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Abstract

The velocity and pressure fields in the proximity of the vocalfolds were studied by means of numer-
ical modeling and experimental investigation. The mathematical model, based on the 2D incom-
pressible Navier-Stokes equations in arbitrary Lagrangian-Eulerian formulation discretized by the
finite element method, was programmed in the Fortran language, using numerical library Mélina.
The results of the numerical simulations show the development of the supraglottal jet and evolution
of the recirculation vortices within one vocal fold oscillation cycle. The physical model, scaled 4 : 1,
yields the acceleration, supraglottal pressure and acoustic signals emitted by an elastic body vibrat-
ing in the wall of a wind tunnel due to coupling with the flow. The velocity fields in the supraglottal
domain were measured on this model by a PIV system synchronized with the vibration.

Résumé

Le champ de vitesse et de pression le long des cordes vocales vibrantes était étudié à l’aide d’un
modèle numérique et par observation expérimentale. Le modèle mathématique, basé sur les équa-
tions de Navier-Stokes 2D incompressibles discrétisées avec la méthode des éléments finis en
formulation d’Euler-Lagrange arbitraire, était programmé dans le langage Fortran, à l’aide de la
librairie numérique Mélina. Dans les résultats des simulations numériques on peut observer le
développement du jet derrière la glotte et l’évolution des tourbillons de récirculation lors du cy-
cle d’oscillation des cordes vocales. Le modèle physique enéchelle 4 : 1 fournit les signaux
d’accéleration, pression supraglottale et le signal acoustique émis par un corps élastique, qui vibre
dans le paroi du canal aérodynamique grâce au couplage avec l’écoulement. Sur le même modèle,
le champ de vitesse dans le domaine supraglottale était mésuré par la PIV synchronisée avec les
oscillations.

Abstrakt

Pomocí numerického modelu a mě̌rení na fyzikálním modelu byla zkoumána rychlostní a tlaková
pole v blízkosti kmitajících hlasivek. Matematický model,založený na 2D nestlačitelných Navier-
Stokesových rovnicích diskretizovaných metodou konečných prvků ve formulaci ALE (Arbitrary
Lagrange-Euler), byl implementován v jazyce Fortran, při využití numerické knihovny Mélina.
Výsledky numerických simulací ukazují vývoj proudění v hlasivkové šťerbiňe a vznik recirku-
lačních vírů b̌ehem periody kmitání hlasivek. Na fyzikálním modelu v mě̌rítku 4 : 1 bylo nam̌ěreno
zrychlení, subglotický tlak a akustický signál vyzařovaný za pružným tělesem kmitajícím ve stěňe
aerodynamického kanálu díky interakci s proudícím vzduchem. Na stejném modelu byla vyhodno-
cena rychlostní pole v supraglotické oblasti metodou PIV synchronizovanou s kmitáním hlasivky.
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Chapter 1

Introduction

At the current speed of technology progress, fluid-structure interaction affects an increasing num-
ber of technical applications – airfoil and helicopter rotor blade vibration, stability of suspension
bridges, towers, smokestacks and skyscrapers, vibration of turbine blades or flow in heat exchang-
ers and nuclear reactors. Thorough investigations of catastrophic disasters caused by wind-induced
vibrations, such as ruptures of aircraft wings, collapse ofthe Tacoma Narrows bridge on Novem-
ber 7, 1940 or breakdown of the cooling towers in Ferrybridgeon November 1, 1965 lead to the
development of a new scientific and technical discipline: the aeroelasticity.

The aeroelastic calculations need to combine the methods ofthree classical branches of mechanics:
dynamics of rigid bodies and structures, fluid dynamics and elasticity. In the majority of cases,
the consequences of the aeroelastic effects are rather undesirable – the flow-induced vibration may
affect negatively the operation of the systems, lead to material fatigue or induce excessive noise
generation. However, there are processes where the fluid-structure interaction plays a crucial role;
this is the case of voice production in human vocal folds, which is the subject of this thesis.

Since the complete equations describing aeroelastic processes are extremely difficult to solve, a
classical approach in aeroelasticity is to reduce the mechanical part of the problem into a small sys-
tem of rigid masses, springs and dampers, which is further coupled with a simplified flow model.
The models often comprise semiempirical relations and constants. An illustrative case study is
demonstrated in Dowel’s monography [10]: the airfoil instability is studied using a model which
consists of a rigid plate fixed on a torsion spring, subjectedto flow described by the Bernoulli equa-
tion. Although such methods are still widely used and make part of standardized and state-certified
procedures e.g. in civil engineering, aeronautics and space applications, some more complex tech-
niques have also been employed in recent years. These are related mainly to the boom of finite
element and finite volume codes, which allow realistic modeling both of the flow and of the elas-
tic deformations. Mathematical modeling of the flow in humanvocal folds using the finite element
method, as well as measurements on a self-vibrating mechanical vocal fold model, will be addressed
within this thesis.

When modeling flow-induced vocal fold oscillation, it is indispensable to understand the basic
principles of voice production in humans and to acquire a basic knowledge about physiological
structures involved. Hence, the most important facts are summarized in the following introductory
section.

7
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1.1 Principles of voice production

The human voice is created by passage of the airflow between vocal folds, which are located in
the upper part of larynx (see Fig. 1.1, left). The vocal folds(formerly called vocal cords) are
two symmetric soft tissue structures fixed between the thyroid cartilage and arytenoid cartilages
(which are paired); basically they are composed of the thyroarytenoid (TA) muscle and ligament
covered by mucosa (see Fig. 1.1, right). In fact, this three-layer model of vocal folds is only a
simplified description; more detailed information can be found e.g. in Titze’s monographs [45]
or [46]. Fig. 1.2 shows the laryngoscopic view of vocal foldswhen respiring and in phonatory
position.

When air is expired from lungs, the constriction formed by the vocal folds (which is calledglottis)
induces acceleration of the flow and creates underpressure;under certain circumstances (subglottal
pressure, glottal width, longitudinal tension in the TA andligament) the fluid-structure interaction
may invoke vocal fold oscillations. Note that the vibrationis a passive process – when voicing, peo-
ple do not perform any sort of periodic muscle contraction, they only adjust the initial configuration
and let the vocal folds vibrate by the airflow.

The creation of voice by vocal fold vibration is usually referred to as phonation. In regular loud
phonation, the vocal folds collide and close the channel completely; the duration of the glottis clo-
sure may span a considerable part of the vibration period. When whispering or in breathy phonation,
the vocal folds may vibrate without collisions.

Even in the case of normal loud phonation, the vocal folds arecapable of vibrating in different
modes – from the vocologist’s point of view, the resulting voice is then classified into differentreg-
isters, the two most important of them being themodal (chest)andfalsettoregisters. Independently
of the voice pitch, we sing in the first two octaves (up to 350 Hzin men, approximately) in the modal
register, where the vocal folds vibrate as a whole, including the TA muscle and where the voice has
ample, rich “color” (spectrum). When trying to reach higherfrequencies, the vocal folds suddenly
switch to falsetto register, where most of the vibration concentrates to the ligament and mucosa;
the resulting voice color is rather “flat”. In training of theprofessional western-culture singers, a
considerable effort is devoted to smooth out the modal-falsetto transition – the subject tries to make
the register switching as little audible as possible. In some other singing techniques like yodeling,
on the contrary, the singer exploits the register transitions deliberately for artistic purposes.

In normal vocal fold vibration, there is a typical phase shift along the vertical axis: the inferior
part of the vocal fold collides prior to the superior segment. In some rather irregular or pathological
cases, longitudinal modes (2-0, 3-0 and higher, see [45]) can be observed. These higher eigenmodes
of vibration were measured and reported e.g. in [41]. For regular phonation, however, the vocal
folds usually vibrate symmetrically and as a whole, i.e. in the 1-0 mode, with vibrational nodes at
the anterior and posterior commissures and with the sole antinode in the middle.

The frequency of vibration is influenced by many factors, primarily by the longitudinal tension
in the TA muscle and in the ligament. The periodical glottal closure modulates the airflow and
generates a sound with the fundamental frequency denoted usually F0. The spectrum of the acoustic
signal contains harmonic frequenciesfk = k · F0, k = 2, 3 . . . and to certain extent also other
frequencies which manifest as noise.

The sound produced by the vocal folds themselves, which can be observed for example in exper-
iments on excised larynges [18], does not resemble human voice at all; it can be compared to the
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Figure 1.1: Scheme of the vocal tract in sagittal section (left) – the vocal folds are located in the
region of the cricoid and thyroid cartilages. Detailed viewof the larynx with termination of the
trachea in coronal section (right) reveals some of the complicated physiological structures forming
the vocal instrument. In the left picture, the anterior-posterior axis is oriented from left to right. In
the right one, it is perpendicular to the picture plane. Figures adapted from [4, 21].

sound produced when blowing a bird-call. The human voice results from the acoustic filtering of
the original signal by the vocal tract. Based on the actual geometry of the vocal tract, which can be
modified mainly by the position of the tongue (see Fig. 1.1), certain frequencies in the spectrum are
amplified and other suppressed: in this way, different vowels are generated from the same source
signal. When pronouncing the vowels [a:] and [i:], for example, the sound generated by the vocal
folds is exactly the same; the difference is that for [a:] thetongue is lowered and the lips wide
open, which creates a large resonance cavity with a large round radiator. When producing the [i:]
vowel, on the contrary, the tongue reduces the oral acousticvolume to minimum, which changes
the resonance frequencies of the vocal tract completely. The vocal tract can be hence regarded as an
acoustic resonator, whose frequency response is determined by its dimensions and actual geometry.

1.2 Objectives of the study

There is no doubt that the possibility to produce voice is crucial for human communication, although
many people do not realize this until they lose their voice temporarily (due to common respiratory
inflammations) or permanently (e.g. after laryngeal cancers). Good knowledge and understand-
ing of the processes and mechanisms which lead to self-sustained vibration of vocal folds is thus
important and has extensive applications. The Institute ofThermomechanics has been, for exam-
ple, involved in the European project Eureka E!2614NewVoiceon the development of new voice
prostheses for patients after total laryngectomy (surgical removal of larynx necessary after certain
cancers, approximately 30 000 patients per year worldwide). The results of the Czech research team
were summarized in report [31] and presented in [32].
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Figure 1.2: Laryngoscopic view of the vocal folds in respiratory (left) and phonatory (right) po-
sition. During respiration, abduction of the arytenoid cartilages moves the vocal folds far apart.
When phonating, the vocal folds are adducted close togetherto leave only a narrow glottal opening.
Anterior-posterior axis is oriented vertically, with the anterior commissure at the bottom. Images
provided by courtesy of Medical Healthcom Ltd., Prague.

The central subject of this study was mathematical modelingand experimental investigation of the
glottal velocity fields during flow-induced vocal fold vibration. In the first approximation, it can
be assumed that the flow field in the glottal region does not change significantly along the anterior-
posterior axis (see Figs. 1.1, 1.2). Thus, it seems reasonable to investigate only 2D flow fields in
the coronal plane. In the mathematical model, this approachfacilitates substantially the numerical
computation: the 3D and 2D models do not differ in principle,but the latter one requires much
less computational power. As regards the physical model, Particle Image Velocimetry (PIV) is a
method which examines the flow field in a selected 2D plane – hence it is perfectly suitable for 2D
examination.

In regular phonation both vocal folds vibrate symmetrically. For the purposes of mathematical or
physical modeling, a simplified approach is often used: the symmetry is assumed ad hoc and only
one half of the channel is modeled. This setup, sometimes called ”hemilarynx configuration“, is
useful to avoid complexity, time consumption of the algorithms and difficulties with unsymmetric
vibrations, related rather to pathological voice production. It is necessary, however, to keep in mind
that the symmetry is in general not warranted, and in some aspects even not realistic (as an example
one may take vortex shedding and jet attachment upstream theglottis, which are definitely not
symmetric phenomena).

The approach presented in this thesis tries to take advantage of the hemilarynx configuration, while
avoiding untenable assumptions: since the subject of the study is the 2D flow field within glottal
space, the whole channel is modeled, but one of the vocal folds is fixed to the channel wall and
does not move at all. This approach can be regarded as a simplified starting point for further, more
complex analysis. Physiologically, it might be related to voice production in subjects with unilateral
vocal fold paralysis.
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1.3 Overview of existing vocal fold models

The mathematical model of Ishizaka & Flanagan [20] is usually regarded as the cornerstone of vocal
fold modeling; it has been widely used (in various modifications) until present. In this model, the
vocal fold was modeled by a system comprising two masses of rectangular shape connected with
springs and dampers, the aerodynamics was based on the Bernoulli equation. It is interesting that
such a trivial model, which neglects a large majority of the real system features, gave surprisingly
good results.

The model of Pelorson and Hirschberg [28] includes more realistic, rounded vocal fold shape and
concentrates on the flow separation point. To simplify the equations, the aerodynamic forces which
act on the second mass are neglected. Steinecke and Herzel [36] used a similar model to investigate
the influence of vocal fold asymmetry. A slightly different two-mass model, featuring translational
and rotational motion, was developed by Liljencrants [23].When studying the Hopf bifurcations
using the original Ishizaka & Flanagan’s model combined with Story’s model of surface waves
[37], Lucero showed [25], that by a proper choice of model parameters it is possible to model the
falsetto-type vocal fold oscillations, too. Horáček et al. [17] proposed a three-mass 2-degrees-of-
freedom model with smooth shape, coupled with quasi-1D flow described by non-stationary Euler
equations. A multi-mass model was first introduced by Titze [43, 44]. The main drawback of all
lumped-parameter models was pointed out in the work of Storyand Titze [37]: there is no clear
relation between the model parameters and the anatomy of real vocal folds.

Calculation of the aerodynamic forces in the models summarized above is usually based on the
Bernoulli equation, the models mostly do not respect the real vocal fold shape. In some cases
(Pelorson and Hirschberg [28]) a variable flow separation point is modeled; in other studies (e.g.
Liljencrants [23], Lous et al. [24]), this parameter is assumed to be constant.

In recent years, a completely different approach to glottalflow modeling has been tried: instead of
simplified 1-D flow models, the 2D flow fields have been calculated using finite volume or finite
element methods, for example in the studies of Alipour and Titze [1] or Thomson et al. [42].
The main drawbacks of this approach are obviously the computational costs, and the difficulties in
supplying geometrical and structural parameters for the model.

Regarding the physical vocal fold models, notable results were reported by Deverge, Pelorson et
al. [8], who modeled the vocal folds by two flexible latex tubes filled with water, self-vibrating
in a wind tunnel. Barney et al. [2] and Kob et al. [22] used vocal fold replicas, which were
driven externally: two plane shutters closing a wind tunnelin the first case, and rotating cams
in a hydrodynamical channel in the latter. Recently, remarkable studies have been published by
Thomson et al. [42], who managed to design a true-scaled self-vibrating vocal fold model fabricated
from a highly flexible polyurethane rubber compound.



Chapter 2

Mathematical modeling

In previous works of the author (summarized in detail in master thesis [30] and published in [17]) the
system was thoroughly examined from the mechanical point ofview: the vocal folds were modeled
by a two-degree-of-freedom oscillator, placed in the wall of a channel and coupled with quasi-1D
flow of ideal fluid, described by the non-stationary Euler equations. The coupled equations were
solved by a semi-analytical method – in this case it was possible to integrate the governing equations
analytically over the spatial variable and proceed with numerical solution of a system of ordinary
differential equations with respect to the time variable, i.e. to perform numerical simulations of
the vocal fold vibration in time. Another possibility was tolinearize the equations, transform the
system into an eigenvalue problem and carry out stability analysis in frequency domain.

Later on, the algorithm was modified to reflect more accurately the conditions occurring for narrow
glottal apertures in order to model more precisely processes accompanying glottis closure. The
modified model included variable flow separation point in terms of a moving boundary condition,
specified according to a semiempirical criterion. The partial differential equations were discretized
by the finite difference method and solved using an explicit scheme. However, this method, reported
in [33], did not bring substantial improvement.

