
HAL Id: pastel-00002562
https://pastel.hal.science/pastel-00002562

Submitted on 25 Jun 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contre-mesures géométriques aux attaques exploitant
les canaux cachés

Sylvain Guilley

To cite this version:
Sylvain Guilley. Contre-mesures géométriques aux attaques exploitant les canaux cachés. do-
main_other. Télécom ParisTech, 2007. English. �NNT : �. �pastel-00002562�

https://pastel.hal.science/pastel-00002562
https://hal.archives-ouvertes.fr

GET / Télécom Paris

CNRS – LTCI (UMR 5141)

Thèse de doctorat:

Contre-mesures géométriques aux attaques exploitant les canaux cachés

Jury:

• David NACCACHE, professeur à Paris II et membre du groupe crypto de l’ENS (rapporteur)

• Jean-Jacques QUISQUATER, professeur à l’Université Catholique de Louvain-la-Neuve (rappor-
teur)

• Marc RENAUDIN, professeur à l’INPG (examinateur)

• Pierre-Yvan LIARDET, docteur, cryptologue chez STMicroelectronics (examinateur)

• Francis JUTAND, professeur, directeur scientifique du GET (président du jury)

• Yves MATHIEU, directeur d’études à l’ENST Paris (examinateur)

• Renaud PACALET, ingénieur d’études à l’ENST Sophia Antipolis, responsable du laboratoire
LabSoC (directeur de thèse)

Sylvain GUILLEY

January 10th, 2007

http://www.get-telecom.fr/
http://www.telecom-paris.fr/
http://www.cnrs.fr/
http://www.ltci.enst.fr/
http://www.get-telecom.fr/
http://www.telecom-paris.fr/
http://www.cnrs.fr/

ii

Résumé de la thèse en français

Ce travail de thèse concerne la sécurisation des circuits électroniques contre
les attaques (dites « par la bande ») qui visent leur implémentation. Les algo-
rithmes cryptographiques ont été traditionnellement étudiés pour résister aux
attaques théoriques. Néanmoins, dès lors que ces algorithmes sont mis en œuvre
sur des dispositifs concrets, de nouvelles attaques deviennent possibles. Effective-
ment, de l’information peut être extraite passivement (par observation) ou active-
ment (par injection de fautes) des circuits [43]. Cette information complémentaire,
communément appelée « canal caché », apporte un pouvoir supplémentaire aux
attaquants. Les canaux cachés les plus populaires sont le temps de calcul, la
consommation électrique, le rayonnement, la température et le bruit. Les dispo-
sitifs les plus vulnérables sont ceux qui sont alimentés de l’extérieur, comme les
cartes à puce avec ou sans contacts, ou les appareils portables en général. Les
radiations électromagnétiques constituent également une fuite d’information, qui
permet notamment à un attaquant de réaliser des attaques à distance. Ainsi,
d’une manière générale, tous les systèmes électroniques, nomades ou non, dont
par ailleurs l’utilisation par le grand public ne cesse de crôıtre, sont de poten-
tielles cibles d’attaques malveillantes. La sécurisation du matériel est donc un
enjeu sociétal. L’appropriation des systèmes électroniques embarqués (typique-
ment à base de TPM) ne pourra en effet perdurer que si leur niveau de sécurité
apporte des garanties prouvées, inspirant par là-même aux utilisateurs finals une
confiance suffisante dans la technologie.

Nous montrons tout d’abord que les attaques sur les canaux cachés (ou Side-
Channel Attacks, SCA) sont des attaques structurelles, c’est-à-dire inhérentes au
traitement de l’information. Il se trouve par ailleurs que les algorithmes crypto-
graphiques sont spécialement sensibles aux attaques SCA, à cause des propriétés
constitutives de certaines fonctions booléennes utilisées. Dans le cas du chiffre
symétrique, nous montrons que les SCA sont inéluctables, car la fuite d’infor-
mation minimale se trouve justement être égale à la clé secrète. De plus, les
contraintes technologiques de mise en œuvre accentuent la force des attaques.
L’étude de l’attaque montrera que le talon d’Achille principal est l’architecture
RTL (Register Transfer Level) de l’opérateur cryptographique. Effectivement, les
transferts de registres rendent possible une attaque dite en « distance de Ham-
ming », particulièrement efficace.

Nous continuons en recherchant des moyens permettant de ne fuir pratique-

iii

iv RÉSUMÉ DE LA THÈSE EN FRANÇAIS

ment aucune information exploitable par un attaquant. Sur l’exemple d’un co-
processeur DES itératif, nous montrons comment exploiter concrètement les fuites
d’information. Nous décrivons l’attaque par analyse différentielle de consomma-
tion (DPA) de DES en poids et en distance de Hamming sur le premier et le der-
nier tour de l’architecture du crypto-processeur non protégé. Des considérations
subtiles, comme l’influence de la diaphonie, de la mémorisation capacitive et du
moyennage temporel des traces de consommation, sont présentées. Ces effets, du
second ordre, sont en effet à même d’induire de nouvelles failles de sécurité. Il
s’avère donc que les portes logiques elles-mêmes possèdent des caractéristiques
critiques à protéger.

Les failles de sécurité mises en évidence sur l’exemple de DES nous conduisent
à émettre des recommandations pour la conception d’un opérateur robuste, basées
sur l’usage d’une bibliothèque de portes et d’une stratégie de routage géométri-
quement équilibrées. Les portes logiques sont conçues de sorte à minimiser les
violations de symétrie. Une contrainte supplémentaire a été de rendre ces portes
logiques interopérables avec les portes d’une bibliothèque standard de STMicroe-
lectronics (à savoir Hcmos9gp, du procédé 130 nanomètres). La stratégie de rou-
tage équilibré obéi aux mêmes critères. La conservation de la symétrie est traitée
avec un soin tout particulier, aboutissant à la méthode générique de « backend

duplication ». Pour autant, la compatibilité avec les outils de conception assistée
par ordinateur (CAO) n’est pas négligée. La backend duplication s’implémente
par de simples ajouts de contraintes lors du placement-routage, ce qui rend la
méthode adaptable à tout flot de conception propriétaire.

La plateforme d’analyse et les logiciels d’attaques sont décrits dans les an-
nexes du manuscrit. Les mesures de canaux cachés ont été réalisés sur des circuits
cousus-main (Application Specific Integrated Circuits, ou ASICs) conçus dans le
cadre des travaux de cette thèse. La châıne d’acquisition s’est progressivement
enrichie de fonctionnalités, à tel point qu’elle est actuellement devenue un labo-
ratoire d’évaluation sécuritaire des systèmes embarqués. Les logiciels d’analyse
de traces ont également été améliorés au cours des travaux. Les algorithmes mis
en œuvre dans les attaques présentées dans ce manuscrit sont désormais plus
puissants de plusieurs ordres de grandeurs.

Le reste de cette section présente les idées directrices et les enchâınements de
la thèse, les résultats et les conclusions, en s’appuyant sur l’articulation logique
entre les cinq chapitres.

v

Chapitre 1 : Cryptographie physique

Ce chapitre présente la nature des vulnérabilités des circuits électroniques,
dans la situation où un attaquant est en mesure d’acquérir des mesures physiques
pendant son fonctionnement. Par rapport au scénario d’une cryptanalyse conven-
tionnelle, le contexte est donc plus riche : les attaques « logiques » sont toujours
possibles, mais en plus les attaques « physiques » deviennent réalisables.

Les systèmes électroniques peuvent être modélisés par des couches d’abstrac-
tion (dites « OSI »). Les attaques, logiques comme physiques, peuvent cibler cha-
cune de ces couches. Ceci signifie que la sécurité d’un système est égale à celle
du maillon le plus vulnérable. Or il s’avère que dans le domaine des systèmes
embarqués, c’est actuellement la couche la plus basse, à savoir la couche phy-
sique, qui est la plus exposée et la plus facilement attaquable en pratique. Ceci
motive donc l’étude de telles attaques et la définition de conditions nécessaires
pour accrôıtre le niveau de sécurité de la couche physique.

Dans le contexte d’attaques sur la couche physique, l’attaquant dispose d’un
potentiel de frappe impressionnant. Moyennant certaines hypothèses, toute va-
riable logique peut être soit lue soit écrite [43].

Nous appelons attaques sur les canaux cachés les attaques passives, où les
données internes ne peuvent qu’être consultées. Lorsque l’attaquant a le pouvoir
supplémentaire de les altérer, nous parlerons d’attaques par injection de fautes.
Cette catégorie d’attaque, non abordée dans le cadre de cette thèse, est également
dite « active ».

Maintenant, il n’est souvent pas concevable à un prix raisonnable d’accéder
arbitrairement aux variables internes des circuits cryptographiques. Les attaques
physiques ne sont donc pas totalement en « bôıte blanche ». La bon niveau de
modélisation est celui de la « bôıte grise » :

– les canaux cachés apportent une information globale (sur plusieurs variables
simultanément) et intégrée (sur plusieurs valeurs consécutives), et

– les injections de fautes touchent également plusieurs nœuds, et ce de façon
non localisée dans le temps.

En résumé, les attaques physiques ne sont pas chirurgicales. Si elles l’étaient, il
n’est pas difficile de comprendre qu’aucune implémentation ne leur résisterait.
La barrière à franchir serait celle de la rétro-conception : il s’agit de pouvoir
interpréter la masse d’information que l’on est en mesure d’accéder, pour ex-
traire uniquement celle qui est pertinente. Néanmoins, des techniques de fouille de
données (data mining) éprouvées permettent aisément de répondre à ce problème
de gestion de la complexité.

Par ailleurs, les données seront souvent bruitées. La mesure physique, surtout
de quantités nanoscopiques, n’est pas parfaite. De même, l’injection de fautes
ne peut pas être contrôlée avec une précision arbitraire. Ce caractère aléatoire
conduit à la définition d’attaques statistiques. Nous investiguerons surtout l’ana-
lyse différentielle de consommation, qui consiste en une corrélation statistique

vi RÉSUMÉ DE LA THÈSE EN FRANÇAIS

d’un jeu de données avec un modèle de fuite. D’autres attaques statistiques ne
nécessitent aucune connaissance préalable du circuit attaqué. Il s’agit par exemple
de l’IPA (Inferential Power Analysis [32]) ou des attaques par patron (aussi ap-
pelées template attacks [25]). Néanmoins, celles-ci nécessitent une phase d’en-
trâınement sur un circuit clone pour acquérir de la connaissance sur le fonction-
nement de la victime. Nous n’aborderons pas ces attaques – néanmoins promet-
teuses – dans ce manuscrit.

À l’inverse, nous supposerons dans ce travail que non seulement l’algorithme
utilisé, mais également le dessin des masques de son implémentation, sont connues
de l’attaquant. Il s’agit donc du scénario d’attaque le plus flexible. Dans le même
ordre d’idée, nous autoriserons un attaquant à faire un nombre d’appels non borné
aux opérations cryptographiques. Cela signifie que l’on suppose que toutes les
contre-mesures « haut-niveau » ont été désactivées ou contournées. Bref, le niveau
de sécurité envisagé est celui d’une implémentation nue, qui doit se défendre
simplement au niveau où on l’attaque, à savoir sur la couche physique.

Pour évaluer des contre-mesures, nous avons réalisé des prototypes de circuits
cousus main (ASIC – Application Specific Integrated Circuits). Dans la même op-
tique d’évaluation sécuritaire que celle mentionnée plus haut, ces circuits donnent
à l’attaquant un signal de synchronisation avec les opérations cryptographiques
et permettent un accès aisé aux canaux cachés (par exemple la consommation
électrique instantanée ou le rayonnement électromagnétique).

Dans la conception des contre-mesures, la priorité a été résolument mise sur la
sécurité, en évitant tout compromis sur les performances. La motivation de cette
approche radicale est simple : notre démarche est de prouver qu’il existe une façon
de rendre impossible les attaques sur les canaux cachés. Si, même en investissant
le prix maximum, en terme de temps de calcul, de surface d’implémentation et
d’énergie consommée, notre solution reste faillible face aux attaques passives, alors
aucun compromis ne sera résistant. À l’inverse, si cette solution est fructueuse, il
pourra être envisagé d’optimiser les performances, en réduisant de façon conco-
mitante le niveau de sécurité, que l’on suppose donc surévalué. Une telle étude
ouvrira la porte à de nombreuses solutions technologiques, intéressantes à deux
points de vue :

1. Il s’agira de la première fois qu’un nouveau critère, à savoir la « sécurité »,
pourra être intégré au triangle canonique — vitesse, surface, consommation
— de l’adéquation algorithme-architecture ; En d’autres termes, des options
de sécurité vont pouvoir émerger dans les outils logiciels CAO de conception
automatique de circuits.

2. La sécurité pourra être mesurée en unité monétaire, et également pour la
première fois, il sera concevable de dégrader le niveau de sécurité au profit
des performances, alors que jusqu’à présent, dans la conception des crypto-
graphes, la sécurité est considérée comme un attribut non négociable.

Les analyses de canaux cachés fournies dans cette thèse sont rassemblés en an-
nexe, afin ne pas surcharger le corps du document. Contrairement à la grande ma-

vii

jorité des publications scientifiques du domaine, nous avons pris soin de préciser
les unités de grandeurs physiques et de resynchroniser les traces avec le déroulement
de l’algorithme cryptanalysé. Il s’agit de la première étude en consommation
précise au cycle près de matériel électronique. La résolution temporelle est de
loin supérieure à ce qui est stricto sensu nécessaire pour réussir une attaque : les
acquisitions sont réalisées au rythme de 20 milliards de point par seconde sur des
circuits tournant à 32 ou 66 MHz. Ainsi, plusieurs centaines d’échantillons sont
disponibles par période d’horloge.

Enfin, il convient de comparer la force des attaques physiques et logiques.
Si l’on ne considère que le temps de traitement des données, voilà deux chiffres
permettant de comparer la puissance relative des deux types d’attaques sur l’al-
gorithme de chiffrement symétrique DES [71] :

– un ordinateur de bureau typique est capable d’exécuter 5 369 726 ∼ 222 chif-
frements DES par seconde (performance obtenue avec la commande “openssl
speed des”),

– un oscilloscope met une seconde pour l’acquisition d’une trace de consom-
mation (cas très défavorable avec du matériel bas de gamme).

Cela signifie qu’une attaque logique (la recherche exhaustive des 56 bits de
la clé) est aussi puissante qu’une attaque physique (une analyse différentielle
de consommation) si l’on réussit celle-ci en 256−22 = 234 traces, soit environ 17
milliards de traces. Or, sur les implémentations non protégées, les attaques phy-
siques réussissent souvent après analyse de moins de mille (disons 210) traces.
Les résultats du chapitre 3 démontrent cette assertion. La conclusion est donc
que les attaques physiques sont, dans l’état de l’art actuel, de plusieurs ordres
de grandeurs plus puissantes que les cryptanalyses logiques. Le danger qu’elles
représentent est donc bel et bien réel, ce qui motivera au chapitre 4 la recherche
de contre-mesures efficaces.

viii RÉSUMÉ DE LA THÈSE EN FRANÇAIS

Chapitre 2 : Immanence des canaux cachés

Ce chapitre montre que, quelque soit l’algorithme de chiffrement utilisé, une
analyse par les canaux cachés permet d’extraire l’intégralité de la clé. Tout
d’abord, un modèle de dissipation logique est présenté. Lorsque des contre-mesures
appropriées ne sont pas prises, le modèle démontre que l’information minimale
qui est fuie se trouve être la clé. Ensuite, un modèle de l’attaque est présenté.
Il montre qu’une attaque sur les canaux cachés est d’autant plus puissante que
l’algorithme attaqué est robuste du point de vue cryptanalytique. La validité du
modèle s’étend aussi bien aux algorithmes à clé secrète de type Feistel (comme
DES [71]) qu’aux réseaux de permutation-substitution (comme AES [72]). Enfin,
ce chapitre se termine sur des remarques importantes au sujet de l’implémentation
pratique de l’analyse différentielle de consommation.

Nous qualifions une attaque de « structurelle » quand elle s’applique à une
classe générique d’algorithmes. Les attaques sur les canaux cachés sont structu-
relles, car elles concernent tous les algorithmes qui dissipent une quantité phy-
sique corrélée à un secret. Nous montrons comment un algorithme de chiffrement
symétrique tel que DES est obligé de fuir de l’information. Dans la figure 1, il
apparâıt que :

(a) soit l’algorithme dissipe logiquement la clé secrète k,
(b) soit il est spécialisé pour une clé k0, et s’expose par là même à une rétro-

conception ou à une divulgation publique de son implémentation.

Ainsi, le cas (b) est naturellement exclus par le principe de Kerkhoff. Le cas (a)
montre qu’il est nécessaire de détruire la clé k avant de diffuser la sortie (c, k)
de la bôıte chiffrante. Cette destruction d’une entropie de 56 bits s’accompagne
physiquement d’une dissipation corrélée à la clé, car celle-ci est nécessairement
stockée dans une ressource matérielle (registre, mémoire, etc.) qui devra être mise
à zéro ou masquée par toute autre grandeur indépendante de la clé.

m

64

k

56

56

k

64

c

(c, k) = DES(m, k)

bijection:
{0, 1}64+56 → {0, 1}64+56

m

64

(a)

c = DES(m, k0)

bijection:
{0, 1}64 → {0, 1}64

64

c

(b)

Fig. 1 – Conception abstraite d’un chiffrement symétrique (ici, le crypto-système DES [71]),
(a) générique dans la clé k ou (b) personnalisée pour une clé donnée de 56 bits k0.

ix

Il existe certes des méthodes théoriques permettant de réaliser une opération
sans dissiper d’énergie sur la durée totale du calcul. Deux façons de procéder
s’appuient sur des styles de logiques proposés par Toffoli et Fredkin :

1. La logique réversible [107] consiste à décomposer les bijections booléennes
vectorielles sur des primitives a priori non dissipatives.

2. La logique conservative [35] consiste à calculer à poids de Hamming constant.
Un modèle de calcul, dit « à boules de billard », permet effectivement d’ima-
giner un mode de calcul sans dissipation.

Néanmoins, aucune implémentation pratique de ces logiques n’a encore vu le jour,
ce qui motive une recherche de solutions avec les procédés technologiques actuels,
comme la logique CMOS [65] par exemple.

Un modèle de l’attaque DPA est présenté. Il s’appuie sur la modélisation simple
de la consommation : toutes les portes consomment le même quantum d’énergie
quand elles commutent. Il s’agit donc d’un modèle basé sur l’étude de l’activité
logique. Lorsque ce modèle est appliqué à l’attaque DPA, qui cible soit le pre-
mier, soit le dernier tour, il se trouve que les opérations linéaires n’interviennent
pas. Seule les opérations non-linéaires, qui se réduisent dans la plupart des cas à
l’utilisation d’une table de substitution (dite « sbox », et notée F ou S, opérant
de {0, 1}p dans {0, 1}q) impacte le modèle d’attaque. Les résultats [89] sont que :

– la corrélation maximale est obtenue pour l’hypothèse de clé correcte. Cette
observation provient de l’application du théorème de Cauchy-Schwarz sur la
fonction pseudo-booléenne d’auto-corrélation.

– Les corrélations sont, en moyenne, nulles,
– ce qui prouve qu’il existe des corrélation pour les hypothèses de clé erronées

(appelée « pics fantômes » – ou aussi « ghost peaks » dans la littérature
scientifique anglaise).

– La qualité de l’attaque peut donc se mesurer par un rapport signal-à-bruit
(SNR), qui ne dépend que de la structure de l’algorithme, à savoir aux
propriétés des bôıtes de substitution utilisées.

– De plus, le rapport signal-à-bruit ne dépend pas de la clé, ce qui démontre
qu’il n’y a pas de clé faible en attaque DPA.

Le rapport entre le SNR de l’attaque DPA et les sbox est caractérisé par les
deux relations suivantes, qui définissent des bornes inférieures :

SNR(DPA)(F) ≥ 2
3p
2
−2

q Λ2
S

= O
(

1

Λ2
S

)
,

SNR(DPA)(F) ≥ 2p

∆S

= O
(

1

∆S

)
.

Les deux quantités ΛS et ∆S, définies dans [34], sont respectivement les ca-
ractéristiques linéaires et différentielles des sboxes. Elles sont d’autant plus petites
que la sbox est solide face aux cryptanalyses linéaires ou différentielles. Ainsi,
mieux un système de chiffrement est protégé contre les attaques logique, plus
facilement il est attaquable via les canaux cachés.

x RÉSUMÉ DE LA THÈSE EN FRANÇAIS

a′
0

a′
1

a′
2

a′
3

a0

a1

a2

a3

a0

a1

a2

a3

a′
0

a′
1

a′
2

a′
3

(b) Cône logique interne vers le nœud n0

n0

(a) Inter-pénétration de cônes logiques

Fig. 2 – Illustration de la factorisation des cônes de logique sur une fonction combinatoire de
4 bits vers 4 bits (a[0..3]→ a′[0..3]).

Une contre-mesure possible contre la DPA serait d’agrandir la taille des bôıtes
de substitution ou de faire en sorte que de nombreux (idéalement tous) bits de
clé interviennent dans le calcul de confusion (rôle dévolu aux sbox) dès le pre-
mier tour. Ces contre-mesures souffrent néanmoins d’un problème d’intégrabilité.
Toutes deux accroissent la taille de l’implémentation de façon exponentielle, ce
qui est rédhibitoire. Ainsi, c’est la nécessité de pouvoir scinder un algorithme en
sous-parties de taille raisonnable (par exemple 8 bits) qui rend possible des at-
taques exhaustives partielles, qui une fois réunies, compromettent l’intégralité du
système. Les attaques sur les canaux cachés fonctionnement effectivement sur la
base d’une stratégie dite « diviser pour régner » ou en terminologie anglo-saxonne
« divide-and-conquer ».

Enfin, il n’a pas encore été prouvé qu’une attaque à l’intérieur d’un cône de
logique ne soit pas réalisable. Dans ce cas de figure, un attaquant peut sonder
par les techniques statistiques de la DPA l’activité d’un nœud arbitraire, comme
n0 au cœur même de la mer de portes constituant la sbox (voir la figure 2). Dans
ce cas, l’attaque se ramène à un test exhaustif d’hypothèses, mais sur un nombre
réduit de bits de clé de tour.

En conclusion, si la constitution d’algorithmes intrinsèquement résistants aux
attaques sur les canaux cachés est une problématique porteuse, les solutions les
plus näıves ne sont certainement pas pérennes. Ceci laisse à penser que les contre-
mesures « bas niveau » ont un potentiel moins incertain.

Dans le chapitre 3, l’attaque DPA est étudiée dans le cas de DES (sbox p = 6→
q = 4). Les vulnérabilités constatés permettent de définir un cahier des charges
sécuritaire, qui sera appliqué dans le chapitre 4 pour concevoir et implémenter
un style de logique résistant de façon optimale aux fuites d’information via la
consommation électrique.

xi

Chapitre 3 : Attaque DPA sur l’algorithme DES

L’objectif de ce chapitre est de montrer quels sont les facteurs qui rendent
possibles une attaque de type DPA. Contrairement au chapitre précédent, de
nature théorique, ce chapitre se veut expérimental. Les vulnérabilités ne sont pas
toutes capturées par un modèle, aussi sophistiqué soit-il. La confrontation de la
théorie avec la pratique conduit à des enseignements sur la nature des failles
exploitables par un attaquant.

Parmi les circuits qui sont potentiellement les cibles d’attaques physiques, on
peut citer les ASIC, les FPGA, les micro-processeurs, ou encore les générateurs
d’aléa vrai. Nous concentrons notre étude sur les accélérateurs matériels réalisés
sur-mesure (ASIC). Notons que dans tous les cas de figure, il est souvent inutile

de sécuriser toute l’application, sans discernement. À l’inverse, il s’agit d’iden-
tifier l’élément qui pourra être le germe de la sécurité, qui se propagera grâce
à des protocoles idoines à l’ensemble du système. Ainsi, à titre d’exemple, nous
envisageons l’étude de cas d’un crypto-processeur DES.

DES est actuellement l’algorithme de chiffrement symétrique le plus étudié par
la communauté scientifique et le plus répandu dans les systèmes embarqués (il est
notamment utilisé dans les masques B0’ des cartes bancaires, etc). L’algorithme
utilise huit bôıtes de substitution S1–S8 différentes, ce qui permet de tester la force
des attaques en fonction des caractéristiques de chacune d’entre elles. Néanmoins,
le choix de DES pour l’étude de vulnérabilité aux attaques sur les canaux cachés
n’est pas « verrouillant ». Effectivement, les conclusions de ce chapitre peuvent
se transposer à tout système cryptographique utilisant des bôıtes de substitution.
Seul le cas de RC5 est a priori non adressé par nos résultats.

L’architecture du module de chiffrement DES est décrite de façon détaillée
dans l’article de revue [101]. Il est nécessaire de bien connâıtre à la fois les res-
sources matérielles (niveau RTL) et l’ordonnancement des opérations, car celui-ci
conditionne les transferts de registres. Le schéma du co-processeur étudié est
résumé dans la figure 3.

Il est notoirement connu que DES a deux problèmes de sécurité [63] (hormis
la trop faible longueur des clés) :

1. Il existe des clés faibles, pour lesquelles le chiffrement est involutif. Avec de
telles clés, il existe 232 points fixes.

2. De plus, il existe des couples de clés semi-faibles, telles que le chiffrement
avec l’une corresponde au déchiffrement avec l’autre. En utilisant des telles
clés, il existe 232 anti-points fixes.

Ces propriétés permettent à un attaquant de localiser dans le temps le début
et la fin d’un chiffrement. Par exemple, la figure 4 permet de mettre en évidence :

– le chargement de la clé (cycles notés 0–8),
– le chiffrement lui-même (cycles notés 16–32).

xii RÉSUMÉ DE LA THÈSE EN FRANÇAIS

RS

RS2

LS

LS2

8 bit

48 bit

2 x 28 bit

2 x 32 bit
8 x 8 bit

PSELR

CD

X3

PC2

IF DI
X2

DO
X1

Domaines:

XORMODE

XORK XORL

MUXPC2MUXCD

MUXLR

MUXIF

2
0’
0

1

1

2

0

0

1

Fig. 3 – Version « SecMat V1 » du chemin de données de l’accélérateur de chiffrement DES,
avec indication de la largeur des bus (en teintes de gris.)

Quand les clés ne peuvent pas être choisies par l’attaquant, l’existence de clés
particulières n’est pas un problème. Nous réalisons alors avec des clés « bana-
lisées » les attaques DPA en poids et en distance de Hamming. Les deux attaques
réussissent. Néanmoins, il s’agit de noter les observations suivantes :

1. L’attaque en poids de Hamming réussit car il existe une signature dépendant
de la clé au tour suivant celui que l’on pense initialement attaquer. Nous
montrons que c’est l’existence d’un glitch qui cause la signature sans équi-
voque du poids de Hamming de la sortie des huit sboxes. Cette constata-
tion va inciter la mise en place de contre-mesures où les portes élémentaires
re-synchronisent entre elles leurs entrées, afin d’interdire la propagation de
transitions non fonctionnelles.

2. L’attaque en distance de Hamming entre parfaitement dans le cadre du
modèle présenté dans le chapitre 2, et réussit donc sans surprise particulière.
Nonobstant, alors qu’un unique pic de corrélation est attendu, on en ob-
serve en réalité trois. L’explication de la complexité a priori inattendue de
ce phénomène provient de la structure dite de Feistel de l’algorithme DES.
À chaque itération, la moitié droite du message sert à la fois à calculer un
masque pour la partie gauche, et à être conservée telle quelle pour, afin que
le système reste déchiffrable. Le « schéma de Feistel » est représenté dans
la figure 3.19 à la page 72. Ainsi, l’existence de cette fourche sur la moitié
droite du message provoque, en plus du pic principal, une duplication de la

xiii

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

6456484032241680-8-16-24-32

T
en

si
on

 [m
V

]

Temps [cycles d’horloge]

Fig. 4 – Analyse SPA obtenue par différence de seulement deux courbes de consommation de
DES, utilisant une clé faible et une autre semi-faible.

xiv RÉSUMÉ DE LA THÈSE EN FRANÇAIS

fuite, ayant lieu pour moitié dans le tour précédent et pour moitié dans le
tour suivant. Ceci explique complètement que trois pics soient observés.

D’autres types d’analyses, notamment à clé connue, sont réalisées. Elles per-
mettent de tirer les conclusions suivantes quant aux caractéristiques sensibles
d’une implémentation matérielle :

– Les attaques en poids de Hamming peuvent réussir (même sans état initial
fixé) par la simple propagation d’un glitch. Il s’agit donc de supprimer les
glitches et également d’équilibrer les portes logiques dans leurs entrées.

– Certaines corrélations peuvent se manifester alors qu’elles ne sont pas at-
tendues. Il est ainsi nécessaire de bien étudier les transferts de données à
l’intérieure d’une zone de confiance et également aux interfaces avec les zones
non sécurisées.

– Il existe des corrélations au-delà de deux périodes d’horloge. Cela va inciter
à supprimer les états « haute impédance » (aussi dits « Z ») et à utiliser des
protocoles de calcul reposant sur une alternance pré-charge / évaluation.

– La diaphonie peut être mis en évidence. En conséquence, les équipotentielles
sensibles doivent être protégées par du blindage avec un nœud global.

– Les attaques continuent à réussir même sur des traces moyennées dans
les temps. Les contre-mesures consistant à introduire une gigue temporelle
sont donc inopérantes. Il faudra donc concentrer les efforts vers une logique
déterministe (par opposition à aléatoire).

xv

Chapitre 4 : Contre-mesures au niveau de la conception
physique

Les vulnérabilités identifiées dans le chapitre précédent sont autant de recom-
mandations sécuritaires pour la définition et la mise en place de contre-mesures
pertinentes. Nous spécifions et implémentons dans ce chapitre une réalisation
possible de calcul qui pallie à tous les écueils identifiés.

En technologie VLSI, le calcul numérique se décompose en deux étapes :

1. Le grain élémentaire de calcul, réalisant des opérations booléennes partielles.

2. L’interconnexion des résultats booléens indépendants pour réaliser la fonc-
tionnalité globale.

Ces deux étapes sont étudiées successivement. La première porte sur le dessin
des masques d’une famille de portes logiques. Quant à la seconde, elle concerne
l’utilisation éclairée des outils de placement-routage. L’objectif de la deuxième
étape est d’éviter de ruiner les efforts réalisés localement lors de leur assemblage
final sur silicium.

La partie logique s’appuie sur une représentation redondante des données, dite
« dual-rail ». Chaque nœud logique A est représenté par une paire de fils (a0, a1),
dont l’évolution dans le temps est décrite comme ci-après :

Phase NULL → VALID(0,1) → NULL → VALID(0,1) → · · ·
(a0, a1) (0, 0) → (0, 1) → (0, 0) → (1, 0) → · · ·
Dans ces chronogrammes, la valeur de pré-charge a été fixée arbitrairement

à (0, 0). Les deux valeurs valides sont A = 0 ⇔ (a0, a1) = (1, 0) et A = 1 ⇔
(a0, a1) = (0, 1). Cependant, d’autres représentations peuvent être utilisées avan-
tageusement. Par exemple, la logique dite « à espaceurs entrelacés » [96] utilise
de façon interchangeable (0, 0) ou (1, 1).

Les portes utilisées, respectant le protocole dual-rail avec retour à l’état NULL,
défini par NULL

.
= (0, 0), doivent de plus être équilibrées vis-à-vis des chemins

d’exécution. Nous proposons la structure illustrée dans la figure 5 pour le cas
particulier de la porte universelle NON-ET. La porte réalise successivement les
étapes suivantes :

1. Synchronisation des entrées, par couples, grâce à des portes de « rendez-
vous », aussi connues sous le nom de portes de Muller ou C-éléments [93].

2. Calcul à proprement parler : aiguillage vers la sortie vraie ou fausse en
fonction du min-terme qui a été décodé.

Afin d’accrôıtre le niveau de robustesse de cette porte, trois niveaux de sécurité
supplémentaires sont mis en œuvre :

1. Les portes de rendez-vous sont toutes identiques, et sans état haute-impédance
suspicieux. Il est à noter que seules les équipotentielles internes Na et Nb

doivent être protégées, car Pa et Pb ne fuient pas d’information (confer fi-
gure 5).

xvi RÉSUMÉ DE LA THÈSE EN FRANÇAIS

BAB
A B A

V
D

D

Y

P
A

P
B

V
S
S

V
D

D

CC

B
A

V
S
S

C
C

BA

AB

P
a

N
a

N
b

P
b

A B

B A

C C C C

a
0

a
1

b 0 b 1

y
0

O
R

S
y
n
ch

ro
n
is

at
io

n
C

al
cu

l

y
1

O
R

V
S
S

Fig. 5 – Schéma en transistor de la porte NON-ET sécurisée [42] de la bibliothèque SecLib.

xvii

Fig. 6 – Dessin des masques de la porte de rendez-vous symétrisée et équilibrée, sans aucun
état haute-impédance.

2. Les portes de concentration du calcul sont de type OR. Leur structure est
rendue redondante, pour éviter de particulariser l’une des deux entrées.

3. Au niveau global, alors que, stricto sensu, seules quatre portes OR sont né-
cessaires pour véhiculer les quatres valeur de la table de vérité vers les deux
sorties, six (trois et trois) sont utilisées en pratique. De cette façon, les deux
sorties sont chargées par le même nombre de portes, et le temps de calcul
devient constant.

Un enjeu important est de conserver la symétrie en passant du schéma au
dessin des masques. Cette étape est réalisable, moyennant certaines concessions
bien identifiées. La structure, dite « symétrique », de la porte de rendez-vous,
se prête particulièrement bien à une projection technologique avec respect des
invariants topologiques, comme illustré dans la figure. 6.

Le résultat final sur la fonction NON-ET est une porte duale, dessinée dans la
figure 7.

Le niveau d’indiscernabilité atteint par cette porte est validé par simulation
électrique exhaustive de tous les cas de figure (arrivées concomitantes ou différées,
dans n’importe quel ordre autorisé par le protocole). La simulation confirme bien
que la signature en consommation de la porte est indépendante des données ma-
nipulées.

Le dessin des masques de toutes les portes sécurisées à deux entrées est iden-
tique, modulo la position de certains vias. Ceci permet de concevoir rapidement

xviii RÉSUMÉ DE LA THÈSE EN FRANÇAIS

Fig. 7 – Exemple du dessin des masques de la porte NON-ET de la bibliothèque SecLib, vue
depuis l’éditeur Virtuoso de Cadence®.

xix

VSS

VDD

VSS

VDD

Vertical routes:
- forbidden
- allowed

A

PITCH:

(a) Floorplan after step ii (b) Floorplan after step iii

10

11

12

1

3

4

5

6

7

8

9

B

Y

Y

B

NAND

NOR

16× PITCH

2×
R
O
W
H
E
I
G
H
T

R
O
W
H
E
I
G
H
T

H
orizon

tal
rou

tes
forb

id
d
en

H
orizon

tal
rou

tes
allow

ed

A

Orientation: MX

Orientation: R0

Placement
forbidden

Placement
allowed

2

Fig. 8 – Plan de masse en dual-rail pour la porte NON-ET sécurisée [42].

une bibliothèque, surnommée « SecLib », comportant les 10 portes logiques à
deux entrées non dégénérées (parmi les 2(2n) possibles, avec n = 2).

Les deux principales étapes de la conception physique, à savoir le placement
et le routage, se doivent de préserver les invariants de sécurité mis en place dans
les portes logiques de SecLib. Grâce à un placement différentiel (chaque instance
voit son homologue dual dans une symétrie axiale) et à un routage également
différentiel (chaque fil est le translaté de son dual), les contraintes géométriques de
sécurité sont étendues du niveau porte au niveau netlist (composition de portes).

La figure 8 illustre l’opération sur une netlist simplifiée, réalisant comme seul
calcul la fonction NON-ET.

L’opération illustrée dans la figure 8 est en pratique réalisée par l’adjonction
de trois étapes à un flot de conception usuel. Ces étapes sont :

1. Le dimensionnement préalable du plan de masse à des distance paires en
terme d’espacement de routage (ou « pitch ») et de sites de placement.

2. Avant le placement et le routage, l’instanciation d’obstructions de placement
sur une rangée de placement sur deux, et la mise en place de contraintes de
routage :
– les canaux horizontaux sont interdits au-dessus des zones de placement

interdites et

xx RÉSUMÉ DE LA THÈSE EN FRANÇAIS

– seul un canal vertical sur deux est accessible.

3. À la fin du flot de placement-routage contraint, l’ensemble des éléments
(placement, routage, signaux globaux, métal non-fonctionnel de remplissage
ou dummies, etc.) sont dupliqués par un script ad hoc, traitant par exemple
la description DEF [56] du circuit.

La méthode proposée dans ce chapitre a été mise en œuvre sur le chemin de
donnée de l’opérateur DES décrit dans le chapitre 3. Les résultats sont résumés
dans la figure 9.

Le premier histogramme (à gauche de la figure 9) représente la répartition des
rapports C(true) / C(false) des équipotentielles de chaque paire différentielle. La
répartition est toujours centrée autour de 1. Mais la dispersion diminue notam-
ment lorsque le placement-routage est contraint :

– Sans contrainte, la dispersion peut monter jusqu’à des rapports 1:4.
– En contraignant simplement le placement (les instances duales sont côte

à côte), les écarts sont fortement réduits. Cette stratégie est porteuse en
technologie FPGA, où il est difficile (voire impossible avec certains IDE) de
contraindre le routage.

– Avec la méthode de duplication du plan de masse [102], l’équilibrage gagne
encore un ordre de grandeur.

Le test C(true) / C(false) est particulièrement significatif, car nous avons évalué
que dans la technologie utilisée et avec le crypto-système DES, la contribution
majoritaire des capacités d’interconnexion provient du routage, et non plus des
capacités d’entrée des portes.

Le second histogramme (à droite de la figure 9) présente la dispersion des
résistances des fils. Dans le cas de la duplication du plan de masse [102], la
répartition est un pic de Dirac parfait, car par construction, les fils de chaque
paire ont exactement la même longueur. Et comme il n’existe pas de couplage
entre résistances (à l’inverse des capacités, pour lesquelles la diaphonie est un
phénomène non négligeable), la distribution n’a pas de variance.

x
x
i

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
in

 C
ou

nt

C(true) / C(false)

500

1000

1500

2000

Dual place-and-route
Dual place, regular route
Regular place-and-route

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
in

 C
ou

nt

R(true) / R(false)

500

1000

1500

2000

Dual place-and-route
Dual place, regular route
Regular place-and-route

F
ig

.
9

–
R

ap
p
ort

d
es

cou
p
les

d
e

cap
acité

et
d
e

résistan
ce

d
es

lign
es

d
u
a
l-ra

il
d
u

ch
em

in
d
e

d
on

n
ée

d
e

l’op
érateu

r
D

E
S

sécu
risé.

xxii RÉSUMÉ DE LA THÈSE EN FRANÇAIS

Chapitre 5 : Conclusions

Depuis notre entrée de plein pied dans la « société de l’information », la grande
majorité des échanges de données est devenue numérique. En conséquence, les ap-
pareils électroniques qui manipulent de l’information sont devenus omniprésents.
Ils ont envahi aussi bien la sphère professionnelle que privée. Dans ce contexte,
dit de « calcul pervasif », les problèmes de sécurité s’avèrent être cruciaux. Jus-
qu’à très récemment, les attaques usuelles ciblaient les bugs logiciels ou les fai-
blesses des protocoles des réseaux. Maintenant que les terminaux (mobiles, as-
sistants personnels, ordinateurs de bureau, etc.) se rapprochent de l’utilisateur
final, l’implémentation elle-même est devenue la cible d’attaques. Ceci s’oppose à
la conception traditionnelle de la sécurité, où les organes sensibles (serveurs, rou-
teurs, etc.) pouvaient être considérés comme des forteresses. De plus, la sécurité
devient de moins en moins cloisonnée au domaine militaire car de plus en plus
une affaire civile.

L’objectif de cette dissertation est double :

1. tout d’abord, nous analysons la force des attaques sur les implémentations
physiques de systèmes de chiffrement symétrique, puis

2. nous proposons, en réponse, des contre-mesures raisonnées.

Cette mission est délicate, car il s’avère que les algorithmes utilisés en crypto-
graphie, par exemple le chiffre symétrique, représente justement la classe d’algo-
rithmes la plus facilement attaquable sur les canaux cachés. Par ailleurs, nous
montrons que la sécurisation des implémentations est une tâche délicate, car
même des attaques a priori non significatives, comme celle en « poids de Ham-
ming », se trouve réussir, à cause d’effets de bords dévastateurs, car non anticipés.
Il s’agit en l’occurrence de transitions « non-fonctionnelles », dites glitches. Nous
détaillons l’origine de cette vulnérabilité, due à la fois à une dissymétrie de la
porte OU-EXCLUSIF dans ses deux entrées et à une course temporelle de signaux.
Il est intéressant de remarquer que cette même faille a permis de casser en 2006
une contre-mesure populaire aux attaques sur les canaux cachés, à savoir la lo-
gique WDDL [100].

Ayant pris conscience de la force des attaques sur les circuits, il s’agit de pro-
poser des contre-mesures à la hauteur de l’enjeu sécuritaire. Étant donné que
dans l’état de l’art des technologie industrielles permettant le calcul intensif (la
filière CMOS n’a à jour pas de rival), il est impossible d’éliminer la consomma-
tion d’énergie, il va falloir composer avec les canaux cachés. Notre objectif est
donc de faire en sorte que le canal caché (par exemple la consommation ins-
tantanée) mesurée par un attaquant ne fuit aucune information sur les données
internes manipulées par le circuit. Nous étude consiste à symétriser les struc-
tures élémentaires de calcul, de telle sorte que tout calcul produise les mêmes
symptômes physiques, du moins dans les limites imposées par les imperfections
technologiques. Les portes logiques elles-mêmes sont donc garantes de la confi-
dentialité des données qu’elles traitent. Grâce à une micro-architecture équilibrée

xxiii

du point de vue géométrique, cette contrainte peut être implémentée, moyennant
certains compromis d’ordre topologique. Effectivement, certaines symétries ne
peuvent pas être respectées sans créer de court-circuits : c’est par exemple le cas
de la symétrie axiale quand il s’agit de relier deux couples de points symétriques
(A,B) & (B′, A′) de façon croisée, i.e. A = A′ & B = B′ électriquement parlant.
Une étude sur la porte réalisant la fonction NON-ET se généralise à l’ensemble
des primitives logiques utiles pour la réalisation de fonctions booléennes vec-
torielles arbitraires. Une bibliothèque complète de portes, appelée SecLib, est
ainsi spécifiée et dessinée en technologie CMOS 130 nanomètres. Un effort par-
ticulier porte sur l’utilisabilité pratique de SecLib avec les outils d’assistance à
la conception disponibles commercialement. De plus, la compatibilité de SecLib
avec les bibliothèques dites « standards », fournies par les fondeurs de silicium,
est une contrainte supplémentaire. Elle permet de mélanger les deux types de
portes, sécurisés et normaux, dans un souci d’économie d’efforts de conception
et de réutilisation d’éléments déjà validés par ailleurs. Un accélérateur crypto-
graphique dédié au chiffrement multi-mode DES et triple-DES est conçu avec
SecLib d’une part et une technique de placement-routage originale, appelée “du-
plication du dessin des masques” (“backend duplication” [102]) d’autre part. Cette
réalisation démontre qu’une méthodologie de conception sécurisée est effective-
ment transférable vers le tissu industriel du semi-conducteur.

xxiv RÉSUMÉ DE LA THÈSE EN FRANÇAIS

Contents

Résumé de la thèse en français iii

Acknowledgments xxix

Introduction xxxi

1 Physical cryptography 1

1.1 Overview of the cryptography . 1

1.1.1 Security needs . 1

1.1.2 Security objects . 1

1.2 The gray box model . 2

1.2.1 Framework for the attacks considered in this PhD thesis 3

1.2.2 Side-channel analyzes provided with in this PhD thesis 3

1.3 Attack of flawed implementations . 4

1.4 Common misconceptions . 4

1.5 Audience . 5

1.6 Personal contributions . 5

2 SCA immanence 7

2.1 Structural attacks . 7

2.2 Logical dissipation . 7

2.2.1 Reversible logic . 8

2.2.2 Conservative logic . 12

2.2.3 Application to DES . 20

2.2.4 Conclusion about reversible and conservative logics 22

2.3 Power attack model . 22

2.3.1 Introduction to power attacks . 22

2.3.2 Differential power analysis . 23

2.3.3 DPA model . 26

2.3.4 Electrical simulation of the DPA . 29

2.3.5 Connections between DPA and conventional cryptanalysis 32

2.3.6 Conclusion of the power attack model . 37

2.3.7 Illustration of DPA signal-to-noise ratio on histograms 38

2.4 Practical computing as security weaknesses . 39

2.4.1 Integrability constraints . 39

2.4.2 Hamming weight versus Hamming distance 41

xxv

xxvi CONTENTS

3 DPA on DES 49
3.1 Secured crypto-processors design . 49

3.1.1 Security target . 49
3.1.2 Motivation for DES . 49

3.2 A DES architecture operating in IP representation 50
3.2.1 Introduction on DES . 50
3.2.2 DES datapath improvement thanks to a generalized pipelining 52
3.2.3 Optimal software / hardware partition to realize all DES variants 58
3.2.4 Performance evaluation of the proposed architecture 61
3.2.5 Comparison with other fast and versatile implementations of DES 63
3.2.6 Proposed architectures modifications for bit-slice P&R 65
3.2.7 Conclusion on the DES architecture . 65

3.3 Fully combinatorial DES implementation . 67
3.3.1 Combinatorial DES datapath . 67
3.3.2 Security properties of the combinatorial DES 69

3.4 DES remarkable cryptological properties . 70
3.4.1 DES weak keys and fixed points . 73
3.4.2 DES semi-weak keys and anti-fixed points 74

3.5 DES remarkable SCA properties . 77
3.5.1 Semi-weak keys . 79
3.5.2 Weak keys . 81
3.5.3 SCA properties generalization for arbitrary keys 84

3.6 Explanation for the differential traces using HW vs HD 90
3.6.1 Interpretation of the differential trace using HW 90
3.6.2 Interpretation of the differential trace using HD 92
3.6.3 Single versus multi-bit HW or HD selection functions 103
3.6.4 Conclusion: improvement of side-channels analyzes 106

3.7 Realization of the DPA on DES . 107
3.7.1 Selection function for the DPA on the DES architecture of SecMat V1 . . 107
3.7.2 DPA on traces integrals . 108

4 Backend countermeasures against SCAs 113
4.1 Leaking no information . 113

4.1.1 Information = distinguishability . 113
4.1.2 Randomization . 114

4.2 The secured library “SecLib” . 114
4.2.1 Secured standard cells . 115
4.2.2 CMOS structures for the secured cells . 116
4.2.3 Use in a regular design flow . 120
4.2.4 Performances . 120
4.2.5 The “SecLib” library . 121
4.2.6 Interconnect involvement in a circuit security 125

4.3 A place-and-route strategy for secured ASICs . 128
4.3.1 Using differential logic to thwart SCA . 130
4.3.2 The “backend duplication” method . 131
4.3.3 The constraints required by the “backend duplication” method 132
4.3.4 “Backend duplication” method insertion into an existing design flow . . . 133
4.3.5 Comparison of the “backend duplication” method with related works . . . 134
4.3.6 Suitability of the “backend duplication” method with some logic styles . . 134
4.3.7 Backend triplication . 136
4.3.8 Implementing a duplicated netlist . 137
4.3.9 Conclusion on the “backend duplication” 139

CONTENTS xxvii

4.3.10 Graphical illustrations of the “backend duplication” method 141

5 Conclusions 145
5.1 Summary of the dissertation . 145
5.2 Perspectives . 146

5.2.1 Open issues . 146
5.2.2 Going further . 146

A Attackees/attackers technical details 147
A.1 The SecMat circuits family . 147

A.1.1 SecMat frontend . 147
A.1.2 SecMat backend . 151

A.2 The attack boards . 151
A.3 The acquisition setup . 152

A.3.1 Optimal power traces acquisition experimental conditions 152
A.3.2 The acquisition software . 156

B Power Traces on the DES Co-Processor of SecMat V1 161
B.1 Hamming weight vs Hamming distance differential traces 162
B.2 DPA signal-to-noise ratios on DES . 163

C Glossary 177

xxviii CONTENTS

Acknowledgments

The work presented in this manuscript compiles the results of four years of research towards the
definition of a backend-level solution to thwart power attacks on electronic integrated crypto-
systems.

First of all, I am grateful to the members of the jury, to have accepted to review my work
and to organize my public defense. Professor Francis JUTAND made me the invaluable honor
of being the chairman of the jury. His broad knowledge of the information theory sector helped
situating this work in a more global and quickly evolving context. Professors David NAC-
CACHE and Jean-Jacques QUISQUATER thoroughly analyzed my manuscript and suggested
relevant perspectives. Professor Marc Renaudin, through the work conducted under his super-
vision at TIMA, gave me insights related to power attacks realized on QDI (and other exotic
logic styles) circuits. Doctor Pierre-Yvan LIARDET represented the industrial point of view on
side-channel resistance: he motivated sound albeit integrable solutions against the side-channel
leakage problem.

I could not have produced this document without the help of many folks.
To begin with, I wish to express all my sincere gratitude to Renaud PACALET, my super-

visor. He has been able to make me take crucial decisions, while in the meantime leaving me a
large space for innovation. This accounts for the large variety of skills that I learnt throughout
this PhD. For instance, I had the rare opportunity to design two dedicated circuits in embed-
ding full custom structures. It is from Renaud that got the conviction that there was both a
scientific and industrial need for trusted computing platforms. Renaud’s philosophy to find the
best possible solutions before looking for acceptable trade-offs encouraged me: this idea gave
birth to fundamental results, resisting the evolution of the state-of-the-art, which was reassur-
ing me regarding the continuity of the work. As the leader of the LabSoC at Sophia Antipolis,
Renaud also plunged the problematic of ASICs security into that of complex systems-on-chip.
Many local contractual projects (especially with STMicroelectronics) added to the stimulation
towards achieving a reliable DPA-proof design flow for trusted platforms.

Philippe MATHERAT taught me that the physics of the computation is a theory still at its
infancy: the principal results remain to be discovered. He interested me on the links between
logical and physical dissipation; this open question motivated my researches. Is the dissipation
correlated to the difficulty of the computations? This problem is certainly is major theoretical
challenge deserving of being tackled with in the next century!

Philippe HOOGVORST gave me inestimable insights about some advanced cryptograph-
ical issues. He has always been available to discuss some very accurate technical questions.
Moreover, I owe him a lot of gratitude for his lessons in object-oriented coding and in software
development technics.

All the other members of the Digital Electronic Group at the ENST (groupe “VLSI”, later
renamed “Systèmes Électroniques Numériques”) also contributed to this work, everyone in its
own manner. Yves MATHIEU, with its inexhaustible energy, encouraged me on an everyday
basis. He also provided the adequate support when necessary: it is with its help that libraries
were layout, that simulations were achieved, that complex designs were verified, and finally
that circuits were timely taped-out. Jean-Luc DANGER got personally involved in the security

xxix

http://labsoc.comelec.enst.fr/

xxx ACKNOWLEDGMENTS

project, also trying to apply the results to other fields, such as reconfigurable computing and
asynchronous logic. Jean PROVOST transferred me most of his valuable expertise in sub-
micronic technology processes and in electrical simulation. Alexis POLTI and Lirida NAVINER
DE BARROS’s interest in embedded devices also influenced this work. I am also in debt from
them for their pieces of advice when I was stuck on technical problems.

I also thank Karim BEN KALAIA for designing and debugging the attack boards. Without
his help, no accurate side-channel measurements would have been possible. Karim provided
and still provides useful guidance for the choice of the appropriate technical solution to the
daily electric challenges.

The IT team, and especially the system administrators of the COMELEC laboratory, Ar-
naud LAURIOU and Frédéric PAUGET (staff of the CNRS LTCI – UMR 5141), installed the
peripherals needed to control devices and to automate the traces acquisition campaigns. They
guided the choice for the most adequate hardware and software resources to carry out the dif-
ficult task of building up a security evaluation platform. I especially thank Frédéric PAUGET
for his proactivity in the choice for two critical computing resources: the 2-Terabytes SVN
repository & SQL database server (geant.enst.fr) and the supercomputer (genie.enst.fr),
taylored for the side-channel traces storage and analysis.

Laurent SAUVAGE actively contributed to the side-channel evaluation platform and solved
many difficult issues related to side-channel measurements. I now wish that Laurent obtains bril-
liant results from the time he invested in the traces acquisition platform. Many thanks to Florent
FLAMENT, for its exceptional involvement in the “SecMat” adventure, and for his highly valu-
able technical mastering and also for his precious sense of organization. Florent’s work helped
to structure the various developments around hardware attacks and counter-measures, and to
capitalize on them. I am very proud to say that some brilliant results, especially those reported
in chapter 3, were first suggested by Florent.

Many other people participated on aspects that are not accounted for in this manuscript. To
cite a few: Mohamed EL HARHAR and Freddy ZANIN, for the design of the ancestor of SecMat,
Hervé FINE and Nicolas PACHER for attacks on FPGA boards, Sumanta CHAUDHURI for
the securization of asynchronous FPGAs, Viriginia MART́ıN HEŔıZ for her preliminary results
on the DPA on AES, Johannes SCHMIDT for the implementation of novel attacks, Korinna
LENZ for the attack against software implementation of DES running into an home-made fake
smartcard based on an ATMEL ATMega processor.

