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Abstract

The velocity and pressure fields in the proximity of the vdolds were studied by means of numer-
ical modeling and experimental investigation. The matheabmodel, based on the 2D incom-
pressible Navier-Stokes equations in arbitrary Lagran@ialerian formulation discretized by the
finite element method, was programmed in the Fortran larguaging numerical library Mélina.
The results of the numerical simulations show the developroithe supraglottal jet and evolution
of the recirculation vortices within one vocal fold osdiiéa cycle. The physical model, scaled 4 : 1,
yields the acceleration, supraglottal pressure and acaighals emitted by an elastic body vibrat-
ing in the wall of a wind tunnel due to coupling with the flow. &telocity fields in the supraglottal
domain were measured on this model by a PIV system syncla@miith the vibration.

Résumeé

Le champ de vitesse et de pression le long des cordes vodblastes était étudié a I'aide d’'un
modéle numérique et par observation expérimentale. Le lmodathématique, basé sur les équa-
tions de Navier-Stokes 2D incompressibles discrétisées & méthode des éléments finis en
formulation d’Euler-Lagrange arbitraire, était prograguians le langage Fortran, a l'aide de la
librairie numérigue Mélina. Dans les résultats des sinmutat numériques on peut observer le
développement du jet derriere la glotte et I'évolution dmsrhillons de récirculation lors du cy-
cle d'oscillation des cordes vocales. Le modéle physique&dtelle 4 : 1 fournit les signaux
d’accéleration, pression supraglottale et le signal a@pues émis par un corps élastique, qui vibre
dans le paroi du canal aérodynamique grace au couplage’@geulement. Sur le méme modeéle,
le champ de vitesse dans le domaine supraglottale étaitrénpau la PIV synchronisée avec les
oscillations.

Abstrakt

Pomoci numerického modelu a&ani na fyzikalnim modelu byla zkoumana rychlostni a tlakov
pole v blizkosti kmitajicich hlasivek. Matematicky modedloZzeny na 2D nesiiéelnych Navier-
Stokesovych rovnicich diskretizovanych metodou Kmyeh prvkt ve formulaci ALE (Arbitrary
Lagrange-Euler), byl implementovan v jazyce Fortrafi, yyuziti numerické knihovny Mélina.
Vysledky numerickych simulaci ukazuji vyvoj prcgmi v hlasivkové &rbirgé a vznik recirku-
lacnich virli Ehem periody kmitani hlasivek. Na fyzikalnim modelu &itku 4 : 1 bylo nang&feno
zrychleni, subgloticky tlak a akusticky signal vyagany za pruznyméesem kmitajicim ve été
aerodynamického kanalu diky interakci s proudicim vzdochéa stejném modelu byla vyhodno-
cena rychlostni pole v supraglotické oblasti metodou PIvchByonizovanou s kmitanim hlasivky.
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Chapter 1

Introduction

At the current speed of technology progress, fluid-strgctnteraction affects an increasing num-
ber of technical applications — airfoil and helicopter robtade vibration, stability of suspension
bridges, towers, smokestacks and skyscrapers, vibratinmtone blades or flow in heat exchang-
ers and nuclear reactors. Thorough investigations of tafdsc disasters caused by wind-induced
vibrations, such as ruptures of aircraft wings, collapséhefTacoma Narrows bridge on Novem-
ber 7, 1940 or breakdown of the cooling towers in FerrybridgeNovember 1, 1965 lead to the
development of a new scientific and technical discipline: abroelasticity.

The aeroelastic calculations need to combine the methatises classical branches of mechanics:
dynamics of rigid bodies and structures, fluid dynamics dadtieity. In the majority of cases,
the consequences of the aeroelastic effects are rathesitatale — the flow-induced vibration may
affect negatively the operation of the systems, lead to mniahtitigue or induce excessive noise
generation. However, there are processes where the fluickate interaction plays a crucial role;
this is the case of voice production in human vocal folds,chfis the subject of this thesis.

Since the complete equations describing aeroelastic ggeseare extremely difficult to solve, a
classical approach in aeroelasticity is to reduce the nmécalgpart of the problem into a small sys-
tem of rigid masses, springs and dampers, which is furthepled with a simplified flow model.
The models often comprise semiempirical relations andteots An illustrative case study is
demonstrated in Dowel's monography [10]: the airfoil itligy is studied using a model which
consists of a rigid plate fixed on a torsion spring, subjetbeftbw described by the Bernoulli equa-
tion. Although such methods are still widely used and makegfastandardized and state-certified
procedures e.g. in civil engineering, aeronautics andesppplications, some more complex tech-
nigues have also been employed in recent years. These atedrehainly to the boom of finite
element and finite volume codes, which allow realistic mimgeboth of the flow and of the elas-
tic deformations. Mathematical modeling of the flow in hunvaal folds using the finite element
method, as well as measurements on a self-vibrating mezdiaical fold model, will be addressed
within this thesis.

When modeling flow-induced vocal fold oscillation, it is isdensable to understand the basic
principles of voice production in humans and to acquire acblasowledge about physiological
structures involved. Hence, the most important facts amnsarized in the following introductory
section.
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1.1 Principles of voice production

The human voice is created by passage of the airflow betweeal f@ds, which are located in
the upper part of larynx (see Fig. 1.1, left). The vocal fofttsmerly called vocal cords) are
two symmetric soft tissue structures fixed between the thycartilage and arytenoid cartilages
(which are paired); basically they are composed of the #aytenoid (TA) muscle and ligament
covered by mucosa (see Fig. 1.1, right). In fact, this thager model of vocal folds is only a
simplified description; more detailed information can barfd e.g. in Titze’s monographs [45]
or [46]. Fig. 1.2 shows the laryngoscopic view of vocal foldken respiring and in phonatory
position.

When air is expired from lungs, the constriction formed by tocal folds (which is calledlottis)
induces acceleration of the flow and creates underpressudey certain circumstances (subglottal
pressure, glottal width, longitudinal tension in the TA dighment) the fluid-structure interaction
may invoke vocal fold oscillations. Note that the vibratiera passive process —when voicing, peo-
ple do not perform any sort of periodic muscle contractibeytonly adjust the initial configuration
and let the vocal folds vibrate by the airflow.

The creation of voice by vocal fold vibration is usually neél to as phonation. In regular loud
phonation, the vocal folds collide and close the channelptetely; the duration of the glottis clo-
sure may span a considerable part of the vibration periodeWWhispering or in breathy phonation,
the vocal folds may vibrate without collisions.

Even in the case of normal loud phonation, the vocal foldscapable of vibrating in different
modes — from the vocologist’s point of view, the resultingceas then classified into differemtg-
isters the two most important of them being thdal (chestandfalsettoregisters. Independently
of the voice pitch, we sing in the first two octaves (up to 350rHnen, approximately) in the modal
register, where the vocal folds vibrate as a whole, inclgdie TA muscle and where the voice has
ample, rich “color” (spectrum). When trying to reach higlfrequencies, the vocal folds suddenly
switch to falsetto register, where most of the vibrationamnirates to the ligament and mucosa,;
the resulting voice color is rather “flat”. In training of tipeofessional western-culture singers, a
considerable effort is devoted to smooth out the modaktaddransition — the subject tries to make
the register switching as little audible as possible. Insather singing techniques like yodeling,
on the contrary, the singer exploits the register transitideliberately for artistic purposes.

In normal vocal fold vibration, there is a typical phase shibng the vertical axis: the inferior
part of the vocal fold collides prior to the superior segmémisome rather irregular or pathological
cases, longitudinal modes (2-0, 3-0 and higher, see [48]beabserved. These higher eigenmodes
of vibration were measured and reported e.g. in [41]. Fouleegphonation, however, the vocal
folds usually vibrate symmetrically and as a whole, i.e.hia 1-0 mode, with vibrational nodes at
the anterior and posterior commissures and with the solead in the middle.

The frequency of vibration is influenced by many factorsmauiily by the longitudinal tension
in the TA muscle and in the ligament. The periodical glottalsare modulates the airflow and
generates a sound with the fundamental frequency denotedlyus0. The spectrum of the acoustic
signal contains harmonic frequencigs = k- F0, k = 2,3... and to certain extent also other
frequencies which manifest as noise.

The sound produced by the vocal folds themselves, which easbberved for example in exper-
iments on excised larynges [18], does not resemble humae atiall; it can be compared to the
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Figure 1.1: Scheme of the vocal tract in sagittal sectioft)(lethe vocal folds are located in the
region of the cricoid and thyroid cartilages. Detailed viefsthe larynx with termination of the

trachea in coronal section (right) reveals some of the cmagld physiological structures forming
the vocal instrument. In the left picture, the anteriortpdsr axis is oriented from left to right. In

the right one, it is perpendicular to the picture plane. Fégwadapted from [4, 21].

sound produced when blowing a bird-call. The human voicelt®$rom the acoustic filtering of
the original signal by the vocal tract. Based on the actuahgary of the vocal tract, which can be
modified mainly by the position of the tongue (see Fig. 1.&jtain frequencies in the spectrum are
amplified and other suppressed: in this way, different veveeé generated from the same source
signal. When pronouncing the vowels [a:] and [i:], for exdenphe sound generated by the vocal
folds is exactly the same; the difference is that for [a:] thegue is lowered and the lips wide
open, which creates a large resonance cavity with a largedroadiator. When producing the [i:]
vowel, on the contrary, the tongue reduces the oral acoustione to minimum, which changes
the resonance frequencies of the vocal tract completelg.vbhal tract can be hence regarded as an
acoustic resonator, whose frequency response is detatyjnies dimensions and actual geometry.

1.2 Objectives of the study

There is no doubt that the possibility to produce voice isiglifor human communication, although
many people do not realize this until they lose their voicagerarily (due to common respiratory
inflammations) or permanently (e.g. after laryngeal casjceGood knowledge and understand-
ing of the processes and mechanisms which lead to selfisedtaibration of vocal folds is thus
important and has extensive applications. The Institut€hgrmomechanics has been, for exam-
ple, involved in the European project Eureka E!28N&wVoiceon the development of new voice
prostheses for patients after total laryngectomy (sukg@aoval of larynx necessary after certain
cancers, approximately 30 000 patients per year worldwitle¢ results of the Czech research team
were summarized in report [31] and presented in [32].
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Figure 1.2: Laryngoscopic view of the vocal folds in resgirg (left) and phonatory (right) po-
sition. During respiration, abduction of the arytenoidtitages moves the vocal folds far apart.
When phonating, the vocal folds are adducted close togatheave only a narrow glottal opening.
Anterior-posterior axis is oriented vertically, with thetarior commissure at the bottom. Images
provided by courtesy of Medical Healthcom Ltd., Prague.

The central subject of this study was mathematical modelimdyexperimental investigation of the
glottal velocity fields during flow-induced vocal fold vilii@n. In the first approximation, it can

be assumed that the flow field in the glottal region does natgéaignificantly along the anterior-
posterior axis (see Figs. 1.1, 1.2). Thus, it seems reatot@lnvestigate only 2D flow fields in

the coronal plane. In the mathematical model, this appréacilitates substantially the numerical
computation: the 3D and 2D models do not differ in princigat the latter one requires much
less computational power. As regards the physical modeticRalmage Velocimetry (PIV) is a

method which examines the flow field in a selected 2D plane eéris perfectly suitable for 2D

examination.

In regular phonation both vocal folds vibrate symmetricafror the purposes of mathematical or
physical modeling, a simplified approach is often used: ytmersetry is assumed ad hoc and only
one half of the channel is modeled. This setup, sometimésdcdtemilarynx configuration®, is
useful to avoid complexity, time consumption of the aldaris and difficulties with unsymmetric
vibrations, related rather to pathological voice produttilt is necessary, however, to keep in mind
that the symmetry is in general not warranted, and in somecéspven not realistic (as an example
one may take vortex shedding and jet attachment upstreargldkies, which are definitely not
symmetric phenomena).

The approach presented in this thesis tries to take adwaofabe hemilarynx configuration, while
avoiding untenable assumptions: since the subject of tiay $6 the 2D flow field within glottal
space, the whole channel is modeled, but one of the vocas fslfixed to the channel wall and
does not move at all. This approach can be regarded as afsgliarting point for further, more
complex analysis. Physiologically, it might be relateddace production in subjects with unilateral
vocal fold paralysis.
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1.3 Overview of existing vocal fold models

The mathematical model of Ishizaka & Flanagan [20] is ugualjarded as the cornerstone of vocal
fold modeling; it has been widely used (in various modifigasi) until present. In this model, the
vocal fold was modeled by a system comprising two massesctdngular shape connected with
springs and dampers, the aerodynamics was based on theuBieegoation. It is interesting that
such a trivial model, which neglects a large majority of thal isystem features, gave surprisingly
good results.

The model of Pelorson and Hirschberg [28] includes morastigl rounded vocal fold shape and
concentrates on the flow separation point. To simplify theatigns, the aerodynamic forces which
act on the second mass are neglected. Steinecke and Hd&}esEl a similar model to investigate
the influence of vocal fold asymmetry. A slightly differemtd-mass model, featuring translational
and rotational motion, was developed by Liljencrants [2B]hen studying the Hopf bifurcations
using the original Ishizaka & Flanagan’s model combinechvBtory’s model of surface waves
[37], Lucero showed [25], that by a proper choice of modebhpaaters it is possible to model the
falsetto-type vocal fold oscillations, too. H@ek et al. [17] proposed a three-mass 2-degrees-of-
freedom model with smooth shape, coupled with quasi-1D fleecdbed by non-stationary Euler
equations. A multi-mass model was first introduced by Ti#&®, A4]. The main drawback of all
lumped-parameter models was pointed out in the work of Stoy Titze [37]: there is no clear
relation between the model parameters and the anatomylofoes folds.

Calculation of the aerodynamic forces in the models sunzedrabove is usually based on the
Bernoulli equation, the models mostly do not respect thé veeal fold shape. In some cases
(Pelorson and Hirschberg [28]) a variable flow separatiointde modeled; in other studies (e.g.
Liliencrants [23], Lous et al. [24]), this parameter is asgdl to be constant.

In recent years, a completely different approach to gldiital modeling has been tried: instead of
simplified 1-D flow models, the 2D flow fields have been cal@datising finite volume or finite
element methods, for example in the studies of Alipour andeTjl] or Thomson et al. [42].
The main drawbacks of this approach are obviously the coatipangl costs, and the difficulties in
supplying geometrical and structural parameters for thdeho

Regarding the physical vocal fold models, notable resutseweported by Deverge, Pelorson et
al. [8], who modeled the vocal folds by two flexible latex takfdled with water, self-vibrating

in a wind tunnel. Barney et al. [2] and Kob et al. [22] used Vdotd replicas, which were
driven externally: two plane shutters closing a wind tuninethe first case, and rotating cams
in a hydrodynamical channel in the latter. Recently, rerabld studies have been published by
Thomson et al. [42], who managed to design a true-scaled/igetting vocal fold model fabricated
from a highly flexible polyurethane rubber compound.



