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Aperçu des résultats

La dualité entre les théories de jauge et la théorie des cordes est un sujet de grande importance pour

la physique théorique d’aujourd’hui. Les connaissances actuelles suggèrent que toutes les théories

des supercordes à dix dimensions peuvent être obtenues comme les limites différentes d’une seule

théorie 11-dimensionnelle, dite la théorie M .

Bien qu’il existe plusieurs arguments en faveur de cette approche, la vraie théorie M n’est

pas encore bâtie. On essaye donc de trouver des preuves indirectes confirmant (ou réfutant) cette

théorie en comparant ces prédictions avec d’autres résultats.

Parmi toutes les prédictions de la théorie M , on peut distinguer celles concernant l’action

effective Wilsonienne [80, 27] pour la branche de Coulomb de l’extension supersymmétrique N = 2

de la theorie de Yang-Mills (N = 2 super Yang-Mills dans ce qui suit) [90]. Le terme principal,

qui contient jusqu’à deux dérivées et quatre fermions a été calculé par Seiberg et Witten [77, 78]

pour le cas de SU(2). Ce terme peut être obtenu en utilisant une fonction holomorphe F(a), qui

s’appelle le prepotentiel [39, 21, 76, 81]. Par l’aide du formalisme des N = 2 superchamps Ψ le

Lagrangien pour la théorie effective peut être écrite comme un N = 2 F -term:

Seff =
1

4π
=m

{
1

2πi

∫
d4xd4θF(Ψ)

}
.

Le prepotentiel classique, qui donne l’action microscopique est

Fclass(a) = πiτ0〈a, a〉,

où τ0 =
4πi

g2
0

+
Θ0

2π
, g0 étant la constante de couplage de Yang-Mills et Θ0 l’angle instantonique.

Il se trouve que pour déterminer le prépotential on a besoin d’une courbe algébrique

C = {(y, z) ∈ C2 : F (y, z) = 0}, d’une forme différentielle méromorphe λ sur cette courbe et

de l’ensemble de cycles de base Al, Bl, l = 1, . . . , r (r étant le rang du group de jauge) qui forment

une partie des homologies premières de la courbe. Etant donné tous les composants nécessaires

(que l’on appelle les données de Seiberg-Witten), le prépotentiel s’écrit sous la forme paramétrique

suivante:

al =
1

2πi

∮

Al

λ,
∂F(a)

∂al
≡ alD =

1

2πi

∮

Bl

λ.

Par la suite la solution de Seiberg et Witten a été généralisée pour les autres groupes de jauge

et les multiplets de matière différents [52, 1, 43, 19, 63, 78, 58, 91].

Le chemin de généralisation habituel est le suivant: d’abord on établit l’expression pour la
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courbe algébrique et la forme différentielle méromorphe sur cette courbe en utilisant les raison-

nements qui viennent des études des monodromies, ou de la théorie M , ou des modèles intégrables.

Après avoir obtenu les données nécessaires on calcule les corrections instantoniques pour le terme

principal de l’action effective.

Notons que l’action Wilsonienne complète contient aussi les autres termes, par exemple, le

terme suivant qui est obtenu à l’aide de quatre dérivées et huit fermions peut être présenté en

utilisant une fonction réelle H(a, a) comme un N = 2 D-term [44, 20, 74, 59, 92, 93, 26]:

S4−deriv =

∫
d4xd4θd4θ̄H(Ψ, Ψ̄).

Dans [69] une nouvelle technique pour extraire les corrections instantonique a été proposée.

Elle fournit une méthode directe pour calculer le prépotentiel. Néanmoins, elle donne l’expression

comme une série sur l’échelle dynamique Λ. Pour découvrir les propriétés analytiques du

prépotentiel nous avons besoin de revenir à la théorie Seiberg et Witten. Une méthode efficace qui

permet de faire cela a été proposée dans [70].

Cette méthode est basée sur quelques propriétés spéciales de la théorie N = 2 super Yang-Mills.

Il s’agit surtout du fait que cette théorie, après une redéfinition appropriée des champs, devient

une théorie cohomologique [89]. Cette propriété permet de réduire l’intégrale fonctionnelle, qui

donne la valeur moyenne d’une observable, à l’intégrale sur l’espace de solutions des équations

de mouvement classiques. Pour la théorie sans matière c’est l’espace des solutions de l’équation

auto-duale:

Fµν − ?Fµν = 0.

Cet espace est connu pour tous les groupes de jauge classiques (SU(N), SO(N) et Sp(N)) via

la construction ADHM [2, 14].

Une autre observation importante est qu’après avoir déformé astucieusement l’opérateur BRST

de la théorie cohomologique, la fonction de partition (dans le sens de la physique statistique)

devient l’exposant du prépotentiel. En combinant ces idées on peut exprimer les corrections non-

perturbatives pour les fonctions de Green de N = 2 super Yang-Mills comme une intégrale de

dimension finie.

La tâche de trouver le prépotentiel peut être divisée en deux parties: d’abord nous avons besoin

de construire les intégrales de dimensions finies pour tous les modèles considérés. Ensuite il faut

extraire de ses expressions les données de Seiberg et Witten: la courbe et la forme différentielle

méromorphe.
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Pour résoudre le premier problème nous avons plusieurs outils différents. Le premier est le

plus simple à comprendre, mais le plus difficile à réaliser. L’idée est la suivante: l’espace des

solutions de l’équation auto-duale (dit espace des modules) est le facteur hyper-Kählerien des

solutions des équations algébrique de deuxième ordre (les équations ADHM) par l’action d’un

groupe dual (voir [14]). Les méthodes pour calculer ces integrales sont connues (voir le chapitre

(3)). L’intégrale sur les espaces de modules peut être calculé via localisation, en utilisant la formule

de Duistermaat-Heckman. Cette formule réduit l’intégrale en question à l’intégrale sur l’algeb̀re

de Cartan du groupe dual, si on connâıt les poids de l’action du groupe dual sur l’espace tangent.

Cet intégrale peut être calculée par residus, et nous obtenons une expression pour les corrections

non-perturbatives de l’action effective [69].

L’inconvénient de cette méthode est que pour chaque contenu de la matière et pour chaque

groupe de jauge nous avons besoin de bâtir l’ espace des solutions de l’équation auto-duale.

Une autre méthode est beaucoup plus simple à réaliser. Cette méthode est basée sur la relation

entre les poids de l’action du groupe dual et l’indice équivariant de l’operateur de Dirac, defini sur

le fond instantonique.

Dans cette thèse nous avons calculé les actions Wilsoniennes effectives pour tous les groupes

classiques et pour presque tous les contenus de la matière qui sont compatibles avec la condition

de la libertée asymptotique. Le sens du mot “presque” dans ce contexte est le suivant: nous avons

calculé le prépotentiel pour chaque représentation du groupe de jauge qui est contenu dans une

puissance tensorielle de la représentation fondamentale. Pour le groupe de jauge SU(N) on peut

couvrir de cette manière toutes les représentations, tandis que pour SO(N), par example, il nous

manque les représentations spinorieles pour les petits N .

L’action Wilsonienne est calculée en utilisant les deux méthodes annoncées: d’abord pour les

modèles sans matière (et pour la représentation fondamentale de SU(N)) on trouve les corrections

non-perturbatives par un calcul direct. Dans le chapitre qui suit, avoir développé le formalisme

général, on présente les résultats pour le reste des modèles.

L’expression pour le prépotentiel peut être mise sous la forme suivante (pour obtenir le

prépotentiel on a F(a,m,Λ) = lim
ε1,ε2→0

F(a,m,Λ; ε)):

exp
1

ε1ε2
F(a,m,Λ; ε) = Zpert(a,m,Λ; ε) ×

∞∑

k=1

e2πiτ0k ΛβkZk(a,m; ε), (1)
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où β est le coefficient de g2 dans le développement de la fonction β de la théorie de jauge et

Zk(a,m; ε) =

∫ rankGD∏

i=1

dφi
2πi

R(φ)

rankGD∏

i=1

z1(a,m, φi; ε). (2)

Ici R(φ) est une fonction rationnelle des différences φi − φj . Pour les corrections qui viennent des

configurations 1-instantoniques cette fonction est égale à 1.

Les règles pour construire la fonction z1(a,m, φ; ε) peuvent être établies après avoir examiné

les expressions pour tous les modèles. L’intégrale sur φ peut être calculée par résidus et finalement

on obtient les règles simples pour écrire les correction 1-instantonqiue.

Ces règles peuvent être comparées avec celles qui viennent de l’analyse des courbes algébriques

prédites par la théorie M . On trouve une cöıncidence remarquable entre les deux approches.

L’apparition de la fonction R(φ) pour les corrections k-instantonique, k > 1, rend l’analyse

directe de ces expressions assez difficile. Néanmoins, la méthode de [70] permet d’extraire les

courbes de Seiberg et Witten de ces expressions, et comme conséquence de les comparer directement

avec les prédictions de la théorie M .

Les raisonnements sont les suivants: on s’intéresse au cas où ε1, ε2 → 0. On peut montrer que

dans ce cas la contribution dominante à la somme (1) vient de Zk(a,m; ε) avec k ∼ 1

ε1ε2
. Dans la

limite k → ∞ l’intégrale (2) devient une intégrale fonctionnelle. Le produit ε1ε2 joue le rôle de la

constante de Plank. La limite ε1, ε2 → 0 devient la limite classique de cette intégrale.

Il convient d’introduire la densité f(x) de φi deformée d’une manière qui permet de tenir

compte des contributions perturbatives au prépotentiel. Il est possible d’établir les équations

intégrales pour cette fonction (les équations de point-selle). Les solutions de ces équations donnent

précisément les courbes de Seiberg et Witten.

Pour les trouver on introduit la primitive de la résolvante de f ′′(x) définie comme:

F (z) =
1

4πi

∫
dxf ′′(x) ln

(
z − x

Λ

)
.

Les solutions des équations de point-selle donnent la courbe après la rédéfinition suivante

y(z) = exp 2πiF (z).

Dans quelques cas simple ces équations peuvent être résolues. Le resultat cöıncide avec les ex-

pressions connues. Néanmoins, pour la plupart des équations la solution exacte n’a pas été obtenue.

En revanche, on a proposé une technique qui permet d’extraire de ces équations l’approximation
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hyperelliptyque des courbes de Seiberg et Witten. Ces approximations sont suffisantes pour obtenir

les corrections à 1 instanton.

Cette démarche peut être utilisée pour vérifier la cohérence de la méthode de point-selle qui

permet d’extraire les courbes de Seiberg et Witten. En fait, on peut comparer les corrections

1-instantonique obtenues à l’aide des approximations des courbes avec les expressions exactes.

Pour tous les modèles on a trouvé les résultats identiques, qui montre que les équations de

point-selle donne une méthode sûre pour obtenir les données de Seiberg-Witten.
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Abstract

N = 2 supersymmetric Yang-Mills theories for all classical gauge groups, that is, for SU(N),

SO(N), and Sp(N) is considered. The formal expression for almost all models accepted by the

asymptotic freedom are obtained. The equations which define the Seiberg-Witten curve are pro-

posed. In some cases they are solved. It is shown that for all considered the 1-instanton corrections

which follows from these equations agree with the direct computations. Also they agree with the

computations based on Seiberg-Witten curves which come from the M -theory consideration. It is

shown that for a large class of models the M -theory predictions matches with the direct compu-

atations. It is done for all considered models at the 1-instanton level. For some models it is shown

at the level of the Seiberg-Witten curves.

Résumé

La théorie supersymmetrique N = 2 de Yang-Mills est considérée pour tous les groupes de jauge

classiques (SU(N), SO(N) et Sp(N)). Les expressions formelles pour l’action Wilsonienne effective

pour (presque) tous les modèles compatible avec la condition de la liberté assymptotique sont

obtenues. Les équations qui déterminent les courbes de Seiberg et Witten sont proposées. Dans

quelque cas elles sont résolues. Il est montré que pour tous les modèles considérés les corrections à

1 instanton qui viennent de ces équations sont en accord avec les caculs directs. Ainsi elles sont en

accord avec les caculs basés sur les courbes de Seiberg et Witten qui viennent de la théorie M . Il

est montré donc que pour une grande classe de modèles les prédictions de la théorie M cöıncident

avec les calcul directs. Ceci est fait pour toutes les modèles considérés au niveau des calculs à 1

instanton. Pour quelques modèles ceci est fait au niveau des courbes algébriques.
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xiv Notations and conventions

Notations and conventions

The following convention will be used through the paper:
Indices:

• Greek indices µ, ν, . . . run over 0, 1, 2, 3,

• small latin indices i, j, . . . run over 1, 2, 3,

• capital latin indices A,B, . . . run over 1, 2. They are supersymmetry indices,

• small greek indices α, β, . . . run over 1, 2. They are spinor indices,

• capital latin indices I, J, . . . run aver 0, 1, 2, 3, 4, 5, 6. This is six dimensional indices.

• τ1, τ2 and τ3 are the Pauli matrices defined in the standard way (A.7),

• The Euclidean σ-matrices are:

σµ,αα̇ = (
�
2,−iτ1,−iτ2,−iτ3),

σ̄α̇αµ = (
�
2,+iτ1,+iτ2,+iτ3) = (σµ,αα̇)

†
,

• in Minkowskian space two homomorphisms SL(2,C) → SO(3, 1) are governed by:

σµ,αα̇ = (
�
2,−τ1,−τ2,−τ3),

σ̄α̇αµ = (
�
2,+τ1,+τ2,+τ3).

(we apologize for the confusing notations – we can only hope that every time it will be clear

whether we work with Euclidean or Minkowski signature).

• Dα, D̄α̇ are covariant derivatives in superspace, see (1.5),

• Qα, Q̄α̇ are the supersymmetry operators, defined in (1.3).

• δab is the Kronecker delta. By definition δab = 1 when a = b and δab = 0 otherwise.

• εµ1,...,µd
is the d-dimensional Levi-Civita tensor. ε12...d = +1,

• the spinor metric is

ε = ‖εαβ‖ =


 0 −1

1 0


 .
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• �
n is n× n unit matrix,

• the symplectic structure is denoted by

J2n =


 0

�
n

− �
n 0


 .

The generators of the spinor representation of SO(3, 1) are

σµν =
1

4

(
σµσ̄ν − σν σ̄µ

)
,

σ̄µν =
1

4

(
σ̄µσν − σ̄νσµ

)
,

they satisfy

σµν,αβσρσαβ =
1

2

(
gµρgνσ − gµσgνρ

)
− i

2
εµνρσ ,

σ̄µν,α̇β̇σ̄ρσ
α̇β̇

=
1

2

(
gµρgνσ − gµσgνρ

)
+
i

2
εµνρσ .

In the Euclidean space the complex conjugation rises and lowers the spinor indices without

changing their dottness. In the Minkowski space the height of the index is unchanged whereas its

dottness does change.

• Mostly we denote by G the gauge group. Its Lie algebra is denoted by g = Lie(G). Sometimes

when we identify the gauge group and the group of the rigid gauge transformations, which

acts at the infinity, we denote it by G∞. Its maximal torus is denoted by T∞ ⊂ G∞. h∨ is

the dual Coxeter number. We use the notation a for the elements of Lie(T∞). The set of

positive roots for the gauge group is denoted by ∆+. The Dynkin index for a representation

% is `%. The set of weights for a representation % is denoted by w%.

• We denote by GD the dual (in the sense of [14]) group (see the definition at the end of section

3.2.1). Its maximal torus is denoted by TD ⊂ GD. The Cartan subalgebra is t = Lie(TD).

WD is its Weyl group.

• The flavor group is denoted by GF (see the definition at the end of section 2.8). Its maximal

torus is TF ⊂ GF .

• The Killing form on the Lie algebra of the gauge group is denoted as 〈α, β〉. In the adjoint

representation it is given by 〈α, β〉 =
1

h∨
Tradj{αβ} where the trace is taken over the adjoint

representation.
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In section 3.5.1 we have introduces so-called Ω-background. The main object is the matrix of

the Lorentz rotations Ωµν which we represent as follows

Ω =
1√
2




0 0 0 −ε1
0 0 −ε2 0

0 ε2 0 0

ε1 0 0 0



.

It will be useful to introduce the following combinations of the parameters ε1 and ε2:

• ε± =
ε1 ± ε2

2
,

• ε = ε1 + ε2 = 2ε+.

If V is a vector space, then ΠV is the vector space with changed statistics (bosons ↔ fermions).

We study gauge theory on R4. Sometimes it is convenient to compactify R4 by adding a point

∞ at infinity, thus producing S4 = R4 ∪ {∞}.
We consider a principal G-bundle over S4, with G being one of the classical groups (SU(N),

SO(N) or Sp(N)). To make ourselves perfectly clear we stress that Sp(N) means in this paper

the group of matrices 2N × 2N preserving the symplectic structure, sometimes denoted in the

literature as USp(2N).

In our notations the gauge boson field (the connection) Aµ are real. Therefore the covariant

derivative is defined as follows: ∇µ = ∂µ − iAµ. The curvature (stress tensor) is defined by (1.9).

Sometimes the connection Aµ is supposed to be antihermitian (especially in mathematical texts).

In that case the field strength is defined by

Fm
µν = ∂µA

m
ν − ∂νA

m
µ + [Am

µ , A
m
ν ].

We can establish the connection with the mathematical formalism as follows

Am
µ = −iAµ, Fm

µν = −iFµν .

In these notations we have the following definition of the cuvature tensor:

[∇µ,∇ν ] = −iFµν .

In section 2.5 we will introduce twisted fields ψ̄, ψµ, ψ̄µν . In order to make contact with the

topological multiplet [89] (Atop
µ , φtop, λtop, ηtop, ψtop

µ , χtop
µν ) let us write the rule of correspondence
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(2.18):

Atop
µ = Aµ, ψtop

µ = ψµ,

φtop = −2
√

2H, λtop = −2
√

2H†,

ηtop = −4ψ̄, χtop
µν = ψ̄µν .

• The vacuum expectation of the field φ belonging to the topological multiplet will be denoted

through the paper as a.

• The vacuum expectation of an observable O over the field configurations with the fixed value

of φ at infinity (which is equal to a) is denoted as

〈O〉a =

∫

lim
x→∞

φ(x) = a
D {fields} eaction O

• The vacuum expectation of the Higgs field H will differ to a by the factor − 1

2
√

2
:

〈H〉a = − 1

2
√

2
a

We will use the complex coupling constant τ which is related with the Yang-Mills coupling

constant g and with the instanton number in the following way

τ =
4πi

g2
+

Θ

2π
.

In section 2.4 we introduce the instanton counting parameter q which is related to τ , g and Θ as

follows:

q = e2πiτ = e
− 8π2

g2 eiΘ .
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Introduction

The duality between the gauge theories and the string theory is now of the great importance. The

actual knowledge suggests that all the superstring theories in ten dimensions can be obtained as

different limits of a unique eleven dimensional theory, known as M -theory [5, 75, 46, 83].

In spite of the existence of numerous arguments in favor of this approach, the M -theory is

not yet built. Therefore one tries to find some non-direct evidences which confirm (or reject) this

theory. The main strategy is to compare its prediction with results which can be obtained in a

different (and independent of the M -theory) way.

Among other predictions which provides M -theory there are those which concern to the Wilso-

nian effective action [80, 27] along the Coulomb branch for N = 2 super Yang-Mills theory [90].

The leading part of the non-perturbative effective action for the gauge group SU(2) which con-

tains up to two derivatives and and four fermions was computed by Seiberg and Witten [77]. After

its appearance the Seiberg-Witten solution was generalized in both directions: to other classical

groups and to various matter content [52, 1, 43, 19, 63, 78, 58, 91].

Till recently while generalizing one established the expression for the algebraic curve and the

meromorphic differential from the first principles and then computed the instanton corrections to

the leading part of the effective action. This part can be expressed with the help of a unique

holomorphic function F(a), referred as prepotential [39, 21, 76, 81]. With the help of the extended

superfield formalism the Lagrangian for the effective theory can be written as an N = 2 F -term:

Seff =
1

4π
=m

{
1

2πi

∫
d4xd4θF(Ψ)

}
.

The classical prepotential, which provides the microscopic action, is

Fclass(a) = πiτ0〈a, a〉,

where τ0 =
4πi

g2
0

+
Θ0

2π
. Note that we use the normalization of the prepotential which differs from

some other sources by the factor 2πi.

The complete Wilsonian effective action does contain other terms, for example the next one,

which contains four derivatives and eight fermions can be expressed with the help of a real function

H(a, a) as the N = 2 D-term [44, 20, 74, 59, 92, 93, 26]:

S4−deriv =

∫
d4xd4θd4θ̄H(Ψ, Ψ̄).
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In [69, 70] a powerful technique was proposed to follow this way in the opposite direction: to

compute first the instanton corrections and to extract from them the Seiberg-Witten geometry and

the analytical properties of the prepotential.

In [71] the solution of N = 2 supersymmetric Yang-Mills theory for the classical groups other

that SU(N) using the method proposed in [69, 70] was obtained. This method consists of the

reducing functional integral expression for the vacuum expectation of an observable (in fact, this

observable equals to 1, hence we actually compute the partition function as it defined in statistical

physics) to the finite dimensional moduli space of zero modes of the theory. That is, to the

instanton moduli space, the moduli space of the solutions of the self-dual equation

Fµν − ?Fµν = 0

with the fixed value of the instanton number

k = − 1

16πh∨

∫
Tradj F ∧ F.

Notation Tradj means that the trace is taken over the adjoint representation.

In [79] we continue to investigate the possibility to solve the N = 2 supersymmetric Yang-Mills

theory with various matter content (limited, of cause, by the asymptotic freedom condition).

Roughly speaking our task can be split into two parts. First part consists of the writing

the expression for the finite dimensional integral to which vacuum expectation in question can be

reduced. To accomplish this task in [69, 71] the explicit construction for the instanton moduli space

was used. Already for the pure gauge theory its construction (the famous ADHM construction of

instantons, [2]) is rather nontrivial (see for example [31, 30, 29, 49, 50, 51]). In the presence of

matter it becomes even more complicated.

Fortunately there is another method which lets to skip the explicit description of the moduli

space and to directly write the required integral. This method uses some algebraic facts about the

universal bundle over the instanton moduli space. It will be explained in section 5.1. Using this

method we will obtain the prepotential as a formal series over the dynamically generated scale.

The second part of the task is to extract the Seiberg-Witten geometry from obtained expres-

sions. To do this we will use the technique proposed in [70]. It is based on the fact that in the

limit of large instanton number the integral can be estimated by means of the saddle point approx-

imation. This approximation can be effectively described by the Seiberg-Witten data — the curve

and the differential. One may wonder why the prescription obtained in this limit will provide the
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exact solution even in the region of finite k, where the saddle point approximation certainly will

not work. The answer is that the real reason why the Seiberg-Witten prescription works is the

holomorphicity of the prepotential, pointed out in [77], whereas the saddle point approximation

just makes it evident and easy to extract.

The paper is organized as follows: in chapter 1 we recall some aspects of N = 1 and N = 2 su-

persymmetry. In chapter 2 we give an outline of the important facts about N = 2 super Yang-Mills

theories: the Seiberg-Witten theory, topological twist, and its relation to the M -theory. Chapter

3 is devoted to some aspects of the equivariant integration. Also we give a short introduction to

the ADHM construction. In chapter 4 we use the ADHM construction to compute the instanton

corrections for some cases. In chapter 5 we describe a method to write the formula for the in-

stanton corrections. In chapter 6 we reduce the problem of the instanton correction computations

to the problem of minimizing a functional. And finally in chapter 7 we solve the saddle point

equations for some models. Using relations between the saddle point equation for different models

we establish the same relations between the prepotentials for these models and finally we find the

hyperelliptic approximation for the Seiberg-Witten curves for all the models. This allows us to

compute the 1-instanton corrections which comes from the algebraic curve and compare it with

the direct computations result. In each case perfect agreement between results of two approaches

is observed.

The logic of the presentation is not always linear. In order to simplify the reading we have

included a schematic roadmap of this text, figure 1. The word “some” near some arrow means

that the passage is possible only for some models.
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Figure 1: The roadmap of the text



Chapter 1

Supersymmetry

In this section we will shortly describe some properties of the superspace, which is necessary to

consider super Yang-Mills theory. There are lot of well-written texts on supersymmetry [85, 86, 84,

9, 61, 24]. Not even trying to describe the subject in all details, we have just pick some elements

in order to make our story self-consistent.

1.1 Algebra of supersymmetry

The Coleman and Mandula theorem [15] states that the only allowed symmetry of the S-matrix is

the Poincaré algebra plus maybe some internal symmetries which commute with it. This theorem

concerns only transformation with commuting parameters. Therefore this statement is about the

maximal allowed external symmetry Lie algebra. But if we include also some transformations with

anticommuting parameters, that is, transform the Lie algebra to a superalgebra, we can obtain a

supplementary symmetry in the theory. In this way the supersymmetry arises.

Let Pµ and Jµν be the generators of the Poincaré algebra. Their commutation relations are

the following

[Pµ, Pν ] = 0,

[Jµν , Pρ] = igρνPµ − igρµPν ,

[Jµν , Jρσ ] = igνρJµσ − igµρJνσ − igνσJµρ + igµσJνρ.

1
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They can be represented by the following differential operators:

Pµ = i∂µ,

Jµν = ixµ∂ν − ixν∂µ + Sµν .
(1.1)

These operators act on the argument of scalar functions and describe their transformation under

rotations and translations of the Poincaré group. Sµν is the spin operator. It describes the

transformation of a function belonging to a higher spin representation of the Lorentz group. For

example, if we consider a spinor function ψα(x) the spin operator takes the following form

(
Sµνψ(x)

)α
= iσµν

α
βψ

β(x).

The supersymmetry is realized as the largest supergroup of symmetry of the S-matrix [42]. It

is described as follows. In addition to the operators (1.1), which naturally have bosonic statistics,

one introduces a supplementary set of operators QAα and Q̄A,α̇ = (QAα )
†
, A = 1, . . . ,N , which are

fermions. They have spinor indices. The (anti)commutation relations of the enlarged Poincaré

algebra are the following (we use the standard normalization)

[Pµ,Q
A
α ] = 0,

[Pµ, Q̄A,α̇] = 0,

[Jµν ,Q
A
α ] = iσµν,α

βQAβ ,

[Jµν , Q̄
α̇
A] = iσ̄µν

α̇
β̇Q̄

β̇
A,

{QAα , Q̄B,β̇} = 2σµ
αβ̇
Pµδ

A
B ,

{QAα ,QBβ } = εαβZ
ABZ,

{Q̄A,α̇, Q̄B,β̇} = εα̇β̇Z
∗
ABZ.

(1.2)

Here ZAB is an antisymmetric matrix. A new operator Z is the central extension of the supersym-

metry algebra. It is known as the central charge. This operator commutes with all other generators

of the super Poincaré algebra.

Remark. Note that we have adopted a rule according to which hermitian conjugation swaps upper

and lower supersymmetry indices. 2

Remark. The dumb spinor indices will be omitted in general. To make formulae unambiguous we

adopt the rule according to which undotted indices are summed from up-left to right-down, and

dotted – from down-left to right-up. For example ψχ ≡ ψαχα, ψ̄χ̄ ≡ ψ̄α̇χ̄
α̇. 2
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1.2 Superspace

If we wish to represent operators QAα and Q̄A,α̇ in the spirit of (1.1) we should introduce some

additional coordinates. Namely, let us introduce N left handed spinor coordinates θαA and N
righthanded1 θ̄A,α̇. these coordinates are anticommuting. Also introduce a boson real coordinate

z which corresponds to the central charge. The complete set of coordinates becomes therefore

za =
(
xµ, θαA, θ̄

A,α̇, z
)
.

The space with these coordinates will be referred as the superspace.

The following differential operators satisfy the supersymmetry algebra (1.2).

Z = i
∂

∂z
,

QAα =
∂

∂θαA
+ iσµ

αβ̇
θ̄A,β̇∂µ +

i

2
εαβZ

ABθβB
∂

∂z
,

Q̄A,α̇ =
∂

∂θ̄A,α̇
+ iθβAσ

µ
βα̇∂µ +

i

2
εα̇β̇Z

∗
AB θ̄

B,β̇ ∂

∂z
.

(1.3)

Remark. Our choice of the sign of the second summand in these formulae is closely related to our

definition of the momentum operator Pµ (1.1). The choice Pµ = +i∂µ is, in its turn, fixed by our

choice of the Minkowskian metric (A.1) and the corresponding formulae in Quantum Mechanics:

H = +i
∂

∂t
, ~P = −i ∂

∂~x
.

2

Remark. In the opposition with the bosonic case the fermionic derivative is hermitian:

(
∂

∂θαA

)†

=
∂

∂θ̄A,α̇
.

2

The general transformation of the super Poincaré algebra can be represented as follows:

−iaµPµ − i

2
ωµνJµν + ζαAQAα + ζ̄B,β̇Q̄B,β̇ − itZ.

1for N > 2 it does not have any practical value, since irreducible field multiplets will suffer too many constraints
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It corresponds to the following supercoordinate transformations:

xµ 7→ xµ + aµ + ωµνxν + iζαAσ
µ

αβ̇
θ̄A,β̇ − iθαBσ

µ

αβ̇
ζ̄B,β̇ ,

θαA 7→ θαA + ζαA +
1

2
ωµνσµν

α
βθ
β
A,

θ̄A,α̇ 7→ θ̄A,α̇ + ζ̄A,α̇ +
1

2
ωµν σ̄µν

α̇
β̇ θ̄
A,β̇ ,

z 7→ z + t+
i

2
ζαAεαβZ

ABθβB +
i

2
ζ̄A,α̇εα̇β̇Z

∗
AB θ̄

B,β̇.

(1.4)

1.3 Geometry of the superspace

In this section we consider some geometrical properties of the superspace. In particular, we recall

how to derive the covariant derivative from the geometrical point of view. More details can be

found, for example, in [85, 86, 84].

Four dimensional Minkowski (Euclidean) space can be seen as a coset ISO(3, 1)/SO(3, 1)2

(ISO(4)/SO(4)), where ISO(3, 1) (ISO(4)) is the Poincaré group. In the same way the superspace

can be seen as a the super Poincaré group SISO(3, 1) (SISO(4)) factor Lorentz group.

The geometrical properties of the superspace can be deduced from the fact that the Killing

vectors of the super Poincaré symmetry of the space are obtained by the group multiplication. It

allows to get the connection.

Any element of the super Poincaré group can be parametrized as follows

g(za, ωµν) = exp
{
−ixµPµ + θαAQAα + θ̄B,β̇Q̄B,β̇ − izZ

}
exp

{
− i

2
ωµνJµν

}
.

A representative of a conjugacy class can be given by the first factor, that is, by

g̃(za) = exp
{
−ixµPµ + θαAQAα + θ̄B,β̇Q̄B,β̇ − izZ

}
.

The vielbein ea
b and the spin connection wµνa can be obtained in the following way:

g̃−1(za)dg̃(za) = dzaea
µPµ + dzaea

α
AQAα + dzaea

B,β̇Q̄B,β̇ + dzaea
zZ +

1

2
dzawµνa Jµν .

2“I” stands for “inhomogeneous”
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Computations give the following values for ea
b:

a ↓, b→ Pµ QAα Q̄A,α̇ Z

dxν −iδµν 0 0 0

dθβB θ̄B,γ̇σµβγ̇ δαβ δ
B
A 0 1

2εβγZ
BCθγC

dθ̄B,β̇ θαBσ
µ

αβ̇
0 δα̇

β̇
δBA

1
2εβ̇γ̇Z

∗
BC θ̄

C,γ̇

dz 0 0 0 −i

The spin connection wµνa appears to be zero.

The covariant derivative can be obtained as follows:

Db = e−1
b
a

(
∂a +

1

2
wµνa Sµν

)
.

Having inverted the vielbein matrix we get the following expressions (compare with (1.1) and

(1.3)):

Dµ = i∂µ,

DA
α =

∂

∂θαA
− iσµ

αβ̇
θ̄A,β̇∂µ − i

2
εαβZ

ABθβB
∂

∂z
,

D̄A,α̇ =
∂

∂θ̄A,α̇
− iθβAσ

µ
βα̇∂µ − i

2
εα̇β̇Z

∗
AB θ̄

B,β̇ ∂

∂z
,

Dz = i
∂

∂z
.

(1.5)

Since the supersymmetry transformation define Killing vectors with respect to this connection

we conclude that the covariant derivatives commute with generators of the supersymmetry, that

is, with the supercharges QAα and Q̄A,α̇. Of cause, this statement can be checked straightforwardly.

Remark. There is another way to deduce (1.5) which is simpler and closely related to the traditional

way to introduce “long” derivatives. Taking into account (1.4) we conclude that the derivative with

respect to θαA does not transforms covariantly:

∂

∂θαA
=
∂θβB

′

∂θαA

∂

∂θβB
′ +

∂xµ′

∂θαA

∂

∂xµ′
+
∂z′

∂θαA

∂

∂z′

=
∂

∂θαA
′ +

1

2
ωµνσµν

β
α

∂

∂θβA
′

− iσµ
αβ̇
ζ̄A,β̇

∂

∂xµ′
− i

2
ζβBεβαZ

BA ∂

∂z′
.

The requirement that the last line in this expression is absent leads us directly to (1.5). 2
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The commutation rules for the covariant derivatives are the following:

{DA
α , D̄B,β̇} = −2iσµ

αβ̇
∂µδ

A
B ,

{DA
α ,D

B
β } = −iεαβZAB

∂

∂z
,

{D̄A,α̇, D̄B,β̇} = −iεα̇β̇Z∗
AB

∂

∂z
.

(1.6)

All others are trivial. They could be used to reconstruct the curvature and the torsion of the

superspace, but we will not need them.

Let us also introduce new coordinates which are covariantly constant in the θ̄A,α̇ and z direc-

tions:

yµ = xµ − iθAσ
µθ̄A. (1.7)

It satisfies

D̄A,α̇y
µ = Dzy

µ = 0.