The integration of this work on the circuits’ security into a larger “Trusted Computing”
GET1-wide structuring project enlarged the scope for the hardware to the software. The
contributions of Sophie COUDERT, Ronan KERYELL and Guillaume DUC, and of course of
Renaud PACALET, were fundamental for the project creation.

Collaborations outside of the GET, mainly motivated by national projects, were also very
fruitful. Many ideas originate from discussions with STMicroelectronics at Rousset, TIMA
CIS and QLF groups at Grenoble, the multi-wafer project broker CMP at Grenoble, LIRMM
at Montpellier, UCL at Louvain-la-Neuve and Oberthur at Nanterre. I also thank colleagues
from the LIP6 of Université Pierre et Marie Curie for informal information exchange during the
backend stages of the ASICs design.

Finally, I thank all my close friends and my family, that were sometimes wondering why I
spent so much time working instead of caring of them. Thank you for your comprehension, and
also for making me work smarter, not harder!

For the list to be really complete, I must thank the open source and/or free software de-
velopers and maintainers community. Many of them, through their advice and their software
packages, helped me a lot, for a variety of tasks: computation, design automation, source code
management, edition, typesetting and presentation. I especially thank the numerous volunteers
of bugs.gcc.org and of comp.lang.c++.

1The GET is the “Groupe des Écoles des Télécommunications”: http://www.get-telecom.fr/.

http://www.cnrs.fr/
http://www.get-telecom.fr/

Introduction

This thesis is concerned with the security of electronic circuits against attacks on their imple-
mentation.

Cryptographic algorithms have traditionally been studied to withstand theoretical attacks,
that are tacitly tantamount to black-box attacks. However, when these algorithms are imple-
mented in a real devices, many other specific attacks become possible. With the advent of
attacks on the physical implementations, some information can be diverted (i.e. extracted)
from the circuits, or even altered (i.e. modified) by external means, which makes the security
requirements more stringent. The new types of attacks are referred to as observation (or
“SCA”, short for Side-Channel Attack) and injection (or “FA”, short for Fault Attack) at-
tacks. These attacks, targeting the physical level, move the context from black-box to gray-box,
because some internal variables can be partially read or written to [43]. The type of hardware
that is vulnerable to SCA and FA is that where the power is supplied externally or easily ac-
cessible by an outsider: this includes contact and contactless smartcards, but also any mobile
devices (handheld or not.) The exploitation of the electromagnetic field makes it possible to
mount remote attacks on otherwise physically unattainable circuits. In this security context,
the attacker model must be refined. In the introduction or the dissertation, the difference
between the logical and the physical cryptanalysis is discussed.

Then an analysis of the SCAs [66] is carried out. They happen to be “structural attacks”, in
the sense that are inherent to information processing. In particular, cryptographic algorithms,
because of some Boolean properties of their architecture, are especially sensitive to SCAs. When
applied on symmetrical ciphers, we show that SCAs are inescapable on ideal hardware without
counter-measures, because the minimum information that leaks happens to be the full key itself.
Then we show that SCAs are enhanced by the technological limitations, such as the limited
datapath bitwidth, and that cryptographic algorithms increase the power of SCAs.

After that, we show how to avoid SCAs by leaking almost no information. And, given that
information leakage is inescapable, how to build secured circuits? The DES case-study helps
us to show how to evaluate the implementation dissipation via the power emanations. The
architecture of a representative crypto-processor and the implementation issues are discussed.
The co-processor security is evaluated w.r.t. logical and physical attacks.

The security flaws brought to the fore are then used to propose an unconditionally secure
module. We discuss a method based on a technological balancing. Both gate-level design and
CAD techniques are addressed: the SecLib secured library conveys a syndrome-free elementary
computation kernel at the bit-level, while the “backend duplication” strategy allows for an
efficient use of those gates in arbitrary complex netlists.

Finally, we conclude on the evaluation platform that has been set up, and we mention the
open problems that remain to be tackled with.

Key words: Trusted computing, secured electronics, layout-level counter-measures, side-
channel attacks, SPA/DPA, power analysis, physical cryptanalysis, topological constraints, ge-
ometrical symmetries.

xxxi

xxxii INTRODUCTION

Chapter 1

Physical cryptography

This chapter presents the vulnerabilities of electronic circuits arising when an attacker is able to
acquire some physical emanations in addition to the public information. The attack scenario is
thus augmented: “logical” security requirements remain, while “physical” security precautions
add up. The objective of this chapter is to lay rational bases for the topics developed in the
rest of the PhD dissertation. The two ideas that we promote are:

1. The need for rigorous threat assessment and associated proven counter-measures.

2. The fact that attacks are reproducible, and that their outcome is deterministic and in-
herent to both the algorithm and the ad hoc architecture used.

It is thus possible to unify logical and physical security requirements in a global security frame-
work where defenses against both abstract and concrete attacks must be devised. This is the
field of “physical cryptography”.

1.1 Overview of the cryptography

1.1.1 Security needs

From a user point of view, the cryptography is a set of solutions that can be assembled to
provide solutions to some basic usages, such as:

• privacy,

• integrity,

• authentication,

• non-repudiation, etc.

1.1.2 Security objects

Similarly to every complex system, the cryptography can be divided into layers, that are illus-
trated in the table below along with an example of a desirable property;

Layer Example of property
Boolean functions Non-linearity

Algorithms One-way
Protocols Zero-knowledge

Applications Authentication implemented

1

2 CHAPTER 1. PHYSICAL CRYPTOGRAPHY

This structure allows an abstraction between the layers. For instance, the algorithms are
most of time independent of the Boolean functions actually used, provided they feature a
high degree of non-linearity. The protocols are themselves independent of the underlying algo-
rithms. If for instance the one-wayness property is desired, then many algorithms can be used
interchangeably. Finally, at the application level, the protocols are also seen as commodities.
Application that rely on SSL/TLS (Secure Sockets Layer / Transport Layer Security) typi-
cally initiate a communication with an exchange of ServerHello and ClientHello, where the two
parties agree for a common protocol.

In the framework of this thesis, we focus on the Boolean vectorial functions and algorithms.
This selection is motivated by the facts that the attacks on the implementation usually target
more specifically the lower layers and that the security of protocols and applications are more
logical concerns.

The algorithms of concrete use can basically fall into three categories. Their resistance
against cryptanalytic and brute-force (or exhaustive) attacks is respectively based on [60]:

1. Symmetrical encryption and message authentication codes (MACs):

• Cryptanalysis: number of rounds, taylored substitution boxes,

• Brute force: size of the key;

2. Hash:

• Cryptanalysis: number of rounds, taylored substitution boxes,

• Brute force: size of the hash-code;

3. Asymmetrical encryption:

• Cryptanalysis: mathematical NP-complete problem,

• Brute force: size of the key.

Symmetrical encryption, hash and MAC primitives are closely related. A block cipher, such
as DES [71], can achieve the three. Similarly, a hash function, such as SHA [69], can do the
same (the encryption algorithm derived from SHA has been baptized SHACAL.) There are no
widespread MAC algorithm that is not based upon an encryption or an hash algorithm.

In the sequel, algorithms based on DES will be more specifically studied.

1.2 The gray box model

The general context for cryptographic attack is that of a black-box: internal variables are
unknown. However, the algorithmic details are fully available to the attacker. This principle is
known as Kerckhoff’s law. It encourages security-by-clarity design methodologies rather than
security-by-obscurity. The security-by-obscurity is somehow similar to obfuscation: it makes
the attack setup more difficult, but once this obstacle is overcome, it does not decrease its
strength.

The concrete systems that are the targets of attacks are often very complex, which might
confuse analysis when trying to identify their critical parts. The first goal of an attacker is
indeed to locate the sub-system in charge of using confidential information. This sub-system
is almost always a cryptographic block. Under the abovementioned “open system model”,
the whole system reverse-engineering is supposed to be feasible; it is even assumed that the
insulation of the cryptographic sub-system is easy as compared to its attack.

Paradoxally enough, the “architectural” complexity of a system is a burden to its security.
Indeed, a complex system is structured in layers (similar to the OSI [110] stack), in which every

1.2. THE GRAY BOX MODEL 3

level of abstraction brings its own vulnerability. The security of a combination (even with
embedded counter-measures) equals that of the weakest link.

In the context of attacks on the implementation, some internal variables, not always chosen
nor known, can be read or written to [43]. These attacks are customarily referred to as side-
channel attacks (SCAs), that divide into passive (or observation) and active (or fault) attacks.

Cryptanalysis consists in finding an exploitable bias, due to an unknown design flaw, that
none of the up-to-now tests detected. In that sense, passive attacks on the implementations
and cryptanalysis are much alike.

Active attacks are more powerful than passive ones: the DFA1 of Piret and Quisquater [40]
requires as few as two well-behaved faults to successfully attack AES, whereas DPAs [54] require
in the best cases a few hundreds of traces. Active attacks are also more expensive, because their
setup is not trivial [11]. Seldom gate-level counter-measures against FAs have been reported
(refer for instance to [94] for some suggestions); One reason is that the reporting of a detected
error is complex, and that this protection can itself be circumvented with faults. Therefore FA
counter-measures are usually a matter of algorithms. Additionally, the FAs are very different
in nature from SCAs and so are the counter-measures against them. Because the SCAs are
already a very complex matter we decided not to consider FAs. Instead, we focus on observation
attacks and associated counter-measures at the implementation-level.

1.2.1 Framework for the attacks considered in this PhD thesis

The security evaluations realized in this work meet the same standards as cryptanalysis: all the
implementation information, such as algorithm and its layout, is supposed to be known to the
attackers.

Moreover, the attacker can make an unrestricted use of the system. Typically, an unbounded
number of calls to cryptographic functions is possible. The attacker can also tamper with the
circuit that make up the system, for instance to access its power supply.

Furthermore, we make the hypothesis that the analysis laboratory itself (probes, synchro-
nization signals, etc.) is embedded onto the chip.

In order to evaluate our work, custom ASICs have been designed. They allow for a full
control over the algorithm implementation, and an accurate access to the synchronization and
the physical parameters (such as the power, the EMI, the temperature, etc.) They also allow
for a comparison between the measures and the simulations, which is essential from a scientific
point of view when analyzing attacks results.

When dealing with counter-measures, efficiency is the first focus, irrespectively of over-
head. Unless otherwise explicitly stated, this is the securization strategy we adopt in this thesis.
Indeed, the goal of this work is to conclude regarding the efficiency of counter-measures when
the maximum efforts have been spent. If an efficient (albeit expensive) solution is found, then it
is relevant to optimize it without compromising its efficiency until its cost becomes acceptable
for a given application. On the contrary, if no satisfying solution can be found whatever the
cost, it would be useless to spend efforts in optimization. In this case, the very valuable result
would be the conclusion that low level design counter-measures are unpractical.

1.2.2 Side-channel analyzes provided with in this PhD thesis

The analysis of side-channel information from power or electromagnetic traces requires a lot
of care to properly gather, and then understand them. Some power traces are included in
Appendix B, to avoid over-loading chapters with numerous graph data. We paid attention
to annotate the graphs with the time expressed in clock periods and the amplitudes with the
appropriate physical units. This enables a rigorous scientific interpretation of the data.

1The technical acronyms are explained in the Appendix C.

4 CHAPTER 1. PHYSICAL CRYPTOGRAPHY

The acquisition platform is described in Appendix A. It can be noticed that all the ac-
quisitions are performed at 20 Gsample/s, which is in most cases much more than necessary
to successfully attack an unprotected device (refer for instance to the attacks described in
Sec. 3.7.2.) The attacked circuits were typically clocked at 32 or 66 MHz, which means that
some hundreds of points are available for every clock period. However, this acquisition speed is
not an over-kill from a scientific viewpoint, because it makes it possible to analyze fine events
occurring within the clock period. Many results presented in the Chp. 3 would not have been
obtained with a lower acquisition rate.

1.3 Attack of flawed implementations

A software bug can trivially make some attacks possible. For instance, a software bug may
be exploited to read a sensitive memory area. Like in software, hardware flaws can fully
compromise the security. For instance, if scan-chains or test-points are left unprotected, secrets
could be disclosed But in hardware, the consequences of design flaws can lead to more subtle
leaks. In a design that lacks clock-tree buffers, the power consumption will be increased and so
will probably be the information leaks. A dual-rail2 circuit where the gates are balanced, but
the routing is not, compromise the intended counter-measure based on symmetry. Ironically
enough, those two problems were indeed encountered in our first ASIC (nicknamed SecMat
V1) . . .

All the results presented in this work take for granted that the studied implementations are
correct, that is to say that they respect their specifications and that the specifications are sane
(which is far from being obvious.)

1.4 Common misconceptions

When evaluating the strength of attacks targeting a piece of hardware, its security level is
generally over-estimated. Let us compare the cost of a logical and a physical cryptanalysis on
DES. For the sake of simplicity, the attack is chosen to be of brute force type in both cases.
The cost function is taken equal to computation time:

• no space-time trade-off is used for the logical attack and

• the traces are accumulated as soon as they are captured in a DPA acquisition setup.

Then with the state-of-the-art hardware,

• 5 369 726 ≈ 222 simple-DES encryptions per second (assessed with the built-in self test
“openssl speed des” [30])

• 1 acquisition per second with an oscilloscope, including the pre- and post-processing
(trigger setting & saving the averaged results on the disks; for accurate figures, refer to
Appendix B at page 161)

Thus, to keep the same level of security as DES (which is low w.r.t. current security standards),
a DPA-proof hardware should withstand an attack using 256−22 = 234 ≈ 17 billion traces. This
ratio is relevant in the respect that the rare resource is the minimum number of encryptions
that an attack must realize to retrieve the full secret. This figure is much higher than what is
usually considered in the literature. This cautionary note is to be taken all the more seriously
as some attacks on unprotected implementations are practical with as few as a couple or tens
of power traces. Such attacks are for instance reported in the article about ITA [32] when some

2Dual-rail circuits is a widely studied counter-measure against power analysis. It will be explained in deep
details in the following chapters.

1.5. AUDIENCE 5

key bits are manipulated individually, which might happen in software implementations. On
parallel architectures, we successfully retrieved six key bits (the ones at the input of the sbox
#6) with as few as 28 averaged power traces, using a selection function not described in this
thesis.

1.5 Audience

The target audience for this PhD thesis is mainly cryptographers and designers of secured
embedded systems. Some results from the PhD has been published in journals or conferences
proceedings. Some others are presented genuinely in this manuscript. Finally, some issues were
not fully explored. They are presented as “open problems” or as “conjectures”, to be addressed
in future works.

There does not exist one definitive reference covering the security of embedded designs
against attacks on their implementation. The so-called “DPA book” [97] is scheduled for
publication in December 2006 – January 2007. Most technical information about the state-
of-the-art can be found on the proceedings of the IACR workshops. The newly created portal
http://www.sidechannelattacks.com/, maintained by the Reliable Computing Laboratory
of the Boston University (USA), aggregates the currently available academic information. Other
sources of information can be found on-line, like the “Side Channel Cryptanalysis Lounge” from
the network of excellence (NoE) ECRYPT [66] or the one term course in the “Real time and
Embedded Systems” curriculum at Institut Eurécom (France) entitled “Security of Security
Hardware” [73].

1.6 Personal contributions

This manuscript accounts for three personal contributions to the field of embedded systems
security:

1. The formalization of SCAs, notably with the introduction of selection functions expressed
as a sign function of a Boolean auto-correlation. Within this theoretical framework, the
SCA attacks are shown to be all the more powerful as the underlying algorithm is strong
against linear and differential cryptanalyses (Chapter 2.)

2. An accurate analysis of differential power traces, which enables the explanation of the
peaks observed in a DPA attack (Chapter 3.)

3. A method, correct by design, to design leakage-proof circuits from a global point of view.
The method takes advantages of geometrical symmetries to balance both gates and their
interconnect. The method is proved viable, by the realization of a secured cryptoprocessor
(Chapter 4.)

After this chapter 1, that introduced the security problematic and the objects involved in
cryptography, the rest of the dissertation is structured as follows. Chapter 2 shows what are the
intrinsic vulnerabilities of current cryptographic primitives. Chapter 3 is a practical example
of the security flaws illustrated in the case-study of DES. Chapter 4 settles the basic conditions
for a type of counter-measures. The nature and the modelization of leakage via the power is
discussed. The discussion is technological, and mainly concerns digital CMOS implementations.
Now, knowing that leaks are unavoidable, how can they be made balanced so that they convey
no information about the data? Chapter 5 concludes the work and open perspectives towards
better achievements in the field of electronics privacy.

http://www.iacr.org/
http://www.iacr.org/workshops/
http://www.sidechannelattacks.com/
http://reliable.bu.edu/

6 CHAPTER 1. PHYSICAL CRYPTOGRAPHY

Chapter 2

SCA immanence

This chapter shows that, whatever the symmetric encryption algorithm under attack, the anal-
ysis of side-channels allows an attack to extract the whole key. First, a logical dissipation model
is presented. It proves that, unless dedicated counter-measures are taken, the minimal informa-
tion dissipation is exactly equal to the key. Then, a model for a power attack, namely CARDIS
2004 [89] model, is presented. It shows that a side-channel attack is all the more powerful as
the target algorithm is cryptographically strong. The model is shown to be applicable to real
ciphers: it is extended from substitution/permutation block ciphers to Feistel-networks, such
as DES. Finally, we conclude with some important remarks about practical implementation of
the differential power analysis.

2.1 Structural attacks

This section motivates the researches carried out in this thesis about counter-measures against
SCAs. Despite many efforts deployed to thwart those attacks since the seminal publication of
Paul Kocher in 1998 [54], no fully satisfying solution has been proposed publicly. An explanation
for this fact is analyzed in this section, based on two observations. First of all, the use of
keyed bijections is shown to leak at least the information about the full key. This means that
the optimal implementation in terms of leakage precisely reveals only the secrets, that are
otherwise mixed with other non-necessary (technological) dissipations. Then, the conjunction
of the cryptographic functions and implementation constraints are proven to especially increase
the leakage. The very arguments used to build the security of functions, from a cryptanalysis
viewpoint, are exploited to improve the SCAs. Thus, whatever the exact algorithm, SCAs
can attack them because they feature some structural properties. As a consequence, SCAs are
referred to as structural attacks [18] in this section.

2.2 Logical dissipation

The side-channel attacks are only possible if there exists a leak of any nature accompanying
the computation. In a physical viewpoint, leaks can originate from two sources:

1. An irreversibility, which increases Boltzmann entropy of the computing system. Irre-
versibility occurs whenever it is impossible to reverse the computation because two or
more former states would be equally suitable after a transition has occurred. For instance,
both “5 + 7” and “4 + 8” evaluate to the same result, namely “12”. This phenomenon is
called “logical dissipation” [76].

7

8 CHAPTER 2. SCA IMMANENCE

non-bijective: (2n)(2n) − 2n!{0, 1}n → {0, 1}n
vectorial Boolean mappings

bijective

non-linear: 2n!−∏n−1
i=0 (2n − 2i)

linear

non-permutation:
∏n−1

i=0 (2n − 2i)− n!

permutation: n!

Figure 2.1: Taxonomy and counting of n-bit → n-bit vectorial Boolean mappings.

2. The dissipation caused by technological imperfections. Given the state-of-the-art tech-
nology, a theoretically reversible phenomenon happens to be irreversible in practice if
not properly insulated from its environment. In CMOS technologies, the dissipation of a
logical gate (such as a Boolean inverter) is caused by short-circuit currents and parasitic
capacitances, as discussed later in Sec. 2.3. However, this leakage is due to imperfec-
tions in the implementations, and it is likely that they do not constitute fundamental
limitations. They are thus commonly referred to as “technological dissipation”.

In this section, we assume that the “technological dissipation” can be reduced to null, and
we focus on the computations that are realizable without any “logical” leaks. As a conse-
quence only injections are of interest, because, knowing the image, a unique antecedents can
be associated. For the sake of symmetry between the computation and the inversion of the
computation, only injective invertible mappings such that the inversion is also injective are
considered. Those functions are the bijections from {0, 1}n to {0, 1}n. They are represented in
Fig. 2.1. In this figure, the n-bit vectorial Boolean functions are partitioned into the relevant
sets for cryptography.

The dissipation-free nature of reversible gates can alternatively be expressed in terms of
entropy conservation. The entropy of a set of n independent random inputs xi, i ∈ [0, n[is
equal to n bit. The probability of every input is P(x = xn−1 · · ·x0) = 1

2n . The entropy of the
output of a reversible gate f is:

−
2n−1∑

x=0

P(f(x)) log2 P(f(x)) = −
2n−1∑

x=0

P(x) log2 P(x) // Outputs reordering

= −
2n−1∑

x=0

1

2n
log2

1

2n
= +n bit .

This shows that the entropy variation after the reversible gate traversal is equal to zero.

2.2.1 Reversible logic

The implementation of reversible functions relies on the assembly of primitive gates to form a
circuit. The decomposition of a function into the gates is a process called “logical synthesis”.
After synthesis, a “netlist” of gates is proposed as one possible implementation of the function.
The netlist can be seen as an oriented graph, where the nodes are the primitive gates and the
arcs the interconnection nets. In the context of combinatorial logic, the graph is acyclic. In this
netlist model, the “fork” (split of a net into other nets) must be represented as a gate, sometimes
also referred to as the “fan-out” gate. A fan-out gate has more outputs than inputs. Thus,
if the fan-out gate is used, there must exist “condensation” gates than have more inputs than
outputs. Otherwise, the function produces more outputs than inputs, although it is specified
to operate from {0, 1}n to {0, 1}n. All the condensation gates are not reversible. A reversible
synthesis of a reversible function does not utilize irreversible gates. Hence forks are forbidden

2.2. LOGICAL DISSIPATION 9

c0

c1

d

c′0 = c0

c′1 = c1

d′ = c0 ⊕ c1 ⊕ d

c

d

c′ = c

d′ = c⊕ d

(a) (b)

Figure 2.2: (a) The controlled inverter with one control c and (b) a construction to realize
linear combinations of inputs.

in a reversible netlist. The advantage of this restriction is that any composition whatsoever of
reversible gates is in turn reversible.

The one-input gates consist in the identity a 7→ a (the wire) and the inverter a 7→ a. With
those primitives, only the permutations composed with bit-flips are realizable.

The non-trivial two-input two-output gates are variations around the exclusive-or, denoted
XOR: modulo permutations and inversions of the wires, those gates compute: (c′, d′)

.
= (c, c⊕d).

This operation is also known as the controlled inversion, or C-NOT. The usual symbol for the C-
NOT is depicted in Fig. 2.2(a). The first input is the control, left unchanged, whereas the second
input is the controlled data. As the C-NOT is linear, netlists of C-NOT can only give rise to
linear functions. Actually, the netlists of C-NOT ensemble is exactly the linear functions. The
sketch of the demonstration is given hereafter, for a mapping {ai, i ∈ [0, n[} 7→ {a′

i, i ∈ [0, n[}.
The first component of the linear function a′

0 is equal to a linear combination of all the inputs.
Figure 2.2(b) gives an idea for a possible netlist for a Boolean linear combination. Then, all
the components but the last are recomputed as a function of {a′

0} ∪ {ai, i ∈ [1, n[}. The a′
0 can

now serve as control, but is not used any more as a data. By repeating the same operation for
all the outputs, the function is entirely mapped using only C-NOTs.

In a view to generate all the bijections, including the non-linear ones, Toffoli proposed
his now eponymous gate. The gate has three inputs, and realizes the following mapping:

(c′0, c
′
1, d) = (c′0, c

′
1, (c0 · c1) ⊕ d). The schematic for the Toffoli gate T is given in the last

column of the Fig. 2.3. One possible internal implementation is given for every Ti in a “gray
box”: it only intents to illustrates the gate’s function. Nevertheless, the implementation as such
is not reversible, because of the use forks and of one AND gate (depicted with an ampersand
“&” in Fig. 2.3.) But globally, the gate is reversible. It must thus be seen as a physical atom
for the overall construction of a reversible netlist to remain valid.

Toffoli shows in the historical paper [107] that the inverter, the C-NOT and the Toffoli
gate is an universal set for the reversible functions. Toffoli’s result is correct provided that the
constant gate ‘0’ is added to the generating set. With this addition, the universal set can be
represented by the generalized Toffoli gates Ti, i ∈ [0, 3] represented in Fig. 2.3. One can notice
that T2 (resp. T1) is also equal to T3 (resp. T2) where the first input is forced to ‘1’.

We provide here an original demonstration of the universality of the set {Ti, i ∈ [0, 3]}.
The demonstration is on purpose informal because the point lays less in the result than in
its consequences. It relies on the fact that any bijection can be seen as an element of σ2n ,
the symmetric group of 2n elements, mapping the 2n possible combinations of the n inputs
into the 2n possible combinations of the n outputs. The symmetric group is generated by
the transpositions {τ2n(i, j), i ∈ [0, 2n[and j ∈ [0, 2n[\{i}} that swaps items i and j. The
function’s inputs and outputs are implicitly assimilated with their corresponding integer value,
i.e. {ai, i ∈ [0, n[} ⇔ ∑n−1

i=0 ai · 2i. The generalized Toffoli gate Tn is the transposition
τ2n(2n − 2, 2n − 1). As a matter of fact, Tn leaves inputs ai, i > 0 unchanged, because they

are the control signals. The least significant bit (LSB) a0 is toggled when
∏n−1

i=1 ai = 1. As

10 CHAPTER 2. SCA IMMANENCE

c

d

c′ = c

d′ = c⊕ d

T2

“C-NOT gate”

&

c′0 = c0

c′1 = c1

d′ = (c0 · c1)⊕ d

c0

c1

d

T3

“Toffoli genuine gate”

c c′ = c

T1

“wire”

‘0’‘0’

T0

“constant zero”

Figure 2.3: The first generalized Toffoli gates Ti. The genuine Toffoli gate [107] is T3.

a consequence, the n-input generalized Toffoli gate simply exchanges 1 · · · 10 ⇔ 2n − 2 for
1 · · · 11⇔ 2n − 1.

Now, the transpositions of σ2n are themselves generated from the sub-set {τ2n(i, j), |i⊕ j| =
1}, where | · | denotes the Hamming weight. The other transpositions are then constructed
as a composition of the “1-bit toggle” transpositions along a Grey path. As the variables can
be sorted using renumbering, only “LSB toggle” transpositions, defined as {τ2n(i, j), i ⊕ j =
0 · · · 01} are eventually needed for a universal synthesis.

We introduce positive and negative control generalized Toffoli gates. In the original Toffoli
gate, the control function f is defined as the condition when the data input toggles. This
function is f : ci, i ∈ [0, n− 1[7→ ∏n−1

i=0 ci. The function f can be made more general, by
introducing the possibility that a control signal ci be interpreted negatively. When this is the
case, the corresponding input is marked with a “◦” symbol (while regular or positive control
inputs are identified by a “•” – not to be confused with the “solder dot” or the “fork” symbol,
used for instance in Fig. 2.4(a).) An illustration of those gates is given in Fig. 2.4 for the case
n = 3. The functionality of the positive/negative control variants of Tn is expressed by the
mapping:

(a0, a1, · · · , an−1) 7→ (a0 ⊕
n−1∏

i=1

(◦i ⊕ ai)

︸ ︷︷ ︸
data signal

, a1, · · · , an−1︸ ︷︷ ︸
control signals

) , (2.1)

where:

{
◦i = •i = 1 if the control signal i is negative, or equivalently,
◦i ⊕ ai = •i ⊕ ai = ai if ◦i or ai if •i .

The synthesis of the positive/negative control variants can be achieved by the successive
transformation of positive controls into negative ones. The process is illustrated by Fig. 2.5.
The underlying idea is to use a n − 1 Toffoli gate to cause a double swap in the truth table,
and then to cancel one swap using an n Toffoli gate. There only remains one swap (hence
the composition yields an n Toffoli gate), but for another control function. By repeating this
operation along a Grey path, all the positive/negative gates are realizable.

The partial conclusion is that all reversible functions can be synthesized in terms of T1, T2

and T3, provided that Ti, for i ∈ [4, n] are available.

In his article [107], Toffoli proposes a design scheme for Ti≥4 based on the idea depicted in
Fig. 2.6. This construction demands to add one dummy input (a T0 gate) and symmetrically
one output (another T0 gate) per primitive n→ n+1 synthesis. This artifact is not considered
a burden as long as it is free to add a “void” degree a freedom.

2.2. LOGICAL DISSIPATION 11

c0

c1

d

c′0
c′1
d′ = (c0 ·c1)⊕ d

T3

c0

c1

d

c′0
c′1
d′ = (c0 ·c1)⊕ d

T3

c0

c1

d

c′0
c′1
d′ = (c0 ·c1)⊕ d

T3

c0

c1

d

c′0
c′1
d′ = (c0 ·c1)⊕ d

T3

f

c′0 = c0

c′1 = c1

d′ = f(c0, c1)⊕ d

c0

c1

d

(a): T3 with arbitrary control f (b): Positively (•) and negatively (◦) controlled T3

Figure 2.4: (a) Custom controlled T3 gate by a priori arbitrary function f : {0, 1}(3−1) → {0, 1}.
(b) Illustration of four non-trivial positive/negative controlled T3 variants defined in Eqn. (2.1).

T3T2T3 T3 T2= =

Figure 2.5: Synthesis of a positive/negative variant of a T3 Toffoli gate.

Tn

T3

Tn

T0 T0‘0’

d
c2

c1

c0 c′0 = c0

c′1 = c1

‘0’
c′2 = c2

d′ = (c0 · c1 · c2)⊕ d

Figure 2.6: Synthesis of Tn+1 from two Tn, one T3 and two T0 gates.

12 CHAPTER 2. SCA IMMANENCE

However, to remain in a strict {0, 1}n input space, Toffoli’s construction cannot hold. There
is actually a fundamental reason for the n → n + 1 synthesis failure without the addition of a
non-functional input. The Tn+1 Toffoli gate corresponds to a transposition in σ2n+1 , of signature
−1. When Tn is immerged into the bijections of n+1 bits, its signature becomes (−1)

2
= +1. It

is thus impossible to generate Tn+1 from σ2n gates. As a consequence, the universal reversible
set that does not resort to constants, for {0, 1}n → {0, 1}n bijections, is: {Ti, i ∈ [1, n]}. This
set does depend on the function dimensionality, because it holds n − 1 elements. Given the
construction of the positive/negative control gates based on the collaboration of Tn+1 and Tn

(refer to Fig. 2.5), the set is proved to be minimal for netlists that do not alter the interface
(e.g. add dummy input and output port couples.)

2.2.2 Conservative logic

The description of the reversible logic proves that a logically reversible function can be computed
using a physical system. However, the physical system must be continuous [107]. It is desirable
to study the classes of computations realizable with discrete physical systems, because digital
electronic gates are typically represented as controlled interruptors manipulating bits. Typical
discrete systems are a (classical) perfect gas or billiard balls moving in two directions on a table,
as introducted by Fredkin et al. [35]. With those systems, it is mandatory that the number of
molecules or of balls be conserved. This constraint defines the “conservative logic” [35].

The vectorial Boolean mappings that satisfy the conservation property are the reversible
functions that preserve the Hamming weight. Indeed, one can code the presence (resp. the
absence) of a particle by ‘1’ (resp. ‘0’). The inputs of a conservative bijective mapping can be
partitioned according to their Hamming weight p ∈ [0, n]. These partitions must be preserved
by the mapping, but inside of then, any permutation is legal. As a consequence, the number of
conservative mapping is equal to:

∏n
p=0

(
n
p

)
!, where

(
n
p

) .
= n!

(n−p)! · p! are the binomial coefficients.

In a similar approach as the one used for reversible logic, the minimal set of universal gates is
researched. When n ≤ 2, all the functions are linear. For n = 1, the only conservative function is
the wire (a 7→ a). For n = 2, the two conservative functions are the identity ((a0, a1) 7→ (a0, a1))
and the swap ((a0, a1) 7→ (a1, a0)). For n > 2, a non-linear primitive is required. Fredkin
proposes a “controlled-swap” primitive, that realizes: (c′, d′0, d

′
1) = (c′, d′0·c′⊕d′1·c′, d′1·c′⊕d′0·c′).

The input c′ is unchanged and controls the swap of data inputs d0 and d1. As with reversible
gates, the definition can be enlarged to encompass arbitrary function f control of two inputs, as
illustrated in Fig. 2.7. Notice that the convention on the controlled swap polarity is the inverse
of the one presented in [35].

It is worth noticing that Fredkin provides in [35] with two realizations of his gate in the
billiard ball model, respectively nicknamed “R. Feynman and A. Ressler” and “N. Margolus”.
The generalized Fredkin gate Fn introduced in this thesis can be trivially realized in the same
model, by wrapping a Fn−1 gate between a couple of switch / anti-switch (“R. Feynman and
A. Ressler”) or interaction / anti-interaction (“N. Margolus”) gates fed with the extra control
signal. This construction grows the gate linearly with the number of control signals added.

In Fn, the inputs a0 and a1 are swapped when all the controls are equal to ‘1’. The swapping
leads to a difference when a0 6= a1, i.e. when (a0, a1) is either equal to (0, 1) or to (1, 0). As a
consequence, the n-input generalized Fredkin gate with positive controls simply swaps 1 · · · 101
and 1 · · · 110.

The conservative functions can be generated from the conservative transpositions. This
property results from the fact that the set of conservative functions is isomorphic to the cartesian
product:

⊕n
p=0 σ(n

p)
. This shows that the conservative functions can be generated by the

composition of conservative transpositions τσ2n (i, j), with |i| = |j| = p, for all p ∈ [0, n]. The
conservative transpositions can indeed be partitioned into n + 1 classes: if p belongs to [0, n],
then a conservative transposition of two items of Hamming weight p leaves unchanged other
partitions of Hamming weight different from p.

2.2. LOGICAL DISSIPATION 13

d′
0 = f(c0, c1) · d0 ⊕ f(c0, c1) · d1d0

d1 d′
1 = f(c0, c1) · d1 ⊕ f(c0, c1) · d0

f = 0f f = 1

(b): The “Controlled swap” (Fredkin) gate

is or

f

c′0 = c0

c′1 = c1

c0

c1

(a): “Generalized Fredkin gate”

Figure 2.7: Fredkin generalized gate, illustrated in (a) with two control signals c0 and c1, for
which a control function f is evaluated, and pilots (b) a conditional swap.

Lemma 1 Let i and j be two bit vectors satisfying |i| = |j|. Then |i⊕ j| is even.

Demonstration 1 (Proof of lemma 1) Given two bits x and y, their exclusive-or can be
evaluated with the following arithmetical equation: x ⊕ y = x + y − 2 × x · y. Thus, if bit
vectors i and j are equi-weighted, |i ⊕ j| =

∑
p (i⊕ j)p =

∑
p ip +

∑
p jp − 2 ×∑p (i · j)p =

2×∑p

(
ip − (i · j)p

)
∈ 2 N.

The conservative transpositions can be generated from the subset of τσ2n (i, j), for which
|i| = |j| and |i⊕ j| = 2. The demonstration is given in the form of the algorithm 1. For a list
k, we use the following notations:

• the scalar k.back() refers to the last element and

• the instruction k.push back(tmp) consists in appending the element tmp at the end of
k.

An illustration of the algorithm 1 is provided in Tab. 2.1.

Algorithm 1 Computing all the conservative transpositions from the distance-2 transpositions.

1: k ← {i}; {Initialization of a list (e.g. a C++ std::list) as a singleton.}
2: for p = 0 to n− 1 do {The p− 1 first bits of k.back() and j are identical.}
3: if ip 6= jp then
4: for q = p + 1 to n− 1 do {The distance | (in−1 · · · ip+1)⊕ (jn−1 · · · jp+1) | is odd.}
5: if iq 6= jq then
6: tmp← k.back()⊕ 2p ⊕ 2q; {Moving two bits forward in the direction of j.}
7: k.push back(tmp); {Appending a new link in the chain k.}
8: end if
9: end for

10: p← q; {Advancing the outer loop counter}
11: end if
12: end for{Post-condition: k.back() = j.}
13: return k; {The walk from i to j through chain k is completed.}

The algorithm 1 allows the decomposition of the conservative transpositions according to:

τσ2n (i, j) =

{
Id if k.size() = 1 ,

©k.size()−2
r=0 τσ2n (k[r], k[r + 1]) otherwise .

14 CHAPTER 2. SCA IMMANENCE

Table 2.1: Illustration of the decomposition of τσ2n (i, j) for n = 8, initial value i =
i7i6i5i4i3i2i1i0 = Ox62 and final value j = Ox98, where |i| = |j| = 3.

Input Element of {0, 1}8 Output

i 01100010 k[0]
.
= i (Initialization)

01101000 k[1]
.
= k[0]⊕ 00001010 (p = 1, q = 3)

01011000 k[2]
.
= k[1]⊕ 00110000 (p = 4, q = 5)

j 10011000 k[3]
.
= k[2]⊕ 11000000 (p = 6, q = 7)

In the former equation, all the τσ2n (k[r], k[r + 1]) are distance-2 conservative transpositions,
i.e. generalized Fredkin gates, which proves the decomposition proposition. More precisely, if p
and q denote the indices of the differences between k[r] and k[r + 1], then τσ2n (k[r], k[r +
1]) is the generalized Fredkin gate whose control function f (refer to Fig. 2.7) is: x 7→∏

b∈[0,2n[\{p,q} (k[r]b ⊕ xb) =
∏

b∈[0,2n[\{p,q} (k[r + 1]b ⊕ xb). Notice that f , operating on the

restriction [0, 2n[\{p, q}, can be rewritten thanks to the usual C-style binary operator == as:
x 7→ (x==k[r]) = (x==k[r + 1]).

The previous demonstration is constructive, which proves the synthesizeability of the studied
functions. However, knowing that a solution exists, the actual synthesis can optimize the
number of gates. For instance, all the 36 conservative bijections for an n = 3 dimensionality,
defined in Tab. 2.3 can be decomposed using an exhaustive search of the netlists that instantiate
the minimum number of Fredkin gates. Commercial synthesizers, using Boolean decomposition
into (AND, OR) primitive gates prior to performing a technological mapping, cannot cope with
such a synthesis. Although the conservative library shown in Tab. 2.2 can be parsed and
understood properly by any legacy synthesizer, no technological mapping is possible in practice
due to the lack of either AND or OR primitives. A dedicated synthesis tool must thus be written
to achieve the Boolean decomposition with Fredkin gates. This tool has been devised at the
ENST, and is fully operational for small values n of conservative bijections {0, 1}n 7→ {0, 1}n
to map.

The optimally compact netlists are expressed in terms of the Fredkin gate (item 12) and of
the 6 permutations (items 0, 13, 8, 22, 27 and 35). The former is represented in Tab. 2.4 and
the latter are depicted as in Tab. 2.5. The netlists are provided with in Tab. 2.6. Notice that
the netlists provided in this table are not unique.

2.2. LOGICAL DISSIPATION 15

Table 2.2: Liberty [46] library describing a conservative logic cells library (actually containing
one unique “Fredkin” cell) for combinatorial vectorial Boolean functions mapping.

/**

* Filename: conservative.lib

* Description: A minimal conservative library based on the fredkin gate

* Warning: This library is logical, which means that it does not

* contain physical values (e.g. capacitance, timing, power)

*/

library(conservative)

{

/** The type of the ’in’ and ’out’ ports */

type(bus3)

{

base_type: array;

data_type: bit;

bit_width: 3;

bit_from: 0;

bit_to: 2;

downto: false;

}

/** The Fredkin gate */

cell(fredkin)

{

bus(A)

{

bus_type: bus3;

direction: input;

pin(A[0]) {}

pin(A[1]) {}

pin(A[2]) {}

}

bus(Y)

{

bus_type: bus3;

direction: output;

pin(Y[0]) { function: "A[0]"; /** control signal */ }

pin(Y[1]) { function: "A[0] & A[1] + A[0]’ & A[2]"; }

pin(Y[2]) { function: "A[0]’ & A[1] + A[0] & A[2]"; }

}

}

}

16 CHAPTER 2. SCA IMMANENCE

Inputs
(000) , (100) , (010) , (110) , (001) , (101) , (011) , (111)

Outputs
0 (000) , (100) , (010) , (110) , (001) , (101) , (011) , (111)
1 (000) , (100) , (001) , (110) , (010) , (101) , (011) , (111)
2 (000) , (010) , (100) , (110) , (001) , (101) , (011) , (111)
3 (000) , (010) , (001) , (110) , (100) , (101) , (011) , (111)
4 (000) , (001) , (100) , (110) , (010) , (101) , (011) , (111)
5 (000) , (001) , (010) , (110) , (100) , (101) , (011) , (111)
6 (000) , (100) , (010) , (110) , (001) , (011) , (101) , (111)
7 (000) , (100) , (001) , (110) , (010) , (011) , (101) , (111)
8 (000) , (010) , (100) , (110) , (001) , (011) , (101) , (111)
9 (000) , (010) , (001) , (110) , (100) , (011) , (101) , (111)
10 (000) , (001) , (100) , (110) , (010) , (011) , (101) , (111)
11 (000) , (001) , (010) , (110) , (100) , (011) , (101) , (111)
12 (000) , (100) , (010) , (101) , (001) , (110) , (011) , (111)
13 (000) , (100) , (001) , (101) , (010) , (110) , (011) , (111)
14 (000) , (010) , (100) , (101) , (001) , (110) , (011) , (111)
15 (000) , (010) , (001) , (101) , (100) , (110) , (011) , (111)
16 (000) , (001) , (100) , (101) , (010) , (110) , (011) , (111)
17 (000) , (001) , (010) , (101) , (100) , (110) , (011) , (111)
18 (000) , (100) , (010) , (101) , (001) , (011) , (110) , (111)
19 (000) , (100) , (001) , (101) , (010) , (011) , (110) , (111)
20 (000) , (010) , (100) , (101) , (001) , (011) , (110) , (111)
21 (000) , (010) , (001) , (101) , (100) , (011) , (110) , (111)
22 (000) , (001) , (100) , (101) , (010) , (011) , (110) , (111)
23 (000) , (001) , (010) , (101) , (100) , (011) , (110) , (111)
24 (000) , (100) , (010) , (011) , (001) , (110) , (101) , (111)
25 (000) , (100) , (001) , (011) , (010) , (110) , (101) , (111)
26 (000) , (010) , (100) , (011) , (001) , (110) , (101) , (111)
27 (000) , (010) , (001) , (011) , (100) , (110) , (101) , (111)
28 (000) , (001) , (100) , (011) , (010) , (110) , (101) , (111)
29 (000) , (001) , (010) , (011) , (100) , (110) , (101) , (111)
30 (000) , (100) , (010) , (011) , (001) , (101) , (110) , (111)
31 (000) , (100) , (001) , (011) , (010) , (101) , (110) , (111)
32 (000) , (010) , (100) , (011) , (001) , (101) , (110) , (111)
33 (000) , (010) , (001) , (011) , (100) , (101) , (110) , (111)
34 (000) , (001) , (100) , (011) , (010) , (101) , (110) , (111)
35 (000) , (001) , (010) , (011) , (100) , (101) , (110) , (111)

Table 2.3: The truth table of the
(
3
0

)
! ·
(
3
1

)
! ·
(
3
2

)
! ·
(
3
3

)
! = 36 conservative bijections of {0, 1}3.

Index 12
Name F

Diagram

F
c
b
a a′

b′

c′
=

c
b
a

b′

c′

a′

Table 2.4: The genuine Fredkin gate F
.
= F3 schematic representation.

2.2. LOGICAL DISSIPATION 17

Index 0 13 8 22 27 35
Name P0 = Id P1 P2 P3 P4 P5

Diagram

a′

b′
a
b
c c′ c

b
a a′

b′

c′ c
b
a a′

b′

c′ c
b
a a′

b′

c′ c
b
a a′

b′

c′ c
b
a a′

b′

c′

Table 2.5: The six permutations (aka wires reordering or elements of σ3) of {0, 1}3.

18 CHAPTER 2. SCA IMMANENCE

Netlist Diagram Simplified diagram

0 P0

a′

b′
a
b
c c′

a′

b′

c′

a
b
c

1 P1 ◦ F

Fb
c

a′

b′

c′

a a

c
b

b′
c′
a′

2 P3 ◦ F ◦ P5

Fb
c

a a′

b′

c′c

a
b

a

c
b

b′

c′
a′

3 P3 ◦ F ◦ P3 ◦ F

F F
c
b
a a′

b′

c′ c
b
a b′

c′

a′

4 P2 ◦ F ◦ P5 ◦ F

F F
c
b
a a′

b′

c′ c
b
a c′

b′
a′

5 P2 ◦ F ◦ P3

F
c
b
a a′

b′

c′ c
b
a c′

b′

a′

6 P3 ◦ F ◦ P4

F
c
b
a a′

b′

c′ c
b
a a′

b′

c′

7 P3 ◦ F ◦ P2 ◦ F

F F
c
b
a a′

b′

c′ c
b

a′a
c′

b′

8 P2
c
b
a a′

b′

c′ c
b
a b′

a′

c′

9 P4 ◦ F

F
c
b
a a′

b′

c′ c
b
a b′

c′

a′

10 F ◦ P3

F
c
b
a a′

b′

c′ c
b
a c′

b′
a′

11 F ◦ P5 ◦ F

F F
c
b
a a′

b′

c′ c
b
a

b′
c′

a′

12 F

F
c
b
a a′

b′

c′ c
b
a

b′

c′

a′

13 P1
c
b
a a′

b′

c′ c
b
a a′

c′

b′

14 P3 ◦ F ◦ P5 ◦ F

F F
c
b
a a′

b′

c′ c
b
a

c′

b′

a′

15 P3 ◦ F ◦ P3

F
c
b
a a′

b′

c′

a

c
b
a b′

c′

a′

16 P2 ◦ F ◦ P5

F
c
b
a a′

b′

c′ c
b
a

a′

b′

c′

17 P2 ◦ F ◦ P3 ◦ F

F F
c
b
a a′

b′

c′ c
b
a

b′
c′

a′

Continued on next page . . .

2.2. LOGICAL DISSIPATION 19

18 P2 ◦ F ◦ P2 ◦ F

F F
c
b
a a′

b′

c′ c
b
a a′

b′

c′

19 P2 ◦ F ◦ P4

F
c
b
a a′

b′

c′ c
b
a

b′
c′
a′

20 F ◦ P2

F
c
b
a a′

b′

c′ c
b
a b′

a′

c′

21 F ◦ P4 ◦ F

F F
c
b
a a′

b′

c′ c
b
a b′

c′

a′

22 P3
c
b
a a′

b′

c′ c
b
a

b′
a′
c′

23 P5 ◦ F

F
c
b
a a′

b′

c′ c
b
a c′

b′

a′

24 P3 ◦ F ◦ P4 ◦ F

F F
c
b
a a′

b′

c′ c
b
a a′

b′

c′

25 P3 ◦ F ◦ P2

F
c
b
a a′

b′

c′ c
b
a a′

c′

b′

26 P2 ◦ F

F
c
b
a a′

b′

c′ c
b
a b′

a′

c′

27 P4
c
b
a a′

b′

c′ c
b
a

a′

b′

c′

28 F ◦ P3 ◦ F

F F
c
b
a a′

b′

c′ c
b
a c′

b′
a′

29 F ◦ P5

F
c
b
a a′

b′

c′ c
b
a c′

b′

a′

30 P2 ◦ F ◦ P2

F
c
b
a a′

b′

c′ c
b
a a′

b′

c′

31 P2 ◦ F ◦ P4 ◦ F

F F
c
b
a a′

b′

c′ c
b
a a′

c′

b′

32 F ◦ P2 ◦ F

F F
c
b
a a′

b′

c′ c
b
a

c′
a′
b′

33 F ◦ P4

F
c
b
a a′

b′

c′ c
b
a

a′
c′
b′

34 P3 ◦ F

F
c
b
a a′

b′

c′ c
b
a c′

a′

b′

35 P5
c
b
a a′

b′

c′ c
b
a

a′

c′

b′

Table 2.6: Minimal netlists of the 36 conservative gates of {0, 1}3.

20 CHAPTER 2. SCA IMMANENCE

2.2.3 Application to DES

The revisited presentation of the reversible and conservative logic in Sec. 2.2.1 and 2.2.2 does
not share the same objective as Toffoli and Fredkin’s. They attempted to build a universal
computational model resorting only to reversible or conservative primitives, adding whenever
necessary dummy or duplicated inputs and corresponding outputs. Our goal is basically the
same, except that it concentrates on a restricted class of functions, namely reversible and
conservative functions. We proved that it is possible to synthesize them without adding neither
non-functional inputs nor outputs. This constraint, that might appear artificial at this point,
is indeed crucial in front of an active attacker. The dummy input or output can be exploited
to inject faults, and thus open up on a potential vulnerability. Our approach is thus based
on a precaution principle: without altering the problem’s framework (n-bit to n-bit vectorial
Boolean mappings), we have shown that a reversible or conservative synthesis is possible.

Given the nature of the underlying physics,

• reversible logic, adapted to continuous systems, fits to analog computation, whereas

• conservative logic, adapted to discrete systems, fits to digital computation.

The goal of this section is to apply the results from the conservative logic to a real-world
algorithm, such as DES. If cryptographic computation often uses bijections, they are however
usually not conservative. This problem can be alleviated thanks to a special data representation.
For instance, the dual-rail encoding consists in using two wires (a0, a1) to encode one Boolean
variable A. The couple (a0, a1) has constantly a unit Hamming weight with the following
convention: (a0, a1)

.
= (A,A). The physical motivation is that every state of A (‘0’ or ‘1’)

conveys the same amount of energy, since they are encoded with globally indistinguishable
states (‘01’ and ‘10’.) Consequently, resorting to dual-rail, conservative logic can realize all
bijections, conservative or not.

The Data Encryption Standard [71] cipher is built upon the following primitives: permuta-
tions, linear operations (typically XORs), and non-linear operations. The later are referred to as
substitution boxes (or more shortly “sboxes”.) The sboxes of DES are neither conservative nor
reversible since they operate from {0, 1}6 to {0, 1}4. However, the input of every sbox is also
forked (hence preserved unchanged), and the 4-bit output is the input of an XOR gate.

As a consequence, the non-linear and non-bijective logic of every substitution box can be
seen as a function f controlling a Toffoli gate. This idea is explicited on Fig. 2.8(a), where, for
the sake of clarity, the addition of the round key has been omitted. The input data are the bits
32, 1, 2, 3, 4 and 5 from a given register R. This input is kept verbatim in an output register
called R′, that corresponds to the end of one DES round before the Left/Right half blocks swap.
The controlled bits are bit 9 (but also 17, 23, and 31, computed in parallel by sbox #1) from
another register L. The control function, denoted f in Fig. 2.8(a), cannot be obtained directly
from the positive/negative Toffoli gates defined in Eqn. (2.1). Indeed, the sboxes output bits are
not single min-terms of the control signals. Nevertheless, it is straightforward to instantiated
enough chained T6+1 gates to end up with the ad hoc disjunctive normal form.

The same function can be realized in conservative logic using dual-rail encoding. The control
wires are the true values of the ad hoc R bits, and the controlled data is the couple (L0,L1).
Indeed, if the control function is true, L is unchanged, otherwise it is inverted, which corresponds
to the desired XOR functionality. The conservative sbox #1 first bit computation for DES is
shown in Fig. 2.8(b).

For this reason, the synthesis remains reasonable, since the only gates required are:

• Ti for i ∈ [1, 6 + 1] in reversible logic, or,

• Fi for i ∈ [1, 6 + 2] in conservative logic,

2.2. LOGICAL DISSIPATION 21

f

R′{32, 1, 2, 3, 4, 5}
6

R{32, 1, 2, 3, 4, 5}

1

6

L′{9}L{9}

f

R′
1{32, 1, 2, 3, 4, 5}

6

L′
0{9} ← (false)

R1{32, 1, 2, 3, 4, 5}

L′
1{9} ← (right)

L0{9}

L1{9}

1

6

(a) DES sbox #1 first bit in reversible logic (b) DES sbox #1 first bit in conservative logic

Figure 2.8: Computation of the first bit of the sbox #1 of DES, (a) in reversible logic and (b)
in conservative logic.

m

64

k

56

56

k

64

c

(c, k) = DES(m, k)

bijection:
{0, 1}64+56 → {0, 1}64+56

m

64

(a)

c = DES(m, k0)

bijection:
{0, 1}64 → {0, 1}64

64

c

(b)

Figure 2.9: Abstract view of a symmetric cipher (here the Data Encryption Standard [71]), (a)
generic in the key k or (b) personalized for a given 56-bit key k0.

because the input size of the DES substitution box is six bits.

Now, taking into account the fact that DES involves a 64-bit message and a 56-bit key,
the full synthesis in reversible or conservative logic is feasible. The result in reversible logic is
shown in Fig. 2.9(a). A similar schematic would be obtained in dual-rail logic for a conservative
synthesis. The output of the reversible DES is a ciphertext and the key, that (in this very case)
is returned unchanged, because of a specificity in the DES key schedule. After one encryption,
only the ciphertext is disclosed; the key must be hidden from the user. It is thus the only
information that is dissipated. In other terms, the sole bits that get erased are the very bits of
the key.

To avoid this risk, the cipher could be specialized for one key, as depicted in Fig. 2.9(b).
However, the latter case is not studied because it violates Kerckhoff’s law. The secret is indeed
dissolved into the implementation and will be vulnerable to a disclosure of the layout. A
disclosure can typically happen if the circuit “repositories” (i.e. the source code to design,
validate and build the fabrication masks) have leaked out on the internet, either by a mistake
or by a malevolent intrusion. The layout must also be disclosed in the case of a legal suit, for
instance if the plaintiff (the disguised attacker) claims a patent infringement about a pretext
technological feature at the transistor level embedded in the layout.