The approaches described above, which use rather simplified, one-dimensional fluid model, can
be very useful to reveal critical flow values, observe the influence of various model parameters
and examine the mechanical phenomena related to vocal fold vibration, such as the displacement,
velocity and acceleration waveforms or impact intensity; and all this without requiring excessive
computing power. They do not, however, tell much about the fluid-mechanical part of the problem,
and some important effects like flow separation, vortex shedding or recirculation cannot be modeled
this way at all. Within this thesis, a completely different mathematical model is presented. The flow
is described by incompressible non-stationary Navier-Stokes equations in 2D, solved by the finite
element method (FEM).

The main advantage of the finite element method is its capability to handle problems with complex
geometries. Unlike the finite difference method, which is still popular thanks to simplicity of its im-
plementation and effectiveness of the algorithms, FEM is well suited even for unstructured meshes
– one can use meshes with very fine elements in the domains, where high gradients of the solution
are expected, and coarser elements elsewhere to spare computer resources. In comparison with the
finite volume method, which approximates the solution by a piecewise constant function, the finite
element method (using a piecewise polynomial approximation) leads to higher-order, more accurate

12
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numerical schemes [13].

The finite element method, which is widely used for numericalsolution of elliptic and parabolic
partial differential equations, for example in structuralmechanics, seems to be somewhat less pop-
ular in computational fluid dynamics (CFD); actually most ofthe commercial CFD codes employ
some variant of the finite volume method. This might be causedby the computational costs of the
FEM (with the same number of mesh elements, lower-order methods – such as the finite volume
method – offer less accurate, but less computationally expensive solutions), but also by the fact,
that for high Reynolds numbers the standard finite element method does not give reliable results.
To understand this unfavorable feature, it is necessary to realize that for high-velocity flows the
viscous term in the Navier-Stokes equations becomes insignificant against the convective term. It
is well known, that for such systems with dominating convection (sometimes also called singularly
perturbed problems), standard finite element method is not suitable as it produces nonphysical,
“spurious” oscillations in the solution [12]. There exist several stabilization concepts, which can
help overcome this numerical problem, namely streamline diffusion method (alias streamline up-
wind Petrov-Galerkin method, SUPG) or Galerkin least-squares method. These methods, however,
require a very careful choice of the stabilization parameters. Since the Reynolds numbers of typical
glottal flows do not usually exceed values ofRe = 1000 − 5000, the standard, non-stabilized finite
element numerical scheme was used in this study.

When modeling flow past vibrating vocal folds, yet another, substantial complication is encoun-
tered: due to vocal fold vibration, the computational domain Ω changes in time (which implies that
the mesh is deformed, too); this makes the straightforward FE discretization impossible. There-
fore, the Navier-Stokes equations were first reformulated in arbitrary Lagrangian-Eulerian (ALE)
approach. Based on a special mappingA(t) of the fixed, reference configurationΩ0 (e.g. domain
occupied by the fluid at timet = 0) onto the deformed, actual configurationΩt (domain in time
t > 0), the ALE method makes possible to apply the finite element method on problems with
time-variable geometry [27].

The Navier-Stokes equations are nonlinear; besides the proofs of the existence and uniqueness
of the solution (which are available only for several simplified, rather academic cases), this also
complicates the numerical solution. The direct FE discretization would lead to a system of nonlinear
algebraic equations, which would be, due to the number of unknowns, extremely inconvenient to
solve. This is why it is necessary to use a suitable linearization of the convective term. Within this
work, the Oseen iteration process was used.

Numerical solution of partial differential equations, whether by the finite volume or finite element
method, leads to a large system of linear equations; the efficiency of the whole algorithm is thus
essentially affected by the linear solver used. Basically,one can choose between the direct methods,
which are fast but become too memory demanding when employedon large matrices, and iterative
methods, which are memory efficient, but much slower in general. Moreover, when using iterative
methods, it is necessary to concern about convergence, which is not trivial. Most of the modern
CFD codes on the market now feature an iterative linear solver based on multigrid acceleration – a
concept, which can dramatically improve the time efficiencywhile preserving reasonable memory
requirements. The numerical implementation, which shall be described here, uses a powerful direct
linear solverUMFPACK [7].

The mathematical formulation and numerical solution of theproblem in 3D and in 2D is, in prin-
ciple, the same. The difference is that in 3D, it is much more complicated to specify the geometry;
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actually, no complete 3D geometrical data regarding the vocal fold shape can be found in litera-
ture so far. In 3D, it is necessary to specify more structuraland material properties of the system,
which are generally not known. What is more, 3D modeling results in considerably increased el-
ement numbers and matrix sizes, requiring more time and memory to solve. Therefore, it seems
reasonable to start with a 2D mathematical model, which can be in future extended into 3D without
principal modifications.

The geometry of the problem, i.e. the 2D shape of the vocal folds and adjoining vocal tract, was
specified according to measurements on excised human larynges, performed in the Institute of Ther-
momechanics [34]. More specifically, the geometry of the computational domainΩ0 at zero dis-
placement was modeled on the basis of the measurements of themid-membranous coronal section
of larynx No.8 (female, 72 years, phonated at the fundamental frequencyF0 = 308 Hz).

2.1 Mathematical description

2.1.1 Equations of motion of the mechanical system

From the mechanical point of view, real vocal folds constitute a very complex system. They consist
of several tissue layers composed of diverse viscoelastic materials, whose mechanical properties are
generally not known. Therefore it is often necessary to takeup with simplified, lumped-parameter
models and to try to match at least several fundamental dynamic properties (e.g. natural frequencies
and damping factors) of real vocal folds. To illustrate the method, the equations of motion will be
derived for a simple two-degrees-of-freedom dynamic system.

m1

F1( )t
F2( )t

U0

m3 m2

x

y

k2

b2

k1

b1

l l
L1

L

CG

e
w2 (t)w1 (t) C

Figure 2.1: Geometric definitions in the mathematical model(hemilarynx configuration). Rigid
body of massm and moment of inertiaJ (with respect to the center of gravity CG), supported by
springs and dampers. For the derivation of the equations of motion, the rigid body can be replaced
by a dynamically equivalent three-mass systemm1, m2, m3.

The real, continuously elastic vocal fold is first replaced by a rigid body supported by two springs
and dampers (see Fig. 2.1). The kinematic model reflects two basic modes of the vocal fold motion:
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vertical shift along the y-axis and rotation with respect toC. For the generalized coordinates one
may take vertical displacementsw1 andw2 at the locations ofm1 andm2, respectively. Note that
within such system, the third mode – horizontal motion of thevocal fold, which is important in real
voice production, too – is blocked; this is however necessary to preserve simplicity and to avoid the
necessity to supply additional parameters, which are not known.

To derive the equations of motion, the rigid body of massm, static momentm · e (with respect
to the location ofm3) and moment of inertiaJ (with respect to the center of gravity CG) can be
temporarily replaced by a dynamically equivalent three-mass systemm1, m2, m3. The conditions
of equal mass, static moment and moment of inertia

m1 + m2 + m3 = m

−m1 l + m2 l = m e

m1 l2 + m2 l2 = J + m e2 (2.1)

yield

m1 =
1

2 l2
(
m e2 − m e l + J

)

m2 =
1

2 l2
(
m e2 + m e l + J

)

m3 = m

[
1 −

(e

l

)2
]
−

J

l2
. (2.2)

Now it is easy to write the linearized Lagrange functionL for the equivalent undamped system
(assuming small amplitudes):

L =
1

2
m1 ẇ2

1 +
1

2
m3

(
ẇ1 + ẇ2

2

)2

+
1

2
m2 ẇ2

2 −

[
1

2
k1 w2

1 +
1

2
k2 w2

2

]
. (2.3)

Application of the Lagrange equations on (2.3)

d

dt

(
∂L

∂ẇi

)
−

∂L

∂wi
= Fi i = 1, 2 , (2.4)

whereFi are the (generalized) excitation forces, gives the equations of motion for the undamped
system

m1 ẅ1 +
m3

4
(ẅ1 + ẅ2) + k1 w1 = F1

m2 ẅ2 +
m3

4
(ẅ1 + ẅ2) + k2 w2 = F2 . (2.5)



CHAPTER 2. MATHEMATICAL MODELING 16

Using matrix notation and introducing the displacement vector W(t) = (w1(t), w2(t))
T , one may

rewrite (2.5) as

M Ẅ + K W = F , (2.6)

whereM, K are the mass and stiffness matrices andF = (F1, F2)
T is the vector of excitation

forces. The spring stiffnessesk1, k2 in (2.5), which were not specified so far, can be set in such a
way that the natural frequencies of the model match the first two resonance frequencies measured
on real vocal folds (such experiments were performed in the Institute of Thermomechanics and
reported in [41]). The first step is to substitute a harmonic solutionW(t) = A eω t, whereω ∈ C is
the complex angular frequency andA the amplitude vector, into the equations of motion (2.6) with
zero excitationF = 0, which gives

(
ω2

M + K
)
A = 0 . (2.7)

This equation is usually exploited to determine the circular eigenfrequencies of a system when the
mass and stiffness matrices are known. However, it can be used in a reversed way – to calculate the
unknown stiffness constantsk1, k2 from known (measured) eigenfrequenciesω1, ω2. In order to
obtain a nontrivial solution, the determinant of the matrix(2.7) must be zero:

∣∣ω2
M + K

∣∣ =
(
k1 + (m1 +

m3

4
) ω2

) (
k2 + (m2 +

m3

4
) ω2

)
−

m2
3

16
ω4 = 0 . (2.8)

Substituting the experimental angular resonance frequencies ω1, ω2 into (2.8) yields a system of
two quadratic equations for stiffnessesk1, k2, which can be easily solved.

So far, we were concerned with the undamped system. The equations of motion of the damped
system read

M Ẅ + B Ẇ + K W = F . (2.9)

The damping matrixB is generally not easy to specify; one possible approach is touse the propor-
tional damping model, which assumes

B = ǫ1 M + ǫ2 K . (2.10)

The coefficients of the proportional dampingǫ1, ǫ2 can be calculated according to approximate
formulas [19]

ǫ1 = 2 π
∆f1 f2

2 − ∆f2 f2
1

f2
2 − f2

1

, ǫ2 =
1

2 π

∆f1 − ∆f2

f2
1 − f2

2

, (2.11)
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wherefi = 1
2 π

ωi are the measured resonance frequencies and∆fi stand for the experimental 3dB
half-power widths of the corresponding resonance peaks.

Once the excitation forcesF(t) are known, the equations of motion (2.9) represent a system of
two linear second-order ordinary differential equations,which can be easily transformed into four
first-order equations and solved numerically e.g. by the Runge-Kutta method.

Using a different model with more degrees of freedom does notchange anything in the principles
and methods described, it just complicates technically thederivation of the equations and makes
necessary to supply more structural constants. There is even no need to linearize the Lagrange
function – for the numerical solution in time the equations of motion need not be linear.

2.1.2 Formulation of the coupled problem

Once the equations of motion of the mechanical system are known, it is possible to proceed to the
formulation of the coupled problem, i.e. to derive equations describing jointly the flow and the
vocal fold motion, which are in interaction. In our case, thecoupling is realized by aerodynamic
forces (determined by the flow pressure field), which act on the surface of the vocal folds and induce
their motion; from the other side, the moving vocal folds modify the shape of the flow domain thus
affecting back the velocity and pressure fields.

As for the fluid model, we shall describe the flow of an incompressible viscous Newtonian fluid in a
bounded 2D domain. In what follows, vector-valued quantities will be in bold, tensors and matrices
double-struck. Numerical indices denote vector components.

Let Ωt ⊂ R2 be the domain occupied by the fluid at timet ∈ (0, T ). The boundaryΓ = ∂Ω is
composed of four non-intersecting parts (see Fig. 2.2):Γ = Γin∪Γout∪Γwall∪ΓV F , whereΓin and
Γout are virtual boundaries representing the inlet and outlet,Γwall = Γb1

wall∪Γb2
wall∪Γu1

wall∪Γu2
wall is

the fixed wall, which is not a function of time, andΓV F = Γb
V F ∪Γu

V F stands for the surface of the
moving vocal folds. The superscripts ’b’ and ’u’ denote the bottom and upper parts, respectively.

W Gout
Gin

Gwall

u1
Gwall

u2

GVF

b

Gwall

b1

Gwall

b2

GVF

u

Figure 2.2: Sketch of the computational domain and definition of its boundary parts. InletΓin,
outletΓout, fixed wallΓwall and moving vocal foldsΓV F .

Let qb
i (t) andqu

j (t) be the generalized coordinates specifying uniquely the position of the bottom
and upper vocal fold, respectively. According to the mechanical vocal fold model used, the indices
i, j may be equal to 1 for a one degree-of-freedom (1-DOF) system,they may run from 1–2 in
the case of the 2-DOF model described in section 2.1.1 (in this case, we have simplyqb

1 = w1,
qb
2 = w2), from 1–3 for a generally moving rigid body in 2D with three DOF or from 1–n when a

discrete multi-mass system is used. The number of generalized coordinates might be even infinite
in the case of continuous elastic vocal fold modeling. In anycase, the shape of the domain is an
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explicit function of the generalized coordinates only,Ωt = F (qb
i , q

u
j ), i = 1..N b

DOF , j = 1..Nu
DOF

.

Our goal is to find the flow velocityu(t,x), kinematic pressurep(t,x) and generalized coordinates
of the vocal foldsqb

i (t), qu
j (t), t ∈ (0, T ), x ∈ Ωt, i = 1..N b

DOF , j = 1..Nu
DOF . Kinematic

pressure is the pressure (in Pascals) divided by the fluid density.

Incompressible flow of a Newtonian fluid in a non-deforming domainΩ is described by the incom-
pressible Navier-Stokes equations and by the continuity equation:

∂u

∂t
+ (u · ∇) u + ∇p − ν ∆u = 0 in (0, T ) × Ω

div u = 0 in (0, T ) × Ω , (2.12)

whereν denotes the kinematic fluid viscosity. However, since the Eulerian time derivative∂/∂t is
not well defined in a time-dependent computational domainΩt, the standard, Eulerian form (2.12)
of the governing equations is not suitable for description of the flow in a domain that deforms in
time. Therefore it will be reformulated using the arbitraryLagrangian-Eulerian approach.

2.1.3 Arbitrary Lagrangian-Eulerian method

Before we proceed to the derivation of the Navier-Stokes equations in ALE approach, let us remind
two basic time derivatives, which are used in fluid dynamics.The first one is theEulerian deriva-
tive ∂/∂t, which represents the rate of change of some quantity in a fixed point. Thematerial
(substantive, Lagrangian) derivative

D

Dt
=

∂

∂t
+ (u · ∇) , (2.13)

on the other hand, reflects the rate of change of some propertyof a specific fluid particle, moving
with the fluid. Further, yet another time derivative – the ALEderivative – shall be introduced.

The fundamental concept of the ALE method, used in CFD problems with time-variable geometry
(such as wave propagation on free surface, fluids containingfloating bodies, fluid-structure inter-
action problems), is to relate the equations defined in the actual, “deformed” configuration – the
domainΩt at timet – to a reference configurationΩ0, which is usually the domain att = 0 (see
Fig. 2.3). This is realized using the ALE mappingAt : Ω0 7→ Ωt, which is for eacht ∈ [0, T ] a
smooth bijection (one-to-one mapping ofΩ0 ontoΩt with continuous first partial derivatives).

For the coordinates in the actual configuration, space coordinates, we will use small letters; the
coordinates in the reference configuration – reference coordinates – will be in uppercase. Hence
we may writex = x(t,X) = At(X), X = A−1

t (x). In what follows, byΦ we will denote the
domain, where the velocity and pressure fieldsu(t,x) andp(t,x) are defined:

Φ =
{

(t,x) : t ∈ (0, T ), x ∈ Ωt

}
. (2.14)
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W
t

W
0

At

X

x = A ( )t X

Figure 2.3: Illustration of the ALE mappingAt - a smooth mapping of the reference configuration
Ω0 onto the actual configurationΩt. Reference coordinatesX and space coordinatesx.

