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Résumé

Ce travail est consacré à l’analyse et la construction de codes définis par des graphes
dans le but d’obtenir des familles de codes ayant, pour une complexité de décodage faible,
de très bonnes performances pour une large plage de rapports signal-à-bruit.

Nous nous intéressons à une famille de codes que nous appelons TLDPC (pour Tail-
biting Trellis Low-Density Parity Check) qui contient, comme sous-familles, à la fois les
Turbo codes de Berrou et Glavieux et les codes de Gallager appelés aussi codes LDPC.

La première partie de cette thèse est consacrée à l’étude des codes TLDPC binaires.
Nous nous sommes intéressés au caractère asymptotiquement bon de ces codes et avons
obtenus des conditions nécessaires ou suffisantes en étudiant les polynômes énumérateurs
moyens des poids d’ensembles de ces codes, ou en introduisant un certain graphe associé
à ces codes dont les cycles sont reliés à des mots de code de poids potentiellement faibles.

Cela nous a donné des bornes sur la proportion des noeuds de degré 2 pour respecter
le caractère asymptotiquement bon. Nous avons ensuite optimisé (avec cette contrainte
sur les noeuds de degré 2) la distribution des noeuds des autres variables au moyen des
courbes d’entropie (analogues des courbes EXIT ou Extrinsic Information Transfer charts)
pour maximiser les performances de l’algorithme standard de décodage itératif (Belief
Propagation) et nous obtenons par ce moyen de très bonnes performances.

Dans la deuxième partie de la thèse, nous étudions certains codes LDPC et TLDPC
non-binaires. Nous y présentons une famille de codes TLDPC non-binaires, ayant à la fois
une structure simple et de très bonnes performances de décodage itératif, dont l’un des
avantages est la pente de leurs courbes de taux d’erreur dans la région de faible rapport
signal-à-bruit plus forte que pour les codes binaires correspondants. Il est à noter qu’un
code LDPC ayant au moins deux symboles de degré 2 par équation de parité peut être
représenté comme un code TLDPC ayant des symboles de degré 1 dans sa structure. Ces
codes LDPC peuvent donc être vus et décodés comme des TLDPC. Dans le cas particulier
des codes de cycles d’un graphe, cette façon de faire nécessite beaucoup moins d’itérations
de décodage grâce aux symboles de degré 1 sans pour autant changer le seuil de correction.
En introduisant dans la structure de ces codes de cycles d’un graphe des noeuds de degré 1,
nous obtenons pour le canal à effacements en autorisant une petite fraction de symboles
effacés après décodage, une famille de codes dont les performances se rapprochent encore
des limites théoriques de Shannon.



Abstract

This study is dedicated to the analysis and the design of sparse-graph codes in order to
construct codes having high performances both in waterfall and error-floor regions under
an iterative decoding algorithm of low complexity.

In particular, we explore a class of Tail-biting trellis LDPC (TLDPC) codes involving
the class of turbo codes of Berrou and Glavieux as well as the class of codes of Gallager
known as LDPC codes.

In the first part of the thesis, binary TLDPC codes are investigated. We found sufficient
and necessary conditions to ensure that they are asymptotically good by calculating their
average weight enumerator and studying a certain graph in which the cycles correspond
to potentially low weight codewords. These conditions give us an upper bound on the
fraction of degree-2 nodes in the Tanner graph. By keeping the fraction of degree-2 nodes
below the upper bound, we optimised the degree distribution of other variable nodes by
EXIT chart techniques and thus we obtained good performances under standard iterative
decoding algorithm (belief propagation).

In the second part of the thesis, some non-binary TLDPC and LDPC codes are investi-
gated. We propose a family of non-binary TLDPC codes with a very simple structure and
a steep waterfall region. We also noticed that any LDPC code with at least two degree-2
symbols per parity-check equation can be represented as a TLDPC code with symbols
in degree 1 in its structure. Thus, it can be decoded like a TLDPC code. In the case
of cycle codes, such a decoding decreases significantly the number of iterations while the
iterative decoding threshold does not seem to change. Moreover, by allowing a constant
fraction of degree 1 symbols for this class of codes and a small fraction of erased bits after
decoding over binary erasure channel, we obtained codes with improved iterative decoding
performances.
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Chapter 1

Introduction

1.1 Context and historical background

In his paper [64] Shannon stated the result that reliable communication is only possible at
rates up to channel capacity. This means that there exists a channel code and a decoding
algorithm that can achieve any designed word error probability as long as the rate of the
channel code is smaller than the channel capacity. On the other hand, if the rate is larger
than the capacity, the word error probability goes to one exponentially.

The proof of the above result only shows the existence of such a channel code and such
a decoding algorithm but says nothing about the code construction or, more importantly,
how to decode the code efficiently.

All the approaches proposed since the appearance of Shannon’s theorem can be clas-
sified in two big groups: “classical” approach or “modern” approach. For a “classical”
approach it is typical to find a code with some desirable properties, e.g. large minimum
distance, and then to look for a decoding algorithm for the given code. In the “modern
approach” the situation is reversed: given an iterative decoding algorithm one seeks codes
which work well with this algorithm.

For “modern” codes the underlying objects are so called graph-based codes.
We give a brief description of the historical development of ”modern” channel coding

techniques. At the beginning of the 1960s Gallager presented the so called low-density
parity-check (LDPC) codes [36] and proposed an iterative decoding algorithm for them.
However, at that time LDPC codes received little attention. In the early 1980s Tanner
introduced bipartite graphs to describe a class of codes1 including LDPC codes and the
sum-product algorithm based on these graphs [67]. The publishing of turbo codes by
Berrou et al. in 1993 [11] had a big impact on the channel coding community.

Since then there has been a lot of research activity and many improvements in the area
of codes defined on graphs. Undoubtedly, research on LDPC codes has played a central
role in this field, as many of the new classes of codes which are defined on graphs are
influenced by the structure of LDPC codes. Some of the key improvements in the field of
graphical codes and their importance are highlighted below

• Irregular LDPC codes: Luby et al. [49] introduced irregular LDPC codes and showed
that they can attain the channel capacity on the erasure channel. The discovery of

1Tanner codes in further
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irregular LDPC codes influenced considerations of irregular structures for other codes
defined on graphs.

• Density evolution: Richardson, Shokrollahi and Urbanke [57] proposed a method
called density evolution to analyze arbitrarily long LDPC codes.

• Extrinsic Information Transfer (EXIT) chart analysis: EXIT chart analysis [68] is
similar to density evolution, except that it follows the evolution of a single parameter
that represents the density of messages. This evolution can be visualized in a graph
called an EXIT chart. EXIT charts have become very popular, as they provide deep
insight into the behaviour of iterative decoders.

The research in the area of graphical codes is still very active and there are many open
problems under study, for example how to attain capacity on other channels or to find a
code performing well on several different channels.

1.2 Motivation

Several different coding schemes such as turbo-codes, low-density parity check codes,
repeat-accumulate codes or product codes are able to operate with reasonably low er-
ror probability after iterative decoding at rates extremely close to the Shannon limit.
However, it seems that in all cases, this comes at the cost of having a poor minimum
distance, which itself gives a rather high error floor. This turns out to be quite apparent
in the schemes which are the closest to the Shannon limit (either irregular LDPC codes
[22] or irregular turbo-codes [15]).

On the other hand, there are code families which are asymptotically good (in the sense
of having minimum distance linear in the length of the code) which can be successfully
iteratively decoded, for instance LDPC codes with a small enough fraction of edges of left
degree 2 [29, 30] or Tanner codes built from local codes of distance greater than 2 [16], but
they are only able to operate with vanishing error probability after iterative decoding at
rates that are much further from the Shannon limit than the aforementioned constructions.

This raises the issue of whether or not asymptotically good codes can approach capacity
with low complexity iterative decoding.

The aim of this thesis is to propose an alternative code family (different from turbo
codes or LDPC codes) which, with a low complexity iterative decoding algorithm, could
simultaneously approach the Shannon capacity and exhibit a very low error-floor.

1.3 Outline

We explore a particular family of codes which we call Tail-biting Trellis Low-Density
Parity Check codes (TLDPC).

Since we want to obtain a good code behaviour in the error-floor region, we are in-
terested in the members of the family which are asymptotically good and we look for
conditions which ensure such a property.

Our codes are defined by using two constituents: a base code and a bipartite graph.
Therefore, we find to find what conditions on the constituents will ensure that the overall
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code is asymptotically good. Sufficient conditions for the base code side were presented
in [71], in the next Section we give more details about it. As for the bipartite graph, we
develop these constraints in Section 3.7.

Our codes being irregular, we optimize degree distributions of code ensembles to mini-
mize the threshold of the code family and to maximize the design code rate by using EXIT
chart techniques [69].

We present six different TLDPC code families and their performances in Section 3.8.

Two of these code families experience error-floors at word error-rate 10−5−10−6 which
are caused by so called trapping set configurations [56]. In Chapter 4 we investigate the
structure of trapping sets of two code families and their failure probabilities that permits
us to estimate their error-floor without performing Monte-Carlo decoding simulations.

Further investigations show that all six proposed TLDPC families perform very well
at rates from 1/10 till 1/2 because of their base code structures which seem to be very
well adapted to the above rates. To construct a high-rate TLDPC code family (from the
rate 2/3 and higher), we need to find an appropriate base code (whose rate must be higher
than the given rate of the code family we want to construct) which could be decoded with
a low complexity iterative decoding algorithm and would be asymptotically good. There
are different ways to obtain such a high-rate base code, for example to make its structure
more complex by increasing the number of states of its trellis.

To enlarge the number of possible constructions of the base code and to make an
optimum choice between the decoding complexity and the performance, we do not restrict
ourselves to the binary field anymore and we work over the class of non-binary codes. The
question arising with the use of non-binary base codes is their asymptotic analysis (i.e.
optimisation of degree distribution of TLDPC code families, computation of thresholds).
We perform the asymptotic analysis of non-binary TLDPC codes and we describe density
evolution operations for them in Section 5.3.

A family of non-binary TLDPC codes with symbols of degree 1 happens to have the
same iterative decoding thresholds for different alphabets as the non-binary cycle code
ensemble. We study whether such TLDPC and LDPC constructions represent the same
code.

We finish by investigation of non-binary LDPC codes with a constant fraction of sym-
bols of degree 1 to study their influence on iterative decoding threshold of the code en-
semble.

1.4 Contributions

In the present thesis the following contributions are made:

• The necessary condition to avoid small weight codewords in graph-based codes is to
choose the bipartite structure in such a way that a certain graph contains only cycles
of linear size. This graph is generalized over all graph-based codes and it is called
the graph of codewords of weight 2. With the help of the graph of codewords
of weight 2 it can be easily shown that the minimal distance of turbo codes is
logarithmically bounded. We compute the upper bound on the average degree of
the graph of codewords of weight 2 above of which the associated graph-based code
will contain codewords of logarithmic size.

13



• The family of binary TLDPC codes is proposed. It combines several interesting
features when the parameters of the members are well chosen, namely:

– a very simple structure which yields low-complexity iterative decoding,

– a minimum distance linear in the length of the code,

– good performances after iterative decoding which beat standard turbo-codes for
code lengths of several thousand for instance. We present examples of members
of this class with rates 1/2, 1/3, 3/10, 1/4 and 1/10 where this fact is striking.

• One of the presented TLDPC code families is proven to have typical minimum dis-
tance linear in the codelength if its graph of codewords of weight 2 does not contain
cycles.

• We construct families of TLDPC codes having bits of degree 1 in their structure.
We investigate the influence of degree-1 bits on EXIT charts of code families and
we make a structured choice of the permutation to avoid codewords of logarithmic
length.

• An algorithm for estimating the error-floor of TLDPC codes is presented. As such
an error-floor phenomenon is due to the presence of trapping sets in the Tanner
graph, the algorithm is based on detecting potential trapping sets of small size and
then on evaluating their failure probability.

• The density evolution equations for non-binary TLDPC codes, when the transmission
takes place over the binary erasure channel, are defined.

• Any LDPC code, binary or not, with a large enough fraction of degree-2 symbols
can be represented as a TLDPC code with symbols of degree 1 and vice versa. Such
TLDPC representation gives a fast convergence decoding algorithm of the LDPC
codes.

It was observed that thresholds for non-binary LDPC codes (2, 3) and (2, 4) under
both standard and TLDPC-like decoding algorithms coincide.

• Performances of TLDPC codes over larger alphabets are presented.

• Iterative decoding thresholds of some non-binary LDPC code ensembles with a small
constant fraction of symbols of degree 1 are computed.

14



Chapter 2

Background

The goal of this chapter is to review the necessary background on sparse-graph code fam-
ilies, structured and unstructured, iterative decoding algorithms and the existing analysis
methods in the infinite-length case.

2.1 Sparse-graph codes

Very often a bipartite graph representation is used to describe graph-based codes. Behind
this representation there is an efficient decoding algorithm.

A code may be characterized as the set of configurations that satisfy a certain set of
constraints. For example, a linear code may be characterized as the set of configurations
that satisfy a certain set of parity checks. Such a representation was proposed by Gallager
[36]. Generally, such a representation is specified by local constraints where each constraint
involves a subset of code bits and defines a set of valid local configurations [67].

It also has a graphical model called a Tanner graph. A Tanner graph is a bipartite
graph in which a first set of vertices represents the bit variables , a second set of vertices
represents the local constraints, and a variable node is connected to a constraint node by
an edge if the corresponding bit is involved in the corresponding local constraint.

A code is a sparse-graph if the number of edges in its corresponding Tanner graph
is linear in the number of nodes. In the following sections only sparse-graph codes are
considered.

For a Tanner graph of a code, we define a degree of a variable (constraint) node to be
the number of constraint (variable) nodes connected to it. To each variable (constraint)
node of degree l we assign l sockets. The total number m of sockets of variable nodes
is equal to the total number of sockets of constraint nodes. The sockets of variable and
constraint nodes are matched by a random permutation chosen with uniform probability
among a set of permutations of size m. Sets of variable nodes V and of constraint nodes
C of a Tanner graph together with the set of allowed edge permutations define a code
ensemble.

An unstructured code ensemble is a code ensemble defined over all the possible socket
matchings.
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2.1.1 Unstructured code ensembles

In this section we review some well-known unstructured code ensembles. We begin with
the LDPC code family.

LDPC codes

An LDPC code is a linear block code with a sparse parity-check matrix. In the Tanner
graph, constraint nodes represent parity-check equations from the parity-check matrix of
the code and are usually called check nodes.

An LDPC code ensemble is (dv, dc)-regular if all the variable and check nodes have
corresponding degrees dv and dc. For a regular LDPC code the minimum code rate (also
called design code rate) is

R =
n − r

n
= 1 − dv

dc
.

An LDPC code is irregular if not all of the variable (check) nodes have equal degree.
By carefully designing the irregularity in the graph, one can construct codes which perform
very close to the capacity [49].

Let λ = (λ2, . . . , λs) be a probability distribution over the set of integers {2, . . . , s}
and let ρ = (ρ3, . . . , ρl) be a probability distribution over the set of integers {3, . . . , l}.
Let λ̄

def
= 1P

i λi/i and let nλ̄ = m for some positive integer n. Then an ensemble of irregular

LDPC codes of length n is defined by its variable (left) degree distribution λ and its check
(right) degree distribution ρ if λim/i and ρjm/j are integers for any i ∈ {2, . . . , s} and
j ∈ {2, . . . , l}. Note that λi denotes the fraction of edges incident on variable nodes of
degree i and ρj denotes the fraction of edges incident on check nodes of degree j, λim/i

(ρjm/j) is the fraction of variable (check) nodes of degree i (j), λ̄ (ρ̄
def
= 1P

j ρj/j ) represents

the average left (right) degree of the corresponding Tanner graph.

It is also possible to describe the same code ensemble by representing the sequences λ
and ρ by the following polynomials λ(x) =

∑

i>2 λix
i−1 and ρ(x) =

∑

j>3 ρjx
j−1.

Given the degree distribution for an irregular LDPC code, it is easy to find its design
code rate:

R = 1 −
∑

j
ρj

j
∑

i
λi

i

= 1 −
∫ 1
0 ρ(x)dx
∫ 1
0 λ(x)dx

.

Finding a good family of irregular LDPC codes of infinite length is equivalent to finding
a good degree distribution.

For n large enough, the average behaviour of almost all instances of the regular or
irregular LDPC ensemble concentrates around the expected behaviour [57]. Additionally,
the expected behaviour converges to the cycle-free case [57].

Tanner codes

This class of codes was first presented by Tanner in [67].
A Tanner code of length n is defined with the help of ρ1r local codes C1 of length n1, ρ2r

local codes C2 of length n2,. . ., ρtr local codes Ct of length nt
1, and of the bipartite graph

1
Pt

1 ρi = 1
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G = (V,W ) with V to be a set of variable nodes and W to be a set of constraint nodes,
each constraint node representing a local code, |V | = n and |W | = r

∑t
i=1 ρini = m.

A left degree distribution λ(x) =
∑s

i=1 λix
i−1 and a right degree distribution ρ(x) =

∑t
i=1 ρjx

nj−1 are respectively associated with variable and local code nodes.

If a Tanner code is constructed by using r identical local codes, its right degree distri-
bution only contains one degree, and the code is called simple.

Remark that LDPC codes are a particular case of Tanner codes when it has a parity
code as the local code.

2.1.2 Structured code ensembles

It was already pointed out that for unstructured code ensembles no restriction is put on
the permutation choice.

In order to have iterative decoding performances close to channel capacity, we need to
have a large fraction of degree-2 variable nodes in the code structure. In particular, all
the sequences of LDPC codes in [65] attaining the capacity on the erasure channel, satisfy

λ2 → 1

p(ρ̄ − 1)
.

On the other hand, a large fraction λ2 gives rise to a rather high error floor as the
error-floor phenomenon can be caused by low-weight codewords corresponding to cycles
in the subgraph of the Tanner graph which contain only degree-2 variable nodes. To avoid
such cycles, the following condition should be satisfied:

λ2(ρ̄ − 1) < 1.

Then the typical minimum distance of the code ensemble is linear in the codelength and
the error-floor for a code from the code ensemble is low. In the opposite case, when
λ2(ρ̄ − 1) > 1, the typical minimum distance of the code ensemble is logarithmic in the
codelength.

But it does not mean that code ensembles with linear minimum distance for which
λ2 > 1

ρ̄−1 do not exist, however, these code ensembles are rare and cannot be found by
random choice of permutation. So, to construct code ensembles with iterative decoding
performances close to channel capacity and having a low error-floor, we need to choose
permutations in a structured way in order to avoid low-weight codewords of sublinear size.

The code ensembles with a structured choice of permutation are called structured. We
give some examples of structured code ensembles below.

Parallel turbo codes

The first example of structured ensembles are the parallel turbo-codes. Their factor graph
contains two types of variable nodes, information and redundancy nodes, and two con-
straint nodes, corresponding to two convolutional codes C1 and C2 of the same length m
and rate RC . For the constraint node i, i = 1, 2, we distinguish two subsets of information
and redundancy positions Ci

I and Ci
R which correspond to information and redundancy
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bits of the convolutional code Ci. Similarly, we denote the subset of information vari-
able nodes by VI and the subset of redundancy variable bits by VR. Then we define a
permutation Π = {ΠI ,ΠR} as follows:

ΠI : VI 7→ C1
I

VI 7→ C2
I

ΠR : VR 7→ C1
I ∪ C2

I

In other words, two edge subsets are defined. The first subset connects information variable
nodes to information positions of constraint nodes and the second one connects redundancy
variable nodes to redundancy positions of constraint nodes.

The structured code ensemble of parallel turbo codes with two convolutional codes C1

and C2 is an ensemble of codes obtained by all possible random permutations within every
edge subset.

Note that it is not possible to avoid cycles of logarithmic size for parallel turbo codes,
so their minimum distance is logarithmic in the code length [17]. However, they have a
very large fraction of degree-2 variable nodes which determines their good performances
in the waterfall region.

Repeat-accumulate codes

An important example of structured ensembles is the repeat-accumulate (RA) code en-
semble [31]. Its Tanner graph contains two subsets of variable nodes, information VI and
VP parity nodes, as well as check nodes C. The common degree of the information variable
nodes is dv, the degree of the parity variable nodes is 2 and the check node degree is dc.
The number of check nodes for RA codes is equal to the number of parity variable nodes.
Let |C| = |VP | = r. We distinguish two edge subsets, EI and ER, the first one connecting
information variable nodes to check nodes, and the second one connecting parity variable
nodes to check nodes.

We make a structured choice of permutation for ER by connecting each of parity
variable nodes to exactly two check nodes in such a way that parity variable nodes and
check nodes form a cycle of length 2r. The permutation for EI is chosen uniformly at
random.

Note that RA codes do not have cycles of logarithmic size with degree-2 variable nodes
only in their structure. As there is a large fraction of degree-2 variable nodes, they have
very good performances in the waterfall region.

LDPC codes constructed from protographs

The next example of structured code ensembles are codes constructed from protographs
[70].

A protograph is a bipartite graph G with a relatively small number of variable and
check nodes.

Definition 1 [Edge type] We say that an edge in a Tanner graph is of type ti,j if it
connects a variable node of degree i and a check node of degree j. If there are n variable
nodes and m check nodes, the number of all possible edge types is mn.
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A LDPC code of length Nn constructed from the protograph G is defined by its Tanner
graph, when the Tanner graph is obtained by the following way:

- N copies of G are made,

- edges of the same edge type are randomly permuted.

Necessary conditions for being asymptotically good and exam-
ples of asymptotically good code ensembles constructed from pro-
tographs are presented in [25].
Note that RA codes can also be viewed as codes constructed from
protographs. For example, the protograph of a rate-1/3 RA code
with dv = 3 is presented in the figure on the right.

Circles represent variable nodes (filled circles represent parity variable nodes) and ⊕ rep-
resent check nodes. During the transmission, only values of parity variable nodes are sent
to the channel.

Multi-edge LDPC codes

Irregular LDPC codes and LDPC codes based on protographs are two particular cases of
multi-edge type codes introduced in [59]. In general, the structure of multi-edge codes is
a modification of the structure of irregular LDPC codes for which

- different types of sockets for variable and check nodes are defined and only sockets
of the same type are matched,

- hidden variable nodes are allowed.

Let G be a Tanner graph of a multi-edge LDPC code ensemble. As it was already
said, constraint nodes of G are parity check nodes. Variable nodes of G are divided in two
subsets: the nodes corresponding to symbols transmitted over the channel and the nodes,
called hidden, corresponding to non-transmitted symbols.

To each variable (check) node of degree l we assign l sockets.
To each socket a type i is also assigned. Let the total number
of socket types be t. Then to each variable (check) node we
associate a vector D of length t, the i-th element of which
is the number of sockets of type i assigned to it. The type
of a variable (check) node is determined by its vector D.
We match sockets of variable and check nodes by random
permutation if they are of the same type. Thus, the Tanner
graph of the code contains edges of t types each of them
corresponding to a socket type.
An example of a multi-edge structure taken from Table 8
in [59] is presented in the figure at right. Unfilled circles
represent transmitted variable nodes, filled circles represent
hidden ones, ⊕ represent check nodes. There are 6 socket
types, each of them represented by different color. Let
the vector D be { blue, cyan, orange, red, yellow, green}.
Then variable nodes have four types, namely {2, 0, 0, 0, 0, 0},
{0, 3, 0, 0, 0, 0}, {0, 0, 3, 2, 1, 0} and {0, 0, 0, 0, 0, 1}.
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Check nodes have three types: {2, 2, 0, 1, 0, 0}, {2, 1, 0, 0, 1, 0} and {0, 0, 3, 0, 0, 1}. The
number of sockets of given type for variable nodes and for check nodes is the same and
they are matched by random permutation.

Different socket types impose substructures in the Tanner graph which can have a
positive effect on the typical minimum distance of the code ensemble. In the multi-edge
structure presented as an example, each check node will be connected to at most 2 variable
nodes of degree 2. Therefore, by matching sockets of type ’blue’ carefully, the subgraph of
the Tanner code induced by variable nodes of degree 2 will not contain cycles and the code
will not have low-weight codewords corresponding to such cycles. Another advantage is
the possibility to include bits of degree 1 (which have a positive effect on the convergence
and performances of the iterative decoding in the waterfall region) without harming much
the typical minimum distance of the code ensemble. For instance, from the figure of the
example it is seen that two bits of degree 1 can not be connected to the same parity check
node and this avoids having codewords of weight 2 in the code.

Note that the standard irregular LDPC code ensemble is a particular case of the multi-
edge structure when all variable nodes are transmitted over the channel and there is only
one edge type, i.e. any variable node can be connected with any check node when the
random permutation of edges is performed.

The protograph ensemble corresponds to a particular case of multi-edge LDPC ensem-
bles when the node and edge types are determined by nodes and edges in its protograph.

2.1.3 Belief propagation decoding algorithm

Consider a transmission over a noisy channel. Let X be a random vector on its input and
let Y be a random vector on its output. We assume that Y depends on X via a conditional
probability density function PX|Y(x|y). Given a received vector y = (y0, . . . , yn−1), the
most likely transmitted codeword is the one that maximizes PX|Y(x|y). If the channel is
memoryless and each of the codewords are equally likely, then this reduces to the codeword
x = (x0, . . . , xn−1) which maximizes PY|X(y|x). This is known as maximum likelihood
(ML) estimate of the transmitted codeword and is written as follows

x̂ = arg maxx∈CPY|X(y|x).

The ML decoder is optimum in terms of word error probability. To minimize the bit error
probability for a bit xi, we maximize P(xi = x|y) over all x. The decoder maximizing
this quantity is called maximum a posteriori (MAP) decoder and the i-th position of its
output is written as follows

x̂i = arg maxx∈AP((xi = x|y),

the maximisation is done over the input alphabet of the channel. In what follows we
consider the binary alphabet.

ML decoding becomes exponentially difficult as the codelength becomes large. To
decode graph-based codes, we use hard or soft iterative decoding algorithms which operate
on their graphs. The decoding complexity of such algorithms per iteration is linear in the
codelength. Soft iterative decoding algorithms can be viewed as applying Bayes’ rule
locally and iteratively to calculate approximate marginal a posteriori probabilities for
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graph-based codes. If the graph has no cycles then these algorithms compute marginal
posterior probabilities exactly.

Let us describe in general decoding operations for LDPC codes. Under an iterative
decoding algorithm, variable and check nodes exchange messages iteratively. The messages
in this algorithm are probabilities. The message passed from a variable node v to a check
node c is the probability that v has a certain value given the value received from the
channel and all the values communicated to v on the previous semi-iteration from check
nodes incident to v other than c. The message passed from c to v is the probability that
v has a certain value given all the messages passed to c on the previous semi-iteration
from variable nodes other than v. This two-step procedure is repeated many times. After
n such iterations, each variable node decodes its associated bit based on all information
obtained from its depth-n subgraph of neighbours. Under local tree assumption, i.e. if the
girth of the subgraph is large enough, the subgraph has no repeated nodes and thus forms
a tree. Therefore, all the incoming messages to any node are statistically independent.
The notion of independence is very important while doing the analysis of the average
behaviour of a code ensemble. Even it is not the case, the local subgraphs contain cycles
and incoming messages are dependent, we assume their independence when analysing the
code ensemble.

The decoding procedure described above also holds when we have a code ensemble
for which variable nodes are not connected to separated parity-check nodes but to one or
several codes with more complicated relations between the bits (for example, convolutional
codes in the turbo code structure). During the code ensemble analysis we also assume
the independence between incoming messages [76]. Let us describe a decoding algorithm
called the sum-product (SP) [67, 76, 33], also known as belief propagation [43] in more
general case than LDPC codes when there is only one constraint node representing a code
of length n bigger that the length of the global code n′. We denote by mi the degree of
the i-th variable node, i = 0, . . . , n′ − 1. Let q0

i = P (xi = 1|yi) be a priori probabilities
received from the channel, i = 0, . . . , n′ − 1, and let tmax be the maximum number of
iterations. We denote by pt

j and qt
j extrinsic and intrinsic probabilities of the i-th bit of

the constraint code at the t-th iteration, j = 0, . . . , n − 1. qfinal
i denotes the a posteriori

probability of the i-th bit at the decoder output, i = 0, . . . , n′ − 1. The stages of the SP
algorithm are represented as follows:

1. Put the number of iterations t = 1.
2. Compute extrinsic probabilities

pt
j = P (xj = 1|y0, y1, . . . , yj−1, yj+1, . . . , yn−1)

with the help of the modified APP algorithm (Section A.1).
3. If t = tmax go to stage 6.
4. Update intrinsic probabilities:

qt
j =

q0
i ·
Q

k=1...mi,k 6=j pt
k

q0
i ·
Q

k=1...mi,k 6=j pt
k+(1−q0

i )·
Q

k=1...mi,k 6=j(1−pt
k)

5. t = t + 1. Go to stage 2.

6. Compute qfinal
i :

qfinal
i =

q0
i ·
Q

j=1...mi
pt

j

q0
i ·
Q

j=1...mi,j 6=i pt
j+(1−q0

i )·
Q

j=1...mi
(1−pt

j)

21



2.1.4 Asymptotic analysis tools

An iterative decoder at each iteration uses two sources of knowledge about the trans-
mitted codeword: the information from the channel (the intrinsic information) and the
information from the previous iteration (the extrinsic information). During decoding iter-
ations only the extrinsic information changes while the intrinsic information is fixed. In all
methods of analysis of iterative decoders, the statistics of the extrinsic messages at each
iteration are studied. Studying the evolution of the probability distribution of extrinsic
messages iteration by iteration is the most complete analysis (known as density evolution).
However, as an approximate analysis, one may study the evolution of a representative of
this density.

Density evolution

In his initial work, Gallager provided an analysis of the decoder in the case of binary
regular LDPC codes. The main idea of his analysis is to characterize the error rate of the
messages in each iteration in terms of the channel situation and the error rate of messages
in the previous iteration. This analysis is based on the tree assumption, i.e. for a fixed
iteration number, any message, computed at some node on this iteration, is based on the
neighbouring graph2 which is a tree.

In 2001, Richardson and Urbanke extended the main idea of LDPC code analysis
used for Algorithm A and B and also BEC-decoding to other decoding algorithms [60].
Considering the general case, where the message alphabet is the set of real numbers, they
proposed a technique called density evolution, which tracks the evolution of the probability
distribution of the messages, iteration by iteration.

To be able to define a density for the messages, they needed a property for channel and
decoding, called the symmetry conditions. The symmetry conditions require the channel
and the decoding update rules to satisfy symmetry properties. As for channel symmetry,
the channel is said to be output-symmetric if PY |X(y|x = 1) = PY |X(−y|x = −1). Con-
cerning decoding update rules symmetry, a variable node symmetry and a function node
symmetry must hold. Details can be found, for instance, in [58].

Under the symmetry conditions, the convergence behaviour of the decoder is inde-
pendent of the transmitted codeword, and we can assume that the all-zero codeword is
transmitted.

Furthermore, by the general concentration theorem [60], we are assured that, for almost
all randomly constructed codes and for almost all inputs, the decoder performance will be
close to the decoder performance under the local tree assumption with high probability, if
the block length of the code is long enough.

