
HAL Id: pastel-00002564
https://pastel.hal.science/pastel-00002564

Submitted on 2 Jul 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Conception et Ingénierie de Réseaux Nouvelle
Génération Orientés Ethernet

Yannick Brehon

To cite this version:
Yannick Brehon. Conception et Ingénierie de Réseaux Nouvelle Génération Orientés Ethernet. do-
main_other. Télécom ParisTech, 2007. English. �NNT : �. �pastel-00002564�

https://pastel.hal.science/pastel-00002564
https://hal.archives-ouvertes.fr

THÈSE

Présentée pour obtenir le grade de

Docteur de l’École Nationale Supérieure des Télécommunications de Paris

Spécialité : Informatique et Réseaux

par

Yannick BRÉHON

Conception et Ingénierie

des Réseaux de Nouvelle Génération Orientés Ethernet

Soutenue le 11 mai 2007 devant la Commission d’Examen :

Jean-Claude Bermond (INRIA) Président
Michal Pióro (WUT & ULUND) Rapporteur
Deepankhar Medhi (UMKC) Rapporteur
Emmanuel Dotaro (Alcatel-Lucent) Examinateur
Daniel Kofman (ENST) Directeur de Thèse
Augusto Casaca (INESC-ID) Co-Directeur de Thèse

A Amélie.

iv

v

Résumé

Introduction

Les opérateurs de réseaux tendent aujourd’hui à déployer la technologie Ethernet le plus
largement possible, dans les segments d’accès, métropolitains et de cœur, afin de con-
struire les Réseaux de Nouvelle Génération. Cette mouvance s’accompagne d’un besoin
d’optimiser l’utilisation des ressources du réseau, et de réduire les coûts opérationnels et
d’infrastructure.

Les Réseaux de Nouvelle Génération sont à l’étude afin de satisfaire les besoins futurs des
utilisateurs. Dès aujourd’hui, les usages évoluent et de nouveaux services émergent. Du
fait de l’augmentation à la fois de la bande passante mise à la disposition de l’utilisateur
et de la puissance des ordinateurs personnels, on observe l’apparition de nouveaux services
et applications, comme le peer-to-peer, la télévision Haute Définition, la convergence fixe-
mobile, etc. En ce qui concerne les services aux professionnels, et du fait des mêmes
facteurs, de nouveaux services émergent, tels que des réseaux privés virtuels à très haut
débit, des grids (plateformes de calcul distribué), la visioconférence. C’est la satisfaction de
tous ces besoins que les Réseaux Nouvelle Génération doit offrir. Or du fait de l’agressivité
du marché, constamment sous l’assaut de nombreux nouveaux entrants, les opérateurs
doivent être de plus en plus efficaces tout en offrant de plus en plus de services.

Dans ces conditions, l’intégration et l’optimisation multi-couches est un problème cru-
cial à résoudre pour les opérateurs, afin de réduire notamment les coûts opérationnels,
directement liés à la quantité de main d’œuvre nécessaire à la bonne gestion et surveil-
lance du réseau. En parallèle, les opérateurs ont besoin de méthodes d’ingénierie de trafic
afin d’utiliser au mieux les ressources de leur réseau. L’utilisation croissante d’Ethernet
comme technologie prévalente dans tous les segments du réseau est l’une des réponses à
ces problèmes.

Ethernet est la technologie de couche 2 (selon le modèle OSI [Zim80]) la plus répandue
chez l’utilisateur final, grâce à sa simplicité de déploiement et d’utilisation et son bas
coût. Afin de réduire les coûts d’intégration, les opérateurs cherchent donc à pousser
Ethernet de plus en plus profondément dans le réseau. Dans les réseaux de cœur, l’une

vi

des tâches du groupe de travail Common Control And Measurement Plane (CCAMP)
de l’IETF a donc été de rendre Ethernet compatible avec les contraintes propres à ce
segment, on parle d’Ethernet carrier-class: cet effort s’est concrétisé sous la forme des
Layer 2 LSPs [Pap04], qui font d’Ethernet une solution orientée connexion, contrôlée avec
GMPLS. Dans le segment métropolitain, les Réseaux Privés Virtuels Provisionnés par le
Fournisseur (PPVPN) sont utilisés pour fournir les services d’interconnexion entre les sites
de leurs clients. Ce service permet une communication privée et sécurisée entre ces sites
en passant au travers d’une infrastructure commune et partagée, telle qu’Internet.

Contribution au dimensionnement des réseaux métropolitains

Dans le segment métropolitain des réseaux, Ethernet est déjà largement déployé et utilisé,
en particulier afin de fournir le service de Réseaux Privés Virtuels (RPV). Néanmoins,
ce déploiement est basé sur des protocoles qui évoluent afin d’offrir des fonctionnalités
nouvelles et améliorées d’ingénierie de trafic.

Ethernet utilise le Spanning Tree Protocol pour établir un arbre couvrant de communica-
tion, qui garantit qu’il n’y aucune boucle dans le transport de l’information d’une source
vers une destination. Un arbre couvrant n’utilise par définition qu’un nombre restreint de
liens (un de moins que le nombre total de nœuds dans le réseau). De ce fait, l’utilisation
d’un seul arbre soutenant tous les RPV implique que de nombreux liens ne sont pas du
tout utilisés, tandis que d’autres liens peuvent être surchargés: il n’y a pas d’équilibrage
de la charge.

Avec l’apparition du Multiple Spanning Trees Protocol [IEE02], plusieurs arbres couvrants
différents peuvent être utilisés conjointement sur un même réseau. Il est ensuite possible
de faire correspondre un ou plusieurs RPV à un arbre couvrant - mais un même RPV ne
peut pas utiliser plus d’un seul arbre. Ces arbres de communication comprennent tous des
liens du réseau, mais en utilisant plusieurs arbres, il est possible de répartir la charge du
réseau sur plus de liens. Un problème d’optimisation double se pose donc: il faut choisir
l’ensemble des arbres couvrants de façon optimale, et associer à chacun de ces arbres un
ou plusieurs RPV de façon optimale. L’optimalité peut se définir selon divers critères. On
peut chercher à minimiser l’usage global des ressources, ou bien minimiser la charge du
lien le plus chargé (cela permet de garantir une augmentation proportionnelle maximale
du trafic accepté dans le réseau, et revient à équilibrer la charge), ou encore, avoir des
arbres les plus divers possibles afin de garantir la plus grande tolérance aux pannes.

Dans notre étude présentée dans le chapitre 2, nous formulons mathématiquement ce prob-
lème sous la forme d’un programme d’optimisation non linéaire avec variables entières.
Néanmoins, il n’est pas possible de le résoudre de façon exacte avec des solveurs commer-
ciaux de type CPLEX [CPLEX]. De ce fait nous présentons une heuristique de résolution

vii

très rapide et efficace. Nos résultats sont comparés à ceux d’autres méthodes présentes
dans la littérature scientifique et obtiennent de meilleurs résultats, tant sur la répartition
de la charge que sur la résistance aux pannes. En moyenne, sur les trois réseaux testés,
notre méthode permet une réduction de 8% de la charge du lien le plus chargé, tout en
n’augmentant la charge globale que marginalement. L’augmentation globale de la charge
est nécessaire, mais est due à l’équilibrage de la charge de quelques liens les plus chargés
vers les liens les moins chargés. Elle n’impacte donc pas les coûts effectifs de l’opérateur,
qui au contraire, peut voir son trafic évoluer linéairement de façon plus importante.

Présentation du concept de bus-LSPs

Dans les réseaux orientés-connexions avec un plan de contrôle GMPLS, on appelle La-
bel Switched Path(LSP) une connexion entre un équipement d’entrée (ingress) et un
équipement de sortie (egress). Cette connexion utilise un ou plusieurs liens reliant des
équipements appelés Label Switching Routers (LSRs). Ces liens peuvent être des liens
physiques, comme des fibres, ou des LSPs de plus bas niveau servant à créer le LSP
supérieur. Une adjacence d’acheminement, ou Forwarding Adjacency (FA), est une représen-
tation dans le plan utilisateur de la connectivité qu’un ou plusieurs LSPs établissent entre
le nœud ingress et le nœud egress. Cette FA peut ensuite être utilisée dans les couches
supérieures, tout comme un lien physique.

Nous introduisons dans le chapitre 3 les bus-LSP et les bus-FA qui sont des extensions
de ces concepts de LSP et de FA. Avec un bus-LSP, les LSRs intermédiaires ont la pos-
sibilité d’injecter et d’extraire du trafic circulant sur le LSP. De ce fait, le bus-LSP offre
une connectivité entre les nœuds ingress, egress et nœuds intermédiaires. La bus-FA est
une représentation de cette connectivité dans le plan utilisateur. Comme le bus-LSP est
unidirectionnel, la donnée ne peut être envoyée que vers une destination en aval de la
source.

Un mécanisme permet à tout nœud (ingress ou intermédiaire) d’indiquer dans le paquet
émis pour quel destinataire il est adressé, par un système de compteur décrémenté dans
chaque nœud. Comme avec les LSPs, il est possible pour un bus-LSP d’utiliser un autre
bus-LSP (ou un segment de celui) comme lien virtuel (principe de nesting).

Nous présentons aussi dans le chapitre 3 une manière de représenter les bus-LSPs dans les
graphes modélisant les réseaux.

Bus-LSPs dans des environnements mono-couches

Dans le chapitre 4, nous étudions le problème d’optimisation sous-jacent à l’introduction
de bus-LSPs dans des réseaux mono-couches. Dans ce type de réseau, l’intuition suggère

viii

que les bus-LSPs doivent permettre une réduction du nombre total de connexions établies,
et de ce fait, de réduire les coûts opérationnels du réseau. En effet, moins il y a de
connexions, moins il y a besoin de personnel pour surveiller et gérer le réseau.

Le problème est donc formulé comme deux programmes d’optimisation linéaire avec vari-
ables entières. Le premier cherche à minimiser uniquement ces coûts opérationnels, tandis
que le second vise à réduire ces coûts mais en maintenant une utilisation de la bande pas-
sante disponible dans le réseau au minimum. Une résolution de ces programme est réalisée
pour deux réseaux d’illustration, et les résultats confirment donc l’hypothèse. En effet, on
observe une réduction significative, dans tous les cas, du nombre de connexions nécessaires
aux opérations du réseau (de 75% à 95% pour l’étude sur les coûts opérationnels simples,
de 66% à 87% pour l’étude incluant l’utilisation optimale de la bande passante du réseau).

Bus-LSPs dans des environnements multi-couches

Dans le chapitre 5, nous étudions le problème d’optimisation induit par l’introduction
de bus-LSPs dans des réseaux multi-couches. Ici, l’étude qualitative réalisée dans le
chapitre 3 permet d’espérer une réduction de la quantité de trafic circulant dans les couches
supérieures du réseau, une meilleure utilisation des ressources du réseau et à nouveau une
réduction des coûts opérationnels par une baisse du nombre total de connexions établies.

Le problème est formulé mathématiquement sous la forme d’un programme d’optimisation
linéaire avec variables entières. Ce problème est trop complexe pour obtenir des résultats
issus d’une résolution exacte. C’est pourquoi nous proposons une approche heuristique
(non-exacte). Pour cela, nous avons développé des variantes des algorithmes MIRA [KKL00]
et Dijkstra [Dij59], respectivement PIBRA et FT-SPF. Ces algorithmes sont à la base de
notre heuristique, dont les détails sont donnés dans la section 5.3.

Cette heuristique obtient de bons résultats pour tous les critères jugés. Ainsi, sur les deux
réseaux de cœur utilisés pour la tester, nous obtenons une quantité de trafic routée dans la
couche supérieure quasi-nulle, même sous de fortes charges. Le nombre de bus-LSPs établis
est très réduit (6 bus pour 110 demandes dans un cas, 20 bus pour 420 demandes dans
l’autre). Le délai de propagation n’est quasiment pas augmenté bien que la répartition
de charge permette une grande augmentation linéaire de la matrice de trafic. C’est sur
ce dernier point néanmoins que l’approche montre ses limites pour le plus grand des deux
réseaux, et dans la section 5.5, nous présentons donc des pistes pour améliorer l’approche.

ix

Intégration des bus-LSPs et des bus-FAs dans un plan de

contrôle GMPLS

Afin de permettre une utilisation concrète des bus-LSPs dans les réseaux de cœur, il
est nécessaire de fournir les outils pour les manipuler dans le plan de contrôle. Dans le
chapitre 6, nous les présentons pour le protocole de routage interne de GMPLS (OSPF-
TE [RFC3630]) et pour le protocole de signalisation (RSVP-TE [RFC3473]).

Le protocole de routage permet l’échange d’informations de routage entre les divers nœuds
appartenant au réseau. De ce fait il est naturel de l’utiliser pour que les nœuds commu-
niquent leur support éventuel des bus-LSPs. De plus, il est nécessaire d’annoncer dans le
réseau les bus-FAs induites par les bus-LSPs. L’extension au protocole proposée permet
de faire ceci tout en étant rétro-compatible avec les versions antérieures du protocole.

Au niveau de la signalisation, l’introduction des bus-LSPs introduit de nouvelles con-
traintes dans le réseau. Il faut en effet pouvoir rediriger le bus, mais aussi changer ses
extrémités sans avoir d’effet sur les nœuds intermédiaires, ou encore fusionner plusieurs
bus en un seul. Après avoir analysé comment ces fonctions peuvent être réalisées, pour
certaines d’entre elles, avec les blocs existant de RSVP-TE (section 6.2.3), l’impossibilité
de manipuler aisément les bus-LSPs sans une extension ad-hoc est indéniable. Naturelle-
ment, nous introduisons une extension au protocole (section 6.2.4) qui permet de remplir
intégralement ce cahier des charges en un nombre minimal d’opérations.

x

xi

Acknowledgements

I would like to thank my thesis director, Daniel Kofman for the patience he showed all
along my years preparing this thesis. He found time to advise me, both scientifically and
morally. He brought out the ideas which were in me, helped me formulate them and
investigate them. For this and for helping me achieve my objectives, I am very grateful.

I sincerely thank Professor Augusto Casaca from INESC-ID, Lisboa, for having been my
co-advisor. He followed my progress and gave me valuable input continuously. I also want
to thank him for the great help he provided on the article we wrote together. Generally,
he helped me structure my work and the thesis, and gave me very sound advice.

Professor Pióro and Professor Medhi have agreed to be the reviewers of my thesis, and
this regardless of all the obstacles. Despite the very short deadlines, they gave me their
comments on my thesis and helped improve it. Also, Professor Pióro provided major con-
tributions to the formulation of problem presented in Section 5.2.2. I also thank Professor
Bermond and Emmanuel Dotaro for being examiners of the thesis, I know I have imposed
on their heavily loaded schedules.

I also wish to thank all the people at the RHD department of the ENST, who have made my
time spent at the ENST an enjoyable one. In particular, I wish to thank Ramon Casellas
and Jean-Louis Rougier who I have always been able to count on, and who provided a
large amount of the work on the control plane issues tackled in this thesis. Also I wish to
thank Myriam Morcel whose kindness and helpfulness I have always been able to rely on.

I have appreciated the possibility to collaborate with great people at Alcatel-Lucent,
namely Emmanuel Dotaro and Martin Vigoureux, and then join them for my career.
They gave me time to complete my thesis, and welcomed me, in the PTI research team.

For her personal and moral support, I am extremely grateful to Amélie Cook, the love
of my life. She has always believed in me and showed it, I deeply thank her for it. To
my parents, I am grateful and glad to make them proud, as it is their love and education
which has made me the man I am today. Also, I thank my brother David, he has made
time and been there for me when I needed him; in short, he has been a great brother.
Last but not least, I wish to thank all my beloved friends who have meant so much along
the years, Ze Groop and Les Frères Daltons in particular.

xii

xiii

Abstract

The increase in individual and professional customer expectations, as well as the fast
technological evolutions, are leading to the design of the Next Generation Internet (NGI).
Network optimization allows operators to efficiently deliver high-quality services at reduced
costs. Due to the pre-eminence of Ethernet technologies at the customer premises and in
the access network segment, and due to its low cost, Ethernet is a natural candidate to
serve as the technology of choice of the NGI.

In the metropolitan network segment, efforts have led to specifying Ethernet flavors which
allow mapping client traffic into Virtual LANs. In this thesis, we investigate how to
efficiently assign these VLANs to the Spanning Trees generated by Ethernet’s Spanning
Tree Protocol, since this is currently the only way to perform traffic-engineering and
network optimization in this network segment. We describe a way of generating the
Spanning Trees and mapping the VLANs, which

In the core network segment, several initiatives aim at turning Ethernet into a GMPLS-
controlled connection-oriented technology (such as Layer 2 LSPs and PBB-TE). In this
thesis, a new type of connection for packet- and frame- based, connection-oriented and
GMPLS-controlled technologies is introduced and studied: the bus-LSP. Both in single-
layer and in multi-layer networks, it provides the operator with significant cost reduction.
We numerically quantify this reduction, as well as engineering methods for efficiently
deploying bus-LSPs. We also detail the control plane protocols extensions needed to
manage these bus-LSPs.

xiv

xv

List of Abbreviations

AD Add-Drop

ADSL Asymmetric Digital Subscriber Line

AP Access Point

ATM Asynchronous Transfer Mode

CAPEX Capital Expenditure

CCAMP Common Control And Measurement Plane

CE Customer Edge

C-VLAN Customer Virtual Local Area Network

DFGM Diversified Forest with Greedy Mapping

DSL Digital Subscriber Line

DWDM Dense Wavelength Division Multiplexing

EGP External Gateway Protocol

ERO Explicit Route Object

FA Forwarding Adjacency

FCAPS Fault-management, Configuration, Accounting, Performance, Security

FDDI Fiber Distributed Data Interface

FTTx Fiber To The Home/Curb/Office/etc.

FT-SPF Forbidden Turns - Shortest Path First

GMPLS Generalized Multi-Protocol Label Switching

IETF Internet Engineering Task Force

IGP Internal Gateway Protocol

ISP Internet Service Provider

L1, L2, L3 Layer 1, Layer 2, Layer 3 (of the OSI model)

L1-VPN, L2-VPN, L3-VPN Layer 1-, Layer 2-, or Layer 3-Virtual Private Network

LAN Local Area Network

LSA Link State Advertisement

LSP Label Switched Path

LSR Label Switching Router

xvi

MEF Metro Ethernet Forum

MCL Minimal Complexity Layout

MCL-BC Minimal Complexity Layout with Bandwidth Constraint

MILP Mixed-Integer Linear Program

MINLP Mixed-Integer Non-Linear Program

MLXC Multi-Layer Cross-Connect

MPLS Multi-Protocol Label Switching

MSTP Multiple Spanning Trees Protocol

OAM Operations, Administration and Maintenance

OCX Optical Cross-Connect

OPEX Operational Expenditure

OSI Open Systems Interconnection

OSPF Open Shortest Path First

OSPF-TE Open Shortest Path First - Traffic Engineering extension

PAD Packet Add-Drop

PCE Path Computation Element

PE Provider Edge

PIBRA Potential and Interference-Based Routing Algorithm

PPVPN Provider Provisioned Virtual Private Networks

PSC Packet-Switching Capability

PWE3 Pseudo-Wire Emulation Edge-to-Edge

QoS Quality of Service

RA Router Advertisement

RRO Record Route Object

RSTP Rapid Spanning Tree Protocol

RSVP Resource reSerVation Protocol

RSVP-TE Resource reSerVation Protocol - Traffic Engineering extension

SDH Synchronous Digital Hierarchy

SLA Service Level Agreement

SP Service Provider

SRRG Shared Risk Resource Group

ST Spanning Tree

STP Spanning Tree Protocol

xvii

TDM Time-Division Multiplexing

TE Traffic Engineering

TLV Type, Length, Value

VLAN Virtual Local Area Network

VNT Virtual Network Topology

VPLS Virtual Private LAN Service

VPN Virtual Private Network

VPWS Virtual Private Wire Service

VTD Virtual Topology Design

VTHD Vraiment Très Haut Débit

WAN Wide Area Network

WDM Wavelength Division Multiplexing

WLAN Wireless Local Area Network

xviii

xix

Contents

Résumé v

1 Introduction 1

1.1 Ethernet in the Next Generation Networks 1

1.2 The Virtual Private Networks Services . 3

1.3 Service Providers and Transport Networks 5

1.3.1 Transport Networks . 5

1.3.2 Network Planes . 6

1.3.3 Multilayer Networks: Peer and Overlay Models 10

1.4 Multilayer Networks Optimization Methodology 12

1.4.1 Static Optimization Heuristics . 13

1.4.2 Dynamic Optimization Heuristics . 14

1.4.3 Dynamic and Static Optimization Heuristics Interworking 15

1.5 Thesis organization . 15

2 Contribution to Metropolitan Ethernet design 17

2.1 Towards Metro Ethernet . 17

2.1.1 Using VLANs to provide VPN services 17

2.1.2 Ethernet’s control plane . 18

2.1.3 Requirements for a Metro Access Ethernet 19

2.2 Metro Ethernet for Ethernet VPNs . 20

2.3 Related work . 21

2.4 Formulation as a MINLP . 21

2.4.1 Preliminary observations . 22

2.4.2 Optimization Problem Formulation 22

2.5 Greedy Heuristic Mapping of VPNs to Spanning Trees 27

xx CONTENTS

2.5.1 Building the Spanning Forest . 27

2.5.2 Mapping the VPNs on the Spanning Forest 28

2.6 Performance Analysis . 28

2.7 Concluding Remarks . 34

3 Bus-LSPs and Bus-FAs 37

3.1 Technological context . 37

3.1.1 Opaque optical network architecture 37

3.1.2 GMPLS Unified Control Plane and MLXCs 39

3.2 Bus-LSPs . 40

3.2.1 Definition . 40

3.2.2 The Packet Add-Drop (PAD) . 41

3.2.3 Related work . 42

3.2.4 Benefits of the Bus-LSPs . 42

3.3 Representation in multi-layer networks . 46

3.4 Concluding Remarks . 47

4 Bus-LSPs in Single Layer Environments 49

4.1 Optimization Model for a Network Using bus-LSPs 49

4.1.1 Network and Paths . 49

4.1.2 Demands and Flows . 50

4.2 Optimization Problems Formulation . 50

4.2.1 Reduced Complexity Layout With Bus-LSPs 51

4.2.2 Reduced Complexity, Minimal Bandwidth Layout With Bus-LSPs . 52

4.2.3 Problem Formulation Improvements and Additional Constraints . . 53

4.3 Numerical Results . 55

4.4 Concluding Remarks . 57

5 Bus-LSPs in Multi Layer Environments 59

5.1 An Introductory Example . 59

5.2 Optimization Problem . 60

5.2.1 Optimization Model for a Multi-Layer Network Using Bus-LSPs . . 60

5.2.2 Optimization Problem Formulation 62

5.3 Heuristic Algorithm . 65

CONTENTS xxi

5.3.1 Forbidden Turns Shortest Path First Algorithm 65

5.3.2 PIBRA for Lexicographically Maximizing a Traffic Matrix 68

5.3.3 Layout Design Algorithm for Bus-LSPs 69

5.4 Numerical Results . 72

5.4.1 Testbed . 72

5.4.2 Results . 72

5.5 Heuristic Algorithm Improvements . 81

5.5.1 Improving the initial routing . 82

5.5.2 Allowing overlapping bus-LSPs . 82

5.5.3 Minor modification of Algorithm 6 83

5.5.4 Dynamic use of the heuristics . 84

5.6 Concluding Remarks . 84

6 Extensions to GMPLS Control Protocols for Bus-LSPs 85

6.1 Routing . 85

6.1.1 OSPF-TE: the GMPLS routing protocol 85

6.1.2 Bus-LSPs related requirements of OSPF-TE 86

6.1.3 Various representations . 86

6.1.4 Flooding node capabilities . 94

6.2 Signaling . 95

6.2.1 Introduction . 95

6.2.2 Managing Add-Drop Points . 95

6.2.3 Bus-LSP Manipulation Methods Without Extensions 97

6.2.4 Extension Proposal . 109

6.3 Concluding Remarks . 120

7 Conclusion 121

7.1 Summary of Contribution . 121

7.2 Future Work . 123

A AMPL models 125

A.1 AMPL model for problem of Section 2.4 . 125

A.1.1 Model . 125

A.1.2 Model data file . 131

xxii CONTENTS

A.2 AMPL model for problem of Section 4.2 . 133

A.2.1 Model . 133

A.2.2 Model data file . 136

A.3 AMPL model for problem of Section 5.2 . 138

A.3.1 Model . 138

A.3.2 Model data file . 142

A.4 AMPL model for problem of Section 5.4 . 145

A.4.1 Model . 145

A.4.2 Model data file . 147

xxiii

List of Figures

1.1 Provider Provisioned Virtual Private Network 4

1.2 Network Planes . 7

1.3 Multilayer Network Example . 11

2.1 Metro Ethernet Architecture . 20

2.2 Link Bandwidth Calculation . 22

2.3 VTHD Network . 29

2.4 Italian High-Speed Network . 30

3.1 The MLXC architecture . 38

3.2 Bus-LSP Terminology . 40

3.3 Direct Point to Point Architecture . 43

3.4 Bus-LSP Architecture . 43

3.5 Multi-Hopped Architecture . 44

3.6 Bus-LSP . 47

3.7 Bus-LSP equivalent representation . 47

4.1 NET1 Network . 55

5.1 Sample 8-node Network . 59

5.2 FT-SPF applied to a sample network . 67

5.3 Average Value of H (traffic multiplication) 73

5.4 Total Forbidden Routed Traffic . 74

5.5 Total Amount of Routing in Network . 74

5.6 Total Number of Bus-LSPs . 75

5.7 Average Number of Hops (routing delay) . 75

5.8 Average Number of Links for each Demand (propagation delay) 76

xxiv LIST OF FIGURES

5.9 Average Bus Length . 76

5.10 Number of Steps to obtain Best Result . 77

5.11 Average Value of H (traffic multiplication) 78

5.12 Total Forbidden Routed Traffic . 78

5.13 Total Amount of Routing in Network . 79

5.14 Total Number of Bus-LSPs . 79

5.15 Average Number of Hops (routing delay) . 80

5.16 Average Number of Links for each Demand (propagation delay) 80

5.17 Average Bus Length . 81

5.18 Number of Steps to obtain Best Result . 81

5.19 2 Overlapping un-mergeable bus-LSPs . 83

6.1 Parameters of a bus-LSP (with 4 nodes) . 87

6.2 Linear representation of a bus-FA (with 4 nodes) 88

6.3 Bus-FA node as a Hybrid Node . 91

6.4 TE nodes . 91

6.5 Half Mesh Representation . 93

6.6 First method, adding an AD point . 99

6.7 Method 2, removing an AD point . 100

6.8 Extending a bus-LSP . 102

6.9 Removing the egress point . 104

6.10 Adjacent Bus-LSP Merging . 106

6.11 Disjoint Bus-LSP merging . 107

6.12 Overlapping bus-LSPs . 107

6.13 Merging Overlapping bus-LSPs, method 1 108

6.14 Merging Overlapping bus-LSPs, method 2 109

6.15 Network topology used for illustrating extension proposal 111

6.16 Identifiers for the illustration network . 112

A.1 Metro Access Network . 131

A.2 Single Layer Network using bus-LSPs . 136

xxv

List of Tables

2.1 Relative Algorithm Performances : VTHD Network 29

2.2 Relative Algorithm Performances : Italian Network 31

2.3 Relative Algorithm Performances : Dense Network 32

2.4 Influence of ∆ for the VTHD Network . 33

2.5 Influence of ∆ for the Italian Network . 33

2.6 Influence of ∆ for the Dense Network . 34

4.1 MCL Results . 56

4.2 MCL-BC Results . 57

xxvi LIST OF TABLES

xxvii

List of Algorithms

1 Spanning Forest Generation . 27

2 Mapping VPNs to Spanning Forest . 28

3 Forbidden Turns - Shortest Path First (FT-SPF) 66

4 Potential- and Interference-Based Routing Algorithm (single demand) 69

5 Optimization Procedure Initialization . 70

6 Bus-LSP Network Optimization Algorithm 71

xxviii LIST OF ALGORITHMS

1

Chapter 1

Introduction

There is currently a trend followed by network operators, for deploying the Ethernet
technology as widely as possible, in the access, the metropolitan and the core topological
segments, to build the Next Generation Networks. This trend is accompanied by a need
to optimize network usage and reduce capital and operational costs. We will present here
this general context as the framework for our thesis.

1.1 Ethernet in the Next Generation Networks

Next Generation Networks are being developed today so as to tomorrow provide the end-
user with a new and improved experience. Due to the simultaneous increase of bandwidth
offered to the customer and to the exponential improvement of personal computers’ power,
the services proposed to the user are made better continuously. Offers such as Triple-Play
have become standard in many places, offering High-Speed Internet (HSI) access, telephone
connection and television over a single DSL connection. The experience of the Internet
itself has changed a lot, due to applications such as peer-to-peer filesharing, gaming, and
”Web 2.0” browsing among others. The telephone service include Plain Old Telephony
Service (POTS), but with VoIP (Voice over IP), new services are being developed, such
as mobile-fixed line handover and video conferencing. Many additional video services
are being developed, such as IPTV, Video-On-Demand (VOD), which is more and more
widely offered, High-Definition TeleVision (HDTV), personal video-conferencing, video
sharing and broadcasting, and many more. All these services are very bandwidth-hungry
and/or quality of service-demanding. At the same time, and for the same reasons, high-
quality services are being developed and proposed to companies: high-speed virtual private
networks, grid and distributed computing, video conferencing. Bandwidth at the access is
therefore increasing by very big increments. In less than five years, DSL technologies have
evolved from low-speed, a few hundred kilobits-per-second (kbps), to high speed, offering

2 1. Introduction

downstream connection speeds in the vicinity of the megabit per second (Mbps) and even
very high speed, with technologies such as ADSL2+ which boasts speeds of up to 28 Mbps.
But even those speeds are obsolete as they are released, as we see technologies such as
Fiber-To-The-Curb/Office/Building/Home (FTTx) appearing.

However, the end-user is not interested in having access to each service separately. The
concept of always available service, ”always on”, has emerged and there is now a demand
for access to all services from all locations and from various terminals: home computer,
itinerant laptop, but also cell phone and public phone. Each of these terminals works with
different sets of protocols and technologies. Therefore, one can talk of the evolution of
multi-service networks into multi-network services. The operators therefore have to adapt
their offer in many ways; they will in particular have to offer support for many different
layers.

Network operators which are in a very competitive market, with many new entrants, have
to focus on efficiency. This means multi-layer optimization is now a justified and signif-
icant concern for operators, as they do not want to have to operate multiple networks
separately. Integration and cross layer optimization has therefore become a key problem
to address, and improving cross-layer and cross-network integration will result in an op-
erational expenditure (OPEX) reduction. OPEX is directly related to the manpower an
operator must dedicate to his network management and monitoring. In parallel, opera-
tors need to develop traffic-engineering (TE) strategies which will allow them to use their
resources at their full potential and thus reduce Capital Expenditure (CAPEX). This con-
sists in developing techniques such as load balancing, so as to relieve the heavily loaded
equipments while using more of other under-used ones. However, traffic engineering also
has to deal with user-imposed constraints. These are known as Quality of Service (QoS)
constraints, and can be expressed, among others, as a maximum delay from source to des-
tination, as a minimal guaranteed bandwidth, as a maximal jitter (delay variation), etc.
These constraints are often binding, through contracts called Service Level Agreements
(SLAs).

In this context, a major trend is forming, pushing the use of Ethernet as far as possible
into the network. Ethernet has been the technology of choice for end-users, its popularity
has steadily increased and Ethernet now prevails as the most used layer 2 technology of
the standard OSI model [Zim80]. This last fact is due to several strong points of Ethernet:
it is a very cheap technology, it is very simple to deploy, and it is relatively efficient. The
cost of Ethernet has always been low: initially, Ethernet’s protocol simplicity allowed the
equipments to be rapidly designed and brought to the market; later on, the fact that
Ethernet pieces of equipments were so widespread allowed the costs to be reduced, the
market being very competitive. Ethernet’s popularity spawned from its very easy setup;
in particular Ethernet networks are meshed and do not necessitate any special structure

1.2. The Virtual Private Networks Services 3

such as Token Ring or FDDI’s rings among others. It initially also was configuration free,
which meant no particular technical skills were required to setup an Ethernet network:
it was basically ”plug and play”. Ethernet is not the most efficient layer 2 technology
available [SH80]. It is known not to scale very well, in particular on shared mediums.
But its low cost allowed for high bandwidths to be designed and brought to the market
very fast, compensating for its slight performance issues. Today, Ethernet has evolved
quite a lot, and is now available in multiple flavors: switched Ethernet at speeds from 10
MBps to 100GBps. Wireless local area networks (WLANs) have also emerged recently,
using 802.11 (WIFI) protocols. In a nutshell, these wireless protocols are a remodeling of
Ethernet pushed into the air. This explains the very easy integration of WIFI networks
in wireline Local Area Networks (LANs).

Operators and service providers are inclined to push Ethernet as far as possible into the net-
works in order to achieve previously mentioned integration, for both CAPEX and OPEX
reasons: for example, ATM as a transport layer is disappearing in ADSL. In the core
networks, an important work of the Common Control And Measurement Plane (CCAMP)
group of the IETF has been extending Ethernet to become a carrier-class technology: this
work has led to the specification of the Layer 2 LSPs [Pap04], which turn Ethernet into
a circuit-oriented GMPLS-controlled technology. The Provider-Backbone Bridge - Traffic
Engineering (PBB-TE) similarly aims at turning Ethernet into a connection-oriented tech-
nology, which is also supposed to use GMPLS as a control plane. In the metropolitan area,
Provider Provisioned Virtual Private Networks (PPVPN) are focused on using Ethernet
to bring the Virtual Local Area Network (VLAN) service to their customers.

1.2 The Virtual Private Networks Services

A Virtual Private Network (VPN) is a service which allows private communications over
a public network infrastructure, as illustrated in Figure 1.1. For instance, a company may
setup a VPN to connect its multiple sites over the Internet. A VPN may be setup at various
levels of the OSI model: 1, 2, and 3, depending on the type of connection between the
customer sites. According to [RFC4664], the term ”provider provisioned VPNs” [RFC4026]
refers to Virtual Private Networks (VPNs) for which the Service Provider (SP) participates
in management and provisioning of the VPN. That is, the public network infrastructure
is the provider network in this case. In all PPVPN solutions, the provider has border
equipments, the Provider Edge (PE), which are connected to the client site’s Client Edge
(CE). The type of PE which is seen by the CE depends on the type of VPN, as will be
detailed hereafter. In this thesis, we concentrate on PPVPNs, which are the VPNs found
in the metropolitan network segment, though our results can be applied to all types of
VPNs.

4 1. Introduction

Site 1 Site 2

Site 3

Service Provider

CE

CE

PE

PE

PE

CE

Figure 1.1: Provider Provisioned Virtual Private Network

If the customer wishes to interconnect equipments over a network which can only transport
layer 1 (such as TDM or optical connections) traffic, he will require a layer 1 VPN. Note
that Layer-1 VPNs are under definition at the IETF, and will require GMPLS. In this
case, the PEs are optical cross-connects or SDH nodes for example, which will allow the
customer to transparently connect distant sites with layer-1 connections.

There are two fundamentally different kinds of Layer 2 VPN service that a service provider
could offer to a customer: Virtual Private Wire Service (VPWS) and Virtual Private LAN
Service (VPLS). A VPWS is a VPN service that supplies an L2 (Layer 2) point-to-point
service. This is equivalent to having a fiber interconnecting two sites, or a leased line.
However, with the emerging of MPLS-based provider networks, this service is most often
based on Pseudo-Wires, according to the work [RFC3985, RFC4447] of the Pseudo-Wire
Emulation End-to-End (PWE3) Working Group at the IETF.

A VPLS is an L2 service that emulates LAN service across a Wide Area Network (WAN).
While the VPLS may be realized by a full-mesh of point-to-point connections between the
various customer sites, as is the case with the current Pseudo-Wire-based solution (most
popular), this is a very different type of service from the VPWS. Indeed, the customer
subscribes to a single service, which allows him to interconnect all his sites, whereas a
VPWS emulates a leased line.

Finally, the layer-3 VPN service allows the provider to setup routers which will directly be
connected to the client sites. These various routers will be interconnected by the provider
network in an opaque way to the client. The PEs are layer 3 routers in this case, and the
client sees the provider network as a full mesh between all PEs.

1.3. Service Providers and Transport Networks 5

The work which is presented in Chapter 2 fits into the context of VPNs which are es-
tablished by interconnecting the PEs with an Ethernet network: this can be the case
for layer-3 VPNs or layer-2 VPNs (using technologies such as 802.1ad, also known as
Q-in-Q [IEE06b] and 802.1ah, also known as MAC-in-MAC [IEE06a]).

For all types of VPNs, one of the most popular ways (the only way actually, for L1-
VPNs) for interconnecting the PEs is to establish a full-mesh of (G)MPLS-controlled
tunnels [MR07]: in this context, the work on bus-LSPs (see Chapters 3, 4, 5, and 6) will
allow such tunnels to be setup at a lesser cost (both in terms of OPEX and CAPEX) for
the provider.

1.3 Service Providers and Transport Networks

The architecture of the Internet is organized in what is known as a tier-based approach:
its organization is based on Service Providers which inter-operate according to a provider-
client model. The end-user accesses the network through a series of aggregation networks
which are in turn themselves clients of higher level networks. This range of networks
spans from the personal area network (PAN), to the Local Area Network (LAN), to an
Internet Service Provider network (ISP). This ISP provides the user with connectivity
to the Internet: for businesses, this also means providing interconnection (VPN service)
between various sites.