Chapter 2

Mathematical modeling

In previous works of the author (summarized in detail in raastesis [30] and published in [17]) the
system was thoroughly examined from the mechanical poiniegi: the vocal folds were modeled

by a two-degree-of-freedom oscillator, placed in the wakh @ehannel and coupled with quasi-1D
flow of ideal fluid, described by the non-stationary Eulerans. The coupled equations were
solved by a semi-analytical method —in this case it was ptesg integrate the governing equations
analytically over the spatial variable and proceed with atical solution of a system of ordinary

differential equations with respect to the time variable, ito perform numerical simulations of
the vocal fold vibration in time. Another possibility was ltoearize the equations, transform the
system into an eigenvalue problem and carry out stabiligfyesis in frequency domain.

Later on, the algorithm was modified to reflect more accwdtet conditions occurring for narrow
glottal apertures in order to model more precisely proces®eompanying glottis closure. The
modified model included variable flow separation point imgf a moving boundary condition,
specified according to a semiempirical criterion. The phdifferential equations were discretized
by the finite difference method and solved using an explatiesne. However, this method, reported
in [33], did not bring substantial improvement.

The approaches described above, which use rather simpldiegtdimensional fluid model, can

be very useful to reveal critical flow values, observe theugrice of various model parameters
and examine the mechanical phenomena related to vocal itmidtion, such as the displacement,
velocity and acceleration waveforms or impact intensityd all this without requiring excessive

computing power. They do not, however, tell much about thd-fliechanical part of the problem,

and some important effects like flow separation, vortex dhmegor recirculation cannot be modeled
this way at all. Within this thesis, a completely differenatimematical model is presented. The flow
is described by incompressible non-stationary Naviek&tequations in 2D, solved by the finite
element method (FEM).

The main advantage of the finite element method is its capatnlhandle problems with complex
geometries. Unlike the finite difference method, whichiisopular thanks to simplicity of its im-
plementation and effectiveness of the algorithms, FEM i sudted even for unstructured meshes
— one can use meshes with very fine elements in the domainse \ntgdh gradients of the solution
are expected, and coarser elements elsewhere to spareteomgsources. In comparison with the
finite volume method, which approximates the solution byex@ivise constant function, the finite
element method (using a piecewise polynomial approximateads to higher-order, more accurate

12
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numerical schemes [13].

The finite element method, which is widely used for numergution of elliptic and parabolic
partial differential equations, for example in structurschanics, seems to be somewhat less pop-
ular in computational fluid dynamics (CFD); actually mostlé commercial CFD codes employ
some variant of the finite volume method. This might be caulmlethe computational costs of the
FEM (with the same number of mesh elements, lower-order odsth such as the finite volume
method — offer less accurate, but less computationally resipe solutions), but also by the fact,
that for high Reynolds numbers the standard finite elemettaodedoes not give reliable results.
To understand this unfavorable feature, it is necessargdtize that for high-velocity flows the
viscous term in the Navier-Stokes equations becomes iifisigmt against the convective term. It
is well known, that for such systems with dominating coniec{sometimes also called singularly
perturbed problems), standard finite element method is utdkde as it produces nonphysical,
“spurious” oscillations in the solution [12]. There exiglveral stabilization concepts, which can
help overcome this numerical problem, namely streamliffesion method (alias streamline up-
wind Petrov-Galerkin method, SUPG) or Galerkin least-sgsianethod. These methods, however,
require a very careful choice of the stabilization paramset8ince the Reynolds numbers of typical
glottal flows do not usually exceed valuesid = 1000 — 5000, the standard, non-stabilized finite
element numerical scheme was used in this study.

When modeling flow past vibrating vocal folds, yet anothebstantial complication is encoun-
tered: due to vocal fold vibration, the computational damfaichanges in time (which implies that
the mesh is deformed, too); this makes the straightforw& dliscretization impossible. There-
fore, the Navier-Stokes equations were first reformulatedrbitrary Lagrangian-Eulerian (ALE)
approach. Based on a special mappih@) of the fixed, reference configuratidiy, (e.g. domain
occupied by the fluid at timé = 0) onto the deformed, actual configuratiéh (domain in time
t > 0), the ALE method makes possible to apply the finite elemerthateon problems with
time-variable geometry [27].

The Navier-Stokes equations are nonlinear; besides thefpaf the existence and uniqueness
of the solution (which are available only for several siffiptl, rather academic cases), this also
complicates the numerical solution. The direct FE diszagion would lead to a system of nonlinear
algebraic equations, which would be, due to the number ohowks, extremely inconvenient to
solve. This is why it is necessary to use a suitable linetiizaf the convective term. Within this
work, the Oseen iteration process was used.

Numerical solution of partial differential equations, wier by the finite volume or finite element
method, leads to a large system of linear equations; thdesftig of the whole algorithm is thus
essentially affected by the linear solver used. Basicaiig, can choose between the direct methods,
which are fast but become too memory demanding when emplaydalge matrices, and iterative
methods, which are memory efficient, but much slower in ganéioreover, when using iterative
methods, it is hecessary to concern about convergencehwiwot trivial. Most of the modern
CFD codes on the market now feature an iterative linear sblased on multigrid acceleration — a
concept, which can dramatically improve the time efficiemtyle preserving reasonable memory
requirements. The numerical implementation, which shaliéscribed here, uses a powerful direct
linear solvelUMFPACK [7].

The mathematical formulation and numerical solution ofgheblem in 3D and in 2D is, in prin-
ciple, the same. The difference is that in 3D, it is much mamumlicated to specify the geometry;
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actually, no complete 3D geometrical data regarding thalfmd shape can be found in litera-

ture so far. In 3D, it is necessary to specify more structaral material properties of the system,
which are generally not known. What is more, 3D modeling ltesn considerably increased el-
ement numbers and matrix sizes, requiring more time and metaolve. Therefore, it seems

reasonable to start with a 2D mathematical model, which ean buture extended into 3D without

principal modifications.

The geometry of the problem, i.e. the 2D shape of the vocdsfahd adjoining vocal tract, was
specified according to measurements on excised human &gypgrformed in the Institute of Ther-
momechanics [34]. More specifically, the geometry of the pomtional domairf), at zero dis-
placement was modeled on the basis of the measurements midhmembranous coronal section
of larynx No.8 (female, 72 years, phonated at the fundarh&eguency'0 = 308 Hz).

2.1 Mathematical description

2.1.1 Equations of motion of the mechanical system

From the mechanical point of view, real vocal folds consgtita very complex system. They consist
of several tissue layers composed of diverse viscoelagtiennals, whose mechanical properties are
generally not known. Therefore it is often necessary to tgkaith simplified, lumped-parameter
models and to try to match at least several fundamental dignauioperties (e.g. natural frequencies
and damping factors) of real vocal folds. To illustrate thetimod, the equations of motion will be
derived for a simple two-degrees-of-freedom dynamic sgste

w, (1) cl ! w, (1)

Figure 2.1: Geometric definitions in the mathematical mdtemilarynx configuration). Rigid
body of massn and moment of inertia (with respect to the center of gravity CG), supported by
springs and dampers. For the derivation of the equationsotibm the rigid body can be replaced
by a dynamically equivalent three-mass system ms, ms.

The real, continuously elastic vocal fold is first replacgdalrigid body supported by two springs
and dampers (see Fig. 2.1). The kinematic model reflects asicInodes of the vocal fold motion:
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vertical shift along the y-axis and rotation with respectCtoFor the generalized coordinates one
may take vertical displacements andw- at the locations ofn; andms, respectively. Note that
within such system, the third mode — horizontal motion ofwbheal fold, which is important in real
voice production, too — is blocked; this is however necgstapreserve simplicity and to avoid the
necessity to supply additional parameters, which are noivkn

To derive the equations of motion, the rigid body of massstatic momenin - e (with respect
to the location ofims) and moment of inertia/ (with respect to the center of gravity CG) can be
temporarily replaced by a dynamically equivalent threessrsystemn, ms, ms3. The conditions
of equal mass, static moment and moment of inertia

mp+me+m3 = m
—mil+mal = me
mil2+mol® = J4+me? (2.2)
yield

m; = i(mez—mel—i-J)

212

1 2
my = 2—l2(me +mel+J)

e\ 2 J

Now it is easy to write the linearized Lagrange functibrfor the equivalent undamped system
(assuming small amplitudes):

1, 1 i +in 2 1 1 1
Lzﬁmlw%—l—gmg (T) —|—§m2w%— §k1w%+§k2w% . (2.3)

Application of the Lagrange equations on (2.3)

d (0L oL ,

where F; are the (generalized) excitation forces, gives the equatid motion for the undamped
system

m1w1+T3 (wl—i-wg)—i—klwl = F
. m3 . .
My iy + —2 (i) + o) + kywy = Fy. (2.5)

4
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Using matrix notation and introducing the displacementae® (¢) = (w; (t), wa(t))”, one may
rewrite (2.5) as

MW+KW=F, (2.6)

whereM, K are the mass and stiffness matrices &he= (F;, F»)” is the vector of excitation
forces. The spring stiffnessés, k- in (2.5), which were not specified so far, can be set in such a
way that the natural frequencies of the model match the firstresonance frequencies measured
on real vocal folds (such experiments were performed in tiséitute of Thermomechanics and
reported in [41]). The first step is to substitute a harmoalatoon W (t) = A e¥?, wherew € C is

the complex angular frequency aAdthe amplitude vector, into the equations of motion (2.6wit
zero excitatiorF = 0, which gives

(WM+K)A=0. (2.7)

This equation is usually exploited to determine the cinceigenfrequencies of a system when the
mass and stiffness matrices are known. However, it can likinsereversed way — to calculate the
unknown stiffness constants, ks from known (measured) eigenfrequencies w». In order to
obtain a nontrivial solution, the determinant of the mafgixX7) must be zero:

2
WM +K| = <k1 + (my + %) w2> <k2+(m2+ %) w2> Lyt (2.8)

Substituting the experimental angular resonance fregegng, w- into (2.8) yields a system of
two quadratic equations for stiffnesses k-, which can be easily solved.

So far, we were concerned with the undamped system. Theiegsiaif motion of the damped
system read

MW+BW+KW=F. (2.9)

The damping matri®B is generally not easy to specify; one possible approachuséahe propor-
tional damping model, which assumes

B=eM+eK. (2.10)

The coefficients of the proportional dampiag ¢, can be calculated according to approximate
formulas [19]

_Ah fzz AL fio - LAh-AR (2.11)
f3-fi

:2 p—
“ 2r fI-j2
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wheref; = ﬁ w; are the measured resonance frequenciestafigtand for the experimental 3dB

half-power widths of the corresponding resonance peaks.

Once the excitation forceB(¢) are known, the equations of motion (2.9) represent a sysfem o
two linear second-order ordinary differential equatiombjch can be easily transformed into four
first-order equations and solved numerically e.g. by thegetutta method.

Using a different model with more degrees of freedom doeshange anything in the principles
and methods described, it just complicates technicallydérévation of the equations and makes
necessary to supply more structural constants. There is meveneed to linearize the Lagrange
function — for the numerical solution in time the equatiofsnotion need not be linear.

2.1.2 Formulation of the coupled problem

Once the equations of motion of the mechanical system ane@rkniois possible to proceed to the
formulation of the coupled problem, i.e. to derive equatialescribing jointly the flow and the

vocal fold motion, which are in interaction. In our case, toeipling is realized by aerodynamic
forces (determined by the flow pressure field), which act erstirface of the vocal folds and induce
their motion; from the other side, the moving vocal folds rifypthe shape of the flow domain thus
affecting back the velocity and pressure fields.

As for the fluid model, we shall describe the flow of an incorspilele viscous Newtonian fluid in a
bounded 2D domain. In what follows, vector-valued quagsgitvill be in bold, tensors and matrices
double-struck. Numerical indices denote vector companent

Let 2, C R? be the domain occupied by the fluid at time= (0,77). The boundaryl® = 992 is
composed of four non-intersecting parts (see Fig. 2:2: I';,, Ul 50t UL ot ULy £, Wherel';,, and
I, are virtual boundaries representing the inlet and ouflgt;, = I'®! , urb? Urul UT"Z, is

a a a a

the fixed wall, which is not a function of time, afd - r = FI{/F UTI'Y, » stands for the surface of the
moving vocal folds. The superscripts and 'u’ denote the bottom and upper parts, respectively.

u2
wall

1_,u1

wall

r

b1 ! b2

1_‘wall 1—‘wall
Figure 2.2: Sketch of the computational domain and defimitbits boundary parts. Inlet;,,
outletI’,,, fixed walll",,,;; and moving vocal fold$'y r.

Let ¢%(t) and q}‘(t) be the generalized coordinates specifying uniguely théipnsf the bottom
and upper vocal fold, respectively. According to the meatarvocal fold model used, the indices
1,7 may be equal to 1 for a one degree-of-freedom (1-DOF) systieey, may run from 1-2 in
the case of the 2-DOF model described in section 2.1.1 (&1dase, we have simplyf = wy,

¢4 = wo), from 1-3 for a generally moving rigid body in 2D with thre@B or from 1-n when a
discrete multi-mass system is used. The number of genedatiaordinates might be even infinite
in the case of continuous elastic vocal fold modeling. In eage, the shape of the domain is an
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explicit function of the generalized coordinates ofily,= F(q/,q}),i = 1.Npop, j = 1.Npop

Our goal is to find the flow velocity (¢, ), kinematic pressurg(t, ) and generalized coordinates
of the vocal foldsg}(t), ¢ (t), t € (0,T), z € Qu, i = 1.Npop, j = 1.Npop. Kinematic
pressure is the pressure (in Pascals) divided by the fluisitgen

Incompressible flow of a Newtonian fluid in a non-deformingr@an €2 is described by the incom-
pressible Navier-Stokes equations and by the continuitagon:

6—u—|—(u-V)u—l—Vp—yAuzO in (0,7) x Q

ot
divu =0 in(0,7) xQ , (2.12)

wherer denotes the kinematic fluid viscosity. However, since thkeian time derivative) /0t is
not well defined in a time-dependent computational dorfigirthe standard, Eulerian form (2.12)
of the governing equations is not suitable for descriptibthe flow in a domain that deforms in
time. Therefore it will be reformulated using the arbitré&igrangian-Eulerian approach.

2.1.3 Arbitrary Lagrangian-Eulerian method

Before we proceed to the derivation of the Navier-Stokesatous in ALE approach, let us remind
two basic time derivatives, which are used in fluid dynamildse first one is thé&ulerian deriva-
tive 9/0t, which represents the rate of change of some quantity in d fdxént. Thematerial
(substantive, Lagrangian) derivative

D 0

E_a_'_(u.V)’ (2.13)
on the other hand, reflects the rate of change of some propeagspecific fluid particle, moving
with the fluid. Further, yet another time derivative — the All&rivative — shall be introduced.

The fundamental concept of the ALE method, used in CFD probleith time-variable geometry
(such as wave propagation on free surface, fluids contaiiteaging bodies, fluid-structure inter-
action problems), is to relate the equations defined in theahc'deformed” configuration — the
domain(2; at timet — to a reference configuratidny, which is usually the domain @t= 0 (see
Fig. 2.3). This is realized using the ALE mappidg : Qy — £, which is for eacht € [0,7] a
smooth bijection (one-to-one mapping{@f onto 2; with continuous first partial derivatives).