A function f : Φ 7→ R, defined in the actual configuration, can be transformed intothe reference
configuration, where it will be referred to as̃f :

f̃(t,X) = f(t,x) , x = At(X) . (2.15)

Let us define thedomain velocity

w̃(t,X) =
∂

∂t
At(X) =

∂

∂t
x(t,X) , (2.16)

or in space coordinates

w(t,x) = w̃(t,X) , X = A−1
t (x) . (2.17)

Now we can proceed to the definition of theALE derivative
DA

Dt
: Φ 7→ R :

DA

Dt
f(t,x) =

∂

∂t
f̃(t,X) , X = A−1

t (x) . (2.18)

Lemma 2.1. Let Ω0 be a bounded domain,Ωt = At(Ω0). Let f : Φ 7→ R be a function with
continuous partial derivatives of order 1,f ∈ C1

(
Φ
)
. Then

DA

Dt
f =

∂f

∂t
+ (w · ∇) f
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Proof. Using the ALE velocity definition (2.18), the domain velocity definition (2.16), relation
(2.15) and applying the chain rule, for a fixedx = At(X) we can write

DA

Dt
f(t,x) =

∂

∂t
f̃(t,X) =

d

dt
f
(
t, At(X)

)
=

∂f

∂t
(t,x) +

2∑

i=1

∂f

∂xi
(t,x)

(
d

dt
At(X)

)

i︸ ︷︷ ︸
w̃i(t,X) = wi(t,x)

=

=
∂f

∂t
(t,x) +

(
w · ∇

)
f(t,x) .

We see that the ALE derivativeDA/Dt = ∂/∂t + (w · ∇) is analogous to the material derivative
D/Dt = ∂/∂t+(u·∇) in Lagrangian approach. The difference is that in Lagrangian description we
track the particles with velocityu; the ALE approach, on the other hand, follows the “deformation”
of the particles of the reference configuration (the vertices of the computational mesh for example),
whose velocity is the domain velocityw.

Lemma 2.1 holds also for vector-valued functionsf(x, t). In this case,(w · ∇) f is a vector with
components

(
(w · ∇) f

)

i
=

2∑

j=1

wj
∂fi

∂xj

. (2.19)

The next quantity, which will be important in following derivations, is the Jacobi determinant of the
ALE mappingJAt :

JAt(x) =

∣∣∣∣
∂At(X)

∂X

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

∂At,1

∂X1
(X)

∂At,1

∂X2
(X)

∂At,2

∂X1
(X)

∂At,2

∂X2
(X)

∣∣∣∣∣∣∣∣∣

, X = A−1
t (x) . (2.20)

Due to the fact that the ALE mappingAt is surjective∀ t ∈ [0, T ] and thatAt(X) = Id(X) = X

for t = 0, it can be proven [29] that

JAt > 0 . (2.21)

Furthermore, the following relation holds [11, 29]:

DA

Dt
JAt(x) = JAt(x) div w(t,x) . (2.22)
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Theorem 2.2. (transport theorem in ALE formulation)
Let Vt ⊂ Ωt be a bounded domain,f ∈ C1

(
Φ
)
. Then

d

dt

∫

Vt

f dx =

∫

Vt

(
DA

Dt
f + f div w

)
dx . (2.23)

Proof. Let us denoteV0 = A−1
t (Vt). By the substitution theorem, the integral can be rewrittenas

d

dt

∫

Vt

f(t,x) dx =
d

dt

∫

V0

f̃(t,X) J̃At(X) dX .

Since the integration domainV0 is no longer dependent on time, we can apply the theorem on
differentiation of an integral with respect to a parameter.Using the definition (2.18) of the ALE
derivative, equation (2.22) and performing the inverse substitution we get

d

dt

∫

V0

f̃(t,X) J̃At(X) dX =

∫

V0

(
∂f̃

∂t
(t,X)

︸ ︷︷ ︸
DA

Dt
f(t,x)

J̃At(X) + f̃(t,X)
∂

∂t
J̃At(X)

︸ ︷︷ ︸
DA

Dt
JAt (x)

)
dX =

=

∫

Vt

(
DA

Dt
f(t,x) + f(t,x) div w(t,x)

)
dx .

2.1.4 Navier-Stokes equations in ALE formulation

The incompressible Navier-Stokes equations can be derivedfrom the principles of conservation
of mass, momentum and angular momentum. Additionally, it isnecessary to assume a constitutive
relation for the fluid, which relates the stress and strain tensors. In Eulerian description, the principle
of conservation of mass for an incompressible fluid expresses as the continuity equation

div u(t,x) = 0 in Φ . (2.24)

The continuity equation does not include any time derivatives and can be discretized in a standard
way; therefore it will be used in this form even in the ALE formulation.

Now we will exploit the momentum equation. Let us consider anarbitrary non-material volumeV
with a boundary∂V , moving with a velocityv. The momentum equation (the second Newton’s
law) states that the material time derivative of momentum isequal to the sum of external forces:

D

Dt
(ρ u) =

∂

∂t
(ρ u) +

[
u · ∇

]
(ρ u) = ∇ · T + ρ f , (2.25)
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whereT is the Cauchy stress tensor, representing the effects of surface forces, andf is the density
of volume forces.

For further derivations, we will need the Reynolds transport theorem, which expresses the time
derivative of an integral form. The standard Reynolds transport theorem deals with integrals over
material volumes, containing permanently the same particles of continuum. In our case, however,
V is not a material volume; hence we will need the general form of Reynolds transport theorem
(see [35] for detailed derivation)

d

dt

∫

V

f dx =

∫

V

∂f

∂t
dx +

∫

∂V

f v · n dσ, (2.26)

wheren stands for the unit outer normal. The theorem states that therate of change of the integral
of a functionf(t,x) over an arbitrary time-variable volumeV is equal to the change off insideV
and the flux off across the boundary∂V . Note that in the surface integral, the velocityv of the
boundary∂V is involved, instead of the velocityu of the boundary of a material volume (equal to
the flow velocity), which figures in standard Reynolds transport theorem.

Specifically, the transport theorem (2.26) for the momentumρu, for the volumeVt and the boundary
∂Vt whose velocity isw gives

∫

Vt

∂(ρ u)

∂t
dx =

d

dt

∫

Vt

ρ u dx −

∫

∂Vt

(ρ u) w · n dσ . (2.27)

Substituting (2.27) into the momentum equation (2.25) integrated overVt yields

F =

∫

Vt

(
∇ · T + ρ f

)
dx =

d

dt

∫

Vt

ρ u dx −

∫

∂Vt

(ρ u) w · n dσ +

∫

Vt

[
u · ∇

]
(ρ u) dx , (2.28)

whereF is the resultant of the forces acting onVt. When applying the ALE transport theorem
(2.23) to express the first integral on the right hand side of (2.28), we get

F =

∫

Vt

(
DA

Dt
(ρ u) + (ρ u) div w

)
dx −

∫

∂Vt

(ρ u) w · n dσ +

∫

Vt

[
u · ∇

]
(ρ u) dx . (2.29)

Using the Green’s theorem, for the i-th component of the surface integral in (2.29) we can write
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∫

∂Vt

(ρ ui) w · n dσ =

∫

∂Vt

(ρ ui w) · n dσ =

∫

Vt

div (ρ ui w) dx =

=

∫

Vt

w1
∂(ρ ui)

∂x1
+ w2

∂(ρ ui)

∂x2
+ w3

∂(ρ ui)

∂x3
+ ρ ui div w dx =

=

∫

Vt

[
w · ∇

]
(ρ ui) + ρ ui div w dx , (2.30)

which gives

∫

∂Vt

(ρ u) w · n dσ =

∫

Vt

[
w · ∇

]
(ρ u) + ρ u div w dx . (2.31)

For the incompressible fluidρ(x, t) = const, substituting (2.31) into (2.29) finally yields

F = ρ

∫

Vt

(DA

Dt
u +

[
(u − w) · ∇

]
u
)

dx . (2.32)

As seen in (2.28), the vector of the outer forcesF = F V + F S is composed of the volume forces

F V =

∫

Vt

ρf(t,x) dx (2.33)

and the surface forces

F S =

∫

Vt

∇ · T dx =

∫

∂Vt

T(t,x) · n dσ =

∫

∂Vt

τ (t,x,n) dσ , (2.34)

whereT is the stress tensor andτ = T · n is the stress vector (density of the surface forces). Now
it is necessary to include the constitutive relation. Supposing Newtonian fluid, in which the shear
stress is linearly proportional to the velocity gradient, the constitutive relation states that

Tij = −P δij + µ

(
∂ui

∂xj

+
∂uj

∂xi

)
, (2.35)

whereδij stands for the Kronecker delta,P is pressure andµ the dynamic fluid viscosity. The rest
of the derivation is identical with that of the standard Navier-Stokes equations, and shall be only
briefly outlined here: using the constitutive relation (2.35) it can be easily shown that

∇ · T = −∇P + µ ∆u . (2.36)
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Neglecting the volume forcesf , introducing the kinematic pressurep = P/ρ, kinematic viscosity
ν = µ/ρ and combining (2.32), (2.34) and (2.36) immediately yieldsthe ALE-formulation of the
Navier-Stokes equations, defined inΦ:

DA

Dt
u +

[
(u − w) · ∇

]
u + ∇p − ν ∆u = 0

div u = 0 . (2.37)

Note that if we are not interested in the detailed derivationof the Navier-Stokes equations, the ALE-
formulation (2.37) can be obtained immediately by substituting the result of Lemma 2.1 forf = u

into the standard Navier-Stokes equations (2.12).

2.1.5 Initial and boundary conditions

To solve the Navier-Stokes equations (2.37), it is necessary to supply suitable boundary conditions
on the boundary∂Ωt of the computational domainΩt. The boundary is composed of several dif-
ferent parts (see Fig. 2.2) – the inletΓin, the fixed wallsΓwall, the moving vocal fold surfacesΓV F

and the outletΓout.

The inlet flow, coming throughΓin, is imposed as needed. In the computations presented within
this work a parabolic profile of the vertical velocity component was used,

u(t,x) =

(
−4 U0

(x2−xTL
2

) (x2−xBL
2

)

(xTL
2

−xBL
2

)2

0

)
for x ∈ Γin, t ∈ [0, T ] , (2.38)

whereU0 is the maximum flow velocity at the channel axis andxTL, xBL represent the coordinates
of the top and bottom left domain corners, respectively.

Since we use a viscous model, the “no-slip condition” is prescribed on the fixed wallsΓwall:

u(t,x) = 0 for x ∈ Γwall, t ∈ [0, T ] . (2.39)

On the moving vocal fold surfaces, the velocity of the fluid particles must be equal to the velocity
of the moving surface, which is given by the ALE-velocityw. Hence,

u(t,x) = w(t,x) for x ∈ ΓV F , t ∈ [0, T ] . (2.40)

Finally, some condition has to be specified on the outletΓout. Unlike the previous cases, this
represents a rather delicate question – we need to set a sufficiently “unrestrictive” formula. One
possible choice is the “do-nothing condition” [47]
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−ν
∂u

∂n
(t,x) + p(t,x) n(x) = pref n(x) for x ∈ Γout, t ∈ [0, T ] , (2.41)

whereν is the fluid viscosity,∂/∂n denotes the normal derivative,n(x) is the unit outer normal to
Γout andpref is a reference pressure, which can be set to zero. The physical meaning of the refer-
ence pressure becomes clear when the do-nothing condition is set onΓin, too, instead of prescribing
the parabolic velocity profile. Then, the value

(
pin

ref − pout
ref

)
determines the pressure difference be-

tweenΓin andΓout which drives the flow. In phoniatric terms, this difference is calledtransglottal
pressureand is approximately equal to the lung pressure during phonation.

The origins of the do-nothing condition, which are not obvious at the moment, actually arise from
the weak formulation of the Navier-Stokes equations. This matter will be discussed more thor-
oughly in section 2.2.4.

Since the non-stationary Navier-Stokes equations includetime derivative, suitable initial conditions

u0(x) = u(0,x) , p0(x) = p(0,x) (2.42)

must be supplied, too. One possibility is to solve the stationary Navier-Stokes equations

[
(u(x) − w(x)) · ∇

]
u(x) + ∇p(x) − ν ∆u(x) = 0 ∀ x ∈ Ω0

div u(x) = 0 ∀ x ∈ Ω0 (2.43)

and to use the stationary solution as the initial condition.This approach is applicable only for low
Reynolds numbers (which is our case) – for higher flow velocities, the numerical solution of the
stationary system does not usually converge.

2.1.6 Dimensionless variables

When describing physical processes by mathematical equations, it is often advantageous to pass
from dimensional quantities towards dimensionless variables. Firstly, in the dimensionless form of
the governing equations, the relative importance of the terms becomes more evident. The dimen-
sional analysis allows to create scaled, but dynamically similar models, thus predicting the behavior
of the original system on the basis of the results from the scaled model. Moreover, the dimensionless
form of the equations is more suitable for the numerical solution due to the computer arithmetics
properties.

In the Navier-Stokes equations (2.37) we shall introduce dimensionless space coordinate, velocity,
time and pressure denotedx′,u′, t′ andp′. These will be defined using suitable scalesX∗, U∗, T ∗

andP ∗ as follows:

x = L∗ x′, u = U∗ u′, t = T ∗ t′, p = P ∗ p′ . (2.44)
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The length scaleL∗ can be chosen as the length of the vocal fold (denotedL in Fig. 2.6). Based on
the geometric data available [34], the length scale used in the computations was

L∗ = 43.11 · 10−3 m . (2.45)

It is convenient to take the velocity scaleU∗ as the flow velocity at the channel axis onΓin, U∗ = U0

(see 2.38), according to the boundary condition which is prescribed there. Henceforth, it is not
possible to choose neither the time nor the pressure scale arbitrarily – it is necessary to set

T ∗ =
L∗

U∗
(2.46)

P ∗ =
(
U∗
)2

. (2.47)

Note thatP ∗ is the scale of thekinematicpressure (dynamic pressure divided by the fluid density),
whose physical dimension isN m3

m2 kg
= kg m m3

s2 m2 kg
= m2/s2.

Differentiating (2.44) yields

d

dx′
= L∗ d

dx
, i.e. ∇′ = L∗ ∇ ,

d

dt′
= T ∗ d

dt
. (2.48)

By substituting (2.44), (2.46), (2.47) and (2.48) into the dimensional Navier-Stokes and continuity
equations (2.37) we get

U∗

L∗

DA

Dt′
u′U∗ +

[
U∗ (u′ − w′) ·

1

L∗
∇′
]
u′ U∗ +

1

L∗
∇′p′ P ∗ − ν

1

L∗2
∆′u′ U∗ = 0

1

L∗
div′u′ U∗ = 0 .

(2.49)

Now, if we multiply the first equation byL∗/U∗2

, introduce the dimensionless Reynolds number

Re =
L∗ U∗

ν
(2.50)

and drop the primes to simplify notation, we immediately obtain the dimensionless Navier-Stokes
equations defined onΦ:

DA

Dt
u +

[
(u − w) · ∇

]
u + ∇p −

1

Re
∆u = 0

div u = 0 . (2.51)
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2.2 Numerical solution

The Navier-Stokes equations were solved using the finite element method. All the code was pro-
grammed inFortran77, making use of the free, open-source numerical libraryMélina, developed
at Université de Rennes and Unité de Mathématiques Appliquées, ENSTA Paris.

2.2.1 Solution of the coupled problem

The Navier-Stokes equations (2.37) together with the equations of motion (2.9) form a full coupled
system describing the fluid-structure interaction in the vocal folds. Since such mixed system of
partial and ordinary differential equations is not suitable to be solved directly by some standard
numerical scheme, it is convenient to begin with the time-semidiscretization of the Navier-Stokes
equations and discretization of the equations of motion, both with the same timestepτ . In our
case, the ALE-derivative in the Navier-Stokes equations was approximated by a second-order back-
ward difference, and the equations of motion were discretized using the fourth-order Runge-Kutta
method. Further, the following procedure is applied:

Assuming that the solution of the Navier-Stokes equations (2.37) on a specific time levelt and
domainΩt is known (or using the data specified in the initial conditionfor t = 0), the generalized
excitation forces are calculated. In the case of the simple 2-DOF system described in section 2.1.1,
the horizontal motion is blocked and the generalized forcesare represented by the vertical forces
F1, F2 (see Fig. 2.1). These forces can be calculated from the forceand momentum conditions

F1 + F2 = Ff (2.52)

F1 (L1 − l) + F2 (L1 + l) = Mf , (2.53)

which immediately yield

F1 =
Ff (l + L1) − Mf

2 l
(2.54)

F2 =
Ff (l − L1) + Mf

2 l
. (2.55)

The total vertical forceFf and momentumMf , by which the fluid acts on the bottom vocal fold, is
given by the integration of the stress vectorτ , similarly as in (2.34):
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Ff =

∫

Γb

V F

τ2 dσ =

∫

Γb

V F

2∑

j=1

T2j nj dσ , (2.56)

Mf =

∫

Γb

V F

2∑

j,k=1

ǫ3jkτj xk dσ =

∫

Γb

V F

2∑

j,k,l=1

ǫ3jkTjl nl xk dσ =

=

∫

Γb

V F

2∑

l=1

(
T1l nl x2 − T2l nl x1

)
dσ . (2.57)

HereT is the stress tensor,n the unit outer normal to the vocal fold surface andǫijk the Levi-
Civita symbol. For the definition of the integration domainΓb

V F see Fig. 2.2. The stress tensorT is
calculated from the pressure and velocity fieldsp(t, x) andu(t, x) on time levelt, according to the
constitutive relation (2.35) valid for Newtonian fluids.

