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Résumé

Ce mémoire se focalise sur les systèmes de communication sans fil ayant plusieurs antennes
en réception et en émission. D’abord, on étudie les performances de ces systèmes en se basant
sur un schéma de multiplexage spatial en transmission et sur un détecteur ML en réception.
On en déduit une bonne approximation de la probabilité d’erreur conditionnelle pour un canal
quasi statique. Cette approximation est obtenue dans le cas où différentes modulations sont
appliquées sur les antennes de transmission et pour toute configuration de canal MIMO.

Ensuite, on met en avant des techniques adaptatives pour les systèmes MIMO : modulation
adaptative et sélection d’antennes. La première adapte les modulations en émission en fonction
des conditions radio afin de maximiser l’efficacité spectrale tout en respectant une contrainte
sur la probabilité d’erreur. Alors que la deuxième, sélectionne un sous ensemble d’antennes
actives pour optimiser le critère de sélection (par exemple : maximiser la capacité, etc.) étant
donnée une estimation de canal. Les deux techniques adaptatives ont besoin d’une métrique
pour évaluer les performances du système MIMO. On propose donc un nouveau schéma de
modulation adaptative et un nouvel algorithme de sélection d’antennes où l’approximation de
la probabilité d’erreur obtenue précédemment est utilisée comme métrique.

Finalement, on considère la quantification des canaux MIMO. Cette quantification, ou dans
notre terminologie classification, permet de faire une partition de l’ensemble des canaux MIMO
en des classes différentes, où chaque classe est identifiée par un représentant. Cette méthode
peut être utilisée pour les techniques adaptatives afin de trouver le meilleur jeu de paramètre.
Dans ce chapitre, on décrit l’ algorithme de classification et on illustre son application pour les
systèmes MIMO à boucle fermée comme le " beamforming ".
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Thesis abstract

This thesis report focuses on wireless communication systems with multiple transmit and mul-
tiple receive antennas. At first, we study the performance of such systems assuming a spatial
multiplexing scheme at the transmitter and an ML detection at the receiver. We derive an
accurate approximation for the conditional error probability on a quasi static channel. This
approximation is computed when distinct modulations are applied on the transmit antennas
and for any MIMO channel configuration.

Then, we outline some adaptive techniques for MIMO systems: adaptive modulation and an-
tenna selection. The first one adjusts the modulations on transmit antennas according to the
channel conditions in order to maximize the spectral efficiency while satisfying a constraint on
error probability. The second technique selects the set of active antennas to optimize the chosen
selection criterion (e.g. maximize the capacity, etc) providing a channel estimation. Both adap-
tive techniques need a relevant matric to evaluate the MIMO system performance. We propose
a new adaptive modulation scheme and antenna selection algorithm where the derived error
probability approximation is used as a selection metric.

Finally, we consider the quantization of MIMO channels. This quantization, in our terminology
classification, allows the partitioning of MIMO channels set into different classes, where each
class is identified by a representative. This method could be used for adaptive techniques to
find the best adjustable parameters. We describe our MIMO classification algorithm and we
illustrate its application for closed-loop MIMO systems, e.g beamforming.
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Résumé de la thèse en français

Introduction

La tendance actuelle des systèmes de communication sans fil est de fournir des services fiables
à débit élevé.
La capacité des systèmes de communication classiques, utilisant une seule antenne en émission
et en réception (Single Input Single Output (SISO)), est directement limitée par la puissance
transmise et par la bande passante disponible. Par conséquent, l’utilisation de l’architecture
SISO pour les futurs systèmes radio nécessite l’application de modulations larges et des
équipements de puissance élevée.

Pour pallier à ces limitations, il est recommandé d’employer des antennes multiples aux deux
extrémités de la chaîne de transmission (Multiple Input Multiple Output (MIMO)). En effet,
on a prouvé que la capacité des canaux MIMO augmente proportionnellement avec le nombre
minimal des antennes en émission et en réception. Vu les avantages de la technologie MIMO,
son intégration dans des standards 3GPP est actuellement en cours (e.g. HSDPA/HSUPA).
L’architecture MIMO peut être également utilisée conjointement avec la technique OFDM, ce
qui est envisagé pour les standards IEEE 802.16 et IEEE 802.11n.

Comme tous les systèmes sans fil, les systèmes MIMO sont sensibles aux évanouissements
du canal radio. Par conséquent, ils nécessitent des mécanismes de communication robustes et
efficaces, e.g. les techniques adaptatives.

La plupart des systèmes radio ne disposent pas d’une connaissance du canal à l’émetteur
et par la suite ils sont incapables d’adapter le débit ou la taille de la modulation en émission.
Ces systèmes non adaptatifs sont conçus en considérant les conditions radio les plus défa-
vorables pour ne pas trop dégrader les performances qui y sont associées. Ceci entraîne une
utilisation inefficace de la capacité du canal radio.

La connaissance du canal en émission (e.g. pour les systèmes TDD, ou plus généralement
si la réciprocité du canal est supposée) permet d’améliorer le débit transmis d’un système de
communication radio. Adapter les paramètres de transmission aux conditions radio implique
une utilisation plus efficace du canal puisque la puissance transmise ainsi que la taille de la
modulation peuvent être ajustées afin de tirer profit des conditions radio favorables et garder
une qualité de service minimale lorsque les conditions radio se dégradent.

xi
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Le principe de la transmission adaptative consiste à maintenir une qualité de service cible (QoS)
(e.g. taux d’erreur) en variant le niveau de la puissance, le débit, la taille de la modulation, le
taux ou/et schéma de codage, ou toute combinaison de ces paramètres. Tout en garantissant la
QoS souhaitée, ces schémas fournissent une efficacité spectrale élevée en augmentant le débit
de transmission pour les canaux favorables et en baissant ce débit si les conditions radio sont
défavorables.

Le concept de modulation et codage adaptatifs est spécifié pour HSDPA en se référant à des
tables pré-établies pour différent schémas de modulation et de codage.

Certes, l’utilisation des antennes multiples pour les systèmes radio offre des gains impor-
tants (au niveau de la capacité du canal et en terme de fiabilité de transmission) avec la même
bande passante. Mais, l’augmentation du nombre d’antennes conduit à un coût matériel et une
complexité du traitement du signal plus élevés.

La technique de la sélection d’antennes permet de réduire ces impacts en activant moins de
chaînes RF (e.g. amplificateurs, convertisseurs analogique/numérique, etc.) tout en gardant un
même ordre de diversité. Cette technique adapte l’ensemble des antennes actives en émission
ou/et en réception en fonction des conditions radio. Elle est proposée pour le standard IEEE
802.11n.

Les techniques adaptatives permettent d’améliorer les performances des systèmes MIMO.
Néanmoins, elles ajoutent une complexité supplémentaire dans la recherche des valeurs opti-
males des paramètres à ajuster pour chaque canal. Cette complexité augmente considérable-
ment avec le nombre d’antennes.

Pour la réduire, nous proposons d’utiliser l’approche de la classification. En effet, les canaux
MIMO ayant des propriétés proches peuvent être regroupés dans une même classe. A chaque
classe, on associe un jeu de paramètres qui répond aux contraintes. Ensuite, il suffit de chercher
la classe appropriée d’un canal donné pour déterminer les valeurs optimales à appliquer.
Cette approche de classification peut être utilisée aussi pour les systèmes à boucle fermée afin
d’estimer le canal en émission, e.g. beamforming.
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Chapitre 1: Préliminaires sur les systèmes à antennes multiples

Ces dernières années, les systèmes de communication sans fil sont devenus de plus en plus
populaires puisqu’ils permettent à tout moment à des utilisateurs de communiquer les uns avec
les autres indépendamment de leurs endroits. En même temps, des services qui demandent un
débit élevé et une grande fiabilité se sont bien développée.

Malheureusement, la conception des systèmes sans fil répondant à ces exigences est diffi-
cile dans le cas d’un canal radio où une seule antenne est utilisée en émission et en réception.
En effet, à cause de l’évanouissement provoqué par des réflexions multiples du signal transmis,
la fiabilité de ces systèmes n’est pas garantie pendant la communication. En outre, la capacité
de tels systèmes est limitée.

Pour faire face à ces limitations, l’utilisation des antennes multiples aux deux côtés de la chaine
de transmission est une solution prometteuse. En fait, l’augmentation du nombre d’antennes
présente des avantages importants pour améliorer la fiabilité et le débit de transmission.

Ce chapitre donne une vue d’ensemble sur les systèmes à antennes multiples. Il présente
également leurs paramètres qui sont repris dans les prochains chapitres.

Au début, nous introduisons quelques caractéristiques du canal sans fil : variation temporelle
et fréquencielle, temps de cohérence,...

Ensuite, nous nous focalisons sur le système sans fil utilisant des antennes multiples en émis-
sion et en réception. Tout d’abord, nous illustrons le modèle généralement utilisé pour un tel
système. Puis, nous rappelons les avantages de l’utilisation des antennes multiples en terme
de capacité du canal et de fiabilité de transmission.

En fait, augementer le nombre d’antennes améliore la diversité du système et par la suite
sa fiabilité. D’un autre côté, la capacité d’un canal radio augmente linéairement en fonction de
min(nt,nr) pour une entrée gaussienne, où nt et nr sont repectivement le nombre des antennes
en émission et en réception.

Dans ce chapitre, nous rappelons également différents schémas de réception (ML, ZF, MMSE,
OSuIC) pour les systèmes MIMO. Les performances, en terme de probabilité d’erreur, sont
illustrées pour ces différents schémas. Les résultats de simulation montrent bien le gain obtenu
(en diversité, en codage) avec un récepteur ML.

Enfin, nous présentons un exemple de schéma de transmission pour les systèmes MIMO qui
sera adoptée dans la suite. Des hypothèses et des notations sont aussi illustrées dans ce chapitre
et seront utilisées dans ce qui suit.
En émission, on peut utiliser soit une seule QAM, soit des QAMs différentes. Le canal H
est supposé non corrélé, non sélective en fréquence et quasi-statique. On suppose aussi une
connaissance parfaite du canal en réception. Finalement, notre modèle est sans codage.
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Chapitre 2: Les réseaux de points et les systèmes MIMO

La théorie des réseaux de points et la théorie des nombres fournissent des moyens puissants
pour étudier les propriétés du canal MIMO, leurs performances, les schémas de transmission
associés,. . ..

En effet, en exploitant la théorie des réseaux de points, plusieurs schémas de détection ont
été proposés récemment pour les systèmes MIMO [23], [68], [67]. Ces schémas sont conçus avec
une faible complexité (comme pour les récepteurs linéaires). Toutefois, ils permettent d’avoir
des performances proches de celles d’un récepteur optimal (ML).

Dans ce mémoire, la théorie des réseaux de points et la théorie des nombres permettent non
seulement d’étudier les performances des systèmes MIMO, en terme de probabilité d’erreur,
mais aussi de concevoir un algorithme de classification pour les canaux MIMO.

Ce chapitre illustre des paramètres et des concepts importants des réseaux de points et de
la théorie des nombres, qui sont nécessaires pour comprendre la suite.

D’abord, nous nous intéressons aux paramètres les plus importants des réseaux de points:
matrice génératrice, matrice de Gram, région de Voronoi, gain fondamental, série theta, . . ..

Ensuite, nous illustrons des concepts de la théorie des nombres permettant d’étudier les réseaux
de points, e.g. formes quadratiques et réduction des réseaux. La notion des réseaux de points
finis est introduite et elle va être considérée afin de représenter les canaux MIMO.

Enfin, nous exposons deux algorithmes de décodage pour les réseaux de points, se basant
sur le critère de maximum de vraisemblance: le décodeur par sphère utilisant l’énumération
de Pohst et celui utilisant l’énumération Schnorr-Euchner.
L’adaptation de ces deux algorithmes aux réseaux de points finis est présentée.

La représentation des canaux MIMO avec des réseaux de points finis nous permet d’introduire
les décodeurs que nous venons de citer dans notre chaîne de transmission.
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Chapitre 3: Approximation quasi-exacte pour la probabilité d’erreur

d’un système MIMO

Dans ce chapitre, nous proposons une meilleure approximation de la probabilité d’erreur con-
ditionnelle pour un système MIMO. Cette approximation sera utilisée dans le prochain chapitre
pour étudier les systèmes adaptatifs (par exemple modulation, sélection d’antennes).

Dans la littérature, Taricco et Biglieri ont donné l’expression de la probabilité d’erreur par
paires dans [55] [56] pour les systèmes à antennes multiples non-sélectifs en fréquence. La
probabilité d’erreur considérée dans leurs travaux est définie comme l’espérance mathéma-
tique sur toutes les réalisations du canal. Ainsi, leur expression ne peut pas être utilisée pour
les techniques adaptatives.

En outre, Tarokh et al ont proposé dans [58] une limite inférieure de la probabilité d’erreur
pour un canal gaussien. Cette limite est une approximation valide pour des constellations de
rang élevé.
Puisque c’est une limite inférieure, l’approximation présentée dans [58] ne peut pas donner de
bonne performances pour les techniques adaptatives.

Notre approximation de la probabilité d’erreur décrite dans ce chapitre est conditionnée sur
une réalisation fixe de canal. La méthode proposée n’exige pas une évaluation insurmontable
de toutes les probabilités d’erreur par paires. Elle se base sur un choix judicieux suite à
l’énumération de Pohst/Schnorr- Euchner des voisins dominants à l’intérieur d’une sphère cen-
trée sur un point de la constellation.

Ce chapitre est organisé comme suit. D’abord, nous montrons comment un canal MIMO,
décrit par sa matrice, peut être représenté par un ensemble fini d’un réseau de points.

Ensuite, en se basant sur la théorie des réseaux de points, nous présentons une approxima-
tion plus précise de la probabilité d’erreur conditionnelle pour les canaux MIMO ayant plus
d’antennes en réception qu’en transmission. Puis, cette approximation est validée en comparant
l’expression analytique proposée aux résultats des simulations de Monte Carlo pour différentes
configurations d’antenne et de modulation.

La dernière section fournit une généralisation de l’approximation à tout nombre d’antennes.
Nous présentons dans cette section l’algorithme généralisé du sphère décodeur donné dans [17]
pour n’importe quelle configuration de canal MIMO. Ce décodeur est utilisé pour comparer
l’approximation de probabilité d’erreur et les résultats de simulations de Monte Carlo.

Pour les différents scénarios de modulations et de configurations d’antennes, on note la fi-
abilité de notre approximation. Par conséquent, cette approximation peut être utilisée comme
une métrique d’adaptation.
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Chapitre 4: Techniques adaptatives pour les systèmes MIMO

L’introduction des systèmes MIMO peut offrir un gain significatif en capacité et en diversité
par rapport aux systèmes traditionnels SISO [59], [21], [57]. Par conséquent, la technique de
transmission avec antennes multiples est intégrée dans les futurs systèmes sans fil pour fournir
plus de fiabilité et des débits plus élevés.

Malheureusement, les performances des systèmes MIMO dépendent des conditions du canal
radio. Pour maintenir une Qualité de service cible dans les systèmes conventionnels à antennes
multiples, les paramètres de transmission (par exemple le débit, la modulation et le codage, la
puissance, etc.) devraient être ajustés par rapport au cas le plus défavorable.
Ceci rend insuffisante l’utilisation de la largeur de bande du canal dans les conditions favor-
ables. Par ailleurs, l’utilisation des antennes multiples exige des dispositifs particuliers (par
exemple chaînes radio) qui augmente le coût et la complexité de ces systèmes.

On a proposé plusieurs techniques pour faire face à ces limitations, par exemple la modu-
lation adaptative [52], [69], [70], [50], [64] et la sélection d’antennes [29], [30], [27].
D’une part, la technique de modulation adaptative vise, en respectant une QoS cible, à max-
imiser le débit [69], [70], [50], ou réduire au minimum la puissance de transmission [64], etc.
suivant les conditions du canal.
D’autre part, on propose la sélection d’antenne pour réduire le coût des systèmes MIMO en
réduisant le nombre d’antennes actives, tout en gardant l’avantage d’utiliser toutes antennes
disponibles.

Dans les deux techniques adaptatives, l’algorithme d’adaptation est exécuté en réception. Ayant
une estimation du canal, le récepteur évalue la qualité du canal pour choisir les valeurs ap-
propriées. Si les paramètres ajustables sont en émission, un lien de retour est nécessaire pour
informer l’émetteur de la sélection.
le choix de l’ensemble approprié de modulations ou d’antennes pour la transmission a besoin
d’une métrique pré-définie. Cette métrique doit être conçue pour évaluer avec précision les
performances des systèmes MIMO.

Dans ce chapitre, nous proposons un nouveau schéma de modulation adaptative ainsi qu’un
nouvel algorithme de sélection d’antennes. Les deux techniques utilisent comme métrique
l’approximation de la probabilité d’erreur conditionnelle d’un système MIMO, donnée au
chapitre précédent, pour choisir les meilleurs paramètres, à savoir la taille de la modulation et
le sous-ensemble d’antennes actives pour la transmission.

Le schéma de transmission représenté au premier chapitre est repris dans ce chapitre. Nous con-
sidérons un système MIMO sans codage. On peut appliquer soit la même QAM, soit différentes
QAMs sur les antennes de transmission. Le canal MIMO est de Rayleigh et quasi-statique où
le nombre d’antennes d’émission nt et le nombre d’antennes de réception nr peuvent être soit
égales, soit différents. Finalement, nous supposons une détection basée sur le critère ML en
réception.

La première section de ce chapitre se focalise sur le schéma conçu de modulation adapta-
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tive. Cette technique vise à ajuster les QAMs à utiliser en émission en fonction des conditions
radio afin de maximiser l’efficacité spectrale tout en satisfaisant une contrainte sur la probabilité
d’erreur. L’algorithme d’adaptation exécuté en réception est décomposé en deux blocs. Le pre-
mier calcule la probabilité d’erreur en utilisant notre approximation pour une combinaison de
modulations et le second sélectionne la combinaison qui répond à nos contraintes. L’émetteur
est informé de la sélection grâce à une voie de retour pour ajuster les modulations.

Cette section est organisée comme suit. D’abord, nous présentons cette technique et quelques
schémas existants dans la littérature. Puis, nous décrivons notre algorithme pour adapter la
modulation sur toutes les antennes pour les systèmes MIMO avec un multiplexage spatial.

Pour notre schéma d’adaptation, on distingue deux cas. Le premier où on utilise la même
QAM sur toutes les antennes est sous optimal. En effet, le nombre total de combinaisons pos-
sibles est limité à Nq (Nq est le nombre de QAMs disponibles en émission) ce qui n’optimise
pas l’efficacité spectrale. Le cas optimal correspond à des QAMs différentes sur les antennes.
Le nombre maximal de combinaisons de modulations est exponentiel en nt. Par exemple, si
on dispose de 4 modulations en émission, pour un système 4x4, le récepteur doit évaluer 256
fois la probabilité d’erreur. Ainsi, on note la complexité élevée de ce cas optimal qui augmente
considérablement avec le nombre d’antennes nt. Pour baisser cette complexité, nous proposons
de sélectionner un nombre réduit de combinaisons.

La stratégie prposée permet de réduire le nombre de combinaisons pour qu’il soit linéaire
en nt au lieu d’exponentiel. L’application de la dichotomie à travers cette liste est possible
vue la monotonie de la probabilité d’erreur. Ceci permet de réduire encore la complexité de
recherche de la meilleure combinaison en log(nt).

En conclusion, notre schéma adaptatif de modulation est comparé à un autre système en
utilisant la limite de probabilité (3.4), et également aux systèmes non-adaptatifs.
En comparant les différentes stratégies, les résultats de simulation montrent que notre schéma
adaptatif permet d’optimiser l’efficacité spectrale tout en satisfaisant la contrainte de probabilité
d’erreur.

La section suivante traite la technique de sélection d’antennes. D’abord, nous décrivons le
principe de cette technique ainsi que quelques schémas de sélection d’antennes existants.

Généralement, la technique de sélection consiste à utiliser uniquement les meilleures antennes
optimisant certains critères, en fonction des conditions radio. Le critère que nous proposons
utilise l’approximation dérivée pour la probabilité d’erreur. Les antennes sélectionnées en
émission ou en réception sont celles qui minimisent cette approximation.

Ensuite, nous illustrons le modèle général pour les systèmes MIMO avec sélection d’antennes
et nous indiquons nos hypothèses. Pour le modèle adopté, l’algorithme de sélection est effectué
en réception. Il se compose de deux blocs, le premier calcule la probabilité d’erreur pour une
combinaison d’antennes. Le second choisit la combinaison qui minimise cette approximation.
Si la sélection est considérée en émission, une voie de retour est nécessaire pour informer
l’émetteur des antennes à activer.

Pour évaluer notre critère de sélection, nous le comparons, en terme de probabilité d’erreur, à
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d’autres qui sont connus dans la littérature, tel que la capacité et la distance Euclidienne mini-
male. La sélection avec les différents critères est aussi comparée au cas où toutes les antennes
disponibles sont utilisées. Pour la simulation, on considère un système 5x4 et on applique la
sélection en transmission pour activer les 4 meilleures antennes. Les performances sont illustrés
en terme de probabilité d’erreur en fonction du SNR transmis. Considérant la sélection avec
les différents critères, on note le gain achevé avec cette technique d’adaptation au niveau de la
diversité ainsi qu’en SNR. Considérons un récepteur ML, les résultats de simulation montrent
que la probabilité d’erreur est minimisée avec notre critère et la distance minimale avec un gain
de 1dB en SNR, mais avec une complexité plus importante.
Néanmoins, le critère de la probabilité d’erreur n’est pas le meilleur avec d’autres configuar-
tions sous optimales pour le récepteur. En fait, notre approximation est dérivée en considérant
le critère de maximum de vraissembalance en réception.

Dans cette section, nous étudions également les performances des systèmes SIMO en acti-
vant l’antenne de réception qui offre le meilleur SNR reçu instantané. Nous dérivons une borne
pour la probabilité d’erreur d’un système SIMO avec le critère de sélection basé sur le SNR.
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Chapitre 5: Classification des canaux à antennes multiples

L’approche de la classification est intéressante dans plusieurs domaines, en particulier le do-
maine des communications numériques vue ses applications diverses.
La classification peut servir pour les techniques adaptatives afin de réduire la complexité
de recherche des valeurs optimales des paramètres à ajuster. En effet, la détermination des
paramètres appropriés aux conditions radio nécessite tout simplement la connaissance de la
classe du canal considéré. Les systèmes MIMO à boucle fermée représentent aussi un autre
champ d’application de la classification afin d’estimer le canal en réception.

La classification des canaux MIMO consiste à associer à l’ensemble infini et continu des canaux
MIMO un ensemble fini et discret de représentants, ou aussi des centroids. L’ensemble des cen-
troids forment un codebook. Ainsi, chaque canal est représenté par le centroid le plus proche.
Les canaux associés au même centroid construisent une classe.

Notre algorithme de classification nécessite 4 entrées : le nombre d’antennes, le nombre de
classes, une métrique pour calculer la distance entre les matrices des canaux et une façon pour
générer les centroids. Par conséquent, on peut déterminer un représentant pour un canal donné
en cherchant celui le plus proche.

Notre schéma de classification considère les formes hermitiennes correspondant aux canaux
MIMO. Par conséquent, nous présentons dans ce chapitre quelques notions de base d’algèbre
et de géométrie différentielle dans l’espace des formes hermitiennes.
Ces concepts sont utilisés pour décrire notre algorithme de classification des canaux MIMO et
pour concevoir une nouvelle métrique.

Nous proposons une nouvelle métrique, appelée géodesique, pour calculer la distance en-
tre les formes Hermitiennes normalisées, associées aux matrices des canaux MIMO.

Pour déterminer les centroids, nous nous sommes basés sur l’algorithme de Lloyd. Cet al-
gorithme itére entre deux étapes. La première détermine les éléments des différentes classes.
La deuxième met à jour le centroid de chaque classe.

L’algorithme de classification donné dans ce chapitre est valable pour les systèmes MIMO
corrélés ou non corrélés non-sélectifs en fréquences. Aucune hypothèse sur la distribution de
canal n’est exigée.
A noter que notre algorithme de classification est étendu aux réseaux de points.

La validation de l’algorithme de classification est considérée dans ce travail en comparant
des propriétés du canal MIMO à celles du centroid associé. Deux critères d’évaluation sont
retenues. Le premier consiste à mesurer la ressemblance entre la région du Voronoi du canal et
celle de son centroid. Le second critère d’évaluation de l’algorithme de classification est basé
sur la probabilité d’erreur. L’idée est d’utiliser le centroid approprié comme un estimé pour le
canal lors de la détection.

Les résultats de simulation pour ces critères d’évaluation montrent que la fiabilité de la classi-
fication dépend de la dimension des canaux ainsi que du nombre de classes.
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Comme application pour la classification, nous considérons la technique de beamforming.
En effet, la technique de beamforming vise à sélectionner le meilleur mode pour la transmis-
sion. Ceci nécessite l’application de deux matrices de rotation U et V en émission et en réception
respectivement. Le canal MIMO est par la suite transformé en une série de canaux SISO de
gains égaux aux valeurs propres. Ainsi, le mode le plus fort correspond au canal SISO ayant le
gain le plus élevé.
Cette technique exige la connaissance de la matrice U en transmission sachant que le canal est
généralement estimé en réception pour les systèmes réels. Par conséquent, la capacité de la
voie de retour dans ce cas doit être importante pour avoir un estimé de la matrice U en émission.

Pour limiter le nombre de bits nécessaires pour cette estimation, nous proposons d’utiliser
l’approche de classification. Le canal H est classé en exécutant notre algorithme en réception.
Ensuite, le numéro de la classe appropriée est uniquement transmis à l’émetteur. Ce dernier
applique la matrice Uc calculée au préalable. La matrice Uc est obtenue en digonalisant la
matrice du centroid. Le récepteur applique aussi la matrice Vc correspondante à Uc.

Des résultats de simulation sont exposés pour comparer la probabilité d’erreur en utilisant
la classification à celle en supposant une connaissance parfaite du canal à l’émission.

Autres applications potentielles de la classification seraient la modulation adaptative et le
codage adaptatif dans les réseaux locaux sans fil et dans les réseaux radio mobiles de troisième
et de quatrième générations.
Dans ce cas, le choix des paramètres adaptatifs optimaux a besoin seulement de la détermina-
tion du centroide le plus proche. Puis, les paramètres choisis pour ce centroide peuvent être
appliqués.
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Conclusions

Dans ce mémoire, nous nous sommes intéressés aux systèmes MIMO sans codage où le schéma
de multiplexage spatial est adopté en émission. Le canal radio est supposé quasi-statique non
sélectif en fréquence et est parfaitement estimé en réception.

Au début, nous avons étudié les performances des systèmes MIMO en terme de probabil-
ité d’erreur où différentes modulations peuvent être appliquées en émission. En considérant le
sous-réseau de points associé (ensemble fini du réseau) au canal MIMO et en se basant sur la
théorie de réseau de points, nous avons dérivé une approximation quasi-exacte pour la prob-
abilité d’erreur conditionnelle. Cette approximation est calculée dans un premier temps pour
un canal MIMO où le nombre d’antennes de réception est supérieur au nombre d’antennes
d’émission.

Ensuite, nous avons généralisé ce calcul pour n’importe quelle configuration du canal. La
validation de notre approximation est effectuée en la comparant aux résultats de simulation
Monte-Carlo pour différents scénarios. Cette approximation est comparée également à une
borne simple pour le réseau de points infini associés au canal MIMO. En considérant les résul-
tats de simulation, nous avons noté un écart de 2dB de la borne simple par rapport à la notre
pour un système où nt=nr=4 et une 4-QAM appliquée sur les antennes d’émission. Enfin, la
complexité de notre approximation est étudiée.

Nous avons proposé deux applications pour l’approximation dérivée pour la probabilité d’erreur:
la modulation adaptative et la sélection d’antennes.
Nous avons conçu un algorithme pour adapter les modulations afin de maximiser l’efficacité
spectrale (nombre de bits par utilisation de canal) tout en satisfaisant une contrainte sur la prob-
abilité d’erreur. Cet algorithme considère une liste réduite de combinaisons de modulations et
se base sur la dichotomie en parcourant cette liste. Ceci réduit la complexité de recherche des
valeurs optimales des modulations en fonction des conditions radio.
Notre schéma d’adaptation a été comparé à un autre utilisant la borne simple mentionnée dans
le paragraphe précédant. Il a aussi été comparé au schéma non adaptatif pour différentes con-
figurations de modulations. Pour ces deux comparaisons, nous avons considéré un système
MIMO où nt=nr=4 et différentes modulations peuvent être appliquées. Nous avons noté que
l’efficacité spectrale est maximisée avec le schéma proposé tout en satisfaisant la contrainte sur
la probabilité d’erreur.

Pour la sélection d’antennes, nous avons signalé au début les avantages de cette technique
en maintenant l’ordre de diversité même en réduisant le nombre d’antennes actifs pour un
système SIMO. Nous avons dérivé une borne pour la probabilité d’erreur de ces systèmes avec
la sélection d’antennes.
Ensuite, nous avons décrit notre algorithme de sélection. Ce dernier utilise l’approximation
dérivée pour la probabilité d’erreur d’un système MIMO comme critère de sélection. Pour
évaluer cette nouvelle approche, nous l’avons comparée à d’autres utilisant d’autres critères
de sélection pour différent schémas de réception. Nous avons constaté que la sélection (com-
parée au schéma sans sélection) introduise une nouvelle diversité et un gain au niveau du SNR
pour les différents critères de sélection. Nous avons noté aussi que le critère de la probabilité
d’erreur achève les meilleures performances avec un détecteur ML. Ce qui n’est pas le cas pour
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des récepteurs sous-optimaux (ZF, MMSE, etc). En effet, ce comportement s’explique par le fait
que notre approximation est dérivée en supposant une détection ML en réception.

Dans la dernière partie de ce mémoire, nous avons proposé un algorithme de classification
des canaux MIMO en considérant leurs formes Hermitiennes.
L’algorithme de classification pourrait être utilisé dans certaines techniques adaptatives, e.g.
modulation adaptative, codage adaptatif, etc. Pour l’appliquer, nous avons dérivé une nouvelle
métrique, distance géodésique, permettant de mesurer la distance entre les formes Hermitiennes
associées aux canaux MIMO. Une adaptation de cet algorithme aux réseaux de points corre-
spondant aux canaux MIMO a été effectuée.
Notre métrique a été évaluée en la comparant a une autre plus simple basée sur la distance de
Frobenius. Nous avons remarqué que la classification avec la distance géodésique entraîne une
distribution uniforme des canaux entre les différentes classes pour deux modèles du canal: avec
corrélation et sans corrélation. Par contre, la distribution des canaux entre les classes dépend
du modèle adopté pour la distance de Frobenius.

Pour évaluer notre algorithme de classification, nous avons comparé des propriétés du canal à
celles du centroid associé, e.g. régions de Voronoi, probabilités d’erreur. Pour ces deux critères,
nous avons noté que les canaux MIMO, où nt=nr=2, sont bien représentés avec les centroids
les plus proches tout en considérant un nombre de classe acceptable. Malheureusement, pour
des dimensions élevées (nt=nr=3), un nombre de classes plus important est nécessaire afin de
bien quantifier les canaux MIMO pour les deux distances.

Comme application pour la classification, nous avons sélectionnés les systèmes à boucle fer-
més, e.g. beamforming. L’émetteur considère le centroid comme estimé pour le canal radio
afin d’évaluer la matrice de précodage à appliquer en émission.
Ensuite, le mode le plus élevé est choisi pour la transmission. Pour les deux distances, nous
avons noté que l’impact de l’erreur d’estimation est négligeable, même avec un codebook de
taille faible, pour les systèmes MIMO avec nt=nr=2 et une 4-QAM appliquée sur les antennes.
Pour les systèmes MIMO avec nt=nr=4, un codebook de taille élevée est nécessaire afin de
supprimer les interférences même si le mode le plus élevé est uniquement sélectionné.
L’application de la classification aux systèmes MIMO codés est aussi soulignée. L’algorithme
conçu pourrait être utilisé dans le but de diagonaliser les canaux MIMO et obtenir un ensemble
fini de canaux SISO. Ensuite, l’algorithme de décodage est appliqué pour chaque canal SISO.
Cette méthode permet de réduire considérablement la complexité de décodage des systèmes
MIMO.
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Perspectives

L’algorithme de classification proposé nécessite un codebook de taille élevé afin de bien quan-
tifier les canaux MIMO à dimension élevé (nt=nr=4). Ceci n’est pas réalisable en pratique pour
les systèmes radio avec une voie de retour de capacité limitée. Pour cela, nous avons commencé
l’étude de quelques approches dans le but d’adapter notre algorithme aux canaux de dimension
élevé avec un codebook de taille acceptable.

L’optimisation de la taille du codebook peut être également étudiée en tenant compte de la
dimension, de la métrique sélectionnée et de l’erreur de quantification tolérée. Une approche
possible, reliée à la théorie d’information, cherche à déterminer la fonction taux-distorsion as-
sociée à une métrique donnée. La distorsion représente la distance entre un canal MIMO et le
centroid associé. Le taux est donné par log2(K), où K désigne la taille du codebook.
Par la suite, la taille minimum du codebook pourrait être spécifiée tout en satisfaisant la distor-
sion tolérée.

Enfin, l’adaptation de la puissance transmise par antenne pour les systèmes MIMO où la
puissance totale est fixée, améliore les performances. L’algorithme "water-filling" permet
d’augmenter la capacité des systèmes MIMO par rapport au cas où la puissance est unifor-
mément répartie sur les antennes.
Or, cette technique nécessite une connaissance du canal à l’émission. L’algorithme de classifi-
cation proposé pourrait être utilisé afin d’estimer le canal en émission avec un nombre de bits
faible pour la voie de retour.
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Introduction

Next generation wireless systems require considerably high data rates and transmission relia-
bility. In a conventional communication system using one antenna at the transmitter and the
receiver (Single Input Single Output (SISO)), the achievable capacity is directly limited by the
transmitted power and the available spectrum bandwidth. Therefore, the use of SISO architec-
ture for future wireless systems requires large modulation sizes and higher power devices. In
order to cope with these limitations, the use of multiple antennas at each side (Multiple Input
Multiple Output (MIMO)) was suggested. In fact, the channel capacity achieved by MIMO
systems was shown to increase proportionally to the minimum number of antennas at the
transmitter and at the receiver. That’s why, the integration of MIMO technology into 3GPP
for mobile wireless communications is currently under way with HSDPA/HSUPA standards.
MIMO technique can also be used in conjunction with OFDM, and is part of the broadband
WMAN standard IEEE 802.16 and will also be part of the high-throughput WLAN standard
IEEE 802.11n.

However, MIMO systems are sensitive to fading radio conditions. So, they need robust and
spectrally efficient communication mechanisms, e.g. the adaptive techniques. Most current
systems do not assume any channel knowledge at the transmitter and hence could not adapt
the data rate or the modulation of the transmission. These non-adaptive methods necessitate
a fixed link margin to maintain acceptable performance when the channel quality is poor, and
are thus designed for the worst case channel conditions, resulting in insufficient utilization
of the full channel capacity. When channel knowledge is available at the transmitter (e.g. in
TDD systems or more generally, when channel reciprocity can be assumed), it may be used in
order to improve the overall throughput of the system. Adapting transmit characteristics to
the signal fading allows the channel to be used more efficiently since power and rate can be
adjusted to take advantage of favorable channel conditions. The basic idea behind adaptive
transmission is to maintain a target quality of service (QoS) (e.g. error rate) by varying the
transmitted power level, symbol transmission rate, constellation size, coding rate/scheme or
any combination of these parameters. Without sacrificing the Bit Error Rate (BER) or Frame
Error Rate (FER), these schemes provide high average spectral efficiency by transmitting at
high data rates under favorable channel conditions and reducing the throughput as channel
degrades. Adaptive modulation and coding (AMC) concept was specified for HSDPA by using
computed look-up tables for different modulation and coding schemes.

The application of multiple antennas in wireless systems provide significant gains in both
channel capacity and transmission reliability without any additional bandwidth. Nevertheless,
increasing the number of antennas leads to an elevated hardware cost and signal processing

1



2

complexity. Antenna selection technique reduces these impacts by using less radio frequency
(RF) chains (transmit amplifiers, digital-to-analog converters, etc.) while keeping the diversity
gain. This technique adapts the subset of active transmit and/or receive antennas according to
the channel conditions. Therefore, it is proposed for IEEE 802.11n standard.

The adaptive techniques allow to improve the MIMO system performance. But, they imply the
search of the appropriate adaptive parameter(s) for each given channel. This fact increases the
computation complexity of such systems especially when several possibilities for adaptive pa-
rameter(s) are available. To reduce this complexity, we propose to quantize the set of all MIMO
channels and consequently to generate a discrete set of representatives. Then, we associate for
each representative the optimal adaptive parameters that can be stored in look-up tables. Thus,
it is possible to determine the best parameters for a given channel by considering its nearest
representative. This MIMO classification concept could be also used in other applications that
need some knowledge about channels at the transmitter, e.g. beamforming. In this case, the
channel can be estimated by its representative.

Thesis outline

In chapter 1, we start with a brief summary of wireless channel characteristics. Then, we
focus on the wireless system which uses multiple antennas at the transmitter and at the re-
ceiver. First, we illustrate the conventional model for a such system. Second, we point out the
advantages of using multiple antennas in terms of channel capacity and transmission reliabil-
ity. Finally, we present for these systems a transmission scheme that will be adopted in our
studies. Some assumptions and notations, used in the sequel, are also illustrated in this chapter.

In chapter 2, we present some mathematical tools (from lattices and number theory) that will be
used in next chapters to study the performance of MIMO systems, in terms of error probability,
and to design a classification algorithm for these systems. At first, we deal with the main lattice
parameters. Then, we illustrate some mathematical concepts from the number theory allowing
to study lattices, e.g. quadratic forms and lattice reduction. The notion of lattice codes is
introduced and it will be considered to represent MIMO channels in next chapters. Finally, we
expose two lattice decoder algorithms, using the ML criterion: sphere decoder based on Pohst
enumeration and sphere decoder based on Schnorr-Euchner enumeration. The adaptation of
both algorithms to lattice codes is also given. The representation of MIMO channels with lattice
codes makes it possible to use lattice decoders in our transmission scheme.

