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1 General Introduction

1.1 Motivation

The research reported in this thesis is concerned with the mechanical and the per-
ceptual processes that take place when we listen to the sounds produced by ob-
jects bouncing and rolling over a plate. Bouncing and rolling sounds are chosen
because, by listening to these sounds, the listeners can form clear estimates of the
physical properties of the moving objects such as their size and their speed, or the
material from which they are made. This makes it possible to study the relation
between the mechanical parameters that determine the acoustic properties of the
sound radiated from the vibrating objects and the perceptual estimates of these
mechanical properties by listeners. Thus, the psychomechanical studies reported
here all deal with the generation of the mechanical information as present in the
vibration patterns and the sounds radiated from the moving objects, and the way
listeners process this information to derive estimates about physical parameters
of these objects.
Pure bouncing occurs when a ball is dropped on a plate from a certain height,
loses some energy in the contact between the ball and the plate, leaves the plate
in opposite direction with reduced kinetic energy, falls back on the plate again,
makes another contact, etc. etc. So, for a purely bouncing ball, the time intervals
between the successive moments of contact with the plate follow a relatively sim-
ple rule, and the angular velocity of the ball is zero. A purely rolling ball, on the
other hand, does not lose contact with the plate, and has a well defined non-zero
angular velocity. Various kinds of transitions between bouncing and rolling may
occur when an arbitrary object is cast on a plate with an arbitrary speed into an
arbitrary direction. First, the object may bounce a few times; if the object is non-
spherical, the time intervals between successive bounces can be very irregular
and even seem chaotic. After some bounces transitions to rolling may occur, after
which the object comes to rest. If an object gains speed, e.g., when rolling down
a slope, it may start with pure rolling and, as the speed increases, the object may
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2 General Introduction

lose contact with the plate and transitions to bouncing can occur. The smaller the
ball, the sooner such transitions to bouncing will occur. An obvious observation
is that listeners can hear these transitions and distinguish between the different
types of sound resulting from the different types interaction between a ball and
a plate. But much less is known about what kind of information in the sound
they use for their judgments, and how this information depends on the mechan-
ical processes that generate the sound. The thesis tries to provide answers to this
type of questions by focusing on one specific experimental condition: a wooden
or metal ball bouncing on or rolling over a wooden or metal plate.
The research described in this thesis builds on earlier perception oriented work
by Houben [44]. In his experiments, the focus was not so much on bouncing
but more on purely rolling sounds. Sounds in which transitions from rolling to
bouncing were clearly audible were deliberately removed from the sets of stimuli
used in the perception experiments. This choice of stimuli was motivated by the
fact that the inclusion of bouncing would complicate the processes under study
too much. Another aspect of Houben’s work was that he established the relation
between acoustic features of the rolling sounds, like spectral or temporal varia-
tions, and the listeners’ perceptual judgments, but he did not attempt to link the
acoustic features analytically to the mechanical parameters of the sound produc-
ing objects, such as their elasticity, their mass, and their shape. This concentration
on perception experiments was again a deliberate choice to focus his work.
As will be seen in the following chapters, the research described in this thesis
goes beyond both of these restrictions. Bouncing sounds are included in the stim-
ulus sets, because the presence or absence of bouncing conveys information the
listener may use in estimating the size and the speed of the rolling objects. Select-
ing sounds with as little bouncing as possible may, therefore, remove information
that listeners use in making their estimations. Later in this introduction it will be
argued that the richness of natural sounds and the redundancy of information
present in these sounds may play an essential role in the perceptual processes
involved in deriving judgments about mechanical parameters.
As for the experimental methods used, we also include a number of theoretical
and experimental analyses of the mechanical events that take place when two
solid objects are in contact. These analyses allow to predict how the produced
vibrations and sounds depend on the mechanical parameters of the objects and
whether different mechanical parameter combinations can lead to similar sounds.
By combining these mechanical insights with those from perception experiments
it will be shown that for some physical properties, like the size of a ball, listeners
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can indeed reliably report their magnitude, while for others, like the plate thick-
ness, they cannot.
In the next sections of this General Introduction we will describe the theoreti-
cal and conceptual framework in which the research of this thesis is carried out.
This framework will be summarized in a scheme for the various components in
the psychomechanical hearing process (Figure 1.1). It consists of a complete re-
search cycle with various levels on the mechanical side, and various levels on the
perception side. From the inherent complexity of this framework it will become
clear that not all parts of the sketched research cycle can be completed within the
limited amount of time of a PhD project. Various parts of the cycle could be ad-
dressed successfully. On the perceptual side, e.g., the problem was encountered
that the accuracy of the perceptual estimates of the speed of the rolling balls ap-
peared to depend on the experimental paradigm. The theoretical implications
will be discussed. Some other gaps in the cycle could only partly be filled in;
on the mechanical side, e.g., simulations of bouncing sounds led to satisfactory
results for metal balls but not yet for plastic balls. Consequently, a good model
could be developed for a metal ball rolling over a metal plate, but for a wooden
ball rolling over a wooden plate, the imperfect sphericity leads to temporal vari-
ations that are currently not included in simulations. Yet, the sounds of wooden
balls are much more pleasent to the ear, and probably more typical of what peo-
ple expect to hear when listening to a rolling ball. Note that in this process the
listener – not a mechanical procedure – determines the quality of the sounds. The
theoretical, methodological, and conceptual significance of these findings will be
discussed extensively in the course of the thesis.

1.2 Everyday sounds

In everyday life, we gather information about our surroundings via the sound
that this environment produces. In the classification of everyday sound-producing
events, as introduced by Gaver [24], one of the three branches is labeled “vibrat-
ing objects”. Often these objects start vibrating after being in contact with each
other. This contact can last shorter or longer, and the type of contact, like hitting,
gliding and scraping, forms a continuum of possible interactions. If one of the
objects is a ball, the possible interactions are: bouncing, rolling and scraping, and
they can also occur in combination, e.g., rolling and bouncing. By studying the
perception of these sounds we want to investigate how people use the informa-
tion in radiated sound that is generated in their surrounding to form an image of
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this surrounding. By doing so we investigate an important branch of everyday
sound-producing events. The information in this example of a rolling or bounc-
ing ball resides in the geometry of the objects, their materials and their changing
positions during the interactions. For example, by listening to its sound we can
determine whether a ball is bouncing or not. When imagining a table-tennis ball
and a cannon ball falling on the floor, we intuitively know that these events gen-
erate quite different sounds. We also know from experience that, when some
object is dropped on a carpet, it sounds quite different from the same object when
dropped on a wooden floor. These are all examples of information about the
mechanical object properties that people can extract from listening to the sound.
These are also examples where differences between the mechanical properties of
the objects result in different sounds. The discipline that relates the mechanical
features of a sound generating system with the auditorily perceived features of
this system is called psychomechanics [66][68].

Up to now most psychomechanical research has been carried out with objects
that obey relatively simple acoustical descriptions. Examples are the presumed
simple relation between the change in the resonance frequency above the water
level of a vessel that is being filled [9], or objects that easily and accurately can
be described or synthesized with a modal description [63]. Recently, interest has
increased in sounds that are more complex, for instance due to damping [68] or
due to the variable thickness of a vibrating plate [16]. In this thesis, we will try
to go one step further and investigate the perception of mechanical features of a
ball rolling over or bouncing on a plate. We will show that many aspects in the
contact can provide information to the listener. We already mentioned, the ball
might lose contact with the plate while rolling, resulting in bounces, the spectrum
of which that can provide extra information about the size of the ball. Not only
whether the ball bounces or not, also the bouncing pattern, regular, irregular or
even chaotic, may provide information to the listener; as may be the temporal
variation in amplitude of the bouncing sounds.

According to the ecological psychology of hearing, the perception of mechan-
ical properties of the ball should be based on coherent information that is ob-
tained via multiple sources of information [26]. If perception, indeed, depends
on coherency of the different auditory sources of information, there should be
multiple sources of information available to the listener to test this hypothesis.
And thus we can only study this process if we use sounds that are naturally rich
of such information.
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1.3 Information in sound

In many occasions, people seem to trust upon information they obtain from the
sounds they hear. For instance, when we close a door we can hear if the door falls
into its lock. In the absence of hearing the click, we are informed that the door
has not fallen into its lock, and we press the door another time. In this act we
seem to trust upon auditory information, because we cannot see the lock that is
hidden in the door. We never seem to doubt this information.

In the presence of other sensory information, however, e are often more likely
to rely more on that information than on the auditory information. For instance,
in vessel filling, people are much more accurate in this task when visual infor-
mation is also present [9]. This should, however, not lead to the conclusion that
information obtained auditorily is inferior to that obtained via vision. The mate-
rial of a plastic object that perfectly looks like metal can be revealed by tapping
on it. Apparently we put, in this case, more trust in the identification of material
by sound than we put in its identification by vision.

More anecdotal evidence of the use of auditory information is given by several
authors. Most often these examples deal with situations where some object is out
of view. Gaver [24] describes the situation where someone is walking in the street
and identifies a car behind him by the sound that it generates.

1.4 Psychomechanics

Gaver [23][24] introduced two terms for two different ways of listening, musical
listening and everyday listening. In musical listening, we judge sounds on the
basis of their musical properties. For instance, we listen to the pitch, the duration
and the harmonicity of sounds. In everyday listening, for instance when hearing
a resonating sound after hitting an almost empty bottle, we will foremost con-
clude that it is almost empty. We will hear, but not put any attention to the fact
that it is a resonating sound.The scientific problem with this view is that there is,
besides such anecdotal arguments, no evidence for such a division in different
hearing modes. Therefore, we do not know if there are only two modes of hear-
ing or perhaps even more. Furthermore, we do not know to which extent these
two modes differ. In the studies presented in this thesis, we have always asked
people to judge mechanical properties of the sound and thus assume that they
always operate in the same type of listening, i.e., everyday listening.
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Many everyday sounds consist of contact sounds produced by mechanical in-
teraction between solid objects. That part of hearing research that studies the
perception of these sounds have already been indicated with psychomechanics.
Psychomechanics is the term introduced by McAdams [66][68] to describe the
auditory perception of mechanical properties of a sound-producing system. Typ-
ically, in psychomechanics a somewhat different approach is taken. Instead of
dividing the hearing process into two types, the sound generation process is divided
into two steps, the source or origin of the sound and the path from the source to
the listener. The source is often an interaction between two objects, such as hit-
ting a bar with a mallet, a bouncing or rolling ball or a vessel being filled. When
someone is asked what he or she hears after being presented with a recording of a
violin, he or she is likely to answer that it is a violin, added with details about the
work if it is known to the listener. What he or she is not likely to answer is that
it is a CD-player or a loudspeaker that he or she heard, although this formally is
also a correct answer to the question. This observation indicates that we naturally
speak about the content of the sound, and thus about the source that generates
the sound, and not about the path the sound takes to reach our ears.

When explicitly asked, we could also judge the quality of the CD-player or
the size of the room where the musical piece was played in. We naturally con-
centrate on the source because this is what gives us the view on the environment
surrounding us. In this way we can tune our hearing to different aspects of the
same sound, just as in the case Gaver described. In this case, however, there is
no artificial split in two ways of listening. Using a split into the source and path
of the sound, we can shift the attention of the listener by asking to judge some
source properties or to judge some properties of the path towards the listener.

1.5 Acoustics

It is impossible to treat the perception of everyday sound without looking at the
whole picture of acoustics. In this research process we want to concentrate on
acoustic variations that indicate considerable variation in the percepts associated
with these acoustical variations. It would be a waist of time to ask people to
judge some features of the mechanical system when we know beforehand that
this task is impossible due to lack of variation in the sound corresponding to
these features. One hilarious example would be to ask people to judge the color
of a rolling ball from its sound. With a thorough analysis of the acoustics of the
mechanical system that produces the sound, we can identify the mechanical pa-
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rameters whose variation results in large differences in the sound. Although this
is, as we will see in this thesis, not sufficient to guarantee that these parameters
are identified by the listener, it seems to be a necessary prerequisite.

1.6 Measurement

In the natural sciences, measuring of magnitude involves determining a unique
and reciprocal correspondence between some quantifiable property of the mag-
nitude with a standard quantity, called unit, by using an instrument under con-
trolled conditions [85][99]. A measurement is usually distinguished from a count.
A measurement is a real number, and is never exact. A count is a natural number
and can be exact. For example, we can count the number of balls in a box and be
sure of our answer. In other words, there is no measurement error. Measurement
is not limited to physical quantities and relations but can be extended to the es-
timation of magnitudes of any kind. Improvement of measurement techniques
has brought the natural sciences to a higher plan. The definition of measure-
ment in the social sciences has a long history. A currently widespread definition,
proposed by Stevens [92], is that "measurement is the assignment of numerals
to objects or events according to some rule". We should conclude that measure-
ment in psychology and physics are in no sense different. In actual research in
physics, the measured quantities are often hidden from the eye and the measure-
ment methods are indirect. Physicists can measure when they can find the op-
erations by which they may meet the necessary criteria; psychologists have but
to do the same. They need not worry about the mysterious differences between
the meaning of measurement in the two sciences [82]. A metric determines the
distances in a space. By creating this metric, not only the measurement points are
determined but also the space nearby the measurement points. The easiest way
to come from measurement points to a metric is to fit the measurement points
with a curve. The distances between points on this curve can now be measured
and can serve to define a metric.

These methods of measurement in psychology have, most often, been used
on “low level” perceptual phenomena, such as loudness and pitch perception. In
this thesis we will use psychometric methods to quantify the human capability
on a more cognitive or “higher level” in perception. That is, it will be shown that
these methods are also applicable to derive a measure for the listener’s capability,
not only to detect changes in sounds they hear, but also to interpret and use these
sounds to build an image of what is happening around them.
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1.7 Psychomechanics research scheme

Both mechanical engineers and psychologists have both studied sound, but each
used their own scope of research, mostly without looking to results of the other
domain. For the mechanical engineers sound is the vibration of air, while for a
psychologist, sound is a percept. In this thesis we will try to link both domains.

The approach combining these domains is schematically illustrated in Fig-
ure 1.1, where a sequence is depicted to come from a mechanical system at the
left-hand side to the auditorily perceived features of this mechanical system at
the right-hand side.

The scheme can be seen as an extension of the strategy for investigating the
perception of source events as introduced by Li, Logan and Pastore [60]. They
introduced a scheme with three blocks. They labeled the first “auditory events”
and it corresponds to our block mechanical system. The name of this block as used
by Li et al. suggests that it should be interpreted as being part of the perceived
reality and thus be placed on the right side of our scheme. It is, however, referred
to in the text as describing “acoustic source events”, suggesting it to be part of the
physical reality on the left side of our scheme. Also Giordano [28] acknowledged
this confounding labeling and used the term “physical level” for this block.

The second block was labeled “acoustic structure” and corresponds to the com-
bination of our blocks acoustical radiation and auditory information. The third block
of their figure was labeled “perception” and corresponds to our block perceived me-
chanical features. We have introduced two new blocks that represent more hidden
aspects of the perception process. The mechanical basis variables represent the me-
chanical system, but now using parameters that effectively change the sound in
unique ways. A more complete description of the content of these blocks will be
given in the discussion of this thesis. Li et al. stressed, as we do, that the relation
between all blocks should be investigated to understand how the features of the
mechanic event are recovered from the acoustic representation of this event. We
use this scheme as a guide for the work in the different chapters of this thesis.
In the discussion of this thesis we will show which contributions we have made
in the investigations of the relations between all blocks, but first we will start by
relating the state of the art to this scheme.
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FIGURE 1.1: Overview of the psychomechanical hearing process. For details see text.
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1.8 Literature

In this section we will review some recent literature and indicate the place of the
investigated relations in our scheme.

The left size of the scheme is described by mechanical and acoustic laws found
in textbooks on these subjects, such as by Cremer et al. [14], Morse and Ingard [71],
Junger and Feit [48], Dowling and Williams [18] and many other texts. Note that,
however, many aspects of acoustics that are important for sound quality are still
being investigated, such as structural damping [12].

McAdams, Chaigne and Roussarie [68] studied the material properties of im-
pacted bars in a psychomechanical study using synthesized sounds. They de-
fine three types of variables which they label “mechanical parameters”, “signal
descriptors” and “perceptual coordinates”. In terms of our scheme these refer
to the mechanical system, acoustic radiation and auditory information, respectively.
They conclude that “The results thus validate two aspects of the synthesis model
and quantify psychophysically the relations between the mechanical parameters,
the potential signal characterization that carry them and the perceptual represen-
tation” [68, p. 1319]. They do not address the question what mechanical system
is perceived, which is the main question in our research.

A quite similar approach has been taken by Canévet, Habault, Meunier and
Demirdjian [10] in their study of the auditory perception of sounds radiated by
a vibrating plate. In our terms, they investigated the relation between the same
blocks of our scheme as McAdams et al. [68]. They also concluded that struc-
tural damping parameters are important in the perception of the sound. They
found a high correlation between the time decay of the sound and one of the
three dimensions of the perceptual space found with a multidimensional scal-
ing (MDS) analysis. The other two dimensions were correlated with the tonal
character and the sharpness of the sounds. There was also a correlation between
the structural damping and the pleasantness of the sound. Although interesting,
sound quality as such is not addressed by our scheme. An important difference
between this study and the one by McAdams et al. [68] is the type of physical
model. Where McAdams et al. [68] used a numerical model in which the differen-
tial equations are directly discretized, Canévet et al. [10] used an analytical model
where only the result of the analysis is discretized. The numerical model often
leads to more realistic sounds, especially when non-linearities are involved; the
analytical model often leads to more insight in the influences of different param-
eters onto the sound.
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In an effort to determine the human capability of determining the size of
bouncing balls, Grassi [31] performed a study of the mechanics of a bouncing
ball as well as perception tests. He divided the two interacting bodies in two, the
non-sounding object and the sounding object. In the case of his mechanical setup,
the ball did not radiate acoustically, and hence the plate is the sounding object
whereas the ball is the non-sounding object. He does not explain in what respect
estimation of properties of the non-sounding object differs from estimation of the
properties of the sounding object. Although it seems intuitively more difficult to
estimate the properties of the non-sounding object because it is more indirect, this
might not be so trivial. In terms of mechanical analysis, the interaction between
ball and plate is the source of the vibration. These vibrations are then filtered
by the resonating plate and radiated acoustically. Some mechanical parameters,
such as the mass of the ball and the density of the plate, have an influence on the
interaction; others, such as the plate size, have an influence on the filtering of the
vibrations by the plate. A priori we cannot tell if some parameter influencing the
interaction leads to larger differences in the sound than a parameter influencing
the filtering of the vibrations. Grassi then correlated the results of his perception
test with acoustical signal parameters such as RMS power and spectral centroid.
The problem here is that these two signal parameters are correlated to a high de-
gree, and he suggested to use synthesized or manipulated sounds to solve this
problem. Although Grassi recognized the importance of the contact time and
restitution coefficient, he did not use these parameters in the analysis of the re-
sults of his perception tests. We will show that these two variables summarize the
mechanical system in such a way that we can relate the results of our perception
test to these variables.

Kirkwoord [50] tested if presentation type has an influence on the perceived
length of wooden dowels. He used three presentation types, live generated, bin-
aurally recorded, and monophonically recorded presentations. The performance
for the estimation of the length of a rod being dropped on the floor was in these
three conditions not statistically different, although there was somewhat more
variability in the answers from the data being generated with monophonic pre-
sentations. Although Kirkwood warns for using monophonic presentation, from
his data we can conclude that we can investigate the perception of mechanical
features as well as with binaural or live presentation, at the cost of somewhat
more variance in the data. We might presume that the difference will be even less
when there are no binaural cues available.
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Lutfi [62] investigated the discrimination of intensity in tone complexes. Par-
tials of the tone complexes varied in amplitude in a stochastic manner. The num-
ber of partials also varied and it was investigated whether people could make
use of the increase in information. The term information is used here, as in infor-
mation theory, to be synonymous with random variation. In these tests feedback
was used to test the limit of the intensity-discrimination capability of listeners.
This is a typical example of research that can be placed in a single block of our
scheme, that of auditory information. No reference is made to the meaning of the
sounds, and such research informs us about the capability of the low-level audi-
tory system to detect variations in sound that can be used to infer the meaningful
properties of the sound in the higher-level blocks of the scheme.

Another example of an approach that concentrates on the right-hand side of
the scheme is given by Houben and colleagues [40][42][43]. In one study, Houben,
Kohlrausch and Hermes [42] showed that listeners are more or less capable of de-
termining the speed and size of a rolling ball. They tried to find the cues by which
the listeners are capable to do so, by using a computational model for the audi-
tory system. Two features were investigated in their study; the centroid of the
specific loudness and the auditory roughness. The problem with these cues is
that they both vary in a similar manner with the speed and the size of the ball,
and so cannot be used to judge these mechanical parameters independently. In
another approach by the same authors [43] they tried to generate new rolling
sounds by combining the spectral content of one rolling sound with the temporal
variations of another rolling sound. They again asked listeners to judge the size
and the speed of the ball. In this way they could determine whether temporal
or spectral properties were responsible for the speed and size judgments of the
listeners, and it turned out that for these sounds the spectral content dominated
in both cases, while temporal variations were shown to play only a minor role. In
yet another study, Houben [40] added amplitude modulation to the sound. The
reason for doing so, was that in the rolling sound of wooden balls there is always
some amplitude modulation present, which provides information about the size
and speed of the ball. This information could be used to disambiguate the other
cues that give similar information about the size and speed of the ball. Listeners
indeed varied their answers according to these added amplitude modulations,
and Houben concluded that when judging the speed of a rolling ball, the partici-
pants’ judgments correlate predominantly with the angular speed corresponding
to this amplitude modulation. If we project their methods on our scheme, we can
say that they built a computational model for the right-hand side of the scheme,
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to overcome the problem that many of the variables in this domain cannot be
measured directly.

In contrast to the mentioned work, we will try to address all blocks of our
scheme and we will explain some of the more hidden blocks, the auditory cues
and the mechanical basis variables.

1.9 Goals and main contributions of this thesis

The goal of this project was to investigate what kind of auditory information
listeners use in judging the properties of a mechanical system, how well this au-
ditory information represents the parameters of this mechanical system, and how
accurately a listener can use this information to perceive the physical properties
of the mechanical system, such as the speed, the size, or the material of the ob-
jects the system consists of. Our object of study was that of a ball bouncing on or
rolling over a plate.

In order to realize this goal, a novel research paradigm has been described to
investigate the auditory perception of mechanical features of a sound generating
system. It contains elements from the paradigms suggested by Gaver [23][24]
and Li, Logan and Pastore [60]. In essence, it is an extended analysis/resynthesis
paradigm but, both on the mechanical and on the perceptual side, the system is
split up in various levels of description. Various elements of this novel paradigm
are well known: some originate from psychomechanics, some from signal de-
tection theory, and others from psychophysics. They are used, however, in a
new configuration that systematically distinguishes three levels on the mechani-
cal side and three levels on the perceptual side. By studying the relation among
the levels and the flow of information between them, we expect to reveal the pro-
cesses underlying the perception of mechanical features of a sound generating
system.

The current thesis extends the goals of the thesis of Houben [40]. He deter-
mined how well listeners can judge the size and the speed of a rolling ball and
investigated on which kinds of signal properties the listeners’ judgments are based.
This thesis goes a step further and, as mentioned, aims at finding out what me-
chanical parameters underlie the acoustic information used by listeners. To this
end, the current method concentrates on the flow of information from the sound
generating system to the image the listener reconstructs from auditory informa-
tion coming from this system. By addressing separate points in the processing
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line that is formed by this information flow, we will describe the individual pro-
cessing steps of this flow as studied in this PhD project.

The psychomechanical research paradigm introduced in section 1.7 is the the-
oretical and methodological contribution of this thesis to psychomechanical re-
search. Essentially, this psychomechanical approach requires sound mechanical
descriptions of the system under study, preferably at the three levels described
for the mechanical side of this research scheme. It became apparent that the exist-
ing models of bouncing and rolling were too simple to explain some phenomena
that we observed and wanted to investigate for their role in the perception of me-
chanical features of these interactions. Hence, this thesis contains contributions
on three mechanical phenomena, and on three perceptual phenomena:

• First, it presents a model of bouncing that builds upon the mechanical point
impedance of a plate, the contact stiffness, and the contact time. This model
explains the effect of various mechanical parameters upon the spectrum and
temporal pattern of the generated sound.

• Second, an interference pattern is described that appears in the recordings
of the rolling sounds. It will be shown that this pattern arises from inter-
ference between the vibrations induced at the point of contact between ball
and plate, and the reflections of these vibrations at the edge of the plate.

• Third, a time-domain model and simulations of a ball rolling over or bounc-
ing on a plate is presented. Using this model we could simulate four differ-
ent types of contact between the ball and the plate, sometimes regular and
sometimes irregular or chaotic.

• Fourth, the relevance of the restitution coefficient, and the consequent tem-
poral pattern, on the perception of the size of the bouncing ball is studied.
Remarkably, it appeared that this pattern plays only a minor role in the size
judgments of the listener. The spectral properties of the impact sound ap-
pears to be more important.

• Fifth, the flow of information between auditory information and perceived
mechanical features (see Figure 1.1) was studied for the acoustic interfer-
ence patterns resulting from edge reflections. Listeners can in general dis-
tinguish between the sound of a ball rolling towards the edge of a plate and
that of a ball rolling away from it. They are, however, not able to use this
information in judging the rolling direction. This spectro-temporal acoustic
pattern is thus an example of auditory information that does not support
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the perception of mechanical features. In a similar way, the perception ex-
periments involving different plate thicknesses revealed that the related au-
ditory information is perceived by the listeners, but cannot be used to judge
the plate thickness.

• Sixth, for the perceived mechanical features of size and speed of a rolling
ball we gained new insights into the relation between the three process-
ing levels on the perceptual side of our psychomechanical research scheme.
Size perception is most robust, because it is equally accurate in an absolute
estimation paradigm and in a paired comparison paradigm. In contrast,
the accuracy of speed perception diminishes when this parameter has to be
judged in isolation, compared to the accuracy in a paired comparison exper-
iment. Taken together with the fifth item on this list, these results suggest
that the auditory perception of mechanical object properties is a layered
process, and that detection and estimation take place at different levels of
such a layered process.

1.10 Outline

This thesis is organized in such a way that specific aspects of the ball-plate in-
teraction are first investigated in terms of mechanics, followed by a perceptual
study of the auditory consequences of the found mechanical relations. We will
do this for bouncing behavior, for an interference pattern arising from reflections
at the edge of the plate, and finally for rolling behavior.

In Chapter 2, the mechanics of a ball bouncing on a plate are investigated.
We will show that the temporal pattern of the bouncing process can vary, among
others, with the size, the material and the height from which the ball is dropped,
and we will try to describe this system in terms of mechanical basis parameters.
In Chapter 3 we will relate these findings to the perception of the ball size from
bouncing sounds. By manipulating the temporal pattern of the bouncing sounds,
we will show that listeners do not attribute much weight to this temporal pattern.
The frequency content of the bouncing sounds is given more weight in judging
the size of the bouncing ball.

When a ball rolls over a plate, it generates vibrations in the plate that are re-
flected at the border of the plate. This results in a spectro-temporal pattern in the
sound recordings. This pattern, described in Chapter 4, gives information as to
whether the ball rolls towards the edge of the plate, in which case the spectral
peaks increase in frequency, or away from the plate edge, in which case the spec-
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tral peaks decrease in frequency. In Chapter 5, we will show that listeners are well
capable of distinguishing between sounds with such a decreasing or increasing
interference pattern but do not use this information in judging whether the ball
rolls towards the edge of the plate or away from it.

In the remaining chapters, we will focus on rolling sounds as a whole. In
Chapter 6 we will describe a numerical model that is able to generate rolling
sounds, together with measurements and simulation results. It will turn out that,
for a large class of rolling sounds, a relatively realistic description can be given.
This applies in particular to small metal balls rolling over a wooden or metal
plate when the sound is not too monotonous, for instance because the balls are
bouncing somewhat. In the two next chapters, we will look into the perception
of the rolling sound, using psychometric functions in Chapter 7, and using mul-
tidimensional scaling (MDS) in Chapter 8. From the results of these experiments
we will quantify the human capability to auditorily perceive the ball speed, ball
size and plate thickness. As for plate thickness, listeners are well capable of hear-
ing the differences but, as in the case of the interference pattern, they do not use
this information in judgments on plate thickness. For speed judgments listeners
are more accurate when comparing two rolling sounds one after the other than
when asked to judge the speed of the ball based on one sound. Regarding size
judgments, the two methods lead to equal results.

A theoretical framework will be presented that allows to organize the pro-
cesses underlying the perception of mechanical features of a sound generating
system. This is summarized and discussed in the final chapter of this thesis.



2 Bouncing of a Ball on a Plate: A Model
and Measurements Based Upon the Me-
chanical Driving-Point Impedance of the
Plate

Abstract

The restitution coefficient of a ball bouncing on a plate can be calculated from
Hertz’ contact theory, Newton’s second law and the response of the plate. We
have adapted this method by calculating the plate response from the point im-
pedance of the plate. This is not only a more comprehensible approach than the
classical analysis [111], but the results are also more generally applicable. For in-
stance we will show that, by altering the plate impedance, this new model can
also be used to describe bouncing at the edge of the plate. In order to evaluate
model predictions, we have set up the following experiments. First we measured
the plate impedance to verify its calculation from the mechanical plate proper-
ties. We then used the model to calculate the influence of the plate thickness and
we calculated the restitution coefficient both in the middle of the plate and at the
edges, where the restitution coefficient is much lower. Measurements showed
good resemblance between predicted and measured restitution coefficients, as
long as the ball was hard compared to the plate. In the opposite case, where the
ball was soft compared to the plate, the model was not applicable. Measurements
show a completely different behaviour of the restitution coefficient in this case.

2.1 Introduction

When a ball is dropped onto a plate it will bounce some time before it comes to
rest. From practical experience we know or can imagine some situations where
a ball bounces very long or very short. For instance, a ping-pong ball or a rub-
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ber bouncing ball remains bouncing for a very long time while a cannon ball on
grass, a ball made of deformable clay or the silly putty ball used as example by
Cross [15] are examples of balls that bounce only a few times, if at all.

The parameter used to describe this difference in behavior in bouncing is the
restitution coefficient, which is defined as the ratio of the velocities shortly before
and after the bounce. The reduction in speed is a result of the ball losing energy
in each bounce. For a linear process we would expect that this loss of energy
in each bounce is a constant fraction of the kinetic energy of the ball, and the
restitution coefficient would be constant throughout the bouncing process. Due
to non-linearities this is, however, not always the case.

This restitution coefficient can take values between 0 and 1. The practical
meaning of a high restitution coefficient, close to one, is that the ball will keep
on bouncing for a relatively long time whereas in the case of a low restitution
coefficient, close to zero, it will come to rest on the plate after a few bounces.

One very remarkable observation in the bouncing of a ball on a plate is that,
for some balls and some plates, the ball bounces very well on the middle while at
the corner of the plate it remains lying on the table after the first impact, without
bouncing at all. In this chapter we will derive a physical model that describes
this effect. One specific motivation to model this phenomenon is our interest in
determining which information about the bouncing events can be extracted by
just listening to its sound. The restitution coefficient is potentially a good cue to
be used by human listeners to determine the size of a bouncing ball but it has not
been studied in other perceptive studies of bouncing, for instance those by Grassi
[31][84].

We will analyze two setups that result in different bouncing behavior of the
ball. In the first setup we used metal balls bouncing on MDF plates. In a second
setup we used plastic balls bouncing on metal plates.

The mechanics of bouncing balls have been studied from a number of per-
spectives. The first important contribution was made by H. Hertz in 1881 [37].
He studied the contact stress of two spheres. His results are well known and ap-
plied in many areas. In a publication in 1941, Zener [111] used bouncing to study
the reaction of plates to forces of short duration, and established the influence
of many material properties, including geometrical ones, on the restitution coef-
ficient. More recently the calculation of the restitution coefficient, including the
influence of position of the plate, was studied by Sondergaard et al. [90] whose
interest originated in a completely different area, namely gas dynamics.
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Our interest comes from studying auditory perception of object properties
such as the ball size. People can determine the ball size by listening to the sound
of a bouncing ball, as was shown by Grassi [31], and we will investigate further
in the next chapter. But they can also descriminate between balls of different
sizes by listening to the sound of rolling balls [40]. Also for rolling sounds the
vibration originates from the contact between ball and plate. In order to better
understand the mechanical behavior of the contact, we try to calculate first the
case for a bouncing ball, because here we can do some well-defined measure-
ments and there are some published experimental results available. The model
parameters leading to correct bouncing ball predictions can be used as a starting
point for the model for rolling sounds.

In the case of bouncing the contact is, however, generally so short that, when
the balls bounces sufficiently far from the border, the vibrational waves reflected
at this border of the plate do not return to the point of impact during the time of
impact. During the time of impact the plate can thus be considered as infinitely
large. The point of impact does, in an infinitely large plate, only move during
the time of impact. A vibrational wave travels from this point outward. When
the plate is finite in size, this wave will be reflected at the edges of the plate,
and the plate continues to vibrate. When the vibrational waves return at the
point of impact during the contact of a single bounce, this will be of influence
on the restitution coefficient. This happens when the ball bounces close to the
edge of the plate. The critical distance from the border up to which the plate can
be considered infinite during the contact between the ball and the plate will be
studied later in this chapter. Furthermore, in our experiments, the plate comes to
rest in between the bounces, except only for the last few bounces, simplifying the
analysis further.

There are several reasons why bouncing of balls is interesting for the study
of rolling sounds. First of all, it is much simpler to compare the numerical and
experimental results for bouncing than for rolling. Therefore, any parameter in-
volved in rolling as well as in bouncing can best be measured using the latter,
an approach which was also applied by Brillianov and Pöschel [8]. Furthermore,
bouncing is often included in rolling.

Because people have experience with all kinds of bouncing objects, we would
like to have a somewhat broader view on this bouncing process, compared to
the mentioned studies where a single setup was studied. We will show different
bouncing behavior for two setups, which is of importance to understand what
people may consider natural bouncing behavior and what not. If we want to test
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the perceived relation between the restitution coefficient and the ball size, as we
will do in the next chapter, we should know what this relation is in the physical
world and under which conditions it is present.

2.2 Theoretical analysis

Experimental data comparing the bouncing of a 10 mm steel ball on a steel plate
or on a granite plate were published by Stensgaard and Lægsgaard [91]. For
the granite plate the restitution coefficient seems constant; for the steel plate it
increased with decreasing impact velocity. Such data can provide information
about the energy dissipation causing a reduced restitution coefficient.

The loss of energy can be due to many effects. For instance:

1. Viscoelastic deformation of the ball [15],

2. Elasticity of the ball (it remains vibrating after the contact),

3. Viscoelastic loss in the contact region [55][20],

4. Elastic waves in the plate [111][29],

5. Plastic deformation of ball or plate.

Measuring the restitution coefficient for low impact velocities, which could
provide answers regarding the correct model for the viscoelasticity, has been
shown to be difficult [20]. This is partly due to the fact that the gravitation in-
fluences the way the ball comes to rest. We neglect the viscoelasticity in our
analytical analysis. In the numerical simulations it is possible to include these
effects.

When the ball bounces on a plate, the primary loss of energy happens during
the contact with the plate. During the contact-free phase the motion is governed
by the gravitational forces and inertia of the mass of the ball. During the contact
the gravitational forces can be neglected. Due to the very short time in which the
ball reverses its direction, the inertia of the ball puts a much larger force on the
plate. Because ball and plate are not perfectly rigid, the ball leaves the plate with
a slightly smaller velocity. Due to this effect, the restitution coefficient varied in
our experiments from about 0.95 to 0.5.