There are multiple tiers of ISPs. Tier-1 ISPs are in the core of the Internet and provide
the interconnection of tier-2 ISPs. The tier model is hierarchical in that each tier-2 ISP
provides interconnection for tier-3 ISPs and so on. This model also allows for what are
known as ”peering agreements”, in which two Service Providers agree to connect directly
and thus bypass a higher level ISP to interconnect them. Such peering agreements are put
into effect when the volumes of traffic exchanged between the peers are equivalent, and
the agreement is therefore interesting for both peers.

1.3.1 Transport Networks

The ISPs need transport functions, which they may or may not manage internally. This
aspect is orthogonal to the service provided. By definition, the mission of the transport
network is to provide end-to-end, transparent transport services to the client (which could
be a 2 Mb/s circuit or a Gigabit Ethernet flow), with deterministic levels of reliability
and availability across a network. The transport function is traditionally divided in three
main segments. The first segment is the Access segment, which is often regarded as
less profitable. The Access must bring the traffic from and to the end user: this is the
copper phone line, FTTx or a leased line for example. The Metro Aggregation segment,

6 1. Introduction

which covers distances between 20 and 50 kilometers, aggregates the traffic from various
access segments, and provides metropolitan network coverage: this is an SDH ring for
instance. The aggregation function of this network is to multiplex traffic from the Access;
the aggregation process usually tends to homogenize the shape of the traffic. The Core
segment deals with the largest traffic volumes and long geographical distances; they work
at the highest bandwidths and granularities. It is agreed upon that typical distances
covered by core networks are in the order of the hundreds of kilometers in general. Core
networks are traditionally connection oriented networks: the data is not routed hop-by-
hop at each core network node, but rather, connections are established between remote
core nodes, and the traffic is tunneled through these connections. Connection-oriented
networks are typically used for their traffic-engineering capabilities, the high bandwidth
they provide and their strong protection schemes.

As client services are moving toward IP and Ethernet technologies, the transport network
has to evolve to speak a similar packet-based language. There is a trend moving toward
packet-oriented transport technologies that accommodate increased bandwidth while of-
fering differentiated quality of service (QoS). Current Time-Division Multiplexing (TDM)
transport network infrastructures require extensive upgrading – even rebuilding – with
new overlays. The upgrades lead to higher revenues, but at greater cost. Where interop-
erability of TDM networks with packet based networks is a complex issue, Ethernet and
IP/MPLS based transport is able to accomplish this interoperability in a smoother fash-
ion. Moreover, packet-based transport has the key capability to aggregate and transport
traffic in fine granularity, taking advantage of statistical multiplexing for optimal use of
optical bandwidth at the lowest cost per bit. It does this while meeting traditional TDM
features in terms of manageability, reliability and availability.

1.3.2 Network Planes

A network makes use of three separate sets of functions to operate, which are regrouped in
three different planes: the data plane, the control plane and the management plane. Note
that all these planes can be physically distinct networks. For instance, the control plane
may be an IP network connecting various nodes and used to control an SDH data plane.

1.3.2.1 Data Plane

The data plane is responsible for forwarding data from source to destination, and therefore,
in each node, the data plane functions allow the traffic to be received from an incoming
interface and re-emitted on one (or more) outgoing interfaces.

In a connection oriented network, the data plane is made up of connections between various
equipments. The main candidate for the Next Generation Networks transport architecture

1.3. Service Providers and Transport Networks 7

Figure 1.2: Network Planes

is the GMPLS framework [RFC3471], which follows the architecture presented here, and
the same plane separation [RFC3945]. GMPLS is built as a generalization of MPLS-
TE [RFC3209]. We will make use of the GMPLS terminology in this thesis, which we
therefore introduce here. The data plane principle in all MPLS-like protocols is to switch
a label. MPLS nodes are therefore Label Switching Routers (LSRs), and a connection is
called a Label Switched Path (LSP). Such LSPs may span one or more links (these links
may be physical or virtual links created by other connections, this is explained later). An
LSP connects two LSRs called ingress and egress nodes, in such a way that all traffic
from the ingress node reaches the egress node. Mapping traffic to a given LSP is part
of the adaptation function of the data plane, which allows a given network to provide
connectivity to a client layer/network. The adaptation function takes a given type of
traffic as input and presents it to the data plane in a standardized form, which is ready
for use. The adaptation functions are used at the exit of an LSP when the traffic needs
to be passed on to the client layer.

An FA-LSP is a tunnel opened between two equipments, used as a Forwarding Adjacency
(FA): this means its use is restricted to the data plane, although this is only a practical
restriction. Data which goes into this tunnel will not be specifically treated until arrival
at exit. Various categories of traffic can use a same tunnel and will be treated in the
same way, because of the MPLS paradigm that a tunnel is agnostic to what it transports.
Along an LSP, all packets are switched according to a label (MPLS paradigm). Therefore
an FA-LSP is such an LSP used in the data plane.

Establishing such FA-LSPs defines a logical topology for the data plane, consisting in
the LSRs (vertices) and the FAs (edges) connecting them: this is the virtual layout (see

8 1. Introduction

Section 1.3.3). Indeed LSPs can be opened using as their segments not only physical links,
but also FAs. This recursion is the basis to multi-layer networks, as they are defined in
Section 1.3.3.

As has been shown in previous work, such as in [GS95, YKH95, GSM02, GM02, OSK+03,
SL03, XST03, ZLYHG02], dynamically changing the virtual layout offers high use-effectiveness
of the network resources. GMPLS signaling and routing has been designed to establish
and release such LSPs on the fly, rather than provisioning these LSPs statically via man-
agement.

1.3.2.2 Control Plane

The control plane consists in the association of the routing plane and the signaling plane.

The routing plane allows network nodes to exchange information on the data plane topol-
ogy: this information will then be used to perform the routing function in the data plane.
The responsibility of deciding on the routes the traffic may follow in the network can be as-
signed to the source node of the traffic, this is explicit source routing, or distributed among
all nodes which perform hop-by-hop routing. When explicit source routing is applied, the
ingress node can perform:

• strict routing : all the intermediate nodes are explicitly specified.

• loose routing : some of the intermediate nodes may not be specified, in which case
some of the intermediate nodes will have to obtain new routes for the missing seg-
ments.

The actual calculation of the route may however be delegated to a different network el-
ement, this is for example the case when using the Path Computation Element (PCE)
architecture [RFC4655] defined in the IETF PCE working group. In all cases, the calcu-
lation of the route is not a part of the routing plane, as the latter is only responsible for
the exchange of information on the data plane topology.

The signaling plane is responsible for the exchange of messages, in connection-oriented
networks, between nodes taking part in a connection. These signaling messages control
the connection, that is they are responsible for the setup and release of the connection,
and, where available, for the association with backup connections, for the deviation of the
connection, for the modification of its endpoints, and for resource reservation.

The value of a control plane is inversely proportional to the OPEX it generates: automation
of the control plane is of great value since it allows for reducing management. One aspect
which is developed in this thesis is the reduction of OPEX by the reduction of the total
number of entities which appear in the network. By entities, one must understand the
connections established, the nodes, the protection resources, etc. Entities which appear

1.3. Service Providers and Transport Networks 9

in the network’s control plane must also be monitored by an operations and management
department of the network operator: reducing the number of entities is beneficial for the
operator as it allows for OPEX reduction. Of course the reduction of the number of
entities cannot be separated from the complexity of each entity. The control plane is an
enabler for transport network functionalities such as traffic engineering (TE) and SLA-
compliance. It is through the control plane that it is possible to establish connections
and assign TE characteristics to them, such as QoS constraints. Traffic engineering is also
a way to maximize the use of a network, by allowing load sharing, enabling protection
scenarios (such as primary and backup connections which do not share ”at-risk” links or
nodes), etc.

Although there were trials to use CR-LDP [RFC3472], the Resource reSerVation Protocol
with Traffic Engineering extensions (RSVP-TE) [RFC3473] is now accepted as the sig-
naling protocol of choice for the GMPLS control plane. The signaling plane is used to
establish the LSPs and assign a label to each segment, among other things, such as reserve
the resources, plan the protection schemes, etc. As for the routing protocol, GMPLS uses
OSPF-TE [RFC3630] for intra-domain routing messages exchange.

1.3.2.3 Management Plane

The management plane is the third plane to be considered: this plane is transverse to
the two others and allows for management, that is configuration by operators of the two
other planes. For example, an operator might want to setup a connection by directly
entering its characteristics into network nodes instead of using the control plane (data
plane management). Another example is that of an operator who might want to define
for a given node the TE policy its control plane must follow (control plane management).

The OAM (Operations, Administration and Maintenance) functions are a part of the
management plane, and they are meant to monitor the network’s condition. For example,
OAM functions allow to test the liveliness of a node in the network (ping operation), check
that an LSP is still up, running, and associated to the right Forwarding Equivalence Class
(FEC), etc.

The management functions are traditionally divided into 5 main categories, called the
FCAPS:

• F: Fault-management,

• C: Configuration,

• A: Accounting,

• P: Performance,

10 1. Introduction

• S: Security.

Fault management’s task is to recognize, isolate, correct and log faults that occur in the
network. The use of trend analyses is possible to predict, correct or avoid further errors
for maximal network availability.

Configuration must gather and store configurations from network devices (locally or re-
motely), simplify the configuration of the device, track changes which are made to the
configuration and statically provision tunnels and LSPs.

Accounting gathers usage statistics from the network users and allows both the billing of
clients and the enforcement of usage quotas.

Performance collects usage data in order to monitor the network’s condition, adapt its
capacities to the clients demands and upgrade the equipments where needed.

Security Management is the process of controlling access to the network’s elements, en-
forcing security policies and maintaining the network free of intruders’ attacks.

1.3.3 Multilayer Networks: Peer and Overlay Models

A multilayer network is a network in which two or more networking technologies (and thus,
data planes) are superposed. A connection oriented layer, say layer N, is usually used to
create a layout over layer N-1 to optimize the transport of the traffic coming from layer
N+1. The lowest possible layer is the physical layer, which corresponds to the physical
interconnections between nodes. In the GMPLS context, the circuits (connections) are the
Label Switched Paths (LSPs); thus, at a given layer, a layout is a set of LSPs. The LSPs
can be announced as Forwarding Adjacencies (FA) by the routing protocol in an upper
layer. The upper layer therefore uses a set of connections provided by its lower layer, this
is the nesting function, where the lower layer connection, used as an FA by the above
layer nests an upper layer connection. The traffic demands may then be routed over the
uppermost layer. This is the standard multilayer network model, an example of which is
presented for the two-layer case in Figure 1.3.

There are several reasons which justify multilayer networks. Historically, different tech-
nologies appeared, and operators gradually invested in these, depending on their needs, as
each technology satisfied different requirements. For instance, optical switching allows for
large bandwidths, but does not allow for fine granularity connections. Packet switched net-
works have this granularity but do not necessarily provide the same robustness to failures,
or the same bandwidths.

When dealing with multilayer networks, two different models are commonly used to de-
scribe the way these networks interact. Depending on the type of association between
control plane(s) with a multilayer network, one will speak of peer model or overlay model.

1.3. Service Providers and Transport Networks 11

Lower Layer : SDH/WDM, …
Upper Layer : IP or MPLS

Demands

Figure 1.3: Multilayer Network Example

Note that a unified control plane such as the one provided by the GMPLS framework is
intended to work in both models.

In the overlay model, each layer has its own control plane associated to its data plane.
The lower layer only provides connectivity, management and TE information to its upper
layer: therefore, the layers are logically separated. The lower layer can decide on which
information it will export to the upper layer control plane: this is a client-server model,
in which the lower layer is the server answering demands from the client upper layer. For
example, an established connection can be associated to its bandwidth, an administrative
group, some risk group (Shared Risk Resource Groups, SRRG), an end-to-end delay, etc.
However, using this model, the upper layer is agnostic to the actual use of the resources
and even the topology in the lower layers when these are not exported to the upper layers.

On the contrary, the peer model has a single control plane for multiple layers. Associated
with this model are the ideas of unified, integrated or common control plane. In the peer
model, since there is a single control plane, the upper layers are not independent from
the lower layers. The entire information is shared by all layers, and a single connection
can span different layers. The route calculation for example, may take into account,
at the highest layers, information from the lowest layers, which would not usually be
exported. This allows for finer tuning, for instance to perform load balancing at the link
level. Indeed, in the overlay model, information concerning the individual physical links
is usually not exported from lower layers to upper layers. The main drawback of the peer
model compared to the overlay model is its scalability: sharing all network characteristics
among all nodes does not scale well. However, since the topology is shared to all nodes,
even client nodes, this also poses security issues. The aggregation offered by the overlay
model is a way to solve these problems.

12 1. Introduction

1.4 Multilayer Networks Optimization Methodology

Classical optimization problems for network operators are design and resource optimiza-
tion. These problems are usually based on point-to-point connections (LSPs). The mini-
mum cost multi-objective multi-commodity flow problems resulting from the realistic mod-
eling of the considered networks are known to be NP-complete. This NP-completeness
limits the size of the networks that can be treated through exact methods. Available
solvers were used to obtain results for the formulated problems for small networks. These
results are useful to validate the proposed models, as well as the correctness of the prob-
lem formulations. They are also very useful in devising other resolution schemes, since the
exact result can be compared to that of the proposed schemes.

To overcome the network size limitation, which quickly makes computation intractable,
heuristic methods were developed to approximately solve the described problems. If heuris-
tics use general search techniques, without any knowledge of the nature of the problem,
they are meta-heuristics. However, investigation showed that such heuristics were of lit-
tle use with the considered problems. Heuristics which are adapted to the nature of the
particular problem being treated are called Ad-Hoc heuristics. In the problems which we
present results for, such heuristics were developed, and their results were compared, on
small network instances, to exact solutions, and on larger networks, to other published
algorithms.

Part of our work presented here consists in optimizing multi-layer networks. Since we
consider only one virtual layer, this consists in choosing two routing sets which will be
overall optimal: first, one must route the virtual layout over the physical topology, and
second, the demands - i.e., the client traffic - must be routed over this virtual layout. This
case is illustrated by Figure 1.3, but may be extended to more than two layers.

Much study has been carried out on this topic. Optimally designing the Virtual Net-
work Topology (the VNT problem) has undergone many studies, in which the optimality
criterion has been defined in many ways. It can can be one of the following, a linear
combination of a subset of them, or a prioritized selection of them:

• Minimize a delay function (total delay minimized, maximal delay minimized, etc.)
[SS03, LGCS02]

• Minimize routing complexity (upper layer number of hops) [XST03]

• Minimize complexity of upper layer (such as the number of LSPs)

• Maximize factor by which the traffic matrix can be increased [YR02]

• Minimize traffic disruption and reconfiguration costs (this implies adding a time
dimension). This can be done by simultaneously:

1.4. Multilayer Networks Optimization Methodology 13

– constraining a new configuration to be within a certain distance of optimality
(where ”distance” needs defining) [ZLYHG02, SPM01, RR00]

– minimizing the number of operations to go from one configuration to the other
[TZJT02, CMP+03, KL01]).

Many approaches are available to (at least partially) solve the VNT problem. It has been
proved to be NP-hard [DR00] even for simple ring-topology cases. These problems are
far from new and many studies are available in the ATM architecture (in which the lay-
ers are the VPs and the VCs), such as in [GS95, FL98, YKH95]. Based on the formal
statement of the problem as an optimization problem, such as presented in [PM04], tra-
ditional linear optimization techniques may be applied. These include generic network
optimization techniques such as Lagrangian relaxation [AMO93], Dantzig-Wolfe decom-
position [AMO93] and column generation [AMO93]. However, these techniques have some
limitations which arise when precisely modeling networks: scaling issues, such as solving
time which grows fast with network size; integer and non-linear-constraints issues which
appear when modeling finer constraints, such as delay. This is where heuristic algorithms
come into use, they can be divided into two categories: static and dynamic heuristics.

1.4.1 Static Optimization Heuristics

The first set of heuristics, which our bus-LSP virtual layout design algorithm (see Section
5.3.3) belongs to, is the set of static heuristics. These are heuristics which work off-line,
and are usually centralized: they necessitate a central computer. This computer will need
access to all data entering the optimization process, and it will calculate a layout which
will satisfy at best all demands. However, such an algorithm is not able to adapt to
changes in the traffic matrix. This implies that the traffic effectively has moderate (or
predictable) time evolutions. The solution is calculated in advance, and there will be no
way of applying feedback to the solution. This can be used therefore for core networks
with high aggregation factors, when the total traffic volumes do not vary much from the
average value; or when the evolutions over long intervals of time obey a given periodic
variation (for example, hourly variations which are self similar every day).

These static methods focus on the optimization problem while taking advantage of its net-
work characteristics: these are network optimization techniques such as Branch Exchange
and its variations [LA91, LHA94, YKS+02], Simulated Annealing [MBRM96], Flow Devia-
tion [MBRM96], Integer Relaxation [KS01], Lagrangian Relaxation [SL03]. In [ZLYHG02],
the authors develop a Prediction Based Multi-stage Heuristic Reconfiguration which uses
predictions of traffic and a node exchange method. In [TZJT02], the authors compare
three heuristics for routing the demands:

• (adding) Longest Path First (LPF) to the VNT

14 1. Introduction

• (adding) Shortest Path First (SPF) to the VNT

• (adding) Minimal Disruptive Path First (MDPF) to the VNT

1.4.2 Dynamic Optimization Heuristics

Dynamic heuristics are used to maintain the network resources at best use, by dynamically
adapting the existing layout without recalculating it entirely for every new demand. The
algorithm uses the traffic variation as feedback for reconfiguration of the VNT, therefore
maintaining a design adapted (within the chosen algorithms capabilities) to the input
traffic matrix. When it is possible for each network node to adapt the routing based
solely on the information it has at hand, and no centralized intelligence is needed, the
algorithm is distributed. This is the case for shortest path routing which can easily be
distributed to each network node; however, such cases are rarer with the increasing number
of constraints the routing is expected to obey. The advent of centralized routing has led
to the development of the PCE architecture [RFC4655], such as defined in the IETF PCE
working group.

When a centralized solution is used, the operator must guarantee the distribution of the
yielded solution to the nodes, for effective establishment of the solution. For instance, if
the operator manually sets up all tunnels, then he will just have to transfer his solution.
However, if the algorithm is dynamic and is going to change often, some kind of protocol
must be installed to allow the distribution of the configuration to the nodes. When using
a distributed algorithm, such a need no longer exists, as each node is only responsible for
its configuration. However, the available distributed solutions do not provide results as
accurate as centralized ones.

In [OSK+03], the authors study the influence of router ports: this will be one of the
major studied criteria in Section 5. In their study, they propose two policies for accepting
connection requests. One aims at re-using all established lower layer connections and
therefore maximize the number of multi-hop upper-layer connections. The other policy,
on the contrary, tries to establish direct single-hop connections in the upper layer (end-
to-end lower layer connections). They established that the second policy is better as soon
as the number of packet-switching ports in the network is under a given threshold, where
the first policy is best in other cases. In [XST03], the Minimum Average Logical Hop
(MALH) algorithm searches all possible virtual links and establishes/deletes those in such
a way that it minimizes the overall average number of logical hops.

In [GSM02] and [GM02], the authors use periodic measures of traffic for centralized de-
cision making. The setup and deletion of light-paths (upper layer links) is based on
thresholds: high and low watermarks, which condition the establishment and deletion of
LSPs. In [SOI+03], the authors derive their idea from [GSM02, GM02] to distribute the

1.5. Thesis organization 15

algorithm in the nodes.

1.4.3 Dynamic and Static Optimization Heuristics Interworking

Dynamic and static heuristics are, however, often used in conjunction. The dynamic
heuristic is indeed often able neither to calculate a first working VNT, nor the initial
routing of demands over the VNT. The static heuristic will be used to that effect, the
optimization process being done over average long term values for the traffic matrix; and
some dynamic, maybe distributed, algorithm will then manage the network layout and
routing over time. If the dynamic heuristic diverges too much for the optimal use of the
network resources, the process may be reseted by making use of the static algorithm again.

1.5 Thesis organization

The thesis is organized as follows:

In Chapter 2, we present our work on metropolitan Ethernet. This work is not related
to GMPLS-controlled networks, but, however, Ethernet is still the technology of choice.
We describe the context in which our work is introduced and then present an original
formulation of the VPN service on Ethernet spanning trees optimization problem. We
then present a greedy heuristic which tries to optimize the layout of these spanning trees
and numerically compare its results to concurrent algorithms.

In Chapter 3, we introduce a new object for core networks: the bus-LSP. The bus-LSP is
an abstract type of LSP which can be implemented in various data planes, and it induces
a complex type of adjacency in the data plane: the bus-FA. We describe the technological
context in which this object is introduced, formally define it and present its representation
which allows traditional network algorithms to be applied. We also qualitatively evaluate
benefits such an object can bring, in terms of OPEX and CAPEX, in single layer networks
and multi-layer networks. Though this technology may be applied to GMPLS-controlled
Ethernet, its scope is however not limited to Ethernet and is much broader.

In Chapter 4, we evaluate the benefits which bus-LSPs will bring to single layer networks.
In this phase, we formulate a first optimization problem, which we solve instances of on
two networks using a generic solver. We obtain numerical results demonstrating strong
OPEX savings in networks using bus-LSPs.

In Chapter 5, the benefits of introducing bus-LSPs in multi-layer networks are quantita-
tively evaluated. For this purpose, a network model is presented and exactly solved on
a small network. An ad-hoc heuristic is then developed, which is basically a modified
and tuned greedy heuristic. We analyze numerical results of our heuristic approach on
two large realistic networks, and show strong CAPEX and OPEX savings in multi-layer

16 1. Introduction

networks using bus-LSPs.

In Chapter 6, we tackle the control plane-related issues raised by bus-LSPs. We present
how bus-FAs are to be represented in the routing plane. We then show how specific control
over bus-LSPs can be accomplished using the standard GMPLS signaling protocol. Indeed,
bus-LSPs induce new control needs, which are, as we will demonstrate, not easily fulfilled
by standard mechanisms. We therefore introduce a protocol extension which allows for
finer and smoother control over bus-LSPs.

Finally, in Chapter 7 we conclude on the interest of the work presented in the thesis, and
we discuss some perspectives opened by this work.

17

Chapter 2

Contribution to Metropolitan

Ethernet design

In the metropolitan network segment, Ethernet is already widely deployed and used, in par-
ticular to provide clients with the Virtual Private Network service. However, this deploy-
ment is based on protocols which are evolving to offer new and improved traffic-engineering
functionalities. This chapter explores how the optimal use of Multiple Spanning Trees can
improve network scalability and resiliency at the cost of some added complexity.

We first present the Metro Ethernet architecture in Section 2.1 and the VPN services
it provides in Section 2.2. Related work to this subject is detailed in Section 2.3. We
then formulate the problem of mapping multiple VPNs to various spanning trees as an
original Mixed Integer Non Linear Program in Section 2.4. However, this problem is not
computationally tractable. Therefore, in Section 2.5, we propose a heuristic algorithm
to help the operator first configure his Ethernet switches, that is, build the spanning
trees of MSTP, and then map client VPNs to STs in an optimal way for load sharing
considerations. In Section 2.6, we provide numerical results for our heuristic approach and
compare it to other published algorithms to prove its relevance. Finally, we will present
some concluding remarks in Section 2.7.

2.1 Towards Metro Ethernet

2.1.1 Using VLANs to provide VPN services

Ethernet has been a very successful technology and has been widely accepted in local
networks. Network operators have been inclined to push this technology further into
their network, following a cost-effective desire of unification. Therefore, Ethernet is now
becoming the technology of choice when building Metropolitan Area Networks (MANs).

18 2. Contribution to Metropolitan Ethernet design

Ethernet MANs will support VPNs (Virtual Private Networks), using the concept of
VLANs (Virtual Local Area Networks), such as defined by [IEE03]. VPNs are distributed
LANs which are connected using a provider-provisioned network. Once connected, nodes
in VPNs are able to communicate as if they were physically directly connected.

VLANs allow a single network to interconnect several groups of Ethernet nodes - groups
which, in a VPN context, will be the VPNs - and maintain a separation between those
groups, isolating one from another.

2.1.2 Ethernet’s control plane

There are many advantages to the Ethernet technology. It has been around long enough
and deployed widely enough to benefit from substantial cost reductions. It is now a mature
technology which is very cost effective, easy to deploy and easily inter-operable. However
it lacks a decent control plane. For the network operator, this means there are no resource
reservation schemes available and no load-sharing mechanisms. For the network user, this
means there are no QoS (Quality of Service) guarantees and no protection mechanisms
for failure resiliency. These are essential drawbacks which need to be addressed when
deploying MAN-grade Ethernet. These major issues are therefore a focus of great inter-
est. While the introduction of a GMPLS control plane [RFC3471] for Ethernet [Pap04]
is under consideration and would solve many if not all of these issues, networks are al-
ready deployed and need solutions now; moreover the GMPLS control plane is not fully
automated, therefore operation expense (OPEX) is not negligible.

For the protection issues, the Spanning Tree Protocol [IEE98] (STP) has evolved to a
Rapid Spanning Tree Protocol [IEE01] (RSTP). These protocols are in charge of building
the Spanning Tree (ST) which will support the Ethernet traffic. The RSTP version accel-
erates reconvergence of the tree when links or nodes of the current tree fail, bringing the
convergence time from 30 seconds to 3 seconds in most failure scenarios. While this is still
no protection mechanism, the recovery times are at least more acceptable.

As far as load balancing is concerned, the introduction of the Multiple Spanning Tree
Protocol [IEE02] (MSTP) allows for multiple trees to coexist on a single network. Each
tree has an identifier and traffic is mapped to various trees so as to allow some sort
of traffic engineering. For instance, using multiple trees, it is possible to achieve load
balancing in the network by spreading the load across trees which use different links. The
work introduced in this chapter considers the issue of optimally mapping VLANs to STs,
using MSTP to provide the VPN services.

2.2. Metro Ethernet for Ethernet VPNs 19

2.1.3 Requirements for a Metro Access Ethernet

The Metro Ethernet Forum (MEF) has defined so-called Ethernet services for metro trans-
port networks. The MEF, created in June 2001, has become, during the past years, the
main forum, widely accepted by the telecom industry, to specify and accelerate worldwide
adoption of Carrier-class Ethernet networks and services.

The up to date Ethernet Service Definition framework is currently defined in the MEF 6,
”Ethernet Services Definition” and MEF 10, ”Ethernet Services Attributes Phase 1”. The
service framework intends to be very generic in order to serve as a common basis for a wide
range of application-based services. It thus defines two major Service types, each begin
associated to certain service attributes, which finally ends with some specific Ethernet
Service Attribute Parameters. One of the main attributes which is defined by the MEF,
and which is not available in legacy Ethernet, is scalability: the provider’s network should
accept up to the order of 100,000 customers. According to [Mor06], a poll done amongst
numerous ISPs revealed that VPN services should support:

• From 1 to thousands of VPNs in the network

• 5 to hundreds or even thousands of VPNs per Provider Edge (PE)

• tens to hundreds of Customer Edges (CEs) per VPN per PE

• hundreds or even thousands of PEs per VPN.

The two major Ethernet Service types are the Ethernet Line (E-Line), corresponding to
a point-to-point Ethernet Virtual Connection (EVC) and the Ethernet LAN (E-LAN)
corresponding to a multipoint-to-multipoint Ethernet Virtual Connection (EVC), which
correspond respectively to VPWS and VPLS defined in Section 1.2. Two main propos-
als are considered at the MEF for these services: 802.1ad [IEE06b] – ”Q-in-Q” – and
802.1ah [IEE06a] – ”MAC-in-MAC”. Both of these introduce new headers in the Ethernet
header, so as to allow the customer’s Ethernet and the provider’s Ethernet to be sepa-
rated. [IEE06b] allows for what is called ”VLAN stacking”, which is having more than
one VLAN ID (up to three) per frame: this allows the customer to have his own pri-
vate VLANs used for internal client switching, and the provider to use another VLAN ID
based on the customer, to isolate the customers’ traffic sets one from another. However,
the service provider is limited to only 4096 VLANs, which is clearly insufficient based on
the previous scalability requirements. [IEE06a], which is still at drafting stage, allows for
MAC stacking, enabling the service provider to manage up to 16 million customers.

20 2. Contribution to Metropolitan Ethernet design

Metro Ethernet Core

Access Point
(edge)

C-VLAN 1

C-VLAN 2

C-VLAN 1

C-VLAN 2

C-VLAN 1

ST 1
ST 2

C-VLAN 3 C-VLAN 3

C-VLAN 3

Figure 2.1: Metro Ethernet Architecture

2.2 Metro Ethernet for Ethernet VPNs

The Metro Ethernet architecture (see Figure 2.1) consists of a provider’s metropolitan
network which relies on Ethernet to transparently connect distant nodes of the network’s
clients.

A customer may want to interconnect various sites and operate them as a single LAN: he
wants to setup a Virtual Private Network (VPN). When this VPN uses a Metro Ethernet
provider, it appears as a C-VLAN (Customer VLAN) for the provider. Each of his sites is
connected to the provider’s network via a gateway: the Provider Edge (PE). The network
provider is in charge of transparently interconnecting these PEs according to some Service
Level Agreement (SLA).

The notion of VLAN identifier (VID) was introduced for this purpose. The use of VLAN
IDs enables the logical separation between groups of Ethernet clients (which would other-
wise be impossible due to the flat addressing used in Ethernet). When a frame belonging
to a given client enters the provider’s network, it is tagged with a VID. Each port of the
Ethernet switches in the core is assigned a VID. The switch will forward the tagged frame
to and from a port only if it is part of the corresponding C-VLAN. This mechanism allows
the different C-VLANs to use the same provider network and yet, C-VLANs are isolated
one from another.

Ethernet uses a spanning tree protocol which prevents loops in the forwarding. This
protocol constructs a shortest-paths tree given a root and link weights. The root is auto-
matically selected based on an administrator-set identifer for each node. The link weights

2.3. Related work 21

are also set by management. Frames are then sent on this tree, which guarantees a single
path between any two nodes, and the switches just need to learn which port gives access
to which Ethernet destination machine. It is possible to build all possible tree topologies
over a given network by properly choosing the root node and link weights.

However, using a tree structure means many links are not used, since they are left out of
the structure. This means the network resources are wasted. One way to overcome this
issue is to use the Multiple Spanning Tree Protocol (MSTP). This protocol allows, among
other things, to have several Spanning Trees (STs) on the same network. Each tree has
a single identifier. The C-VLANs are mapped to spanning trees, such that each C-VLAN
uses only one of the available STs. However, one ST can carry multiple C-VLANs. The
question is to build the STs and have them carry the C-VLANs in a way which is optimal:
in Figure 2.1, there are many ways to map C-VLANs 1, 2 and 3 to the two STs. The
optimality can be defined in many ways.

One may want to minimize total network resources usage, minimize the maximally loaded
link (that is improve load sharing) or have distinct trees (or at least, trees which share
the minimum amount of links) for failure resiliency. This chapter focuses on the load-
sharing issue; however, other issues such as protection (measured in the number of VPNs
threatened by a single link failure) and VLAN ID space (e.g., the number of VLANs
needed, which directly impacts OPEX) will also be considered.

2.3 Related work

Many papers have studied how to do traffic engineering using MSTP [ACG05, PNM+05,
HZC06]. [ACG05] shows the tradeoff between the number of spanning trees deployed,
the alternate routing and the load-balancing. It also offers an algorithm to group various
VPN clients onto fewer spanning trees. This grouping strategy however does not show
how to initially build the spanning trees which the VPNs are then mapped to. [PNM+05]
proposes a heuristic algorithm to build a spanning tree for each VPN. In the end, there are
as many trees deployed as there are VPNs in the network: this raises both management
and scaling issues. Finally, [HZC06] proposes a control admission scheme to make the best
use of deployed spanning trees. This last paper therefore is adapted for optimal dynamic
use of spanning trees.

2.4 Formulation as a MINLP

In this section, we will provide a mathematical formulation of the above described prob-
lem in the form of a MINLP (Mixed Integer Non Linear Program). Given a physical
topology, which STs and which assignment of VPNs to STs make the optimal use of the

22 2. Contribution to Metropolitan Ethernet design

p
no

de
s

of
 th

e
V

P
N

(N
-p

) n
od

es
 o

f t
he

 V
P

N

�������� −− ������

Figure 2.2: Link Bandwidth Calculation

network resources? We first make preliminary observations which are used in the MINLP
formulation.

2.4.1 Preliminary observations

For simplicity of the formulation in Section 2.4.2, we will consider here that nodes in a
given VPN i are all given the same access bandwidth (Di). We also assume there is a
uniform traffic matrix. This implies that the bandwidth is reserved in such a way that
along any tree supporting a given VPN, there must be enough bandwidth to satisfy traffic
of volume Di/(Ni − 1) between all nodes in the VPN, where Ni is the number of nodes
belonging to VPN i. However, simple modifications will allow nodes to have differentiated
accesses, by adding weights to the nodes.

The calculation of the bandwidth needed on a single link is very simple. Consider two
nodes on a tree such as those depicted in Figure 2.2. One node gives access to p nodes of
the VPN, the other node to Ni−p. Then, for the above bandwidth reservation hypothesis
to apply, we need to reserve Di ∗ p ∗ (Ni− p)/(Ni− 1) units of bandwidth on the link. The
key element to understanding the formulation is therefore the calculation of how many
nodes are accessed through a given node.

2.4.2 Optimization Problem Formulation

Let us assume that:

• v = 1, 2, .., n indices network nodes

• e = 1, 2, .., p indices links of the network

2.4. Formulation as a MINLP 23

• i = 1, 2, .., V indices the VPNs we are trying to setup where V is the total number
of VPNs to be supported.

• j = 1, 2, .., S indices spanning trees, where S is the maximum amount of Spanning
Trees which can be setup in the network.

Additionnally we will assume that the following constants are known by the operator:

• Di is the bandwidth allocated to each node of VPN i

• P i
v is the binary constant indicating that node v is a part of VPN i. Note that a

node may only be a part of a single VPN: one node must be created for each VPN
connected to a given AP (Access Point). This is not a restriction, it is simply for
clarity of the formulation. A simple way to ponder some nodes in regards of others
is therefore to connect more nodes of the same VPN to a given AP.

• Ni =
∑

v P i
v is the number of clients of VPN i

• aev is the binary constant indicating that link e has an extremity at v

• Ce is the capacity of link e

• Me is the module of link e (integer number of trees which the link can support).

Finally, the optimization problem will manipulate these variables:

• xeij is the flow allocated to link e for VPN i on tree j

• xej is the total flow allocated to link e on tree j

• xe is the total flow allocated to link e

• mij is the binary variable set to 1 if VPN i is mapped to tree j

• ιveij is the integer variable indicating how many nodes of VPN i are available behind
node v when coming from link e, using tree j.

• δejv is the binary variable indicating that link e is being used in VPN j such that v

must go through e to get to the root. If this variable is null, then either the link is
not being used in the tree’s active topology or it is being used in the other direction.

• uj is the binary variable indicating that ST j has at least one VPN mapped to it.

• 1/Λ is the amount by which the bandwidths assigned to each VPN can be multiplied.
1/Λ should be greater or equal to 1 if the initial bandwidth is to be assigned.

24 2. Contribution to Metropolitan Ethernet design

• 1/Θ is the amount by which the number of trees assigned to each VPN can be
multiplied. 1/Θ should be greater or equal to 1 if the modules are significant.

We can then easily formulate a Mixed Integer Non-Linear Program with a set of con-
straints:

• Domain definition constraints:

– The δejv variables are only different from zero for (e, v) couples such that link
e is connected to node v

δejv ≤ aev ∀j, v, e (2.4.1)

– The ιveij variables are only different from zero for (e, v) couples such that link
e is connected to node v. Also, no interface may present an access for a VPN
for more nodes than there are clients(this prevents loops to appear, considered
as being part of the spanning tree (wrongly) by the program, and containing
at least one VPN member mapped to the ST: it forces the graphs generated
by the algorithm to be connex, and because of the n-1 active links (see con-
straint (2.4.8)), a spanning tree)

ιveij ≤ Ni ∗ aev ∀e, i, j, v (2.4.2)

• Mapping constraint:

– Only one ST (Spanning Tree) can be used for a given VPN:∑
j

mij = 1 ∀i (2.4.3)

– ST use:
uj ≥

∑
i mij

V
∀j (2.4.4)

• Spanning Tree Definition:

– In a spanning tree, there are exactly (number of nodes - 1) links used (one link
going to the root per node, the uplink). We use this property to define our
spanning tree: ∑

e,v

δejv = n− 1 ∀j (2.4.5)

– One uplink per non-Root node and per ST:∑
e

δejv ≤ 1 ∀v, j (2.4.6)

2.4. Formulation as a MINLP 25

– A given link may only be oriented once at most:∑
v

δejv ≤ 1 ∀j, e (2.4.7)

• We must define, for each node, the number of VPN nodes it gives access to when
coming from a given link. These are the interface definitions constraints:

– For ST nodes which are part of the VPN (and are thus, by hypothesis, leaves
of the network graph), the interface is set to 1.∑

e/aev=1

ιveij = mij ∀j, i, v/P i
v = 1 (2.4.8)

– For ST nodes which are not part of the VPN, the interface gives access to the
sum of the values of the interfaces its other interfaces are linked to.