In chapter 3, we study thanks to lattice theory, the performance (in terms of error probability)
of a quasi-static uncoded multiple antenna system. The system model described in the first
chapter is assumed. At first, we show how a MIMO channel, described by its channel matrix,
can be associated to a lattice code (or lattice constellation). After that, we present our accurate
approximation of the conditional error probability for MIMO channels with more receive than
transmit antennas. This approximation is derived in the general case where distinct modu-
lations are applied on transmit antennas. The proposed bound is validated by comparing its
analytical expression to Monte-Carlo simulation results for different modulation and antenna
configurations. Next, we give a generalization of this approximation for any number of trans-
mit/receieve antennas and we present an existing generalized sphere decoder algorithm. This
decoder is then used in the transmission scheme to validate our approximation by comparison
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to Monte-Carlo simulation results.

In chapter 4, we propose a new adaptive modulation scheme as well as a new antenna se-
lection algorithm. Both techniques use the accurate approximation of the conditional error
probability in a MIMO system, derived in chapter 3, as a metric to select the best parameters,
namely modulation size and antenna set for transmission. We start by detailing our adaptive
modulation scheme for MIMO systems. Next, we compare by simulations the performance of
the proposed adaptive modulation technique to that of the non-adaptive systems in terms of
spectral efficiency. Our adaptive scheme is compared also to another one based on a simple
bound for the lattice associated to the MIMO channel. Then, we focus on the antenna selection
technique. We study the impact of this technique on the diversity order for SIMO systems.
Next, we introduce our proposed selection criterion and other existing selection criteria. Fi-
nally, we point out the advantage of the antenna selection (with different selection criteria) while
comparing the achieved performance to that without selection, assuming the same number of
active antennas. We also compare the performance obtained with our proposed selection crite-
rion to other existing criteria for different receiver schemes (optimal and sub-optimal receivers).

In chapter 5, we focus on the classification of MIMO channels by considering their associated
Hermitian forms. First, we introduce the MIMO system model on which the classification will
be based. Second, we illustrate some basic notions from algebra and differential geometry that
will be used in our classification algorithm. Third, we detail our classification algorithm that is
proposed firstly for MIMO channels and is extended, then, to lattices. To design this algorithm,
we propose a new metric to compute the distance between Hermitian forms. This metric is
compared to the natural one based on the Euclidean distance by illustrating the behavior of
classification parameters (e.g. centroids, classes population, etc). After that, we validate our
classification by measuring the resemblance between the channels and their representatives (e.g
using Voronoi regions, error probabilities). Finally, we consider this classification for closed-
loop MIMO systems. We focus on beamforming technique where each channel is estimated by
its representative at the transmitter. The classification approach for beamforming is compared
in performance with the case where a perfect estimation is assumed at the transmitter. In
addition, an application of the classification to coded MIMO systems is outlined.





Chapter 1

An overview of MIMO wireless
systems

Introduction

In recent years, wireless communication devices have become more and more popular since
they allow users to communicate with each other independently from their locations. At the
same time, the demand for high data rate and reliable radio systems has grown. Unfortunately,
the design of systems satisfying these requirements is difficult in traditional wireless channel
using one antenna at the transmitter and at the receiver. Indeed, due to the fading caused by
multiple reflections of the transmitted signal, the reliability of these systems is not guaranteed
during the communication. In addition, the capacity of such systems is limited. To cope with
these limitations, the use of multiple antennas at both sides is a promising solution. In fact,
increasing the number of antennas leads to important benefits regarding the reliability and the
transmission throughput.
This chapter gives an overview for multiple antenna systems. It also introduces their important
parameters which are necessary for the next chapters.

Section 1.1 deals with wireless channels. At first, we briefly discuss the main known prob-
lem for such channels which is fading. Then, we present a basic model for the fading in
traditional wireless channel. Finally, we point out different types of time-variation wireless
channel.
Section 1.2 focuses on a particular example of wireless channel: multiple antenna channel. The
conventional model for such system is introduced at the beginning of this section. Then, the ad-
vantages of using multiple antennas in terms of channel capacity and reliability are discussed.
At the end, different transmission schemes were proposed in the literature for MIMO systems.
Section 1.3 describes the scheme that is adopted in our studies.

1.1 The wireless channel

The wireless channel is the channel that uses radio waves to transmit data between two de-
vices, namely the transmitter and the receiver. It is characterized by its random time-variation
variable, called fading. At the receiver, the channel fading is seen as a multiplicative process
that affects the transmitted signal. In practice, the radio signal reaches the receiver via different
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paths (multi-path) that experience differences in attenuation, delay and phase shift. The super-
position of these paths results in fading. Due to propagation delay, the fading is presented as a
complex number with a phase and a magnitude that represents the channel distortion. Different
statistical models are associated to the fading, depending on the propagation environment. In
this section, we present a statistical model for the channel fading, which will be used later in
our studies.

1.1.1 Statistical model for fading

Assume that there are many objects in the environment that scatter the radio signal before it
arrives at the receiver. By the Central Limit Theorem, each component of the fading channel
(real and imaginary parts) will be well-modelled as a Gaussian random variable. If there is no
line-of-sight (LOS) between the transmitter and the receiver, then fading will have zero mean
and phase evenly distributed between 0 and 2π. The magnitude of the channel fading will
therefore be Rayleigh distributed. Calling this random variable r, it will have a probability
density function (PDF)

p(r) =
r

σ2
r

exp

(

−r2

2σ2
r

)

, r ≥ 0 (1.1)

where σ2
r = E(r2) is the mean received power.

In the presence of LOS, the fading channel has a non zero mean. Its magnitude follows a
Rician distribution with a PDF expressed as

p(r) =
r(K + 1)

σ2
r

exp

(

−K − (K + 1)r2

2σ2
r

)

I0




r

√

K(K + 1)

σ2
r




, r ≥ 0, K ≥ 0 (1.2)

where I0(x) is the zeroth-order modified Bessel function defined as

I0(x) =
1

2π

∫ 2π

0

exp(−x · cos(θ))dθ,

and the parameter K is the ratio of the power received via the LOS path to the power contribu-
tion of the non-LOS paths. When K = 0, the Rician distribution (1.2) is reduced to the Rayleigh
distribution (1.1).

1.1.2 Time selective fading, Frequency selective fading

As indicated before, the fading is a time varying effect. This variation is characterized by the
channel coherence time, Tc, that serves as a measure of how fast the channel changes in time.
In fact, the coherence time corresponds to the longest interval during which the channel is
assumed to be constant.
Let’s denote by Ts (respectively T f ) the time needed to transmit a symbol (respectively a frame).
Using these parameters, different channel models could be distinguished:

• Ergodic : When Tc = Ts, the channel is said to be ergodic. In this case, each transmitted
symbol is associated with a new realization of the channel.
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• Quasi-static : If the channel remains constant during one frame, i.e. Tc = T f , the channel
is called quasi-static.

• Block fading : When fading does not change during N frame transmissions, the channel
is said to be block fading. In this case, Tc = N.T f . It is noted that a quasi static channel is
also a block fading channel with N = 1.

In the wireless channel, the multi-path propagation leads to a time delay spread to receive
the different paths. This spread is characterized in the frequency domain by the coherence
bandwidth, Bc. Indeed, Bc is a measure of the range of frequencies over which the channel has
approximately equal gain.

• When the signal bandwidth is comparable or less than Bc, all the frequency components
of the transmitted signal undergo the same attenuation, the channel is said to be flat or
non-frequency selective fading.

• When the radio channel has different gains within the signal bandwidth, a frequency

selective fading is experienced.

As mentioned in section 1.1, fading causes attenuations and distortions for the transmitted
signal. To combat this phenomenon and improve the reception of the transmitted signal,
diversity techniques are used. These techniques consist in receiving and transmitting multiple
versions of the same transmitted signal in a gainful manner. Diversity is obtained by different
means [48]: frequency, time, code or space. One promising technique is spatial diversity, which
is produced by the use of multiple antennas at the transmitter or/and at the receiver. The
resulting wireless system is called MIMO channel. Next section provides some assumptions
on MIMO channel and describes the multiple antenna channel model that will be used in our
studies.

1.2 Multiple antenna channel

A multiple antenna channel, known also as MIMO channel, is a wireless channel with multiple
transmit and receive antennas. The use of multiple antennas provides two types of gain:
diversity gain and channel capacity gain. The first one will be further examined in section 1.2.2.
The second gain will be illustrated in section 1.2.3.

1.2.1 General model for multiple antenna channel

Let nt and nr be the number of transmit and receive antennas, respectively. A MIMO channel,
as given in Fig. 1.1, can be represented mathematically by an nr × nt complex matrix H = [hi j].

H =





h11 h12 · · · h1nt

h21 h22 · · · h2nt

...
...

. . .
...

hnr1 hnr2 · · · hnrnt





← 1rst receive antenna

↑ 2nd transmit antenna
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transmit
antennas

receive
antennas

1 1

nrnt

Figure 1.1: MIMO channel model with nt transmit and nr receive antennas.

The coefficient hi j denotes the single-input single-output (SISO) channel fading between the jth

( j = 1,2, . . . ,nt) transmit antenna and the ith (i = 1,2, . . . ,nr) receive antenna. The column vector
h j = [h1 j,h2 j, . . . ,hnr j]

T is the single-input multiple-output (SIMO) channel produced by the jth

transmit antenna through the nr receive antennas. The row vector hT
i
= [hi1,hi2, . . . ,hint] is the

multiple-input single-output (MISO) channel that represents the different nt paths arriving to
the ith receive antenna.

The rank of the MIMO channel corresponds to the number of independent signals that one
may safely transmit through the MIMO system. It is determined by the algebraic rank of the
nr × nt channel matrix, which is lower than min(nt,nr). A MIMO channel is said rank-deficient if
nt > nr and full rank otherwise.

1.2.2 Multiple antenna channel diversity

As mentioned before, the use of multiple antennas, sufficiently spaced to ensure independent
fading between antennas, produces spatial diversity. This diversity is characterized by the
number of independently fading branches, known as diversity order. Diversity order can be
observed as the slope of the BER versus signal-to-noise ratio curve.

Two types of diversity are potentially provided by MIMO channels :

• Receive Diversity : The use of multiple antennas at the receiver produces a receive spatial
diversity. The diversity order is equal to the number of receive antennas.

• Transmit diversity : It consists in sending the same information over different transmit
antennas. The diversity order in this case is equal to the number of transmit antennas.

Thus, the diversity order in MIMO channels is equal to the product of both transmit and
receive antenna numbers, if the channel between each transmit/receive antenna pair fades
independently.
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1.2.3 MIMO Information theory

Some performance limits of MIMO systems are given in this section in terms of spectral ef-
ficiency with reliability. These limits are derived thanks to the classical information theory
initiated by Shannon in 1948 [53].

Let the random variables x and y be the input and the output of a memoryless wireless chan-
nel. The observation of the channel output y gives us an information about the variable x.
The mutual information I(x; y) is defined by the information theory to measure the amount
of information that y contains about x. The maximization of the mutual information over all
possible input distributions p(x) determines the maximum data rate that a channel can support
without error, also known as channel capacity. The channel capacity is then measured in bits
per channel use. Commonly, it is represented within a unit bandwidth of the channel and it is
measured in bits/s/Hz.

For a discrete memoryless channel, the channel capacity is defined by [16]

Cinst = max
p(x)

I(x; y) (1.3)

When constraining the available power at the transmitter to PT, the channel capacity becomes

Cinst = max
p(x),E(x†x)≤PT

I(x; y) (1.4)

In [21] and [59], the capacity of MIMO channel were evaluated for different channel time-
variations (ergodic and non-ergodic). Next sections present the MIMO capacity and illustrate
simulation results that outline the benefit of multiple antenna systems.

1.2.3.1 Ergodic capacity

To show the gain offered by the use of multiple antennas at both sides in terms of capacity, we
begin with fundamental results derived for single antenna (SISO) or multiple antennas at one
side (SIMO or MISO) wireless systems.

In the following, we assume that the channel is ergodic and flat fading. Perfect CSI (Chan-
nel State Information) is available only at the receiver and the transmitter is constrained in its
total power to PT, i.e. E(x†x) ≤ PT. The ergodic capacity is defined as the expectation of the
instantaneous channel capacity (1.4) over the distribution of the elements of the channel matrix
H

Cerg = EH

{

max
p(x),E(x†x)≤PT

I(x; y)

}

(1.5)

Capacity of SISO channel

For a memoryless SISO system (nt = nr = 1), the channel matrix H is reduced to a scalar complex
variable h. The ergodic capacity is given by

C
erg

SISO
= Eh

{

max
p(x),E(|x|2)≤PT

I(x; y)

}

(1.6)
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For a SISO channel, the ergodic capacity (1.6) can be written as [21]

C
erg

SISO
= Eh

{

log2(1 + ρ|h|2)
}

, (1.7)

where ρ denotes the average Signal-to-Noise Ratio (SNR) per receive antenna.

If we assume |h|2 = 1, the instantaneous capacity equals Cinst
SISO

= log2(1 + ρ). It increases
slowly with respect to the SNR, according to the logarithm of (1+ρ). For high SNR, it is noticed
that a gain of 3 dB on ρwill provide only one bit increase in capacity.

When the channel gain amplitude |h| is Rayleigh distributed, |h|2 follows a chi-squared distri-
bution with two degrees of freedom [48] which leads to an exponential distribution. Equation
(1.7) can then be written as [21]

C
erg

SISO
= Eh

{

log2

(

1 + ρχ2
2

)}

, (1.8)

where χ2
2

is a chi-square distributed random variable with two degrees of freedom.

Capacity of SIMO and MISO channels

Consider a SIMO channel h = [h1,h2, . . . ,hnr], with a single transmit and nr receive antennas.
The capacity under ergodicity assumption is given by [21], [45]

C
erg

SIMO
= Eh





log2




1 + ρ

nr∑

i=1

|hi|2








(1.9)

Like in the SISO case, if we assume that h satisfies |hi| = 1, i = 1, · · · ,nt, then the instantaneous
capacity becomes Cinst

SIMO
= log2(1 + ρnr). Thus, the addition of receive antennas only results in

a logarithmic increase of the capacity with the SNR.

With optimal combining at the receiver, the capacity of a Rayleigh fading SIMO channel can be
expressed as [21]

C
erg

SIMO
= Eh

{

log2

(

1 + ρχ2
2nr

)}

(1.10)

where χ2
2nr

is a chi-squared distributed random variable with 2nr degrees of freedom.

When multiple antennas are employed only at the transmitter, the capacity of the MISO channel
is given by [21], [45]

C
erg

MISO
= Eh





log2




1 +
ρ

nt

nt∑

i=1

|hi|2








(1.11)

If |hi| = 1, i = 1, · · · ,nt, then the instantaneous capacity is equal to Cinst
MISO

= log2(1 + ρ). There is
no gain in capacity over a SISO channel. By comparing equations (1.11) and (1.9) and assuming
the same total number of antennas, it is clear that CMISO is lower than CSIMO when CSI is not
available at the transmitter.
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Capacity of MIMO channel

The average capacity of a random ergodic MIMO channel is given by [59]

C
erg

MIMO
= EH

{

max
p(x); tr(Q)≤PT

I(x; y)

}

, (1.12)

where Q = E(xx†) is the transmit signal covariance matrix, and tr(Q) = E(x†x) denotes the trace
of Q.

The mutual information is maximized for a zero mean circularly symmetric complex Gaus-
sian distributed input [59]. The capacity is then given by

C
erg

MIMO
= EH

{

log2

(

det
(

Inr +
1

2N0
HQH†

))}

(1.13)

When no CSI is available at the transmitter, the available power PT can be uniformly dis-
tributed among the transmit antennas. For uncorrelated channel, the transmit covariance

matrix is equal to Q = PT

nt
Int and the corresponding channel capacity becomes

C
erg

MIMO
= EH

{

log2

(

det
(

Inr +
PT

2N0nt
HH†

))}

(1.14)

Let ρ = PT

2N0
be the average SNR per receive antenna. For optimal combining between nr

antennas at the receiver, the capacity can be written as [21], [59]

C
erg

MIMO
= EH

{

nt log2

(

1 +
ρ

nt
χ2

2nr

)}

(1.15)

By the law of large numbers, the term 1
nt

HH† → Inr as nt gets larger and nr remains fixed
[44], [35]. Thus, the ergodic capacity in this case is :

C
erg

MIMO
= EH

{

nr log2(1 + ρ)
}

Hence, the capacity reaches an asymptotic value for a fixed nr. It is then unadvantageous to
increase indefinitely the number of transmit antennas.

Further analysis of the MIMO channel capacity could be conducted by applying the singu-
lar value decomposition (SVD) to the channel matrix H [59], that is

H = UDV†.

The nr×nr and nt×nt complex matrices U and V are unitary and the nr×nt non-negative diagonal
matrix D contains the singular values of the matrix H. Substituting H by its decomposition in
(1.14) leads to the following capacity expression:

C
erg

MIMO
= EH





m∑

i=1

log
(

1 +
ρ

nt
λi

)




=

m∑

i=1

Eλi

{

log
(

1 +
ρ

nt
λi

)}

(1.16)
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where (λi)1≤i≤m are the square of the non-zero entries of the diagonal matrix

D = diag(
√

λ1,
√

λ2, . . . ,
√

λm,0, . . . ,0)

and m = min(nt,nr) is equal to the channel rank. We can deduce that the total capacity of a given
MIMO channel H is made up by the sum of m parallel independent AWGN SISO sub-channels,
whose channel gain equals respectively

√
λi, i = 1, . . . ,m. Consequently, the MIMO capacity

grows linearly with m = min(nt,nr) rather than logarithmically [21], [59].

In case of perfect CSI at the transmitter, the optimal transmitted power is not uniformly dis-
tributed but is optimized according to the water-filling algorithm [12], [21], [59]. The resulting
capacity is then given by

C
erg

MIMO
= EH





m∑

i=1

log2(µλi)
+





(1.17)

where µ is chosen to satisfy

ρ =
m∑

i=1

(µ − λ−1
i )+ (1.18)

for each given channel H. The notation x+ is defined as max(x,0).

The impact of the channel knowledge at the transmitter is studied in the literature, e.g. [11],
[12], [54]. Authors notice that the water-filling gains over equal power are significant at low
SNR but converge to zero as the SNR increases.

Simulation results are depicted on Figs. 1.2 and 1.3 for i.i.d. Rayleigh fading ergodic chan-
nels for different scenarios of (nt,nr) and different power allocation. The input variable x is
supposed to be Gaussian distributed. When uniform power allocation is considered (1.14)),
Fig. 1.2 shows the channel capacity as a function of the average SNR per receive antenna, ρ.
Clearly, the use of multiple antennas increases the achievable rates on fading channels. At
moderate to high SNRs, the capacity of a nt = nr = 4 MIMO channel is about twice the capacity
of a 2 × 2 system and 4 times the capacity of a 1 × 1 system. The slope of the capacity versus
SNR is proportional to min(nt,nr).
As indicated above, the capacity of SIMO system is higher than MISO system for both cases
n = 5 and n = 3, where n = nt + nr. The capacity gain achieved by the following MISO systems
: 2 × 1 and 4 × 1, over SISO system (1 × 1) is not significant.

Figure 1.3 compares the capacity observed with two power allocation strategies: uniform
power allocation and optimal power allocation based on water-filling algorithm. Both power
allocations maintain the capacity proportional to the channel rank which is equal to min(nt,nr).
However, an SNR gain is noticed while applying the optimal strategy. This gain is more signif-
icant at low SNR, especially for 4 × 4 system.

For slow-varying or block fading channel, the ergodicity property is not respected and the
classical capacity definition is no longer appropriate. A new capacity definition for non ergodic
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Figure 1.2: Capacity on an i.i.d Rayleigh fading ergodic channel (Gaussian input and uniform
power allocation).

channel is introduced in [6], [4], [21], [59]: capacity is associated to outage probability. Capacity
becomes a random variable which depends on the channel instantaneous response. Next section
focuses on the capacity for non ergodic channel.

1.2.3.2 Outage capacity/outage probability

The capacity under channel ergodicity is defined as the average of the maximal value of the
mutual information between the transmitted and the received signal. A closed-form expression
for the capacity assuming a perfect CSI at the receiver is given by equation (1.14). However,
real communication systems transmit blocks of information within a limited time duration.
This duration is not long enough to contain a statistically representative set of propagation
conditions and the channel is non ergodic. In this case, another definition of channel capacity
is frequently used that is outage capacity. With this definition, the channel is characterized by
an outage probability [21], [59]. The capacity is treated as a random variable which depends on
the channel instantaneous response. The outage probability is the probability that the channel
capacity falls below the effective bit rate R that the system is trying to transmit[59].

Pout(R) = inf
Q,tr(Q)≤PT

P(C(Q,H) < R),

where
C(Q,H) = log2 det(Inr +HQH†)
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Figure 1.3: Capacity on an i.i.d Rayleigh fading ergodic channel, Gaussian input. Uniform
power allocation (unif), optimal power allocation (wf).

Thus, the outage probability is the probability that a certain rate can be supported. Alterna-
tively, the outage capacity is defined as the rate for which the error probability of a frame (or
codeword) is below a certain level.

In Fig. 1.4, the outage capacity is plotted for 2 × 2 and 4 × 4 MIMO systems as a function
of the average received SNR per bit, Eb/N0, where Eb/N0 = nrρ/R and Eb is the bit energy. The
outage probability corresponding to the outage capacity for both cases is fixed to 5.10−2. For a
given SNR, the transmit rate at which the error probability is below to 5.10−2 increases with the
number of antennas.

The next section describes our MIMO transmission scheme and gives some assumptions and
notations that will be adopted in the sequel.
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Figure 1.4: Outage capacity in an i.i.d Rayleigh fading channel. Gaussian input and uniform
power allocation. Outage probability = 5.10−2.

1.3 Description of our multiple antenna transmission scheme

In this section, we describe the transmission model that we considered in our studies. This
model is depicted in Fig. 1.5 which shows an uncoded digital transmission system with nt

transmit antennas and nr receive antennas. This model consists of a transmitter, a MIMO chan-
nel and a receiver. In chapters 3 and 4, the MIMO channel is assumed to be in row convention
with a channel matrix of dimension nt × nr.

For each channel use, the relationship between the receive and the transmit vectors is given by

r = sH + ν, (1.19)

where r is the nr length receive complex vector, s is the nt length transmit vector, and ν is the nr

length additive white Gaussian noise vector.

The following subsections present the different blocks of the MIMO transmission model.

1.3.1 The transmitter: scheme and assumptions

The incoming binary data stream is mapped to nt complex modulation symbols sk, k = 1, . . . ,nt

(e.g. quadrature amplitude modulation (QAM), phase shift keying (PSK)). In this mapping
same or distinct modulations can be applied for the different sk. The resulted symbols are
demultiplexed to be sent independently and simultaneously on the nt transmit antennas. Such
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ŝ

r2

r1

Multiplexing

Spatial Division

Demodulation

Modulation
νnr

rnr

s = (s1, s2, .., snt
) r = (r1, r2, .., rnr

)

s1

s2

snt

b

Figure 1.5: MIMO system model with spatial multiplexing.

a transmission algorithm is referred in the literature as spatial multiplexing.
This scheme over MIMO channels increases the transmission rate linearly in the number of
transmit-receive antenna pairs or min(nt,nr). In the sequel, square QAM modulation with Gray
mapping is selected. The transmitted symbol sk belonging to a Mk-QAM modulation [48],
k = 1 . . . nt, is written as

sk =ℜ(sk) +
√
−1ℑ(sk) ∈ C, ℜ(sk),ℑ(sk) ∈ {±1, ± 3, · · · , ± (

√

Mk − 1)}

The average energy per transmit symbol is equal to

Es =
2

3
· (M − 1), (1.20)

where M stands for the modulation size. Figure 1.6 illustrates some examples of square QAM
constellations, with Gray mapping. The average symbol energy, per complex dimension, for
4-QAM, 16-QAM and 64-QAM are respectively 2, 10 and 42.

The nt QAM constellations are not necessarily identical. Let CQAM be their Cartesian product.
The projection of the multidimensional constellation CQAM onto a plane could lead to a rectan-
gular constellation. For example, if we assume the modulation combination (16-QAM,4-QAM)
for a 2 × 2 MIMO system,

CQAM = {s = (s1,s2), s1 ∈ 16-QAM, s2 ∈ 4-QAM}
The observation of CQAM on the plane corresponding to ℑ(s1) and ℜ(s2) leads to the set of
symbols illustrated by the rectangular constellation in Fig. 1.7.

1.3.2 The channel: model and assumptions

The MIMO channel is assumed to be uncorrelated frequency non-selective and quasi-static.
The nt × nr MIMO channel matrix H = [hi j] is constant during Tc channel uses, where the
integer Tc is the channel coherence time and one time unit is equal to one transmission period.
The coefficients hi j are independent zero-mean unit-variance complex Gaussian variables that
take independent values each Tc periods. The channel gains |hi j| are then Rayleigh distributed
random variables with PDF given by (1.1).
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Figure 1.6: Examples of square QAM constellation: 4-QAM, 16-QAM, and 64-QAM with Gray
labelling.
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Figure 1.7: Projection of multidimensional constellation (16-QAM,4-QAM) onto a plane.

1.3.3 The receiver: scheme and assumptions

At the receiver, additive thermal noise corrupts the received signal on the nr receive antennas.
Detection and demapping operations are then performed to recover the transmit message.
Different detection schemes were proposed in the literature for spatial multiplexing systems.
Most of them are linear equalization followed by quantization, nulling and cancelling (or
decision feedback), and ML detection [61], [1]. The first two detectors are suboptimal but with
lower complexity computation than the ML detector. Next subsections briefly describe the
principles of such detectors that will be used in the sequel.
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1.3.3.1 Sub-optimal receivers

Linear equalization

In this case, the detection consists in applying at first an nr × nt equalizer matrix G to the
received vector r. Then an estimate of the transmitted vector s is obtained using the quantization
operation, that is

ŝ = Q(rG)

where Q(.) denotes the quantization operator.

For zero-forcing (ZF) receiver, the equalization aims to null the inter-symbol interference. The
equalizer matrix is given by the pseudo-inverse of the channel matrix H [32], [60] as

GZF = H†(HH†)−1

Therefore, the equalization results in

rZF = rGZF = s + νGZF

which is the transmitted vector s corrupted by the modified noise νGZF.

The minimum mean-square error (MMSE) receiver searches to minimize the mean-square error
given by

E
(

‖rG − s‖2
)

.

The equalizer matrix is then given by [60]

GMMSE = H†
(

HH† +
2N0

Es/nt
Int

)−1

,

and the result of the MMSE equalization is

rMMSE = rH†
(

HH† +
2N0

Es/nt
Int

)−1

Nulling and cancelling

Unlike the linear receiver, where detection is performed simultaneously for all vector symbols,
nulling and cancelling (NC) approach, called also successive interference cancelling (SIC), is
based on the decision-feedback method to detect each symbol separately (e.g V-BLAST [66],
[22]). When a symbol is estimated, it is subtracted from the received vector r and the result is
used to detect the next symbol, etc. To detect a particular symbol, the symbols that have not
been detected yet are nulled via ZF or MMSE equalizer.
The presence of error detection could increase the interference when detecting the next symbols.
That is why, the order in which the symbols are detected strongly impacts the performance of
NC detector. In the case when symbols are detected in the order of decreasing SNR, the receiver
is called Ordered Successive Interference Cancellation (OSuIC). In chapter 4, we consider the
OSuIC, where the nulling operation is performed with MMSE equalizer. This detector is
denoted MMSE-OSuIC.
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1.3.3.2 ML detection

The optimal receiver, in terms of minimum error probability, is based on maximum likelihood
(ML) detection. The detection looks for the vector ŝ that solves

ŝ = arg min
s
‖r − sH‖

The search is performed exhaustively over all
∏nt

i=1
Mi candidate vectors s, where Mi is the

modulation size applied on the ith transmit antenna.
The decoding complexity of the exhaustive ML receiver is exponential in nt. Several algorithms
were proposed in the literature to decrease this complexity. For example, the sphere decoder
algorithm which finds the ML solution with a polynomial complexity with respect to the rank
of the channel [1], [63].

1.3.3.3 Simulation results

Figures 1.8 and 1.9 compare the performance achieved with the different detection schemes
for an uncoded 2 × 2 and 4 × 4 MIMO system with QPSK modulation applied on all transmit
antennas. The performance are illustrated in terms of Bit Error Rate (BER) versus the average
received SNR per bit, Eb/N0. For both cases, it is clear that the best performance is obtained
with the optimal receiver, i.e. ML, that provides a receive diversity equal to nr. The system
diversity is minimized with the Zero-Forcing linear receiver, that equals nr − nt + 1 = 1 (when
nt = nr) [65]. Finally, the MMSE-OSuIC receiver provides more than nr − nt + 1 and lower than
nr order diversity thanks to an ordering process.

In next chapters, the performance of wireless systems are evaluated with respect to the variation
of the average received SNR per bit. Under the assumption mentioned in this section, the SNR
is computed as follows

SNR =
nr

∑nt

i=1
Esi

2
∑nt

i=1
log2(Mi)N0

(1.21)

where Esi
is the average energy per complex dimension of a symbol belonging to a QAM con-

stellation of size Mi.

Conclusions

This chapter introduced the MIMO system model that will be used in the sequel. To show
the advantages of this system, it was compared to a SISO system. When employing a single
antenna at the transmitter and at the receiver, the reliability is not guaranteed due to channel
fading. To combat fading, we saw that using multiple antennas at both sides is beneficial, by
creating a spatial diversity. Moreover, we outlined that multiple antennas do not only improve
the reliability of wireless channel; but also, increase the channel capacity. We illustrated the
performance of spatial multiplexing MIMO systems, in terms of error probability, with different
receiver schemes (ZF, MMSE, OSuIC, and ML). We showed that the optimal one (ML receiver)
achieves the full receive diversity. Finally, we provided the MIMO transmission scheme and
some assumptions/notations adopted in our studies in the last section.



20 1.3. D      

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 5 10 15 20 25

B
it 

E
rr

or
 R

at
e

Received Eb/N0 (dB)

ML detector
Linear ZF detector

Linear MMSE detector
Non linear MMSE-OSuIC detector

Figure 1.8: Average bit Error Rate of a 2 × 2 quasi-static MIMO Rayleigh channel. QPSK
modulation on transmit antennas.
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modulation on transmit antennas.





Chapter 2

Lattices and MIMO systems

Introduction

Lattices and number theory provide powerful means to study MIMO channel properties and
to deal with the performance of MIMO systems, their transmission schemes, etc. In particu-
lar, by exploiting lattice theory, many detectors are recently proposed for MIMO systems [23],
[68], [67]. Like linear receivers, these detectors are designed with low complexity, but they
approaches the performance of ML receiver. In this thesis report, lattice theory and number
theory allow not only to study the performance of MIMO systems but also to design a MIMO
classification algorithm.

This chapter provides the important parameters and concepts from lattices and number theory,
which are necessary to understand the next chapters.
The first section focuses on lattices. Main lattice parameters are presented as well as some
mathematical concepts from number theory allowing to deal with lattices, namely quadratic
forms and lattice reduction. These concepts will be used in the next chapters.
Next, we present the definition and some properties of lattice codes (or lattice constellations).
The notion of lattice code will be considered in next chapters to represent MIMO system and
then to study their performance. Finally, section 2.2 describes two lattice decoder algorithms
based on the ML criterion. In the next chapters, the representation of MIMO systems as lattice
codes justifies the use of these decoders in our transmission scheme for the detection.

2.1 Generalities on lattices

This section introduces first the main lattice parameters. Then, we outline the relationship
between quadratic forms and lattices. Next, some lattice reduction algorithms are presented. A
finite set of a lattice, called lattice code, is after that focused. Finally, the last part gives a bound
for the performance of n-dimensional lattices on an AWGN channel, assuming a ML detection.

2.1.1 Main lattice parameters

Let K be a field, e.g. K = R the field of real numbers, or K = C the field of complex numbers.
Let A ⊂ K be a ring, e.g. A = Z the ring of integers, or A = Z[i] = {a + ib| a,b ∈ Z} the ring of

23
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Gaussian integers.

Definition 1 (Lattice):
A lattice Λ ⊂ Kn, also called a point lattice, is a free A-module in Kn. An element belonging to Λ

is called a point or equivalently a vector. Any point x = (x1,x2, . . . ,xn) ∈ Λ can be written as a linear
combination of m vectors (m ≤ n)

x =

m∑

i=1

zivi,

where (vi)1≤i≤m is an A-basis of Λ, and (zi)1≤i≤m ∈ A. The components {vi j} j=1,...,n of the vector vi,
i = 1, . . . ,m, belong to the field K. The rank of the lattice is equal to m which is the cardinality of the
basis (vi)1≤i≤m. If m = n, the lattice is said to be of full-rank.

In the following, we assume that m = n. The lattice is viewed also as an infinite discrete additive
group in Kn. The sum of two lattice vectors produces a new vector in Λ, both vectors x and −x

belong to Λ and the null vector 0 is a lattice point.

The minimum Euclidean distance between two lattice points x = (x1, . . . ,xn) and x′ = (x′
1
, . . . ,x′n)

is equal to

dEmin
def
= min

x,x′∈Λ

√√
n∑

i=1

|xi − x′
i
|2

If x′ = 0, dEmin is the minimum Euclidean norm of the non zero lattice points.

The canonical basis of the real Euclidean space Rn generates the so called integer lattice Zn,
with dEmin = 1.

Definition 2 (Generator matrix):
The n × n matrix built from a basis of Λ is called a generator matrix for Λ. In line convention, let

M = [vi j]1≤i≤n,1≤ j≤n, then the lattice is defined by

Λ = {x = zM, z ∈ An} (2.1)

Therefore, we can see the lattice Λ as a transformed version of the lattice An by the linear
transformation defined by the matrix M. When column convention is assumed, i.e. the basis
vectors form the columns of the generator matrix, a lattice point is defined by x† =Mz†, where
† denotes transpose conjugation operation. Throughout this chapter, the lattice is defined as in
equation (2.1) and row convention is used.

For a given generator matrix M, the lattice Λ can be generated by any matrix M′ = UM,
where U is a unimodular matrix with elements in A and determinant satisfying |det(U)| = 1.
The matrix M′ is then another generator matrix ofΛ obtained simply by the rotation of the ring
An via the transformation U. The matrix U can be also viewed as the basis change from M to M′.

Definition 3 (Gram matrix) :
The product G =MM† is called a Gram matrix. Its elements gi j1≤i≤n,1≤ j≤n

are the inner product of pairs

of vectors of the lattice basis, that is gi j = 〈vi,v j〉 =
∑n

k=1 vikv jk, where x denotes the conjugate of x.
Therefore, G is Hermitian when K = C and symmetric when K = R.
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Geometrically, the diagonal elements of G (gii = 〈vi,vi〉 = ‖vi‖2 ) are equal to the square norm of
the basis vectors, whereas the other non diagonal elements (gi j i, j = 〈vi,v j〉) correspond to the
inter-vector angles.

If Λ is a full rank lattice, then a generator matrix M of rank n determines uniquely a positive
definite Gram matrix G. However, a Gram matrix determines an infinite number of generator
matrices which are, in fact, the rotated versions of the same lattice. Thus, two generator matrices
M and M′ associated to the same Gram matrix are related by

M′ =MB

where B is a unitary matrix. In the real case, B is said to be an orthogonal matrix.

Definition 4 (Fundamental parallelotope and fundamental volume):
Let (vi)1≤i≤n be a basis for the lattice. The parallelotope surrounded by the basis vectors

P(Λ) = {x ∈ Kn | x =
n∑

i=1

αivi, 0 ≤ αi < 1}.

is a fundamental parallelotope. It is an example of a fundamental region for the lattice, such that one
repetition of this region leads to the generation of a lattice point. Since different bases are possible for the
lattice, the fundamental parallelotope is not unique. Its volume given by

vol(Λ)
def
= |det(M)| =

√

det(G)

and it is independent from the basis choice. It is called fundamental volume and is the determinant of the
lattice. When |det(M)| = 1, the lattice is said unimodular.

Definition 5 (Voronoi cells) :
Consider a point x ∈ Λ and delimit its neighborhood by mediating hyperplanes between x and all other

lattice points. The obtained region is called Voronoi cell or Dirichlet region of x and is defined as

V(x) = {y ∈ Kn | |y − x| < |y − x′|, ∀x′ ∈ Λ}.

The shape of Voronoi region does not depend on the lattice point x. It depends only on the
lattice structure and its volume equals vol(Λ).

Definition 6 (Lattice density and center density):
In lattice , the density ∆ determines the fraction of the space covered by spheres of radius ρ = 1

2 dEmin

and centered at lattice points, where dEmin denotes the minimum Euclidean distance of the lattice. The
density ∆ of a lattice is then defined by

∆ =
volume o f a packing sphere o f radius ρ

volume o f a Voronoi cell
=

Vnρn

vol(Λ)
≤ 1, (2.2)

where Vn is the volume of unit sphere in Rn, given by

Vn = π
n/2/Γ(n/2 + 1) =





πn/2

(n/2)! , n even
2nπ(n−1)/2((n−1)/2)!

n! , n odd
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The center density δ is defined by normalizing ∆, that is

δ =
∆

Vn
=
ρn

vol(Λ)

The center density determines the number of sphere centers, i.e. lattice points, per unit volume and it is
used generally to compare lattices density in different dimensions.

The possible densest lattice packings are known in dimension≤ 8 [15]. For example, the densest
lattice in dimension 1 is the integer lattice Z with ∆(Z) = 1. In 2 dimensions, the hexagonal

lattice A2 is the densest lattice with ∆(A2) = π/
√

12.

