

Etude des propriétés volumétriques (PVT) d'hydrocarbures légers (C1-C4), du dioxyde de carbone et de l'hydrogène sulfuré. Mesures par densimétrie à tube vibrant et modélisation.

Fabien Rivollet

▶ To cite this version:

Fabien Rivollet. Etude des propriétés volumétriques (PVT) d'hydrocarbures légers (C1-C4), du dioxyde de carbone et de l'hydrogène sulfuré. Mesures par densimétrie à tube vibrant et modélisation.. Chemical Sciences. École Nationale Supérieure des Mines de Paris, 2005. English. NNT: . pastel-00002603

HAL Id: pastel-00002603 https://pastel.hal.science/pastel-00002603

Submitted on 28 Jun 2007 $\,$

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Collège doctoral

N° attribué par la bibliothèque

THESE

pour obtenir le grade de Docteur de l'Ecole des Mines de Paris Spécialité "Génie des Procédés"

présentée et soutenue publiquement par **Fabien RIVOLLET**

le 19 décembre 2005

ETUDE DES PROPRIETES VOLUMETRIQUES (PVT) D'HYDROCARBURES LEGERS (C1-C4), DU DIOXYDE DE CARBONE ET DE L'HYDROGENE SULFURE

MESURES PAR DENSIMETRIE A TUBE VIBRANT ET MODELISATION

Directeur de thèse : Dominique RICHON

Jury :

M. Serge LAUGIER	Rapporteur
M. Giancarlo SCALABRIN	Rapporteur
M Jacques SCHWARTZENTRUBER	Examinateur
Mme Inmaculada VELASCO-ALBILLOS	Examinateur
M. François MONTEL	Examinateur
M. Dominique RICHON	Examinateur

« Le métier de chercheur exige certes de savoir résoudre quelques problèmes, mais aussi de savoir les choisir.»

Pierre-Gilles de Gennes (1990), Préface « les atomes » de Jean Perrin, Editions Flammarion 1991.

« Tire la chevillette, la bobinette cherra.»

Charles Perrault (XVIIème).

A ma famille.

Remerciements

Une formation d'ingénieur de l'Ecole des Mines d'Albi Carmaux (ENSTIMAC) suivi de trois ans au sein du laboratoire « Thermodynamique et Equilibres entre Phases » du centre Energétique et Procédés de l'Ecole des Mines de Paris (ENSMP/CEP/TEP) m'ont permis de comprendre l'importance et l'enjeu des propriétés physiques au sein du génie des procédés.

Durant cette thèse, j'ai pu être formé tant sur les aspects expérimentaux que sur les aspects de modélisation appliquée aux propriétés volumétriques et autres propriétés intervenant dans les équilibres de phases.

Je tiens à remercier M. D. RICHON dans son rôle de directeur de thèse pour son aide sur les aspects expérimentaux et fondamentaux liés à ce travail. Je souhaite également le remercier pour son aide précieuse m'ayant permis de mener à bien cette étude dans les meilleures conditions possibles.

Je remercie particulièrement M. S. LAUGIER d'abord pour son aide sur l'apprentissage des réseaux de neurones et de leur utilisation. Cette technique de représentation de données a été utilisée à maintes reprises au cours de cette étude. De plus, je remercie plus spécifiquement M. LAUGIER pour son aide précieuse dans l'amélioration de ce document.

Je remercie les membres du jury dont la présence montre l'intérêt porté par le monde universitaire mais également par le monde industriel envers les travaux de mesure et de modélisation des propriétés volumétriques.

Je remercie également Christophe et Pascal pour leurs conseils qui m'ont permis d'apprendre à transformer les essais expérimentaux en modélisation et comparer les différents modèles numériques.

Sur un plan plus technique, Alain a toujours su viser juste et résoudre les problèmes expérimentaux. David et Hervé ont construit l'installation et m'ont permis d'apporter des améliorations par rapport à l'installation précédente grâce à une grande compétence et quelques astuces dispensées dans une bonne humeur legendraire.

Sans Armelle et Jeannine, les tâches administratives auraient été un véritable labeur jusqu'à l'impression même de ce manuscrit.

Je remercie particulièrement Carmen pour son aide précieuse sur les mesures expérimentales et la représentation de ces dernières, sans oublier ses cours d'espagnol.

Je remercie enfin l'ensemble des personnes avec qui j'ai partagé ces trois ans au laboratoire (Alain, Antonin, Armelle, Cathy, Christophe, Clémence, David, Déborah, Dominique, Hervé, Jean-Marc, Jeannine, Mariana, Nathanelle, Pascal, Ramona, Salim et Wael). Ces rencontres ont été plus ou moins brèves selon les circonstances mais elles m'ont tant apportées.

Quelques mots particuliers vont en direction de la Mañica et d'Albert qui m'ont supporté dans leur bureau.

Résumé

Les propriétés volumétriques interviennent à de nombreuses reprises au sein du génie des procédés (élaboration et amélioration de procédés) et particulièrement dans le domaine pétrolier. Les fluides pétroliers sont extraits de gisements qui contiennent des teneurs plus ou moins importantes de composés non souhaités tels que le dioxyde de carbone ou l'hydrogène sulfuré. La présence de ces impuretés modifie les propriétés physiques des fluides et des modèles physiques sont nécessaires pour estimer dans quelles mesures ces modifications ont de l'importance.

Le développement des modèles physiques et surtout l'estimation des limites d'utilisation, sont obtenus à l'aide de données expérimentales. Les travaux sont menés en général sur des données expérimentales de systèmes simples d'abord puis de systèmes plus complexes ensuite afin de garantir la fiabilité des valeurs numériques obtenues. Dans ce travail, des mesures expérimentales de propriétés volumétriques de trois mélanges binaires (éthane – hydrogène sulfuré, éthane – dioxyde de carbone et propane – hydrogène sulfuré) ont été réalisées à l'aide d'un densimètre à tube vibrant de type DMA 512P.

L'appareillage utilisé a été défini et construit au cours de ce travail en se basant sur une précédente installation qui utilisait une cellule de densimétrie de type DMA 512. Des améliorations ont pu être apportées afin d'obtenir des données sensiblement plus stables. Les mélanges binaires ont été étudiés dans la plage de températures de 253 à 363 K et pour des pressions jusqu'à 20 MPa ou 40 MPa suivant les cas. La méthode semi empirique FPMC d'étalonnage du tube vibrant développée par Bouchot et Richon (2001)^[01BOU] a été utilisée dans un premier temps. Des tests ont montré que cette méthode ne pouvait pas être étendue dans l'état à une méthode d'étalonnage valable dans le temps (5 mois de mesures). De plus, une solution annexe utilisant des réseaux de neurones a été développée afin d'obtenir des résultats sur le système contenant dioxyde de carbone-éthane, dans un domaine où la méthode FPMC introduit des erreurs identifiée par Bouchot (1995)^[95BOU] et de la Rosa Vidal (2002)^[02ROS] sous le nom de « syndrome supercritique ».

Une étude sur la modélisation des propriétés volumétriques PVT a permis de mettre en évidence la difficulté, pour les équations d'état cubiques, de représenter simultanément les données volumétriques et les données d'équilibre de phases. Parmi les équations d'état présentées, une attention particulière a été portée sur les équations cubiques de par leur implication dans le domaine pétrolier. Un couplage entre l'équation d'état cubique de Soave-Redlich-Kwong ^[72SOA] et une correction de volume par un réseau de neurones est testé de façon à tirer profit du travail existant de représentation des équilibres de phases (règles de mélanges et coefficients d'interaction) tout en améliorant le calcul des données volumétriques.

Les calculs des propriétés thermodynamiques ont été réalisés à l'aide d'un outil d'ajustement et de prédiction développé, en partie, au cours de ce travail (TEP ThermoSoft). Enfin, les calculs liés à l'utilisation des réseaux de neurones sont issus également d'un programme informatique développé au cours de ce travail (NeuroBox).

Introduction

Au sein du génie des procédés, les propriétés volumétriques interviennent d'abord sur un plan thermodynamique dans le cas de la détermination des équilibres de phases (équation d'état). Sur un plan économique, les propriétés volumétriques permettent de définir la taille des divers éléments du procédé. Enfin, sur un plan fondamental, la connaissance des propriétés volumétriques permet de comprendre les interactions entre les molécules.

Dans le domaine des fluides pétroliers, les propriétés volumétriques interviennent à toutes les étapes d'extraction, de transport et de transformation des hydrocarbures. Les fluides pétroliers sont des mélanges complexes de nombreux hydrocarbures impliquant des impuretés telles que l'azote (N_2), le dioxyde de carbone (CO_2) ou encore l'hydrogène sulfuré (H_2S).

Le travail présenté dans ce document concerne des systèmes binaires d'hydrocarbures légers $(CH_4, C_2H_6 \text{ et } C_3H_8)$ avec du dioxyde de carbone (CO_2) ou de l'hydrogène sulfuré (H_2S) . Des données expérimentales sur trois systèmes binaires $(C_2H_6-CO_2)$, $(C_2H_6-H_2S)$ et $(C_3H_8-H_2S)$ sont présentées grâce à l'utilisation d'un nouvel appareillage défini au cours de ce travail. Cet appareillage est basé sur une cellule de densimétrie DMA 512 P constituée d'un alliage résistant aux produits corrosifs tels que H₂S. Une méthode d'étalonnage du densimètre à tube vibrant, développée par Bouchot et Richon $(2001)^{[01BOU]}$ sous le nom FPMC (Forced Path Mechanical Calibration), a été utilisée et étudiée. Une méthode alternative est également présentée pour traiter les données du système $(CO_2 - C_2H_6)$. En effet, la méthode FPMC peut présenter des erreurs importantes en ce qui concerne le CO₂ dans les régions critique et supercritique.

En modélisation, les équations d'état montrent des lacunes pour la représentation simultanée des équilibres de phases et le calcul des masses volumiques. De très nombreux travaux ont été menés pour arriver à estimer au mieux les équilibres de phases en mélanges. Cependant, ces travaux sont différents de ceux qui concernent la représentation des propriétés volumétriques. Une étude sur différentes équations d'état et notamment sur les équilibres de phases et des propriétés volumétriques. Une méthode alternative est initiée dans le chapitre. Cette méthode est basée sur une correction des volumes calculés avec des équations cubiques à partir d'un réseau de neurones.

Les différents calculs concernant les équations d'état et les réseaux de neurones ont été réalisés à l'aide d'outils développés en partie au cours de ce travail (TEP ThemoSoft, NeuroBox) dont une présentation est proposée en annexe à ce document.

Sommaire

1.1 Les propriétés PVT : reflet des états de la matière 15 1.2 La loi des gaz parfaits : équation d'état 17 1.3 Les propriétés PVT dans le génie des procédés 17 1.3.1 Génie des procédés / Propriétés physiques 17 1.3.2 Propriétés volumétriques et équations d'état 18 1.3.3 Modèles et données expérimentales 19 2 OBTENTION DE DONNEES VOLUMETRIQUES A L'AIDE D'UN TUBE VIBRANT 24 2.1 Principales distinctions entre les techniques expérimentales 24 2.2 Petite revue des méthodes expérimentales de mesures PVT 25 2.2.1 Les piézomètres: mesure directe de compressibilité 26 2.2.4 Méthode de Burnett : mesure a compressibilité sans mesure répétée de volume. 27 2.2.3 Méthodes indirectes basées sur le principe d'Archimède 28 2.2.6 Comparaison des méthodes à tube vibrant 30 2.4 Unitstallation expérimentale avec une cellule DMA 512 32 2.4.1 Unstallation expérimentale avec une cellule DMA 512 P 34 2.5.2 Autres méthodes des mesures 41 2.5.1 Mesures de période 43	1 LA PLACE DES PROPRIETES PVT AU SEIN DU GENIE DES PROCEDES	15
1.2 La loi des gaz parfaits : équation d'état 17 1.3 Les propriétés PVT dans le génie des procédés 17 1.3.1 Génie des procédés / Propriétés physiques 17 1.3.2 Propriétés volumétriques et équations d'état 18 1.3.3 Modèles et données expérimentales 19 2 OBTENTION DE DONNEES VOLUMETRIQUES A L'AIDE D'UN TUBE VIBRANT 24 2.1 Principales distinctions entre les techniques expérimentales 24 2.2 Petite revue des méthodes expérimentales de mesures PVT 25 2.2.1 Les piézomètres: mesure directe de compressibilité 26 2.2.2 Les pyenomètres: mesure de compressibilité sans mesure répétée de volume. 27 2.2.3 Méthode es indirectes basées sur le principe d'Archimède 28 2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a) 28 2.3 Evolution des méthodes à tube vibrant 30 2.4 L'installation expérimentale avec une cellule DMA 512 P 32 2.4.1 L'installation expérimentale avec une cellule DMA 512 P 34 2.4.3 Protocole de mesure 37 2.5.5 Etalonnage et incertitudes des mesure	1.1 Les propriétés PVT : reflet des états de la matière	15
1.3 Les propriétés PVT dans le génie des procédés 17 1.3.1 Génie des procédés / Propriétés physiques 17 1.3.2 Propriétés de volumétriques et équations d'état 18 1.3.3 Modèles et données expérimentales 19 2 OBTENTION DE DONNEES VOLUMETRIQUES A L'AIDE D'UN TUBE VIBRANT 24 2.1 Principales distinctions entre les techniques expérimentales 24 2.2 Petite revue des méthodes expérimentales de mesures PVT 25 2.2.1 Les piézomètres: mesure directe de compressibilité 26 2.2.2 Les procendéres: mesure directe de compressibilité sans mesure répétée de volume. 27 2.2.3 Méthodes indirectes 28 2.2.4 Méthodes indirectes 28 2.2.5 Autres méthodes indirectes 28 2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a) 28 2.3 Evolution des méthodes à tube vibrant 30 2.4 Installation expérimentale avec une cellule DMA 512 32 2.4.1 L'installation expérimentale avec une cellule DMA 512 32 2.5.1 Mesures de mesure 37 2.5.2	1.2 La loi des gaz parfaits : équation d'état	17
1.3.1 Génic des procédés / Propriétés physiques 17 1.3.2 Propriétés volumétriques et équations d'état 18 1.3.3 Modèles et données expérimentales 19 2 OBTENTION DE DONNEES VOLUMETRIQUES A L'AIDE D'UN TUBE VIBRANT 24 2.1 Principales distinctions entre les techniques expérimentales 24 2.2 Petite revue des méthodes expérimentales de mesures PVT 25 2.2.1 Les piézomètres: mesure directe de compressibilité 26 2.2.2 Les puézomètres: mesure directe de masse 27 2.3 Méthodes indirectes basées sur le principe d'Archimède 28 2.2.4 Méthodes indirectes basées sur le principe d'Archimède 28 2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a) 28 2.3 Evolution des méthodes a tube vibrant 30 2.4 L'installations expérimentales avec une cellule DMA 512 22 2.4.1 L'installation expérimentale avec une cellule DMA 512 P 34 2.5.2 Mesures de température 42 2.5.3 Mesures de température 42 2.5.4 Westros de prériode 45 2.6 </th <th>1.3 Les propriétés PVT dans le génie des procédés</th> <th>17</th>	1.3 Les propriétés PVT dans le génie des procédés	17
1.3.2 Propriétés volumétriques et équations d'état 18 1.3.3 Modèles et données expérimentales 19 2 OBTENTION DE DONNEES VOLUMETRIQUES A L'AIDE D'UN TUBE VIBRANT 24 2.1 Principales distinctions entre les techniques expérimentales 24 2.2 Petite revue des méthodes expérimentales de mesures PVT 25 2.2.1 Les piézomètres: mesure directe de compressibilité 26 2.2.2 Les pyconomètres: mesure directe de masse 27 2.2.3 Méthode de Burnett : mesure da compressibilité sans mesure répétée de volume. 27 2.2.4 Méthodes indirectes 28 2.2.5 Autres méthodes in terme de précision de mesure (R134a) 28 2.3 Evolution des méthodes à tube vibrant 30 2.4 L'installation expérimentale avec une cellule DMA 512 32 2.4.1 L'installation expérimentale avec une cellule DMA 512 P 34 2.4.3 Protocole de mesure 37 2.5 Mésures de température 42 2.5.1 Mésures de température 42 2.5.2 Mésures de composition 43 2.5.4 Mésures de présion	1.3.1 Génie des procédés / Propriétés physiques	17
1.3.3 Modèles et données expérimentales 19 2 OBTENTION DE DONNEES VOLUMETRIQUES A L'AIDE D'UN TUBE VIBRANT 24 2.1 Principales distinctions entre les techniques expérimentales 24 2.2 Petite revue des méthodes expérimentales de mesures PVT 25 2.2.1 Les piccomètres: mesure directe de compressibilité 26 2.2.2 Les piccomètres: mesure directe de masse 27 2.2.3 Méthode Burnett : mesure de compressibilité sans mesure répétée de volume. 27 2.2.4 Méthodes indirectes basées sur le principe d'Archimède 28 2.2.5 Autres méthodes indirectes 28 2.2.6 Comparaison des méthodes a tube vibrant 30 2.4 U'installation expérimentales utilisées 32 2.4.1 L'installation expérimentale avec une cellule DMA 512 32 2.4.2 L'installation expérimentale avec une cellule DMA 512 P 34 2.5.3 Mesures de présion 43 2.5.4 Rusures de présion 43 2.5.5 Mesures de présion 43 2.5.1 Mesures de présion 43 2.5.2 Mesures de présion 4	1.3.2 Propriétés volumétriques et équations d'état	18
2 OBTENTION DE DONNEES VOLUMETRIQUES A L'AIDE D'UN TUBE VIBRANT 24 2.1 Principales distinctions entre les techniques expérimentales 24 2.2 Petite revue des méthodes expérimentales de mesures PVT 25 2.2.1 Les piézomètres: mesure directe de compressibilité 26 2.2.2 Les piézomètres: mesure directe de compressibilité sans mesure répétée de volume. 27 2.2.3 Méthodes indirectes basées sur le principe d'Archimède 28 2.2.4 Méthodes indirectes basées sur le principe d'Archimède 28 2.2.5 Autres méthodes indirectes 28 2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a) 28 2.3 Evolution des méthodes à tube vibrant 30 2.4 L'installation expérimentale avec une cellule DMA 512 32 2.4.1 L'installation expérimentale avec une cellule DMA 512 P 34 2.4.3 Protocole de mesure 43 2.5.4 Mesures de pression 43 2.5.3 Mesures de préssion 43 2.5.4 Mesures de préside 45 2.6.1 Principe de l' « étalonnage en période » 45 2.6.	1.3.3Modèles et données expérimentales	19
2.1Principales distinctions entre les techniques expérimentales242.2Petite revue des méthodes expérimentales de mesures PVT252.2.1Les piézomètres: mesure directe de compressibilité262.2.2Les pyenomètres: mesure directe de compressibilité sans mesure répétée de volume.272.2.3Méthode de Burnett: mesure de compressibilité sans mesure répétée de volume.272.2.4Méthodes indirectes bascées sur le principe d'Archimède282.2.5Autres méthodes indirectes282.2.6Comparaison des méthodes en terme de précision de mesure (R134a)282.3Evolution des méthodes à tube vibrant302.4Installation expérimentales utilisées322.4.1L'installation expérimentale avec une cellule DMA 512322.4.2L'installation expérimentale avec une cellule DMA 512 P342.4.3Protocole de mesure372.5Etalonnage et incertitudes des mesures412.5.1Mesures de température422.5.2Mesures de température422.5.3Mesures de période452.6.1Principe de l' « étalonnage en période »452.6.1Principe de l' « étalonnage en érier en masses volumiques.452.6.1Principe de l' « étalonnage en érier en masses volumiques.452.6.2Les méthodes clasiques462.6.3Modèle d' étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)472.6.4Utilisation de réseaux de neurones52<	2 OBTENTION DE DONNEES VOLUMETRIQUES A L'AIDE D'UN TUBE VIBRANT	24
2.2 Petite revue des méthodes expérimentales de mesures PVT 25 2.2.1 Les piézomètres: mesure directe de compressibilité 26 2.2.2 Les pyenomètres: mesure directe de masse 27 2.2.3 Méthode de Burnet : mesure de compressibilité sans mesure répétée de volume. 27 2.2.4 Méthodes indirectes basées sur le principe d'Archimède 28 2.2.5 Autres méthodes indirectes 28 2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a) 28 2.3 Evolution des méthodes à tube vibrant 30 2.4 Installations expérimentales utilisées 32 2.4.1 L'installation expérimentale avec une cellule DMA 512 32 2.4.2 L'installation expérimentale avec une cellule DMA 512 P 34 2.4.3 Protocole de mesure 41 2.5.1 Mesures de température 42 2.5.2 Mesures de présion 43 2.5.3 Mesures de présion 43 2.5.4 Mesures de présion 43 2.5.5 Mesures de présion 44 2.5.4 Mesures de présiode 45 2.6.6 <td>2.1 Principales distinctions entre les techniques expérimentales</td> <td>24</td>	2.1 Principales distinctions entre les techniques expérimentales	24
2.2.1 Les piźzomètres: mesure directe de compressibilité 26 2.2.2 Les pycnomètres: mesure directe de masse 27 2.2.3 Méthode de Burnett : mesure de compressibilité sans mesure répétée de volume. 27 2.2.4 Méthode indirectes basées sur le principe d'Archimède 28 2.2.5 Autres méthodes indirectes 28 2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a) 28 2.3 Evolution des méthodes à tube vibrant 30 2.4 Installations expérimentales utilisées 32 2.4.1 L'installation expérimentale avec une cellule DMA 512 32 2.4.2 L'installation expérimentale avec une cellule DMA 512 P 34 2.4.3 Protocole de mesure 37 2.5 Etalonnage et incertitudes des mesures 41 2.5.1 Mesures de pression 43 2.5.2 Mesures de pression 43 2.5.3 Mesures de présides mesurées en masses volumiques. 45 2.6.4 Vitilisation de réseaux de neurones 45 2.6.2 Les méthodes classiques 46 2.6.3 Modèle d' étalonnage en période » <	2.2 Petite revue des méthodes expérimentales de mesures PVT	25
2.2.2 Les pycnomètres: mesure directe de masse 27 2.2.3 Méthode de Burnett : mesure de compressibilité sans mesure répétée de volume. 27 2.2.4 Méthodes indirectes basées sur le principe d'Archimède 28 2.2.5 Autres méthodes indirectes basées sur le principe d'Archimède 28 2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a) 28 2.3 Evolution des méthodes à tube vibrant 30 2.4 Installations expérimentales utilisées 32 2.4.1 L'installation expérimentale avec une cellule DMA 512 32 2.4.2 L'installation expérimentale avec une cellule DMA 512 P 34 2.4.3 Protocole de mesure 37 2.5 Etalonnage et incertitudes des mesures 41 2.5.1 Mesures de température 42 2.5.2 Mesures de période 45 2.5.4 Mesures de période 45 2.6.1 Principe de l' « clalonnage en période » 45 2.6.2 Les méthodes classiques 46 2.6.3 Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model) 47 2.6.4 Uti	2.2.1 Les piézomètres: mesure directe de compressibilité	26
2.2.3 Méthode de Burnett : mesure de compressibilité sans mesure répétée de volume. 27 2.2.4 Méthodes indirectes basées sur le principe d'Archimède 28 2.2.5 Autres méthodes indirectes 28 2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a) 28 2.3 Evolution des méthodes à tube vibrant 30 2.4 Installations expérimentales utilisées 32 2.4.1 L'installation expérimentale avec une cellule DMA 512 32 2.4.2 L'installation expérimentale avec une cellule DMA 512 P 34 2.4.3 Protocole de mesure 37 2.5 Etalonnage et incertitudes des mesures 41 2.5.1 Mesures de température 42 2.5.2 Mesures de pression 43 2.5.3 Mesures de prosition 44 2.5.4 Mesures de préside 45 2.6.1 Principe de l' « étalonnage en période » 45 2.6.2 Les méthodes classiques 46 2.6.3 Modèle d'étalonnage em impirique FPMC (Forced Path Mechanical Calibration model) 47 2.6.4 Utilisation de réseaux de neurones 52	2.2.2 Les pycnomètres: mesure directe de masse	27
2.2.4 Méthodes indirectes basées sur le principe d'Archimède 28 2.2.5 Autres méthodes indirectes 28 2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a) 28 2.3 Evolution des méthodes à tube vibrant 30 2.4 Installations expérimentales utilisées 32 2.4.1 L'installation expérimentale avec une cellule DMA 512 32 2.4.2 L'installation expérimentale avec une cellule DMA 512 P 34 2.4.3 Protocole de mesure 37 2.5 Etalonnage et incertitudes des mesures 41 2.5.1 Mesures de température 42 2.5.2 Mesures de pression 43 2.5.3 Mesures de période 45 2.6 Conversion des périodes mesurées en masses volumiques. 45 2.6.1 Principe de l' « étalonnage en période » 45 2.6.2 Les méthodes classiques 46 2.6.3 Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model) 47 2.6.4 Utilisation de réseaux de neurones 52 2.7 La détermination des limites de l'équilibre Liquide-Vapeur	2.2.3 Méthode de Burnett : mesure de compressibilité sans mesure répétée de volume.	27
2.2.5 Autres méthodes indirectes 28 2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a) 28 2.3 Evolution des méthodes à tube vibrant 30 2.4 Installation expérimentales utilisées 32 2.4.1 L'installation expérimentale avec une cellule DMA 512 32 2.4.2 L'installation expérimentale avec une cellule DMA 512 P 34 2.4.3 Protocole de mesure 37 2.5 Etalonnage et incertitudes des mesures 41 2.5.1 Mesures de température 42 2.5.2 Mesures de pression 43 2.5.3 Mesures de présion 44 2.5.4 Mesures de présion 44 2.5.4 Mesures de présion 45 2.6.1 Principe de l' « étalonnage en période » 45 2.6.2 Les méthodes classiques 46 2.6.3 Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model) 47 2.6.4 Utilisation de réseaux de neurones 52 2.7 La détermination des limites de l'équilibre Liquide-Vapeur 59 2.8 La sélectio	2.2.4 Méthodes indirectes basées sur le principe d'Archimède	28
2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a) 28 2.3 Evolution des méthodes à tube vibrant 30 2.4 Installations expérimentales utilisées 32 2.4.1 L'installation expérimentale avec une cellule DMA 512 32 2.4.2 L'installation expérimentale avec une cellule DMA 512 P 34 2.4.3 Protocole de mesure 37 2.5 Etalonnage et incertitudes des mesures 41 2.5.1 Mesures de température 42 2.5.2 Mesures de préssion 43 2.5.3 Mesures de période 45 2.6 Conversion des périodes mesurées en masses volumiques. 45 2.6.1 Principe de l' « étalonnage en période » 45 2.6.3 Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model) 47 2.6.4 Utilisation de réseaux de neurones 52 2.7 La détermination des limites de l'équilibre Liquide-Vapeur 59 2.8 La sélection du nombre de données mesurées 60 2.9 Résultats expérimentaux 61 2.9.1 Dioxyde de carbone / Ethane 63	2.2.5 Autres méthodes indirectes	28
2.3Evolution des méthodes à tube vibrant302.4Installations expérimentales utilisées322.4.1L'installation expérimentale avec une cellule DMA 512322.4.2L'installation expérimentale avec une cellule DMA 512 P342.4.3Protocole de mesure372.5Etalonnage et incertitudes des mesures412.5.1Mesures de température422.5.2Mesures de pression432.5.3Mesures de pression432.5.4Mesures de période452.6Conversion des périodes mesurées en masses volumiques.452.6.1Principe de l' « étalonnage en période »452.6.3Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)472.6.4Utilisation de réseaux de neurones522.7La détermination des limites de l'équilibre Liquide-Vapeur592.8La sélection du nombre de données mesurées602.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane612.9.2Hydrogène Sulfuré / Ethane632.9.3Hydrogène Sulfuré / Propane66	2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a)	28
2.4Installations expérimentales utilisées322.4.1L'installation expérimentale avec une cellule DMA 512322.4.2L'installation expérimentale avec une cellule DMA 512 P342.4.3Protocole de mesure372.5Etalonnage et incertitudes des mesures412.5.1Mesures de température422.5.2Mesures de pression432.5.3Mesures de composition442.5.4Mesures de période452.6Conversion des périodes mesurées en masses volumiques.452.6.1Principe de l' « étalonnage en période »452.6.2Les méthodes classiques462.6.3Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)472.6.4Utilisation de réseaux de neurones522.7La détermination des limites de l'équilibre Liquide-Vapeur592.8La sélection du nombre de données mesurées602.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane612.9.2Hydrogène Sulfuré / Ethane612.9.3Hydrogène Sulfuré / Propane66	2.3 Evolution des méthodes à tube vibrant	30
2.4.1L'installation expérimentale avec une cellule DMA 512322.4.2L'installation expérimentale avec une cellule DMA 512 P342.4.3Protocole de mesure372.5Etalonnage et incertitudes des mesures412.5.1Mesures de température422.5.2Mesures de pression432.5.3Mesures de composition442.5.4Mesures de périodes mesurées en masses volumiques.452.6Conversion des périodes mesurées en masses volumiques.452.6.1Principe de l' « étalonnage en période »452.6.2Les méthodes classiques462.6.3Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)472.6.4Utilisation de réseaux de neurones522.7La détermination des limites de l'équilibre Liquide-Vapeur592.8La sélection du nombre de données mesurées602.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane612.9.3Hydrogène Sulfuré / Propane63	2.4 Installations expérimentales utilisées	32
2.4.2L'installation expérimentale avec une cellule DMA 512 P342.4.3Protocole de mesure372.5Etalonnage et incertitudes des mesures412.5.1Mesures de température422.5.2Mesures de pression432.5.3Mesures de composition442.5.4Mesures de période452.6Conversion des périodes mesurées en masses volumiques.452.6.1Principe de l' « étalonnage en période »452.6.2Les méthodes classiques462.6.3Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)472.6.4Utilisation de réseaux de neurones522.7La détermination des limites de l'équilibre Liquide-Vapeur592.8La sélection du nombre de données mesurées602.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane612.9.3Hydrogène Sulfuré / Propane63	2.4.1 L'installation expérimentale avec une cellule DMA 512	32
2.4.3Protocole de mesure372.5Etalonnage et incertitudes des mesures412.5.1Mesures de température422.5.2Mesures de pression432.5.3Mesures de composition442.5.4Mesures de période452.6Conversion des périodes mesurées en masses volumiques.452.6.1Principe de l' « étalonnage en période »452.6.2Les méthodes classiques462.6.3Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)472.6.4Utilisation de réseaux de neurones522.7La détermination des limites de l'équilibre Liquide-Vapeur592.8La sélection du nombre de données mesurées602.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane632.9.3Hydrogène Sulfuré / Propane63	2.4.2 L'installation expérimentale avec une cellule DMA 512 P	34
2.5Etalonnage et incertitudes des mesures412.5.1Mesures de température422.5.2Mesures de pression432.5.3Mesures de composition442.5.4Mesures de période452.6Conversion des périodes mesurées en masses volumiques.452.6.1Principe de l' « étalonnage en période »452.6.2Les méthodes classiques462.6.3Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)472.6.4Utilisation de réseaux de neurones522.7La détermination des limites de l'équilibre Liquide-Vapeur592.8La sélection du nombre de données mesurées602.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane612.9.2Hydrogène Sulfuré / Ethane632.9.3Hydrogène Sulfuré / Propane66	2.4.3 Protocole de mesure	37
2.5.1Mesures de température422.5.2Mesures de pression432.5.3Mesures de composition442.5.4Mesures de période452.6Conversion des périodes mesurées en masses volumiques.452.6.1Principe de l' « étalonnage en période »452.6.2Les méthodes classiques462.6.3Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)472.6.4Utilisation de réseaux de neurones522.7La détermination des limites de l'équilibre Liquide-Vapeur592.8La sélection du nombre de données mesurées602.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane612.9.2Hydrogène Sulfuré / Ethane632.9.3Hydrogène Sulfuré / Propane66	2.5 Etalonnage et incertitudes des mesures	41
2.5.2Mesures de pression432.5.3Mesures de composition442.5.4Mesures de période452.6Conversion des périodes mesurées en masses volumiques.452.6.1Principe de l' « étalonnage en période »452.6.2Les méthodes classiques462.6.3Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)472.6.4Utilisation de réseaux de neurones522.7La détermination des limites de l'équilibre Liquide-Vapeur592.8La sélection du nombre de données mesurées602.9Résultats expérimentaux 2.9.1612.9.2Hydrogène Sulfuré / Ethane 2.9.3632.9.3Hydrogène Sulfuré / Propane66	2.5.1 Mesures de température	42
2.5.3 Mesures de composition 44 2.5.4 Mesures de période 45 2.6 Conversion des périodes mesurées en masses volumiques. 45 2.6.1 Principe de l' « étalonnage en période » 45 2.6.2 Les méthodes classiques 46 2.6.3 Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model) 47 2.6.4 Utilisation de réseaux de neurones 52 2.7 La détermination des limites de l'équilibre Liquide-Vapeur 59 2.8 La sélection du nombre de données mesurées 60 2.9 Résultats expérimentaux 61 2.9.1 Dioxyde de carbone / Ethane 61 2.9.2 Hydrogène Sulfuré / Propane 63	2.5.2 Mesures de pression	43
2.5.4Mesures de période452.6Conversion des périodes mesurées en masses volumiques.452.6.1Principe de l' « étalonnage en période »452.6.2Les méthodes classiques462.6.3Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)472.6.4Utilisation de réseaux de neurones522.7La détermination des limites de l'équilibre Liquide-Vapeur592.8La sélection du nombre de données mesurées602.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane612.9.2Hydrogène Sulfuré / Ethane632.9.3Hydrogène Sulfuré / Propane66	2.5.3 Mesures de composition	44
2.6 Conversion des périodes mesurées en masses volumiques. 45 2.6.1 Principe de l' « étalonnage en période » 45 2.6.2 Les méthodes classiques 46 2.6.3 Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model) 47 2.6.4 Utilisation de réseaux de neurones 52 2.7 La détermination des limites de l'équilibre Liquide-Vapeur 59 2.8 La sélection du nombre de données mesurées 60 2.9 Résultats expérimentaux 61 2.9.1 Dioxyde de carbone / Ethane 61 2.9.2 Hydrogène Sulfuré / Ethane 63 2.9.3 Hydrogène Sulfuré / Propane 66	2.5.4 Mesures de période	45
2.6.1 Principe de l' « étalonnage en période » 45 2.6.2 Les méthodes classiques 46 2.6.3 Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model) 47 2.6.4 Utilisation de réseaux de neurones 52 2.7 La détermination des limites de l'équilibre Liquide-Vapeur 59 2.8 La sélection du nombre de données mesurées 60 2.9 Résultats expérimentaux 61 2.9.1 Dioxyde de carbone / Ethane 61 2.9.2 Hydrogène Sulfuré / Ethane 63 2.9.3 Hydrogène Sulfuré / Propane 66	2.6 Conversion des périodes mesurées en masses volumiques.	45
2.6.2 Les méthodes classiques 46 2.6.3 Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model) 47 2.6.4 Utilisation de réseaux de neurones 52 2.7 La détermination des limites de l'équilibre Liquide-Vapeur 59 2.8 La sélection du nombre de données mesurées 60 2.9 Résultats expérimentaux 61 2.9.1 Dioxyde de carbone / Ethane 61 2.9.2 Hydrogène Sulfuré / Ethane 63 2.9.3 Hydrogène Sulfuré / Propane 66	2.6.1 Principe de l' « étalonnage en période »	45
2.6.3Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)472.6.4Utilisation de réseaux de neurones522.7La détermination des limites de l'équilibre Liquide-Vapeur592.8La sélection du nombre de données mesurées602.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane612.9.2Hydrogène Sulfuré / Ethane632.9.3Hydrogène Sulfuré / Propane66	2.6.2 Les méthodes classiques	46
2.6.4Utilisation de réseaux de neurones522.7La détermination des limites de l'équilibre Liquide-Vapeur592.8La sélection du nombre de données mesurées602.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane612.9.2Hydrogène Sulfuré / Ethane632.9.3Hydrogène Sulfuré / Propane66	2.6.3 Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)	47
2.7La détermination des limites de l'équilibre Liquide-Vapeur592.8La sélection du nombre de données mesurées602.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane612.9.2Hydrogène Sulfuré / Ethane632.9.3Hydrogène Sulfuré / Propane66	2.6.4 Utilisation de réseaux de neurones	52
2.8La sélection du nombre de données mesurées602.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane612.9.2Hydrogène Sulfuré / Ethane632.9.3Hydrogène Sulfuré / Propane66	2.7 La détermination des limites de l'équilibre Liquide-Vapeur	59
2.9Résultats expérimentaux612.9.1Dioxyde de carbone / Ethane612.9.2Hydrogène Sulfuré / Ethane632.9.3Hydrogène Sulfuré / Propane66	2.8 La sélection du nombre de données mesurées	60
2.9.1Dioxyde de carbone / Ethane612.9.2Hydrogène Sulfuré / Ethane632.9.3Hydrogène Sulfuré / Propane66	2.9 Résultats expérimentaux	61
2.9.2Hydrogène Sulfuré / Ethane632.9.3Hydrogène Sulfuré / Propane66	2.9.1 Dioxyde de carbone / Ethane	61
2.9.3 Hydrogène Sulfuré / Propane 66	2.9.2 Hydrogène Sulfuré / Ethane	63
	2.9.3 Hydrogène Sulfuré / Propane	66

3 LA MODELISATION DES PROPRIETES VOLUMETRIQUES	71
3.1 Comportement de l'équation d'état exacte	71
3.2 Equation d'état : concurrence entre les forces répulsives et attractives	72
3.3Les équations d'état cubiques3.3.1Formulation3.3.2Représentation des données volumétriques	73 73 74
3.4 Les équations d'état dérivées du développement du Viriel : BWR(S)	77
3.5 Application aux alcanes légers, dioxyde de carbone et hydrogène sulfuré	79
3.6 Quelques autres formes d'équations d'état	80
 3.7 Représentation des données PVT par un réseau de neurones 3.7.1 Présence de réseaux de neurones dans la littérature 3.7.2 Un unique réseau de neurones pour représenter les phases gaz et liquide 	82 82 83
4 CORRECTION DE VOLUME DES EQUATIONS D'ETAT CUBIQUES – APPLICATION AUX ALCANES LEGERS (C1 A C4), CO ₂ ET H ₂ S.	93
 4 CORRECTION DE VOLUME DES EQUATIONS D'ETAT CUBIQUES – APPLICATION AUX ALCANES LEGERS (C1 A C4), CO₂ ET H₂S. 4.1 Principe de calcul des masses volumiques en mélange à partir d'une équation d'état cubique : règles de mélange. 	93 93
 4 CORRECTION DE VOLUME DES EQUATIONS D'ETAT CUBIQUES – APPLICATION AUX ALCANES LEGERS (C1 A C4), CO₂ ET H₂S. 4.1 Principe de calcul des masses volumiques en mélange à partir d'une équation d'état cubique : règles de mélange. 4.2 Quelques méthodes de correction des équations cubiques 	93 93 94
 4 CORRECTION DE VOLUME DES EQUATIONS D'ETAT CUBIQUES - APPLICATION AUX ALCANES LEGERS (C1 A C4), CO₂ ET H₂S. 4.1 Principe de calcul des masses volumiques en mélange à partir d'une équation d'état cubique : règles de mélange. 4.2 Quelques méthodes de correction des équations cubiques 4.3 Analyse des déviations sur les corps purs 	93 93 94 94
 4 CORRECTION DE VOLUME DES EQUATIONS D'ETAT CUBIQUES - APPLICATION AUX ALCANES LEGERS (C1 A C4), CO₂ ET H₂S. 4.1 Principe de calcul des masses volumiques en mélange à partir d'une équation d'état cubique : règles de mélange. 4.2 Quelques méthodes de correction des équations cubiques 4.3 Analyse des déviations sur les corps purs 4.4 Une nouvelle démarche de correction des volumes 	93 93 94 94 94
 4. CORRECTION DE VOLUME DES EQUATIONS D'ETAT CUBIQUES - APPLICATION AUX ALCANES LEGERS (C1 A C4), CO₂ ET H₂S. 4.1 Principe de calcul des masses volumiques en mélange à partir d'une équation d'état cubique : règles de mélange. 4.2 Quelques méthodes de correction des équations cubiques 4.3 Analyse des déviations sur les corps purs 4.4 Une nouvelle démarche de correction des volumes 4.5 Ajustement des déviations par réseau de neurones 	93 93 94 94 96 96
 4. CORRECTION DE VOLUME DES EQUATIONS D'ETAT CUBIQUES – APPLICATION AUX ALCANES LEGERS (C1 A C4), CO₂ ET H₂S. 4.1 Principe de calcul des masses volumiques en mélange à partir d'une équation d'état cubique : règles de mélange. 4.2 Quelques méthodes de correction des équations cubiques 4.3 Analyse des déviations sur les corps purs 4.4 Une nouvelle démarche de correction des volumes 4.5 Ajustement des déviations par réseau de neurones 4.6 Application en mélange 4.6.1 Données volumétriques 4.6.2 Quelques considérations sur la méthode 	 93 93 94 94 96 96 98 100 101

Chapitre 1

La place des propriétés volumétriques au sein du génie des procédés

1 La place des propriétés PVT au sein du génie des procédés

Ce premier chapitre présente les notions principales nécessaires à la compréhension des autres chapitres qui concernent l'obtention et la modélisation de mesures expérimentales de propriétés volumétriques (PVT). Les deux aspects sont intimement liés. Ils représentent en effet, les fondements de la démarche scientifique : observation et explication des phénomènes physiques. L'observation a le double rôle de servir d'abord de base au développement d'une théorie (explication) mais elle permet surtout de la valider sur une multitude de cas différents.

Quelques informations sur les états de la matière et les équations d'état, sont présentées de façon à aborder l'importance des propriétés PVT dans le domaine du génie des procédés.

1.1 Les propriétés PVT : reflet des états de la matière

Dans le cadre du génie des procédés, la matière peut se trouver sous les trois états bien connus : solide, liquide et gaz. Le passage d'un état à l'autre rend compte de phénomènes quotidiens (évaporation de l'eau bouillante, formation de glace l'hiver, ...). La figure 1.1 regroupe les noms associés au passage de chacun de ces états. Le présent travail exclut l'état solide.

Figure 1.1 Représentation des changements d'état de la matière

L'expérience schématisée sur la figure 1.2 présente le passage d'un état gazeux à un état liquide. La présence de liquide est visualisée par l'apparition d'un ménisque qui détermine la limite entre chacune des phases.

- 1 Du gaz est contenu dans un récipient fermé à l'une des extrémités par un piston
- 2 Le piston est compressé jusqu'à l'apparition d'un ménisque indiquant la présence de liquide (des gouttes peuvent également se former).
- 3 Plus le piston est compressé, plus la quantité de phase liquide augmente.
- 4 La phase gaz a complètement disparue.

Figure 1.2 : Schématisation d'une expérience de changement de phase gaz-liquide par compression de la phase gaz En fait, un quatrième état existe : l'état « supercritique ». Thomas Andrews présente dès la fin du XIX^{ème} siècle la notion de température critique (« température d'ébullition absolue » selon Mendéléev) : température limite au-delà de laquelle le passage d'un état liquide à un état gazeux n'est plus « visible ». Ce n'est qu'assez récemment, à partir des années 1980-1990, que l'« état supercritique » est scientifiquement considéré comme un réel état de la matière. La matière se trouve ni sous forme « gaz » ni sous forme « liquide », mais sous une forme intermédiaire lui conférant des propriétés physiques spécifiques. La caractéristique principale de l'état supercritique est l'absence de séparation de phase (discontinuité volumétrique) lors du passage d'un état à faible masse volumique à un état à masse volumique élevée.

Les limites de la zone supercritique sont définies « mathématiquement » par des coordonnées critiques (température critique et pression critique). Les fluides supercritiques sont produits :

- o en comprimant un gaz au-dessus de sa pression critique,
- $\circ~$ en chauffant un liquide au-delà de sa température critique.

Le dioxyde de carbone est le fluide supercritique le plus communément utilisé en raison de sa température critique relativement basse (304 K soit 31°C), de sa faible toxicité et réactivité, et enfin de sa haute pureté à faible coût.

La figure 1.3 présente deux représentations des états de la matière gaz et liquide, et montre la zone supercritique.

× Point critique

Le premier diagramme regroupe les différentes phases dans un repère PT (Pression, Température). L'équilibre liquide-vapeur¹ est contenu dans le trait épais représentant les différentes pressions de changement de phases (tension de vapeur) en fonction de la température. Dans le deuxième diagramme Pp (Pression, Masse volumique), l'équilibre liquide-vapeur est délimité, côté gaz, par la courbe de rosée, et côté liquide, par la courbe de bulle. Le point critique symbolise le point où ces deux courbes se rejoignent.

Au travers de ces deux diagrammes, il est possible d'imaginer le passage d'un état gaz à un état liquide sans « traverser » l'équilibre liquide-vapeur : il faut contourner le point critique et passer dans la zone supercritique. Ces trois états sont liés et sont regroupés sous l'appellation « phases fluides » ou « fluides » (par opposition à la matière solide).

¹ Le terme vapeur désigne un gaz en équilibre avec un liquide

1.2 La loi des gaz parfaits : équation d'état

La chronologie représentée sur la figure 1.4 permet de suivre les étapes qui ont conduit à la formulation de la « loi des gaz parfaits », une des lois de la physique les plus connues. Cette loi traduit mathématiquement les observations effectuées sur les relations liant la pression, le volume et la température d'un gaz, elle est en conséquence purement empirique.

≈ 1670	1787	1802	1811	XIXème
Boyle et Mariotte	Charles	Gay-Lussac	Avogadro	Loi des Gaz Parfaits >
$PV = C^*$	$V = C^*.T$	$P = C^*.T$	$V = C^*.n$	$P.V = n.R^{**}.T$

^{*}C représente une constante dont la valeur diffère selon les relations.

^{**}R représente la constante des gaz parfaits (R = 8.314 J/mol/K)

Figure 1.4 : Chronologie des lois physiques conduisant à la loi des gaz parfaits P : Pression, T : Température, V : Volume, n : Quantité de matière (nombre de moles)

- Boyle et quelques temps après Mariotte, constatent, à température ambiante (température constante), que la pression est inversement proportionnelle au volume du gaz étudié.
- Charles observe qu'à pression atmosphérique (pression constante), le volume d'un gaz est directement proportionnel à la température.
- Gay-Lussac énonce que pour un volume de gaz constant, la pression est directement liée à la température.
- Avogadro définit qu'à pression et température données, un volume de gaz contient le même nombre de molécules (n).

Toutes ces considérations aboutissent au XIX^{ème} siècle à l'écriture de la première équation reliant la pression, le volume, la température et le nombre de particules. La loi des gaz parfaits ne s'applique qu'à des gaz à faible pression (autour de la pression atmosphérique et en dessous). Tout autre usage peut conduire à de très mauvaises prédictions. Toutes les équations liant la pression, le volume, la température et le nombre de particules (ou indirectement la masse des particules) sont appelées « équations d'état ».

L'équation d'état exacte qui représente parfaitement l'ensemble des propriétés PVT sous critiques et supercritiques, n'existe pas. De nombreuses formes d'équations ont été développées pour représenter au mieux soit un domaine de température, soit un domaine de pression, soit un type de composés.

1.3 Les propriétés PVT dans le génie des procédés

1.3.1 Génie des procédés / Propriétés physiques

Le génie des procédés regroupe l'ensemble des compétences (physiques et financières) qui permettent de décrire, développer et assembler les différentes techniques de transformation de la matière. La notion de rentabilité du procédé est un facteur à part entière qui a des conséquences sur le choix d'une technique parmi plusieurs possibles.

Les propriétés physiques correspondent aux paramètres physiques qui déterminent le comportement de la matière dans la situation étudiée. Il peut s'agir aussi bien de température d'ébullition, de pression de saturation, de capacité calorifique, ... Elles interviennent à de nombreux niveaux dans la définition d'un procédé (faisabilité technique, optimisation économique, dimensionnement final, ...)

Une connaissance extrêmement précise de ces propriétés physiques n'est pas nécessaire pour tous les composés et à tout moment. En effet, dans la première étape de faisabilité, des valeurs avec une précision relativement faible suffiront à savoir si le projet est techniquement envisageable. Par contre, dans les autres étapes, il est nécessaire de s'intéresser de plus en plus à la précision des propriétés physiques en fonction de leur sensibilité sur le procédé (sensibilité technique et économique).

1.3.2 Propriétés volumétriques et équations d'état

Les propriétés volumétriques sont un élément des « propriétés physiques ». Sont rassemblées sous ce nom les propriétés qui sont directement liées au volume :

- volume molaire $\left(v = \frac{V}{n}\right)$, masse volumique $\left(\rho = \frac{m}{V}\right)$, densité $\left(d = \frac{\rho}{\rho_{eau}}\right)$, facteur de compressibilité $\left(Z = \frac{Pv}{RT}\right)$, ...

La présente étude est axée sur la masse volumique de par la méthode expérimentale utilisée (densimètre à tube vibrant).

Les propriétés volumétriques sont d'autant plus importantes qu'elles interviennent directement sur le montant de l'investissement du procédé car elles sont intégrées dans le « dimensionnement » des différentes unités: définition de la taille d'une colonne à distiller en fonction de la quantité de gaz matière attendue en tête et des contraintes de sécurité par exemple.

De plus, les propriétés volumétriques interviennent comme données « techniques » dans les étapes de définition d'un procédé, par exemple :

- o la densité permet de connaître l'ordre de ségrégation de deux fluides non miscibles,
- o la masse volumique donne une information sur l'état du fluide (gaz ou liquide), ...

Enfin, l'utilisation de données volumétriques permet l'estimation d'autres propriétés physiques. D'un point de vue thermodynamique, la connaissance du volume en fonction de la température et de la pression (équation d'état) permet de calcul des données énergétiques (enthalpie, entropie, capacité calorifique) ou encore la vitesse du son. Cependant, un tel travail nécessite une équation d'état extrêmement précise.

L'utilisation plus classique des équations d'état conduit à l'estimation des équilibres de phases. Les équations d'état permettent le calcul de la répartition des fluides d'un mélange entre chacune des phases (définition de la composition des phases gaz et liquide(s)) lorsque les conditions de température et de pression imposent un équilibre de phases.

Dans le présent travail, l'intérêt a été porté sur la représentation des propriétés volumétriques, celles des équilibres de phases ayant été mises au second plan (l'inverse étant plus souvent réalisé).

Enfin, il convient de préciser également que la connaissance des propriétés volumétriques d'un fluide est très importante fondamentalement car elle apporte des informations sur les interactions entre les molécules. De telles informations peuvent conduire à une meilleure compréhension de l'ensemble des phénomènes physiques qui sont régis par ces interactions.

1.3.3 Modèles et données expérimentales

<u>Figure 1.5 : Place des données expérimentales et de la modélisation</u> <u>dans différentes étapes de définition d'un procédé</u>

La figure 1.5 schématise trois aspects de la définition d'un procédé. Les propriétés physiques interviennent dans deux de ces aspects : lors de l'étude technique et lors du dimensionnement. Dans le premier cas, elles permettent de définir les étapes nécessaires à l'obtention du produit

fini et dans l'autre cas, elles permettent de calculer la taille des éléments intervenant dans chacune des étapes. Tout l'enjeu de la définition d'un procédé réside dans la détermination des conditions opératoires de chacune des étapes unitaires (température et pression par exemple). De ce fait, il est primordial de connaître la valeur des propriétés physiques sur une gamme relativement large des propriétés dépendantes (volume en fonction de la pression et de la température par exemple). D'une façon plus générale, une équation (ou une méthode de calcul) doit être connue pour chaque propriété physique nécessaire : c'est l'enjeu de la modélisation.

Hors tout comme les fondements des sciences physiques (observation / explication), les modèles sont liés aux données expérimentales. Ces dernières représentent en fait une image d'un système physique à un instant donné. Elles forment un ensemble d'informations discontinues d'un point de vue mathématique et ne sont donc pas exploitables directement dans le développement de procédés. Ces données permettent cependant de comprendre le comportement des propriétés physiques et d'en définir des modèles (représentations mathématiques continues). Inversement, les données expérimentales sont nécessaires pour valider les modèles physiques et définir les limites d'utilisation. Ce double aspect rend les données expérimentales indispensables au sein du génie des procédés.

Il n'est pas toujours possible d'obtenir des données expérimentales sur des mélanges complexes dans l'ensemble des conditions d'utilisation d'un procédé. L'étude de systèmes simples (mélanges de deux voire trois composés appelés respectivement mélanges binaire et ternaire) revêt une importance particulière car ils permettent de déterminer les interactions entre ces composés. Ils permettent ainsi d'estimer le comportement des mélanges complexes.

Les notions importantes, utilisées et développées dans les parties suivantes ont été présentées dans ce premier chapitre. Les propriétés physiques interviennent au cœur des procédés avec une importance plus ou moins élevée en fonction de l'avancée de l'étude et de l'influence des propriétés sur le coût final. Les propriétés volumétriques interviennent lors des aspects de calcul de volumes et d'estimation des équilibres de phases au travers des équations d'état. De plus, les propriétés volumétriques permettent d'estimer d'autres propriétés physiques telles que les propriétés énergétiques.

D'un point de vu pratique, l'utilisation des propriétés physiques nécessitent des modèles (représentations mathématiques continues), idéalement « calés » sur des données expérimentales (image discontinue de la réalité physique).

Dans le domaine pétrolier, la connaissance des propriétés volumétriques des hyrdrocarbures est primordiale, notament en présence d'impuretés tels que le dioxyde de carbone ou l'hydrogène sulfuré. Le chapitre suivant présente alors la technique expérimentale utilisée au cours de ce travail pour obtenir de nouvelles données volumétriques sur des systèmes binaires composés d'alcanes, de dioxyde de carbone et d'hydrogène sulfuré.

Chapitre 2

Obtention de données volumétriques à l'aide d'un tube vibrant

Cette page vide permet de faire correspondre les schémas avec les explications sur la même double page.

2 Obtention de données volumétriques à l'aide d'un tube vibrant

Une revue bibliographique succincte présente différentes méthodes expérimentales et principalement la méthode de densimétrie par tube vibrant. L'évolution de cette méthode est détaillée avec un aspect historique général dans un premier temps, puis plus concrètement au sein du laboratoire TEP. Cette technique a été choisie pour répondre aux besoins de mesures sur les fluides de substitution aux CFCs dès les premières préoccupations du début des années 1990. Une technologie de cellule de densimétrie permet désormais de réaliser des mesures sur des fluides corrosifs et notamment le sulfure d'hydrogène (H_2S). Le développement d'un appareillage utilisant cette cellule est un des aspects de ce travail.

2.1 Principales distinctions entre les techniques expérimentales

Il existe des notions qui permettent de mieux se représenter quelques différences techniques entre les méthodes expérimentales.

• *Méthodes analytiques / Méthodes synthétiques*

Les méthodes analytiques sont liées à l'analyse de la composition des phases d'un mélange porté sous les conditions de mesures souhaitées (température et pression). A l'inverse, une méthode sera dite synthétique lorsqu'il n'y aura pas d'analyse de composition en cours de manipulation. Dans le cas d'un mélange, cela implique la connaissance préalable de la composition globale (synthèse du fluide).

• Méthodes dynamiques / Méthodes statiques

La distinction « dynamique » / « statique » fait référence à la présence ou non d'une circulation forcée du fluide étudié. Cette circulation est principalement mise en place sur une phase donnée afin de l'isoler pour mieux l'étudier (prélèvement, méthode optique, densimétrie, ...). Dans une méthode statique, le fluide est introduit dans une cellule d'équilibre puis agité de façon à atteindre l'équilibre thermodynamique le plus rapidement possible.

0 Méthodes à circuit ouvert / Méthodes à circuit fermé

En cours de manipulation, lorsque de la matière est échangée avec l'extérieur, l'appareil est dit en circuit « ouvert ». L'inverse garantit la conservation de la matière tout au long des mesures à l'exception des prélèvements d'échantillons pour analyse. Les échantillons doivent avoir des tailles les plus faibles possibles afin de ne pas perturber l'équilibre thermodynamique.

• Méthodes directes / Méthodes indirectes

Seules les propriétés physiques pour lesquelles des capteurs spécifiques existent, peuvent être directement mesurées. Dans cette catégorie, les plus connues sont la température (thermocouples, sondes de platine, ...) et la pression (capteurs à jauges de contraintes, capteurs inductifs ...). Cependant, certaines méthodes expérimentales utilisent une propriété intermédiaire, directement mesurable, pour obtenir la valeur d'une propriété pour laquelle il n'existe pas de capteur spécifique. Par exemple, dans le cas de l'analyse de la formation d'un précipité par méthode optique, le capteur optique mesure l'intensité d'un rayon lumineux traversant le milieu à étudier. Ce n'est alors que la variation de cette intensité qui renseigne sur la présence de précipité.

Figure 2.1. Classification du densimètre à tube vibrant

La figure 2.1 montre un exemple de la classification du densimètre utilisé dans le cadre de ce travail : appareil synthétique, dynamique, ouvert et indirect (pour la masse volumique).