The recent possibility to implement dynamic reconfiguration in FPGAs can be a work-
around for a safe implementation of Fig. 2.9(b) that does not violate Kerckhoff’s law [87].

22 CHAPTER 2. SCA IMMANENCE

2.2.4 Conclusion about reversible and conservative logics

The section 2.2 has proved that the realization of encryption algorithms is practical in both
reversible and conservative logics. The number of unique primitive gates required for the syn-
thesis of a product block cipher has been shown to be determined by the input size of the sboxes.
Such implementations are immune to SCAs, the only problem being the key management. In
fact, the secret key can be safely injected into the datapath, but its deletion after usage must
be carefully devised to avoid its dissipation through a side-channel.

In the sequel, a regular CMOS [65] technology is used instead of reversible or conservative
gates, for two reasons:

1. to our knowledge, no integrable and scalable Toffoli or Fredkin gates exist so far, and

2. synthesis tools are not available. The one that was written to map conservative logic
functions (refer to Tab. 2.6) works in exponential time, and becomes unpractical starting
from n ≥ 5.

The use of CMOS logic opens up two security breaches, discussed hereafter. The imperfection
of the gates (technological dissipation) as well as the erasure of bits of information (logical
dissipation) can indeed be exploited.

The term cryptophthora (secret degradation) is sometimes used to express the degradation
of secret key material resulting from side channel leakage. The rest of this chapter covers the
topic of retrieving information correlated to a key, be it dissolved into the device or supplied
externally, from a real device. First we show that the primitives used in algorithms make the
attack outcome easier for the attacker. We focus on DPA attacks on non-linear parts of an
algorithm, but we also mention that linear parts can enhance other attacks, such as the DFA.
Then we show how concrete design constraints make the setup of attacks easy. We expose two
constraints: the necessity to internally use some sub-keys, and the imperfection of standard
logic gates.

2.3 Power attack model
Extended version of CARDIS’04 communication [89]

CMOS gates consume different amounts of power whether their output has a falling or a rising
edge. Therefore the overall power consumption of a CMOS circuit leaks information about the
activity of every single gate. This explains why, using differential power analysis (DPA), one
can infer the value of specific nodes within a chip by monitoring its global power consumption
only.

In this section, we model the information leakage in the framework used by conventional
cryptanalysis. The information an attacker can gain is derived as the autocorrelation of the
Hamming weight of the guessed value for the key. This model is validated by an exhaustive
electrical simulation.

Our model proves that the DPA signal-to-noise ratio increases when the resistance of the
substitution box against both linear and differential cryptanalyses increases.

This result shows that the better shielded against linear and differential cryptanalyses a
block cipher is, the more vulnerable it is to side-channel attacks such as DPA.

2.3.1 Introduction to power attacks

Power attacks are side-channel attacks on cryptosystems implementing public or private key
algorithms. They were first published by Kocher in 1998 [54]. Public key algorithms, like RSA,
are vulnerable to simple power analysis (SPA), but can be efficiently secured by algorithmic

2.3. POWER ATTACK MODEL 23

counter-measures [29, 88], like key and/or data blinding. Secret key algorithms, such as DES
or AES, consist in the repetition of several rounds, and are thus threatened by the differential
power analysis (DPA.)

DPA can attack on either the first or the last round of an algorithm and requires the
knowledge of either the cleartext or the ciphertext. The side-channel exploited is the difference
between the power consumed by a single gate when its output rises or falls.

Similar attacks take advantage of other types of leakage that disclose information about the
internal computation. For instance, the correlation power analysis (CPA [111, 112]) monitors
the activity of a register: the attack exploits the fact that in CMOS logic, a gate only dissipates
energy when it changes states. CPA, unlike DPA, can be modeled with the assumption that
the energy dissipation is independent on the gate (either rising or falling) edge. Those attacks
can also be conducted by recording a different physical quantity than the power consumption,
like the electromagnetic field [37].

The rest of this section is organized as follows: Sec. 2.3.2 explains the principle of the DPA
attack. In Sec. 2.3.3, we present a theoretical model for the DPA. The model is validated against
exhaustive electrical simulations in Sec. 2.3.4. In Sec. 2.3.5, some results prove that the better
shielded against linear cryptanalysis a block cipher is, the more vulnerable it is to side-channel
attacks such as DPA.

2.3.2 Differential power analysis (DPA)

2.3.2.1 Measuring the consumption bias of a CMOS inverter

The schematic depicted on Fig. 2.10(a) has been implemented using discrete National Semi-
conductor CD4007M transistors to measure the instantaneous current drawn from the power
source VDD and sent back to the ground VSS. The two resistors RN and RP are not functional.
They have been added to ensure that the voltage drops between:

1. VSS and point A and

2. VDD and point B

reveal respectively the currents I(VSS) and I(VDD). According to Ohm’s law:

1. I(VSS) = (V (A)− V (VSS)) /RN and

2. I(VDD) = (V (VDD)− V (B)) /RP .

In the context of a power analysis, an attacker also introduces a resistor RN or RP (referred to
as a “spying resistor”) outside of the circuit under attack. The side-channel acquired by this
mean can be equivalently seen as:

• a voltage drop (expressed in volts), or

• a current (expressed in ampers), or

• a power (product between the constant value of (VDD−VSS) and the current, expressed
in watts.)

In the sequel, the three units are used interchangeably to quantify the leaks.
When the inverter evaluates to false (S = VSS), the N transistor is conducting whereas

the P is blocked. The contrary happens when the inverter evaluates to true (S = VDD.) The
inverter’s transistors are thus modeled by interrupters, as in Fig. 2.10 (b) and (c). Fig. 2.11
shows that the current I(VDD) flowing through resistor RP is the sum of:

• a short-circuit current, Ishort, whose intensity is independent of the edge (falling or rising)
of the output S of the inverter and of

24 CHAPTER 2. SCA IMMANENCE

E = VDD E = VSS

(b) (c)

CLN

CLP

RP

RN

CLN

CLP

RP

RN

IL

IL

(a)

I(VDD)

I(VSS)

E

RN

RP

P

N

A

B

VSS

VDD

10V
=

S S S

Figure 2.10: (a) Experimental setup used to measure the currents I(VDD) and I(VSS) when
the output S of a CMOS inverter switches. The currents flows are illustrated in (b) and (c) for
respectively a falling and a rising edge of the inverter’s output S.

• a current IL, loading a charging capacitance CL and observed only when S rises from VSS
to VDD (Fig. 2.10(c)), because, otherwise, CL discharges through RN only (Fig. 2.10(b)).
The capacitance CL models both the gate output capacitance, linked to the gate fanout
and to the routing wires, as well as the parasitic capacitances.

The current I(VDD) depends on the edge (rising or falling) of S. We denote:

• I↓ = Ishort the current observed upon a VDD → VSS edge and

• I↑ = Ishort + IL the one observed upon a VSS → VDD edge.

2.3.2.2 Principle of the DPA attack

The analysis of the instantaneous power consumption can leak the type of operations being
performed. For instance, Fig. 2.12 shows that the power consumption of a DES operator
indicates the beginning of every encipherment. The retrieval of information from a single
power trace is referred to as SPA.

Moreover, a more precise analysis can insulate the activity of a single gate, because:

• the instantaneous consumption of the circuit is the sum of all individual consumptions,

• each gate draws a different intensity (I↑ or I↓) according to its output edge, as shown in
the previous example of the CMOS inverter.

The DPA attacks proceed in two phases. First, a large number of power consumption traces
for different plaintexts1 are recorded. Those traces contain the information about the type of
edge (via a I↑ or I↓ contribution) of each gate in the design.

The second step consists in extracting this information from the traces Tx(t). In the his-
torical DPA [54], Kocher suggests to partition the traces according to the value of a particular

1The plaintexts need not be known: the DPA can be a ciphertext-only attack. It can also be a plaintext-only
attack, chosen or not [39].

2.3. POWER ATTACK MODEL 25

0

5

10

15

20

5 µs3, 75 µs2, 5 µs1, 25 µs0

0

5

10

15

20

C
ur

re
nt

I
(V

SS
)

[m
A

]

C
ur

re
nt

I
(V

D
D

)
[m

A
]I↑ I↓ I↑Ishort

IL

A: I(VDD)
B: I(VSS)

E :

S :

Figure 2.11: Measures of I(VDD) et I(VSS) of the inverter of Fig. 2.10(a) acquired by an
oscilloscope.

bit i of the algorithm, which (hopefully) corresponds to a particular node in the netlist. One
partition, S0, gathers the traces Tx(t), where i = 1, expected to contain an I↑ contribution,
whereas the other, S1, gathers the traces where i = 0. Thus the “differential trace”, computed
as:

1

#S0

∑

Tx∈S0

Tx(t) − 1

#S1

∑

Tx∈S1

Tx(t) ,

reveals the I↑−I↓ power consumptions of the target gate i. This modus operandi can be used as
an oracle to validate or invalidate an assumption. The DPA attack consists in testing whether
the differential trace feature a singularity (peak) when analyzing the consumption of a gate
i whose unknown state is guessed by making an hypothesis on a secret (typically a part of a
round key.) When the hypothesis on the key is correct, the differential trace is expected to
feature a peak, resulting from the accumulation in a coherent manner of the I↑−I↓ information
extracted from the power traces. More precisely, the peak is expected around the date tS when
the gate switches.

Refinements on this attack have been put forward [61]. The idea is to take into account
that, in CMOS technologies, a gate only dissipates power when its output switches. The traces
are thus partitioned into three sets. In addition to Kocher S0 and S1 sets, the S2 set contains
the traces with no or little dissipated power. Only traces from the sets S0 and S1 are used
to compute the differential traces. For the sake of clarity, and to prepare for the presentation
of our DPA model, we prefer not to present DPA in terms of traces partitioning but rather
in terms of traces weighting. This allows us to reformulate the definition of the differential
traces as a weighted accumulation of power traces, the weights being +1, −1 and 0 for traces
belonging to sets S0, S1 and S2.

2.3.2.3 Ghost peaks in differential traces

It has been reported in [111] that “ghost” peaks also appear in differential traces computed
with a wrong assumption of the key. We explain in the next section that those secondary peaks
can be as high as the peak for the correct key and we provide a theoretical way to compute
their relative amplitude.

26 CHAPTER 2. SCA IMMANENCE

0

10

20

30

40

50

60

70

80

543210

8 µs6, 4 µs4, 8 µs3, 2 µs1, 6 µs0

I
(V

D
D

)
[A

.U
.]

Time [number of encipherments]

Figure 2.12: Power consumed by five DES encipherments (programmed in an FPGA).

2.3.3 DPA model

2.3.3.1 Framework for DPA

Model general setup. The DPA model we describe is applicable to hardware implementa-
tions of private key product ciphers. The algorithm consists in the repetition of some rounds,
the first or the last one being attackable by DPA. Without any loss of generality, we focus on
an attack on the last round. Fig. 2.14 shows the typical dataflow of one round: the “plaintext”
corresponds to the intermediate message produced by the penultimate round which is mixed
in the last round with the “key” to produce the “ciphertext”. The last round features one
non-linear function (called S-Box) and one linear function (in our case a bit-wise XOR-ing) with
some bits of the round key k. Given a known value x and an unknown but constant key k, the
value y of all the target bits i ∈ [0, q[under investigation is derived as:

y = F (x⊕ k) . (2.2)

In the original DPA [54], the value of each bit i of y is used to partition the traces so as to
build differential traces. In other words, the “selection function” D introduced by Kocher is the
projection of Eqn. (2.2) on i. In our model, the whole value of y is used to weight the traces in
a view to obtain one differential trace.

As explained below, the selection function of Eqn. (2.2) applies to both DES and AES.
Notice that side-channel attacks against block ciphers that do not use sboxes, such as RC5, are
still an open topic.

DES. Fig. 2.13 represents a simplified dataflow of the last round of DES: the permutations
and the expansion are left apart since the attacker can work around them. The guess on the
bit i (belonging to the right part of the round 15 output) comes down to a guess on a bit of the
output y of the S-Box, since CL is known to the attacker. DPA on DES is therefore a particular
case of Fig. 2.14, where F = S is the direct S-Box: Kp→Kq with p = 6 and q = 4 (we denote
K = ({0, 1},⊕, ·) the field with two elements.)

AES. The schematic of Fig. 2.14 comes in a direct line from the structure of the last round
of AES, with F = S−1 = InvSubBytes and p = q = 8. This structure is referred to as

2.3. POWER ATTACK MODEL 27

SPN, for Substitution – Permutation Networks. With Feistel networks, it is the second kind of
symmetrical block encryption structures to be encountered.

Fig. 2.13 schematic actually also applies to any Feistel cipher with constant S-Boxes, in
which the attacked bit belongs to the right part of the penultimate round.

y

pq

k

xS-Box

CR

← Plaintext→

← Ciphertext→

← Key

F

CL

PL PR

Figure 2.13: Simplified DES cipher flow showing a
single S-Box out of eight.

q

p

p

x

k Key (guessed)

Ciphertext (known)

y Plaintext (unknown)

F−1

Figure 2.14: Schematic DPA setup
on an SPN structure.

2.3.3.2 Noise sources occurring during DPA

There are various sources of noise when doing a DPA:

N1. The activity of the rest of the circuit. This noise can be lowered by the accumulation of
many independent traces. Noise spectral power vanishes as the inverse square root of the
number of traces recorded.

N2. The jitter on the attacked gate. Depending on the delays in the lines and the type of
edges, the switching of a gate output can happen at different dates, which leads to a
loss of coherence of the trace accumulation. This is negligible for gates directly fed by
registers, as their inputs are perfectly synchronized.

N3. S-Boxes themselves introduce their own bias. Measured traces slightly match the activity
deduced from the computation of one plaintext bit yi = Fi(k ⊕ ·), as described by
Eqn. (2.2), even if the assumption on k turns out to be wrong. Although substitution box
bits are designed to be independent from one another so as to block linear cryptanalysis,
DPA modus operandi artificially introduces an inter-bit correlation. The plaintext bits y
are computed all together which introduces an artificial correlation between them. This
notion of S-Box “intrinsic noise” is investigated in the next section. It is also called “ghost
peaks” in [111] and “algorithmic noise” in [61].

2.3.3.3 DPA intrinsic noise

2.3.3.3.1 The “DPA signal”: a model for the differential traces peak amplitude.
In this section we assume that the noise sources N1 and N2 are low enough. Under this
condition, the DPA makes it possible to insulate the power consumption (I↑ or I↓) resulting
from the activity of one single bit i: this manifests as a peak in the differential trace when the
key is guessed right.

We propose to model the amplitude of the peak observed in the differential trace as a “DPA
signal” that is built by an accumulation of scores. Given one ciphertext x, this score is:

+1 if the value Fi(k⊕x) inferred for the bit i by the selection function (Eqn. 2.2) is the same
as the actual Fi(k0 ⊕ x) for the correct key k0,

28 CHAPTER 2. SCA IMMANENCE

-1 otherwise. As the recomputed bit value is false, the trace is considered to provide a
I↑ power consumption contribution whereas the actual contribution is I↓, or vice-versa.
Thus, instead of accumulating coherently I↑−I↓ to the differential traces, the opposite
I↓−I↑ will be added, thus reducing the score coherence.

The scores are accumulated over many encipherments. Asymptotically, the accumulation is
done for all the ciphertexts x.

As already mentioned when discussing the noise source N3, all the q bits of y = F (k ⊕ x)
are guessed at the same time. As they take their values simultaneously, it is impossible to test
the yi = Fi(k ⊕ x) independently.

The “DPA signal” is thus the accumulation over all the ciphertexts x of the score obtained
by a bit i of the plaintext against the q bits of actual plaintext. As a result, the DPA signal is
built from the correlation of plaintext bit i for the trial key k with plaintext bit j for the actual
key k0:

Corr(k0, k; 1i, 1j) , where: ∀k0, k ∈ Kp, ∀a, b ∈ Kq, (2.3)

Corr(k0, k; a, b)
.
=

1

2p

∑

x

(−1)
〈a|F (x⊕k)〉⊕〈b|F (x⊕k0)〉

as [29]:

DPA(k0, k; 1i) =

q−1∑

j=0

Corr(k0, k; 1i, 1j) . (2.4)

Moreover, as it is easy to prove that:

Corr(k0, k; a, b) = Corr(k0 ⊕ k, 0; a, b) ,

the correlation is independent of the actual key k0. This means that there are no weak keys as
for the differential power attack. The relevant parameter is the difference k0 ⊕ k between the
actual key and the trial key. We simply denote this difference k, as if the actual key was 0. The
correlation (Eqn. 2.3) is rewritten Corr(k; 1i, 1j). The “DPA signal” is rewritten accordingly:
DPA(k0, k; 1i) = DPA(k; 1i). The correlation takes its values in [−1, +1] and equals +1 if
the guess on the key is correct (i.e. k = 0) and i = j.

2.3.3.3.2 The “ghost peaks”. When recomputing one bit of the plaintext from the ci-
phertext and a wrongly guessed key, the value can, by chance, match the actual value. If it
happens too often, the guessed key might be hard to distinguish from the actual key.

For instance, in the case of DES S-Box #3, there exists one wrong key that leads to a “DPA
signal” (Eqn. 2.4) as high as the one for the correct key: it occurs when the bits 0 or 3 of the
S-Box output are guessed.

Those secondary peaks make it difficult to interpret the differential traces: they make up
an artificial noise that was reported as “ghost peaks” [111].

DPA modus operandi justification

In this section we assume that the S-Box F is balanced and that the attacker found the correct
key (i.e. k = 0). If the partitioning test is done according to the value of 〈a|F (x)〉, where
a belongs to Kq, (e.g. if a = 1i, the sole bit i is used to partition the traces), the attacker

2.3. POWER ATTACK MODEL 29

computes the following DPA signal:

DPA(0; a) =

q−1∑

j=0

1

2p

∑

x

(−1)
〈1j |F (x)〉⊕〈a|F (x)〉

=
1

2p

q−1∑

j=0

∑

x

(−1)
〈1j⊕a|F (x)〉

=
1

2p

q−1∑

j=0

2p δ(1j ⊕ a) (because F is balanced)

=

{
1 if there exists one i ∈ [0, q[such as a = 1i,
0 otherwise.

It shows that DPA exhibits a non-zero signal if and only if (iff) the partition is made on
one of the q plaintext bits. In this case, the DPA signal is maximum (+1).

2.3.3.3.3 A new modus operandi for DPA. The traditional modus operandi for the DPA
is to compute the differential traces for testing the value of the q bits of F output. However, the
q differential traces are not independent, because the each predicted bit i is matched against all
the actual plaintext F (k0⊕ ·). For this reason we consider the sum of the q differential traces.
The DPA signal associated is:

DPA(k)
.
=

q−1∑

i=0

DPA(k; 1i) =
1

2p




q−1∑

i=0

(−1)
Fi ⊗

q−1∑

j=0

(−1)
Fj



 (k) . (2.5)

As an auto-correlation, the signal DPA(k) is maximum in absolute value in k = 0, i.e. when
the attacker guess on the key is correct. This remark is the consequence of the Cauchy-Schwarz
theorem applied on the pseudo-Boolean function k 7→ DPA(k) [19].

The method to compute the differential trace can be reformulated. Let k be the key be-
ing evaluated. For every ciphertext x, the power trace is weighted by W (x, k), the centered
Hamming weight of the recomputed plaintext (Eqn. (2.2)):

W (x, k)
.
=

q−1∑

i=0

Fi(x⊕ k)− q/2 =
1

2

q−1∑

i=0

(−1)
Fi(x⊕k)

. (2.6)

The weighted power traces are accumulated to yield the differential trace.

2.3.4 Electrical simulation of the DPA

The DPA attack is simulated at the electrical level in order to validate our DPA signal model
(Eqn. 2.5).

We find that, given the long time required by electrical simulations, a 6 × 4 S-Box like
one S-Box of DES cannot be simulated for all the plaintext transitions. Instead of limiting
ourselves to a subset of the possible messages, like in [104], we choose to simulate a simpler
cryptographic operator. The cipher used is the one shown in Fig. 2.14, with Serpent [85] S-Box
#0 (p = q = 4.) The truth table of this S-Box is given in Tab. 2.7.

The cipher is synthesized using various synthesis constraints into a 130 nm low leakage
technology. The various logical netlists are translated into SPICE [78] netlists using extracted
standard cells in BSIM3V3 model.

The cipher is fed with all the transitions of plaintexts and the currents I(VDD) and I(VSS)
are extracted during the simulation with eldo tool.

The exhaustive stimuli space exploration (22·q traces) as well as the accuracy provided by the
electrical simulation ensure that the traces we measure and the differential traces we compute
emulate a perfectly noise-free DPA attack.

30 CHAPTER 2. SCA IMMANENCE

Table 2.7: The substitution box #0 {0, 1}4 → {0, 1}4 of the encryption algorithm Serpent.

Inputs 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

Outputs 0x3 0x8 0xf 0x1 0xa 0x6 0x5 0xb 0xe 0xd 0x4 0x2 0x7 0x0 0x9 0xc

0

1

2

3

+
1

+
0
,5

+
0
,3

7
5

+
0
,2

5

+
0
,1

2
50

−
0
,2

5

−
0
,3

7
5

−
0
,5

−
0
,6

2
5

−
0
,7

5

N
um

be
r

of
oc

cu
re

nc
es

DPA signal

01

2,D,E

3

4,6 5,78,A 9,B

CF

Figure 2.15: Theoretical histogram for the DPA signal (Eqn. 2.5). The hexadecimal values
0, · · · , F on top of the bars are those of k0 ⊕ k (written on p = 4 bits). The thick peak for
k0 ⊕ k = 0 is the DPA peak that betrays the secret key k0, whereas the others are the “ghost
peaks”.

2.3. POWER ATTACK MODEL 31

For the cipher described above, the theoretical model (Eqn. 2.5) predicts a DPA signal
whose amplitude is given as an histogram in Fig. 2.15.

The differential traces depicted on Fig. 2.16 are computed from the traces acquired during
the electrical simulation with the method explained above. The differential traces amplitude
for the correct key can reach about 10 mA, which is also more or less the peak amplitude
of a typical trace. The differential traces show that the amplitudes of secondary peaks are

-15

-10

-5

0

5

10

15

1.00.50

D
if

fe
re

nt
ia

lt
ra

ce
[m

A
]

Time [ns] (Last round of an encipherment)

Side-channel: I(VDD)
0

9,B
C
5,7
2,D,E

4,6
1
8,A
F
3

Computation end

-15

-10

-5

0

5

10

15

1.00.50

D
if

fe
re

nt
ia

lt
ra

ce
[m

A
]

Time [ns] (Last round of an encipherment)

Side-channel: I(VSS)
0

9,B

C

5,7

2,D,E

4,6

1

8,A

F

3

Computation end

Figure 2.16: Electrical simulation of a DPA, using either I(VDD) or I(VSS) as the side-channel.
The bold curve is the one computed when the hypothesis on the key is correct (k0 ⊕ k = 0).

those predicted by the histogram of Fig. 2.15 for both side-channel I(VDD) and I(VSS). This
conclusion is the same for all the netlists we simulate, which tends to show that DPA does not
depend on the implementation.

The DPA signals obtained by simulation match the theory, which justifies the DPA model

32 CHAPTER 2. SCA IMMANENCE

of Sec. 2.3.3 and proves that the difference I↑ − I↓ of power consumption of a single gate can
be extracted from the overall power consumed by a cryptographic operator. In addition, the
model remains valid during much of the cipher computation time.

2.3.5 Connections between DPA and conventional cryptanalysis

2.3.5.1 DPA signal-to-noise ratio

DPA work factor is related to actual experiments, where the performance is assessed by a signal-
to-noise ratio (SNR). As already mentioned, even if the DPA is not noisy, it does not allow to
directly spot the right peak (k = 0) because there exists secondary peaks even for wrong keys
(k 6= 0). Secondary peaks are modeled as noise. DPA quality is thus assessed by the following
notion of SNR.

Definition 1 Signal Sig SNR.

SNR(Sig)
.
=

Sig(k=0)−Sig
„

1
#k

P

k

“

Sig(k)−Sig
”2

«1/2 ,where Sig is the signal mean . (2.7)

As far as the DPA signal (Eqn. 2.5) is concerned, a balanced S-Box F satisfies:






DPA(0) =
∑

i,j 2−p
∑

x (−1)
〈1i⊕1j |F (x)〉

=
∑

i,j δ(1i ⊕ 1j) = q ,

DPA = 2−2p
∑

i,j

∑
x (−1)

F (x)i

(∑
k (−1)

F (x⊕k)j

)

= 0 (because F is balanced) .

(2.8)

As a result, the DPA signal-to-noise ratio is:

SNR(DPA)(F)
.
=

DPA(k = 0)−DPA√
1

#k

∑
k

(
DPA(k)−DPA

)2 where DPA= 1
#k

∑
k DPA(k)=0.

=
q

(
1
2p

∑
k

(
1
2p

(∑q−1
i=0 (−1)

Fi ⊗∑q−1
j=0 (−1)

Fj

)
(k)
)2
)1/2

= q 2
3
2 p




1

2p

∑

k




̂


∑

i

(−1)
Fi ⊗

∑

j

(−1)
Fj



(k)




2



−1/2

(Parseval)

= q 22p




∑

k

(
∑

i

̂
(−1)

Fi(k)

)4



−1/2

since f̂ · ĝ= ̂(f ⊗ g)

= q 22p




∑

k

(
q−1∑

i=0

θ̂F (k, 1i)

)4



−1/2

since θ̂F (k, a)=
̂

(−1)
〈a|F 〉

(k) , (2.9)

where:

• f̂(k)
.
=
∑

x (−1)
〈x|k〉

f(x) is the “Fourier transform” of the Boolean function f (note that
some authors use the same notation for the so-called “Hadamard-Walsh transform” of f ,
defined as the Fourier transform of (−1)

f
) and

2.3. POWER ATTACK MODEL 33

• θF (k, a) is the characteristic function of F , defined as δ(F (k)⊕ a)
.
=

{
1 if F (k) = a ,
0 otherwise .

The DPA SNR expression of Eqn. 2.9, proper to each S-Box F , fully characterizes the DPA
discrimination power. Incidentally, it happens that the value of SNR(DPA)(F) (Eqn. 2.9) is

significantly lower than SNR
(∑q−1

i=0 Corr(k; 1i, 1i)
)

(refer to Eqn 2.3); for instance, those

SNR are respectively 9.6 and 15.1 for AES. This proves that it is not realistic to neglect the
inter-bit correlations (N3) when doing DPA. The available information in the traces is the sum
of the consumptions of the q output bits of the function F and the DPA indeed only reveals the
correlation of one bit of the predicted plaintext with the Hamming weight of the full plaintext.

2.3.5.1.1 SNR for some typical S-Boxes. A relevant reference for the SNR is the ex-
perimental setup where there is no S-Box. Analysis is thus performed behind a set of q = p
independent XOR gates. In this case, DPA(k) =

∑
i (−1)

ki (see Eqn. (2.10), with F = I, the
identity matrix) and the SNR is

√
q.

The SNR of the DPA signal is computed using Eqn. (2.9) for balanced S-Boxes and an ad
hoc calculus for the bent S-Box. Results are reported in Table 2.8. The SNR figures are given
without any unit, because they are ratios of two commensurable quantities.

Table 2.8: Signal-to-noise ratio of DPA signal on some typical S-Boxes.

S-Box No S-Box (F =I) Linear S-Box DES S-Box 1 AES Bent S-Box

Fig. 2.17 (a) (b) (c) (d)

p 8 8 6 8 8
q 8 8 4 8 4

DPA SNR
√

8 = 2.8 2.8 3.6 9.6 9.8

2.3.5.1.2 DPA SNR for an Affine Balanced S-Box. Let F be an affine balanced S-Box:
F (x) = M × x⊕D.

Lemma 2
Corr(k; 1i, 1j) = (−1)

〈1j |M×k〉
δi, j , (2.10)

thus: SNR(DPA)(F) = q
1
2 .

2.3.5.1.3 DPA SNR for a Bent S-Box. As far as (unbalanced) bent S-Boxes are con-
cerned, DPA expression (Eqn. 2.5) yields high SNR (cf. Table 2.8). However, we have not
investigated other expressions that could take advantage of the unbalancedness.

Results of Eqn.2.8 do not apply to an unbalanced S-Box. Instead, if F is bent,






DPA(0) = q + 1
2p

∑
i6=j

̂
(−1)

〈1i⊕1j |F 〉
(0) , hence:

|DPA(0)− q| ≤ q (q − 1)2−p/2 ≪ q and
DPA = q 2−p ≪ DPA(0) if p, q →∞ and p ≥ 2q [34] .

Therefore, at first order in 2−p/2, the expression of Eqn.2.9 for DPA SNR still holds. It allows
for the derivation of a minoration of SNR(DPA)(F):

SNR(DPA)(F) & q 22p




∑

k

(
q−1∑

i=0

2
p
2

)4



−1/2

= 2
p
2 /q .

34 CHAPTER 2. SCA IMMANENCE

2.3.5.1.4 DPA SNR Bounds. Let us denote Yk =

(∑q−1
i=0

̂
(−1)

Fi(k)

)2

.

SNR(DPA)(F) is thus rewritten as q 22p
(∑

k Yk
2
)−1/2

. The maximum and the minimum of

the SNR correspond to the minimum and the maximum of
∑

k Yk
2. Moreover,

Lemma 3

• If F is balanced:
∑

k Yk = q 22p,

• otherwise:
∑

k Yk ∈ [0, q2 22p].

• DPA SNR maximum bound.

The application C : (x0, x1, · · · , x2p−1) ∈ (R+)
2p

→ ∑2p−1
k=0 xk

2 ∈ R+ is convex. Its
minimum is thus reached when C gradient is null, i.e. when all the xk, k ∈ [0, 2p[, are
equal. Given Lem. 3, this value is q 2p if F is balanced and can be as low as 0 otherwise.

Therefore, the maximum SNR of the DPA signal in a balanced S-Box is 2p/2. We ignore
whether there exists S-Boxes that reach this bound. We also ignore whether DPA SNR
is maximum bounded if the analyzed S-Box is unbalanced.

• DPA SNR minimum bound.

As
∑

k Yk
2 = (

∑
k Yk)

2−∑k′, k′′ Yk′Yk′′ , DPA SNR is minimum when the sum of positive
terms

∑
k′, k′′ Yk′Yk′′ is minimum. It is null (and thus minimum) iff there exists an index

k0 such as all the Yk, k 6= k0, are null. If F is balanced, ∀k, Yk = q 22p δ(k⊕k0). This lower
bound can only be reached provided q 22p (hence q) is a perfect square. If F is unbalanced,

Yk can reach q2 2p. As for all i ∈ [0, q[and k ∈ Kp,
̂
(−1)

Fi(k) ≤ 2p, Yk reaches q2 2p

iff for all i and k,
̂
(−1)

Fi(k) = 2p δ(k ⊕ k0). S-Boxes satisfying this constraint are affine
S-Boxes whose linear part rank is 1. Their corresponding SNR is 1/q.

2.3.5.1.5 Summary of DPA Range and Typical Values. The results on the SNR of
the DPA measured signal obtained in the Sec. 2.3.5.1 are summarized in Tab. 2.9.

Table 2.9: DPA signal-to-noise ratio bounds and typical values for different S-Boxes F .

SNR Bound or typical value / S-Box type

1/q Lower bound for unbalanced S-Boxes, reached only by rank 1 affine S-Boxes

1 Lower bound for balanced S-Boxes. Can only be reached if q is a perfect square

q1/2 SNR of rank q affine S-Boxes

2p/2/q Approximative (at first order in 2−p/2) lower bound for bent S-Boxes

2p/2 Upper bound for balanced S-Boxes

2.3.5.2 Conventional cryptanalysis evaluators

Algorithmic attacks, like linear [59] or differential [16] cryptanalysis, are measured by a maxi-
mum singularity in distributions. For example [34],

{
ΛS

.
=supa6=0, k

∣∣∣#{x / 〈a|x〉⊕〈k|S(x)〉 = 0} − 2p

2

∣∣∣,
∆S

.
=supk 6=0, a #{x /S(x)⊕S(x⊕ k) = a},

(2.11)

are two parameters that characterize the resistances of an S-Box S against linear and differential
cryptanalysis respectively The lower they are, the more difficult the corresponding attack. We
recall that in Eqn. ((2.2)), F = S−1 for AES and F = S for DES.

2.3. POWER ATTACK MODEL 35

2.3.5.3 Comparing DPA and conventional cryptanalysis estimators

The results of the previous section tend to show that the less linear a S-Box (and thus the
higher its cryptographic quality), the higher the DPA SNR. The histograms of the occurrences
of the SNR signal amplitudes are shown for some S-Boxes in the section 2.3.7.

On the other hand, linear S-Boxes, the poorest protection against cryptanalysis, are the
most difficult to attack by DPA.

The SNR of the DPA signal (Eqn. 2.9) is related to the two quantities ΛS and ∆S (refer to
Sec. 2.3.5.2) that characterize linear and differential cryptanalyses on S-Box F by:

SNR(DPA)(F) ≥ 2
3p
2 −2

q Λ2
S

= O
(

1

Λ2
S

)
, (2.12)

SNR(DPA)(F) ≥ 2p

∆S
= O

(
1

∆S

)
. (2.13)

The best shielded against linear or differential cryptanalysis (ΛS or ∆S low), the more vulnerable
to DPA attack (SNR(DPA)(S) high). The proofs are given in the next two paragraphs.

2.3.5.4 Detail of the connection of DPA SNR with linear cryptanalysis

ΛS
.
= sup

a6=0, k

∣∣∣#{x / 〈a|x〉 ⊕ 〈k|S(x)〉 = 0} − 2p

2

∣∣∣ = sup
a6=0, k

1

2
θ̂S(k, a) [34]

hence
∀k ∈ Kp,∀a ∈ Kq\0, θ̂S(k, a) ≤ 2ΛS

thus:

∀k ∈ Kp,∀i ∈ [0, q[,

(
q−1∑

i=0

θ̂S(k, 1i)

)4

≤ (2q ΛS)
4
,

and finally the proof of Eqn. (2.12):

SNR(DPA)(F) ≥ q 22p

(
∑

k

(2q ΛS)
4

)−1/2

= q 22p 2−
p
2︸︷︷︸

(
P

k)−1/2

(2q ΛS)
−2

=
2

3
2 p−2

q Λ2
S

= O
(

1

Λ2
S

)
.

2.3.5.5 Detail of the connection of DPA SNR with differential cryptanalysis

∆S
.
= sup

k 6=0, a
#{x /S(x)⊕ S(x⊕ k) = a} = sup

k 6=0, a
θS ⊗ θS(k, a) [34]

(
∑

i

θ̂S(k, 1i)

)4

=



 ̂∑

i

θS(k, 1i) · ̂∑

j

θS(k, 1j)




2

=



 ̂
(
∑

i

θS(· , 1i)⊗
∑

j

θS(· , 1j))(k)




2

since f̂ · ĝ = f̂ ⊗ g .

36 CHAPTER 2. SCA IMMANENCE

As
∑

k f̂2(k) = 2p
∑

k f2(k) (Parseval) ,

∑

k

(
∑

i

θ̂S(k, 1i)

)4

=
∑

k



(
̂∑

i

θS(· , 1i)⊗
∑

j

θS(· , 1j))(k)




2

= 2p
∑

k



(
∑

i

θS(· , 1i)⊗
∑

j

θS(· , 1j))(k)




2

Given that when k = 0 :

(
∑

i

θS(· , 1i)⊗
∑

j

θS(· , 1j))(0)

=
∑

k′

∑

i, j

θS(k′, 1i) · θS(k′, 1j)

=
∑

k′

∑

i

θ2
S(k′, 1i)

∣∣∣∣
if F (k′) = 1i,
F (k′) 6= 1j when i 6= j.

=
∑

k′

∑

i

θS(k′, 1i) Remark that θS ∈ {0, 1}; Hence θ2
S = θS .

=
∑

i

{k′/F (k′) = 1i}

= q 2p−q if F is balanced (sane assumption) , (2.14)

and given that when k 6= 0 :




∑

i

θS(· , 1i)⊗
∑

j

θS(· , 1j)



 (k)

=
∑

i

∑

k′

∑

a∈{1i⊕1j ,j∈[0, q[}
θS(k′, 1i) · θS(k′ ⊕ k, 1i ⊕ a)

≤
∑

i

∑

k′

∑

a∈Kq

θS(k′, 1i) · θS(k′ ⊕ k, 1i ⊕ a)

=
∑

i

(θS ⊗ θS)(k, 1i)

≤ q sup
k 6=0, a

(θS ⊗ θS)(k, a)

= q ∆S . (2.15)

Finally, using (2.14) and (2.15):

2.3. POWER ATTACK MODEL 37

2p
∑

k



(
∑

i

θS(· , 1i)⊗
∑

j

θS(· , 1j))(k)




2

≤ 2p





(
q 2p−q

)2
+ 2p − 1︸ ︷︷ ︸

P

k 6=0

(q ∆S)
2






≤ 2p q2
{
∆2

S + (2p − 1)∆2
S

}
because 2p−q ≤ ∆S [34]

= q2 22p ∆2
S .

Hence the proof of Eqn. (2.13):

SNR(DPA)(F) ≥ q 22p
(
q2 22p ∆2

S

)−1/2

=
2p

∆S

= O
(

1

∆S

)
.

2.3.6 Conclusion of the power attack model

The overall power consumption of a circuit leaks the activity of every single gate. The DPA
attack exploits this side-channel to retrieve one secret kept within the circuit. The signal
that an attacker computes to perform a DPA can be modeled as the auto-correlation of the
Hamming weight of a given temporary variable used in the cryptographic algorithm. This auto-
correlation function is maximum when the attacker key guess is correct. We have validated
this model against an electrical simulation of a block cipher. The SNR of the DPA signal
increases when the resistance against linear or differential cryptanalysis increases. The SNR is
bounded, the lower bound being reached by the poorest cryptographic S-Boxes, namely affine
S-Boxes. High quality cryptographic S-Boxes (AES, bent S-Boxes) feature high SNR, close
to the maximum bound. As a consequence, DPA is fostered on devices implementing a high
cryptographic-wise quality private key algorithm. The results from the DPA model presented
in this Sec. 2.3 can be reformulated by the aphorism: resistance against logical attacks and
resistance against physical attacks are antinomic. Similar works, by Emmanuel Prouff [77]
and Claude Carlet [24], elaborate on this topic.

The same law can be drawn from the observation that not only the non-linear (S) parts
of an algorithm, but also the linear (P) ones, can induce severe vulnerabilities. Gilles Piret’s
differential fault attack against SPN structures (like AES and Khazad) [40] illustrates this fact.
Briefly, the working factor of Piret’s DFA is that there exists many solutions K (prospective
sub-keys to extract) to the byte-oriented equation:

S−1(C ⊕K)⊕ S−1(C∗ ⊕K) = E ,

where (C,C∗) is a public couple of a correct and faulted ciphertexts bytes and E an assumed
error on one byte at the input of the last diffusion layer ShiftRows ◦ MixColumns. As a rule
of thumb, if this equation had few solutions, then the differential characteristic ∆S (2.11) of
the sbox S, i.e. SubBytes, would be poor. But if the diffusion layer is good and that the fault
occurs in the penultimate round, then many equalities (typically i ∈ [1, 4] or i ∈ [1, 8]):

S−1(Ci ⊕Ki)⊕ S−1(C∗
i ⊕Ki) = Ei

38 CHAPTER 2. SCA IMMANENCE

hold concomitantly for related Ei (the Ei make up a linearly dependent family of 28 elements.)
This coincidence, that arises from the good linear property of the permutation, makes it possible
to enhance the key search.

Special care is thus needed while designing cryptoprocessors. As no trade-off is possible as for
resistance against cryptanalysis, specific counter-measures must be devised. A possible counter-
measure is to use secured logic gates [104]. However, those gates leak information because of
parasitic effects: algorithmic counter-measures can thus be an adequate solution. For instance,
the combination of a high SNR followed by a low SNR (in terms of DPA SNR) cipher on
the same chip could provide a protection against both DPA and conventional cryptanalysis.
Masking [58] and the duplication [41] method are other counter-measures that require to re-
design the ciphers.

2.3.7 Illustration of DPA signal-to-noise ratio on histograms

The figures of this section show the histograms of occurrence of a given DPA signal amplitude.
The actual signal is the peak of amplitude q (4 or 8), whereas the other peaks make up the
S-Box intrinsic noise. It clearly appears in Fig. 2.17(a) that a linear S-Box has a weak SNR
(namely

√
q). Usual cryptosystems DES (Fig. 2.17(b)) and AES (Fig. 2.17(c)) have a better

SNR. The SNR is still better for a bent S-Box of Maionara-McFarland type [90] (Fig. 2.17(d).)

(a)

0

10

20

30

40

50

60

70

+8+6+4+20+2-4-6-8

N
u
m

b
er

of
o
cc

u
rr

en
ce

s

DPA Signal on a rank q linear S-Box (p = 8, q = 8)

Signal

(b)

0

1

2

3

4

5

6

7

+4+20-2-4

N
u
m

b
er

of
o
cc

u
rr

en
ce

s

DPA Signal on DES S-Box 1 (p = 6, q = 4)

Signal

(c)

0

2

4

6

8

10

+8+40-4-8

N
u
m

b
er

of
o
cc

u
rr

en
ce

s

DPA Signal on AES S-Box (p = 8, q = 8)

Signal

(d)

0

20

40

60

80

100

120

+4+20-2-4

N
u
m

b
er

of
o
cc

u
rr

en
ce

s

DPA Signal on a bent S-Box (p = 8, q = 4)

Signal

Figure 2.17: Histogram of occurrences of the DPA signal measured on:
(a) a linear S-Box. SNR(DPA)(F) =

√
8 ∼ 2.8 (Eqn. 2.9),

(b) DES S-Box #1. SNR(DPA)(F) = 3.6,

(c) AES SubBytes. SNR(DPA)(F) = 9.6,

(d) a bent S-Box. SNR(DPA)(F) = 9.8.

2.4. PRACTICAL COMPUTING AS SECURITY WEAKNESSES 39

2.4 Practical computing as security weaknesses

In the previous section, we discussed how specific properties of cryptographic algorithms can
enhance the side-channel attacks. In this section, the pragmatic aspects of computing are shown
to make those attacks possible and to make them easier on embedded devices.

2.4.1 Integrability constraints

Louis Goubin, at page 162 of [41], and also Renaud Pacalet in the course [73] propose a method-
ology to analyze rationally the vulnerability against side-channel attacks. Their analytical ap-
proach is based on identifying “fundamental hypotheses” under which an attack is likely to be
successful. Thanks to this methodology, we review here the usual integrability constraints that
violate security “fundamental hypotheses”.

The realization of a SCA requires the following hypotheses:

H1 An exhaustive key search is possible.

H2 The attack does not require the knowledge of couples of plaintext and ciphertext.

Now, all cryptographic algorithms feature the following properties:

��HHH1 The datapath is split into sub-paths, of typically n = 6 or 8 bits, because {0, 1}n →
{0, 1}m functions, with m ≤ n are not integrable (and reasonably will not be integrable
in a near future — unless an unprecedented technical breakthrough occurs.) An highly
non-linear {0, 1}n → {0, 1}m vectorial Boolean function’s implementation roughly grows
as O(m × 2n). This estimation holds for random functions, such as the DES sboxes.
The implementation size might be reduced by using structured sboxes. For instance,
the AES sbox’s area can be reduced by a factor four by taking advantage of its internal
structure [82]. The statistics of Tab. 2.10 clearly show that synthesizers try hard to use as
many cells as possible from the library for the straightforward look-up table (a.k.a. LuT)
architecture, to the detriment of a global optimization (factored implementation.) The
factored sbox is the number (1) in Fig. A.1(b), whereas the LuT is the number (2.) Still,
from a purely mathematical point of view, it is difficult to find good primitives (security-
wise and in terms of integrability.) There exists no general theory (out of existence
theorems) to systematically construct highly non-linear mappings. For theses reasons,
the keys are split into n-bit sub-keys, with makes exhaustive searches on a 2n space
feasible.

��HHH2 Given that the datapath divides into n-bit sub-paths, n bits of one inner round can be
computed given 2n hypothesis on a key. As the functions involved in one round have
an appropriate non-linearity (refer to Sec. 2.3), the n-bit sub-key can be unambiguously
extracted from only a one-round analysis. The keys used for every round are derived
from the master key. However, to avoid reducing the key space, the generation of every
round key is obtained from a stem that contains all the information about the key. Put
differently, this means that every round key has the same quantity of information about
the root key. As a consequence, the attack of the first or of the last round yields the
same amount of information about the key. This information can be used to peel off
another round. Alternatively, an exhaustive search on the remaining bits can be launched.
However, the first solution is the more consistent, because all the necessary information
has already been collected in the power traces.

40 CHAPTER 2. SCA IMMANENCE

Table 2.10: Area of the AES function SubBytes synthesized into a 717-element library from a
130 nm technology.

Implementation # instances # !instances Area µm2

Look-up-Table 423 53 4 018

Factorization in GF(162) 144 22 1 767

a′
0

a′
1

a′
2

a′
3

a0

a1

a2

a3

a0

a1

a2

a3

a′
0

a′
1

a′
2

a′
3

(b) Internal logic cone to a net n0

n0

(a) Interpenetrating logic cones

Figure 2.18: Illustration of the combinatorial logic factorization for a 4-bit → 4-bit mapping.

2.4.1.1 Attacks on hardware implementations

When the cryptographic algorithm can be implemented as a custom hardware, some constraints
might be relaxed. For instance, an n to m-bit function can be optimized by sharing logic between
the m Boolean functions. This interpenetration of combinatorial logic cones is illustrated in
Fig. 2.18(a). In contrast, a ROM version cannot be shrunk below the nominal m× 2n memory
points. If larger functions are thus conceivable using combinatorial logical synthesis, an attack
in the middle of the logic cone is thus becoming a new threat. With such an attack, a net that)
depends on a subset of the n inputs is analyzed, instead of an output that is a function of the n
inputs. In Fig. 2.18(b), an internal net n0, depending on some but not on all the inputs, could
be used to build a weighting function.

In pure hardware co-processors, there is also the possibility to choose the signals encoding.
For instance, a dual-rail representation enables a key loading without dissipating its Hamming
weight. As for the actual algorithm realization, constant Hamming weight functions should
be used. However, the theoretical framework of this class of function does not exist yet. A
trade-off is proposed in this thesis: using unbalanced functions, but with a dual-rail encoding,
the overall function execution is balanced. This result is the subject of the chapter 4.

2.4.1.2 Attacks on software implementations

In software implementations of cryptographic algorithms, the vulnerabilities mainly arise from
the underlying hardware that is in charge of executing the machine code. However, even for
a properly compiled software, DPA is made possible on all the intermediate data due to an
exhaustive search possibility (28 to 232 is within reach of any attacker.)

The software is also intrinsically more vulnerable than dedicated co-processors because of
its versatility. Thomas Messerges reports in [61] that the access to a memory location by
the CPU of a smartcard signs by a voltage syndrome of 6.5 mV. In the DES cryptoprocessor
analyzed in this dissertation, the signatures reach a few tens of millivolts only for the most
loaded gates. For sure, between Messerges’s experiments (1999) and ours (2005), six years,
hence four technological generations [3], have elapsed. But this does not account for the three
orders of magnitudes between versatile and dedicated power signature gap. For any operation,
software implementations must active a lot of logic, even if it eventually selects only one value ;
this is, in a nutshell, the reason why software implementations dissipate information with a

2.4. PRACTICAL COMPUTING AS SECURITY WEAKNESSES 41

greater amplitude than taylored low-power hardware. Hardware-oriented architectures do not
access a global RAM to fetch data (such as substitution boxes results), but instead work in local
dedicated registers. Moreover, critical data is always computed locally (for instance sboxes are
decomposed as combinatorial logic) in hardware, whereas static constant data are preferably
lodged in a foreign RAM by software compilers.

2.4.2 Hamming weight versus Hamming distance selection functions

The previous section 2.3 concentrated on a DPA model based on the distinction of the signature
of rising versus falling edges of gates transitions. The model can be adapted by changing the
selection function (2.2).

Two distinct attack scenarios can be considered:

1. Only the value at a given date is known. This leads to the most powerful attack, because
it requires the fewer information.

2. The previous and the current state of some variable are both known. This is a comfortable
scenario, where the SNR of the attack is maximal. Attacks realized in this scenario are
sometimes referred to as “CPA” [111, 112] instead of “DPA”. In the sequel, the generic
acronym “DPA” is used to qualify both types of attacks.

In each case, the syndromes are:

1. 0→ 0 or 1→ 0 (i.e. 0 + Ishort, with the notations of Sec. 2.3.2.1) versus 0→ 1 or 1→ 1
(i.e. 0 + Ishort + Iload), in the case the spying resistor RP monitors only the current
delivered by the power supply.

2. 0 → 0, 0 → 1, 1 → 0 and 1 → 1 are all known. The attack is less general but yields the
correct keys with less power traces.

The signatures of the two transitions: 0 → 1 (rising edge) and 1 → 0 (falling edge) are
evaluated with the following 32-bit selection functions:

1. R0 · R1 (rising edge of DES register R) and

2. R0 · R1 (falling edge of DES register R.)

The two differential waves are represented in Fig. 2.19. It appears that it is very hard to
distinguish a rising edge from a falling edge of a register. The highest difference occurs in clock
cycle 18, where the rising (resp. falling) edge culminates at 1.39 mV (resp. 1.65 mV.) The
optimal exploited bias are therefore:

• |1.65− 1.39| = 0.26 mV for the Hamming weight attack and

•

∣∣ 1
2 × (1.65 + 1.39)− 0

∣∣ = 1.52 mV for the Hamming distance attack2.

Thus, in the best case, the syndrome is six times greater for the Hamming distance than for
the Hamming weight selection function.

Hamming weight model applies well on combinatorial (or asynchronous) parts. Synchronous
parts are vulnerable to the Hamming distance prevision attack, because it is well suited to
multi-bit attacks (all the bits are valid simultaneously due to the synchronization by the global
clock.)

Due to area optimization, most hardware implementations are devised to be iterative: this
architectural strategy allows to re-use a common hardware resource as many times as possible.

2The distance from the average of the rising and falling value to zero is taken because R0⊕R1

.
= R0·R1+R0·R1

and because the 0 → 0 and 1 → 1 transitions are assumed to dissipate no energy.

42 CHAPTER 2. SCA IMMANENCE

-1

 0

 1

 2

 3

 4

 5

 6

191817

V
ol

ta
ge

 [m
V

]

Time [clock cycles]

’Rising edge’ selection function
’Falling edge’ selection function

Transfer in the register R Transfer in the register L

Maximum = 1.39 mV

Maximum = 1.65 mV

Figure 2.19: Differential traces resulting from the weighting by the two selection functions∣∣R0 · R1

∣∣ (rising edge) and
∣∣R0 · R1

∣∣ (falling edge) on DES.

2.4. PRACTICAL COMPUTING AS SECURITY WEAKNESSES 43

With the notable exception of the combinatorial DES architecture exposed in Sec. 3.3, most
hardware implementation of block cyphers execute in more than one clock cycle. This enables
Hamming distance attacks.

From an acquisition campaign performed on an iterative DES hardware implementation, a
collection of roughly 80 000 traces have been garnered. One typical trace is shown in Fig. 2.20.
The Hamming weight and distance analysis have been performed on this set of traces, as shown
in Fig. 2.21. The weighting functions are:

• |Sbox #1(m, k)| for the Hamming weight (HW) weighting function and

• |R0{9, 17, 23, 31} ⊕R1{9, 17, 23, 31}| for the Hamming distance (HD) weighting function.

The results for the seven other sboxes are given in appendix B.1, at page 162. The expected peak
(indicating the looked for correlation) is marked by a vertical dotted black line on both graphs.
The relevant date for the HW weighting function is the end of the sbox logic evaluation, that
occurs about 8.45 ns after the rising edge of the first clock of the encryption (that corresponds
to the sixteenth clock of the whole encryption process, as further explained in Sec. 3.2.) The
HD weighting function reveals a peak when register R is overwritten by the first round result,
which occurs at the very beginning of the clock period. Concretely, due to the modulation of
the acquired signal by the probing system (the resonance frequency is about 150 MHz), the
peak is slightly delayed: it takes its maximum 1.7 ns after the rising edge of the clock.

The other peaks are explained in the next section 3.6.
It is remarkable that:

• The HW peaks are less sharp than HD ones. This is due to the fact that the HD peak
is synchronized by the clock: not only the four D-flip-flops R1{9, 17, 23, 31} sample at
the same time, but they also do it for every trace. By contrast, the four bits output
by the first sbox toggle at various times depending on the inputs and of the previous
state of the sbox logic, but in addition the toggle time vary from trace to trace. This
inevitably contributes to add random noise to the traces accumulation, thus reducing the
peak contrast.

• In the best case (perfect synchronization of the traces), the SNR of the DPA signal is
twice as low for the HW than for the HD:

SNR(DPAHW) =
1

2
SNR(DPAHD) , (2.16)

The result is that, in the HW case, only a final state is known, the initial state being un-
known, whereas in the HD case, both initial and final states are known (given an hypoth-
esis on the key.) The DPAHW signal can be thought of as a DPAHD signal averaged over
all the initial states. However, in the practical cases, SNR(DPAHW) ≪ 1

2SNR(DPAHD),
because of the temporal dispersions of the (power consuming) monitored events. Inciden-
tally, a physical argument deserve consideration: in HW, the leakage has a “technological”
origin (refer to Fig. 2.11), whereas in HD, the leak is of “logical” nature: at the first order,
a DFF does not dissipate any energy when its state is not changed, while it consumes
power when toggling state. Eventually, it could be thought that HW types of attacks
leave more room for creativity, since any function f(m, k) can be used, whereas f is fixed
to fHD

.
= DFFi⊕DFFi+1 for some extremal round index i when using HD. However, as it

will be clear in Sec. 3.7, the choice fHD is indeed really good, at least in the straightforward
iterative implementations. Of course, an attacker can customize its distance computation,
but the simple fHD weighting function already enables an excellent discrimination power
between the correct and the wrong key guesses.