Definition 7 (Fundamental gain) :
The density of Λ and its error rate performance in presence of additive noise are also related to its

fundamental gain (also known as Hermite constant) defined by the energetic ratio [15][20]

γ(Λ)
def
=

d2
Emin

(Λ)

n/2
√

vol(Λ)
= 4

n/2√
δ. (2.3)

The fundamental gain of the integer lattice Zn is equal to γ(Zn) = 1.

Definition 8 (Kissing number):
For a lattice sphere packing, the kissing number is defined by the number of spheres tangent to one

sphere. The kissing number is the same for all spheres in the case of lattice packing. It determines the
number of points τ located at minimum distance from any lattice point.

For example, the kissing number for the integer lattice Z is 1. It is equal to 240 for the densest
lattice packing in dimension 8, called E8.

Definition 9 (Theta series) :
Since a lattice is a discrete subgroup of Kn, the distribution of the Euclidean distances around a lattice

point x does not depend on x. It is uniquely determined by its lattice.
A lattice shell is defined as the set of lattice points lying at a distance r, called shell radius, from a
lattice point x. Then , the Euclidean distance distribution is given by the radius of lattice shells and
their population (number of points in a shell). Similar to the Hamming weight distribution of an error-
correcting code defined over a finite field, the theta series ΘΛ(z) of Λ describes its Euclidean distance
distribution

ΘΛ(z)
def
=

∑

x∈Λ
q‖x‖

2
= 1 + τq4ρ2

+ . . . , (2.4)

where q = eiπz, i =
√
−1 and z is a complex variable. The theta series of highly structured lattices (e.g.

integral lattices) is known for low dimensions [15].

Some simple examples are :

1. Λ = Z

ΘZ(z) =

+∞∑

m=−∞
qm2
= 1 + 2q + 2q4 + 2q9 + 2q16 + . . . = θ3(z),

where θ3(z) is a Jacobi theta function. It is trivial to show that ΘZn(z) = ΘZ(z)n = θ3(z)n.
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2. Λ = Z + 1/2 The theta series of the translated lattice Z + 1/2 is

ΘZ+1/2(z) =

+∞∑

m=−∞
q(m+1/2)2

= 2q1/4 + 2q9/4 + 2q25/4 + . . . = θ2(z),

where θ2(z) is also a Jacobi theta function.

3. Λ = A2 the theta function of the hexagonal lattice is given by

ΘA2
(z) =

∑

x∈Λ
q‖x‖ = θ3(z)θ3(3z) + θ2(z)θ2(3z) = 1 + 6q + 6q3 + 6q4 + 12q7 + . . . ,

where Q(x) is the quadratic form associated to A2.

The reader can check that the theta series exactly describes A2 shells population and radius as
illustrated in Fig. 2.2. If Λ is a random lattice, then ΘΛ(z) or at least all its terms up to qC can be
determined using the Short vectors algorithm that solves ‖x‖ ≤ C [46][47][14].

Definition 10 (Equivalent lattices):
Two latticesΛ1 andΛ2 are said equivalent, if one lattice can be obtained from the other by a rotation or a

reflection or a change of scale without changing the shape of the Voronoi region. Two generator matrices
M1 and M2 of equivalent lattices are related by

M2 = cUM1B

where c =
( |det(M2)|
|det(M1)|

)1/n
is a constant corresponding to the scaling factor, U is an unimodular matrix that

contains the coordinates of the basis given by M2 according to the basis M1 and B is a unitary matrix.
For real case, B is associated to an isometry transformation, e.g. reflection, rotation, translation, . . . .

The Gram matrices of two equivalent lattices are related simply by

G2 = c2UG1U†

If the scaling factor c = 1, equivalent lattices Λ1 and Λ2 are called congruent. When B is the
identity matrix and c , 1, Λ2 is a scaled version of Λ1. If U is the identity matrix and c = 1, Λ2

is a rotated version of Λ1.

Figure 2.1 illustrates the integer lattice Z2 generated by the basis (v1,v2). Two equivalent
lattices for Z2 could be obtained as follows

1. A simple rotation of the basis (v1,v2) using the orthogonal matrix

B =

[

cos(φ) −sin(φ)
sin(φ) cos(φ)

]

with φ = 30, generates a new basis (w1,w2) for the rotated version of Z2.

2. A scaled version of the lattice Z2 constructed via the basis (ω 1,ω 2) is also depicted. The
latter basis is obtained through the multiplication of the basis (v1,v2) by the scalar c = 1/2.
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Figure 2.1: (a) The integer latticeZ2. (b) A rotated version of the latticeZ2. (c) A scaled version
of the lattice Z2.

• Example of a lattice in R2: hexagonal lattice A2

As an illustrative example for deterministic highly structured lattices, Fig. 2.2 shows the struc-
ture of the famous hexagonal lattice A2. A generator matrix for A2 is given by

M(A2) =

[

1 0

1/2
√

3/2

]

.

Some of the important lattice parameters are also depicted in Fig. 2.2. The minimum Euclidean
distance between distinct lattice points is dEmin(Λ) = 2ρ, where ρ is the sphere packing radius
associated to Λ as shown in the upper left part of Fig. 2.2. According to the generator matrix

M(A2), we deduce that dEmin = 2ρ = 1 and vol(A2) = |det(M(A2))| =
√

3/2.

Each lattice point has τ neighboring points located at minimum distance. For A2, we have
τ = 6. The Voronoi region V(x) of the lattice A2 has six facets obtained by the six mediating
segments with the nearest points. For higher order shells, let τi, i ≥ 1, be the number of points
belonging to the ith shell and di their Euclidean distance from the origin.
For A2, we observe in Fig. 2.2 the (τi,di) first values illustrated in the table 2.1.
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Shell i τi di

1 6 2ρ

2 6 2
√

3ρ
3 6 4ρ

4 12 2
√

7ρ

Table 2.1: Number of neighboring points and distances of the first shells for the lattice A2.

Thus, the theta series for A2 could be written as

ΘA2
(z) =

∑

x∈Λ
q‖x‖

2

= 1 + τ1qd2
1 + τ2qd2

2 + τ3qd2
3 + τ4qd2

4 + . . .

Replacing ρ by its value, the first terms of the theta series for this example can be written as

ΘA2
(z) = 1 + 6q + 6q3 + 6q4 + 12q7 + . . .

which corresponds to the expression given in Definition 9.
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Figure 2.2: Structure of the hexagonal lattice A2 in the real bidimensional space.
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2.1.2 Lattices and quadratic forms

Quadratic form theory is a useful tool to study arithmetical properties of lattices in the Euclidean
space. This theory will be used in the last chapter for MIMO channel classification.
This section gives at first the definition of the quadratic forms in real and complex spaces. Then,
it describes the relationship between lattices and quadratic forms.

2.1.2.1 Definitions

Let V be a vector space over a field K, mainly K = R or C. An Hermitian form on a vector space
V over the field K is a function h : V × V → K such that for all u, v, w ∈ V and for all ρ, λ ∈ K,
we have

1. h(λu + ρv,w) = λh(u,w) + ρh(v,w)

2. h(u,v) = h(v,u)

If K is the real field, the function h is considered as a symmetric bilinear form.

A map Q from V to K is called a quadratic form if the following conditions are satisfied:

1. Q(λu) = |λ|2Q(u), ∀ λ ∈ K and ∀ u ∈ V

2. h(u,v) = 1
2 (Q(u + v) −Q(u) −Q(v)) is an Hermitian or a symmetric bilinear form on V

If V is of rank n over the complex (respectively real) field and (vi)1≤i≤n is a basis for V, the Hermi-
tian form (respectively bilinear form) relative to this basis can be represented by an Hermitian
(respectively symmetric) matrix B with coefficients bi j = h(vi,v j). For u = (u1,u2, . . . ,un) ∈ V, the
associated quadratic form is given by

Q(u) =
∑

1≤i, j≤n

bi juiu j = uBu†

2.1.2.2 Lattices as quadratic forms

In the following, we show how lattices and quadratic forms are related. Let us consider a free
A module lattice Λ generated by the basis vectors (vi)1≤i≤n (forming the rows of a generator
matrix M). A is the ring of integers or Gaussian integers. The squared norm of a lattice point
x = zM is defined as

‖x‖2 = xx† =
n∑

i=1

ziz j〈vi,v j〉 = zGz† (2.5)

The reader could notice that equation (2.5) defines a quadratic form, of the vector z associated
with the Gram matrix G = MM† of the lattice. Therefore, an alternative approach to study a
lattice Λ consists in dealing with its corresponding quadratic form QΛ defined by:

QΛ : An → K : z 7→ zGz†, (2.6)

where G is a Gram matrix for Λ.

For any lattice, QΛ is a positive quadratic form, in particular, for all z ∈ An,QΛ(z) is posi-
tive.
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Given the relationship between lattices and quadratic forms, it is possible to carry out compu-
tations on a lattice knowing only a Gram matrix and not necessarily a generator matrix. For
example, the minimum squared Euclidean distance between any two points of Λ is equivalent
to the minimum of QΛ in An − {0}, where 0 is the null vector of An.

Examples :

• Λ = A2 : a quadratic form of the hexagonal lattice A2 shown in Fig. 2.2 is

QA2
(z) = z2

1 + z1z2 + z2
2.

The Gram matrix relative to QA2
is

GA2
=

[

1 1/2
1/2 1

]

.

• Λ = Zn : The n-dimensional cubic lattice Zn generated by the identity matrix In can be
represented by its associated quadratic form as

QZn(z) = z2
1 + z2

2 + . . . + z2
n

The following section describes a useful tool which will be recalled in the last chapter.

2.1.3 Lattice reduction algorithms

Any lattice can be described by different bases. Given a lattice basis M1 and any unimodular
matrix U (U with entries in A and |det(U)| = 1) the product M2 = UM1 generates a new basis
for the lattice Λ. Then, U is a basis change matrix. So, it is easy to verify that

|det(M2)| = |det(UM1)| = |det(M1)| = vol(Λ)

Among all lattice bases, some are better than others. The best bases are those whose elements
are the shortest (i.e. having the lowest norm) and the most orthogonal (to each other). The
lattice reduction is a old notion which consists in searching the best lattice basis, called reduced
basis.

Figure 2.3 illustrates two bases for the 2-dimensional integer lattice Z2, (w1,w2) and (v1,v2).
Their corresponding generator matrices are respectively

M1 =

[

3 2
2 1

]

M2 =

[

1 0
0 1

]

(2.7)

The basis M2 is obtained by multiplying the basis M1 by the matrix U, M2 =M1U where :

U =

[

−1 2
2 −3

]

(2.8)

It is clear that the entries of U are in Z and |det(U)| = 1. The basis M2 is obtained by the
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Figure 2.3: Integer lattice Z2. (v1,v2): reduced basis, (w1,w2): non reduced basis.

reduction of the basis M1.

The lattice reduction is used in conjunction with detector structures to improve performance.
In [8], the authors show that the lattice decoder (VB and AEVZ) may be accelerated if the
generator matrix is reduced. Conventional detection methods based on zero-forcing and min-
imum square error criterions have very low complexity but does not give the full diversity
order. However, the application of lattice reduction with such detection schemes achieves the
maximum receive diversity [68]. In our study, the lattice reduction will be used in chapter 5 to
represent lattices with their reduced bases in order to classify them.

The main known reduction algorithms are illustrated in the following sub-sections.

2.1.3.1 Minkowski reduction

Let (bi)1≤i≤n be a basis of a lattice Λ. This basis is said Minkowski reduced if the following holds:

1. b1 is a shortest vector in Λ

2. For i ∈ {2, . . . ,n}, bi is a shortest vector inΛ independent from (b j)1≤ j≤i−1 such that (b j)1≤ j≤i

can be extended to a basis of Λ.

Such a reduced form has found an application in the theory of numbers, but it is not useful
computationally, and other classes of reduction were developed.

2.1.3.2 KZ reduction

Korkine-Zolotareff (KZ) reduction is a variant of Minkowski reduction that is more useful
algorithmically. Consider a lattice Λwith a basis (bi)1≤i≤n. This basis is KZ reduced, if

1. b1 is a shortest vector of Λ

2. Let Λi be the lattice obtained by the projection of Λi−1 into the subspace of Rn−i+1 orthog-
onal to bi−1, where Λ = Λ1. The vector bi should be a shortest vector of Λi.
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2.1.3.3 LLL reduction

In 1982, Lenstra, Lenstra, and Lovasz succeeded in defining a new notion of reduction with a
polynomial-time consuming algorithm. The LLL reduction is often used in situations where
the KZ reduction would be too time-consuming.

Let (bi)1≤i≤n be a basis of a lattice Λ. For LLL reduction, the basis vectors are considered
pairwise, and each vector bi is required to be the shortest in the two-dimensional projected
lattice generated by bi and bi+1. Since LLL reduction is local in nature, so the basis found does
not necessarily include a shortest vector, but only an approximation of one.

For a two-dimensional real lattice Λ, the basis (b1,b2) is LLL reduced iff





〈b1,b2〉
|b1|2 ≤ 1

2

|b1|2 ≤ |b2|2
(2.9)

where 〈b1,b2〉 is the scalar inner product between the vectors b1 and b2.

To guarantee a polynomial-time completion, (2.9) is relaxed to

δ|b1|2 ≤ |b2|2 (2.10)

where 0.5 ≤ δ ≤ 1. Often, δ = 3
4 .

When Λ is a complex lattice, (b1,b2) is LLL reduced iff





ℜ
( 〈b1,b2〉
‖b1‖2

)

≤ 1
2

ℑ
( 〈b1,b2〉
‖b1‖2

)

≤ 1
2

‖b1‖2 ≤ ‖b2‖2

(2.11)

where 〈b1,b2〉 is the Hermitian inner product between the vectors b1 and b2.

Now, let us generalize the conditions given in (2.9) to a basis B = (bi)1≤i≤n of dimension n.
To do this, we need an orthogonalization of the basis B [14], for example the Gram-Schmidt or-
thogonalization of a basis B in an Euclidean space vector E. This process leads to an orthogonal
basis (b∗

i
)1≤i≤n, such that

b∗i = bi −
i−1∑

j=1

µi jb
∗
j, 1 ≤ i ≤ n (2.12)

where µi j =
〈bi,b

∗
j
〉

|b∗
j
|2 . The vector b∗

i
is the projection of bi on the space spanned by (b j)1≤ j≤i−1.

Let Λi be the lattice defined by a pair of vectors bi and bi+1. The orthogonal projection of
Λi into (b j)1≤ j≤i−1 produces a lattice generated by the basis bi(i),bi+1(i), such that bi(i) = b∗

i
and
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bi+1(i) = b∗
i+1
+ µi+1,ib

∗
i
. The application of the conditions (2.9) and (2.10) for the pair of adjacent

vectors (bi,bi+1) gives the LLL basis reduction conditions





|µi j| ≤ 1
2 , for 1 ≤ i < j ≤ n

δ|b∗
i
|2 ≤ |b∗

i+1
+ µi+1,ib

∗
i
|2, for 1 ≤ i < n

(2.13)

A basis B = (bi)1≤i≤n satisfying (2.13) is said to be LLL size-reduced.

Both Minkowski and KZ reduction algorithms may find the reduced basis but with an ex-
ponential complexity on lattice dimension. The last one, i.e. LLL reduction, does not guarantee
to find the shortest lattice vectors. It generates in polynomial time a basis whose vectors are
relatively short and orthogonal.

2.1.4 Lattice codes

A lattice code C(Λ) is defined as a set of lattice points that are contained in a bounded support
region of the field Kn [58]. A support region is defined as a convex, measurable, nonempty
bounded region of Kn (e.g. a cube, a sphere, etc). In digital communication, this finite set is
called as a signal constellation, or a multi-dimensional constellation (n ≥ 2) for real space.

Some lattice parameters can no longer be used when considering only a finite subset of the
lattice. This fact is observed essentially by points which are located close to the borders of the
constellation. It is more significantly experienced for small lattice codes (i.e. small cardinal)
where a high number of points are lying in the borders. An example of a lattice parameter
that depends on the position of the point within the constellation is the Voronoi region. If the
point x lies close to the boundary of the support region, the Voronoi region of x may be larger
than that of any lattice point [58] (see also Fig. 2.4). This implies that the minimum Euclidean
distance of lattice code dEmin(C(Λ)) is bigger than that of the lattice

dEmin(Λ) ≤ dEmin(C(Λ))

Also, the distribution of the Euclidean distance around a point depends on its position (within
the constellation) and on the constellation shape.
Figure 2.4 illustrates two examples of lattice codes C1 and C2 carved from the hexagonal lattice
A2. Their support regions are given respectively by the bases (v1, v2) and (w1, w2). For both
examples, we plot the Voronoi regions of points x1 ∈ C1 and x2 ∈ C2, that are located at the
border of the constellations. Clearly, both cells are larger than the one which is around any
point in the lattice A2 (see Fig. 2.2). The distribution of the Euclidean distance around the points
x1 and x2 depends on the support region shape. Indeed, the kissing number τ(x1) is equal to 3,
whereas τ(x2) = 4.

Hence, the performance of a lattice code on a Gaussian channel depends not only on the un-
derlying lattice Λ but also on the shape of the support region.

2.1.5 Lattice performance

This section presents a known bound on the error probability of n-dimensional lattices on an
AWGN channel assuming ML detection.
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Figure 2.4: Voronoi cells around points in lattice constellations carved from the hexagonal lattice
A2.

Due to the geometrical uniformity of Λ, the error probability Pe(Λ) does not depend on the
transmitted point, e.g. Pe(Λ) = Pe|0 ≤

∑

x,0 P(0 → x), where P(x → y) is the classical notation
for the pairwise error probabilities (the probability that the received point is closer to the point y

than to the transmitted point x) and Pe|x is the error probability conditioned on the transmission
of x. The exact expression of the error probability is obtained by computing

Pe(Λ) = Pe|0 = 1 − 1

(σ
√

2π)n

∫

V(0)

e−‖x‖
2/2σ2

dx

where V(0) is the Voronoi region around the origin 0. To evaluate the above expression, one
should integrate over the Voronoi region.
It is well known in lattice theory [15] that integrating over any Voronoi region is an extremely
difficult task. If integration is to be done numerically and if a random lattice is considered,
one can imagine to determine a complete description of the Voronoi region via the Diamond
Cutting Algorithm [62] and then integrate using the Gaussian distribution. Unfortunately, the
task is still extremely complex. The integration must be done for all points in the case of a finite
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constellation, or at least a large number of points if symmetry exists.
Hence, error rate Pe(Λ) cannot be exactly computed by numerical integration that avoids Monte
Carlo simulation. Under the assumption that all facets of the Voronoi region are created by
lattice points lying on the first lattice shell, we have

Pe(Λ) ≤ τ(Λ) × Q

(

dEmin(Λ)

2σ

)

. (2.14)

In the next chapters, we will consider lattice codes to represent MIMO channels. Therefore,
it is possible to use the known lattice decoders in our transmission scheme to perform an ML
detection with low complexity. The next section describes the most known lattice decoder
algorithms and shows how they could be adapted to lattice codes.

2.2 Lattice decoder algorithms

Given an n-dimensional lattice Λ and any vector y in the real Euclidean space Rn, decoding
consists in finding the closest lattice point to the vector y. An exhaustive search of the closest
point is an intractable solution having an exponential complexity on the dimension n.
An efficient decoding algorithm for any lattice is then required with low complexity. In [15],
several decoding algorithms, depending on the lattice structure, are described for the well-
known lattices, namely the integer lattices An(n ≥ 1), root lattices Dn(n ≥ 2), E6, E7, E8 and their
duals. The problem here is how to find the closest point to y in a random lattice. The first step
to solve this problem is to find a bounded region B inRn surrounding the optimal lattice point.
Then all the lattice points belonging to B will be checked. It is noticed that the size of B could
be reduced during the search using the distance between any lattice point in B and the vector y.

Two approaches are mainly used when searching the closest point. On the one hand, Pohst
proposed in [46] to limit the search in an hypersphere. On the other hand, Kannan recom-
mends to restrict the search in a rectangular parallelepiped [33]. Pohst method is considered to
be more practical and easier to be implemented, while Kannan’s strategy remains mostly used
in a theoretical context.

The Pohst method was first used in digital communications by Viterbo and Biglieri [61], and
then by Viterbo and Boutros [63] to find the closest point for a single antenna fading channels.
Lately, Agrell et al [1] introduced the Schnorr-Euchner strategy [51], which represents an im-
provement of Pohst method, for the closest point search.
Both search strategies will be described in the following subsections for lattice decoder. We will
also outline how both strategies could be adapted to lattice codes.

2.2.1 Lattice decoder based on Pohst enumeration

A lattice decoding algorithm searches the closest lattice point in a sphere of radius R and
centered at the vector y, S(y,R). The search in the real space is conducted within a spherical
region, while in the integer space it is made inside an ellipsoid. This idea was proposed at
first for the search of the shortest nonzero vector in a lattice by exploring the ellipsoid centered
at the origin [46][47][14]. Viterbo and Boutros detailed in [63] the decoding algorithm of any
point in Rn and gave a flowchart for a specific implementation of this algorithm. The decoder
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searches for a vector y the lattice point which is associated to the minimum of the set

{‖y − x‖, x ∈ Λ}
=

{‖w‖, w ∈ y −Λ}

That is, the search in the lattice Λ is equivalent to a search among the points of the translated
lattice y −Λ.
Let the real vectors x, y and w be defined as

x = zM, z ∈ Zn

y = ρM, ρ = (ρ1,ρ2, . . . ,ρn) ∈ Rn

w = y − x = ξM, ξ = (ξ1,ξ2, . . . ,ξn) ∈ Rn

The matrix M is invertible so ρ = yM−1 is the Zero-Forcing point. Moreover, ξi = ρi − zi,
i = 1, . . . ,n define the coordinates of the point x in the new coordinate system obtained with the
translation.

As pointed out previously, the search according to Pohst strategy is performed inside a sphere
of radius R. The checked lattice points should satisfy the inequality:

‖y − x‖2 = ‖w‖2 = ξ Gξ T = Q(ξ ) =

n∑

i=1

n∑

j=1

mi jξiξ j ≤ R2 (2.15)

where G = MMT denotes a Gram matrix for the lattice Λ and Q is the quadratic form on Rn

associated to G.

By diagonalizing the matrix G as G = PDPT, where P is unitary, equation (2.15) becomes

Q(ξ ′) =
n∑

i=1

di|ξ′i |2 ≤ R2 (2.16)

where ξ ′ = (ξ′
1
, . . . ,ξ′n) = ξ P and di is the ith eigenvalue of M.

Equation (2.16) illustrates the equation of an ellipsoid, whose semi-axe lengths are equal to
1√
di

, and direction are carried by the basis rotated from the Euclidean basis using the matrix P.

As a consequence, the search inside a sphere of radius R is equivalent to a search into an
ellipsoid centered at the origin of the new coordinate system, whose axis are defined by the
transformed basis (Fig. 2.5).

Now, to find the bounds for the unknown components (zi)1≤i≤n corresponding to the sphere
S(y,R), we proceed as follows. The Cholesky factorization of the Gram matrix yields to G = RTR,
where R = [ri j]i, j=1,..,n is an upper triangular matrix. Substituting this result in the inequality
(2.15) leads to:

Q(ξ ) = ξ RTRξ T = ‖Rξ T‖2 =
n∑

i=1




riiξi +

n∑

j=i+1

ri jξ j





2

≤ R2 (2.17)
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Figure 2.5: Example of sphere decoder search in bidimensional lattice.

If qii = r2
ii

for i = 1,..,n and qi j =
ri j

rii
for i = 1,..,n, j = i + 1,..,n, we can write:

Q(ξ ) =

n∑

i=1

qii




ξi +

n∑

j=i+1

qi jξ j





2

≤ R2 (2.18)

Substituting ξi by ρi − zi in (2.18), the reader could notice that the search in the real space
can be carried on more easily in the integer space. The search algorithm consists in spanning
at each level i the possible values of zi, starting from level i = n and going down to levels
i = n − 1,n − 2, . . . ,1. The borders of the coordinate zn are given by





−
√

R2

qn,n
+ ρn





≤ zn ≤


√

R2

qn,n
+ ρn


(2.19)

The bounds of the component zi are determined by the current values of the components
(z j) j=n...i+1 as follows:

⌈

−
√

1
qii

(

R2 −∑n
l=i+1 qil

(

ξl +
∑n

j=l+1 ql jξ j

)2
)

+ ρi +
∑n

j=i+1 q jiξ j

⌉

≤ zi ≤
⌊√

1
qii

(

R2 −∑n
l=i+1 qil

(

ξl +
∑n

j=l+1 ql jξ j

)2
)

+ ρi +
∑n

j=i+1 q jia j

⌋

(2.20)

where ⌈x⌉ is the smallest integer greater than x and ⌊x⌋ is the greatest integer smaller than x.

When a vector inside the search region is found, its squared distance from y, denoted d̂2,
is compared to the minimum distance, which is initialized at R. If it is smaller, this point is
considered as a candidate lattice point and the enumeration is restricted to the lattice points
belonging to a sphere S(y,d̂). The bounds of the integer components zi (2.20) are then updated.
If no integer component zn is found in the sphere, the initial radius R is increased and the search
is restarted with the new squared radius.
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Since the bounds considered in the equation (2.20) depend on the sphere radius R, a suit-
able choice of its initial value is recommended. Note that if R is too large, many points are
obtained and the search remains exponential in size, whereas if R is very small, no point is
obtained in the sphere. The initial sphere radius can be chosen based on noise statistics as
suggested by Hassibi and Vikalo in [28]. In this case, the radius can be adjusted such that the
probability to find a lattice point inside the corresponding sphere is high.

Notice that the described algorithm is proposed for the infinite lattice. Since, in digital com-
munications, finite lattice constellations are often used, it is necessary to adapt the decoding
algorithm to this kind of structures. To solve this problem, one trivial idea consists in applying
the lattice decoder and then checking the position of the selected point in the constellation. In
this case, the probability to find a point within the constellation is lower than the case of the
infinite lattice. Then the search complexity is increased.

To reduce this complexity, a solution proposed in [8], [49] consists in exploring only the lattice
points inside the finite constellation. This limitation is made simply by taking into account the
borders of the constellation when evaluating the bounds of the components zi, i = 1, . . . ,n.
Let zmax and zmin be the higher and the lower value respectively, of the coordinates of the points
belonging to the constellation. Thus, the components zi, i = 1, . . . ,n lie on the following set

Ic
i = {z ∈ Z,max(zmin,Imin ,i) ≤ z ≤ min(zmax,Imax ,i)}

where Imin ,i and Imax ,i are the lower and the higher bound respectively for the component zi in
(2.20).

When a non square constellation is considered, the bounds zmax and zmin may vary with the
dimension i. The decoder must take into account this variation while computing the bounds of
the components zi, i = 1, . . . ,n.
Figure 2.6 illustrates an example of a lattice code in the 2-dimensional real space. The corre-
sponding constellation in the integer latticeZ2 is a rectangular constellation with zmax = −zmin =

2 for the first dimension, and zmax = −zmin = 1 for the second dimension.

2.2.2 Lattice decoder based on Schnorr-Euchner enumeration

Agrell, Eriksson, Vardy and Zeger proposed in [1] a lattice decoder based on the Schnorr-
Euchner strategy. The proposed algorithm requires to represent the lattice by a triangular
generator matrix. Such representation can be obtained by a QR decomposition of any generator
matrix M. In row convention, we have

M = RQ

where R is a lower triangular matrix with positive diagonal elements and Q is an orthogonal
matrix satisfying QQT = I.

The decoder tries to find the closest point x = zM to the vector y, that can be written as
y = x +w, where w ∈ Rn. Using the QR decomposition for the matrix G, the preimage of y by
the orthogonal matrix Q is

ỹ = yQT = zR +wQT
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Figure 2.6: An example of a sphere decoder search in a 2-dimensional lattice code.

The matrix R could be written as

R =

[

Rn

rn

]

where ri, i = 1, . . . ,n, equals the ith row of the matrix R, and the n − 1 × n matrix Rn is made up
by {ri}1≤i≤n−1.

The rank of the matrix Rn is n− 1 since the rank of R equals n (the vectors {ri}1≤i≤n−1 are linearly
independent). Let Hn be the hyperplane generated by the vectors {ri}1≤i≤n−1 and (ei)1≤i≤n be the
canonical basis of Rn. Therefore, it is easy to note that en is orthogonal to Hn (as R is lower
triangular).
Then, the vector rn could be written as

rn = 〈rn,en〉.en
︸     ︷︷     ︸

+ (rn − 〈rn,en〉.en)
︸             ︷︷             ︸

rn⊥ rn‖

where the vector rn⊥ is orthogonal to Hn and the vector rn‖ is in Hn.
Let v be a vector in Rn. Then,

v ∈ ΛR ⇔ ∃ z = (z1, . . . ,zn) ∈ Zn

such that

v = zR =
[

[z1 . . . zn−1] zn

]

·
[

Rn

rn

]

= [z1 . . . zn−1].Rn
︸           ︷︷           ︸

+zn.rn

w

where w belongs to the lattice ΛRn . Consequently, a lattice point v in ΛR can be decomposed in

v = w + zn · rn⊥ + zn · rn‖ , zn ∈ Z and w ∈ ΛRn
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di = distance(y, Hzi
)

0

y

Hzi

Hzi−1

‖rn⊥
‖ Hzi−2

Figure 2.7: Projection of the received vector y on the different layers carrying the lattice.

Therefore, the lattice ΛR can be viewed as

ΛR =
⋃

zn∈Z
{w + zn · rn⊥ + zn · rn‖ , w ∈ ΛRn}

With this representation, the n-dimensional latticeΛR can be seen as the superposition of (n−1)-
dimensional translated sublattices associated to ΛRn .

Let v ∈ ΛR, v could be written also as

v = w̃ + zn · rn⊥

where w̃ = w + zn · rn‖ belongs to the hyperplane Hn. Therefore

ΛR ⊂
⋃

zn∈Z
{w̃ + zn · rn⊥ , w̃ ∈ Hn}

As a consequence, the lattice ΛR is included in a stack of hyperplanes or layers Lzn indexed by
zn ∈ Z and separated by at least ‖rn⊥‖ (Fig. 2.7). The search of the closest point will be based on
this observation.

Let denote ŷ the orthogonal projection of y onto the vector rn⊥ . Thus,

ŷ =
〈y,rn⊥〉
‖rn⊥‖2
︸  ︷︷  ︸

· rn⊥

z̃n

The distance between the vector y and the layer Lzn is given by

dn = ‖ŷ − zn · rn⊥‖ = |z̃n − zn| · ‖rn⊥‖

The nearest layer to y is Lẑn , where ẑn = [z̃n] and [x] denotes the closest integer to x.

Let us consider the real vector ρ = (ρ1, . . . ,ρn) such that ρ = yR−1: ρ is the ZF vector. Therefore,

{

y = ρ R

yn = ρn · 〈en,rn〉 = ρn · 〈en,rn⊥〉
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Since

〈y,rn⊥〉 =
n∑

i=1

yi · 〈ei,rn⊥〉 = yn · 〈en,rn⊥〉,

we have 



z̃n =
〈y,rn⊥ 〉
‖rn⊥‖2

= ρn

dn = |ρn − [ρn]| · ‖rn⊥‖, (ẑn = [ρn])

Knowing that y = ρ R,

yn−1 = ρn−1 · rn−1,n−1 + ρn · rn−1,n.

Using the decision on ρn (ρn = ẑn),

ρn−1 =
1

rn−1,n−1
(yn−1 − ẑnrn−1,n) and ẑn−1 = [ρn−1]

More generally, for i = n − 1, . . . ,1, ρi could be written as

ρi =
1

rii
· (yi −

n∑

j=i+1

ẑ jri j)

and the distance di is

di = |ρi − [ρi]| · ‖ri⊥‖

The evaluation of the integer vector ẑ = (ẑ, . . . ,ẑn), ẑi = [ρi] recursively, as described in the
previous, yields to the Babai point [1]. The squared distance between the Babai point and the
vector y equals

d2 =

n∑

i=1

d2
i

The described strategy to find the Babai point represents the first step of this algorithm. The
Babai point is a first estimation of the closest point, but is not necessarily the closest point.
Nevertheless, finding the Babai point gives us a bound on the search region.

Once the Babai point is found, the second step of this decoding algorithm consists in go-
ing through the lattice points whose components are obtained by oscillating around the Babai
point components. Thus, the ith integer component zi of the tested point belongs to the (ordered)
sequence of values:

zi ∈ {ẑi,ẑi − 1,ẑi + 1,ẑi − 2,ẑi + 2,...}

As for the Babai point computation, the component zi at the ith level is computed using the
values of the components zn,..,zi+1.

A lattice point x̂ is considered as a candidate to be the closest point if ‖x̂ − y‖2 ≤ d̂2 where
d̂2 is initialized at d2. The distance d̂2 is then updated to ‖x̂ − y‖2 and the search will continue
until all points within S(y,d̂2) are checked.
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When a finite set of the lattice is considered, we should take into account the borders of the
constellation [8], [49]. At first, we choose the components of the Babai point (z̃i)1≤i≤n such that:





z̃i = [ρi]
z̃i = zmin, if z̃i < zmin

z̃i = zmax, if z̃i > zmax

where zmax and zmin are the higher and the lower value respectively, of the constellation point
coordinates.
Then, at each level i 1 ≤ i ≤ n, we compare the component zi to the constellation borders. If the
condition zmin ≤ zi ≤ zmax is not respected, we restart the search from the level i + 1.

Conclusions

In this chapter, we introduced some lattice parameters that will be used in the sequel to study
the MIMO system performance. Moreover, quadratic forms associated to lattices are pointed
out. Indeed, this mathematical tool will be used to classify MIMO channels in the last chapter.
Finally, we described two lattice decoder algorithms, namely sphere decoder based on Pohst
strategy and sphere decoder based on Schnorr-Euchner strategy. It was shown that sphere
decoder with both strategies has a reduced complexity, since it is able to find the ML point in
polynomial time. In the next chapters, the ML detector used in conjunction with MIMO channel
will be based on Schnorr-Euchner strategy as it is not affected from complexity point of view
by the choice of the initial search radius.



Chapter 3

Accurate approximation of the MIMO
error probability

Introduction

In this chapter, we propose an accurate approximation of the conditional error probability in a
MIMO system. This approximation will be used in the next chapter for adaptive systems (e.g.
adaptive modulation, antenna selection).
In the literature, Taricco and Biglieri gave the exact pairwise error probability in [55][56] for
frequency non-selective multiple antenna systems. The pairwise error probability considered
in their paper is defined as the mathematical expectation over all channel realizations. Thus,
their closed form expression cannot be used for adaptive techniques. Besides, Tarokh et al
proposed in [58] a lower bound of the error probability for a Gaussian channel. This bound is
a valid approximation for high rate lattice codes. Since it is a lower bound, the approximation
given in [58] cannot provide good performance for adaptive techniques.
The tight error probability approximation described in this chapter is conditioned on a fixed
channel realization. The proposed method does not require an intractable evaluation of all
pairwise error probabilities. This is achieved thanks to a judicious choice via Pohst/Schnorr-
Euchner enumeration of dominant neighbors inside a sphere centered around a constellation
point.

This chapter is organized as follows. Section 3.1 shows how a MIMO channel, described
by its channel matrix, can be represented by a finite set of a lattice. Based on the lattice the-
ory, section 3.2 presents first an accurate approximation of the conditional error probability
for MIMO channels with more receive than transmit antennas. Next, the validation of this
approximation is made by comparing the proposed analytical expression to Monte-Carlo simu-
lation results for different antenna and modulation configurations. The last section 3.3 provides
a generalization of the approximation to any number of receive and transmit antennas. We
present in this section the generalized sphere decoder algorithm given in [17] for any MIMO
channel configuration. This decoder is used to compare the error probability approximation
and the Monte-Carlo simulation results.

45
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3.1 Lattice representation of MIMO channel

We consider a digital transmission system with nt transmit antennas and nr receive antennas.
The notations and the assumptions made in section 1.3 are valid through this chapter. For one
channel use, the input-output model is

r = sH + ν, (3.1)

where r is the length nr receive complex vector, s is the length nt transmit vector and ν is an
nr length additive white Gaussian noise vector. The transmitted symbol sk, for the kth antenna,
belongs to a Mk-QAM modulation [48], k = 1 . . . nt, where Mk is the size of the QAM modulation
applied on antenna k. The nt QAM constellations are not necessary identical, their Cartesian
product is denoted CQAM.
At the receiver side, it is assumed that perfect Channel State Information (perfect CSI) is avail-
able. CSI is not required at the transmitter side.
Finally, a maximum-likelihood detector based on a sphere decoder is applied [63][1][8] to ac-
complish a low complexity detection (as described in section 2.2).

For the sake of simplicity, we assume at first that nt = nr. The study is similar in the asymmetric
channel case when nr ≥ nt. The generalization of the proposed bound to the case when nr < nt

will be provided in the last section of this chapter.

The performance study of the quasi-static multiple antenna model in (3.1) is carried out in
this chapter thanks to lattices and sphere packings theory [15]. The reader who is not familiar
with group/lattice representation can find in chapter 2 a summary of the main lattice parameters
that are used in this chapter.

In equation (3.1), the product x = sH is interpreted as a point in the Euclidean space Rn,
n = 2nt = 2nr. The point x belongs to a real lattice Λ of rank n, whose n × n generator matrix
M = [mi j] is the real version of H defined by





m2i,2 j =ℜ(hi, j)
m2i+1,2 j = −ℑ(hi, j)
m2i,2 j+1 = ℑ(hi, j)
m2i+1,2 j+1 =ℜ(hi, j)

(3.2)

whereℜ(x) and ℑ(x) denote the real and imaginary parts of the complex x respectively.