Les techniques expérimentales peuvent également se différencier dans la manière de parvenir aux conditions de mesures souhaitées (variation de température, de pression, de volume, ...). Dorhn et Brunner (1995)^[95DOR] et Christov et Dorhn (2002)^[02CHR] présentent deux études sur les méthodes expérimentales dans le domaine des équilibres de phases à haute pression. Les propriétés volumétriques n'y sont pas traitées, cependant le travail de synthèse effectué est intéressant en ce qu'il montre une grande diversité de capteurs et de méthodes qui peuvent s'appliquer à d'autres domaines.

2.2 Petite revue des méthodes expérimentales de mesures PVT

Le terme "propriétés volumétriques" regroupe les notions liées directement au volume du fluide, à savoir la masse volumique, la densité, la densité molaire, le volume molaire ou encore le facteur de compressibilité. Tekac et al. (1985)^[85TEK] proposent une revue des méthodes de mesure de propriétés PVT. Dans le cadre de ce travail, l'objectif est de situer le densimètre à tube vibrant et seules les grandes lignes des méthodes les plus utilisées sont abordées. Dans ce qui suit les diverses méthodes utilisées seront indiquées, puis suivra un paragraphe dédié aux incertitudes associées à ces méthodes.

2.2.1 Les piézomètres: mesure directe de compressibilité

Les piézomètres sont définis comme des appareils permettant la mesure directe de la compression d'un fluide par connaissance de la pression, de la température et du volume. La masse de produit est connue à priori. Deux familles se distinguent :

- Les piézomètres à volume variable.

Ce type d'appareil est constitué d'une cellule dans laquelle un capteur volumétrique (ou de déplacement) mesure directement la variation de volume de la cellule. La cellule et le capteur volumétrique sont alors dans la même enceinte, à la même température.

- Les piézomètres à volume constant.

Le capteur volumétrique est déporté de l'enceinte contenant la cellule. Le capteur est maintenu à température constante, et le système qui le compose ne sera pas soumis aux variations de température des mesures. Le lien entre le capteur volumétrique et la cellule est réalisé le plus souvent à l'aide d'un capillaire comme l'ont décrit récemment Abdulagatov et Azizov (2004)^[04ABD].

De nombreux appareils peuvent se ranger sous l'appellation de piézomètre. Ces derniers se différencient par la méthode de mesure du volume du fluide étudié : type piston liquide ou solide, à mesure visuelle ou mécanique. Rahman et Barrufet (1995)^[95RAH] utilisent, par exemple, une cellule à piston flottant connectée à une cellule d'équilibre dans laquelle ils peuvent prélever des échantillons pour analyser les équilibres liquide-vapeur ou liquide-liquide.

Au laboratoire, un appareil peut être classé dans cette catégorie : l'appareil statique à volume variable dont le fonctionnement est décrit par Fontalba et al. (1984)^[84FON]. Il s'agit d'une cellule plongée dans une atmosphère thermorégulée. Le volume est imposé par un piston mobile dont la position est mesurée à l'aide d'un palmer ou d'un capteur de déplacement.

Figure 2.2 : Représentation de la mesure expérimentale d'un point de bulleavec la méthode de cellule à volume variable.Système R134a + Air (N2+O2) à $\approx 5\%$ massique et 296 K

La variation de la pression en fonction du déplacement du piston à température constante permet d'observer un point de cassure au niveau du point de bulle. Cette cassure, observée sur la figure 2.2, marque la différence de compressibilité du liquide et du mélange « liquide-vapeur ». Cette méthode a été utilisée à de nombreuses reprises par Bouchot (1995)^[95BOU] pour valider la méthode de détermination des points de bulle à partir du densimètre à tube vibrant.

2.2.2 Les pycnomètres: mesure directe de masse

Une cellule de volume connu est pesée dans les conditions de température et pression souhaitées. Ce type d'appareil permet d'obtenir directement la masse volumique en fonction de la température, de la pression et de la composition du mélange du fluide. Le plus souvent, la cellule est suspendue sur une balance électronique dans un environnement d'hélium. Une parfaite connaissance de l'évolution du volume de la cellule en fonction de la température et de la pression est nécessaire pour obtenir des données précises. Cette méthode peut être utilisée dans des conditions de températures et de pressions élevées telles que présenté par Hou et al. (1992)^[92HOU] avec des données de R134a de 180 à 380 K jusqu'à 70 MPa. La précision obtenue sur la densité est alors de l'ordre de 0.1% en phase liquide. Plus récemment, Westwood et Kabadi (2003)^[03WES] ont réalisé des mesures jusqu'à une température de 473 K et une pression de 5 MPa avec des composés purs comme le 1-butanol et le n-heptane. Enfin, ce type d'appareils est souvent employé pour la détermination des masses volumiques « vraies » des molécules présentant des interstices (structure cristalline). Viana et al. (2002)^[02VIA] ont montré que la procédure expérimentale utilisée (nombre de purges du circuit, …) a une incidence non négligeable sur la qualité des résultats obtenus.

2.2.3 Méthode de Burnett : mesure de compressibilité sans mesure répétée de volume.

Adaptée des méthodes à volume constant, la méthode de Burnett $(1936)^{[36BUR]}$ tient sa particularité du facteur de compressibilité qui est déterminé à partir des seules valeurs de la température, de la pression et du volume initial de la cellule. Cette méthode est basée sur une succession d'expansion du fluide entre deux réservoirs. L'écriture du facteur de compressibilité pour le fluide (P.V = Z.R.T) entre deux expansions successives k et k+1 permet d'obtenir une relation de la forme :

$$\frac{P_k}{P_{k+1}} = N_k \cdot \frac{Z_k}{Z_{k+1}}$$

où N_k est une constante fonction du volume des deux réservoirs. Cette constante est obtenue par étalonnage avec un fluide de référence et permet de connaître le volume à la k_i^{ème} expansion en fonction du volume initial V₀. Cette méthode, qui nécessite une technique de mesure de pression très performante, a notamment été utilisée par Qian et al. (1992)^[92QIA] pour la détermination des seconds et troisièmes coefficients du Viriel du R134a à différentes températures.

2.2.4 Méthodes indirectes basées sur le principe d'Archimède

La flottabilité d'une cellule plongée dans un fluide est fonction des masses volumiques de la cellule et du fluide de référence. Ce principe a été utilisé par Reding (1965)^[65RED], puis par Grigor et Steele (1966)^[66GRI] afin de déterminer une relation de proportionnalité entre la masse volumique du fluide et la mesure de la flottabilité.

Les différents appareillages basés sur ce principe se différencient par la technique de mesure de la flottabilité comme un ressort à quartz (Goldman et Scrase (1969) ^[69GOL]) ou une suspension et une bouée magnétique (Haynes (1983) ^[83HAY]).

2.2.5 Autres méthodes indirectes

Il existe de nombreuses autres méthodes indirectes de mesures des propriétés volumétriques d'un fluide.

- mesure de la vitesse du son

(Isdale et al. cité dans le papier de Tekac et Al. (1985) ^[85TEK]) La vitesse du son, u, peut être reliée à la compressibilité isentropique, β_s , et la densité, ρ , du fluide :

 $\beta_{\rm S} = (\rho.u)^{-1}$

- mesure de l'onde de choc

L'équation de Hugoniot utilisée par Bradley et Munro (1965)^[65BRA] permet de calculer les propriétés thermodynamiques des liquides à partir des quantités de mouvement mesurées pendant la propagation d'une onde de choc.

- mesure de l'indice de réfraction

Bose et al. (1986)^[86BOS] utilise une technique optique qui fournit des informations sur les propriétés diélectriques et la masse volumique du fluide.

- mesure de la période de vibration : Densimètre à tube vibrant

Le densimètre à tube vibrant est classé dans les méthodes indirectes car la masse volumique est déterminée par une mesure intermédiaire de la période de vibration du tube. Cette méthode est utilisée dans ce travail et est en conséquence détaillée dans les chapitres 2.3 et 2.4.

2.2.6 Comparaison des méthodes en terme de précision de mesure (R134a)

Dans la littérature de nombreuses publications présentent des résultats de mesures de propriétés volumétriques. Dans cette comparaison, les méthodes citées précédemment, sont jugées sur la précision des résultats obtenus concernant le 1,1,1,2-tetrafluoroethane (R134a). En effet, de par les décisions gouvernementales sur l'environnement (Protocole de Montréal en 1989 et Protocole de Kyoto en 1998), les mesures de propriétés volumétriques se sont principalement portées ces dix dernières années sur des produits de substitution aux CFCs.

Ainsi, le réfrigérant R134a a été étudié avec la plupart des techniques présentées dans les paragraphes précédents. De plus, ce fluide est utilisé par la suite lors de l'étalonnage du tube vibrant et est donc un élément important de la procédure expérimentale.

	Pressions [MPa]	Températures [K]	Masse volumique [kg/m3]			
Piézomètres à volume constant						
Piao et al. (1990) ^[90PIA]	$0.7-12 \pm 0.002$	$310 - 425 \pm 0.01$	$36-1144 \pm 0.5$	0.05%		
Wilson et Basu (1988) ^[88WIL] ,	0.05-6.6	$317 1/8 \pm 0.03$	$51.520 \pm 0.15.1.6$	0.3%		
Basu Wilson (1989) ^[89BAS]	$\pm 5.10^{-5}$ -6.6.10 ⁻³	$517 - 440 \pm 0.05$	$51-520 \pm 0.15-1.0$	0.570		
Tamatsu et al. (1992) ^[92TAM]	$0.4-9.8 \pm 3.2.10-3$	$318-443 \pm 0.01$	$18-1103 \pm 0.02-1.2$	0.1%		
Méthode de Burnett						
Zhu et al. (1992) ^[92ZHU]	$0.1 - 1.3 \pm 0.002$	$283 - 353 \pm 0.015$	$5-52 \pm 0.004-0.05$	0.1%		
Qian et al. (1992) ^[92QIA]	$0.13 - 1.93 \pm 3.10^{-4}$	$320-340 \pm 0.01$	$6 - 40 \pm 0.02 - 0.11$ *	0.3%		
* Estimation réalisée sur la base d'une déviation de 0.2% du facteur de compressibilité.						
Pycnomètre						
Hou et al. (1992) ^[92HOU]	70 ± 0.07	$180 - 380 \pm 0.02$	658 - 1601 ± 0.66-1.6	0.1%		
Densimètre à tube vibrant						
Morisson et Ward (1991) ^[91MOR]	$Psat - 5.5 \pm 0.002$	$278 - 368 \pm 0.005$	$848 - 1219 \pm 0.4 - 0.6$	0.05%		
Bouchot et Richon (1998) ^[98BOU]						
R125 (44), R143 (52),	$0.1-19 \pm 0.003$	$253-333 \pm 0.002$	$< 1290 \pm 0.3$	0.02%		
R134a (4 wt. %)						
Tillner-Roth et	16 ± 0.003	242.412 ± 0.01	$\sim 760 \pm 0.14.04$	0.040		
Baehr (1993) ^[93TIL]	10 ± 0.005	$243-415 \pm 0.01$	$< 100 \pm 0.14$ -0.4	0.04%		

<u>Tableau 2.3: Comparaison de mesures réalisées sur le R134a au</u> moyen de différentes méthodes expérimentales

Comme le montre le tableau 2.3, les précisions de mesure concernant les méthodes autre que le densimètre à tube vibrant sont de l'ordre de 0.1%. Il est à noter que Piao et al. (1990) ^[90PIA] présentent des résultats avec une incertitude de $\pm 0.05\%$ avec un piézomètre à volume constant. En ce qui concerne le densimètre à tube vibrant, l'incertitude présentée par trois auteurs est inférieure ou égale à 0.05%. Une analyse statistique de mesures réalisées à partir de plusieurs méthodes expérimentales peut conduire à diminuer les incertitudes affichées dans le tableau. Cela vient du calcul des incertitudes qui dans le cas statistique est inversement proportionnel à la racine du nombre de mesures indépendantes. Ceci est utilisé notamment dans le cas de l'élaboration d'équation d'état dédiée comme l'eau ou le Réfrigérant 134a.

Le choix de l'une ou l'autre des techniques se réalise en fonction des conditions de mesures recherchées. Par exemple, pour de faibles masses volumiques, la méthode de Burnett semble la plus précise, par contre, une méthode du type pycnomètre peut être plus facile à mettre en place.

Le tube vibrant se distingue car il permet de réaliser un nombre considérable de mesures - 800 points dans le cas de Tillner-Roth et Baehr (1993)^[93TIL], plus de 1500 points dans celui de Bouchot et Richon (1998)^[98BOU] - en un temps raisonnable (1 journée de mesure par isotherme en suivant la procédure décrite par la suite) aussi bien en phase gaz qu'en phase liquide. Les tubes vibrants peuvent également être associés à une autre méthode comme une cellule saphir - Morisson et Ward (1991)^[91MOR] - qui permet la détermination très précise des équilibres de phases. Plus récemment, May et al. (2004)^[04MAY] proposent le couplage d'un densimètre avec un résonateur à micro-ondes de façon à mesurer les propriétés diélectriques des gaz.

2.3 Evolution des méthodes à tube vibrant

La technique de densimétrie par tube vibrant utilise un tube, fixe à une extrémité et soumis à une excitation magnétique constante à l'autre extrémité comme le montre la figure 2.4 . La réponse du tube se mesure par une période d'oscillation. Cette dernière est fonction de la masse du tube contenant le fluide introduit. Une variation de la masse du fluide implique en conséquence une variation de la période mesurée.

Figure 2.4 – Schéma de fonctionnement d'un tube vibrant

Kratky et al. (1969)^[69KRA] sont les premiers à présenter une méthode de détermination des masses volumiques de cette manière. L'appareil décrit est un tube vibrant en verre sur lequel sont collés des aimants. Le tube est positionné entre deux bobines. Un courant électrique circulant dans la première bobine, dite excitatrice, crée un champ magnétique et fait vibrer le tube en verre grâce aux aimants. Un courant électrique se crée dans la deuxième bobine mais l'intensité de cette dernière est diminuée de par la présence du tube vibrant. Un circuit électronique reliant les deux bobines à l'oscillateur à quartz déclenchant les impulsions électriques permet d'en déduire la période de vibration du tube.

Kratky et al. $(1969)^{[69KRA]}$ proposent une relation simple entre la masse volumique ρ et la période de vibration du tube τ de la forme :

$$\rho = A.\tau^2 - B$$

A et B représentent des constantes qui peuvent être obtenues par comparaison avec des mesures sur des fluides dont les propriétés volumétriques sont connues avec précision : « fluides de référence ». La détermination d'un seul paramètre est préférée en écrivant la relation précédente sous la forme d'une différence de densités :

$$(\rho_1 - \rho_2) = A.(\tau_1^2 - \tau_2^2)$$

Deux fluides sont en général utilisés pour la détermination de la constante A : l'air et l'eau.

Cette méthode très attrayante a dès lors été mise à profit par la société Anton Paar pour commercialiser des densimètres qui utilisent encore aujourd'hui ces mêmes principes. Le tube est réalisé en verre, en acier ou en hastelloy pour couvrir des conditions d'utilisation variées.

Au niveau des laboratoires de recherche, les méthodes à base de tube vibrant se sont principalement développées en utilisant deux fluides de référence : l'air et l'eau. La précision obtenue sur les mesures de masses volumiques en phase vapeur est longtemps resté trop faible pour être acceptable, et seules des mesures en phase liquide ont été publiées jusqu'au début des années 1990. La technique de mesure la plus répandue concerne des conditions de température et pression fixes. Dans ce cas, pour chaque couple (température, pression) au moins trois mesures doivent être réalisées dans les conditions les plus proches possibles : les deux fluides de référence et le fluide étudié.

A partir des années 1990, le regain d'intérêt apparu de par la recherche de substituants aux CFCs a conduit au développement de nouveaux appareils avec des précisions accrues. Sousa et al. (1992)^[92SOU] présentent alors quelques mesures en phase vapeur.

Galicia-Luna et al. $(1994)^{[94GAL]}$ publient une technique de chargement d'une cellule à volume variable, du composé le plus volatile au composé le plus lourd. Cette cellule reliée au tube vibrant permet de réaliser en continu des mesures sur des mélanges binaires et ternaires. La température est fixe et la pression varie par paliers successifs. A chaque palier des triplets (P,T, τ) sont relevés. Contrairement à la formule de conversion $\rho=f(\tau)$ précédente, la constante C devient une fonction de la température et de la pression C(T,P).

Blencoe et al. (1996)^[96BLE] utilisent un densimètre dans des conditions de pressions et températures extrêmes (200 MPa – 773 K). La difficulté réside alors dans la prise en compte des déformations du tube vibrant. Les mesures sont réalisées à température et pression fixes. Hynek et al. (1997)^[97HYN] décrivent un système photoélectrique de mesure de la période de vibration du tube pour des applications jusqu'à 573 K et 35 MPa.

Une étude sur les limites de mesure des masses volumiques des gaz en utilisant un tube vibrant est publiée par Laznickova et Huemer $(1998)^{[98LAZ]}$. Cette étude montre le regain d'intérêt pour les gaz. Deux tubes vibrants sont testés, l'un en verre et l'autre en acier, et tous deux présentent dans la plage de mesures réalisées, de (303 à 363) K et jusqu'à 2.7 MPa, une incertitude minimale sur la masse volumique de ± 0.01 kg.m⁻³.

Marriott et al. (1999)^[99MAR] publient une méthode expérimentale continue. La période de vibration du tube est mesurée en fonction du temps. Une solution d'eau pure circule en flux continu dans le tube vibrant et fournit une ligne de base de la période. Des échantillons des fluides de référence et des échantillons du fluide à étudier sont injectés. L'expérimentateur attend que la période de vibration soit revenue à sa ligne de base entre deux injections. La différence de variation de période entre un échantillon de référence et un échantillon de mesure permet d'en déduire la différence de densité entre ces deux fluides.

Ihmels et al. (2000-2001)^{[00IHM],[01IHM]} publient deux articles qui présentent un appareillage de densimétrie piloté par ordinateur. La pression est imposée à l'aide d'une cellule à volume variable avec un piston à tige filetée reliée à un moteur. La température est régulée par des thermostats. L'appareil est opérationnel pour des températures de (298 à 523) K et une pression de 10 MPa dans la première publication, puis de (273 à 623) K jusqu'à 40 MPa dans la seconde. Les mesures sont réalisées à température et pression constantes, par paliers successifs.

Bouchot et Richon (2001)^[01BOU] présentent des résultats sur une méthode semi empirique de détermination de la masse volumique en fonction de la période. Cette technique permet d'une part de diminuer le nombre de fluides de référence en réalisant une étude mécanique sur la déformation du tube en fonction de la température et de la pression. D'autre part, un nouveau protocole de mesure aboutit à l'obtention d'un nombre important de données (près de 3000 points de mesures par heure) pour une température donnée. Cette méthode, utilisée au cours de ce travail, est détaillée au chapitre 2.6.3.

2.4 Installations expérimentales utilisées

La première partie du travail de thèse a consisté en l'étude d'une installation existante de densimétrie basée sur un tube vibrant DMA 512 de Anton Paar. Dans un second temps, cette analyse a permis de définir une nouvelle installation à partir d'une cellule DMA 512 P dont les caractéristiques permettent des mesures sur des produits corrosifs.

2.4.1 L'installation expérimentale avec une cellule DMA 512

Cet appareil, initialement développé par Bouchot (1995)^[95BOU] a été légèrement modifié par la suite lors du travail de Naydenova-Benmansour (1999)^[99NAY].

La cellule DMA 512 est un tube en acier inoxydable T304 (Z6-CN 18 10) qui permet des mesures dans des conditions de températures de (253 à 423) K et de pressions jusqu'à 40 MPa.

Le tube vibrant (3) possède une double paroi dans laquelle circule un fluide thermostaté (6). Un orifice entre les deux branches en U crée un puit thermostatique dans lequel une sonde de platine (11) mesure la température du tube vibrant. La cellule DMA 512 est commercialisée en étant solidaire de son électronique de mesure comme le montre la photo de la figure 2.5. Dans le cas de cet appareil, l'électronique (16) est déportée de la cellule qui est plongée dans le bain principal (15). La cellule (3) est alors fixée à une masse externe elle-même fixée sur un mur porteur afin de remplacer la masse de référence initialement disposée dans le bloc de l'électronique.

L'utilisation d'un bain principal dans lequel le tube vibrant est plongé permet de contrôler avec précision la température du fluide aux abords du tube. De plus, une différence de température peut être imposée entre le tube vibrant et la ligne d'entrée afin de garantir le début des transitions de phases au sein du tube vibrant.

Le fluide étudié (corps pur ou mélange) est introduit initialement dans une cellule de chargement à volume variable (1). A l'ouverture de la vanne de la cellule de chargement (1b), le débit du fluide est régulé à l'aide d'une vanne de précision couplée à une vanne d'arrêt (2a et 2b).

Un serpentin (4) garantit la température en entrée du tube vibrant. En sortie du tube, 3 circuits peuvent se distinguer :

- le circuit de mesure de pression
- le circuit de mise sous vide
- le circuit d'échappement et de purge

Figure 2.5 : Schéma du dispositif expérimental DMA 512

La mesure de pression est composée de trois capteurs de pression (8) directement reliés à la sortie du tube vibrant. L'intérêt d'utiliser trois capteurs de gammes différents est d'obtenir une précision importante sur un domaine de mesure large (de 0 à 40 MPa). Les capteurs de pression sont calorifugés et maintenus à une température de 373 K. De même la ligne en sortie du tube vibrant est calorifugée et peut être chauffée pour avoir une température supérieure à celle du tube vibrant.

Un piquage sur la ligne en sortie du tube vibrant, relié à une double vanne, permet l'utilisation d'une pompe à vide (9) et la re-direction du fluide vers une cellule de purge (10) ou vers une hotte d'évacuation (5). Une vanne de précision (7b) couplée à une vanne d'arrêt (7a) autorise une régulation du débit d'échappement. La cellule de purge a un volume de l'ordre de 3 fois celui du tube vibrant et du circuit amont, à savoir $\approx 8 \text{ cm}^3$. Lors de la compression d'un fluide en phase gaz, la transition de phase se caractérise par la formation de gouttelettes que l'on essaye de produire, pour les toutes premières, à l'intérieur du tube vibrant par un différentiel de température entre tube vibrant et reste du circuit. Les gouttelettes formées ont des compositions différentes de celle de la phase vapeur dont elles sont issues et qui dépendent de la pression (en fait de l'équilibre liquide-vapeur). Ainsi lorsque tout le circuit contiendra une phase liquide (obtenue par compression de la phase vapeur par du liquide homogène au dessus de sa pression de bulle, via la cellule de chargement 1) ce liquide sera en partie inhomogène en composition due à la condensation de la phase vapeur sur un large domaine de

pression. La cellule de purge servira à balayer le tube vibrant avec du produit homogène provenant de la cellule de chargement et ainsi à supprimer les gradients de composition.

L'appareillage ainsi défini permet d'obtenir des mesures de période de vibration du tube en fonction de la température et de la pression. Les mesures sont réalisées à température constante en faisant varier de façon continue la pression. Les périodes de vibrations mesurées peuvent ensuite être converties en masses volumiques.

2.4.2 L'installation expérimentale avec une cellule DMA 512 P

Une nouvelle cellule, DMA 512 P, a été développée par Anton Paar pour réaliser des mesures dans des conditions de pression jusqu'à 70 MPa et de température de (253 à 423) K. Au-delà de l'augmentation de pression par rapport à la cellule DMA 512, la cellule est constituée d'hastelloy C276 qui lui garantit une résistance à de nombreux produits corrosifs tels que le sulfure d'hydrogène (H₂S), même en présence d'eau.

Au niveau de la structure de l'installation complète, la principale différence entre les deux installations concerne le choix de ne pas désolidariser le tube vibrant de son socle principal.

Le bain principal ne contient plus que les éléments du circuit autre que le tube vibrant comme le montrent les figures 2.6 et 2.7. Une attention particulière est alors portée sur l'isolation thermique du tube vibrant. Afin de diminuer au maximum la partie des lignes d'entrée et de sortie (16), située en dehors du bain principal, la cellule DMA 516 P est disposée juste au dessus du couvercle de ce bain.

En cours de manipulation, la partie de l'installation qui contient le fluide étudié est délimitée par les deux vannes de précision (vannes de dosage) avec lesquels les débits d'admission et d'échappement du fluide sont réglés. Aussi, contrairement à l'ancienne installation, tout le circuit compris entre ces vannes a été intégré à l'intérieur du bain principal. Cette modification permet de maîtriser parfaitement la température du fluide mesuré depuis l'admission (2) jusqu'à l'échappement (7). La vanne de dosage de sortie a donc été déplacée avant le piquage vers la pompe à vide.

Les capteurs de pression sont fixés sur le couvercle du bain principal de façon à être à la même hauteur que le tube vibrant. Le principe de trois capteurs avec des gammes d'utilisation différentes est conservé et adapté aux nouvelles conditions de pressions. Les capteurs couvrent les domaines (0-0.25, 0-5 et 0-40) MPa et peuvent supporter une pression de charge entre 150 et 200 % de la limite supérieure.

Le principe de chargement a été conservé avec la cellule à volume variable connectée à un fluide sous pression. De même, en sortie du circuit, un vanne trois voies permet d'une part de connecter une pompe à vide (9) et d'autre part de diriger le fluide vers une hotte d'extraction ou un produit de neutralisation (10). Il est à noter que la cellule de purge présentée dans l'installation précédente a été retirée, mais l'opération de purge du circuit a été maintenue dans le protocole comme indiqué dans la partie suivante.

Figure 2.6 : Schéma de l'appareillage de densimétrie DMA 512P

Figure 2.7 : Photo de l'installation DMA 512 P

Pour des questions de sécurité et compte tenu de la capacité de l'appareil à accepter des très hautes pressions (70 MPa), un disque de rupture (5) (Caractéristique du disque) calibré à 82 MPa, a été introduit. Afin de réduire au maximum les volumes du circuit toutes les lignes sont de taille 1/16^{ème} de pouce.
Des mesures sur le fluide de référence R134a (1,1,1,2 tetrafluoroéthane) et sur le système CO_2 - C_2H_6 (dioxyde de carbone – éthane) ont été réalisées sur l'ancienne et la nouvelle installation.

A gauche : DMA 512 – A droite : DMA 512 P

La figure 2.8 montre une partie d'une isotherme liquide du binaire entre 6 et 13 MPa. Cette comparaison graphique met en avant la dispersion des mesures et montre l'amélioration apportée par la nouvelle installation (dispersion divisée par 10). A titre d'exemple, seules les mesures sur le binaire sont présentées, mais les mêmes résultats sont observées sur les mesures du corps purs R134a. Cependant, cette amélioration de la dispersion n'a pas un impact aussi important sur les incertitudes des masses volumiques. En effet, pour réduire le nombre de données obtenues avec l'une ou l'autre des deux installations, une moyenne des points de période et de pression est effectuée sur un faible intervalle. Cette moyenne permettait de « gommer » l'effet de dispersion sur l'ancienne installation.

L'écart de température entre les phases gaz et liquides, due à la régulation fine des deux bains, a été supprimé en laissant le tube vibrant, solidaire de son électronique, en dehors du bain principal. En effet, le protocole de mesure impose une différence de température entre le tube vibrant et le reste du circuit pour garantir la formation initiale de transition de phases au sein du tube. La figure 2.9 montre l'influence du bain principal sur l'installation DMA 512.

Figure 2.9 : Régulation de température sur l'installation DMA 512

Sur la nouvelle installation, la température du tube vibrant n'est plus influencée par celle du bain principal et, en conséquence, il est plus facile de conserver la même température dans le tube vibrant et ce pour l'étude des phases gaz et liquide.

La figure 2.10 regroupe trois isothermes du R134a réalisées à 293 K. La reproductibilité du rapport « $\frac{\tau}{\tau_0}$ » confirme la cohérence des résultats produits par l'appareil à des dates différentes. En utilisant les données du mois de mai comme référence, les données de juin et de juillet montre un écart sur les périodes de l'ordre de ± 4.10⁻⁸s sur les deux phases.

Figure 2.10 : Isothermes de R134a à 293 K

2.4.3 Protocole de mesure

Le protocole de mesure est divisé en plusieurs étapes. La première concerne la préparation du produit à mesurer (corps pur ou mélange). La seconde correspond à la mesure de la phase gaz et la dernière à la mesure de la phase liquide après une étape intermédiaire de purge du circuit.

La préparation du fluide à mesurer consiste à l'introduire dans la cellule de chargement et à le pressuriser. La cellule de chargement est une cellule à volume variable (voir photo, figure 2.11).

Figure 2.11 : Photo de la cellule de chargement à volume variable

Avec les corps purs, seules les considérations concernant la nature du joint polymère du piston de la cellule sont à prendre en compte. Il existe pour cela des tables de compatibilité entre les polymères et les types de composés. En fonction des produits utilisés deux types de joints ont été nécessaires lors de ce travail :

- Des joints « Viton » (H₂S, Réfrigérants)
- Des joints « Nitrile » (CO₂, Hydrocarbures)

Un mauvais choix de matière se caractérise principalement par l'une des deux conséquences suivantes : un gonflement ou une dislocation du joint qui induit des fuites (pollution des corps purs par passage du fluide de pressurisation, modification de composition des mélanges). Dans le cas des systèmes mixtes (H₂S, Hydrocarbures), des joints Viton ont été utilisés. Par contre, pour éviter un gonflement du joint par les hydrocarbures, le mélange n'était pas conservé dans la cellule de chargement plus de deux jours.

Dans le cas de la préparation d'un mélange à partir de plusieurs sources de produits purs, il convient de suivre le protocole mis en place par Galicia-Luna et al. (1994)^[94GAL] qui propose de charger les composés en fonction de leur volatilité croissante. Une fois la cellule chargée, cette dernière doit être mise sous une pression supérieure à la pression de bulle du mélange et agitée. Le fluide contenu dans la cellule reste homogène sans autre agitation nécessaire tant que la pression est maintenue. Cette condition d'homogénéité est une des limites de l'appareillage. En effet, dans le cas de mélange contenant des gaz difficilement condensables tel que l'air, des pressions importantes seront nécessaires et une cellule adaptée devra être utilisée.

Figure 2.12 : Schéma simplifié de l'appareillage de densimétrie DMA 512P

Une pompe à vide est connectée au circuit (9). Le vide est réalisé au sein du circuit par ouverture de toutes les vannes comprises entre (9) et (2a). Un vide primaire est suffisant, et une période de vibration stable pendant 10 minutes suffit. Cependant, les mesures étant

commencées souvent en début de journée, le vide était réalisé régulièrement pendant toute une nuit de façon à diminuer soigneusement la présence éventuelle de traces d'autres produits mesurés précédemment.

Le bain régulant la température du tube vibrant (6) est réglé pour correspondre à la mesure voulue. La température du bain principal (15) est définie avec une température supérieure de l'ordre de 0.5 à 1 K par rapport au tube vibrant. Cette différence permet de garantir la formation de la première goutte de condensation au sein du tube vibrant légèrement plus froid que le reste du circuit. La cellule (1) précédemment chargée est connectée à l'entrée du circuit (1b). Le vide est alors réalisé jusqu'à la cellule par ouverture de la vanne (2a). Puis les vannes (2a, 2b, 7a, 7b et 8) sont fermées.

La procédure de mesure de la phase gaz commence par l'ouverture des vannes tout ou rien (1b et 2a). La vanne (2b) est ouverte très progressivement afin d'obtenir un débit de produit équivalent à une évolution de pression inférieure ou égale à 0.005 MPa/s. Cette valeur correspond à la limite au-delà de laquelle le fluide ne peut plus être considéré dans un pseudoétat thermodynamique stable et des considérations cinétiques devraient intervenir. Pour de plus amples informations, le lecteur pourra se référer au travail de thèse de Bouchot (1995)^[95BOU]. L'acquisition en continue (toutes les 3 secondes en moyenne) des données de température, pression et période, permet de suivre et de contrôler la vitesse de montée en pression du système. La partie de mesure de la phase gaz s'arrête à partir de l'observation d'une variation irrégulière de la période de vibration significative d'une transition de phase (Figure 2.13). Cette variation nette dans l'évolution de la période s'effectue sur un palier de pression pour un corps purs et de façon beaucoup moins régulière pour un mélange.

Une fois la transition de phases commencée, l'ouverture des vannes (7a et 7b) permettra de vider légèrement le tube vibrant et surtout d'imposer la pression en cours jusqu'à la vanne (10). L'étape suivante concerne la mesure de la phase liquide. Pour liquéfier totalement la vapeur contenue dans le tube vibrant, il faut augmenter la pression par ajout de produit (ouverture de la vanne 2b). La conséquence de cette transformation est une augmentation importante de la pression et une surveillance particulière doit être apportée aux limites d'utilisation des capteurs de pression. Lorsque le changement de phase se produit à une pression proche de la limite d'utilisation d'un des capteurs de pression, l'augmentation brutale de la pression en phase liquide peut détruire le capteur si ce dernier n'est pas isolé à temps.

Figure 2.13 : Isotherme du CO₂ à 293 K – DMA 512P

Lors de la transition de phase, des gradients de composition locaux ont pu se créer et il convient de les éliminer avant la mesure de la phase liquide. Ils peuvent en effet induire des erreurs sur les mesures de la masse volumique du fluide. Cette phase est appelée purge du circuit. L'ouverture de la vanne (10) permet de vider une partie du circuit caractérisée par une chute de pression. A l'inverse, l'ouverture de la vanne (2b) permet de remplacer le liquide échappé par du produit homogène sortant de la cellule de chargement (montée de pression). Plusieurs cycles de descentes et montées de pression sont réalisés successivement. Le fluide est considéré homogène dans l'ensemble du circuit lorsque la réponse du tube vibrant est la même (à une pression donnée) lors des descentes et en montées de pression (cf. figure 2.14). Lors de cette phase de purge, une attention particulière doit être portée de façon à ce que le système ne se retrouve pas de nouveau en équilibre liquide-vapeur (pression inférieure à la pression de bulle) car une nouvelle transition de phases implique de nouvelles purges.

<u>Figure 2.14 : Purges du circuit</u> A gauche : Sauts successifs de pression A droite : Evolution de la période au cours des purges successives.

Cette méthode de purge a été préférée à l'utilisation d'une cellule de purge comme dans le cas de l'installation DMA 512, car l'expérimentateur se rend compte visuellement de la fin de la purge.

La pression maximale de mesure souhaitée est atteinte à l'aide de la vanne (2b). Les vannes (1b, 2a et 2b) sont fermées. La température du bain principal est modifiée pour être entre (0.5 et 1) K au dessous de la température du tube vibrant. Dans ce cas, le tube vibrant qui aura une température légèrement plus élevée que le reste du circuit sera le lieu le plus propice à la première bulle de vaporisation. Tout comme pour la phase gaz, la mesure de la phase liquide nécessite des variations de pression inférieures à 0.005 MPa/s. Ces variations sont imposées et contrôlées à l'aide de la vanne dosimétrique (7a). L'étude de la phase liquide est terminée lorsque le point de bulle est atteint et qu'une variation significative de la période indique une transition de phase.

Il n'est pas rare d'observer une phase liquide pour une pression inférieure à la pression de bulle qui représente normalement la transition de phase. Cette phase liquide est dans un état métastable (figure 2.15) qui par définition n'est possible que lors d'une grande stabilité. En effet, dans un tel état, une légère perturbation du tube vibrant (choc par exemple) peut amorcer une transition de phase brutale.

2.5 Etalonnage et incertitudes des mesures

Un des aspects primordiaux de toute mesure expérimentale est la confiance qui peut être accordée à la valeur mesurée. Cette confiance se caractérise par une incertitude de mesure indiquée par le symbole ±. Les questions de métrologie sont gérées au niveau national depuis janvier 2005² par le LNE (Laboratoire National d'Essai) rebaptisé Laboratoire National de métrologie et d'Essai après avoir repris les misions du BNM (Bureau National de Métrologie). A un niveau international, un des organismes de référence est le NIST (National Institute of Standards and Technology) (standards américains).

Dans ce travail, les résultats sont indiqués conformément aux recommandations du NIST, à savoir :

$X = A \pm \sigma_A$

Où, X, représente la grandeur recherchée A, la valeur numérique avec un nombre chiffres significatifs cohérent avec l'incertitude associée σ_A , l'incertitude de mesure (écart-type)

La partie du travail qui consiste à déterminer l'incertitude des mesures via les capteurs utilisés

correspond à l'étalonnage. Cet étalonnage dépend du type de capteur (température, pression, déplacement, ...) mais suit une même logique : comparer les valeurs mesurées par le capteur (valeurs lues) à celles mesurées par une « sonde de référence » (valeurs vraies) dans les mêmes conditions. En fait, la sonde de référence n'est rien de plus qu'un autre capteur, plus précis, qui aura été au préalable étalonné par un laboratoire certifié tel que le LNE.

² Les Pouvoirs Publics ont confié, par décret 2005-49 paru au JO du 27 janvier, la responsabilité de la métrologie française au LNE.

2.5.1 Mesures de température

Les sondes de température, de type PT 100, sont étalonnées à partir d'un "thermomètre à résistance de platine" de marque TINSLEY et de type 5187 SA. Un ohmmètre de type

Figure 2.16 : Bloc d'étalonnage des températures

HP34420A, relié à la sonde de référence, permet de mesurer la résistance de cette dernière, convertie en température en suivant le protocole du certificat d'étalonnage fourni par le LNE (Certificat n° A040166). Les sondes à étalonner sont disposées autour de la sonde de référence dans un bloc en laiton comme montré sur la figure 2.16. Ce bloc joue le rôle de conducteur thermique et permet ainsi de garantir que les sondes en périphérie sont à la même température que la sonde de référence. Une condition de stabilité de température d'au moins 90 s est nécessaire correspondant au temps d'inertie dû à la présence du bloc en laiton. En fonction des gammes de températures, deux fluides caloporteurs sont utilisés : l'éthanol (253 à 288) K et l'eau déminéralisée (278 à 363) K.

Les sondes sont reliées à l'appareil d'acquisition HP34970A utilisé lors des mesures expérimentales afin de tenir compte des éventuels facteurs liés à la ligne d'acquisition. Enfin, des mesures de températures sont effectuées tous les 10 K en

montée et descente de température de façon à détecter un éventuel phénomène d'hystérésis. La seule sonde qui nécessite une mesure précise est celle du tube vibrant. Les résultats d'étalonnage sont traités à l'aide d'un polynôme du 1^{er} degré :

 $T_{\text{Tube vibrant}} = (0.9977.t_{\text{Lue}} - 1.41) + 273.15$ où « T » est la température exprimée en K et « t » en °C.

L'incertitude sur la température est de \pm 0.01 K comme le montre la figure 2.17. Aucun phénomène d'hystérésis n'est observé.

La régulation de température du circuit est assurée par une tête de type LAUDA RE206 pour le tube vibrant et de type HUBER Variostat P1-C50P pour le bain principal. L'incertitude sur la température, liée à la régulation, est estimée à \pm 0.01 K et en conséquence, l'incertitude globale sur les mesures de température est estimée à \pm 0.02 K.

Figure 2.17 : Etalonnage de la sonde de température du tube vibrant \diamond : Descente de température - \blacklozenge Montée de température

La sonde de température du bain principal présente la même incertitude avec la relation de correction d'étalonnage suivante :

 $T_{\text{Tube vibrant}} = (0.9976.t_{\text{Lue}} - 1.43) + 273.15$ où « *T* » est la température exprimée en *K* et « *t* » en °*C*.

Le graphique de dispersion lors de l'étalonnage n'est pas présenté ici car cette sonde ne sert que d'indication de différence de température entre le tube vibrant et le bain principal. Elle n'intervient pas dans les résultats finaux.

2.5.2 Mesures de pression

Les capteurs de pressions, de type DRUCK PTX 611, sont étalonnés à partir de deux appareils : une balance à poids mort (Desgranges et Huot modèle 5202S) pour les pressions supérieures à 0.3 MPa et un étalon numérique (Desgranges et Huot modèle 24610) pour les pressions inférieures à 0.6 MPa. Les appareils sont certifiés par Desgranges et Huot, société habilitée par un organisme national.

Le principe de fonctionnement de chacun des deux étalons est décrit en Annexe 1. Pour plus de clarté, seul le principe général commun aux deux appareils sera décrit ici. Les capteurs de pression sont disposés sur l'appareillage et mis à température (373 K dans le cadre de ce travail). Comme la réponse des capteurs peut varier en fonction de la température, il est préférable de les laisser à température constante et donc, de les étalonner dans ces conditions. La balance à poids mort, ou l'étalon numérique, est connectée à l'entrée du circuit à la place de la cellule de purge de façon à représenter au mieux les conditions de mesure. Une pression est imposée dans le circuit à l'aide d'une bouteille d'azote ou d'air reliée à l'étalon. Lorsque la pression est stabilisée, une vingtaine de points de mesures sont enregistrés par un ordinateur relié à l'appareil d'acquisition HP34970A. L'opération est répétée pour différentes pressions

en suivant le même principe que pour les températures, à savoir en montée et descente de pression de façon à vérifier ou non la présence d'hystérésis.

Les données des capteurs sont traitées avec un polynôme d'ordre 2 sur l'ensemble des mesures : les résultats obtenus avec l'étalon numérique et la balance à poids morts sont cumulés pour les capteurs 40 et 5 MPa. Les coefficients d'étalonnage et les résultats après correction sont représentés sur la figure 2.18. Les capteurs présentent des incertitudes de (\pm 0.002, \pm 0.0008 et \pm 0.0005) MPa pour les capteurs des gammes respectives (0-40, 0-5 et 0-0.2) MPa.

	Gamme	Etalonnage
	[MPa]	[MPa]
a	0-40	$4.7.10^{-7}$.P ² + 0.997.P + 0.005
b	0-5	$5.7.10^{-6}$.P ² + 0.9950.P - 0.0016
	0-0.2	9.2.10 ⁻⁵ .P ² + 0.9955.P -0.00039

Figure 2.18 : Etalonnage des capteurs de pression

Abscisses : P_{vraie} [MPa] – -Ordonnées : P_{cal}. – P_{vraie} [MPa] □ : Descente de pression - ◆ : Montée de pression

2.5.3 Mesures de composition

Les mélanges sont réalisés par pesées successives comme décrit par Galicia-Luna et al. $(1994)^{[94GAL]}$. Une balance analytique de type Sartorius AG Göttingen CC3000 permet d'avoir une précision sur les pesées de $\pm 10^{-3}$ g. L'incertitude recherchée concerne la composition molaire du mélange. Les méthodes de propagation d'erreurs utilisées en métrologie permettent d'estimer cette incertitude sur chaque composé « i », à partir de la relation :

$$\sigma_{ni} = \frac{\sigma_{p.}M_{i}}{\sum_{j} m_{j.}M_{j}} + \frac{\sum_{j} \sigma_{p.}M_{j}}{\sum_{j} m_{j.}M_{j}}$$

Où, σ_{ni} est l'incertitude sur la composition de l'élément i σ_p est l'incertitude sur chaque pesée (10⁻³g) M_i est la masse molaire de l'élément i m_i est la masse introduite de l'élément i La valeur moyenne d'incertitude constatée est de $\pm 2.10^{-4}$ sur les fractions molaires.

2.5.4 Mesures de période

Les mesures de période ne nécessitent pas d'étalonnage au sens présenté précédemment. Ces valeurs sont converties en masses volumiques et les masses volumiques sont directement étalonnées à partir d'un ou plusieurs fluides de référence (phase décrite dans le paragraphe 2.6). Cependant, pour avoir une notion de l'incertitude sur la période, des mesures ont été réalisées sous vide. Les données ont été triées pour ne conserver que des valeurs avec une incertitude de mesure en température en pression inférieures aux précisions des capteurs. Le résultat montré sur la figure 2.19 présente une dispersion des périodes de l'ordre de $\pm 10^{-8}$ s.

2.6 Conversion des périodes mesurées en masses volumiques.

L'utilisation d'une cellule de type DMA nécessite une conversion des périodes mesurées en masses volumiques. Historiquement, des relations simples sont d'abord apparues, puis ces dernières se sont compliquées au fur et à mesure du besoin d'une plus grande précision. Trois types de conversion sont présentés dans ce chapitre. Les méthodes dites « classiques » utilisent des polynômes de faibles degrés. Bouchot et Richon (2001)^[01BOU] développent une méthode semi empirique basée sur l'étude du comportement mécanique du tube vibrant. Ce travail, principalement réalisé lors de la thèse de Bouchot (1995)^[95BOU] au sein du laboratoire est étudié ici. Enfin, une méthode basée sur l'utilisation de réseaux de neurones est présentée.

2.6.1 Principe de l' « étalonnage en période »

Ce paragraphe vise à faciliter la compréhension des méthodes présentées par la suite. En effet, le principe général de l'étalonnage en période est sensiblement identique aux étalonnages des autres capteurs : comparer la valeur lue à une référence pour en déduire la valeur vraie.

Cependant, dans le cas de la période, la référence n'est pas utilisée pour définir la valeur vraie de la période, mais pour définir la valeur vraie de la masse volumique. La période est intialement convertie en masse volumique. L'étalonnage consiste alors à définir les paramètres de la formule de conversion pour transformer la valeur lue de la période en valeur vraie de masse volumique. Les références sont alors des fluides dont la masse volumique est parfaitement connue.

La masse volumique étant dépendante de la température et de la pression, la formule de convertion en est également dépendante. Le principe initial de l'étalonnage en période consiste à réaliser des mesures à température et pression constante et à utiliser deux fluides de références pour relier les valeurs de périodes en masses volumiques. Toute période comprise dans l'intervalle étalonné pourra alors être convertit en masses volumiques. Différentes méthodes qui se basent sur des formules de conversion différentes sont présentées dans les paragraphes suivants.

2.6.2 Les méthodes classiques

L'élément principal du densimètre à tube vibrant est un tube en U fixé à ses extrémités dans une masse immobile. La partie en U du tube est soumise à une excitation magnétique. La période de vibration du tube est alors fonction de sa masse (masse propre m_0 et masse du fluide introduit). Un modèle mécanique simple (masse liée à un ressort – *Cf.* figure 2.20) peut représenter le tube vibrant. Ce modèle permet d'obtenir une relation entre la masse du tube et sa période de vibration :

$$\tau = 2.\pi \cdot \sqrt{\frac{M}{K}}$$

Avec, τ: période de vibration du tube
 M: masse totale du tube (avec le fluide)
 K: Raideur du ressort équivalent

Une relation directe est déterminée entre en la période de vibration du tube et la masse volumique ρ du fluide, à condition de connaître quelques grandeurs (volume du tube V_i, masse propre du tube M₀, raideur du tube K), en posant M = M₀ + ρ .V_i.

$$\tau = 2.\pi \cdot \sqrt{\frac{M_0}{K} + \rho \cdot \frac{V_i}{K}}$$
(Eq. 2.21)

Cette technique est utilisée par de nombreux laboratoires. Des différences interviennent alors dans la détermination des paramètres du tubes vibrant : V_i , M_0 et K.

Figure 2.20 : Schéma représentant le modèle mécanique du tube vibrant

2.6.2.1 Méthode discrète

Cette méthode consiste en l'utilisation de deux fluides de référence dont les propriétés volumétriques sont bien connues, généralement l'eau et l'azote, et encadre les valeurs du fluide mesuré. En écrivant la relation (2.21) pour chacun des deux fluides, à température et pression fixés, on obtient deux équations à deux inconnues $\left(\frac{M_0}{K} \operatorname{et} \frac{V_i}{K}\right)$. Le protocole expérimental impose alors de réalisé une mesure des deux fluides étalons pour chaque mesure du fluide étudié à température et pression constante. La résolution numérique du système permet d'en déduire les valeurs des deux inconnues $\left(\frac{M_0}{K} \operatorname{et} \frac{V_i}{K}\right)$ et donc de calculer la masse volumique du fluide étudié.

2.6.2.2 Méthodes continues

Les méthodes continues permettent de conserver le sens physique des paramètres en définissant des fonctions $V_i(P, t)$, K(P,t). La relation (1) s'écrit alors :

$$\tau^{2}(\mathbf{P},t) = 4.\pi^{2}.(\frac{M_{0}}{K(\mathbf{P},t)} + \rho(\mathbf{P},t)*\frac{V_{i}.(\mathbf{P},t)}{K(\mathbf{P},t)})$$
(Eq. 2.22)

Dans les premiers temps, une approche empirique permettait de postuler des formes mathématiques aux fonctions V_i et K. Lagourette et al. (1992)^[92LAG] proposent une méthode de ce principe avec de l'eau comme fluide de référence et le vide.

Afin de conserver le caractère physique du problème, Bouchot et Richon (2001)^[01BOU] développent une formulation semi empirique dans laquelle ces fonctions ont été formulées à partir des lois de la mécanique. Cette approche est expliquée dans le paragraphe suivant.

2.6.3 Modèle d'étalonnage semi empirique FPMC (Forced Path Mechanical Calibration model)

2.6.3.1 Détail

Ce modèle est basé sur une étude mécanique des déformations du tube vibrant en fonction de la pression et de la température. La forme initiale de la relation est basée sur les équations (2.21 et 2.22) écrites en fonction du rapport $\frac{\tau^2}{\tau_0^2}$:

$$\rho = \left(\frac{\mathbf{M}_0}{\mathrm{Vi}}\right) \cdot \left(\frac{\mathbf{K}}{\mathbf{K}_0} \cdot \frac{\tau^2}{\tau_0^2} - 1\right)$$

Le volume V_i est écrit comme le produit de la section du tube par sa longueur. En considérant une longueur de référence notée L_{00} , longueur initiale du tube pour une température de 273.15 K (0°C) et une pression de 0 MPa, la dilatation et l'expansion du tube est déterminée par les lois de la mécanique à partir du coefficient de dilatabilité linéique α et le coefficient d'expansion γ_t . L'expression précédente de la masse volumique s'écrit :

$$\rho = \left(\frac{M_0}{L_{00}} \cdot \frac{1}{\pi \cdot r_i^2 \cdot \exp\left(\int_0^t \alpha(t)dt + \gamma_t \cdot P\right)}\right) \cdot \left(\frac{K}{K_0} \cdot \frac{\tau^2}{\tau_0^2} - 1\right)$$

La raideur du tube peut être définie proportionnellement au moment d'inertie I, et inversement proportionnellement au cube de la longueur L du tube. Les considérations géométriques du tube et le théorème d'Huygens appliqué au tube vibrant impliquent que le moment d'inertie est proportionnel à la différence entre les valeurs des rayons externe et interne du tube élevées à la puissance 4. L'expression finale proposée par Bouchot et Richon $(2001)^{[01BOU]}$ s'écrit :

$$\rho = \left(\frac{M_0}{L_{00}} \cdot \frac{1}{\pi \cdot r_i^2 \cdot \exp\left(\int_0^t \alpha(t)dt + \gamma_t \cdot P\right)}\right) \cdot \left(\frac{\Delta r^4}{\Delta r_0^4} \cdot \exp\left(-3 \cdot \gamma_t \cdot P\right) \cdot \frac{\tau^2}{\tau_0^2} - 1\right)$$

Toute la difficulté réside alors dans la détermination des valeurs des rayons internes et externes du tube vibrant en fonction de la température et de la pression. En considérant des déformations tangentielles et radiales au sein du matériau, le calcul des rayons peut s'exprimer à partir du module de Young E, du cœfficient de Poisson v, de la dilatabilité linéique α et des valeurs nominales des rayons.

La détermination des deux derniers paramètres $\frac{M_0}{L_{00}}$ et γ_t correspond à l'étalonnage du tube vibrant. D'un point de vu pratique, ces paramètres sont ajustés sur des données d'un seul fluide de référence pour toute la gamme de pression d'étude, à température constante. Cette méthode permet alors de mesurer les propriétés volumétriques des fluides purs dont le comportement des propriétés volumétriques est proche du fluide de référence. Lors de l'étude de cette étude, le fluide de référence choisi est un réfrigérant dont une équation d'état dédiée précise existe : le R134a. Ce dernier présente des propriétés de masses volumiques et de point critique élevés. Tillner Roth et Baehr (1993)^[93TIL] en proposent une équation d'état dédiée qui permet d'estimer les masses volumiques avec une précision de 0.05%.

La méthodologie de l'étalonnage du tube vibrant est schématisée sur la figure 2.23. Conformément à Bouchot et Richon $(2001)^{[01BOU]}$, une isotherme du fluide de référence est réalisée pour chaque nouvelle température. Une méthode numérique permet de modifier les valeurs des paramètres d'étalonnage en minimisant une « fonction objectif », F_{OBJ}, basée sur la différence entre les masses volumiques calculées d'une part par la méthode FPMC et d'autre part par l'équation d'état dédiée.

Figure 2.23 : Schéma récapitulatif de l'étalonnage du tube vibrant

2.6.3.2 Application aux installations DMA 512 et DMA 512 P

Le tableau 2.24 regroupe les relations de calcul des paramètres mécaniques pour les deux tubes vibrants qui sont constitués de matériaux différent.

DMA 512 P – Hastelloy C270 **
$v_0 = 0.307$
$E(T) = 1.88 \cdot 10^{6} + 1.174 \cdot 10^{6} \cdot \left(\frac{1}{\exp\left(\frac{T-273.15}{298.15}\right)} \cdot 1\right) - \frac{1}{\exp\left(\frac{T-273.15}{T}\right)} \cdot 1$
$\alpha_0 = 1.144.10^{-5} + 9.697.10^{-7}.(T-273.15) -1.655.10^{-11}.(T-273.15)^2 + 2.334.10^{-14}.(T-273.15)^3$
0.1073 - 0.1588

<u>Tableau 2.24 : Propriétés nécessaires pour l'utilisation de la méthode FPMC</u> ^{*} Paramètres utilisés par Bouchot (1995)^[95BOU] ^{**} Paramètres utilisés par de la Rosa Vidal (2002)^[02ROS]

En fait, une deuxième référence est utilisée dans la méthode FPMC : la période sous vide. Compte tenu de la précision des périodes du densimètre DMA 512, Bouchot (1995)^[95BOU] a

montré que la valeur de la période sous vide peut être obtenue avec un simple vide primaire et non un vide secondaire plus poussé. Dans la nouvelle installation, l'amélioration de la mesure de la période conduit à vérifier les remarques de Bouchot. Deux méthodes de détermination de la valeur de la période sous vide sont illustrées sur la figure 2.25. La première méthode consiste à déterminer la limite de l'évolution de la période en fonction de la pression. Un polynôme de degré 3 est ajusté sur les points déterminés jusqu'à une pression de 0.1 MPa.

<u>Figure 2.25 : Comparaison de deux méthodes de mesure de la période sous vide à 303 K</u> Gauche : Limite par ajustement d'un polynôme de degré 3 sur des données du R134a Droite : Moyenne des points mesurés à basse pression (vide primaire)

La deuxième méthode est une moyenne de points mesurés sous un vide primaire réalisé par une pompe à vide AEG de type LN38066008. Les deux valeurs de vide ont une différence de 5.10^{-9} s, différence inférieure à la précision de mesure du tube vibrant estimée à 10^{-8} s. Cet exemple confirme alors les remarques de Bouchot et un simple vide primaire est également suffisant pour la nouvelle installation DMA 512 P.

Enfin, une dernière remarque concerne le paramètre de pression γ_t pris constant par Bouchot (1995)^[95BOU] sur le DMA 512. De la Rosa Vidal (2002)^[02ROS] définit un paramère linéaire en fonction de la pression ($\gamma_t = \gamma_{t1} + \gamma_{t2}$.P) sur un travail utilisant un DMA 512P pour des mesures jusqu'à 70 MPa. Dans le dernier cas, cela crée un paramètre ajustable supplémentaire. Or, au vu des mesures réalisées dans ce travail (< 40 MPa), cette solution n'a pas été retenue et une valeur constante (pour chaque étalonnage) du paramètre γ_t a été conservée.

2.6.3.3 Réflexions sur la méthode FPMC : vers un étalonnage complet

La méthode FPMC apporte un gain de temps non négligeable par rapport aux méthodes classiques car seul un fluide de référence est nécessaire. L'autre référence étant le vide, le temps de mesure du second fluide de référence est économisé. Cependant, une isotherme du fluide de référence est préconisée à chaque changement de température car les paramètres ajustables M_0/L_{00} et γ_t , qui devraient par définition être constants, absorbent les incertitudes des autres paramètres et surtout les « imperfections » de la méthode FPMC. En effet, cette méthode ne permet pas un étalonnage « unique » du tube vibrant pour toute température.

A titre d'exemple, les valeurs des paramètres obtenus pour différentes températures de mesures du R134a, sont regroupées dans le tableau 2.26. Les valeurs de ces deux paramètres sont relativement aléatoires et ne correspondent pas à une évolution monotone en fonction de la température.

Т [К]	M ₀ /L ₀₀ [kg/cm]	γ _t [bar⁻¹]
253	0.32422	9.9874E-07
268	0.32558	1.2161E-06
278	0.32694	1.5550E-06
283	0.32686	1.5612E-06
293	0.32437	1.0923E-06
303	0.32668	1.6138E-06
313	0.32527	1.2044E-06
323	0.32547	1.1378E-06
333	0.32590	1.0824E-06

 Tableau 2.26 : Valeur des paramètres ajustés sur des données de R134a pour différentes températures

Tout comme les capteurs de pression et de température, il serait idéal d'utiliser une méthode qui autorise un étalonnage sur l'ensemble de la gamme d'utilisation du tube vibrant, c'est-àdire au moins sur plusieurs températures. Un tel étalonnage permettrait de réduire le nombre d'isothermes du fluide de référence et apporterait alors un gain de temps supplémentaire.