A proper measurement of SNR(DPAHW) is not possible 8.45 ns inside the first round,
because the correct key does not yield the highest differential trace. If we resort to the peak

44 CHAPTER 2. SCA IMMANENCE

in the next clock period, we measure SNR(DPAHW) = 3.95. In the same clock period, we also
measure SNR(DPAHD) = 8.11, which validates the Eqn. (2.16).

Finally, it is also worth noticing that correlations in iterative designs might be exploitable
over two clock periods. This issue is seldom discussed in the available literature. The up-coming
publication [75] is concerned with this aspect in EMA. We demonstrate the same result on DPA,
on an iterative DES straightforward hardware implementation. The three graphs of Fig. 2.22
show differential traces (for the correct key k0 = 0x56), using the following weighting functions:

1. LR0(m, k)⊕ LR1(m, k),

2. LR0(m, k)⊕ LR2(m, k),

3. LR0(m, k)⊕ LR3(m, k).

The most significant information can be extracted from the traces weighted by the regular HD
selection function (Fig. 2.22(1)). The amplitude of the main peak is 10.56 mV. This figure
corresponds to eight times the amplitude of the peak of the lower graph of Fig. 2.21 (DES
has eight substitution boxes), that is to say 8 × 1.18 = 9.47 mV, plus the much less power
dissipating (in because the fan-out is only one) direct 32-bit register transfer L0 → L1.

The maxima for the eight sboxes (S1 to S8) and for the transfer L0 → L1 can be computed:

Register transfer’s HD S1 S2 S3 S4 S5 S6 S7 S8 L0→L1

Maximum [mV] 1.18 0.79 0.68 0.88 0.94 1.18 0.91 1.17 3.01

The sum of these figures is equal to 10.73 mV, i.e. slightly more that the measured 10.56 mV,
because all the peaks do not occur exactly at the same date. The discrepancy expresses a
triangular inequality.

If, instead, the integral of the differential traces over the 17th clock period are computed,
then there is a perfect equality.

Register transfer’s HD S1 S2 S3 S4 S5 S6 S7 S8 L0→L1

Integral [mV× ns] 1.79 0.62 0.92 1.12 1.67 1.96 1.19 2.06 4.95

The integral is equal to 16.28 mV×ns when summing together the figures from the previous
table. This is also the result of the integration over t ∈ [clock17, clock18[of the differential trace
from Fig. 2.22(1).

However, Fig. 2.22(2) shows that the distance-2 Hamming difference still leaks out some
information. There are two ways to interpret this observation:

1. either the DFFs somehow memorize some of their states even after one erasure

2. or an event that signs as LR0 ⊕ LR2 occurs in the datapath.

As argued in Sec. 3.6.1, the principal reason is a peculiarity of DES, and not of a parasitic
memorization.

Higher distances, starting from 3 (Fig. 2.22(3)), do not reveal any further information.

In the rest of this thesis, and unless otherwise mentioned, the weighting function used for
the analysis will be the unitary Hamming distance.

2.4. PRACTICAL COMPUTING AS SECURITY WEAKNESSES 45

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

3224168

V
ol

ta
ge

 [V
]

Time [clock cycles]

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

18171615

V
ol

ta
ge

 [V
]

Time [clock cycles]

Zoom on the beginning of the encryption of one trace of DES

Figure 2.20: Typical power trace used to perform Hamming weight versus Hamming distance
functions comparison. The upper graph shows the power signature of a full DES encryption
(the sixteen rounds unroll between clocks 16 and 32), while the lower graph focuses on the first
round under attack (thus corresponding to the clock interval 16–17.)

46 CHAPTER 2. SCA IMMANENCE

-0.2

 0

 0.2

 0.4

 0.6

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #1 (Hamming weight)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #1 (Hamming distance)

Figure 2.21: Comparison between an Hamming weight (upper graph) and an Hamming distance
(lower graph) weighting functions. The correct key (k0 = 0x56) is drawn in bold red.

2.4. PRACTICAL COMPUTING AS SECURITY WEAKNESSES 47

(1)

-2

 0

 2

 4

 6

 8

 10

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Hamming distance 1 for LR register

(2)

-2

 0

 2

 4

 6

 8

 10

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Hamming distance 2 for LR register

(3)

-2

 0

 2

 4

 6

 8

 10

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Hamming distance 3 for LR register

Figure 2.22: Hamming distance 1, 2 and 3 from the first round on the whole 64-bit register
LR of DES.

48 CHAPTER 2. SCA IMMANENCE

Chapter 3

DPA on DES

The previous chapter showed that whenever some physical information can be extracted from
a device, the security of the latter is jeopardized. This chapter aims at characterizing the
risks: the factors that make attacks possible are brought to the fore. First of all, a full-
featured architecture of a DES crypto-processor (able to perform simple and triple encryptions
in conjunction with all the standardized modes of operations) is described. Second, some
known logical weaknesses of the DES based on weak and semi-weak keys are explicited. Then,
the logical weakness is exploited by a side-channel analysis using only two power traces to
characterize the information leaks. The leaks reveal the algorithm’s architecture, thus allowing
to customize an attack. Finally, additional results from a real DPA are presented.

3.1 Secured crypto-processors design

3.1.1 Security target

When devising a “trusted computing platform”, the asset to protect can be an ASIC, an FPGA,
a CPU, or even a “true” random number generator (T-RNG – analog device.) However, these
devices are always a piece of hardware. The virtuous security construction mechanism consists
in enlarging the trusted zone. This idea is common to:

• Processors working with untrusted hardware components, such as CryptoPage [55] or
AEGIS [98].

• Pieces of hardware certified by a trusted module, such as TCG [6] (the former “Trusted
Computing Platform Alliance”, aka TCPA.)

• And in general, any public-key cryptography, giving rise to PKIs.

This hypothesis is always that there exists a secured zone that is the stem to the global security.
The “root of security” is a germ for any large scale “trusted computing platform”.

In the sequel, we focus on the securization of a DES co-processor. Its security features are
studied in this chapter, and the means to increase its security is the subject of the next one.

3.1.2 Motivation for DES

DES is certainly the most studied symmetrical algorithm, and is currently widely used (in the
form of triple-DES or DESX [84] in low-cost smartcards). It is forecast that it will probably
still be around in ten or twenty years from now [26].

The algorithm uses eight different sboxes S1 to S8, which allows us to realize comparisons
between their relative strength with the same set of traces.

49

50 CHAPTER 3. DPA ON DES

DES has been designed to be very efficient in hardware (all the permutations and substi-
tution boxes are indeed a nightmare to write on 8-bit machines), whereas AES is efficient in
software (a 919 bytes implementation is described in [72]) From a hardware design point of
view, DES is the best candidate, because it is small and versatile: one DES engine can be used
to perform encryption, hash, MAC and random number generation.

The studied implementation is described in details in the following section.

3.2 A fast pipelined multi-mode DES architecture oper-
ating in IP representation — Integration, the VLSI
Journal article extended version [101]

The Data Encryption Standard (DES) is a cipher that is still used in a broad range of ap-
plications, from smartcards, where it is often implemented as a tamper-resistant embedded
co-processor, to PCs, where it is implemented in software, for instance to compute crypt(3)

on UNIX platforms. Notice that crypt features a security enhancement over DES: it makes
use of a 12-bit salt and of 25 consecutive encryptions. System utilities, like passwd(1) or
htpasswd(1), can be based over crypt or MD5 [83]. To the authors’ knowledge, implemen-
tations of DES published so far are based on the straightforward application of the NIST
standard. This section describes an innovative architecture that features a speed increase for
both hardware and software implementations, compared to the state-of-the-art. For example,
the proposed architecture, at constant size, is shown to be about twice as fast as the state-of-
the-art for 3DES-CBC (refer to Fig. 3.10.) The first contribution of this section is an hardware
architecture that minimizes the computation time overhead caused by key and message loading.
The second contribution is an optimal chaining of computations, typically required when “op-
eration modes” are used. The optimization is made possible by a novel computation paradigm,
called “IP representation”.

3.2.1 Introduction on DES

The Data Encyption Standard, DES, is a block product cipher algorithm promoted by the NIST.
The latest version of the standard is known as FIPS 46-3 [71], and includes the definition of
“triple DES”. The “DES modes of operation”, standardized in FIPS 81 [67], is a companion
document devoted to the description of the secure use of DES when the messages to encrypt
are longer than 8 bytes.

DES is an modification of the algorithm Lucifer developed by IBM in the early 1970s.
Since its inception, DES has been used pervasively by many applications that require data
confidentiality. Since 2001, DES has been superseded by the Advanced Encryption Standard
AES [72]. However, in practice, a lot of hardware or software applications still resort to DES.

The DES algorithm turns a 64-bit confidential data block, nicknamed plaintext, into another
64-bit data block, nicknamed ciphertext, using a standardized bijection parametrized by a 56-bit
secret, nicknamed key. The bijection DESk is crafted in such a way that it is almost impossible
to retrieve the plaintext from the ciphertext without the knowledge of the key k. The bijection
can be inverted: this operation is called decipherment and noted DES−1

k . When it is not relevant
whether the algorithm performs encipherment or decipherment, the neologism “cipherment” is
employed instead.

Several attacks against the plain DES version were published. They can basically be classi-
fied into two categories: algorithmic and physical attacks.

3.2. A DES ARCHITECTURE OPERATING IN IP REPRESENTATION 51

3.2.1.1 Algorithmic attacks on DES

Algorithmic attacks are also referred to as cryptanalysis [16, 59]. Those analyzes are somehow
unpractical, since a large amount of {plaintext, ciphertext} couples must be intercepted. The
exhaustive search of the key has been publicly feasible since 1997, as proved by the RSA Labo-
ratory’s “DES Challenge II” being won in 1997 in 39 days by a network of computers running
the distributed application DESCHALL [27] and in 1998 in 3 days by a dedicated machine built
by the EFF [28]. Other methods to speed-up the search using pre-computated datasets have
been put forward [51].

To counteract those attacks, variants of the DES were proposed. We list below three of the
most widespread ones:

1. Modes of operation allow a message consisting of several 64-bit blocks to be ciphered in
chain. The idea is that the 64-bit ciphertext blocks actually depends on the corresponding
plaintext block and also of some, if not all, of the previous ones, and of an initialization
vector (IV.) The standardized modes of operation are ECB, CBC, CFB and OFB [67].
ECB and CBC are block-ciphers, whereas CFB and OFB are stream-ciphers. The latter
two are actually defined in the K-bit version, 1 ≤ K ≤ 64. As the K = 64 version is
the most efficient in terms of throughput, it is usually the sole version to be implemented
(refer for instance to openssl [30].) Because of the “short cycle property”, NIST explicitly
does not support K < 64 for OFB [70, page 13].

2. TDEA (informally called “triple-DES” or “3DES”) is described in the annex of
the DES standard [71, page 22]. Three 64-bit keys ki, i ∈ {0, 1, 2} are used instead of one.
The encipherment consists in computing DESk2

◦DES−1
k1
◦DESk0

whereas decipherment

is DES−1
k0
◦DESk1

◦DES−1
k2

. Triple DES is customarily used with two keys [79] (k0 = k2.)
Notice that when the three keys are taken equal, k0 = k1 = k2, triple DES actually
computes plain DES, which guarantees the backward compatibility of 3DES engines.

3. DESX [52] is a data whitening technique, proposed by Ron Rivest. It consists in adding
two 64-bit blocks, in white and out white, to the key. The key in white is used to
exclusive-or (i.e. XOR) the plaintext prior to starting DES and out white to XOR the
result after the cipherment.

Those variants can of course be combined at will. For instance, triple-DES using two keys
in CBC mode is often used to encipher long messages. Any hardware implementation of DES
must nowadays support the modes of operation and the triple encryption.

3.2.1.2 Physical attacks on DES

Physical attacks are the most recent threats against DES and its variants. The side-channel
attacks, such as DPA [54] or EMA [37], allow to retrieve the keys by the analysis of the physical
emanation of the device while it is handling the key. Partial side-channel information, such as
the Hamming weight of key chunks or key-dependent correlations between two small chunks
of data, suffice to recover the full key, provided enough measurements can be performed. The
faults injection attacks [17] consist in either perturbing transiently the circuit or to damage it
to enhance other attacks. Algorithmic counter-measures (modes of operation, 3DES or DESX)
do not protect against physical attacks. Both side-channel and fault attacks can be thwarted,
with more or less success, by using leakage-proof logic and adequate sensors, for instance.

In this section, we describe an architecture able to compute DES and its variants efficiently.
More precisely, the described architecture can compute: DES in ECB, CBC, 64-bit CFB and
64-bit OFB, as well with simple or triple DES using two keys. The cryptanalytic strength of
the variant as well as the security of its implementation against physical attacks is out of the
scope of this section.

52 CHAPTER 3. DPA ON DES

control
DES

datapath
DES

2N
×

n
-b

it
sc

ra
tc

h
-p

ad

R
A

M

n

n

N
address

data in

data out

CPU ↔ bus interface RAM interface Crypto-processor

Figure 3.1: System-on-Chip environment for a VLSI version of the DES co-processor. Typical
values for the bus widths are n = 8 and N = 8.

The rest of the section is organized as follows. Section 3.2.2 discusses the DES datapath
optimization: an hardware pipelined architecture is presented. Section 3.2.3 applies to both
software (SW) and hardware (HW) implementations. It introduces the so-called “IP repre-
sentation” computational framework, which allows to optimally chain DES computations. In
Sec. 3.2.4, the gain of proposed architecture over state-of-the-art architectures is discussed.
Finally, Sec. 3.2.7 summarizes the architecture study.

3.2.2 DES datapath improvement thanks to a generalized pipelining

In the DES algorithm, the control is independent of the data. It is thus safe to consider the
design of the datapath and the control finite state machine (FSM) as two distinct tasks. This
section is devoted to the datapath. The control is further studied in Sec. 3.2.3.

3.2.2.1 Straightforward DES

The inputs of the DES algorithm are two 64-bit blocks, the plaintext and the key1. The two
operands cannot be loaded in the DES operator in one go, since data provided by processors are
typically on n = 8, 16 or 32 bits. In the rest of the article, we assume that the DES co-processor
is fed by an n = 8-bit wide data bus. This figure corresponds to the case of an embedded system
built around a micro-controller, as depicted in Fig. 3.1. This architecture integrates naturally
into the SoC SecMat V1 as a module (refer to Tab. A.1 in appendix.)

Most of DES implementations elude the question of the connexion to an n < 64 wide
bus [44, 92, 21]. Other implementations, such as [10], do not take advantage of the architectures
presented in this study.

The knowledge of the DES algorithm internals is not required to explain the rationale of the
three implementations discussed in this section. Only the following facts are indeed relevant
for the coming analysis:

• DES is a Feistel cipher [45], which means that the message is divided into two halves (L
and R), among which only L undergoes a logical operation dependent on the some bits of
the round key, R being left untouched. Then the two halves are swapped, and the process
is iterated sixteen times. After the last round, L and R are not swapped.

1The entropy of the key is actually limited to only 56 bits, because 8 bits are redundant.

3.2. A DES ARCHITECTURE OPERATING IN IP REPRESENTATION 53

• Before any processing, the message bits are shuffled, using a permutation called IP. At
the end of the Feistel scheme, the message is de-shuffled by the inverse permutation
FP

.
= IP−1.

• Only 56 bits of the key are used. As justified in the standard [71, page 1], every byte of the
key has a parity bit, chosen so that the Hamming weight of every byte of the key is odd.
In a similar way to the message, the key bits are initially shuffled, using the permutation
PC1. A round key Ki is extracted from K at each round i; it is stored in a register called
CD. The Ki are transformed by an operation known as “key schedule”, consisting in one
or two Left Shifts, LS (resp. Right Shifts, RS) for encipherments (resp. decipherments),
followed by a permutation called PC2. The shifts are designed in such a way that CD is
back to its initial value after a full encipherment. They are implemented by a 2× 2 input
multiplexor (4→ 1 MUX.) However, when enciphering, the initial value to be presented
at PC2 is LS(k), whereas when deciphering, bare Id(k)

.
= k is to be used instead. Given

that a “general purpose” DES module is designed to both encipher and decipher, both
PC1 and LS ◦ PC1 must be computed in parallel.

As a result, a straightforward implementation of DES requires the following sequential
resources:

1. one 64-bit register (named LR in [71, page 11]) to hold the ciphertext and to store the 16
intermediate round outputs, and

2. one 56-bit register (named CD in [71, page 19]) to hold the key stripped off its parity bits
and to store the 16 round keys.

Without any additional registers, the storage of the plaintext in LR and of the key in CD
requires a demultiplexing logic, illustrated in Fig. 3.2. For the sake of clarity, the control
part has been omitted in Fig. 3.2: the multiplexors and the key schedule logic are implicitly
commanded externally.

The schematics follow those conventions:

• sequential gates, Flip-Flops (DFF) in our case, are represented as boxes (),

• combinatorial gates are represented as boxes with round corners (or),

• permutation-only gates, such as IP or buses merge () or split (), are hollow, whereas

• gates made up of logic have a solid background ;

• datapath forks are represented with solder dots (•) and

• when some bits are useless, they are disposed ().

The entire DES design is made up of bit shuffling dataflow primitives (permutations, multi-
plexors and flip-flops), with the exception of the round logic. This fact is depicted on Fig. 3.3,
where the critical path of the datapath is highlighted. The typical resource utilization in the
straightforward architecture of Fig. 3.2 is illustrated in Tab. 3.1.

Registers LR and CD must be loaded sequentially. In a pipelined architecture, the use of
“enable” signals on the DFFs can usually be avoided. It is possible to use none, if the key is
loaded first into CD, because there is a way to keep it “apparently” still. As LS2 = LS ◦ LS,
RS2 = RS ◦ RS and LS ◦ RS = RS ◦ LS = Id, it is easy to control the key in such a way it is
unchanged before and after the LR loading. In the sequel, we assume that the transformation
is LS4 ◦ RS4.

As for LR, it never has to maintain its state more than one clock cycle. The same remark
will hold for the refinements carried out on this straightforward architecture, because they are

54 CHAPTER 3. DPA ON DES

IPFP PC1

Message

output

8 →֒ Key bytesMessage bytes ←֓

8 7

56

8

64 56

32

LS◦PC1

49

8

7 1
32

32

32

The key parity bits

are checked or

simply disposed.

LR

4→1 MUX

CD

Round logic Key schedule

4→1 MUX

Figure 3.2: Straightforward architecture for a DES module, equipped with demultiplexing logic
to load the message and the key one byte at the time.

PC2

RS RS2LSLS2

From register CDFrom register LR

To register LR
To L To R

From L From R

To register CD

Key

schedule

Round

logic 4→1 MUX

S

E

P

Figure 3.3: DES round and key schedule combinatorial logic. The critical path LR → Round
Logic → LR is highlighted .

Table 3.1: Resources area [µm2] in Fig. 3.2, synthesized at 400 MHz in a 130 nm ASIC low-
leakage technology.

Datapath Control
Round logic Rest: Dataflow logic

S + XOR Permutation MUX DFF FSM
8482 0 7193 3437 5075

3.2. A DES ARCHITECTURE OPERATING IN IP REPRESENTATION 55

“pipelined”: data (other than the key) flows continuously through the datapath, without having
to wait at any time.

The straightforward pipeline is thus initially busy during 64/n = 8 clock cycles to load the
key into CD. During another eight clock cycles, the key is applied LS4 ◦ RS4, whilst the first
message block is loaded into LR. Then the DES engine starts the sixteen iterations. The next
eight clock cycles are devoted to flushing the result out.

In the straightforward scheme of Fig. 3.2, every computation has an overhead in execution
time due to data loading / unloading in the LR or in the CD register. The evaluation of the
architecture throughput does not take into account the key loading, because most applications
use only one key, loaded once for many consecutive cipherments (the case of 3DES is detailed
later in Sec. 3.2.3.2.) The loading stage consumes 64/n = 8 cycles, and monopolizes the LR or
the CD registers, so that it is impossible to parallelize a loading with a DES cipherment (16
cycles). Then the message must be output, which requires another 64/n = 8 cycles. Notice
that for read and write accesses to be done in parallel, two RAMs must be connected to the
DES engine. In terms of memory usage, it is however optimal to use a single RAM, since every
computation result can be written over the original message. Thus, the maximum throughput
is one encipherment per 8+16+8 clock cycles (2.0 bit/clock). With a double port RAM, the
write and read accesses could parallelized, which would reduce the encipherment time to 24
cycles.

The straightforward architecture suffers two drawbacks, that impede the cryptoprocessor
performances:

1. The DES cannot perform cipherements while new blocks mi+1 are being read and pro-
cessed blocks DES(mi) are being written out.

2. The LR register is preceded by two layers of multiplexors, that increase the critical path.

The next section describes and motivates a novel pipelining scheme, where the data can be
transferred byte by byte, in parallel with DES cipherments.

3.2.2.2 DES datapath fast pipelining

The drawbacks put forward in the previous section can be overcome by a more elaborate
pipelining scheme of the DES cryptoprocessor. The principle is to parallelize the message
loading and unloading with the DES algorithm itself. A comparison between the so-called
iterative and pipeline architectures of DES inner-loop is discussed in [81, page 589]. The
difference is that an iterative DES engine processes one cipherment at the time, whereas a
pipeline DES engine can process many – up to 16 – at the same time. In all the architectures
presented here, DES is computed iteratively. However, the outside view of the DES engine is
more like a pipeline: data is not input and output monolithically, but rather byte by byte. It
must be clear that, throughout this study, the term “pipeline” refers to the way the data is
loaded and unloaded.

A 64-bit register, called IF (because of its role of InterFace between the 8-bit inputs and
the 64-bit blocks involved within DES), is added to the DES cryptoprocessor.

IF is designed to have two possible sources: it can input either individual bytes or 64-bit
blocks. In the first case, the output of IF is shifted by 8-bits to make room for the incoming
byte, to be concatenated with the others already collected. The byte that has been “shifted-
out” is not lost: it is available at the eight-bit output of the pipeline. In the second case, a
64-bit block, such as the result of the DES computation, is latched into IF, in a view to being
output byte by byte. In the meantime, the whole content of IF can be transferred to LR, so
that the DES datapath is ready to immediately start another cipherment.

The same IF register can be reused to manage the 8-bit ↔ 64-bit conversion for both LR
and CD. Figure 3.4 illustrates that the pipeline is generalized to cover both the round logic and
the key schedule.

56 CHAPTER 3. DPA ON DES

IP

0 10 1

LSPC1

210

FPin
p
u
t

Key parity bits

56

64

8
8×1

8×7

ou
tp

u
t

8

LRIF CD

Key schedule

3→1 MUX2→1 MUX 2→1 MUX

Round logic

Figure 3.4: Proposed pipelined DES 8-bit datapath for ECB cipherments.

don’t care

CD reg:

LR reg:

IF reg:

IF sel:

LR sel:

CD sel:

input k

0

k kept still

input m0 output cn−1input mi+1output ci−1

process ci =DES(mi, k)

key schedule

8 2416 32

(i = 0, 1, · · ·)
orginal k

∗n

clock cycles

0 87 16 32 4015 3124

don’t care 2
0
1

Figure 3.5: Pipeline (cf. Fig. 3.4) steps involved in ECB cipherments i = 0, 1, · · · , n−1. Upper
part : registers content (c−1 = ’-’ is don’t care). Lower part : multiplexors selection signals.

3.2. A DES ARCHITECTURE OPERATING IN IP REPRESENTATION 57

A more detailed description of the pipelined process is given below and illustrated in Fig. 3.5
for DES-ECB encipherment with one key:

1–7: During seven clock periods, the seven first bytes of the key k are loaded, side-by-side, into
IF.

8: The blocks comprised of the last byte of the key k[56, 63], concatenated with the already
loaded seven others k[0, 7] || · · · || k[48, 55], are then loaded into CD, using selection 0
(when deciphering) or selection 1 (when enciphering).

9–15: During the seven following clock periods, the message m0 is built-up into IF.

16: The message m0, now complete, is transferred into LR. In the meantime, k is kept still in
CD, which is possible, as shown in Sec. 3.2.2.1. At the same time, the result DESk(m−1)
of the previous computation – if any – is latched into IF.

17–24: The next eight cycles would be devoted to the output of an hypothetical c−1
.
= DESk(m−1),

byte by byte (c−1[8 · i, 8 · (i + 1)[, i ∈ [0, 8[), from IF. In the present case, c−1 is a “don’t
care” result. However, starting from clock cycle 33, relevant ci, i ≥ 0 will be delivered
byte by byte from IF. Concomitantly, the first eight rounds of DES are executed.

25–31: Whilst DES rounds are computed, a new 64-bit block of data is loaded (as already seen
at clock cycles 9–15.)

32: DES has finished the sixteen rounds. The result is latched into IF. Simultaneously, a new
64-bit block of data is loaded into LR.

33–40: While DES starts the second cipherment, IF outputs c0. The scheduling scheme goes on,
with a periodicity of 16 clock cycles.

In practice, the pipeline is connected to a scratch-pad RAM. The pipeline reads from (cycles 1–
8, 9–16, 25–32) and writes to (cycles 17–24, 33–40) the RAM on disjoint time slots. Therefore,
a simple-port RAM (the less expensive type of RAM) is perfectly suitable. The throughput of
the DES pipelined operator is 64-bit per 16 clock periods (4.0 bit/clock). The input and output
latencies are 8 cycles (as in Sec. 3.2.2.1, we ignore the key initial loading.)

By the same token, the pipelined architecture improves the datapath speed. In the straight-
forward implementation, the LR register has four input sources:

1. the input byte concatenated with the previous register content shifted by 8 bits to build
the plaintext up,

2. the same block, but passed through IP, to start the computation and

3. the end of the round data, reinjected into LR for the next round.

4. the same block, swapped and passed through FP.

As already shown in Fig. 3.2, a 4→ 1 multiplexor, to choose between those four sources, directly
precedes LR.

In the pipelined architecture, IP is performed concomitantly with the collection of the
plaintext constitutive bytes. It does not slow down the computation, because in a hardware
implementation, IP requires no logic: it is a mere reordering of wires. Consequently, LR has
only two possible inputs in the pipelined architecture ; the 4→ 1 multiplexor is replaced by a
2→ 1. This optimization is crucial, since this multiplexor is on the critical path (LR→ Round
Logic → LR).

58 CHAPTER 3. DPA ON DES

3.2.3 Optimal software / hardware partition to realize all DES vari-
ants

3.2.3.1 IP representation

The notations used in this section are inspired from openssl [30] internals:

• des encrypt1 is the full DES,

• des encrypt2
.
= IP ◦ des encrypt1 ◦ FP

is DES, without IP nor FP.

Functions des encrypt{1,2}(m, k, enc) take three arguments: a message m, a key k and a
Boolean enc, specifying whether to encrypt (enc = 1) or decrypt (enc = 0.)

For any function set fi : [0 :264 − 1] 7→ [0 :264 − 1], the following property holds:

Πi (FP ◦ fi ◦ IP) = FP ◦ (Πifi) ◦ IP , (3.1)

where: Πi=imax
i=imin

fi
.
= fimax

◦ · · · ◦ fimin
,

because FP ◦ IP is the identity function.
This property allows the chaining of DES operations without caring neither for IP nor for

FP permutations. The “IP representation” computational framework consists in using the
des encrypt2 primitive instead of des encrypt1, the IP (resp. FP) being called only once at
the beginning (resp. at the end) of the computation. The Equation (3.1) can be applied to the
following DES variants:

• fi = des encrypt2(mi, k, enc) (ECB and ECB−1)

• fi =

{
des encrypt2(mi, ki, (1 + i)%2) if enc = 1
des encrypt2(mi, k2−i, (i)%2) if enc = 0

,∀i ∈ {0, 1, 2} ,
(triple-DES on one block m ; m0 = m and mi+1 = fi(mi), the output being m3)

• fi =

{
des encrypt2(mi ⊕ fi−1, k, 1) if enc = 1 ,
des encrypt2(mi, k, 0)⊕ fi−1 if enc = 0 ,

(CBC and CBC−1, with f−1 = IV)

• fi = des encrypt2(fi−1, k, 1)⊕mi,
(64-CFB and 64-CFB−1, with f−1 = IV)

• fi = des encrypt2(fi−1 ⊕mi−1, k, 1)⊕mi,
(64-OFB and 64-OFB−1, with f−1 ⊕m−1 = IV)

In software implementations, IP is not free as in hardware, because bits cannot be arbitrarily
moved within or between words. In openssl, IP and FP are implemented using 32-bits registers
in 5× (3 XOR + 2 SHIFT + 1 AND) = 30 operations [30].

DES des {en,de}crypt3 function performs triple DES on one block of plaintext. It is
the only function from openssl that takes advantage of the optimization provided by the
computation in the IP representation (3.1). All other functions, especially chained DES, are
thus inefficient.

3.2.3.2 Multi-mode pipelined DES datapath operating in “IP representation”

The pipeline described in Sec. 3.2.2.2 (see Fig. 3.4) is not designed to chain cipherments. How-
ever, it can be enhanced to cope with triple-DES and all modes of operation. The rationale is
to add two inputs to the LR multiplexer:

3.2. A DES ARCHITECTURE OPERATING IN IP REPRESENTATION 59

IP

FP

1 20 1 2 30

FP

8

in
p
u
t

LS

PC1◦FP

0 1 2

64

56

Parity bits

8×1

representation
“Normal”

ou
tp

u
t

8
“IP”

IF

3→1 MUX

LR CD

Key schedule

3→1 MUX 4→1 MUX

Round logic

Figure 3.6: Proposed multi-modes pipelined DES datapath operating in “IP representation”.

Table 3.2: Selected signals at the beginning of each DES chained with modes of operation.

Mode IF MUX LR MUX Built upon
ECB 1 0 DES
ECB−1 1 0 DES−1

CBC 1 2 DES
CBC−1 — — —
CFB 2 2 DES
CFB−1 2 0 DES
OFB = OFB−1 2 0, 3, 3, · · · DES

1. the result of the previous DES, which allows triple-DES and also OFB (where the series{
DESi(IV)

}
i≥0

is computed),

2. idem, but XORed with the new message, which allows CBC and CFB chained modes.

The new inputs to LR are compatible provided they are in the IP representation. It basically
means that inputs to DES must be previously IP’ed and that output of DES to be recycled
must not be FP’ed. Additionally, the IF register must be able to latch the XOR between the
new message and the current result, which is required by the stream modes (i.e. CFB and
OFB) of DES. Those constraints lead to the versatile version of the pipelined DES datapath
represented in Fig. 3.6. By default, the multiplexor in front of IF (resp. LR) selects the input 0
(resp. 1). At the end of every cipherment (i.e. every 16 clock periods), the multiplexers choose
another input, as shown in Tab. 3.2.

The realization of triple DES requires a special schedule. The 3DES-ECB is illustrated in
Fig. 3.7. The IF and CD registers sample their default inputs, selection 1 for IF and 0 for CD
(corresponding to the ECB and ECB−1 lines in Tab. 3.2). The scheme for 3DES of Fig. 3.7
can be combined with the modes of operation. It suffices that the data to be output by IF and
sampled into LR have non-default origins documented in Tab. 3.2 every 3× 16 clock periods.

In the case of 3DES with two keys (k0 and k1, k2 = k0), it is noticeable that the computation
never stalls. As a matter of fact, the key for the first of the three DES is already present in

60 CHAPTER 3. DPA ON DES

do m′′
i =DES−1(m′

i, k1)do m′
i =DES(mi, k0)

output ci−1

2416

(i = 0, 1, · · ·)

40 5648

do ci =DES(m′′
i , k0)

input k1 input mi+1input k0

∗n

32

key schedule LS1,2(k0) key schedule RS1,2(k1) key schedule LS1,2(k0)

clock cycles

CD:

LR:

IF:

Figure 3.7: Register contents when the pipeline is configured for 3DES encipherments with
two keys k0 and k1, possibly chained i ∈ [0 : n[times (in which case the indicated clock cycles
must be added the offset i× 48.)

CD, since the last key was k2 = k0. Consequently a new message mi can be loaded instead,
and the next computation can follow seamlessly.

3.2.3.3 SW/HW trade-offs

The proposed pipelined architecture of Fig. 3.6 is versatile, since all the modes of operation can
be fit. Nevertheless, this architecture suffers three drawbacks, discussed in the following three
paragraphs.

3.2.3.3.1 Realization of 3DES with three different keys.
In 3DES with three keys, it would be necessary to load the first key k0 and the new message

block mi at the same time. However, in the proposed versatile architecture, the RAM delivering
the data is single-port and there is a single IF register. As there is a contention, the two
loadings must be done sequentially. As CD has can kept a key globally unchanged during 8
clock cycles, it is loaded first. During the extra eight clock cycles required to load mi, the
pipeline stalls, because it is starving data. Triple-DES with three keys can thus be used with
modes of operation, but it is the only exception where the cipherments do not chain gracefully.

3.2.3.3.2 Realization of CBC−1.
As already indicated in Tab. 3.2, CBC cannot be deciphered directly. The reason is that

to retrieve plaintext block mi, the following XOR must be computed: mi = DES−1(ci) ⊕ ci−1.
Unfortunately, the XOR right-hand side ci−1 has already been consumed by the pipeline (to
compute DES−1(ci−1)) when it is needed again. Re-fetching the ciphertext ci−1 in memory
would require to freeze the pipeline during 8 clocks cycles, which is not desirable.

The first workaround is to implement CBC−1 by EBC−1, which yields m0, m0⊕m1, m1⊕m2,
etc. instead of m0, m1, m2, etc. The processor can afterwards compute (in software) the XOR
between the couples in the memory ram[0:N[to retrieve the correct plaintext. An example
programme is listed below:

register char tmp0, tmp1;

for(register char i=0; i<8; ++i) {

tmp0=ram[i]; // The 1st block is only read

for(register size_t j=1; j<N; ++j) {

tmp1=ram[j*8+i]; // Read jth block

ram[j*8+i]=tmp0^tmp1; // Write jth block

tmp0=tmp1;

}

}

The second workaround we propose is the smartest, because it does not require any post-
processing in software. The idea is to adapt the control to decipher the blocks ci in reverse

3.2. A DES ARCHITECTURE OPERATING IN IP REPRESENTATION 61

Table 3.3: Resources area and maximum frequency of the three proposed architectures imple-
mented in a Xilinx Virtex-4.

Architecture Number of CLBs Number of DFFs Frequency

“Straightforward” (Fig. 3.2) 1445 209 211 MHz
“Pipelined” (Fig. 3.4) 1454 259 202 MHz

“Multi-mode” (Fig. 3.6) 1957 276 144 MHz

order. If we note c′i
.
= cN−1−i, then mi = DES−1(c′i−1)⊕ c′i, for i ∈]N :0], is computable by the

multi-mode architecture of Fig. 3.6. It is the same configuration as CFB−1, but with the key
schedule set to decipher.

3.2.3.3.3 Using CBC and CBC−1 with an IV.
At last, CBC and CBC−1 modes cannot be used with an IV. The IV should indeed be loaded,

kept in some register (say LR) while the first block m0 is built-up into IF, The computation
could then start with the first operand IV ⊕m0. However, this scenario also implies that LR
has an enable, which we explicitly want to avoid.

A first solution relies on the software. The task simply consists in XORing the first block
prior to calling an encipherment or after a decipherment.

A second solution consists in adding an initialization procedure, during which DES±1(IV) is
computed. Then, every message to cipher is simply prepended DES±1(IV). For long messages,
this overhead in processing time becomes negligible.

A third solution implies to increase the DES engine area. The datapath is augmented with
an 8-bit XOR operator that would compute “input ⊕ output” (with the notations of Fig. 3.6.)
This result would be injected into the multiplexor in front of the IF register. It is a design choice
to decide whether it is worth implementing this minor hardware feature that complexifies both
the datapath and the control (since the IF multiplexor has a new input).

3.2.4 Performance evaluation of the proposed architecture

The three architectures discussed in this section, namely the “straightforward” (Fig. 3.2),
“pipelined” (Fig. 3.4) and “multi-mode” (Fig. 3.6) have been captured using VHDL. They
have been synthesized in an FPGA technology (for prototyping) and in an ASIC “low-leakage”
130 nm technology (for production.)

The FPGA front-end was Mentor Graphics Precision Synthesis (for mapping) and the
back-end Xilinx ISE (for fitting.) The performances are given in Table 3.3 for the Virtex
4vfx12sf363-12.

In terms of speed, the “straightforward” architecture is the fastest and the “multi-mode” is
the slowest.

The ASIC tool-chain for the tape-out of the embedded 8-bit DES blocks was Cadence
pks shell for the front-end (synthesis) and SOC/Encounter for the back-end (place-and-route.)
The synthesis results, for both the control and the datapath, are given in Fig. 3.8. The increase
of the area is due for about 25 % to bufferization and for 75 % to Boolean optimization.
The straightforward architecture is the most compact and the multi-mode is the largest. The
designs maximum frequency are 540 MHz (straightforward DES), 500 MHz (pipelined DES),
435 MHz (multi-mode DES.) The pipelined DES does not reach the same frequency as the
straightforward DES because its more complex control limits its speed. The multi-mode DES
datapath is more sophisticated, which explains why it cannot reach as high frequencies as the
two other architectures. The maximum frequency of the proposed architectures are fairly high

62 CHAPTER 3. DPA ON DES

22000

24000

26000

28000

30000

32000

34000

36000

38000

40000

100 150 200 250 300 350 400 450 500 550
A

re
a

[µ
m

2
]

Chip frequency [MHz]

Straightforward (Fig. 2)
Fully pipelined (Fig. 4)
Multi-mode (Fig. 6)

Figure 3.8: Synthesis results for the three architectures.

Table 3.4: Throughput in bit/cycle of some modes of the three studied implementations of
DES.

Straightforward Pipelined Multi-mode
DES-ECB 2.000 4.000 4.000
DES-CBC 1.000 1.000 4.000

3DES-ECB 0.571 0.571 1.333
3DES-CBC 0.444 0.444 1.333

for an embedded system. The architectures can be adapted to an external datapath width of
n = 16 (resp. n = 32) bits, in which case two (resp. four) rounds can be computed within
one clock period. This new architecture will run at a maximum speed roughly half (resp. four
times less.)

However, the cipherment throughput is the highest for the pipelined architecture in ECB
mode, and for the multi-mode in all the other modes and triple DES. Table 3.4 shows the
throughput of some modes. It should be noted that neither the straightforward nor the pipelined
architectures are designed to handle modes of operation or triple-DES. The chaining operation
must thus be computed artificially in SW. An estimation of the code for such an operation is
given below:

1. Read ram[i] . (1 clock cycle)

2. Read ram[i+8] .(1 clock cycle)

3. Compute ram[i] XOR ram[i+8](1 clock cycle)

4. Write ram[i+8] . (1 clock cycle)

This fragment must be repeated 8 times, which leads to a total of 8× 4 = 32 clock cycles. This
evaluation is optimistic, because it does not take into account the context switch. It is also
unrealistic, since the processor should not be disturbed by the computation internal details.
The throughput figures given for straightforward or the pipelined are thus only indicative.

The maximum throughputs are also shown graphically in Fig. 3.9 (a) for DES-ECB and in
Fig. 3.9 (b) for 3DES-CBC. It is also interesting to compare the throughputs of an ASIC design
with the one of a personal computer (PC.) The maximum throughput for 3DES-CBC attained

3.2. A DES ARCHITECTURE OPERATING IN IP REPRESENTATION 63

0

500

1000

1500

2000

100 150 200 250 300 350 400 450 500 550

Chip frequency [MHz]

T
h
ro

u
gh

p
u
t

(a)

Straightforward (Fig. 2)
Fully pipelined (Fig. 4)
Multi-mode (Fig. 6)

0

100

200

300

400

500

600

100 150 200 250 300 350 400 450 500 550

Chip frequency [MHz]

T
h
ro

u
gh

p
u
t

(b)

Straightforward (Fig. 2)
Fully pipelined (Fig. 4)
Multi-mode (Fig. 6)

Figure 3.9: Throughput (in 106 bit/s) of the three solutions in (a) DES-ECB and (b) 3DES-
CBC.

by the multi-mode architecture is 580 Mbit/s = 435 MHz × 1.33 bit/cycle while a PC clocked
at 3.2 GHz is only able to encrypt at 200 Mbit/s (result of openssl speed des [30].)

However, achieving high throughput would be needless if the area overhead is getting too
large. For most modes of operation, the parallelization of the cipherments is impossible, due
to data dependencies between the consecutive blocks. Still, ECB±1, CBC−1 and CFB−1 can
indeed be parallelized. In those cases, the throughput can be multiplied by the instantiation
of multiple engines operating concurrently. Therefore, in Fig. 3.10, the throughput divided by
the area is plotted. At constant area, the multi-mode architecture of DES remains the fastest.

The DES module after automatic place-and-route by SOC/Encounter is shown in fig. 3.11.
It happens that the synthesizer was optimistic: static timing analysis performed on the final
layout at 95% placement density reports, after post-route resynthesis and in-place optimization,
a maximal frequency of 286 MHz (versus 435 MHz predicted by the logical synthesizer.) This
limitation is in practice not deterrent, since 256 bytes embedded rams in 130 nm technology
cannot work above 333 MHz without violating either hold or setup times.

3.2.5 Comparison with other fast and versatile implementations of
DES

A “Cryptographic Reuse Library” based on static genericity is described in [91]. It contains
synthesizable algorithms commonly used in cryptography, each of which can be used either as
such, or wrapped into a module that enables modes of operations, or further wrapped into

64 CHAPTER 3. DPA ON DES

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

100 150 200 250 300 350 400 450 500 550

Chip frequency [MHz]

Straightforward (Fig. 2)
Fully pipelined (Fig. 4)
Multi-mode (Fig. 6)

Figure 3.10: Comparative efficiency of 3DES-CBC (in Mbit/s/µm2) for the three proposed
architectures.

Figure 3.11: The multi-mode DES after place-and-run in 130 nm technology. Left : Datap-
ath / Control partitioning; Right : Final layout.

3.2. A DES ARCHITECTURE OPERATING IN IP REPRESENTATION 65

an interface module that adapts throughputs and latencies to match that of the environment.
Although the methodology has not been applied to DES in [91], it could be extended to support
this algorithm. The features of this “Cryptographic Reuse Library” are those we present in this
section. However, as the mode of operation and interface wrappers involved in the library are not
aware of the algorithm internals, the resulting block is necessarily sub-optimal. The approach
used in the “multi-mode” architecture (Fig. 3.6) is to merge the two abovementioned wrappers
into the algorithm datapath itself. This allows the “multi-mode” architecture to work without
dead cycles at a constant throughput. This prominent feature is a valuable characteristic of
the multi-mode architecture: the I/Os are equipartitioned during the processing of the DES
algorithm. However, this design solution is specific to DES, and probably does not extend to
other algorithms.

Some architectural innovations are described in [36] regarding the round logic of DES. The
frontier between the consecutive rounds i and i + 1 is dissolved in order to balance the critical
path between Li→Ri+1 and Ri→Li+1. The transformation yields an overall decrease of the
critical path length, at the cost of an increase of the latency (the apparent number of rounds
rises from 16 up to 21 or 37) and of a particularization of the first and last rounds. These
modifications are not a burden when a pipelined implementation is targeted. However, they
are deterrent for the architectures presented in this section, because the data processing is kept
iterative.

3.2.6 Proposed architectures modifications for bit-slice P&R

The three architectures proposed in figures 3.2, 3.4 and 3.6 are not adapted to a bit-slice
place-and-route. The permutations IP, FP and PC1 indeed mix the bus indices, which wastes
area simply for wires reordering. A reorganization of the permutations that helps keeping
buses together is shown in Fig. 3.12. The figure highlights the various datapath bit-widths
and introduces three permutations X{1,2,3}. X1 and X2 correspond to IP and FP. Those
permutations take advantage of the fact that IP and FP can be achieved in eight cycles (duration
of a 64-bit block loading or unloading.) As IP and FP are close to being transpositions of the
input bits represented as an 8× 8 matrix (see Fig. 3.13), the operation can be realized in eight
iterations thanks to shift registers (see Fig. 3.14.) The permutation X3 remains the adaptor
from IP to PC1: X3

.
= PC1 ◦ FP.

Notice that the multiplexor MUXPC2 is placed after register CD in the architecture of
Fig. 3.12. This is a design awkwardness, because the key schedule is uselessly added to critical
path. The ASIC “SecMat V1” available for the power analysis has this very architecture, which
is why the figure is not corrected. All the power traces on DES printed in this document were
realized on this architecture.

3.2.7 Conclusion on the DES architecture

Two architectural innovations, namely the I/O and processing pipelining and the use of the
“IP representation”, allow to improve the design of DES 8-bit implementations. The proposed
architecture supports all modes of operation and triple DES with two keys. The hardware
implementation can take advantage of both methods, whereas software implementations can
only benefit from the “IP representation”. The pipelining strategy consists in parallelizing the
data inputs and outputs with the processing. It also enables shorter clock periods, due to
the elimination of the some multiplexors on the critical path. The IP representation enables
optimized chaining. These optimizations allow to accelerate DES operations in smartcards or
in embedded systems or to speed-up DES-cracking machines [81].

66 CHAPTER 3. DPA ON DES

RS

RS2

LS

LS2

8 bit

48 bit

2 x 28 bit

2 x 32 bit
8 x 8 bit

PSELR

CD

X3

PC2

IF DI
X2

DO
X1

Domains:

XORMODE

XORK XORL

MUXPC2MUXCD

MUXLR

MUXIF

2
0’
0

1

1

2

0

0

1

Figure 3.12: SecMat V1 version of the DES datapath, with the indication of the datapath width
(in shades of gray.)

R[17-24] R[25-32]R[9-16]R[1-8]

L[17-24] L[25-32]L[9-16]L[1-8]

IP:

1
9

17
25
33
41
49
57

2

18
26
34
42
50
58

3

19
27
35
43
51
59

4

20
28
36
44
52
60

5

21
29
37
45
53
61

6

22
30
38
46
54
62

7

23
31
39
47
55
63

8

24
32
40
48
56
64

11 12 13 14 15 1610

Figure 3.13: Repartition of the messages bytes (lines) in registers L and R after IP (columns.)

3.3. FULLY COMBINATORIAL DES IMPLEMENTATION 67

2 4 6 8 1 3 5 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 2115 22 23 24 25 26 27 28 30 31 32 33 34 3529 37 38 39 40 41 4236 43 44 45 46 47 48 49 51 52 53 56555450

57 59 60 61 62 63 64581 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 2115 22 23 24 25 26 27 28 30 31 32 33 34 3529 37 38 39 40 41 4236 43 44 45 46 47 48 49 51 52 53 56555450

byte #2 byte #3 byte #4 byte #5 byte #6 byte #7 byte #8

RAM
IF

IF

X1

byte #1

byte #1 byte #2 byte #3 byte #4 byte #5 byte #6 byte #7 byte #8

57 59 60 61 62 63 64581 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 2115 22 23 24 25 26 27 28 30 31 32 33 34 3529 37 38 39 40 41 4236 43 44 45 46 47 48 49 51 52 53 56555450

2 4 6 8 1 3 5 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 2115 22 23 24 25 26 27 28 30 31 32 33 34 3529 37 38 39 40 41 4236 43 44 45 46 47 48 49 51 52 53 56555450

IF

RAM
IF

X2

Figure 3.14: Permutations X1 (top) and X2 (bottom) used in the DES datapath of Fig. 3.12.

Table 3.5: Number of CD shifts for the combinatorial DES datapath (see Fig. 3.15.)

Round # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Shift # 0 1 3 5 7 9 11 13 14 16 18 20 22 24 26 27

3.3 Fully combinatorial DES implementation

3.3.1 Combinatorial DES datapath

The iterative architecture presented in the previous section can be made combinatorial, without
modifying neither the control nor the performances in terms of speed. The idea is to remove the
register transfers occurring during the sixteen rounds. The registers are thus disabled during
the rounds execution, and the datapath is fully unrolled. The algorithm combinatorial depth
is thus roughly increased by a factor of sixteen, but the registers LR and CR remain frozen
during sixteen clock cycles, which makes up for the delay through the gates. The architecture
is depicted in Fig. 3.15. The inputs 1 of the LR multiplexor and 2 of the CD multiplexor play
the role of enable for the corresponding registers. The key schedule consists in the sequence of
shifts (left as for encryption, right otherwise) given in Tab. 3.5.

Notice that, at the synthesis, the timing constraints must be relaxed. Indeed, by default, the
timing engines of the synthesizers attempt to fit into one clock cycle the logic that is situated
between two register banks. In the combinatorial DES specific case, the logic driven by LR and
CD has sixteen clock cycles to execute. This piece of information cannot be easily inferred,
thus user constraints must be set. They basically consist in specifying spare clock cycles for
some timings arcs. The timing paths that are concerned thus start at registers LR and CD,
plus the Boolean signal originating from the control that tells whether the current operation is
an encipherment or a decipherment (refer to Fig. 3.5, where the shifts can be interpreted left
or right-wise.) The “multi-cycle” constraints listed in Fig. 3.16 express the fact that outputs
of LR and CD are sixteen times slower that the clock and that the signal to decide between
encipherment and decipherment is a false timing path. This last path is indeed never critical
because the choice between encryption and decryption is not modified during one computation.

Finally, the description in HDL is impacting the synthesis of the combinatorial datapath.
With the state-of-the-art synthesizers, it is not possible (within a reasonable amount of time) for
a synthesizer to map the function: LR16 = IP◦DES(IP−1(LR0),PC1−1(CD0)). It happens that
the synthesizer is able to cope with an unrolled description expressed in the generic instantiation
of sixteen entities, as shown in Fig. 3.17.

This “segmented” description yields thus the best netlist obtainable with general-purpose
synthesizers. A dedicated Boolean mapping tool might be more efficient. With the round-by-
round description, the synthesizer can optimize the round entities boundaries, but not their

68 CHAPTER 3. DPA ON DES

IP

FP

1 20 1 2 30

FP

8

in
p
u
t

LS

PC1◦FP

0 1 2

ou
tp

u
t

8

64

56

Parity bits

8×1

...

“Normal” “IP”

representation

IF

3→1 MUX

LR CD

Key schedule

Key schedule

Round logic

3→1 MUX 4→1 MUX

Round logic

Key scheduleRound logic

Round logic

Key schedule

Round 2:

Round 15:

Round 16:

...

Round 1:

Figure 3.15: Combinatorial DES datapath built upon the versatile architecture of Fig. 3.6.

set_current_module des_datapath_combi_wrapper; # Internal constraints

set_current_instance [find -hier -inst I_REG_LR];

The following constraint (1+15 cycles allowed for the computation)

concerns the whole bus:

set_cycle_addition -from [get_info [lindex [find -port q] 0] bus] 15;

set_current_instance [find -hier -inst I_REG_CD];

set_cycle_addition -from [get_info [lindex [find -port q] 0] bus] 15;

set_current_module des_datapath_combi; # External constraint

set_false_path -from [find -port sel_left_not_right]; # Encrypt/Decrypt

Figure 3.16: TCL timing constraints crafted for the “multi-cycle” DES combinatorial datapath
synthesis by Cadence bgx shell.

3.3. FULLY COMBINATORIAL DES IMPLEMENTATION 69

G_ROUND: for ROUND in 1 to 16 generate

I_ROUND: entity des_datapath_combi_round(combi)

port map

(

M => LR(ROUND-1),

C => LR(ROUND),

KEY => reg_cd_out,

CYPHER => sel_left_not_right, -- Encrypt/Decrypt

ROUND => ROUND

);

end generate G_ROUND;

Figure 3.17: Excerpt from the VHDL description of the unrolled DES architecture.

internal structure. As a consequence, the iterative nature of the DES datapath is still somehow
structurally present.

3.3.2 Security properties of the combinatorial DES

The expected security enhancement provided by the combinatorial DES first arises from the
removal of the registers: there are consequently no more register transfers to exploit. As
underlined in Sec. 2.4.2, the attacks of combinatorial logic is more difficult to set up and, above
all, features a reduction of the SNR by a factor two (refer to Eqn. (2.16).) The absence of
DFFs to resynchronize the combinatorial signals at every round fosters the timing variations
to increase during the percolation of the message and of the key. A statisical study of the
ciphertext arrival time variations is given below.

While generating the netlist of the combinatorial datapath, the propagation delays in the
gates as well as an estimation of the routing delays are saved in a back-annotation SDF [5] file.
A simulation is then run with the VITAL [48] models of the gates. It must be noted that the
simulation was performed on a DES module with IP and FP.

For 1 251 different random cleartexts, three values are extracted:

1. the date of the first toggle at the output LR16 of the datapath,

2. the date of the last toggle, corresponding to the bit final value, and

3. the number of toggles, corresponding to the “glitch” activity of the output bit.

The average values of these three measurements are plotted on the three figures 3.18 (a),
(b) and (c). The standard deviation of the extracted quantities is computed and reported on
the graphs as error bars.

The following observations can be made:

1. First toggle: The first event in output occurs quickly compared to the computation
duration. In average, the first toggle occurs 2 ns after the computation beginning for an
average duration of 15 ns. This means that there exists very short paths to the output,
as well as very long ones. Thus we expect many glitches.

