D. Landau and E. M. Lifshitz, Theoretical physics, vol II. Field theory, Pergamon Press,
London, 1965.

K. Landsteiner and E. Lopez, New curves from branes, Nucl.Phys. B516 (1998), 273-296,
arXiv:hep-th/9708118.

U. Lindstrom, F. Gonzalez-Rey, M. Rocek, and R. von Unge, On N = 2 low energy effective
actions, Phys.Lett. B388 (1996), 581-587, larXiv:hep-th/9607089.

A. Losev, A. Marshakov, and N. Nekrasov, Small instantons, little strings and free fermions,

arXiv:hep-th/0302191.
J. D. Lykken, Introduction to supersymmetry, arXiv:hep-th/9612144.

Marcos Marinio and Niclas Wyllard, A note on instanton counting for N = 2 gauge theories

with classical gauge groups, arXiv:hep-th/0404125.

J. A. Minahan and D. Nemeschansky, Hyperelliptic curves for supersymmetric Yang-Mills,
Nucl.Phys. B464 (1996), 3-17, arXiv:hep-th/9507032.

G. Moore, N. Nekrasov, and S. Shatashvili, D-particle bound states and generalized instantons,

arXiv:hep-th/9803265.

, Integration over Higgs branches, arXiv:hep-th/9712241.
J. D. Moore, Lectures on Seiberg- Witten invariants, Springer, 1996.

S. Naculich, H. Rhedin, and H. Schnitzer, One-instanton test of a Seiberg- Witten curve
from M-theory: the antisymmetric representation of SU(N), Nucl. Phys. B533 (1998), 275,
arXiv:hep-th/9804105.


http://arxiv.org/abs/hep-th/0004076
http://arxiv.org/abs/hep-th/9804199
http://arxiv.org/abs/hep-th/9709192
http://arxiv.org/abs/hep-th/9708118
http://arxiv.org/abs/hep-th/9607089
http://arxiv.org/abs/hep-th/0302191
http://arxiv.org/abs/hep-th/9612144
http://arxiv.org/abs/hep-th/0404125
http://arxiv.org/abs/hep-th/9507032
http://arxiv.org/abs/hep-th/9803265
http://arxiv.org/abs/hep-th/9712241
http://arxiv.org/abs/hep-th/9804105

156 BIBLIOGRAPHY

[68] N. Nekrasov, Informal lectures on equivariant integration, Lectures given at IHES, november

2003.

[69] , Seiberg- Witten prepotential from instanton counting, Adv.Theor.Math.Phys. 7 (2004),

831-864, arXiv:hep-th/0206161.

[70] N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions,
arXiv:hep-th/0306238.

[71] N. Nekrasov and S. Shadchin, ABCD of instantons, Comm.Math.Phys. 253 (2004), 359-391,
arXiv:hep-th/0404225.

[72] H. Osborn, Solutions of the Dirac equation for general instanton solutions, Nucl.Phys. B140
(1978), 45.

, Semiclassical functional integrals for selfdual gauge fields, Ann. of Phys. 135 (1981),

373.

[74] Austin Pickering and Peter C. West, The one loop effective super-potential and mnon-
holomorphicity, Phys.Lett. B383 (1996), 54—62, larXiv:hep-th/9604147.

[75] John H. Schwarz, The power of m-theory, Phys.Lett. B367 (1996), 97-103,
arXiv:hep-th/9510086.

[76] N. Seiberg, Supersymmetry and nonperturbative beta functions, Phys. Lett. 206B (1988), 75.

[77] N. Seiberg and E. Witten, FElectric-magnetic duality, monopole condensation, and con-
finement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B426 (1994), 19,
arXiv:hep-th/9407087.

[78] , Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD,

Nucl.Phys. B431 (1994), 484-550, larXiv:hep-th/9408099.

[79] S. Shadchin, Saddle point equations in Seiberg-Witten theory, JHEP 0410 (2004), 033,
arXiv:hep-th/0408066.

[80] Mikhail A. Shifman and A. I. Vainshtein, Solution of the anomaly puzzle in SUSY gauge
theories and the Wilson operator expansion, Nucl.Phys. B277 (1986), 456.

[81] G. Sierra and P. K. Townsend, Introduction to N' = 2 rigid supersymmetry, Lectures given at

the 19th Karpacz Winter School on Theoretical Physics, Karpacz, Poland, Feb 14-28, 1983.


http://arxiv.org/abs/hep-th/0206161
http://arxiv.org/abs/hep-th/0306238
http://arxiv.org/abs/hep-th/0404225
http://arxiv.org/abs/hep-th/9604147
http://arxiv.org/abs/hep-th/9510086
http://arxiv.org/abs/hep-th/9407087
http://arxiv.org/abs/hep-th/9408099
http://arxiv.org/abs/hep-th/0408066

BIBLIOGRAPHY 157

[82]

[83]

[92]

[93]

G. t'Hooft, Computation of the quantum effects due to a four-dimensional pseudoparticle,

Phys.Rev. D14 (1976), 3432.

P. K. Townsend, The eleven-dimensional supermembrane revisited, Phys.Lett. B350 (1995),
184-187, larXiv:hep-th/9501068.

P. van Nieuwenhuizen and P. West, Principles of supersymmetry and supergravity, Cambridge

Univercity Press, Cambridge, 1986.