1.4 Supermultiplets

In this section we describe some supermultiplets which will be useful for the following.

In the spirit of field theory, where particles are seen as some irreducible representation of the

Poincaré group, we would like to describe irreducible representations of the super Poincaré group.

However, there is a difference. In the super case an irreducible multiplet contains more than one

particle. At least, it contains bosons and fermions. Therefore, we will describe families of particles

by means of irreducible representations.

As an supersymmetric extension of the Wigner theorem [87] we can say that all super multiplets

can be described by means of families of function defined on the superspace, and which transform

under an (irreducible) representation of the Lorentz group (the group we have factored out).

1.4.1 N = 1 chiral multiplet.

Consider the simplest case: N = 1 (and therefore the central charge is absent) and the scalar

representation of the Lorentz group. That is, we consider a scalar function Φ(x, θ, θ̄). Notice,

however, that this function provides a reducible representation of the super Poincaré group, since

we can impose the condition

D̄α̇Φ(x, θ, θ̄) = 0
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which commute with the supersymmetry transformation, since the covariant derivative does.

This constraint can be solved using the coordinate (1.7). The result is

Φ(y, θ) = H(y) +
√

2θψ(y) + θθf(y)

= H(x) + iθσµθ̄∂µH(x) − 1

4
(θθ)(θ̄θ̄)∂µ∂

µH(x)

+
√

2θψ(x) − i√
2
θθ(∂µψ(x)σµ θ̄) + θθf(x).

Here H(x) is a scalar field, ψα(x) is a Weyl spinor and f(x) is an auxiliary field which does not

have any dynamics (Lagrangian’s do not contain any of its derivatives).

1.4.2 N = 1 vector multiplet.

Now consider a general scalar function defined on the N = 1 superspace, which satisfies the reality

condition:

V (x, θ, θ̄) = V †(x, θ, θ̄).

Its component expansion is

V (x, θ, θ̄) = ϕ(x) +
√

2θχ(x) +
√

2θ̄χ̄(x) + θθg(x) + θ̄θ̄g†(x) + θσµθ̄Aµ(x)

− i(θ̄θ̄)θ

(
λ(x) +

1√
2
σµ∂µχ̄(x)

)
+ i(θθ)θ̄

(
λ̄(x) +

1√
2
σ̄µ∂µχ(x)

)

+
1

2
(θθ)(θ̄θ̄)

(
D(x) − 1

2
∂µ∂

µϕ(x)

)
.

The reality condition shows that ϕ†(x) = ϕ(x), D†(x) = D(x) and A†
µ(x) = Aµ(x). Real vector

field is naturally associated with a vector boson, which is a gauge boson of a gauge theory. Since

such bosons are in the adjoint representation of the gauge group, it is reasonable to take the vector

superfield itself in the adjoint.

In fact, this supermultiplets is not irreducible, it contains a chiral multiplet (also in the adjoint

representation). To gauge it out we can consider the following transformation:

e2V 7→ e2V ′

= e−iΛ
†

e2V eiΛ . (1.8)

where

Λ(y, θ) = α(y) + . . .

is a chiral multiplet. Under such a transformation the vector component Aµ(x) transforms as
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follows:

Aµ(x) 7→ A′
µ(x) = Aµ(x) −∇µ(<eα(x)),

where ∇µ is the covariant derivative with the connection Aµ(x):

∇µ = ∂µ − i[Aµ, ·].

This formula justifies the identification Aµ(x) as a gauge boson.

There is a specific gauge where the component expansion of the vector superfield becomes

quite simple. It is the Wess-Zumino gauge. In that gauge fields ϕ(x), χα(x), χ̄α̇(x) and g(x) are

eliminated. Therefore we have the rest:

VWZ(x, θ, θ̄) = θσµθ̄Aµ(x) − i(θ̄θ̄)(θλ(x)) + i(θθ)(θ̄λ̄(x)) +
1

2
(θθ)(θ̄θ̄)D(x).

Remark. Even having fixed the Wess-Zumino gauge we still have a freedom to perform the gauge

transformation (and this is the only remaining freedom). 2

Remark. The Wess-Zumino gauge does not commute with the supersymmetry transformation. 2

1.4.3 Supersymmetric field strength

There is another way to represent the same field content. We can find an expression which remains

unchanged under (1.8). It is given by

Wα(x, θ, θ̄) = −1

8
D̄α̇D̄α̇ e−2V (x,θ,θ̄) Dα e2V (x,θ,θ̄) .

Its component expansion is (we use yµ = xµ − iθσµθ̄):

Wα(y, θ) = −iλα(y) + θαD(y) − iσµνα
βθβFµν(y) − θβθβσ

µ

αβ̇
∇µλ̄

β̇(y).

In this formula we see the appearance of the field strength

Fµν(x) = ∂µAν(x) − ∂νAµ(x) − i[Aµ(x), Aν (x)] (1.9)

which corresponds to the connection Aµ(x).

The superfield Wα(x) is chiral: D̄α̇Wα(x, θ, θ̄) = 0. In the abelian case it satisfies the following
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constraint (reality condition):

D̄α̇W̄
α̇(x, θ, θ̄) = DαWα(x, θ, θ̄)

which commute with the supersymmetry transformation. Therefore it can be seen as an another

example of the Wigner theorem (now applied to a spinor function).

The reality condition assures that D(x) is real field, and Fµν(x) satisfied the Bianchi identity,

which allows us to identify it with the curvature of a connection Aµ(x)

In the non-abelian case these relations become more sophisticated. Namely, one should intro-

duce the superconnection AA
α and replace everywhere

DA
α 7→ D̃A

α = DA
α − iAA

α ,

D̄A,α̇ 7→ ˜̄DA,α̇ = D̄A,α̇ + iĀA,α̇,

Dµ 7→ D̃µ = Dµ − iAµ.

The relation with the the gauge field Aµ is established via

Aµ(x, θ, θ̄)
∣∣
θ=0,θ̄=0

= Aµ(x).

Details can be found in [85, 86].

1.4.4 N = 2 chiral multiplet [41].

The most natural superfield representation for the N = 2 chiral multiplet is given in the extended

superspace, which has the coordinates xµ, θαA, θ̄
A
α̇ , A = 1, 2. The chirality condition for scalar

superfield Ψ(x, θ, θ̄, z) means that

D̄A,α̇Ψ(x, θ, θ̄, z) = 0.

Using the algebra of covariant derivatives we see that it implies that this superfield does not depend

on central charge coordinate z.

As usual when we consider chiral multiplets we introduce covariantly constant coordinate
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yµ = xµ − iθAσ
µθ̄A. The component expansion for the N = 2 chiral multiplet is the following:

Ψ(y, θ) = H(y) +
√

2θAψ
A(y) +

1√
2
θAσ

µνθAFµν(y) +
1√
2
θAL

A
B(y)θB

− 2i
√

2

3
(θAθB)

(
θA

{
σµ∇µψ̄B(y) +

1√
2
[H†(y), ψB(y)]

})

− 1

3
(θAθB)(θAθB)

(
∇µ∇µH

†(y) − [H†(y), D(y)] − i√
2
{ψ̄C(y), ψ̄C(y)}

)
.

(1.10)

The matrix LAB consists of auxiliary fields. This superfield is not an arbitrary chiral N = 2

superfield. It subjects to the following reality conditions (compare with (A.18))

εACL∗
C
DεDB = LAB .

This auxiliary field matrix can be expressed with the help of auxiliary fields for N = 1 chiral and

vector multiplets as follows (we denote f(y) = f ′(y) + if ′′(y) and f †(y) = f ′(y) − if ′′(y))

LAB(y) =


 iD(y) −

√
2f(y)

√
2f †(y) −iD(y)


 = −i

√
2f ′′(y)τ1 − i

√
2f ′(y)τ2 + iD(y)τ3.

Covariantly this restriction can be written (in the abelian case) as

DADBΨ(x, θ, θ̄) = D̄AD̄B [Ψ(x, θ, θ̄)]
†
.

In the non-abelian case we should introduce superconnection as in the case of the vector multiplet.

Using the language of the N = 1 supermultiplets one can re-express this superfield as follows:

Ψ(y, θ) = Φ(y, θ1) + i
√

2θ2W (y, θ1) + θ2θ2G(y, θ1)

where Φ(y, θ) and G(y, θ) are two N = 1 chiral multiplets. These two chiral supermultiplets are

not independent. The second one can be obtained from the first one and the vector superfield in

the following way:

G(y, θ) = −1

2

∫
d2θ̄Φ†(y − 2iθσθ̄, θ̄) e2V (y,θ,θ̄)

While doing the integral in the righthand side yµ is supposed to be fixed.

The supersymmetry transformation for N = 2 chiral multiplet is given by

δζ,ζ̄Ψ(x, θ, θ̄) = (ζAQA + ζ̄AQ̄A)Ψ(x, θ, θ̄).
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The component expansion for this equation gives

δζ,ζ̄H =
√

2ζAψ
A,

δζ,ζ̄H
† =

√
2ζ̄Aψ̄A,

δζ,ζ̄ψ
A
α = σµνα

βζAβ Fµν + iζAα [H,H†] − i
√

2σµ
αβ̇
ζ̄A,β̇∇µH,

δζ,ζ̄ψ̄
α̇
A = σ̄µν,α̇β̇ ζ̄

β̇
AFµν − iζ̄α̇A[H,H†] − i

√
2σ̄µ,α̇βζA,β∇µH

†,

δζ,ζ̄Aµ = iζAσµψ̄A − iψAσµζ̄A.

(1.11)

Here we have come slightly ahead and used the equations of motion which follow from the action

(2.1) of N = 2 super Yang-Mills theory:

f = 0, D = [H,H†].

Let us finally rewrite for further references the N = 2 superfield (1.10) in less SU(2)I covariant

and more tractable way. We have

Ψ(y, θ) = H(y) +
√

2θ1ψ
1(y) +

√
2θ2ψ

2(y)

+ θ1θ1f(y) + θ2θ2f
†(y) + i

√
2θ1θ2D(y) +

√
2θ2σ

µνθ1Fµν

− i
√

2(θ1θ1)(θ2σ
µ∇µψ̄2(y)) + i(θ1θ1)(θ2[H

†(y), ψ1(y)])

− i
√

2(θ2θ2)(θ1σ
µ∇µψ̄1(y)) − i(θ2θ2)(θ1[H

†(y), ψ2(y)])

− (θ1θ1)(θ2θ2)
(
∇µ∇µH

† − [H†, D] + i
√

2{ψ̄1, ψ̄2}
)
.

1.4.5 Hypermultiplet.

The matter in N = 2 supersymmetric theory can be described with the help of the hypermultiplet

[38, 12].

In a SU(2)I invariant way it can be described as follows. Consider an SU(2)I doublet of scalar

superfields QA(x, θ, θ̄, z). Its derivatives DA
αQ

B and D̄A
α̇Q

B belong to the reducible representation

1 ⊕ 3 of SU(2)I . If we project out the three dimensional representation, the rest will be the

hypermultiplet. That is, we impose the following condition

DA
αQ

B + DB
αQ

A = 0 ⇔ DA
αQ

B =
1

2
εABDC,αQ

C ,

D̄A
α̇Q

B + D̄B
α̇Q

A = 0 ⇔ D̄A
α̇Q

B =
1

2
εABD̄C,α̇Q

C .
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Remark. The superfield QA is not chiral. Therefore, it does depend on the central charge coordinate

z. Since the matrix ZAB is antisymmetric, it is proportional to εAB when N = 2. After an

appropriate rescaling of z we can put simply ZAB = εAB 2

Consider the (infinite, thanks to the presence of the bosonic coordinate z) series which represents

this superfield. Some first terms are given by the following formula

QA(x, θ, θ̄, z) = qA(x) +
√

2θAχ(x) +
√

2θ̄A ¯̃χ− izXA(x) + . . .

Here (q1, q2) are an SU(2)I doublet of complex scalars, χα and χ̃α are two spinor singlets and

(X1, X2) are an doublet of auxiliary fields. Terms contained in “. . . ” can be expressed as spacetime

derivatives of these fields.

The on-shell supersymmetry transformations for the massive hypermultiplet coupled with the

gauge multiplet are given by

δζ,ζ̄q
A =

√
2ζAχ+

√
2ζ̄A ¯̃χ,

δζ,ζ̄χα = i
√

2σµαα̇ζ̄
α̇
A∇µq

A − 2iζ̄Aα̇ q
†
AH +

√
2mqAζA,α,

δζ,ζ̄
¯̃χα̇ = i

√
2ζA,ασµαα̇∇µqA − 2iζAα q

†
AH +

√
2mqAζ̄α̇A.

(1.12)

where H(x) is a Higgs field from the N = 2 chiral multiplet, m is the massive hypermultiplet

matter. In the covariant derivative ∇µ = ∂µ − iAµ we use the connection which is also the part of

the chiral multiplet.

Remark. The multiplication HqA should be understood as follows: in the adjoint representation we

have H = HaT adj
a , a = 1, . . . , dimG where T adj

a are the generators of the gauge group (structure

constants). Taking a representation % of the gauge group one considers corresponding generators

T %a . The superfield QA is acted on by this representation. And HqA means HaT %a q
A which is

well-defined. The same remark should be taken into account while considering ∇µq
A. 2

This field content can be repackaged into two N = 1 chiral superfield. Unfortunately, in non-

SU(2)I invariant way. However, the practical computations with repackaged superfields are much

simpler. These two chiral superfields have the following form:

Q(y, θ) = q(y) +
√

2θχ(y) + θθX(y),

Q̃(y, θ) = q̃†(y) +
√

2θ ¯̃χ(y) + θθX̃†(y),

where q(x) ≡ q1(x), q̃†(x) ≡ q2(x), X(x) ≡ X1(x) and X̃†(x) ≡ X2(x). Note that the hermitian
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conjugation in the last line does not affect on yµ. Also note that the N = 1 chiral multiplet Q is

acted on by the representation % of the gauge group, whereas Q̃ – by the dual representation %∗.
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Chapter 2

N = 2 Super Yang-Mills theory

In this chapter we give an outline of known facts about N = 2 supersymmetric Yang-Mills the-

ory: the action, the famous Seiberg-Witten theory, which allows to compute the non-perturbative

corrections to the Green functions via the prepotential (see its definition is the section 2.3), and

the stringy tools used in this theory. Also we discuss the twist which makes it a topological field

theory and BV derivation of this topological field theory.

2.1 The field content

The field content of the pure N = 2 super Yang-Mills theory is described by the N = 2 chiral

superfield (1.10):

Aµ(x)

ψ1
α(x) = ψα(x) ψ2

α(x) = λα(x)

H(x)

where

• Aµ(x) is a gauge boson,

• ψAα (x), A = 1, 2 are two gluinos, represented by Weyl spinors, and

• H(x) is the Higgs field, which is a complex scalar.

We have arranged these fields in this way in order to make explicit the SU(2)I symmetry. It

acts on the rows. Accordingly Aµ(x) and H(x) are singlets and (ψ1
α(x), ψ2

α(x)), are a doublet.

15
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Since vector bosons are usually associated with a gauge symmetry, Aµ(x) is supposed to be

a gauge boson corresponding to a gauge group G. It follows that it transforms in the adjoint

representation of G. To maintain the N = 2 supersymmetry ψAα (x) andH(x) should also transform

in the adjoint representation. Therefore, all the fields are supposed to be g = Lie(G) valued

functions.

Let us also describe the matter hypermultiplet. The field content is the following:

χα(x)

q1(x) = q(x) q2(x) = q̃†(x)

¯̃χα̇(x)

where χα and ¯̃χα̇ are two SU(2)I singlets Weyl spinors. q and q̃† form a doublet of complex

bosons. To couple the matter fields with the gauge multiplet we should specify a representation %

of the gauge group. Then q and χ are acted on by the gauge transformation in this representation,

whereas q̃ and χ̃ by the dual one %∗.

2.2 The action

Let us now write the action for N = 2 supersymmetric Yang-Mills theory. This action is uniquely

defined by the following requirements (see, for example, [7, 8, 24])

• it contains only two derivative terms, and not higher,

• it is renormalizable.

The action which satisfies these conditions is (after integration out all the auxiliary fields)

SYM =
Θ0

32π2h∨

∫
d4xTrFµν ? F

µν

+
1

g2
0h

∨

∫
d4xTr

{
−1

4
FµνF

µν + ∇µH
†∇µH − 1

2
[H,H†]

2

+iψAσµ∇µψ̄A − i√
2
ψA[H†, ψA] +

i√
2
ψ̄A[H, ψ̄A]

}
.

(2.1)

Using N = 1 superfields one can rewrite this action as follows:

SYM =
1

8πh∨
=m

{
τ0 Tr

(∫
d4xd2θWαWα +

∫
d4xd2θd2θ̄Φ† e2V Φ

)}
.
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Here τ0 =
4πi

g2
0

+
Θ0

2π
, g2

0 being the Yang-Mills coupling constant (and the Plank constant as well)

and Θ0 is the instanton angle. Its contribution to the action is given by the topological term, Θ0k

where k ∈ Z is the instanton number:

k = − 1

32π2h∨

∫
d4xTrFµν ? F

µν . (2.2)

Here h∨ is the dual Coxeter number. Its values for different groups are collected in the Appendix

B.

The most natural form of this action can be obtained with the help of N = 2 chiral superfield

(1.10):

SYM =
1

4πh∨
=m

{∫
d4xd4θ

τ

2
TrΨ2

}
. (2.3)

The coupling constant g is running in the Yang-Mills theories. At high energies it can go to

infinity (Landau pôle) or to zero (or, in marginal cases, remain finite). The theories with the

second and third type of behavior are referred as asymptotically free. Physically it means that the

action (2.1) better describes the model at high energies. So, if we take the high energy limit, we

will see the action becomes exact.

Therefore, for asymptotically free theories the action (2.1) is the exact or bare or microscopic

one. However, when one goes from high to low energies, the bare action is getting dressed. The

perturbative and non-perturbative correction should be taken into account and we arrive to the

Wilsonian effective action.

2.3 Wilsonian effective action

By definition the Wilsonian effective action Seff is defined in a similar way as a standard effective

action, Γeff . However there are some distinctions. The latter is defined as a generating functional

of one-particle irreducible Feynman diagrams. It can be obtained from the generating functional

of all Feynman diagrams W by the Legendre transform. The former type of effective actions, the

Wilsonian one, is defined in as Γeff except that one introduces explicitly an infra-red cut-off Λ (often

we will call it dynamically generated scale). Therefore, the Wilsonian effective action is cut-off

dependent. There is no big difference between Seff and Γeff when there are no massless particles in

the theory. However, in the N = 2 super Yang-Mills theory there are such particles. The property

that makes plausible to consider the Wilsonian effective action is that it is a holomorphic function

of Λ, which is not the case for Γeff .
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If one requires that N = 2 supersymmetry remains unbroken in low energy region, one can get

very restrictive conditions to the form of the Wilsonian effective action. Namely when one goes to

the low energies region, one observes that thanks to the term

−1

2
[H,H†]

2
(2.4)

in the microscopic action massless Higgs fields satisfy the equation [H,H †] = 0 and therefore belong

to the Cartan subalgebra of the gauge group G. The same conclusion is also valid for the gauge

field. The non-perturbative analysis shows that at low energies N = 2 supersymmetric Yang-Mills

theory is alway in the Coulomb branch, where one finds r = rankG copies of the QED with photon

fields being Al,µ(x), l = 1, . . . , r.

Having integrated out all the massive fields one gets the Wilsonian effective action, which

describes the physics at low energies. The leading term of the effective action (containing up

to two derivatives and four fermions terms) can be obtained by relaxing the renormalizability

condition. The result is the following

Seff =
1

8π
=m

{
1

2πi

∫
d4xd2θF lm(Φ)Wα

l Wm,α +
1

2πi

∫
d2θd2θ̄

[
Φ† e2V

]
l
F l(Φ)

}
.

For this action to be N = 2 supersymmetric the following conditions should be satisfied :

F l(a) =
∂F(a)

∂al
, F lm(a) =

∂2F(a)

∂al∂am
.

Here we have introduced a holomorphic function F(a) on r variables al, which is called the prepo-

tential.

As usual, the most compact form of the effective action can be obtained with the help of the

N = 2 superfield (1.10):

Seff =
1

4π
=m

{
1

2πi

∫
d4xd4θF(Ψ)

}
.

The expression of the classical prepotential can be easily read from (2.3):

Fclass(a) = πiτ0

r∑

l=1

al
2 = πiτ0〈a, a〉. (2.5)

Note that we use the normalization of the prepotential which differs from some other sources by

the factor 2πi.

Further analysis [76] shows that all perturbative contributions to the prepotential consist of
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the 1-loop term1. The expression one gets is

Fpert(a,Λ) = −
∑

α∈∆+

〈α, a〉2
(

ln

∣∣∣∣
〈α, a〉

Λ

∣∣∣∣−
3

2

)

+
1

2

∑

%∈reps

∑

λ∈w%

(〈a, λ〉 +m%)
2

(
ln

∣∣∣∣
〈a, λ〉 +m%

Λ

∣∣∣∣−
3

2

) (2.6)

where Λ is the dynamically generated scale. This formula gives the prepotential for the Yang-Mills

theories with matter multiplets which belong to representations % of the gauge group and have

masses m%. In this formula the highest root is supposed to have length 2.

Remark. Term − 3
2 is not fixed by the perturbative computations. It describe the finite renormal-

ization of the classical prepotential. Our choice is made for the simplicity of further formulae.

2

The description of the positive root for classical Lie algebras are in the Appendix B.

2.4 Seiberg-Witten theory

Besides the classical (2.5) and the perturbative (2.6) parts of the prepotential, there is also a third

part, due to the non-perturbative effects and coming from the instanton corrections to the effective

action.

The classical N = 2 syper Yang-Mills theory has internal U(2) = SU(2)I × U(1)R symmetry.

Thanks to ABJ anomaly, which appears on the quantum level, the second factor is broken down

to Zβ where β is the leading (and unique thanks to topological nature of the theory) coefficient

of the β-function. β is an integer and for assymptotically free theories non-negative, therefore the

object Zβ ≡ Z/βZ does make sens. It is computed in Appendix B According to this the general

form of the non-perturbative contribution can be represented by the follwing series over Λ:

Finst(a,Λ) =

∞∑

k=1

Fk(a)Λkβ , (2.7)

In order to make evident that this expansion is nothing but the nonperturbative expansion

caused by contributions of different vacua let us consider the renormgroup flow for the coupling

constant τ . It can be easily obtained from (2.6) and is given by

τ(Λ1) = τ(Λ2) +
β

2πi
ln

Λ1

Λ2
.

1this fact is closely related to the topological nature of the N = 2 super Yang-Mills theory, see section 2.5
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Let us choose the energy scale in such a way, that the renormalization group flow becomes

τ(Λ) = τ0 +
β

2πi
ln Λ. Introduce the instanton counting parameter

q = e2πiτ = e
− 8π2

g2 eiΘ = e2πiτ0 Λβ. (2.8)

Remark. When β 6= 0 we can completely neglect τ0 and in this case we have q 7→ Λβ . For the

conformal theories, that is, for the theories where β = 0, we have q = e2πiτ0 . In both cases we can

replace Λβ by e
− 8π2

g2 eiΘ. 2

Taking into account the fact that the value of the Yang-Mills action on the instanton background

with the instanton number k is −8π2k

g2
+ iΘk we conclude that the Λβ expansion in the same as

instanton expansion.

The non-perturbative constributions to the prepotential give rise to the instanton corrections

to the Green functions (and therefore can be extracted from them [50, 49, 51]). However the direct

calculation of their contribution is very complicated, thus making quite useful the Seiberg-Witten

theory [77, 78]. In this section we will explain some basic aspects of this theory. More detailed

explanation can be found, for example, in [8, 24].

The key observation is that the kinetic term in the effective Wilson action is proportional to

−=m
1

2πi
F lm(H). Since this function is analytic, it can not be positive everywhere. Therefore

such a description is valid only within a certain region of the moduli space. To find a universal

description we involve the following geometrical fact: consider an algebraic curve, let A1, . . . , Ar

and B1, . . . , Br be its basic cycles which satisfy Al#Bm = δlm and λ1, . . . , λr be holomorphic

differentials such that ∮

Al

λm = δlm.

Then the real part of the period matrix

2πiBlm =

∮

Bl

λm

is negatively defined.

Therefore, if find a meromorphic differential λ, depending on the quantum moduli space of the

theory (set of vacuum expectations of the Higgs field H(x)), which we will denote al, such that

∂λ

∂al
= λl,

∮

Al

λ = al, and

∮

Bl

λ =
1

2πi

∂F(a)

∂al
, (2.9)
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we could assure the positivity of the kinetic term.

Another way to get the description of the prepotential in terms of an auxiliary algebraic curve

is to account properly the monodromies of the vector

~υ =




a1

a1
D

...

ar

arD




where alD =
∂F(a)

∂al
. It allows to write a differential (Schrödinger like) equation for al, a

l
D. Its

solutions can be expressed with the help of hypergeometric functions, whose integral representations

reproduce the prescription (2.9).

2.5 Topological twist

Another property of N = 2 supersymmetric Yang-Mills theory which will be important in what

follows is its relations to so-called topological (or cohomological) field theories [89, 88].

Namely, the action (2.3), up to a term, proportional to TrFµν ?F
µν , which is purely topological

itself, can be rewritten as a Q̄-exact expression for a fermionic operator Q̄. One can construct this

operator by twisting the usual supersymmetry generators Q̄A,α̇ in the following way:

Q̄ = εAα̇Q̄A,α̇.

Remark. Note that in this expression we have mixed supersymmetry indices A,B, . . . and space-

time spinor indices α̇, β̇, . . . . Geometrically it corresponds to the redefinition of the Lorentz group

of the theory. Indeed, the group of symmetries is2

SU(2)L × SU(2)R × SU(2)I .

Now we redefine the Lorentz group by taking SU(2)′R = diagSU(2)R × SU(2)I . 2

Let us see in some details how does it work. According to this prescription we redefine the

2after the Wick rotation and passing form SO(3, 1) to SO(4), whose cover is SU(2)L × SU(2)R
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fields of the theory as follows:

ψA,α =
1

2
σµαAψµ, ψ̄A,α̇ =

1

2
εAα̇ψ̄ +

1

2
σ̄µν

Aα̇ψ̄µν .

By definition field ψ̄µν is anti-self-dual:

ψ̄µν = −i ? ψ̄µν .

These expressions can be inverted as follows:

ψµ = σ̄µ,AαψA,α, ψ̄ = εα̇Aψ̄
A,α̇ = εAα̇ψ̄A,α̇, ψ̄µν = σ̄µν α̇Aψ̄

A,α̇.

Remark. Previously we had the following action of the hermitian conjugation: (ψAα )
†

= ψ̄A,α̇. It

corresponds to the fact that in the signature SO(3, 1) the complex conjugation swaps left and right

spinors. Since we have redefined the Lorentz group it is naturally to expect that this map becomes

more complicated. In particular, the action of hermitian conjugation should be accompanied by

the charge conjugation matrix (which was trivial before). 2

The action (2.1) becomes

SYM =
Θ0

32π2h∨

∫
d4xTrFµν ? F

µν +
1

g2
0h

∨

∫
d4xTr

{
−1

4
FµνF

µν + ∇µH
†∇µH − 1

2
[H,H†]

2

+
i

2
ψµ∇µψ̄ − i

2
(∇µψν −∇νψµ)

−ψ̄µν +
i

2
√

2
ψµ[H

†, ψµ] − i

2
√

2
ψ̄[H, ψ̄] − i

2
√

2
ψ̄µν [H, ψ̄µν ]

}
.

(2.10)

Now let us rewrite the supersymmetry transformations for these new fields. But before we

introduce all set of the twisted supercharges:

Qµ = σ̄Aαµ QA,α, Q̄µν = σ̄µν
Aα̇Q̄A,α̇.

Having redefined the parameters of this transformation in the same way as the gluino fields

ζαA, ζ̄
A,α̇ 7→ ζµ, ζ̄ , ζ̄µν we can easily deduce the action of operators Q̄,Qµ and Q̄µν on the fields. We
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have

Q̄H = 0, QµH =
√

2ψµ,

Q̄H† =
√

2ψ̄, QµH
† = 0,

Q̄ψµ = 2i
√

2∇µH, Qµψν = −4(Fµν)
+

+ 2igµν [H,H
†],

Q̄ψ̄ = 2i[H,H†], Qµψ̄ = 2i
√

2∇µH
†,

Q̄ψ̄µν = −2(Fµν)
−
, Qµψ̄ρτ = −2i

√
2
(
gµρ∇τH

† − gµτ∇ρH
†
)−
,

Q̄Aµ = −iψµ, QµAν = −igµνψ̄ − 2iψ̄µν ,

(2.11)

Q̄µνH = 0,

Q̄µνH
† =

√
2ψ̄µν ,

Q̄µνψρ = −2i
√

2(gµρ∇νH − gνρ∇µH)−,

Q̄µν ψ̄ = 2(Fµν)
−
,

Q̄µν ψ̄ρτ = −
(
gρµ(Fτν)

− − gτµ(Fρν)
−

+ gτν(Fρµ)
− − gρν(Fτµ)

−
)−

+ i(gµρgντ − gµτgνρ)
−[H,H†],

Q̄µνAρ = −i(gµρψν − gνρψµ)
−
.

where we denote by

(Fµν )
∓

=
1

2
(Fµν ∓ i ? Fµν)

the (anti)self-dual part of the antisymmetric tensor Fµν . It worth noting that ψ̄µν and Q̄µν are by

definition anti-selfdual.

One should not be worried about the inconsistency, which appears at first sight in two first

lines. Remember the remark before (2.10).

The crucial observation about the action (2.10) (made for the first time by Witten [89] in the

context of the Donaldson invariant theory) is that it is Q̄ exact up to a topological term (2.2).

More precisely we see that

SYM = =m

[
Q̄

{
τ0

16πh∨

∫
d4xTr

(
(Fµν )

−ψ̄µν − i
√

2ψµ∇µH
† + iψ̄[H,H†]

)}]
. (2.12)

In this computation we have used the equation of motion for ψ̄µν :

(∇µψν −∇νψµ)
−

=
√

2[H, ψ̄µν ]. (2.13)

This is an inevitable price to pay for the integration out auxiliary fields f(x), f †(x) and D(x) —
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three degrees of freedom, therefore three equations of motion to use.

The operator Q̄ is nilpotent up to a gauge transformation (with the parameter −2
√

2H). To

see this we should use the equation of motion for ψ̄µν (2.13). Thanks to this property we can call

it the BRST-like operator. As we shall see, the suffix “like” can be, actually, removed.

Remark. The topological term (2.2) is Q̄ closed. Indeed

Q̄

∫
d4xFµν ? F

µν = 2i

∫
d4x (∇µψν −∇νψµ) ? F

µν = −4i

∫
d4xψν∇µ ? F

µν = 0

thanks to the Bianchi identity. 2

2.6 BV quantization vs. twisting

In previous section we have obtained topological action by appropriate twisting of N = 2 super

Yang-Mills action (2.1). However, in order to perform some field theoretical computations we

should do some extra work.

First of all, as we have mentioned in passing by in the end of previous section the algebra of

twisted fermionic operators is closed only on-shell. And, as usual in gauge theories, in order to be

able to compute path integrals we should fix the gauge. This step requires to introduce a nilpotent

(off-shell) BRST operator Q̄.

An amazing property of the action (2.10) is that it can be obtained by an appropriate gauge

fixing procedure for the topological action [4, 13, 56].

Stop =
Θ0

32π2h∨

∫
d4xTr

{
Fµν ? F

µν
}
. (2.14)

Therefore we can remove the suffix “like” and call Q̄ the BRST operator.

The topological action is invariant under the following transformation:

Aµ 7→ Aµ −∇µα+ αµ,

where αµ(x) is a g valued function constrained by the condition that Aµ(x) +αµ(x) belong to the

same gauge class that Aµ(x), whereas α(x) is an arbitrary g valued function. The invariance with

respect to the last term is noting but the usual gauge invariance. The invariance with respect to

the first transformation is guaranteed by the Bianchi identity for the curvature Fµν .

Following the standard BV procedure [3] one introduces the ghosts corresponding to each
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Fields Aµ c ψµ φ b Hµν η c̄ χµν λ

Ghost number 0 +1 +1 +2 0 0 −1 −1 −1 −2
Statistics B F F B B B F F F B

Table 2.1: Ghost number and statistics

symmetry, ψµ and c. These fields are supposed to be fermions with associated ghost number +1.

However, the direct implementation of the gauge fixing procedure leads to the singular Lagrangian.

This is the consequence of the fact that αµ and αµ−∇µβ (where β is an arbitrary g valued function)

produce the same transformation of Fµν . Therefore, further gauge fixing is needed. To this extent

we introduce a ghost for ghosts φ which is boson with ghost number +2.

To fix the gauge we should impose the following conditions on fields (and ghosts):

∇µAµ = 0,

(Fµν )
− = 0,

∇µψµ = 0.

To do this we will need some supplementary fields. Namely, for each gauge condition we

introduce the Lagrange multiplier: bosons b,Hµν and fermion η. Note that Hµν is anti-selfdual.

To them we associate the following ghost numbers: (0, 0,−1). Moreover, we will need a set of

antighosts: c̄, χµν and λ with the following ghost numbers: (−1,−1,−2). χµν is anti-selfdual. In

order to simplify the references let us put the ghost number and the statistics of the introduced

fields into the Table 2.1

The BRST transformation for the ghosts which corresponds to this symmetry is the following:

Q̄Aµ = −∇µc− iψµ,

Q̄c = − i

2
{c, c} − φ,

Q̄ψµ = −i∇µφ− i{c, ψµ},

Q̄φ = −i[c, φ].

(2.15)
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For the Lagrange multipliers and antighosts we have the following expressions:

Q̄c̄ = b, Q̄b = 0,

Q̄χµν = Hµν − i{c, χµν}, Q̄Hµν = −i[φ, χµν ] − i[c,Hµν ],

Q̄λ = η − i[c, λ], Q̄η = −i[φ, λ] − i{c, η}.