For the coordinates in the actual configuration, space auaes, we will use small letters; the
coordinates in the reference configuration — referencedaoates — will be in uppercase. Hence
we may writex = x(t, X) = A(X), X = A;'(x). In what follows, by® we will denote the
domain, where the velocity and pressure fialds ) andp(t, ) are defined:

o = {(t,w) ‘1 e (0,7), :cth}. (2.14)
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Y.

Q,
+x =A4,(X)

S

Figure 2.3: lllustration of the ALE mapping; - a smooth mapping of the reference configuration
Qo onto the actual configuratidn,. Reference coordinateX and space coordinatas

A function f : ® — R, defined in the actual configuration, can be transformedtimeaeference
configuration, where it will be referred to s

[, X)=f(t,x), x=A(X). (2.15)

Let us define thelomain velocity

(1, X) = Lax) =2

o o, X) (2.16)

or in space coordinates

wt,x) =wtX), X=A(z). (2.17)

i D4
Now we can proceed to the definition of tA&E derivative T d—R:

A
ol

(t,x) = % f6,X), X=A"(z). (2.18)

Lemma 2.1. Let Qy be a bounded domaif); = A;(). Let f : & — R be a function with
continuous partial derivatives of order 4. C*(®). Then

DA of
Ef:E“‘(w'v)f
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Proof. Using the ALE velocity definition (2.18), the domain velycdefinition (2.16), relation
(2.15) and applying the chain rule, for a fixed= A;(X) we can write

A o - d d 209 d
%f(t,w) == (t, X) = o ft,A(X)) = 8—{ (t,x)+283‘i (t,x) (E At(X)>i =
P

ZDi(t,X) = w; (t,:l:)
of

=3¢ (t,z)+ (w-V)f(t,).

O

We see that the ALE derivativB“ /Dt = 9/0t + (w - V) is analogous to the material derivative
D /Dt = 0/0t+(u-V) in Lagrangian approach. The difference is that in Lagramdescription we
track the particles with velocity; the ALE approach, on the other hand, follows the “defororati
of the particles of the reference configuration (the vestimethe computational mesh for example),
whose velocity is the domain velocity.

Lemma 2.1 holds also for vector-valued functigfig, ¢). In this case(w - V) f is a vector with
components

(w-V)f) = ; w; O (2.19)
7 —1
]:

J@wj '

The next quantity, which will be important in following deations, is the Jacobi determinant of the
ALE mapping.J4 :

0A; 1 0A; 1

(X) (X)
0X X
JA (x) = ‘%‘ = ' ’ ., X =A1(x). (2.20)
DA DA
0X, (X) X, (X)

Due to the fact that the ALE mapping is surjectiveV ¢ € [0,7] and thatd,(X) =I1d(X) = X
for t = 0, it can be proven [29] that

JA4 > 0. (2.21)
Furthermore, the following relation holds [11, 29]:

D% Jau(w) = 14 (@) div wit 2.22
277 @) = I (@) divw(t @) (2.22)



CHAPTER 2. MATHEMATICAL MODELING 21

Theorem 2.2. (transport theorem in ALE formulation)
Let V; C Q) be a bounded domaitf, € C*(®). Then

d D4 :
- wfdx:A<Ef+fdlvw>dw. (2.23)

Proof. Letus denotdy = A, '(V}). By the substitution theorem, the integral can be rewrigten

d d [ - -
— t,x)dr = — t, X)J"(X)dX .
G ) e de = | 30700

Since the integration domaiti is no longer dependent on time, we can apply the theorem on
differentiation of an integral with respect to a parametdsing the definition (2.18) of the ALE
derivative, equation (2.22) and performing the inversesstuttion we get

d F ~At e a_f: NAt r g NAt .
- /Vof@,x) Jrexx = ( 08, %) J4 () + fe.X) 2 (X)>dX _
%?f(t,m) DT;‘JAt(:E)
DA .
= /W (Ef(t’ x)+ f(t,x) div w(t, x)) dex .

2.1.4 Navier-Stokes equations in ALE formulation

The incompressible Navier-Stokes equations can be defieed the principles of conservation
of mass, momentum and angular momentum. Additionally, ieisessary to assume a constitutive
relation for the fluid, which relates the stress and straiades. In Eulerian description, the principle
of conservation of mass for an incompressible fluid exprseasdahe continuity equation

divu(t,xz) =0 in®. (2.24)

The continuity equation does not include any time deriestignd can be discretized in a standard
way; therefore it will be used in this form even in the ALE farfation.

Now we will exploit the momentum equation. Let us considegdritrary non-material volumg
with a boundarydV’, moving with a velocityv. The momentum equation (the second Newton’s
law) states that the material time derivative of momentuetisal to the sum of external forces:

Dﬂt(ﬂu):%@u)‘*’[U'V](PU)ZV'T+Pf7 (2.25)
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whereT is the Cauchy stress tensor, representing the effects fafcguiorces, and is the density
of volume forces.

For further derivations, we will need the Reynolds transploeorem, which expresses the time
derivative of an integral form. The standard Reynolds faristheorem deals with integrals over
material volumes, containing permanently the same pastiof continuum. In our case, however,
V' is not a material volume; hence we will need the general foffReynolds transport theorem
(see [35] for detailed derivation)

d of

wheren stands for the unit outer normal. The theorem states thattheof change of the integral
of a functionf (¢, x) over an arbitrary time-variable volunié is equal to the change gfinsideV’
and the flux off across the bounda§yl’. Note that in the surface integral, the velocityof the
boundarydV is involved, instead of the velocity of the boundary of a material volume (equal to
the flow velocity), which figures in standard Reynolds tramsheorem.

Specifically, the transport theorem (2.26) for the momenpuifor the volumel; and the boundary
0V, whose velocity igw gives

I(pu) d /
dr = — udxr — uw)w- -ndo. 2.27
/w 2 il [ o (2.27)

Substituting (2.27) into the momentum equation (2.25)grated ovel; yields

F = (V-’]I‘—i—pf)dac:i pudw—/ (pu)w-ndo+
Vi dt Jy, i
/[uV](pu) dz | (2.28)
Vi

where F' is the resultant of the forces acting &) When applying the ALE transport theorem
(2.23) to express the first integral on the right hand sid® &q), we get

F = Vt(%j(pu)+(pu)divw>d:c—/a‘/t(pu)w-ndo—l—
/Vt[uV}(pu) dz . (2.29)

Using the Green’s theorem, for the i-th component of theasarintegral in (2.29) we can write
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/ (pu;)) w-ndo :/ (pu; w) -ndo :/ div (pu; w) de =
Vi Vi

Vi
:/ wla(ﬂui) PG B CAT))
Vi

i di dx =
8901 2 8562 ? 8903 tou divw dz
:/ [w-V] (pui) + pu; divw de (2.30)
Vi
which gives
/ (pu)w-ndaz/ [w-V](pu)+pudivw dz . (2.31)
Vi Vi

For the incompressible fluid(x, t) = const, substituting (2.31) into (2.29) finally yields

PEqu(%$u+Ru—wa%de. (2.32)

As seen in (2.28), the vector of the outer fordés= F'y, + F'g is composed of the volume forces

Fy = /v pf(t,x) de (2.33)

and the surface forces

Fg= V-wa:/ T(t,w)-ndaz/ T(t,x,m) do, (2.34)
Vi oV oV

whereT is the stress tensor and= T - n is the stress vector (density of the surface forces). Now
it is necessary to include the constitutive relation. Sgmp Newtonian fluid, in which the shear
stress is linearly proportional to the velocity gradiehg tonstitutive relation states that

axj + 8CCZ

(2.35)

Tij = —P o +p <8ui 6uj> ;

whered;; stands for the Kronecker delt&, is pressure ang the dynamic fluid viscosity. The rest
of the derivation is identical with that of the standard Naxstokes equations, and shall be only
briefly outlined here: using the constitutive relation &.8 can be easily shown that

V.-T=-VP+puAu. (2.36)
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Neglecting the volume forceg, introducing the kinematic pressupe= P/p, kinematic viscosity
v = u/p and combining (2.32), (2.34) and (2.36) immediately yighs ALE-formulation of the
Navier-Stokes equations, defineddin

D%t [(w—w)- V]ut Vo v Au—0

Dt
divu=0 . (2.37)

Note that if we are not interested in the detailed derivatibiihie Navier-Stokes equations, the ALE-
formulation (2.37) can be obtained immediately by subtituthe result of Lemma 2.1 fof = u
into the standard Navier-Stokes equations (2.12).

2.1.5 |Initial and boundary conditions

To solve the Navier-Stokes equations (2.37), it is necgdsasupply suitable boundary conditions
on the boundary$2; of the computational domaift;. The boundary is composed of several dif-
ferent parts (see Fig. 2.2) — the inl&t,, the fixed wallsl",,;;, the moving vocal fold surfacds;
and the outlef’,;.

The inlet flow, coming through’;,,, is imposed as needed. In the computations presented within
this work a parabolic profile of the vertical velocity comeoh was used,

4T (zg—zQTL) (wg—zQBL)
u(t,x) = 0 @fT—afT) for @ € Ty, t € [0,7T], (2.38)
0

wherel is the maximum flow velocity at the channel axis arid, 2" represent the coordinates
of the top and bottom left domain corners, respectively.

Since we use a viscous model, the “no-slip condition” is gribed on the fixed wall§',,.;;:

u(t,z) =0 for x € Tyay, t €10,7] . (2.39)
On the moving vocal fold surfaces, the velocity of the fluidtisées must be equal to the velocity
of the moving surface, which is given by the ALE-velocity Hence,

u(t,z) = w(t,x) forx e Typ, t €[0,T]. (2.40)

Finally, some condition has to be specified on the ouflgl;. Unlike the previous cases, this
represents a rather delicate question — we need to set aesuffic'unrestrictive” formula. One
possible choice is the “do-nothing condition” [47]
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_Vg—:;(t,:c) +p(t, @) n(x) = pregn(x)  forx € Toy, t €[0,77], (2.41)

wherev is the fluid viscosity)/0n denotes the normal derivative(x) is the unit outer normal to
I'ou: andp,..s is a reference pressure, which can be set to zero. The phygséeming of the refer-
ence pressure becomes clear when the do-nothing conditsst orl';,,, too, instead of prescribing
the parabolic velocity profile. Then, the val(pf];f — pgg}) determines the pressure difference be-
tweenI';,, andT',,; which drives the flow. In phoniatric terms, this differensecalledtransglottal
pressureand is approximately equal to the lung pressure during gimna

The origins of the do-nothing condition, which are not olonga@t the moment, actually arise from
the weak formulation of the Navier-Stokes equations. Thadten will be discussed more thor-
oughly in section 2.2.4.

Since the non-stationary Navier-Stokes equations indinake derivative, suitable initial conditions

uo(:c) =u(0,x), po(:c) =p(0,x) (2.42)

must be supplied, too. One possibility is to solve the statip Navier-Stokes equations

(u(x) —w(x)) - V]u(w) + Vp(x) —v Au(z) =0 VaeQ
0 Ve (2.43)

and to use the stationary solution as the initial conditibhis approach is applicable only for low
Reynolds numbers (which is our case) — for higher flow veiesijtthe numerical solution of the
stationary system does not usually converge.

2.1.6 Dimensionless variables

When describing physical processes by mathematical emsatit is often advantageous to pass
from dimensional quantities towards dimensionless végglFirstly, in the dimensionless form of

the governing equations, the relative importance of thesdsecomes more evident. The dimen-
sional analysis allows to create scaled, but dynamicathylar models, thus predicting the behavior
of the original system on the basis of the results from thiedaaodel. Moreover, the dimensionless
form of the equations is more suitable for the numerical tsmhudue to the computer arithmetics

properties.

In the Navier-Stokes equations (2.37) we shall introduceedisionless space coordinate, velocity,
time and pressure denoted, ', ¢’ andp’. These will be defined using suitable scaks U*, T*
and P* as follows:

x=L"x%, u=U"d, t=T"t, p=Pp. (2.44)
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The length scald.* can be chosen as the length of the vocal fold (denatedFig. 2.6). Based on
the geometric data available [34], the length scale useaeirdmputations was

L*=4311-103m. (2.45)

Itis convenient to take the velocity scdle as the flow velocity at the channel axisBy,, U* = Uy
(see 2.38), according to the boundary condition which is@ibed there. Henceforth, it is not
possible to choose neither the time nor the pressure sdatendty — it is necessary to set

LT
T == (2.46)
Pt = (U2 (2.47)

Note thatP* is the scale of thkinematicpressure (dynamic pressure divided by the fluid density),
whose physical dimension % = ff:n”f,;z =m?2/s2.

Differentiating (2.44) yields

d d . _,
L L e v =L

dz’ dx’lev v

d . d

- Ta (2.48)

By substituting (2.44), (2.46), (2.47) and (2.48) into theensional Navier-Stokes and continuity
equations (2.37) we get

U* DA 1 1 1

T D WU + U (v —w') - EVI o U* + EV’p’ P —v e ANd U = 0
1
- divia' U* = 0.

(2.49)

Now, if we multiply the first equation byZ*/U*Q, introduce the dimensionless Reynolds number

LU

14

Re (2.50)

and drop the primes to simplify notation, we immediatelyaibthe dimensionless Navier-Stokes
equations defined oh:

%I:u—l—{(u—w)-V}u—i—Vp—

1
— Au=0
Re “

dive=0 . (2.51)
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2.2 Numerical solution

The Navier-Stokes equations were solved using the finilmet¢ method. All the code was pro-
grammed inFortran77, making use of the free, open-source numerical libM@éfina, developed
at Université de Rennes and Unité de Mathématiques Ap@sUENSTA Paris.

2.2.1 Solution of the coupled problem

The Navier-Stokes equations (2.37) together with the éougbf motion (2.9) form a full coupled
system describing the fluid-structure interaction in thealdolds. Since such mixed system of
partial and ordinary differential equations is not suitatd be solved directly by some standard
numerical scheme, it is convenient to begin with the tinmidescretization of the Navier-Stokes
equations and discretization of the equations of motionth lpdgth the same timestep. In our
case, the ALE-derivative in the Navier-Stokes equations aggproximated by a second-order back-
ward difference, and the equations of motion were disadtizsing the fourth-order Runge-Kutta
method. Further, the following procedure is applied:

Assuming that the solution of the Navier-Stokes equati@87) on a specific time level and
domain(; is known (or using the data specified in the initial conditiont = 0), the generalized
excitation forces are calculated. In the case of the simTyidOFE system described in section 2.1.1,
the horizontal motion is blocked and the generalized foesesrepresented by the vertical forces
Iy, F; (see Fig. 2.1). These forces can be calculated from the faxdenomentum conditions

P+ F = F (2.52)
Fy (L1 — l) + F5 (Ll + l) = Mf , (2.53)

which immediately yield

Fy (I+Ly) — My

o= = (2.54)
Fr(l— Ly)+ M
R o= Ll 2;” I (2.55)

The total vertical forcd’; and momentuni/;, by which the fluid acts on the bottom vocal fold, is
given by the integration of the stress vectqrsimilarly as in (2.34):
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Fr = /TQdJZ/ZTanjdav (2.56)

J=1
TV e TV e
2 2
Mf = / E €3jkTj Tk do = / E egjijl ny Ty do =
_],kzl J7kvl:1
TV e Ve
2
= / E (Tll ny ro — Tgl ny .%'1>d0 . (2.57)
=1
TV e

Here T is the stress tenson the unit outer normal to the vocal fold surface ang. the Levi-
Civita symbol. For the definition of the integration dom&ip,. see Fig. 2.2. The stress tengbis
calculated from the pressure and velocity fighds =) andwu(¢, x) on time levelt, according to the
constitutive relation (2.35) valid for Newtonian fluids.