2. Last toggle: The output bits can be partitioned in two groups L16 and R16. Given the
structure of FP, at the output of the full combinatorial DES, the odd index bits all come
from R16 while the even index bits all come from L16. Now, because of the Feistel-network
structure, the evaluation of L16 is immediate, whereas R16 must first pass through the
round logic. The computation time difference is about equal 1/16 of the total computation

70 CHAPTER 3. DPA ON DES

time. Additionally, the standard deviation on the last toggle date is equal to one round
duration, which proves that it is extremely difficult for an attacker to resynchronize one
output bit. The instant when a relevant event occurs is indeed mixed with the events
from the previous round, as suggested by the interpenetration of the error bars from the
two groups of output bits.

3. Number of toggles: The number of glitches on the outputs is, in average, equal to
20, but is very scattered. The dispersion is a characteristic of the netlist, because it is
little impacted by a change of the key. This tends to show that the fully combinatorial
DES remains immune to timing attacks [53]. But this immunity is rather a property
of the algorithm ; a timing attack can be mounted successfully against an unprotected
implementation of RSA because every bit of the secret key is processed sequentially and
because the duration of any single multiplication depends on this bit. As far as DES is
concerned, the secret bits are used in parallel and their addition (bitwise XOR) operates
in constant time (at the first order.) The parallel processing and the absence of obvious
distinguishers in execution time make the fully combinatorial DES implementation robust
against timing attacks.

3.4 DES remarkable cryptological properties

The DES cipher has several cryptological properties that are exposed in this section 3.4 (theory.)
The application of those properties to side-channel analysis is the subject of the next section 3.5
(practice.)

DES is a Feistel scheme with sixteen rounds. One typical Feistel round is depicted in
Fig. 3.19.

As for DES, the Feistel function f is constant, and thoroughly studied in the previous
section 3.2. The round key Ki depends on the round i. A DES key is first stripped off its parity
bits thanks to a 64 → 56 bit function called PC1. The result is stored as a key state, named
CD, each register C and D holding 28 bits. The state CD undergoes transformation referred to
as “Left-Shifts” (LS) or “Right-Shifts” (RS), depending on the type of cipherment (encryption
or decryption.) A remarkable property of the DES key schedule is that after one cipherment,
the register CD is back to its original state. The round key Ki injected into the datapath is
the state CD filtered through a function called PC2. The PC2 function does not make any use
of bits {9, 18, 22, 25, 35, 38, 43, 54} of CD. The state of CD (i.e the key before PC2) is given
in Tab. 3.6.

The Data Encryption Standard has a couple of remarkable properties, that constitute po-
tential weaknesses:

1. Complementary property:

∀(K,M) ∈ {0, 1}56 × {0, 1}64, DESK(M) = DESK(M) .

2. Weak-keys and fixed points (refer to next section 3.4.1.)

3. Semi-weak keys and anti-fixed points (refer to next section 3.4.2.)

No cryptographic engineering handbook (neither [60, Sec. 7.4.3] nor [22])provide demonstra-
tions for DES particular keys, therefore I give here mine. A more elliptic proof can be found
in [63]. They will be useful for the coming power analyzes of DES (see Sec. 3.5.)

3.4. DES REMARKABLE CRYPTOLOGICAL PROPERTIES 71

(a)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 8 16 24 32 40 48 56 64

F
irs

t t
og

gl
e

da
te

 [n
s]

DES cipher output bits

Computation dispersion in a DES combinatorial implementation

(b)

 11

 11.5

 12

 12.5

 13

 13.5

 14

 14.5

 0 8 16 24 32 40 48 56 64

La
st

 to
gg

le
 d

at
e

[n
s]

DES cipher output bits

Computation dispersion in a DES combinatorial implementation

(c)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 8 16 24 32 40 48 56 64

N
um

be
r

of
 to

gg
le

s

DES cipher output bits

Computation dispersion in a DES combinatorial implementation

Figure 3.18: Statistics on a back-annotated combinatorial DES netlist simulation with the key
0x01 23 45 67 89 ab cd ef: (a) first toggle date, (b) last toggle date and (c) number of toggles.

72 CHAPTER 3. DPA ON DES

• The datapath is divided into two halves, referred to as
L and R (standing for Left and Right),

• For all round, indexed by an integer i,

{
Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1,Ki)

• Then, whatever the Feistel function f , decryption is ac-
complished via:

{
Ri−1 = Li

Li−1 = Ri ⊕ f(Li,Ki)

Li−1 Ri−1

RiLi

Ki f

Figure 3.19: Horst Feistel network structures [45].

Table 3.6: DES architecture V1 key schedule.

Round Encryption Decryption

LSs CD State # RSs CD State

1 1 LS1 0 RS0 = Id

2 1 LS2 1 RS1

3 2 LS4 2 RS3

4 2 LS6 2 RS5

5 2 LS8 2 RS7

6 2 LS10 2 RS9

7 2 LS12 2 RS11

8 2 LS14 2 RS13

9 1 LS15 1 RS14

10 2 LS17 2 RS16

11 2 LS19 2 RS18

12 2 LS21 2 RS20

13 2 LS23 2 RS22

14 2 LS25 2 RS24

15 2 LS27 2 RS26

16 1 LS28 = Id 1 RS27

3.4. DES REMARKABLE CRYPTOLOGICAL PROPERTIES 73

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2927 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

“C” half “D” half

49 50 51 52 53 5655541 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2927 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

CD

PC2(CD)

Figure 3.20: The PC2 permuted choice, operating from {0, 1}28×{0, 1}28 to {0, 1}24×{0, 1}24.

3.4.1 DES weak keys and fixed points

3.4.1.1 DES weak keys

Definition 2 A weak key K is a key such as: ∀M,DESK(M) = DES−1
K (M). As a conse-

quence, encryption and decryption are involutive: DESK ◦DESK = DES−1
K ◦DES−1

K = Id.

Property 1 Note: For the sake of simplicity, in the following, K = PC1(key).

• The key schedule must be palindromic. ∀i ∈ [1, 16],Ki = K17−i,PC2(CDi) = PC2(CD17−i).

• PC2 : {0, 1}56 → {0, 1}48 is not bijective;
CDi and CD17−i are equal only on [1, 56]\({9, 18, 22, 25} ∪ {35, 38, 43, 54}).

• As shown below, all the subkeys are equal.

• Moreover, the subkeys (all equal to the actual key K) take only four values:

{0}56, {0}28 × {1}28, {1}28 × {0}28 and {1}56.

Demonstration 2 (Proof of property 1) As shown in Fig. 3.20, PC2 can split into two
halves [1, 28]∪ [29, 56]. Thus solutions can be thought of independently for “C” and “D”. In the
sequel, only the “C” part is discussed.

• For i = 1, CD1 = LS(K) and CD16 = K. Thus:

LS(K) : 2 3 4 5 6 7 8 9 ��ZZ10 11 12 13 14 15 16 17 18 ��ZZ19 20 21 22 ��ZZ23 24 25 ��ZZ26 27 28 1
|| || || || || || || || ¿? || || || || || || || || ¿? || || || ¿? || || ¿? || || ||

Id(K) : 1 2 3 4 5 6 7 8 ��ZZ9 10 11 12 13 14 15 16 17 ��ZZ18 19 20 21 ��ZZ22 23 24 ��ZZ25 26 27 28

Hence the bits of the key K are equal in every of the four partitions: ([26, 28] ∪ [1, 9]),
([10, 18]), ([19, 22]) and ([23, 25]). Note: The symbol “||” is used to express the equality
between bits of two bit vectors, whereas “¿?” means that no equality relationship holds.

• For i = 2, CD2 = LS2(K) and CD15 = LS27(K) = RS(K). Thus:

LS2(K) : 3 4 5 6 7 8 9 10 ��ZZ11 12 13 14 15 16 17 18 19 ��ZZ20 21 22 23 ��@@24 25 26 ��@@27 28 1 2
|| || || || || || || || ¿? || || || || || || || || ¿? || || || ¿? || || ¿? || || ||

RS(K) : 28 1 2 3 4 5 6 7 ��ZZ8 9 10 11 12 13 14 15 16 ��@@17 18 19 20 ��ZZ21 22 23 ��@@24 25 26 27

Hence [26, 28] ∪ [1, 9] ∋ (K9 = K12) ∈ [10, 18] ∋ (K18 = K21) ∈ [19, 22] ∋ (K22 = K25) ∈
[23, 25] ; all the partitions share the same value, either 0 or 1. QED.

74 CHAPTER 3. DPA ON DES

3.4.1.2 DES fixed points with weak keys

We adopt the following notations:

• For all i ∈ [0, 16], we note (Li,Ri)
.
= LRi.

• The plaintext is IP−1(LR0) = FP(LR0) and the ciphertext is FP(RL16).

Lemma 4 — whenever K is a weak key
∀i ∈ [0, 15],∀j ∈ [1, 16], LRi = RLj ⇒ LRi+1 = RLj−1.

Demonstration 3 (Proof of lemma 4)
∀i ∈ [0, 15],LRi+1 = (Ri,Li ⊕ f(Ri, κ)), where κ

.
= PC2(CDi) does not depend on i, since all

subkeys are equal. Consequently, ∀j ∈ [1, 16],LRj−1 = (Rj ⊕ f(Lj , κ),Lj). Thus:






RLj−1 = (Lj ,Rj ⊕ f(Lj , κ))
= (Ri,Li ⊕ f(Ri, κ)) (Hypothesis)
= LRi+1. QED

Definition 3 (DES fixed points with weak keys) A fixed point is a message M that is

not modified by encryption (and thus decryption): DESK(M) = M .

Property 2 DES has exactly 232 fixed points when K is a weak key.

Demonstration 4 (Proof of property 2) Let M = DESK(M). It follows that LR0 = RL16,
because IP is bijective. Hence, for all k ∈ [0, 16], LRk = RL16−k (Previous lemma 4 applied by

induction.) In particular, LR8 = RL8, i.e. L8 = R8. Now, ∀x ∈ {0, 1}32, there exists one and
only one message M(x) such that LR8 = (x, x), because M 7→ LR8 is bijection. Thus, the 232

M(x) are fixed point and there are no others. QED.

3.4.2 DES semi-weak keys and anti-fixed points

3.4.2.1 DES semi-weak keys

Definition 4 (DES semi-weak key) A couple of semi-weak keys (K,K ′) satisfies: DESK◦
DESK′ = Id. If K is used to encrypt, then decrypting can be achieved by a second encryption
with K ′.

Property 3 (DES Semi-Weak Keys)

• Weak keys are semi-weak keys.

• There are 6 couples of strict semi-weak keys (i.e. K 6= K ′):

PC1(K) = CD0 PC1(K ′) = CD′
0

1. {01}14 × {0}28 {10}14 × {0}28
2. {01}14 × {1}28 {10}14 × {1}28
3. {01}14 × {10}14 {10}14 × {01}14
4. {10}14 × {10}14 {01}14 × {01}14
5. {0}28 × {10}14 {0}28 × {01}14
6. {1}28 × {10}14 {1}28 × {01}14

3.4. DES REMARKABLE CRYPTOLOGICAL PROPERTIES 75

Demonstration 5 (Proof of property 3) If encryption with K followed by encryption with
K ′ yields Id, then κi = κ′

17−i for the 16 rounds i ∈ [1, 16].

• Thus: ∀k ∈ {1, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 28},
PC2(LSk(CD0)) = PC2(RSk−1(CD′

0)) .

• Moreover, as RS = LS−1 and LS28 = Id,

PC2(LSk(CD0)) = PC2(LS29−k(CD′
0)) .

As already mentioned, PC2 does split into two halves. Hence a demonstration only on “C”.

• For k = 1,

LS(K) : 2 3 4 5 6 7 8 9 ��ZZ10 11 12 13 14 15 16 17 18 ��ZZ19 20 21 22 ��ZZ23 24 25 ��ZZ26 27 28 1
|| || || || || || || || ¿? || || || || || || || || ¿? || || || ¿? || || ¿? || || ||

Id(K ′) : 1 2 3 4 5 6 7 8 ��ZZ9 10 11 12 13 14 15 16 17 ��ZZ18 19 20 21 ��ZZ22 23 24 ��ZZ25 26 27 28

• Moreover, for k = 28,

Id(K) : 1 2 3 4 5 6 7 8 ��ZZ9 10 11 12 13 14 15 16 17 ��ZZ18 19 20 21 ��ZZ22 23 24 ��ZZ25 26 27 28
|| || || || || || || || ¿? || || || || || || || || ¿? || || || ¿? || || ¿? || || ||

LS(K ′) : 2 3 4 5 6 7 8 9 ��ZZ10 11 12 13 14 15 16 17 18 ��ZZ19 20 21 22 ��ZZ23 24 25 ��ZZ26 27 28 1

Thus, ∀i ∈ [1, 28]\ [9, 18, 22, 25],Ki+1 = K ′
i and Ki = K ′

i+1.

• Furthermore, for k = 2,

LS2(K) : 3 4 5 6 7 8 9 10 ��ZZ11 12 13 14 15 16 17 18 19 ��ZZ20 21 22 23 ��@@24 25 26 ��@@27 28 1 2
|| || || || || || || || ¿? || || || || || || || || ¿? || || || ¿? || || ¿? || || ||

RS(K ′) : 28 1 2 3 4 5 6 7 ��ZZ8 9 10 11 12 13 14 15 16 ��@@17 18 19 20 ��ZZ21 22 23 ��@@24 25 26 27

• And for k = 27,

RS(K) : 28 1 2 3 4 5 6 7 ��ZZ8 9 10 11 12 13 14 15 16 ��@@17 18 19 20 ��ZZ21 22 23 ��@@24 25 26 27
|| || || || || || || || ¿? || || || || || || || || ¿? || || || ¿? || || ¿? || || ||

LS2(K ′) : 3 4 5 6 7 8 9 10 ��ZZ11 12 13 14 15 16 17 18 19 ��ZZ20 21 22 23 ��@@24 25 26 ��@@27 28 1 2

Thus, ∀i ∈ [1, 28]\ [9, 18, 22, 25],Ki+2 = K ′
i−1 and Ki−1 = K ′

i+2.

As a consequence, ∀i ∈ [1, 28],Ki+1 = K ′
i. Indeed, ∀i ∈ [9, 18, 22, 25], we have:

Ki+1 = K(i−1)+2

= K ′
(i−1)−1 (k = 2)

= K(i−1) (k = 1)
= K ′

(i−1)+1 . (k = 28)

Idem, ∀i ∈ [1, 28],Ki = K ′
i+1. Hence, ∀i ∈ [1, 28],Ki = Ki+2 and K ′

i = K ′
i+2. The relationships

with other k will not bring additional information, since ∀k, k− (29−k) is odd. As for the “C”
part, there are 4 semi-weak keys, depending whether (K1,K2) = (0, 0), (0, 1), (1, 0) or (1, 1).

76 CHAPTER 3. DPA ON DES

Table 3.7: Register CD successive contents during a DES encryption with semi-weak key of
either pair 3 or pair 4.

Round # Register CD content

1 CD0

2 – 8 CD0

9 – 15 CD0

16 CD0

3.4.2.2 DES anti-fixed points with semi-weak keys

Definition 5 An anti-fixed point is a message M such that DESK(M) = M .

Property 4 (DES Anti-Fixed Points) DES has exactly 232 anti-fixed points when using
either semi-weak key from the couple 3 or 4.

The demonstration of the 232 anti-fixed points requires the following assumption on the sub-
keys. The key schedule is anti-palindromic, which means that: ∀i ∈ [1, 16],CDi = CD17−i.
This assumption holds only for the key couples 3 and 4, because if C1 or D1 is equal to either
{0}28 or {1}28, then C16 = C1 and D16 = D1. For CD16 to be the logical invert of CD1, C1

and D1 must thus be equal to either {01}14 or {10}14. In this case, the register CD successive
contents is given in Tab. 3.7. In this very table, CD0 is PC1(K); in encryption mode, the key is
LS’ed once, hence the first inversion of the key. The keys of either type 3 or type 4 are assumed
for the rest of the demonstrations.

Lemma 5 — whenever K is a semi-weak key of type 3 or 4
∀k ∈ [0, 15], LRk = RL16−k ⇒ LR(k+1) = RL16−(k+1).

Demonstration 6 (Proof of the lemma 5)

• ∀i ∈ [0, 15],LRi+1 = (Ri,Li ⊕ f(Ri, κi+1)), where κi
.
= PC2(CDi) = PC2(CD0) when

i ∈ [2, 8] ∪ {16}, the complemented otherwise (refer to Tab. 3.7.)

• Consequently, ∀j ∈ [1, 16],LRj−1 = (Rj ⊕ f(Lj , κj),Lj).

• Thus:






RL15−k = (L16−k,R16−k ⊕ f(L16−k, κ16−k))
= (Rk,Lk ⊕ f(Rk, κk+1)) (Hypothesis + κi property)

= (Rk,Lk ⊕ f(Rk, κk+1)) (f(·, ·) = f(·, ·) for DES [71])
= LRk+1. QED

Demonstration 7 (Proof of property 4)

Let M = DESK(M). Then, equivalently, LR0 = RL16. Hence, for all k ∈ [0, 16], LRk =
RL16−k (Previous lemma 5 applied by induction.) In particular, LR8 = RL8, i.e. L8 = R8.

Thus, ∀x ∈ {0, 1}32, the message M(x) such as LR8 = (x, x) is an anti-fixed point and there
are no others. QED.

3.5. DES REMARKABLE SCA PROPERTIES 77

Table 3.8: Exhaustive list of weak and semi-weak DES keys.

Key Dual PC1(Key) PC1(Dual)
1. e001e001f101f101 01e001e001f101f1 55555550000000 aaaaaaa0000000

2. fe1ffe1ffe0efe0e 1ffe1ffe0efe0efe 5555555fffffff aaaaaaafffffff

3. e01fe01ff10ef10e 1fe01fe00ef10ef1 5555555aaaaaaa aaaaaaa5555555

4. 01fe01fe01fe01fe fe01fe01fe01fe01 aaaaaaaaaaaaaa 55555555555555

5. 011f011f010e010e 1f011f010e010e01 0000000aaaaaaa 00000005555555

6. e0fee0fef1fef1fe fee0fee0fef1fef1 fffffffaaaaaaa fffffff5555555

7. 0101010101010101 0101010101010101 00000000000000 00000000000000

8. fefefefefefefefe fefefefefefefefe ffffffffffffff ffffffffffffff

9. e0e0e0e0f1f1f1f1 e0e0e0e0f1f1f1f1 fffffff0000000 fffffff0000000

10. 1f1f1f1f0e0e0e0e 1f1f1f1f0e0e0e0e 0000000fffffff 0000000fffffff

3.5 DES remarkable SCA properties

We recall that the studied architecture for the DES datapath is shown in Fig. 3.12. Compared
with the versatile implementation shown in Fig. 3.6, the key schedule contributes to the critical
path. The architecture is thus not optimal. However, as it is available in the first version of
the SecMat ASIC (refer to Sec. A.1), it is used to realize the power attacks. The key schedule
for this module is explicited in Tab. 3.6.

In this section, we use remarkable DES keys to exhibit power signatures in a view to grasping
the nature of the information leakage via the power. DES weak (7 to 10) & semi-weak (1 to 6)
keys were characterized in Sec. 3.4; They are also given in NIST/FIPS 74 [68], and reproduced
in Tab. 3.8.

Two power traces (see Fig. 3.21) corresponding to two encryptions of the same message
{0}64 are acquired with:

1. the weak key 10, and

2. the semi-weak key 4.

Regarding their power dissipation, semi-weak keys can be partitioned into three classes:

1. semi-weak keys 1 & 2 toggle either none or all DFFs of C, resulting in 0 or 28 toggles,

2. semi-weak keys 3 & 4 toggle either none or all DFFs of CD, resulting in 0 or 56 toggles,

3. semi-weak keys 5 & 6 toggle either none or all DFFs of D, resulting in 0 or 28 toggles.

In a view to maximize the difference between the absence (LSi, for i even) and the presence of
toggles (LSi, for i odd), the key was chosen amongst {3, 4}. With any weak key K, the key
schedule does not consume any power, because the content of PC1(K) is affected by neither
LSi, i ∈ Z.

It is thus interesting to substract the trace acquired with the semi-weak key with the one
acquired with a weak key, because the activity correlated with the message will be partially
removed: only the activity linked to the key schedule will remain. Actually, to be accurate,
the activity linked to the datapath LR would cancel only if averages over many messages for
each key of the pair were substracted. As, in the present case, only one message is used, the
difference is noisy.

It is plotted in Fig. 3.22. This figure shows that a lot — if not all — of information about
the algorithm structure can be retrieved out of only two chosen traces. The rest of this section
is devoted to the clarification of the link between the peaks in Fig. 3.22 and the datapath
architecture.

78 CHAPTER 3. DPA ON DES

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

6456484032241680-8-16-24-32

V
ol

ta
ge

 [m
V

]

Time [clock cycles]

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

6456484032241680-8-16-24-32

V
ol

ta
ge

 [m
V

]

Time [clock cycles]

Figure 3.21: Encryption trace of the plaintext {0}64 with the weak key {0}64 (upper.)
Encryption trace of the same plaintext {0}64 with the semi-weak key {00ff}4 (lower.)

3.5. DES REMARKABLE SCA PROPERTIES 79

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

6456484032241680-8-16-24-32

V
ol

ta
ge

 [m
V

]

Time [clock cycles]

Figure 3.22: Difference of the two power traces plotted in Fig. 3.21 at constant scale.

3.5.1 Semi-weak keys

At the RTL level, the parity bits are not checked for. Therefore, the key “00ff00ff00ff00ff”
can be injected into the datapath. The PC1 transformation will remove the (wrong) parity
bits, resulting in a DES-correct semi-weak key equal to: “01fe01fe01fe01fe”.

As it can be seen from the schedule of Fig. 3.5, the theoretical power consumption caused
by the key bits for one single encryption occurs at:

• Cycles [0-7], for the key loading into IF, and cycles [8-15] for the key flush out IF while
the message overwrites it. This is depicted in Tab. 3.9. The XX value denotes data
uncorrelated to the key. In cycles [0-7], it consists in the previous content of IF, for
instance a cryptogram. In cycles [8-15], it is the message, differing from the key.

• Cycles [16-32], were the key is used as a master to derive the round keys. The content of
the CD register is explicited in Tab. 3.10. The table was obtained from the data of the
column “CD State” of Tab. 3.6 that presents the DES key schedule.

This journey through the DES pipeline is also represented in a snapshot, taken for the
Mentor Graphics ModelSim (aka vsim) evenemential simulator, in Fig. 3.23, with a testbench
clock frequency of 100 MHz. The eight clock cycles required for the key and then the message
loading, and the sixteen cycles of the encryption proper are delimited by cursors. The first
cursor marks the clock cycle 0.

The number of bit toggles related to the key is given throughout the transit of the key. It
is computed as follows: the number of bit flips caused by a key between two consecutive clock
periods. For instance, when the key is loaded in IF (refer to Tab. 3.9):

http://www.mentor.com/

80 CHAPTER 3. DPA ON DES

Figure 3.23: Transit of the key 00ff00ff00ff00ff in one DES encryption.

Table 3.9: Theoretical dissipation of the semi-weak key 00ff00ff00ff00ff in its transit in IF.

Time [clocks] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IF[1-8] 00 ff 00 ff 00 ff 00 ff XX XX XX XX XX XX XX XX

IF[9-16] XX 00 ff 00 ff 00 ff 00 ff XX XX XX XX XX XX XX

IF[17-24] XX XX 00 ff 00 ff 00 ff 00 ff XX XX XX XX XX XX

IF[25-32] XX XX XX 00 ff 00 ff 00 ff 00 ff XX XX XX XX XX

IF[33-40] XX XX XX XX 00 ff 00 ff 00 ff 00 ff XX XX XX XX

IF[41-48] XX XX XX XX XX 00 ff 00 ff 00 ff 00 ff XX XX XX

IF[49-56] XX XX XX XX XX XX 00 ff 00 ff 00 ff 00 ff XX XX

IF[57-64] XX XX XX XX XX XX XX 00 ff 00 ff 00 ff 00 ff XX

Toggle count 0 8 16 24 32 40 48 56 56 48 40 32 24 16 8 0

• In cycle 0, the key first byte 0x00 replaces an arbitrary value (XX.) It is thus likely to
cause 8/2 = 4 bit flips. This is the average toggle rate, and is thus ignored.

• In cycle 1, the key first byte 0x00 causes the same transition as just mentioned. In
addition, the key second byte 0xff replaces the value 0x00, which causes |0x00⊕0xff| = 8
bit flips. Hence the contribution to the power consumption.

Although the same number 56 of antinomic register transfers occur at t = 7 and t = 8, the
peak at t = 8 is higher than at t = 7. The fact that the byte IF[57-64] is more loaded than
the others accounts for this difference. Indeed, the last byte of the register IF loads the RAM
input, whereas the others merely load standard cells. This discrepancy is a first evidence of the
dependency of the side-channel leakage with the net loads.

In the architecture used in SecMat (refer to the datapath shown in Fig. 3.12), the multiplexor
that selects one shift type amongst the five {LSi, i ∈ [−2,+2]} (MUXPC2 in short) is situated

Table 3.10: Theoretical dissipation of the semi-weak key 00ff00ff00ff00ff in its transit in
CD.

Time [clocks] 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

CD[1-56] aa7 557 aa7 aa7 aa7 aa7 aa7 aa7 aa7 557 557 557 557 557 557 557 aa7

Toggle count 0 56 56 0 0 0 0 0 0 56 0 0 0 0 0 0 56

3.5. DES REMARKABLE SCA PROPERTIES 81

between the register CD and the PC2 function. The subkey used in one round is thus sampled
in CD at the beginning of the next round. The selections operated by MUXPC2 thus anticipate
the CD register transfers. In the current encryption scenario, MUXPC2 only chooses between
LS1 and LS2, under the control of a signal named sel one not two. This signal builds up
the key schedule; its variations are represented in green in Fig. 3.23. When sel one not two

changes values, the lines starting from MUXPC2 and leading to CD and the PC2 are charged.
The values those lines convey are limited to aa7 and 557. Thus, each time sel one not two

toggles, |aa7 ⊕ 557| = 56 lines also toggle in response. This combinatorial power consumption
adds up to the one caused by sequential parts of the datapath (register transfers.) As the signal
sel one not two is computed from a finite state machine, it takes its new value after a small
amount of time, leading to peaks slightly late w.r.t. the clock rising edge. In addition, this
signal may glitch, i.e. not take its value at once. In the case of an incomplete transition, the
multiplexors are likely to filter out the spurious event. However, if the transition was complete
(such as: 0 → 1 → 0 in one clock period), then the combinatorial power consumption of the
lines charged by MUXPC2 is roughly doubled. It is exactly doubled if the glitch duration was
large enough to let all the lines have in turn full transitions. Let apart the glitch complications,
the combinatorial transitions just described occur at clock periods 16, 18, 24, 25, 31 and 32.
This phenomenon can be seen in the power traces. For instance, Fig. 3.24 shows a magnified
view of Fig. 3.22, where it clearly appears that:

• at clock 16, there is only a combinatorial dissipation (sel one not two↑),

• at clock 17, there is only a sequential dissipation (CD: aa7 → 557) and that

• at clock 18, both types of dissipation add up (CD: 557 → aa7 + sel one not two↓),
with a few nanoseconds delay for the combinatorial contribution.

The overall theoretical power model for the semi-weak key studied in this section is plotted
in Fig. 3.25. The use of the null weak key would lead to an “all zero” dissipation profile.
Indeed, neither the loading in IF nor in CD trigger dissipation, since |value ⊕ value| = 0.
The graph shown in Fig. 3.25 also represents the difference of the bit toggles for the semi-weak
and the absence of bit toggles for the weak key. The hardware activated by the key bits is
highlighted in Fig. 3.26. It is thus an approximation of the real traces difference computed
in Fig. 3.22. Notice nonetheless that the number of bit flips is only a first order estimate for
the power physical dissipation. A more accurate description would weight the bit flips with
a quantity related to the bit capacitive load. Within this model, it becomes relevant to add
up dissipations. In the Fig. 3.22, the additions are only illustrative, because the operands are
physically incommensurable.

3.5.2 Weak keys

The peak occurring sixteen clock periods after the end of the encryption (i.e. at period 48) is
caused by a default of dissipation for the null-key trace. With the null-key, not only encryption
is equal to decryption, but also the subkeys are all equal to zero. In the studied DES archi-
tecture, the LR register does not have an enable (power saving strategies can be achieved at a
higher level, using for instance clock gating.) Thus, another encryption starts afresh right after
the requested one. But as encryption is tantamount to decryption, the ciphertext is actually
decrypted during rounds 17 to 32.

As shown in Tab. 3.11, the plaintext is retrieved again sixteen periods after the ciphertext
has been output. We refer to this phenomenon as a resurgence. Given that the analyzed
operation processes one single block of data, all the control signals are only activated for one
encryption. As already indicated, this does not impact the key schedule; however, it does
impact the datapath. The DES algorithm indeed demands that in the last round, the two
message halves must not be swapped. As indicated in Tab. 3.11, the signal that controls the

82 CHAPTER 3. DPA ON DES

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

19181716

V
ol

ta
ge

 [m
V

]

Time [clock cycles]

Sequential dissipation

Combinatorial dissipation

Ideal clock

Figure 3.24: Zoom on the clock periods 16, 17 and 18 of the difference of the power traces
plotted in Fig. 3.22. The clock frequency is 66 MHz, hence its period is about 15 ns.

 0

 20

 40

 60

 80

 100

 0 8 16 24 32

B
it

fli
ps

 c
ou

nt

Time [clock cycles]

Key loading Message loading

Combinatorial (MUXPC2)
Sequential (CD)
Sequential (IF)

DES encryption (16 rounds)

Figure 3.25: Theoretical dissipation related to the key transit when it is semi-weak.

3.5. DES REMARKABLE SCA PROPERTIES 83

RS

RS2

LS

LS2

8 bit

48 bit

2 x 28 bit

2 x 32 bit
8 x 8 bit

PSELR

CD

X3

PC2

XORLXORK

IF DI
X2

XORMODE

MUXCD

MUXLR

MUXIF

DO
X1

MUXPC2

Cycles 16, 18, 24, 25, 31, 32

Cycles 17, 18, 25, 32

Cycles [0-15]

2
0’
0

1

1

2

0

0

1

Figure 3.26: Pieces of hardware activated in the DES datapath logic by a semi-weak key transit.
Contrast this figure with Fig. 3.12 at page 66.

Table 3.11: Register LR contents when using a weak key, a symmetrical message, and a single
block DES-ECB encryption.

Round # 0 i ∈ [1, 15] 16 i ∈ [17, 31] 32 i ∈ [33, 47] 48 · · ·
Clock 16 [17, 31] 32 [33, 47] 48 [49, 63] 64 · · ·

LR contents LR0 LRi RL16 RL32−i RL0 = LR0 LRi−32 LR16 6= RL16 XX

Swap L↔ R? yes yes no yes yes yes yes yes

84 CHAPTER 3. DPA ON DES

swap L↔ R is inactive at the end of the nominal encryption, at round 16, but remains active
afterwards. The reason why the plaintext is recovered at round 32 is that it is specific: it is
symmetrical, meaning that it verifies RL0 = LR0. This also explains why there is only one
resurgence at round 32. In fact, there would be an infinite number of resurgences if the LR
register was swapped every sixteen rounds. Because this is no longer the case after the single
block ECB-mode encryption, the ciphertext obtained at clock period 32 + 16 = 48 differs from
the actual ciphertext LR16. Consequently, the decryption is, this time, not consistent with
respect to the plaintext.

Now, as indicated in Tab. 3.11, one clock period before the resurgence, the LR register
contains the value RL1. At the resurgence, the transition RL1 → LR0 occurs. As for all i,
Li+1 = Ri, there is no change in R: |L1 ⊕ R0| = 0. This lack of power consumption does not
happen for the semi-weak or regular keys, since the hypothesis of key-schedule independence is
not true, which does not allow for any resurgences. Hence the positive peak showing up at
clock period period 48 in Fig. 3.22.

3.5.3 SCA properties generalization for arbitrary keys

The power signatures just illustrated in Sec. 3.5.1 and 3.5.2 can in fact be put forward with
arbitrary keys, albeit using much more than two traces. The results previously obtained with
one sole weak key and another semi-weak key was essentially pedagogical.

When random keys and messages traces are available through a side-channel, the following
selection function can be used:

IF︸︷︷︸
Initial state

⊕ X1(X2(IF)[1, 56] ||DI)︸ ︷︷ ︸
Final state

, (3.2)

where X1 and X2 have been defined in Fig. 3.14. The content of the register IF can be either
“IP(key)” at clock 8 or “IP(msg)” at clock 16. The IF register is always fed with fresh data
from the RAM; the sole exception to this behavior happens at clock 31, when IF samples the
last round output in parallel. The 8-bit input from the RAM, term denoted “DI” in Eqn. (3.2),
is chosen equal to:

• at clock 8 : the first byte of the message, because in the architecture of Fig. 3.12, the
message is loaded right after the key.

• at clock 16 : the memory contents at address 0x00, because this is the default address
selected by the DES datapath controller.

The Eqn. (3.2) basically expresses the fact that, in IF, the new incoming byte “DI” flushes the
previously read byte. The last byte IF[57,64] is available at the RAM input as DO.

Differential traces are computed with the selection function (3.2) from the accumulation of
20 000 power traces using random keys and messages, acquired at 32 MHz. The two graphs
represented in Fig. 3.27 shows that the key and the message remain consistent during their
loading and unloading from the register IF. The two signatures are analog for the key and
the message. They are nonetheless offset by eight clock periods (refer to Fig. 3.5), because key
loading and unloading in IF occur at clock cycles [0, 8[∪[8, 16[(as in Fig. 3.22), whereas message
loading and unloading in IF occur at clock cycles [8, 16[∪[16, 24[. Despite the data traveling
through IF is different (the key, followed by the message), the same hardware (register IF) is
exercised. The loading and unloading signature for the key is equally intense to the one for the
message because parity bits are not stripped off yet: in both cases, all the bits contribute to
the dissipation signature.

3.5. DES REMARKABLE SCA PROPERTIES 85

Table 3.12: Maximum peaks amplitude at selected clock cycles for two differential traces.

Clock cycle # 8 # 16

Traces difference (Fig. 3.22 at page 79) 23.31 mV 53.52 mV
Differential trace (Fig. 3.27(upper) at page 86) 17.70 mV 24.97 mV

3.5.3.1 Key signature in SecMat V1 datapath

On the one hand, the key propagation continues to sign, because:

LS ◦ PC1 ≈ PC1 ◦ CLS8 , (3.3)

where CLS denotes the “Circular Left Shift” operation. In fact, the equation (3.3) holds on
the restriction [1, 56]\{8, 16, 24, 28} ∪ {36, 44, 52, 56}, hence for 6/7 of register CD bits. The key
loading/unloading corresponds to the transfers K ← CLS8(K) in IF (also refer to Eqn. (3.2)),
because the input/output of every material is done on a byte basis. Consequently:

|K ⊕ CLS8(K)| // [1] Matches selection function (3.2) for 7/8 of the bits

≈ |PC1(K ⊕ CLS8(K))| // [2] True for the entire key but the parity bits

= |PC1(K)⊕ PC1 ◦ CLS8(K)| // [3] Linearity of PC1

≈ |PC1(K)⊕ LS ◦ PC1(K)| . // [4] Observation for 6/7 of the bits made in (3.3) (3.4)

The equation (3.4) happens to concern the key without the following bits:

• {8× i, i ∈ [1, 8]} (because of [1]),

• {8× i− 7, i ∈ [1, 8]} (because of [2]),

• {PC1−1(i), i ∈ {8, 16, 24, 28} ∪ {36, 44, 52, 56}} = {1, 2, 3, 36, 7, 6, 5, 4} (because of [4].)

In short, there are 23 key bits that are left apart (since bit 1 is shared by sets [2] and [4]),
including the eight parity bits. Finally, the result is that for 64−23

64 ≈ 64 % of the bits, the
selection function (3.2) matches too a register transfer in CD for the first left shift. This ratio
can be verified on the experimental traces. The table 3.12 shows the maximum peak amplitude
for the traces difference and the differential traces selection using Eqn. (3.2). As the trace come
from two different acquisitions, the amplitudes cannot be compared in absolute value, but only
relatively to a reference. The reference peak is chosen equal to the dissipation occurring in
register CD at clock cycle #8. The peak at clock #16 serves as an evaluator of the correlated

activity in the register CD. Compared to that of the difference, the activity is 24.97/17.70
53.52/23.31 ≈ 61 %,

which is very similar to the expected value 64 %. The small discrepancy can be explained by
variations amongst the bits of register CD regarding their dissipation, by the noise in Fig. 3.22
due to the use of only two curves, and by the fact that the peak maximum is not the most
appropriate metric.

Relations similar to (3.4) hold whenever there is a single left shift in the key schedule.
As reminded in Tab. 3.6, this occurs at rounds 1, 2, 9 and 16. Notice that in the SecMat V1
architecture (cf Fig. 3.12), the correct number of key shifts is selected during the round, and the
key is latched in register CD at the next rising edge of the clock. This explains why sequential
peaks are visible at rounds 2, 3, 10 and 17. A more accurate analysis of rounds [1,16] is done in
Tab. 3.13. But for sure, the differential trace of Fig. 3.27(upper) is an improved approximation
(from a statistical viewpoint) of Fig. 3.22.

86 CHAPTER 3. DPA ON DES

 0

 5

 10

 15

 20

 25

 30

 35

 40

3224168

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Hamming distance 1 for IF register loading/unloading the key

key
loading

key
unloading

R
ou

nd
 #

1
R

ou
nd

 #
2

R
ou

nd
 #

9

R
ou

nd
 #

16

 0

 5

 10

 15

 20

 25

 30

 35

 40

3224168

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Hamming distance 1 for IF register loading/unloading the message

message
loading

message
unloading

Figure 3.27: Signature of key loading / unloading in IF, plus the CD activity (upper.) Differen-
tial trace using the analog selection function (3.2), but operating on IP(msg) instead of IP(key)
(lower.)

3.5. DES REMARKABLE SCA PROPERTIES 87

 0

 5

 10

 15

 20

 25

 30

 35

 40

3224168

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Hamming distance 2 for IF register loading/unloading the key

sel_not_shift

sel_one_not_two

Combinatorially-triggered
Sequentially-triggered

Figure 3.28: Signature of distance-2 key loading / unloading in IF and of LS2 in CD (3.5).

88 CHAPTER 3. DPA ON DES

LS(CD)

LS2(CD)

CD

sel one not two sel not shift

tmp1

tmp2

0

1
0

1

Figure 3.29: Part of the 5→ 1 MUXPC2 (refer to Fig. 3.12) activated during an encryption.

Incidentally, the Eqn. (3.3) can be extended to LS2:

LS2 ◦ PC1 ≈ PC1 ◦ CLS16 . (3.5)

There is an equality on the set [1, 56]\{9, 1, 10, 2, 11, 3, 44, 36} ∪ {15, 7, 14, 6, 13, 5, 12, 4}, hence
for 40/56 bits of CD. This property can be shown in traces, by considering the selection func-
tion presented in Eqn. (3.2), but composed by itself. The result is shown in Fig. 3.28. The
amplitude of the double left shift (i.e. LS2) peaks is consistent with that of the single:
16.19 mV

19.88 mV

/
56− 16

56− 8
≈ 1 .

The distinction between sequentially-triggered and combinatorially-triggered peaks has al-
ready been observed in Sec. 3.5.1. A finer analysis leads to the explanation of the repartition
of sequentially-triggered and combinatorially-triggered peaks between Fig. 3.27 and 3.28. The
hardware that is concerned is the register CD and the multiplexer MUXPC2. Only the relevant
part of the latter is analyzed; its internal 56-bit buses tmp1 and tmp2 are defined in Fig. 3.29.
The detailed chronology of the events transmitted by the control to the datapath is provided
in Tab. 3.13. In this table, “1 / 2”, “shift” and “clk” are short names for the control
signals “sel not shift”, “sel one not two” and “clock”. The activation of a combinatorial
dissipation on the Hamming distance 2 expressed by Eqn. (3.5) within clock period 16 is due
to the conjunction of two facts:

1. sel one not two = 0 in the idle state (it is a mere contingency of the control behavior)
and

2. sel not shift is faster than sel one not two, basically because in order to compute
sel one not two, the control combinatorial logic must evaluate two Boolean conditions:
(1) is the DES co-processor in encryption mode? and (2) how many shifts are there in the
current round? The first Boolean is indeed sel not shift. Consequently, the evaluation
of sel one not two traverses a deeper control logic than the evaluation of sel not shift.

Thus, the bus tmp2 has a first transition: CD0 → LS2(CD0). Then, sel one not two changes
from 0 to 1, which causes a second transition on tmp2: LS2(CD0) → LS(CD0). The second
transition is selected by Eqn. (3.3), because this selection function is not oriented in time:
the signature of “initial → final” is identical to that of “final → initial”. In our example,
|LS2(CD0)⊕ LS(CD0)| = |LS(CD0)⊕ LS2(CD0)|. The first “combinatorial” transition in clock
#16 (cf. Fig. 3.27) is larger than the second one (cf. Fig. 3.28), because:

• when sel one not two toggles, the two multiplexors toggle, whereas

• when sel one not two toggles, only the selected one toggles.

The idea is that upstream changes in the datapath propagate downstream. Thus a change is
all the more dissipative as it happens high in the datapath traversing multiplexors.

3.5. DES REMARKABLE SCA PROPERTIES 89

Table 3.13: Propagation of data through MUXPC2 (refer to Fig. 3.29) during the first three
cycles of encryption.

Event clk↑ (16) shift↓ 1 / 2↑ clk↑ (17) clk↑ (18) 1 / 2↓ clk↑ (19)

CDa CD0 CD0 CD0 CD1 CD2 CD2 CD3

tmp1 LS2(CD0) LS2(CD0) LS(CD0) LS(CD1) LS(CD2) LS2(CD2) LS2(CD3)

tmp2 CD0 LS2(CD0) LS(CD0) LS2(CD1) LS(CD2) LS2(CD2) LS2(CD3)

Transition ∅ Eqn. (3.5) Eqn. (3.3) Eqn. (3.3) Eqn. (3.3) Eqn. (3.3) Eqn. (3.5)

aNotice that the register CD is updated synchronously with every rising edge of clk; by definition: CD1

.
=

LS(CD0), CD2

.
= LS2(CD1), CD3

.
= LS2(CD2), etc. (also refer to [71] and to Tab. 3.6 at page 72.)

In the rest of the encryption (not detailed in Tab. 3.13 to keep it readable), the internal buses
tmp1 and tpm2 only have LS1(CDi) → LS2(CDi) transitions (or vice-versa.) As a result, the
Fig. 3.28 does not have any additional combinatorial peaks. The sequential peaks correspond
to CDi → CDi+1 transitions in CD (for i ∈ [0, 16].) The sequence of sel not shift and
sel one not two (without delays) is superimposed to Fig. 3.28 in order to help differentiate
the double from the single left shifts while the key schedule unrolls.

It can be noticed that at the low frequency of the acquisition, the key schedule is completed
well before the half of the clock period. In the front latch of the CD register DFFs will thus
sample in advance the new value CDi+1 at the falling edge of the clock. This has the effect
of announcing a future sequential dissipation in the register. The power signatures of these
announcements is reported in Fig. 3.28 with small arrows.

3.5.3.2 Message signature in SecMat V1 datapath

On the other hand, the message is mutated in such a way that there remains almost no corre-
lation between the plaintext and the first round contents of LR. Thus, during the encryption
proper, the Fig. 3.27 does not disclose any correlation peaks.

Peaks corresponding to the message transformation during the encryption can be produced
by ad hoc selection functions, presented in Sec. 3.6.

3.5.3.3 Conclusion on DES remarkable SCA properties

The properties shown in this section can be used to reverse-engineer the architecture of the
DES crypto-processor. For instance, the differential traces plotted in Fig. 3.27 clearly show
that eight clock cycles are required to load the key, then the message, and that the encryption
is iterative. Thus, if the implementation is secret, then power analysis is a means to discover
it.

From a practical point of view, we used the semi-weak key {00ff}4 to locate the encryption
rounds on the oscilloscope screen. The signature shown in Fig. 3.21 made it possible to configure
the horizontal range in such a way only the relevant clock cycles were acquired.

To summarize this section on DES side-channel properties, the study of signature given by
a trivial differential power analysis has taught us that:

• Both register transfers and combinatorial logic (especially dataflow “conditionals”, such
as multiplexors.) can induce vulnerabilities, because they resynchronize the data.

• The load of the nets, but also the amount of downstream logic, impact the differential
signature.

90 CHAPTER 3. DPA ON DES

• Signatures follow the data throughout its journey in the datapath. This remark is valid
only for the data that are not altered during the computation. This is of course true for
DES keys but not for the messages, as recalled in Fig. 3.27.

3.6 Explanation for the differential traces using HW and
HD selection functions

The differential traces obtained in Sec. 2.4.2 and plotted in Fig. 2.21 were expected to present a
peak at the dates indicated by a vertical bar. It has been observed that other peaks appeared.
Their presence is accounted for in this section.

The acquisition campaign is taylored for a DPA attack: the key is constant, whereas the
messages change. It must be noted that the additional peaks observed in the differential traces
are not a consequence of the key being constant. Similar differential traces are indeed obtained
from traces where both keys and messages vary.

3.6.1 Interpretation of the differential trace using HW

Let us define the following selection functions collection:

∀i ∈ [0, 15], |f(Ri,Ki+1)| , (Output of Sboxes at round #i + 1) (3.6)

where f is the Feistel function for DES, as defined in Fig. 3.19. Notice that the Hamming weight
of every weighting function in Eqn. (3.6) satisfies |f(Ri,Ki+1)| = |Li⊕Ri+1| = |Li⊕Li+2|. Some
differential traces, using the weighting functions from Eqn (3.6), are represented in Fig. 3.30.

The weak and spread peak observed in the interesting clock period is followed by another
peak, occurring slightly after the next clock rising edge. This peak is not due to a register
transfer, otherwise its slope would be greater and it would coincide exactly with the clock
rising edge.

The origin of the peak happens to be a “glitch” for i 6= 15: the differential traces for i < 15
are alike, and discussed below. The triple signature at i = 15 is due to a singular computation
ending. A detailed analysis of the phenomenon is given later on in Sec. 3.6.2.3.

Glitches correlated to the round message occur at the output of XORK and XORL gates.
The nature of the glitches is discussed below:

• The PC2 input of XORK is valid late in the clock period because of the MUXPC2 traver-
sal. Thus the input from register LR arrives first, causing a glitch at the output of XORK.

• The outputs of the sboxes take awhile to be computed. Consequently, the L input of the
XORL gate is ready well before S, thus causing a glitch at the output of XORL.

However, those two glitches yield respectively the following activity at the XOR gates output:

Ri+1 ⊕ Ri , (for gate XORK) (3.7)

Li+1 ⊕ Li . (for gate XORL) (3.8)

The origin of the observed peak is thus different. Actually, the XOR gates are dissymmetric
w.r.t glitches. Whatever the steady input, a glitch at the other input does propagate. However,
the power signature depends on the value of the steady input. This fact is illustrated in
Tab. 3.14, obtained from electrical simulations on an exclusive-or standard cell extracted model.

In CMOS logic, an exclusive-or Boolean function cannot be realized with only one layer of
transistors. In fact, a CMOS gate g satisfies g(0, · · · , 0) = 1 and g(1, · · · , 1) = 0. The first
equality is obviously violated if g = XOR. As a consequence, some inputs must be inverted
before being used. The exclusive-or gate is made up of two transistor layers, which explains

3.6. EXPLANATION FOR THE DIFFERENTIAL TRACES USING HW VS HD 91

 0

 1

 2

 3

 4

3433323130292827262524232221201918171615

V
ol

ta
ge

 [m
V

]

Time [clock cycles]

i=15

 0

 1

 2

 3

 4

V
ol

ta
ge

 [m
V

]

i=14

 0

 1

 2

 3

 4

V
ol

ta
ge

 [m
V

]

i=8

 0

 1

 2

 3

 4

V
ol

ta
ge

 [m
V

]

i=1

 0

 1

 2

 3

 4

V
ol

ta
ge

 [m
V

]

i=0

Figure 3.30: Differential traces weighted with the Hamming weight of Eqn. (3.6) for i =
0, 1, 8, 14 and 15.

92 CHAPTER 3. DPA ON DES

the two peaks in the power signatures shown in Tab. 3.14. The instant power can be negative,
when the gate restituates charges loaded in parasitic capacitances to the power supply. But
after a complete toggle, the gate has globally spent energy: the integral of the power consumed
by the gate is positive. The average energy dissipated by an event propagation from input b to
the output z is:

• 9.46 pJ when the steady input a equals 0, but

• 11.87 pJ when the steady input a equals 1.

A dissymmetry can also be observed when the roles of a and b are permuted. Similar observa-
tions can be made for other logic gates. But the relevance of the dissymmetry for the XOR gate
is that its restriction to one input is reversible: if the steady input is a and the output is z,
then the second input b is known: b = a⊕ z. As a consequence, whatever the activity of input
b (even unknown), the dissymmetry is correlated to a.

The XOR dissymmetry w.r.t. glitches yields the following power signatures:

PC2(CDi) , (for gate XORK) (3.9)

Ri+1 ⊕ Li . (for gate XORL) (3.10)

The second peak observed in Fig. 3.30 (i < 15) results from the dissymmetry of XORL, that
results in the bias of Eqn. (3.10). This peak is larger than the one generated by the substitution
boxes during the previous round because the XOR gates glitch is synchronized (indirectly) with
the clock; the clock has a rising edge, which causes the DFFs of register L to evaluate, which
in “second hand” transmit the variation across XORL. The shape of the peak is thus smooth,
because of the slight propagation time variations in L DFFs. The peak is not totally identical
for all i ∈ [0, 14] because the would-be steady input can actually evaluate fast: it was indeed
shown in Fig. 3.18(a) that the sboxes outputs can be valid very early. It is probable that many
DPAs realized thanks to an Hamming weight selection function and reported as successful in
the literature actually exploited a glitch instead of the intended substitution boxes outputs.

3.6.2 Interpretation of the differential trace using HD

Following the analytical approach of Sec. 3.6.1, the following function family is defined:

∀i ∈ [0, 15], LRi ⊕ LRi+1 . (Register transfer at round #i + 1) (3.11)

Some of them are plotted in Fig. 3.31. The plots are similar for i = 2 to 13. The plots for
i = 0, 1 and i = 14, 15 have side-effects.

3.6.2.1 Interpretation of HD at rounds [3,14]

The differential curves for i ∈ [2, 13] feature three peaks, occurring just after three consecutive
clock edges. These curves share the property that the sum of the two outer peaks yield the
central peak. This amazing property is shown in Fig. 3.32(c) on the example of i = 8.

The reason for this conservation property lies in the twisted ladder structure of DES. For
i ∈ [1, 14],






LRi−1⊕LRi = (Li−1 ⊕ Li) || (Ri−1 ⊕ Ri)

LRi⊕LRi+1 = (Ri−1 ⊕ Ri) || (Li+1 ⊕ Li+2) // See the note below

LRi+1⊕LRi+2 = (Li+1 ⊕ Li+2) || (Ri+1 ⊕ Ri+2) .

3.6. EXPLANATION FOR THE DIFFERENTIAL TRACES USING HW VS HD 93

Table 3.14: Instant power and total energy consumed by various glitches on an XOR gate. The
graphs’ time unit is [ns] and the power unit is [µW].

Input a = ‘0’ is steady

or

or z

b

a = ‘0’

Input b has a rising edge at t = 0 Input b has a falling edge at t = 0
Total energy: 7.72 pJ Total energy: 11.21 pJ

-40

-20

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

-40

-20

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

Input a = ‘1’ is steady

or

or z

b

a = ‘1’

Input b has a rising edge at t = 0 Input b has a falling edge at t = 0
Total energy: 8.93 pJ Total energy: 14.81 pJ

-40

-20

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

-40

-20

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6

94 CHAPTER 3. DPA ON DES

-4
-2
 0
 2
 4
 6
 8

 10
 12
 14

353433323130292827262524232221201918171615

V
ol

ta
ge

 [m
V

]

Time [clock cycles]

i=15

-4
-2
 0
 2
 4
 6
 8

 10
 12
 14

V
ol

ta
ge

 [m
V

] i=14

-4
-2
 0
 2
 4
 6
 8

 10
 12
 14

V
ol

ta
ge

 [m
V

] i=8

-4
-2
 0
 2
 4
 6
 8

 10
 12
 14

V
ol

ta
ge

 [m
V

] i=1

-4
-2
 0
 2
 4
 6
 8

 10
 12
 14

V
ol

ta
ge

 [m
V

] i=0

Figure 3.31: Differential traces weighted with Eqn. (3.11) for i = 0, 1, 8, 14 and 15. The traces
corresponding to i ∈ [2, 13] are not plotted because they are all similar (to that of i = 8.)

3.6. EXPLANATION FOR THE DIFFERENTIAL TRACES USING HW VS HD 95

-2

 0

 2

 4

 6

 8

 10

 12

27262524

V
ol

ta
ge

 [m
V

]

Time [clock cycles]

(a)

2625

Time [clock cycles]

(b)

2625

Time [clock cycles]

(c)

Figure 3.32: (a) Differential traces for i = 8, (b) Sum ∆24 + ∆26 of the periods 24 and 26 ,
(c) Difference ∆25 − (∆24 + ∆26).

96 CHAPTER 3. DPA ON DES

Note: The left half of LRi ⊕ LRi+1 is equal to Ri−1 ⊕ Ri because Li = Ri−1 and Li+1 = Ri.

Identically, the right half of LRi ⊕ LRi+1 is equal to Li+1 ⊕ Li+2 because Ri = Li+1 and

Ri+1 = Li+2.