La figure 2.27 présente une comparaison entre les déviations obtenues sur les masses volumiques en utilisant la méthode FPMC avec d'une part, un ajustement des paramètres sur chaque température et d'autre part, un unique ajustement sur l'ensemble des données (M_0/L_{00} = 0.32564 kg/cm et γ_t = 1.2996E-06). Comme, le laissaient présager les variations entre les valeurs des paramètres, présentées dans le tableau 2.26, un étalonnage complet n'est pas possible dans l'état actuel.

Figure 2.27 : Déviations sur les masses volumiques après ajustement des paramètres de la méthode FPMC A gauche : Ajustement sur chaque isotherme A droite : Ajustement sur l'ensemble des isothermes

La question qui se pose est de savoir si cela vient du modèle FPMC ou d'une reproductibilité insuffisante des mesures dues à des variations des paramètres intrinsèques du tube vibrant (variation de température, évolution dans le temps, ...). Dans le dernier cas, il ne sera tout simplement pas possible d'envisager un étalonnage complet.

Il est à noter que de la Rosa Vidal présente des résultats après ajustements sur des données d'eau liquide, très peu compressible, avec des déviations inférieures à 0.05 kg.m⁻³. Dans ce travail, l'ajustement des paramètres de la méthode FPMC est effectué avec des données de R134a en phase liquide et vapeur. De plus, de la Rosa Vidal utilise une dépendance linéaire de γ_t en fonction de la pression en introduisant un paramètre ajustable supplémentaire. Cependant, des variations du même ordre que celles présentée dans le tableau 2.26 sont observées.

2.6.4 Utilisation de réseaux de neurones

2.6.4.1 Cohérence des mesures du densimètre dans le temps.

En alternative à la méthode FPMC, une méthode utilisant un réseau de neurones est testée³. L'objectif premier est d'estimer la cohérence d'un grand nombre de données mesurées avec le densimètre sur une longue période de temps, à différentes températures afin d'évaluer la faisabilité d'un étalonnage regroupant plusieurs températures. Le lecteur qui n'a aucune notion des réseaux de neurones peut se reporter à l'Annexe 2.

Le tableau 2.28 regroupe des mesures réalisées sur le R134a, réparties sur 5 mois de l'année 2004 et sur 14 températures entre (253 et 363) K. Certaines mesures ont été sélectionnées pour la phase de définition de la structure du réseau et d'ajustement des poids (apprentissage), les autres sont utilisées lors de la phase de validation. Les données utilisées lors de

³ Pour de plus amples informations sur les réseaux de neurons, le lecteur est invité à lire l'annexe 2.

l'apprentissage incluent celles déjà utilisées dans le paragraphe précédent avec la méthode FPMC.

Par rapport aux considérations physiques (méthode FPMC entre autres), les paramètres prépondérants dans la détermination des masses volumiques sont la température, la pression et une relation entre la période mesurée et la période sous vide. Le choix des entrées du réseau de neurones s'est porté vers la température, la pression et la différence entre la période mesurée et la période sous vide. La sortie du réseau est en conséquence la masse volumique.

Date \ T [K]	253	263	268	273	278	283	293	303	313	323	333	348	353	363
03/05/2004														
05/05/2004														
06/05/2004														
07/05/2004														
11/05/2004														
12/05/2004														
18/05/2004														
19/05/2004														
24/05/2004														
25/05/2004														
26/05/2004														
10/06/2004														
17/06/2004														
23/06/2004														
25/06/2004														
28/06/2004														
30/06/2004														
05/07/2004														
06/07/2004														
27/07/2004														
28/07/2004														
02/08/2004														
03/08/2004														
05/08/2004														
06/08/2004														
11/08/2004														
12/08/2004														
22/09/2004														
23/09/2004														
24/09/2004														

Données utilisées pour l'apprentissage du réseau de neurones Données utilisées lors de la validation

<u>Tableau 2.28 : Répartition des données de R134a utilisées pour la définition</u> <u>et la validation du réseau de neurones lors de l'étalonnage du tube vibrant.</u>

Après plusieurs essais de structure, un réseau à 2 couches cachées (6 neurones sur la 1^{ère} couche et 3 neurones sur la deuxième), présenté sur la figure 2.29, a permis d'obtenir un ajustement sur 13 températures (\approx 1300 données) avec une déviation standard sur les masses volumiques de 0.017 kg.m⁻³. Le graphique correspondant est présenté sur la figure 2.30.

Figure 2.29 : Structure du réseau de neurones 1 : Biais, O Neurone (fonction sigmoïde exponentielle), O Neurone de sortie (fonction linéaire)

La structure du réseau de neurones fait apparaître 49 paramètres (*cf.* Annexe 3) et doit être validée sur des données n'ayant pas été utilisées lors de la phase d'apprentissage, présentées dans le tableau 2.28 (\approx 5200 données).

Figure 2.30 : Déviations sur les masses volumiques après ajustement d'un réseau de neurones – – Ecart-type des déviations

Les déviations sur les données de validation présentent un écart-type de 0.032 kg/m^3 (*cf.* figure 2.31).

Figure 2.31 : Déviations sur les masses volumiques (données de validation)

Les déviations sur les masses volumiques des données de validation sont présentées sur la figure 2.31. L'allure des courbes montre une tendance vers des déviations plus fortes pour les pressions élevées. Ces résultats confirment le côté « mathématique » du réseau de neurones à savoir qu'il doit être utilisé en extrapolation qu'avec précaution. Une deuxième conclusion concerne la cohérence des données entre-elles puisque la plus forte déviation observée est de l'ordre de 0.2 kg/m³ correspondant en phase liquide à des déviations relatives maximum de 0.02%. Les points qui se démarquent à faible pression (autour de 2.5 MPa) sont certainement dus à des erreurs de mesures (montée trop importante de la pression en cours de mesure, par exemple, déstabilisant l'équilibre thermodynamique).

2.6.4.2 Vers un étalonnage « complet »

Le réseau de neurones précédent peut être considéré comme un étalonnage « complet » (dans la gamme des températures choisies). C'est-à-dire, un étalonnage qui pourrait être réalisé au même titre que les étalonnages de pression ou de température, une seule fois pour tout une gamme de mesures.

Cependant, l'application à des mesures de CO_2 , pour des températures comprises entre (263 et 303) K montre un comportement aberrant (Cf. figure 2.32). Ce comportement n'est pas la conséquence d'un « surapprentissage » du réseau de neurones car ce dernier a été testé sur des données de validation non utilisées pendant la phase d'apprentissage. Le problème semble venir en partie de la prise en compte dans les poids du réseau des propriétés physiques intrinsèques au R134a. En effet, la masse volumique est fonction de la pression et de la température. Ainsi le réseau précédent ayant en entrée la pression, la température et en sortie la masse volumique, inclut certainement une correction liée au R134a et ne peut donc être utilisé pour d'autres composés. Un tel résultat va à l'encontre du principe de l'étalonnage qui doit pouvoir s'appliquer aux fluides étudiés autres que le fluide de référence.

Il convient également de préciser que l'exemple du CO_2 est extrême car ce dernier semble présenter une réponse de la période en fonction de la masse volumique différente du R134a pour les données critiques et supercritiques (phénomène supercritique identifié par Bouchot (1995)^[95BOU]). Or, une température de 303 K est très proche du point critique du CO_2 dont la température critique est de 304.2 K.

En conclusion, les aberrations observées peuvent être la conséquence de deux facteurs :

- seul le R134a a été utilisé pour définir le réseau de neurones, auquel cas, un apprentissage à partir de données plus variées (type de composés) semble nécessaire.
- l'exemple pris est celui du CO₂ pour lequel des problèmes de mesure dans la région critique est connu (« phénomène supercritique » décrit par Bouchot (1995)^[95BOU]).

Deux tests sur les variables à prendre en compte pour l'entrée du réseau de neurones ont été réalisés pour éviter d'intégrer les propriétés spécifiques du R134a dans les poids du réseau. Pour cela la température et la pression ont été découplés et des réseaux avec en entrée uniquement le couple « pression P, différence de périodes τ - τ_0 » ou le couple « température, différence de périodes τ - τ_0 »

2.6.4.3 Contournement du phénomène supercritique

De la Rosa Vidal $(2002)^{[02ROS]}$ analyse le phénomène « supercritique » évoqué par Bouchot $(1995)^{[05BOU]}$: l'estimation des masses volumiques en utilisant la méthode FPMC montre de fortes déviations autour du point critique. A titre d'exemple, des déviations de l'ordre de 10 kg/m³ sont observées sur les masses volumiques du CO₂ pour des températures entre 303 et 373 K. Il semble que les fluides proches de leur point critique, absorbent une partie de l'énergie de vibration du tube vibrant.

De la Rosa Vidal propose une modification du modèle FPMC à un seul ressort en introduisant un ressort supplémentaire entre les parois du tube vibrant et les particules. Cette modification permet de tenir compte du mouvement des particules et permettrait ainsi de représenter les phénomènes fluides supercritiques. De plus, cette modification a l'avantage de se résumer analytiquement à un facteur correctif « f », fonction de la température et de la pression, comme le montre l'équation sur la figure 2.33.

$$\rho_{\text{Corrigée}} = \rho_{\text{FPMC}} + \frac{M_0}{V_i} \frac{K}{K_0} \frac{\tau^3}{\tau^2_0} f(T, P)$$

Figure 2.33 : Schéma et équation représentant le modèle mécanique à deux ressorts

Dans l'étude de ce phénomène, menée par de la Rosa Vidal, le facteur correctif « f(T,P) » est estimé à partir de propriétés physiques (coordonnées critiques entre autres) et de données expérimentales de masses volumiques de corps purs. Ainsi, cette correction ne peut que être utilisé en « constatation » sur des fluides dont la masse volumique est connue. Cette méthode ne peut alors être utilisé en tant qu'étalonnage du tube vibrant, car le facteur correctif devrait être connu pour les fluides à mesurer.

Pour contourner ce problème et arriver à traiter les données de mélange $CO_2-C_2H_6$ (dioxyde de carbone – éthane) sous et sur-critique, une méthode à base de réseaux de neurones a été développée. Deux réseaux ont été utilisés (les paramètres sont donnés en Annexe 4). L'un représente les données $CO_2-C_2H_6$ des corps purs de 0 à 400 kg/m³. L'autre représente les données des corps purs de 200 à 1000 kg/m³. Les deux réseaux ont été paramétrés simultanément sur des données de CO_2 et de C_2H_6 . L'utilisation de deux réseaux de neurones et non un seul, a été rendu obligatoire par manque de données numériques entre les mesures liquides de l'éthane (dont la valeur de la masse volumique est de l'ordre de 400 à 500 kg/m³) et celles du dioxyde de carbone (valeurs de l'ordre de 800 à 1000 kg/m³). Les données prises en compte sont présentées sur le graphique 2.34.

Figure 2.34 : Représentation des données de l'éthane et du dioxyde de carbone ◆ Ethane (278.3, 283.3, 288.4, 293.4,313 .3, 333.2) K × Dioxyde de carbone (283.3, 288.4, 293.4, 298.3, 303.3) K

Il est à noter que des données sur le CO_2 supercritiques étaient prévues. Ces données n'ont pu être traitées dans ce travail suite à des problèmes expérimentaux. De telles données pourraient améliorer la représentation de ce système et permettre l'utilisation d'un seul réseau de neurones sur l'ensemble du domaine.

En effet, lorsqu'un seul réseau de neurones est utilisé, le manque de données entre l'éthane et le dioxyde de carbone conduit à un comportement aberrant dans la zone 450-700 kg/m³.

Le choix s'est alors tourné vers deux réseaux qui se « recoupent » pour garantir l'intégrité et la cohérence des données en mélange lors du passage d'un réseau à l'autre. Ce recoupement est illustré sur la figure 2.35.

Figure 2.35 : Représentation des données Ethane-Dioxyde de carbone à 51 % molaire à (288, 293, 313 et 333) K ◆ 1^{er} Réseau de neurones - × 2^{ème} Réseau de neurones

La méthodologie employée pour l'étude du système CO₂-C₂H₆ est la suivante :

- Mesure de la période pour le mélange
- Calcul de la masse volumique avec les deux réseaux
- Si la valeur trouvée par le premier réseau (en noir sur le graphique) est supérieure à 400 kg/m³, c'est la valeur du deuxième réseau qui est conservée (en bleu sur le graphique).

Cette méthode donne une alternative à la méthode FPMC pour les mesures qui sont réalisées avec des fluides autour de leur région critique. Elle est cependant moins pratique que la méthode FPMC car elle nécessite deux fluides de référence et deux réseaux de neurones, ce qui augmente considérablement le nombre de paramètres d'étalonnage. De plus, l'utilisation de réseaux de neurones peut conduire à des résultats abbérents à très basse pression. Un traitement linéaire doit alors être appliqué pour corriger ces valeurs.

2.7 La détermination des limites de l'équilibre Liquide-Vapeur

Les limites de la zone d'équilibre liquide-vapeur (points de bulle et de rosée) sont estimées « graphiquement » par analyse des mesures autour du point de cassure comme le montre la figure 2.36. Les données précédant et suivant le point de cassure sont ajustées par deux modèles linéaires.

Figure 2.36 : Détermination du point de rosée d'un mélange CO₂-C₂H₆ (9% CO₂ et 278 K)

Les incertitudes sur la pression et la période (et par extension sur la masse volumique) sont déterminées par la qualité de l'ajustement linéaire comme le montre le schéma 2.37. Ces incertitudes sont obtenues pour chaque point de transition de phase déterminé et sont de l'ordre de ± 0.05 MPa pour la pression et de $\pm 10^{-7}$ s pour la période.

Figure 2.37 : Estimation des incertitudes sur la pression et la période

L'incertitude sur la température est obtenue par moyenne des valeurs des mesures prises en compte (une valeur de l'ordre de 0.03 K est en générale observée). En effet, la transition de phase est un phénomène énergétique qui induit des variations de température (exothermique pour le passage de gaz à liquide et endothermique pour la transition inverse). A titre d'exemple, la variation de température observée sur les mesures du mélange CO_2 - C_2H_6 est présentée sur la figure 2.38.

Figure 2.38 : Détermination du point de rosée d'un mélange CO₂-C₂H₆ (9% CO₂ à 278 K)

2.8 La sélection du nombre de données mesurées

L'appareillage de densimétrie autorise la mesure d'un triplet ($PT\tau$) toutes les 3 secondes. Sachant que l'évolution de pression est contrôlée pour ne pas dépasser une vitesse d'évolution de plus de 0.005 MPa/s, une isotherme jusqu'à 20 MPa contient au moins 1300 points de mesures. En pratique, plus de 3000 points de mesures sont enregistrés. Ce nombre de données ne peut être exploité en l'état car il est trop important. Une procédure de diminution du nombre de données a donc été mise en place. Afin de donner plus de crédit à la cohérence des données, la procédure est basée sur la réalisation de moyennes avec des pas sur les périodes de l'ordre de 4.10⁻⁸ s. Un tel traitement permet de réduire le nombre de points à environ 200. Pour un traitement de modélisation et de présentation des résultats, ce nombre reste important et en général seul un point sur deux est conservé. En pratique, l'utilisation des moyennes devrait permettre de diminuer l'incertitude sur les valeurs mesurées (effet statistique). Cependant, l'incertitude est actuellement limitée par celle de l'équation du fluide de référence et non par celle de la mesure.

2.9 Résultats expérimentaux

Trois systèmes ont été étudiés en tenant compte des considérations sur les appareillages et sur les conversions de période en masses volumiques présentées dans les parties précédentes. Seuls les graphiques par composition de mélange sont présentés dans ce chapitre. Les résultats numériques sont fournis en Annexe 5.

2.9.1 Dioxyde de carbone / Ethane

Le système Dioxyde de carbone – Ethane est un système dont les deux composés purs ont des températures critiques très proches (304.2 et 305.3 K), mais des pressions critiques éloignées (4.8 et 7.4 MPa). De plus les masses volumiques liquides des deux corps purs sont presque du simple au double. Il parait intéressant de voir dans ce cas le comportement de ce système sur toute la plage composition. Pour ce faire trois compositions d'environ 10, 50 et 90 % en CO_2 ont été mesurées à différentes températures (*Cf.* Tableau 2.39).

Composition CO ₂ Température	0.0877	0.5158	0.9353
278 K	Х	Х	
293 K		Х	Х
313 K	Х	Х	Х
333 K	Х	Х	Х

Tableau 2.39 : Répartition des isothermes mesurées (X) sur le système CO₂/C₂H₆

Il est à noter que les isothermes à 313 et 333 K sont supercritiques sur les trois compositions. Pour les quatre autres isothermes, les points de bulle et de rosée ont été estimés selon la méthode décrite au paragraphe 2.7. L'intérêt porté sur ce système se limitant à la partie autour de la région critique, les mesures ont été limitées à 18 MPa.

Les trois graphiques de figure 2.40 présentent les trois compositions différentes. Les graphiques sont séparés car les masses volumiques sont très différentes entre elles. L'incertitude estimée sur les masses volumiques est de ± 0.3 % avec une valeur minimum de 0.6 kg/m³. Cette incertitude est liée à l'utilisation des deux réseaux de neurones pour s'affranchir des problèmes de représentation supercritique de la méthode FPMC. L'incertitude au niveau de la détermination des équilibres est estimée à chaque point.

Les limites de la zone d'équilibre liquide-vapeur pour les températures sous critiques sont présentées dans le tableau 2.41.

Z _{CO2}	Tempe [K	rature]	P1 []	ession MPa]	Masse Volumique [kg/m ³]		
0.9353 ^r	293.43	± 0.02	5.990	± 0.001	212.7	± 0.6	
0.9353 ^b	293.39	± 0.02	6.016	± 0.001	677.0	± 0.7	
0.0877 ^r	278.19	± 0.02	2.922	± 0.020	61.4	± 0.5	
0.0877^{b}	278.16	± 0.02	3.109	± 0.001	405.1	± 0.6	
0.5158 ^r	278.33	± 0.02	4.251	± 0.020	124.6	± 0.7	
0.5158 ^b	278.26	± 0.02	4.373	± 0.020	519.8	± 0.5	

<u>Tableau 2.41 : Données d'équilibre Liquide - Vapeur du système CO_2/C_2H_6 </u> (^bPoint de bulle - ^rPoint de rosée)

Peu de données de masses volumiques ont été trouvées dans la littérature. Seuls les travaux de Goodwin et Moldover (1997) ^[97GOO] ainsi que ceux de Weber (1992) ^[92WEB] dans des conditions équimolaires ont pu être comparés graphiquement aux mesures de ce travail (*cf.* Figure 2.42).

Une très bonne cohérence des données est observée. Au traitement des données expérimentales de l'isotherme à 293 K, aucun point entre 250 et 400 kg/m³ n'a été conservé à cause de variations de températures trop importantes certainement liées à la proximité du point critique de mélange.

2.9.2 Hydrogène Sulfuré / Ethane

Les différentes isothermes et compositions étudiées du système H_2S/C_2H_6 sont regroupées dans le tableau 2.43.

Composition H ₂ S	0.0380	0.0563	0.0977	0 1430
Température	0.0500	0.0505	0.0777	0.1150
254.05 K			Х	
263.43 K	Х			
268.15 K				Х
273.41 K		Х		
283.30 K				Х
293.24 K	Х			
303.14 K			Х	
313.14 K		Х		
322.21 K				Х
333.23 K	Х			
353.15 K		Х		
363.21 K			Х	

Tableau 2.43 : Répartition des isothermes mesurées (X) sur le système H₂S/C₂H₆

D'un point de vue pratique, la cellule de chargement permet de réaliser trois isothermes avec le même chargement. Afin de balayer le plus grand nombre de températures possibles, les quatre compositions ont été étudiées à des températures différentes. 12 températures ont alors été couvertes. La composition du système est volontairement faible en H_2S pour des raisons expérimentales. Le premier joint utilisé pour ce système sur la cellule de chargement était un joint nitrile créant une fuite de produit dans la hotte. H_2S étant un produit toxique par inhalation, le joint a été changé, mais des compositions assez faibles de produits ont été réalisées. De plus, d'un point de vue physique, ce choix couvre le domaine des études d'hydrocarbures avec H_2S comme impureté. Une faible quantité de produit soufré est alors suffisante. Les données de limites d'équilibres de phases (points de bulle et de rosée) sont rassemblées dans le tableau 2.44.

7	Tempé	rature	Pression		Masse Volumique	
ZH2S	[K		L	viraj	[Kg/III]	
0.0380 ^b	263.43	± 0.02	1.913	± 0.001	430.1	± 0.2
0.0380 ^r	263.43	± 0.02	1.881	± 0.001	35.3	± 0.2
0.0380 ^b	293.25	± 0.02	3.816	± 0.020	346.4	± 0.2
0.0380 ^r	293.25	± 0.02	3.806	± 0.001	87.3	± 0.2
0.0563 ^b	273.40	± 0.02	2.424	± 0.001	410.8	± 0.2
0.0563 ^r	273.40	± 0.02	2.420	± 0.010	47.2	± 0.2
0.1430 ^r	268.17	± 0.02	2.141	± 0.020	40.9	± 0.3
0.1430 ^b	268.17	± 0.02	2.144	± 0.020	443.6	± 0.2
0.1430 ^r	283.31	± 0.02	3.078	± 0.005	63.6	± 0.2
0.1430 ^b	283.31	± 0.02	3.089	± 0.008	403.8	± 0.2
0.0977 ^r	254.10	± 0.08	1.474	± 0.020	27.3	± 0.3
0.0977 ^b	254.10	± 0.08	1.511	± 0.012	462.5	± 0.2
0.0977 ^r	303.15	± 0.02	4.725	± 0.050	131.9	± 0.5
0.0977 ^b	303.15	± 0.02	4.727	± 0.020	304.4	± 0.9

 $\frac{Tableau \ 2.44: Points \ de \ bulle \ et \ de \ rosée \ du \ système \ H_2S-C_2H_6}{(\ ^b Point \ de \ bulle \ -\ ^r Point \ de \ rosée)}$

Aucune donnée de la littérature n'a été trouvée pour comparer directement ces données de masses volumiques en mélange. Seuls deux points de bulle et deux points de rosée à une composition ont pu être comparés avec les données de Kay et Brice $(1953)^{[53KAY]}$ en terme de masse volumique (*cf.* Figure 2.45).

Figure 2.45 : Données d'équilibre liquide-vapeur du système H₂S-C₂H₆ à 10% molaire en H₂S

 $\begin{array}{c} \underline{Figure\ 2.46: Système\ C_2H_6\ (1)-H_2S\ (2)} \\ \triangle, z_2 = 0.0380\ (263.43,\ 293.24\ et\ 333.23\ K);\ \textbf{+}, z_2 = 0.0563\ (273.41,\ 313.14\ et\ 353.15\ K); \\ \diamondsuit, z_2 = 0.0977\ (254.05,\ 303.14\ et\ 363.21\ K);\ \bigstar, z_2 = 0.1430\ (268.15,\ 283.30\ et\ 322.21\ K); \end{array}$

Les données expérimentales de périodes ont été converties en masses volumiques à partir de la méthode FPMC classique et présente en conséquence une incertitude sur les masses volumiques de l'ordre de 0.05 % avec un minimum de 0.2 kg/m^3 . Les résultats expérimentaux sont rassemblés sur la figure 2.46.

Une étude a été menée pour estimer la validité de ces données en utilisant un modèle thermodynamique du type BWRS. Cette étude présentée rapidement de ce papier est reprise en détail par Rivollet $(2005)^{[05RIV]}$. Les paramètres BWRS obtenus par la relation de Starling $(1973)^{[73STA]}$ ont été ajusté sur des données expérimentales des corps purs. La règle de mélange à un seul paramètre, proposée par Starling $(1973)^{[73STA]}$ a été utilisée pour ajuster les données de mélange. Le paramètre d'interaction k_{ij} ajusté (k_{ij} = 0.52) montre une bonne cohérence de l'ensemble des données entre elle comme le montre la figure 2.47.

Le modèle ne représente pas correctement les données à 10% molaire d' H_2S à la température 303.14 K dans le domaine proche du point critique. Cette difficulté de représentation est certainement liée au caractère critique de l'éthane dont la température critique est de l'ordre de 305 K. Le modèle BWRS comme beaucoup d'équations d'état montre des problèmes de représentation dans les domaines critiques des composés.

2.9.3 Hydrogène Sulfuré / Propane

Un troisième système a été mesuré à deux compositions et trois températures comme indiquées dans le tableau 2.48.

Composition H ₂ S Température	0.2227	0.2691
263.11 K	Х	
268.09 K		Х
293.28 K	Х	
313.21 K		Х
333.22 K	Х	
363.24 K		Х

Tableau 2.48 : Répartition des isothermes mesurées (X) sur le système H₂S/C₃H₈

Les données expérimentales de périodes ont été converties en masses volumiques à partir de la méthode FPMC et sont données avec une incertitude sur les masses volumiques de l'ordre de 0.05 % avec un minimum de 0.2 kg/m^3 . Les résultats expérimentaux sont présentés sur la figure 2.49.

Il est à noter qu'aucune donnée de la littérature n'a pu être trouvée pour estimer la validité de ces résultats expérimentaux, tant au niveau des masses volumiques des phases comprimées (gaz et liquide) que des masses volumiques d'équilibres de phases.

Les résultats des points de bulle et de rosée estimés à partir des données volumétriques sont rassemblés dans le tableau 2.50.

Z _{H2S}	Tempé [K	rature]	Pr []	ession MPa]	Masse Volumique [kg/m ³]		
0.2227 ^r	263.11	± 0.02	0.443	± 0.005	9.1	± 0.2	
0.2227 ^b	263.11	± 0.02	0.701	± 0.010	567.3	± 0.3	
0.2227 ^r	313.21	± 0.03	1.799	± 0.020	38.7	± 0.2	
0.2227 ^b	313.20	± 0.02	2.157	± 0.001	487.9	± 0.2	
0.2227^{r}	333.23	± 0.04	2.502	± 0.001	52.4	± 0.2	
0.2227 ^b	333.20	± 0.02	3.565	± 0.010	435.7	± 0.4	
0.2691 ^r	293.29	± 0.02	1.059	± 0.018	21.7	± 0.2	
0.2691 ^b	293.27	± 0.02	3.706	± 0.020	514.5	± 0.2	
0.2691 ^r	268.08	± 0.02	0.548	± 0.005	11.1	± 0.4	
0.2691 ^b	268.09	± 0.02	0.668	± 0.010	565.8	± 0.2	

 $\frac{Figure \ 2.50: Points \ de \ bulle \ et \ de \ rosée \ du \ système \ H_2S-C_3H_8}{(\ ^b \ Point \ de \ bulle \ -\ ^r \ Point \ de \ rosée)}$

Comme tout appareillage, les limites d'utilisation doivent être déterminées. Outre, les limites « immédiates » de température et de pression imposées par le tube vibrant (253 à 423 K et 70 MPa), il convient de s'attarder sur les limites imposées par la méthode de mesure elle-même. La condition d'homogénéité au sein de la cellule de chargement impose de pouvoir conserver le mélange à l'état monophasique. Dans l'installation, la cellule est à température ambiante, et la pression de mesure est imposée au travers de cette cellule de chargement. Aussi, les fluides doivent être monophasiques sous pression (entre 20 et 40 MPa) à température ambiante (état liquide ou supercritique).

Bien que la cellule de mesure du densimètre supporte des pressions jusqu'à 70 MPa, il n'a pas été choisi de travailler à des pressions si élevées lors de ce travail pour se concentrer d'avantage sur la méthode de détermination des masses volumiques et la possibilité d'un étalonnage complet. En effet, des mesures supérieures à 25 - 30 MPa nécessitent soit une nouvelle cellule de chargement, soit une modification de circuit pour permettre sa mise en pression élevée. Un travail de thèse parallèle étant mené sur l'automatisation complète de ce densimètre, ces préoccupations y ont été intégrées.

Une méthode alternative à la méthode FPMC est présentée pour contourner le phénomène supercritique. La faisabilité d'un étalonnage complet semble possible, mais nécessite de plus amples travaux. L'intérêt d'un tel étalonnage est un gain de temps important.

L'appareil DMA 512 P défini dans ce chapitre a été utilisé pour réaliser des mesures sur les systèmes suivants :

- $C_2H_6 CO_2$ (7 isothermes de (278 à 333) K et des pressions jusqu'à 18 MPa)
- $C_2H_6 H_2S$ (13 isothermes de (253 à 363) K jusqu'à 20 MPa)
- $C_3H_8 H_2S$ (6 isothermes de (263 à 363) K jusqu'à 40 MPa)

Chapitre 3

La modélisation des propriétés volumétriques

3 La modélisation des propriétés volumétriques

L'expression qui lie la pression, le volume et la température est appelée « équation d'état ». Cette équation permet de déterminer l'état des fluides (gaz, liquide). Après une introduction relative aux caractéristiques intrinsèques d'une équation d'état, différentes équations sont présentées. Un des objectifs de ce travail est de savoir dans quelle mesure, les équations d'état classiques (type van der Waals) peuvent être utilisées pour restituer les masses volumiques des alcanes légers, du dioxyde de carbone et de l'hydrogène sulfuré.

3.1 Comportement de l'équation d'état exacte

Figure 3.1 : Diagramme pression - masse volumique du CO₂
 — Isothermes (250, 270, 290, 305, 320, 350) K, ---- Courbe d'équilibre liquide-vapeur Calculs à partir de l'équation de Span et Wagner (1996)^[96SPA]

Une équation d'état est une fonction mathématique, notée E par exemple, qui donne une relation entre la pression, P, la température, T, le volume total du système V et la quantité de matière n. La fonction peut alors s'écrire E(P, T, V, n) = 0 ou dans un repère massique, préféré au cours de ce travail, $E(P, T, \rho) = 0$. La figure 3.1 représente le diagramme « $P\rho$ » du CO_2 et les courbes pleines correspondent à l'écriture $P = E(\rho)_{T \text{ constant}}$. Trois comportements sont observés :

 En dessous du point critique : l'évolution de la pression est marquée par une forte discontinuité au changement de phase. Les évolutions des phases gaz et liquide sont différentes. Pour des températures basses, l'évolution de la phase liquide tend vers une verticale caractéristique de la faible compressibilité des liquides (par rapport aux gaz).

- **Dans la région du point critique** : les courbes gaz et liquide présentent une courbure importante à l'approche du point critique avec une discontinuité qui disparaît pour les températures supérieures à la température critique.
- Au dessus du point critique : l'évolution de la masse volumique est continue avec un changement de courbure à l'approche de la densité critique. Cette inversion de courbure diminue avec l'augmentation de température.

Toute la difficulté de l'équation d'état « exacte » réside dans sa capacité à représenter de façon précise l'ensemble des différentes évolutions. Historiquement, les équations d'état ont d'abord été développées pour satisfaire les températures en dessous du point critique avec le passage de la phase gaz à la phase liquide. Depuis quelques années les zones critique et supercritique intéressent de plus en plus les industriels de par les propriétés des fluides rencontrées (absence de changement de phase, capacité thermique des fluides, variation de densité, ...). Aussi, de nombreux travaux sont menés pour améliorer la représentation des équations d'état autour du point critique.

Au-delà de la « simple » représentation de la relation entre la pression, la température et le volume, les équations d'état permettent la détermination de l' « état du fluide » (gaz, liquide ou équilibre liquide-vapeur) : dans le cas de l'équilibre liquide-vapeur de mélanges, l'équation d'état permet d'estimer la composition de chacune des phases. L'équation d'état exacte (représentation parfaite des données volumétriques sous et super critiques ainsi que la représentation des données d'équilibres liquide-vapeur en corps pur et en mélange) n'existe pas. Chaque équation a des limites qu'il convient de connaître.

3.2 Equation d'état : concurrence entre les forces répulsives et attractives

Les phénomènes physiques qui régissent les états gaz et liquide permettent de comprendre la forme analytique des différentes équations existantes. Ces phénomènes sont liés à la notion d'interactions entre les molécules.

Les molécules sont soumises à deux contraintes opposées : des forces d'attraction et des forces de répulsion qui sont de natures différentes (électronique, massique, magnétique, ...). Les phases gaz et liquide représentent une contribution globale des forces plutôt répulsive (gaz : les molécules sont éloignées les unes des autres) ou plutôt attractive (liquide : les molécules sont proches les unes des autres). De même, la pression représente l'importance des chocs des molécules sur les frontières du système (parois). La température est un indicateur de la vitesse d'agitation des particules. A volume constant, une augmentation de la température implique une augmentation de la vitesse de déplacement des particules et donc une augmentation de la violence des chocs (augmentation de la pression).

La discontinuité (équilibre liquide-vapeur) qui existe dans le domaine sous critique correspond à une zone d'instabilité dans laquelle certaines molécules vont se trouver dans un état gaz et d'autres dans un état liquide.

Les équations d'état essaient de tenir compte à la fois des effets attractifs et répulsifs des molécules pour représenter au mieux les phénomènes physiques observés. La première des équations d'état qui inclut les deux notions d'interaction est l'équation de Van der Waals (1873)^[73VAN].

3.3 Les équations d'état cubiques

3.3.1 Formulation

La loi des gaz parfait n'est valable que pour des gaz à très faible pression (seul le terme répulsif entre les particules est pris en compte). Van der Waals $(1873)^{[73VAN]}$ améliore cette équation en introduisant un terme d'attraction moléculaire, « $\frac{a}{v^2}$ », et en corrigeant le volume réel occupé par les molécules par le volume minimale « incompressible » occupé physiquement par les atomes « v-b ». L'équation s'écrit alors sous la forme :

$$\left(P + \frac{a}{v^2}\right)$$
. $(v - b) = R.T$ ou $P = \frac{RT}{v-b} - \frac{a}{v^2}$

Cette modification marque un tournant dans l'évolution des équations d'état cubiques car elle prend en compte à la fois la répulsion et l'attraction des molécules. Ceci conduit à la représentation des phases gaz et liquides.

De nombreuses modifications ont été apportées à l'équation de Van der Waals (1873)^[73VAN] pour améliorer le terme attractif. Les équations d'état qui en découlent sont regroupées sous l'appellation « équations de type van der Waals » ou « équations cubiques » car le développement de l'équation en volume fait apparaître une dépendance de degré 3.

Il existe de nombreuses équations d'état cubiques. Le tableau 3.2 en répertorie quelques unes parmi les plus utilisées. Les équations étudiées présentent jusqu'à quatre paramètres, notés a, b, c et d. Soave $(1972)^{[72SOA]}$ publie une méthode de calcul des paramètres a et b pour l'équation de Redlich Kwong $(1949)^{[49RED]}$.

Source	Equation
Redlich et Kwong (1949) ^[49RED]	$P = \frac{RT}{v-b} - \frac{a}{\sqrt{T}(v+b).v}$
Soave, Redlich et Kwong (1972) ^[72SOA]	$P = \frac{RT}{v-b} - \frac{a(T)}{(v+b).v}$
Peng et Robinson (1976) ^[76PEN]	$P = \frac{RT}{v-b} - \frac{a(T)}{(v^2 + 2b.v-b^2)}$
Harmens et Knapp (1980) ^[80HAR]	$P = \frac{RT}{v-b} - \frac{a(T)}{(v^2 + (1-c).b.v + c.b^2)}$
Patel et Teja (1982) ^[82PAT]	$P = \frac{RT}{v-b} - \frac{a(T)}{(v^2 + (b+c).v-c.b)}$
Trebble et Bishnoi (1987) ^[87TRE]	$P = \frac{RT}{v-b} - \frac{a(T)}{(v^2+(b+c).v-(bc+d^2))}$

Tableau 3.2 : Quelques équations d'état cubiques

Cette méthode est basée entre autre sur une propriété du point critique : les dérivées première et seconde de la pression par rapport au volume sont nulles. L'application de cette méthode permet de montrer que les équations d'état à deux paramètres (a et b) induisent un facteur de compressibilité critique constant quelque soit les composés étudiés ($Z_c = \frac{1}{3}$ pour Redlich et

Kwong et $Z_c = 0.3074$ pour l'équation de Peng et Robinson). De ce fait ces équations ne peuvent s'adapter et représenter correctement les données proches du point critique ou de nombreux composés ont un facteur de compressibilité très différent. Soave $(1972)^{[72SOA]}$

modifie l'équation de Redlich et Kwong en remplaçant le terme $\frac{a}{\sqrt{T}}$ par une forme plus

générale qui introduit la notion de fonction « α » (dépendance en température de a) :

 $a(T) = a_c \cdot \alpha(T)$ où a_c est une constante liée aux coordonnées critiques.

Il est à noter que cette fonction α est très importante dans le sens où elle peut contenir des paramètres ajustables qui vont corriger en partie les lacunes de la formulation de l'équation d'état en « calquant » les calculs des tensions de vapeur sur des données expérimentales des corps purs. La fonction « α » de Mathias-Copeman (1983)^[83MAT] par exemple contient trois paramètres ajustables (C₁, C₂ et C₃) et s'écrit pour T \leq T_C (Température critique) :

$$\alpha(T)_{MC} = \left[1 + C_1 \cdot \left(1 - \sqrt{\frac{T}{T_C}}\right) + C_2 \cdot \left(1 - \sqrt{\frac{T}{T_C}}\right)^2 + C_3 \cdot \left(1 - \sqrt{\frac{T}{T_C}}\right)^3\right]^2$$

 $C_1 = 0.871191$, $C_2 = -0.734064$ et $C_3 = 2.69176$ pour le CO_2 et l'équation de Soave-Redlich-Kwong par exemple (Reid et al. (1987)^[87REI]).

3.3.2 Représentation des données volumétriques

Les lacunes de telles équations d'état cubiques résident dans le calcul des masses volumiques. La figure 3.3 montre le calcul⁴ des masses volumiques du CO_2 en utilisant trois équations d'état cubiques différentes, comparées aux données de références proposées par le NIST. Des différences non négligeables apparaissent entre les données calculées et les données de référence.

Les valeurs des volumes (et par conséquent les masses volumiques) sont une conséquence de l'équation d'état cubique. Contrairement aux tensions de vapeur, les volumes ne sont que très peu dépendant de la fonction α et l'équation ne peut pas être « calée » sur des données expérimentales. Les équations de Peng-Robinson et Patel Teja semblent présenter moins de décalage que celle de Redlich Kwong, modifiée par Soave (SRK) sur les données liquides. Cependant l'équation SRK semble mieux représenter l'évolution des masses volumiques en fonction de la pression (lignes continues parallèles aux données de référence).

Une attention particulière est portée sur ce type d'équation car il s'agit d'équations couramment utilisées pour le calcul des équilibres de phase. De nombreux travaux sont menés sur l'utilisation de ces équations en mélange. Pour la capacité des équations cubique à la représentation des équilibres de phases, le lecteur pourra se reporter au travail de Wei et Sadus (2000)^[00WEI]. Ce dernier présente notamment un arbre qui lie l'origine et les évolutions des équations entre elles.

Dans le présent travail, l'intérêt est porté avant tout sur la représentation des propriétés volumétriques. Aussi, il convient d'essayer de comprendre en quoi une équation d'état cubique peut représenter correctement des données de masses volumiques en phase gaz, liquide et supercritique. Pour cela, 6 isothermes du CO₂, de (250 à 350) K ont été ajustées indépendamment avec une équation polynomiale simple de degré 3 ($P = A.\rho^3 + B.\rho^2 + C.\rho$).

⁴ Le lecteur peut se reporter en annexe 8 pour un decription de l'outil de calcul, TEP ThermoSoft

Les facteurs de corrélation, R^2 , sont donnés sur la figure 3.4. Ils sont un indicateur de la capacité d'une telle équation d'état à représenter ce type de données ($R^2 = 1$ signifie que l'équation passe exactement par tous les points).

de Peng-Robinson et avec une équation polynomiale de degré 3

<u>calée sur des données expérimentales.</u> Source : Span et Wagner (1996)^[96SPA] – NIST à 250 K En dehors de la région proche du point critique ($T_{c CO2} = 304.2$ K), il semble qu'une équation polynomiale de degré 3 est apte à la représentation des données dans les phases gaz, liquides et supercritiques. La différence avec les équations d'état de type Van der Waals, réside dans la prise en compte de l'évolution des coefficients de l'équation en fonction de la température et surtout dans l'implication de la représentation de l'équilibre liquide-vapeur (tension de vapeur pour un corps pur).

Graphiquement, cette implication se caractérise par la condition de Maxwell qui traduit la condition thermodynamique d'équilibre liquide-vapeur par l'égalité des aires au dessous (b) et au dessus (a) de la pression de saturation, dans une représentation en volume comme le montre la figure 3.5.

La figure 3.6 illustre que l'implication de la condition d'équilibre correctement représentée par l'équation de Peng-Robinson se caractérise par une mauvaise représentation de la phase liquide. Inversement, une représentation des phases liquide et vapeur (équation polynomiale simple) conduit au non respect de la condition de Maxwell et impliquera alors une mauvaise estimation de la tension de vapeur.

3.4 Les équations d'état dérivées du développement du Viriel : BWR(S)

Une équation polynomiale (en masse volumique) de degré 6 semble nécessaire pour arriver à représenter les phases sous et supercritiques. Cette constatation est reprise dans une écriture du facteur de compressibilité $Z\left(Z = \frac{Pv}{RT}\right)$ en développement en série de $\frac{1}{v}$, appelée « développement du Viriel ».

$$Z = 1 + \frac{B}{v} + \frac{C}{v^2} + \dots$$
 ou $Z = 1 + B.\rho + C.\rho^2 + \dots$

Les coefficients B et C sont respectivement appelés « second » et « troisième » coefficients du Viriel. Cette équation a été déclinée en équation d'état en la tronquant au deuxième et troisième coefficient. Benedict et al. $(1940)^{[40BEN]}$ propose une relation appliquée aux hydrocarbures légers, sous la forme (équation BWR):

$$P = R.T.\rho + \left(B_0.R.T - A_0 - \frac{C_0}{T^2}\right) \cdot \rho^2 + (b.R.T - a) \cdot \rho^3 + a \cdot \alpha \cdot \rho^6 + \frac{c \cdot \rho^3}{T^2} \cdot (1 + \gamma \cdot \rho^2) \cdot exp(-\gamma \cdot \rho^2)$$

Il s'agit en fait d'un développement d'ordre 6 avec une dépendance des coefficients en fonction de la température. Les 8 paramètres (A₀, B₀, C₀, a, b, c, α et γ) sont spécifiques aux composés étudiés et leurs déterminations doit suivre une méthodologie particulière et complexe.

Opfell et al. (1956)^[560PF] proposent une corrélation basée sur le facteur acentrique et 14 paramètres pour déterminer les coefficients des hydrocarbures légers pour l'équation BWR. Cooper et Goldfrank (1967)^[67COO] proposent des valeurs de ces paramètres pour 38 composés (hydrocarbures légers et composés les plus courants). Ils montrent également que les sets de

paramètres ne sont pas uniques et qu'ils doivent être pris uniquement dans leur intervalle d'ajustement.

L'extension de la corrélation de Opfell et al. est également proposée pour des composés autres que les hydrocarbures. De nombreuses modifications et généralisations ont été publiées pour améliorer et étendre cette équation.

Une des plus connue est la modification de Starling $(1973)^{[73STA]}$ qui introduit 3 paramètres supplémentaires (D₀, E₀ et d) :

$$P = R.T.\rho + ..\rho^{2} + \left(b.R.T - (a + \frac{d}{T})\right).\rho^{3} + (a + \frac{d}{T}).\alpha.\rho^{6} + \frac{c.\rho^{3}}{T^{2}}.(1 + \gamma.\rho^{2}).exp(-\gamma.\rho^{2})$$

Nishiumi (1980)^[80NIS] s'intéresse à l'extension des paramètres BWR aux composés polaires. L'intérêt pour cette équation est encore d'actualité comme le montre le travail de Wang et al. (2001)^[01WAN]. L'application de considérations thermodynamiques telles que les spécificités du point critique (les valeurs des dérivées premières et secondes de la pression par rapport au volume sont nulles au point critique), permet de réduire le nombre de paramètres empiriques à un seul. Les paramètres de l'équation BWR sont calculés à partir de ce paramètre empirique. L'équation BWR, connue pour sa grande souplesse induite par le nombre de paramètres, perd une partie de sa souplesse dans le cas d'un seul paramètre empirique.

Starling (1973)^[73STA] propose une corrélation pour le calcul des paramètres de l'équation à partir du facteur acentrique et des coordonnées critiques. Les résultats de cette corrélation appliquée au calcul des masses volumiques du CO₂ sont présentés sur la figure 3.7.

Malgré les avantages certains de cette forme d'équation d'état, le nombre de paramètres empiriques et l'absence de signification physique de chacun des paramètres rend difficile l'élaboration de règles de mélanges. Ceci explique le faible nombre de règles de mélanges développées pour cette équation. La plus connue est certainement celle de Starling (1973)^[73STA] contenant un seul paramètre ajustable.

3.5 Application aux alcanes légers, dioxyde de carbone et hydrogène sulfuré

Trois équations d'état cubiques, Peng-Robinson (PR), Soave-Redlich-Kwong (SRK) et Patel Teja (PT) ainsi que l'équation d'état de Benedict Webb Rubbin modifiée par Starling (BWRS) ont été comparées aux données de référence obtenues à partir du site du site Internet du NIST. Pour les équations PR et SRK, la fonction α de Mathias-Copeman a été utilisée. Dans le cas de PT la fonction α généralisée proposée par Patel-Teja est conservée.

	PR			SRK			PT			BWRS						
	BIAS	MRD	σ	Е	BIAS	MRD	σ	Е	BIAS	MRD	σ	Е	BIAS	MRD	σ	Е
Méthane	2.23	2.37	2.18	4.41	-3.63	3.64	2.49	6.12	-1.58	1.69	1.88	3.47	-1.29	1.64	1.79	3.08
Ethane	4.51	5.04	4.04	8.56	-4.83	4.83	3.07	7.90	-0.65	2.25	2.93	3.59	0.09	1.19	1.54	1.64
Propane	5.39	5.83	3.09	8.47	-5.36	5.36	2.54	7.90	0.80	2.19	2.59	3.39	0.36	0.79	1.08	1.45
n-Butane	5.07	5.22	1.89	6.95	-6.24	6.24	1.83	8.07	1.71	2.16	1.78	3.50	0.01	0.59	0.72	0.73
IsoButane	6.13	6.32	2.31	8.44	-5.14	5.14	2.05	7.19	2.16	2.68	2.10	4.26	-1.72	1.80	1.09	2.81
Dioxyde de carbone	1.24	3.12	3.42	4.65	-7.19	7.19	3.87	11.06	-0.62	2.40	3.11	3.73	-0.75	1.25	1.61	2.37
Hydrogène sulfuré	5.67	5.88	3.47	9.15	-4.65	4.65	2.68	7.33	-0.41	1.83	2.48	2.89	-0.16	0.97	1.18	1.34
Moyenne	4.32	4.83	2.91	7.23	-5.29	5.29	2.65	7.94	0.20	2.17	2.41	3.55	-0.49	1.17	1.29	1.92

A. Masses volumiques

Calculs réalisés sur 300 points répartis sur 5 isothermes (200, 250, 300, 350 et 400) K avec un pas de 0.5 MPa de (0.5 à 30) MPa.

B. Tension de vapeur

	PR			SRK			PT			BWRS						
	BIAS	MRD	σ	Е												
Méthane	0.00	0.12	0.13	0.14	-0.01	0.14	0.16	0.17	1.10	1.26	0.87	1.97	1.81	1.93	2.37	4.18
Ethane	-0.11	0.22	0.21	0.32	-0.12	0.26	0.26	0.39	0.81	0.81	0.25	1.07	0.72	1.10	1.49	2.21
Propane	-0.02	0.24	0.29	0.31	-0.04	0.31	0.36	0.40	0.90	0.90	0.62	1.53	-0.27	0.86	0.98	1.25
n-Butane	-0.11	0.28	0.29	0.40	-0.13	0.34	0.35	0.49	0.31	0.40	0.44	0.75	-1.56	1.56	0.63	2.19
IsoButane	0.59	0.59	0.44	1.03	0.57	0.57	0.43	1.00	1.68	1.68	1.69	3.37	-2.62	2.77	1.48	4.10
Dioxyde de carbone	0.22	0.22	0.05	0.27	0.20	0.20	0.06	0.26	-0.49	0.49	0.23	0.72	-2.50	2.50	0.50	3.00
Hydrogène sulfuré	-0.16	0.25	0.40	0.56	-0.18	0.24	0.40	0.58	1.56	1.56	1.52	3.08	-0.24	2.62	3.11	3.35
Moyenne	0.06	0.25	0.24	0.40	0.04	0.27	0.27	0.43	0.91	1.06	0.72	1.75	-0.56	1.96	1.70	2.94

Calculs réalisés sur des températures réduites, Tr, comprises entre 0.5 et 0.9. (0.65<Tr< 0.9 pour le dioxyde de carbone).

$$BIAS = \frac{1}{N} \sum_{i}^{N} \left(\frac{X_{i \text{ CAL}} - X_{i \text{ EXP}}}{X_{i \text{ EXP}}} \right) *100, \quad MRD = \frac{1}{N} \sum_{i}^{N} \left(\frac{|X_{i \text{ CAL}} - X_{i \text{ EXP}}|}{X_{i \text{ EXP}}} \right) *100,$$
$$\sigma = \frac{1}{N} \sqrt{\sum_{i}^{N} \left(\frac{|X_{i \text{ CAL}} - X_{i \text{ EXP}}|}{X_{i \text{ EXP}}} *100 \text{-BIAS} \right)^{2}}, \mathbf{E} = |\mathbf{BIAS}| + \sigma$$

Où X représente la masse volumique ρ dans le tableau A et la pression P dans le tableau B.

 Tableau 3.8 : Comparaison des données calculées à partir de 4 équations d'état

 par rapport à des données de référence proposées par le NIST.

Le tableau 3.8 permet de comparer les différentes équations d'état sélectionnées sur les résultats de calcul des masses volumiques des phases compressées et de la tension de vapeur,

pour plusieurs hydrocarbures, le dioxyde de carbone et l'hydrogène sulfuré. Des indicateurs classiques ont été sélectionnés pour cette comparaison : le BIAS, le MRD et σ . σ représente « l'oscillation » des erreurs autour de la déviation systématique indiquée par BIAS. Un autre paramètre, noté E, a été calculé : il correspond au cumul de la déviation systématique représentée par le BIAS et σ . Cet indicateur donne une notion de la valeur des déviations « maximales » observées. Ces valeurs sont en effet difficilement estimées à partir des seules valeurs de BIAS et MRD.

Ces résultats confirment l'analyse précédemment réalisée sur les équations d'état cubiques à savoir que les équations qui représentent le mieux les masses volumiques ont le plus de difficultés à représenter les tensions de vapeur (équilibre liquide-vapeur des corps purs) et inversement :

-	dans le cas de BWRS,	$E_{\text{masse volumique}} = 1.92$	et	$E_{\text{tension vapeur}} = 2.94,$
-	dans le cas de PR,	$E_{\text{masse volumique}} = 7.23$	et	$E_{\text{tension vapeur}} = 0.40.$

3.6 Quelques autres formes d'équations d'état

Il convient de mentionner d'autres méthodes et types d'équations d'état existantes qui n'ont pas été retenues dans ce travail. En effet, le travail présenté est axé sur les équations d'état cubiques de part leur simplicité de mise en œuvre auxquelles un terme de correction de volume sera appliqué.

• Modification du terme répulsif

Les équations d'état cubiques présentées dérivent d'une modification du terme attractif de l'équation de van der Waals ; il existe alors des méthodes qui intégrent égalemen une modification du terme répulsif. Ce type d'équations présente un nouveau paramètre $\eta \left(\eta = \frac{b}{4v} \right)$ appelé « packing fraction ». Une des modifications les plus connues est celle de Carnahan et Starling (1969)^[69CAR], qui remplace le terme $\frac{RT}{v-b}$ par le terme $\frac{RT}{v} \cdot \frac{1+\eta+\eta^2-\eta^3}{(1-\eta)^3}$. Les modifications du terme répulsif peuvent être associées aux modifications du terme attractif comme le présente Carnahan et Starling (1972)^[72CAR] en utilisant la modification du terme attractif de Redlich Kwong comme ci-dessous :

$$P = \frac{RT}{v} \cdot \frac{1 + \eta + \eta^2 - \eta^3}{(1 - \eta)^3} - \frac{a}{\sqrt{T} \cdot (v + b)}.$$

• Méthode des états correspondants

Le principe des états correspondants est basé sur l'égalité des propriétés thermodynamiques réduites pour tous les fluides. Pitzer et al. (1955)^[55PIT] présentent le facteur de compressibilité comme une fonction linéaire du facteur acentrique en prenant en compte deux fluides de références. Lee et Kesler (1975)^[75LEE] conservent la même idée en utilisant une équation d'état de la forme BWRS pour chacun des fluides de références (hélium et octane).

Le facteur de compressibilité calculé est fonction des fluides de références, noté 0 et 1, par la forme suivante :

$$Z(T_{\rm r}, P_{\rm r}, \omega) = Z^{0}(T_{\rm r}, P_{\rm r}) + \omega \frac{Z^{1}(T_{\rm r}, P_{\rm r}) - Z^{0}(T_{\rm r}, P_{\rm r})}{\omega^{1}}$$

La référence 0 est un gaz rare (ω =0) et la référence 1 un composé avec un facteur acentrique élevé tel que l'octane de façon à encadrer au mieux les propriétés du fluide étudié. Naydenova-Benmansour (1999)^[99NAY] propose une modification de cette méthode pour prendre en compte plusieurs fluides de références.

• Equations d'état dédiées

Les équations d'état dédiées sont les équations se rapprochant le plus de l'équation d'état exacte. La représentation des données volumétriques est très précise (de l'ordre de 0.05% en générale). Elles sont développées pour un composé (ou un mélange) donné en prenant en compte des données expérimentales très variées (masses volumiques, tension de vapeur, enthalpie, entropie, ...). Ces équations sont écrites la plupart du temps en énergie libre : la pression est obtenue par dérivation

$$P = -\left(\frac{\delta A}{\delta V}\right)_{T}$$

L'expression de l'énergie libre est la somme de l'énergie libre du gaz parfait et d'une énergie libre résiduelle. A titre d'exemple, le lecteur peut consulter l'équation dédiée du R134a présentée par Tillner-Roth et Baehr (1993)^[93TIL]. Cette équation a notamment été utilisée pour étalonner la réponse du tube vibrant lors des mesures expérimentales de masses volumiques (*cf.* Chapitre 2).

• Equation d'état avec une « approche atomique / statistique »

Sous le terme d'approche atomique sont regroupées les méthodes qui tiennent compte des atomes des molécules et non plus des molécules comme un tout. Ces méthodes sont développées pour mieux représenter les propriétés des molécules contenant de nombreux atomes. Dans ce cas, les phénomènes agissant au sein de la molécule ont effectivement une importance non négligeable sur le comportement du fluide comme le présente Prigogine (1957)^[57PRI].

L'idée de « molécule chaîne » considère chaque molécule comme une succession d'atomes liés entre eux par des « chaînes » représentant les liaisons intra-moléculaires. Ces chaînes permettent de tenir compte de configurations spatiales différentes pour chacune des molécules. De nombreuses modifications de ce concept existent et l'une des plus connues actuellement est l'équation SAFT (Statistical Associating Fluid Theory).

Ces méthodes présentent l'avantage de représenter de façon plus « réelle » les énergies mises en jeu au sein du fluide. Cependant, elles sont plus compliquées à mettre en ouvre que les équations cubiques. Leur application s'oriente vers les molécules complexes mais reste assez compliquées notamment en mélange. De nombreux travaux sont actuellement menés pour évaluer la capacité de l'équation SAFT dans un environnement industriel.

• Approche statistique du type Monte Carlo ou dynamique moléculaire.

Le dernier type d'approche abordée dans ce paragraphe concerne la thermodynamique statistique. Il s'agit d'une simulation moléculaire à part entière. Les interactions entre chaque molécule (intermoléculaire) et au sein de chacune des molécules (intramoléculaire, en prenant la théorie des molécules chaînes) sont calculées. En règle générale, le nombre de molécules et le volume sont imposés et les propriétés thermodynamiques telles que la pression, la température ou encore l'énergie interne du fluide sont obtenues par moyenne statistique des valeurs des interactions entre les molécules (interaction électronique, vitesse et choc des molécules, ...).

Dans cette modélisation, les potentiels d'interaction moléculaire sont postulés pour chaque type de molécules. Ce potentiel inclut à la fois les interactions répulsives et attractives (potentiel de Leonard-Jones par exemple). Cependant, l'inconvénient majeur est le nombre de calculs et en conséquence le temps nécessaire pour obtenir un résultat (plusieurs heures, voire plusieurs jours peuvent être nécessaires). Panagiotopoulos (1996)^[96PAN] présente l'utilisation de la méthode Monte Carlo en thermodynamique.

3.7 Représentation des données PVT par un réseau de neurones

Une partie de ce travail a consisté en l'étude des réseaux de neurones⁵ dans le cadre de la représentation de données volumétriques.