Once the excitation forcesF1 andF2 are known, we can proceed to the next time levelt + τ by
performing one step of the Runge-Kutta method in the time-discretized equations of motion. In
this way, we get the new system coordinateswi(t + τ), i = 1..2 (or qi(t + τ), i = 1..n in the
generaln-DOF case). These coordinates uniquely determine the shapeof the domainΩt+τ . With
the knowledge of the solution from the previous two time levels, the Navier-Stokes equations can
be solved on the new time levelt + τ and new domainΩt+τ using the finite element method.

It is evident that within this numerical scheme, there is no essential difference between the solution
of the coupled system (fluid-structure interaction), and the solution in the case of externally driven
vibrations, i.e. prescribed vocal fold motion. All, what isnecessary in the coupled system, is
to calculate the generalized forces and solve numerically an additional small system of ordinary
differential equations, which is not so complicated in comparison to the difficulties encountered in
finite element solution of the nonlinear Navier-Stokes equations. Though, modeling of the coupled
oscillations brings several technical challenges, which are not easy to overcome:

First, it is not obvious which kinematic vocal fold model to use. Obviously, the more degrees of
freedom modeled, the closer to reality the model can be, but the more elastic and damping constants
are needed to design the dynamic model. However, these constants are not known, and very difficult
or even impossible to obtain experimentally.

What is more, it is by no means guaranteed, that the model actually encounters the self-oscillation
regime. Unlike many technical systems, where flow-induced vibrations represent an undesirable
phenomenon which is rather difficult to suppress (e.g. bridge-deck wind-induced vibrations, airfoil
flutter), the vibration of vocal folds is a result of a long-term evolution and occurs only in very
special conditions. It has been experienced in the measurements on physical vocal fold models [33]
and excised human larynges [41] that it is indeed not trivialto adjust the geometry, elastic properties
and other parameters so that the oscillations occur.

Taking all this into account, it seems reasonable to performthe first computations using the model
with externally driven vibration. The results shown withinthis study were calculated in this mode
– with prescribed motion of the vocal fold.
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2.2.2 Time discretization of the Navier-Stokes equations

The time discretization is based on the works of Sváček, Feistauer and Horáček [38, 39]. A constant
timestepτ will be used. Let us define the discrete time levelti = i τ and the approximate flow
velocity, pressure and domain velocity on this time level

ui(x) ≈ u(ti,x), pi(x) ≈ p(ti,x), wi(x) ≈ w(ti,x), x ∈ Ωti . (2.58)

The Eulerian time derivative∂u/∂t can be approximated by second-order backward difference

∂u

∂t
(tn+1,x) ≈

3 u(tn+1,x) − 4 u(tn,x) + u(tn−1,x)

2 τ
. (2.59)

On the basis of the solutions from previous time levelstn and tn−1, an explicit two-step scheme
can be constructed. In the ALE-formulated Navier-Stokes equations (2.37), however, we use the
ALE-derivative

DA

Dt
u(tn+1,x) =

∂

∂t
ũ(tn+1,X) , X = A−1

tn+1
(x), x ∈ Ωtn+1

. (2.60)

The pointX of the reference configuration will be helpful for the construction of the approximation
of the ALE-derivative. Let us denote the ALE-maps of the reference pointX on the three time levels
involved

xn+1 = Atn+1
(X), xn = Atn(X), xn−1 = Atn−1

(X) . (2.61)

Then, similarly as in (2.59), the ALE-derivative can be approximated by the formula

DAu

Dt
(tn+1,xn+1) ≈

3 un+1(xn+1) − 4 un(xn) + un−1(xn−1)

2 τ
=

=
3 un+1(xn+1) − 4 un

(
Atn

(
A−1

tn+1
(xn+1)

))
+ un−1

(
Atn−1

(
A−1

tn+1
(xn+1)

))

2 τ
.

(2.62)

Provided that the ALE-mappings on time levelstn+1, tn andtn−1 are known, the finite difference
(2.62) is now well-defined onΩtn+1

. When we introduce the notation

ûi(xn+1) = ui
(
Ati

(
A−1

tn+1
(xn+1)

))
, (2.63)
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by substituting (2.62) into (2.37) we get the semidiscrete Navier-Stokes equations for the functions
un+1 : Ωtn+1

7→ R2 andpn+1 : Ωtn+1
7→ R :

3 un+1

2 τ
+
[
(un+1 − wn+1) · ∇

]
un+1 + ∇pn+1 − ν ∆un+1 =

4 ûn − ûn−1

2 τ

div un+1 = 0 . (2.64)

2.2.3 Linearization of the convective term - Oseen iterations

Due to the presence of the convective term
[
(un+1−wn+1)·∇

]
un+1 in the Navier-Stokes equations

(2.64), the system cannot be solved in a straightforward way. Instead, it is first necessary to linearize
the equations, i.e. to replace the first occurrence of the sought velocity vectorun+1 by some vector
u∗, which is already known:

[
(un+1 − wn+1) · ∇

]
un+1 ≈

[
(u∗ − wn+1) · ∇

]
un+1 . (2.65)

As regards the approximation vectoru∗, one possible approach is to use the solution from the
previous timestepun, transformed to the actual configuration with the aid of the ALE-mapping
(see 2.63):

u∗ = ûn . (2.66)

This would be sufficient for quasi-steady flows; to increase precision for the non-stationary flow it
is better to employ an iteration process, using (2.66) as thezero iteration. Themth iteration of the
so-called Oseen iteration process is performed by solving the system

3 un+1
m

2 τ
+
[
(un+1

m−1 − wn+1) · ∇
]
un+1

m + ∇pn+1 − ν ∆un+1
m =

4 ûn − ûn−1

2 τ
div un+1

m = 0 . (2.67)

Using the notation

u ≡ un+1, w ≡ wn+1, p ≡ pn+1, Ω ≡ Ωtn+1
(2.68)

to simplify the equations, the Oseen system can be formally rewritten as

3 u

2 τ
+
[
(u∗ − w) · ∇

]
u + ∇p − ν ∆u =

4 ûn − ûn−1

2 τ
div u = 0 . (2.69)
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2.2.4 Weak formulation of the Navier-Stokes equations

The starting point for the finite element discretization of any system of partial differential equations
is its weak formulation. Theweak solutionof a partial differential equation may be understood
as a generalization of the concept ofclassical solutions, whose derivatives concerned must exist
everywhere in the computational domainΩ. The weak solution, on the other hand, is defined in
an “integral” sense. It should be stated that the concept of weak solutions remains consistent with
the classical theory: it can be proven that a weak solution, which is sufficiently regular, is also a
solution in the classical sense.

In order to derive the weak formulation of the Navier-Stokesequations, several spaces used in
functional analysis shall be needed. First, let us recall the Lebesgue space of measurable square-
integrable functions defined onΩ ≡ Ωtn+1

⊂ R2:

L2(Ω) =

{

f : Ω 7→ R measurable : 2

√∫

Ω
|f |2 dµ < ∞

}

. (2.70)

The Lebesgue spaceL2(Ω) will be used for the pressure component of the solution. As regards the
velocity, the solution will be sought in the Sobolev spaceY =

(
H1(Ω)

)2
, where

H1(Ω) =

{
f ∈ L2(Ω) :

∂f

∂xi

∈ L2(Ω), i = 1, 2

}
. (2.71)

See e.g. [12] for details.

Now we will define the velocity and pressure test function space W and Q, respectively. The
velocity test functions are zero on the boundaries, where the Dirichlet condition is prescribed:

W =
{

v ∈ Y : v|Γin∪Γwall∪ΓV F
= 0
}

(2.72)

Q = L2(Ω) . (2.73)

The weak formulation of the equations is obtained by multiplying the classical formulation (2.69)
by an arbitrary test function from the relevant space and integrating overΩ:

3

2τ

∫

Ω
u · v dx +

∫

Ω

([
(u∗ − w) · ∇

]
u
)
· v dx +

∫

Ω
∇p · v dx −

∫

Ω
ν ∆u · v dx =

1

2 τ

∫

Ω

(
4ûn − ûn−1

)
· v dx ∀ v ∈ W , (2.74)

∫

Ω
q div u dx = 0 ∀ q ∈ Q . (2.75)
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Using Green’s theorem and the fact, that the test functionsv are zero on∂Ω \ Γout, we can rewrite
the third and fourth term from (2.74)

∫

Ω
∇p · v dx −

∫

Ω
ν ∆u · v dx =

=

∫

∂Ω
p v · n dσ −

∫

Ω
p div v dx + ν

2∑

j=1

∫

Ω
∇uj · ∇vj dx − ν

2∑

j=1

∫

∂Ω
∇uj · n vj dσ =

= ν

∫

Ω
∇u · ∇v dx −

∫

Ω
p div v dx +

∫

Γout

(
−ν

∂u

∂n
+ p n

)
· v dσ . (2.76)

The last surface integral in (2.76) reveals the origin of theboundary condition on the outlet of the
channel (2.41); the do-nothing condition actually represents a natural condition coming from the
weak formulation. In certain cases, however, this condition becomes too vague – it does not even
prevent the flow returning to the domainΩ throughΓout. Thus, the total influx into the domainΩ
can grow infinite and the numerical scheme tends to diverge.

To suppress this inconvenience, the boundary condition onΓout can be slightly modified. First, it is
necessary to apply Green’s theorem on the second, convective term in (2.74). If we realize that

v
∣∣∣
∂Ω\Γout

= 0 , w
∣∣∣
∂Ω\ΓV F

= 0 , (2.77)

we can write:

∫

Ω

([
(u∗ − w) · ∇

]
u
)
· v dx =

2∑

i,j=1

∫

Ω
(u∗

i − wi)
∂uj

∂xi
vj dx =

=

2∑

i,j=1

[1
2

∫

Ω
(u∗

i − wi)
∂uj

∂xi
vj dx +

1

2

∫

Ω
(u∗

i − wi)
∂uj

∂xi
vj dx

]
=

=

2∑

i,j=1

[
1

2

∫

Ω
(u∗

i − wi)
∂uj

∂xi
vj dx +

1

2

∫

∂Ω
vj (u∗

i − wi) uj ni dσ

−
1

2

∫

Ω
uj

∂

∂xi

[
(u∗

i − wi) vj

]
dx

]
=

=
2∑

i,j=1

[
1

2

∫

Ω
(u∗

i − wi)
∂uj

∂xi

vj dx +
1

2

∫

Γout

vj u∗
i uj ni dσ

−
1

2

∫

Ω
uj vj

∂

∂xi

(u∗
i − wi) dx −

1

2

∫

Ω
uj (u∗

i − wi)
∂vj

∂xi

dx

]
=
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=
1

2

∫

Ω

([
(u∗ − w) · ∇

]
u
)
· v dx +

1

2

∫

Γout

(u∗ · n)u · v dσ

−
1

2

∫

Ω
u · v div (u∗ − w) dx −

1

2

∫

Ω

([
(u∗ − w) · ∇

]
v
)
· u dx . (2.78)

The continuity equationdiv u = 0 holds also foru∗. Thus, with the aid of the Green’s theorem,
the third term in the result of (2.78) can be rewritten as

−
1

2

∫

Ω
u · v div (u∗ − w) dx =

1

2

∫

Ω

2∑

i,j=1

uivi
∂wj

∂xj

=

=
1

2

2∑

i,j=1

[∫

∂Ω
ui vi wj nj dσ −

∫

Ω
wj

∂

∂xj
(ui wi) dx

]
= −

1

2

∫

Ω

[
w · ∇

](
u · v

)
dx =

= −
1

2

∫

Ω

([
w · ∇

]
u
)
· v dx −

1

2

∫

Ω

([
w · ∇

]
v
)
· u dx . (2.79)

The boundary integral in (2.79) was dropped since on each part of the boundary∂Ω either the flow
velocityui, the velocity test functionsvi or the domain velocitywj is zero. Substituting (2.79) back
into (2.78) we finally receive

∫

Ω

([
(u∗ − w) · ∇

]
u
)
· v dx =

1

2

∫

Ω

([
(u∗ − 2 w) · ∇

]
u
)
· v dx −

1

2

∫

Ω

([
u∗ · ∇

]
v
)
· u dx +

1

2

∫

Γout

(u∗ · n)u · v dσ .

(2.80)

The new boundary integral which arose in (2.80) can be separated into the positive and negative
parts:

1

2

∫

Γout

(u∗ · n) u · v dσ =
1

2

∫

Γout

(u∗ · n)+ u · v dσ +
1

2

∫

Γout

(u∗ · n)− u · v dσ . (2.81)

Since we wish to suppress the return flow, that is

(u∗ · n)−
∣∣∣
Γout

= 0 , (2.82)

we add the negative part to the boundary condition and leave the positive term in the weak formu-
lation. The new, more stable boundary condition onΓout, sometimes referred to as thedownstream
boundary condition[5, 16], now reads
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−ν
∂u

∂n
(t,x) + p(t,x) n(x) +

1

2

(
u∗(x) · n(x)

)−
u(t,x) = pref n(x)

for x ∈ Γout, t ∈ [0, T ] . (2.83)

If we substitute back all the results (2.76), (2.80), (2.81)into the equations (2.74), (2.75) and make
use of the downstream boundary condition (2.83), we can express the ultimate form of the weak
semidiscretized ALE Navier-Stokes equations:

3

2τ

∫

Ω
u · v dx + ν

∫

Ω
∇u · ∇v dx −

∫

Ω
p div v dx +

1

2

∫

Ω

([
(u∗ − 2 w) · ∇

]
u
)
· v dx

−
1

2

∫

Ω

([
u∗ · ∇

]
v
)
· u dx +

1

2

∫

Γout

(
u∗ · n

)+
u · v dx =

=
1

2 τ

∫

Ω

(
4ûn − ûn−1

)
· v dx −

∫

Γout

pref v · n dσ ∀ v ∈ W , (2.84)

−

∫

Ω
q div u dx = 0 ∀ q ∈ Q . (2.85)

The weak solution of the problem is defined as a couple(u, p) ∈ Y ×Q such that the weak Navier-
Stokes equations (2.84), (2.85) hold and that the boundary conditions (2.38), (2.39), (2.40) and
(2.83) are satisfied in the sense of traces.