Since the transmit vector s is limited to the Cartesian product CQAM ⊂ Zn, then x belongs

to a finite set CH of Λ, CH is called a lattice constellation or lattice code. When CQAM is square,

the shape of CH is given by the parallelotope P, i.e. CH and P are homothetic. The reader
should notice that a Mk-QAM modulation is defined as a rectangular subset ofZ2 and that any
scaling factor or any translation generates an equivalent set.
The cardinal of the lattice constellation CH is equal to

∏nt

k=1
Mk. The spectral efficiency of the

uncoded QAM system is
∑nt

k=1
log2(Mk) bits per channel use.
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3.2 Accurate Approximation of a MIMO channel error probability

The lattice representation of a multiple antenna channel converts the MIMO model given in
equation (3.1) into a simple additive white Gaussian noise (AWGN) channel model

r = x + ν

For a given random lattice Λ generated by a fixed channel matrix H, let Pe(Λ) denote the point
error probability associated to the infinite set Λ and let Pe(CH) denote the average point error
probability associated to the finite constellation CH. Trivial geometrical properties leads to the
inequality

Pe(CH) ≤ Pe(Λ).

As indicated in section 2.1.5, due to the geometrical uniformity ofΛ, the error probability Pe(Λ)
does not depend on the transmitted point, e.g. Pe(Λ) = Pe|0 ≤

∑

x,0 P(0 → x), where P(x → y)
is the classical notation for the pairwise error probability and Pe|x is the error probability
conditioned on the transmission of x.
On the contrary, CH is not geometrically uniform. To find its exact error probability, the
conditional error probability Pe|x can be evaluated for all x ∈ CH, and then averaged:

Pe(CH) =
1

card(CH)

∑

x∈CH

Pe|x.

For example, when nt = 4 and Mk = 16 for all k, a classical Union bound would cost

2
∑nt

k=1
log2(Mk)× (2

∑nt
k=1

log2(Mk)−1), i.e. 65536×65535, Euclidean distance evaluations. To reduce the
complexity, we propose in the following a method which yields to an accurate approximation
of the CH error rate at a low complexity cost.

As shown in section 2.1.5, under the assumption that all facets of the Voronoi region are created
by the first lattice shell, we have

Pe(CH) ≤ Pe(Λ) ≤ τ(Λ) × Q

(

dEmin(Λ)

2σ

)

. (3.3)

where τ(Λ) is the kissing number, dEmin(Λ) is the minimum Euclidean distance, and σ2 is the
one-dimensional real noise variance.
The situation in which the right inequality of (3.3) is valid corresponds to dense lattice packings,
i.e. the fundamental gain γ(Λ) given in (2.3) is greater than 1 [15], [20].

When square QAM modulations are applied on the transmit antennas, the noise variance
σ2 is equal to

σ2 =
Es

2
∑nt

i=1
log2 Mi

1

Eb/N0

where Eb/N0 denotes the average received SNR per bit, and Es is the received signal energy
equal to

Es =
nr

4

nt∑

i=1

2(Mi − 1)

3
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Figure 3.1: Distribution of the lattice fundamental gain γ(dB) (Hermite constant) in a symmetric
MIMO channel nt = nr.

Substituting the noise variance and the signal energy expressions in (3.3) leads to the following
[9]

Pe(Λ) ≤ τ(Λ) × Q





√

3 ×∑nt

i=1
log2 Mi

nr ×
∑nt

i=1
(Mi − 1)

× Eb

N0
× d2

Emin
(Λ)




. (3.4)

Unfortunately, random lattices generated by H are not necessarily dense, especially for nt ≤ 4
as illustrated in Fig. 3.1. Thus, in the general case, the theta series of Λ is needed to derive an
upper bound for Pe(Λ). In practice, the theta series defined in (2.4) will be truncated to a limited
number of shells around the transmitted point. This truncation yields to precise numerical re-
sults because the lattice is transmitted on a Gaussian channel where pairwise error probability
decreases exponentially with respect to Euclidean distance.

Let us now describe how the non geometrically uniform set CH is handled in order to reduce
the computational complexity with respect to the Union bound. With this method, we aim at
finding a precise approximation for the point error rate (point refers to a lattice point that corre-
sponds to the transmitted vector s), not an exact evaluation, neither a closed-form expression.
Before illustrating the proposed method, we introduce a simple example that highlights our
idea for error probability computation.
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symbol ∈ I2

symbol ∈ I0

symbol ∈ I1

Figure 3.2: An example of a 16-QAM constellation inR2. Points are distinguished according to
the number of crossing facets.

3.2.1 Example of error probability computation strategy

Consider a 16-QAM constellation transmitted on a Gaussian channel (Fig. 3.2). It can be
partitioned into 3 subsets: 4 points in the middle (I0), 8 non-corner points on the facets (I1), and
4 points on the corners (I2). There are 3 different error rates, one for each subset. The total point
error rate is obtained by

Pe =
4

16
Pe(I0) +

8

16
Pe(I1) +

4

16
Pe(I2)

Therefore, there is no need to compute 16 error rates corresponding to 16 × 15 distance evalua-
tions.

3.2.2 Error probability computation for n ≥ 2

Now, generalize the previous idea to a dimension n ≥ 2, where the constellation CH is not cubic
shaped since H is random.

For a given constellation point x = sH = zM (z = (z1, . . . ,zn) ∈ Zn such that z2i−1 = ℜ(si)
and z2i = ℑ(si) for 1 ≤ i ≤ n), the local theta series, i.e. the distance distribution of points
surrounding x and belonging to CH, depends on x.
This observation can be noticed in Fig. 3.3 that represents points of a lattice constellation carved
from a lattice Λ ⊂ R2. Consider the points x0, x1, x2. The local theta series of these points, e.g.
up to a square radius R, are not identical. Indeed, six neighbors surround the point x0 inside
the constellation, whereas four points surround the point x1 belonging to one facet, and only
two points surround the point x2 belonging to two facets.

More precisely, the distribution of the Euclidean distances around x depends on the position
of x in CH. If x does not belong to the boundary of CH (the point belongs to the interior
of the constellation) then boundary effects can be neglected and the local theta series is well
approximated by the theta series of Λ. Otherwise, if the point x is located on the boundary of
CH, then the local theta series is derived by translating the original one (given for the lattice Λ)
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Figure 3.3: An example of lattice constellation in R2. Points are distinguished according to the
number of crossing facets.

around x and subtracting all lattice points that do not belong to CH.
Consequently, we partition the constellation into n + 1 subsets

CH =

n⋃

ℓ=0

Iℓ, (3.5)

where Iℓ contains lattice points located on the intersection of ℓ facets in CH. The subset I0 is
the interior of the constellation. Notice that x = zM ∈ Iℓ is equivalent to z belonging to the
intersection of ℓ facets in CQAM ⊂ Zn.
Following (3.5), the error probability of the constellation becomes

Pe(CH) =

n∑

ℓ=0

pℓPe(Iℓ). (3.6)

The weighting factor pℓ is the probability that a point of CH belongs to the subset Iℓ, and Pe(Iℓ)
is the error probability associated to Iℓ. The probability Pe(Iℓ) is obtained by averaging over all
points x ∈ Iℓ, since the conditional probability Pe|x depends on the local position of x. In the
sequel, we describe how an accurate approximation of (3.6) can be obtained.

3.2.3 Evaluation of the probability pℓ

For simplicity reasons, only square QAM constellations are considered in this section. In this
case, each M-QAM can be written as the Cartesian product of Pulse Amplitude Modulations :

M-QAM =
√

M-PAM ×
√

M-PAM. The generalization to rectangular and cross bi-dimensional
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Figure 3.4: Pulse Amplitude Modulation constellation of cardinal M. Points black filled are on
the edge of the PAM. Those that are in the interior of the PAM are white filled.

constellations is straightforward. It is also assumed that QAM symbols transmitted through
the MIMO channel have the same a priori probability.

Two cases are distinguished:

• 1- All antennas transmit the same QAM set

Let x = zM be a point of the constellation CH with z = (z1,z2,..,zn) ∈ Zn. The components zi

belong to the
√

M-PAM constellation that is composed of
√

M symbols as depicted on Fig. 3.4.
Only two among the symbols belonging to the PAM are on the edges of the constellation. The
probability, p, that a symbol is on the edges of the PAM is equal to:

p =
2√
M

(3.7)

Supposing that x belongs to Iℓ means that ℓ components of z are on the edges of the PAM.
Let Ei be a discrete random variable having two possible values:

Ei = 1 if zi is on the edge with the probability p

Ei = 0 otherwise with the probability 1 − p

Since the components zi are independent, the variables (Ei)i=1,..,n are iid. Let F =
∑n

i=1 Ei denote
the number of components zi of the vector z on the edge of the constellation. Therefore F defines
a random binomial variable with parameter p, given by equation (3.7), and the probability pℓ is
given by:

pℓ = Prob(F = ℓ) =

(

n
ℓ

)

pℓ(1 − p)n−ℓ

=

(

n
ℓ

) (

2√
M

)ℓ ( √
M − 2√

M

)n−ℓ
(3.8)

• 2- Antennas transmit general QAM sets (not necessarily identical)

To derive the expression of the probability pℓ when distinct QAMs are applied on the transmit
antennas, two methods are proposed in the following.

Method 1

Let {M1,M2,..,MNq} be the set of available QAM modulation sizes at the transmitter. There are
(Nq)nt potential combinations of modulations that can be applied on the nt transmit antennas.
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Let nti
∈ {0,..,nt} be the number of transmit antennas using the same Mi-QAM modulation and

0 ≤ ni = 2nti
≤ n.

For a given value of ℓ, 0 ≤ ℓ ≤ n, let ℓi be the number of the components of the transmitted
vector s, that belong to the edges of the Mi-QAM constellation. The variables {ℓi} satisfy the
following sum condition:

Nq∑

i=1

ℓi = ℓ , 0 ≤ ℓi ≤ ℓ (3.9)

Example :

Assume that four QAM modulations are available at the transmitter: QPSK, 16-QAM, 64-
QAM and 256-QAM, i.e. Nq = 4. Let nt = 8 and (QPSK, 64-QAM, 16-QAM, 16-QAM, 16-
QAM, 64-QAM, 256-QAM, QPSK) be the combination applied on transmit antennas. Let
z = (z1,z2 . . . z15,z16) ∈ Z16 be the transmitted vector. According to the chosen modulation, we
have





(z1,z2), (z15,z16) ∈ 4-QAM

(z5,z6), (z7,z8), (z9,z10) ∈ 16-QAM

(z3,z4), (z11,z12) ∈ 64-QAM

(z13,z14) ∈ 256-QAM

As indicated before, the pairwise (zi,zi+1) ∈M-QAM belongs to at least one facet of the constella-

tion if zi or zi+1 =
√

M−1. Let ℓ1, ℓ2, ℓ3, ℓ4 denote the number of edge components corresponding
to QPSK, 16-QAM, 64-QAM and 256-QAM respectively. For example, we give in the following
the value of ℓi, i = 1, . . . ,4, when z = (−1,1, − 5,3, − 1,3, − 1, − 3,1, − 1, − 7, − 1,15, − 5,1,1).

• (z1,z2,z15,z16) = (−1,1,1,1)→ ℓ1 = 4

• (z5,z6,z7,z8,z9,z10) = (−1,3, − 1, − 3,1, − 1)→ ℓ2 = 2

• (z3,z4,z11,z12) = (−5,3, − 7, − 1)→ ℓ3 = 1

• (z13,z14) = (15, − 5)→ ℓ4 = 1

To find the number of facets ℓ that cross the lattice point x = zM, it is sufficient to compute the

sum
∑4

i=1 ℓi = ℓ = 8. The lattice point x corresponding to the integer vector z belongs then to
the subset I8. The components belonging to the edge of the lattice constellation are illustrated
in red in Fig. 3.5.

Note that for a given value of ℓ, we can find

JNq,ℓ =

(

ℓ +Nq − 1
ℓ

)

combinations of ℓi that satisfy the condition illustrated by equation (3.9). Let Lℓ, j = (ℓ
j

i
)1≤i≤Nq;1≤ j≤JNq ,ℓ

be one of these combinations. The probability pℓ can be expressed as:
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Figure 3.5: An example to compute the number of facets belonging a constellation point in R8.

pℓ = P(x ∈ Iℓ) = P




x ∈

⋃

1≤ j≤JNq ,ℓ

I
j

ℓ





=

JNq ,ℓ∑

j=1

P(x ∈ I
j

ℓ
) (3.10)

where I
j

ℓ
is a subset of Iℓ corresponding to the combination Lℓ, j.

Since the components of the vector x are independent, the probability P(x ∈ I
j

ℓ
) can be written

as:

P(x ∈ I
j

ℓ
) =

Nq∏

i=1

P(xi ∈ I
j

ℓ,i
) (3.11)

where (xi) is the ni-uplet that is composed of the components of x belonging to the
√

Mi-PAM,

1 ≤ i ≤ Nq, and I
j

ℓ,i
⊂ Zni contains the vectors xi having ℓi components on the edge of the

√
Mi-PAM constellation. Note that if ni = 0, I

j

ℓ,i
= ∅ and the probability P(xi ∈ I

j

ℓ,i
) is equal to 1

∀ j.

The probability P(xi ∈ I
j

ℓ,i
) is obtained by substituting the variables ℓ

j

i
, ni and Mi in equation

(3.8), that is:

P(xi ∈ I
j

ℓ,i
) =

(

ni

ℓ
j

i

) (

2√
Mi

)ℓ
j

i
( √

Mi − 2√
Mi

)ni−ℓ j

i

(3.12)
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Combining equations (3.10), (3.12) and (3.12) leads to

pℓ =

JNq ,ℓ∑

j=1

Nq∏

i=1

(

ni

ℓ
j

i

) (

2√
Mi

)ℓ
j

i
(

1 − 2√
Mi

)ni−ℓ j

i

(3.13)

When all Tx antennas transmit the same modulation so Nq = 1 and one combination Lℓ, j is

available. The variable ni is equal to n and ℓ
j

i
equals ℓ since one modulation is considered.

Thus, the probability pℓ given by (3.13) is equivalent to that given by (3.8).

Method 2

The number ℓ of constellation facets to which a point x = zM belongs in Rn is written as

ℓ =
n∑

i=1

ℓi, (3.14)

ℓ ∈ [0...n] and ℓi ∈ {0,1}. The integer ℓi is set to 1 if zi is on the PAM boundary . Notice that zi,
i = 1 . . . n, belongs to a PAM real constellation of size

√

M[(i+1)/2], where Mk is the size of the kth

bi-dimensional QAM set, 1 ≤ k ≤ nt = n/2. For a given value of ℓ, let Lℓ, j = (ℓ
j

1
. . . ℓ

j

i
. . . ℓ

j
n) denote

a length n binary vector whose components satisfy the sum condition (3.14), 1 ≤ j ≤
(

n
ℓ

)

. It is

easy to show that

pℓ =
∑

Lℓ, j

n∏

i=1





2
√

M[(i+1)/2]





ℓ
j

i



1 − 2

√

M[(i+1)/2]





1−ℓ j

i

. (3.15)

The above expression reduces to (3.8) when identical QAM sets are used on the MIMO channel.

3.2.4 A bound for the subset error probability Pe(Iℓ)

We establish an upper union bound for Pe(Iℓ) using the local theta series. Computer simulations
given below show the tightness of this bound based on the simple AWGN model defined by
r = x + ν.

The error probability Pe(Iℓ) considered in equation (3.6) can be written as:

Pe(Iℓ) =
∑

x∈Iℓ
Pe(Iℓ,x)

=
∑

x∈Iℓ
Pe(Iℓ/x)p(x)

=
1

card(Iℓ)

∑

x∈Iℓ
Pe(Iℓ/x) (3.16)

where card(Iℓ) denotes the cardinal of Iℓ and Pe(Iℓ/x) is the error probability for Iℓ conditioned
on x.

The union bound applied to Pe(Iℓ/x) in equation (3.16) leads to the following inequality:

Pe(Iℓ/x) ≤
∑

y∈C(H)−{x}
P(x→ y) (3.17)



C 3. A   MIMO   55

Let Sx,i = {y ∈ CH|dE(x,y) = di} be the set of points belonging to CH and surrounding x at a
Euclidean distance di. The shape of Sx,i is not necessarily spherical due to the cutting boundaries
of the constellation. Equation (3.17) can be written as:

Pe(Iℓ/x) ≤
∑

i

∑

y∈Sx,i

Pi(x→ y) (3.18)

with

Pi(x→ y) = Q

(

di

2σ

)

Combining equation (3.16) and inequality (3.18), the upper bound for Pe(Iℓ) becomes:

Pe(Iℓ) ≤
1

card(Iℓ)

∑

x∈Iℓ

∑

i

τx,ℓ,i ×Q

(

di

2σ

)

(3.19)

with τx,ℓ,i = card(Sx,i) and x ∈ Iℓ. The shells at distance di in the local theta series Sx,i are indexed
by i in the subscript of τ.

Finally, for a fixed channel matrix H, an accurate approximation of the point error probability
for a multi-dimensional QAM modulation transmitted on a MIMO channel is obtained by
combining equations (3.19) and (3.6),

Pe(CH) ≤
n∑

ℓ=0

pℓ

card(Iℓ)

∑

x∈Iℓ

∑

i

τx,ℓ,i ×Q

(

di

2σ

)

(3.20)

where pℓ is given by equation (3.8) or (3.15). In the following, the bound given in (3.20) is
referred by MEPA (MIMO Error Probability Approximation).

The next subsection gives our proposed strategy to compute the coefficients τx,ℓ,i in (3.20).

3.2.5 Numerical implementation of MEPA

In this section, the computation of the coefficient τx,ℓ,i is detailed in the first subsection. Then,
the Short vectors algorithm used for this computation is presented. The assumptions considered
in the evaluation of the error probability Pe(CH) are given in the last subsection as well as the
flowchart of the error probability computation. Finally, simulation results are illustrated to
show the accuracy of our approximation.

3.2.5.1 Evaluation of τx,ℓ,i strategy

The coefficients τx,ℓ,i of the local theta series are easily determined from the original theta series
of the random lattice Λ as follows:

• Step 1: Generate lattice points y ∈ Λ located at a distance di from the origin. These points

are found using the Short vectors algorithm, which is detailed later, based on a Pohst
enumeration inside a sphere [46][14].

• Step 2: For each y found in the previous step, check if the translate y + x belongs to the

constellation CH and increment τx,ℓ,i accordingly.
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The Short vectors algorithm used in Step 1 to compute the coefficient τx,ℓ,i is detailed in the
following paragraph.

Short vectors algorithm

The Short vectors algorithm searches all the points x ∈ Λ subject to ‖x‖2 ≤ C or equivalently if
x = zM,

‖x‖2 = zGzT = Q(z) ≤ C, (3.21)

where C is a positive constant value and G = MMT is the Gram matrix of the lattice Λ. It is
noticed that the enumeration of the points x is equivalent to that illustrated in section 2.2 while
assuming the sphere is centered at the lattice origin.
Thanks to Cholesky factorization, the Gram matrix G can be written as G = RTR, where

R = [ri j] is a real upper triangular matrix. Assuming qii = r2
ii
, i = 1 . . . n and qi j =

ri j

rii
, i = 1 . . . n

and j = i + 1 . . . n, we can write:

Q(z) =

n∑

i=1

qii




zi +

n∑

j=i+1

qi jz j





2

≤ C (3.22)

The Short vectors algorithm used to solve Q(z) ≤ C is given by the following steps, extracted
from [46]:

In Step 1 to Step 6, Ti, Ui and Z are operation variables.

Example of computing τx,ℓ,i

Figure 3.6 illustrates an example of lattice constellation in the 2-dimensional real space. This
example shows how the parameter τx,ℓ,i is computed for four different points of the constellation,
namely 0, x1, x2, x3. The Short vectors algorithm is applied to obtain the neighbors of the origin
in the lattice located on different shells. Then translations of the different neighbors around the
points x1, x2, x3 are illustrated for cases (a), (b), and (c) respectively in Fig. 3.6. It is clear that
the parameter τx,ℓ,i, given by the intersection of the constellation and the translated shells (Step
2), depends on the position of the point x in the constellation. Notice that the two points 0 and
x1 that belong to the subset I2 do not necessarily have the same parameter τx,ℓ,i.

3.2.5.2 Numerical implementation of MEPA assumptions

For the derivation of numerical results, we limited the total number of considered points x in
(3.20) to Nx = min(1000,

∏nt

k=1
Mk). The number of points selected from the subset Iℓ (points

lying on the intersection of ℓ facets) is weighted by pℓ, i.e. we consider pℓNx such points. This
method accurately approximates the distribution of constellation points according to their po-
sition. The number of shells in the considered local theta series is limited to imax, where the most
distant shell is at 2d2

Emin
(Λ). The conventional factor 2 is fully justified by its corresponding 3dB

signal-to-noise ratio margin on a Gaussian channel. If the local theta series (around x) is empty,
then the new search radius can be increased up to 4d2

Emin
(Λ) (6dB SNR margin).

Another heuristic for controlling imax is to select the first squared radius greater than mini gii,
where [gi j] = MMT is the Gram matrix for Λ. It can be shown that the minimum Euclidean
distance in CH satisfies
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input : The matrix [qi j] used in (3.22) and C > 0
output: All z ∈ Zn, z , 0, satisfying (3.21) and additionally each corresponding value

Q(z)

Step 1 : (Initialization)1.1

Set i← n, Ti ← C, Ui ← 01.2

Step 2 : (Bounds for zi)1.3

Set Z←
√

Ti/qii, UB(zi)← ⌊Z −Ui⌋, zi ← ⌈−Z −Ui⌉-1,1.4

where UB(zi) is an upper bound of zi1.5

Step 3 : (Increase zi)1.6

if zi > UB(zi) then1.7

set zi ← zi + 11.8

end1.9

else1.10

go to Step 51.11

end1.12

Step 4 : (Increase i)1.13

Set i← i + 11.14

Go to Step 31.15

Step 5 : (Decrease i)1.16

if i = 1 then1.17

go to 61.18

end1.19

else1.20

set i← i − 1, Ui ←
∑n

j=i+1 qi jz j, Ti ← Ti+1 − qi+1i+1(zi+1 +Ui+1)2
1.21

go to Step 21.22

end1.23

Step 6 : (Solution)1.24

if z = 0 then1.25

terminate1.26

end1.27

else1.28

print z, −z and Q(z) = C − T1 + q11(z1 +U1)2
1.29

go back to Step 31.30

end1.31

Algorithm 1: Short vectors algorithm.
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Figure 3.6: Example for computing the parameter τx,ℓ,i for different points in the bidimensional
constellation.

dEmin(Λ) ≤ dEmin(CH)

dEmin(Λ) ≤
√

min
i=1...n

gii (3.23)

For 1 ≤ ℓ ≤ n, the algorithm proposed to compute PeIℓ is depicted on Fig. 3.7. The notations
used in the flowchart are the following:

• K is the current number of points, belonging to ℓ hyperplane facets, actually tested;

• Kdi
x is the number of points located at a distance di from the constellation point x;

• τi(Λ) is the number of points located at a distance di from the constellation point x in the lattice Λ
(results from the theta series of the lattice Λ);

• SΛ
0,i
= {y ∈ Λ,d(0,y) = di} is the ith shell around the lattice origin 0;

• zmin j
and zmax j

denotes respectively the minimum and maximum values of the jth component in

the constellation CH;

• zx is a n-dimensional vector such as x = zxG and zy is a n-dimensional vector such as y = zyG;
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• (zx + zy) j denotes the jth component of the vector zx + zy;

• The error probability Pei is equal to Pei = Q
(

di

2σ

)

Note that the error probability Pe(Iℓ) computed by the algorithm described in Fig. 3.7 is propor-
tional to the upper bound on the error probability given by the equation (3.19). This proportion-
ality coefficient will be compensated in the evaluation of the overall error probability Pe(CH),
presented in Fig. 3.7. Moreover in order to reduce the complexity of the algorithm, the vectors x

belonging to Iℓ can be stored in a table to avoid generating them for each i = 1,...,imax. The same
remark may be applied to the lattice points y, which are generated around the constellation
origin thanks to Short vectors algorithm, i.e. for a given shell i, the same vectors y can be used
for different points x (only a translation is required). Furthermore, as the lattice is the same for
all constellations considered in the setR, the same vector y can be used for all the constellations
to be tested.

3.2.6 Simulation results

Figure 3.8 illustrates the accuracy of the upper bound (3.20) in the case of a fixed 4 × 4 MIMO
channel. The point error rate is plotted versus the average signal-to-noise ratio. The matrix H

is selected at random and kept unchanged (Tc = ∞) for all results shown in Fig. 3.8. Four dif-
ferent QAM combinations are tested. The notation 4*M-QAM means that 4 transmit antennas
are using the same M-QAM. When transmitted constellations are not identical, a notation as
16-16-64-64-QAM means that M1 =M2 = 16 and M3 =M4 = 64. In all cases, simulation results
below 10−1 are very close to the proposed analytical approximation.

Figure 3.9 illustrates the average error probability of a quasi-static 4 × 4 MIMO channel with a
finite coherence time (Tc = 10 instead of +∞). Expectation is made over the distribution of H in
Fig. 3.9. The proposed approximation maps almost exactly with simulation results below 10−1.

The Fig. 3.10 compares the simple upper bound (3.4) to our bound (3.20) that is based on the
local theta series. It is shown that the simple bound (3.4) is less accurate than (3.20). For low
SNR, (3.4) is not necessarily an upper bound because some Voronoi facets are due to more
distant points than those located on the first lattice shell (see the 4*16-QAM case). At high SNR,
the influence of those facets is negligible. The gap between the simple bound and the exact
error rate decreases with the constellation size at high SNR. For example, at Eb/N0 = 16 dB,
a factor of 8 is noticed between both bounds when 4-QAM is applied on transmit antennas,
whereas this factor is equal to 3 when 16-QAM is used.

The previous study to evaluate the error probability for a quasi-static MIMO system is valid
when nt ≤ nr. Indeed, the upper triangular factorization (e.g. based on Cholesky factorization)
of the Gram matrix G =MMT that is considered in the Short vectors algorithm (see section 3.2.5),
can be used only for definite positive Gram matrix, e.g. case nt ≤ nr. The next section shows
how to generalize this study for any (nt,nr).
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x
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Figure 3.7: Flowchart of the algorithm used to compute the error probability Pe(Iℓ).
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Figure 3.8: Error probability of a 4× 4 static MIMO channel (Tc = +∞). Analytic approximation
(continuous lines) and Monte Carlo simulation (dotted lines).

3.3 Generalization of the error probability approximation for any

MIMO channel

The generalization of the Cholesky factorization for a non definite Gram matrix G = RRT (when
the rank of G is equal to 2nr < 2nt) yields to an upper triangular matrix R of rank equal to 2nr

with diagonal elements satisfying

rii =

{

0 for i > nr

, 0 for 1 ≤ i ≤ nr
(3.24)

Recall that the Short vectors algorithm searches the lattice points x = zM located around the
lattice origin. Let zUp and zDw refer to the first m and the last n−m elements of the integer vector
z, where m = 2nr and n = 2nt. For a given value of zUp, the Short vectors algorithm is applied to
search the elements of zDw. This should be repeated for each possible value of zUp. Note that

the components of zUp are integers belonging to the interval zmini
≤ z

Up

i
≤ zmaxi

, where zmini

and zmaxi
denote the lower and the higher values of the components belonging to the QAM

applied on the ⌈i/2⌉th antenna, 1 ≤ i ≤ n. However, this approach to generalize the Short vectors
algorithm has an exponential complexity in (n − m), when the same M-QAM modulation is
applied on all transmit antennas. Thus, the search complexity increases with the modulation
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Figure 3.9: Average error probability of a 4 × 4 quasi-static MIMO channel (Tc = 10). Analytic
approximation (continuous lines) and Monte Carlo simulation (dotted lines).

size and is higher for large constellations (e.g. 64-QAM, 256-QAM).

In [17], the authors proposed a method to generalize the sphere decoder algorithm with lower
complexity than the previous approach. The proposed algorithm aims to find an upper bound
for the minimum Euclidean lattice constellation and to search the neighbors surrounding a
lattice constellation point at a distance di.

In this section, we present first the generalized sphere decoder algorithm proposed in [17]
and considered in our simulations. Then, we describe the generalization of the error probabil-
ity (3.20) for the case when nt > nr. Finally, we give some simulation results for this case.

3.3.1 Generalization of the sphere decoder algorithm for the case when nt > nr

Let us write the relationship between the transmit and the receive signal of a nt × nr MIMO
system, as

r = sH + ν (3.25)

Let x = zM be equivalent to sH in the real spaceRn, where M is a n×m real matrix related to H

as given in equation (3.2). The lattice constellation corresponding to the channel H is denoted
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Figure 3.10: Average error probability of a 4 × 4 quasi-static MIMO channel (Tc = 10). Analytic
approximation given in (3.20) based on local theta series (continuous lines), bound given in
(3.4) based on minimum Euclidean distance (dashed lines), and Monte Carlo simulation (dotted
lines).

CH.

As previously seen, the sphere decoder algorithm is based on the maximum-likelihood cri-
terion (see section 2.2). It consists in enumerating all the lattice points x = zM ∈ CH located
within a certain region, denoted S ⊂ Rn, around the received point r and selecting the closest
point x̂, as follows:

‖r − x̂‖2 = min
x∈CH∩S

‖r − x‖2 (3.26)

The Euclidean distance ‖r − x‖2 can be expressed as

‖r − x‖2 = ‖r − zM‖2 + αzzT − αzzT α > 0

= ‖r‖2 + z(MMT + αIn)zT − αzzT − rMTzT − zMrT, (3.27)

Let consider the positive definite matrix G̃ =MMT+αIn. This matrix can be Cholesky factorized
as G̃ = R̃TR̃, where R̃ is an upper triangular matrix. Let us define ρ and M̃ such as ρ = rMTG̃−1

and M̃ = R̃R̃T. The equality (3.27) can be written as
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‖r − zM‖2 = ‖r‖2 + zR̃R̃TzT + ρ R̃R̃Tρ T − ρ M̃ρ T − αzzT − rMTzT − zMrT

= ‖(ρ − z)R‖2 + ‖r‖2 − ρ M̃ρ T − αzzT (3.28)

Thus, the new radius for (3.26) is equal to

r2
1 = r2 − ‖r‖2 + ρ M̃ρ T + αzzT (3.29)

In [17], the algorithm is proposed at first in the case of QPSK modulation and then is gener-
alized to any M-QAM modulation. Indeed, if the elements of z are of constant modulus the
QPSK case, the product αzzT remains constant. Thus, the minimization of the Euclidean norm
‖(ρ − z)R‖2 is equivalent to the minimization of ‖r − zM‖2 on z. Note that the complexity of
this proposed algorithm depends on the choice of α. There exists an optimal α that leads to
the lowest complexity but it is impossible to derive a closed-form expression for the optimal α,
which depends on the variance of the additive noise and n−m [17]. For simulations, we test the
value of α = 0.5

n−m . We apply the Schnorr Euchner strategy [1] to the generalized sphere decoder.
This choice is done to avoid searching the closest point into the sphere of radius r2

1
, especially

when r1 ≫ 1.

To generalize this algorithm to any M-QAM modulation, it is observed that any M-QAM
(M = 2n) constellation can be represented as a weighted sum of n/2 QPSK constellations when
n is an even number [17]. Thus,

∀s ∈M-QAM, ∃ si ∈ QPSK, 0 ≤ i ≤ n/2 such that s =

n
2−1
∑

i=0

2isi (3.30)

For example, if we consider a 16-QAM modulation, any symbol s ∈ 16-QAM can be expressed
as:

s = 2s1 + s0

where s0, s1 ∈ QPSK.

The received signal r = sH + ν can be written as

r =
[

s1 s0

]
[

2H

H

]

+ ν (3.31)

A MIMO system with nt transmit, nr receive antennas, and 16-QAM modulation could be
transformed into another MIMO system with 2nt transmit, nr receive antennas, and QPSK
modulation.

In the following, we consider the algorithm described above to generalize the proposed MIMO
error probability approximation to any (nt,nr).

3.3.2 Generalization of the error probability computation when nt > nr

We adapt the approximation given in (3.20) to the asymmetric case, nt > nr. For a fixed
channel matrix H, it is shown (see section 3.2) that an accurate approximation of the point error
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probability for a multi-dimensional QAM modulation transmitted on a MIMO channel is upper
bounded by

Pe(CH) ≤
n∑

ℓ=0

pℓ

card(Iℓ)

∑

x∈Iℓ

∑

i

τx,ℓ,i ×Q

(

di

2σ

)

(3.32)

where Pe(CH) denotes the average point error probability associated to the finite constellation
CH and Iℓ is a subset of CH that contains lattice points located on the intersection of ℓ facets in
CH. The subset I0 represents the interior of the constellation. The factor pℓ is the probability
that a point of the constellation CH belongs to the subset Iℓ. The expressions of pℓ given in
(3.8) and (3.15) remain valid in the studied case. The coefficients τx,ℓ,i represents the number of
points belonging to ℓ facets and surrounding the point x at a distance di within the constellation.
Since the coefficients τx,ℓ,i is evaluated thanks to the Short vectors algorithm, it is necessary to
generalize this algorithm for the studied case, nt > nr.

3.3.2.1 Generalization of the Short vectors algorithm

As indicated in section 3.2.5, the Short vectors algorithm searches all the points x = zM ∈ Λ
subject to ‖x‖2 ≤ C, where z ∈ Zn.

Considering the approach detailed in section 3.3.1, the Euclidean norm ‖x‖2 can be written as

‖x‖2 = zMzT = zG̃zT − αzzT ≤ C (3.33)

Thus, inequality (3.33) is equivalent to

zM̃zT = ‖zR̃‖2 ≤ C + αzzT ≤ C + α
n∑

i=1

z2
maxi
, α > 0 (3.34)

where M̃ = M + αIn is a definite positive matrix and R̃ is an upper triangular matrix resulting
from the Cholesky factorization of M̃ as indicated in section 3.3.1. Since M̃ is definite and
positive, it is possible to apply the Short vectors algorithm (detailed in section 3.2.5) to search
the points x̃ = zR̃ belonging to the sphere centered at the origin of a square radius, equal to
C̃ = C + α

∑n
i=1 z2

maxi
. Note that this algorithm outputs all the integer components z satisfying

(3.34) and also the Euclidean distance ‖x̃‖2. Thus, to determine the components z which satisfy
(3.33), we should compute ‖x‖2 = ‖x̃‖2 − αzzt and compare it to the radius C. Note that the
minimum Euclidean distance of the constellation d2

Emin
is upper bounded by

d2
Emin
≤ min

i
gii

where G = [gi j] is the Gram matrix.

Therefore, it is more efficient to limit the search of the short vectors algorithm to the sphere of
square radius C = mini gii.
To evaluate the coefficients τx,ℓ,i corresponding to the different points x of the constellation, we
proceed as in the previous study:

• Step 1: Generate lattice points v ∈ Λ located at a distance di from the origin as described

just before.
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• Step 2: For each v found in the previous step, check if the translate v + x belongs to the

constellation CH and increment τx,ℓ,i accordingly.

It is noticed that the complexity of the proposed method to generalize the Short vectors algorithm
depends on the new radius C̃. Indeed, the value of C̃ increases with the number of transmit
antennas and especially with the constellation size (e.g. 64-QAM, 256-QAM). To decrease this
complexity, it is possible to limit the search of the vector z within a region such that the different
translations over the lattice points (Step 2) should be taken into account. Thus, it is sufficient to
consider only the zi belonging to the interval [-zmaxi

,zmaxi
], where zmaxi

denotes the maximum
value of the corresponding M-PAM. In simulation results, the coefficient α is fixed to 0.5.

3.3.2.2 Numerical implementation

For the derivation of the numerical results, we limited the number of points x considered in
(3.32) to Nx = min(1000,

∏nt

k=1
Mk), where Mk denotes the size of the modulation applied on the

antenna k. The size of a subset Iℓ is approximated by card(Iℓ) ≈ pℓ × Nx. The number of shells
considered in the local theta series is limited to a number imax where the most distant shell is at
λd

up

Emin
(CH), with λ ∈ {2, 4, 8}, and where d

up

Emin
(CH) denotes an upper bound of the constellation

minimum Euclidean distance. Starting the computation of the coefficient τx,ℓ,i for λ = 2, if
the local theta series (around x) is empty, then the new search radius can be increased up to
4d2

Emin
(Λ) or 8d2

Emin
(Λ). The evaluation of d

up

Emin
(CH) is determined by applying the generalized

sphere decoder algorithm around a randomly chosen lattice constellation and then searching
the closest constellation point.

3.3.3 Simulation results

We consider a quasi-static nt × nr MIMO system. In Figs. 3.11 and 3.12, we plot the point error
probability (PER) as a function of the average received Eb/N0 for both scenarios (nt,nr) = (3,2)
and (nt = nr) = (4,2) when applying QPSK and 16-QAM on the transmit antennas. The analytical
results map almost exactly with the simulation results for both scenarios and both modulation
sizes.
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Figure 3.11: Average error probability of a 3×2 quasi-static MIMO channel (Tc = 100). Analytic
approximation (continuous lines) and Monte Carlo simulation (dotted lines).



68 3.3. G       MIMO 

1E-04

1E-03

1E-02

1E-01

1E+00

0 5 10 15 20 25 30

P
oi

nt
 E

rr
or

 R
at

e

Average received Eb/N0(dB)

16-QAM on all antennas
QPSK on all antennas

Figure 3.12: Average error probability of a 4×2 quasi-static MIMO channel (Tc = 100). Analytic
approximation (continuous lines) and Monte Carlo simulation (dotted lines).
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Compute Pe(CH)
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dEmin

y(di) ∈ S(0, αdEmin)

Check if y(di) + x ∈ CH,
increment τx,ℓ,i accordingly,

Figure 3.13: Main steps for the error probability computation.