Given the probability distribution of received messages (since we know the channel)
and update rules for function and variable nodes, we are able to compute the probability
distributions of the outcoming messages first for function nodes and then for variable
nodes. The process can be continued for n iterations.

The probability distribution of a message will also give us the corresponding error
probability. It was proved in [60] that there exists a worst case channel condition for

2this neighbouring graph is also called the computation graph
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which, the message error rate approaches zero as the number of iterations approaches
infinity. This channel condition is called the iterative decoding threshold of the code.

On the BEC, the density evolution does not involve updating probability distributions,
but simply a single erasure probability.

EXIT chart

In extrinsic information transfer (EXIT) chart analysis, instead of tracking the density
of messages, we track the evolution of a single parameter, iteration by iteration. This
term is usually used in literature when mutual information is the parameter the evolution
of which is tracked. The tool has been introduced by ten Brink (see for instance [68]).
Alternatively, one can also track the SNR of the extrinsic messages [37] or their error
probability [6] as well as the mean square error (MSE) of messages [14].

When we use EXIT charts in further work, we track down during the iterations en-
tropy curves, i.e. the evolution of the expectation of the average entropy of the extrinsic
probability of a bit versus the average entropy of the intrinsic probability of a bit. As
usual, we define the binary entropy function by h(x) = −x log2 x − (1 − x) log2(1 − x).
Definitions of entropy curves used in this thesis are given in Section 3.6.

Note that for the erasure channel, the average (extrinsic or intrinsic) entropy is given
by a single value, and entropy curves can be defined rigorously without making any as-
sumption. On the Gaussian channel however, the average entropy is given by a probability
density function. It is generally assumed that the log-likelihood ratios of the extrinsic and
intrinsic probabilities conditioned on the value of the bit under consideration have Gaus-
sian distributions and that, in the case the all zero codeword was sent, the log-likelihood
ratios of the extrinsic (or intrinsic) probability are distributed as Gaussian variables with
mean µ and variance ν2 = 2µ. Under these assumptions, the probability density function
defining the average entropy is characterised by the single parameter µ and the expected
value of the average entropy is given by

f(µ)
def
=

∫ +∞

−∞

1√
4πµ

h(x)e
(x−µ)2

4µ dx.

We define two entropy curves. The first one summarizes how the extrinsic probabilities
behave in terms of the intrinsic probabilities and is defined as a function g(f, f0), f0 being
the initial parameter of the transmission channel. The second entropy curve summarizes
how the intrinsic probabilities behave in terms of the extrinsic probabilities and is given
by h(f, f0). These two entropy curves predict that at the t-th iteration the expectations
of the average extrinsic entropies Et and the average intrinsic entropies It are given by

I0 = f0

E1 = g(f−1(I0), f0)

I1 = h(f−1(E1), f0)

· · · · · · · · ·
Et = g(f−1(It−1), f0)

It = h(f−1(Et), f0)

We illustrate this with an example in the figure below. In other words the entropy curves
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Figure 2.1: Entropy curves and average decoding trajectory.

predict that the Et’s and the It’s are given by taking vertical and horizontal steps between
both curves and that the decoding converges to the right codeword whenever the entropy
curve g(f, f0) is below the entropy curve h(f, f0).

Entropy curves have many interesting properties. On the erasure channel, it has been
proven in [7] that for a code ensemble with left degree distribution λ(x) and for any value
of the erasure channel probability p0 which is such that the entropy curves do not cross, the
gap between the capacity C and the design rate R is proportional to the area A between
entropy curves,

C − R = λ̄(1 − λ1)A,

where λ1 is the fraction of bits of degree 1 and λ̄ =
Ps

i=2 λiPs
i=2 λi/i . Such a relation holds also

approximately over the Gaussian channel. If we want to minimise the gap to capacity we
should strive for entropy curves g(f, f0) which can be well approximated by an entropy
curve h(f, f0).

GEXIT chart

Generalized extrinsic information transfer (GEXIT) charts form a generalization of the
concept of EXIT charts and were introduced by Measson et al. [20]. The important point
is that they satisfy the area theorem for an arbitrary MBIOS channel by definition (see
[58]).

This area conservation theorem also enables to get upper bounds on the thresholds of
sparse-graph code ensembles under bit-MAP decoding. The bound was shown to be tight
for the BEC [19], and is conjectured to be tight in general for MBIOS channels [20].
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2.1.5 Average weight distribution

Since all the code ensembles are sequences of sets of codes of given rate and length, we are
interested in the typical behavior of codes of the same length. In order to study it, define

ā
(n)
i to be the average number of codewords of weight i, where the average is taken over

all codes of length n in the given code ensemble.

Definition 2 [Asymptotically good codes] An ensemble of codes is asymptotically

good if there exists δ > 0 so that
∑δn

i=1 ā
(n)
i = o(1) for n → ∞. By Markov’s inequality

this implies that all but perhaps a small fraction o(1) of codes of length n in such an
ensemble have minimum distance at least δn.

A weaker statement is formulated as follows:

Definition 3 [Weakly asymptotically good codes] An ensemble of codes is weakly

asymptotically good if there exist constants δ > 0 and p < 1 such that
∑δn

i=1 ā
(n)
i ≤ p for

n sufficiently large. In this case all but possibly a fraction p of codes of length n in this
family have minimum distance at least δn, for n sufficiently large.

Note that the average distance spectrum of regular LDPC codes was computed in
[36], The average distance spectrum of irregular LDPC codes was computed in [46, 18].
Moreover, it has been realized in [29] that from the behavior of the average weight distri-
bution for low weights, a very simple criterion ensuring that most codes in an LDPC code
ensemble are asymptotically good can be derived. It was also observed that is possible
to generalize the generating function approach of [36] to obtain the distance spectrum
of regular Tanner codes, see [54, 16]. For the average distance spectrum of ensembles of
repeat-accumulate codes and variations see [31, 38], of turbo codes - [10, 61, 41].

As aw has an exponential behaviour, then w/n tends to a constant as n → ∞. We
define α(δ) to be the growth rate of a code ensemble:

α(δ) = lim
n→∞

1

n
ln ā

(n)
δn . (2.1)
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Chapter 3

Family of binary TLDPC codes

3.1 Introduction

The goal of this part is to construct a family of binary codes with low error-floor having an
iterative decoding algorithm of low complexity. To provide the low error-floor behaviour,
we focus ourselves on the design of asymptotically good codes, i.e. codes with linear
minimum distance in the codelength.

The basic idea of our design is to modify a (not necessarily asymptotically good)
Tanner code so as to obtain a code with an improved weight distribution. The hope is,
that if the initial Tanner code has a low complexity iterative decoding, then the obtained
code can be also decoded with a low complexity.

We optimize parameters of the obtained code family by using entropy curves (which are
essentially similar to EXIT charts). We also make a structured choice of the permutation
in order to avoid codewords of sublinear size and thus to preserve the property for being
asymptotically good; this adds up to avoiding cycles of sublinear size in the special graph
called graph of codewords of (partial) weight 2.

Codes, constructed in such a way, are called Tail-biting Trellis LDPC codes (TLDPC)
and are defined further.

An important point is that an asymptotically good TLDPC code ensemble can still
have a large number of codewords of the base code of weight 2 and 3 which is of benefit for
the entropy curve of its base code (see Section 3.6 for details) as it improves the threshold
of the ensemble and decreases the gap to channel capacity.

Moreover, TLDPC codes allow to have bits of degree 1 in their structure. The inclusion
of bits of degree 1 significantly changes the behaviour of the entropy curve of the base code
at the origin which leads to a lowering of the threshold and to improving the performance
of the code ensemble under iterative decoding (see Section 3.8.3).

A good threshold (for example, 0.15 dB from the channel capacity for a code of rate
1/3) together with a linear minimum distance in the codelength, enables us to obtain code
families with a good behaviour in the waterfall region and with no error-floor up to the
word error rate in the range 10−5 − 10−6.

In Section 3.5 we present sufficient conditions for being asymptotically good for the
TLDPC code family. The result is taken from [71]. Then in Section 3.6 we show why
it is important to have a large number of codewords of weight 2 and 3 in the base code.
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We present necessary conditions for being asymptotically good in Section 3.7. Further we
consider particular TLDPC code families, we construct codes of rates 1/10, 1/4, 3/10, 1/3
and 1/2 and we present their performances.

3.2 General framework for irregular code constructions and
their average spectrum

In this section we present a new representation of graph-based codes which embraces all the
code ensembles presented as examples in the previous chapter. This general construction
was first described in [71], then mentioned in [4] and [5]. The representation permits to
apply directly the simple mono-dimensional optimisation of the degree distribution of a
given code ensemble if the ensemble is unstructured.

Definition 4 [Construction, base code] The construc-
tion starts with a binary code C of length m and yields a
code of smaller length n with the help of a degree distribu-
tion Λ = (λ1, λ2, . . . , λs) over the set of integers {1, 2, . . . , s}
so that λin is an integer for any i ∈ {1, 2, . . . , s} and such
that

∑s
i=1 iλi = 1 and n

∑s
i=1 iλi = m. The construction

uses a bipartite graph between two sets V and W of vertices
of size n and m respectively, where the degree of any vertex
in W is exactly one and the number of vertices in V of de-
gree i is λin. We match vertices in W with m positions of
the base code C.
The code C is called the base code of the construction.

1
2
3

m

1

2

n

The bipartite graph together with the base code specifies a code of length n as the set of
binary assignments of V such that the induced assignments1 of vertices of W belong to C.

We present several known code constructions viewed as particular cases of the general
construction.
Example

- Tanner codes: The base code of a Tanner code defined in Section 2.1.1 is the jux-
taposition of ρ1r codes C1, ρ2r local C2,. . ., ρtr local Ct. The set W of positions of
the base code is divided into r subsets, each subset being associated to the positions
of one local code.

- LDPC codes (Section 2.1.1): The base code of an LDPC code is a particular case of
a Tanner base code when local codes are parity check codes.

- Parallel turbo codes (Section 2.1.2): The base code of a parallel turbo code is a
juxtaposition of one or several convolutional codes. The set of variable nodes V
is divided into subsets of information and redundancy variable nodes. Information
variable nodes have degrees which correspond to the number of times they are used
in the encoding process, redundancy variable nodes are of degree 1.

1a vertex in W receives the same assignment as the vertex in V it is connected to.
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3

The point of the construction that even if C has a poor minimum distance, the ob-
tained random code of length n has a better minimum distance, and, if C has an efficient
maximum likelihood decoding algorithm, there is an iterative decoding algorithm with the
comparable decoding complexity to decode the obtained code of length n.

Theorem 1 Let Rb be the rate of the base code and λ̄ the average degree of the bipartite
graph. Then the design rate of the constructed code R can be calculated as

R = 1 − (1 − Rb)λ̄. (3.1)

Proof : Let ni be the set of variable nodes of degree i, i = 1, . . . , s. We obtain that

n =

s∑

i=1

ni,

m =

s∑

i=1

ini.

The number k of information bits of the constructed code is computed as

k = Rbm −
s∑

i=1

(i − 1)ni = Rb(1 − m) + n

where
∑s

i=1(i − 1)ni is the number of equality conditions. Thus, the design rate of the
code is

R = 1 + Rb
m

n
= 1 − (1 − Rb)λ̄.

There is a simple formula for the average number āw of codewords of weight w for
an irregular code ensemble defined using the general construction. Let m be the number
of edges in the bipartite graph and let s be the maximum degree of variable nodes. We
define a polynomial q(x, y) as follows

q(x, y)
def
=

s∏

j=1

(1 + xyj)λjn.

Let b(x) the weight enumerator of the base code.

Notation ⌊q(x, y)⌋w,e denotes the coefficient of xwye of the polynomial q(x, y). ⌊b(x)⌋e

denotes the coefficient of xe in b(x).

The expression for the average number āw of codewords of weight w is written as

āw =
m∑

e=1

⌊b(x)⌋e ⌊q(x, y)⌋w,e
(m

e

) . (3.2)
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3.3 Tanner codes. Sufficient conditions for being asymptot-
ically good.

In this section the asymptotic average weight distribution of Tanner code ensembles is pre-
sented. This generalizes formulas known for LDPC code ensembles. A sufficient condition
for being asymptotically good for such a family is also derived.

The results described in this section are taken from [71].

3.3.1 Average spectrum of Tanner codes

In the case of Tanner codes, when the base code is a juxtaposition of local codes, the
weight enumerator of the base code b(x) has a very simple expression in terms of weight
enumerator polynomials of local codes. Denote by bi(x) the weight enumerator of a local
code Ci,1 ≤ i ≤ t, where t is the maximum degree of constraint nodes in the bipartite
graph (i.e. the maximum length of local codes). Then, if r denotes the number of local
codes, we obtain

b(x) =

t∏

i=1

bi(x)ρir.

We are interested in estimating the behaviour of āδn
2, δ ∈ [0, 1]. According to (3.2),

this boils down to estimating ⌊q(x, y)⌋δn,εn and ⌊b(x)⌋εn for some ε ∈ (0, 1). These poly-
nomials have nonnegative coefficients and we can use the following upper bound on the
coefficient of the monomial xiyj of a polynomial p(x, y) with negative coefficients:

⌊p(x, y)⌋i,j ≤ inf
u>0,v>0

p(u, v)

uivj
. (3.3)

Using the upper bound for polynomials q(x, y) and b(x) yields the correct exponent of the
exponential behaviour of their coefficients; the reason for this is that q(x, y) and b(x) are
powers of some fixed polynomials with positive coefficients Q(x, y) and B(x). We quote
the following theorem which has been proved in [18]:

Theorem 2 Let γ be some rational number and let p(x, y) be a function such that p(x, y)γ

is a polynomial with nonnegative coefficients. Let δ and ε be some positive reals, and let
ni be the set of indexes such that ni/γ is an integer and ⌊p(x, y)ni⌋δn,εn 6= 0, then

⌊p(x, y)ni⌋δn,εn ≤ inf
u>0,v>0

p(u, v)ni

(uδvε)ni
(3.4)

and

lim
i→∞

ln⌊p(x, y)ni⌋δn,εn = ln inf
u>0,v>0

p(u, v)

uδvε
. (3.5)

Now we can present the proof of the following theorem:

2by slight abuse of notation we denote ā⌊δn⌋ by āδn
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Theorem 3
α(δ) = sup

∆minδ≤ε≤∆maxδ
β(δ, ε)

where

β(δ, ε) =
r

n
inf
x>0

"
tX

j=1

ρj ln bj(x) −
εn

r
ln x

#
+ inf

x>0,y>0

"
sX

i=1

λi ln(1 + xy
i) − δ ln x − ε ln y

#
− λ̄h(

ǫ

λ̄
).

Moreover,
ā(n)

w ≤ enα(w/n). (3.6)

Proof : From Theorem 2, ⌊q(x, y)⌋w,e and ⌊b(x)⌋e have an exponential behaviour when
e/n and w/n tend to a constant. This is also the case for

(
m
n

)
. Therefore, aw has an

exponential behaviour when w/n tends to a constant as n → ∞. Let us compute the
growth rate α(δ) of the Tanner ensemble.

From (3.2),

α(δ) = lim
n→∞

1

n
ln āδn = lim

n→∞
1

n
max

1≤e≤m
ln

⌊b(x)⌋e⌊q(x, y)⌋δn,e
(m

e

) ,

This leads to estimate ⌊q(x, y)⌋δn,θm and ⌊b(x)⌋θm, θ ∈ [0, 1]. Note that ε = θλ̄, then

1

n
ln āδn = max

δ∆min≤ε≤δ∆max

(
1

n
ln⌊b(x)⌋εn +

1

n
ln⌊q(x, y)⌋δn,εn − λ̄h(

ǫ

λ̄
) + o(1)), (3.7)

where ∆min and ∆max are the smallest and the highest left degrees of the bipartite graph
and where last terms are obtained using the following approximation.

(
m

θm

)

=

(
λ̄n

ǫn

)

= λ̄n[h(
ǫ

λ̄
) + o(1)].

By using the upper bound (3.5), we obtain that

1

n
ln⌊b(x)⌋εn =

1

n

t∑

j=1

ln⌊bρjr
i (x)⌋εn.

Thus, by Theorem 2,

lim
n→∞

1

n
ln⌊b(x)⌋εn =

r

n

t∑

j=1

ρj ln inf
x>0

bj(x)

xεn/(ρjr)
=

r

n
inf
x>0





t∑

j=1

ρi ln bj(x) − εn

r
lnx



 . (3.8)

We also use Theorem 2 to get the limit for ⌊q(x, y)⌋δn,εn:

lim
n→∞

1

n
ln⌊q(x, y)⌋δn,εn = ln inf

x>0,y>0

s∑

i=1

(1 + xyi)λi

xδyε

= inf
x>0,y>0

[
s∑

i=1

λi ln(1 + xyi) − δ ln x − ε ln y

]

.

By using (3.7), (3.8) and (3.9) we obtain the given expression for ā
(n)
w .
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Now we prove Inequality (3.6). We begin from (3.2) and write:

āw = exp

[

ln

m∑

e=1

⌊b(x)⌋e ⌊q(x, y)⌋w,e

(
(m

e

)

]

≈ exp

[

max
1≤e≤m

ln⌊b(x)⌋e + ln⌊q(x, y)⌋w,e − ln

(
m

e

)]

.

Using Theorem 2 and keeping w/n fixed, we obtain that

āw ≤ exp

[

sup
∆minδ≤ε≤∆maxδ

nβ(δ, ε)

]

= enα(w/n).

3.3.2 Sufficient conditions for Tanner codes for being asymptotically
good

Intuitively, if α(δ) is small around the origin, then the code ensemble should be asymp-
totically good. For a Tanner code, the following lemma settles the issue of how small α
has to be:

Lemma 1 Consider an ensemble of Tanner codes. If −∞ < limδ→0+
α(δ)

δ < − ln 2, then

the code ensemble is weakly asymptotically good. If limδ→0+
α(δ)

δ → −∞, the code ensemble
is asymptotically good.
Proof : Assume first that limδ→0+

α(δ)
δ exists, is finite and is smaller than − ln 2. This

implies that there exists C < − ln 2 and δ0 > 0 such that

α(δ) = Cδ

for any 0 < δ < δ − 0. By inequality (3.6), ā
(n)
i ≤ enα(i/n) ≤ Ki with K < 1/2 for any

0 < i < δ0n. Therefore, provided that i/n stays smaller than some well chosen constant
δ1 > 0, we have

δ1n∑

i=1

ā
(n)
i ≤

δ0n∑

i=1

Ki ≤ K

1 − K
< 1.

Consider now that limδ→0+
α(δ)

δ = −∞. Let f(n) = sup0<u< 1√
n

α(u)
u . Note that f(n) goes

to −∞ as n tends to infinity. From the hypothesis on α(δ) we know that there exists
δ0 > 0 such that for any positive integer i ≤ δ0n we have α(i/n) ≤ − ln 2. Observe that

δ0n∑

i=1

ā
(n)
i =

⌊√n⌋
∑

i=1

ā
(n)
i +

δ0n∑

⌊√n⌋+1

ā
(n)
i

≤
⌊√n⌋
∑

i=1

eif(n) +

δ0n∑

⌊√n⌋+1

e−i ln 2

≤ ef(n)

1 − ef(n)
+

1

2⌊
√

n⌋

32



The last term tends to 0 as n tends to infinity.

Remark that it does not hold for other irregular code ensembles, even if α(δ) exists.

To calculate limδ→0+
α(δ)

δ , we use two following lemmas. The first of them will permit
to settle the behaviour of the first term in the expression β(δ, ε) as δ → 0 in Theorem 3:

Lemma 2 Let f be a C∞ function defined over [0,∞). Assume that f(0) = 1 and f ′(0) ≥
0, and that the behaviour of f ′ is given by f ′(x) = αxβ−1 + O(xβ), with α > 0 and β > 1.

Assume also that xf ′(x)
f(x) is increasing. Let g(t) = infu>0 ln f(x) − t ln u. Then

g(t)

t
=

1 + ln α − ln t + o(1)

β

as t → 0+.
The second lemma is used to determine the behaviour of the second term in the

expression β(δ, ε), namely

π(δ, ε) = inf
x>0,y>0

s∑

i=1

λi ln(1 + xyi) − δ ln x − ε ln y,

as δ → 0+ and the ratio τ = ε/δ is kept fixed.

Lemma 3 As δ → 0+ and τ = ε/δ is kept fixed and and equal to some constant τ ,

π(δ, ε) = h(δ) + δK(τ) + o(δ),

where K(τ) = infx>0 ln q(x) − τ lnx and q(y) =
∑s

t=1 λiy
i. K(τ) is an increasing and

continuous function in τ which satisfies:
K(τ) = −∞ for τ < ∆min,
K(∆min) = ln(λ∆min

).
We formulate the following proposition:

Proposition 1 Let dmin be the smallest minimum distance of local codes Ci and let ni be
the number of codewords of weight dmin in the local code Ci. If ∆min > 2 or dmin > 2,
then a Tanner code ensemble is asymptotically good. If ∆min = dmin = 2, then the Tanner
code ensemble is weakly asymptotically good if

8λ∆min

∑t
i=1 ρini

λ̄ρ̄
< 1.

Proof : By using Lemmas 2 et 3, we write the expression for α(δ) in the form

α(δ) = Aδ log δ + Bδ + o(δ),

where

A = ∆min − ∆min

dmin
− 1;

B =
∆min

dmin

[

1 + log(
λ̄

ρ̄
∑t

j=1 ρjnj

)

]

+ log λ∆min
+ ∆min log

∆min

λ̄
.

So we have that
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- if ∆min > 2 or dmin > 2 as δ → 0+, we approximate α(δ) by its second term

α(δ) = (∆min − ∆min

dmin
− 1)δ ln δ + O(δ)

and

lim
δ→0+

α(δ)

δ
= −∞.

- if ∆min = dmin = 2 as δ → 0+, then A = 0 and

α(δ) = δ(1 + log
4λ∆min

∑t
i=1 ρini

λ̄ρ̄
) + o(δ)

and

lim
δ→0+

α(δ)

δ
= log

8λ∆min

∑t
i=1 ρini

λ̄ρ̄
.

From these calculations and lemma 1 we can deduce the expression above.

3.4 Tail-biting trellis LDPC codes

In this section we define a TLDPC code ensemble by defining what is the TLDPC base
code. The TLDPC code ensemble is obtained by a simple modification of a Tanner code
ensemble where the base code of a simple Tanner code is replaced by a tail-biting convo-
lutional code.

Let C0 be the local code from which the simple Tanner code is constructed. Say that
this code has length n0 and dimension k0. Let r be the number of local codes in the
Tanner code we consider. Assume that for some integer c we have a couple of linear maps

R : {0, 1}c × {0, 1}k0 → {0, 1}n0−k0

S : {0, 1}c × {0, 1}k0 → {0, 1}c

such that C0 is formed by all the couples of the form (x,R(e, x)), where x ∈ {0, 1}k0 and
e ∈ {0, 1}c satisfy S(e, x) = e.

In other words, we have defined a one-sectional linear tail-biting trellis T for C0 with
state complexity 2c using two linear maps R and S, where R maps trellis states and
information bits to redundancy bits and S maps input state bits and information bits to
output state bits.

Assumption 1 We assume that

1. for ∀e ∈ {0, 1}c, the set {S(e, x), x ∈ {0, 1}k0} is equal to {0, 1}c (i.e. the state
complexity is constant and equal to 2c).

2. there is only one state e ∈ {0, 1}c such that R(e, 0) = 0, namely e = 0 (i.e. this
amounts to the uniqueness of the all-zero codeword).
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Definition 5 [TLDPC base code] The base code of the TLDPC code is a tail-biting
convolutional code obtained by the serial concatenation of r copies of T , where the first and
the last states of serial concatenation are identified. In other words, the base code of the
TLDPC code is the set of vectors of the form (x1, y1, x2, y2, . . . , xr, yr) (with xi ∈ {0, 1}k0 ,
yi ∈ {0, 1}n0−k0 for i ∈ {1, 2, . . . , r}) for which there exists (e1, e2, . . . , er) (with ei ∈ {0, 1}c

for i ∈ {1, 2, . . . , r}) such that:

1. e0 = er (condition of trellis termination),

2. ∀i ∈ {1, r}, S(ei−1, xi) = ei and R(ei−1, xi) = yi.

Remark that the definition can be generalised to TLDPC codes constructed from more
complicated Tanner codes. In this case it is essential that every couple (Ri, Si) defining a
one-sectional linear tail-biting trellis for a local code Ci be defined over a common state
space (i.e. all the {0, 1}c have to be the same).

3.5 Sufficient conditions for TLDPC codes for being asymp-

totically good

3.5.1 Average spectrum of the TLDPC code ensemble

The average spectrum of TLDPC codes is obtained using a similar approach as for Tanner
codes in Section 3.3.1. We compute the average spectrum of TLDPC code family using
(3.2) with b(x) being the weight enumerator polynomial of the TLDPC base code. The
average spectrum ā⌊δn⌋ having an exponential behaviour when w/n tends to a constant
and n to infinity, we compute the growth rate of the TLDPC code family.

Note that the weight enumerator b(x) of the base code has a simple expression in terms
of the following matrix M(x) = (mi,j), i ∈ {0, 1}c and j ∈ {0, 1}c: the entry {i, j} of M is
equal to the weight enumerator (assumed to be a polynomial in x) of the set

{(u,R(i, u)); u ∈ {0, 1}k0 such that S(i, u) = j},
namely

b(x) = trM(x)r.

To bound coefficients ⌊b(x)⌋εr
3, we adapt Theorem 2 to our case and we obtain the fol-

lowing expression:

⌊b(x)⌋εr ≤ inf
x>0

trM(x)r

xǫr
. (3.9)

Let µ(x) be the largest positive eigenvalue of M(x). By the Perron-Frobenius theorem
[35], since M(x) is a positive matrix for any x > 0, µ(x) is simple and larger than or equal
to the absolute values of the other eigenvalues. From this we deduce that

1

r
ln⌊b(x)⌋εr ≤ c ln 2

r
+ inf

x>0
(ln µ(x) − ε ln x).

By doing calculations similar to those in [18], one can show that that
limr→∞

1
r ln⌊b(y)⌋ǫr exists and is equal to infx>0(ln µ(x) − ε ln x). So, the growth rate of

the TLDPC code ensemble α(δ) can be calculated as follows

3Recall that ⌊b(x)⌋εr is the coefficient of xεr of the polynomial b(x)
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Theorem 4
α(δ) = sup

∆minδ≤ε≤∆maxδ
β(δ, ε)

where

β(δ, ε) =
r

n
inf
x>0

h
ln µ(x) −

nε

r
ln x

i
+ inf

x>0,y>0

"
sX

i=1

λi ln(1 + xy
i) − δ ln x − ελ̄ ln y

#
+ λ̄h (ǫ) .

For the average number of codewords of weight w we can write

āw = exp

[

ln

m∑

e=1

⌊b(x)⌋e ⌊q(x, y)⌋w,e
(m

e

)

]

≈ exp

[

max
1≤e≤m

ln⌊b(x)⌋e + ln⌊q(x, y)⌋w,e − ln

(
m

e

)]

.

By using Theorem 2 and keeping w/n fixed, we obtain that

ln āw ≤ sup
∆minδ≤ε≤∆maxδ

nc ln 2 +
r

n
inf
x>0

[

ln µ(x) − nε

r
ln x
]

+

+ inf
x>0,y>0

[
s∑

i=1

λi ln(1 + xyi) − δ ln x − ελ̄ ln y

]

+ λ̄h (ǫ) ,

and thus, for TLDPC codes we have the weaker statement than for Tanner codes

āi ≤ 2cenα(i/n). (3.10)

This is a consequence of b(x) = trM(x)r ≤ 2cµ(x)r. However, for small values of i/n the
following inequality holds.

Proposition 2 For every ε′ > 0 there exists β > 0 such that for any positive integers i
and n, i/n > β, we have

āi ≤ (1 + ε′)enα(i/n). (3.11)

Proof : We start from Inequality (3.9). Note that for every γ there exists some constant
K(γ) such that for every 0 < ε < K(γ) the infimum is attained for some x ∈ (0, γ).

M(0) is a matrix with only one non-zero coefficient m0,0, equal to 1. As a consequence,
M(0) has a single positive eigenvalue which is 1, all the other eigenvalues equal to 0. From
the fact that the eigenvalues of M(x) are continuous functions of x [66] and the trace of
M(x)r is equal to the sum of the r-th powers of the eigenvalues of M(x), we deduce that
there is a γ > 0 such that trM(x)r ≤ (1 + ε′)µ(x)r for every 0 < x < γ. We choose such
a γ and then for ε < K(γ) we obtain that

⌊b(x)⌋εr ≤ (1 + ε′) inf
x>0

µ(x)r

xǫr
.

By using calculations similar to those leading up to (3.10), we obtain the inequality (3.11).

Note that Inequality (3.11) is stronger than Inequality (3.6). This is due to the fact
that trM(x)r ≈ µ(x)r for values of x around 0.
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It is highly instructive to estimate what can be gained in the average distance spectrum
if we take a TLDPC code instead of a simple Tanner code. Recall that for a right-regular
Tanner code

α(δ) = sup
∆minδ≤ε≤∆maxδ

β(δ, ε)

where

β(δ, ε) =
r

n
inf
x>0

"
tX

j=1

ρj ln bj(x) −
εn

r
ln x

#
+ inf

x>0,y>0

"
sX

i=1

λi ln(1 + xy
i) − δ ln x − ε ln y

#
− λ̄h(

ǫ

λ̄
).

For a simple Tanner code the first term in the expression β(δ, ε) reduces to ln b1(x), b1(x)
being the weight enumerator polynomial of the local code chosen to construct the simple
Tanner code. If we take the associated TLDPC code (constructed with the help of the
same local code), then in the corresponding expression for β(δ, ε) b1(x) will be replaced
by µ(x) (since b1(x) = trM(x) and we replace the trace of M(x) by the largest eigenvalue
of M(x)). Note that the tail-biting trellis of the local code can be chosen in such a way
that the largest eigenvalue of M(x) will be significantly smaller than the trace of M(x).

3.5.2 Sufficient conditions for being asymptotically good

The calculations for TLDPC codes are similar to those done for Tanner codes with the
only difference that before to apply Lemma 2 we need to study the behaviour of µ(x)
around 0. This is done by matrix perturbation argument. To obtain the behaviour of
α(δ) around 0 by using only the first order approximation of µ(x) and thus to simplify
the results, we make the following assumption:

Assumption 2 All entries of M(x) except m0,0 are divisible by x2 and (m0,0 − 1) is also
divisible by x2. This amounts to the fact that all vectors (x,R(e, x)) with x ∈ {0, 1}k0 ,
e ∈ {0, 1}c are of weight at least 2, except (0, R(0, 0)) which has Hamming weight 0.