(2.16)

One can see that the operator Q̄ is nilpotent. Last two lines is rather unusual for the antighost-

Lagrange multiplier transformation. However, one can check that the nilpotency condition is

fulfilled [56].

Now to construct a gauge fixed action we will need the last ingredient, the gauge fermion. This

function has the ghost number −1. The appropriate choice is the following:

VYM =
1

h∨g2
0

∫
d4xTr

{
1

2
χµν

(
(Fµν)

− +
1

4
Hµν

)
+
i

8
λ∇µψ

µ + c̄ (∇µA
µ + b)

}
. (2.17)

The gauge fixed action can be written now as follows Stop + Q̄VYM.

In order to get the action (2.12) we add to the gauge fixed action another Q̄-exact term Q̄V ′

where

V ′ = − i

128h∨g2
0

∫
d4xTr

{
η[φ, λ]

}
.

This term does not spoil the non-singularity of the kinetic term of the Lagrangian [89]. It is only

responsible for the introduction of a potential.

In order to simplify further formulae we will slightly change the notations. Namely, instead of

using the N = 2 gauge multiplet we will use the topological multiplet. Pragmatically it means

that we redefine our fields as follows:

φ = −2
√

2H, λ = −2
√

2H†,

χµν = ψ̄µν , η = −4ψ̄.
(2.18)

Remark. Note that if we forget for a moment about the multiplet which is responsible for gauge

fixing, the multiplet (c, c̄, b), then the action of the BRST operator coincides with (2.11) if we use

the introduced notations and use the equations of motion for Hµν : Hµν = −2(Fµν)
−

. Moreover,

the BRST operator Q̄ becomes the same as the twisted supersymmetry operator (2.11). However

in order to get the nilpotency of the BRST uperator up to a gaguge transformation we should use

the equation of motion for χµν (2.13). 2
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2.7 Dimensional reduction

In that follows it will be useful to keep in mind one more way to get N = 2 supersymmetric

Yang-Mills action.

Let us start with the six dimensional Minkowskian N = 1 super Yang-Mills theory. Suppose

that the space is compactified in the following way: R1,3 ×T2 where T2 is a two dimensional torus

described by coordinates x4 and x5:

x4 ≡ x4 + 2πR4, x5 ≡ x5 + 2πR5,

where R4 and R5 are the radii of compactification.

Consider two six dimensional Weyl spinors which we denote as ΨA, A = 1, 2. We can buid

from them a single object, the symplectic Majorana spinor (see the Appendix A for some details)

which is defined by the following condition:

ΨA = εABC+
6 Ψ̄T

B = εABC+
6 Γ0Ψ∗

B , (2.19)

where we have denoted ΓI = γI6 , I = 0, 1, 2, 3, 4, 5. The matrices C+
6 and γI6 are defined in the

Appendix A.

The supersymmetric action can be written as follows:

SN=1,d=6 =
1

g2h∨

∫
d4xTr

{
−1

4
FIJF

IJ +
i

2
Ψ̄AΓI∇IΨ

A

}
. (2.20)

Now suppose that the radii of compactification of coordinates x4 and x5 is so small that all the

fields can be considered as independent of them. It follows that Fµ4 = ∇µA4 and Fµ5 = ∇µA5.

Therefore if we define

H =
A4 + iA5√

2
, H† =

A4 − iA5√
2

(2.21)

we obtain F45 = [H,H†] and therefore

−1

4
FIJF

IJ = −1

4
FµνF

µν + ∇µH∇µH† − 1

2
[H,H†]

2
.
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Now let us represent Weyl spinors ΨA in the following form

ΨA =




ψAα

χA,α̇

0

0



.

Then the symplectic Majorana condition can be recast as follows:

χA,α̇ = εABεα̇β̇ψ̄B,β̇.

Recall that for four dimensional Weyl spinors bar means the complex conuugation: ψ̄ = ψ∗.

Consequently we can write

i

2
Ψ̄AΓI∇IΨ

A = iψAσµ∇µψ̄A − i√
2
ψA[H†, ψA] +

i√
2
ψ̄A[H, ψ̄A}.

Therefore the N = 1, d = 6 supersymmetric Yang-Mills action (2.20) becomes exactly the N = 2,

d = 4 action (2.1).

2.8 Matter

Let us finally describe the matter in the N = 2 super Yang-Mills theory [55, 48, 47]. The action

for the hypermultiplet coupled with the gauge multiplet can be written in the N = 1 superfield

language as follows (for the sake of simplicity we consider only one matter multiplet):

Smat =
1

2h∨g2
0

∫
d4xTr

{
d2θd2θ̄

(
Q† e2V Q+ Q̃ e2V Q̃†

)
+ 2<e

(∫
d2θ

√
2Q̃ΦQ+mQ̃Q

)}
.

where m is the mass of the multiplet.

Consider first the massless case. In that situation after integration out the auxiliary fields X

and X̃ we arrive to the following expression:

Smat =
1

h∨g2
0

∫
d4xTr

{
∇µq

†
A∇µqA + iχασµαα̇∇µχ̄

α̇ + iχ̃ασµαα̇∇µ
¯̃χ
α̇

+ χ̃αφχα − χ̄α̇φ
† ¯̃χ
α̇

+
√

2q†Aψ
A,αχα −

√
2χ̄α̇ψ

α̇
Aq

A +
√

2q†Aψ̄
A
α̇

¯̃χ
α̇ −

√
2χ̃αqAψA,α

+ q†A
(
φφ† + φ†φ

)
qA − 1

2

(
q†
A
T %aqB + q†

B
T %aqA

)
q†AT

%
a qB

}
.
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For the matter multiplet the topological twist consists of the identification qA 7→ qα̇. One can

see that the twisted supersymmetry transformation (1.12) is not closed off-shell. It happens since

we have already integrated out the auxiliary fields X and X̃. In order to close the transformation

we introduce another set of auxiliary fields: hα and h̃α. As in the case of the pure Yang-Mills

theory we see that their transformation properties differ from properties of the old ones.

In order to simplify the formulae we introduce new fields µ̄α̇, µα̇, να and ν̄α as follows:

√
2¯̃χ

α̇
= µα̇, χα =

√
2να,

√
2χ̄α̇ = µ̄α̇, χ̃α =

√
2ν̄α.

Closed off-shell (up to a gauge transformations) BRST operator Q̄ is given by the following

relations:

Q̄qα̇ = µα̇, Q̄µα̇ = φqα̇,

Q̄q†α̇ = µ̄α̇, Q̄µ̄α̇ = −q†α̇φ,

Q̄ν̄α = h̄α, Q̄h̄α = −ν̄αφ,

Q̄να = hα, Q̄hα = φνα.

Remark. The choice of the off-shell closed BRST transformation is not unique (see, for example,

[48]). However, this one makes the geometrical properties of the action clear. 2

Using these formulae one can check that the matter action can be rewritten as a Q̄-exact

expression: Smat = Q̄Vmat where

Vmat =
1

h∨g2
0

∫
d4xTr

{
− i

2
χµνq

†
α̇σ̄

µν,α̇
β̇q
β̇ − 1

4

(
µ̄α̇λq

α̇ − q†α̇λµ
α̇
)

+ 2ν̄α
(
σµαα̇∇µq

α̇ − hα
)
− 2

(
∇µq

†
α̇σ̄

µ,α̇α − h̄α
)
να

}
.

(2.22)

Now consider the general case, where the mass is not zero. After integration out all the auxiliary

field in this case we obtain the following supplementary terms in the action:

Smass =
1

h∨g2
0

∫
d4 Tr

{
−m2q†Aq

A +
√

2mq†AHq
A +

√
2mq†AH

†qA −m¯̃χ
α̇
χ̄α̇ −mχ̃αχα

}
.

The presence of the mass leads to the deformation of the supersymmetry transformation (1.12).
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It turns to be that the proper version of the off-shell BRST transformation is given by

Q̄qα̇ = µα̇, Q̄µα̇ = φqα̇ +mqα̇,

Q̄q†α̇ = µ̄α̇, Q̄µ̄α̇ = −q†α̇φ−mq†α̇,

Q̄ν̄α = h̄α, Q̄h̄α = −ν̄αφ−mν̄a,

Q̄να = hα, Q̄hα = φνα +mνα.

(2.23)

Note that this deformation leads to a new property of the BRST operator. Before we had

Q̄2 = G(φ)

where G(φ) is the gauge transformation with the parameter φ. Now the new BRST operator

satisfies the new relation:

Q̄2 = G(φ) + F(m).

Here F(m) is an operator which does not affect on the gauge multiplet, but multiplies all the fields

of the hypermultiplet by ±m. This transformation can be seen as an infinitesimal version of the

following transformation:

Q 7→ Q′ = emQ, Q̃ 7→ Q̃′ = e−m Q̃

Therefore, this operator can be identified with the flavor group action. In the case when we have

only one hypermultiplet, the flavor group is U(1). Note that usually one describes the U(1) action

as a multiplication by eiθ. It can be achieved after the redefinition m 7→ im.

Remark. The deformation of the BRST operator described before provides only the part of the

required mass term. However, the missed part can be restored after adding to to the action a

BRST exact term Q̄Vmass where

Vmass =
1

h∨g2
0

∫
d4xTr

{
−1

4
m
(
q†α̇µ

α̇ + µ̄α̇q
α̇
)}

(2.24)

2

Remark. Since the operator Q̄ is not nilpotent, the fact that the full action

S = Stop + Q̄ (VYM + V ′ + Vmat + Vmass)
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is BRST invariant does not follow from the fact that it is (up to the topological term) BRST-

exact. It follows from the invariance of VYM, V ′, Vmat and Vmass with respect to the transformation

generated by Q̄2. 2

2.9 M-theory derivation of the prepotential

In this section we will briefly describe some aspects of the relation between the N = 2 super

Yang-Mills theory and string theory. Namely, we discuss how to get the curves which are essential

element of the Seiberg-Witten theory using some stringy arguments. Also we describe the stringy

interpretation of the auxiliary algebraic curve, which appears in the Seiberg-Witten theory. The

reference is [90], see also [32, 34].

We consider a gauge theory described on the language of type IIA theory in R10. The coordi-

nates are denoted by x0, x1, . . . x9.

We use the following setup (see figure 2.1): some NS5 branes with D4 branes suspended between

them. The worldvolume of NS5 branes is along x0, x1, x2, x3, x4 and x5. Their positions correspond

to different values of x6. They have x7 = x8 = x9 = 0. Their world volumes are described by

x0, x1, x2, x3 and x6. Since in the x6 direction the world volume is finite, macroscopically it

is described by x0, . . . x3, that is, the worldvolume is four dimensional. One considers the gauge

theory on D4-branes.

The Dp-brane action which generalizes the Nambu-Goto string action is the following

−Tp
2

∫
dp+1ξ

√−γ
[
γab∂ax

µ∂bx
νgµν(x) − λp(p− 1)

]
, (2.25)

where gµν(x) is the external metric, γab is the internal Dp-brane matric, λp is a constant, and Tp is

the Dp-brane tension. In this section greek indices µ, ν, . . . run over 0, 1, . . . , 9 and for a Dp-brane

small latin indices a, b, . . . run over 0, 1, . . . , p.

This action implies the follwing equations of motion for the brane coordinates:

∂a
√−γγab∂bxµ +

√−γγab∂axρ∂bxτΓµρτ (x) = 0

where Γµρτ (x) is the Cristoffel connection for the external metric.

The x6 position of an NS5 brane depends only on x4 and x5. Let us ntroduce the complex
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'
'

D4
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Figure 2.1: M -theory setup for SU(3) gauge theory
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coordinate z = x4 + ix5. The equation for x6 for large z becomes

∂z∂z̄x
6(z, z̄) = 0.

If we denote z-positions of D4 branes which are attached to an NS5 brane from the left by a
(L)
i

and positions of those D4 branes which are attached to it from the right by a
(R)
i we can get the

following solution for x6:

x6 = C
qL∑

i=1

ln
∣∣∣z − a

(L)
i

∣∣∣− C
qR∑

i=1

ln
∣∣∣z − a

(R)
i

∣∣∣ ,

where C is a normalization constant.

If between two NS5 branes there are N D4 branes, then the gauge theory will have SU(N)

as a gauge group (it can be shown that the U(1) factor is frozen). To find the effective coupling

constant let in the action (2.25) integrate out the internal Dp-brane metric. In this way we get the

induced volume action. In order to consider the gauge field which lives on this brane we should

deform this action to the Born-Infeld one:

−T4λ
3/2
4

∫
d5ξ
√
− det

(
γinduced
ab + Fab

)
≈ Constant − Tλ

3/2
4

∫
d4xd(x6)FabF

ab

= Constant − T4λ
3/2
4

(
x′

6
(z, z̄) − x′′

6
(z, z̄)

)∫
d4xFabF

ab

where Fab is the field strength tensor, x′
6
(z, z̄) and x′′

6
(z, z̄) are the x6 positions of NS5′ and NS5′′

branes respectively. Constant is proportional to the D4 brane volume. In this computation we

have used the fact that Fµν is independent of x6. The coupling constant of this theory can be read

from the last expression:

1

g2(z, z)
= 4T4λ

3/2
4

(
x′

6
(z, z̄) − x′′

6
(z, z̄)

)
,

The logarithmic divergence in large z is interpreted as a one loop β-function contribution of the

four dimensional theory.

Type IIA superstring theory can be reinterpreted as M -theory on R10 × S1. The eleventh

coordinate x10 is supposed to be compactified on a circle with radius R: x10 ≡ x10 + 2πR10. Then

the previous formula becomes

s =
x6 + ix10

R10
=

qL∑

i=1

ln
(
z − a

(L)
i

)
−

qR∑

i=1

ln
(
z − a

(R)
i

)
.
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If we then introduces the complex coupling constant τ =
4πi

g2
+

Θ

2π
we can write

−iτ(z) = s′(z) − s′′(z).

Note that τ(z) is a holomorphic function on z.

Type IIA NS5 brane can be interpreted as an M5 brane with a fixed value of x10. Type IIA D4

brane can be seen as an M5 brane wrapped over S1. Therefore we arrive at the crucial observation

that NS5-D4 setup can be seen as a single M5 brane embedded in R10 × S1 in a complicated way.

The worldvolume of this M5 brane can be described as follows: it fills the four dimensional space

of the gauge theory: x0, . . . , x3, it is located at x7 = x8 = x9 = 0. The intersection of the rest of

11-dimensional space and this M5 brane can be described as two dimensional subspace living in

R3 × S1. Another viewpoint to this two dimensional subspace is the following: one introduces in

the four dimensional space R3 × S1 a complex structure, defined in such a way that z = x4 + ix5

and s =
x6 + ix10

R10
are holomorphic. Then the two dimensional subspace in question is an algebraic

curve. The point is that this curve is essentially the complex curve which appears as an auxiliary

object in the Seiberg-Witten theory.

In order to find an explicit expression for the curve we introduce a single valued complex

variable y = exp {−s}. Then the curve is described by the equation

F (y, z) = 0.

The degree of F as a polynomial on y is the number of the NS5 branes. Therefore if one considers

SU(N) theory the only quadratic polynomials are needed. If one wish to consider the pure Yang-

Mills theory this polynomial gains further restrictions and has the following form

F (y, z) = y2 +

N∏

l=1

(z − αl)y + 1.

And this is exactly the Seiberg-Witten curve for the SU(N) model.

One can go further and incorporate D6 branes in order to consider models with fundamental

matter. To do this one should replace R3 × S1 by a non-trivial S1 bundle over R3\{singularities},
known as multi-Taub-NUT space.

If one wishes to incorporate non-trivial matter multiplets in the theory, such as symmetric and

antisymmetric, one should also introduce orientifold planes.

Summarizing this discussion we can say, that the M -theory provides the solutions for numerous
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models. Therefore the independent way to compute the effective action can be seen, in particular,

as a test of the M -theory.
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Chapter 3

Localization, deformation and

equivariant integration

In this chapter we describe some essential tools which will be used to compute the prepotential

for the low energy effective action. First of all we describe some aspects of the localization and

find that the functional integral is localized on the instanton moduli space. When we describe the

ADHM construction for this moduli space. After that we discuss some general properties of the

equivariant integration: we introduce Thom and Euler classes, discuss the Duistermaat-Heckman

formula. And finally we describe the deformation of the BRST charge, which will allows us to link

the prepotential with some integrals over the instanton moduli space.

Now we perform the Wick rotation and therefore lend to R4.

3.1 Localization

In this section we describe how to reduce a functional integral, which represents a vacuum expec-

tation for a quantity well chosen to a finite dimensional integral for the case of the topological field

theory.

Consider first a pure Yang-Mills theory, described by the action S = Stop + Q̄(VYM + V ′). Let

O be a Q̄ closed observable: Q̄O = 0. For such a quantity we define its vacuum expectation as

follows:

〈O〉 =

∫
DXO eStop+Q̄(VYM+V ′) (3.1)

where DX is the measure DX = DADφDψDηDχDHDλ. Our computations will be based on

37
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the standard observation: if we add to the action a BRST exact term, the vacuum expectation

value remain unchanged. The proof is simple taking into account the BRST closeness of both the

observable O and the action itself we get

〈O〉′ =

∫
DXO eS+Q̄δV = 〈O〉 +

∫
DXO eS Q̄δV = 〈O〉 +

∫
DXQ̄

(
O eS δV

)
= 〈O〉. (3.2)

Here we have used the Leibniz rule for the BRST operator and the fact the vacuum expectation

of a BRST exact term equals zero.

Let us therefore modify the action in such a way that it becomes Stop + Q̄Ṽ where

Ṽ =

∫
d4xTr

{
−χµν

(
t(Fµν)

− − 1

4
Hµν

)
+ iλ∇µψ

µ

}
(3.3)

(we suppose, that the measure DX is already divided by the volume of the gauge group, and we

do not worry about the gauge fixing). Here t is an arbitrary parameter. The whole integral does

not depend on it provided it does not lead to new singularity of the Lagrangian.

If we integrate out the Lagrange multiplier Hµν we arrive to the following expression for the

action:

S = Stop +

∫
d4xTr

{
−t2(Fµν )−(F µν)

−
+ tχµν(∇µψν −∇νψµ)

−
+ iη∇µψµ + iλ∇µ∇µφ

}
.

Since the integral does not depend on t we can take t→ ∞ limit. We observe that in that case

the integral localizes on the space of the solutions of the self-dual equation

Fµν = ?Fµν . (3.4)

Remark. Even though the second term seems to be negligible with respect to the first one, this is

not the case. In fact, it serves to balance the Faddeev-Popov determinant, which comes from the

first term. 2

The space of the solutions of the selfdual equation is finite dimensional. Therefore the path

integral can be reduced to a finite dimensional integral, which can be (in principle) computed

exactly.
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3.2 ADHM construction

Now it is a time to describe the moduli space of the solutions of the selfdual equation, the instanton

moduli space. It is given by the ADHM construction [2] There are a number (see, for example,

[17, 14, 30, 29, 28, 31]) of introduction to the subject. We pick some important details from them.

The ADHM construction is gauge group dependent. It exists only for the classical gauge groups,

that is for SU(N), SO(N) and Sp(N). Consider first the simplest case, the case of SU(N).

3.2.1 SU(N) case

In order to construct the self-dual connection in the SU(N) case we introduce a complex structure

on R4 with the help of the euclidean σ-matrices:

xαα̇ = σµαα̇xµ =



 x0 − ix3 −ix1 − x2

−ix1 + x2 x0 + ix3



 =



 z1 −z∗2
z2 z∗1



 . (3.5)

Moreover we need the following data: a (N + 2k)× 2k complex matrix which depends linearly

on the coordinates:

∆α̇ = Aα̇ + Bαxαα̇.

We suppose that the matrix ∆α̇ has maximal rang 2k. The next ingredient is an annihilator of

∆†α̇ which we denote by v(x):

∆†α̇v = 0. (3.6)

v is a matrix N × (2k +N) normalized as follows:

v†v =
�
N . (3.7)

Having this data we can write the expression for the connection Aµ(x) as follows:

Aµ(x) = iv†(x)∂µv(x).

One can easily check that this connection is hermitian: A†
µ = Aµ. Therefore it is a U(N) connection

in the fundamental representation.

Impose on ∆α̇ the factorization condition:

∆†α̇∆β̇ = δα̇
β̇
R−1, (3.8)
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where R(x) is an invertible k × k complex hermitian matrix.

Since the rang of the matrix ∆α̇ is maximal and taking into account (3.7) we conclude that

P = vv† =
�
2k+N − ∆α̇R∆†α̇.

It follows that the curvature is self-dual:

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] = −2iηiµνv
†BαRB†

βvτi,α
β .

Remark. We have claimed before that Aµ is a U(N) connection. However the trace part of this

connection can be gauge out. Indeed, a solution of the self-dual equation satisfy also the Yang-Mills

equation. Therefore we have ∇µF
µν = 0. Taking the trace of this equation we get ∂µ TrF µν = 0.

It follows that

0 =

∫
d4xTr {Aν∂µ TrF µν} = −N

2

∫
d4xTrFµν TrF µν .

Therefore TrFµν = 0 and TrAµ = ∂µα. Thus we can say that Aµ(x) is, in fact, an SU(N)

connection. 2

Let us express the factorization condition (3.8) in terms of Aα̇ and Bα. Having develop on xµ

we get:

B†
αBβ =

1

2
δβαB†

γBγ ,

B†
αAα̇ = A†

α̇Bα,

A†α̇Aβ̇ =
1

2
δα̇
β̇
A†γ̇Aγ̇ .

Note that the first and second conditions can be packaged in the following one: ∆†
α̇Bα = B†

α∆α̇.

The meaning of the number k can be clarified by means of the Osborn identity [73]

Trfund Fµν ? F
µν = −(∂µ∂

µ)
2
ln detR. (3.9)

The factorization condition (3.8) implies

2R−1 = A†α̇Aα̇ + A†α̇Bβxβα̇ + x†
α̇βB†

βAα̇ + x†
α̇βB†

βBγxγα̇.

It follows that in the limit x → ∞ we have the following assymptotics:

R−1 → 1

2
x2B†

αBα.
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Therefore exploiting the asymptotic expansion for R(x) we get

∂µ∂
µ Trfund lnR → −4k

x2
when x→ ∞.

Taking into account that for SU(N) we have 2N Trfund Fµν ? F
µν = TrFµν ? F

µν , and using

the formula (2.2) we conclude that k is nothing but the instanton number.

Neither (3.8) nor (3.7) changes under the transformation

∆α̇ 7→ ∆′
α̇ = U∆α̇M and v 7→ v′ = Uv (3.10)

with U being a (N + 2k)× (N + 2k) unitary matrix and M being an invertible one. This freedom

can be used to put the matrix B = (B1,B2) into the canonical form

B =


 0

�
k ⊗

�
2


 .

Then the relevant data is contained in the matrices Aα̇ and v which can be represented as follows:

A = (A1̇,A2̇) =


 S1̇ S2̇

Xµ ⊗ σµ


 , v =


 T

Qα


 .

Matrices Sα̇ transform under the space-time rotations as righthand spinor, Xµ as a vector, T is a

scalar, and Qα is a lefthanded spinor.

Having fixed the form of the matrix Bα we still have a freedom to perform a transformation

(3.10) which can be read as

Sα̇ 7→ S′
α̇ = UNSα̇U

−1
k , Xµ 7→ Xµ′ = UkX

µU−1
k ,

T 7→ T ′ = UNT, Qα 7→ Q′
α = UkQα

(3.11)

where Uk ∈ U(k) and UN ∈ U(N).

The factorization condition (3.8) requires the matrices Xµ to be hermitian: Xµ† = Xµ and

also the following non-linear conditions to be satisfied:

µi = A†α̇τi,α̇
β̇Aβ̇ = 0.

These conditions are known as the ADHM equations. They are usually written in slightly
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different notations. Namely, let

J = S1̇, I = S2̇
†, B1 = X0 − iX3 and B2 = −iX1 +X2.

Then the ADHM equation are

µR = −µ3 = II† − J†J + [B1, B
†
1] + [B2, B

†
2] = 0,

µC =
1

2
(µ1 − iµ2) = µ− = IJ + [B1, B2] = 0.

(3.12)

If we consider two vector spaces V = Ck and W = CN then I, J, B1 and B2 become linear operators

acting as

I : W → V , J : V → W , and B1, B2 : V → V .

The space of such operators modulo transformations (3.11) is the instanton moduli space.

The residual freedom (3.11) corresponds to the freedom of the framing change in V and W .

Framing change in W corresponds to the rigid gauge transformation, which change, in particular,

the gauge at infinity. Sometimes we will denote the group of the rigid gauge transformations as

G∞.

The change of frame in V becomes natural when one considers the instanton moduli space as a

hyper-Kähler quotient. Indeed, the space of all (unconstrained) matrices Aα̇ has a natural metric

dA†α̇dAα̇ and the hyper-Kähler structure which consists of the triplet of linear operators I i which

together with the identity operator is isomorphic to the quaternion algebra. These operators act

as follows:

IiAα̇ = −iτi,α̇β̇Aβ̇ .

The action of the unitary group U(k) described by (3.11) is Hamiltonian with respect to each

symplectic structure. The Hamiltonian (moment), corresponding to the i-th symplectic form and

the algebra element ξ ∈ Lie(U(k)) is

µiξ = −iτi,α̇β Tr(ξA†α̇Aβ̇).

Hence the ADHM equations together with residual transformation can be interpreted as the hyper-

Kähler quotient [45]:

Mk = µ−1(0)/U(k).

We call the group which is responsible to the change of frame in V the dual group. In the case
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of U(N) the dual group is U(k).

3.2.2 Solutions for the Weyl equations

Before exploring other classical groups SO(N) and Sp(N) let us pause and consider the solutions

for the Weyl equations in the instanton background. That is, consider the following equation:

∇α̇αψα = σ̄µ,α̇α∇µψα. (3.13)

For the fundamental representations of the gauge group we can get a simple formula for the k

independent solutions which can be arranged to the N × k matrix [72]

ψα = v†BαR = Q̄αR. (3.14)

One can show that thanks to the identity [18]

ψ̄αψ
α = RB†

αvv
†BαR = −1

4
∂µ∂

µR

the following statements hold [17]:

∫
d4xψ̄αψ

α = π2 �
k,

∫
d4xψ̄αψ

αxµ = −π2Xµ, and

ψαxαα̇ → − 1

x2
Sα̇ when x → ∞.

(3.15)

Taking these equations as the definitions of Xµ and Sα̇ one recovers both the ADHM constraints

and the fact that the matrices Xµ are hermitian.

Let us look closely to the equations (3.6),(3.7). The first equation can be solved for Qα:

Qα(x) = −(X + x)−2(X + x)αα̇S
†α̇T (x).

The second equation gives the following condition for T (x):

T (x)†
(

�
W + Sα̇(X + x)−2S†α̇

)
T (x) =

�
W . (3.16)

The matrix in the brackets is positively defined and therefore there exists a matrix M(x) such

that

M(x)†M(x) =
�
W + Sα̇(X + x)

−2
S†α̇. (3.17)
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It follows that g(x) = M(x)T (x) ∈ U(N). Otherwise here we have found the explicit dependence

on the gauge group.

Remark. When we consider group SO(N) or Sp(N) the equations (3.6), (3.16) and (3.17) are still

valid (modulo some minor changes) provided the following convention is accepted:

• for SO(N) we replace (·)† 7→ (·)T,

• for Sp(N) we replace (·)† 7→ (·)†J2N .

In particular the equation (3.17) implies g(x) = M(x)T (x) ∈ G. 2

Let us also briefly describe the solutions for the Weyl equation in the adjoint representation.

Let us use the following ansatz:

ψα = iυ†
(
CRB†

α − BαRC†
)
v (3.18)

where C is a complex k × (N + 2k) matrix with constant coefficients. It follows by definition that

εαβψ
†β = ψα, therefore it belongs to the adjoint representation.

Computation shows that ψα will be solution of the Weyl equation if the matrix C satisfies the

following condition ∆†α̇C + C†∆α̇ = 0, that is

A†α̇C + C†Aα̇ = 0,

B†
αC − C†Bα = 0.

(3.19)

Lefthand sides of these equations are hermitian and anthihermitian matrices k × k. Therefore

they give 4k2 real conditions on C. Matrix C has 2k(2k + N) = 4k2 + 2kN real coefficients.

Therefore the rest is 2kN solutions of the Weyl equation as it should be.

3.2.3 SO(N) case

The extension to the SO(N) case can be obtained with the help of the reciprocity construction

(3.15).

Note that according to the Table B.1 we have `adj = 2h∨`fund for SU(N) and Sp(N) whereas

`adj = h∨`fund for SO(N). Therefore formula (2.2) together with (3.9) shows that in the case of

SO(N) to obtain the solution of the self-dual equation with the instanton number k we should

replace k by 2k in the construction for SU(N).

Let us choose the Darboux basis in V = C2k, which corresponds to the split C2k = C2 ⊗ Ck.

Correspondingly, we split the index which runs over 1, . . . , 2k into two: the first, A = 1, 2, and the
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second over 1, . . . , k. Thus the solution for the Weyl equation can be written as the set of four

N × k matrices ψαA. These matrices can be represented as follows:

ψαA = ψµσ
µ
αA.

The twisted index µ that appears in the righthand side does not correspond to a Lorentz vector.

The Weyl equation can be rewritten now as a set of four equations:

∇µψµ = 0 and (∇µψν)
− = 0. (3.20)

It worth noting that these conditions mean that ψµ is orthogonal to the gauge transformations

and that it satisfies the linearized self-dual equation.

The condition that −iAµ belongs to the algebra of SO(N) implies that it is real antisymmetric

matrices. Hence the equation for ψµ has real coefficients and its solutions can be chosen real as

well. The fact that ψµ are real means that ψµσ
µ
αA can be considered as a quaternion. We recover

here the quaternion construction introduced in [14]. The possibility of this expansion with real

coefficients implies that Sα̇ can also be expanded as SAα̇ = Sµσ
µ
Aα̇ where Sµ are real.

Using then the definition of Xµ (3.15) we derive the following statement:

εCAX
µ,A

Bε
BD = (XµT)C

D,

or, if we introduce the symplectic structure J2k this can be written as

J2kX
µ
J
T
2k = XµT.

The dual group is a subgroup of U(2k) which preserves this condition. It is the group

Sp(k) ⊂ U(2k).

The matrices Xµ and Sα̇ can be represented as follows:

Xµ =



 Y µ Zµ†

Zµ Y µT



 , S1̇ = J = (K,K ′) and S2̇ = I† = (−K ′∗,K∗) (3.21)

where Y µ is an hermitian matrix and Zµ is an antisymmetric one.
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Let

B1,2 =



 P1,2 Q′
1,2

Q1,2 PT
1,2



 , (3.22)

where Q1,2 and Q′
1,2 are antisymmetric matrices. The ADHM equations for SO(N) becomes:

µC =



 MC N ′
C

NC −MT
C



 = 0 and µR =



 MR N ′
R

NR −MT
R



 = 0 (3.23)

where

MC = [P1, P2] +Q′
1Q2 −Q′

2Q1 −K
′TK,

NC = Q1P2 − PT
2 Q1 + PT

1 Q2 −Q2P1 +KTK,

N ′
C = Q′

1P
T
2 − P2Q

′
1 + P1Q

′
2 −Q′

2P
T
1 −K ′TK ′,

and

MR =
2∑

s=1

(
[Ps, Ps

†] +Qs
∗Qs −Qs

′Qs
′∗
)

+K ′TK ′∗ −K†K,

NR =

2∑

s=1

(
QsPs

† − Ps
∗Qs +Qs

′∗Ps − Ps
TQs

′∗
)
−KTK ′∗ −K

′†K,

N ′
R =

2∑

s=1

(
Qs

′Ps
∗ − Ps

†Qs
′ +Qs

∗Ps
T − PsQs

∗
)
−K ′TK∗ −K†K ′.

Note that NC, N
′
C
, NR and N ′

R
are symmetric matrices.

3.2.4 Sp(N) case

The group Sp(N) is a subgroup of U(2N) which preserves the symplectic structure J2N . The

ADHM construction for Sp(N) can be obtained by imposing some constraints on the ADHM

construction for SU(2N). A quick look at the Table B.1 shows that in this case there is no

doubling of the instanton charge.

Let us choose the Darboux basis in C2N , which corresponds to the split C2N = C2 ⊗ CN ,

J2N = J2 ⊗ JN . Correspondingly, we split the index which runs over 1, . . . , 2N into two: the first,

A = 1, 2, and the second: l = 1, . . . , N .

We can expand the solution of the Weyl equation as follows ψαA = ψµσ
µ
αA. The fact that −iAµ

belongs to the Lie algebra of Sp(N) imposes the following condition:

J2NA
∗
µJ2N = −Aµ.
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G GD Size of ∆α̇ Size of v V W

U(N) U(k) k ×N + 2k N ×N + 2k Ck CN

O(N) Sp(k) 2k ×N + 4k N ×N + 4k C2k RN

Sp(N) O(k) k × 2N + 2k 2N × 2N + 2k Rk C2N

Table 3.1: Spaces, matrices, groups

The solutions ψµ can be chosen to be real. Thus the reciprocity formulae (3.15) show that in that

case the matrices Xµ are not only hermitian, but also real and consequently symmetric. The dual

group should preserve this condition and we arrive to the conclusion that this is O(k) ⊂ U(k).

The reality of ψµ implies also that the matrices Sα̇ can be expanded as SAα̇ = Sµσ
µ
Aα̇ where

Sµ are real. Hence for the matrices I and J we have

J =


 K

K ′


 and I† =


 −K ′∗

K∗


 . (3.24)

Hence the ADHM equation for Sp(N) take the following form

µC = KTK ′ −K ′TK + [B1, B2],

µR = KTK∗ −K†K +K ′TK ′∗ −K ′†K ′ + [B1, B
∗
1 ] + [B2, B

∗
2 ].

