D. Lust and S. Theisen, Lectures in String Theory, Lecture Notes in Physics, vol.346, 1989.

E. Kiritsis, Introduction to String Theory, pp.hep-th, 1998.

J. Polchinski, String theory, volume 1 (An introduction to the bosonic string) and 2 (Superstring theory and beyond), 1998.

B. Zwiebach, A first course in string theory, 2004.

P. Fendley, F. Lesage, and H. Saleur, A unified framework for the Kondo problem and for an impurity in a Luttinger liquid, Journal of Statistical Physics, vol.21, issue.1-2, p.211, 1996.
DOI : 10.1007/BF02175563

N. Vilenkin and A. Klymik, Representation of Lie groups and Special Functions, Kluwer academic publisher, 1993.

A. A. Kirillov, Elements of the theory of representations Lectures on the orbit method, Graduate studies in Mathematics, vol.64, 1976.

G. W. Moore and N. Seiberg, RU-89-32 Presented at Trieste Spring School, 1989.

V. Dotsenko, Prepared for NATO Advanced Study Institute: Frontiers in Particle Physics, pp.1-13, 1994.

V. Dotsenko, Course on conformal field theory

V. Schomerus, Non-compact string backgrounds and non-rational CFT, Physics Reports, vol.431, issue.2, p.39, 2006.
DOI : 10.1016/j.physrep.2006.05.001

URL : https://hal.archives-ouvertes.fr/hal-00163911

L. Brink, P. D. Vecchia, and P. S. Howe, A locally supersymmetric and reparametrization invariant action for the spinning string, Physics Letters B, vol.65, issue.5, p.471, 1976.
DOI : 10.1016/0370-2693(76)90445-7

L. Brink, P. D. Vecchia, and P. S. Howe, A Lagrangian formulation of the classical and quantum dynamics of spinning particles, Nuclear Physics B, vol.118, issue.1-2, p.76, 1977.
DOI : 10.1016/0550-3213(77)90364-9

V. I. Ogievetsky, Infinite-dimensional algebra of general covariance group as the closure of finite-dimensional algebras of conformal and linear groups, Lettere al Nuovo Cimento, vol.62, issue.17, p.988, 1973.
DOI : 10.1007/BF02891914

J. L. Cardy, Boundary conditions, fusion rules and the Verlinde formula, Nuclear Physics B, vol.324, issue.3, p.581, 1989.
DOI : 10.1016/0550-3213(89)90521-X

J. L. Cardy and D. C. Lewellen, Bulk and boundary operators in conformal field theory, Physics Letters B, vol.259, issue.3, p.274, 1991.
DOI : 10.1016/0370-2693(91)90828-E

G. Pradisi, A. Sagnotti, and Y. S. Stanev, Completeness conditions for boundary operators in 2D conformal field theory, Physics Letters B, vol.381, issue.1-3, p.97, 1996.
DOI : 10.1016/0370-2693(96)00578-3

E. Witten, Non-abelian bosonization in two dimensions, Communications in Mathematical Physics, vol.48, issue.4, p.455, 1984.
DOI : 10.1007/BF01215276

H. Sugawara, A Field Theory of Currents, Physical Review, vol.170, issue.5, p.1659, 1968.
DOI : 10.1103/PhysRev.170.1659

D. Amati and C. Klimcik, Nonperturbative computation of the Weyl anomaly for a class of nontrivial backgrounds, Physics Letters B, vol.219, issue.4, p.443, 1989.
DOI : 10.1016/0370-2693(89)91092-7

D. Amati and C. Klimcik, Strings in a shock wave background and generation of curved geometry from flat-space string theory, Physics Letters B, vol.210, issue.1-2, p.92, 1988.
DOI : 10.1016/0370-2693(88)90355-3

H. J. De-vega and N. G. Sanchez, Particle scattering at the Planck scale and the Aichelburg-Sexl geometry, Nuclear Physics B, vol.317, issue.3, p.731, 1989.
DOI : 10.1016/0550-3213(89)90541-5