Throughout the analysis this chapter, a Kirchhoff-Love model for the plate
and a Hertzian model for the plate are used. These models have their intrinsic
limitations. The Kirchhoff-Love model is a thin-plate approximation because it
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neglects the effects of rotatory inertia and shear [69]. Especially in the thickest
of our plates these effects may play a role. The Hertzian model assumes that the
strains are small, and no plastic deformation occurs [46]. These limitations might
contribute to the discrepancies between the model and the measurements later in
this chapter.

2.2.1 Energy balance

At the moment just before impact, the following kinetic energy EZ is stored in the
ball:

Ez = 1/2msv
2. (2.1)

The energy difference due to the different velocities of the ball, before and after
the impact, is transferred into the plate. This difference in velocity, of course, also
determines the restitution coefficient. We can also calculate this energy from the
resulting plate vibrations. Starting from the plate equation, see for instance [30],

ρh
∂2W

∂t2
=
∂2Mx

∂x2
+
∂2My

∂y2
+ 2

∂2Mxy

∂x∂y
+ fz(x, y, t), (2.2)

with, as usual, W the plate displacement, ρ the plate density per area, h the plate
thickness, x, y the coordinates along the plate and Mx,My,Mxy the moments on
the plate, and finally fz(x, y, t) the external force applied by the bouncing ball. We
can calculate the part of the energy in the plate after the impact, by calculating
the force,

Fz =

∫∫

fzdS, (2.3)

from the displacement and the moments. The capital letter F denotes the com-
plete force on the whole of the plate, and S is the surface of the plate. We can
calculate the energy from the force

E =

∫

FdW

=

∫

F
∂W

∂t
dt. (2.4)
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Because all terms in Equation (2.2) are essentially forces, we can use Equations (2.3)
and (2.4) to get

ρh

∫∫∫
∂2W

∂t2
∂W

∂t
dtdS−

∫∫∫ (
∂2Mx

∂x2
+
∂2My

∂y2
+ 2

∂2Mxy

∂x∂y

)

∂W

∂t
dtdS = Ez. (2.5)

This calculation is easily done in a numerical domain where the plate vibrations
are known with great precision for each moment and each position in space. An
example of a model that enables us to do such an analysis will be discussed in
Chapter 4.

In this chapter we will describe an analytical model, for which the plate vibra-
tions do not need to be known. This can be achieved by approximating the real,
finite-sized plate with an infinite one. The behavior of the plate is then sufficiently
described by the mechanical plate impedance. Later we will extend this model to
be valid in the proximity of one plate edge, that is to a semi-infinite plate.

2.2.2 The contact between ball and plate

When a ball is pressed against a plate, the deformation of the ball and plate has
the effect that the center of the ball comes closer to the horizontal midplane of the
plate than in the undeformed condition. This effect will be indicated with α:

α = up − us, (2.6)

where the displacement of the plate is labeled up and that of the sphere us. The
reference position α = 0 is defined for the equilibrium in which the ball is in
contact with the plate without putting any force on it. When a force is put onto
the ball, α becomes negative. The remainder of our analysis is only valid when
the ball and plate are in contact, thus, α can never be positive. The quantity α
was called “approach” by Zener [111] and others, but we will not use this term to
avoid confusion.

The deformation of the plate can be split up in two types: First, the local de-
formation at the point of impact. Because the area of deformation is very small
compared to the thickness of the plate, we can approximate the plate with an
elastic half space and use Hertz’ theory to calculate the resulting force of this
deformation,

F = κα3/2, (2.7)
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where

κ =
4

3

√
R

(

1− µ2p

Ep
+
1− µ2s
Es

)−1

(2.8)

depends on the radius of the ball, R, and the stiffness of the ball and the plate
material represented by E and µ, which are, respectively, Young’s modulus and
the Poisson ratio of the sphere and plate, indicated again with subscripts s and p

The second type of deformation is due to the deformation of the plate as a
whole by the force of the ball which is transmitted via the contact area. In this
case we use the thin-plate approximation, to calculate the mechanical point ad-
mittance. β1 This is exactly the reciprocal of the mechanical point impedance of
a plate, which has been calculated by Cremer [14] and also Junger and Feit [48],
thus

β =
1

4h2

√

3(1− µ2)

Eρ
. (2.9)

Their method does, however, not apply for the border of the plate, but for this
special case the admittance was calculated by Eichler to be 3.5 times the original
admittance [19].

We can use β as an ordinary admittance,

vz = Fβ. (2.10)

The source of the force lies in Newton’s second law, which reads in this case:

−F = ms

d2us

dt2
(2.11)

wherems is the mass of the sphere. After differentiating Equation (2.6) twice with
respect to time, substituting Equations (2.7), (2.10), (2.11) yields

d2α

dt2
= κα1/2

(

3

2
β
dα

dt
+
α

ms

)

. (2.12)

Equation (2.12) was solved numerically to determine the outgoing velocity of the
release of the ball for a given impact velocity. The velocity is, throughout this

1In the original article, Zener [111] uses, instead of th plate impedance, a derivation where the
plate size is made infinitely large after using a modal approximation. Modes do, however, not
exist on infinitely large plates and therefore this derivation is not fully comprehensible. It does
however, lead to exactly the same result.
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calculation, strictly perpendicular to the plate and when the outgoing velocity
is divided by the incoming velocity, in absolute sense, we obtain the restitution
coefficient.

It is possible to find an analytic expression for the time the ball and plate are
in contact during the bounce, which we will call the contact time for short (see
Chaigne and Doutaut [11] and[20])

tc = 3.22
(ms

κ

)2/5

v
−1/5

in , (2.13)

and the dimensionless inelasticity parameter as introduced by Zener [111]:

λ = β
ms

tc
. (2.14)

The restitution coefficient is a function of λ only, but, due to the non-linear nature
of Equation (2.13), there is no analytic expression, that we know of, to solve it.
The relation has been plotted graphically by Zener [111]. As we will see in the
next section describing measurements, this calculation is accurate as long as the
main loss of energy is through the plate that is set into vibration.

2.3 Measurements

Our derivation of the equations which, after numerical simulation, lead to the
restitution coefficient, depends on the mechanical admittance of the plate. Ac-
cording to the theory, an infinite plate has a real impedance, which means it can-
not remain moving when the ball has left the plate. Of course, due to its finite
size, and thus inevitable reflections, the plate remains vibrating for a while after
the hit. Because our calculations of bouncing do not extend to the time after the
impact, we are really interested in the impedance the given plate would have if
the plate was infinite in size. The impedance is independent of frequency, there-
fore we do not calculate the impedance in the frequency domain as is usually
done.

In our first setup, a large difference exists in stiffness between the material of
the ball (steel, E = 215 GPa) and that of the plate (wood E ≈ 5 GPa). Due to this
effect, it is mostly the plate that deforms during the bounces. In our second setup,
the situation is about reversed. The plastic balls (E ≈ 0.5 − 2 GPa) are very soft
compared to the metal plates (E = 70 or 110 GPa).
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2.3.1 Experimental setups

We used two different measurement setups to measure the restitution coefficient
of bouncing balls.

The first measurement setup consisted of a plate of MDF (Medium Density
Fiberboard, wood particles that are compressed and glued together), with a thick-
ness of 6, 12 or 18 mm, and a size of 50x120 cm. The plate rested on four air bal-
loons, to minimize the effect of the suspension. Various balls were used ranging
from 10 to 19 mm in diameter and made of steel. The balls were held in position
by an under pressure in a cone-shaped device and were dropped by letting air in
via an opening at the top of this device. The vibrations of the plate were measured
with accelerometers, placed close to the point of impact. These were connected to
their special power supply and pre-amplifier and from there the signal was fed
into a high quality PC sound-card.

For the second measurement setup, we used aluminium or brass plates of
size 100x20 cm and an average thickness of 10 mm for the aluminium plate and
of 5 mm for brass plate. The plastic balls had diameters of 10 or 20 mm and were
made from polypropylene or teflon, two materials differing in density and Young
modulus. Also aluminium bars were used to bounce the balls on, but the results
were equal to the metal or brass plates.

2.3.2 Impedance

We measured the impedance by hitting the plate with an impact hammer at dif-
ferent positions of the plate. We obtained the speed of the plate by integrating the
acceleration which was measured with the accelerometer. The contact force was
obtained from the hammer. Then the impedance was obtained by simply divid-
ing the speed by the force on the highest point of the force curve. The results are
found in Table 2.1.

The theoretical values given in the table are based on Equation (2.10) where
the Young’s modulus, E, was determined by measuring the bending of a small,
simply supported bar of the same material. Comparing the theoretical values
with the measured values, it appears that the measured values are 5 to 25% lower.

2.3.3 Case 1: Bouncing of a hard ball on a soft plate

We measured the restitution coefficient for three different plates. The three plates
differ in Young’s modulus as well as in thickness. In our model we only need to
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TABLE 2.1: Mechanical driving-point impedance of the various positions of the plate as
a function of the plate thickness. Three values are given for the middle of the plate: the
first is in the geometrical center of the plate, the others are 10 and 20 cm away from that
center. Driving-point impedances are given in Ns/m

theory middle edge corner
h Zm Zm1 Zm2 Zm3 Zm4

Zm1

Zm4
Zm5

Zm1

Zm5

18 mm 1692 1271 1607 1313 289 3.28 169 7.57
12 mm 724 687 627 667 186 3.65 92 7.37
6 mm 181 147 147 155 49 3.00 30 4.90

change the admittance of the plate. The results calculated numerically with the
model are compared to the measured data in Figure 2.1. The model and mea-
surements show an increased restitution coefficient for lower impact velocities.
Furthermore both the model and measurements show an increased restitution co-
efficient for thicker plates. They differ in that the model overestimates the effect
of the plate thickness. For the thicker plates the predicted restitution coefficient is
too high, but for the thinnest plate the measured restitution coefficient is higher
than the one predicted by the model. Overall, there is a reasonable agreement
between the measured and calculated data. The error is about 10 percent, which
is roughly equal to measurements reported elsewhere [90].

If the restitution coefficient predicted by the model is higher than the mea-
sured value, this might be explained by loss of energy not taken into account by
our model. It is thus surprising to see that for the thinnest plate the predicted
restitution coefficient is actually lower than the measured value. Therefore it is
more likely that this discrepancy is due to the intrinsic limitations of the Hertz
model. Possibly for the lowest plate the deformation depth is not small compared
to the plate thickness.

Another effect predicted by the model is that the gradual decrease of bounce
height results in elongation of the contact between ball and plate during the
bounces. This causes the sound of the bounces not only to become softer but
also somewhat duller or lower in frequency.

2.3.4 Boundary influence

The restitution coefficient is substantially lower for a ball bouncing near the bor-
der of a plate. In order to be able to model this behavior we need to replace the
infinite plate with a finite one. A semi-infinite plate model, with only one, straight
edge was derived by Eigler [19]. He found an admittance at the edge which is 3.5
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FIGURE 2.1: Comparison between theory and measurements for the restitution coeffi-
cients of a 10 mm steel ball on three different plates. The different plate thicknesses are
indicated above the panels. Bounces from three bouncing series, connected with a dashed
line, are compared with theoretical values, plotted in a continuous line.

times larger than for the infinite plate. The admittance has also a small imaginary
part, but it is only 1.5 percent of the real part and therefore we will neglect it. This
3.5 times difference in admittance is valid as long as there are no other edges close
to the point of impact, thus not to close to the corners and the opposite edge. In
our experimental setup this condition is fullfilled for bouncing more than a few
centimeters away from the corners.

By using Eigler’s plate-edge impedance instead of the infinite-plate impe-
dance, we can use our model to calculate the restitution coefficient of a ball bounc-
ing near the edge of a plate. To test this extension of the model, we measured
the restitution coefficient of a ball bouncing in the middle of the plate, near the
edge and near the corner of the plate. The results are shown in Figure 2.2, and
compared with the theoretical values using the infinite plate impedance and the
semi-infinite plate impedance for, respectively, the calculation of the restitution
coefficient at the middle and at the side of the plate. The restitution coefficient is
somewhat lower than the theoretical values, as noted before. Of course it is not
possible to bounce exactly on the edge of the plate, so we should extrapolate the
values approaching that border. This leads to a value of somewhat less than 0.6,
which is very close to the theoretical value, but the difference in the restitution
coefficient between a ball bouncing on the middle of the plate or near the edge of
the plate is lower for the measurement than for the predicted values. The figure
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FIGURE 2.2: The restitution coefficient as a function of the distance to the border. The
two indicated values are the theoretical values for an infinite plate, 0.87, and at the plate
edge, 0.63. The distance indicated on the abscissa is the closest distance from the impact
point to the plate edge. The ball was 10 mm in diameter, made of steel and hit the 18 mm
thick MDF plate with a velocity of 1.4 m/s.

also shows that there is, as expected, no difference between the long and short
side of the plate, as long as we do not approach the corner of the plate.

2.3.5 Case 2: Bouncing of a soft ball on a hard plate

So far, we assumed that the reduced kinetic energy of the ball during a bounce is
put into the vibration of the plate. For our second setup, this is not the case. Be-
cause the ball is soft compared to the plate, the ball starts vibrating. We measured
these vibrations by putting an accelerometer on top of the ball while it bounced
on the plate. The result is plotted in Figure 2.3. The same measurement with a
steel ball does not lead to much vibration of the ball after contact. Note that the
accelerometer influences the vibrations of the ball, because of its presence. There-
fore it is hard to estimate how long the ball remains vibrating in the case the
accelerometer is not present. We have not been able to create a theoretical model,
based on a vibrational analysis of the system, explaining the experimental results
of this system, as shown in the next section. Therefore our explanation that the
ball vibrations are the main cause of the observed behavior of the restitution co-
efficient is so far only a hypothesis.
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FIGURE 2.3: Vibration of the ball during a bounce. During the period between about 0.05
and 0.18 ms the ball and the plate are in contact. After this first half period of a sine, the
contact is lost, but the ball remains vibrating.

A simple analytical model for this system is not known to us. Due to the com-
plicated vibrations of the ball, we could not simplify the vibration of the ball as
was possible with the vibration of the plate in the case of the hard ball bounc-
ing on the soft plate. The experimental results from this system are, however,
astonishingly simple.

To generate the plots shown in Figure 2.4, we dropped balls on the plate with-
out special apparatus. From the time in between two bounces, the velocity of
impact can be calculated, and from the ratio of two consecutive bounces, the
restitution coefficient was calculated. The balls were dropped ten times to ob-
tain more data points. The plate vibrations indicate the moments of impact, and
these can be measured with an accelerometer. Each circle in Figure 2.4 represents
one bounce. The first bounce is not shown because the incoming velocity is un-
known. For each plot, ten bouncing sequences were used. For the lower impact
velocities, at the end of the bouncing process and shown on the left in side of the
plots of Figure 2.4, the plate does not come to rest inbetween the bounces. These
vibrations influence the bouncing, and therefore the plots become more scattered
for lower impact velocities. This hypothesis was verified by putting the plate on
a damping foam layer. This indeed reduced the scattering of the datapoints for
low velocities.

For a polypropylene ball, shown in the top two panels of Figure 2.4, the resti-
tution coefficient is independent of the impact velocity. It is also independent of
the ball size, always about 0.8. A ball made of a different material, teflon, also
resulted in the same restitution coefficient of 0.8. The density of teflon is 2.4 times
higher than the density of polypropylene and the Young modulus of teflon is 1.86
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times lower than that of polypropylene. Probably these two compensate each
other.

Some balls of other materials were also used to measure the restitution coef-
ficient. Some plastic balls had a velocity-independent, constant restitution coef-
ficient of 0.9. Although the material of this ball is not known for certain, and we
have not measured the Young modulus for this ball, it is clear that the restitution
coefficient can be different from 0.8 and depends on the material of the ball.

A result not shown in the figures was that also the plate geometry had no
influence on the restitution coefficient. All plates and even bars we tried resulted
in the same restitution coefficient. This indicates that the plate can be considered
as an infinite half-space during the contact, if the plate is sufficiently thick.

The bouncing behavior observed here is different from what we observed in
case 1, the restitution coefficient is independent of the impact velocity in case 2
where it depended on the impact velocity in case 1. To verify that this different
behavior compared with our other measurement setup resulted from the ball be-
ing very soft, and did not result from other differences in the measurement setup
we dropped metal balls on the plate. The results were very similar to our meas-
urement setup where a metal ball bounced on a wooden plate, the restitution
coefficient depends on the impact velocity and varies with the ball size. In this
case, however, the plate is not soft compared to the ball and this should be taken
into account when calculating the contact stiffness coefficient κ, for the rest the
analysis of the wooden plate setup would be valid for this setup.

2.4 Discussion and conclusion

We have adapted the long known model for a sphere bouncing on a plate to be
based on the driving-point impedance of the plate. We have verified this model
step by step by measuring the plate impedance, contact time and the influence
of the plate thickness and the finite size of the plate. We consider the derivation
of the model to be more comprehensible than the usual approach, since we do
not use the eigenfunctions of the plate, which do not exist for the infinitely large
plate. Also, to examine the various effects we can use the separately measurable
plate impedance instead of the dimensionless equations of Zener [111]. Generally
the measurements and calculations for the restitution coefficient differed by 10
percent or less. There were two exceptions. First, a larger difference was observed
the restitution coefficient of the thinnest of our plates. Second, for a soft ball
bouncing on a hard plate we have no theoretical model.
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(a) 10mm polypropelene ball on aluminium plate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

re
st

itu
tio

n 
co

ef
fic

ie
nt

impact velocity [m/s]

(b) 20mm polypropelene ball on aluminium plate
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(c) 10mm teflon ball on aluminium bar on foam
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(d) 10mm polypropylene ball on brass plate
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(e) 10mm metal ball on brass plate
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(f) 34mm plastic ball on aluminium bar on foam

FIGURE 2.4: Restitution coefficient as function of the impact velocity of the ball. Note
that, in a natural bouncing process, the first bounce has the highest impact velocity and
is thus plotted on the right side of the graphs. The six panels correspond with different
setups, that is, plate and ball materials or geometries. For a discussion of the different
results of these setups, see text. Note the differences in x-axis range.
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The theory developed here has many implications for the perception of bounc-
ing balls that have so far not been addressed. There are two obvious sources of
information that aid the perception of the size of a bouncing ball. The first is the
spectrum of the impact sound. Intuitively we know that a large ball generates
more low frequencies than a small one, when bouncing on a plate. The parame-
ter that determines the lowest frequency is the contact time. This contact time is a
function of the size and weight of the sphere, as well as the elasticity parameters
of the ball and plate, but neither of the geometry nor the weight of the plate. Of
course, the vibrations pass through the plate before being radiated, and thus the
plate geometry has a large effect on the total spectrum of the sound of a bouncing
ball.

The other source of information is the restitution coefficient. Large, heavy
balls have a lower restitution coefficient than small, light balls. One interesting
aspect about this restitution coefficient is that it is very robust against other in-
fluences. These influences can consist of background noise or spectral changes
of the sound, for instance when a recorded version is played back with a very
low quality. The restitution coefficient is robust in the sense that it can provide
information to the listener, as long as the time of the impact is detectable. An
interesting case is the difference between the restitution coefficient as well as the
spectral properties of the sound of a ball bouncing in the middle or at the edges
of the plate. Perception experiments will have to reveal whether the listener will
correctly identify this effect or will add more weight to the spectral or tempo-
ral sources of information. We have seen examples of mechanical setups that
did not change while the restitution coefficient did, namely a metal ball bounc-
ing near the edge of a wooden plate. We have also seen examples of mechanical
setups that did change while the restitution coefficient did not, namely the plas-
tic ball bouncing on a metal plate. Therefore the restitution coefficient seems an
unreliable source of information about the mechanical parameters of the sound-
producing process that cannot be trusted by the listener. The same can, however,
be said about the spectral information, that changes for instance due to room
acoustics.

A situation that resembles rolling more closely is the bouncing of a ball on a
vibrating surface. It appears to be a classical example of chaos [34] although this
is contradicted by others [61] [17]. Either way it seems a good possibility to study
the (quasi-)chaotic behavior without including the large plate model. Typically,
in the mentioned articles, the bounce is idealized. The contact time is assumed
to be zero. There is no nonlinear contact, that is, no Hertz or other non-linear-
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contact model, and the restitution coefficient is a constant, not depending on the
incoming velocity.

The mechanics of a bouncing ball will help us to develop a numerical model
for rolling sounds. As we will see in Chapter 4, the experimental results shown
in this chapter can be used as a test case to benchmark the numerical model.
We will compare these experimental results with results from simulations with a
numerical model. Furthermore the restitution coefficient for very low velocities
can indicate the correct damping model for the contact, as explored by Falcon et
al. [20].
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3 The Bouncing of Balls: Influences of Spec-
tral and Temporal Variations on Percep-
tion1

Abstract

In this chapter, the perception of the size of a bouncing ball based only on the
generated sound is studied. We will start by identifying two parameters in the
mechanical analysis of bouncing balls that control the spectral and temporal char-
acter, respectively, of the generated sound. A signal-processing method to modify
the spectral and temporal properties of bouncing ball sounds is presented. In a
perception experiment we found that at least some of the participants were able
to recognize the natural relation between the spectral and temporal properties of
these sounds. In a second experiment it was tested if listeners relied more on the
spectral or on the temporal properties in their judgment of the size of the bounc-
ing ball. The spectral cues appear to be used in a more consistent way and, on
average, have more influence on the participants’ judgment.

3.1 Introduction

In rolling sounds, spectral and temporal effects are not easily separated mathe-
matically [43]. To investigate their individual contributions to auditory percep-
tion, we chose to investigate a different kind of contact sound generated by a ball
on a plate, i.e., the sound of a ball bouncing on a plate. We will show that for this
mechanical interaction the spectral and temporal information can be manipulated
independently.

Most perceptual research of impact sounds has concentrated on the impacted
plate or object, for instance [63][54][68][56]. As far as bouncing is concerned,

1Part of this work was presented at the CFADAGA04 Conference [96]

35
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Grassi [31] has shown that people can detect the size of a bouncing ball with
remarkable precision. By separating temporal and spectral information we will
investigate whether people rely more on the spectrum of the bouncing sounds or
on the temporal pattern of the bounces.

The restitution coefficient determines a temporal phenomenon that, as we will
show, plays a role in the auditory perception of the size of the bouncing ball. In
the perception experiments we will focus on the ball size and the naturalness of
the bouncing sounds, and keep the dimensions and material of the plate constant.

3.2 Mechanical analysis

In this section we will look at the mechanics of a bouncing ball, and analyze the
mechanical variables which characterize only the plate and those which charac-
terize only the ball parameters. First, we will try to identify the mechanical vari-
ables that depend on properties of the plate, because those are the variables kept
constant and, hence, can be ignored. Using the ball parameters only we will then
identify the two parameters that determine the restitution coefficient. As a last
step in this analysis we will determine the influence of the plate on the spectrum
of the bouncing sounds.

To investigate the relation between the mechanical variables and restitution
coefficient, we must look at the time interval tc the ball and plate are in contact
with each other, because during this contact, some energy is transferred from
the ball to the plate which results in vout being less than vin for the investigated
setup. When a ball is pressed against a plate, the deformations of the ball and
the plate will cause the distance of the ball center and the mid-plane of the plate
to become smaller than the normal undeformed minimum distance. This change
in distance, will be called α. The variation of α during a bounce is governed
by a nonlinear differential equation, which was, in a somewhat different form,
published by Zener [111]:

d2α

dt2
= κα1/2

(

3

2
β
dα

dt
+
α

ms

)

, κ =

√
R

D
, (3.1)

where κ is the contact stiffness. For each of the parameters in this equation we can
identify one of two sources, the ball or the plate. Parameters for the plate are β
andD, those for the ball arems and R. The parameterD is a plate parameter here,
because the plate is much softer than the ball. The parameters of the ball, the mass
and the radius, respectively, are evident; the plate parameters, the mechanical
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plate impedance, β, and the elasticity coefficient, D, have been described in the
previous chapter. Note that D is a plate parameter because in this setup the ball
is much harder, or less elastic, than the plate. After introducing the equation
and its parameters, it can be shown that only two factors determine the ball-plate
contact, i.e., the contact time (for a derivation, see Chaigne and Doutaut [11])

tc = 3.22
(ms

κ

)2/5

v
−1/5

in , (3.2)

and the dimensionless inelasticity parameter as introduced by Zener [111]:

λ = β
ms

tc
. (3.3)

The restitution coefficient is only a function of λ, but, due to the non-linear na-
ture of Equation (3.1), there is, as far as we know, no analytic expression for it.
The relation has been plotted graphically by Zener [111]. These formulas provide
us with the insight into the relation between these mechanical parameters on the
one hand, and the spectrum and restitution coefficient on the other. The restitu-
tion coefficient itself can be found by solving Equation (3.1) numerically (see, for
instance, Kreyzig [53]).

The mechanical plate impedance, β, is constant when the ball is bouncing
somewhere in the middle of the plate. As was shown in the previous chapter,
the admittance, 1/β, at the edge of the plate is about 3.5 times the admittance in
the middle, which results in a lower restitution coefficient, and a different spec-
trum for each bounce. In our measurements of the restitution coefficient close
to the edge we found a good agreement with the theory using Eichler’s admit-
tance [19]. Furthermore, we could determine that, for our plates, the admittance
only changed significantly when the location where the ball bounced was closer
to the edge than a few centimeters.

Once we know λ and tc, we know the force the ball has exerted onto the plate.
However, the actual spectrum of the bounces depends on the plate itself. Differ-
ent plates will radiate different sounds when they are subjected to the same force.
For instance, the damping in the plate has a large influence on the sound, but it
has no influence on β and, therefore, neither on the restitution coefficient nor the
contact time of the ball and the plate. As long as the plate is kept constant, the
parameters λ and tc determine the spectrum of the sound of a ball bouncing not
too close to the border of the plate. For balls of the same material, a larger ball
will bounce shorter than a smaller one.
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To conclude, the size of the ball has an influence on both the restitution coeffi-
cient and the spectrum of the sound. Both restitution coefficient and the spectrum
of the bouncing sound are, however, also influenced by other mechanical param-
eters so that listeners cannot rely on only one of them to estimate the size of a
bouncing ball accurately. By combining them a listener may obtain a more robust
estimate of the size of the ball but it is still impossible to calculate analytically the
ball size and mass from the contact time and the inelasticity parameter without
knowing other mechanical variables. We would like to know how people de-
termine the size of a ball by listening to its bouncing sound. Do they rely more
on temporal parameters, the restitution coefficient, or on the spectral properties
of the sound? Indeed, do they combine those two to come to a more robust re-
sponse?

3.3 General methods

In order to generate bouncing sounds, we dropped metal balls with diameters of
10, 14 or 19 mm on a plate made of MDF, which consists of wood particles that
were pressed and glued together. All balls were dropped from the same height,
about 10 cm above the plate. The plate had a surface of 50x120 cm and a thickness
of 18 mm. The sounds were recorded using a microphone, Type Røde NT5.

An example of a recorded bouncing sound is shown in Figure 3.1b. The
bouncing consists of a series of separate bounces with ever decreasing ampli-
tude, and with intervals between bounces that decrease in length according to the
restitution coefficient. It can be seen that, at least at the beginning of the bouncing
series, the sound is almost completely damped out before the next bounce starts.
Hence, every bounce is separated from the next by a silent period. By shortening
or lengthening this silent interval, by adding or removing zero’s at this position
of the sound file, one can simulate the effect of a manipulated restitution coef-
ficient. The spectral properties of each individual bounce sound change from
bounce to bounce, because the reduced impact velocity results in a longer contact
time according to Equation (3.2). The ball mass has, according to the same equa-
tion, also an influence on the contact time. To give an impression of the spectral
consequences of the different ball sizes, the spectrum of the first bounce of each
ball is depicted in Figure 3.2.

By thus increasing and decreasing the interval between the bounces, and chang-
ing the amplitude correspondingly, the restitution coefficient of the bouncing se-
ries was varied in seven steps. Step 1 corresponds to the lowest restitution co-
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FIGURE 3.1: The waveforms of a bouncing ball with manipulated restitution coefficients.
The ball was made of steel and had a diameter of 19 mm. The signal with the origi-
nal restitution coefficient is shown in panel b. In panel a the amount of silence between
the bounces and the amplitude of the consecutive bounces are lowered to simulate the
effect of a lower restitution coefficient. Similarely, in panel c the silent gaps have been
elongated and the amplitude increased to simulate the effect of a higher restitution co-
efficient. These restitution coefficients correspond to respectively step 2, 3 and 4 of the
heaviest ball that was used for the perception experiment.
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FIGURE 3.2: The spectra of the first bounces of bouncing balls for each of the three diam-
eters. The spectrum of the ball with the diameter indicated above the panels is plotted in
thick lines, the other two are plotted with dots for comparison.
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TABLE 3.1: Restitution coefficient of the second bounce of the bouncing ball recordings.
Horizontally are the five or seven manipulation steps, vertically the three different sizes.

Ball size restitution coefficient step
mm e1 e2 e3 e4 e5 e6 e7
10 0.60 0.63 0.69 0.72 0.78 0.81 0.85
14 0.60 0.65 0.70 0.73 0.78 0.80 0.85
19 0.58 0.62 0.67 0.72 0.76 - -

efficient, step 7 to the highest. The restitution coefficient varies over time, as it
increases on each bounce, so the restitution coefficient of the second bounce for
each ball for each manipulation step is given in Table 3.1. A picture of the wave-
forms with the original and modified restitution coefficients is given in Figure 3.1.
By changing the radius and the mass of the ball independent from each other, the
contact time and the restitution coefficient can also be changed independently, as
can be seen from Equations (3.2) and (3.3). Therefore the manipulation we apply
here could also result from material variations in the setup. When changing the
material from lead to aluminum, and adapting the mass and radius so that the
contact time remains equal, this results in a change in restitution coefficient of
less than one step of our manipulation.

At the end of the bouncing process, the bounces follow each other very rapidly
and there is no longer a silent gap between two bounces. To stretch the interval
between the bounces, we copied a small part, from a previous bounce in the same
signal, to fill the gap. In the very end, there are no longer separable impacts and
this final part of the manipulated signal was simply copied from the original.
Only for the largest ball it was not possible to obtain the sounds with the highest
two restitution coefficients, because the silent period between the bounces was
not long enough and it needed to be stretched too much, resulting in unnatural
sounds. These two steps were, therefore, omitted for this ball. The restitution
coefficient of the sounds changes as a function of the impact velocity, and hence
over time. The recorded (original) restitution coefficient for these balls differ, and
correspond to step 3 for the largest ball, step 4 for the middle ball and step 5 for
the smallest ball. In this way we could manipulate the temporal pattern of the
bouncing sounds, keeping their spectral properties unaffected. This resulted in
3× 7− 2 = 19 different sounds.

First, we investigated whether listeners recognized the natural relation be-
tween the restitution coefficient and the spectrum of the sound. Second, we tested
if listeners do, in their judgment of the size of the ball, rely more upon the tem-
poral information, i.e. the restitution coefficient, or upon the spectrum of the
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individual sounds. The loudness of the sounds could be a very obvious cue for
the size of the ball producing the sound, because larger balls make louder sounds.
We are, however, interested in the spectral and temporal cues, and therefore, all
stimuli were normalized for peak amplitude. Because the sounds have a very fast
decay after the impact of the ball, this simple normalization effectively levels out
loudness differences.

The sounds were presented in pairs to 40 participants via headphones, in a
two-alternative forced-choice procedure. The sounds varied in length between
about 0.7 and 2 seconds, depending on the restitution coefficient. There was
250 ms of silence between them. The levels of all bouncing sequences were nor-
malized to have the same peak value. The largest ball produces more sound when
bouncing and this would otherwise result in an obvious cue to the participants in-
dicating the size of the ball. In Experiment 1 the participants were asked to select
the most natural sound. Only pairs where both bouncing sequences originated
from recording were used. Since there were seven different sounds for the two
smallest balls and five for the largest ball, this resulted in 2× 7× 6+ 5× 4 = 104

sound pairs. In Experiment 2 the participants were asked to select the sound com-
ing from the largest ball. The two sounds originated from the same or different
recordings. Only restitution coefficient steps 1, 3, 5, and 7 were used, resulting
in 11 sounds and 110 sound pairs. In both experiments the participants could
answer by clicking on one of two buttons, labeled “first” or “second”. The exper-
iment started with six practice sound pairs for the participants to get accustomed
to the sounds and the response system. The sound pairs within each of the two
experiments were presented in random order. All participants took part in both
experiments which took them about 20 minutes. Participants were paid 3.50 euro
for participating. In the instructions the participants were told that the materials
were always the same, and the ball sizes were varied. They were also told that
some sounds were modified after being recorded. The participants were not ex-
plicitly told that the balls were dropped from the same height, but in principal
they could derive this from the restitution coefficient and the time in between the
bounces.
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FIGURE 3.3: The relative preference values regarding the naturalness of different sounds
are plotted as a function of the restitution coefficient step. The panels show individual
data for two participants. In the left panel the data from a participant are depicted that
seems to recognize the relation between restitution coefficient and spectral content of the
individual bouncing sounds. In the right panel, we see the data of one participant who
consistently selected the sound of longer bouncing balls as being more natural.

3.4 Experiment 1

3.4.1 Method

As mentioned, we asked the participants to choose the most natural sound out
of the two of one pair. The relative preferences were calculated by averaging the
number of times the participants responded to prefer a specific sound over one
of the others.

3.4.2 Results

The data of each participant were analyzed in terms of the preference for each of
the 19 bouncing ball sounds. Figure 3.3 shows the results for two participants.
The relative preference is plotted for the 7, or 5 for the largest ball, restitution
coefficient steps, and the different symbols indicate the different ball diameters.
For the data of each participant a quadratic function was fitted through the rela-
tive preferences of the 7, or 5 in case of the largest ball, versions of the one sound
that was manipulated to differ in restitution coefficient. For many participants
these quadratic functions showed maxima located outsize the range from 1 to 7
for the two smaller balls and 1 to 5 for the largest balls. For these participants, the
quadratic preference function increased monotonically over the range from 1 to 7
(or 1 to 5). This means that these participants always selected the longer bouncing
ball as the more natural one. In Figure 3.3b we can see one example of a partici-
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TABLE 3.2: Average percentage of “second ball is bigger” responses, for bouncing sounds
with different spectral content. The spectral content of the sound is coded with “s1”
meaning that each individual bounce has the spectral content of the smallest ball, through
“s3” where each individual bounce has the spectral content of the largest ball. The hori-
zontal axis represents the balls which were presented first, and the vertical axis represents
the balls presented second. In the left panel the data are selected where the restitution
coefficient was manipulated to be equal for both sounds. In the right panel the restitu-
tion coefficient of the first and second bouncing sound were not equal. The presentations
were balanced; thus the first ball was bouncing longer as many times as the second ball.
To have an equal amount of data in each cell, only the data for restitution coefficient steps
1-5 were used. The 95% two-sided confidence interval for guessing for the left panel is
44%-56% and for the right panel it is 46%-54%. Data that fall outside these intervals are
printed in boldface.

pant who clearly prefers the longer bouncing ball. When, on the other hand, the
maximum is located within the range of the tested restitution coefficients, the par-
ticipant apparently has a preference for a particular restitution coefficient. When
this is the case for all of the three ball sizes, we can say that such a participant was
able to recognize the relation between the restitution coefficient and the spectral
properties of the bounces. In total 12 out of the 40 participants showed such a
behavior, and Figure 3.3a shows the preference data for one of them. For this par-
ticular participant the peaks of the fitted preference data are in their physically
natural order, the larger the ball the lower the most preferred restitution coeffi-
cient. Furthermore, the peaks of the fitted preference curves occur, in absolute
sense, close to the recorded versions. The preferred restitution coefficient steps
are 2.8, 3.6, 4.2 while the natural values are 3, 4 and 5. The result shown if Fig-
ure 3.3 represent clear examples if the two different response types. Looking at
the group of 40 participants we find responses that cover the whole range in be-
tween the two examples in Figure 3.3. None of the participants, however, showed
a systematic preference for the low restitution coefficient steps.
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TABLE 3.3: Average percentage of “second ball is bigger” responses, for bouncing sounds
with different restitution coefficients. The restitution coefficient was manipulated in dif-
ferent steps, ranging from the lowest restitution coefficient, step 1 to the highest one, step
7. Horizontally are the balls presented first, and vertically those presented last. In the left
panel the data are selected for pairs in which the spectrum of each bounce was equal for
both sounds. In the right panel the spectra of each bounce of the first and second bounc-
ing sound were not equal. The order of the pairs was balanced; thus the pairs in which
the first ball was the one bouncing longer were as often presented as the pairs in which
the second ball was bouncing longer. To have an equal amount of data in each cell, only
the data from the smaller two balls were used. The 95% two-sided confidence interval for
guessing for the both panels is 43%-58%. For the left panel, results do not differ signifi-
cantly from guessing (χ2df=11 = 9.02;p = 0.62), or a 50% score in each cell. For the right
panel, the results do not differ significantly from guessing (χ2df=15 = 4.64;p = 0.995).