Here the matrices B1,2 are symmetric. We see that µC and µR are antisymmetric matrices.

3.2.5 Spaces, matrices and so on

To simplify further references we have put in the Table (3.1) some relevant information about the

ADHM data. In that follows we will denote the dual group (in the sense of [14]) by GD .

3.3 Equivariant integration

In the previous section we have seen that the instanton moduli space, where the functional integral

localizes to, can be seen as a space of linear operators I , J , B1 and B2 satisfying the ADHM

equation (3.12) and considered up to transformations generated by G∞ × GD. The non-linear

ADHM equations can not be solved for k > 3. Therefore, we should find a way to perform required

integration without introducing local coordinates on Mk.

This task can be accomplished with the help of the equivariant integration [68, 16]. Math-
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ematically the problem can be formulated as follows. Let X be a manifold. Let G be a group

which acts on this manifold. We denote the left action by g · x, g ∈ G, x ∈ X . Let M ⊂ X be a

submanifold of X on which the group G acts freely. Then we wish to express the integral over the

factor N = M/G in terms of the integral over X .

3.3.1 Integration over zero locus

Let us do it step-by-step. Suppose we have a closed form α defined on M . How to express

∫

M

α

as an integral over X? We will only need the case where M = s−1(0), where s ∈ Γ(E) is a section

of a vector bundle with a fiber F : F ↪→ E
π→ X .

Let {xµ}dimX
µ=1 be set of coordinates of X in a local patch. In order to make our discussion

sound field theoretically let us introduce an alternative notation for the base 1-forms: dxµ = ψµ

and for de Rham differential d = Q̄. Then we have:

Q̄xµ = ψµ, Q̄ψµ = 0.

Let F be a vector space such that π−1(x) ' F for a point x ∈ M . We should introduce a

multiplet (χ,H) ∈ ΠF ∗ ⊕ F ∗ (χ is a fermion, therefore it belongs to F ∗ with changed statistics,

χ ∈ ΠF ∗). In order to make the transformations for this multiplet covariant we should introduce

a connection on the bundle E. Let us denote it Γµ. Then we have

Q̄χ = H − Γµψ
µχ, Q̄H = −Γµψ

µH +
1

2
Rµνψ

µψνχ.

where Rµν is a curvature for the connection Γµ. One can check that Q̄2 = 0. In order to see that

Q̄2H = 0 one should use the Bianchi identity for Rµν .

Remark. When the bundle E is trivial (this is the case of the twisted N = 2 supersymmetric

Yang-Mills theory) one has simply

Q̄χ = H, Q̄H = 0.

2

Then we required formula is

∫

M

α =

∫

X

DxDψDHDχι∗α eiQ̄χ(s(x)−
1
2t
H), (3.25)
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where ι : M → X is the inclusion map, D(·) is a standard measure and we have used the fact that

if we formally replace in a form α = α(x, dx) all differentials dxµ by Grassman variables ψµ we

can write ∫
α =

∫
DxDψα(x, ψ).

Taking into account the discussion in the section 3.1 we can see that the righthand side of

(3.25) does not depend on t. Therefore one can compute the integral in the large t limit. It gives

precisely the lefthand side.

3.3.2 Integration over factor

Let M be a manifold on which a group G acts freely. We wish to to express an integral over a

factor M/G as an integral over M . To do this we use the fact that de Rham cohomologies of M/G

are isomorph to so-called G-equivariant cohomologies of M (which we denote by H∗
G(M)):

H∗(M/G) ' H∗
G(M).

The latter can be described as follows. Let Ω∗(M) be the de Rham complex of M . Denote by

Fun(g) an algebra of function on g = Lie(G). These function will be graded in such a way that

n-th power homogeneous polynomial have the degree 2n.

Remark. Such an assignation is done in order to the Cartan differential (see few lines below) have

a definite degree. It can be understood from the physical point of view if we consider the degree

as the ghost number. Recall from the section 2.6 that ψµ = dxµ has ghost number +1 and φ ∈ g

has the ghost number +2. 2

Let the group G acts on the functions from Fun(g) by the adjoint representation, and on forms

G-action be induced by left action on M . When one introduces another complex

Ω∗
G(M) = (Ω∗ ⊗ Fun(g))

G

where (·)G means G-invariant part. Denote by V (φ) = φaVa a vector field on M corresponding to

φ ∈ Fun(g) and introduce the Cartan differential

Q̄ = d + iV (φ).

Its square is the Lie derivative with respect to V (φ). Hence Q̄2 = 0 on elements of Ω∗
G(M). The
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cohomology of the Cartan differential Q̄ are called G-equivariant cohomology of M :

H∗
G(N) = Im Q̄/Ker Q̄.

Taking into account the isomorphism between H∗(N) and H∗
G(M) we can identify correspond-

ing classes. Let α(φ) = α(φ, x, ψ) be a representative of the class which contains α̃. Then the

required formula can be obtained as follows. Let (·, ·) be a G-invariant metric on M . In coor-

dinates we have (v, w) = gµνv
µwν . With the help of this metric we can raise and lower indices.

Then the required formula is

∫

N=M/G

α̃ =

∫

M

DxDψDφDλDη
Vol(G)

eiQ̄Vµ(λ)ψµ

α(φ, x, ψ). (3.26)

where we have introduced the projection multiplet (λ, η). The Cartan differential acts on it and

on (x, ψ) as follows:

Q̄xµ = ψµ, Q̄ψµ = V µ(φ),

Q̄λ = η, Q̄η = [φ, λ].

Note that

Q̄Vµ(λ)ψ
µ = ηaVa,µψ

µ + λa
(
(Va, Vb)φ

b + ∂µVa,νψ
µψν

)
.

Therefore the λ integral provides a delta function localized on

φb = −(Va, Vb)
−1 1

2
(∂µVa,ν − ∂νVa,µ)ψ

µψν .

Formula (3.26) can be recast in more elegant form if we introduce the equivariant integration.

Let us choose a Haar measure on G. And let dφ1dφ2 . . . dφdim(G) coincides with the Haar measure

at the identity of G. Then we define a equivariant integration as follows:

∮

M

α =
1

Vol(G)

∫

g

dimG∏

a=1

dφ

2πi

∫

M

α(φ)

Remark. In general, when the form α(φ) is a polynomial on φ, the integral does not converge. To

cure this one introduces a convergence factor e−
1
2 ε〈φ,φ〉 where 〈·, ·〉 is a Killing form on g and ε is

a positive parameter. We will not need it since the form we wish to integrate is proportional to

delta function on φ. 2
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With this definition the formula (3.26) takes the following form

∫

s−1(0)/G

α̃ =

∮

s−1(0)

∫
DηDλ eiQ̄Vµ(λ)ψµ

α.

3.3.3 Synthesis

Now let us put things together. In the general case which are interested in here the solution exists

when s is an equivariant section of E. It means that for any g ∈ G we have s(g ·x) = %(g)s(x) where

%(g) is the image of g in the representation % of G which acts on F . This condition guarantees

that s−1(0) is G-invariant.

We wish to express the integral of a closed form α̃ ∈ H∗(N) over N = s−1(0)/G as an integral

over X . Now Q̄ means the Cartan differential. Therefore, it acts as follows:

Q̄xµ = ψµ, Q̄ψµ = V µ(φ),

Q̄χ = H − Γµψ
µχ, Q̄H = φaT %aχ− Γµψ

µH +
1

2
Rµνψ

µψνχ,

Q̄λ = η, Q̄η = [λ, φ].

If, as before α(φ, x, ψ) belongs to the same class as α̃ then

∫

s−1(0)/G

α̃ =

∫

X

DxDψDHDχDφDλDη
Vol(G)

eiQ̄(χs+ψµV
µ(λ)) ι∗α(φ, x, ψ).

It can be rewritten with the help of the equivariant integration as follows:

∫

s−1(0)/G

α̃ =

∮

X

∫
DηDλDHDχ eiQ̄(χs+ψµV

µ(λ)) ι∗α(φ, x, ψ).

3.3.4 Euler and Thom classes

Consider again (3.25). Since the integral does not depend on t we can set, for example, t = i. Let

us compute the exponent. We have

iQ̄χ

(
s+

i

2
H

)
= −1

2
(H − is)

2 − 1

2
s2 + iχ∇µsψ

µ +
1

4
χRµνψ

µψνχ+
1

2
χφaT %aχ

where ∇µ = ∂µ + Γµ is the covariant derivative with the connection Γµ.

Let us now integrate out H . The integral is Gaussian and we arrive to

iQ̄χs 7→ −1

2
s2 + iχ∇µsψ

µ +
1

4
χRµνψ

µψµχ+
1

2
χφaT %aχ.
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Using the general arguments we can show that (3.25) does not depend on s(x) (see (3.2)).

Therefore we can simply set s(x) = 0. It leads to the following formula

∫

M

α =

∫

X

DxDψDHDχι∗α eiQ̄(χs+ i
2H) =

∫

X

ι∗αEug(E) (3.27)

where g = eφ ∈ G and

Eug(E) =
1

(2π)
dimF/2

∫

ΠF

Dχ e
1
4χRµνψ

µψµχ+ 1
2χφ

aT %
aχ (3.28)

is the equivariant Euler class for a bundle F ↪→ E
π→ X .

Remark. If Q̄ is the de Rham differential when it becomes an ordinary Euler class

Eu(E) =
1

(2π)
dimF/2

∫

ΠF

Dχ e
1
4χRµνψ

µψνχ .

If E = TX , and dimX = 2m then one can show using formulae for the Berezin integrals

Eu(TX) =
1

(2π)m
Pf(R)

where R =
1

2
Rµνψ

µψν is the curvature form. Then thanks to the Gauss-Bonnet-Hopf theorem

∫

X

Eu(TX) = χX ,

the Euler characteristic of X . 2

The integral (3.27) does not depend on s. Therefore we can introduce another version of the

Euler class:

Eug(E, s) =
1

(2π)dimF/2

∫

ΠF

Dχ e−
1
2 s

2+iχ∇µsψ
µ+ 1

4χRµνψ
µψµχ+ 1

2χφ
aT %

aχ .

It can be seen as a pullback of s : X → E of a universal equivariant Thom class Φg(E) ∈ Ω∗(E).

The definition is the following. Denote by pair (xµ, ξi) the local coordinates of p ∈ E. Let dxµ = ψµ

and dξi be the basis of 1-forms on E. Define Γ = Γµψ
µ and R =

1

2
Rµνψ

µψν . Then

Φg(E) =
1

(2π)
dimF/2

∫

ΠF

Dχ e−
1
2 ξ

2+iχ(dξ+Γξ)+ 1
2χRχ+ 1

2χφ
aT %

aχ
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It is clear that Eug(E, s) = s∗Φg(E).

Remark. Usually in mathematical texts the Thom class is defined in a slightly different way.

Consider the most explicit and simple example of the situation where dimF = 2. In that case the

general formula for the Thom class is the following [66, 10]

Φg(E) = ρ′(ξ2) (dξ + Γξ) ∧ (dξ + Γξ) − ρ(ξ2) Eug(E, 0).

where the function ρ(t) is such that

∫

R2

ρ′(ξ2)d2ξ = 1. It is clear that our construction corresponds

to the particular case

ρ(t) = − 1

π
exp

{
− t

2

}
.

2

3.3.5 The Duistermaat-Heckman formula

Another useful tool which we are going to exploit is the Duistermaat-Heckman formula. It allows

us to express an integral over a symplectic manifold which is acted on by a torus T as a sum over

the T-stable points. Let us describe some relevant details.

Let M be a 2n dimensional symplectic manifold, ω be its symplectic form. Let T acts symplecti-

cally, and suppose that its action can be described by a Hamiltonian (momentum) map µ : M → t∗,

t = Lie(T). The choice of ξ ∈ t defines the Hamiltonian h(ξ) = 〈µ, ξ〉 and the action. It means

that the dh(ξ) = iV (ξ)ω. Let xf ∈ M be a fixed point of this action and wα(xf ) ∈ t∗ a weight of

this action on the tangent space to xf . It means that on the tangent space to a fixed point xf the

T action can be represented by a block diagonal matrix with blocks



 cos 2πwα(ξ) sin 2πwα(ξ)

− sin 2πwα(ξ) cos 2πwα(ξ)



 .

Then the Duistermaat-Heckman formula states that

∫

M

ωn

n!
e−〈µ,ξ〉 =

∑

xf :fixed

e−〈µ(xf ),ξ〉

∏
α〈wα(xf ), ξ〉

. (3.29)

In that follows we will basically use the shorthand notation 〈wα(xf ), ξ〉 ≡ wα.

To prove the formula we note that if we introduce the Cartan differential Q̄ = d + iV (ξ) then
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Q̄(ω − h(ξ)) = 0, therefore ω − h(ξ) is an equivariantly closed form. Note also that for any form

∫

M

Q̄α =

∫

M

dα+

∫

M

iV (ξ)α = 0

(the second term vanished since it is not a top form). It follows that for any Q̄ closed form α and

for any T invariant form β we have

∫

M

α =

∫

M

α eQ̄β .

If we choose β = −tVµ(ξ)ψµ (cf (3.26)) and α = eω−h(ξ) then using

Q̄β = −t∂µVνψµψν − t(V (ξ), V (ξ))

and the standard localization arguments we arrive to (3.29).

Remark. When we deal with supermanifolds, which contain supercoordinates, the Duistermaat-

Heckman formula should be modified as follows:
∏
α wα 7→ ∏

α wα
εα where εα = ±1 depends on

the statistics of coordinate it comes from. 2

It turns out to be easier to compute first the character of the torus element q ∈ T:

Indq ≡
∑

α

εα ewα .

This can be done with the help of the equivariant analog of the Atiyah-Singer index theorem taking

into account that the same quantity can be seen as the equivariant index of the Dirac operator.

It worth noting that when Indq is derived equivariantely, the signs εα comes from the alternated

summation over cohomologies, and not from boson-fermion statistics.

Once we have Indq , the passage to the Duistermaat-Heckman formula can be done with the

help of the following transformation (which can be seen as a proper time regularization, see section

6.3):
∑

α

εα ewα 7→
∏

α

wα
εα . (3.30)

This transformation is performed in two steps: first we perform an integral transformation which

converces ewα to lnwα. Then the exponent of the expression we have obtained
∑

α

εα lnwα is

precisely the rifgthand side of the announced formula.
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3.4 Back to Yang-Mills action

Now it is time to look back at the action for super Yang-Mills. Consider first the pure Yang-

Mills theory. Having compared (3.1), (2.17), (3.3), (3.25), (2.2) and (2.14) we conclude that if O
is a gauge invariant BRST closed operator, when 〈O〉 can be considered as an integral over the

instanton moduli space of Õk ∈ H∗(Mk), which belongs to the same cohomology class as O. More

precisely

〈O〉a =

∞∑

k=0

e2πikτ

∫

Mk

Õk. (3.31)

This is so since we have identified s = (Fµν )
−

and the group which we factor by is the gauge group

G = {g : R4 → G : g(∞) =
�
G}. Note that the full gauge group is Gfull = G × G∞, where G∞ is

the group of the rigid gauge transformations, that is, the transformations at infinity.

Looking back to (2.11) and (2.23) we see that Q̄2 produces the gauge transformation with

the parameter φ. From (2.4) it follows that if the supersymmetry is unbroken then at infinity

φ(x) → a, where a ∈ g. The notation 〈·〉a means that the vacuum expectation is taken with

respect to such field configurations. Therefore, among others transformations, Q̄2 produces the

rigid gauge transformations with parameters al, l = 1, . . . , r. Taking into account the discussion

in section 3.3.2 and the finite dimensional construction of the instanton moduli space we can

schematically say that the full group of gauge transformations becomes the product G∞ ×GD.

The finite dimensional version of the Cartan differential squares, therefore, to

Q̄2 = G(a) + F(m) + D(φ), (3.32)

where D(φ) is a dual group transformation.

Using the finite dimensional model for the instanton moduli space we can re-express the required

vacuum expectation as a sum of the finite dimensional integrals. And therefore make the problem

(in principle) doable.

In the presence of matter the situation is slightly different. First of all we note that if add to

the pure Yang-Mills action terms which correspond to (2.22) and (2.24) then we can identify

s = ((Fµν)
−

+ iq†α̇σ̄µν
α̇
β̇q
β̇ , σµαα̇∇µq

α̇),

the multiplet (να, hα) with (χ,H) and (qα̇, µα̇) with (x, ψ). When the vacuum expectation can

be localized to the moduli space of Seiberg-Witten monopoles, that is, to the solutions of the
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monopole equations

(Fµν )
−

+ iq†α̇σ̄µν
α̇
β̇q
β̇ = 0,

σµαα̇∇µq
α̇ = 0

(3.33)

up to a gauge transformation.

Another way to see the things is the following. First of all let us deform the action in such a

way that the first equation becomes

(Fµν )
− +

i

t
q†α̇σ̄µν

α̇
β̇q
β̇ = 0

with an arbitrary t. In the t → ∞ limit the equation reduces to the self-dual equation. Therefore

the integral over the gauge multiplet localizes as before on the instanton moduli space.

To deal with matter we observe that after integration out field hα in (2.22) the action becomes

the equivariant Euler class (3.28) for a bundle Dk over Mk of the solutions for the Weyl equation.

Indeed, the action which follows from (2.22) forces fields to localize on the solutions of the Weyl

equation

σµαα̇∇µq
α̇ = 0,

σµαα̇∇µµ
α̇ = 0,

σ̄µ,α̇α∇µνα = 0.

There are no solutions for the first two equations. The solutions for the third are given by (3.14)

for the fundamental representation and (3.18) for the adjoint. The action on these solutions takes

the following form:

Smat = − 1

π2

∫
d4xTr

{
ν̄α (φ+m) να + h̄αhα

}
(3.34)

The equation (3.31) becomes

〈O〉a =

∞∑

k=0

e2πikτ

∫

Mk

Õk Eug(Dk) (3.35)

where g = (em, eφ, ea) ∈ GF ×GD ×G∞.

3.5 Lorentz deformation and prepotential

We have learned how to reduce the vacuum expectation to the finite dimensional integral. However

in order to get access to the prepotential it is not sufficient. We should further deform our BRST
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operator Q̄. It is already deformed in such a way that it squares induces GF × GD × G∞ trans-

formation. We have another group with respect to which the action of the Yang-Mills theory is

invariant. This is the Lorentz group. The deformed Yang-Mills action can be naturally described

in the terms of so-called Ω-background.

3.5.1 Ω-background

In section 2.7 we have learned how to produce N = 2 super Yang-Mills action via dimensional

reduction of N = 1, d = 6 super Yang-Mills action. While compactifying we have used the following

flat metric:

ds26 = gµνdx
µdxν − (dx4)

2 − (dx5)
2
.

Now let the torus T2 act on R1,3 by Lorentz rotations. Its action is governed by the following

vectors:

V µ4 = Ω4
µ
νx

ν , V µ5 = Ω5
µ
νx

ν ,

where Ωa
µ
ν , a = 4, 5 are matrices of Lorentz rotations. Since π1(T

2) is commutative we conclude

that the Lie bracket of V µ4 and V µ5 should vanish. It is equivalent to say that matrices Ω4 and Ω5

commute. Let us define the following metric [60, 70]:

ds26 = gµν (dxµ + V µa dxa)
(
dxν + V νb dxb

)
− (dx4)

2 − (dx5)
2

= GIJdxIdxJ .

We have

Gµν = gµν , Gµν = gµν − V µa V
ν
a ,

Gaµ = Va,µ, Gaµ = V µa ,

Gab = −δab + V µa Vb,µ, Gab = −δab.

One can also check that G = detGIJ = −1. Computation shows that this metric is flat when the

matrices Ω4 and Ω5 commute.

In that follows we will use the six dimensional vielbein e
(J)
I which satisfies

ds26 = gµνe
(µ)
I e

(ν)
J dxIdxJ − e

(a)
I e

(a)
J dxIdxJ .
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It can be represented as follows:

e(µ)
ν = δµν , eµ(ν) = δµν ,

e(µ)
a = V µa , ea(µ) = 0,

e(a)µ = 0, eµ(a) = −V µa ,

e
(a)
b = δab ea(b) = δab .

Let us write the action (2.20) in this background, keeping the compactification. Using the

vielbein we get

−1

4

√
−GFIJFKLGIKGJL = −1

4
F(I)(J)F

(I)(J).

Computation shows that

F(µ)(ν) = Fµν ,

F(a)(µ) = Faµ − V ρa Fρµ,

F(a)(b) = V µa V
ν
b Fµν − FaνV

ν
b − V µa Fµb + Fab.

Let us introduce the complex combination of V µa and Ωa
µ
ν keeping in mind (2.21):

V µ =
1√
2

(V µ4 + iV µ5 ) , V̄ µ =
1√
2

(V µ4 − iV µ5 ) ,

Ωµν =
1√
2

(Ω4
µ
ν + iΩ5

µ
ν) , Ω̄µν =

1√
2

(Ω4
µ
ν − iΩ5

µ
ν) .

The bosonic part of the action can be written as follows:

−1

4

√
−GFIJFKLGIKGJL = −1

4
FµνF

µν + (∇µH + V ρFρµ)
(
∇µH† + V̄ ρFρ

µ
)

− 1

2

{
[H,H†] − iV̄ µV νFµν − i

(
V µ∇µH

† − V̄ µ∇µH
)}2

.

Note that when Ω and Ω̄ commute the last line can be rewritten as [H,H†]
2

where

H = H − iV µ∇µ, H† = H† − iV̄ µ∇µ.

This shift can be explained as follows. Consider a function φ belonging to the adjoint representation

of the gauge group and to a representation of the Lorentz group. Let Sµν be the spin operator for
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this representation. In the non-deformed case we had

∇φ =
1√
2

(∇4 + i∇5)φ = −i[H,φ].

In the Ω-background this expression is deformed as follows

∇φ =
1√
2

(
∇(4) + i∇(5)

)
φ =

1√
2

(
eI(4)∇I + ieI(5)∇I

)
φ

= −i[H,φ] − V µ∇µφ+
1

2
ΩµνSµνφ = −i[H, φ].

Since H itself is a scalar for this field the spin opertator is trivial. However it becomes non-trivial

when acts on spinors. Therefore in the general case the shift is the following

H 7→ H = H − iV µ∇µ +
i

2
ΩµνSµν ,

H† 7→ H† = H† − iV̄ µ∇µ − i

2
Ω̄µν S̄µν .

Also note that when Ω and Ω̄ commute, the whole expression can be written up to a total

derivative, which is irrelevan, as follows:

−1

4

√
−GFIJFKLGIKGJL = −1

4
FµνF

µν +
1

2

{
[∇µ,H], [∇µ,H†]

}
− 1

2
[H,H†]

2

− 1

4
Ω̄ρµF

ρµH− 1

4
ΩρµF

ρµH†
(3.36)

The fermionic term can be written as follows:

i

2
Ψ̄AΓIeJ(I)∇JΨA,

where in order to define the covariant derivative we should use the spin connection which can be

written with the help of the Ricci coefficients:

γI,JK =
1

2
eM(I)

(
eLJ∇MeL(K) − eL(K)∇MeL(J)

)
= eM(I)e

L
(J)∇MeL(K).

Computation shows that when Ω4 and Ω5 commute the only nonvanishing coefficient is

γa,µν = −γa,νµ = −Ωa,µν .
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For the covariant derivative we have the following expression:

∇IΨ = ∂IΨ − i[AI ,Ψ] +
1

2
ΣPQγI,PQΨ = ∇IΨ +

1

2
ΣPQγI,PQΨ,

where ΣPQ =
1

4
[ΓP ,ΓQ] are the generators of the six dimensional Lorentz group in the spinor

representation.

The calculation shows that the fermionic part of the Lagrangian can be represented as follows:

i

2
Ψ̄AΓIeJ(I)∇JΨA = iψAσ

µ∇µψ̄
A − i√

2
ψA[H†, ψA] +

i√
2
ψ̄A[H, ψ̄A]

− 1

2
√

2
Ωµν ψ̄

Aσ̄µν ψ̄A − 1

2
√

2
Ω̄µνψA

1

2
σµνψA.

(3.37)

Having compared the initial action (2.1) with the deformed one, which is the sum of (3.36) and

(3.37), we can note that there are only distingtion is coming from the formal shift H 7→ H and

from the additional terms which can be written as follows

−1

4
Ω̄ρµF

ρµH− 1

4
ΩρµF

ρµH† − 1

2
√

2
Ωµν ψ̄

Aσ̄µν ψ̄A − 1

2
√

2
Ω̄µνψAσ

µνψA.

Topological term should also be modified. Putting all things together we can see that the

whole effect of the introducing of the Ω-background consists of the shift H 7→ H and the following

modification of the complex coupling constant:

τ 7→ τ(x, θ) = τ − i√
2

(
Ω̄µν

)+
θµθν ,

where we have used twisted supercoordinates: θµ = σ̄µ,AαθA,α.

3.5.2 Getting the prepotential

In order to use the powerful machinery of the equivariant integration we should be sure that the

action in the Ω-background is still BRST exact with some BRST (or BRST-like) operator.

Being inspired by the formula (2.12) we perform some computations. First of all we have

Qµ

{
1

4
(Fρτ )

−
ψ̄ρτ − i

2
√

2
ψρ∇ρH

† +
i

4
ψ̄[H,H†]

}
= −

√
2 ? Fµρ∇ρH† − i∇ρ

(
ψ̄µτ ψ̄

ρτ
)
.

When using the equations of motion for ψµ and ψ̄µν , which are modified in the Ω-background we
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can show that the Yang-Mills action in the Ω-background is Q̄Ω exact where

Q̄Ω = Q̄ − i

2
√

2
Ωµνx

νQµ,

provided we further shift the complex coupling constant:

τ 7→ τ(x, θ) = τ − i√
2

[(
Ω̄µν

)+
θµθν +

i

2
√

2
Ω̄µνΩ

µ
ρx
ρxν
]
.

This modification changes only the topologica term, which have not yet been discussed.

Note that thanks to the supersymmetry algebra which yields {Q̄,Qµ} = 4i∇µ we get up to a

gauge transformation
(
Q̄Ω

)2
=

√
2Ωµνx

ν∂µ.

It worth noting that the superspace dependent complex coupling constant is annihilated by the

following operator:

RΩ = θµ
∂

∂xµ
− i

2
√

2
Ωµνx

ν ∂

∂θµ
,

provided the matrices Ω and Ω̄ commute.

This observation allows us to get access to the prepotential [69]. Indeed, taking into account

the relation between the dynamically generated scale and the complex coupling constant (2.8)

we conclude that in the Ω-background Λ becomes effectively x and θ dependent. Moreover, this

dependence is such that this new Λ is annihilated this operator:

RΩΛ(x, θ) = RΩ e
2πi
β
τ(x,θ) = 0. (3.38)

The second observation is that since the action is Q̄Ω exact we can localize it on the zero-modes

of the superfield Ψ(x, θ) = H(x) + . . . = − 1

2
√

2
φ(x) + . . . . Therefore the functional integral for

the partition function of the theory on the Ω-background becomes

Z(a; Ω) = 〈1〉a = exp
1

4π
=m

{
1

2πi

∫
d4xd4θF(− 1

2
√

2
a,Λ(x, θ))

}
.

The integral at the exponent on the righthand side can be computed using the localization

arguments. The operator RΩ can be seen as the Cartan differentail: RΩ = d− i

2
√

2
iV . Therefore

we can apply the Duistermaat-Heckman formula.
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Let us choose the coordinate system on R4 where the matrix Ω has the canonical form:

Ω =
1√
2




0 0 0 −ε1
0 0 −ε2 0

0 ε2 0 0

ε1 0 0 0



.

This choice corresponds to the complex structure introduced in (3.5).

The weights which correspond to the action of the operator at the lefthand side of (3.38) are

i

4
ε1 and

i

4
ε2.

Remark. With this definition the weights of the action
(
Q̄Ω

)2
are ε1 and ε2. This fact will be used

in the next chapter. 2

Therefore using the localization and the fact that the prepotential is a homogenious function

of the degree 2 we get

Z(a,m,Λ; ε) = exp
1

ε1ε2
F(a,m,Λ; ε), (3.39)

where the prepotential can be obtained from the function F(a,m,Λ; ε) by taking ε1, ε2 → 0 limit:

F(a,m,Λ) = lim
ε1,ε2→0

F(a,m,Λ; ε).

Now combining (3.31) (or in general case (3.35)) with (3.39) we get a way compute the prepo-

tential:

exp
1

ε1ε2
F(a,m,Λ; ε) =

∞∑

k=0

qk
∫

Mk

Eug(Dk),

where g = (em, eφ, ea, eiε) ∈ TF × TD × T∞ × TL.

Note that through the discussion of this chapter we have not say a word about the gauge fixing

procedure, which should be performed in order to compute properly the functional integral. The

proper accounting of this procedure leads to a supplementary factor for Zpert(a,m,Λ; ε). This

factor leads, in particular, to the perturbative contribution to the prepotential (2.6). See the

discussion in sections 5.5.1 and 6.3.

Therefore the formula for the prepotential takes the following form:

Z(a,m,Λ; ε) = Zpert(a,m,Λ; ε) ×
∞∑

k=0

qkZk(a,m; ε) = exp
1

ε1ε2
F(a,m,Λ; ε),
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where Zpert(a,m,Λ; ε) is the perturbative contribution to the partition function and

Zk(a,m; ε) =

∫

Mk

Eug(Dk). (3.40)
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Chapter 4

Finite dimensional reduction

In this chapter we derive the expression for the prepotential using the finite dimensional model for

the instanton moduli space. We obtain formula which express Zk(a,m,Λ; ε) in (3.40) as a finite

dimensional integral. After that we will rederive them in the spirit of the Duistermaat-Heckman

formula.

4.1 Direct computations: SU(N) case

Let us obtain the formulae for SU(N) model without matter. We will follow [64, 65, 69].

First of all let us introduce the finite dimensional analog of the BRST operator Q̄. The instanton

moduli space is the subset of the space of linear operators B1, B2, I and J factored by the dual

group. This subset can be described by the ADHM equation (3.12) µR = 0 and µC = 0. The

general discussion of the section 3.3 shows that in order to take into account this fact we should

introduce the following supplementary multiplets:

(χR, HR) and (χC, HC).

The transformation properties of the matrices B1, B2, I , J and the ADHM equation with

respect to TL are

B1 7→ eiε1 B1, B2 7→ eiε2 B2,

I 7→ e−iε+ I, J 7→ e−iε+ J,

µR 7→ µR, µC 7→ eiε µC,

65
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where ε = ε1 + ε2 and ε+ =
1

2
ε =

1

2
(ε1 + ε2). Taking into account (2.11), (3.32) and the Lorentz

deformation of the BRST operator we can write

Q̄B1,2 = ψ1,2, Q̄ψ1,2 = [φ,B1,2] + iε1,2B1,2,

Q̄I = ψI , Q̄ψI = φI − Ia− iε+I,

Q̄J = ψJ , Q̄ψJ = −Jφ+ aJ − iε+J,

Q̄χR = HR, Q̄HR = [φ, χR],

Q̄χC = HC, Q̄HC = [φ, χC] + iεχC,

Q̄η = λ, Q̄λ = [φ, λ].

(4.1)

The finite dimensional version of (3.40) is

Zk(a; ε) =

∫ Dφ
Vol(GD)

DηDλDHDχDB1DB2DIDJDψ eiQ̄(χ·µ+tχ·H+ψ·V (λ)) (4.2)

where

χ · µ = Tr

{
χRµR +

1

2

(
χ†

C
µC + χCµ

†
C

)}
,

χ ·H = Tr

{
χRHR +

1

2

(
χ†

C
HC + χCH

†
C

)}
,

(note the torus action on χR and χC is chosen in such a way that χ · µ be invariant) and V (λ) is

the dual group flow vector field:

ψ · V (λ) = Tr
{
ψ1[λ,B

†
1] + ψ2[λ,B

†
2] + ψ̄1[λ,B1] + ψ̄2[λ,B2] + ψIλI − I†λψ̄I − Jλψ̄J + ψJλJ

†
}
.

Let us consider two way to do this integral: straightforwardly and using the Duistermaat-

Heckman formula.

4.1.1 Straightforward computation

To compute this integral we add to the exponent two BRST-exact terms, which should not change

the integral:

iQ̄t′ TrχRλ− Q̄
1

2
t′′ Tr

{
2∑

s=1

(
B†
sψs − ψ̄sBs

)
− I†ψI + ψ̄II − J†ψJ + ψ̄JJ

}
. (4.3)
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The term, proportional to t′ produces

t′ TrHRλ+ t′ TrχRη.

Therefore if we take first the limit t′ → ∞ we can first integrate out HR which gives the delta

function of t′λ. Then we integrate out λ which gives the factor
1

t′k
2/2

. And finally when we do the

integral over χR and η we remove this factor.

Now let us compute the contribution of terms which proportional to t. They can be written as

follows:

tTrHRHR + tHCH
†
C

+ tTrχR[φ, χR] + tTrχ†
C

([φ, χC] + iεχC) .

Note that the first term in fact, does not present, since it is already integrated out (when t′ � t it

can be neglected). The third term does not contribute neither since in the t′ → ∞ limit all terms

which are proportional to a power TrχR[φ, χR] will be suppressed.

Now we take the t → ∞ limit. HC integral is Gaussian and produces the factor 1
tk2 . In order

to compensate it we integrate out χC. But first let us reduce the φ integral from the Lie algebra

of GD to the Lie algebra of its maximal torus. The price we pay is the Vandermond and the order

of the Weyl group. In section 4.2 we treat this question in the general framework. Let us here just

cite the result for GD = U(k):

Dφ 7→ 1

k!

k∏

i=1

dφi
2πi

∏

i<j≤k

(φi − φj)
2 .

The advantage is that now the matrix φ can be seen as the diagonal one with eigenvalues iφi:

φ = diag{iφ1, . . . , iφk}.