Let E(x) = M(x) − M(0). Note that the largest eigenvalue of M(0) is simple and
equal to 1, and the associated eigenvector can be chosen to be the vector u with the 1 in
the first position equal and 0 elsewhere. By applying Theorem 2.3 of [66] we obtain that

µ(x) = 1 +
(u,E(x)x)

(u, u)
+ O(‖E(x)‖2) = m0,0(x) + O(‖E(x)‖2),

where (u, v) denotes the standard inner product in R2c
. By using the assumption we

obtain µ(x) = m0,0(x) + O(x4). This leads us to consider the subcode C(0) of the local

code given by (x,R(0, x)) with x ∈ {0, 1}k0 such that S(0, x) = 0. Denote by d
(0)
min the

minimum distance of the subcode and by n
(0)
min the number of codewords in this subcode

of weight d
(0)
min. With this notation, we finally obtain

µ(x) = n
(0)
minxd

(0)
min + O(x4).

By using this expression in Lemma 1 we obtain that

- if either ∆min > 2 or 4 ≥ d
(0)
min > 2 as δ → 0+, then

α(δ) =

(

∆min − ∆min

d
(0)
min

− 1

)

δ ln δ + O(δ);
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- if ∆min = d
(0)
min = 2, as δ → 0+, then

α(δ) = ln

(

4λ∆min

∑t
i=1 ρini

λ̄ρ̄

)

δ + o(δ).

As for Tanner codes, For TLDPC ones we have the following lemma:

Lemma 4 Consider an ensemble of TLDPC codes. If −∞ < limδ→0+
α(δ)

δ < − ln 2, then

the code ensemble is weakly asymptotically good. If limδ→0+
α(δ)

δ → −∞, the code ensemble
is asymptotically good.

The proof of the lemma is similar to the proof of Lemma 1, and we use Proposition 2
with an ε′ such that (1 + ε′)C ≤ − ln 2 to show that for i/n smaller than some constant

δ1 > 0 we have ā
(n)
i ≤ Ki.

From previous calculations and Lemma 4 we deduce the following proposition

Proposition 3 Let C be a TLDPC code ensemble which satisfies the Assumption 2. If

either ∆min > 2 or d
(0)
min > 2 then C is asymptotically good. If ∆min = d(0)min = 2 and if

4λ∆min
n

(0)
min

λ̄ρ̄
< 1, then C is weakly asymptotically good.

Note that for TLDPC codes we can allow twice more codewords of weight 2 in the
base code than for Tanner codes and still be asymptotically good.

3.6 Matching condition for entropy curves of TLDPC codes

on the BEC

In this section, with the aim to define what base codes are more appropriate to obtain a
code family with good decoding performances, we study the first and the second derivatives
of entropy curves of the base code at the origin and show that they are functions of the
number of codewords of the base code of weight 2 and 3.

Though in general entropy curves (see Section 2.1.4 for definition) are only an approxi-
mation to describe the behaviour of the decoding algorithm, on the BEC they give exactly
the average behaviour of a code ensemble when the codelength tends to infinity. For the
BEC there also exist relations connecting the threshold of iterative decoding and some
parameters of the code ensemble. These relations can be used to optimise the parameters
of the code in order to improve the performances under iterative decoding.

We study two different cases of TLDPC code families: without and with bits of degree
1 in their structure.

3.6.1 TLDPC code families without bits of degree 1

Properties of entropy curves of variable nodes and of the base code

Let us define the entropy curves of variable nodes and of the base code on the BEC.
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Definition 6 We define extrinsic average entropy and intrinsic average entropy at the tth

iteration as follows

Et
def
=

1

nb

nb∑

i=1

Et(i)

It
def
=

1

nb

nb∑

i=1

It(i)

with Et(i) (It(i)) being the entropy of the extrinsic (intrinsic) probability associated to the
i-th position of the base code at the t-th iteration.

We begin with the entropy curve of the base code:

Lemma 5 The entropy curve of the base code on the BEC with erasure probability p is
given by the set of points (I0, E1) with:

I0 = p

E1 =
1

nb

nb∑

i=1

hi(p)

where
hi(p) =

∑

e∈Ei

p|e|−1(1 − p)nb−|e| (3.12)

with Ei to be the erasure configurations of bits of the base code for which the value of bit i
cannot be found; for every such configuration e, |e| denotes the number of erasures in it.

Lemma 5 is a slight modification of the result given in [7].

Lemma 6 An erasure configuration e is included in Ei if and only if there exists a code-
word of the base code with 0 on all the unerased positions of e and 1 at position i.

Proof : An erasure at position i cannot be compensated by the decoding of the base code
if and only if there exist two codewords being respectively equal to 1 and to 0 at position i
which are compatible with the received word. By the code linearity, we may assume that
the transmitted codeword was the all-zero one. Thus one of the compatible codewords will
be the all-zero codeword, and there exists a codeword with 1’s at position i compatible
with the received codeword if and only if all the unerased positions of this codeword are
equal to 0.

We compute the behaviour of entropy curves of variable nodes and of the base code
at the origin. This computation is fundamental to explain our approach to construct base
codes with a given trellis complexity.

For the entropy curve of variable nodes we have the following theorem:

Theorem 5 The derivative of the entropy curve of variable nodes at the origin for the
BEC with erasure probability p is equal to

1

pλ2
.
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Proof : The inverse function of the entropy curve of variables nodes is expressed as pΛ(x).
Its derivative at the origin is pΛ′(0) = pλ2, so the derivative of the entropy curve of variable
nodes at the origin is equal to 1/pλ2.

Note that the entropy curve of variable nodes is a function of the erasure channel
probability p. When p decreases, the entropy curve of variable nodes moves away from
the entropy curve of the base with the rate inversely proportional to the average degree
λ̄. Note also that greater the gap between two entropy curves for some p, the faster is the
average convergence of the iterative decoding in this case. This fact is another reason to
have λ̄ small besides the low complexity of iterative decoding.

For the entropy curve of the base code we have

Theorem 6 Let m2 be the number of codewords of weight 2 in the base code of length nb.
The derivative at the origin of the entropy curve of the base code is equal to

2m2

nb
.

Proof : Let m2(i) the number of codewords of the base code of weight 2 equal to 1 at the
position i. By using Lemmas 5 and 6 we obtain for p → 0+ :

hi(p) = m2(i)p + O(p2).

Therefore, the derivative of the entropy curve of the base code at the origin is equal to
∑nb

i=1 m2(i)

nb
=

2m2

nb
. (3.13)

We also calculate the second derivative of the entropy curve of the base code at origin
in the next theorem:

Theorem 7 Let mt be the number of codewords of the base code of weight t, and mt(i)
be the number of codewords of the base code of weight t being equal to 1 at the position i.
The second derivative of the entropy curve of the base code at the origin is equal to

6m3 + m2 −
∑n

i=1 m2(i)
2

nb
.

Proof : By using Lemmas 5 et 6 and by letting p → 0+ we obtain:

hi(p) = m2(i)p + (A + B)p2 + O(p3),

where the coefficient A + B of p2 is given by

• A = m2(i)(−nb + 2), which comes from the contribution of p(1 − p)nb−2 erasure
configurations of weight 2 for which the position i cannot be found,

• B is the number of configurations with 3 erasures for which the position i cannot be
found by the base code decoding. This set is the union of two following sets:
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– the set of erasure configurations of weight 3 which coincide with the support
of a codeword of weight 3 having 1 at the position i. There are m3(i) such
configurations.

– the set of erasure configurations of weight 3 which coincide with the support
of a codeword of weight 3 which covers the support of a codeword of weight 2
having 1 at the position i. Every codeword of weight 2 having 1 at the position
i can be completed in nb − 2 different ways to have such a configuration. The
number of such configurations is thus equal to m2(i)(nb − 2) from which we
subtract the number of doubly counted configurations

(
m2(i)

2

)
.

We deduce that the second derivative of the entropy curve of the base code at the origin
is equal to

2

∑n
i=1 m3(i) − m2(i)(m2(i)−1)

2

nb
=

6m3 + m2 −
∑

i m2(i)
2

nb
.

Approach to construct base codes without bits of degree 1

We seek a code having a low decoding complexity, the iterative threshold of which is close
to capacity. To have a low decoding complexity we fix the average degree λ̄ to be small.
In this case the form of the entropy curve of variable nodes is close to the straight line.
To optimize the iterative decoding threshold, we would like to have a base code whose
entropy curve form is similar to the form of the entropy curve of variable nodes.

Denote by pc the threshold erasure probability, i.e. the minimum erasure probability of
the channel for which the probability of recovering of the codeword after iterative decoding
is equal to 1/2. Consider an ideal case when the entropy curve of the base code is of form
y = 1

pcx for x ∈ (0, pc) and is equal 1 for x ∈ [pc, 1) . In this case, one could choose all the
bits to be of degree 2 and to attain the capacity of the erasure channel.

For TLDPC codes, the entropy curve of the base code is very close to 1 for x = pc,
and, as the entropy curve of variable nodes begins at the point (pc, 1), the area difference
between two entropy curves in this region will be very small.

A different thing happens for entropy curves at the origin. Note that if we want the
entropy curves of variable nodes and of the base code to be close at the origin, their
derivatives at the origin have to be approximately close:

2m2

nb
≈ 1

λ2pc
, (3.14)

i.e.
2λ2m2

nb
≈ 1

pc
. (3.15)

In the case of asymptotically good TLDPC codes the number of codewords of the base code
of weight 2 is bounded by Proposition 3 and so is the first derivative of the entropy curve of
the base code. The condition (3.15) can not be satisfied, except in the case when the code
rate is close to 0 or pc ≈ 1. Thus the entropy curve of the base code is convex at the origin
and its slope at the origin is different from the slope at the origin of the entropy curve
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of variable nodes (which is concave). Owing to this difference, there is always some area
between entropy curves at the origin which influences the gap to capacity. The solution
to minimise the area at origin between the two entropy curves is to choose the second
derivative at origin of the entropy curve of the base code to be the largest possible. This
implies that the number of codewords of weight 3 in the base code should be maximised.

Finally, with the aim to construct an asymptotically good TLDPC code family having
a small gap to capacity and a low complexity of decoding, we do the following: while
designing the base code, we seek to minimise

∑

i m2(i)
2 and maximise m3 for a fixed ratio

m2
nb

.

3.6.2 TLDPC code families with bits of degree 1

So far TLDPC code families without bits of degree 1 have been considered.
Now, let us have a sparse-graph graph code family with a degree distribution Λ(x) =

∑s
i=1 λix

i−1 (λ1 > 0) and a base code Cb and let us define a new degree distribution
Λ̃(x) =

∑s
i=2 λ̃ix

i−1 =
∑s

i=2 λix
i−1/

∑s
i=2 λi. The average degree λ̄ is defined over λ̃i:

λ̄ =
1

∑s
i=2 λ̃i/i

We focus on TLDPC code families with a constant fraction of bits of degree 1 and we
study properties of entropy curves of their base codes.

Let us define the entropy curves of variable nodes and of the base code for a code
family containing bits of degree 1 on the BEC.

Definition 7 Let the base code of a TLDPC code family with bits of degree 1 and of length
nb have n1 positions of degree > 1. Then we define extrinsic average entropy and intrinsic
average entropy at the tth iteration as follows

Et
def
=

1

nb − n1

∑

i:deg(i)>1

Et(i)

It
def
=

1

nb − n1

∑

i:deg(i)>1

It(i)

with Et(i) (It(i)) being the entropy of the extrinsic (intrinsic) probability associated to the
i-th position of the base code of degree > 1 at t-th iteration, 0 ≤ i ≤ nb − 1.

We define the entropy curve of variable nodes:

Lemma 7 The entropy curve of variable nodes on the BEC with erasure probability x is
given by the set of points (pΛ̃(x), x), with Λ̃(x) =

∑s
i=2 λ̃ix

i where λ̃i = λi/
∑s

i=2 λi.
We define the entropy curve of the base code:

Lemma 8 The entropy curve of the base code on the BEC with erasure probability p is
given by the set of points (x,E1) with:

E1 =
1

nb − n1

∑

i:deg(i)>1

hi(x, p)
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where 0 ≤ x ≤ 1, 0 ≤ i ≤ nb − 1, and

hi(x, p) =
∑

(e,e1)∈Ei

p|e1|x|e|−1(1 − p)n1−|e1|(1 − x)nb−n1−|e| (3.16)

with Ei to be the erasure configurations of bits of the base code for which the value of bit i
cannot be found; a configuration consists of a set e of bits of the base code of degree > 1
and of a set e1 of bits of the base code of degree 1. |e| denotes the number of erasures in
the set e.

Similarly to the case without bits of degree 1,

Lemma 9 An erasure configuration (e, e1) is included in Ei if and only if there exists a
codeword of the base code with 0 on all the unerased positions of (e, e1) and 1 at position
i.

Note that in contrast to the case λ1 = 0, the entropy curve of the base code h is
not only function of the average intrinsic probability x but also of the channel erasure
probability p, h = h(x, p). This implies that, when p decreases, the entropy curves of the
code family with λ1 > 0 will move away from each other more quickly compared to the
case λ1 = 0 due to the dependence on p of the entropy curve of the base code. In its turn,
such a divergence of entropy curves gives a faster convergence under iterative decoding
and might lead to improved performances in the waterfall region. An example of influence
of bits of degree 1 on the entropy curve of the base code is presented in Sections 3.8.3 and
5.3.5.

We compute the behaviour of entropy curves of variable nodes and of the base code at
the origin for a TLDPC code family with bits of degree 1.

Theorem 8 The derivative of the entropy curve of variable nodes at the origin for the
BEC with erasure probability p is equal to

1

pλ̃2

.

For the entropy curve of the base code we have

Theorem 9 Consider transmission over the BEC with channel erasure probability p.
Consider a base code of length nb containing n1 bits of degree 1. Let m2 be the num-
ber of codewords of the base code of weight 2 containing only positions of degree > 1 and
m2,j be the number of codewords of weight 2 + j containing 2 positions of degree > 1 and
j positions of degree 1. Then the derivative at the origin of the entropy curve of the base
code is equal to

2

nb − n1
(m2 +

n1∑

j=1

m2,jp
j).

Proof : Let m2(i) be the number of codewords of the base code of weight 2 only containing
positions of degree > 1, m2,j(i) be the number of codewords of weight 2 + j containing 2
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positions of degree > 1 and j positions of degree 1 and all these codewords are equal to 1
at the position i. By using Lemmas 5 and 6 we obtain for x → 0+ :

hi(p, x) = m2(i)x + x

n1∑

j=1

m2,j(i)p
j + O(x2).

Therefore, the derivative of the entropy curve of the base code at the origin is equal to

nb−n1∑

i=1

m2(i) +
∑n1

j=1 m2,j(i)p
j

nb − n1
=

2

nb − n1
(m2 +

n1∑

j=1

m2,jp
j). (3.17)

There is a big advantage to allow bits of degree 1 in the code structure. It is observed
in [72] that the derivative of area between the entropy curve of the base code for a graph-
based code ensemble and the entropy curve of variable nodes is a function with two terms,
the first one inversely depending of the average degree λ̄ and the other one depending on
λ1. This implies that the convergence of the iterative decoding for a code with bits of
degree 1 is faster and its performance curve in the waterfall region is steeper.

Examples of entropy curves for TLDPC code families with and without bits of degree 1
are presented in sections below. Before presenting particular examples, we study conditions
to be put on the bipartite graph in order to have an asymptotically good code family.

3.7 Necessary conditions for being asymptotically good

An analysis of the number of codewords of a given weight w over the ensemble of n length
codes obtained from the previous construction shows that their average aw is of order
Ω (1). This behaviour comes from the existence of cycles of a small size in a special graph
which is derived from the bits of degree 2 and codewords of weight 2 in the base code. If
one insists upon having a code family where almost all members are asymptotically good,
it is crucial to have the average number of codewords of constant size be of order o(1).

In this section we define this special graph for two cases: when the code family has
no bits of degree 1 in its structure and when it has. The graph is called the graph of
codewords of weight 2 in the first case and the graph of codewords of partial weight 2
in the second case4. We determine some restrictions on the average degree of the graphs
which have to be satisfied to construct a family of asymptotically good codes.

Notice that the graph of codewords of (partial) weight 2 is nothing but a slight gener-
alization of a graph which has been considered in [30] in the case of LDPC code ensembles.

3.7.1 Definition of the graph of codewords of (partial) weight 2

For code families without bits of degree 1, we define the graph of codewords of weight 2
with a help of the following definition:

4We write graph of codewords of (partial) weight 2 if we refer to both graphs
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Definition 8 [Clusters] Two bits xi and xj of the base code are equivalent if and only
if the base code contains a codeword of weight 2 with these bits equal to 1 and the others
equal to 0. The ensembles of equivalent bits of the base code are called clusters.

Now we are ready to define the graph of codewords of weight 2:

Definition 9 [Graph of codewords of weight 2, edge labelling] For code families
without bits of degree 1, the graph of codewords of weight 2 is the graph G = (V,E) where
V is the ensemble of clusters of equivalent bits from Definition 8 and E is the ensemble
of edges eij between the clusters vi and vj if and only if there exist two bits xk and xl of
the base code belonging to the clusters vi and vj respectively which join the same degree-2
variable node. The edge eij is labelled by the number t of the position of the corresponding
variable node in the Tanner graph of the code.
Examples

1. LDPC codes: recall that the base code of an LDPC code is a juxtaposition of single
parity-check codes. Clusters in the graph of codewords of weight 2 will correspond
to parity checks as any two bits involved in the same parity check form a support
for a codeword of weight 2 in the base code. Two clusters are connected only if their
corresponding parity checks are joined to the same variable node of degree 2 in the
Tanner graph.

2. TLDPC code without bits of degree 1: in Fig.3.1a, we present a toy example of a
code of length 6 defined by the base code having a six-section tail-biting trellis with
two bits per section and by a bipartite graph between variable nodes representing
bits of the code and positions of the base code. All the variable nodes are of degree
2.

In this case we have six clusters, each of them corresponding to a single codeword
of weight 2. The graph is shown in Fig.3.1b.

3

6 7 8 9 1110

4 5

0

4

5

1

2

3

Figure 3.1: a) base code and bipartite graph for a code of length 6; b) its graph of
codewords of weight 2.

For code families with degree 1 bits we consider codewords of the base code of partial
weight 2:
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Definition 10 [Codewords of the base code of partial weight 2] For a base code
with positions of degree 1, codewords of the base code of partial weight 2 are codewords
which contain exactly two non-zero positions of degree 2 and all other non-zero positions
of which are of degree 1.
Example

For the TLDPC code with bits of degree 1, presented in Fig.3.2a, the base code contains
two sections of length 1 which carry bits of degree 1; all the other trellis sections are of
length 2 and carry bits of degree 2. There are 24 codewords of the base code: four of them,
namely 1100000000, 0011000000, 0000011000 and 0000000110, have supports on positions
of degree 2 only; 12 of codewords of partial weight 2 have one bit of degree 1 in their
supports (as, for instance, 0010101000); last 8 of them contain 2 bits of degree 1 in their
supports. 3

The definition of equivalency between bits is based on codewords of partial weight 2
and is formulated as follows:

Definition 11 [Clusters] Two bits xi and xj of the base code containing bits of degree

1 are equivalent if and only if the base code contains a codeword of partial weight 2 for

which the non-zero positions of degree 2 are i and j. The ensembles of equivalent bits of

the base code are called clusters.
We can see that the definition of clusters is different from the previous one, when

there were no bits of degree 1 in the code structure. Now the definition for the graph of
codewords of partial weight 2 is the following one:

Definition 12 [Graph of codewords of partial weight 2, edge labelling] For code
families with bits of degree 1, the graph of codewords of partial weight 2 is the graph
G′ = (V ′, E′) where V ′ is the ensemble of clusters of equivalent bits from Definition 11
and E′ is the ensemble of edges eij between the clusters vi and vj if and only if there
exist two bits xk and xl of the base code belonging to the clusters vi and vj respectively
which join the same degree-2 variable node. The edge eij is labelled by the number t of the
position of the corresponding variable node in the Tanner graph of the code.
Example

We continue the example of the code with bits of degree 1 in Fig.3.2a. Remark that
any two positions of degree 2 of the base code form a support of a codeword of a partial
weight 2. So, there is only one cluster in the corresponding graph of codewords of partial
weight 2, and it contains all the positions of degree-2 of the base code. Such the graph of
codewords of partial weight 2 with one cluster is presented in Fig.3.2b. 3

3.7.2 Cycles in the graph of codewords of (partial) weight 2

In this section we show the correspondence between cycles in the graph of codewords of
(partial) weight 2and codewords of the code. First we define weights of nodes and of cycles
in the graph of codewords of (partial) weight 2:

Definition 13 [Node weights] For a node v in the graph of codewords of (partial) weight
2 and for two edges i and j connected to it we define a node weight wv

i,j to be the number
of positions of degree 1 in the base code in the corresponding codeword of partial weight 2
containing two non-zero positions of degree 2 in v which are connected by edges i and j.
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Figure 3.2: a) base code and bipartite graph for a code of length 6; b) its graph of
codewords of partial weight 2 containing only one cluster.

Definition 14 [Cycle weight] The weight l of a cycle C = (VC , EC) in the graph of
codewords of (partial) weight 2 is equal to

l = |EC | +
∑

v∈VC

wv,

where wv is the node weight associated with v and two edges in EC connected to v.

The following proposition shows the influence of cycles in the graph of codewords of
(partial) weight 2 on the weight distribution of the code:

Proposition 4 A cycle of weight l in the graph of codewords of (partial) weight 2 induces
a codeword of weight l in the code.

Proof : If C = (VC , EC) is a cycle in G (G′), we associate to it a configuration x =
(x1, x2, . . . , xnb

)5 of positions of the base code in which

- positions of the base code of degree 2 are put to 1 if in the Tanner graph they are
connected to the variable nodes of degree 2 which are associated with edges in EC ;

- a set B of positions of degree 1 is put to 1 if they form a codeword of the base code
of partial weight 2 with two positions of degree 2;

- all other positions in x are put to 0.

Denote by wv the size of the set B for a node v ∈ VC . The configuration x gives
a codeword of weight 2|EC | +

∑

v∈VC
wv in the base code. 2|EC | non-zero bits of x are

connected to degree-2 variable nodes and the rest of them is connected to degree-1 variable
nodes. Thus, there are |EC |+

∑

v∈VC
wv of variable nodes participating in the configuration

x and they correspond to a codeword of weight |EC | +
∑

v∈VC
wv .

Note that the weight of the smallest cycle in the graph of codewords of (partial) weight
2 is an upper bound on the code minimum distance. We formulate two following corollaries:

5nb is the length of the base code
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Corollary 1 For a code ensemble without bits of degree 1 to which the graph of codewords
of weight 2 G is associated to, all the node weights are 0 and the minimum distance is
upper bounded by the value |EC | of the smallest cycle in G.

Corollary 2 For a code ensemble with bits of degree 1 if the node weights wv
i,j of its

corresponding graph of codewords of partial weight 2 are smaller than some small positive
integer a, the minimum distance is upper bounded by (a + 1)|EC |.

Thus, if the graph of codewords of (partial) weight 2 in these two cases contains a cycle
of logarithmic length, the minimum distance will be logarithmic in the codelength. It can
be also noticed that it is possible to obtain a lower average of the number of codewords
of given weight aw of order o (1) by avoiding cycles of weight l smaller than a fraction δ
of the code length n (l ≥ δn) in the graph of codewords of (partial) weight 2.

All the TLDPC code families with bits of degree 1 presented in the thesis have bounded
node weights.

It may happen for a given code family with bits of degree 1 (for instance, for turbo
codes) that node weights in the corresponding graph of codewords of partial weight 2 are
unbounded. Then the cycle weights are not bounded either, and thus small cycles do not
necessarily correspond to low-weight codewords. We treat this particular case below.

Particular case of unbounded node weights

We proceed in a slightly more complicated way by considering a new graph Gk called
graph of codewords of partial weight 2 of order k:

Definition 15 [Graph of codewords of partial weight 2 of order k] A graph of
codewords of partial weight 2 Gk of order k is defined by

- the set of vertices Vk corresponding to the set of positions of degree 2 of the base
code,

- the set of edges Ek partitioned into two subsets ER
k and EB

k of red and blue edges,

- two vertices in Vk are connected by a red edge of weight t if they form a codeword of
the base code of partial weight 2 and of total weight t + 2, for some t ≤ k,

- two vertices in Vk are connected by a blue edge of weight 1 if their corresponding
positions of degree 2 are associated to the same degree-2 variable node in the Tanner
graph of the code.

The graph of codewords of partial weight 2 can be viewed as a graph Gk of the largest
possible order k if edges in G′ are represented by blue ones and the vertices in G′ are
represented by red-connected components of sets of vertices connected by red edges.

Example

We show an example of the node v of degree 8 in the graph of codewords of partial
weight 2 in Fig.3.2b viewed as red-connected component in Fig.3.4a. Nodes of the com-
ponent are associated to positions of degree-2 in the base code, the tail-biting trellis of
which is recalled in Fig.3.3. Lines of different styles represent edges of different weight
and the weight of an edge between positions i and j corresponds to the node weight wv

ij.
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As the nodes of G′ are equivalent classes, i.e. any position of degree 2 in a node form a
codeword of base code of partial weight 2 with any other position in the same node, its
corresponding red-connected component is a complete graph. In Fig.3.4b-d corresponding
red-connected components of G0 and G1 are represented. 3

0 0 0 0 0

1 1 1 1 1

5      6 7      82     30      1

{00, 11} {01, 10}

0 0

1 1

0 1

4 9

Figure 3.3: Tail-biting trellis of the base code from the previous example.

Figure 3.4: a) complete red-connected component of the node of degree 8 in G′ in Fig.3.2b;
b) component in G0; c) component in G1.

Now consider cycles in Gk. We define the weight of a cycle for a graph of codewords
of partial weight 2 Gk of order k

Definition 16 [Cycle weight for Gk] The weight of a cycle in Gk is the sum of edge
weights participating in it.

We do the following proposition:

Proposition 5 A cycle in Gk of weight l containing alternating blue and red edges induces
a codeword of weight l in the code.

Considering graphs of codewords of partial weight 2 of order k, we can give an upper
bound on the minimum distance of the corresponding code ensemble by using Proposition
5:
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Corollary 3 If the graph Gk of order k contains cycles with alternating red and blue
edges, then the minimum distance is bounded by (k + 1)EC , where EC is the number of
edges of the smallest cycle.

3.7.3 Upper bound on the average degree of the graph of codewords of
(partial) weight 2

It is known that the girth of a d-regular graph with d > 2 is logarithmic in the size of the
graph. Recently, Alon et al. have proved ([3]) that the same result holds for an irregular
graph of average degree d, d > 2. We present it in the following lemma:

Lemma 10 Let (V’,E’) be an irregular graph of average degree d̄. If N l
j denotes the

depth-l neighbour set of a node j such that N l
j = V ′, then, when d > 2, l is upper bounded

by
l ≤ ⌈t⌉

where t satisfies

t =







log(m−2m/d̄+1)

log(d̄−1)
for odd g

log(m(d̄−2)+d̄)−log 2
log(d̄−1)

for even g
, (3.18)

⌈·⌉ indicates the ceiling of a real number and m denotes the cardinality of the set V’.
The proof follows directly from the result of Alon et al. in [3].
In the previous section it was shown the connection between codewords of a TLDPC

codes family with or without bits of degree 1 and cycles in its corresponding graph of
codewords of (partial) weight 2. When constructing a family of asymptotically good
TLDPC codes, we must avoid codewords of sublinear weight and thus avoid cycles of
sublinear weight in its corresponding graph of codewords of (partial) weight 2. This
consideration naturally gives us the upper bound on the average degree of the graph of
codewords of (partial) weight 2:

Theorem 10 A TLDPC code ensemble without bits of degree 1 or a TLDPC code ensem-
ble with bits of degree 1 having node weights bounded by a small positive integer a is not
asymptotically good when the average degree of the graph of codewords of weight 2 of its
members is greater than 2 + ǫ for some ǫ > 0 .

The proof follows directly from Lemma 10 and Proposition 4.
In the unbounded case, we have the following theorem

Theorem 11 A TLDPC code ensemble with bits of degree 1 and with unbounded node
weights is not asymptotically good when the average degree of its graph G′

k of order k is
greater than 2 + ǫ for some ǫ > 0.

The fact that the parallel turbo-codes have at most logarithmic minimum distance in
the codelength is a consequence of Theorem 11: one can find a graph Gk of order with the
average degree greater than two.

3.7.4 Conditions on permutation of bits of degree > 2

By choosing the structured permutation for degree-2 variable nodes in the Tanner graph
of of an TLDPC code we avoid configurations corresponding to codewords of logarithmic
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Figure 3.5: Tail-biting trellis of the base code for different TLDPC code families.

size which appear with constant probability when the permutation is chosen at random.
However, in order to construct an asymptotically good code, permutation for variable
nodes of degrees > 2 must be taken into account.

It was recently shown in [73] that for LDPC codes of length n having the same number
of variable nodes of degree-2 and of check nodes, for which all other variable nodes are
of degree c > 2 and the corresponding graph of codewords of weight 2 contains only a
single cycle, the minimum distance is bounded by Θ(n1−1/c). The similar result holds in
more general case when the graph of codewords of weight 2 is arbitrary (but always has
m edges). The upper bound is due to the presence of codewords of polynomial weight
which correspond to configurations in the Tanner graph having a small number (say, j) of
variable nodes of degree c and the rest of variable nodes being of degree 2, for which the
graph of codewords of weight 2 has cj/2 connected components.

3.8 Particular TLDPC code families

Our approach to obtain codes with good performances under a low-complexity iterative
decoding algorithm is to seek for base codes for which the EXIT chart [7] comes close
to a straight line. If this were the case, one could choose all the bits to be of degree 2
and attain the capacity of the erasure channel. Even if this is not exactly the case, the
optimisation of the degree distribution Λ(x) yields a large fraction of degree 2 nodes which
gives an iterative decoding algorithm of low complexity.

For this purpose, we have noticed that base codes defined from convolutional structures
help us to obtain such a straight line. We have even found out that there is no need to
choose large complexity trellises.

More precisely we have focused on base codes obtained from the (multi-edge) tail-biting
trellis presented in Fig.3.5.

The Ci
0’s are chosen as single parity-check codes and Ci

1 is the complementary coset of
Ci

0. Note that the tail-biting trellis can have bits of degree 1 as its labels.
In what follows, we focus on the 6 families derived from the following choices:

Code families without bits of degree 1

(A) Ci
0 = {00, 11} and Ci

1 = {10, 01}

(B) Ci
0 = {000, 011, 101, 110} and Ci

1 = {001, 010, 100, 111}
Code families with bits of degree 1

(C) Ci
0 = {0} and Ci

1 = {1} for i ≡ 0 (mod 4), Ci
0 = {00, 11} and Ci

1 = {01, 10} otherwise

(D) Ci
0 = {0} and Ci

1 = {1} for i ≡ 0 (mod 4), Ci
0 = {000, 011, 101, 110},

and Ci
1 = {001, 010, 100, 111}. for i ≡ 6 (mod 8), Ci

0 = {00, 11} and Ci
1 = {01, 10}

otherwise
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(E) Ci
0 = {0} and Ci

1 = {1} for i ≡ 0 (mod 5), Ci
0 = {00, 11} and Ci

1 = {01, 10} otherwise

(F) Ci
0 = {0} and Ci

1 = {1}

Base codes of all the presented TLDPC code ensembles are defined by concatenation
of trellis sections as shown in Fig.3.5.

Families A and B were first presented in [4], families C, D and E - in [5]. We describe
properties and performances of each of code families in the sections below.