3.4 Complexity of the error probability approximation

As indicated in Fig. 3.13, the evaluation of the conditional error probability approximation
(3.20) is based on two main steps that are responsible for the computational complexity:

• Application of Short vectors algorithm : It is known that this algorithm has a polynomial
complexity with respect to lattice dimension. It is of order n4

s , where ns = min(2nt,2nr).

• Evaluation of the parameter τx,ℓ,i for different points of the constellation : The complexity
study of the approximation (3.20) shows that the evaluation of the factor τx,ℓ,i is the
most time consuming. Indeed, this factor must be computed for Kc × imax times for each

channel realization H, where Kc = min(1000,2
∑nt

i=1
log2(Mi)) and imax depends on the number

of transmit antennas nt. Typically, on average, imax equals 2 for nt = 2 and to 10 for nt = 4.
For example, when nt = nr = 4 and 16-QAM modulation applied on all transmit antennas,
τx,ℓ,i is computed 104 times on average for each MIMO channel.

Conclusions

This chapter focused on the performance of uncoded MIMO systems with spatial multiplexing
scheme at the transmitter. In this scheme, same or distinct modulations could be applied on
transmit antennas. Then, by considering the lattice code associated to the MIMO channel and
using lattice theory, we derived an accurate approximation for the conditional error probability.
This approximation was derived at first for the case when there are more antennas at the
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receiver side. Then, we generalized this approximation without any constraint on the number
of antennas. Finally, Monte-Carlo simulation results given for both cases showed the tightness
of our analytical approximation for different antenna and modulation configurations. The
error probability approximation was compared to another one proposed for the whole lattice
associated to the MIMO channel. It was noticed that this bound is less accurate than our
approximation (e.g. a loss in SNR higher than 2dB at PER=10−3 with 4-QAM on all antennas),
but has a lower computation complexity.
Our error probability approximation is used in the next chapter for adaptive techniques in
MIMO systems: adaptive modulation and antenna selection.



Chapter 4

Adaptive techniques for MIMO
systems

Introduction

MIMO systems can offer significant capacity and diversity gains over traditional SISO systems
[59], [21], [57]. That is why, multiple antenna technique is integrated in future wireless sys-
tems to provide more reliability and high data rates. Unfortunately, the performance of MIMO
systems depend on the radio channel conditions. To maintain a target QoS in conventional
multiple antenna systems, transmission parameters (e.g. data rate, modulation and coding,
transmit power, etc) should be adjusted to the worst case. This leads to insufficient use of the
channel bandwidth under favorable channels. Moreover, the use of multiple antennas demands
additive devices (e.g. RF chains) which increases the cost and the complexity of these systems.
Several techniques have been proposed to cope with these limitations, for example adaptive
modulation [52], [69], [70], [50], [64] and antenna selection [29], [30], [27]. On the one hand,
adaptive modulation technique aims to guarantee a target QoS while maximizing the data rate
[69], [70], [50], or minimizing the transmit power [64], etc. according to channel conditions. On
the other hand, antenna selection is proposed to reduce the cost of MIMO systems by reducing
the number of active antennas, while keeping the advantage of using all the available antennas.

In both adaptive techniques, the selection of the appropriate modulation or antenna set at the
transmission needs a relevant metric. This metric must be defined to precisely assess the MIMO
system performance.

In this chapter, we propose a new adaptive modulation scheme as well as a new antenna
selection algorithm. Both techniques use the accurate approximation of the conditional error
probability in a MIMO system, given in chapter 3, as a metric to select the best parameters,
namely modulation size and antenna set for transmission. The transmission scheme depicted
in chapter 1 is assumed in this chapter.
Section 4.1 focuses on the designed adaptive modulation scheme. First, we introduce this
technique and we illustrate some existing schemes in the literature. Then, we describe our
algorithm to adapt modulations on transmit antennas for spatial multiplexing MIMO systems.
A refinement of this algorithm is made to reduce the search complexity of the optimal modu-
lations. Finally, our adaptive modulation scheme is compared to another one using the error
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probability bound (3.4), and also to non-adaptive systems.
Section 4.2 deals with the antenna selection technique. First, the principle of this technique
as well as some exiting selection schemes are given. Second, we illustrate the general model
for MIMO systems with antenna selection and we indicate our assumptions. Third, we study
the performance of SIMO systems while activating the best receive antennas in terms of the
instantaneous received SNR. After that, our proposed selection criterion and some existing se-
lection criteria are introduced. Finally, we compare the performance achieved with the different
criteria for many receiver schemes.

4.1 Adaptive modulation

4.1.1 Adaptive modulation concept

Adaptive modulation is a promising technique to maximize the transmission rate while guaran-
teeing a target quality of service (QoS). This justifies its popularity for future high-rate wireless
systems (e.g. HSDPA, IEEE 802.11). The fundamental concept of adaptive modulation consists
in adjusting the transmission parameters (modulation size, transmit power, coding parameters,
etc), according to the current channel state. This adaptation aims to guarantee a target QoS and
to achieve the highest possible spectral efficiency. In this chapter, QoS will be characterized by
a target error rate. Therefore, the adaptive modulation aims to

maximize the spectral efficiency

subject to

Pe(CH) ≤ PERtarget

where Pe(CH) is the error probability and PERtarget is the target error rate.

In the literature, adaptive modulation schemes have been studied at first for SISO systems.
One of the most famous algorithm for such systems is the one given in [26], [13]. The corre-
sponding adaptive modulation technique selects the maximum information rate subject to a
double constraint on the error rate and the average transmitted power. In [26] and [13], the
proposed adaptive approach is based on an approximation of the conditional error probability
for an AWGN channel. The adaptation is studied for two categories, namely continuous rate
and discrete rate. Analytical expressions for transmit power and rate are derived for the contin-
uous rate case, whereas in the discrete rate case, numerical search is undertaken to determine
the optimal adaptation parameters. The latter case, when the set of available constellations is
discrete, is more interesting from a practical point of view.

Figure 4.1 depicts a general model for an adaptive modulation scheme in a MIMO context.
Note that this model is also valid for a SISO context when one antenna is assumed at both sides.
Any adaptive modulation algorithm for both MIMO and SISO systems is based on three major
input parameters that depend on the adaptation strategy:

1. Channel State Information (CSI) : It characterizes the knowledge of the radio channel
at one or both (receiver and transmitter) sides of the system. Perfect CSI means that the
channel is estimated without error. Systems with perfect CSI available at both sides are
referred as ideally designed adaptive modulation systems.

2. Link quality of the transmission : It depends on the instantaneous channel state in-
formation within the current frame. Based on the link quality of the transmission, the
appropriate modulations at the transmitter are selected.
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Figure 4.1: Adaptive modulation issue in a MIMO context.

3. Feedback link : Once the optimal modulation is selected according to the current channel,
this selection should be fed back to the transmitter to adjust the modulations applied on
the different transmit antennas. When this information is returned to the transmitter
without error, a perfect feedback is assumed.

Different strategies have been proposed based on the system model depicted on Fig. 4.1. The
focus of these different schemes is how to determine the link quality of the transmission and
then select the appropriate transmission parameters. In [69] and [70], the authors founded
their strategy on a singular value decomposition of the MIMO channels to obtain parallel eigen
sub-channels. Then, they applied the adaptive scheme for a SISO system [13] on each eigen
sub-channel. This method requires a perfect CSI at the transmitter and at the receiver in order
to apply the precoding required by the SVD and the related adaptive policy. Such method
presents the following drawbacks:

1. Sensitivity to channel estimation errors.

2. Need of a reliable feedback allowing to send a high number of bits (especially for high
dimension) to inform the transmitter about the precoding matrix.

In the following, we propose a new adaptive modulation scheme. This scheme requires a few
bits to inform the transmitter about the optimal modulation combination to be applied while
satisfying the system constraints.

4.1.2 A new adaptive modulation scheme

We restrict our scheme to the adaptation of modulation size for each transmit antenna for
uncoded MIMO channels. Power adaptation and channel coding rate variations are not con-
sidered. Square QAM modulations are assumed in this work. However, this study is valid
for any rectangular QAM that can be implemented with two independent PAMs. Perfect CSI
is available at the receiver side only. The transmitter is informed via the feedback link about
the selected QAMs that satisfy the system constraints. The link quality of the transmission
is evaluated by computing the error probability conditioned on the channel H, Pe(CH). The
objective of our adaptive modulation scheme is the following:
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Figure 4.2: Adaptive QAM modulation receiver/transmitter pair for quasi-static MIMO chan-
nels.

Given an average signal-to-noise ratio per bit, find modulation sizes M1,M2, . . . ,Mnt for the nt transmit
antennas in order to maximize the spectral efficiency

∑nt

k=1
log2(Mk) under the constraint Pe(CH) ≤

PERtarget, where PERtarget is the target point error rate.

Notice that when Pe(CH) ≥ PERtarget, no data is transmitted and the conditional error probability
Pe(CH) is equal to 0. In the latter case, an outage is declared.

In practice, if the quality of service depends on the frame error rate (FER) and if a frame
has length NF transmit periods, NF ≤ Tc, then FER = 1 − (1 − PER)NF ≈ NF × PER. Hence,
PERtarget can be easily linked to FERtarget and can be used for the adaptation QoS constraint.

Figure 4.2 depicts our adaptive modulation scheme for uncoded MIMO channels. Assume
that the nt-antenna transmitter selects the modulation among Nq distinct QAM modulations.
For example, Nq = 4 if square constellations 4-QAM, 16-QAM, 64-QAM and 256-QAM are
used. If all transmit antennas use the same M-QAM constellation, then the adaptation scheme
should select an optimal solution (M,M, . . . ,M)opt among Nq possibilities. If transmit antennas
use different QAM constellations, then the adaptation scheme should select an optimal solution
(M1,M2, . . . ,Mnt)opt among Nnt

q possibilities.

At the receiver side, the channel estimation block provides a perfect estimate of the chan-
nel H and the noise variance σ2 to the adaptation block. The PER computation function uses
the approximation (3.20) to compute PER = Pe(CH), where CH = CH(M1,M2, . . . ,Mnt). The
final block selects the optimal solution (M1,M2, . . . ,Mnt)opt that maximizes the total spectral ef-
ficiency

∑nt

k=1
log2(Mk) under the constraint PER ≤ PERtarget. Finally, the feedback link conveys

nt × ⌈log2(Nq)⌉ bits to the transmitter, e.g. 8 feedback bits if nt = 4 and Nq = 4.

The complexity of the adaptive scheme depends on the number of available modulations. The
easiest adaptive modulation scheme when all QAMs are identical, M1 = M2 = . . . = Mnt , has
a low adaptation complexity proportional to Nq. On the contrary, the most efficient adaptive
modulation scheme (when QAM constellations may be distinct per transmit antenna) has an
adaptation complexity proportional to the number of possibilities, that is equal to Nnt

q , e.g.
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44 = 256 possibilities if 4 types of QAM are authorized (Nq = 4 and M ∈ {4,16,64,256}) and nt = 4
transmit antennas. Hence, an adaptation with a brute force (exhaustive search means that all
combinations are tested) will cost Nnt

q numerical evaluations of (3.20).

Since the spectral efficiency varies when from nt × 2 to nt × 2 × Nq bits per channel use, it

can have exactly 8nt−2nt

2 + 1 = (Nq − 1)× nt + 1 possible values. In order to avoid considering all
(Nnt

q = 256 for nt = 4 and Nq = 4) the possibilities, a key idea is to select a reduced number of
combinations. This could be achieved by partitioning the set of all the possibilities into subsets
(classes) of combinations having the same spectral efficiency (13 for nt = 4 and Nq = 4). The
following paragraph describes the proposed strategy to generate a representative for each class.

Strategy to reduce the modulation combination list

• Step 1: The objective of this step is to select a representative for each spectral efficiency
value between nt × 2 and nt × 8. For example, if nt = 4, the first step consists in choosing
13 = 3nt + 1 representatives as in Table 4.1. So, we start with the lowest modulation
combination (4, . . . ,4). Then, to move upward from the row k to the row k+ 1, we increase
the spectral efficiency of the lowest QAM corresponding to the highest antenna index.
For example, to generate the next combination starting from (4, 4, 16, 16) (row 3 from the
bottom in Table 4.1), we use for the second antenna the modulation 16-QAM instead of
4-QAM which leads to (4, 16, 16, 16) combination.

• Step 2: In the second step, each transmit antenna must be assigned to a column as in Table
4.1, i.e. we must properly permute the nt integers Mk given by the row of Table 4.1 selected
in the first step. We proposed to assign the Mk’s according to the order of ‖hi‖, where hi is
the ith row of H. This is inspired by coded systems. Indeed, if an error-correcting code is
used in combination with a soft output decoder, then under the genie condition (perfect
feedback of a priori information), the capacities of the nt independent channels are sorted
according to ‖hi‖2.

In our case, QAM modulations are uncoded. Nevertheless, simulation results show that the
loss in spectral efficiency with our strategy compared to the brute-force is negligible. The
adaptation based on 13 possibilities performs almost as well as with 256 possibilities. This
strategy reduces the number of QAM combinations from Nnt

q down to (Nq − 1)nt + 1. Moreover,
the application of the dichotomy on this list allows to further reduce the complexity of the
algorithm to 0(log2((Nq − 1)nt + 1)). This is made possible thanks to the monotony of the error
probability Pe(CH). At the end of this section, we recall the dichotomy method.

For nt = Nq = 4, we sort the transmit antennas such that ‖h1‖2 ≤ ‖h2‖2 ≤ ‖h3‖2 ≤ ‖h4‖2.
Then, we start from the most robust combination (4*4-QAM) upward to the most efficient com-
bination (4*256-QAM) as shown in Table 4.1. Only one integer is changed from one row to
another according to a decreasing order of transmit antennas power. Consequently, thanks to
the dichotomy method applied on the reduced list, a maximum of 4 = ⌈log2(13)⌉ evaluations of
Pe(CH) are required instead of Nnt

q = 256. Considering a large number of antennas, e.g. nt = 8
and nq = 4, the associated reduced list is illustrated in Table 4.2. It consists of 25 QAM combina-
tions among the overall, i.e., 48 = 65536 combinations. When applying the dichotomy on this
list, a maximum of 5 = ⌈log2(25)⌉ computations of Pe(CH) are needed to select the appropriate
combination.
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Spectral Tx 1 Tx 2 Tx 3 Tx 4 Comment

efficiency

32 256 256 256 256 highest spectral efficiency and worst error rate performance

30 64 256 256 256

28 64 64 256 256

26 64 64 64 256

24 64 64 64 64

22 16 64 64 64

20 16 16 64 64

18 16 16 16 64

16 16 16 16 16

14 4 16 16 16

12 4 4 16 16

10 4 4 4 16

8 4 4 4 4 lowest spectral efficiency and best error rate performance

Table 4.1: Reduced list for adaptive modulation, Nq = 4 distinct QAM sets and nt = 4 transmit
antennas.

Tx 1 Tx 2 Tx 3 Tx 4 Tx 5 Tx 6 Tx 7 Tx 8

256 256 256 256 256 256 256 256

64 256 256 256 256 256 256 256

64 64 256 256 256 256 256 256

64 64 64 256 256 256 256 256

64 64 64 64 256 256 256 256

64 64 64 64 64 256 256 256

64 64 64 64 64 64 256 256

64 64 64 64 64 64 64 256

64 64 64 64 64 64 64 64

16 64 64 64 64 64 64 64

16 16 64 64 64 64 64 64

16 16 16 64 64 64 64 64

16 16 16 16 64 64 64 64

16 16 16 16 16 64 64 64

16 16 16 16 16 16 64 64

16 16 16 16 16 16 16 64

16 16 16 16 16 16 16 16

4 16 16 16 16 16 16 16

4 4 16 16 16 16 16 16

4 4 4 16 16 16 16 16

4 4 4 4 16 16 16 16

4 4 4 4 4 16 16 16

4 4 4 4 4 4 16 16

4 4 4 4 4 4 4 16

4 4 4 4 4 4 4 4

Table 4.2: Reduced list for adaptive modulation, Nq = 4 distinct QAM and nt = 8 Tx antennas.
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Note that the number of iterations (the number of combinations tested) can be further reduced,
by taking into account the frequency of the channel variations. Indeed, when Doppler is low,
the channel response variations from one block to another are small and the appropriate QAM
modulation will probably be the same on both blocks. In this case it is worth testing first the
QAM modulation used on the previous block (instead of starting from the beginning of the
modulation combination list). According to the result of the comparison with the target PER,
the receiver notifies the transmitter to decrease or to increase the modulation size w.r.t. the
previous block modulation.

Dichotomy method

It is a method for numerically solving equations having a single unknown. Consider the
equation f (x) = 0 with a continuous function f on the interval [a,b], such that f (a) · f (b) < 0.
Therefore, it exists at least one solution x̂ within [a,b]. To find x̂ approximately, we proceed as
shown in algorithm 2.

input : a, b, f , ǫ
output: x̂, such that | f (x̂)| ≤ ǫ
a0 = a;2.1

b0 = b;2.2

k = 0;2.3

x0 =
a0+b0

2 ;2.4

while | f (xk)| > ǫ do2.5

if f (xk) · f (ak) < 0 then2.6

ak+1 = ak;2.7

bk+1 = xk;2.8

end2.9

else2.10

ak+1 = xk;2.11

bk+1 = bk;2.12

end2.13

k = k + 1;2.14

xk =
ak+1+bk+1

2 ;2.15

end2.16

return x̂ = xk;2.17

Algorithm 2: Dichotomy method to solve f (x) = 0 in [a,b].

Figure 4.3 illustrates an example to search x̂ that satisfies f (x̂) = 0 with the dichotomy method.

4.1.3 Computer simulation of the adaptive modulation scheme

The considered target point error rate is PERtarget = 10−3. The QAM selection is made within the
reduced list given in Table 4.1. Figure 4.4 presents the performance of a 4 × 4 antenna system
satisfying the constraint on the error probability for each channel H and each noise variance,
i.e. Pe(CH) ≤ PERtarget.
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Figure 4.3: First steps in the dichotomy method for a given function f .

Clearly, the curves corresponding to both non adaptive and adaptive schemes are below the
target. The upper curve corresponding to adaptive modulation is close but remains below the
10−3 target. It also shows a good stability (low variation of PER) within a 10 dB signal-to-noise
ratio range. For high noise variance, the selected combination corresponds to the lowest one
(i.e. 4*4-QAM) for the majority of channels. On the other hand, PER of the adaptive scheme
tends to that of 4*256-QAM at high SNR.

Figure 4.5 represents the probability of no transmission (known as outage probability), i.e.
Pe(CH) > PERtarget. The outage probability of the adaptive modulation is superimposed with
the outage of a fixed 4*4-QAM modulation. Therefore, the proposed adaptive modulation is as
robust as the 4-QAM but it guarantees a higher spectral efficiency. It leads to a maximization
of the spectral efficiency while keeping the error probability close to the target.

In Fig. 4.6, the total spectral efficiency achieved by a 4 × 4 antenna system is presented versus
the average received SNR while satisfying the PER constraint. This figure also emphasizes
the advantage of adaptive modulation. The stair including 4 soft steps corresponds to the
non adaptive scheme when all Tx antennas are using the same QAM constellation. Albeit the
looseness of (3.4) shown in Fig. 3.10, the adaptive modulation based on minimum Euclidean
distance exhibits a small spectral efficiency loss at low SNR with respect to adaptation based
on local theta series.
The next section introduces the second adaptive technique for MIMO channels : antenna
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Figure 4.4: Average point error rate function of average signal-to-noise ratio, adaptive versus
non-adaptive modulation policy , 4 × 4 quasi-static MIMO channel.

selection.

4.2 Antenna selection

Multiple antenna systems can offer significant capacity gains over traditional mono-antenna
systems [59],[21]. However, the use of multiple antennas requires multiple RF chains consisting
of amplifiers, analog to digital converters, mixers, etc. This fact increases the cost of MIMO
systems as well as the complexity of both the transmitter and the receiver. Antenna selection
is a promising technique that reduces the complexity and the cost of MIMO systems while
keeping the diversity benefits of all antennas [27], [25]. That’s why, it is proposed for future
wireless systems, e.g. IEEE 802.11n. The basic idea behind the antenna selection is to choose
the best set of antennas at the transmitter and/or the receiver that achieves the highest system
performance according to a selection criterion (e.g error probability, capacity, signal-to-noise
ratio,...). Therefore, a reduced number of RF chains is needed at the transmitter and/or the
receiver and each RF chain is tried to be optimally assigned to one of the large number of
available transmit or receive antennas.

Different selection criteria, according to channel conditions, have been proposed in the lite-
rature. In [29], Heath et al proposed the maximization of the post-processing SNR as a selection
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Figure 4.5: Outage probability versus average signal-to-noise ratio, 4 × 4 quasi-static MIMO
channel. No transmission if Pe(CH) > Petarget.

criterion for linear receivers (ZF or MMSE). For the maximum likelihood receiver, the authors in
[30] derived a selection criterion based on an upper bound of the error rate. The minimization
of this upper bound is equivalent to the maximization of the minimum Euclidean distance of
the receive constellation. Due to its high complexity computation, their proposed criterion is
hard to be evaluated for larger constellations applied at the transmitter.

We propose an antenna selection criterion based on the accurate approximation of the condi-
tional error probability given in (3.20).

4.2.1 Antenna selection for MIMO system

Figure 4.7 depicts a general model for multiple antennas system with antenna selection at one
or both sides of the transmission. The antenna selection is performed at the receiver side. It
needs the following blocks:

1. Channel estimation : Perfect CSI offers better performance. Imperfect CSI is treated in
[70]. The authors show that the error probability performance of an adaptive MIMO
system designed for perfect CSI is quite sensitive to the CSI imperfection.
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Figure 4.6: Average spectral efficiency of adaptive modulation versus non-adaptive scheme,
4 × 4 quasi-static MIMO channel.

2. A selection block : It is partitioned into two sub-blocks. The first one computes the chosen
selection criterion for all possible combinations of antennas. Then, the second selects the
best combination of antennas at the transmitter or/and the receiver, that optimizes the
selection criterion.

3. Feedback link : It is required only for transmit selection in order to inform the transmitter
about the selection to be perform. For both transmit/receive selections, the receiver should
be notified about the selection to perform the detection.

Let n such that 1 ≤ n ≤ nt (respectively m such that 1 ≤ m ≤ nr) be the number of active transmit
(respectively receive) antennas after selection. For a given channel H, the selection criterion is
evaluated x times (x is the number of selection possibilities) according to the selection type :

• Transmit selection: all the available receive antennas are used for transmission, but only

n < nt transmit antennas are activated. In this case, x is equal to

(

nt

n

)

.

• Receive selection: all the available transmit antennas are used for transmission, but only

m < nr receive antennas are considered. In this case, x is equal to

(

nr

m

)

.
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Figure 4.7: General model for MIMO system with antenna selection.

• Transmit/Receive selection: this is the case when selection is performed at both sides.
Only n < nt and m < nr transmit and receive antennas are chosen for transmission. The

number x is equal to the product of the above cases:

(

nr

m

)

×
(

nt

n

)

. The computation

complexity for this last case is more important.

In our study, we assume that perfect channel state information (perfect CSI) is available only
at the receiver. CSI is not required at the transmitter side. The selection is performed for the
general case, i.e. transmit/receive selection.

Let H̃ be the n × m sub-matrix corresponding to the active transmit and receive antennas. A
maximum-likelihood detector based on a sphere decoder is applied [63], [1], [8], [17] to accom-
plish a low complexity detection (as seen in chapter 2).

For one channel use, the received signal can be written as

r = sH̃ + ν (4.1)

where r is the length m receive complex vector, s is the length n transmit vector and ν is a
length m additive white Gaussian noise vector with 2N0 variance per complex dimension. The
transmitted symbol sk belongs to a Mk-QAM modulation, k = 1 . . . n. For the sake of simplicity,
we assume that the same modulation M-QAM is applied on transmit antennas. The proposed
selection criterion remains valid for the general case when distinct modulations are used at the
transmitter as demonstrated in chapter 3.

The following section illustrates some results that outline the benefit of the antenna selection to
improve system performance.

4.2.2 SIMO system performance with antenna selection

To emphasize the advantage of antenna selection regarding the system performance, we evalu-
ate in this section the error probability obtained when selecting the antennas for transmission.
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The performance is studied for the case of Single-Input Multiple-Output (SIMO) systems.

The selection criterion adopted in this section consists in choosing the set of receive anten-
nas, which maximizes the instantaneous received SNR. For a given combination p, this SNR is
equal to:

SNRp =
Es

∑m
j=1 |h

(p)

j
|2

2N0
(4.2)

where Es is the transmit signal energy and h
(p)

j
correspond to the selected set of antennas. For

a given channel realization, let H̃ = [h j] j=1,...,m be the sub-channel maximizing the received

SNR. Assuming ML detection at the receiver, the error probability, Pe(H̃), conditioned on H̃ is
bounded by [48]:

Pe(H̃) ≤ NeQ





√

d2
min
‖H̃‖2

4N0




≤ Ne

2
exp




−

d2
min
‖H̃‖2

8N0




(4.3)

where dmin is the minimum Euclidean distance of the transmit constellation, Ne is the maximum
number of neighbors located at dmin and N0 is the noise variance per real dimension.

To obtain the average error probability, we evaluate the expected value of the upper bound
in (4.3) with respect to the distribution of the random vector R = (R1,R2, . . . ,Rm), where Ri = |hi|
for i = 1, . . . ,m. That is

Peavg = ER(Pe(H̃)) =

∫

R

Pe(H̃)pR(r)
∏

dri (4.4)

where pR(r) is the probability density function (pdf) of R.

In the following, we derive an upper bound for the average error probability after selection.
We start with the simple case when m = 1. Then, we generalize the results for m ≥ 1.

4.2.2.1 Antenna selection performance when m = 1

At the receiver, one antenna is selected for transmission. Substituting (4.3) in (4.4), we obtain

Peavg ≤
Ne

2

∫

R

exp




−

d2
min

r2

8N0




pR(r)dr (4.5)

where r = max(r1,r2, . . . ,rnr) for one channel realization.

The cumulative density function (cdf) of the variable R is given by

FR(r) = P(r1 ≤ r, . . . ,rnr ≤ r) =

nr∏

i=1

FRi
(r), r ≥ 0 (4.6)

Knowing the statistics of the variables hi, their norms Ri are then Rayleigh distributed[48], so

FR(r) =
(

1 − exp(−r2)
)nr
, r ≥ 0 (4.7)

The desired pdf of the selected channel is then equal to

pR(r) = 2nrr. exp(−r2)
(

1 − exp(−r2)
)nr−1

(4.8)
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Substituting (4.8) in (4.5), the upper bound follows as

Peavg ≤ nrNe

∫ ∞

0

r. exp
(

−βr2
) (

1 − exp(−r2)
)nr−1

dr (4.9)

where β = 1 +
d2

min
8N0

.

Assuming a square M-QAM modulation, the average transmit SNR Eb/N0 and β are related by

β =
3 log2(M)

2(M − 1)

Eb

N0
+ 1 (4.10)

Applying the binomial theorem, equation (4.9) becomes

Peavg ≤ nrNe

nr−1∑

k=0

∫ ∞

0

r. exp
(

−r2 (
k + β

))

dr

≤ nrNe

2

nr−1∑

k=0

κk,nr−1

k + β
, (4.11)

where

κk,p = (−1)k

(

p
k

)

Since
1

k + β
=

∫ 1

0

xk+β−1dx,

inequality (4.11) can be written as

Peavg ≤ nrNe

2

nr−1∑

k=0

κk,nr−1

∫ 1

0

xk+β−1dx

≤ nrNe

2

∫ 1

0

(1 − x)nr−1xβ−1dx (4.12)

In order to compute the upper bound in (4.12), we define

Θα,β = α

∫ 1

0

(1 − x)α−1xβ−1dx

By observing that

Θα+1,β =
α + 1

β
Θα,β+1,

Θα,β is simply

Θα,β =
α!

∏α−1
k=0 (β + k)

(4.13)

Substituting (4.13) in (4.12) for α = nr, Peavg is bounded by

Peavg ≤
Ne

2

nr!

βnr
(4.14)

Thus, the diversity order is equal to that of the full system diversity[27],[25], and a loss in SNR
of about 10 log10(nr!)

1/nr is observed.

The generalization of this bound will be illustrated in the following section.
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4.2.2.2 Antenna selection performance when m ≥ 1

Rearranging in descending order the variables r2
i

leads to

r2
k1
≥ r2

ki
≥ . . . ≥ r2

km
, k1, . . . ,km ∈ {1, . . . ,m}

Let us denote γi = r2
ki

, 1 ≤ i ≤ m, and γ0 = +∞. Introducing γi in (4.4), the average error

probability is bounded by

Peavg ≤
Ne

2

∫ γ0

0

∫ γ1

0

. . .

∫ γm−1

0

e−(β−1)
∑m

i=1 γipγ1...γm

∏

dγi (4.15)

The joint probability density function (pdf) for the m random variables γi maximizing the SNR,
is given by [3]

pγ1...γm(γ1, . . . ,γm) = m!

(

nr

m

)

[
F(γm)

]nr−m
m∏

i=1

p(γi) (4.16)

where F(γi) (respectively p(γi)) denotes the cdf (respectively pdf) of the random variable γi.

Providing the statistics of the variables ri, so the variables γi are distributed as

F(γi) = 1 − e−γi

and

p(γi) = e−γi (4.17)

Let τi = exp(−βγi). Substituting (4.16) and (4.17) in (4.15), the upper bound of Peavg becomes

Peavg ≤
NeA

m
nr

2

∫ γ0

0

τ1 . . .

∫ γm−1

0

τm
(
1 − e−γm

)nr−m
∏

dγi (4.18)

where Am
nr
=

nr!
(nr−m)! is the arrangement number.

Using the binomial theorem for (1 − e−γm)nr−m, inequality (4.18) can be written as

Peavg ≤
NeA

m
nr

2

nr−m∑

k=0

κk,nr−m

∫ γ0

0

τ1 . . .

∫ γm−1

0

τme−kγm

∏

dγi (4.19)

In order to evaluate the Peavg upper bound, we define the variable It,k, t ≥ 1 as

It,k =

∫ γm−t

0

τm−t+1 . . .

∫ γm−1

0

τme−kγm

m∏

i=m−t+1

dγi (4.20)

Thus,

Peavg ≤
NeA

m
nr

2

nr−m∑

k=0

κk,nr−mIm,k (4.21)

Using the recurrence method, equation (4.20) becomes

It,k =

∫ γm−t

0









t−1∑

j=1

Ψt, j,k




+ Φt,k




dγm−t+1 (4.22)
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where

Ψt, j,k =
(−1) j−1 exp(− jβγm−t+1)

(t − 1 − j)!( j − 1)!

1

βt−2
(
(t − j)β + k

)

and

Φt,k =
(−1)t−1 exp((tβ + k)γm−t+1)

∏t−1
j=1( jβ + k)

Note that Im,k can be seen as the exponential factor ofΨm+1,1,k (since γ0 = +∞), so

Im,k =
1

(m − 1)!βm−1(mβ + k)
(4.23)

Substituting (4.23) in (4.21) leads to

Peavg ≤
NeA

m
nr

2(m − 1)!βm−1

nr−m∑

k=0

κk,nr−m

(mβ + k)
(4.24)

The sum
nr−m∑

k=0

κk,nr−m

(mβ + k)

can be computed similarly as in (4.12) and it corresponds to

Θnr−m+1,mβ

nr −m + 1
.

Hence, we can write

Peavg ≤
Nenr!

2(m − 1)!βm−1

1
∏nr−m

i=0
(mβ + i)

≤ Nenr!

2m!mnr−mβnr
(4.25)

The upper bound (4.25) is compared to another derived in [25] for the average pairwise error
probability. The corresponding average error probability is obtained by applying the union
bound and considering only the neighbors, Ne, located at dmin. This leads to

Peavg ≤
Ne

2

(
β − 1

)−nr

(
m

nr

)−nr

(4.26)

In the following, the bounds in (4.25) and (4.26) are respectively referred to KK bound and GD
bound. Both (4.25) and (4.26) show that the selection maintains the full system diversity, equal
to the number of receive antenna before selection : nr.

Let denote ∆SNR(Ni → N f ) the loss in SNR when decreasing the number of active antennas
from Ni to N f . When selecting m receive antennas among nr, the loss in SNR ∆SNR(nr → m)
given by (4.25) is equal to

∆
(KK)
SNR

(nr → m) =
10

nr
log10

(
nr!

m!mnr−m

)

(4.27)

Notice that
nr!

m!mnr−m
=

nr(nr − 1) . . . (m + 1)

mnr−m
≤ (

nr

m
)nr−m,
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therefore it is clear that ∆
(KK)
SNR

is upper bounded by ∆SNR(nr → m) shown in (4.26) which is
defined by

∆
(GD)
SNR

(nr → m) = 10 log10(
nr

m
) (4.28)

It is obvious that decreasing the number of selected antennas leads to an SNR loss. Let N f1 and
N f2 be the number of selected antennas for two different times, N f1 , N f2 ≤ Ni. To evaluate the
loss in SNR while choosing N f1 instead of N f2 , we define the following parameter

∆SNR(Ni,N f1 ,N f2)
def
= ∆SNR(Ni → N f1) − ∆SNR(Ni → N f2) (4.29)

It is clear that ∆SNR(Ni,N f1 ,N f2) ≥ 0 if N f1 ≥ N f2 and ∆SNR(Ni,N f1 ,N f2) ≤ 0 otherwise.

4.2.2.3 Simulations results

We consider a quasi-static SIMO channel with nr = 4 receive antennas and QPSK modulation
applied at the transmitter. The channel is kept unchanged during a frame of 100 QPSK symbols.
For each channel realization, the best n receive antennas maximizing the instantaneous SNR
are selected.

By comparing (4.25) and (4.26) to simulation results, it is shown in Fig. 4.8 that the KK bound is

more accurate than the GD bound for m = 3, 2. The loss in SNR as defined in (4.29), ∆
(Sim)
SNR

(4,3,2)

given by simulations, is equal to ∆
(KK)
SNR

(4,3,2), whereas it is upper bounded by ∆
(GD)
SNR

(4,3,2).

To compare the SNR loss for different values of m, we illustrate in Fig. 4.9 the required average
transmit SNR to achieve an error probability of 10−4 for m = 1,2,3,4. Let SNR(m) be the required
SNR for m active antennas obtained from simulations. The required SNR for (4.25) is equal
to SNR(m) + K, where K remains constant equal to 2.4 dB for all m values, whereas it equals
SNR(m) + V(m) for (4.28), where V(m) depends on m value (e.g. V(1)=5.3 dB, V(4)=2.7 dB).
Hence, the exact SNR loss is almost equal to that derived from (4.28), but it is upper bounded
by that indicated in [25].

4.2.3 Antenna selection under different criteria

In order to evaluate the system performance using the proposed criterion (error probability ap-
proximation (3.20)), it is interesting to compare the performance obtained with those achieved
using other existing selection criteria. The different considered selection criteria are given in

the following. They consist in choosing the best set of antennas among

(

nt

n

)

×
(

nr

m

)

possibili-

ties. For every subset p of active transmit/receive antennas, we denote H̃p the associated channel.

• Error probability criterion:

For every subset p of transmit or receive antennas, compute the conditional error probability
given in (3.20) when n ≤ m and the generalized version if n > m. Then choose the subset that
minimizes the conditional error probability.

• Capacity criterion:
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Figure 4.8: Average error probability for a 1 × 4 quasi-static system with receive selection.

For every subset p of transmit/receive antennas, compute the instantaneous capacity of the
channel H̃p assuming a Gaussian channel input

C
p

inst
= log det

(

In +
Es

2N0n
H̃pH̃†p

)

where Es denotes the total transmit energy, and then choose the subset with the largest C
p

inst
.

During a frame transmission (H̃ is fixed), the channel model given by equation (4.1) can be
represented in the real space by

y = x + ν (4.30)

where x ∈ R2n whose components are the real and imaginary parts of the complex vector sH̃,
denotes the input of the scalar Gaussian channel (4.30).

For a scalar additive Gaussian channel, Shamai et al propose in [18] the following theorem.
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Theorem 1 For every input distribution Px with E(x2) < ∞ and every snr,

d

dsnr
I(snr) =

1

2
mmse(snr) (4.31)

where mmse(snr) = E
(
x − E

(
x/y; snr

))
denotes the minimum mean-square-error in estimating the

input given the output and I(snr) represents the input-output mutual information of the channel given
by (4.30).

Thus, the application of the capacity criterion leads to the maximization of the channel capacity
which allows to minimize the mmse as indicated in (4.31). The validity of this conclusion will
be verified in the following via simulation results.

• Minimum Euclidean distance criterion:

Heath et al proposed in [30] a selection criterion based on minimum error rate. The authors in
[30] considered the error probability upper bound given in (4.32) by :

Pe ≤
(

2nb − 1
)

Q

(
dc

min

2
√

N0

)

(4.32)

where b = log2 M, and derive a selection criterion that minimizes this bound. The criterion
proposed in [30] consists in choosing the subset of antennas that maximizes the minimum

Euclidean distance of the constellation CH̃p denoted dc
min

. The computation of dc
min

requires

a search over 2nb−1
(

2nb − 1
)

distances which can be prohibitive for large constellations. For
example, when 16-QAM modulation is applied, 32640 distances have to be computed when
only 2 antennas are used at the transmitter. The comparison of the complexity computation
between (3.20) and (4.32) shows that the latter is more complex when M ≥ 16 and especially
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when n ≥ 3.
In [30], simulation results show that this criterion is better than capacity criterion for ML receiver.

• Maximum post-processing SNR:

This criterion is considered for ZF and MMSE receivers [29].
For a ZF receiver, compute the pseudo-inverse matrix G for every subset p,

G
(ZF)
p = H̃†p

(

H̃pH̃†p
)−1

The post-processing SNR for a given stream k, denoted SNR
(k)
p , corresponding to the subset p is

SNR
(k)
p =

Es

2N0n
[(

H̃pH̃†p
)−1

]

kk

where
[(

H̃pH̃†p
)−1

]

kk
denotes the kth diagonal element of the matrix

(

H̃pH̃†p
)−1

. The best subset p

is the one that corresponds to maxp min1≤k≤n SNR
(k)
p .