Once the excitation forceB; and F; are known, we can proceed to the next time level = by
performing one step of the Runge-Kutta method in the tinserdtized equations of motion. In
this way, we get the new system coordinate$t + 7), i = 1..2 (or ¢;(t + 7), i = 1..n in the
generaln-DOF case). These coordinates uniquely determine the sifaphe domaint);, .. With
the knowledge of the solution from the previous two time lgvthe Navier-Stokes equations can
be solved on the new time levek r and new domainf),, . using the finite element method.

It is evident that within this numerical scheme, there is smeatial difference between the solution
of the coupled system (fluid-structure interaction), arelgblution in the case of externally driven
vibrations, i.e. prescribed vocal fold motion. All, whatrigcessary in the coupled system, is
to calculate the generalized forces and solve numericallgdditional small system of ordinary

differential equations, which is not so complicated in camgon to the difficulties encountered in

finite element solution of the nonlinear Navier-Stokes ¢igna. Though, modeling of the coupled

oscillations brings several technical challenges, whiehnat easy to overcome:

First, it is not obvious which kinematic vocal fold model teeu Obviously, the more degrees of
freedom modeled, the closer to reality the model can beheutore elastic and damping constants
are needed to design the dynamic model. However, theseatwsistre not known, and very difficult
or even impossible to obtain experimentally.

What is more, it is by no means guaranteed, that the modedlctncounters the self-oscillation
regime. Unlike many technical systems, where flow-inducédations represent an undesirable
phenomenon which is rather difficult to suppress (e.g. leridgck wind-induced vibrations, airfoil
flutter), the vibration of vocal folds is a result of a longrteevolution and occurs only in very
special conditions. It has been experienced in the measmtsron physical vocal fold models [33]
and excised human larynges [41] that it is indeed not trigi@djust the geometry, elastic properties
and other parameters so that the oscillations occur.

Taking all this into account, it seems reasonable to perftfirst computations using the model
with externally driven vibration. The results shown withins study were calculated in this mode
— with prescribed motion of the vocal fold.
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2.2.2 Time discretization of the Navier-Stokes equations
The time discretization is based on the works of&ka Feistauer and Haték [38, 39]. A constant

timestepr will be used. Let us define the discrete time letek= i 7 and the approximate flow
velocity, pressure and domain velocity on this time level

uz(:c) ~ u(t;,x), pz(:c) ~ p(t;, x), 'wz(:c) ~w(t;,x), x ey, . (2.58)

The Eulerian time derivativéu /0t can be approximated by second-order backward difference

0 3 tn ) —4 t?’w tn— )
O it ) u(tpi1, @) —dultn, @) +utn-1,2) (2.59)
ot 2T

On the basis of the solutions from previous time levglandt, 1, an explicit two-step scheme
can be constructed. In the ALE-formulated Navier-Stokesatigns (2.37), however, we use the
ALE-derivative

DA

)
o — U(ty1,X), X=A' (), z€W,, . (2.60)

u(tn+17w) - ot tnt1

The pointX of the reference configuration will be helpful for the constion of the approximation
of the ALE-derivative. Let us denote the ALE-maps of the reffiee pointX on the three time levels
involved

2 = A (X), @ = A (X), @t = A (X)) (2.61)

Then, similarly as in (2.59), the ALE-derivative can be apmated by the formula

DA 3u (1) —4u(zy) +u (2, 1)

oy (e Ene) = 27 -

Bu M @ni1) —4u" (A, (A, @) + w" M (A (AL, @)

2T
(2.62)

Provided that the ALE-mappings on time levels 1, ¢, andt,,_1 are known, the finite difference
(2.62) is now well-defined of;, . ,. When we introduce the notation

' (x"h) = u'(Ay (A7) (®0g1))) (2.63)
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by substituting (2.62) into (2.37) we get the semidiscretwibr-Stokes equations for the functions
w o,  —R*andp" ™ Q, , — R:

1 ~ ~n—1
3 12‘”+ n (un+1 _ wn+1) Va4 vt -y At = 4 “n; u"
T T
divu™™t = 0. (2.64)

2.2.3 Linearization of the convective term - Oseen iteratios

Due to the presence of the convective tgfm" ™' —w"*1).-V]u"*! in the Navier-Stokes equations
(2.64), the system cannot be solved in a straightforward \masyead, it is first necessary to linearize
the equations, i.e. to replace the first occurrence of thgrorelocity vectors”*! by some vector
w*, which is already known:

(™! —w™ ). V]u ! & [(u — w™) - V]u T (2.65)

As regards the approximation vectar, one possible approach is to use the solution from the
previous timesteps”, transformed to the actual configuration with the aid of tHeEAmapping
(see 2.63):

*

ut =a". (2.66)

This would be sufficient for quasi-steady flows; to increaseigion for the non-stationary flow it
is better to employ an iteration process, using (2.66) agé¢he iteration. Then'™ iteration of the
so-called Oseen iteration process is performed by solViagystem

3 n+1 4 ~n ~n—1
Uy, + (ugz—’——ll _ ,wnJrl) X V] 'U,:Ln+1 + vanrl —y Au:ﬁrl _ u u
2T 2T
divu™™ = 0. (2.67)
Using the notation
u=u"", w=w"t p=p"t, Q= Q4,1 (2.68)

to simplify the equations, the Oseen system can be formallyitten as

3
—u—i—[(u*—w)-v u+Vp—vAu =
2T

4" —a !
2T
divu = 0. (2.69)
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2.2.4 Weak formulation of the Navier-Stokes equations

The starting point for the finite element discretization w§ aystem of partial differential equations
is its weak formulation. Theveak solutionof a partial differential equation may be understood
as a generalization of the conceptabhssical solutionswhose derivatives concerned must exist
everywhere in the computational domdd The weak solution, on the other hand, is defined in
an “integral” sense. It should be stated that the concepteaikvgsolutions remains consistent with
the classical theory: it can be proven that a weak solutidrichvis sufficiently regular, is also a
solution in the classical sense.

In order to derive the weak formulation of the Navier-Stokeegiations, several spaces used in
functional analysis shall be needed. First, let us recalllthbesgue space of measurable square-
integrable functions defined ab= ,,,, C R*

L(Q) = {f : Q0 — R measurable : ,2// If1? dp < oo} : (2.70)
Q

The Lebesgue spade? () will be used for the pressure component of the solution. Aands the
velocity, the solution will be sought in the Sobolev spate-= (Hl(Q))Q, where

HY(Q) = {f € L*(Q): % LX), i = 1,2} . (2.71)

See e.g. [12] for detalils.

Now we will define the velocity and pressure test functioncep” and ), respectively. The
velocity test functions are zero on the boundaries, whexd®ikichlet condition is prescribed:

w = {veY vl i, =0} (2.72)
Q = L*(9). (2.73)

The weak formulation of the equations is obtained by muljiiig the classical formulation (2.69)
by an arbitrary test function from the relevant space arebiratting over?:

3

> Qu-vdw—F/S]([(u*—w)-V]u)-vdw—l—/QVp-vdac—

1
/VAu~'vd:L':—/ <4’ii"—ﬁ”71)-vd:c VveW, (2.74)
Q 27 Ja

/qdivudw:() VqeQ. (2.75)
Q
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Using Green’s theorem and the fact, that the test functioase zero ord<2 \ T',,,;, we can rewrite
the third and fourth term from (2.74)

/Vp-'vd:t: —/VAu-'vd:L':
Q Q

:/ puv- nda—/pdlvvdac +v Z/Vuj ijdac—uz Vu;-nvjdo =
0N

oo

:y/Vu-V'vdm—/pdivvd:c —l—/ <—y8—u+pn) ~vdo . (2.76)
Q Q Fout 8”

The last surface integral in (2.76) reveals the origin oftibendary condition on the outlet of the
channel (2.41); the do-nothing condition actually repse natural condition coming from the
weak formulation. In certain cases, however, this condibecomes too vague — it does not even
prevent the flow returning to the domdinthroughT',,;. Thus, the total influx into the domain
can grow infinite and the numerical scheme tends to diverge.

To suppress this inconvenience, the boundary conditioi,gncan be slightly modified. First, it is
necessary to apply Green’s theorem on the second, coreéetiw in (2.74). If we realize that

=0 2.77
v‘an\rout ’ ( )

we can write:

/Qq(u*—'w)-V] ) 'vd:c—Z/ u; — w;) vjd:c—

i,7=1
2
Ou; Lt — w0 2% ) =
”21{ / u; — w;) axiv] d$+§/ﬂ(ui w;) &mvj dm] =
2 O, 1 .
= Z / u; — w;) oz, vjd:c+ / vj (uj —w;) ujn; do
1,7=1 o0
1 0 "
__/ L (01— wi)vs) dm] =

2 [1 du
= E [g/g(uf—wz)axvjd:c+2/romvjufujnida
0v;

1 0 N 1 x
—5/Qujvja—xi<ui—wi>dw—§/ﬂuj< wi) G2 de =
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_ 1 q(u*_w).v}u)-vdw—i—l (u'-n)u-vdo
2 Jo 2 )r

out
1

_§/Qu.vdi\,(u*_w) dm_%/g([(u*_w).v}v).udw. (2.78)

The continuity equatiorliv . = 0 holds also foru*. Thus, with the aid of the Green’s theorem,
the third term in the result of (2.78) can be rewritten as

2

1 o 1
:5” I:/QQuiin]‘nde'—/;zw]‘%j(uz‘wi)dw:l :—§/Q{w-V](u-v) do =

:_%/:aw.v}u).wa_%/ng-v]v)-udw. (2.79)

The boundary integral in (2.79) was dropped since on eadioptire boundarys? either the flow
velocity u;, the velocity test functions; or the domain velocityy; is zero. Substituting (2.79) back
into (2.78) we finally receive

/Qq(u*—'w)-V]u)-'vd:c:
%/Q([(u*—Zw)-V}u)-vdm—%/ﬂ([u*-V}'v)-udw—l—%/r (v n)u-vdo.

out
(2.80)

The new boundary integral which arose in (2.80) can be stgzhiato the positive and negative
parts:

1 1 1
—/ (u*-n)u-'vdoz—/ (u*-n)+u-vdo+—/ (v n) uw-vdo. (2.81)
2 Pout 2 Tout 2

1—‘oul’,

Since we wish to suppress the return flow, that is

=0 2.82
o ; (2.82)
we add the negative part to the boundary condition and lda/@asitive term in the weak formu-
lation. The new, more stable boundary condition[p,, sometimes referred to as tewnstream
boundary conditiorj5, 16], now reads
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Z—Z(t, x) + p(t,x) n(x) + %(u*(w) . n(m))_u(t, x) = pres n(x)

4

forx € Ty, t € [0,T] . (2.83)

If we substitute back all the results (2.76), (2.80), (2.i819 the equations (2.74), (2.75) and make

use of the downstream boundary condition (2.83), we canesgpthe ultimate form of the weak
semidiscretized ALE Navier-Stokes equations:

3 1
— cv dx + . dx — divvdx + - -2 . cvd
5 u-vdr y/ Vu - Vo dx /p ivvde 5 / <[(u w) V}u) vdx

_%/ﬂ<[u*-V}v>-udw+%/Fout(u*-n)Jru-vdw:

1
= (4’&” — 'ﬂ”fl) ‘vdr — / Pref U -n do VveW, (2.84)
2T (¢}

out

—/qdivudw:() VqeQ. (2.85)
Q

The weak solution of the problem is defined as a cotpley) € Y x @ such that the weak Navier-

Stokes equations (2.84), (2.85) hold and that the boundamgitons (2.38), (2.39), (2.40) and
(2.83) are satisfied in the sense of traces.

To simplify notation, we may introduce the forms

a(US,U, V) = %(u,v) + v ((u,v)) — (p,divv) + (div u, q) —|—% ([(u* —2w) - V]u,v)

—% ([u* : V]'v,u) +% /Fout (u* -n)+u-'v dx | (2.86)

1 ~n ~n—1
f(V)—E(‘lu —u 7v>—/routprefv-nda, (2.87)

whereU = {u,p}, U* = {u*,p}, V = {v,q}, where(u,v) = [,u - v dx denotes the scalar

product in(LQ(Q))2 and((u,v)) = [, Vu - Vv dz is the scalar product i@H&(Q))z. Using this
notation, the problem can be formulated as follows:
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FindU = {u,p} € Y x @ such that the boundary conditions (2.38), (2.39), (2.4d)@®83) are
satisfied in the sense of traces and that

aUU,V)=f(V) VV={v,q}eWxQ. (2.88)

2.2.5 FE discretization of the Navier-Stokes equations

To find an approximate solution of the semidiscrete weak &laStokes equations (2.88) we shall
use the finite element method. Let us suppose that the ddmiipolygonal and denot@;, = (2
(otherwise, it would be necessary to construct a polygopptaimation(, of the domain(?),
and that the bounda2 is Lipschitz-continuous. Lef;, = {Ki}ic(1..,) b€ a regular finite ele-
ment mesh oveR;,, which means that the elemerits are closed polygons with mutually disjoint
interiors such that

%= U K (2.89)

and that an intersection of arbitrary two elements is eidmepty or their common vertex or edge
(see [12] for details). The subscriptusually represents the maximum diameter of all the elements

h = max (diam K;) . (2.90)

iE{l..’l’Lh}

The velocity constituent of the approximate solution wél éought in the finite-dimensional space

Y, = {vh € (C(Qh))2 cwple € PFTYK) VK € Th} , (2.91)

where P™(K) is the set of all polynomials defined dii of degree less than or equalta Simi-
larly, the pressure constituent of the solution comes frioafinite-dimensional space

On = {qh € C(O): anly € PHE) VK e :rh} . (2.92)

This means that the solution is approximated by continuaesewise-polynomial functions; in
other words, the spaceg,, ), represent finite-dimensional approximations of the fuoral
spacesY, ). It can be anticipated that when decreasing the size of eiesnee. forh — 0,
the approximation error diminishes and the approximateties may converge to the exact solu-
tion.

Itcan be proventhd™, C Y, Q, C Q. The space¥ ;,, Q) are called théinite element spacethe
functionsvy, € Y, pn, € Qp, are sometimes referred to fagite elementsin order to guarantee the
numerical stability of the resulting scheme, the spa¥es (Q;, cannot be chosen arbitrarily; they
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must fulfill the Babuska-Brezzi condition (see [11]). FoetR*+!/P* elements (called Taylor-
Hood elements), this condition holds.