3.8.1 Family A

For the family A C0 = {00, 11} and C1{01, 10}.
We can easily calculate two ratios - number of codewords of weight 2 or 3 divided by

the length of the base code

m2

nb
= 1/2

m3

nb
= 2.

The first ratio assures that the corresponding graph of codewords of weight 2 has average
degree at most 2 (under condition that all the variable nodes have degree 2). In this case
we can choose the permutation such as to avoid cycles in the graph of codewords of weight
2. The second ratio (which is quite high for a low-complexity trellis) assures that the slope
of the entropy curve of the base code at the origin quickly increases when the intrinsic
entropy increases.

EXIT chart analysis

Note that the entropy curve of the family-A base code on the BEC can be calculated
analytically and it is done in Appendix B.2.1.

If we trace the entropy curve of the family-A base code and the entropy curve of the
degree distribution Λ(x) = x for different erasure channel probabilities p, we can see that
this curve is very close to the entropy curve of the base code when p is around 0.45301 (see
Fig.3.6). This indicates that the threshold for the iterative decoding of this code ensemble
is around this value.

For the Gaussian channel we have similar curves (see Fig.3.7), and the threshold of the
Gaussian noise for which the entropy curve of variable nodes is above the entropy curve
of the base code is of about 0.77 dB. Note that for the code rate 1/2 the entropy of the
Gaussian noise of 0.77 dB corresponds approximatively to the entropy of the BEC with
erasure probability p = 0.45 (see Appendix B.3).

When the fraction of bits of degree 2 satisfies λ2 < 1 and the permutation is appropri-
ately chosen to avoid cycles in the graph of codewords of weight 2 as it will be explained
further, then such a constructed code family is asymptotically good. We show this in the
next section.

The introduction of bits of higher degrees in the code structure represents several
advantages:

- to obtain asymptotically good codes in a simple way,
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Figure 3.6: Entropy curve of the family-A base code and entropy curve for Λ(x) = x and
p = 0.45301.
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Figure 3.7: Entropy curve of the family-A base code and entropy curve for Λ(x) = x and
for the channel of SNR’s 0.77 and 1.3dB respectively.

- to increase the number of parameters and thus to increase the degree of freedom for
the code optimisation.

For example, we construct an irregular family-A code family of rate 1/3 and after the
degree distribution optimisation, we obtain Λ(x) = 0.7114317527x + 0.08251239426x13 +
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0.06786376632x14 + 0.1381920867x15 . The threshold erasure probability for this code
family is 0.635 as can be seen from Fig.3.8. We did the same kind of optimisation for
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code de base            

nv : p=0.635            

nv : p=0.6              

base code
var. nodes, p=0.635
var. nodes, p=0.6

Figure 3.8: Entropy curve of the family-A base code and entropy curve associated to
Λ(x) = 0.7114317527x+0.08251239426x13 +0.06786376632x14 +0.1381920867x15 for era-
sure probabilities 0.635 and 0.6 respectively.

the Gaussian channel and found the degree distribution Λ(x) = 0.7x + 0.3x11 for the code
rate 1/3. If we plot the entropy curve associated to Λ(x) for different SNR’s (see Fig.3.9),
we can see that the entropy curve obtained for 0.0186 dB is slightly above of the entropy
curve of the base code. This gives an estimate of the noise threshold which is sustained
by this code family.

Permutation choice

For the family-A base code all bits associated with the same trellis section belong to
the same cluster. So, clusters of the graph of codewords of weight 2 always contain 2
bits. Thus, by Theorem 10, we can always avoid cycles of sublinear size in the graph of
codewords of weight 2 for any value of λ2.

Let n be the code length, ns be the number of sections in the base code and λi be
the fraction of degree-i variable nodes. To construct a permutation we use the following
procedure:

• generation of a random cyclic permutation of length ns with the vertices being
associated to sections of the base code;

• uniform choice of λ2n edges of this cycle and their association to degree-2 variable
nodes: for the edge connecting a section i to a section j there is a corresponding
degree-2 variable node in the bipartite graph of the code which connects these two
sections of the base code. We notice that as the codewords of weight 2 are only
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Figure 3.9: Entropy curve of the family-A base code and entropy curve associated to
Λ(x) = 0.7x + 0.3x11 for Gaussian channel with SNR 0.0186dB, 0.5dB, 1dB.

located within the sections, they completely define the graph of codewords of weight
2 associated to our code.

• given the structure of the bipartite graph for the degree-2 variable nodes, the choice
of connections for variable nodes of higher degrees is made at random among the
remaining positions in the sections of the base code.

In the case of λ2 = 1, n = ns and the graph of codewords of weight
2 is a length-n cycle; it is a forest when λ2 < 1 as it is shown in the
figure on the right. Light-blue points represent clusters of degree
0, violet red points - clusters of degree 1 and blue - clusters of
degree 2.

Proof for being asymptotically good when λ2 < 1

In this section we prove that most codes of family A are asymptotically good when the
random bipartite graph G is chosen as explained in Section 3.8.1 and λ2 < 1. The proof
can be decomposed in four steps.

1. Calculation of the average number āw of codewords of given weight w.

We compute the average number āw of codewords of given weight w taking the
average over all the bipartite graphs which are defined in Section 3.8.1; we use a
generating function approach by conditioning on well chosen events.

We say that a binary word covers t sections of the base code Cb if its non-zero
elements are located on exactly t sections of Cb. As before, let b(x, y) be the weight
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enumerator polynomial of the base code,

b(x, y) =
∑

bi,jx
iyj ,

where bi,j is the number of codewords of the base code of weight i covering j sections.

Let I be a matching function from {0, 1}n to {0, 1}m 6 which gives the assignments
of the bits of the base code Cb induced by the assignments of the bits of the code C
through the Tanner graph G of the code C. Then we use the following notation:

• xw ∈ {0, 1}n be the binary word of weight w whose first w coordinates are equal
to 1;

• S be the number of sections of the base code Cb covered by I(xw);

• T be the weight of I(xw).

By linearity of expectation we have

āw =

(
n

w

)

P(I(xw) ∈ Cb)

=

(
n

w

)
∑

s,t

P(I(xw) ∈ Cb | S = s, T = t)P(S = s, T = t)

The last conditioning is valid due to the fact that the distribution of the matching
function I(xw) is uniform over all words of weight t covering s sections of Cb. We
denote by as,t the number of weight-t codewords of Cb covering s sections, by bs,t

the number of words of length m and of weight t with the 1’s located in s subvectors
obtained by partitioning the initial word into subvectors of length 2. Thus, the
probability P(I(xw) ∈ Cb | S = s, T = t) is simply the quotient of as,t by bs,t,

P(I(xw) ∈ Cb | S = s, T = t) =
as,t

bs,t
. (3.19)

Let us consider the denominator bs,t. It is easy to see that bs,t is simply

bs,t = 22s−t

( λ̄n
2

2s − t

)( λ̄n
2 − 2s + t

t − s

)

,

which is equal to choose 2s− t subvectors of weight 1 and t− s subvectors of weight
2. This gives us 2s− t + t− s = s covered subvectors and 2s− t + 2(t− s) = t 1’s in
every word.

As for the numerator as,t, we introduce the following lemma using a generating
function approach:

Lemma 11 For two consecutive trellis sections of the family-A base code let

A
def
=

[
1 + 2x2y + x4y2 4x2y2

4x2y2 2xy + 2x3y2

]

6Note that the length of the base code is m = λ̄n, λ̄ being the the average degree of the Tanner graph
of the code
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be a matrix where the Ai,j-th element is equal to the extended path enumerator of
the set of words with corresponding trellis paths going from the state i to the state j.
We note the path weight variable as x and covered sections variable as y. Then we
calculate as,t as follows

as,t = ⌊trA λ̄n
4 ⌋s,t.

Now let us obtain a formula for P(S = s, T = t). We define the number of bits
of the base code equal to 1 which are connected to the degree-2 variable nodes and
to variable nodes of higher degrees as T1 and T2 correspondingly. More precisely,
T1 = #{i | I(xw)i = 1,deg(i) = 2} and T2 = #{i | I(xw)i = 1,deg(i) > 2}. We
rewrite P(S = s, T = t) in the form:

P(S = s, T = t) = (3.20)

=
∑

t1+t2=t

P(T1 = t1)P(T2 = t2 | T1 = t1)P(S = s | T1 = t1, T2 = t2) (3.21)

Let n1
def
= λ̄λ2n

2 be the total number of bits of the global code of degree 2. As all the
bits of the global code are assembled along a unique cycle, the number of ”touched”

bits of the global code of degree 2 is simply equal to w1
def
= t1/2. So, the first term in

(3.20) is equal to

P(T1 = t1) =

(n1

w1

)(n−n1

w−w1

)

(n
w

) , (3.22)

and the second term is equal to

P(T2 = t2 | T1 = t1) =
qw−w1,t2
(n−n1

w−w1

) , (3.23)

where qw−w1,t2 is given by the generating function q(x, y)
def
=
∏

j>2(1 + xyj)λ̃jn. In
other words, qk,l is the number of possibilities to choose k variable nodes of degree
j > 2 with exactly l outgoing edges.

Let us estimate the last term in (3.20). We denote S1 to be the number of sections
covered by degree-2 bits in I(xw). Notice that w1+1 ≤ S1 ≤ 2w1. By conditioning on
the event S1 = s1 we obtain the following expression for P(S = s | T1 = t1, T2 = t2);

P(S = s | T1 = t1, T2 = t2) = (3.24)

=

2w1∑

s1=w1+1

P(S1 = s1 | T1 = t1)P(S = s | T1 = t1, T2 = t2, S1 = s1). (3.25)

The first term can be calculated by a generating function approach.

Lemma 12 For a trellis section of the family-A base code we make a correspondence
to a trellis section with the transition matrix B described as follows

B
def
=

[
1 xy
xy x2y

]

,
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where x is the weight variable and y is the covered sections variable.

Let
∑

t,s dt,sx
tysdef

= trB
λ̄n
2 , then

P(S1 = s1 | T1 = t1) =
dt1,s1
∑

s dt1,s
=

dt1,s1

( λ̄n
2
t1
2

)
.

The last term in (3.24) can be expressed as

P(S = s | T1 = t1, T2 = t2, S1 = s1) = (3.26)

=
∑

u

(2s1−t1
u

)
22(s−s1)−(t2−u)

( λ̄n
2
−s1

2(s−s1)−(t2−u)

)( λ̄n
2
−2s+s1+t2−u

(t2−u)−(s−s1)

)

(λ̄n−t1
t2

) , (3.27)

where a term of the sum is the number of possibilities to choose s − s1 sections of
the base code which contain t2 bits equal to 1 and connected to variable nodes of
degrees greater than 2 partitioned in the following way: u sections contain already
one bit connected to a degree-2 variable node, 2(s − s1) − (t2 − u) sections contain
exactly one bit from t2 and (t2 − u) − (s − s1) sections contain two bits from t2.

Putting all these formulas together, we obtain an explicit expression of āw:

āw =

(
n

w

)
∑

s,t

as,t

22s−t
( λ̄n

2
2s−t

)( λ̄n
2
−2s+t
t−s

) ·
∑

t1+t2=t

(
n1
w1

)
qw−w1,t2
(n
w

) ·
2w1∑

s1=w1+1

dt1,s1

( λ̄n
2
t1
2

)
·

∑

u

(
2s1−t1

u

)
22(s−s1)−(t2−u)

( λ̄n
2
−s1

2(s−s1)−(t2−u)

)( λ̄n
2
−2s+s1+t2−u

(t2−u)−(s−s1)

)

(λ̄n−t1
t2

)

It involves sums of terms each of which represents a product of binomial coefficients
and terms as,t, qw−w1,t2 , dt1,s1.

2. Calculation of α(δ).

Let us compute the average growth rate α(δ) of family-A codes. To do this, we have
to estimate āw. As we have seen in the previous step, the formula of āw is a sum of a
polynomial number of terms in n, each of them displaying an exponential behaviour
in n. Obviously, α(δ) is simply the largest exponent in the aforementioned sum.

Given that the binomial coefficients
(n

i

)
are readily estimated by the well-known

formula (
n

i

)

= 2h( i
n

)n(1+o(1)),

we only have to estimate the coefficients as,t, qw−w1,t2, dt1,s1. All these terms are
coefficients of some polynomial p(x, y) =

∑

i,j pi,jx
iyj with only nonnegative coef-

ficients. We use the upper bound 2 of coefficients pi,j. By using large deviation
results (local forms of the Gaerther-Ellis theorem, [27],Section 2.3) it can be proved
that this upper bound captures the correct exponent of the considered terms as,t,
qw−w1,t2, dt1,s1.
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Lemma 13 Let µA(x, y) and µB(x, y) be the largest eigenvalues of A and B respec-
tively. For σ > 0, τ > 0, ω > 0 we have

lim
n→∞

log(aσn,τn)

n
= inf

x>0,y>0

λ̄

4
ln µA(x, y) − σ ln x − τ ln y, (3.28)

lim
n→∞

log(qσω,τn)

n
= inf

x>0,y>0

∑

i>2

λ̃i log(1 + xyi) − ω ln x − τ ln y, (3.29)

lim
n→∞

log(dσn,ωn)

n
= inf

x>0,y>0

λ̄

2
lnµB(x, y) − σ ln x − ω ln y. (3.30)

The result is obtained by using the techniques described above as we have done this
in (3.9).

3. Behaviour of α(δ) around 0.

To prove that the family-A code family is asymptotically good, we explore the be-
haviour of α(δ) around 0. For this purpose we capture the behaviour for small σ,
τ , ω of the expressions in Lemma 13, which turns out to be rather simple. We use
it to prove that α(δ) can be expressed in the form −Kδ log δ + O(δ) for small δ and
some positive K > 0.

We obtain the following results:

Lemma 14 For ω → 0+ and σ ≤ Kω, τ ≤ K ′ω for some constants K, K ′ ≥ 0 we
have

lim
n→∞

log(aσn,τn)

n
= −(σ − τ) log(σ − τ) − (2σ − τ) log(2σ − τ) + O(ω).

Lemma 15 As ω → 0+ and τ
ω is kept fixed and equal to some constant α, we can

estimate the behaviour of cs,t as given:

lim
n→∞

log(qσω,τn)

n
= h(ω) + δK(α) + o(ω),

where K(α)
def
= infx>0 ln q(x) − α ln x, q(x) being equal to q(x) =

∑

i>2 λ̃ix
i. K(α) is

an increasing and continuous function for α ∈
[
d, λ̄
]
, d

def
= min{i > 2 | λi 6= 0}, which

satisfies:

• K(τ) = −∞ for τ < d,

• K(d) = ln(λd).

Lemma 16 For ω < σ ≤ 2ω, let k be an integer such that k+1
k ≤ σ

ω < k
k−1 and

ε = σ − ω, then

lim
n→∞

log(dσn,ωn)

n
= −ε log ε − (τ − kε) log(τ − kε) + O(τ).
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4. Proof that the code family A is asymptotically good when λ2 < 1.
Gathering together Lemmas 14, 15 and 16, for λ2 < 1 we obtain that α(δ) =
−Cδ log(δ) + O(δ) for some positive constant C. We choose δ0 > 0 so that for all
0 < δ < δ0 the following inequality holds: α(δ) ≤ −C

2 δ log(δ). We use the inequality

P(minimum distance of the global code ≤ δ0n) ≤
δ0n∑

i=1

āi

to show that the probability for being asymptotically good tends to 1 as the n tends
to infinity.

Remark that in order to study the behaviour of the family-A code ensemble with λ2 = 1
we need to take into account terms of second order in our computations. It seems to us
that the proof technique used in [73] also applies here, and that the expected minimum
distance of such codes would be of order Θ(n1/3).

Simulation results

In this part we present simulation results for family-A codes of different lengths and rates.
In Fig.3.10 and 3.11 we present simulations results on the Gaussian channel for family-

A codes of rate 1/2 and of length 2000, 4000 and 16000 respectively. The maximum number
of iterations is fixed to 50. The degree distribution is Λ(x) = x.

0.5 1 1.5 2 2.5

Eb�N0, dB

-6

-5

-4

-3

-2

-1

0

W
E

R
,B

E
R

WER

BER

0.5 0.75 1 1.25 1.5 1.75 2 2.25

Eb�N0, dB

-6

-5

-4

-3

-2

-1

0

W
E

R
,B

E
R

WER

BER

Figure 3.10: Performance of family-A codes of length 2000 (left) and 4000 (right) of rate
1/2 on the Gaussian channel, Λ(x) = x.

We compare the family-A code [16000, 8000] with a duo-binary turbo code of the same
length and dimension decoded with 8 iterations. In all three cases we see the phenomenon
of error-floor. Its study did not reveal the presence of low-weight codewords but error
configurations for which either the decoding process is extremely slow (we need 60-120
iterations to make such decodings successful) or it does not converge. Nevertheless, we
note that the family-A code of length 16000, though having a very simple structure,
already competes with the WER of the duo-binary turbo code. The BER of the turbo
code, however, is better that of the family-A code. This is explained by the fact that when
the decoding process for the family-A code fails, there is a quite large number of erroneous
bits (of about 10%).

Family-A codes seem to be quite effective for rates around 1/3. The degree distribution
was optimised to improve iterative decoding performances (i.e. to lower the asymptotic
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Figure 3.11: Performance of a family-A code of length 16000 of rate 1/2 on Gaussian
channel, Λ(x) = x, vs. duo-binary turbo code of the same length and rate.

noise threshold) for a given rate. By curve fitting techniques (see for instance [69]) we
found the degree distribution Λ(x) = 0.7x + 0.3x11 which gave codes of rate 1/3 with the
asymptotic noise threshold being slightly below 0 dB.

In Fig. 3.12 we compare a family-A code of rate 1/3 and with the degree distribution
above decoded with 100 iterations with an 8-state Turbo code of length 15342 and of rate
1/3 decoded with 8 iterations from the 3GPP norm [21].
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Figure 3.12: Family-A code of length 15330 and of rate 1/3 with degree distribution
Λ (x) = 0.7x + 0.3x11 compared with an 8-state Turbo code of length 15342 and of rate
1/3.

Notice that there is a 0.5 dB improvement in the error-floor region of the turbo-code
at a bit error rate of 10−5 and that even the packet error rate of our code is below the
bit-error rate of the turbo-code.

3.8.2 Family B

Trying to optimise the degree distribution of the previous family to obtain codes of rate
1/2 is not a good idea as there will always be a significant gap between the EXIT chart
of the base code and the EXIT chart of variable nodes for large values of the average
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intrinsic entropy (say in the range 0.4-0.5). As a consequence, the resulting codes will
have thresholds rather far away from capacity. However, this behaviour can be significantly
improved by changing the base code. For instance, we reduce the aforementioned gap by
taking the base code of family (B).

For the family-B code C0 = {000, 011, 101, 110} and C1 = {001, 010, 100, 111}. So, the
base code is of rate 5/6.

The numbers of codewords of weight 2 or 3 divided by the length of the base code are
given by

m2

nb
= 1

m3

nb
= 4.5.

EXIT chart analysis

The analytical expression for the entropy curve of the family-B base code on the BEC is
similar to the one for family A and also can be found in Appendix B.2.1. The entropy
curves of the base codes for both families, A and B, are shown in Fig.3.13. Comparing
them, we can see that the curve for family B is less convex at the origin that the curve for
family A, which is due to the fact that the number of codewords of weight 2 in the family-B
base code is two times larger that for family A. This implies a smaller gap to capacity for
family B than for family A. As it will be shown in the next part about the permutation

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

base code
of family B

base code
of family A

Figure 3.13: Comparison between entropy curves of the base code for families A and B.

choice, for family B we cannot choose λ2 = 1 as the typical minimum distance is at most
logarithmic in this case. However, we still can have a large fraction of degree-2 variable
nodes, up to 2/3, still being asymptotically good. For example, by optimising the degree
distribution of the code family B for the BEC we obtain the following degree distribution

Λ(x) = 0.6141700231x + 0.02989470758x7 + 0.07007531202x8 + 0.2858599574x19 .

The obtained code ensemble has rate 1/2 and corrects 48.3% erasures with probability
1 − o(1).

For the Gaussian channel, we choose λ2 = 1/2 by following reasons:
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- the ratio of 1/2 is still close to the limit of 2/3,

- in this case it is easy to find structured permutations so that the graph of codewords
of weight 2 does not have cycles.

By optimising the degree distribution for the Gaussian channel, we obtain

Λ(x) = 0.5x + 0.182x2 + 0.069x12 + 0.249x13.

The threshold predicted by entropy curves is about 0.45 dB.

Choice of permutation

For the family-B base code, similarly with the previous code family, all bits associated
with the same trellis section belong to the same cluster. So, clusters of the graph of
codewords of weight 2 contain 3 bits in this case. Thus, the average degree of the graph
of codewords of weight 2 is 3, and by Theorem 10, it is impossible to avoid sublinear-size
cycles when λ2 > 2/3; we construct family-B TLDPC codes with the fraction of degree-2
variable nodes λ2 ≤ 1/2.

In this case, there are several different ways to put some structure on the bipartite
graph in order to have a graph of codewords of weight 2 without cycles of sublinear
size. Probably the simplest way would be to choose the graph of codewords of weight
2 to be a union of disjoint paths. In this case, the same proof as in the previous case
applies to show that the new code family contains almost only asymptotically good codes.
However, it turns out that the prediction of the threshold given by the EXIT charts is
underestimated by a bit more than 0.1dB. This might be due to the fact that that the
EXIT chart implicitly assumes that we choose positions to be of degree 2 independently
of each other with probability λ2. This would imply that the expected number of vertices
of degree 3 in the graph of codewords of weight 2 would be λ3

2. However with the previous
choice there are no vertices of degree 3.

This fact motivated us to choose the positions of bits of degree 2 in the base code in
a more sophisticated way: the distribution of sections of the base code having t bits of
degree 2, t = 0, . . . , 3, is chosen to be the same as if the positions of degree 2 were chosen
independently at random with probability λ2, i.e. the 1/8-th part of all the sections does
not contain bits of degree 2, the 3/8-th part contains one bits of degree 2, the 3/8-th part
contains two bits of degree 2 and finally the 1/8-th part contains three bits of degree 2.

Let ns the number of sections in the base code and let ns be divisible by 8; the
procedure of the choice of an permutation is the following one:

• random choice of 3ns/8 sections and generation of their cyclic permutation;

• uniform choice of 3ns/8 degree-2 variable nodes and their association to cycle edges:
for the edge connecting a section i to a section j there is a corresponding degree-2
variable node in the bipartite graph of the code which connects these two sections
of the base code.

• choice of ns/8 remaining sections and matching each of them to three sections from
the rest: if we match the section i with sections j, k, l, then three bits i1, i2 and i3
of the section i will be connected with one bit in each of three given sections j, k, l.
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Associating a degree-2 variable node with every edge, we define all the edges of left
degree 2 in G.

• given the structure of the bipartite graph for the degree-2 variable nodes, the choice
of connections for variable nodes of higher degrees is made at random among the
left positions in the sections of the base code.

We note that the structure of the graph of codewords of weight 2 is a cycle of length 3ns/8
and the union of ns/8 3-stars. In this case the proportion of vertices of degree 0, 1, 2 and 3
in the graph of codewords of weight 2 is 1/8, 3/8, 3/8 and 1/8 respectively. These figures
are exactly the expected proportions we would have obtained if the positions of the base
code were chosen to be of degree 2 with probability 1/2. The predictions of the threshold
given by the EXIT chart seem to be accurate in this case.

Figure 3.14: graph of codewords of weight 2 of the family-B code.

It is easy to check that the average degree of the graph of codewords of weight 2 is
equal to 3/2.

Simulation results

Fig.3.15 shows a family-B code of length 16000 and of rate 1/2 performing 0.6 dB better
at WER of 2 ·10−4 than an 8-state duo-binary Turbo code of the same length and rate [1].
Note that for our family-B code, the maximum number of iterations is 100, but depending
on the signal to noise ratio the average number of decoding iterations necessary to decode
successfully is in the range 20 − 40 only.

In Fig.3.16 performances of family-B codes of lengths 1000, 2000, 4000, 8000 and 12000
and of rate 1/2 are presented.

In Fig.3.17 we present WER performances of family B codes of length 1000 and 2000
and of rate 1/2 having the degree distribution Λ(x) = 0.5x+0.182x2 +0.069x12 +0.249x13

and WER (floating-point) performances of the multi-edge LDPC code of length 1280 and
of rate 1/2 taken from Fig.1 in [59]. The interpolation of performances for the family B
code of length 1280 is represented by dotted line.

It can be seen from the figure that if we simulate the family-B code of length 1280,
the performance loss in comparison to the multi-edge code would be about 0.15 dB. We
also observe that family-B codes do not reveal the error-floor region till WER = 3 · 10−5,
in contrast to the multi-edge code. This is due to the fact that the multi-edge code is not
asymptotically good. It can be easily shown that its corresponding graph of codewords of
partial weight 2 is of degree 2 and the first degree being greater than 2 is 3, thus, by in
[73], its expected minimum distance is at most of order Θ(n1/3).
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Figure 3.15: Family-B code of length 16000 and of rate 1/2 with degree distribution
Λ(x) = 0.5x + 0.182x2 + 0.069x12 + 0.249x13 compared with a duo-binary Turbo code of
the same length and rate.
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Figure 3.16: Family-B codes of of rate 1/2 with degree distribution Λ(x) = 0.5x+0.182x2+
0.069x12 + 0.249x13 of length 1000, 2000, 4000, 8000 and 16000 correspondingly.

In Fig.3.18 we compare performances of family-B codes of rate 1/2 and of lengths 8000
and 12000 performances (hardware simulations) of two multi-edge LDPC codes of length
10240 and of rate 1/2 taken from Fig.1 and 2 in [59]. The interpolation of performances
for the family B code of length 10000 is represented by dotted line. The first multi-edge
code is of the same family as the previous one from Fig.3.17, and it is not asymptotically
good. It can be easily verified that necessary conditions for being asymptotically good
hold for the second multi-edge code. By doing interpolation of the performances for the
family-B code of length 10000, we obtain that its WER is about 0.1 dB worse than the
WER of the first multi-edge code and is 0.1 dB better than the WER of the second one.
Family-B codes are conjectured to be asymptotically good.

In our simulations we performed a maximum of 100 decoding iterations. To give an
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Figure 3.17: WER vs. SNR for family-B codes of of rate 1/2 with degree distribution
Λ(x) = 0.5x + 0.182x2 + 0.069x12 + 0.249x13 of lengths 1000 and 2000 compared with the
WER of the multi-edge LDPC code of length 1280 and of rate 1/2 from Fig.1 in [59].
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Figure 3.18: WER vs. SNR for family-B codes of of rate 1/2 with degree distribution
Λ(x) = 0.5x+0.182x2 +0.069x12 +0.249x13 of lengths 8000 and 12000 compared with the
WER (hardware simulations) of multi-edge LDPC codes of length 10240 and of rate 1/2
from Fig.1 and 2 in [59].

idea of the number of iterations needed for decoding of TLDPC codes, for the family-B
code of length 1000 we plot the entropy of extrinsic probabilities as a function of the
number of iterations (see Fig.3.19) for 1.3 dB corresponding to WER = 10−2 and for 1.8
dB corresponding to WER = 5 · 10−3. Note that for the beginning of the waterfall region
(1.3 dB) 96 % of the test frames needed only 22 iterations to be decoded and the number
of required iterations decreases with the SNR increase (13 iterations for 1.8 dB).
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Figure 3.19: Convergence of a 2-regular family-B code of length 1000 and of rate 1/4 on
Gaussian channels with SNRs 1.3 dB and 1.8 dB, 10 test examples.

3.8.3 Introduction to TLDPC code families with bits of degree 1

It was underlined in Section 3.6.2 that inclusion of bits of degree 1 in the code structure
gives a faster convergence under iterative decoding and might lead to improved perfor-
mances in the waterfall region. Let us present an example of the influence of bits of degree
1 on the waterfall region.

Example

We compare entropy curves on the BEC for the family of (2,3) LDPC codes and of
a TLDPC code family with bits of degree 1 where the TLDPC code family is defined as
follows:

• the base code Cb is presented by a tail-biting trellis in Fig.3.5 for which Ci
0 = {0}

and Ci
1 = {1} 7,

• Λ̃(x) = x and λ1 = 1/2,

• bits of degree 1 are put on the parallel sections of the trellis of the base code.

It is easy to verify that the rate of the TLDPC base code is 2/3 and the rate of the defined
TLDPC code family is 1/3. It can be also checked that thresholds of (2,3) LDPC code
family (which is of the same rate) and the defined TLDPC code family coincide and are
equal to 1/2. This comes from the fact that, by Theorems 6 and 9, the first derivatives at
origin for their entropy curves of the base code are equal.

In Fig.3.20 we present entropy curves of these two code families. For details of com-
putation of the entropy curves see Section 5.3.5. We see that for p = 1/2 the entropy
curve of the TLDPC base code containing bits of degree 1 is below of the entropy curve
of the base code of the LDPC code ensemble which implies that the TLDPC code family
will have a faster convergence under iterative decoding algorithm. Moreover, the entropy
curve of the TLDPC base code depends on the channel erasure probability p and moves
away from the entropy curve of the variable nodes when p decreases (see Section 5.3.5,
Fig.5.5). This fact determines a better performances of the TLDPC code family in the
waterfall region. 3

7see also Section 5.3 on ((1, 1))1-TLDPC codes
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Figure 3.20: Entropy curves for base codes of the (2,3) LDPC code ensemble and of the
TLDPC code ensemble with bits of degree 1 and their entropy curve of variable nodes for
p = 1/2.

Thus, we further consider TLDPC code families by allowing bits of degree 1 in their
architecture, as it has a positive impact both on the EXIT chart of the base code and on
the performances under iterative decoding. At present we do not have a proof that the
families with bits of degree 1 are asymptotically good 6, but we conjecture that this is still
the case and simulations results did not show error floors behaviors for block error rates
up to 10−6.

The previous choices of the base code do not allow to have a constant fraction of degree
1 nodes as in this case the corresponding graph of codewords of partial weight 2 contains
necessarily a cycle of fixed size and thus by Lemma 4 there will be a codeword of constant
weight. However, if we allow certain sections of the tail-biting trellis to be of length one
(i.e the Ci

0’s associated to these sections are equal to {0}) then positions associated to
these sections can be chosen to be of degree one without harming the minimum distance
of the code.

This approach turns out to be particularly useful to lower the threshold of family A
for which the area difference at origin between two entropy curves is quite significant. We
replace some of the trellis sections by sections carrying a single bit (i.e. the associated code
Ci

0 is chosen to be {0}) and we put the positions of degree 1 precisely at these sections.
This drastically changes the behavior of the entropy curve of the base code, the slope at
the origin becomes steeper without changing too much the behavior of the curve elsewhere.
It can even be proved that for the family A on the erasure channel, choosing one section
out of 3 to be of unit length yields a concave entropy curve of the base code. Such a base
code can give an efficient low-rate code as it is shown in Section 3.8.7.

In this part we present four code families, C, D, E and F, having degree-1 bits in their

6In principle it is possible to extend the results of [4] to this case, but the calculations are much more
involved.
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structure.