Given that DES leaves unchanged one half of the datapath after every round, there exists
a correlation between the previous and the next round when using the HD weighting function.
The transfer during the clock cycle 24 is Ri−1 → Ri, taking place “physically” in the register R,
whereas in the next clock cycle 25, it occurs in the register L. The glitching activity of XORK
(Eqn. 3.7) and XORL (Eqn. 3.8) respectively add up to those register transfers. The same
remark applies for the Li+1 → Li+2 transfer. But eventually, the 64-bit transfer LRi → LRi+1,
realized at clock 25 in the LR register, is equal to the sum of the transfers in R and L at clocks
24 and 26, in a virtual RL register. As the plaintext is random, the data in registers Li and
Ri have the same statistical properties, which explains why an activity in the real LR register
cannot be distinguished from that of an artificial RL register.

The Fig. 3.32(a) also shows a peak exactly in the middle of the clock periods 24 and 25.
It represents the sampling of the new data in the DFFs head latch, that toggles states syn-
chronously with the falling edge of the clock. The amplitude of the peak is small, compared to
that corresponding to register transfers, because the head latch is little capacitively loaded: it
singly drives an internal net of the DFF gate. The curves were acquired while the DES module
was running at the low frequency of 32 MHz, although it was synthesized for a target frequency
greater than 100 MHz. The new value LRi+1 is thus already valid 15.625 ns after the rising
edge of the clock. This justifies that the dissipation of the input latches of the LR DFFs is
correlated to the weighting function (3.11).

The peaks caused by the negative edge of the clock follow a similar conservation property
as the one observed regarding the LR value. On one graph i ∈ [1, 13] of Fig. 3.31, the sum of
those at clocks i− 1 and i + 1 is equal to that of the clock i.

3.6.2.2 Interpretation of HD at rounds [1,2]

The differential curves for i = 0, 1 have a “combinatorial” peak in the first clock period of the
encryption. It has been made clear in Sec. 3.5 that a peak occurring not after a rising edge of
the global clock is a coherent event triggered by an edge on one control signal that modifies
the datapath. Typically, those signals are multiplexors selection inputs. In round 16, the two
MUXLR selection signals sel swap and sel ext not fbk have a rising edge. Notice that the
reason for the delay of the peak w.r.t. the rising edge of the clock is that the selection signals
are computed externally by a control block, that is in turn synchronized with the clock. The
delay is thus a propagation time. Besides, the selection signal may have glitches, which may
explain the fact that the peak is not sharp: it is wider than that caused by the (glitch-free)
clock.

The origin of the dissipation correlated to (3.11) induced by the selection signal is explicited

by the splitting into the left and the right halves:

|Li ⊕ Li+1| , (in Fig. 3.33) (3.12)

|Ri ⊕ Ri+1| . (in Fig. 3.34) (3.13)

Now, as Ri ⊕ Ri+1 = Li+1 ⊕ Li+2, the two differential traces become identical when i↔ i + 1.
This is a general property of Feistel networks: the differential trace for the whole LR datapath
is equal to the superimposition of that of R and that of L delayed by one round.

Figure 3.35 introduces three intermediate nodes tmp{1,2,3} involved in the signature of
the transition LR0 → LR1. An analysis on clock period 16 is given in Tab. 3.15. In this table,
“swap” and “fbk / ext” are short for “sel swap” and “sel fbk not ext”.

3.6. EXPLANATION FOR THE DIFFERENTIAL TRACES USING HW VS HD 97

-2
 0

 2
 4

 6
 8

 10
 12

353433323130292827262524232221201918171615

V
ol

ta
ge

 [m
V

]

Time [clock cycles]

i=15

-2

 0

 2

 4

 6

 8

 10

 12

V
ol

ta
ge

 [m
V

]

i=14

-2

 0

 2

 4

 6

 8

 10

 12

V
ol

ta
ge

 [m
V

]

i=8

-2

 0

 2

 4

 6

 8

 10

 12

V
ol

ta
ge

 [m
V

]

i=1

-2

 0

 2

 4

 6

 8

 10

 12

V
ol

ta
ge

 [m
V

]

i=0

Figure 3.33: Differential trace for the selection function |Li ⊕ Li+1|.

98 CHAPTER 3. DPA ON DES

-2
 0

 2
 4

 6
 8

 10
 12

353433323130292827262524232221201918171615

V
ol

ta
ge

 [m
V

]

Time [clock cycles]

i=15

-2

 0

 2

 4

 6

 8

 10

 12

V
ol

ta
ge

 [m
V

]

i=14

-2

 0

 2

 4

 6

 8

 10

 12

V
ol

ta
ge

 [m
V

]

i=8

-2

 0

 2

 4

 6

 8

 10

 12

V
ol

ta
ge

 [m
V

]

i=1

-2

 0

 2

 4

 6

 8

 10

 12

V
ol

ta
ge

 [m
V

]

i=0

Figure 3.34: Differential trace for the selection function |Ri ⊕ Ri+1|.

3.6. EXPLANATION FOR THE DIFFERENTIAL TRACES USING HW VS HD 99

clk

LRi⇒
RLi+1

tmp1

sel ext not fbkexternal input

tmp2

tmp3

sel swap

1

0
LR1

0

Figure 3.35: Simplified datapath involved in the LR0 → LR1 selection function.

Table 3.15: Events in the datapath of Fig. 3.35 between clock cycles 16 and 17.

Event initial clk↑ (16) R0→R1 swap↑ fbk / ext↑ clk↑ (17)

LRa XX LR0 LR0 LR0 LR0 LR1

tmp1 XX XL1
b RL1 RL1 RL1 R1L2

tmp2 XX XL1 RL1 LR1 LR1 L1R2

tmp3 LR0 LR0 LR0 LR0 LR1 LR1

Transition ∅ ∅ ∅ 2× (3.13) (3.12 & 3.13) (3.12 & 3.13)

aNotice that the register LR is updated synchronously with every rising edge of clk.
bThe evaluation of L1

.
= R0 happens instantaneously after the rising edge of the clock.

3.6.2.3 Interpretation of HD at rounds [15,16]

In Sec. 3.5.3, it has been explained that in the case of the cryptographic algorithm DES, the key
can be traced by power analysis throughout the algorithm (Sec. 3.5.3.1), because of the sim-
plicity of the key schedule, but that the message is instantaneously decorrelated (Sec. 3.5.3.2.)
The analysis at rounds [3,14] shows that, because of the Feistel structure, the correlations are
actually kept one round before and after the selection function. Now, the differential traces
at round [15,16] disclose correlations over five clock periods. Such a high longevity is fairly
unexpected.

This observation deserves an in-depth explanation. The profusion of curious correlation
peaks accentuates the information leakage, thus fostering sneak attacks.

The contents of the LR register after the encryption, is shown to remain consistent until
two cycles past the computation end. The Tab. 3.16 presents this results. Based on these facts,
a register transfer analysis is given below:

• at clock #32, the transition signature is |LR15 ⊕ RL15|, which results in no peak in
neither Fig. 3.33 nor Fig. 3.34.

• at clock #33, the transition R16L16 → L16L15, yields both a signature in register L at
i = 15 (R15 ⊕ R16 = R16 ⊕ L16) and in register R at i = 14 (R14 ⊕ R15 = L16 ⊕ L15.)

• at clock #34, the transfer L16 → L15 signs for the transition |R14 ⊕ R15| in register L
at i = 14.

The peak in Fig. 3.34 for i = 14 at clock #33 is larger than other similar peaks for i < 14.
The context for this peak is different from the other Ri → Ri+1 transfers occurring during the
encryption.

• In clock cycles [16,32], the round key is updated at every round. Thus, when Ri is updated
into Ri+1, the difference Ri → Ri+1 propagates through the R register, the XORK gates,

100 CHAPTER 3. DPA ON DES

Table 3.16: Register LR contents after one SecMat V1 DES-ECB encryption.

Clock Round LR contents Combinatorial round logic output Swap L↔R?

...
...

...
... yes

30 14 LR14 RL15 yes
31 15 LR15 RL16 noa

32 16 RL16 (L16,R16 ⊕ f(L16,K16
b)c) = (L16,L15) yes

33 17 (L16,L15) (L15,L16 ⊕ f(L15,K16)
d) = (L15, XX) yes

34 18 (L15, XX) (L15 ⊕ f(XX,K16), XX) = (XX, XX) yes
35 19 (XX, XX) (XX, XX) yes
...

...
...

... yes

aThe last round is the sole occasion where the datapath two halves are not swapped.
bThe key is unchanged after the encryption (i.e. sel not shift=1.)
cf(L16, K16) = f(R15, K16) = R16 ⊕ L15: the comeback of this value is highly astonishing.
dThe value of f(L15, K16) is decorrelated from any Li and Ri; it can be considered as a random mask “XX”.

and substitution boxes. However, the internal nets of the sboxes have been decorrelated
by the sub-key update.

• After clock cycle #32, the round-keys are always the same: PC2(CD16) = PC2(CD0).
Thus when the value R15 is replaced by the value R14, the internal nets of the sboxes
have kept a strong dependency in R15. The correlation continues thus deeper in the
logic. A quantitative evaluation of the correlation gain requires an accurate knowledge
of the netlist. A static simulator could be an relevant tool to provide more insights
on the “entanglement” of the sbox with its input. This assertion is validated by the
computation of the difference between a “regular” and the “clock cycle #33” peaks for
the Ri → Ri+1 transfer. The resulting waves for two different acquisition campaigns are
shown in Fig. 3.37. The waves shapes differ because the two campaigns have been led on
two different acquisition boards. The graph shows that the difference begins to sign about
1.20 nanoseconds after the rising edge of the clock, which proves that extra dissipation is
caused by the activation of combinatorial gates.

The effect just mentionned should not manifest if all the round keys happen to be equal. The
plot shown in Fig. 3.36 compares the maximum peak height for differential waves obtained from
the selection function (3.12) for two acquisition campaigns:

1. one with a weak key ({0x00}8) and

2. another with a variable (random) key.

During the encryption (15 register transfers), peaks obtained with the null key are the highest.
The reason for the increase trend from i = 1 to 15 of the peaks amplitude is still unknown2.
However, after the encryption, at clock period 33, the peak corresponding to the transfer
L16 → L15 is the same, as expected.

The former analysis showed that keys that do not vary randomly at every round enhance
the power attacks. In the case of DES, those keys are for instance weak and semi-keys, as well
as 48 potentially weak keys [22].

The last peak whose presences remain unexplained is:

1. The combinatorial peak in Fig. 3.33 for i = 14 at clock #34. This peak is the only one
to disappear if the key is randomized.

2It just suggests that an known ciphertext DPA is likely to be more powerful than a chosen plaintext DPA.

3.6.
E

X
P

L
A

N
A

T
IO

N
F
O

R
T

H
E

D
IF

F
E

R
E

N
T

IA
L

T
R

A
C

E
S

U
S
IN

G
H

W
V

S
H

D
101

 24

 26

 28

 30

 32

 34

 36

 38

i=15 @ 33

i=15 @ 31

i=14 @ 30

i=13 @ 29

i=12 @ 28

i=11 @ 27

i=10 @ 26

i=9 @ 25

i=8 @ 24

i=7 @ 23

i=6 @ 22

i=5 @ 21

i=4 @ 20

i=3 @ 19

i=2 @ 18

i=1 @ 17

L register transfer maximum voltage [mV]

R
ound index

N
ull key

R
andom

 key

E
ncryption

After encryption

F
igu

re
3.36:

A
m

p
litu

d
e

of
d
iff

eren
tial

w
aves

com
p
u
ted

w
ith

th
e

selection
fu

n
ction

(3.12
).

102 CHAPTER 3. DPA ON DES

-4

-2

 0

 2

 4

 6

 8

 10

 12

1514131211109876543210

V
ol

ta
ge

 [m
V

]

Time [ns]

Acquisition campaign with a fixed key

t=1.21 ns

(1) Register R transfer at clock #30
(2) Register R transfer at clock #33
(3) Difference of the traces: (2) - (1)

-5

 0

 5

 10

 15

 20

 25

 30

 35

1514131211109876543210

V
ol

ta
ge

 [m
V

]

Time [ns]

Acquisition campaign with a random key

t=1.19 ns

(1) Register R transfer at clock #30
(2) Register R transfer at clock #33
(3) Difference of the traces: (2) - (1)

Figure 3.37: Difference of differential traces for a register transfer in R, at clock periods #30
(during the encryption) and #33 (after the encryption.) Only the first half period is plotted
(the full clock period lasts 1

32 MHz = 31.25 ns.)

3.6. EXPLANATION FOR THE DIFFERENTIAL TRACES USING HW VS HD 103

Table 3.17: Analysis of the glitches dissymmetry in XORL at the end of clock cycles 31–33.

Clock #31 Clock #32 Clock #33

b

a z
R16

L15

R16 ⊕ L15

b

a z
L15

R16

L15 ⊕R16

b

a z
L16⊕

L16

f(L15, K16) = XX f(L15, K16)

The chronology provided in Tab. 3.16 shows the survival of correlated round messages Li

and Rj , where i, j ∈ {15, 16}. This explains the differential trace obtained using the Hamming
weight selection function (3.6) with i = 15. As expected, in clock period [31,32], the sbox
outputs are betrayed (albeit with a poor signal quality) by the power analysis. At the beginning
of clock period 32, Neither of transitions |L15⊕L16| (Fig. 3.33) nor |R15⊕R16| (Fig. 3.34) sign.
On contrary, as explained in Tab. 3.16, the transition LR15 → RL16 signs a Hamming weight
equal to |L15 ⊕ R16|, occurring in register L. This leads to the sequential peak observed in
Fig. 3.30 for i = 15 at clock 32. Now, in these differential traces, two peaks remain to be
explained:

1. a small peak following the sequential peak just identified at clock 32 and

2. another small peak at clock 32.

These two peaks are due to a glitch propagation through XORL, as already detailed in Sec. 3.6.1.
The state of the datapath at the end of clock cycles 31, 32 and 33, when every signal has
stabilized to its definitive value, is given in Tab. 3.17. In this table, the input b is slow, since
it is on the critical path: effectively, both the round key and the sbox must be computed to
present a valid input to port b of XORL. The input a is fast, because it is directly the output
of the datapath register L. This table shows that the steady input b take the following values:

• At the rising edge of clock 32, b remains transiently equal to R16 ⊕ L15.

• At the rising edge of clock 33, b remains transiently equal to L15 ⊕ R16.

• At the rising edge of clock 34, b remains transiently equal to f(R15, k16) = XX.

As a consequence, two glitches are produced for the |f(R15,K15)| = |R16 ⊕ L15| = |L15 ⊕ R16|
selection function, at clock 32 and 33.

3.6.3 Single versus multi-bit HW or HD selection functions

The analyzes of the differential traces obtained by the weighting with an HW (resp. HD) selec-
tion function on the full 64-bit register LR has been conducted in Sec. 3.6.1 (resp. Sec. 3.6.2.)
The origin of the correlation peaks have been shown to be of three types:

1. state at the output of a combinatorial logic cone (peaks in clock period 16+i in Fig. 3.30),

2. coherent glitching activity of an XOR gate (peaks in clock period 16 + i in Fig. 3.30),

3. transition of the output of a sequential gate, synchronized either with the clock or with
a control signal (all the peaks in Fig. 3.31.)

The goal of this section is to show that, under normal conditions, the state (item no. 1 of the
previous list) of a net is an invalid selection function. The evidence is provided experimentally,

104 CHAPTER 3. DPA ON DES

Table 3.18: Selection functions used for differential waves plots in Fig. 3.38.

State selection (HW) Transition selection (HD)

Single-bit
∣∣SHW & (0x80, 0x003)

∣∣ = SHW|1
∣∣SHD & (0x80, 0x003)

∣∣ = SHD|1
Multi-bit |SHW| |SHD|

thanks to four differential traces. The four differential traces use either one or all the 32 bits
from the two functions:

SHW
.
= f(R0,K1) , (state of the sboxes output at round #i = 0)

SHD
.
= f(R0,K1)⊕ f(R1,K2) . (transition of the sboxes output at round #i = 1)

The actual selection functions, and the resulting differential traces, are given in Tab. 3.18.
The multi-bit Hamming weight function has already been plotted in Fig. 3.30(i = 0) and studied
in previous Sec. 3.6.1.

Not surprisingly, the single and multi-bit traces exhibit peaks at roughly same dates. Nev-
ertheless, the peaks are not all homothetic; a factor 32 is indeed expected. The fact that a
peak scales (or not) when adding up bits of a same multi-bit selection function reveals whether
the function matches an elementary side-channel. The underlying criterion is the notion of
physical significance of a selection function.

Definition 6 (Physical significance of a selection function) A selection function is phys-
ically significative when its logical expression accurately models a physical dissipation.

When a single-bit selection function is physically significative, it typically matches the dis-
sipation of one target net of a circuit. Given that the energy is an extensive quantity, the
power dissipation of a collection of nets simply adds up; this is true at least at first order, i.e.
if the nets are not physically cross-coupled (generally via undesirable parasitic capacitances.)
Now, let us consider a collection of nets that are not logically cross-coupled: this situation is
representative of a cryptographic datapath, where the bits are made as independent from each
other as possible, from a statistical point of view. If the multi-bit selection function for such a
collection of nets is physically significative, then the power peak is equal to the coherent sum
of the individual peaks for every net within the collection.

Based on this rationale, the peaks in Fig. 3.38 are analyzed. In the first round, only the
HW selection functions have peaks. They represent the item no. 1: state-wise dissipation.
In the second round, peaks are caused by items no. 2 & 3. They can be grouped under
the common denomination of activity-related dissipation (either “differential activity” for item
no. 2 or “simple activity” for item no. 3.) The maximum amplitude of the peaks are reported
in Tab. 3.19. It can be seen that the peaks of the first round do not scale, whereas others do.
Theses two constatation are expressed in properties 5 and 6.

Property 5 (Physical insignificance of HW) The Hamming weight (HW) selection func-
tions are physically insignificative w.r.t to the targeted net(s.) These functions can be significa-
tive of an asymmetry of the HD activity at the output of gate (such as the glitching activity

of an XOR gate.)

Property 6 (Physical significance of HD) The Hamming distance (HD) selection func-
tions are physically significative: they model the dissipation of the targeted net(s.) Without
caring about physical units, this dissipation is indeed assessed by the amount of changes (i.e.
transitions or activity) of the nets value.

3.6. EXPLANATION FOR THE DIFFERENTIAL TRACES USING HW VS HD 105

-0.02

 0

 0.02

 0.04

 0.06

 0.08

181716

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential trace for the first bit of DES Sbox #1 (1-bit selection function)

Round 1 Round 2

Hamming weight
Hamming distance

-0.5

 0

 0.5

 1

 1.5

 2

181716

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential trace for all DES Sboxes (32-bit selection function)

Round 1 Round 2

Hamming weight
Hamming distance

Figure 3.38: Single-bit (upper) and multi-bit (lower) selection functions comparison for DES
sboxes outputs Hamming weight or distance, as per Tab. 3.18.

106 CHAPTER 3. DPA ON DES

Table 3.19: Maximum amplitude of the peaks of differential traces shown in Fig. 3.38.

Round 1 Round 2

HW HD

Single-bit 0.050 mV 0.007 mV [NA]

Multi-bit 0.787 mV 0.029 mV [NA]

HW HD

Single-bit 0.045 mV 0.081 mV

Multi-bit 1.659 mV 1.945 mV

The fact that the Hamming weight signs all the same is probably due to a degenerescence
of the selection function. If an initial or final state is constant, then the HD is brought back
to an HW. The complex logic that makes up a substitution box can, by chance, make such
a situation appear with a low probability. In such cases, the HW selection leads to a “near-
match”, hence causing a peak. This explanation is very relevant for software implementations,
where it is not unlikely that a register contain a deterministic value prior to being loaded with
the targeted word (thus turning HD into HW.)

It can be noticed that the best way to estimate the output change of a combinatorial function,
such as sboxes, remains the HD. The corresponding peak in clock period 1 is slightly delayed
w.r.t. the XORL peak. However, the delay is very small, and certainly accounts only for the
first glitches at the output of the sboxes. For every sbox output, the first glitch wipes out the
previous value. Following glitches (more scattered in time) match the transitions towards the
final value of the sboxes. This explains why the HW differential traces peaks occur latter in the
clock period than HD’s. Those glitches are indeed revealed by an HW-type selection function.
Unfortunately, only the last glitch stabilizes to the HW. This glitch temporal occurrence does
depend both on the data and of the targeted bit. The large dispersion of the last glitch accounts
for the inconsistency of the HW selection function.

Property 6 shows that, from a theoretical point of view, HW is not suitable to model attacks.
Attacks using HW that happen to be successful succeed in fact thanks to:

• either the exploitation of an happy degenerescence,

• or of a secondary HD effect, such as the asymmetrical glitching activity of an XOR gate.

3.6.4 Conclusion: improvement of side-channels analyzes

The traces analyzes accounted for in this Sec. 3.6 are very specific to the DES co-processor
architecture embedded in SecMat V1. However, their interpretation has led to the identification
of new vulnerabilities.

First of all, the multiplicity of the peaks (see for instance the triples in Fig. 3.31, for i = 0)
can be exploited to increase the leakage signal. In particular, on Feistel-networks, additional
peaks can appear after the encryption is over (until clock period #34), unless the register LR
is frozen. The corollary is that a conventional DPA on the last round does succeed. This opens
a serious security breach, that is made possible by an optimization: if the LR register had an
enable, then:

• the critical path would be slightly longer, thus impeding the co-processor speed, but

• the dreaded register transfer LR15 → LR16 would never manifest (refer to Sec. 3.7.)

We also noted that the falling edge of the clock contributes to the power signature.
Then, we observed that glitches can be exploited too. We proved that the insulation of a

glitch traversing an XOR gate is done thanks to the Hamming weight of the steady input.

3.7. REALIZATION OF THE DPA ON DES 107

4

S

[1,4]

6

[1,6]

E

6

6{32,1,2,3,4,5}

R0 P

4

R1

4

4

L1

⊕K1

6

{9,17,23,31} {9,17,23,31}[1,6][1,6]

Key (K1)
M

e
ss

a
g
e

(L
R

0
)

⊕L0

L0

Figure 3.39: Datapath of DES involved in the DPA attack of the first round.

These observations demonstrate the possibility to realize “multi-selection function” side-
channels analyzes. We are currently working to quantify the improvement conveyed by this
new analysis tool.

3.7 Realization of the DPA on DES

The DPA is performed on the first round, because the last round is a transfer from register
LR to register IF. The IF register contains meaningless data, hence the unexploitability of the
transfer. Consequently, the attack is a known-plaintext DPA on the iterative hardware DES
cryptoprocessor described in Sec. 3.2.6 at page 65. The side-channel that is considered is the
register transfer LR0 → LR1 between rounds 1 and 2.

Notice that in the DES module of SecMat V1, the DPA surprisingly does work on the last
round. The reason is a consequence of the results obtained in Sec. 3.6.2. As shown in Tab. 3.16,
the register L contains the values:

• R16 at clock period #32 and

• L16 = R15 at the following clock period.

The fateful transfer R15 → R16 thus happens, albeit:

• not in this order, but in the other,

• not at clock period #32, but at clock period #33,

• not in register R, but in register L.

3.7.1 Selection function for the DPA on the DES architecture of Sec-
Mat V1

Given that DES is a Feistel network, L1 = R0. As this transition does not depend on the key
K1, it does not leak any sensitive information. However, The transition R0 → R1 is relevant.
The datapath for this transition is depicted in Fig 3.39.

Property 7 (DES diffusion) None of the DES sboxes clobber the registers containing the
data previously holding their inputs. Put differently, the set of indices of the plaintext that,
mixed with a subkey, yields the sbox input is disjoint from the sbox output.

108 CHAPTER 3. DPA ON DES

Table 3.20: Input / output along one DES round for the eight sboxes (For the sake of clarity,
the functions ⊕K1

and ⊕L0
have been omitted because they do not reorder the wires.)

Sbox R0 E S P

1 {32, 1, 2, 3, 4, 5} {1, 2, 3, 4, 5, 6} {1, 2, 3, 4} {9, 17, 23, 31}
2 {4, 5, 6, 7, 8, 9} {7, 8, 8, 10, 11, 12} {5, 6, 7, 8} {13, 28, 2, 18}
3 {8, 9, 10, 11, 12, 13} {13, 14, 15, 16, 17, 18} {9, 10, 11, 12} {24, 16, 30, 6}
4 {12, 13, 14, 15, 16, 17} {19, 20, 21, 22, 23, 24} {13, 14, 15, 16} {26, 20, 10, 1}
5 {16, 17, 18, 19, 20, 21} {25, 26, 27, 28, 29, 30} {17, 18, 19, 20} {8, 14, 25, 3}
6 {20, 21, 22, 23, 24, 25} {31, 32, 33, 34, 35, 36} {21, 22, 23, 24} {4, 29, 11, 19}
7 {24, 25, 26, 27, 28, 29} {37, 38, 39, 40, 41, 42} {25, 26, 27, 28} {32, 12, 22, 7}
8 {28, 29, 30, 31, 32, 1} {43, 44, 45, 46, 47, 48} {29, 30, 31, 32} {5, 27, 15, 21}

This characteristic holds by construction for DES: the outputs of every sbox are injected
into other sboxes, but the current one. The property 7 can be proven exhaustively, as shown
in Tab. 3.20: the intersection between the first and the last column is always empty. The
cryptological concept expressed by the property 7 is that of “diffusion”.

The transition that is exploited (for sbox #1) is:

R0{9, 17, 23, 31} → L0{9, 17, 23, 31} ⊕ S1 (R0{32, 1, 2, 3, 4, 5} ⊕K1[1, 6]) . (3.14)

Using as weighting function the XOR between the initial and the final values in Eqn. (3.14),
the DPA is performed on a set of 50 000 traces. The attack is successful starting from about
one thousand traces. Much fewer traces are required if the maximum peak criteria exposed in
Sec. 2.3.5.1 is traded for a maximum likelihood estimation [86].

The signal-to-noise ratio, as defined in Eqn. (2.7) of the DPA for all the substitution boxes
is given in Appendix B.2 at page 163. The theoretical value of the SNR is reported on the
graph. It is evaluated according to the model Eqn. (2.9), with the two following modifications:

1. the signal (for the correct key guess) is not included in the denominator, because it does
not contribute to the noise, and

2. it is adapted to DES, as per Eqn. (3.14.)

The asymptotical measured SNR match the predicted value, as shown in Fig. 3.40. In this
histogram, the SNRs are given without units.

3.7.2 DPA on traces integrals

Definition 7 (Trace integral) A trace integral is a scalar that represents a selected portion
of a full trace. Typically, the integration of a trace in a window yields a trace reduced to one
point, that is a possible candidate for a trace integral.

The DPA is performed on three types of traces integrals:

1. integral over the acquisition period (including parts of data loading and unloading),

2. integral over the sixteen rounds of the encryption and

3. integral over the first round of the encryption.

The characteristics of the three averagings are given below:

3.7. REALIZATION OF THE DPA ON DES 109

 0

 2

 4

 6

 8

 10

 1 2 3 4 5 6 7 8

A
sy

m
pt

ot
ic

 S
N

R
 o

f t
he

 D
P

A
 (

30
00

0
tr

ac
es

)

Sbox index

SNR of the DPA on the 8 Substitution Boxes (Sboxes) of the DES

Theoretical model [Digital ; weight function = mean{ HW(S(x+k)+random)}]
Experimental acquisition campaign on SecMatV1/DES_HW [11 ohm, 1.2 V]
Experimental acquisition campaign on SecMatV1/DES_HW [80 ohm, 0.7 V]

Figure 3.40: Comparison between theoretical digital model presented in Sec. 3.7 and experimen-
tal analog measurements of the DPA Signal-to-Noise Ratio (SNR) on the secret key encryption
algorithm DES [71] embarked in the SecMat V1 ASIC (cf. the layout of Fig. A.1(a)).

110 CHAPTER 3. DPA ON DES

 0

 2

 4

 6

 8

 10

 0 10000 20000 30000 40000 50000 60000 70000 80000

S
N

R

Trace number

DPA on DES Sbox #1

DPA success threshold

Correct key (attack success)
Wrong key (attack failure)

Theoretical SNR

Figure 3.41: Hamming distance for sbox #1 on the scalar sum of the full power traces over 32
clock periods taking in one DES encryption.

1. The full traces have 20 000 data points, acquired at 20 Gsample/s. As the circuit runs at
32 Mhz, the full traces span over 32 clock periods. One representative trace is shown in
Fig. 2.20; the integral consists in computing

∑20 000−1
t=0 trace(t).

2. For the second type of integral, the averaging is limited to the sixteen clock periods (clocks
16 to 32) taken by the DES encryption proper: only half of the number of points making
up the trace are used in the summation.

3. The third type of integral consists in clipping the first sixteenth of the DES encryption,
corresponding to one single clock period (clock 16 to 17.) The averaging is thus realized
on 625 data points.

The DPA keeps on working for sbox #1, even with the averaging over the full trace, as
shown in the figures 3.41, 3.42 and 3.43.

Apart from sboxes #3 and #4, all the sub-keys were retrieved with 81 089 traces, even with
the harshest integral. The minimum number of traces to crack each sub-key is reported in
Tab. 3.21.

It is interesting to remark that, without averaging (see SNR graphs at Appendix B.2), it is
generally harder to find the correct key than with an averaging over the critical clock period
of the first round. The reason is that the energy dissipated by the DFFs is spread, due to the
signals modulation at 150 MHz. The summation over the clock period helps reconstructing the
spread information.

The latter remark is justified by the fact that the attack is still faster when averaging on
the first half of the period.

The recommendations that can be made for a security improvement is to use deterministic
gates, because random delay insertions (see Sec. 4.1.2), etc. do not resist the temporal inte-

3.7. REALIZATION OF THE DPA ON DES 111

 0

 2

 4

 6

 8

 10

 0 10000 20000 30000 40000 50000 60000 70000 80000

S
N

R

Trace number

DPA on DES Sbox #1

DPA success threshold

Correct key (attack success)
Wrong key (attack failure)

Theoretical SNR

Figure 3.42: Hamming distance for sbox #1 on the sum of the traces points over the 16 clock
periods making up a DES encryption.

 0

 2

 4

 6

 8

 10

 0 10000 20000 30000 40000 50000 60000 70000 80000

S
N

R

Trace number

DPA on DES Sbox #1

DPA success threshold

Correct key (attack success)
Wrong key (attack failure)

Theoretical SNR

Figure 3.43: Hamming distance for sbox #1 on the sum of the data points inside of DES first
round.

112 CHAPTER 3. DPA ON DES

Table 3.21: Minimum number of traces to crack the unprotected DES iterative implementation.

Average type
Sbox Whole trace Whole DES First round No average

1 44 211 16 129 528 968
2 37 497 23 075 1 231 1 799
3 Failure 40 591 761 2 475
4 Failure 18 289 1 816 1 478
5 80 711 8 517 1 141 1 151
6 51 229 9 899 995 1 110
7 35 367 8 972 3 093 1 353
8 35 902 14 493 854 967

gration. Now, this section showed that even heavy integrations proved to be vulnerable to the
DPA.

Chapter 4

Backend countermeasures against
SCAs

The leakage identified in the previous chapter are inputs to devise recommendations for maxi-
mally protected implementations. The goal is to provide the designer with an insightful solution
without any tradeoff, but that offers the best achievable security level. A standard cell library
is presented, along with a place-and-route methodology to use it securely. The approach used
in this proposed counter-measures is based on using indiscernability at the lowest possible level,
namely the logical gate operating on individual bits of information.

4.1 Leaking no information

4.1.1 Information = distinguishability

First of all, it must be noticed that side-channel attacks are possible because the circuit’s
behavior can be observed without modifying its execution. This assumption is for instance
incompatible with the quantum key distribution model. In such protocols, the security lays on
the assurance that unauthorized observations can be detected. In BB84 [13], the potentially
observation rate is estimated prior to agreeing on a secret. If the channel is private enough,
the communication of key materials can begin in clear. Actually, cryptography exists because
classical information can be copied verbatim without anybody being aware of the information
theft. Charles Bennett goes even further [12]: the same arguments can be extended from
communication to computation. As classical devices leak energy, a periodic refresh, implemented
by the amplification properties of logical gates, is mandatory. In contrast, a quantum computer
falls into either the reversible (see Sec. 2.2.1) or the conservative (see Sec. 2.2.2) computation
styles. Bennett states that classic computation is merely quantum computation impeded by
observability. And it can be added that classic computers are also more vulnerable, because of
the existence of side-channels.

Now, we assume that any computers available nowadays leak information. Given two observ-
able random variables D0 and D1, we write D0 ∼ D1 if D0 and D1 have the same distribution.
Such a case is called “perfect indistinguishability”. A consequence is that for a given observa-
tion, there exists no evidence to decide whether D0 or D1 happened. For example, D0 and D1

cannot be distinguished by their mean, their standard deviation, or any higher moments. The
use of indistinguishable phenomenon is thus a valid strategy, not to conceal the occurrence of
an event, but to hide its nature.

This strategy can be enforced at high-level to fight timing attacks: one objective is to
guarantee that the execution of a program requires an identical amount of time irrespectively

113

114 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

of the data being processed. A concrete contre-measure at C-language level is exposed in a
work on the program counter security model [62]. At the assembly language level, Marc Joye
proposes the side-channel atomicity model as a software balancing technique [14]. In the rest
of this section, we are concerned with similar solutions, at the gate-level.

When modeling security at high level, few physical considerations enter into account. At the
opposite, low level investigations lead to an abundance of possible side-channels. The balancing
strategies are thus less straightforward; at the resolution of the clock period, two instructions
can be balanced in time. Below the clock period granularity, the evaluation of every instruction
does depend on the type of instruction; hence a variation of the power or the electromagnetical
signature. As a consequence, low-level balancing strategies often require some approximations.
For instance, the decorrelation of the activity of two nets will be possible, provided they are
enough spaced or shielded.

To conclude, it must be mentioned that the EMA model is rampant. This attack might
enable — but to what extent? — a localization of the measured dissipation. The ability to
access local information defeats the counter-measures presented in this section.

4.1.2 Randomization

An alternative solution is to resort to the unpredictable randomization of the syndromes D0 &
D1 to be distinguished. This idea is widely used in cryptography; the concept of initialization
vector (IV), seed and nonce are very common, but aim to fight other threats.

In hardware design, digital randomization fall into two categories:

1. data masking, such as the duplication method [41], The technic involves a data ran-
domization, like cleartext or key blinding [60]. that lowers the correlation between the
data and the physical information leaked (its syndrome.)

2. timing desynchronization, as analyzed in the PhD of Fraidy Bouesse [38]. The desyn-
chronization often relies on a dedicated microelectronic design based on asynchronous
logic with a dual rail datapath encoding [64, 109, 33].

Analog counter-measures also exist:

• One possible gate that inserts random delays is explicited in [94].

Anyway, the use of random number generators (RNGs) displaces the problem: the device
to protect is now the RNG itself.

These counter-measure consists in adding noise; it is irrelevant in the scope of our analysis
(cf Sec. 1.2.1), since it only increases the number of traces to acquire, but does not make the
attacks impracticable. The successful realization of the DPA attack on traces averaged over
one encryption (and even more) demonstrated in Sec. 3.7.2 indeed indicates that randomization
strategies are not long-term counter-measures against SCAs.

When a run-time reconfigurable device is available, new dynamical strategies become pos-
sible. Some seminal ideas about hardware obfuscation and adaptative resilience are
mentioned in [87].

In the rest of this chapter, our contribution for a static and deterministic transistor-level
balancing counter-measure is presented. The principled counter-measure can be split into a
computation cell (see Sec. 4.2) and guidelines to turn a regular design into a secure one (see
Sec. 4.3.)

4.2 The secured library “SecLib”

SecLib has been designed to provide the highest possible level of immunity against SCAs,
without comprise on the performances. The goal of the SecLib is not to be a definitive solution

4.2. THE SECURED LIBRARY “SECLIB” 115

against SCAs. The approach is rather a “proof-of-concept”. On the one hand, if the library
proves to be secure, then more efficient libraries might exist with the same level of security,
which is an advantage for the adoption of this technology in concrete designs. On the other
hand, is the library fails to be secure, then it is very likely that no other comparable library
will be. Other solutions against SCAs will thus need to be devised. Moreover, the high cost
that we afford to pay in SecLib is justified by the fact that no viable solution against the SCAs
has been put forward yet.

The effects of the characteristics variations across the wafer are not taken into account at
that point. The rationale is that those variations can be reduced by over-sizing the design.

4.2.1 Secured standard cells

The motivation to specify a new cell library is that standard cells do not compute with a
constant syndrome. The goal of this section is to come up with a balanced architecture, able
to process all the inputs combinations in an indiscernability way.

The difference between the rising and the falling transitions symptoms is a phenomenon
making side-channel attacks possible. As a result, an electronic gate can only be claimed to be
secured against side-channels attacks provided every logical change of this output correspond
to the same type of transitions, i.e. always either a falling or a rising transition.

4.2.1.1 Dual-rail four-phase logic

One solution consists in encoding every data A on two wires, a0 and a1, and to start every
computation with the condition a0 = a1 satisfied. In pratical, an event on either a0 or a1 repre-
sents the new valid data (0 or 1). The new state (further referred to as VALID) is characterized
by a0 6= a1. It is followed by a reinitialization step (further referred to as NULL), where the
complementary wire is sent an event, so as to restart the new computation with a0 and a1 at
the same electrical level. The NULL state can either be constant or alternative, as shown in (4.1)
and in (4.2).

These schemes are referred to as dual-rail four-phase logic [33]. In those logics, the NULL

must propagate: every gate whose inputs are NULL must produce a NULL output.
The constant NULL (say NULL= (0, 0)) scheme (4.1) is also known as return-to-zero (RTZ)

signalization. As explained later on in Sec. 4.2.2, only RTZ is suitable with secured transistor-
level structures. Additionally, the (1, 1) state becomes forbidden and can therefore be used to
detect faults [33, 64].

NULL→ VALID→NULL→ VALID→NULL →· · ·
ր (0, 1) ց ր (0, 1) ց ր · · ·

(0, 0) (0, 0) (0, 0)
ց (1, 0) ր ց (1, 0) ր ց · · ·

(4.1)

NULL→ VALID→NULL’→ VALID→NULL →· · ·
ր (0, 1) ց ր (0, 1) ց ր · · ·

(0, 0) (1, 1) (0, 0)
ց (1, 0) ր ց (1, 0) ր ց · · ·

(4.2)

4.2.1.2 Secured cell micro-architecture

A gate with dual-rail inputs and outputs, using a succession of VALID and NULL states (4.1),
starts any computation with rising edges, whatever the input data. Nevertheless, the gate must
be further symmetrized to make its electrical behavior independent of its input data. The
following three conditions are necessary for a constant syndrome gate:

116 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

1. The electrical network seen from input a0 must be identical to the one seen from a1. If
it was not the case, an event on a0 would probably consume a different amount of power
than an event on a1. A gate with multiple inputs, (a0, a1), (b0, b1), (c0, c1), must remain
electrically unchanged under any combinations of the transformations a0 ↔ a1, b0 ↔ b1,
c0 ↔ c1.

2. The gate shall not produce anticipated outputs. If the gate evaluates before all the inputs
are in the same state, either all VALID or all NULL, the computation duration depends on
the input data. As this dependence is exploited by SPA, a secured gate shall wait for all
its inputs before evaluating.

3. The gate must be memoryless. Every CMOS gate (but the INV) contains internal nodes
that are not always driven. Undriven nodes store a state in their capacitance; the memo-
rizing state is usually referred to as high-impedance or Z internal state. The memorization
of an electrical charge from one computation to another leads to an observable conditional
discharge. The discharge is a symptom, correlated to the gate input data sequence, and
is for this reason exploited by side-channel attacks.

The first condition is straightforward on balanced truth tables gates, as for instance the
invertor (INV), the exclusive-or (XOR), the half-adder (HA), the full-adder (FA) or the 2 → 1
multiplexer (MUX21). Although a universal logic set can be build out of those primitives (for
instance {INV, MUX21}), it is worth trying to design a gate with unbalanced truth table, such as
a NAND. As shown later in Fig. 4.1, dummy loads can be used to balance the electrical network.
Additionally, as will become clear later, 3-input secured gates are much larger than 2-input
gates. The 2-input NAND gate thus provides the most viable universal set.

The second condition can be implemented by a rendez-vous of the inputs, so as to make
sure the gate processes the inputs (either VALID or NULL) only when they have all arrived.
The inputs are thus first decoded by C-Element gates [99]. For instance, a 2-input (a0, a1),
(b0, b1) gate implements the rendez-vous between a0 and b0, a0 and b1, a1 and b0, a1 and b1.
Only one of these rendez-vous produces an event. As soon as this event occurs, the gate can
evaluate. Fig. 4.1 (inspired from [64]) shows a structure implementing a NAND that satisfies
the first two conditions. The decomposition in transistors requires attention: the netlist must
indeed preserve the conditions 1 and 2 (refer to Sec. 4.2.2.)

The proposed structure can clearly be divided into two parts:

1. the front part, in charge of the synchronization of the inputs,

2. the back part, a balanced combinatorial circuit in charge of the output computation.

This structure is by design delay-insensitive. In Fig. 4.1, the OR gates on the path to y1 is
dummy: its only purpose is to balance the y0 and y1 ways. More sophisticated architectures
where the additional material is used for error detection (in the context of fault attacks) have
been proposed [64].

The third condition can be fulfilled by adding circuitry to remove any conditionally undriven
states. When a Z state occurs in the P transistor network, an appropriate N transistor logic
can force its state to VSS. This method is illustrated on the three input NOR gate (3NOR) in
Fig. 4.2. Another example of removal of Z states from the internal nodes truth table is shown
for the C-Element in Fig. 4.3.

4.2.2 CMOS structures for the secured cells

The two parts, namely synchronization and computation, of the schematic of the NAND gate of
Fig. 4.1 can be implemented independently.

4.2. THE SECURED LIBRARY “SECLIB” 117

C

C

C

C

a0

a1

b0

b1

VSS

OR

y1

y0

OR

Synchronization Computation

Figure 4.1: A secured NAND gate schematic.

B CA

C

B

A

A B A

Y

VDD

VSS

Figure 4.2: Unbalanced – hence insecure – 3NOR gate, computing Y = A + B + C, without
internal Z states.

118 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

(a) (b)
VDD

C

VSS

B

A

A

B

CC

C
A

B

A

B

PB

NB

PA

NA

VDD

C

C

A

A

B

B

C

PA PB

NA NB

B A

B A

C

VSS

Figure 4.3: (a) Symmetrical C-Element. (b) Secure C-Element without internal Z states.

4.2.2.1 Transistor structure for the NAND synchronization part

The four C-Elements can be implemented by the memory-less C-Elements of Fig. 4.3. This
C-Element (whose reset is omitted) provides two security features:

1. Like the so-called symmetrical C-Element [93], its power consumption is same whether
an input arrives on port A or B (condition 1 is fulfilled.)

2. When it is used, like in Fig. 4.1, as an input decoder, it can receive two consecutive events
on the same input. After the two events have arrived, the C-Element returns in the same
state as it was before, leaving no evidence that either A or B has received two consecutive
events. This results from the fact that, in the NULL state (A=B=0), all the nodes are
driven.

4.2.2.2 Transistor structure for the NAND computation part

The two 3ORs of Fig. 4.1 cannot be implemented by those of Fig. 4.2, since they violate the first
condition discussed in Sec. 4.2.1.2. As a matter of fact, the electrical consumption of the 3NOR

of Fig. 4.2 is different depending on which port (A, B or C) an input arrives. A systematic
way to get rid of the difference of the 3OR transistor structure seen from either input consists in
implementing all the 3! 3OR gates with the inputs permuted and to short together their outputs,
as depicted in Fig. 4.4.

BA C BA C BA C BA C BA C

BA C

A
B
C

OR OROROROR

Y
= OR
of Fig. 4.2

CBA

OR

OR

Figure 4.4: Implementation of a 3OR without electrical symptom, built out of 3! Z-free 3ORs.

4.2. THE SECURED LIBRARY “SECLIB” 119

A lighter solution consists in assembling 2ORs to build the 3OR. Using only two 2ORs does
not allow to build a gate whose 3 inputs are equivalent, as shown in Fig. 4.5. However, 3 2ORs
(Fig. 4.6), one being dummy, can be assembled in such a way it is impossible to tell, from the
power consumption analysis, which input has been activated from 0 to 1.

OR

Y

A

B
OR

C
OR

= OR of Fig. 4.7

Figure 4.5: 3OR gate whose inputs are not
equivalent.

Y

VSS

A

B

C

OR

OR

OR

Figure 4.6: 3OR gate whose inputs are equiv-
alent.

In CMOS logic, a 2OR gate is typically build with a 2NOR followed by an INV. A 2NOR gate
suitable for the implementation of a 3OR gate (as depicted in Fig. 4.6) is shown in Fig. 4.7. It

B

A

BA

B

A

VDD

Y

PB

VSS

PA

Figure 4.7: Balanced 2NOR, without un-
driven nodes provided A 6= 1 and B 6= 1.

B

A

BA

B

A

Y

VDD

VSS

NA NB

Figure 4.8: Balanced 2NAND, without un-
driven nodes provided A 6= 0 and B 6= 0.

is symmetric with respect to the input exchange A ↔ B but do contain Z states in its truth
table. However, for every computation, at most one among the three inputs has a transition
0→ 1→ 0, depending whether y0 or y1 is set to 1 by the computation (cf. Fig. 4.1). Now, in
the activated 3OR gate, the inputs of one first-level 2OR (or actually 2NOR) and of the last-level
2OR turn from (0, 0) to (0, 1), or vice-versa, while the second first-level 2NOR inputs are left
unchanged at (0, 0). However, in the transition (0, 0)→(0, 1)→(0, 0), all the nodes of the 2OR

are driven. As a consequence, the final state of the 2NOR gate is the same as it was before the
computation.

It would not have been so if we had needed a 2NAND (cf. Fig. 4.8). The 2NAND memorizes
“VSS” in its node NB after a sequence (A, B) : (0, 0)→ (0, 1)→ (0, 0). Then, in the next
computation,

• if the same sequence repeats, NB remains at potential VSS, and no power is dissipated,

• if the opposite sequence (namely (0, 0)→(1, 0)→(0, 0)) happens, node NB is charged to

120 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

“VDD” while NA discharges. Additional power is thus consumed, revealing a syndrome
on the gate input data.

Moreover, the same problem would happen on the 2NOR of Fig. 4.7 if the NULL state is (1, 1)
instead of (0, 0). In this case, the PA and PB node of the 2NOR would be memorizing, allowing
for deductions on the data. The RTZ protocol (scheme (4.1)) in thus the one possible alternative
compatible with a balanced and memoryless computation part.

4.2.3 Use in a regular design flow

The symmetrical design of the C-Elements (Fig. 4.3) and of the 2NOR (Fig. 4.7) gates needed
to build the RTZ dual-rail rail NAND gate (Fig. 4.1) must be kept in the layout. A possible
symmetrical layout for the C-Element is given in Fig. 4.9. The layout is given here in a so-
called scalable CMOS (SCMOS) technology from MOSIS [4]. In this technology, all the design
rules are expressed as a multiple of a parameter λ. For instance, the minimum gate width is
given by 2× λ ; thus in a 130 nm technology, λ = 65 nm. As in our case the target technology
is 130 nm or beyond, the rules are in fact the deep sub-micron variant of SCMOC, called
SCMOS DEEP. The layout editor is GNU/Electric [1].

Figure 4.9: Symmetrical layout of the secured C-Element of Fig. 4.3.

Moreover, the dual-rail wires must be routed together.

The secured gates being delay-insensitive, they can be used in an asynchronous logic block [64].

4.2.4 Performances

Spice simulations of the power consumption of the secured dual-rail RTZ NAND gate are shown in
Fig. 4.10 (a). There is a slight difference between the traces corresponding to two computations
that lead to a different output (y0 or y1), as shown in Fig. 4.10 (b). The difference, null
in average, arises from the fact that an internal node shortened to ground by a wire is not
equivalent to a node connected to ground by a closed transistor (cf. dummy 3OR of Fig. 4.1).

4.2. THE SECURED LIBRARY “SECLIB” 121

-1500

-1000

-500

0

500
C

u
rr

en
t

[µ
A

]

Two NAND current signature (a), and traces difference (b).

(a)

NULL → A = 1, B = 1→ NULL
NULL → A = 1, B = 0→ NULL

0.2

0

-0.2

T = 2 ns

B NULL

A NULL

B VALID

A VALID

C
u
rr

en
t

[µ
A

]

(b)

Figure 4.10: Secured NAND current signature. In (a), a transition from A = 1 and B ∈ {0, 1} to
the NULL state is shown. In (b), the difference according to the target value of B is highlighted.

Thus, at least in simulation (albeit without taking into account of the technological dissi-
pation with a Monte-Carlo analysis), the NAND gate is definitely robust against power leaks.

Tab. 4.1 summarizes the performances of the regular and secured NAND gate.
The NAND gate is large, but the conditions for antennæ effects to manifest are never met.

They consist in a possible CMOS transistor gate damage during the fabrication process when-
ever the surface of the metal exposed to a plasma is greater than a certain ratio of the area of
the gates. In the targeted 130 nm technology, the minimum cumulated ratio equals 600, which
remains large.

Table 4.1: Standard and secured NAND gate performances confrontation.

Performance Standard cell Secured cell

Surface 4 transistors 112 transistors

Propagation 0→ 1 0.03 ns 2 × 0.19 ns

Propagation 1→ 0 0.02 ns 2 × 0.19 ns

10 log(P↑/P↓) 23.2 dB 7.2 · 10−4 dB

4.2.5 The “SecLib” library

Based on the example of the secured NAND gate, a complete library named “SecLib” is built.
The cells are called “S<f> X<d>”, where:

• the logical function is <f> and

• the driving capability is <d>.

122 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

Table 4.2: Taxonomy for the 2-input cells (A,B) 7→ <f>(A,B) of SecLib.

Truth Table Logical
<f>

00 01 10 11 Function

0 0 0 0 0 -

0 0 0 1 A ·B AN2

0 0 1 0 A + B NR2A

0 0 1 1 A -

0 1 0 0 A + B NR2B

0 1 0 1 B -

0 1 1 0 A⊕B EO2

0 1 1 1 A + B OR2

1 0 0 0 A + B NR2

1 0 0 1 A⊕B EN2

1 0 1 0 B -

1 0 1 1 A ·B ND2A

1 1 0 0 A -

1 1 0 1 A ·B ND2B

1 1 1 0 A ·B ND2

1 1 1 1 1 -

The taxonomy of the functionality of the non-trivial two-input gates available in SecLib is given
in Tab. 4.2. The following name mangling is used:

1. The prefix indicates the Boolean function class, as specified in this hash table:
(AN2 → “and”, EN2 → “xnor”, EO2 → “xor”, ND2 → “nand”, NR2 → “nor”, OR2 → “or”.)

2. The name can be postfixed with one of the inputs, conventionally called A and B. It
signifies the inversion of the given input prior to evaluating <f>.

Notice that because of the de Morgan law, NR2A could also have been called AN2B, etc.

In a view to ease the library maintainability, the layouts are hierarchical. The approach
consists in reusing as many components as possible. The result is a library based on specialized
templates, depicted in Fig. 4.11. The specialization is implemented with the punctual addition
of vias or metal-2 bridges.

The secured NAND gate layout, called SecLib:SND2, is represented in Fig. 4.12.

An asymmetrical multiplexer is added to the library. This cell waits only on the selected
input. It can be used for the interface, because the arrival date of an external data is a public
information. In a cryptoprocessor, its goal is to inject the RTZ dynamic from the outside. This
cell is called SMUX2 and is represented in Fig. 4.13.

SecLib is also comprised of non functional gates. The full content of SecLib is listed below:

• Scannable Flip-Flops, with or without initialization

• Buffers: driving strength ∈ {1
2 , 1, 2, 4, 6, 8, 10, 12}

• Logical Inverter: dual-rail swap (y0, y1) = (a1, a0)

4.2. THE SECURED LIBRARY “SECLIB” 123

SEO2_{T,F}_X{1,2,4}
SEN2_{T,F}_X{1,2,4}

SMUX2_{T,F}_X{1,2,4}
SMUXN2_{T,F}_X{1,2,4}

SEO2_X{1,2,4}
SEN2_X{1,2,4}

SMUX2_X{1,2,4}
SMUXN2_X{1,2,4}

Instanciated
in the ‘‘backend

duplication’’
method.

_SOR4

_HALF_SNAND_X{1,2,4}_HALF_SNOR

_SNAND_X{1,2,4}_SNOR

_TEMPLATE_3OR_{T,F}_X{1,2,4}

_HALF_SCELEMENT

_SCELEMENT

_TEMPLATE_1OR_{T,F}_X{1,2,4}

_SWITCH_R0

The actual cells.

_PINOUT

_SWITCH_MX
+

+

SAN2_X{1,2,4}

SND2_X{1,2,4}
SND2A_X{1,2,4}
SNR2_X{1,2,4}
SOR2_X{1,2,4}

SNR2A_X{1,2,4}

SAN2_{T,F}_X{1,2,4}

SND2_{T,F}_X{1,2,4}
SND2A_{T,F}_X{1,2,4}
SNR2_{T,F}_X{1,2,4}
SOR2_{T,F}_X{1,2,4}

SNR2A_{T,F}_X{1,2,4}

Figure 4.11: SecLib layout database organization.

124 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

Figure 4.12: Example of the layout of SND2: the transistors (upper), the complete cell (lower.)