It follows that when we integrate out χ†
C,ij and χC,ij we get factor φi −φj + ε. Therefore when

we integrate out χ†
C

and χC completely we get

εk
∏

i<j≤k

(
(φi − φj)

2
+ ε2

)

Remark. Note that this contribution formally looks like the Vandermond if one set ε = 0 (and

remove the factor εk). However, we cannot integrate out χR and HR before introducing t′ term.

The reason is the presence of zero modes in the expression TrχR[φ, χR]. Besides, even if we
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forget about these zero modes and integrate out χR we would get only the square root of the

Vandermond. However, this similarity can be used to get the expression for the Vandermond using

the transformation rules for χR (see below). 2

Let us finally sent t′′ → ∞ and integrate out the rest of “fields” (but φ). The contribution to

the exponent is the following:

− t′′ Tr
{
ψ̄1ψ1 + ψ̄2ψ2 + ψ̄IψI + ψ̄JψJ

}

− t′′ Tr

{
2∑

s=1

B†
s ([φ,Bs] + iεsBs) − I†(φI − Ia− iε+I) − J†(−Jφ+ aJ − iε+)J

}
. (4.4)

When we integrate out Bs (recall that it is complex) we get the following contributions (up to

the factor
1

t′′k
2 which can be killed by ψs integration):

1

εks

∏

i<j≤k

1(
(φi − φj)

2 − ε2s

) .

Let in now remember that a ∈ T∞. That is, has the following form:

a = diag{ia1, . . . , iaN}.

Taking this observation into account one can see that the same procedure applied to I and J (as

usual, accompanied by the integration over ψI and ψJ) leads to the factor

k∏

i=1

N∏

l=1

1(
(φi − al)

2 − ε2+

) .

Now let us combine all pieces. In order to simplify formulae we introduce the following nota-

tions:

∆±(x) =
∏

i<j≤k

(
(φi ± φj)

2 − x2
)

P(x) =

N∏

l=1

(x− al).

(4.5)

Then the integrand for the partition function is given by

zk(a, φ; ε) =
1

k!

εk

εk1ε
k
2

∆−(0)∆−(ε)

∆−(ε1)∆−(ε2)

k∏

i=1

1

P(φi + ε+)P(φi − ε+)
. (4.6)
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The formula for Zk(a; ε) is

Zk(a; ε) =

∫ k∏

i=1

dφi
2πi

zk(a, φ; ε).

Remark. The integral on φ seems to pass through the poles of the integrand. However this is not the

case. To see this we should consider the expression (4.4). The integral over Bs has schematically

the form d
∫

R
dx eiεx

2

. In order to make it convergent we should introduce the shift εs 7→ εs + i0.

Therefore this integral can be computed by residues. Note that another way to get this shift is

to consider −εs as an infrared regularizer (the mass) for the Bs integral (which is needed for zero

modes of TrB†
s [φ,Bs]). The shift is then nothing but the Feynman rule of bypassing the poles. 2

4.1.2 Stable points computation

Now let us describe another way to understand formula (4.6).

Suppose that we have already integrated out χR, HR and the projection multiplet (λ, η). Con-

sider the superspace spanned by B1, B2, I , J , and χC. Formulae (4.1) suggests that ψ1, ψ2, ψI ,

ψJ and HC should be their differentials. On this space the torus TD × T∞ × TL acts as follows:

Bs 7→ eφBs e−φ eiεs ,

I 7→ eφ I e−a e−iε+ ,

J 7→ ea J e−φ e−iε+ ,

χC 7→ eφ χC e−φ e−iε .

(4.7)

This action has the only stable point, the origin. Therefore the integral over Bs, I , J and χC

can be computed with the help of (3.29) provided we know the weights wα. However, they can be

easily read from the infinitesimal form of (4.7). We have:

φi − φj + εs for Bs,ij ,

φi − al − ε+ for Iil,

al − φi − ε+ for Jli,

φi − φj − ε for χC,ij .

Applying then the Duistermaat-Heckman formula (3.29) and taking into account the statistics

of the coordinates we get (4.6).
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Remark. Note that if one applies the same recipe for χR one gets the following weights

φi − φj , i 6= j.

If we include them into the Duistermaat-Heckman formula we get precisely the Vandermond. 2

4.2 Haar measures

Even though the Haar measure can be obtained considering the weight for χR let us describe its

standard group theoretical derivation.

The general formula for the Haar measure reduced to the maximal torus of the group is given

by:

dµG =
1

|W |

rankG∏

i=1

dφi
2π

∣∣∣∣∣
∏

α∈∆+

(
e

i
2 〈α,φ〉− e−

i
2 〈α,φ〉

)∣∣∣∣∣

2

This measure gives a measure on the Lie algebra (it corresponds to the limit of small φi)

dµg =
1

|W |

rankG∏

i=1

dφi
2π

∏

α∈∆+

〈α, φ〉2.

Using the root systems of algebras of type B, C and D we can write the measures:

dµBk
=

1

2kk!

k∏

i=1

dφi
2π

∏

i<j

(φ2
i − φ2

j )
2
k∏

i=1

φ2
i ,

dµCk
=

1

2kk!

k∏

i=1

dφi
2π

∏

i<j

(φ2
i − φ2

j )
2
k∏

i=1

(2φi)
2,

dµDk
=

1

2k−1k!

k∏

i=1

dφi
2π

∏

i<j

(φ2
i − φ2

j )
2
.

The detailed investigation of the Haar measure can be found for example in [11], and in [53, 54].

4.3 SO(N) and Sp(N) gauge groups

Let us find the analog of (4.6) for pure Yang-Mills theories with the gauge groups SO(N) and

Sp(N). Since we have already described the finite dimensional model for the instanton moduli

space for these groups the only thing we need is to find the weights of the TD × T∞ × TL action.
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4.3.1 SO(N) case

Let us choose the matrices from the Cartan subalgebra of SO(N) and Sp(k) in the standard forms:

a = diag







 0 −a1

+a1 0



 , . . . ,



 0 −an
+an 0



 ,♦



 ∈ Lie(SO(N)),

φ =


 φ̃ 0

0 −φ̃


 ∈ Lie(Sp(k)) where φ̃ = diag{iφ1, . . . , iφk}.

Here ♦ = 0 for odd N and is absent for even N . The eigenvalues a1, . . . , an and φ1, . . . , φk are

assumed real.

Now we have to rewrite the TD × T∞ × TL action in terms of the building blocks for matrices

Bs: (3.22) MC and NC (3.23). We have (s = 1, 2):

Ps 7→ eφ̃ Ps e−φ̃ eiεs , MC 7→ eφ̃MC e−φ̃ eiεs ,

Qs 7→ e−φ̃Qs e−φ̃ eiεs , NC 7→ e−φ̃NC e−φ̃ eiεs ,

Q′
s 7→ eφ̃Q′

s eφ̃ eiεs , N ′
C 7→ eφ̃N ′

C
eφ̃ eiεs .

In order to diagonalize a let us introduce the following N ×N matrix

U = diag





1√
2



 1 1

−i i



 , . . . ,
1√
2



 1 1

−i i



 ,�



 (4.8)

where � = 1 for odd N and is absent for even N . One sees that

ã = U †aU = diag {ia1,−ia1, ia2,−ia2, . . . , ian,−ian,♦}

We have the following action for K̃ = U †K and K̃ ′ = U †K ′, where K and K ′ are defined in

(3.21):

K̃ 7→ eã K̃ e−φ̃ e−iε+ , K̃ ′ 7→ eã K̃ ′ eφ̃ e−iε+ .

For even N the weights for K̃li and K̃ ′
li are:

al − φi − ε+, −al − φi − ε+,

al + φi − ε+, −al + φi − ε+,
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where l = 1, . . . , n and i = 1, . . . , k. For odd N we have as well

φi − ε+, −φi − ε+.

The weights which correspond to Ps,ij , Qs,ij , Q
′
s,ij for all N are:

φi − φj + εs, i, j = 1, . . . , k,

−φi − φj + εs, i < j,

φi + φj + εs, i < j.

The same procedure applied to χC,ij gives:

φi − φj + ε, i, j = 1, . . . , k,

−φi − φj + ε, i ≤ j,

φi + φj + ε, i ≤ j.

Here we have taken into account that the matrices Qs and Q′
s are antisymmetric, whereas χC is

symmetric (since µC is).

4.3.2 Sp(N) case

Now let us consider the group Sp(N). As in the previous section we choose the matrices from

Cartan subalgebras of G∞ and GD in the standard form:

a =



 ã 0

0 ã



 ∈ Lie(Sp(N)) where ã = diag{ia1, . . . , iaN},

φ = diag






 0 −φ1

+φ1 0


 , . . . ,


 0 −φn

+φn 0


 ,♦



 ∈ Lie(SO(k)),

where n = [k/2], and ♦ = 0 if k is odd and is absent if k is even. As before, φ1, . . . φn and

a1, . . . , aN are supposed to be real.

For matrices K and K ′ from (3.24) the TD × T∞ × TL action becomes

K 7→ eãK e−φ e−iε+ K ′ 7→ e−ãK ′ e−φ e−iε+ .
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After introducing the k× k dimensional version of (4.8) for K̃ = KU and K̃ ′ = K ′U we obtain

K̃ 7→ eã K̃ e−φ̃ e−iε+ ,

K̃ ′ 7→ e−ã K̃ ′ e−φ̃ e−iε+ .

Hence the weight for the matrix elements of Kli and K ′
li for even k are

al − φi − ε+, al + φi − ε+,

−al − φi − ε+, −al + φi − ε+

where l = 1, . . . , n and i = 1, . . . , N . For odd k we have a supplementary pair of weight:

al − ε+, −al − ε+.

Now let us obtain weight for Bs, s = 1, 2. Consider the case of even k. The Bs transformation

is the same as in the SU(N) case. Therefore we arrive to the following weight for i 6= j:

εs + φi − φj , εs + φi + φj ,

εs − φi − φj , εs − φi + φj .

And for i = j

εs, εs + 2φi, and εs − 2φi.

For odd k we get additional wights:

εs, εs + φi, and εs − φi.

The same procedure gives for χC the following weights for even k and i 6= j :

ε+ φi − φj , ε+ φi + φj ,

ε− φi − φj , ε− φi + φj .

For i = j the only weight we get is ε (we remember that µC (and therefore χC) is antisymmetric).

For odd k the following weights appear:

ε, ε+ φi, and ε− φi.
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4.4 Expression for the partition function

Let us finally combine all pieces and obtain expressions for Zk(a,Λ; ε) which allows us to get the

prepotential according to (3.39).

4.4.1 SO(N) case

Let N = 2n+ χ where n = [N/2], χ ≡ N (mod 2). Denote

∆(x) =
∏

i<j≤k

(
(φi + φj)

2 − x2
)(

(φi − φj)
2 − x2

)
,

P(x) = xχ
n∏

l=1

(x2 − a2
l ).

(4.9)

When for the partition function integrand we have the following expression:

zk(a, φ; ε) =
εk

εk1ε
k
2

∆(0)∆(ε)

∆(ε1)∆(ε2)

k∏

i=1

4φ2
i (4φ

2
i − ε2)

P(φi + ε+)P(φi − ε+)
. (4.10)

4.4.2 Sp(N) case

Now consider the Sp(N) case. Let k = 2n+ χ, n = [k/2], χ ≡ k (mod 2). Introduce

∆(x) =
∏

i<j≤n

(
(φi + φj)

2 − x2
)(

(φi − φj)
2 − x2

)
,

P(x) =

N∏

l=1

(x2 − a2
l ).

(4.11)

Then

zk(a, φ; ε) =
εn

εn1 ε
n
2

[
1

ε1ε2
∏N
l=1(ε

2
+ − a2

l )

n∏

i=1

φ2
i (φ

2
i − ε2)

(φ2
i − ε21)(φ

2
i − ε22)

]χ

× ∆(0)∆(ε)

∆(ε1)∆(ε2)

n∏

i=1

1

P(φi − ε+)P(φi + ε+)(4φ2
i − ε21)(4φ

2
i − ε22)

(4.12)

4.4.3 Matter

Let us say some words about the matter. Using the fact that in the presence of matter fields

we should consider the equivariant integral of the equivariant Euler class of Dk we can write

corresponding contributions. Consider first the fundamental representation of SU(N).

As we have already seen the integral localizes on the solutions of the Weyl equation (3.34).
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All The solutions for the Weyl equation in the fundamental representation are given by (3.14). In

order to specify one solution we should introduce a vector x ∈ V = Ck. Then the solution for the

Weyl equation which corresponds to this vector is

ψαx = Q̄αRx.

It gives the boson solution. If we wish to have a fermion solution we should consider a fermion

vector ξ ∈ ΠV = ΠCk. Then taking into account (3.15) we can rewrite the contribution of (3.34)

as follows ∫
DxDξ e−tx̄x−tξ̄(φ+m−iε+)ξ . (4.13)

Note that the integral does not depend on t.

Remark. In that follows we redefine the mass: m 7→ im. 2

The integral is Gaussian, therefore we can compute it exactly and the result is the following

supplementary factor of zk:

zfund
k (φ,m; ε) =

k∏

i=1

(φk +m− ε+). (4.14)

In the spirit of the Duistermaat-Heckman formula this expression can be understood as follows.

We introduce the supplementary fermion coordinate ξ ∈ ΠV , x being its differential. On the space

ΠV the torus TD × TF × TL acts as follows:

ξ 7→ eφ eim ξ e−iε+ .

The last factor will be explained in the next chapter. Anyway, one can consider it as a redefinition

of the mass. Note that the physical value of m is pure imaginary with =mm < 0. If we add −ε+

this condition can not be violated since =m ε+ > 0.

The BRST operator acts on ξ and x as follows:

Q̄ξ = x, Q̄x = [φ, ξ] + imξ − iε+ξ.

Note that the exponent in (4.13) can be written as (cf (4.3), t′′ terms)

− t

2
Q̄
(
ξ̄x+ x†ξ

)
.
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The torus action has the unique stable point, the origin. It allows also to deduce the weights

of the torus action. They are

φi +m− ε+, i = 1, . . . , k.

Thus we arrive to (4.14).

The matter in the adjoint representation can be considered in the same way. The only difference

is that now for a solution for the Weyl equation we have supplementary condition to be satisfied

(3.19). One can do so in the spirit of the section 3.3.1. The required ingredient is the pair of

supplementary coordinates with the opposite statistics. The final answer will be obtained in the

next chapter in more general context.

4.5 Example: Sp(N) instanton corrections

In previous sections we have shown how to get the partition function. However, the thing we are

looking for is the prepotential. Let us show how it can be extracted from the partition function.

For the simplicity reason we consider the case of the pure Sp(N) theory.

Looking at (4.12) we see that in the case of Sp(N) to obtain k-th instanton correction we have

to compute only [k/2]tiple integral. In particular to get F1(a), F2(a) and F3(a) we should compute

a single φ integral.

For Z1(a; ε), Z2(a; ε) and Z3(a; ε) we have:

Z1(a; ε) = − 1

2ε1ε2

N∏

l=1

1

a2
l − ε2+

,

Z2(a; ε) = − 1

2ε1ε2

N∑

l=1

(
Sl(a

−
l )D(a−l ) + Sl(a

+
l )D(a+

l )
)

+
1

8(ε1ε2)
2

ε2T (ε1/2) − ε1T (ε2/2)

ε2 − ε1
,
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Z3(a; ε) =
1

4(ε1ε2)
2

N∏

l=1

1

a2
l − ε2+

×
{

N∑

l=1

(
Sl(a

−
l )D(a−l )E(a−l ) + Sl(a

+
l )D(a+

l )E(a+
l )
)

+
1

12ε1ε2

[
−T (ε1/2) + T (ε2/2) + 2T (ε1) + 2T (ε2)

6

+ (ε1 + ε2)

(
−2 (T (ε1) − T (ε2)) + 5 (T (ε1/2) − T (ε2/2))

ε1 − ε2

−8ε1 (T (ε2/2) − T (ε1))

3(ε1 − 2ε2)
− 8ε2 (T (ε1/2) − T (ε2))

3(ε2 − 2ε1)

)]}

where

a±l = al ± ε+,

D(t) =
1

[4t2 − ε21] [4t
2 − ε22]

,

E(t) =
t2(t2 − (ε1 + ε2)

2)

(t2 − ε21)(t
2 − ε22)

,

Sl(t) =
1

4alt

∏

k 6=l

1[
(t+ ε+)

2 − a2
k

] [
(t− ε+)

2 − a2
k

] ,

T (t) =
1

P(ε+ + t)P(ε+ − t)
.

Using the definition (3.39) we get the prepotential:

F1(a) = −1

2

N∏

l=1

1

a2
l

,

F2(a) = − 1

16

(
N∑

l=1

S̃l(al)

a4
l

+
1

4

∂2T̃ (t)

∂t2

∣∣∣∣∣
t=0

)
,

F3(a) = − 1

16

N∏

l=1

1

a2
l

(
N∑

l=1

S̃l(al)

a6
l

+
1

144

∂4T̃ (t)

∂t4

∣∣∣∣∣
t=0

)

where the tilde over S and T means that we set ε1 = ε2 = 0 in the definition of these functions.

For the case N = 1, that is, for the group Sp(1) = SU(2) we have the following expression for

the prepotential:

Finst(a,Λ) = − Λ4

2a2
− 5Λ8

64a6
− 3Λ12

64a10
+O(Λ16)

which coincides with both Seiberg-Witten [22] and direct computations [69] for SU(2). Zk(a; ε),

k = 1, 2, 3 can also be checked against the corresponding quantities for SU(2) [69].
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Chapter 5

Instanton corrections in the

general case

As we have seen, to write the expression for the partition function integrands we should have in

hands a model for the instanton moduli space. In particular, to incorporate the matter we should

find solutions for the Weyl equation for all interesting representations. However, we can avoid this

work and find directly the weights which appear in the Duistermaat-Heckman formula. In this

chapter we present some methods which will allow us to do that.

5.1 Universal bundle

It is well known [66] that a manifold M equipped by an almost complex structure and a hermitian

metric allows to define a SpinC-structure. Moreover in that case the complexified tangent bundle

can be view as TM ⊗ C ' Hom(S+ ⊗ L, S− ⊗ L). Here S± is the spinor bundles of positive and

negative chiralities, and L is the determinant bundle. Even if S± and L do not exist separately

their tensor product S± ⊗ L does. That is why S± and L is called sometimes virtual bundles.

On the sections of S+ and S−, that is, on dotted and undotted spinors, the maximal torus of

the Lorentz group TL acts as follows:

χα̇ 7→ χα̇
′ = U+α̇

β̇χβ̇ and ψα 7→ ψ′
α = U−α

βψβ

79
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where

U+ =


 eiε+ 0

0 e−iε+


 , U− =


 eiε− 0

0 e−iε−


 , where ε± =

ε1 ± ε2
2

.

The complex coordinates transform as:

z1 7→ z′1 = z1 eiε1 and z2 7→ z′2 = z2 eiε2 ,

and the sections of L as s 7→ s eiε+ .

Remark. As an illustration we consider the four dimensional manifold. Then (1, dz1 ∧ dz2) trans-

forms as “s× dotted spinor” and (dz1, dz2) as “s× undotted spinor”. 2

Taking into account these properties the ADHM construction can be represented by a following

complex:

V ⊗ L−1 τ−→ V ⊗ S− ⊕W σ−→ V ⊗L (5.1)

where

τ =




B1

B2

I


 , σ = (B2,−B1, J),

where L and S− can be viewed as fibers of L and S− respectively. The ADHM equations (3.12)

assure that this is indeed a complex.

Now we recall the construction of the universal bundle. Let M be the instanton moduli

space, given by the ADHM construction. Let us introduce local coordinates on M: {mI},
I = 1, . . . , dim M. The tangent space to a point m ∈ M is spanned by solutions of the lin-

earized self-dual equation (3.4). Let us fix a basis of such a solutions: {aIµ(x,m)}. Consider now

a family of instanton gauge fields parametrized by points of M: Aµ(x,m). We can write

∂Aµ
∂mI

= hIJa
J
µ + ∇µαI

where αI is a compensating gauge transformation. We can combine it with the connection Aµ into

a one form on R4 × M: A = Aµdx
µ + αIdm

I which can be seen as a connection of the vector

bundle E over R4 × M with the fiber W . This bundle is called the universal bundle.

Let q be generic element of the torus T = TD×T∞×TL×TF . The equivariant Chern character

of E depending on q can be computed as an alternating sum of traces over the cohomologies of the
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complex (5.1) (see [69, 60] for some details). Then we come to the formula

Chq(E) ≡ TrE(q) = TrW(q) + TrV(q)
(

TrS−
(q) − TrL(q) − TrL−1(q)

)

= TrW(q) − (eiε1 −1)(eiε2 −1) e−iε+ TrV(q)

(5.2)

where Chq(E) is the equivariant Chern character.

The equivariant analog of the Atiyah-Singer theorem allows us to compute the equivariant

index of the Dirac operator. It has the following form

Indq =
∑

α

εα ewα =

∫

C2

Chq(E) Tdq(C
2),

where the sum is taken over all fixed points of the T action and all T action invariant subspaces

of the tangent space to a fixed point, wα being a weight of this action. In this formula Tdq(C
2) is

the equivariant analogue of the Todd class1, which for C2 ' R4 has the simple form:

Tdq(C
2) =

ε1ε2
(eiε1 −1)(eiε2 −1)

.

The integration can be performed with the help of the Duistermaat-Heckman formula (3.29).

The Hamiltonian of TL action is iε1|z1|2 + iε2|z2|2. The only fixed point of this action on C2 is

the origin. The weights are iε1 and iε2. Consequently we arrive at

Indfund
q =

∑

α

εα ewα =
Chq(E)|z1=z2=0

(eiε1 −1)(eiε2 −1)
. (5.3)

Let us denote the elements of T∞, TD and TF as follows:

qG = diag{ia1, . . . , iaN} ∈ T∞

qD = diag{iφ1, . . . , iφk} ∈ TD

qF = diag{im1, . . . , imNf
} ∈ TF

where a1, . . . aN , φ1, . . . , φk,m1, . . . ,mNf
are real, Nf being the number of flavors. Then combining

1the fact that we should use the Todd class, and not the Â-polynomial, as one could think, follows from the
close relation between solutions of the Dirac equation and Dolbeaut cohomologies, discussed at the beginning of the
section 5.2.
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(5.2) and (5.3) we get for Nf = 1,m = 0

Indfund
q =

∑

α

εα ewα =
1

(eiε1 −1)(eiε2 −1)

N∑

l=1

eial −
k∑

i=1

eiφi−iε+ . (5.4)

The generalization to Nf > 1 is straightforward and we obtain:

Indfund,Nf

q =
1

(eiε1 −1)(eiε2 −1)

Nf∑

f=1

N∑

l=1

eial+imf −
Nf∑

f=1

k∑

i=1

eiφi−iε++imf .

5.2 Alternative derivation for Chq(E)

The derivation of (5.4) presented in previous section, yet quite general, may seem to be too abstract.

Here we present an alternative way to get it. In particular this method allows us to see the origin

of all terms which appears in the formula.

Before starting let us recall the relation between Dirac operator on complex manifolds and ∂̄

operator. Define

∂̄ = dz1∇1 + dz2∇2.

Thanks to the self-dual equation equations (3.4) this operator is nilpotent ∂̄2 = 0. Indeed, the

self-dual equation is equivalent to

[∇1,∇1̄] + [∇2,∇2̄] = 0,

[∇1,∇2] = 0.

The solutions of the Weyl equation (3.13) can be naturally associated with Dolbeaut coho-

mology. The only thing that should be taken into account is the twist by the square root of the

determinant bundle.

Now let us recall the discussion of the section 4.4.3. A solution for the fermionic Dirac equation

can be parametrized by ξ ∈ ΠV . Now we remember that we have a freedom to perform a gauge

transformations which are trivial at infinity. Therefore we see that a solution of the Weyl equation

are labeled by G ⊕ ΠV , where G = {g : S4 → G}.
We stress that it is not the moduli space, since we do not factor out the group of local gauge

transformations G.

Now we have enough information to reconstruct the equivariant index of the Dirac operator.

It is given by the sum of T action weights to fixed points.
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Since the gauge transformation g should be ∂̄-closed, that is, holomorphic, we conclude that

g =
∑

n1,n2≥0

gn1,n2z
n1
1 zn2

2 .

The weights of the T action on g are

wα = ial + in1ε1 + in2ε2, l = 1, . . . , N, n1, n2 ≥ 0.

The T action on ΠV is given by ξ 7→ e−iε+ qDξ where qD ∈ TD . It follows that the weights are

given by

wα = iφi − iε+, i = 1, . . . , k.

Now we recall that the contribution of the fermionic variables comes with εα = −1 (see remark

below (3.29)). It implies that the equivariant index equals to

Indfund
q =

N∑

l=1

∑

n1,n2≥0

eial+in1ε1+in2ε2 −
k∑

i=1

eiφi−iε+

which is equivalent to (5.2) after applying (5.3).

5.3 Equivariant index for other groups

In a similar way we can find the equivariant index for the fundamental representation of SO(N)

and Sp(N).

5.3.1 SO(N) case

Let N = 2n+ χ where n = [N/2] and χ ≡ N (mod 2). Then

Indfund
q =

1

(eiε1 −1)(eiε2 −1)

(
χ+

n∑

l=1

(
eial + e−ial

)
)

−
k∑

i=1

(
eiφi−iε+ + e−iφi−iε+

)
. (5.5)

5.3.2 Sp(N) case

Let k = 2n+ χ where n = [k/2] and χ ≡ k (mod 2). Then

Indfund
q =

1

(eiε1 −1)(eiε2 −1)

N∑

l=1

(
eial + e−ial

)
−

n∑

i=1

(
eiφi + e−iφi +χ

)
. (5.6)
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5.4 Equivariant index for other representations

Having computed the equivariant index for the fundamental representation let us turn to others

representations.

5.4.1 SU(N) case

As it was explained in [60] the equivariant index for the adjoint representation of SU(N) can be

obtained as follows:

Indadj
q =

∑

α

εα ewα =

∫

C2

Chq(E ⊗ E∗) Tdq(C
2)

=

∫

C2

Chq(E) Chq(E∗) Tdq(C
2) =

Chq(E) Chq(E∗)|z1=z2=0

(eiε1 −1)(eiε2 −1)
.

(5.7)

We can use the expression (5.2) to compute this index. The result is

Indadj
q =

1

(eiε1 −1)(eiε2 −1)



N +

N∑

l6=m

eial−iam





−
k∑

i=1

N∑

l=1

(
eiφi−iε+−ial + e−iφi+ial−iε+

)
+ k(1 − e−iε1 )(1 − e−iε2 )

+

k∑

i6=j

(
eiφi−iφj + eiφi−iφj−iε1−iε2 − eiφi−iφj−iε1 − eiφi−iφj−iε2

)
.

(5.8)

At the same way the indices for symmetric and antisymmetric representations can be obtained.

Denote

Chsym
q (E) = Chq(Sym2 E),

Chant
q (E) = Chq(∧2E).

If Chfund
q (E) =

∑
α εα ewα then

Chsym,ant
q (E) =

1

2

[(
Chfund

q

)2

± Chfund
q2

]
=

1

2

[(∑

α

εα ewa

)2

±
∑

α

εα e2wα

]
. (5.9)

We can now apply the analog of (5.7) to compute the equivariant index for these representations.
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The result is the following:

Indsym
q =

1

(eiε1 −1)(eiε2 −1)

∑

l≤m≤N

eial+iam

−
N∑

l=1

k∑

i=1

eial+iφi−iε+ −
k∑

i=1

(
e2iφi−iε1 + e2iφi−iε2

)

+
∑

i<j≤k

(
eiφi+iφj + eiφi+iφj−iε1−iε2 − eiφi+iφj−iε1 − eiφi+iφj−iε2

)
,

(5.10)

Indant
q =

1

(eiε1 −1)(eiε2 −1)

∑

l<m≤N

eial+iam

−
N∑

l=1

k∑

i=1

eial+iφi−iε+ +

k∑

i=1

(
e2iφi + e2iφi−iε1−iε2

)

+
∑

i<j≤k

(
eiφi+iφj + eiφi+iφj−iε1−iε2 − eiφi+iφj−iε1 − eiφi+iφj−iε2

)
.

(5.11)

5.4.2 SO(N) case

Using Table B.1 we see that the adjoint representation of SO(N) is the antisymmetric one. So

using (5.5) together with (5.9) we get

Indadj
q =

1

(eiε1 −1)(eε2 −1)



∑

l<m≤n

(
eial+iam + eial−iam + e−ial+iam + e−ial−iam

)

+ χ

n∑

l=1

(
eial + e−ial

)
+ n

]
+ χ

k∑

i=1

(
eiφi−iε+ + e−iφi−iε+

)

+

k∑

i=1

n∑

l=1

(
eiφi+ial−iε+ + e−iφi+ial−iε+ + eiφi−ial−iε+ + e−iφi−ial−iε+

)

+

k∑

i=1

(
e2iφi + e−2iφi + e2iφi−iε + e−2iφi−iε

)
+ k(1 − e−iε1)(1 − e−iε2)

+ (1 − e−iε1)(1 − e−iε2 )
∑

i<j≤k

(
eiφi+iφj + eiφi−iφj + e−iφi+iφj + e−iφi−iφj

)

(5.12)
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5.4.3 Sp(N) case

Table B.1 shows that the adjoint representation of Sp(N) is the symmetric representation. Using

(5.6) and (5.9) we get:

Indadj
q =

1

(eiε1 −1)(eiε2 −1)



∑

l<m≤N

(
eial+iam + eial−iam + e−ial+iam + e−ial−iam

)

+

N∑

l=1

(
e2ial + e−2ial

)
+N

]
− χ

N∑

l=1

(
eial−iε+ + e−ial−iε+

)

−
N∑

l=1

n∑

i=1

(
eial+iφi−iε+ + eial−iφi−iε+ + e−ial+iφi−iε+ + e−ial−iφi−iε+

)

− χ
(
e−iε1 + e−iε2

)
+ (1 − e−iε1 )(1 − e−iε2)

[
n+ χ

n∑

i=1

(
eiφi + e−iφi

)
]

+ (1 − e−iε1 )(1 − e−iε2)
∑

i<j≤n

(
eiφi+iφj + eiφi−iφj + e−iφi+iφj + e−iφi−iφj

)

−
(
e−iε1 + e−iε2

) n∑

i=1

(
e2iφi + e−2iφi

)
.

(5.13)

Another case that we will be interested in is the antisymmetric representation of Sp(N). Using

(5.6) and (5.9) we get

Indant
q =

1

(eiε1 −1)(eiε2 −1)




∑

l<m≤N

(
eial+iam + eial−iam + e−ial+iam

+ e−ial−iam
)

+N
]
− χ

N∑

l=1

(
eial−iε+ + e−ial−iε+

)
+ χ

(
1 + e−iε

)

−
N∑

l=1

n∑

i=1

(
eial+iφi−iε+ + eial−iφi−iε+ + e−ial+iφi−iε+ + e−ial−iφi−iε+

)

+ (1 − e−iε1 )(1 − e−iε2)

[
n+ χ

n∑

i=1

(
eiφi + e−iφi

)
]

+ (1 − e−iε1 )(1 − e−iε2)
∑

i<j≤n

(
eiφi+iφj + eiφi−iφj + e−iφi+iφj + e−iφi−iφj

)

+
(
1 + e−iε

) n∑

i=1

(
e2iφi + e−2iφi

)
.

(5.14)
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5.5 Partition function

Now we are ready to write the expression for the pertition function (3.39). First we note that since

the tangent space to a point belonging to bundle is a direct sum of the tanget space to the point

of the base and the tangent space to the point of the fiber. Taking into account the statistics of

the fields (recall that the Yang-Mills connection Aµ belongs to the adjoint representation of the

gauge group) we can write

Indq = Indadj,gauge
q −

∑

%∈reps

Ind%,matter
q . (5.15)

The transformation (3.30) converts the sum to a product. In order to get the k-instanton partition

function Zk(a,m; ε) we should integrate over t = Lie(TD). We have to keep in mind the order of

the Weyl group which we should divide the integral on.

Let us realize this program step-by-step. Compute first the weights products (3.30) for (almost)

all cases allowed by the asymptotic freedom. We will consider all the matter representations

contained in a tensor power of the fundamental one. For SU(N) we can get all the representations

in such a way. However, for other groups this is not the case. For example for SO(N) we will

miss some spinor representations. We should find all the solutions of the equation β ≥ 0 where β

is defined by the righthand side of (B.1). Using Table B.1 we get the following list (Table 5.1) of

asymptotically free models.

Here we give the expression for the building blocks which are necessary to construct all the

cases listed above.

5.5.1 SU(N) case

As it was noticed in the end of the section (3.5) the partition function is the product of the

perturbative part Zpert(a,m,Λ; ε) and

∞∑

k=0

qk
∫ k∏

i=1

dφi
2πi

zk(a, φ,m; ε).

Remark. The term Zpert(a,m,Λ; ε) comes from the first terms in (5.4), (5.8), (5.10), (5.11) respec-

tively. Under the transformation (3.30) these terms become the infinite products to be regularized.

It can be shown [69, 70] that after the proper time regularization they give precisely the perturba-

tive contribution to the prepotential (2.6) (in the ε1, ε2 → 0 limit, see section 6.3). In that follows
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• SU(N):

– Nf fundamental multiplets, Nf ≤ 2N ,

– 1 antisymmetric multiplet and Nf fundamental, Nf ≤ N + 2,

– 1 symmetric multiplet and Nf fundamental, Nf ≤ N − 2,

– 2 antisymmetric and Nf fundamental, Nf ≤ 4,

– 1 symmetric and 1 antisymmetric multiplet,

– 1 adjoint multiplet.

• SO(N):

– Nf fundamental multiplet, Nf ≤ N − 2,

– 1 adjoint multiplet.

• Sp(N):

– Nf fundamental multiplet, Nf ≤ N + 2,

– 1 antisymmetric multiplet and Nf fundamental, Nf ≤ 4,

– 1 adjoint multiplet.