3.5 Experiment 2

3.5.1 Method

In experiment 2 the participants were asked to judge the size of the bouncing ball.
We again used a two-interval forced-choice procedure and the participants had
to indicate which of the two sounds was produced by the larger ball. In contrast
to experiment 1, for this test, the two presented sounds were recordings from
different balls, and the restitution coefficient was varied for each of them. The
results are shown in Table 3.2 and 3.3. In Table 3.2a, we can see that people on
average label the sounds with the spectral content of a larger ball as the larger
ball. In Table 3.2b we can see that average performance does not degrade, even if
the restitution coefficient differs between the two sound samples. On the diago-
nal of this same table, we can see another effect. If both balls are equally big, we
would expect an equal division between choices for the first and second sample.
As we can see on the diagonal of Table 3.2b this is not the case. When both balls
are small, the participants more often labeled the second ball as larger. When
both balls are large, the participants more often labeled the first ball as larger. Al-
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FIGURE 3.4: Average response to the question which of the two presented sounds of a
pair represented the larger ball. The data are analyzed for each participant in terms of
differences in spectral content of the bounces. A “first” response is coded with -1 and a
“second” response is coded with 1. On the unitless y-axis are the averages of these coded
responses when both sounds differed in spectral content of the individual bounces. The
x-marks represent the data where the first sound had the spectral content of the larger
ball, the circles represent the data where the second sound had the spectral content of
the larger ball. The order in which the sounds differing in restitution coefficients were
presented was balanced, i.e., pairs in which the first ball was bouncing longer were as
often presented as the pairs in which the second ball was bouncing longer. If all responses
were based upon the spectral information, the x-marks should be at -1 and the circles at
+1.

though we have not proven this hypothesis, the following reasoning may explain
such behavior. When the listener concludes that the sound of the first ball, he or
she already estimates its size. If he or she hears the first ball is the smallest, he or
she hypothesizes that the next ball will be larger and responds this way unless he
or she is proven wrong by the second sound.

The data from Table 3.2 were recalculated for Table 3.3, but now analyzed as
a function of the restitution coefficient of each of the two balls in a pair. Again,
the table shows the average response to the question which of the two presented
sounds of a pair represents the larger ball. We can see most entries are close
to 50% indicating that the participants, on average, do not respond very much
to differences in the restitution coefficient. In contrast, individual participants
do respond to the restitution coefficient but there seem to be large differences
between participants as we will see in the next paragraph.
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FIGURE 3.5: Average response to the question which of the two presented sounds of
a pair represented the larger ball. The data are analyzed for each participant in terms
of differences in restitution coefficient of the two bouncing balls. A “first” response is
coded with -1 and a “second” response is coded with 1. On the unitless y-axis are the
averages of these coded responses when both sounds differed in restitution coefficient.
The x-marks represent the data where the first sound was the longer bouncing, which
is usually the smaller ball. The circles represent the data where the second sound is
the longer bouncing. The order in which the sounds differing in spectral content were
presented was balanced, i.e., pairs in which the first ball had the spectral content of the
larger ball were as often presented as the pairs in which the second ball had the spectrum
of the larger ball. If all responses were based upon the temporal information, the x-marks
should be at -1 and the circles at +1.
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In Figures 3.4 and 3.5 the individual performance of each participant is de-
picted. The responses labeled “first” and “second” are coded -1 and 1, respec-
tively. In Figure 3.4 and 3.5 the averages of these responses are shown for dif-
ferent subsets of the data. In Figure 3.4, the data where the first sound has the
spectrum of a larger ball is plotted with a cross and the data where the second
sound has the spectrum of the larger ball is plotted with a circle. All different
combinations of the restitution coefficient were used, i.e., the first is either bounc-
ing shorter or longer than the second or they could be bouncing equally long. In
order to limit the number of stimuli, only four steps for the restitution coefficient
were used, steps 1, 3, 5 and 7. The used data are counterbalanced for the resti-
tution coefficient, thus the first sound is as often from the longer bouncing ball
as the second. This means that, if the line between these two points is long, the
participant has used the spectral information in the sound to come to the answer.
For Figure 3.5, the data where the first sound had the lower restitution coefficient
of a larger ball are plotted with a cross and the data where the second sound had
the lower restitution coefficient is plotted with a circle. All different combinations
of the spectral information were used, and the used data are counterbalanced for
the spectral information. This means that, if the line between these two points is
long, the participant has used the restitution coefficient in the sound to come to
his answer. The two plots are not based on the same data, since the data where
both balls have the same spectral content were not used in Figure 3.4 but they
were in Figure 3.5. The opposite is true for sounds with the same restitution coef-
ficient; data where both balls have the same restitution coefficient, were not used
in Figure 3.5 but they were in Figure 3.4. For both plots, when the line is not cen-
tered around zero, this means that there was a response bias, in the sense that the
listeners preferred the either the first sound or the second sound more often.

From Figures 3.4 and 3.5 we can draw the following conclusions regarding
the different ways the participants responded to the stimuli. Participant number 1
has a very limited difference in response depending on the temporal information,
the line connecting x and o is very short in Figure 3.5, but spectral information has
a large effect on his or her answers. We can conclude that this participant relies
on spectral information to come to his or her answer. For participant number 3,
however, the situation is reversed. He or she almost does not respond to spectral
differences, but very much to temporal differences. Yet another situation we see
for participant number 15 who seems to base the judgment neither on temporal
nor on spectral differences. There is one inverse responder, participant number
6, for the spectral cues, and there are 12 inverse responders for the restitution
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coefficient, among whom number 6. These people do not recognize the natural
relation between the spectral content or the restitution coefficient and the ball
size.

3.6 Discussion and conclusion

We have analyzed the differential equation governing the restitution coefficient
and found a relation in the contact force between the spectral and temporal prop-
erties. In a perception experiment, we found two types of responses, some par-
ticipants were able to identify some relation between the spectral and tempo-
ral properties, and other participants chose always the highest restitution coef-
ficient as most natural. This is similar to the division in two groups was found
by Canévet et al. [10] when asking subjects for the pleasantness of single impact
sounds. In our case, there is no clear distinction between two groups, most people
respond somewhat in between the two described types of responses.

Second, we argued that both the spectral and temporal cues are also influ-
enced by other parameters such as the plate thickness. When asked for the size
of the ball, the participants respond, on average, according to the spectral con-
tent of the sound. The restitution coefficient had an influence on the responses
for many participants, but in a less consistent manner. Such a listening strategy
can be successful in an experimental setting like the one we used, where the plate
parameters are kept constant. It should, however, lead to wrong judgments when
other mechanical parameters, like the plate thickness, are variable. In such a sit-
uation, only a combined evaluation of spectral and temporal cues would allow
to correctly judge ball parameters, because each one individually is affected by
variations in both ball and plate parameters.



4 Temporal Aspects of Rolling Sounds: A
Smooth Ball Approaching the Edge of a
Plate1

Abstract

We measured the sounds of smooth metal balls rolling over medium density
fiberboard (MDF) plates. In the spectrograms of these sounds we observed grad-
ually varying ripples. These ripples were more closely spaced for the sound gen-
erated in the middle of the plate than for the sound generated closer to the edge.
Furthermore, the spacing for lower frequencies was somewhat closer than for
higher frequencies. It is shown that this pattern arises from the interference be-
tween the sound directly generated at the point of contact between ball and plate,
and the sound reflected at the edge of the plate. This effect was added to synthe-
sized rolling sounds which resulted in a more natural sound. A discussion is
presented concerning the perceptual relevance of this pattern.

4.1 Introduction

This chapter is concerned with a spectro-temporal pattern in the spectogram of
the sound of a ball rolling over a plate. This study is done in the wider context
of a study into the human capabilities of extracting physical and geometric object
properties, such as size and shape, from the sounds these objects generate when
impacted by other objects. Various authors (e.g., [22][56][54]) have shown these
capabilities. Until now, they used metal objects with simple geometric forms, and
the sound was induced by simple impacts. The acoustical analysis of these sys-
tems, as given in these papers, is relatively straightforward; the impact sounds
are modelled as a sum of modal frequencies with exponentially decaying en-

1This chapter is based on Stoelinga, Hermes, Hirschberg and Houtsma [98]
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velopes. This was further developed into algorithms to synthesize more com-
plicated impact sounds such as the sounds of balls or pebbles rolling in metal
vessels and other hollow metal objects (Van den Doel et al. [105]). The results
were informally compared with recorded sounds of such systems.

The system we studied consisted of a ball rolling over a wooden plate. Due
to strong damping and the absence of clear modal frequencies, the method by
Van den Doel et al. could not be applied. Houben et al. [41] demonstrated for a
wooden ball rolling over such a wooden plate, that human listeners are capable
of distinguishing small from large and slowly from rapidly rolling balls on the
basis of their rolling sounds. By signal analysis techniques they then manipu-
lated the spectral and temporal properties of these sounds and could derive from
perception experiments with these manipulated sounds that both temporal and
spectral properties played a role in the successful judgment made by the listener.
They additionally showed that quasi-periodic amplitude modulation, produced
by the not perfectly spherical shape of the wooden balls, when audible, played
a dominant role in the judgments by the listeners. For the rest, Houben et al.
could not directly link the spectral and temporal signal properties on which the
listeners based their judgments with the physical properties of the system that
determined these spectral and temporal properties. An obstacle to this was the
lack of an acoustic model of the rolling-ball system.

We believe that an appropriate understanding of the acoustic properties of the
system is necessary, if we want to understand the temporal and the spectral in-
formation in the sound signal that the human listeners use in making judgments
about the physical properties of the system, such as the size, material, or velocity
of the ball rolling over the plate.

Other studies on rolling sounds (Thompson et al.[101][100]; Scheuren[88]) fo-
cused on the road and railway noise produced by cars and trains. The primary
interest of these studies was noise reduction and, hence, they mainly focused
on the distribution of acoustic energy over the spectrum. Hardly any attention
was paid to temporal and more complicated properties of the noise. Moreover,
the physical systems are essentially different from a system consisting of a ball
rolling over a plate. For instance, it will be shown that the presence of edges is
very important in modeling the acoustics of the ball-plate system.

This study is focused on a spectro-temporal pattern in the spectrogram of the
rolling sounds of a smooth ball approaching the edge of a wooden plate. The ori-
gin of this pattern will be shown to lie in the reflections at the edge of the plate.
This effect is first studied by means of cross-correlation techniques, first on un-
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processed accelerometer signals, and then on band-pass filtered versions of these
signals. This is used to determine the wave velocity for a range of frequencies.
This is of significance since the waves predominantly consist of bending waves
which obey the fourth order dispersive wave equation. For these waves the prop-
agation velocity is frequency dependent, which will appear to be important and
this effect will be considered in more detail. A simulation model will be pro-
posed, which is based on signal analyses of recorded sounds. In this model, the
mentioned spectro-temporal effects of a ball rolling towards the edge of a plate
are included on the basis of a simplified physical analysis. The perceptual rele-
vance of this pattern will be presented.

4.2 Measurement setup

The vibrations of the plate induced by the rolling ball were recorded using the
setup shown in Figure 4.1. The balls were made of stainless steel and had diame-
ters of either 35 or 55 mm. The plates, 49 cm wide and 122 cm long, consisted of
MDF, wood fibers compressed and glued together. Their thickness was 6, 12 or
18 mm. The results used as illustration in the figures of this paper were obtained
with the thickest plate.

The setup rested on a table from which it was isolated by a 25 mm thick layer
of soft foam. This insulation layer was necessary to avoid vibrations of the table.
The effect of the plate’s support on our results has been checked by carrying out
some measurements on a plate supported by four small soft balloons filled with
air. While a reduction in damping of low frequencies is observed the relevant
spectro-temporal effects discussed further were not altered. This indicates that
the 18 mm thick plate can be considered as “free”. Especially for the 6 mm plate,
however, the extra damping caused by the foam was very prominent. A possible
consequence of this extra damping is a complex wave velocity [30, p. 173].

In order to give the balls a well defined velocity along the center line of the
plate, they were rolled from a slide onto the plate. The height of the slide was
25 cm. The balls were released from various heights on the slide to vary their
velocity. In order to measure the velocity of the ball, its course interrupted the
beams of six independent light-gates, placed at intervals of 20 cm. The measure-
ments showed that, during one run, the ball’s velocity was constant within a few
percent. The range of velocities we used in the experiment was varied from 0.6
to 1.5 m/s.



52 Temporal Aspects of Rolling Sounds

ball

screws to adjust height

light gates

plate gaplayer

slide

foam

FIGURE 4.1: Side-view of the experimental setup: the plate supported by a foam layer is
placed on a table. The slide is separated from the plate by a narrow gap. Light-gates are
used to measure the velocity of the ball.

The slide was separated from the plate by a narrow slit, about 0.5 mm in
width, to avoid the transmission of vibrations. The slide had a smooth bend near
its end to transform the vertical velocity of the balls into a horizontal one. At the
other side of the plate, the ball was left free to roll off.

This experimental setup was chosen in order to prevent bouncing or ampli-
tude modulation by less perfectly round balls. Furthermore, relatively heavy,
polished metal balls were used, which resulted in a smooth and stationary rolling
sound. In this way, the spectro-temporal pattern could best express itself and was
not obscured by bouncing ticks or other amplitude fluctuations. In fact, the sound
generated in this manner does not sound very much like rolling. When the ball
is gently slid over the plate, while preventing it from rolling, a similar sound is
generated. Hence, the analysis presented here is equally valid for balls sliding
softly over the plate.

4.3 Acoustical analysis

An important variable in the rolling-ball system is the surface roughness of the
plate. Surface irregularities of the ball will be ignored, since the ball was made
of stainless steel and polished. As long as the velocity of the ball is low, the ball
will continuously keep contact with the plate. Due to the surface irregularities it
will then move up and down and the corresponding reaction force will excite the
plate continuously. When the velocity of the ball gets higher, it may occasionally
lose contact with the plate, causing light impacts when it comes down again. Very
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FIGURE 4.2: Average spectrum of a ball rolled over the plate.

rough irregularities may also induce such bouncing-like rolling behavior at lower
speeds. The smooth plates we used did not cause such a bouncing.

Even though the ball is in continuous contact with the plate, the interaction is
of a non-linear nature. The implications of these non-linear effects have not been
fully investigated, but it is assumed that the ball induces a force with band-pass
characteristics onto the plate. The plate surface will not contain very low fre-
quencies, since it was polished. Spatial irregularities that are very close together
do not move the ball very much either, because it simply rolls over them. Due
to these two effects the force that the ball exerts on the plate will have a band-
pass character. It can easily be seen that the forcing frequency Ω depends on the
velocity of the ball V for one wavelength λ of the roughness spectrum,

Ω =
2πV

λ
. (4.1)

Therefore the frequency range of this band-pass filter scales with the velocity of
the rolling ball.

Apparently, the spatial-frequency characteristics of the plate roughness and
the velocity of the ball determine the bandwidth of the frequencies by which the
plate will be excited. In the system we used, this bandwidth was rather broad.
An example of an estimated spectrum is shown in Figure 4.2. It was calculated
by averaging the spectra of several successive windowed segments of the signal.
This averaging was done to reduce the variance of the spectrum. This method
results in what is known as Welch averaged periodograms [79].

From the absence of clear peaks one can see that no strong modal frequencies
were found. This is due to the strong damping inside the plate. When waves are
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induced at one end of the plate they have almost vanished when they reach the
other end of the plate. On the other hand, reflections can be found when the ball
is near the edge of the plate, which will play an important role in the remainder
of this chapter. (see section 4.4).

Another important aspect relates to the kind of waves playing a role in the
rolling ball system. When a plate is hit by another object, vibrational waves
spread from the point of contact over the plate. Following classical plate the-
ory, the vibrational waves are bending waves which are described by a fourth
order differential equation. In this case the group velocity vg is not independent
of frequency but is proportional to the square root of the frequency [48]:

vg = 2

(

D

ρh

)1/4

ω1/2, (4.2)

where D is the flexural rigidity of the plate, h the plate thickness, ρ the plate
density and ω the angular frequency.

4.4 Reflections

In a string or membrane the theoretical description of reflections at an open end
is relatively straightforward. Some analytically calculated examples of the reflec-
tions for bending waves in bars and for waves reflecting at the surface of a semi-
infinite medium indicate, however, that the analysis of the reflections at the free
end of a plate is more complicated than that of a membrane (see [30, section4.2]).
Instead of deriving the behavior of the reflections mathematically, their properties
will be determined by calculating the correlation function from measured data, in
a similar way as treated by Bendat and Piersol [5]. In two-dimensional structures
with reflecting edges there are many different paths consisting of straight lines
running from the excursion point to the measuring point: direct and via one or
more edges. When trying to measure these reflections with the auto-correlation
function, Rff(τ), the peak at τ = 0 was found to be very strong while others were
much weaker and difficult to detect precisely. This could be attributed to the
dispersion and damping of the waves as they travel across the plate. This was
partly solved by using two measuring points instead of one and determining the
cross-correlation function between the signals measured at these points (see Fig-
ure 4.3). This correlation procedure was repeated for various bandpass-filtered
versions of the signals, which also increased the sharpness of the figures. For two
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3 421

FIGURE 4.3: Traveling paths from the ball (marked with a solid circle) to the accelerome-
ter (marked with a square) with a single boundary, resulting in a mirror image of the ball
(marked with a dashed circle) and four different paths from the source and its mirror to
the accelerometers.

accelerometer signals f(t) and g(t), the cross-correlation function is defined as

Rfg(τ) = lim
T→∞

1

2T

∫ T

−T

f(t)g(t− τ)dt. (4.3)

Consider a semi-infinite plate with a single edge as shown in Figure 4.3. Posi-
tioned on the plate are the two accelerometers and a ball impacting the plate. For
each accelerometer there are two paths running from the ball to the accelerome-
ters: one direct path from the excitation point; the other reaching the accelerome-
ter after being reflected at the edge. This second path can be modeled as coming
from a virtual mirror image at the other side of the edge. The direct wave f0(t)
arrives first, followed by the reflection from the mirror image. Due to the spread-
ing of the wavefront over a larger region there is a reduction in amplitude given
by α1 and α2,

f(t) = α1f0(t− τ1) + α2f0(t− τ2), (4.4a)

g(t) = α3f0(t− τ3) + α4f0(t− τ4). (4.4b)

Using Equation (4.3), this cross-correlation function splits up into the weighted
sum of four of the original auto-correlation function shifted in time. These auto-
correlation functions have peaks at τ3−τ1, τ3−τ2, τ4−τ1 and τ4−τ2, respectively.
If these peaks are spaced widely enough, they can be distinguished separately in
the cross-correlation function. As more edges are added, the number of mirror
images increases accordingly. For an actual plate with four edges, four mirror
images will be found. But these are only mirror images of the first order, repre-
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senting waves reflected at one edge. Similarly, waves reflected more than once
can be considered as coming from mirror images of higher order, resulting in a
cross-correlation function consisting of the weighted sum of a large number of
time-shifted auto-correlation functions. As in the MDF plates we used the damp-
ing was quite high, the weight factors αiαj decreased rapidly with increasing
path length. Hence, we will only consider the first-order reflections.

So far, only a fixed excitation point was considered. To obtain useful infor-
mation about the rolling ball this must be extended to a moving excitation point.
In order to study the signal at time t0, a short segment is gated out by multiply-
ing the signal by a window function w(t) shifted t0 in time. In each windowed
segment, the excitation point, or ball position, is considered fixed. For each t0,
we then calculate the cross-correlation function of this windowed segment, or,
expressed mathematically,

Rfg(τ, t0) =
1

Ew

∫∞

−∞

f(t)g(t− τ)w(t− t0)
2dt. (4.5)

A non-overlapping square window function was used with a length of 4.167 ms.
In the range of the measured velocities, this corresponds to rolling over a distance
of between 2.5 and 6.25 mm. Ew represents the energy of the signal within this
window.

It appeared that during rolling the energy of the signal was very unevenly
distributed over time, so that one windowed segment could contain a lot more
energy than the next. In order to compensate for this, the cross-correlation func-
tions were normalized for energy. We will indicate the so obtained figures with
running cross-correlogram.

The two-dimensional function given by Equation (4.5) was then plotted with
t0 on the horizontal axis, and τ on the vertical axis. Hence, for each t0 considered,
the cross-correlation functions were displayed vertically. Their values were con-
verted into a gray scale with higher values being lighter than lower values. An
example is presented in the right panel of Figure 4.4

When the ball moves over a certain distance, the mirror images move along
over the same distance. Depending on the configuration, this can lead to chang-
ing differences in path lengths between the excitation point and its images, and
the accelerometers. This will result in changes in the position of the peaks in
the cross-correlation functions. On the other hand, the position of the ball, its
mirror images and the accelerometers are known. Hence, the actual differences
in path lengths can be measured. And if, for the moment, it is assumed that
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FIGURE 4.4: The pattern in the running cross-correlogram, as calculated (left) and mea-
sured (right). The two accelerometers were mounted at the edge of the plate on 1/3 and
2/3 of its length. The calculated lines approximate the measured ones.

the wave velocity is constant, the time differences with which the waves travel
these distances can be compared with the positions of the peaks in the measured
cross-correlation functions. This provides us with a way to verify whether or not,
in the complicated situation of a real plate with its dispersion and its damping,
these reflections are very different from the simplified theoretical cases.

In the left panel of Figure 4.4 we plotted the calculated maxima of the running
cross-correlogram under the assumption that the waves travel with a velocity of
300 m/s. These lines are only plotted if the traveling distance from the origin,
and hence the attenuation of the signal, is less than some specified value. Energy
loss at the reflections was not taken into account.

The right panel displays the actually measured running cross-correlogram.
If the position of the lines in the upper panel is compared with the light bands
representing the maxima in this running cross-correlogram, the correspondence
is indeed remarkable.

Note that in this simplified description it is assumed that the waveform is not
distorted too much in the course of traveling through the plate. This implies that
the wave velocity is more or less constant, and that issues like dispersion and
energy loss at the edges have not yet expressed themselves in clear changes in
shape of the wavefront. The correspondence between the two patterns described
in the lower and upper panel of Figure 4.4 shows that, to a certain extent, this is
indeed fulfilled. This can partially be explained by the limited frequency range of
the excitation. So it can be concluded that the reflected waves are strongly corre-
lated with the original waves. It will be shown later that the resulting similarities
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between original and reflected waves are the origin of the interference pattern as
found in the spectrogram of the rolling sounds.

4.5 Wave velocity

In the previous sections the wave velocity was regarded as constant. To calcu-
late maxima in the patterns seen in the running cross-correlogram, we had to
estimate the wave velocity. Now things can be turned around. One may try to
estimate the wave velocity from the running cross-correlogram. This can be done
by calculating, for a plausible range of velocities, the correspondence of the cal-
culated lines of maxima with the actual maxima in the measured running cross-
correlogram. This has been done informally by printing the calculated lines on
top of the measured running cross-correlograms, or by summing, for the range
of velocities considered, the values of the running cross-correlogram underneath
the calculated lines. The highest value is then expected to represent the best es-
timate of the wave velocity. This procedure still assumes that the wave velocity
is constant within the frequency band of the acoustic signal, and it was shown
that possible discrepancies did not distort the reflected signal too much. Classical
plate theory predicts, however, that the traveling-wave velocity is proportional
to

√
ω.

Dispersion of the waves leads to a change in shape of the reflected wave, and
thus the correlation technique will have to be adapted. In practice the correla-
tion function is blurred due to this dispersion, which means that instead of well
defined narrow and high peaks, smooth broader and lower ones will be found.
The amount of blurring depends on the range of frequencies in the waves and the
distance they have traveled.

In order to get a frequency dependent estimate of the wave velocity, we will
now carry out the above mentioned procedure for a series of band-pass filtered
signals. The centre frequencies of the filters ranged from 1 to 10 kHz. Indeed,
Figure 4.5 shows two running cross-correlograms, one for a center frequency
of 774 Hz and one for 5995 Hz. As mentioned, we then calculated, for a range
of velocities, the fit of the maxima predicted for these velocities with the actual
maxima in the running cross-correlograms. For low frequencies, the wavelength
is no longer small compared to the travelling distances, and this method loses its
accuracy. The measured values are plotted in Figure 4.6 from 1 kHz (wavelength
about 25 cm) to 10 kHz.
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FIGURE 4.5: The running cross-correlograms of signals that were first filtered with a
bandpass filter. The centre frequency of the filter was 774 Hz for the upper panel and
5996 Hz for the lower panel. The pattern is compressed in the y-direction in the case of
the highest band-filter, due to the higher wave velocity for higher frequencies.
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FIGURE 4.6: The bending-wave velocity can be estimated by matching measured data
with analytically calculated lines of the filtered running cross-correlogram. These esti-
mated values are indicated here with a circle. The line indicates the theoretical group ve-
locity obtained using the theoretical wave velocity, from the statically measured Young’s
modulus.
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To verify the plausibility of these values, the Young’s modulus and density
of the MDF were measured. The Young’s modulus was measured by statically
loading a strip cut from the plate with various weights, in the same direction
as the plate is distorted by bending waves. This is the direction in which the
wood particles are pressed together, and Young’s modulus measured in this way
(5.7 kN/mm2) is somewhat higher than the (true) Young’s modulus, measured in
other directions (4.2 kN/mm2). From these measurements the theoretical wave
velocity can be calculated. The phase velocity is also measured by determin-
ing the frequency of the first resonance mode of a smaller plate. This smaller
plate, as well as the strips used for the measurements of the Young’s modulus
where sawn off the plates used to generate the rolling sounds before the experi-
ments. The resulting wave velocity at the first mode of this smaller plate (52 Hz)
is 50 m/s, quite close to the theoretical value based on the statically measured
Young’s modulus (56 m/s).

In Figure 4.6 the group velocity, as calculated via the statically measured Young’s
modulus is compared with those measured via the correlation method, described
above. As can be seen, there appears to be a systematic error increasing with
frequency, resulting in measured velocities that are about half as high as the the-
oretical values based on the statically measured Young’s modules. This could be
caused by, for instance, internal friction or dispersion, two aspects that are not
included in the model.

The velocity found when we do not filter the signal before determining the
cross correlate (see Figure 4.4) is indeed about equal to the velocity of strongest
frequencies (see Figures 4.2 and 4.6).

4.6 Comb-filter model for reflections at the edge

In the previous section it was shown that, in our configuration of a metal ball
on an MDF plate, the waves, generated at the point of contact between ball and
plate, travel through the plate obeying classical plate theory. Moreover, these
waves reflect at the edges of the plate and interfere with the direct, unreflected
waves. Damping and dispersion are, on the one hand, so high that reflections of
higher order do not play a role of significance. On the other hand, the distortion
is not so strong that the similarity between direct and reflected waves is lost.

The presence of reflections can be described on the basis of virtual sound
sources, so-called mirror images as already depicted and described (see Figure
4.3). Let us for the moment consider only two mirror images moving in direc-
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FIGURE 4.7: The position of the two most important mirror images considered in the
comb-filter model. Indicated are the directions in which the ball and its images rolls, as
well as the distances, l and L, used in the formulas.
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FIGURE 4.8: Model for the effect of the images. The two delayed and damped versions
of the direct waves are added to this direct wave, due to the effect of reflecting at the
boundaries of the plate.
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tions opposite to the original ball as shown in Figure 4.7. One mirror image is
positioned at the other side of the edge the real ball leaves behind, while the sec-
ond mirror image approaches the real ball from the other side of the edge that
the ball rolls to. This can be modelled as shown in Figure 4.8. The delay between
direct waves and reflected waves can be calculated by:

τ1(t) = l/c = (vt)/c, (4.6a)

τ2(t) = (L− vt)/c, (4.6b)

where c is the group velocity of the vibrational waves in the plate, v the velocity
of the ball, l is the distance from the mirror image to the real plate, and L is
the length of the real plate. The attenuation factors α are also time dependent.
They decrease for mirror images moving away from the real ball and increase for
mirror images approaching the ball. If dispersion and damping are neglected,
they can be approximated by

α1(t) = α0l = α0vt, (4.7a)

α2(t) = α0(L− vt). (4.7b)

In the configuration we used, it appeared that the damping was so large that the
α’s almost vanished in the middle of the plane. As a consequence, the model can
be simplified by only considering one boundary at a time.

Let us now look at the consequences of the reflections on the spectrum of
the rolling sound. We start by considering a fixed position of the source, and
hereby we eliminate the time dependence of τi and αi. The complex spectrum of
the direct sound will be indicated with X(ω); the direct sound plus the reflected
sound will be indicated with Y(ω). If just one reflection is considered, as argued
in the previous paragraph,

Y(ω) = X(ω) + αie−jωτiX(ω), (4.8)

the frequency response function H(ω) and the power spectrum |H(ω)|2 can be
calculated as

|H(ω)|2 = 1+ α2
i + 2αi cos(ωτi), (4.9)

with i = 1 or 2 for the desired edge.
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This shows that the power spectrum of the combined sound can be calculated
from the spectrum of the direct sound by multiplying the spectrum of the direct
sound by a constant plus a cosine. This results in a rippled spectrum. Due to the
fact that the vibrational waves travel at a much higher speed than the ball, we can
still consider the position of the source constant, and use the given H(ω), while
calculating the temporal variation of this rippled spectrum. Using Equations (4.6)
and (4.9), it can be shown that the minima of this ripple are located at:

ω =
(2n+ 1)πc

l
, (4.10a)

ω =
(2n+ 1)πc

L− l
, (4.10b)

with n = 0, 1..∞.
When we do not, for the moment, consider the frequency dependence of the

wave velocity, the power spectrum for one fixed τ is plotted as the dashed line in
Figure 4.9. As a consequence of this frequency dependence of the wave velocity,
c =

√
ωc ′, the time delay τi in between the arrival of the direct and reflected

wave is not a constant value but frequency dependent

τi =
τ ′i√
ω
, (4.11)

resulting in the power spectrum

|H(ω)|2 = 1+ α2
i + 2α cos(

√
ωτ ′i), (4.12)

and now the minima of this ripple are located at:

ω =

(

(2n+ 1)πc ′

l

)2

, (4.13a)

ω =

(

(2n+ 1)πc ′

L− l

)2

. (4.13b)

The pattern of the minima in the power spectrum can be scaled in two ways.
First, increasing the size L of the plate results in a wider pattern. Second, varying
c/l, for instance, by varying the thickness of the plate, changes the steepness of
the patterns. Note that the patterns do not depend on the ball velocity but on the
ball position.
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FIGURE 4.9: Power spectrum of the model for the effect of the images, here drawn for
α = 1 and a fixed wave velocity (dashed line) or a frequency dependent wave velocity
(solid line). The minima depend on τ, and τ itself depends upon the ball position.
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FIGURE 4.10: In the spectrogram of a ball rolling from one side to another over an ap-
proximately free plate, U-shaped strokes of a lighter color appear, indicating less power
at these frequencies. These are drawn schematically in the top panel and calculated from
measurements in the bottom panel.
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This final result is compared with measurements in Figure 4.10, where the
minima are depicted with lines in the upper panel and are seen as strokes of a
lighter color in the lower panel. Due to the earlier mentioned effects as disper-
sion and damping, the waves are not completely canceled at the minimum, which
would result in completely white strokes. Note that τ is considered as time in-
dependent within one analysis window of the spectogram, and changes between
different time windows. The same restraint is valid for the synthesis algorithm
discussed in the next section.

4.7 Synthesis

Next, we tried to get an impression of the perceptual effect of this rippled spec-
trum, by simulating the effect on synthesized noise and comparing it with the
original noise. The synthesis algorithm was divided in two steps. We have started
from Gaussian white noise and filtered it in such a way that its long-term power
spectrum matched the average power spectrum of recorded rolling sound. By
doing so, it is assured that all the spectral properties due to ball and plate proper-
ties as well as the velocity of the ball, are well represented in the obtained sound.
Also spectral effects which are constant in the course of rolling, for instance due
to the radiation from the plate, are taken into account by this step. All temporal
properties, however, are ignored by this procedure. Hence, the direct signal con-
sists of band-pass filtered noise. The noise coming from the mirror images can
then be added to the original noise according to the attenuated delay modeled in
Figure 4.8. This was first simulated for a frequency independent wave velocity. In
this case the contribution of the reflections to the resulting sound was unnaturally
strong overdone. This is a consequence of a very prominent so-called repetition
pitch in this simulation. The perceptual background of repetition pitch will be de-
scribed below. Adding more mirror images in the simulation did not result in any
further improvement in the naturalness of the simulated rolling noise. A consid-
erable improvement was obtained, however, when the simulation included that
the wave velocity is frequency dependent. The perceptual effect of the too promi-
nent repetition pitch disappears. The effect of the spectro-temporal pattern is still
well audible, and results in a considerable improvement of the naturalness of the
sound.
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4.8 Repetition pitch of echoed noise

The study of repetition pitch has been of great interest to pitch-perception re-
search. Repetition pitch can be perceived when a signal, generally a noise signal,
is delayed and added to itself. The frequency of the pitch perceived corresponds
to the inverse of the time delay between the two signals. Yost and Hill [108] used
a model, similar to the one shown in Figure 4.8, to generate these repeated-noise
signals. They concluded that a pitch can be detected even if one signal is up to
20 dB weaker than the other, or, applied to our situation, the reflection can be
up to 20 dB weaker than the direct signal. Some signal alterations have been ap-
plied to the delayed signal such as filtering (Yost [109]) or phase shift (Bilsen [6]),
and this is shown not to influence the presence of a repetition pitch. However,
the perceived prominence of the pitch may decrease with these alterations of the
signal.

In our situation of the ball rolling over the plate there are some differences
with the repeated noise used above. First, the delay between the two noise
sources varies with time. If the wave velocity would be independent of frequency,
this would result in a time-varying repetition pitch. When the frequency depen-
dence of the wave velocity is taken into account, the situation is more complex. In
that case, the ripple on the power spectrum is no longer strictly periodic (see con-
tinuous line in Figure 4.9). Hence, a well defined repetition pitch can no longer
be perceived. Rather, the non-periodic ripple colors the spectrum in a more in-
definite way. When the ball approaches the edge which reflects the waves, the
ripples on the spectrum become more widely spaced. Subjectively, one can hear
that something gets higher. But since the ripple on the spectrum is not periodic,
this, now, is not perceived as a strict increase in pitch. Neither is it perceived as
a change in brightness or sharpness, as these measures are defined as the bal-
ance between high and low frequencies, which remains constant in our case (for
a definition of the various sound qualities see [70][112]). Furthermore this effect
becomes stronger when the ball comes closer to the edge, because the reflections
are strongest there.

Note that the interference pattern consists of a change in time of a non-periodic
ripple over the spectrum. Integration, either in the time or in the spectral domain
results in obscuring or vanishing of this interference pattern. Hence, if human
listeners indeed extract information from this interference pattern as to the posi-
tion and the velocity of the rolling ball, this information resides essentially in the
spectro-temporal domain.