For an MMSE receiver, the pseudo-inverse matrix G for every subset p is given by

G
(MMSE)
p = H̃†p

(

H̃pH̃†p +
2N0

Es
In

)−1

The corresponding post-processing SNR for the stream k is

SNR
(k)
p =

Es

2N0n
[

H̃pH̃†p +
2N0

Es
In

]−1

kk

− 1

4.2.4 Simulation results

In this section, the selection criteria described above are compared using Monte Carlo simu-
lations for transmit or receive selection. The case which combines both selection sides is not
considered in this section. We assume that QPSK modulation is applied on all transmit anten-
nas. System performance are illustrated in terms of average PER (Point Error Rate). The matrix
H is selected at random and kept unchanged during one frame (i.e. Tc = 100 channel uses). The
selection computation is achieved every Tc periods and selects the optimal sub-matrix H̃p to be
used during the frame transmission. The average PER is plotted versus the average transmit
signal-to-noise ratio (SNR). Notice that the choice of transmit SNR instead of receive SNR is
justified as follows. The antenna selection modifies the initial variance of the coefficients hi j.
Therefore, to find the average receive SNR, we need the evaluation of the channel coefficients
variance when using the selection.
Note that the variation of the average PER in function of the received SNR needs the evalua-
tion of the channel coefficients variance, since the selection modifies the initial variance of the
coefficients hi j.

The antenna selection based on different criteria is applied for different receiver schemes,
namely ML, MMSE, and OSuIC receivers.
We consider the following pairs: (nt,nr) = (3 , 2) and (5 , 4). The transmit (respectively receive)
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selection consists in choosing the nt − 1 (respectively nr − 1) best transmit (respectively receive)
antennas for both cases.

To emphasize the advantage of antenna selection, we plot for each scenario the performance of
uncoded MIMO system without selection, i.e. (nt−1)×nr when transmit selection is performed,
and nt × (nr − 1) when receive antenna selection is chosen.

4.2.4.1 ML receiver

Figures 4.10 and 4.11 illustrate the performance when selection is performed at transmit side
and receive side respectively. Each figure depicts the performance of 2× 2 and 4× 4 quasi-static
MIMO channel.

By comparing with the non selection case, it is noticed that the selection creates a new di-
versity order for all criteria. Indeed, one could notice that the diversity becomes 3 instead of
2 when choosing the 2 best antennas among 3, and equals 5 instead of 4 when 4 antennas are
selected from 5. This additional diversity is independent from the selection side. An SNR
improvement is achieved also over system without selection. For example, when transmit
selection is chosen for (3,2) MIMO system, a gain greater than 7 dB is noticed.

While observing the performance with different selection criteria, it is noticed in Figs. 4.10
and 4.11 that our proposed criterion minimizes the error probability for all SNR range. The
minimum Euclidean distance criterion achieves almost the same performance as the best one.
This means that the first term of (3.20), for which di equals the minimum Euclidean distance of

the constellation CH̃p , is sufficient to achieve the antenna selection.

The capacity criterion is the worst. A loss of about 2 dB is noticed over the above criteria
at PER = 10−5 when transmit selection is considered.

The comparison between transmit and receive selection simulation results in Figs. 4.10 and 4.11
shows that error probability and minimum Euclidean distance criteria give better performance
when applying the selection at the transmitter, with a gain of 2 dB at PER=10−5. Indeed, both
criteria consist in minimizing the error probability by reducing the inter-channel interference
(ICI) among the spatial channels.
Unlike the above criteria, performance with capacity criterion is almost independent from the
selection side.

4.2.4.2 Linear MMSE receiver

Simulations have been carried out with a linear MMSE detector at the receiver. Figure 4.12
illustrates the performance of 4 × 4 quasi-static MIMO system for different antenna selection
criteria at both sides.

By comparing the different selection criteria, it is noticed in Fig. 4.12 that the SNR and the
capacity provide the best performance. However, a little gain is achieved by the former over
the latter, for both transmit and receive selection. The selection introduces an additional diver-
sity for both criteria, so that the system diversity order becomes 2 instead of 1. The criterion
based on the minimization of the ML error probability is not adapted to the studied system with
MMSE detection. That is why it presents the worst performance. The diversity remains lower
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Figure 4.10: Average error probability with transmit selection and ML receiver. Select 2 antennas
among 3 Tx antennas (on the top). Select 4 antennas among 5 Tx antennas (on the bottom).
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Figure 4.11: Average error probability with receive selection and ML receiver. Select 2 antennas
among 3 Rx antennas (on the top). Select 4 antennas among 5 Rx antennas (on the bottom).
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than 2 for this criterion, whereas a gain of 5 dB is noticed at PER = 10−3 over the no selection
case for both transmit and receive selection.

4.2.4.3 MMSE-OSuIC receiver

In this section, we assume a MMSE-OSuIC detector at the receiver. Both transmit and receive
selection choose the 2 best antennas among 3. Simulation results are plotted in Fig. 4.13 for
2 × 2 quasi-static MIMO system. The performance of 2 × 2 system with ML detection without
selection is plotted too.

While comparing the two examined selection criteria, we notice that the proposed criterion
based on error probability gives almost the same performance as the capacity at low SNR
(Eb/N0 ≤ 12 dB), whereas a loss over the capacity performance is observed at high SNR. The
diversity order of no selection case is maintained below 2, when using the error probability,
whereas it is improved to 2 when applying capacity criterion. Thus, the proposed criterion
performs better with MMSE-OSuIC than with linear MMSE at low SNR. This fact can be ex-
plained when comparing the ML and MMSE-OSuIC receivers. For example, for a 2× 2 system,
Fig. 4.13 shows that the MMSE-OSuIC performance is close to that of the ML receiver at low
SNR. Therefore, the ML error probability criterion can be used in this case. As for the linear
MMSE receiver, the application of the selection at the receiver does not change significantly the
performance comparing to the selection at the transmitter.
Based on simulation results given in the previous sections, it is noticed that the application of
the capacity as a transmit or a receiver selection criterion provides a selection diversity gain for
all the receiver schemes as shown in theorem (4.31).

Conclusions

In this chapter, we presented two applications of the error probability approximation derived
in chapter 3 for uncoded MIMO systems, namely adaptive modulation and antenna selection.
We started by proposing an efficient algorithm to adapt modulations while maximizing the total
spectral efficiency and satisfying a constraint on error probability. This algorithm considers a
short list of modulation combinations and uses the dichotomy method to go through the list.
This leads to a reduced complexity. Finally, the designed adaptive modulation algorithm was
compared to another algorithm using the simple bound (3.4) and to the non-adaptive scheme.
In both comparisons, the gain of our adaptive scheme was noticed regarding the total spectral
efficiency.
Then, the performance of SIMO systems with antenna selection were studied. We showed
with analytical expressions that the diversity is kept while activating only some antennas and
we proposed a bound for such systems. Then, we presented the antenna selection algorithm
with our proposed selection criterion as well as with other existing criteria. This algorithm
is based on an exhaustive search over all the antenna combinations. Next, the performance
with antenna selection were compared to the non-adaptive scheme with the same number of
active antennas. The benefit of the adaptive technique was observed in diversity order and
in SNR gain. We noticed via simulation results that the proposed criterion to select the best
set of antennas provides the best performance (compared to other existing selection criteria)
when detection is based on ML criterion. However, the same criterion gives bad results while
using sub-optimal receivers (ZF, MMSE, OSuIC) comparing to the other criteria. Indeed, the
proposed selection criterion was derived assuming a ML detection. That’s why, it performs
better for the optimal receiver than for the sub-optimal receivers.
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Figure 4.12: Average error probability with transmit/receive selection and MMSE receiver.
Select 4 among 5 Tx antennas (on the top). Select 4 among 5 Rx antennas (on the bottom).
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Figure 4.13: Average error probability with transmit/receive selection with MMSE-OSuIC. Select
2 antennas among 3 Tx antennas (on the top). Select 2 antennas among 3 Rx antennas (on the
bottom).
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It appears that both adaptive techniques improve the performance in MIMO systems but
increase the complexity computation due to the search of the appropriate adaptive parame-
ters, especially for high number of antennas. One approach to reduce this complexity will be
proposed in the next chapter.





Chapter 5

Classification of multiple antenna
channels

Introduction

The material described in this chapter can be applied to any problem that admits a lattice repre-
sentation. The great interest of the research community and public in multiple antenna digital
transmission [7] made us study the Hermitian forms classification and use it on that particular
subject. The classification of multiple-input multiple-output (MIMO) frequency non-selective
fading channels has a considerable importance in information and communication theory. It
consists in associating to the continuous set of MIMO channels a discrete set of representatives
(or centroids), called codebook. Each channel will be then represented by the nearest element
of the designed codebook. The set of channels corresponding to the same centroid defines a
class.
Some potential applications for the classification would be adaptive modulation and adaptive
channel coding in wireless local area networks and in 3G-4G mobile radio data networks. In
this case, the choice of the optimal adaptive parameters needs only the determination of the
nearest centroid. Then, the selected parameters for this centroid could be applied. Additional
applications may be also related to other closed-loop (which require a CSI at the transmitter)
systems, e.g. beamforming [45], [34], water-filling [21], [59], etc.
The classification algorithm given in this chapter is valid for both correlated and uncorrelated
frequency non-selective MIMO. No assumption on channel distribution is required.

This chapter is organized as follows. First, section 5.1 recalls the procedure of the quanti-
zation (in our terminology classification) as well as the related parameters (e.g. codebook,
centroids, training data samples, class, metric, etc). It also illustrates the famous quantization
algorithm: Lloyd algorithm that is used to design our MIMO classification algorithm. Second,
section 5.2 focuses on the classification of MIMO channels. First, it introduces the MIMO system
model on which the classification will be based. Then, it describes our classification scheme.
This scheme considers the Hermitian forms corresponding to the MIMO channels. That is why,
we introduce in section 5.3 some basic notions from algebra and differential geometry dealing
with the space of Hermitian forms. These concepts are used in section 5.4 to describe our pro-
posed MIMO classification algorithm and to derive a metric to compute the distance between
Hermitian forms associated to MIMO channels. This algorithm is then extended to lattices in
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section 5.5. Section 5.6 compares the derived metric to the natural one based on the Euclidean
distance by illustrating some results about the generated centroids, the population of each class,
etc. Simulation results are also given to validate the designed classification by measuring the
resemblance between MIMO channels and their associated centroids based on Voronoi regions
and error probabilities. Finally, we propose to apply the classification for beamforming, as an
example of closed-loop MIMO systems, to estimate the channel at the transmitter. At the end,
simulation results are exposed to compare the error probability when using the classification to
that when assuming a perfect CSI.

In this chapter, we use some definitions and parameters from lattice theory and quadratic forms
theory which are introduced in chapter 2.

5.1 Quantization

Quantization refers to the process of approximating the continuous set of values of an arbitrary
source with a finite (preferably small) set of values [16]. This set is known as a codebook and
its elements are called centroids.

The quantization process needs the definition of a relevant metric to find the distance be-
tween the input data and the different centroids. The representative of each data input is the
one which minimizes the chosen metric. A good quantizer should represent the original data
with minimum loss or distortion. This distortion is generally defined by the mean square
distance

MSD =
1

card({X})
∑

X

d2(X,X̂) (5.1)

where the set {X} denotes the input data set, card({X}) is its cardinality and X̂ is the representative
of the element X.
It is clear that the quantization distortion depends on the codebook size. Thus, the huger this
codebook is, the smaller the distortion is. Therefore, the user should choose the codebook size
according to the envisaged application and the related constraint on distortion.

The common way to design the codebook for quantization is to generate a large set of data
samples, called training database, and update iteratively an initial codebook, in order to de-
crease the mean square distance, based on the database.
One of the best known methods for the codebook design is the Lloyd algorithm [19][42]. The
Lloyd algorithm is iterative. It starts with an initial set of centroids (or codebook), that are
chosen randomly, and modifies them through a sequence of iterations.
It works as follows: Given any set of N centroids, for each centroid X̂, let C(X̂) denote the set of
data points for which X̂ is the nearest representative. In the next iteration of the algorithm, each
old centroid X̂ is replaced (providing an update rule) by the new centroid of C(X̂) and then the
set C(X̂) is updated by recomputing the distance from each point to its nearest centroid. These
steps are repeated until convergence of the algorithm is achieved.

As long as successive iterations of the Lloyd algorithm continue to generate new centroids,
the mean square error strictly decreases. Unfortunately, the Lloyd algorithm is sensitive to the
choice of the initial codebook.

As an example we take a source that generates complex Gaussian random variables and we
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intend to classify these variables by finding the best representative. The number of classes, or
equivalently the size of the codebook, is equal to 8. By applying the Lloyd algorithm on that
source, the classification results are depicted on Fig. 5.1. This figure shows 8 regions separated
by continuous lines. To each region, a representative or centroid, denoted Ci, is associated.
Given an input variable, the centroid that is chosen to represent it is the one in the same Voronoi
region. The centroid Cx is determined to be the closest in Euclidean distance from the input
variable x, that is

Cx = arg min
C j

‖x − C j‖

In the sequel, we focus on the quantization/classification of MIMO channels. Thus, we need a
metric to compute the distance between each data sample and the different centroids. Also, a
way to built the codebook is required.

Figure 5.1: An example of quantization of complex Gaussian random variables.

5.2 MIMO channels classification

This section introduces first the system model which is used for the classification. Then, it
presents the proposed classification scheme for MIMO channels.
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5.2.1 System model

Let us briefly recall the mathematical model for a multiple antenna channel [7] and introduce
some notations. We restrict our study to a square channel where the number nt of transmit
antennas is equal to the number nr of receive antennas. Let n = nt = nr. Unlike chapters 3 and
4, matrices and vectors are in column convention. The input-output model is given by

r = Hz + ν (5.2)

where:

• the transmitted vector z belongs to Z[i]n, Z[i] being the ring of Gaussian integers

• ν ∈ Cn is an additive white Gaussian noise

• H = [hi j] is an n × n matrix defining the MIMO channel coefficients

• r ∈ Cn is the received vector.

We suppose that H is perfectly known at the receiver side. No channel state information is
assumed at the transmitter because, in most imaginable applications, the classification will
be performed at the receiver side. A widely used model assumes that the coefficients hi j are
complex Gaussian distributed with zero mean and unit variance (as shown in chapter 1).

In the sequel, we assume that det(H) = 1. In fact, two channel matrices H1 and H2 related by
H1 = cH2 generate two equivalent lattices (definition 10 in section 2.1.1). Then if det(H1) , 1,
we can consider H2 =

1
n
√

det(H1)
H1 since det(H2) = 1. Thus, it is necessary to normalize the

fundamental volume of lattices in order to avoid the scaling factor. This corresponds to adding
a multiplicative factor to the signal-to-noise ratio (a simple shift when expressed in dB). The
probability distribution of det(H) can be further taken into account in potential applications of
the proposed classification.

5.2.2 Classification scheme

The main procedure of the proposed algorithm is illustrated in Fig. 5.2. Given the number of
transmit and receive antennas, given the number of classes to be distinguished, the classifica-
tion algorithm runs in its training phase on a large number M of some training instances. Once
a codebook of K centroids is built, any instance H can be quantized to the nearest class centroid.
The classification needs a metric and an update rule as in the classical multidimensional Lloyd
also known as k-Means clustering algorithm [19][42].

A matrix H such that det(H) = 1 generates a complex lattice Λ(H) with a normalized funda-
mental volume [15]. The lattice Λ(H) is associated to the Hermitian form z†H†Hz , where A†

denotes the transpose conjugate of A. Therefore, our proposed classification algorithm will
consider the Hermitian forms corresponding to the MIMO channels. As a consequence, we
need some basic mathematical notions about the structure of the Hermitian forms space which
are exposed in the next section.
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Figure 5.2: The procedure of MIMO classification.

5.3 Some basic mathematical notions

5.3.1 Some algebra concepts

This section recalls some algebra notions which are used later.

Let F be a field, mainly F = R or C and Mn(F) be the set of n × n matrices in F. Some useful
definitions from algebra are introduced in the following.

Definition 11 (Some groups of Mn(F))

The General linear group : GLn(F) of size n is the set of n × n invertible matrices. GLn(F) with the
operation of ordinary matrix multiplication, (GLn(F),×), is a group.

The Special linear group : SLn(F) is a subgroup of GLn(F) of all matrices with determinant +1.

The Unitary group : U(n) is the subgroup of GLn(C) of unitary matrices M such that MM† = In.

The Special unitary group : SU(n) is the subgroup of U(n) of matrices with unit determinant.

Definition 12 (Equivalence relation and set partitions):

Equivalence relation : An equivalence relation on a set X is a binary relation on X which is reflexive,
symmetric, and transitive. That is, if the relation is denoted by the symbol "∼",
∀a, b, c ∈ X

1. a ∼ a (reflexivity)

2. if a ∼ b then b ∼ a (symmetry)

3. if a ∼ b and b ∼ c then a ∼ c

A partition PX of a set X is a set of subsets of X such that :

1. No element of PX is empty : ∀s ∈ PX, s , ∅.
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2. The union of the elements of PX is equal to X : X =
⋃

s∈PX
.

3. The intersection of any two distinct elements of PX is empty : ∀s1, s2 (s1 , s2) ∈ PX, s1 ∩ s2 = ∅.

Every equivalence relation on X defines a partition of X into subsets called equivalence classes: all
elements equivalent to each other are put into one class. Conversely, if the set X can be partitioned into
subsets, then we can define an equivalence relation ∼ on X by the rule "a ∼ b if and only if a and b lie
in the same subset".
The set of all equivalence classes in X for an equivalence relation ∼ is usually denoted as X/ ∼ and called
the quotient set of X by ∼.

If G is a group, H a subgroup of G, and x an element of G, then

1. xH = {xh | h ∈ H} is a left coset of H in G,

2. Hx = {hx | h ∈ H} is a right coset of H in G.

The left (respectively right) cosets of H in G are the equivalence classes under the equivalence relation on
G given by x ∼ y if and only if y ∈ xH (respectively y ∈ Hx).

Definition 13 (Group action)

A group G is said to act on a set X when there is a map φ from G × X to X such that :

1. ∀x ∈ X, φ(e,x) = x where e stands for the identity element of G

2. ∀g1, g2 ∈ G, φ(g1,φ(g2,x)) = φ(g1.g2,x)

In this case φ is called a left group action.

This action induces an equivalence relation ∼ such that

∀x,y ∈ X, x ∼ y ⇐⇒ ∃g ∈ G, y = φ(g,x)

In the special case when G is a subgroup of X, a natural action of G on X could be given by

φ(g,x) = g.x, g ∈ G, x ∈ X

The corresponding quotient set G\X is the set of the right cosets of G in X.

The action G on X is called transitive if for any two x, y ∈ X, there exists a g ∈ G such that gx = y.
In particular, when there exists precisely one g ∈ G such that gx = y, the action G on X is then both
transitive and free, and it is called regular or simply transitive. In this case, X is known as a principal
homogeneous space for G.

Consider a group G acting on a set X. The orbit of a point x ∈ X is the set of elements of X to which x
can be moved by the elements of G. The orbit of x is denoted by Gx:

Gx = {g.x | g ∈ G}

The defining properties of a group guarantee that the set of orbits of X under the action of G form a
partition of X. For example, a transitive group action implies that there is only one group orbit equal to
X. The associated equivalence relation is defined by saying x ∼ y iff there exists a g ∈ G with gx = y.
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The orbits are then the equivalence classes under this relation; two elements x and y are equivalent iff
their orbits are the same, i.e. Gx = Gy.
The set of all orbits of X under the action of G is written as X/G or G\X, and is called the quotient of
the action; in geometric situations it may be called the orbit space.

Some elements of a group G acting on a space X may fix a point x. These group elements form a subgroup
called isotropy group of x, defined by

Gx = {g ∈ G | gx = x}
For example, consider the group SO(3) of all rotations of a sphere S2. Let x be the north pole (0,0,1).
Then, as illustrated in Fig. 5.3, a rotation which does not change x must turn around the usual axis,
leaving the north pole and the south pole fixed. These rotations form the isotropy group for both north
and south poles.

Usual axis

Rotation around the usual axis

(0,0,1)

(0,0,−1)South pole

North pole

Figure 5.3: An example of isotropy group. X = S2 and G = SO(3).

When two points x and y are on the same group orbit, say y = gx, then the isotropy groups are conjugate
subgroups. More precisely, Gy = gGxg−1. In fact, any subgroup conjugate to Gx occurs as an isotropy
group Gy to some point y on the same orbit as x.

Let φ be the group action of a group G on a set X. The action φ is irreducible if there are no nontrivial
subspaces in X that are invariant by this action. The unique subspaces which are invariant by the action
of φ are the entire space X and the null space.

5.3.2 Some definitions from differential geometry

Some notions of differential geometry are also needed for MIMO classification study to design
a new distance between Hermitian forms.
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5.3.2.1 Differentiable manifolds

Definition 14 (Manifold)

A manifold is a space that is locally like an Euclidean space Rn, but globally its structure may be more
complicated.
To illustrate this idea, consider the surface S of a sphere. Locally, an open subset of S resembles to an
open subset of R2, which is not true globally.

Definition 15 (Topological manifold)

S is a topological manifold if

1. S is a Hausdorff topological space. This means that S is a topological space in which two different
points can be separated by disjoint open sets.

2. ∀p ∈ S, ∃ an open subset U of S containing p, and an homeomorphism (a bijective continuous
function whose inverse is also continuous) φ of S onto an open subset of Rn.

We say that n is the dimension of the manifold S, and the pair (U,φ) is an open chart, known also as a
system of local coordinates, on S.

Definition 16 (Differentiable manifold)

S is called a n-dimensional C∞ differentiable manifold if

1. S is a topological manifold.

2. ∃ a collection of open charts {(Uα,φα)}α∈A of S (S = ∪α∈AUα), such that for each pair α, β ∈ A,
the mapping φβ ◦ φ−1

α is a C∞ differentiable mapping from φα(Uα ∩Uβ) onto φβ(Uα ∩Uβ).

A complex manifold is a manifold S whose coordinate charts are open subsets of Cn and the transition
functions between charts, φβ ◦ φ−1

α , are holomorphic functions (i.e. have a derivative at every variable
xi, (x1,x2, . . . ,xn) ∈ Cn). Naturally, a complex manifold of dimension n also has the structure of a real
differentiable manifold of dimension 2n.

A submanifold is a subset of a manifold that is itself a manifold, but has smaller dimension.

Definition 17 (Symmetric space)

A differential manifold S is called a symmetric space if for each x ∈ S there exists a diffeomorphism sx

which satisfies the following conditions :

1. x is an isolated fixed point of sx,

2. sx is involutive, that is, s2
x = 1,

3. sx(sy(z)) = ssx(y)(sx(z)) for any y and z in S.
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5.3.2.2 Tangent vector and tangent space

In differential geometry, one can attach to every point p of a differentiable manifold a tangent

space, a F vector space which intuitively contains the possible "directions" in which one can
pass through p. The elements of the tangent space are called tangent vectors at p. All the
tangent spaces have the same dimension, equal to the dimension of the manifold.

For example, if the given manifold is a sphere in R2, one can picture the tangent space at
a point x as the plane which touches the sphere at x. It is also the plane which is perpendicular
at x to the line joining the sphere center and x.

In particular, when S ⊂ Kn, K = R, or C and S is defined by the equations

F1(x1,x2, . . . ,xn) = 0
...

Fr(x1,x2, . . . ,xn) = 0

where x = (x1,x2, . . . ,xn) ∈ Kn and Fi : Kn → K, the tangent space to S at the point x is the set of
the tangent vectors whose coordinates (t1,t2, . . . ,tn), satisfy

n∑

i=1

ti
∂

∂xi
F j(x1,x2, . . . ,xn) = 0, ∀ j = 1, . . . ,r (5.3)

As an example, we consider the space of invertible matrices with unit determinant, S = SLn(C) ⊂
Cn×n. Let us compute the tangent vector at the identity point In of this space.
Let M = [xi, j] ∈ SLn(C). The space SLn(C) can be defined by the unique equation of n2 variables
xi, j

F(x11,x12, . . . ,xnn) = det





x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .
...

xn1 xn2 · · · xnn





− 1 = 0

Theorem 2 The tangent space at the identity matrix In for the space SLn(C) is the set of matrices with
trace equal to zero.

Proof: According to (5.3), we have

n∑

j,k=1

t jk
∂

∂x jk
F(x11,x12, . . . ,xnn) = 0 (5.4)

Let compute the partial derivatives.

∂

∂x jk
F(x11, . . . ,xnn)| M=In

=
∂

∂x jk
det(M)| M=In

Since
det(M) =

∑

σ∈Sn

sgn(σ)
∏

xiσ(i)
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where Sn is the permutation group of the set {1,2, . . . ,n} and sgn(σ) denotes the signature of the
permutation σ: +1 if σ is an even permutation and −1 if it is odd.

∂

∂x jk
F(x11, . . . ,xnn)| M=In

=
∑

σ∈Sn

sgn(σ)
∂
∏n

i=1 xiσ(i)

∂x jk
| x jk=δ jk

=
∑

σ∈Sn

sgn(σ)





n∏

i=1,i, j

xiσ(i)





∂x jσ( j)

∂x jk
| x jk=δ jk

=
∑

σ∈Sn,σ( j)=k

sgn(σ)
n∏

i=1,i, j

xiσ(i) | x jk=δ jk

=
∑

σ=I,σ( j)=k

sgn(I)

n∏

i=1,i, j

xii | x jk=δ jk
(I is the identity element of Sn)

= δ jk (5.5)

Therefore, by replacing (5.5) in (5.4), the tangent vectors to SLn(C) at the identity In satisfy

n∑

i=1

tii = 0 (5.6)

Thus, the tangent space at In is the set of matrices with trace zero.

5.3.2.3 Riemannian manifold

Definition 18 (Riemannian manifold)

A Riemannian manifold (S,g), is a differentiable manifold S in which each tangent space is equipped
with an inner product g in a manner which varies smoothly from point to point. In other words, for any
tangent vectors D, D′ at a point p ∈ S, g(D,D′) ∈ R and g satisfies :

1. Linearity: g(aD + bD′,D′′) = ag(D,D′′) + b(D′,D′′), ∀a, b ∈ R

2. Symmetry: g(D,D′) = g(D′,D)

3. Positive-definiteness: If D , 0 then g(D,D) > 0

This allows one to define various notions such as the length of curves, angles, areas (or volumes), curva-
ture, gradients of functions and divergence of vector fields.

Definition 19 (Geodesic on a Riemannian manifold)
Let γ : [a,b] → S be a continuously differentiable curve in the Riemannian manifold S, [a,b] is some

interval of R. We define its length L(γ) = ‖γ‖ to be

L(γ)
def
=

∫ b

a

‖γ′(t)‖dt. (5.7)

where γ′(t) is a tangent vector in the tangent space at the point γ(t).

With the definition (5.7), every connected Riemannian manifold S becomes a metric space (and even
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a length metric space) in a natural fashion: the distance d(x,y) between the points x and y of S is defined
as

d(x,y) = inf
γ
{L(γ) | γ is a continuously differentiable curve joining x and y}.

Even though Riemannian manifolds are usually "curved", there is still a notion of "straight line" on
them: the geodesics. These are curves which locally join their points along the shortest paths.

5.3.2.4 Lie group

Definition 20 (Lie group)

A Lie group G is a differentiable manifold obeying the group properties and that satisfies the additional
condition that the group operations (multiplication and inversion)

G × G → G

(g,h) 7→ gh

and

G × G → G

g 7→ g−1

are differentiable.

A complex Lie group is defined in the same way using complex manifolds rather than real ones.

Some examples of Lie groups :

1. The group GLn(F) of invertible matrices (under matrix multiplication) is a Lie group of
real dimension n2 if F = R and 2n2 if F = C.

2. The subgroup SLn(F) of matrices of determinant 1 is also a Lie group of real dimension
n2 − 1 if F = R and 2n2 − 2 if F = C.

3. The group of unitary matrices U(n) is a real Lie group of dimension n2.

4. The group of special unitary matrices SU(n) is a real Lie group of dimension n2 − 1.

There are several standard ways to form new Lie groups from old ones. For example:

1. The product of two Lie groups is a Lie group.

2. Any closed subgroup of a Lie group is a Lie group.

3. The quotient of a Lie group by a closed normal subgroup is a Lie group. Notice that the
quotient of a Lie group by a closed subgroup is only a differentiable manifold

Definition 21 (Homogeneous space for Lie group)

Let A be a topological group, in particular a Lie group, and F be a closed subgroup of A. The system of
left cosets aF, a ∈ A denoted A/F, is an homogeneous space. Indeed, X = A/F has a transitive group
action for the group G = A. The group action could be defined by

τ : G × X → X

(a,x = bF) 7→ abF
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A homogeneous space S of a Lie group G is a space with a transitive group action by G. Because a
transitive group action implies that there is only one group orbit, S is isomorphic having the same form
to the quotient space G/H where H is the isotropy group Gx. The choice of x in S does not affect the
isomorphism type of G/Gx because all of the isotropy groups are conjugate.

In the following section, we focus on the space of Hermitian matrices that can be seen as a
Riemannian space. Consequently, all the above definitions can be applied for the classification
of MIMO channels.

5.4 MIMO classification algorithm

As pointed out previously, our proposed classification algorithm will be used for Hermitian
forms. This section defines how the normalized MIMO channels could be identified by their
Hermitian forms (using an equivalence relation). Then, the section 5.4.2 describes the computa-
tion of the geodesic distance between Hermitian forms and how it could be used as a metric for
the classification algorithm. Finally, section 5.4.3 introduces the Frobenius distance and shows
the application of this distance for the classification. Frobenius distance will be compared in
section 5.6 to the geodesic distance regarding the performance of the classification.

In the sequel, the complex cubic latticeZ[i]n associated to the identity matrix will play the role
of a reference Hermitian form.

5.4.1 Equivalence of MIMO channels

Let define an equivalence relation on the set SLn(C).

Definition 22 (Equivalence relation for MIMO channels)
Two channels are equivalent in SLn(C) if there exist a unitary matrix U in SU(n) such that H2 = UH1.

First representation of MIMO channels equivalence

From a differential geometric point of view, the objects considered in this report can be described
as follows. Elements of Cn will be considered as column vectors, so that a unimodular basis
of Cn corresponds to an element of the special linear group SLn(C), and the natural action
of the special unitary group SU(n) on Cn induces an action of SU(n) on SLn(C), given by
left multiplication. Thus the equivalence class of such a basis under unitary transformations
corresponds to an element of the quotient set

X = SU(n)\SLn(C).

Elements of this quotient set are cosets of the form

[H] = SU(n) ·H for H ∈ SLn(C).

Note that if we had chosen row notation instead of column notation, then SU(n) would have
acted by right multiplication, and the quotient set to consider would have been SLn(C)/SU(n),
whose elements are cosets of the form H · SU(n).

The quotient set SU(n)\SLn(C) is an example of homogeneous space, that is, the quotient
of the Lie group SLn(C) by the closed subgroup SU(n). As such, it carries a differential structure
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and an action of SLn(C), given by right multiplication.

φ : X × SLn(C) → X

([H1] = SU(n) ·H1,H2) 7→ [H1 ·H2] = SU(n) ·H1 ·H2 (5.8)

Second representation of MIMO channels equivalence

There is another way to describe the space SU(n)\SLn(C) that is quite useful in practice. Observe
that two unimodular matrices H1 and H2 in SLn(C) have the same Gram matrix G = H†

1
H1 =

H†
2
H2 if and only if there is a unitary matrix U ∈ SU(n) such that H2 = UH1, that is if and

only if the classes of H1 and H2 in SU(n)\SLn(C) coincide. Conversely, any positive definite
Hermitian matrix G of determinant 1 can be written in the form G = H†H for H ∈ SLn(C)
uniquely determined up to left multiplication by a unitary matrix. In fact one can mention two
specific choices of H that are of particular interest: the first one is to take H upper triangular,
given by Cholesky decomposition, while the second is to take H Hermitian, by extracting the
square root of G as

H =
√

G = UDU† (5.9)

where D = diag(
√
λ1, . . . ,

√
λn) and λ1, . . . ,λn are the eigenvalues of G and U the normalized

vectors.

These considerations allow to identify SU(n)\SLn(C) with the space of positive definite Her-
mitian matrices of determinant 1, by identifying the coset SU(n) · H with the Gram matrix
G = H†H. The differential structure on SU(n)\SLn(C) can be retrieved as the natural differential
structure on this space of Hermitian matrices seen as a real submanifold of Cn×n.

The right action of SLn(C) on the quotient set SU(n)\SLn(C) sends the matrix H ∈ SLn(C) to
SU(n) ·H · P, where P ∈ SLn(C). Thus, using the identification of the coset SU(n) ·H with the
Gram matrix G = H†H, we can define the right action of SLn(C) on the space of positive definite
Hermitian matrices of determinant 1 as follows:

if G is an Hermitian matrix and P ∈ SLn(C), then P acts on G by sending it to P†GP.

In the sequel, we denote Γ the space of positive definite Hermitian matrices of determinant 1.
So the classification is applied on the space Γ instead of the space of MIMO channels in SLn(C).

The next subsection focuses on the computation of the geodesic distance between Hermitian
matrices, and on its application as a metric in the classification algorithm.

5.4.2 Geodesic distance for MIMO Classification

• Geodesic distance for Hermitian matrices

It appears that SU(n)\SLn(C) is a special type of homogeneous space, called a symmetric space,
and thus carries a natural Riemannian structure. We will refer to [31] which is the classical
reference on this topic (along with E. Cartan’s original works). More precisely, following the
classification given in [31], §IX.6.1, SU(n)\SLn(C) is the Riemannian global symmetric space of
type IV associated with the Lie algebra of type an−1.
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Therefore, we can define a geodesic in the Riemannian space SU(n)\SLn(C) (or equivalently
the space of Hermitian forms Γ) to compute the shortest distance between two elements of the
space Γ providing the Riemannian metric (or inner products) on this space (definition 19 in
section 5.3.2.3).

The aim of the following proposition is to describe the geodesics and the distance associated to
the Riemannian structure SU(n)\SLn(C).

Proposition 1 Let G1 and G2 be two positive definite Hermitian matrices of size n with determinant 1.
Let P1 be any element of SLn(C) such that G1 = P1

†P1, and put G = (P1
†)−1G2P1

−1 and L = log(G).
Then:

1. There is a unique geodesic segment γ joining G1 to G2, given by the parametrization γ(t) =
P1
† exp(tL)P1 for t ∈ [0,1].

2. Up to multiplication by a constant, the geodesic distance between G1 and G2 is

dgeod(G1,G2) =





∑

1≤i≤n

| logλi|2




1/2

, (5.10)

where λ1,...,λn are the eigenvalues of G.

Recall that if A is an Hermitian matrix, and F a real analytic function (i.e. it possesses derivatives
of all orders) that is well defined on the eigenvalues of A, then F(A) can be defined as follows:

if A = V†diag(µ1,...,µn)V is the diagonalization of A, then F(A) = V†diag(F(µ1),...,F(µn))V

where V is unitary matrix and µ1,...,µn are real eigenvalues of A.

In particular, with the notations of the proposition, if one writes G = U†diag(λ1,...,λn)U with U

unitary, then




L = log(G) = U†diag(log(λ1),..., log(λn))U

γ(t) = P1
† exp(tL)P1 = P1

†U†diag(λt
1
,...,λt

n)UP1

Proof: Since the right action of SLn(C) must send geodesics to geodesics and preserve the
distance, one can suppose that G1 = In, P1 = In, and G2 = G.
This observation is depicted in Fig. 5.4. This figure illustrates the space of Hermitian matrices Γ.
The geodesic relating two elements of Γ, G1 and G2 is denoted by γ2. The length of γ2 is equal
to that of γ1, which is the geodesic between the identity element In and the matrix G obtained
by right action of SLn(C) on G1 and G2 respectively.

Since SU(n) is the set of fixed points of the analytic involution σ : H 7→ (H†)−1 of SLn(C),
one can apply [31], Proposition IV.3.4, to retrieve the fact that SU(n)\SLn(C) is a Riemannian
globally symmetric space. The tangent space to SLn(C) at In is the space of matrices with
trace zero (Theorem 2). From [31], Proposition IV.3.3(iii), it follows that the tangent space T to
SU(n)\SLn(C) at In can be identified with its subspace of anti-invariants under dσ. That is for
M ∈ T , dσ satisfies dσ(M) = −M†. Since dσ sends a matrix M to −M†, one sees that this tangent
space T is the space of Hermitian matrices with trace zero. Since G = U†diag(λ1,...,λn)U is
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In

G

G2 = P
†
GP

G1 = P
†
P

γ1

Right action of SLn(C)
on Γ

γ2

Γ

L: tangent vector at I
n

L

Figure 5.4: Action of SLn(C) on the space of Hermitian matrices Γ.

of determinant 1, one checks that L = U†diag(log(λ1),..., log(λn))U indeed is an element of T .
Now it follows again from [31], Proposition IV.3.3(iii) that any geodesic segment starting at In

is of the form γL′ : t 7→ exp(tL′) for some L′ ∈ T , and the condition γL′(1) = G forces L′ = L.
This proves the first part of the proposition.
Now since γL is a geodesic segment, its tangent vector has constant norm equal to ‖L‖, where
‖.‖ is the norm on T given by the Riemannian structure. This norm must be invariant under
the action of SU(n) on T , and since this action is irreducible, ‖.‖ is unique up to multiplication
by a constant. One can check indeed that the so-called Frobenius norm defined by

‖L‖ =




∑

1≤i, j≤n

|Li j|2




1/2

is invariant.