Table 5.1: Models allowed by the asymptotic freedom

we will drop this term in all calculations and restore it, if ever, only in the final result. 2

We use the definition (4.5). Then

zfund
k (a, φ,m; ε) =

k∏

i=1

(φi +m− ε+), (5.16)

zadj,gauge
k (a, φ; ε) =

εk

εk1ε
k
2

∆−(0)∆−(ε)

∆−(ε1)∆−(ε2)

k∏

i=1

1

P(φi + ε+)P(φi − ε+)
, (5.17)

zadj,matter
k (a, φ,m; ε) =

(m− ε1)
k(m− ε2)

k

(m− ε)kmk

∆−(m− ε1)∆−(m− ε2)

∆−(m)∆−(m− ε)

×
k∏

k=1

P(φi −m+ ε+)P(φi +m− ε+),

(5.18)

zsym
k (a, φ,m; ε) =

∆+(m− ε1)∆+(m− ε2)

∆+(m)∆+(m− ε)

×
k∏

i=1

(2φi +m− ε1)(2φi +m− ε2)P(−φi −m+ ε+),

(5.19)
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zant
k (a, φ,m; ε) =

∆+(m− ε1)∆+(m− ε2)

∆+(m)∆+(m− ε)

k∏

i=1

P(−φi −m+ ε+)

(2φi +m)(2φi +m− ε)
. (5.20)

To find similar expressions for SO(N) and Sp(N) we use (5.5), (5.12), (5.6), (5.14) and (5.13).

The result is the following.

5.5.2 SO(N) case

We will use the notations introduced in (4.9). Then

zfund
k (a, φ,m; ε) =

k∏

i=1

((m− ε+)2 − φ2
i ), (5.21)

zadj,gauge
k (a, φ; ε) =

εk

εk1ε
k
2

∆(0)∆(ε)

∆(ε1)∆(ε2)

k∏

i=1

4φ2
i (4φ

2
i − ε2)

P(φi + ε+)P(φi − ε+)
, (5.22)

zadj,matter
k (a, φ,m; ε) =

(m− ε1)
k(m− ε2)

k

mk(m− ε)k
∆(m− ε1)∆(m− ε2)

∆(m)∆(m− ε)

×
k∏

i=1

P(φi +m− ε+)P(φi −m+ ε+)

(4φ2
i −m2)(4φ2

i − (m− ε)2)
.

(5.23)

5.5.3 Sp(N) case

We use the definition (4.11). Then

zfund
k (a, φ,m; ε) = (m− ε+)χ

n∏

i=1

((m− ε+)2 − φ2
i ), (5.24)

zadj,gauge
k (a, φ; ε) =

εn

εn1 ε
n
2

[
1

ε1ε2
∏N
l=1(ε

2
+ − a2

l )

n∏

i=1

φ2
i (φ

2
i − ε2)

(φ2
i − ε21)(φ

2
i − ε22)

]χ

× ∆(0)∆(ε)

∆(ε1)∆(ε2)

n∏

i=1

1

P(φi − ε+)P(φi + ε+)(4φ2
i − ε21)(4φ

2
i − ε22)

,

(5.25)
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zadj,matter
k (a, φ,m; ε) =

(m− ε1)
n(m− ε2)

n

mn(m− ε)n
∆(m− ε1)∆(m− ε2)

∆(m)∆(m − ε)

×
[
(m− ε1)(m− ε2)

N∏

l=1

(
(m− ε+)2 − a2

l

) n∏

i=1

(φ2
i − (m− ε1)

2)(φ2
i − (m− ε2)

2)

(φ2
i −m2)(φ2

i − (m− ε)2)

]χ

×
n∏

i=1

P(φi +m− ε+)P(φi −m+ ε+)
2∏

s=1

(4φ2
i − (m− εs)

2),

(5.26)

zant
k (a, φ,m; ε) =

(m− ε1)
n(m− ε2)

n

mn(m− ε)n
∆(m− ε1)∆(m − ε2)

∆(m)∆(m− ε)

×
[∏N

l=1((m− ε+)2 − a2
l )

m(m− ε)

n∏

i=1

(φ2
i − (m− ε1)

2
)(φ2

i − (m− ε2)
2
)

(φ2
i −m2)(φ2

i − (m− ε)
2
)

]χ

×
n∏

i=1

P(φi +m− ε+)P(φi −m+ ε+)

(4φ2
i −m2)(4φ2

i − (m− ε)
2
)

.

(5.27)

Now we should perform the integration over TD . The orders of the Weyl group of the dual group

|WD| can be found in Table B.1. Finally for a theory with some matter multiplets we get the

following expression:

Zk(a,m; ε) =
1

|WD |

∮ k∏

i=1

dφi
2πi

zadj,gauge
k (a, φ; ε)

∏

%∈reps

z%,matter
k (a,m%, φ; ε) (5.28)

Remark. The expressions for the adjoint representation integrand zk(q) for SO(N) and Sp(N)

coincides with the expressions which can be obtained from the direct analysis of the instanton

moduli space for these groups (4.6), (4.10), (4.12), (4.14) [69, 71]. 2

To compute the contour integral we need a contour bypassing prescription. It can be

obtained, as explained in [71], by considering the four dimensional theory as a limit of a

five dimensional theory, where the complexified torus TC acts on. As a result we obtain

(ε1, ε2,m) 7→ (ε1 + i0, ε2 + i0,m − i0) prescription. It worth noting that the prescription for

masses m coincides with the Feynman prescription for bypassing the physical poles. See also the

remark at the end of section 4.1.1. The contour can be closed on the upper or lower complex

halfplain. The choice is irrelevant since the residue at infinity of the integrand vanishes.
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Group Multiplet Factor of S(x)

Adjoint, gauge
1

∏N
l=1 (x− al)

2

Fundamental x+m

SU(N) Symmetric (2x+m)2
∏N
l=1(x+ al +m)

Antisymmetric
1

(2x+m)2
∏N
l=1(x+ al +m)

Adjoint, matter
∏N
l=1((x− al)

2 −m2)

Adjoint, gauge
x4−2χ

∏n
l=1 (x2 − a2

l )
2

SO(2n+ χ) Fundamental x2 −m2

(χ = 0, 1) Adjoint, matter
(x2 −m2)

χ

4x2 −m2

∏n
l=1((x +m)

2 − a2
l )((x −m)

2 − a2
l )

Adjoint, gauge
1

x4
∏N
l=1 (x2 − a2

l )
2

Sp(N) Fundamental x2 −m2

Antisymmetric

∏N
l=1((x +m)2 − a2

l )((x−m)2 − a2
l )

(4x2 −m2)
2

Adjoint, matter (4x2 −m2)
2∏N

l=1((x+m)2 − a2
l )((x −m)2 − a2

l )

Table 5.2: S(x) building blocks

5.6 1-instanton corrections and residue functions

Formula (5.28), yet far from the final result, allows, however, to perform various checks. In

particular, we can check this formula against the known one instanton corrections.

After the work of Seiberg and Witten [77] the 1-instanton corrections was computed for

numerous combinations of (classical) groups and matter content. In particular, in references

[67, 36, 35, 37, 22, 23, 25, 33] it was done for all cases allowed by asymptotic freedom.

In [37, 34, 33, 32] it was pointed out that in all cases the one instanton corrections can be

described with the help of a rational function S(x) referred as a master function or residue function.

This function appears in the hyperelliptic truncation of the Seiberg-Witten curve as follows:

y(z) +
1

y(z)
=

1√
S(z)Λβ

. (5.29)

The rules to construct such a function was proposed in [33, 32]. We have put them to the Table

5.2

The residue function has double and quadratic poles. Denote the corresponding “residues” as
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follows:

S(x) ∼ S2(x0)

(x− x0)2
, S(x) ∼ S4(y0)

(x− y0)4
.

Then in many cases the one instanton corrections are given by

F1(a,m) =

N∑

l=1

S2(al). (5.30)

If the model contains one antisymmetric representation of SU(N) or the adjoint of SO(N)

one should add to (5.30) term −2S2(−m/2), where m is the mass of corresponding matter

multiplet. For two antisymmetric multiplets of SU(N) with masses m1 and m2 one adds

−2S2(−m1/2) − 2S2(−m2/2).

Finally for the group Sp(N) we have a quite different expression. One instanton corrections

for all matter multiplets is given by

F1(a,m) =
√
S4(0).

The aim of this section is to show how the notion of the master function naturally appears in

our approach. This analysis allows us to state that one instanton corrections computed by our

method match with one instanton corrections computed from M -theory curves.

Put k = 1. The 1-instanton contribution to the partition function (5.28) is given by

Z1(a,m; ε) =

∮
dφ

2πi
z1(a,m, φ; ε). (5.31)

The 1-instanton correction to the prepotential can be extracted from Z1(a,m, ε) according to

Z1(a,m; ε) =
1

ε1ε2
F1(a,m) + . . . , (5.32)

where “. . . ” denotes all terms containing nonnegative powers of ε1, ε2. Combining these two

formulae we get

F1(a,m) = lim
ε1,ε2→0

ε1ε2

∮
dφ

2πi
z1(a,m, φ; ε).

Analysis of (5.16), (5.17), (5.18), (5.20), (5.19), (5.21), (5.22), (5.23), (5.24), (5.25), (5.26), and

(5.27) together with (5.28) shows that one can establish the rule to construct z1(a,m, ε, φ) (see

Table 5.3).
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Group Multiplet Factor of z1(a,m, φ; ε)

Adjoint, gauge
ε

ε1ε2

1
∏N
l=1((φ− al)2 − ε2+)

Fundamental φ+m− ε+
SU(N) Symmetric (2φ+m− ε1)(2φ+m− ε2)

∏N
l=1(φ+ al +m− ε+)

Antisymmetric

∏N
l=1(φ+ al +m− ε+)

(2φ+m)(2φ+m− ε)

Adjoint, matter
(m− ε1)(m− ε2)

(m− ε)m

∏N
l=1((φ− al)

2 − (m− ε+)2)

Adjoint, gauge
ε

ε1ε2

4φ2(4φ2 − ε2)

(φ2 − ε2+)χ
∏n
l=1((φ + ε+)2 − a2

l )((φ− ε+)2 − a2
l )

SO(2n+ χ) Fundamental (m− ε+)2 − φ2

(χ = 0, 1) Adjoint, matter
(m− ε1)(m− ε2)

m(m− ε)
(φ2 − (m− ε2+)2)χ

×
∏n
l=1((φ +m− ε+)2 − a2

l )((φ −m+ ε+)2 − a2
l )

(4φ2 −m2)(4φ2 − (m− ε)2)

Adjoint, gauge
1

ε1ε2
∏N
l=1(ε

2
+ − a2

l )
Sp(N) Fundamental (m− ε+)

Antisymmetric

∏N
l=1((m− ε+)2 − a2

l )

m(m− ε)

Adjoint, matter (m− ε1)(m− ε2)
∏N
l=1((m− ε+)2 − a2

l )

Table 5.3: z1(a,m, φ; ε) building blocks
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First observation is that that for SU(N) and SO(N) the following equality holds:

lim
ε1,ε2→0

ε1ε2
ε
z1(a,m, φ; ε) = S(φ).

Hence one can call z1(a,m, φ; ε) a deformed residue function. Using the properties of the contour

integration ∮
dφ

2πi

1

(φ− x0 − ε+)(φ − x0 + ε+)
=

1

ε

we arrive to the rule announce after (5.30).

Remark. For Sp(N) the integrand does not depend on φ. It means that for Sp(N) the one instanton

corrections are given by

F1(a,m) = lim
ε1,ε2→0

ε1ε2z1(a,m; ε).

The rule for the residue function proposed in [33, 32] are such that

√
S4(0) = lim

ε1,ε2→0
ε1ε2z1(a,m; ε).

This proves the validity of our formulae in the case of Sp(N). 2

The method of residue function, yet simple for k = 1 case, seems to be difficult to generalize

to other (k > 1) cases. The reason is both the complexity of (5.31) and (5.32) when k > 1. For

example (5.31) generalizes as follows (for SU(N) and SO(N), the Sp(N) case should be considered

separetely):

Zk(a,m; ε) =

∮ k∏

i=1

dφi
2πi

R(φ)

k∏

i=1

z1(a,m, φi; ε)

where R(φ) is a ratio of ∆’s products. The integral can be computed by hands in low k case. For

example, it was done in [62] for k ≤ 3 for SO(N) and Sp(N) pure Yang-Mills theories and for

k ≤ 2 for symmetric and antisymmetric representations of SU(N). Also these integrals can be

computed for general k in the case of SU(N) (fundamental and adjoint representations, [69]). See

the discussion in [62] of what happens in the case of other classical groups.



Chapter 6

Saddle point equations

The formal expression (5.28) allows, in principle, to compute all the instanton correction. However,

there are two objection: first, for general group and representation this is not known how to rewrite

this integral as a sum over the residues of the deformed residue function z1(a,m, φ; ε). Second

objection comes from the fact, that the representation of the prepotential as of the formal series

on Λ makes its analytical properties obscure. In particular, it is not clear how the prepotential

could be analytically continued beyond the convergence radius.

Fortunately, the Seiberg-Witten theory [77] can answer to the second question. Our goal in

this section is to explain how the Seiberg-Witten data can be extracted from (5.28).

6.1 Thermodynamic (classical) limit

In [70] the general method to extract the Seiberg-Witten data was proposed. The idea is the

following. The prepotential can be obtained from the partition function Z(a,m,Λ; ε) in the limit

ε1, ε2 → 0 (see (3.39)). One can show that in this limit the main contribution to the partition

function comes from k ∼ 1

ε1ε2
. It follows that in order to extract Seiberg-Witten data we don’t

need to examine the whole series (3.39). It is sufficient to consider the expression (5.28) taken in

the limit k → ∞.

In this limit the multiple integral on φi becomes Feynman integral over the density of φi’s. Each

φi can be seen as a physical quantity which corresponds to a “particle”. The instanton number k

plays the role of the number of such a “particles”. Another point of view is to consider the inverse

instanton number as a Plank constant in a quantum mechanical problem. The expression (5.28)

becomes the partition function of a system, described by a Hamiltonian, depending of the φi’s

95
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density.

In the thermodynamic (classical) limit k → ∞ this partition function can be computed by

the saddle point approximation. It means that the main contribution is given by a classical

configuration (we put aside the question of existence and uniqueness of such a configuration). The

prepotential appears as the “free energy” in this context. As we shall see the Seiberg-Witten data

appears naturally when we solve the equation of motion (saddle point equation).

After this short introduction let us pass to the concrete computations. First we note that the

thermodynamic (or quantum mechanical) problem is formulated by means of the action (Hamil-

tonian). The integrand in the Feynman integral generically has the form e−
1

ε1ε2
H . Therefore we

should convert the integrand of (5.28) into the similar form. Keeping in mind the origin of this

integrand (formula (3.30)) we can obtain a mnemonic rule to compute the Hamiltonian H directly

from the equivariant index of the Dirac operator:

Indq =
∑

α

εα ewα 7→
∏

α

wα
εα = exp

{
∑

α

εα lnwα

}
7→ Hε1,ε2 = −ε1ε2

∑

α

εα ln |wα|.

However, the Hamiltonian defined above contains much more information we need. Namely it

can be represented as a series over the nonnegative powers of ε1 and ε2. The only contribution

relevant in the thermodynamic limit comes from the terms independent of ε1 and ε2. Therefore

the expression for the Hamiltonian can be rewritten as follows:

Indq =
∑

α

εα ewα 7→ H = − lim
ε1,ε2→0

ε1ε2
∑

α

εα ln |wα|. (6.1)

Taking into account the additivity of the equivariant index (5.15) we conclude that

H = Hadj,gauge +
∑

%∈reps

H%,matter.

Remark. We have just established a rule to represent Zk(a,m; ε) given by (5.28) as an exponent

of a sum of ln |wα|’s. We can ask now what will change if we multiply Zk(a,m; ε) by Λkβ . The

answer is that we should replace ln |wα| with ln
∣∣∣
wα
Λ

∣∣∣. 2
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6.2 A trivial model example

To illustrate the phenomenon, where the series is evaluated by the saddle point we take the following

trivial example:

Z(Λ, ε) =

∞∑

k=0

1

k!

(
Λ

ε

)k
.

Suppose
Λ

ε
∈ R+ and Λ � ε. Then the series is dominated by the single term, where k = k? ∼ Λ/ε.

Stirling’s formula gives:

Z(Λ, ε) ∼ ek? ∼ exp
Λ

ε
.

Now this formula can be analytically continued to aritrary Λ ∈ C, and by expanding the answer

in powers of Λ we get correctly the terms in the original series for small k.

6.3 SU(N) case, pure Yang-Mills theory

Let us consider in some details the simplest case: the SU(N) theory without matter multiplets.

The weights are given by (5.8).

Let us show how the first term in (5.8) gives the perturbative correction to the prepotential

[70].

As we have already mentioned, the transformation (3.30) can be seen as the proper time

regularization. It is given by the formula

ei〈x,wα(p)〉 7→ d

ds

∣∣∣∣
s=0

Λs

Γ(s)

∫ ∞

0

dt

t
ts ei〈tx,wα(p)〉 = − ln

∣∣∣∣
〈x,wα(p)〉

Λ

∣∣∣∣ .

It follows that the contribution of the first term of (5.8) to the Hamiltonian (6.1) is given by

lim
ε1,ε2→0

ε1ε2

N∑

l,m=1

γε1,ε2(al − am,Λ)

where

γε1,ε2(x,Λ) =
d

ds

∣∣∣∣
s=0

Λs

Γ(s)

∫ ∞

0

dt

t
ts

eitx

(1 − eiε1t)(1 − eiε2t)
.

The ε expansion of γε1ε2 is given by

γε1,ε2(x,Λ) =
1

ε1ε2
kΛ(x) + . . . ,
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where “. . . ” are terms finite in the thermodynamic limit and

kΛ(x) =
1

2
x2

(
ln
∣∣∣
x

Λ

∣∣∣− 3

2

)
.

For more properties of γε1,ε2(x,Λ) see Appendix A in [70].

Finally the contribution to the Hamiltonian of the first term is given by

∑

l6=m

kΛ(al − am) =
∑

l6=m

1

2
(al − am)

2

(
ln

∣∣∣∣
al − am

Λ

∣∣∣∣−
3

2

)
.

In this expression we can recognize the perturbative part of the prepotential (2.6). It explains

the remark after (5.20).

To handle the last line in (5.8) we use the following identity:

f(0) + f(ε1 + ε2) − f(ε1) − f(ε2) = ε1ε2f
′′(0) + . . . ,

where “. . . ” are the higher ε-terms. It gives

ln(φi − φj) + ln(φi − φj − ε) − ln(φi − φj − ε2) − ln(φi − φj − ε1) = −ε1ε2
1

(φi − φj)
2 + . . . .

Finally with the help of (6.2) we have the following expression for the Hamiltonian:

H = −
∑

l6=m

kΛ(al − am) + 2ε1ε2

k∑

i=1

ln

∣∣∣∣
P(φi)

ΛN

∣∣∣∣+ (ε1ε2)
2
∑

i6=j

1

(φi − φj)
2

In the thermodynamic limit k → ∞ the number of φi’s becomes infinite. It is natural to introduce

its density which is normalizable in the limit. In order to keep the normalizability we define:

ρ(x) = ε1ε2

k∑

i=1

δ(x− φi). (6.2)

In the thermodynamic limit this function becomes smooth. With the help of the density function

the Hamiltonian can be rewritten as follows:

H = −
∑

l6=m

kΛ(al − am) + 2
N∑

l=1

∫
dxρ(x) ln

∣∣∣∣
x− al

Λ

∣∣∣∣+ −
∫

x6=y

dxdy
ρ(x)ρ(y)

(x − y)2
.

The obtained expression is rather suggestive. After integration by parts and introducing the
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profile function1

f(x) = −2ρ(x) +

N∑

l=1

|x− al| (6.3)

the Hamiltonian can be rewritten in a nice form:

H [f ] = −1

4

∫
dxdyf ′′(x)f ′′(y)kΛ(x− y). (6.4)

The partition function (3.39) can be represented as follows:

Z(a,m,Λ; ε) ∼
∫

Df e−
1

ε1ε2
Hε1,ε2 [f ]

. (6.5)

We are interested in the classical approximation of this integral only.

6.4 SU(N), matter multiplets

In this section we obtain expressions for the Hamiltonians similar to (6.4) for the matter multiplets

using the rule (6.1) and formulae (5.16), (5.18), (5.19), and (5.20).

6.4.1 Matter in the fundamental representation.

Hε1,ε2 =

N∑

l=1

kΛ(al +m) − ε1ε2

k∑

i=1

ln

∣∣∣∣
φi +m

Λ

∣∣∣∣

=
N∑

l=1

kΛ(al +m) −
∫

dxρ(x) ln

∣∣∣∣
x+m

Λ

∣∣∣∣ .

With the help of the profile function we can rewrite the Hamiltonian as follows:

H [f ] =
1

2

∫
dxdyf ′′(x)kΛ(x+m). (6.6)

6.4.2 Matter in the symmetric representation

We have

Hε1,ε2 =
∑

l≤m≤N

kΛ(al + am +m) − ε1ε2

k∑

i=1

ln

∣∣∣∣
P(−φi −m)

ΛN

∣∣∣∣

− 2ε1ε2

k∑

i=1

ln

∣∣∣∣
φi +m/2

Λ

∣∣∣∣− (ε1ε2)
2
∑

l≤m≤N

1

(φi + φj +m)
2 .

1in the SU(N) case this function is closely related to the profile of the Young tableaux, as defined in [70]
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The density function lets us to rewrite this expression as follows:

H =
∑

l≤m≤N

kΛ(al + am +m) −
∫

dxρ(x) ln

∣∣∣∣
P(−x−m)

ΛN

∣∣∣∣

− 2

∫
dxρ(x) ln

∣∣∣∣
x+m/2

Λ

∣∣∣∣−
1

2

∫
dxdy

ρ(x)ρ(y)

(x+ y +m)
2 .

Using the profile function we get finally

H [f ] =
1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x+ y +m) +

∫
dxf ′′(x)kΛ(x+m/2). (6.7)

6.4.3 Matter in the antisymmetric representation

Hε1,ε2 =
∑

l≤m≤N

kΛ(al + am +m) − ε1ε2

k∑

i=1

ln

∣∣∣∣
P(−φi −m)

ΛN

∣∣∣∣

+ 2ε1ε2

k∑

i=1

ln

∣∣∣∣
φi +m/2

Λ

∣∣∣∣− (ε1ε2)
2
∑

l≤m≤N

1

(φi + φj +m)2
.

The density function lets us to rewrite this expression as follows:

H =
∑

l≤m≤N

kΛ(al + am +m) −
∫

dxρ(x) ln

∣∣∣∣
P(−x−m)

ΛN

∣∣∣∣

+ 2

∫
dxρ(x) ln

∣∣∣∣
x+m/2

Λ

∣∣∣∣−
1

2

∫
dxdy

ρ(x)ρ(y)

(x+ y +m)
2 .

Using the profile function we get finally

H [f ] =
1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x+ y +m) −

∫
dxf ′′(x)kΛ(x+m/2). (6.8)

6.4.4 Matter in the adjoint representation

Hε1,ε2 =
∑

l6=m

kΛ(al − am +m) +NkΛ(m)

− ε1ε2

k∑

i=1

ln

∣∣∣∣
P(φi −m)P(φi +m)

Λ2N

∣∣∣∣− (ε1ε2)
2
∑

l6=m

1

(φi − φj +m)2
.
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The density function lets us to rewrite this expression as follows:

H =
∑

l6=m

kΛ(al − am +m) +NkΛ(m)

−
∫

dxρ(x) ln

∣∣∣∣
P(x−m)P(x+m)

Λ2N

∣∣∣∣−
∫

dxdy
ρ(x)ρ(y)

(x− y +m)2
.

Using the profile function we get

H [f ] =
1

4

∫
dxdyf ′′(x)f ′′(y)kΛ(x− y +m). (6.9)

6.5 SO(N) case

Now let us apply the rule (6.1) to the orthogonal group.

6.5.1 Pure gauge theory

Formulae (5.21), (5.22) and (5.23) lead to the following expression for the Hamiltonian

Hε1,ε2 = −2
∑

l<m≤n

(
kΛ(al − am) + kΛ(al + am)

)
− 2

n∑

l=1

kΛ(al)

+ 2(ε1ε2)
2
∑

i<j≤k

(
1

(φi − φj)
2 +

1

(φi + φj)
2

)

+ 2ε1ε2

k∑

i=1

ln

∣∣∣∣
P(φi)

Λ2n+χ

∣∣∣∣− 4ε1ε2

k∑

i=1

ln

∣∣∣∣
φi
Λ

∣∣∣∣ .

As in the SU(N) case we introduce the density function as follows:

ρ(x) = ε1ε2

k∑

i=1

(
δ(x − φi) + δ(x+ φi)

)
. (6.10)

Simple computation shows that

1

2
−
∫

dxdy
ρ(x)ρ(y)

(x − y)2
= 2(ε1ε2)

2
∑

i<j≤k

(
1

(φi − φj)
2 +

1

(φi + φj)
2

)
,

∫
dxρ(x) ln

∣∣∣∣
P(x)

Λ2n+χ

∣∣∣∣ = 2ε1ε2

k∑

i=1

ln

∣∣∣∣
P(φi)

Λ2n+χ

∣∣∣∣ .
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Using these formulae we get

H = −2
∑

l<m≤n

(
kΛ(al − am) + kΛ(al + am)

)
− 2

n∑

l=1

kΛ(al)

+
1

2
−
∫

dxdy
ρ(x)ρ(y)

(x− y)2
+

∫
dxρ(x) ln

∣∣∣∣
P(x)

Λ2n+χ

∣∣∣∣− 2

∫
dxρ(x) ln

∣∣∣
x

Λ

∣∣∣

Introducing the profile function

f(x) = −2ρ(x) + χ|x| +
n∑

l=1

(
|x− al| + |x+ al|

)
(6.11)

we rewrite the expression for the Hamiltonian as follows:

H [f ] = −1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x − y) +

∫
dxf ′′(x)kΛ(x). (6.12)

6.5.2 Matter in the fundamental representation

Formula (5.21) gives

Hε1,ε2 =

n∑

l=1

(
kΛ(al −m) + kΛ(al +m)

)
− ε1ε2

k∑

i=1

ln

∣∣∣∣
φ2
i −m2

Λ2

∣∣∣∣

=
n∑

l=1

(
kΛ(al −m) + kΛ(al +m)

)
−
∫

dxρ(x) ln

∣∣∣∣
x−m

Λ

∣∣∣∣ .

With the help of the profile function (6.11) it can be rewritten as follows:

H [f ] =
1

4

∫
dxf ′′(x)kΛ(x+m) +

1

4

∫
dxf ′′(x)kΛ(x −m). (6.13)
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6.5.3 Matter in the adjoint representation

Applying the rule (6.1) to (5.23) we get (for the perturbatif terms we use directly (5.12)):

Hε1,ε2 =
∑

l<m≤n

(
kΛ(al + am +m) + kΛ(al − am +m) + kΛ(−al + am +m)

+ kΛ(−al − am +m)
)

+ χ

n∑

l=1

(
kΛ(al +m) + kΛ(−al +m)

)
+ nkΛ(m)

− 2(ε1ε2)
2
∑

i<j≤k

(
(φi − φj)

2
+m2

((φi − φj)
2 −m2)

2 +
(φi + φj)

2
+m2

((φi + φj)
2 −m2)

2

)

− ε1ε2

k∑

i=1

ln

∣∣∣∣
P(φi +m)P(φi −m)

Λ4n+2χ

∣∣∣∣+ 2ε1ε2

k∑

i=1

ln

∣∣∣∣
φ2
i −m2/4

Λ2

∣∣∣∣ .

Using the following algebraic identity

1

(a+ b)
2 +

1

(a− b)
2 = 2

a2 + b2

(a2 − b2)
2 (6.14)

we can write using the density function (6.10):

1

2

∫
dxdy

ρ(x)ρ(y)

(x+ y +m)2
= 2(ε1ε2)

2
∑

i<j≤k

(
(φi + φj)

2
+m2

(φi + φj)
2 −m2)

2 +
(φi − φj)

2
+m2

((φi − φj)
2 −m2)

2

)
.

Thus the Hamiltonian can be rewritten as follows:

H =
∑

l<m≤n

(
kΛ(al + am +m) + kΛ(al − am +m) + kΛ(−al + am +m)

+ kΛ(−al − am +m)
)

+ χ

n∑

l=1

(
kΛ(al +m) + kΛ(−al +m)

)
+ nkΛ(m)

− 1

2

∫
dxdy

ρ(x)ρ(y)

(x + y +m)
2 −

∫
dxρ(x) ln

∣∣∣∣
P(x+m)

Λ2n+χ

∣∣∣∣+ 2

∫
dxρ(x) ln

∣∣∣∣
x+m/2

Λ

∣∣∣∣ .

Using the profile function we get

H [f ] =
1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x+ y +m) −

∫
dxf ′′(x)kΛ(x+m/2). (6.15)

6.6 Sp(N) case

Let us finally apply the rule (6.1) to the theories with the symplectic gauge group. We start with

the pure Yang-Mills theory.
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6.6.1 Pure gauge theory

Applying the rule (6.1) to formulae (5.24), (5.25), (5.26), and (5.27) we obtain:

Hε1,ε2 = −
N∑

l,m

(
kΛ(al − am) + kΛ(al + am)

)
−

N∑

l=1

kΛ(2al)

+ 2(ε1ε2)
2
∑

i<j≤n

(
1

(φi − φj)
2 +

1

(φi + φj)
2

)
+ 2ε1ε2

n∑

i=1

ln

∣∣∣∣
P(φi)φ

2
i

Λ2N+2

∣∣∣∣

+ 2χ(ε1ε2)
2

n∑

i=1

1

φ2
i

.

In order to reduce the sum to the integral introduce the density of φi’s as follows:

ρ(x) = ε1ε2

n∑

i=1

(
δ(x− φi) + δ(x+ φi)

)
. (6.16)

It follows that the relevant in the thermodynamic limit Hamiltonian is

H = −
N∑

l,m

(
kΛ(al − am) + kΛ(al + am)

)
−

N∑

l=1

kΛ(2al)

+
1

2
−
∫

dxdy
ρ(x)ρ(y)

(x− y)2
+

∫
dxρ(x) ln

∣∣∣∣
x2P(x)

Λ2N+2

∣∣∣∣

= −
N∑

l,m

(
kΛ(al − am) + kΛ(al + am)

)
−

N∑

l=1

kΛ(2al)

+
1

2
−
∫

dxdy
ρ(x)ρ(y)

(x− y)
2 +

1

2

∫
dxρ(x)

N∑

l=1

(
ln

∣∣∣∣
x− al

Λ

∣∣∣∣+ ln

∣∣∣∣
x+ al

Λ

∣∣∣∣
)

+ 2

∫
dxρ(x) ln

∣∣∣
x

Λ

∣∣∣ .

Remark. It worth noting that in the thermodynamic limit the last χ-dependent term becomes

irrelevant and therefore can be dropped. It seems naturals since in the k → ∞ limit the difference

between k-even and k-odd cases disappears. 2

Further simplification can be achieved after the integration twice by part and introducing the

following analogue of the profile function:

f(x) = −2ρ(x) +

N∑

l=1

(
|x− al| + |x+ al|

)
. (6.17)
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Note that this function (as well as (6.16)) is explicitly symmetric. Then

H [f ] = −1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x− y) −

∫
dxf ′′(x)kΛ(x). (6.18)

6.6.2 Matter in the fundamental representation

Formula (5.24) give

Hε1,ε2 =

N∑

l=1

(
kΛ(al −m) + kΛ(al +m)

)

− ε1ε2

n∑

i=1

ln |φ2
i −m2|

= −
N∑

l=1

(
kΛ(al −m) + kΛ(al +m)

)

= −1

2

∫
dxρ(x) ln

∣∣∣∣
x+m

Λ

∣∣∣∣−
1

2

∫
dxρ(x) ln

∣∣∣∣
x−m

Λ

∣∣∣∣ .

With the help of the profile function (6.17) we obtain

H [f ] =
1

4

∫
dxf ′′(x)kΛ(x−m) +

1

4

∫
dxf ′′(x)kΛ(x+m). (6.19)

6.6.3 Matter in the antisymmetric representation

We have (for the perturbative term we use directly (5.14))

Hε1,ε2 =
∑

l<m

(
kΛ(al + am +m) + kΛ(al − am +m)

+ kΛ(−al + am +m) + kΛ(−al − am +m)
)

+NkΛ(m)

− 2(ε1ε2)
2
∑

i<j≤n

(
(φi − φj)

2 +m2

((φi − φj)
2 −m2)

2 +
(φi + φj)

2 +m2

((φi + φj)
2 −m2)

2

)

− 2χ(ε1ε2)
2

n∑

i=1

φ2
i +m2

(φ2
i −m2)

2 − ε1ε2

n∑

i=1

ln

∣∣∣∣
P(φi +m)P(φi −m)

Λ4N

∣∣∣∣

+ 2ε1ε2

n∑

i=1

ln

∣∣∣∣
φ2
i −m2/4

Λ2

∣∣∣∣ .
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Using the algebraic identity (6.14) we can rewrite obtained expression with the help of the density

function (6.16) as follows:

H =
∑

l<m

(
kΛ(al + am +m) + kΛ(al − am +m)

+ kΛ(−al + am +m) + kΛ(−al − am +m)
)

+NkΛ(m)

− 1

2

∫
dxdy

ρ(x)ρ(y)

(x + y +m)
2 +

∫
dxρ(x)

(
ln

∣∣∣∣
x−m/2

Λ

∣∣∣∣+ ln

∣∣∣∣
x+m/2

Λ

∣∣∣∣
)

− 1

2

∫
dxρ(x)

N∑

l=1

(
ln

∣∣∣∣∣
(x+m)

2 − a2
l

Λ

∣∣∣∣∣+ ln

∣∣∣∣∣
(x−m)

2 − a2
l

Λ

∣∣∣∣∣

)
.