The test functions in the discretized equations come fromeesiV;,, ¢ W and(@),, where

Wh - {/Uh < Yh : vh|rinurwallUFVF = 0} : (293)

Now we are able to formulate the discrete problem: find a @®@Upl = {un,pr} € Y, X Qn
satisfying (in the sense of traces) a suitable approximatfdhe boundary conditions (2.38), (2.39),
(2.40) and (2.83) such, that

a(U;,,Un, Vi) = f(Vp) VVi={vn,qn} € Wi x Q. (2.94)

For the purpose of clarity, the rest of the discretizationcpss will be outlined here (without any
claims on completeness):

First, it is necessary to construct the bases of the spEges);,. The basis of a,-dimensional
spaceY’;, will be denoted by{w;}";, {¢:};""; is the basis of the spad@; of dimensionm,.
In order to produce sparse matrices, it is suitable to chbasés functions with small support,
i.e. for example equal to one in one vertex of the mesh and esswhere (in the case of linear

Pl-elements).

Once the basis functions are chosen, the approximate @oladn be expressed as their linear
combination

2 mp
uh:ZUj 'wj, ph:ZPj qj. (295)
Jj=1 Jj=1

If a relation holds for an arbitrary element of a space, it ininadd for all the elements of the basis
and vice versa. Thus, using (2.95), we can equivalentlyitewhre condition (2.94) as

a(U;:,{ZUj'wj,ZPrqr},{wk,ql}> :f({'wk,ql}) Vke {Lny} Vi€ {l.m,}. (2.96)
j=1 r=1

We can assume that the vectdi is known from the previous iteration of the Oseen process.
Looking back on the definitions (2.86), (2.87) of the (triar formsa (U*, U, V) and f(V), itis
obvious that the equations (2.96) represent a system drliagebraic equations fdn;, + my,)
unknown regl coefficients, which can be organized into vedd = (U ... Unh)T andP =
(Pr...Py,) .

The linear system, which arises from the finite element diszation described above, has the block
structure

(A+’]1‘+I§IT+]D>+E Iga)(g):(g) (2.97)
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where
A= (aij)?,;:l aj; = I//vaj -Vw; dz ,
T = (tij)zszl tij = % /ij cw; dx |
C= (Cij)?,;zl Cij = %/Q ([(u* —2w) - V] 'wj> ~w; dx |
D= (dij)?,;a dij = —%/Q <[u* . V} 'wi) cw; de
E = ()i, €ij = %/FW (u” - n) Tw; - w; do
B = (bij);2 [ %:—A%&wmm,

1 e
F:(fl...fnh)T fizﬂ/g(llu —u 1)-'wial:n3—/F Pref w; - N do .
out
(2.98)

The matricesA and T, coming from the discretization of the viscous term and & témporal
derivative, are symmetric, whil€, D (from the convective terms), andB are generally nonsym-
metric. By the symbol) we denote the zero matrix or vector.

Before solving the linear system (2.97) it is necessary ke tato account the Dirichlet boundary
conditions (2.38), (2.39), (2.40). The principle of thealthm can be illustrated on a generic linear
system

Mg = b (2.99)

with a matrixM = (m;;)7;_; and a second membér=(b; . ..b,)T. Imposing the Dirichlet
condition is equivalent to blocking some of the degreeseaxddom, i.e. to setting

©Yj = 3g; VjeD, (2.100)

whereg; are prescribed values arfd is an index set of the blocked (Dirichlet) nodes. We will
assume that the linear system has already been organizadhmsvay, that the diagonal elements
corresponding to non-Dirichlet nodes are non-zeug,# 0 Vi ¢ D.

In order to satisfy the Dirichlet conditions, the origingbtem (2.99) is modified as follows: first the
components of the right-hand side vectotorresponding to the non-Dirichlet nodes are replaced
by the values

bz‘ = bz‘ — Zmzj 9j V1 ¢ D. (2.101)
j€D
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Then, the matrix elements in the relevant columns are sedrtm z

mij:=0 Vi VjeD. (2.102)

Finally, the matrix rows corresponding to the Dirichlet medare modified as follows:

mZJ:() VieD Vj#i,
m; =1 VieD,
bi = gi VieD. (2.103)

2.2.6 ALE mapping

There is still one term in the Navier-Stokes equations (Rv@dich has not yet been discussed
properly: the domain velocityw. According to the definitions (2.16), (2.17), the domainoedly

is simply the time derivative of the ALE-mapping;. Our task is to determine the explicit form of
the ALE-mappingA,(X) at time levelt, provided that the generalized coordinaigg) andg® ()

of the bottom and upper vocal folds (and thus the shape ofdheih();) are known.

Let us remind thatd; maps the reference, non-deformed dom@jnonto the actual, deformed
domain(,;. Looking on Figs. 2.2, 2.3, it is obvious that the ALE-magpimust satisfy following
conditions o y:

A, —Id, At‘ — F(X), (2.104)

FinUl e Ul out I'vr

where Id is the identity mapping (these boundaries do not move) anerevh; is a prescribed
explicit function of the generalized coordinatgs qj, i = 1.NYop, j = 1..N¥, -~ modeling the
motion of the vocal fold surface. In the case of the simpleskiatic model shown in Fig. 2.1, the
function F; is given by shift and rotation of the rigid body in the cenfpalt, and by cubic spline
interpolation on the side segments (membranes).

The second condition is that the mappifgmust be smooth of;. Otherwise, however, the choice
of A; in the ALE approach is indeed arbitrary.

In simple cases, the form of the ALE-mapping may be guessddrored on the basis of geometric
considerations. Another possibility, which can be appliatversally, is to seek the mapping as

a solution of an auxiliary boundary problem with a suitalppem@tor. In the computations presented
within this work, the ALE-mapping was defined as a solutiothef Laplace’s equation

AA, =0  inQ, (2.105)

with the boundary conditions (2.104).
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The system (2.105) must be numerically solved in each tiepest the computation. It might seem
that this could slow down the algorithm considerably; hogreit is necessary to realize that within
one timestep, more Oseen iterations are performed, wleladtixiliary problem (2.105) must be
solved only once. Moreover, the finite element code prograthosesP**! / P* elements for the
velocity and pressure fields, resulting in much larger roesrithan the?* elements for the ALE-
mappingA;. Although the specific number depends on many factors, thetipal computations
show that the solution of the auxiliary problem takes at fbe$0% of the total computational time.

Fig. 2.4 shows the reference meshinand two meshes deformed by the ALE-mappitigwhich
was calculated as the solution of the Laplace’s equatidt08). The deformed meshes correspond
to two different time levelsy, to, near the maximum and minimum glottal aperture.
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Figure 2.4: Reference (top) and deformed (bottom) comjomalt meshes, 8246 elements.

2.2.7 Mesh generation and adaptive refinement

One of the advantages of the finite element method, agam§nite difference method for example,
is the possibility to use anisotropic or locally refined nmessh a straightforward way. It is obvious
that in regions, where the solution is nearly constantetieeno need to apply a very fine mesh (the
calculation times increase with the number of unknowns ped/by a constant between 2-3, where
the number of unknowns is a linear function of the number o§melements). In the domains
where the solution is expected to have steep gradients angtathanges, on the contrary, a fine
mesh is required in order to minimize the error of the discestiution.

The adaptive mesh generatngener [9] was used to create the meshes necessary for the finite
element computations. The packa§jegener features triangular mesh generation on polygonal
2D domains. The solutions obtained with the primary, igutraneshes can serve as a basis for
adaptive mesh refinement, i.e. to create locally refined egstthose local element size is optimal
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in the sense of minimizing the approximation error. Fig. illUstrates the difference between an
isotropic and locally refined mesh.

In the case of vector-valued solutiosngener requires to select one of the components, which
will be used in the adaptive algorithm. For our calculatiotie horizontal component of the ve-
locity was chosen. Further, it was necessary to modifyAthgener source code in order to obtain
triangulation files in the format, which was required by thwté element library.
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Figure 2.5: Isotropic and adaptively refined meshes, 23403888 elements, respectively. The
mesh was adapted according to the horizontal componentofaiocity vector from the solution
obtained on the original mesh.

2.2.8 Algorithmic and technical remarks

The numerical solution of the discretized problem (2.94% waplemented using an open-source
library Mélina [26] (the acronym comes from the French collocation for FEMéthode des éle-
ments finis). The library, programmed undeortran77, is not confined to a specific class of
physical problems (like elasticity or viscous flow); it casadiwith any partial differential problem.
The initial point for the algorithm is the weak formulatiohtbe governing equations. This can be
specified in a file of directives together with the boundargditions, physical constants involved,
type of elements used (Lagrange/Gauss-Lobato P1 — P6, PbBleoir3, Q1 — Q20 interpola-
tion supported) and link to the mesh file (triangular and gaagular; tetrahedral, prismatic and
hexahedral elements allowed).
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The numerical library provides an extensive collectionighhand low-level routines, which allow
to program the solution of simple problems without worryiggout algorithmic details, such as
discretization of the terms, assemblage of the matricevem enemory management. However,
since all the source files are available and well-documerntexiflow of execution is fully under
control of the programmer and the routines can be modifieciolle even non-standard problems
—like, in our case, the Oseen iterations for the nonlinean téhe variable geometry and deforming
mesh, additional boundary integrals arising from the meditionvective term etc.

In outline, the flow chart of the code programmed is as foltows

Execution of theéViélina initialization routines — import of the mesh file, parsingtioé
directives file, global numbering of the nodes

Backup of the node coordinates for the reference (non-oefd)y mesh

Initialization of the matrix of the auxiliary problem (fohé ALE-mapping)

Beginning of the principal time loop i~ =0; t: =i *tau

— Calculation of the coordinates of the vocal fold

— Restoration of the reference mesh, assembly of the ayxjpianblem matrix, reso-
lution — Ay
— Deformation of the element vertices calculated on the basit;, recalculation of
the node coordinates
— Beginning of the Oseen loop
x Recalculation of the convective and downstream-boundamg based on the
velocity vector field from last iteration
x Assemblage of the matrix of the Navier-Stokes problem
« Imposition of the Dirichlet boundary conditions
* Resolution of the linear problem
* Calculation of the residual itf-norm
x Storage of the results into output files

— End of the Oseen loop
— Recalculation of the ALE-velocity and time derivative texm

e End of the principal time loop +: =i +1

The direct linear solvers provided withiélina, which use LU factorization, are not very efficient;
this makes them applicable only on problems with small roaesii Therefore it was necessary to
incorporate some more powerful external linear solver Méina.

The packagdéJMFPack [7], which is used as a default sparse matrix solver in regergions of
Matlab, uses a direct multifrontal method, suitable for generalblyysymmetric sparse matrices.
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Its performance may be further boosted by installation afitable BLAS (Basic Linear Algebra
Subsystem) — fodMFPack the Goto’s versiorGoto BLAS [14] is recommended.

A new subroutineunt . f was developed to allow callingMFPack within the Mélina code. This
subroutine can simply replace built-in direct solvé u. f andf asv. f, since it has identical
input parameters. Basically, the interface works in thepfahg way:

1. The matrix of the linear system is converted fromNMh&ina BiMorse format to the Nume-L
format.

2. The Nume-L structure is converted to the zero-based cesspd row format.

3. The matrix entries numerically equal to zero are suppress spare memory. Real values
are stored in double precision in the superarray DST.

4. The matrix is passed through the Fortran interfacedi-Pack, which performs the reso-
lution itself in three steps (symbolic analysis, LU factation, resolution of the factorized
problem). UMFPack requires the compressed column matrix format, the matrsupplied
in compressed row format. Consequently, the solution isaseled for the transposed matrix
(this is equivalent).

5. The solution is stored as\élina term.

In spite of the additional operations performed (matrixriat conversions, array dislocations), the
new method is essentially faster then the original submestiapproximately by a factor of 100. On
Intel processors, the overall performance of the binaryeaah be further improved by compiling
UMFPack, Mélina libraries and the program source code with Intel Fortran gien (instead of
GNU Fortran compiler, such d37 or gfortran), and by setting suitable optimization flags (on an
Intel E6600 Core2 Duo systemxT - 03 flags were used).
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2.3 Results

This chapter shows the sample results calculated withimeenigal simulation using typical values
of input parameters. These were as follows:

The channel geometry was based on the data measured ondetxais@an larynges [34], scaled 1

. 4 to match the dimensions of the physical model. The gldttadjth in the model wad.go =
67.22 mm (see Fig. 2.6), the lengths of the chandgl = 0.25 - Loz = 16.80 mm, Loz =
1.75 - Lge = 117.63 mm. The dimension_y, determines the part of the boundary, which changes
in time: within the length of the vocal fold = 43.11 mm, the boundary is given by the rotation and
translation of the rigid body, outwards by smooth splineiipolation. The height of the channel
was H, = 37.50 mm, the initial gap between the vocal folgs= 4.00 mm.

L01 L02 L03
Figure 2.6: Dimensions in the mathematical model.

At the inletT’;,, (see Fig. 2.2 for definitions of the boundary segments), grgcal component of

the velocity vector was zera,, = 0; the horizontal velocity component; was prescribed as a
parabolic profile with a maximum velocity["™® = U, = 0.25 ms~! at the channel axis, which
gives a Reynolds numbéte = 680. With the same mesh, the numerical scheme was stable for
inlet flow velocities up td/y = 1 m s~!. The reference pressupe. ; was set to zero, air viscosity

v =1.583 1075 m? s, air densityp = 1.1 kg m 3.

The mesh was triangular and consisted of 16537 Taylor-Hé3d P') elements. The upper vocal
fold was fixed, the motion of the bottom one was prescribedrasmonic oscillation of the vertical
shift y and rotationp around the center of the vocal fold

2 2
Y = Ymaz SN <y0 + it) s ® = Gmax Sin <¢O + it> (2106)
Ty T¢

with amplitudesy,,q, = 1.5 mm, ¢, = 8 deg, oscillation periodl’;, = T, = 100 ms and phase
differenceyy = 0, ¢g = —45 deg. The timestep of the method was= 1 ms; as regards the
number of Oseen iterations, for typical Reynolds numbigrs= 500 — 3000 it was found sufficient
to use a fixed number of iterations, usually two or three.

Fig. 2.7 demonstrates development of the velocity field iale phases over one vocal fold os-
cillation cycle of lengthl,.. We can observe the free jet, which is formed between thel Yolcis
and whose shear layer induces vortex shedding. It is quitemaan that the jet does not follow



CHAPTER 2. MATHEMATICAL MODELING 44

the channel axis and that it adheres to the channel wallptiégmomenon is known as the Coanda
effect. The flow is not perfectly periodical.

In Fig. 2.8 we can observe the development of the pressuddriithe same phases of the oscillation
cycle. The vortices appear as circular zones of low prespunpagating towards the channel outlet.

Finally, a detailed view of the velocity field near the jetrtpincluding the velocity vectors, is
shown in Fig. 2.9. The figure reveals the large-scale vatitedded from the jet boundary layer.

The mesh files, animations of the velocity and pressure fggdsrated from numerical simulations
with Uy = 0.25, 0.5 and 1.0 m/s and all the source code files can be found on the DVD enclosed
to this thesis.
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Figure 2.7: Development of the velocity field during the vdo#d vibration cycle — velocity mag-
nitude [m/s].
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Figure 2.7: (continued) Development of the velocity fieldidg the vocal fold vibration cycle —
velocity magnitude [m/s].
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Figure 2.7: (continued) Development of the velocity fieldidg the vocal fold vibration cycle —
velocity magnitude [m/s].
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Figure 2.8: Development of the pressure field during the Madd vibration cycle — pressure [Pa].
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Figure 2.8: (continued) Development of the pressure fielihduhe vocal fold vibration cycle —
pressure [Pa].
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Figure 2.8: (continued) Development of the pressure fielihduthe vocal fold vibration cycle —
pressure [Pa].
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Figure 2.9: Detail of the velocity field near the jet front429 ms. Velocity magnitude in color,
vectors indicate the flow direction.