A Smooth Ball Approaching the Edge of a Plate 67

4.9 Discussion

In our study of the sound of a metal ball rolling over a wooden plate, we encoun-
tered a spectro-temporal pattern consisting of a time-varying spectral ripple. The
spacing of the ripples was not equidistant and decreased with distance from the
edge of the plate. By predicting and measuring the running cross-correlogram
between two accelerometer signals, it was shown that this pattern was due to the
interference between the direct waves generated at the point of contact between
ball and plate, and the waves reflected at the edge of the plate. Due to the strong
damping in the plate, only first-order reflections had to be taken into account.
Higher-order reflections only played a minor role. In addition, by calculating the
running cross-correlograms for different frequency bands, it was shown that the
travelling wave velocity was not independent of frequency. In accordance with
traditional plate theory the traveling wave velocity increases with the square root
of frequency. On the basis of this result, the spectro-temporal interference pattern
could quantitatively be described.

It was argued on the basis of the results of pitch-perception research that the
human listener is very sensitive to the kind of information present in this spectro-
temporal interference pattern. The acoustic vibrations induced by a ball rolling
over a wooden plate contain a spectro-temporal pattern listeners can use in es-
timating the time needed for the ball to reach an edge of the plate. Research by
Cabe and Pittenger [9] and Lee and Reddish [59] showed that such information
can indeed be gathered from similar properties of the visual or auditory signal.
Using this information together with other sources of acoustic information, such
as the spectral centroid [41], the spectral tilt, and the temporal variations corre-
lated with the angular speed of the ball (Houben and Stoelinga [44]), allows the
listener not only to estimate physical properties of the ball such as its velocity and
its size, but also plate properties such as its material and its dimensions, which
can never be perceived on the basis of one parameter alone.

In a following set of perception experiments we will investigate if the infor-
mation conveyed by this spectro-temporal interference pattern is actually used
by human listeners to determine properties such as the ball velocity or the time
to reach the edge of the plate. We will do this on the basis of sounds synthe-
sized by simulating the process of direct sound reflected at the edges of a plate.
By varying this pattern independent of other physical parameters, which in the
natural situation are necessarily coupled and thus correlated with this pattern,
we will determine whether indeed the information present in this pattern is used
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by human listeners in reconstructing an auditory image of what happens around
them.

In summary, if accelerometers placed on a wooden plate record the vibrations
induced by a metal ball rolling over this plate, the running cross-correlogram
of the recorded signals indicates the occurrence of reflections of the waves at
the edges of the plate. These running cross-correlograms additionally allow the
measurement of the frequency dependent wave velocity in the plate. Moreover,
the interference between the direct waves coming from the point of contact be-
tween the ball and plate and the waves reflected at the boundary cause a frequency-
dependent ripple over the spectrum of the signal. Since the spacing of the ripple
becomes wider as the ball approaches the boundary of the plate, the spectrogram
shows a time-varying interference pattern. This effect can be described quan-
titatively by modeling the reflections as coming from mirror images outside the
plate. This interference phenomenon is expected to be a source of information the
listener uses to estimate the position and the velocity of the rolling ball. Including
this interference effect in the synthesis of rolling-ball sounds on the basis of such
a simple model indeed improves the perceived naturalness of the sound. Espe-
cially the frequency-dependence of the wave velocity in the model contributes to
this naturalness. As this frequency dependent velocity depends on plate prop-
erties such as its material and thickness, this interference pattern may addition-
ally provide the listener with perceptual information for these plate properties.
Hence, such models provide the basis for further perception research on rolling
sounds.



5 Influence of Wave Reflections at the Plate
Edge on Perceiving the Rolling Direction
of a Rolling Ball

Abstract

When a ball rolls over a plate of finite dimensions, the interference between the
sound generated at the point of impact and the wave reflections at the edges of
the plate causes a characteristic spectro-temporal variation of the sound. The goal
of the perception experiments reported in this chapter was to investigate whether
this acoustic information can be used by listeners to derive information about the
rolling direction of a sound. The sounds used in the experiments were either
recorded or synthesized and represented balls that were rolling towards or away
from the edge of a plate. In the first two second experiments, the participants had
to indicate which of two sounds was caused by a ball rolling towards the edge,
and which was caused by a ball rolling away from the edge. No training was pro-
vided and no feedback was given about the correctness of their responses during
the measurement. The overall performance was close to chance. In a control
experiment it was established that participants could easily discriminate between
sounds that differed only in the rolling direction, despite the fact that they did
not receive any training with these sounds. Thus, although the sounds contained
enough auditory information to be perceived as different, the participants were
not able to interpret these differences consistently in terms of the rolling direction.

5.1 Introduction

In the preceding chapter we examined the acoustic effect of the finite dimensions
of the plate on the vibrations caused by a rolling ball. More specifically, we argued
that a ball rolling towards an edge of the plate can be modeled by extending the
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plate beyond the edge, and rolling an imaginary mirror image of the ball towards
the same edge, but in the opposite direction of the real ball, over this imaginary
extension of the plate. The vibrational waves take some time to travel from the
imaginary part of the plate to the real part of the plate, and only the real part of
the plate can radiate sound. Therefore, the acoustical effect of the mirror image
of the ball is a delayed version of the rolling sound. In the frequency domain this
results in comb filtering of the sound. When the ball approaches the edge, the
amount of delay becomes less, and thus the distance between the crests of the
comb filter becomes larger. This is thus a spectro-temporal effect that varies with
the distance of the ball to the edge of the plate. Hence, this effect could be used
by listeners to determine the position of the ball on the plate.

The varying comb filter effect is influenced by many parameters of the plate,
such as the thickness and the plate size, and the speed of the ball, but not by any
of the geometrical or material properties of the ball. It might be less audible when
the ball bounces heavily but, in essence, it is not altered. In other words, it con-
veys information about the ball position, and thus speed, but is invariant to many
other parameters, which could make it a good source of information for the per-
ception of the speed of the ball. Because of the simple relation between position
and speed, listeners could use this spectro-temporal effect also for estimating the
rolling speed of the ball. We will confirm in Chapter 7 of this thesis, Houben’s
findings [40] that listeners are generally well capable of identifying the faster of
two rolling balls.

In other words, we want to test if people can use this spectro-temporal effect
to determine the speed of the ball. If listeners can interpret information that is
presented to them via this spectro-temporal effect, and use it to determine the
speed of the ball, they should be able to determine the movement of the crests of
the comb filter. If listeners determine this movement, they should also be able to
note if the ball moves towards the center or towards the edge of the plate, because
in the first case the crests of the comb filter move downwards in frequency, and
in the second case they move upwards in frequency, as shown in Figure 4.10. By
asking for this rolling direction, we exclude other cues normally used by listeners
to determine the rolling speed of a ball, such as the spectrum and temporal effects
due to the imperfect spericity of the ball, simply because those are independent
of rolling direction.
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5.2 Experiment

Two experiments are carried out to test whether listeners can hear if a ball rolls
from the edge towards the middle of the plate or starting in the middle and ap-
proaching an edge of the plate. In experiment 1 we used recorded sounds, in
experiment 2 we used synthesized sounds. The synthesized sounds, used in the
second experiment, sound cleaner and the comb filter effect is better audible. This
is due to the simplified synthesis algorithm and the absence of all other temporal
variations.

5.3 Synthesis

For the synthesized sounds, a procedure was used where the average spectrum
of the corresponding ball was copied onto a noise signal, whereafter the effect
of the reflected waves was added, as discussed in the preceding chapter and by
Houben and Stoelinga [44].

From measurements we know that the spectra of rolling balls exhibit a band-
pass characteristic of which the shape depends on various properties of the ball,
such as its velocity. One possibility to synthesize a rolling sound is by using a
physical model which describes the interaction between ball and plate. Such a
model is discussed in Chapters 6 of this thesis, but it is not yet capable of synthe-
sizing convincing rolling sounds for the case that the ball-plate contact is contin-
uous. On the other hand, the effect of the plate edge is easier heard in the sound
when there is a continuous contact between the ball and the plate. Therefore, we
chose to use steal balls, which give a continuous ball-plate contact, and to use a
different synthesis algorithm. The model only requires the basic geometric con-
figuration measures of the ball and plate, and the average spectrum of a rolling
sound.

The simplest model for generating this non-varying sound consists of band-
pass-filtered noise. This results, however, in an unrealistic, synthetic sounding
stimulus. A better result, which mimics more precisely the spectrum of a rolling
sound, is obtained by taking a sample of white noise, and filtering this white
noise with a special filter that gives the noise sample the same, long-term average
spectrum as a chosen rolling sound. The temporal properties of the sound are due
to the finite plate dimensions and the imperfect sphericity of the balls. By taking
the long-term average spectrum of the sound these temporal properties are not
represented. The long-term average spectrum is calculated by first splitting the
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recorded sound into frames, then determining the spectrum of each frame and,
finally, averaging the spectra of these frames. Half overlapping and windowed
frames were used to avoid artifacts due to the edges of the frames. The frames
must be long enough to cover the lowest frequencies of the rolling sound. This
lower limit is determined by the lowest frequencies radiated by the plate. To be
on the safe side, hanning windows of 1024 samples were used, which results for
a sample frequency of 48 kHz in a lowest possible frequency of 46.9 Hz.

Vibrational waves travel from the point of excitation, the ball, to the side of the
plate, where they are reflected by the edge of the plate. These reflected waves ap-
pear to come from a virtual source outside the plate. In the case of a string, those
mirror images are easily determined mathematically. In the case of a plate, how-
ever, this is mathematically not obvious due to added complexity by the fourth-
order differential equation and the fact that a plate is modeled two-dimensionally
instead of one-dimensionally.

We only added the effect of the first reflection of the vibrations because this
one is stronger than the other reflections later on, since the vibrations are damped
when they travel across the plate. The sound radiated from the plate due to vi-
brations from the mirror image occurs somewhat later than the sound radiated
due to the direct vibrations of the ball. The effect of a time-varying delay can be
approximated by splitting the sound into frames and varying the delay between
frames. We again used half overlapping windows with a length of 1024 samples,
using a sample frequency of 48 kHz. The delays, ranging from 0 to 4 ms, had very
small steps between two consecutive segments, so that the steps in the delay time
are not heard. Two complicating effects have to be included to obtain a natural
sound. The velocity of the vibrational waves is not constant but depends on the
square root of the frequency. A frequency-dependent delay was synthesized by
calculating one period of a Schroeder phase complex [89], and this phase complex
was used to obtain the coefficients for a FIR filter. A Schroeder phase complex is
a sound in which all harmonics are of equal amplitude,

r(t) =

N∑

n=1

cos(
2πnf0t

T
+ φ(n)), (5.1)

and have a phase relation φ(n) as follows:

φ(n) =
2πCn(n− 1)

N
, (5.2)
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where n is the harmonic number and N the total number of harmonics. C was
chosen to be 1, in which case the tone complex is called Schroeder positive. The
signal approaches a periodic, linear FM chirp. The instantaneous frequency de-
creases linearly from the frequency of the highest component, which was 24 kHz,
down to the fundamental frequency, 250 Hz for the longest delay.

This range of frequencies is covered in maximally 4 ms, making it a rather fast
chirp. A second effect of the propagation of vibrational waves in a plate is the
faster damping of the higher frequency vibrations. This was modeled by multi-
plying the time signal with a ramp. The chirp starts with a high frequency and
therefore only those high frequencies are attenuated by the ramp. This damping
as well as the delay times are a property of the material and thickness of the plate.
These values should therefore be altered when synthesizing the sound produced
by other plates.

5.4 Method

The experiment took place in a quiet room, where the participants were pre-
sented with the stimuli via headphones. The experimental paradigm was two-
alternative forced-choice. Feedback was never given. After given an introductory
text, participants were three times presented with a set of 18 stimuli. Each set con-
sisted of the same 18 pairs of sounds, presented in a different random order. The
participants were asked to respond to the question “Which ball rolls towards the
edge of the plate?”, and presented two buttons labeled “first” and ”second” to
indicate their answer. Feedback about the correctness of their answers was never
given.

This relatively short experiment took the participants about five minutes. They
were not paid for participating. The participants were colleagues who were aware
of the general line of research but uninformed about the effect of the plate edge
on the sound of rolling balls. In both experiments we had four participants. None
of the participants that volunteered in the first experiments also participated in
the second experiment.

5.5 Stimuli

The sounds were recorded with the setup described in the preceding chapter.
Steel balls with diameters of 20, 35 and 50 mm were used, which were rolled
at speeds of 0.67, 1.15 or 1.6 m/s. These sounds were also used to obtain the
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spectrum for the synthesized sounds. From all combinations two samples were
taken, one sample was taken from the beginning of the sound where the ball rolls
from the edge towards the middle of the plate and another sample starting about
halfway the sound where the ball rolls from the center towards the opposite edge
of the plate. Both orders of these two samples formed one stimulus. Due to the
different speeds of the balls, the samples had different lengths, ranging from 500
to 900 ms. In between the stimuli there was always 500 ms of silence. The total
number of stimuli was 3× 3× 2 = 18.

TABLE 5.1: Results of experiment 1, using recorded sounds. In the middle part
the percentages correct of the responses are given for the four participants and
the three sets of stimuli, which represent the same 18 stimuli in different random
orders. On the lowest row the mean percentages correct for each participant are
presented, on the right side the mean percentages for each set are presented, while
the grand mean of all responses is given at the bottom right.

participant number

1 2 3 4 mean

stimulus 1 44 39 72 72 57

set 2 72 56 50 44 56

number 3 39 44 56 61 50

mean 52 46 59 59 54

TABLE 5.2: Results of experiment 2, using synthesized sounds. In the middle part
the percentages correct of the responses are given for the four participants and
the three sets of stimuli, which represent the same 18 stimuli in different random
orders. On the lowest row the mean percentages correct for each participant are
presented, on the right side the mean percentages for each set are presented, while
the grand mean of all responses is given at the bottom right.

participant number

5 6 7 8 mean

stimulus 1 39 44 44 50 44

set 2 56 44 44 56 50

number 3 56 44 33 44 44

mean 50 44 41 50 46
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5.6 Results

The experimental results show that listeners cannot or, not very well, detect the
rolling direction of a rolling ball on the plate, which was either rolling from or
towards the edge of the plate. For each of the two experiments, the two-sided,
95% confidence interval for guessing covered the range from 43.5% to 56.5%. The
mean percentage correct values of both experiments fall within this region. When
looking at each participant individually, the two-sided, 95% confidence interval
for guessing covered the range from 37.0% to 63.0%. Here too, all results fall
within this region. There is no trend in the percentages correct for consecutive
sets, and thus we have no indication that the participants are learning their task.
We can thus not conclude that the participants extracted any relevant information
about the rolling direction from listening to the sound.

5.7 Control experiment

The negative result in the first two experiments described in this chapter could
have different reasons. One explanation is that listeners can discriminate between
sounds that roll towards or away from the edge, but that they are unable to iden-
tify which sound represents rolling towards the edge. Another more trivial ex-
planation is that listeners cannot discriminate between two sounds that differ in
rolling direction.

To test this latter explanation, a control experiment was set up. The same stim-
uli were used as in the first two experiments described in this chapter. To begin
with, two sounds were presented to the listener as before. They again originated
from three different balls rolling with three different speeds. These sounds were
presented in two versions, one approaching the edge of the plate and the other
moving away from the edge of the plate. After these two sounds a third sound
was presented, being equal to one of the first two sounds. The participants’ task
was to indicate whether they thought this third sound was equal to the first or
second sound. The number of stimuli was 36 sound triplets per set this number
is twice as large compared to the first two experiments, because there are two
alternatives for the third sound in the triplet. This time all the experiments con-
sisted of three sets of recorded sounds and three sets of synthesized sounds for
all eight participants. The sets were presented in alternating sequence, beginning
with the recorded sounds. Three of the participants were also participants of one
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of the first two experiments. This control experiment took the participants about
15 minutes, they were not financially rewarded.

5.8 Results

TABLE 5.3: Results of the control experiment. In the middle part the percentages
correct of the responses are given for the eight participants and the two types of
stimuli, either recorded or synthesized sounds, averaged across all three stimu-
lus sets. On the lowest row the mean percentages correct for each participant
are presented, on the right side the mean percentages for each stimulus type are
presented, while the grand mean of all responses is given at the bottom right.
Numbers presented in italics are not different from guessing in a statistically sig-
nificant way.

participant number

1 2 3 4 5 6 7 8 mean

recorded sounds 91 96 86 100 99 83 91 83 91

synthetic sounds 76 61 50 56 96 70 77 81 71

mean 83 79 68 78 98 77 84 82 81

For the recorded sounds, the participants could clearly distinguish the two sounds,
with the worst score still 83% correct. For synthetic sounds, the situation is some-
what different. The individual differences were quite large. Two out of eight
participants were not able to score significantly better than chance. Another par-
ticipant scored better than chance in a statistically significant way (p=0.011), but
he or she had difficulties in doing the task, scoring only 61% correct. Only five
out of eight participants scored reasonably well, of whom one scores very well.
The participant that scored equal to chance (50% correct), indicated afterwards
that he or she could not do the task for these sounds and continued by always
pressing the same button.

5.9 Discussion

In the previous chapter it was explained that the wave reflections result in peaks
in the spectrum. These peaks move upwards in frequency when the ball ap-
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proaches the edge of the plate and downward in frequency when the ball moves
away from the edge of the plate. In the third experiment of this chapter, it was
shown that, for the recorded sounds, and for five out of eight participants also for
synthetic sounds, listeners could very well distinguish between the sound from a
ball rolling towards the edge of the plate and one rolling towards the edge of a
plate. In an identification task, both experiments showed performance that was
not significantly different from chance. This means that the listeners could not
tell where the differences they heard originated from.

The time needed for the ball to reach an edge of the plate can also be derived
from the movement of the peaks in the spectrum, in a similar way that plum-
meting gannets estimate the time before they hit the water [59], and this could
help listeners in estimating the speed of the ball. With the current negative re-
sults regarding the rolling direction, it seems unlikely that listeners do use this
spectro-temporal pattern for this seemingly more difficult task. Thus, the acous-
tic information resulting from the reflections at the plate edge does not help in
explaining the generally good capability of listeners to discriminate the faster
rolling ball from the slower one, which will be shown in Chapter 7.
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6 Time-domain Modeling and Simulation of
Rolling Objects1

Abstract

A model that was previously developed for simulating a single impact of a ball
on a damped plate has been adapted to simulate the sound of a ball rolling over
a plate. The original model has the advantage of being well tested and showing
good agreement between measurements and time-domain simulations of various
impacted plates [12]. The main changes for its adaptation to rolling sounds were
made in the ball-plate contact. Instead of an impact point that is fixed in space
and short in time the model now incorporates an interacting contact point that is
continuously moving in space. To allow for the variable position of the contact
point, we use a special spatial window that is optimized for this purpose. Fur-
thermore, a model for the surface roughness of the plate was added.

The model is validated by means of three different types of simulations. The
numerical results are either compared with experiments or with analytical cal-
culations. The first type of simulation is that of a ball that rolls over a surface
with some random asperities. The main observation is that the ball loses con-
tact with the plate at some speed. The second simulation is that of a sinusoidally
time-varying source that moves over the plate. Here the characteristic Doppler
effect is identified. The third set of simulations are of a ball that is dropped on a
plate. The ball bounces back to some height that is lower than the original release
height. This fraction of height, also called the restitution coefficient, was measured
and compared with simulated data.

Following the validation procedure, the model is used to simulate rolling ob-
jects. It is shown that different kinds of contact exist between ball and plate. Four

1This chapter is based on Stoelinga and Chaigne [97] and [93]
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different types of rolling with different plate/ball contact parameters are iden-
tified: amplitude modulations, periodic bouncing, chaotic bouncing and contin-
uous contact. Comparisons are made between measured and simulated accele-
rations of a fixed point on a aluminum plate with a sinusoidal waviness profile,
which is set into vibrations by rolling spheres of various sizes, stiffnesses and
densities.

6.1 Introduction

Many attempts have been made to synthesize rolling sounds. These roughly fall
in two categories. They can be based on signal processing or based on numerical
simulation of physical laws. The signal processing models can also have some
physical basis. Often we can distinguish several steps in the processing, repre-
senting a surface model, a contact model and a plate model.

The signal based approachwas used by Hermes [36], who tried to generate the
sounds by convolving a series of impulses with a gamma tone, a cosine manipu-
lated to have an envelope formed by a polynomial attack and exponential decay.
Some temporal variations are added (amplitude modulation and a decaying am-
plitude of the pulses). Also Van den Doel et al. [105] used this approach, their
focus lied on the generation of sounds for interactive virtual environments. One
example they give is the rolling and bouncing of a rock in a virtual wok. Pauly et
al. had the same focus, and presented a model including a two-dimensional con-
tact including a Coulomb friction model [76]. They were capable of simulating
complex situations such as a spinning ball dropped onto an inclined plane.

Within the sounding object project, an attempt has been made to synthesize
rolling sounds [81]. The researchers from this project made, as they called it, “car-
toonifications” of a real rolling sound. The strong point of their algorithm is the
fact that the sounds are generated in real time, allowing their use in virtual reality
applications. On the other hand it is impossible to compare experimental record-
ings with computed sounds, because the latter are only intended as a cartoon of
the first. The only information about the quality of their sounds is available from
the effectiveness of the sounds in an interactive augmented reality experiment
[80].
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For train track-wheel interaction a lot of research has been done, and the mod-
els have a physical basis. One of these numerical models, called TWINS, was ver-
ified with experimental data [101] [100]. The authors conclude that “The model is
found to give reliable results, provided that extreme care is taken with the input
data, especially concerning the roughness data and the attenuation of the vibra-
tion along the rail”. The model, however, is defined in the frequency domain and,
due to the lack of phase information, we cannot transform it to the time domain
and listen to the results. Furthermore their model is linear, and thus it is expected
to fail in simulating the chaotic bouncing phenomena observed in experiments,
as described in Section 6.4.3 of this paper. A non-linear time domain model was
proposed by Nordborg [74]. The output of this model, however, was not com-
pared to measured data in his paper.

The non-linear interaction between a sphere and plane has been subject of re-
search also. Some interesting results have been found in this way. In one of the
first articles on the topic, by Nayak [72], the loss of contact due to vibrations of the
plate is calculated, using the method of harmonic balance. Later, similar results
were found with the more refined method of multiple scales [38].

By applying the stationary solution of the Fokker-Planck equation to the Hertz-
ian contact problem, the resulting stationary probability density function for the
relative displacement can be derived [75]. The interaction of two rough surfaces
as well as surface roughness of differently finished surfaces were presented by
Sayles and Soom [87].

As a basis for the current work we start from the model of impacted plates by
Chaigne and Lambourg [12] [57] which is summarized briefly in Section 6.2. It has
the advantage of yielding a good agreement between measurements and simula-
tions of damped impacted plates. This agreement is primarily due to the detailed
modeling of the various processes contributing to the damping in the plate. This
model consists of three parts. One part is the contact model between the ball and
the plate based on Hertz’s law. Since it had to be changed here to allow for rolling
sounds, this adaptation is treated in Section 6.3. The contact of the ball sets the
plate into vibration. The second part of the model is that of the flexural vibra-
tions in the plate. In the numerical algorithm, the plate is represented at discrete
gridpoints. In all these gridpoints the motion of the plate is calculated by solv-
ing the Kirchhoff-Love plate equation using an explicit finite difference scheme.
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The schemes used are of 4th order in time and 2nd order in space. An impor-
tant aspect for the sonic quality of the simulations is the damping in the plate. In
the original model thermoelastic damping, viscoelastic damping, and damping
due to the radiation of sound are accounted for. The third part of the model is a
model for the radiation of the impacted plate sound in free space. This is covered
by calculating a Rayleigh integral over the plate. A simple correction at low fre-
quencies is applied to account for the case of an unbaffled plate. This radiation
model has shown to be effective and was not changed. In Section 6.4, preliminary
simulations of spheres rolling on an MDF (Medium Density Fiberboard) plate are
presented in order to validate the model. The ability of the method to reproduce
typical features such as Doppler effect, restitution coefficient at the rebounds,
and the influence of surface profile on the particular histories of rolling sounds
are presented and discussed. Finally, Section 6.5 presents an extensive compari-
son between measured and simulated plate accelerations for an aluminum plate
with a specially designed sinusoidal profile, which is set into vibrations by rolling
spheres of various sizes, stiffnesses and densities.

6.2 Single impact on a damped plate

We consider here the sound radiated by the flexural vibrations of a finite plate
excited by a single impact. This excitation will be revisited in the next section
to account for rolling. To simplify the presentation, it is assumed that the plate
is rectangular, thin, homogeneous and isotropic, and that the Kirchhoff-Love ap-
proximations are applicable. The thickness h of the plate is a function of the coor-
dinates (x, y), to allow for introducing roughness and waviness in the model. In
the simulations, the boundary conditions can be selected either free, clamped or
simply supported on each edge. In the experiments presented in Sections 6.4 and
6.5, the plates are free on each edge and are lying on four springs: this has the con-
sequence of introducing a supplementary rigid body mode of very low frequency
with no consequence on the present problem, so that it will not be discussed any
longer in this paper.

One main challenge of the present study is to reproduce rolling sounds and
vibrations in the time-domain convincingly so that the results of the simulations
can be heard, and reasonably compared to real recorded sounds. This imposes
to use an accurate model of damping for the plate. We use here a general model
of damping that includes thermoelastic, viscoelastic and radiation losses [57]. In
what follows, two different isotropic plates were used: MDF and aluminum, re-
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FIGURE 6.1: Geometry of the plate.

spectively. The MDF plate is characterized by high attenuation, which is well rep-
resented by a viscoelastic model. For the aluminum plate (as for metallic plates,
in general), only thermoelastic and radiation losses are taken into account. As
a consequence, the rigidity of the plates becomes complex. In what follows, the
derivatives versus time ∂/∂t are replaced, for convenience, by a multiplication by
s, the Laplace variable. For the MDF plate, the complex rigidity is given by [12]:

D̃ =
Eh3

12(1− ν2)

[

1+
sRv1

s+ sv1
+

sRv2

s+ sv2

]

, (6.1)

where E is the Young’s modulus of the plate and ν its Poisson’s ratio. Rv1, Rv2, sv1
and sv2 are viscoelastic parameters derived from curve-fitting of measured decay
times of free vibrations over a broad range of frequencies [57]. The magnitudes
of both fractions between the brackets in Equation (6.1) are supposed to be small
expressed relative to unity. The numerical values used here are listed in Table 6.1
on page 97. For the aluminum plate, the complex rigidity is written [12]:
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, (6.2)

where ρ is the plate density, Rt and ct are thermoelastic constants of the material,
ωc its critical frequency, ρa is the density of air, ca the speed of sound in air, and
an and bm are constants (see Table 6.2). The two fractions between the brackets
in Equation (6.2) are perturbations terms of the first order compared to unity. The
first fraction accounts for thermoelastic damping while the second fraction ac-
counts for radiation losses in the plate and takes the form of a Padé approximant.
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FIGURE 6.2: Ball-plate interaction. Hertz’s model.

Numerical values of these physical parameters can be found in Table 6.2.

As a consequence of this damping model, the transverse displacement W of
the plate is governed by the equation:

ρhs2W̃ = −D̃∇4W̃ + q̃, (6.3)

where W̃ and q̃ are the Laplace transforms of displacement and excitation, re-
spectively. ∇4 is the biharmonic operator.

It is assumed that both plate and impactor are elastic solids and that their
interaction is governed by Hertz’s law of contact. In this context the interaction
force at the contact point of coordinates (x0, y0) between the plate and the sphere
of radius R is given by (see Figure 6.2):

Fc(t) =

{
κ [R− (η(t) −W(x0, y0, t))]

3/2 for η(t) −W(x0, y0, t) < R

0 otherwise,
(6.4)

where η(t) is the displacement of the center of gravity of the impacting sphere (or
ball) of mass m. κ is the Hertzian constant, in N/m2/3 [107]. During the contact,
the motion of the sphere is governed by Newton’s second law:

m
d2η

dt2
= −Fc(t). (6.5)
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The origin of time t = 0 is selected at the very instant when the sphere just hits
the plate with initial velocity dη

dt
= V0.

In Equation (6.3), q has the dimension of a pressure. In order to establish the
link between the impact force and q, one has to consider that, during the contact
phase, the force is distributed over a finite area. To account for this, we define a
spatial window M(x− x0, y− y0) so that:

q(x, y, t) = M(x− x0, y− y0)Fc(t). (6.6)

The order of magnitude for M was obtained experimentally by measuring the
spot on plates consecutive to the impact of spheres previously colored with ink.
In addition, the model allows temporal variation ofM to account for the variation
of the contact surface with time. However, no significant discrepancies were ob-
served between simulations and measurements, at least for hard impactors [11].

Equations (6.3)-(6.6) are solved numerically by means of high-order explicit
finite difference schemes [57]. In order to minimize frequency warping, a high
sampling frequency fe is requested: 192 kHz was the standard value used, which
ensures estimation of the eigenfrequencies of the plate up to 5 kHz within one
per cent accuracy. However, for appropriate reproduction of the restitution coef-
ficient (see Section 6.4.2) it was found that higher sampling rates were necessary.

The numerical model yields the time history of impact force Fc(t), plate dis-
placement W(x, y, t) and sphere displacement η(t) as output files. From the sur-
face distribution W(x, y, t), the radiated sound pressure p(r, t) at a given point r
in space is computed, using a Rayleigh integral [57]. Other vibrational quantities,
such as plate velocity and acceleration, can also easily be derived.

6.3 Adaptation of the model for moving sources

We start the explanation of the model for rolling objects by considering first “im-
posed” moving sources, thus leaving the plate-ball interaction problem temporar-
ily aside. This preliminary simple model is used to explain the distribution of
force onto the gridpoints in section 6.3.1, and it will also be used later in sec-
tion 6.4.1 to show vibrations in the plate in the case of a moving, harmonic excita-
tion. An imposed force source would correspond roughly to the case of a shaker
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attached to the plate. However, for a moving source such an attachment is not
possible in reality, and thus this model is rather theoretical.

In a second part, a more realistic case is treated where the vibrations of the
plate lead to a change of force between ball and plate. This model is called “in-
teractive”. This model was used in almost all the simulations, except in the pre-
viously mentioned ones.

6.3.1 Windowing

In our numerical model, the plate is represented at discrete positions, in the time
domain as well as spatially. The discrete spatial locations where the displacement
of the plate is defined will be called gridpoints hereafter.

To move a force smoothly over the plate, we need to convert the contact force,
Fc, located at a continuously defined position to one at the discrete gridpoints,
(Nx, Ny), of the plate. Thus, a numerical version of Equation (6.6) is now written:

q(Nx, Ny) = Fc ×M(Nx∆x− x0, Ny∆y− y0). (6.7)

The contact force is spread a little in space, thus over the gridpoints, by the win-
dow function M(. . .). The gridpoints are separated by a spatial step ∆x,∆y. In
order to create a window in two dimensions, as needed by Equation (6.7), we
multiply a window in the two orthogonal directions:

M(x, y) = M(x)M(y). (6.8)

The windowing is illustrated in Figure 6.3. For moving sources, the appropriate
choice of the window function is more critical than for fixed impacts. To satisfy
numerical accuracy, some constraints are posed on the window function. One
first constraint is that, for a given imposed force, this force is kept constant when
the point of impact is changing. The second constraint is that the windowing
should be independent of the spatial sampling. These constraints are always met
by the class of generalized cosine windows, and therefore these functions were
selected (see Figure 6.4). The generalized cosine windows have the form
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FIGURE 6.3: The spatial window spreads the force onto the gridpoints. When the ball
rolls over the virtual plate, the position of the window changes. Due to this effect at each
point in time, a different portion of the window is found at the gridpoints. The spatial
window is thus converted into a window in time, that is stretched for higher velocities.
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FIGURE 6.4: Plot of the various window functions. The upper left panel shows the win-
dow function itself, the uper right panel shows the second derivative and the lower panel
shows the fourth derivative of the window function. The width of the windows is nor-
malised to their minimal usable width. Although the functions itself look much alike,
their higher order derivatives are very different. The s4-window (see Equation 6.12) is
the only one that is zero at its border at all derivatives
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M(x) =






N∑

n=0

an cos(nπx/2) if − 1 ≤ x ≤ 1,

0 (otherwise),

(6.9)

where N is the order of the window function. Using a0 = a1 = 1
2
, we obtain the

Hanning window. Generally the window is normalized so that M(0) = 1. In our
case, we wish that the window be smooth near the edge, in its first, second, third
and fourth derivatives, in order to avoid unwanted noise in the simulations due
to unrealistic discontinuities. This implies:

M(0) = 1,M(1) = 0,M ′′(1) = 0,M ′′′′(1) = 0, (6.10)

for which we need four degrees of freedom, or N = 3, and this leads to

a0 =
5

16
, a1 =

15

32
, a2 =

3

16
, a3 =

1

32
, (6.11)

or in combining with Equation (6.9):

Ms4(x) = 5/16+ 15/32 cos(πx/2)+ 3/16 cos(2πx/2)+ 1/32 cos(3πx/2). (6.12)

This last function will be called the smooth-fourth-order derivative generalised
cosine window or abbreviated “s4-window”. It is also possible to generate a win-
dow function that is only smooth in its first two derivatives. This function,

Ms2(x) = 3/8+ 1/2 cos(πx/2) + 1/8 cos(2πx/2), (6.13)

we will call “s2-window”. The relevance of the appropriate choice of windows
is shown in Figure 6.5. We can see that the numerically calculated second-order
derivative of the hanning window has large errors near its discontinuities which
do not vanish when the spatial discretisation step is taken smaller. The other win-
dow shows much less error, and this error does decrease with decreasing spatial
step. The error depends largely on the position of the window, that is, on the posi-
tion of the highest point of the window in between the gridpoints. This is shown
in Figure 6.6. If the window is approximately centered, the error is large. The
error is periodic with the sample interval: two periods are shown in Figure 6.6.
Note that in Figure 6.6 the error values are not reduced when using more sample
points in the case of the hanning window, because the largest source of error is
the discontinuity. For the s2-window, on the contrary, we can reduce the error as
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FIGURE 6.5: A window function with its second-order derivative calculated twice, once
analytically and once numerically. We see in the left pane a Hanning window with a
large difference between the two double derivatives, due to its discontinuous second
order derivative. In the right pane, a generalised cosine window with smooth second
order derivative is depicted, which has no large discrepancy between the analytically
and numerically calculated second-order derivative.

much as we wish by taking more sample points.

For the sake of simplicity and brevity, only the properties of the “s2-window”
are presented in Figures 6.5 and 6.6. In fact, due to the presence of 4th-order
derivatives in the plate equation, an “s4-window” was used preferentially in our
simulations.

6.3.2 Interactive model

To create an interactive model, where the force depends on the displacement of
the plate, we need to know this displacement in the first place. However the plate
displacement is only calculated at the gridpoints. To find the displacement at the
contact point, it needs to be interpolated from the nearby gridpoints. This is the
inverse problem as treated in the previous section, and the same windowing tech-
nique is used to obtain the plate displacement at the position of the contact.

We return now to the model used for the contact. As for isolated impacts, see
Equation (6.4), the ball-plate interaction is assumed to be governed by Hertz’s
law. To account for surface irregularities (random rugosity and/or waviness),
we make now the distinction between the plate displacementWp and the surface
profile Ws. This distinction is necessary because the scale of the irregularities is
usually smaller than the scale of the spatial grid used for the plate and thus, we
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FIGURE 6.6: The actual error of the numerical method largely depends on the shortest
distance between the highest point of the window and the discretisation points. Here we
see the error in the case of a window sampled at eight points (left) and at sixteen points
(right).

will have to process them separately. As a consequence, following the procedure
used by several authors [74] [107], the interaction force is rewritten as follows:

Fc =

{
κ [R− (η(t) −Wp(x, y, t) −Ws(x, y, t))]

3/2
= κα3/2 for α > 0

0 otherwise,
(6.14)

where the coordinates (x, y) of the contact point are now moving with time. No-
tice that, in some cases, a damping term of the form µα̇α1/2 was added in the
expression of Fc in order to account for dissipation in the ball [47][55].