ιveij ≥
∑

e′ 6=e/
ae′v=1

∑
v′ 6=v/

ae′v′=1

ιv′eij−(1−
∑
v′

δejv′)∗N ∀j, i, v/P i
v = 0, e/aev = 1 (2.4.9)

where N is the largest VPN count (= maxiNi). The second term insures
that the inequality is only applied to links in the active topology (see con-
straint 2.4.10).

– For all ST nodes, interface must only be set to a positive number if the link is
part of the active topology:

ιveij ≤
∑
v′

δejv′ ∗N ∀e, i, j, v (2.4.10)

• Based on the number of clients of a VPN on accessed behind every node, it is easy
to define a set of constraints dictating the flow assignation and related conditions.

– Flow on links: ∑
i

xeij ≤ xej ∀e, j (2.4.11)

∑
i

xej ≤ xe ∀e (2.4.12)

– Flow can only be set if the VPN is mapped to a tree, and only if the link is
used in the tree’s active topology

xeij ≤
∑

v

δejv ∗M ∀j, e, i (2.4.13)

xeij ≤ mij ∗M ∀j, e, i (2.4.14)

26 2. Contribution to Metropolitan Ethernet design

where M is a constant large enough not to be a constraint.

– Flow assignation: a link must provide enough flow for every node on one side
to be able to setup a connection with a node on the other side (this is based
on 2.4.1)

xeij ≥ Di/(Ni−1)∗
∑

v′ 6=v/
aev′=1

ιv′eij ∗ (Ni−
∑

v′ 6=v/
aev′=1

ιv′eij) ∀e, i, j, v/aev = 1 (2.4.15)

– Capacity constraint: this constraint can be used in two ways. First, intuitively,
in a resource optimization problem for a given network. Second, by setting all
link capacities equal, maximizing 1/Λ in this constraint will actually be a way
to minimize the maximally loaded link, i.e. achieve load balancing.

xe ≤ Λ.Ce ∀e (2.4.16)

– Number of trees per link constraint: this constraint can also be used in two ways.
First, intuitively, in a resource optimization problem for a given network, one
may want to limit the number of trees on a link based on some discrete resource
(such as wavelengths). Second, by setting all link modules equal, maximizing
1/Θ in this constraint will actually be a way to minimize the maximal number
of trees on any single link, which means that any link failure will impact a
minimal number of trees. ∑

j,v

δejv ≤ Θ.Me ∀e (2.4.17)

The objective is now:
Minimize α

∑
j

uj + β.Λ + γ.Θ (2.4.18)

Where α, β, γ are the weights assigned according to relative importance of respectively,
the cost of the number of STs (management cost), load balancing and protection needs.

Note that constraint (2.4.15) is quadratic, semi definite negative, which means that the
solution space is concave. This means it is not possible to solve exactly without exploring
the entire solution space. So as to solve this problem, we tried linearizing this constraint
(see Appendix A.1), but calculations were still intractable (using the commercial solver
CPLEX [CPLEX]), even for instances of the problem implying very small networks. This
is why the following heuristic method was conceived and analyzed.

2.5. Greedy Heuristic Mapping of VPNs to Spanning Trees 27

2.5 Greedy Heuristic Mapping of VPNs to Spanning Trees

We will present here an original heuristic algorithm for mapping VPNs to STs: the Diver-
sified Forest with Greedy Mapping. This method is based on two stages. First, we build
a set of STs which aim at having few links in common: the Spanning Forest. Second, we
assign VPNs to STs in a greedy fashion.

The rationale behind this process is that this way, the network operator only builds a
Spanning Forest once and then maps his various VPNs to it. This method is therefore
very convenient for operators, while providing good results (see Section 2.6).

2.5.1 Building the Spanning Forest

For this stage of the algorithm, the weights of each link will be changed so as to represent
how often the link appears in spanning trees. After building an ST, the weights of its
links are increased of a fixed value ∆ (influence of this feedback parameter is studied in
Section 2.6). Initially, all links have a same fixed weight of 1.

When building the spanning trees, an important factor is the choice of the root. The root is
typically the node of the tree which will have the most traffic running along it. Therefore,
it is important that the roots be as varied as possible, which is why we introduce a variable
associated to each node which counts how many times a node has been a root in any ST.
The root is then chosen as the network node which minimizes the quantity (with W the
weight and C the capacity):

∑
all adjacent links Wlink∑
all adjacent links Clink

∗ (number of times root) (2.5.1)

Once the root is chosen, the ST is built by using a method such as Dijkstra’s shortest
path [Dij59]. The weights are then updated and the process is repeated a fixed number of
times S.

Algorithm 1: Spanning Forest Generation
Given: A graph G = (V,A)
Given: Cl the capacity of link l,∀l ∈ A
Given: Wl the weight of link l,∀l ∈ A
Find: A diversified Spanning Forest
1: Set Wl = 1 ∀l ∈ A
2: for all i ∈ [1, ..., S] do
3: Select a root minimizing the quantity of (2.5.1)
4: Build a spanning tree STi rooted at the selected node
5: Wl ←Wl + ∆,∀l ∈ STi

6: end for

28 2. Contribution to Metropolitan Ethernet design

2.5.2 Mapping the VPNs on the Spanning Forest

Once the spanning forest has been generated, the VPNs have to be mapped onto it. For
this part, a simple ”greedy” method is applied.

Algorithm 2: Mapping VPNs to Spanning Forest
Given: A graph G = (V,A)
Given: Cl the capacity of link l,∀l ∈ A
Given: A Spanning Forest: {ST1, ST2, ..., STS}
Find: A mapping of VPNs to STs
1: Sort VPNs decreasingly according to the quantity Di ∗Ni

2: for all VPN do
3: Select ST which minimizes maximally loaded link when mapping the current

VPN on it.
4: if More than one ST are candidates then
5: Select ST which minimizes total bandwidth added to network when

mapping the current VPN on it.
6: end if
7: Map VPN to selected ST (update link loads)
8: end for

The VPNs are sorted by their volume (ie: by decreasing order of the quantity Di ∗ Ni

using the same notations as in section 2.4).

Next, the largest VPN is mapped onto the ST of the Forest which minimizes the load of
the maximally loaded link. If more than one ST have the same minimum value for the
maximally loaded link, the ST which satisfies the VPN while using the total minimum
amount of bandwidth in the network is selected.

2.6 Performance Analysis

In this section, we applied the heuristic method described in the previous section to three
different networks. The first one is a 11 node- and 14 (bidirectional) link-network, based on
the French research network VTHD [VTHD], illustrated in Figure 2.3. The second network
is a 21 node- and 36 link-network, based on the Italian high-speed network [SIL+98]
illustrated in Figure 2.4 . The third network is a highly connected 12 node- and 40 link-
network, such as the one described in [PNM+05]. We considered the first two core networks
all along this thesis (except in Chapter 4 due to computational issues) as they are good
large scale, realistic networks. Their topology can be assumed close to one of a small
Metro Ethernet network. The last network was chosen due to its large size, which makes
it more realistic as a Metro Ethernet topology. However, the last network was also chosen
to provide a comparable study frame with the algorithms described in [PNM+05], as their
algorithms were designed to perform well on such a network.

2.6. Performance Analysis 29

�

�

�
�

0��+���	�����	��������������	��������	��������������������,�	���(&�����+�����������

�����	�� 	����� /�	��(���� ���	�(���� ��� ���� ����	/��� =!$� #��+,��>'� 0�� ������ /������ ��	�

#��+,�����������������	����������,��������,�	�����	���+������$�,��	�������������	��	�����/��&�

������?�������	���+�����$�,��	�����&��������	��������������	����������������&'� �

.���������	�����+�����������������������������	���������9��?���	�����������7�#���&������&�

&���� ���� ����� (��:7�#� ������ ��� �������� (��,���� ���'� �/��� ,���� �����+� ,����

����+��������&����	����	���������	�8��$� ���� ��&�����	�/���(&� ��������������������� �������

��,�&���&����	��H����	����������������	��&���	�/�	����������+�(��:7�#���	��/�	&�(��:7�#'� �

�

St-Lam-

bert 2
Rennes

Lannion

Rouen

St-Lam-

bert 1

Auber-

villiers

Mont

Souris

Lyon

Gre-

noble Sophia

Nancy

%�+�	�� '����E����,�	��

������		�,��&�(���@����,��

�6(�������	���������������

1

4

%�+�	���'���������,�	��

������		�,��&�(���@����,��

�6(�������	���������������

3

2

Figure 2.3: VTHD Network

Table 2.1: Relative Algorithm Performances : VTHD Network

VTHD Network

Algorithm →

Si
ng

le
ST

M
ST

w
it
ho

ut
tr

affi
c

up
da

te

M
ST

w
it
h

tr
affi

c
up

da
te

E
nh

an
ce

d
M

ST

D
iv

er
si

fi
ed

F
or

es
t

w
/

G
re

ed
y

M
ap

p
in

g

30 VPNs

Max.load 1678 1084 930 862 794

Avg.load 664 672 676 634 682

Max.nb of trees/link 1 30 30 30 10.4

Total nb of trees 1 30 30 30 10.4

10 VPNs

Max.load 535 390 354 349 270

Avg.load 212 212 215 199 214

Max.nb of trees/link 1 10 10 10 6.72

Total nb of trees 1 10 10 10 6.72

30 2. Contribution to Metropolitan Ethernet design

Figure 2.4: Italian High-Speed Network

We compare the results of our heuristic to those provided by the 3 algorithms described
in [PNM+05]. The first one constructs one ST associated to each VPN. This leads to as
many STs as there are VPNs. The idea is to apply weights to links which increase with
the load supported, and construct trees based on these weights. This technique is referred
to as ”MST with traffic update”. They further enhance their tree by mapping some links
of some shortest paths to the constructed trees: this will be referred to as the ”enhanced
MST” technique. When the link weights are not updated after constructing a tree, that is,
each ST is constructed for a VPN by simply selecting a root randomly among the VPN’s
AP nodes, the technique is referred to as ”MST without traffic update”. We compared
the results of our heuristic on the 3 above described networks with those provided by the
”MST with traffic update”, the ”MST without traffic update”, the ”enhanced MST” and
the single spanning tree strategy, by implementing all algorithms1.

1The source code for Python implementations as well as auxiliary programs are freely available at
http://perso.enst.fr/~brehon/

http://perso.enst.fr/~brehon/

2.6. Performance Analysis 31

Table 2.2: Relative Algorithm Performances : Italian Network

Italian Network

Algorithm →

Si
ng

le
ST

M
ST

w
it
ho

ut
tr

affi
c

up
da

te

M
ST

w
it
h

tr
affi

c
up

da
te

E
nh

an
ce

d
M

ST

D
iv

er
si

fi
ed

F
or

es
t

w
/

G
re

ed
y

M
ap

p
in

g

30 VPNs

Max.load 5915 3658 2807 2872 2252

Avg.load 1504 1257 1288 1131 1255

Max.nb of trees/link 1 29.0 27.4 27.1 12.7

Total nb of trees 1 30 30 30 13.8

10 VPNs

Max.load 1826 1267 1055 1221 785

Avg.load 467 387 396 341 379

Max.nb of trees/link 1 9.93 9.55 9.82 7.19

Total nb of trees 1 10 10 10 7.29

For simplicity, networks have links which are all of equal capacity. We generate a fixed
number of VPNs, having each a random set of APs in the network. Each VPN asks for
a random amount of bandwidth, uniformly chosen betwen 0 and 10 MBps. This amount
must be available between any 2 nodes of the VPN. For our heuristic, we chose to generate
as many STs as there are nodes, in the Spanning Forest Generation phase. ∆ was set to 1
in this chart. The results presented here are average values of 100 simulations. The results
are presented in tables 2.1, 2.2, 2.3 and give the statistics for maximum load, average load,
maximum number of trees for the links and the total number of trees setup in the network.

As the results show, our algorithm outperforms the other 4 as far as load balancing is
concerned. For the VTHD network, the maximum load on a single link is 7.9% lower on
average than the best concurrent algorithm (which is here the ”enhanced MST”). For the
Italian network, the improvement is of 19.8% over the ”MST with traffic update”. We can
also notice that for this large network which is not highly connected, the ”enhanced MST”
algorithm does not improve on the ”MST with traffic update”. Finally, for the highly
connected network, our algorithm improves on the ”enhanced MST” algorithm by 25%.

The average link load is higher with our approach (by 3 to 9%) than the best algorithm in
this regard, which is always the ”enhanced MST”. Considering how that algorithm builds

32 2. Contribution to Metropolitan Ethernet design

Table 2.3: Relative Algorithm Performances : Dense Network

Dense Network

Algorithm →

Si
ng

le
ST

M
ST

w
it
ho

ut
tr

affi
c

up
da

te

M
ST

w
it
h

tr
affi

c
up

da
te

E
nh

an
ce

d
M

ST

D
iv

er
si

fi
ed

F
or

es
t

w
/

G
re

ed
y

M
ap

p
in

g

30 VPNs

Max.load 1581 650 403 382 286

Avg.load 230 216 215 208 215

Max.nb of trees/link 1 18.3 13.9 14 5.0

Total nb of trees 1 30 30 30 11.5

10 VPNs

Max.load 522 280 202 219 139

Avg.load 74 70 70 66 68

Max.nb of trees/link 1 6.89 5.56 5.73 3.36

Total nb of trees 1 10 10 10 6.71

the STs, this is however expected behavior, since it aims at minimizing an overall cost of
the tree. In contrast the Diversified Forest with Greedy Mapping aims at achieving load-
balancing: this comes at the cost of using less direct paths, impacting the average link
load. The network operator will therefore have to ponder whether increasing the average
load a little is worth the tradeoff to reduce the highest link utilization.

When there are 30 VPNs (respectively 10), the ”enhanced MST” and ”MST with/without
traffic updates” all use 30 (resp. 10) trees. The single ST uses a single tree to support all
VPNs. However, our algorithm makes use of only 30% to 50% that number of trees. This
does not have any meaning regarding traffic distribution, but it does mean a considerable
label space savings (less VLAN-IDs). It also means there will be less signaling-related
traffic, since there are fewer trees to maintain.

In tables 2.4, 2.5, 2.6, the influence of the parameter ∆ is analyzed. This parameter, which
is defined in Section 2.5.1, corresponds to the value of the feedback which is brought to the
link weight after it has been incorporated into a ST. The conclusion which may be drawn
is that there is no optimal value for the parameter, and that this is network-dependent
optimal. Here, for the purpose of load balancing, it is better to have high feedback for
the Italian network and low feedback for the dense network (any feedback is good for

2.6. Performance Analysis 33

Table 2.4: Influence of ∆ for the VTHD Network

VTHD Network

value of ∆ → 0 0.4 1 5

30 VPNs

Max.load 794 783 783 783

Avg.load 686 682 682 682

Max.nb of trees 9.36 10.43 10.43 10.43

Avg.nb of trees 9.36 10.43 10.43 10.43

10 VPNs

Max.load 274 270 270 270

Avg.load 213 214 214 214

Max.nb of trees/link 6.32 6.72 6.72 6.72

Total nb of trees 6.32 6.72 6.72 6.72

Table 2.5: Influence of ∆ for the Italian Network

Italian Network

value of ∆ → 0 0.4 1 5

30 VPNs

Max.load 2264 2280 2251 2218

Avg.load 1216 1253 1255 1252

Max.nb of trees 10.24 12.08 12.72 12.48

Avg.nb of trees 10.26 13.31 13.81 13.92

10 VPNs

Max.load 776 788 785 775

Avg.load 372 380 379 378

Max.nb of trees/link 6.32 7.19 7.26 7.47

Total nb of trees 6.32 7.55 7.29 7.38

VTHD). For overall load, it is better to have no feedback however, in all cases except
VTHD with few VPNs. As for the maximal number of trees per link and the total number
of trees in the network, it is often better to have no feedback. These conclusions have
been observed regularly on most of the averaged experiments. The value of the parameter
∆ must therefore be adapted to the underlying network for optimal results, even though
setting the value to 1 proves to be on average a good choice.

34 2. Contribution to Metropolitan Ethernet design

Table 2.6: Influence of ∆ for the Dense Network

Dense Network

value of ∆ → 0 0.4 1 5

30 VPNs

Max.load 317 280 286 302

Avg.load 211 217 216 221

Max.nb of trees 6.03 4.8 4.95 4.94

Avg.nb of trees 10.6 11.4 11.5 11.4

10 VPNs

Max.load 144 140 139 149

Avg.load 66.7 67.5 67.5 69.2

Max.nb of trees/link 3.54 3.36 3.5 3.15

Total nb of trees 6.16 6.36 6.71 6.69

2.7 Concluding Remarks

In this chapter, we tackled the problem of mapping VPNs to Spanning Trees in Metro
Ethernet networks. We formulated this problem as a novel MINLP problem. However,
due to tractability issues, we were brought to conceive a heuristic algorithm to solve the
problem of optimally balancing the load of the VPNs accross the network. This algorithm
is quite simple to implement by an operator, since the two stages of building the Spanning
Forest and then mapping the VPNs are totally independent. We compared the results of
our heuristic to the other known methods of mapping VPNs to Spanning Trees which are
available, and very good results were obtained.

This research could, provided proper adaptation, be used to determine the best multicast
distribution trees, in the context of the current trend of multicast research, both for VPN
services or content-distribution (such as IP television). Further research on the subject is
targeting the resiliency of the generated forests, to minimize the impact of a single failure.

For Carrier Ethernet services, providing load-balanced Ethernet transport of client Ether-
net is not sufficient, as other requirements are stated at the MEF for ”Carrier Ethernet”,
such as:

• Protection: this is a traditional transport requirement, which translates into the well
known ”five 9’s” requirement, or 99.999% of network availability

• Quality of Service (QoS) guarantees, such as hard bandwidth, delay, jitter, etc.
guarantees

• Service management, which allows for simple way of enabling, managing, measuring
and upgrading services (refer to Section 1.3.2.3).

2.7. Concluding Remarks 35

All these additional requirements necessitate advanced networking functions, such as the
ones enabled by the GMPLS framework: transport of Ethernet in GMPLS-controlled
networks will benefit from the bus-LSP structure presented in the following chapters.

36 2. Contribution to Metropolitan Ethernet design

37

Chapter 3

Bus-LSPs and Bus-FAs

In present GMPLS networks, the layouts are based on point to point Label Switched Paths
(LSPs). In this chapter, we introduce an unexplored type of LSP (and more precisely of
Traffic-Engineered link), based on a unidirectional bus concept, allowing reducing the
cost of the network as well as the layout complexity. The benefits of the concept are
qualitatively evaluated. The graph representation of this concept is also introduced, so as
to allow the application of traditional graph-based studies to networks implementing this
new concept.

3.1 Technological context

3.1.1 Opaque optical network architecture

An opaque optical network consists of multiple equipments as described in Figure 3.1,
which we will call multilayer cross-connects (MLXC), interconnected by multiple optical
fibers. Use of (D)WDM (Dense Wavelength Division Multiplexing) allows for multiplexing
more than one wavelength on a given fiber, and hence, it is possible to use the great
potential of a fiber’s bandwidth. Indeed, while no current electronic device can deliver
data at the rate which utilizes a fiber efficiently, by multiplexing wavelengths with reduced
bandwidth, it is possible for electronics to use the wavelengths efficiently.

The MLXC has two main functions: a routing function, and a switching (or forwarding)
function. The routing function and the switching function may belong to a same piece
of equipment, or they may be physically separated and need interfaces to be connected.
The routing function is used at the packet level, to determine where to send each packet
based on its header. This is layer 3 in the standard OSI model [Zim80]. The switching
function is used to forward all data coming from a given direction to a same destination
direction. This is layer 2 in the standard OSI model [Zim80]. This switching function may

38 3. Bus-LSPs and Bus-FAs

Router

Electronic Cross Connect

Prism

Opto-electronic converters

Prism

Prism Prism

… …

GMPLS
Controller

Function
separation

Figure 3.1: The MLXC architecture

be dynamically changed so as to modify the switching patterns, and therefore, virtual
layouts.

The routing function may be realized by standard OSPF (or IS-IS), in which case every
packet is routed based on its destination field using hierarchical routing tables [RFC2328].
It may also implement a label-based packet switching technique such as MPLS [RFC3031],
or MPLS-TE [RFC2702], which are often placed at a layer 2.5 in the OSI model.

The MLXC consists in various elements. On the path of transit packets, the first element
met is a transceiver at the end of a fiber optic which demultiplexes the various wavelengths
and sends each one of them to an opto-electronic converter. These converters are attached
to input ports of the electronic cross connect, and so are the output ports of the router.
The output ports of the cross-connect are themselves attached, one to one, either to input
ports of the router or to outgoing converters. Outgoing converters are multiplexed onto a
single fiber using a transceiver again (basically, a prism). This means that a packet going
through the MLXC and which is routed at layer 3 will be switched through the electronic
cross-connect twice: once to go from an incoming converter to the router, and once from
the router to the appropriate outgoing converter.

A network consisting of such equipments is called opaque in opposition to transparent
optical networks. In transparent optical networks, wavelengths are switched directly at
the optical level, without use for opto-electronic and electro-optical conversions. In opaque

3.1. Technological context 39

networks this is not the case. Although transparent optical networks have been announced
for a while, they still are not deployed, and opaque networks prevail in operator networks.
Therefore the circuits which are established are not light paths but instead circuits of a
transport technology. These technologies can be layer 2 LSPs [Pap04] (Ethernet circuits),
SDH, etc.

A very complex subproblem [NTLM02] is often linked to the multilayer routing problem
described in Section 1.4. When applied to transparent optical networks, a wavelength
cannot be changed along a path, unless expensive devices called Wavelength Converters
are used. Since the optical bandwidth space is limited, this means that wavelength avail-
ability can become quite fast an important constraint. This yields a subproblem called
the wavelength assignation problem which when unfeasible for a given VNT may cause
the only possible solutions to be suboptimal. When considering opaque (or equivalently,
transparent with unlimited wavelength converters) optical networks, this problem does
not arise.

3.1.2 GMPLS Unified Control Plane and MLXCs

The unified multilayer control plane offered by the GMPLS architecture has been designed
so as to take advantage of such networks, and is intended to pilot equipments such as the
MLXC.

In the exposed network architecture, two types of FA-LSPs may coexist: layer 2 FA-LSPs
and layer 3 FA-LSPs:

• At layer 2, an FA-LSP which only transits through a node will be switched directly
from an incoming port on the electronic cross-connect to an outgoing port. An FA-
LSP originating in an MLXC will have its layer 3 packets routed towards an ingoing
port of the cross-connect. The cross-connect has been configured so as to switch
this port to a given outgoing port by the GMPLS control plane. Finally, an FA-LSP
terminating in an MLXC will have incoming packets, once out of the opto-electronic
converters, switched to an outgoing port going to an incoming port of the router.

• At layer 3, an FA-LSP is simply a set of successive layer 2 FA-LSPs which are
concatenated to form a longer fixed path for packets. At the merger of each of these
layer 2 FA-LSPs, the packets must be forwarded at the router level of the joining
MLXC.

40 3. Bus-LSPs and Bus-FAs

1 5432

Network node
(MLXC, …)

Upper layer
(IP, …)

Lower layer
(Ethernet, SDH…)

PADBus-LSP

Figure 3.2: Bus-LSP Terminology

3.2 Bus-LSPs

3.2.1 Definition

In a GMPLS-controlled multilayer network, a Label Switched Path (LSP) is a connection
between ingress and egress LSRs (Label Switching Routers), spanning one or more links.
The links can be physical links such as fibers, or lower-layer LSPs nesting the LSP, as long
as the hierarchy defined in [RFC4206] is respected. A Forwarding Adjacency (FA) is a
representation, at the Data Plane, of the connectivity that one or several LSP offer in the
data plane between the ingress and egress. It can therefore be used in upper layers as a
physical link is used by the bottom layer.

What we call here bus-LSP and bus-FA are extensions of these concepts of LSP and FA.
In a bus-LSP, such as the one depicted in Figure 3.2, intermediate LSRs in the LSP have
the possibility of adding and dropping data on the bus-LSP. We will call these nodes add-
drop points. A bus-LSP provides a forwarding connectivity between ingress, add-drop
points and egress in the data plane. We call the representation of this connectivity in the
Data Plane a bus-FA. A mechanism allows the ingress of the bus-FA and any add point
to specify which single node on the bus-FA the data sent is addressed to. This solution
is neither a multicast one nor a point-to-(multi)point one. At the moment, the bus-LSP
supporting the bus-FA is unidirectional. Hence, data may only be sent to a drop point
(or the egress) which is downstream from the sending add point (or ingress). When traffic
arrives in a node which must inject it onto a bus-LSP, the node checks where the traffic
must exit, based on the Forwarding Equivalency Class the packet belongs to [RFC3031]
as for any (G)MPLS packet, and addresses the specific drop point (or egress node) it is
intended for. Note that bus-LSPs can nest other bus-LSPs at various layers, just as LSPs
can nest LSPs.

This structure is only one step away from offering some degraded point-to-multipoint
functionality, by allowing packets to be both dropped and forwarded in the same MLXC.
This needs further signaling and routing protocols research, but it could be useful for VPN
or content distribution, as will be shown in Section 3.2.4.3.

3.2. Bus-LSPs 41

3.2.2 The Packet Add-Drop (PAD)

The equipment which is considered at the moment consists in a PAD (Packet Add-Drop)
which is a relatively light piece of software or hardware added in the electronic cross-
connect part of the MLXC. The PAD is able to read a small integer in the incoming
packets on-the-fly, and:

• Either decrement it if it is strictly positive and forward the packet to the cross-
connect for regular FA switching,

• or forward the packet to the router if it is null (possibly bypassing the cross-connect).

This is the Drop functionality of the PAD. The integer therefore serves as a local addressing
along the bus-LSP, and any equipment sending packets on the bus can set this integer to
a given value which corresponds to the number of PADs the packet is supposed to go
through before being dropped. The PAD also has an Add functionality to it, which allows
an intermediate router to inject traffic on a bus. This relies on a MAC protocol, of which
the details are not disclosed here.

Some details of this PAD structure are unknown, and will be decided upon full implemen-
tation. Some of these specific details are:

• The number of incoming electronic ports which will be mapped to a PAD function.

• The PAD position in the MLXC architecture:

– at input of the electronic cross-connect : this implies the router must add the
packets to the LSP which is then switched by the cross connect

– at output : it means uselessly switching packets through the electronic fabric
before dropping them

– partly input and partly output, dropping packets before going through the
cross-connect and adding packets after. This is obviously the most expensive
solution as the PAD is split in two parts, but it is the most efficient solution as
the electronic fabric use is minimized.

• The number of interfaces going from PADs to the routing function. Given that on
one bus-LSP, incoming packets in a transit MLXC will not all be dropped, it would
appear that having all PADs have their own outgoing port on the cross-connect and
their own input port on the router is inefficient. Therefore, all PADs could share
one or several ports.

In the case where bus-LSPs are nested in other bus-LSPs, there must be a PAD system
for every layer using bus-LSPs. Each layer has its own counter system, and these cannot
interact, in the same way as GMPLS labels do not interact.

42 3. Bus-LSPs and Bus-FAs

3.2.3 Related work

3.2.3.1 Light trails

Light-trails [GC03] are a neighbor concept to bus-LSPs. A light trail is setup as a path
in the network. A dedicated control channel is then in charge of setting up connections
between nodes belonging to the trail. While these two nodes are conversing, no other node
may use the trail.

Bus-LSPs are however very different from light trails. In a light-trail architecture, a
dedicated control channel must give clearance before data is sent on trail. Therefore,
the specific control channel requires resources for the exchange of the control messages it
uses. Also, data must be aggregated before sending, for control channel usage sparing, and
for resource utilization maximization. Indeed, if the data is not aggregated, the control
channel spends its time swapping which node may use the data channel(s), and therefore,
data channel resources are wasted. Finally, the shared optical bus cannot support two
overlapping connections, since, at any moment, each segment of the trail is dedicated to a
given connection. With the bus-LSP concept, the shared bus is accessible at all time for
all nodes. This means two small overlapping connections may simultaneously use the bus.

Yet, studies can be easily applied from light-trails to bus-LSPs and conversely. Some
studies [BSK05, FHS04, BHS05] have focused on the design of virtual topologies using
light-trails. [FHS04, BHS05] focus on the optical CAPEX optimization (namely, number
of transceivers) in the case of all-optical transparent networks. [BSK05] concentrates on
reducing the number of connection grooming nodes (hub nodes).

3.2.3.2 Distributed Aggregation

In [BPD+04], the authors use the possibility of adding traffic onto an LSP at an inter-
mediate node in an all-optical transparent network to improve throughput and reduce
network cost. This is the equivalent of a bus-LSP on which only add nodes are available,
but in a transparent optical network. However, we show that in a routed environment, the
throughput increase and cost reduction can be achieved by using the nesting technique,
at the cost of router processing load.

3.2.4 Benefits of the Bus-LSPs

By offering more adjacencies with fewer LSPs, the bus-LSP concept allows reducing the
number of LSPs to be setup and therefore the operation and maintenance costs, regardless
of the environment it is deployed in.

However, this is not the only benefit of bus-LSPs, as shown below. We analyze two cases.
In the first one we consider a network of just two layers, the physical network layer and

3.2. Bus-LSPs 43

�

�

(��,������+	��������+	����7�I��-7�(����,������+�I����	�2$��������+������	���	�������'�����

����������(����&����������������������(�	�$��	���,�	:��&�	�7�#��������+�����7�#$�������+��������

���	�	��&����������=�>����	�������'�*�%�	,�	��+�*B�����&�-%*2������	��	����������$��������

3���	���#����$����������������/��&�����������	���/�	���7�#�����	������������������(��,��������

��+	��������+	���'�.���������	���	��(�������������	���&�	���������&������ ������������(&�����

(��������&�	'� �

0����,���������	��(��:7�#����(��:%*��	���8������������������������������7�#����%*'�

5����(��:7�#$�����	�������7�I���������7�#���/�����������(����&�������+����	�����+�����

�������(��:7�#'�0��,���������������������:	���������'�*�(��:7�#��	�/��������	,�	��+�

��������/��&� (��,���� ��+	���$� �:	��� ������� ��� �+	���� ��� ���� ���� �����'� 0�� ����� ����

	��	����������� ��� �������������/��&� ��� ����3���	���#����� �� (��:%*'�*����������� ����,�� ����

��+	�����������(��:%*������&������������������&�,��������+��������������(��:%*���������

���������	�������'������������������������	�������������������	�������������:��:-�����2�������

���'� .�� ���� �	������ ����	$� ��� ��	� ���� �����(����&� ��� ���� ��������������$� ���� (��:7�#�

�����	���+�����(��:%*��������	��������'�;����$�������&����&�(������������	���������-�	�����

�+	���2�,���������,���	�����	������������+���������-�	���+	���2'�

����(��:7�#�������������,��	�����+��������(�	����7�#�����(��������������	���	������

���	��������������������������'�0��9�������������+������	��,���8������������������������

 '�

;�,�/�	$������������� �������&�(����������(��:7�#�$�������,����	�����	'�0������&@���,��

�����'�.��������	�������,��������	������,�	�����B�����,����&�	�$�������&���������,�	����&�	����

����������������,��+���������&������������&���������,���������	���	����&������	�����'����	��

������	�����+��/�	�������&��������,��+������	�����	������	�������/�	���	�����������%*�-,�������

������		�������+����,�	���	��������	��C���:	������	��������	�D2'�.����������������$����	�����

���	���&�	����������	����������	�������/�	���/�	���%*��-���	��������������	����	������������2'�

�

) � �������
��
���
�������
�
"���$�����
������������

.�����	���������� ����������	��������	�� -����%�+�	���2$� ������	�����������(��,���� �,��

���������	�����	����/�	������+������������������%*�(��,�������������-���(��:%*���	�����2'�

0��,���������������	��������	���#E#�-�	���������:��:�����2'�.�����������,��+�,��������	������

����%*���	�������	���(&����(�������������'�

������8�����$��������������	�����&������������+&��������������	��������$�����3�

�

�

*� �� 3�

%�+�	���'���	����#��������#�����*	��������	��

I�����+�7�&�	�

1*3�7�&�	�

7����7�&�	�

Figure 3.3: Direct Point to Point Architecture

�

�

�

�

,������	�����������(&��,�������$������	���*�����������������	��	��������3�-������,�����

%�+�	����� ���E2'�0���������	��+� �����#E#� ���������,���� ����(��:7�#�����	��	������� ���

%�+�	��E$�,���(��	/������H�

�: �����#E#����	�����	�9��	�������������+��,��7�#��������������$��������������&�

������	�����(��:7�#�-����%�+�	��E2'�

E: �������� ��� ���� ���	���� (��,���� ��� ���(�� �����������$� ��� ������������

��������8��+��������,����������#E#������(��,��������*���������*����3��	�����$�

������	� (��,���� ����*� ��� 3� ��� �� ��� 3� �	�����'� ���	���	�$���	��	����	���� �	��

������&� �������'� ����� ���� ���� (���� ��	�����&� �8���	�� ��� =�>� ����+� �� ��	��

	���	����/�$�&���	�������������(��:7�#$���������+&'�

": �,����������&�,�/����+�����������������:�����	��������/�	��	�����	�9��	�'� �

�

���� �#E#� ��� ���	���	�� ��	�� 	����	��:��������+� ��� �������� �� +	����	� ����+������

������8��&������� �������(�	����	�9��	��7�#�� ��� ��	+�	'�����+���� ���	������,����������@�����

�������,�	�'�

�

)) �������
��
���
�������
�
$�����
������������

.�� �� �������&�	� ��/�	������$� ��� ��� �����(��� ��� 	����� ������ �/�	� ��������� %*�� �	�

(��:%*�'�0�������	����	����(��:7�#�(�����	��������	�����������������-����%�+�	��"2�,��	������

�	������ ������ �	�� �����	��� (&� 7�#�� ,����� �	�� ������ ���&� (��,���� ��&������&� �B������

���������������,������	�����'�0��,������������������������1;�-�����:�����2'� �

*�� ��� �8�����$� ���� ��� ������	� ���� ����� ������+&� ��� ��� ���� �	�/����� �������'� 0����

�����	��+�����1;����������,��������(��:7�#����$�,���(��	/������H�

�: 0��	�� ����1;��	��������	������ ��� ������ ������������ �,���	���	��7�#�$����&�

����(��:7�#��������'� �

E: ���� (��:7�#� ��	����	�� ��� ����� ������+� ��� 	����	� 	����	���� ����� ���� 1;�

��	����	�?� ����$� �	������ �������� ��� �� ���� �	�� ���� 	����� ��� ��&�	� "� (��� B����

��	,�	����� ��&�	�E'����������(������/�	&������&���� ��&�	�E��	������	����++��

,���� ����	�� ��������+� ������		�������+�	�����+����'������������ �� ��+���	�

���� ��	� ���� 	����	$� ��� �	�������+� ��,�	� ��� ���	�$� ,����� ���� �	����&� (��

���/�	�����������	����������	��������	���	'�

�

*� �� 3�

%�+�	��E'����:7�#�*	��������	��

I�����+�7�&�	�

1*3�7�&�	�

7����7�&�	�

Figure 3.4: Bus-LSP Architecture

a second one allowing the deployment of a layout that will support directly the traffic.
There is no routing over the layout allowing the transport of traffic over more than one FA
(we call the corresponding network architecture ”non-routed architecture”). This requires
the establishment of connections between all pair of nodes which have a demand to satisfy
from one to the other, and can lead to a full-mesh of connections. In the second case, there
is a third layer that can route the traffic over several FAs (there is no need here for a full
mesh). We will also consider the additional services the bus-LSPs facilitate to provide.

3.2.4.1 Benefits of the Bus-LSP in Non-Routed Architectures

In a direct point to point architecture (see Figure 3.3), each traffic demand between two
nodes is transported over a single point to point FA between the nodes (no bus-FAs are
used). We will call this architecture DP2P (direct point-to-point). In the following we
consider that the FAs are supported by lambda connections.

As an example, consider a physical topology composed of three nodes A,B and C which
are connected by two links, one from A to B and the other from B to C (as shown in
figures 3.3 and 3.4). When comparing the DP2P solution with the bus-LSP one represented

44 3. Bus-LSPs and Bus-FAs

�

�

�

�

�

": .��������&�	�"�	�����+��������������	�/���(&�������	�����9�������$�����(��:7�#�

,������/��	����	���������������	�����(��,������&�	�"������,�	���&�	���9�������$�

����������/���	������������(�	����	�9��	����&����������	���������(�+����,�	��'�

�: %�����&$� ���� (��:7�#� ��� 1;� �	��������	��� �	�� ��	����&� �9��/������ ��� ��	��� ���

������������ ��������8��+� ������ (���� ���� ��������8� ��������� ���,�� ����� �� ���+���

7�#'� �

�

) , �-��	�-
���
$����-
$�.��������

��������	���������(��:7�#�(���+�����/������������������61#7�������$���������������

�	����	�����/�� ��� (�� ������ ��	� ����+� ����� ��� �8�����+�61#7�� ���,�	��'�*� (��:7�#� ���

����������+�����������&������I�J#:���=K>$�=L>�����������������	�����(������+���	�+���	�7�#'�

;�,�/�	$���+�����+��8�����������/�����(����������������$�����&$������$��	���������	����	��

������ ��	������	�7�#�'����� ������������� ��� (�� �	�����	���� ��� ���� (��:7�#� �,�	������'�0��

��/�� ��������� ������ ��+�����+� �8��������?� ���� �������� ��� �����,�	��,���� (�� ��(������ ��� ��

����	��������	'�������	�&$�����8���������������	�����+��	������$������&�5�#%:���=�!>$��������

(�� ���+��� ��	� 	��	�������+� (��:%*�� ��� ��	�� ��� 	�����+� ����	������$� ��� ���	�(����+� ����

��		�������+����������	�����+����	���'� �

�

, %�#!/!0�#!%"
/%&+�
1%$
�
"+#2%$�
'�!"3
�'������

�

.�����������,��+����������,��,����9���������/��&�����&@������(�����������(��:7�#�������	���

��&���� ������8��&� 	�������'� .�� ���� �	������ �������� ,�� ���	����� �� �,�� ��&�	� -���:	����2�

���,�	��������������/�	�����	���������������������,��������������,��+���������'� �

�

, � "������
���
�����

������&���������,�	�����	��	�������(&����	�����+	�������������$�,��	������������������

/�	������ ���8��(&� ����+���	��� ��(��	����	�
���$� ����� ��� ���� ���� ��� �+��� ���8��(&� ����

+���	��� ��(��	�����
���'� ����/�	������	��	��������	�� ����61#7��7�(��� �,������+�I����	��

-7�I�2����������+��	��	�������������	������������������+������(��,��������'�*��������&$�

,��������(&����������������������&���������'�

*� �� 3�

%�+�	��"'�1����:;�����*	��������	��

I�����+�7�&�	�

1*3�7�&�	�

7����7�&�	�

Figure 3.5: Multi-Hopped Architecture

in Figure 3.4, we observe that:

1. The DP2P approach requires maintaining two LSPs on each link, instead of only one
for the bus-LSP (see Figure 3.4).

2. Because of the discrete bandwidth of lambda connections, no statistical multiplexing
is allowed in the DP2P case between the A to B and A to C traffic, neither between
the A to C and B to C traffic. Therefore, more resources are usually consumed. This
idea has been partially explored in [BPD+04] using a more restrictive, yet related to
the bus-LSP, technology.