To simplify notation, we may introduce the forms

a(U∗, U, V ) =
3

2τ
(u,v) + ν ((u,v)) − (p,div v) + (div u, q) +

1

2

([
(u∗ − 2 w) · ∇

]
u,v

)

−
1

2

([
u∗ · ∇

]
v,u

)
+

1

2

∫

Γout

(
u∗ · n

)+
u · v dx , (2.86)

f(V ) =
1

2 τ

(
4ûn − ûn−1,v

)
−

∫

Γout

pref v · n dσ , (2.87)

whereU = {u, p}, U∗ = {u∗, p}, V = {v, q}, where(u,v) =
∫
Ω u · v dx denotes the scalar

product in
(
L2(Ω)

)2
and((u,v)) =

∫
Ω ∇u · ∇v dx is the scalar product in

(
H1

0 (Ω)
)2

. Using this
notation, the problem can be formulated as follows:
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Find U = {u, p} ∈ Y × Q such that the boundary conditions (2.38), (2.39), (2.40) and (2.83) are
satisfied in the sense of traces and that

a(U∗, U, V ) = f(V ) ∀ V = {v, q} ∈ W × Q . (2.88)

2.2.5 FE discretization of the Navier-Stokes equations

To find an approximate solution of the semidiscrete weak Navier-Stokes equations (2.88) we shall
use the finite element method. Let us suppose that the domainΩ is polygonal and denoteΩh ≡ Ω
(otherwise, it would be necessary to construct a polygonal approximationΩh of the domainΩ),
and that the boundary∂Ω is Lipschitz-continuous. LetTh = {Ki}i∈{1..nh} be a regular finite ele-
ment mesh overΩh, which means that the elementsKi are closed polygons with mutually disjoint
interiors such that

Ωh =
⋃

i∈{1..nh}

Ki (2.89)

and that an intersection of arbitrary two elements is eitherempty or their common vertex or edge
(see [12] for details). The subscripth usually represents the maximum diameter of all the elements,

h = max
i∈{1..nh}

(diam Ki) . (2.90)

The velocity constituent of the approximate solution will be sought in the finite-dimensional space

Y h =

{
vh ∈

(
C(Ωh)

)2
: vh|K ∈ P k+1(K) ∀ K ∈ Th

}
, (2.91)

wherePm(K) is the set of all polynomials defined onK of degree less than or equal tom. Simi-
larly, the pressure constituent of the solution comes from the finite-dimensional space

Qh =
{

qh ∈ C(Ωh) : qh|K ∈ P k(K) ∀ K ∈ Th

}
. (2.92)

This means that the solution is approximated by continuous piecewise-polynomial functions; in
other words, the spacesY h, Qh represent finite-dimensional approximations of the functional
spacesY , Q. It can be anticipated that when decreasing the size of elements, i.e. forh → 0,
the approximation error diminishes and the approximate solution may converge to the exact solu-
tion.

It can be proven thatY h ⊂ Y , Qh ⊂ Q. The spacesY h, Qh are called thefinite element spaces, the
functionsvh ∈ Y h, ph ∈ Qh are sometimes referred to asfinite elements. In order to guarantee the
numerical stability of the resulting scheme, the spacesY h, Qh cannot be chosen arbitrarily; they
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must fulfill the Babuška-Brezzi condition (see [11]). For the P k+1/P k elements (called Taylor-
Hood elements), this condition holds.

The test functions in the discretized equations come from spacesW h ⊂ W andQh, where

W h =
{

vh ∈ Y h : vh|Γin∪Γwall∪ΓV F
= 0
}

. (2.93)

Now we are able to formulate the discrete problem: find a couple Uh = {uh, ph} ∈ Y h × Qh

satisfying (in the sense of traces) a suitable approximation of the boundary conditions (2.38), (2.39),
(2.40) and (2.83) such, that

a (U∗
h , Uh, Vh) = f (Vh) ∀ Vh = {vh, qh} ∈ W h × Qh . (2.94)

For the purpose of clarity, the rest of the discretization process will be outlined here (without any
claims on completeness):

First, it is necessary to construct the bases of the spacesY h, Qh. The basis of anh-dimensional
spaceY h will be denoted by{wi}

nh

i=1, {qi}
mh

i=1 is the basis of the spaceQh of dimensionmh.
In order to produce sparse matrices, it is suitable to choosebasis functions with small support,
i.e. for example equal to one in one vertex of the mesh and zeroelsewhere (in the case of linear
P 1-elements).

Once the basis functions are chosen, the approximate solution can be expressed as their linear
combination

uh =

nh∑

j=1

Uj wj, ph =

mh∑

j=1

Pj qj . (2.95)

If a relation holds for an arbitrary element of a space, it must hold for all the elements of the basis
and vice versa. Thus, using (2.95), we can equivalently rewrite the condition (2.94) as

a
(
U∗

h ,
{ nh∑

j=1

Ujwj,

mh∑

r=1

Prqr

}
, {wk, ql}

)
= f

(
{wk, ql}

)
∀ k ∈ {1..nh} ∀ l ∈ {1..mh} . (2.96)

We can assume that the vectorU∗ is known from the previous iteration of the Oseen process.
Looking back on the definitions (2.86), (2.87) of the (tri)linear formsa (U∗, U, V ) andf(V ), it is
obvious that the equations (2.96) represent a system of linear algebraic equations for(nh + mh)
unknown real coefficients, which can be organized into vectors U = (U1 . . . Unh

)T and P =
(P1 . . . Pmh

)T .

The linear system, which arises from the finite element discretization described above, has the block
structure

(
A + T + C + D + E B

B
T ∅

)(
U

P

)
=

(
F

∅

)
, (2.97)
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where

A =
(
aij

)nh

i,j=1
aij = ν

∫

Ω
∇wj · ∇wi dx ,

T =
(
tij
)nh

i,j=1
tij =

3

2 τ

∫

Ω
wj · wi dx ,

C =
(
cij

)nh

i,j=1
cij =

1

2

∫

Ω

([
(u∗ − 2 w) · ∇

]
wj

)
· wi dx ,

D =
(
dij

)nh

i,j=1
dij = −

1

2

∫

Ω

([
u∗ · ∇

]
wi

)
· wj dx ,

E =
(
eij

)nh

i,j=1
eij =

1

2

∫

Γout

(
u∗ · n

)+
wj · wi dσ ,

B =
(
bij

)nh mh

i=1, j=1
bij = −

∫

Ω
qj div wi dx ,

F =
(
f1 . . . fnh

)T
fi =

1

2 τ

∫

Ω

(
4 ûn − ûn−1) · wi dx −

∫

Γout

pref wi · n dσ .

(2.98)

The matricesA and T, coming from the discretization of the viscous term and of the temporal
derivative, are symmetric, whileC, D (from the convective terms),E andB are generally nonsym-
metric. By the symbol∅ we denote the zero matrix or vector.

Before solving the linear system (2.97) it is necessary to take into account the Dirichlet boundary
conditions (2.38), (2.39), (2.40). The principle of the algorithm can be illustrated on a generic linear
system

Mϕ = b (2.99)

with a matrixM = (mij)
n
i,j=1 and a second memberb = (b1 . . . bn)T . Imposing the Dirichlet

condition is equivalent to blocking some of the degrees of freedom, i.e. to setting

ϕj = gj ∀ j ∈ D , (2.100)

wheregj are prescribed values andD is an index set of the blocked (Dirichlet) nodes. We will
assume that the linear system has already been organized in such a way, that the diagonal elements
corresponding to non-Dirichlet nodes are non-zero,mii 6= 0 ∀ i /∈ D.

In order to satisfy the Dirichlet conditions, the original system (2.99) is modified as follows: first the
components of the right-hand side vectorb corresponding to the non-Dirichlet nodes are replaced
by the values

bi := bi −
∑

j∈D

mij gj ∀ i /∈ D . (2.101)
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Then, the matrix elements in the relevant columns are set to zero,

mij := 0 ∀ i ∀ j ∈ D . (2.102)

Finally, the matrix rows corresponding to the Dirichlet nodes are modified as follows:

mij := 0 ∀ i ∈ D ∀ j 6= i ,

mii := 1 ∀ i ∈ D ,

bi := gi ∀ i ∈ D . (2.103)

2.2.6 ALE mapping

There is still one term in the Navier-Stokes equations (2.84) which has not yet been discussed
properly: the domain velocityw. According to the definitions (2.16), (2.17), the domain velocity
is simply the time derivative of the ALE-mappingAt. Our task is to determine the explicit form of
the ALE-mappingAt(X) at time levelt, provided that the generalized coordinatesqb

i (t) andqu
i (t)

of the bottom and upper vocal folds (and thus the shape of the domainΩt) are known.

Let us remind thatAt maps the reference, non-deformed domainΩ0 onto the actual, deformed
domainΩt. Looking on Figs. 2.2, 2.3, it is obvious that the ALE-mapping must satisfy following
conditions on∂Ω0:

At

∣∣∣
Γin∪Γwall∪Γout

= Id, At

∣∣∣
ΓV F

= Ft(X) , (2.104)

whereId is the identity mapping (these boundaries do not move) and whereFt is a prescribed
explicit function of the generalized coordinatesqb

i , qu
j , i = 1..N b

DOF , j = 1..Nu
DOF modeling the

motion of the vocal fold surface. In the case of the simple kinematic model shown in Fig. 2.1, the
functionFt is given by shift and rotation of the rigid body in the centralpart, and by cubic spline
interpolation on the side segments (membranes).

The second condition is that the mappingAt must be smooth onΩt. Otherwise, however, the choice
of At in the ALE approach is indeed arbitrary.

In simple cases, the form of the ALE-mapping may be guessed orderived on the basis of geometric
considerations. Another possibility, which can be applieduniversally, is to seek the mappingAt as
a solution of an auxiliary boundary problem with a suitable operator. In the computations presented
within this work, the ALE-mapping was defined as a solution ofthe Laplace’s equation

∆At = 0 in Ω0 , (2.105)

with the boundary conditions (2.104).
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The system (2.105) must be numerically solved in each timestep of the computation. It might seem
that this could slow down the algorithm considerably; however, it is necessary to realize that within
one timestep, more Oseen iterations are performed, while the auxiliary problem (2.105) must be
solved only once. Moreover, the finite element code programmed usesP k+1/P k elements for the
velocity and pressure fields, resulting in much larger matrices than theP k elements for the ALE-
mappingAt. Although the specific number depends on many factors, the practical computations
show that the solution of the auxiliary problem takes at most5-10% of the total computational time.

Fig. 2.4 shows the reference mesh inΩ0 and two meshes deformed by the ALE-mappingAt, which
was calculated as the solution of the Laplace’s equation (2.105). The deformed meshes correspond
to two different time levelst1, t2, near the maximum and minimum glottal aperture.

Figure 2.4: Reference (top) and deformed (bottom) computational meshes, 8246 elements.

2.2.7 Mesh generation and adaptive refinement

One of the advantages of the finite element method, against the finite difference method for example,
is the possibility to use anisotropic or locally refined meshes in a straightforward way. It is obvious
that in regions, where the solution is nearly constant, there is no need to apply a very fine mesh (the
calculation times increase with the number of unknowns powered by a constant between 2-3, where
the number of unknowns is a linear function of the number of mesh elements). In the domains
where the solution is expected to have steep gradients and abrupt changes, on the contrary, a fine
mesh is required in order to minimize the error of the discrete solution.

The adaptive mesh generatorAngener [9] was used to create the meshes necessary for the finite
element computations. The packageAngener features triangular mesh generation on polygonal
2D domains. The solutions obtained with the primary, isotropic meshes can serve as a basis for
adaptive mesh refinement, i.e. to create locally refined meshes, whose local element size is optimal
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in the sense of minimizing the approximation error. Fig. 2.5illustrates the difference between an
isotropic and locally refined mesh.

In the case of vector-valued solutions,Angener requires to select one of the components, which
will be used in the adaptive algorithm. For our calculations, the horizontal component of the ve-
locity was chosen. Further, it was necessary to modify theAngener source code in order to obtain
triangulation files in the format, which was required by the finite element library.

Figure 2.5: Isotropic and adaptively refined meshes, 2349 and 3988 elements, respectively. The
mesh was adapted according to the horizontal component of the velocity vector from the solution
obtained on the original mesh.

2.2.8 Algorithmic and technical remarks

The numerical solution of the discretized problem (2.94) was implemented using an open-source
library Mélina [26] (the acronym comes from the French collocation for FEM –Méthode des éle-
ments finis). The library, programmed underFortran77, is not confined to a specific class of
physical problems (like elasticity or viscous flow); it can deal with any partial differential problem.
The initial point for the algorithm is the weak formulation of the governing equations. This can be
specified in a file of directives together with the boundary conditions, physical constants involved,
type of elements used (Lagrange/Gauss-Lobato P1 – P6, P1 & bubble P3, Q1 – Q20 interpola-
tion supported) and link to the mesh file (triangular and quadrangular; tetrahedral, prismatic and
hexahedral elements allowed).
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The numerical library provides an extensive collection of high- and low-level routines, which allow
to program the solution of simple problems without worryingabout algorithmic details, such as
discretization of the terms, assemblage of the matrices or even memory management. However,
since all the source files are available and well-documented, the flow of execution is fully under
control of the programmer and the routines can be modified to handle even non-standard problems
– like, in our case, the Oseen iterations for the nonlinear term, the variable geometry and deforming
mesh, additional boundary integrals arising from the modified convective term etc.

In outline, the flow chart of the code programmed is as follows:

• Execution of theMélina initialization routines – import of the mesh file, parsing ofthe
directives file, global numbering of the nodes

• Backup of the node coordinates for the reference (non-deformed) mesh

• Initialization of the matrix of the auxiliary problem (for the ALE-mapping)

• Beginning of the principal time loop –i:=0; t:=i*tau

– Calculation of the coordinates of the vocal fold

– Restoration of the reference mesh, assembly of the auxiliary problem matrix, reso-
lution → At

– Deformation of the element vertices calculated on the basisof At, recalculation of
the node coordinates

– Beginning of the Oseen loop

∗ Recalculation of the convective and downstream-boundary terms based on the
velocity vector field from last iteration

∗ Assemblage of the matrix of the Navier-Stokes problem

∗ Imposition of the Dirichlet boundary conditions

∗ Resolution of the linear problem

∗ Calculation of the residual inl2-norm

∗ Storage of the results into output files

– End of the Oseen loop

– Recalculation of the ALE-velocity and time derivative terms

• End of the principal time loop –i:=i+1

The direct linear solvers provided withinMélina, which use LU factorization, are not very efficient;
this makes them applicable only on problems with small matrices. Therefore it was necessary to
incorporate some more powerful external linear solver intoMélina.

The packageUMFPack [7], which is used as a default sparse matrix solver in recentversions of
Matlab, uses a direct multifrontal method, suitable for generallynonsymmetric sparse matrices.
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Its performance may be further boosted by installation of a suitableBLAS (Basic Linear Algebra
Subsystem) – forUMFPack the Goto’s versionGoto BLAS [14] is recommended.

A new subroutineumf.f was developed to allow callingUMFPack within theMélina code. This
subroutine can simply replace built-in direct solversfalu.f andfasv.f, since it has identical
input parameters. Basically, the interface works in the following way:

1. The matrix of the linear system is converted from theMélina BiMorse format to the Nume-L
format.

2. The Nume-L structure is converted to the zero-based compressed row format.

3. The matrix entries numerically equal to zero are suppressed to spare memory. Real values
are stored in double precision in the superarray DST.

4. The matrix is passed through the Fortran interface ofUMFPack, which performs the reso-
lution itself in three steps (symbolic analysis, LU factorization, resolution of the factorized
problem).UMFPack requires the compressed column matrix format, the matrix issupplied
in compressed row format. Consequently, the solution is demanded for the transposed matrix
(this is equivalent).

5. The solution is stored as aMélina term.

In spite of the additional operations performed (matrix format conversions, array dislocations), the
new method is essentially faster then the original subroutines, approximately by a factor of 100. On
Intel processors, the overall performance of the binary code can be further improved by compiling
UMFPack, Mélina libraries and the program source code with Intel Fortran Compiler (instead of
GNU Fortran compiler, such asf77 or gfortran), and by setting suitable optimization flags (on an
Intel E6600 Core2 Duo system,-xT -03 flags were used).
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2.3 Results

This chapter shows the sample results calculated within a numerical simulation using typical values
of input parameters. These were as follows:

The channel geometry was based on the data measured on excised human larynges [34], scaled 1
: 4 to match the dimensions of the physical model. The glottallength in the model wasL02 =
67.22 mm (see Fig. 2.6), the lengths of the channelL01 = 0.25 · L02 = 16.80 mm, L03 =
1.75 · L02 = 117.63 mm. The dimensionL02 determines the part of the boundary, which changes
in time: within the length of the vocal foldL = 43.11 mm, the boundary is given by the rotation and
translation of the rigid body, outwards by smooth spline interpolation. The height of the channel
wasH0 = 37.50 mm, the initial gap between the vocal foldsg = 4.00 mm.

U0

gH0

L01 L02 L03

L

Figure 2.6: Dimensions in the mathematical model.