It can be rewritten using the profile function as well:

H [f ] =
1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x+ y +m) −

∫
dxf ′′(x)kΛ(x +m/2). (6.20)

6.6.4 Matter in the adjoint representation

After examination (5.26) we get

Hε1,ε2 =
∑

l<m≤N

(
kΛ(al + am +m) + kΛ(al − am +m) + kΛ(−al + am +m)

+ kΛ(−al − am +m)
)

+

N∑

l=1

(
kΛ(2al +m) + kΛ(−2al +m)

)
+NkΛ(m)

− 2(ε1ε2)
2
∑

i<j≤n

(
(φi − φj)

2 +m2

((φi − φj)
2 −m2)

2 +
(φi + φj)

2 +m2

((φi + φj)
2 −m2)

2

)

− 2χ(ε1ε2)
2

n∑

i=1

φ2
i +m2

(φ2
i −m2)

2 − ε1ε2

n∑

i=1

ln

∣∣∣∣
P(φi +m)P(φi −m)

Λ4N

∣∣∣∣

− 2ε1ε2

n∑

i=1

ln

∣∣∣∣
φ2
i −m2/4

Λ2

∣∣∣∣ .
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Group Multiplet Contribution to H[f ]

Adjoint, gauge −1

4

∫
dxdyf ′′(x)f ′′(y)kΛ(x− y)

Fundamental
1

2

∫
dxf ′′(x)kΛ(x+m)

SU(N) Symmetric
1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x+ y +m) +

∫
dxf ′′(x)kΛ(x+m/2)

Antisymmetric
1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x+ y +m) −

∫
dxf ′′(x)kΛ(x+m/2)

Adjoint, matter
1

4

∫
dxdyf ′′(x)f ′′(y)kΛ(x− y +m)

Adjoint, gauge −1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x + y) +

∫
dxf ′′(x)kΛ(x)

SO(N) Fundamental
1

2

∫
dxf ′′(x)kΛ(x+m)

Adjoint, matter
1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x+ y +m) −

∫
dxf ′′(x)kΛ(x+m/2)

Adjoint, gauge −1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x + y) −

∫
dxf ′′(x)kΛ(x)

Sp(N) Fundamental
1

2

∫
dxf ′′(x)kΛ(x+m)

Antisymmetric
1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x+ y +m) −

∫
dxf ′′(x)kΛ(x+m/2)

Adjoint, matter
1

8

∫
dxdyf ′′(x)f ′′(y)kΛ(x+ y +m) +

∫
dxf ′′(x)kΛ(x+m/2)

Table 6.1: Hamiltonians

With the help of the density function (6.16) it can be rewritten as

H =
∑

l<m≤N

(
kΛ(al + am +m) + kΛ(al − am +m) + kΛ(−al + am +m)

+ kΛ(−al − am +m)
)

+

N∑

l=1

(
kΛ(2al +m) + kΛ(−2al +m)

)
+NkΛ(m)

− 1

2

∫
dxdy

ρ(x)ρ(y)

(x + y +m)
2 −

∫
dxρ(x)

(
ln

∣∣∣∣
x−m/2

Λ

∣∣∣∣+ ln

∣∣∣∣
x+m/2

Λ

∣∣∣∣
)

− 1

2

∫
dxρ(x)

N∑

l=1

(
ln

∣∣∣∣∣
(x+m)2 − a2

l

Λ

∣∣∣∣∣+ ln

∣∣∣∣∣
(x−m)2 − a2

l

Λ

∣∣∣∣∣

)
.

In terms of f(x) it becomes

H [f ] =
1

8

∫
dxf ′′(x)f ′′(y)kΛ(x+ y +m) +

∫
dxf ′′(x)kΛ(x+m/2). (6.21)
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6.7 Hamiltonians

Let us put the result obtained above to the table. Recall the definitions (6.2), (6.3), (6.10), (6.11),

(6.16) and (6.17):

• SU(N):

ρ(x) = ε1ε2

k∑

i=1

δ(x− φi),

f(x) = −2ρ(x) +
N∑

l=1

|x− al|,

• SO(2n+ χ):

ρ(x) = ε1ε2

k∑

i=1

(
δ(x− φi) + δ(x + φi)

)
,

f(x) = −2ρ(x) +

n∑

l=1

(
|x− al| + |x+ al|

)
+ χ|x|,

• Sp(N): Let k = 2n+ χ, χ = 0, 1.

ρ(x) = ε1ε2

n∑

i=1

(
δ(x− φi) + δ(x+ φi)

)
,

f(x) = −2ρ(x) +

N∑

l=1

(
|x− al| + |x+ al|

)
.

Note that in the case of SO(N) and Sp(N) the density function and the profile function are

symmetric.

The Table 6.1 contains formulae (6.4), (6.6), (6.8), (6.7), (6.9), (6.12), (6.13), (6.15), (6.21),

(6.19), (6.20), (6.21).

6.8 Profile function properties

Let us briefly discuss some properties of the profile function f(x).

First of all we note that since ρ(x) has a compact support f(x) behaves like d|x| when x→ ±∞,

where d is the number of connected pieces of the support of f(x). It equals to the dimension of

the fundamental representation.

In general when |al − am| � Λ , l 6= m, the support of ρ(x) is a union of d disjoint intervals.
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Each of them contains one of al’s. Let [α−
l , α

+
l ] be such an interval: al ∈ [α+

l , α
−
l ]. Then

∫ α+
l

α−
l

f ′′(x)dx = 2

∫ α+
l

α−
l

(
δ(x − al) − ρ′′(x)

)
dx = 2. (6.22)

It follows that ∫

R

f ′′(x)dx = 2d.

∫ α+
l

α−

l

xf ′′(x)dx = 2

∫ α+
l

α−

l

x
(
δ(x− al) − ρ′′(x)

)
dx

= 2al − 2
(
xρ′(x) − ρ(x)

)∣∣∣
α+

l

α−

l

= 2al.

(6.23)

The sum
∑d
l=1 al equals zero for all group we consider and therefore we have

∫

R

xf ′′(x)dx = 2

d∑

l=1

al = 0.

Using the definition of ρ(x) for SU(N) (6.2) we have

∫

R

x2f ′′(x)dx = 2

∫

R

x2

(
N∑

l=1

δ(x− al) − ρ′′(x)

)
dx

= 2

N∑

l=1

a2
l − 4

∫

R

ρ(x)dx = 2

N∑

l=1

al
2 − 4ε1ε2k.

(6.24)

It follows that this integral fixes the relation between the instanton number k and
1

ε1ε2
.

The equation (6.24) can be used to represent the factor qk in the form similar to (6.5). Indeed,

we have

qk = exp
1

ε1ε2

{
πiτ

N∑

l=1

a2
l −

πiτ

2

∫

R

x2f ′′(x)dx

}

= Λkβ exp
1

ε1ε2

{
πiτ0〈a, a〉 −

πiτ0
2

∫

R

x2f ′′(x)dx

}
.

(6.25)

The first term in the curly brackets can be identified with the classical prepotential (2.5). The

second term in general should be added to the Hamiltonian. However, for the non-conformal

theories, as it was already mentioned, τ0 can be neglected, and so this term is irrelevant. It

becomes relevant only in the conformal theories.
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6.9 Lagrange multipliers

In (6.5) the integration is taken only over the functions satisfying the condition (6.23). This

condition is rather complicated to be considered as the definition of the domain of the functional

integration.

However we can extend this domain to all the functions after introducing the Lagrange mul-

tipliers. The standard way is the following: let ξ1, ..., ξd be the multipliers. Then instead of the

Hamiltonian H [f ] we should minimize the following (Lagrange) functional:

L[f, ξ] = H [f ] +

d∑

l=1

ξl

(
1

2

∫ α+
l

α−
l

xf ′′(x)dx − al

)

= S[f, ξ] −
d∑

l=1

ξlal.

(6.26)

where

S[f, ξ] = H [f ] +
1

2

d∑

l=1

ξl

∫ α+
l

α−
l

xf ′′(x)dx. (6.27)

Having found the minimizer f?(x) of L[f, ξ] we should also find the stationary point with respect

to ξl. This provide the condition (6.23). In other words S[f, ξ] should satisfy

∂S[f?, ξ]

∂ξl

∣∣∣∣
f?=const

= al. (6.28)

where the ξ-dependence of f?(x) can be neglected since the derivative of the functional with respect

to function is zero at the minimizer. This equation determines ξl as some functions of al. Plugging

back these functions into (6.26) we obtain the value of the Hamiltonian at the critical point. That

is, the (minus) prepotential. Otherwise the function S[f?, ξ] is nothing but the Legendre transform

of −F(a,m).

Note that since
∑d

l=1 al = 0 the sum of ξl is not fixed by this procedure.

The last term in (6.27) requires the knowledge of the support of the minimizer f?(x) which itself

is to be found. Hence the constraints can not be imposed in the form presented above. However

another way exists [70]. Note that f ′(−∞) = −d, f ′(+∞) = d and thanks to (6.22)

f ′(α+
l ) − f ′(α−

l ) =

∫ α+
l

α−
l

f ′′(x)dx = 2.

Hence we can introduce a piecewise linear function (the surface tension function) σ(t) such that
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σ′(t) = ξl when t = f ′(x), x ∈ [α−
l , α

+
l ], that is, t ∈ (−d+ 2(l− 1),−d+ 2l). With the help of this

function we can rewrite the last term in (6.27) as follows

1

2

d∑

l=1

ξl

∫ α+
l

α−
l

xf ′′(x)dx = −1

2
−
∫

R

σ(f ′(x))dx (6.29)

provided σ(d) + σ(−d) = 0. Together with the definition of σ(t) it implies
∑d

l=1 ξl = 0 and all the

ξl’s are now defined.

The discussion presented above implies that in order to determine the prepotential we have

proceed the following steps:

• find the minimizer f?(x) of the Lagrange functional:

S[f, ξ] = H [f ] − 1

2
−
∫

R

σ(f ′(x))dx, (6.30)

where the Hamiltonian H [f ] is defined for each model with the help of Table 6.1,

• in order to obtain the prepotential we need to perform the Legendre transform with respect

to ξ of S[f?, ξ].

As we shall see in the next section the Seiberg-Witten curves appear naturally while performing

these steps.
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Chapter 7

Seiberg-Witten geometry

In this chapter we consider some examples of the saddle point equations and their solution. Let

start with an example of SU(N): pure Yang-Mills theory and matter in fundamental representation

[70].

7.1 Example: SU(N), pure Yang-Mills and fundamental

matter

Let Nf be the number of flavors. With the help of the Table 6.1 we can write the Hamiltonian of

the model:

H [f ] = −1

4

∫
dxdyf ′′(x)f ′′(y)kΛ(x− y) +

Nf∑

f=1

1

2

∫
dxf ′′(x)kΛ(x+mf ).

In order to minimize the functional (6.30) we note, that it naturally depends not on f(x), but

rather on f ′(x). The saddle point (Euler-Lagrange) equations for f ′(x) are

2
δS[f, ξ]

δf ′(x)
=

∫
dyf ′′(y)k′

Λ(x− y) −
Nf∑

f=1

k′Λ(x+mf ) − σ′(f ′(x)) = 0. (7.1)

Using the definition of σ(t) we conclude that σ′(f ′(x)) = ξl when x ∈ [α−
l , α

+
l ]. When x is outside

of the support of f ′′(x), say x ∈ (α+
l , α

−
l+1), we can not determine σ′(f ′(x)). The only thing we

can say is that in this case ξl ≤ σ′(f ′(x)) ≤ ξl+1.

113
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Figure 7.1: Conformal map for SU(3), Nf = 2

Taking the derivative we obtain:

∫
dyf ′′(y) ln

∣∣∣∣
x− y

Λ

∣∣∣∣−
Nf∑

f=1

ln

∣∣∣∣
x+mf

Λ

∣∣∣∣ = 0, x ∈ [α−
l , α

+
l ]. (7.2)

In order to go further we exploit the primitive of the Sokhotski formula:

ln(x+ i0) = ln |x| − iπH (−x),

where H (x) is the Heaviside step function:

H (x) =





1, x > 0,

0, x < 0.

Define the primitive of the resolvent of f ′′(x):

F (z) =
1

4πi

∫

R

dyf ′′(y) ln

(
z − y

Λ

)
.

For F (x) we obtain the following equation:

F (x) −
Nf∑

a=1

1

4πi
ln

(
x+mf

Λ

)
= ϕ(x), (7.3)

where the complex map ϕ(x) maps the real axis to boundary of the domain on the figure 7.1. It

is holomorphic (since the lefthand side is). It follows that ϕ(z) maps the upper half-plane to the

domain. Suppose that |al − am| � Λ if l 6= m and mf � al for all f and l. This information is
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sufficient to reconstruct this map. One gets (up to an additive constant):

ϕ(z) =
1

2π
arccos

P (z)

2Λβ/2
√
Q(z)

, (7.4)

where according to (B.1) β = 2N −Nf and

Q(x) =

Nf∏

f=1

(x+mf ), P (x) =
N∏

l=1

(x− αl).

We have introduces parameters αl ∈ [α−
l , α

+
l ] which are the classical values of the Higgs vevs.

Define y(z) = exp 2πiF (z). Then the solution we have obtained can be written as an equation

for y(z):

y2(z) − P (z)y(z) + ΛβQ(z) = 0. (7.5)

The endpoints of f ′′(x)’s support satisfy the equation

P 2(α±
l ) − ΛβQ(α±

l ) = 0.

The Riemann surface of the function y(z) is the two-fold covering of the Riemann sphere. It

has cut which connect these two folds along the support of the profile function. Let us define the

basic cycles of this Riemann surface (figure 7.2). We see that the intersection number satisfies

Al#Bm = δl,m.

Using some resolvent properties and (6.23) one shows that

1

2

∫ α+
l

α−
l

xf ′′(x)dx =

∮

Al

zdF (z) =

∮

Al

1

2πi
z
dy

y
= al.

Using the saddle point equation (7.1) we conclude that

ξl+1 − ξl
2πi

= 2

∫ α−
l−1

α+
l



F (z) −
Nf∑

f=1

1

4πi
ln

(
z +mf

Λ

)

dz

= −2

∫ α−
l−1

α+
l

z



dF (z) −
Nf∑

f=1

1

4πi

dz

z +mf



 = −
∮

Bl+1−Bl

1

2πi
z
dy

y
.
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Al

Bm

Am

Figure 7.2: Basic cycles

Performing the Legendre transform inverse to (6.28) we obtain

∂F
∂al

= 2πi

∮

Bl

1

2πi
z
dy

y
.

It follows that the prepotential for this theory can be reconstructed with the help of the Seiberg-

Witten data: the curve (7.5) and the meromorphic differential

λ =
1

2πi
z
dy

y
= zdF (z). (7.6)

7.2 Fundamental matter for SO(N) and Sp(N)

In this section we extend the previous analysis for the matter in fundamental representation to

other classical groups: SO(N) and Sp(N).

7.2.1 SO(N) case

With the help of the Table 6.1 we obtain the Hamiltonian. In order to obtain the saddle point

equation we should take the variation with respect to the symmetric functions. The function σ(t)
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is also supposed to be symmetric. The equation we get is

∫
dyf ′′(y)k′

Λ(x− y) − 4k′Λ(x) −
Nf∑

f=1

(
k′Λ(x+mf ) + k′Λ(x−mf )

)
− 2σ′(f ′(x)) = 0.

We see that this equation coincides with (7.1) for 2Nf + 4 fundamental multiplets with masses

(0, 0, 0, 0,m1,−m1, . . . ,mf ,−mf ). It follows that the same should be true for the prepotential

[23].

Remark. One could be worried about N -odd case, where one of the Higgs field vevs, which is equals

to zero, matches with the zero mass coming form from the term 2k′
Λ(x). However already from

the expression (5.22) and (5.21) it is seen that they painless annihilate each other [71]. 2

We define F (z), y(z) and λ at the same way as in the SU(N) case. We are able to write the

Seiberg-Witten curve (as usual we defineN = 2n+χ, χ = 0, 1; according to (B.1) β = 2N−2Nf−4):

y2(z) + zχ
n∏

l=1

(z2 − α2
l )y(z) + Λβz4

Nf∏

f=1

(z2 −m2
f ) = 0.

7.2.2 Sp(N) case

In order to solve the saddle point equation for this model it is convenient to introduce another

profile function defined as follows:

f̃(x) = f(x) + 2|x| = −2ρ(x) +

N∑

l=1

(
|x− al| + |x+ al|

)
+ 2|x|. (7.7)

The new profile function is also symmetric. We also should redefine the surface tension function

σ(t) as follows:

σ̃′(t) =






−ξl, t ∈ (−2l,−2l− 2), l = 1, . . . , N

0 t ∈ (−2, 2)

+ξl, t ∈ (+2l,+2l+ 2), l = 1, . . . , N

The Hamiltonian for the gauge multiplet is

H̃[f̃ ] = H [f ] = −1

8

∫
dxdyf̃ ′′(x)f̃ ′′(y)kΛ(x− y).
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And finally the saddle point equation for the model can be written as follows:

∫
dyf̃ ′′(y)k′

Λ(x − y) −
Nf∑

f=1

(
k′Λ(x+mf ) + k′

Λ(x−mf )
)
− 2σ̃′(f̃ ′(x)) = 0.

This equation looks like (7.1). However we should remember that the support of f̃ ′′(x) contains

the interval [α−
o , α

+
o ] 3 0. Using the definitions (6.16) and (6.17) we get

∫ α+
o

α−
o

f̃ ′′(x)dx = 4. (7.8)

It follows that for the primitive of the resolvent of f̃(x) defined by (7.3) we obtain the following

equation

F (z) −
Nf∑

f=1

1

4πi

(
ln

(
z +mf

Λ

)
+ ln

(
z −mf

Λ

))
= ϕ(z),

where ϕ(z) is a holomorphic function which maps the upper halfplain to the domain on the figure

7.3. In order to construct the map we use the reflection principle. Function ϕ(z) maps first

quadrant to the half of the domain. It follows that together with the square map function ϕ(z)

maps upper halfplain to the half of our domain. Hence we can use the result for SU(N). The map

ϕ̃(z) is given by

ϕ̃(z) =
1

2π
arccos

z
∏N
l=1(z − α̃l)

2ΛN+1−Nf/2

√∏Nf

f=1(z + m̃f )
, m̃f = −α̃−

o −
m2
f

Λ
.

The endpoints of the intervals [α̃−
l , α̃

+
l ] satisfy the equation:

α̃±
l

N∏

l=1

(α̃±
l − α̃) = ±2ΛN+1−Nf/2

Nf∏

f=1

√
α̃±
l + m̃f .

Using this condition we can rewrite the composition of ϕ̃(z) and z 7→ z2/Λ + α̃−
o as follows:

ϕ(z) =
1

2π
arccos

z2
∏N
l=1(z

2 − α2
l ) + Λβ/2

∏Nf

f=1 imf

2Λβ/2
√∏Nf

f=1(z
2 −m2

f )
,

where β = 4N + 4 − 2Nf .
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It follows that the curve can be written as

y2(z) +


z2

N∏

l=1

(z2 − α2
l ) + Λβ/2

Nf∏

f=1

imf


 y(z) + Λβ

Nf∏

f=1

(z2 −m2
f ) = 0.

7.3 Symmetric and antisymmetric representations of

SU(N): equal masses

Another model for which the curve can be obtained with the help of the analysis of the saddle point

equation is the SU(N) gauge theory with symmetric and antisymmetric representations which have

equal masses m. The Table 6.1 shows that the same equation describes the SU(N) gauge theory

with two antisymmetric representations with the same masses m and four fundamental multiplets

with masses m/2.

Taking into account the discussion after (6.25) we can write the Hamiltonian of the model as

follows

H [f ] = −1

4

∫
dxdyf ′′(x)f ′′(y)kΛ(x − y) +

1

4

∫
dxdyf ′′(x)f ′′(y)kΛ(x+ y +m)

− πiτ0
2

∫
dxx2f ′′(x) − 1

2

∫
dxσ(f ′(x)).

The saddle point equation is

∫
dyf ′′(y)k′

Λ(x− y) −
∫

dyf ′′(y)k′Λ(x+ y +m) = 2πiτ0x+ σ′(f ′(x)).

Taking the derivative we arrive to

∫
dyf ′′(y) ln |x− y| −

∫
dyf ′′(y) ln |x+ y +m| = 2πiτ0, x ∈ [α−

l , α
+
l ]. (7.9)

The crucial observation is that the function on the lefthand side is antisymmetric under the

reflection with respect to −m/2: x 7→ −x−m. So the righthand side is also antisymmetric. Hence

the difference of the logarithms equals to −2iπτ0 when x ∈ [−α+
l −m,−α−

l −m]. Define

F (z) =
1

4πi

∫

R

dxf ′′(x) ln

(
z − x

z + x+m

)
. (7.10)

The saddle point equation states that F (z) maps the real axis to the boundary of the boundary

of the domain on the figure 7.4. So the upper halfplain is mapped to the whole domain. Such a
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Figure 7.4: Conformal map for SU(2), and matter in symmetric and antisymmetric representation

map is known and given by the formula

F (z) =
1

2ω1
sn−1 ϑ3(0)

ϑ2(0)

P(z)

P(−z −m)
, (7.11)

where we have defined P(z) =
∏N
l=1(z − αl). In this formula sn(x) is the Jacobi elliptic sinus, 2ω1

is its real period. It satisfies [40]

sn(ω1x) =
ϑ3(0)

ϑ2(0)

ϑ1(x)

ϑ4(x)
,

ϑ1(x+ 1/2) = ϑ2(x) =
∑

n∈odd

qn
2/2 eiπnx,

ϑ4(x+ 1/2) = ϑ3(x) =
∑

n∈even

qn
2/2 eiπnx .

The endpoints of the support of f ′′(x) satisfy the equation

P(α±
l ) = ±ϑ2(0)

ϑ3(0)
P(−m− α±

l ).

Using these formulae we can rewrite the expression for F (z) as follows:

ϑ4(2F )P(z)− ϑ1(2F )P(−z −m) = 0.

This expression can be checked in various ways. First let us consider the limit τ0 → ∞. In such

a limit we have ϑ3(0)/ϑ2(0) ∼ q−1/2, sn(x) ≈ sin(x), and ω1 ≈ π. The expression (7.11) becomes

F (z) ≈ 1

2π
sin−1 P(z)

q1/2P(−z −m)
.
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If we also take a limit m → ∞ in such a way that m2Nq = 4Λ2N stays finite we obtain the

expression (7.4) for pure SU(N) gauge theory, which is consistent with the fact that in this limit

the massive representations decouple.

Another way to check this expression is to consider the hyperelliptic truncation of the curve,

given by

y(z) +
1

y(z)
=

P(z)

q1/2P(−z −m)
,

where y(z) = i exp 2πiF (z). Comparing this expression with (5.29) and referring to the Table 5.3

we see that the one instanton corrections are correctly described by this curve.

7.4 Mapping to SU(N) case

As another application, the saddle point equations help to establish the connection between dif-

ferent models. Some of them have been already found after examination the Seiberg-Witten curve

[23] and the 1-instanton corrections [33]. In this section we will examine the saddle point equations.

If for two theories they match (after the appropriate identification the parameters of curves) it is

natural to expect that the prepotentials will be the same.

As an example consider the SU(N) theory with the symmetric and antisymmetric matter and

some fundamental matter. We have the following saddle point equations:

Antisymmetric matter.

∫
dyf ′′(y) ln

∣∣∣∣
x− y

Λ

∣∣∣∣−
1

2

∫
dyf ′′(y) ln

∣∣∣∣
x+ y +m(a)

Λ

∣∣∣∣+ 2 ln

∣∣∣∣
x+m(a)/2

Λ

∣∣∣∣

−
N

(a)
f∑

f=1

ln

∣∣∣∣
x+mf

Λ

∣∣∣∣ = 2πiτ0 + σ′(f ′(x)), x ∈ [α−
l , α

+
l ]. (7.12)

Symmetric matter

∫
dyf ′′(y) ln

∣∣∣∣
x− y

Λ

∣∣∣∣−
1

2

∫
dyf ′′(y) ln

∣∣∣∣
x+ y +m(s)

Λ

∣∣∣∣− 2 ln

∣∣∣∣
x+m(s)/2

Λ

∣∣∣∣

−
N

(s)
f∑

f=1

ln

∣∣∣∣
x+mf

Λ

∣∣∣∣ = 2πiτ0 + σ′(f ′(x)), x ∈ [α−
l , α

+
l ].

The analysis of these two expressions leads us to the conclusion that the matter in the symmetric

representation with mass m is equivalent to the matter in antisymmetric representation with the
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same mass together with four fundamental multiplets with masses m/2.

In this section we establish such an equivalence between the models containing different groups

and matter content. For each model we find its SU(N) partner. We use the following notation:

~a = (a1, . . . , an) for SO(2n+ χ) models and ~a = (a1, . . . , aN) for Sp(N) models.

7.4.1 SO(N), pure gauge

The saddle point equation is

∫
dyf ′′(y) ln

∣∣∣∣
x− y

Λ

∣∣∣∣− 4 ln
∣∣∣
x

Λ

∣∣∣ = 2πiτ0.

We conclude that this model is equivalent to the SU(N) model with 4 massless fundamental

multiplets. This fact was already used in the section 7.2.1.

7.4.2 SO(N), matter in fundamental representation

The contribution to the lefthand side of the saddle point equation is

− ln

∣∣∣∣
x−mf

Λ

∣∣∣∣− ln

∣∣∣∣
x+mf

Λ

∣∣∣∣ .

It follows that each fundamental representation of SO(N) is equivalent to two SU(N) fundamental

representations with masses +mf and −mf .

7.4.3 SO(N), matter in adjoint representation

The contribution to the lefthand side of the saddle point equation is

− 1

2

∫
dyf ′′(y) ln

∣∣∣∣
x+ y +m

Λ

∣∣∣∣−
1

2

∫
dyf ′′(y) ln

∣∣∣∣
x+ y −m

Λ

∣∣∣∣

+ 2 ln

∣∣∣∣
x+m/2

Λ

∣∣∣∣+ 2 ln

∣∣∣∣
x−m/2

Λ

∣∣∣∣ .

Comparing with (7.12) we see that the adjoint representation with mass m in the SO(N) case is

equivalent to the two antisymmetric representation of SU(N) with masses +m and −m.
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7.4.4 Sp(N), Pure gauge

The saddle point equation in this case is

∫
dyf ′′(y) ln

∣∣∣∣
x− y

Λ

∣∣∣∣+ 4 ln
∣∣∣
x

Λ

∣∣∣ = 2πiτ0.

We conclude that Sp(N) pure gauge theory with 4 massless fundamental matter multiplets is

equivalent to the SU(2N) theory with Higgs vevs (~a,−~a).

There is another way to establish a map to the SU(N) case which use the definition (7.7) of

the profile function. The saddle point equation is

∫
dyf̃(y) ln

∣∣∣∣
x− y

Λ

∣∣∣∣ = 2πiτ0.

We see that the model is equivalent to the SU(2N + 2) pure gauge model with the following

values of the Higgs vevs: (0, 0,~a,−~a).

Remark. We should stress that in the case of embedding Sp(N) ⊂ SU(2N + 2) the two of 2N + 2

Higgs vevs matches. This case should be treated carefully as shows the example of the section

7.2.2. 2

7.4.5 Sp(N), matter in the fundamental representation

The contribution to the lefthand side of the saddle point equation is the same as in the SO(N)

case:

− ln

∣∣∣∣
x−mf

Λ

∣∣∣∣− ln

∣∣∣∣
x+mf

Λ

∣∣∣∣ .

So the fundamental representation for Sp(N) is equivalent to the fundamental representation for

SU(2N).

7.4.6 Sp(N), matter in the antisymmetric representation

With the help of the profile function (7.7) the Hamiltonian can be rewritten as follows:

H̃ [f̃ ] = H [f ] =
1

8

∫
dxdyf̃ ′′(x)f̃ ′′(y)kΛ(x+ y +m) −

∫
dxf̃ ′′(x)kΛ(x+m/2).
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The lefthand side of the saddle point equation is

− 1

2

∫
dyf̃ ′′(y) ln

∣∣∣∣
x+ y +m

Λ

∣∣∣∣−
1

2

∫
dyf̃ ′′(y) ln

∣∣∣∣
x+ y −m

Λ

∣∣∣∣

+ 2 ln

∣∣∣∣
x+m/2

Λ

∣∣∣∣+ 2 ln

∣∣∣∣
x−m/2

Λ

∣∣∣∣ .

It follows that the Sp(N) model with antisymmetric matter representation with mass m and

two massless fundamental multiplets is equivalent to the SU(2N) model with two antisymmetric

representations with masses +m/2 and −m/2 and with moduli (~a,−~a).

7.4.7 Sp(N), matter in the adjoint representation

Using the profile function (7.7) one can rewrite the Hamiltonian of the model as follows:

H̃ [f̃ ] = H [f ] =
1

8

∫
dxdyf̃ ′′(x)f̃ ′′(y)kΛ(x+ y +m) +

∫
dxf̃ ′′(x)kΛ(x+m/2).

The contribution to the lefthand side of the saddle point equation is

− 1

2

∫
dyf̃ ′′(y) ln

∣∣∣∣
x+ y +m

Λ

∣∣∣∣−
1

2

∫
dyf̃ ′′(y) ln

∣∣∣∣
x+ y −m

Λ

∣∣∣∣

− 2 ln

∣∣∣∣
x+m/2

Λ

∣∣∣∣− 2 ln

∣∣∣∣
x−m/2

Λ

∣∣∣∣ .

We conclude that the matter in the adjoint representation of Sp(N) is equivalent to two symmetric

multiplets with masses +m and −m.

In the Table 7.1 we have collected these results. As usual, for the orthogonal group SO(N)

notation ♦ means 0 when N is odd and it is absent when N is even.

7.5 Hyperelliptic approximations

In this section we show how to extract the hyperelliptic approximation to the Seiberg-Witten curve

from the saddle point equation. This allows us to prove that the 1-instanton correction which will

be obtained from the curves matches with our computation presented in section 5.6

In 5.6 we have shown that our computations match with the algebraic curve computation

provided the curve is given by (5.29) and the residue function have been constructed with the help

of the Table 5.2. It follows that the only thing we should show is that when solving the saddle

point equation in hyperelliptic approximation we obtain the correct rules for the residue function.
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Group Multiplet Higgs Fund. Anti.

SU(N) Symmetric, m ~a m/2, m/2, m/2, m/2 m

Adjoint, gauge (♦,~a,−~a) 0, 0, 0, 0 —
SO(N) Fundamental, m (♦,~a,−~a) −m, +m —

Adjoint, m (♦,~a,−~a) — +m, −m
Adjoint, gauge (0, 0,~a,−~a) — —
Adjoint, gauge

Sp(N) + 2 fund., m = 0 (~a,−~a) — —
Fundamental, m (~a,−~a) +m, −m —

Antisymmetric, m (~a,−~a) — +m, −m
Adjoint, m (~a,−~a) +m/2,+m/2,−m/2,−m/2 +m, −m

Table 7.1: Mapping to SU(N)

Note that for all (classical) groups and fundamental matter the hyperelliptic approximation is

exact. It follows that the task is already accomplished for these models.

Consider the first non-trivial case, the antisymmetric representation for SU(N) model.

7.5.1 SU(N), antisymmetric matter and some fundamentals

The saddle point equation for this model is given by (7.12). In order to obtain the hyperelliptic

approximation to the Seiberg-Witten curve we will simplify the second term.

To do that we note that the approximation to the profile function which leads to the perturbative

prepotential is the following (see (6.3)):

fpert(x) =
N∑

l=1

|x− al|.

The second derivative of this function has a pointwise support. The support of the exact solution

is the union of intervals which has length of order Λ � m. Consider the primitive of the resolvent

of f ′′(x):

F (z) =
1

4πi

∫

R

dyf ′′(y) ln

(
z − y

Λ

)
.

The primitive of fpert-resolvent is

Fpert(z) =
1

2πi

N∑

l=1

ln

(
z − al

Λ

)
.

The exact expression for F (z) will be different. However, if |z − al| � Λ for all l = 1, . . . , N
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we can still use this approximation. In particular when we compute integral over the cycles Al or

Bl+1−Bl we can use for F (−z−m) the perturbative approximation. Coming back to the equation

(7.12) we conclude that in order to obtain 1-instanton correction we can put in the second term

f(x) = fpert(x). After this identification the equation becomes:

∫
dyf ′′(y) ln

∣∣∣∣
x− y

Λ

∣∣∣∣−
N∑

l=1

ln

∣∣∣∣
x+ al +m

Λ

∣∣∣∣

+ 2 ln

∣∣∣∣
x+m/2

Λ

∣∣∣∣−
Nf∑

f=1

ln

∣∣∣∣
x+mf

Λ

∣∣∣∣ = 2πiτ0, x ∈ [α−
l , α

+
l ].

To solve this equation let us define another profile function

f̃(x) = f(x) + |x+m/2|.

For this function we have the following saddle point equation:

∫
dyf̃ ′′(y) ln

∣∣∣∣
x− y

Λ

∣∣∣∣−
N∑

l=1

ln

∣∣∣∣
x+ al +m

Λ

∣∣∣∣−
Nf∑

f=1

ln

∣∣∣∣
x+mf

Λ

∣∣∣∣ = 2πiτ0, x ∈ [α−
l , α

+
l ].

This equation looks like (7.2) if we identify ~a 7→ (−m/2,~a), and

mf 7→ (−m − a1, . . . ,−m − aN ,m1, . . . ,mNf
). Using the result of the section 7.1 we can

immediately write the solution (7.5):

y(z) +
1

y(z)
=

(2z +m)
∏N
l=1(z − αl)

Λ(N+2−Nf )/2

√∏N
l=1(z +m+ al)

∏Nf

f=1(z +mf )
. (7.13)

Remark. Since we have identified the mass of the antisymmetric multiplet with one the Higgs vevs

we should, in principle, write its contribution to the nominator as (2z+µ), where µ = m+O(Λβ/2).