3. Twice as many wavelengths and total opto-electronic converters are required.

The DP2P approach is therefore more resource-consuming and implies a greater manage-
ment complexity since the number of required LSPs is larger. The gain increases with the
size of the network.

3.2.4.2 Benefits of the Bus-LSP in Routed Architectures

In a multilayer environment, it is possible to route demands over multiple FAs or bus-FAs.
We compare here a bus-LSP based architecture to a situation (see Figure 3.5) where all
traffic demands are supported by LSPs which are setup only between physically adjacent
nodes that can switch traffic. We will call this situation MH (multi-hopped).

As an example, consider the same topology as in the previous section. When comparing
the MH solution with the bus-LSP one, we observe that:

1. Where the MH architecture has to setup and maintain two or more LSPs, only one
bus-LSP is needed.

3.2. Bus-LSPs 45

2. The bus-LSP structure is less demanding in terms of router resources than the MH
structure; indeed, transit packets in a node are not routed at layer 3 but just for-
warded at layer 2. This can be done very easily if layer 2 frames are tagged with
a mark indicating the corresponding dropping node. This means lower load for
the router, and processing power is spared, which can directly be converted to cost
reduction for the operator.

3. If the layer 3 routing function is provided by a separate equipment, the bus-LSP will
save resources at the interface between layer 3 and lower layers equipment, this can
even reduce the number of required physical interfaces in large networks.

4. Finally, the bus-LSP and MH architectures are strictly equivalent in terms of statis-
tical multiplexing since both can multiplex multiple flows onto a single LSP.

3.2.4.3 Benefits of the Bus-LSP as a Service Enabler

This section will focus on the functional interest a tool such as the bus-LSP can pro-
vide. From the section presented beforehand, its interest can be understood on a pure
optimization level. Bus-LSPs basically reduce the load on the upper-layer router, save
some opto-electronic converters and provide management facilities. With this in hand, it
is natural to consider bus-LSPs as a tool to reduce costs and optimize the network design.
However, they can also play an interesting part for providers wishing to furnish given
services.

First of all, due to the particular design of the bus-LSP, flows inside it share the bandwidth.
If a provider is using it to send traffic, dimensioning nested LSPs is important. However,
a bus-FA could be used to provide a Layer 2 VPN service to customers. By running a bus-
FA through all CEs (Customer Edges), which is dedicated to the customer, a bus-FA is a
very interesting way of offering layer-2 connectivity. A customer may use the bandwidth
reserved as he wishes, and the bandwidth sharing between CEs is not to be decided by
the provider. Additionally, if bus-FAs were enhanced by a multipoint functionality, there
would be some additional gain by natively offering broadcast instead of relying on frame
duplication at CEs. Finally, if a bus-LSP is allowed to be circular, any CE can broadcast or
target a message on the Layer-2 VPN. In this case, one unidirectional ring-shaped bus-LSP
would replace the two unidirectional bus-LSPs needed to provide the proper connectivity.
In the VPN perspective, obviously, a bus-FA is used not as an optimization technique, but
as a functionality-serving architecture. This service remains to be detailed (particularly
the CEs behavior, how to establish the bus/cycle running between CEs, etc.).

Second, if bus-FAs are given point-to-multipoint capabilities, then they can be used as a
simple way of doing content delivery (among other services which remain to be defined).
A central server could send its content via a bus-FA to distributed servers. This can be

46 3. Bus-LSPs and Bus-FAs

useful for television and video applications for instance, and more generally, for all one-way
content distribution services. Using a bus-FA for two-way content application can also be
considered, either by using two parallel bus-LSPs or by a single circular bus-LSP, since
this is basically the establishment of a temporary VPN session.

3.3 Representation in multi-layer networks

It is important to be able to represent the connectivity a bus-FA offers in a graph. This
can be useful for example, once a layout containing bus-LSPs has been decided on, so
as to optimize the above layer. This does not apply when optimizing resources in multi-
layer optimization, i.e., where the virtual layout and the routing on the layout are both
optimized at once. However, for single layer optimization over a pre-set virtual layout, it
is important to represent bus-LSPs in a usable way. This section brings an answer to this
problem.

In this section, we will show a graph representation of bus-LSPs. This representation will
be used to initialize bus-LSPs of length 1 over a link in Algorithm 5.

Let us assume we are considering a bus-LSP as depicted in Figure 3.6, running through 5
different nodes. Node 1 is ingress, 5 is egress, node 2 has add/drop capability, node 4 has
only drop capability, and node 3 is just a transit node. We can transform this configuration
into the graph depicted in Figure 3.7.

To do this we first create a virtual node associated with each true node connected to the
bus-LSP: we create 5 virtual nodes 1′,2′,3′,4′, and 5′. The virtual node is then connected
to its parent node with up to two directed links, depending on its access type to the bus-
LSP: these are called fork links and they connect physical nodes to to virtual nodes (and
conversely). In our example, this leads to the following fork links setup:

• (1,1’),

• (2,2’) and (2’,2),

• no links between nodes 3 and 3’,

• (4’,4),

• (5’,5).

Then, all virtual nodes are connected (here 1’,2’,3’,4’,5’); they represent the bus-LSP itself,
while the fork links represent router access. Capacities are set in the following way on
the representation. The fork links capacities are set to the router treatment capacity. For
example, if router 2 has interfaces between the routing layer (upper layer) and the optical

3.4. Concluding Remarks 47

1 5432

May only route 3 units of traffic incoming on this bus-LSP

Capacity of bus-LSP on this link: 5 units

Routing layer

Forwarding layer

Figure 3.6: Bus-LSP

1’ 5’4’3’2’

1 5432

C
=

3
 o

r C
=
∞

C=5

Figure 3.7: Bus-LSP equivalent representation

layer (lower layer) to send on this bus-LSP a volume of 3 units, the capacity is set to 3 on
link (2,2’) (one may set the capacity to∞ if routing is not a constraint, as in Section 5.3).
The capacity on the link between two virtual nodes is set to the capacity (Zgq) available
in the bus-LSP segment between the two true nodes associated to those virtual nodes. For
example, if the bus-LSP has a capacity of 5 units of traffic between nodes 3 and 4, the
capacity of link (3’,4’) is set to 5.

Note that a virtual node is associated with a given bus-LSP. If multiple bus-LSPs run
through the same node, multiple virtual nodes are formed.

3.4 Concluding Remarks

In this chapter, we have introduced the novel bus-LSP structure. This structure is intro-
duced in the GMPLS framework as a way for network operators to reduce both CAPEX
and OPEX, in single- and multi-layer networks. This was qualitatively demonstrated, and
will be quantitatively explored in following Chapters 4 and 5. Additionally, the represen-
tation of a bus-LSP in a graph allows integration of this complex structure in traditional
graph-based studies.

48 3. Bus-LSPs and Bus-FAs

49

Chapter 4

Bus-LSPs in Single Layer

Environments

As has been shown in Chapter 3, there are two types of gain possible in single layer
environments. First, if the layer’s resource is available only in discrete increments, it is
possible to multiplex more flows on a single link using bus-LSPs. This provides the ability
to spare link bandwidth. The reader may refer to the work in [BPD+04] for some results
linked to this strategy. However those results are based on Distributed Aggregation which
only allow packet adding and not packet dropping: using bus-LSPs will provide CAPEX
savings which will necessarily be greater or equal.

Second, it has been shown that making use of bus-FAs should reduce the overall number of
FAs setup. This can directly be translated into OPEX savings. Indeed, a network’s oper-
ation costs are directly related to the number of network entities to supervise and manage
(FCAPS costs). The more network entities there are, the more people are needed for
management: therefore reducing the number of said entities will result in lower operations
costs. This chapter focuses on this aspect of management simplification.

4.1 Optimization Model for a Network Using bus-LSPs

In the following sections we will quantitatively analyze the benefits of bus-LSPs in terms
of layout complexity reduction. In the present section we introduce a single layer network
model and the various related notations that we use in the following sections.

4.1.1 Network and Paths

The physical network is represented by a directed graph G = (V,A), where V is the set of
vertices indexed by subscript n = 1, 2, . . . , N , and A is the set of edges indexed by subscript

50 4. Bus-LSPs in Single Layer Environments

e = 1, 2, . . . , E. The vertices represent here the GMPLS Label Switching Routers (LSRs)
and each edge represents a unidirectional connecting link between them. Additionally, ce

denotes the nominal capacity of link e.

Since our target is to show the benefits of bus-LSPs in terms of reduction of the number
of objects to be set-up and maintained, a path formulation of the network optimization
problem is better adapted than a node-link formulation. Let subscript p = 1, 2, . . . , P

index all considered paths in the network. Note of course that in practical cases, the
network operator can select the list of paths that can be used; this is taken into account
in our model. A path is characterized by the ordered succession of links it uses. In the
bus-LSP context, a path and a bus-LSP will be considered as equivalent, that is, all nodes
along a path will be able to add or remove packets on the bus. We suppose in this thesis
that bus-LSPs do not cross a given router more than once.

4.1.2 Demands and Flows

Let subscript d = 1, 2, . . . , D index all network demands, that is the various end-to-end
commodities. Demand d requires bandwidth hd.

Since we consider a non-routed (single-layer) architecture, demands have to use a single
(bus-)FA to go from source to destination.

Let δedp be the binary incidence coefficient that takes value 1 when path (or bus-LSP) p

requires bandwidth on link e when satisfying demand d, and value 0 otherwise. We assume
here that the signaling and routing protocols allow the residual bandwidth to vary along
a given bus-LSP, depending on the initial nominal capacities of the links composing the
bus-LSP and the bandwidth reservations made on each segment of the bus-LSP.

Let γdp be the binary incidence coefficient indicating if path (or bus-LSP) p can effectively
transport demand d. Again, the operator can restrict the use of a path for the transport
of a given flow so as to guarantee delay constraints for example.

Let xdp be the continuous variable indicating how much flow from demand d is routed on
path p.

Let up be the binary variable associated with path p indicating whether path p is activated
or not.

4.2 Optimization Problems Formulation

Given the physical network configuration and a traffic matrix, the objective is to minimize
the total number of LSPs a network operator has to manage. Below are formulated two
problems that need to be solved for this purpose. The first consists in minimizing the

4.2. Optimization Problems Formulation 51

number of active LSPs with the constraints of transporting all the traffic without over-
loading any link, and the second has an additional target of keeping the overall bandwidth
consumption minimal.

4.2.1 Reduced Complexity Layout With Bus-LSPs

MCL 1
Minimal Complexity Layout Problem

Given:
The topology, i.e., the set of links {1, 2, . . . , E}; the sets of demands {1, 2, . . . , D} and of
paths {1, 2, . . . , P} as well as:

• hd for d = 1, 2, . . . , D (demand volume)

• ce for e = 1, 2, . . . , E (link capacity)

• δedp for d = 1, 2, . . . , D; e = 1, 2, . . . , E; p = 1, 2, . . . , P

• γdp for d = 1, 2, . . . , D; p = 1, 2, . . . , P

Minimize:

P∑
p=1

up (4.2.1)

Subject to:

D∑
d=1

P∑
p=1

δedpxdp ≤ ce for e = 1, 2, . . . , E (4.2.2)

P∑
p=1

xdpγdp = hd for d = 1, 2, . . . , D (4.2.3)

xdp ≤ hdup for d = 1, 2, . . . , D, p = 1, 2, . . . , P (4.2.4)

The operational expense for a network operator is related to the layout complexity. In
the thesis, we define complexity as the total number of LSPs which are simultaneously
active. In this section, we formulate a multi-commodity flow problem with the objective
of minimizing this number of bus-LSPs. The MCL (Minimal Complexity Layout) problem
is formulated as Mixed Integer Linear Program (MILP), as some of the variables (like the
up) are integers and other (like the xdp) are continuous. The paths which may be used in
this formulation are predefined, that is a set of paths is used as an input to the problem.

Constraint (4.2.2) ensures that no link carries more flow than its nominal capacity. Con-

52 4. Bus-LSPs in Single Layer Environments

straint (4.2.3) expresses the fact that all the demand is satisfied and that only paths which
connect the endpoints of a demand are used. Constraint (4.2.4) ensures that there is no
flow on inactive bus-LSPs (for which up=0). We allow here for load-balancing, or flow
bifurcation, since we do not impose for a commodity to be satisfied by a single path.

4.2.2 Reduced Complexity, Minimal Overall Bandwidth Layout With

Bus-LSPs

As we will show in the numerical study in Section 4.3, minimizing the number of bus-LSPs
can lead to wasting a lot of bandwidth, as demands may be multiplexed on too long bus-
LSPs. Therefore, we propose another formulation, where we have the additional constraint
that the overall used bandwidth does not exceed the minimal overall bandwidth required
to support the demand in a network that does not implement bus-LSPs.

This MCL-BC (Minimal Complexity Layout with Bandwidth Constraint) problem is solved
in two steps. The first one consists in determining the minimal link bandwidth consump-
tion (B∗) of a layout not using bus-LSPs. This is obtained by solving a MCL problem
similar to the one formulated in Section 4.2.1 for which only objective (4.2.1) is changed
and becomes:

minimize : B =
E∑

e=1

(
P∑

p=1

D∑
d=1

δedpxdp) (4.2.5)

This leads to a minimal network utilization B∗. As the up variables are no longer con-
strained, they may all be set to 1, which means that flows can be routed on all paths.
However, only those using minimal amount of bandwidth will be selected, regardless of
how many are used and whether load is balanced or not. We then use this to solve a
variation of the MCL problem with this optimal bandwidth utilization as an additional
constraint (4.2.10).

4.2. Optimization Problems Formulation 53

MCL-BC 1
Minimal Complexity Layout with Bandwidth Constraint Problem

Given:
The sets of links {1, 2, . . . , E}, of demands {1, 2, . . . , D} and of paths {1, 2, . . . , P} as well
as:

• hd for d = 1, 2, . . . , D

• ce for e = 1, 2, . . . , E

• δedp for d = 1, 2, . . . , D; e = 1, 2, . . . , E; p = 1, 2, . . . , P

• γdp for d = 1, 2, . . . , D; p = 1, 2, . . . , P

Minimize:

P∑
p=1

up (4.2.6)

Subject to:

D∑
d=1

P∑
p=1

δedpxdp ≤ ce for e = 1, 2, . . . , E (4.2.7)

P∑
p=1

xdpγdp = hd for d = 1, 2, . . . , D (4.2.8)

xdp ≤ hdup for d = 1, 2, . . . , D, p = 1, 2, . . . , P (4.2.9)

E∑
e=1

(
P∑

p=1

D∑
d=1

δedp.xdp) ≤ B∗ + ε (4.2.10)

where ε is a tolerance allowing a slightly higher use of bandwidth as compared to B∗.

Objective (4.2.6) and constraints (4.2.7), (4.2.8), (4.2.9) are respectively the same as
(4.2.1), (4.2.2), (4.2.3) and (4.2.4).

4.2.3 Problem Formulation Improvements and Additional Constraints

An operator might want to ensure that all data flows associated with a given commodity
use the same path. This can be imposed in the model by adding a binary variable udp

which is set to 1 if demand d uses path p, and two constraints:

54 4. Bus-LSPs in Single Layer Environments

P∑
p=1

udp = 1 for d = 1, 2, . . . , D (4.2.11)

xdp ≤ hdudp for d = 1, 2, . . . , D; p = 1, 2, . . . , P (4.2.12)

Constraint (4.2.11) guarantees that only one path will be used for a given demand. Con-
straint (4.2.12) ensures that flow will be assigned only to the path which is designated for
routing the demand.

Another additional constraint one might want to consider is the possibility of weighting
bandwidth utilization on different links, to take into account such factors as the length or
the technology of the link. By introducing an additional cost coefficient ge for each link e,
one may replace (4.2.5) by:

minimize :
E∑

e=1

(
P∑

p=1

D∑
d=1

δedpgexdp) (4.2.13)

The new objective (4.2.13) will yield a different overall network cost B∗′, which is used to
replace constraint (4.2.10) by:

E∑
e=1

(
P∑

p=1

D∑
d=1

δedpgexdp) ≤ B∗′ (4.2.14)

Finally, if the results produced by this formulation are to produce an average point of
operation which will be subject to traffic matrix variations in time, it can be important
to change constraints (4.2.2) and (4.2.7) to:

P∑
p=1

D∑
d=1

δedpgexdp ≤ ce.Θ for e = 1, 2, . . . , E (4.2.15)

where Θ is a coefficient ensuring that no link in the resulting solution will be excessively
loaded, thus leaving some margin for traffic variations.

As a side note, we would like to point out that the formulations given here do not ensure
that the bus-LSPs used in the solution will effectively transport traffic on their entire
length. It may be possible to shorten the bus-LSPs which are used as some segments may
not transport any traffic at all. Also some bus-LSPs may transport demands which do
not overlap, that is, these bus-LSPs could be cut in two (or more) without any impact on
demand satisfaction. However, there is no way to avoid this. We do take these aspects
into consideration in the heuristic solving method described in Section 5.3 of Chapter 5,
which does not provide solutions using such ”degenerate bus-LSPs” (that is, bus-LSPs

4.3. Numerical Results 55
�

�

�
�

0��+���	�����	��������������	��������	��������������������,�	���(&�����+�����������

�����	�� 	����� /�	��(���� ���	�(���� ��� ���� ����	/��� =!$� #��+,��>'� 0�� ������ /������ ��	�

#��+,�����������������	����������,��������,�	�����	���+������$�,��	�������������	��	�����/��&�

������?�������	���+�����$�,��	�����&��������	��������������	����������������&'� �

.���������	�����+�����������������������������	���������9��?���	�����������7�#���&������&�

&���� ���� ����� (��:7�#� ������ ��� �������� (��,���� ���'� �/��� ,���� �����+� ,����

����+��������&����	����	���������	�8��$� ���� ��&�����	�/���(&� ��������������������� �������

��,�&���&����	��H����	����������������	��&���	�/�	����������+�(��:7�#���	��/�	&�(��:7�#'� �

�

St-Lam-

bert 2
Rennes

Lannion

Rouen

St-Lam-

bert 1

Auber-

villiers

Mont

Souris

Lyon

Gre-

noble Sophia

Nancy

%�+�	�� '����E����,�	��

������		�,��&�(���@����,��

�6(�������	���������������

1

4

%�+�	���'���������,�	��

������		�,��&�(���@����,��

�6(�������	���������������

3

2

Figure 4.1: NET1 Network

which have segments without any flow on them, and could thus be split).

4.3 Numerical Results

We present here a numerical study of the problems MCL and MCL-BC. We compare the
complexity of the layouts when bus-LSPs are allowed and not allowed and show that the
bus-LSP allows for drastically reducing this complexity. Since we consider the single layer
case, the number of LSPs required in the non-bus LSP case is at least the total number
of demands. To simplify the presentation, we compare the number of required bus-LSPs
with the total number of demands, which corresponds to a worst case of the gain.

The results are obtained by submitting the formulated problem to the numerical solver
ILOG CPLEX. We present results for two networks, noted NET1 and VTHD. NET1 (Fig-
ure 4.1) is a 4 node network, with 10 unidirectional links (this very simple network topology
allows to develop some intuition on the benefits of bus-LSPs). VTHD (Figure 2.3) is the
11 node and 28 links network, based on a French National Research Network, deployed
for the project VTHD (Vraiment Très Haut Débit) [VTHD]. Due to the complexity of the
CPLEX program associated to the problem formulated in Section 5.2.2 (see AMPL files
in Appendix A.2), we were not able to perform tests on large networks, and could not
provide results for the Italian network.

We generate traffic demands for all pairs of nodes in the networks by using independent
uniform random variables distributed in the interval [0, maxload]. We chose values for
maxload such that the results show the network under light load, where all links are
relatively unloaded; and under high load, where many links are loaded at their nominal
capacity.

It is interesting to note that the solutions are not unique; more than one LSP layout
may yield the same bus-LSP count and optimal bandwidth use. Even when dealing with

56 4. Bus-LSPs in Single Layer Environments

Table 4.1: MCL Results

Network

NET1 VTHD

(12 demands) (110 demands)

Maxload (Mbps) → 200 500 20 180

Number of bus-LSPs 2 3 5 7

Bandwidth used (Gbps) 2.02 6.21 3.75 25.83

Length of bus-LSP (links)
Avg 3 3 7.8 7.57

Max 3 3 9 9

Demands per bus-LSP
Avg 6 4.33 22 17.29

Max 6 5 34 23

Demands per link
Avg 2 1.9 14.32 11.93

Max 4 4 32 16

homogeneous symmetric traffic matrixes, the layout provided by the optimal solution is not
always symmetric: there is not necessarily a reverse matching bus-LSP for every bus-LSP.

Table 1 provides numerical results for the MCL case. The main result here is the reduction
of the number of required LSPs which, under high traffic loads, is brought down from 12 to
3 for NET1 and from 110 to 7 for VTHD. Such a significant reduction in the complexity
of the layout is quite important considering that the related operational costs will also
decrease in an important amount.

We observe in Table 4.1 that the total number of flows transported by the bus-LSPs is
larger than the number of commodities. The reason is that, as indicated before, load
sharing is allowed between bus-LSPs.

Note that the bus-LSPs go through an important number of nodes: for NET1, they all
visit all nodes, and for VTHD, they visit between 6 and 10 of the 11 nodes. It is finally
interesting to see that the established bus-LSPs carry a great number of demands, proving
the fact that there is a good reuse factor of a bus-FAs; the average number of demands
running on a link actually proves this point as well. This reuse factor however decreases as
the load increases, because the links along the bus saturate and cannot convey any more
demands.

We now will discuss the MCL-BC problem. For the simulations of this problem, we set
the value of ε (see constraint (4.2.10)) to 1/10,000 of the value of the optimal bandwidth
utilization. We used here the same traffic matrixes as those generated for the study of
MCL so as to compare results between both methods.

4.4. Concluding Remarks 57

Table 4.2: MCL-BC Results

Network

NET1 VTHD

(12 demands) (110 demands)

Maxload (Mbps) → 200 500 20 180

Number of bus-LSPs 4 4 14 14

Bandwidth used (Gbps) 1.48 4.72 2.14 19.80

Length of bus-LSP (links)
Avg 3 2.75 6.6 6.5

Max 3 3 8 9

Demands per bus-LSP
Avg 3 2 7.86 8

Max 3 3 11 14

Demands per link
Avg 1.4 1.4 8.21 8.43

Max 2 2 11 12

First of all, the number of bus-LSPs required here is notably larger than in the previous
case. However, the gain is still important, reducing the number of LSPs from 12 to 4 for
NET1 and from 110 to 14 for VTHD.

The second important result is the bandwidth utilization. When solving the MCL-BC, the
bandwidth utilization is at least 23% less than when solving the MCL. This therefore may
justify the use of the MCL-BC as a traffic engineering tool, as it simultaneously gives a
good utilization of the network resources and reduces the operational costs by simplifying
the layout.

It is interesting to remark that in our examples the number of required bus-LSPs does not
depend on the load. This is of course not always the case, but happens quasi-systematically
when the demand matrixes are generated uniformly. As with the MCL problem, the
average length of bus-LSPs is reduced when the load increases, as some very important
demands will fill a link to nominal capacity, preventing any other demand from using it:
this generates shorter bus-FAs. On average, the number of demands running on each bus-
LSP and on each link has reduced, which comes from the fact that the load is spread out
more evenly so as to allow better bandwidth utilization.

4.4 Concluding Remarks

In this chapter we analyzed the benefits of introducing bus-LSPs in a GMPLS network.
We show that this concept allows for reducing both the OPEX and CAPEX and we

58 4. Bus-LSPs in Single Layer Environments

evaluated quantitatively this gain for two network topologies in the single layer case. For
this purpose, we have formulated and analyzed two mixed-integer linear programs which
are realistic models of the analyzed networks.

We will present in the following chapter an optimal design for the multi-layer case. As
these bus-LSPs are to be integrated in GMPLS controlled routed multilayer networks, we
will evaluate both the layout complexity reduction and the resource savings bus-LSPs can
provide in such networks.

59

Chapter 5

Bus-LSPs in Multi Layer

Environments

In this chapter, we study the use of bus-LSPs in multi-layer environments. As has been
shown in the previous chapters, bus-LSPs allow the operator to reduce both the CAPEX
and the OPEX, by lowering the number of routing equipment and limiting the complexity
of the virtual layouts. Our contribution is the design and evaluation of a virtual layout in
a bus-LSP-capable network. The goal is to maximize the utilization of such a network by
operators, through both maximizing the traffic scaling and minimizing upper-layer routing.
We show how bus-LSPs can be used to reduce CAPEX and OPEX of a multi-layer network.
Concerning CAPEX, we show that resources (like bandwidth and switching capacity)
and components (like interfaces and electro-optical converters) can be saved. Concerning
OPEX, we show that bus-LSPs allow reducing the layout complexity. We measure this
complexity by the number of LSPs that have to be established and maintained.

5.1 An Introductory Example

We will demonstrate the value of bus-LSPs using the sample network shown in Figure 5.1.
This example was designed on purpose, to prove the value of bus-LSPs in a simple way in
the multi-layer network case. Let us assume that every link supports a single wavelength

1

87

3

6

2

54

Demandes:

1�3 : 0.3

1�6: 0.1

2�7: 0.1

3�8: 0.1

4�8: 0.3

M = C = 1

Routing capacity:

Cas 1: Pas de routage (hors

émission réception)

Cas 2:

5: 0.1

6: 0.1

7: 0.1

Figure 5.1: Sample 8-node Network

60 5. Bus-LSPs in Multi Layer Environments

in each direction. Each wavelength may carry 1 unit of traffic. The demands are:

• 1 → 3 : volume 0.3

• 1 → 6 : volume 0.1

• 2 → 7 : volume 0.1

• 3 → 8 : volume 0.1

• 4 → 8 : volume 0.3.

Nodes 5,6 and 7 can route 0.1 units of traffic. This can satisfy, at best, only 25% of each
demand without using bus-LSPs, this means saturating routers 5 and 7, and setting up at
least 7 LSPs, for instance:

• 1-2-3

• 3-7

• 2-1-5

• 3-2-6

• 4-5

• 5-6-7

• 7-8.

This exact result was obtained using the CPLEX MIP solver. Using bus-LSPs, 100% of
demands can be satisfied, by simply opening 2 bus-LSPs (1-5-6-7-3 and 4-5-1-2-3-7-8).

Now, suppose nodes 5, 6 and 7 cannot route any traffic. Without using bus-LSPs, it is
impossible to route all demands, even partially, whereas when using bus-LSP-aware nodes,
all demands can still be fully satisfied, using the same layout as before.

5.2 Optimization Problem

5.2.1 Optimization Model for a Multi-Layer Network Using Bus-LSPs

The physical network (lower layer network, PN) is represented by a directed graph N =
(V,G), where V is the set of nodes, and G is the set of links. Nodes v ∈ V represent GMPLS
Label Switching Routers (LSRs), and links g ∈ G represent physical directed connecting
links between two nodes. Quantity cg denotes the capacity of link g, and M is a discrete
module of bandwidth allocated to the lower layer resources, for example, the capacity of

5.2. Optimization Problem 61

one wavelength in WDM. Ov is the maximum outgoing bandwidth capacity of the router
at node v, and Iv—its maximum incoming bandwidth capacity.

The virtual network (upper layer network, VN) is represented by a directed graph M =
(V, E), where V is the set of nodes (the same as in PN—we assume that all nodes have full
multi-layer capabilities), and E is the set of virtual links. Capacity of link e ∈ E is denoted
by ye (it will be a variable). Each virtual link e ∈ E represents a forwarding adjacency
(FA) such as defined in Section 3. Each bus-LSP will therefore generate multiple FAs in
the virtual topology. In the sequel we will use notation δ+(v) and δ−(v) for the set of all
virtual links e ∈ E outgoing from and incoming to node v ∈ V, respectively. Finally, set
D will represent all network demands, that is the collection of end-to-end commodities.
Demand d ∈ D requires bandwidth hd.

Because of the strong path-oriented nature of this problem, path formulation of the network
optimization problem is more suitable than node-link formulation. The set of all paths in
PN (i.e., sequences of physical links) formed to realize links e ∈ E is denoted by Q. Then
Qe ⊆ Q is the set of all physical paths that can be used to realize capacity ye of virtual
link e ∈ E . Clearly, Q =

⋃
e∈E Qe. Moreover, since paths q ∈ Q are supported by bus-

LSPs, we need to distinguish a subset Q̂ of all maximal paths (i.e., the paths representing
bus-LSPs) in the set of all paths Q (Q̂ ⊆Q). We assume that q ∈ Q̂ if, and only if, q ∈Q
and q is not a subpath of any other path q′ ∈ Q, i.e., ∀q′ ∈ Q, q′ + q. Next, with each
path q ∈ Q̂ we associate set Q(q) which is the set of all subpaths of the maximal path q

that connect the end nodes of some virtual link e ∈ E , i.e., Q(q) = {q′ : q′ ∈Q ∧ q′ ⊆ q}.
Finally, with each q ∈ Qe we associate the quantity ∆q = max{cg : g ∈ q} which bounds
the capacity of virtual link e ∈ E that can be realized on q.

The set of all paths in the VN is denoted by P , and Pd ⊆ P is the set of all (virtual)
paths p ∈ P that can be used to realize demand d ∈ D. Certainly, P =

⋃
d∈D Pd.

We note that in practice the network operator can select the list of paths Qe to be used
for realizing virtual link e ∈ E ; this is taken into account in our model. Note also that
path q ∈ Qe is characterized by the sequence of links it uses. In the bus-LSP context, a
bus-LSP is equivalent to a maximal path, that is, all nodes along a maximal path will be
able to add or remove packets on the bus. We assume that bus-LSPs do not cross a given
router more than once and that signaling and routing protocols allow the bandwidth to
vary along a given bus-LSP, depending on the capacities of the links composing the bus-
LSP and the bandwidth reservations made on each segment of the bus-LSP. We also note
that the operator can restrict the length of paths in the VN for the transport of a given
demand to guarantee a maximum number of hops. He may also restrict the number of
physical links to appear in a given bus-LSP. This allows to bound the overall delay (under
the assumption that delay is independent of the virtual and physical link loads).

Let xdp be a continuous variable (flow) indicating what portion of volume of demand d is

62 5. Bus-LSPs in Multi Layer Environments

routed on path p ∈ Pd. Similarly, let zeq be a continuous flow allocated to path q ∈ Qe

(a bus-LSP or its subpath) realizing the capacity of virtual link e. We will also use an
auxiliary continuous variable Zgq expressing, for each bus-LSP q ∈ Q̂ such that g ∈ q, the
load of g induced by all flows on q using link g.

We will also use two sets of binary variables. First, Uq will denote a binary variable asso-
ciated with each maximal path (bus-LSP) q ∈ Q̂, indicating whether path q is activated
or not. (Variable S will express the total number of active bus-LSPs.) Second, ueq will be
the binary variable indicating whether or not link e is actually using path q ∈ Qe.

5.2.2 Optimization Problem Formulation

An important part of the network operator’s capital expense (CAPEX) optimization con-
sists in maximizing the amount of traffic a given initial investment will bring him. There-
fore, increasing this amount is a direct source of revenue. So is the reduction of the total
routing equipment needed. The operational expense for a network operator is related to
the layout complexity. In this thesis, we define complexity as the total number of active
LSPs.

Given a physical network configuration and a traffic matrix, the objective is to use bus-
LSPs to maximize the amount of traffic the operator could transport, while minimizing
routing costs and total complexity of the layout.

First, we design the virtual topology, using bus-LSPs to transport the maximal amount
of traffic, represented by variable H. Once this optimal amount is found, we next mini-
mize the costs in routing equipment in the upper layer, which in a first approximation is
equivalent to reducing the overall amount of routed traffic. Finally, we minimize the total
number of LSPs a network operator has to manage, which directly impacts OPEX.

In this section, we formulate a multi-commodity flow problem with these objectives. The
VTD (Virtual Topology Design) problem is formulated as Mixed Integer Linear Program
(MILP), as it uses both integer and continuous variables [PM04]. The hypothesis is that
all nodes are able to both route IP traffic and switch optical connections.

5.2. Optimization Problem 63

VTD 1
Virtual Topology Design Problem

Given:
set of nodes V, set of physical links G, set of virtual links E , set of demands D, set of
physical paths Q, set of virtual paths P , and

• hd, volume of demand d ∈ D

• cg, capacity of physical link g ∈ E

• Iv, Ov, bounds on incoming and outgoing capacity of node v ∈ V

• M , capacity module

lexmax (H,−R,−S) (5.2.1)

Subject to: ∑
p∈Pd

xdp ≥ Hhd, d ∈ D (5.2.2)

∑
d∈D

∑
p∈Pd: e∈p

xdp = ye, e ∈ E (5.2.3)

∑
q∈Qe

zeq = ye, e ∈ E (5.2.4)

R =
∑
e∈E

ye (5.2.5)

∑
e∈δ−(v)

ye ≤ Iv, v ∈ V (5.2.6)

∑
e∈δ+(v)

ye ≤ Ov, v ∈ V (5.2.7)

S =
∑
q∈Q̂

Uq (5.2.8)

ueq′ ≤ Uq, q ∈ Q̂ e ∈ E q′ ∈ Q(q) ∩Qe (5.2.9)∑
q∈Qe

ueq = 1, e ∈ E (5.2.10)

zeq ≤ ∆queq, e ∈ E q ∈ Qe (5.2.11)

Zgq =
∑
e∈E

∑
q′∈Q(q)∩Qe: g∈q′

zeq′ , g ∈ G q ∈ Q̂ (5.2.12)

∑
q∈Q̂
dZgq

M
e ≤ cg, g ∈ G. (5.2.13)

64 5. Bus-LSPs in Multi Layer Environments

Constraint (5.2.2) ensures that all demands are satisfied when multiplied by factor H,
which is the first objective in (5.2.1). Equalities (5.2.3) define the capacity of each virtual
link to be equal to its load. Constraint (5.2.4) ensures that link capacities will actually be
realized by means of PN flows. (5.2.5) defines the overall amount of virtual capacity in
the network—this is the second objective minimized by (5.2.1).

Constraints (5.2.6) and (5.2.7) bound the amount of incoming and outgoing traffic, re-
spectively, routed through an upper layer node v. Minimizing the total number of active
bus-LSPs, defined in (5.2.8), is the third objective in (5.2.1). Constraint (5.2.9) forbids
assigning flows to inactive bus-LSPs. In the formulation we do not assume load-balancing
(flow bifurcation) in the lower layer since virtual links are supported by single bus-LSP’s—
this is forced by (5.2.10) and (5.2.11). Equalities (5.2.12) specify the load of a PN link g

induced by bus-LSP q.

Finally, constraint (5.2.13) accounts for the fact that total flow on a particular bus-LSP is
allocated to PN links in discrete modules M . This is a critical constraint which actually
reveals the benefit from using bus-LSPs instead of regular LSPs.

Notice that although (5.2.13) is not written in the linear form, it is easy to transform this
inequality into a set of linear constraints using integer variables Ygq:

Zgq ≤MYgq, g ∈ G q ∈ Q̂ (5.2.14)∑
q∈Q̂

Ygq ≤ cg, g ∈ G. (5.2.15)

5.2.2.1 Problem Formulation Improvements and Additional Constraints

An additional constraint one might want to consider is the possibility of weighting some
demands compared to others. This is particularly useful if one knows the relative growth
speeds of the various demands, i.e., the traffic matrix may not scale uniformly. This could
also be useful if one has a premium client whose demands he wants to prioritize and let
grow more. In this case, it is useful to introduce an additional coefficient sd for each
demand d, which represents the growth speed of demand d. For example, demand d1 may
grow twice as fast as demand d2: sd1 = sd2 ∗ 2. In this case, (5.2.2) can be replaced by:

∑
p∈Pd

xdp ≥ Hsdhd, d ∈ D (5.2.16)

In Chapter 4, a coefficient had been introduced to allow for some margin around the
operation point. This is not something which is needed here, since the traffic multiplication
is maximized: this guarantees that the traffic matrix will have as much margin for growth
as possible.