4.2. THE SECURED LIBRARY “SECLIB” 125

C

C

C

C

OR

OR

y1

a00

a10

a01

a11

y0

sel1sel0

Figure 4.13: The asymmetrical 2→1 multiplexor SMUX2.

• Two-input Secured Cells [42], also known as QDI (Quasi Delay Insensitive) gates in
the asynchronous logic community (see Tab. 4.2.)

• Asymmetrical 2→ 1 multiplexor: for data input into the cryptographic core pipeline

An overview of SecLib organization in the Cadence design framework II library manager
is provided in Fig. 4.14.

The SecLib library can be applied to reconfigurable circuits. In these circuits, the elementary
computing elements (the “Logic Element”) is a programmable versatile cell. For this reason,
it is larger than a standard cell. In a view to designing an FPGA robust by design, the
SecLib logic is a suitable candidate: the area overhead intrinsic to this logic is reduced by
the need of versatility. A schematic of a two-input reconfigurable secured gate is given in
Fig. 4.15. This gate is able to compute arbitrary expressions in disjunctive normal form (DNF)
y(a, b) =

∑
(i,j)∈{0,1}2(i⊕a)·(j⊕b)·fij , using dual-rail RTZ logic. Notice that the reconfigurable

capability of this cells enables advanced strategies for resilience. The “on field” agility indeed
allows a dynamic adaptation whenever necessary.

4.2.6 Interconnect involvement in a circuit security

The amplitude of a single net power signature is proportional to the capacitance it drives. A
first estimation of the capacitances is given by the synthesizer, based on wire-load tables. A
deeper analysis of the capacitances requires the place-and-route (P&R) step of the synthesized
netlist. The process is shown in Fig. 4.16 and commented below:

❶ The source code, written in an hardware RTL language such as VHDL, can be simulated
and synthesized

❷ Thanks to a logical synthesizer, a netlist of gates mapped into a given technology is
produced. The non-placed-nor-routed netlist is designated by the extension *.vm

❸ A place-and-route tool allows to obtain the final netlist, of extension *.vo, along the
extracted physical information, in the standard parasitics exchange format (SPEF [7,
Sec. 9 pp. 288–332], of extension *.spef).

The state-of-the-art Cadence RTL to silicon tools divide into a synthesizer (pks shell fam-
ily) and a place-and-route tool (encounter.) However, both tools are built upon the same

126 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

Figure 4.14: SecLib viewed from the Cadence® dfII Library Manager.

4OR y0

4OR y1

C

C

a0
b0

a0
b1

a1
b0

a1
b1

C

C

&

Configuration flip-flops:

&

&

&

&

&

&

&

f00 f11f10f01

Figure 4.15: Example of a reconfigurable 2-input DI secured gate.

4.2. THE SECURED LIBRARY “SECLIB” 127

❷ netlist

des datapath.vm
+ other VHDL files

❶ source

des datapath.vhd

❸ P&R netlist

des datapath.vo
+ des datapath.spef

Figure 4.16: Design flow steps from the RTL source code (in VHDL, *.vhd files), via the netlist
(in Verilog, *.vm files), to the placed-and-routed netlist (in Verilog, *.vo files) along with the
extracted physical information (in SPEF, *.spef files.)

General physical information

extract.tcl

.spef∅

P&R�
�

�X
X

XP&R

.vm .vo

.lib .lib

Netlist

Cells timing model
Capacitance/Slew extraction
for selected nets of the netlist

Figure 4.17: Physical quantities extraction from the netlists, with (.vo) or without P&R
information (.vm.)

timing computation software library, called CTE (Common Timing Engine, described in [23].)
For this reason, the netlists, be they placed-and-routed or not, can be reinjected in the synthe-
sizer to extract quantities such as:

• net total capacitances and

• slew rates (transition durations.)

This process is illustrated in Fig. 4.17. It boils down to a simple TCL script for the syn-
thesizer Cadence pks shell, illustrated in Fig. 4.18 with a technology ${lib}, a P&R netlist
${vo} and the associated parasitics ${spef}.

The extracted capacitances can be split into two parts:

1. the gate capacitance (linked to the standard cells) and

2. the interconnect capacitance (linked to the routing.)

The capacitances of the R register from the iterative DES architecture presented in Sec. 3.5.3.1
is studied in this section. Three capacitances values are analyzed:

1. an estimation of the capacitances after synthesis,

2. an extraction of the capacitances after P&R with an out-dated three-dimensional field-
solver (version 3.2 of First Encounter [47], aka FE 3.2),

3. an extraction of the capacitances after P&R with an up-to-dated field-solver (FE 4.1.)

read_dotlib ${lib}; # Cells definition and timing

read_verilog -structural ${vo}; # The P&R design netlist

read_spef ${spef}; # The P&R parasitics information

Use "report_net" to extract the physical quantities that are relevant

Figure 4.18: The “extract.tcl” script mentioned in Fig. 4.17.

128 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

3224168

W
iri

ng
 c

ap
ac

ita
nc

e
[fF

]

Register R bits

1. No routing
2. With routing (FE 3.2)
3. With routing (FE 4.1)

Figure 4.19: Absolute value of the interconnect capacitances driven by nets R[1:32] nets.

We find that the gate capacitances are equal for the three analyses. A comparison between the
interconnect capacitances is reported in Fig. 4.19.

The deviation from the out-dated version 3.2 w.r.t the current version 4.1 is equal to 0.22 %,
which is negligible. This means that CAD tools are reliable. However, the capacitances esti-
mated after synthesis differs much from the extracted values after extraction (22 %.) It can
nonetheless be noticed that the estimation provided by the synthesizer is always pessimistic.
If the synthesizer’s predictions are magnified by a factor of 22 %, then the deviation shrinks
to 4.0 %. The conclusion is that relative capacitance values can be computed from the sole
synthesis results with an accuracy of a few percents.

In the rest of the document, the most accurate estimation (namely version 4.1 of the “First
Encounter” P&R tool) is taken as the reference. As shown in Fig. 4.20, the wiring contribution
to the capacitances is in average 53 % of the total capacitance. As a consequence, from 130 nm
technology and beyond, routing capacitances become larger than gate capacitances, at least for
nets with fan-outs of 6 or 7 (which is the case for register R.) It is thus mandatory to provide
a secured routing method. This is the topic of the next section 4.3.

4.3 The “backend duplication” method: a place-and-route
strategy for secured ASICs

Several types of logic gates suitable for leakage-proof computations have been put forward [103,
105, 64, 42, 80]. This section describes a method, called “backend duplication” [102] to assemble
secured gates into leakage-proof cryptoprocessors. The section addresses all the aspects involved

4.3. A PLACE-AND-ROUTE STRATEGY FOR SECURED ASICS 129

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

3224168

W
iri

ng
 c

ap
ac

ita
nc

e
/ t

ot
al

 c
ap

ac
ita

nc
e

[p
er

ce
nt

]

Register R bits

Figure 4.20: Ratio between the interconnect and the total capacitance of R[1:32] nets.

130 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

in the backend design of secured hardware. The “backend duplication” method achieves the
place-and-route of differential netlists. It allows for 100 % placement density and for balanced
routing of dual-rail signals. Wires of every other metal layer are free to make turns. In addi-
tion, the method does not require any modification to the design rules passed to the router.
The “backend duplication” method has been implemented in 0.13 µm ASIC technology and
successfully tested on various ciphers. The example of the design of a DES module resistant
against side-channel attacks is described into details.

4.3.1 Using differential logic to thwart SCA

It has been shown that sensitive information can be extracted from cryptographic hardware
either by spying physical quantities or by injecting faults. The first type of attack is often
referred to as “side-channel attack” (SCA [53, 54, 37]), whereas the second one is also known
as “fault attack” (FA). Two classes of countermeasures against SCA have been put forward.
The first idea is to shield the hardware at the algorithmic level: the data manipulated by the
cryptoprocessor is masked or protected by secret-sharing methods. The second idea is to build
the hardware using only leakage-proof gates, so as make sure that the overall cryptoprocessor
is, in turn, leakage-proof.

This section focuses on the implementation of the latter class of countermeasures. Many
leakage-proof logic styles have been published. The level of protection the secured gates provide
depends upon their specification:

1. SABL [103] is a logic consuming a nearly constant current.

2. WDDL [105] uses dual gates pairs to ensure a constant activity, although the power
consumed by each gate of the pair is not the same.

3. Speed-independent (SI) logic presented in [64] features a consumption independent on
the input data configuration. It also shields against the leakage of the signal transitions
timing by synchronizing the inputs.

4. Refinements [42] of the previous solution also ensure that parasitic capacitances are un-
conditionally unloaded between two computations.

Some of those methods, for instance methods 3 and 4 above (nicknamed “SecLib” in the rest
of this section) can also embed an error-detection feature. The mechanism, based on an alarm
propagation, is explained in [64]. Nevertheless, resistance to faults injection is not covered in
this section.

The logical part (coding, functionality verification, refinements for synthesis) in a design tar-
geting FPGA or ASIC implementation is called frontend. The physical part (mainly consisting
in place-and-route, but extensive description is provided in Sect. 4.3.2) is called backend. The
common point to the secure gates listed above is the use of differential logic with a 4-phase pro-
tocol, such as “return to zero” (RTZ) or any variation [96]. It has already been stressed that the
security of individual gates can extend to a netlist of gates only provided that the interconnect
is kept differential [106]. Nonetheless, most articles evade the question of the implementation
of a secure backend design using the gates mentioned above.

Given the complexity of backend flows in sub-micron technologies, a simple way to realize the
secure backend is necessary. We provide in this article a method, called “backend duplication”,
that integrates the secure place-and-route into any preexisting backend flow without modifying
the design rules.

The rest of the article is organized as follows: the “backend duplication” is presented in
Sect. 4.3.2. The method is applied to some secured gates primitives in Sect. 4.3.6. A case study,
namely a DES cryptoprocessor, is provided in Sect. 4.3.8. This example was actually fabricated
in HCMOS9GP 0.13 µm technology from STMicroelectronics using the method presented in

4.3. A PLACE-AND-ROUTE STRATEGY FOR SECURED ASICS 131

this section. This section contains an evaluation of the cost and of the security increase provided
by the use of the “backend duplication”. Finally, Sect. 4.3.9 concludes this section.

4.3.2 The “backend duplication” method

4.3.2.1 Regular “place-and-route” ASIC design flow

In a standard cell flow, cryptographic functions are synthesized into a netlist of primitive gates.
Then, the gates are placed into rows (see Fig. 4.21(a)). In each row, the gates are abutted, so
that they share the ground (VSS) and the power (VDD) lines. When two gates are not placed
side by side, a “filler” cell can be added in-between to ensure the continuity of the supply
lines. In sub-micron technologies, there are enough levels of metal to allow the routing of the
interconnect over the standard cell rows. For this reason, the rows are themselves abutted.
Thus, the supply lines are shared between adjacent rows. This is achieved by flipping upside-
down every other row: the ground (resp. the power) of one row is merged with the ground
(resp. the power) of the lower (resp. the upper) row, (see Fig. 4.21(b)).

Sub-micron technologies allow for 45 degree wire routes, but this feature is not yet imple-
mented in commercial routers: currently, the routing is still Manhattan. Moreover, the most
popular routers are also grid-based. Metal wires are only instantiated along a virtual routing
tracks superimposed on the floorplan (see Fig. 4.21(c)). It is thus customary to attribute a
preferred direction to every routing layer. However, routers consider the preferred direction
only as a recommendation. The convention we use in this section is that odd metal levels
(metal 1, metal 3, and so forth) are preferentially routed vertically, whereas even metal levels
are preferentially routed horizontally.

I2 I3

I4 I5

I9 I10I8I7I6

I1I0

I12I11

(b) Place OK (c) Route OK(a) Floorplan OK

Placement row #1

(upside-down)

Placement row #2

(regular orientation)

(upside-down)

Placement row #3

Placement row #4

(regular orientation)

VDD

VSS

VDD

VSS

VDD

Figure 4.21: Illustration of the regular (and insecure) “Place-and-Route” ASIC design flow.

4.3.2.2 The “backend duplication” method overview

The “backend duplication” addresses the strengthening against SCA of sensitive ASICs (smart-
cards, hardwired cryptoprocessors, etc.) It consists in a single manipulation of the backend
layout to ensure the security of its interconnect. However, this method shall not be confused
with the tailored duplication method for software or dedicated hardware implementations [41].

The basic idea of the “backend duplication” method is to apply a regular backend flow
on a single-ended (as opposed to duplicated) netlist, taking care to leave enough room on
the floorplan for the duplication of the placed-and-routed netlist. The duplication basically
demands that every other row be kept free, which is typically achieved by obstructing every
other row for placement.

132 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

The next aspect concerned with duplication is the interconnect. To make it possible to
duplicate the interconnect, the vertical wires, that connect every other row, are forced to occupy
only one routing channel in two. This ensures that a simple right shift of the vertical routing
by a routing pitch (i.e. the distance separating two routing tracks) does not create electrical
shorts. As a consequence, vertical wires must be straight. If they were able to make turns, they
would cross the adjacent routing tracks that are kept free for the duplicated vertical routes.
On the contrary, wires of the “horizontal routing layers” are left free to make turns, as long
as they remain in their placement row. Indeed, if the horizontal routing is confined within one
row over two, the duplication of the “horizontal” wires in the upper or the lower rows does not
interfere with the wires in the current row.

The constraints imposed to the place-and-route tool summarize as follows: as the design
must be translated vertically by the height of one placement row (ROW HEIGHT) for placement
reasons and horizontally by one routing pitch (PITCH) for routing reasons, the whole placed-
and-routed design is scheduled to move by a (δx, δy) = (PITCH, ROW HEIGHT) vector translation.
In backend taxonomy, this translation actually coincides with the minimum “placement site”.

At that point, the result of the duplication is two identical netlists interleaved one into the
other. Notice that the netlists cannot be “de-interleaved” because they are not independent:
some signals must be exchanged locally between abutted gates. As we will see in Sect. 4.3.6,
it happens for the inverter gate in SABL and WDDL (Tab. 4.3(b)) and for all gates in SecLib
(Fig. 4.29).

The chip finishing steps shall not delete the indistinguishability of the two netlists. For
instance, the dummies generator must be constrained to add dummies (metal pieces added
randomly to fulfill the minimum density design rules) only in the rows in which placement is
allowed. Afterwards, dummies are duplicated and translated by a placement site: they end
up in the same routing environment as initially (no short is created) since the routing was
duplicated in the same manner.

4.3.3 The constraints required by the “backend duplication” method

As mentioned above, the “backend duplication” method is implemented in two stages, consisting
in:

(1) constraining the design and

(2) duplicating the placed-and-routed design.

The constraints can be generated automatically by a script setting the following obstructions:

• placement blockages one row over two and on the rightmost placement site of the
placeable row,

• routing blockages of one track channel over two for vertical metals and over the rows
already marked obstructed for standard cell placement for horizontal metals.

Figure 4.30(a) illustrates these constraints on a 16 × 2-site piece of floorplan. As far as the
routing is concerned, these constraints are more flexible than the ones proposed in the “fat
wire” method [106], since only vertical wires are forced to remain strictly straight. The metals
whose preferred routing direction is horizontal are free to zigzag, provided they stay within
their row. This degree of freedom is not negligible, since there are typically around 12 routing
channels per row. This allows for both a more successful and a faster routing.

It must be made clear that the constraints to set for the P&R steps are not a burden from
the tool’s point of view. The expression of the constraints only slightly increase the workload
of the designer. However, the constraints are so simple that their implementation is worth the
effort, given their expected security benefits.

4.3. A PLACE-AND-ROUTE STRATEGY FOR SECURED ASICS 133

4.3.4 “Backend duplication” method insertion into an existing design
flow

As seen in Sect. 4.3.3, and contrary to [106], the “backend duplication” method need not redefine
the design rules. It only relies on constraints on the CAD software. A typical backend flow
includes the steps shown in Fig. 4.22. The insertion of the “backend duplication” consists in
adding three steps (i, ii and iii).

- Floorplanning

- Place-and-route

- Clock tree generation

- Scan chain optimization

- Antenna effects correction

- Custom steps, like ECO or SI fix

- Dummies placement

: Obstructions implementation

: Duplication

i

ii

iii

Flow compatible with the “backend
duplication”. Added steps:Regular backend flow:

: Floorplan dimensioning

Figure 4.22: Typical backend flow and modifications (steps i, ii and iii) to implement the
“backend duplication” method.

i. Floorplan dimensioning. As a matter of fact, the floorplan of an design block is made
up of two parts: the core, devoted to the standard cells placement and the die, that covers
the core and an extra channel surrounding it. It is used for example to route a supply ring.
The core horizontal dimension must be an even number of the routing PITCH and the vertical
dimension an even number of ROW HEIGHT. This condition ensures that the placement and the
routing within the core do not extend out of the core after duplication.

The core can either be checked and repaired if one of the figures is odd or generated auto-
matically. To end up with a core of density d and of aspect ratio r, the first step is to generate a
core of density d/2 and of aspect ratio r/2 before duplication. Then the core dimensions (x, y)
are retrieved, and a new core with the dimensions:

x′ =

⌈
x

2× PITCH

⌉
× 2× PITCH , y′ =

⌈
y

2× ROW HEIGHT

⌉
× 2× ROW HEIGHT

is regenerated. Its density is slightly less than d and its aspect ratio roughly equal to r.

ii. Obstructions instantiation. The constraint script described previously in Sect. 4.3.3
can be generated automatically as soon as the floorplan dimensions are known. This script is
sourced after floorplanning and before place-and-route.

iii. Duplication. As far as standard cells are concerned, the duplication consists in a trans-
lation by a placement site followed by an horizontal flipping of each row.

The routing duplication is a bit more complex than a mere translation. Indeed, the design
pins extend over the core to reach the die boundary. If the routing was simply translated, the
duplicated design would have pins both inside and outside the die. To avoid this shortcoming,
the routing extremities (u, v) of every wire undergo this transformation:

• if (u, v) belongs to the core, then (u′, v′) = (u + PITCH, v + ROW HEIGHT),

134 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

• otherwise (u′, v′) = (u, v).

Additionally, to prevent shorts, the constraints described in Sect. 4.3.3 actually extend till to
die limits and the routing channels that are entirely outside the core are obstructed. These
transformations are illustrated on Fig. 4.30(b).

The information needed to apply the duplication is the orientation and position of standard
cells and the routing coordinates. The design exchange format (DEF) typically contains all this
information. Given the simplicity of the DEF syntax and the availability of parsers [56], the
duplication can be implemented easily.

It is also a good idea to apply the duplication on the Verilog netlist: it consists in duplicating
all wires and all leaf instances (i.e. standard cells). Verilog parsers are easy to write, even from
scratch. The key benefit of generating the duplicated Verilog netlist is to enable LVS verification.

4.3.5 Comparison of the “backend duplication” method with related
works

K. Tiri [104] noticed that the balancedness of the routing is crucial to effectively protect a
differential circuit against SCA. The solution put forward in [106] is based on “fat wires”
routing: a large wire is first routed and then split into two minimum-sized wires. This method
implies that:

• Specific design rules must be written for the “fat wires”.

• The only way for a wire to turn is to change layers.

• For the “fat wire” to access the pins of standard cells, their layout must be redefined.

The “backend duplication” implies none of these assumptions.
The experimental DPA [54] of F.G. Bouesse et al. [21] also showed that the weakest nodes

in a differential layout correspond to unbalanced pairs. The backend correction flow described
in [20] is iterative: the design is successively routed and analyzed, until every dual-rail pair
is balanced. The analysis consists in the collection for every node of the sum of the parasitic
elements extracted after every routing (more details in Sect. 4.3.8.2). This method requires
a complex strategy to constrain the router and a non trivial algorithm to guide the iterative
process towards a convergence point. On the contrary, the routing generated by “backend
duplication” is balanced by design. However, the “backend duplication” only handles pairs of
signals, whereas the iterative method [20] can route both dual and single-rail signals (data is
dual-rail; acknowledge is single-ended.)

4.3.6 Suitability of the “backend duplication” method with some logic
styles

4.3.6.1 Backend duplication for WDDL

The wave dynamic differential logic (WDDL, [105]) is a design style that uses standard cells by
pairs, in such a way that at any step of the computation, one and only one of the two gates has
a transition. This behavior masks the fluctuations of the power consumption due to irregular
activity: the activity of a WDDL circuit is constant. The computations are split into successive
precharge and evaluation steps. A Boolean function ei∈{0,1,··· } 7→ f(ei) is computed using the
two dual gates fT (ei) and fF (ei) that satisfy:

{
During precharge: ∃i, fT (ei) = fF (ei) ,

During evaluation: ∀i, fT (ei) = fF (ei) .
(4.3)

4.3. A PLACE-AND-ROUTE STRATEGY FOR SECURED ASICS 135

Table 4.3: Duality: definition, examples (a) and WDDL identity for the invertor (b).

(a) Regular gate Dual gate

Definition f(ei) f(ei)

Examples

NOT NOT

NAND NOR

ΠΣ ei ΣΠ ei

(b)

e1

e0 e0

e1

e0

e1

e1

e0

⇔

Dual invertor

Regular invertor

Table 4.4: Truth table of the two dual functions NAND / NOR.

NAND NOR

e0 e1 e0 · e1 e0 + e1

0 0 1 x

x

1

0 1 1 0

1 0 1 0

1 1 0 0

Table 4.3(a) provides some examples of dual gates pairs suitable for WDDL. If the condition
on the precharge in (4.3) cannot be met, the identity shown in Tab. 4.3(b) solves the problem
out. The truth table of two dual gates (refer to Table. 4.4) shows a symmetry, that can also be
observed at the transistor level, as shown in Table. 4.5.

The symmetry illustrated in Table. 4.5 suggests that standard cells are ready to be used in a
WDDL flow using the “backend duplication” method. This is actually only partially true: the
structures in transistors indeed perfectly superimpose, but in practice, PMOS (symbol:)
are drawn wider than NMOS (symbol: .) For this reason, in a commercial standard cell
library, the pins of a gate (regular orientation: or R0) and of the X-symmetric (orientation:

or MX) of its dual do not match exactly. Nevertheless, as they are located on the routing grid,
they usually overlap.

Fortunately, it is easy to work around this difficulty. The procedure begins with an enlarge-
ment of the pins. Then, the pins are merged considering the intersection of the enlarged pins.
The routing obstructions are basically made up of the metal not included in the union of the
newly created pins:

{
PIN = PIN(NAND) ∩ PIN(NOR), (in Fig. 4.27)
OBS = (OBS(NAND) ∪ OBS(NOR)) ∪ (PIN(NAND)△ PIN(NOR)) . (in Fig. 4.27)

This procedure can be applied on the sole abstract view of the standards cells. Thus a simple
LEF parser [56] can be used turn a standard cell library into a WDDL-compliant library.
Instead of describing the parser into details, a graphical example on the NAND/NOR and AND/OR
gate couples is shown in Fig. 4.27.

As far as cell placement duplication is concerned, the method presented in step iii (refer to
Sect. 4.3.4) demands that, in addition to the duplication and the flipping, the gate be replaced
by its dual.

136 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

Table 4.5: Illustration of the NAND / NOR dual gate couple symmetry {fT , (N,P), MX} ↔
{fF , (P,N), R0}.

Regular gate fT (NAND) Dual gate fF (NOR)

Orientation: or MX Orientation: or R0

VDD

VSS

A1 B1

A1

B1

Y1

x

x

VDD

VSS

A0 B0

A0

B0

Y0

4.3.6.2 Backend duplication for other logic gates

In order to apply the “backend duplication” method to SABL or SecLib. the gates must be
split into two parts: one computing true values, the other false values.

The splitting is straightforward for SABL, as shown in Fig. 4.28.
As for SecLib, the division is a bit less trivial, but is sane since it forces the symmetry of

the transistor schematic to be kept in layout view. The placement of each building block of the
cell along with the indication of their orientation is provided in Fig. 4.29.

For both SABL and SecLib, the gate pins must be designed in such a way they are left
unchanged in a symmetry y ← ROW HEIGHT − y (or R0 ↔ MX). This condition ensures that a
connection to the pin of a regular gate (placed first) also arrives on a pin of the other half
of the gate (placed while duplicating the backend at step iii). SecLib gates, whose layout is
depicted in Fig. 4.12, meet this condition. Additionally, the routing converges faster if the pins
are placed on every other vertical routing track: the pins are better accessed if they are not
below a vertical routing obstruction.

The intrinsic dissymmetry of WDDL can be corrected by the use of so-called “enhanced-
WDDL” cells are based on the standard 3-input majority cell: (A,B,C) 7→ Y = A · B + B ·
C + C · A. The schematic of the majority and of two dual “enhanced-WDDL” cells is given
in Fig. 4.23. The automatic routing of “enhanced-WDDL” requires the use of constants. The
figure 4.24 shows that the backend duplication can effectively cope with constants, thanks to
appropriate ties to the global power and ground nets VDD and VSS.

4.3.7 Backend triplication

Incidentally, it is also straightforward to adapt this method to a “backend triplication”. The
obstructions would basically be placed on two rows or vertical routing channels out of three.
The goal of this method would not be to protect the design against SCA, but rather against
FA. For this matter, the registers would also need to embed majority voting and error reporting
logic. With this modification, the hardware block is able to detect local errors: this method
could be an alternate countermeasure to FA where faults can be modeled as SET or SEU (Single
Event Transients or Upsets) [57].

4.3. A PLACE-AND-ROUTE STRATEGY FOR SECURED ASICS 137

Majority

A

B

C

Y

Enhanced AND

A

B

‘0’

Y

Enhanced OR

A

B

‘1’

Y

Figure 4.23: The majority standard cell and the two enhanced WDDL cells implementing the
AND and OR functionalities.

R0false

MXtrue

VDD

VDD

VSS

‘0’

‘1’ VDD

VDD

VSS

‘1’

‘0’

constant oneconstant zero

Figure 4.24: Realization of constants needed by “enhanced-WDDL” logic.

4.3.8 Implementing a duplicated netlist

4.3.8.1 The example of a secured DES cryptoprocessor design

In this section, we explain how a placed-and-routed netlist obtained by the “backend dupli-
cation” method can be embedded into a whole design. First of all, let us notice that after
duplication, even global signals are duplicated: the duplicated backend has two clocks and two
resets, that must be shorted together. The two scan chains can either be joined or be considered
independently.

Most often, the whole cryptoprocessor needs not be secured. The reason is that when
implementing a non proprietary algorithm such as DES, the computation steps are public. As
a consequence, the control leaks non confidential information. In most designs, the control
(algorithm steps) can be clearly dissociated from the datapath (data processing).

It is relevant to derive the control of the duplicated datapath (dual-rail encoding, RTZ
protocol) from the original control of the insecure datapath (single-ended, no RTZ): it allows to
debug a single-ended control, which is easier to understand and faster to simulate. The method
to update the regular control to make it compatible with the duplicated datapath requires that:

• The state machine can be frozen: it has an enable input. This enable forces the state
machine to work twice as slow as initially to mimic RTZ.

• The control is wrapped by a converter single-to-dual rail for the datapath inputs and
dual-to-single rail for its outputs. In addition to converting the control signals exchanged
between the datapath and the control, the control wrapper also converts the datapath
input and output data. Thus, seen from the outside, the cryptoprocessor keeps a single-
ended interface. However, the internal architecture of the datapath is dual-rail RTZ secure
logic obtained by “backend duplication”.

When the control is disabled (enable = 0), all the input signals of the datapath (provided
by the control wrapper) are set to the precharge state (e.g. 00). This solution emulates the

138 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

dual-rail RTZ protocol required by the duplicated architecture of the datapath. Moreover, this
architecture is well suited for asynchronous gates implementations, such as SecLib, because the
datapath inputs (both data and control) are kept behind a register barrier, which guarantees
that those signals are glitch-free. This condition is mandatory for SecLib logic to work securely.

The schematic of Fig. 4.25 shows the secure architecture of a DES module. Let us notice
that the control input signals (a simple start command, named GO in Fig. 4.25) is memorized
as GO Q over the two phases (precharge and evaluation), to prevent it from being discarded if it
arrives when the control is disabled. The GO command can actually be activated at any time,
because the cryptoprocessor environment is not aware of the RTZ behavior of the secured DES.

memorization

generation

Pipeline barrier
that filters glitchs

OR

Registers : ()

Command (GO)

Phase (enable)

clk
1

ram in

EOC
1 1

88
ram out

enable

sel

1
web

8
ram add

GO Q

DES CONTROL

GO

SDES CONTROL

phase

0 0 0 0

sel1 sel0

ram out 2rail ram in 2rail

SDES DATAPATH

2×#control signals2× 82× 8

sel 2rail

SI-WDDL logic

Figure 4.25: Secured DES architecture. The duplicated datapath (SDES DATAPATH), for example
implemented in SecLib logic, is obtained according to the method described in Sect. 4.3.2. The
regular control (DES CONTROL) is encapsulated into a wrapper (SDES CONTROL) that can interface
to the dual-rail datapath of DES. The operations performed by this control are twofold: (1)
transformation of control signals from single ended signals into dual-rail signals (sel 2rail →
{sel0, sel1}) and (2) conversion of data to and from the environment (in this case, a RAM)
(ram out → ram out 2rail and ram in 2rail → ram in).

Table 4.6 shows a comparison of the time needed to place and route the DES datapath for
the regular and the secured netlist. For both designs, the placement density is 95 %. The
WDDL netlist is harder to place and to route because the netlist contains more gates and
because the design is more constrained. As for now, the DEF parser is written in PERL: the
parsing time (26 kbytes/s) could be drastically reduced if the parser was recoded in a compiled
language.

4.3. A PLACE-AND-ROUTE STRATEGY FOR SECURED ASICS 139

Table 4.6: Timing of backend steps of the regular DES datapath design and an implementation
in SecLib style using the “backend duplication” method (block “SDES datapath” of Fig. 4.25).

Regular design SecLib design
Placement 1.9 s 6.2 s
Routing 39.0 s 80.0 s

Duplication - 77.5 s

4.3.8.2 Method cost and security evaluation

The method overhead is assessed below:

• When using WDDL, the circuit frequency is unchanged, but every encryption takes twice
more time to execute because of the RTZ protocol. With other logics, the frequency
depends on the gates implementation; for instance, SecLib suffers a serious penalty in
speed, as shown in Tab. 4.1.

• The area increase of the datapath depends on which secured gates are used. If WDDL
gates are chosen, SDES DATAPATH is simply twice as large as DES DATAPTH. If SecLib gates
are chosen, we obtain a 15 times area increase1. The overhead of the control area is
14%: the area of the module DES CONTROL (resp. SDES CONTROL) is 12 942 µm2 (resp.
14 788 µm2.)

The increase of security can be assessed by the ratio of the two dual lines routing capacitances
and resistances. The capacitance “C” accounts for the power dissipation occurring at every
transition: 1

2 ×C× (VDD−VSS)
2
. The resistance “R” is responsible for the delay R×C of the

transition propagation. The wire pairs are all the more balanced as the ratios C(true)/C(false)
and R(true)/R(false) do not spread much around 1. Figure 4.26 shows the repartition of those
ratios for the 2 211 internal wire couples of SDES DATAPATH. The three data samples correspond
to a dual placed-and-routed design, obtained by the “backend duplication” method, a dual
placed and regular routed design, and a regular placed-and-routed design. Both the capacitances
and resistances were obtained using the RC extractor tool of Cadence SOC/Encounter. The
technological information was produced by the Cadence coyote 3D-field solver.

The resistance of a “backend duplicated” circuit against EMA [37] has not been evaluated
yet.

4.3.9 Conclusion on the “backend duplication”

Securing a cryptoprocessor against physical attacks (either SCA or FA) can be done at the
algorithmic or at the implementation level. This section focuses on the countermeasures on
the hardware implementation. Many types of primitive gates suitable for secure computation
have been proposed [103, 105, 64, 42, 80, 31, 9], but the issue of building cryptoprocessor out
of them is seldom addressed. To the authors’ knowledge, only the “fat wire” method [106]
partially tackles this problem since pratical aspects of layout finishing are not discussed. In
the case of WDDL netlists, the “fat wire” method cannot cope with constants, whereas the
“backend duplication” can.

We provide a complete description of a backend flow compatible with all of the above-
mentioned gates. The method we describe can apply to all existing flows and requires no
modification of the design rules.

1The SecLib gates were not optimized: a much better ratio can probably be obtained, even without any
trade-off on the gate symmetry.

140 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
in

 C
ou

nt

C(true) / C(false)

500

1000

1500

2000

Dual place-and-route
Dual place, regular route
Regular place-and-route

 0 0.5 1 1.5 2 2.5 3 3.5 4

B
in

 C
ou

nt

R(true) / R(false)

500

1000

1500

2000

Dual place-and-route
Dual place, regular route
Regular place-and-route

Figure 4.26: Ratio of the capacitances and the resistances of SDES DATAPATH dual nets.

4.3. A PLACE-AND-ROUTE STRATEGY FOR SECURED ASICS 141

The “backend duplication” method is illustrated on the example of a DES cryptoprocessor.
This example also shows that the method is compatible with a secure partitioning of the design:
only the datapath is duplicated. The emphasis is placed on the insertion of the duplicated
datapath into the whole DES, whose interface remains unchanged. This case study proves
that the hardening of a cryptoprocessor can be fully automated and that the integration of the
“backend duplication” method into an existing flow is seamless.

4.3.10 Graphical illustrations of the “backend duplication” method

Figures 4.27, 4.28 and 4.29 show how WDDL, SABL and SecLib gates must be transformed
prior to being used in the “backend duplication” design flow.

Figure 4.30 illustrates the “backend duplication” (steps ii and iii) on a floorplan suitable
for the duplication (step i was already executed: the floorplan dimensions are even.)

N
O
R

N
O
R

N
A
N
D

N
A
N
D

OR OR OR

(f
al

se
)
R
0

AND AND AND

NAND / NOR AND / OR

A

VSS

Y B A

VDD

VSS

Y B

VDD

D
ua

l g
at

e
R

eg
ul

ar
 g

at
e

A
Y

VDD

VSS

B

A
Y

VDD

VSS

B

VSS

VDD

Y

B

A

VSS

VDD

Y

B

A

VSS

VDD

Y

B

A

(t
ru

e)
M
X

VSS

VDD

A

B
Y

VSS

VDD

A

B
Y

VSS

VDD

A

B
Y

couplecouple

Figure 4.27: Transformation on the abstracted views of the standard cells to make them WDDL-
compliant [105]. This resulting gate couple satisfies the following condition: the abstract couples
{fT , (N,P), MX} and {fF , (P,N), R0} perfectly superimpose.

142 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

VSS

VDD

A1

B1 A0 B0

clk

clk

Y0Y1

VSS

VSS

clk

(false)

R0

(true)

MX

A1

B1

clk

Y1

A0 B0

clk

clk

VDD

Y0

(a)

(b)

Figure 4.28: Transformation of a NAND gate implemented in SABL [103] (a) into two dual gates
(b), for subsequent use in the “backend duplication” design flow.

VSS
(false)
R0

(true)
MX

A0

B0

A0

B1

A1

A1

B0

B1

Y0

Y1

Y0

Y1

A0

B0

A1

B1

A0

B0

A1

B1

VSS

(a) (b)

Figure 4.29: Transformation of a NAND gate implemented in SecLib [64] (a) into two dual gates
(b). Notice that the two halves of the gate exchange signals.

4.3. A PLACE-AND-ROUTE STRATEGY FOR SECURED ASICS 143

VSS

VDD

VSS

VDD

Vertical routes:
- forbidden
- allowed

A

PITCH:

(a) Floorplan after step ii (b) Floorplan after step iii

10

11

12

1

3

4

5

6

7

8

9

B

Y

Y

B

NAND

NOR

16× PITCH

2×
R
O
W
H
E
I
G
H
T

R
O
W
H
E
I
G
H
T

H
orizon

tal
rou

tes
forb

id
d
en

H
orizon

tal
rou

tes
allow

ed

A

Orientation: MX

Orientation: R0

Placement
forbidden

Placement
allowed

2

Figure 4.30: (a) Place and route constraints, illustrated on a floorplan containing 16 × 2
placement sites. In PITCH units, the placement site is 1×12 and the routing grid offset is 1

2 × 1
2 .

(b) Final floorplan containing one single NAND gate (and its dual NOR gate). The horizontal
wires can turn (wires connecting ports A, B and Y), whereas the vertical ones are straight. The
vias that contact horizontal and vertical wires are noted .

144 CHAPTER 4. BACKEND COUNTERMEASURES AGAINST SCAS

Chapter 5

Conclusions

5.1 Summary of the dissertation

With the recent advent of the “information society”, most exchanges tend to become digital.
As a consequence, information processing apparatuses become omnipresent. In this context
of pervasive computing, security threats turn out to be major concerns. Until recently, the
common attacks consisted in exploiting software bugs or network protocol weaknesses. Now
that the computing devices (smartcards, tags, PDAs, PCs, etc.) get closer to the end-user, the
implementation itself has become the target of attacks.

The goal of this dissertation is to investigate the strength of the attacks on the implemen-
tation of symmetrical block encryption algorithms, and to propose principled counter-measures
against them. First of all, the attacks have been shown to be especially efficient on crypto-
graphic implementations. We exhibited a paradox: some properties necessary to thwart logical
attacks are shown to facilitate physical attacks. Then the two usual ways to realize the attacks,
namely a correlation against the Hamming weight versus the Hamming distance, are compared.
We conclude that the Hamming weight attack is not physically significative, even though it can
lead to successful key extractions.

Some experiments have been conducted on an unprotected multi-mode DES crypto-processor.
Attacks using the power consumption of the crypto-processor have been set up. The accurate
analysis of the information leaks proved that the functional activity of gates could be exploited,
as well as non-functional activity, commonly referred to as glitches. We even showed that at-
tacks using the Hamming weight against substitution boxes could succeed because of a glitching
activity occurring one clock period after the computation of the substitution boxes. Finally, we
have simulated degenerated attack conditions: for instance, power traces were averaged over
long period of time to mimic a low-frequency acquisition campaign. Even with this poor quality
information, attacks were shown to succeed, albeit with a greater number of traces.

Knowing that attacks on the implementation were intrinsically strong, equally strong counter-
measures have be studied. As it is impractical with the state-of-the-art technologies to remove
the power dissipation, we have attempted to make power dissipation irrelevant to an attacker.
The solution we study consists in designing circuits with appropriate symmetries to balance
any otherwise unbalanced dissipation. The first step is to devise an elementary computing gate,
which leads to the layout of a cell library called “SecLib”. Then we have shown that a secured
backend flow, called “backend duplication” can be set up on top on existing legacy tools. A
secured DES module has been designed to prove the feasibility of a geometrically symmetric
circuit. The secured DES is usable in practice, because it embeds all the usual facilities: clock
and reset signal bufferisation, test material based on scan chains and clock gating logic. Some
properties, such as the signature of the substitution boxes input, have been confirmed thanks
to the use of DES remarkable keys.

145

146 CHAPTER 5. CONCLUSIONS

The secured DES is proved sound based on simulations. The next step is to evaluate
the module in silico. If it resists attacks, then less expensive solutions could be investigated.
Indeed, the use of “SecLib” with the “backend duplication” severely impacts the cost of the
implementation, in terms of area, computation speed and power consumption. Otherwise, we
would have proved than backend-level counter-measures against SCAs are irrelevant.

5.2 Perspectives

5.2.1 Open issues

Some open issues are still to be solved:

• Other SCAs (such as EMA) and FAs are still to be investigated on “SecLib”.

• Do inherently SCA-resistant algorithms exist?

• Will technological spreading of the circuit characteristics ruin all the geometrical counter-
measures? This question is all the more important that situations exist where, if a single
sample is defectuous, all the product line is corrupted.

• Will the evolution with Moore’s law foster attacks or counter-measures?

• Is there a potential for adiabatic logic or non-dissipating logics?

5.2.2 Going further

Some of the open issues identified in the previous sections have lead to the creation of national
research projects. Some of them are listed below:

• OpenSmartCardhttp://www.comelec.enst.fr/recherche/opensmartcard/

• MARS . http://www.comelec.enst.fr/recherche/mars/

• SAFE . http://www.comelec.enst.fr/recherche/safe/

• SEMBAL . http://www.comelec.enst.fr/recherche/setin2006/

http://www.comelec.enst.fr/recherche/opensmartcard/
http://www.comelec.enst.fr/recherche/mars/
http://www.comelec.enst.fr/recherche/safe/
http://www.comelec.enst.fr/recherche/setin2006/

Appendix A

Attackees/attackers technical
details

A.1 The SecMat circuits family

Two ASICs have been developed to have a feedback from real circuits regarding attacks and
counter-measures discussed in this manuscript. They are referred to as the “SecMat” (acronym
for the french name “Sécurité du Matériel”) family. The version 1, represented in Fig. A.1(a),
was used for the acquisition of power and electromagnetical traces, whereas the version 3/2,
represented in Fig. A.1(b), is dedicated to the comparison of SecLib with other logics.

A.1.1 SecMat frontend

A.1.1.1 SecMat V1 ASIC

The SecMat V1 experimental circuit is designed to validate countermeasures against the DPA
(Differential Power Attacks.) It is made up of about two million transistors and has a silicon
area of 3.10 mm2 (4.00 mm2 with the scribe lines and the alignment structures.) Its overall ar-
chitecture is a bus-centric system-on-chip (SoC), described in Tab. A.1. Standardized modules,
implementing the Advanced-VCI [108] interface, are plugged together onto a fixed priority bus
mastered by an 8-bit 6502 CISC micro-processor. The processor boots a “monitor” from an
embedded 2kb ROM and loads its program from the outside through an UART (up to 921 600
bauds) into a embedded 32kb RAM. The SoC is programmable in the C language. The main
feature of the chip is the activation of the four cryptoprocessors — one AES and three DES
— to lead DPA campaigns. It has been demonstrated interactively at the circuit exhibition
collocated with the conference ESSCIRC’05.

The crypto-processors were willingly embedded within a SoC to avoid interferences between
the encryptions and the pads activity: indeed, in the presented architecture, the cryptoproces-
sor’s program is loaded once, and then executes silently; the only pad that toggles is a trigger
that is sent to the oscilloscope so that it properly synchronizes the acquisitions. This trigger is
activated well before the encryption begins to ensure an optimal decoupling.

Measures obtained from an home-made smart-card based on a commercial micro-processor
are given in Fig. A.2. The card is based on the ATMega-128 processor from ATMEL; Its program
is ISO-7816 compatible [2], so that acquisition campaigns can be launched via a standard
smartcard reader. The smartcard is clocked thanks to the signal sent by the reader. Its
frequency is 3.6864 MHz. Only a global power supply is available. The side-channel waveforms
is thus highly distorted: oscillations at about 4 MHz deport some of the energy of one clock
cycle onto the following ones. The consequence it that the power curves do not come back to

147

http://www.obelisk.demon.co.uk/6502/
http://archives.grenoble-isere.com/essderc-esscirc05/
http://www.atmel.org/dyn/resources/prod_documents/doc2467.pdf

148 APPENDIX A. ATTACKEES/ATTACKERS TECHNICAL DETAILS

(a) SecMat V1 (refer to [74, pp 62–63]). (b) SecMat V3/2 (13 AES/SubBytes [72, 15]).

DES1

DES2

CPU

AES

RAM256
3×

(for DES)

ROM2k

4×
RAM64
(for AES)

SDES

RAM32k

(5)

(9)

(10)

(6)

(7)

(1)

(2)

(3)

(4)

(8)

(11)

(12)

(13)

Figure A.1: Prototype ASICs developed in order to confront power models against actual
measurements. (a) In SecMat V1, the target crypto-processor is labeled “DES2”. (b) In
SecMat V3/2, all the SubBytes modules are targeted.

SecMat V1 Modules Architecture SecMat V1 Top-Level Architecture

Every module (e.g. crypto-processors) commu-
nicates via a shared local RAM.

Modules are connected to a bus, and are able to
send interrupts to the 6502 CPU.

RAM

ADD

DI

WEB

DO

LOADR3

SELR2NR3

LOADR2

LOADR1

SELVCINDES

R
E

R
R

O
R

R
E

O
P

E
O

P

R
S
P

V
A

L

R
S
P
A

C
K

C
M

D

C
M

D
V
A

L

C
M

D
A

C
K

E
O

C

VCIInterface

R
S
P

V
A

L
E

O
P

C
M

D

C
M

D
V
A

L
C

M
D

A
C

K

R
S
P
A

C
K

R
E

O
P

R
E

R
R

O
R

R
D

A
T
A

D
I

A
D

D

D
O

C
M

D

E
O

C

W
E

B

A
D

D
R

E
S
S

W
D

A
T
A

R
D

E
R

R
O

R

8

8

8

8

83

2

ADD

WDATA

RD

INTR

CORE

R1

R2 R3

R
A

M
E

N
R

A
M

E
N

E
R

R
O

R
C

O
R

E

C
M

D
C

O
R

E

ARB

‘Wires’TimerUARTINTRRAMROMPIO

BUS

RAMRAM RAM RAM

CPU DES1 DES2 SDES AESFIX

I2C

Table A.1: SecMat V1 System-on-Chip architecture.

A.1. THE SECMAT CIRCUITS FAMILY 149

power
supply

External

Smartcard

Target CPU (ATMega)

Test LEDs

Debug
serial port

contacts

Differential probe for

JTAG flash
programmation

voltage acquisition

External oscillatorTrigger

EEPROM

 300

 350

 400

 450

 500

 550

 600

 650

76543210

V
ol

ta
ge

 [m
V

]

Time [clock cycles]

Figure A.2: (upper) Annotated picture of the experimental smartcard based on an ATMega
processor. (lower) Seven clock cycles of the DES algorithm executed on the artisanal smartcard.

150 APPENDIX A. ATTACKEES/ATTACKERS TECHNICAL DETAILS

0 V after the rising edge of the clock. In spite of the poor quality of the setup, power analyzes
are pratical on this circuit. But as the implementation details are not totally known, accurate
analyzes are not possible. This is one additional reason to use an ASIC design explicitly for
the purpose of power analyzes.

In the SecMat V1 ASIC, the DES modules have been obtained from the same VHDL de-
scription (refer to Sec. 3.2.6), but are implemented into different micro-architectures. The most
secure of those architectures uses a full-custom cell library, called SecLib (see Sec. 4.2), as-
sembled into a synchronous dual-rail return-to-zero netlist (see Sec. 4.3.) This DES module is
expected to feature a high level of immunity against side-channel attacks that exploit informa-
tion leakage through the power consumption. The security of this module relies on a careful
backend design that balance every possible dissymmetry [42, 102].

Two flaws in the DES layout may make its power analysis somehow easier than expected:

1. It does not have a clock tree. The clock net is thus heavily loaded (by 64 + 64 + 56 = 184
DFFs), which implies that its variations are slow. Consequently, all the DES datapath
registers probably consume more than with a sharp clock signal,

2. The control signals are not buffered, and thus lead to clearly visible signatures. Refer for
instance to Fig. 3.24 at page 82 for a concrete illustration of so-called “combinatorially-
triggered” dissipation.

Those two potential problems are readily solved for the next release of the SecMat system-
on-chip.

A.1.1.2 SecMat V3/2

The SecMat V3/2 circuit embeds thirteen versions of the “SubBytes” modules (substitution
boxes used in the AES [72] encryption) in a 1.00 mm2 silicon die. Its purpose is to enable
a comparative evaluation of the several implementation of a same combinatorial block. The
evaluation of sequential (synchronous or asynchronous) circuits is the task of the more complex
SecMat (refer to [74, pp 62–63]) system-on-chip family.

Four libraries of cells were assessed:

1. Standard cell (130 nm low-leakage technology),

2. Read-Only Memory (“ROM”, generated by an automated generator),

3. WDDL [105], based upon the standard cell library,

4. SecLib [42], a custom secured QDI logic.

The two first libraries (standard cells and ROM) are unprotected, and can thus constitute
references for the security evaluation. The four unprotected instances have different architec-
tures, that are respectively:

1. Standard cell, look-up table [72, p. 16],

2. Standard cell, factored in GF(162), as suggested by Vincent Rijmen [82],

3. Standard cell, decode/permute/encode, as described by Guido Bertoni [15],

4. Generated low-power contact-programmable ROM.

The SecMat V3/2 circuit is still in foundry and has not been characterized yet.

A.2. THE ATTACK BOARDS 151

Figure A.3: PCB plan (left) and photograph (right) of the attack board front view, with the
SecMat V1 ASIC in exergue.

A.1.2 SecMat backend

The SecMat circuits were synthesized with Cadence pks shell and placed-and-routed with
Cadence encounter. The modules to cryptanalyze (DES in SecMat V1 and SubBytes in
SecMat V3/2) were powered by a dedicated supply pair, that convey the vss=0 volt and
vdd=1.2 volt voltages directly into to the co-processor, equipped with its own power ring.
The private voltage of every co-processor is noted V, whereas the circuit’s core voltage is noted
U. In normal operating conditions, V=U=1.2 volt. For the sake of attacks, the voltages may
be tuned, as shown in Tab. A.2.

The process is a low-leakage (hence high threshold voltage) 130 nm technology with six
metal layers (M1–M6). The chips are fabricated through the multi-wafer projects of the CMP,
run S12C5 1 (for V1) and run S12C6 3 (for V3/2.)

A.2 The attack boards

The SecMat V1 circuit is placed on a motherboard that is controllable remotely via a single
USB socket. The serial ↔ USB conversion is delegated to an FTDI DLP-2232M module. The
SECMAT circuit monitor is functional and can execute arbitrary code injected from a PC. The
attack motherboard is shown in Fig. A.3.

http://cmp.imag.fr
http://www.ftdichip.com/Products/EvaluationKits/DIPModules.htm

152 APPENDIX A. ATTACKEES/ATTACKERS TECHNICAL DETAILS

Figure A.4: Differential voltage acquisition probe configuration.

A.3 The acquisition setup

The acquisition apparatus is an Infiniium 54 855A oscilloscope from Agilent. The probes’
model is 1132A, featuring a bandwidth of 5 GHz. The E2669A differential connectivity kit was
used. The power traces shown in this document were acquired with a solder-in connector. The
configuration of the acquisition probe is depicted in Fig. A.4. The overall experimental setup
is shown in Fig. A.5. It is suitable for:

• power attacks, thanks to the differential voltage probe, and

• EMA, thanks to an ad hod antenna, preceded by a 32 dB active amplifier.

A.3.1 Optimal power traces acquisition experimental conditions

The success of a DPA depends both on a proper acquisition setup and on an advanced traces
processing (confidential information extraction.) This short notice studies the optimal acquisi-
tion setup based on an extra resistance added by an attacker to access the power side-channel.
The traces shown in this manuscript were acquired with a resistance R = 11 Ω, but the results
reported here-after show that a wide range of values are actually suitable.

Two wafer doping styles exist: double and triple-well. In those two cases, the ground
is common to all the transistors. On the contrary, the highest voltage is provided only to
the specific rows containing P-MOS transistors in an N-well. As the polarisation of P-MOS
transistor can be decoupled, the spy resistance is placed on the VDD-side of the chip.

A.3.1.1 Discussion about the pros and the cons of some alternatives

Side-channels attacks exploiting the power dissipation of a working cryptoprocessor need an
access to the power. A common experimental setup requires to divert some of the power
consumed by a chip into a “spy” resistance. The choice of the resistor value R is up to the
attacker.

If it is chosen small, the amplitude of the traces collected is small, which leads to a poor-
quality attack. Indeed, the state-of-the-art oscilloscopes can only use the full 8-bit vertical
precision if calibers 10 mV or above are used (signal dynamics ≥ 80 mV.)

http://www.agilent.com/

A.3. THE ACQUISITION SETUP 153

Monitoring

PC

Targeted

ASIC

apparatus

Voltage

probe

EMA

probe

tools

Control

amplifier

Large-band Power

supplies

Acquisition

Figure A.5: Experimental setup for SCA models validation against practical measurements.

154 APPENDIX A. ATTACKEES/ATTACKERS TECHNICAL DETAILS

At the opposite, if R is chosen too large, the circuit is disturbed by the voltage drop across
the resistance. In a realistic scenario, an embedded analog power controller would check for the
stability of the voltage delivered to the circuit. In this study, we assume that such protection
does not exist. It is thus possible to choose an arbitrary resistor R.

The maximum value Rmax is that where the circuit begins to malfunction. Indeed, at that
point, the power traces do not correspond to the expected computation, hence any correlation
attack is doomed to fail. It is however a way to inject errors during the processing, which
enables fault attacks.

If the resistor is kept beyond Rmax, the circuit remains functional. An attacker can thus
decide arbitrarily for R ∈]0,Rmax[. Now, for R close to Rmax, the electronic gates are under-
supplied, and thus consume less power (that is proportional to the square of the voltage). As
a consequence, an higher signal is measured for a weaker phenomenon. Thus, there exists an
optimal value Ropt for R.

The value Ropt could be defined as the value for which the measured signals have the largest
amplitude. However, the real challenge is to increase the strength of the DPA. Thus the actual
criterion is the number of traces needed to reach a given signal-to-noise ratio for the DPA.

A.3.1.2 Power measurements

Two experiments were carried out on the DES crypto-processor datapath (that has a separate
power supply V) embedded into the SecMatV1 ASIC (powered by U.) The datapath of the
DES module is described in Sec. 3.2 and in [101].

In the first experiment, the voltage is dropped from the nominal value, 1,2 V, until the
results of the DES cryptoprocessor become false. In the second experiment, the DES datapath
is supplied with its nominal 1,2 V, but a variable resistor R is inserted between the power
supply and the power of the DES datapath. The results are given in the table A.2 below.