J. Wess and J. Bugger, Supersymmetry and supergravity, Princeton Univercity Press, Prince-

ton, 1983.
P. West, Introduction to supersymmetry and supergravity, World Scientific, Singapore, 1986.

E. Wigner, On unitary representations of the inhomogenious Lorentz group, Journ.Math. 40

(1939), 149-204.

E. Witten, Introduction to topological quantum field theories, Lectures at the workshopon

Topological Methods in Physics, ICTP, Trieste, Italy (Juin 1990).

, Topological quantum field theory, Comm.Math.Phys. 117 (1988), 353.

, Solutions of four-dimensional field theories via M-theory, Nucl.Phys. B500 (1997),
3, larXiv:hep-th/9703166.

E. Witten and R. Donagi, Supersymmetric Yang-Mills systems and integrable systems,
Nucl.Phys. B460 (1996), 299-334.

Alexei Yung, Instanton-induced effective lagrangian in the Seiberg- Witten model, Nucl. Phys.
B485 (1997), 3862, larXiv:hep-th/9605096.

, Higher derivative terms in the effective action of N' =2 SUSY QCD from instantons,
Nucl.Phys. B512 (1998), 79-102, arXiv:hep-th/9705181l


http://arxiv.org/abs/hep-th/9501068
http://arxiv.org/abs/hep-th/9703166
http://arxiv.org/abs/hep-th/9605096
http://arxiv.org/abs/hep-th/9705181

	Remerciements
	Aperçu des résultats
	Abstract
	Résumé
	Notations and conventions
	Introduction
	Supersymmetry
	Algebra of supersymmetry
	Superspace
	Geometry of the superspace
	Supermultiplets
	N=1 chiral multiplet.
	N=1 vector multiplet.
	Supersymmetric field strength
	N=2 chiral multiplet GaugeMultiplet.
	Hypermultiplet.


	N=2 Super Yang-Mills theory
	The field content
	The action
	Wilsonian effective action
	Seiberg-Witten theory
	Topological twist
	BV quantization vs. twisting
	Dimensional reduction
	Matter
	M-theory derivation of the prepotential

	Localization, deformation and equivariant integration
	Localization
	ADHM construction
	SU(N) case
	Solutions for the Weyl equations
	SO(N) case
	Sp(N) case
	Spaces, matrices and so on

	Equivariant integration
	Integration over zero locus
	Integration over factor
	Synthesis
	Euler and Thom classes
	The Duistermaat-Heckman formula

	Back to Yang-Mills action
	Lorentz deformation and prepotential
	-background
	Getting the prepotential


	Finite dimensional reduction
	Direct computations: SU(N) case
	Straightforward computation
	Stable points computation

	Haar measures
	SO(N) and Sp(N) gauge groups
	SO(N) case
	Sp(N) case

	Expression for the partition function
	SO(N) case
	Sp(N) case
	Matter

	Example: Sp(N) instanton corrections

	Instanton corrections in the general case
	Universal bundle
	Alternative derivation for Chq(E)
	Equivariant index for other groups
	SO(N) case
	Sp(N) case

	Equivariant index for other representations
	SU(N) case
	SO(N) case
	Sp(N) case

	Partition function
	SU(N) case
	SO(N) case
	Sp(N) case

	1-instanton corrections and residue functions

	Saddle point equations
	Thermodynamic (classical) limit
	A trivial model example
	SU(N) case, pure Yang-Mills theory
	SU(N), matter multiplets
	Matter in the fundamental representation.
	Matter in the symmetric representation
	Matter in the antisymmetric representation
	Matter in the adjoint representation

	SO(N) case
	Pure gauge theory
	Matter in the fundamental representation
	Matter in the adjoint representation

	Sp(N) case
	Pure gauge theory
	Matter in the fundamental representation
	Matter in the antisymmetric representation
	Matter in the adjoint representation

	Hamiltonians
	Profile function properties
	Lagrange multipliers

	Seiberg-Witten geometry
	Example: SU(N), pure Yang-Mills and fundamental matter
	Fundamental matter for SO(N) and Sp(N)
	SO(N) case
	Sp(N) case

	Symmetric and antisymmetric representations of SU(N): equal masses
	Mapping to SU(N) case
	SO(N), pure gauge
	SO(N), matter in fundamental representation
	SO(N), matter in adjoint representation
	Sp(N), Pure gauge
	Sp(N), matter in the fundamental representation
	Sp(N), matter in the antisymmetric representation
	Sp(N), matter in the adjoint representation

	Hyperelliptic approximations
	SU(N), antisymmetric matter and some fundamentals
	SU(N), matter in the symmetric representation
	SU(N), matter in the adjoint representation
	SO(N) models
	Sp(N) models


	Open questions and further directions
	Spinor properties
	Spinors in various dimensions
	Clifford algebras
	Recurrent relations
	Weyl and Majorana spinors

	Pauli matrices
	't Hooft symbols
	Euclidean spinors

	Lie algebras
	Algebra An
	Algebra Bn
	Algebra Cn
	Algebra Dn