A. R. Steif, Nonperturbative time-dependent classical string solutions for the closed, bosonic string, Physical Review D, vol.42, issue.6, p.2150, 1990.
DOI : 10.1103/PhysRevD.42.2150

A. A. Tseytlin, A class of finite two-dimensional sigma models and string vacua, Physics Letters B, vol.288, issue.3-4, p.279, 1992.
DOI : 10.1016/0370-2693(92)91104-H

R. R. Metsaev and A. A. Tseytlin, Exactly solvable model of superstring in plane wave Ramond-Ramond background, Physical Review D, vol.65, issue.12, p.126004, 2002.
DOI : 10.1103/PhysRevD.65.126004

C. R. Nappi and E. Witten, Wess-Zumino-Witten model based on a nonsemisimple group, Physical Review Letters, vol.71, issue.23, p.3751, 1993.
DOI : 10.1103/PhysRevLett.71.3751

M. Blau, J. Figueroa-o-'farrill, C. Hull, and G. Papadopoulos, Penrose limits and maximal supersymmetry, Classical and Quantum Gravity, vol.19, issue.10, p.87, 2002.
DOI : 10.1088/0264-9381/19/10/101

URL : http://arxiv.org/abs/hep-th/0201081

G. Papadopoulos, J. G. Russo, and A. A. Tseytlin, Solvable model of strings in a time-dependent plane-wave background, Classical and Quantum Gravity, vol.20, issue.5, p.969, 2003.
DOI : 10.1088/0264-9381/20/5/313

M. Blau, J. Figueroa-o-'farrill, and G. Papadopoulos, Penrose limits, supergravity and brane dynamics, Classical and Quantum Gravity, vol.19, issue.18, p.4753, 2002.
DOI : 10.1088/0264-9381/19/18/310

URL : http://arxiv.org/abs/hep-th/0202111

W. Miller-jr, Lie theory and special functions, Academic press, 1968.

J. M. Figueroa-o-'farrill and S. Stanciu, Nonsemisimple Sugawara construction, Physics Letters B, vol.327, issue.1-2, p.40, 1994.
DOI : 10.1016/0370-2693(94)91525-3

A. A. Tseytlin, -branes in 10 and 11 dimensions, Classical and Quantum Gravity, vol.14, issue.8, p.2085, 1997.
DOI : 10.1088/0264-9381/14/8/009

S. Gukov, E. Martinec, G. W. Moore, and A. Strominger, Search for a holographic dual to $\textit{AdS}_3\times S^3\times S^3\times S^1$, Advances in Theoretical and Mathematical Physics, vol.9, issue.3, p.435, 2005.
DOI : 10.4310/ATMP.2005.v9.n3.a3

R. Penrose, Any spacetime has a plane wave as a limit, Differential Geometry and Relativity, pp.271-275, 1976.

J. M. Maldacena, H. Ooguri, and J. Son, Strings in AdS3 and the SL(2,R) WZW model. II: Euclidean black hole, Journal of Mathematical Physics, vol.42, issue.7, p.2961, 2001.
DOI : 10.1063/1.1377039

J. M. Maldacena and H. Ooguri, WZW model. III. Correlation functions, Physical Review D, vol.65, issue.10, p.106006, 2002.
DOI : 10.1103/PhysRevD.65.106006

M. R. Douglas and N. A. Nekrasov, Noncommutative field theory, Reviews of Modern Physics, vol.73, issue.4, p.977, 2001.
DOI : 10.1103/RevModPhys.73.977

L. Freidel and K. Krasnov, The fuzzy sphere ???-product and spin networks, Journal of Mathematical Physics, vol.43, issue.4, p.1737, 2002.
DOI : 10.1063/1.1456255