Chapter 3

Experimental investigation

Despite the numbers of sophisticated mathematical modietscal fold vibration and glottal flow
developed in recent years, experimental approaches stjllgn important role in vocal fold re-
search. The computational models can supply very usefal datertheless, it is necessary to keep
in mind that many models are based on important simplifioatiand that the results cannot be
extrapolated beyond the parameter limits, for which theyendesigned. The models often can-
not avoid to include several ad hoc assumptions. Moreomerpcal fold modeling one needs to
enter many geometrical and tissue parameters, whose roaheaiues are often not well known.
Therefore, the results from the mathematical models shaluldys be verified using experimental
data.

The most relevant data regarding vocal fold vibration orge from measurements on living human
subjects. However, since the human vocal folds are hardigssible, the majority of processes
occuring during phonation cannot be measured directlwio.vihe second possibility is to perform
in vitro investigations, i.e. measurements on excised muoraanimal larynges. This approach
provides improved accessibility to measured structurestiasues in better controlled laboratory
conditions; yet many drawbacks of experiments on livingues persist — technical complications,
poor measurement reproducibility and also ethical corscerhis is why it is often useful to employ
physical vocal fold models with well-defined and easily coltéble parameters. Provided that the
mechanical model reflects the important characteristicsadfvocal folds, these measurements may
help in understanding some of the fundamental physicalgas®s in voice production.

Investigation of the supraglottal flow velocity field repeats one of the cases, where both in vivo
and in vitro measurements are hardly realizable. Therediaelf-vibrating mechanical model of
human vocal folds was designed and fabricated during tlyeo$tdne author at ENSTA Paris. The
principal goal was to study the conditions, where flow-ireth@ibrations of vocal folds occur and
to investigate the velocity fields in the supraglottal chrerimmediately upstream the narrowest
glottal gap. The measurements of the flow velocity fields vaenee by means of Particle Image
Velocimetry, during different phases of vocal fold motidrhe measured data were intended to be
compared with the results from the FEM computational model.

52
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3.1 Principles of Particle Image Velocimetry

Many areas of technical research and development requikaauring technigue that can measure
the flow velocity across a larger domain of the flow field. Thas de achieved by scanning the
domain with a point velocity probe (such as a Pitot tube ortadiee probe), however the instanta-
neous flow structure is lost and such procedure can be veeydomsuming. Besides the qualitative
and semiquantitative flow visualization methods (diref@dtion, optical and holographic interfer-
ometry), an optical non-intrusive quantitative technidues developed during last 30 years; this
method is called Particle Image Velocimetry (PIV). PIV carasure the velocity field across a
selected planar domain of the flow, providing the instardaserelocity vectors.

Measure ment

¥ volume —_
Imaging
J<>( L optics
Z : N
Light .’“_}r'____
Double- sheet Se =) b ceb
pulsed At >
laser /L B
. - .L Cylindrical lens ! "-d /,[
- 8
: Flow with
' seeding particles
Data Data
i analysis

Particle
images

Figure 3.1: Principle of the PIV method (adapted from [6]heTposition of the seeding particles,
illuminated by a double-pulsed laser light sheet, is reedrithto two frames. Cross-correlation of
two corresponding interrogation windovis and I yields the flow velocity vector.

The basic principles of the method are demonstrated in Fig. Bhe flow is seeded with small

particles, typically oil aerosols in gases and solid pkesidn fluids. Using a light sheet, formed
by passing a double-pulsed laser beam through a cylindeaal, the position of these particles
is illuminated twice with a small time delay in between. Atfasmputer-shuttered CCD camera
synchronized with the laser system records two frames.

These two images are then divided into small subsectiohsdcaterrogation windows. The pixel
by pixel cross-correlation

C(9) = //IW L(X) (X —8)dX (3.1)

of the image signal$; (X) and,(X) corresponding to the same interrogation winddw gives a
correlation peak, which identifies the particle displacetwector. Assuming that the tracers follow
the flow, the flow velocity vector is then calculated from tmodn time delay of the laser pulses.
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The velocity vectors obtained from a standard PIV, usingaameera with optical axis perpendicular
to the light sheet, are only two-dimensional. This setupitable for the flow that can be assumed
2D (e.qg. flow past airfoils, cylinder wakes). If the third @eity component is needed too, two CCD
cameras in stereoscopic arrangement can be used.

3.2 Concept and design of the physical vocal fold model

The flow in human vocal folds can be in first approximation éde&ed as two-dimensional — one
may suppose that the flow velocity does not change significaling the width of the vocal folds
(i.e. along the anterior-posterior axis see Fig. 3.2). This encourages the development of 2D or
quasi-1D mathematical flow models, and also permits to draanimgful data from PIV measure-
ments of the physical vocal fold models.

| L |

“ "

Figure 3.2: Basic design of the vocal fold model and ovenaéthe important dimensional param-
eters: channel heighly, inlet flow velocity Uy, characteristic lengtli. and frequencyf, massm
and stiffness:.

To reflect these facts, the physical model was proposed asadfmdd-shaped element vibrating in
the rectangular channel wall, preferably in they plane. The z-dimension (i.e. the width) of the
vocal fold was intended to exceed considerably its lengthdapth, which is the case in true vocal
folds, tod. The shape of the vocal folds was specified according to measunts of excised human
larynges, performed in the Institute of Thermomechanid$. [Bhe next issue to be determined was
the overall dimension of the physical model.

There is no doubt that when trying to experimentally ingegt complex real processes in labora-
tory conditions, the ideal setup is a physical model in tiee, 1:1 scale. However, from various

reasons the development of a true scale model is often irodewt or even impossible. In these
cases one may try to use a scaled model, while conservingriamalimensionless numbers rele-
vant to the process involved. With the aid of dimensionalysisiit is afterwards possible to relate

the measured results to real, non-scaled conditions.

1The terms ‘length’, 'width’ and 'depth’ are defined here in @tural way, to be consistent with the length, width
and height of the wind tunnel. In vocal fold modeling, howethe vocal fold dimensions are standardly defined in a
different way: length along the z-axis, thickness (widthidirection and depth along the y-axis.



CHAPTER 3. EXPERIMENTAL INVESTIGATION 55

The physical dimensions of real human vocal folds — widthuald® mm [46], length 9 mm and
depth 5 mm — are rather small; this would make the constnuctfa mechanical vocal fold model
in 1:1 scale and installation of the measuring devices véficalt. Further, the double-flash PIV
laser system available had a maximum repetition frequeh@p ¢z, and due to synchronization
it was preferable to design a system with the natural fregiesrf < 20 Hz, too. This implies the
necessity to increase the mass/stiffness ratio, i.e. agaicrease the model dimensions. Moreover,
the PIV camera was to acquire the images through a plexiglessnel wall; in these conditions
and with the seeding particles used a larger image sizetseisumuch better image quality and
resolution. Taking all this into account, it was necessargddsign a model 2 — 5 times enlarged
with respect to real vocal folds.

The most relevant dimensionless numbers pertinent to atbmsary flow past vibrating vocal folds
are arguably the Reynold’s number

H
Re = Yoflo (3.2)
14
and the Strouhal number
fL
St = — 3.3
o (33)

which can be based on the channel heifffgtand mean flow velocity at inlet/y, kinematic air
viscosityr = 1.58 - 107° m?2s~!, frequency of vortex shedding (supposed to be equal to the
frequency of vibration of vocal folds), and vocal fold lehdi (see Fig. 3.2).

The Reynolds numbeRe represents the ratio between the convective and diffudieete (i.e.
the inertial and viscous forces) in the flow and determines @nucial way the nature of the flow
- development of the boundary layer, flow separation, vodgamics and turbulent effects in
general. The Strouhal number, alias "reduced frequenayicates the relationship between the
characteristic time of convectioh/U, and the frequency of flow fluctuations, which are in this
case strongly coupled with the natural frequency of the raeicial system. In flow past stationary,
non-vibrating bluff bodies, the Strouhal number is knowmeach the values of approximately 0.2
(for the case of cylinders) [3]. For elastic structures tdgeo exhibit vibration, the issue is whether
the vibration frequency of the structure gets close to thguency of stationary vortex shedding.
If so, the shedding frequency may "lock* to the vibrationguency, which has a strong effect on
organizing the wake and amplifying the vibration amplitudéne Strouhal number of about 0.24,
encountered in the physical model which was finally fabedatcould suggest that the conditions
were favorable for this lock-in effect.

The natural frequencies of the first two modes of the mechhniodel (lift and rotation inc—y
plane, see Fig. 3.2) are determined by the ratio

f \/kib (3.4)
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wherem is the mass and, the stiffness of the supporting springs. To ensure thatetinesdal
frequencies are lower than 20 Hz, considerably low stiffrias/ertical direction is needed. For the
proper function of the model, however, the torsional stiffsk; should remain as high as possible
(the term torsion is used here for the rotation with respethé x-axis). Consequently, the springs
were designed as four slender cantilever beams of ldpgthidth w, and thickness,. The bending
and torsional stiffness of one beam, denotgdand &, respectively, can be calculated from the
formulas

Gty ws
gl = 2l s (3.5)

ol E w, t3
31

P RBA-u2)

One can note that rather than by the material properties -a¢fonodulusE, shear modulug?
and Poisson’s ratip — the stiffnesses are influenced by the beam thickness agthlén flexion)
and width (in torsion), which figure in third powers. Usingtlquations (3.4), (3.5), the require-
mentsf < 20 Hz, k; > k; and taking into account the technical constraints, theiredispring
dimensions were estimated Bs~ 80 mm, ws; ~ 10 mm, t, ~ 0.5 mm. The cantilever beams,
representing the springs, were fabricated from a brasg éMbich has lower elastic moduli than
steel) and fixed with screws and shims. The physical modeh@fvbcal folds, mounted in the
measuring section of the wind tunnel, is shown in Fig. 3.8litawhal images can be found on the
accompanying DVD.

The vocal folds themselves were cast using a RTV-II two-coumal silicone rubber type 69199. In
the configuration presented here, the upper vocal fold weasl fia the channel wall. The second
one, attached to a lightened square aluminum profile, wasitadwon four brass flat springs into
the wall of the channel. Two adjusting screws allowed to Betzero position of the vocal fold

precisely.

Unfortunately, the mechanical system did not provide ehofige parameters to preserve the
Reynolds and Strouhal numbers (3.2), (3.3) exactly. Alse udimensions of the wind tunnel
available, a 1:4 scale was finally chosen for the physicalehadhich gives

H(I):’M LPM

(see Fig. 3.2, superscripf3M andV F' denote the physical model and the real vocal fold, respec-
tively). As described above, the natural frequencies ofsysem, supposed to be equal to the
frequency of flow fluctuations (vortex shedding) cannot beseim arbitrarily, neither; taking a typ-
ical fundamental frequency of male voice pff" ~ 100 Hz and the first natural frequency of the
physical model off "™ ~ 13 Hz yields the ratio

fP]W

~
~

1
fW g . (3.7)
In a system, whose vibrations are self-induced, the flowcigld/, is not a completely free pa-
rameter. Unlike externally excited vocal fold models (g¢tge hydrodynamical model of Kob et al.
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Figure 3.3: Design of the physical model of vocal folds (imfiguration fixed upper - vibrating
lower vocal fold). The vibrating elastic silicone rubbeerlent is attached to an aluminum profile,
supported by four adjustable brass flat springs. The systeeguipped with two Bruel&Kjeer
4507C accelerometers, a G.R.A.S. 1/8" measuring micrapltygpe 2692, two hoses connected to
a water manometer and inlet of the Validyne DP15TL presgarsstucer. Avalilable on the DVD
in full resolution.

[22]), the flow rate must remain between the bounds given éxthical flow (the lowest flow able
to excite vibrations) and the maximum flow (at which the vilanas either stop or become chaaotic).
Using a 1D mathematical model of Héegk & Sidlof [17, 30] some estimations have been per-
formed prior to physical model fabrication to ensure that eynolds and Strouhal numbers stay
approximately the same for the physical model as for thevael folds. The flow-induced vibra-
tions of the vocal fold model, which was eventually fabrézitoccurred for flow velocities ranging
from U({DM = 1.25 — 5 m/s. Considering a typical mean subglottal flow velocityidgrphona-
tion of UY't" ~ 2.5 m/s and using (3.6), (3.7), one may estimate that for theiphlymodel, the
Reynolds numbeRe = 2000 — 3000 was 2—6 times higher and the Strouhal number: 0.24 was
1-3 times lower than those of real vocal folds. Hence, thesighy model cannot be claimed to be
perfectly dynamically similar; however, it can be assuntet the flow regime is not substantially
different from the real situation.
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3.3 Experimental setup

The vocal fold model was mounted into a plexiglass wind tlooeprising a blower engine and a
long circular channel with a diameter of 180 mm intended fapsess the inlet turbulence. Further,
the channel cross-section contracts smoothly by fattsr6 into a rectangulai00 x 40 mm inlet

of the measuring section with the vocal folds, continueg@axmately 40 cm to simulate the vocal
tract and terminates freely into ambient air. The overaiwof the experimental setup is shown in

Fig. 3.4.

FI'IV laser

measuring section — —

“wi=== PC (Labview)——==—=.

blower engine

Figure 3.4: Overall view of the experimental setup. Avalitaon the DVD in full resolution.

In addition to the PIV system installed to measure the supttag) flow field, the model was also
equipped with accelerometers, pressure transducers amdphones to measure and record vocal
fold vibration. The diagram in Fig. 3.5 shows the locationsl aviring of transducers used, the
dimensions are specified in Fig. 3.6.

To measure the mean flow in the channel, an ultrasonic flowmetemounted near the downstream
end of the circular channel. Unlike many other flow velocitgasuring techniques, this device rep-
resents a non-invasive way to measure the stationary floxdgfrthe channel. It provides a digital
value in liters per minute (LPM) and a calibrated analogupuisignal. The measured values are,
however, not very precise and even in the case of stationanytfe output often fluctuates up to
ten percents. Moreover, the device performs one readouiyeeseconds and thus is completely
unsuitable for dynamic flow measurements.

Two accelerometers, fixed under the vibrating vocal foldremgsed to record mechanical vibra-
tion. The 1:4 scale of the model allowed to use the relatilaige, but very sensitive type B&K
4507C without affecting the system significantly. The ctioding amplifier with built-in signal
integration, supplied with the accelerometers, can intamdto acceleration provide also velocity
or even displacement waveforms. Such signal integrationlmoaever introduce phase distortions,
and since the phase was an important issue, no integratisiselected.

The signal from the accelerometer was also used to triggeP iVl laser. Rectification using a pulse
generator yields a rectangular signal, whose rising edgegmonds to a distinct phase of vocal fold
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Figure 3.5: Diagram of the experimental setup used for thasomements of vocal fold vibration
and for PIV investigation of the supraglottal flow.