6.3.3 Surface model

Although for impacts it is common to regard the ball and plate as perfect sphere
and plane, in rolling the asperities of the contacts are the source of the structural
vibrations. There have been a number of publications dealing with the contact of
two rough surfaces. Two different approaches can be identified. One is a stochas-
tic approach, sometimes called a Greenwood and Williams surface model, after
the authors of the pioneering work [32]. In this model the two rough surfaces are
replaced by a smooth surface in contact with an equivalent rough surface. The
equivalent rough surface consists of asperities with simple geometrical shapes.
They are assumed to have a stochastic distribution for some parameters such as
the asperity height and density [51][52]. In a fractal approach, the two surfaces
are considered to have the same self-affine scaling properties, but are uncorre-
lated [45]. These publications do not treat the case of a curved surface, but if the
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FIGURE 6.7: Interactive model of rolling on a rough surface with two spatial scales. The
interaction of the sphere with the surface profile is resolved at a fine spatial scale. The
resulting force is transferred to the plate using a spatial window. The plate displacement
is then calculated at its gridpoints (large scale). This displacement is then interpolated on
a finer grid so that it can be included in the calculation of the contact force. The procedure
is repeated at the next time step, for a different position of the moving sphere.

surface irregularities are small compared to the sphere size this approach seems
appropriate.

In our numerical simulations, a profile map was used to describe the relative
height of the surface. Some stochastic as well as a fractal methods were tried to
generate a profile map. These methods gave different simulation results, but, un-
til we have done an extensive study of these differences, we choose to use a very
simple model. For the simulations, the relative height of the surface is stored in
a profile map, representing the relative height of the plate surface. Before the ac-
tual simulation starts, a profile map is filled with random numbers between zero
and a given maximal height. This leads to a surface height that is uniformly dis-
tributed between zero and this maximum height. This profile map is then used
in Equation (6.14) to calculate the contact force.

Usually, the surface irregularities, and the contact region, are defined on a
much smaller scale, about 50 times smaller than the size of the plate grid. It
is unfeasible to change the grid to such small sizes since it would lead to 2500
times longer calculation times. Therefore we calculate the contact force with a
spatial grid that is much finer than the grid used for the calculations of the plate
vibrations, and then distribute the force that was found over the nearby points of
the plate grid, using the earlier introduced windowing functions. Conversely, the
resulting displacement of the plate is interpolated so that the contact force can be
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calculated on the fine grid corresponding to the rugosity scale of the surface. This
procedure is explained in Figure 6.7.

6.4 Simulations

In this section, a first series of simulations is presented in order to validate the
model. In the next paragraph, a simple constant moving force is applied to the
plate in order to test the ability of the model to reproduce Doppler effects ad-
equately. In Section 6.4.2, the excitation is fixed and the ball-plate interaction
model is tested by comparing measured and simulated restitution coefficients. In
Section 6.4.3, the complete interactive model is used and comparisons are made
between measurements and simulations of spheres rolling on an aluminum plate
with a sinusoidal surface profile. Here, we focus on the critical velocities for
which there is a loss of contact. Simulated velocities are compared with mea-
surements performed using a high-speed camera. Finally, large ranges of input
physical parameters are tested in Section 6.4.4 in order to explore the capability
of the model to simulate a significant variety of sounds: here the sounds and vi-
brations produced by different spheres rolling on an MDF plate with imposed
random rugosity are simulated.

6.4.1 Doppler effect

One effect that is immediately expected when moving sources are involved is
the Doppler effect. Due to the speed of the sphere, the vibrations in front of
it are compressed while the waves behind are elongated. Figure 6.8 shows an
example of simulations for a sphere rolling on a very low and narrow metallic
plate (a rail). Observations are made before the waves reach the end of the rail.
On this figure, we can see the compressed and expanded waves, as expected.
The frequency shift is expected to be asymmetric around the forcing frequency ff
where the higher frequency, in front of the source, equals ff/(1+M) and the lower
frequency, behind the source equals ff/(1−M). The mach number,M equals 0.207
in our case resulting in 631 and 414 Hz, before and behind the source, where we
found 638 and 419 Hz in our simulation.

6.4.2 Restitution coefficient

When a ball is dropped on a plate, it bounces back to some height that is lower
than the original release height. The fraction of the original and rebounce height
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FIGURE 6.8: The plate vibrations at a fixed point vary in frequency due to the Doppler ef-
fect. The example shown is obtained for a 500 Hz sinusoidal imposed force moving with
a speed of 500 m/s. The origin of time corresponds at the very instant where the source
passes at the fixed point. At the left side where the source approaches the observation
point, the average frequency is 638 Hz, and it is 419 Hz at the right side.

is called the restitution coefficient. The restitution coefficient represents the loss of
energy during bouncing. It varies with many material parameters due to various
effects, as described in the literature [20][111].

Simulations are made here on MDF plates, which are also used for the ex-
periments. Parameters of these plates are found in Table 6.1. The predominant
energy loss is due to the spread of vibrational energy in the plate. As seen in
Figure 6.9, our model gives good results for the plate with thickness h = 6 mm,
whereas the energy loss is underestimated in the model by nearly 20 % for the
thick plate (h = 12 mm). This might be due to the fact that the model is based
on the thin plate theory, which is probably not justified anymore in this latter case.

Finally, it might be of interest to indicate that a large sampling rate was re-
quired in order to estimate the restitution coefficient with sufficient accuracy.
Figure 6.10 shows an example of this, for a ball bouncing on the thinnest plate
(h = 6 mm), where it is shown that the estimation of this coefficient converges to
an asymptotic value for sampling frequencies above 1536 kHz.
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6.4.3 Loss of contact and rebounds

When a ball rolls over a surface with sufficient asperities, it loses contact with the
plate at some speed. To verify the simulated accuracy of the phenomenon, we
rolled a ball over an aluminum plate with a sinusoidal suface profile. The size
of the plate was 1x0.2 m with an average thickness of 8 mm. The wavelength
of the profile was λ=5 cm, and the wave amplitude was H0=2 mm. When the
ball moves faster over the plate, this profile slides faster underneath the ball. If
contact is maintained, the ball is forced to follow the profile, going up and down
in vertical direction. At a certain point, the downward acceleration that the ball
is required to have to follow the profile exceeds the gravitational acceleration of
the ball. This condition for which the ball leaves the plate is given by the so-
called “critical velocity” v0. A rough estimate of v0 can be simply obtained by
computing this, horizontal, velocity for which the vertical ball acceleration is just
equal to the gravity acceleration g which yields:

v0 =
λ

2π

√

g

H0

. (6.15)

For the aluminum plate with wavelength λ equal to 50 mm and amplitude H0

equal to 2 mm, Equation (6.15) yields v0=0.56 m/s. Of course, the main weak
point of this estimation is that it does not take the motion of the plate into ac-
count. This can be done only numerically and it is in fact one possible application
of our model. For the same parameters, and taking further the parameters of the
aluminum plate into account, the model yields v0 = 0.4 m/s.

In order to check this value experimentally, we made movies of a ball rolling
over the profiled plate using a high speed camera, and the vibrations of the plate
were measured with an accelerometer. The exact critical velocity, at which the
transition between continuous contact and periodic bouncing occurs, is difficult
to determine experimentally. The reason for this difficulty arises from the ac-
celerometer signal, since the ball impacts are difficult to be distinguished from
the periodical modulations of the contact force, which are present just before the
loss of contact. Even in the images from the high speed camera it is difficult to see
a very narrow space between the ball and the plate (see Figure 6.11). In order to
circumvent the problem, systematic measurements and simulations were made
where the initial speed of the ball was increased stepwise from 0.1 up to 1 m/s
with 0.1 m/s steps in order to obtain upper and lower bounds for v0.
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FIGURE 6.11: Pictures of the highspeed camera. A small ball is rolling over a plate with
a sinusoidal profile. The plate is 100 cm long but only the first 30 cm are shown. In
the left panel the ball has a velocity of about 0.7 m/s and is above the plate. In the
right panel the velocity is about 0.3 m/s and the ball remains in contact with the plate.
Note that we see a reflection of the ball in the plate, which can be used to estimate the
distance between ball and plate. The complete videos are available at the web address:
wwwy.ensta.fr/∼chaigne/Rolling_sounds.

In this section we investigated the system without a Hertzian spring. This
Herzian spring can, together with the mass of the ball form a resonant system.
Oscillations in this system can also cause loss of contact, and this could be due
to very small roughness of the plate the ball rolls over. This effect is analyzed in
Appendix 6.C.

For the lowest velocities, below v0=0.4 m/s, there is clearly continuous contact
between ball and plate. Around 0.6 m/s we could see the ball impacting the plate.
For velocities in between those two values, it is very difficult to determine the
actual contact because, at the point where the ball and plate are in slight contact,
very few vibrations are induced into the plate. When there is slight loss of contact,
the gap between ball and plate is very small making it hard to detect in the films.
The results of simulations are summarized in Figure 6.12 where the discontinuity
between the two slopes at v0 = 0.4 m/s is in agreement with the experimental
observations.

6.4.4 First simulations of rolling sounds

We now use our model to simulate broad categories of rolling objects. We will
show that there are different kinds of contacts between ball and plate, depend-
ing on their respective geometry and material properties. This list should not
be considered as a complete list of all possible rolling types, but rather as typi-
cal illustrations. The following examples simulate sounds produced by spheres
rolling over an MDF plate whose input parameters are listed in Table 1.
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FIGURE 6.12: Average height of the ball above the surface for a ball rolling over a sinu-
soidally curved surface. Up to a certain critical speed, here 0.4 m/s, the ball remains in
contact with the plate. Above this speed the bouncing becomes quickly chaotic.

TABLE 6.1: Input parameters for the simulations with MDF plates

Plate geometry 1.2× 0.5× 0.018 m
Plate material MDF
Boundary conditions free
Plate density 700 kg m−3

Young’s modulus E = 3.4 GPa
Poisson’s ratio 0.4
Damping parameters (see [57])

Rv1 = 60× 10−3 ; Rv2 = 20× 10−6

sv1 = 15× 103 rad s−1; sv2 = 50× 103 rad s−1

Ball velocity 0.6 m s−1

Surface profile uniformly distributed between 0.0 and 0.1 mm
spatial step: 0.19× 0.19 mm

Specific parameters in simulations a) to d); See Figure 6.13
Hertzian constant a) 80 ; b) 8× 106 ; c) 8× 105 ; d) 8× 104 Nm−1.5

Ball mass (in g) a) 3.3 ; b) 3.3 ; c) 10 ; d) 20
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FIGURE 6.13: Different effects in rolling sounds due to different contact parameters and
mass when simulated by the model (see Table 6.1). Left are the simulated acoustical
pressures (sounds) and to the right are the contact forces. From top to bottom the four ef-
fects are: (a) Amplitude modulations, (b) periodic bouncing, (c) chaotic bouncing and
(d) continuous contact. The corresponding sounds are available at the web address:
wwwy.ensta.fr/∼chaigne/Rolling_sounds.
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The first of our rolling types is dominated by an amplitude modulation of the
contact force. This modulation is due to the resonance frequency of the equivalent
contact stiffness and the mass m of the ball. There is no loss of contact here,
and therefore the effect is that the vibrations due to the surface roughness are
modulated in amplitude. The modulation period T can be calculated, as shown
by Falcon et al. [20]:

T ≈ 5.38

(

m

κg1/2

)1/3

, (6.16)

which, in our case, results in T = 0.127 s for m = 3.3 g and κ = 80 Nm−1.5, which
is in perfect agreement with the period of the oscillations in the simulations (see
example (a)) in Figure 6.13.

If the amplitude of the ball motion becomes larger, the ball loses contact with
the plate in a periodic manner (example (b)). As it is seen in the second right
panel of Figure 6.13, the contacts will be rather short. The bounce height is fixed
for a given configuration of ball and plate. It seems to bounce always relatively
high, that is, we can hear the bounces on the plate.

For situations where the surface roughness induces the contact loss between
ball and the plate, the contact loss is more chaotic (see example (c)). In contrast to
the prior situation, the bouncing is not periodic. Also, the bounce height can vary
largely. For situations where the contact loss is short, the plate vibrations do not
decrease in amplitude during this loss of contact. This we call micro bouncing
because in the sound we can not always recognize this bouncing.

The last simulated example, (d), is for a continuous contact between ball and
plate. Here the contact acts as a non-linear filter of the surface profile, and passes
the vibrations to the plate. Although we can have resonances between the ball
mass and the equivalent contact spring, as described in the first rolling type, this
does not dominate the sound. The resulting sound has thus the least temporal
variation.
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H1

FIGURE 6.14: Slide and plate.

6.5 Comparison between measured and simulated plate
acceleration

The experimental set-up used for the analysis of rebounds is now used again for
comparing experiments with simulations of rolling spheres. The selected alu-
minum plate has a large waviness so that the other causes of roughness can be
neglected, to a first approximation. All data of spheres and plate can be found
in Table 6.2. These parameters were directly measured (m, V0, R, h, λ,...), or ex-
tracted from the literature (Young’s moduli, Poisson’s ratios, thermoelastic con-
stants). The Hertzian constant κ of the sphere-plate contact is estimated from the
formula [58]:

κ =
4
√
R

3

[

1− ν2p

Ep
+
1− ν2s
Es

] , (6.17)

where Ep, νp are the elastic parameters of the plate, and Es, νs the elastic parame-
ters of the sphere.

In Table 6.2, we can see that both spheres s2 and s4 have almost the same mass
m, but that they differ in κ and R. Conversely, s2 and s5 have same the radius R,
but differ in κ and m. Finally, s4 and s5 have similar values for κ, but differ in R
and m. This selection was made intentionally with the goal to better understand
the respective influence of size, mass and rigidity in the resulting sounds and vi-
brations. The initial velocity V0 of the spheres is controlled by putting the sphere
at height H1 on a slide situated at one end of the plate (see Figure 6.14).

A rough estimate of the horizontal velocity at the beginning of the plate is
then obtained by means of the simple formula:

V0 =
√

2gH1. (6.18)
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TABLE 6.2: Measured parameters used as input for the synthesis of rolling sounds in
Section 6.5

Ball parameters:

Sphere material V0 κ R m E ν

m/s × 109 N/m2/3 mm g GPa
s2 steel 0.53 7.8 10 32.6 200 0.3
s4 plastic 0.38 0.35 17 30.6 2 0.2
s5 plastic 0.64 0.27 10 3.5 2 0.2

Plate parameters:
Material : Aluminum ;
Density ρ = 2.66 kg/m3 ; Young’s modulus E = 63 GPa ; Poisson’s ratio ν = 0.35 ;
Free boundary conditions ; mean thickness < h > = 8 mm ;
Waviness amplitude H0 = 2 mm ; waviness wavelength λ = 5 cm ;
Width ly = 20 cm ; length lx = 100 cm ;

Thermoelastic constants [12] Rth = 8.45 10−3 and cth = 8.0 10−4 rad.m2.s−1.

Coefficients of the Padé approximant in the radiation damping term in
Equation (6.2) [12]:
a0 = 1.1669 ; a1 = 1.6574 ; a2 = 1.5528 ; a3 =1 ;
b1 = 0.0620 ; b2 = 0.5950 ; b3 = 1.0272.

Coordinates of the observation point (accelerometer):
x = 20.5 cm ; y = 5.0 cm.
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If necessary, this estimation is refined by means of measurements with the high-
speed camera. Comparison between measurements and simulations are made on
acceleration signals rather than on sound pressure. The main reason is that the
experiments are simpler and allow better reproducibility. Informal tests with a
scanning microphone near the plate have shown that the waveforms and spec-
tral contents of both signals are very similar, at a given position of the plate. The
signal delivered by the accelerometer (B&K 4507-C) is amplified and sampled at
a rate of 12800 Hz.

The parameters listed in Table 6.2 are used as input parameters for the syn-
thesis. The calculation of 1.6 s of sound at a sampling frequency of 192 kHz (3.07
105 samples) takes roughly 100 min on a standard desktop computer. The pro-
gram yields, in addition, the displacement of the plate at any requested posi-
tion, the contact force history and the displacement of the center of gravity of
the sphere. The simulated acceleration at the observation point is then obtained
through double differentiation versus time of the plate displacement. The anal-
ysis and post-processing of both experimental and simulated signals are made
in MATLABr. To allow comparisons with measurements, the simulated wave-
forms are first decimated by a factor of 15 (5x3). Thus, spectral analysis is made
for frequencies between 0 and 6.4 kHz.

While listening to rolling sounds, the ear is sensitive to both the temporal and
spectral features of the signal. The temporal envelope give us cues, for example,
on amplitude modulation, presence of rebounds and presence of irregularities in
the time history. The overall spectral balance is linked to our judgment of “dull”
or “bright” sound. Finally, the fine structure of the spectrum, and the distribu-
tion of spectral peaks is of high importance in the perception of tone color and
pitch. Taking advantage of our calculations in the time-domain, the results are
presented both in the time (Figure 6.15) and frequency domain (Figure 6.16). As
an alternative compromise, Figure 6.17 shows a time-frequency plot where both
aspects are presents.

In Figure 6.15, the temporal envelopes are obtained through calculation of the
energy of the signal. The energy is then low-pass filtered. This figure shows the
results obtained for spheres s4 and s5. Measurements are on the top, and simu-
lations are on the bottom. The initial velocity for sphere s4 (left-hand side of the
figure) is slightly below the critical velocity: this results in only small modula-
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FIGURE 6.15: Temporal envelopes of measured and simulated plate acceleration. First
row: measurements ; second row: simulations. Left column: sphere 4 ; right column:
sphere 5. The magnitudes are normalized to unity.
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FIGURE 6.16: Average spectra of measured and simulated plate accelerations. First row:
measurements ; second row: simulations. Left column: sphere 4 ; right column: sphere 5.
Spectra are normalized to 0 dB.

tions of the contact force with only one or two clearly visible peaks due to a loss
of contact. This effect is well reproduced in the simulations, although the exact
position of the high peaks is not fully comparable: with such highly nonlinear
signals, it is well-known that small differences in the initial conditions can lead
to substantial differences after some time. The main reason for the discrepancies
here is to find in the absence of “perfect control” of the initial conditions when the
ball just reaches the plate after the slide. The initial velocity for sphere s5 (right-
hand side of the figure) is well above the critical velocity: this results in much
more pronounced peaks in the temporal envelope that account well for the fact
that a lot of almost regular rebounds are present here. This envelope is clearly
in accordance with the auditory perception, when listening to the correspond-
ing sound. The number, shape, and periodicity of the peaks are well reproduced
in the simulations. The overall distribution of amplitudes is also similar. As for
sphere s4, the main discrepancy here is that there is no perfect reproduction of the
amplitude of each peak. In addition, the “double rebounds” in the simulations
are less visible in the measurements.
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Figure 6.16 show the average spectra corresponding to the same acceleration
signals shown in Figure 6.15. These spectra were obtained by computing the av-
erage power spectral density of the complete signal with windows of 8192 points
and overlap of 8000 points. The frequency resolution is about 1.5 Hz. Compared
to s4, the spectrum of s5 has clearly more energy in the upper frequency range
(typically for frequencies above 2 kHz). This is in accordance with our daily ex-
perience when listening to rolling objects that are light, small and fast compared
to others that are heavy, big and slow. Here, the Hertzian constant, which is com-
parable for both spheres, does not seem to play any role.

It can be seen that the simulations reproduce both the spectral envelope and
the fine structure of the spectrum with great accuracy. All four figures show some
“holes” in the spectrum around 2500 and 4500 Hz which is presumably caused
by the position of the accelerometer. In the fine structure, we can recognize very
narrow peaks, especially in the low-frequency range. From the recordings of the
plate vibrations after the ball has left the plate, we could verify that these low-
frequency “ringing” peaks correspond to excited eigenfrequencies of the plate.
For the case of sphere s5, the plate is excited by rebounds, and we can see more
peaks in the medium and upper frequency range, both in the measured and in the
simulated acceleration. Despite its simplicity, we can see that our time-domain
model is able to reproduce quantitatively, and with a relatively high level of de-
tail, the fine structure of rolling sound spectra. Notice that the range of magni-
tude (in dB) is smaller for experimental signals compared to simulated ones, a
consequence of the noise floor that is present in the measurements and not in the
simulations.

The spectrograms shown in Figure 6.17 summarize the most significant audi-
ble features of a sphere rolling over a sinusoidal profile. Comparisons are made
here between measurements and simulations for sphere s2. Both panels show
similar patterns. On the “spectral” point of view, we can see that the energy is
concentrated in the same frequency domains. In addition, sharp peaks, material-
ized here by very thin horizontal lines, are clearly visible with the same frequen-
cies in both cases: as indicated above, these peaks correspond to eigenmodes of
the plate. On the “temporal” point of view, we can see slow modulations marked
here by large grey zones. On a finer time scale, the presence of superimposed re-
bounds is represented by small spots with the same duration both in simulations
and experiments.
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FIGURE 6.17: Spectograms of the acceleration at the observation point while sphere 2
rolled over the plate. (Left) Spectrogram of the simulated acceleration ; (Right) Spectro-
gram of the measured acceleration.

6.6 Conclusion

In this chapter, a model for simulating the vibrations and sounds produced by
spheres rolling on a damped elastic plate in the time-domain has been presented.
This model includes a sphere-plate interaction based on Hertz’s law of contact, a
surface profile accounting for rugosity and/or waviness, and the flexural vibra-
tions of the damped thin plate, using a Kichhoff-Love model.

One main objective of such simulations is to provide a tool for producing
rolling sounds that can be heard and compared to the reality. Therefore, particu-
lar attention has been paid to the modeling of damping. For this reason, a previ-
ous model of single impact of a sphere against a plate, which has been proven to
be efficient and yielding simulated sounds comparable to experiments, has been
adapted to rolling sounds. On a numerical point of view, such an adaptation
made it necessary to develop a new method of windowing for the interaction, in
order to avoid discontinuities that would have led to unwanted noise in the sim-
ulations. In addition, the windowing associated to an interpolation procedure
allows to deal with two different scales: a fine grid for the plate surface in order
to compute the interaction force, and a larger grid for computing the flexural dis-
placement of the plate. Such a procedure was necessary, since the use of the fine
grid for both elements would have led to an overwhelming computation time.

The model has been validated by three successive procedures. First, simula-
tions performed with a simple constant moving forces on a rail show the expected
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Doppler effect associated to moving sources. A second procedure consisted in
measuring the restitution coefficient of energy for balls bouncing on two differ-
ent MDF plates and to compare the results with the simulations. Such a proce-
dure was aimed at assessing that the global energy loss was correctly reproduced
by the model and it gave satisfactory results. However, it was found that high
sampling rates are necessary in order to obtain a very good agreement between
measurements and simulations. In addition, some limits of the model appear for
thick plates, for which the flexural model would probably need to be modified.
Finally, comparisons were made between measurements and simulations of “crit-
ical velocities” for spheres rolling on an aluminum plate with a sinusoidal profile.
The “critical velocity” corresponds to the threshold for which rebounds start to
appear, leading to significant differences in the produced sounds. Here again, the
model estimates such velocities correctly.

One main interest of such a physical model lies in its capability of providing
a large variety of sounds, despite the fact that only 10 to 20 input parameters
are necessary. To illustrate this, systematic simulations were conducted, in which
only a few parameters are modified in each case, for a relatively large range of
values. The four main classes of sounds obtained in this manner were presented
in this paper. It has been proposed to designate them as: amplitude-modulated,
periodic bouncing, chaotic bouncing and continuous contact.

Finally, comparisons were made between measured and simulated plate ac-
celerations for different spheres rolling on a specially designed aluminum plate
with a sinusoidal profile. The model is able to reproduce real temporal envelopes
convincingly. The general distribution of amplitude and impulse duration is well
reproduced, although the waveforms cannot be fully superimposed. To obtain
perfect superposition, one would probably have to control the initial conditions
much more carefully. Other causes of discrepancies might follow from microcon-
tacts [21], or from a departure from straight line motion of the spheres. Spectral
analysis of simulated and real sounds show an impressive number of similarities:
here the spectral envelopes can be clearly superimposed, and even the detailed
contents of the spectra match reasonably well. The auditory resemblance between
real and simulated sounds is well rendered by spectrograms which show together
the spectral formants, the ringing frequencies and the discontinuities in time.
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In its present form, the model is theoretically able to account for discontinu-
ities in thickness and inhomogeneities in the plate, but systematic exploration of
such quantities remains to be done. Other challenges are linked to the objective
of simulating “high-speed” rolling objects: in its present form, the model would
then need to simulate very long plates and thus, there are certainly some alter-
native ways to find in order to limit the computation time. The contact model is
also very elementary, and it is rather surprising that such a crude model yields
so good results. However, one can anticipate that rolling of much more mas-
sive and large objects, such as wheels, would need a more sophisticated contact
model, comparable to those developed in the context of wheel-rail interaction,
including, for example, friction and plasticity [107] [51] .
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6.A Numerical scheme

To solve the non-linear ball-plate contact problem, we use a fourth order Runge-
Kutta-Nyström[2] approach, which we will describe here.

Let f(Wp,Wb, Ẇb) be the calculation of the acceleration using the mass of the
sphere and Newton’s second law, Ẅs = Fs/m and Hertz’ law in the case of con-
tact between ball and plate.

Furthermore, Wn
ps = Wn

plate +Wn
surface is the vertical position of the plate due

to the vibration of the plate and the surface roughness, Ws is the position of the
ball. Then the fourth order Runge-Kutta-Nyström equations read:

k1 =
1

2
∆tf(Wn

ps,Wb) (A-1)

k2 =
1

2
∆tf(Wn+1/2

ps ,Wn
s + K, Ẇn

s + k1) K =
1

2
∆t(Ẇn

b +
1

2
k1) (A-2)

k3 =
1

2
∆tf(Wn+1/2

ps ,Wn
s + K, Ẇn

s + k2) (A-3)

k4 =
1

2
∆tf(Wn+1

ps ,Ws + L, Ẇn
s + k2) L = ∆t(Ẇn

s + k3) (A-4)

Wn+1
s = Wn

s + ∆t(Ẇs
b +

1

3
(k1+ k2+ k3)) (A-5)

Ẇn+1
b = Ẇn

b +
1

3
(k1+ 2k2+ 2k3+ k4). (A-6)

Note that in the case of no damping, k2 and k3 are equal. For the different plate
positions, we take the same value,Wn

ps = W
n+1/2
ps = Wn+1

ps . AlthoughWps changes
due to plate vibrations and the changed position of the ball, taking this into ac-
count via a linear interpolation did not speed up the convergence of the restitu-
tion coefficient as a function of the sampling frequency as shown in Figure 6.10.
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6.B Constant moving force

First we examine the effect of a movement of the source over the plate on the
vibrations in the plate. This is best illustrated by a simulation that is otherwise as
simple as possible, thus a propagating constant force without any modulations
or interaction of the plate vibrations on the force. The simulated plate is very
long, 11 m, to be able to view the wave propagation for a while before the first
reflections occur. In the width direction, however, the plate is chosen to be small,
20 cm, to have a quasi-static situation. Thus we see the wave propagation only in
one dimension. Five velocity profiles at 5.2 ms intervals are shown in Figure 6.18.
The first panel shows the vibrational waves shortly after the start of the impact,
which lies inbetween the low and highest peak in the middle of the figure. The
source is moving leftward and we see that the plate moves downwards just before
the impact point and upwards right behind the impact point. Here the vibrations
are still very much centered around the impact point.

In Figure 6.18b we can see that the vibrational waves that are more outward,
thus the ones that have traveled more distance, have shorter wavelengths than
the ones more to the center. This effect, the higher frequencies having a higher
wave velocity compared to the lower frequency waves, is known as dispersion.
The Doppler effect can be identified the clearest in Figure 6.18c. The Doppler ef-
fect states that the waves in the direction of the source movement are spatially
compressed (left in the figure) and the waves at the other size of the source are
elongated (right in our figure). Indeed we can identify this difference in the pic-
tures.

Due to dispersion, the lower the frequency, the lower the wave velocity. At
a certain frequency, the propagation of the force source is faster than the prop-
agation of the waves. The very slow waves stay approximately at the original
point of impact, resulting in vibrations that are apparently steady on the plate.
In fact, there exists exactly one frequency where the velocity of the vibrational
waves is exactly equal to the speed of the propagating force. This results in a si-
nusoidal vertical movement of the impact point, despite of the fact that the force
is constant.

Shortly after the last panel of Figure 6.18 the first reflected waves return to the
center of the plate. With their increasing energy the picture gets more and more
disturbed and we can no longer distinguish any of the previous effects.
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a) t=5.2 ms

b) t=10.4 ms

c) t=15.6 ms

d) t=20.8 ms

d) t=26.0 ms

FIGURE 6.18: Plate velocity due to a moving constant force on the plate as calculated by
the numerical model. The plate is 11 m long and 20 cm wide, but only the central four
meters are shown. The vertical velocity is amplified 20000 times. Until t=0, the plate is
in rest. Then, the force starts at about the middle of the figure and propagates to the left
with a speed of 40 m/s.
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FIGURE 6.19: Overview of the analysed system with a non-linear spring.

6.C A simple non-linear system

In this section a simple non-linear system will be analysed to gain insight into
the effects that can occur due to the non-linear behaviour of the contact between
the ball and the plate. Specifically we are interested in the generation of vibration
frequencies that are not present in the excitation and in the conditions in which
loss of contact occurs.

Many simplifications will be made in this system. A one-dimensional Hertz-
ian approximation was taken for the contact spring, while in reality the contact
can be at more than one point [35]. The surface roughness is simply sinusoidal
and the plate is considered completely rigid, which means also that no waves can
travel through this plate.

6.C.1 A simple non-linear system with linear damping

We will try to explain some of the behavior of the rolling ball by analyzing this
simplified non-linear system. The ball rolling over a plate is represented by a
mass, and the plate has a rigid sinusoidally curved surface. The contact is mod-
eled, according to Hertzian theory [46], with a non-linear spring.

Next, the conditions are identified for which the sphere loses contact with
the plate. Similar systems were also studied using the method of the harmonic
balance by Nayak [72], and by the method of multiple scales as used here by Hess
and Soom [38] and by Turner [104]. Related experimental work was published by
Rigaud and Perret-Liaudet [83].

The origin of the coordinates is taken at the contact point, before deformation,
thus the ball stays at x, y = 0. The plate is moving with constant speed under-
neath the sphere, and, due to its surface roughness, there appears to be a variable
displacement of the plate at the contact point. The system we analyze is a mass
resting on a Hertzian spring, with an imposed displacement at the bottom of the
spring. It is assumed that there remains contact between the sphere and the plate.
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Hence ∀t, z(t) < 0. The plate impedance is taken to be infinite. As a first step,
the forces on the system are listed, starting with Fm due to Newton’s second law
with ball mass M and vertical position z:

Fm = −Mz̈, (A-7)

the gravitational force:

Fg = −Mg, (A-8)

and finally the non-linear spring according to Hertzian theory, but with a linear
damping term added2:

Fs = κ(h− z)3/2 − 2Mµ(ḣ− ż). (A-9)

The surface profile with amplitude H0 and wavelength Ω is given by

h = H0 cos(Ωt). (A-10)

For the static case z(t) = z0 we can neglect the damping term since ḣ = 0 and
ż = 0, and the remaining terms, Fs + Fg = 0 leads to

κ(h− z0)
3/2 −Mg = 0, (A-11)

introducing the earlier used quantity, α = h− z, as a positive

α0 =

(

Mg

κ

)2/3

. (A-12)

For the dynamic case we add the driving position due to the surface, h, which
indirectly results in a driving force via Fs + Fg + Fm = 0, leading to

κ(h− z)3/2 + 2Mµ(ḣ− ż) −Mg−Mz̈ = 0. (A-13)

Using the static result of Equation (A-11) then leads to

κ(h− z0 + z0 − z)3/2 − κ(h− z0)
3/2 − 2Mµ(ḣ− ż) −Mz̈ = 0, (A-14)

2The choice for a linear damping term seems the usual approach and evolves from practical
considerations in the following calculations.
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where the second, static, term κ(h − z0)
3/2 does not cancel against terms of the

first, dynamic, term κ(h − z0 + z0 − z)3/2 as is the case for a linear spring. Using
the Equation (A-12), we find

κ((α0 + z0 − z)3/2 − α
3/2

0 ) − 2Mµα̇−Mz̈ = 0. (A-15)

Substituting z̄ = z− z0, which is also equal to z−h+α0, thus gives z̈ = ¨̄z− ḧ, and
also ˙̄z = −α̇, after which it results in

κα
3/2

0

[

(

1−
z̄

α0

)3/2

− 1

]

+ 2Mµ ˙̄z−M ¨̄z = −Mḧ. (A-16)

If z̄¿ α0 we can use the Taylor expansion,

(

1−
z̄

α0

)3/2

= 1−
3

2

z̄

α0

+
3

8

(

z̄

α0

)2

+
1

16

(

z̄

α0

)3

+ h.o.t., (A-17)

or, alternatively a third-order least-squares fit on the interval 0 < z̄/α0 < 1, sim-
ilar to the fit used by Hess and Soom [38]. The advantage of this approximation
is that the error is spread over the whole region, whereas the Taylor approxima-
tion is more precise for smaller values of z̄/α0. The least squares fit can thus be
expected to be more precise in the determination of loss of contact between the
ball and the plate. Using the least squares fit we find

(

1−
z̄

α0

)3/2

=
384

385
−
16

11

z̄

α0

+
16

77

(

z̄

α0

)2

+
8

33

(

z̄

α0

)3

, (A-18)

however, we need the first term to be one to cancel out the other one within the
square brackets of Equation (A-16). Therefore we make a small error and set the
first term to one. The numeric constants of Equations (A-17) or (A-18) can be
replaced by symbols c ′1, c ′2 and c ′3 to obtain

(

1−
z̄

α0

)3/2

= 1− c ′1
z̄

α0

− c ′2

(

z̄

α0

)2

− c ′3

(

z̄

α0

)3

. (A-19)

Combining this with Equation (A-16) results in

M ¨̄z− κα3/2

[

−c ′1
z̄

α0

− c ′2

(

z̄

α0

)2

− c ′3

(

z̄

α0

)3
]

+ 2Mµ ˙̄z = −Mḧ (A-20)

¨̄z+ c ′1
κ

M
α
1/2

0 z̄+ c ′2
κ

M
α

−1/2

0 z̄2 + c ′3
κ

M
α

−3/2

0 z̄3 + 2Mµ ˙̄z = −ḧ, (A-21)
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or in the form used by Nayfeh and Mook [73, equation 4.2.1]

¨̄z+ 2µ ˙̄z+ω2
0z̄+ c2z̄

2 + c3z̄
3 = E(t) (A-22)

with

ω2
0 = c ′1

κ

M
α
1/2

0 (A-23)

c2 = c ′2
κ

M
α

−1/2

0 (A-24)

c3 = c ′3
κ

M
α

−3/2

0 (A-25)

E(t) = H0Ω
2 cosΩt. (A-26)

Here we can identify a shortcoming of the least squares fit method. Theω0 can be
calculated easily by linearizing the Hertz contact spring around the static equilib-
rium as shown by Sabot et al. [86]. The analytical solution obtained in this way is
exactly equal to the ω0 found by the Taylor approximation, but the least squares
method results in a value 3 percent lower.