B. Kostant, Quantization and unitary representations, Lect. Notes Math, vol.76, pp.87-207, 1970.
DOI : 10.2307/2372397

N. M. Woodhouse, Geometric Quantization, p.Clarendon, 1992.

A. Alekseev, L. D. Faddeev, and S. L. Shatashvili, Quantization of symplectic orbits of compact Lie groups by means of the functional integral, Journal of Geometry and Physics, vol.5, issue.3, p.391, 1988.
DOI : 10.1016/0393-0440(88)90031-9

A. M. Perelomov, Generalized Coherent States And Their Applications
DOI : 10.1007/978-3-642-61629-7

H. B. Nielsen and D. Rohrlich, A path integral to quantize spin, Nuclear Physics B, vol.299, issue.3, p.471, 1988.
DOI : 10.1016/0550-3213(88)90545-7

A. Y. Alekseev and V. Schomerus, -branes in the WZW model, Physical Review D, vol.60, issue.6, p.61901, 1999.
DOI : 10.1103/PhysRevD.60.061901

URL : https://hal.archives-ouvertes.fr/jpa-00212404

J. Hoppe, (???), International Journal of Modern Physics A, vol.04, issue.19, p.5235, 1989.
DOI : 10.1142/S0217751X89002235

B. Y. Hou, B. Y. Hou, and Z. Q. Ma, Clebsch-Gordan Coefficients, Racah Coefficients and Braiding Fusion of Quantum sl(2) Enveloping Algebra II, Communications in Theoretical Physics, vol.13, issue.3, p.341, 1990.
DOI : 10.1088/0253-6102/13/3/341

N. Vilenkin and A. Klymik, Representation of Lie groups and Special Functions, Kluwer academic publisher, 1993.

N. Mukunda and B. Radhakrishnan, Clebsch???Gordan problem and coefficients for the three???dimensional Lorentz group in a continuous basis. I, Journal of Mathematical Physics, vol.15, issue.8, p.1320, 1974.
DOI : 10.1063/1.1666814

B. Ponsot and J. Teschner, Clebsch???Gordan and Racah???Wigner Coefficients for a Continuous Series of Representations of ?q (??(2, ???)), Communications in Mathematical Physics, vol.224, issue.3, p.613, 2001.
DOI : 10.1007/PL00005590

N. A. Liskova and A. N. Kirillov, (SU(1,1)), International Journal of Modern Physics A, vol.07, issue.supp01b, p.611, 1992.
DOI : 10.1142/S0217751X92003951

S. Davids, Semiclassical limits of extended Racah coefficients, Journal of Mathematical Physics, vol.41, issue.2, p.924, 2000.
DOI : 10.1063/1.533171

B. Jurco and P. Stovicek, Quantum dressing orbits on compact groups, Communications in Mathematical Physics, vol.23, issue.N3, p.97, 1993.
DOI : 10.1007/BF02097059

K. Sfetsos, Gauged WZW models and non-Abelian duality, Physical Review D, vol.50, issue.4, p.2784, 1994.
DOI : 10.1103/PhysRevD.50.2784

URL : http://arxiv.org/abs/hep-th/9402031

V. S. Dotsenko and V. A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nuclear Physics B, vol.240, issue.3, p.312, 1984.
DOI : 10.1016/0550-3213(84)90269-4

F. J. Whipple, Well-Poised Series and Other Generalized Hypergeometric Series, Proc. London Math. Soc. Ser. 2 25, pp.525-544, 1926.
DOI : 10.1112/plms/s2-25.1.525

URL : http://plms.oxfordjournals.org/cgi/content/short/s2-25/1/525

F. J. Whipple, On Well-Poised Series, Generalized Hypergeometric Series having Parameters in Pairs, each Pair with the Same Sum, Proceedings of the London Mathematical Society, vol.2, issue.1, pp.247-263, 1926.
DOI : 10.1112/plms/s2-24.1.247

F. J. Whipple, A Fundamental Relation between Generalized Hypergeometric Series, Journal of the London Mathematical Society, vol.1, issue.3, pp.257-272, 1927.
DOI : 10.1112/jlms/s1-1.3.138