At the inletΓin (see Fig. 2.2 for definitions of the boundary segments), the vertical component of
the velocity vector was zero,u2 = 0; the horizontal velocity componentu1 was prescribed as a
parabolic profile with a maximum velocityumax

1 = U0 = 0.25 m s−1 at the channel axis, which
gives a Reynolds numberRe = 680. With the same mesh, the numerical scheme was stable for
inlet flow velocities up toU0 = 1 m s−1. The reference pressurepref was set to zero, air viscosity
ν = 1.583 10−5 m2 s−1, air densityρ = 1.1 kg m−3.

The mesh was triangular and consisted of 16537 Taylor-Hood (P 2/P 1) elements. The upper vocal
fold was fixed, the motion of the bottom one was prescribed as aharmonic oscillation of the vertical
shift y and rotationφ around the center of the vocal fold

y = ymax sin

(
y0 +

2πt

Ty

)
, φ = φmax sin

(
φ0 +

2πt

Tφ

)
(2.106)

with amplitudesymax = 1.5 mm, φmax = 8 deg, oscillation periodTy = Tφ = 100 ms and phase
differencey0 = 0, φ0 = −45 deg. The timestep of the method wasτ = 1 ms; as regards the
number of Oseen iterations, for typical Reynolds numbersRe = 500− 3000 it was found sufficient
to use a fixed number of iterations, usually two or three.

Fig. 2.7 demonstrates development of the velocity field in twelve phases over one vocal fold os-
cillation cycle of lengthTc. We can observe the free jet, which is formed between the vocal folds
and whose shear layer induces vortex shedding. It is quite common that the jet does not follow



CHAPTER 2. MATHEMATICAL MODELING 44

the channel axis and that it adheres to the channel wall; thisphenomenon is known as the Coanda
effect. The flow is not perfectly periodical.

In Fig. 2.8 we can observe the development of the pressure field in the same phases of the oscillation
cycle. The vortices appear as circular zones of low pressure, propagating towards the channel outlet.

Finally, a detailed view of the velocity field near the jet front, including the velocity vectors, is
shown in Fig. 2.9. The figure reveals the large-scale vortices shedded from the jet boundary layer.

The mesh files, animations of the velocity and pressure fieldsgenerated from numerical simulations
with U0 = 0.25, 0.5 and 1.0 m/s and all the source code files can be found on the DVD enclosed
to this thesis.
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t = 310 ms (0.0 Tc)

t = 320 ms (0.1 Tc)

t = 330 ms (0.2 Tc)

t = 340 ms (0.3 Tc)

Figure 2.7: Development of the velocity field during the vocal fold vibration cycle – velocity mag-
nitude [m/s].
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t = 350 ms (0.4 Tc)

t = 360 ms (0.5 Tc)

t = 370 ms (0.6 Tc)

t = 380 ms (0.7 Tc)

Figure 2.7: (continued) Development of the velocity field during the vocal fold vibration cycle –
velocity magnitude [m/s].
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t = 390 ms (0.8 Tc)

t = 400 ms (0.9 Tc)

t = 410 ms (1.0 Tc)

t = 420 ms (1.1 Tc)

Figure 2.7: (continued) Development of the velocity field during the vocal fold vibration cycle –
velocity magnitude [m/s].
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t = 310 ms (0.00 Tc)

t = 320 ms (0.1 Tc)

t = 330 ms (0.2 Tc)

t = 340 ms (0.3 Tc)

Figure 2.8: Development of the pressure field during the vocal fold vibration cycle – pressure [Pa].
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t = 350 ms (0.4 Tc)

t = 360 ms (0.5 Tc)

t = 370 ms (0.6 Tc)

t = 380 ms (0.7 Tc)

Figure 2.8: (continued) Development of the pressure field during the vocal fold vibration cycle –
pressure [Pa].
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t = 390 ms (0.8 Tc)

t = 400 ms (0.9 Tc)

t = 410 ms (1.0 Tc)

t = 420 ms (1.1 Tc)

Figure 2.8: (continued) Development of the pressure field during the vocal fold vibration cycle –
pressure [Pa].
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Figure 2.9: Detail of the velocity field near the jet front, t=420 ms. Velocity magnitude in color,
vectors indicate the flow direction.



Chapter 3

Experimental investigation

Despite the numbers of sophisticated mathematical models of vocal fold vibration and glottal flow
developed in recent years, experimental approaches still play an important role in vocal fold re-
search. The computational models can supply very useful data; nevertheless, it is necessary to keep
in mind that many models are based on important simplifications and that the results cannot be
extrapolated beyond the parameter limits, for which they were designed. The models often can-
not avoid to include several ad hoc assumptions. Moreover, in vocal fold modeling one needs to
enter many geometrical and tissue parameters, whose numerical values are often not well known.
Therefore, the results from the mathematical models shouldalways be verified using experimental
data.

The most relevant data regarding vocal fold vibration originate from measurements on living human
subjects. However, since the human vocal folds are hardly accessible, the majority of processes
occuring during phonation cannot be measured directly in vivo. The second possibility is to perform
in vitro investigations, i.e. measurements on excised human or animal larynges. This approach
provides improved accessibility to measured structures and tissues in better controlled laboratory
conditions; yet many drawbacks of experiments on living tissues persist – technical complications,
poor measurement reproducibility and also ethical concerns. This is why it is often useful to employ
physical vocal fold models with well-defined and easily controllable parameters. Provided that the
mechanical model reflects the important characteristics ofreal vocal folds, these measurements may
help in understanding some of the fundamental physical processes in voice production.

Investigation of the supraglottal flow velocity field represents one of the cases, where both in vivo
and in vitro measurements are hardly realizable. Thereforea self-vibrating mechanical model of
human vocal folds was designed and fabricated during the stay of the author at ENSTA Paris. The
principal goal was to study the conditions, where flow-induced vibrations of vocal folds occur and
to investigate the velocity fields in the supraglottal channel immediately upstream the narrowest
glottal gap. The measurements of the flow velocity fields weredone by means of Particle Image
Velocimetry, during different phases of vocal fold motion.The measured data were intended to be
compared with the results from the FEM computational model.

52
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3.1 Principles of Particle Image Velocimetry

Many areas of technical research and development require a measuring technique that can measure
the flow velocity across a larger domain of the flow field. This can be achieved by scanning the
domain with a point velocity probe (such as a Pitot tube or a hot-wire probe), however the instanta-
neous flow structure is lost and such procedure can be very time-consuming. Besides the qualitative
and semiquantitative flow visualization methods (direct injection, optical and holographic interfer-
ometry), an optical non-intrusive quantitative techniquehas developed during last 30 years; this
method is called Particle Image Velocimetry (PIV). PIV can measure the velocity field across a
selected planar domain of the flow, providing the instantaneous velocity vectors.

Figure 3.1: Principle of the PIV method (adapted from [6]). The position of the seeding particles,
illuminated by a double-pulsed laser light sheet, is recorded into two frames. Cross-correlation of
two corresponding interrogation windowsI1 andI2 yields the flow velocity vector.

The basic principles of the method are demonstrated in Fig. 3.1. The flow is seeded with small
particles, typically oil aerosols in gases and solid particles in fluids. Using a light sheet, formed
by passing a double-pulsed laser beam through a cylindricallens, the position of these particles
is illuminated twice with a small time delay in between. A fast computer-shuttered CCD camera
synchronized with the laser system records two frames.

These two images are then divided into small subsections called interrogation windows. The pixel
by pixel cross-correlation

C(S) =

∫∫

IW

I1(X) · I2(X − S) dX (3.1)

of the image signalsI1(X) andI2(X) corresponding to the same interrogation windowIW gives a
correlation peak, which identifies the particle displacement vector. Assuming that the tracers follow
the flow, the flow velocity vector is then calculated from the known time delay of the laser pulses.
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The velocity vectors obtained from a standard PIV, using onecamera with optical axis perpendicular
to the light sheet, are only two-dimensional. This setup is suitable for the flow that can be assumed
2D (e.g. flow past airfoils, cylinder wakes). If the third velocity component is needed too, two CCD
cameras in stereoscopic arrangement can be used.

3.2 Concept and design of the physical vocal fold model

The flow in human vocal folds can be in first approximation considered as two-dimensional – one
may suppose that the flow velocity does not change significantly along the width of the vocal folds
(i.e. along the anterior-posterior axisz, see Fig. 3.2). This encourages the development of 2D or
quasi-1D mathematical flow models, and also permits to draw meaningful data from PIV measure-
ments of the physical vocal fold models.

U0

L

H0 x

y

z
f

m

k

Figure 3.2: Basic design of the vocal fold model and overviewof the important dimensional param-
eters: channel heightH0, inlet flow velocityU0, characteristic lengthL and frequencyf , massm
and stiffnessk.

To reflect these facts, the physical model was proposed as a vocal-fold-shaped element vibrating in
the rectangular channel wall, preferably in thex–y plane. The z-dimension (i.e. the width) of the
vocal fold was intended to exceed considerably its length and depth, which is the case in true vocal
folds, too1. The shape of the vocal folds was specified according to measurements of excised human
larynges, performed in the Institute of Thermomechanics [34]. The next issue to be determined was
the overall dimension of the physical model.

There is no doubt that when trying to experimentally investigate complex real processes in labora-
tory conditions, the ideal setup is a physical model in true,i.e. 1:1 scale. However, from various
reasons the development of a true scale model is often inconvenient or even impossible. In these
cases one may try to use a scaled model, while conserving important dimensionless numbers rele-
vant to the process involved. With the aid of dimensional analysis it is afterwards possible to relate
the measured results to real, non-scaled conditions.

1The terms ‘length’, ’width’ and ’depth’ are defined here in a natural way, to be consistent with the length, width
and height of the wind tunnel. In vocal fold modeling, however, the vocal fold dimensions are standardly defined in a
different way: length along the z-axis, thickness (width) in x-direction and depth along the y-axis.
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The physical dimensions of real human vocal folds – width about 16 mm [46], length 9 mm and
depth 5 mm – are rather small; this would make the construction of a mechanical vocal fold model
in 1:1 scale and installation of the measuring devices very difficult. Further, the double-flash PIV
laser system available had a maximum repetition frequency of 20 Hz, and due to synchronization
it was preferable to design a system with the natural frequenciesf ≤ 20 Hz, too. This implies the
necessity to increase the mass/stiffness ratio, i.e. againto increase the model dimensions. Moreover,
the PIV camera was to acquire the images through a plexiglasschannel wall; in these conditions
and with the seeding particles used a larger image size results in much better image quality and
resolution. Taking all this into account, it was necessary to design a model 2 – 5 times enlarged
with respect to real vocal folds.

The most relevant dimensionless numbers pertinent to nonstationary flow past vibrating vocal folds
are arguably the Reynold’s number

Re =
U0H0

ν
(3.2)

and the Strouhal number

St =
fL

U0
, (3.3)

which can be based on the channel heightH0 and mean flow velocity at inletU0, kinematic air
viscosityν = 1.58 · 10−5 m2s−1, frequency of vortex sheddingf (supposed to be equal to the
frequency of vibration of vocal folds), and vocal fold length L (see Fig. 3.2).

The Reynolds numberRe represents the ratio between the convective and diffusive effects (i.e.
the inertial and viscous forces) in the flow and determines ina crucial way the nature of the flow
- development of the boundary layer, flow separation, vortexdynamics and turbulent effects in
general. The Strouhal number, alias ”reduced frequency“, indicates the relationship between the
characteristic time of convectionL/U0 and the frequency of flow fluctuations, which are in this
case strongly coupled with the natural frequency of the mechanical system. In flow past stationary,
non-vibrating bluff bodies, the Strouhal number is known toreach the values of approximately 0.2
(for the case of cylinders) [3]. For elastic structures capable to exhibit vibration, the issue is whether
the vibration frequency of the structure gets close to the frequency of stationary vortex shedding.
If so, the shedding frequency may ”lock“ to the vibration frequency, which has a strong effect on
organizing the wake and amplifying the vibration amplitude. The Strouhal number of about 0.24,
encountered in the physical model which was finally fabricated, could suggest that the conditions
were favorable for this lock-in effect.

The natural frequencies of the first two modes of the mechanical model (lift and rotation inx–y
plane, see Fig. 3.2) are determined by the ratio

f ∝

√
m

kb

, (3.4)
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wherem is the mass andkb the stiffness of the supporting springs. To ensure that these modal
frequencies are lower than 20 Hz, considerably low stiffness in vertical direction is needed. For the
proper function of the model, however, the torsional stiffnesskt should remain as high as possible
(the term torsion is used here for the rotation with respect to the x-axis). Consequently, the springs
were designed as four slender cantilever beams of lengthls, widthws and thicknessts. The bending
and torsional stiffness of one beam, denotedk1

b andk1
t , respectively, can be calculated from the

formulas

k1
b =

E ws t3s
12 l3s (1 − µ2)

, k1
t =

G ts w3
s

3 ls
. (3.5)

One can note that rather than by the material properties – Young modulusE, shear modulusG
and Poisson’s ratioµ – the stiffnesses are influenced by the beam thickness and length (in flexion)
and width (in torsion), which figure in third powers. Using the equations (3.4), (3.5), the require-
mentsf ≤ 20 Hz, kt ≫ kb and taking into account the technical constraints, the required spring
dimensions were estimated asls ≈ 80 mm, ws ≈ 10 mm, ts ≈ 0.5 mm. The cantilever beams,
representing the springs, were fabricated from a brass alloy (which has lower elastic moduli than
steel) and fixed with screws and shims. The physical model of the vocal folds, mounted in the
measuring section of the wind tunnel, is shown in Fig. 3.3, additional images can be found on the
accompanying DVD.

The vocal folds themselves were cast using a RTV-II two-compound silicone rubber type 69199. In
the configuration presented here, the upper vocal fold was fixed to the channel wall. The second
one, attached to a lightened square aluminum profile, was mounted on four brass flat springs into
the wall of the channel. Two adjusting screws allowed to set the zero position of the vocal fold
precisely.

Unfortunately, the mechanical system did not provide enough free parameters to preserve the
Reynolds and Strouhal numbers (3.2), (3.3) exactly. Also due to dimensions of the wind tunnel
available, a 1:4 scale was finally chosen for the physical model, which gives

HPM
0

HV F
0

=
LPM

LV F
= 4 (3.6)

(see Fig. 3.2, superscriptsPM andV F denote the physical model and the real vocal fold, respec-
tively). As described above, the natural frequencies of thesystem, supposed to be equal to the
frequency of flow fluctuations (vortex shedding) cannot be chosen arbitrarily, neither; taking a typ-
ical fundamental frequency of male voice offV F ≈ 100 Hz and the first natural frequency of the
physical model offPM ≈ 13 Hz yields the ratio

fPM

fV F
≈

1

8
. (3.7)

In a system, whose vibrations are self-induced, the flow velocity U0 is not a completely free pa-
rameter. Unlike externally excited vocal fold models (e.g.the hydrodynamical model of Kob et al.
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1/8’’ microphone
to water manometer

to dynamic
pressure
transduceradjusting screws

Figure 3.3: Design of the physical model of vocal folds (in configuration fixed upper - vibrating
lower vocal fold). The vibrating elastic silicone rubber element is attached to an aluminum profile,
supported by four adjustable brass flat springs. The system is equipped with two Brüel&Kjær
4507C accelerometers, a G.R.A.S. 1/8” measuring microphone type 2692, two hoses connected to
a water manometer and inlet of the Validyne DP15TL pressure transducer. Avalilable on the DVD
in full resolution.

[22]), the flow rate must remain between the bounds given by the critical flow (the lowest flow able
to excite vibrations) and the maximum flow (at which the vibrations either stop or become chaotic).
Using a 1D mathematical model of Horáček & Šidlof [17, 30] some estimations have been per-
formed prior to physical model fabrication to ensure that the Reynolds and Strouhal numbers stay
approximately the same for the physical model as for the realvocal folds. The flow-induced vibra-
tions of the vocal fold model, which was eventually fabricated, occurred for flow velocities ranging
from UPM

0 = 1.25 − 5 m/s. Considering a typical mean subglottal flow velocity during phona-
tion of UV F

0 ≈ 2.5 m/s and using (3.6), (3.7), one may estimate that for the physical model, the
Reynolds numberRe = 2000−3000 was 2–6 times higher and the Strouhal numberSt ≈ 0.24 was
1–3 times lower than those of real vocal folds. Hence, the physical model cannot be claimed to be
perfectly dynamically similar; however, it can be assumed that the flow regime is not substantially
different from the real situation.
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3.3 Experimental setup

The vocal fold model was mounted into a plexiglass wind tunnel comprising a blower engine and a
long circular channel with a diameter of 180 mm intended to suppress the inlet turbulence. Further,
the channel cross-section contracts smoothly by factorf ≈ 6 into a rectangular100 × 40 mm inlet
of the measuring section with the vocal folds, continues approximately 40 cm to simulate the vocal
tract and terminates freely into ambient air. The overall view of the experimental setup is shown in
Fig. 3.4.

blower engine

ultrasonic flowmeter

PIV laser

PC (Labview)

PC (PIV)

measuring section

Figure 3.4: Overall view of the experimental setup. Avalilable on the DVD in full resolution.