3.7.1 Présence de réseaux de neurones dans la littérature

L'utilisation de réseaux de neurones pour la représentation de propriétés thermodynamiques apparaît dans la littérature dès 1993 comme le montre le tableau 3.9.

Référence	Application
Lee et Chen (1993) ^[93LEE]	Prédiction propriétés thermophysiques (température
	d'ébullition, température critique,)
Normandin et al. (1993) ^[93NOR]	Analyse de données PVT
Cherqaoui et al. (1994) ^[94CHE]	Prédiction propriétés thermophysiques (température
	d'ébullition, température critique,)
Laugier et al. (1994) ^[94LAU]	Prédiction ELV
Petersen et al. (1994) ^[94PET]	Prédiction contribution de groupe (ELV)
Alvarez et al. (1999) ^[99ALV]	Règle de mélange (ELV)
Sharma et al. (1999) ^[99SHA]	Prédiction ELV
Scalabrin et al. (2002) ^[02SCA]	Equation d'état
Laugier et Richon (2003) ^[03LAU]	Représentation PVT

<u>Tableau 3.9 : Quelques références d'utilisation de</u> réseaux de neurones pour le calcul de propriétés thermodynamiques

Cependant, l'utilisation de tels réseaux reste marginale dans le cadre de la modélisation thermodynamique de par notamment l'absence d'écriture analytique claire : le réseau apparaît

⁵Pour de plus amples informations sur les réseaux de neurones, le lecteur pourra consulter l'annexe 2.

comme une boite noire où les éléments n'ont pas de lien avec les phénomènes physiques. Cet outil présente tout de même des avantages certains là où des modèles physiques comportent trop d'incertitudes.

Appliqué aux données PVT, Normandin et al. (1993)^[93NOR] publient un réseau de neurones à une couche cachée pour représenter le facteur de compressibilité de 8 gaz d'hydrocarbures. Laugier et Richon (2003)^[03LAU] proposent un réseau pour la représentation des données PVT en phase gaz et en phase liquide avec deux réseaux différents (un pour chaque phase). Les données d'entrée sont la température et la pression et la sortie correspond soit au facteur de compressibilité pour la phase gaz soit la masse volumique pour la phase liquide. Le prochain paragraphe montre comment utiliser un seul réseau de neurones pour représenter à la fois les phases gaz et liquide. Un tel modèle mathématique permet de représenter également les données critiques et supercritiques.

3.7.2 Un unique réseau de neurones pour représenter les phases gaz et liquide

La représentation simultanée des deux phases n'est pas possible dans un repère $\rho = f(T,P)$. En effet, la figure 3.10 montre que dans un tel repère, la discontinuité du changement de phase rend trop « difficile » l'estimation de la pression : une très faible variation de pression peut induire une très forte variation de masse volumique. Aussi, pour définir un unique réseau pour les deux phases, nous nous sommes attachés à travailler dans un repère $P = f(T, \rho)$ comme pour les équations d'état précédentes.

L'inconvénient de ce système est que dans le cas où la grandeur recherchée est la masse volumique en fonction de la température et de la pression, il faut utiliser une routine d'inversion numérique. Par contre, un réseau de neurones unique permet de représenter les phases gaz et liquide ainsi que la phase supercritique sur un très large domaine de pressions et de températures.

3.7.2.1 Application à un coprs purs : le R134a

Afin de voir les capacités d'un tel réseau, le R134a a été choisi. Tillner Roth et Baehr (1993)^[93TIL] ont publié une équation d'état dédiée qui est valable sur un domaine de températures de (180 à 450) K et des pressions jusqu'à 70 MPa. 974 points ont été générés sur 17 isothermes. L'algorithme d'ajustement du réseau de neurones est de type rétro propagation suivant la méthode numérique de Levenberg Marquardt modifiée par Wilamowski et al. (2001)^[01WIL]. 322 données ont également été générées sur 5 isothermes pour vérifier la capacité du réseau en interpolation.

Les graphiques de la figure 3.11 montrent les résultats obtenus avec un réseau de neurones contenant 2 couches cachées de 5 et 3 neurones. Les valeurs des poids sont données en

Annexe 6. Sur les figures présentées, les masses volumiques ont été calculées à partir de données de températures et de pressions (en utilisant une inversion numérique des résultats obtenus à partir du réseau de neurones). Les déviations sont inférieures à 0.1 kg/m³ pour le domaine sous critique.

Dans la région critique des écarts plus importants apparaissent (< 1kg/m^3) dus à la courbure de l'isotherme. En effet, dans ce cas, une très faible erreur sur la pression peut induire une variation de masse volumique importante. Dans la région supercritique, la représentation est de l'ordre de 0.2 kg/m³. Ces valeurs sont comprises dans l'incertitude de l'équation d'état dédiée (de l'ordre de 0.05 % sur le domaine).

Figure 3.12 : Représentation des masses volumiques du R134a par réseau de neurones (0.5, 1, 2, 3, 4, 5, 8, 10, 30, 50, 70) MPa — Ce travail

Les calculs de validation ont également été réalisés sur des données isobares. Les valeurs sont comparées à la même équation d'état dédiée programmée dans REFPROP 6.0. Les résultats sont présentés sur la figure 3.12, ils sont du même ordre que ceux obtenus précédemment sur les isothermes.

Un tel outil présente plusieurs avantages :

- La précision obtenue sur le calcul des masses volumiques est égale ou supérieure à celle obtenue avec une équation d'état dédiée sur une plage de température et de pression importante.
- Un tel outil peut être rapidement mis en place pour représenter des données PVT expérimentales.
- A l'inverse des équations d'état habituellement utilisées ou des équations dédiées, ce modèle ne nécessite aucune propriété physique (coordonnées critiques notamment) autre que les données expérimentales de masse volumique en fonction de la température et de la pression

3.7.2.2 Calcul de l'enthalpie et de l'entropie à partir des données volumétriques

La connaissance des données volumétriques permet, en théorie, d'estimer les propriétés énergétiques dérivées telles que l'enthalpie, notée « h » :

h (T,P) =
$$\int_{T_0}^{T} c_p^{\#}(T).dT + \int_{\infty}^{v} dv + Pv - RT$$

L'intégrale peut être calculée numériquement par des méthodes simples (méthode des trapèzes par exemple). Cependant, l'utilisation d'une telle méthode numérique nécessite une précision sur les données volumétriques importantes. Aussi, nous avons souhaité estimer la qualité des données d'enthalpie calculée à partir des données volumétriques calculées par le réseau de neurones présenté dans le paragraphe 3.7.2.1.

Dans la formule précédente, $c_p^{\#}$ représente la capacité calorifique à pression constante du gaz parfait qui peut être obtenue par une relation polynomiale dont les coefficients sont propres aux molécules. A titre d'exemple, voici la relation utilisée par Tillner Roth et Baehr (1993) [^{93TIL]}:

$$\frac{cp^{\#}(T)}{R} = c_1 + c_2 \cdot \left(\frac{T_c}{T}\right)^{\frac{-1}{2}} + c_3 \cdot \left(\frac{T_c}{T}\right)^{\frac{-3}{4}}$$

Avec $c_1,\,c_2$ et c_3 les paramètres spécifiques au R134a (T_c = 374.21 K , c_1 = -0.629789, c_2 = 7.292937 and c_3 = 5.154411).

Pour les données en phase liquide, l'enthalpie de changement de phase peut également être obtenue à partir des données volumétriques par la relation :

$$\Delta h = (v_1 - v_g)$$

Les résultats calculés à partir de l'application de ces relations au réseau de neurones précédemment défini ont été comparés à ceux obtenus par les relations proposés par Tillner-Roth et Baehr (1993)^[93TIL] (Cf. Figure 3.13). L'erreur maximale observée est de 8 kJ/kg pour une plage totale de 500 kJ/kg (soit 1.6 %).

Ces résultats montrent une très bonne capacité du réseau de neurones à estimer les enthalpies à partir des seules données volumétriques expérimentales.

Figure 3.13 : Représentation de l'enthalpie du R134a (0.5, 1, 2, 3, 4, 5, 8, 10, 30, 50, 70) MPa — Ce travail

Le même travail a été mené sur l'entropie et les résultats sont présentés sur la figure 3.14. Les résultats sont similaires, et montrent des formes de déviations proches de celles obtenues avec l'enthalpie. Une erreur maximale de 0.05 kJ/kg/K correspond à environ 3% de la plage de calcul comprise entre 0.45 et 2.05 kJ/kg/K.

3.7.2.3 Considérations pour une application en mélange

Le travail présenté dans les paragraphes précédents est spécifique à un corps purs. Pour appliquer de tels modèles de calcul en mélange, au moins un paramètre supplémentaire indiquant la composition doit être introduit.

Cependant, l'inconvénient majeur du modèle utilisant un réseau de neurones réside dans son incapacité à représenter les données d'équilibre de phases. En effet, contrairement aux

équations d'état cubiques (*cf.* paragraphe 3.3.2), le comportement du réseau de neurones dans la zone d'équilibre liquide-vapeur ne répond pas à la loi de Maxwell. Ces conclusions nous ont conduit à ne pas utiliser cette méthode pour représenter les données expérimentales des mélanges étudiés dans ce travail. L'idée d'une méthode basée sur la correction d'une équation d'état cubique a été préférée et est présentée dans le chapitre suivant.

L'enjeu de la modélisation des propriétés volumétriques est la représentation exacte des corps purs et les mélanges dans des conditions sous critiques, critiques et supercritiques.

Une relation analytique unique qui permet une telle représentation est très difficile à obtenir voire impossible. La plus performante semble l'équation BWRS, développement du Viriel à l'ordre 6. Cependant, chaque coefficient de cette équation dépend de la température et des propriétés des composés étudiés. Pour les corps purs, il existe des procédures de détermination de ces paramètres en se basant à la fois sur des données de tensions de vapeur (équilibre liquide-vapeur du corps purs) et sur des données de masses volumiques de gaz et de liquides. Le problème intervient en mélange où la représentation des équilibres liquidevapeur sera au détriment des données volumétriques (et inversement).

Les méthodes qui semblent les plus « aptes » actuellement à représenter au mieux les interactions entre les molécules et donc à bien estimer les volumes de mélanges complexes, sont les méthodes atomiques. En effet, dans de telles approches, les molécules ne sont plus considérées comme un tout mais comme des enchaînements d'atomes. Les interactions intramoléculaires peuvent donc être prises en compte contrairement aux équations analytiques qui s'intéressent essentiellement aux interactions intermoléculaires. Cependant, la mise en place des méthodes moléculaires requiert une complexité et des temps de calculs supérieurs aux équations d'état analytiques (cubique, viriel, ...). Les équations d'état cubiques jouent un rôle important dans le monde industriel malgré leur relative simplicité. Leur avantage réside principalement dans la facilité d'utilisation et dans le nombre « considérable » (par rapports aux autres équations d'état) de règles de mélanges qui leur permettent d'appréhender de nombreux problèmes.

Par extension, il arrive que les volumes calculés à partir de ces équations soient utilisés. Une attention toute particulière doit alors être apportée quant aux valeurs obtenues car elles ne semblent suffisamment valides qu'à très faible pression (pour des gaz). Plus souvent le besoin de volume liquide est comblé par des équations dédiées liquides spécifiques pour des catégories de composés ou mélanges.

L'utilisation d'un réseau de neurones permet de représenter de façon très précise les données volumétriques sur une très large plage de pressions et de températures. La souplesse des réseaux de neurones permettrait certainement de les utiliser pour traiter des données volumétriques de mélanges (plus ou moins complexes). Cependant l'inconvénient majeur du réseau développé réside dans son incapacité à représenter les données d'équilibre de phases.

Une nouvelle méthode a alors été cherchée de façon à tirer profit des avantages de la représentation des équilibres de phases des équations d'états cubiques tout en essayant d'améliorer les volumes calculés. Il s'agit de l'objet du prochain chapitre.

Chapitre 4

Correction de volume des équations d'état cubiques Application aux alcanes légers (C1 à C4), CO₂ et H₂S

4 Correction de volume des équations d'état cubiques – Application aux alcanes légers (C1 à C4), CO₂ et H₂S.

Ce chapitre présente l'idée d'une méthode de correction des équations d'état cubiques, plus particulièrement celle de Redlich-Kwong modifiée par Soave (1972)^[72SOA]. Bien que les équations d'état cubiques montrent des déviations sur le calcul des masses volumiques importantes, elles ont l'avantage de pouvoir être utilisées assez facilement (à condition de connaître les coordonnées critiques des composés étudiés) sur des systèmes variés.

De nombreuses règles de mélanges (et paramètres d'interaction associés) ont été développées autour de ces équations de façon à représenter la plupart des conditions d'équilibre de phases : équilibres liquide-vapeur, liquide-liquide, solide-liquide,

Le travail mené concerne la présentation de la correction, de ses intérêts et un test sur six systèmes binaires.

4.1 Principe de calcul des masses volumiques en mélange à partir d'une équation d'état cubique : règles de mélange.

Au cours du chapitre 3, le principe de calcul des masses volumiques des corps purs a été abordé. Les équations d'états cubiques proposent une relation entre la pression, la température et le volume comme l'illustre l'équation cubique suivante.

 $P = \frac{RT}{v-b} - \frac{a(T)}{(v+b).v}$ Soave, Redlich et Kwong (1972)^[72SOA]

Pour un corps purs, les paramètres a et b sont estimés à partir des propriétés critiques de ce corps purs (méthode de calcul de Soave $(1972)^{[72SOA]}$) et en conséquence, à T et P fixé, le seul paramètre restant est v qui est déterminé par résolution numérique de l'équation cubique. Dans le cas d'un mélange, le problème est plus compliqué. En effet, les mélanges présentent des points critiques qui ne sont pas connu à priori (très peu de données expérimentales). Une méthode alternative consiste alors à définir des paramètres a et b de mélange en fonction des paramètres a_i et b_i des corps purs « i » qui constituent le mélange : il s'agit des « règles de mélanges ». De nombreuses règles de mélanges existent et celles utilisées dans ce travail sont les « règles de mélange quadratique » :

$$\begin{cases} a = \sum_{i=1}^{N} \sum_{j=1}^{N} \sqrt{a_{i}.a_{j}.(1-k_{ij})} & a \text{ et } b \text{ paramètres } de \text{ mélange,} \\ a_i \text{ et } b_i, \text{ paramètres } des \text{ corps } purs \ll i \gg, \\ b = \sum_{i=1}^{N} x_{i}.b_i & x_i, \text{ composition } du \text{ composé} \ll i \gg, \\ k_{ij}, \text{ paramètre d'interaction binaire.} \end{cases}$$

Les règles de mélange introduisent la notion de paramètres d'interaction : facteurs traduisant l'influence des composés les uns en présence des autres.

4.2 Quelques méthodes de correction des équations cubiques

Le principe de correction des volumes des équations d'état cubiques a déjà été présenté sous des formes diverses. Une des premières méthodes est celle de Peneloux et al. (1982)^[82PEN] :

$$c = v^{cal} - v^{exp}(T_r=0.7)$$

avec c = 0.40768. $\left(R.\frac{T_c}{P_c}\right)$. (0.29441 - Z_{RA}) (Eq. 4.1)

Le paramètre c (*Cf.* Eq 4.1) correspond à une translation de volume dans le cas de l'équation d'état de Redlich-Kwong. Cette correction s'applique initialement au volume liquide à saturation ; Eq. 4.1 concerne les hydrocarbures jusqu'au n-décane (Z_{RA} est le facteur de compressibilité de Racket). Cette méthode s'applique particulièrement bien à l'équation d'état de Redlich-Kwong qui sous-estime les masses volumiques de la plupart des composés étudiés. Ainsi une correction constante du volume liquide calculé permet effectivement d'améliorer de façon significative les masses volumiques à saturation.

D'autres méthodes de translation de volume se sont développées comme le montre l'étude de de Sant'Ana et al. (1999)^[99SAN] qui présentent quatre corrélations comparées sur leur capacité de calcul des densités des corps purs (alcanes et alcènes). La grande majorité de ces corrélations proposent une translation de volume « constante » pour améliorer principalement les calculs des masses volumiques à saturation. Dans ces cas, l'amélioration ne s'applique pas à des pressions éloignées de la pression de saturation du composé.

Une autre approche est proposée par Solimando et al. (1995)^[95SOL]. Au lieu de corriger le volume calculé par une équation d'état cubique, la pression est modifiée par un facteur de forme. Cette modification permet d'améliorer la représentation dans la région critique des corps purs.

Le problème principal de ces types de corrections concernent leur dépendance vis-à-vis de paramètres tels que les coordonnées critiques. Leur application en mélange devient alors dépendante de la définition de pseudo paramètres critiques (avec introduction la plupart du temps de paramètres d'interaction binaire différents de ceux utilisés dans les règles de mélanges).

4.3 Analyse des déviations sur les corps purs

Afin de se rendre compte des difficultés de calcul des équations d'état cubiques, trois d'entreelles ont été comparées sur les calculs des masses volumiques des alcanes légers, du dioxyde de carbone, de l'azote et de l'hydrogène sulfuré.

Les paramètres des corps purs utilisés dans ces équations sont regroupés dans le tableau 4.2 et sont issus de l'ouvrage de Reid et al. (1987)^[87REI].

	Тс	Рс	ω	Mw
	К	MPa		kg/mol
CH₄	190.56	4.599	0.0115	0.01604
C_2H_6	305.32	4.872	0.0995	0.03007
C₃H ₈	369.83	4.248	0.1523	0.04410
$n-C_4H_{10}$	425.12	3.796	0.2002	0.05812
IsoC₄H ₁₀	408.14	3.648	0.1808	0.05812
H₂S	373.53	8.963	0.0942	0.03408
N_2	126.20	3.400	0.0377	0.02801
	304.21	7.383	0.2236	0.04401

Tableau 4.2 : Paramètres de corps purs – Reid et al. $(1987)^{[87REI]}$ T_C : Température critique – P_C : Pressioncritique - ω : Facteur acentrique – M : Masse molaire

La figure 4.3 présente les déviations obtenues avec les équations d'état de Peng-Robinson (PR), Soave-Redlich-Kwong (SRK) et Patel-Teja (PT) pour des températures de 200 à 400 K et des pressions jusqu'à 30 MPa. Tout comme dans le chapitre précédent, les équations PR et SRK ont été associées à la fonction alpha de Mathias-Copeman et l'équation de PT à celle de Patel Teja généralisée. Les calculs ont été réalisés à l'aide d'un outil numérique, TEP ThermoSoft, présenté en annexe 8.

Les déviations sont calculées par la relation

 $\Delta \rho = \rho_{\text{calculée}} - \rho_{\text{référence}}$

L'allure de ces déviations confirme qu'une méthode classique de translation de volume par une constante ne peut pas représenter correctement les différents composés sur l'ensemble du domaine de masses volumiques étudié. Par contre, il est remarquable que les trois équations cubiques présentent la même forme de déviations avec une répartition relativement centrée pour les équations de Peng-Robinson et Patel-Teja. Dans le cas de l'équation de Soave-Redlich-Kwong, les masses volumiques des composés sont toujours sous estimées. Dans la suite de ce travail, le choix s'est porté vers une tentative de correction des volumes de l'équation de Soave-Redlich-Kwong. Les masses volumiques obtenues après correction sont alors comparées à celles obtenues de façon « classique » par utilisation de l'équation de Peng-Robinson. A priori, d'après les formes communes de déviations constatées sur les trois équations cubiques de la figure précédente, la plupart des constatations que nous pourrons faire sur le cas de Redlich Kwong devrait pouvoir s'appliquer aux deux autres équations d'état cubiques.

4.4 Une nouvelle démarche de correction des volumes

La correction présentée suit une démarche basée d'abord sur l'utilisaiton d'une méthode « classique » à base d'équation d'état pour représenter les données d'équilibres. Puis une fonction de correction des volumes est appliquée. La méthode classique concerne dans cet exemple l'équation d'état de Soave-Redlich-Kwong. La correction utilise un réseau de neurones défini à partir de données de corps purs. En mélange, la correction suit les étapes ainsi définies :

- 1 un réseau de neurones est employé pour représenter les déviations obtenues par l'équation d'état cubique de Soave-Redlich-Kwong (SRK) sur les corps purs (*Cf.* figure 4.3).
- 2 l'équation SRK associée aux règles de mélange quadratiques est utilisée pour représenter l'équilibre de phases : le paramètre d'interaction binaire k_{ij} est ajusté sur des données d'équilibre.
- 3 Le modèle thermodynamique ainsi défini permet de calculer des volumes en mélange pour une température, une pression et une composition donnée. La fonction de correction obtenue à l'aide du réseau de neurones est alors appliquée pour corriger les volumes calculés à partir du modèle thermodynamique.

4.5 Ajustement des déviations par réseau de neurones

Comme présenté dans le paragraphe précédent, les déviations dues à l'équation SRK sont représentées par un réseau de neurones. Initialement, les variables d'entrée du réseau de neurones comprenaient la température, T, et la pression, P, étant donné le lien qui les unit à la masse volumique. Un paramètre lié aux composés est nécessaire, le paramètre choisi est la masse molaire, M_w. Le choix de ce paramètre peut paraître surprenant car il ne figure dans aucune équation d'état. Cependant, la masse molaire est une propriété physique qui a la particularité d'être calculée exactement pour les mélanges (simple pondération en fonction de la composition). Les autres propriétés, telle que la pression critique, ne sont pas connues à priori en mélange. Un des aspects de la correction est de tenir compte de la masse volumique calculée par l'équation d'état SRK en tant que paramètre d'entrée. En effet, l'état du fluide (gaz ou liquide) est implicitement inclu dans la valeur de ce paramètre (masse volumique faible pour un gaz et valeur plus élevée pour un liquide). Cela permet de « tirer profit » du travail du modèle thermodynamique choisi (équation cubique et règles de mélange) et ajusté sur les données d'équilibre. L'utilisation de la masse volumique justifie également l'implication de la masse molaire. En effet, en déterminant la masse molaire et la masse volumique comme paramètres d'entrée, le réseau tient compte à la fois de la dimension de volume et de quantité de matière contenu dans ce volume.

Le réseau retenu après différentes configurations de structures testées est présenté sur la figure 4 .4. Avec cette structure, un écart-type d'ajustement de 2 kg/m³ est obtenu sur environ 1000 données réparties dans l'ensemble des 2500 masses volumiques calculées avec l'équation d'état SRK sur les composés cités dans le paragraphe 4.3.

<u>Figure 4.4 : Structure du réseau de neurones</u> 1 : Biais, O Neurone (fonction sigmoïde exponentielle), O Neurone de sortie (fonction linéaire)

Un problème identifié de ce réseau concerne le n-butane et l'iso-butane, qui présentent la même masse molaire mais des déviations différentes.

Pour avoir une notion de la possibilité d'améliorer le calcul des déviations, un nouveau paramètre a été testé pour marquer la différence entre ces deux molécules : le facteur acentrique ($\omega = 0.20$ pour n-C₄H₁₀ et $\omega = 0.18$ pour iso-C₄H₁₀) a été choisi. Dans cette configuration, la pression n'apporte pas d'intérêt supplémentaire. Elle a donc été retirée des entrées. Cette conclusion surprenante dans un premier temps peut s'expliquer par l'implication de la pression dans la valeur de la masse volumique calculée à partir de l'équation d'état.

Figure 4.5 (a) : Déviations entre la masse volumique calculée corrigée et les données de références

Figure 4.5 (b) : Déviations relatives entre la masse volumique calculée corrigée et les données de références

Comme le montre la figure 4.5 (a), un écart en général inférieur à 2 kg/m³ (écart-type d'ajustement de 0.6 kg/m³) est obtenu sur les déviations en utilisant un réseau de neurones à deux couches cachées (5 et 4 neurones) et 4 entrées (M_W , T, ω et ρ_{EOS}). Les déviations affichées concernent la différence entre les données calculées avec la correction du réseau de neurones et les données de références. Ces déviations correspondent à un écart-type relatif de 0.4 % en ne considérant que les masses volumiques supérieures à 2 kg/m³ (correspond à environ trois fois l'écart type absolu).

Les données présentées sur les graphiques 4.5 (a et b) concernent un ensemble de 2500 données dont seulement 1000 ont été extraites pour ajuster les poids du réseau. Les valeurs de ces poids sont présentées en annexe 7.

Ces résultats sur les corps purs montrent l'intérêt d'un paramètre supplémentaire (ici le facteur acentrique). Cependant l'ajout de ce paramètre pose un problème de définition en mélange : quelle est la valeur du facteur acentrique d'un mélange ? Pour éviter d'introduire un nouveau paramètre de mélange, nous avons préféré, pour la suite du travail, conserver un réseau sans facteur acentrique mais avec en entrée: la masse molaire, la température et la valeur de la masse volumique calculée à l'aide du modèle thermodynamique. Ce réseau recentre les déviations autours de 0 et présente un écart-type sur les déviations relatives de 2.5%. Les poids du réseau sont présentés en annexe 7.

4.6 Application en mélange

Une fois une correction sur les déviations des masses volumiques des corps purs obtenues, la méthode conduit à s'intéresser à la représentation des équilibres de phases (liquide-vapeur dans ce travail) des systèmes étudiés. La figure 4.6 montre les résultats obtenus à partir des modèles thermodynamiques basés sur les équations d'état de Soave-Redlich-Kwong et de Peng-Robinson (fonction α de Mathias-Copeman et règles de mélanges quadratiques). Les valeurs des paramètres d'interaction « k_{ij} » des règles de mélanges quadratiques ont été obtenues par ajustement sur les données expérimentales issues de la littérature.

 Figure 4.6 : Représentation des équilibres Liquide-Vapeur de binaires composé de CH_4 , C_2H_6 , C_3H_8 ,

 CO2 et H_2S

Système	k _{ij} (SRK)	k _{ij} (PR)	Source des données
CO C H	0.133	0.125	Reamer et al. (1951) ^[51REA]
$CO_2 - C_3 \Pi_8$	0.155	0.125	(277.59, 294.26 et 310.93) K
	0.001	0.082	Kalra et al (1977) ^[77KAL]
$C_2 \Pi_6 - \Pi_2 S$	0.091	0.082	(283.15, 255.32, 227.93 et 199.93) K
CO 45	0.108	0.104	Bierlein et Kay (1953) ^[53BIE]
$CO_2 - H_2S$	0.108	0.104	(2.02, 4.05, 6.08 et 8.11) MPa
	0.006	0.081	Kohn et al. (1958) ^[58KOH]
$CH_4 - H_2S$	0.096	0.081	(344.26, 310.93 et 277.59) K
	0.007	0.002	Brewer et al. $(1961)^{[61BRE]}$
$C_3 \Pi_8 - \Pi_2 S$	0.097	0.092	(0.14, 0.34, 0.69 et 1.38) MPa
CO C H	0.122	0.125	Fredenslund et Mollerup (1974) ^[74FR]
$CO_2 - C_2H_6$	0.133	0.125	(223.15, 283.15 et 263.15) K

Pour les six systèmes étudiés, le paramètre d'interaction k_{ij} a été pris constant (pas de dépendance en température ni en pression). Les résultats avec les deux modèles thermodynamiques (Soave-Redlich-Kwong et Peng-Robinson) sont très proches, voire quasiment confondus.

4.6.1 Données volumétriques

Figure 4.7 : Calcul de la masse volumique de systèmes binaires composés <u>de CH₄, C₂H₆, C₃H₈, CO₂ et H₂S</u> ◆ : Soave-Redlich-Kwong ; Δ : Peng-Robinson ; * : Ce travail

En mélange, la première étape consiste à calculer la masse volumique à partir du modèle thermodynamique de représentation de l'équilibre. Puis, la fonction de correction à base de

réseau de neurones développée sur les corps purs est directement appliquée. Les résultats obtenus avec cette démarche ont été comparés à des mesures expérimentales de masses volumiques sur les 6 systèmes binaires présentés sur la figure 4.7.

Système	Nb	z(1)	T [K]	P [MPa]	E _{SRK} /E _{COR}	E _{PR} /E _{COR}
$CO_2 - C_3H_8$	159	0.0833 - 0.9306	294 - 358	0.1 - 70	1.6	0.7
$C_2H_6 - H_2S$	408	0.8570 - 0.9620	254 - 363	0.01 - 22	2.3	2.4
$CO_2 - H_2S$	136	0.4859	325 - 500	1 - 60	0.6	0.7
$CH_4 - H_2S$	56	0.5073	350 - 450	1 - 45	0.9	1.1
$C_3H_8 - H_2S$	90	0.7773 - 0.9353	263 - 333	0.1 - 41	3.1	1.8
$CO_2 - C_2H_6$	519	0.0877 - 0.9353	278 - 333	0.01 - 18	1.5	1.0
				Moyenne	1.6	1.3

Nb : Nombre de points expérimentaux ; SRK : Soave-Redlich-Kwong ; PR : Peng-Robinson ; COR : Correction $E = |BIAS| + \sigma \text{ avec } BIAS = \frac{1}{N} \sum_{i}^{N} \left(\frac{X_{i \text{ CAL}} - X_{i \text{ EXP}}}{X_{i \text{ EXP}}} \right) * 100 \text{ et } \sigma = \frac{1}{N} \sqrt{\sum_{i}^{N} \left(\frac{|X_{i \text{ CAL}} - X_{i \text{ EXP}}|}{X_{i \text{ EXP}}} * 100 \text{-} BIAS \right)^{2}},$

 $\begin{array}{l} \underline{Tableau\; 4.8: Tableau\; récapitulatif\; des\; déviations\; avec\; et\; sans\; correction} \\ (C_2H_6-H_2S,\,C_3H_8-H_2S,\,CO_2-C_2H_6)\;: données\; de\; ce\; travail \\ (CO_2-C_3H_8): de\; la\; Cruz\; de\; Dios\; et\; al.\; (2003)^{[03CRU]} \end{array}$

Les graphiques de la figure 4.7 montrent les différences de comportement entre les deux équations d'état testées et la méthode de correction présentée. Pour compléter les graphiques, le tableau 4.8 présente un indicateur qui permet de situer la correction présentée par rapport aux modèles thermodynamiques utilisant les équations de Soave-Redlich-Kwong et de Peng-Robinson. Le rapport E_{SRK}/E_{COR} ou E_{PR}/E_{COR} supérieure à 1 traduit « globalement » une amélioration liée à la méthode de correction mise en place. Ce rapport doit cependant être pris avec beaucoup de précaution car il a été défini pour chacun des systèmes et il englobe des données isothermes différentes avec des comportements qui peuvent être tout autant différent. Cependant, l'avancée de cette étude ne justifie pas de s'intéresser en détail à chacune des isothermes.

La correction formulée semble relativement adéquate pour les systèmes éthane-hydrogène sulfuré et propane-hydrogène sulfuré. Dans le cas du système méthane-hydrogène sulfuré, il est difficile de tirer des conclusions dans la mesure où le comportement de la méthode Soave-Redlich-Kwong diffère des conditions d'ajustement du réseau de neurones (déviations positives). Pour les systèmes (éthane- dioxyde de carbone) et (propane - dioxyde de carbone), la correction améliore les résultats obtenus avec l'équation SRK seule, mais sont du même ordre que ceux de PR.

4.6.2 Quelques considérations sur la méthode

Dans l'état actuel des tests, la correction n'apporte qu'une amélioration sélective et modérée en mélange. Cependant, la méthode n'est pas dénuée de sens comme le montre la Figure 4.9 sur laquelle les déviations des masses volumiques en mélange et en corps purs avec les deux équations d'état ont été superposées.

Les déviations en mélange sont cohérentes avec celles en corps purs (même forme). Cela confirme l'intérêt de cette méthode et montre que les résultats peuvent être améliorés. Cependant, il faut noter que les déviations entre 0 et 200 kg/m³, correspondant au système H_2S-CH_4 sont très différentes des corps purs. Il semble alors plus difficile d'utiliser la méthode proposée sur des mélanges très supercritiques. Un tel écart confirme que les calculs à partir de l'équation d'état de Peng-Robinson et de Soave-Redlich-Kwong donne des résultats à prendre avec précaution sur les mélanges contenant un composé supercritique.

Afin d'améliorer la méthode présentée, différents tests complémentaires ont été menés, mais ils n'apportent pas de réelle amélioration :

• Intégrer le facteur acentrique en mélange.

En mélange, une simple pondération en fonction de la composition a été appliquée. Les résultats obtenus montrent un comportement plus aléatoire et parfois complètement incohérent de la correction.

• Tester cette correction sur l'équation Peng-Robinson.

La même méthode de correction a été appliquée avec les données calculées à partir de l'équation de PR. Des résultats très similaires à ceux présentés pour SRK ont été obtenus. Cela confirme cependant que cette méthode, une fois améliorée, pourrait s'appliquer à différentes équations d'état comme suggérée initialement.

• Intégrer des données de mélanges dans l'ajustement du réseau de neurones. Aucune amélioration ni effet défavorable particuliers n'ont été observés si ce n'est une meilleure représentation du ou des mélanges pris en considération. Cela semble montrer que l'effort peut être porté sur l'utilisation seule des données de corps purs.

Malgré les améliorations modérées obtenues, l'étude nécessite d'être poursuivie car elle présente de très bonnes perspectives. Les efforts peuvent notament être menés sur la définition du réseau de neurones de correction des masses volumiques.

Les travaux suivants devraient être étudiés :

• Utiliser une gamme de donnée d'ajustement du réseau plus vaste en terme de masse molaire.

Cela revient à réaliser le travail sur une multitude de composé.

• Utiliser les paramètres d'attraction « a » et de covolume « b » comme entrée du réseau de neurones de correction

Les paramètres « a » et « b » apportent deux informations complémentaires (force d'attraction de la molécule et volume minimal occupée) au lieu de la seule information de volume final obtenu par la résolution de l'équation d'état.

A l'inverse, dans l'état actuel des travaux, il parait tentant de vouloir introduire des paramètres tels que le facteur acentrique ou les propriétés critiques en place de la masse molaire. Cependant, cela irait à l'encontre de la méthode qui est « ambitieuse » et dont l'intérêt principal est de tirer profit du travail initial des équations d'état. Or, les paramètres cités précédemment sont utilisés dans ces équations d'état pour représenter au mieux les équilibres de phases. Les valeurs des masses volumiques, de « a » et de « b », calculées par les équations d'état incluent alors implicitement ces paramètres. De plus, introduire de nouveaux ces paramètres dans le réseau de neurones impliquerait l'utilisation de nouvelles règles de mélanges et diminuerait alors d'autant l'intérêt de cette correction en nécessitant trop de paramètres.

4.7 Conclusions

La méthode présentée dans ce chapitre vise à améliorer le calcul des masses volumiques tout en conservant l'utilisation des équations d'état cubiques. L'idée est de tirer profit des équations cubiques pour la représentation des équilibres liquides vapeurs sans en modifier la structure. De cette façon, les règles de mélanges développées pour ces équations cubiques peuvent être conservées telles quelles.

La correction proposée s'applique à la valeur de la masse volumique calculée à partir de l'équation cubique. Elle est déterminée à l'aide d'un réseau de neurones dont les poids ont été ajustés sur un ensemble de données de masses volumiques de corps purs.

Cette méthode semble très prometteuse dans le sens où elle permettrait de fournir un moyen de calcul amélioré concernant à la fois les données d'équilibre de phases et les volumes mis en jeu. De plus, à priori, la méthode peut s'appliquer très facilement aux simulateurs existants car les routines de calcul d'équilibre de phases ne sont pas remis en cause. Une unité supplémentaire appliquée aux résultats des équilibres semble suffire. L'étude plus approfondie de l'application aux simulateurs ne pourra cependant être réalisée qu'àprès avoir amélioré significativement la représentation des masses volumétriques en mélange.

Dans ce chapitre, un réseau de neurones est utilisé pour corriger les masses volumiques calculées à partir de l'équation d'état de Soave-Redlich-Kwong. A la vue de l'allure des déviations obtenues en utilisant les équations de Peng-Robinson et de Patel-Teja, les résultats obtenus pour Soave-Redlich-Kwong devrait s'appliquer aux deux autres équations.

La méthode de correction testée comporte comme paramètre d'entrée la masse molaire, le facteur acentrique, la température et la masse volumique calculée par l'équation d'état. Le facteur acentrique améliore sensiblement la correction utilisant le réseau de neurones (± 0.6 kg/m³). Cependant le problème se pose de savoir comment l'estimer en mélange. Dans un premier temps ce paramètre n'a pas été pris en compte et un réseau ayant une incertitude sur les déviations de l'ordre de 3% a été préféré. Les résultats obtenus sur 6 systèmes binaires contenant CH₄, C₂H₆, C₃H₈, CO₂ et H₂S ont montré une efficacité mitigée de la correction en mélange. Par contre la méthode semble très intéressante car elle n'apporte pas de paramètres de mélange supplémentaire et elle laisse présager des améliorations de son efficacité moyennant une poursuite du travail.

Une étude plus poussée devrait être menée pour en définir concrètement les limites.

Conclusions

La première partie de ce travail a consisté à développer un nouvel appareillage de densimétrie par tube vibrant basé sur une cellule DMA 512 P. Cette cellule a l'avantage d'être constituée en hastelloy C276 lui conférant des propriétés de résistance aux fluides corrosifs. L'analyse d'une ancienne installation de densimétrie constituée d'une cellule DMA 512 a permis de définir des points d'amélioration apportée à la nouvelle installation. Une plus grande stabilité de l'appareil est observée, caractérisée par une diminution de la dispersion des mesures.

Des mesures sur trois binaires contenant de l'hydrogène sulfuré, du dioxyde de carbone, de l'éthane et/ou du propane ont été réalisées. Les données volumétriques des phases comprimées ainsi que l'estimation des données d'équilibre liquide-vapeur lorsque cela est possible (conditions sous critiques) ont été présentées.

Le traitement de ces données a permis de définir que la méthode d'étalonnage semi empirique FPMC n'est pas utilisable telle qu'elle pour un étalonnage sur plusieurs températures. De même, une méthode alternative a été mise au point pour convertir les données de périodes en données volumétriques pour les produits comme le CO_2 dans la région critique. La méthode FPMC présente en effet des lacunes surnommées « syndrome supercritique » dans les travaux de Bouchot (1995)^[95BOU] et de la Rosa Vidal (2002)^[02ROS].

Différentes équations d'état ont été comparées sur leur capacité à représenter les données volumétriques de corps relativement simples (hydrocarbures, dioxyde de carbone, hydrogène sulfuré et azote). Une attention particulière a été portée sur les équations d'état cubiques de par leur implication dans la modélisation des équilibres de phases. Ces dernières présentent cependant de forts décalages sur les valeurs des masses volumiques des corps purs. Quelques travaux traitent de correction de ces valeurs calculées à l'aide d'une relation analytique. Dans le présent projet un test d'utilisation d'un réseau de neurones montre une grande adaptation à la représentation des données des corps purs.

L'application en mélange est testée sur six binaires incluant H_2S , C_2H_6 , CO_2 , CH_4 et C_3H_8 . Les résultats sont intéressants car ils corrigent certaines des déviations observées en utilisant l'équation d'état de Soave-Redlich-Kwong. Cependant la correction calculée par le réseau de neurones reste modérée (amélioration pour les systèmes contenant H_2S mais plutôt défavorable pour ceux contenant CO_2). La méthodologie est prometteuse dans la mesure où elle permettrait de tirer profit de tous les travaux qui sont réalisés sur les équilibres de phases (règles de mélanges, paramètres d'interaction). En effet son rôle consiste en la correction du volume calculée à partir de l'équation d'état sans ajouter de paramètres d'interaction supplémentaire en mélange.

Les divers modèles thermodynamiques ont pu être comparés et testés grâce à un logiciel développé au laboratoire : TEP ThermoSoft⁶. Le développement de cet outil a tenu une part importante au cours de ce travail de thèse. L'objectif étant d'obtenir un outil adaptable et évolutif.

⁶ http://www.ensmp.fr/Fr/CENERG/TEP/ThermoSoft/TEP_ThermoSoft.htm.

Références

[73VAN]	J. D. VAN DER WAALS, Thèse soutenue à l'université de LEYDE (1873)
[36BUR]	B.S. BURNETT, J. Appl. Mech., 58 (1936) 136-xx
[40BEN]	M. BENEDICT, G.B. WEBB, L.C. RUBIN, J. Chem. Phys., 8 (1940), 334-xx
[49RED]	O. REDLICH, J.N.S. KWONG, Chem. Rev., 44 (1949), 233-244
[51REA]	H.H. REAMER, B.H. SAGE, W.N. LACEY, Ind.Eng.Chem., 43 (1951) 2515-
[]	2520
[53BIE]	J.A. BIERLEIN, W.B. KAY, Ind.Eng.Chem., 45 (3) (1953) p618-624
[53KAY]	W. B. KAY, D. B. BRICE, Ind. Eng. Chem., 1953, 45, 615-618.
[55PIT]	K.S., PITZER, J. Am. Chem. Soc., 77 (1955) 3427
[56OPF]	J.B. OPFELL, B.H. SAGE et K.S. PITZER, Ind. Eng. Chem., 48 (1956) 2069
[57PRI]	I. PRIGOGINE, A. BELLEMANS AND C. J. NAAR-COLIN, J. Chem. Phys., 1957,
[58KOH]	J.P. KOHN, F. KURATA, AIChE J., 4 (1958) 211
[61BRE]	J. BREWER, N. RODEWALD, F. KURATA, AIChE J., 7 (1961) 13-16
[65BRA]	R.S. BRADLEY, D.C. MUNRO, Pergamon Edition, London (1965) 186-xx
[65RED]	J.N., REDING, J. Chem. Eng. Data, 58 (1965) 1-xx
[66GRI]	A.F. GRIGOR, W.A. STEELE, Rev. Sci. Instrum., 37 (1966) 51-xx.
[67COO]	H.W. COOPER, J.C. GOLDFRANK, Hydrocarbon Processing, 46 (1967), 141-146
[69CAR]	N.F. CARNAHAN, K.E. STARLING, J. Chem. Phys., 51 (1969), 635-636.
[69GOL]	K. GOLDMAN, N.G. SCRASE, Physica, 44-3 (1969) 555-586
[69KRA]	O. KRATKY, H. LEOPOLD, H. STABINGER, Z. Angew. Phys., 27 (1969) 273-277
[72CAR]	N.F. CARNAHAN, KE STARLING, AIChE J. 71 (1972) 1184 1189
[72SOA]	G. SOAVE, Chem. Eng. Sci., 27 (1972), 1197 – 1203.
[73STA]	K.E. STARLING, Hydrocarbon Processing, 3 (1973) 101-xx
[74FRE]	A. FREDENSLUND, J. MOLLERUP, J.Chem.Soc., Faraday Trans.1, 70 (1974) 1653-1660
[75LEE]	B.I. LEE, M.G. KESLER, AIChE Journal, 21 (1975) 3
[76PEN]	D. PENG, D.B. ROBINSON, Ind. Eng. Chem. Fundam., A5 (1976) 59-64
[77KAL]	KALRA H., ROBINSON D.B., KRISHNAN T.R., J. Chem. Eng. Data, 22 (1977) 85-
	88
[80HAR]	A. HARMENS, H. KNAPP, Ind. Eng. Chem. Fundam., 19 (1980), 291-294
[80NIS]	H. NISHIUMI, J. Chem. Eng. Japan, 13-3 (1980), 178-183
[82PAT]	N.C. PATEL, A.S. TEJA, Chem. Eng. Sci., 37 (1982), 463-473
[82PEN]	A. PÉNÉLOUX, E. RAUZY, R FRÈZE, Fluid. Phase Equilib., 8 (1982) 7-23
[83HAY]	W.M. HAYNES, J. Chem. Thermodyn., 15 (1983) 419
[83MAT]	P.M. MATHIAS, T.W. COPEMAN, Fluid Phase Equilib., 13 (1983) 91-108
[84FON]	F. FONTALBA, D. RICHON, H. RENON, Rev. Sci. Instrum., 55-6 (1984), 944-951
[85TEK]	V. TEKAC, I. CIBULKA, R. HOLUB, Fluid Phase Equilib., 19 (1985), 33-149
[86BOS]	T.K. BOSE, J.M. ARNAUD, H.J. ACHTERMAN, R. SCHARF, Rev. Sci. Instum., 57
	(1986) 26-32
[87REI]	REID, R. C., PRAUSNITZ, J. M.; POLING, B. E. The properties of Gases and
	Liquids, fourth Ed;. Mc Graw-Hill Book Company : New York, 1987.
[87TRE]	M.A. TREBBLE, P.R. BISHNOI, Fluid Phase Equilib., 35 (1987), 1-18
[88WIL]	D.P. WILSON, R.S. BASU, ASHRAE 94 -2 (1988), 2095-2118
[89BAS]	R.S. BASU, D.P. WILSON, Int. J. Thermophys., 10-3 (1989) 591-603
[90PIA]	C-C.PIAO, H. SATO, K. WATANABE, ASHRAE transaction, 1 (1990), 132-140.
[91MOR]	G. MORRISON, D.K. WARD, Fluid Phase Equilib., 62-1-2 (1991), 65-86
[92HOU]	H. HOU, J.C. HOSTE B. E. GAMMON, K. N. MARSH, Int. J. Refrig., 15-6 (1992), 365-371
[92LAG]	B. LAGOURETTE, C. BONED, H. SAINT-GUIRONS, P XANS, H.ZHOU, Meas.
-----------	---
	Sci. Technol., 3 (1992) 699-703
[92QIA]	Z.H. QIAN, H. SATO, K. WATANABE, Fluid Phase Equilib., 78 (1992) 323-329
[92SOU]	A.T. SOUSSA, P.S. NIETO DE CASTRO, R. TUFEU, B. LE NEINDRE, Fluid Phase
	Equilib., 80 (1992) 213-225
[92TAM]	T. TAMATSU, H. SATO, K. WATANABE, J. Chem. Eng. Data, 37 (1992) 216-219
[92ZHU]	M.S. ZHU, Y.D. FU, L.Z. HAN, Fluid Phase Equilib., 80 (1992) 149-156
[92WEB]	L.A. WEBER, Int. J. Thermophysics, Vol. 13 (1992) 6
[93NOR]	A. NORMANDIN, B. P. A. GRANDJEAN, J. THIBAULT, Ind. Eng. Chem. Res.
[03] EE1	1995, 52, 970-975 MILLEE LT CHEN Ind Eng Chem Des 1003-32-005-007
	D THI I NED DOTH H D BAEHD I of Chem Thermodyn 25 (1003) 277 202
	D CHEROAOUL D VILLEMIN V KVASNICKA Chemometrics and Intelligent
[94CIIL]	Laboratory Systems 24, 1994, 117-128
[94GAL]	L.A. GALICIA LUNA, D. RICHON, H. RENON, J. Chem. Eng. Data, 39 (1994) 424-
[,]	431
[94LAU]	S. LAUGIER, L. CARALP, D. RICHON, International Conference CFC's, The day
	after, Padova, pages 509-516, september 21-23, (1994)
[94PET]	R. PETERSEN, A. FREDENSLUND, P. RASMUSSEN, Computers chem Engng,
	Vol. 18, Suppl. Pp S63-S64, 1994
[95BOU]	C. BOUCHOT, Thèse soutenue à l'Ecole des Mines de Paris, 1995.
[95DOR]	R. DORHN, G. BRUNNER, Fluid Phase Equilib., 106 (1995) 213-282
[95RAH]	S. RAHMAN, M.A. BARRUFET, J. of Petroleum Science and Engineering, 14 (1995)
	25-34
[95SOL]	R. SOLIMANDO, M. ROGALSKI, E. NEAU, A. PENELOUX, Fluid Phase Equilib.,
	106 (1995) 59-80
[96BLE]	J.G. BLENCOE, S.E. DRUMMOND, J.C. SEITZ, B.E. NESBITT, Int. J.
	Inermophys., 1 /-1 (1996), 1 /9-190
[96PAN]	A.Z. PANAGIOTOPOULOS, Fluid Phase Equilib., 116 (1996) 257-266
[905PA]	K. SPAN, W. WAGNEK, J. Phys. Chem. Ref. Data, 25 (1996) 1509-1596.
	GOODWIN, MOLDOVEK, J. Chem. thermodyn. 1997, 29, 1481-1494
[9/HYN]	V. HYNEK, M. OBSIL, V. MAJER, J. QUINT, J.P.E. GROLIER, INT. J. Thermonhys 18-3 (1997) 719-732
[98BOU]	C. BOUCHOT, D. RICHON, Int. Elec. J. of Phys. Data, 4 (1998), 163-172
[98LAZ]	R. LAZNICKOVA, H. HUEMER, Meas. Sci. Technol. 9 (1998) 719-733
[99ALV]	E. ALVAREZ, C. RIVEROL, JM, CORREA, J.M. NAVAZA, Ind. Eng. Chem. Res.,
	38 (1999) 1706-1711
[99NAY]	S. NAYDENOVA-BENMANSOUR, Thèse soutenue à l'Ecole des Mines de Paris
	(1999)
[99MAR]	R.A. MARRIOT, A.W. HAKIN, J.L. LIU, M.R. ROUSSEL, Computers & Chemistry,
	23 (1999) 487-492
[99SAN]	H.B. DE SANT'ANA, P. UNGERER, J.C. DE HEMPTINNE, Fluid Phase Equilib.,
	154 (1999) 193-204
[99SHA]	R. SHARMA, D. SINGHAL, R. GHOSH A. DWIVEDI, Computers et Chemincal
	Engineering, $23 (1999) 385 - 390$
[00IHM]	C. IHMELS, C. AUFDERHAAR, J. RAREY, J. GMEHLING, Chem. Eng. Technol.,
100337111	23-5 (2000) 409-412
[00WEI]	Y.S. WEI, K.J. SADUS, AIChE J., 46 (2000), 109-191
	C. BOUCHUI, D. RICHUN, Fluid Phase Equilib., 191 (2001) 189-208
	C. ITIVIELO, J. UVIETILINU, ITU. ETIG. UTETI. KES., 40 (2001) 44/0-44//
	5. WAING, H. AIANG B. HAIN, FILIG PHASE EQUIID., 181 (2001) /1-82
[UI WIL]	D. WILAWOWSKI, S. IFLIKU, U. KATANK, W. U. EFE, IIItemational Joint Conference on Neural Networks (IJCNN/01) pp. 1779–1792 Washington DC July 15
	10 2001
[02CHR]	M CHRISTOV R DORHN Fluid Phase Fauilib 202 (2002) 153-218
	1.1.5.1.1010101, 1.1.501011, 11000100000000000000000000000000

- [02ROS] E. DE LA ROSA VIDAL, Thèse soutenue à l'Institut Polytechnique National du Mexique, Mexico (2002)
- [02SCA] G. SCALABRIN, L. PIAZZA, D. RICHON, Fluid Phase Equilib. 199 (2002), 33-51
- [02VIA] M. VIANA, P. JOUANNIN, C. PONTIER, D. CHULIA, Talanta 57 (2002), 583-893.
- [03CRU] J. DE LA CRUZ DE DIOS, C. BOUCHOT AND L. A. GALICIA LUNA, Fluid Phase Equilib. 210 (2003), 175-197
- [03LAU] S. LAUGIER D. RICHON, Fluid Phase Equilib. 210 (2003) 247-255
- [03WES] B.M. WESTWOOD, V.N. KABADI, J. Chem. Thermodyn. 35 (2003) 1965-1974
- [04ABD] I.M. ABDULAGATOV, N.D. AZIZOV, J. Chem. Thermodyn. 36 (2004) 17-27
- [04MAY] E.F. MAY, T. J. EDWARDS, A.G. MANN, D.K. MANNING, J. of Petroleum Science and Engineering, 41 (2004) 297-308
- [05RIV] F. RIVOLLET, C. JARNE, D. RICHON, J. Chem. Eng. Data, XX (2005) En attente de parution.

- Annexe 1 : Etalonnage des capteurs de pression
- Annexe 2 : Quelques notions sur les réseaux de neurones / Présentation du logiciel NeuroBox
- Annexe 3 : Paramètres du réseau de neurones Etalonnage du tube vibrant sur les données de R134a
- Annexe 4 : Paramètres des réseaux de neurones Etalonnage du tube vibrant sur les données de CO_2 et de C_2H_6
- Annexe 5 : Données expérimentales
- Annexe 6 : Paramètres du réseau de neurones Equation d'état de R134a
- Annexe 7 : Paramètres du réseau de neurones Correction de volume
- Annexe 8 : Présentation du logiciel TEP ThermoSoft

Annexe 1 : Etalonnage des capteurs de pression

• Etalon numérique

L'appareil d'étalonnage pour les basses pressions est un étalon numérique commercialisé par Desgranges et Huot. La pression estimée du gaz est directement transmise sous forme numérique en "points". Cette indication peut se convertir en bar à l'aide d'un coefficient "Pression/ Masse", noté KN_{20} (\approx 1bar/kg) dont la valeur est donnée avec précision par un organisme habilité, pour une température de mesure de 20°C.

La conversion de KN₂₀ en un coefficient "Pression/Point", noté B₂₀, prend en compte une valeur de référence Nk (100000 Pts/Kg) pour une pesanteur normale $g_n = 9.80665 \text{ m/s}^2$. Il faut alors corriger cette valeur par la pesanteur locale g_c estimée à 9.806 m/s⁻² :

$$\mathbf{B}_{20} = \frac{\mathbf{KN}_{20}}{\mathbf{N}_k} \cdot \frac{\mathbf{g}_c}{\mathbf{g}_n}$$

Dans le cas où la température ambiante lors de l'étalonnage des capteurs de pression est différente de 20°C, il faut appliquer un facteur de correction qui prend en compte la dilatation linéique des matériaux qui composent les parties sensibles de l'appareil (piston et cylindre). Ces coefficients de dilatation (α_p et α_c) sont fournis par l'organisme habilité :

$$B(t) = B_{20} * (1 - (\alpha_p + \alpha_c).(t - 20))$$

Avec, $\alpha_p + \alpha_c = 9.00 \ 10^{-6} \ ^{\circ}C^{-1}$ B₂₀ en bar/point t en $^{\circ}C$

En outre, la température est mesurée à l'aide d'une sonde à résistance de platine qui transmet une valeur de résistance R_{lue} dont la conversion en °C nécessite une valeur de référence R_0 définie par l'organisme habilité :

$$t = \frac{R_{lue} - R_0}{0.3896}$$

Enfin, à la pression obtenue par l'application des relations précédentes, le vide résiduel estimé par l'appareil, doit être ajoutée. Ainsi, la relation finale d'estimation de la "pression vraie" a la forme suivante :

$$P_{\text{vraie}} = B(t).N + V_r$$

• Balance à poids mort

L'appareil étalon utilisé est un étalon à gaz commercialisé par Desgranges et Huot. Son principe réside sur l'équilibre entre la pression d'un gaz relié au circuit de capteurs de pression et des masses disposées autour d'un axe en rotation. Le plateau supportant les masses peut se déplacer verticalement le long de l'axe. On considère que le gaz est à la pression définie par les masses équivalentes lorsque l'aiguille d'indication de la position du plateau le long de l'axe est au niveau d'un repère fixe.

Cet appareil est également caractérisé par un coefficient de conversion KN "Pression/Masse" de l'ordre de 10 bar/kg. En acceptant une masse maximum de 40 kg, l'appareil permet d'étalonner des capteurs de pression jusqu'à 400 bars. De même l'axe ayant une masse minimale de 300 g, la pression minimale que l'appareil permet d'étalonner est de 3 bars.

Un organisme d'étalonnage habilité permet de connaître précisément la valeur du coefficient de conversion KN et fournit une estimation de l'incertitude de l'appareil. A la pression équivalente aux masses disposées sur l'étalon, il faut ajouter la pression atmosphérique qui est mesurée à l'aide d'un manomètre, indépendant de l'étalon, qui mesure des pressions de 850 à 1150 mbar. La formule de conversion permettant d'obtenir la "pression vraie" estimée par l'étalon est :

 P_{vraie} = Masse . KN + $P_{\text{atmosphérique}}$

• Les masses étalons

Les masses utilisées dans les deux cas d'étalonnage des pressions cités précédemment doivent également être étalonnées par un organisme habilité. On peut alors estimer l'incertitude en pression de ces masses en fonction de l'incertitude délivrée par l'organisme habilité et le type d'appareil étalon utilisé.

Type de masse Incertitude en ma [g]	Incertitude en masse	Incertitude en pression [mbar]			
	[g]	Etalon numérique	Balance à poids mort		
2 kg	4 10 ⁻²	0.04	0.4		
1 kg	2.10 ⁻²	0.02	0.2		
500 g	1.10 ⁻²	0.01	0.1		

Pour estimer l'incertitude liée à une masse composée de plusieurs éléments, on peut utiliser une formule de calcul de la variance :

$$\sigma = \sqrt{\sum_{i=1}^{N} \sigma_i}$$

<u>Exemple :</u>

Soit une masse de 5 kg composée de 2 éléments de 2 kg et 1 élément de 1 kg, l'incertitude sur la masse totale peut être estimée à 6.10^{-2} g soit dans le cas de la balance à poids mort une incertitude de 0.6 mbar pour une pression de mesure de 50 bars et pour l'étalon numérique de 0.05 mbar pour une pression de 5 bars. Par la suite l'incertitude due à ces masses sera considérée comme négligeable face aux incertitudes dues aux capteurs eux-mêmes.