3.8.4 Family C

For the family C we have Ci
0 = {00, 11} and Ci

1 = {01, 10} but every forth section is of
unit length, i.e. Ci

0 = {0} and Ci
1 = {1} for i ≡ 0 (mod 4). Thus, we have

λ1 =
m1

nb
=

1

7
.

EXIT chart

For the BEC channel let us denote p the erasure probability of bits of degree 1 and x
the erasure probability of bits of higher degrees. For fixed p, we plot the entropy curve
as a function of x. Such an entropy curve of the family-C base code is presented in
Fig.3.21 for p = 0, 0.65, 1. We also plot the entropy curve of the family-A code. By
comparing curves of families A and C we can see that the slope at the origin of the
family-C curve is much steeper and it changes more slowly in the range x = 0.4 . . . 0.6
which can lower the maximum degree during the degree distribution optimisation. For
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Figure 3.21: Entropy curve of the family-C base code plotted for different erasure proba-
bilities p of degree-1 bits and compared with the entropy curve of the family-A code.

the Gaussian channel, we optimise the rest of the degree distribution so as to maximise
the sustainable noise threshold for several rates 3

10 , 1
3 , 1

4 . For rate 1
3 we obtained Λ̃(x) =

0.5x + 0.0027x2 + 0.082x5 + 0.219x6 + 0.0012x12 + 0.1865x13 + 0.0086x14 . For rate 3
10

we have the following degree distribution Λ̃(x) = 0.5x + 0.0027x2 + 0.082x5 + 0.219x6 +
0.0012x12 + 0.1865x13 + 0.0086x14 the threshold given by entropy curves is situated at
−0.44 dB, whereas the channel capacity at rate 0.3 is around −0.617 dB. The degree
distribution for rate 1

4 is Λ̃(x) = 0.4522x + 0.2967x6 + 0.0103x7 + 0.0219x21 + 0.2189x22.
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For the rate 0.3 entropy curves seem to indicate that the gap to capacity in this case
is about 0.18dB, which is quite good. However, for smaller rates the degree optimization
yields even lower gaps to capacity at the cost of increasing the maximum degree. This
has an impact on not only the complexity of iterative decoding (which increases) but also
the performances of iterative decoding: now, when the decoding algorithm fails, this is
generally due to a failure of reducing the extrinsic entropy in the first steps of iterative
decoding and a large number of errors usually remains. It has a negative influence on
the bit error probability and the slope in the waterfall error region is also decreased. It
is possible to give a heuristic explanation of these negative phenomena by entropy curves
considerations along the lines of [44]. Assume we seek a code of rate R with iterative
threshold close to capacity. Assume also that the entropy curve of the base code is almost
tangent to the horizontal line of equation y = 1 at the abscissa 1 − R (this is exactly
what happens for the base code when we seek for rates smaller than 1/4). Then the
degree optimization yields large degrees to allow the entropy curve of variables nodes to
be almost horizontal at the abscissa 1−R. A closer examination of both entropy curves for
values of the signal to noise ratio of interest reveals that the bottleneck between them lies
precisely in this region at abscissa around 1−R where both curves are almost horizontal.
Following [44] such a bottleneck is in general the point where iterative decoding fails (in our
case it corresponds to the first steps of decoding). Roughly speaking a narrow bottleneck
is related to a large probability that iterative decoding fails and this has a negative impact
on the slope of the waterfall region.

Permutation choice

For family C there are two kind of clusters defining the graph of codewords of partial
weight 2: the first one is composed by 4 bits in 2 sections around a section of length 1,
and the other one - by 2 bits in sections not adjacent to any section of length 1. The
number of clusters of maximum degree 2 and 4 is equal. Similarly to the case of family
B, it can be checked that the average degree of the graph of codewords of partial weight
2 is of degree strictly larger than 2 when λ̃2 > 2

3 , so that there is necessarily a cycle of
logarithmic size in the graph of codewords of partial weight 2 and thus the associated
code is not asymptotically good. For the same considerations as for family B, we choose
λ̃2 = 1

2 and we select positions of bits of degree 2 so that for any degree i ∈ {0, 1, 2, 3, 4},
the number of vertices of degree i in the graph of codewords of partial weight 2 is equal
to the expected number of degree i vertices in this graph when all the positions of degree
2 are chosen independently at random with probability 1

2 . For fixed λ̃2 the average ai of
clusters of degree can be simply calculated as follows:

ai =
1

2

(
4

i

)

(λ̃2)
i(1 − λ̃2)

4−i +
1

2

(
2

i

)

(λ̃2)
i(1 − λ̃2)

2−i, i = 0, 1, 2,

ai =
1

2

(
4

i

)

(λ̃2)
i(1 − λ̃2)

4−i, i = 3, 4.

After performing such a random choice we match them together two by two in order to
avoid any cycle in the graph of codewords of partial weight 2. Clearly, the way to perform
the matching depends on fractions ai. We choose the structure of the graph of codewords
of partial weight 2 to be as it is shown in Fig.3.22.
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Figure 3.22: graph of codewords of partial weight 2 for the family C

Simulation results

In order to compare codes of family C with the ones obtained for the family A, we choose
code lengths to be around 15000, see Fig.3.12. For rate 1

3 we obtain slightly better perfor-
mances than for family A (see Fig.3.23), but we will see in the next section that family-D
and family-E codes give better results.
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Figure 3.23: Family-C code of length 15000 and of rate 1/3 with Λ̃(x) = 0.5x+0.0027x2 +
0.082x5 +0.219x6 +0.0012x12 +0.1865x13 +0.0086x14 compared with the family-A code of
the same length and rate with Λ(x) = 0.7x + 0.3x11 and the 8-state Turbo code of length
15432 and of rate 1/3.

Comparing the performances of family-C codes for rates 1/4, 0.3 and 1/3 (Fig.3.24)
we can conclude that the family C displays quite good iterative decoding performances
for rates around 3/10. Note that the code of rate 3/10 has a steeper waterfall region than
the code of rate 1/4.

3.8.5 Family D

To circumvent the problem of bottleneck discussed for the code family C, we slightly
change the base code to match the behavior of the entropy curve of the base code we are
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Figure 3.24: Performance of family-C codes of length 15360 and of rates 1/4,0.3 and 1/3
with following degree distributions: Λ̃(x) = 0.4522x + 0.2967x6 + 0.0103x7 + 0.0219x21 +
0.2189x22 for r = 1/4, Λ̃(x) = 0.5x+0.0027x2 +0.082x5+0.219x6+0.0012x12+0.1865x13+
0.0086x14 for r = 0.3 and Λ̃(x) = 0.5x + 0.0027x2 + 0.082x5 + 0.219x6 + 0.0012x12 +
0.1865x13 + 0.0086x14 for rate r = 1/3.

after. In other words, we look for an entropy curve of the base code which is reasonably
close to the line y = 1 at the abscissa 1 −R with a large enough slope at that point. The
two following code families, D and E, yield exactly such a behavior.

For the family D we have Ci
0 = {0} and Ci

1 = {1} for i ≡ 0 (mod 4), Ci
0 = {000, 011, 101,

110}, and Ci
1 = {001, 010, 100, 111}. for i ≡ 6 (mod 8), Ci

0 = {00, 11} and Ci
1 = {01, 10}

otherwise. The fraction of bits of degree-1 in this case is slightly lower than for family C:

λ1 =
2

15

EXIT chart optimisation

We choose λ̃2 as the maximum possible value for λ̃2 below the threshold λ̃2 ≤ 8/13 (which
corresponds to the largest possible value when being asymptotically good) such that the
gap to capacity is no more that 0.2 dB. Thus for family D for Gaussian channel we obtain
Λ̃(x) = 0.44x + 0.136x2 + 0.424x9.

Permutation choice

Every local code of family D corresponds to a cluster of maximum degree 4 followed by a
degree-3 cluster which in its turn is followed by one cluster of degree 4 and then by one
cluster of degree 2. Thus, the graph of codewords of partial weight 2 consists of clusters
of maximum degree 2,3 and 4 with fractions 1/4, 1/4 and 1/2 correspondingly. For family
D, cycles of logarithmic size in their associated graph of codewords of partial weight 2
are unavoidable as soon as λ̃2 > 8

13 . Applying the approach that the number of vertices
of degree i in the graph of codewords of partial weight 2 must be equal to the expected
number of degree i vertices in this graph when all the positions of degree 2 are chosen
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independently at random with probability 1
2 , it is simple to calculate necessary fractions

of clusters of degree 0, 1, 2, 3, 4:

ai =
1
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4
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1

2

(
4
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)

(λ̃2)
i(1 − λ̃2)

4−i.

Given ai, a simple structure for the graph of codewords of partial weight 2 seems to be as
it is presented in Fig.3.25.

Figure 3.25: graph of codewords of partial weight 2 for the family D

Simulation results

In Fig.3.26 we compare performance of the family-D code having the degree distribution
Λ̃(x) = 0.44x + 0.136x2 + 0.424x9 with the family-A code with Λ(x) = 0.7x + 0.3x11. The
family-D code performs 0.1 dB better and it does not have an error floor till WER =
3 · 10−6.

3.8.6 Family E

The code family E is another alternative to family C, their entropy curves have a quite
large slope at the abscissa 1−R which prevents decoding failures due to the proximity of
entropy curves of the base code and of variable nodes at this point.

The trellis of the base code of family E can be described by C0 and C1 as follows:
Ci

0 = {0} and Ci
1 = {1} for i ≡ 0 (mod 5), Ci

0 = {00, 11} and Ci
1 = {01, 10} otherwise. So,

we have that

λ1 =
2

18
=

1

9
.

EXIT chart analysis

To have a large fraction of degree-2 nodes, we choose λ̃2 to be closely below the max-
imum value above which the graph of codewords of partial weight 2 will contain cy-
cles of logarithmic size and so that the degree distribution optimization by using EXIT
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Figure 3.26: Family-D code of length 15000 and of rate 1/3 with degree distribution
Λ̃(x) = 0.44x + 0.136x2 + 0.424x9 compared with an 8-state Turbo code of the length
15432 and of same rate and with the family-A code with Λ(x) = 0.7x+0.3x11 of the same
length and rate.

charts yields gaps to capacity of about 0.2dB. For the family E such λ̃2 is chosen to
be 0.5. After the degree distribution optimisation for the Gaussian channel we obtain
Λ̃(x) = 0.5x + 0.181x2 + 0.198x8 + 0.121x9.

Entropy curves of the E base code and of variables nodes for −0.25 dB and 0.4 dB are
shown in Fig.3.27. Once more, note that in the presence of bits of degree 1 the entropy
curve of the base code depends on the channel noise and, when the channel noise decreases,
the curve moves away from the entropy curve of variable nodes. This has a positive effect
on performance under iterative decoding and the convergence.

Permutation choice

It is easy to check that the graph of codewords of partial weight 2 for family E contains
3/5 clusters of maximum degree 4 and 2/5 clusters of maximum degree 2. For family E
cycles of logarithmic size are unavoidable if λ̃2 > 5

8 . If the degree of clusters in the graph

of codewords of partial weight 2 is chosen at random given λ̃2 = 1/2, the average ai of the
proportion of degree i is the following:

a0 =
11

80
; a1 =

28

80
; a2 =

26

80
; a3 =

12

80
; a4 =

3

80
.

Based on the proportions, we choose the structure of the graph of codewords of partial
weight 2 as it is shown in Fig.3.28.

Simulation results

As it is shown in Fig.3.29, the family-E code of length 15000 and of rate 1/3 performs
0.15 dB better than the family-A code of the same length and rate. However, the point
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Figure 3.27: Entropy curve of the family-E base code and entropy curves of variables nodes
with Λ̃(x) = 0.5x + 0.181x2 + 0.198x8 + 0.121x9 for Gaussian channel with SNR -0.25 dB
and 0.4 dB.

Figure 3.28: graph of codewords of partial weight 2 for the family E

at 0.5 dB reveals the beginning of the error floor region. The experiments show that
similarly to the case of LDPC codes the error floor of the family-E code is due to special
configurations of bits called trapping configurations which are not codewords. The study of
trapping configurations is a problem isolated from the construction of codes by asymptotic
tools, and a separated section is devoted to it.

In the following Fig.3.30 we present all the constructed codes of families A, C, D and
E of rate 1/3.

3.8.7 Family F

It seems that to construct very low-rate codes with good performance based on graphs is
a difficult task. To do it we found very helpful to have a large fraction of degree-1 bits in
the code structure. Graph-based codes which are very efficient in middle and high rates
such as RA and LDPC codes both suffer from the performance loss and the extremely
slow convergence using iterative decoding at the low rate region. Standard turbo codes
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Figure 3.29: Family-E code of length 15000 and of rate 1/3 with degree distribution
Λ̃(x) = 0.5x + 0.181x2 + 0.198x8 + 0.121x9 compared with an 8-state Turbo code of the
length 15432 and of same rate and with the family-A code with Λ(x) = 0.7x + 0.3x11 of
the same length and rate.
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Figure 3.30: Performance of codes of families A, C, D and E of rate 1/3 and of length
close to 15000.

are efficient around the rate 1/3 and they have a large fraction of degree-1 λ1 = 1/2.
One of the best low-rate code families proposed by now is Hadamard zigzag concatenated
codes [45] whose construction is based on Hadamard arrays and which have a zigzag graph
structure.

With the intention to construct codes of rates ≤ 1/10, we study a TLDPC code family
F the base code of which contains the maximum number of section containing bits of degree
1 under the condition for being asymptotically good. It has Ci

0 = {0} and Ci
1 = {1}, and

each third section of the family-F base code contains a bit of degree 1 while all the others
contain bits of higher degrees. Thus, we have

λ1 =
1

3
.
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EXIT chart optimisation

By performing the optimisation for Gaussian channel we obtain the following degree dis-
tribution Λ̃(x) = 0.4x + 0.264209x2 + 0.090866x4 + 0.236716x8 + 0.008209x9 .

Permutation choice

The family-F base code contains the maximum possible number of trellis sections contain-
ing bits of degree 1. This implies the graph of codewords of partial weight 2 were all the
clusters have maximum degree 4. So, to construct an asymptotically good code family,
the fraction λ̃2 must not exceed 2/5. If the degree of clusters in the graph of codewords
of partial weight 2 is chosen at random given λ̃2 = 0.4, we have a relatively large fraction
of clusters of degrees 3 in comparison with code families presented above:

a0 =
81

625
; a1 =

216

625
; a2 =

216

625
; a3 =

96

625
; a4 =

16

625
.

To find a structure of the graph of codewords of partial weight 2 without cycles becomes
a harder task but is still feasible. Its structure in this case becomes more involved and
contains large “stars” formed by clusters of degree 1,3 and 4, “chains” formed by clusters
of degree 1 and 2 as well as clusters of degree 0.

Simulation results

In Fig.3.31 we present simulation results on Gaussian channel for family-F codes of rates
1/10 and of different lengths, for every of which the degree distribution obtained by opti-
misation was adapted to the given length.
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Figure 3.31: Performance of family-F codes of rate 1/10 and of lengths 6250, 18750 and
50000 with following degree distributions: Λ̃(x) = 0.4x + 0.2644x2 + 0.09x4 + 0.2376x8 +
0.008x9 for n = 6250, Λ̃(x) = 0.4x+0.2646x2+0.0902x4+0.2364x8+0.008x9 for n = 18750
and Λ̃(x) = 0.4x + 0.2642x2 + 0.0905x4 + 0.2365x8 + 0.008x9 for n = 50000.
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Chapter 4

Trapping sets of TLDPC codes

4.1 Introduction: trapping sets of LDPC codes

Recent simulations of LDPC codes on hardware platforms have shown that LDPC codes,
even those with good distance properties such as (3, 6) Gallager codes, do exhibit error-
floors. However, the error-floor does not typically arise from low-weight codewords.

It is well known that for LDPC codes, iterative decoding techniques used on the BEC
fail if the errors occur on subsets of variable nodes forming a stopping set [28], while for
the AWGN channel a similar phenomenon can be observed with respect to trapping sets
[56], sometimes referred as to pseudocodewords [8] or near-codewords [51].

The influence of trapping sets on the onset of error-floors in LDPC codes is attributed
to the following phenomenon, related to the properties of the code graph, decoding algo-
rithm and the probability of realization of certain special channel-noise configurations. In
the initial stage of belief-propagation, due to abnormal large values of noise on a certain
trapping set, variable nodes internal to it experience a large increase in the reliability
estimates for the incorrect bit value. This information gets propagated to other variable
nodes in the trapping set, some of which already have very low-reliability channel values.
After the initial increase in reliability, external variables usually start adjusting the in-
correct estimates towards the correct bit values. But by that time, the variable nodes in
a trapping set may have already significantly biased their decisions towards the incorrect
values. Since there are very few unsatisfied check nodes with odd degrees in the case
of LDPC codes which are capable to detect error within the trapping set, the unreliable
information remains unchanged until the end of decoding process.

More formally, let us bring in following definitions and notations of trapping sets for
LDPC codes. First we define general trapping sets which englobe all possible configura-
tions of trapping sets for a given code. However, it was shown by simulations that harmful
trapping sets are those with small a and very small b (typically b is equal to 1 or 2). We
define them to be elementary trapping sets.

Definition 17 A general (a, b) trapping set is a configuration of a variable nodes in V
for which the induced subgraph in G contains b > 0 odd-degree check nodes.

Definition 18 An elementary (a, b) trapping set is a trapping set for which all check nodes
in the induced subgraph have either degree one or two, and there are exactly b degree-one
check nodes.
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It was shown in [52] that for (3,5) and (3,6) regular LDPC codes the exponential growth
of average number of elementary trapping sets is very close to the exponential growth of
average number of general trapping sets. In other words, this gives some theoretical
evidence that trapping sets with higher degrees of check nodes (and thus having a more
complicated configuration) are possible but very unlikely for mentioned code ensembles.

It was also noticed in [56] that small trapping sets contribute more to the appear-
ance of the error-floor than large ones. This paper also suggests an importance sampling
methodology to predict error-floors of LDPC codes. We describe it by the example of the
AWGN channel with noise variance σ2:

1. first, trapping sets in the given code have to be detected;

2. an abnormal large noise is applied to a trapping set T (that is Gaussian noise with
variance σ′2 > σ2) and “normal” Gaussian noise of variance σ2 is applied elsewhere,
iterative decoding is performed and the probability of decoding failure P (T , σ′, σ) is
estimated;

3. let Q(T , σ′, σ) be the probability that the empirical variance of the noise on the trap-
ping set is indeed σ′2 when the bits are subject to an AWGN channel with noise vari-
ance σ2. The value σ2

T of σ′2 which maximizes the product P (T , σ′, σ)Q(T , σ′, σ) is
computed and the error floor is then estimated by the sum

∑

T P (T , σT , σ)Q(T , σT , σ).

For the sake of complexity issues it was also proposed in [23] to put a certain kind of
deterministic noise on a trapping set and thus to estimate its contribution to the error-
floor.

The phase of trapping set detection can be accomplished using one of the following
approaches:

• search by iterative decoding: we simply run decoding simulations in the error-floor
region to look for trapping sets. This approach may not lead to the identification of
all possible trapping sets but it does not need to know the combinatorial structure
of trapping sets and thus can be performed directly.

• focus on detection of elementary trapping sets of small size: knowing their structure,
we perform a search of such configurations in the Tanner graph of the code which
could potentially give us the elementary trapping set. This approach is intended to
find all potential elementary trapping sets up to some maximum size.

During decoding simulations for TLDPC code families D and E we observed that the
error-floor starts at word error-rates 10−6. These two code families are conjectured to
be asymptotically good and thus the error-floor is unlikely to be caused by low-weight
codewords. Studying incorrect bits of decoding failures, we found out that they belong
to special configurations of the Tanner graph which prevent the iterative decoder from
converging to a valid codeword.

We call these configurations trapping sets of TLDPC codes.

We begin with describing properties of decoding failures obtained by simulations of a
family-E code.
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4.2 Experimental results for a family-E code

In order to reveal the trapping sets structure and to collect different statistics, we run
simulations for a family-E code of length 15000 and of rate 1/3 at 0.55 dB which cor-
responds to its error-floor region. Because of the code linearity the all-zero codeword is
always transmitted. The maximal number of iterations is taken to be 200.

The data were obtained in the following way. If after 22 decoding iterations the frame
still contains errors (the value of iteration number corresponds to the average number of
performed iterations for the family-E code at 0.55 dB), then we begin to do the following:

• trace the number of erroneous bits at every iteration,

• for every bit compute the number of iterations when it was erroneous,

• if numbers of erroneous bits for the next 2 iterations are larger than the present one,
the present configuration of erroneous bits is saved.

If the frame still contains errors after 200 iterations, it is declared to be erroneous and we
output the saved configurations, the list of numbers of erroneous bits per iteration and the
list of bits which were erroneous most frequently altogether with their grades (number of
iterations during which bits were estimated incorrectly). The minimal number of incorrect
iterations to be taken into account is fixed to be 60.

The results given below were obtained for 77 million frames, 93 frames being in error
under belief propagation decoding.

4.2.1 Properties of decoding failures

Decoding behaviour

First we study the behaviour of decoding failures during decoding iterations. Plotting the
number of erroneous bits with respect to the iteration number, three principal behaviours
were determined (see Fig. 4.2.1): random-like oscillations show the case when a trapping
set is covered by an error configuration received from the channel (we say that we got
a trapping frame), the smooth lower curve represents the decoder convergence to a low-
weight codeword and the smooth upper curve corresponds to a decoding failure when the
decoder did not converge. 75 erroneous frames from 93 behaved accordingly to the first
example, 5 - to the second one and 13 - to the third one.

Remark that in the case of trapping frame the number of erroneous bits at the end of
decoding can be quite large as it oscillates continuously.

Variable nodes and assignments of the base code of observed trapping sets

It was observed that trapping frames have a large fraction of degree-2 variable nodes
and a quite small number of variable nodes of higher degrees: observed trapping frames
contained in average 91.95% of degree-2 variable nodes, 8.02 % of degree 3 variable nodes
and 1.03 % of variable nodes of higher degrees. If we look at grades of most frequently
erroneous bits we see that variable nodes of degree 2 have in average higher grades than
other variable nodes. This is due to the fact that they are less protected and, having been
trapped once, they have more difficulty to turn their estimations to correct bit values.
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Figure 4.1: Examples of decoding behaviour.

Let us describe trapping frames from the base code side, namely we are interested in
the location of erroneous positions in the base code. To do this, for a trapping frame take
the list of most frequently erroneous bits, assign them to 1 and others to 0 (as we work
under all-zero codeword assumption, such an assignment will cover the trapping set of the
given trapping frame). We noticed that in most of cases the induced assignments of bits
of the base code are not codewords.

Assignments of the base code can be decomposed into smaller sets of bits, each of
them inducing either a minimal codeword (this means that its support does not contain a
support of another nonzero codeword) or a word being close to a minimal codeword of the
base code. We are particularly interested in codewords and near-codewords of the base
code of partial weight 2 and 3. By near-codewords of partial weight 2 and 3 we understand
words with such a support in the base code that there is a position of degree greater than
1 in the base code that if we put it to 1 and add to a given support, we will get a support
of a codeword of the base code of partial weight 2 or 3 respectively.

In observed trapping frames there were in average 53.93 % of near-codewords of partial
weight 2, 30.55 % of codewords of partial weight 2, 7.36 % of near-codewords of partial
weight 3, 6.4 % of codewords of partial weight 3 and 1.76 % of others. Of course, the
percentage depends on how we output grades of bits after erroneous decodings, but still
we can grade that they contain a large fraction of codewords and near-codewords of the
base code of partial weight 2 and 3.

By using the list of grades of the most frequently erroneous bits we are able to calculate
what type of codewords of near-codewords of weight 2 and 3 is trapped more often. To do
this, we pass grades of erroneous bits to codewords and near-codewords in the base code
connected to corresponding variable nodes, we take an average on all grades received by
a codeword or a near-codeword and thus we obtain a grade for each of them. This grade
is an estimation of the number of iterations during which the codeword or near-codeword
was trapped. Having obtained such grades, we compute the mean on grades for every
type of given codewords and near-codewords. Obtained results are presented in Table
4.2.1 and witness that from the base code view codewords of small weight, once they have
been trapped, are harder to reestimate correctly than near-codewords of small weight.

To conclude, observed trapping sets contain a large fraction of degree-2 variable nodes
and the assignments of bits of the base code, induced by trapping sets form codewords or
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type mean number of iterations

near-codewords of weight 2 77
codewords of weight 2 104

near-codewords of weight 3 84
codewords of weight 3 114

Table 4.1: Mean number of iterations during which a codeword or near-codeword in the
base code of weight 2 or 3 is trapped.

near-codewords of the base code and have a very small weight (mostly 2 and 3).

Clusters in observed trapping sets

Now let us study codewords and near-codewords of partial weight 2 and 3 by focusing on
statistical properties of clusters. Clusters1 were defined in Section 3.7.1.

Definition 19 For a given assignment of base code bits, the degree of a cluster is the
number of its positions equal to 1.

Remark family-E codes contain 40 % of clusters of possible maximum degrees 2 and
that 60 % of clusters of possible maximum degree 4.

It is possible to make a correspondence between clusters and codewords and near-
codewords of weight 2 and 3 discussed above. Codewords of partial weight 2 will corre-
spond to clusters of degree 2 and near-codewords of partial weight 2 will correspond to
clusters of degree 1. Due to the trellis structure of the family-E base code, codewords
of partial weight 3 correspond to three consecutive clusters of degree 1 having respective
maximum degrees 4,2 and 4. Similarly, near-codewords of weight 3 correspond to three
consecutive clusters of maximum degrees 4, 2 and 4, the two of which have degree 1 and
one - degree 0.

As incorrect bits of trapping frames induce many near-codewords of weight 2 and
codewords and near-codewords of weight 3 and they correspond to clusters of degree 1, we
expect them to be the most numerous between all the clusters corresponding to induced
codewords and near-codewords of the base code in trapping frames. And indeed, we obtain
that in average there are 70.05 % of clusters of degree 1, 29.68 % clusters of degree 2 and
others are clusters of higher degrees.

If we look at maximum possible degree of connected clusters, erroneous bits of trapping
frames connect in average 76.5 % of clusters of maximum degree 4 and 23.5 % of clusters of
degree 2. These proportions are different from proportions of clusters for family-E codes in
favour of clusters of maximum degree 4, so we conclude that they appear more frequently
in trapping set configurations than clusters of maximum degree 2.

These figures, put together with the fact that a large fraction of degree-2 variable
nodes corresponds to incorrect bits, imply that the more frequent erroneous bits must
correspond to the configuration of a variable node of degree 2 connected to two clusters
of maximum degree 4.

1Recall that clusters are equivalent classes of positions in the base code of degree > 1 such that they
form a support of a codeword of the base code of partial weight 2.
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max.degrees of clusters mean grade

2 and 2 96.93
2 and 4 97.64
4 and 4 97.41

Table 4.2: Mean grade of degree-2 variable nodes connected to two clusters of different
maximum degrees.

Now we want to know if bits in such configurations are trapped more often than other
bits corresponding to degree-2 variable nodes. To estimate this, we use grades of most
erroneous bits and we compute mean grades for bits corresponding to degree-2 variable
nodes connected to clusters with different maximum degrees. Results presented in Table
4.2.1 show that all bits corresponding to degree-2 variable nodes have almost the same
mean grade (recall it corresponds to the mean number of iterations during which a given
bit was estimated incorrect) not depending on maximum degree of connected clusters.

4.3 Generalized definition of trapping sets

In this section we generalise the notion of trapping sets of LDPC codes to a general class
of codes and in particular to TLDPC codes.

Let us consider the general class of codes including LDPC codes, turbo codes as well
as TLDPC codes which was defined in Section 3.2. Then we can define a general trapping
set as follows:

Definition 20 A general (a, b) trapping set is a set of a variable nodes in V such that if
all the positions in the base code connected to this set are put to 1 then we need to put to 1
b another positions in the base code in order to obtain a valid codeword of the base code.

In particular case of LDPC codes this definition is equivalent to Definition 17, as the
base code of LDPC codes is simply a juxtaposition of small parity-check codes.

In Fig.4.3 we give some examples of trapping sets.

Figure 4.2: Examples of trapping sets.

In the figure on the left we show a code whose base code is represented by a two-state
tail-biting trellis (straight lines correspond to “0” labels, dashed - to “1”). Dark circles
represent variables nodes of the trapping set. These variable nodes put to 1 induce a word
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(0110010111) which is not a codeword of the base code. But if we put the fifth position to
1 we obtain (0110110111) which is a codeword of the base code. So, for the given trapping
set a = 3 and b = 1.

The figure on the right represents a subgraph of an LDPC code induced by variables
nodes of a trapping set put to 1. One check node in the subgraph receives only one “1”
which is not a codeword of a parity-check code. To obtain a codeword, we need to put
another bit of the parity-check code to 1. Thus, we have a (2,1) trapping set.

The definition of elementary trapping sets, however, will depend on properties of the
particular underlying code. In the case of TLDPC codes it is a convolutional code such
that the labels of its branches for one trellis section belong either to the parity-check code
C0 either to its coset C1 whose parity is equal to 1.

Let us define generalized elementary trapping sets. For doing this we first define a
certain graph derived from degree-2 variable nodes, clusters defined in Section 3.7.1 and
codewords of the base code. We begin by the simple case with no codewords of the base
code of partial weight higher than 2 and we describe what elementary trapping sets look
like in this case:

Definition 21 The graph of type 2 is a bipartite graph G with V to be the set of variable
nodes and W to be the set of clusters where a cluster c in W is connected to a variable
node v in V if c contains a position of the base code connected to the given variable node
in the Tanner graph of the code.

Definition 22 An elementary trapping set (a, b) of type 2 is a set of a variable nodes
such that the induced graph only contains clusters connected once or twice and there are
exactly b clusters connected once.

It can be seen that for LDPC codes, clusters of the base code coincide with parity-
check nodes in the bipartite graph. So, Definition 18 of elementary trapping sets coincides
with Definition 22 and elementary trapping sets of LDPC codes are elementary trapping
sets of type 2 in our notation.

As trapping sets of TLDPC codes display more complicated structures than those of
LDPC codes involving codewords of the base code of higher weights in their structure, the
given definition is insufficient to describe them. This motivates us to define an elementary
trapping set of type i with the help of the graph of type i, i > 2:

Definition 23 For i ≥ 3, the graph of type i is a graph Gi with set V of variable nodes,
set W1 of clusters and set W2 of nodes of codewords of partial weight j, 3 ≤ j ≤ i. A node
of codewords of weight j in W2 (a cluster in W1) is connected to a node in V if there is
a position belonging to the support of the codeword of weight j in the base code (belonging
to given cluster) connected to the corresponding variable node.

Remark that for the Tanner graph of the code a variable node and a position of the
base code determine only one edge in the graph. It is also true for the graph of codewords
of partial weight 2 for which every edge is defined by a variable node and a position in the
base code. For a graph of type i a node in V and a position in the base code determine
not one edge but a set of edges. This comes from the fact that the same position in the
base code belong to several supports of codewords of weight j, 2 ≤ j ≤ i, in the base code.