In it noticeable that when DES fails close to the maximum resistor Rmax or the minimum
voltage Vmin, the result is not full-zero. The errors actually concern the loading of the message
into the RAM. The faulted ciphertext is actually almost correct, apart from sparse errors. The
errors always lead to lower values, for the following partial order: a ≺ b ⇔ ∀i,

(
a & 2i

)
<(

b & 2i
)
. This fact is shown in Tab. A.3. The errors thus probably arise from the fact that

0.6 V cannot allow the RAM, powered at about twice this voltage, to distinguish between the
actual digital values “0” or “1”. Actually, for the DES processor to remain functional, two
constraints must be met simultaneously:

1

2
×U < V < 2×U .

The first strict inequality makes sure that the core properly interprets the “1”s from the DES
module and vice-versa for the second. There is no risk that “0”s be misunderstood, because the
DES module and the core share the same ground; this equipotential is the common PWELL
made up of the silicon substrate (aka the wafer’s bulk.)

The faults induced by under-voltage and/or over-voltage are referred to as a “semi-invasive”
attack1.

Figure A.6 shows the average power consumption of the DES datapath when V varies, while
U is fixed at 1.2 volt. The power dissipation has been measured irrespectively of the fact that
the DES datapath works properly or not. Figure A.6(a) shows that the dissipation is almost
null below the V ∼ 0.3 volt. The reason is that there can be no activity if the transistors remain
blocked; this happens when the power supply is below the absolute value of the threshold of all
the transistors: V < min (VThN ,−VThP) [50, chap. 5]. In the so-called ‘typical’ characterization
corner, the thresholds are equal to: VThN

= 295 mV and VThP
= 367 mV. Now, in Fig. A.6(b),

the dissipation increases significantly when V is over 1.5 volt, because the P-MOS transistors

1See the taxonomy of Sergei P. Skorobogatov at http://www.cl.cam.ac.uk/~sps32/semi-inv_def.html.

http://www.cl.cam.ac.uk/~sps32/semi-inv_def.html

A.3. THE ACQUISITION SETUP 155

Table A.2: Measures of the correctness probability of DES encryptions for
DES(m=“0011223344556677”, k=“0011223344556677”) = “e4ff10812363072d” (with-
out faults.)

R=0 Ω, V varies, U=1.2 V. R varies, V=1.2 V, U=1.2 V.

U

out: DES(k,m)
in: k, m

V

clk rst data sel

VSS

VDD VDD

VSS

DES

UART SECMAT

PC ↔ SECMAT:

U

out: DES(k,m)
in: k, m

V

R

clk rst data sel

VSS

VDD VDD

VSS

DES

UART SECMAT

PC ↔ SECMAT:

0

20

40

60

80

100

0.625 0.63 0.635 0.64 0.645 0.65 0.655

V [Volts]

Percentage of correct encryptions

0

20

40

60

80

100

1460 1465 1470 1475 1480 1485 1490 1495

R [Ω]

Percentage of correct encryptions

Table A.3: Errors occurring for every nibble of faulted ciphertexts based on 1 000 000 encryp-
tions (correct results percentage is 35 %).

Correct nibble Faulted nibble (≺ Correct one)

e 2, a

4 none

f 0, 1, 3, b

f 4, 6, e

1 0

0 none

8 0

1 0

2 0

3 2

6 0, 2

3 2

0 none

7 6

2 0

d 4, c

156 APPENDIX A. ATTACKEES/ATTACKERS TECHNICAL DETAILS

of the input gates become permanently on: VGS > VThP
. The figure A.7 illustrates the short-

circuits that can be caused in this situation. This effect is important because it can trigger
thermal runaway in the circuit causing its destruction. In addition, there is a risk for the gates
driven by the DES datapath to start a latch-up effect in the “low-voltage” part of the circuit.
This latch-up would propagate to the whole chip (CPU, memories, etc.), which would probably
destroy it. For these reasons, V has not been set too much over 2.2 volt [11].

A.3.2 The acquisition software

The architecture of the acquisition software is depicted in Fig. A.8. The main function (entry
point in C) builds an acquisition object, that undertakes the following two actions:

1. build a cmdline object, and customize it with the user options (call to parseMain),

2. build an attack object, that is able to launch the acquisition, that has collaborate an
attacker and an attackee. An attacker is for instance a single (gpib device 54850 3)
or a multi-modal (gpib device 54850 3 4) oscilloscope, whereas an attackee is a de-
vice embedding dedicated crypto-processors (attackee crypto) or running cryptographic
software (attackee rta, attacked via an rta, i.e. a register transfer attack.)

Then, the typical attack loops are represented in the sequence diagram for the acquisition
shown in Fig. A.9. It is worth noticing that all the events are asynchronous, in the sense that
the acquisition does not fail if random delays are inserted between them. The only strict timing
constraint to be respected is the constant time between the trigger edge and the “consuming
event” (encryption.)

As illustrated in Fig. A.9, one central PC controls the whole acquisition process. It can be
programed to launch an acquisition remotely, for instance from the internet via a secure shell
(ssh) connection.

A.3. THE ACQUISITION SETUP 157

0

2

4

6

8

10

21.51.210.50

V [Volts]

(a) DES dissipated power [milliWatts] — Nominal voltage is 1.2 volts.

Under-voltage Over-voltage

Encryption active
Reset (leakage power)

U−VThP

0

0.1

0.2

0.3

0.4

0.5

21.51.210.50

V [Volts]

(b) DES dissipated power [milliWatts] — Nominal voltage is 1.2 volts.

Under-voltage Over-voltage

Encryption active
Reset (leakage power)

VThN

Figure A.6: (a) Power dissipated by the DES datapath, when U is fixed at 1.2 volt. (b) Zoom
on the same graph, near the nominal voltage.

158 APPENDIX A. ATTACKEES/ATTACKERS TECHNICAL DETAILS

S

D

D

SG

G

V > U− VThP

VGS = U− V < VThP

P-MOS transistor conducting

VGS = U− 0 > VThN

N-MOS transistor conducting

DES
power domain

‘Z’
U = ‘1’

1.2 volt

SECMAT
power domain

DES typical

input gate:

Figure A.7: Short-circuit occurring when the logical input ‘1’ is applied from the SecMat core
to the DES module, powered with V > U−VThP . The ‘Z’ states inside the DES module might
propagate metastability.

Figure A.8: UML class diagram for the acquisition application (also refer to the concept of
Fig. A.9.)

A.3. THE ACQUISITION SETUP 159

GPIBUSB

RS232

()*encryption

PC (dpa campaign.xpp) Oscilloscope (Agilent 54855A)

Parallel Output (trigger)

Idle

Load the setup (channels, calibers, etc.)initialize()

parseMain(int, char**)

Prepare for the acquisition task

Sample the power; average if requested

set key()

set msg()

trig scope()

start()

acquire data()

stop()

if n == nmax

set n = 0n++

Return to monitor

Monitor

Monitor

Inhibit watchdog

6502 crypto program

save data()

Monitor

ASIC (SecMatV1)

Transfer the new trace to the hard drive

Figure A.9: Typical acquisition sequence diagram, for an attack (conducted by a PC running
the acquisition campaign.xpp software) that involves both an attackee (the ASIC SecMatV1

of Fig. A.1(a)) and an attacker (Agilent model Infiniium 54 855A.)

http://www.agilent.com/

160 APPENDIX A. ATTACKEES/ATTACKERS TECHNICAL DETAILS

Appendix B

Power Traces on the DES
Co-Processor of SecMat V1

The noise induced by the acquisition apparatus and the variation of the environment conditions
is evaluated for several built-in averaging of the oscilloscope. The same message is encrypted
1 000 times with the same key. The 1 000 traces are made up of 20 000 data points, acquired
at the rate of 20 × 109 samples/s, corresponding to 32 clock periods of a circuit running at
32 MHz. The vertical caliber is set to 50× 8 mV. The average standard deviations are given in
Tab. B.1 for averaging ranging from 1 (i.e. no averaging) to 4 096 times. The duration of the
acquisition of a trace is about proportional to the number of averages. It must be noted that
44 % of the time is spent by post-processing between every trace acquisition; put differently,
the oscilloscope is triggered only 66 % of the acquisition duration.

It appears that the experimental standard deviation decreases by a factor 1/
√

2 when the
averaging is doubled, in the range [0, 256]. This observation is in line with the official resolution
documentation from Agilent. Without averaging, the traces resolution is 8 bits. Using the
built-in averaging capability of the oscilloscope, the resolution can reach 12 bits, as shown in
Tab. B.2. Beyond the amount of 256 averaging, a residual error cannot be corrected. The
reasons may be:

• the quantification noise of the oscilloscope analog-to-digital converters (ADCs) or

• the variation of the experimental conditions, since the acquisitions take many hours when
large averages are requested.

It is worth noticing that the averaging rate is not limited by the frequency of the trigger

Table B.1: Acquisition characteristics for various averaging factors.

Averaging 20 21 22 23 24 25 26

Standard deviation [mV] 6.41 4.47 3.18 2.22 1.59 1.15 0.82

Acquisition time [s/trace] 0.317 0.334 0.456 0.628 0.960 1.656 2.966

Averaging 27 28 29 210 211 212

Standard deviation [mV] 0.59 0.44 0.37 0.39 0.87 0.57

Acquisition time [s/trace] 5.624 10.884 21.469 42.596 84.785 169.268

161

162 APPENDIX B. POWER TRACES ON THE DES CO-PROCESSOR OF SECMAT V1

Table B.2: Agilent’s 54 855A acquisition resolution, quoted from the oscilloscope datasheet.

Averaging 20 22 24 26 28

Resolution [bit] 8 9 10 11 12

signal, but by the oscilloscope. The trigger is generated by software, and it takes about 853
CPU cycles to loop; so, for instance, when SecMat runs at 32 MHz, the period of the trigger
is 26.66 µs. This period could be optimized, but this is useless, because at best (i.e. for
4 096 averages), only one trigger produced by SecMat out of about 1 000 actually triggers the
oscilloscope.

The limitation may be due to:

• the slow arming rate of the oscilloscope or

• the computation-intensive averaging algorithm itself.

The algorithm used by the oscilloscope to achieve an averaging by N consists in:

• initializing an average wave “T” to zero: T← 0 · · · 0,

• accumulating the new trace T, with the following weighting: T ← n− 1

n
T +

1

n
T, for

n ∈ [1, N],

• then, if further samples are available, the average is updated according to: T← N − 1

N
T+

1

N
T.

The dependence of the average on the traces is thus infinite, at least in theory. In practice, the

series
{(

N−1
N

)i}

i∈N

quickly decreases below the minimum floating point precision.

A fair trade-off between acquisition speed and vertical resolution is to use a 64-times average.
All the traces shown in this manuscript have been averaged 64 times, with exception of Fig. 3.21,
acquired with the maximal 4 096-times averaging.

The power traces are reproducible as long as the board is not modified. Otherwise, the
signal’s shape is altered.

Acquisitions are said to be reproducible if the mean standard deviation of averaged traces
acquired on different days is similar to the standard deviation of the acquisitions realized on one
day. Practically speaking, acquisition campaigns of 1 000 traces averaged 64-times were realized
on four different days. The four mean traces Ti, i ∈ {1, 2, 3, 4} were computed, and the mean
standard deviation is equal to: 0.96 mV. As already reported in Tab. B.1, the standard deviation
of every individual campaign is 0.82 mV. More precisely, the four deviations are respectively
0.82, 0.81, 0.82 and 0.82 mV. As 0.96 mV ≈ 0.82 mV, the campaigns are reproducible.

B.1 Hamming weight vs Hamming distance differential
traces

This section reports an acquisition campaign realized on the DES hardware encryption of the
ASIC SecMat V1. The architecture of the crypto-processor is extensively described in chapter 3.
The campaign consists in the acquisition of 81 089 traces with a constant key, jexjexje in

B.2. DPA SIGNAL-TO-NOISE RATIOS ON DES 163

ASCII or 0x6a 65 78 6a 65 78 6a 65 in hexadecimal. The spying resistor is on the VDD side of
the power supply, its resistance is 11 Ω, and the voltage is the nominal value of 1.2 volts.

The eight figures B.1 to B.8 are the differential traces obtained for the 26 = 64 hypotheses
on the key on each sbox. The figure B.1 was already printed as Fig. 2.21 at page 46, but is
printed in this appendix once again for the collection of the eight sboxes to be complete.

B.2 DPA signal-to-noise ratios on DES

This section is intended to present the DPA signal-to-noise obtained with the traces collection
described in former Sec. B.1. The plot is red when the key guess is correct, and green otherwise.

Notice that the weird variations in the SNR of the sbox #8 can be explained by the choice
of the date at which the SNR is evaluated. The SNR computation algorithms looks for the date
that optimizes the SNR. It actually happens that this date is oscillating between two values, as
reported in Fig. B.17. A smoother SNR curve is obtained with an a priori choice for the date.

164 APPENDIX B. POWER TRACES ON THE DES CO-PROCESSOR OF SECMAT V1

-0.2

 0

 0.2

 0.4

 0.6

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #1 (Hamming weight)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #1 (Hamming distance)

Figure B.1: Hamming weight for sbox #1 (upper) — Hamming distance for sbox #1 (lower).

B.2. DPA SIGNAL-TO-NOISE RATIOS ON DES 165

-0.2

 0

 0.2

 0.4

 0.6

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #2 (Hamming weight)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #2 (Hamming distance)

Figure B.2: Hamming weight for sbox #2 (upper) — Hamming distance for sbox #2 (lower).

166 APPENDIX B. POWER TRACES ON THE DES CO-PROCESSOR OF SECMAT V1

-0.2

 0

 0.2

 0.4

 0.6

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #3 (Hamming weight)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #3 (Hamming distance)

Figure B.3: Hamming weight for sbox #3 (upper) — Hamming distance for sbox #3 (lower).

B.2. DPA SIGNAL-TO-NOISE RATIOS ON DES 167

-0.2

 0

 0.2

 0.4

 0.6

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #4 (Hamming weight)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #4 (Hamming distance)

Figure B.4: Hamming weight for sbox #4 (upper) — Hamming distance for sbox #4 (lower).

168 APPENDIX B. POWER TRACES ON THE DES CO-PROCESSOR OF SECMAT V1

-0.2

 0

 0.2

 0.4

 0.6

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #5 (Hamming weight)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #5 (Hamming distance)

Figure B.5: Hamming weight for sbox #5 (upper) — Hamming distance for sbox #5 (lower).

B.2. DPA SIGNAL-TO-NOISE RATIOS ON DES 169

-0.2

 0

 0.2

 0.4

 0.6

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #6 (Hamming weight)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #6 (Hamming distance)

Figure B.6: Hamming weight for sbox #6 (upper) — Hamming distance for sbox #6 (lower).

170 APPENDIX B. POWER TRACES ON THE DES CO-PROCESSOR OF SECMAT V1

-0.2

 0

 0.2

 0.4

 0.6

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #7 (Hamming weight)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #7 (Hamming distance)

Figure B.7: Hamming weight for sbox #7 (upper) — Hamming distance for sbox #7 (lower).

B.2. DPA SIGNAL-TO-NOISE RATIOS ON DES 171

-0.2

 0

 0.2

 0.4

 0.6

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #8 (Hamming weight)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

18171615

D
iff

er
en

tia
l w

av
e

[m
V

]

Time [clock cycles]

Differential traces for DES Sbox #8 (Hamming distance)

Figure B.8: Hamming weight for sbox #8 (upper) — Hamming distance for sbox #8 (lower).

172 APPENDIX B. POWER TRACES ON THE DES CO-PROCESSOR OF SECMAT V1

 0

 2

 4

 6

 8

 10

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

S
N

R

Trace number

DPA on DES Sbox #1

Theoretical SNR

Correct key (attack success)
Wrong key (attack failure)

Figure B.9: SNR of the DPA on DES sbox #1.

 0

 2

 4

 6

 8

 10

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

S
N

R

Trace number

DPA on DES Sbox #2

Theoretical SNR

Correct key (attack success)
Wrong key (attack failure)

Figure B.10: SNR of the DPA on DES sbox #2.

B.2. DPA SIGNAL-TO-NOISE RATIOS ON DES 173

 0

 2

 4

 6

 8

 10

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

S
N

R

Trace number

DPA on DES Sbox #3

Theoretical SNR

Correct key (attack success)
Wrong key (attack failure)

Figure B.11: SNR of the DPA on DES sbox #3.

 0

 2

 4

 6

 8

 10

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

S
N

R

Trace number

DPA on DES Sbox #4

Theoretical SNR

Correct key (attack success)
Wrong key (attack failure)

Figure B.12: SNR of the DPA on DES sbox #4.

174 APPENDIX B. POWER TRACES ON THE DES CO-PROCESSOR OF SECMAT V1

 0

 2

 4

 6

 8

 10

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

S
N

R

Trace number

DPA on DES Sbox #5

Theoretical SNR

Correct key (attack success)
Wrong key (attack failure)

Figure B.13: SNR of the DPA on DES sbox #5.

 0

 2

 4

 6

 8

 10

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

S
N

R

Trace number

DPA on DES Sbox #6

Theoretical SNR

Correct key (attack success)
Wrong key (attack failure)

Figure B.14: SNR of the DPA on DES sbox #6.

B.2. DPA SIGNAL-TO-NOISE RATIOS ON DES 175

 0

 2

 4

 6

 8

 10

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

S
N

R

Trace number

DPA on DES Sbox #7

Theoretical SNR

Correct key (attack success)
Wrong key (attack failure)

Figure B.15: SNR of the DPA on DES sbox #7.

 0

 2

 4

 6

 8

 10

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

S
N

R

Trace number

DPA on DES Sbox #8

Theoretical SNR

Correct key (attack success)
Wrong key (attack failure)

Figure B.16: SNR of the DPA on DES sbox #8.

176 APPENDIX B. POWER TRACES ON THE DES CO-PROCESSOR OF SECMAT V1

5768 (17.09)

5762 (17.08)

5756 (17.07)

5750 (17.06)

5743 (17.05)

5737 (17.04)

5730 (17.03)

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

10

8

6

4

2

0

P
ea

k
da

te
 [5

 x
 1

0-1
1 s

] /
 (

fr
a

ct
io

n
 o

f
cl

o
ck

 p
er

io
d
)

S
N

R
 o

f t
he

 D
P

A
 [n

o
un

it]
Trace number

Position in time of the DPA peak on Sbox #8 (when successful)

SNR of the attack
Date of the maximum DPA signal

Theoretical SNR

Figure B.17: Date selected for the SNR computation while doing the DPA on DES sbox #8.

Appendix C

Glossary

The acronyms specific to the topics approached in this document are listed in the following
table.

Acronym Signification

AES Advanced Encryption Standard [72]
API Application Programming Interface
ASIC Application Specific Integrated Circuit
CAD Computer Aided Design (French acronym: CAO)
CAO Conception Assistée par Ordinateur (English acronym: CAD)
CISC Complex Instruction Set Computer
CLB Compound Logic Block

CMOS Complementary MOS transistor
CMP Circuit Multi-Projets (French broker in ICs & MEMS: http://cmp.imag.fr)
CPA Correlation Power Analysis [111, 112]
CPU Central Processing Unit
CTE Common Timing Engine [23]
DES Data Encryption Standard [71]
DFA Differential Fault Attack [17] (particular type of FA)
DFF D-type Flip-Flop (logical synchronous sample-and-memorize one-bit device)
DI Delay Insensitive

DNF Disjunctive Normal Form
DPA Differential Power Analysis [54]
ECC Elliptic Curve Cryptography
EMA ElectroMagnetic Attack [37]
EMI ElectroMagnetic Interference
FA Fault Attack
FE First Encounter, backend design product of Cadence [47]

FPGA Field Programmable Gate Arrays
GNU Gnu is Not Unix (Project website: http://www.gnu.org/)
GPIB General Purpose Interface Bus, IEEE 488

HD, HW Hamming Distance, Hamming Weight
IC Integrated Circuit (typically an ASIC or an FPGA)

IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers (http://www.ieee.org/)
IP Initial Permutation, used in DES (Note that: IP−1 .

= FP)
IP Intellectual Property (understand: “stand-alone hardware macro”)

Continued on next page . . .

177

http://cmp.imag.fr
http://www.gnu.org/
http://www.ieee.org/

178 APPENDIX C. GLOSSARY

Continued from previous page . . .

IPA Inferential Power Attack [32]
IPsec Internet Protocol security, RFC 2401 [49]
IV Initialization Vector
LE Logic Element
LR Left-Right, the 2× 32-bit state register of DES [71]
LuT Look-up Table
MAC Message Authentication Code
MD5 Message Digest #5, RFC 1321 (http://tools.ietf.org/html/rfc1321)
MOS Metal-Oxyde-Semiconductor (based on Silicium for most digital ICs)

MOSIS MOS Implementation System (USA MPW company [4])
MPW Multi-Project Wafer
NIST National Institute of Standards and Technology (http://www.nist.gov/)
NP Non-Polynomial, in complexity theory
OSI Open Systems Interconnection [110]
PC Personal Computer (trademark of IBM)

PCB Printed Circuit Board
PKI Public Key Infrastructure
P&R Place-and-Route
QDI Quasi-Delay Insensitive
RAM Random Access Memory
RC5 Rivest Cipher #5 (RSAsecurity proprietary encryption algorithm)
RNG Random Number Generator
ROM Read-Only Memory
RSA Rivest Shamir Adelman encryption/signature asymmetrical patented algorithm
RTL Register Transfer Level (architectural notion)
RTZ Return To Zero, aka Return To NULL in the context of QDI logic
Sbox Substitution box, aka a vectorial Boolean function
SCA Side-Channel Attack
SDF Standard Delay Format [5], IEEE standard #P1497
SHA Secure Hash Algorithm [69]
SI Speed-Independent circuits (see also entries DI and QDI)

SNR Signal-to-Noise Ratio (refer to Eqn. (2.7) at page 32)
SoC System-on-Chip
SoI Silicon-on-Insulator
SPA Simple Power Analysis [54]
SPEF Standard Parasitic Exchange Format (part of the 1481-1999 IEEE standard)
SPICE Simulation Program with Integrated Circuit Emphasis [78]
SPN Substitution – Permutation Network
TCG Trusted Computing Group (https://www.trustedcomputinggroup.org/, [6])
TCL Tool Command Language (see for instance http://www.tcl.tk/)
TPM Trusted Platform Module (Refer to the entry “TCG”)

T-RNG True RNG (i.e. an RNG that is not ruled by any algorithm)
UML Universal Modeling Language [8, 95]
USB Universal Serial Bus (http://www.usb.org/)
VCI Virtual Component Interface [108]

VHDL VHSIC Hardware Description Language, IEEE standard #1076-2000
VHSIC Very High Speed IC
VITAL VHDL Initiative Towards ASIC Libraries [48], IEEE standard #1076.4-2000
WDDL Wave Dynamic Differential Logic [105]
XOR eXclusive OR, also denoted “⊕”

http://tools.ietf.org/html/rfc1321
http://www.nist.gov/
http://www.ibm.com/
http://www.rsasecurity.com
https://www.trustedcomputinggroup.org/
http://www.tcl.tk/
http://www.usb.org/

179

180 APPENDIX C. GLOSSARY

Bibliography

[1] GNU/Electric CAD system. http://www.gnu.org/software/electric/.

[2] ISO/IEC 7816, Smartcard Standard. (Informal website).

[3] ITRS (International Technology Roadmap for Semiconductors) website.
http://public.itrs.net/.

[4] MOSIS (MOS Implementation System) website. http://www.mosis.org/.

[5] Standard Delay Format (SDF) website. http://www.eda.org/sdf/sdf_3.0.pdf.

[6] Trusted Computing Group (TCG). http://www.trustedcomputinggroup.org/.

[7] IEEE Std 1481-1999, IEEE standard for integrated circuit (IC) delay and power calcula-
tion system, June 1999. PDF (IEEE Xplore).

[8] “The Object Management Group (OMG) website”, 2006.

[9] Alin Razafindraibe. Analyse et Amélioration de la Logique Double Rail pour la Con-
ception de Circuits Sécurisés. PhD thesis, Université Montpellier II, November 2006.
http://papyrus.lirmm.fr/Document.htm&numrec=031994468917620 (french).

[10] ATMEL. Datasheet – Triple Data Encryption Standard (TDES). March 2005.
(Online reference).

[11] Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan.
The sorcerer’s apprentice guide to fault attacks. Cryptology ePrint Archive, Report
2004/100, 2004. http://eprint.iacr.org/2004/100/.

[12] Charles H. Bennett. Invited conference on “Quantum Communication and Computation”.
15 february 2006, amphithéâtre Émeraude, at the CNRS LTCI, ENST (Paris).

[13] Charles H. Bennett and Gilles Brassard. Quantum Cryptography: Public Key Distribu-
tion and Coin Tossing. In Proceedings of the International Conference on Computers,
Systems, and Signal Processing, 1984.

[14] Benôıt Chevallier-Mames and Mathieu Ciet and Marc Joye. Low-cost solutions for pre-
venting simple side-channel analysis: Side-channel atomicity. IEEE Transactions on Com-
puters, 53(6):760–768, 2004.
http://www.gemplus.com/smart/rd/publications/pdf/CCJ04ato.pdf.

[15] Guido Bertoni, Marco Macchetti, Luca Negri, and Pasqualina Fragneto. Power-
Efficient ASIC Synthesis of Cryptographic S-Boxes. In ACM Great Lakes Symposium
on VLSI, pages 277–281, april 2004. Boston, MA, USA. (PDF available from ACM –
http://portal.acm.org/).

181

http://www.gnu.org/software/electric/
http://www.iso.org/
http://www.iec.ch/
http://www.cardwerk.com/smartcards/smartcard_standard_ISO7816.aspx
http://public.itrs.net/
http://www.mosis.org/
http://www.eda.org/sdf/sdf_3.0.pdf
http://www.trustedcomputinggroup.org/
http://ieeexplore.ieee.org/iel5/6837/18380/00846710.pdf
http://www.omg.org/
http://papyrus.lirmm.fr/Document.htm&numrec=031994468917620
http://www.atmel.com/dyn/resources/prod_documents/6150s.pdf
http://eprint.iacr.org/2004/100/
http://www.ltci.enst.fr/
http://www.enst.fr/
http://www.gemplus.com/smart/rd/publications/pdf/CCJ04ato.pdf
http://portal.acm.org/ft_gateway.cfm?id=989019&type=pdf&coll=GUIDE&dl=GUIDE&CFID=61720752&CFTOKEN=99186528
http://portal.acm.org/

182 BIBLIOGRAPHY

[16] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. Journal
of Cryptology, 4(1):3–72, 1991.

[17] Eli Biham and Adi Shamir. Differential Fault analysis on secret key cryptosystems. In
Proc. of CRYPTO’97, volume 1294, pages pp 513–525, 1997.

[18] Alex Biryukov and Adi Shamir. Structural Cryptanalysis of SASAS. In Proceedings of
Eurocrypt 2001, volume LNCS 2045, pages 394–405, 2001.

[19] E. Boros and P.L. Hammer. Pseudo-Boolean Optimization. Discrete Applied Mathematics,
123((1-3)):155–225, 2002.

[20] G.F. Bouesse, M. Renaudin, S. Dumont, and F. Germain. DPA on Quasi Delay Insensitive
Asynchronous Circuits: Formalization and Improvement. In Proceedings of DATE’05,
pages pp 424–429, March 2005. Munich, Germany.

[21] G.F. Bouesse, M. Renaudin, B. Robisson, E. Beigné, P.-Y. Liardet, S. Prevosto, and
J. Sonzogni. DPA on Quasi Delay Insensitive Asynchronous Circuits: Concrete Results.
In XIX Conference on Design of Circuits and Integrated Systems, Proceedings of DCIS’04,
24–26 Nov 2004. Bordeaux, France (PDF).

[22] Bruce Schneier. Applied Cryptography. 1996. John Wiley & Sons, ISBN 0-471-12845-7.

[23] Cadence. Delay Calculation Algorithm Guide, june 2002. Product SPR50, ct alg.pdf.

[24] Claude Carlet. On Highly Nonlinear S-Boxes and Their Inability to Thwart DPA Attacks.
pages 49–62. INDOCRYPT 2005 (LNCS 3797), december 2005. Bangalore, India. (PDF
on SpringerLink; Complete version on IACR ePrint).

[25] S. Chari, J.R. Rao, and P. Rohatgi. Template Attacks. In CHES, volume 2523 of Lecture
Notes in Computer Science, August 2002. ISBN: 3-540-00409-2.

[26] Nicolas T. Courtois, Guilhem Castagnos, and Louis Goubin. What do DES S-
boxes Say to Each Other? Cryptology ePrint Archive, Report 2003/184, 2003.
http://eprint.iacr.org/2003/184.

[27] “Distributed” project website. http://www.distributed.org/.

[28] Electronic Frontier Foundation (EFF – http://www.eff.org/). Secrets of Encryption
Research, Wiretap Politics & Chip Design. July 1998. ISBN: 1-56592-520-3.

[29] Elisabeth Oswald. On Side-Channel Attacks and the Application of Algorithmic Coun-
termeasures. PhD thesis, IAIK, may 2003.
http://www.iaik.tu-graz.ac.at/aboutus/people/oswald/papers/PhD.pdf.

[30] Eric Young, < eay@cryptsoft.com >. DES ASM and C implementation in openssl (file
crypto/des/des.h), 1995–1997. (Source code).

[31] Fabien Germain. Towards cryptographic security using dedicated integrated cir-
cuits design methodologies. PhD thesis, École Polytechnique, June 2006.
http://www.imprimerie.polytechnique.fr/Theses/Files/Germain.pdf (french).

[32] Paul N. Fahn and Peter K. Pearson. IPA: A New Class of Power Attacks. In Proc. of
CHES, volume LNCS 1717, pages 173–186, 1999.
http://link.springer.de/link/service/series/0558/bibs/1717/17170173.htm.

http://tima.imag.fr/cis/publi/2004/DCIS04DPA.pdf
http://www.springerlink.com/(1mc5ct45l1xlnirkbdul2j55)/app/home/contribution.asp?referrer=parent&backto=issue,5,32;journal,42,2337;linkingpublicationresults,1:105633,1
http://www.springerlink.com/
http://eprint.iacr.org/2005/387
http://eprint.iacr.org/2003/184
http://www.distributed.org/
http://www.eff.org/
http://www.iaik.tu-graz.ac.at/aboutus/people/oswald/papers/PhD.pdf
http://www.openssl.org/source/
http://www.imprimerie.polytechnique.fr/Theses/Files/Germain.pdf
http://link.springer.de/link/service/series/0558/bibs/1717/17170173.htm

BIBLIOGRAPHY 183

[33] Karl Fant and Scott Brandt. NULL Convention Logic: A Complete and Consistent Logic
for Asynchronous Digital Circuit Synthesis. In International Conference on Application
Specific Systems, Architectures, and Processors (ASAP 96), pages 261–273, August 1996.
http://www.theseusresearch.com/Downloads/NCL.PDF.

[34] Florent Chabaud and Serge Vaudenay. Links between Differential and Linear Crypt-
analysis. In Proc. of Eurocrypt’94, volume 950, pages 356–365, 1995. Springer-Verlag,
(PDF).

[35] Edward Fredkin and Tommaso Toffoli. Conservative Logic. International Journal of
Theoretical Physics, 21(3/4):219–253, 1982.

[36] G. Rouvroy and F.-X. Standaert and J.-J. Quisquater and J.-D. Legat. Efficient Use of
FPGAs for Implementations of DES and Its Experimental Linear Cryptanalysis. IEEE
Transactions on Computers, 52(4), April 2003.

[37] K. Gandolfi, C. Mourtel, and F. Olivier. Electromagnetic Analysis: Concrete Results. In
Proceedings of CHES’01, volume 2162 of LNCS, pages pp 251–261. Springer, May 2001.
http://www.gemplus.com/smart/rd/publications/ps/GMO01ema.ps.gz.

[38] Ghislain Fraidy Bouesse. Contribution à la Conception de Circuits
Intégrés Sécurisés : l’Alternative Asynchrone. PhD thesis, Institut Na-
tional Polytechnique de Grenoble (INPG) – TIMA, december 2005.
http://tima.imag.fr/publications/files/th/csd_221.pdf.

[39] Gilles Piret. A Note on the Plaintexts Choice in Power Analysis Attacks. Technical
report, November 2005. http://www.di.ens.fr/~piret/publ/power.pdf.

[40] Gilles Piret and Jean-Jacques Quisquater. A Differential Fault Attack Technique against
SPN Structures, with Application to the AES and Khazad. In ”CHES’03”, volume
LNCS 2779, pages 77–88, 2003. (Online PDF version).

[41] L. Goubin and J. Patarin. DES and Differential Power Analysis (The “Duplication”
Method). In Proceedings of CHES’99, volume 1717 of LNCS, pages pp 158–172. Springer,
August 1999.

[42] S. Guilley, Ph. Hoogvorst, Y. Mathieu, R. Pacalet, and J. Provost. CMOS Structures
Suitable for Secured Hardware. In Proceedings of DATE’04, pages pp 1414–1415, February
2004.

[43] S. Guilley and R. Pacalet. SoC Security: a War against Side-Channels. Annals of the
Telecommunications, 59(7–8):998–1009, july–august 2004. (Abstract – Full Paper).

[44] Helion Technology. Datasheet – High Performance DES and Triple DES core for ASIC.
2003. (Online reference).

[45] Horst Feistel. Cryptography and Computer Privacy. Scientific American, pages 15–23,
May 1973. (Online PDF version).

[46] Synopsys. Liberty Vol. 1 & 2, dec 2003. “liberty.pdf”, available from Synopys “tap-in”
program website: http://www.synopsys.com/partners/tapin/.

[47] Cadence. First Encounter Silicon Virtual Prototying, Encounter®digital IC design plat-
form,. http://www.cadence.com/products/digital_ic/first_encounter/.

[48] IEC 61691-5:2004, IEEE standard #1076.4-2000. VITAL (VHDL Initiative Towards
ASIC Libraries) ASIC (application specific integrated circuit) modeling specification.

http://www.theseusresearch.com/Downloads/NCL.PDF
http://www.di.ens.fr/ftp/pub/dmi/users/di/reports/liens-93-3.A4.ps.Z
http://www.gemplus.com/smart/rd/publications/ps/GMO01ema.ps.gz
http://tima.imag.fr/publications/files/th/csd_221.pdf
http://www.di.ens.fr/~piret/publ/power.pdf
http://www.dice.ucl.ac.be/crypto/files/publications/pdf119.pdf
http://www.annales-des-telecommunications.com/documents/Jui04.htm#A1886
http://www.tsi.enst.fr/publications/https://www.crypto.comelec.enst.fr/pubs/soc_side_channels.pdf
http://www.heliontech.com/downloads/des_asic_helioncore.pdf
http://www.prism.net/user/dcowley/docs.html
http://www.synopsys.com/
http://www.synopsys.com/partners/tapin/
http://www.cadence.com/
http://www.cadence.com/products/digital_ic/first_encounter/

184 BIBLIOGRAPHY

[49] “IPsec”. Security Architecture for the Internet Protocol, http://rfc.net/rfc2401.html
or http://www.ietf.org/rfc/rfc2401.txt.

[50] J.-L. Danger and S. Guilley and Ph. Matherat and Y. Mathieu and L.
Naviner and A. Polti and J. Provost. “Électronique Numérique Integrée”.
Cours de l’École Nationale Supérieure des Télécommunications, Paris, 2006.
http://www.comelec.enst.fr/tpsp/eni/poly/eni.pdf.

[51] Jean-Jacques Quisquater and François-Xavier Standaert. Exhaustive Key Search of the
DES: Updates and Refinements. February 2005.
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/.

[52] Joe Kilian and Phillip Rogaway. How to protect DES against exhaustive key search (an
analysis of DESX). Journal of Cryptology, 14(1):17–35, 2001.

[53] P. Kocher, J. Jaffe, and B. Jun. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Proceedings of CRYPTO’96, volume 1109 of LNCS,
pages pp 104–113. Springer, 1996. Springer-Verlag, (PDF).

[54] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis: Leaking Secrets. In Proceed-
ings of CRYPTO’99, volume 1666 of LNCS, pages pp 388–397. Springer, 1999. Springer-
Verlag, (PDF).

[55] Cédric Lauradoux and Ronan Keryell. CryptoPage-2 : un processeur sécurisé contre le
rejeu. In Proc. of RENPAR’15 / CFSE’3 / SympAAA’2003, October 2003.
http://www.lit.enstb.org/~keryell/publications/conf/2003/SympAAA/article.pdf.

[56] LEF/DEF parsers, website. http://openeda.si2.org/projects/lefdef/ or
http://www.cadence.com/partners/languages/languages.aspx.

[57] Régis Leveugle. Automatic modifications of high level VHDL descriptions for fault de-
tection or tolerance. In Proceedings of DATE’02, pages pp 837–841, March 2002.

[58] M. Akkar and C. Giraud. An Implementation of DES and AES secure against Some
Attacks. In Springer-Verlag, editor, Proc. of CHES’01, number 2162, pages 309–318,
2001.

[59] M. Matsui. Linear cryptanalysis method for DES cipher. In Proceedings Eurocrypt’93,
T. Helleseth, Ed., Springer-Verlag, (LNCS 765):386–397, 1994.

[60] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. october 1996. CRC Press, ISBN: 0-8493-8523-7, 816 pages,
http://www.cacr.math.uwaterloo.ca/hac/.

[61] T.S. Messerges, E.A. Dabbish, and R.H. Sloan. Investigations of Power Analysis Attacks
on Smartcards. In USENIX Workshop on Smartcard Technology, pages pp 151–162, May
1999.

[62] David Molnar, Matt Piotrowski, David Schultz, and David Wagner. The Program Counter
Security Model: Automatic Detection and Removal of Control-Flow Side Channel At-
tacks. 2005. Cryptology ePrint Archive, report 2005/368.

[63] J. H. Moore and G. J. Simmons. Cycle Structure of the DES with Weak and Semi-
Weak Keys. In Proceedings of CRYPTO, number LNCS 263, pages 3–32, August 1986.
Springer-Verlag, Berlin, 1987; Santa Barbara, USA.

http://rfc.net/rfc2401.html
http://www.ietf.org/rfc/rfc2401.txt
http://www.enst.fr/
http://www.comelec.enst.fr/tpsp/eni/poly/eni.pdf
http://www.ruhr-uni-bochum.de/itsc/tanja/SHARCS/
http://www.cryptography.com/timingattack/paper.html
http://www.cryptography.com/resources/whitepapers/DPA.pdf
http://www.lit.enstb.org/~keryell/publications/conf/2003/SympAAA/article.pdf
http://openeda.si2.org/projects/lefdef/
http://www.cadence.com/partners/languages/languages.aspx
http://www.cacr.math.uwaterloo.ca/hac/
http://eprint.iacr.org/2005/368

BIBLIOGRAPHY 185

[64] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor. Improving Smart
Card Security using Self-timed Circuits. In Proceedings of ASYNC’02, pages pp 211–218.,
April 2002. Manchester, United Kingdom.

[65] Neil Weste and David Harris. CMOS VLSI Design: A Circuits and Systems Perspective.
Addison Wesley, 2004. (3rd Edition), ISBN: 0-321-14901-7, http://www.cmosvlsi.com/.

[66] Network of Excellence ECRYPT virtual lab VAMPIRE (virtual application and im-
plementation research laboratory). The “Side-Channel Cryptanalysis” Lounge , 2006.
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html.

[67] NIST/ITL/CSD. DES Modes of Operation, December 1980.
(Online reference).

[68] NIST/ITL/CSD. FIPS PUB 74: Guidelines for implementing and using the NBS Data
Encryption Standard, April 1981.
http://www.itl.nist.gov/fipspubs/fip74.htm.

[69] NIST/ITL/CSD. Secure Hash Standard. FIPS PUB 180-1, 1993.
http://www.itl.nist.gov/fipspubs/fip180-1.htm.

[70] NIST/ITL/CSD. Modes of Operation Validation System (MOVS): Requirements and
Procedures. February 1998. (Online reference).

[71] NIST/ITL/CSD. Data Encryption Standard. FIPS PUB 46-3, October 1999.
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf.

[72] NIST/ITL/CSD. FIPS PUB 197: Advanced Encryption Standard (AES), November
2001. (Online reference).

[73] Renaud Pacalet. “Security of Security Hardware” graduate course at Institut Eurecom.
http://soc.eurecom.fr/crypto.

[74] Renaud Pacalet and Sylvain Guilley. CMP Annual Report 2005. (Online PDF versions:
web / local).

[75] Eric Peeters, François-Xavier Standaert, and Jean-Jacques Quisquater. Power and Elec-
tromagnetic Analysis: Improved Model, Consequences and Comparisons. Special Is-
sue of Integration, The VLSI Journal: “Embedded Cryptographic Hardware”, 2006.
(Online PDF).

[76] Philippe Matherat and Marc-Thierry Jaeckel. Dissipation logique des implémentations
d’automates — Dissipation du calcul. Technique et Science Informatique, 15(8):1079–
1104, october 1996.
French version: http://www.comelec.enst.fr/~matherat/publications/tsi96/;
English version: http://fr.arxiv.org/abs/quant-ph/9805018.

[77] Emmanuel Prouff. DPA Attacks and S-Boxes. pages 424–441. FSE 2005 (LNCS 3557),
february 2005. Paris, France. (Edited by Springer-Verlag).

[78] Jan M. Rabaey. SPICE (language & simulator) website.
http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/.

[79] Ralph Merkle and Martin Hellman. On the Security of Multiple Encryption. Communi-
cations of the ACM, 24(7):465–467, July 1981.

http://www.cmosvlsi.com/
http://www.ecrypt.eu.org/
http://www.ruhr-uni-bochum.de/itsc/tanja/vampire
http://www.crypto.ruhr-uni-bochum.de/en_sclounge.html
http://www.itl.nist.gov/fipspubs/fip81.htm
http://www.itl.nist.gov/fipspubs/fip74.htm
http://www.itl.nist.gov/fipspubs/fip180-1.htm
http://csrc.nist.gov/publications/nistpubs/800-17/800-17.pdf
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://www.eurecom.fr/
http://soc.eurecom.fr/crypto
http://cmp.imag.fr
http://cmp.imag.fr/download/reports/2005/cmp_annual_report_2005.pdf
https://www.crypto.comelec.enst.fr/interne/secmat/cmp_annual_report_2005.pdf
http://www.dice.ucl.ac.be/crypto/files/publications/pdf252.pdf
http://tsi.revuesonline.com/
http://www.comelec.enst.fr/~matherat/publications/tsi96/
http://fr.arxiv.org/abs/quant-ph/9805018
http://crypto.rd.francetelecom.com/fse2005/
http://www.springerlink.com/
http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE/

186 BIBLIOGRAPHY

[80] A. Razafindraibe, M. Robert, and P. Maurine. Asynchronous Dual Rail Cells to Secure
Cryptosystems against Side Channel Attacks. In Proc. of SAME 2005 forum, 8th edition.
Sophia Antipolis, France, October 6th 2005.

[81] Richard Clayton and Mike Bond. Experience Using a Low-Cost FPGA Design to Crack
DES Keys. In Cryptographic Hardware and Embedded Systems (CHES’02), volume LNCS
2523, pages 579–592, Aug 2002.

[82] Vincent Rijmen. Efficient Implementation of the Rijndael S-box. (Short note in PDF).

[83] Ronald L. Rivest. Message Digest 5. RFC 1321.
http://theory.lcs.mit.edu/~rivest/Rivest-MD5.txt.

[84] P. Rogaway. The Security of DESX, 1996. RSA Laboratories Cryptobytes,
citeseer.ist.psu.edu/rogaway96security.html.

[85] Ross J. Anderson. Serpent website (former candidate to the AES), 1999.
http://www.cl.cam.ac.uk/~rja14/serpent.html.

[86] Régis Bévan. Évaluation statistique et sécurité des cartes à puce. Évaluation d’attaques
DPA évoluées. PhD thesis, (french). Université Paris 11 & École Nationale Supérieure
d’Électricité (Supélec), April 2004.

[87] S. Chaudhuri and J.-L. Danger and S. Guilley and Ph. Hoogvorst. FASE: An Open
Run-Time Reconfigurable FPGA Architecture for Tamper-Resistant and Secure Embed-
ded Systems. In 3rd international conference on reconfigurable computing and FPGAs
(ReConFig 2006), September 2006. San Lúıs Potośı, México, (Online PDF).

[88] S. Guilley and Ph. Hoogvorst. The Proof by 2M − 1: a Low-Cost Method to Check
Arithmetic Computations. In SEC 2005, volume IFIP 181, pages pp. 589–600, May 2005.
Makuhari-Messe, Chiba, Japan. (PDF).

[89] S. Guilley and Ph. Hoogvorst and R. Pacalet. Differential Power Analysis Model and some
Results. In Proceedings of WCC/CARDIS’04, pages pp 127–142, August 2004. Toulouse,
France.

[90] Takashi Satoh, Tetsu Iwata, and Kaoru Kurosawa. On Cryptographically Secure Vectorial
Boolean Functions. In Proc. of Asiacrypt’99, volume 1716, pages 20–28, 1999. Springer
Verlag.

[91] A. Schubert, R. Jährig, and W. Anheier. Cryptography Reuse Library. In Forum on
Design Languages (FDL 99). Lyon, France, August 1999.

[92] Sci-worx. Datasheet – DES / Triple DES (High Performance). (Online reference).

[93] M. Shams, J.C. Ebergen, and M.I. Elmasry. Modeling and comparing CMOS implemen-
tations of the C-element. IEEE Transactions on VLSI Systems, 6(4):563–567, December
1998.

[94] Simon Moore and Ross Anderson and Robert Mullins and George Taylor and Jacques
J.A. Fournier. Balanced Self-Checking Asynchronous Logic for Smart Card Appli-
cations. Journal of Microprocessors and Microsystems, 27(9):421–430, October 2003.
http://www.cl.cam.ac.uk/~swm11/research/papers/micromicro2003.pdf.

[95] Sinan Si Alhir. “Learning UML”, July 2003. ISBN: 0-596-00344-7.

[96] D. Sokolov, J. Murphy, and A. Bystrov. Improving the Security of Dual-Rail Circuits. In
Proceedings of CHES’04, LNCS, pages pp 282–297. Springer, Aug 2004.

http://www.same-conference.org/same_2005
http://www.iaik.tugraz.at/research/krypto/AES/old/~rijmen/rijndael/sbox.pdf
http://theory.lcs.mit.edu/~rivest/Rivest-MD5.txt
citeseer.ist.psu.edu/rogaway96security.html
http://www.cl.cam.ac.uk/~rja14/serpent.html
http://www.supelec.fr/
http://www.tsi.enst.fr/publications/enst/inproceedings-2006-6437.pdf
https://www.crypto.comelec.enst.fr/pubs/proof_sec05.pdf
http://www.sci-worx.com/Data_Encryption_Standard_DES.150.0.html
http://www.cl.cam.ac.uk/~swm11/research/papers/micromicro2003.pdf
http://www.oreilly.com/catalog/learnuml/

BIBLIOGRAPHY 187

[97] Stefan Mangard and Elisabeth Oswald and Thomas Popp. Power Analysis Attacks:
Revealing the Secrets of Smartcards. Springer, December 2006. ISBN 0-387-30857-1,
http://www.dpabook.org/.

[98] E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas. The AEGIS processor
architecture for tamper evident and tamper resistant processing, 2003. Technical Report
LCS-TM-461, Massachusetts Institute of Technology.

[99] Ivan E. Sutherland. Micropipelines (Turing award). Communications of the ACM,
32(6):720–738, June 1989.

[100] Daisuke Suzuki and Minoru Saeki. Security evaluation of dpa countermea-
sures using dual-rail pre-charge logic style. In CHES, pages 255–269, 2006.
http://dx.doi.org/10.1007/11894063_21.

[101] Sylvain Guilley and Philippe Hoogvorst and Renaud Pacalet. A Fast Pipelined Multi-
Mode DES Architecture Operating in IP Representation. Integration, The VLSI Journal,
to appear in 2006. DOI: 10.1016/j.vlsi.2006.06.004.

[102] Sylvain Guilley, Philippe Hoogvorst, Yves Mathieu and Renaud Pacalet. The “Backend
Duplication” Method. In CHES 2005, volume LNCS 3659, pages 383–397. Springer.
August 29th – September 1st, Edinburgh, Scotland, UK (Online presentation).

[103] K. Tiri, M. Akmal, and I. Verbauwhede. A Dynamic and Differential CMOS Logic with
Signal Independent Power Consumption to Withstand Differential Power Analysis on
Smart Cards. In Proceedings of ESSCIRC’02, pages pp 403–406, September 2002.

[104] K. Tiri and I. Verbauwhede. Securing Encryption Algorithms against DPA at the
Logic Level: Next Generation Smart Card Technology. In LNCS, editor, Proceedings
of CHES’03, volume 2779 of LNCS, pages pp 125–136. Springer, September 2003.

[105] K. Tiri and I. Verbauwhede. A Logic Level Design Methodology for a Secure DPA Re-
sistant ASIC or FPGA Implementation. In Proceedings of DATE’04, pages pp 246–251,
February 2004.

[106] K. Tiri and I. Verbauwhede. Place and Route for Secure Standard Cell Design. In
Proceedings of CARDIS’04, pages pp 143–158, August 2004.

[107] Tommaso Toffoli. Bicontinuous Extensions of Invertible Combinatorial Functions. Math-
ematatical Systems Theory, 14:13–23, 1981.

[108] VSI Alliance. On-Chip Bus Development Working Group. Virtual Component Interface
Standard Version 2 (OCB 2 2.0), April 2001. http://www.vsia.org/.

[109] Z.C. Yu, S.B. Furber, and L.A. Plana. An investigation into the Security of Self-timed
Circuits. In Proc. of Async’03, May 2003. Vancouvers, Canada.

[110] H. Zimmerman. OSI reference model — The OSI model for architectures for open systems
interconnection. IEEE Transactions on Communications, 28:425–432, April 1980.

[111] Éric Brier, Christophe Clavier, and Francis Olivier. Optimal statistical power analysis.
Cryptology ePrint Archive, Report 2003/152, 2003. http://eprint.iacr.org/.

[112] Éric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis with a
Leakage Model. Proc. of CHES’04, LNCS 3156:16–29, August 11–13 2004. ISSN: 0302-
9743; ISBN: 3-540-22666-4; DOI: 10.1007/b99451; Cambridge, MA, USA.

http://www.springer.com
http://www.dpabook.org/
http://dx.doi.org/10.1007/11894063_21
http://islab.oregonstate.edu/ches/ches2005/presentations/CHES2005_guilley.pdf
http://www.vsia.org/
http://eprint.iacr.org/

	Résumé de la thèse en français
	Acknowledgments
	Introduction
	Physical cryptography
	Overview of the cryptography
	Security needs
	Security objects

	The gray box model
	Framework for the attacks considered in this PhD thesis
	Side-channel analyzes provided with in this PhD thesis

	Attack of flawed implementations
	Common misconceptions
	Audience
	Personal contributions

	SCA immanence
	Structural attacks
	Logical dissipation
	Reversible logic
	Conservative logic
	Application to DES
	Conclusion about reversible and conservative logics

	Power attack model
	Introduction to power attacks
	Differential power analysis
	DPA model
	Electrical simulation of the DPA
	Connections between DPA and conventional cryptanalysis
	Conclusion of the power attack model
	Illustration of DPA signal-to-noise ratio on histograms

	Practical computing as security weaknesses
	Integrability constraints
	Hamming weight versus Hamming distance

	DPA on DES
	Secured crypto-processors design
	Security target
	Motivation for DES

	A DES architecture operating in IP representation
	Introduction on DES
	DES datapath improvement thanks to a generalized pipelining
	Optimal software/hardware partition to realize all DES variants
	Performance evaluation of the proposed architecture
	Comparison with other fast and versatile implementations of DES
	Proposed architectures modifications for bit-slice P&R
	Conclusion on the DES architecture

	Fully combinatorial DES implementation
	Combinatorial DES datapath
	Security properties of the combinatorial DES

	DES remarkable cryptological properties
	DES weak keys and fixed points
	DES semi-weak keys and anti-fixed points

	DES remarkable SCA properties
	Semi-weak keys
	Weak keys
	SCA properties generalization for arbitrary keys

	Explanation for the differential traces using HW vs HD
	Interpretation of the differential trace using HW
	Interpretation of the differential trace using HD
	Single versus multi-bit HW or HD selection functions
	Conclusion: improvement of side-channels analyzes

	Realization of the DPA on DES
	Selection function for the DPA on the DES architecture of SecMat V1
	DPA on traces integrals

	Backend countermeasures against SCAs
	Leaking no information
	Information = distinguishability
	Randomization

	The secured library ``SecLib''
	Secured standard cells
	CMOS structures for the secured cells
	Use in a regular design flow
	Performances
	The ``SecLib'' library
	Interconnect involvement in a circuit security

	A place-and-route strategy for secured ASICs
	Using differential logic to thwart SCA
	The ``backend duplication'' method
	The constraints required by the ``backend duplication'' method
	``Backend duplication'' method insertion into an existing design flow
	Comparison of the ``backend duplication'' method with related works
	Suitability of the ``backend duplication'' method with some logic styles
	Backend triplication
	Implementing a duplicated netlist
	Conclusion on the ``backend duplication''
	Graphical illustrations of the ``backend duplication'' method

	Conclusions
	Summary of the dissertation
	Perspectives
	Open issues
	Going further

	Attackees/attackers technical details
	The SecMat circuits family
	SecMat frontend
	SecMat backend

	The attack boards
	The acquisition setup
	Optimal power traces acquisition experimental conditions
	The acquisition software

	Power Traces on the DES Co-Processor of SecMat V1
	Hamming weight vs Hamming distance differential traces
	DPA signal-to-noise ratios on DES

	Glossary