Using this invariance property, this can also written as:

dgeod(In,G) = length(γ)

=

∫ 1

0

‖L‖dt = ‖L‖

= ‖U†diag(log(λ1),..., log(λn))U‖
= ‖diag(log(λ1),..., log(λn))‖

=





∑

1≤i≤n

| logλi|2




1/2

,

which proves the second part of the proposition.

• Centroid update in generalized Lloyd for Hermitian forms

The generalized Lloyd algorithm iterates between two steps. The first step determines the
borders of Voronoi regions. A Voronoi region is also called a class in our terminology. This
Lloyd first step utilizes the geodesic metric given by proposition (1) in the previous section.
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γ1

G2

G3

Gi

Gi+1

GN

γ3

γi

γi+1

New centroid (iter k+1)

Centroid C0 (iter k)

γ2

Li

G1

γN

Figure 5.5: Centroid update rule after k Lloyd iterations.

The second step updates the centroid of each class.
In the second step of Lloyd algorithm applied to the space SU(n)\SLn(C), given some positive
definite Hermitian matrices G1,...,GN with determinant 1, one needs to find the centroid C of
this class of cardinality N that minimizes the sum of the squared distances dgeod(C,G1)2 + ... +

dgeod(C,GN)2, that is

C = arg min
C̃

{

dgeod(C̃,G1)2 + ... + dgeod(C′,GN)2
}

To our knowledge, there is no exact way to perform this minimization, however, proposition
(1) suggests a way to find at least a good approximation of this centroid, based on a gradient
heuristic.
Indeed, suppose we know that G1,...,GN already are not too far from an “old” centroid C0.
Using the invariance of the geodesic distance under the action of SLn(C), one can reduce to
the case C0 = In. Then if Li is the tangent vector at In to the geodesic segment ending at Gi,
so that Li = log(Gi), the gradient at In of the function C 7→ dgeod(C,G1)2 + ... + dgeod(C,GN)2 is
proportional to L = L1 + ... + LN. It is thus natural to take for C the endpoint of the geodesic
with tangent vector 1

N L, that is

C = exp
(

1

N

(
log G1 + ... + log GN

)
)

(5.11)

Figure 5.5 illustrates an example to update the old centroid C0 knowing the different elements
G1,...,GN that are associated to C0.
One can check easily that if N = 1, or if N = 2 and C0 already lies on the unique geodesic
passing through G1 and G2, then this approximate C is the exact C that minimizes the sum of
the squared distances.

The next subsection presents the Euclidean distance (or Frobenius distance) which could be
used as a metric for MIMO classification.
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5.4.3 Frobenius distance for MIMO classification

• Frobenius distance for Hermitian matrices

From a computational point of view, a drawback with the mathematical constructions used
for geodesic distance, is that they require to diagonalize some of the matrices involved, which
can be heavily time-consuming. A computationally lighter alternative is then to consider the
space of positive definite Hermitian matrices with determinant 1 as a subset of the affine space
of all Hermitian matrices, and to use the distance and the averaging process coming from this
affine structure. More precisely, this amounts to replacing the geodesic distance dgeod with the
Frobenius distance

dFrob(G1,G2) =





∑

1≤i, j≤n

|(G1 −G2)i j|2




1/2

(5.12)

• Centroid update in generalized Lloyd for Hermitian forms

When Frobenius distance is considered for the classification algorithm, we proceed as follows
to update the centroids at the end of each Lloyd algorithm step. We define the linear average
of G1,...,GN as

C̃ =
1

N
(G1 + ... +GN),

and then we construct the new centroid as by applying the normalization

C =
(

det(C̃)
)−1/n

C̃ (5.13)

5.4.4 Summary

The algorithm 3 illustrates the different steps of MIMO channels classification to generate the
centroids C1,C2, . . . ,CK of the different K classes. This algorithm is valid for any selected metric
to compute the distance between two Hermitian forms. The Lloyd algorithm mentioned in
algorithm 3 is described in algorithm 4.
In our study, we choose two metrics, namely geodesic and Frobenius distances. Thus, the
distance, dist(Citer

k
,Gi), in the algorithm 4 is computed as (5.12) if Frobenius distance is selected

and as (5.10) if geodesic distance is the chosen metric. Also, the centroid update after k Lloyd
iterations in algorithm 4 is determined as given in (5.13) if Frobenius distance, otherwise as
(5.11) if geodesic distance is considered. Notice that the normalization of the centroid Citer+1

k
in algorithm 4 is required only when selecting Frobenius distance. It is easy to check that the
centroid update rule proposed for geodesic distance keeps det(Citer+1

k
) = 1.

The design of a quantizer for SU(n)\SLn(C) via the different distances (e.g. geodesic or Frobe-
nius) and these different centroids averaging processes should be tuned to the specific target
application.

5.5 Lattice classification

In the previous section, we classified MIMO channels which correspond to finite subsets of
lattices. In this section, we will extend this classification to lattices.
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input : Data samples {H1,H2, . . . ,HM}, where M≫ 1 and Hi ∈ Cn×n

output: Centroids defined by their Hermitian forms {C1,C2, . . . ,CK}, where
det(Ci) = 1

for i = 1 to M do3.1

compute normalized Hermitian form Gi =
1

n
√

det(Hi†Hi)
H†

i
Hi;

3.2

end3.3

Build an initial codebook of Hermitian forms {C0
1
,C0

2
, . . . ,C0

K
}, where det(C0

i
) = 1;3.4

Apply Generalized Lloyd Algorithm procedure GEN_LLOYD();3.5

return;3.6

Algorithm 3: Classification algorithm for n × n MIMO channels.

input : (Gi) , (C0
i
) , maxIter , K , M , dist() , updateCentroid()

output: (Ci)

for iter = 1 to maxIter do4.1

MSEiter = 0;4.2

for i = 1 to M do4.3

d =MAXDBL;4.4

for k = 1 to K do4.5

Compute dk = dist(Citer
k
,Gi);4.6

if d ≥ dk then4.7

d = dk;4.8

kmin = k;4.9

end4.10

end4.11

Assign Gi to the centroid Citer
kmin

;4.12

MSEiter+ = dkmin
;4.13

end4.14

if MSEiter ==MSEiter−1 then4.15

return;4.16

end4.17

else4.18

for k = 1 to K do4.19

Citer+1
k

= updateCentroid(Gik), where Gik ∈ Class(Citer+1
k

);4.20

Normalize Citer+1
k

so that det(Citer+1
k

) = 1;4.21

end4.22

end4.23

end4.24

Algorithm 4: Procedure GEN_LLOYD().
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5.5.1 Lattice classification algorithm

Recall that a n-dimensional complex lattice Λ over Z[i] is defined by

Λ = {x = Hz ∈ Cn; z ∈ Z[i]n}
The columns hi,i = 1, . . . ,n of the matrix H form a complex basis for Λ. In contrast to the last
chapters dealing with lattices, the above definition assumes a column notation for matrices and
vectors. Therefore, the reader should adapt the definitions given especially in chapter 2 to the
current notation.

In chapter 2, section 2.1.1, it has been defined that two matrices in SLn(C) span the same
lattice Λ over Z[i] if and only if they differ by a right multiplication of an element in SLn(Z[i]).
In other words, let H1 and H2 be two bases for Λ; they are related by

H2 = H1P

where P ∈ SLn(Z[i]) denotes an unimodular matrix.

Thus the set of equivalence classes of unimodular lattices, defined in chapter 2 section 2.1.1),
over the ring of Gaussian integers is represented by the quotient set

SLn(C)/SLn(Z[i])

Using the action of SU(n) on the quotient set SLn(C)/SLn(Z[i]) given by a left multiplication
leads to the double quotient space

SU(n)\SLn(C)/SLn(Z[i]),

whose elements are double cosets of the form

[H] = SU(n) ·H · SLn(Z[i])

Notice that if row notation is chosen, then SLn(Z[i]) would have acted by a left multiplication
and SU(n) by a right multiplication, and the quotient set becomes SLn(Z[i])\SLn(C)/SU(n).

The classification problem that was treated in section 5.4.1 for SU(n)\SLn(C) could also be
carried out for SU(n)\SLn(C)/SLn(Z[i]) with the same techniques, although some additional
tools are needed.

Remember that a lattice Λ has many bases. The most common of them are the reduced bases
that are used for many applications thanks to their ’nice’ properties (section 2.1.3). Any matrix
H ∈ SLn(C) generating a lattice Λ is related to a reduced basis Hred by

H = HredPred

Since the basis change does not alter the lattice, a lattice Λ could be identified by its reduced
basis. Therefore, the classification of lattices is equivalent to classify the MIMO channels with
their reduced form. Then, we can apply the techniques described in the previous section to
classify lattices.
It is clear that the action of SLn(Z[i]) on SU(n)\SLn(C) reduces the number of MIMO channel
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representatives.

To find the reduced basis associated to a given lattice basis, several reduction algorithms were
proposed (see section 2.1.3). In this work, we choose the lowest complexity algorithm to
determine Hred: the LLL algorithm [14]. As indicated in section 2.1.3.3, the LLL algorithm does
not guarantee to find the shortest lattice vector satisfying the Minkowski criteria that are given
in section 2.1.3.1. However, it guarantees in polynomial time to find a vector within a factor of
the shortest vector.
The classification algorithm for lattices is similar for MIMO channels (algorithm 3) with small
change to obtain the reduced bases. This leads to algorithm 5.

input : Data samples {H1,H2, . . . ,HM}, where M≫ 1 and Hi ∈ Cn×n

output: Centroids defined by their Hermitian forms {C1,C2, . . . ,CK}, where
det(Ci) = 1

for i = 1 to M do5.1

Apply the chosen reduction algorithm on the bases H1,H2, . . . ,HM to produce5.2

a reduced basis Hred
1
,Hred

2
, . . . ,Hred

M
;

compute normalized Hermitian form Gi =
1

n
√

det(Hred†
i

Hred
i

)
Hred†

i
Hred

i
;

5.3

end5.4

Build an initial codebook of Hermitian forms {C0
1
,C0

2
, . . . ,C0

K
}, where det(C0

i
) = 15.5

and C0
i

is the Gram matrix of a reduced basis;

Apply Generalized Lloyd Algorithm procedure GEN_LLOYD_LATTICE();5.6

return;5.7

Algorithm 5: Classification algorithm for n-dimensional complex lattices.

The LLL algorithm applied for complex lattices will be given in the next subsection.

5.5.2 LLL algorithm for complex bases

As outlined previously, the n-dimensional complex lattice Λ associated to the channel matrix
H is defined by

Λ = {x = Hz ∈ Cn; z ∈ Z[i]n}
where the columns hi,i = 1, . . . ,n of the matrix H form a complex basis forΛ. The complex basis
(hi)1≤i≤n is LLL-reduced if [23]





ℜ(µi, j) ≤ 0.5, 1 ≤ j < i ≤ n

ℜ(µi, j) ≤ 0.5, 1 ≤ j < i ≤ n

(

δ − |µi+1,i|2
)

‖h∗
i
‖2 ≤ ‖h∗

i+1
‖2, 1 ≤ i < n and 1/2 ≤ δ ≤ 1

(5.14)

The set of orthogonal vectors {h∗
i
}1≤i≤n span the same space as {hi}1≤i≤n. They are generated

using the Gram-Schmidt orthogonalization procedure as (see section 2.1.3.3)

h∗i = hi −
i−1∑

j=1

µi jh
∗
j, 1 ≤ i ≤ n (5.15)
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input : (Gi) , (C0
i
) , maxIter , K , M , dist() , updateCentroid()

output: (Ci)

for iter = 1 to maxIter do6.1

MSEiter = 0;6.2

for i = 1 to M do6.3

d =MAXDBL;6.4

for k = 1 to K do6.5

Compute dk = dist(Citer
k
,Gi);6.6

if d ≥ dk then6.7

d = dk;6.8

kmin = k;6.9

end6.10

end6.11

Assign Gi to the centroid Citer
kmin

;6.12

MSEiter+ = dkmin
;6.13

end6.14

if MSEiter ==MSEiter−1 then6.15

return;6.16

end6.17

else6.18

for k = 1 to K do6.19

Citer+1
k

= updateCentroid(Gik), where Gik ∈ Class(Citer+1
k

);6.20

Construct the reduced Hermitian form associated to Citer+1
k

by6.21

evaluating an associated basis. This can be achieved by extracting the
square root of Citer+1

k
as in (5.9) or by applying the Cholesky

decomposition. Then, apply the reduced algorithm on the computed
basis Hred;
Compute the Hermitian form Gred = Hred†Hred and normalize Gred

6.22

(det(Gred) = 1), the new centroid is then Citer+1
k

← Gred;

end6.23

end6.24

end6.25

Algorithm 6: Procedure GEN_LLOYD_LATTICE().
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The Gram-Schmidt coefficient µi j is equal to

µi j =
〈bi,b

∗
j
〉

|b∗
j
|2

where 〈x,y〉 stands for the Hermitian inner product between x and y.

In algorithm 7, we present the LLL algorithm to reduce the bases of complex vectors. When the
rank of the channel is equal to 2 and δ = 1, the LLL algorithm reduces to the optimal reduction
algorithm, i.e. the Minkowski reduction. More orthogonal reduced bases can be obtained by
increasing δ to one. However, this may increase the number of iterations required.

The evaluation of the proposed classification performance is achieved based on numerical
results. The next section illustrates some simulation results to validate the classification algo-
rithm.

5.6 Numerical results

The reader could notice that the described classification algorithm does not depend on the
channel model (e.g. PDF of the channel matrix coefficients, channel correlation, etc). For
numerical results, we consider both cases:

• The first one corresponds to the simple case where channel coefficients are uncorrelated.

• The second one focuses on channels whose coefficients present a spatial correlation due to
the proximity of transmit or/and receive antennas. The correlation model that is adopted
in our simulations is given by[41]

H = Rr ·Hw · Rt (5.16)

where Hw is an nr × nt matrix of iid complex Gaussian random variables with zero mean
and unit variance. The matrices Rr ∈ Cnr×nr and Rt ∈ Cnt×nt are the correlation matrices
at the receiver and the transmitter, respectively. Both Rr and Rt are positive semi-definite
Hermitian matrices. Generally, the coefficients {ri j}i, j of both correlation matrices satisfy
[41]

ri j =





γ j−i i ≤ j

r ji i > j

where γ = γ0e jθ with |γ| ≤ 1, and x denotes the conjugate of x. In our study, we consider
the simple case where θ = 0. The matrices Rr and Rt are equal to

Rr =





1 α · · · αn−1

α 1 · · · αn−2

...
...

. . .
...

αn−1 · · · α 1





Rt =





1 β · · · βn−1

β 1 · · · βn−2

...
...

. . .
...

βn−1 · · · β 1




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input : a basis {h1,h2, . . . ,hn} for a lattice Λ in Cn

output: a reduced basis for Λ

h∗
1
← h1, B1 = 〈h1,h1〉;7.1

for i = 2 to n do7.2

h∗
i
← hi;7.3

for j = 1 to i − 1 do7.4

µi j ← 〈hi,h
∗
j
〉/B j and h∗

i
← h∗

i
− µi jh

∗
j
;7.5

end7.6

Bi = 〈h∗i ,h∗i 〉;7.7

end7.8

k← 2;7.9

while k ≤ n do7.10

for l = k − 1 to 1 do7.11

RED(k,l);7.12

end7.13

B← 〈hk,hk〉, i← 1;7.14

while i ≤ k − 1 do7.15

if δBi ≤ B then7.16

B← B − µ2
k,i

Bi, i← i + 1;7.17

end7.18

else7.19

INSERT(k,i);7.20

if i ≤ 2 then7.21

k← i − 1, B← 〈hk,hk〉, i← 1;7.22

end7.23

else7.24

k← 1;7.25

end7.26

end7.27

end7.28

k← k + 1;7.29

end7.30

return {h1,h2, . . . ,hn};7.31

Algorithm 7: LLL lattice basis reduction algorithm.

ifℜ(µk,l) ≥ 1/2 or ℑ(µk,l) ≥ 1/2 then8.1

hk ← hk − ⌊µk,lhl⌉];8.2

for j = 1 to l − 1 do8.3

µk, j ← µk, j − ⌊µk,l⌉µl, j;8.4

end8.5

µk,l ← µk,l − ⌊µk,l⌉;8.6

end8.7

Algorithm 8: Procedure RED(k,l).
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h← hk;9.1

for j = k − 1 downto i + 1 do9.2

h j ← h j−1;9.3

end9.4

hi ← h;9.5

Algorithm 9: Procedure INSERT(k,i).

Note that Hw is a full rank matrix. In the presence of receive or transmit correlation, the rank
of the channel matrix H is constrained by min(rank(Rr),rank(Rt)).

We consider both channel models: with uncorrelated/correlated coefficients before doing the
determinant normalization. Our numerical results on MIMO classification are obtained via a
generalized Lloyd similar to the one-dimensional Lloyd [36]:

1. Build an initial codebook with K elements chosen randomly.

2. Assign each data sample to its nearest centroid (according to the chosen metric or distance).

3. Update the centroid of class i based on the Ni data samples belonging to this class, for i = 1, . . . ,K.
These are the new K centroids.

4. Go back to step 2 during nL iterations.

We distinguish two scenarios. The first one chooses one channel model (correlated or uncorre-
lated) for all channel samples. The second considers both models (correlated and uncorrelated)
for channel samples with equal proportions, i.e. half of them satisfy the uncorrelated model
and the others satisfy the correlated model.

As mentioned in section 5.1, any quantization process introduces a distortion for the origi-
nal data. This distortion depends essentially on the adopted metric and also on the codebook
size. For the MIMO classification, that consists in quantizing Hermitian forms given by their
associated matrices, the codebook size should depend on the dimension of the Hermitian forms
space. That is, a good quantization which represents the original data requires a codebook size
of order exp(c ·n2), where n is the dimension of the Hermitian forms space and c > 0 is a non zero
positive integer. For example, if n = 2 (i.e. 2 × 2 MIMO systems), an acceptable quantization
could be achieved with a codebook equal at least to K = 16. Therefore, one octet could be
sufficient to quantize the 2-dimensional space. When n = 4 (i.e. 4 × 4 MIMO systems), at least
K = 65536 centroids are needed, which is a high number. Two octets at least are necessary to
quantize the 4-dimensional space.
For simulations, we apply the Lloyd algorithm (algorithm 3 or 5) for K = 32 and K = 256, 1024
when n = 2 and n = 4 respectively.
Another parameter that could impact the codebook size is the channel coefficients distribution.
Indeed, for uncorrelated channel matrix, the degree of freedom (i.e. the number of values
which are freely available) is higher than the one for the correlated model case. Therefore, the
uncorrelated model requires more centroids than the correlated one to represent the MIMO
channels.

The following subsections illustrate some numerical results to evaluate the classification al-
gorithm for MIMO channels. First, we focus on the generated centroids and their associated
classes. Second, we outline the resemblance between any channel and its corresponding cen-
troid by using Voronoi regions and error rates.
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5.6.1 Centroid orbits

To observe the repartition of the centroids in the space of Hermitian forms, SU(n)\SLn(C), we
evaluate the distance between each centroid and the identity element of this space, i.e. the
identity matrix In. This distance is computed using equation (5.10) when geodesic metric is
adopted and (5.12) when Frobenius metric is chosen.

The set of centroids lying at the same distance from the identity matrix is called orbit. Fig-
ures 5.6- 5.14 show the geodesic and Frobenius orbits of centroids after nL Lloyd iterations on
M = 106 Hermitian form samples for different scenarios. Each figure illustrates:

1. The origin that represents the identity matrix, In.

2. A square symbol that represents a centroid Gc placed on a circle of radius equal to its
distance from the identity

dgeo(In,Gc) =

√√
n∑

i=1

log(λi)2 , in case of geodesic distance

dlin(In,Gc) =

√√
n∑

i=1

(λi − 1)2 , in case of Frobenius distance

where λi, i = 1, . . . ,n are the eigenvalues of the centroid Gc.

3. The angles, α(Gc), that surround the different centroids and are proportional to the size
of their classes, that is

α(Gc) = 2π
card(Gc)

∑

1≤i≤K card(Gci
)
,where {Gci

}1≤i≤K are the centroids.

For some values of K considered as small, the codebook is spherical in the geodesic represen-
tation and classes are equiprobable if Lloyd reaches a steady state at large nL. Clearly, when
K is high, the codebook includes many orbits. Some singular orbits may correspond to rare
Hermitian forms or to a non convergence state of Lloyd algorithm.

The analysis of the different scenarios depicted on Figs. 5.6-5.14 is illustrated in the follow-
ing sections for MIMO channels and lattices.

5.6.1.1 Case of MIMO channels

• 2-dimensional case

For uncorrelated model, both geodesic and Frobenius metrics in Fig. 5.6 lead essentially to two
orbits around the origin. For K = 32, the repartition of centroids in both orbits is less balanced
for geodesic than Frobenius distance. For correlated model in Fig. 5.7, there are more orbits
for both distances. The size of different classes is almost equal for geodesic distance, whereas
a large class contains almost half of data samples for Frobenius distance. Comparing both
models, one can deduce that more centroids are required for the uncorrelated model than for
the correlated model as expected previously.

• 4-dimensional case
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Figure 5.6: MIMO classification : Geodesic (on the left) and Frobenius (on the right) orbits for
n = 2 antennas, uncorrelated model, K = 32 classes, nL = 120 Lloyd iterations.

For K = 256 and uncorrelated channels, the application of Lloyd algorithm using the geodesic
metric generates K centroids with almost equal eigenvalues, since all centroids belong to the
same orbit in Fig. 5.8. A second orbit appears when increasing the codebook size, K = 1024,
with a few number of centroids. For the second metric, Fig. 5.9 illustrates two distinct orbits
for K = 256 and more for K = 1024. One can believe that K = 1024 is insufficient to quantize the
Hermitian forms in the 4-dimensional space.

For correlated model, more orbits are obtained for K = 256 in Fig. 5.10 for both metrics. As for
n = 2, we can deduce that more centroids are needed for uncorrelated model. For Frobenius
distance, it is noticed that the difference between the classes size is more significant for n = 4.
While the distribution of classes size is almost uniform for the geodesic distance.

To go further in the comparison of both metrics, we consider the classification of mixed channel
models. We generate correlated and uncorrelated data samples with equal proportions, and we
apply the classification algorithm to a small codebook, K = 32, to generate the centroids for both
metrics. Figure 5.11 illustrates simulation results for both geodesic and Frobenius distances. We
distinguish essentially two orbits for both metrics but with different centroid distributions. The
nearest orbit to the origin contains the centroids associated to the uncorrelated model channels,
whereas the second orbit consists of centroids which correspond to correlated model channels.
Frobenius distance generates only one centroid for correlated channels with the highest class
size comparing to the uncorrelated centroids. However, geodesic distance shares out almost
fairly (in class size) the codebook between correlated and uncorrelated models.

• Conclusions

As conclusions, it seems that geodesic distance is less sensitive to channel distribution than
Frobenius distance. Indeed, the above results focusing on centroid orbits show that the distri-
bution of classes population with geodesic metric is quasi uniform for both cases: correlated
and uncorrelated models. However, the classification with Frobenius distance leads to a dise-
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Figure 5.7: MIMO classification : Geodesic (on the left) and Frobenius (on the right) orbits for
n = 2 antennas, correlated model, K = 32 classes, nL = 120 Lloyd iterations.
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Figure 5.8: MIMO classification : Geodesic orbits for n = 4 antennas, uncorrelated model,
K = 256 (on the left), K = 1024 (on the right) classes, nL = 120 Lloyd iterations.
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Figure 5.9: MIMO classification : Frobenius orbits for n = 4 antennas, uncorrelated model,
K = 256 (on the left), K = 1024 (on the right) classes, nL = 120 Lloyd iterations.

Figure 5.10: MIMO classification : Geodesic (on the left) and Frobenius (on the right) orbits for
n = 4 antennas, correlated model, K = 256 classes, nL = 120 Lloyd iterations.
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Figure 5.11: MIMO classification : Geodesic (on the left) and Frobenius (on the right) orbits for
n = 4 antennas, correlated & uncorrelated models, K = 32 classes, nL = 120 Lloyd iterations.

quilibrium between classes size for correlated model; whereas a uniform distribution is shown
for uncorrelated model.

By considering the diagonalization of the centroid Gc = UDU†, where D = diag(λ1, . . . ,λn) and
U ∈ SU(n), and the fact that all centroids have almost the same eigenvalues λi for the geodesic
distance and n = 4, one can deduce that this metric starts by quantizing the unitary matrix
U. When K is high, the quantization of both U and D should be noticed by distinguishing
the different orbits. In this work, we limit K to 1024 = 210 since most of wireless applications
require a few number of bits to quantize channels.

5.6.1.2 Case of lattices

We apply the classification algorithm extended to lattices (algorithm 5) and we expose in this
section the simulation results for three scenarios: (n = 2, K = 32), (n = 4, K = 256), and
(n = 4, K = 1024). Figures 5.12, 5.13, and 5.14 illustrate the centroid orbits for in case of lattices
associated to uncorrelated model for geodesic and Frobenius metrics. It is clear that there are
more orbits in this case than for the previous case of MIMO channels. Therefore, we can deduce
that lattices classification requires less centroids as representatives. This result can be observed
intuitively since the degrees of freedom for lattices is lower comparing to MIMO channels: two
distinct channels could represent the same lattice and the reciprocal is not correct.

5.6.2 Classification validation

In this section, we focus only on the proposed geodesic metric to validate our classification
algorithm. Using this metric, we compare some channel parameters to those of their associated
centroids. These parameters are: Voronoi regions and error rate.

5.6.2.1 Validation based on Voronoi regions

Let ΛQ and ΛG be two lattices. This criterion consists in comparing the shape of the Voronoi
regionsVQ andVG associated to ΛQ and ΛG, respectively. To do this, we proceed as follows:
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Figure 5.12: Lattices classification : Geodesic (on the left) and Frobenius (on the right) orbits
for n = 2 antennas, uncorrelated model, K = 32 classes, nL = 120 Lloyd iterations.
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Figure 5.13: Lattices classification : Geodesic orbits for n = 4 antennas, uncorrelated model,
K = 256 (on the left) , K = 1024 (on the right) classes, nL = 120 Lloyd iterations.
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Figure 5.14: Lattices classification : Frobenius orbits for n = 4 antennas, uncorrelated model,
K = 256 classes, nL = 120 Lloyd iterations.

1. Step 1: Normalize the fundamental volume of ΛQ and ΛG to avoid the scaling factor as
assumed in section 5.2.1. This implies Vol(VQ) = Vol(VG) = 1.

2. Step 2: Evaluate the intersection betweenVQ andVG.

To perform Step 2, we define the function IV, associated to the Voronoi regionV, as follows:

IV : R2n → R

x → 1 if x ∈ V and 0 otherwise (5.17)

Therefore, Step 1 leads to
∫

R2n

IVQ
(x)dx =

∫

R2n

IVG
(x)dx = 1

The figure of merit defined by

µ(Q,G) =

∫

R2n

IVQ
(x)IVG

(x)dx (5.18)

gives the intersection between VQ and VG. Given the definition (5.17), it is clear that
µ(Q,G) ∈ [0,1] (providing that ∀ x ∈ R2n, 0 ≤ IVQ

(x)IVG
(x) ≤ IVQ

(x)). The Voronoi regions
VQ andVG are geometrically close if their associated µ(Q,G) is near to 1.

The evaluation of µ(Q,G) requires the knowledge of V(Q) and V(G). Several solutions are
proposed in the literature to define the Voronoi regions of particular lattices [15], [62]. Never-
theless, the determination of Voronoi regions for random lattices is still an open problem.

Recall that the goal of this section is to compare the MIMO channel H to its associated centroid
via their Voronoi regions. This comparison consists in evaluating the figure of merit (5.18)
between the Hermitian form Q = H†H and its nearest centroid Gc.
We propose a numerical approach to evaluate the figure of merit. A high number of points x

are generated uniformly within a cube centered at the origin with edge length equals 2dmin,
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where dmin is the minimal Euclidean distance of the lattice ΛQ associated to H. To determine
both IVQ

(x) and IVGc
(x), we apply the sphere decoder [1], [63] around the origin. For example,

when the decoder is applied for the lattice associated to Q, IVQ
(x) = 1 if the point x is decoded

as 0 and IVQ
(x) = 0 otherwise.

Figure 5.15 illustrates the figure of merit µ(Q,Gc) for different scenarios, where Gc denotes
the centroid associated to the Hermitian form Q. In Fig. 5.15, the notation (n,K) means that the
dimension of the Hermitian form is n and K is the size of the codebook. We plot the figure
of merit of 10 different Hermitian forms for (2,20), (2,512) and (4,1024). It seems that the sce-
nario (2,512) achieves almost the best performance with respect to (2,20). In average, µ(Q,Gc)
is close to 0.9 for the best one and it is less than 0.8 for (2,20). The case (4,1024) oscillates be-
tween 0.5 and 0.7, which means that 50% to 70% of generated points belong to bothVQ andVGc .

Therefore, given the results depicted on Fig. 5.15, one could deduce that the resemblance
between one channel and its associated centroid is more tight in case of n = 2, even with a
small codebook size than in case of n = 4. This observation will be noticed also in the following
sections.
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Figure 5.15: Classification is based on geodesic distance. Figure of merit for (n = 2,K = 20),
(n = 2,K = 256), (n = 4,K = 1024) cases.

5.6.2.2 Validation based on error rate

Another characterization for the geometrical resemblance between a MIMO channel and its
associated centroid is considered in this section.
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Principle

This criterion consists in comparing the channel to its centroid by detecting the transmit signal
while having the centroid as an estimate for the channel.

Let H be a n × n MIMO channel matrix with Gram matrix G = H†H. Rewriting the MIMO
channel model (5.2) leads to

r = Hz + ν,

where r denotes the received vector, z ∈ (M-QAM)n is the transmit signal, and ν is an AWGN
vector with variance 2N0 per complex dimension.

The current validation aims at decoding the transmit signal z using the Gram matrix of the
centroid Gc instead of the channel Gram matrix G. This is equivalent to minimize the following
metric over z ∈ (M-QAM)n

ẑ = arg min
z∈(M-QAM)n

‖y − Rcs‖2 (5.19)

where Rc =
√

Gc, Gc is the centroid associated to the Hermitian form G, and ẑ is an estimate for z.

One could notice that this criterion is close to the one based on the Voronoi region comparison.
However, the previous criterion considers the lattice Voronoi region which is not necessary
equal to that of the lattice constellation associated to the MIMO channel (section 2.1.4). The
evaluation of the error probability using the channel centroid Rc is equivalent to comparing the
Voronoi regions of lattice constellations associated to Rc and H.

Simulation results

To use this criterion, we classify first 4 different channels, generated at random, to determine
their associated centroids. Then, we decode the signal z as given in (5.19). To reduce the
complexity of the detector, a sphere decoder [1], [63] could be applied. Simulation results are
plotted in Figs. 5.16, 5.17, and 5.18 in terms of point error probability wrt the transmit SNR
per bit. The notation (index,K) means that the index of the channel is index and the size of the
codebook used for the classification is K, e.g. (2,20) denotes the performance of the channel 2
using a codebook whose size is equal to 20. Notice that K = ∞ (optimal case) means that the
detection is based on a perfect estimation of the channel H.
For this criterion, the classification will be validated by evaluating the gap between two cases
for the detection:

1. the optimal case where the channel is perfectly known at the receiver, i.e. K = ∞.

2. the sub-optimal case where the channel is estimated with its associated centroid.

Notice that the choice of K in simulations is done randomly. We believe that there may be
a more intelligent way to find the optimal codebook size regarding the dimension n and the
quantization metric.
The two first figures, 5.16 and 5.17, illustrate the performance for 2-dimensional Hermitian
forms when applying 4-QAM and 16-QAM on transmit antennas. We consider, for instance,
the channel indexed by 1, 2, 4, 5 in Fig. 5.15. It is clear in both figures that increasing the size
of the codebook improves the performance. For example, in Fig. 5.16, for the channels of index
1 and 5, the loss in SNR is negligible (< 0.1 dB) for K = 512 and ≥ 0.6 dB for K = 20, at error
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probability close to 10−3, with respect to the optimal case. Also in Fig. 5.16, the loss in SNR
for the channel of index 4 is divided by two when moving from 20 to 512 in codebook size. In
addition, both figures 5.16 and 5.17 show that the distance between the channel of index 2 and
its centroid is the highest and the loss in SNR is more significant for K = 20 than for K = 512.
In this case, the detection with the centroid leads to a significant loss for the all codebook and
constellation sizes. This conclusion could be made provided the simulation results plotted in
Fig. 5.15 which shows a low figure of merit for this channel.
In Fig. 5.17, the loss in SNR due to the estimation error (using Rc instead of H) is more significant
when using bigger constellation size, i.e. 16-QAM. It is more important for K = 20 than for
K = 512. Indeed, for the same channel (index = 1), the loss is equal to 2 dB for K = 512 and
much higher for K = 20, at error probability equal to 10−3.

The last figure 5.18 corresponding to n = 4 and 4-QAM applied on transmit antennas, shows
that a codebook of 1024 is insufficient to well represent 4 × 4 MIMO channels. The lowest SNR
loss is given by the channel of index 5. At error probability equal to 10−3, this loss is about 4.3
dB. This result could be deduced also when observing Fig. 5.15.

Conslusions

To conclude, the estimation of MIMO channel with its associated centroid leads to a loss
over a perfect channel estimation in terms of error probability. This loss increases wrt the
dimension of the channel matrices and on the modulation size. Therefore, a high codebook
size is recommended for high n and M. The adjustment of this size depends on the application
constraints. It should be noticed that the introduction of channel coding in the considered
transmission scheme should reduce the required codebook size. Indeed, to determine this size
for coded system, lower error probability should be considered(≤ 10−2). In this case, the loss in
SNR is reduced even for n = 4 wrt PER=10−3. Hence, we can use a codebook with acceptable
size.

After evaluating the accuracy of our classification by comparing MIMO channels to their asso-
ciated centroids using Voronoi regions and error rates, we propose in the following section an
application of this classification to closed-loop MIMO systems e.g. beamforming.

5.7 Application of the classification algorithm to closed-loop MIMO

systems

The closed-loop MIMO systems are the wireless systems where CSI is assumed at the transmitter
(e.g. beamforming). The CSI could be a full knowledge about the channel matrix or a partial
knowledge of this matrix. In this study, we focus on systems that converts the MIMO systems
into a bank of scalar channels. This operation requires the knowledge of the precoder matrix
U at the transmitter. The matrix U is obtained by applying the singular value decomposition
(SVD) on the MIMO channel matrix H:

H = V
√

DU† (5.20)

where
√

D = diag(
√
λ1, . . . ,

√
λm,0, . . . ,0) is a diagonal matrix, V and U are unitary matrices and

m is the channel rank.
By applying the basis change matrices V† and U on the model (5.2) at the receiver and the
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Figure 5.16: Point error rate performance for n = 2 antennas using centroids for detection.
Classification using geodesic metric. Components of z are Gaussian integers taken from a
4-QAM constellation (uncoded).

transmitter respectively, the MIMO channel is transformed into m parallel and independent
SISO channels:

V†r =
√

Dz +V†ν (5.21)

For these systems, the SVD operation is often performed by the receiver which could have an
estimate for the channel matrix, for example through a training sequence. Then, a feedback link
is required to inform the transmitter about the precoder matrix U. In practice, a limited-rate
feedback is provided, which entails the quantization of the matrix U. Unfortunately, a quantizer
in MIMO systems generally needs a codebook size that grows exponentially with the product
of the transmit and the receive antennas, 2nt × nr [39]. For example, when n = nt = nr = 4, the
matrix U has 32 parameters that should be quantized every Tc channel use. This means that
the number of bits necessary to quantize the precoder matrix is exponential in 32, which ex-
ceeds the capacity of practical wireless systems. Therefore, it is important to design intelligent
algorithms to quantize complex matrices (e.g. U) under the constraint of a limited-rate feedback.

Several approaches were proposed in the literature to quantize the matrix U with a few bits.
Most of them were designed to optimize a given criterion, e.g. maximize capacity or minimize
error rate [39], [38], [43], [40]. In [38] and [43], the authors focused on beamforming technique
and proposed to quantize only a column vector of the matrix U which corresponds to the
highest mode. Their quantization strategies are then limited to applications consisting in the
transmission of a single data stream (e.g. beamforming), although capacity in MIMO systems
can increase with the transmission of multiple data streams simultaneously [59], [21].
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Figure 5.17: Point error rate performance for n = 2 antennas using centroids for detection.
Classification using geodesic metric. Components of z are Gaussian integers taken from a
16-QAM constellation (uncoded).

We propose in the next section to apply our classification algorithm to quantize the overall
precoder matrix U.

5.7.1 Evaluation of the classification quantization

Quantization using the classification

The quantization is performed at the receiver side and it is composed of two steps. The first
step consists in finding the nearest centroid Gc to the Hermitian form G = H†H. The second
step applies the diagonalization on Gc as

Gc = Uc ·Dc ·U†c (5.22)

Finally, the obtained matrix Uc is considered as an estimate for U. The next section evaluates
the performance of the quantization using the classification algorithm.

In the following, we examine the performance of the proposed approach to quantize the matrix
U. This consists in evaluating the diagonalization operation using the matrix Uc at the trans-
mitter and Vc at the receiver.
To do this, we check the coefficients of the obtained matrix

√
D′ = Vc ·H ·Uc = U†c ·U ·

√
D ·U† ·Uc
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Figure 5.18: Point error rate performance for n = 4 antennas using centroids for detection.
Classification using geodesic metric. Components of z are Gaussian integers taken from a
4-QAM constellation (uncoded).

We compute the ratio, ρi=1,...,n, between a diagonal element and all the elements lying in the

same row of the matrix
√

D′ = [d′
i j

], that is

ρi =
|d′

ii
|2

∑n
j=1 |d′i j

|2 (5.23)

When ρi approaches 1 for all i between 1 and n, the matrix
√

D′ could be considered as a
diagonal matrix. Therefore, the classification is said to well quantize the matrix U.