For a node v in V and for a position k in the base code we denote Ev,k to the set of
edges determined by v and k.
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Definition 24 An elementary trapping set (a, b) of type i is a set of a nodes in V such
that

1. for a node v and a position k in the base code one edge is only active in Ev,k,

2. the induced graph is the graph containing a nodes, active edges and clusters or code-
words activated by these edges,

3. codewords of weight j in the graph, 3 ≤ j ≤ i, are connected at least (j − 1) times.

If the number of clusters connected once is b1 and the number of codewords of weight j of
degree (j − 1) is b2, then b = b1 + b2.

4.4 Error-floor estimation

In this section, we describe how to estimate the error-floor of a TLDPC code. As an
example we estimate the error-floor of the family-E code of length 15000 and of rate 1/3
described in Section 3.8.6.

Generally, if ξT ∈ {0, 1}n denotes the set of bits of the global code that gives rise to a
failure on a trapping set T , then the block error rate PB of a code in the error-floor region
can be evaluated as

PB =
∑

T
P{ξT }.

To estimate the lower bound of the error-floor of the given code, we can use trapping
sets obtained during simulations.

As we would like to have a general method to estimate trapping sets of all families
of TLDPC codes, we restrict ourselves to the estimation of the error-floor by considering
small trapping sets only up to some size k. In this case, we will obtain a lower bound on
the block error rate:

PB ≥
k∑

i=1

P{ξTi
}. (4.1)

Knowing that small trapping sets are responsible for the beginning of the error-floor (and
this is exactly our region of interest), this bound is supposed to be tight. Moreover, we also
assume that, as for LDPC codes, most of the general trapping sets of TLDPC codes are
elementary ones, that other, more complicated configurations are possible, but unlikely,
and we only take into account elementary trapping sets.

So, we begin by searching small elementary trapping sets in the given code and, more
exactly, by searching typical configurations of such trapping sets. If these configurations
exist, we can find all these configurations in the Tanner graph of the code and then to
look for elementary trapping sets between them.

4.4.1 Evaluation of P{ξT } in AWGN case

Consider a trapping set T with K variable nodes.

Under zero-codeword assumption and BPSK modulation the channel output can be
written as yi = 2

σ2 (1 + ni), i = 1, . . . , n, ni are independent identically distributed (i.i.d.)
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random variables with distribution N (0, σ2). Consider the subvector (n1, . . . , nk) of noise
applied to T and suppose that each element of it is subject to noise s with distribution
N (0,K−1σ2). Supposing that the failure rate is dependent on noise s applied to T , we
consider conditioning on s in order to evaluate it. Then P{ξT } can be expressed as follows:

P{ξT } = Es(P{ξT |s}) =

√
K√

2Πσ

∫ ∞

−∞
P{ξT |s=x}e−

−x2K

2σ2 dx. (4.2)

In practice, we try to determine the function to be integrated in a neighborhood of its
maximum and it is supposed to decay quickly with s. The factor P{ξT |s=x} is estimated
by simulations, we count only failures that occur precisely in T . Typically, it is sufficient
to simulate down to 10−3, which does not take much time and thus makes the technique
efficient.

4.5 Error-floor estimation of the family-E code over AWGN

channel

To be able to use (4.1), we do the following:

- study of typical trapping set configurations,

- search of all typical configurations in the Tanner graph of the code,

- simulation of the failure rate for each of found configurations,

- evaluation of the error-floor by (4.2).

4.5.1 Trapping sets configurations

To select trapping frames corresponding to small trapping sets, let us consider their min-
imum number of incorrect bits occurred during iterations. As these small sets of bits
cannot be decoded correctly, they must cover some trapping sets of small size.

During simulations of the given family E code we saved lists of erroneous bits for such
iterations of the decoding that the number of erroneous bits increased during next two
iterations. They are exactly small sets of bits in which we are interested in.

As we are interested in trapping sets of small size, from all saved lists we choose those
whose size do not exceed 50, there are 50 of them.

Now, for every of such lists we construct the graph of type 3,4 or 5, depending which
kind of minimal codewords and near-codewords of the base code are induced by the given
list, and we study their structure. Our aim is to find out what types of small configurations
the constructed graphs consist of and if there exist such configurations that they are present
in every studied trapping structure. We call them dominant configurations.

Examples of graphs of type 3 and 4 are presented in Appendix C.1.
Considering 50 graphs of type 3,4 or 5, three dominant configurations were found.

Surprisingly, their structure is quite simple, all of them only consist of codewords of weight
2 and near-codewords of weight 3 connected through degree-2 variable nodes.

The first dominant configuration has b = 3 and is composed of three near-codewords
of weight 3 connected through degree-2 variable nodes and clusters. It is present in 19
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trapping structures from 50 studied. Let us denote this dominant configuration by (a, 3).
The second dominant configuration has b = 2, it is composed of two near-codewords of
weight 3 connected through degree-2 variable nodes and clusters and it was found in 29
studied trapping structures. We denote the dominant configuration by (a, 2). The third
dominant configuration has b = 1, it is composed of only one near-codeword of weight
3 connected through degree-2 variable nodes and clusters and it was found in 3 studied
trapping structures. We denote the dominant configuration by (a, 1).

First two dominant configurations cover together 47 trapping structures from 50 and
other three configurations belong to the third type.

We represent dominant configurations graphically in Fig.4.3. Near-codewords of the
base code of weight 3 are depicted by circles. and they are connected by labelled edges.
An edge with label k between two codewords exists if in the the corresponding graph the
codewords are connected through exactly k variable nodes of degree 2 and k − 1 clusters.
Remark that when clusters are connected by degree-2 variable nodes in the graph, they
form a chain of clusters where all the positions belonging to inner clusters of the chain are
satisfied. Red arrows represent unsatisfied positions of near-codewords of weight 3.

a1

a3
a2

(a, 3)

t1

t2

(a, 2)

r

(a, 1)

Figure 4.3: Dominant configurations with 1) a = a1 + a2 + a3 + 3; 2) a = t1 + t2 + 2; 3)
a = r + 1.

4.5.2 Detection of dominant configurations

To detect potential trapping sets in the given code, we make the search of three dominant
configurations described above.

Let n3 be the number of codewords of weight 3 (and thus, of possible near-codewords
of weight 3) in the base code. Let us describe the proposed detection procedure of (a, 3)
configurations. We do it in a simplified way, by describing how to detect three near-
codewords of weight 3 in the base code which make the base of an (a, 3) configuration.
Then, to obtain numbers of bits of global code corresponding to a given configuration
we have to make the list of clusters trough which the near-codewords of weight 3 are
connected. This can be done either by saving number of clusters in a list during the
procedure of near-codewords detection either by performing an additional step during
which the clusters are determined knowing what near-codewords of weight 3 they connect.

The procedure of detection of numbers of near-codewords of weight 3 is as follows:

Fix the depth of search lmax.

• Fill the distance (triangular) table D of dimensions n3×n3. An element di,j is equal
to the minimal length l of the chain connecting the given support of codeword of
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weight 3 i with the support of codeword of weight 3 j if l ≤ lmax and ∞ otherwise.
For fixed i let Di be an ensemble of numbers such that di,j 6= ∞ for every j ∈ Di.

• For i from 0 to n3 − 1 do the following:

– For every j ∈ Di look for k such that k 6∈ Di and di,k 6= ∞ as well as dj,k 6= ∞
– Save {i, j, k} and di,j + di,k + dj,k.

We detect (a, 2) and (a, 1) configurations with the following procedure:

• For a set of clusters {ck
i }2

k=0 corresponding to a codeword wi of base code of weight
3 , 0 ≤ i < n3, we create a list of connections Gk with elements gk

j = (wk
j , ck

j , l
k
j )

where wk
j is the codeword of weight 3 of the base code, ck

j is a cluster corresponding

to this codeword and lkj is the length of the chain of clusters and degree-2 variable

nodes connecting the cluster ck
j and the initial cluster ck

i . The list includes all the
clusters up to a maximum depth lmax.

• If wk
t = wk′

t and ck
j = ck′

t when k 6= k′, then a (lkj + lk
′

t ) + 1, 1) configuration is

detected. Save (ck
i , c

k
j , ck′

i ).

• If wk
t = wk′

t and ck
j 6= ck′

t when k 6= k′, then a (lkj + lk
′

t ) + 2, 2) configuration is

detected. Save (ck
i , c

k
j , ck′

t , ck′
i ).

By performing such a search we found 37 connected couples and 7042 triangles.

4.5.3 Error-floor estimation results

In order to obtain the lower bound on the error-floor for a TLDPC code, we need to
calculate P{ξTi

}, where ξTi
represents a decoding failure on (a, i) configurations, i = 1, 2, 3,

and to sum these probabilities. By doing this, we obtain an estimation of 8.5 · 10−7 for
0.56 dB which is comparable to the estimation of 1.1 · 10−6 obtained by simulationg the
decoding failure of trapping sets revealed by simulations.
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Eb�No, dB
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E
R

EF estimation 2
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Figure 4.4: Estimations of error floor 1) by simulations results; 2) by using trapping
configurations.
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Chapter 5

Codes over Fq

5.1 Motivation

So far, only binary codes were considered.

However, in some cases it is very natural to use non-binary codes. Moreover, this
may improve the decoding performances, even over binary channels. The benefits of non-
binary codes constructions were demonstrated on turbo-codes [12, 13, 15, 62] as well as on
LDPC codes [26, 39, 77, 40] and on RA codes [78]. Note that LDPC codes on non-binary
alphabets have already been considered by Gallager in Chapter 5 of his PhD thesis [36].
Further, Hu showed that even the performance of 2-regular LDPC (cycle) codes can be
improved considerably with non-binary alphabets [39].

For a graph-based code, increasing the alphabet size given a fixed degree distribution
increases the density of the underlying binary Tanner graph and the chances of finding
better performance and achieving the channel capacity. Note though that iterative decod-
ing is performed over q-ary bipartite graph in this case and the performance improvement
will be achieved at the cost of higher decoding complexity. The computation complexity of
iterative decoding (Sum-Product or Min-Sum) applied directly over Fq is of order 0(q2) by
symbol. However, it was first observed in [50] that using Fourier transforms for computing
extrinsic messages from check nodes to variables nodes decreases the complexity of the
decoding and can be reduced to be of order O(q log2 q). Later, this result was rediscovered
many times.

The bad news is that increasing the alphabet size does not necessarily improve the
performance. The investigation performed in [55] on the erasure channel strongly suggests
that for a given degree distribution, the asymptotic noise threshold sustained by the family
is a unimodal function of the alphabet size : the performances either always decrease with
the alphabet size or increase up to a certain alphabet size and decrease afterwards.

The first step to understand the behaviour of non-binary codes is to study their asymp-
totic performance. Note that in general the messages of the decoder are vectors of dimen-
sion q − 1 and it becomes a difficult task to track their densities. However, it was shown
in [2] that, under Gaussian approximation, the q − 1 dimensional distribution of the mes-
sages of a non-binary coset LDPC code can be described by a single parameter. Another
interesting result was presented in [74], where it was shown that for non-binary LDPC
codes on the BEC the densities of the messages can be computed recursively.
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Recall that for cycle codes (these are LDPC codes where all variable nodes are of degree
2) a dramatic improvement in the performances was observed by increasing the alphabet
size [39]. It was also put forward in [40], that unlike the binary case, where one has to
choose very large degrees to approach capacity, there are very good degree distributions for
LDPC codes for large alphabet sizes with variable nodes which are all of small degree and
with a very large proportion of variable nodes of degree 2. All these investigations seem
to indicate that the case of (2, d) Gallager (cycle) codes over large fields is particularly
interesting.

Density evolution operations in [74] are also applied to cycle codes. In this chapter we
study density evolution for a non-binary LDPC code family with a small constant fraction
of symbols of degree 1 obtained by a slight modification of cycle codes. In this case, the
error probability will be constant but it is interesting to see the influence of symbols of
degree 1 on the iterative decoding threshold.

We continue investigations on analysis of non-binary codes by extending density evo-
lution operations of [74] over non-binary TLDPC codes. Similarly for the binary case,
non-binary TLDPC codes allow symbols of degree 1 in their structure and, by computing
thresholds for some particular families with symbols of degree 1, we find that they are
equal to thresholds of non-binary cycle codes! This motivates us to study if there is any
correspondence between codewords of cycle codes and ones of TLDPC codes with symbols
of degree 1. We show in Section 5.3.7 that a more general result holds: an irregular LDPC
code, binary or not, having at least 2 degree-2 variable nodes per parity-check equation
can be represented as a TLDPC code with symbols of degree 1 and vice versa. The fact
to present the LDPC codes as TLDPC codes with symbols of degree 1 reveals another, a
more efficient way of decoding of LDPC codes [32].

5.2 State of art

In this section we present general definitions and then density evolution operations for
non-binary LDPC codes from [74].

5.2.1 General definitions

Assume that the transmission takes place over the binary erasure channel with erasure
probability p and that the all-zero codeword is transmitted. We perform a belief propaga-
tion decoding at the receiver end. During an iteration t extrinsic messages E(t) of symbols
of the base code are computed and then intrinsic messages I(t) are updated. Note that the
messages in the belief propagation decoder are vectors of length q1. For a given symbol

i of the base code the k-th component of the message E
(t)
i (I

(t)
i ) is denoted as E

(t)
i (k)

(I
(t)
i (k)), k = 0, . . . , q− 1, and this component is equal to the a posteriori probability that

the symbol is k.

In the following sections of this chapter, we often consider q = 2m and in this case all
the operations are performed over F2m.

1The decoder message can be represented by a vector of length q − 1 without any loss of information.
However, it will be convenient to consider them to be of length q.
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When q = 2m, the vectors E(t) and I(t) have a special form as they can be interpreted
as subspaces of the vector space (F2)

m. Due to transmission over the BEC, the number of
non-zero positions of the vectors is a power of 2 and, if the number of non-zero positions
is 2k, then all these positions are equal to 2−k.

Based on messages E(t) and I(t) and supposing q = 2m, we define the following prob-
ability vectors ǫ(t) and ι(t):

Definition 25 Let ι(t)(k) be the probability that the intrinsic message I(t) at iteration
t has 2k non-zero positions, k = 0, . . . ,m. Let ǫ(t)(k) denote the similar probability for
message E(t).

5.2.2 Definition of some useful operations over R
q and R

m+1

In this part we define some operations over R
q and R

m+1 which will be used to define
decoding and density evolution operations for non-binary codes.

Convolution and multiplication over R
q

The convolution operator ⊗ is defined as an operator between two vectors a = (ai)i∈Fq ∈ R
q

and b = (bi)i∈Fq ∈ R
q, which produces a vector whose k-th component is given by

[a ⊗ b]k =
∑

α∈Fq

aα · bk−α, k ∈ Fq, (5.1)

where the subtraction k − α is evaluated over Fq.
We denote the element-wise multiplication over R

q by ⊙:

[a ⊙ b]k = ak · bk, k ∈ Fq. (5.2)

Both ⊙ and ⊗ operations are associative and commutative over R
q. It is easy to verify

that the following property also holds:

[a ⊙ (b ⊗ c)]k = [(ak · b) ⊗ c)]k = [b ⊗ (ak · c)]k , (5.3)

where ak · b denotes the vector (ak · bi)i∈Fq .

p-Gaussian binomial coefficient

As we write density evolution equations using p-Gaussian binomial coefficients, it is es-
sential to provide a definition.

Definition 26 The p-Gaussian binomial coefficient

[
n
k

]

p

denotes the number of vector

subspaces of dimension k of a vector space of dimension n over a field of p elements which
can be written as [

n
k

]

p

= Πk−1
i=0

pn−i − 1

pk−i − 1

or [
n
k

]

p

= Πk−1
i=0

pn − pi

pk − pi
.
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Let us mention several properties of Gaussian binomial coefficients. One of the prop-
erties we will use is the symmetry property:

[
n
k

]

p

=

[
n

n − k

]

p

.

Define [n]p by

[n]p = Πn−1
i=0 (pn−i − 1),

then
[

n
k

]

p

=
[n]p

[k]p [n − k]p
. (5.4)

In what follows, we work with the vector space (F2)
m for convenience, we choose p = 2

and thus we only use 2-Gaussian binomial coefficients.

a ⊡ b and a ⊠ b over R
m+1

For two vectors a = (ai)0≤i≤m ∈ R
m+1 and b = (bi)0≤i≤m ∈ R

m+1 we define operations
a ⊡ b and a ⊠ b so that

[a ⊡ b]k =

m∑

i=k

k+m−i∑

j=k

C⊡(m,k, i, j)aibj , k = 0, . . . ,m,

[a ⊠ b]k =
k∑

i=0

k∑

j=k−i

C⊠(m,k, i, j)aibj , k = 0, . . . ,m,

with the following expressions for C⊡ and C⊠

C⊡(m,k, i, j) =

[
i
k

]

2

[
m − i
j − k

]

2
[

m
j

]

2

2(i−k)(j−k),

C⊠(m,k, i, j) =

[
m − i
m − k

]

2

[
i

k − j

]

2
[

m
m − j

]

2

2(k−i)(k−j).

C⊡(m,k, i, j) represents the probability of choosing a subspace of dimension j in a
space of dimension m so that its intersection with a fixed subspace of dimension i has
dimension k. C⊠(m,k, i, j) is the probability to choose a subspace of dimension j in a
space of dimension m so that it forms a subspace of dimension k together with a fixed
subspace of dimension i.

Operations ⊡ and ⊠ are commutative over R
m+1 as shown in Appendix D.1.
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5.2.3 LDPC codes over Fq

An Fq-LDPC code is defined by its q-ary bipartite graph where to each variable node a
symbol from Fq is assigned, a linear bijective mapping f : Fq 7→ Fq is associated to each
edge and each check node corresponds to a parity-check equation over Fq.

Let k be the number of edges of the q-ary bipartite graph and λ = (λ2, . . . , λs) be a
probability distribution over the set of integers {2, . . . , s} so that λik/i is an integer for any
i ∈ {2, . . . , s}, then the number of edges of left degree i is λik and the number of variable
nodes of degree i is λik/i. Similarly, let ρ = (ρ3, . . . , ρl) be a probability distribution over
the set of integers {3, . . . , l} so that ρjk/j is an integer for any j ∈ {3, . . . , l}, then the
number of edges of right degree j is ρjk and the number of check nodes of degree j is
ρjk/j.

Note that the total number of vertices of the q-ary bipartite graph is n = k
∑s

i=2 λi/i

and the total number of check nodes is r = k
∑l

j=3 ρj/j.

Let x = (x0, . . . , xn−1) ∈ (Fq)
n be a codeword of an Fq-LDPC code. When q = 2m,

each symbol xi can be represented as a binary m-tuple and x can be seen as a binary
codeword of length mn.

For the analysis, it is essential that the edge mapping f is linear bijective, this provides
that after the edge action a message of same dimension gets mapped to any message of
same dimension with equal probability.

We make the infinite tree hypothesis, i.e. that for a fixed iteration number t the
computation graph is a tree and the density at iteration t is only determined by the
distributions λ and ρ. In fact, this hypothesis holds for infinite block lengths (asymptotic
case), but it can be shown that in the finite-length case the average densities of the
non-binary LDPC code ensemble converge to densities of the asymptotic case for a fixed
number of iterations when n → ∞.

We present density evolution operations for Fq-LDPC codes in the asymptotic case, the
average is taken over all permutations and all linear bijective mappings as it was defined
in [74].

Lemma 17 [74] For an Fq-LDPC code density evolution operations at the t-th iteration
are the following:

1. on the check node size

ǫ(t+1) =

l∑

i=3

ρiǫ
(t)
i

where the ǫ
(t)
i ’s are computed recursively

ǫ
(t)
3 = ι(t) ⊠ ι(t)

ǫ
(t)
j = ǫ

(t)
j−1 ⊠ ι(t), j = 4, . . . , i.

2. on the variable node side

ι(t) =
s∑

i=2

λiι
(t)
i ,
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where the q
(t)
i ’s are computed recursively

ι
(t)
2 = ι(0) ⊡ ǫ(t)

ι
(t)
j = ι

(t)
j−1 ⊡ ǫ(t), j = 3, . . . , i.

with ι(0)(k) =
(m

k

)
pk(1 − p)m−k, 0 ≤ k ≤ m, p is the erasure channel probability.

5.3 TLDPC codes over Fq

In this section we define a family of non-binary TLDPC codes and density evolution
operations for this family.

5.3.1 Definition

Similarly as for the binary case, a general construction for graph-based code ensembles
over Fq can be defined by means of a non-binary base code and of a q-ary bipartite graph.
We consider q = 2m.

Definition 27 [Non-binary code ensemble] A non-binary graph-based code ensemble
of length n over Fq is defined by a non-binary base code Cb of length nb ≥ n and a random
q-ary bipartite graph between a set V of variable nodes of size n, each of them being
assigned a symbol from Fq, and a set W formed by positions of Cb. To each edge of the
q-ary bipartite graph a linear bijective mapping f : (F2)

m 7→ (F2)
m is assigned.

Let Λ = (λ1, λ2, . . . , λs) be a probability distribution over the set of integers {1, 2, . . . , s}
so that λinb/i is an integer for any i ∈ {1, 2, . . . , s} and such that n = nb

∑s
i=1 λi/i, then

the number of edges of degree i is λinb and the number of vertices in V of degree i is
λinb/i.

The bipartite graph together with the base code Cb specifies a code of length n as the set
of assignments {vi}1≤i≤n ∈ (Fq)

n of V such that the induced assignments 2 {wj}1≤j≤nb
∈

(Fq)
nb of vertices of W belong to Cb.

We consider a particular case of this general construction called TLDPC code family
over Fq defined by the its non-binary base code:

Definition 28 [Non-binary ((a, b)) TLDPC code] Let T be a trellis having two sec-
tions, parallel (P) and cross-like (X), as shown in Fig.5.1, for which

• states s0, s1, s2 ∈ Fq,

• the branch label of the parallel section xP = (xP
1 , . . . , xP

a ) ∈ (Fq)
a and the branch

label of the cross-like section xX = (xX
1 , . . . , xX

b ) ∈ (Fq)
b,

2a vertex in W receives the assignment of the vertex in V to which it is connected through a linear
bijective mapping f .
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• the parallel and the cross-like sections are defined by following parity equations

s1 =
a∑

j=1

xP
j = s0,

s2 = s1 +
b∑

j=1

xX
j ,

the sums being computed over Fq.

Then the trellis of the base code of an ((a, b)) TLDPC code over Fq is a concatenation of
r copies of T for which the initial s0 and the last s2r trellis states are identified. The base
code has length nb = r(a + b).

0 0 0

1 1 1

q-1 q-1 q-1

s0 s1 s2xa xb

Figure 5.1: Trellis T with two sections, parallel (P) and cross-like (X).

As in the case of binary codes, the inclusion of a constant fraction of symbols of degree
1 in the structure of a non-binary code ensemble may improve the convergence of the
iterative decoding and performances in the waterfall region. However, if we have such
a constant fraction of symbols of degree 1 in our structure and we choose at random
positions of symbols of degree 1 in the base code, the probability of having a codeword
of constant weight is non-zero. This comes from many reasons, one of them is that there
is a non-zero probability to have three consecutive sections X, P and X, each of them
carrying a symbol of degree 1, which gives a valid configuration for a codeword of weight
3. Moreover, if symbols of degree 1 are put on sections of length > 1, there is a non-zero
probability that a variable of degree i is connected to i sections each of them carrying a
symbol of degree 1 and this is a valid configuration for a codeword of weight i + 1. So,
in order not to harm the minimum distance of the code ensemble by allowing symbols of
degree 1 in its structure, symbols of degree 1 should be placed on the trellis sections of
the base code in a structured way in order to prevent that two consecutive sections carry
symbols of degree 1 and sections carrying symbols of degree 1 should be of length 1.

With the aim to allow the maximum possible fraction of symbols of degree 1, we can
choose all the parallel sections to be of length 1 and to carry symbol of degree 1. Thus
every second trellis section will carry a symbol of degree 1. Note that we cannot choose
cross-like sections to be carriers of symbols of degree 1, in this case the minimum distance
is upper bounded by 1+2i, where i is the minimum degree > 1. This comes from the fact
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that a non-zero position on a parallel section forms a codeword of weight 3 together with
symbols of degree 1 of two neighbouring cross-like sections.

In following sections we consider two particularly interesting families of non-binary
TLDPC codes with parameters ((b, b)) and ((1, b))1. The ((b, b)) TLDPC code family is
an example of a code family with no symbols of degree 1 in its structure. By ((1, b))1 we
denote a TLDPC code family which has symbols of length 1 carried by parallel sections
of the trellis of the base code of length 1.

5.3.2 Decoding operations for ((a, b)) TLDPC code family

We assume that the transmission takes place over the binary erasure channel with erasure
probability p and we perform a belief propagation decoding at the receiver end. During
an iteration t we compute extrinsic messages E(t) of symbols of the base code and then
we update intrinsic ones I(t).

Similarly, we also define state messages S(t) of trellis sections of the base code. We

denote by S
(t)
l the state vector on the input of the trellis section l at iteration t, where

l = 0, . . . , 2r, r being the number of concatenated trellises T in the trellis of the base code.
We distinguish forward and backward state messages.

Let us define operations during the belief propagation decoding. Before iterating we
initialize the intrinsic messages I(0) from variable nodes to the base code by values received
from the channel.

An iteration of decoding consists of the following steps:

1. edge mapping
Because of invertibility of the edge mapping, elements in vectors I(t) are permuted,

i.e. for an intrinsic message vector I
(t)
i = (I

(t)
i (0), . . . , I

(t)
i (q − 1)) and a mapping f

we get

Ĩ(t) = (I
(t)
i (f(0)), . . . , I

(t)
i (f(q − 1))).

2. base code decoding
The decoding on the tail-biting trellis of the base code is performed. It computes
outgoing messages Ẽ(t) as a function of the incoming messages Ĩ(t).

The tail-biting trellis of the base code has two types of sections, P and X, having
respectively a and b symbols per branch.

On forward (backward) stage we compute state messages Sf (Sb) as a function of
the previous (future) state messages and intrinsic ones. Let d = a + b. For the
forward stage we have

Sf
2j+1 = Sf

2j ⊙ (⊗a−1
i=0 Ĩ

(t)
dj+i)

Sf
2j+2 = Sf

2j+1 ⊗ (⊗b−1
i=0 Ĩ

(t)
dj+a+i)

and for the backward stage

Sb
2j+1 = Sb

2j+2 ⊗ (⊗b−1
i=0 Ĩ

(t)
dj+a+i)

Sb
2j = Sb

2j+1 ⊙ (⊗a−1
i=0 Ĩ

(t)
dj+i).
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with j = 0, . . . , r − 1. We fix initial condition to be Sf
0 = Sb

2r = 1
q (1 1 . . . 1)T. In

the following step we compute extrinsic messages Ẽ(t+1) as follows:

Ẽ
(t+1)
dj+i = (Sf

2j ⊙ Sb
2j+1) ⊗ (⊗a−1

s=0,s 6=iĨ
(t)
dj+s), i = 0, . . . , a − 1,

Ẽ
(t+1)
dj+a+i = (Sf

2j+1 ⊗ Sb
2j+2) ⊗ (⊗b−1

s=0,s 6=iĨ
(t)
dj+a+s), i = 0, . . . , b − 1.

3. inverse edge mapping
Messages Ẽ(t+1) are normalised and inversely permuted, i.e. for an extrinsic message

vector Ẽ′(t+1)
i = (Ẽ′(t+1)

i (0), . . . , Ẽ′(t+1)
i (q − 1)) obtained by normalisation of the

vector Ẽ
(t+1)
i , and an edge mapping f we get

E
(t+1)
i = (Ẽ′(t+1)

i (f−1(0)), . . . , Ẽ′(t+1)
i (f−1(q − 1))).

4. message updating at variable nodes
We calculate new intrinsic messages I(t+1) by element-wise multiplication of incom-
ing messages of neighbouring edges E(t+1) and of the initial message I(0). Thus
for an edge l connected with a degree-n variable node incoming extrinsic messages

E
(t+1)
1 , . . . , Ẽ

(t+1)
n we write

I
(t+1)
l = (⊙n

k=1,k 6=lẼ
(t+1)
k ) ⊙ I

(0)
l . (5.5)

5.3.3 Density evolution equations

To define density evolution operations, we make the following assumptions:

• by linearity, we assume without loss of generality that the all-zero codeword was
transmitted.

• we assume that that the code is of infinite length and, therefore, that the base code
is of infinite length, so any two distant positions of the base code are located far
from each other and the extrinsic probabilities calculated for these positions are
independent as if they came from two separate base codes.

• similarly as for Fq LDPC codes, we make the infinite tree assumption by assuming
that that for a fixed iteration number t the computation graph of the TLDPC code
is tree-like.

Thus we will define density evolution operations for the asymptotic (infinite code length)
case. In the finite-length case the last two assumptions do not hold, but the average
densities of the TLDPC code ensemble will converge to densities of the asymptotic case
as the code length will tend to infinity.

We describe density evolution operations for the base code side separately for families
((b, b)) and ((1, b))1. Note that the edge mapping and the inverse edge mapping do not
change values of ι(t) and ǫ(t) messages, so, we can write density evolution equations for
the base code side in terms of these quantities (working now with E(t) instead of Ẽ(t)).

Recall that the number of symbols per trellis section of the base code for ((b, b)) TLDPC
family is equal to b.
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Variable nodes side

Note that as the transmission is made over the BEC, initial intrinsic messages probabilities
are equal to

ι(0)(k) =

(
m

k

)

pk(1 − p)m−k, 0 ≤ k ≤ m.

Density evolution operations can be rewritten in terms of probabilities ǫ(t) and ι(t).

Lemma 18 The density evolution over variable nodes of degree ≥ 2 is rewritten in terms
of probabilities ǫ(t) and ι(t) in the following way:

ι(t) = ι(0) ⊡

s∑

k=2

λk(⊡
k−1
i=1 ǫ(t))

∑s
i=2 λi

, t ≥ 1.

For variable nodes of degree 1 the probability vector ι(t) is always equal to ι(0).

Base code side operations for family ((b, b))

• Forward/backward stage
First we define state probability vectors for the trellis of the base code

Definition 29 For a given trellis section i of the base code, let ξ
(t)
i (k) be the proba-

bility that the corresponding state message ξ
(t)
i at iteration t has k non-zero positions,

0 ≤ k ≤ m, i = 0, . . . , 2r, r being the number of concatenated trellises T in the trellis
of the base code. We distinguish forward ξf

i and backward ξb
i probability vectors3.

As example, in Fig. 5.2 we depict the factor graph of the l-th concatenated trellis T
of ((2, 2)) code family. It contains a parallel (P) and a cross-like (X) section. Black
circles represent state edges of the trellis. Boxes represent symbols connected to
every trellis section.

P C

ξf
2l ξf

2l+1 ξf
2l+2

ξb
2l ξb

2l+1 ξb
2l+2

ι(t) ι(t) ι(t) ι(t)

Figure 5.2: A l-th concatenated trellis T of ((2, 2)) code family and the location of prob-
ability vectors.

In the case of ((b, b)) family, for a trellis section we denote ι̃(t) and ι̂(t) to be

ι̃(t) = ⊠
b−1
i=0 ι

(t)
i ,

ι̂(t) = ⊠
b−2
i=0 ι

(t)
i .