5.3. Heuristic Algorithm 65

To be completely exact, the costs in routing equipment are actually equal to the number
of routing ports on each router. This quantity increases by discrete amounts and not
continuously, therefore the overall amount of routed traffic is not strictly equal to the
routing equipment costs. This implies transforming constraint (5.2.5) into:

R =
∑
e∈E

P dye/P e (5.2.17)

where P is the capacity of a router port. Although this is not in the linear form, a
transformation similar to the one presented for (5.2.13) can be applied to make it linear.

5.3 Heuristic Algorithm

We describe here a set of algorithms, which, when combined, will approximatively solve
problem VTD 1, as described in Section 5.2.

This heuristic approach is not distributed in its nature: knowledge of all demands is
necessary, and thus, a centralized implementation is best adapted. Our algorithms are
meant to be used statically, however it runs fast enough for a semi-dynamic approach to
be considered. However, since the optimization routines reroute established demands, this
introduces traffic disruption which is not desired in dynamic contexts.

5.3.1 Forbidden Turns Shortest Path First Algorithm

We first specify a constrained shortest path algorithm: the Forbidden Turns Shortest Path
First (FT-SPF) algorithm. The goal of this algorithm is to find a shortest path between
a source node and a destination node without using some specific ”turns”.

Let us first define a turn as a pair of adjacent links. Turn (g1, g2) is forbidden if a shortest
path yielded by our FT-SPF algorithm cannot use g1 and g2 successively. However the
SP may use g1 or g2 alone, or even both, as long as they do not appear immediately one
after another in the solution.

Algorithm 3, FT-SPF, defines a procedure to find a shortest path without any of the
forbidden turns which are given in a list L. This algorithm is based on the Dijkstra
algorithm [Dij59]. The notations in FT-SPF are as follow:

• fromd
v , v ∈ V, is the node from which one must come when in v to reach the

destination d if no other specific route is specified (default route)

• fromv′
v , v ∈ V, is the node from which one must come to reach v, when v′ is

included in the route: this is a specific route

• x can be either a superscript for the default route or a specific route

66 5. Bus-LSPs in Multi Layer Environments

• distancex
v , v ∈ V, is the sum of the weights needed to reach v when on a route

(specific or default).

• Mv, v ∈ V, is a list of nodes which cannot be reached by the default route flowing
through v.

Algorithm 3: Forbidden Turns - Shortest Path First (FT-SPF)
Given: A graph G = (V,A)
Given: ca the capacity of link l,∀l ∈ A
Given: w(a) the weight of link l,∀l ∈ A
Given: A source node s and a sink node d.
Given: A list of forbidden turns F
Find: A shortest path between s and d in which no forbidden turns appear, if such a

path exists
1: Create a queue Q and push s in Q
2: Initialize Mv = ∅ ∀v
3: Initialize fromx

v = −1 ∀v, x
4: Initialize distancex

v =∞ ∀v, x
5: while Q 6= ∅ do
6: where = extract(Q)
7: Mwhere ←Mwhere

⋃
{v ∈ V/(fromd(where)− where− v) ∈

F AND (fromv(where)− where− v) ∈ F}
8: Mwhere ←Mwhere \ {where}
9: for all node next adjacent to where such that (next /∈Mwhere OR

distancenext
where <∞) do

10: if distancex
next > distancex

where + w(where, next) then
11: fromx(next) = where
12: distancex(next) = distancex

where + w(where, next)
13: Mnext ←Mnext

⋃
Mwhere

14: push next to Q
15: end if
16: end for
17: end while
18: Shortest path without forbidden turns is simply obtained by reversely following the

default route from destination to source, branching onto specific routes when needed.

When L = ∅, FT-SPF is equivalent to Dijkstra’s algorithm. When there is one or more
forbidden turns, the full search guarantees that if there is an alternate path, it will be
found. Indeed, the marking of missed nodes guarantees the propagation of the algorithm
to nodes which have been explored when some forbidden turn has blocked the algorithm.
The algorithm therefore performs better than (|L| + 1) times Dijkstra, since parts of the
default route are not recalculated for every forbidden turn. If Q is the queue managing the
nodes to be considered by the algorithm, complexity depends on how nodes are popped
from Q. In our implementation, we extract from Q the node with the least default cost

5.3. Heuristic Algorithm 67

Figure 5.2: FT-SPF applied to a sample network

68 5. Bus-LSPs in Multi Layer Environments

(cost on the default route) from linear storage: the complexity is therefore: O((|L|+1).n2).
An example of this algorithm on a simple network is demonstrated in Figure 5.2.

5.3.2 Potential and Interference-Based Routing Algorithm for Lexico-

graphically Maximizing a Traffic Matrix

In this Section, we propose an extension to the Minimum Interference Routing Algorithm
(MIRA) [KKL00] to route the demands over the network. Our Potential- and Interference-
Based Routing Algorithm (PIBRA) is designed to achieve MinMax optimization on a
weighted set of demands (that is maximize scaling of the traffic matrix). While MIRA
is intended for environments in which future request is anticipated, we will use PIBRA
for static traffic matrices. This is to allow re-routing of demands separately, and partial
matrix rerouting. PIBRA is an algorithm which routes demands one at a time, so is
suited for this task. Moreover, such an approach would allow PIBRA to be used, were the
heuristic algorithm to be adapted for dynamic traffic matrices.

We will define here the potential of a demand as its ratio of maxflow and volume, where
the maxflow is the maximal amount of flow which can be sent on the network, without
bifurcation. For a given demand d, the higher its potential, the more its volume hd can be
increased (without having to change the routing of demand d or the network capacities).

We define here the WLEX-MAX problem. Given a network and a current routing of D−1
demands, we wish to route a new demand d with volume hd. Given F , the set of feasible
(D − 1)-vectors of potential values for the D − 1 other demands after d is routed, the
objective of WLEX-MAX is to find Θ̃ ∈ F such that I(Θ̃) ≥ I(Θ) for all Θ ∈ F , where
I(Θ) represents a nondecreasing arrangement of Θ.

One of the approximations on which this algorithm relies is that the ordering of potentials
will remain the same after demand d is routed. This is clearly not always true, but is more
likely to happen if the volume hd of demand d is small. This is why we will apply PIBRA
to the list of demands, sorted by decreasing volumes.

Intuitively, the weights we are looking for must be such that the path of the demand
which has the smallest potential is protected the most, then the second lowest potential,
etc. Therefore, by applying a similar reasoning as in [KKL00] we define a new set of
weights for the links. If we are able to number the demands which are already routed such
that:

Θ̃d1 ≤ Θ̃d2 ≤ . . . ≤ Θ̃dD−1
(5.3.1)

then we can obtain as in [KKL00], with m the number of links in the network, the following
set of weights:

βi =

{
1 i = (D − 1)
mhd(1 + mhd)D−i−2 i = (D − 2), . . . , 1

(5.3.2)

5.3. Heuristic Algorithm 69

with the desired property:

βi > (βi+1 + βi+2 + . . . + βD−1) i = (D − 2), . . . , 1 (5.3.3)

Algorithm 4: Potential- and Interference-Based Routing Algorithm (single demand)
Given: A graph N = (V,G)
Given: A set B of residual capacities on all the links.
Given: An ingress node a and an egress node b between which a demand d of volume hd

must be setup.
Find: A route between a and b having necessary capacity to satisfy d
1: Eliminate all links which have residual bandwidth less than hd and form a reduced

network
2: Compute the maxflow values and the critical link sets Cd′ ∀d′ ∈ D\{d}
3: Sort the demands according to the potential and calculate their coefficients βd′ based

on formula (5.3.2).
4: Compute the link weights

w(g) =
∑

d′:l∈Cd′

βd′ ∀g ∈ G. (5.3.4)

5: Using FT-SPF, compute the shortest path in the reduced network with w(g) as
weight of link g ∈ G.

6: Route d along the obtained path, update residual capacities.

Notice that PIBRA uses FT-SPF instead of Dijkstra which is suggested by [KKL00]. When
FT-SPF is run without any forbidden turns it is equivalent to Dijkstra. However, using
FT-SPF forces the flow to be deviated around the shortest path: this will be useful in
Section 5.3.3.

Results for PIBRA are presented in Section 5.4. Still, it is not fundamentally different
from the original MIRA, for which more complete results are available in [KKL00].

5.3.3 Layout Design Algorithm for Bus-LSPs

In this section, we present a heuristic algorithm for designing the virtual network when
bus-LSPs are allowed. We will be using PIBRA as explained in previous Section 5.3.2
(which uses for the routing stage the FT-SPF introduced in Section 5.3.1), and the graph
representation of bus-LSPs detailed in 3.3.

When applying PIBRA to more than one demand, we will always do it in decreasing order
of demand volume (see Section 5.3.2). PIBRA is chosen because it can both provide an
initial routing of the traffic and re-route a single demand. Because PIBRA uses FT-SPF
and not Dijkstra, the flow is able to be inserted in a bus-LSP at a node where there is more
routing capacity available. Indeed, flow is deviated from the shortest path when routing

70 5. Bus-LSPs in Multi Layer Environments

capacities are overloaded along it.

Algorithm 5: Optimization Procedure Initialization
Given: A graph N = (V,G)
Given: A set C of capacities on all the links.
Given: A set R of routing capacities on all nodes.
Given: A traffic matrix (set of demands) D.
1: Transform each link into a bus-LSP of length 1, as described in Section 3.3, using

infinite capacities on the fork links.
2: Apply PIBRA on all demands, sorted decreasingly by volume (and not by potential,

see Section 5.3.2).
3: Create an initially empty list Fd of forbidden turns for each demand d
4: Create an initially empty queue of forbidden pairs of bus-LSPs to merge L

The idea behind this heuristic algorithm is to:

• route the demands to maximize potential, without taking into account routing con-
straints. This is why, in Algorithm 5, we use infinite capacities on the fork links.

• rearrange layout to reduce amount of routed traffic (that is, traffic which goes from
one bus-LSP to another), by deviating flow (i.e., forbidding turns) around heavily
loaded nodes

The procedures of rearrangement of the layout can be either:

• Merging two adjacent bus-LSPs into a single one, provided that the merging does
not introduce a loop. This reduces routing by allowing some routed demands to flow
along a single bus-LSP.

• Cutting a bus-LSP into two smaller ones around a pivot node. This will increase
routing if a demand now has to be routed around a node.

In Algorithm 6, function GetLinkPair() is used. This function returns a pair of fork links.
One is a (virtual node,node) link of a bus-LSP, the other is a (node,virtual node) link of
another bus-LSP. Let us associate for each pair of links g1, g2 around v the vector of values
(where d is the largest demand routed in v):

• a binary variable indicating there is excess routing (compared to routing capacity of
v)

• a binary variable indicating v is egress for the bus-LSP using g1 and ingress for the
bus-LSP using g2

• the amount of excessive routed traffic due to d, in v, going from g1 to g2

5.3. Heuristic Algorithm 71

Algorithm 6: Bus-LSP Network Optimization Algorithm
1: while pair = GetLinkPair() do
2: Cut all bus-LSPs around nodes where cutting will not increase routing (such as

at the end of empty segments of bus-LSPs).
3: Let node be the node in common to both links of pair
4: Let busPair be the pair of bus-LSPs using the links of pair
5: if busPair can be merged into a single bus-LSP and pair /∈ L then
6: Merge busPair
7: else
8: Let d be the largest volume using successively both links in pair.
9: Push pair to Fd

10: Unroute d, and reroute d using PIBRA
11: if d cannot be rerouted then
12: repeat
13: v = Pop(Fd)
14: Cut all bus-LSPs using v, around v into 2 bus-LSPs starting and

ending at v
15: Unroute all demands using the cut bus-LSPs
16: until d is able to be rerouted using PIBRA
17: for all point v which was popped from Fd, and which d now uses in its

route do
18: if bus-LSPs, that d uses, around v, may be merged and pair /∈ L

then
19: merge bus-LSPs
20: else
21: Push the pair of links around v in L
22: end if
23: end for
24: Sort unrouted demands decreasingly by volume
25: Route unrouted demands
26: if Not all unrouted demands were able to be routed then
27: Exit algorithm;
28: end if
29: end if
30: end if
31: end while

• the amount of total routed traffic due to d, in v, going from g1 to g2 (that is, volume
of d)

The function will return the pair of links which lexicographically maximize this vector.
Therefore, because of the structure of this function, we can categorize our algorithm as
greedy. Indeed, at every step, we try to get rid of the routed traffic – by either forwarding
it directly in the lower layer or deviating the route around the overloaded router – which is
the most problematic: obviously this is suboptimal in some cases. However, we will show

72 5. Bus-LSPs in Multi Layer Environments

results proving that this algorithm functions quite well and fast.

5.4 Numerical Results

We present here results of our heuristic implementation. As there is not, at least to
our knowledge, any exact or approximate method to solve the problem presented in Sec-
tion 5.2.2, we will provide the reader with numerical comparisons evaluating the algorithm.

5.4.1 Testbed

For the exact results, we have used the commercial software CPLEX 9.1 [CPLEX] to solve
the problem presented in Section 5.2.2. For our simulations, we have implemented the
heuristic presented in Section 5.3.3 in C++1, using Boost Graph Libraries. This compiled
language was chosen because of speed and efficiency.

We have run our tests on a Debian system, running on a 3.4 GHz Pentium with 4GB of
RAM.

5.4.2 Results

5.4.2.1 Sample 8-node network

First, we ran the heuristic on the 8-node sample network presented in Figure 5.1. It took
just 16 steps (i.e., Algorithm 6 went 16 times through step 1) to perform, and took less
than a second. Output was a 2-bus-LSP virtual layout which transported the 5 demands
without any routing at all. All demand volumes could be multiplied by 1.42 and link
capacity constraints would still hold.

5.4.2.2 VTHD network

Next we ran the heuristic on the VTHD [VTHD] network (Figure 2.3)). It is an 11
node and 28 links network, based on a French National Research Network, deployed for
the project VTHD (Vraiment Très Haut Débit). Each link has capacity of 1 GBps, and
we limited each node’s routing power to process also only 1GBps. Under heavy load, this
constraint may not be feasible, but we wish to limit the amount of forbidden routed traffic,
that is, limit the amount of extra routing equipment the network operator would have to
install to satisfy the demands.

We generate traffic demands for all pairs of nodes in the networks by using independent
uniform random variables distributed in the interval [0, maxload]. We chose values for

1The source code and auxiliary programs are available at http://perso.enst.fr/~brehon/

http://perso.enst.fr/~brehon/

5.4. Numerical Results 73

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

0,00 0,05 0,10 0,15 0,20
Maxload

La
m
bd

a init/fusion
optimal
Theoretical limit

Figure 5.3: Average Value of H (traffic multiplication)

maxload such that the results show the network under light load and under high load. We
generated 10 traffic matrixes for each value of maxload (0.02 to 0.2 by increments of 0.02).
Results were obtained with a running time of under one minute for every iteration.

The following results were obtained by running the heuristic. We denote by initial the
results obtained after running the initial PIBRA (Algorithm 5) and by fusion the result ob-
tained by applying only bus-LSP fusions to the initial layout: this corresponds to running
the heuristic as long as possible without branching in the else block (line 7) of Algorithm 6.
Finally, we call optimal the results obtained by running Algorithm 6 completely.

Results of Figure 5.3 show that PIBRA runs below optimality (it is on average at 71% of
optimality), yet it reacts well to the increase of load, and provides a routing of demands in
reasonable time and reasonably close to optimality. Theoretical optimum was calculated
by an exact resolution using CPLEX with the same traffic conditions, but in a single-layer
environment, and allowing flow splitting. Initial and fusion results are the same since
routing is not changed between both steps. Traffic multiplication is calculated without
taking into account routing constraints (constraints 5.2.6 and 5.2.7 of VTD problem defined
in 5.2.2), only link capacity constraints are taken into account (constraint 5.2.13). Routing
constraints are separated and evaluated in the following results.

Figures 5.4 and 5.5 are the most important ones. These show that our heuristic performs
well when considering the initial goal of saving in CAPEX (routing equipments). Our
heuristic is able to provide a virtual layout in which the routing power constraints are
upheld until maxload is equal to 0.1. Total routing is also maintained low, which can
translate into some savings by removing extra routing equipments (such as cross layer
interfaces). The average minimal value is the amount of traffic which is routed at ingress

74 5. Bus-LSPs in Multi Layer Environments

0,00

5,00

10,00

15,00

20,00

25,00

30,00

0,00 0,05 0,10 0,15 0,20
Maxload

Un
its

 o
f t

ra
ffi

c

Init (PIBRA)
Fusion
Optimal

Figure 5.4: Total Forbidden Routed Traffic

0,00
5,00
10,00
15,00
20,00
25,00
30,00
35,00
40,00
45,00
50,00

0,00 0,05 0,10 0,15 0,20
Maxload

Un
its

 o
f t

ra
ffi

c

Init (PIBRA)
Fusion
Optimal
Average Minimal

Figure 5.5: Total Amount of Routing in Network

and egress, i.e., the total routing if all traffic could be sent from source to destination in
a single bus-LSP.

Results of Figure 5.6 show that OPEX is also quite low. 110 demands are satisfied in
this 28-link network setting up only a few bus-LSPs (average is between 6 and 7 bus-
LSPs). This very low number means that the network operator’s work is quite reduced as
maintenance operations concern only a few bus-LSPs.

The delay parameters are studied in figures 5.7 and 5.8 which present respectively the
routing delay (average number of upper-layer hops to destination) and the propagation
delay (average number of physical links from source to destination). Because of the goal

5.4. Numerical Results 75

0

2

4

6

8

10

12

14

16

18

0,00 0,05 0,10 0,15 0,20
Maxload

Bu
s-
LS

Ps Fusion
Optimal

Figure 5.6: Total Number of Bus-LSPs

0

0,5

1

1,5

2

2,5

3

0,00 0,05 0,10 0,15 0,20
Maxload

Ho
ps Init (PIBRA)

Fusion
Optimal

Figure 5.7: Average Number of Hops (routing delay)

of reducing the routing, the routing delay is low as expected. Interestingly however, the
overall propagation delay is also quite low, meaning that the average length from source
to destination is reduced by our heuristic, yet neither at the cost of traffic multiplier nor
at the cost of routing equipment: our heuristic allows the end-to-end delay to be reduced.

Results of Figure 5.9 depict the fact that the average length of bus-LSPs is higher after
running the heuristic. This is expected behavior, considering less bus-LSPs are used after
running.

Finally, results in Figure 5.10 show the average number of steps our algorithm runs in
(the number of times Algorithm 6 goes through step 1). This number is significantly high

76 5. Bus-LSPs in Multi Layer Environments

2,30
2,35
2,40
2,45
2,50
2,55
2,60
2,65
2,70
2,75
2,80
2,85

0,00 0,05 0,10 0,15 0,20
Maxload

Li
nk

s Init/Fusion
Optimal

Figure 5.8: Average Number of Links for each Demand (propagation delay)

0

1

2

3

4

5

6

0,00 0,05 0,10 0,15 0,20
Maxload

Le
ng

th
(no

de
s)

Initial
Fusion
Optimal

Figure 5.9: Average Bus Length

when running algorithm to end (instead of just stopping at the fusion step). However, an
entire virtual layout for a given instance of this problem is found within a minute, whereas
CPLEX is unable to find a feasible solution (let alone the optimal one) after two weeks of
running time when given the formulation of Section 5.2.2 and an instance of the problem
for this VTHD network.

5.4.2.3 Italian network

Finally we ran the heuristic on the Italian high-speed network described in [SIL+98] and
depicted in Figure 2.4. This is a 21 node- and 72 link-network. Each link was set with a

5.4. Numerical Results 77

0

20

40

60

80

100

120

140

0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 0,18
Maxload

St
ep

s Fusion
Optimal

Figure 5.10: Number of Steps to obtain Best Result

capacity of 1 GBps, and we again limited each node’s routing power to process also only
1GBps.

We generate traffic demands for all pairs of nodes in the networks by using independent
uniform random variables distributed in the interval [0, maxload]. This amounts to 420
demands. We chose values for maxload such that the results show the network under light
load and under high load. We generated 10 traffic matrixes for each value of maxload
(0.002 to 0.02 by increments of 0.002). Results were obtained with a running time of 65
minutes for each iteration on average. This is not as fast as the previous test, due to the
larger network and the more numerous demands.

We present here the results obtained by running the heuristic. We denote by initial
the results obtained after running the initial PIBRA (algorithm 5) and by fusion the
result obtained by applying only bus-LSP fusions to the initial layout: this corresponds
to running the heuristic as long as possible without branching in the else block (line
7) of algorithm 6. Finally, we call optimal the results obtained by running algorithm 6
completely.

Results of Figure 5.11 show that the PIBRA runs below optimality: it is on average at
36% of optimality. This can likely be attributed to the fact that the initial routing of
the demands uses PIBRA which is not designed for static routing. Theoretical optimal
was calculated by an exact resolution using CPLEX with the same traffic conditions,
but in a single-layer environment, and allowing flow splitting. The flow splitting may
also be partially responsible for theoretical higher values for the multiplication factor.
Initial and fusion results are the same since routing is not changed between both steps.
Traffic multiplication is calculated without taking into account routing constraints (5.2.6)

78 5. Bus-LSPs in Multi Layer Environments

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0,000 0,005 0,010 0,015 0,020 0,025
Maxload

La
m
bd

a init/fusion
optimal
Theoretical limit

Figure 5.11: Average Value of H (traffic multiplication)

0,000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

0,000 0,005 0,010 0,015 0,020 0,025
Maxload

Un
its

 o
f t

ra
ffi

c

Init (MIRA)
Fusion
Optimal

Figure 5.12: Total Forbidden Routed Traffic

and (5.2.7) of VTD problem defined in 5.3.3, only link capacity constraints (5.2.13) are
taken into account. Routing constraints are separated and evaluated in the following
results.

Figures 5.12 and 5.13 are the most important ones. These show that our heuristic per-
forms well when considering the initial goal of saving in CAPEX (routing equipments).
Our heuristic is able to provide a virtual layout in which the routing power constraints
are always upheld. Total routing is also maintained low, which can translate into some
savings by removing extra routing equipments (such as cross layer interfaces). The average
minimal value is the amount of traffic which is routed at ingress and egress, i.e., the total

5.4. Numerical Results 79

0,000

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0,000 0,005 0,010 0,015 0,020 0,025
Maxload

Un
its

 o
f t

ra
ffi

c

Init (PIBRA)
Fusion
Optimal
Average Minimal

Figure 5.13: Total Amount of Routing in Network

0

10

20

30

40

50

60

0,000 0,005 0,010 0,015 0,020 0,025
Maxload

Bu
s-
LS

Ps Fusion
Optimal

Figure 5.14: Total Number of Bus-LSPs

routing if all traffic could be sent from source to destination in a single bus-LSP.

Results of Figure 5.14 show that OPEX is also quite low. 420 demands are satisfied in
this 72-link network setting up only a few bus-LSPs (between 18 and 27 bus-LSPs). This
very low number means that the network operator’s work is quite reduced as maintenance
operations concern only a few bus-LSPs.

The delay parameters are studied in Figures 5.15 and 5.16 which present respectively the
routing delay (average number of upper-layer hops to destination) and the propagation
delay (average number of physical links from source to destination). Because of the goal
of reducing the routing, the routing delay is low as expected. As in the previous section

80 5. Bus-LSPs in Multi Layer Environments

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0,000 0,005 0,010 0,015 0,020 0,025
Maxload

Ho
ps Init (MIRA)

Fusion
Optimal

Figure 5.15: Average Number of Hops (routing delay)

3,900

3,950

4,000

4,050

4,100

4,150

4,200

4,250

0,000 0,005 0,010 0,015 0,020 0,025
Maxload

Li
nk

s Init/Fusion
Optimal

Figure 5.16: Average Number of Links for each Demand (propagation delay)

however, the overall propagation delay is also quite low, meaning that the average length
from source to destination is reduced by our heuristic, yet neither at the cost of traffic
multiplier nor at the cost of routing equipment.

Results of Figure 5.17 depict the fact that the average length of bus-LSPs is higher after
running the heuristic. This is expected behavior, considering less bus-LSPs are used after
running.

Finally, results in Figure 5.18 show the average number of steps our algorithm runs in (the
number of times algorithm 6 goes through step 1). The number of steps is even higher
than with the VTHD network, as the solution space explored is larger.

5.5. Heuristic Algorithm Improvements 81

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0,000 0,005 0,010 0,015 0,020 0,025
Maxload

Le
ng

th
(no

de
s)

Initial
Fusion
Optimal

Figure 5.17: Average Bus Length

0

50

100

150

200

250

300

350

0,000 0,005 0,010 0,015 0,020 0,025
Maxload

St
ep

s Fusion
Optimal

Figure 5.18: Number of Steps to obtain Best Result

5.5 Heuristic Algorithm Improvements

In this section, we consider various sets of improvements which may be made to the
proposed heuristic algorithm. Though the results we obtained were quite good, some
limitations were encountered. In particular, the heuristic did not scale very well in terms
of traffic matrix multiplication. Also, a link can only carry a single bus-LSP in this version,
which means ”overlapping” bus-LSPs are not possible.

82 5. Bus-LSPs in Multi Layer Environments

5.5.1 Improving the initial routing

In our algorithm, we wished that the routing procedure be the same at all stages, using our
PIBRA. This is good for implementation simplicity, and performs quite well. However,
since this heuristic is meant for offline optimization, it is possible to consider different
approaches.

In particular, one could use an exact resolution maximizing the load multiplication, ob-
tained by an ILP solver such as the commercial CPLEX [CPLEX] solver for instance.
Since initially, the virtual topology matches exactly the physical topology, the problem
can be seen, at least at the beginning, as a single layer problem. Additionally, the fusion
process starts with an initial routing of the flows which does not necessarily obey the max-
imum amount of routing per node constraints (5.2.6) and (5.2.7). Therefore, formulating
the maximization of the multiplier is quite easy, and can even be done in a link-node
formulation such as described in [PM04]. These problems, which are solved to obtain the
theoretical limit in the previous section 5.4, are extremely easy and fast to solve. Flow
separation should be avoided however, this adds some complexity to the formulation since
it means the problem must use integer variables which slow the calculation process further.

However this approach needs further testing to be validated. The approach with PIBRA
actually lexicographically maximizes all multipliers, not simply the first coefficient of the
proportional fairness. It is not clear whether simply maximizing the first coefficient will
actually provide better overall results, though initial intuition may suggest so.

Also, this approach does make the heuristic a little more complicated, since it must first
solve the ILP, either using a solver or by some other approach. It must then, if this is not
provided by the solving function, correlate the maximum values of flows on each link to
the demand paths so as to obtain routing.

5.5.2 Allowing overlapping bus-LSPs

Some scenarios are not possible with the current heuristic. Consider the bus-LSPs depicted
in figure 5.19. A link can carry two units of traffic between A and B, and B can carry
one unit to C and one unit to D. If demands are from A to C and from A to D, there will
necessarily be routing in B using our heuristic, since the fusion process will entirely merge
link AB to either BC or BD.

However, this can be avoided by allowing the link AB to carry two separate bus-LSPs.
This can be done brutally, by simply considering AB as two one-unit links, but in large
networks, this solution is not scalable. Therefore, it would be interesting to design an
algorithm which takes this into account by design, at the merging phase for instance. This
can probably be done by considering a bus-LSP segment as having a used capacity (the
sum of all demands already assigned to it) and a potential capacity (the size it could grow

5.5. Heuristic Algorithm Improvements 83

A B
D

CBus-LSP 1

Bus-LSP 2

Figure 5.19: 2 Overlapping un-mergeable bus-LSPs

to without the sum of all used capacities exceeding the link nominal capacity). With these
two variables, the heuristic might be adapted for flow separation.

Some problems are not solved yet however: when and where does one decide to open a
parallel bus-LSP? What happens when two bus-LSPs sharing a segment are used to route
a single demand (the potential value is not correct)?

This is an improvement which may be very interesting, but a solution to the above stated
problems has not been found yet.

5.5.3 Minor modification of Algorithm 6

Algorithm 6, when tested, performed better as presented above. However, it is possible
to modify it slightly and get results which are a little different. On average the following
modification gives lesser results (when tested on the examples of Section 5.4), however,
on some individual instances it allows the algorithm to perform better. This performance
measure is based on the traffic multiplication factor which is found. Note that this is a
very marginal increase or decrease of performance in all cases anyway. We don’t suggest
the use of this modification, however, it can be considered in some cases.

Function GetLinkPair() can sometimes return a pair such that busPair contains two bus-
LSPs with more than one node in common. In this case, normal execution would branch
into statement of line 8. This will try to reroute demands running around the common
node of pair. Alternative behavior would be to simply add, before line 5, an instruction
saying that when a busPair has two or more nodes in common, pair should be added to
L. This alternate behavior provides results which are, on average and on the networks of
Section 5.4, 2% below the standard traffic multiplication value(H). On some individual
experiments, however, one can note an increase of up to 5% of traffic multiplication H.

84 5. Bus-LSPs in Multi Layer Environments

5.5.4 Dynamic use of the heuristics

As was mentioned in Section 5.3, our approach is not ideal for dynamic environments.
Since the optimization process may reroute many demands, traffic disruption is likely to
happen. However, by considering that the established demands may not be rerouted, one
can introduce in the network a new set of demands and apply our heuristic approach with
minor modifications. Removing a set of demands can also be done easily in a similar
fashion. However, this approach requires further study to evaluate how the solution given
evolves compared to optimality and to a complete static re-optimization of the new traffic
matrix.

5.6 Concluding Remarks

In this chapter we have analyzed benefits from introducing bus-LSPs in a multi-layer
GMPLS network. We have shown that this concept allows for reducing both OPEX and
CAPEX and we have evaluated quantitatively this gain for a sample network topology.
For this purpose, we have formulated and analyzed a mixed-integer linear program which
is a realistic model.

We have then proposed a Virtual Topology Design heuristic, based on a new type of Con-
strained Shortest Path First Algorithm and a variant of the Minimum Interference Routing
Algorithm. Results provided by the heuristic have shown that the layouts provided by our
heuristic are good: they allow for significant traffic scaling and important routing reduc-
tion, that is, they are meaningful CAPEX-wise. They also are relatively simple which
directly translates into a reduction of OPEX. Finally, these results are obtained in a very
short computing time, proving they are usable in dimensioning of real networks within the
management process.

While the benefits to be gained from the bus-LSP have been studied and quantified, it
is still necessary to specify the mechanisms to actually use this structure in GMPLS-
controlled networks. The following chapter therefore presents extensions to both the rout-
ing and signaling protocols of GMPLS for bus-LSP support.

85

Chapter 6

Extensions to GMPLS Routing

and Signaling Protocols for

Bus-LSPs

When integrating a new object such as the bus-LSP into a GMPLS architecture, extensions
to the standard protocols are needed for inter-operability. Two of the most important pro-
tocols of GMPLS are OSPF-TE [RFC3630] and RSVP-TE [RFC3473], used respectively
for the exchange of routing information [RFC4202] and for signaling the establishment,
modification, deletion and protection of LSPs in the data plane.

6.1 Routing

6.1.1 OSPF-TE: the GMPLS routing protocol

OSPF-TE is a protocol based on OSPF [RFC2328]. OSPF was designed to allow link state
routing. Historically, routing started off as distance vector routing, with protocols such
as RIP [RFC1058]. In such a routing protocol, each router exchanges with its neighbor
only distance vectors to other routers and attached hosts. A router which receives such
a distance vector updates its own routing tables and forward any modified information
to its own neighbors. This is basically a practical implementation of the Dijkstra’s al-
gorithm [Dij59]. However, limitations quickly occurred with the use of such protocols,
namely convergence time, big distance vector exchanges (routing tables) and a limited
maximal size of the routing area, due to what is called ”horizon splitting” [RFC1058].
Link state routing was introduced to face these limitations.

Link-state routing protocols are based on the contrary on the flooding in the network
of announcements of the existence of links (Link State Advertisement, LSA) and routers

86 6. Extensions to GMPLS Control Protocols for Bus-LSPs

(Router Advertisement, RA). Each router is then responsible for calculating a shortest path
to any destination. The algorithm used to calculate this shortest path is not standardized,
but Dijkstra can be used for example.

However, OSPF was not sufficient to do traffic engineered routing, since the calculations
of routes did not take into account multiple criterions and only calculate shortest paths.
It was therefore necessary to introduce a protocol able to manage traffic-engineered links,
which have multiple characteristics, such as the available and used bandwidths, adminis-
trative status colors, etc. OSPF-TE allows this by introducing into an OSPF routing area
new type of announcements: opaque LSAs and RAs [RFC2370] which carry TE informa-
tion. In OSPF-TE, two databases are used: one for ”regular” links, and one for TE-links,
the TE-database. The TE-database takes into account all links which may be used to
transport traffic, including LSPs announced as FAs.

6.1.2 Bus-LSPs related requirements of OSPF-TE

For bus-LSPs to be integrated in GMPLS networks, it is important that the IGP (Internal
Gateway Protocol) be able to announce these objects so routers know that they should
include them in their TE-databases for path calculations; it is also important that the
node add-drop capabilities be announced in the network.

However, this must not be done at the cost of other functionalities. The first requirement
is therefore backward compatibility: new objects introduced in the routing protocol (and
the same will be true of the signaling protocol) should not disrupt the protocol for nodes
working with older versions of the protocol. Of course, such nodes may not be able to use
all of the functionalities offered by bus-LSPs.

The bus-LSP object is complex, since it creates many Forwarding Adjacencies (FAs) but
the capacity of each of these FAs depends on the other FAs. This complexity may translate
into an increased number of messages exchanged in the routing plane. This number of
messages will have to be monitored and kept as low as possible, for scalability issues. One
of the ways to achieve this is by infering attributes, given that many of the characteristics
of the bus-LSP segments are linked.

6.1.3 Various representations

Three different ways of representing bus-LSPs in the routing plane were considered. These
representations are necessary in order to perform route calculations over graph structures.
These representations are:

• The linear representation

• The virtual node representation

6.1. Routing 87

• The half mesh representation

In the following, we represent a bus-FA connecting an arbitrary number of nodes denoted
R1, R2, . . . , RN . In Figure 6.1, the upper layer is represented by a traditional cylinder with
arrows (usually representing IP routers) while the underlying switch is represented by a
plain box. This may represent two linked equipments or a single multi-layer equipment,
with packet and WDM capabilities for example.

Pre requisites

! Number of states needed to represent FAMA:

" Focus on TE attributes:

C12

U12(p)

R1 R2 R3 R4

C23

U23(p)

C34

U34(p)

Cin
1

Uin
1(p)

Cout
1

Uout
1(p)

Cin
3

Uin
3(p)

Cout
3

Uout
3(p)

The following Recursive Formula Holds:

Cin
1=0, Uin

1(p)=0

C12-U12(p)= (Cout
1 - U

out
1(p)) - (Cin

1-U
in

1(p)), etc.

Cout
N=0, Uout

N(p)=0 Q: Cout
j = Cin

j ???

Figure 6.1: Parameters of a bus-LSP (with 4 nodes)

For node n, let Cout
n and Cin

n denote the capacity available between the upper layer and
the lower layer and between the lower layer and the upper layer, respectively. Other
parameters will be denoted with the same in/out convention, in particular {Un(p)}p which
will represent the set of unreserved bandwidth (for the different priorities p). At the lower
layer, the switches n and n + 1 are connected by a specific TE link. Let Cn,n+1 denote its
capacity, and {Un,n+1(p)}p denote the set of unreserved bandwidths for different priorities.

The unidirectional nature of a bus-LSP implies that:

Cout
N = 0

Cin
1 = 0

Uout
N (p) = 0 ∀p

U in
1 (p) = 0 ∀p

Furthermore, flow conservation implies the following recursion formula, which holds for all
prority p :

C1,2 − U1,2(p) =
(
Cout

1 − Uout
1 (p)

)
(6.1.1)

Cn,n+1 − Un,n+1(p) = Cn−1,n − Un−1,n(p) +
(
Cout

n − Uout
n (p)

)
−

(
Cin

n − U in
n (p)

)
(6.1.2)

CN−1,N − UN−1,N (p) =
(
Cin

N − U in
N (p)

)
(6.1.3)

88 6. Extensions to GMPLS Control Protocols for Bus-LSPs

From these equations, we can see that all the proposed variables are not needed. We shall
see that some proposed routing representations will use this property, omitting the sets
{Un,n+1(p)}p for instance, as they can be easily derived.

Note that with this simple model, we focused on parameters related to bandwidth. In this
section the cases of other metrics and attributes (SRRG, etc.) are not considered.

6.1.3.1 Linear Representation

This model aims at representing the bus-FA with a set of N specific TE links (where the
bus-LSP connects N nodes R1, R2, . . . , RN). Each TE link will summarize the properties
of a segment of the bus-LSP. We shall see that this model does not allow non-compatible
equipments to use bus-LSPs (yet, bus-LSPs will not disrupt the routing plane). However,
the linear decomposition allows us to reach scalability and the lowest overhead in terms
of the number of LSAs generated, particularly in case of changes in the bus capacity:
whenever a TE-LSP is set-up from node i toward node j across the bus-FA, only two
LSAs are generated.

Linear Representation: First Visit

! Linear Representation of FAMA:

" FAMA represented as associated point-to-point

(unidir) links.