Annexe 2 : Quelques notions sur les réseaux de neurones – Présentation du logiciel NeuroBox

1. Présentation des réseaux de neurones

Les réseaux de neurones doivent être compris comme un outil de représentation mathématique de données, aussi diverses soient-elles.

L'origine de cette technique est une analyse des neurones biologiques qui constituent notre cerveau. Ces derniers transmettent les informations qui proviennent notamment des nerfs. La transmission se déroule en plusieurs phases :

- arrivée d'une impulsion électrique
- transformation de l'impulsion électrique en neurotransmetteurs chimiques
- transformation des neurotransmetteurs chimiques comptés sur « les sites récepteurs »

Le passage de l'impulsion électrique en transmetteurs chimiques est essentielle car il permet de réaliser un « filtre » : les neurones ne transmettent de nouvelles impulsions électriques que si la somme des impulsions éléctriques entrantes est supérieure à un seuil. La force des neurones réside dans leur multitude et leur disposition en réseaux. Les neurones sont interconnectés et les liens entre ces neurones croîent ou au contraire décroient en fonction de la quantité d'impulsions éléctriques y circulant. L'étape de définition de la taille des liens entre les neurones correspond à des phases d'apprentissage d'information. Le phénomène intriguant est que ce sont ces neurones qui ne possèdent que deux états (activé ou non) qui sont à la base de notre réflexion et nous permettent de penser et de calculer.

Les neurones biologiques ont alors a été formalisés sous une forme mathématique pour essayer de tirer profit de la capacité à apprendre des neurones. Dans cette formalisation, les neurones sont représentés par des fonctions mathématiques. Initialement, il s'agit d'une fonction mathématique « seuil » qui retourne une valeur 1 si la somme des valeurs des entrées est supérieure à un seuil. L'inconvénient d'une telle fonction est sa discontinuité qui n'est jamais souhaitable en méthode numérique. Aussi, les neurones « seuil » ont été remplacés par des neurones avec une fonction d'activation continue dont les plus connues sont les fonctions sigmoïdes exponentielles et fonctions linéaires. (*Cf.* Figure A2.1)

Figure A2.1 : Exemple de fonctions d'activation

Un neurone seul ne permet rien en soit, par contre, intégré à un réseau, il compose un outil de représentation de données de tout type. Différentes catégories de réseaux existent mais ceux qui nous intéressent sont les réseaux dits « MLP » (Multi Layer Perceptron) tels que le représente l'exemple de la figure A2.2. Les réseaux MLP sont constituées de plusieurs

couches au sein desquelles les neurones ne peuvent communiqués. Par contre, chaque neurone d'une couche est relié aux neurones des couches précédentes et suivantes.

Figure A2.2 : Exemple de structure d'un réseau de neurones de type MLP

Deux couches sont constantes dans un réseau : la couche d'entrée et la couche de sortie. La couche d'entrée contient autant de neurones que de paramètres d'entrée à prendre en compte et la couche de sortie contient autant de neurones que de sorties attendues. Dans les problèmes de représentations rencontrés dans ce travail, une seule sortie était nécessaire.

D'un point de vu biologique, les liens entre les neurones se renforcent lorsque de nombreuses impulsions électriques y circulent. Ce renforcement permet d'augmenter l'intensité des impulsions qui y circulent. Inversement, les liens s'appauvrissent si aucune impulsion ne s'y propage. D'un point de vu mathématique, ces notions sont concrétisées par des valeurs numériques appelées poids qui sont multipliés par les valeurs des neurones de la couche précédente afin de définir l'entrée des neurones de la couche suivante.

L'utilisation d'un réseau de neurones nécessite deux phases bien distinctes. La première, appelée phase d'apprentissage, consiste à définir les valeurs des poids entre les neurones. Pour ce faire, des données connues sont soumises au réseau et en fonction de l'erreur obtenue, les poids sont corrigés en suivant un algorithme appelé « algorithme de rétro propagation ». Cette phase doit contenir au moins 20 fois plus de données que de poids du réseau pour être considéré comme suffisamment représentatif des données.

La deuxième phase est une phase de validation où le réseau est testé sur des ensembles de données qui n'ont pas été utilisés pendant la phase d'apprentissage.

Au cours de ce travail, des réseaux contenant deux couches cachées ont été utilisés. Des réseaux ne contenant qu'une seule couche cachée auraient pu être utilisés avec des précisions équivalentes. Cependant, il a semblé que des neurones à deux couches permettaient d'obtenir légèrement moins de poids.

2. Logiciel NeuroBox

Les étapes de calcul à partir de réseaux de neurones sont très facile à mettre en œuvre numériquement. Cependant, les étapes d'ajustement des poids nécessitent des algorithmes tels que ceux à rétropropagation.

Un outil complet de définition de réseaux de neurones, de calcul et d'ajustement des poids a été réalisé au cours de ce travail. Cet outil permet notamment de définir des réseaux à plusieurs couches cachées avec des neurones de différentes fonctions d'activation (linéraire, sigmoïde exponentielle ou sigmoïde tangentielle).

Figure A2.3 : Ecran de définition du réseau de neurones

ajustement		Evolution de la fonction objective
Levenberg Marquardt	.	🜳 Paramètres 📃 🗖 🔀
onvergence	1e-6	Initialisation de Lambda
ges	10	Seuil d'arrêt (à 250 itérations) 1
ues par tirage	1500	Evolution (500 itérations) 1/ 1.2
aléatoire des poids		

Une page permet de définir les données d'entrée du réseau de neurones et une dernière page permet de suivre l'évolution de l'ajustement du réseau.

L'algorithme d'ajustement utilisé est une version modifiée de Leenberg Marquardt en rétropropagation (Wilamowski et al. (2001)^[01WIL]).

Différents paramètres d'ajustement peuvent être modifié comme le montre la copie d'écran de la figure A2.4. En cliquant sur les « ... » à droite de la méthode numérique, 3 paramètres apparaissent :

- Lambda : valeur initiale du paramètre de modification de la méthode LM
- Seuil d'arrêt à 250 itérations : Lors de certains tirages, l'initialisation aléatoire de poids ne converge pas vers une valeur faible mais stagne à une forte valeur. Le seuil permet alors d'arrêter le tirage en cours si la valeur de la fonction objectif est supérieure à la valeur entrée au bout de 250 itérations.
- Evolution : Toutes les 500 itérations (500, 1000, 1500, ...), le programme compare la valeur de la plus basse fonction objectif obtenue avec la valeur de la fonction 500 itérations avant. Si l'évolution de cette valeur est inférieure au rapport entré, le programme considère qu'il n'y a plus d'évolution significative et il passe au tirage suivant. Cela permet d'éviter d'attendre le nombre maximal d'époques lors d'un tirage qui converge très vite vers la valeur « finale ».

Figure A2.5 : Ecran de définition du réseau de neurones

Au cours de l'ajustement, le réseau de neurones est déssiné. Un exemple est montré sur la Figure A2.5.

Les segments rouges correspondent à des valeurs de poids négatives et les segments noirs à des poids positifs. La taille du trait est fonction de la valeur absolue du poids. Le plus gros trait correspond à la valeur indiquée dans « poids maximal ».

Annexe 3 : Paramètres du réseau de neurones - Etalonnage du tube vibrant sur les données du R134a

	1ère		2ème		3ème
	couche		couche		couche
				Rigio	-
	-3.52017035	Rigic	0.06694145	Diais	27.6350503
	-5.96741118	Diais	-13.4794355	1	53.4772445
Biais	-9.78196011		-5.70284475	2	28.4658166
	-2.36609637		0.18238358	3	7.66736052
	-1.92652359	1	3.73339072		
	-4.564465		1.410423		
	-2.35433698		-4.53754889		
T / ℃	-1.10010781	2	1.78790543		
	-0.79644202		-2.41731257		
-20.02	1.39317013		-38.0770454		
90.06	-0.86456959	3	-0.49800441		
	-2.63928556		-0.74085276		
	0.54040853		0.00082801		
P / bar	0.4226088	4	-1.24062967		
	2.20225882		0.97528444		
0.00	-1.1329894		0.07636038		
233.70	2.5842669	5	15.5312057		
	3.72238071		6.77896778		
	2.34761399		-0.1309167		
$\tau - \tau_0 / 10^8 s$	8.44374656	6	2.06079803		
	19.763466		-2.62520447		
-0.64	1.96493397				
29292	11.5727429				
	10.7394462				

Le minimum et le maximum des valeurs en sortie sont respectivement 0.00 et 1408.08 kg/m³

Annexe 4 : Paramètres des réseaux de neurones – Etalonnage du tube vibrant sur les données de CO₂ et de C₂H₆

• Réseau pour les basses masses volumiques (< 400 kg/m³) (2 couches de 5 et 3 neurones)

	1ère couche	;	2ème couch	е	3ème couche
	0.77551359		-0.19197769	Biais	-3.75249485
	-12.0323184	Biais	9.27760116	1	0.93387816
Biais	8.69828241		-7.32031349	2	2.85371383
	-11.8270914		-11.0210908	3	1.9058824
	-4.29863409	1	-2.0057626		
	-0.0454543		7.73910953		
T∕°C	-7.43457545		5.84347576		
5.11	-2.02999196	2	-3.90561512		
60.08	8.60192836		-0.04984809		
	0.03420106		9.75789925		
	6.49107435	3	-5.42575321		
τ - τ_0 / 10 ⁸ s	26.8988304		0.17087164		
13.812	-11.9444394		-3.31026992		
9504	10.0907531	4	3.77259541		
	3.66438531		-0.0924155		
			10.213664		
		5	0.38711986		
			8.65245005		

Le minimum et le maximum des valeurs en sortie sont respectivement 0.62 et 444.10 kg/m³

	1ère couche		2ème couche
	-1.8813719	Biais	0.94637554
Biais	0.46520248	1	6.4575942
	2.89193097	2	-0.69218161
	15.4899302	3	2.28711706
	2.40635112	4	-0.11538774
	-0.95008839	5	-3.65320937
T / ℃	-2.25820619		
5.11	-0.75941931		
60.08	-1.79176692		
	-0.62408305		
	-1.34728719		
τ - τ_0 [/] 10 ⁸ s	-3.69905839		
6443	-6.44851545		
19927	-16.3755021		
	-5.26042719		

• Réseau pour les hautes masses volumiques (> 200 kg/m^3) (1 couche de 5 neurones)

Le minimum et le maximum des valeurs en sortie sont respectivement 300.28 et 942.79 $\mbox{kg/m}^3$

Annexe 5 : Données expérimentales

Système		7	
1	2	\mathbf{L}_1	I[K]
	•		-
		0.9353	333.16
		0.9353	313.17
		0.9353	293.40
		0.0877	279.29
CO	CII	0.0877	313.35
	$C_2\Pi_6$	0.0877	333.26
		0.5158	279.29
		0.5158	313.30
		0.5158	333.24
		0.5158	293.41
		0.2227	263.11
		0.2227	293.28
II C	C_3H_8	0.2227	333.22
п ₂ 5		0.2691	268.09
		0.2691	313.21
		0.2691	363.24
		0.0380	263.43
		0.0380	293.24
		0.0380	323.23
		0.0563	273.41
		0.0563	313.14
L.C	C.H.	0.0563	353.15
п25	C_2H_6	0.0977	254.05
		0.0977	303.14
		0.0977	363.21
		0.1430	268.15
		0.1430	283.30
		0.1430	322.21

Les données suivantes sont présentées dans cette annexe :

Les données du système $H_2S-C_2H_6$ ont en partie été publiées dans dans Rivollet et al. (2005)^[05RIV]

Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.012	0.2	4.614	83.9	7.900	183.2	10.253	291.1	12.155	404.8	14.676	528.4
0.113	1.7	4.687	85.7	7.948	185.0	10.294	293.4	12.189	406.8	14.732	530.5
0.208	3.2	4.761	87.4	7.995	187.0	10.329	295.4	12.229	409.2	14.794	532.9
0.297	4.5	4.835	89.2	8.042	188.8	10.365	297.3	12.270	411.6	14.855	535.3
0.387	5.9	4.908	91.0	8.086	190.5	10.404	299.5	12.310	414.0	14.911	537.3
0.483	7.4	4.979	92.7	8.142	192.8	10.442	301.6	12.345	416.0	14.984	540.1
0.580	8.9	5.047	94.4	8.197	195.0	10.481	303.8	12.390	418.6	15.046	542.3
0.676	10.4	5.118	96.1	8.251	197.2	10.519	306.0	12,429	420.9	15,107	544.5
0.770	11.8	5.190	98.0	8.306	199.5	10.553	307.9	12.474	423.5	15.161	546.5
0.862	13.3	5.260	99.7	8.359	201.7	10.586	309.9	12.520	426.1	15.215	548.5
0.952	14.6	5.329	101.5	8.412	203.8	10.624	312.0	12.565	428.7	15.276	550.5
1.044	16.1	5.398	103.3	8.464	206.0	10.661	314.2	12.611	431.2	15.337	552.7
1.136	17.6	5.466	105.1	8.515	208.2	10.697	316.3	12.657	433.8	15.396	554.7
1.224	19.0	5.534	106.9	8.566	210.4	10.733	318.5	12.702	436.3	15.456	556.7
1.315	20.4	5.599	108.6	8.616	212.5	10.769	320.6	12.743	438.6	15.513	558.7
1.404	21.8	5.664	110.4	8.666	214.6	10.805	322.7	12.778	440.5	15.571	560.7
1.490	23.2	5.728	112.1	8.715	216.8	10.840	324.9	12.817	442.6	15.630	562.6
1.578	24.7	5.791	113.8	8.763	218.9	10.875	327.0	12.863	445.1	15.685	564.4
1.665	26.1	5.854	115.5	8.812	220.9	10.910	329.1	12.910	447.6	15.748	566.5
1.742	27.4	5.916	117.3	8.859	223.0	10.941	330.9	12.956	450.1	15.814	568.6
1.836	29.0	5.977	119.0	8.905	225.1	10.972	332.9	12.998	452.2	15.880	570.7
1.924	30.5	6.038	120.7	8.952	227.1	11.006	335.0	13.038	454.3	15.945	572.8
2.012	32.0	6.099	122.5	8.997	229.1	11.040	337.1	13.086	456.8	16.024	575.3
2.098	33.4	6.161	124.3	9.042	231.2	11.073	339.1	13.132	459.3	16.087	577.2
2.184	35.0	6.222	126.0	9.086	233.2	11.107	341.2	13.180	461.7	16.153	579.2
2.274	36.5	6.283	127.9	9.130	235.2	11.140	343.2	13.227	464.0	16.224	581.4
2.365	38.1	6.342	129.6	9.174	237.2	11.171	345.1	13.275	466.5	16.294	583.5
2.457	39.8	6.400	131.4	9.217	239.2	11.213	347.8	13.323	468.9	16.362	585.5
2.547	41.4	6.455	133.0	9.259	241.1	11.246	349.8	13.371	471.2	16.427	587.4
2.635	43.0	6.508	134.7	9.301	243.1	11.279	351.9	13.419	473.5	16.492	589.2
2.728	44.7	6.578	136.8	9.342	245.0	11.310	353.8	13.467	475.9	16.561	591.2
2.817	46.3	6.640	138.8	9.383	247.0	11.342	355.8	13.515	478.2	16.626	593.1
2.901	48.0	6.702	140.7	9.424	248.9	11.374	357.9	13.564	480.5	16.690	594.9
2.986	49.6	6.760	142.6	9.465	250.8	11.406	359.8	13.611	482.8	16.756	596.7
3.071	51.2	6.817	144.5	9.504	252.7	11.450	362.3	13.661	485.1	16.820	598.5
3.145	52.6	6.877	146.4	9.548	254.8	11.487	364.5	13.708	487.3	16.886	600.2
3.223	54.1	6.937	148.4	9.592	256.9	11.524	366.6	13.759	489.5	16.950	602.0
3.304	55.7	6.996	150.4	9.630	258.8	11.560	368.8	13.807	491.8	16.991	603.4
3.392	57.5	7.054	152.3	9.667	260.6	11.597	370.9	13.856	494.0	17.083	605.5
3.473	59.1	7.112	154.3	9.705	262.5	11.633	373.2	13.904	496.2	17.151	607.3
3.550	60.6	7.170	156.2	9.742	264.4	11.668	375.3	13.973	499.2	17.220	609.1
3.625	62.2	7.226	158.2	9.779	266.2	11.703	377.5	14.022	501.3	17.287	610.8
3.705	63.9	7.282	160.2	9.816	268.1	11.738	379.6	14.071	503.5	17.359	612.6
3.784	65.5	7.337	162.1	9.852	269.9	11.774	381.7	14.121	505.6	17.426	614.4
3.860	67.1	7.391	164.1	9.887	271.7	11.809	383.8	14.171	507.8	17.495	616.1
3.937	68.8	7.444	166.0	9.922	273.6	11.845	386.0	14.221	509.9	17.566	617.8
4.009	70.3	7.498	168.0	9.957	275.4	11.879	388.1	14.270	512.0	17.637	619.5
4.082	71.9	7.551	169.9	9.992	277.2	11.914	390.2	14.321	514.1	17.734	621.6
4.160	73.6	7.603	171.8	10.040	279.7	11.949	392.3	14.371	516.1	17.815	623.4
4.237	75.3	7.647	173.5	10.074	281.6	11.983	394.4	14.420	518.2	17.924	625.7
4.312	77.0	7.703	175.6	10.109	283.3	12.018	396.5	14.465	520.0	18.012	627.7
4.385	78.7	7.753	177.5	10.142	285.2	12.053	398.6	14.526	522.5	18.087	629.5
4.463	80.4	/.802	179.4	10.175	286.9	12.087	400.6	14.576	524.4	18.154	631.3
4.542	82.2	/.851	181.3	10.212	288.9	12.122	402.8	14.626	526.4	18.206	632.8

Systèn	Système CO_2 - C_2H_6 - z_{CO2} = 0.9353 / T = 313.17 K										
P	RHO	P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.011	0.2	4.381	93.4	7.109	201.1	8.903	394.7	10.415	573.1	13.470	685.7
0.111	1.9	4.444	95.1	7.144	203.1	8.910	396.7	10.446	575.1	13.553	687.6
0.196	3.3	4.506	96.9	7.180	205.3	8.920	399.0	10.478	577.2	13.626	689.3
0.289	5.0	4.566	98.7	7.214	207.4	8.939	401.9	10.510	579.2	13.707	691.2
0.380	6.5	4.627	100.5	7.249	209.6	8.979	407.5	10.543	581.3	13.789	692.9
0.472	8.1	4.687	102.3	7.283	211.7	8.989	409.4	10.578	583.4	13.867	694.6
0.568	9.9	4.746	104.1	7.316	213.8	9.000	411.5	10.616	585.6	13.947	696.4
0.657	11.4	4.806	105.9	7.349	216.1	9.025	415.3	10.652	587.8	14.030	698.2
0.752	13.1	4.861	107.6	7.381	218.2	9.038	417.4	10.691	590.0	14.119	700.0
0.842	14.7	4.916	109.3	7.413	220.4	9.046	419.1	10.731	592.3	14.207	701.8
0.931	16.3	4.974	111.2	7.444	222.5	9.055	421.0	10.773	594.5	14.299	703.7
1.029	18.1	5.031	113.0	7.475	224.7	9.065	422.9	10.815	596.8	14.394	705.5
1.121	19.8	5.087	114.8	7.509	227.2	9.078	425.0	10.859	599.1	14.491	707.4
1.212	21.5	5.144	116.6	7.542	229.6	9.087	427.1	10.906	601.4	14.592	709.3
1.306	23.2	5.195	118.3	7.571	231.6	9.086	428.1	10.952	603.8	14.688	711.1
1.394	24.9	5.260	120.6	7.599	233.8	9.185	443.1	10.999	606.1	14.786	713.0
1.501	26.9	5.315	122.4	7.627	235.9	9.198	445.2	11.046	608.3	14.896	714.9
1.588	28.6	5.367	124.3	7.655	238.0	9.226	448.3	11.092	610.5	15.007	716.9
1.699	30.8	5.426	126.3	7.681	240.1	9.234	449.7	11.143	612.9	15.120	718.8
1.789	32.5	5.498	128.9	7.708	242.1	9.250	451.6	11.189	615.0	15.230	720.6
1.874	34.2	5.554	130.9	7.734	244.1	9.266	453.4	11.236	616.9	15.349	722.5
1.958	35.9	5.610	133.0	7.759	246.1	9.285	455.2	11.286	619.2	15.492	724.7
2.043	37.6	5.664	135.0	7.784	248.2	9.291	456.4	11.345	621.7	15.592	726.3
2.128	39.3	5.717	137.0	7.808	250.2	9.379	476.2	11.401	623.9	15.694	727.9
2.213	41.1	5.772	139.1	7.833	252.2	9.400	478.6	11.456	626.2	15.795	729.5
2.297	42.8	5.823	141.0	7.857	254.1	9.427	481.4	11.518	628.6	15.912	/31.4
2.381	44.6	5.8/1	142.9	7.882	256.1	9.461	484.4	11.5/2	630.8	16.032	733.2
2.464	46.4	5.921	144.9	7.905	258.1	9.474	486.3	11.626	632.8	10.143	734.9
2.546	48.1	5.972	146.9	7.929	260.0	9.486	488.1	11.585	635.1	16.255	736.6
2.028	49.9	0.023	149.0	7.952	262.0	9.499	490.0	11.004	637.5	10.308	738.2
2.706	51.0	6.100	151.0	7.975	263.9	9.513	492.1	11.005	640.0	16.601	739.9
2.777	54.8	6 172	155.0	8.020	203.0	9.525	493.9	12 025	645.6	16 727	741.0
2.043	56.4	6.221	157.2	8.042	269.5	9.555	493.0	12.023	647.8	16.852	745.0
2 991	58.0	6 268	159.2	8.063	271 5	9.669	509.8	12 163	649.7	16 975	746.7
3.067	59.8	6.315	161.3	8.087	273.6	9.684	511.6	12 219	651.5	17 108	748.5
3 143	61.5	6.362	163.4	8 112	275.7	9 708	513.9	12 276	653.3	17.100	750.1
3,219	63.3	6.409	165.5	8.133	277.6	9.728	515.6	12,333	655.1	17.370	751.9
3.299	65.2	6.455	167.6	8.153	279.6	9.743	517.3	12.388	656.8	17.499	753.4
3.374	67.0	6.500	169.6	8.173	281.6	9.881	530.4	12.446	658.5	17.634	755.1
3.443	68.7	6.544	171.6	8.193	283.4	9.899	532.2	12.509	660.4	17.743	756.4
3.512	70.4	6.589	173.7	8.213	285.4	9.915	533.8	12.569	662.1		
3.584	72.2	6.632	175.9	8.233	287.4	9.934	535.6	12.637	664.1		
3.658	74.0	6.674	177.9	8.252	289.3	9.950	537.4	12.697	665.8		
3.726	75.7	6.717	179.9	8.271	291.4	9.969	539.3	12.761	667.6		
3.793	77.5	6.758	182.0	8.290	293.4	9.984	541.0	12.831	669.5		
3.860	79.2	6.800	184.1	8.630	356.1	10.001	542.9	12.897	671.3		
3.926	80.9	<u>6</u> .841	186.3	8.672	362.2	10.019	544.7	12.963	673.1		
3.990	82.6	6.881	188.4	8.724	369.0	10.035	546.4	13.031	674.8		
4.055	84.3	6.920	190.4	8.787	376.7	10.052	547.9	13.101	676.6		
4.124	86.2	6.958	192.5	8.808	379.5	10.297	565.1	13.171	678.4		
4.193	88.1	6.996	194.6	8.812	381.4	10.326	567.2	13.239	680.1		
4.256	89.8	7.034	196.8	8.832	385.2	10.356	569.1	13.310	681.9		
4.319	91.6	7.072	198.9	8.852	387.7	10.385	571.1	13.386	683.7		

Système	e CO ₂ -C	5H6 - ZC	$\alpha = 0.93$	353 / T =	= 293.40	К					
P	RHO	P	RHO	P	RHO	P	RHO	Р	RHO	Р	RHO
MPa	kg/m3	Мра	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.003	0.0	2.972	64.2	4.907	131.9	5.862	198.9	7.637	740.9	11.869	807.5
0.080	1.4	3.031	65.8	4.934	133.2	5.877	200.5	7.695	742.4	11.968	808.6
0.128	2.3	3.091	67.4	4.962	134.6	5.887	201.6	7.759	743.9	12.075	809.8
0.181	3.3	3.148	69.0	4.987	136.0	5.897	202.8	7.828	745.5	12.183	811.0
0.237	4.3	3.206	70.6	5.010	137.0	5.907	203.8	7.901	747.2	12.293	812.1
0.289	5.2	3.261	72.2	5.032	138.2	5.918	205.1	7.977	748.9	12.397	813.1
0.344	6.3	3.303	73.4	5.054	139.3	5.926	205.9	8.049	750.4	12.503	814.3
0.404	7.4	3.346	74.6	5.075	140.5	5.939	207.4	8.125	752.0	12.626	815.5
0.465	8.5	3.392	76.0	5.097	141.6	6.029	678.2	8.212	753.6	12.751	816.7
0.522	9.6	3.438	77.4	5.118	142.8	6.045	679.3	8.292	755.1	12.864	817.9
0.575	10.6	3.483	78.7	5.139	144.0	6.060	680.4	8.381	756.6	12.975	819.0
0.644	11.9	3.523	79.9	5.160	145.1	6.076	681.7	8.434	757.7	13.090	820.1
0.711	13.1	3.559	81.0	5.180	146.2	6.095	682.9	8.495	758.9	13.226	821.4
0.769	14.2	3.599	82.2	5.200	147.4	6.114	684.3	8.556	760.0	13.350	822.5
0.819	15.2	3.643	83.6	5.220	148.6	6.134	685.6	8.616	761.2	13.471	823.6
0.868	16.1	3.686	84.9	5.240	149.7	6.155	686.9	8.674	762.3	13.671	825.3
0.921	17.2	3.729	86.3	5.260	150.9	6.176	688.2	8.733	763.4	13.782	826.4
0.974	18.2	3.771	87.7	5.279	152.1	6.199	689.6	8.793	764.6	13.896	827.4
1.028	19.3	3.813	89.0	5.298	153.3	6.224	691.0	8.853	765.7	14.008	828.4
1.080	20.4	3.850	90.2	5.317	154.4	6.249	692.4	8.922	766.9	14.124	829.4
1.133	21.4	3.883	91.3	5.336	155.6	6.273	693.8	8.994	768.2	14.251	830.5
1.184	22.4	3.916	92.4	5.354	156.8	6.301	695.2	9.060	769.3	14.380	831.6
1.238	23.6	3.954	93.7	5.373	158.0	6.329	696.7	9.125	770.5	14.503	832.7
1.292	24.6	3.994	95.1	5.390	159.1	6.359	698.1	9.195	//1.6	14.628	833.7
1.343	25.7	4.030	96.3	5.408	160.3	6.391	699.6	9.272	772.9	14.777	834.9
1.393	26.7	4.066	97.6	5.426	161.5	6.428	701.2	9.351	774.2	14.899	835.9
1.445	27.8	4.105	99.0	5.443	162.7	6.472	703.0	9.429	775.5	15.024	837.0
1.500	29.0	4.144	100.4	5.459	163.9	6.516	704.7	9.523	776.9	15.152	838.0
1.552	30.1	4.183	101.7	5.477	165.1	6.563	706.2	9.609	770.5	15.280	839.0
1.599	31.1	4.221	103.1	5.493	100.2	0.021	708.1	9.694	779.5	15.404	840.0
1.049	32.1	4.200	104.4	5.509	167.4	0.048	709.1	9.767	780.0	15.533	841.0
1.703	24.5	4.204	105.4	5.525	160.0	6.600	710.2	9.039	701.0	15.000	042.0
1.755	25.5	4.310	100.7	5.541	171.0	6 7 7 7	712.6	10,000	702.0	15.000	042.9
1.856	36.7	4.334	100.1	5.574	172.3	6 755	712.0	10.000	785.2	16.057	845.0
1.000	37.7	4.000	110.5	5 593	172.0	6 783	713.0	10.002	786.4	16 197	846 1
1.000	38.8	4 4 4 2	111.6	5.612	175.3	6.818	716.0	10.241	787.4	16.330	847 1
2 001	39.9	4 470	112.8	5 630	176.8	6.856	717.4	10.321	788.6	16 463	848.0
2.052	41.1	4.498	113.8	5.646	178.1	6.893	718.7	10.408	789.7	16,606	849.1
2.107	42.4	4.526	115.0	5.662	179.6	6.933	720.1	10.491	790.8	16.744	850.1
2.157	43.6	4.553	116.1	5.680	181.0	6.972	721.5	10.568	791.9	16.882	851.1
2.205	44.7	4.580	117.2	5.695	182.4	7.009	722.7	10.649	793.0	17.027	852.1
2.257	45.9	4.606	118.3	5.710	183.8	7.049	724.0	10.733	794.0	17.173	853.1
2.301	46.9	4.633	119.5	5.725	185.1	7.087	725.2	10.826	795.2	17.318	854.1
2.343	47.9	4.659	120.6	5.740	186.5	7.127	726.5	10.919	796.4	17.463	855.1
2.385	49.0	4.685	121.7	5.755	188.0	7.172	727.9	11.010	797.5	17.609	856.1
2.429	50.0	4.710	122.8	5.769	189.3	7.220	729.4	11.103	798.7	17.758	857.1
2.469	51.0	4.736	124.0	5.782	190.6	7.271	730.8	11.198	799.8	17.915	858.1
2.569	53.7	4.761	125.1	5.794	191.7	7.323	732.4	11.295	800.9	18.093	859.2
2.661	56.0	4.786	126.2	5.805	192.9	7.377	733.8	11.393	802.1		
2.726	57.7	4.811	127.4	5.817	194.1	7.430	735.3	11.480	803.1		
2.790	59.3	4.835	128.5	5.829	195.4	7.478	736.7	11.570	804.2		
2.851	60.9	4.859	129.7	5.840	196.5	7.529	738.1	11.669	805.3		
2.912	62.6	4.883	130.8	5.851	197.7	7.582	739.5	11.771	806.4		

$Systeme CO_2 - C_2 II_6 - L(0)_2 - 0.0077771 - 270.17$	$L_{C(2)} = 0.0077771 = 270.1713$
---	-----------------------------------

Système	e CO ₂ -C	$_{2}H_{6} - z_{0}$	$c_{02} = 0.0$	877 / T :	= 278.17	' K					
P	RHO	 P	RHO	P	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.001	0.0	1.578	25.0	2.676	51.8	4.990	420.8	8.411	439.7	13.143	457.8
0.005	0.2	1.605	25.5	2.693	52.4	5.050	421.1	8.496	440.0	13.245	458.1
0.041	0.6	1.631	26.0	2.716	53.1	5.110	421.5	8.568	440.4	13.345	458.4
0.064	0.9	1.657	26.5	2.734	53.8	5.172	422.0	8.644	440.7	13.437	458.7
0.087	1.2	1.680	27.0	2.753	54.4	5.243	422.4	8.712	441.0	13.531	459.0
0.112	1.5	1.702	27.4	2.771	55.1	5.326	422.9	8.781	441.3	13.640	459.3
0.137	1.9	1.724	27.9	2.789	55.7	5.374	423.2	8.855	441.7	13.738	459.7
0.162	2.2	1.750	28.4	2.807	56.3	5.424	423.6	8.932	442.0	13.833	460.0
0.184	2.5	1.779	29.0	2.825	57.0	5.477	423.9	9.016	442.4	13.939	460.3
0.206	2.8	1.804	29.5	2.842	57.7	5.533	424.3	9.101	442.7	14.042	460.6
0.229	3.1	1.826	29.9	2.859	58.3	5.586	424.6	9.175	443.0	14.143	460.9
0.250	3.4	1.847	30.4	2.875	59.0	5.639	425.0	9.257	443.4	14.252	461.3
0.281	3.8	1.868	30.8	2.892	59.6	5.695	425.3	9.346	443.8	14.357	461.6
0.310	4.3	1.889	31.3	3.125	405.1	5.749	425.6	9.423	444.1	14.461	461.9
0.348	4.9	1.910	31.7	3.188	405.6	5.805	426.0	9.509	444.5	14.559	462.2
0.383	5.3	1.931	32.2	3.226	406.0	5.867	426.3	9.587	444.8	14.664	462.5
0.418	5.8	1.951	32.6	3.252	406.3	5.923	426.7	9.654	445.1	14.771	462.8
0.453	6.4	1.972	33.1	3.288	406.7	5.983	427.0	9.740	445.4	14.864	463.1
0.488	6.9	1.992	33.5	3.318	407.0	6.047	427.4	9.827	445.7	14.970	463.4
0.522	7.3	2.015	34.1	3.352	407.3	6.108	427.8	9.903	446.1	15.075	463.8
0.555	7.8	2.038	34.6	3.385	407.6	6.168	428.1	9.984	446.4	15.195	464.1
0.589	8.4	2.058	35.0	3.419	407.9	6.236	428.6	10.065	446.7	15.309	464.4
0.623	8.8	2.080	35.6	3.449	408.2	6.296	428.9	10.153	447.1	15.414	464.7
0.656	9.3	2.102	36.1	3.472	408.6	6.361	429.3	10.239	447.4	15.517	465.0
0.694	9.9	2.122	36.6	3.510	408.9	6.427	429.6	10.323	447.7	15.629	465.3
0.731	10.5	2.144	37.0	3.551	409.3	6.495	430.0	10.407	448.1	15.735	465.7
0.763	11.0	2.166	37.6	3.596	409.7	6.540	430.3	10.503	448.4	15.841	466.0
0.795	11.5	2.184	38.0	3.637	410.1	6.616	430.6	10.593	448.8	15.969	466.3
0.827	12.0	2.206	38.6	3.683	410.5	6.662	430.9	10.680	449.1	16.093	466.7
0.858	12.5	2.227	39.1	3.729	410.9	6.722	431.2	10.773	449.5	16.210	467.0
0.893	13.0	2.245	39.5	3.774	411.3	6.778	431.6	10.869	449.8	16.321	467.3
0.929	13.6	2.266	40.1	3.806	411.6	6.838	431.9	10.956	450.2	16.435	467.6
0.959	14.1	2.287	40.6	3.847	412.0	6.905	432.2	11.049	450.5	16.564	468.0
0.989	14.6	2.304	41.0	3.897	412.4	6.963	432.5	11.151	450.9	16.694	468.3
1.019	15.1	2.322	41.6	3.939	412.7	7.010	432.8	11.248	451.2	16.814	468.6
1.053	15.6	2.340	42.0	3.989	413.1	7.072	433.1	11.347	451.6	16.921	468.9
1.086	16.2	2.360	42.5	4.024	413.5	7.144	433.5	11.446	451.9	17.046	469.3
1.114	16.7	2.382	43.1	4.066	413.8	7.213	433.9	11.522	452.2	17.165	469.6
1.146	17.2	2.402	43.6	4.113	414.2	7.280	434.2	11.615	452.6	17.290	469.9
1.1//	17.7	2.419	44.1	4.157	414.5	7.347	434.6	11./18	452.9	17.410	470.2
1.208	18.3	2.438	44.7	4.205	414.9	7.410	434.8	11.823	453.3	17.557	470.6
1.239	18.8	2.460	45.3	4.256	415.3	7.472	435.2	11.906	453.6		
1.265	19.2	2.479	45.8	4.304	415.7	7.535	435.5	12.009	454.0		
1.295	19.8	2.498	46.3	4.349	416.1	7.600	435.8	12.092	454.3		
1.325	20.3	2.519	47.0	4.400	416.5	7.674	436.2	12.181	454.6		
1.350	20.8	2.537	47.5	4.453	416.9	7.745	436.5	12.262	454.8		
1.379	21.3	2.553	48.0	4.508	417.3	7.814	436.9	12.362	455.2		
1.408	21.8	2.568	48.4	4.564	41/./	7.888	437.2	12.456	455.5		
1.432	22.3	2.584	48.9	4.625	418.1	7.963	437.6	12.555	455.8		
1.456	22.7	2.599	49.4	4.687	418.6	8.039	437.9	12.647	456.2		
1.480	23.1	2.616	49.9	4./48	419.1	8.125	438.3	12./33	456.4		
1.504	23.6	2.633	50.4	4.802	419.5	8.196	438.6	12.823	456./		
1.528	24.1	2.648	50.9	4.8/5	420.0	8.262	439.0	12.923	45/.1		
1.551	24.5	2.662	51.3	4.931	420.3	8.332	439.3	13.033	457.4	1	1

Système CO ₂ -C ₂ H	$- z_{CO2} = 0.0877$	/ T = 313.35 K
---	----------------------	----------------

Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.004	0.1	3.758	63.1	5.574	136.7	6.775	268.4	11.371	371.6
0.100	1.2	3.806	64.3	5.607	139.2	6.800	270.2	11.542	373.2
0.194	2.4	3.858	65.6	5.639	141.5	6.826	272.0	11.714	374.7
0.285	3.6	3.910	67.0	5.669	143.8	6.852	274.0	11.888	376.3
0.371	4.7	3.964	68.3	5.705	146.5	6.887	276.2	12.062	377.7
0.453	5.7	4.023	70.0	5.738	149.4	6.922	278.4	12.235	379.2
0.534	6.8	4.080	71.6	5.771	152.2	6.952	280.1	12.408	380.5
0.616	7.9	4.131	73.1	5.802	154.8	6.983	281.8	12.601	382.0
0.702	9.0	4.177	74.4	5.832	157.7	7.014	283.7	12.816	383.7
0.785	10.1	4.221	75.7	5.860	160.6	7.047	285.4	13.008	385.1
0.867	11.2	4.265	77.0	5.887	163.2	7.080	287.3	13.198	386.5
0.951	12.3	4.303	78.1	5.914	165.9	7.114	289.1	13.407	388.0
1.034	13.4	4.345	79.4	5.936	168.2	7.149	290.8	13.592	389.2
1.116	14.6	4.390	80.9	5.957	170.5	7.195	293.1	13,773	390.5
1.192	15.7	4,430	82.2	5.981	173.2	7.252	295.7	13.971	391.7
1.266	16.7	4,470	83.5	6.002	175.5	7.301	297.9	14,163	392.9
1.349	17.9	4.508	84.8	6.017	177.3	7.352	300.5	14.368	394.3
1.427	19.1	4.549	86.2	6.033	179.3	7.415	302.9	14.585	395.6
1.497	20.1	4,590	87.7	6.052	181.6	7.481	305.3	14,796	396.9
1.565	21.1	4.627	88.9	6.074	184.3	7.550	307.8	14.998	398.1
1 634	22.2	4 662	90.2	6.097	187.2	7 609	309.7	15 208	399.2
1 704	23.2	4 700	91.6	6 114	189.5	7.658	311.2	15 438	400.6
1.780	24.4	4 736	93.0	6 129	191.4	7 720	313.5	15,653	401 7
1.859	25.6	4 765	94.1	6 144	193.3	7 784	315.2	15.894	403.0
1 933	26.8	4.700	95.4	6 161	195.7	7.851	317.2	16.085	404.0
2 001	27.9	4.834	96.9	6 179	198.2	7.001	319.5	16 284	405.1
2.070	29.1	4.871	98.4	6.197	200.7	8.015	321.5	16.487	406.2
2.140	30.2	4,903	99.7	6.214	203.2	8.102	323.9	16,689	407.2
2.212	31.5	4.934	101.1	6.232	205.6	8.176	325.6	16.908	408.2
2.280	32.6	4.965	102.4	6.249	208.1	8.297	328.5	17,140	409.3
2.345	33.7	4,991	103.6	6.267	210.7	8.391	330.4	17,353	410.4
2.408	34.8	5.021	104.9	6.285	213.3	8.489	332.5	17.563	411.4
2,469	35.9	5.052	106.3	6.300	215.4	8.587	334.4	17.822	412.5
2.530	37.0	5.079	107.7	6.314	217.5	8,688	336.5		
2.587	38.0	5.104	108.8	6.329	219.6	8.791	338.5		
2.645	39.0	5.127	109.9	6.344	221.6	8.895	340.2		
2.703	40.2	5.150	111.2	6.358	223.7	9.001	342.0		
2.764	41.3	5.173	112.3	6.374	225.9	9.110	344.0		
2.823	42.5	5.197	113.5	6.389	228.1	9,219	345.8		
2.880	43.6	5.222	115.0	6.405	229.9	9.349	347.6		
2.931	44.6	5.249	116.3	6.424	232.8	9.481	349.5		
3.006	46.1	5.275	117.7	6.449	236.0	9.595	351.3		
3.076	47.7	5.298	119.1	6.469	238.5	9.711	352.8		
3.143	49.0	5.320	120.4	6.491	241.1	9.827	354.3		
3.203	50.2	5.343	121.7	6.517	244.3	9.945	356.0		
3.255	51.4	5.365	123.1	6.540	247.0	10.064	357.5		
3.312	52.6	5.387	124.5	6.563	249.4	10.204	359.2		
3.374	54.0	5.408	125.7	6.593	252.5	10.347	360.8		
3,435	55.4	5.428	127.1	6.617	255.1	10.469	362.2		
3,495	56.7	5.451	128.5	6.637	257.0	10.613	363.8		
3,553	58.1	5.469	129.7	6.659	258.9	10.759	365.4		
3.610	59.4	5 486	131.0	6.687	261.5	10.906	367.0		L
3,660	60.7	5.517	132.9	6.721	264.3	11.054	368.4		
3.710	61.8	5.546	134.8	6.750	266.7	11.202	369.9		

	S	vstème	CO ₂ -C ₂ H ₆	$- z_{CO2} = 0$.0877 /	′ T =	: 333.26]	K
--	---	--------	--	-----------------	---------	-------	------------	---

Système	e CO ₂ -C	5H6 - Z€	0.02 = 0.03	877 / T =	= 333.26	К					
P	RHO	<u> </u>	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.003	0.0	4.196	59.6	6.629	128.7	8.307	212.0	10.277	283.7	14.752	348.3
0.093	1.1	4.256	60.8	6.662	130.0	8.335	213.3	10.331	285.0	14.868	349.3
0.203	2.3	4.309	61.9	6.695	131.4	8.363	214.7	10.387	286.3	14.982	350.3
0.290	3.2	4.367	63.1	6.729	132.8	8.391	216.1	10.442	287.7	15.093	351.3
0.376	4.2	4.430	64.4	6.761	134.1	8.419	217.5	10.498	289.0	15.219	352.3
0.461	5.1	4.492	65.7	6.794	135.5	8.447	218.9	10.555	290.2	15.346	353.4
0.543	6.0	4.552	67.0	6.826	136.8	8.475	220.2	10.613	291.5	15.475	354.5
0.627	7.0	4.608	68.2	6.857	138.2	8.503	221.6	10.677	292.9	15.608	355.6
0.711	8.0	4.662	69.4	6.887	139.5	8.531	222.9	10.741	294.3	15.739	356.6
0.791	8.9	4.720	70.8	6.920	141.0	8.560	224.3	10.801	295.5	15.862	357.6
0.871	9.9	4.778	72.1	6.955	142.5	8.589	225.7	10.861	296.7	15.989	358.6
0.952	10.8	4.830	73.3	6.989	144.2	8.617	227.0	10.921	297.9	16.125	359.6
1.033	11.8	4.882	74.5	7.020	145.6	8.647	228.3	10.988	299.2	16.262	360.6
1.116	12.7	4.938	75.9	7.087	148.4	8.676	229.6	11.056	300.5	16.376	361.5
1.192	13.7	4.993	77.2	7.160	151.8	8.705	231.0	11.118	301.7	16.570	362.8
1.265	14.5	5.043	78.4	7.212	154.3	8.735	232.3	11.181	302.9	16.700	363.8
1.342	15.5	5.092	/9./	7.244	155.9	8.765	233.6	11.250	304.1	16.841	364.8
1.416	16.4	5.145	81.0	7.267	157.2	8.795	235.0	11.321	305.4	16.9/1	365.7
1.487	17.3	5.197	82.4	7.298	158.7	8.825	236.2	11.391	306.7	17.110	366.6
1.560	18.2	5.249	83.7	7.327	160.2	8.856	237.6	11.463	307.9	17.260	367.6
1.636	19.2	5.300	85.0	7.357	161.7	8.886	238.8	11.527	309.0	17.400	368.5
1.707	20.1	5.350	86.4	7.389	103.3	8.922	240.3	11.099	310.2	17.027	369.4
1.780	21.1	5.395	87.0	7.422	100.1	8.956	241.7	11.0/1	311.3	17.004	370.3
1.042	21.9	5.440	00.0	7.401	169.0	0.900	243.0	11.730	312.4		
1.930	23.2	5.400	90.2	7.479	160.0	9.023	244.4	11.011	214.0		
2.032	24.3	5.532	91.4	7.506	170.0	9.059	240.9	11.091	216.1		
2.110	25.0	5.618	02.7	7.550	170.3	9.095	247.2	12.055	317.3		
2.132	27.8	5.660	95.1	7.503	172.4	9.120	240.4	12.000	318.5		
2 364	29.1	5 701	96.4	7.619	175.3	9 1 9 1	250.9	12.107	319.7		
2 452	30.3	5 743	97.6	7.647	176.8	9.225	252.1	12.210	320.9		
2 538	31.6	5 787	99.0	7.674	178.3	9.259	253.3	12.385	322.0		
2 624	32.8	5.831	100.3	7 702	179.8	9 293	254.6	12.000	323.1		
2 702	33.9	5 874	101.6	7 729	181.2	9.327	255.8	12.552	324.3		
2.778	35.1	5.916	103.0	7.756	182.7	9.362	257.0	12.636	325.4		
2.861	36.4	5.955	104.3	7.784	184.2	9.402	258.4	12.728	326.5		
2.943	37.6	5.993	105.5	7.811	185.7	9.442	259.7	12.826	327.8		
3.017	38.8	6.034	106.9	7.838	187.1	9.482	261.1	12.917	328.9		
3.084	39.8	6.074	108.2	7.865	188.6	9.524	262.4	13.009	330.0		
3.150	40.9	6.114	109.6	7.896	190.2	9.560	263.6	13.108	331.2		
3.222	42.0	6.150	110.8	7.927	191.9	9.601	264.9	13.213	332.5		
3.299	43.3	6.186	112.0	7.954	193.3	9.643	266.3	13.319	333.7		
3.374	44.6	6.221	113.2	7.981	194.8	9.681	267.4	13.417	334.8		
3.449	45.8	6.256	114.5	8.008	196.2	9.724	268.7	13.521	335.9		
3.524	47.1	6.290	115.7	8.035	197.7	9.772	270.1	13.638	337.2		
3.597	48.4	6.324	117.0	8.062	199.1	9.816	271.4	13.749	338.5		
3.664	49.5	6.361	118.3	8.089	200.6	9.860	272.7	13.845	339.4		
3.730	50.7	6.397	119.7	8.117	202.0	9.910	274.1	13.946	340.5		
3.801	52.0	6.430	120.9	8.144	203.4	9.961	275.5	14.054	341.6		
3.870	53.3	6.463	122.2	8.170	204.8	10.012	276.9	14.161	342.7		
3.939	54.6	6.498	123.5	8.198	206.3	10.064	278.3	14.273	343.8		
4.007	55.9	6.532	124.8	8.225	207.7	10.116	279.7	14.395	345.0		
4.075	57.2	6.564	126.1	8.252	209.1	10.169	281.0	14.512	346.1		
4.136	58.4	6.595	127.3	8.280	210.5	10.223	282.4	14.633	347.2		

Système C	$O_2 - C_2 H_6 -$	$z_{CO2} = 0$.5158/	T =	279.29	K
-----------	-------------------	---------------	--------	-----	--------	---

Svstèm	e CO ₂ -C	− ZΩ	$\alpha = 0.5$	158 / T =	= 279.29	K			
P	RHO	<u> </u>	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.001	0.0	1.573	28.8	2.936	62.9	4.174	117.8	6.800	555.5
0.013	0.2	1.599	29.2	2.961	63.7	4.190	118.9	6.837	555.9
0.035	0.6	1.625	29.8	2.990	64.6	4.205	120.1	6.881	556.5
0.062	1.0	1.646	30.2	3.019	65.5	4.218	121.2	6.923	556.9
0.080	1.3	1.668	30.7	3.043	66.3	4.374	519.5	6.988	557.6
0.105	1.7	1.693	31.3	3.068	67.0	4.374	520.1	7.015	557.8
0.129	2.1	1.718	31.7	3.088	67.7	4.375	520.5	7.072	558.4
0.155	2.5	1.742	32.3	3.104	68.1	4.387	521.1	7.118	558.8
0.173	2.9	1.767	32.9	3.120	68.8	4.805	526.9	7.157	559.2
0.196	3.2	1.813	33.8	3.135	69.2	5.201	533.9	7.190	559.6
0.219	3.7	1.841	34.5	3.154	70.0	5.274	534.9	7.239	560.0
0.243	4.1	1.861	34.8	3,177	70.7	5.285	535.2	7.287	560.4
0.286	4.8	1.880	35.3	3.196	71.3	5.303	535.5	7.327	560.9
0.329	5.5	1.905	35.9	3.215	72.0	5.326	535.8	7.368	561.3
0.365	6.2	1.932	36.5	3.238	72.8	5.342	536.1	7.429	561.9
0.401	6.6	1.953	37.0	3 257	73.5	5 359	536.4	7 461	562.2
0.438	7.3	1 981	37.7	3 272	74.0	5 392	537.0	7.530	562.9
0.474	8.0	2.014	38.4	3.286	74.4	5.435	537.5	7.580	563.4
0.510	8.6	2.041	39.0	3 301	75.0	5 539	538.9	7.000	000.1
0.546	9.2	2.063	39.5	3,319	75.6	5 614	539.9		
0.581	9.2	2.000	40.1	3 3/0	76.4	5 631	540.2		
0.001	10.5	2.004	40.7	3 362	70.4	5 703	5/1 8		
0.651	11.1	2.100	41.2	3 380	77.0	5 734	542.1		
0.685	11.1	2.100	42.0	3 308	78.6	5 788	5/2 9		
0.000	12.2	2.103	12.0	3 4 2 8	70.0	5.840	542.5		
0.720	12.0	2.137	42.0	3.420	80.0	5 808	544.2		
0.797	12.5	2.225	40.0	3.430	82.2	5.030	544.2		
0.707	1/ 1	2.200	11.0	3 510	83.3	5.052	544.0		
0.020	14.1	2.200	44.5	3.540	84.7	5.952	545.2		
0.000	15.2	2.300	40.0	3.549	85.0	5 008	545.6		
0.003	15.0	2.001	40.1	2 600	03.3	6.019	545.0		
0.917	16.5	2.301	40.5	3.637	88.3	6.043	546.2		
0.949	17.1	2.307	47.5	3.666	89.7	6.069	546.5		
1.011	17.1	2.407	40.0	2.604	00.7	6.009	547.0		
1.011	10.0	2.452	49.3	2 701	90.7	6 1 2 1	547.0		
1.042	10.2	2.470	49.0 50.2	2 740	92.1	6 1 4 9	547.5		
1.072	10.0	2.430	51.0	2 775	04.7	6 172	549.0		
1.037	10.0	2.520	51.0	2 002	05.0	6 202	549.0		
1.127	20.2	2.049	52.5	2 0 0 0	95.9	6.202	540.4		
1.132	20.2	2.070	53.0	3,853	97.5	6 255	5/0 1		
1.170	20.7	2.002	53.2	3.000	90.3	0.200	549.1 540.5		
1.200	21.3	2.020	53.7	3.070	99.0	6.204	549.5		
1.229	21.0	2.039	54.5	3.902	101.1	0.320	549.9		
1.207	22.4	2.002	54.9	3.926	102.3	0.357	550.4		
1.280	22.9	2.089	55.7	3.950	103.5	0.389	550.7		
1.314	23.5	2./1/	57.0	3.9/3	104.9	0.411	551.I		
1.341	24.0	2./44	57.2	3.995	105.2	0.451	551.5		
1.369	24.5	2./66	57.8	4.017	107.4	0.482	551.9		
1.396	25.1	2.784	58.3	4.038	108.7	6.520	552.3		
1.419	25.5	2.806	59.0	4.059	109.9	6.559	552.9		
1.441	26.0	2.828	59.6	4.079	111.3	6.596	553.2		
1.468	26.6	2.850	60.3	4.100	112./	6.641	553.8		
1.490	26.9	2.8/6	61.1	4.119	114.0	6.681	554.2		
1.512	27.5	2.898	61.6	4.137	115.2	6./16	554.6		
1.543	28.1	2.915	62.2	4.157	116.6	6.758	555.1	1	1