3the iteration number t is omitted for simplicity
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Then for the forward/backward stage we can write the following sets of equations:

ξf
2l+1 = ι̃(t) ⊡ ξf

2l

ξf
2l+2 = ι̃(t) ⊠ ξf

2l+1

(5.6)

and
ξb
2l = ι̃(t) ⊡ ξb

2l+1

ξb
2l+1 = ι̃(t) ⊠ ξb

2l+2

(5.7)

where l = 0, . . . , r − 1.

Lemma 19 The following expressions hold for forward state probability vectors ξf
2l+1

and ξf
2l+2:

ξf
2l+1 = M l

XP ξf
1 ,

ξf
2l+2 = M l

PXξf
0 ,

where the elements of matrices MPX and MXP are the following:

MPX(i, j) =

{∑j
u=0 A(m, i, u)B(m,u, j), if 0 ≤ j ≤ i,

∑k
u=0 A(m, i, u)B(m,u, j), if i + 1 ≤ j ≤ m,

(5.8)

MXP (i, j) =

{∑m
u=i B(m, i, u)A(m,u, j) if 0 ≤ j ≤ i,

∑m
u=j B(m, i, u)A(m,u, j) if i + 1 ≤ j ≤ m,

(5.9)

A(m, i, u) =
∑i

v=i−u C⊠(m, i, u, v)ι(t)(v)

and B(m,u, j) =
∑m+u−j

v=u C⊡(m,u, j, v)ι(t)(v).

Proof : By rewriting expressions (5.6) and using commutativity, we obtain

ξf
2l+1 = ι̃(t) ⊡ (ι̃(t) ⊠ ξf

2l−1) = (ξf
2l−1 ⊠ ι̃(t)) ⊡ ι̃(t)

ξf
2l+2 = ι̃(t) ⊠ (ι̃(t) ⊡ ξf

2l) = (ξf
2l ⊡ ι̃(t)) ⊠ ι̃(t).

The mapping ξf
2l−1 7→ (ξf

2l−1 ⊠ ι̃(t)) ⊡ ι̃(t) from R
m+1 into R

m+1 is linear and can

be written as ξf
2l−1 7→ MXP ξf

2l−1, where MXP is defined by (5.8), and thus ξf
2l+1 =

MXP ξf
2l−1. By similar considerations, ξf

2l+2 = MPXξf
2l, MPX being defined by (5.8).

The details about about how the expression (5.8)was obtained are presented in
Appendix D.2.

We obtain that

ξf
2l+1 = M l

XP ξf
1 ,

ξf
2l+2 = M l

PXξf
0 .

We give without proof a similar lemma for backward state probability vectors:
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Lemma 20 The following expressions hold for backward state probability vectors
ξb
2l+1 and ξb

2l:

ξb
2l+1 = (MPX)r−lξb

2r−1,

ξb
2l = (MXP )r−lξb

2r,

where MPX and MXP are defined by (5.8).

We look for a solution of systems of equations in the asymptotic case assuming that
the base code is of infinite length, i.e. we want to calculate state probability vectors
ξf
2l, ξf

2l+1, ξb
2l and ξb

2l+1. This can be done using the theory of nonnegative matrices.
For this we recall some well-known definitions:

Definition 30 [Stochastic matrix] A stochastic matrix M is a nonnegative ma-
trix such that its column sums are equal to 1.

Lemma 21 MPX and MXP are stochastic matrices.

Proof : The matrix MPX (MXP ) is the matrix of linear mapping which maps any

probability vector ξf
2l (ξf

2l−1) into a probability vector ξf
2l+2 (ξf

2l+1). By (5.8), the
coefficients of MPX (MXP ) are nonnegative. These two facts imply the stochasticity
of MPX (MXP ).

Definition 31 [Irreducible matrix, period] An irreducible matrix M is a square
nonnegative matrix such that for every i, j there exists pi,j > 0 such that [Mpi,j ]i,j >
0. Let ki,j = min{pi,j : [Mpi,j ]i,j > 0}. The period of an irreducible matrix M is
the greatest common divider for all the ki,i’s.

Definition 32 [Aperiodic matrix] An aperiodic matrix M is an irreducible ma-
trix with period one.

Note that MPX and MXP are irreducible and aperiodic when 0 < p < 1. This comes
from the fact that in this case the vector ι(t) is positive and so is ι̃(t). Matrices defined
by C⊡ and C⊠ operations being always positive, we obtain that all the elements of
MPX and MXP are positive and, therefore, they are irreducible and aperiodic.

Let Π = (π0, . . . , πm) be a stationary distribution vector4 associated to a stochastic
matrix M , if MΠ = Π and

∑

i πi = 1. Now we draw upon the Perron-Frobenius
theorem:

Theorem 12 If M is an irreducible aperiodic stochastic matrix then

– one of its eigenvalues is equal to 1,

– all other eigenvalues are smaller than 1 in absolute value,

– M has a unique positive stationary distribution vector Π,

– for any non-zero probability vector U , limk→∞ MkU = Π.

4Π is a column vector
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Definition 33 [Stationary distribution vectors] We define by ξf
2∞+1 and ξf

2∞
the stationary distribution vectors of respective matrices MXP and MPX .

To compute ξf
2∞+1 and ξf

2∞, we use the properties of Π and solve the following
systems of equations:

{

ξf
2∞ = MPXξf

2∞
∑

k ξf
2∞(k) = 1

and {

ξf
2∞+1 = MXP ξf

2∞+1
∑

k ξf
2∞+1(k) = 1

.

Similarly for the backward step, it can be shown that probability vectors ξb
2∞ and

ξb
2∞+1 are respectively stationary distribution vectors of MXP and MPX and

ξb
2∞ = ξf

2∞+1,

ξb
2∞+1 = ξf

2∞.

• Computation of ǫ(t)

We have the following theorem:

Theorem 13 Given ξf
2∞, ξf

2∞+1, ξb
2∞ and ξb

2∞+1, the probability vector ǫ(t) of ex-
trinsic messages under the infinite base code assumption is calculated as follows

ǫ(t) =
1

2

[

(ξf
2∞ ⊡ ξb

2∞+1) ⊠ ι̂(t) + (ξf
2∞+1 ⊠ ξb

2∞) ⊠ ι̂(t)
]

Proof : Let ǫ
(t)
P and ǫ

(t)
X be the probability vectors of extrinsic messages for the

parallel trellis section and for the cross-like trellis section respectively. Then they
are computed as follows

ǫ
(t)
P (k) = (ξf

2∞ ⊡ ξb
2∞+1) ⊠ ι̂(t),

ǫ
(t)
X (k) = (ξf

2∞+1 ⊠ ξb
2∞) ⊠ ι̂(t), k = 0, . . . ,m.

The ((b, b)) base code containing the equal number of parallel and cross-like sections,
the probability vector ǫ(t) is simply

ǫ(t) =
ǫ
(t)
P + ǫ

(t)
X

2

Base code side operations for the family ((1, b))1

• Forward/backward stage
We define forward ξf and backward ξb state probability vectors as it is done in
Definition 29.
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As an example, in Fig.5.3 we depict the factor graph of the l-th concatenated trellis
T of the ((1, 2))1 code family containing a parallel (P) section of length 1 and a
cross-like (X) section of length 2 where parallel sections carry symbols of degree 1.
Black circles represent state edges of the trellis. Boxes represent symbols connected
to every trellis section.

P C

ξf
2l ξf

2l+1 ξf
2l+2

ξb
2l ξb

2l+1 ξb
2l+2

ι(0) ι(t) ι(t)

Figure 5.3: A l-th concatenated trellis T of the ((1, 2))1 code family and the location of
probability vectors.

For a cross-like trellis section we denote ι̃(t) and ι̂(t) to be

ι̃(t) = ⊠
b−1
i=0 ι

(t)
i ,

ι̂(t) = ⊠
b−2
i=0 ι

(t)
i .

Then on the forward/backward stage we can write following sets of equations:

ξf
2l+1 = ι̃(0) ⊡ ξf

2l

ξf
2l+2 = ι̃(t) ⊠ ξf

2l+1

and
ξb
2l = ι̃(0) ⊡ ξb

2l+1

ξb
2l+1 = ι̃(t) ⊠ ξb

2l+2

As we compute extrinsic messages for symbols of degrees > 1, we are only interested
in odd forward and even backward probability vectors.

Lemma 22 The following expressions hold for odd forward and even backward state
probability vectors

ξf
2l+1 = M lξf

1 , (5.10)

ξb
2l = M r−lξb

2r, (5.11)

the elements of M being the following:

M(i, j) =

{∑m
u=i B0(m, i, u)A(m,u, j) if 0 ≤ j ≤ i,

∑m
u=j B0(m, i, u)A(m,u, j) if i + 1 ≤ j ≤ m,

(5.12)

where A(m, i, u) =
∑i

v=i−u C⊠(m, i, u, v)ι(t)(v)

and B0(m,u, j) =
∑m+u−j

v=u C⊡(m,u, j, v)ι(0)(v).
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Proof : We have

ξf
2l+1 = ι̃(0) ⊡ (ι̃(t) ⊠ ξf

2l−1) = (ξf
2l−1 ⊠ ι̃(t)) ⊡ ι̃(0) = Mξf

2l−1,

ξb
2l = ι̃(0) ⊡ (ι̃(t) ⊠ ξb

2l+2) = Mξb
2l+2,

where M is the matrix of linear mapping R
m+1 7→ R

m+1 and is defined by (5.12).
We obtain (5.10) and (5.11) by recursion.

Using the same considerations as for the family ((b, b)), one can show that the matrix
M is irreducible, aperiodic and stochastic.

Lemma 23 Let ξf
2∞+1 and ξb

2∞ are stationary distribution vectors of M . Then

ξf
2∞+1 = ξb

2∞.

We compute ξf
2∞+1 and ξb

2∞ by solving the system of equations:







ξf
2∞+1 = Mξf

2∞+1
∑

k ξf
2∞+1(k) = 1

ξf
2∞+1 = ξb

2∞

• Computation of ǫ(t)

Theorem 14 Given ξf
2∞+1 and ξb

2∞, the extrinsic probability vector ǫ(t) under the
infinite base code assumption is calculated as follows

ǫ(t)(k) = ǫ
(t)
X (k) = (ξf

2∞+1 ⊠ ξb
2∞) ⊠ ι̂(t).

5.3.4 Results on thresholds

In this part we present obtained results of thresholds for families ((b, b)) and ((1, b))1.
We compute thresholds for ((b, b))-family with Λ(x) = x for different values of b and

m and present the obtained results in the table below as well as rates and capacity limits
pSh for different values of b.

For b = 2 the threshold gets worse with increasing the size of the alphabet. But for
b = 3 and b = 4 we have a slight improvement of the thresholds for m = 2 and after that
the threshold values begin to decrease.

In Table 5.2 we present thresholds of ((1, b))1-TLDPC code family with Λ(x) = 1/(b+
1) + bx/(b + 1) for different values of b and m.

In Table 5.3 we present the thresholds for (2,3) non-binary LDPC codes taken from
[74] and for (2,4) non-binary LDPC codes. Comparing them with the results of Table 5.2
we see that the thresholds for ((1, 1))1-TLDPC code family coincide with the thresholds
of (2,3) LDPC codes up to the third digit and so do the ((1, 2))1-TLDPC codes with
the (2,4) LDPC codes. At the same time, it can be easily verified that in the binary
case the threshold of the (2,3) LDPC code ensemble coincides with the threshold of the
((1, 1))1-TLDPC code ensemble as well as the threshold of the (2,4) LDPC code ensemble
coincides with the threshold of the ((1, 2))1-TLDPC code ensemble. Thus, the difference
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H
H

H
H

HH
m

b
2 3 4

1 0.4529 0.2986 0.2215

2 0.4489 0.3005 0.2252

3 0.4372 0.2932 0.2200

4 0.4227 0.2828 0.2121

rate 1/2 2/3 3/4

pSh 0.5 1/3 0.25

Table 5.1: Thresholds of ((b, b))-TLDPC code family over F2m with Λ(x) = x for different
values of b and m.

H
H

H
H

HH
m

b
1 2

1 0.5 1/3

2 0.5774 0.4096

3 0.6184 0.4506

4 0.6369 0.4681

5 0.6445 0.4742

6 0.6465 0.4747

7 0.6453 0.4724

rate 1/3 1/2

Table 5.2: Thresholds of ((1, b))1-TLDPC code family over F2m with Λ(x) = 1/(b + 1) +
bx/(b + 1) for different values of b and m.

P
P

P
P

P
P

P
PP

m
(c, d)

(2,3) (2,4)

1 0.5 1/3

2 0.5775 0.4094

3 0.6183 0.4506

4 0.6369 0.4680

5 0.6446 0.4742

6 0.6464 0.4742

7 0.6453 0.4723

rate 1/3 1/2

Table 5.3: Thresholds of non-binary (2,3) and (2,4) LDPC codes for different values and
m.

106



in thresholds of LDPC and TLDPC codes can be due to the slow convergence in threshold
computations. To verify this, we fix m = 4 and do 10000 of iterations for the (2,3)
LDPC cycle code ensemble and 1000 iterations for the ((1, 1))1 TLDPC code ensemble; the
computations are made with the Maple precision of 30 digits for floating-point numbers.
We obtain the same value of threshold pth = 0.63684 for both of them.

We conjecture that the thresholds of (2,3) LDPC and ((1, 1))1-TLDPC code ensembles,
as well as of (2,4) LDPC and ((2, 1))-TLDPC code ensembles are the same.

5.3.5 EXIT chart for the (2,3) LDPC code ensemble and the ((1, 1))1-
TLDPC code ensemble

The important difference between ensembles of 2-regular non-binary LDPC codes and
ensembles of ((1, b))1-TLDPC codes is the existence of symbols of degree 1 in the structure
of ((1, b))1-TLDPC codes which has a positive effect on the entropy curve of the base
code and on iterative decoding performances of the code ensemble. In this subsection we
illustrate the positive effect of symbols of degree 1 on entropy curves of a code ensemble
comparing entropy curves of the (2,3) LDPC binary code ensemble and the ((1, 1))1-
TLDPC binary code ensemble in the binary case.

For the binary (2,3) LDPC code ensemble the entropy curve of the base code (which
is the parity code [3,2,2]) is described by the simple expression

g[3,2,2](x) = 1 − (1 − x)2.

The expression for the entropy curve of the ((1, 1))1-TLDPC base code can also be found
analytically, and it is done in Appendix D.3. Finally, if p is the erasure probability of
the transmission channel, then the entropy curve of the ((1, 1))1-TLDPC base code is
expressed as

gB(x, p) = 1 −
(

1 − p

1 − p(1 − x)

)2

.

The entropy curve of variable nodes for both code ensembles is simply

h(x) = x/p.

h(x) = x/p, g[3,2,2](x) and gB(x, p) for p = 1/2 are presented in Fig.5.4.

It can be shown that entropy curves of both base codes are concave, and, given that
the entropy curve of variable nodes for 2-regular code ensembles is a straight line, in the
limit case of p = pth it is a tangent to the corresponding entropy curve of the base code.
It can be also shown that the tangent of entropy curves of both base codes is y = 2x and
thus, both code ensembles have threshold pth = 1/2 in the binary case.

We can see that the entropy curve of the base code of the ((1, 1))1 TLDPC family

- is equal to 1 − (1 − p)2 < 1 for x = 1 and p < 1,

- is always below the entropy curve of the base code of the (2,3) LDPC family (see
Fig.5.4), which will imply the faster convergence of the iterative decoding for the
TLDPC codes,
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Figure 5.4: Entropy curves for base codes of the (2,3) LDPC code ensemble and of the
((1, 1))1-TLDPC code ensemble and its entropy curves of variable nodes for p = 1/2.

- depends on the channel noise so that the area A between the entropy curves of the
base code and of variable nodes gets larger when the channel noise decreases and
that the area derivative dA/dp for TLDPC entropy curves is strictly greater than for
LDPC entropy curves. Roughly speaking, this means that for channel noise values
close to the threshold (waterfall region) the bottleneck between entropy curves for
TLDPC ensemble is larger than for LDPC one which implies that the number of
successful decodings for TLDPC codes is greater. This is demonstrated in Fig.5.5:
not only the entropy curve of variable nodes moves away by enlarging the bottleneck
(and which is also the case for LDPC code ensembles) but the entropy curve of the
base code does the same.

5.3.6 Convergence of the (2,3) LDPC code ensemble and of the ((1, 1))1-
TLDPC code ensemble

In this subsection we demonstrate that the convergence of iterative decoding of binary
TLDPC codes with bits of degree 1 is faster than the convergence for cycle codes.

To compare the convergence of a 2-regular LDPC code ensemble and a corresponding
TLDPC code ensemble with bits of degree 1, we take as an example the (2,3) LDPC
ensemble and the ((1, 1))1 TLDPC code ensemble and we compute the number of iterations
of the density evolution necessary for each of them to attain a fixed bit error probability
Pb. The comparison is performed for p at which several dozens of iterations are needed
for TLDPC decoding (in our examples p = 0.6 . . . 0.64) and for p close to the iterative
decoding threshold.

In Fig.5.6 the comparison is made for m = 4 and Pb = 10−4. Recall that the threshold
of both code ensembles is equal to 0.63684.
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Figure 5.5: Entropy curves for the base code of the ((1, 1))1-TLDPC code ensemble and
their entropy curve of variable nodes for p = 1/2 and for p = 1/3.
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Figure 5.6: Average number of iterations necessary to attain the bit error probability
Pb = 10−4 as a function of the erasure channel probability p for the ((1, 1))1 TLDPC and
(2,3) LDPC code ensembles, m = 4.

In Fig.5.7 we compare two code ensembles for m = 7 and Pb = 10−5. The threshold
in this case is 0.64530. For m = 4 and p = 0.6 . . . 0.63 the number of iterations of LDPC
decoding is from 2.67 to 2.9 times greater than for TLDPC decoding. For m = 7 and
p = 0.6 . . . 0.64 the respective figures are 2.57 and 2.8. In both examples, for p close to
the iterative decoding threshold the TLDPC code ensemble needs at least three times less
iterations than the LDPC one. The smaller number of iterations for TLDPC codes is due
to the fact that the entropy curve of the TLDPC base code is below the entropy curve of
the LDPC base code and, moreover, the entropy curve of the TLDPC base code moves
below with decreasing of the channel noise.
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Figure 5.7: Average number of iterations necessary to attain the bit error probability
Pb = 10−5 as a function of the erasure channel probability p for the ((1, 1))1 TLDPC and
(2,3) LDPC code ensembles, m = 7.

5.3.7 ((1, b))1 TLDPC codes as irregular LDPC codes with a large frac-
tion of symbols of degree 2

In this section we show that binary TLDPC codes with bits of degree 1 can be presented
as binary LDPC codes which have at least two degree-2 bits per each parity-check equa-
tion. The same result holds in the non-binary case. The fact that the same code can
be represented both in LDPC and TLDPC form gives us another decoding algorithm for
irregular LDPC codes of this structure, they can be decoded like TLDPC codes and thus
can have a faster convergence and a better performance in the waterfall region.

We have the following theorem:

Theorem 15 Consider a binary ((1, R(x)))1 TLDPC code5 with degree distribution of
variable nodes L(x) =

∑s
i=1 lix

i−1, where R(x) =
∑t

j=1 rjx
j−1, rj is the fraction of cross-

like sections of length j. Let the TLDPC base code be of length m and thus consists of
l1m local codes. Then it can be represented as an irregular LDPC code with respective
degree distributions of variable nodes and of check nodes L′(x) =

∑s
i=2 l′ix

i−1 and R′(x) =
∑t

j=1 rjx
j+1, where l′2 = l1 + l2, l′i = li for i > 2 and the Tanner graph of which contains

a cycle formed by l1m variable nodes of degree 2.
Proof : Consider the tail-biting trellis of the ((1, R(x)))1 TLDPC base code. Let the
parity of bits of a cross-like section of length j be Pj and let u1 and u2 be the bits of
two parallel sections of length 1, neighboring with the given cross-like section. Then the
following parity holds

u1 + Pj = u2.

By writing similar expressions for all cross-like trellis sections, we obtain a set of l1m
parity equations which define the TLDPC base code.

We associate a parity node to each parity equation and we construct the corresponding
Tanner graph. Note that each of l1m bits of degree 1 (the bits being carried by parallel
sections) participate in exactly two parity equations, so their corresponding variable nodes
have degree 2 and form a cycle of length l1m in the Tanner graph. Any other bit of the
TLDPC code of degree i, 2 ≤ i ≤ s, participates in i different parity equations and thus,
its corresponding variable node is of degree i and is connected to different parity nodes.

5by abuse of notation R(x) denotes the distribution of cross-like sections of different lengths and not
the length of cross-like sections
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In other words, we obtained the Tanner graph of an irregular LDPC code with the
degree distributions L′(x) and R′(x), which contains a cycle of length l1m formed by
variable nodes of degree 2 and all l1m parity nodes.

It can be easily proven that the inverse is hold: a binary irregular LDPC code with at
least two bits of degree 2 per parity-check equation can be represented as a TLDPC code
with bits of degree 1.

It is straightforward to show that the same result holds in the non-binary case.

Recall that an TLDPC code is decoded in two stages, one of which consists to calculate
extrinsic messages of the symbols of the base code and another one consists to update
intrinsic messages at variable nodes. The fact that an irregular LDPC code with a cycle
with degree-2 variable nodes in its Tanner graph can be represented as a TLDPC code
with symbols of degree 1 implies that the corresponding LDPC code can be also decoded
in similar, TLDPC-like, way: first, the decoding on the cycle is performed and extrinsic
messages for symbols not included in the cycle are calculated, then the updating of intrinsic
messages of these symbols are performed at variable nodes [32].

For binary (2, b + 2)-regular LDPC codes the following theorem holds:

Theorem 16 The entropy curve of the base code of an (2, b + 2)-regular LDPC code is
always under the entropy curve of its corresponding ((1, b))1 TLDPC code with bits of
degree 1.

Proof I: t easy to show that the entropy curve of the base code of the (2, b + 2)-regular
LDPC code ensemble is described by

h(x) = 1 − (1 − x)b+1.

It can be also shown that the entropy curve of the ((1, b))1 TLDPC code ensemble is

g(x) = 1 −
(

1 − px
∑b−1

i=0 (1 − x)i

1 − p(1 − x)b

)2

,

0 < x < 1 and p is the erasure channel probability.

We have

(1 − x)b+1 ≤
(

1 − p
1 − (1 − x)b−1

1 − p(1 − x)b

)2

≤
(

1 − p

1 − p(1 − x)b

)2

≤
(

1 − p

1 − p(1 − x)b+1

)2

.

By setting y = (1 − x)b+1 and solving the cubic equation, we obtain that y ≤ z, where

z = 1
p

(

1 − 0.5p + 0.5
√

4p − 3p2
)

. So, b + 1 ≥ ln z
ln(1−x) . Note that ln z ≥ 0 for 0 ≤ p ≤ 1

and ln(1 − x) ≤ 0 for 0 ≤ x ≤ 1. Thus, b ≥ C with C ≤ −1.

Theorem 16 implies better convergence and performances for the TLDPC code, the
decoding of (2, d)-regular LDPC codes using cycles in its Tanner graph is always the best
strategy of decoding to obtain better performances and convergence.

It is also curious to remark that thresholds of non-binary cycle codes decoded in LDPC-
and turbo-like way coincide for any alphabet size while two decoding algorithms are dif-
ferent.
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5.3.8 Performance of some families of non-binary TLDPC codes

We study the performances of ((2, 2))-TLDPC codes with Λ(x) = x over two alphabets,
F4 and F8. For the linear bijective mapping we have taken the multiplicative operation
over Fq i.e. x 7→ g · x.

Over F4

For a trellis section of the ((2, 2))-TLDPC code let (gixi, gi+1xi+1) be the pair of symbols
on its branches, xi being the symbols from variables nodes and gi - the edge labels, i is
the number of trellis section. Assume without loss of generality that gi = 1.

With the aim to study performance of different ((2, 2))-TLDPC base codes, we study
the performances of ((2, 2))-TLDPC codes as a function of the gi+1’s. Note that the case
gi+1 = 1 corresponds to the binary code of length twice the length of the code over F4.

We present the performance of codes of length 1000 and of rate 1/2 having different
values of gi+1 and we compare it with the performances of the binary code of length 2000
and of rate 1/2 as if it were in the case gi+1 = 1. In our simulations gi+1 can be constant
for every section or belongs to a pattern repeated periodically. We can see that in average
there is 0.2 − 0.25 dB of improvement in comparison with the binary code twice as long.
The best ((2, 2))-TLDPC code over Fq seems to be the one with gi+1 = 2.

0 0.5 1 1.5 2
Eb�No, dB

-7

-6

-5

-4

-3

-2

-1

0

B
E

R
,

W
E

R

WER, g=3,2

BER, g=3,2

WER, g=2,3

BER, g=2,3

WER, g=1,3

BER, g=1,3

WER, g=1,2

BER, g=1,2

WER, g=2

BER, g=2

WER, @2000,1000DGFH 2 L

BER, @2000,1000DGFH 2 L

Figure 5.8: Performance of codes with parameters [1000,500] and Λ(x) = x over F4 with
different coefficients gi+1 = g on trellis sections.

The maximum number of iterations was fixed to 100. However, the average number
of iterations for a family-((2, 2)) code of length 1000 and of rate 1/2 over F4 is 19 for
WER = 0.2034 and 9 for WER = 7.1 · 10−3.

Then we plot WER vs. SNR for codes with parameters [1000,500], [672,336] and
[502,252] over F4, gi+1 = 2 in Fig.5.9. We can see that the threshold of this family seems
to be about 0.7 dB.
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Figure 5.9: WER vs. SNR of codes [1000,500], [672,336] and [502,252] over Fq, gi+1 = 2,
Λ(x) = x.

In Fig. 5.10 we present the reference curves from [77] and we compare them with the
performances of [504,252] over Fq. We can see that in the waterfall region this simple
((2, 2))-TLDPC code with only degree-2 variable nodes has a similar behaviour to the
best irregular binary PEG code from [77]. It also outperforms by 0.4 dB the equal length
binary code of Mackay as well as the PEG cycle code over F4.
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Figure 5.10: WER vs. SNR of the code [502,252] over Fq, gi+1 = 2, Λ(x) = x compared
with the binary code of Mackay [1008,504], PEG cycle [504,252] code over Fq and PEG
binary irregular code with parameters [1008,504].

Over F8

We present the performances of codes over F8 of rate 1/2 and of lengths 1000, 672, 336
and with gi+1 = 2 in Fig.5.11. We can see that the threshold is 0.75 dB.

In Fig.5.12 we compare the ((2, 2))-TLDPC code [672,336] over F8 with the cycle
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Figure 5.11: Performances of codes of rate 1/2 and of length 1000, 672 et 336 over Fq,
Λ(x) = x.

PEG code of the same parameters and with irregular binary PEG code [1008,504]. The
performance of the 2-regular ((2, 2))-TLDPC code [336,168] constructed over F8 is only
0.05 dB worse in the waterfall region than performances of the irregular binary PEG code
[1008,504] and of the irregular PEG code [336,168] over F8. Comparing the 2-regular
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Figure 5.12: WER vs. SNR of the ((2, 2))-TLDPC code [672,336] with Λ(x) = x and of
the cycle [672,336] PEG code over F8.

((2, 2))-TLDPC code [672,336] and the PEG cycle code [672,336] both constructed over
F8 (see Fig.5.13), we observe that the performance of the ((2, 2))-TLDPC code is 0.8 dB
better at WER = 10−2, and, in contrast to the PEG cycle code, the ((2, 2))-TLDPC code
does not show the error-floor till WER = 2 · 10−4.

We compare a ((2, 2))-TLDPC [336,168] code over F8 and a ((2, 2))-TLDPC code
[504,252] over F4 in Fig.5.14, α2 = 2, Λ(x) = x. Performances of both codes in the
waterfall region are similar, however, the code over F8 does not suffer from an error-floor
which begins at WER = 10−4 for the code over F4.
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Figure 5.13: WER vs. SNR of the ((2, 2))-TLDPC [336,168] code over F8 with Λ(x) = x
compared to the irregular PEG [336,168] code over F8.

1 1.5 2 2.5 3
Eb�No, dB

-7

-6

-5

-4

-3

-2

-1

0

B
E

R
,

W
E

R

BER, @336,168DT-LDPC, GFH 8 L, g=2

WER, @336,168DT-LDPC, GFH 8 L, g=2

BER, @504,252DT-LDPC, GFH 4 L, g=2

WER, @504,252DT-LDPC, GFH 4 L, g=2

Figure 5.14: WER vs. SNR of codes ((2, 2))-TLDPC [336,168] over F8 and [504,252] over
F4, Λ(x) = x.
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5.4 Analysis of LDPC codes over Fq having a small constant
fraction of symbols of degree 1

We study an ensemble of family of non-binary LDPC codes defined over Fq with a small
constant fraction of symbols of degree 1. We suppose q = 2m and we consider that a linear
bijective mapping f : Fq 7→ Fq is associated to each edge of the corresponding bipartite
graph.

Consider a non-binary LDPC code ensemble defined by left and right degree distri-
butions λ(x) = λ1 + (1 − λ1)x and ρ(x) = xd−1. Note that the fraction λ1 of edges of
degree 1 is non-zero. The minimum distance of such a code ensemble is typically constant
since there is typically a constant number of variable nodes of degree 1 and any path in
the q-ary Tanner graph connecting two variable nodes of degree 1 between them is a valid
configuration of a codeword. However, the interest of this code ensemble is that on large
fields the iterative decoding threshold for a given bit erasure probability (say, of order
10−3 . . . 10−4) is better than the threshold of the cycle code family with ω ∈ F2m \ {0}
from [55].

Note that if the permutation is chosen at random in this
case, there will be λd

1 check nodes connected to variable
nodes of degree 1 only, so messages of the variable nodes
will not change during decoding process. To avoid such
configurations one need to make a structured choice of
permutation. This gives us a multi-edge structure with
two types of edges, those connected to variable nodes of
degree 1 and those connected to variable nodes of degree
2. In the figure at right we present an example of the
structure for d = 4. Circles in the figure are variable
nodes and ⊕ are check nodes. Edges of two types are
showed by dotted and straight lines correspondingly.

Thus, check nodes are of d types, the check node of type i being connected to i variable
nodes of degree 2. We choose the proportion ai of check nodes of type i to be

ai =

(d
i

)
λd−j

1 (1 − λ1)
j

1 − λd
1

which corresponds to the expected number of check nodes of degree i in the case when the
edge matching is chosen at random and the configurations of check nodes connected to d
variable nodes of degree 1 are forbidden. Proportions of variable nodes of degree 1 and 2
are 2λ1

1+λ1
and 1−λ1

1+λ1
.