• One LSA per node (towards next-Hop)

• Requirement for new sub TLVs (ex: Cin,Cout,Cab)

• Requirement to associate individual LSAs (FAMA ID)

• Specific LSA for last hop (just announcing Cin,Cout)

C12

U12(p)

R1 R2 R3 R4

C23

U23(p)

C34

U34(p)

Cin
1

Uin
1(p)

Cout
1

Uout
1(p)

Cin
3

Uin
3(p)

Cout
3

Uout
3(p)

Cout
1, U

out
1(p)

Cin
1 U

in
1(p) C12

Figure 6.2: Linear representation of a bus-FA (with 4 nodes)

As shown in Figure 6.2, the proposed scheme uses N link state messages, one per node
in the bus-FA. The link state generated by node n will summarize the different properties
of the segment between node n and n + 1, hiding the underlying lower layer. Of course,
the link state of the last node N has a degenerate form, since there is no next hop in this
case. We use the same semantic however, with appropriate parametric adaptations (e.g.,
some parameters will be null).

Using the previous notations, one can see that each LSA will need to define:

• Cout
n ,

• Uout
n (p),

6.1. Routing 89

• Cin
n ,

• U in
n (p),

• Cn,n+1,

• and Un,n+1(p).

Using the recursion formula (6.1.1) introduced above, we do not need to specify Un,n+1(p).

The first message is specific with Cin
1 = 0 and U in

1 (p) = 0,∀p. The last message is also
specific, as there is no next hop. It is used to specify Cin

N and U in
N - by convention, we set

all other parameters to null.

One of the interesting properties of this approach is that there is no coordination require-
ments between nodes of the bus-FA. The different link states can be generated easily and
locally by each node as the parameters are locally available (e.g. U in

n , Uout
n for node n).

Deducing Un,n+1 from the recursion formula (6.1.1), allows to reduce the number of mes-
sages in case the bus-FA capacities change. Imagine that some TE-LSP is set-up between
node i and node j and that this LSP is nested in the bus-FA. The unreserved bandwidth
parameters will thus change for Uout

i (p), Ui,i+1(p), . . . , U in
j (p) (for the priority levels below

the TE-LSP priority). With this representation however, only two messages are needed,
one at each end-point of the client TE-LSP. The triggered link state at node i will allow
one to get the new set of parameters Uout

i (p) and the one at node j will announce the
new values U in

j (p). All intermediate values Ui,i+1 can be inferred easily by any node after
reception of these two messages.

We will briefly discuss here how OSPF-TE could be used to announce the representation
described above. We do not intend to cover all technical details and give a full specification,
but rather highlight the technical issues and how they might be solved.

First, a new TE link type should be defined: for instance, link-type=”bus-FA”. Then new
TLVs will be required to encode all parameters: Cout

n , Uout
n (p), Cin

n , U in
n (p), and Cn,n+1.

The most difficult aspect of the proposed scheme is that all link states composing the
bus-LSP are independently generated by each node. This implies that without any proper
extension, there is no mean for a node to associate the different segments of the bus-LSP
with each other. The Link-ID is not sufficient: for example, the Link-ID could be set to
the last hop router ID, but several bus-LSPs could be terminated at this very node. We
propose a new TLV, the ”Association ID”. Note that this can be the same value as in the
RSVP-TE attribute with the same name proposed in 6.2.4.

Since this representation requires new link types to be defined, network nodes unaware of
these new types will be unable to use bus-FAs at all. This does not disrupt the routing
protocol however, but rather limits the use of bus-FAs to network nodes which are able to
understand the corresponding extensions to the routing protocol. However, in a multilayer

90 6. Extensions to GMPLS Control Protocols for Bus-LSPs

network (overlay model) where the routing is determined by a PCE (Path Computation
Element) for instance, non-bus-FA-compatible nodes may use the bus-FA transparently
to nest the LSPs for which they are ingress. Indeed, only the PCE needs to know how to
handle bus-FAs, so in such an architecture, compatibility is in fact full, and all nodes may
benefit from the establishment of bus-FAs in the network.

6.1.3.2 Virtual Node Representation

This approach is motivated by the increasing number of GMPLS hybrid nodes such as
the MLXC introduced in Section 3.1.1. Hybrid nodes are GMPLS-enabled nodes which
announce a diversity of switching capabilities, with the possibility of terminating and/or
adapting the switching capabilities as defined in the GMPLS hierarchy [RFC4206]. This
approach defines a general means of representing such hybrid nodes, the MLXC being a
specific case thereof. This representation is based on the graph equivalent of bus-LSPs
introduced in Section 3.3.

The proposed approach was also designed for full backward compatibility with legacy
OSPF-TE. Nodes that are not bus-FA-aware will see the bus-FA as a set of nodes and TE
links in several regions (switching capabilities): this will allow the setup of LSPs on these
TE links. The main drawbacks are that this solution induces more overhead and raises
some technical issues.

According to [SPR+06]: ”A hybrid node can terminate links with different switching capa-
bilities terminating on the same interface. So, it advertises at least one TE Link containing
more than one ISCDs with different ISC values. For example, a node comprising of PSC
and TDM links, which are interconnected via internal links. The external interfaces con-
nected to the node have both PSC and TDM capability.”. Figure 6.3(a) illustrates a
representation of the data plane part of such a hybrid node : the node can be considered
as a set of switching elements, one per supported switching capability (region), plus a
subsystem that fulfills the adaptation capabilities required at the node, here, PSC and
TDM adaptation. This adaptation subsystem comprises:

• Switching capability termination.

• Data plane adaptation and encapsulation.

• In general, any inter-working functions required for the adaptation of lower and
higher levels of the GMPLS hierarchy.

The bus-FA node is a particular case of a hybrid node, with native upper-layer (here, PSC)
and lower-layer (here, TDM) interfaces, and an adaptation system that allows adding or
extracting packets from/to the lower-layer connection, as shown in Figure 6.3(b). The

6.1. Routing 91

SC k

…

…

…

SC j

SC i

Inputs
Outputs

Adaptation
System

(a) Generic Hybrid Node

…

…

TDM

PSC

Inputs
Outputs

Adaptation
System

(b) Bus-FA node as a Hybrid Node

Figure 6.3: Bus-FA node as a Hybrid Node

Data Plane / Physical Network

Control Plane

Client
Router

GMPLS
controller

Bus-LSP

(a) Data and control planes

Data Plane / Physical Network

TE Data Base

Client
Router

Bus-LSP

Virtual
Node

Virtual
Node

Cin, Cout
TE link

(b) TE database

Figure 6.4: TE nodes

adaptation system is simplified in order to represent only the capacities Cin and Cout

which need to be managed.

The virtual node approach is represented in Figure 6.4. In order to represent in the TE
database the different switching elements, the adaptation subsystems and their associated
TE properties (e.g. bandwidth parameters), each switching element (e.g. packet switching
matrix, OCX matrix, etc.) is represented as a node and the adaptation capabilities,
modeled as internal links, are represented as TE links with specific TE properties. The TE
database is thus extended in order to have a detailed description of the internal architecture
of hybrid nodes in the simple form of nodes and links.

This approach breaks the established GMPLS routing paradigm where only TE links are
announced and these are attribute extensions of physical links in the data plane, with the
exception of Forwarding Adjacencies and bundled links [RFC3473]. In our case, we have
to announce ”virtual” nodes (one per switching element) and ”virtual” TE links (internal

92 6. Extensions to GMPLS Control Protocols for Bus-LSPs

adaptation capabilities).

As represented in Figure 6.4(b), the bus-FA is represented by a set of independent links:

• TE links between the two virtual nodes : 2 TE links, one for each direction (up-
stream/downstream) with [PSC,TDM] switching capability. These TE links will
announce parameters Cout

i ,
{
Uout

i (p)
}

and Cin
i ,

{
U in

i (p)
}
, respectively.

• TE links between consecutive hops in the bus-LSP (between the lower layer virtual
nodes). They are unidirectional links with the switching capability of the lower layer.
These links will announce parameters Ci,i+1 and {Ui,i+1(p)}.

With this virtual-node-based representation, the bus-FA is not represented as a specific
(multiple access) TE-link but as a set of independent TE links at different regions. For
bus-FA-enabled nodes, the distinct TE-links can be associated within a single compound
object, in order to better represent the bus-FA. This can be achieved using a specific
bus-FA Association-ID as introduced in Section 6.1.3.1 for instance. Note that the nodes
that are not bus-FA-capable will not be able to understand this extension and will not
see the bus-FA but independent TE links. This insures full backward compatibility as an
LSP can still be set-up through these TE links and virtual nodes (normal LSP set-up in
a multi-region context).

A bus-LSP connecting N nodes requires 2N virtual nodes and 3N − 1 TE links (to be
compared with N nodes and N −1 TE links in the linear representation). Furthermore, in
case a new LSP is nested within the bus-FA, a larger set of LSAs is required to announce
the changes of the TE properties, since the parameters {Un,n+1} are explicitly announced
and not inferred as in the previous case.

6.1.3.3 Half Mesh Representation

In Figure 6.5, a last option is illustrated. This boils down to simply representing the bus-FA
with a half-mesh between all nodes involved. In this figure, C12 = min

(
Cout

1 , Cin
2 , C12

)
,

C13 = min
(
Cout

1 , Cin
3 ,min(C12, C23)

)
= min

(
Cout

1 , Cin
3 , C12, C23

)
and so forth : Cij =

min
(
Ci

out, C
j
in, Ci,i+1, Ci,i+2, . . . Cij

)
.

The same equalities hold for the variables {U.}:

Uij = min
(
Uout

i , U in
j , Ui,i+1, Ui,i+2, . . . Uij

)
.

The rationale for such a representation is to have full backward compatibility: nodes with
no bus-FA extensions are able to ”see” the bus-FA (as standard TE links) and thus to set-
up LSP inside this bus-FA. Each TE link can be set to accurately represent the bus-FA.
For instance it is possible to use the same TE metric between any nodes of the bus-LSP

6.1. Routing 93Full Mesh Model

R1 R4

R2 R3

C12

C23

C34

C14

C24

C13

Where :

C12
 = min(Cout

1, C
in

2, C12)

C13= min(Cout
1, C

in
3, min(C12, C23)) = min(Cout

1, C
in

3, C12, C23)

Cij=min(Cout
i, C

in
j, Ci,i+1, Ci,i+2, … Cij),

 the same for U, Uij=min(Uout
i, U

in
j, Ui,i+1, Ui,i+2, … Uij)

FAMA seen as

meshed network with

directionality

constraint.

Figure 6.5: Half Mesh Representation

(the same TE metric for all the TE links of the half mesh) and not a cumulative metric
at each individual segment. Such a metric policy is not possible with the virtual node
representation in Section 6.1.3.2.

The main drawback of this approach is its very poor scalability due to the large number of
TE LSAs that such a representation will generate, which can be approximated by N(N−1)

2

links for a bus-LSP with N nodes. Furthermore, each time there is a change in the bus-FA,
such as a decrease of the available bandwidth due to a new nested LSP for instance, the
whole mesh may potentially be impacted, therefore requiring a large number of TE LSA
updates.

Finally, this representation poses some synchronization issues between nodes of the bus-
LSP: in Figure 6.5 for instance, let us imagine than a significant change in available
bandwidth occurs between nodes R3 and R4 (a nested LSP is set-up between R3 and
R4 using the bus-FA). This will cause the generation of a TE LSA update by R3 for
link R3-R4. R1 and R2 may also have to update their TE LSA due to the recursive
formulas Uij = min

(
Uout

i , U in
j , Ui,i+1, Ui,i+2, . . . , Uij

)
. How these nodes will be aware of

this change is an issue for which we did not find an acceptable solution yet. If we do
not assume any specific synchronization procedure between nodes of the bus-LSP, R1 and
R2 will thus have to evaluate whether any received LSA update impacts their own set of
TE links. This requires using, again, a specific field to associate the different TE links
with each other, such as the ”Association ID” of the previous solutions in sections 6.1.3.1
and 6.1.3.2. This association however induces a ”cascade” effect (generated LSA update
that in turn trigger other LSA updates) that would strongly penalize both convergence

94 6. Extensions to GMPLS Control Protocols for Bus-LSPs

and routing scalability.

6.1.3.4 Suggested representation

Different routing representations for the bus-FAs have been proposed and discussed pre-
viously. The implementation of these representations have been analyzed.

• The linear representation appears as the most efficient and scalable solution. It
allows reaching the minimal overhead in term of generated LSAs; however it has
minimal backward compatibility. It is however adapted in multi-area networks with
PCEs.

• The virtual node representation offers very good backward compatibility. However,
the overhead generated by this solution is slightly higher with respect to the previous
case, yet it remains linear in the number of nodes.

• The mesh representation fully insures backward compatibility. However, this solution
raises very strong scalability issues (routing messages polynomial in the number of
nodes)and synchronization requirements between nodes.

The virtual node representation, similar to the graph representation of Section 3.3, appears
therefore as the best compromise between backward compatibility and scalability.

6.1.4 Flooding node capabilities

While representing bus-FAs is very important to allow them to nest LSPs, a fully auto-
mated bus-LSP-based network needs a way to find out which nodes are actually Add/Drop-
capable. This will allow the network to establish bus-LSPs connecting various Add/Drop
capable nodes.

In [VRY+06], an extension to OSPF-TE is introduced which allows to flood TE node
capabilities. For instance, it is suggested in the point-to-multipoint context to announce
which nodes are able to be branch nodes (i.e., they replicate traffic on multiple branches).
We propose to announce the Add/Drop capabilities in the same way. [VRY+06] defined 5
node capabilities, we suggest an additional sixth and seventh capabilities. This is coherent
with [VRY+06]: ”Note that new capability bits may be added in the future if required”.
We define an ”A bit” which is used to signal the fact that a node is able to perform the
Add function, and a ”D bit” for the Drop function.

6.2. Signaling 95

6.2 Signaling

6.2.1 Introduction

Bus-LSPs being new objects, some modifications are necessary in the control plane as well,
that is, to the RSVP-TE [RFC3209, RFC3473] protocol which is the de-facto standard
for the GMPLS control plane. RSVP-TE being made to manipulate point-to-point LSPs,
some operations were never previously needed. Indeed, if a FA needed to be terminated,
the associated LSP was closed; if a FA was needed, a corresponding FA was opened, and
so on.

In contrast, bus-FAs offer multiple adjacencies within a single object, therefore it is very
conceivable that part of these adjacencies need to be modified while preserving the others.
A set of new operations was defined to tackle new issues raised by bus-FAs:

• Introduce the notion of add-drop node in the control messages

• Manage the nodes belonging to a bus-FA

– Activate/Deactivate add-drop functionalities from a node on a bus-LSP

– Add or remove a node at the head of the bus-LSP

– Add or remove a node at the tail of the bus-LSP

• Sequentially merge two or more running bus-LSPs

In the following sections, we will therefore address these issues and explain how the various
operations can be done.

6.2.2 Managing Add-Drop Points

With no modifications to the existing protocols, it is impossible to even establish a bus-FA
since nothing exists to signal the fact that a node on the path of the bus-LSP should be
ready to execute add-drop operations. To this effect, it is important to include in the
signaling the fact that a node will or not be an add-drop node of the bus-LSP.

6.2.2.1 The ERO object and subobjects

According to [RFC3209], the Explicit Route Object (ERO) can be used in a PATH message
to indicate which nodes will constitute the path followed by the LSP. These nodes do not
have to constitute the entirety of the path, that is only some intermediate nodes are
mentioned, the others will be determined hop-by-hop by routing techniques as the PATH
message will progress: this is called loose routing. These nodes can be addressed by an

96 6. Extensions to GMPLS Control Protocols for Bus-LSPs

IPv4 address, an IPv6 address, IPv4 or IPv6 prefixes or an AS number. For bus-LSPs,
AS numbers and IP prefixes may not be considered as add-drop nodes, the objects used
in those cases are therefore not modified. In the IP address cases, according to the RFC,
the format of an ERO subobject is as follows:

For IPv4 addresses:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|L| Type | Length | IPv4 address (4 bytes) |

+-+

| IPv4 address (continued) | Prefix Length | Resvd |

+-+

For IPv6 addresses:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|L| Type | Length | IPv6 address (16 bytes) |

+-+

| IPv6 address (continued) |

+-+

| IPv6 address (continued) |

+-+

| IPv6 address (continued) |

+-+

| IPv6 address (continued) | Prefix Length | Resvd |

+-+

The only difference here is the length of the address. The L bit is used to indicate whether
the node must be reached by strict routing or by loose routing. If the node is marked as
strict (L bit set to zero), then this node must be a direct neighbor of the preceding node
in the ERO. Otherwise, a path will be evaluated to reach the node.

The Type field is fixed to 0x01 for IPv4 and 0x02 for IPv6 addresses.

The Length field indicates the total length of the subobject in bytes and must be set to 8
for IPv4 and to 20 for IPv6 addresses.

The Address field is a standard IPv4/IPv6 address.

6.2. Signaling 97

The Prefix Length, if different from the length of an IPv4/IPv6 address, indicates that the
address must be considered as an IP prefix, the length of which is specified by this field,
in bits. If the node is a router, and the Address field contains the address of this router,
then this Prefix Length must be set to 32 for IPv4 and to 256 for IPv6 addresses.

Finally the Resvd section will be disregarded by routers and is reserved for future use.

6.2.2.2 Encoding the Add-Drop Functionality

We propose to use the 2 last bits of the Resvd field to encode the fact that a node will
be performing add-drop operations on the LSP (Add-Drop status, or AD status). We will
denote these bits as the AD (add-drop) flags.

For non-compatible routers receiving the PATH message, this field will be disregarded (this
means that these nodes cannot perform add-drop operations of course) and the message
will be treated normally. This allows non-bus-LSP aware routers to be intermediate nodes
on a bus-LSP, though they will not be an add-drop node.

For compatible routers, we propose to use the following values for the AD flags:

• 00 (0x00): no add drop operations

• 01(0x01): add only operations

• 10 (0x02): drop only operations

• 11 (0x03): add and drop operations.

Decrementing the counter of the packet (see 3.2.2) will be performed by the nodes per-
forming the drop operations, since nodes which only add traffic do not have to read this
counter. This must be taken into account when setting the counter by the ingress node
and the nodes adding packets in the bus.

6.2.3 Bus-LSP Manipulation Methods Without Extensions

In this section, we present methods which allow to add and remove add and drop func-
tionality to nodes which are part of the bus-LSP. These methods make use of the AD flags
as defined in the above section 6.2.2.2.

Of course, one can change the AD status of various nodes, modify the endpoints, etc.
by simply destroying the existing bus-LSP and opening a new one. This is called the
break-before-make method. However it makes for a long traffic disruption, therefore it is
sub-optimal. One can also do what is called double booking which consists in opening a
second LSP while the first is running, then destroying the first LSP. However this leads to
resource waste and cannot always be performed, in particular when the network is heavily

98 6. Extensions to GMPLS Control Protocols for Bus-LSPs

loaded and therefore cannot afford to double-book the resource reservation for a single
LSP. The GMPLS framework provides tools to do the make-before-break technique. We
will show in this section how these tools can be used for bus-LSPs.

6.2.3.1 RSVP-TE Identifiers

So as to present the ways bus-LSPs may be manipulated by the control plane, some of the
inner workings of RSVP-TE must be explained, in particular the way an LSP is identified
and signaled in the network.

The most important object of the RSVP-TE messages is called the SESSION object, which
carries, among others, three fields:

• IPv4 (or IPv6) tunnel end point address (egress address)

• Tunnel ID: An identifier that remains constant over the life of the tunnel. This
represents the connectivity between the endpoints, and it must stay constant even
when the tunnel is rerouted.

• Extended Tunnel ID: An identifier used in the SESSION that remains constant over
the life of the tunnel. Normally set to all zeros. Ingress nodes that wish to narrow
the scope of a SESSION to the ingressegress pair MAY place their IPv4 (or IPv6)
address here as a globally unique identifier.

Another very important object of RSVP-TE is the SENDER TEMPLATE (for PATH
messages) and the FILTER SPEC (for RESV messages). This object carries, among
others, these fields:

• IPv4 (or IPv6) tunnel sender address (ingress address)

• LSP ID: An identifier that can be changed to allow a sender to share resources with
itself. It identifies the path and TE characteristics of the LSP. The LSP ID is used to
differentiate LSPs that belong to the same LSP Tunnel (as identified by its Tunnel
ID).

6.2.3.2 Adding and removing an intermediate AD point

The goal here is to activate an add drop point along the path which was previously
forwarding the node without performing any add-drop functionality; or deactivate such a
functionality.

When an ingress node with an existing path wants to modify the AD status of a node,
two methods are available, each of which have their benefits.

6.2. Signaling 99Issue 2.1: Add a point within a FA-MA
A C B

Add C

Tunnel=200
LSP=1
Destination=B
Source=A
ERO=A,C,B
Add Drops=A,B

Tunnel=200
LSP=1
Destination=B
Source=A
ERO=A,C,B
Add Drops=A,C,B

PATH
PATH

PATH

PATH

RESV
RESV

RESV
RESV

Figure 6.6: First method, adding an AD point

The first and simplest method, illustrated in Figure 6.6, is to simply refresh the Path
messages along the bus-LSP and changing the AD statuses in the ERO. This must be
initiated by the head-end. However, this will of course change the value that each node
has to set on the counter indicating in the packet which node has to drop it. Therefore any
node A seeing a modification of the AD statuses in the refreshed PATH messages should
stop sending packets to a downstream node B which is such that another node C whose
AD status is modified is in-between A and B (nodes are in this order: A ... C ... B). The
packet emission will be able to resume as soon as the RRO indicates that node C (and all
nodes in a similar situation) has also changed its AD status.

The second method, illustrated in Figure 6.7, may be used to guarantee that the traffic
is not interrupted. It simply relies on applying a make-before-break procedure such as
described in [RFC3209]. The head-end will form a new Path message as follows. The
existing SESSION object is used unchanged. The ingress node picks a new LSP ID to
form a new SENDER TEMPLATE. It creates an EXPLICIT ROUTE object for the route,
which contains in particular the updated AD statuses. The new PATH message is sent.
The ingress node refreshes both the old and new path messages.

The egress node responds with a Resv message with an SE flow descriptor formatted as:

<FLOWSPEC><old_FILTER_SPEC><old_LABEL_OBJECT><new_FILTER_SPEC>

<new_LABEL_OBJECT>

100 6. Extensions to GMPLS Control Protocols for Bus-LSPsIssue 2.1: Add a point within a FA-MA
A C B

Remove C

Tunnel=200
LSP=1
Destination=B
Source=A
ERO=A,C,B
Add Drops=A,C,B

Tunnel=200
LSP=2
Destination=B
Source=A
ERO=A,C,B
Add Drops=A,B

PATH
PATH

PATH

PATH

RESV
RESV

RESV
RESV

Tear(200,1)

Figure 6.7: Method 2, removing an AD point

The FLOWSPEC and FILTER SPEC are RSVP-TE objects which are used to specify
the TE characteristics of the LSP. The LABEL object contains the used label for the
LSP. Though two LSP IDs are being used, the RSVP-TE protocol is built to allow the
intermediate nodes to do resource reservation sharing instead of double-booking, based on
the fact that the Tunnel ID and the SESSION object are the same.

This message is sent upstream, hop-by-hop to the ingress node. When the ingress node
receives the Resv Message(s), it may begin using the new route. It should send a PathTear
message for the old route, which is a message which will erase the RSVP-TE bindings
related to the old LSP ID in the nodes.

However, since this second method consists in signaling a second LSP, the labels will have
to be changed from the first LSP (old AD statuses) to the new LSP (new AD statuses):
this is a requirement of MPLS [RFC3209]. In some cases, this is not an option, for example
if the label is the only available wavelength or SDH time slot. In that case, one must apply
the first method. Otherwise the second method is a good way to modify the AD statuses

6.2. Signaling 101

without disrupting the traffic at all, since the use of 2 LSPs guarantees two different sets
of labels and therefore, the counters associated with each one will be easy to distinguish.

6.2.3.3 Adding and removing the ingress point

RSVP-TE is a destination oriented protocol, and can do resource reservation sharing in
the following way: a node receiving a reservation request for an LSP with a Tunnel ID and
a SESSION object for which it already has a reservation knows resource sharing must be
done (as in the previous section 6.2.3.2). Therefore adding or removing an ingress node
can be done by the new to-be ingress node which simply signals a new bus-LSP using
the same SESSION object and the same Tunnel ID. Once the new bus-LSP is setup, the
destruction of the previous one can be triggered by sending a Path Tear message. This
is simply a standard make-before-break rerouting procedure as defined in [RFC3209] and
an example of which is available in the previous section (6.2.3.2, second method). This
procedure does not introduce any counter-related problems, as two distinct bus-LSPs are
established, and though they share the resource reservations, they use two different labels
and therefore counters are clearly identified and separated.

6.2.3.4 Extending the bus-LSP (adding a node beyond the egress)

Because RSVP-TE is a destination-oriented protocol due to its inheritance of RSVP, it is
not made for changing the egress. It is however possible to achieve the same objective by
applying a series of elementary operations and taking advantage of the nesting [RFC4206],
[RFC3471] or stitching [AKV06] capabilities available in GMPLS. Since nesting is possible
only where a hierarchy of labels is available, we will demonstrate the technique using
stitching procedures; however, using nesting would be equivalent in terms of the number
of opening and tearing down of LSPs. Nesting is simpler to put into application, and does
not need the first step in which the LSP is prepared for stitching.

Let’s assume a bus-LSP A-B-C-D is established and we wish to extend it to reach E. This
is illustrated in Figure 6.8. The first step is to ask for stitching over the existing LSP. This
is done by setting in the PATH message the ”LSP Stitching Desired” bit, which is the 5th
bit in the Attributes Flags TLV of the LSP ATTRIBUTES object [AKV06]. Once the
egress node receives this request, it informs the LSP’s head-end that it is ready to perform
stitching by setting in the RESV message the ”LSP segment stitching ready”, which is the
5th bit of the Flags field of the RRO Attributes sub-object. This finishes the first step of
preparing the LSP for stitching.

The next procedure consists in using the [A,B,C,D] LSP as a S-LSP [AKV06]. This means
it is used as a segment to support another LSP. In this case, the supported LSP is [A,D,E].
The new LSP headend, A will setup this LSP by emitting a PATH message, sent to the

102 6. Extensions to GMPLS Control Protocols for Bus-LSPsIssue 3.a (bis) : Extend “Add E” (continued)
A B C D E

Tunnel=200
LSP=1
Destination=E
Source=A
ERO=A,D,E
RSVP_HOP=(A,mpls0)

Tunnel=100
LSP=1
Destination=D
Source=A
ERO=A,B,C,D
Add Drops=A,B,C,D

Induces bus-LSP [A B C D]

Seen as entity (A,mpls0)

Tunnel=100
LSP=1
Destination=D
Source=A, Stitching Ready
ERO=A,B,C,D
Add Drops=A,B,C,D

Seen as entity (A,mpls1)

Tunnel=200
LSP=2
Destination=E
Source=A
ERO=A,B,C,D,E
Add Drops=A,B,C,D,E

Initial

Signal Stitching

Reuse FA

Extend

Seen as entity (A,mpls2) TearDown of (A,mpls0) and (A,mpls1)

PATH

RESV

PATH

RESV

PATH

RESV

Figure 6.8: Extending a bus-LSP

extremity of the stitched LSP: D. This PATH message uses a new SESSION object (since
the destination changes) and informs D that the LSP is stitched to [A,B,C,D] by the fact
the RSVP HOP points to the LSP [A,B,C,D] used as supporting tunnel. D will then itself
forward the PATH message to E. The RESV messages will follow the reverse path. This
way, [A,B,C,D] has been stitched with [D,E]. At this stage, when a packet is sent from A
to E, using [A,D,E], it is sent to D via the [A,B,C,D] LSP, using the corresponding labels.
Since the LSP was opened using stitching, D knows all packets arriving via the [A,B,C,D]
LSP (this information is obtained by the correspondance between label and LSP), must
be immediately forwarded onto the [D,E] segment. However, there exists no [A,B,C,D,E]
LSP yet, counters are not applicable, and especially, nodes B and C have no indication
that they are stitched to E. Therefore the procedure cannot be marked as complete yet.

head-end A must now reroute the [A,D,E] LSP to explicitly go through [A,B,C,D,E], then
only will the bus-LSP [A,B,C,D,E] exist as such. Therefore it sends a new PATH message
to open the [A,B,C,D,E] LSP, with the same identifiers (SESSION object and tunnel sender
address) and a different LSP ID. At this point, traffic can be switched from [A,B,C,D] to
[A,B,C,D,E]. Node A then performs standard make-before-break procedure as explained
as in [RFC3209] and in previous sections 6.2.3.2. The head-end can then finally destroy
(PathTear message) the old LSP [A,B,C,D] and the temporary [A,D,E] LSP.

In the case where nesting is possible, the above procedure is then followed exactly to the

6.2. Signaling 103

only exception that the [A,B,C,D] LSP is not signaled for stitching. This does not change
the result, the only precaution to be taken is to make sure that [A,B,C,D] is not used to
nest any other LSP in which case the final teardown can only be done when all nested LSPs
have been transferred to use different nesting LSPs (this includes the bus-LSP [A,B,C,D,E]
of course).

Note that draft [BBPF06] introduces a way to change the egress of a bus-LSP, however,
this is only in the case of a failure scenario, and it cannot be adapted because its main
drawback is its lack to forbid definitive rerouting to the new egress. This extension only
allows temporary egress change, and only when a link is actually unavailable. Also note
that this extension is incompatible with ingress modification.

6.2.3.5 Removing the egress point

The process for removing the egress point of a bus-LSP without any extension to the
signaling protocol is basically the reverse operation of the previous solution for extending
the bus-LSP. However, it is more complex, because we need to establish LSPs without
actually reserving resources for them.

Let’s assume an [A,B,C,D,E] LSP is setup, and we wish to reduce it to [A,B,C,D], as shown
in Figure 6.9. The first step consists in opening an [A,B,C,D] LSP but without committing
the resource reservation. This is done by exploiting the PROTECTION object. We open
[A,B,C,D] as a new LSP, different from [A,B,C,D,E] (new Tunnel ID, new LSP ID, new
destination address). The PATH message needs to ask for a bandwidth reservation equal
to the one of [A,B,C,D,E] (this is done in the SENDER TEMPLATE). However, to prevent
the resources to actually be reserved, the bits P (for protecting) and S (for secondary) are
set to 1. This means the LSP is opened to be a protecting LSP (as defined in [LRP06]).
The ASSOCIATION ID of the ASSOCIATION object is not set. This means this LSP
will be used to protect an LSP which is not setup yet. This new [A,B,C,D] LSP will
therefore be ready to replace another LSP, but for now, the resources are not actually
taken off the network. The [A,B,C,D] LSP is also signaled to use stitching (as in the
previous section 6.2.3.4, using ”LSP Stitching Desired” and ”LSP segment stitching ready”
mechanisms).

The next step consists in opening a protecting LSP [A,D,E] using the [A,B,C,D] S-
LSP [AKV06], which should ”protect” the [A,B,C,D,E] LSP. It will not be used for protec-
tion of course, but once again we are exploiting some of the available features of RSVP-TE
to achieve our goal. Therefore, a PATH message is sent from A to D, then to E to signal
a new LSP. This LSP uses the same Tunnel ID, destination address and sender address as
[A,B,C,D,E]. The PATH message informs D that the LSP is stitched to [A,B,C,D] by the
fact the RSVP HOP points to the LSP [A,B,C,D] used as supporting tunnel.The ASSO-
CIATION object specifies in the ASSOCIATION ID the LSP ID of LSP [A,B,C,D,E]: this

104 6. Extensions to GMPLS Control Protocols for Bus-LSPs

Figure 6.9: Removing the egress point

indicates that [A,D,E] protects [A,B,C,D,E]. However, [A,D,E] is signaled as a secondary
and protecting LSP (bits P and S are set): resources are not yet committed since the
protected LSP, [A,B,C,D,E], is still working.

At this point, node A sends a NOTIFY message to E to inform it that the protecting
LSP must now be used, the detailed procedure for switching over from a woking LSP
to a protecting LSP is detailed in [LRP06]. Automatically, resources are released from
[A,B,C,D,E] and reallocated to [A,D,E] and [A,B,C,D] ([A,B,C,D] needs to be signalled

6.2. Signaling 105

as working, for resources to be allocated). At this point both [A,B,C,D] and [A,D,E] are
in use, [A,B,C,D,E] is deactivated. [A,B,C,D] can now be used as a regular bus-LSP, and
traffic can be switched to [A,B,C,D]. A can now teardown [A,D,E] and [A,B,C,D,E] which
are no longer in use.

This procedure depends however on the speed of resource reallocation in the case of
protecting LSPs activation such as described in [LRP06], and on the fact that switch-
ing [A,B,C,D,E] to [A,D,E] will effectively allocate those resources to [A,B,C,D] as well,
instead of preempting some other LSP’s resources for [A,B,C,D]: this last question is
implementation-dependent, since it is out of the scope of [LRP06] and related IETF doc-
uments.

6.2.3.6 Bus-LSP Merging

We will now consider the problem of merging bus-LSPs. Three different cases have to be
considered:

• Adjacent merging: bus-LSPs [A,B] and [B,C,D,E] to be merged

• Disjoint merging: bus-LSPs [A,B] and [C,D,E] to be merged

• Overlapping merging: bus-LSPs [A,B,C,D] and [B,C,D,E] to be merged

Adjacent Merging

Suppose two bus-LSPs are to be merged, as described in Figure 6.10: [A,B] and [B,C,D,E].
This can be done by applying a procedure similar to that of the egress extension 6.2.3.4.
The first step is to ask for stitching of LSP [A,B]. This is done as in previous section 6.2.3.4,
using ”LSP Stitching Desired”and ”LSP segment stitching ready”mechanisms (again, note
that this can also be done by nesting techniques, where available).

Once the LSP is ready for stitching, a new LSP is opened (new Tunnel ID, LSP ID):
[A,B,E]. However it is specified that this new LSP is obtained by stitching [A,B] and
[B,C,D,E], as defined in [AKV06]. The new [A,B,E] tunnel is then rerouted using the
make-before-break procedure to become [A,B,C,D,E]. Though the two LSPs go through
the same routers, it is again important that [A,B,C,D,E] be signaled as a single LSP, so
that all nodes A, B, C, D, E are aware of the existence of the bus-LSP, as well as the other
nodes in the routing area to which the bus-FA will be announced. Finally, both bus-LSPs
[A,B] and [B,C,D,E] may be torn down as they are elegantly replaced by [A,B,C,D,E].

Disjoint Merging

To realize disjoint merging of two bus-LSPs [A,B] and [C,D,E] (see Figure 6.11), we will
simply apply two operations:

• first extend the [C,D,E] to [B,C,D,E] by applying the procedure described in 6.2.3.3.

106 6. Extensions to GMPLS Control Protocols for Bus-LSPs

A B C D E

Tunnel=100
LSP=1
Destination=E
Source=A
ERO=
(A,mpls0),(B,mpls1),E
Stitching Ok
Tunnel=100
LSP=2
Destination=E
Source=A
ERO=A,B,C,D,E
Add Drops=A,B,C,D,E
SHARED EXPLICIT

Tear

Tear

Induces bus-FA [B C D E]

Induces bus-FA [A B]

Seen as entity (B,mpls1)
Stitching
Enabled

Seen as entity (A,mpls0)

Figure 6.10: Adjacent Bus-LSP Merging

• second apply the adjacent merging as described previously

Of course, the first step could be replaced by extending [A,B] to [A,B,C], however the
procedure for lengthening a bus-LSP is more complex when extending the downstream
end.

Overlapping Merging

This is the most complex case of bus-LSP merging. For variation’s sake, we will demon-
strate how to perform this type of merging using nesting. We leave it to the reader as an
exercise to apply stitching instead, knowing however that the stitching process happens
the same as in previous scenarios.

Let’s assume [A,B,C,D] and [B,C,D,E] are two established bus-LSPs, such as shown in
Figure 6.12.

The first method described is illustrated in Figure 6.13. We open a nested LSP [A,D,E]
which will have the following characteristics:

6.2. Signaling 107Issue 4.2b Disjoint Stitching
A B C D E

Induces bus-FA [C D E]
Induces Bus-FA [A B]

Seen as entity (C,mpls0)

Induces bus-FA [B C D E]

Seen as entity (B,mpls0)

Figure 6.11: Disjoint Bus-LSP merging

Issue 4.3 Overlapping Stitching: Option Ib
A B C D E

Induces bus-FA [B C D E]

Induces bus-FA [A B C D]

Seen as entity (B,mpls1)

Seen as entity (A,mpls0)

Shorten

Figure 6.12: Overlapping bus-LSPs

108 6. Extensions to GMPLS Control Protocols for Bus-LSPsIssue 4.3 Overlapping Stitching: Option III
A B C D E

Tunnel=100
LSP=1
Destination=E
Source=A
ERO=
(A,mpls0),(D,mpls1),E

Tunnel=100
LSP=2
Destination=E
Source=A
ERO=A,B,C,D,E
Add Drops=A,B,C,D,E
SHARED EXPLICIT

Tear

Tear

Figure 6.13: Merging Overlapping bus-LSPs, method 1

• a set of new identifiers: tunnel ID, LSP ID

• the destination (SESSION object) is E

• the source is A

• the ERO mentions the following hops: A, D, E. It is also mentioned that the D-E
segment must use the existing bus-LSP segment [D,E] of [B,C,D,E].

• the RSVP HOP object states that the LSP uses the [A,B,C,D] LSP to realize [A,D]
connection.

The [A,D,E] nested bus-LSP is then rerouted according to [RFC3209] to [A,B,C,D,E].
However, note that at this point, nothing allows node B for instance to know that [A,D,E]
and [A,B,C,D,E] need to share resources. Double booking is most likely going to happen
here along the segments which are common to both initial LSPs ([B,C] and [C,D]). The
initial bus-LSPs may now be torn down: [A,B,C,D] and [B,C,D,E].