To solve this equation using the method of multiple scales, the problem is or-
dered in different scales, using a dimensionless parameter, thus replacing z̄ by εu,
and in order to obtain the forcing and damping terms in the smallest scale, be-
cause the damping has only a small influence, they are multiplied by ε3. Dividing
all by a common single ε we obtain:

ü+ω2
0u = −2ε2µu̇− εc2u

2 − ε2c3u
3 + ε2k cosΩt. (A-27)

Now the single function u can be replaced by a sum of different functions, one
for each of the time scales Tn = εnt, with n ∈ N,

u(t, ε) = u0(T0, T1, T2, . . . )+εu1(T0, T1, T2, . . . )+ε
2u3(T0, T1, T2, . . . )+. . . . (A-28)

For the differential operators, we find

d

dt
=
dT0

dt

d

T0
+
dT1

dt

d

T1
+
dT2

dt

d

T2
+ · · · = D0 + εD1 + ε2D2 + . . . , (A-29)

and for the second-order differential operator all terms with ε of order higher
than 2 can be excluded, the remainder being

d2

dt2
= D2

0 + 2εD0D1 + ε2(D2
1 + 2D0D2). (A-30)
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Finally, we assume that the driving frequency is close to the free vibration fre-
quency, by replacing Ω by ω0 + σε2. Combining all and substituting the result
into Equation (A-27), and separating the different scales gives

D2
0u0 +ω2

0u0 = 0 (A-31)

D2
0u1 +ω2

0u1 = −2D0D1u0 − c2u
2
0 (A-32)

D2
0u2 +ω2

0u2 = −2D0D1u1 − 2D0D2u0 −D2
1u0 − 2µD0u0

−2c2u1u0 − c3u
3
0 + k cos(ω0T0 + σT2). (A-33)

These three formulas at the three different scales will now be solved one after
another. For the first equation, the solution reads

u0 = A exp(iω0T0) + Ā exp(−iω0T0), (A-34)

where A is an unknown complex function with A = A(T1, T2) and Ā the complex
conjugate of A. The governing equations for A are obtained by requiring u1 and
u2 to be periodic in T0. The solution for u0 can now be included in Equation (A-32)
to obtain

D2
0u1+ω2

0u1 = −2D1Aiω0 exp(iω0T0)−c2(A
2 exp(2iω0T0)+AĀ)+cc, (A-35)

where cc indicates the complex conjugate of the preceding terms. In order to
cancel the first part, which is secular, we obtain D1A = 0 or A = A(T2). This
results in

u1 =
c2

ω2
0

[−AĀ+
1

3
A2 exp(2iω0T0) +

1

3
Ā2 exp(−2iω0T0)]. (A-36)

Substituting these results for u0 and u1 into Equation (A-33), and dropping all
terms containing D1A and those periodic in 3ω0T0 results in

D2
0u2 +ω2

0u2 =

[

−2µiω0A− 2
c22
ω2

0

A2Ā−
4c22
3ω2

0

A2Ā− 3c3A
2Ā +

1

2
k exp(iσT2) − 2D2iω0A

]

exp(iω0T0) + cc+NST,(A-37)

whereNST stands for non secular terms. In this case we are only interested in the
conditions to cancel the secular terms. Thus,

2iω0(µA+D2A) +
10

3

c22
ω0

A2Ā− 3α3A
2Ā−

1

2
k exp(σT2) = 0. (A-38)
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To find these conditions, we rewrite A in polar form, A = 1
2
a exp iβ where a and

β are real functions of T2, therefore D2A = 1
2
a ′ exp(iβ) + 1

2
iaβ ′ exp(iβ) resulting

in

iω0(µa exp(iβ) + a ′ exp(iβ) + iaβ ′ exp(iβ))+

1

23

(

10

3

c22
ω0

− 3c3

)

a3i exp(iβ) −
1

2
k exp(iω0T0) = 0, (A-39)

separating real and imaginary terms,






a ′ = −µa−
k

2ω0

sin(σT2 − β)

aβ ′ =
10c22 − 9c3ω

2
0

24ω3
0

a3 −
k

2ω0

cos(σT2 − β)
, (A-40)

which results in the general approximate solution

u = acos(Ωt− γ) −
1

2
ε
c2

ω0

a2[−1+
1

3
(2Ωt− 2γ)] +O(ε2), (A-41)

where γ = σT2 − β. The equation can represent both softening and hardening
behavior, but the condition for hardening behavior is never fullfilled. Hardening
behavior implies, c3 > 10/9c22ω

−2
0 , which using Equations (A-23)-(A-25), equals

c ′3 >
10

9

c ′2
2

c ′1
, (A-42)

which is in our case is never fullfilled since c ′3 is negative and c ′1 is positive. For
the lift of the mass, − 1

2
εc2ω

−2
0 a

2, we get

lift = −
1

2

κ

Mω2
0

√
α0

c ′2a
2. (A-43)

The ε was removed from the formula because it was only introduced to order
the different scales of the formula. The minus sign indicates that the deformation
is reduced, and the mass is moved upwards. For conditions that lead to loss of
contact, the amplitude amust be near the static deformation α0. In fact, the loss of
contact occurs a little earlier due to this lift, but if the lift is small compared to the
oscillation amplitude we can substitute a by α0 and obtain a shorter expression

lift = −
gc ′2
2ω2

0

. (A-44)
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Next we look at the detuning parameter, σ. This parameter indicates the change
in resonance frequency for changing amplitudes, which is typical for non-linear
systems. No explicit solution is given in by Nayfeh and Mook but the derivation
is very similar to one of the simpler cases, thus, we take from the solution

a ′ = −µa+
k

2ω0

sinγ, (A-45)

aγ ′ = aσ−
9c3ω

2
0 − 10c22
24ω3

0

a3 +
k

2ω0

cosγ. (A-46)

The primed terms can be set to zero to find the stationary solution. We will solve
σ from these equations. Starting by bringing the non-circular terms to the left
then squaring and summing the last two equations results in

[

µ2 +

(

σ−
9c3ω

2
0 − 10c22
24ω3

0

a2
)2
]

a2 =
k2

4ω2
0

, (A-47)

σ =
9c3ω

2
0 − 10c22
24ω3

0

a2 ±

√

k2

4ω2
0a

2
− µ2, (A-48)

which is the frequency-response curve. The first part will give the free vibration
spline or backbone. The backbone represents the resonance frequency as a func-
tion of oscillation frequency in the absence of damping. With the use of our c1
and c2, the backbone is

σ =
27

32 · 24

(

3

2

)3/2
κ13/12

M13/12g7/12
a2. (A-49)

The backbone and frequency response curve are plotted in Figure 6.20. We can
see the softening behavior, i.e., the backbone is curved towards lower frequencies
for higher amplitudes. By comparing the oscillation amplitude with the static
deformation, the plotted horizontal dashed line in Figure 6.20, we can see if loss
of contact occurs. In the example shown this is not the case. When the damping
µ is lower, or the excitation is higher, the frequency response curve will become
higher than the amplitude of loss of contact, and loss of contact will occur.

6.C.2 Conclusion

This analytical calculation regards a very simple setup that has many simplifica-
tions. We can view upon this calculation as a generalization of Falcon’s result,
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FIGURE 6.20: The frequency response curve of the non-linear system. The solid line gives
the vibration amplitude for the ball given the excitation amplitude of 1 mm. The dotted
line represents the backbone. The dashed line represents loss of contact. For the used
µ = 1 s−1 and H0 = 1 mm there will be no loss of contact. When damping is lower or
the driving amplitude is higher, however, loss of contact will be possible. The oscillation
frequency calculated by Falcon et al. [20] is indicated with the circle. This point should be
equal to the crossing of the backbone curve (dotted) and the loss of contact (dashed).

who calculated the oscillation frequency near loss of contact [20] using an energy
balance method.

This calculation can aid to obtain more understanding about the nature of the
ball plate contact. At least for this simple plate we can calculate the speed for loss
of contact. This is not a practical result, but the oscillation frequency was used to
verify the simulation program in the preceding chapter. In the inverse situation,
when a ball comes to rest after having bounced on a plate we also find the same
oscillation frequency [20].



120 Time-domain modeling and simulation of rolling objects



7 Using Psychometric Functions to Deter-
mine the Auditory Capability to Perceive
the Size and Speed of a Rolling Ball1

Abstract

The purpose of the experiments presented in this chapter was to quantify the pre-
cision of listeners’ judgments of certain parameters of a mechanical system from
the sounds generated by this system. We used sounds generated by a wooden
ball rolling over a wooden plate. In the recordings of these sounds, the ball di-
ameter, the rolling speed and the thickness of the plate were varied. Two exper-
imental methods were used: In the paired-comparison experiment, participants
listened to two sequentially-presented sounds and had to indicate, which of the
two sounds was, e.g., created by the larger ball. Corresponding measurements
were performed for paired comparisons of the mechanical parameters ball speed
and plate thickness. In the absolute magnitude-estimation experiment, partici-
pants listened to single sounds and had to estimate the value of, e.g., the size
of the ball by reporting a number. Again, also the two other parameters were
tested. The data obtained with both methods were used to calculate psychomet-
ric functions, which indicate the listeners’ sensitivity to differences in one of the
physical parameters. For each pair of sounds the percentage of correct responses
was plotted against the logarithm of the proportion of their mechanical param-
eter values. These datapoints were then fitted by a cumulative normal distribu-
tion. Both paired comparison and absolute magnitude estimation led essentially
to the same psychometric functions for the size estimations. In the psychometric
functions for the speed estimation, however, there was a difference between the
results obtained with the two methods, and the origin of this discrepancy will be
discussed. By applying this analysis to subsets of the data it is shown that the

1Part of this work was presented at the ASA Providence meeting in 2006 [95]
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precision of the listeners’ estimations of the ball size changes when the ball speed
changes. The same is true for the estimations of the ball speed when the ball size
changes. In contrast to the results for judgments of the two ball parameters, the
plate thickness was poorly judged by the participants in the paired comparison
task.

7.1 Introduction

The vibrations produced by a mechanical system convey information about its
physical properties, which are passed to the listener via sound. Our main goal
is to estimate how much and what type of information is passed to the listener
via these sounds. We want to study, therefore, how precisely the listener can
judge certain mechanical properties of the system by listening to the sounds, how
much difference there is between participants, and whether listeners can hear and
independently judge more than one property of the system at a time.

We used sounds generated by a wooden ball rolling over a wooden plate.
These continuous sounds present listeners with different kinds of information at
the same time: The size of the ball, speed of the ball, and the plate thickness,
which were all varied during the experiments.

Participants were asked to judge each of these three parameters in the sound
in two different ways, in a two-alternative forced-choice paired-comparison task,
and using absolute magnitude estimation. This method was used to test whether
discrimination capabilities decrease when two parameters, e.g., speed and size,
are changed simultaneously.

The auditorily perceived speed of objects passing by was studied by Kacz-
marek [49]. He discussed three types of cues for determining the speed of these
objects, namely, interaural time differences, loudness variations and the Doppler
shift. The first is not present in our situation, because we presented the sounds
monaurally to the participants. Another difference with our experiments is that
in our case it was the plate that radiated the sound and not the moving object,
the ball. This is due to the fact that the plate is much larger and radiates more
efficiently. The plate, however, did not move. When the microphone is placed
too close to the plate, the recorded sound will be the loudest when the ball rolls
close to the microphone. We choose our microphone placement so that this effect
was avoided.

Much research has been done on the subject of bouncing balls and impacted
plates. Examples of the auditory perception of mechanical properties of a system
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with a ball, or more general an impactor, and plate are: The complex thickness
patterns [16], the shape of plates [54], and the size of bouncing balls [31] [96].

Psychometric functions have been used to determine the capabilities of listen-
ers to distinguish differences in the frequency spectrum of the sound [64]. We will
apply this method in the field of psychomechanics to determine the capabilities
of listeners to distinguish mechanical differences in the sound generating system,
in our case the speed and size of rolling balls. In this respect it is a generalization
of the result of Houben et al. [39][42][43], who used a paired-comparison method
to study the perception of the size and speed of rolling balls.

We will compare two methods for gathering the data, namely paired-com-
parison and absolute magnitude estimation. The results were sometimes similar
and sometimes different. We will propose an explanation for these discrepancies
based on different processing levels of the acoustic information.

7.1.1 Stimuli

The stimuli consisted, as mentioned, of recordings of wooden balls rolling over
wooden plates. In the recording of these sounds, the ball diameter, the rolling
speed and the thickness of the plate were varied independently. The balls and
plates were chosen to give good rolling sounds and to be the same or similar as
used in earlier experiments [40].

The balls we used were made of beech wood and had diameters of 25, 35,
45, 55 and 68 mm. Due to the production process, the balls were not perfectly
spherical, and this leads to temporal variations in the sound made as they roll,
such as amplitude modulation or even some bouncing for the smallest and fastest
balls.

In order to give the balls a well defined velocity along the center line of the
plate, they were rolled from a slide onto the plate. The height of the slide was
25 cm. The balls were released from various heights on the slide to vary their
velocity. In order to measure the velocity of the ball, its course interrupted the
beams of six independent light-gates, placed at intervals of 20 cm. The measure-
ments showed that, during one run, the ball’s velocity was constant within a few
percent. The velocities we used in the experiment ranged from 0.48 to 1.63 m/s.

The slide was separated from the plate by a narrow slit, about 0.5 mm in
width, to avoid the transmission of vibrations from the slide to the plate. The
slide had a smooth bend near its end to transform the vertical velocity of the balls
into a horizontal one, and so minimizing the impact heard when the ball hits the
plate. At the other side of the plate, the ball was free to roll off.
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The plates, 50 cm wide and 120 cm long, were made of MDF, which consists
of wood-particles pressed and glued together. Their thickness was 4, 8, 12 or
18 mm. The advantage of this kind of material over real wood is that the material
properties do not change with position on the plate.

Seen from above, the microphone was placed 70 cm to the right of the long
side of the plate, and halfway along its length. It was placed 70 cm above the
plate, pointing at it with an angle of 45 degrees. The closest distance between
microphone and plate was 100 cm. The microphone itself was a small diaphragm
cardioid condenser microphone, type Røde NT5. It was connected to a sound
card, type Terratec MIC8, that recorded the sounds with 24-bit resolution at a
sample frequency of 48 kHz on a standard PC.

From the middle of the sound, 600 ms segments were cut out. The waveforms
were gated on and off with half of an 8 ms Hanning window. In the paired com-
parison task of experiment 1, there was 250 ms of silence between the two sounds.
The sounds were presented to the participants via headphones, at their original
relative sound levels.

Because spectral information is often considered to be one of the most im-
portant cues for determining object properties, a plot of the average spectrum
of some the used sounds, with different ball speeds, ball sizes, and plate thick-
nesses is included in Figures 7.1 to 7.3. The method used to obtain these spectra
is Welch’s averages periodograms [79] with a window length of 512 samples or
10.7 ms. The spectrum of one sound is depicted in all three figures, a ball with
a diameter of 45 mm, rolling with 0.91 m/s on a 12 mm thick plate, but in each
figure two, or three for the plate thickness, other sounds with changes in one di-
mension are added: A smaller and larger ball in Figure 7.1, a faster and slower
ball in Figure 7.2, and a ball rolling over a thicker and two balls rolling over a
thinner plate in Figure 7.3. We can see that size and speed changes have some-
what similar effects on the spectrum, namely the amplitude of high frequencies
increases and that of low frequencies diminishes for smaller and also for faster
balls. The plate thickness has a different effect on the spectrum. The low frequen-
cies are less pronounced for the thickest plate and the fine structure changes due
to different modal frequencies of the plate. Although this cannot be seen indis-
putably from these figures, from general acoustics, see for instance [48], we know
that the resonance frequencies of the plate change with its thickness, whereas the
excitation only changes the amplitude of the vibrational modes.
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FIGURE 7.1: Effect of the size of the ball on the average spectrum of the rolling ball sound.
In all three cases the ball speed was 0.91 m/s and the plate thickness was 12 mm.
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FIGURE 7.2: Effect of the speed of the ball on the average spectrum of the rolling ball
sound. In all three cases, the ball diameter was 45 mm and the plate thickness was 12 mm.
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FIGURE 7.3: Effect of the plate thickness on the average spectrum of the rolling ball
sound. In all three cases, the ball speed was 0.91 m/s and the ball diameter was 45 mm.

7.2 Experiment 1: Paired comparisons

Experiment 1 was similar to earlier experiments described by Houben et al. [42].
This experiment was repeated in order to realize that we can compare the results
of this experiment with those of experiment 2. Some extra pairs were added
to spread the measurement points on the psychometric functions more evenly.
Another difference was that we asked participants to judge the distance the ball
traveled during the course of rolling, instead of asking its speed directly. When
asked for speed, participants can choose to interpret this as "angular velocity" or
as "linear velocity" [42], which gives different results. For brevity, and because
this is really the underlying property that we are interested in when we ask for
the traveled distance, we will still refer to the speed of the ball in the analysis. The
actual speed can simply be calculated from the distance by dividing the distance
by the sound sample duration, in this experiment 600 ms.

7.2.1 Method

The experimental methodology was a two-alternative forced-choice procedure.
Thus the sound pair was presented once and the participants were asked to judge
which of the two sounds represented the largest ball, which ball covered the
largest distance, or which ball rolled over the thickest plate. They were then
allowed to answer if they thought it was the first or second sound of the pair.



capability to perceive the size and speed of a rolling ball 127

Feedback was never given. First, six practice sounds were presented to the lis-
teners to get them accustomed to the procedure. At three points during the ex-
periment, the participants were allowed to take a break. The experiment took
about 25 minutes and the 23 participants were paid 3.50 euros for participating.
They were recruited at the university and were mainly students. All participants
reported that they had no hearing problems.

The first experiment consisted of three parts. In the first part the participants
were asked to compare the diameters of the two balls and indicate the larger one.
All combinations of the five different ball sizes were used, giving 5× 4 = 20 pairs
of sounds, including all pairs in both orders but not those consisting of two equal
sounds. All four different ball speeds were used with one plate thickness, 12 mm.
The two sounds always differed only in ball size. This results in a total of 80
sound pairs for the first part.

In the second part, the participants were asked to compare the distances trav-
eled by the two balls and indicate the longer one. All combinations of the four
different ball speeds were used, giving 4× 3 = 12 pairs of sounds. All five differ-
ent ball sizes were used with one plate thickness, 12 mm. The 60 sound pairs in
which two sounds differed only in ball speed were followed by 24 pairs, consist-
ing of the same ball speeds, but in which the first ball had a diameter of 25 mm,
the second 68 mm and vice versa. This gives a total of 60 + 24 = 84 sound pairs
for the second part of the experiment.

In the third part of the experiment, the participants were asked to compare the
thicknesses of the two plates on which the balls rolled and indicate the thicker
one. All combinations of the four different plate thicknesses were used, giving
4 × 3 = 12 pairs of sounds. All five different ball sizes were used and one ball
speed, 0.91 m/s. The two sounds of one pair always differed only in plate thick-
ness. This results in a total of 60 sounds pairs, which were presented twice to
the participants, for the third part. Together with some sound pairs of which the
results are not used in this paper, the participants were asked to judge 372 sound
pairs.

7.2.2 Results

To check if participants were able to perform the task, we plotted the average per-
centage correct for each type of sound pair, and for each individual participant.
Figures 7.4 to 7.6 show these results for each of the three object properties that the
participants were asked to judge: The size and speed of the ball and the thickness
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of the plate it rolls over. In addition, the 95% confidence interval for guessing is
shown between dashed lines in the figure. 2

In Figure 7.4 the percentages correct for the size judgment are shown. It can
be seen that all participants were able to do this task, although some were much
better at it than others. One participant, number 14, performed very well in the
task, with nearly 100% correct score. Overall, the average percentage correct for
the size judgment was 85%. Since all participants scored above chance level, and
on average scored well, we can conclude that the participants were able to do
this task. In Figure 7.5, similar performance can be seen for the speed judgments.
However, three of the participants performed well below chance level, i.e., they
gave the wrong answer most of the time. These are called inverse-labelers, since
they are apparently capable of identifying the speed difference, but they give the
wrong label, i.e., they label the faster ball as slower. It can also be seen that two
of these inverse labelers, participants 9 and 10, are among the best performers
of all participants, giving consistent answers in 90% of the time. The results of
these inverse-labelers were therefore inverted and included in the remainder of
the analysis. We could also have chosen to leave out these three inverse labeling
participants, but this leads to about the same results in any of the analyses, sim-
ply because these three participants together are, by chance, average responders
in our tests. This taken into account, the average percentage correct for the speed
judgment was 83%. The tested ranges for speed and size are more or less compa-
rable; the ratio of the diameter of the largest ball and the diameter of the smallest
one is 2.7 for the speed judgment. The ratio of the largest and smallest traveled
distance was 3.4. From these figures it might seem that the discrimination of size
and speed is about equal. This, however, is not the case as we will see later. The
fact that the average percentage correct for the size and speed judgments are so
close (85% and 83% respectively) is because, in the design of the experiment, the
presented sound pairs contain, in both experiments, about an equal number of
easy and difficult to distinguish stimulus pairs.

The analysis of the thickness judgment data, shown in Figure 7.6, however,
shows a different picture. As many as ten participants fall within the confidence
intervals for guessing, four of them fall below the confidence interval for guess-
ing and only nine of them show behavior in line with good discrimination and
correct labeling. None of them is outstanding. The four participants who score

2If a particular participant was not able to do the task for at least some of the sound pairs, it
is assumed that the participant has guessed, and thus the 95% confidence intervals can be calcu-
lated by taking the 2.5% and 97.5% value of a binomial distribution for a process with probability
parameter p=0.5 and the given number of soundpairs in the set.
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FIGURE 7.4: Percentage correct of the answers of the 23 participants who were asked to
indicate the larger ball in the pair of two presented sounds of rolling balls. Both balls had
the same speed, four different speeds were used, and rolled over the plate with 12 mm
thickness. The horizontal dashed line represents the upper and lower boundary of the
95% confidence interval for guessing. All participants fall outside this region.

below the confidence interval thus give more or less consistently the wrong an-
swer. Their scores, however, are not set apart from the rest as was done case in
the speed judgments. We could treat the data from these inverse-labelers in vari-
ous ways; we could include their data as-is, inverse their answers or exclude their
data. If we combine the data of all participants, however, performance differs sig-
nificantly from guessing, regardless of how we treat the inverse-labelers. We can
conclude, therefore, that, on average, the participants performed very poorly, but
were still capable of judging above chance the thickness of the plate. Although it
was possible to calculate a psychometric function from these data, one may then
ask which participants to include, e.g., must the inverse labelers be included, or
should we include only the participants who score above the 95% confidence lim-
its. The thickness judgment data are, therefore, not analyzed in the remainder of
this chapter.

7.2.3 Psychometric functions

We can estimate the psychometric function from the percentage correct data by
plotting the percentages correct, as shown in Table 7.1 against the difference be-
tween the two sounds on one of the measured variables. It turns out that this
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FIGURE 7.5: Percentage correct of the answers of the 23 participants who, after listen-
ing to the sounds of two rolling balls, were asked to indicate the ball which traveled the
greatest distance in the course of rolling. The two balls had both the same size, out of five
different sizes used in the experiment, and rolled over the plate with 12 mm thickness.
The horizontal dashed lines represent the upper and lower boundary of the 95% confi-
dence interval for guessing. All participants fall outside this region, but three of them
reversed the fastest and slowest ball.
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FIGURE 7.6: Percentage correct of the answers of the 23 participants who, after listening
to the sounds of two rolling balls, where asked to indicate the ball which rolled over the
thickest plate. The two rolling balls had both the same size and speed. The horizontal
dashed lines represent the upper and lower boundary of the 95% confidence interval for
guessing. Although the overall average percentage correct, 53.7%, is above chance level,
51.8%, participants clearly do not do well in this test.
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TABLE 7.1: The percentage of answers: “ball 1 is larger” for all different stimulus pairs,
averaged over all subjects. From this table the psychometric function shown in Figure 7.9
is derived.
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leads to the most consistent results if the logarithm of the proportion of the ball
sizes is taken as the difference in physical variable. The fact that we need to use
the difference of the logarithm of the ball sizes agrees with Steven’s law which
predicts that the perceptual distance between stimuli differing in one physical
dimension depends linearly on the difference of the logarithm of this quantity.
Furthermore, if the datapoints are not plotted on a logarithmic scale, but on a lin-
ear scale the plots look no longer symmetric. On the other hand, the data points
are symmetric on the x-axis if we define the distance between two sounds as the
difference of the logarithm of the two ball sizes, as can be seen in Figures 7.7 and
7.9. Through the points found in this way, we fitted a cumulative Gaussian curve
using a least-squares algorithm. The data were tested for response bias by check-
ing the number of times the participants chose the first and the second sound
as being the larger, the faster, or the ball rolling over the thicker plate. The data
turned out to be symmetric with respect to the order of presentation and within
chance levels for all tests that we ran. The psychometric curves can, therefore,
be assumed to be symmetric around the point (0, 1/2), for which the mechanical
parameters in the two sounds are equal. Furthermore, we assumed that, for cases
in which the physical differences of the balls are very large, i.e., larger than in the
pairs we presented here, participants will always give the correct answer. This
causes the psychometric curve to take values ranging from exactly zero to one
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but not including zero and one. In this way, the cumulative Gaussian curve had
only one degree of freedom. From the least-squares fit we can also find the confi-
dence intervals for the estimated parameter, in our case β which is the inverse of
the standard deviation of the fitted distribution, and represents the steepness of
the psychometric function. For a comparison between different types of curves
used for fitting psychometric functions, see [27], where our type of curve is listed
as a Gaussian function with log-ratio kernel.

In contrast with the fitted psychometric functions, the data-points shown in
the psychometric curves of the first experiment are not exactly symmetrical. As
an example we take the psychometric function for size estimation presented if
Figure 7.9. If the smallest ball was the first of the two sounds presented to the
listeners, the result will be plotted in the left side of the plot, if it was presented
second, this datapoint would appear in the right half. Since we found no de-
pendence on the order of presentation, we could mirror the data to reduce the
variance on the data. However, in the procedure used this would lead to exactly
the same psychometric functions.

The results for the estimation of the speed are depicted in Figures 7.7 and 7.8.
In Figure 7.7 we see the results for the speed judgment where the size of the two
balls was equal. In Figure 7.8 the results are shown for speed judgments, in which
the size of the balls in a pair also differed. We then see that the steepness of the
psychometric function is much lower when the two balls also differ in size. The
size judgment itself has the highest steepness, as shown in Figure 7.9.

7.3 Comparison with other studies

A two-alternative forced-choice experiment in a similar setup, but with different
sound recordings, has been conducted by Houben [40]. In this section we will
compare these data with ours. In Figure 7.10 we see a plot of the psychometric
function for the estimated ball size, together with data from Houben. The data
from the previous study of Houben fall somewhat around our data points. The
somewhat larger variance can be explained by the fewer number of subjects in
the earlier study, 6 versus 23 in our study. When comparing the speed data of
both studies, the story is different. The data from Houben’s experiment result in a
6.5 times greater steepness of the psychometric function, as shown in Figure 7.11.
There are a few possible causes for this difference. First, the setup was different.
Particularly the plate and plate support were different. In Houben’s experimental
setup the plate was more damped by the support, a layer of felt. Furthermore he
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FIGURE 7.7: The psychometric function for the estimated differences in speed when the
ball sizes were equal. The parameter β is the fitted steepness parameter, and the numbers
between brackets present the 95% two-sided confidence intervals of the fit. Data are from
the paired-comparison task.
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FIGURE 7.8: The psychometric function for the estimated differences in speed when the
ball sizes were different. The parameter β is the fitted steepness parameter, and the num-
bers between brackets present the 95% two-sided confidence intervals of the fit. Data are
from the paired-comparison task.
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FIGURE 7.9: The psychometric curve for the estimated differences in size when the ball
speeds were equal. The parameter β is the fitted steepness parameter, and the numbers
between brackets present the 95% two-sided confidence intervals of the fit. Data are from
the paired-comparison task.
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FIGURE 7.10: The psychometric function for the estimated size of the ball. The data
from the current experiment, shown with filled dots, are compared with data from
Houben [40], plotted with open dots.
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FIGURE 7.11: The psychometric function for the estimated speed of the ball. The
data from the current experiment, shown with filled dots, are compared with data
Houben [40], plotted with open dots.

selected rolling sounds for which the ball was not bouncing too much. These two
factors could lead to a more pronounced amplitude modulation in the sound of
these rolling balls. Also, Houben minimized the bouncing by selecting the most
spherical balls, and rolling directions for these balls, and by selecting recordings
that, by chance, had the least bouncing in them. Sounds containing less bouncing
may have been less confusing to the listeners. Although bouncing can provide
information about the rolling speed, it could be difficult for the listener to com-
pare a bouncing ball with a non-bouncing one, as may have been the case in our
study.

Another possibility is the change of the question, posed to the participants,
which was directly for speed in Houben’s experiment and for traveled distance
in the current one. The question was changed because the term “speed” could
be interpreted in different ways. An example is given by Houben [40]. When
we measure speed in m/s then a mouse that runs “fast”, corresponds to a much
lower speed than a horse that runs “fast”. In other words, for a large object we
expect a larger speed than we expect for a small object, to label it fast. For rolling
balls it might be that listeners think a ball rolls fast, when it rotates fast instead
of when it moves fast. But, this has the same effect, that larger balls should move
faster than smaller balls to obtain the label fast. Consequently, the two effects
are indistinguishable. The term rotational speed, the number of rotations of the
ball per second, will therefore be used to indicate that a larger balls should move



136 Using psychometric functions to determine auditory

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β = (1.5−) 1.7 (−1.9)

ln dist1 − ln dist2

pr
op

or
tio

n 
of

 ’b
al

l1
 fa

st
er

’ r
es

po
ns

es

Our data
fitted on data
Heller

FIGURE 7.12: The psychometric function for the estimated speed of the ball. The data
from the current experiment, shown with filled dots, are compared with data from a
pilot experiment, shown with open dots, by Dr. Laurie Heller, Dept of Cognitive and
Linguistic Sciences, Brown University, Providence RI.

faster than smaller balls to obtain the label fast. To move at the same speed,
measured in m/s, which will be called linear speed, a ball being twice as large as
a reference ball should have half the rotational speed of the reference ball.

If listeners have no intuitive feeling for the traveled distance, the task could
be much more difficult for the participants in the new experiment. They might
have an intuitive idea about the rotational speed. They are, however, forced to
answer in terms of linear speed when we ask for “traveled distance”. To come
up with this answer, listeners will have to calculate the linear speed from the
rotational speed using the perceived size of the ball. The perceived ball size is,
however, not completely accurate and neither is the rotational speed. Hence, in
the process of these calculations there are two sources of inaccuracies. Therefore,
this process could have led to the lower performance we observed compared to
the performance reported previously.

This, however, is not likely to be explanation for the much lower steepness of
the psychometric function in our study, because we also found the same differ-
ence in the scales of an multidimensional scaling (MDS) experiment, as will be
discussed in Chapter 8 of this thesis. As we explain in Appendix A of this chap-
ter, the differences in the scale sizes of the MDS analysis could cause a difference
in detectability. A numerical calculation leads to the observed difference in the
steepness of the psychometric functions.
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Further evidence that the question posed is not of crucial importance, comes
from a pilot study by Heller at Brown university (personal communication). Four
participants took part in a two-interval forced-choice test. This experiment was
equal to ours in the sense that the sound samples were the same as in our experi-
ments. The question posed to the participants was, however, different. We asked
the participants literally “Which ball covers the largest distance”, after being ex-
plained in the introduction that the samples were of equally long duration but
the balls were rolling at different speeds. Heller asked her participants “which
ball was moving faster” which is almost the same as Houben who asked “which
ball is rolling faster”. As can be seen in Figure 7.12 Heller’s data falls right on top
of our psychometric function.

To resolve these questions, difference ratings could be gathered from partic-
ipants using Houben’s sounds. An MDS study could resolve if people could
indeed detect smaller differences in these sounds. Another possibility could be
to find an acoustic description of the information that results in these detected
differences. One possible technique could be kernel-based principal component
analysis [77]. This is, however, a new method and its effectiveness remains to be
tested.

7.4 Experiment 2: Absolute magnitude estimation

7.4.1 Method

The sounds of the second experiment were selected from the same set of record-
ings as used in the first experiment. The sounds from the 12 mm plate were used.
The participants were not asked to judge the thickness in view of the difficulty the
participants had with thickness discrimination, as shown in Figure 7.6. The ex-
perimental methodology for this experiment was absolute magnitude estimation,
i.e., the participants had to indicate numerically their judgment of the diameter
of the ball or the distance the ball traveled in the course of rolling. They were free
to answer in any format they liked, that is using a number with a comma or dot if
they wished, and using m, dm, cm or mm as units. Their answers were checked
for validity, i.e., to be numerical and having a unit. If their response was not
valid, they were asked to correct this, otherwise the next sound was presented.
The experiment consisted of two parts, one for size estimations, the other for
the speed estimations. Before the first part there were eight practice sounds for
the participants to get accustomed to the range of the sounds and the method of
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responding. Before the second part there were four such practice sounds. In be-
tween the two parts the participants were allowed to have a break if they wished.
The experiments lasted about 20 min and the participants were paid 3.50 euros
for participating. Twenty individuals participated. They were recruited at the
university and were mainly students. All participants reported that they had no
hearing problems.

In the first part, the participants were asked to judge the diameter of the ball
producing the rolling sound presented to them. Two recordings of all balls with
five different sizes and four different speeds were presented twice in random
order, giving a total of four responses for each of the 20 combinations of speeds
and sizes. In the second part, the participants were asked to judge the distance
the ball covered in the course of rolling by listening to its recorded sound. Exactly
the same sounds were used, but in a different random order.

7.4.2 Results

To check if participants were able to perform the task, we first tried to identify the
relation between the physical size and the speed of the rolling ball in the record-
ing, and the perceived size and speed. These physical and perceived sizes were
log-transformed in accordance with Steven’s law, which results in homoscedastic
data, i.e., the variances of the logarithm of the perceived sizes were independent
of the physical sizes, and the variances of the logarithm of the perceived speeds
were independent of the physical speed. Using linear regression, a line was fitted
through the average of the four answers of each participant.

log(perceived size) = factorsize × log(real size) + interceptsize. (7.1)

For the factorsize we found values varying over the participants from 0.68 to 2.87
with an average of 1.71, and for the interceptsize the values ranged from -13.0 to
-6.08 with an average of -9.69.

These results are shown in Figure 7.13. The linear regression line fitted through
all data is compared with the interquartile ranges of the data per size. The in-
terquartile range is quite high, due to the fact that there is a large variation be-
tween participants. Individual participants often show much better performance,
in the sense that they consistently give higher ratings to balls with a larger size.
On average, the participants overestimated the differences in size resulting in a
regression line with a negative intercept.
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If we compare the predicted values of this linear regression with the averages
of the four responses the participants gave for the four identical representations,
we come to an explained variance of 44% when we apply the linear regression to
the pooled data. When we apply the linear regression analysis to each participant
separately, the explained variance increases to 79%. These individual regression
lines all have positive values for factorsize. Hence, the participants were able to
detect the differences in size.

Applying the same procedure to the speed of the ball, with

log(perceived speed) = factorspeed × log(real speed)+ interceptspeed, (7.2)

we find for one participant a negative factorspeed (-0.14). This means that this
person judged faster balls as slower or, in other words, reversed labels, as did
three of the 40 participants in the previous paired-comparison experiment in sec-
tion 7.2. Because we cannot simply inverse the answers as in the previous paired-
comparison experiment, we omitted this participant for the remainder of the
analysis. For the other participants we found values for factorspeed ranging from
0.023 to 0.83 with an average of 0.13. For interceptspeed values were found from
0.025 to 0.23 with an average of 0.10. This time all participants underestimated
the differences in the speed of the ball, and the intercept is positive. Besides the
one reverse labeler, the result of one other participant was not included in this
linear regression analysis, the participant with the highest factorspeed. Since the
factorspeed for this participant was 0.83 and the second highest factorspeed was
0.29, with an average of 0.13, this high value is clearly an outlier in statistical
sense. Remarkably, among all 20 participants this participant in fact best esti-
mated the actual speed of the ball, since his or her factorspeed, 0.83, was closest
to 1. For the other participants the factorspeed was much lower.