Système CO₂-C₂H₆ - $z_{CO2} = 0.5158 / T = 313.30 K$

IMP Igym3 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
0.00 0.0 3.513 61.1 6.081 139.1 7.629 22.93 8.735 316.8 10.200 40.43 13.373 47.46 0.0160 1.22 3.557 63.8 61.33 142.3 7.675 23.15 8.775 31.6 10.300 404.4 13.457 474.6 0.2161 3.2 3.686 65.3 6.175 143.9 7.688 233.1 8.766 13.21 10.300 404.4 13.457 478.1 0.214 4.5 3.877 68.1 6.248 147.1 7.742 236.8 8.84 325.9 10.668 411.4 13.769 480.3 0.425 7.2 3.877 70.9 6.320 15.93 7.802 247.5 8.81 30.50 16.81 13.34 4.83 0.516 9.29 7.79 6.320 15.81 7.824 24.53 8.31 30.0 10.554 41.31 41.428 46.7 0.516 11.3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.086 1.3 3.5.7 6.2.8 6.3.8 6.4.2.3 7.6.7 231.5 8.7.75 31.8.5 10.2.00 40.4.4 13.4.57 475.9 0.215 3.2 3.5.66 6.5.3 6.1.7 143.9 7.6.96 231.5 8.7.76 320.0 10.341 40.5.9 13.540 477.0 0.244 4.2 3.667 6.6.71 6.111 145.5 7.720 235.1 8.16 321.1 10.328 477.4 13.617 480.3 0.341 5.1.1 3.7.87 6.6.6 5.2.9 14.4.7 7.7.74 238.7 8.2.5 10.5.06 411.8 13.83 420.6 0.405 7.2 3.8.77 7.0.9 6.320 15.9 7.822 4.17 4.174 241.7 8.832 233.1 10.466 41.4 13.43 13.494 482.6 0.616 9.2 3.937 7.2.8 6.5.1 15.9 7.0.2 3.0.1 14.113 14.13 44.3.4 4.2.6<	0.001	0.0	3.451	61.1	6.061	139.1	7.629	227.9	8.733	316.8	10.220	401.4	13.294	473.4
1150 2.2 3.575 63.8 61.38 142.3 7.675 231.5 8.776 32.0 10.300 40.4 13.457 477.6 0.284 4.2 3.636 66.7 6.211 145.5 7.720 235.1 8.816 32.1 10.382 407.4 13.617 478.1 0.341 5.1 3.877 68.7 62.41 148.7 7.742 238.7 8.834 324.4 10.423 408.6 410.4 13.667 486.9 43.68 43.68 43.68 44.7 7.742 238.7 8.342 32.5 10.666 41.18 13.894 482.6 6616 9.2 3.997 7.23 6.356 15.9 7.862 243.5 8.932 33.0 10.569 41.47 14.084 483.6 6616 9.2 3.997 7.39 6.367 15.2 7.867 245.7 10.508 41.47 14.038 485.9 47.8 3.32 10.508 41.47 14.038 487.9 <t< td=""><td>0.086</td><td>1.3</td><td>3.513</td><td>62.5</td><td>6.099</td><td>140.6</td><td>7.652</td><td>229.8</td><td>8.755</td><td>318.5</td><td>10.260</td><td>402.8</td><td>13.373</td><td>474.6</td></t<>	0.086	1.3	3.513	62.5	6.099	140.6	7.652	229.8	8.755	318.5	10.260	402.8	13.373	474.6
0.215 3.2 8.886 6.5.3 6.175 143.9 7.698 233.3 8.766 221.6 10.341 6.1.5 3.564 477.0 0.244 4.2 3.697 66.1 6.211 145.5 7.720 235.1 8.816 322.1 10.382 407.4 13.617 473.0 0.499 6.1 3.817 68.5 6.284 148.7 7.742 236.7 8.854 325.9 10.466 11.04 13.763 400.3 0.465 7.2 3.877 72.3 6.366 151.9 7.802 241.7 8.893 328.8 10.551 413.3 13.84 482.8 0.662 10.3 4.059 7.54 6.416 154.7 7.882 243.7 8.976 33.2 10.638 417.7 14.203 482.9 0.748 11.3 41.18 7.77 5.813 154.4 7.609 250.4 9.000 33.65 10.777 42.83 47.0 33.3 1.42.	0.150	2.2	3.575	63.8	6.138	142.3	7.675	231.5	8.775	320.0	10.300	404.4	13.457	475.9
0.284 4.2. 0.807 6.7. 6.211 145.5 7.720 235.1 8.816 323.1 10.382 407.4 13.617 478.1 0.409 6.1 3.817 60.5 6.284 147.1 7.764 238.7 8.854 322.5 10.466 410.4 13.768 480.3 0.455 7.2 3.937 7.33 6.320 150.3 7.784 241.7 8.893 328.8 10.551 41.3 13.493 482.6 0.616 9.2 3.997 7.3 6.337 155.4 7.822 241.7 8.893 328.8 10.682 417.6 14.203 482.9 0.748 11.3 4.18 7.61 64.50 155.2 7.872 24.71 8.975 33.47 10.682 417.6 14.203 487.9 0.841 4.287 8.13 6.56 159.4 7.907 34.1 10.682 417.6 44.203 45.9 0.846 14.287 8.43 <td>0.215</td> <td>3.2</td> <td>3.636</td> <td>65.3</td> <td>6.175</td> <td>143.9</td> <td>7.698</td> <td>233.3</td> <td>8.796</td> <td>321.6</td> <td>10.341</td> <td>405.9</td> <td>13.540</td> <td>477.0</td>	0.215	3.2	3.636	65.3	6.175	143.9	7.698	233.3	8.796	321.6	10.341	405.9	13.540	477.0
0.341 5.1 3.767 6.81 6.248 147.1 7.742 238.9 8.834 324.4 10.423 408.9 13.893 472.2 0.485 7.2 3.877 70.9 6.320 150.3 7.763 240.2 8.875 327.5 10.506 411.8 13.850 481.3 0.566 9.2 3.997 7.33 6.387 153.4 7.824 243.5 8.911 30.01 10.595 41.47 14.035 482.8 0.661 9.2 3.997 75.4 6.416 154.8 7.867 247.1 8.954 33.2 10.682 41.41 14.118 44.42 0.744 11.8 4.128 6.561 165.7 7.888 24.57 33.43 10.727 41.83 482.6 49.00 33.63 10.717 42.83 44.74 482.4 0.948 14.4 4.287 81.2 6.564 166.5 7.947 25.7 9.073 34.51 10.964 42	0.284	4.2	3.697	66.7	6.211	145.5	7.720	235.1	8.816	323.1	10.382	407.4	13.617	478.1
0.409 6.1 3.817 69.5 6.284 148.7 7.764 238.7 8.854 325.5 10.506 411.8 13.850 480.3 0.552 8.3 3.937 7.23 6.356 151.9 7.002 241.7 8.893 288.1 0.551 41.33 13.943 482.6 0.616 9.2 3.997 73.9 6.387 153.4 7.824 243.5 8.911 330.0 10.595 41.7 1.4005 483.8 0.628 10.3 4.118 7.73 6.445 156.2 7.667 24.71 8.954 33.2 10.682 41.7.6 1.4.203 482.8 0.815 12.3 4.168 78.1 6.440 159.4 7.909 250.4 9.000 33.6 1.0.71 4.828 49.00 38.4 1.4.7 4.482 4.3.7 4.4.483 4.5.7 4.9.64 4.3.7 4.4.483 4.5.7 4.9.64 4.3.7 4.4.483 4.5.7 4.9.64 4.3.7	0.341	5.1	3.757	68.1	6.248	147.1	7.742	236.9	8.834	324.4	10.423	408.9	13.693	479.2
0.485 7.2 3.877 70.9 6.320 150.3 7.783 240.2 8.875 327.5 10.508 411.8 13.850 481.3 0.562 8.3 3.937 72.3 6.366 151.9 7.802 241.7 6.893 328.8 10.551 41.3 14.34 443.4 483.8 0.661 9.2 3.997 73.9 6.387 153.4 7.224 245.5 8.992 331.7 10.638 411.8 14.420 483.9 0.748 11.3 4.113 76.7 6.445 156.2 7.867 247.1 8.954 333.2 10.881 14.202 48.9 0.815 12.3 4.168 7.841 157.7 7.888 245.7 8.975 33.47 10.727 14.89 482.0 487.0 0.948 14.4 4.287 81.2 6.546 160.9 7.931 252.2 9.026 338.0 10.86 421.7 14.474 483.4 1.1011<	0.409	6.1	3.817	69.5	6.284	148.7	7.764	238.7	8.854	325.9	10.466	410.4	13.769	480.3
0.552 8.3 3.937 72.3 6.366 151.9 7.802 241.7 8.893 328.8 10.551 413.3 13.943 482.6 0.666 9.2 3.997 73.9 6.337 153.4 7.624 245.5 8.911 330.0 10.659 414.7 14.034 483.9 0.682 10.3 4.168 754.6 6.416 156.7 7.886 248.7 8.925 331.7 10.727 418.9 14.203 485.9 0.883 13.4 4.228 70.7 6.513 159.4 7.709 250.5 9.000 336.5 10.771 448.9 14.4 4.287 81.2 6.566 160.9 7.331 252.2 9.026 338.3 10.816 421.7 14.474 489.4 0.176 16.4 4.387 838.6 6627 169.9 7.331 257.9 9.073 341.5 10.906 428.4 14.76 449.4 1.076 4.848 85.6	0.485	7.2	3.877	70.9	6.320	150.3	7.783	240.2	8.875	327.5	10.508	411.8	13.850	481.3
0.616 9.2 3.997 73.9 6.387 153.4 7.824 243.5 8.911 330.0 10.595 414.7 14.035 483.8 0.682 10.3 4.059 75.4 6.416 154.8 7.846 245.3 8.932 331.7 10.632 416.1 14.118 448.9 0.748 11.3 4.113 4.113 4.113 4.113 4.114 448.9 0.815 12.3 4.168 78.1 6.480 157.7 7.888 246.7 8.975 334.7 10.727 418.9 14.203 447.7 0.946 14.4 4.287 74.12 6.546 160.9 7.931 252.9 9.026 338.1 10.816 42.17 14.477 449.6 1.011 15.4 4.341 82.6 6.656 166.5 7.9073 257.9 9.073 341.5 10.064 42.7 14.752 492.8 1.202 18.5 4.488 86.5 6.687 168	0.552	8.3	3.937	72.3	6.356	151.9	7.802	241.7	8.893	328.8	10.551	413.3	13.943	482.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.616	9.2	3.997	73.9	6.387	153.4	7.824	243.5	8.911	330.0	10.595	414.7	14.035	483.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.682	10.3	4.059	75.4	6.416	154.8	7.845	245.3	8.932	331.7	10.638	416.1	14.118	484.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.748	11.3	4.113	76.7	6.445	156.2	7.867	247.1	8.954	333.2	10.682	417.6	14.203	485.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.815	12.3	4.168	78.1	6.480	157.7	7.888	248.7	8.975	334.7	10.727	418.9	14.283	487.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.883	13.4	4.228	79.7	6.513	159.4	7.909	250.4	9.000	336.5	10.771	420.3	14.377	488.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.946	14.4	4.287	81.2	6.546	160.9	7.931	252.2	9.026	338.3	10.816	421.7	14.474	489.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.011	15.4	4.341	82.6	6.593	163.3	7.953	253.9	9.051	340.0	10.862	423.1	14.571	490.6
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.076	16.4	4.387	83.8	6.625	164.9	7.973	255.7	9.073	341.5	10.908	424.3	14.651	491.5
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.139	17.4	4.438	85.2	6.656	166.5	7.994	257.3	9.093	342.9	10.954	425.7	14.752	492.8
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.202	18.5	4.488	86.5	6.687	168.0	8.013	258.8	9.112	344.2	11.018	427.5	14.847	493.9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1.263	19.5	4.538	87.9	6.718	169.6	8.031	260.3	9.132	345.5	11.065	428.8	14.935	494.9
1.38421.54.65091.06.778172.88.073263.69.176348.411.160431.415.130497.11.44422.44.70092.56.807174.48.094265.39.203350.111.209432.615.225498.21.50623.44.74993.96.837176.08.115266.99.230351.911.263434.115.317499.11.62925.64.84696.76.895179.28.157270.19.279355.011.385437.115.502501.11.62925.64.84696.76.895179.28.157270.19.279355.011.385437.115.502501.11.62925.64.84998.36.923180.88.177271.89.308356.811.447438.615.597502.11.75427.74.94799.76.952182.58.198273.59.336358.511.503440.015.695503.21.80728.64.993101.16.980184.08.218275.29.362360.011.559441.215.999504.21.86229.65.039102.57.007185.68.274279.59.448365.011.743445.316.090507.12.03132.65.169106.67.082188.88.274279.59.448365.011.743445.316.090 <td< td=""><td>1.322</td><td>20.4</td><td>4.593</td><td>89.4</td><td>6.748</td><td>171.2</td><td>8.052</td><td>262.0</td><td>9.152</td><td>346.9</td><td>11.113</td><td>430.1</td><td>15.025</td><td>495.9</td></td<>	1.322	20.4	4.593	89.4	6.748	171.2	8.052	262.0	9.152	346.9	11.113	430.1	15.025	495.9
1.444 22.4 4.700 92.5 6.807 174.4 8.094 265.3 9.203 350.1 11.209 432.6 15.225 498.2 1.506 23.4 4.749 93.9 6.837 176.0 8.115 266.9 9.230 351.9 11.263 434.1 15.317 499.1 1.629 25.6 4.846 96.7 6.895 179.2 8.157 270.1 9.279 355.0 11.324 435.6 15.411 500.2 501.1 1.694 26.6 4.899 98.3 6.923 180.8 8.177 271.8 9.308 356.5 11.503 440.0 15.695 503.2 1.807 28.6 4.993 101.1 6.980 184.0 8.218 275.5 9.336 358.5 11.503 441.2 15.799 504.2 1.862 29.6 5.039 102.5 7.007 185.6 8.240 276.8 9.388 361.5 11.622 442.7 15.900	1.384	21.5	4.650	91.0	6.778	172.8	8.073	263.6	9.176	348.4	11.160	431.4	15.130	497.1
1.50623.44.74993.96.837176.08.115266.99.230351.911.26343.115.317499.11.56824.54.79895.26.866177.68.136268.59.254353.511.324435.615.411500.21.62925.64.84696.76.895179.28.157270.19.279355.011.385437.115.502501.11.64926.64.89998.36.923180.88.177271.89.308356.811.447438.615.597502.11.75427.74.94799.76.952182.58.198273.59.362360.011.559441.215.695503.21.80728.64.993101.16.980184.08.218275.29.362360.011.559441.215.799504.21.82229.65.039102.57.007185.68.240276.89.388361.511.622442.715.993506.21.92030.65.084103.97.035187.28.258278.29.418363.311.686444.115.993506.21.97931.65.129105.47.062188.88.274279.59.448366.711.801446.716.193508.12.03132.65.169106.67.088190.48.291280.99.478366.711.801446.716.193 <t< td=""><td>1,444</td><td>22.4</td><td>4,700</td><td>92.5</td><td>6.807</td><td>174.4</td><td>8.094</td><td>265.3</td><td>9.203</td><td>350.1</td><td>11.209</td><td>432.6</td><td>15.225</td><td>498.2</td></t<>	1,444	22.4	4,700	92.5	6.807	174.4	8.094	265.3	9.203	350.1	11.209	432.6	15.225	498.2
1.568 24.5 4.798 95.2 6.866 177.6 8.136 268.5 9.254 353.5 11.324 435.6 15.411 500.2 1.629 25.6 4.846 96.7 6.895 179.2 8.157 270.1 9.279 355.0 11.385 437.1 15.502 501.1 1.694 26.6 4.899 98.3 6.923 180.8 8.177 271.8 9.308 356.8 11.447 438.6 15.597 502.1 1.754 27.7 4.947 99.7 6.952 182.5 8.198 273.5 9.362 360.0 11.559 441.2 15.799 504.2 1.807 28.6 4.993 101.1 6.980 184.0 8.218 275.2 9.362 360.0 11.743 445.3 16.090 507.1 1.807 30.6 5.084 103.9 7.035 187.2 8.274 29.48 366.0 11.743 445.3 16.090 507.1 <t< td=""><td>1.506</td><td>23.4</td><td>4,749</td><td>93.9</td><td>6.837</td><td>176.0</td><td>8.115</td><td>266.9</td><td>9.230</td><td>351.9</td><td>11.263</td><td>434.1</td><td>15.317</td><td>499.1</td></t<>	1.506	23.4	4,749	93.9	6.837	176.0	8.115	266.9	9.230	351.9	11.263	434.1	15.317	499.1
1.629 2.5.6 4.846 96.7 6.895 179.2 8.157 270.1 9.279 355.0 11.385 437.1 15.502 501.1 1.694 26.6 4.899 98.3 6.923 180.8 8.177 271.8 9.308 356.8 11.447 438.6 15.597 502.1 1.754 27.7 4.947 99.7 6.952 182.5 8.198 273.5 9.336 358.5 11.503 440.0 15.695 503.2 1.807 28.6 4.993 101.1 6.980 184.0 8.218 275.2 9.362 360.0 11.559 441.2 15.799 504.2 1.862 29.6 5.039 102.5 7.007 185.6 8.240 276.8 9.388 361.5 11.62 442.7 15.993 506.2 1.979 31.6 5.129 105.4 7.062 188.8 8.274 279.5 9.448 366.7 11.801 446.7 16.193 508.1 <	1.568	24.5	4,798	95.2	6.866	177.6	8,136	268.5	9.254	353.5	11.324	435.6	15.411	500.2
1.69426.64.89998.36.923180.88.177271.89.308356.811.447438.615.597502.11.75427.74.94799.76.952182.58.198273.59.336358.511.503440.015.695503.21.80728.64.993101.16.980184.08.218275.29.362360.011.559441.215.799504.21.86229.65.039102.57.007185.68.240276.89.388361.511.622442.715.900505.31.92030.65.084103.97.035187.28.258278.29.418363.311.686444.115.993506.21.97931.65.129105.47.062188.88.274279.59.448365.011.743445.316.090507.12.03132.65.169106.67.088190.48.291280.99.478366.711.801446.716.193508.12.03233.55.209107.97.125192.78.312282.69.509368.411.865448.116.295509.22.14034.65.249109.27.151194.38.333284.39.540370.111.931449.416.400510.12.20737.15.326111.77.204197.78.367287.09.605373.512.060452.116.603 <td>1.629</td> <td>25.6</td> <td>4.846</td> <td>96.7</td> <td>6.895</td> <td>179.2</td> <td>8.157</td> <td>270.1</td> <td>9.279</td> <td>355.0</td> <td>11.385</td> <td>437.1</td> <td>15.502</td> <td>501.1</td>	1.629	25.6	4.846	96.7	6.895	179.2	8.157	270.1	9.279	355.0	11.385	437.1	15.502	501.1
1.754 27.7 4.947 99.7 6.952 182.5 8.198 273.5 9.336 358.5 11.503 440.0 15.695 503.2 1.807 28.6 4.993 101.1 6.980 184.0 8.218 275.2 9.362 360.0 11.559 441.2 15.799 504.2 1.862 29.6 5.039 102.5 7.007 185.6 8.240 276.8 9.388 361.5 11.622 442.7 15.900 505.3 1.920 30.6 5.084 103.9 7.035 187.2 8.258 278.2 9.418 363.3 11.686 444.1 15.993 506.2 1.979 31.6 5.129 105.4 7.062 188.8 8.274 279.5 9.448 365.0 11.743 445.3 16.090 507.1 2.031 32.6 5.169 106.6 7.088 190.4 8.291 280.9 9.478 366.7 11.801 446.7 16.193 508.1 2.032 33.5 5.209 107.9 7.125 192.7 8.312 282.6 9.509 368.4 11.865 448.1 16.295 509.2 2.140 34.6 5.249 109.2 7.178 195.9 8.333 284.3 9.540 370.1 11.931 449.4 16.400 510.1 2.207 35.2 5.288 110.5 7.178 195.9 8.351 285.8 9.572 371.8 <td< td=""><td>1.694</td><td>26.6</td><td>4.899</td><td>98.3</td><td>6.923</td><td>180.8</td><td>8.177</td><td>271.8</td><td>9.308</td><td>356.8</td><td>11.447</td><td>438.6</td><td>15.597</td><td>502.1</td></td<>	1.694	26.6	4.899	98.3	6.923	180.8	8.177	271.8	9.308	356.8	11.447	438.6	15.597	502.1
1.807 28.6 4.993 101.1 6.980 184.0 8.218 275.2 9.362 360.0 11.559 441.2 15.799 504.2 1.862 29.6 5.039 102.5 7.007 185.6 8.240 276.8 9.388 361.5 11.622 442.7 15.900 505.2 1.979 31.6 5.129 105.4 7.062 188.8 8.274 279.5 9.448 365.0 11.743 445.3 16.090 507.1 2.031 32.6 5.169 106.6 7.088 190.4 8.291 280.9 9.478 366.7 11.801 446.7 16.193 508.1 2.082 33.5 5.209 107.9 7.125 192.7 8.312 282.6 9.509 368.4 11.865 448.1 16.295 509.2 2.140 34.6 5.249 109.2 7.151 194.3 8.333 284.3 9.540 370.1 11.931 449.4 16.400 510.1	1.754	27.7	4.947	99.7	6.952	182.5	8,198	273.5	9.336	358.5	11.503	440.0	15.695	503.2
1.862 29.6 5.039 102.5 7.007 185.6 8.240 276.8 9.388 361.5 11.622 442.7 15.900 505.3 1.920 30.6 5.084 103.9 7.035 187.2 8.258 278.2 9.418 363.3 11.622 442.7 15.900 505.3 1.979 31.6 5.129 105.4 7.062 188.8 8.274 279.5 9.448 365.0 11.743 445.3 16.090 507.1 2.031 32.6 5.169 106.6 7.088 190.4 8.291 280.9 9.478 366.7 11.801 446.7 16.193 508.1 2.082 33.5 5.209 107.9 7.125 192.7 8.312 282.6 9.509 368.4 11.865 448.1 16.295 509.2 2.140 34.6 5.249 109.2 7.151 194.3 8.333 284.3 9.540 370.1 11.931 449.4 16.400 510.1	1.807	28.6	4.993	101.1	6.980	184.0	8.218	275.2	9.362	360.0	11.559	441.2	15,799	504.2
1.920 30.6 5.084 103.9 7.035 187.2 8.258 278.2 9.418 363.3 11.686 444.1 15.993 506.2 1.979 31.6 5.129 105.4 7.062 188.8 8.274 279.5 9.448 365.0 11.743 445.3 16.090 507.1 2.031 32.6 5.169 106.6 7.088 190.4 8.291 280.9 9.478 366.7 11.801 446.7 16.193 508.1 2.082 33.5 5.209 107.9 7.125 192.7 8.312 282.6 9.509 368.4 11.865 448.1 16.295 509.2 2.140 34.6 5.249 109.2 7.151 194.3 8.333 284.3 9.540 370.1 11.931 449.4 16.400 510.1 2.207 37.1 5.326 111.7 7.204 197.7 8.367 287.0 9.605 373.5 12.060 452.1 16.603 512.1	1.862	29.6	5.039	102.5	7.007	185.6	8.240	276.8	9.388	361.5	11.622	442.7	15.900	505.3
1.979 31.6 5.129 105.4 7.062 188.8 8.274 279.5 9.448 365.0 11.743 445.3 16.090 507.1 2.031 32.6 5.169 106.6 7.088 190.4 8.291 280.9 9.478 366.7 11.801 446.7 16.193 508.1 2.082 33.5 5.209 107.9 7.125 192.7 8.312 282.6 9.509 368.4 11.865 448.1 16.295 509.2 2.140 34.6 5.249 109.2 7.151 194.3 8.333 284.3 9.540 370.1 11.931 449.4 16.400 510.1 2.207 35.9 5.288 110.5 7.178 195.9 8.351 285.8 9.572 371.8 11.995 450.8 16.501 511.1 2.270 37.1 5.369 113.1 7.204 197.7 8.367 287.0 9.605 373.5 12.060 452.1 16.603 512.1 2.337 38.4 5.369 113.1 7.202 197.9 9.762<	1.920	30.6	5.084	103.9	7.035	187.2	8.258	278.2	9.418	363.3	11.686	444.1	15.993	506.2
2.031 32.6 5.169 106.6 7.088 190.4 8.291 280.9 9.478 366.7 11.801 446.7 16.193 508.1 2.082 33.5 5.209 107.9 7.125 192.7 8.312 282.6 9.509 368.4 11.801 446.7 16.193 508.1 2.140 34.6 5.249 109.2 7.151 194.3 8.333 284.3 9.540 370.1 11.931 449.4 16.400 510.1 2.207 35.9 5.288 110.5 7.178 195.9 8.351 285.8 9.572 371.8 11.995 450.8 16.501 511.1 2.270 37.1 5.326 111.7 7.204 197.7 8.367 287.0 9.605 373.5 12.060 452.1 16.603 512.1 2.337 38.4 5.369 113.1 7.206 201.0 8.404 290.1 9.669 376.9 12.190 454.6 16.812 514.0	1.979	31.6	5.129	105.4	7.062	188.8	8.274	279.5	9.448	365.0	11.743	445.3	16.090	507.1
2.082 33.5 5.209 107.9 7.125 192.7 8.312 282.6 9.509 368.4 11.865 448.1 16.295 509.2 2.140 34.6 5.249 109.2 7.151 194.3 8.333 284.3 9.540 370.1 11.931 449.4 16.400 510.1 2.207 35.9 5.288 110.5 7.178 195.9 8.351 285.8 9.572 371.8 11.995 450.8 16.501 511.1 2.207 37.1 5.326 111.7 7.204 197.7 8.367 287.0 9.605 373.5 12.060 452.1 16.603 512.1 2.337 38.4 5.369 113.1 7.226 201.0 8.404 290.1 9.605 376.9 12.190 454.6 16.812 514.0 2.409 39.7 5.413 114.7 7.256 201.0 8.404 290.1 9.669 376.9 12.190 454.6 16.812 514.0 2.481 41.1 5.451 116.0 7.281 202.7 8.423<	2.031	32.6	5.169	106.6	7.088	190.4	8.291	280.9	9.478	366.7	11.801	446.7	16.193	508.1
2.140 34.6 5.249 109.2 7.151 194.3 8.333 284.3 9.540 370.1 11.931 449.4 16.400 510.1 2.207 35.9 5.288 110.5 7.178 195.9 8.351 285.8 9.572 371.8 11.995 450.8 16.501 511.1 2.207 37.1 5.326 111.7 7.204 197.7 8.367 287.0 9.605 373.5 12.060 452.1 16.603 512.1 2.337 38.4 5.369 113.1 7.256 201.0 8.404 290.1 9.605 376.9 12.190 454.6 16.812 514.0 2.409 39.7 5.413 114.7 7.256 201.0 8.404 290.1 9.669 376.9 12.190 454.6 16.812 514.0 2.481 41.1 5.451 116.0 7.281 202.7 8.423 291.7 9.702 378.6 12.255 455.8 16.914 514.9 2.650 42.4 5.489 117.3 7.306 204.4 8.441<	2.082	33.5	5.209	107.9	7.125	192.7	8.312	282.6	9.509	368.4	11.865	448.1	16.295	509.2
2.207 35.9 5.288 110.5 7.178 195.9 8.351 285.8 9.572 371.8 11.995 450.8 16.501 511.1 2.207 37.1 5.326 111.7 7.204 197.7 8.367 287.0 9.605 373.5 12.060 452.1 16.603 512.1 2.337 38.4 5.369 113.1 7.230 199.3 8.386 288.6 9.637 375.2 12.125 453.4 16.709 513.0 2.409 39.7 5.413 114.7 7.256 201.0 8.404 290.1 9.669 376.9 12.190 454.6 16.812 514.0 2.481 41.1 5.451 116.0 7.281 202.7 8.423 291.7 9.702 378.6 12.255 455.8 16.914 514.9 2.550 42.4 5.489 117.3 7.306 204.4 8.441 293.2 9.736 380.3 12.321 457.1 17.017 515.8 2.615 43.7 5.527 118.6 7.332 206.1 8.457<	2.140	34.6	5.249	109.2	7.151	194.3	8.333	284.3	9.540	370.1	11.931	449.4	16.400	510.1
2.270 37.1 5.326 111.7 7.204 197.7 8.367 287.0 9.605 373.5 12.060 452.1 16.603 512.1 2.337 38.4 5.369 113.1 7.230 199.3 8.386 288.6 9.637 375.2 12.125 453.4 16.709 513.0 2.409 39.7 5.413 114.7 7.256 201.0 8.404 290.1 9.669 376.9 12.190 454.6 16.812 514.0 2.481 41.1 5.451 116.0 7.281 202.7 8.423 291.7 9.702 378.6 12.255 455.8 16.914 514.9 2.550 42.4 5.489 117.3 7.306 204.4 8.441 293.2 9.736 380.3 12.321 457.1 17.017 515.8 2.615 43.7 5.527 118.6 7.332 206.1 8.457 294.5 9.766 381.7 12.387 458.3 17.126 516.8 2.663 45.0 5.570 120.1 7.357 207.8 8.476<	2.207	35.9	5.288	110.5	7.178	195.9	8.351	285.8	9.572	371.8	11.995	450.8	16.501	511.1
2.337 38.4 5.369 113.1 7.230 199.3 8.386 288.6 9.637 375.2 12.125 453.4 16.709 513.0 2.409 39.7 5.413 114.7 7.256 201.0 8.404 290.1 9.669 376.9 12.190 454.6 16.812 514.0 2.481 41.1 5.451 116.0 7.281 202.7 8.423 291.7 9.702 378.6 12.255 455.8 16.914 514.9 2.550 42.4 5.489 117.3 7.306 204.4 8.441 293.2 9.736 380.3 12.321 457.1 17.017 515.8 2.615 43.7 5.527 118.6 7.332 206.1 8.457 294.5 9.766 381.7 12.387 458.3 17.126 516.8 2.663 45.0 5.570 120.1 7.357 207.8 8.476 296.0 9.797 383.2 12.454 459.6 17.194 517.4	2.270	37.1	5.326	111.7	7.204	197.7	8.367	287.0	9.605	373.5	12.060	452.1	16.603	512.1
2:409 39.7 5.413 114.7 7.256 201.0 8.404 290.1 9.669 376.9 12.190 454.6 16.812 514.0 2:409 39.7 5.413 114.7 7.256 201.0 8.404 290.1 9.669 376.9 12.190 454.6 16.812 514.0 2:481 41.1 5.451 116.0 7.281 202.7 8.423 291.7 9.702 378.6 12.255 455.8 16.914 514.9 2.550 42.4 5.489 117.3 7.306 204.4 8.441 293.2 9.736 380.3 12.321 457.1 17.017 515.8 2.615 43.7 5.527 118.6 7.332 206.1 8.457 294.5 9.766 381.7 12.387 458.3 17.126 516.8 2.683 45.0 5.570 120.1 7.357 207.8 8.476 296.0 9.797 383.2 12.454 459.6 17.194 517.4	2.337	38.4	5,369	113.1	7,230	199.3	8.386	288.6	9.637	375.2	12,125	453.4	16,709	513.0
2.481 41.1 5.451 116.0 7.281 202.7 8.423 291.7 9.702 378.6 12.255 455.8 16.914 514.9 2.550 42.4 5.489 117.3 7.306 204.4 8.441 293.2 9.736 380.3 12.255 455.8 16.914 514.9 2.615 43.7 5.527 118.6 7.332 206.1 8.457 294.5 9.766 381.7 12.387 458.3 17.126 516.8 2.683 45.0 5.570 120.1 7.357 207.8 8.476 296.0 9.797 383.2 12.454 459.6 17.194 517.4 2.754 46.5 5.613 121.7 7.381 209.5 8.496 297.8 9.831 384.8 12.521 460.7 460.7 2.819 47.7 5.654 123.2 7.405 211.3 8.518 299.6 9.867 386.4 12.587 462.0 463.1 453.1 453.1 453.1 453.1 453.1 453.1 453.1 453.1 453.1 453.1	2.409	39.7	5.413	114.7	7.256	201.0	8.404	290.1	9,669	376.9	12,190	454.6	16.812	514.0
2.550 42.4 5.489 117.3 7.306 204.4 8.441 293.2 9.736 380.3 12.321 457.1 17.017 515.8 2.615 43.7 5.527 118.6 7.332 206.1 8.457 294.5 9.766 381.7 12.387 458.3 17.126 516.8 2.683 45.0 5.570 120.1 7.357 207.8 8.476 296.0 9.797 383.2 12.454 459.6 17.194 517.4 2.754 46.5 5.613 121.7 7.381 209.5 8.496 297.8 9.831 384.8 12.521 460.7	2,481	41.1	5.451	116.0	7.281	202.7	8.423	291.7	9.702	378.6	12.255	455.8	16.914	514.9
2.615 43.7 5.527 118.6 7.332 206.1 8.457 294.5 9.766 381.7 12.387 458.3 17.126 516.8 2.683 45.0 5.570 120.1 7.357 207.8 8.476 296.0 9.797 383.2 12.454 459.6 17.194 517.4 2.754 46.5 5.613 121.7 7.381 209.5 8.496 297.8 9.831 384.8 12.521 460.7 2.819 47.7 5.654 123.2 7.405 211.3 8.518 299.6 9.867 386.4 12.587 462.0 11.3 2.859 49.2 5.696 124.7 7.430 213.0 8.540 301.6 9.898 387.8 12.653 463.1 12.955 50.5 5.738 126.3 7.454 214.8 8.561 303.3 9.929 389.2 12.712 464.1 12.955 3.017 51.8 5.781 127.9 7.478 216.5 8.582	2,550	42.4	5,489	117.3	7.306	204.4	8.441	293.2	9,736	380.3	12.321	457.1	17.017	515.8
2.683 45.0 5.570 120.1 7.357 207.8 8.476 296.0 9.797 383.2 12.454 459.6 17.194 517.4 2.754 46.5 5.613 121.7 7.381 209.5 8.496 297.8 9.831 384.8 12.521 460.7 2.819 47.7 5.654 123.2 7.405 211.3 8.518 299.6 9.867 386.4 12.587 462.0 2.889 49.2 5.696 124.7 7.430 213.0 8.540 301.6 9.898 387.8 12.653 463.1 2.955 50.5 5.738 126.3 7.454 214.8 8.561 303.3 9.929 389.2 12.712 464.1 3.017 51.8 5.781 127.9 7.478 216.5 8.582 305.1 9.965 390.8 12.790 465.4	2.615	43.7	5.527	118.6	7.332	206.1	8.457	294.5	9.766	381.7	12.387	458.3	17.126	516.8
2.754 46.5 5.613 121.7 7.381 209.5 8.496 297.8 9.831 384.8 12.521 460.7 2.819 47.7 5.654 123.2 7.405 211.3 8.518 299.6 9.867 386.4 12.587 462.0 2.889 49.2 5.696 124.7 7.430 213.0 8.540 301.6 9.898 387.8 12.653 463.1 2.955 50.5 5.738 126.3 7.454 214.8 8.561 303.3 9.929 389.2 12.712 464.1 3.017 51.8 5.781 127.9 7.478 216.5 8.582 305.1 9.965 390.8 12.790 465.4	2.683	45.0	5.570	120.1	7.357	207.8	8.476	296.0	9,797	383.2	12,454	459.6	17.194	517.4
2.819 47.7 5.654 123.2 7.405 211.3 8.518 299.6 9.867 386.4 12.587 462.0 2.889 49.2 5.696 124.7 7.430 213.0 8.540 301.6 9.898 387.8 12.653 463.1 2.955 50.5 5.738 126.3 7.454 214.8 8.561 303.3 9.929 389.2 12.712 464.1 3.017 51.8 5.781 127.9 7.478 216.5 8.582 305.1 9.965 390.8 12.790 465.4	2,754	46.5	5.613	121.7	7.381	209.5	8.496	297.8	9.831	384.8	12.521	460.7		0
2.889 49.2 5.696 124.7 7.430 213.0 8.540 301.6 9.898 387.8 12.653 463.1 2.955 50.5 5.738 126.3 7.454 214.8 8.561 303.3 9.929 389.2 12.712 464.1 3.017 51.8 5.781 127.9 7.478 216.5 8.582 305.1 9.965 390.8 12.790 465.4	2 819	47.7	5 654	123.2	7 405	211.3	8.518	299.6	9.867	386.4	12 587	462.0		
2.955 50.5 5.738 126.3 7.454 214.8 8.561 303.3 9.929 389.2 12.712 464.1 3.017 51.8 5.781 127.9 7.478 216.5 8.582 305.1 9.965 390.8 12.790 465.4	2 889	49.2	5 696	124.7	7 430	213.0	8.540	301.6	9,898	387.8	12 653	463.1		
3.017 51.8 5.781 127.9 7.478 216.5 8.582 305.1 9.965 390.8 12.790 465.4	2 955	50.5	5 738	126.3	7.100	214.8	8.561	303.3	9 929	389.2	12 712	464 1		
	3.017	51.8	5.781	127.9	7.478	216.5	8.582	305.1	9,965	390.8	12,790	465.4		
3 078 53 0 5 822 129 5 7 502 218 3 8 604 306 8 9 997 392 2 12 856 466 5	3.078	53.0	5.822	129.5	7.502	218.3	8.604	306.8	9,997	392.2	12,856	466.5		
3 140 54 4 5 862 131 1 7 526 220 1 8 626 308 5 10 029 393 6 12 93 467 7	3 140	54.4	5 862	131 1	7 526	220.1	8 626	308.5	10 029	393.6	12.000	467 7		
3 203 55 7 5 902 132 6 7 549 221 8 8 648 310 2 10 066 395 2 13 01 469 0	3 203	55.7	5 902	132.6	7 549	221.8	8 648	310.2	10.066	395.2	13.01	469.0		
3 264 57.0 5 943 134.2 7 570 223.2 8 671 311.9 10 105 396.8 13.08 470.1	3 264	57.0	5 943	134.2	7 570	223.2	8 671	311.9	10 105	396.8	13.08	470 1	-	
3 326 58 3 5 983 135 9 7 587 224 6 8 693 313 7 10 143 398 3 13 15 471 3	3 326	58.3	5 983	135.9	7 587	224.6	8 603	313.7	10 1/2	398.3	13 15	471 3		
3 389 59 7 6 022 137 5 7 607 226 1 8 712 315 2 10 181 399 9 13 22 472 4	3,389	59.7	6.022	137.5	7,607	226.1	8,712	315.2	10.181	399.9	13.22	472.4		

Système CO₂-C₂H₆ - $z_{CO2} = 0.5158 / T = 333.24 K$

P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.003	0.0	3.961	61.2	7.033	137.5	9.214	220.9	10.954	294.6	13.041	366.5	16.020	428.5
0.092	1.2	4.028	62.5	7.075	138.8	9.248	222.3	10.984	295.8	13.081	367.7	16.093	429.6
0.164	2.2	4.089	63.7	7.121	140.3	9.281	223.8	11.014	297.0	13.126	368.9	16.163	430.7
0.232	3.1	4.150	64.9	7.171	141.9	9.314	225.2	11.045	298.2	13.171	370.1	16.234	431.8
0.337	4.5	4.216	66.2	7.212	143.3	9.348	226.6	11.075	299.4	13.212	371.3	16.307	432.9
0.425	5.7	4.282	67.5	7.263	145.0	9.381	228.0	11.106	300.6	13.257	372.5	16.382	434.0
0.515	6.9	4.349	68.9	7.311	146.6	9.414	229.4	11.140	302.0	13.319	374.1	16.454	435.0
0.598	8.0	4.415	70.3	7.358	148.2	9.447	230.8	11.178	303.4	13.368	375.3	16.518	436.0
0.675	9.0	4.483	71.7	7.406	149.8	9.479	232.2	11.228	305.5	13.417	376.6	16.589	437.0
0.750	10.0	4.550	73.1	7.452	151.4	9.513	233.6	11.262	306.8	13.470	378.0	16.663	438.1
0.819	10.9	4.615	74.5	7.498	152.9	9.545	235.0	11.297	308.0	13.522	379.3	16.735	439.1
0.892	11.9	4.682	75.9	7.544	154.5	9.577	236.4	11.335	309.6	13.571	380.5	16.803	440.1
0.960	12.9	4.745	77.3	7.589	156.1	9.614	238.0	11.374	311.0	13.619	381.7	16.869	441.0
1.037	13.9	4.800	78.5	7.634	157.7	9.649	239.5	11.412	312.5	13.667	382.9	16.936	441.9
1.107	14.9	4.860	79.8	7.679	159.3	9.681	240.9	11.450	314.0	13.715	384.1	17.003	442.8
1,178	15.9	4,944	81.7	7,723	160.9	9.713	242.2	11,489	315.5	13,767	385.3	17.062	443.7
1.253	16.9	4.997	82.9	7.767	162.6	9.745	243.6	11.527	316.9	13.824	386.6	17.129	444.5
1.324	17.9	5.057	84.2	7.811	164.1	9.777	245.0	11.567	318.4	13.876	387.9	17.224	445.7
1.390	18.8	5.110	85.6	7.854	165.7	9.807	246.3	11.601	319.7	13.924	389.0	17.311	446.8
1.457	19.8	5.180	87.1	7.897	167.3	9.839	247.7	11.637	321.0	13.972	390.1		
1.526	20.8	5,237	88.4	7,939	168.9	9.870	249.0	11.672	322.3	14.019	391.2		
1.584	21.6	5.300	90.0	7.981	170.5	9,901	250.3	11,706	323.5	14.067	392.3		
1 657	22.7	5 357	91.3	8 023	172.1	9,933	251.7	11 745	324.9	14 115	393.3		
1 726	23.7	5 408	92.6	8 064	173.7	9 964	253.0	11 784	326.4	14 166	394.5		
1 800	24.9	5 4 5 9	93.8	8 105	175.2	9 995	254.3	11 823	327.8	14 220	395.6		
1.000	26.0	5 516	95.1	8 146	176.8	10.026	255.7	11.862	329.2	14 275	396.8		
1.951	27.1	5 572	96.5	8 186	178.4	10.058	257.0	11 901	330.6	14,330	398.0		
2 021	28.1	5.622	97.7	8 227	180.0	10.089	258.3	11 941	332.0	14 384	399.1		
2 095	29.3	5.678	99.1	8 266	181.5	10 119	259.7	11 976	333.2	14 437	400.2		
2 169	30.4	5 734	100.6	8 306	183.1	10 150	261.0	12 012	334.5	14.494	401.4		
2 244	31.6	5 782	101.8	8 345	184.7	10.181	262.3	12.012	335.9	14 550	402.5		
2 316	32.7	5 838	103.2	8 384	186.2	10.101	263.6	12.000	337.5	14 603	403.6		
2.389	33.9	5 892	100.2	8 423	187.8	10.243	265.0	12 138	338.8	14 661	404.7		
2 470	35.2	5 941	105.9	8 461	189.3	10.240	266.2	12.100	340.1	14 720	405.9		
2 545	36.3	5 989	107.3	8 4 9 9	190.9	10.274	267.5	12.170	341.4	14 780	407.1		
2 621	37.6	6.037	107.0	8 537	192.4	10.334	268.8	12 258	342.7	14.838	408.2		
2.698	38.8	6.090	100.4	8 575	194.0	10.365	270.1	12.200	344 1	14.892	409.2		
2 766	30.0	6 1/2	111.3	8.612	195.5	10.305	271 /	12 336	3/5 3	1/ 0//	410.2		
2.700	<i>4</i> 1 1	6 195	112.7	8.649	197.0	10.000	272.8	12.000	3/6.6	15 00/	/11 3		
2,000	42.2	6 252	11/1 3	8 687	198.6	10.464	274.3	12.077	3/7 9	15.004	412 <i>A</i>		
2.000	42.2	6 309	115.0	8 723	200.2	10.507	274.0	12.417	3/0.2	15 118	412.5		
2.577	43.3	6.365	117.4	8 750	200.2	10.507	270.1	12.407	350.5	15 175	413.5		
2 1 2 7	44.7	6.415	117.4	0.755	201.7	10.557	277.5	10 520	251.7	15 224	414.5		
2 107	40.0	6.465	120.2	0.795	203.1	10.507	270.0	12.550	252.0	15 204	415.0		
2.197	47.2	6.514	120.3	0.032	204.7	10.090	279.9	12.570	254.2	15.294	410.0		
2 242	40.0	6.562	121.7	0.007	200.1	10.650	201.2	12.019	255.5	15.302	417.7		
0.04Z	49.7	0.000	1046	0.300	201.1	10.009	202.0	12.000	256.7	15.400	410.0		
3.413	51.0	0.012	124.0	0.939	209.2	10.009	203.1	12./00	300./	15.408	419.7		
3.40/ 2 FFC	52.4	0.001	120.0	0.9/3	210./	10.719	200.0	12./41	357.9	15.529	420.7		
3.000	53.0	0./15	127.0	9.008	212.1	10.753	200.3	12./01	309.1	15.589	421./		
3.024	54.8	0./00	129.2	9.043	213.5	10.787	20/./	12.823	300.4	15.65	422.7		
3.093	50.1	0.022	130.9	9.077	215.0	10.018	289.0	12.856	301.3	15.72	423.9		
3.760	57.4	0.893	133.0	9.111	210.5	10.852	290.4	12.901	302.0	15.80	425.0		
3.829	0.60	6.941	134.5	9.145	217.9	10.889	292.0	12.947	363.9	15.87	426.2		
3.895	60.0	6.987	136.0	9.180	219.3	10.924	293.3	12.996	365.3	15.95	427.4		

Système CO_2 - $C_2H_6 - z_{CO2} = 0.5158 / T = 293.41 K$

Р	BHO	P	BHO	Р	BHO	Р	BHO	Р	BHO	Р	BHO
MPa	ka/m3	MPa	ka/m3	MPa	ka/m3	MPa	ka/m3	MPa	ka/m3	MPa	ka/m3
0.002	0.0	3 040	58.6	1 0/0	126.1	6 360	/17.6	8 240	103.2	12 785	5/0.0
0.002	1.0	3.040	50.0	4.949	107.5	6.370	417.0	0.240	493.2	12.700	549.9
0.064	1.3	3.063	09.0	4.970	127.5	0.370	419.4	0.311	494.0	12.904	550.9
0.152	2.3	3.125	01.0	5.001	129.0	0.395	421.0	8.393	495.9	13.027	551.9
0.226	3.5	3.166	61.8	5.027	130.4	6.414	422.8	8.437	496.8	13.148	552.9
0.289	4.5	3.209	62.9	5.052	131.9	6.437	424.6	8.488	497.8	13.269	553.9
0.356	5.6	3.251	64.0	5.076	133.3	6.464	426.6	8.540	498.8	13.396	554.9
0.422	6.6	3.293	65.2	5.099	134.7	6.497	428.7	8.592	499.8	13.532	556.0
0.485	7.6	3.335	66.3	5.122	136.1	6.530	430.7	8.641	500.7	13.669	557.1
0.547	8.7	3.377	67.5	5.144	137.5	6.545	432.0	8.695	501.7	13.796	558.1
0.605	9.6	3.418	68.6	5.168	139.0	6.561	433.3	8.754	502.7	13.922	559.0
0.666	10.6	3.456	69.6	5.188	140.5	6.578	434.8	8.811	503.7	14.061	560.0
0.733	11.8	3.493	70.7	5.243	143.7	6.594	436.0	8.868	504.8	14.197	561.1
0.800	12.9	3.533	71.8	5.292	147.2	6.610	437.3	8.924	505.7	14.336	562.1
0.861	13.9	3.574	73.0	5.338	150.4	6.628	438.7	8.981	506.7	14.478	563.1
0.921	14.9	3.615	74.2	5.376	153.3	6.645	440.0	9.043	507.7	14.616	564.1
0.986	16.0	3.655	75.4	5.409	156.0	6.665	441.3	9.106	508.8	14.771	565.2
1.048	17.1	3.695	76.6	5.441	158.6	6.687	442.8	9.169	509.8	14.940	566.3
1.107	18.1	3.732	77.7	5.460	160.4	6.709	444.3	9.236	510.9	15.111	567.5
1 171	19.3	3 768	78.8	5 479	162.2	6 733	445.7	9 303	511.9	15 332	568.8
1 232	20.4	3 801	79.8	5 497	163.9	6 759	447.3	9.382	513.1	15 446	569.6
1 200	21.4	3,836	91.0	5.514	165.6	6 788	118.0	0.002	51/ 3	15 501	570.5
1.250	21.4	3,873	82.2	5.531	167.3	6.815	440.9	9.407	516.3	15 742	571.5
1.000	22.0	3.073	02.2	5.551	107.3	0.015	450.2	9.019	510.5	15.742	571.5
1.400	23.5	3.910	03.3	5.547	170.7	0.040	401.0	9.000	517.1	10.040	572.5
1.460	24.5	3.946	84.5	5.563	170.7	0.870	453.3	9.756	518.1	16.048	573.5
1.514	25.6	3.980	85.6	5.579	1/2.4	6.905	454.7	9.825	519.1	16.206	5/4.5
1.567	26.6	4.012	86.7	5.593	1/4.0	6.937	456.1	9.903	520.1	16.374	5/5.5
1.617	27.5	4.043	87.8	5.607	1/5./	6.978	457.7	9.983	521.1	16.538	5/6.5
1.670	28.5	4.075	88.9	5.621	177.3	7.025	459.6	10.057	522.1	16.700	577.5
1.726	29.6	4.108	90.0	5.633	178.8	7.079	461.5	10.133	523.1	16.911	578.7
1.781	30.6	4.140	91.1	5.647	180.4	7.151	463.8	10.217	524.1	17.054	579.6
1.833	31.7	4.171	92.2	5.659	182.1	7.241	466.3	10.293	525.0		
1.883	32.7	4.203	93.4	5.672	183.6	7.277	467.5	10.370	526.0		
1.933	33.6	4.240	94.7	5.683	185.2	7.310	468.6	10.466	527.1		
1.983	34.6	4.275	96.1	5.692	186.5	7.340	469.6	10.565	528.3		
2.032	35.6	4.311	97.5	5.708	188.7	7.371	470.7	10.659	529.4		
2.080	36.7	4.348	98.8	5.719	190.2	7.404	471.8	10.750	530.4		
2.129	37.6	4.389	100.4	5.729	191.7	7.438	472.8	10.846	531.5		
2.178	38.7	4.429	102.1	5.738	193.2	7.475	474.0	10.934	532.4		
2.235	39.9	4.469	103.6	5.749	194.9	7.509	475.0	11.032	533.4		
2.289	41.1	4.504	105.1	5.760	196.6	7.547	476.1	11.135	534.6		
2.343	42.3	4.538	106.5	5.769	198.1	7.584	477.2	11.232	535.6		
2.396	43.4	4.576	108.1	5.778	199.5	7.622	478.3	11.329	536.6		
2 445	44.5	4 612	109.7	5 786	200.8	7 662	479.4	11 431	537.6		
2 4 9 5	45.6	4 645	111 1	5 793	202.2	7 704	480.6	11 543	538.7		
2 5/18	46.9	4 672	1123	5 802	203.8	7 745	481.6	11 658	539.8		
2 601	18 0	4 700	112.0	5,812	205.0	7 7 9 5	182.7	11 779	540.0		
2.001	40.0	4.700	114.0	5.012	200.4	7.00	402.7	11.770	540.9		
2.000	49.3	4./2/	114.9	5.82U	∠00.ŏ	7.029	405.9	10.010	542.2		
2.707	50.5	4./53	110.1	5.829	208.1	7.010	400.1	12.013	543.1		
2./55	51.6	4./82	117.5	5.837	209.4	7.916	486.1	12.126	544.1		
2.806	52.8	4.811	118.9	5.844	210.4	7.963	487.2	12.237	545.1		
2.859	54.1	4.839	120.3	5.851	211.5	8.011	488.3	12.340	546.1		
2.907	55.3	4.869	121.8	5.859	212.4	8.059	489.5	12.445	547.0		
2.950	56.3	4.896	123.2	6.333	414.3	8.114	490.7	12.560	548.0		
2.994	57.4	4.921	124.6	6.348	416.1	8.176	491.9	12.674	549.0		

P		-0 -112 P	BHO	P	BHO	P	BHO	Р	BHO	Р	BHO
MPa	ka/m3	MPa	ka/m3	MPa	ka/m3	MPa	ka/m3	MPa	ka/m3	MPa	ka/m3
0.000	0.0	2 6 1 9	574.8	9 1 9 6	585.6	16 593	595.9	25 751	606.9	35 660	617.3
0.008	0.0	2 756	575.0	9.341	585.8	16 766	596.2	25.930	607.1	35 875	617.5
0.019	0.1	2 880	575.2	9.487	586.0	16 931	596.4	26 106	607.4	36.063	617.7
0.031	0.4	2 991	575.4	9.619	586.2	17 087	596.6	26 283	607.5	36 282	617.9
0.001	0.0	3 069	575.6	9 735	586.4	17.007	596.8	26.466	607.7	36 / 88	618.1
0.040	1.0	3.406	576.2	9.862	586.6	17.207	597.0	26.638	607.9	36 692	618.3
0.002	1.0	3 506	576.3	9.002	586.8	17.403	597.0	26.788	608.1	36.874	618.5
0.000	1.2	3 631	576.6	10 120	587.0	17.330	597.2	26.960	608.3	37.069	618.7
0.073	1.4	3 728	576.8	10.120	587.2	17.700	597.4	27 131	608 5	37 288	618.9
0.002	1.0	3 852	576.9	10.200	587.4	18 074	597.8	27 295	608.6	37 512	619.1
0.000	2.0	3 980	577.2	10.538	587.6	18 217	598.0	27 539	608.9	37 712	619.3
0.112	22	4 057	577.3	10.669	587.8	18.378	598.2	27 708	609.1	37 899	619.4
0.123	24	4 153	577.5	10.803	588.0	18 540	598.4	27.880	609.3	38.098	619.6
0.132	26	4 275	577.7	10.000	588.2	18 708	598.6	28.056	609.5	38 290	619.8
0.141	2.8	4.387	577.9	11.066	588.4	18 889	598.9	28 241	609.7	38 486	620.0
0.150	29	4 493	578.1	11 196	588.5	19 047	599 1	28,398	609.8	38 693	620.2
0.159	3.1	4.608	578.3	11.345	588.8	19.213	599.3	28.629	610.1	38,901	620.4
0.169	3.3	4.757	578.5	11.470	588.9	19.385	599.5	28.825	610.3	39.123	620.6
0.179	3.5	4.886	578.7	11.601	589.1	19.564	599.7	28,954	610.4	39.351	620.8
0.189	3.8	5.003	578.9	11.738	589.3	19,735	599.9	29.121	610.6	39.564	621.0
0.209	4.2	5.112	579.1	11.879	589.5	19.917	600.1	29.282	610.8	39,779	621.2
0.225	4.5	5.226	579.3	12.039	589.8	20.085	600.3	29.447	611.0	40.091	621.4
0.245	5.0	5.342	579.5	12.188	590.0	20.279	600.5	29.560	611.1	40.354	621.7
0.264	5.4	5.455	579.7	12.334	590.2	20.452	600.8	29.917	611.5	40.590	621.9
0.281	5.7	5.582	579.9	12.473	590.4	20.605	601.0	30.001	611.6	40.812	622.1
0.298	6.1	5.693	580.1	12.600	590.6	20.767	601.2	30.127	611.7	41.014	622.3
0.315	6.5	5.814	580.3	12.760	590.8	20.948	601.4	30.401	612.0	41.258	622.5
0.332	6.9	5.926	580.4	12.911	591.0	21.118	601.6	30.592	612.2	41.466	622.7
0.351	7.4	6.051	580.7	13.040	591.2	21.295	601.8	30.768	612.4	41.645	622.8
0.373	7.8	6.162	580.8	13.188	591.4	21.451	602.0	30.976	612.6	41.881	623.1
0.387	8.1	6.285	581.0	13.327	591.6	21.620	602.2	31.179	612.8	42.096	623.3
0.399	8.4	6.411	581.2	13.490	591.8	21.800	602.4	31.336	613.0	42.371	623.5
0.410	8.6	6.531	581.4	13.634	592.0	21.969	602.6	31.542	613.2	42.610	623.7
0.423	8.9	6.673	581.7	13.710	592.1	22.145	602.8	31.726	613.4		
0.438	9.1	6.812	581.9	13.957	592.4	22.347	603.0	31.927	613.6		
0.444	9.2	6.928	582.1	14.087	592.6	22.525	603.2	32.132	613.7		
0.707	571.2	7.058	582.3	14.221	592.8	22.690	603.4	32.290	613.9		
0.808	571.4	7.180	582.5	14.355	593.0	22.902	603.7	32.490	614.1		
0.907	571.6	7.323	582.7	14.484	593.2	23.145	604.0	32.699	614.3		
1.008	571.8	7.454	582.9	14.651	593.4	23.368	604.2	32.928	614.6		
1.122	572.1	7.569	583.1	14.800	593.6	23.569	604.4	33.140	614.8		
1.242	572.2	7.697	583.3	14.949	593.8	23.736	604.6	33.331	615.0		
1.357	572.5	7.833	583.5	15.099	594.0	23.891	604.9	33.539	615.2		
1.483	5/2./	7.972	583.7	15.262	594.2	24.088	605.1	33.754	615.4		
1.616	5/2.9	8.103	583.9	15.415	594.4	24.176	605.2	33.964	615.6		
1./41	5/3.2	8.224	584.1	15.549	594.6	24.508	605.5	34.194	615.8		
1.8/4	5/3.5	8.352	584.3	15.708	594.8	24.6/6	605.7	34.414	616.0		
1.995	5/3./	0.482	504.5	15.84/	595.0	24.863		34.632	616.5		
2.110	5/3.8 E74 1	0.020	504.7	10.995	595.2	25.053	000.2	34.834	010.5		
2.230	574.1	0.703	585.0	16 200	595.4	25.215	606.6	35.040	616.0		
2.007	574.5	9.507	585 /	16 / /0	595.0	25.401	606.7	35 / 20	617.1		
2.432	0.4.0	3.001	505.4	10.443	JJJ./	20.011	000.7	00.400	017.1	1	1

Système H₂S-C₃H₈ – z_{H2S} = 0.2227 / T = 263.11 K

	293.28 K	T =	1	.2227	$- Z_{H2S} =$	$H_2S-C_3H_8 -$	Système
--	----------	-----	---	-------	---------------	-----------------	---------

Systèn	ne H ₂ S-	C_3H_8 –	$Z_{H2S} =$	0.2227	/ T = 2	93.28 H	Κ						
P	RHO	P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.000	0.0	0.766	14.8	6.162	526.6	11.195	540.5	17.502	554.4	24.978	567.8	33.453	580.6
0.014	0.2	0.779	15.1	6.230	526.8	11.298	540.7	17.616	554.6	25.127	568.1	33.634	580.8
0.031	0.5	0.791	15.4	6.313	527.0	11.411	541.0	17.753	554.9	25.277	568.3	33.813	581.1
0.048	0.8	0.804	15.6	6.393	527.3	11.523	541.3	17.880	555.1	25.427	568.6	34.000	581.3
0.066	1.1	0.814	15.9	6.475	527.5	11.636	541.5	18.009	555.4	25.588	568.8	34.187	581.6
0.084	1.5	0.842	16.5	6.556	527.8	11.747	541.8	18.128	555.6	25.744	569.1	34.350	581.8
0.098	1.7	0.856	16.9	6.643	528.1	11.853	542.1	18.257	555.9	25.904	569.3	34.538	582.0
0.114	2.0	0.872	17.2	6.714	528.3	11.966	542.4	18.410	556.2	26.058	569.6	34.727	582.3
0.131	2.3	0.885	17.5	6.802	528.5	12.100	542.7	18.564	556.5	26.196	569.8	34.916	582.5
0.146	2.5	0.899	17.9	6.903	528.8	12.237	543.0	18.702	556.7	26.349	570.1	35.087	582.8
0.159	2.8	0.915	18.3	6.991	529.1	12.357	543.3	18.832	557.0	26.506	570.3	35.283	583.0
0.171	3.0	0.932	18.7	7.069	529.3	12.466	543.5	18.965	557.2	26.663	570.5	35.464	583.3
0.186	3.3	0.948	19.1	7.159	529.6	12.584	543.8	19.101	557.5	26.815	570.8	35.649	583.5
0.204	3.6	0.963	19.4	7.243	529.8	12.701	544.1	19.250	557.8	26.980	571.0	35.831	583.8
0.228	3.8	0.978	19.8	7.323	530.1	12.821	544.4	19.396	558.0	27.137	571.3	36.045	584.1
0.228	4.1	0.992	20.2	7.417	530.4	12.941	544.6	19.529	558.3	27.283	571.5	36.270	584.4
0.251	4.5	1.005	20.5	7.510	530.6	13.067	544.9	19.662	558.5	27.446	571.8	36.384	584.5
0.262	4.7	1.019	20.9	7.610	530.9	13.189	545.2	19.790	558.8	27.621	572.0	36.567	584.8
0.278	5.0	1.031	21.2	7.701	531.2	13.317	545.5	19.936	559.0	27.776	572.3	36.892	585.2
0.292	5.2	1.041	21.6	7.800	531.5	13.443	545.8	20.079	559.3	27.932	572.5		
0.304	5.5	1.050	21.9	7.904	531.8	13.572	546.1	20.214	559.6	28.088	572.8		
0.319	5.8	1.056	22.2	7.991	532.0	13.696	546.3	20.338	559.8	28.245	573.0		
0.334	6.0	3.770	518.4	8.081	532.3	13.825	546.6	20.466	560.0	28.411	573.2		
0.350	6.3	3.840	518.7	8.183	532.5	13.944	546.9	20.612	560.3	28.569	573.5		
0.370	6.7	3.923	519.0	8.267	532.8	14.068	547.2	20.762	560.6	28.729	573.7		
0.375	6.8	3.995	519.2	8.361	533.0	14.197	547.5	20.889	560.8	28.892	574.0		
0.392	7.1	4.065	519.5	8.449	533.3	14.318	547.7	21.046	561.1	29.055	574.2		
0.406	7.4	4.130	519.7	8.541	533.5	14.426	548.0	21.193	561.3	29.216	574.5		
0.414	7.6	4.199	519.9	8.653	533.8	14.557	548.3	21.336	561.6	29.389	574.7		
0.433	7.9	4.279	520.2	8.755	534.1	14.709	548.6	21.473	561.9	29.553	575.0		
0.444	8.2	4.366	520.4	8.834	534.4	14.789	548.8	21.625	562.1	29.713	575.2	1	
0.470	8.7	4.421	520.7	9.016	534.8	14.928	549.0	21.763	562.4	29.879	575.4		
0.480	8.8	4.521	521.1	9.118	535.1	15.033	549.3	21.902	562.6	30.036	575.7		
0.491	9.1	4.588	521.3	9.223	535.4	15.156	549.6	22.056	562.9	30.200	575.9		
0.509	9.4	4.686	521.6	9.320	535.7	15.287	549.8	22.200	563.1	30.379	576.2		
0.523	9.7	4.762	521.9	9.428	536.0	15.393	550.1	22.367	563.4	30.549	576.4		
0.538	10.0	4.842	522.2	9.535	536.2	15.501	550.3	22.560	563.7	30.710	576.7		
0.556	10.4	4.940	522.6	9.629	536.5	15.624	550.5	22.742	564.1	30.872	576.9		
0.573	10.7	4.991	522.8	9.738	536.8	15.750	550.8	22.920	564.4	31.030	577.1		
0.589	11.1	5.047	523.0	9.834	537.0	15.870	551.1	23.082	564.6	31.204	577.4		
0.606	11.4	5.113	523.2	9.941	537.3	15.995	551.3	23.224	564.9	31.365	577.6		
0.621	11.7	5.205	523.5	10.046	537.6	16.122	551.6	23.383	565.2	31.541	577.9		
0.635	12.0	5.269	523.7	10.144	537.8	16.243	551.8	23.566	565.5	31.725	578.1		
0.649	12.3	5.349	524.0	10.245	538.1	16.359	552.1	23.684	565.7	31.881	578.3		
0.665	12.6	5.425	524.3	10.345	538.3	16.4//	552.3	23.817	565.9	32.033	5/8.6		
0.678	12.9	5.501	524.5	10.444	538.6	16.605	552.6	23.963	566.2	32.196	578.8		
0.690	13.2	5.576	524.8	10.549	538.9	16.726	552.8	24.103	566.4	32.373	5/9.1		
0.703	13.4	5.613	525.1	10.673	539.2	16.853	553.1	24.247	566.6	32.550	5/9.3		
0.717	13.7	5.864	525.6	10.783	539.5	16.981	553.3	24.379	566.8	32.720	5/9.5		
0./31	14.0	5.933	525.8	10.892	539.7	17.103	553.6	24.530	567.1	32.898	5/9.8		
0.742	14.3	6.012	526.1	11.001	540.0	17.237	553.8	24.683	567.4	33.072	580.0		
0.754	14.5	6.088	526.3	11.101	540.2	17.374	554.1	24.828	567.6	33.2/1	580.3	1	1