1. Rietschle Thomas centrifugal blower engine (2200 M0 = 29 mbar, Q. =
2770 m3/h). 2. Omron Sysdrive 3G3MV frequency inverter (380 V, 0 — 60 H3). GE Pana-
metric GC 868 ultrasonic gas flowmeter. Validyne DP15TL dynamic pressure transducer
(steel membrane 0.125 PSI F$). Validyne CD23 amplifier. 6., 7. Bruel&Kjeer 4507C ac-
celerometers8. Briel&Kjser Nexus conditioning amplifier type 2692 (freqagrbandpass 1 Hz —
1 kHz). 9. G.R.A.S. 1/8" condenser microphone type 4138, G.R.A.Sappdifier type 26AJ10.
G.R.A.S. 1/2" prepolarized free field microphone type 40BER.A.S. preamplifier type 26A11.
Briel&Kjeer Nexus conditioning amplifier type 26902. New Wave Research PIV laser SOLO 3-
15. 13. New Wave Research SOLO lll laser unit4. LaVision Imager PRO camera unit.5.
PC - 2proc Intel Xeon, software Davis v¥6. Philips PM5715 TTL/pulse generatar7. National
Instruments NI DAQPad-6015 data acquisition car®l. PC - software NI LabView v7.119. LaV-
ision Imager PRO camera (1600x1200 pixel, Nikon AF NIKKORrBfth 1:1.8 D lens, f-number
8). 20. Kimo water manometer (precision 0.5 mm®l (5 Pa)).
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Figure 3.6: Dimensions of the wind tunnel and placement etthAnsducers

motion. Using the phase shift function of the generator {dhe PIV controlling software) allows
to trigger the PIV at arbitrarily chosen vocal fold positiore. at a distinct glottal opening and jet
formation phase.

In voice production, the pressure waveforms are obviousligh importance and interest. The
pressure waves emitted to the ambient atmosphere repitbsegénerated voice, while the supra-
glottal pressure waveform provides information on the atiowsignal generated by the vocal fold
itself (one must take into account the vocal tract resorgné&om the subglottal pressure one may
calculate the mean transglottal pressure, an importaanpeter for voice onset, and also observe
the subglottal vocal tract resonances. This is why threesoreanent spots were chosen: at the exit
of the channel, and immediately downstream and upstreamidkies (see Fig. 3.5).

Due to the first natural frequency of the mechanical sysfers 13 Hz, the fundamental acoustic
frequency was out of the documented range of standard niegsuicrophones. Hence, dynamic
pressure transducers were tried first. However, the traesdiavailable (Validyne DPTL-family
with changeable measuring membrane), in combination viighrecommended amplifiers, gave
poor signal-to-noise ratio and zero-level stability, antldduced spurious resonance frequencies.
The measuring microphones, on the other hand, proved simglyi good frequency response even
in this infrasonic band, and provided much better signalaly, only one pressure transducer was
used to record the subglottal pressure where non-zero D@aoent is present (this static value
actualy corresponds to the mean transglottal pressurehveloiuld be also read out from the water
manometer).

The amplifiers and the LabView measuring software were sebupat all the registered data were
directly in Sl units. In the case of the accelerometers andsoméng microphones, manufacturer-
specified calibration data were used. The pressure traessiuere calibrated by the use of a water
manometer. The calibration data are available on the DVD.

The spatial configuration of the PIV system is demonstratelgig. 3.7. This setup, with vertical
laser sheet passing through the middle of the channel anderaavith horizontally situated optical
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axis, allows to record the 2D flow field across the plexiglasanoel wall. Due to oil particle

deposition on the walls, frequent cleaning was necessamglmeasurements to preserve sufficient
image sharpness.

Laser La Vision / New Wave Research
DE solo 3-5

Alimentation du laser
PC
logiciel Davis

Caméra digitale
La Vision Imager Pro VC04

Accélérometre
B&K 4507C

Amplificateur de charge B&K Nexus,
Générateur de pulse Philips PM5715

Figure 3.7: 3D diagram of the PIV setup. The signal from theeBometer, rectified by a
TTL/pulse generator, is used to trigger the PIV laser anadté#mera shutter. The laser sheet passes

vertically through the middle of the channel so that the donmamediately downstream the glottis
is illuminated.
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3.4 Results of the dynamic and acoustic measurements

The primary purpose of the vibroacoustic measurements avasduire supplementary data to the
PIV records. Basically, the procedure consisted of settivegflow rate, taking one ten-second
record of the accelerometer, pressure and acoustic signdls a sampling rate of 2 kHz), and
performing a series of PIV measurements for approximat8lyl?ases of the vocal fold motion
(the latter will be explained in detail in section 3.5). Thi®cedure was repeated for the flow rate
values ranging from minimum flow able to sustain vocal foldration up to a maximum value,
where either the vibrations ceased or became chaotic guiae The systematic interpretation of
the vibroacoustic data, even regardless of the PIV measumsnprovides valuable information on
the dynamical behavior of the system.

First of all, the natural vibration of the model without flovasrmeasured. The silicone profile was
deflected from equilibrium, released and left to exhibit gachoscillation. The waveform and spec-
tra of the acceleration in Fig. 3.8 reveal a dominant spkfterquency of 11.0 Hz, corresponding to
the natural frequency of the prevailing translational mode

4 120

OJ %7110

100

[

S(acc)

90

Accel eration [m/s?]
N

80

0.5 1 1.5 2 2.5 0 20 40 60 80 100
Time [s] frequency [Hz]

Figure 3.8: Waveform and spectra of the damped natural tidoraf the physical model. The first
peak in the spectrum at 11.0 Hz corresponds to the natugidrey of the translational mode.
The second peak at 21.9 Hz is most likely the natural frequehthe torsional mode (which was
undesirable).

Fig. 3.9 shows dependence of the frequency of vibration erilthv rate. It demonstrates a behav-
ior typical for nonlinear dynamic systems, where a smalhgieaof the driving parameter (the flow
rate in this case) may cause a substantial alteration of sdregtional characteristic, i.e. invoke a
turnover of the mode of vibration. Tracking the frequencyhvimcreasing flow rate allows to distin-
guish four modes of vibration: mode I, where small flow ratetuce impactless low-amplitude vi-
bration, whose frequency does not change significantlyriftal flow Q...; = 7.6 1 /s, this regime
suddenly turns into mode Il and further mode Ill, which arareltterized by large-amplitude reg-
ular vibrations with impacts in each cycle. Subjectivelygge modes represent the ideal energy
transfer from the flow to the mechanical vibrations, andesgond best with normal voice produc-
tion. The nature of vibration in modes Il and Il does not eliffioticeably; they were distinguished
only on the basis of the frequency jump evident in Fig. 3.9.e Blooustic pressures emitted in
mode I/l vibration significantly exceed those measunediode I. Finally, high flow rates induce
partially irregular or even chaotic mode IV vibration witlgh noise level in the acoustic output.

The transition between mode Ill and mode IV showed evidestdrgsis - the jump occurred at
13.6 I/s when increasing flow rate, while at 11.3 I/s when €asing. The hysteresis of the mode
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Figure 3.9: Frequency of vocal fold vibration as a functidnnereasing flow rate. Mode [ low
flow rate, impactless vibration with low amplitude, freqagmoes not change significantly. Mode
[LIII (medium flow rate): at critical flowQ..;; = 7.6 /s, regular vibrations with large amplitudes
and impacts begin to develop. The frequency of vibratioaditg increases with the flow, despite a
sudden drop af) = 10.7 I /s. Mode IV (high flow rate): af) = 13.8 | /s, the character of vibration
changes completely — partially irregular, low-amplituderations arise. The data were drawn from
Fourier analysis with a spectral resolution®f = 0.12 Hz.

transition I-Il was much less distinct. Since the differerietween modes Il and 11l was hardly
noticeable, the hysteresis was not measured.

The next important vibrational parameter is the maximurmitjpesand negative acceleration over

the oscillation cycle, i.e. the peak values on the accétgrataveforms. These values provide
important information about the amplitude and intensityibfation, and are of particular interest

for voice specialists, since the maximum acceleration emghtt intensity are often considered as
the principal factors causing certain traumatic vocal fiidnges, such as vocal fold nodules.

The dependence of the maximum acceleration on the flow ratenmnstrated in Figs. 3.10, 3.11

—to interpret the meaning it is necessary to realize thagptis@ive peaks on the acceleration wave-
form correspond to the impact intensity (see also Figs. 3.83L5), while the negative peaks are
related to the overall vibration amplitudes. In mode | vilwna, the peak positive and peak negative
accelerations are similar. In mode Il and mode lll, the pasitimpact peaks are higher, while in

mode 1V, the acceleration is higher during the opening phase
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Figure 3.10: Maximum positive acceleration (impact intgfssersus flow rate. Mode I. low flow
rate, impactless low-amplitude vibrations. Mode Il,llledium flow rate, regular vocal fold vibra-
tion with impacts whose intensity rises with increasindlav. Mode IV: high flow rate, maximum
acceleration does not change significantly.

oF | T | '
Mode | 1 Mobde Il 1 Mde 11 1 Mode |V
| | |
()
_ oo | |
3 oo I I
Er | | |
1 1 1
> [ [ [
c | | |
z 20 | | |
o -20} | | [
s I | |
~ [ [ [
c 1 1 1
° |.. | | ®
g .30 I S |
S [ J [ ]
) | | |
> | % |.. | ®
g | o "o |
1 1 1 °
© | | e ! s [ ]
=< -40 | l | ®e
i | | .I hd [ ]
= 1 1 1 L4 oo
| | | [ ]
[ ]
| | | °% e
-50 b 1 L 1 . . ® hd .
5 10 15 20 25

Flow rate [l /s]

Figure 3.11: Maximum negative acceleration (peak accaberauring opening phase) versus flow
rate. Mode . low flow rate, impactless low-amplitude viliwas. Mode I1,1lIl: medium flow rate,
regular vocal fold vibration with impacts. Mode IV: high flomte, absolute value of the peak
acceleration continues to increase slightly.
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In the rest of this section, Figs. 3.12, 3.13, 3.14 and 3.btwghe measured waveforms and their
spectra for four example flow rate values: low r@e-= 5.59 | /s (mode I), which induces impactless
small-amplitude vibrations, medium flow rafe = 8.58 | /s and@ = 10.47 | /s (mode Il and IlI -
regular vibrations with impacts) and high flow ra&pe= 17.87 | /s (mode 1V), where the vibrations
become irregular and the acoustic signal very noisy duegb tirbulence level in the flow. The
complete set of measurements is available on the DVD.

The acceleration signals presented here come from theeaopedter (numbered 7 in Fig. 3.5)

mounted below the downstream edge of the vibrating vocel fohe subglottal pressure was mea-
sured by a dynamic pressure transducer, while two measorici@phones monitored the acoustic
signals. See Figs. 3.5, 3.6 for details regarding the measmt setup and wiring.
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Figure 3.12: Waveforms and frequency spectra of the aat@ar subglottal pressure, supraglottal
pressure and pressure radiated at the channel exit. MeasoréNo. 002 (mode |) — low flow

rate@ = 5.59 /s, impactless vocal fold vibration with a fundamental freqey of 11.7 Hz.

The mechanical vibrations are nearly sinusoidal. The remmbnic spectral frequency of 78.5 Hz,
seen also in the spectrum of the subglottal pressure, pameds probably to the rotational mode
(with respect to z-axis, see Fig. 3.2) or to subglottal atoussonance. In the waveforms of the
microphone signals prevails broadband noise, caused hyringlent flow.
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Figure 3.13: Waveforms and frequency spectra of the aat@ear subglottal pressure, supraglottal

Time [s]

140

m 130
=

120

110

» 100

90

80

acc

o

40 60
frequency [Hz]

160

140

[dB]

120

Psub)

5’100

80

o

40 60
frequency [Hz]

160
150

B 140

S(psupra) [

150

40 60
frequency [Hz]

140
o' 130
o
= 120
a
e 110

100

40 60
frequency [Hz]

80 100

67

pressure and pressure radiated at the channel exit. Measoré&lo. 012 (mode Il) — medium flow
rateQ = 8.581/s, ideal for regular vocal fold vibration with an impact ircbaycle. Fundamental

frequency 13.2 Hz. On the acceleration waveform, the imgackearly visible as a peak on the
positive half-wave. The acoustic signals now show perigthiecture, with harmonic frequencies in

their spectra.
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Figure 3.14: Waveforms and frequency spectra of the aat@ear subglottal pressure, supraglottal
pressure and pressure radiated at the channel exit. MeasoréNo. 017 (mode IlI) — medium

flow rateQ =

10.47 1/s, ideal for regular vocal fold vibration with an impact inceacycle.

Fundamental frequency 13.8 Hz. The character of vibrataes ot differ substantially from mode
Il vibrations.
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Figure 3.15: Waveforms and frequency spectra of the aat@ear subglottal pressure, supraglottal
pressure and pressure radiated at the channel exit. Measordlo. 032 (mode 1V) — high flow
rateQ = 17.87 |I/s induces partially irregular vibrations with lower acceatéons and increased
noise level in the acoustic signals. Fundamental frequ&Bcy Hz. The pressure and microphone

waveforms are not perfectly periodical.
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3.5 Results of the PIV measurements

An extensive series of PIV measurements was performed owiltheting vocal fold model. The
flow rate was gradually increased frogh = 5.33 | /s (measurement N0.001) © = 25.61 |/s
(measurement No0.044). Within each of the 44 measuremeappspxdmately 25 PIV records, cor-
responding to 25 distinct phases of the vocal fold osaillatycle, were taken. This was realized
using the synchronization signal (accelerometer signatexed to TTL) and the time-delay func-
tion of the laser control software. Each PIV record condisteten PIV measurements of the same
phase within ten successive vibration cycles. Considdtiagotal number of PIV measurements
performed and taking into account the camera resolutior60d x 1200 pix, there is no surprise
that the volume of the measured and post-processed dats fieethed 40GB.

Basically, the post-processing comprised standard PlRutation of the instantaneous velocity
fields (division of the image into interrogation windowspss-correlation, peak identification —
as explained in section 3.1) and further the calculatiorhefgghase-averaged velocity field. It is
necessary to discern well between thstantaneousind thephase-averagedelocity fields. The
instantaneous fields (which were ten for each flow rate anld phase, in our case) represent the
real velocity distribution and capture all the flow strueti(jet, vortices) of sufficiently large scale,
i.e. comparable to the interrogation window size. The pfaasgaged velocity field, on the other
hand, provides statistic information about the mean floneteh phase chosen. It is calculated by
a simple arithmetic average of the instantaneous fieldteceta the particular phase of vocal fold
motion. Due to the fact, that the flow is not perfectly peripdhe phase-averaged fields usually
do not show the small-scale vortices. In some cases, wher@stantaneous velocity fields differ
substantially (e.g. a free jet attached alternately to dipeaind bottom channel walls), the phase-
averaged image may show completely useless information.