We consider the density evolution for the multi-edge code ensemble. Assume the
transmission over binary erasure channel with erasure probability p and perform a belief
propagation decoding at the receiver end. During an iteration t we compute extrinsic
messages E(t) of symbols and then we update intrinsic ones I(t). We note that the messages
in the belief propagation decoder are vectors of length q. For a given symbol i of the

base code we denote the k-th component of the message E
(t)
i (I

(t)
i ) as E

(t)
i (k) (I

(t)
i (k)),

k = 0, . . . , q−1, and this component is equal to the posteriori probability that the symbol
is k.
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5.4.1 Code rate as a function of λ1

For a non-binary LDPC code ensemble with a fraction λ1 of symbols of degree 1, a fraction
λ2 = 1−λ1 of symbols of degree 2 and with edge labels taken at random from {0, . . . , 2m−
1}, we define left and right degree distributions λ(x) and ρ(x) as following:

λ(x) = λ1 + (1 − λ1)x

ρ(x) = xd−1

So, the design rate of the code ensemble is a function of λ1 and is equal

R = 1 − 2

d(λ1 + 1)
.

5.4.2 Density evolution equations

The transmission is made over the BEC with the erasure probability p, initial intrinsic
messages probability vector ι(0) is equal to

ι(0)(k) =

(
m

k

)

pk(1 − p)m−k, 0 ≤ k ≤ m.

Lemma 24 For a non-binary LDPC code with a constant fraction λ1 of symbols of degree
1, a fraction λ2 = 1− λ1 of symbols of degree 2 and the constant degree d of parity nodes,
the average extrinsic probability vector ǫ(t) and the average intrinsic probability vector ι(t)

at the t-th iteration are computed as follows

ǫ(t) =
d + 1

2(1 − λd
1)

d∑

j=1

j

d

(
d

j

)

λd−j
1 (1 − λ1)

j (⊠j−1ι(t−1)) ⊠ (⊠d−jι(0)),

ι(t) = ǫ(t)
⊡ ι(0),

where ⊠
jg = g ⊠ g . . . ⊠ g

︸ ︷︷ ︸

j times

.

The a posteriori probability vector ι̂(l) after l iterations is

ι̂(l) = ǫ(l)
⊡ ǫ(l)

⊡ ι(0).

Recall that the i-th element of ι̂(l) denotes the probability that the a posteriori mes-
sage of m bits has k non-zero bits after iterative decoding. Having ι̂(l), the bit erasure
probability after l decoding iterations is given by

P (l)
e =

1

m

m∑

i=1

nm(i)ι̂(l)(i),

where nm(i) is the average number of erased bits in a symbol of m bits given that it
belongs to a random space of dimension i,

nm(i) =

m∑

j=i

bm(i, j)

am(i)
(m − j),
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am(i) being the total number of vector subspaces of dimension i of a vector space of

dimension m, am(i) =

[
m
i

]

2

, and bm(i, j) being the number of vector subspaces of

dimension i with support of size j of a vector space of dimension m.

Below we give several examples for nm(i).

Example

For i = 1, am(1) = 2m − 1 and bm(1, j) =
(m

j

)
. Thus, we have

nm(i) =
m

2
(1 − 1

2m − 1
).

3

Example

For i = 2, am(2) =

[
m
2

]

2

and

bm(2, j) =

∑j−1
i=1

(m
i

)(m−i
j−i

)
2i +

(m
j

)
(2j − 2)

(22 − 1)(22 − 2)
.

We obtain that

nm(2) = m
4m−1 + 2m

4m − 3 · 2m + 2
.

3

5.4.3 Obtained thresholds

As nm(i) ≤ m, we can denote

P̂e =
ι̂(1)

2
(1 − 1

2m − 1
) +

4m−1 + 2m

4m − 3 · 2m + 2
ι̂(2) +

m∑

i=3

ι̂(i)

to be an upper bound on the bit erasure probability after iterative decoding. This bound
is often tight as in practice the values of ι̂(i) decay quickly with i.

In this section we compute iterative decoding thresholds of modified cycle codes for
different values of λ1 and for P̂e = 10−3.

In Fig.5.15 we present an example of how the iterative decoding threshold of an LDPC
code family changes with the fraction of symbols of degree 1. In this example the LDPC
code family is over F

7
2 and has degree distributions λ(x) = λ1 + (1 − λ1)x and ρ(x) = x3.

We see that the iterative decoding threshold pth decreases gradually up to some critical
value of λ1 and than goes down rapidly. Compared to the maximum achievable threshold
pSh as a function of λ1 (and R 6), pth is more closer to pSh for the critical value of λ1.

In Table 5.4 we present rates R and iterative decoding thresholds pth of non-binary
LDPC codes over F

5
2, F

6
2 and F

7
2 for their corresponding critical values of λ1. Presented

code families have d = 3 and d = 4.

6see Appendix E.1
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0,5 0,5025 0,505 0,5074 0,5098 0,5122 0,5147

λ1

pSh

R

pth

Figure 5.15: Thresholds of non-binary LDPC codes with λ(x) = λ1 + (1 − λ1)x and
ρ(x) = x3 for P̂e = 10−3 and over F

7
2 as a function of λ1.

d = 3
m λ1 R pth pSh

5 0.0055 0.337 0.6423 0.6644
6 0.0075 0.3383 0.6442 0.662
7 0.009 0.3393 0.6432 0.6611

d = 4
m λ1 R pth pSh

5 0.0122 0.506 0.4708 0.4945
6 0.0173 0.5085 0.471 0.492
7 0.0223 0.5112 0.4685 0.4896
8 0.0273 0.5133 0.4647 0.467
9 0.0332 0.5161 0.4602 0.4626

Table 5.4: Thresholds pth of non-binary LDPC codes with λ(x) = λ1 + (1 − λ1)x and
ρ(x) = xd−1 for P̂e = 10−3 over F

m
2 .
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Chapter 6

Conclusions and perspectives

6.1 Conclusions

This thesis is a contribution on how close we can approach the channel capacity with
asymptotically good code ensembles which is known to be a non-trivial problem [53].

We focus on the construction of a code family having good performances in both high
and low SNR regions under iterative decoding of low complexity. Our approach for this
purpose is to construct a family of asymptotically good codes with large fraction of bits
(symbols) of degree 2. We have also tried to include bits (symbols) of degree 1 which
seems to improve the performances in the waterfall region and decrease the number of
decoding iterations.

We begin with a general construction which covers both turbo codes and LDPC codes
and we optimise its parameters in order to obtain good performances under iterative
decoding. The structure of the code family which has been studied is defined using two
components: a base code and a bipartite graph. In the particular case when the base
code of a code family is represented by a tail-biting trellis, it is called Tail-biting LDPC
(TLDPC) code family.

There are two constraints to be set if we want to construct a family of asymptotically
good codes:

- a special graph called the graph of codewords of (partial) weight 2 must have no
cycles of sublinear size,

- one has to pay a special attention to the number of codewords of weight 2 and 3 in
the base code.

For one of presented TLDPC codes families (namely, family A) the property of being
asymptotically good was proven under condition that its corresponding graph of codewords
of weight 2 has no cycles. All the other presented code families are conjectured to be
asymptotically good.

Binary TLDPC codes have a low complexity of iterative decoding due to their simple
base code and a large fraction of degree-2 variable nodes in their structure. Iterative
decoding thresholds of TLDPC codes with bits of degree 1, the degree distributions of
which were optimised for rates 1/3 on the Gaussian channel, are located at most 0.2 dB
from the channel capacity. The performances of TLDPC codes at rates 1/3 and 1/2 beat
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the ones of standard turbo-codes for code lengths of several thousand and are comparable
with the performances of multi-edge LDPC codes.

It is a difficult task to construct LDPC codes of low rates. The proposed TLDPC code
of rate 1/10 has high performances under iterative decoding and is one of the best low-rate
code presented by now.

An error-floor region was observed for one of the TLDPC codes at WER = 10−6. It
was found out that it is due to trapping sets in its structure. The study showed that
typical trapping configurations have more complicated structure that configurations for
LDPC codes, and that they also have greater size. A method to estimate the error-floor
of TLDPC codes with the help of typical trapping configurations was proposed.

We also explored non-binary TLDPC codes with and without symbols of degree 1.
We calculated the iterative decoding thresholds of several code ensembles using density
evolution.

We noticed that any irregular LDPC code, binary or not, having at least two symbols
of degree 2 in each parity-check equation can be represented as a TLDPC code with a
non-zero fraction of symbols of degree 1. Such a TLDPC representation gives us another
way of decoding of the LDPC codes when their parity checks nodes in the Tanner graph
can be arranged in cycles containing only degree-2 variable nodes. The advantage of the
new decoding algorithm is its very fast convergence. Typically, it requires from 2 to 3
times less iterations than a standard decoding algorithm for LDPC codes.

We also noticed that the thresholds of some non-binary TLDPC code families coincide
with thresholds of cycle codes for different alphabets.

We present the performances of several TLDPC codes over F4 and F8. These codes,
having a very simple structure, have very good performances and have a significantly
steeper waterfall region in comparison to binary codes.

We study iterative decoding thresholds of modified non-binary cycle codes with a small
constant fraction of symbols of degree 1. The bit error probability of such codes is kept
below some fixed value, say 10−3. The presence of symbols of degree 1 increases the rate
of the code ensemble. Even if the minimum distance of modified cycle codes is constant,
their iterative decoding threshold becomes closer to the theoretical limit. For example,
for modified (2,4) cycle codes over F64 with the fraction of symbols of degree 1 equal to
0.0173, the rate of the code ensemble is 0.5085 the obtained iterative decoding threshold
is 0.021 from the theoretical limit.

6.2 Future work

In continuation of this work, there are a number of problems that can be the subject of
future research. Here is a short list of some of the possible directions.

- We explored the code families of rates 1/10− 1/2. It remains to investigate TLDPC
code families of higher rates.

- We did not discuss the encoding of TLDPC codes. It is easy to show that the codes
of family A with λ2 = 1 are linearly encodable. It is interesting to study if the linear
encoding is possible for other TLDPC code families.
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- To find simple criteria of being asymptotically good for codes with more complicated
structures than LDPC codes.

- To show formally the impact of bits of degree 1 in the structure of a code.

- To show formally the impact of larger alphabets on the code performances.

- To construct good codes with symbols of degree 1 over larger alphabets.
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Appendix A

A.1 APP modified decoding algorithm

The Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [9, 75], is used to decode a code of length
n when it is presented by a trellis. The input of the algorithm is conditional probabilities
p(yi|xi), 0 ≤ i ≤ n−1, computed at the channel output, xi represents the value of the i-th
bit sent to the channel and yi represents the corresponding received value. The output
of the algorithm is A Posteriori Probabilities of bits. Because of it the algorithm is also
called APP.

In this section we propose a modification of the algorithm which outputs the extrinsic
probabilities pi = P(xi|y0, y1, . . . , yi−1, yi+1, . . . , yn1) of the i-th bit, 0 ≤ i ≤ n − 1. We
also suppose that the trellis of a given code is tail-biting with constant number of states
and that each trellis section contains nb bits, nb > 1. Let bi =

{
x1

i , . . . , x
nb

i

}
to be the

ensemble of bits of the i-th section.

We define the variables used during the algorithm description:

Input variables:
nb: number of bits in a trellis section;
nsections = n

nb
: number of trellis sections;

nstates: number of trellis states;
p(yj

i |x
j
i ): conditional probability of the j-th bit of the i-th trellis section on the channel

output, j = 1, . . . , nb, i = 1, . . . , nsections;
qi(m,m

′
): 1 if for the i-th section there exists the transition between states m and m

′
, 0

otherwise, m = 1, . . . , nstates, m′ = 1, . . . , nstates.

Output variables:
σj

u,i(m,m′): extrinsic probability of the j-th bit for the transition m → m′ in the i-th
trellis section given the initial trellis state u;
pj

i : extrinsic probability of the bit xj
i .

Intermediate variables:
j: number of the bit within the section, j = 1, . . . , nb;
i: section number, i = 1, . . . , nsections;
Si: trellis state at the i-th section output;
xi = (x1

i , . . . , x
nb

i ): ensemble of bits of the i-th trellis section;

xj
i = (x1

i , . . . , x
j−1
i , xj

i , . . . , x
nb

i ): ensemble of bits of the i-th trellis section excluding the
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j-th bit;
γi(m,m

′
) = P(Si = m

′
,xi|Si − 1 = m): m → m′ transition probability of the i-th trellis

section;
γ̄j

i (m,m
′
) = P(Si = m

′
,xj

i |Si−1 = m): extrinsic probability of the transition m → m′ for
the i-th trellis section;
αu,i(m) = P(Si = m|{xk}i

k=1, S0 = u): probability of the state m given observations from
1 to i and the initial trellis state u;
βu,i(m) = P(Si = m| {xk}N−1

k=i+1 , Snsections
= u): probability of the state m given observa-

tions from i + 1 to N − 1 and the final trellis state u.

The algorithm proceeds in four stages: on the first stage initial values of α and β are
fixed. As the trellis is tail-biting, S0 = Snsections

.
A principal part of the BCJR algorithm contains forward and backward procedures

to compute α and β. We do this using transition probabilities γ. On the next stage,
sigma are evaluated using corresponding probabilities α and β and extrinsic transition
probabilities γ̄. Finally, bit extrinsic probabilities are computed.

The operations performed during the stages of the modified APP algorithm are pre-
sented below:

Initialisation

αu,i(m) =

{
1 if m = 0 and i = u,
0 otherwise.

u = 1 . . . nstates

βu,i(m
′) =

{
1 if m′ = nsections − 1 and i = u,
0 otherwise.

u = 1 . . . nstates

Transition probabilities computation:
γi(m,m′) = qi(m,m′)

∏nb

k=1 P (yk
i |xk

i )

γ̄j
i (m,m′) = qi(m,m′)

∏nb

k=1,k 6=j P (yk
i |xk

i )

Forward procedure
αu,i(m

′) =
∑

m γi(m,m′)αu,i−1(m) i = 1 . . . nsections u = 1 . . . nstates

Backward procedure
βu,i(m) =

∑

m′ γi+1(m,m′)βu,i+1(m
′) i = nsections − 1 . . . 0 u = 1 . . . nstates

Computation of σj
u,i(m,m′)

σj
u,i(m,m′) = αu,i−1(m)γ̄j

i (m,m′)βu,i(m
′)

Extrinsic probabilities computation

pj
i =

∑

u,m,m‘|xj
i
σj

u,i(m,m′) u,m,m′ = 1, . . . , nstates
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Appendix B

B.1 Optimisation of the degree distribution Λ(x) to max-

imise the iterative decoding threshold

It is well known that such irregular codes may perform much better with respect to iterative
decoding than their regular counterparts. This holds for LDPC codes [47, 48, 57, 22] as
well as for other families of graph-sparse codes such as TLDPC codes, turbo-codes or for
repeat-accumulate codes [42, 34, 15]. We discuss the Λ(x) optimisation of the general
construction (see Section 3.2). Two principal points of the optimisation are

1. To fix the level of noise and to maximise the code rate of given code ensemble as a
function of λi.

2. Such an optimisation can be written as a linear programming problem.

To understand the second point, let us consider that the entropy curve of the base code
can be described by the function y = f(x) and that different entropy curves associated

to degree distributions of constant degrees Λd(x)
def
=xd−1 can be described by equation

x = gi(y). So, the entropy curve associated to the degree distribution Λ(x) =
∑

i λix
i−1

can be expressed as x =
∑

i λigi(y). We make a hypothesis that the iterative decoding
converges with the probability tending to 1 with the codelength if and only if the entropy
curve of variable nodes is above the entropy curve of the base code. From this it follows
that when the iterative decoding converges, we have (see Fig.B.1)

∀x ∈ [0, 1]
∑

i

λigi(f(x)) ≤ x (B.1)

The maximum code rate is equal to

R = 1 +
Rb − 1
∑

i
λi

i

with Rb to be the rate of the base code. Thus, we want to maximise the quantity

ρ(Λ)
def
=
∑

i

λi

i
.

This constitutes a linear programming problem in infinite space.
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y=f(x)

x

f(x)
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degree distribution

Figure B.1: Illustration of inequality (B.1)

In general, the entropy curve of the base code will be obtained experimentally and we
will only have in our disposition an approximation fapprox of the function f(x) for a small
number E of discrete values. So, we have to solve the following problem

Maximise
∑

i
λi

i given

∀x ∈ E
∑

i λigi(fapprox(x)) ≤ x.

B.2 Optimisation of degree distributions for the binary era-

sure channel

B.2.1 Entropy curves of base codes for families A and B

Both local codes of families A and B can be presented by two trellis sections, parallel-like
and cross-like, each of length 2 and 3 respectively. Denote the length of one trellis section
by a. Thus, we have m/(2a) local codes if the base code of family A or B is of length m.
Consider n-th local code in the base code (see Fig.B.2.1).

p p p p p p p p p p p p p p
p p

p p
p p

p p
p p

pp p p p p p p p p p p p p

i0

i1

i0

i1

i0

i1

C0

C1

C0

C0

C1

C1

P2n P2n+1 P2n+2

A: a = 2, C0 = {00, 11}, C1 = {10, 01}

B: a = 3,
C0 = {000, 011, 101, 110},
C1 = {001, 010, 100, 111}

Figure B.2: n-th local code of the base code of the family A or B.

Let x the bit erasure probability, so the probability p that all the bits of a section are
erased is equal to p = 1− (1− x)a. In the same way, the probability q that for a given bit
all its neighbour bits in the section are erased is q = 1 − (1 − x)a−1. For a local code n
denote the pair of probabilities {P2n+1, P2n+2}, n = 0, 1, . . . ,m/(2a) − 1, where Pi is the
state erasure probability on the output of the section i − 1 of the base code.

Using BCJR decoding procedure on the trellis of the base code, we compute analytical
expressions for extrinsic probabilities of bits of the base code. On the forward stage we
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obtain that
{

P
(f)
2n+1 = pP2n

P
(f)
2n+2 = (1 − p)P2n+1 + p

P0 = 0, n = 0, 1, . . . ,
m

2a
− 1.

We can rewrite these expressions as follows
{

P
(f)
2n+2 = p(1 − p)P2n + p n = 0, 1, . . . , m

2a − 1

P
(f)
2n+3 = p(1 − p)P2n+1 + p2 n = 0, 1, . . . , m

2a − 1

Note that P
(f)
2n+2 = p(1 − p)P2n + p is a linear recursion of the first order with the zero

first coefficient. To find the solution of the recursion by using, for example, Theorem 2.1
of [63], we obtain that

P
(f)
2n+2 = p

∑

1≤i≤n+1

[p(1 − p)]n+1−i = p1,

where we denote p1 = p1−[p(1−p)]n+1

1−p(1−p) . Similarly for P
(f)
2n+3 we get

P
(f)
2n+3 = p2

∑

1≤i≤n+1

[p(1 − p)]n+1−i = p2,

with p2 = p2 1−[p(1−p)]n+1

1−p(1−p) .
In the same way we obtain for the backward stage

{

P
(b)
2n+2 = p2, n = 1, . . . , m

2a − 1

P
(b)
2n+3 = p1 n = 1, . . . , m

2a − 1

Let E2n,2n+1 and E2n+1,2n+2 be bit extrinsic probabilities for the n + 1-th local code.
Then

E2n,2n+1 = 1 − (1 − p1)
2(1 − q) − 2p1(1 − p1)(1 − q) = p2

1 + (1 − p2
1)q,

E2n+1,2n+2 = 1 − (1 − p2)
2(1 − q) = 2p2 − p2

2 + (1 − p2)
2q.

Thus, the average extrinsic probability of the base code is equal to

Ē =
1

m

m∑

i=0

Ei =
E2n,2n+1 + E2n+1,2n+2

2
= q

[
1 − p2

1 + (1 − p2)
2
]
− (1 − p2

1) + (1 − p2)
2.

B.3 Comparison of different types of channel

To compare iterative decoding performance for different types of channel, we use the
following assumption: iterative decoding performance on different types of channel are
similar for the same value of the entropy of noise. The entropy of noise is defined by
Ent(X), X being the probability of a bit to be equal to 0 where the bit was transmitted
over the associated channel with the corresponding noise level.

As an example, the following table presents values of the channel parameter for different
types of channel (BEC, BSC, Gaussian channel) for the code rate 1/2 which give the same
entropy of noise.
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BEC BSC Gauss.
pe ps SNR, dB

0.5 0.11003 0.1871
0.4914 0.1072 0.3
0.4838 0.1047 0.4
0.4761 0.1022 0.5
0.4684 0.098 0.6
0.4607 0.0974 0.7
0.4529 0.095 0.8
0.4451 0.0926 0.9
0.4372 0.0902 1.0
0.4294 0.0879 1.1
0.4214 0.0856 1.2
0.4135 0.0833 1.3

Note that the dependence between two of these parameters is quasi-linear in the large
range of values, as shown in the following figures:

1.61.20.80.4

peff

0.5

0.48

0.46

0.44

0.42

0.4

0.38

0.36

SNR

2

SNR(dB)/p(eff) R=0.5    

0.1

1.6

0.09

0.08

1.2

0.07

0.80.4

SNR

2

0.11

SNR(db)/p(CBS) R=0.5    

Figure B.3: Erasure probability (left) and error probability of the BSC (right) as functions
of the SNR (in dB) of the Gaussian channel

We present another table in which we show limit values of noise which can be corrected
with probability → 1 when the codelength n → ∞ (Shannon limit) for different code rates:

Code rate 4/5 3/4 2/3 3/5 1/2 1/3

pe 0.2 0.25 1/3 0.4 0.5 2/3

ps 0.0311 0.042 0.0615 0.0794 0.11003 0.1740

SNR (dB) 2.0400 1.6264 1.0595 0.6787 0.1871 -0.4954
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Appendix C

C.1 Trapping set configurations observed during simulations

In the appendix we present structures of graphs of type 3 and 4 for trapping sets of the
family E code of length 15000 and of rate 1/3. We use the following graphical represen-
tation. Codewords of the base code of weight 3 are depicted by circles and codewords
of the base code of weight 3 - by squares. Variable nodes of degrees greater than 2 are
denoted by filled circles. Codewords and variable nodes are connected by labelled edges.
An edge with label k between two codewords exists if in the the corresponding graph the
codewords are connected through exactly k variable nodes of degree 2 and k − 1 clusters.
Similarly, An edge with label k connects a codeword and a variable node of degree > 2
if in the the corresponding graph they are connected through exactly k variable nodes of
degree 2 and k clusters.

We depict unsatisfied connections of codewords and of variable nodes by red arrows.
If, for example, a codeword of weight 3 has a red arrow, it represents a near-codewords of
weight 3 - a word of weight 2 which is not a codeword, but there is such a position in the
base code that if we put it to 1 we get a codeword of weight 3.

The number of unsatisfied connections is equal exactly to b.

C.2 Low-weight codewords

During decoding simulations some low-weight codewords were detected. In this part we
represent graphically their structure.
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Figure C.1: Examples of trapping set configurations.
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Figure C.2: Examples of codewords of weight a) 24; b) 27; c) 30; d) 35.
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Appendix D

D.1 Properties of ⊠ and ⊡ operations

1. Commutativity:

Using Property 5.4, we show the symmetry of C⊡(m,k, i, j) and C⊠(m,k, i, j):

C⊡(m,k, i, j) =
[i]2 [m − i]2 [j]2 [m − j]2

[k]2 [i − k]2 [j − k]2 [m − i − j + k]2 [m]2
2(i−k)(j−k) = C⊡(m,k, j, i),

C⊠(m,k, i, j) =
[m − i]2 [i]2 [m − j]2 [j]2

[m − k]2 [k − i]2 [k − j]2 [i + j − k]2 [m]2
2(k−i)(k−j) = C⊠(m,k, j, i).

[a ⊡ b]k =

m∑

i=k

k+m−i∑

j=k

C⊡(m,k, i, j)aibj =

m∑

j=k

k+m−j
∑

i=k

C⊡(m,k, j, i)bjai = [b ⊡ a]k ,

[a ⊠ b]k =

k∑

i=0

k∑

j=k−i

C⊠(m,k, i, j)aibj =

k∑

j=0

k∑

i=k−j

C⊠(m,k, j, i)bjai = [b ⊠ a]k .

D.2 Computation of (5.8) in Lemma 19

ξf
2l(i) =

i∑

u=0

(
i∑

v=i−u

C⊠(m, i, u, v)ι(t)(v)

)



m∑

j=u

ξf
2l(j)

m+u−j
∑

n=u

C⊡(m,u, j, n)ι(t)(n)





=

i∑

u=0

A(m, i, u)





m∑

j=u

ξf
2l(j)B(m,u, j)





=
i∑

j=0

ξf
2l(j)

j
∑

u=0

A(m, i, u)B(m,u, j) +
m∑

j=i+1

ξf
2l(j)

i∑

u=0

A(m, i, u)B(m,u, j)

where A(m, i, u) =
∑i

v=i−u C⊠(m, i, u, v)ι(t)(v)

and B(m,u, j) =
∑m+u−j

n=u C⊡(m,u, j, n)ι(t)(n).
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Similarly,

ξf
2l+1(i) =

m∑

u=i

(
m+i−u∑

v=i

C⊡(m, i, u, v)ι(t)(v)

)



u∑

j=0

ξf
2l−1(j)

u∑

n=u−j

C⊠(m,u, j, n)ι(t)(n)



 =

m∑

u=i

B(m, i, u)





u∑

j=0

ξf
2l−1(j)A(m,u, j)



 =

i∑

j=0

ξf
2l−1(j)

m∑

u=i

B(m, i, u)A(m,u, j) +

m∑

j=i+1

ξf
2l−1(j)

m∑

u=j

B(m, i, u)A(m,u, j).

D.3 Entropy curve of the ((1, 1))1-TLDPC base code

The local code of the ((1, 1))1-TLDPC non-binary family is presented by two trellis sec-
tions, parallel-like and cross-like, both of length 1. The length-1 parallel section carries
the bit of degree 1, and the cross-like section carries bits of degrees > 1.

Let x be the bit erasure probability for bits of degrees > 1, so the probability that the
bit of a cross-like section is erased is equal to x. Let p be the erasure probability of the
transmission channel. For a local code n denote the pair of probabilities {P2n+1, P2n+2},
n = 0, 1, . . . ,m/2−1, where Pi is the state erasure probability on the output of the section
i − 1 of the base code of length m (Fig.D.1).

p p p p p p p p p p p p p p
p p

p p
p p

p p
p p

pp p p p p p p p p p p p p

i0

i1

i0

i1

i0

i1

0

1

0

0

1

1

P2n P2n+1 P2n+2

Figure D.1: n-th local code of the ((1, 1))1-TLDPC base code.

Using BCJR decoding procedure on the trellis of the base code, we compute analytical
expressions for extrinsic probabilities of bits of the base code. On the forward stage we
obtain that {

P
(f)
2n+1 = pP2n

P
(f)
2n+2 = (1 − x)P2n+1 + x

The expression for P
(f)
2n+1 can be rewritten as follows

P
(f)
2n+3 = px + p(1 − x)P2n+1 (D.1)

This is a linear recursion of the first order. We define P
(f)
2∞+1 to be the stationary solution

of (D.1). By using Theorem 2.1 of [63] and letting n tend to infinity, we obtain that?

P
(f)
2∞+1 =

px

1 − p(1 − x)
.
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Let P
(b)
2∞ be the stationary solution of the backward recursion for even state stages. It can

be shown that the expression P
(b)
2∞ is the same,

P
(b)
2∞ = P

(f)
2∞+1.

Let EC(x, p) be the extrinsic probability for a bit of the cross-like section. Then

EC(x, p) = 1 − (1 − P
(f)
2∞+1)(1 − P

(b)
2∞) = 1 − (1 − P

(f)
2∞+1)

2.

Thus, the average extrinsic probability of the base code is equal to

Ē = EC(x, p) = 1 −
(

1 − p

(1 − p(1 − x))

)

.
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Appendix E

E.1 Noisy channel coding theorem for binary erasure chan-
nel

The noisy channel coding theory was first presented by Shannon in [64]. In this section
we formulate it for binary erasure channel for a non-zero bit erasure probability Pe.

Theorem 17 For binary erasure channel with capacity C, the following holds:

• If a bit erasure probability Pe is acceptable, the maximum achievable rate R(Pe) is
given by

R(Pe) =
C

1 − Pe
.

• all the rates no greater than R(Pe) are achievable.

Proof :

• Maximum achievable rate.
The source, encoder, noisy channel and decoder form (see Fig.E.1) a Markov chain

Destination Decoder

ChannelSource Encoder

Ŝ ∈ (0, 1, ?)k

Pe

X ∈ (0, 1)nS ∈ (0, 1)k

Y ∈ (0, 1, ?)n

C

Figure E.1: Communication chain.

S → X → Y → Ŝ. For this chain we have that

I(S; Ŝ) ≤ I(X;Y ) ≤
∑

i

I(xi; yi) ≤ nC.
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Assume that a system achieves a rate R and that Ŝ is estimated with a maximum
bit erasure probability Pe. Then

I(S; Ŝ) = H(S) − H(S|Ŝ) =
∑

i

H(si) −
∑

i

H(si|ŝi, s1, . . . , si−1, si+1, . . . , sk)

≥
∑

i

H(si) −
∑

i

H(si|ŝi) =
∑

i

I(si; ŝi)

≥ k(1 − Pe) = nR(1 − Pe).

We obtain that nR(1 − Pe) ≤ I(S; Ŝ) ≤ nC and thus

R ≤ C

1 − Pe
.

• Achievable region.
When a non-zero bit erasure probability Pe is acceptable, one can present the commu-
nication chain as consisting of an uniform source, a lossy compressor with distortion,
an encoder, a noisy channel with capacity C, a decoder and a decompressor with
error Pe as shown in Fig.E.2.

Y ∈ (0, 1, ?)n

Ŝ ∈ (0, 1)k

Pe

S′ ∈ (0, 1)k
′

k′ ≤ k

S ∈ (0, 1)k

Ŝ′ ∈ (0, 1)k
′

X ∈ (0, 1)n

C

Figure E.2: Presentation of the communication chain with a lossy compressor.

The distortion function of the compressor between it input s and output s′ bits is

d(s, s′) =

{

0, if s′ = s

1, if s′ =?

where ? denotes an erasure.

We use Theorem 13.2.1 in [24], p.342, to calculate the rate distortion function
Rcomp(Pe) for the i.i.d. uniform source and the lossy compressor with the distortion
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function d(s, s′) and maximum erasure probability Pe:

Rcomp(Pe) = min
p(s′|s):

P
(s,s′) p(s)p(s′|s)d(s,s′)≤Pe

I(S;S′)

= min
p(?|s):p(?|0)=p(?|1)≤Pe

k − H(s|?)

= 1 − Pe.

The rate of the communication chain R(Pe) is given by the multiplication

R(Pe) = RcompRcod,

where Rcomp is the rate of the source coding part and Pcod is the rate of the channel
coding part. Note that Rcomp ≤ 1

1−Pe
and Rcod ≤ C. By choosing the source

(channel) coding part so that Rcomp = 1−ǫ1
1−Pe

(Rcod = C(1 − ǫ2)) for some ǫ1 > 0
(ǫ2 > 0), we obtain that

R(Pe) = C
1 − ǫ

1 − Pe

with 1 − ǫ ≥ (1 − ǫ1)(1 − ǫ2).

By the theorem above, we compute the threshold pSh on the BEC for fixed code rate
R and bit erasure probability Pe as follows

pSh = 1 − R(1 − Pe).

This result is used in Section 5.4.3.
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