S	vstème	H ₂ S-C ₃ H ₈	$- z_{H2S} = 0$.2227	/ T =	333.2	2 K
~	,		- 12.7				

Systèm	e H ₂ S-	C ₃ H ₈ –	$z_{H2S} =$	0.2227	/T = 3	<u>33.22 k</u>	<u> </u>				-
Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.000	0.0	1.961	37.8	4.088	444.1	9.079	475.9	16.177	502.8	26.392	528.5
0.050	0.8	1.990	38.5	4.151	444.6	9.181	476.4	16.347	503.3	26.593	528.9
0.064	1.0	2.019	39.3	4.197	445.2	9.286	476.9	16.516	503.8	26.959	529.7
0.108	1.7	2.048	40.0	4.915	450.2	9.395	477.4	16.686	504.3	27.101	530.0
0.138	2.1	2.076	40.8	4.984	450.7	9.513	478.0	16.856	504.8	27.327	530.4
0.168	2.6	2.103	41.5	5.039	451.2	9.602	478.4	17.024	505.3	27.560	530.9
0.193	3.0	2.125	42.1	5.102	451.7	9.907	479.8	17.199	505.8	27.776	531.4
0.218	3.4	2.148	42.8	5.178	452.3	10.024	480.3	17.371	506.3	28.011	531.8
0.260	4.1	2.176	43.6	5.251	452.9	10.183	480.9	17.546	506.8	28.252	532.3
0.298	4.7	2.204	44.4	5.323	453.4	10.299	481.4	17.715	507.3	28.465	532.7
0.344	5.4	2.229	45.1	5.406	454.1	10.381	481.7	17.893	507.8	28.707	533.2
0.390	6.2	2.253	45.8	5,496	454.7	10.533	482.3	18.082	508.4	28.947	533.7
0.434	6.9	2.277	46.5	5.586	455.4	10.643	482.8	18,264	508.9	29,181	534.2
0.470	7.5	2,300	47.2	5.661	455.9	10.767	483.3	18,433	509.4	29.416	534.6
0.503	8.1	2.324	48.0	5.731	456.4	10.890	483.8	18,607	509.8	29.663	535.1
0.536	8.6	2 3//	18.6	5 805	156.9	11 001	184.3	18 79/	510.3	29 918	535.6
0.570	9.0	2 369	40.0 /0.3	5.880	457.5	11 125	18/ 8	18 975	510.8	30 160	536.0
0.604	0.0	2.000	50.2	5.000	457.0	11.720	405.0	10.156	511.2	20.404	526.5
0.004	9.0	2.390	50.2	5.945 6.026	457.9	11.249	405.5	10.220	511.0	20,650	530.5
0.030	10.0	2.422	51.4	6.000	450.5	11.000	400.0	10 560	512.4	20.009	537.0
0.071	11.5	2.444	50.0	0.090	459.0	11,490	400.3	10.745	512.4	21 170	537.5
0.707	10.0	2.400	52.0	0.177	459.5	11.000	400.9	10.001	512.9	01 400	500.4
0.744	12.2	2.495	52.6	0.241	459.9	11.778	487.4	19.921	513.3	31.423	538.4
0.780	12.8	2.528	53.0	0.318	460.5	10.000	488.0	20.100	513.8	31.695	538.9
0.811	13.4	2.551	53.6	6.403	461.0	12.069	488.0	20.294	514.3	31.961	539.4
0.838	13.9	2.567	54.3	6.494	461.6	12.135	488.8	20.484	514.8	32.217	539.8
0.889	14.9	2.584	55.1	6.584	462.2	12.276	489.3	20.669	515.2	32.470	540.3
0.942	15.9	2.599	55.8	6.686	462.8	12.414	489.9	20.857	515.7	32.731	540.8
0.995	16.9	2.614	56.5	6.743	463.2	12.539	490.4	21.053	516.2	33.002	541.2
1.045	17.8	2.630	57.1	6.850	463.8	12.676	490.9	21.243	516.7	33.272	541.7
1.093	18.7	2.649	57.6	6.886	464.0	12.813	491.4	21.435	517.2	33.541	542.2
1.140	19.6	2.666	58.1	7.006	464.7	12.959	491.9	21.628	517.6	33.791	542.6
1.186	20.5	2.681	58.6	7.096	465.3	13.097	492.4	21.832	518.2	34.092	543.1
1.232	21.5	2.698	59.3	7.141	465.5	13.233	492.9	22.044	518.7	34.354	543.6
1.276	22.3	2.711	59.9	7.239	466.1	13.370	493.4	22.238	519.1	34.636	544.1
1.323	23.2	2.722	60.4	7.336	466.7	13.515	493.9	22.434	519.6	34.919	544.6
1.363	24.1	2.734	61.0	7.425	467.2	13.662	494.5	22.624	520.1	35.197	545.0
1.401	24.9	2.745	61.7	7.515	467.7	13.811	495.0	22.830	520.5	35.481	545.5
1.444	25.8	2.755	62.3	7.603	468.2	13.956	495.5	23.037	521.0	35.752	546.0
1.481	26.5	2.766	62.8	7.695	468.8	14.123	496.1	23.236	521.5	36.045	546.5
1.512	27.2	2.778	63.4	7.781	469.2	14.293	496.6	23.454	522.0	36.336	546.9
1.548	28.0	2.792	64.0	7.866	469.7	14.428	497.1	23.671	522.5	36.615	547.4
1.587	28.9	2.801	64.3	7.961	470.2	14.523	497.4	23.897	523.0	36.900	547.9
1.625	29.6	3.571	438.6	8.061	470.7	14.671	497.9	24.120	523.5	37.195	548.3
1.663	30.6	3.610	439.1	8.152	471.2	14.817	498.4	24.340	524.0	37.486	548.8
1.699	31.4	3.654	439.7	8.247	471.7	14.981	498.9	24.557	524.5	37.781	549.3
1.735	32.2	3.705	440.2	8.351	472.3	15.152	499.5	24.792	525.0	38.079	549.7
1.771	33.0	3.750	440.7	8.453	472.8	15.261	499.9	25.030	525.5	38.381	550.2
1.805	33.9	3.809	441.3	8.549	473.3	15.406	500.3	25.252	526.0	38.676	550.7
1.839	34.7	3.861	441.9	8.653	473.8	15.558	500.8	25.466	526.5	38.961	551.1
1.871	35.5	3.921	442.5	8.768	474.4	15.710	501.3	25.691	527.0	39.341	551.7
1.902	36.2	3.951	442.9	8.832	474.7	15.868	501.8	25.923	527.5	39.554	552.1
1.931	37.0	4.026	443.5	8.992	475.5	16.031	502.3	26.162	528.0	39.778	552.5

Système	$H_2S-C_3H_8$ -	$-z_{\rm H2S} = 0.2691$	/ T = 268.09 K
---------	-----------------	-------------------------	----------------

P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
bar	kg/m3	bar	kg/m3	bar	kg/m3	bar	kg/m3	bar	kg/m3
1.243	2.41	49.199	578.06	127.364	590.98	221.195	603.90	325.743	616.15
1.450	2.81	50.607	578.32	128.949	591.23	223.575	604.16	328.243	616.41
1.636	3.19	51.917	578.55	130.565	591.48	224.872	604.36	330.446	616.65
1.802	3.50	53.147	578.79	132.362	591.75	226.697	604.60	332.424	616.88
1.963	3.83	54.604	579.05	134.175	592.03	228.279	604.82	334.724	617.11
2.156	4.20	56.078	579.30	136.055	592.30	229.998	605.11	337.089	617.34
2.371	4.66	57.341	579.54	137.981	592.54	231.118	605.30	339.254	617.58
2.585	5.09	58.760	579.79	139.630	592.80	233.134	605.52	341.405	617.80
2.746	5.46	60.175	580.05	141.068	593.04	235.217	605.77	343.817	618.07
2.911	5.76	61.703	580.30	142.437	593.27	237.110	605.99	345.855	618.26
3.081	6.09	63.018	580.56	144.221	593.51	239,105	606.23	348,200	618.52
3 354	6.68	64 504	580.81	146 208	593 79	240 975	606.48	350 491	618 76
3 523	7.04	65 955	581.04	147 888	594.03	242 878	606 70	352 359	618.96
3 691	7.39	67 247	581.27	149 591	594 28	245 015	606.96	355.093	619 24
3 872	7.78	68 593	581 52	151 233	594 52	246 956	607.20	357 683	619.48
4.031	8 16	70 211	581.81	152 806	594.02	249.000	607.20	360,268	619 75
4 206	8 50	71 725	582.05	154 549	59/ 99	250 923	607.44	362 540	620.00
4.200	8 90	73 160	582.00	156 118	595 21	252 903	607.07	364 664	620.00
4.580	0.00	74 506	582 53	157 880	595.47	254 758	608 14	367 030	620.20
4.300	9.51	76.028	582 70	150 670	505.47	256 884	608 38	360 500	620.47
4.703	10.01	77.020	502.73	161 205	505.04	250.004	609.50	271 000	620.02
4.901	10.01	70 061	503.01	162 906	506 17	200.901	600.03	274 240	621.20
5.052	10.54	70.001	503.30	164 521	590.17	200.942	600.10	374.349	601.40
0.175	10.55	00.440	503.32	166 007	590.41	203.117	600.24	370.799	621.43
0.175	509.97	02.040	503.01	169 105	590.00	204.940	600 FC	201 700	601.09
9.200	570.22	03.290	504.02	160 992	590.90	200.009	600.90	20/ 112	622.133
11 295	570.59	04.771	594.20	171 769	507.15	209.000	610.05	206 610	622.17
10.646	570.00	00.021	504.00	170 507	597.41	271.105	610.00	200.010	600.66
12.040	570.92	00.007	504.01	175.007	597.03	273.227	610.50	201 201	600.00
15.901	571.10	09.002	505.00	177.205	509 16	273.170	610.52	204 110	622.00
16 760	571.40	91.247	505.55	170.000	590.10	277.110	611.00	206 706	602.14
17.057	571.00	92.079	595 70	100 706	509.42	279.333	611.02	200 072	622.42
10.244	570.06	94.072	596.05	100.700	509 00	201.374	611.24	402 914	622.09
20 792	572.20	06.000	596.05	102.013	500.16	205.415	611 70	402.014	624.19
20.703	572.04	90.900	596 50	196 052	500.45	203.400	611.06	403.720	624.10
22.229	572.03	00.08/	586 74	188 740	500.60	207.555	612.16	407.012	624.59
25.000	573.30	101 668	587.02	100.740	500.03	203.302	612.10	0.005	-0.01
20.100	573.39	101.000	507.02	100.415	600 10	291.030	610.64	0.005	-0.01
20.003	573.74	104 552	507.20	192.342	600.10	293.747	610.00	0.094	0.20
20.397	574.09	104.002	507.49	106 107	600.67	295.940	612.00	0.234	0.45
30.110	574.40	107.640	507.72	100.107	600.07	297.007	610.00	0.303	0.70
22 200	575.02	107.040	500.00	200.060	601 10	299.927	612 56	0.511	1.00
35.599	575.03	111 024	500.22	200.000	601.19	204.202	612.00	0.000	1.23
35.143	575.30	110.000	500.49	202.145	001.44	304.203	013.01	0.702	1.47
30.905	575.71	114.005	500.74	203.097	001.00	300.312	014.04	1.054	1.09
20.002	576.00	115 690	200.92	203.430	602.12	210 624	614.20	1.054	2.03
39.993	576.29	117.000	509.22	207.398	602.13	310.034	014.01		
41.384	5/0.56	110.114	509.4/	209.384	602.40	312./13	014./5		
42.406	5/0.01	100 775	589.75	211.4/9	602.00	314.84/	615.01		
43.939	5//.08	120.775	509.99	213.384	002.89	310.9/6	015.21		
45.342	577.54	122.343	590.24	215.228	602.14	319.188	615.43		
40.485	577.55	123.881	590.48	217.548	003.42	321.340	015.07		
48.493	1 5//.91	125.49/	590./1	1219.20/	603.66	323.595	1 615.92	1	

$U_1 U_1 U_1 U_1 U_2 U_1 U_1 U_2 U_1 U_1 U_2 U_2 U_1 U_1 U_2 U_2 U_1 U_1 U_2 U_2 U_2 U_1 U_1 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2 U_2$	313.21 K	/T = 2	.2691	$-Z_{H2S} = 0$	H ₂ S-C ₃ H ₈	Système
---	----------	--------	-------	----------------	--	---------

Systèn	ne H ₂ S-	C_3H_8 –	$z_{H2S} =$	0.2691	/ T = 3	13.21 F	K				
P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
bar	kg/m3	bar	kg/m3	bar	kg/m3	bar	kg/m3	bar	kg/m3	bar	kg/m3
0.00	0.01	13.22	25.29	52.09	505.57	116.69	527.05	207.52	548.41	322.70	568.50
0.23	0.38	13.51	25.97	52.99	505.94	118.09	527.45	209.46	548.79	325.12	568.87
0.48	0.81	13.79	26.66	53.97	506.32	119.78	527.90	211.48	549.19	327.75	569.25
0.73	1.19	14.07	27.30	54.99	506.73	121.40	528.33	213.54	549.60	330.26	569.65
0.98	1.61	14.31	27.92	56.01	507.14	122.83	528.75	215.31	549.97	333.05	570.06
1.23	2.01	14.55	28.49	57.10	507.56	124.34	529.15	217.24	550.34	335.50	570.44
1.50	2.45	14.84	29.27	58.18	508.00	125.96	529.58	219.18	550.72	338.08	570.82
1.76	2.87	15.11	29.92	59.41	508.45	127.62	530.00	221.07	551.10	340.62	571.20
2.02	3.33	15.36	30.56	60.78	509.00	129.33	530.46	223.10	551.48	343.19	571.58
2.29	3.78	15.60	31.19	61.88	509.41	130.94	530.88	225.02	551.84	345.85	571.96
2.54	4.15	15.80	31.73	62.96	509.82	134.55	531.81	227.05	552.22	348.46	572.35
2.79	4.59	16.02	32.35	63.96	510.19	135.98	532.18	229.03	552.61	351.06	572.72
3.04	5.03	16.27	32.97	65.16	510.63	137.50	532.58	230.99	552.98	353.73	573.11
3.31	5.50	16.50	33.66	66.33	511.07	139.01	532.97	233.12	553.38	356.45	573.50
3.56	5.91	16.73	34.31	67.45	511.48	140.52	533.36	235.05	553.75	359.18	573.90
3.82	6.37	16.93	34.87	68.56	511.88	142.05	533.74	237.04	554.12	361.63	574.27
4.09	6.85	17.14	35.53	69.73	512.31	143.56	534.11	239.19	554.51	364.53	574.67
4.34	7.30	17.32	36.11	70.81	512.68	145.09	534.50	241.21	554.88	367.29	575.06
4.59	7.74	17.50	36.77	71.95	513.09	146.63	534.88	243.43	555.29	369.98	575.44
4.84	8.17	17.61	37.26	73.13	513.48	148.30	535.28	245.56	555.68	372.74	575.83
5.09	8.64	17.73	37.91	74.34	513.92	149.92	535.68	247.76	556.07	375.54	576.22
5.33	9.07	17.82	38.38	75.55	514.36	151.61	536.09	249.79	556.45	378.27	576.60
5.58	9.52	21.89	491.48	76.87	514.81	153.23	536.49	251.97	556.83	381.00	576.98
5.80	9.92	22.57	491.85	78.12	515.23	154.91	536.88	254.11	557.22	383.83	577.36
6.03	10.35	23.46	492.31	79.34	515.63	156.54	537.28	256.26	557.60	386.61	577.75
6.27	10.79	24.17	492.73	80.77	516.11	158.17	537.67	258.46	557.99	389.38	5/8.16
6.49	11.20	25.14	493.26	81.91	516.49	159.82	538.07	260.68	558.37	-	
6.72	11.61	26.03	493.72	83.09	516.89	161.46	538.45	262.92	558.76		
6.97	12.10	26.92	494.19	84.23	517.26	163.26	538.86	264.98	559.12	-	
7.44	12.58	27.87	494.63	85.44	517.05	104.90	539.24	267.37	559.53	-	
7.44	13.00	28.71	495.06	07.00	518.05	169.00	539.63	269.50	559.90		
2.07	14.10	29.52	495.45	07.00	510.43	170.07	540.03	271.77	560.67		
0.00	14.10	21.01	495.00	09.34	510.92	171.75	540.40	274.02	561.06		
8.53	15.14	32.00	490.20	90.03	519.52	173.55	540.00	270.31	561.00		
8 78	15.65	32.03	490.72	93.05	520.08	175.39	541.62	280.82	561.83		
9.04	16.17	33.78	497.10	94.21	520.00	177.27	542.02	283 11	562.22		
9.04	16.69	34.65	497.96	95.51	520.40	179.61	542.52	285 56	562.60		
9.59	17.30	35.49	498.37	96.87	521.26	181.30	542.90	287.77	562.97		
9.90	17.90	36.38	498.79	98.18	521.67	183.03	543.30	289.97	563.33		
10.13	18.41	37.33	499.23	99.46	522.07	184.78	543.68	292.28	563.72		
10.40	18.97	38.17	499.62	100.87	522.48	186.64	544.07	294.78	564.12		
10.63	19.44	39.16	500.06	102.19	522.88	188.49	544.48	297.10	564.48		
10.86	19.95	41.73	501.17	103.64	523.30	190.36	544.86	299.73	564.91		
11.09	20.45	43.91	502.12	104.95	523.70	192.13	545.25	302.03	565.28	1	
11.32	20.91	44.69	502.48	106.41	524.10	193.90	545.61	304.62	565.69	1	
11.56	21.44	45.93	503.01	107.72	524.51	196.01	546.05	307.03	566.07		
11.78	21.99	46.86	503.39	109.10	524.90	197.87	546.43	310.04	566.54		
12.07	22.62	48.35	504.01	110.61	525.33	199.87	546.85	312.39	566.91		
12.35	23.24	49.17	504.37	112.00	525.73	201.79	547.24	314.97	567.31		
12.62	23.86	50.11	504.75	113.60	526.20	203.75	547.64	317.49	567.71		
12.94	24.60	51.05	505.15	115.21	526.64	205.70	548.03	320.05	568.08		

Système	H ₂ S-C ₃ H ₈	$-z_{H2S} = 0.2691$	/T = 363.24 H
---------	--	---------------------	---------------

Ρ	BHO	P	BHO	Р	BHO	Р	BHO	Р	BHO
bar	ka/m3	bar	ka/m3	bar	ka/m3	bar	ka/m3	bar	ka/m3
0.09	0.10	43 881	104.61	51 661	272 16	72 758	389.97	235,300	490.53
1.93	2 70	44,330	106.52	51 740	274 79	73 917	392.01	241 488	492 42
3 13	1 12	44.683	108.50	51 822	277 / 9	75 119	39/ 05	2/18 70/	191 60
1.64	6.63	45 222	110.00	51 9/6	280.86	76 39/	396.08	25/ 3/0	196 22
5.06	0.00	45 704	110.21	52.016	200.00	70.00+	200.00	204.040	400.22
7.90	10.59	45.724	112.27	52.010	203.20	70 122	400.19	200.900	490.10
0.40	10.04	46.020	117.01	52.035	200.00	90 540	400.10	207.730	433.30 501.92
0.42	14.20	40.020	120.76	52.203	200.07	00.049	402.14	274.023	502.70
3.00	16.64	40.100	100.01	52.000	201.40	02.102	404.20	202.200	505.75
10.07	10.04	40.000	105.00	52.391	293.93	05.039	400.15	209.020	505.67
12.37	10.74	40.030	123.23	52.551	290.09	00.112	407.90	290.300	507.67
14.70	20.70	40.923	127.43	52.007	299.60	00.743	409.90	305.143	509.52
14.78	22.85	47.199	129.83	52.854	302.29	88.370	411.79	313.521	511.53
10.02	24.99	47.473	132.23	53.016	304.57	90.024	413.00	320.923	513.24
17.10	26.83	47.724	134.62	53.235	307.16	91.805	415.58	328.891	515.04
18.10	28.72	47.962	137.25	53.359	309.12	93.687	417.53	337.166	516.87
19.16	30.76	48.1//	139.79	53.473	311.16	95.573	419.43	347.104	519.02
20.14	32.70	48.380	142.50	53.598	313.36	97.545	421.33	355.067	520.70
21.08	34.63	48.543	145.55	53.776	315.43	99.637	423.28		
22.04	36.59	48.670	149.29	53.914	317.46	101.834	425.24		
23.03	38.57	48.765	152.90	54.104	319.67	104.040	427.17		
24.01	40.57	48.859	157.06	54.289	321.68	106.283	429.05		
24.87	42.41	48.959	161.92	54.491	323.71	108.775	431.08		
25.76	44.41	49.053	166.82	54.741	325.98	111.320	433.04		
26.61	46.36	49.149	171.64	54.983	328.09	113.815	434.93		
27.42	48.29	49.235	176.05	55.221	330.24	116.475	436.86		
28.23	50.25	49.315	180.12	55.492	332.27	119.210	438.78		
29.047	52.28	49.390	183.91	55.786	334.58	122.059	440.70		
29.798	54.19	49.464	187.47	55.988	337.12	125.147	442.72		
30.575	56.17	49.537	190.89	56.323	339.35	128.149	444.64		
31.270	57.99	49.614	194.21	56.717	341.75	131.232	446.53		
32.113	60.27	49.690	197.55	57.146	344.12	134.440	448.46		
32.876	62.36	49.763	200.75	57.624	346.49	137.617	450.30		
33.579	64.38	49.815	203.67	58.167	348.99	141.088	452.26		
34.256	66.41	49.889	207.39	58.610	351.09	144.516	454.13		
34.925	68.43	49.972	211.53	59.137	353.34	148.182	456.08		
35.544	70.38	50.018	215.95	59.601	355.26	151.979	458.03		
36.134	72.27	50.075	219.80	60.141	357.43	156.164	460.10		
36.819	74.46	50.140	224.54	60.558	359.23	159.744	461.82		
37.518	76.28	50.208	229.74	60.907	360.85	163.745	463.70		
38.151	78.04	50.264	233.91	61.649	363.32	168.068	465.67		
38.777	80.71	50.339	237.51	62.283	365.41	172.223	467.52		
39.130	82.19	50.433	241.13	62.989	367.55	176.845	469.49		
39.638	84.49	50.522	243.31	63.663	369.54	181.626	471.48		
40.246	86.41	50.643	246.08	64.413	371.63	186.063	473.27		
40.556	88.36	50.763	248.64	65.148	373.59	190.707	475.10		
41.097	90.33	50.870	251.05	66.009	375.80	195.962	477.12		
41.555	92.41	51.009	254.01	66.785	377.69	201.147	479.04		
41.901	94.19	51.140	257.19	67.701	379.81	207.166	481.21		
42.366	96.32	51.244	259.88	68.627	381.82	211.628	482.76		
42.805	98.30	51,366	263.18	69.612	383.90	217.390	484.73		
43.225	100.46	51.461	266.16	70.624	385.94	223.344	486.72		
43.541	102.50	51.550	268.95	71.618	387.87	229.360	488.67	1	

D D		<u>012</u>					DUO
P	RHO	P	RHO	P	RHO	P	RHO
мра	kg/m3	мра	Kg/m3	мра	kg/m3	мра	Kg/m3
0.001	0	1.809	33.3	5.056	442.7	9.484	456.1
0.037	0.5	1.834	34	5.115	442.9	9.599	456.4
0.07	1	1.857	34.6	5.19	443.2	9.676	456.6
0.104	1.5	1.873	35.1	5.254	443.4	9.791	456.9
0.137	2	1.918	430.2	5.321	443.6	9.884	457.2
0.175	2.6	1.957	430.4	5.408	443.9	9.984	457.4
0.213	3.1	2.024	430.7	5.474	444.2	10.077	457.7
0.253	3.7	2.091	431	5.539	444.4	10.161	457.9
0.295	4.3	2.126	431.1	5.641	444.7	10.276	458.2
0.336	4.9	2.182	431.4	5.71	444.9	10.358	458.4
0.378	5.5	2.23	431.6	5.769	445.2	10.481	458.7
0.419	6.2	2.3	431.9	5.85	445.4	10.584	459.0
0.46	6.8	2.359	432.2	5.935	445.7	10.658	459.2
0.499	7.4	2.417	432.4	6.016	445.9	10.779	459.4
0.539	8	2.454	432.6	6.095	446.2	10.859	459.6
0.575	8.6	2.525	432.9	6.174	446.5	10.963	459.9
0.611	9.2	2.575	433.1	6.239	446.7	11.05	460.1
0.646	9.8	2.637	433.4	6.316	446.9	11.144	460.4
0.682	10.3	2.703	433.7	6.393	447.2	11.29	460.7
0.721	11	2,761	433.9	6.478	447.4	11.39	460.9
0.76	11.6	2.81	434.1	6.551	447.7	11.462	461.1
0.798	12.3	2.88	434.5	6.622	447.9	11.586	461.4
0.836	13	2 943	434 7	6 704	448.1	11 702	461 7
0.871	13.5	2 978	434.9	6.78	448.4	11 773	461.9
0.906	14.2	3 045	435.1	6 889	448.7	11.906	462.2
0.000	14.8	3 113	435.4	6 947	448.9	12 032	462.5
0.979	15.4	3 181	435.7	7.05	449.2	12 108	462.6
1 013	16.1	3 245	436	7 116	449.4	12.100	462.9
1.048	16.7	3.29	436.1	7 191	449.7	12 344	463.2
1.040	17.4	3 361	436.5	7.131	440.0	12.044	463.4
1 1 1 9	18	3 /17	436.7	7 364	450.2	12.410	463.7
1 155	18.8	3.476	136.9	7.004	450.2	12.682	464.0
1.100	10.0	2.56	430.3	7.40	450.4	12.002	404.0
1.103	20	2,612	407.2	7.557	450.7	12.733	404.2
1.219	20	2.667	437.4	7.010	450.9	12.070	404.4
1.249	20.0	3.007	437.0	7.705	401.2	12.994	404.7
1.279	21.1	3.730	437.9	7.797	431.4	10.025	404.9
1.308	21.7	3.806	438.2	7.882	451.7	10.235	405.2
1.337	22.4	3.869	438.4	7.956	451.9	13.328	465.4
1.366	23	3.94	438.7	8.06	452.2	13.469	465.7
1.398	23.6	3.99	438.9	8.129	452.4	13.573	465.9
1.43	24.3	4.06	439.2	8.21/	452.7	13.665	466.2
1.458	24.9	4.135	439.4	8.326	452.9	13.777	466.4
1.487	25.5	4.196	439.7	8.404	453.2	13.898	466.7
1.515	26.2	4.255	439.9	8.487	453.4	14.011	467.0
1.542	26.8	4.331	440.2	8.581	453.7	14.123	467.2
1.57	27.4	4.399	440.4	8.665	453.9	14.234	467.4
1.597	28	4.469	440.7	8.753	454.2	14.366	467.7
1.624	28.7	4.528	440.9	8.868	454.5	14.461	467.9
1.651	29.3	4.603	441.2	8.961	454.7	14.558	468.2
1.68	30	4.676	441.4	9.026	454.9	14.672	468.4
1.708	30.7	4.73	441.6	9.136	455.2	14.818	468.7
1.734	31.4	4.816	441.9	9.238	455.5		
1.762	32.1	4.889	442.1	9.32	455.7		
1.787	32.7	4.97	442.4	9.389	455.9		

Système H₂S-C₂H₆ – z_{H2S} = 0.038 / T = 263.43 K

Système $H_2S-C_2H_6 - z_{H2S} =$: 0.038 / T =	293.24	K
-----------------------------------	---------------	--------	---

P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.001	0.0	1.912	28.7	3.564	73.6	4.673	361.5	6.831	383.2	10.407	404.7
0.042	0.5	1.951	29.4	3.583	74.5	4.715	361.9	6.860	383.4	10.488	405.0
0.074	0.9	1.991	30.1	3.601	75.3	4.748	362.2	6.922	383.9	10.561	405.4
0.108	1.4	2.029	30.9	3.618	76.1	4.797	362.8	6.972	384.2	10.647	405.8
0.143	1.8	2.066	31.6	3.645	77.5	4.813	363.1	7.025	384.7	10.729	406.2
0.177	2.2	2.104	32.3	3.661	78.3	4.847	363.6	7.089	385.1	10.850	406.8
0.208	2.6	2.140	33.1	3.678	79.2	4.881	364.0	7.150	385.6	10.931	407.2
0.241	3.1	2.178	33.8	3.694	80.1	4.895	364.2	7.184	385.8	11.010	407.5
0.277	3.6	2.210	34.5	3.709	80.9	4.945	364.9	7.249	386.3	11.087	407.9
0.313	4.0	2.242	35.1	3.724	81.8	4.963	365.1	7.308	386.7	11.176	408.3
0.348	4.5	2.277	35.9	3.738	82.6	5.001	365.5	7.366	387.1	11.263	408.7
0.386	5.0	2.312	36.6	3.751	83.5	5.033	365.9	7.429	387.6	11.345	409.0
0.426	5.5	2.347	37.3	3.765	84.3	5.067	366.4	7.464	387.8	11.464	409.6
0.466	6.1	2.382	38.1	3.777	85.1	5.104	366.8	7.532	388.3	11.559	410.0
0.505	6.6	2.416	38.8	3.789	85.9	5.138	367.2	7.594	388.7	11.645	410.3
0.543	7.1	2.445	39.5	3.798	86.6	5.155	367.4	7.671	389.2	11.747	410.8
0.582	7.6	2.474	40.1	3.819	346.3	5.208	368.0	7.717	389.5	11.804	411.0
0.618	8.1	2.507	40.9	3.835	346.7	5.225	368.2	7.791	390.0	11.896	411.4
0.653	8.6	2.539	41.6	3.851	347.2	5.261	368.6	7.822	390.2	12.026	412.0
0.685	9.0	2.570	42.3	3.869	347.6	5.299	369.1	7.898	390.8	12.122	412.4
0.723	9.6	2.597	42.9	3.881	347.8	5.338	369.5	7.974	391.2	12.223	412.8
0.760	10.1	2.623	43.6	3.898	348.2	5.382	370.0	8.009	391.5	12.322	413.2
0.798	10.7	2.653	44.3	3.922	348.7	5.417	370.4	8.082	391.9	12.420	413.5
0.833	11.1	2.683	45.0	3.941	349.1	5.459	370.8	8.126	392.2	12.516	414.0
0.866	11.6	2.712	45.7	3.964	349.6	5.481	371.0	8.199	392.7	12.620	414.4
0.901	12.1	2.742	46.5	3.978	349.9	5.521	371.5	8.269	393.1	12.723	414.7
0.940	12.7	2.770	47.2	3.998	350.3	5.564	371.9	8.344	393.6	12.828	415.2
0.978	13.3	2.810	48.3	4.021	350.7	5.605	372.3	8.424	394.1	12.932	415.6
1.009	13.7	2.851	49.4	4.044	351.1	5.654	372.8	8.464	394.3	12.993	415.8
1.045	14.3	2.884	50.3	4.062	351.4	5.681	373.0	8.535	394.7	13.096	416.2
1.083	14.8	2.915	51.1	4.080	351.8	5.727	373.5	8.611	395.1	13.218	416.7
1.117	15.4	2.948	52.1	4.107	352.3	5.766	373.9	8.684	395.6	13.330	417.1
1.152	15.9	2.984	53.0	4.126	352.7	5.808	374.3	8.742	395.9	13.459	417.6
1.187	16.4	3.019	54.1	4.146	353.0	5.848	374.7	8.821	396.4	13.529	417.9
1.219	16.9	3.052	55.0	4.174	353.6	5.888	375.1	8.864	396.6	13.657	418.3
1.253	17.5	3.085	56.0	4.193	353.9	5.930	375.5	8.939	397.1	13.754	418.7
1.288	18.0	3.117	57.0	4.214	354.3	5.972	375.9	9.023	397.5	13.874	419.1
1.324	18.6	3.148	57.9	4.238	354.7	6.017	376.3	9.114	398.0	13.975	419.5
1.359	19.1	3.177	58.9	4.261	355.2	6.058	376.7	9.160	398.3	14.102	420.0
1.395	19.7	3.206	59.8	4.283	355.5	6.102	377.0	9.239	398.7	14.214	420.4
1.430	20.3	3.234	60.8	4.308	356.0	6.150	377.5	9.311	399.1	14.297	420.6
1.462	20.8	3.262	61.7	4.333	356.4	6.207	378.0	9.415	399.7	14.421	421.1
1.493	21.3	3.291	62.7	4.350	356.6	6.256	378.4	9.460	399.9	14.532	421.5
1.528	21.9	3.318	63.6	4.373	357.0	6.279	378.6	9.547	400.4	14.678	422.0
1.566	22.6	3.343	64.6	4.397	357.4	6.330	379.1	9.594	400.6	14.749	422.2
1.601	23.1	3.368	65.5	4.426	357.9	6.377	379.5	9.685	401.1	14.892	422.7
1.632	23.7	3.392	66.4	4.455	358.3	6.432	379.9	9.782	401.6	15.006	423.1
1.663	24.2	3.415	67.3	4.473	358.6	6.486	380.4	9.866	402.0	15.109	423.5
1.694	24.7	3.438	68.2	4.507	359.1	6.516	380.7	9.913	402.2	15.242	423.9
1.720	25.2	3.461	69.1	4.535	359.6	6.570	381.1	10.000	402.6		
1.754	25.8	3.484	70.1	4.565	360.0	6.619	381.5	10.104	403.2		
1.794	26.5	3.505	71.0	4.581	360.2	6.676	381.9	10.150	403.4		
1.833	27.2	3.525	71.9	4.612	360.6	6.726	382.3	10.242	403.9		
1.873	28.0	3.545	72.7	4.653	361.2	6.775	382.7	10.318	404.2		

Système	$H_2S-C_2H_6 -$	$z_{H2S} = 0.038$	/ T =	333.23	K
---------	-----------------	-------------------	-------	--------	---

P	RHO	P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.039	0.5	3.783	53.6	5.921	107.7	7.121	161.7	8.149	218.7	10.386	291.2
0.077	0.9	3.837	54.7	5.952	108.9	7.150	163.3	8.174	219.9	10.447	292.4
0.153	1.7	3.893	55.7	5.987	110.1	7.165	164.1	8.199	221.2	10.508	293.6
0.226	2.5	3.954	56.9	6.007	110.8	7.180	164.9	8.226	222.4	10.568	294.7
0.334	3.8	4.004	57.9	6.026	111.5	7.195	165.7	8.251	223.7	10.629	295.9
0.415	4.7	4.062	59.1	6.066	113.0	7.210	166.6	8.278	225.0	10.691	297.1
0.485	5.5	4.091	59.7	6.085	113.7	7.226	167.5	8.305	226.3	10.753	298.1
0.610	6.9	4.136	60.6	6.119	115.0	7.259	169.3	8.333	227.6	10.815	299.3
0.693	7.9	4.193	61.8	6.137	115.7	7.275	170.3	8.362	229.0	10.880	300.3
0.771	8.9	4.257	63.1	6.169	116.9	7.292	171.2	8.391	230.3	10.942	301.4
0.849	9.8	4.296	63.9	6.200	118.1	7.310	172.2	8.421	231.6	11.006	302.5
0.922	10.7	4.355	65.3	6.217	118.8	7.327	173.2	8.450	232.9	11.069	303.6
0.991	11.5	4.404	66.3	6.235	119.5	7.345	174.2	8.480	234.3	11.133	304.6
1.101	12.9	4.418	66.6	6.269	120.9	7.362	175.2	8.512	235.7	11.198	305.6
1.173	13.8	4.483	68.0	6.298	122.1	7.380	176.2	8.543	237.1	11.261	306.6
1.247	14.7	4.521	68.9	6.314	122.7	7.397	177.2	8.576	238.4	11.325	307.6
1.316	15.5	4.557	69.8	6.348	124.1	7.412	178.1	8.609	239.8	11.386	308.6
1.392	16.6	4.607	70.9	6.363	124.7	7.427	179.0	8.643	241.2	11.449	309.5
1.497	17.9	4.636	71.6	6.392	126.0	7.446	180.0	8.676	242.6	11.574	311.3
1.577	18.9	4.690	72.8	6.409	126.7	7.466	181.1	8.711	243.9	11.636	312.2
1.622	19.6	4.737	73.9	6.441	128.1	7.482	182.1	8.747	245.4	11.696	313.1
1.702	20.6	4.775	74.9	6.456	128.7	7.499	183.1	8.783	246.8	11.756	313.9
1.782	21.7	4.813	75.8	6.489	130.2	7.516	184.0	8.820	248.1	11.832	314.9
1.866	22.8	4.858	76.9	6.506	130.9	7.533	185.0	8.856	249.6	11.908	315.9
1.940	23.9	4.901	78.0	6.522	131.6	7.550	186.0	8.894	251.0	11.981	316.9
2.023	25.0	4.929	78.7	6.552	133.0	7.564	186.8	8.933	252.3	12.065	318.0
2.091	25.9	4.973	79.8	6.568	133.7	7.578	187.7	8.972	253.7	12.148	319.1
2.156	26.9	5.043	81.2	6.594	135.0	7.594	188.5	9.012	255.1	12.228	320.1
2.225	27.9	5.074	82.0	6.610	135.6	7.624	190.3	9.053	256.5	12.307	321.0
2.298	28.9	5.100	82.7	6.641	137.1	7.640	191.1	9.095	258.0	12.383	322.0
2.366	29.9	5.146	83.9	6.653	137.6	7.656	192.1	9.138	259.3	12.459	322.9
2.403	30.5	5.187	85.0	6.677	138.8	7.672	193.0	9.182	260.8	12.530	323.8
2.486	31.8	5.206	85.5	6.708	140.3	7.690	193.9	9.226	262.2	12.635	325.0
2.567	33.0	5.243	86.6	6.722	140.9	7.708	195.0	9.271	263.5	12.718	325.9
2.631	34.0	5.285	87.8	6.734	141.5	7.725	195.9	9.315	264.9	12.789	326.7
2.719	35.4	5.319	88.7	6.762	142.9	7.743	197.0	9.360	266.3	12.912	328.1
2.775	36.2	5.353	89.7	6.775	143.6	7.762	198.0	9.407	267.6	12.965	328.6
2.809	36.7	5.396	90.9	6.800	144.8	7.780	199.0	9.454	269.0	13.084	330.0
2.871	37.7	5.418	91.6	6.824	146.0	7.799	200.0	9.503	270.4	13.141	330.6
2.937	38.7	5.464	93.0	6.837	146.6	7.818	201.1	9.552	271.6	13.221	331.7
3.001	39.8	5.483	93.5	6.865	148.1	7.838	202.2	9.602	273.0	13.314	332.7
3.068	40.9	5.521	94.7	6.882	149.0	7.857	203.3	9.652	274.4	13.402	333.5
3.133	42.0	5.564	96.0	6.897	149.7	7.878	204.4	9.704	275.7	13.545	334.9
3.177	42.8	5.600	97.1	6.923	151.0	7.898	205.5	9.757	277.0	13.637	335.8
3.249	44.0	5.627	98.0	6.936	151.7	7.919	206.6	9.809	278.4	13.725	336.7
3.283	44.6	5.653	98.8	6.969	153.5	7.940	207.8	9.864	279.7	13.850	337.8
3.340	45.5	5.676	99.5	6.982	154.2	7.962	209.0	9.920	281.1	13.955	338.7
3.421	47.0	5.713	100.7	6.996	154.9	/.984	210.1	9.975	282.4	14.078	339.8
3.454	47.6	5./42	101.7	/.009	155.6	8.006	211.3	10.032	283.7		
3.521	48.8	5./84	103.1	/.036	157.1	8.028	212.5	10.090	285.0		
3.566	49.6	5.804	103.7	7.050	157.8	8.052	213.7	10.147	286.2		
3.629	50.8	5.844	105.1	/.064	158.6	8.076	214.9	10.206	287.5		
3.694	51.9	5.863	105.7	7.093	160.1	8.101	216.2	10.265	288.7		
3.726	52.5	5.899	107.0	7.107	160.9	8.125	217.4	10.325	289.9		

Système H ₂ S-C ₂ H	$_{6} - z_{H2S} = 0.0563$	/ T = 273.14 K
---	---------------------------	----------------

P	RHO	P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.001	0.0	1.557	25.3	2.970	414.4	5.590	427.7	9.189	441.2	13.798	454.6
0.026	0.3	1.586	25.9	3.015	414.6	5.661	428.0	9.238	441.4	13.906	454.9
0.047	0.6	1.614	26.5	3.035	414.7	5.693	428.1	9.334	441.7	13.997	455.2
0.069	1.0	1.637	26.9	3.084	415.0	5.751	428.4	9.384	441.9	14,106	455.4
0.088	1.2	1.661	27.4	3.107	415.1	5.823	428.7	9.490	442.2	14.212	455.7
0.114	1.6	1.684	27.9	3.155	415.4	5.890	429.0	9.541	442.4	14.310	456.0
0.137	1.9	1.708	28.4	3.195	415.6	5.964	429.3	9.638	442.7	14.415	456.2
0.158	2.2	1.731	28.9	3.243	415.9	5.992	429.4	9.701	442.9	14.473	456.4
0.183	2.5	1.754	29.4	3.292	416.2	6.075	429.8	9.806	443.2	14.598	456.7
0.207	2.9	1.777	29.9	3.345	416.5	6.108	429.9	9.902	443.5	14,707	456.9
0.231	3.2	1.799	30.4	3.370	416.7	6.176	430.2	9.938	443.7	14.806	457.2
0.252	3.5	1.822	30.9	3.422	417.0	6.241	430.5	10.025	443.9		
0.283	4.0	1.844	31.4	3.452	417.1	6.325	430.8	10.120	444.2		
0.324	4.6	1.866	31.9	3 498	417.4	6.350	430.9	10.200	444.5		
0.362	5.1	1 888	32.4	3 539	417.6	6 423	431.2	10.292	444.8		
0.394	5.6	1 910	33.0	3 590	417.9	6 4 9 4	431.5	10.336	444.9		
0.004	6.0	1.010	33.5	3 634	418.2	6 565	431.8	10.000	445.1		
0.457	6.5	1.002	34.0	3 690	/18.5	6 609	/31.0	10.511	445.1		
0.437	7.0	1.000	34.5	3 724	418.7	6.655	/32.1	10.598	445.7		
0.400	7.0	1 998	35.1	3 79/	/10.7	6 73/	132.1	10.000	446.0		
0.520	7.0	2 022	35.7	3,823	/10.0	6.804	432.7	10.000	446.3		
0.531	8.4	2.022	36.2	3.88/	419.2	6.889	432.7	10.701	440.3		
0.501	0.4	2.043	36.7	3 0 2 1	419.5	6.003	433.0	10.025	440.4		
0.641	0.0	2.000	37.2	3 979	413.7	7.027	433.6	11.020	440.7		
0.041	0.0	2.000	27.7	4 012	420.0	7.027	400.0	11 125	447.0		
0.071	9.0	2.103	20.2	4.013	420.2	7.073	433.7	11.120	447.3		
0.701	10.5	2.122	38.8	4.031	420.0	7.113	434.2	11.173	447.4		
0.751	11.7	2.141	20.2	4.130	420.0	7.201	404.2	11.277	447.7		
0.701	11.2	2.100	30.8	4.175	421.0	7 3 3 0	434.4	11.307	440.0		
0.735	12.2	2.100	40.3	4.221	421.2	7.330	434.7	11.470	440.0		
0.029	12.3	2.190	40.3	4.270	421.0	7.570	434.9	11.021	440.4		
0.000	12.7	2.217	40.9	4.321	421.7	7.400	433.2	11.020	440.7		
0.007	10.2	2.235	41.4	4.304	421.9	7.539	435.5	11 000	440.9		
0.921	14.0	2.200	41.9	4.444	422.3	7.570	435.7	11.000	449.2		
0.959	14.3	2.271	42.4	4.504	422.0	7.073	430.0	11.009	449.4		
1.020	14.9	2.209	42.9	4.320	422.7	7./19	430.2	10.056	449.0		
1.020	10.4	2.305	43.4	4.007	423.0	7.012	430.3	10.150	449.9		
1.063	10.1	2.325	44.1	4.018	423.2	7.854	430.7	12.153	450.2		
1.102	10.8	2.345	44.7	4.000	423.4	7.936	437.0	10.000	450.6		
1.134	17.4	2.365	45.3	4.744	423.8	8.008	437.2	12.328	450.7		
1.162	17.9	2.384	45.9	4.779	423.9	8.051	437.4	12.429	451.0		
1.189	18.3	2.402	46.5	4.831	424.2	8.154	437.7	12.484	451.1		
1.215	18.8	2.445	411.0	4.900	424.5	8.227	438.0	12.583	451.4		
1.243	19.3	2.470	411.2	4.932	424.7	8.274	438.2	12.675	451.7		
1.275	19.9	2.518	411.5	4.992	424.9	8.367	438.5	12.776	451.9		
1.302	20.4	2.548	411.7	5.052	425.2	8.418	438.6	12.871	452.2		
1.329	20.8	2.589	412.0	5.082	425.4	8.504	438.9	12.972	452.4		
1.355	21.4	2.651	412.3	5.139	425.6	8.575	439.2	13.061	452.7		
1.381	21.8	2.664	412.4	5.204	425.9	8.674	439.5	13.190	453.0		
1.407	22.3	2.708	412.7	5.264	426.2	8.720	439.7	13.261	453.2		
1.432	22.8	2.733	412.9	5.330	426.5	8.778	439.9	13.360	453.5		
1.457	23.3	2.791	413.2	5.360	426.7	8.874	440.2	13.410	453.6		
1.483	23.8	2.837	413.5	5.425	426.9	8.985	440.6	13.521	453.9		
1.508	24.3	2.858	413.7	5.491	427.2	9.040	440.8	13.619	454.2		
1.532	24.8	2.920	414.0	5.528	427.4	9.083	440.9	13.738	454.5		
Système H ₂ S-C ₂ H	$z_{\rm H2S} = 0.0563$	/ T = 313.14 K									
---	------------------------	----------------									
---	------------------------	----------------									

Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.002	0.0	3.422	54.2	5.058	111.7	5.631	171.3	6.446	282.0	11.318	367.9
0.047	0.6	3.452	54.9	5.086	112.9	5.637	172.4	6.495	284.7	11.439	368.9
0.127	1.5	3.481	55.6	5.102	113.9	5.642	173.5	6.547	287.4	11.554	369.7
0.220	2.7	3.540	56.9	5.121	115.1	5.648	174.6	6.602	290.1	11.666	370.6
0.305	3.7	3.565	57.5	5.137	116.2	5.654	175.8	6.658	292.7	11.871	372.1
0.391	4.7	3.617	58.8	5.153	117.3	5.658	176.9	6.717	295.2	11.990	373.0
0.468	5.7	3.648	59.6	5.168	118.3	5.664	178.1	6.785	298.0	12.109	373.8
0.554	6.8	3.710	61.2	5.183	119.4	5.669	179.2	6.855	300.6	12.216	374.6
0.632	7.7	3.744	62.0	5.198	120.4	5.674	180.3	6.916	302.7	12.407	375.9
0.735	9.1	3.775	62.8	5.212	121.5	5.679	181.4	6.962	304.3	12.503	376.6
0.782	9.7	3.802	63.5	5.226	122.5	5.684	182.5	7.010	305.9	12.694	377.9
0.863	10.7	3.855	65.0	5.240	123.6	5.689	183.7	7.059	307.4	12.847	379.0
0.936	11.7	3.881	65.7	5.253	124.6	5.694	184.8	7.111	309.0	12.957	379.9
1.037	13.1	3.931	67.1	5.267	125.7	5.698	185.9	7.163	310.5	13.155	381.0
1.085	13.7	3.954	67.7	5.280	126.8	5.703	187.1	7.217	312.0	13.282	381.7
1.168	14.9	4.004	69.1	5.294	127.9	5.707	188.3	7.271	313.4	13.458	382.8
1.246	15.9	4.030	69.8	5.306	129.1	5.712	189.4	7.326	314.8	13.642	383.8
1.323	17.0	4.055	70.7	5.320	130.2	5.717	190.6	7.382	316.3		
1.364	17.6	4.105	72.1	5.332	131.3	5.722	191.8	7.439	317.7		
1.463	19.1	4.130	72.9	5.344	132.4	5.726	193.0	7,497	319.1		
1.538	20.2	4 155	73.7	5.356	133.5	5 731	194.2	7 595	321.3		
1.584	20.8	4 204	75.2	5.367	134.6	5 736	195.5	7.684	323.2		
1.664	20.0	4 228	76.0	5 378	135.7	5.730	106.7	7.00+	325.1		
1.004	22.0	4.220	76.7	5 290	126.9	5.740	107.0	7.070	227.0		
1.700	22.0	4.201	70.7	5.309	107.0	5.745	100.5	7.072	327.0		
1.773	23.0	4.297	70.2	5.400	137.9	5.752	199.5	7.909	320.0		
1.041	24.0	4.320	79.0	5.410	1.39.0	5.760	201.1	0.007	330.0		
1.907	25.6	4.345	79.9	5.419	140.0	5./6/	202.7	8.165	332.3		
1.980	26.8	4.368	80.7	5.429	141.1	5.774	204.4	8.265	334.0		
2.051	27.9	4.391	81.5	5.439	142.2	5.782	206.1	8.366	335.6		
2.087	28.5	4.437	83.1	5.448	143.2	5.796	208.5	8.467	337.2		
2.152	29.6	4.462	84.1	5.459	144.6	5.811	211.3	8.569	338.7		
2.224	30.8	4.484	84.9	5.470	145.8	5.826	214.1	8.672	340.2		
2.268	31.6	4.505	85.7	5.478	146.9	5.841	217.0	8.780	341.7		
2.346	33.0	4.538	87.0	5.486	148.0	5.857	219.9	8.896	343.3		
2.382	33.5	4.570	88.3	5.494	149.0	5.873	222.8	8.992	344.5		
2.462	34.9	4.600	89.5	5.502	150.0	5.891	225.7	9.087	345.8		
2.502	35.7	4.636	90.9	5.509	151.1	5.908	228.8	9.182	347.0		
2.571	36.9	4.661	91.9	5.518	152.3	5.926	231.8	9.278	348.1		
2.607	37.6	4.680	92.8	5.527	153.6	5.945	234.9	9.375	349.3		
2.677	38.9	4.704	93.8	5.537	155.0	5.967	238.2	9.493	350.6		
2.745	40.1	4.732	95.1	5.545	156.3	5.987	241.1	9.611	352.0		
2.778	40.7	4.760	96.3	5.552	157.3	6.009	244.1	9.706	353.0		
2.846	42.0	4.786	97.5	5.558	158.3	6.032	247.1	9.800	354.0		
2.884	42.8	4.811	98.7	5.564	159.4	6.056	250.0	9.901	355.1		
2.921	43.5	4.836	99.9	5.572	160.5	6.082	253.1	10.001	356.1		
2.988	44.8	4.873	101.8	5.578	161.5	6.109	256.0	10.128	357.4		
3.024	45.6	4.903	103.3	5.584	162.5	6.138	258.9	10.254	358.6		
3.094	47.0	4.925	104.4	5.591	163.7	6.169	261.9	10.379	359.8		
3.128	47.7	4.946	105.5	5.596	164.7	6.201	264.8	10.527	361.2		
3.195	49.1	4.965	106.6	5.603	165.8	6.235	267.7	10.682	362.5		
3.233	49.9	4.984	107.6	5.608	166.9	6.272	270.5	10.825	363.8		
3.267	50.7	5.001	108.6	5.615	168.0	6.312	273.5	10.961	365.0		
3.334	52.2	5.018	109.6	5.620	169.1	6.354	276.4	11.077	365.9		
3.363	52.8	5.034	110.6	5.626	170.2	6.399	279.2	11.193	366.9		