The examples of PIV camera images together with the reguitistantaneous velocity field are
shown in Fig. 3.16. Fig. 3.17 demonstrates the calculatfdheophase-averaged velocity fields. In
all PIV images, ther andy axis labels correspond to the real dimensions (in mm). Thasored
flow velocities range from 0 to 35 m/s.
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Figure 3.16: Instantaneous velocity field downstream tlotigl Two camera images with a time
delay of50 us (top) acquired by illuminating the oil particles by the Btaipulsed laser system. The
small, dark circular zones (zones of low pressure) cormagpo small-scale vortices developing in
the boundary layer of the jet. Cross-correlation of the iensignals gives the instantaneous velocity
field (bottom). The vocal folds are on the left - the bottom @éxed, the upper one is moving
(the image is reversed vertically with respect to the retage The flow direction is from the left to
the right. Example taken from measurement No.012, phasé® ms (short after glottis opening).
The velocity modulus is in color, arrows show the velocitsedtion and magnitude. A free jet with

a maximum flow velocity of/ ~ 17 m/s forms between the vocal folds. Two large-scale vortices
develop at the sides of the jet front.
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Figure 3.17: Calculation of the phase-averaged velocityd.fidline instantaneous velocity fields
measured in the same phase of ten successive vibratiorsdgglether with the calculated phase-
averaged velocity field. Note the jet direction in the fiftetentaneous field, which is different from
all the other cases. Example taken from measurement No.012.
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The following figures demonstrate in detail the results oé¢hselected measurements (out of 44
in total): measurement No.002, 012 and 032. These measotemere recorded at three different
modes of vibration of the vocal fold: the first one was taketoatflow velocity, where the vocal
fold vibrates with low amplitude without collisions (modg imeasurement No.012 was chosen as
a representative case of medium flow rate, large-amplitedalar oscillations (mode II), which
subjectively correspond the best to normal voice produoctize last case, N0.032, is an example of
partially irregular oscillations induced by high flow rat@sode V). The velocity fields for mode
[l (which is very similar to mode 1) can be found on the DVDawosed, which comprises the
exported PIV images and calculated velocity fields in futlalation for all the cases measured.

The major difference between the velocity fields measurditsisthe maximum flow velocity of
the free jet, which reaches 13 m/s, 18 m/s and 36 m/s, regplctiConsidering the 3 ms delay
between two successive vocal fold oscillation phases, anestimate the distance which a particle
may travel within the time which separates the phases. Toenseimportant difference is that
in the first case (measurement No.002), the vocal folds daoiite and the jet is only slightly
modulated. In the measurements No.012 and 032, on the athel the glottis closes completely
and the flow is periodically interrupted.

In the majority of velocity fields measured, the jet is ateatho the upper channel wall. This
asymmetry is probably caused by the fact that the siliconielsmaf the upper and lower vocal folds
were not perfectly identical in shape, and that only the uppeal fold vibrated. Due to these
asymmetries, the direction of the jet sorting glottis caalléady be inclined upwards, which would
obviously make the jet attachment to the upper wall pretakn

It can be stated that the flow is not perfectly periodical ingyal. The turbulent structures, devel-
oping mainly due to presence of the boundary layer of therjetract mutually and with the jet in
a disordered, stochastic way; this is why the flow fields ofdfime phase in successive oscillation
cycles are not necessarily identical. The important flowcitres, however, are generated peri-
odically in accordance with the frequency of vibration: hiit each oscillation cycle, a new jet is
created with one pair of large vortices propagating aloegehfront. The jet attaches to the channel
wall and during the closing phase it fades away and evegtdadappears, leaving the turbulence to
damp out.
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t=12ms (0.14 T,)

t=24ms (0.28 T,) t=36ms (0.42 T,)

t =72 ms (0.84 T,) t =84 ms (0.987T,)

Figure 3.18: Selected instantaneous velocity fields dowast the glottis — measurement No. 002
(low flow rate @ = 5.59 I/s — mode 1). For low flow rates, the vocal folds do not collidel an
the channel remains open throughout the entire cycle. Tthe jet interrupted and just slightly
modulated by the variable glottis aperture.
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t = 0 ms (0.000 T,) t=3ms (0.039 T,)

t =6 ms (0.079 T) t =9ms (0.119 T,)

t =12 ms (0.159 T.) t=15ms (0.199 T,)

t =18 ms (0.239 T,) t =21 ms (0.279 T,)

Figure 3.19: Selected instantaneous velocity fields dowast the glottis — measurement No. 012
(medium flow rate = 8.58 | /s — mode 1), glottis opening. The jet forms between the véaias
and later attaches to the channel wall. Two vortices comegalath the jet front (see full-resolution
images on the DVD).
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t =27 ms (0.359 T,

t = 30 ms (0.399 T.) t = 33 ms (0.438 T.)

t =42 ms (0.558 T, t =45 ms (0.598 T,

Figure 3.19: (continued) Selected instantaneous veldieltys downstream the glottis — measure-
ment No. 012 (medium flow rat€ = 8.58 /s — mode ll), glottis closure. As the vocal folds
approach each other, the jet becomes weaker andtaftet5 ms it disappears.



CHAPTER 3. EXPERIMENTAL INVESTIGATION 77

t =48 ms (0.638 T, t =51 ms (0.678 T,

t =54ms (0.718 T,) t =60 ms (0.798 T,

t = 66 ms (0.837 T.) t = 69 ms (0.877 T.)

t="72ms (0.917 T,) t =75 ms (0.957 T,

Figure 3.19: (continued) Selected instantaneous veldiellys downstream the glottis — measure-
ment No. 012 (medium flow rat®@ = 8.58 | /s — mode lI), glottis closure, vocal fold collision and
glottis reopening. During the closure, no bulk flow is preésard only residual turbulence is visible
(phases 57 ms and 63 ms similar to images 54 ms and 60 ms arertfitisd). In the last two
phases, a new jet develops.
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t = 0ms (0.000 T.) t =3 ms (0.041 T,)

t = 6ms (0.082 T) t =9ms (0.123 T.)

t=12ms (0.164 T,) t =15 ms (0.205 T,

t =18 ms (0.246 T,) t =21 ms (0.287 T,

Figure 3.20: Selected instantaneous velocity fields dowast the glottis — measurement No. 032
(high flow rate@ = 17.87 /s — mode 1V), glottis opening. The free jet forms and attadbeke
channel wall - in the majority of cases to the upper wall, bigdme cycles and phases to the bottom
one.
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t =24ms (0.328 T,) t =27 ms (0.369 T,)

t =30 ms (0.410 T, t =33 ms (0.451 T})

t =36 ms (0.492 T,) t =39 ms (0.533 T.)

t =42ms (0.574 T,) t =45 ms (0.615 T,

Figure 3.20: (continued) Selected instantaneous veldiellys downstream the glottis — measure-
ment No. 032 (high flow rat€) = 17.87 |/s — mode V), glottis closure. The maximum jet velocity
reaches 35 m/s and gradually diminishes until completenfetiiuption. In the bottom part of the
domain, important recirculation is evident (see also thieréisolution images on the DVD).



CHAPTER 3. EXPERIMENTAL INVESTIGATION 80

RS et g "

t = 48 ms (0.656 T, t =51 ms (0.697 T,
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t =57 ms (0.779 T, t = 60 ms (0.820 T,
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t = 66 ms (0.902 T, t =69 ms (0.943 T,)

t=72ms (0.984 T,) t=75ms (1.02T,)

Figure 3.20: (continued) Selected instantaneous veldiellys downstream the glottis — measure-
ment No. 032 (high flow rat§) = 17.87 | /s — mode V), glottis closure, vocal fold collision and
glottis reopening. Images 54 ms and 63 ms omitted. Residdallence during closure, develop-
ment of a new jet after opening.



Chapter 4

Discussion and conclusions

A new mathematical model of 2D viscous flow, interacting véthelastic body in the wall of the
channel, was developed. The non-stationary incompreshialier-Stokes equations were derived
in the Arbitrary Lagrangian-Eulerian (ALE) approach, whiallows to deal with time-dependent
(deforming) computational domains. The Navier-Stokesaéqus were discretized by the Finite
element method (FEM), using the Taylor-HoBd/ P! elements for the velocity and pressure func-
tions. The numerical scheme was completely programmedeifrahntran language, making use
only of open-source libraries for the finite element diszegton and for the numerical solution of
the resulting linear system. The code allows to run numkesioaulations of flow past vibrating vo-
cal folds, to study the development of the velocity and pressields and to observe and quantify
the effects like vortex shedding, flow separation and mdituiaf the jet formed between the vocal
folds.

To obtain experimental feedback and to validate the mathieahanodel, a new 4:1 scaled physical
model of vocal folds was designed and fabricated. After daresive series of computations, tests
and modifications, we succeeded to develop a model, whereotted fold vibrates only due to
flow-structure interaction — unlike most of the models deped by other research teams, where
the vibration is excited externally. The signals from aepaineters, pressure transducers and mea-
suring microphones mounted on the measuring section ma®hbe to identify the mechanical
properties and acoustical output of the model. The windelaras adapted in such a way, that it
allows velocity field measurements by the Particle Imagedsietetry (PI1V) immediately upstream
the vibrating vocal fold. The PIV images from the measuretshiegnchronized with the vibration
reveal similar flow structures as the results of numericautions.

When modeling vocal fold oscillations or glottal flow, it ismhpting to try to compare the model
outputs with physiological data known from literature asrs@s some results are obtained. It is
however necessary to take into account the limitations ®fntloedels and not to try to extrapolate
beyond the scope for which the models were designed: it iplaoisible, for example, to draw
systematic conclusions regarding vortex shedding iniglottm a 1D flow model.

Neither the mathematical nor the physical model, describighdin this thesis, was primarily in-
tended for direct comparison with real human vocal folds.e Timain goal of the study was to
develop a mathematical model of 2D viscous flow in a channelpetsing vibrating vocal folds.
Since the experimental data regarding velocity fields ittiglare nearly impossible to obtain from
living subjects, a mechanical vocal fold model was designElde strategy is hence first to vali-
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date the mathematical model using results of the PIV meamnts on the physical model; once a
satisfactory correspondence between the computationaplaysical models will be achieved, the
geometry and boundary conditions of the mathematical moakelbe modified in order to reflect

the conditions occurring in real vocal folds. For the vdiioka of the model, it was advantageous to
use the configuration with one vocal fold moving and the ofixed.

The results from the mathematical and physical model obthso far seem to correspond when
compared visually. Nevertheless, it should be noted theretlare some aspects, which make a
systematic comparison difficult for the time being. As relgathe physical model, the situation is
complicated by the dynamic similarity: due to the 4 : 1 scdiferent frequencies of vibration
and critical flow velocities, the important dimensionlebamcteristics (i.e. Reynolds and Strouhal
numbers) were close to the real situation, but not identibébreover, the leakage alongside the
vibrating element, which was inevitable due to technicaliés, is obviously not present in real
vocal folds; it is not evident whether the leakage represanteffect of secondary importance or
whether it can alter the flow regime or the instability typgngiicantly.

The main limitation of the mathematical model is the fact tth@ vocal folds are not allowed to
collide. The processes accompanying glottal closure argtax and from the algorithmic point of
view, the separation of the computational domain into tvezassity to introduce additional bound-
ary conditions and to handle pressure discontinuity wheomeecting the domains represent a very
complicated problem. Yet it will be necessary to deal witis task in future, if the mathematical
model should be employed to model regular loud phonation.

The next issue which should be addressed is to introducdinglp@tween the flow and the mechan-
ical vibration. In the results shown here, the vibrationh# vocal fold was prescribed according
to the data measured on the physical model; to model therttagattion it is necessary to evaluate
the aerodynamic forces in each time level and perform a tepdsa the equations of motion. This
represents no principal problem and has already been ddhimwie master thesis [30] in a quasi-
1D fluid-structure interaction model. In the 2D model, hoesmthis will require certain technical
effort to implement. Moreover, it will be necessary to spethe constants regarding the stiffness
and damping of the support, which is not trivial.

There is one more source of discrepancy between the maticaimahd physical model. At the
beginning of this study, an assumption has been made thélothdields in glottis are in the first
approximation two-dimensional. This is indeed the caseHervery proximity of a 2D obstacle,
which has a strong capability to bi-dimensionalize the flproyided that the channel is sufficiently
wide to suppress the influence of the lateral walls and cernéthe channel, which introduce
peripheral 3D flow structures). As regards the channel éurtipstream a barrier, however, the
vortex dynamics in 2D and in 3D are substantially differeimt.the 2D situation, which does not
actually exist in reality and which represents only a coteapsimplification, the vorticity vector

w=curlu=V xu

is always perpendicular to the flow plane (i.e. parallel todbstacle axis) and the only mechanism
of vortex vanishing are the viscous effects. In the real, aBe¢ on the contrary, the large-scale
vortices, whose axis is originally also parallel to the abkt orientation, tend to slew into the flow
direction. As a result, the vortices detected in the PIV elafithe 3D vocal fold model seem to
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“disappear” much faster than the eddies predicted by the 2ihematical model. The computa-
tional model could be improved by introducing some kind abtdence modeling (e.g. Reynolds
Averaged Navier-Stokes equations, Large Eddy Simulatidng this does not solve the problem
completely. The turbulence models are designed rather ap@noximate, computationally more
effective alternative to direct numerical simulations @¥hfail to predict the influence of small, sub-
grid eddies; they are not intended to model the 3D effect®inN2oreover, the specific turbulence
models were mostly derived for specific configurations amdt thalidity is not guaranteed univer-

sally. The only reliable method is thus the simulation in 8Dth the mathematical description and
the computer code are ready for the 3D case; the full thneeasional modeling, however, will

require much more computational power and also specificatiohe 3D vocal tract geometry.

As explained in the previous paragraphs, a thorough vetititaof the mathematical model by
means of the measured data is difficult at the current statehg results obtained are promising and
important from the methodological point of view. The matlatical model was originally based on
the works of Feistauer, S¥ék and Horéek [40, 39] on numerical solution of flow-induced airfoll
vibrations. It was adapted for low Reynolds numbers and foody vibrating in the channel wall,
and completely reprogrammed in tRertran language using the numerical librak§élina. The
new implementation has several advantages — mainly théyiiggo use triangular, quadrangular,
tetrahedral, prismatic and hexahedral meshes and higtler-mterpolations (up to P6 or Q20) in
2D or 3D. Furthermore, a different algorithm was used for¢hkulation of the ALE-mapping,
which is crucial for the deformation of the computationalstmeluring vocal fold oscillations. Un-
like the latter studies, where the ALE-mapping was expietésen geometrical considerations or
from the solution of the elastic problem, here it was obtaiagthe solution of the Laplace equation.

The next feature of the mathematical model, which could hgaved, is the mechanical part of the
model. So far, the vocal fold has been modeled as a two-dediireedom rigid body supported by
linear springs and dampers. In future, the deformationt@®bft elastic tissue could be modeled
by the finite element method, too. This will, however, requa supply a number of geometrical and
material data regarding the diverse tissue structuresshwiorm the vocal fold; this appears to be
the stumbling-block of the currently existing FE vocal foddels found in literature [15, 42, 46].

As regards the physical model, it seems to be a promisingnalige to the vocal fold models
developed by other scientific teams over the world [8, 42, 281the best knowledge of the author,
there are not many mechanical self-oscillating vocal foladeis which have been employed so
far to measure the supraglottal flow fields; hopefully, thedetawill allow us to perform further
interesting measurements and help to disclose some of theonpletely understood features of
voice production in human vocal folds.
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