However in order to compute the prepotential we will not need to compute any contour integral

where contour passes near the point −m/2. It follows that the shift µ 7→ m will take effect only in

the higher instanton corrections which we are not interested in here. 2

The equation (7.13) is the same as (5.29) provided we set

S(x) =

∏N
l=1(x +m+ al)

∏Nf

f=1(x+mf )

(2x+m)
2∏Nf

l=1 (x− αl)
2

.

This expression matches with the value of the residue function which can be build with the help
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of the Table 5.2. The last observation proves that the solution of the saddle point equation (7.12)

gives the correct prediction for the 1-instanton correction.

The procedure presented above can be easily converted to the mnemonic rule to build the

residue function which appears in (5.29). It can be formulated as follows: any term of the form

ε ln

∣∣∣∣
x− x0

Λ

∣∣∣∣

leads to the (x− x0)
−ε

factor of the S(x).

7.5.2 SU(N), matter in the symmetric representation

In order to obtain the hyperelliptic approximation for the case of symmetric representation we can

either use the same technique as in the case of the antisymmetric multiplet or directly apply the

result of the section 7.4. Anyway the result for the simplified saddle point equation is

∫
dyf ′′(y) ln

∣∣∣∣
x− y

Λ

∣∣∣∣−
N∑

l=1

ln

∣∣∣∣
x+ al +m

Λ

∣∣∣∣− 2 ln

∣∣∣∣
x+m/2

Λ

∣∣∣∣ = 2πiτ0, x ∈ [α−
l , α

+
l ].

Applying our rule we get the following contribution to the residue function:

(2z +m)
2
N∏

l=1

(z +m+ al)

which is in the agreement with the Table 5.2.

7.5.3 SU(N), matter in the adjoint representation

The contribution to the simplified saddle point equation is

−
N∑

l=1

ln

∣∣∣∣
x− al +m

Λ

∣∣∣∣ .

It follows that the contribution to the residue function is

1
∏N
l=1(x− al +m)

.

It agrees with the Table 5.2.
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7.5.4 SO(N) models

In order to establish the same results for the SO(N) models we can apply the result of the section

7.4. The result for the adjoint gauge multiplet is:

S(x) =
x4−2χ

∏N
l=1 (x− αl)

2
.

For the adjoint matter multiplet we get the following contribution to the residue function:

(x2 −m2)
χ

4x2 −m2

N∏

l=1

((x+m)
2 − a2

l )((x −m)
2 − a2

l ).

These expression are in agreement with the Table 5.2.

7.5.5 Sp(N) models

Using the result of the section 7.4 we get the following residue function for the gauge multiplet:

S(x) =
1

x4
∏N
l=1 (x2 − α2

l )
2 .

The contribution which comes from the antisymmetric representation is defined by the following

contribution to the saddle point equation

− 1

2

∫
dyf ′′(y) ln

∣∣∣∣
x+ y +m

Λ

∣∣∣∣−
1

2

∫
dyf ′′(y) ln

∣∣∣∣
x+ y −m

Λ

∣∣∣∣

+ 2 ln

∣∣∣∣
x+m

Λ

∣∣∣∣+ 2 ln

∣∣∣∣
x−m

Λ

∣∣∣∣+ 2 ln

∣∣∣∣
x+m/2

Λ

∣∣∣∣+ 2 ln

∣∣∣∣
x−m/2

Λ

∣∣∣∣ .

Plugging into this expression the perturbative approximation of the profile function

fpert(x) =

N∑

l=1

(|x− al| + |x+ al|) + 2|x|

we obtain the following contribution to the residue function:

∏N
l=1 ((x+m)

2 − a2
l )((x −m)

2 − a2
l )

2

(4x2 −m2)
.
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The contribution to the residue function which comes from the adjoint representation is

(4x2 −m2)
N∏

l=1

((x +m)2 − a2
l )((x −m)2 − a2

l )
2
.

Obtained expressions is in agreement with the Table 5.2.
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Open questions and further

directions

In this paper have derived the method which allows us to compute the low-energy effective action

for N = 2 supersymmetric Yang-Mills theories. We have considered almost all models allowed by

the asymptotic freedom. Using the results of [37, 34, 33, 32] we have shown in section 5.6 that the

equivariant deformation method provides the results which in the 1-instanton level agree with the

previous computations.

Also we have written the saddle point equation for each models and we have shown that in

all cases when we can it solve obtained expressions for the Seiberg-Witten data agree with known

results.

We have shown that the saddle point equation technique is self-consistent: in spite of the fact

that the curves and the differentials are obtained under rather strong condition k → ∞, the final

answer is nevertheless correct even if k is low.

In section 7.5 we obtained the hyperelliptic approximation to the Seiberg-Witten curve. Pre-

sumably, one can develop the method presented there and obtain the mathematically rigorous

recursion scheme which will give all the instanton corrections. It would be interesting to establish

its relation with other recursion schemes (such as, for example, [6]).

Another direction would be the generalization of the moduli space singularities counting. Close

relation between these singularities and Young tableaux allows us to compute the integral (5.28)

(see [69]). It would be interesting to generalize this approach to other models.

An important question which remains unsolved in the present paper is about the exact solutions

131
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for saddle point equations for all considered models. It seems, that the method of conformal map,

used in [70, 71, 79] is limited by the models, considered in this paper. However, another methods

exist. Their implementation whould be an interesting branch of investigations.

Another question which appears is the following. We have started from the exact microscopic

action. Therefore the effective action we obtain should also be exact. We know how to extract

from the integrals over the instanton moduli space the leading part of this action, the part, which

can be reconstructited with the help of the prepotential. The question if it is possible and how to

extract the subleading terms remains open.

And finally let us mention another direction for generalization. All the presented results are

based on the ADHM construction which is known only for the classical groups. A way to perform

the computations which does not use it would provide the effective action for all groups. It would

be interesting to find it.



Appendix A

Spinor properties

In this section we give a brief review of some properties of 4-dimensional spinors, related formulae

and common notations. In order to build N = 2 super Yang-Mills theory we will need consider

Minkowski space, that is, R1,3. The choice of the metric is the following:

gµν =




+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1



. (A.1)

However to be capable to treat its instanton expansion we should preform a Wick rotation and

therefore get in Euclidean space, R4, where the metric equals to the Kronecker delta: gµν = δµν .

The spinor properties are different for these two spaces. We will mostly consider the euclidean

spinors.

A.1 Spinors in various dimensions

A.1.1 Clifford algebras

We will start with some generalities about the Clifford algebras.

Let us consider the d dimensional space with the diagonal metric with signature (p, q), p+q = d.

Otherwise

gµν = diag{+1,+1, . . . ,+1︸ ︷︷ ︸
p times

,−1,−1, . . . ,−1︸ ︷︷ ︸
q times

}.
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The Clifford algebra is generated by symbols {γµp+q}
d

µ=1
satisfying the following anticommuta-

tion relations:

{γµ, γν} = gµν
�
. (A.2)

Thanks to this relation an arbitrary element of the Clifford algebra can be written as follows

ω = ω(0) + ω(1)
µ γµ +

1

2
ω(2)
µ1µ2

γµ1µ2 + · · · + 1

k!
ω(k)
µ1...µk

γµ1...µk + . . . ,

where γµ1...µk is the antisymmetric part of the product γµ1 . . . γµk . The dimension of the Clifford

algebra is therefore 1 + C2
d + · · · = 2d.

Let us introduce the orientation operator

Γd =
1

d!
εµ1...µd

γµ1 . . . γµd .

Where are two possible signs in this definition, the choice corresponds to the sighn of the Levi-

Civita tensor, which in its turn is defined by the choice of the orientation. The square of the

orientation operator can be easily computed with the help of the defining relations (A.2). Indeed,

since

Γ2
d = γ1γ2 . . . γd−1γdγ1γ2 . . . γd−1γd = (−1)

d−1
(γd)

2
γ1γ2 . . . γd−1γ1γ2 . . . γd−1

It is easy to guess the following recurrent relation: Γ2
d = (−1)

d−1
(γd)

2
Γ2
d−1. It follows that

Γ2
d = (−1)

(d−1)+(d−2)···+1
(γ1)

2
. . . (γd)

2
= (−1)

d(d−1)
2 +q �

.

In the following we will be interested in the representations of the Clifford algebras. It is clear

that if matrices γµ satisfy the basic relation (A.2) then the conjugated matrices γ̃µ = UγµU−1

also satisfy these relations.

We will say that a matrix representation of the Clifford algebra is generated by the Dirac

matrices. The space on which these matrices act is the space of the Dirac spinors VD.

Example. Consider a trivial example d = 1 and the signature of the matric is (0, 1). The Clifford

algebra has only one generator satisfying γ2
1 = −1. Therefore γ1 = i and in this case the Clifford

algebra is ismorphe to C. Note that the representation of one dimensional Clifford algebra is also

one dimensional.

Remark. It is clear that multiplying the generators by i we can chnage the signature of the metric.

2
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A.1.2 Recurrent relations

Now suppose that we have constructed a representation of the Clifford algebra for the d dimensional

case. How to construct the representation for the dimension d+ 1? There are two possibilities.

If d is even then it is easy to see that {Γ, γµ} = 0 ∀µ. It follows that if we define

γµd+1 = γµd , γd+1
d+1 = Γd

when it will be representation of the d+ 1 dimensional Clifford algebra. Note that in this case the

dimension of the representation does not grow up.

If d is odd then we can consider the following set of generators:

γµd+1 =


 0 −γµd

γµd 0


 , γd+1

d+1 =


 0

�

�
0


 . (A.3)

There are another realization of this construction. Indeed, we can define the following generators:

γµd+1 =


 0 γµd

γµd 0


 , γd+1

d+1 =


 0

�

− �
0


 . (A.4)

Both of this construction lead to the representation of d + 1 dimensional Clifford algebra. Note

that in this case the dimension of the metrices is doubled. These two constructions are conjugated

by the matrix

U =


 0 −q �

q∗
�

0




where q = ei
π
4 =

1 + i√
2

.

It follows from this recurrent procedure that the dimension of the matrices of representation

we have constructed is 2[ d
2 ]. Therefore these matrices have 2d components if d is even and 2d−1

components if d is odd. It suggests that in the even dimensional case we have a faithful repre-

sentation, whereas in the odd dimensional case this is not true. The way out is to note that in

the odd dimensional case the complex conjugated representation is not equiavalent to the initial

one. These two representations together have 2×2d−1 = 2d independent components, which is the

dimension of the Clifford algebra.

Now let us apply the recurrent procedure to get some representation of the Clifford algebra for

some d. The one dimensional representation is already considerred. Therefore we start with the
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case d = 2.

d = 2. Applying directly the prescription (A.3) we get

γ1
2 =



 0 1

1 0



 , γ2
2 =



 0 −γ1

γ1 0



 =



 0 −i
i 0



 .

This choice corresponds to the signature (2, 0). If we wish to consider the Minkowski space (with

sinature (1, 1)) we ahould multiply the second matrix by a factor i. Therefore we get

γ0
2 =



 0 1

1 0



 , γ1
2 =



 0 1

−1 0



 .

d = 3. The orientation operator for the d = 2, signature (2, 0) case is

Γ2 = γ1
2γ

2
2 =



 i 0

0 −i



 .

Therefore the generators of the three dimensional Clifford algebra with the eucledian signature

(3, 0) can be choosen as follows:

γ1
3 =


 0 1

1 0


 , γ2

3 =


 0 −i

i 0


 , γ3

3 =


 1 0

0 −1


 .

Note that this is nothing but the Pauli matrices (A.7).

d = 4. Applying once again the prescription (A.3) we get for the Minkowkian signature (1, 3) the

following representation:

γ0
4 =


 0

�
2

�
2 0


 , γi4 =


 0 −τi

τi 0


 ⇔ γµ4 =


 0 σµ

σ̄µ 0


 ,

where σ-matrices are defined in (A.19).

d = 5. The orientation operator for the previous case is

Γ4 = γ0
4γ

1
4γ

2
4γ

3
4 =



 −i �
2 0

0 i
�
2



 .
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Since Γ2 = − �
4 we conclude that the following set of generators

γµ5 = γµ4 , γ4
5 = Γ4

provides the representation of five dimensional Clifford algebra with the signature (1, 4).

d = 6. Let us finally consider the six dimensional case. In order to get the representation of the

Clifford algebra for the signature (1, 5) we use the prescription (A.4). The result is the following:

γµ6 =


 0 γµ4

γµ4 0


 , γ4

6 =


 0 Γ4

Γ4 0


 , γ5

6 =


 0

�
4

− �
4 0


 .

The schemas (A.4) and (A.3) show that in the Euledian signature the matrices γµ, where µ is

even odd can be choosen to be real whereas γν for ν even can be choosen pure imaginary (recall that

in the Eucledian case µ = 1, 2, . . . , d whereas in the Minkowskian µ = 0, 1, . . . , d − 1). Moreover

all the Dirac matrices are hermitian. Since multiplying them by i we can change the signature we

conclude that the following relation holds

(γµ)† = γµ = gµνγ
ν .

Note that these two properties are stable under the conjugation by unitary matrices.

A.1.3 Weyl and Majorana spinors

Let us discuss the existence of the Weyl spinors. It is easy to see that if the dimension is even then

the orientation operator Γd (multiplied by ±i, if necessary) has the following form:

Γd =




�
0

0 − �


 .

It allows us to define the projection operators to the space of the left and right handed spinors:

P± =

� ± Γd
2

. Therefore in even dimensions the Weyl spinors exist. If d is odd the orientation

operator is proportional to the unit matrix and does not allow to define chirality.

Before discussing the Majorana spinors let us define the Dirac conjugation. It is easy to see

that the following matrices

Sµν =
1

4i
[γµ, γν ] =

1

4i
(γµγν − γνγµ)
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satisfy the commutation relations for the Lorentz group O(p, q):

[Sµν , Sρσ ] = igµρSνσ + igνσSµρ − igµσSνρ − igνρSµσ .

The infinitesemal Lorentz rotation is defined on spinors as follows:

VD 3 ψ 7→
(

�
+
i

2
Sµνω

µν

)
ψ

where ωµν are parameters of this rotation. The Dirac conjugation is defined as ψ̄ = ψ†A where A
is a unitary matrix (to assure ¯̄ψ = ψ) choosen in such a way that ψ̄ψ is a scalar. This condition

can be recast as follows:

A−1 [γµ, γν ]A =
[
γ†µ, γ

†
ν

]

and indeed will be satisfied if A−1γµA = ±γ†µ = ±γµ. Therefore we can take either

A+ = γ1γ2 . . . γp or A− = γp+1γp+2 . . . γp+q. In the Eucledian case we can take A = A− =
�
, and

in the Mikowskian case A = A+ = γ0. Note that since γµ† = γµ for µ = 1, . . . , p and γµ† = −γµ

for µ = p+ 1, . . . , p+ q we get AT
+ = A+ and AT

− = (−1)qA−.

Consider the Dirac equation for the massive spinors in the external gauge field Aµ which is

supposed to be real:

[i∇µγ
µ −m]ψ = [(i∂µ +Aµ) γ

µ −m]ψ = 0.

The complex conjugated equation is

[(−i∂µ +Aµ) γ
µ∗ −m]ψ∗ = 0.

If we wish the Dirac conjugated spinor ψ̄T = ATψ∗ to satisfy the same equation as the initial one,

but have the opposite charges (Aµ 7→ −Aµ) we should identify ψ and ψC = C−ψ̄T = C−ATψ∗

where C− satisty the following condition:

(C−)
−1
γµC− = −ATγµ∗A−T. (A.5)

This matrix together with the complex conjugation c defines an antilinear operation C− = C−ATc.

In the even dimensional case the projection operator Γ anticommutes with the generators γµ. It

follows that the Clifford algebra is simple and threfore the representation generated by matrices

γµ and the complex conjugated matrices should be equivalent.
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Therefore the square of the antilinear operator is proportional to
�

thanks to Schur lemma.

Since C−(C−)
2

= (C−)
2
C− we conclude that (C−)

2
= C−AT(C−AT)

∗
= α

�
where α ∈ R. If we

rescale C− by a number λ ∈ C we get α 7→ α|λ|2. Therefore we can put either α = −1 or α = +1.

In the last case it is possible to define the projection operators P±
C− =

� ± C−

2
splitting the space

of spinors into the selfconjugated and anti-selfconjugated. The space of self conjugated spinors, if

exists, is called the space of Majorana spinors.

If the spinors are massless there is another option: we may find a matrix C+ satisfying

(C+)
−1
γµC+ = +ATγµ∗A−T. (A.6)

Combining this matrix with the copmplex conjugation we get the following antilinear operator

C+ = C+ATc. When (C+)
2

= +
�

we can construct the projection operators P±
C+ =

� ± C+

2
which

splits the space of Dirac spinors into two subspaces of Majorana spinors.

Note that if (C±)
2

= C±AT(C±AT)
∗

= − �
there is still a way out to define a version of

Majorana spinors, the symplectic Majorana spinors. To this extent we should enlarge the space of

Dirac spinors VD 7→ VD ⊗W where W is a vector space equipped by a symplectic form Ω. When

we can define a projection operotor as follows

P±
S =

�
VD

⊗ �
W ± C ⊗ Ω

2
.

Pragmatically it means that instead of one Dirac (or Weyl) spinor ψ we consider a set of such a

spinors: ψ1, ψ2, . . . . And the symplectic Majorana spinors are those which satisfy the following

condition:

ψi = Ωijψ
C
j = ±ΩijCATψ∗

j .

Consider some examples of the matrices C±
d in the Mikowski spaces (spaces with the signature

(1, d− 1)). To this extent we note that according to schemas (A.4) and (A.3) in this signature the

matrices γ0, γ1, γ3, . . . are real whereas γ2, γ4, . . . are imaginary. Recall that A = γ0. Therefore

the conditions (A.6) and (A.5) are satisfied by the following matrices

C−
d = γ1

dγ
3
d . . . γ

d−1
d and C+

d = γ0
dγ

2
d . . . γ

d
d if d ≡ 2 (mod 4),

C−
d = γ0

dγ
2
d . . . γ

d
d and C+

d = γ0
dγ

2
d . . . γ

d
d if d ≡ 0 (mod 4).

It is easy to write corresponding matrices for all other types of signature.

Consider some examples of these matrices.
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d = 2. Applying the rules we get

C−
2 = γ1

2 =



 0 1

−1 0



 , C+
2 = γ0

2 =



 0 1

1 0



 .

We see that (C±
2 )

2
= +

�
2. Therefore in 1 + 1 there are spinors of Majorana of two types.

d = 4. We get

C−
4 = γ0

4γ
2
4 =


 iε 0

0 −iε


 , C+

4 = γ1
4γ

3
4 =


 −ε 0

0 −ε


 ,

where the 2 × 2 matrix ε is defined in (A.10). In this case (C−
4 )

2
= +

�
4 whereas (C+

4 )
2

= − �
4.

Therefore in the four dimensional case there are only spinors of Majorana of type “−” (which

respect the mass) can exist.

d = 6. We obtain

C−
6 = γ1

6γ
3
6γ

5
6 =



 0 C+
4

−C+
4 0



 , C+
6 = γ0

6γ
2
6γ

4
6 =



 0 −C+
4

−C+
4 0





In both cases (C±
6 )

2
= − �

8. Therefore the Majorana spinors can not exist in 1 + 5 dimensions.

However it is possible to define a symplectic Majoarana spinors.

A.2 Pauli matrices

Define the Pauli matrices in the standard way:

τ1 =



 0 1

1 0



 , τ2 =



 0 −i
i 0



 , τ3 =



 1 0

0 −1



 . (A.7)

They have naturally one upper and one lower spinor index: τi,α
β . This convention makes

possible to multiply them. We have

τi,α
βτj,β

γ = δijδ
γ
α + iεijkτk,α

γ
(
τiτj = δij

�
2 + iεijkτk

)
. (A.8)

Together with the unit matrix they form a basis of all 2 × 2 complex matrices. This fact can be
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expressed as the Fierz identity :

δβαδ
δ
γ + τi,α

βτi,γ
δ = 2δβγ δ

δ
α

(
�
2 ⊗

�
2 + τi ⊗ τi = 2

�
2×2

)
, (A.9)

where
�
2×2 is the unit matrix in the vector space of all 2×2 matrices. The Fierz identity is nothing

but the completeness condition for the Pauli matrices.

The Pauli matrices are all hermitian:

τi
† = τi.

Consider the matrix:

εαβ =


 0 −1

1 0


 , εαβ =

(
ε−1
)αβ

=


 0 1

−1 0


 . (A.10)

One can check that the Pauli matrices satisfy the equation:

τ∗i
α
β = −εαγτi,γ δεδβ

(
τ∗i = −ε−1τiε

)
. (A.11)

The meaning of this relation can be discovered as follows. Consider a matrix Xα
β . It can be

developed as Xα
β = X0δ

β
α + iXkτk,α

β . The reality of X0 and Xi is equivalent to

X∗ = ε−1Xε.

This equation is called the reality condition.

For any U ∈ SU(2) we have U = eiφ
iτi where φi are real. Thus (A.11) yields

(U∗)
α
β = εαγUγ

δεδγ

(
U∗ = ε−1Uε

)
.

It follows that ε is stable under the SU(2) transformations. Indeed

ε′αβ = Uα
γUβ

δεγδ = εαβ .

Hence the “metric” ε can be used to rise and lower the spinor indices.
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A.3 ’t Hooft symbols

In this section we consider selfdual and anti-selfdual forms in the Euclidean space. According to

this we can make no difference between upper and lower spatial indices. The standard reference is

[82], however some details can be found in [57].

Any antisymmetric tensor in four dimensions Fµν can be represented by means of two three

dimensional vectors ai and bi:

Fµν =




0 a1 a2 a3

−a1 0 b3 −b2
−a2 −b3 0 b1

−a3 b2 −b1 0




≡ (a, b)µν .

Remark. The triples ai and bi will transform as vectors with respect to the subgroup SO(3) of

SO(4) which preserves the vector (1, 0, 0, 0). However if we extend this subgroup to O(3) by

including the reflections xi 7→ −xi we find that ai is a vector whereas bi is a pseudo (or axial)

vector. 2

Using the Hodge star one can define for this tensor the dual tensor as follows:

?Fµν ≡ (?F )µν =
1

2
εµνρσFρσ ,

where εµνρσ is four dimensional Levi-Civita tensor defined as ε0123 = +1. Calculation shows that

the following identity holds:

?(a, b)µν = (b, a)µν .

We see, that all tensors of form (a, a)µν satisfy the selfdual equation:

?(a, a)µν = (a, a)µν ,

and all the tensors which can be written as (−a, a)µν satisfy the anti-selfdual equation:

?(−a, a)µν = (a,−a)µν = −(−a, a)µν .

Note that applying ? twice we get the same tensor: ?2Fµν = Fµν .

Remark. In the general case when we apply ? to an antisymmetric tensor with m lower indices in
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d dimensions we get:

?2 = (−1)
m(d−m)

sign(det g).

It follows that in Minkowski space the self-dual and anti-self-dual equations can have only trivial

solution. Indeed if ?Fµν = ±Fµν when applying ? and using ?2 = −1 we get

−Fµν = ?2Fµν = ± ? Fµν = Fµν .

We can however introduce the imaginary unit i in the definition of ?. This enables us to obtain

nontrivial solution of the self-dual and anti-self-dual equations in the Minkowski space. This

solution will be in general complex. 2

One says that a tensor satisfying selfdual equation is selfdual, and the tensor satisfying anti-

selfdual equation is anti-selfdual. We can find a basis of selfdual and anti-selfdual tensors as

follows:

(a, a)µν = aiη
i
µν , (−a, a)µν = aiη̄

i
µν .

One says that ηiµν are selfdual t’Hooft symbols and η̄iµν are anti-selfdual t’Hooft symbols [82].

These symbols can be represented by six 4× 4 matrices as follows:

η1
µν =




0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0



, η2

µν =




0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0



, η3

µν =




0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0



,

(A.12)

and

η̄1
µν =




0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0



, η̄2

µν =




0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0



, η̄3

µν =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0



.

(A.13)

One can check that the t’Hooft symbols satisfy the following multiplication rule:

ηiηj = −δij �
4 − εijkηk

(
ηiµνη

j
νρ = −δijδµρ − εijkηkµρ

)
,

η̄iη̄j = −δij �
4 − εijk η̄k

(
η̄iµν η̄

j
νρ = −δijδµρ − εijk η̄kµρ

)
.

(A.14)
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It follows that they form the representation of the SU(2) group. Indeed from (A.14) we get

[
−η

i

2
,−η

j

2

]
= εijk

(
−η

k

2

)
,

[
− η̄

i

2
,− η̄

j

2

]
= εijk

(
− η̄

k

2

)
.

This fact can be easily seen from the representation theory point of view: the vector represen-

tation of SO(4) ' SU(2) × SU(2)/Z2 is ( 1
2 ,

1
2 ). It follows from the properties of Clebcsh-Gordon

coefficients for SU(2) that

(
1

2
,
1

2

)
⊗
(

1

2
,
1

2

)
= (0, 0)⊕ (1, 1)⊕ (1, 0) ⊕ (0, 1).

The first term in the righthand side is the trace of a rang-2 tensor, the second is its symmetric

traceless part and third and fourth are the decomposition of its antisymmetric part onto self-dual

and anti-self-dual components.

A.4 Euclidean spinors

In this section we will mostly speak about spinors in the Euclidean space. Sometimes we will stress

differences with the Minkowski space.

The double covering group for SO(4) is Spin(4) ' SU(2) × SU(2). Thus we have two inde-

pendent spinor representation each of them is isomorph to SU(2). According to this the spinors

in four dimensional euclidean space can have one doted or one undotted spinor index running over

1, 2 and 1̇, 2̇ respectively. For the combinations ψαχα and ψα̇χ
α̇ are supposed to be invariants we

conclude that (χα)∗ transforms as ψα. And the same rule for a doted index.

Remark. Here and below the following rule will be held: the undotted indices follow form left-up

to right-down and the doted – from left-down to right-up. 2

Three Pauli matrices and the unit one can be arranged to one four dimensional vector defined

as

σµ,αα̇ = (
�
2,−iτ1,−iτ2,−iτ3) (A.15)

The homomorphism from SU(2)× SU(2) to SO(4) can be constructed as follows: consider a four
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vector xµ. We can build a matrix

xαβ̇ = xµσµ,αβ̇ =


 x0 − ix3 −x2 − ix1

x2 − ix1 −x0 + ix3


 (A.16)

satisfying x†x = x2 �
2 where x2 = xµxµ. Thus if we take two SU(2) matrices U1 and U2 and

transform x 7→ x′ = U1xU2
† we get

x′
2 �

2 = x′
†
x′ = U2x

†U1
†U1xU2

† = x2 �
2. (A.17)

Hence this transformation generates an SO(4) transformation of xµ (since the group SU(2)

is simply connected we see that the determinant of xµ transformation should be equal to 1).

According to this four σ-matrices have one undotted and one doted index. Our convention is that

they are both lower.

Remark. We see that the following rule holds: when complex conjugated, the indices rise and low

without changing their dotness. Mention the difference with the Minkowski case: there the indices

rise and low together with the changing of their dotness. This can be explained as follows: though

in the euclidean case the both SU(2) are independent, in the Minkowski case they are related by

means of the complex conjugation. 2

The σ-matrices are not all hermitian, but rather satisfy the following conjugation rule:

σ0
† = σ0, σi

† = −σi.

The reality condition for them can be expressed as follows:

σ∗
µ
αα̇ = εαβεα̇β̇σµ,ββ̇

(
σµ

∗ = ε−1σµε
)
. (A.18)

For any matrix which can be developed as Xαβ̇ = Xµσµ,αβ̇ the reality condition X∗ = ε−1Xε

means that the coefficients Xµ are real.

Remark. In Minkowski space the definition of σ-matrices misses i:

σµ,αα̇ = (
�
2,−τ1,−τ2,−τ3),

σ̄α̇αµ = (
�
2,+τ1,+τ2,+τ3).

(A.19)

This set of matrices governess an isomorphism SL(2,C) → SO(3, 1). There is another set of such
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matrices:

σ̄µ,α̇α = (
�
2,+τ1,+τ2,+τ3).

Its analogue in the Euclidean space is just the hermitian conjugate of Euclidean σ-matrices:

σ̄µ,α̇α = (σ†)µ,α̇α. 2

The σ-matrices also satisfy a version of the Fierz identity (A.9) which has the following form:

σµ,αβ̇σµ,γδ̇ = 2εαγεβ̇δ̇ ,

σµ,αβ̇
(
σ†
µ

)γ̇δ
= 2δδαδ

γ̇

β̇
.

(A.20)

Note that thanks to the doted-undotted convention we can not directly multiply σµ and σν .

However we can multiply it by σ̄ν (or σν
†). We get:

σµ,αα̇σ̄
α̇β
ν = δµνδ

β
α + iτi,α

βηiµν

(
σµσ̄ν = δµν

�
2 + iτiη

i
µν

)
,

σ̄α̇αµ σν,αβ̇ = δµνδ
α̇
β̇

+ iτi
α̇
β̇ η̄

i
µν

(
σ̄µσν = δµν

�
2 + iτiη̄

i
µν

)
.

(A.21)

Here we see the appearance of selfdual (A.12) and anti-selfdual (A.13) t’Hooft symbols .

Remark. If we swap σ-matrices and σ̄-matrices we get the equations (A.21) but with the selfdual

symbols replaced by anti-selfdual and vice versa. Notice going ahead that in this way we can

construct the anti-instantons instead of the instantons. 2

Let us introduce the Clebsch-Gordon coefficients which govern the spinor transformation with

respect to the space rotation. Using (A.21) we get

σµν,α
β ≡ 1

4

(
σµ,αγ̇ σ̄

γ̇β
ν − σν,αγ̇ σ̄

γ̇β
µ

)
=
i

2
τi,α

βηiµν ,

σ̄α̇µν β̇ ≡ 1

4

(
σ̄α̇γµ σν,γβ̇ − σ̄α̇γν σµ,γβ̇

)
=
i

2
τi
α̇
β̇η̄

i
µν .

(A.22)

The appearance of ’t Hooft symbols on the lefthand side allows us to call σµν and σ̄µν ’t Hooft

projectors.

Remark. In Minkowski space they satisfy

σµν,αβσρσαβ =
1

2
(gµρgνσ − gµσgνρ) − i

2
εµνρσ

2



Appendix B

Lie algebras

Here we cite some group theoretical data which is used (implicitly or explicitly) in our discussion

of the derivation of prepotential. Since the derivation of the prepotential is based on the ADHM

construction, which is known only for the classical groups, we consider only Lie algebras for SU(N),

SO(N) and Sp(N) groups. All details can be found, for example, in [11].

Apart from the standard group theoretical data, such as a root system, or the Weyl group

description we also give the Dynkin indices for various representations and the coefficient β which

appears in the Λ expansion of the prepotential.

Recall the Dynkin index definition. Since for the simple groups the Killing metric is unique up

to multiplicative factor we conclude that for all representations `adj Tradj = `% Tr% where `% is the

Dynkin index of this representation. Through the paper we normalize indices in such a way that

`fund = 1 for all groups.

The coefficient β is equal to

β = ζ

(
`adj −

∑

%∈reps

`%

)
. (B.1)

Remark. One could, of cause, renormalize the Dynkin index in order to absorb the parameter ζ.

To do this one can simply pose `fund = ζ. 2

We denote by ∆+ the set of all positive roots. h and h∨ the Coxeter and dual Coxeter number.

We have collected some data in the Table B.1.
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Algebra h h∨ |W | Adjoint `adj `sym `ant ζ

An n+ 1 n+ 1 (n+ 1)! fund ⊗ fund∗ 2n+ 2 2n+ 4 2n 1
Bn 2n 2n− 1 2nn! ∧2fund 2n− 1 2n+ 3 2n− 1 2

Cn 2n n+ 1 2nn! Sym2 fund 2n+ 2 2n+ 2 2n− 2 2
Dn 2n− 2 2n− 2 2n−1n! ∧2fund 2n− 2 2n+ 2 2n− 2 2

Table B.1: Group theoretical data

B.1 Algebra An

The algebra An is the Lie algebra for the group SU(n+1), n ≥ 1. The root system can be describes

as follows. Denote by {ei}, i = 1, . . . , n+ 1 an orthonormal base of the Rn+1. The set of positive

roots is

∆+ = {ei − ej}, 1 ≤ i < j ≤ n+ 1.

The adjoint representation lies in the tensor product of the fundamental and antifundamental

representations.

B.2 Algebra Bn

This is the Lie algebra of the group SO(2n+ 1), n ≥ 2. We denote by {ei}, i = 1, . . . , n the base

of Rn. The set of positive roots is

∆+ =






ei, 1 ≤ i ≤ n,

ei − ej , 1 ≤ i < j ≤ n,

ei + ej , 1 ≤ i < j ≤ n

The adjoint representations is the antisymmetric one.

B.3 Algebra Cn

The Lie algebra of the group Sp(n) is called Cn, n ≥ 2. {ei}, i = 1, . . . , n is the base of Rn. The

set of positive roots is

∆+ =





ei − ej , 1 ≤ i < j ≤ n,

ei + ej , 1 ≤ i < j ≤ n,

2ei, 1 ≤ i ≤ n.
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The adjoint representation is the symmetric one.

B.4 Algebra Dn

This is the Lie algebra of the group SO(2n), n ≥ 3. {ei}, i = 1, . . . , n is the base of Rn. The set

of positive root is

∆+ =





ei − ej , 1 ≤ i < j ≤ n,

ei + en, 1 ≤ i < n,

ei + ej , 1 ≤ i < j < n.

The adjoint representations is antisymmetric one.
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