Figures 5.19 and 5.20 illustrate the distribution of the parameter ρi=1,...,n, assuming an increa-
sing order (ρ1 ≤ ρ2 ≤ · · · ≤ ρn), for the geodesic and Frobenius metrics. It is noticed that
for 2-dimensional Hermitian space, a codebook of 512 well quantizes the matrix U, whereas
the quantization with a small codebook of 20 centroids is worse. For this case, it seems that
the geodesic distance diagonalizes better the matrix D′ than the Frobenius distance, for both
codebook sizes. In 4-dimensional space, the classification performance for the diagonalization

degrade, and the matrix
√

D′ couldn’t be considered as a diagonal matrix for a codebook size

equal to 256 with both metrics. Indeed, the majority of matrices
√

D′ have the parameter ρi=1,...,n

lower than 1, which means that the estimation error due to quantization is not negligible and
could lead to inter-symbol interference. Therefore, to have better performance for n = 4, a
bigger codebook is required. Notice that ρ1 and ρ4 are closer to 1 for the Frobenius metric than
for the geodesic one, and the inverse is observed for ρ2 and ρ3.



136 5.7. A      -MIMO 

0

5

10

15

20

25

30

35

0.6 0.7 0.8 0.9 1.0 1.1

pd
f

ρ value

codebook size = 20

Frobenius, ρ1
Frobenius, ρ2
Geodesic, ρ1
Geodesic, ρ2

0

10

20

30

40

50

60

70

0.6 0.7 0.8 0.9 1.0 1.1

pd
f

ρ value

codebook size = 512

Frobenius, ρ1
Frobenius, ρ2
Geodesic, ρ1
Geodesic, ρ2

Figure 5.19: Distribution of the parameters ρ1, ρ2 given in (5.23). Classification with geodesic
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Figure 5.20: Distribution of the parameters ρ1, ρ2, ρ3, ρ4 given in (5.23). Classification with
geodesic and Frobenius metrics when (n = 4,K = 256).

As an application for this quantization, we study in the sequel the beamforming technique.

5.7.2 Application of the classification to beamforming

Now, after focusing on the performance of the proposed approach to quantize the precoder
matrix U, we use it in the sequel for the beamforming technique. This section presents first the
proposed beamforming scheme using the classification algorithm. Then, the performance (in
terms of error rate) of the designed scheme for MIMO-beamforming systems are compared to
the optimal case where a perfect estimation of the matrix U is assumed at the transmitter (i.e.
MSD = 0).

5.7.2.1 Beamforming scheme

Beamforming [2] in MIMO systems works in two steps. The first step transforms the MIMO sys-
tem into a finite number of SISO systems (or channel modes). The second step activates only the
strongest mode and send the signal accordingly. Thanks to the combination of received signals
from the multiple antennas, such systems can attain full diversity order in flat-fading Rayleigh
channels [37], [24], [45], [34]. Regarding the benefits of this technique, MIMO beamforming is
proposed for high data rates wireless LANs (IEEE 802.11) and for broadband wireless MANs
(IEEE802.16).

Figure 5.21 illustrates our designed scheme for transmit beamforming. Given a perfect channel
estimation and using the classification procedure described in algorithm 3, the receiver searches
the centroid associated to the current channel. Then, it sends the index of the corresponding
class to the transmitter via a feedback which is assumed error free. After that, the transmitter
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applies the matrix Uc (eq. (5.22)) as an estimate for U. Only the strongest mode, corresponding
to the highest eigenvalue, is selected for the transmission. Notice that the feedback necessitates
only log2(K) bits where K is the codebook size. For example, if K = 256, 8 bits are only needed
to quantize the matrix U. The matrices Uc corresponding to the different centroids are stored
in a lookup table. Having the centroid index, the transmitter finds the appropriate matrix Uc

in this table.

The receiver applies the matrix Vc on the received signal r, where

Vc = U†c ·
√

G ·H−1

and G = H†H.

It is noticed that the receiver can use the matrix V given in (5.20) instead of the above matrix
Vc since it has a perfect channel estimation. Nevertheless, we find via simulations that the
diagonalization performance with V are worse than with Vc.
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Figure 5.21: System model with the proposed beamforming scheme using the MIMO classifi-
cation.

5.7.2.2 Simulation results

Applying the uncoded transmission scheme depicted in Fig. 5.21 to different scenarios leads to
the simulation results plotted in Figs. 5.22 and 5.23. In both figures, the notation (dist_type,K)
means that the distance between Hermitian forms is measured based on dist_type (geodesic or
Frobenius) for a codebook size equal to K. Perfect estimation corresponds to the optimal case
where the precoder matrix U is estimated without error (i.e. K = ∞).

Figures 5.22 and 5.23 illustrate the error rate per bit as a function of the transmit SNR for
n = 2 and n = 4, respectively. As expected, the quantization provides good performance for
n = 2, a low codebook size (K = 20) and a 4-QAM modulation with both geodesic and Frobe-
nius. However, increasing the modulation size (16-QAM) degrades the performance, especially
for K = 20. This impact is negligible for the geodesic distance with K = 512. For all cases, it is
noticed that the geodesic distance performs better than the Frobenius distance in terms of error
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rate. This result could be observed in Fig. 5.19 where the parameter ρ2 is close to 1 for K = 20
and K = 512. Moreover, Fig. 5.22 shows the improvement of the diversity order from 2 to 4
when applying the mode selection.
Besides, in Figs. 5.22 and 5.23, the antenna selection, introduced in chapter 4, is compared to
the beamforming (called also mode selection). The selection is achieved by activating only the
transmit antenna that maximizes the received SNR. In both figures, the performance with the
mode selection are better than with the antenna selection. Indeed, a gain of about 1dB in SNR
is noticed at error rate equal to 10−5.

When n = 4, the selected mode corresponds to the parameter ρ4 in Fig. 5.20. This figure showed
that the classification does not well perform the diagonalization for both metrics, which could
lead to interference-inter symbol that impacts badly the decoding procedure. Indeed, this im-
pact is observed in Fig. 5.23 where performance are degraded with K = 256.

As conclusions, based on simulation results, it appears that the performance (in terms of error
rate) of the beamforming scheme using the classification comparing to the optimal one (perfect
estimation of the precoder matrix) depend on the chosen metric, the channel dimension, the
codebook size, and the modulation size on the transmitter. For low dimension n = 2, we noticed
that the classification with the geodesic distance performs closer to the optimal one than the
Frobenius distance for n = 2, K = 512 and different modulation sizes.
When n = 4 and K = 1024, the loss in performance using the classification approach are very
important with both distances.

5.7.3 Potential application for the classification

Recall that the use of the precoder matrices U and V (5.20) at the transmitter and the receiver
conveys the MIMO system into a parallel and independent SISO systems. In the previous
section, we showed how the classification could be used to quantize the matrix U.
We propose a second application to the classification for coded MIMO systems. It is known
that applying some channel coding algorithms (e.g. LDPC codes, turbo codes, convolutional
codes, etc) in MIMO systems increases the computation complexity due to the likelihoods [10],
which are exponential in n, 2n log2(M), where M is the modulation size and n = nt = nr. With
the diagonal model (5.21), the likelihoods are computed for each SISO channel and not for the
whole MIMO channel. This fact decreases the complexity from exponential in n to linear in
n. Therefore, the proposed approach to diagonalize the MIMO channel could be used in this
context to decrease the complexity of the decoding process.
This section gives some initial results for this application. The performance of the proposed
approach in coded MIMO systems will be illustrated later.
We present, in the following, the performance of the diagonal model (5.21) while using all
the modes. This allows to predict these performance while introducing the channel coding.
Figures 5.24 and 5.25 illustrate the error rate per bit wrt the transmit SNR. The notations used
in Figs. 5.22 and 5.23 remain valid in the current figures. For n = 2, it is noticed in Fig. 5.24 that
geodesic distance performs better than Frobenius distance for K = 20, 512 and modulation size
M = 4, 16, as expected from Fig. 5.19. It is clear that the quantization performance depends on
the codebook size for both distances. The impact of the quantization is observed at high SNR.
For the different cases, the error probability approaches a limit that depends on the codebook
size and the selected distance. This behavior is conditioned essentially by the lowest mode
which has the highest contribution in the inter-symbol interference.
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Figure 5.22: Bit error rate for the best eigen mode SISO channel resulting from the SVD of 2× 2
static MIMO channel using the proposed quantization approach for beamforming. 4-QAM
modulation (on the top) and 16-QAM modulation (on the bottom) applied on Tx antennas.
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Figure 5.23: Bit error rate for the best eigen mode SISO channel resulting from the SVD of 4× 4
static MIMO channel using the proposed quantization approach for beamforming. 4-QAM
modulation applied on Tx antennas.

When introducing the channel coding, the performance should be improved with respect to the
uncoded case. Therefore, it may be sufficient to focus on the classification performance at low
error probability (≤ 10−2) for uncoded system. In this case, the geodesic distance with K = 512
could be a good quantizer for both 4-QAM and 16-QAM.

For n = 4, the quantization of the precoder matrix U with K = 256, 1024 in Fig. 5.25 does
not provide good performance in terms of error probability per bit. The impact of the quan-

tization error is significant in this case. This is expected from Fig. 5.20 where the matrix
√

D′

couldn’t be considered as diagonal for the majority of channels. A higher number of centroids
is suggested.

Conclusions

This chapter described our proposed classification algorithm of Hermitian forms in multi-
dimensional space. The classification procedure aims to quantize any Hermitian form by
finding an appropriate representative (or centroid) which belongs to a given codebook. To
design this algorithm, we derived a new metric, called geodesic, which measures the distance
between Hermitian forms. We defined also a way to build a codebook using Lloyd algorithm.
The classification algorithm was proposed first for MIMO channels by considering their asso-
ciated Hermitian forms. Then, it was extended to lattices.

In the second part of this chapter, we evaluated the performance of the MIMO classification
algorithm. First, we focused on the distribution of the MIMO channels between classes as well



142 5.7. A      -MIMO 

10-4

10-3

10-2

10-1

100

-10 -5  0  5  10  15  20  25  30

B
it 

E
rr

or
 R

at
e

Transmit Eb/N0 (dB)

perefct estimation
(Geodesic, 20)

(Geodesic, 512)
(Frobenius, 20)

(Frobenius, 512)

10-4

10-3

10-2

10-1

100

-10 -5  0  5  10  15  20  25  30

B
it 

E
rr

or
 R

at
e

Transmit Eb/N0 (dB)

perefct estimation
(Geodesic, 20)

(Geodesic, 512)
(Frobenius, 20)

(Frobenius, 512)

Figure 5.24: Bit error rate performance for 2 SISO channels resulting from the SVD of 2×2 static
MIMO channel using the proposed quantization approach. 4-QAM modulation (on the top)
and 16-QAM modulation (on the bottom) applied on Tx antennas.
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Figure 5.25: Bit error rate performance for 4 SISO channels resulting from the SVD of 4×4 static
MIMO channel using the proposed quantization approach. 4-QAM modulation applied on Tx
antennas.

as the distribution of the centroids wrt the Hermitian form space origin, In. Two channel models
were used for simulations: correlated and uncorrelated models. We noticed that the classifica-
tion distributes the channels uniformly between classes for both models when using geodesic
distance. However, this distribution depends on the selected model when Frobenius distance
is adopted as the classification metric. When n is high (n = 4), simulation results showed that
almost all the centroids lie in the same orbit wrt the origin, for a codebook size of 256 or 1024 and
both metrics (geodesic and Frobenius). Thus, one could deduce that a bigger codebook size is
required for n = 4. Second, we considered two criteria, Voronoi regions and error probabilities,
to measure the resemblance between a MIMO channel and its associated centroid. Simulations
were carried out only with geodesic distance. We found that the classification provides a good
representative for 2×2 MIMO channels, with an acceptable codebook size. However, for higher
dimension, nt = nr ≥ 3, the performance degrade and a large codebook size may be necessary
to well represent a MIMO channel with its nearest centroid.

Finally, we proposed to apply the classification to closed-loop MIMO systems, e.g. beamform-
ing. Our algorithm is used at the receiver side to find the nearest centroid to the MIMO channel.
Then, the transmitter is informed about the centroid index to select its corresponding precoder
matrix (stored in look-up table). We compared the performance, in terms of error probability,
of our approach to those with the optimal case (without estimation error due to classification).
It appears that the performance for both cases are close with small constellation size (4-QAM)
even for low codebook size with geodesic and Frobenius metrics. Nevertheless, the impact of
the interference due to the estimation error increases with higher constellation size (16-QAM).
This impact is still negligible with geodesic distance when using a large codebook size of 512.
When nt = nr = 4, as noticed for the above criteria, a bigger codebook size is needed to get rid of
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the interference even when only the best mode is used. At the end of this chapter, we outlined
a potential application for the classification in coded MIMO systems. The classification can be
used to diagonalize the MIMO channel into a finite SISO channels. Then, the decoding process
could be achieved more easily for each SISO channel instead of processing the whole MIMO
channel. This decreases the complexity of the decoding process in MIMO channels.



Conclusions and perspectives

Conclusions

In this report, we focused on uncoded MIMO systems with spatial multiplexing scheme at the
transmitter. Wireless channels were assumed to be frequency non-selective and quasi-static,
and a perfect CSI was supposed only at the receiver.

First, we studied the performance of such systems in terms of error probability when one or
distinct modulations are applied on the transmit antennas. Considering the lattice constellation
associated to the MIMO channel and using lattice theory, we derived an accurate approxima-
tion for the conditional error probability. This approximation was computed at first for the
case when more antennas are available at the receiver side. Then, we generalized this approx-
imation without any constraint on the number of antennas. Monte-Carlo simulation results
for both cases showed the accuracy of our analytical approximation for different antenna and
modulation configurations. The derived approximation was also compared to a simple bound
for the lattice associated to the MIMO channel. Simulations showed a loss in SNR of about 2dB
with the simple bound over the one proposed for 4 × 4 MIMO system and 4-QAM on transmit
antennas. Finally, The complexity of our approximation was outlined.

Two applications were suggested for the derived error probability approximation: adaptive
modulation and antenna selection. We proposed an efficient algorithm to adapt modulations
while maximizing the total spectral efficiency and satisfying a constraint on error probabil-
ity. This algorithm considers a short list of modulation combinations and uses the dichotomy
method to go through the list. This leads to a reduced complexity. The proposed adaptive
modulation scheme was compared to another one using the simple bound that is indicated
in the previous paragraph. It was also compared to the non-adaptive scheme with different
modulation configurations. For both cases, 4 × 4 quasi-static MIMO system and distinct mod-
ulations on transmit antennas case were assumed. It was shown that the proposed adaptive
algorithm achieves the highest performance in terms of spectral efficiency while keeping the
error rate close to the target one.
For antenna selection, we outlined at first the benefit of this technique in maintaining the di-
versity order even with a reduced number of active antennas for SIMO systems. We derived
an error probability bound for such systems with antenna selection. Then, we illustrated our
algorithm using the derived approximation as a selection criterion. Finally, we presented the
performance achieved with antenna selection assuming different selection criteria and different
receiver schemes. For each scheme, we noticed that with the same number of active antennas,
the selection improves the performance comparing to the non selection case for different cri-
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teria. The selection introduces an additional diversity order and an SNR gain for most of the
selection criteria. We noted that the proposed selection criterion provides the best performance
for ML detectors. Nevertheless, for sub-optimal receivers, it achieves the worst performance.
This could be justified by the fact that the proposed approximation was derived assuming a
ML detection at the receiver.

At the end of this thesis report, we proposed a classification algorithm for MIMO channels
by considering their associated Hermitian forms. This algorithm could be used for adaptive
modulation and adaptive channel coding. To apply this algorithm in MIMO channels, we de-
rived a new metric, geodesic distance, that can be used for the corresponding Hermitian forms.
Then, we adapted it to lattices. Our proposed metric was compared to the natural distance,
known as Frobenius metric. Simulation results showed the performance of the proposed clas-
sification to quantize MIMO channels, with both geodesic and Frobenius metrics. We noted
that the classification with geodesic distance leads to a uniform distribution of MIMO channels
between classes for correlated and uncorrelated models. However, with Frobenius distance, the
distribution between classes is different, according to the chosen model. The validation of the
classification was achieved by comparing some properties of the classified channels to those of
the associated centroids, such as Voronoi regions and error probabilities. For both criteria, we
noticed that the classification provides good representatives for 2 × 2 MIMO channels, with an
acceptable codebook size. Unfortunately, for high dimension (nt = nr ≥ 3), a bigger codebook
size is necessary for both metrics to well represent a MIMO channel with its nearest centroid.
As an application for the classification, we illustrated the closed-loop systems, e.g. beamform-
ing. The transmitter uses the centroid as an estimate for the channel to evaluate its precoder
matrix. Then the highest eigen mode is selected for the transmission. For both distances, we
noticed that the estimation error impact is negligible for 2× 2 MIMO systems and 4-QAM even
with the small codebook size. For 4 × 4 MIMO systems, a large codebook size is required to
get rid of the interference even when only the best mode is used. A potential application of
the classification for coded MIMO was also outlined. The proposed algorithm could be used
to diagonalize MIMO channels to obtain a finite SISO channels. Then, the decoding process
performs on each SISO channel instead of working on the whole MIMO system. This method
leads to a significant complexity decrease for the decoding process in MIMO channels.

Perspectives

The current classification algorithm requires a large codebook size to well quantize MIMO
channels in high dimension (nt = nr ≥ 4). This is impractical for real wireless systems that
are designed with a limited-rate feedback. We are studying some approaches to improve this
algorithm and use it for high dimensional MIMO channels with an acceptable codebook size.

Another improvement for the proposed classification algorithm aims to determine the opti-
mal codebook size or equivalently the number of classes with respect to different parameters:
e.g. the selected quantization metric, the dimension of the Hermitian space and the target
quantization distortion (i.e. target QoS). One possible approach from information theory point
of view consists in deriving the distortion-rate function associated to a given metric. The dis-
tortion represents the distance between a MIMO channel and its appropriate centroid and the
rate is equal to log2(K), where K denotes the codebook size. Therefore, according to the allowed
distortion, a minimum codebook size could be determined.
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Finally, for MIMO systems with a fixed total power, adapting the transmit power to chan-
nel conditions over the different antennas could improve the performance. The water-filling
algorithm is a good approach to increase the capacity in MIMO systems comparing to the
uniform power allocation approach [21], [59]. Unfortunately, this technique requires some
knowledge about the channel at the transmitter. The proposed classification algorithm could
be used for such applications to give an estimate for MIMO channel under the constraint of a
limited-rate feedback.





Bibliography

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest point search in lattices,” IEEE
Transactions on Information Theory, vol. 48, no. 8, pp. 2201-2214, August 2002.

[2] E. Akay, E. Sengul, E. Ayanoglu, “Performance analysis of beamforming for MIMO OFDM
with BICM,” in Proceedings of International Conference on Communications, vol. 1, pp. 613-617,
May 2005.

[3] A. Annamalai and C. Tellambura, “A new approach to performance evaluation of general-
ized selection diversity receivers in wireless channels,” in Proceedings of Vehicular Technology
Conference, vol. 4, pp. 2309-2313, October 2001.

[4] E. Biglieri, J. Proakis, and S. Shamai, “Fading channels: Information-Theoretic and Com-
munication Aspects,” IEEE Transactions on Information Theory, vol. 44, pp. 2619-2692, Octo-
ber 1998.

[5] E. Biglieri, G. Taricco, and A. Tulino, “Decoding space-time codes with BLAST architec-
ture,” IEEE Transactions on Signal Processing, vol. 50, no. 10, pp. 2547-2552, October 2002.

[6] E. Biglieri, G. Taricco, “How far away is infinity? Using asymtotic analyses in multiple-
antenna capacity calculations,” JWCC Barolo, Itay, November 2002.

[7] E. Biglieri and G. Taricco, Transmission and reception with multiple antennas: Theoretical
foundations, now Publishers Inc., 2004.

[8] J. Boutros, N. Gresset, L. Brunel, and M. Fossorier, “Soft-input soft-output lattice sphere
decoder for linear channels,” in Proceedings of IEEE Global Communications Conference, vol.
3, pp. 1583-1587, December 2003.

[9] J. Boutros, E. Viterbo, C. Rastello, and J.C. Belfiore, “Good lattice constellations for both
Rayleigh fading and Gaussian channels,” IEEE Transactions on Information Theory, vol. 42,
no. 2, pp. 502-518, March 1996.

[10] J. Boutros: A tutorial on iterative probabilistic decoding and channel estimation, downalable at
http://www.comelec.enst.fr/ boutros/publications/, January 2005.

[11] C.N. Chuah, J.M. Khan, and D. Tse, “Capacity of indoor multiantenna array systems in
indoor wireless environment,” in Proceedings of IEEE Global Communications Conference, vol.
4, pp. 1894-1899, November 1998.

149



150

[12] C.N. Chuah, D. Tse, J.M. Khan, and R. Valenzuela, “Capacity scaling in MIMO wireless
systems under correlated fading,” IEEE Transactions on Information Theory, vol. 48, pp.
637-650, March 2002.

[13] S.T. Chung and A.J. Goldsmith, “Degrees of freedom in adaptive modulation: a unified
view,” IEEE Transactions on Communications, vol. 49 , no. 9, pp. 1561-1571, September 2001.

[14] H. Cohen: Computational algebraic number theory, Springer Verlag, 1993.

[15] J. H. Conway and N. J. Sloane: Sphere packings, lattices and groups, 3rd edition, Springer-
Verlag, New York, 1998.

[16] T.M Cover, J.A. Thomas: Elements of Information theory, John Wiley & Sons, 1991.

[17] T. Cui and C. Tellambura, “An efficient generalized sphere decoder for rank-deficient
MIMO systems,” IEEE Communications Letters, vol. 9, no. 5, pp. 423-425, May 2005.

[18] G. Dongning, S. Shamai, and S. Verdu, “Mutual information and MMSE in gaussian
channels,” in Proceedings of International Symposium on Information Theory, pp. 349-349, June
2004.

[19] E. Forgey, “Cluster Analysis of Multivariate Data: Efficiency vs. Interpretability of Classi-
fication,” Biometrics, vol. 21, pp. 768, 1965.

[20] G. D. Forney, “Coset codes I: introduction and geometrical classification,”, IEEE Transac-
tions on Information Theory, vol. 34, no. 5, pp. 1123-1151, September 1988.

[21] G.J. Foschini and M.J. Gans,“On limits of wireless communication in a fading environment
when using multiple antennas,” Wireless Personal Communications, vol. 6, no. 3, pp. 311-335,
March 1998.

[22] G.J. Foschini, G.D. Golden, R.A. Valenzuela, and P.W. Wolniansky, “Simplified processing
for high spectral efficiency wireless communication employing multi-element arrays”,
IEEE Journal on Selected Areas in Communications, Vol. 17, no. 11, pp. 1841-1852, November
1999.

[23] Y.H. Gan and W.H. Mow, ”Complex lattice reduction algorithms for low-complexity MIMO
detection,” in Proceedings of Global Communications Conference, vol. 5, pp. , November 2005.

[24] D. Gesbert, M. Shafi, D.-S. Shiu, P. J. Smith, and A. Naguib ”From theory to practice: An
overview of MIMO space-time coded wireless systems,” IEEE Journal Selection Areas in
Commununications, vol. 21, no. 3, pp. 281-302, April 2003.

[25] A. Ghrayeb and T. M. Duman, “Performance analysis of MIMO systems with antenna
selection over quasi-static fading channels,” IEEE Transactions on vehicular technology, vol.
52, no. 2, pp. 281-288, March 2003.

[26] A.J. Goldsmith and S.-G. Chua, “Variable-rate variable-power M-QAM for fading chan-
nels,” IEEE Transactions on Communications, vol. 45 , no. 10, pp. 1218-1230, October 1997.

[27] A. Gorokov, D. A. Gore, and A. Paulraj, “Receive antenna selection for MIMO spacial
multiplexing : theory and algorithms,” IEEE Transactions on signal processing, vol. 51, no.
11, pp. 2796-2807, November 2003.



B 151

[28] B. Hassibi and H. Vikalo, “On the expected complexity of sphere decoding,” in Proceedings
of Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1051-1055, November
2001.

[29] R.W. Heath, S. Sandhu, and A. Paulraj, “Antenna selection for spatial multiplexing systems
with linear receivers,” IEEE Communications Letters, vol. 5, no. 4, pp. 142-144, April 2001.

[30] R.W. Heath and A. Paulraj, “Antenna selection for spatial multiplexing systems based on
minimum error rate,” in Proceedings of IEEE International Conference on Communications, vol.
7, pp. 2276-2280, June 2001.

[31] S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces. Graduate Studies in
Mathematics, vol. 34, American Mathematical Society, 2001.

[32] R. Horn and C. Johnson: Matrix Analysis, NewYork: Cambridge University Press, 1985.

[33] R. Kannan, “Improved algorithmsfor integer programmingon related lattice problems,” in
Proceedings of the ACM Symposium on Theory of computing, pp. 193-206, April 1983.

[34] E. G. Larsson and P. Stoica: Space-Time Block Coding for Wireless Communications, Cambridge
University Press, New York, 2003.

[35] A. Leon-Garcia: Probability and Random Processes for Electrical Engineering, Addison Wesley,
New York, NY, 2nd edition, 1994.

[36] S.P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on Information Theory,
vol. 28 no. 2, pp. 129-137, March 1982.

[37] T. K. Y. Lo ”Maximum ratio transmission,” IEEE Transactions on Commununications, vol. 47,
no. 10, pp. 1458-1461, October 1999.

[38] D.J. Love, R.W. Heath, and S. Thomas, “Grassmannian beamforming for multiple-input
multiple-output wireless systems,” IEEE Transactions on Information Theory, vol. 49, no. 10,
pp. 27335-2747, October 2003.

[39] D.J. Love, R.W. Heath, W. Santipach, and M.L. Honig, “What is the value of limited
feedback for MIMO channels?,” IEEE Communications Magazine, vol. 42, no. 10, pp. 54-59,
October 2004.

[40] D.J. Love and R.W. Heath, “Limited feedback unitary precoding for orthogonal space-time
block codes,” IEEE Transactions on Signal Processing, vol. 53, no. 1, pp. 64-73, January 2005.

[41] S.L. Loyka, “Channel capacity of MIMO architecture using the exponential correlation
matrix,” IEEE Communications Letters, vol. 5, no. 9, pp. 369-371, September 2001.

[42] J. MacQueen, “Some Methods for Classification and Analysis of Multivariate Observa-
tions,” in Proceedings of the Fifth Berkeley Symposium Mathematical Statistics and Probability,
vol. 1, pp. 281-296, 1967.

[43] K.K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang, “On beamforming with finite
rate feedback in multiple-antenna systems,” IEEE Transactions on Information Theory, vol.
49, no. 10, pp. 2562-2579, October 2003.

[44] A. Papoulis: Probability, Random Variables, and Stochastic Processes, McGrawHill, New York,
NY, 1984.



152

[45] A. Paulraj, R. Nabar, and D. Gore: Introduction to Space-Time Wireless Communications,
Cambridge University Press, New York, 2003.

[46] M. Pohst, “On the computation of lattice vectors of minimal length, successive minima
and reduced bases with applications,” in the ACM SIGSAM Bulletin, vol. 15, no. 1, pp.37-44,
February 1981.

[47] M. Pohst and H. Zassenhaus: Algorithmic algebraic number theory, Encyclopedia of Mathe-
matics and its Applications, Cambridge University Press, 1989.

[48] J. Proakis: Digital Communications, 4th edition, McGrawHill, New York, 2000.

[49] G. Rekaya and J.C. Belfiore, “On the complexity of ML lattice decoders for decoding linear
full-rate space time codes,” in Proceedings of IEEE International Symposium on Information
Theory, pp. 206-206, July 2003.

[50] C. Roh and B.D. Rao, “Adaptive modulation for multiple antenna channels,” in Proceedings
of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 526-530,
November 2002.

[51] C.P. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical algorithms
and solving subset sum problems,”Mathematical Programming, vol. 66, pp. 181-191, August
1994.

[52] P. Sebastian, H. Sampath, and A. Paulraj, “Adaptive modulation for multiple antenna
systems,” in Proceedings of Asilomar Conference on Signals, Systems and Computers, vol. 1, pp.
506-510, October 2000.

[53] C.E. Shannon, “A Mathematical Theory of Communication,” Bell Systems Technical Jour-
nal, vol. 27, July and October 1948.

[54] P.J. Smith and M. Shafi, “On a Gaussian approximation to the capacity of a wireless MIMO
systems,” in Proceedings of IEEE International Conference on Communications, vol. 1, pp.
406-410, April 2002.

[55] G. Taricco and E. Biglieri, “Exact pairwise error probability of space-time codes,” IEEE
Transactions on Information Theory, vol. 48, no. 2, pp. 510-513, February 2002.

[56] G. Taricco and E. Biglieri, “Correction to ëxact pairwise error probability of space-time
codes,̈” IEEE Transactions on Information Theory, vol. 49, no. 3, pp. 766-766, March 2003.

[57] V. Tarokh, N. Seshadri, and A.R. Calderbank, “Space-time codes for high data rate wire-
less communication: performance criterion and code construction,” IEEE Transactions on
Information Theory, vol. 44, no. 2, pp. 744-765, March 1998.

[58] V. Tarokh, Alexander Vardy, and Kenneth Zeger, “Universal Bound on the Performance of
Lattice Codes,” IEEE Transactions on Information Theory, vol. 45, no. 2, pp. 670-681, March
1999.

[59] I.E. Telatar, “Capacity of multi-antenna Gaussian Channels,” European Transactions on
Telecommunications, vol. 10, no. 6, pp. 585-595, November-December 1999.

[60] S. Verdu: Multiuser detectection, 2nd edition, Cambridge U.K: Cambridge University Press,
1998.



B 153

[61] E. Viterbo and E. Biglieri, “A univeral lattice decoder,” in Gretsi 14eme colloque, (Juan les
Pins), September 1993.

[62] E. Viterbo and E. Biglieri, “Computing the Voronoi cell of a lattice: the diamond-cutting
algorithm,” IEEE Transactions on Information Theory, vol. 42, no. 1, pp. 161-171, January
1996.

[63] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,” IEEE
Transactions on Information Theory, vol. 45, no. 5, pp. 1639-1642, July 1999.

[64] Z.Y. Wang and C. HE, “Adaptive modulation MIMO system based on minimizing trans-
mission power,” Journal of Zhejiang University SCIENCE A, pp. 1046-1050, 2006.

[65] J.H. Winters, J. Slaz, and R.D. Gitlin, “The impact of antenna diversity on the capacity of
wireless communication systems,” IEEE transactions on Communications, vol. 42, no. 234,
pp. 1740-1751, February/March/April 1994.

[66] P.W. Wolniansky, G.J. Foschini, G.D. Golden, and R.A. Valenzuela “V-BLAST: an archi-
tecture for realizing very high data rates over the rich-scattering wireless channel,” in
Proceedings of URSI International Symposium on Signals, Systems, and Elecetronics, vol. x, no.
98, pp. 295-300, September 1998.

[67] C. Windpassinger and R.F.H. Fischer, “Low-complexity near-maximum-likelihood detec-
tion and precoding for MIMO systems using lattice reduction,” in Proceedings of Information
Theory Workshop, vol. x, no. x, pp. 345-348, March 2003.

[68] H. Yao and G.W. Wornell “Lattice-Reduction-Aided Detectors for MIMO Communication
Systems,” in Proceedings of IEEE Global Telecommunications Conference, vol. 1, pp. 424-428,
November 2002.

[69] S. Zhou and G.B. Giannakis “Adaptive modulation for multi-antenna transmissions with
channel mean feedback,” IEEE transactions on Wireless Communications, vol. 3, no. 5, pp.
1626-1636, September 2004.

[70] Z. Zhou, B. Vucetic, M. Dohler, and Y. Li “MIMO systems with adaptive modulation,”
IEEE transactions on Vehicular Technology, vol. 54, no. 5, pp. 1828-1842, September 2005.





Publications

[1] Antenna selection for MIMO systems based on an accurate approximation of QAM error
probability, by F. Kharrat-Kammoun, S. Fontenelle, S. Rouquette, and J.J. Boutros, IEEE Vehic-
ular Technology Conference, Stockholm, May 2005.

[2] A classification of multiple antenna channels, by J.J. Boutros, F. Kharrat-Kammoun, and
H. Randriambololona, IEEE International Zurich Seminar on Communications, ETHZ, Zurich,
February 2006.

[3] Accurate Approximation of Error Probability on MIMO Channels and its Application to
Adaptive Modulation and Antenna Selection, by F. Kharrat-Kammoun, S. Fontenelle, and J.J.
Boutros, IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse,
May 2006.

[4] Accurate approximation of QAM error probability on quasi-static MIMO channels and
its application to adaptive modulation, by F. Kharrat, S. Fontenelle and J.J. Boutros, accepted
for publication in the IEEE Transactions on Information Theory, submitted November 2004, to
appear in 2006.

[5] Disclosure published at IP.com (2004): Adaptive modulations for MIMO systems.

[6] Disclosure published at IP.com (2006): A reduced complexity Adaptive Modulation for
MIMO Systems.

155


	Remerciements
	Résumé
	Thesis abstract
	Contents
	Résumé de la thèse en français
	List of Figures
	List of Tables
	List of acronyms
	List of notations
	Introduction
	1 An overview of MIMO wireless systems 
	1.1 The wireless channel 
	1.1.1 Statistical model for fading 
	1.1.2 Time selective fading, Frequency selective fading

	1.2 Multiple antenna channel 
	1.2.1 General model for multiple antenna channel
	1.2.2 Multiple antenna channel diversity 
	1.2.3 MIMO Information theory 
	1.2.3.1 Ergodic capacity 
	1.2.3.2 Outage capacity/outage probability


	1.3 Description of our multiple antenna transmission scheme
	1.3.1 The transmitter: scheme and assumptions
	1.3.2 The channel: model and assumptions
	1.3.3 The receiver: scheme and assumptions
	1.3.3.1 Sub-optimal receivers 
	1.3.3.2 ML detection 
	1.3.3.3 Simulation results 



	2 Lattices and MIMO systems 
	2.1 Generalities on lattices 
	2.1.1 Main lattice parameters 
	2.1.2 Lattices and quadratic forms 
	2.1.2.1 Definitions 
	2.1.2.2 Lattices as quadratic forms 

	2.1.3 Lattice reduction algorithms 
	2.1.3.1 Minkowski reduction 
	2.1.3.2 KZ reduction 
	2.1.3.3 LLL reduction 

	2.1.4 Lattice codes 
	2.1.5 Lattice performance 

	2.2 Lattice decoder algorithms
	2.2.1 Lattice decoder based on Pohst enumeration
	2.2.2 Lattice decoder based on Schnorr-Euchner enumeration


	3 Accurate approximation of the MIMO error probability 
	3.1 Lattice representation of MIMO channel 
	3.2 Accurate Approximation of a MIMO channel error probability 
	3.2.1 Example of error probability computation strategy 
	3.2.2 Error probability computation for n greater than 2 
	3.2.3 Evaluation of the probability Pl 
	3.2.4 A bound for the subset error probability Pe(Il) 
	3.2.5 Numerical implementation of MEPA 
	3.2.5.1 Evaluation of tau strategy 
	3.2.5.2 Numerical implementation of MEPA assumptions

	3.2.6 Simulation results

	3.3 Generalization of the error probability approximation for any MIMO channel 
	3.3.1 Generalization of the sphere decoder algorithm for the case when nt>nr
	3.3.2 Generalization of the error probability computation when nt > nr
	3.3.2.1 Generalization of the Short vectors algorithm 
	3.3.2.2 Numerical implementation 

	3.3.3 Simulation results 

	3.4 Complexity of the error probability approximation

	4 Adaptive techniques for MIMO systems 
	4.1 Adaptive modulation 
	4.1.1 Adaptive modulation concept 
	4.1.2 A new adaptive modulation scheme
	4.1.3 Computer simulation of the adaptive modulation scheme

	4.2 Antenna selection 
	4.2.1 Antenna selection for MIMO system
	4.2.2 SIMO system performance with antenna selection
	4.2.2.1 Antenna selection performance when m=1
	4.2.2.2 Antenna selection performance when m greater than 1
	4.2.2.3 Simulations results 

	4.2.3 Antenna selection under different criteria 
	4.2.4 Simulation results 
	4.2.4.1 ML receiver 
	4.2.4.2 Linear MMSE receiver 
	4.2.4.3 MMSE-OSuIC receiver 



	5 Classification of multiple antenna channels 
	5.1 Quantization
	5.2 MIMO channels classification
	5.2.1 System model 
	5.2.2 Classification scheme

	5.3 Some basic mathematical notions 
	5.3.1 Some algebra concepts 
	5.3.2 Some definitions from differential geometry
	5.3.2.1 Differentiable manifolds
	5.3.2.2 Tangent vector and tangent space
	5.3.2.3 Riemannian manifold 
	5.3.2.4 Lie group


	5.4 MIMO classification algorithm
	5.4.1 Equivalence of MIMO channels
	5.4.2 Geodesic distance for MIMO Classification
	5.4.3 Frobenius distance for MIMO classification 
	5.4.4 Summary

	5.5 Lattice classification
	5.5.1 Lattice classification algorithm
	5.5.2 LLL algorithm for complex bases 

	5.6 Numerical results
	5.6.1 Centroid orbits 
	5.6.1.1 Case of MIMO channels 
	5.6.1.2 Case of lattices

	5.6.2 Classification validation 
	5.6.2.1 Validation based on Voronoi regions
	5.6.2.2 Validation based on error rate


	5.7 Application of the classification algorithm to closed-loop MIMO systems
	5.7.1 Evaluation of the classification quantization
	5.7.2 Application of the classification to beamforming
	5.7.2.1 Beamforming scheme
	5.7.2.2 Simulation results

	5.7.3 Potential application for the classification


	Conclusions and perspectives
	Conclusions
	Perspectives

	Bibliography
	Publications