To avoid the double-booking, an alternate scenario, which is however traffic-disrupting,
is to shorten [B,C,D,E] to [D,E], as described in 6.2.3.3 and illustrated in Figure 6.2.3.6;
then merge the two adjacent resultant bus-LSPs [A,B,C,D] and [D,E] as described in the

6.2. Signaling 109Issue 4.3 Overlapping Stitching: Option Ib
A B C D E

Induces bus-FA [B C D E]

Induces bus-FA [A B C D]

Seen as entity (B,mpls1)

Seen as entity (A,mpls0)

Shorten

Figure 6.14: Merging Overlapping bus-LSPs, method 2

adjacent merging section. One could also equivalently shorten [A,B,C,D] to [A,B], though
the process of manipulating egress is more complex. The choice of manipulating the ingress
or the egress should be circumstance-based, noting that manipulating the ingress is much
simpler, but may sometimes cause much traffic disruption. For instance, imagine merging
[A,B,C] with [B,C,D,E,F,G,H,I]. In this case:

• manipulating the ingress consists in shortening [B,C,D,E,F,G,H,I] which might dis-
rupt traffic from B to many destinations

• whereas manipulating the egress consists in shortening [A,B,C] to [A,B] which is
maybe (depending on the traffic matrix) less disruptive, since the only adjacency
destroyed is from A to C. (B to C is still available in the second bus-LSP).

• in this case, it might even be just as interesting to simply tear down [A,B,C] and
extend [B,C,D,E,F,G,H,I] to become [A,B,C,D,E,F,G,H,I] as described in 6.2.3.3.

6.2.4 Extension Proposal

Because resource sharing is normally done based on the equality of the SESSION object
(and in some cases, of the Sender address in the SENDER TEMPLATE / FILTER SPEC)

110 6. Extensions to GMPLS Control Protocols for Bus-LSPs

some of the bus-LSP manipulations are quite complex and can necessitate many operations,
as the previous section 6.2.3 demonstrates: to simply extend the egress of a bus-LSP, 5
signaling operations are required (stitching preparation, opening an auxiliary LSP, rerout-
ing the auxiliary LSP to the final bus-LSP, teardown of the initial LSP, teardown of the
auxiliary LSP). In the merging case, some double booking or traffic-disruption cannot be
avoided: this is a problem which should be addressed. Finally, complex operations, which
involve multiple of the manipulations of 6.2.3 at once, are extremely complex and timely.

Therefore, to alleviate the signaling process, to allow more flexible operations and to enable
new possibilities (real make-before break), an extension to RSVP-TE is proposed [BC07].
This extension is based on the PROTECTION and ASSOCIATION objects as defined
in [LRP06]. However, the ASSOCIATION object is used in a slightly different way: it is,
for now incompatible with [LRP06], but only little modifications of [LRP06] are needed
for compatibility.

6.2.4.1 Recovery Attributes

The recovery attributes include all the parameters that determine the status of a LSP
within the recovery scheme to which it is associated. These attributes are part of the
PROTECTION object introduced in [LRP06]. They include the S (Secondary) bit, the
P (Protecting) bit and the O (Operational) bit. The fields defined in [RFC3473] and
in [LRP06] are unchanged by this document. The LSP recovery classification introduced
in [LRP06] remains also unchanged, and the procedures here are designed for all eventu-
alities:

• Full LSP Rerouting

• Preplanned LSP Rerouting without Extra-traffic

• LSP Protection with Extra-traffic

• Dedicated LSP Protection

Note: for the LSP protection scenarios (dedicated or with extra-traffic), the traffic may
only be replicated downstream of the first node on both preempting and preempted LSPs.

6.2.4.2 LSP Association

The ASSOCIATION object, introduced in [LRP06], is used to associate the rerouted
(initial, or preempted) and rerouting (new, or preempting) LSPs. When used for signaling
the initial LSP, the Association ID (16 bit) of the ASSOCIATION object identifies the
initial LSP Tunnel ID (whereas in [LRP06], it identifies the protecting LSP ID).

6.2. Signaling 111

Extension proposal: ideas and illustration

A

E F

B C

D

Figure 6.15: Network topology used for illustrating extension proposal

When signaling the new LSP, two ASSOCIATION Objects are used. The first one has its
Association source set to the initial LSP source IP, and the Association ID set to the same
Tunnel ID. In short: it carries the same ASSOCIATION Object as the initial LSP to be
rerouted. The second ASSOCIATION object carries the new LSPs ingress as Association
source and its Tunnel ID as Association ID.

Note: The ASSOCIATION Object in the initial LSP and the second ASSOCIATION in
the preempting LSP are actually easy to infer from their SESSION Objects. They have
been put here for ease of manipulation.

6.2.4.3 General procedures

Consider the network consisting of:

• 6 nodes A, B, C, D, E, and F,

• 5 bidirectional links (A,B), (E,B), (B,C), (C,F), (C,D).

This topology is illustrated in Figure 6.15. We will use this network as an illustration for
our extension proposal.

The initial bus-LSP is [A,B,C,D] and the new bus-LSP is [E,B,C,F]. Whatever the pro-
tection scheme is, the procedures are similar. We call the preempted bus-LSP [A,B,C,D]
LSP1 and preempting bus-LSP [E,B,C,F] LSP2.

The two LSPs carry different SESSION objects, LSP IDs and Source Addresses. So as to
facilitate association therefore, LSP1 carries an ASSOCIATION Object. LSP2 carries the
same ASSOCIATION Object. The identifiers for the illustrating example are detailed in
Figure 6.16. How Node E can have knowledge of LSP1 Tunnel ID is beyond the scope
of this extension to RSVP-TE, however, if E were a part of the LSP1 as well, then this
information would be carried by signaling messages; else, some other mechanism must
be designed, such as information flooding, in the routing information for instance. LSP2

112 6. Extensions to GMPLS Control Protocols for Bus-LSPsExtension proposal: ideas and illustration

A

E F

B C

D

Session: @D
Sender: @A

Association ID: @A/12
Tunnel: 100
Ext. Tunnel: 0
LSP ID: 12

Session: @F
Sender: @E

Association ID1: @A/12
Association ID2: @E/7

Tunnel: 200
Ext. Tunnel: 0
LSP ID: 7

RESOURCE
SHARING
IN NODE B

Figure 6.16: Identifiers for the illustration network

also carries a second ASSOCIATION Object with its own Tunnel ID and Source Address
carried. Based simply on the ASSOCIATION Objects, nodes B and C are aware of the
fact that LSP1 and LSP2 are associated.

To effectively switch to the preempting bus-LSP, a ”Preemption asked” flag is set in the
SESSION ATTRIBUTES of LSP2. Upon reception of this flag, the first node common
to both LSPs, here B, initiates the switchover. It knows it is the first common node to
2 LSPs based on the EROs / RROs. Before enabling LSP2, B sends a Notify message
including LSP1’s and LSP2’s SESSION Object within the <upstream/downstream session
list> (see [RFC3473]) and the new error code/subcode ”Notify Preemption/LSP ready
to preempt” (the exact value of this error code is to be defined by the community and
IANA). This notification is sent to the head-end of LSP1, A, which decides, based on
policy, whether to allow preemption or not. If it does not, nothing changes, and head-end
B of LSP2 is responsible for further course of action. If it does, the A simply initiates a
teardown of LSP1, according to procedures (see [RFC3473]). As B receives this teardown
order, it will enforce the preemption, by enabling LSP2 (this depends on the protection
policy, see [LRP06] for change of S,O,W bits and procedures order). B should maintain
LSP1 alive (by refreshing PATH/RESV messages) until LSP2 has taken over, even though
this means that a part of LSP1 will temporarily no longer exist and will yet be still seen
downstream of B. Once LSP1 is tore down and LSP2 is the only remaining LSP, the new
head-end E should remove the first ASSOCIATION Object, the other one becoming the

6.2. Signaling 113

one used for further rerouting.

If an egress node should receive a ”Preemption asked” flag, an error should be sent to its
ingress indicating that LSP2 and LSP1 do not have a shared node along their paths, when
this is the case (based on ERO/RRO information). E may then teardown LSP2.

6.2.4.4 Scenario: appending a node to an bus-LSP

Let us consider the following situation. We have an bus-LSP established [A,B,C,D] and we
wish to extend it for it to become [A,B,C,D,E] as in section 6.2.3.4. The initial bus-LSP,
LSP1, has the following identifier set:

• SESSION: @D

• LSP ID: X

• Tunnel ID: Y

• Ext. Tunnel ID: 0

• Tunnel Sender: @A

• Association Object:

– Association source: @A

– Association ID: Y

• Protection Object Flags:

– O: 1

– S: 0

– P: 0

While this first bus-LSP is being used, the second one, LSP2, can be setup using the
following identifier set in the PATH message:

• SESSION: @E

• LSP ID: X’

• Tunnel ID: Y’

• Ext. Tunnel ID: 0

• Tunnel Sender: @A

• Association Object 1:

114 6. Extensions to GMPLS Control Protocols for Bus-LSPs

– Association source: @A

– Association ID: Y

• Association Object 2:

– Association source: @A

– Association ID: Y’

• Protection Object Flags:

– O: 0

– S: 1

– P: 1

Concerning the ERO/RRO, if the head-end wishes to keep the same path for the [A,B,C,D]
section of the bus-LSP, it is up to it to set the ERO accordingly.

For nodes such as B, C, and D, (i.e.: nodes which already are maintaining a state for LSP1)
receiving the PATH message fo LSP2, the fact that the association object 1 mentions @A
and ID Y, these nodes know that they have to share resources among LSP1 and future
LSP2.

For nodes which receive the PATH message for LSP2 without prior reservation state for
LSP1, such as E in our example, or intermediate loosely routed nodes (for instance, a B’
node could have been inserted between B and C due to loose routing), these nodes process
the PATH and RESV messages as usual.

When LSP2 PATH and RESV messages have gone all the way, LSP2 is provisioned and
LSP1 can be switched over to LSP2. Given that both LSP1 and LSP2 share the same
ingress, A, the preemption can take place immediately, without any Notification messages.
In this case, A simply generates a TEARDOWN procedure for LSP1, letting LSP2 become
operational (O bit set to 1, S to 0, P to 0). LSP2 should also stop carrying the Association
Object referring to @A/Y.

We will not detail how pruning the egress node exactly happens, as it is the same procedure
and necessitates no further explanations.

6.2.4.5 Scenario: pruning a head-end node from an bus-LSP

Let us consider the following situation. We have a bus-LSP established [A,B,C,D,E] and
we wish to shorten it for it to become [B,C,D,E] as in section 6.2.3.3. The initial bus-LSP,
LSP1, has the following identifier set:

• SESSION: @E

6.2. Signaling 115

• LSP ID: X

• Tunnel ID: Y

• Ext. Tunnel ID: 0

• Tunnel Sender: @A

• Association Object:

– Association source: @A

– Association ID: Y

• Protection Object Flags:

– O: 1

– S: 0

– P: 0

While this first bus-LSP is being used, the second one, LSP2, can be setup using the
following identifier set in the PATH message:

• SESSION: @E

• LSP ID: X’

• Tunnel ID: Y’

• Ext. Tunnel ID: 0

• Tunnel Sender: @B

• Association Object 1:

– Association source: @A

– Association ID: Y

• Association Object 2:

– Association source: @B

– Association ID: Y’

• Protection Object Flags:

– O: 0

– S: 1

116 6. Extensions to GMPLS Control Protocols for Bus-LSPs

– P: 1

Concerning the ERO/RRO: if the head-end wishes to keep the same path for the [B,C,D,E]
section of the bus-LSP, it is up to it to set the ERO accordingly.

For nodes such as C, D, and E, (i.e.: nodes which already are maintaining a state for LSP1)
receiving the PATH message fo LSP2, the fact that the association object 1 mentions @A
and ID Y, these nodes know that they have to share resources among LSP1 and future
LSP2.

For nodes which receive the PATH message for LSP2 without prior reservation state for
LSP1, such as intermediate loosely routed nodes (for instance, a B’ node could have been
inserted between B and C due to loose routing), these nodes process the PATH and RESV
messages as usual.

When LSP2 PATH and RESV messages have gone all the way, LSP2 is provisioned and
LSP1 can be switched over to LSP2. Given that LSP2’s head-end is a part of LSP1, it can
send a Notify message including LSP1’s and LSP2’s SESSION Object. This notification
is sent to the head-end of LSP1, A, which decides, based on policy, whether to allow
preemption or not. If it does, A can simply initiate a teardown of LSP1. Once LSP2 has
become operational (O bit set to 1, S to 0, P to 0), LSP2 should also stop carrying the
Association Object referring to @A/Y.

We will not detail how adding an ingress node exactly happens, as it is the same procedure
and necessitates no further explanations.

6.2.4.6 Scenario: replacing an ingress and/or an egress

We will detail here the most complex of these three procedures, the two others can be
obtained quite simply and are left as an exercise to the reader. Let us consider the
following situation. We have a bus-LSP established [A,B,C,D] and we wish to extend it
for it to become [E,B,C,F].

The initial bus-LSP, LSP1, has the following identifier set:

• SESSION: @D

• LSP ID: X

• Tunnel ID: Y

• Ext. Tunnel ID: 0

• Tunnel Sender: @A

• Association Object:

6.2. Signaling 117

– Association source: @A

– Association ID: Y

• Protection Object Flags:

– O: 1

– S: 0

– P: 0

While this first bus-LSP is being used, the second one, LSP2, can be setup using the
following identifier set in the PATH message:

• SESSION: @F

• LSP ID: X’

• Tunnel ID: Y’

• Ext. Tunnel ID: 0

• Tunnel Sender: @E

• Association Object 1:

– Association source: @A

– Association ID: Y

• Association Object 2:

– Association source: @F

– Association ID: Y’

• Protection Object Flags:

– O: 0

– S: 1

– P: 1

Concerning the ERO/RRO: if the head-end wishes to keep the same path for the [B,C]
section of the LSP, it is up to it to set the ERO accordingly.

For nodes such as B and C, (i.e.: nodes which already are maintaining a state for LSP1)
receiving the PATH message fo LSP2, the fact that the association object 1 mentions @A
and ID Y, these nodes know that they have to share resources among LSP1 and future
LSP2.

118 6. Extensions to GMPLS Control Protocols for Bus-LSPs

For nodes which receive the PATH message for LSP2 without prior reservation state for
LSP1, such as F, or intermediate loosely routed nodes (for instance, a B’ node could have
been inserted between B and C due to loose routing), these nodes process the PATH and
RESV messages as usual.

When LSP2 PATH and RESV messages have gone all the way, LSP2 is provisioned and
LSP1 can be switched over to LSP2. To effectively switch to the preempting LSP2, a
”Preemption asked” flag is set in the SESSION ATTRIBUTES of LSP2. Upon reception
of this flag, the first node common to both bus-LSPs, here B, initiates the switchover.
To do so, B sends a Notify message including LSP1’s and LSP2’s SESSION Object. This
notification is sent to the head-end of LSP1. Once A accepts preemption, it simply initiates
a teardown of LSP1. As B receives this teardown order, it will enforce the preemption, by
enabling LSP2. Once LSP2 has become operational, LSP2 should also stop carrying the
Association Object referring to @A/Y.

6.2.4.7 Scenario: Using this extension to stitch / merge two bus-LSPs

Let us consider the following situation. We have these two bus-LSPs (LSP1 and LSP2) es-
tablished: [A,B,C] and [D,E,F] and we wish to merge them to become LSP3 [A,B,C,D,E,F].
This example could also work just as well if C and D were the same nodes (adjacent merg-
ing case of section 6.2.3.6) or if [B,C] and [D,E] were equal (overlapping merging case of
section 6.2.3.6).

We simply create LSP3 and associate it both with LSP1 and LSP2. It should therefore
carry 3 association objects.

Here are the relevant identifier sets:

For LSP1:

• SESSION: @C

• LSP ID: X

• Tunnel ID: Y

• Ext. Tunnel ID: 0

• Tunnel Sender: @A

• Association Object 1:

– Association source: @A

– Association ID: Y

For LSP2:

6.2. Signaling 119

• SESSION: @F

• LSP ID: X’

• Tunnel ID: Y’

• Ext. Tunnel ID: 0

• Tunnel Sender: @D

• Association Object 1:

– Association source: @D

– Association ID: Y’

For LSP3:

• SESSION: @F

• LSP ID: X”

• Tunnel ID: Y”

• Ext. Tunnel ID: 0

• Tunnel Sender: @A

• Association Object 1:

– Association source: @A

– Association ID: Y

• Association Object 2:

– Association source: @D

– Association ID: Y’

• Association Object 3:

– Association source: @A

– Association ID: Y”

For nodes such as B and C, (i.e.: nodes which already are maintaining a state for LSP1)
receiving the PATH message for LSP3, the fact that the association object 1 mentions @A
and ID Y, these nodes know that they have to share resources among LSP1 and future
LSP3.

120 6. Extensions to GMPLS Control Protocols for Bus-LSPs

For nodes such as D, E, and F (i.e.: nodes which already are maintaining a state for LSP2)
receiving the PATH message for LSP3, the fact that the association object 2 mentions @D
and ID Y’, these nodes know that they have to share resources among LSP2 and future
LSP3.

For nodes which receive the PATH message for LSP2 without prior reservation state for
LSP1, such as intermediate loosely routed nodes (for instance, a B’ node could have been
inserted between B and C due to loose routing), these nodes process the PATH and RESV
messages as usual.

When LSP3 PATH and RESV messages have gone all the way, LSP3 is provisioned and
LSP1 and LSP2 can be switched over to LSP3. To effectively switch to the preempting
LSP2, a ”Preemption asked” flag is set in the SESSION ATTRIBUTES of LSP3. Upon
reception of this flag, the first node common to two bus-LSPs, here D (A also, but given it
is the head-end of two bus-LSPs, its task is simplified), initiates the switchover. If D ac-
cepts preemption, it simply initiates a teardown of LSP2 and enforces the preemption, by
enabling LSP3. Likewise, A initiates a TearDown of LSP1. Once LSP3 has become opera-
tional, and LSP1 and LSP2 are destroyed, LSP3 should also stop carrying the Association
Object referring to @A/Y and to @D/Y’.

There is no limitation on the number of merged bus-LSPs using this technique, and this
allows to merge in just one pass multiple bus-LSPs.

6.3 Concluding Remarks

This chapter has presented the principles of extensions both to the GMPLS intra-domain
routing protocol OSPF-TE and to the GMPLS signaling protocol RSVP-TE. Both these
extensions enable the bus-LSP to be supported in a network, bringing the bus-LSP-related
benefits, detailed in the two previous chapters 4 and 5, to GMPLS-controlled networks.

These extensions have not yet been submitted as drafts to the IETF CCAMP working
group.

121

Chapter 7

Conclusion

We offer in this chapter the general conclusion of the different studies presented in this
thesis. We summarize the main contributions of our work and suggest future research
directions that stem from it. We also would like to encourage our readers to visit the web
page at http://perso.enst.fr/~brehon/ to obtain source code of the tools developed
and used for these studies.

7.1 Summary of Contribution

In the context of Metro access networks, our study applies to Ethernet metropolitan net-
working. Work at the Metro Ethernet Forum has standardized various flavors of Ethernet.
However, no study had yet proposed an efficient way of providing the Ethernet VPN ser-
vice while balancing the load over the network. Our work, presented in [BKC07], treats
the problem as an optimization problem and provides a novel and original formulation of
it. Due to tractability issues solving the problem formulated in an exact way, it also offers
a heuristic algorithm for balancing the load of the clients over a meshed network. This
approach provides better results in terms of load balancing than other existing algorithms
which consider similar problems. We showed in the thesis that our heuristic outperforms
all known concurrent approaches in terms of load balancing, by reducing the load on the
maximally loaded link by 8% to 25%, at the cost of a slight increase of the average load on
each link (3% to 9%). Our approach can be used in practical applications as the designed
algorithms are simple and converge fast. The interest of this work is therefore theoretical
and practical, and yields more balanced traffic-engineering of the network: this is of value
to the network operator.

The rest of our thesis concentrates on Carrier Ethernet, by studying an innovative structure
called the bus-LSP. This structure can be used in any GMPLS-controlled network and is
not restricted to Ethernet, but could apply to IP over WDM, Packet over SONET, etc.

http://perso.enst.fr/~brehon/

122 7. Conclusion

The first study, presented in [BK06] introduced the bus-LSP concept and qualitatively
evaluated CAPEX and OPEX benefits that this structure may bring in single- and multi-
layer networks. It also did a quantitative evaluation of the OPEX benefits in terms of
layout complexity in single-layer networks. These results proved that bus-LSPs allow
a layout complexity reduction of more than 80% while maintaining network bandwidth
consumption near optimality (within a few percents).

In [BKPD07], we provided a new set of tools – FT-SPF and PIBRA algorithms – en-
abling the development of a heuristic approach for optimally designing the virtual layout
in multi-layer networks. This set of tools was designed to solve the problem, the formu-
lation of which was presented but impossible to use for realistic, large networks due to
computational issues. This heuristic algorithm optimizes the network cost for the oper-
ator, both in terms of CAPEX and OPEX, by maximizing the total amount of traffic
accepted by the network, minimizing the cost in upper layer routers, and minimizing the
overall complexity of the layout measured in the number of connections setup. Our results
show that the heuristic developed is able to perform in a short amount of time (in the
order of minutes at most), and yields traffic-engineering rules which may be applied by a
network operator. The numerical results of the heuristic proved to scale well with load,
but not as well with network size (network scaling is 71% of optimal for VTHD, 36% for
the Italian network). During the optimization procedure of the heuristic algorithm, the
load of the maximally loaded link is reduced, while other parameters are also optimized,
such as the amount of interfaces needed to interconnect both layers, the overall routing
processor power needed, and the number of bus-LSPs needed. Numerical studies showed
that our algorithm reduced the total traffic routed in the upper layer in the initial routing
chosen by more than 45%, the number of overall bus-LSPs by more than 50%, and even
reduced the average number of links (which directly translates to propagation delay). That
is, our heuristic fills its purpose of minimizing both CAPEX and OPEX for the network
operators implementing the bus-LSP technology.

Finally, the study of this new structure was completed by considering the GMPLS standard
protocols extensions which are needed to operate bus-LSPs and announce the bus-FAs they
generate. This resulted in the study of routing protocol (OSPF-TE) options and in the
elaboration design guidelines; this also led to a signaling protocol (RSVP-TE) limitations
analysis and a technical proposal for extending this protocol [BC07]. This study of the
evolutions needed for the GMPLS control plane used to manipulate bus-LSPs and bus-FAs
allows the integration of bus-LSPs in an automated, highly manageable network in which
costs are minimized thanks to network engineering.

7.2. Future Work 123

7.2 Future Work

The studies presented in this thesis open the way for future work. These additional
considerations are in the domains of both Metro and Carrier Ethernet. Indeed, there is
a strong driver by network operators and providers to use Ethernet in these domains.
Ethernet is being extended to support many metro- and carrier-grade features such as
hard quality of service and protection guarantees, high manageability and cross-domain
and cross-layer interconnections, among many others. We list here some of the issues
which stem from our research and which are related to this trend:

• In the Metro domain:

– There is some concern about so-called leakage. Leakage happens during the
learning (of MAC addresses) phase: the broadcast traffic of a customer can end
up at some PEs where there is no presence of this customer. This is due to the
fact that multiple customers are placed on the same tree while not being all
present at the same PEs. The leakage phenomenon must be understood and
filters developed to prevent this from happening.

– There is today a large demand for multicast functionalities by service providers,
for mass content distribution for instance. The mapping of multicast traffic over
trees is an issue which is very close to the one considered in [BKC07], so it might
be very interesting to build on and apply some of the principles explored to a
different context, in particular for dimensioning the network using the load-
balancing properties of our algorithm.

• In the Core domain (concerning bus-LSPs and bus-FAs):

– The bus-LSP concept allows the interconnection of multiple nodes between
which bus-FAs are created. This structure might therefore be used for offering
a VPN service, using for instance just two unidirectional bus-LSPs running
through all VPN sites (see Section 3.2.4). The bus-LSP structure would avoid
setting up full mesh connections, however the trade-off in terms of resource use
must be evaluated: since the bus-LSP is linear, a traveling salesman problem has
to be solved to interconnect all sites in an optimal way; such a solution should
be compared to resource consumption in non-bus-LSP enabled networks.

– Bus-LSPs are limited in use, for now, to opaque optical networks (or non-
optical networks), since an electronic device is needed to update the counter
associated with each data packet must be decremented at each hop. However,
designing some MAC protocol which would allow to do this in transparent
optical networks would allow the use of the bus-LSP structure. Note that the
add functionality has already been designed in [BPD+04].

124 7. Conclusion

– The heuristic approach developed in [BKPD07] provides CAPEX- and OPEX-
wise interesting results, however there are several drawbacks to this approach.
Some are technical issues which are raised and discussed in Section 5.5, but
operators could definitely benefit from an algorithmic approach allowing for
non-disruptive dynamic virtual topology design. This implies working on the
rerouting procedures on our approach so as to evaluate and minimize traffic
disruption during traffic matrix changes.

– The bus-LSP structure is one step away from offering some degraded multipoint-
to-multipoint functionality, by allowing packets to be both dropped and for-
warded in the same node. This would be useful for multicast VPNs or content
distribution; however it needs additional research, in particular in the dimen-
sioning area and the standard protocol support (routing and signaling protocols
extensions).

– Making a bus-LSP circular (egress at the ingress) could provide some interesting
functionalities in VPN and multipoint to multipoint. This can still be emulated
today by two bus-structured FAMAs running parallel and in opposite directions.
This area is closely related to the question of ring-shaped virtual topologies and
their efficiency, and needs, of course, more signaling and routing research.

– Finally, the question of bus-LSP protection must be investigated: in particular,
there are issues raised by the failure of an intermediate node/link. Some of the
FAs induced by a partly failed bus-LSP might still be maintained if the nodes
connected are on the same side of the failure; the question is therefore that of
maintaining partly functional bus-LSPs, refreshing the valid FAs, and so on.
Also, protection of bus-LSPs could be only partial, protecting only a subset of
the bus-FA for example, or protection might be differentiated along the bus;
this needs further investigation and analysis.

125

Appendix A

AMPL models

A.1 AMPL model for problem of Section 2.4

We present here the files which could be used in Section 2.4 to obtain exact results.
However, even for the small data file presented here, CPLEX is not able to give a solution
in a reasonable amount of time. Notice there is a piecewise-linear approximation of the
(2.4.15). The model is available at: http://perso.enst.fr/~brehon/.

A.1.1 Model

#CPLEX command:

#reset;model VPN_STP\vpn.mod;data VPN_STP\test_net.dat;

#option solver cplex;solve;

#------------------------#

GIVEN

#------------------------#

param Nb_Links >=0;

param Nb_Nodes >= 0;

param Nb_VPN >= 0;

param Nb_ST >= 0;

param maxflow = 100000; # max flow on a link

param maxclients = 100; # max number of clients / VPN

http://perso.enst.fr/~brehon/

126 A. AMPL models

param nb_breaks >=0; # number of breaks in the approx of x(1-x)

set LINK := 1 .. Nb_Links; # graph links

set NODE := 1 .. Nb_Nodes; # network nodes

set VPN := 1 .. Nb_VPN; # VPNs

set ST := 1 .. Nb_ST; # Spanning trees

param in_VPN {NODE,VPN} >= 0; # if node NODE belongs to VPN

param access_bw {VPN} >= 0;

minimal guaranteed access bandwidth for nodes of VPN

param endpoint {LINK,NODE} >=0 ; # if LINK has an end at NODE

param capacity {LINK}>=0; # capacity of LINK

param b{1..nb_breaks}; # break points of the approx of x(1-x)

param s{0..nb_breaks}; #slopes of the approx of x(1-x)

param nb_Clients{i in VPN} = sum{v in NODE} in_VPN[v,i];

#nb of clients (sites) of vpn i

#------------------------#

VARIABLES

#------------------------#

var Flow {e in LINK, i in VPN , j in ST} >= 0;

flow on e due to VPN i mapped to ST j

var Flow_st {e in LINK , j in ST} >= 0; # volume on e due to ST j

var Flow_link {e in LINK} >= 0; #total volume on e

var Lambda >= 0; # traffic matrix multiplier

var Map {i in VPN, j in ST} binary; #if VPN i is mapped to ST j

var If {v in NODE, e in LINK, i in VPN, j in ST} >=0, integer;

number of clients of i to which access is through

v by e, when i is mapped to j

var Node_Prop {v in NODE, e in LINK, i in VPN, j in ST} >=0;

proportion of clients of i to which access is through v by e,

when i is mapped to j

var Dir {e in LINK, j in ST, v in NODE} binary;

A.1. AMPL model for problem of Section 2.4 127

=1 if e is active in j, in direction v -> e -> root

var u{j in ST} binary; #if ST j is used

#------------------------#

OBJECTIVES

#------------------------#

#OBJECTIVE 1: minimize number of STs

minimize Total_Flow: sum{e in LINK} Flow_link[e];

#minimize ST_Number: sum{j in ST} u[j];

#minimize ST_Num_and_Flows:

sum{j in ST} u[j] + sum{e in LINK} Flow_link[e];

#minimize Traf_Mult: Lambda;

#------------------------#

CONSTRAINTS

#------------------------#

DOMAIN DEFINITIONS

subject to Dir_If_Link_Connected{j in ST,e in LINK, v in NODE}:

Dir[e,j,v] <= endpoint[e,v];

#"dir" variables are meaningless if e and v aren’t connected

subject to If_If_Link_Connected{i in VPN,j in ST,e in LINK, v in NODE}:

If[v,e,i,j] <= endpoint[e,v] * maxclients;

#"if" variables are meaningless if e and v aren’t connected

subject to Connexity {j in ST, i in VPN, v in NODE,

e in LINK : endpoint[e,v]=1}:

128 A. AMPL models

If[v,e,i,j] <= nb_Clients[i];

each node must allow access to at most all VPN nodes (this

prevents loops with any vpn member to form)

MAPPING CONSTRAINTS

subject to One_ST {i in VPN}:

sum {j in ST} Map[i,j] = 1;

Constraint: one ST /VPN

subject to ST_use{j in ST}:

u[j] >= sum {i in VPN} Map[i,j] / Nb_VPN;

#defines if a ST is used

SPANNING TREE DEFINITION

subject to ST_Link_Number {j in ST}:

sum {e in LINK, v in NODE} Dir[e,j,v] = Nb_Nodes - 1;

Constraint: a connex graph of n nodes has n-1 links in each ST

subject to One_Uplink {j in ST, v in NODE}:

sum {e in LINK} Dir[e,j,v] <= 1;

Constraint: each node has at most one "uplink"

subject to One_Dir {j in ST, e in LINK}:

sum{v in NODE: endpoint[e,v]=1 } Dir[e,j,v] <= 1;

#Constraint: a link is an uplink to only ONE node

INTERFACE CONSTRAINTS

A.1. AMPL model for problem of Section 2.4 129

subject to VPN_Node {j in ST, i in VPN, v in NODE,

e in LINK : in_VPN[v,i] = 1 and endpoint[e,v]=1}:

If[v,e,i,j] = Map[i,j];

Constraint: for VPN nodes, graph leaves, set value of interface to 1

subject to Non_VPN_Node {j in ST, i in VPN, v in NODE,

e in LINK: in_VPN[v,i] = 0 and endpoint[e,v]=1}:

If[v,e,i,j] >= (sum { ee in LINK, vv in NODE : ee <> e and

endpoint[ee,v]=1 and vv <> v and

endpoint[ee,vv]=1} If[vv,ee,i,j])

- (1 - sum { vv in NODE } Dir[e,j,vv]) * maxclients;

Constraint: for non VPN nodes, interface is worth the sum of value of

interfaces its other links go to

subject to ST_If_Only { j in ST, i in VPN, v in NODE, e in LINK}:

If[v,e,i,j] <= sum { vv in NODE : endpoint[e,vv] = 1 } Dir[e,j,vv]

* maxclients;

#constraint: never set an interface value if link is not part of ST

subject to If_Sum_To_Clients{j in ST, i in VPN, e in LINK}:

sum { v in NODE : endpoint[e,v] =1} If[v,e,i,j] <= nb_Clients[i];

* Map[i,j] - (1 - sum { vv in NODE } Dir[e,j,vv]) * nb_Clients[i];

#To forbid If values which are too big on both sides of a link,

#which makes the flow=0...

subject to If_If_ST_Mapped{v in NODE, j in ST,i in VPN, e in LINK}:

If[v,e,i,j] <= Map[i,j] * maxclients;

To forbid If values if i is not mapped to j

#FLOW CONSTRAINTS

#subject to ST_Flows { i in VPN, j in ST, e in LINK}:

Flow [e,i,j] <= maxflow * Map[i,j];

130 A. AMPL models

No flow if ST is not mapped to the VPN

#useless (implicit)

#subject to Dir_Needed {j in ST, i in VPN, e in LINK}:

Flow[e,i,j] <= sum { v in NODE} Dir [e,j,v] * maxflow;

Constraint: a flow can only be on a link with a direction (active)

#useless (implicit)

subject to ST_Link {j in ST, e in LINK}:

Flow_st[e,j] = sum {i in VPN} Flow[e,i,j];

#capacity used by a ST on a link

subject to Link_Flow {e in LINK}:

Flow_link[e] = sum {j in ST} Flow_st[e,j];

#capacity used on a link

subject to Node_Prop_Def{j in ST, i in VPN, v in NODE,

e in LINK:endpoint[e,v]=1}:

Node_Prop[v,e,i,j] = If[v,e,i,j] / nb_Clients[i];

Node_Prop[v,e,i,j] = sum { vv in NODE : vv <> v and

endpoint[e,vv] =1} If[vv,e,i,j]

/ nb_Clients[i];

subject to Flow_Alloc {j in ST, i in VPN, v in NODE,

e in LINK:endpoint[e,v]=1}:

Flow[e,i,j] >= (access_bw[i] / (-1 + nb_Clients[i])) *

(sum { vv in NODE : vv <> v and endpoint[e,vv] = 1}

If[vv,e,i,j])*

(nb_Clients[i] -

sum{vv in NODE:vv <> v and endpoint[e,vv]=1}

If[vv,e,i,j]);

non linear, replaced by:

Flow[e,i,j] >= (access_bw[i] / (-1 + nb_Clients[i])) *

nb_Clients[i] * nb_Clients[i] *

(<<{k in 1..nb_breaks}b[k];{k in 0..nb_breaks} s[k]>>

Node_Prop[v,e,i,j]);

Constraint: flow on a link = avg vpn flow * nb nodes accessed from

other side of a node

nb_breaks: nb points where slope changes.

A.1. AMPL model for problem of Section 2.4 131

9

4

3

1110

5

6

2
1

12

8

7

VPN 1 node

VPN 2 node

VPN 3 node

Figure A.1: Metro Access Network

b[k] absciss of points, s[k]slope after point k.

to approx f(x)=x(1-x)

subject to Link_Capa {e in LINK}:

Flow_link[e] <= capacity[e];# * Lambda;

Constraint: link capacity constraint

A.1.2 Model data file

We represent the network shown in Figure A.1.

param Nb_Links := 12;

param Nb_Nodes := 12;

param Nb_VPN := 3;

param Nb_ST := 3;

param nb_breaks := 4;

param b:=

1 0

2 0.25

3 0.75

4 1;

132 A. AMPL models

param s:=

0 0

1 1

2 0

3 -1

4 0;

#ligne: vpn

#colonne: nodes

v1 v2 v3

#n1

#n2

param in_VPN: 1 2 3 :=

1 1 0 0

2 0 0 1

3 1 0 0

4 0 1 0

5 0 1 0

6 0 0 1

7 0 1 0

8 1 0 0

9 0 0 0

10 0 0 0

11 0 0 0

12 0 0 0

;

#line: nodes

#column: links

n1 n2 n3

#l1

#l2

param endpoint: 1 2 3 4 5 6 7 8 9 10 11 12 :=

1 1 0 0 0 0 0 0 0 1 0 0 0

2 0 1 0 0 0 0 0 0 1 0 0 0

A.2. AMPL model for problem of Section 4.2 133

3 0 0 1 0 0 0 0 0 0 1 0 0

4 0 0 0 1 0 0 0 0 0 1 0 0

5 0 0 0 0 1 0 0 0 0 0 1 0

6 0 0 0 0 0 1 0 0 0 0 1 0

7 0 0 0 0 0 0 1 0 0 0 0 1

8 0 0 0 0 0 0 0 1 0 0 0 1

9 0 0 0 0 0 0 0 0 1 1 0 0

10 0 0 0 0 0 0 0 0 0 1 1 0

11 0 0 0 0 0 0 0 0 0 0 1 1

12 0 0 0 0 0 0 0 0 1 0 0 1

;

param access_bw:=

1 1

2 1

3 1;

param capacity:=

1 2

2 2

3 2

4 2

5 2

6 2

7 2

8 2

9 2

10 2

11 2

12 2;

A.2 AMPL model for problem of Section 4.2

A.2.1 Model

The model is available at: http://perso.enst.fr/~brehon/ as well as some programs
to generate the data files based on simple textual network descriptions.

http://perso.enst.fr/~brehon/

134 A. AMPL models

#CPLEX command:

#reset;model optim_fama3.mod;data optim_fama3.dat;

#option solver cplex;solve;

#------------------------#

GIVEN

#------------------------#

param Nb_Links >=0;

param Nb_Demands >= 0;

set LINK := 1 .. Nb_Links; # graph links

set PATH; # paths over the graph

set DEMAND := 1 .. Nb_Demands; # demands

set DEMAND_PATH within (DEMAND cross PATH);

possible combinations of demands to paths

param delta {DEMAND_PATH,LINK} >= 0;

if link e contributes to path p when demand d runs overs p.

param volume {DEMAND} >= 0; # volume of demand d

param capacity {LINK}; # capacity of link e

#------------------------#

VARIABLES

#------------------------#

var Flow {(d,p) in DEMAND_PATH} >= 0, <= volume[d];

volume of d routed over p

var Active {p in PATH} binary;

#if path p is active active

#var Uses {p in PATH, e in LINK} binary;

#if path p uses link e. Used for objective 3 only.