In addition to the PIV system installed to measure the supraglottal flow field, the model was also
equipped with accelerometers, pressure transducers and microphones to measure and record vocal
fold vibration. The diagram in Fig. 3.5 shows the locations and wiring of transducers used, the
dimensions are specified in Fig. 3.6.

To measure the mean flow in the channel, an ultrasonic flowmeter was mounted near the downstream
end of the circular channel. Unlike many other flow velocity measuring techniques, this device rep-
resents a non-invasive way to measure the stationary flux through the channel. It provides a digital
value in liters per minute (LPM) and a calibrated analogue output signal. The measured values are,
however, not very precise and even in the case of stationary flow the output often fluctuates up to
ten percents. Moreover, the device performs one readout pertwo seconds and thus is completely
unsuitable for dynamic flow measurements.

Two accelerometers, fixed under the vibrating vocal fold, were used to record mechanical vibra-
tion. The 1:4 scale of the model allowed to use the relativelylarge, but very sensitive type B&K
4507C without affecting the system significantly. The conditioning amplifier with built-in signal
integration, supplied with the accelerometers, can in addition to acceleration provide also velocity
or even displacement waveforms. Such signal integration may however introduce phase distortions,
and since the phase was an important issue, no integration was selected.

The signal from the accelerometer was also used to trigger the PIV laser. Rectification using a pulse
generator yields a rectangular signal, whose rising edge corresponds to a distinct phase of vocal fold
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Figure 3.5: Diagram of the experimental setup used for the measurements of vocal fold vibration
and for PIV investigation of the supraglottal flow.
1. Rietschle Thomas centrifugal blower engine (2200 W,∆pmax = 29 mbar, Qmax =
2770 m3/h). 2. Omron Sysdrive 3G3MV frequency inverter (380 V, 0 – 60 Hz).3. GE Pana-
metric GC 868 ultrasonic gas flowmeter.4. Validyne DP15TL dynamic pressure transducer
(steel membrane 0.125 PSI FS).5. Validyne CD23 amplifier. 6., 7. Brüel&Kjær 4507C ac-
celerometers.8. Brüel&Kjær Nexus conditioning amplifier type 2692 (frequency bandpass 1 Hz –
1 kHz). 9. G.R.A.S. 1/8" condenser microphone type 4138, G.R.A.S. preamplifier type 26AJ.10.

G.R.A.S. 1/2" prepolarized free field microphone type 40BE,G.R.A.S. preamplifier type 26AJ.11.

Brüel&Kjær Nexus conditioning amplifier type 2690.12. New Wave Research PIV laser SOLO 3-
15. 13. New Wave Research SOLO III laser unit.14. LaVision Imager PRO camera unit.15.

PC - 2proc Intel Xeon, software Davis v7.16. Philips PM5715 TTL/pulse generator.17. National
Instruments NI DAQPad-6015 data acquisition card.18. PC - software NI LabView v7.1.19. LaV-
ision Imager PRO camera (1600x1200 pixel, Nikon AF NIKKOR 50mm 1:1.8 D lens, f-number
8). 20. Kimo water manometer (precision 0.5 mm H2O (5 Pa)).
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Figure 3.6: Dimensions of the wind tunnel and placement of the transducers

motion. Using the phase shift function of the generator (or of the PIV controlling software) allows
to trigger the PIV at arbitrarily chosen vocal fold position, i.e. at a distinct glottal opening and jet
formation phase.

In voice production, the pressure waveforms are obviously of high importance and interest. The
pressure waves emitted to the ambient atmosphere representthe generated voice, while the supra-
glottal pressure waveform provides information on the acoustic signal generated by the vocal fold
itself (one must take into account the vocal tract resonances). From the subglottal pressure one may
calculate the mean transglottal pressure, an important parameter for voice onset, and also observe
the subglottal vocal tract resonances. This is why three measurement spots were chosen: at the exit
of the channel, and immediately downstream and upstream theglottis (see Fig. 3.5).

Due to the first natural frequency of the mechanical systemf ≈ 13 Hz, the fundamental acoustic
frequency was out of the documented range of standard measuring microphones. Hence, dynamic
pressure transducers were tried first. However, the transducers available (Validyne DPTL-family
with changeable measuring membrane), in combination with the recommended amplifiers, gave
poor signal-to-noise ratio and zero-level stability, and introduced spurious resonance frequencies.
The measuring microphones, on the other hand, proved surprisingly good frequency response even
in this infrasonic band, and provided much better signal. Finally, only one pressure transducer was
used to record the subglottal pressure where non-zero DC component is present (this static value
actualy corresponds to the mean transglottal pressure, which could be also read out from the water
manometer).

The amplifiers and the LabView measuring software were set upso that all the registered data were
directly in SI units. In the case of the accelerometers and measuring microphones, manufacturer-
specified calibration data were used. The pressure transducers were calibrated by the use of a water
manometer. The calibration data are available on the DVD.

The spatial configuration of the PIV system is demonstrated in Fig. 3.7. This setup, with vertical
laser sheet passing through the middle of the channel and a camera with horizontally situated optical
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axis, allows to record the 2D flow field across the plexiglass channel wall. Due to oil particle
deposition on the walls, frequent cleaning was necessary during measurements to preserve sufficient
image sharpness.

Laser La Vision / New Wave Research
DE solo 3-5

Alimentation du laser
PC

logiciel Davis

Caméra digitale
La Vision Imager Pro VC04

Accéléromètre
B&K 4507C

Amplificateur de charge B
énérateur de pulse Philips PM5715

&K Nexus,
G

sig IN
TTL OUT

trigg IN

caméra laser

Figure 3.7: 3D diagram of the PIV setup. The signal from the accelerometer, rectified by a
TTL/pulse generator, is used to trigger the PIV laser and thecamera shutter. The laser sheet passes
vertically through the middle of the channel so that the domain immediately downstream the glottis
is illuminated.
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3.4 Results of the dynamic and acoustic measurements

The primary purpose of the vibroacoustic measurements was to acquire supplementary data to the
PIV records. Basically, the procedure consisted of settingthe flow rate, taking one ten-second
record of the accelerometer, pressure and acoustic signals(with a sampling rate of 2 kHz), and
performing a series of PIV measurements for approximately 25 phases of the vocal fold motion
(the latter will be explained in detail in section 3.5). Thisprocedure was repeated for the flow rate
values ranging from minimum flow able to sustain vocal fold vibration up to a maximum value,
where either the vibrations ceased or became chaotic or irregular. The systematic interpretation of
the vibroacoustic data, even regardless of the PIV measurements, provides valuable information on
the dynamical behavior of the system.

First of all, the natural vibration of the model without flow was measured. The silicone profile was
deflected from equilibrium, released and left to exhibit damped oscillation. The waveform and spec-
tra of the acceleration in Fig. 3.8 reveal a dominant spectral frequency of 11.0 Hz, corresponding to
the natural frequency of the prevailing translational mode.

0.5 1 1.5 2 2.5
Time @sD

-6

-4

-2

0

2

4

A
c
c
e
l
e
r
a
t
i
o
n
@
m
�
s
2
D

0 20 40 60 80 100
frequency @HzD

80

90

100

110

120

S
H
a
c
c
L
@
d
B
D

Figure 3.8: Waveform and spectra of the damped natural vibration of the physical model. The first
peak in the spectrum at 11.0 Hz corresponds to the natural frequency of the translational mode.
The second peak at 21.9 Hz is most likely the natural frequency of the torsional mode (which was
undesirable).

Fig. 3.9 shows dependence of the frequency of vibration on the flow rate. It demonstrates a behav-
ior typical for nonlinear dynamic systems, where a small change of the driving parameter (the flow
rate in this case) may cause a substantial alteration of somevibrational characteristic, i.e. invoke a
turnover of the mode of vibration. Tracking the frequency with increasing flow rate allows to distin-
guish four modes of vibration: mode I, where small flow rates induce impactless low-amplitude vi-
bration, whose frequency does not change significantly. At critical flow Qcrit = 7.6 l/s, this regime
suddenly turns into mode II and further mode III, which are characterized by large-amplitude reg-
ular vibrations with impacts in each cycle. Subjectively, these modes represent the ideal energy
transfer from the flow to the mechanical vibrations, and correspond best with normal voice produc-
tion. The nature of vibration in modes II and III does not differ noticeably; they were distinguished
only on the basis of the frequency jump evident in Fig. 3.9. The acoustic pressures emitted in
mode II/III vibration significantly exceed those measured in mode I. Finally, high flow rates induce
partially irregular or even chaotic mode IV vibration with high noise level in the acoustic output.

The transition between mode III and mode IV showed evident hysteresis - the jump occurred at
13.6 l/s when increasing flow rate, while at 11.3 l/s when decreasing. The hysteresis of the mode
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Figure 3.9: Frequency of vocal fold vibration as a function of increasing flow rate. Mode I: low
flow rate, impactless vibration with low amplitude, frequency does not change significantly. Mode
II,III (medium flow rate): at critical flowQcrit = 7.6 l/s, regular vibrations with large amplitudes
and impacts begin to develop. The frequency of vibration steadily increases with the flow, despite a
sudden drop atQ = 10.7 l/s. Mode IV (high flow rate): atQ = 13.8 l/s, the character of vibration
changes completely – partially irregular, low-amplitude vibrations arise. The data were drawn from
Fourier analysis with a spectral resolution of∆f = 0.12 Hz.

transition I-II was much less distinct. Since the difference between modes II and III was hardly
noticeable, the hysteresis was not measured.

The next important vibrational parameter is the maximum positive and negative acceleration over
the oscillation cycle, i.e. the peak values on the acceleration waveforms. These values provide
important information about the amplitude and intensity ofvibration, and are of particular interest
for voice specialists, since the maximum acceleration and impact intensity are often considered as
the principal factors causing certain traumatic vocal foldchanges, such as vocal fold nodules.

The dependence of the maximum acceleration on the flow rate isdemonstrated in Figs. 3.10, 3.11
– to interpret the meaning it is necessary to realize that thepositive peaks on the acceleration wave-
form correspond to the impact intensity (see also Figs. 3.13– 3.15), while the negative peaks are
related to the overall vibration amplitudes. In mode I vibration, the peak positive and peak negative
accelerations are similar. In mode II and mode III, the positive, impact peaks are higher, while in
mode IV, the acceleration is higher during the opening phase.
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Figure 3.10: Maximum positive acceleration (impact intensity) versus flow rate. Mode I: low flow
rate, impactless low-amplitude vibrations. Mode II,III: medium flow rate, regular vocal fold vibra-
tion with impacts whose intensity rises with increasing airflow. Mode IV: high flow rate, maximum
acceleration does not change significantly.
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Figure 3.11: Maximum negative acceleration (peak acceleration during opening phase) versus flow
rate. Mode I: low flow rate, impactless low-amplitude vibrations. Mode II,III: medium flow rate,
regular vocal fold vibration with impacts. Mode IV: high flowrate, absolute value of the peak
acceleration continues to increase slightly.
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In the rest of this section, Figs. 3.12, 3.13, 3.14 and 3.15 show the measured waveforms and their
spectra for four example flow rate values: low rateQ = 5.59 l/s (mode I), which induces impactless
small-amplitude vibrations, medium flow rateQ = 8.58 l/s andQ = 10.47 l/s (mode II and III -
regular vibrations with impacts) and high flow rateQ = 17.87 l/s (mode IV), where the vibrations
become irregular and the acoustic signal very noisy due to high turbulence level in the flow. The
complete set of measurements is available on the DVD.

The acceleration signals presented here come from the accelerometer (numbered 7 in Fig. 3.5)
mounted below the downstream edge of the vibrating vocal fold. The subglottal pressure was mea-
sured by a dynamic pressure transducer, while two measuringmicrophones monitored the acoustic
signals. See Figs. 3.5, 3.6 for details regarding the measurement setup and wiring.
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Figure 3.12: Waveforms and frequency spectra of the acceleration, subglottal pressure, supraglottal
pressure and pressure radiated at the channel exit. Measurement No. 002 (mode I) – low flow
rateQ = 5.59 l/s, impactless vocal fold vibration with a fundamental frequency of 11.7 Hz.
The mechanical vibrations are nearly sinusoidal. The non-harmonic spectral frequency of 78.5 Hz,
seen also in the spectrum of the subglottal pressure, corresponds probably to the rotational mode
(with respect to z-axis, see Fig. 3.2) or to subglottal acoustic resonance. In the waveforms of the
microphone signals prevails broadband noise, caused by theturbulent flow.
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Figure 3.13: Waveforms and frequency spectra of the acceleration, subglottal pressure, supraglottal
pressure and pressure radiated at the channel exit. Measurement No. 012 (mode II) – medium flow
rateQ = 8.58 l/s, ideal for regular vocal fold vibration with an impact in each cycle. Fundamental
frequency 13.2 Hz. On the acceleration waveform, the impactis clearly visible as a peak on the
positive half-wave. The acoustic signals now show periodicstructure, with harmonic frequencies in
their spectra.
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Figure 3.14: Waveforms and frequency spectra of the acceleration, subglottal pressure, supraglottal
pressure and pressure radiated at the channel exit. Measurement No. 017 (mode III) – medium
flow rate Q = 10.47 l/s, ideal for regular vocal fold vibration with an impact in each cycle.
Fundamental frequency 13.8 Hz. The character of vibration does not differ substantially from mode
II vibrations.
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Figure 3.15: Waveforms and frequency spectra of the acceleration, subglottal pressure, supraglottal
pressure and pressure radiated at the channel exit. Measurement No. 032 (mode IV) – high flow
rateQ = 17.87 l/s induces partially irregular vibrations with lower accelerations and increased
noise level in the acoustic signals. Fundamental frequency13.5 Hz. The pressure and microphone
waveforms are not perfectly periodical.
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3.5 Results of the PIV measurements

An extensive series of PIV measurements was performed on thevibrating vocal fold model. The
flow rate was gradually increased fromQ = 5.33 l/s (measurement No.001) toQ = 25.61 l/s
(measurement No.044). Within each of the 44 measurements, approximately 25 PIV records, cor-
responding to 25 distinct phases of the vocal fold oscillation cycle, were taken. This was realized
using the synchronization signal (accelerometer signal converted to TTL) and the time-delay func-
tion of the laser control software. Each PIV record consisted of ten PIV measurements of the same
phase within ten successive vibration cycles. Consideringthe total number of PIV measurements
performed and taking into account the camera resolution of1600 × 1200 pix, there is no surprise
that the volume of the measured and post-processed data finally reached 40GB.

Basically, the post-processing comprised standard PIV calculation of the instantaneous velocity
fields (division of the image into interrogation windows, cross-correlation, peak identification –
as explained in section 3.1) and further the calculation of the phase-averaged velocity field. It is
necessary to discern well between theinstantaneousand thephase-averagedvelocity fields. The
instantaneous fields (which were ten for each flow rate and each phase, in our case) represent the
real velocity distribution and capture all the flow structures (jet, vortices) of sufficiently large scale,
i.e. comparable to the interrogation window size. The phase-averaged velocity field, on the other
hand, provides statistic information about the mean flow foreach phase chosen. It is calculated by
a simple arithmetic average of the instantaneous fields related to the particular phase of vocal fold
motion. Due to the fact, that the flow is not perfectly periodic, the phase-averaged fields usually
do not show the small-scale vortices. In some cases, where the instantaneous velocity fields differ
substantially (e.g. a free jet attached alternately to the top and bottom channel walls), the phase-
averaged image may show completely useless information.