So the data from those two participants was excluded from the analysis. The
regression line through the data of the remaining 18 participants is shown in Fig-
ure 7.14. The slope of the line is close to the slope of the median of the data, in-
cluding outliers. The fact that factorspeed is much lower than unity means that,
averaged over all participants, the listeners strongly underestimate the speed dif-
ferences. If we compare the predicted values using this linear regression with
the averages of the four responses the participants gave for the four identical
representations we come to a, statistically not significant, explained variance of
only 5% for the pooled data. If we, however, apply the linear regression per par-
ticipant the explained variance is 39%, which is statistically significant. The low
explained variance is no surprise after analyzing Figure 7.14, we see that the vari-
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ation in perceived speed explained by the almost flat line is much lower than the
variation indicated by the quartile ranges of the data. The much higher explained
variance for the fit per participant, however, indicates that the participants are
much more consistent in rating the faster ball as faster. This means that the par-
ticipants were able to detect the differences in speed, but they underestimate the
actual speeds and there were large individual differences.

Although this is the standard way to analyze data from an absolute magnitude
estimation experiment, in our case this does not seem to be the optimal method.
These plots in Figures 7.14 and 7.13 do not show that, although the variation
between the participants was high, the participants themselves were generally
reasonably consistent in their answers. Only by averaging across a large number
of participants we get the shown response. Only few participants answered close
to these average responses.

The main problem is that the answers of one participant cannot be compared
with the answers of others directly, because each of them seems to have its own
unit of measurement. By normalizing the data per participant we can only par-
tially overcome this problem. In the stochastic estimation model the perceived
magnitudes differ due to different perceived magnitudes but also due to a dis-
criminational dispersion (see appendix A). We should only normalize for the
scale differences in the perceived magnitudes, but we cannot distinguish this
from the discriminational dispersion.

In the next section we will describe a better and more precise way to quantify
the performance of the participants in this task. This method compares only re-
sponses from one participant at a time, and it makes thereby a comparison on one
scale only. Via these comparisons within data from one participant, probabilities
are calculated, and these probabilities can be compared across participants.

7.4.3 Psychometric functions

To calculate a psychometric function of the correct identification of the larger or
faster of the two balls, we need data comparing balls of two sizes or of two speeds.
We calculate these data in the following way. It is assumed that the participant
estimates the size or speed of the two balls separately and then compares the two
estimated values and responds accordingly. For each individual size or speed, we
have four estimated values, which we treat as equally likely to be the result of the
estimation process. Thus we have a total of sixteen equally likely comparisons, in
which we can identify a correct or incorrect response. A third possibility is that
the two estimates are equal. By counting the correct responses and giving two
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FIGURE 7.13: Estimations for the size of the ball. Each circles indicates the medians
across all data of 16 estimations by 20 participants; the bars indicate the interquartile
ranges. The continuous line is the linear regression line through all data. The dashed line
is the identity relation between physical parameters and the estimates.
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FIGURE 7.14: Estimations for the distance traveled by the ball. Each circles indicates the
medians across all data of 20 estimations by 20 subjects; the bars indicate the interquartile
ranges. The continuous line is the regression line through all data. The dashed line is the
identity relation between physical parameters and the estimates.
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equal estimates half probability of being a correct answer and dividing by the
total number of comparisons, in this case 16, we find what we will call a derived
percentage correct. An example of how to calculate the derived percentage correct
is given in Table 7.2. The participants were free to choose any step to round their
responses to. The derived percentage correct represents the probability that the
larger ball was indeed judged larger than the smaller ball. After calculating the
derived percentage correct for all pairs, we can proceed to calculate the psycho-
metric function as in the first experiment. However, the psychometric functions
are now symmetric, because we have no order in which the two sounds were
presented to the listener.

TABLE 7.2: Calculating paired data from absolute magnitude data, or the chance
of a correct response in a paired comparison that we derive from two series of
answers in an absolute magnitude estimation task. In the first row and column
the physical sizes of the two balls are displayed. The second row and column
display the four estimations of the listener. The table values code the comparison
for each pair in the following way: 0: second estimate is larger; 1: first estimate
is larger; .5: both estimates are equal. The average value of the table values gives
the estimated proportion correct paired comparisons. The shown values are fic-
tive and serve as an example, and would lead to a derived proportion correct of
12.5/16 = 0.78 in which the first ball is judged larger.

Actual ball 2 size [mm]:
25

Estimated ball 2 size [mm]:

28 31 39 43

Actual 35 1 1 0 0

ball 1 39 1 1 .5 0

size 45
45 1 1 1 1

[mm]:

Es
tim

at
ed

ba
ll

1
si

ze
[m

m
]:

52 1 1 1 1

The method has the advantage that it uses no reference and no measure of
difference between the two sounds. The lack of reference is important because we
know that a considerable part of our participants poorly recognize the absolute
sizes of the balls. In Section 7.4.2 we saw that a linear regression on the pooled
data results in a much lower explained variance than when a linear regression
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FIGURE 7.15: The psychometric curve for the estimated size of the ball while the speed
was constant. The data came from an absolute magnitude estimation experiment. The
steepness β is indicated and the numbers between brackets present the 95% two-sided
confidence intervals.

was applied for each participant separately. The lack of a measure of difference is
important because the perceptual difference is the basis of the discriminatability
that we are trying to measure. If we would base our values on the mean or the
median of the four responses we would have to convert the proportion of those
two means into a probability, for which there is no known algorithm.

In the current case it is much less clear that the difference scale is logarithmic.
In fact, due to the more scattered data, the fits are equally good when done on a
linear scale. In order to compare the results from this paired-comparison exper-
iment with the previous absolute magnitude estimation experiment, we will use
a logarithmic scale here, too.

In Figure 7.15 and 7.16 we see the results. Again, the psychometric function
for size, Figure 7.15, is much steeper than the one for speed, Figure 7.16. The fit
is quite good resulting in small confidence intervals. Because of this good fit we
can also try to use only a subset of the data to fit the functions. In Figure 7.18
the steepness of the psychometric function, β for judging travelled distance, is
plotted as a function of the diameter of the ball. The different ball sizes are not
averaged as was the case in Figure 7.16, but analyzed separately. Similarly, in
Figure 7.17 the size data were used and analyzed for each ball speed separately.
In these figures, we can see that there is some statistically significant variation in
the steepness of the psychometric function, β. Speed judgments seem easiest for
the smallest ball, which had a diameter of 25 mm. Remarkably, the next smallest
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FIGURE 7.16: The psychometric function for the estimated traveled distance of the ball,
while the size was constant. The data came from an absolute magnitude estimation ex-
periment. The steepness β is indicated and the numbers between brackets present the
95% two-sided confidence intervals.

0.48 0.91 1.31 1.63
1.5

2

2.5

3

speed of the ball [m/s]

st
ee

pn
es

s 
(β

)

FIGURE 7.17: The steepness of the psychometric function for the diameter judgment for
separate speeds. The data came from an absolute magnitude estimation experiment. The
error bars denote the two-sided 95% confidence intervals.
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FIGURE 7.18: The steepness of the psychometric function for the traveled distance judg-
ment for separate sizes. The data came from an absolute magnitude estimation experi-
ment. The error bars denote the two-sided 95% confidence intervals.

ball, that of 35 mm diameter, is the most difficult to judge. If there were a simple
interaction of the ball size on the judgment of the speed of the ball, we would
expect a monotonic change of the steepness for speed judgment when the size of
the ball increases. Similarly these figures show no systematic interaction of ball
speed on judgment of the size. In the current data, however, we can see that the
capability to discriminate speed does not increase or decrease for larger sizes, it
is merely so that for some of the balls, specifically the 25 mm one, it was easier to
detect the speed than for other ones, specifically the 35 mm one.

7.5 Discussion

In both experiments, the participants were able to detect differences in the sizes
and in the speeds of a rolling ball. Participants were sometimes able, but gener-
ally performed very poorly in estimating the thickness of the plate on which the
ball rolled in experiment 1. This is somewhat surprising because in other experi-
ments, discussed in Chapter 8, we established that the participants could hear the
differences between the sound of a ball rolling over a thick plate and the sound of
a ball rolling over a thin plate. Also, in daily activities people often tap on a piece
of wood of, for instance, a table to hear if the top plate is thin, thick or hollow.
This surprisingly does not extend to rolling sounds and more specifically, they
fail to use the differences they hear to estimate the thickness of the plate.
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An absolute size experiment was also done by Grassi [31]. He asked partic-
ipants if they could estimate the size of a bouncing ball. Grassi concluded that
listeners underestimate the size of the ball. From the figures plotted in his paper
we can also conclude that his participants overestimate the size differences, but
have a negative intercept. In his experiment six out of seven balls were underesti-
mated in size. This corresponds very well with our findings in the size estimation
using absolute magnitude estimation.

By plotting the percentage correct as a function of the difference of the loga-
rithm of the ball sizes, data were obtained through which a well-defined psycho-
metric function could be fitted. From the fact that the fit is very good in the case
that we have the best data (see Figure 7.15) we can derive a distance measure that
we can also use when the data are somewhat more scattered (e.g., see Figure 7.9).
The psychometric functions shown in this chapter are based on data from all par-
ticipants. In this way we can calculate the estimated percentage correct, EP1, that
a listener will hear the difference in size or speed between two of the balls:

EP1 = gaussian(log(s1) − log(s2), 1/β), (7.3)

where the two sizes or the two speeds are indicated with s1 and s2. The cumula-
tive Gaussian distribution is used:

gaussian(x, σ) =
1

2

(

1+ erf
x

σ
√
2

)

. (7.4)

We can calculate the size or speed difference, or more precisely the ratio, s1/s2
necessary to realize that more than EP1 of the participants judge the correct ball
as being larger or faster:

s1

s2
= exp

(√
2

β
erf−1(2EP1− 1))

)

, (7.5)

where erf and erf−1 stand for the ordinary and inverse error function (see, e.g.,
Arfken and Weber [4]).

7.5.1 Absolute magnitude estimation versus paired comparison

Apart from these issues, the merits of both methods to generate the psychomet-
ric functions can be compared. In our design we had four speeds and five sizes
leading to 20 different sounds. In the absolute magnitude estimation experiment
we presented all sounds four times, with two different questions, one for the size
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and one for the speed, which leads to 160 presentations to the 20 participants. We
presented each pair once in each order to the 23 participants in a paired compar-
ison task, which leads to 140 presented pairs. Thus, the total numbers of sound
presentations are similar. Yet, the confidence intervals for the steepness of the
psychometric functions resulting from the absolute magnitude scaling data are
smaller. This is due to the advantage of absolute magnitude estimation, which
is that there is more information gathered for each presented sound, namely a
numeric value that we can compare with all the other responses by the same par-
ticipant. In paired comparison only a small amount of information is gathered
after presenting two sounds, either the first or second is estimated larger or faster.
The psychometric functions can, therefore, be fitted with fewer hours of partic-
ipant testing. The disadvantages of absolute magnitude estimation is that this
task is harder for the participants, and we cannot tell immediately if an answer is
right or wrong. Participants almost never give the exact answer, but this does not
mean that the data points do not fit well on a psychometric curve. Another ad-
vantage of paired comparison is that we can choose to fit the psychometric curves
symmetrically or asymmetrically. A disadvantage for paired comparison is that
all sounds considered need to be presented in pairs. Especially when examining
interaction effects, this will lead to excessively many pairs. We dealt with this
problem by only presenting a small subset of the pairs of sounds in which both
speed and size differed simultaneously, presenting all these pairs twice, once in
each order.

7.5.2 Interaction

We have looked for interaction effects between size and speed judgments in vari-
ous ways. Using the data obtained in the absolute magnitude estimation, a linear
regression model was used to fit the data of the participants. Extending the linear
model of Equations (7.1) and (7.2), the mean of the four estimations was fitted for
each participant individually with the following function:

log(perceived size) = factorsize × log(real size) + interceptsize +

factorcovary × log(real speed) +

factorinter × log(real size) × log(real speed). (7.6)

The addition of one or both of the two terms, factorcovary × log(real speed) or
factorinter × log(real size)× log(real speed), did not increase significantly the ex-
plained variance when such a model is fitted through the average estimates of all
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TABLE 7.3: The steepness β of the psychometric curve can be calculated from part of
the data where the size as well as the speed differed. The performance in the absolute
magnitude task is split into three categories: In the first column the results for half of the
data, where the largest ball is the fastest, are used to calculate the steepness, β. In the
third column the other half of the data is used to calculate the steepness, thus where the
smallest ball is the fastest. In the second column all data is used, and this consists of an
equal number of cases where the smallest and the largest ball is the fastest.

largest is fasted counter balanced smallest is fastest
distance (0.56-) 0.66 (-0.76) (0.76-) 0.82 (-0.88) (0.95-) 1.0 (-1.1)

diameter (1.9-) 2.0 (-2.1) (2.0-) 2.2 (-2.3) (2.2-) 2.5 (-2.7)

data of all participants. For the speed estimation the explained variance increased
from 5.3% to 6.0%, and for the size estimation it remained at 44%. When such a
plane is fitted for each participant individually, however, the explained variance
increases with the inclusion of these two parameters. For the speed estimation
the explained variance increased from 39% to 72% and for the size estimation it
increased from 79% to 88%. This leads to the conclusion that there is no system-
atic interaction effect present in these data. Apparently the interaction term from
one participant is canceled by that from another. We can, however, only compare
the regression coefficients of the fits and not the accuracy of the individual es-
timations of speeds or sizes because of the large individual differences between
participants.

After constructing the psychometric functions, we showed in Figure 7.17 that
the steepness of the psychometric function for the speed judgment varies for dif-
ferent ball sizes and, in Figure 7.18, that the steepness of the psychometric func-
tion for the size judgment varies for different ball speeds. There seems, however,
no general trend in the sense that the speed of larger balls is easier or harder to
discriminate than the speed of smaller balls. It seems merely that the speed of
some of the balls is easier to discriminate than the speed of other balls. We can
only guess for the cause of this difference, but there are large temporal differ-
ences in the sounds of the rolling balls. Sometimes, especially for smaller and
faster balls, the balls bounce more readily. In the absence of bouncing, the sound
of certain balls at certain speeds shows a more pronounced temporal variation in
amplitude. This amplitude modulation corresponds with the rotational velocity
of the ball, and has a strong influence on speed and size estimations [40]. If listen-
ers are capable of interpreting these extra sources of information, and they are for
amplitude modulation [40], their availability could explain this part of our data.
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TABLE 7.4: A summary of the steepness parameter β as found in the different parts of
this paper. The two methods are magnitude estimation and paired comparison

magnitude estimation paired comparison
diameter:
equal distance (2.2-) 2.4 (-2.5) (2.1-) 2.6 (-3.1)
distance:
diameter equal (0.80-) 0.86 (-0.92) (1.5-) 1.7 (-1.9)
diameter different (0.76-) 0.82 (-0.88) (0.89-) 1.2 (-1.4)

Furthermore, there could be a subtle difference between the ways participants
listen to sounds when presented one at a time or when presented in pairs. The
fact that people listen in different ways to the same kind of sounds is not new. A
classic way is Gaver’s [24] division in musical and everyday listening. For our
case we could hypothesize two models in which the listener responds to a sound
pair. In the first model, the listener would treat each sound separately, and come
to an internal representation of the size or speed of the ball. In paired compari-
son, these two internal representations are compared to come up with an answer.
This will lead to exactly the same results compared to an absolute magnitude
estimation task in which the participants will answer directly according to their
internal representations of the speeds or sizes of the balls. In contrast, when the
participants compare the two sounds on a somewhat lower processing level, e.g.,
by listening to temporal patterns or the brightnesses, then there could be a differ-
ence in both methods. Assume that people have some short-term memory space
available to remember, for instance, the temporal pattern over a short time, and
that the capability to remember this pattern fades over time. In this case, for a
paired comparison task the two sounds are compared at a higher resolution than
in an absolute magnitude estimation task. This will lead to steeper psychometric
curves.

Considering the possibility of comparing sounds at different levels, it is in-
teresting to see that the psychometric functions for the size estimations are com-
parable for the two methods whereas the functions for speed estimations differ.
On the basis of the foregoing discussion, this could mean that listeners are able
to judge the size differences of the two balls after they have built the complete
internal representation of the size of the rolling balls. With this we mean that the
listener has an idea of the actual diameter for both balls, and compares these two
quantitatively. This explains why, in the size judgment task, the steepness of the
results obtained with absolute magnitude estimation is equal to that of the paired
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comparison task, see Table 7.4 for a summary of the β values derived in the dif-
ferent experiments of this chapter. In the speed judgment task, however, listeners
perform better in the paired-comparison task than in the absolute magnitude es-
timation. Again, following the discussion of the previous paragraph, this would
imply that they do not build the full internal representation of the speeds of the
balls, but, in a paired-comparison task, they compare the sounds in a more direct
manner. This more direct method could consist of comparing lower-level percep-
tual attributes of the auditory signals such as the brightness or roughness of the
sounds and lead to a higher sensitivity than in the magnitude estimation task.
For a definition of brightness and roughness see [112].

In the cases where both the speeds and the sizes of the balls differ, listeners
can no longer rely on the lower level properties of the auditory signals, because
they vary with both the speed and the size of the ball. They, therefore, compare
both sounds at the level of the internal representation of the ball size, and the
steepness of this psychometric function for this paired comparison is more equal
to the one constructed from the absolute magnitude data, and much flatter than
the psychometric function for this paired comparison where the speed of the ball
is not varied. For the speed estimation the situation is slightly different. The
listeners can still make comparisons on the basis of the lower-level perceptual
attributes of the auditory signals, and compensate for the ball diameter, for which
they can make a much better estimate. This explains the higher steepness for the
distance estimates, using the paired comparison case in which the balls are of
different diameters, compared to the absolute magnitude tests.
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7.A Psychological scales

In this appendix, we will analyze the perception of the size and speed of rolling
balls using a concept that was introduced by Thurstone called “discriminal dis-
persion” as introduced in [102]. Our reasoning will closely follow that of Thur-
stone, see also [103] and [25], but confines it to our particular case and to the
psychometric functions. The essence of this concept is that the perception of a
stimulus can be represented by a random variable. The actual or physical stimu-
lus value, in our case the size or speed of a rolling ball, is represented by a random
variable with mean value S̄, on the relevant psychological scale. For each individ-
ual representation of a stimulus there is, for various reasons, a random deviation
from this mean value.

We will assume that the variance of this random variable remains constant for
all ball sizes or speeds, although this is no necessity for Thurstone’s theory, but it
simplifies our calculations. Furthermore, we will assume, as is essential in Thur-
stone’s theory, that listeners perceive the size or speed differences of the two balls
by subtracting the internal representations of the size or speed of the balls indi-
cated by the two random variables S1 and S2. The result is a new random variable
Sd with E[Sd] = E[S1] − E[S2] and var[Sd] = var[S1] + var[S2]. When this new ran-
dom variable is positive, this means that the first presentation is judged larger or
faster. This means that the shaded proportion, shown in Figure 7.19, represents
the probability P(Sd1,2 > 0) that the first presentation is judged larger or faster.
This probability P(Sd > 0) is a function of the difference S̄2 − S̄1. This means that
for another pair of quantities on the same scale, say S3 and S4, that have a dif-
ferent position on the same psychological scale, but have the same distance, this
leads to the same P(Sd1,2 > 0) = P(Sd3,4 > 0); it also means that P(Sd1,3 > 0) can
be calculated when knowing P(Sd1,2 > 0) and P(Sd2,3 > 0). Such calculations are
only permitted if these probabilities form a metric space.

If the probability P(Sdx,y > 0) with x, y indicating a numeric index for the two
sounds, forms a metric space, there should be a distance d(x, y) that conforms
the prerequisites for a metric space: non-negativity of ∀x,yd(x, y) ≥ 0, identity
d(x, y) = 0 iff x = y, symmetry ∀x,yd(x, y) = d(y, x), and the triangle inequality
d(x, z) ≤ d(x, y) + d(y, z). A valid distance for our space is:

d(x, y) = |P(Sdx,y > 0) − 1/2|

All together, in such a metric space we can calculate the scale values from the
frequency table, and this is exactly what is done by Thurstone’s method.
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FIGURE 7.19: (a) Distributions of two perceived quantities on a psychological scale. (b)
The distribution of the discriminal differences on a psychological scale. The shaded por-
tion to the right of the zero point the probability that the investigated magnitude of stim-
ulus 1 is perceived larger than magnitude of stimulus 2.

Using Thurstone’s method on our frequency tables, Table 7.1 and 7.2 of the
preceding chapter, results in a number of relative scale values for the perceived
size and speed of the ball. In Figures 7.20 and 7.21 we plotted these scale values
plotted against the logarithm of the physical or actual parameters. It can be seen
that the data from the absolute magnitude data experiment follow the logarithmic
scale more closely than the data from the paired-comparison experiment. Calling
the physical value A and the position of the mean of the random variable on the
psychological scale, S̄, results in

S̄ = α ln(A), (A-1)

where α is some unknown constant. The probability P(Sd > 0) is a function of
the difference S̄d = S̄2− S̄1 and, hence, also of α(ln(A2)− ln(A1)). It represents the
proportion of times S2 is reported as coming from the larger or faster ball than S1.
Thus, if the representation of this difference Sd is positive, the listener perceives
the first sound as larger or faster. The probability P(Sd > 0|S2 − S1) or P(Sd >

0|α(ln(A2) − ln(A1))) results in the psychometric function. If we assume that
the distribution of the random variable is Gaussian, the psychometric functions
will have the form of a cumulative Gaussian, and this is what we chose for the
psychometric functions in this chapter.

Following Stevens’ law, Equation (A-1) should contain an extra constant, indi-
cating the proportionality of the relation, S̄ = α ln(A)+ ln(c), which was included
in the linear regression in section 7.4.2. Since we are now only interested in the
difference of two scale values, these constant proportionality factors would can-
cel each other and, therefore, we do not consider them in this appendix. Hence,
we can use a single parameter to describe the psychometric function, β = 1/α,
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FIGURE 7.20: Relative perceptual scale values for different ball sizes, derived using Thur-
stone’s method. Data are from a paired comparison experiment (x-marks) and an abso-
lute magnitude scaling experiment (squares). Positions are relative to the smallest ball.
The line is fitted from the data under the assumption that Stevens’ law holds, i.e. two
stimuli are equally different if their ratio is the same, hence the logarithmic scale for the
horizontal axis.
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FIGURE 7.21: Relative perceptual scale values for different ball speeds, derived using
Thurstone’s method. Data are from a paired comparison experiment (x-marks) and an
absolute magnitude scaling experiment (squares). Positions are relative to the ball with
the lowest speed. The line is fitted from the data under the assumption that Stevens’ law
holds, i.e. two stimuli are equally different if their ratio is the same, hence the logarithmic
scale for the horizontal axis.
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and we can calculate the relative position of the ball size on the psychological
scale in units of σ, the standard deviation of the random variable that represents
the perceived size or speed of the ball. This means that if the distances on the
(logarithmic) psychometric scale are twice as large, this leads to β being twice as
large and thus to twice as steep a psychometric function.

The method of Thurstone has been criticized, see for instance Greenwood and
Williamson [32]. The main points of critique come from the fact that it is an “indi-
rect” measurement technique, i.e., the scale is not measured directly but derived
from measurement results. For instance, one criticism is that it measures the scale
in some region and not a global scale. But the same can be said of magnitude es-
timation, which is supposed to be direct. In the end we are searching for the
mental representation of the objects heard, and for that no direct measurement
techniques exist.

The difference between Thurstone’s method and the method based on the psy-
chometric functions that are estimated in the main part of this chapter, is that
Thurstone’s method estimates the scale values from a frequency table, and the
psychometric functions estimate the accuracy of the perceived scale from the fre-
quency table and known scale values. We know what the sizes and the speeds of
the balls were when we recorded the sounds. Using Thurstone’s method, we can
show that Stevens’ law holds for the data generated by the absolute magnitude
experiment, by plotting the relative distances of the stimuli on the perceptual
scale, as found by using Thurstone’s method versus the logarithm of their sizes
or speeds. This is shown in figures 7.20 and 7.21. From the good fit of the straight
line, we conclude that Stevens’ law indeed holds, and we can safely use a log-
ratio scale on the psychometric functions.



8 Using Multidimensional Scaling to Deter-
mine Distances in the Perceptual Space of
Rolling Sounds1

Abstract

The experiments described in this chapter were performed to allow the construc-
tion of a perceptual space for rolling sounds. The same recorded sounds as in
Chapter 7 of this thesis were used as experimental stimuli. All sounds were com-
bined in pairs and participants were asked to quantify the perceptual difference
between the two sounds of a pair on a five-point scale. Using this method, all pos-
sible perceptual differences could contribute to the difference scalings without a
need for the participants to interpret these differences in terms of underlying ob-
ject properties such as size or speed. Using a multidimensional scaling algorithm,
the scaled differences were used to construct a perceptual space of these sounds.
A good fit was obtained for a space having three dimensions. None of these
dimensions corresponded directly with one of the three mechanical parameters
varied in the rolling sounds. Differences in speed led, for the parameter ranges
used, to a smaller distance in the constructed perceptual space than differences in
size. This corresponds to results from direct scaling experiments using the same
sounds. Remarkably, differences in the plate thickness resulted in large distances
in the perceptual space, while this mechanical property was poorly recognized
when participants were directly asked to estimate it. In the perceptual space,
the direction that correlated best with plate thickness was almost perpendicular
to the directions that correlate best with the speed and size of the ball. This or-
thogonality might indicate a perceptual process that separates the more relevant
auditory information from the less relevant.

1Part of this work was presented at the ASA Providence meeting in 2006 [94]
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8.1 Introduction

Up to now, all our research on the perception of rolling sounds has been focused
on determining the auditory capability of humans to detect some mechanical fea-
ture of the rolling sound. In this study, we tried to quantify the differences listen-
ers can hear in a rolling sound without labeling what the differences are. Thus,
after listeners were presented with two sounds they were asked to respond how
different they thought the sounds were, wheras in previous research they had
to answer some specific question, such as which of the two sounds represented
the bigger or faster rolling ball. There are two important differences between
those two methodologies. When people can answer some specific question, like
“which of the two balls is the larger one” correctly, this requires two skills of the
listener. The listener has to be able to detect the differences in the sound caused
by this change in size of the ball, and second, he or she has to be able to inter-
pret these differences. The listener has to separate the differences in the sound
caused by this change in size from other changes in the sound, and this will en-
able the listener to derive the relative sizes of the balls. Only if both detection and
interpretation have taken place, people will come to the correct answer to such
questions. This was tested in previous research. In the current study there is no
specific question, and people do not have to interpret the differences they hear,
and we can concentrate on the detection of the differences in the sounds.

Next, we would like to figure out whether people can “tune their ears” to lis-
ten to the size of rolling balls and then use a different tuning when listening to the
speed of the ball. In other words: Does the question posed to the listener have an
influence on the perception process. We will try to answer this question by look-
ing at a configuration where this adaptation or “tuning of the ears” does certainly
not take place, because the question asked to the listener is always the same. If we
then do not find enough differences to explain the differences found in Chapter
7, we may conclude that this tuning of the perception process indeed takes place.
This tuning is similar to schema-driven perception where different schemas can
be activated. For an explanation on schema-driven perception see [7][106][67].
Note that the participants were, in the papers mentioned before, asked directly to
judge the size or the speed of the ball, and in one case the thickness of the plate
of the recorded rolling sounds. For the current work we asked the participants
to judge the difference they perceived between the sounds without identifying
the origin of these differences. A multidimensional scaling was then applied to
determine the underlying perceptual space of these rolling sounds.
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Multidimensional scaling has been applied earlier in sound-perception re-
search. For instance, it was used to study differences for signal processing tech-
niques that influence the overall differences in sounds [3]. The stimuli in that
study were synthetic; pure tones with or without applied frequency modulations,
noise bands with or without amplitude modulation and harmonic complexes,
whereas we used recorded sounds. Also, these authors focused on the differ-
ences in scaling between adults and 7 or 10 year old school kids. By correlating
the periodicity and temporal fine structure of the sounds with the found MDS
axes, they were able to determine that adults and many children appear to base
their classification on both the temporal and the spectral structure of the sound.

In an attempt to evaluate the perceptual relationships between sounds from
16 musical instruments, Grey [33] used stimuli, the synthesis of which was based
upon a spectro-temporal analysis of actual instrument tones. Using this analy-
sis, he tried to explain the confusions listeners made between instruments. This
idea was evaluated further by McAdams [67, Ch. 6] who used multidimensional
scaling in an attempt to explain the recognition of sound sources and events.

Some approaches using multidimensional scaling, quite similar to the work
presented here, were aimed at studying the processes that enable listeners to de-
tect mechanical properties of sound generating systems. The psychomechanics
of simulated impacted mallets was studied by McAdams, Chaigne and Rous-
sarie [68]. Based on multidimensional scaling, a two-dimensional perceptual
space was constructed, and signal parameters were found that explained a signif-
icant amount of variance in the response data. The two best descriptors appeared
to be the long-term decay constant and the spectral center of gravity. In another
work by Canévet, Habault, Meunier and Demirjian [10], the auditory perception
of sounds radiated by a plate excited by a transient point source was studied. In
this work too, synthesized sounds were used. In their multidimensional scaling
they found three dimensions. They found that a first dimension was related to
the “structural damping and high-frequency components”. Another dimension
was related to the “tonal character of the resonant part of the sound”. The third
dimension was related to the “sharpness of the transient part of the sound”.

Note that in these studies fast decaying sounds were used that were synthe-
sized and relatively short. Correlations with acoustic signal parameters were
studied. For the current work we used recorded sounds that are relatively long
and steady-state, and we will try to correlate the results from the multidimen-
sional scaling with the mechanical parameters of the sound-generating system.
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Then we will discuss the auditory processing mechanism that enables listeners to
detect the mechanical properties of the sound-generating system.

8.2 Stimuli

The stimuli consisted of recordings of wooden balls rolling over wooden plates.
In the recording of these sounds, the ball diameter, the rolling speed and the
thickness of the plate were varied. The balls and plates were chosen to give good
rolling sounds and to be the same or similar as used in earlier experiments [40].
The balls were made of beech wood and had diameters of 25, 45 and 68 mm.
Due to the production process, the balls were not perfectly spherical, leading to
temporal variations in the sound, such as amplitude modulation, or even some
bouncing for the smallest and fastest balls.

In order to give the balls a well defined velocity along the center line of the
plate, they were rolled from a slide onto the plate. The height of the slide was
25 cm. The balls were released from various heights on the slide to vary their
velocity. In order to measure the velocity of the ball, its course interrupted the
beams of six independent light-gates, placed at intervals of 20 cm. The measure-
ments showed that, during one run, the ball’s velocity was constant within a few
percent. The velocities we used in the experiment were 0.48, 0.91, and 1.63 m/s.

The slide was separated from the plate by a narrow slit, about 0.5 mm in
width, to avoid the transmission of vibrations from slide to plate. The slide had
a smooth bend near its end to transform the vertical velocity of the balls into a
horizontal one. At the other side of the plate, the ball was left free to roll off.

The plates, 50 cm wide and 120 cm long, consisted of MDF, a kind of wood-
particles pressed and glued together. The thickness was 8, 12 or 18 mm. The
advantage of this kind of material over real wood is that the material properties
do not change with position and direction on the plate.

Seen from above, the microphone was placed 70 cm to the right of the long
side of the plate, and halfway its length. It was placed 70 cm above the plate,
pointing at it with an angle of 45 degrees. The closest distance between micro-
phone and plate was 100 cm. The microphone itself was a small diaphragm car-
dioid condenser microphone, type Røde NT5. It was connected to a sound card,
type Terratec MIC8, that recorded the sounds with 24-bit resolution at a sample
frequency of 48 kHz on a standard PC.

From the middle of the sound, 600 ms intervals were cut out. The waveforms
were gated on and off with half of an 8 ms Hanning window. The two sounds of
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a pair were presented with a 250 ms silent interval. The sounds were presented
to the participants via headphones, at their original relative sound levels.

Because spectral differences are often considered as a very important source
of information, the spectral differences between the sounds of these mechanical
systems were analyzed and the results can be found in Chapter 7.

8.3 Method

From the recorded sounds we selected all three ball sizes, three ball speeds and
three plate thicknesses, resulting in 27 different sounds. All possible pairs were
constructed except those where the two sounds were identical, resulting in 26 ×
27 = 702 sound pairs. These sound pairs were presented in random order via
headphones to the participants. Their task was to scale the differences between
the sounds on a five-point scale ranging from “no audible differences”, scale
value 1, to “very different”, scale value 5. The intermediate steps were not given
a label. The main part of the experiment was preceded by eight practice sound
pairs to let the participants get familiar with the interface. The main experimen-
tal part itself was split into four parts with a possibility of a break in between.
The experiment lasted about 40 minutes and the 27 participants were awarded
5 euro for participating. They were recruited at the university and were mainly
students. All participants reported to have no hearing problems.

8.4 Results

On the dissimilarity scale from 1 to 5, the average response across all participants
and all sound pairs was 3.36 while the standard deviation was 1.01. The sound
pair with the highest rated difference had an averaged response of 4.5, the lowest
response was 1.55. In Figure 8.1 the confidence intervals for the means of the
difference scalings given by the participants are presented. The two ratings given
by each participant for each pair in the two orders were averaged. On this scale,
the width of the confidence intervals ranges from 0.30 to 0.74.

In the following, we analyze the mechanical properties of sound pairs with
the largest and the smallest differences. The ten sound pairs that were most alike
according to the participants were rated from 1.6 to 1.9. The two sounds in each
of these pairs differed in the speed of the ball, and four of them also differed
in size. For those four pairs, that differed in two dimensions, the ball with the
highest speed was the smallest in diameter. The sound pairs with the five highest
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FIGURE 8.1: The confidence intervals of the difference ratings. For all sound pairs the
95% confidence intervals are plotted against the mean of the difference ratings. Due to
the limited number of data, some values for the mean of the difference rating occur more
than once, in which case the mean values are spread a little bit to make the individual
lines visible.

rated differences differed in all three dimensions. Their ratings ranged from 4.4
to 4.5 on the same scale. Of the next five, all with rating 4.4, only one differed
in three dimensions and two differed in plate thickness and the size of the ball,
the other two differed in plate thickness and the speed of the ball. As we will see
later, this simple analysis gives a good indication of the results obtained with the
more sophisticated MDS analysis.

8.4.1 Multidimensional scaling

So far we only discussed the average dissimilarities of all 351 sound pairs. These
dissimilarities represent distances between the points in the perceptual space that
represent the different sounds. We can now try to find coordinates in a space in
such a way that the distances between the points are proportional to the average
dissimilarity as judged by the participants of our experiment. Depending on the
dimensions of the space that we try to construct, there always remains a discrep-
ancy between the distances in between the points in the constructed space and
the average dissimilarity of the sounds as reported in the experiment. The mean
squared average of this discrepancy over all sound pairs is called the stress. The
stress depends on the number of dimensions of the underlying space, where the
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FIGURE 8.2: The three panels represent the perceptual space of the sounds. In all three
panels one of the three dimensions of the multidimensional scaling analysis is perpen-
dicular to the paper, so we can see only the two remaining dimensions. The mechanical
properties of the plate are represented in the symbols. The size of the symbols represents
the thickness of the plate, where the largest symbol corresponds to the thickest plate. The
type of the symbol represents the speed of the ball. The circle was the slowest, the square
the middle and the diamond the fastest. The fill color of the symbol represents the size of
the rolling ball, with the open symbol representing the small ball, the gray one the middle
and the black one the largest balls.
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representation of the stress as a function of the dimensions of this space is called
the stress function. The stress function is always decreasing with increasing num-
ber of dimensions of the underlying space but typically shows a steeper decrease
up to a certain number of dimensions. This number of dimensions is then re-
garded as the best choice to describe the perceptual space. In our case, however,
the stress function was not conclusive about the required number of dimensions.
We chose to use three dimensions because the results were easiest to interpret in
this case. In addition, as we will see later, this enabled us to transform the axes
resulting from the MDS analysis into new axes that correlate best with the three
dimensions of the mechanical variations applied in our setup.