A.2. AMPL model for problem of Section 4.2 135

#------------------------#

OBJECTIVES

#------------------------#

minimize Nb_LSPs: sum {p in PATH} Active[p];

Objective: total nb of active LSPs

#minimize Net_Cost:

sum {(d,p) in DEMAND_PATH, e in LINK} delta[d,p,e] * Flow[d,p];

Objective: number of used links in network

optionnally, multiply by cost/link

#minimize Max_Lambdas:

max{e in LINK} (sum{p in PATH} (Active[p] * Uses[p,e]));

#subject to Use{p in PATH, e in LINK}:

Uses[p,e] = max{(d,p) in DEMAND_PATH} delta[d,p,e];

#Objective: minimize max number of wavelengths used on a link

#------------------------#

CONSTRAINTS

#------------------------#

#subject to Net_Cost:

sum {(d,p) in DEMAND_PATH, e in LINK} delta[d,p,e] * Flow[d,p] <= 5;

#constraint: not exceed optimal net cost (found by minimizing obj 2.)

#optionnally, multiply by cost/link

subject to Link_Capa {e in LINK}:

sum {(d,p) in DEMAND_PATH} delta[d,p,e] * Flow[d,p] <= capacity[e];

Constraint: link capacity constraint

136 A. AMPL models

1

2
6

4

53

Figure A.2: Single Layer Network using bus-LSPs

subject to Active_Path {(d,p) in DEMAND_PATH}:

Flow[d,p] <= volume[d] * Active[p];

Constraint: a flow may only use an active path

subject to Demand_Satisfaction {d in DEMAND}:

sum {(d,p) in DEMAND_PATH} Flow[d,p] = volume[d];

Constraint: demand satisfaction

A.2.2 Model data file

We represent the network shown in Figure A.2. There are demands of volume 1 between
each pair of nodes. Bus-LSPs of length 1 and 2 may be setup to satisfy demands. For
example, demand 1 (connecting nodes at both ends of link 1) may be satisfied by a bus-LSP
going through:

• link 1

• links 1 and 2

• or links 5 and 6

param Nb_Links := 6;

param Nb_Demands := 6;

set PATH := 1 12 5 56 4 45 2 23 6 64 3 31;

A.2. AMPL model for problem of Section 4.2 137

set DEMAND_PATH := (1,1) (1,12) (2,12) (5,12) (5,5) (5,56) (6,56) (1,56)

(4,4) (4,45) (5,45) (2,45) (2,2) (2,23) (3,23) (4,23)

(6,6) (6,64) (4,64) (2,64) (3,3) (3,31) (1,31) (6,31);

param delta: 1 2 3 4 5 6 :=

1 1 1 0 0 0 0 0

1 12 1 0 0 0 0 0

2 12 0 1 0 0 0 0

5 12 1 1 0 0 0 0

5 5 0 0 0 0 1 0

5 56 0 0 0 0 1 0

6 56 0 0 0 0 0 1

1 56 0 0 0 0 1 1

4 4 0 0 0 1 0 0

4 45 0 0 0 1 0 0

5 45 0 0 0 0 1 0

2 45 0 0 0 1 1 0

2 2 0 1 0 0 0 0

2 23 0 1 0 0 0 0

3 23 0 0 1 0 0 0

4 23 0 1 1 0 0 0

6 6 0 0 0 0 0 1

6 64 0 0 0 0 0 1

4 64 0 0 0 1 0 0

2 64 0 0 0 1 0 1

3 3 0 0 1 0 0 0

3 31 0 0 1 0 0 0

1 31 1 0 0 0 0 0

6 31 1 0 1 0 0 0

;

param volume:=

1 1

2 1

3 1

4 1

5 1

6 1;

138 A. AMPL models

param capacity:=

1 2

2 2

3 2

4 2

5 2

6 2;

A.3 AMPL model for problem of Section 5.2

A.3.1 Model

The model is available at: http://perso.enst.fr/~brehon/, as well as some programs
to generate the data files based on simple textual network descriptions.

#CPLEX command:

#reset;model FAMA_2_LAYER\fama.mod;data FAMA_2_LAYER\carre_diag_aleat.dat;

#option solver cplex;solve;

#------------------------#

DONNEES

#------------------------#

param Nb_Links >=0;

param Nb_VLinks >= 0; # nb of possible virtual links

param Nb_Demands >= 0;

param Nb_Nodes >= 0;

set LINK := 1 .. Nb_Links; # links

set VLINK := 1 .. Nb_VLinks; # virtual links

set PATH; # paths on the physical graph

set VPATH; # virtual paths on the virtual topology

set DEMAND := 1 .. Nb_Demands; # network demands

set DEMAND_VPATH within (DEMAND cross VPATH);

possible combinations of demand assignment to virtual paths.

(d,p) exists means demand d can be satisfied by p

http://perso.enst.fr/~brehon/

A.3. AMPL model for problem of Section 5.2 139

set VLINK_PATH within (VLINK cross PATH);

possible combinations of virtual links created by paths.

(e,q) exists means v-link e can be created by q

set NODE := 1 .. Nb_Nodes; # network nodes

param delta {DEMAND_VPATH,VLINK} >= 0;

if VLINK contributes to to VPATH when DEMAND uses VPATH.

param gamma {VLINK_PATH,LINK} >= 0;

if LINK contributes to PATH when VLINK uses PATH.

param ingress {VLINK,NODE} >=0 ; # if VLINK starts at NODE

param egress {VLINK,NODE} >=0 ; # if VLINK ends at NODE

param volume {DEMAND} >= 0; # volume of DEMAND

param capacity {LINK}; # capacity of LINK

param r_in {NODE}; # incoming capacity of IP router NODE

param r_out {NODE}; # outgoing capacity of IP router NODE

param M >= 0; # value of capacity of one bus-LSP

#------------------------#

VARIABLES

#------------------------#

var Up_Flow {(d,p) in DEMAND_VPATH} >= 0, <= volume[d];

volume of d routed over p

var Low_Flow {(e,q) in VLINK_PATH} >= 0;

volume of e routed over q

var Active {q in PATH} binary;

if q is active

var U {(e,q) in VLINK_PATH} binary;

if q is active and creates e

var Vcapacity {e in VLINK} >= 0;

capacity of vlink e

var Lambda >= 0; # traffic matrix multiplier

var Nb_Modules {(q,g) in PATH cross LINK} >=0, integer;

#ceiling of sum(e)gamma_geq.z_eq / M

var Routing_Usage {v in NODE} >= 0;

140 A. AMPL models

var In{v in NODE} >= 0;

var Out{v in NODE} >= 0;

#------------------------#

OBJECTIVES

#------------------------#

#OBJECTIVE 1: maximize possible traffic

maximize Traf_Mult: Lambda;

#OBJECTIVE 2: minimize cost in routing equipment

#minimize Routing_Power: sum{v in NODE} Routing_Usage[v];

#subject to Traf_Mult: Lambda >= 0.25; #value obtained by obj.1

#OBJECTIVE 3: minimize number of LSPs

#minimize Nb_LSPs: sum {p in PATH} Active[p];

#subject to Traf_Mult: Lambda >= 0.25; #value obtained by obj.1

#subject to Routing_Power: sum{v in NODE} Routing_Usage[v] <= 0.9;

#value obtained by obj.2

#------------------------#

CONSTRAINTS

#------------------------#

subject to Demand_Satisfaction {d in DEMAND}:

sum {(d,p) in DEMAND_VPATH} Up_Flow[d,p] >= Lambda * volume[d];

Constraint: demand satisfaction

subject to VCapa_Def {e in VLINK}:

Vcapacity[e] <= sum {(e,q) in VLINK_PATH} Low_Flow[e,q];

Constraint: capacity def. of virtual links

A.3. AMPL model for problem of Section 5.2 141

subject to VLink_Capa {e in VLINK}:

sum {(d,p) in DEMAND_VPATH} delta[d,p,e] * Up_Flow[d,p] <= Vcapacity[e];

Constraint: v-link capacity constraint

subject to Link_Capa {g in LINK}:

sum {(e,q) in VLINK_PATH} gamma[e,q,g] * Low_Flow[e,q] <= capacity[g];

Constraint: link capacity constraint

subject to Active_Path {(e,q) in VLINK_PATH}:

Low_Flow[e,q] <= 100000 * U[e,q];

Constraint: flows only use active paths

subject to In_Traffic {v in NODE}:

In[v] <= r_in[v];

Constraint: incoming routed traffic limited

subject to Out_Traffic {v in NODE}:

Out[v] <= r_out[v];

Constraint: outgoing routed traffic limited

subject to Routing_def{v in NODE}:

Routing_Usage[v] = In[v] + Out[v];

Defining total routing power needed in network

subject to In_Traffic_Def {v in NODE}:

#In[v] = sum{(e,q) in VLINK_PATH} egress[e,v] * Low_Flow[e,q];

In[v] = sum{e in VLINK} egress[e,v] * Vcapacity[e];

Def: incoming routed traffic

subject to Out_Traffic_Def {v in NODE}:

#Out[v] = sum{(e,q) in VLINK_PATH} ingress[e,v] * Low_Flow[e,q];

Out[v] = sum{e in VLINK} ingress[e,v] * Vcapacity[e];

Def: outgoing routed traffic

#subject to No_Low_Split{e in VLINK}:

sum{(e,q) in VLINK_PATH} U[e,q] <= 1 ;

Constraint: no lower layer flow splitting

142 A. AMPL models

subject to Activation{(e,q) in VLINK_PATH}:

U[e,q] <= Active[q];

Definition: a bus-LSP is active if a VLINK uses it.

subject to Nb_Module_Def1{(q,g) in PATH cross LINK}:

Nb_Modules[q,g] >= sum{(e,q) in VLINK_PATH} gamma[e,q,g]

* Low_Flow[e,q] / M;

#subject to Nb_Module_Def2{(q,g) in PATH cross LINK}:

#Nb_Modules[q,g] <= (sum{(e,q) in VLINK_PATH} gamma[e,q,g]

* Low_Flow[e,q] / M)

+1;

#definition of the ceiling function

#warning: <= should really be a <, but cplex refuses it

#however, this last constraint is implicit when minimization is running

subject to Modular{g in LINK}:

sum{q in PATH} Nb_Modules[q,g] * M <= capacity[g];

#modular allocation of bus-LSPs

A.3.2 Model data file

In this example data file, 3 nodes are linked by 2 unidirectional links of capacity 1 and
module 1, such as in Figure 3.4. There are 3 demands, using a volume 0.4 each. Demands
may be routed in the intermediate node in the upper layer or switched in the lower layer,
depending on which bus-LSPs are setup.

param Nb_Links := 2;

param Nb_Demands := 3;

param Nb_VLinks := 3;

param Nb_Nodes := 3;

param M := 1;

set PATH := 1_2 2_3 1_2_3 ;

set VPATH := 1_2 1_3 2_3 1_2_3 ;

set DEMAND_VPATH := (1,1_2) (2,1_3) (3,2_3) (2,1_2_3) ;

set VLINK_PATH := (1,1_2) (2,2_3) (1,1_2_3) (3,1_2_3) (2,1_2_3) ;

Association of link number to nodes:

1 to node 2 : 1

A.3. AMPL model for problem of Section 5.2 143

2 to node 3 : 2

Association of v-link number to nodes:

1 to node 2 : 1

2 to node 3 : 2

1 to node 3 : 3

Association of demand number to nodes:

1 to node 2 : 1

1 to node 3 : 2

2 to node 3 : 3

e1 e2

[d1,*,*]

p1

param delta:=

[1,*,*] : 1 2 3 :=

1_2 1 0 0

[2,*,*] : 1 2 3 :=

1_3 0 0 1

1_2_3 1 1 0

[3,*,*] : 1 2 3 :=

2_3 0 1 0

;

g1 g2

[e1,*,*]

q1

param gamma:=

[1,*,*] : 1 2 :=

1_2 1 0

144 A. AMPL models

1_2_3 1 0

[2,*,*] : 1 2 :=

2_3 0 1

1_2_3 0 1

[3,*,*] : 1 2 :=

1_2_3 1 1

;

#ligne: noeuds

#colonne: vlinks

param ingress : 1 2 3 :=

1 1 0 0

2 0 1 0

3 1 0 0

;

#ligne: noeuds

#colonne: vlinks

param egress : 1 2 3 :=

1 0 1 0

2 0 0 1

3 0 0 1

;

param r_in :=

1 2

2 2

3 2

;

param r_out :=

1 2

2 2

3 2

;

param volume:=

1 0.4

A.4. AMPL model for problem of Section 5.4 145

2 0.4

3 0.4

;

param capacity:=

1 1

2 1

;

A.4 AMPL model for problem of Section 5.4

In this section, we present the files used to generate the theoretical limit values of Sec-
tion 5.4. The model is available at: http://perso.enst.fr/~brehon/ as well as some
programs to generate the data files based on simple textual network descriptions.

A.4.1 Model

#CPLEX command:

#reset;model optim_fama3.mod;data carre_aleat.dat;

#option solver cplex;solve;

#------------------------#

GIVEN

#------------------------#

param Nb_Links >=0;

param Nb_Demands >= 0;

set LINK := 1 .. Nb_Links; # links

set PATH; # paths in graph

set DEMAND := 1 .. Nb_Demands; # network demands

set DEMAND_PATH within (DEMAND cross PATH);

possible combinations of demand assignment to paths

param delta {DEMAND_PATH,LINK} >= 0;

if LINK contributes to PATH when DEMAND uses PATH.

http://perso.enst.fr/~brehon/

146 A. AMPL models

param volume {DEMAND} >= 0; # volume of DEMAND

param capacity {LINK}; # capacity of LINK

#------------------------#

VARIABLES

#------------------------#

var Flow {(d,p) in DEMAND_PATH} >= 0; # volume of d running over p

var lambda >=0; # traffic matrix multiplier

#------------------------#

OBJECTIVE

#------------------------#

maximize Lambda_var: lambda;

#maximize traffic multiplier

#------------------------#

CONSTRAINTS

#------------------------#

subject to Link_Capa {e in LINK}:

sum {(d,p) in DEMAND_PATH} delta[d,p,e] * Flow[d,p] <= capacity[e];

Constraint: link capacity constraint

subject to Demand_Satisfaction {d in DEMAND}:

sum {(d,p) in DEMAND_PATH} Flow[d,p] = lambda * volume[d];

A.4. AMPL model for problem of Section 5.4 147

Constraint: demand satisfaction

A.4.2 Model data file

This should be the same type of data file as used for the model presented in Appendix A.2.

148 A. AMPL models

149

Bibliography

[ACG05] M. Ali, G. Chiruvolu, and A. Ge, Traffic Engineering in Metro Ethernet,
IEEE Network (2005), pp. 10–17. 2.3

[AKV06] A. Ayyangar, K. Kompella, and J.P. Vasseur, Label Switched Path Stitching
with Generalized MPLS Traffic Engineering, draft-ietf-ccamp-lsp-stitching-
04.txt (2006). 6.2.3.4, 6.2.3.4, 6.2.3.5, 6.2.3.6

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin, Network
Flows: Theory, Algorithms, and Applications, Prentice Hall, 1993. 1.4

[BBPF06] Lou Berger, Igor Bryskin, Dimitri Papadimitriou, and Adrian Farrel, Gm-
pls based segment recovery, draft-ietf-ccamp-gmpls-segment-recovery-03.txt
(2006). 6.2.3.4

[BC07] Yannick Brehon and Ramon Casellas, Extensions to RSVP-TE for bus-LSP
support, IETF draft to be submitted, 2007. 6.2.4, 7.1

[BHS05] S. Balasubramanian, Wensheng He, and A.K. Somani, Light-Trail Networks:
Design and Survivability, Local Computer Networks, 30th IEEE International
Conference on, November 2005, pp. 174–181. 3.2.3.1

[BK06] Y. Brehon and D. Kofman, Bus-Label Switched Paths, an approach to reduce
the cost of multilayer networks, Communications, 2006 IEEE International
Conference on (ICC 2006), 5 (2006), pp. 2401–2406. 7.1

[BKC07] Y. Brehon, D. Kofman, and A. Casaca, Virtual Private Network To Spanning
Tree Mapping, IFIP Networking Conference, May 2007. 7.1, 7.2

[BKPD07] Y. Brehon, D. Kofman, M. Pióro, and M. Diallo, Optimal Virtual Topology
Design using Bus-Label Switched Paths, Selected Areas in Communications,
Special issue on Traffic Engineering for Multi-Layer Networks, IEEE Journal
on (JSAC), 25 (2007), pp. 1001–1010. 7.1, 7.2

150 BIBLIOGRAPHY

[BPD+04] N. Bouabdallah, G. Pujolle, E. Dotaro, N. Le Sauze, and L. Ciavaglia, Dis-
tributed Aggregation in All-Optical Wavelength Routed Networks, Communi-
cations, 2004 IEEE International Conference on (ICC2004), vol. 3, June 2004,
pp. 1806–1810. 3.2.3.2, 2, 4, 7.2

[BSK05] S. Balasubramanian, A.K. Somani, and A.E. Kamal, Sparsely hubbed light-
trail grooming networks, Computer Communications and Networks, 14th In-
ternational Conference on, October 2005, pp. 249–254. 3.2.3.1

[CMP+03] J. Comellas, R. Martinez, J. Prat, V. Sales, and G. Junyent, Integrated
IP/WDM routing in GMPLS-Based Optical Networks, Network, IEEE 17

(2003), no. 2, pp. 22–27. 1.4

[CPLEX] ILOG, CPLEX and AMPL optimization packages, on-line, www.cplex.com.
(document), 2.4.2, 5.4.1, 5.5.1

[Dij59] E. W. Dijkstra, A note on two problems in connection with graphs, Numerische
Mathematik 1 (1959), pp. 83–89. (document), 2.5.1, 5.3.1, 6.1.1

[DR00] R. Dutta and G.N. Rouskas, A survey of virtual topology design algorithms for
wavelength routed optical networks, Optical Networks Mag. 1 (2000), no. 1,
pp. 73–89. 1.4

[FHS04] Jing Fang, Wensheng He, and A.K. Somani, Optimal light trail design in
WDM optical networks, Communications, IEEE International Conference on,
vol. 3, June 2004, pp. 1699–1703. 3.2.3.1

[FL98] Gang Feng and Zemin Liu, Dynamic routing algorithms in ATM networks,
Circuits and Systems, 1998. ISCAS ’98. Proceedings of the 1998 IEEE Inter-
national Symposium on, vol. 6, May 1998, pp. 468–501. 1.4

[GC03] A. Gumaste and I. Chlamtac, Light-trails: a novel conceptual framework for
conducting optical communications, High Performance Switching and Rout-
ing, Workshop on, June 2003, pp. 251–256. 3.2.3.1

[GM02] A. Gencata and B. Mukherjee, Virtual-topology adaptation for WDM mesh
networks under dynamic traffic, INFOCOM 2002. Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceed-
ings, vol. 1, June 2002, pp. 48–56. 1.3.2.1, 1.4.2

[GS95] O. Gerstel and A. Segall, Dynamic maintenance of the virtual path layout,
INFOCOM ’95. Fourteenth Annual Joint Conference of the IEEE Computer
and Communications Societies, vol. 1, April 1995, pp. 330–337. 1.3.2.1, 1.4

BIBLIOGRAPHY 151

[GSM02] A. Gencata, L. Sahasrabuddhe, and B. Mukherjee, Virtual-topology adapta-
tion with minimal lightpath change for dynamic traffic in WDM mesh net-
works, Optical Fiber Communication Conference and Exhibit, 2002, March
2002, pp. 783–784. 1.3.2.1, 1.4.2

[HZC06] X. He, M. Zhu, and Q. Chu, Traffic Engineering for Metro Ethernet Based on
Multiple Spanning Trees, Networking, International Conference on Systems
and International Conference on Mobile Communications and Learning Tech-
nologies, International Conference on, ICN/ICONS/MCL 2006, 2006, p. 97.
2.3

[IEE98] IEEE, Media Access Control Bridges, IEEE 802.1d (1998). 2.1.2

[IEE01] IEEE, Rapid Spanning Tree Configuration, IEEE 802.1w (2001). 2.1.2

[IEE02] IEEE, Multiple Spanning Trees, IEEE 802.1s (2002). (document), 2.1.2

[IEE03] IEEE, Virtual Bridged Local Area Networks, IEEE 802.1q (2003). 2.1.1

[IEE06a] IEEE, Provider Backbone Bridges, Draft 3.3, IEEE 802.1ah (2006). 1.2, 2.1.3

[IEE06b] IEEE, Provider Bridges, IEEE 802.1ad (2006). 1.2, 2.1.3

[KKL00] K. Kar, M. Kodialam, and T. V. Lakshman, Minimum Interference Routing of
Bandwidth Guaranteed Tunnels with MPLS Traffic Engineering Applications,
Selected Areas in Communications, IEEE Journal on 18(12) (2000), pp. 2566
– 2579. (document), 5.3.2, 5.3.2, 5.3.2

[KL01] M. Kodialam and T.V. Lakshman, Integrated dynamic IP and wavelength
routing in IP over WDM networks, INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies, vol. 1,
April 2001, pp. 22–26. 1.4

[KS01] R.M. Krishnaswamy and K.N. Sivarajan, Design of logical topologies: a linear
formulation for wavelength-routed optical networks with no wavelength chang-
ers, Networking, IEEE/ACM Transactions on 9 (2001), no. 2, pp. 186–198.
1.4.1

[LA91] J-F.P. Labourdette and A.S. Acampora, Logically rearrangeable multihop
lightwave networks, Communications, IEEE Transactions on 39 (1991), no. 8,
pp. 1223–1230. 1.4.1

[LGCS02] S.K. Lee, D. Griffith, V. Coussot, and D. Su, Explicit routing with QoS con-
straints in IP over WDM, Communications, IEEE Proceedings 149 (2002),
no. 2, pp. 83–91. 1.4

152 BIBLIOGRAPHY

[LHA94] J-F.P. Labourdette, G.W. Hart, and A.S. Acampora, Branch Exchange Se-
quences for Reconfiguration of Lightwave Networks, Communications, IEEE
Transactions on 42 (1994), no. 10, pp. 2822–2832. 1.4.1

[LRP06] J.P. Lang, Y. Rekhter, and D. Papadimitriou, Rsvp-te extensions in sup-
port of end-to-end gmpls-based recovery, draft-ietf-ccamp-gmpls-recovery-e2e-
signaling-04.txt (2006). 6.2.3.5, 6.2.3.5, 6.2.4, 6.2.4.1, 6.2.4.2, 6.2.4.3

[MBRM96] B. Mukherjee, D. Banerjee, S. Ramamurthy, and A. Mukherjee, Some
principles for designing a wide-area WDM optical network, Networking,
IEEE/ACM Transactions on 4 (1996), no. 5, pp. 684–696. 1.4.1

[Mor06] T. Morin, Requirements for Multicast in L3 Provider-Provisioned VPNs,
draft-ietf-l3vpn-ppvpn-mcast-reqts-10.txt (2006). 2.1.3

[MR07] D. Medhi and K. Ramasamy, Network Routing: Algorithms, Protocols, and
Architectures, Morgan Kaufmann, March 2007. 1.2

[NTLM02] A. Narula-Tam, P.J. Lin, and E. Modiano, Efficient routing and wavelength
assignment for reconfigurable WDM networks, Selected Areas in Communica-
tions, IEEE Journal on 20 (2002), no. 1, pp. 75–88. 3.1.1

[OSK+03] E. Oki, K. Shiomoto, M. Katayama, W. Imajuku, and N. Yamanaka, Perfor-
mance of dynamic multi-layer routing schemes in IP+optical networks, High
Performance Switching and Routing, 2003, HPSR. Workshop on, June 2003,
pp. 233–238. 1.3.2.1, 1.4.2

[Pap04] D. Papadimitriou, Generalized MPLS Signaling for Layer-2 Label Switched
Paths (LSP), draft-papadimitriou-ccamp-gmpls-l2sc-lsp-03.txt (2004). (doc-
ument), 1.1, 2.1.2, 3.1.1

[PM04] M. P. Pióro and D. Medhi, Routing, Flow, and Capacity Design in Commu-
nication and Computer Networks, Morgan Kaufmann, July 2004. 1.4, 5.2.2,
5.5.1

[PNM+05] M. Padmaraj, S. Nair, M. Marchetti, G. Chiruvolu, M. Ali, and A. Ge, Metro
Ethernet Traffic Engineering Based on Optimal Spanning Trees, Wireless and
Optical Communications Networks, Second IFIP International Conference on,
WOCN, 2005, pp. 568–572. 2.3, 2.6

[RFC1058] C. Hedrick, Routing Information Protocol (RIP), Internet RFC 1058 (1988).
6.1.1

[RFC2328] J. Moy, OSPF Version 2, Internet RFC 2328 (1998). 3.1.1, 6.1.1

BIBLIOGRAPHY 153

[RFC2370] R. Coltun, The OSPF Opaque LSA Option, Internet RFC 2370 (1998). 6.1.1

[RFC2702] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus, Require-
ments for Traffic Engineering Over MPLS, Internet RFC 2702 (1999). 3.1.1

[RFC3031] E. Rosen, A. Viswanathan, and R. Callon, Multiprotocol Label Switching Ar-
chitecture, Internet RFC 3031 (2001). 3.1.1, 3.2.1

[RFC3209] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow, RSVP-
TE: Extensions to RSVP for LSP Tunnels, Internet RFC 3209 (2001). 1.3.2.1,
6.2.1, 6.2.2.1, 6.2.3.2, 6.2.3.2, 6.2.3.3, 6.2.3.4, 6.2.3.6

[RFC3471] L. Berger, Generalized Multi-Protocol Label Switching (GMPLS) Signaling
Functional Description, Internet RFC 3471 (2003). 1.3.2.1, 2.1.2, 6.2.3.4

[RFC3472] P. Ashwood-Smith and L. Berger, Generalized Multi-Protocol Label Switch-
ing (GMPLS) Signaling - Constraint-based Routed Label Distribution Protocol
(CR-LDP) Extensions, Internet RFC 3472 (2003). 1.3.2.2

[RFC3473] L. Berger, Generalized Multi-Protocol Label Switching (GMPLS) Signaling
Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions,
Internet RFC 3473 (2003). (document), 1.3.2.2, 6, 6.1.3.2, 6.2.1, 6.2.4.1,
6.2.4.3

[RFC3630] D. Katz, K. Kompella, and D. Yeung, Traffic Engineering (TE) Extensions
to OSPF Version 2, Internet RFC 3630 (2003). (document), 1.3.2.2, 6

[RFC3945] E. Mannie, Generalized Multi-Protocol Label Switching (GMPLS) Architec-
ture, Internet RFC 3945 (2004). 1.3.2.1

[RFC3985] Bryant and Pate, Pseudo Wire Emulation Edge-to-Edge (PWE3) Architec-
ture, Internet RFC 3985 (2005). 1.2

[RFC4026] L. Andersson and T. Madsen, Provider Provisioned Virtual Private Network
(VPN) Terminology, Internet RFC 4026 (2005). 1.2

[RFC4202] Y.Rekhter K.Kompella, Routing Extensions in Support of Generalized Multi-
Protocol Label Switching , Internet RFC 4202 (2005). 6

[RFC4206] K. Kompella and Y. Rekhter, LSP Hierarchy with Generalized MPLS TE,
Internet RFC 4206 (2005). 3.2.1, 6.1.3.2, 6.2.3.4

[RFC4447] L. Martini, E. Rosen, N. El-Aawar, T. Smith, and G. Heron, Pseudowire Setup
and Maintenance Using the Label Distribution Protocol (LDP), Internet RFC
4447 (2006). 1.2

154 BIBLIOGRAPHY

[RFC4655] A. Farrel, J.-P. Vasseur, and J. Ash, A Path Computation Element (PCE)-
Based Architecture, Internet RFC 4655 (2006). 1.3.2.2, 1.4.2

[RFC4664] L. Andersson and E. Rosen, Framework for Layer 2 Virtual Private Networks
(L2VPNs), Internet RFC 4664 (2006). 1.2

[RR00] B. Ramamurthy and A. Ramakrishnan, Virtual topology reconfiguration of
wavelength-routed optical WDM networks, Global Telecommunications Con-
ference, 2000. GLOBECOM ’00. IEEE, vol. 2, November 2000, pp. 1269–1275.
1.4

[SH80] J. F. Shoch and J. A. Hupp, Measured Performance of an Ethernet Local
Network, Communications of the ACM 23(12) (1980), pp. 711 – 721. 1.1

[SIL+98] R. Sabella, E. Iannone, M. Listanti, M. Berdusco, and S. Binetti, Impact of
transmission performance on path routing in all-optical transport networks,
Journal on Selected Areas of Communications, JSAC IEEE 6 (1998), no. 2,
pp. 1617–1622. 2.6, 5.4.2.3

[SL03] M.E.M. Saad and Zhi-Quan Luo, Reconfiguration with no service disruption
in multifiber WDM networks based on Lagrangean decomposition, Communi-
cations, 2003. ICC ’03. IEEE International Conference on, vol. 2, May 2003,
pp. 1509–1513. 1.3.2.1, 1.4.1

[SOI+03] K. Shiomoto, E. Oki, W. Imajuku, S. Okamoto, and N. Yamanaka, Distributed
virtual network topology control mechanism in GMPLS-based multiregion net-
works, Selected Areas in Communications, IEEE Journal on 21 (2003), no. 8,
pp. 1254–1262. 1.4.2

[SPM01] N. Sreenath, G.R. Panesar, and C.S.R Murthy, A two-phase approach for
virtual topology reconfiguration of wavelength-routed WDM optical networks,
Networks, 2001. Proceedings. Ninth IEEE International Conference on, Oc-
tober 2001, pp. 371–376. 1.4

[SPR+06] K. Shiomoto, D. Papadimitriou, J.L. Le Roux, M. Vigoureux, and D. Brun-
gard, Requirements for GMPLS-based multi-region and multi-layer networks
(MRN/MLN), draft-ietf-ccamp-gmpls-mln-reqs-02.txt (2006). 6.1.3.2

[SS03] J. Stosic and B. Spasenovski, Practical models for design and reconfigura-
tion of virtual topology in optical transport networks, Telecommunications in
Modern Satellite, Cable and Broadcasting Service, 2003. TELSIKS 2003. 6th
International Conference on, vol. 1, October 2003, pp. 67–70. 1.4

BIBLIOGRAPHY 155

[TZJT02] H. Takagi, Y. Zhang, X. Jia, and H. Takagi, Virtual Topology Reconfiguration
for Wide-Area WDM Networks, Communications, Circuits and Systems and
West Sino Expositions, IEEE 2002 International Conference on, vol. 1, June
2002, pp. 835–839. 1.4, 1.4.1

[VRY+06] J.P. Vasseur, J.L. Le Roux, S. Yasukawa, S. Previdi, P. Psenak, and P. Mabey,
IGP Routing Protocol Extensions for Discovery of Traffic Engineering Node
Capabilities , draft-ietf-ccamp-te-node-cap-04.txt (2006). 6.1.4

[VTHD] Réseau National de Recherche en Télécommunications, Vraiment Très Haut
Débit, http://www.vthd.org, Ministère de l’Économie, des Finances et de
l’Industrie de France. 2.6, 4.3, 5.4.2.2

[XST03] S. Xu, K. Sezaki, and Y. Tanaka, A Heuristic Method of Logical Topology
Reconfiguration in IP/WDM Optical Networks, 10th International Conference
on Telecommunications (ICTŠ2003), February 2003. 1.3.2.1, 1.4, 1.4.2

[YKH95] A. Yamashita, R. Kawamura, and H. Hadama, Dynamic VP rearrangement
in an ATM network, Global Telecommunications Conference, 1995. GLOBE-
COM ’95., IEEE, vol. 2, November 1995, pp. 1379–1383. 1.3.2.1, 1.4

[YKS+02] N. Yamanaka, M. Katayama, K. Shiomoto, E. Oki, and N. Matsuura,
Multi-layer traffic engineering in photonic-GMPLS-router networks, Global
Telecommunications Conference, 2002. GLOBECOM ’02. IEEE, vol. 3,
November 2002, pp. 2731–2735. 1.4.1

[YR02] X. Yang and B. Ramamurthy, An Analytical Model for Virtual Topology Re-
configuration in Optical Networks and A Case Study, Computer Communi-
cations and Networks, 2002. Proceedings. Eleventh International Conference
on, October 2002, pp. 302–308. 1.4

[Zim80] H. Zimmermann, OSI Reference Model - The ISO Model of Architecture
for Open Systems Interconnection, Communications, IEEE Transactions on,
28(4) (1980), pp. 425–432. (document), 1.1, 3.1.1

[ZLYHG02] L. Zhang, K. Lee, C-H. Youn, and H-G.Yeo, Adaptative Virtual Topology
Reconfiguration Policy Employing Multi-stage Traffic Prediction in Optical
Internet, High Performance Switching and Routing (2002). 1.3.2.1, 1.4, 1.4.1

	Résumé
	1 Introduction
	1.1 Ethernet in the Next Generation Networks
	1.2 The Virtual Private Networks Services
	1.3 Service Providers and Transport Networks
	1.3.1 Transport Networks
	1.3.2 Network Planes
	1.3.3 Multilayer Networks: Peer and Overlay Models

	1.4 Multilayer Networks Optimization Methodology
	1.4.1 Static Optimization Heuristics
	1.4.2 Dynamic Optimization Heuristics
	1.4.3 Dynamic and Static Optimization Heuristics Interworking

	1.5 Thesis organization

	2 Contribution to Metropolitan Ethernet design
	2.1 Towards Metro Ethernet
	2.1.1 Using VLANs to provide VPN services
	2.1.2 Ethernet's control plane
	2.1.3 Requirements for a Metro Access Ethernet

	2.2 Metro Ethernet for Ethernet VPNs
	2.3 Related work
	2.4 Formulation as a MINLP
	2.4.1 Preliminary observations
	2.4.2 Optimization Problem Formulation

	2.5 Greedy Heuristic Mapping of VPNs to Spanning Trees
	2.5.1 Building the Spanning Forest
	2.5.2 Mapping the VPNs on the Spanning Forest

	2.6 Performance Analysis
	2.7 Concluding Remarks

	3 Bus-LSPs and Bus-FAs
	3.1 Technological context
	3.1.1 Opaque optical network architecture
	3.1.2 GMPLS Unified Control Plane and MLXCs

	3.2 Bus-LSPs
	3.2.1 Definition
	3.2.2 The Packet Add-Drop (PAD)
	3.2.3 Related work
	3.2.4 Benefits of the Bus-LSPs

	3.3 Representation in multi-layer networks
	3.4 Concluding Remarks

	4 Bus-LSPs in Single Layer Environments
	4.1 Optimization Model for a Network Using bus-LSPs
	4.1.1 Network and Paths
	4.1.2 Demands and Flows

	4.2 Optimization Problems Formulation
	4.2.1 Reduced Complexity Layout With Bus-LSPs
	4.2.2 Reduced Complexity, Minimal Bandwidth Layout With Bus-LSPs
	4.2.3 Problem Formulation Improvements and Additional Constraints

	4.3 Numerical Results
	4.4 Concluding Remarks

	5 Bus-LSPs in Multi Layer Environments
	5.1 An Introductory Example
	5.2 Optimization Problem
	5.2.1 Optimization Model for a Multi-Layer Network Using Bus-LSPs
	5.2.2 Optimization Problem Formulation

	5.3 Heuristic Algorithm
	5.3.1 Forbidden Turns Shortest Path First Algorithm
	5.3.2 PIBRA for Lexicographically Maximizing a Traffic Matrix
	5.3.3 Layout Design Algorithm for Bus-LSPs

	5.4 Numerical Results
	5.4.1 Testbed
	5.4.2 Results

	5.5 Heuristic Algorithm Improvements
	5.5.1 Improving the initial routing
	5.5.2 Allowing overlapping bus-LSPs
	5.5.3 Minor modification of Algorithm 6
	5.5.4 Dynamic use of the heuristics

	5.6 Concluding Remarks

	6 Extensions to GMPLS Control Protocols for Bus-LSPs
	6.1 Routing
	6.1.1 OSPF-TE: the GMPLS routing protocol
	6.1.2 Bus-LSPs related requirements of OSPF-TE
	6.1.3 Various representations
	6.1.4 Flooding node capabilities

	6.2 Signaling
	6.2.1 Introduction
	6.2.2 Managing Add-Drop Points
	6.2.3 Bus-LSP Manipulation Methods Without Extensions
	6.2.4 Extension Proposal

	6.3 Concluding Remarks

	7 Conclusion
	7.1 Summary of Contribution
	7.2 Future Work

	A AMPL models
	A.1 AMPL model for problem of Section 2.4
	A.1.1 Model
	A.1.2 Model data file

	A.2 AMPL model for problem of Section 4.2
	A.2.1 Model
	A.2.2 Model data file

	A.3 AMPL model for problem of Section 5.2
	A.3.1 Model
	A.3.2 Model data file

	A.4 AMPL model for problem of Section 5.4
	A.4.1 Model
	A.4.2 Model data file