The examples of PIV camera images together with the resulting instantaneous velocity field are
shown in Fig. 3.16. Fig. 3.17 demonstrates the calculation of the phase-averaged velocity fields. In
all PIV images, thex andy axis labels correspond to the real dimensions (in mm). The measured
flow velocities range from 0 to 35 m/s.



CHAPTER 3. EXPERIMENTAL INVESTIGATION 71

zones of low pressure (vortex kernels)
in the shear layer of the jet

Figure 3.16: Instantaneous velocity field downstream the glottis. Two camera images with a time
delay of50 µs (top) acquired by illuminating the oil particles by the double-pulsed laser system. The
small, dark circular zones (zones of low pressure) correspond to small-scale vortices developing in
the boundary layer of the jet. Cross-correlation of the image signals gives the instantaneous velocity
field (bottom). The vocal folds are on the left - the bottom oneis fixed, the upper one is moving
(the image is reversed vertically with respect to the real setup). The flow direction is from the left to
the right. Example taken from measurement No.012, phaset = 0 ms (short after glottis opening).
The velocity modulus is in color, arrows show the velocity direction and magnitude. A free jet with
a maximum flow velocity ofU ≈ 17 m/s forms between the vocal folds. Two large-scale vortices
develop at the sides of the jet front.
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Figure 3.17: Calculation of the phase-averaged velocity field. Nine instantaneous velocity fields
measured in the same phase of ten successive vibration cycles together with the calculated phase-
averaged velocity field. Note the jet direction in the fifth instantaneous field, which is different from
all the other cases. Example taken from measurement No.012.
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The following figures demonstrate in detail the results of three selected measurements (out of 44
in total): measurement No.002, 012 and 032. These measurements were recorded at three different
modes of vibration of the vocal fold: the first one was taken atlow flow velocity, where the vocal
fold vibrates with low amplitude without collisions (mode I); measurement No.012 was chosen as
a representative case of medium flow rate, large-amplitude regular oscillations (mode II), which
subjectively correspond the best to normal voice production; the last case, No.032, is an example of
partially irregular oscillations induced by high flow rates(mode IV). The velocity fields for mode
III (which is very similar to mode II) can be found on the DVD enclosed, which comprises the
exported PIV images and calculated velocity fields in full resolution for all the cases measured.

The major difference between the velocity fields measured isfirst the maximum flow velocity of
the free jet, which reaches 13 m/s, 18 m/s and 36 m/s, respectively. Considering the 3 ms delay
between two successive vocal fold oscillation phases, one can estimate the distance which a particle
may travel within the time which separates the phases. The second important difference is that
in the first case (measurement No.002), the vocal folds do notcollide and the jet is only slightly
modulated. In the measurements No.012 and 032, on the other hand, the glottis closes completely
and the flow is periodically interrupted.

In the majority of velocity fields measured, the jet is attached to the upper channel wall. This
asymmetry is probably caused by the fact that the silicone molds of the upper and lower vocal folds
were not perfectly identical in shape, and that only the upper vocal fold vibrated. Due to these
asymmetries, the direction of the jet sorting glottis couldalready be inclined upwards, which would
obviously make the jet attachment to the upper wall preferential.

It can be stated that the flow is not perfectly periodical in general. The turbulent structures, devel-
oping mainly due to presence of the boundary layer of the jet,interact mutually and with the jet in
a disordered, stochastic way; this is why the flow fields of thesame phase in successive oscillation
cycles are not necessarily identical. The important flow structures, however, are generated peri-
odically in accordance with the frequency of vibration: within each oscillation cycle, a new jet is
created with one pair of large vortices propagating along the jet front. The jet attaches to the channel
wall and during the closing phase it fades away and eventually disappears, leaving the turbulence to
damp out.
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t = 0 ms (0.00 Tc) t = 12 ms (0.14 Tc)

t = 24 ms (0.28 Tc) t = 36 ms (0.42 Tc)

t = 48 ms (0.56 Tc) t = 60 ms (0.70 Tc)

t = 72 ms (0.84 Tc) t = 84 ms (0.98 Tc)

Figure 3.18: Selected instantaneous velocity fields downstream the glottis – measurement No. 002
(low flow rate Q = 5.59 l/s – mode I). For low flow rates, the vocal folds do not collide and
the channel remains open throughout the entire cycle. The jet is not interrupted and just slightly
modulated by the variable glottis aperture.
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t = 0 ms (0.000 Tc) t = 3 ms (0.039 Tc)

t = 6 ms (0.079 Tc) t = 9 ms (0.119 Tc)

t = 12 ms (0.159 Tc) t = 15 ms (0.199 Tc)

t = 18 ms (0.239 Tc) t = 21 ms (0.279 Tc)

Figure 3.19: Selected instantaneous velocity fields downstream the glottis – measurement No. 012
(medium flow rateQ = 8.58 l/s – mode II), glottis opening. The jet forms between the vocalfolds
and later attaches to the channel wall. Two vortices come along with the jet front (see full-resolution
images on the DVD).



CHAPTER 3. EXPERIMENTAL INVESTIGATION 76

t = 24 ms (0.319 Tc) t = 27 ms (0.359 Tc)

t = 30 ms (0.399 Tc) t = 33 ms (0.438 Tc)

t = 36 ms (0.478 Tc) t = 39 ms (0.518 Tc)

t = 42 ms (0.558 Tc) t = 45 ms (0.598 Tc)

Figure 3.19: (continued) Selected instantaneous velocityfields downstream the glottis – measure-
ment No. 012 (medium flow rateQ = 8.58 l/s – mode II), glottis closure. As the vocal folds
approach each other, the jet becomes weaker and aftert = 45 ms it disappears.
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t = 48 ms (0.638 Tc) t = 51 ms (0.678 Tc)

t = 54 ms (0.718 Tc) t = 60 ms (0.798 Tc)

t = 66 ms (0.837 Tc) t = 69 ms (0.877 Tc)

t = 72 ms (0.917 Tc) t = 75 ms (0.957 Tc)

Figure 3.19: (continued) Selected instantaneous velocityfields downstream the glottis – measure-
ment No. 012 (medium flow rateQ = 8.58 l/s – mode II), glottis closure, vocal fold collision and
glottis reopening. During the closure, no bulk flow is present and only residual turbulence is visible
(phases 57 ms and 63 ms similar to images 54 ms and 60 ms are thusomitted). In the last two
phases, a new jet develops.
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t = 0 ms (0.000 Tc) t = 3 ms (0.041 Tc)

t = 6 ms (0.082 Tc) t = 9 ms (0.123 Tc)

t = 12 ms (0.164 Tc) t = 15 ms (0.205 Tc)

t = 18 ms (0.246 Tc) t = 21 ms (0.287 Tc)

Figure 3.20: Selected instantaneous velocity fields downstream the glottis – measurement No. 032
(high flow rateQ = 17.87 l/s – mode IV), glottis opening. The free jet forms and attachesto the
channel wall - in the majority of cases to the upper wall, but in some cycles and phases to the bottom
one.
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t = 24 ms (0.328 Tc) t = 27 ms (0.369 Tc)

t = 30 ms (0.410 Tc) t = 33 ms (0.451 Tc)

t = 36 ms (0.492 Tc) t = 39 ms (0.533 Tc)

t = 42 ms (0.574 Tc) t = 45 ms (0.615 Tc)

Figure 3.20: (continued) Selected instantaneous velocityfields downstream the glottis – measure-
ment No. 032 (high flow rateQ = 17.87 l/s – mode IV), glottis closure. The maximum jet velocity
reaches 35 m/s and gradually diminishes until complete jet interruption. In the bottom part of the
domain, important recirculation is evident (see also the full-resolution images on the DVD).
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t = 48 ms (0.656 Tc) t = 51 ms (0.697 Tc)

t = 57 ms (0.779 Tc) t = 60 ms (0.820 Tc)

t = 66 ms (0.902 Tc) t = 69 ms (0.943 Tc)

t = 72 ms (0.984 Tc) t = 75 ms (1.02 Tc)

Figure 3.20: (continued) Selected instantaneous velocityfields downstream the glottis – measure-
ment No. 032 (high flow rateQ = 17.87 l/s – mode IV), glottis closure, vocal fold collision and
glottis reopening. Images 54 ms and 63 ms omitted. Residual turbulence during closure, develop-
ment of a new jet after opening.



Chapter 4

Discussion and conclusions

A new mathematical model of 2D viscous flow, interacting withan elastic body in the wall of the
channel, was developed. The non-stationary incompressible Navier-Stokes equations were derived
in the Arbitrary Lagrangian-Eulerian (ALE) approach, which allows to deal with time-dependent
(deforming) computational domains. The Navier-Stokes equations were discretized by the Finite
element method (FEM), using the Taylor-HoodP 2/P 1 elements for the velocity and pressure func-
tions. The numerical scheme was completely programmed in the Fortran language, making use
only of open-source libraries for the finite element discretization and for the numerical solution of
the resulting linear system. The code allows to run numerical simulations of flow past vibrating vo-
cal folds, to study the development of the velocity and pressure fields and to observe and quantify
the effects like vortex shedding, flow separation and modulation of the jet formed between the vocal
folds.

To obtain experimental feedback and to validate the mathematical model, a new 4:1 scaled physical
model of vocal folds was designed and fabricated. After an extensive series of computations, tests
and modifications, we succeeded to develop a model, where thevocal fold vibrates only due to
flow-structure interaction – unlike most of the models developed by other research teams, where
the vibration is excited externally. The signals from accelerometers, pressure transducers and mea-
suring microphones mounted on the measuring section make possible to identify the mechanical
properties and acoustical output of the model. The wind tunnel was adapted in such a way, that it
allows velocity field measurements by the Particle Image Velocimetry (PIV) immediately upstream
the vibrating vocal fold. The PIV images from the measurements synchronized with the vibration
reveal similar flow structures as the results of numerical simulations.

When modeling vocal fold oscillations or glottal flow, it is tempting to try to compare the model
outputs with physiological data known from literature as soon as some results are obtained. It is
however necessary to take into account the limitations of the models and not to try to extrapolate
beyond the scope for which the models were designed: it is notplausible, for example, to draw
systematic conclusions regarding vortex shedding in glottis from a 1D flow model.

Neither the mathematical nor the physical model, describedwithin this thesis, was primarily in-
tended for direct comparison with real human vocal folds. The main goal of the study was to
develop a mathematical model of 2D viscous flow in a channel comprising vibrating vocal folds.
Since the experimental data regarding velocity fields in glottis are nearly impossible to obtain from
living subjects, a mechanical vocal fold model was designed. The strategy is hence first to vali-
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date the mathematical model using results of the PIV measurements on the physical model; once a
satisfactory correspondence between the computational and physical models will be achieved, the
geometry and boundary conditions of the mathematical modelcan be modified in order to reflect
the conditions occurring in real vocal folds. For the validation of the model, it was advantageous to
use the configuration with one vocal fold moving and the otherfixed.

The results from the mathematical and physical model obtained so far seem to correspond when
compared visually. Nevertheless, it should be noted that there are some aspects, which make a
systematic comparison difficult for the time being. As regards the physical model, the situation is
complicated by the dynamic similarity: due to the 4 : 1 scale,different frequencies of vibration
and critical flow velocities, the important dimensionless characteristics (i.e. Reynolds and Strouhal
numbers) were close to the real situation, but not identical. Moreover, the leakage alongside the
vibrating element, which was inevitable due to technical issues, is obviously not present in real
vocal folds; it is not evident whether the leakage represents an effect of secondary importance or
whether it can alter the flow regime or the instability type significantly.

The main limitation of the mathematical model is the fact that the vocal folds are not allowed to
collide. The processes accompanying glottal closure are complex and from the algorithmic point of
view, the separation of the computational domain into two, necessity to introduce additional bound-
ary conditions and to handle pressure discontinuity when reconnecting the domains represent a very
complicated problem. Yet it will be necessary to deal with this task in future, if the mathematical
model should be employed to model regular loud phonation.

The next issue which should be addressed is to introduce coupling between the flow and the mechan-
ical vibration. In the results shown here, the vibration of the vocal fold was prescribed according
to the data measured on the physical model; to model the true interaction it is necessary to evaluate
the aerodynamic forces in each time level and perform a timestep in the equations of motion. This
represents no principal problem and has already been done within the master thesis [30] in a quasi-
1D fluid-structure interaction model. In the 2D model, however, this will require certain technical
effort to implement. Moreover, it will be necessary to specify the constants regarding the stiffness
and damping of the support, which is not trivial.

There is one more source of discrepancy between the mathematical and physical model. At the
beginning of this study, an assumption has been made that theflow fields in glottis are in the first
approximation two-dimensional. This is indeed the case forthe very proximity of a 2D obstacle,
which has a strong capability to bi-dimensionalize the flow (provided that the channel is sufficiently
wide to suppress the influence of the lateral walls and corners of the channel, which introduce
peripheral 3D flow structures). As regards the channel further upstream a barrier, however, the
vortex dynamics in 2D and in 3D are substantially different.In the 2D situation, which does not
actually exist in reality and which represents only a conceptual simplification, the vorticity vector

ω = curl u ≡ ∇× u

is always perpendicular to the flow plane (i.e. parallel to the obstacle axis) and the only mechanism
of vortex vanishing are the viscous effects. In the real, 3D case, on the contrary, the large-scale
vortices, whose axis is originally also parallel to the obstacle orientation, tend to slew into the flow
direction. As a result, the vortices detected in the PIV plane of the 3D vocal fold model seem to
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“disappear” much faster than the eddies predicted by the 2D mathematical model. The computa-
tional model could be improved by introducing some kind of turbulence modeling (e.g. Reynolds
Averaged Navier-Stokes equations, Large Eddy Simulations), but this does not solve the problem
completely. The turbulence models are designed rather as anapproximate, computationally more
effective alternative to direct numerical simulations which fail to predict the influence of small, sub-
grid eddies; they are not intended to model the 3D effects in 2D. Moreover, the specific turbulence
models were mostly derived for specific configurations and their validity is not guaranteed univer-
sally. The only reliable method is thus the simulation in 3D.Both the mathematical description and
the computer code are ready for the 3D case; the full three-dimensional modeling, however, will
require much more computational power and also specification of the 3D vocal tract geometry.

As explained in the previous paragraphs, a thorough verification of the mathematical model by
means of the measured data is difficult at the current state; yet the results obtained are promising and
important from the methodological point of view. The mathematical model was originally based on
the works of Feistauer, Sváček and Horá̌cek [40, 39] on numerical solution of flow-induced airfoil
vibrations. It was adapted for low Reynolds numbers and for abody vibrating in the channel wall,
and completely reprogrammed in theFortran language using the numerical libraryMélina. The
new implementation has several advantages – mainly the possibility to use triangular, quadrangular,
tetrahedral, prismatic and hexahedral meshes and higher-order interpolations (up to P6 or Q20) in
2D or 3D. Furthermore, a different algorithm was used for thecalculation of the ALE-mapping,
which is crucial for the deformation of the computational mesh during vocal fold oscillations. Un-
like the latter studies, where the ALE-mapping was expressed from geometrical considerations or
from the solution of the elastic problem, here it was obtained as the solution of the Laplace equation.

The next feature of the mathematical model, which could be improved, is the mechanical part of the
model. So far, the vocal fold has been modeled as a two-degree-of-freedom rigid body supported by
linear springs and dampers. In future, the deformations of the soft elastic tissue could be modeled
by the finite element method, too. This will, however, require to supply a number of geometrical and
material data regarding the diverse tissue structures, which form the vocal fold; this appears to be
the stumbling-block of the currently existing FE vocal foldmodels found in literature [15, 42, 46].

As regards the physical model, it seems to be a promising alternative to the vocal fold models
developed by other scientific teams over the world [8, 42, 22]. To the best knowledge of the author,
there are not many mechanical self-oscillating vocal fold models which have been employed so
far to measure the supraglottal flow fields; hopefully, the model will allow us to perform further
interesting measurements and help to disclose some of the not completely understood features of
voice production in human vocal folds.
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[33] ŠIDLOF, P.,AND HORÁČEK, J. Vocal fold motion and voice production: mathematical mod-
elling and experiment. InProceedings of Forum Acusticum(Budapest, Hungary, 29 August –
2 September 2005), pp. 2737–2742.
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