The software program used for the multidimensional scaling was XGms as
described in [65]. The paradigm used is referred to as double-stimulus dissim-
ilarity scaling. The distance measure used had a Minkowski norm of rank two,
which means that the ordinary sum of squares of the residue was minimized.

Within this MDS space we can use linear regression techniques, to find the
directions that correlate best with the variations in the mechanical parameters.
The angles between the thus found directions, with maximum correlation with
the thickness, speed and size are: 85 degrees between thickness and speed, 99 de-
grees between thickness and size and 130 degrees between speed and size. From
this we can conclude that the thickness dimension is nearly perpendicular to the
other two dimensions and that the speed and size dimensions interact, with a
larger speed corresponding with a smaller size. It appears that a larger size com-
pensates, perceptually, for a faster ball. Thus, two rolling sounds are perceived
more different, when the largest ball is the slowest than when the largest ball is
rolling fastest.

The three directions found in this way can also be used to form a basis for
a transformed space to describe the perceptual positions of the sounds. This is,
however, only possible if the three directions are independent of each other, that
is, have components in along all three axes of the (original) MDS space. The direc-
tions in perceptual space which correlate best with the variations in the mechan-
ical parameters do have indeed components along all three axes in the original
MDS space and thus form a good basis for a transformed perceptual space. The
position of each individual sound in terms of the new basis can be found by mul-
tiplying it with the transformational matrix. It should be emphasized that this
transformation is not a simple rotation of the original three-dimensional MDS
space, but that the transformational matrix is non-orthogonal. In the appendix to
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TABLE 8.1: Correlations between the mechanical parameters of the objects and the origi-
nal axes found by the MDS analysis.

mds axes
dim1 dim2 dim3

mech. param.
thickness -0.21 0.84 0.39
speed -0.56 -0.15 -0.02
size 0.64 -0.32 0.73

this chapter this transformation of the originally-derived MDS space is explained
in more detail.

The explained variance of the parameters can be calculated by squaring the
correlation coefficient between the parameter and the axis. The correlation co-
efficients are found in Table 8.1 for the original basis and in Table 8.2 for the
transformed basis.

When the distance between two sounds in the MDS space is large, this means
that the participants have rated the differences between the two sounds as large.
When looking at the correlation coefficients in Table 8.2, the correlation coefficient
for size, 0.80, is, in absolute sense, larger than the one for speed, -0.57, indicating
that differences in the speeds of our sounds were given less weight than differ-
ences in the sizes of the balls. If the judgment of the participants is represented
by the difference between the projection of these speeds on this axis, this corre-
sponds with a much poorer performance than in the case of the size judgment.
This is exactly what we found in the experiments in Chapter 7 where the partici-
pants were directly asked to judge the size and speed of a rolling ball.

However, the situation is remarkably different as far as plate thickness is con-
cerned. Here, the correlation coefficient between mechanical parameter and the
corresponding axis in perceptual space is, in absolute sense, the highest, 0.94. We
can, therefore conclude that the listeners are very well able to hear differences
in the rolling sounds associated with the plate thickness. Since in Chapter 7 it
was shown, however, that listeners perform badly in thickness judgments, we
can conclude that the listeners do not use the perceptually available information
in the thickness judgments.
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FIGURE 8.3: The three plots represent the perceptual space of the sounds after applying
the basis transformation. The axes of the constructed three-dimensional space now in-
dicate the mechanical parameters that have the highest correlations with these axes. In
all three panels one of the three dimensions of the MDS analysis is perpendicular to the
paper, so we can see only the two remaining dimensions. The mechanical properties of
the plate are represented in the symbols. The size of the symbols represents the thickness
of the plate, where the largest symbol corresponds to the thickest plate. The type of the
symbol represents the speed of the ball. The circle was the slowest, the square the middle
and the diamond the fastest. The fill color of the symbol represents the size of the rolling
ball, with the open symbol representing the small ball, the grey one the middle and the
black ones the largest balls.
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TABLE 8.2: Correlations between the mechanical parameters of the objects and the trans-
formed axes, as reconstructed with the linear regression method.

mds axes
dim1 dim2 dim3

(thickness) (speed) (size)
mech. param.
thickness 0.94 0.00 0.00
speed 0.00 0.56 0.00
size 0.00 0.00 0.82

8.5 Discussion

The thickness of the plate has a pronounced effect on the sound generated by
a ball rolling over a plate. Due to the cut-off effect the sound generated by the
plate is high-pass filtered, as the lowest frequencies simply do not radiate from
the plate. This so-called cut-off frequency is lower for the thicker plates than it
is for the thinner plates. On the other hand, the modal frequencies are higher
for the thicker plates than they are for the lower plates. The third effect is that
the bouncing process of the ball is altered because the thicker plate is stiffer than
the thinner plate. Finally, the frequency dependent damping parameters vary
with the plate thickness [12]. These variations do not induce simple alterations
in the spectrum but bring about changes that induce differences in almost any
perceptual attribute of the sound, such as loudness, brightness and roughness.

Despite all these complex alterations in the spectrum, the reconstructed basis
shows that the ball size and speed variations result in audible differences that are
perpendicular to the audible differences caused by the plate thickness. This is
highly remarkable because we tend to believe that spectral content of the sounds
plays a very important role in size and speed perception. Another very remark-
able result of the analysis is that the thickness of the plate is best represented in
the perceptual space whereas it is not recognized when participants are directly
asked which of two sounds represents a ball rolling over the thicker plate, as was
discussed in Chapter 7.

The fact that the plate thickness is represented as a separated dimension al-
most perpendicular to the others seems illogic at first sight. Perhaps compat-
ible results may have been found by Freed [22] who noted that listeners were
able to separate out interacting dimensions of a stimulus in order to make an
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environment-oriented judgment. In his work the perceived mallet hardness was
independent of the pan struck with it.

The auditory information is, so to say, pre-processed to exclude the plate thick-
ness information from the system. But, had the plate thickness not been nearly
orthogonal to the two other dimensions, then it would not have been possible
to ignore this information. It appears that the size and speed of the ball are per-
ceptually more relevant and that these two are separated from other causes of
variations in the sound, thus enabling perceiving them separately. The fact that
the thickness is nearly perpendicular to the size and speed in the generated dif-
ference scale means that if we simply ignore this axis in the perceptual space, the
perception of the size and the speed is not influenced by the differences caused by
the plate thickness. We may perhaps also compare this with the process that sepa-
rates room acoustics from sound generating events; on every location in the room
a constant filter is imposed over any sound that we hear, due to the response of
the room. This filter can be absent outdoors, but can also cause very severe al-
teration of the spectrum of the sound when, e.g., considering small rooms with
reflecting walls. Yet, when we try to recognize someone’s voice, we can do this
both outdoors and in a small reflecting room. We are apparently able to ignore
the room acoustics and focus on the sound source. Thus, we are able to separate
the properties of the sound source, the voice, from that of the path of the sound
to our ears, i.e., the room which acts as a filter on the sound. It could well be that
the same process underlies the inability to estimate the thickness of the plate. It
may be considered part of the path from the sound source to our ears. The effect
of the plate is then similar to that of the room. It is a, nearly constant, filter with
some crests and peaks that are determined by the thickness of the plate. The only
difference is that the plate is part of the sound generating system, so that there
cannot be sound without the plate. Thus we cannot listen to the rolling sound
without the filter, whereas we can listen to somebodies voice without the filter of
the room, namely outside.

Another effect that may be explained by this reasoning is the inability of par-
ticipants to detect whether a ball is rolling from or towards the edge of a plate,
which we tested and reported in Chapter 5 of this thesis. If listeners ignore the
filtering effect of the plate, they will probably also not notice a change in this
filtering.

Apparently some of the auditory information is interpreted while other data,
though available, remains unidentified. Because the step of interpreting may
or may not occur following the step of detection of the differences, we can say
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that the perception of mechanical properties is a layered process. In the previ-
ous chapter we found a difference in steepness of the psychometric functions for
the size and the speed judgments in a paired-comparison experiment, 2.6 and
1.7 respectively, as listed in Table 7.4. In this chapter we showed that the dis-
tances in the perceptual space for size and speed differences of the same sounds
relate as 0.80 to 0.57, as listed in Table 8.2. We need to use the transformed per-
ceptual space here, because we are interested in the audible differences caused
by the speed and size separately, since they were judged separately in the tasks
that resulted in the psychometric functions of Chapter 7. The ratios of the steep-
ness, 2.6/1.7 = 1.5 and the perceptual distance 0.80/0.57 = 1.4. In the appendix
of Chapter 7 we argued that twice as large perceptual distances lead to twice
as large steepnesses of the psychometric function. Apparently, the distances in
perceptual space underly the size and speed judgments of the listeners. Hence,
judging differences in size and speed may be based on a low level of processing
without the interference of cognitive processing. Stated differently, no evidence
was found that listeners do “tune their ears” to listen for the size or speed of the
rolling balls. The different performance of the estimation of the size and the speed
of the rolling balls, as found in Chapter 7, can be explained by the detectability
of differences in the sounds. One may then speculate whether the speed and
size judgments are based on low-level perceptual attributes such as loudness,
brightness, and roughness. Although these attributes will in combination play a
significant role in size and speed judgment, it does not seem likely that only one
of them will play a separate roll in, e.g., size and speed judgment. In other words,
they are unlikely to function as independent auditory cues.

It is often suggested that in psychomechanics the properties of the mechanical
system are mediated through the air to our brain which constructs an image of
the mechanical system. This process is supposed to be unaffected by the path
over which it is mediated, as, for instance, illustrated in the room acoustics that
have no influence on the perception of the perceived mechanical properties. Our
experiments indicate that the plate can be seen as part of the path from source to
ear and that the properties of the path, here the plate, do not influence the per-
ception of the mechanical properties of the ball. We can interpret this result as
an example of the often suggested processes that listeners filter perceptually rel-
evant mechanical characteristics of the acoustic event from other information in
the sound signal. We are satisfied that the results we found illustrate the process
that underlies this perceptive quality.
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8.A Transformation of the MDS space

In the main text of this chapter we used a transformation to convert the three axes
of an MDS space from directions without a specific meaning in terms of stimu-
lus parameters into three meaningful ones, that is three directions that correlate
most with the mechanical properties of the setup. In a vector, Xn we collect these
mechanical differences in ball speed and size and in plate thickness, for each stim-
ulus n:

Xn = log









thickness

speed

size









, (A-1)

where the logarithmic function is used to transform the differences in mechanical
parameters into a ratio scale, because equally sized steps are perceived equally
different, as was shown, at least for the speed and size part, in Chapter 7. For the
thickness this has not been shown, but we will assume this works the same way.
When we take just linear values, instead of the logarithmic ones, the conclusions
presented in this appendix will not change, we will only change the numerical
values, and if we want to compare these values with results in Chapter 7, we
should take the logarithmic scales. The matrix that represents the mechanical
properties Xn for each of the used setups will be denoted with X.

Using MDS we found the positions of the individual sounds, represented in
the vector y, in the perceptual space. We will try to explain these positions by
considering a linear combination of the differences in the mechanical system that
produced the sound:

y = Xβ+ ε. (A-2)

We search β̂ so that ŷ best approximates y in a minimal sum of squares sense,

ŷ = Xβ̂, (A-3)

from which β̂ can be solved in the usual linear regression method,

β̂ = (X ′X)−1X ′y. (A-4)
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Next, we normalize this matrix,

β̄ =
β̂

|β̂|
, (A-5)

and take the inverse,

T = β̄−1. (A-6)

This transformational matrix T can be used to transform the positions found in
the MDS space, y into positions ynew in a new space:

ynew = Ty. (A-7)

The axes correlating best with the mechanical parameter were not orthogonal in
the original MDS space. They become orthogonal in the transformed MDS space.
This means that the transformation is not orthogonal, and thus that the distances
in the original space are not preserved in the transformed MDS space.
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9 Discussion

9.1 Introduction

In sound, many things are heard that can be qualified as mechanical properties of
the objects producing the sound. We have tried to study the relation between the
perceived object properties and the physical properties of the mechanical process
creating the sound. We have not stopped after determining the perceived param-
eters alone, but we have also tried to get to know the processes underlying the
perception of mechanical properties. Understanding these underlying processes
has several advantages. When it is known how the properties are perceived:

• We are more certain that the perception is not based on artifacts or coinci-
dentally available cues.

• We can try to predict perception results for situations not identical to but
similar to the studied setup, e.g., for different materials or for different types
of interaction, such as scraping instead of rolling.

• Efficient synthesis algorithms can be formulated, synthesizing only aspects
that are used in the perception of the physical properties and hereby con-
veying information.

• We can determine the origin of an interaction in the perception of two me-
chanical features, for instance, size and speed of a rolling ball. The acousti-
cal differences between the sounds generated by a fast and by a small ball
could be inaudible to the listener, or, alternatively the listener could be un-
able to interpret the audible differences between the sounds.

In this chapter we will have a new look upon the schematic representation of our
view on psychomechanics as presented in Figure 1.1 of the General Introduction
presented in Chapter 1.

We have varied scalable properties of the mechanical system, and tested if
these variations are perceivable. In the used setup these were: ball size, speed,
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rolling direction and plate thickness. The resulting changes in the sound could or
sometimes could not be detected by the listeners. Only variations in the sound
that are detected can possibly be used to identify the variations of the mechanical
system. The research can therefore be conducted in two steps. The first step is
to determine the capability of listeners to distinguish two rolling sounds and the
second step is to determine their performance in identifying the variations in the
mechanical configuration.

9.1.1 Acoustics

We have contributed to the domain of acoustics in the form of providing a new
numerical model for the generation of rolling ball sounds. We have also inves-
tigated the contact between ball and plate. This insight can be used not only
for perception research, but also in different domains such as in the reduction of
sound generation in roller bearings or by railroad trains, and to generate sound
for virtual reality systems, when two virtual objects come in contact.

9.1.2 On interdisciplinary research

After all the many years of acoustics research, and despite important progress
in this field, the most important questions from the point of view of psychome-
chanics are still unanswered. On the other hand the most important questions
of psychoacoustic nature that are posed by physical acousticians are also unan-
swered. For instance, we do not know what makes a flute sound good when it
sounds good. There is no computational algorithm that is able to determine from
the sound if the played flute is a good or bad instrument. Yet for human listeners
this is an easy task. Provided with this information, physical acousticians could
turn a bad flute into a good one. Given the fact that both domains already exist
for many decades, it is not likely that the psychoacousticians and the physical
acousticians will answer each others questions soon. The only way to find the
answer is to become skilled in both domains, in order to formulate the relevant
questions and to find these answers. Therefore in this research both the mechan-
ical modeling and the perceptual modeling of rolling and bouncing sounds have
been treated in parallel.
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FIGURE 9.1: Overview of the psychomechanical hearing process. For details see text.
The indicated numbers show the chapters in the text that deal with the relation indicated
with the arrow.
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9.2 Psychomechanic research scheme

The relation between acoustics, mechanics and perception of events as they have
been studied in this thesis is schematically presented in Figure 9.1. This figure
gives an overview of the acoustical and perceptual processes that take place when
a listener perceives the mechanical features of the objects producing a sound. It
is not so much a view of the working of our ears and brains, but more a represen-
tation of the altering and reduction of information along this path. The content
of the information tends to transform in each step along the line from the mechan-
ical system at the upper left of Figure 9.1 towards the perceived mechanical features
at the upper right of Figure 9.1. One of the aspects of this transformation is the
change in dimensionality of this information as it passes from stage to stage. With
dimensionality we mean the degrees of freedom of the parameter space describ-
ing each stage. Each independent parameter adds at least one dimension to this
space; sometimes more than one, for instance, the size of the rectangular plate
adds three dimensions, length, width and thickness.

We can compare this with the color space in the visual domain. We can make
green light out of a combination of light rays that have a frequency corresponding
to blue and yellow light, or using only light of one frequency corresponding to
green light. If chosen right, we cannot see the difference. In the physical domain,
light is described as a spectrum, having an amplitude for each frequency. In the
perceptual domain color is uniquely identified by hue, brightness and saturation.

The upper left block of our scheme, labeled mechanical system, has a nearly
infinite dimensionality, simply because we cannot tell where the mechanical sys-
tem stops. The room in which an acoustic event takes place, for instance, has
a profound influence on the sound produced by that event. In the upper right
block, the dimensionality is rather low, since we mostly concentrate on one or
two perceived mechanical features. We will now describe each stage separately.

Mechanical configuration, dynamics and material properties. There exists a
vast amount of material properties. For instance, the elasticity of the ball and the
plate, their sizes and densities, have a strong influence on the sound, as have the
damping coefficients and the surface roughness parameters. To generate a sound
via simulations we need to know all those parameters.

The resulting sound, however, can only vary in a limited number of ways.
Indeed, if we take a simple example, the ideal string, we can change the pitch of
the string by changing the string tension but also by changing its density. For an
ideal string, if we multiply the string tension and density by an equal amount,
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this leads to exactly the same oscillation frequency. In fact, also considering the
string length, there are three parameters determining the resonance frequency. In
less idealized systems we could try more complicated things; to compensate dif-
ferent viscoelastic damping properties of a string we can try, e.g., to change the
driving force. For a physics based synthesis algorithm, such as our rolling ball al-
gorithm, there are many parameters, but the acoustically important parameters,
such as the frequencies of the vibrational modes of the plate are much lower in
dimensionality than the mechanical parameters. In other words, changing one of
the parameters of the sound generation process, either recorded or synthesized,
does not change the sound in a unique way, because various mechanical varia-
tions result in comparable acoustic variations.

Mechanical basis variables. It is more efficient to consider only the resonance
frequency of the string in stead of the density, length and tension of the string. For
more complicated systems the mechanical basis variables ideally form a minimal set
of variables that are orthogonal and form a basis for all the possible changes of
the mechanical system that affect the generated sound. A very interesting tech-
nique to find these unique mechanical basis variables is dimensional analysis [13].
However, in the case of rolling sounds the dimensional analysis is very hard to
do. The vast amount of parameters and the non-linear, non-continuous contact
make the problem complex. Instead of using a mathematical technique to find
the mechanical basis variables, we can resort to alternative variables that we derive
by analyzing the mechanical system. A set of basis variables found this way may
not be complete, orthogonal or the minimal possible set. But it can still be useful
if a large reduction of the amount of parameters used to describe the material
properties is found. For instance, in Chapter 2 we found two parameters for the
bouncing ball mechanics, the inelasticity parameter λ and the contact time tc, that
govern the spectral and temporal variations of the generated sound.

Acoustic radiation. All properties of the sound pressure field in the air caused
by the mechanical radiation fall under this category. Sound pressure level and
frequency are examples of features in this domain. The effect of the acoustic ra-
diation can be modeled by a linear filter with as input the vibrations of the object
at the contact with the air and as output the air pressure at the ear of the listener.
One interesting and ecologically very important phenomenon is that human lis-
teners can detect and identify mechanical aspects of their environment almost in-
dependently of the acoustic environment. It is, therefore, likely that the features
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in the acoustic signal that lead to our perception of the features of the mechanical
system, are more or less independent of the acoustic transformation. We have,
therefore, not concentrated our research on acoustic radiation.

Auditory information. All detectable variations of a sound can be considered as
containing auditory information. In this sense, information is used as is usual in
information theory. Hence, any variation of the sound that is detectable can pos-
sibly convey information. The perceptual attributes, pitch, loudness, and sharp-
ness are examples of features in this domain. Much research has been devoted
to the study of the processes underlying these perceptual attributes, see for in-
stance Zwicker and Fastl [112] or Moore [70]. Computational models of these
processes have been developed which can more or less accurately estimate the
value the human listener gives to these perceptual attributes. The complexity of
these models shows that there is no simple relation between perceptual attribute
and an acoustical feature of the sound. They combine temporal information from
a large number of auditory filters in order to come to a fair estimation of the
perceived attribute. Nevertheless, these models up to now only operate accu-
rately for a more or less limited set of relatively simple sounds. Certainly when
the sound is generated by a combination of sound sources these models fail in at-
tributing a plausible separate value to each of the perceived sound sources. These
situations occur when, e.g., some musicians play together or some speakers talk
simultaneously.

Moreover, we do not yet know whether these perceptual attributes fully char-
acterize the sound. According to the ANSI standard [1] there are only four per-
ceptual attributes: pitch, loudness duration and timbre. Hence, well established
attributes such as roughness and sharpness are timbral attributes. There probably
are quite a lot of timbral attributes of a sound that on the one hand are used for
the perception of some mechanical parameter but to which no well established
name has yet been given. Moreover, when people are asked to describe a me-
chanical sound they not only use timbral attributes but also refer to the perceived
physical properties of the sound source such as the material of the sound pro-
ducing object and the kind of contact they perceive. In addition, they may use
onomatopoeic descriptions. As a consequence, it is difficult to get to know the
structure of the auditory information present in mechanical sounds on the basis
of verbal descriptions or magnitude estimations. So in this thesis the problem
was addressed from another side.
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Experimental methodologies such as difference scaling, where people are not
asked for any meaning or perceptual attribute of the sound, but are only tested
in their capability to differentiate sounds, were used to investigate the structure
of the auditory information. We described this method in Chapter 8, and by using
multidimensional scaling on these data, we estimated the number of dimensions
of the space of auditory information for the rolling sounds used throughout this
thesis.

Auditory cues. All detectable variations in the mechanical system may provide
us with cues used in perceiving the mechanical features. In contrast to the audi-
tory information, the auditory cues give meaning to the differences that are heard.
By signal processing techniques we can easily make detectable changes to the
sound that do not have any meaning. Sound that is manipulated by distorting it
or by adding easily detected noise does not provide us with information about
the mechanical system. Thus, by this manipulation the auditory information is
changed but not necessarily the auditory cues. The inverse is not possible. If two
sounds are associated with, for instance, two rolling balls with different sizes,
there must be a detectable difference in the sound and thus they must differ in
auditory information.

Previously, the cues were considered apriori and by the imagination of the re-
searcher. Then, by a correlation of the perceived properties of the objects, i.e., size
and speed in our case, with the presumed auditory cues, such as the sharpness
of the sound, it was tried to determine to which extent these auditory cues were
used by the listener to determine the object properties. This approach was suc-
cessful in determining some of the auditory cues but lacks precision in position-
ing these cues. If we investigated cue A, which correlates with some perceived
mechanical feature, we still do not know if there exists another cue B that might
correlate better with this perceived mechanical feature. Thus, previously sharpness
and amplitude modulation were considered as cues [40] but probably more cues
can be used. By examining this space we can determine how much auditory in-
formation the listener uses in extracting the auditory cues used in detecting the
mechanical features.

Note that the classical perceptual qualities such as pitch, loudness and sharp-
ness surely belong to the auditory information or can be represented by a combi-
nation of other auditory information variables, since perception experiments have
shown that people can detect changes in these percepts. They could also be part
of the auditory cues if they convey information about the mechanical system to
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the listener. Other auditory cues might be the result of a combination of different
parameters of the auditory information. Some auditory information might not be
used at all as auditory cue, even if it provides meaningful information about the
mechanical system. An example of this we saw in Chapter 8 where we found
one of the dimensions of the space resulting from the MDS experiment that cor-
related directly with the plate thickness. But the plate thickness was not among
the perceived mechanical features as we saw in Chapter 7. Another example is
the well known effect, the stability of loudness [78] also known as loudness con-
stancy [110], which states that the perceived loudness of, for instance, a vocal
sound, is not based on the signal power of the sound at our ears. In fact, if the
sound pressure of a sound gets less we will in general perceive it as more distant
and not as less loud.

It is questionable whether auditory features like roughness or sharpness are
the only auditory cues used in the perception of one specific physical parameter.
Indeed, let this be true and let, e.g., the sharpness be a cue for the size of the ball
where sharper sounds are related to smaller balls. Then changing the sharpness
in any way, and leaving the other auditory cues unaltered would lead to the per-
cept of a smaller ball. It is questionable whether this sound is a rolling sound, i.e.,
if there can exists a system that would radiate such a sound. Stated differently,
for a given rolling sound there might be another rolling sound that only differs
in, say, sharpness. If there is such a rolling sound, it is probable that all or nearly
all mechanical parameters need to be changed to generate this sound.

In the experiments described in Chapter 7 where participants were asked to
judge the absolute size of rolling balls after listening to their sounds, no structural
interaction was found between the speed and size judgments. Thus if sharpness
is a cue for both size and speed perception, there must be a second variable to
decorrelate the two.

Perceived mechanical features are mechanical properties of the system as
they are perceived by the listener, such as the size and the speed of the ball. All
detectable and identifiable variations in the mechanical system are represented in
the auditory cues, by definition. The listener uses them to build a mental image of
the sound generating system, that is, its mechanical properties such as the size of
the ball and the plate, and the type and speed of the interaction between the ball
and plate.
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9.2.1 Experiments

Nearly all our perception experiments were carried out with recorded sounds,
the exception being described in Chapter 5. Only in Chapter 3 we manipulated
the recorded sounds. In Figure 9.1, depicting the various stages in perceiving
an acoustic event, we indicate for each experiment the chapter in which this ex-
periment is described and which relation within the scheme is investigated. In
the experiment using the absolute scaling paradigm described in Chapter 7, we
determined the accuracy of the size and speed judgments of people listening to
rolling sounds. In terms of the scheme, we determined the relation between the
mechanical system and the perceived mechanical features with this experiment. In
the MDS experiment with recorded sounds, as discussed in Chapter 8, we deter-
mined the relation between the mechanical system and the auditory information. By
comparing the results of these two experiments, we have also derived some rela-
tions between the auditory information and the perceived mechanical information. In
Chapter 2 we showed the relation of two mechanical basis variables, the inelasticity
parameter λ and the contact time tc, and the spectrum and the temporal structure
of the bouncing sound. This analysis helped to understand that both spectrum
and temporal structure can be used to determine the size of the bouncing ball.
We showed in Chapter 3 that people rely on either the spectrum or the temporal
structure of the bouncing sound, or on both to judge the size of a bouncing ball,
a feature represented in the perceived mechanical feature block of our scheme. In
Chapter 5 we have shown that acoustic information that at first sight may seem
to be a good candidate for being an auditory cue, the spectro-temporal effect
caused by the reflections of the vibrational waves at the edges of the plate on the
rolling sound, was in fact not used by listeners.

9.2.2 Inferred relations between blocks

In the left hand side of the Figure 9.1, representing physical reality, we can trans-
form variables from one block of the mechanical system to another block by using
mechanical formulas. In signal processing terms we call this the transfer function.
We have studied the acoustics of bouncing and of rolling sounds in Chapters 2
and in Chapters 4 and 6, respectively. To find the transfer function from one
block on the left to one block on the right we must conduct perception experi-
ments. However, we cannot directly find the relation between blocks at the right
hand side. All auditory information that is used by the listener to extract perceived
mechanical features must be represented in the auditory cues. Hence, the relation
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between blocks on the right can be found by analyzing the results obtained in
two perception experiments, as we did by combining the results of experiments
described in Chapters 7 and 8.

9.2.3 Synthesized sounds

The main advantage of using synthesized sounds over using recorded sounds
is that we can more easily explore all possible sounds within a certain physical
parameter space. For recorded sounds, a small slow ball resembles a large fast
ball, and some combination on a thick plate can resemble another on a thin plate.
Finding the more different sounds, in physical terms, is easier if we can modify
the mechanical basis variables directly, which is normally only possible if we use
synthesized sound. Moreover, it is possible to vary the synthesized sounds using
only a few values for all the basis variables, and all sounds will physically be quite
different. Because there are relatively few mechanical basis variables compared to
possible variations in the mechanical configuration, dynamics and material properties,
it is much more practical to use the mechanical basis variables to explore the space
of the auditory information and that of auditory cues. Using recorded sounds, and
varying the size, speed and plate thickness stepwise, we can obtain many sounds
that are physically more or less similar. Their difference ratings in the perception
experiments can be expected to be quite low, and this will provide us with little
information about the auditory processing of these sounds.

Another unique possibility of a synthesis system is to generate new, unnatu-
ral, situations where the auditory cues give contradictory information. By again
asking the participants for the perceived size and velocity of the ball we could de-
termine which cues are perceptually given more weight than others and, hence,
measure the salience of the various cues. We have applied this method to the
sound of bouncing balls, where we could use manipulated recordings of bounc-
ing balls instead of synthetic sounds, because it was possible to manipulate bounc-
ing sounds to have independent temporal and spectral properties for the size
of the ball. Such an approach was feasible for the bouncing sounds because of
the silent gaps between the bounces of the ball. For rolling sounds, that are
continuous, we will need to generate the sounds synthetically to use this ap-
proach. We believe that the use of sounds that are synthesized in this way, helps
to overcome some of the problems that exist in similar research using manipu-
lated recorded sounds. Such research using manipulated recorded sounds was
done by Houben [40], and the difficulties were that one temporal effect, ampli-
tude modulation, could not be removed from the sounds and to vary this tempo-
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ral effect, it was added in a perhaps exaggerated way with different periodicities.
In another experiment he combined the temporal pattern from one rolling sound
with the spectral properties of another rolling sound. This manipulation leads,
however, to audible artifacts in the sound. Furthermore, as long as we don not
know what the temporal cues for the speed and size of a rolling ball exactly are,
we also don not know how effective the procedure is in manipulating these tem-
poral cues. In a synthesis algorithm, we know what parameters influence the
temporal structure of the sound, and we can establish the relation between these
parameters and the perceived size and speed.

An advantage of using the mechanical basis variables to synthesize unrealistic
sounds over changing sounds with signal processing is that the resulting sounds
are more natural in the sense that they obey physical laws. When we change
a sound using signal processing, we obtain another sound that most probably
could not be produced by another ball-plate configuration. For instance, if we
change the spectral properties of a rolling sound to have more high frequencies
we obtain a sound that has probably no mechanical representation. We can test
how this alters the perceived mechanical parameters but we cannot tell if this reflects
the new mechanical configuration in a correct way. Once we have identified the
mechanical basis variables that change the high-frequency content of a sound, we
can alter those in our synthesis algorithm. By using these sounds in a perception
test we can again test how this alters the perceived mechanical parameters, but this
time we can track back what changes in the mechanical configuration were required
to create these sound changes. This mechanical configuration may or may not exist,
but if the values of the mechanical basis variables do not deviate too much from real
values, the sound should not be perceived as unnatural. As an example, if we
drink a beverage with the color of carrot juice and the taste of coffee this would
be perceived as unnatural. But if we slightly change the processing of the beans
this would not likely change the recognition of the coffee.

Thus, to summarize the last few paragraphs, different acoustic properties of a
sound generating system are very often correlated. For instance the amplitude-
modulation frequency depends on the size and the speed of the rolling ball, as
does, in a different way, the average spectrum of the rolling sound. We argued
that, by using a synthesis algorithm based on the mechanical basis variables, we
can in principle still fulfill this relation, and generate new rolling sounds that are
more natural than is the case for manipulated recording sounds. By using the me-
chanical basis variables it should be easier to find mechanical setups with which
one may generate sounds that differ as much as possible from an acoustical point
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of view. These setups may be difficult to realize in practice due to, e.g., the im-
possibility to produce some materials and shapes with a specified combination
of mechanical properties. In these cases we can use the synthesis algorithm to
generate these sounds. Alternatively, we can synthesize very different sounds
such that the quantities that are normally strongly correlated, are varied inde-
pendently. To do so, we may analyze the mechanical basis variables and split
one of them into two variables. In this way we create a degree of freedom that
was not present in the real mechanical setup. For instance, let us consider the ra-
dius of the ball. It has at least three influences in the synthesis of rolling sounds.
First, in the Hertz contact law, second, in the periodicity of the driving force of
the ball due to imperfect sphericity of the ball, and third, in the weight of the
ball. These are thus all governed by one mechanical basis variable. By splitting
it in two we can generate sounds that have the quasi-periodicity of a large ball
but the average spectrum of a small ball. We actually used such an approach in
the study of the perception of bouncing balls in Chapter 3, because for bouncing
balls, separation of temporal and spectral properties could be achieved without
a synthesis algorithm. Houben [40] used such an approach by manipulating the
spectral and temporal properties of recorded rolling sounds, but here the resyn-
thesized sounds were perceptually different from the recorded sounds. The re-
sults obtained by Houben were valid since he controlled for this difference. But,
in contrast to Houben’s approach, by synthesizing sounds based on the mechani-
cal basis variables we obtain sounds with properties that can be tracked down to
their mechanical characteristics. By then presenting listeners with these sounds,
and asking them for the perceived mechanical features, we can in principle track
these perceived features down to the real mechanical features with as valid a
stimulus set as is acoustically possible. We have thus shown the viability for such
research methods, and have taken the first steps with our synthesis algorithm for
rolling sounds. Naturally more research is needed to exploit the full potential of
such a paradigm.
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192 Summary



Summary

A Psychomechanical Study of Rolling Sounds

In this thesis both the mechanics and the perception of the sounds from rolling
and bouncing objects are studied. It is necessary to combine these two research
domains, resulting in what is called psychomechanics, because only in this com-
bination can we discover the acoustical origin of the information a listener uses
to detect mechanical properties of objects when listening to the sounds generated
by these objects. In this thesis objects are balls rolling over or bouncing on a plate.
The characteristics of such interactions are defined by physical properties of the
components in the interaction, among them the size and the speed of the rolling
balls, and, perhaps, the thickness of the plate over which the ball rolls. The re-
search question is to what extent the listener can "hear" these physical properties
and on what kind of information in the sound this is based. The first two chap-
ters of this thesis investigate bouncing while the remaining five chapters deal
with rolling sounds.

A typical parameter in investigating bouncing processes is the restitution co-
efficient, defined as the proportion of two subsequent time intervals between
bounces. The traditional model for calculating the restitution coefficient of a ball
was adopted by calculating the plate response from the point impedance of the
plate. This analytical model was compared with a numerical model and with
experimental results. The restitution coefficient is one source of information the
listener may use to detect the size of the bouncing ball; the spectral content of
each impact sound is another. The influence and relative weight of each of these
two sources of information was investigated in a perception experiment.

The numerical model for simulating a single impact of a ball on a plate was
adapted to simulate the movement and the sound of a ball rolling over a plate.
The main changes were made in the contact between the ball and the plate. In-
stead of an impact point that was fixed in space and short in time, the model
now incorporates a contact point that is variable in space and continuous in time.
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Furthermore, the model was extended to contain the surface roughness of the
plate. The validity of the model was demonstrated by simulating the ball and
plate movement, and comparing the results with experiments and analytical cal-
culations.

In the case of a ball moving over a plate, a temporal effect was observed due
to the interference between the sound directly generated at the point of contact
between ball and plate, and the sound reflected at the edge of the plate. This effect
was added to synthesized rolling sounds which resulted in a more natural sound.
In a related perception experiment it was shown that the acoustic differences in
the sounds of balls rolling towards or away from the edge of a plate are sufficient
to perceptually discriminate these sounds. Listeners were, however, not able to
indicate the rolling direction of the ball. That is, listeners could not interpret the
acoustic information correctly in terms of perceived mechanical features.

The auditory capabilities to perceive the size and speed of a rolling ball were
studied in a difference-scaling task, where the participants were asked to judge
the difference between two sounds without having to label the origin of these dif-
ferences. In additional experiments participants were asked to rate explicitly the
mechanical properties of ball and plate. The experimental methodologies used
were paired comparison and absolute magnitude estimation. From these results
the distances in the perceptual space of rolling sounds were derived. Further-
more, by calculating the psychometric function for the participants’ estimations,
an exact measure for the probability that a listener correctly identifies the differ-
ence in one of the physical parameters was calculated.

The influence of some object properties, here notably the plate thickness, can
be detected in a difference scaling task, but listeners can not estimate the thick-
ness in a magnitude scaling task. This indicates that the auditory perception of
the mechanical object properties is a layered process, and that detection and es-
timation find place at a different level of such a layered process. On the other
hand, for the two remaining mechanical properties, the size and the speed of the
ball, the estimation of the size was more robust, in the sense that is was little in-
fluenced by a change of experimental methodology or simultaneous variation of
the other mechanical parameters.
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