P	RHO	P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.021	0.3	4.363	57.1	6.981	112.3	8.854	170.0	10.615	226.0	13.268	282.0
0.104	1.1	4.418	58.0	7.021	113.4	8.890	171.1	10.652	227.0	13.356	283.2
0.241	2.4	4.472	58.9	7.059	114.4	8.920	172.2	10.692	228.0	13.444	284.4
0.348	3.6	4.543	60.3	7.098	115.4	8.953	173.2	10.727	229.0	13.497	285.3
0.477	5.1	4.587	60.9	7.134	116.4	8.985	174.3	10.760	230.0	13.588	286.4
0.559	6.1	4.639	61.9	7.171	117.4	9.014	175.3	10.800	230.9	13.675	287.6
0.647	7.0	4.695	62.9	7.207	118.4	9.043	176.2	10.833	231.9	13.736	288.8
0.733	7.9	4.750	63.8	7.246	119.5	9.075	177.3	10.872	232.9	13.834	290.1
0.815	8.8	4.804	64.8	7.287	120.6	9.100	178.2	10.916	234.0	13.936	291.4
0.907	9.8	4.861	65.9	7.322	121.6	9.131	179.3	10.950	234.9	14.050	292.6
0.979	10.6	4.912	66.8	7.359	122.7	9.163	180.4	10.982	235.8	14.122	293.6
1.066	11.7	4.963	67.7	7.395	123.7	9.196	181.4	11.024	236.8	14.231	294.7
1.155	12.7	5.016	68.7	7.433	124.9	9.226	182.5	11.062	237.8	14.329	296.0
1.248	13.8	5.087	69.7	7.471	125.9	9.259	183.6	11.101	238.8	14.394	296.9
1.394	15.5	5.139	70.6	7.506	126.9	9.289	184.6	11.139	239.7	14.482	298.1
1.556	17.5	5.191	71.6	7.541	127.9	9.322	185.7	11.182	240.8	14.564	298.9
1.634	18.4	5.239	72.6	7.576	129.0	9.356	186.7	11.221	241.7	14.643	299.9
1.710	19.3	5.291	73.6	7.611	130.0	9.396	187.8	11.260	242.7	14.732	301.0
1.788	20.3	5.347	74.7	7.647	131.0	9.426	188.9	11.291	243.6	14.816	302.0
1.865	21.2	5.398	75.7	7.682	132.1	9.460	190.0	11.339	244.6	14.894	302.9
1.945	22.2	5.450	76.8	7.716	133.1	9.494	191.1	11.385	245.6	14.978	303.9
2.026	23.2	5.504	77.9	7.752	134.2	9.519	192.2	11.434	246.5	15.065	304.9
2.105	24.2	5.554	78.9	7.789	135.3	9.551	193.3	11.456	247.6	15.156	305.9
2.181	25.1	5.604	79.9	7.823	136.4	9.584	194.3	11.504	248.6	15.254	306.9
2.254	26.1	5.654	80.9	7.855	137.4	9.620	195.5	11.546	249.6	15.345	308.0
2.328	27.0	5.702	81.9	7.886	138.3	9.649	196.5	11.597	250.6	15.437	309.0
2.401	28.0	5.745	82.9	7.917	139.3	9.679	197.5	11.642	251.6	15.533	309.9
2.473	28.9	5.793	83.9	7.952	140.4	9.711	198.5	11.695	252.7	15.621	310.9
2.549	29.9	5.839	84.9	7.987	141.5	9.743	199.6	11.743	253.7	15.723	311.9
2.622	30.9	5.886	85.9	8.023	142.6	9.775	200.6	11.795	254.8	15.822	312.9
2.695	31.9	5.931	86.9	8.058	143.7	9.804	201.6	11.846	255.9	15.920	313.8
2.768	32.9	5.975	87.9	8.092	144.8	9.838	202.6	11.896	256.9	16.020	314.8
2.839	33.9	6.017	88.8	8.127	145.9	9.871	203.7	11.945	257.9	16.133	316.0
2.911	34.9	6.059	89.7	8.160	146.9	9.905	204.8	11.993	258.9	16.233	316.9
2.981	35.8	6.101	90.6	8.192	148.0	9.942	205.8	12.040	259.9	16.338	317.9
3.050	36.8	6.143	91.6	8.225	149.0	9.969	206.7	12.087	261.0	16.440	318.8
3.117	37.7	6.189	92.6	8.255	150.0	10.001	207.8	12.143	261.9	16.557	319.9
3.183	38.7	6.269	94.5	8.286	151.0	10.033	208.8	12.192	262.9	16.659	320.8
3.252	39.7	6.351	96.4	8.325	152.2	10.074	209.9	12.249	263.9	16.763	321.9
3.318	40.7	6.391	97.3	8.354	153.3	10.104	210.9	12.299	264.9	16.887	323.0
3.382	41.6	6.432	98.3	8.385	154.2	10.140	212.0	12.357	265.8	16.977	323.7
3.449	42.6	6.450	98.7	8.414	155.2	10.168	213.0	12.407	266.8	17.112	324.8
3.516	43.6	6.503	100.1	8.445	156.2	10.201	214.0	12.453	267.7	17.219	325.7
3.579	44.5	6.545	101.1	8.479	157.4	10.234	215.0	12.516	268.8	17.335	326.6
3.705	46.5	6.587	102.2	8.512	158.5	10.267	216.0	12.569	269.7	17.455	327.6
3.772	47.5	6.628	103.2	8.543	159.5	10.302	217.0	12.625	270.7	17.646	329.1
3.893	49.4	6.667	104.2	8.611	161.6	10.340	218.1	12.695	272.8		
3.952	50.4	6.706	105.1	8.636	162.6	10.371	219.0	12.773	274.0		
4.014	51.3	6.744	106.1	8.669	163.7	10.407	220.0	12.831	275.0		
4.076	52.3	6.784	107.1	8.701	164.8	10.440	221.0	12.931	276.3		
4.135	53.3	6.825	108.2	8.735	165.8	10.475	222.0	12.979	277.5		
4.193	54.3	6.862	109.1	8.764	166.9	10.508	223.0	13.052	278.6		
4.249	55.2	6.902	110.2	8.795	167.9	10.544	224.0	13.134	279.8		
4.306	56.2	6.941	111.2	8.821	168.9	10.581	225.0	13.208	280.8		

			DHO	P	DUO	P	DHO	D	DUO
P MDa		P		P		P		P MDa	
	kg/ms		Kg/IIIS		Kg/113		Kg/1113		Kg/113
0.010	0.2	1.087	18.6	3.863	469.9	9.148	483.4	15.962	497.0
0.034	0.5	1.102	18.9	3.955	470.2	9.249	483.6	16.071	497.2
0.047	0.8	1.11/	19.2	4.027	470.4	9.356	483.9	16.225	497.4
0.061	1.0	1.131	19.6	4.114	470.7	9.505	484.2	16.382	497.7
0.076	1.2	1.148	19.9	4.181	470.9	9.592	484.4	16.491	497.9
0.089	1.4	1.167	20.3	4.272	471.1	9.702	484.6	16.604	498.1
0.106	1.7	1.183	20.6	4.391	471.4	9.825	484.9	16.761	498.4
0.129	2.0	1.199	20.9	4.486	471.7	9.928	485.1	16.942	498.7
0.150	2.3	1.215	21.3	4.566	472.0	10.063	485.4	17.087	498.9
0.173	2.7	1.229	21.6	4.637	472.1	10.187	485.7	17.199	499.1
0.197	3.1	1.243	21.9	4.726	472.4	10.299	485.9	17.348	499.4
0.219	3.4	1.256	22.2	4.814	472.7	10.385	486.1	17.503	499.7
0.241	3.7	1.271	22.5	4.911	472.9	10.547	486.4	17.644	499.9
0.266	4.1	1.287	22.9	5.004	473.1	10.633	486.7	17.790	500.2
0.292	4.5	1.303	23.3	5.070	473.4	10.773	486.9	17.939	500.4
0.313	4.9	1.319	23.6	5.190	473.7	10.892	487.2	18.084	500.6
0.335	5.2	1.332	23.9	5.304	474.0	11.048	487.5	18.223	500.9
0.356	5.5	1.345	24.2	5.389	474.2	11.126	487.7	18.407	501.2
0.377	5.9	1.360	24.6	5.461	474.4	11.255	487.9	18.519	501.4
0.401	6.3	1.378	25.0	5.582	474.7	11.393	488.2	18.681	501.6
0.425	6.6	1.394	25.4	5.653	474.9	11.455	488.4	18.853	501.9
0.445	7.0	1.406	25.6	5.775	475.2	11.632	488.7	19.017	502.2
0.465	7.3	1.420	26.1	5.854	475.4	11.748	488.9	19.184	502.5
0.486	7.6	1.436	26.4	5.942	475.7	11.871	489.2	19.326	502.7
0.506	8.0	1.450	26.8	6.057	476.0	11.986	489.4	19.513	503.0
0.529	8.4	1.593	462.8	6.144	476.2	12.120	489.7	19.630	503.2
0.552	8.8	1.614	462.9	6.227	476.4	12.251	490.0	19.804	503.5
0.572	9.1	1.691	463.1	6.352	476.7	12.376	490.2	19.937	503.6
0.588	9.3	1.761	463.4	6.446	477.0	12.476	490.4	20.068	503.9
0.607	9.7	1.863	463.7	6.529	477.1	12.591	490.6	20.269	504.2
0.630	10.1	1.930	463.9	6.615	477.4	12.722	490.9	20.452	504.4
0.649	10.4	1.992	464.1	6.735	477.7	12.882	491.2	20.559	504.7
0.668	10.8	2.084	464.4	6.830	477.9	12.978	491.4	20.768	505.0
0.690	11.2	2.170	464.7	6.929	478.2	13.114	491.7	20.902	505.1
0.711	11.5	2.216	464.9	7.035	478.4	13.271	491.9	21.072	505.4
0.744	12.1	2.296	465.1	7.152	478.7	13.399	492.2	21.230	505.6
0.763	12.4	2.396	465.5	7.229	478.9	13.515	492.4	21.414	505.9
0.785	12.8	2.477	465.7	7.352	479.2	13.654	492.7	21.601	506.2
0.804	13.2	2.556	466.0	7.430	479.4	13.744	492.9	21.731	506.4
0.821	13.5	2.626	466.2	7.548	479.7	13.901	493.2	21.896	506.7
0.838	13.8	2.696	466.4	7.666	479.9	14.025	493.4		
0.855	14.1	2.757	466.6	7.765	480.2	14.156	493.7		
0.875	14.5	2.875	467.0	7.851	480.4	14.304	493.9		
0.897	14.9	2.956	467.2	7.988	480.7	14.450	494.2		
0.916	15.2	3.032	467.5	8.090	481.0	14.578	494.4		
0.932	15.5	3.101	467.7	8.191	481.2	14.678	494.6		
0.949	15.9	3.187	467.9	8.285	481.4	14.857	494.9		
0.965	16.2	3.278	468.2	8.411	481.7	14.997	495.2		
0.983	16.6	3.335	468.4	8.538	482.0	15.084	495.4		
1.004	17.0	3.433	468.7	8.618	482.2	15.227	495.7		
1.022	17.3	3.527	468.9	8.734	482.5	15.369	495.9		
1.037	17.6	3.596	469.2	8.813	482.6	15.530	496.2		
1.055	18.0	3.691	469.4	8.939	482.9	15.642	496.4		
1.073	18.3	3.772	469.7	9.086	483.2	15.807	496.7		

Système H₂S-C₂H₆ – z_{H2S} = 0.0977 / T = 254.05 K

Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.002	0.0	3.430	59.6	4.649	120.5	5.429	337.8	7.972	375.9	13.909	413.5
0.111	1.4	3.469	60.7	4.656	121.6	5.457	338.6	8.041	376.5	14.063	414.2
0.196	2.5	3.508	61.8	4.662	122.4	5.487	339.4	8.112	377.2	14.228	414.9
0.303	3.8	3.547	62.9	4.680	124.5	5.516	340.1	8.184	377.8	14.370	415.5
0.377	4.7	3.585	64.1	4.694	126.4	5.545	340.8	8.258	378.5	14.529	416.2
0.464	5.8	3.622	65.2	4.708	128.4	5.562	341.3	8.334	379.2	14.715	417.0
0.542	6.9	3.657	66.3	4.715	129.8	5.593	342.0	8.409	379.9	14.915	417.8
0.618	7.8	3.693	67.4	4.734	305.5	5.626	342.8	8.493	380.6	15.040	418.3
0.689	8.8	3.729	68.6	4.738	306.0	5.664	343.7	8.563	381.2	15.258	419.2
0.761	9.8	3.764	69.8	4.743	306.5	5.700	344.5	8.644	381.9	15.400	419.8
0.831	10.7	3.797	70.9	4.747	307.0	5.720	344.9	8.720	382.6	15.545	420.4
0.899	11.6	3.829	72.0	4.757	307.9	5.757	345.7	8.835	383.5	15.776	421.3
0.968	12.6	3.860	73.1	4.762	308.4	5.790	346.4	8.912	384.1	15.927	421.9
1.037	13.6	3.891	74.2	4.772	309.3	5.828	347.2	8.995	384.8	16.080	422.5
1.103	14.5	3.920	75.3	4.777	309.8	5.846	347.6	9.081	385.4	16.325	423.4
1.169	15.5	3.949	76.4	4.789	310.8	5.884	348.3	9.168	386.1	16.481	424.0
1.235	16.4	3.978	77.5	4.796	311.3	5.926	349.1	9.255	386.8	16.643	424.6
1.299	17.4	4.005	78.6	4.807	312.2	5.969	350.0	9.389	387.8	16.880	425.5
1.366	18.4	4.032	79.7	4.813	312.7	5.990	350.4	9.494	388.5	17.059	426.1
1.431	19.4	4.055	80.7	4.827	313.7	6.039	351.2	9.575	389.1	17.246	426.8
1.493	20.3	4.085	82.0	4.835	314.2	6.083	352.0	9.653	389.7	17.438	427.5
1.552	21.3	4.110	83.1	4.843	314.8	6.127	352.8	9.740	390.3	17.613	428.1
1.605	22.1	4.135	84.2	4.857	315.6	6.158	353.4	9.833	391.0	17.888	429.0
1.678	23.4	4.158	85.3	4,863	316.1	6.204	354.1	9.971	391.9	18.066	429.6
1 752	24.6	4 180	86.3	4 878	317.0	6 249	354.9	10.066	392.6	18 227	430.2
1.823	25.7	4.200	87.2	4,886	317.5	6.284	355.4	10.162	393.2	18.491	431.1
1 884	26.7	4 224	88.5	4 902	318.5	6.339	356.3	10.262	393.9	18 668	431.6
1.001	28.0	4 246	89.6	4 911	319.0	6.366	356.7	10.359	394.5	18 932	432.5
2.031	29.3	4.267	90.7	4.928	320.0	6.423	357.6	10.498	395.4	19,114	433.1
2 100	30.5	4 288	91.8	4 938	320.5	6 4 5 3	358.1	10.604	396.1	19 292	433.7
2 164	31.7	4.310	93.0	4 961	321.0	6.512	358.9	10 708	396.7	19 584	434.6
2 222	32.7	4.331	94.2	4 986	322.0	6.572	359.8	10.815	397.3	19 778	435.2
2 283	33.8	4 352	95.4	4 994	322.4	6.603	360.2	10.982	398.3	19 984	435.8
2.363	35.3	4.371	96.5	5.011	323.2	6 659	361.0	11 030	398.7	20 273	436.7
2.424	36.5	4.388	97.6	5.025	323.9	6.716	361.8	11,185	399.5	20.476	437.3
2 481	37.6	4 405	98.7	5.043	324 7	6 781	362.7	11 295	400.2	20.684	437.9
2 540	38.8	4 4 2 2	99.8	5.054	325.2	6.813	363.1	11.200	400.9	20.965	438.8
2 598	40.0	4 438	100.9	5.073	326.0	6.878	363.9	11.526	401.5	20.000	100.0
2.656	41.1	4 455	102.1	5.093	326.8	6.938	364.7	11.643	402.2		
2 712	42.3	4 471	103.3	5 110	327.5	6.971	365.1	11 809	403.1		
2 766	43.5	4 486	104.4	5 131	328.3	7 044	366.0	11 922	403.7		
2.820	44.6	4 501	105.6	5 140	328.7	7.044	366.5	12 049	404.4		
2.873	45.8	4 515	106.7	5 159	329.4	7 142	367.2	12.040	405.0		
2 925	46.9	4.526	107.7	5 178	330.1	7 203	367.9	12 3//	405.0		
2 920	18.0 18.0	4.5/1	102.0	5 202	330.0	7 200	368.0	12.044	406.6		
2.300	40.2	4.541	110.5	5 228	331.8	7 363	360.3	12.473	400.0		
3 082	50 G	4 567	111.0	5 250	332.5	7 300	370.1	12 720	407.9		
3 127	51.7	4 580	112.5	5 262	332.0	7468	370.1	12 865	402.6		
3 17/	52.9	4 500	112.0	5 280	332.7	7.400	371.6	12.000	100.0		
3 220	54.0	4.092	114.7	5.209	334 5	7.040	370.4	12.994	410.0		
2.220	54.0	4.002	114./	5 220	305.0	7 660	372.4	12 200	410.2		
3.202	56.0	4.012	117.0	5.339	000.0 005 7	7.002	272.0	10.029	410.0		
3.300	57.4	4.023	110.0	5.354	335./ 226.6	7.057	3/3.0	10.4/4	411.0		
2 200	57.4	4.033	110.2	5.300	207.0	7.001	07E 1	10.020	412.2		
১.১∀∠	00.0	4.042	119.4	0.412	აა/.4	1.901	3/3.1	13./04	412.ŏ		

Système	H_2S-C_2	$_{2}H_{6}$ – z_{H2}	$_{2S} = 0.09$	77 / T =	363.21	K	

Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.002	0.0	4.673	59.1	7.703	118.5	9.926	177.8	12.248	237.2	15.909	296.8
0.086	0.9	4.752	60.4	7.766	120.0	9.972	179.1	12.323	238.8	16.005	297.9
0.175	1.8	4.821	61.5	7.803	120.9	9.998	179.9	12.355	239.5	16.100	299.0
0.265	2.8	4.892	62.6	7.839	121.8	10.052	181.3	12.421	240.9	16.207	300.3
0.396	4.1	4.953	63.7	7.900	123.3	10.101	182.7	12.449	241.6	16.307	301.4
0.484	5.1	5.036	64.8	7.930	124.0	10.127	183.4	12.517	243.0	16.364	302.1
0.580	6.1	5.111	66.0	7.990	125.5	10.176	184.8	12.579	244.3	16.475	303.2
0.720	7.6	5.153	66.7	8.019	126.2	10.212	185.8	12.618	245.1	16.617	304.8
0.804	8.5	5.217	67.8	8.078	127.7	10.240	186.6	12.681	246.3	16.668	305.4
0.893	9.4	5.285	68.9	8.108	128.4	10.293	188.0	12.716	247.1	16.773	306.5
1.025	10.9	5.354	70.1	8.164	129.9	10.316	188.7	12.785	248.5	16.881	307.6
1.101	11.7	5.416	71.2	8.192	130.6	10.362	189.9	12.849	249.8	16.987	308.7
1.226	13.1	5.481	72.3	8.248	132.0	10.415	191.4	12.879	250.3	17.131	310.2
1.302	14.0	5.545	73.5	8.276	132.7	10.437	192.1	12.940	251.5	17.242	311.2
1.410	15.2	5.606	74.6	8.331	134.2	10.484	193.3	13.011	252.9	17.344	312.3
1.513	16.4	5.662	75.6	8.359	134.8	10.530	194.6	13.047	253.6	17.457	313.4
1.612	17.6	5.711	76.5	8.413	136.3	10.576	195.9	13,115	254.9	17.566	314.4
1.665	18.2	5.775	77.7	8.439	137.0	10.599	196.4	13,188	256.2	17.675	315.4
1.800	19.8	5.832	78.7	8.492	138.4	10.646	197.7	13.225	256.9	17.791	316.5
1.898	20.9	5.888	79.8	8.546	139.7	10.693	199.0	13,293	258.2	17,900	317.5
1.945	21.5	5.972	81.4	8.572	140.5	10.743	200.4	13.346	259.2	18.010	318.5
2.042	22.6	6.029	82.5	8.623	141.8	10.771	201.1	13.416	260.4	18,132	319.6
2.167	24.1	6.085	83.5	8.649	142.5	10.818	202.4	13,497	261.8	18,299	321.0
2 254	25.2	6 135	84.5	8 713	144.2	10.842	203.0	13 528	262.4	18 404	321.9
2 346	26.4	6 189	85.5	8 738	144.9	10.890	204.3	13 604	263.6	18 518	322.9
2 431	27.4	6.238	86.5	8 788	146.2	10.000	205.6	13 692	265.1	18 702	324.4
2 511	28.4	6 288	87.5	8 813	146.9	10.973	206.5	13 730	265.9	18.815	325.3
2 596	29.5	6.364	89.0	8 875	148.6	11.037	208.1	13.818	267.3	18 929	326.3
2.677	30.5	6 4 0 9	89.9	8 904	149.4	11.007	208.9	13 862	268.1	19 126	327.8
2 756	31.5	6.457	90.9	8 954	150.7	11 114	210.1	13 942	269.4	19 251	328.8
2.842	32.6	6 5 2 6	92.3	8 978	151.4	11 137	210.1	13 987	270.1	10.201	020.0
2 920	33.6	6 572	93.2	9.030	152.8	11 190	210.7	14 079	271.6		
3.022	35.0	6.617	94.1	9.058	153.6	11 223	212.1	14.070	272.9		
3.097	36.0	6.685	95.6	9 106	15/ 9	11 277	21/ 2	1/ 206	273.6		
3 202	37.4	6 732	96.5	9 155	156.3	11.330	215.6	14 293	274.9		
3 242	38.0	6 779	97.5	9 179	156.9	11.359	216.3	14.335	275.6		
3 3/1	39.4	6.845	98.9	9.226	158.2	11/08	217.6	1/ /29	277.0		
3 4 4 3	40.8	6.886	00.0	0.273	150.2	11 /63	217.0	14 520	277.0		
3 522	40.0 /1 Q	6.000	100.8	9.275	160.2	11/03	210.5	14.520	270.3		
3.564	41.5	6 001	100.0	9.2.97	161.5	11.433	213.0	14.501	219.0		
2,652	42.5	7.020	102.1	0.201	162.9	11.551	221.1	14.000	200.4		
2 742	45.7	7.030	102.9	9.391	162.0	11.070	221.7	14.704	201.1		
2 022	45.0	7.009	104.5	9.414	164.0	11.037	223.2	14.013	202.0		
3.022	40.1	7.130	100.1	9.400	104.9	11,700	223.9	14.001	203.3		
3.901	47.3	7.180	106.4	9.492	100.0	11.722	220.2 000 F	14.958	284.0		
3.942	47.9	7.225	107.3	9.538	100.9	11.005	220.0	15.050	285.9		
4.030	49.2	7.200	110.0	9.565	160.0	11.000	221.2	15.141	∠ŏ/.l		
4.110	50.5	7.350	110.3	8.008	170.4	11.015	228.5	15.184	20/./		
4.190	0.10	7.400	110.0	9.662	170.4	11.915	229.7	15.2/6	∠88.9		
4.261	52.7	7.435	112.2	9.685	1/1.1	11.969	230.9	15.3/4	290.1		
4.334	53.8	/.469	113.0	9.749	1/2.9	11.994	231.6	15.471	291.4		
4.418	55.0	/.538	114.6	9.788	173.9	12.052	232.9	15.569	292.6		
4.454	55.6	7.572	115.4	9.820	174.8	12.091	233.8	15.618	293.3		
4.526	56.8	7.605	116.1	9.843	175.5	12.151	235.1	15.715	294.4		
4.599	57.9	7.671	117.8	9.900	177.1	12.216	236.5	15.812	295.6		

P	RHO	P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.072	1.0	1.853	33.1	4.356	453.7	8.130	467.2	13.007	480.7	19.150	494.2
0.112	1.6	1.875	33.6	4.421	454.0	8.191	467.4	13.090	480.9	19.286	494.4
0.151	2.1	1.897	34.2	4.472	454.2	8.294	467.7	13.197	481.2	19.425	494.7
0.190	2.7	1.921	34.8	4.524	454.4	8.361	467.9	13.316	481.4	19.551	494.9
0.226	3.2	1.942	35.3	4.599	454.7	8.474	468.2	13.392	481.6	19.632	495.1
0.262	3.7	1.960	35.8	4.660	454.9	8.537	468.4	13.514	481.9	19.780	495.4
0.299	4.3	1.987	36.5	4.714	455.2	8.606	468.6	13.626	482.2	19.920	495.7
0.336	4.8	2.007	37.0	4.782	455.4	8.710	469.0	13.717	482.4	20.022	495.9
0.370	5.3	2.029	37.6	4.854	455.7	8.777	469.2	13.835	482.7	20.187	496.2
0.404	5.8	2.051	38.2	4.906	455.9	8.874	469.5	13.939	482.9	20.335	496.5
0.434	6.2	2.073	38.8	4.961	456.1	8.941	469.7	14.025	483.2	20.443	496.7
0.489	7.1	2.093	39.4	5.034	456.4	9.020	469.9	14.139	483.4	20.577	496.9
0.531	7.8	2.113	40.1	5.110	456.7	9.096	470.2	14.280	483.7	20.713	497.2
0.568	8.3	2.159	443.6	5.155	456.9	9.210	470.5	14.383	483.9	20.861	497.4
0.604	8.9	2.184	443.7	5.220	457.1	9.286	470.7	14.504	484.2	20.941	497.6
0.642	9.5	2.238	444.0	5.288	457.4	9.382	471.0	14.613	484.5	21.093	497.9
0.680	10.2	2.305	444.2	5.364	457.7	9.460	471.2	14.706	484.7	21.246	498.2
0.730	11.0	2.333	444.4	5.421	457.9	9.528	471.4	14.775	484.9	21.408	498.5
0.769	11.6	2.384	444.7	5.503	458.2	9.632	471.7	14.910	485.2	21.503	498.6
0.810	12.3	2.456	445.0	5.547	458.4	9.707	471.9	15.003	485.4	21.667	498.9
0.843	12.8	2.487	445.2	5.638	458.7	9.784	472.1	15.159	485.7	21.792	499.2
0.885	13.5	2.542	445.5	5.680	458.9	9.919	472.5	15.246	485.9	21.929	499.4
0.922	14.1	2.600	445.7	5.768	459.2	9.983	472.7	15.372	486.2		
0.958	14.8	2.639	445.9	5.841	459.5	10.078	473.0	15.485	486.5		
0.994	15.4	2.676	446.1	5.903	459.7	10.139	473.1	15.593	486.7		
1.029	16.0	2.732	446.4	5.953	459.9	10.232	473.4	15.697	486.9		
1.062	16.6	2.788	446.7	6.033	460.2	10.322	473.6	15.798	487.1		
1.091	17.1	2.834	446.9	6.122	460.5	10.422	473.9	15.899	487.4		
1.123	17.7	2.894	447.2	6.187	460.7	10.516	474.2	16.043	487.7		
1.156	18.3	2.930	447.4	6.267	460.9	10.611	474.4	16.163	488.0		
1.191	18.9	2.995	447.7	6.346	461.2	10.708	474.7	16.276	488.2		
1.224	19.5	3.062	448.0	6.407	461.4	10.779	474.9	16.390	488.4		
1.254	20.1	3.104	448.2	6.491	461.7	10.862	475.1	16.496	488.7		
1.284	20.7	3.144	448.4	6.543	461.9	10.960	475.4	16.593	488.9		
1.313	21.2	3.199	448.6	6.615	462.2	11.066	475.7	16.731	489.2		
1.338	21.8	3.258	448.9	6.699	462.5	11.152	475.9	16.825	489.4		
1.367	22.3	3.324	449.2	6.756	462.7	11.259	476.2	16.945	489.7		
1.395	22.9	3.363	449.4	6.834	462.9	11.333	476.4	17.070	489.9		
1.423	23.5	3.424	449.7	6.894	463.1	11.421	476.6	17.215	490.2		
1.449	24.0	3.483	450.0	6.993	463.5	11.531	476.9	17.318	490.4		
1.484	24.7	3.536	450.2	7.050	463.7	11.640	477.2	17.439	490.7		
1.511	25.3	3.589	450.4	7.142	464.0	11.709	477.4	17.551	490.9		
1.540	25.9	3.653	450.7	7.201	464.2	11.810	477.7	17.678	491.2		
1.569	26.5	3.707	450.9	7.291	464.5	11.922	477.9	17.808	491.4		
1.596	27.1	3.770	451.2	7.352	464.7	11.993	478.1	17.943	491.7		
1.622	27.6	3.818	451.4	7.445	465.0	12.087	478.4	18.078	492.0		
1.646	28.2	3.873	451.6	7.512	465.2	12.206	478.7	18.181	492.2		
1.671	28.7	3.936	451.9	7.574	465.4	12.312	479.0	18.302	492.5		
1.696	29.3	3.996	452.2	7.658	465.7	12.395	479.1	18.403	492.6		
1.724	30.0	4.052	452.4	7.729	465.9	12.514	479.4	18.516	492.9		
1.747	30.5	4.132	452.7	7.827	466.2	12.608	479.7	18.631	493.1		
1.773	31.1	4.173	452.9	7.890	466.4	12.687	479.9	18.771	493.4		
1.802	31.8	4.221	453.1	7.979	466.7	12.811	480.2	18.891	493.7		
1.829	32.5	4.291	453.4	8.065	467.0	12.894	480.4	19.014	493.9	[[

Système H ₂ S-C ₂ H ₆ – $z_{H2S} = 0.1430 / T = 28$	83.30	K
--	-------	---

MPa kg/m3 M2a kg/m3 M3a M2a kg/m3 M2a kg/m3 M2a kg/m3 M2a kg/m3 M2a kg/m3 M2a kg/m3 M2a k	P	RHO	P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.001	0.0	1.797	28.5	2.900	56.7	5.874	424.8	12.016	451.9	21.992	478.8
	0.025	0.3	1.818	28.9	2.917	57.2	5.962	425.3	12.157	452.3		
	0.065	0.9	1.840	29.4	2.944	58.2	6.045	425.8	12.304	452.8		
	0.114	1.5	1.865	29.9	2.957	58.7	6.132	426.3	12.463	453.4		
	0.137	1.9	1.891	30.4	2.969	59.2	6.218	426.8	12.617	453.9		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.189	2.5	1.916	30.9	2.985	59.7	6.311	427.3	12.770	454.4		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.214	2.9	1.941	31.4	2.999	60.3	6.405	427.9	12.936	454.9		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.266	3.6	1.966	32.0	3.014	60.8	6.499	428.4	13.046	455.3		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.296	4.0	1.991	32.5	3.028	61.4	6.595	428.9	13.199	455.8		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.322	4.4	2.015	33.0	3.041	62.0	6.666	429.3	13.367	456.3		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.378	5.1	2.038	33.5	3.054	62.5	6.758	429.8	13.521	456.8		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.405	5.6	2.062	34.0	3.065	63.2	6.860	430.3	13.677	457.3		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.430	5.9	2.085	34.5	3.099	403.9	6.973	430.9	13.852	457.8		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.482	6.6	2.109	35.0	3.136	404.3	7.048	431.3	14.029	458.3		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.510	7.0	2.132	35.5	3.203	404.9	7.153	431.8	14.210	458.9		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.539	7.4	2.154	36.1	3.251	405.4	7.265	432.4	14.346	459.3		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.568	7.8	2.177	36.6	3.328	406.1	7.339	432.8	14.527	459.8		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.620	8.6	2.199	37.1	3.348	406.3	7.443	433.3	14.701	460.4		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.646	9.0	2.221	37.6	3.400	406.8	7.547	433.8	14.865	460.9		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.674	9.4	2.243	38.1	3.462	407.4	7.665	434.4	15.050	461.4		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.700	9.8	2.264	38.6	3.511	407.8	7.752	434.8	15.191	461.8		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.750	10.5	2.285	39.1	3.560	408.3	7.859	435.3	15.380	462.4		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.776	10.9	2.307	39.6	3.625	408.9	7.980	435.8	15.562	462.9		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.801	11.3	2.328	40.1	3.680	409.4	8.074	436.3	15.737	463.4		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.852	12.1	2.348	40.6	3.737	409.8	8,185	436.8	15.885	463.8		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.877	12.5	2.368	41.1	3.798	410.4	8.298	437.3	16.104	464.4		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.904	12.9	2.388	41.6	3.865	410.9	8.425	437.9	16.285	464.9		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.928	13.3	2.407	42.1	3.910	411.3	8.513	438.3	16.441	465.3		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.963	13.9	2.427	42.6	3.982	411.9	8.636	438.8	16.636	465.8		
1.036 15.0 2.462 43.5 4.100 412.8 8.887 439.9 16.983 466.8 1.069 15.6 2.479 43.9 4.170 413.4 8.978 440.3 17.207 467.4 1.101 16.1 2.500 44.5 4.233 413.8 9.080 440.8 17.429 467.9 1.133 16.6 2.521 45.1 4.299 414.3 9.213 441.3 17.580 468.3 1.164 17.1 2.540 45.6 4.361 414.8 9.346 441.9 17.780 468.9 1.220 18.1 2.557 46.0 4.423 415.3 9.470 442.3 17.960 469.3 1.255 18.7 2.575 46.6 4.490 415.8 9.578 442.8 18.139 469.8 1.290 19.2 2.593 47.0 4.557 416.3 9.719 443.3 18.336 470.3 1.320 19.8 2.611 47.5 4.624 416.8 9.837 443.8 18.542 470.8 1.351 20.3 2.631 48.1 4.694 417.3 9.952 444.3 18.935 471.4 1.380 20.8 2.653 48.8 4.764 417.8 10.075 444.8 18.935 471.4 1.438 21.8 2.691 49.9 4.912 418.8 10.242 445.4 19.201 472.4 1.438 <td>1.001</td> <td>14.4</td> <td>2.446</td> <td>43.1</td> <td>4.026</td> <td>412.3</td> <td>8.761</td> <td>439.4</td> <td>16.832</td> <td>466.4</td> <td></td> <td></td>	1.001	14.4	2.446	43.1	4.026	412.3	8.761	439.4	16.832	466.4		
1.069 15.6 2.479 43.9 4.170 413.4 8.978 440.3 17.207 467.4 1.101 16.1 2.500 44.5 4.233 413.8 9.080 440.8 17.429 467.9 1.133 16.6 2.521 45.1 4.299 414.3 9.213 441.3 17.580 468.3 1.164 17.1 2.540 45.6 4.361 414.8 9.346 441.9 17.780 468.9 1.220 18.1 2.557 46.0 4.423 415.3 9.470 442.3 17.960 469.3 1.255 18.7 2.575 46.6 4.490 415.8 9.578 442.8 18.139 469.8 1.290 19.2 2.593 47.0 4.557 416.3 9.719 443.3 18.336 470.3 1.320 19.8 2.611 47.5 4.624 416.8 9.837 443.8 18.542 470.8 1.351 20.3 2.631 48.1 4.694 417.3 9.952 444.3 18.799 471.4 1.380 20.8 2.653 48.8 4.764 417.8 10.075 444.8 18.935 471.8 1.409 21.3 2.672 49.3 4.840 418.3 10.242 445.4 19.201 472.4 1.438 21.8 2.691 49.9 4.912 418.8 10.369 445.9 19.350 472.8	1.036	15.0	2.462	43.5	4.100	412.8	8.887	439.9	16.983	466.8		
1.10116.12.50044.54.233413.89.080440.817.429467.91.13316.62.52145.14.299414.39.213441.317.580468.31.16417.12.54045.64.361414.89.346441.917.780468.91.22018.12.55746.04.423415.39.470442.317.960469.31.25518.72.57546.64.490415.89.578442.818.139469.81.29019.22.59347.04.557416.39.719443.318.336470.31.32019.82.61147.54.624416.89.837443.818.542470.81.35120.32.63148.14.694417.39.952444.318.799471.41.38020.82.65348.84.764417.810.075444.818.935471.81.40921.32.67249.34.840418.310.242445.419.201472.41.43821.82.69149.94.912418.810.369445.919.350472.8	1.069	15.6	2.479	43.9	4.170	413.4	8.978	440.3	17.207	467.4		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.101	16.1	2.500	44.5	4.233	413.8	9.080	440.8	17,429	467.9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.133	16.6	2.521	45.1	4.299	414.3	9.213	441.3	17.580	468.3		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.164	17.1	2.540	45.6	4.361	414.8	9.346	441.9	17.780	468.9		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.220	18.1	2.557	46.0	4.423	415.3	9.470	442.3	17,960	469.3		
1.200 1010	1.255	18.7	2.575	46.6	4,490	415.8	9.578	442.8	18,139	469.8		
1.320 19.8 2.611 47.5 4.624 416.8 9.837 443.8 18.542 470.8 1.351 20.3 2.631 48.1 4.694 417.3 9.952 444.3 18.799 471.4 1.380 20.8 2.653 48.8 4.764 417.8 10.075 444.8 18.935 471.8 1.409 21.3 2.672 49.3 4.840 418.3 10.242 445.4 19.201 472.4 1.438 21.8 2.691 49.9 4.912 418.8 10.369 445.9 19.350 472.8	1.290	19.2	2,593	47.0	4,557	416.3	9,719	443.3	18,336	470.3		
1.351 20.3 2.631 48.1 4.694 417.3 9.952 444.3 18.799 471.4 1.380 20.8 2.653 48.8 4.764 417.8 10.075 444.8 18.799 471.4 1.380 20.8 2.653 48.8 4.764 417.8 10.075 444.8 18.935 471.8 1.409 21.3 2.672 49.3 4.840 418.3 10.242 445.4 19.201 472.4 1.438 21.8 2.691 49.9 4.912 418.8 10.369 445.9 19.350 472.8	1.320	19.8	2.611	47.5	4.624	416.8	9.837	443.8	18.542	470.8		
1.380 20.8 2.653 48.8 4.764 417.8 10.075 444.8 18.935 471.8 1.409 21.3 2.672 49.3 4.840 418.3 10.242 445.4 19.201 472.4 1.438 21.8 2.691 49.9 4.912 418.8 10.369 445.9 19.350 472.8	1.351	20.3	2.631	48.1	4.694	417.3	9.952	444.3	18,799	471.4		
1.409 21.3 2.672 49.3 4.840 418.3 10.242 445.4 19.201 472.4 1.438 21.8 2.691 49.9 4.912 418.8 10.369 445.9 19.350 472.4	1.380	20.8	2.653	48.8	4.764	417.8	10.075	444.8	18,935	471.8		
1.438 21.8 2.691 49.9 4.912 418.8 10.369 445.9 19.350 472.8 1.438 20.4 27.4 1.400 1.010	1 409	21.3	2 672	49.3	4 840	418.3	10.242	445.4	19 201	472.4		
	1.438	21.8	2.691	49.9	4.912	418.8	10.369	445.9	19.350	472.8		
	1.468	22.4	2.710	50.4	4,999	419.3	10,499	446.4	19,596	473.4		
	1.497	22.9	2.729	51.0	5 094	419.9	10.597	446.8	19.812	473.8		
1526 23.4 2.749 51.7 5.148 420.3 10.733 447.3 20.029 474.4	1.526	23.4	2,749	51.7	5.148	420.3	10.733	447.3	20.029	474.4		
1555 23.9 2.767 52.2 5.227 420.8 10.886 447.8 20.256 474.9	1.555	23.9	2,767	52.2	5,227	420.8	10.886	447.8	20.256	474.9		
1.584 24.4 2.785 52.8 5.303 421.3 11.020 448.3 20.414 475.3	1.584	24.4	2.785	52.8	5.303	421.3	11.020	448.3	20.414	475.3		
	1,611	25.0	2,802	53.3	5.382	421.8	11,159	448.9	20.637	475.8		
1 639 255 2817 538 5472 4224 11 308 4494 20 871 476 3	1.639	25.5	2 817	53.8	5 472	422.4	11.308	449.4	20.871	476.3		
1 689 26 4 2 831 54 3 5 546 422 8 11 442 449 8 21 109 476 8	1 689	26.0	2 8 3 1	54.3	5 546	422 R	11 4/2	449 R	21 100	476.9		
	1 716	27.4	2.001	5/ 8	5.627	122.0	11 602	450 4	21.103	477.2		
1743 27 5 2 867 55 4 5 695 423 8 11 715 450 8 21 519 477 8	1 7/3	27.5	2 867	55 /	5 695	423.4	11 715	450.4	21.520	477.9		
	1 770	28.0	2 884	56.1	5 796	424.4	11 857	451.3	21 819	478.4		

Sy	vstème	$H_2S-C_2H_6$ -	$-\mathbf{z}_{\text{H2S}} =$	0.1430	/ T =	322.21	Κ
----	--------	-----------------	------------------------------	--------	-------	--------	---

P	RHO	P	RHO	Р	RHO	Р	RHO	Р	RHO	Р	RHO
MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3	MPa	kg/m3
0.002	0.0	4.307	70.2	6.104	141.0	6.978	222.3	8.157	297.1	12.403	367.4
0.066	0.8	4.336	70.9	6.123	142.4	6.989	223.5	8.224	299.5	12.563	368.8
0.166	2.0	4.403	72.7	6.158	144.8	6.999	224.6	8.258	300.7	12.731	370.2
0.332	3.9	4.456	74.1	6.171	145.7	7.013	226.0	8.291	301.7	12.901	371.7
0.434	5.1	4.484	74.8	6.184	146.6	7.029	227.6	8.325	302.9	13.066	373.0
0.538	6.4	4.541	76.4	6.199	147.7	7.044	229.0	8.359	303.9	13.238	374.4
0.641	7.6	4.592	77.9	6.225	149.7	7.058	230.4	8.393	305.0	13.328	375.1
0.740	8.8	4.638	79.1	6.238	150.7	7.073	231.9	8.462	307.1	13.509	376.5
0.836	10.1	4.690	80.6	6.249	151.5	7.087	233.2	8.498	308.1	13.680	377.8
0.934	11.3	4.714	81.4	6.272	153.3	7.101	234.6	8.532	309.1	13.866	379.2
1.031	12.6	4.764	82.9	6.284	154.2	7.113	235.8	8.567	310.1	14.045	380.5
1.126	13.8	4.811	84.3	6.316	156.9	7.128	237.2	8.638	312.1	14.234	381.8
1.227	15.2	4.854	85.6	6.342	159.1	7.146	238.8	8.672	313.0	14.420	383.1
1.318	16.4	4.898	87.0	6.354	160.0	7.161	240.2	8.744	314.8	14.610	384.4
1.410	17.6	4.943	88.5	6.364	160.9	7.177	241.6	8.780	315.7	14.813	385.7
1.549	19.5	4.970	89.4	6.376	161.9	7.193	243.0	8.815	316.6	15.012	387.0
1.593	20.2	5.022	91.1	6.397	163.8	7.206	244.1	8.885	318.3	15.208	388.2
1.690	21.5	5.046	91.9	6.406	164.6	7.218	245.2	8.926	319.3	15.418	389.5
1.783	22.9	5.098	93.6	6.422	166.0	7.235	246.5	9.019	321.4	15.635	390.8
1.873	24.2	5.136	94.4	6.438	167.5	7.251	247.9	9.066	322.4	15.851	392.1
1.958	25.4	5.182	96.0	6.455	169.0	7.269	249.3	9.111	323.4	16.068	393.3
2.043	26.7	5.207	96.9	6.471	170.5	7.285	250.6	9.156	324.4	16.295	394.6
2.165	28.5	5.252	98.6	6.489	172.1	7.303	252.0	9.247	326.2	16.524	395.9
2.245	29.8	5.274	99.5	6.510	173.9	7.324	253.6	9.292	327.2	16.754	397.2
2.323	31.0	5.316	101.1	6.527	175.5	7.345	255.2	9.381	328.9	17.097	399.0
2.404	32.3	5.360	102.8	6.543	177.0	7.367	256.8	9.425	329.7	17.317	400.1
2.488	33.7	5.380	103.6	6.557	178.3	7.389	258.4	9.526	331.6	17.555	401.3
2.567	34.9	5.419	105.2	6.570	179.6	7.411	260.0	9.574	332.5	17.791	402.5
2.648	36.3	5.438	106.0	6.586	181.1	7.430	261.3	9.678	334.3	18.041	403.7
2.729	37.7	5.478	107.7	6.602	182.7	7.449	262.6	9.748	335.5	18.416	405.5
2.807	39.1	5.501	108.7	6.618	184.3	7.472	264.1	9.808	336.5	18.649	406.5
2.859	40.0	5.539	110.3	6.632	185.6	7.497	265.7	9.905	338.1	18.943	407.9
2.946	41.6	5.570	111.7	6.644	186.9	7.521	267.2	9.959	339.0	19.223	409.1
2.990	42.3	5.587	112.5	6.657	188.2	7.546	268.7	10.053	340.4	19.607	410.8
3.073	43.8	5.624	114.2	6.670	189.5	7.571	270.2	10.149	341.9	19.895	412.0
3.155	45.3	5.652	115.6	6.685	191.1	7.597	271.7	10.198	342.6	20.191	413.3
3.237	46.9	5.682	116.9	6.701	192.8	7.622	273.1	10.298	344.1	20.528	414.6
3.272	47.5	5.719	118.8	6.716	194.4	7.649	274.6	10.390	345.4	20.778	415.7
3.348	49.0	5.739	119.8	6.728	195.7	7.675	276.0	10.479	346.6		
3.420	50.4	5.759	120.8	6.752	198.1	7.702	277.5	10.582	348.0		
3.488	51.8	5.779	121.8	6.767	199.8	7.730	278.9	10.675	349.2		
3.556	53.2	5.816	123.7	6.782	201.4	7.758	280.3	10.778	350.6		
3.628	54.6	5.834	124.7	6.798	203.1	7.787	281.7	10.876	351.8		
3.663	55.4	5.851	125.6	6.813	204.7	7.815	283.1	10.995	353.2		
3.733	56.9	5.880	127.2	6.826	206.1	7.844	284.4	11.128	354.7		
3.795	58.2	5.897	128.2	6.849	208.6	7.874	285.8	11.253	356.0		
3.859	59.6	5.931	130.2	6.861	210.0	7.904	287.1	11.387	357.5		
3.928	61.2	5.949	131.2	6.884	212.5	7.934	288.4	11.514	358.8		
3.967	62.0	5.964	132.1	6.897	213.9	7.964	289.7	11.584	359.5		
4.033	63.5	5.993	133.9	6.919	216.1	7.996	291.0	11.722	360.9		
4.094	65.0	6.008	134.7	6.929	217.2	8.028	292.3	11.859	362.3		
4.126	65.8	6.038	136.7	6.943	218.7	8.060	293.5	12.004	363.7		
4.188	67.3	6.053	137.7	6.956	220.1	8.092	294.7	12.159	365.2		
4.247	68.7	6.066	138.5	6.967	221.2	8.124	296.0	12.320	366.6	1	1

Annexe 6 : Paramètres du réseau de neurones – Equation d'état de R134a

	1ère couche		2ème couche		3ème couche
	-0.77694154		-17.5553829	Biais	13.6663596
	-0.44466097		-12.8295401	1	25.1418533
	0.38968516	Biais	22.3221123	2	-25.388212
	-4.45842444		-2.90090068	3	- 13.9070112
	-10.1753579		9.31373776		
Biais	5.40774049	1	-8.02565657		
	-0.56753625		10.9357133		
	1.43490183		0.13430288		
T/ ℃	-1.91574788	2	-20.6758254		
170	-4.18948088		16.3042777		
-103.15	1.92640953		5.72056177		
181.85	-2.57837238	3	-18.3715608		
	2.08985464		9.56124152		
	5.76330625		4.97134533		
o / ka/m3	-3.85836764	4	-5.85205091		
p / itg/illo	1.92632649		28.5677587		
0	7.64018327		-21.1381627		
1658.67	0.20097434	5	1.19419049		
			3.45756271		
			5.4171103		
		6	4.87266442		

Le minimum et le maximum des valeurs en sortie sont respectivement 0 et 700 bar

Annexe 7 : Paramètres du réseau de neurones – Correction de volume

a. Réseau corps purs

	1ère couche		2èe couche		3ème couche
	-0.962497404		1.905952186	Biais	0.901410044
	-0.892419778	Bioic	1.117161765	1	-14.43898685
Biais	0.405050111	Diais	1.746667317	2	-12.25127533
	-0.597032213		1.899307462	3	-17.47384313
	1.172874203		-12.23818859	4	30.57073425
	16.66191537	1	10.25393779		
Mw / g/mol	3.119240894	I	-2.224973951		
16.0	2.609518774		-6.786214128		
58.1	-14.41426606		-3.257040658		
	-1.710742154	2	-13.82418749		
	0.97940362		-0.742322308		
T / K	3.447977996		-1.916079136		
200	0.574042482		-0.016514782		
400	1.77194239	3	-16.28241733		
	-0.740332211		-7.243062692		
	-28.25810068		-4.020547624		
Omega	-8.453640634		7.271950891		
0.011	-4.345610012	4	-0.607343954		
0.223	-13.42721177	-	-0.661501706		
	3.77047426		3.020272488		
	10.99357234		-15.95264583		
Rho	6.687845276	5	-38.28808547		
24	-1.13088769	0	-11.79455717		
1193.9	20.05303916		-13.908917		
	-15.13019185				

Le minimum et le maximum des valeurs en sortie sont respectivement -134.66 et 0.05 kg/m^3

b. Réseau utilisé pour les tests de correction en mélange

	1ère couche		2èe couche		3ème couche
	-4.608429956		5.971889104	Biais	-0.026797294
	-0.474632635		5.349054728	1	1.722699207
	-1.685103643		0.209638444	2	-2.259929301
	3.237026626	Biais	0.656685798	3	2.86747536
Biais	-14.49019947		-9.431398756	4	1.037560515
Mw / g/mol	6.003859817		7.460413382		
	7.046241217		-7.930775396		
0.01604	-4.273573538	1	6.223087695		
0.05812	2.626481376		1.182942161		
	0.460883977		-10.73762223		
T/K	-0.802261226		0.462536768		
	-0.538460997	2	-2.524482526		
200	1.063882557		-8.16594627		
400	-1.962654982		4.889860155		
	5.586265354		3.19409521		
Rho	3.279431718	3	2.852209277		
	-9.928207816		-7.668014416		
2.4	9.965709682		-9.680213579		
1192.6	-21.86557902		-1.085700317		
	26.73066182	4	6.592567089		
			0.74514304		
			0.460146947		
			-1.692382318		
		F	1 10070011		

Annexe 8 : Outil de modélisation thermodynamique -TEP ThermoSoft

TEP ThermoSoft a été développé pour répondre aux besoins de modélisation du laboratoire de Thermodynamique et des Equilibres entre Phases (CEP / ENSMP).

Il s'agit avant tout d'un logiciel de représentation de données thermodynamiques expérimentales, orienté principalement sur les équilibres de phases.

Certains modèles, dits « prédictifs », permettent d'estimer les propriétés thermodynamiques sans données expérimentales. Cependant l'utilisateur doit resté très critiques face aux résultats obtenus.

<u>1. Spécificités de TEP ThermoSoft</u>

TEP ThermoSoft a été développé pour répondre aux besoins d'un laboratoire de données expérimentales relatives à la thermodynamique des équilibres de phases. La cohérence des données expérimentales produites doit être validée et ce au travers d'outils de modélisation.

C'est dans ce cadre que différents projets initiaux ont été entrepris au sein du laboratoire TEP, notamment le programme ThermoPack dont est issu TEP ThermoSoft. ThermoPack présentait les nombreux avantages d'un outil utile au labaratoire à savoir le calcul, la prédiction et l'ajustement de paramètres. Cependant, pour ajouter de nouveaux modules de calculs, un utilisateur était obligé de rentrer dans le code source du programme et de recompiler l'ensemble. Cette méthode présente en particulier l'inconvénient de centraliser tous les modèles dévelopés par les nombreux

Pour améliorer ce cadre et pouvoir intégrer de nouveaux modules de calculs indépendant de la l'interface principale, TEP ThermoSoft a été développé autours des axes présentés sur la figure suivante.

Fig. A8.1.1 : Strutcture de TEP ThemoSoft

En intégrant une structure déportée autonome pour les modules de calcul, TEP ThermoSoft propose une séquence de construction du calcul très pédagogique. En effet, lorsque l'utilisateur crée un nouveau calcul, il sait clairement quels sont les sous-modules appelés et ainsi peut suivre le cheminement logique du calcul. Cet aspect fait souvent défaut dans les autres programmes de calcul thermodynamiques qui ont un aspect « boite noire ».

2.Présentation de l'interface

Deux écrans principaux ont été définis :

- Fenêtre de projet
- Fenêtre de calcul

2.1. Fenêtre de projet

Un projet représente un ensemble de calculs et de données expérimentales relatif à l'étude d'un système. Un exemple d'écran de fenêtre projet est présenté sur la figure A8.2.1

4 Quitter	Projet Outi	ls		_ 8 ×
Descriptio	on du projet		Système d'étude (Définition des composés par défaut lors d'un calcul) CARBON DIOXIDE DIFLUOROMETHANE	2 Modifier
<i>Liste des c</i> Date	alculs précéd	dents Composés	Description	3
07 janv.	14:56:40	1	Caic2	
07 janv.	11:12:21		Calci	
i				

Fig. A8.2.1 : Fenêtre de projet

La fenêtre projet est destinée à faciliter la gestion des calculs effectués. Cette fenêtre s'affiche à chaque nouveau lancement du programme. Elle est composée de 3 zones décrites ci-après :

1 - Description du projet

L'utilisateur peut y noter quelques informations sur le projet en cours.

2 - Système d'étude

L'utilisateur y défini les composés qui seront le plus souvent utilisés au cours du projet. Le système entré sera utilisé par la suite comme système par défaut.

3 – Liste des calculs précédents

Cette grille regroupe l'ensemble des calculs précédemment enregistrés au cours de ce projet. Les calculs peuvent être édités, supprimés, rechargés ou renommés à l'aide du menu contextuel apparaissant avec un clic droit sur la ligne correspondante.

2.2. Fenêtre de calcul

Un calcul est un ensemble de fonctions, appelés "modules de calcul", liées :

- à un **système de composés** par des variables appelées "paramètres" (*ex. Facteur acentrique, Température critique,* ...)
- à une grille de calcul
- à un **type de calcul** (*prédiction ou ajustement*)

La fenêtre de calcul permet de définir l'ensemble des informations nécessaire à un calcul (calcul prédictif ou ajustement sur des données experimentales).

Fig. A8.2.2 : Interface de calcul

4 zones sont définies comme le montre la figure A8.2.2.

1 - Définition des fonctions utilisées pour le calcul

L'utilisateur peut, au travers de cette zone, définir et modifier les fonctions de calcul et leurs options.

2 - Système d'étude

Cette zone regroupe les composés qui constituent le système sur lequel le calcul doit s'effectuer. L'utilisateur peut y faire afficher les propriétés nécessaires au calcul concernant chaque composé en cliquant sur le composé voulu, et éventuellement en modifier la valeur directement dans la grille. Deux autres catégories apparaissent : "Variables indépendantes" et "Variables de mélanges". La première catégorie regroupe les variables de calcul qui ne sont propres à aucun composé (Ex. Température, Pression, ...). Au contraire, la seconde catégorie regroupe les variables qui concernent l'ensemble des composés en mélange (Ex. Compositions, Paramètres d'intéraction, ...).

Pour rester cohérent entre les différents modules de calcul, les données des paramètres sont exprimées en unités SI.

3 - Grille de calcul

Apparaissent dans la grille de calcul les variables qui n'auront pas été définies (valeur = "") dans la partie "Paramètres" (2).

L'utilisateur peut définir cette grille en double-cliquant dessus; une fenêtre dédiée apparait.

4 - Type de calcul

L'utilisateur peut faire un calcul prédictif s'il possède l'ensemble des valeurs de paramètres propres au système étudié. Dans ce cas, il lui suffit de cocher la case "Calcul", ou "Ajustement".puis de cliquer sur le bouton "Calculer"

2.3. Définition d'un ajustement

🚚 A justement			
Procédure d'ajustement	Personnalisée		1
<u>Fonction "Objectif"</u> Symbole	Fonction 2	Paramètres à ajuster Symbole	3
Méthode numérique			4

Fig. A8.2.3 : Interface de calcul

Dans de nombreux cas de modélisation de propriétés thermodynamiques, notament d'équilibre de phases, les paramètres d'intéraction propres au système étudié ne sont pas connus. Aussi, si des données expérimentales existent, elles peuvent être utilisées pour ajuster ces paramètres. Pour afficher cette fenêtre il suffit de cliquer sur le bouton "Définir", après avoir activer le mode • Austement

1 - Sélection d'une procédure d'ajustement pré-définie

Lorsque des procédure d'ajustement spécifiques existent, l'utilisateur peut en choisir une au travers de cette liste déroulante.

La procédure "Personnalisée" indique que l'utilisateur doit définir chacun des éléments décrits ci-après.

2 - Définition des grandeurs à prendre en compte pour le calcul de la fonction "Objectif"

La fonction "Objectif" est la fonction "cible" qui devra être minimisée. L'utilisateur peut choisir les variables à prendre en compte en cliquant sur la 1ère colonne de la grille (Cf. *Symboles de variables*).

La colonne "Fonction" permettra, à l'avenir, de sélectionner la façon dont sera calculée la fonction objectif. Pour le moment, cette dernière prend la forme suivante :

Où N, correspond au nombre de variables à prendre en compte,

X, représente les variables,

P, correspond aux nombres de calculs effectués.

Pour éviter des divisions par 0, dans le cas où une des valeurs de $X(_{EXP})$ est nulle, la division par $X(_{EXP})$ n'est pas réalisée.

3 - Définition des paramètres dont les valeurs seront ajustées

Cette zone permet de sélectionner les paramètres dont les valeurs seront modifiées par la méthode numérique pour minimiser la "Fonction Objectif" (Cf. *Symboles de variables*).

4 - Sélection de la méthode numérique

La méthode numérique est la fonction qui fait varier les valeurs des paramètres à ajuster pour minimiser la valeur de la "Fonction Objectif". Il existe différentes méthodes numériques qui agiront plus ou moins efficacement suivant les cas.

Les méthodes numériques peuvent avoir des options "modifiables", qui sont alors affichées dans la grille au bas de la fenêtre.

2.4. Suivi du calcul

Après avoir lancé un calcul, une fenêtre de suivi apparaît. Cette dernière permet de voir l'évolution du calcul et éventuellement de l'interrompre.

La fenêtre se compose de trois zones comme le montre la figure A8.2.4.

Fig. A8.2.4 : Fenêtre de suivi de calcul

1 - Menu "Calcul"

Dans le cas de calculs "lourd" (demandant de nombreuses itérations), les fonctions "Pause" et "Arrêter" peuvent ne pas être accessibles ou sembler ne pas fonctionner. Le taux de rafraichissement permet dans le cas de nombreux calculs d'éviter de ralentir ses derniers par l'affichage graphique.

2 - Graphique

Lorsque la fonction principale choisie pour le calcul est paramétré pour affiché un graphique, ce dernier apparaît et permet de suivre l'évolution du calcul en cours. En fin de calcul, un menu contextuel (accessible par clic droit sur le graphique) permet de réaliser quelques opérations sur les données :

3 - Tableau

Ce tableau rassemble les valeurs des variables calculées définies par la fonction principale. Un menu contextuel permet de réaliser quelques opérations sur les données:

