N

N

Optimisation du graphe de décodage d’un systeme de
reconnaissance vocale par apprentissage discriminant
Shiuan Sung Lin

» To cite this version:

Shiuan Sung Lin. Optimisation du graphe de décodage d’un systéeme de reconnaissance vocale par
apprentissage discriminant. domain_ other. Télécom ParisTech, 2007. English. NNT: . pastel-
00002785

HAL Id: pastel-00002785
https://pastel.hal.science/pastel-00002785
Submitted on 24 Jan 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://pastel.hal.science/pastel-00002785
https://hal.archives-ouvertes.fr

TELECOM

Ecole Doctorale
d'Informatique,
Télecommunications

et Electronique de Paris

PARIS

école nationale
supérieure des
télécommunications

These

présentée pour obtenir le grade de Docteur
de I'Ecole Nationale Supérieure des Téléecommunications

Spécialité : Signal et Images
Shiuan-Sung LIN

Optimisation du graphe de décodage d’'un systeme de
reconnaissance vocale par apprentissage discriminant

Soutenue le 5 juin 2007 devant le jury composé de :

Jean-Paul Haton Président
Paul Deléglise Rapporteurs
Kamel Smaili

Claire Waast Examinateurs

Guillaume Gravier
Gérard Chollet Co-directeur de these

Francois Yvon Directeur de these

Quand deux chemins s'ouvrent a toi, choisis toujours le plus difficile.

« Himalaya, I'enfance d'un chef »

Remerciements

J'exprime ma profonde reconnaissance a Monsieur le Professeur Frangois Yvon,
pour son appui, les discussions enrichissantes et conviviales, le temps qu'il m'a
consacré, mais aussi pour les responsabilités qu'il m'a données, je I'assure de ma
profonde reconnaissance.

Je tiens a remercier tout particulierement Monsieur le Professeur Gérard Chollet
pour m'avoir accueilli dans son équipe de recherche et encadré durant ma these.

J'aimerais ensuite remercier tous les membres du jury: Monsieur Jean-Paul
Haton, Monsieur Paul Deléglise, Monsieur Kamel Smaili, Madame Claire Waast et
Monsieur Guillaume Gravier, pour leurs remarques et leurs conseils sientifiques.

D'autre part, je remercie Hemant Misra, pour ses précieux conseils de rédaction,
qui ont permis I'accomplissement de ce travail dans une ambiance sympathique
et chaleureuse.

Je remercie également mes ami(e)s Eduardo Sanchez-Soto, Amit Kumar,
Stéphane Renouard, Djamel Mostefa, Brice Donval et Leila Zouari, pour leur aide
et leurs encouragements.

Enfin, je tiens a remercier mes parents et Jamie, pour leur soutien tout au long de
mes études en France.

Contents

RESUME ... ————————- i
1 0000 o0 10 L U 50) 1
1.1 The Problem Of ASR ..t sessssssesssssssessssssesseees 1

1.2 Objective of the ThesSiS. ... 3

1.3 Contribution of the Thesis..... e sessseeeeseens 4

1.4 Thesis OrganiZation ... sessssssesssesssessssssssssessees 5

2 Speech Recognition: An OVErVIEeW ... 7
2.1 History and DevelopmeNntsceeeeiemsesnessnsssssssesssesssssssssssesssssssssssssssens 7
2.11 Bayes DecisSion Theory ... ssessssssssssssssssessessssees 7

2.1.2 The Statistical Paradigm......ccooenenennessnsessessesssesssssssesens 8

2.1.3 SEATCH oo 10

2.1.4 Current APPliCatioNS ... 12

2.2 Statistical Models and RESOUICES.......coueurieerreererseesserseessessesseessesssessesssessesses 13
2.2.1 1D (615 o) 0 b= 1 oy 2 13

2.2.2 AcOUSEIC MOAELS ..ot 14

2.2.3 Language Modeling.......oemesseenesssessessesssessssessesssssssssssssssees 18

2.3 SEATCH STIateY ..covereecerreererreesesseesresses s sses s sessse s ss s sssssssssessesssesans 26
2.3.1 Dynamic Style Beam Search.......ncsessseseesesnens 26

2.3.2 A% SEATCRH oo 30

2.3.3 Decoding on Static Graphs......eeesesesssessessssssssssssssens 33

2.4 Summary and DiSCUSSION ...vvineneseressesssessssssssens 37

3. Discriminative Training on Static Decoding Graphs.......c.ccocovesesereseens 39
3.1 Discriminative TralNing ... 39

3.2 Training Criteria ... sssssass 40
3.2.1 Maximum Mutual Information ... 41

3.2.2 Minimum Classification EITOT.......oeerereeessessssessessenns 42

3.2.3 Other Training APProacheseeneenesneesessesseesesssesseens 47

3.3 Problem FOrmulation.......esssssssssesssessssssssssesssenns 49

3.4 Training PrOCEAUIE ...t sesssessessssssessssssessssnes 51

3.5 Parameter Update RUIEcnrnreniecresesesssessessesssessssssesssesseenns 53
3.5.1 Choice 0f @ WOTd Pairoceereereereeeesseesesseesesseesseseessesssessesssesssesseens 53

3.5.2 Update POSITIONveeceeeeessesseessssssssesssesssssssesssesssssssesssesssssssssssesaens 54

3.5.3 Parameter SEleCTiON ... e 55

I TSI € =01 W 00} o 3 6 o8 Vot (o) o 000 OO 58

3.6.1 Weighted Finite-State TranSAUCETScoenreeneereenresseesseeseesseenes 58
3.6.2 PIINCIPLE oottt s s sssssens 63
3.6.3 WEST Representation ... eeenessesssssssssesesessessessssees 64
3.6.4 GIraph OPerationsS.....creereeseesssseessessesesessessessssssssssssssssssssssessssssssssas 70
3.6.5 WeEight PUSHING ...t seeseeeesseessseessesessse s ssessssessssssssssesans 71

3.7 Implementation: Design for Fast Decoding.......ccenenenmeenensensessnennes 75
3.7.1 Computation Bottleneckeneenreeneenreneesseeseeseeseeseesseesseeseesseens 75
3.7.2 LOOK-UP Table...ereerereereireiseseesesesessesssssssssssesessesssssssssssssssssssssenns 76
3.7.3 PSEUAO-SOTEING ... rteueeeereeeerreeeesseesee e seeses e es s neans 79
3.7.4 Sub-Graph EXtraction.......eneneeeesesssesssssssssssssssessessesssssssnns 79

7R N 01 40110 oy 83
4, EXPeriments.......cocussmsmsemsmssmsmssmsmssnss 84
4.1 Study on Small Vocabulary SYyStem.........ceomeeneeneenseeseeseensessessesseessessnees 84
4.2 The ESTER Databasec.coumemernermeeseesseessessesssesssessssssssssesssssssssssssssssssssssees 85
4.3 EXPerimental SETUDcoereneeeneeeeeeessessesssessessesssessessesssssssssesssessssssssssssssens 87
43.1 ACOUSEIC MOAELS ...t sesssssse s sesssssssesanes 87
4.3.2 Language Model and Graphooeneensenesseessesseeseeseenns 87
4.3.3 Parameter SettingS ... sessessssssssenes 91

4.4 Experimental RESUILS ... ssessse e sssesssssens 92
4.4.1 Decoding EffiCIENCY ... sssssssssssssssssssssens 92
4.4.2 Fixed and Dynamic Learning Rate.......c.oenenneenseneenseeseesneens 94
4.4.3 Deterministic versus Random Update.......oneemenemsenneensesneesnenns 96
4.4.4 Error Rate Reduction on a Large Graph......neonenneeneenn. 97
4.4.5 Training with a Larger Data Set...... s 100

4.5 Improvements and DiSCUSSIONoomenreereererneessesssessssssessessssssessssssesssssesans 102
4.5.1 Detailed Analysis of the COrrections ... 103
4.5.2 Number of Graph Updatescomeneneenmeeseeseeseesseessesseessesseesseenns 105
4.5.3 SCOTE DIffErENCE...ueeeerrereerreesreeeseersessess s ss s sseessseans 106
4.5.4 Coverage of WOord Pairs......eneneseeseeseessesseesessssssessessesnns 107
4.5.5 DISCUSSION oovrvurenreseeseessseessesssesssesssesssesssesssesssssssesssessssssssssssesssssssssssssans 109

5. Conclusion and Perspectives........usssssssss 111
5.1 Integrated Decoding Graph......nssesessssssssssssssssssses 111
5.2 Efficiency and IMProVeMENLScoereereeereereeseessessessesssessesssessessessssssees 112
5.3 FULUIE DIir€CtIONS...ccuieeeeeeseeseerseesseessesssesssesssssssssssssssessssssssesssesssssssssssssssessens 113
APPENAIX s ————— 115
A, Derivation Of MCE ... sesssessesssssessssssesans 116

B.1. LY o WAV 28 27 0] & 0 4 12 | o 120

B.2. Graph Representation of LM ... 121
O 25y q70) ull 3= 10 ot (o) o 00PN 122
C.1. WER 01N Graphl . ceseeeeeeeseeeeesesssesessessessesssesssssssssssssssssssesans 122
C.2. WER 0N GTraphZ ... eseieessesseesesessesssssssssssssesssssesssssssssssssseanes 123
C.3. Performance on the Test Set ... 125
D. PubliShed Papers.... i sssssssss s ssssssssesssssssssssens 126

Bibliography ... 135

List of Figures

Figure 1: Performances du systéme en fonction du positionnement de la mise a

Figure 2.1: Probabilistic speech recognition frameworkK. ... 8
Figure 2.2: Word graph expansion and search. When tokens reach the root of a
lexical tree, language model probabilities are taken into account to

determine the best hypothesis. ... 29
Figure 2.3: Recognition cascade from HMMs to word sequence.coueneereereennens 35
Figure 2.4: A non-deterministic FST. Each arc carries input symbol, output

symbol and transition Weight. ... 36
Figure 2.5: A deterministic FST where redundant arcs are eliminated. States are

E2 100 1= 100401 0=) /= PP 36
Figure 3.1: Sigmoid functions with different 7 ... 44

Figure 3.2: Flowchart of MCE discriminative training on integrated decoding
graph. The I and D are training iterations and size of data set
TESPECLIVELY . coueuieeerseseessesssis s bbb 52

Figure 3.3: An example of decoded paths represented by solid lines. The dotted
lines are possible paths in the graph. {a;,a;,..,as} are weighted
transitions and {W;,W,,W;} are output word labels........ccooreerrreenren. 55

Figure 3.4: Parameter adjustment with respect to score difference in (0,200)
where 200 is the upper bound. L is the loss function and the learning
TALE ETT0. coeueeceereesseesees e es s s s s s 56

Figure 3.5: Search for the best learning rate........onneneenseneesseeseesseesessessesseees 57

Figure 3.6: A 3-gram language model in the form of a weighted finite-state
acceptor. The dotted rectangles are examples of 1-gram (state 3) and
2-gram histories (state 7 and 9). Initial state is 0 and final state is 12..65

Figure 3.7: Disambiguation of pronunciation sequence by introducing auxiliary

074001010 FS3E 23 o VOO 66
Figure 3.8: Transducer of the pronunciation dictionary.cooeeneeeneesseseesseeneens 67
Figure 3.9: Graph representation of CI to CD phone mapping. The arc carries the

CI phone input, the CD phone output and a null transition weight......... 68
Figure 3.10: CI phone representation of “addis”. ... 68
Figure 3.11: CD phone representation of “addis”.coerenreneenmeeneeneensesseessesseesseenees 68
Figure 3.12: The CD-phone processing rule for a graph using within-word models.

... 70
Figure 3.13: A transition that outputs a word label........onninnnniens 71

Figure 3.14: Integration of an optional SIlence. ... 71

Figure 3.15: Weight pushing algorithm. ... 73
Figure 3.16: Weight pushing in the graph. Maximum transition weight is pushed
towards the word boundary. The i is an iteration index of the
while-loop in the pushWeight function. ... 74
Figure 3.17: Decoding hypothesis redirection for merging. Tokens are over the
transitions, rather than on the STates. ... 77
Figure 3.18: Redirection procedure for tokens that are going to leave the arc....77

Figure 3.19: Pseudo-Sorting algorithm for getting the top-N tokens.......cccoueruuunee. 79
Figure 3.20: Possible paths branching from “Vin"........n 82
Figure 3.21: The paths that match the alignment string “frangais”........ccccuueeneenee. 82
Figure 3.22: Extracting the desired paths........cnnneeeesesesseses 82

Figure 4.1: Error reduction for Graph1 on the DEVSet using a dynamic learning
rate and a fixed 1€arning rate....... s 95

Figure 4.2: Error reduction for Graph1 on the TESTSet using a dynamic learning
rate and a fixed learning rate. Over-fitting occurs after the 6t iteration.

... 95
Figure 4.3: WER reduction on Graph1 by deterministic and random updates.....97
Figure 4.4: WER of Graph2 on the DEVSEt. ... seseeseeeeseeeesseesesseessessesseesees 99
Figure 4.5: WER of Graph2 on the TESTSEeL. ...ocnenmrnenineneseinssssssssesssssssssssssssssesnnes 99

Figure 4.6: Reduction of confusion pairs on the TESTSet from the baseline to the
1st iteration. Discriminative training is performed on the TRAINSet.. 104
Figure 4.7: Reduction of confusion pairs on the DEVSet from the baseline to the

ST L) =0 (0§ PPN 104
Figure 4.8: Number of parameter updates on Graph1 and Graph2 using the
DEVSEL. corietrrersserseersessssessssssssssssssssssssssss s ssssssssses s ssssssss s s sssssssassssses 106

Figure 4.9: Number of files within the range of score difference. Experiments are
performed on Graph?2 over the development set.comenenrenrernseseennens 107

Figure 4.10: Number of occurrence and the coverage of word pairs in the training
Set and iN the TESE St 108

List of Tables

Table 1: Le nombre de n-grams, la perplexité et le WER de baseline de graphe de

décodage INAIVIAUELLE. ...ttt ses s viii
Table 2: La réduction de WER sur le DEVSet et sur le TESTSet, en utilisant des

graphes de taille diffErente. ... xi
Table 3: La réduction de WER en utilisant les données différentes.ccconuerrrernnee Xi
Table 3.1: WFSTs and operations for graph construction.ooeneeeseenseeseenseeseenn. 63
Table 4.1: Data sets for running the eXperiments. ... 86
Table 4.2: Language models and graphs used in our experiments.ccoccovenreereenn. 89
Table 4.3: The n-gram order, number of n-grams and perplexity of individual

language models. LM3 contains all 2-grams of LMO.cccneoneennerneeneeneens 90
Table 4.4: Evolution of graph size when constructing Graph1.......nn. 90
Table 4.5: Evolution of graph size when constructing GraphZ.........onrennenn. 90
Table 4.6: Evolution of graph size when constructing Graph3.........oneonnenn. 90
Table 4.7: Parameter settings for discriminative training and testing.........ccccueeen. 91

Table 4.8: Baseline results of three integrated decoding graphs on the DEVSet.
Substitution errors are significantly reduced if the graph is constructed
from a better language MOdel. ... 92

Table 4.9: Decoding speed in real-time factor and memory allocation of graphs.

... 93
Table 4.10: Number of word pairs in the data Set. ... 102
Table 4.11: Error rate reduction after the 1stiteration on the training set.......... 102
Table 4.12: Error rate reduction after the 1stiteration on the test set.......c.cc....... 102
Table 4.13: Top 10 confusion pairs on the TESTSet. One iteration of

discriminative training is performed on the TRAINSet......ccccoereniecrreneee 104

Table 4.14: Top 25 confusion pairs for the baseline system. The two columns on
the right of the table show the reduction of confusion pairs from the

baseline to the 6t iteration on the DEVSet.cocoomeneenecenneenneeneesseeeeeens 105
Table 4.15: Comparison of transition paths. ... 109
Table C.5.1: Error reduction of Graph1 on the DEVSet.onernenrennernseseensesneenne 122
Table C.5.2: Error reduction of Graph1 on the TESTSet.ocornereeneeneennerreereeseenreenne 122
Table C.5.3: Error reduction of Graph2 on the DEVSet.ooncrnenrenneesseseenseeneenne 123
Table C.5.4: Error reduction of Graph2 on the TESTSet.ocovnereeneereenneereerreeseeereenne 124
Table C.5.5: Four different recordings in the test set and associated with an index.

.. 125
Table C.5.6: WER on each source before discriminative training..........c.ooenn. 125

Table C.5.7: WER on the TESTSet after the 1stiteration is performed on TRAINSet.

Réesumeé

Les trois principales sources de connaissance utilisées en reconnaissance
automatique de la parole (Automatic Speech Recognition, ASR), a savoir les
modeles acoustiques, les dictionnaires de prononciation et les modeles de
langage sont habituellement concues et optimisées de maniere séparée. Le
travail présenté dans ce rapport vise a proposer une méthodologie pour
optimiser de maniere conjointe les parametres de ces différents modeles. Cette
optimisation est réalisée en intégrant ces ressources dans un unique
transducteur fini, dont les poids des transitions sont optimisés par apprentissage
discriminant. Apres avoir montré la faisabilité de cette approche sur une tache
de reconnaissance « petit vocabulaire » (voir les résultats présentés dans (Lin
and Yvon, 2005)), nous étendons ici ce cadre méthodologique a une tache a
grand vocabulaire, la transcription automatique de dépéches d'information
radio-diffusées. En particulier, nous proposons plusieurs techniques pour
accélérer |'étape de décodage de la parole, ce qui permet de mettre en pratique
ces techniques d'apprentissage. Nos expériences montrent qu'une réduction de
1% absolu de taux d'erreur-mot (Word Error Rate, WER) peut étre obtenue. Nous
concluons ce travail par une évaluation critique de I'apport de cette approche sur
les taches de reconnaissance vocale a grand vocabulaire.

1. Introduction

Une large part de l'effort de recherche ASR se concentre sur I'amélioration de la
performance d'un composant spécifique du systéme, avec l'espoir qu'il en
découlera une amélioration de la performance totale. Cette démarche ignore les
multiples dépendances qui existent entre les diverses sources de connaissance
impliquées dans un systeme de reconnaissance. Par exemple, le design et
I'estimation des modeéles acoustiques dépendent de la finesse des variantes de
prononciation qui se trouvent effectivement dans le dictionnaire de
reconnaissance: un petit dictionnaire peut supporter les modeles simples, mais
un systeme a grand vocabulaire nécessitera des modeles plus complexes. De
méme, les modeles de langage sont estimés séparément des autres sources, en
utilisant des corpus tirés parfois de domaines et/ou de registres différents, et
toujours beaucoup plus volumineux que ceux disponibles pour estimer les
modeles acoustiques. De surcroit, la plupart des approches de modélisation
effectuent séparément l'estimation des parametres de chaque ressource, en
supposant que tous les autres parametres sont fixés. La dépendance entre les
différentes ressources est donc ignorée, résultant en des performances
sous-optimales pour chacun des modules.

Disposer de procédures d'estimation fiables pour les parametres des divers
modeles impliqués dans le systéme reste donc une question clé pour obtenir de
bonnes performances. Dans la littérature, la stratégie d'évaluation la plus
géneéralement utilisée est I'estimation par optimisation d'un critere de maximum
de vraisemblance (Maximum Likelihood Estimation, MLE). Cette approche
conduit a estimer les parametres d'une facon telle que la vraisemblance des
observations soit rendue maximale. Les principes de MLE reposent sur la
disponibilité de grands corpus d'apprentissage. Toutefois, 1'amélioration des
estimateurs sur un corpus d'apprentissage ne garantit pas que de meilleures
performances seront obtenues au moment du décodage (Chen et al, 2000). Cette
constatation a mené des chercheurs a explorer d'autres techniques d'évaluation,
notamment des techniques d'apprentissage discriminant (Discriminative
Training, DT). Contrairement a MLE, les méthodes d'apprentissage discriminant
visent a trouver des valeurs pour les parametres qui optimisent la séparation
entre les bonnes et mauvaises hypotheses de reconnaissance, et qui minimisent
plus directement le taux d'erreur du systéme. Ces approches reposent sur la
formulation d'une fonction objectif qui, d'une certaine maniere, pénalise les
parametres qui conduisent a des confusions entre des mots corrects et
incorrects.

Ces dernieres années, diverses méthodes d'apprentissage discriminant telles que
Maximum Mutual Information (MMI) (Bahl et al., 1983) et Minimum Phone Error
(MPE) (Povey and Woodland, 2002), ont permis d'améliorer, parfois de maniere
considérable, les performances des modeles acoustiques utilisés en
reconnaissance vocale. Des techniques d'apprentissage discriminant ont
également permis d'obtenir des améliorations significatives en modélisation du
langage, s'appuyant sur des techniques d'optimisation telles que le Minimum
Classification Error (MCE) (Chen et al., 2000), Minimum Sample Risk (MSR) (Gao
et al, 2005), ou encore des techniques de reclassement (reranking) basées sur
des variantes l'algorithme du perceptron (Roark et al., 2004).

Les avancées récentes des systemes d'ASR ont également mis en évidence
l'utilité du formalisme des transducteurs finis pondérés (Weighted Finite-State
Transducers, WFST), qui fournissent un formalisme commun pour représenter
de facon homogene les diverses sources de connaissance utilisées en
reconnaissance vocale (Mohri, 1997). Un WFST est une machine a nombre
d'états fini, dont les transitions sont étiquettées par des symboles d'entrée, des
symboles de sortie et des poids arbitraires. Une séquence de transitions de 1'état
initial a 1'état final d'un WFST représente une relation pondérée entre un mot de
I'alphabet d'entrée et un mot de l'alphabet de sortie. En utilisant des

transducteurs finis pour représenter les divers composants d'un systéeme de
reconnaissance, des ressources différentes peuvent étre facilement intégrées
dans un espace de recherche doté d'une structure simple. Divers algorithmes
permettant d'optimiser cet espace de recherche, consistant, par exemple, a
determiniser! et a minimiser le transducteur, peuvent alors étre appliqués
hors-ligne, avant le décodage. Ces techniques d'optimisation éliminent les arcs et
les états redondants, conduisant a un espace de recherche équivalent, mais qui
pourra étre exploré de facon plus efficace.

Ce travail de these vise a combiner ces deux techniques dans un cadre
d'apprentissage unifié : les WFSTs sont employés pour représenter de maniere
homogeéne les diverses sources de connaissance dans un transducteur pondéré
dont les parametres sont estimés par apprentissage discriminant. Des résultats
préliminaires, portant sur une tache de reconnaissance « petit vocabulaire », ont
été présentés dans (Lin and Yvon, 2005). Ces résultats positifs sur la
reconnaissance de noms propres ont été récemment confirmés par (Kuo et al,
2007), qui rend compte d'une réduction d'erreur significative sur une application
de reconnaissance « grand vocabulaire ». Dans ce mémoire, nous présentons de
maniére compléte le cadre d'apprentissage proposé, nous décrivons les
adaptations algorithmiques rendues nécessaire par le traitement de gros
volumes de données et nous détaillons et analysons les performances de notre
systéeme sur une tiche de reconnaissance d'émissions radio-diffusées. Nous
discutons finalement le potentiel et les limites de cette approche, avant
d'évoquer les diverses perspectives qu'elle s'ouvre.

2. Apprentissage discriminant des

parametres du graphe de decodage

2.1 Lecritere MCE

Soit G est un graphe de décodage a états finis, intégrant les différentes ressources
nécessaires a la mise en ceuvre d'un systeme de reconnaissance vocale. G

1La question de la déterminisation d'un transducteur fini est une question complexe. Il existe
plusieurs manieres d'envisager le déterminisme de ces machines (déterminisme au sens des
automates sous-jacents, déterminisme de l'entrée, etc) (voir (Roche and Schabes, 1997)). Il
n'est par ailleurs pas toujours possible d'opérer une telle opération de maniére exacte. Nous
entendons donc ici ‘déterminisation’ en un sens assez lache, désignant l'ensemble des
techniques exactes ou heuristiques qui permettent d'éliminer certains chemins redondants
dans le graphe d'état.

contient deux types de parametres: les poids des transitions entre états et les
parametres des modeéles acoustiques des densités Gaussiennes associés aux états
émetteurs du graphe. Etant donnée une séquence de mots W, un ensemble de
modeles acoustiques A, un ensemble de poids entre transitions I' et une
séquence d'observations acoustiques X, la log-probabilité conditionnelle de X
sachant W est approchée par le score du meilleur chemin dans G pour l'entrée X
et la sortie W. Ce score comprend les log-vraisemblances acoustiques et les poids
de transition sur le chemin d'acces (décodé):

g(X,W,A,T)=a(X,W,A)+bW,I) (1)

ou a(X,W,A) estla somme des log-vraisemblances acoustiques et b(W,I") est la
somme des poids de transition sur le chemin de I'état initial a 1'état final du
graphe. Le décodage de la parole consiste a trouver une hypothese Wy,
correspondant a la séquence de mots qui maximise g parmi toutes les séquences
de mots possibles.

Si I'on note Wy la séquence de mot correcte, la performance du systeme de
reconnaissance peut étre exprimée en fonction de la différence de score entre la
référence et la meilleure hypothese. Pour un vecteur acoustique d'entrée donné,
la fonction de misclassification est alors définie par:

d(X,A\T)=—g(X, W, A,T) + g(X, Wy, A,T) (2)

Une hypothése incorrecte se traduit simplement par valeur positive de d(X,A,T"),
signifiant que la séquence de mots correcte n'est pas celle qui obtient le meilleur
score au sens de la fonction g. En intégrant /(X,A,I') dans une fonction de perte
continiment différentiable on dérive d(X,A,I’) par:

1
HdX A D)= 1+exp(—yd(X,A,T)+6) 3

ou y et @ sont des parametres qui controlent respectivement la pente et le
facteur de décalage de la fonction sigmoide. En utilisant l'algorithme Generalized
Probablistic Descent (GPD), une procédure itérative standard peut étre définie,
basée sur la regle suivante de mise a jour des parametres pour les poids de

transition:
[=T —eVIX,ATY) (4)

En supposant que les parametres des modeles acoustiques sont fixés et ne sont

pas concernés par l'apprentissage, la fonction de perte ne doit étre différenciée
que par rapport aux poids de transition. Le gradient de (4) vaut alors:

o, 8di(X,A,T)

V(XA T)= 5
() od; or)
Le calcul de (5) fait finalement apparaitre les deux termes suivants (6) et (7):
- (6)
adl- 7 i i
od;(X,A,T
SRR 1 Wry,5)+ Wi,) 7)

ou I(W,s) représente le nombre d'occurrence de la transition s sur le meilleur

chemin de décodage pour W.

2.2 Laregle de mise a jour de parametres

La mise en ceuvre du cadre d'apprentissage MCE implique de régler divers
parametres, en particulier les parametres y et & qui représentent
respectivement la pente de la fonction sigmoide qui transfere la mesure de
mis-classification dans l'intervalle [0,1], et un terme qui controle 1'amplitude de
la mise a jour les parametres. Elle implique également, pour calculer le terme (7),
de pouvoir disposer de la séquence complete d'états parcourue a la fois pour la
meilleure hypothése de reconnaissance, qui doit étre mémorisée pendant le
décodage, mais aussi pour la séquence de mots de référence. Il est donc
nécessaire de récupérer, par alignement, le meilleur chemin complet (c.-a-d. au
niveau de phone) pour la référence. Enfin, mettre en application la régle de mise
a jour (4) exige de résoudre deux problémes: 1) le choix des n-grams qui sont
comparés dans la séquence hypothése et dans la référence et 2) la position
exacte de la transition qui sera affectée par la mise a jour des poids de transition.

Puisqu'un mot décodé correctement peut suivre un mot incorrect, signifiant que
la mise a jour des parameétres se basera sur une « histoire » de mot incorrecte,
nous nous concentrons sur la relation entre deux mots consécutifs plutét qu'une
certaine histoire de mot. Diverses expériences nous ont permis de réaliser que la
sélection de l'arc qui est mis a jour a une grande influence sur la distribution
globale des poids de transition. Dans notre implémentation, 1'arc dont le poids
est mis a jour est choisi aléatoirement avec probabilité uniforme parmi tous les
arcs candidats possibles.

Vi

Enfin, le choix de la valeur y détermine l'effet de la différence de score entre
référence et hypothese sur la valeur de I'ajustement des parametres. Diverses
expériences nous ont permis de montrer que le choix de y= 0.02 est un choix
raisonnable. L'amplitude de la mise a jour & est déterminée dynamiquement
pour chaque échantillon d'apprentissage, en employant une technique de
line-search, afin de donner une mise a jour efficace des parametres tout en
préservant la stabilité de la convergence.

2.3 Implémentation

Le graphe de décodage est construit en compilant les différentes ressources
impliquées dans le systéme de reconnaissance vocale, c'est-a-dire le dictionnaire,
les modeles acoustiques et le modele de language, sous la forme de
transducteurs finis pondérés (Weighted Finite-State Transducers, WFST). En
utilisant des algorithmes standard de construction et de manipulation de
transducteurs finis, en particulier 1'opération de composition, il est possible de
combiner des représentations de niveaux différents? dans un graphe simple. La
déterminisation est employée pour réduire la taille du graphe en éliminant les
chemins redondants, c.-a-d. ceux qui conduisent aux mémes séquences d'entrée
et de sortie ; le graphe ainsi produit est équivalent au graphe original mais plus
efficace. Un silence facultatif (modele court de pause) est ajouté aux frontieres de
mot; finalement, une pénalité d'insertion de mot (Word Insertion Penalty, WIP)
est ajoutée pour équilibrer la longueur des enchainements de mot sortie.

Notre décodeur effectue la recherche de la meilleure hypothése en employant
'algorithme de passage de tokens (token passing, (Young et al,, 1989)) dans un
graphe fini. Pour accélérer la propagation des tokens sur les e-transitions, la
relation de e-cléture entre les états du graphe est pré-calculée et stockée dans
une table. Cette table est construite hors-ligne en traversant le graphe et en
enregistrant les séquences de e-transition. Pendant le décodage, cette table est
utilisée pour propager les tokens depuis un état source vers tous ses successeurs
(directs ou indirects), sans qu'il soit nécessaire de reparcourir le graphe.

Nous l'avons noté précédemment, notre procédure d'apprentissage nécessite
une phase préalable d'alignement. Le probleme de 1'alignement est différent de
celui décodage : il s'agit de trouver dans le graphe tous les chemins qui peuvent
donner lieux a la production d'une séquence de mots W donnée.

2 C'est-a-dire employant des alphabets d'entrées/sorties différents: transduction de séquence
d'états de HMMs en séquences de phones contextuels, de séquences de phones contextuels en
séquences de phonemes, etc.

vii

Conceptuellement, ceci revient a calculer l'intersection du langage de sortie du
WEFST avec W. Notre approche utilise le principe général de l'inversion de
transducteur, opération qui consiste a échanger les symboles d'entrée et de
sortie sur chaque transition. En recherchant W dans ce graphe inversé, les
séquences phonétiques correspondantes peuvent étre ainsi étre calculées a
I'avance : elles correspondent au langage de sortie associé a l'entrée W dans le
graphe inversé. Les graphes ainsi extraits se composent généralement de
quelques centaines d'états et d'arcs, et dépendent peu de la taille du graphe
original.

Il est possible de distribuer les poids des transitions d'un WFST sans en changer
la sémantique, c'est-a-dire sans changer la valuation globale des relations
définies par le transducteur. Dans les systemes d'ASR, la distribution locale de
ces transitions est en revanche cruciale, dans la mesure ou elle a un effet tres
direct sur l'efficacité de 1'élagage qui est opéré pendant la recherche. De
nombreux travaux ont ainsi mis en évidence le fait que si la probabilité est
correctement redistribuée, l'efficacité de 1'élagage et la vitesse de décodage
peuvent étre sensiblement améliorées (Mohri and Riley, 2001). Nous avons
développé un algorithme original de redistribution des poids le long des
transitions du graphe d'état. Cet algorithme est conceptuellement semblable a
I'algorithme dit "tropical semiring" présenté par (Mohri, 1997) et fonctionne
comme suit : le graphe est tout d'abord renversé (c.-a-d. que l'orientation de
toutes les transitions est renversée) ; pour tous les états, le poids de la transition
de poids maximum parmi les arcs entrants est « poussé » vers la frontiere de mot
la plus proche; finalement le graphe est de nouveau renversé. Cette stratégie est
appliquée tout en prenant garde que des poids ne deviennent trop petits, ce qui
pénaliserait trop fortement la transition correspondante. Cet algorithme a une
complexité en temps comparable a l'algorithme de (Mohri and Riley, 2001), mais
est plus efficace en d'espace, car il posséde une complexité seulement linéaire en
le nombre d'états.

3. Expeériences

3.1 Protocole expérimental

Nos expériences sont effectuées sur la base de données développée a I'occasion
de la campagne d'évaluation ESTER (Gravier et al.,, 2004). Cette base de données
contient des enregistrements de journaux d'information émis sur plusieurs
radios francophones. Approximativement 63 heures de données manuellement

viii

transcrites (constituant le TRAINSet) ont été employées pour estimer les
parametres des modeles acoustiques et d'un modele de langage 3-gram (LM).
L'ensemble de développement (DEVSet) et de test (TESTSet) contiennent
respectivement 5.33 et 2.954 heures d'enregistrement.

Nos modeéles acoustiques contiennent initialement un ensemble de 21466 HMMs,
correspondant a des phones contextuels, auxquels s'ajoutent 1369 nouveaux
modeles que nous avons été conduits a synthétiser lors de la procédure de
construction du graphe de décodage. Chaque modele se compose de 3 états, a
I'exception du modele de pause courte, qui représente un court silence entre
mots, et ne comprend donc qu'un seul état. Cet ensemble de modeles contient un
total de 6238 états distincts, chacun étant associé a une fonction de densité de
probabilité a 39-dimensions, qui prend la forme d'un mélange de 32 Gaussiennes,
(lIa matrice de covariance est supposée diagonale).

Deux modeles de langage 3-gram sont utilisés pour construire les graphes de
décodage: le premier est le modele 3-gram mentionné ci-dessus; le second est
modele 3-gram beaucoup plus grand obtenu par l'interpolation linéaire de
plusieurs modeles estimés sur des archives du journal LeMonde, couvrant
approximativement 400 Millions d'occurrences de mots. Ces deux modeles de
langage sont batis sur des vocabulaires de 65~000 mots. Les graphes résultant
contiennent respectivement 824,845 états pour 1,655,723 arcs et 6,997,044
états pour 19,676,349 arcs. Divers parametres supplémentaires jouent un réle
dans la construction du graphe: a est employé pour équilibrer les scores de
modeles acoustiques et de langage dans le log-domaine ; une pénalité d'insertion
de mots (WIP) permet de réguler le « débit» du décodeur. En employant des
valeurs empiriquement déterminées pour a, y et WIP, le taux d'erreur de mots
(WER) du systeme de base (avant apprentissage) pour chaque graphe de
décodage est donné dans la table suivante:

LM 2-gram 3-gram Perplexité | Baseline
Graphl | 248739 102461 158.92 459
Graph2 | 5052090 | 4033834 86.42 37.9

Table 1: Le nombre de n-grams, la perplexité et le WER de baseline de graphe de
décodage individuelle.

3 Toutes les données de développement n'ont pas été utilisées : seules peuvent sont exploitables
pour 'apprentissage discriminant les phrases qui ne contiennent aucun mot hors vocabulaire.

4 Pour limiter les temps nécessaires a la réalisation des expériences, nous nous sommes limités
aux données enregistrées sur 3 radios parmi celles figurant dans les radios de test.

Le décodeur utilisé dans nos expériences fonctionne respectivement a 0.7xRT et
a 3xRT sur Graphl et GraphZ2 sur un processeur 3.6Ghz Xeon>. Les procédures
d'alignement arrivent a 0.05xRT. Des décodeurs plus rapides ont été décrits dans
la littérature (voir par exemple (Saon et al., 2005)), mais ces décodeurs ont sur le
notre l'avantage de ne devoir sauvegarder et mettre a jour que l'historique
complet des hypotheses de mots. Dans ce cas, des informations cruciales pour
I'apprentissage discriminant, en particulier la séquence compléete des transitions
sur le long du chemin correspondant a la meilleure hypothése de décodage, ne
sont pas sauvegardées durant la recherche. Notre décodeur doit stocker et
mettre a jour l'historique complet des quelques 20~000 hypothéses qui sont a
chaque instant évaluées pendant la recherche, entrainant un surcroit d'activité
trés significatif: ceci explique pourquoi notre décodeur ne parvient pas a
effectuer une recherche en temps réel sur de tres grands graphes.

3.2 Résultats

Sélection déterministe ou aléatoire des transitions mises a jour

Dans notre cadre d'apprentissage, les hypothéses de décodage et la référence
sont représentées par les séquences de phones ayant donné lieu a des séquences
de mots; en revanche, la comparaison de I'hypothése et de la référence, qui est
sous-jacente au calcul du WER et détermine donc les mises a jour des parameétres
se fait au niveau des mots. Le critere MCE ne prescrit pas avec précision la
transition qui doit étre mise a jour quand une erreur est détectée. Ceci nous
laisse plusieurs options : 1) distribuer la mise a jour tous les poids sur le long des
chemins partiels qui correspondent a une erreur de décodage, ou bien 2) choisir
(de maniére déterministe ou aléatoire) un unique arc qui sera mis a jour. Enfin se
pose la question de la mise a jour des transitions correspondant a des arcs de
repli (back-off) dans le modele de langage : mettre a jour ces arcs entraine des
modifications globales dans le graphe, puisque tous les chemins qui vont utiliser
ces transitions sont en fait affectés par la mise a jour.

Notre implémentation traite des transitions de repli comme des transitions
régulieres et considere que l'ajustement des parameétres du graphe ne porte que
sur un seul des arcs des chemins correspondant a des erreurs. Diverses
expériences ont été effectuées en utilisant Graphl, a partir de la baseline

(WER=35) sur le DEVSet. Deux stratégies de mise a jour déterministe (mise a

5 Les chiffres sont obtenus en pré-calculant hors-ligne les vraisemblances acoustiques. Nous
estimons qu'intégrer les calculs de ces vraisemblances augmenterait le temps d'exécution par
moins de 0.7xRT pour le décodage et par approximativement 0.1xRT pour l'alignement.

jour sur le premier arc disponible et mise a jour sur le dernier arc) sont
comparées avec une stratégie aléatoire (voir la Figure 1). La stratégie de mise a
jour aléatoire converge non seulement plus rapidement, mais atteint également
un WER inférieur, confirmant nos résultats présentés dans (Lin and Yvon, 2005).
Cette stratégie est employée dans toutes les expériences suivantes.

36

—O— arc aléatoir
—<— premier arc
—¥—— dernier arc

35.5¢

34.5¢

34/

WER

33.5¢

33

32.5¢

32

31.5

Itérations

Figure 1: Performances du systeme en fonction du positionnement de la mise a jour.

Réduction des erreurs sur un grand graphe

Un graphe de décodage contient un grand nombre de parametres. Certains des
parametres, notamment les poids des transitions, ne sont pas entiéerement
indépendants. Ceci a pour effet de rendre difficile la convergence du processus
d'apprentissage vers le taux d'erreur minimum.

Cependant, un grand graphe fournit habituellement une meilleure baseline pour
le DT. Par conséquent, étant donné la méme quantité de données d'apprentissage,
nous comparons deux graphes de taille différente: le DT est effectué en utilisant
DEVSet sur Graph1 et Graph2. TESTSet est employé pour évaluer l'exécution d'un
graphe de décodage apres l'ajustement de parametre. Apres 8 itérations, nous
obtenons les résultats présentés dans la Table 2.

L'amélioration sur le DEVSet est semblable pour les deux graphes, les
performances de GraphZ2 fournissant une baseline bien meilleure. Sur le TESTSet,
la réduction de WER est plus petite (-1% absolu), dont la moitié est obtenue
apres la 1lere itération.

Xi

DEVSet TESTSet
Graphl 35—31.6 (-3.4) 45.9—-44.9 (-1)
Graph2 28.5—25.1 (-3.4) 37.9—37 (-0.9)
Table 2: La réduction de WER sur le DEVSet et sur le TESTSet, en utilisant des
graphes de taille différente.

Dans des applications pratiques, un graphe peut étre construit a partir d'un
modeéle de langage contenant un grand nombre de n-gram, alors que le nombre
de paires de mots dans l'ensemble de développement qui est employé pour
optimiser le graphe est comparativement beaucoup plus petit. Ceci signifie que le
DT met a jour seulement une petite fraction des poids de transition. Dans la
section suivante, afin de mieux évaluer le potentiel de cette approche, nous
employons une plus grande base de donnée pour l'apprentissage discriminant.

Apprentissage avec une grande base de donnée

Ces expériences sont effectuées en utilisant Graph2 comme pointe de départ. Une
seule itération d'apprentissage est effectuée en utilisant l'intégralité des 62
heures de TRAINSet pour le DT. Cet ensemble de données contient
approximativement 11 fois plus de paires de mots que DEVSet, et 7 fois plus de
paires de mots différents. Les résultats sont présentés dans la Table 3. En
utilisant plus de données, les résultats de décodage sur le TESTSet donnent une
amélioration de 1.1 points du WER dés la 1ere itération, approximativement 3
fois plus que ce que I'on obtient en utilisant le seul DEVSet.

Sub. Del. Ins. WER

DEVSet 23.1 12.0 2.4 37.5
TRAINSet 22.8 11.2 2.8 36.8
Table 3: La réduction de WER en utilisant les données différentes.

4. Discussion et améliorations

Nos expériences ont prouvé que les méthodes d'apprentissage discriminant ont
le potentiel pour réduire sensiblement le WER, méme pour les taches a grand
vocabulaire. Un premier souci est la stabilit¢ de notre procédure itérative
d'optimisation: un examen plus approfondi des résultats de l'apprentissage
indique que le nombre de mises a jour est graduellement réduit sur les deux
graphes. Notons toutefois que méme apres huit itérations, le nombre de mises a
jour de parametre opérées pendant une itération reste substantiel (de I'ordre de

Xii

quelques dizaines de milliers), suggérant que les poids de transition ne
stabilisent pas completement.

Nous avons émis I'hypothése que le DT réduit les erreurs d'apprentissage en
redistribuant les poids des transitions, rapprochant les séquences de sortie des
séquences de référence, et diminuant les différences de scores entre la référence
et la meilleure hypothése. Ceci est confirmé par 1'analyse de la différence de
scores entre la référence et la meilleure hypothese du DEVSet : au terme de 6
itérations, la différence des scores a été diminuée pour presque tous les
échantillons d'apprentissage; et 217 échantillons incorrects a l'origine (3.34%
des phrases) sont completement corrigés (la référence et 1'hypothese sont
entierement identiques).

Les résultats sur le TESTSet sont également positifs, quoique par une plus petite
marge, suggérant que notre algorithme ne généralise pas bien. En fait, une étude
des paires de mot qui se produisent dans le TESTSet et dans le DEVSet indique
qu'environ 40% des mots du TESTSet figurent également dans le DEVSet. La
situation est en fait bien pire: méme si une mise a jour est opérée sur la
transition u—v pendant I'apprentissage, il se peut que cette mise a jour ne soit
pas exploitée pendant le test a cause de la différence dans I'historique du modele
de langage (par exemple si wuv apparait dans les données d'apprentissage et
w'uv dans les données de test).

Au final, environ 2.5% seulement des paires de mots dans l'ensemble de test sont
touchées pendant l'apprentissage, montrant clairement le fait que notre
procédure de mise a jour des parametres ne peut fournir qu'une amélioration
limitée sur cet ensemble de données. L'utilisation de plus de données
d'apprentissage semble un remede efficace, quoique computationnellement
coliteux, a cette situation. D'autres améliorations de notre procédure
d'apprentissage semblent vraiment nécessaires poru rendre les mises a jour de
parametre moins locales: c'est en fait ce qui se produit avec des procédures
traditionnelles d'estimation de LM: n'importe quel nouvel exemple d'uvw
augmentera la probabilit¢ de w dans le contexte de l'uw; il augmentera
également, par une plus petite marge, la probabilité de w apres v. Deux manieres
de faire la mise a jour moins "locale"” de parameétre sont envisagées: un premiere
consisterait a considérer les N-meilleures hypothéses plutét que juste la
meilleure (voir (Kuo et al, 2002)); une deuxieme serait de considérer de mettre
a jour des arcs sur tous les alignements possibles de la référence, plutot juste sur
le meilleur. Parmi les autres voies d'amélioration, mentionnons également l'ajout
d'un facteur de régularisation dans le critere optimisé, qui aurait pour effet de

Xiii

restreindre le nombre et I'amplitude des mises a jour sur le DEVSet, ou encore la
modification de la régle de mise a jour pour essayer de maximiser la marge entre
la meilleure hypothese et ses concurrents.

5. Conclusion et perspectives

La mise en ceuvre de techniques d'apprentissage discriminant sur de grands
graphes de décodage s'est avéré calculatoirement faisable et susceptible
d'améliorer les performances du systéeme. Dans ce cadre d'apprentissage,
'optimisation des parametres est opéré sur un graphe de décodage statique dont
les poids des transitions sont ajustés itérativement. Nous avons présenté les
résultats d'expériences sur des taches a grand vocabulaire qui confirment les
résultats obtenus sur des systemes de décodage a 1'état de I'art pour l'anglais
conversationnel (Kuo et al, 2007) et nous avons discuté les avantages et les
limitations de notre stratégie d'apprentissage. Deux autres améliorations sont
envisagées: 1) obtenir un controle a grain fin de l'effet des mises a jour de
parametre. Sur un WFST « compact », la mise a jour d'un parametre change le
score de tous les chemins qui emploient cette transition, ce qui peut ai final se
révéler néfaste a l'exécution globale; 2) créer (et mettre a jour) de nouvelles
transitions autant que nécessaire, afin de réduire au minimum |'effet précédent.

En conclusion, il est enfin important de signaler que nous avons jusqu'ici
considéré que les parametres acoustiques étaient fixés. Pour quelques
échantillons d'apprentissage, la disparité acoustique est en fait si mauvaise que
la seule mise a jour des poids de transition ne permet pas de « remonter » le
score de la référence, ou le ferait au prix de changements déraisonnables des
poids. De meilleures stratégies d'optimisation qui combineraient apprentissage
acoustique et linguistique sont certainement nécessaires pour mieux faire face a
ce genre de situation.

1.1 The Problem of ASR 1

Chapter 1. Introduction

Speech is one of the most natural ways of communication for human beings. The
task which extracts the intended message content in the signal is automatic
speech recognition (ASR). Since the human speech carries not only the linguistic
information but also the personal information such as the emotion and different
characteristics of speakers, the high variability of speech signal makes it a great
challenge to yield accurate transcripts. In the past four decades, speech
recognition has converged as a scientific field in its own right, integrating various
techniques and theories from linguistics, statistics, computer science and signal
processing. Progress has been steady, yielding the development of systems
capable of robust decoding and of dealing with the high variability of speakers
and environments.

1.1 The Problem of ASR

ASR systems are generally based on Hidden Markov Models (HMMs) (Baum and
Eagon, 1967) and consider the speech signal as a discrete sequence of
observations in some high dimensional feature space. Small vocabulary speech
recognizers simply decode the input stream of acoustic features, by searching for
the most likely state sequence in the HMMs, which directly uncovers the most
likely phone and word sequence. The core of large vocabulary systems is based
on a similar principle, albeit on a more complex search space design, which
involves many HMM acoustic units (typically contextual phones), a large
dictionary and a stochastic language model. The dictionary is used to map
sequences of phonetic symbols to words, taking into account all the possible
pronunciation variants. Language models help discriminate between acoustically
confusable words based on their history.

Difficulties in ASR
Although ASR has been implemented in a wide variety of applications,
robustness in speech recognition remains difficult to achieve (Junqua and Haton,

1995). Several fundamental issues still remain to be properly addressed:

e Robustness: this covers problems related to the noise conditions,
speaking styles, accents, dialects and the acoustic ambiguity.

Introduction

2 1.1 The Problem of ASR

e Adaptation: adaptation of language or acoustic models aims to
improve the performance by adapting an ASR system to new
conditions. The target domain may not have the same vocabulary (the
out-of-vocabulary problem) or the same speakers. Furthermore,
adaptation data may be much sparser than the original training data.

e Speech recognition with limited resources: recent developments in
mobile devices have to deal with the fact that the hardware is not as
good as that in desktop computers; the memory is limited and CPUs
are less powerful.

These topics continue to attract a lot of research, especially the modeling
problem. In ASR systems, the modeling problem refers to the attempts to
simulate the speech process in a machine; this includes pronunciation modeling,
acoustic modeling and language modeling. Although many efforts have been
made on the modeling problem (Gao and Zhang, 2002; Nadas et al, 1988;
Rosenfeld, 2000; Sakti et al., 2006), several fundamental difficulties still remain
to be overcome.

Modeling Problem

(1) Acoustic Modeling

Acoustic models come from the inventory of phonetic units in a language. The
task of acoustic modeling consists in modeling the characteristics of the units
that are needed by the decoder to determine the spoken labels. Most of the
modern ASR systems use HMM based acoustic models, which involve
high-dimensional parameters. To produce a reliable set of parameters, the
maximum likelihood estimation (MLE) method (Aldrich, 1997; Bahl et al., 1983;
Sankar and Lee, 1996) is a popular choice, which has been shown to give better
performance when iterative training process is performed on a large training
data. However, due to the categorical nature of language, it is difficult to collect
adequate data to estimate a large set of parameters. Apart from the problem of
lack of data, MLE trained models do not always seem to give the best
performance (Chou, 2000; Juang et al., 1997).

(2) Language Modeling

The language model is another essential component of a speech recognition
system. It helps the decoder determine the correct word sequence and sort out
acoustic confusions. Language modeling is based on a statistical description of
language regularities from text corpus. Statistical language modeling (SLM)

Introduction

1.2 Objective of the Thesis 3

based on MLE method is a straightforward and widely used modeling technique
in speech recognition (Clarkson and Rosenfeld, 1997; Stolcke, 2002), which
attempts to estimate a reliable probability distribution for short word sequences.
However, language modeling based on MLE method suffers from the same
problems as MLE based acoustic modeling. When the model tries to capture
more complex dependencies, more parameters need to be estimated. In practice,
even in a large text corpus, the majority of the n-grams occur with very low
counts, which foster the needs for smoothing techniques (Chen and Goodman,
1996) such as discounting the maximum likelihood estimates (Witten and Bell,
1991) or backing-off (Kneser and Ney, 1995) to lower n-grams. The most
popular evaluation metric for language models is perplexity. Nevertheless, lower
perplexity may not always lead to higher decoding performance (Chen et al,
1998; Iyer et al., 1997; Printz and Olsen, 2000).

Estimation in Isolation

The three main knowledge sources used in the decoding process, namely the
acoustic models, a dictionary and a language model, are usually designed and
optimized in isolation. For instance, the design of phonetic dictionary is often
done by hand or with the help of phonological rules. The phone sequence in the
dictionary must match the actual occurrences in the database to yield the best
recognition performance. It usually requires an expert to do this labor-intensive
work, especially when variants of words need to be added to capture the
variability. Many ASR systems give a couple of alternative pronunciations for
most words and assume the pronunciations are correct for acoustic modeling.

At present, most of the research focuses on improving the training of a certain
source, with the hope that it will improve the overall system performance. This
does not consider the dependency between knowledge sources. For instance,
parameter estimation of acoustic models depends critically on the definition of
word pronunciation(s) in the dictionary. Language modeling is performed
separately from other resources using different, and often much larger, corpora.
These modeling approaches perform the estimation in isolation, assuming that
parameters of other sources are reliable. The influence among sources is ignored,
which makes it hard to reach the best performance over target data.

1.2 Objective of the Thesis

Among the many studies on ASR, this thesis focuses on the modeling problem in
speech recognition. Parameter estimation in traditional modeling approach is

Introduction

4 1.3 Contribution of the Thesis

performed in isolation and the optimization process may not yield an optimal
decoding performance. Therefore, we propose a novel training framework that
combines various knowledge sources into an integrated decoding graph and
apply discriminative training to update the graph parameters. In this unified
training framework, we attempt to directly optimize the performance of a
decoding graph, rather than indirect measures of the performance such as the
likelihood.

1.3 Contribution of the Thesis

Our contribution is not only academic but also practical.
Integrated Decoding

Although the concept of performing graph search was first implemented in the
HARPY system in 1970s (Lowerre, 1976), we further extend the concept by using
weighted finite-state transducer (WFST) to integrate various sources into a
single decoding network (Mohri et al., 1996; Mohri and Riley, 1999). The WFST
technique is a flexible and efficient representation of knowledge sources.
Moreover, various optimization algorithms can be applied off-line prior to
decoding, which improves the decoding speed and reduces the memory
requirements.

Discriminative Training

Discriminative training has been shown to outperform conventional MLE
method in recent studies both in acoustic modeling (Povey and Woodland, 2002;
Sandness and Hetherington, 2000) and language modeling (Chen et al, 2000;
Kuo et al., 2002). Our novel training framework applies this training approach to
update graph parameters. We also propose a parameter update rule to produce
sufficient parameter adjustment. Several similar studies introduce WFST
technique and use discriminative training to perform parameter update (Le Roux
and McDermott, 2005; McDermott et al, 2007). However, their search space
design basically represents the recognition lattice in the form of a WFST, which is
not an integrated decoding graph. In this work, an additional search network is
required to perform discriminative training.

Fast Decoding Techniques

When decoding is performed on a large and complex graph, a fast decoder is

Introduction

1.4 Thesis Organization 5

indispensable. A recent research presents an extremely fast graph decoder that
gives sub-real-time decoding speed on a large graph (Saon et al,, 2005). However,
it is a pure decoder which does not keep enough information of the transition
paths for discriminative training. We thus extend their concept and develop
several fast-decoding techniques to reduce the overhead of history keeping.
Moreover, our sub-graph extraction technique aiming at fast alignment is a
general-purpose method. It can be directly used, for instance, to perform acoustic
modeling.

1.4 Thesis Organization

This thesis is organized as follows.

We begin with a general overview of typical ASR systems in Chapter 2. The
involved knowledge sources and the prevailing estimation techniques are
introduced with a critique. Here, we also cover several implementations of
search strategy in speech recognition, together with performance issues. Based
on the discussions on modeling problems and decoding efficiency, we propose a
novel discriminative training framework at the end of this chapter.

Chapter 3 elaborates the details of discriminative training on static decoding
graph. At first, we compare discriminative training and conventional MLE from a
modeling point of view. We then present the common discriminative training
criteria in ASR tasks and introduce an error rate based criterion and the training
framework. A further discussion is made on the choice of the loss function, the
optimization method and parameter selection. The second part of this chapter
deals with the construction of an integrated decoding graph whose design
greatly affects the decoding efficiency and accuracy. We describe our graph
construction procedure and weight pushing algorithm. In addition, we also
present several fast graph decoding techniques that are needed to make
discriminative training of practical use.

Chapter 4 presents the experimental results. The database and the experimental
setup are presented in detail. Experiments are carried out from various
directions to show the improvements of discriminative training on large
decoding graph and the performance of different parameter updating schemes.
To further investigate the effect of discriminative training, an analysis is made
from the reduction of confusion pairs, the number of graph updates, score
difference, the coverage of parameters and the comparison of transition paths,
where we also point out the potential improvements.

Introduction

6 1.4 Thesis Organization

In Chapter 5, the conclusion of the thesis is presented, giving a perspective of
discriminative training on decoding graph.

The appendices present the derivation of MCE criterion, an example of graph
representation of language model and the published papers.

Introduction

2.1 History and Developments 7

Chapter 2. Speech Recognition:

An Overview

Speech recognition is the process which inputs speech data and converts it into a
sequence of words. The goal of speech recognition is to obtain the decoded
words as accurately as possible, which requires the ability to find out correct
patterns in the speech. Modern automatic speech recognition (ASR) systems
implement this process by introducing the concept of pattern-matching. Under
this view, recognition process is to produce the most possible pattern in the
speech signal.

In the following, we review the history and more recent developments of ASR in
Section 2.1 . In Section 2.2, three main knowledge sources and popular modeling
approaches are investigated in detail. In Section 2.3, various search strategies in
ASR are presented with discussions on the performance issues. Finally, we come
up with a novel training framework aiming at producing a reliable set of
parameters on an integrated network.

2.1 History and Developments

2.1.1 Bayes Decision Theory

When ASR systems moved from simple pattern-matching to large vocabulary
decoding tasks, various statistical methods and learning theories have been
proposed, which give a strong foundation to the probabilistic framework. The
statistical approaches have their root in Bayes decision theory (Duda and Hart,
1973). The aim of the decision (classification rule) is to assign an object to a class
such that the expected loss is minimized (Chien et al., 2006). From this viewpoint,
given a word sequence W ={w;,w,,..,w,} and an observation vector X, an

intuition of the speech recognition problem can be expressed as:

W* =argmaxP(W | X) (2.1)
w

where the recognizer's task is to find the most likely word sequence W* among
all possible word sequences. A direct implementation of this idea is inapplicable.
By applying Bayes' theorem to the conditional probability, (2.1) can be written as
the following:

Speech Recognition: An Overview

8 2.1 History and Developments

Recordings and
Transcriptions Text Data
Modeling Process
Parameter Parameter
Estimation Estimation
4 4
. Language .
Acoustic Models Model Dictionary
| |
4
, Feature .
——Speech Signal—» Extraction > Decoder | ——Word String—»

Figure 2.1: Probabilistic speech recognition framework.

W* =arg maxw
w P(X)
where P(X|W) and P(W) are respectively factored as acoustic model and

=argmaxP(X |W)P(W) (2.2)

language model (Jelinek, 1997).

With the help of Bayes decision theory, speech recognition has been successfully
transformed from a pattern-matching task to a statistical decision problem.
Figure 2.1 displays the standard speech recognition architecture, and outlines
the fact that recognition performance critically depends on the estimation of
model parameters. A good estimation procedure should not only produce a
reliable set of parameters but also adjust parameters to higher recognition
accuracy.

The modeling problem is the key in speech recognition and has attracted a lot of
research. During the 1990's, theoretical advances in pattern recognition further
transformed the traditional training framework into complex learning problem,
and better performance can be achieved by reducing the decoding errors (Juang
and Katagiri, 1992; Juang and Rabiner, 2005).

2.1.2 The Statistical Paradigm
From Simple Patterns to Various Knowledge Sources

The first ASR system was developed in the 1930's in Bell Labs at AT&T. The
researchers developed a machine for speech analysis and synthesis. Since then,

Speech Recognition: An Overview

2.1 History and Developments 9

the development of systems using speech as a medium of interaction has
attracted many researchers. Early ASR systems considered speech as a sequence
of phonetic elements such that each element corresponds to a pattern
representing a digitized articulation of some human sound(s). A speaker
dependent speech recognizer was built in the 1950's for isolated digit
recognition, and achieved about 50% efficiency (Davis et al.,, 1952).

In the 1970’s, the HARPY system (Lowerre, 1976; Lowerre and Reddy, 1990) was
shown to give a reasonable performance by doing recognition on a graph
network with some syntactical rules. The search space design, represented by a
finite state network, could efficiently reduce the computation. In addition, the
syntactical rules helped the recognizer make use of the knowledge not only from
template matching of speech parameters but also from the relationships between
words in the language. Such systems, which take speech parameters and
syntactical rules as input and perform pattern-matching algorithm on a search
space to obtain the best hypothesis, already implemented the typical
architecture of most modern decoders.

Statistical Modeling of Knowledge Sources

(1) Acoustic Models

One essential improvement in speech recognition systems was obtained when
Hidden Markov Models (HMMs) were introduced for acoustic modeling.
Although the theory of HMM was proposed in 1960's (Baum and Eagon, 1967),
this technique was only extended to mixture densities and widely applied to ASR
in the 1980's. Among the various studies, the Baum-Welch algorithm (Baum,
1972) provided an efficient estimation procedure of the model parameters,
which only requires speech transcripts. Using complex probability density
functions, the speech signal was represented in a statistical form and the system
could work in a speaker-independent manner. This means that one can build a
system using less data for more speakers. By combining pattern recognition
approaches, the use of HMM based methodology has successfully established a
statistical framework for the speech recognition problem, and has significantly
pushed ASR developments from simple pattern matching to large vocabulary,
continuous speech and speaker-independent systems. Till present, the HMM
based methodology is the most popular approaches for acoustic modeling.

(2) Language Model
In the last few decades, another major issue in ASR systems has been the design
of syntactical rules which are expected to help correct the word sequence(s).

Speech Recognition: An Overview

10 2.1 History and Developments

These syntactical rules, when represented in a statistical framework, define a
language model. In the 1970's, a speech recognition system that incorporated a
statistical language model was developed at IBM (Jelinek et al, 1975). The
language model predicts the subsequent word based on the already decoded
word sequence. A strong statistical representation of the word relationship could
guide the decoder to select the best hypothesis while searching for word strings.
In current developments, language models play a critical role and constitute an
essential component of ASR systems, especially for large vocabulary tasks. Even
if they represent a very crude approximation of the syntax of natural languages,
language models are very difficult to improve upon in terms of performance, and
hard to be efficiently integrated in the decoding algorithms.

After significant efforts, the research of speech recognition has been established
in a statistical paradigm, under which most current research is dedicated to
enhance the performance and to compensate the weakness of model parameters
estimation, particularly as far as acoustic modeling and language modeling are
concerned. The flexibility of probabilistic foundation allows researchers to
investigate various methods to better fit the model to the training data.

2.1.3 Search

The search is an indispensable component of ASR systems. Many search
techniques have been developed for the decoding problem (Mohri et al., 2000b;
Ney and Ortmanns, 1997; Viterbi, 1967). These techniques aim at quickly
decoding the message content in the speech signal. In recent years, the search
space often incorporates large and complex knowledge sources. A good search
technique is not only computationally effective but should also make it possible
to output more than just the best scored sequence (for instance, a word lattice
and the pronunciations that were used).

One-Pass and Multi-Pass Search Strategies

The search strategies are generally implemented as one-pass or multi-pass
search. In the one-pass search (Odell et al., 1994), the decoder attempts to find
the most likely hypothesis by searching the whole search space, using all
integrated knowledge sources at a time. The multi-pass search tries to reduce to
the complexity of search space in the first pass, using a word graph (Ney and
Aubert, 1994) or a tree trellis (Soong and Huang, 1991) to represent the
candidates for further processing. Less computational cost approaches are
applied at other stages.

Speech Recognition: An Overview

2.1 History and Developments 11

Dynamic Programming Technique

One commonly known method for the detection of temporal, repeated speech
units is known as dynamic time warping (DTW). DTW is based on dynamic
programming and is used to compute the best possible alignment between a test
and a reference pattern. The sequence with the highest score (or the lowest
distance) from the input pattern is the decoded result. Since DTW search allows
the patterns to be stretched and compressed, this method gave substantial
improvements in early speech recognition systems using simple speech patterns
(such as digits), small vocabulary size and limited number of speakers. Since
1970's, numerous variants of DTW were proposed, including the more subtle
search method: the Viterbi algorithm.

The Viterbi algorithm (Viterbi, 1967) is a search algorithm based on the principle
of dynamic programming. It was proposed by Andrew Viterbi for error
correction coding in communications and has been widely used in many other
applications. In speech recognition, the algorithm searches the most likely
sequence by holding most probable hypotheses and eliminating other
hypotheses at each time frame. Viterbi search is a computationally demanding
technique. The search is usually performed with approximation criteria such as
beam pruning and score threshold to improve the hypotheses. The use of such
heuristics makes the search suboptimal, but greatly reduces the computation
cost.

A* Search

As the search space is getting more complex and large, several alternative
computationally efficient methods have been developed, either to search the
decoded result heuristically or to significantly reduce the computation cost. In
1968, the general purpose A* search was developed (Hart et al., 1968). It visits
from initial node to the terminal in a graph. The partial hypotheses are
represented by paths. During the search, it expands new branches to the leaves
according to a heuristic estimate so as to expand only the most promising paths
as partial hypotheses.

WEFST Decoding
In recent years, research on graph representation has opened the possibility to

further improve decoding efficiency in terms of computation time and memory
space. These improvements advance ASR to continuous and spontaneous

Speech Recognition: An Overview

12 2.1 History and Developments

applications that require very large vocabulary, complex language and acoustic
models. The use of weighted finite-state transducer (WFST) for graph
representation unveils another interesting development in speech recognition
(Mohri et al, 1996). A weighted transducer is a finite-state machine which
carries a) the mapping information of the input and output symbols, and b) the
associated weights. The weights can be the costs or probabilities. When
knowledge sources in ASR are represented in the form of transducers, more
general algorithms such as composition, determinization and other graph
manipulation approaches can be applied to yield more efficient decoding,
without deteriorating the performance (Pereira et al., 1994).

2.1.4 Current Applications

With ever growing CPU speed and memory storage, speech recognition has been
implemented in a bunch of applications and has been applied successfully to
many languages. The potential of ASR lies in the fact that it will make human
machine interaction much easier and natural.

In recent years, when the use of mobile devices such as mobile phone or PDA
becomes more popular and the devices get more powerful, large keyboard and
mouse would no longer be suitable for such small-size devices. Smart and small
input interface must be used to fulfill this need. Typical equipment is a stylus that
is used to click the menu on the device and browse the windows, in a manner
similar to what users do in desktop computers. However, the use of stylus could
be tedious, especially when users are typing a short text, searching a telephone
number or a name in the personnel address book. Several products have already
integrated speech interface to deal with voice-command applications. Some
commercial products are also available for desktop computers. For example, the
IBM's ViaVoice ¢ is a successful commercial product which provides
voice-enabled, conversational access to computer, and free expression for
dictation. In addition, the car with speech recognition capability?, the indexation
of broadcast news and the telephone based service are all speech recognition
applications. Recently released Windows Vista 8 also integrates speech
recognition to make the user interaction with the PC more natural.

6 IBM ViaVoice, http://www-306.ibm.com/software/voice/viavoice/

7 Honda cars equipped with Satellite-Linked Navigation System:
http://automobiles.honda.com/
http://domino.watson.ibm.com/comm/pr.nsf/pages/news.20040901_speech.html

8 Windows Vista, http://www.microsoft.com/windowsvista/default.aspx

Speech Recognition: An Overview

2.2 Statistical Models and Resources 13

2.2 Statistical Models and Resources

2.2.1 Dictionary

The Role of Dictionaries in Speech Recognition

Current paradigm of speech recognition incorporates a dictionary, the acoustic
models, and a language model to transcribe human speech. One fundamental
issue is the definition of the voice units in the human speech. These units must
represent what is actually pronounced and must be able to cover the variants.

In conventional ASR systems, the dictionary contains a list of mappings between
a word and the corresponding phonetic units. With these mappings, the words
occurring in the transcriptions can be represented as a sequence of phones. The
training process of acoustic models starts from these phone sequences and their
corresponding recordings to perform parameter estimation. It is thus obvious
that the performance of acoustic modeling depends heavily on the dictionary
design.

The dictionary is also used during decoding. When a speech signal is decoded
into a sequence of phones, these phones may correspond to a set of distinct
words which have the same pronunciations (for instance, abime, abiment and
abimes are all pronounced /a b i m/) and a word may contain a couple of
variants. For instance, the word alpes can be pronounced as the following:

/alp @z/

/alpz/

/alp/

The dictionary is used to translate the phones into the correct word(s).
Issues in Dictionary Design

The word-to-phone mapping in the dictionary must be correct to train reliable
models. Besides, the coverage of variants must be included. For recognition with
a small vocabulary, such as searching a name or a telephone number in a
personal address book, the speech units can be words or phones. Even if variants
are taken into consideration, dictionary design remains simple and is easy to
implement. However, recognition of conversational speech is much more difficult.
People speak in natural way with personal styles and various accents. Topics
range from daily life to specific domain. The number of words and variants

Speech Recognition: An Overview

14 2.2 Statistical Models and Resources

increase greatly as compared to what is needed in simple applications. Moreover,
the inter-word effects such as coarticulation® and word contraction (for instance,
tu as is pronounced t'as) are commonly found in conversational speech. Even if
an effort is made to include all the variations and spontaneous effects, the size of
the dictionary would become too large to maintain.

Rule-Based and Data-Driven Approach

One approach to handle this problem is to include phonetic variants for words. If
this is done by hand, it requires an expert to do such a labor-intensive work.
When a lot of new words are to be added, hand tuning is less efficient. An
alternative is to introduce phonological rules to the dictionary (Imai et al., 1995).
However, a few rules may not cover the variants in the data set while too many
rules result in too many possibilities.

Another possibility is to learn the pronunciations or variants from data
(Bacchiani and Ostendorf, 1999; Schultz and Waibel, 1998; Singh et al., 2002;
Sloboda and Waibel, 1996). These data-driven approaches attempt to choose the
pronunciations of a word that frequently appear in the database rather than the
“correct” pronunciations. Due to the high variability of human pronunciations,
accurate dictionary design remains a difficult task. Most ASR systems use a fixed
set of mappings or rules to represent the words in terms of phones. The set of
word-to-phone mappings is used as a dictionary for decoding and for acoustic
training.

2.2.2 Acoustic Models
Hidden Markov Model

State-of-the-art speech recognition systems are often based on HMMs which
characterize the speech signal as statistical patterns by a double-layered
stochastic process (Baum and Eagon, 1967). Each model is a finite set of states
and each state is associated with a probability distribution. Transitions
connecting states are weighted transitions which carry transition probabilities.
According to the nature of probability distribution, HMMs can be discrete or
continuous. Most popular approaches introduce continuous HMM (CHMM) to
train the models. Formal definition of HMM can be given as a triple (A, B, m),

9 The beginning of a phone is affected by the preceding phone, and the end is modified by the
succeeding one.

Speech Recognition: An Overview

2.2 Statistical Models and Resources 15

respectively representing transition probabilities, output distributions and initial
state probabilities. Let N and o; be the number of states in the model and the
observation vectors at time t respectively. An HMM needs to satisfy the following
constrains.

o Initial state distribution 7 ={r;}: the probability at state g, when t=1,
m;=Plq, =s;], 1<i<N

e State transition probabilities A={a;}:
a; 20, 1<i,j<N

The sum of transition probabilities satisfies the stochastic constraint:

N
Da;=1,1<i<N
j=1
e Probability distribution on a state B=b;{(o;)}: for the continuous
density models, the probability of observation o, at state j is given by
assuming a mixture of Gaussian models:

b;(0,) = icjm/\/(ﬂ,—m,i,-m,of) (2.3)

where M is the number of mixture components in state j and c;,, is the
mixture weight. The probability distribution is represented by a
Gaussian mixture density:

1 —(o-u'T o)
N(u,3,0)=—e 27" "

(2.4)
@) 3]

The x4 and ¥ are mean vectors and covariance matrix of the mixture
component. For the discrete density models, the probability
distribution is expressed:

b;(0:) = Pi[v(or)] (2.5)
where v(o;) is the vector of output symbols given input vectoro, and
P;[v]is the probability at state j of generating the symbol vector v.

Types of Basic Units

While HMMs have been widely used to train acoustic models from an inventory
of phones, the performance of phone sequence decoding is still less than ideal for
spontaneous and conversational speech, where human coarticulation effects
occur frequently. Individual phone recognition is no longer enough for accurate
decoding. Models that do not take into account the coarticulation effects of are
called context-independent (CI) models.

Speech Recognition: An Overview

16 2.2 Statistical Models and Resources

To improve decoding accuracy, the coarticulation effect must be handled. One
can define various CI models to capture the influence between adjacent sounds,
either by phonological rules, data-driven methods or mix of the two. Besides,
recent studies have proposed several approaches to span the CI models from the
neighboring context (Woodland et al., 1995). Models of this type are called
context-dependent (CD) models. These CD models can be obtained from the
right context (right-context dependent models), the left context (left-context
dependent models) or by creating a new model taking the CI model in the middle,
given its left and right context, yielding the so-called “tri-phones” that are
commonly used in most ASR systems.

To expand CI to CD models, a choice can be made for the CD phones at the word
boundary to determine the cross-word or internal-word models to be used.
Generally, silence or short pause can be considered as special phones and are not
used for context expansion.

A common issue of using CD phones for speech recognition is that a very large
number of models need to be estimated. For a phone inventory of size n, the
complexity of possible CD phone models would be O(n3), which makes it difficult
to collect adequate training data for each CD phones. Typically, the combination
of CD phones is called logical models. Several CD phones may occur rarely and
some of them do not exist in human speech, such as some combination of
consonants. Popular approach of CD model training is usually performed by
state-tying (Young et al, 1994) or mixture-tying (Digalakis et al., 1996), where
the same training samples are shared among different probability distributions.
Once the training process is finished, physical models are created, and also a list
of mappings from logical models to physical models.

Statistical Acoustic Modeling

An HMM is a probabilistic model of random variables. Under the model, there are
three basic problems (Rabiner, 1989):

e Evaluation problem: the calculation of the likelihood of an
observation sequence.

e Recognition problem: the issue of searching the most likely state
sequence given the observation.

e Estimation problem: the estimation of model parameters to best
match the observation.

Speech Recognition: An Overview

2.2 Statistical Models and Resources 17

Statistical acoustic modeling aims to develop the techniques dealing with the
estimation problem. Several popular estimation methods are presented below.

(1) Maximum Likelihood Estimation

In the literature, the most commonly used criterion for estimating the
parameters of an HMM is maximum-likelihood (ML). This criterion attempts to
adjust the means, variances, mixture weights and state transition probabilities
such that the posterior probability of a model can be maximized given evidences
under the form of a sequence of observations. A popular and computationally
efficient algorithm, the Baum-Welch algorithm, is often applied to ML estimation
to find the best parameter settings. By iteratively performing
expectation-maximization (EM) procedure, the probability of a model is
guaranteed to increase and to converge to local maximum.

However, several researchers have investigated and have pointed out the
problems of ML estimation with Baum-Welch algorithm. Basically, the ML
estimation with Baum-Welch algorithm recasts the HMM parameters learning
problem in a statistical framework and focuses on the estimation of model
parameters in order to maximize the likelihood. Though the method has
improved recognition accuracy considerably, a higher likelihood does not always
imply a better recognition performance, especially when there is poor
discrimination across the models.

(2) Discriminative Training

In contrast to ML, an alternative approach uses maximum mutual information
(MMI) criterion (Bahl et al., 1986) for acoustic modeling. This discriminative
criterion attempts to maximize the mutual information of word sequence
between hypothesis and reference, by taking a couple of competing hypotheses
and trying to reduce the probability of incorrect ones. In several ASR tasks, MMI
has been successfully applied in acoustic modeling (Chow, 1990; Normandin,
1991). However, MMI estimation usually suffers from the high computational
cost for large vocabulary ASR tasks. Besides, MMI estimation yields higher error
reduction on the training set than the reduction on the test set, which is known
as the generalization problem. The problem requires additional regularization
terms to be integrated in the objective function in order to guide more
improvements on the test set (Woodland and Povey, 2002).

One notable drawback of MMI is that it still does not directly integrate the
system performance (such as word error rate) into the optimization function.
Even if several iterations have been performed, the solution will not necessarily

Speech Recognition: An Overview

18 2.2 Statistical Models and Resources

reflect an improved performance and may risk the over-fitting on the training
data. A recent study proposed minimum word error (MWE) and minimum
phone error (MPE) criteria for acoustic modeling (Povey and Woodland, 2002).
These two criteria combine the training errors into objective function to increase
the decoding accuracy both at the word and the phone level. In Section 3.2 (p.
40), these discriminative training criteria will be presented in more detail.

(3) Other Modeling Techniques

Artificial neural networks (ANN) have been shown to be a powerful method for
pattern-recognition (Bishop, 1995). However, the time variable makes it difficult
to directly handle ASR in ANN. Several studies developed various ANN
architectures for time sequence classification (Lippmann, 1989). Recent research
further combined the ANN and HMM for large ASR tasks. This architecture of
hybrid ANN/HMM models not only has the power of classification but also has
the ability to handle temporal patterns. In recent years, the hybrid approaches
have been demonstrated to give competitive performance with typical HMM
based systems (Johansen, 1996; Ynoguti et al., 1998).

2.2.3 Language Modeling

In human speech, it is inevitable that there exists word sequence having similar
or identical pronunciations. Even if well-trained acoustic models are used, the
decoder may not be able to decode the word strings accurately. To further
distinguish the acoustically ambiguous utterances, another knowledge source,
the language model, is used to help the decoder find out the most likely word
strings. The issue of how natural language regularities can be captured in a
statistical framework, and the way to estimate the parameters of a model, has
attracted many efforts in language modeling.

Statistical Language Modeling

Statistical language modeling (SLM) was proposed in the 1980's (Bahl et al,
1983), which gives a probabilistic description of the word order in natural
language. N-gram models are the most popular language model for representing
the statistical characteristics. An n-gram predicts the probability of word wi
based on the history of previous n-1 words, under the Markov assumption that
only the closest n-1 words are relevant:

Ly, Ly
P(wy)= HP(W,» lwit)= HP(W,- |W11":(1n71) (2.6)
i=1 i=1

where L, denotes the length of word sequence and n is the order of context.

Speech Recognition: An Overview

2.2 Statistical Models and Resources 19

Larger n could capture more complex language regularities. However, the
number of n-grams would increase exponentially with n. Generally, the tri-gram
(n=3) language model is a common choice for ASR tasks.

One straightforward approach to estimate the probabilities of a model is to
compute the relative occurrence of a word pair over the whole corpora, which is
an example of the maximum likelihood (ML) technique,

P(Wlljf(nfl)) _ C(W;—(n—l))/N _ C(Wll';(nfn)
p (Wzl":(lnfn c (W;:(ln—l))/ N c (Wzl":(lnfn)

P (Wi |Wi (1)) = (2.7)
where c(.) is the number of occurrence of an n-gram and N is the total number of
occurrences. However, ML estimates suffer from the sparse distribution of
n-grams. Since most of the n-grams either never occur or occur with very low
counts, direct use of ML estimation from n-gram occurrences would be greatly
biased due to the sparsity. Besides, when more words have been used in the
language model, more data needs to be collected to yield representative language
regularities. In practice, more data is not a solution to the data sparsity, even if
data is collected from the web (Zhu and Rosenfeld, 2001).

Smoothing

To deal with the sparse estimation problem, an enormous number of techniques
have been proposed to reliably estimate the n-gram probability so as to avoid
zero counts and unreliable estimates for unseen events (an occurrence of an
n-gram) or when there is insufficient data. The process, which aims at making
probability distributions of n-grams in the training data more uniform, is called
smoothing.

One standard approach introducing discounted probability and lower-order
models to smooth the probability estimates is described below (Kneser and Ney,
1995):
.7 P (w; w7l cwi, 1,)>0
P | Wil)) = e e
Wil (=) {ﬂxp(wi IWi—(ln—Z)) c(Wi_(n1))=0

where P"can be obtained by multiplying a discount ratio to (2.7) and S is

(2.8)

considered as a normalization constant to the lower-order estimate:

B 1 _ZXP*(X | Wf:(ln—1)
1_ZXP*(X|W;‘:(1n72))

where x € (W;_(n-1yWi_(n-2)--W;_1X). The discount ratio can be calculated by using

(2.9)

various approaches, which are presented in the following.

Speech Recognition: An Overview

20 2.2 Statistical Models and Resources

(1) Good-Turing Discounting

One straightforward smoothing technique is to modify the original counts by
redistributing the probability mass such that language model would be less
biased by the frequently-occurred or rarely-occurred n-grams. An early
implementation of this idea is Good-Turing discounting (Good, 1953), which
modifies the number of occurrence r of an n-gram as follows:

¢ =(c+1)El) (2.10)
E(n.)
where n, is the number of different n-grams that appears c¢ times. The

probability estimate of the n-gram is:
, ¢’
PGoodfTuring (Wi | W,l':(ln_l)) = N (2 1 1)

It is clear that the Good-Turing estimate can not be used for n-grams with zero
occurrences (E(n.)=0).In (2.10), E(n) is a function to estimate different n-grams

that happen exactly c times.

(2) Jelinek-Mercer Smoothing

Unlike Good-Turing smoothing, which yields a probability distribution from
modified counts, the Jelinek-Mercer smoothing (Jelinek and Mercer, 1980)
estimates the probability by combining the higher-order maximum likelihood
models Py, and lower-order smoothed models P)y in a linearly interpolated form:

Py (Wi |wiZi0) = ﬂw;:g,,,l) P (Wi |wiZ,0) + (1 - ﬁw;‘:g,,,l))P (Wi |WiT,) (2.12)

Where0< 1 <1and the uniform distribution on the 0t order can be used as a
base case to end the recursive interpolation.

To maximize the probability distribution, the As need to be carefully estimated.
Different methods for finding A yield a variety of smoothing techniques. The
deleted-interpolation method (Jelinek and Mercer, 1980) partitions the training
data into several parts and computes the A by circulating different parts. An
alternative is performed by dividing the training data into retained part and
held-out part. The held-out part is introduced to calculate the A and is never
used in Py, estimation. Therefore, when held-out estimation is performed, the
n. is obtained from the retained data, rather than the whole training set.

(3) Witten-Bell Smoothing

The Witten-Bell smoothing (Witten and Bell, 1991) was first developed for text
compression. The key concept (the method C in the reference) is to re-estimate
the unseen n-grams from the seen n-grams that occur at least once. It can be
considered as a linear interpolation of models of different orders to form a

Speech Recognition: An Overview

2.2 Statistical Models and Resources 21

mixture model similar to Jelinek-Mercer smoothing. The interpolation ratio A
can be generally defined as:
CNT (w7, 4

1o ‘ : 2.13
XWHH) CNT(WI{:(ln_l))-{-a)x ZW‘ C(W;_(n_l)) ()

where the hyper-parameter @ can be learned from a development set and the

original Witten-Bell smoothing keeps w=1. The CNT(w/Z, ,,)is the number of
unique words following the history w;_,-1)W;_-2)..w;_1, which is defined as:

CNT(wi) =[{wi : c(w ", .;,wi) > 0} (2.14)

In the smoothing techniques presented so far, the Good-Turing smoothing is
basically a ML estimate, which modifies the non-zero occurrence to produce a
uniform distribution. It is often used in combination with other techniques. The
Jelinek-Mercer smoothing yields probability estimates by interpolating models of
different orders associated with an interpolation ration (weight). The
Witten-Bell smoothing also can be viewed as an instance of interpolation-based
method. In addition, several popular smoothing techniques perform probability
estimate by backing-off to lower-order model. Although lower-order
distributions are used both in interpolated model and back-off model, the key
difference is in determining the probability of n-grams with nonzero counts: the
interpolated models use the information from lower-order distributions while
back-off models do not. In the following, we will present two popular back-off
methods: the Katz smoothing and the Kneser-Ney smoothing.

(4) Katz Smoothing

Katz smoothing (Katz, 1987) basically extends the Good-Turing smoothing by
combining models of different orders. The Katz n-gram model can be defined
recursively in terms of lower (n-1)-gram model with a count threshold k. for
discounting (Katz suggests k.=5) as follows:

C(W{—(n—l))
C(Wf:(ln—1)
C(le'f(nq))

i1
c(Wi(na)

ifc>k.

Praz (Wi | W[4y) =1 de % if1<c<k, (2.15)

ﬂ(wii:(ln—l))PKatz (Wi | W;‘:(ln,z) lf c= O

where the discount ratio is calculated as follows:

Speech Recognition: An Overview

22 2.2 Statistical Models and Resources

i _ (k + 1)nk+1

d =< y 2.16
1— (k+1)nk+1 ()
nm

and if d. is determined, the normalization factor (w7, ;,)can be chosen as:

1- Zw,- >0 Pratz (Wi | WI{'-—l(n—l)
1- zw,' >0 PKatZ (Wi | Wx{';l(n—Z))

BWi) = (2.17)

so that the total number of counts is unchanged by Katz smoothing. That is,

ZW,- Crarz(W_1) = Zwi c(wiy)

Note that in Katz smoothing, the large counts c > k are taken to be reliable and
are not discounted. The n-grams with lower counts are discounted to
compensate, using the discount ratio derived from Good-Turing smoothing. If an
n-gram with zero counts is observed, the probability is estimated by backing-off
to lower-order model with a normalization factor. Generally, the Katz smoothing
is easy to implement and has represented the state-of-the-art in smoothing
techniques for many years (Goodman, 2000).

(5) Kneser-Ney Smoothing

Another back-off method, whose variant has been shown to consistently
outperform other widely-used smoothing techniques (Chen and Goodman, 1996),
is Kneser-Ney smoothing (Kneser and Ney, 1995). Different from other back-off
methods such as Katz smoothing that estimates the lower-order probability from
the smoothed lower-order distribution, the Knesr-Ney smoothing further
proposed a singleton distribution to compute the lower-order distribution only
from the n-grams that are observed just once. In fact, the lower-order
distribution becomes an important factor only when a few or no counts are
present in the higher-order distribution. The intuition of Kneser-Ney smoothing
can be formulated as follows:

max{c(w}_,1,) - D,0} :
i1 P ifc>0
PKneser—Ney (Wi | Wi—(n—l)) = Zwi C(Wif(nfl)) (218)
5(W1{‘:(1n—1))PKneserfNey (Wi | W,{:(ln_z)) lf c= 0

where D is a discounting parameter and J is chosen to make the distribution
sum to 1. An extensive comparison shows that the Kneser-Ney smoothing works
very well (Chen and Goodman, 1996). However, this back-off version always
performs discounting even when it has effectively lowered the probability

Speech Recognition: An Overview

2.2 Statistical Models and Resources 23

(Goodman, 2004). A variant was motivated in (Chen and Goodman, 1996), which
represents the back-off smoothing in an interpolated form and is known as
modified Kneser-Ney smoothing:

max{c(w/_, ,,)—D,0}

z wi C(Wli:(ln—l)

PKneserfNey (Wi | W,{:(ln_l)) = + lPKneserfNey (Wi I W{:(ln_z)) (219)

where
CNT(w;)
ZW,- C(W;:(ln—l)

and CNT(w;) is defined in (2.14). The discounting parameter D is left open which

A=Dx (2.20)

results in some variants.

Overall, the Kneser-Ney smoothing and its variant calculate the lower-order
probability in a novel manner to produce a powerful estimate for the events with
very low counts. Several recent studies have demonstrated its superiority in
language modeling (Chen and Rosenfeld, 2000; Goodman, 2004).

Other Statistical Modeling Techniques

Apart from the popular n-gram models and smoothing techniques, there are also
various approaches developed in language modeling, such as exponential models
and adaptation models. In fact, the data distribution in natural language is often
unreliable due to the unnecessary fragmentation of contexts (the sparse data
problem). One approach, based on maximum entropy principle, introduces an
exponential model to avoid the data fragmentation (Pietra et al., 1992). However,
this approach suffers from the slow training procedure and there is no explicit
control on parameter variances.

Moreover, natural languages are highly heterogeneous, covering various topics
and categories. In many real ASR tasks, where domain-specific data may not be
available, several approaches have been proposed to improve language modeling
by adaptation (Clarkson and Robinson, 1997; Mahajan et al., 1999). In practice,
adaptation can be considered as an approach to sharpen the language model. It
can be performed by building language models for each topic or combining
different topic-specific language models through interpolation (lyer and
Ostendorf, 1999), where the source may come from in-domain or cross-domain
data.

Speech Recognition: An Overview

24 2.2 Statistical Models and Resources

Generally, adaptation is a process to update current language model by the
information captured from new incoming data. This design allows the model to
be more close to a specific task domain. Therefore, significant perplexity? and
word error rate reduction have been observed in these studies (Bellegarda,
2004). One interesting research investigated the possibility to further improve
the performance by combining various modeling techniques together (Goodman,
2000). The results show that a reduction of the perplexity by almost a half can be
achieved, and the smoothing technique is an important factor to n-gram
modeling.

Estimation of Language Model Parameters

Intrinsically speaking, even for the most popular n-gram language model, the
statistical form is just a set of word pairs and their associated probabilities,
which is not the nature of language and very crude syntactic dependencies can
be captured by such a language model. In addition, although the use of language
model in many large vocabulary recognition systems has resulted in observable
improvements, unfortunately, maximum likelihood estimation (MLE) for
language modeling attempts to maximize the likelihood without considering the
actual acoustic confusions. Moreover, the estimation of model parameters is
usually performed in isolation and the likelihood improvement does not always
reflect better recognition accuracy (Chen et al., 1998; Printz and Olsen, 2000).

Recent developments have introduced discriminative training on estimating
language model parameters. Several discriminative criteria have been
demonstrated to give significant improvements, such as minimum classification
error (MCE) (Chen et al, 2000; Juang et al., 1997; Kuo et al., 2002; Paciorek and
Rosenfeld, 2000), minimum sample risk (MSR) (Gao et al., 2005) and reranking
techniques with the perceptron algorithm (Roark et al., 2004). Among the many
studies, MCE is a popular choice and is shown to yield significant improvements.
Unlike typical language modeling approach which maximizes the likelihood, MCE
criterion aims to reduce the decoding errors by increasing the separation
between training samples. The key of this training framework is to define an
objective function which takes into account the language model parameters and
the recognition performance as function variables. Moreover, an optimization
method is applied to search the function minimum such that decoding errors can

10 The perplexity is the most widely-used evaluation metric for language models. Nevertheless,
there have been many counter-examples in the literature showing that lower perplexity does
not always lead to a lower word error rate (Azzopardi et al., 2003; Chen et al., 1998).

Speech Recognition: An Overview

2.2 Statistical Models and Resources 25

be reduced. Training procedure is performed iteratively till convergence is
reached. These discriminative training criteria will be presented in Section 3.2 (p.
40).

Graph Representation of Language Model

In the recent past, weighted finite-state transducer (WFST) technique has
attracted a lot of interests in speech recognition. A WFST is an extension of finite
state machine. One special feature of WFST is that each arc, which goes from one
state to another (or a loop), carries three messages: the input label, the output
label and the transition weight. This property facilitates the use of WFST in ASR,
particularly the mapping between two different information sources. For
instance, a WFST can be used to encode the mapping from a word to its phone
sequence(s) in the dictionary. Language model that is compiled as a WFST
represents the transitions from one word history to another weighted by the
corresponding n-gram probabilities. When knowledge sources are represented
by WFSTs, graph composition can be applied to further combine different WFSTs
in a single search space (graph). By performing various optimization techniques
such as determinization and minimization (Mohri, 1997) to eliminate redundant
arcs and states on the graph, decoding time and memory requirements can thus
be greatly reduced.

Amongst WFST operations, the determinization is particularly critical; it is the
process of producing a deterministic graph which is equivalent to a
non-deterministic onell, such that the deterministic graph contains at most one
path matching any input sequence. This irredundancy reduces the time and
space requirements to process an input sequence (Mohri, 1997; Mohri et al.,
2000b) during decoding.

The efficient representation of WFST allows knowledge sources to be
represented in a flexible manner for more sophisticated WFST operations.
Recent studies using WFST in ASR have demonstrated a significant improvement
in decoding efficiency than traditional speech recognition systems (Caseiro and
Trancoso, 2002; Kanthak et al.,, 2002; Saon et al., 2005). More technical details on
graph construction procedure and WFST operations will be presented in Section
3.6.3 (p. 64).

1 In fact, not all WFSTs can be directly determinized (Mohri, 1997). For many ASR tasks,
however, the WFST representation of knowledge source is determinisible.

Speech Recognition: An Overview

26 2.3 Search Strategy

2.3 Search Strategy

In HMM-based speech recognition systems, one fundamental issue is the
decoding problem. Given a sequence of observations and a set of trained HMMs,
the decoding process attempts to find out the best state sequence for the
observations. Since searching all possible state sequences to discover the best
one is extremely computationally-intensive, one alternative solution for large
vocabulary ASR is to incorporate various approximation techniques which make
the search suboptimal.

One prevalent approach in ASR is to find the most likely state sequence using the
Viterbi algorithm (Viterbi, 1967), which performs the search in an HMM
state-connected network. Due to the graph nature, finding the most likely
sequence is solved as a shortest-path problem in an acyclic graph. Several
dynamic programming (Bellman, 1952) techniques were investigated to address
(Beulen et al., 1999; Dijkstra, 1959) this issue. The Viterbi algorithm is an
application of dynamic programming techniques, which only requires to
compute the score of the best path reaching state at each time frame. Thus
Viterbi algorithm is a time-synchronized search method. Since at each time frame
it holds a list of candidates and propagates the candidates to next time frame,
even for a small set of models, the book keeping induces a significant
computation overhead.

Search using Viterbi algorithm usually incorporates pruning techniques by
keeping only the top-N candidates at each time frame during decoding (or
histogram pruning that adaptively changes the number of active hypotheses
(Steinbiss et al.,, 1994)). Viterbi search incorporating the pruning technique is
known as Viterbi beam search. This approach significantly reduces computation
cost and has been widely used in many large vocabulary ASR systems. However,
as more and more data becomes available for large vocabulary ASR systems,
where thousands of acoustic models may be used and the language model may
contain tens of millions of n-grams, an efficient search strategy is indispensable
for fast decoding. The following sections introduce three popular search
strategies and discuss their performance.

2.3.1 Dynamic Style Beam Search

Dynamic programming search techniques have been successfully applied to
handle speech recognition tasks since their introduction in the 1970's (Jelinek,

Speech Recognition: An Overview

2.3 Search Strategy 27

1976). Although the approximation makes the search suboptimal, it greatly
reduces the computational cost and makes the search technique applicable to
complex ASR tasks. However, as more word alternatives are needed to be held
during decoding process, it not only produces more acoustic confusions but also
increases the computation costs.

Moreover, the search space is a connected network. A bunch of hypotheses may
be produced from a state. If there are N active states at a given time frame and
each state involves M successors, the number of possible hypotheses would be
Nx M, yielding an intractable computation.

Reduction of Search Effort

To keep the search efficient, the dynamic style beam search (DSBS) uses several
techniques during decoding, namely an efficient representation of the lexicon,
the beam search and the integration of language model.

In large vocabulary ASR tasks, many words begin with the same leading phone(s).
Merging identical phones would greatly reduce the search effort without loss of
decoding accuracy. This can be performed by representing the words in a word
graph or a tree structure (Soong and Huang, 1991). For a large list of hypotheses,
one can eliminate the less probable hypotheses and hold the promising ones.
This technique is called beam search. Moreover, one can further incorporate a
language model during decoding. The use of language model is to help the
decoder determine the best word strings among a list of hypotheses. As a result,
hypotheses with lower scores can be pruned from the list as soon as possible.

Word Graph Construction and Search

To implement this idea, various approaches have been proposed which extend
dynamic programming. One efficient approach is the word graph algorithm
(Beulen et al,, 1999; Ney and Aubert, 1994; Ney and Ortmanns, 1997; Oerder and
Ney, 1993; Ortmanns et al., 1996c), which is performed by introducing the
following two quantities:

e Q.(t,s), the score of the best path at time t in state s and the starting
time of the tree is 7.

e H(w,t), at ending time t, the probability of generating acoustic
observation vectors X ={x;,X;,.,X:} and a word sequence which

ends with word w.

Speech Recognition: An Overview

28 2.3 Search Strategy

Based on these two quantities, the algorithm selects the best predecessor for
each word pair with ending time ¢ to expand a new tree for time (¢t+1). The
decision is performed by a recombination process and the rest of the paths are
not considered any further. For all hypotheses in the beam, the word strings are
organized as a tree, and word labels are distributed over the arcs with
corresponding starting and ending time of the word. Since common word labels
are merged in the form of a tree, this hypothesis representation is more memory
efficient than keeping all possible word strings in the beam. Meanwhile, once the
tree is built, nodes with identical time information are merged. Only one arc is
kept if several arcs associated for the same word carry the same word labels. A
more flexible word graph can thus be constructed to cover all hypotheses in this
representation but with less complexity. The complete algorithm of word graph
construction and its implementation is elaborated in (Ney and Aubert, 1994;
Ortmanns et al., 1997b).

A simple example, using trigram language model to build the word graph, is
shown in Figure 2.2. The solid circle and empty circle represent respectively the
word history and the word boundary. For each word history, a separate lexical
tree is generated starting from the word history as depicted in doted triangles.
Solid lines are transitions between acoustic models, and dotted lines between
two states are transitions from a word end to the root of lexical copy. The dotted
lines are the place where language model is used. Before processing new word
hypotheses from the lexical tree, language model probabilities are incorporated
into the scores. Taking Figure 2.2 for instance, given word history (xy) and (zy),
two hypotheses reaching the end of word x, producing the word history (yx)
which is the root of a tree lexicon in upper triangle. To expand word hypotheses
from word history (yx), the language model probability is applied to determine
the best score that will be propagated to the root of lexical tree.

Optimization Techniques

The word graph approach combines word hypotheses in the form of a graph. In
this representation, word hypotheses can be easily produced from the small
graph, without actually keeping a complete list of word strings. When the
approach employs a pruning technique using language model probability, scores
of hypotheses can be compared in advance to determine the best hypothesis
which is allowed to perform state expansion to succeeding words. In addition to
the efficient representation, various optimization techniques are combined with
the word graph search method to improve decoding efficiency and memory
requirements.

Speech Recognition: An Overview

2.3 Search Strategy 29

word history word boundary word history lexical tree

\
\
-\

1
!
1
1
[
1
\
\
\
\
Y
N
VIR
\
\

i i R N

()

/Dé

\

\

\
\

\

\

\
\
\
\

@)

\
\
\

N .
\ N , [
N ’
N .
N ’
N ’
N ’
N ’
4
x

\
\
\
\
\
\
/
/
/|
/)
¢/
’)/
v/
/o
/
/
/

/

transition between

acoustic models language model

Figure 2.2: Word graph expansion and search. When tokens reach the root of a
lexical tree, language model probabilities are taken into account to determine the
best hypothesis.

One popular solution is histogram pruning (Haeb-Umbach and Ney, 1994;
Steinbiss et al., 1994) which limits the number of possible hypotheses to a given
threshold. If the number of active states is greater than the threshold, a selection
process is performed to trim the hypotheses with relative low scores.

It can be readily noticed that the allocated tree lexicons would occupy a lot of
memory space and produce numerous word hypotheses for large vocabulary
ASR tasks, particularly when a complex high order language model is used. In
this case, determining the best score for propagation would become less efficient.
Another possibility is the use of language model look-ahead (Ortmanns et al.,
1996a; Ortmanns et al., 1997a). Unlike language model pruning mentioned above
in expanding tree hypotheses, the basic concept of language model look-ahead is
to make use of language model probabilities as soon as possible in the decoding
process. Before tree expansion from the word boundary, language model
probability is calculated and accumulated into the score of the best hypothesis.
The use of language model look-ahead probability increases the score difference
between hypotheses and makes pruning more efficient.

Speech Recognition: An Overview

30 2.3 Search Strategy

Language model look-ahead is a general technique. In modern search space
design, weight pushing, which re-distributes language model probability on a
weighted finite-state network, is an extension of this concept. More details
regarding weight pushing over finite state network will be given in Section 3.6.5

(p. 71).

2.3.2 A* Search

In graph-searching problem, the A* algorithm (Hart et al.,, 1968) is a common
choice for finding the shortest path. Given an initial state and a goal state, the
algorithm performs the search from the initial state and generates successor
states under a certain condition. This process is repeated until one of the
successors reaches the goal state and satisfies the condition. The returned path is
the solution to the problem. A key component here is a heuristic function which
is employed to help estimate the distance to reach the goal state. The choice of a
heuristic function is arbitrary. A good heuristic is the key for finding a good
solution quickly and accurately. In speech recognition, the decoding process in a
state-connected network can be considered as a graph searching problem where
the goal of decoder is to find out the most likely sequence from the network. If
the A* algorithm is implemented as the search method, the returned path is the
sequence with highest score.

The Heuristic Function

In a path-finding problem, the A* algorithm tries to find the shortest path (or
lowest cost) under the decision:
£(n)= g(n) +h'(n)

where n is the current state. The function g(n) corresponds to the sum of costs
over traversed paths from the initial point to the current state. Since the best
solution has not yet been found, the cost from current position to goal state is a
guess, which is estimated by h'(n) according to a heuristic function. The sum of
g(n) and h'(n) is an estimated lowest cost up to current state. The algorithm
then generates successors. If the successors are generated without limit, memory
allocation would be a potential problem. For searching in a larger graph where
several transitions may reach the same leaf, memory space allocation can be
alleviated by keeping the best score at each state for further successor
expansion.

The A* algorithm usually introduces an OPEN list and a CLOSED list. The OPEN
list keeps the states that have not yet been expanded. Each time a state is popped

Speech Recognition: An Overview

2.3 Search Strategy 31

from the list. When state expansion is performed, the state is placed in the
CLOSED list. The use of OPEN and CLOSED lists allows us to choose the best state
before searching according to the cost which is the sum f(n). For instance, if a
successor of state n is already in the CLOSED or OPEN list, and its expansion has
higher cost than f(n), the successor of state n can be discarded since a better
expansion has been found with lower estimate. The main structure of A*
algorithm is a loop which repeatedly pops the state with lowest cost from the
OPEN list to generate its successors. If the current state is a goal state, the loop
terminates and returns a solution. The pseudo-code of A* algorithm can be found
in (Nilsson, 1997).

Performance Issues

The performance of A* search depends critically on the choice of a heuristic
function. At each state, the heuristic function helps the algorithm make an
estimation to determine how far it is from the current state to the goal state, and
to reduce the state expansion. Thus, a good heuristic function will give an
optimal solution at high search efficiency while a bad heuristic function may
result in a sub-optimal path or may yield an exhausted exploration of the search
space. The performance of a heuristic function is defined in terms of
admissibility and computational efficiency.

(1) Admissibility

If a search algorithm is guaranteed to return an optimal solution, the algorithm is
said to be admissible. For the A* algorithm, it is admissible only if the heuristic
function never over-estimates the cost. That is, the estimated cost from current
state to the goal state must be less than or equal to the actual cost. Otherwise, the
over-estimated cost could make the algorithm choose a sub-optimal solution. To

ensure that the paths with lowest cost are always found, the global admissibility
of A* algorithm using heuristic function h(n) is expressed as below:

h(n)<h' (n) (2.21)

where h(n) is the estimated cost and h"(n) is the actual cost from state n to goal
state. Although (2.21) ensures that the lowest cost of traversing paths, it is not
easy to find such a heuristic function and to prove its global admissibility for
general path searching problems. The choice of heuristic function may vary
depending on the search problem.

One property of heuristic function is the monotonicity, meaning that the
estimated cost of a state n; to its neighbor n, is always less than the actual cost.

Speech Recognition: An Overview

32 2.3 Search Strategy

h(ny)—h(n;)<h (n,)—h"(n,)
The property ensures the score difference between two consecutive states
satisfies the inequality. Thus, the monotonic is also locally optimistic, which
implies global optimal of the heuristic function but not vice versa.

(2) Computational Efficiency

In addition to the admissibility of a heuristic function, the search efficiency is an
important consideration for A* algorithm. As one can imagine, when the graph is
getting larger and more complex, popping states from a large list to determine
the best score would be a CPU intensive task and large number of generated
successors still make the list difficult to handle. In practice, one of the choices
may be made according to the need, a) either an optimal solution should be
obtained or b) a good approximation is satisfying.

The Stack Decoder

The first ASR decoder based on A* search was proposed in (Jelinek, 1969; Jelinek
etal., 1975), which is a variant of A* search and is known as a stack decoder. This
approach has many appealing properties, especially for the matching of acoustic
and language model during decoding. In many ASR search implementations
(Aydin et al., 2005; Kenny et al., 1992; Odell et al., 1994; Paul, 1992), the stack
decoder has been modified for various tasks.

A stack decoder considers the speech decoding as a problem of graph searching
where the words are represented as states and language model probabilities are
distributed over state transitions. From the initial state to the final state, the goal
of decoder is to find out the most likely state sequence. Due to the attractive
control strategy which focuses on the search without managing different
information on the network, A* algorithm allows acoustic models, language
model and a variety of sources to be integrated in a single search space.

A stack decoder usually requires two passes to complete speech decoding:

(1)Generates multiple hypotheses
(2)Performs accurate search on the generated hypotheses

The first pass also enables the decoder to perform N-best sentences search. With
a good heuristic function, the generation of hypotheses is fast. However, there
are some drawbacks when performing recognition on the second pass. In large
vocabulary continuous speech systems, where word boundaries are difficult to

Speech Recognition: An Overview

2.3 Search Strategy 33

locate, there may exist a high number of hypotheses, which will increase the
computation on the second pass. Besides, the heuristic function must be carefully
chosen so that the recognition accuracy would not be deteriorated. From a
technical point of view, the implementation of a stack decoder requires extra
work to maintain the list of hypotheses in an efficient data structure for fast
access, such as a sorted list or a tree. In a large search network, the decoding
speed or accuracy may not be as competitive as standard Viterbi algorithm,
particularly when finite state decoding techniques are introduced to optimize the
graph.

2.3.3 Decoding on Static Graphs
Integrated Search Network

When the three main knowledge sources, namely the acoustic models,
pronunciation lexicon and language model, are available, one possibility to
perform the search is to combine all the sources in a single network. During
decoding, parameters from various sources are accessed at the same time.
Applying search constraints such as beam search during decoding or performing
finite state machine operations beforehand to reduce computation and network
complexity, decoding efficiency can be further improved. In the 1970's, the
concept of integrated search network was implemented in the HARPY system by
taking the advantage of finite state network (Juang and Rabiner, 2005; Lowerre
and Reddy, 1990).

In the integrated search network, decoding thus becomes a simple search task.
However, it is obvious that the search efficiency relies heavily on the network
design. As knowledge sources are getting more complex, from
context-independent to context-dependent phones, tens of thousands of
vocabulary words and millions of n-grams in the language model, optimization
methods on integrated finite state network become the most demanding task in
large vocabulary ASR.

Two main strengths of using an integrated search network are:

e Determinization: each hypothesis is evaluated once.
e Reduce housekeeping overhead during decoding.

With these two features, one can perform network optimization methods on the
whole graph to produce an equivalent but a smaller one. Recent developments of

Speech Recognition: An Overview

34 2.3 Search Strategy

finite state machine operations further extend the idea of network optimization
to ASR tasks, where various knowledge sources can be combined in a single
network.

Weighted Transducer for Speech Components

A finite state machine (FSM) is a finite-state graph which consists of a set of
states and transitions, represented by nodes and arcs respectively. This
foundation gives a general representation for mathematical model in natural
language processing (Maurice, 1987; Mohri, 1996). By extending the use of FSM,
if a weight is distributed over the arc, the transition between states becomes a
weighted mapping from one word to another. This can be considered as a
probability distribution over word strings. Further extension of FSM design was
investigated such that various information sources can be incorporated in a
common representation (Mohri, 1996; Pereira et al., 1994).

The generalization of classical FSM takes the form of weighted finite-state
transducers (WFST) T. A WFST over a weight set K is given as a set of states @, an

input symbol set £, output symbol set Q, a set of transitions E, an initial
statel €Q, a set of final states F — ¢, and some initial weight 4 and final weight

function p.

T=(Z,Q,0,E,F,A,p) (2.22)
With this design, the WFST is able to cope with complex information sources in a
simple representation. In particular, the mapping of an input and output symbol
pair with associated weights opens the possibility of using WFST for speech
components.

Typical ASR systems extract the message content for the speech signal by
decoding acoustic observations into a sequence of basic units (often contextual
phones). The phone sequence is then mapped into word(s) according to the
dictionary. To reduce acoustic confusions, language model probability is used to
determine the most probable word strings. The recognition cascade from
observations to words is shown in Figure 2.3.

If we consider the recognition cascade in a reverse order, we get the following
mapping for each FSM:
e (: word sequence — words represented by different numbers.
e L:word — corresponding pronunciation sequence(s).
e (: context-independent (CI) phone — context-dependent (CD) phone.
e H: CD phone — associated HMM.

Speech Recognition: An Overview

2.3 Search Strategy 35

S S0 et D e B S B

HMMs CD phones CI phones words word sequence

Figure 2.3: Recognition cascade from HMMs to word sequence.

From G to H, these machines perform the mapping from high-level word
sequence to low-level HMMs. The resulting graph is a finite-state network
combining all the information sources. The decoder then only needs to perform
the search of the most likely sequence from the initial state to a final state.

With the use of WFST to represent the various speech components, different
sources can be easily integrated in a single graph for further optimizations. When
speech components are in the form of an FSM, composition and determinization
are commonly used for graph construction. The first operation composes two
FSTs into one FST. The latter is an optimization technique which eliminates
redundant arcs to yield an equivalent but more efficient graph. For most ASR
systems whose search space is constructed as a WFST, graph construction
procedure basically follows the cascade shown in Figure 2.3. FST composition is
performed from right to left (Mohri et al., 2000a):

HoCoLoG (2.23)

Depending on the problem design, various modifications may be introduced for a
specific task. More details about integrated decoding graph construction
procedure are presented in Section 3.6 (p. 58).

Graph Performance

Although WFST gives a “natural” representation for various sources, and allows
them to be integrated in a decoding graph, there are still essential issues to deal
with in order to decode the graph with high efficiency and accuracy: (1) graph
optimization and (2) weight pushing.

(1) Graph Optimization

During each FST composition step, the temporal graph often consists of states
with a bunch of transitions to successors. Some of the transitions carry the same
input, output symbols and weights. If these transitions are not eliminated before

Speech Recognition: An Overview

36 2.3 Search Strategy

decoding, the decoder would have to keep more candidates in the hypothesis list.
In addition, when the decoder is going to perform state transitions, one source of
overhead is that redundant transitions make the decoder repeatedly generating
new hypotheses from the same source with the same acoustic and language
model scores. As illustrated in Figure 2.4, scores of hypotheses over transitions
01 and 02 are the same. For a large beam size, this would make the decoder
much less efficient both in terms of time and memory space.

@

a:<eps>/0 c:<eps>/0

Q)}éxepp /0—»@—d:<eps> /0

b:<eps>/0 e:<eps>/0

Figure 2.4: A non-deterministic FST. Each arc carries input symbol, output symbol
and transition weight.

~c:<eps>/0-
@}a:<eps>/0—>@}d:<eps>/ 0

b:<eps>/0 e:<eps>/0

Figure 2.5: A deterministic FST where redundant arcs are eliminated. States are
also renumbered.

One important technique to deal with this issue in transducer operation is
determinization (Mohri, 1997). For a weighted finite-state network,
determinization eliminates the redundant arcs to make an equivalent and
deterministic graph, meaning that at each state, there exists at most one
transition which is labeled with any element of the input alphabet.

Figure 2.5 shows a deterministic transducer determinized from the one on
Figure 2.4; two transitions with identical input symbol a are merged. At each
state, the graph contains at most one transition with any given input symbol. It is
clear that deterministic transducers are more efficient than non-deterministic
ones, yielding a unique choice to determine the transition without keeping track
of different paths (Mohri, 1997; Mohri and Riley, 1998; Mohri and Riley, 1999).

Speech Recognition: An Overview

2.4 Summary and Discussion 37

(2) Weight Pushing

For ASR using WFST as a decoding graph, the weights distributed on the arcs of G
come from the language model probabilities, HMM state transition tables and
word variants. When G is further composed with the graph L, there exist
transitions in which the input symbols are the same. The resulting
non-deterministic graph is determinized to reduce the complexity. Despite the
efficiency improvement, one issue that needs to be carefully handled is how the
weights should be distributed, particularly when determinization is performed
to eliminate the redundant arcs.

The weights of the WFST can be distributed in many ways that still result in an
equivalent WFST. When the graph is composed at the phone level, a word
transition is turned into a sequence of phone transitions, and the weight
distribution could be even more complex. In many ASR tasks, studies have shown
that language model look-ahead method could help decoding speed-up by
looking at language model probability as soon as possible to perform better
beam pruning (Kanthak et al, 2000; Lai et al, 2002; Ortmanns et al., 1996a;
Ortmanns et al, 1996b). Therefore, the general principle of WFST weight
pushing is to push the weights towards the initial states as much as possible. This
weight distribution yields an equivalent but more suitable transducer for
pruning and speech recognition.

In practice, the implementation of a weight pushing algorithm must carefully
examine a number of additional issues. For instance, if a word insertion penalty
is to be added, where should the penalty be used? If it is added to the machine G,
it is obvious that the whole probability distribution is shifted by the penalty.
Another consideration is that most of the ASR systems incorporate an optional
silence (or a short pause) at the end of a word. However, the optional silence is a
special word which is not integrated in the language model. In a combined graph,
if all phones are treated as regular ones, some transition weights may be
distributed over the transition of the optional silence, which may not be
reasonable in general ASR applications.

2.4 Summary and Discussion

In this chapter, we have reviewed the speech recognition framework,
fundamental problems and various developments in ASR. The Bayes decision
theory gives a strong foundation for formulating ASR task in a statistical
framework, the performance of which critically depends on a reliable set of
parameters.

Speech Recognition: An Overview

38 2.4 Summary and Discussion

Error Rate Based Training Method

Most of the studies focus on the modeling problem so as to improve the
reliability of model parameters. The MLE is a common estimation approach both
in acoustic modeling and language modeling. This approach would give an
optimal solution if infinite data is used. However, due to the data sparsity of
natural language and the training criterion which attempts to maximize the
likelihood, training improvement may not reflect better decoding accuracy.
Discriminative training is an alternative to MLE, aiming at increasing the
separation between training samples. The MCE is an error rate based criterion
which combines training errors into an objective function such that decoding
errors can be reduced if the function's minimum is found.

Integrated Parameter Estimation

Moreover, one issue in conventional modeling approach is that the parameter
estimation for a sentence is performed in isolation, assuming that parameters of
other sources have been reliably estimated, thus ignoring the interdependency
between different sources. Recent research on FSM design opens the possibility
to integrate various sources into a single search space. The integration of
knowledge sources motivates our attempt to build a unified framework for
speech recognition. Under such a framework, various optimization approaches
can be applied to make the decoding efficient and to update the graph
parameters. If the graph is formulated in an objective function, any reduction of
the function loss will also enhance the graph quality.

Discriminative Training on Integrated Decoding Graph

Therefore, we propose a novel training framework which introduces
discriminative training on integrated decoding graph. With an error rate based
criterion and an optimization method, we attempt to reduce the decoding errors
by updating graph parameters such that the performance of decoding graph can
be directly optimized.

Chapter 3 further investigates the finite-state graph and the various
discriminative training criteria. The problem formulation, discriminative training
procedure and the implementation of training task are also presented.

Chapter 4 presents the experimental results, together with a discussion of the
strengths and shortcomings of this approach.

Speech Recognition: An Overview

3.1 Discriminative Training 39

Chapter 3. Discriminative
Training on Static Decoding

Graphs

The speech recognition problem has been established in a statistical framework
for more than two decades. One essential issue for accurate decoding is the
estimation of the various model parameters. For most of the ASR tasks,
maximum likelihood estimation (MLE) is a popular choice for parameter
estimation. This approach attempts to find the value of parameters from the
training samples such that the likelihood of the data is maximized. However, MLE
relies on the availability of large training samples; furthermore, the
improvement in training does not always reflect higher decoding performance
(Chou, 2000; Juang et al, 1997; Nadas et al., 1988). In the following sections, we
will extend this discussion on MLE and investigate discriminative training
techniques for parameter estimation.

3.1 Discriminative Training

Review from Maximum Likelihood Estimation

The principle of MLE states that the desired probability distribution is the one
that makes the observed data most likely. It is performed by adjusting the set of
parameters so as to maximize the likelihood function. From a mathematical point
of view, the likelihood is a function of the training data:

L(X1,X2,000 X0 | 61,62,.0) = | | f(%:;61,62,...6,) (2.24)

i=1

where f(x;0) is a probability density function (PDF), x;,x,,..,x,and 6,,6,,...6, are
respectively the observations and the parameters to be estimated. In the log
domain, (2.24) can be expressed as:

A=InL=>Inf(x:;6:,6,...6,) (2.25)
i=1
The MLE estimate is obtained by maximizing A :
o) =0, j=1,2,..k (2.26)
00;

Discriminative Training on Static Decoding Graphs

40 3.2 Training Criteria

where InL is assumed differentiable and the shape of InL is a concave so that
the global maximum exists. This optimal property gives the MLE a strong
foundation for finding the best set of parameters. One strength of MLE is that the
minimum variance estimates can be achieved if unlimited training samples are
provided. However, this assumption has the drawback that the estimates could
be highly biased for small samples, especially for large vocabulary ASR tasks
where collecting enough data is difficult. Moreover, the goal of MLE is to
maximize the likelihood rather than to directly minimize decoding errors.

Optimizing Separation of Training Samples

Since the objective of MLE is not strongly related to the decoding accuracy, this
led researchers to explore other techniques that could produce reliable
parameters, such as discriminative training. In contrast with MLE,
discriminative training aims at optimizing the separation of training samples. It
is performed by formulating an objective function that, in some ways, penalizes
parameters that are liable to confuse correct and incorrect answers.

In recent decades, various discriminative training criteria such as maximum
mutual information (MMI) (Bahl et al, 1986; Normandin, 1995) and minimum
phone error (MPE) (Povey and Woodland, 2002) have been successfully
developed for producing reliable parameters in acoustic modeling. Several
discriminative techniques also have been demonstrated to give significant
improvements in language modeling, such as minimum classification error (MCE)
(Chen et al., 2000; Juang et al., 1997; Kuo et al, 2002; Paciorek and Rosenfeld,
2000), minimum sample risk (MSR) (Gao et al, 2005), and the reranking
techniques with the perceptron algorithm (Roark et al., 2004).

In the following section, we will present the technical details of the training
criteria mentioned above, and discuss their strengths and weakness.

3.2 Training Criteria

Discriminative training is performed by formulating the parameters in an
objective function, where a wide variety of function choices are possible.
Generally, the objective function should convert the function's improvements
into higher decoding performance, and to allow for efficient optimization
methods. Among the various discriminative training techniques, the MMI and
MCE are the most popular ones. We will first present these two criteria and
extend the idea to other discriminative techniques.

Discriminative Training on Static Decoding Graphs

3.2 Training Criteria 41

3.2.1 Maximum Mutual Information

MMI training is performed by maximizing the mutual information between the
training samples and word sequences. Suppose A and W are a set of training
samples {4, 4;,..,Ar} and the corresponding word sequences {W;,W,,..,Wi}, the
objective function of MMI is the mutual information between the two events,
given by:

Fm (0) = Z_;log% = ;(logpg(A, |W,)—logPs(4,)) (2.27)

The goal is to find a parameter vector € that maximizes Fyu;(€). Assume that
language model P,(W)= P(W)is given, the function's maximum can be obtained
by taking partial derivative of Fuu (0) with respect to @, yielding

OF umi (0) z(89,) (2.28)
06, Pa(A IW) Po(Ar)
where P;(4,) is expanded by:
Py(A) =Y 5 Po(Ar |W)B,(W) (2:29)

MMI estimates implicitly take into account all possible word sequences.

The objective of MMI is to increase the first term of (2.27), which corresponds to
(2.25) of MLE. However, MMI differs from MLE in that the parameter estimation
also tries to decrease the probability of incorrect word sequences (by subtracting
the second term in (2.27)) in the meanwhile, for all possible competing word
hypotheses as shown in (2.29).

Optimization Method

To estimate the model parameters for MMI training, the prevalent technique
comes from the extended Baum-Welch algorithm (EBW) (Gopalakrishnan et al.,
1991). It is an extension of the Baum-Eagon inequality for optimizing rational
objective functions and is applied only to discrete HMMs. Further extension to
continuous HMMs with Gaussian densities was proposed by (Normandin, 1991),
where the parameter update equations are performed more efficiently than with
the traditional gradient descent algorithm.

Discriminative Training on Static Decoding Graphs

42 3.2 Training Criteria

In addition to EBW, there are various approaches that are proposed aiming at
faster convergence or reliable estimation. In (Zheng et al., 2001), a new set of
equations is derived based on quasi-Newton algorithm. The training speed and
decoding accuracy are both improved. In (Schluter et al., 1997), the generalized
probabilistic descent (GPD) method (presented in the next section) was
implemented to make a comparison with EBW in MMI training. The result shows
the strong similarities on Gaussian densities between GPD and EBW, and that
both methods give competitive performance.

Discussion

Many studies in the literature use MMI training for acoustic modeling. In fact, it is
also possible to apply MMI criterion in language modeling, such as (Ohler et al,
1999) and (Warnke et al, 1999), where the latter further incorporates MMI in
optimizing the interpolation parameters of language model (a smoothing
technique presented in Section 2.2.3). Both in acoustic and language modeling,
the MMI is shown to give significant word error rate reduction in comparison to
the standard MLE criterion.

3.2.2 Minimum Classification Error

In contrast to MMI, MCE aims at minimizing the decoding errors on the training
data. Using simple zero-one cost function to measure the error rate is
straightforward; however, the piecewise-constant property violates the
constraint that the objective function should be continuously differentiable such
that a simple numerical search methods can be applied to reach the function's
minimum. Therefore, most of the recent MCE applications introduce embedded
smoothing (Juang et al, 1997) for a loss function. The use of MCE criterion in
discriminative training requires the following functions to be defined:

e Discriminant function
e Misclassification function
e Optimization function

The first step is to define a discriminant function that can return a value suitable
for the classification problem. In a speech recognition task, the score, which is a
sum of acoustic log likelihood and language model log probability, is a reasonable
choice. Once a discriminant function is selected, the second step introduces a
misclassification measure combining discriminant and anti-discriminant criteria
in a functional form. For instance, if the discriminant function returns the score

Discriminative Training on Static Decoding Graphs

3.2 Training Criteria 43

of reference, the anti-discriminant function will represent the score of
competitive hypotheses. Thus, a misclassification function can be considered as a
decision process taking into account the correct and incorrect hypotheses. Then,
the third step applies an optimization method on the misclassification measure
to obtain a set of parameters such that the error rate is minimized.

In many ASR tasks, given a word string W, a set of acoustic model A, a set of
transition weights I and an observation sequence X, the discriminant function is
defined as the following:

gX W, AT)=a(X,W,A)+b(W,I') (2.30)
where g(X,W,A,I') is the score combining acoustic log likelihoods
a(X,W,A) and language model log probabilities b(W,I").

The misclassification measure is taken of the form:

d(X,AT")=—g(X,W.,,A,)+G(X,{W,,},A,T) (2.31)
and G(X,{W,,},A,T') is given by the average score of N-best competing
hypotheses and a positive number 7:

GOX, Wi,), A D) =10g(- Y explg(X, Wi, ATy (232)

r=1

The misclassification measure can be considered as a continuous function of
decision rule. d(X,A,I')<0means a correct decoding and a positive d(X,A,I')

implies that an error occurs and that the parameters need to be adjusted.

As mentioned above, the objective function is a smoothed loss function that
translates the misclassification measure into zero-one domain for gradient
optimization. The sigmoid function is an obvious candidate, formulated by:
Fuer(d) = (2.33)
where y and @ control the slope and the shift of the sigmoid function
respectively. Once the loss function has been formulated, the goal is to find a set
of parameters that minimize the loss. In the following, we will investigate the

choice of loss function and the optimization method in MCE training.
Property of Sigmoid Function

MCE training, as expressed in (2.33), introduces a sigmoid function as the loss
function to define the misclassification measure for error minimization.

Parameter update 1is performed only when the score difference
d(X,A,I")between the reference and the hypothesis is positive. However, as the

Discriminative Training on Static Decoding Graphs

44 3.2 Training Criteria

score difference gets larger, the slope of sigmoid function tends to 0 and no
parameter adjustment is made. To perform an effective training, an upper bound
for the score difference is used. Thus, the usable score difference lies in a certain
interval of the sigmoid function.

In addition, the score difference is scaled by y (@ is usually kept 0) and the
derivation of the sigmoid function is y-F(d)-(1-F(d))-I (I is the difference of
number of transition weights which is not affected by . Derivation is presented
in Section 3.3 and Appendix A), which shows that the slope parameter y controls
the value of the gradient of F(d). Sigmoid functions with different y are
displayed on Figure 3.1. In Section 3.5.3, we will present our parameter selection

in more detail.
F(d)=1/(1+exp(-rd))

0.9}
0.8+ |
S
“ 07t |
0.6+) 1
e r=0.05 —= —r=0.02 -+ r=0.01
05 /‘ | | | | | | | | | |
0O 20 40 60 8 100 120 140 160 180 200

score difference d

Figure 3.1: Sigmoid functions with different y .

Choice of a Good Loss Function

For a learning system, the learning behavior is to find the function's global
minimum. An ideal choice for the loss function is a convex function. A convex
function has the property that the absolute minimum exists and can be reached
from any starting point on a function curve or surface. Well-known convex
functions are exponential functions and quadratic functions defined on the
domain of real numbers. This property makes it straightforward to apply various
convex optimization methods. However, the functions encountered in practice
may not be convex, such as the sigmoid function. Minimizing such non-convex
functions runs the risk to reach a local, rather than a global minimum.

Although various investigations on the performance impact of using different
loss functions have been made in the literature (Rosasco et al, 2004; Zhou, 2002),
the choice of a good loss function varies widely depending on the data
distribution and on the problem design. In the discriminative training framework,

Discriminative Training on Static Decoding Graphs

3.2 Training Criteria 45

the training performance relies heavily on the loss function and optimization
method. A recent study explores several loss functions and optimization methods
(Altun et al., 2003). These experiments suggest that a better performance can be
obtained by extending the feature space in the model, rather than using a
different loss function. These findings have been confirmed in (McDermott and
Hazen, 2004).

GPD Optimization Method

The generalized probabilistic descent (GPD) algorithm is a powerful
optimization method which is often applied on MCE criterion for minimizing
classification error. The GPD algorithm basically performs standard gradient
descent method to optimize the parameters (Schluter et al., 2001) but extends
the calculation of the gradient for each training sample, which makes it a form of
stochastic approximation.

Extension to Stochastic Approximation

Standard gradient descent is an attractive approach due to its simplicity and
generality. Assume v, ¢ and F(:) are a vector of variables, a learning rate
(step-size) and a differentiable function respectively. The parameter update on v
is expressed as:

Vi1 =V —EVE (V) (2.34)
where t is an iteration number and D indicates the whole training data. With a
good starting point and a carefully chosen learning rate, gradient descent often
converges to a local minimum?2. However, the update amount of v is the sum of
gradients of all training samples. The whole model is updated once by this
adjustment at each iteration. Therefore, standard gradient descent is a batch
training. For discriminative training on a large graph, several transitions are
never or rarely traversed, and confusions frequently occur at some positions. It

may not be reasonable to update the involved parameters by the scaled gradient
EVFD (V[) .

A variant is thus proposed to update the model for each individual training
sample. It is known as stochastic gradient descent or stochastic approximation
(Widrow and Hoff, 1960). This on-line training performs sample-by-sample

12 Local minimum is guaranteed under stochastic approximation conditions. It requires learning
rate selection over time to produce sufficient parameter change. However, satisfying these
conditions usually results in slow convergence.

Discriminative Training on Static Decoding Graphs

46 3.2 Training Criteria

parameter update, and usually converges faster than standard gradient descent
(Darken and Moody, 1992; Le Roux and McDermott, 2005; Nekrylova, 1975). The
parameter update of on-line training is written as:

Ve =Ve —EVF; (V) (2.35)

where d is a training sample in the whole training set D.

Property and Comparison

The main difference between (2.34) and (2.35) is that, at each iteration, standard
gradient descent updates the model once while stochastic gradient adjusts the
model parameters for each training sample. With a small enough learning rate,
stochastic gradient can closely approximate the standard gradient. However, it
still runs the risk of being trapped to local minimum, as standard gradient
descent does. Global minimum of stochastic gradient descent is not guaranteed.
Additional optimization and convergence properties of the stochastic gradient
descent are investigated in the literature (Blum, 1954; Spall, 2003). In ASR tasks,
the theoretical survey of GPD in error rate minimization has been explained in
(Juang et al., 1997).

Despite GPD on MCE yielding significant improvements in many ASR tasks, a
common drawback of GPD is the over-fitting effect. This should be carefully
handled, especially when relatively few data is available to train a complex model.
Several methods have been proposed to prevent the over-fitting such as
extending parameter space, cross-validation, early stopping or modified MCE
(Biem, 2006; Shimodaira et al, 1998). In general, providing sufficient training
data is needed to avoid the over-fitting problem.

Other Optimization Methods

GPD optimization method for error rate minimization in MCE training is not the
only choice. Other optimization methods are also possible, such as
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, quasi-Newton's method,
conjugate gradient method (Le Roux and McDermott, 2005; McDermott and
Katagiri, 1994). In recent work, one has compared the performance of different
optimization methods on MCE framework with a large data set (Le Roux and
McDermott, 2005). Although results show that MCE can be effectively optimized
by various methods, parameter selection is needed to reach better performance.
More recently, G. Zweig and his coworkers have used Quickprop, a fast variant of
the well known backpropagation algorithm, to update the parameters of a static
decoding graph (Kuo et al,, 2007).

Discriminative Training on Static Decoding Graphs

3.2 Training Criteria 47

Discussion

Although MCE incorporates error rate into the objective function, a comparison
between MMI and MCE shows that both can be represented in a unifying formula
and optimization methods (Schluter et al., 2001; Schluter and Macherey, 1998),
where significant improvements in acoustic modeling were observed over ML for
both criteria.

3.2.3 Other Training Approaches

In addition to MMI and MCE, several training approaches were conceived
recently. These approaches either extend the error rate based idea or introduce a
novel problem design.

(1) Minimum Phone Error
One recently proposed training approach uses the minimum phone error (MPE)
criterion (Povey and Woodland, 2002) that aims at minimizing the decoded
errors at the phone level, which can be expressed as:

£ pi(0,|s)*P(s)PhoneAcc(s)

FMPE(A):Z ZSPA(Or |5)"P(s)

where {0:,0;,..,0r} is a sequence of observations with corresponding

(2.36)

transcriptions {s,}, P(s)is language model probability, 1 is a set of HMM
parameters, k is a scaling factor of acoustic score and PhoneAcc(s) represents the

number of correctly decoded phones in hypothesis s.

It is clear that MPE criterion allows the estimates of decoding errors to be used
directly in the training process. Maximizing Fupr(A) is equivalent to increase the
decoding accuracy. It can be considered as minimizing the errors by explicitly
modeling the phone accuracy while MCE typically focus on string accuracy
(McDermott et al.,, 2007).

(2) Reranking with Perceptron Algorithm

In recent years, reranking techniques have resulted in significant improvements
in various discriminative training tasks (Collins and Duffy, 2002; Collins and Koo,
2000; Och, 2003; Shen et al,, 2004). It is performed by extracting new features
from the N-best list, and then by using these new features to rerank the N-best
list. One popular algorithm employed to perform this reranking is the perceptron
algorithm (Rosenblatt, 1958).

Discriminative Training on Static Decoding Graphs

48 3.2 Training Criteria

This algorithm is simple and is widely used in machine learning community. The
idea behind is to incrementally modify the parameters such that the misclassified
instances move closer to the correct side of the decision boundary. In ASR tasks,
a general perceptron algorithm is proposed in (Collins, 2002). For a set of
training samples (x;,y;), i=1,2,..,n, the learning function is given by:

Eerceptron (Xi) =Z; =argmax;ccen(x;) CD(Xi ;Z) vV (237)

where GEN(x;) is a decoder that produces a set of candidates from an input
sample x;,® maps a candidate to a feature vector and v is a parameter vector.
Using the training samples as evidence to adjust the parameters, if z; # y;, the

parameter vector is updated by the following rule:
v=v+®O(x;,y;)—D(x:,2;) (2.38)

In ASR tasks, the feature of ®(x,y) can be defined as the number of times a
decoded word (or an n-gram, consecutive words) appears in the reference y. The
goal of the decoder is to output the best path that maximizes F(x). It can be seen
that the parameter update of perceptron algorithm is performed by feature
selection, in an attempt to make the hypothesis and the reference word strings
getting closer.

(3) Minimum Sample Risk

Most existent discriminative training methods introduce a loss function in the
problem design and attempt to reach the minimum error by optimizing the loss
function. However, the loss function is an approximation (or translation) of the
decoding errors. An alternative is to directly minimize the error rate on the
training samples, a technique called minimum sample risk (MSR) (Gao et al,
2005).

Rather than using a loss function, the MSR employs a simple heuristic training
algorithm to minimize the training errors. It is performed by selecting a subset of
the most effective features and then iteratively optimizing the model parameters.
In ASR tasks, the features can be the occurrence of n-grams in a word string W or
their log probabilities. These features are mapped to a set of real values, in the
form of a vector f. Each feature has a corresponding parameter. The product of
the feature and parameter vector A can be defined as the score of a word string.

score(W,)= f (2.39)

Discriminative Training on Static Decoding Graphs

3.3 Problem Formulation 49

Maximizing the score is similar to the perceptron algorithm presented above.
MSR further formulates the problem as an error minimization task; both feature
selection and parameter adjustment are performed based on the following
function:

N
Fuse(A) =argmin Y Er(WR,W;' (x:,4)) (2.40)
A

i=1

where Er(:) is an error function that measures the number of errors by
comparing the reference transcript W with the most likely word string
W* =argmaxScore(W,1) generated from a training sample (x;,Wf), for
i=1,2,..,n. The total number of training errors is defined to be the sample risk.
The goal of (2.40) is to find a set of parameters Athat minimizes the risk, by
taking one feature at a time, reaching its minimum in that direction and
repeating the minimization through all features until the error reduction
converges.

[t is noticeable that the MSR differs from other discriminative training methods
in that the effectiveness of each feature is estimated, instead of being combined
in the objective function, where the high correlation of features may result in
only a slight improvement (Finette et al., 1983; Gao et al,, 2005).

3.3 Problem Formulation

In this thesis, the static decoding graph is constructed from a language model
and other sources. Our goal is to enhance the graph quality by updating some of
the parameters. With a suitable discriminative training criterion, we hope that a
reduction of training errors will yield an improvement of the recognition
accuracy on the test set.

We follow the notations and problem design of our previous work (Lin and Yvon,
2005). Assume G is an integrated finite-state graph based on the principles
described above (additional construction details are given in Section 3.6, p. 58).
The graph G contains two kinds of parameters: state transition weights and
acoustic model parameters, which are associated with HMMs states Gaussian
densities. Given a word string W, a set of acoustic model A, a set of transition
weights I and an observation sequence X, the conditional log likelihood of X is
approximated as the score of the best path in G for input X and output W. This
score combines the individual acoustic log likelihoods and transition weights
along the decoded path, as shown in the following equation:

Discriminative Training on Static Decoding Graphs

50 3.3 Problem Formulation

g(X,W,AT)=a(X,W,A)+b(W,I) (3.1)

where a(X,W,A) is the sum of acoustic log likelihoods and b(W,I") is the sum of
transition weights along the path from the starting state to the final state. Speech
decoding consists of finding a word hypothesis W,,, which maximizes g over all
possible word sequences. If W, is the correct word sequence (reference string),
the performance of the recognizer can be expressed as a function of the score
difference between the reference and the best hypothesis. For a given input
vector, the misclassification function thus is defined as:

d(X,AT)=—g(X,W,,,A,T")+g(X,W,,,A,T) (3.2)

An erroneous recognition hypothesis thus simply translates into a positive value
of d(X,A,I'), meaning that the correct word sequence is not the top ranking one
according to g. Once the misclassification function has been formulated, the next
step is to define a loss function, /(X,A,I"), which aims at minimizing error rate
by integrating the misclassification measure d(X,A,I'):

1
(X AT) = ((d(X, A, T)) = — A AT O (3.3)

where y and @ are the parameters which control respectively the slope and the
shift factor of the sigmoid function. Using generalized probabilistic descent (GPD)
algorithm (Katagiri et al., 1990), a standard iterative procedure can then be
defined, based on the following parameter update rule for the set of transition
weights:

Ten =T —&-VUX,AT,) (3.4)

meaning that new transition weight I';,; is updated by subtracting a scaled
gradient from original weightI’,. If the acoustic model parameters are fixed, the
loss function needs to be differentiated only with respect to the transition
weights. Given that b(W,I') is the sum of transition weights and a(X,W,A) is

considered as a constant, the derivation of (3.4) yields:

ot 8di (X, A,T)

VI(X,AT,)=
() ad: ar

(3.5)

Discriminative Training on Static Decoding Graphs

3.4 Training Procedure 51

Consider I' as a transition weight vector, taking partial derivatives of
d:;(X,A,I") with respect to I, (3.5) finally yields:

a—di—ﬂ(dx)(1—£(d:)) (3.6)

%:—I(Wef;s)"'l(whyp's) (37

where I(W,s) represents the number of transition weight s on the best decoding
path for W. This procedure can be generalized to N-best hypotheses, rather than
the single best one (Kuo et al, 2002). Details of the derivation are provided in
Appendix A (p. 116).

3.4 Training Procedure

Based on the problem formulation and the MCE training framework discussed in
the previous sections, the training procedure is represented as a flowchart
displayed on Figure 3.2. The procedure consists of three phases: 1) graph
construction 2) discriminative training and 3) testing, which are presented in the
following.

Initially, the graph is built by the graph construction procedure presented in
Section 3.6. Three knowledge sources, namely the acoustic models, the language
model and the dictionary, are combined to produce a single search space, the
graph 0, for further parameter update.

Then, all training samples are used to update the parameters of graph 0 by
discriminative training and produce graph 1. In the discriminative training phase,
the graph 1 is taken as input to produce graph 2 in the next training iteration.
One has to note that the graph parameters are updated sequentially. The
updating includes three steps: decoding, alignment and transition weight
adjustment on the word pairs. At each iteration, decoding, alignment and
parameter updating are recorded in a log file for further analysis.

In the testing phase, the updated graph is used for decoding on the test set to
evaluate the performance improvement incurred by the training procedure.

The training loop is repeated until the desired number of training iterations is
reached.

Discriminative Training on Static Decoding Graphs

52 3.4 Training Procedure

acoustic . language
dictionar
models y model

A

graph
construction

iteration i=1 to |

f MCE discriminative training \

training sample d=1 to D

updating parameters decoding/alignment

of graph i-1 log of ith iteration

no
no 1. decodi led
yes . decoding on sample
v 2. alignment on sample d
graph i 3. parameter update
/ testing \

v

decoding on
test set

- » it%hdecoding result

yes

Figure 3.2: Flowchart of MCE discriminative training on integrated decoding graph.

The I and D are training iterations and size of data set respectively.

Discriminative Training on Static Decoding Graphs

3.5 Parameter Update Rule 53

3.5 Parameter Update Rule

In MCE training, the parameters that have to be carefully selected are yand ¢,
representing the slope of sigmoid function that transfers a misclassification
measure to the 0-1 domain, and a scale factor to update the parameters.
Moreover, training is performed on a weighted finite-state graph. A word is
represented by a sequence of phones and redundant arcs are determinized to
reduce the graph complexity. Therefore, the following two issues remain critical:

e The choice of a word pair from the reference and hypothesis word
strings.

e The update position, whose choice is dependent on the distribution of
transition weights.

A general parameter update rule for MCE training on integrated decoding graph
is given by (3.4). Additional implementation details will be discussed from
Section 3.5.1 to Section 3.5.3.

3.5.1 Choice of a Word Pair

When decoding or alignment is performed on a graph, the result is a sequence of
arcs starting from the initial state to the terminal state, yielding the
corresponding word string. Intuitively, if the reference and the hypothesis word
strings are identical, the hypothesis is considered as a correct decoding. Even
though the transition arcs may be different, the difference occurs in the
transition going through an optional silence or through the back-off state. Based
on this discussion, when decoding and alignment produce word strings and the
corresponding transition paths, parameter update is determined by the
comparison of word strings. If the reference and hypothesis word strings are the
same, no parameter update is performed. Otherwise, parameter update is
performed on the mismatched words. If the probability of a mismatched word
has to be changed, only one arc along the corresponding path is selected for
actual transition weight adjustment.

When updating the transition weights of mismatched words, one notable issue is
that a correctly decoded word may follow an incorrect word, meaning that
parameter update is based on an incorrect word history. Although we want to fix
the errors in the word history, decreasing this weight may be harmful to the
correct words (Kuo et al,, 2002). We thus focus on the relationship between two

Discriminative Training on Static Decoding Graphs

54 3.5 Parameter Update Rule

consecutive words rather than considering a certain word history. Assume that,
for instance, the reference and hypothesis word strings and are the following:

hypothesis: <s> franck mathevon </s>
reference: <s> de franck mathevon </s>

The set of word pairs are obtained by extracting consecutive words:

"<s> franck”
"franck mathevon"
"mathevon </s>"
"<S> de"

"de franck"

Given the set of consecutive word pairs, parameter update is performed
according to the following rule:

e If a word pair exists both in the reference and in the hypothesis, with
identical occurrence counts, no update is performed.

e If a word pair exists both in the reference and the hypothesis with
different occurrence counts, parameter update is performed on this
word pair.

e If a word pair exists only in the reference or only in the hypothesis,
parameter update is performed on this word pair.

Since a word pair involves a sequence of arcs, which may be shared with other
pairs, the choice of the updated arc has a great influence on the overall transition
weight distribution. In the next section, we will investigate this issue to propose
a suitable parameter update.

3.5.2 Update Position

In our implementation of MCE training, a word pair W;W; is defined as a
sequence of arcs. The first arc outputs W; and the last arc outputs W>. As
illustrated in Figure 3.3, W;W; is represented by the following transitions:

WiWw, :{02,03,(14,05} (3-8)

Along this sequence, arc a: is the first arc of W;W> and is shared with the word
pair W;Ws. If parameter update is always performed on the first arc, the
adjustment on arc az also influences the weight distribution on W;W3. This

Discriminative Training on Static Decoding Graphs

3.5 Parameter Update Rule 55

dependency makes different word pairs less distinguishable and results in
unstable performance improvement, especially when language model look-ahead
technique is applied to increase pruning. This dependency also occurs when
updating the last arc. This makes the choice of the update position problematic,
particularly for word pairs containing words with only one phone such as the
preposition a and the determiner I'. Due to the high influence of transition
weights, a deterministic arc selection scheme would result in local instability. In
our implementation, the arc for parameter update is randomly determined: one
possible arc is chosen by random sampling with uniform probability amongst all
possible candidates.

a7z’ .
W; R ' 1)
—alp-(O—a2 a3 P O—adPp-O—a5PO—a6»O

Figure 3.3: An example of decoded paths represented by solid lines. The dotted lines
are possible paths in the graph. {a,,a,...,as} are weighted transitions and
{Wy,W,, W3} are output word labels.

One has to note that the arc sequence may contain the back-off arc. Following the
derivation in Section 3.3, the back-off arc is not treated as a special case but as a
regular transition. Parameter update on the back-off arc is performed as on the
other arcs.

3.5.3 Parameter Selection

As discussed in Section 3.2.2, parameters y and ¢ have to be carefully selected.
In the following, we will address the issue of parameter selection in terms of the
distribution of transition weight adjustment.

y : The Slope and Gradient Control

(3.3) shows how a loss function transfers the misclassification measure, where
the slope is controlled by y. Parameter update is then performed by taking the

gradient of the loss function. The value of y is determined by relating the effect

on the parameter adjustment!3 with respect to the score difference.

13 The actual transition weight is calculated by (3.4). However, the term on the right side of (3.5)
is a difference of transition weight occurrence and is not affected by the value . The

discussion thus focuses on the value given by (3.6).

Discriminative Training on Static Decoding Graphs

56 3.5 Parameter Update Rule

rL*(1-L), e=10

0.14
— -~ —=0.05
0.12:" . r=0.02 |
£ 4l N r=0.01 |
£ \
§ \
2 0.08] \ .
< \
& 0.06) \ |
(] \
g
5 0.04
o

0.02

Score Difference

Figure 3.4: Parameter adjustment with respect to score difference in (0,200) where
200 is the upper bound. L is the loss function and the learning rate €=10.

Figure 3.4 shows that different slope gives distinct update distribution. For
y=0.05, the distribution prefers the sentence whose score difference is small,
meaning that word pairs with small score difference will obtain more parameter
adjustment than those of large score difference. This is reasonable since small
score difference indicates that the hypothesis is close to the reference, meaning
that either the decoded word string is almost correct or that the errors can be
easily fixed. Giving more parameter adjustment will quickly correct the errors.
Contrarily, parameter update for score difference greater than 120 almost does
nothing. For » =0.01, the training process gives similar parameter change for all
sentences, no matter whether the word strings are correctly decoded or not. A
reasonable value for this parameter is the following: the slope control y =0.02
with a learning rate £=10, giving minimum 0.0035 and maximum 0.05

parameter adjustments in the log scale.
¢: The Learning Rate

The learning rate is a factor which scales the gradient of the loss to determine the
actual update amount of a transition weight. Generally, low learning rates yield
more stable convergence rate while at the cost of longer training time. Using
higher learning rate to speed up convergence must be carefully designed to
prevent “skipping” local minimum. Due to the sample-by-sample nature of MCE
training using the GPD optimization method, one possibility to give an effective
parameter update while keeping stable convergence is to use a dynamic learning
rate (Magoulas et al., 1999; Yu et al., 1995).

Discriminative Training on Static Decoding Graphs

3.5 Parameter Update Rule 57

In the MCE training framework, the line-search technique (Mor'e and Thuente,
1994) is applied to determine the update for each training sample, under Armijo
condition (Armijo, 1966; Driessen et al., 1998; Luenberger, 1989):

fC+éepi) < f(Ti) + peVE(Ti)pe (3.9)

where 1 €(0,1), f(-) is the loss function. The parameter is updated by:

Dievr =The + xPr (3.10)

where I, is the parameter of a training sample k, ¢ is the learning rate (or the
step-size of individual sample) and p is the descent direction. The computation of
the learning rate and of the descent direction may vary depending on the method.
In our implementation, the descent direction p for training sample k is expressed

as:
P ==Vf (k) (3.11)

and ¢ is calculated by the following procedure:

until f(Ty +&Pp) < f(Tr) + puePVE(T)pi{
U+ = 7))

j=j+1
}

& =)

Figure 3.5: Search for the best learning rate.

where 7 €(0,1)and j is an iteration index. At each iteration, a new ¢ is used to
verify whether the condition still holds or not. In practice, satisfying the stop
condition may require a lot of iterations, most of which will produce negligible
difference on the learning rate. Therefore, a tolerance threshold is often used as a
stop condition to limit the computation. With the definition of p,in (3.11) and
the procedure for finding the learning rate, the parameter update rule using the
line-search method can be expressed as:

rk,t+1 =Fk,t —€ka(rk) (312)

It is similar to (3.4), except that the learning rate is determined dynamically for
each training sample.

Discriminative Training on Static Decoding Graphs

58 3.6 Graph Construction

3.6 Graph Construction

Fast decoding on weighted finite-state graph critically depends on the details of
graph construction, which greatly affect the search efficiency. The graph is built
by compiling knowledge sources from typical ASR systems as finite state
machines (FSM), then by integrating these sources into one search space. Three
main knowledge sources in speech recognition are the dictionary, the acoustic
models and the language model. The use of FSM in ASR tasks, the design
principle and the implementation details of this finite-state graph are presented
in the following sections.

3.6.1 Weighted Finite-State Transducers
Weighted Finite-State Transducers in ASR

Speech decoding involves the process of mapping from a pronunciation sequence
to word(s), and from word(s) to high level linguistic representations, which can
be viewed as a recognition cascade presented in Section 2.3.3 (p. 33). Many ASR
studies generally follow this design but further combine several large knowledge
sources to produce higher decoding accuracy. Although more information can be
captured, the size of sources becomes the main limitation of fast decoding. This
motivates the use of an efficient representation of these models in large
vocabulary ASR tasks.

One recent development introduces weighed finite-state transducers (WFST) in
ASR tasks (Mohri, 1997; Mohri et al, 2000b). A WFST is a type of finite state
machine, whose state transitions carry the input, output symbols and arbitrary
weights. It is clear that a transition sequence from the initial state to the final
state of a WFST represents a weighted path and the mapping from inputs to the
corresponding outputs. A special case of WFST is the weighted finite-state
acceptor (WFSA). It can be considered as a WFST without output symbols. The
state transitions of a WFSA specify the symbol and a weight, which makes it a
proper choice for representing language models.

Both for transducers and acceptors, the epsilon transitions are often introduced
to represent an empty string or a delay. Generally, the use of epsilon transitions
is critical to the efficiency of finite-state graph. We will investigate this issue
later.

Discriminative Training on Static Decoding Graphs

3.6 Graph Construction 59

Operations on Transducers

Once the various knowledge sources are represented as WFSTs for ASR tasks,
two main issues are 1) how the mapping between different information sources
can be represented, and 2) the possibility to reduce the transducer to a minimal
size. In the following, we will present several transducer operations, together
with a discussion of these critical issues.

(1) Composition

The composition operation performs the combination of two transducers
R:Y"—>T and S:I" > A" to produce a single transducer T=RoS: Y —>A’.
(TheX and I'" are strings over the set of alphabets X and I"). Assume that the
corresponding sets of states are{r},{s}and{t}respectively, the relation of
symbol mapping represented by the transducer composition is expressed as the
following (Mohri et al., 2000a; Pereira and Riley, 1997):

(RoS)(r,t)=Y R(r,s)xS(s,t) (3.13)

sel™

where the weight of transitionr —tis a product of weights w1l and w2 over
transitions r —»s and s—t respectively. Obviously, the time and space
complexity of this operation is quadratic with the combined WFSTs. It can be
seen that if R represents the mapping sequence from A to B, and S represents the
mapping from B to C, the composition produces a transducer representing the
mapping from A to C. When constructing transducers from various sources, the
composition allows different mappings to be combined in a single transducer.
For instance, the composition of the transducers constructed from a dictionary
and a word string yields a transducer whose output is identical to the word
string while the connections between states are phone-level transitions.

A WFST can be considered as a generalization of WFSA. When the composition is
performed on a WFSA and a WFST, the acceptor is converted to a transducer
with identical input and output symbols. In addition, the epsilon transitions of
WEFST represent the empty mappings. When the composition is performed, the
epsilon transitions should be carefully dealt with, so that the resulting
transducer would not contain redundant paths. We will come back to this issue
at the end of this section.

(2) Determinization
In many real applications, the constructed transducers are not deterministic. A
transducer is deterministic if and only if the transitions leaving a state carry

Discriminative Training on Static Decoding Graphs

60 3.6 Graph Construction

different input symbols and if there is no input epsilon transitions (Mohri et al,
2000a). Determinization is an important finite-state transducer optimization
technique that has several special features (Mohri et al., 2000b; Mohri and Riley,
1997).

e It aims at reducing the transitions of a state to a minimum, such that
there are no two transitions sharing the same input symbols.

e It is applied directly to the whole transducer, rather than the
redundancy reduction on partial lexical trees such as the word graph
approach (Ortmanns et al., 1996c¢).

e The deterministic transducer is equivalent to the non-deterministic
one, meaning that the functionality is not changed after
determinization.

Once the determinization is performed on a transducer, one critical issue is how
the weights should be distributed when eliminating redundant transitions. For
instance, merging arcs with different weights should preserve the sum of weights
along the path. In (Mohri, 1997), a weighted determinization algorithm was
proposed, which generalized the classical determinization on automata.
Although not all weighted transducers can be determinized (Mohri, 1997), for
many ASR tasks whose transducer representation is acyclic, the transducer is
determinizable. The details of weight distribution over the transducer will be
discussed later.

Epsilon transitions can also be a source of problems, particularly for the
representation of n-gram language models; where epsilon transitions are used to
reach the back-off state. Determinization of such finite-state graphs would result
in an exponential blow-up of the graph size due to the subset construction (Aho
et al, 1986). As a consequence, the epsilon is treated as a regular symbol. This
trick allows to make a compromise between the graph size and the determinism.
The resulting graph still satisfies the definition of determinism (Mohri, 1997;
Mohri and Riley, 1999) in that further composition will not produce multiple
matches. The reason why we do not remove the epsilon transitions to the
back-off state will be explained at the end of this section.

With the determinization, the time efficiency of a transducer can be greatly
improved by reducing the alternatives of a state. Although the worst case
complexity of determinization is exponential (Mohri, 1997), this rarely occurs in
usual ASR tasks, since the initial transducers generally contain a lot of
redundancy (Mohri, 1997).

Discriminative Training on Static Decoding Graphs

3.6 Graph Construction 61

(3) Minimization

Once a deterministic transducer has been constructed, one can further reduce its
size by minimization (Mohri, 1997; Mohri, 2000; Mohri and Riley, 1997). The
determinization only produces a transducer in which there is at most one
transition with given input symbol. However, there may be several states in the
deterministic transducer such that the set of strings from these states to the
terminal state are identical. These states are said to be equivalent (Mohri, 2000),
meaning that they can be further merged by the minimization procedure without
changing the transducer's behavior. This procedure requires to move the output
symbols or to redistribute the weights of a deterministic transducer to yield the
one having smaller number of states. If there exists no other deterministic
transducers having fewer states, this transducer is minimal (Mohri, 2000).

The minimization of weighted deterministic transducers is performed by
extending the classical minimization algorithm, which considers the weighted
transducer as an unweighted acceptor by taking the input, output symbol and the
weight of a transition as a single label (Mohri, 2000; Mohri and Riley, 1997).
Before applying the classical minimization algorithm, one important step is to
redistribute the weights along the path (Mohri, 1997). This does not affect the
transducer's behavior but it makes it more likely to produce a transducer with a
smaller size. It is obvious that arbitrary weight distribution may yield several
weighted transducers which are all minimal, meaning that the minimal weighted
transducer is not unique. In ASR tasks, however, how the weights are distributed
along the path has a critical impact on the performance. We will investigate this
issue again.

For the case of weighted transducers, the determinization increases the time
efficiency by reducing the alternative paths leaving a state. The minimization
further reduces the size by merging equivalent states. The complexity of
minimization is O(|Q|+|E|) in acyclic transducers and O(|E|log|Q]) in the
general case (Mohri, 1997), where |Q| and | E| respectively represent the

number of states and the number of transitions.

(4) Weight Distribution

As noted previously, the weight distribution is not clearly specified in the
determinization and minimization procedures. However, for many ASR systems
which critically rely on the weights (language model probability, HMM state
transition probability or word variants) to improve the pruning, the decoding
performance could be improved if the weights are properly distributed
(Ortmanns et al, 1997a).

Discriminative Training on Static Decoding Graphs

62 3.6 Graph Construction

The motivation of weight pushing on transducers follows this intuition and
pushes the weights towards the initial state as much as possible to improve
pruning. Two general weight pushing techniques were proposed in (Mohri and
Riley, 2001), called log semiring and tropical semiring algorithms. A semiring is
an algebraic structure (R,®,®) over a set of real numbers, which is similar to a
ring without additive inverse (no negative elements). For instance, (N,+,x)is a
semiring over natural numbers, with ordinary addition (identity 0) and
multiplication (identity 1). In the log domain, the semiring can thus be expressed
as below:

(R, U{0},®,+) (3.14)
where + is an ordinary addition of two log probabilities x,y € R, U{x}. For the
log semiring, the @ is given as:

xX®y=—log(e™*+e”) (3.15)
In ASR tasks where Viterbi approximation (finding the path with minimum
weights) is applied, the @ for tropical semiring is defined by:
x® y=min(x,y) (3.16)
When weight pushing is performed, both the log weight pushing algorithms
attempt to push the weights towards the initial state. The difference is that the
log semiring algorithm redistributes the weight of each transition such that
outgoing probabilities of a state sum to 1 while the tropical semiring algorithm
keeps the minimum over the transitions. Although tropical semiring algorithm
outperforms log semiring algorithm in (Mohri and Riley, 2001), another
investigation shows an opposite result when language model probability is not
pushed beyond word boundaries (Kanthak et al,, 2002).

One has to note that both semiring approaches yield equivalent transducers in
the minimization step (Mohri and Riley, 2001). They only differ in the way
weight is redistributed on the path.

Epsilon Removal

As mentioned previously, the epsilon transitions are often introduced in the
transducers, representing the empty string or a delay. The process to remove the
epsilon transitions from a transducer to produce an equivalent transducer
without epsilon transitions is called epsilon-removal. One generic
epsilon-removal algorithm was proposed in (Mohri, 2002), which performs
efficient removal and makes it an independent part of transducer optimization.

In practice, the transducer representation of n-gram language models uses
epsilon transitions connecting to the back-off state with back-off probabilities

Discriminative Training on Static Decoding Graphs

3.6 Graph Construction 63

(Allauzen et al,, 2003). In this connected network, these epsilon transitions can
be freely accessed during decoding. However, removing these transitions is not
desirable. For a 65k words vocabulary, removing epsilon transitions to the
back-off state would increase the number of states needed to represent the
back-off mechanism from (65k + 65k+1) to (65k x65Kk). This would result in an

intractable transducer.

3.6.2 Principle

In (2.23) (p. 35), a general composition rule HoCoLoG is proposed, which
allows all resources to be integrated into one single decoding graph. However,
depending on the problem design, various WFST operations and modifications
may be introduced to produce a more efficient decoding graph. In this thesis, the
goal of graph construction is to build an integrated search space which combines
knowledge sources from the dictionary, the tied-state tri-phone acoustic models
and an n-gram back-off language model. Three additional considerations are
taken into account in our graph construction procedure:

e Optional silence: at the end of a word, a short pause is added to allow
for an optional silence after each word.

e Within-word acoustic models: in this decoding graph, tri-phone
models are used on the transitions within a word. Transitions which
cross a word boundary use context-independent models.

e Word insertion penalty: a word insertion penalty is used to penalize
or to reward the decoding hypothesis when a word label is produced.

The finite-state operations and knowledge sources used in the graph
construction procedure are defined as below:

Notation Description

° composition of two source graphs into one graph
det determinization of a graph

G FSA representation of the language model

L' unambiguous dictionary FST

C' inverse of determinized CI to CD FST

H FST mapping context-dependent phone to HMM
wip add word insertion penalty

T removal of epsilon transitions <eps>

pFST graph weight or label pushing

Sp incorporation of a short pause

Table 3.1: WFSTs and operations for graph construction.

Discriminative Training on Static Decoding Graphs

64 3.6 Graph Construction

Taking into account these three considerations, the graph construction
procedure can be expressed in the following manner:

sp(pFST(det(H o (det(C'o (det(pFST(wip(z(L'>()))))))))) (3.17)

Three aspects of the implementation of (3.17) will be explained below: (1) WFST
representation of knowledge sources (2) graph operations and (3) weight
pushing.

3.6.3 WFST Representation
Language Model

Language models are constructed by estimating the probability between words.
The n-gram models are the most popular in ASR tasks. Each n-gram history
represents a state, and the language model probabilities are distributed over the
arcs connecting different states, admitting the natural representation by WFSAs
(Allauzen et al., 2003). By combining all the transitions between words and word
histories together, a connected network can thus be constructed, starting from
the state <s> and ending at the terminal state </s> as shown in Figure 3.6. The
source 3-gram language model and its finite-state representation are presented
in Appendix B (p. 120).

In Figure 3.6, state 0 represents the history <s>, which is the beginning of the
graph. State 12 is the terminal state, represented by a double circle. Overall,
there are three kinds of states.

e The back-off state: the state 1 in the figure.

e The state representing a 1-word history: the states such as 2, 3, 4, 5
and 6 represent the words (or unigram history in the language
model). This kind of state involves a transition from current state to
the back-off state and a transition from the back-off state to current
state, and carries back-off probability and unigram probability
respectively.

e The state representing a word history of length 2: the states such as 7,
8, 9, 10 and 11 are such states. The 3-gram log probabilities are
distributed over the transitions between these states. In addition,
these states also have transitions to lower order n-grams with
back-off probability, such as the transition from state 7 to state 3.

Discriminative Training on Static Decoding Graphs

3.6 Graph Construction 65

</S>/'0-66'"""""""'"
</s>/0.765

titres/-1.14 |
// _ <F>/1

<F>/-027 </5>/0.698

/ tztres/ 0.23

ses/-1.14 ' <F>/1<—ses/ 053
- - <F>/-03%4
1)& F>/-0.53 v

—de/-0.66- R

 rappel/-0.66 <F>/-0.17

\\ I 77<F>/-0.49,,,, o
. - —
<F>/-049 - “de/-0.12
le/-0.66)

<F>/-049

<F>/0 de/ 0. 12

<F>/0ﬂ rappel/-O.lZ
rappel/-0.12
lef-012 p[7 ¥
<S$>

<s>le le rappel

Figure 3.6: A 3-gram language model in the form of a weighted finite-state
acceptor. The dotted rectangles are examples of 1-gram (state 3) and 2-gram
histories (state 7 and 9). Initial state is 0 and final state is 12.

As mentioned in Section 3.6.1, the epsilons are no longer delays for
determinization on transducers; the label from a state to the back-off state is
represented by <F> so as to be treated as a regular symbol instead of the
reserved label <eps>.

Once the language model is constructed as a WFSA G, we attempt to expand the
graph at the lower levels by composition and determinization, such that more
alternatives can be reduced to yield a more efficient graph. To achieve this, we
use the dictionary as another source for composition.

Dictionary

A pronunciation dictionary is a list of mappings between phone sequence(s) and
words. In a large scale dictionary, there often exists identical pronunciation that

Discriminative Training on Static Decoding Graphs

66 3.6 Graph Construction

corresponds to different words (homophones). This ambiguity makes the
resulting graph LoG non-deterministic after composing the dictionary L and the
language model G. Thus, auxiliary symbols are introduced to distinguish the
pronunciations (Mohri et al, 2000a; Mohri and Riley, 1999), yielding an
unambiguous dictionary L'.

In our application, the dictionary contains 118857 entries, including 65001
words and their pronunciation variants. The first step towards representing the
dictionary as a finite-state graph is to disambiguate all phone sequences by
introducing auxiliary symbols. These auxiliary symbols ensure that each phone
sequence is unique in the dictionary. In French, the ambiguity frequently occurs
in the conjugation, and among singular and plural nouns, as shown in the
following examples. The words having the same pronunciation are distinguished
by adding #n at the end of phone sequence, where n is an arbitrary index.

mange m a~ Z #0
manges m a~ Z #1
mangent m a~ Z #2
lait 1 E #0
laits 1 E #1

Figure 3.7: Disambiguation of pronunciation sequence by introducing auxiliary

symbols #n.

After disambiguating the dictionary, the end of a phone sequence is either a
phone (except the short pause “#” and long silence “##”) or an auxiliary symbol.
Then, the second step is performed on the pronunciations ending with a phone.
In this case, an auxiliary symbol is added at the end of phone sequence. Since the
pronunciation ending with a phone implies that the phone sequence is unique in
the dictionary, adding an auxiliary symbol still keeps the dictionary
unambiguous. This second step is not theoretically motivated, but stems from
practical considerations. With the use of auxiliary symbol, any phone sequence of
a word is preceded and followed by auxiliary symbols which play the role of
word boundary markers and help keeping track of transition weight
distributions between words or variants.

An example of pronunciation dictionary transducer is displayed in Figure 3.8,
using the words listed in Figure 3.7. The word label is placed in the beginning of
the phone sequence to optimize transducer composition. In our application, the
weights are not used in the pronunciation dictionary.

Discriminative Training on Static Decoding Graphs

3.6 Graph Construction 67

- —eg/0—
/ /) yQ—a~:s/ O—PQ—Z:E /0_@ \ .
mr/nange /0 \#\0 o
[/,,,,/’I/n”:’r’nanges/oﬂr : aief : Ze/ : 7 #18/0 N

:5:‘,:‘,,/"‘;“:mangent/O%Qfa%s/O—PQfZ:s/(PPQf#Z:s/O?@
a0 > FE:s/%»Qf—*””#O:E/ 0 /
kk\l:laits/O,,,%w”}QﬁEzs/o_@””, #1ie/0

Figure 3.8: Transducer of the pronunciation dictionary.

Acoustic Models

Acoustic models are not directly integrated in the graph, especially when the
acoustic models contain a large set of tri-phones. The incorporation of acoustic
models is realized by two FSTs: 1) the FST C'representing the mapping from
context-independent (CI) to context-dependent (CD) phones and 2) the FST
which maps CD phones to tri-phones. In this graph construction, the CD phones
refer to logical phones and many of them may link to the same tri-phones. The
tri-phones are physical models that actually exist in the acoustic model set.

(1) CICD FST

To convert a given CI phone transition to the corresponding CD phone transition,
one has to look at its preceding and following CI phones to produce the right CD
phone (for context of length 2) (Chen, 2003). Conceptually, if CI phones are
available, the set of all CD phones can be obtained by taking any three of them as
a combination, representing the left context, middle phone and right context. Any
consecutive three CI phones that can be found in the dictionary is an element in
the set of CD phones.

Therefore, for a machine containing all CI phones and CD phones, if it takes a CI
phone as input and outputs a CD phone by looking its preceding and succeeding
CI phones, the machine can be used as a mapping to convert a CI-phone graph to
a CD-phone based network. This machine is called CICD FST. This FST can be
build by all possible CI phone combinations, except <eps> which indicates null or
epsilon transition and is used only as the left and the right context. Figure 3.9
shows a part of the transitions in the CICD FST.

Discriminative Training on Static Decoding Graphs

68 3.6 Graph Construction

E

JiHoj+0~/0 0~-0~+k/0

H:<eps>-H+j/0
)

E:<eps>-E+j/0 J:E-j+o~/0 [o~j-0~+1/0 Lo~-l+e/0

j:N-, '+o/~ 0
9% / o~j-0~+m/0

N,-<;;JS>-N+j/0
-
Figure 3.9: Graph representation of CI to CD phone mapping. The arc carries the CI
phone input, the CD phone output and a null transition weight.

<eps> : a:addis : d:<eps> : ir<eps> : s:<eps> : #0:<eps> : <eps>

Figure 3.10: CI phone representation of “addis”.

C <eps>-a+d:addis : a-d+i:<eps> : d-i+s:<eps> C i-s+#0:<eps> : s-#0+<eps>:<eps> :

Figure 3.11: CD phone representation of “addis”,

When the CICD FST is built, by composing CICD FST with CI graph, CI phone
transitions are converted to CD phone transitions, as illustrated in Figure 3.10
and Figure 3.11.

(2) Logical Model to Physical Model

When the disambiguated dictionary L' is composed with the language model G,
the graph L'oG carries CI phones over the arcs. By further composing L'cG with
the CICD machine, the input labels become CD phones. For small vocabulary ASR
task, each CD phone is an individual HMM whose parameters are estimated from
the training data. However, if numerous CD phones are used, it is difficult to
collect adequate data to perform reliable parameter estimation for each
individual unit/model. Some of the models thus share the same acoustic states or
data according to a decision tree. If several unseen new models are created, they
can be quickly synthesized by state tying without starting a new training process.
Therefore, the CD phones are often called logical models which logically
represent the context relationships. The models containing actual states and
mixtures for likelihood computation are physical models.

Discriminative Training on Static Decoding Graphs

3.6 Graph Construction 69

The mapping from logical models to physical models can created by HHEd
(Young et al., 2002) with a decision tree. If a logical model name cannot be found
in the set of physical models, the logical model is synthesized from the decision
tree. Otherwise, the logical model is itself a physical model. By scanning all the
logical models, this decision yields the list of logical-physical model mappings.

In our graph construction procedure, the auxiliary symbols are used only for
disambiguating the pronunciation sequences. When a CI phone graph is
converted to a CD phone graph, several CD phones may be created, which differ
only by the auxiliary symbol and result in poor determinization. In fact, these
auxiliary symbols are no longer used after disambiguating the dictionary.
Removing these symbols on the CI-phone network would yield a better
determinization of the CD-phone graph. This can be realized by replacing
transitions containing auxiliary symbols with epsilon transitions <eps> and by
performing epsilon removal. One has to make sure that there are no other <eps>
transitions before replacing auxiliary symbols, especially the transitions to
back-off state of the language model.

Another approach is to build an augmented CICD FST which maps auxiliary
symbols to auxiliary CD phones by a self-loop. Additional distribution name must
be added to the machine H that represents the mapping from CD phones to
physical models. In this implementation, auxiliary symbols are not removed on
CI-phone graph and are treated as regular ones. The use of auxiliary symbols in
graph construction guarantees the determinizability of graph after each
composition (Mohri and Riley, 1999).

Our approach follows the concept of Kkeeping auxiliary symbols for
determinizability and further incorporates a mapping rule. When the CD phones
on the graph are to be converted to HMMs, we 1) perform a simple matching
according to the rule and 2) map the CD phones to HMMs. The advantage of using
this rule is that it allows a flexible model mapping for various purposes, such as
the removal of auxiliary symbols, the use of within-word models or cross-word
models at the word boundary.

Figure 3.12 shows an example of our CD-phone processing rule. If the left or the
right context is an auxiliary symbol, the auxiliary symbol part is truncated. For
instance, the transition i-s+#0 in Figure 3.11 will become i-s by applying the
mapping rule. If the middle context of CD phone is an auxiliary symbol such as
the last transition s-#0+<eps> in Figure 3.11, it is replaced by an epsilon
transition. Otherwise, the CD phone is not changed. By applying this rule, CD

Discriminative Training on Static Decoding Graphs

70 3.6 Graph Construction

phones are converted to logical models, and then to the corresponding physical
models. Since several CD phones may be converted to the same physical model,
graph determinization can be performed again to eliminate the redundant paths,
making the search space smaller.

Given a CD phone p; —p. + ps; and a set of auxiliary symbols AUX:

if (p1 or p3)e AUX

truncate AUX symbol
if p, € AUX

p1— D2+ ps <<eps>

else
p1 — p2 + psunchanged

Figure 3.12: The CD-phone processing rule for a graph using within-word models.

3.6.4 Graph Operations
Composition and Determinization

When the knowledge sources are represented as FST graphs, two main
operations are used to combine them: graph composition and determinization.
The first combines two different sources into a single network and the second
reduces the graph complexity by eliminating redundant arcs. In our graph
construction procedure, the AT&T's tools!4 for finite state machine operations,
the standard fsmcompose and fsmdeterminize, are used to accomplish the task. As
mentioned previously, homophones in the pronunciation dictionary have to be
disambiguated to make the composition result determinizable.

Adding the Word Insertion Penalty

One commonly used parameter for better decoding performance is the word
insertion penalty (WIP). In typical ASR systems, the WIP can be selected
independent of other sources. In an integrated graph, however, the use of WIP
affects greatly the transition weight distribution, which is critical for good
performance. In practice, the WIP can be added on the graph when graph
construction is finished. This has the benefit to allow the training of WIP, but the
added cost is not re-distributed by the weight pushing procedure. Direct shift of
probability distribution may deteriorate the performance. Thus, our graph
construction procedure adds the WIP on the graph L'oG prior to any transition

14 AT&T FSM Library™, http://www.research.att.com/~fsmtools/fsm/

Discriminative Training on Static Decoding Graphs

3.6 Graph Construction 71

weight adjustment (refer to (3.17)). The resulting graph is a network whose
probability distribution is shifted by WIP.

Integration of Optional Silence

The use of an optional silence is integrated by a small program. It searches the
graph for arcs that produce a word label and then creates two additional arcs for
the optional silence. The transition weight is placed over the first arc for better
pruning and the word label is left on the second arc as the mark of a word
boundary.

Moreover, the integration of optional silence is performed off-line by
sequentially scanning the graph transitions. An example of this procedure is
displayed in Figure 3.13 and Figure 3.14. In our graph construction procedure,
the optional silence is a one-state acoustic model # which represents the short
pause between words, instead of the three-state model ## for long silence.

Jj-o~:pérégrination/-4.05
207 #@

Figure 3.13: A transition that outputs a word label.

Jj-o~:g/-4. 0

#:pérégrination/0

Jj-o~:pérégrination/-4.05
207 (521

Figure 3.14: Integration of an optional silence.

3.6.5 Weight Pushing
Language Model Look-Ahead

In typical ASR systems, it has been demonstrated that if the probability is
properly redistributed, it would improve the pruning and performance
(Ortmanns et al., 1997a). This technique is named language model look-ahead.
The idea is to incorporate the language model knowledge as soon as possible
during the decoding so as to improve pruning efficiency. In “dynamic style” beam
search (cf. Section 2.3.1), language model look-ahead is implemented as follows.
Remember that in this type of search, a separate lexical tree copy is needed for
each language model history h: upon reaching a leaf node for word w, the

Discriminative Training on Static Decoding Graphs

72 3.6 Graph Construction

language model probability P(w|h) is retrieved. Language model look-ahead
requires to propagate backwards the probabilities closer to the root node. This
operation needs to be done for each history, yielding a problem when working
with large language models. In an integrated static decoding graph, we thus use
weight pushing techniques. It is performed off-line and directly on the whole
graph.

Weight Pushing on the Graph

In a weighted finite-state graph, the distribution of transition weights along the
paths is a critical issue. One may leave transition weights in the beginning of a
phone sequence to benefit from an early knowledge of the language model
probabilities. However, this scheme will result in a less efficient graph due to the
more redundant arcs?s that are not determinized. On the other hand, when the
transition weights are pushed towards the end, it gives more possibility of
producing a smaller graph. In contrast, the transition weights are almost useless
if they are not pushed backward to the beginning of the phone sequence. The
goal of weight pushing is to produce an equivalent graph with reasonable
transition weight distribution such that decoding is performed at higher speed
and accuracy.

Implementation

In our experiments, the word boundary is the important information for
analyzing the transition weight distribution between words and the distribution
among pronunciation variants. In addition, our fast alignment techniques
(explained in Section 3.7.4) require the word boundary information to extract
sub-graphs from a large WFST. Therefore, we proposed a weight pushing
approach which is conceptually similar to the tropical semiring algorithm (cf.
Section 3.6.1) but performs a simpler task. When the language model is
composed with the dictionary, both the transition weights and output labels
(words) are pushed forward for better determinization. At the end of graph
construction, when the graph carrying physical models has been determinized,
the transition weights are pushed backward as much as possible (refer to (3.17),
the pFST operations). Word labels are left at the end of a pronunciation sequence,

15 When a large transducer can not be directly determinized, the determinization is performed by
graph encoding and decoding. Two arcs are considered identical when the input, output labels
and transition weights are all the same. Therefore, the word labels are pushed forward for
better determinization. (http://www.research.att.com/~fsmtools/fsm/man4/fsmintro.1.html)

Discriminative Training on Static Decoding Graphs

3.6 Graph Construction 73

which will help the sub-graph extraction procedure (presented in Section 3.7.4).
Note that transition weights are redistributed within two word boundaries. The
pseudo-code of our weight pushing algorithm is shown in Figure 3.15.

int graphNodeNum;// number of nodes to perform pushing
int option;// pushing forward or backward
function pushWeight(graph){
nodeNum-=collectNode(graph, graphNodeNum);
while(nodeNum>0){
for(int i=0;i<graphNodeNum;i++){
if(graph[i].pushCondition is true)
entonnoirPushing(graph, i, option);
}
nodeNum=collectNode(graph, graphNodeNum);

Weight pushing algorithm: main program.

function entonnoirPushing(graph, nodei, option){

float sourceProb;

sourceProb=getMaxInProb(graph, node i);

toGate(graph, node i, option);

reDistributeWeight(graph, node i, sourceProb);

if(option==0)// pushing forward, also moving word labels
forwardLabel(graph, node i);

graph[node i].pushCondition=false;

Sub-routine of weight pushing.

function reDistributeWeight(graph, node i, sourceProb){

int sNode, sBranch, update=0;

for(int j=0;j<successorNumber of node i;j++){
obtainSuccessorinfo(sNode, sBranch, j);
graph[sNode].weight[sBranch]+= sourceProb;
update=1;

}

// if redistributed, update predecessors’ probabilities

if(update==1){
for(int j=0;j<graph[node i].inDegree;j++)

updatePredecessorProb(node i, sourceProb, j);

Sub-routine of weight pushing.

Figure 3.15: Weight pushing algorithm.

Discriminative Training on Static Decoding Graphs

74 3.6 Graph Construction

loop i loop i+1 loop i+2

word boundary

max weight max weight max weight

Figure 3.16: Weight pushing in the graph. Maximum transition weight is pushed
towards the word boundary. The i is an iteration index of the while-loop in the
pushWeight function.

At first, the main program computes the number of nodes whose transition
weights are to be pushed. If one of the incoming transition weights is 0, the node
will not be selected by the collectNode(graph, graphNodeNum). The
entonnoirPushing(graph, i, option) performs the weight propagation over the
transitions. It calls three sub-routines to complete the task. The
getMaxInProb(graph, node) returns the maximum transition weight among the
incoming arcs of node. The function toGate(graph, node, option) traverses
recursively the successors starting from node, until a word boundary or the
successor whose in-degree greater than one is encountered. Finally, the
reDistributeWeight(graph, node i, sourceProb) updates the weights.

Figure 3.16 illustrates how this algorithm performs weight pushing. Each
pushing process gets the maximum weight from the incoming weights and
pushes the weight as much as possible.

Complexity

Our weight pushing algorithm has O(N) space complexity and O(NMB) time
complexity, where N, M and B respectively represent the number of graph nodes,
the number of graph nodes that satisfy the pushing conditions and the average
branching factor. In general, M is much smaller than N since most of the nodes
carry an incoming transition weight 0. These nodes are not selected to perform
weight pushing. B is also small in a deterministic graph. This algorithm gives
competitive time complexity with respect to (Mohri and Riley, 2001) but is much
more space efficient.

Weight Distribution Issues

Weight pushing is a critical step of the graph construction procedure, especially

Discriminative Training on Static Decoding Graphs

3.7 Implementation: Design for Fast Decoding 75

for the phone level graph. A word often represents a couple of phone sequences
when a language model graph is composed with a dictionary. How the language
model probability is distributed along the sequence is an issue to investigate.

In the above algorithm, the maximum transition weight is pushed as much as
possible until either the node whose in-degree is more than one or the word
boundary is reached. For pushing weight forward (the graphL'-G), the node
whose in-degree is greater than one is a word boundary. For pushing weight
backward, the same algorithm is used but is performed on a reversed graph. This
is an implementation technique. If the graph is reversed, it is simple to find the
successors and push the maximum weight towards the word boundary.

Besides, in a reversed graph, the node whose in-degree is greater than one is the
place where paths are distinguished. Pushing weights to this place could
improve pruning. However, a critical issue when pushing weights backward is
that a couple of pronunciations are unique or slightly determinized on the first
leading arcs(s). When pushing weights backward, it is obvious that transition
weights would have more possibility to be pushed towards the word boundary.
During the decoding process, the token that reaches this word boundary may
receive exact language model probability instead of a re-distributed transition
weight, resulting in more penalty or reward than other competitive candidates.

3.7 Implementation: Design for Fast

Decoding

Discriminative training requires the parameter updating process to be iteratively
performed with a set of training samples. For large vocabulary ASR tasks,
especially on a large database, a fast decoder is needed to make the training
practical. Therefore, we develop several implementation techniques aiming at a
fast decoding. In the following sections, we review the computation bottlenecks
of discriminative training and present our own solutions.

3.7.1 Computation Bottleneck

Discriminative training using the MCE criterion involves 1) decoding a training
sample, 2) alignment of the sample and then 3) performing parameter update.
The three processes were illustrated on Figure 3.2. Updating parameters is a
simple task. It adjusts transition weight on a certain arc. However, fast decoding
and alignment can not go with ease, especially on a complex search space.

Discriminative Training on Static Decoding Graphs

76 3.7 Implementation: Design for Fast Decoding

Decoding consists in finding the most likely word sequence in a large graph.
Searching all possible paths to select the best candidate is not tractable. However,
in a connected network, different transitions may reach the same state and
branch to a lot of successors. If the decision can be made in advance before
branching, it would significantly eliminate useless candidates and reduce the
time for comparing hypothesis scores. This motivates our design of a look-up
table, which helps determine the best score without actually traversing the graph
(Saon et al.,, 2005). This is explained in Section 3.7.2.

Alignment is the process of finding the best state sequence given a word string. If
the paths that produce the word string can be pre-computed, alignment will not
have to do a lot of searching. Furthermore, if the paths can be extracted, also in
the form of a graph, alignment is performed in a quite small search space and the
speed of alignment will be extremely fast. Thus, we propose a general sub-graph
extraction approach. It can be used not only for doing alignment in
discriminative training but also for other alignment tasks.

3.7.2 Look-up Table
General Token Passing

Our decoder performs the search by using the general token passing (Young et al.,
1989) over a finite-state network. A token can be viewed as an object holding the
information such as the accumulated log probability (score) at a state i up to
current time frame t and the path history of the token. At each time frame, the
tokens are propagated through the network, producing a bunch of successors. To
make the search efficient, the following steps are performed for all tokens.

e Update token's information: the state position, the score and the
history.
e Determine the best token reaching a state.

With the above procedure, the tokens with the best score are used for the next
time frame. In many ASR tasks, a pruning method is often used after the
procedure, to further reduce the number of tokens so that only the top-N tokens
are used at each time frame.

Our decoder implementation extends this concept over WFST. Tokens are
associated with the weighted transitions. For the tokens that are at the last
acoustic state of a model, graph searching amounts to propagating the tokens to

Discriminative Training on Static Decoding Graphs

3.7 Implementation: Design for Fast Decoding 77

the next acoustic states. However, epsilon transitions are bothersome to
determine the best token at the states since tokens will not stay over epsilon
transitions. As displayed on Figure 3.17, the tokenB and tokenC directly reach
state 6. The selection of the best token is easy. But tokenA still reaches state 6
through an epsilon transition 56 at the same time. To make the selection of best
token more efficient, we use a lookup table.

@“}ﬁ‘..i;fg,@ |
:£/-0.8 e:e/0

@ c.-tg/k Oe nB @ i, @

@ d:ti/koenc g:¢/0

Figure 3.17: Decoding hypothesis redirection for merging. Tokens are over the
transitions, rather than on the states.

Implementation

The lookup table holds the epsilon-closure relationships. An epsilon closure is a
set of states reachable from a set of starting states through epsilon transition(s):

¢ —closure(Q")={q|q'€Q',q' = q is ¢-reachable}

The relationship of epsilon closure represents the branch index of epsilon
transitions for each state and the sequence of branch indexes to reach the next
non-epsilon transitions. It is built by traversing the graph, saving the epsilon
paths information in a table. It is performed off-line together with the graph
construction procedure. With the look-up table, a token can be easily re-directed
to its destinations without having to search the graph. Figure 3.18 shows the
procedure for token redirection using a lookup table.

for i=1 to number of tokens {
for j=1 to number of destinations of token i {
destinationState=redirectToken(lookup table, j, token i);
selectTheBestToken(destinationState);

}

Figure 3.18: Redirection procedure for tokens that are going to leave the arc.

Discriminative Training on Static Decoding Graphs

78 3.7 Implementation: Design for Fast Decoding

In brief, the redirection procedure firstly determines the number of destination
states of a token. For instance, tokenA in Figure 3.17 ends at state 5 with two
destination states 6 and 7. The function redirectToken(lookup table, j, token i)
performs the redirection of tokens over the transition to the destination state.
Thus, a copy of tokenA is propagated over 57 (a non-epsilon transition) and
another copy is moved over 56, penalized by -0.8. TokenB and TokenC end at
state 6 which does not have any outgoing epsilon transition. The function
selectTheBestToken(destinationState) is directly performed without token
re-direction. It keeps the state accessed by the token with the highest score
before branching to its successors.

Notice that the redirection is not performed by actual graph search. The
redirection path is kept in the look-up table. The use of look-up table not only
helps determine the best token in an efficient way but also skillfully prevents
from extraneous token branching.

Our experiments are performed on a graph of more than 7M states and 20M arcs.
The decoder keeps 20k tokens at each time frame. During decoding, the tokens
which are going to cross a word boundary are stored in an array. Generally, the
number of such tokens is less than 3000. The above mentioned token redirection
procedure is performed only for these tokens. Our analysis observed that this
procedure takes less than 5% of the total decoding time but significantly trims
useless candidates and greatly accelerates the graph search.

Pruning Techniques

Token-passing approaches often use pruning techniques to retain the most
promising tokens for following path expansions. Two popular pruning criteria
are:

e Global beam pruning: the tokens t' are eliminated if S(t') <k :Spes(t),
where S(t) is the score of token t and k is a coefficient to determine
the beam size.

e Histogram pruning: this pruning method keeps a certain number of
active tokens at each time frame.

The first pruning criterion requires that the pruning factor k should be carefully
estimated, so that the beam size would not be too tight to reach a high decoding
accuracy. Our decoder thus uses the histogram pruning to limit the maximum
number of tokens to 20k, and eliminates the rest ones.

Discriminative Training on Static Decoding Graphs

3.7 Implementation: Design for Fast Decoding 79

3.7.3 Pseudo-Sorting

In many ASR tasks, the exact order of the top-N tokens is not necessary during
decoding. Our decoder implements a pseudo-sorting approach to efficiently
obtain the N-best tokens, given in the following algorithm:

void getTopN(tokenArray, int low, int up, int topN){
int splitPosition, pkey;
if(low<up){
pkey=(low+up)/2;
swap(tokenArray, low, pkey);
splitPosition=partition(tokenArray, low, up);
if(splitPosition+1>topN)
getTopN(tokenArray, low, splitPosition, topN);
if(splitPosition<topN-1)
getTopN(tokenArray, splitPosition+1, up, topN);
}

}

Figure 3.19: Pseudo-Sorting algorithm for getting the top-N tokens.

At first, the algorithm selects the middle element as a pivot and swaps the
element with the leading element. Once the pivot has been placed in the
beginning of the array, the partition(tokenArray, low, up) examines the rest of
array elements by comparing the value with the pivot. The result is a partially
sorted array which is “filtered” by the pivot. The returned position indicates that
the elements in the left are smaller than the pivot and those greater than the
pivot are in the right.

Basically, this approach is performed by moving top-N tokens towards the
beginning of the beam instead of doing a complete sorting to make all the tokens
in a descending or ascending order. Even for the top-N tokens that have been
moved, they are not in a sorted order. Our pseudo-sorting approach performs
data swapping to collect the required number of tokens. Therefore, although it
was devised from the Quick Sort algorithm (Hoare, 1961), it runs faster than the
typical one.

3.7.4 Sub-Graph Extraction
Small Graph for Fast Alignment

The alignment is different from decoding in that the search procedure should

Discriminative Training on Static Decoding Graphs

80 3.7 Implementation: Design for Fast Decoding

traverse the graph given a certain word string. That is, the possible paths for
aligning a training sample are limited. It is not necessary to search the whole
graph and to prune the incorrect paths for each training sample. This suggests
that if these paths can be computed in advance, the graph searching work would
be significantly reduced. In other words, alignment can be performed in a very
fast way on a quite small graph in which the relevant paths have been extracted
from the large one.

Principle of Graph Inversion

Our approach is motivated from the general principle of graph inversion. This
operation exchanges the input and output symbols of state transitions, so that for
each transition:

inversion

a:b/weight —""">b:a /weight

where the input symbols are either words or empty strings after graph inversion.
By searching the desired word strings, the relevant paths can thus be selected in
advance.

Implementation

To extract the sub-graph for fast alignment, a complete graph search is necessary
to find all possible paths from the starting node to the terminal node. All matched
paths are saved in a file corresponding to each training sentence. This process is
performed off-line. Since the graph contains back-off transitions, the paths from
one word to another may be multiple. In addition, a word may appear more than
once in the sentence while the path reaching that word may be different. For
instance, “de publier des contenus protégés par des droits d'auteur” contains two
occurrences of des with different left and right contexts. Therefore, to produce a
correct word sequence, a string comparison is needed during alignment. Assume
that the training set contains the following word sequence:

<s> le vin francgais retrouve un peu de couleur a I’ étranger </s>

Extraction is performed on the large graph, starting from state 0, searching all
possible paths until a word boundary of <s> is reached. A string matching
program is executed to compare the word labels for each traversed path. Then,
from the states that produce <s>, the extraction continues traversing the graph
for the next word le. This procedure is repeated from <s> to le, from le to vin,

Discriminative Training on Static Decoding Graphs

3.7 Implementation: Design for Fast Decoding 81

from vin to francais, until </s> is found. An extraction example is shown from
Figure 3.20 to Figure 3.22. Figure 3.20 illustrates the possible paths from vin to
the next possible words in the large graph. If a path produces the desired word
label francais, all arcs along that path are selected. Figure 3.21 shows examples of
valid paths and incorrect ones, which are respectively represented as solid lines
and as doted lines. The procedure continues for all words in the word sequence.
Finally, the states and transitions that have been selected are saved in a file, as
shown in Figure 3.22.

Discussion

An implementation concern that is important and needs to be paid attention to
for sub-graph extraction is data consistency. One has to keep in mind that the
state indices of the small graph have been re-numbered, and the relative
transition arcs have been changed. When the score and transition paths are
obtained from the small graph for doing alignment, one has to know their
corresponding positions on the large graph in order to update the transition
weights at the right place.

Moreover, several graph parameters may have been updated by training sample i.
When doing alignment for sample i+1, where some transition weights in the
large graph may have been adjusted by previous training samples, transition
weights on the sub-graph have to be synchronized with the large graph before
the alignment starts, such that the alignment is always using the weights which
are updated by the training procedure.

All the mapping information, from sub-graph to large graph, for transition weight
synchronization and index re-numbering are obtained during the graph
extraction procedure. When the small graph is extracted, the extraction
procedure also outputs a table, which lists the mapping position from small
graph to the large one, including states, arcs and branch indices.

Discriminative Training on Static Decoding Graphs

82 3.7 Implementation: Design for Fast Decoding

word boundary word boundary
du
frangais
——vin rouge
biodynamique

Figure 3.20: Possible paths branching from “vin”,

word boundary word boundary

Figure 3.21: The paths that match the alignment string “francais”.

word boundary word boundary

frangais

-~ vin \Q—>

Figure 3.22: Extracting the desired paths.

Discriminative Training on Static Decoding Graphs

3.8 Summary 83

Performance

The extracted graph generally consists of hundreds of states and arcs. For a few
long sentences, the number of states and arcs is in the order of a few thousands.
Carrying out alignment on such a small space is extremely fast, no matter how
large the original graph is. In addition, the look-up table technique proposed in
the previous section is also used in alignment for determining the best token at
each state. Experiments demonstrate that our sub-graph extraction approach
greatly reduces the time for alignment, yielding about 0.05 real-time on a
desktop machine.

3.8 Summary

In this chapter, we presented several discriminative training criteria, notably the
MCE criterion. It is an error rate based approach that combines the decoding
errors into a loss function to reflect the training improvements. Recent
developments in WFST allow various knowledge sources to be combined in a
single search space, and to be optimized so as to yield an equivalent network
with better time and space efficiency. Our training approach applies the WFST
techniques to construct the decoding graph, and uses MCE to reduce the
decoding errors by updating the transition weights. Moreover, we also
implement several fast decoding techniques to speed up the training procedure.

In the next chapter, we will present and discuss our experimental results.

Discriminative Training on Static Decoding Graphs

84 4.1 Study on Small Vocabulary System

Chapter 4. Experiments

In the previous chapters, statistical modeling problems were investigated as well
as their fundamental assumptions, and various estimation techniques were
discussed. Conventional modeling approaches use maximum likelihood
estimation (MLE) methods to estimate the model parameters. However,
discriminative training of acoustic models, which aims at optimizing the
separation between the reference and the hypothesis, has been shown to
outperform MLE in many ASR tasks. In Section 3.2.2, discriminative training
using minimum classification error (MCE) criterion was extended from language
modeling to update parameters in an integrated decoding graph. In this
approach, transition weight adjustment is iteratively performed to minimize the
error rate. Qur previous work (Lin and Yvon, 2005) conducted on Swiss-French
Polyphone database (Chollet et al, 1995) has demonstrated a significant
improvement in error rate reduction. In this chapter, we apply this approach to a
much more complex large vocabulary task. Parameter update rules and error
rate reduction are analyzed from various angles.

4.1 Study on Small Vocabulary System

In our previous work, we carried out experiments on a small vocabulary task
(Lin and Yvon, 2005) (presented in Appendix D, p. 126). It extends the concept of
MCE training on language models and formulates the discriminative training
procedure on an integrated decoding graph. This training framework is similar
to what we used for ESTER experiments (presented later), except that:

e Discriminative training is performed on a small graph.
e Learning rate ¢ is fixed and is selected empirically.

This task consists in recognizing isolated sequence consisting of a proper name
followed by its spelling, as illustrated by:
bliche b u accent circonflexe ch e
In this task, the proper name and its spelling are represented by a phone
sequence (mono-phone labels) and letter sequence respectively:
<s>-b-y-S-</s> <s>-b-u-accent-circonflexe-c-h-e-</s>

The search space is accordingly composed of two parts: a) a graph representing
the pronunciations and b) a graph containing the name spelling. These two
graphs are constructed by WFST techniques from language models estimated on
the phones and letters of proper names respectively. In the Swiss-French

Experiments

4.2 The ESTER Database 85

Polyphone database (Chollet et al., 1995), there are 39 and 53 possible phones
and letters (including <s> and </s>). Therefore, the graph constructed from a
2-gram language model contains 516 states and 2198 arcs. Even if a 3-gram
language model is used, the search space contains only 8154 states and 32467

arcs.

Experimental results showed that decoding errors are significantly reduced both
on the training set and the test set, yielding a 6.5% absolute improvement of
error rate on a decoding graph constructed from a 2-gram language model. A
close examination on the effect of discriminative training also shows that
confusion pairs are reduced for the top 30 most frequent ones, except for a few
pairs that are acoustically and distributionally very similar.

4.2 The ESTER Database

ESTER!¢ is a French radio broadcast news database (Galliano et al., 2005; Gravier
etal, 2004). The corpus was collected from four different sources: France Inter,
France Info, Radio France International and Radio Télévision Marocaine. The
ESTER database contains a large amount of recordings, including manually
transcribed and non-transcribed portions. Approximately 90 hours of manually
transcribed data was used for training the parameters of acoustic and language
models, including 8 hours of data that was used as a development set. The test
set consists of 10 hours of speech taken from five sources: the four above
mentioned radio stations, and one hour from Radio Classique, for which no
specific training data is available. Both during training and testing, only the
manually transcribed portion of the ESTER database is used. Text corpus for
training language models was taken from the newspaper LeMonde, covering
approximately 400M words.

Data Sets

Our discriminative training procedure involves two separate training processes.
The first training process estimates the parameters of the various knowledge
sources such as acoustic models and language model. This process is performed
using conventional MLE. The second is discriminative training. It updates the
graph constructed from these knowledge sources. When the graph parameters
have been updated by discriminative training, another data set is used to

16 Campagne d'évaluation des Systémes de Transcription Enrichie d'Emissions Radiophoniques
http://www.afcp-parole.org/ester/index.html

Experiments

86 4.2 The ESTER Database

estimate the performance improvements. Therefore, three data sets are needed
to run the experiments. These datasets are chosen from the manually transcribed
portion of the ESTER database:

e Development set (DEVSet): the data used for discriminative training.

e Test set (TESTSet): the data used to evaluate the performance of the
graph updated by discriminative training process.

e Training set (TRAINSet): the data used for estimating the acoustic
models and the language model.

The TESTSet contains 4 categories of recordings, listed in Appendix C.3 (p. 125).

Selection of Recordings

The decoding graph is constructed from a language model, composed with the
dictionary, context-independent to context-dependent transducer and with
graph optimization techniques which yield an integrated decoding network. We
have used a 65k words vocabulary, a reasonable size for a large vocabulary ASR
system. This means that the constructed decoding graph is not able to decode
any sentence containing a word that does not belong to the vocabulary.
Additionally, some characteristics of human speech, such as hesitations, are not
integrated in the graph. To deal with these sounds, an extra network must be
constructed and concatenated to the original graph, which makes it complicated
to determine the updating position. In addition, distributing transition weights
over hesitations does not make sense. Therefore, recordings have been removed
from the development set if one of the following conditions is met:

e The transcription contains out-of-vocabulary (OOV) word(s).

e The transcription contains more than one terminal symbol </s> or no
word label between <s> and </s>, such as <s> </s> bonjour a tous
</s>.

e The transcription contains labels which denote hesitations.

The number of recordings and hours of speech for each set are listed below:

Data Set | Num. of Recordings | Hours
DEVSet 6489 5.30
TESTSet 3307 2.95
TRAINSet 70423 62.88

Table 4.1: Data sets for running the experiments.

Experiments

4.3 Experimental Setup 87

4.3 Experimental Setup

In this section, the use of knowledge sources, including acoustic models and
language model, is described in detail. The parameter selection process is also
presented in the following.

4.3.1 Acoustic Models

Acoustic models are built from the TRAINSet. Parameters are estimated by
Hidden Markov Model Toolkit (HTK)'7 (Young et al, 2002). A decision tree is
applied to synthesize the missing models, based on the available ones.

Synthesis of Unseen Models

Our original HMM set contains 21466 acoustic tri-phone models. Additionally,
1369 models are synthesized according to the decision tree by state-tying. Each
model consists of 3 states, except the short pause model (one-state model) used
only for the short silence between words. There are a total of 6238 distinct states.
Each state is associated with a 39-dimensional probability density function
taking the form of a mixture of 32 Gaussians, assuming a diagonal covariance.

Feature Extraction

Feature extraction is performed by the SProl8 toolkit which is a speech signal
processing toolkit implementing standard feature extraction algorithms. The
length of individual time frame is 25 ms and is taken with a frame periodicity of
10ms. Each signal frame is a feature vector containing 39 elements. The first 13
elements are the 12 first Mel-frequency cepstral coefficients (MFCC) plus the
log-energy value. The next 13 features are delta coefficients which are estimated
by taking the first order derivatives of the first 13 elements. The last 13 are
acceleration coefficients obtained from the second order derivatives of the first
13 elements.

4.3.2 Language Model and Graph

When an n-gram language model is constructed in the form of a graph, the graph

17 http:/ /htk.eng.cam.ac.uk/
18 http://www.irisa.fr/metiss/guig/spro/

Experiments

88 4.3 Experimental Setup

performance heavily depends on the quality of the language model. Generally, a
large language model is supposed to cover more n-grams and yields a lower
perplexity, which often indicates better performance. Various language models
of different sizes are studied in our experiments.

Choice of Language Models

In our experiments, two 3-gram language models of distinct size and perplexity
are chosen for comparison:

e Alarge language model denoted by LMO.
e A small language model denoted by LM1.

The first language model LMO is a large 3-gram language model obtained by
linear interpolation of several language models. The associated weights are
estimated such that the resulting model is improved. The second language model
LM1 is a “pure” ESTER 3-gram language model, whose probabilities are
estimated from the transcriptions in the TRAINSet. No pruning is performed
when estimating the model parameters.

In general, a large language model takes a lot of memory space. Many
researchers have investigated the issue of reducing the size of language model
while keeping the performance loss as less as possible (Chen et al., 1998; Gao and
Zhang, 2002; Goodman and Gao, 2000). Therefore, two more considerations have
been taken into account in designing our language models.

(1) Language Model Pruning

Graph composition often requires a large amount of memory space, especially
when the graph is composed with the context-independent to context-dependent
transducer. Memory space allocation often fails when a large graph is to be
constructed!®. Due to the memory allocation problem, a large language model
containing too many n-grams can not be directly used to build the graph without
pruning.

In our experiments, the size of the large language model LM0 is reduced with two
pruning options. The first option is to prune n-gram probabilities if their removal
results in model perplexity increase by less than a given threshold. The second

19 In a 32-bit computer, the memory allocation limit is 3GB per process.

Experiments

4.3 Experimental Setup 89

pruning option is to prune the n-grams whose n-gram probability is lower than
corresponding back-off probability. The SRILM2° (Stolcke, 2002) toolkit is used
for language model pruning.

(2) Large Language Model of Lower Order

We felt it interesting to contrast the effect of discriminative training on a small
3-gram language model and a large language model of lower order. In our
experiment, the 2-gram language model is produced by extracting the 1-grams
and 2-grams from LMO.

The above considerations yield two more language models derived from LMO.
For convenience, language models that are used to construct the graphs are
listed in Table 4.2. Graphl, GraphZ2 and Graph3 represent the search space
constructed from LM1, LM2 and LM3 respectively.

LM Notation | Graph Notation Description
LMO - a large 3-gram LM estimated on LeMonde
LM1 Graphl a 3-gram LM estimated on TRAINSet
LM2 Graph2 a 3-gram LM by pruning LMO
LM3 Graph3 a 2-gram LM by pruning LMO

Table 4.2: Language models and graphs used in our experiments.

Number of n-grams and Perplexity

The number of n-grams in each individual model is displayed in Table 4.3. The
pruned 3-gram model LM2 covers about 30% of 2-grams and 25% of 3-grams in
LMO. The lower order language model LM3 does not have any 3-gram entry.
However, it contains all 2-grams of LM0 and yields a lower perplexity than LM1.
In Section 4.3.3, the baselines for each decoding graph will be presented to show
the relationship between performance and perplexity on this task.

Graph States and Transitions

Following the notations presented in Table 3.1 and the graph construction
principles introduced in (3.17), the evolution of the graph size during the
construction procedure is shown in Table 4.4, Table 4.5 and Table 4.6. For every
composition process, determinization is performed to eliminate the redundant
arcs. When context-dependent phones are mapped to physical models,

20 SRILM - The SRI Language Modeling Toolkit, http://www.speech.sri.com/projects/srilm/

Experiments

90 4.3 Experimental Setup

determinization further reduces the graph size, as shown from Gz to G4 Finally,
the operation sp is performed to incorporate optional silence at the end of each

word.
Language Model | Order | 1-gram | 2-gram 3-gram | Perplexity
LMO 3 65001 | 17322565 | 15990056 82.59
LM1 3 65001 248739 102461 158.92
LM2 3 65001 | 5052090 | 4033834 86.42
LM3 2 65001 | 17322565 - 131.76

language models. LM3 contains all 2-grams of LMO.

Graph States Arcs
G =Graphl 75649 | 471608
G,=pFST(wip(z(L'>G))) | 1590072 | 2681850
G, =det(Gy) 595996 | 1102449
G; =det(C'o () 815162 | 1842915
G, =pFST(det(H o G3)) 543409 | 1092851
sp(Gs) 824845 | 1655723

Table 4.3: The n-gram order, number of n-grams and perplexity of individual

Table 4.4: Evolution of graph size when constructing Graphl.

Graph States Arcs
G =Graph2 972707 | 9806815
G,=pFST(wip(7(L'>G))) | 9417059 | 35047728
G, =det(Gy) 5680880 | 15428746
G; =det(C'oG,) 8122266 | 30164923
G, =pFST(det(HoG3)) | 4748568 | 15179397
sp(Gs) 6997044 | 19676349

Table 4.5: Evolution of graph size when constructing GraphZ.

Graph States Arcs
G =Graph3 64776 | 17452164
G, =pFST(wip(z(L'>G))) | 869569 | 33933803
G, =det(Gy) 1016598 | 18732890
G; =det(C'oG,) 1644570 | 31249080
G, =pFST(det(H 0 G3)) 574889 | 19831331
sp(Gs) 1842185 | 22365923

Table 4.6: Evolution of graph size when constructing Graph3.

Experiments

4.3 Experimental Setup 91

4.3.3 Parameter Settings
Parameters for Discriminative Training

The parameters presented in this section are determined empirically. Table 4.7
shows the parameter settings for our experiments. The value « is the so-called
“fudge” factor which scales the acoustic score so that acoustic score and language
model score can be balanced in the log domain. The parameter y controls the
slope of the sigmoid function. It has an influence on the way a score difference is
turned into a weighted update, as illustrated in Figure 3.4. The word insertion
penalty (WIP) is selected empirically based on preliminary studies. There are
two options for setting the learning rate &: 1) either to adjust it dynamically for
each training sample using the line search method, or 2) a fixed learning rate is
used. Using a fixed learning rate is detrimental to the convergence rate and the
stability of improvements. Our empirical results suggest that ¢ =11is a suitable
choice. The last parameter is the upper bound of the score difference between
the reference and the hypothesis. A transition weight update is performed only if
the score difference is positive and smaller than this threshold.

Decoding Graph | « Y | WIP | ¢,Dynamic/Fixed | Upper Bound
Graphl 0.10.02] 04 Line Search/1 200
Graph2 0.1]0.02] 0.5 Line Search/1 200
Graph3 0.1]0.02| 0.6 Line Search/1 200

Table 4.7: Parameter settings for discriminative training and testing.

Baseline

Using properly selected parameters «, y and WIP, the baseline for each
decoding graph is shown in Table 4.8. From left to right, the columns in the table
respectively represent the correctness, substitution error, deletion error,
insertion error, word error rate (WER) and sentence error. The computation of
error rate is performed by the NIST scoring package SCLITE2! (NIST, 2000). As
Table 4.8 shows, the GraphZ2 constructed from the LM2 language model yields the
lowest WER. It is noticeable that Graph3, which is built from a 2-gram language
model, gives better performance than Graphl. Although Graphl is constructed
from a 3-gram language model, it contains much fewer n-grams than other two
graphs and yields the highest error rate.

21 NIST Spoken Language Technology Evaluation and Utility
http://www.nist.gov/speech/tools/index.htm

Experiments

92 4.4 Experimental Results

Decoding Graph | Corr. | Substitution | Deletion | Insertion | WER | S.Err
Graphl 68.5 23.6 7.9 3.4 35.0 | 84.7
Graph2 73.8 18.3 7.9 2.3 28.5 | 78.7
Graph3 70.7 21.1 8.3 2.9 32.3 | 829

Table 4.8: Baseline results of three integrated decoding graphs on the DEVSet.
Substitution errors are significantly reduced if the graph is constructed from a
better language model.

Overall, the WER reflects the difference of language model perplexity as listed in
Table 4.3. The graph constructed from the language model with lower perplexity
yields better performance, as far as substitution errors are concerned. These
baselines are the starting points for further error rate reduction. Based on the
parameter settings of Table 4.7, the discriminative training experiments are
performed on a machine equipped with Intel Xeon 3.6 GHz CPU and 6GB physical
memory. At each time frame, the decoder keeps 20k candidates in the beam
search decoding; for the alignment, reference paths and corresponding word
strings are obtained by full search.

4.4 Experimental Results

In this section, experimental results will be presented for the various settings
discussed in the previous section. In Section 4.4.1, we present our proposed fast
decoding techniques in discriminative training. Decoding efficiency will be
examined on different graphs. Section 4.4.2 illustrates the error rate reduction
which is observed using a fixed and a dynamic learning rate. In Section 4.4.3, we
contrast the performance of the deterministic update and the random update.
Section 4.4.4 reports the training performance on a large graph with 16 training
iterations; the potential improvements of performing more training iterations.
Generally, a large and complex graph contains a lot of parameters to update,
while the number of graph updates performed through discriminative training is
often relatively much smaller. In Section 4.4.5, a comparison is made by
introducing an additional and large data set to train the same graph. Error rate
reduction is observed both on the development and the test data.

4.4.1 Decoding Efficiency

In Section 3.7.1 (p. 75), we have discussed the computation bottlenecks of
decoding with WFST. This motivated our use of a look-up table to store the
epsilon-closure relationship and our sub-graph extraction algorithm, aiming at

Experiments

4.4 Experimental Results 93

increasing the efficiency of decoding and alignment. In the following section, the
decoding speed on graphs of various sizes will be presented, together with the
memory allocation of each search space and the run time of individual functions
in the decoder.

Pre-computed Likelihoods

In practice, discriminative training updates transition weights without adjusting
acoustic model parameters. This implies that the acoustic score of a training
sample will not be changed throughout iterations. Therefore, to speed up the
training procedure, acoustic likelihoods?2 are computed in advance and are
saved in a file for each training sentence.

Decoding Speed and Memory Allocation

With pre-computed likelihoods and our fast decoder, the decoding performance
is reported in Table 4.9. It shows that our proposed sub-graph extraction
technique yields a very time-efficient alignment. Since the sub-graph is small and
is extracted from the large one, the cost of alignment is almost independent of
the original graph size. Our experiments also show that, without pre-computed
likelihoods, the performance would be slowed by less than 0.7 real-time (RT) for
decoding and by 0.1xRT for alignment.

In addition to the high decoding speed, our decoder is also memory efficient.
Table 4.9 shows the memory allocation for graphs of various sizes. Table 4.4 and
Table 4.5 show that GraphZ is approximately 9 times larger than Graphl in
number of states, and contains about 12 times more arcs. However, the allocated
memory size is only increased by a factor of 4. When doing alignment, an extra
memory block is allocated for the sub-graph, the corresponding look-up table
and a mapping table which maps the state and arc index to those in the large
graph. Generally, the small block takes less than 1MB of memory.

Decoding Graph | Decoding | Alignment | Memory Space
Graphl 0.7xRT | 0.05xRT 220MB
Graph2 3.0xRT | 0.05xRT 960MB
Graph3 2.8xRT | 0.05xRT 600MB

Table 4.9: Decoding speed in real-time factor and memory allocation of graphs.

22 The acoustic score is a sum of the likelihood and of the acoustic state transition probability.
Likelihoods are pre-computed and the transition probability is determined during decoding.

Experiments

94 4.4 Experimental Results

Discussion

Although an extremely fast decoder (0.8xRT) has been reported in the
literature (Saon et al., 2005), this decoder only keeps track of the word history of
hypotheses. Other information such as the state transition sequence can not be
recovered. However, discriminative training on a phone-level decoding graph
requires to store the complete paths from the starting state to the terminal state,
such that the transition weight update can be performed on the corresponding
path. Our decoder thus stores the complete paths of the top 20k candidates at
each time frame. Moreover, in a large and complex graph, a state often has
hundreds of successors, particularly at a word boundary. This high branching
factor also slows down the decoder, which explained why we were unable to
achieve sub-real-time speed 23.

4.4.2 Fixed and Dynamic Learning Rate

Discriminative training using a fixed learning rate gives an identical scale for
parameter change while using a dynamic learning rate implies to determine the
scale for each training sample. In this section, we compare discriminative
training using dynamic and fixed learning rates in terms of error rate reduction
on the development set and the test set. This comparison is carried out on
Graphl1 using the same parameter settings except for the learning rate. Although
Graphl is the smallest decoding graph in our experiments, it was built from a
language model whose size is comparable to the language models used in other
discriminative training experiments (McDermott et al, 2000; McDermott and
Katagiri, 2005). Training starts from a baseline WER of 35% as shown in Table
4.8. Eight iterations are performed with the random updating scheme (discussed
in Section 4.4.3). Results are shown in Figure 4.1 and Figure 4.2.

Performance on the Development Set

Figure 4.1 shows limited improvements when using a fixed learning rate. The
WER is reduced from 35.0% to 33.9%. Moreover, error rate reduction on the
development set is quite small after the 4t iteration. When using a dynamic
learning rate, discriminative training gradually reduces the WER from 35.0% to
31.6%, yielding a substantial improvement of 3.4% absolute. Performance
improvement stabilizes after the 6t iteration. Roughly speaking, both dynamic

23 We also implement a function in the decoder, which only updates the word-level history. This
could improve 0.3xRT decoding speed.

Experiments

4.4 Experimental Results

95

learning rate and fixed learning rate yield better performance than the baseline

result. Decoding errors on the development set are steadily reduced and the

performance improvements also stabilize after a few iterations.

35.5

—<— Dynamic Rate —<— Fixed Rate

354

34.5

34

33.5

WER

33

32.5

32

31.5

lteration

Figure 4.1: Error reduction for Graph1 on the DEVSet using a dynamic learning
rate and a fixed learning rate.

46 T T T T T
—©6— Dynamic Rate —<— Fixed rate

45.75

45.5

45

44.75

44.5

Iteration

Figure 4.2: Error reduction for Graph1 on the TESTSet using a dynamic learning

rate and a fixed learning rate. Over-fitting occurs after the 6" iteration.

Experiments

96 4.4 Experimental Results

Performance on the Test Set

Discriminative training yields substantial improvements on the development set.
However, this error rate reduction is not generalized to the test set. Figure 4.2
shows the corresponding WER decrease for dynamic and fixed learning rates at
each iteration. The 0t iteration indicates the initial WER before discriminative
training is performed. For the graph updated by fixed learning rate, the WER is
decreased by 0.7% at the 6t iteration, from 45.9% to 45.2%, of which 0.6% are
reached after the 3rd iteration. After the 6t iteration, the error rate increases
more quickly than the convergence rate, meaning that over-fitting occurs. This
effect also happens for the graph updated by dynamic learning rate. Overall,
dynamic learning rate yields more stable improvements on the test set before
over-fitting occurs. It lowers the WER from 45.9% to 44.5%, which is 1.4%
absolute to the initial point.

As illustrated in Figure 4.1 and Figure 4.2, dynamic learning rate yields more
stable WER convergence and more WER reduction, both on development set and
test set. As for the generalization problem and data over-fitting effect, they will
be discussed later in Section 4.5.5.

4.4.3 Deterministic versus Random Update

The MCE training performs transition weight adjustment between two
consecutive words that often involve a sequence of phones. However, the MCE
criterion does not specify the exact position to update the transition weight. This
gives several options to determine the arc for parameter adjustment.

e Update all the weights along the transition paths by the average of
gradient or by giving more adjustment over the arc towards the initial
state.

e Select one arc to update. This can be a deterministic or a random
selection.

e For the paths containing a back-off transition, an option would be to
keep the transition weight unchanged when the update yields a
higher back-off probability than the n-gram probability.

Our implementation considers the back-off transitions as regular ones. For
simplicity, we select an arc from the transitions of a word pair for parameter
adjustment. In the following, we will compare the performance in error
reduction between the deterministic update and the random updating schemes.

Experiments

4.4 Experimental Results 97

Transition Weight Updating Schemes

Assume a word pair of two consecutive words WiW, ={a,,a,,..,a,}, where
a,,a;,..,a,are the corresponding arcs. Word labels W; and W are produced at a;
and a, respectively. Two deterministic updating schemes are used for
comparison, the update on the first arc a; and the update on the last arc a,. In
contrast to the deterministic update, the random updating scheme randomly
chooses an arc along the paths with uniform probability.

Experiments are performed using Graphl on the development data set during 8
iterations. The scale of parameter update is determined dynamically by the line
search method. All experiments are performed based on the parameter settings
given in Table 4.7, starting from the baseline as shown in Table 4.8. The curves of
WER reduction with three different updating schemes are displayed below. It is
noticeable that the random updating scheme not only converges more quickly
but also reaches a lower WER.

36 ‘ ‘
—o— Random Arc
—<— First Arc

s (e —+—— Last Arc

L

] R LT EEEE T

K N

WER

335 N TR L

B3 N TRl

325 P O

B2 Tel

31.5

lteration

Figure 4.3: WER reduction on Graph1 by deterministic and random updates.

4.4.4 Error Rate Reduction on a Large Graph

An integrated decoding graph is a search space where a large number of
parameters are distributed in a complex network. Some of the parameters, such
as the transition weights, are not completely independent. This makes the
training process difficult to reach the minimum error rate, particularly when the
graph is constructed from a very large language model. However, a large graph

Experiments

98 4.4 Experimental Results

usually provides a better baseline for discriminative training. Therefore, given
the same training data, we compare two graphs of different sizes to investigate
the training behavior and potential improvements.

Training is performed using development set on Graphl and GraphZ2. Baselines
are given in Table 4.8. Experiments are carried out based on the parameter
settings given in Table 4.7, using a dynamic learning rate and the random
updating scheme. In the following experiments, 16 iterations of training are
performed. The performance of the first 8 iterations on GraphZ2 is compared with
the performance of Graph1 represented in Figure 4.1 and Figure 4.2. From the 8th
to the 16t iteration, the supplementary training iterations on GraphZ are
performed to see the possible error rate reduction in a large graph. Details of the
error reduction on GraphZ2 are presented in Appendix C.2 (p. 123).

Performance on a Large Graph

Figure 4.4 and Figure 4.5 show the improvements from the 0t iteration (the
baseline). In Figure 4.4, a 3.4% absolute error rate reduction can be obtained
from the baseline to the 8t iteration. This improvement on GraphZ2 is similar to
the performance on Graphl (the WER was reduced by 3.4% absolute) but starts
from a better baseline. Experiments on Graphl and GraphZ both give stable
convergence on the development data. However, the improvement on the test set
still suffers from the same generalization problem; only 1% of WER is obtained
on Graph2, and approximately half of the improvement is achieved in the 1st
iteration.

Training Iterations and Error Rate Reduction

Since the decoding graph involves a large number of parameters, several
iterations of the training process may not be sufficient to give a proper transition
weight distribution. Thus, eight more iterations are performed on the GraphZ2 to
investigate the training behavior. As Figure 4.4 indicates, training error is
gradually reduced when more iterations are performed. Although the slope of
convergence is getting smaller, around 1.5% absolute WER reduction is obtained
from the 8t to the 16t iteration. That is, a total of 5% of training errors can be
reduced from the baseline to the 16t iteration. The WER reduction on the
development set is mainly due to the decrease of substitution errors and to a
small decrease (1% absolute) of the deletion errors. Despite the significant
improvements, error rate reduction on the development set almost does not
yield any performance change on the test set from the 8t to the 16t iteration.

Experiments

99

4.4 Experimental Results

- — — 4+ - -

- — — 4+ - —

e

e

——d -k - -4 - ——

29
281~

10 11 12 13 14 15 16

8
lteration

, , , , , , , , , =Y
| | | | | | | | |
| | | | | | | | |
- t--—-------"+-"—-"—-""-|\-"-"-""-"4+-"-"-"=-|-"—"=—"—"—-"=—"—-—"—<-=—-- - = ——
| | | | | | | |
| | | | | | | |
Lo 0l ___L___J___t___]
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
35 r-——>T-~" """\ -~"~“"~"7" " ~“"9|/~"~"~“"~““"7°~" " "9/ "“"“"“"™r—-"~"~""™[M°~"“~"“~"°~"r°~°=—°7
nwuu | | | | | | | | |
| | | | | | | | |
V S A
E | | | | | | | | |
| | | | | | | | |
D | | | | | | | |
) e St ety Mttt H e T N A O Sl
| | | | | | | | |
m | | | | | | | | |
[t B e e i i I S
m | | | | | | | | |
| | | | | | | | |
| | | | | | | | |
M \\\\\,\\\\,\\\\4\\\J\\\\4\\\\,\\\\,\\\\J\\\\,\\\\m
| | | | | | | | |
MI | | | | | | | | |
r r-t-"-""-"-"—-"—-"+-"—-—"=-"-"|-"—-—"=—-"=—-"+-"—-—"—-"—-|-"—-—"—-—"—"f—-—-——-——-=-—- - - - -
| | | | | | | | |
m | | | | | | | | |
e [
M | | | | | | | |
| | | | | | | |
| | | | | | | |
E e e e e e A A E el e
W | | | | | | | |
.. | | | | | | | |
(S
A-“ | | | | | | | |
4 | | | | | | | |
| | | | | | |
m e et ety Mt iy B e </
u | | | | | | |
| | | | | | |
.Fw . S S S|
| | | | | | |
| | | | | | |
I O O N I ~ S R DU BRI
| | | | |
| | | | |
| | | | |
r—-———"4 """+ -~ —"=—""\—"—" =)~ """ -"—"—"~—"tt—-——4"A4-——~—"F=- = -7
| | | | | | |
| | | | | | |
| | | | | |
x & @ N © . ¥ o N = N~
5 5 5 5 B B B B BT
d3aM

10 11 12 13 14 15 16

9

8
lteration

Figure 4.5: WER of GraphZ2 on the TESTSet.

Experiments

100 4.4 Experimental Results

Discussion

Experiments reported in the previous sections have shown the error reduction
incurred through the discriminative training process. However, in practice, a
graph may be constructed from a language model containing a large number of
n-grams while the number of word pairs in the development set to update the
graph is relatively small. This means that discriminative training updates only a
small portion of the transition weights even if more training iterations are
performed. In the next section, we will dig into this issue by introducing a larger
data set to evaluate the potential of using a larger training set.

4.4.5 Training with a Larger Data Set
Occurrence of Word Pairs and Parameter Update

Discriminative training performs parameter update by increasing some
transition weights while decreasing some other ones. The goal of the transition
weight adjustment is to yield a proper distribution so that the error rate can be
reduced. However, in practice, many word pairs will never be updated or the
parameter update is performed given a specific history. Assume that the word
pairs W,W,, W,W.and W,W, are distributed as below:

o W, W,: exists in the training set only.
e W,W.: occurs both in the training set and the test set.
o W, W,: exists only in the test set.

It is obvious that a transition weight update on W,W, may not yield any
contribution to the performance on the test set but might help on some other test
set. Updating the transition weight on W,W.is more likely to give an error
reduction, since the word pair exists both in the training set and the test set. One
little drawback is the non-locality effects. Both W,W, and W,W, start from the
same word W,. Transition weights on the path W,W. may be affected by the
parameter change on W,W,. Technically, if the word pair exists only in the test
set, there might even not be any transition to update, meaning that there is no
arc for this word pair and that a weight update may occur only on the back-off
transition. Due to the absence of this word pair in the training, a proper
transition weight distribution on W,WW;, is difficult to achieve. Even if a couple of
training iterations are performed, transition weight distribution of W,W,; may not
be changed, or will be modified in an arbitrary way, as a side effect of other
changes, meaning that this error on the test set may never be fixed.

Experiments

4.4 Experimental Results 101

In this section, we use the data set originally used to train the language model for
discriminative training. Experiments are performed on GraphZ, based on the
parameter settings given in Table 4.7. Starting from the baseline as shown in
Table 4.8, one training iteration is performed on TRAINSet and DEVSet to
compare the performance improvement. The number of recordings and hours of
speech of the individual data set is given in Table 4.1.

Number of Word Pairs in the Data Set

Table 4.10 shows the number of word pairs in each data set. A word pair is
obtained by extracting two consecutive words from the transcriptions. Thus, a
word pair may occur several times. The number of distinct word pairs is shown
in the 3rd column of Table 4.10. It can be seen that a word pair is updated 2 or 3
times on an average. However, the number of different word pairs is much less
than the total number of parameters?4 in GraphZ2, as shown in Table 4.5.

Performance on the Training Set

Table 4.11 shows a significant improvement in performance when using a large
data set in discriminative training. The large database TRAINSet contains 11
times more word pairs and 7 times more different word pairs than those in
DEVSet. Discriminative training performed on this data set greatly decreases all
kinds of training errors, particularly a high reduction of substitution error.
Training result shows that a 7.9% of WER improvement is achieved over the
baseline result.

Performance on the Test Set

As reported in the previous experiments, the improvement on the test set is
much smaller than that on the training set, as shown in Table 4.12. When much
more training samples are used to update the graph parameters, both
substitution errors and deletion errors are reduced while insertion errors are
slightly increased. Decoding results on the test set give a total of 1.1% absolute
WER reduction, approximately 3 times more than the improvement obtained
using DEVSet. Although the test set consists of four sources of recordings with
distinct performance, as shown in Appendix C.3, discriminative training using a
large data set still yields an improvement on each source.

24 Since the acoustic model parameters are fixed, the number of parameters corresponds to the
number of transition weights in the decoding graph.

Experiments

102 4.5 Improvements and Discussion

Data Set Num. of Word Pairs Num. of Distinct Pairs

DEVSet 69423 31628
TRAINSet 814624 221736
TESTSet 40729 22265

Table 4.10: Number of word pairs in the data set.

Data Set | Corr. | Substitution | Deletion | Insertion | WER | S.Err
Baseline | 73.8 18.3 7.9 2.3 28.5 | 78.7
DEVSet | 74.0 18.1 7.8 2.3 28.2 | 78.3
TRAINSet | 80.8 12.1 7.1 1.4 20.6 | 67.0

Table 4.11: Error rate reduction after the 15t iteration on the training set.

Data Set | Corr. | Substitution | Deletion | Insertion | WER | S.Err
Baseline | 64.6 23.6 11.9 2.4 379 | 874
DEVSet | 73.8 23.1 12.0 2.4 37.5 | 86.6
TRAINSet | 70.7 22.8 11.2 2.8 36.8 | 86.2

Table 4.12: Error rate reduction after the 15t iteration on the test set.

Based on our previous experiments, it is likely that running additional training
iterations with the large graph could bring us another 1% absolute WER
reduction on the test set.

4.5 Improvements and Discussion

In the previous sections, experiments have shown that discriminative training
has the potential of effectively reducing the errors. To further analyze the details
of the improvement of discriminative training, we take the largest decoding
graph (the Graph2) as an example to investigate the training results from the
following perspectives:

e Error corrections: we study the reduction of errors before and after
the training.

e Number of updates: we compare the number of graph updates in the
course of training.

e Score difference: we observe the score difference between the
reference and the hypothesis and examine how discriminative
training re-distributes the transition weights.

Experiments

4.5 Improvements and Discussion 103

e Coverage of parameters and the transition paths: we analyze the
coverage of word pairs in the development set and the test set, and
compare the transition paths. It may point out possible sources of
improvements.

4.5.1 Detailed Analysis of the Corrections

In the following, we study the reduction of errors on the training set and the test
set. To keep track of the error reduction, the top confusion pairs are extracted
from the results produced by the SCLITE scoring tool. Since the improvement on
the test set is limited, we focus on the confusion pairs that have been
significantly reduced to discuss the possibility of generalizing discriminative
training performance to unseen data. In Section 4.5.4, we will extend the
comparison to investigate the issue of generalization in more detail.

Reduction on the Training Set

Previous experiments have shown that discriminative training gives significant
improvements on the training set. The error reduction on the training set also
produces a consistent result. Figure 4.7 shows that, for most of the pairs that are
frequently confused when using the baseline graph, the number of errors has
been decreased after discriminative training. Table 4.14 shows the number of
errors for each confusion pair, before and after training.

Reduction on the Test Set

Graph parameter update performed on Graph2 by using TRAINSet yields better
improvements both in the training set and the test set, from which we take the
decoding results on the test set before and after discriminative training. The top
10 confusion pairs are extracted from the baseline results to compare the
improvements. The number of confusion pairs and the reduction are given in
Table 4.13 and Figure 4.6. Several confusion pairs exist both in Table 4.13 and in
Table 4.14. They are also ranked in the top 5 list, such as (des, les), (et, est) and
(Ia, le). These confusions are effectively reduced after discriminative training is
performed.

The word pair (et, les) shows a typical improvement on both sets. The words “et”
and “les” are acoustically similar (also frequent in French) while the usage is
quite different. With discriminative training to re-distribute the transition
weights, there should be fewer errors occurring on this word pair.

Experiments

104

4.5 Improvements and Discussion

Number of confusions

N B » © O
T

—e— Baseline —&— 1st iteration

3 4

5 6

Top 10 confusion pairs

7

10

Figure 4.6: Reduction of confusion pairs on the TESTSet from the baseline to the 1st

iteration. Discriminative training is performed on the TRAINSet.

Num. Confusion Paris Baseline | 1stiteration
1 |des les 12 9
2 et est 9 7
3 |la le 8 5
4 |des de 7 6
5 let les 7 2
6 |a de 7 8
7 la 6 5
8 |a de 4 3
9 |a la 4 3

10 |ce le 4 3

Table 4.13: Top 10 confusion pairs on the TESTSet. One iteration of discriminative

training is performed on the TRAINSet.

70r
60 -
50 -
40|
30"

Number of confusions

10+

—e— Baseline —©— 6th iteration

Top 25 confusion pairs

Figure 4.7: Reduction of confusion pairs on the DEVSet from the baseline to the 6th

iteration.

Experiments

4.5 Improvements and Discussion

105

Num Confusion Paris Baseline | 6t iteration
1 |des les 66 51
2 lest et 39 37
3 |les des 34 31
4 et est 33 38
5 |la le 33 27
6 |un le 33 30
7 |a de 32 35
8 I d’' 30 24
9 |les le 29 27

10 |des de 28 29
11 | la 28 24
12 lest ces 26 10
13 |au le 24 19
14 |le les 24 11
15 |l qui 23 22
16 | le 23 15
17 |I' les 22 20
18 |d’ de 21 17
19 et les 21 11
20 |deux de 20 15
21 |de deux 17 17
22 |de le 16 11
23 |de que 16 8

24 et il 16 9

25 |ses ces 16 11

Table 4.14: Top 25 confusion pairs for the baseline system. The two columns on the
right of the table show the reduction of confusion pairs from the baseline to the 6t
iteration on the DEVSet.

4.5.2 Number of Graph Updates
Error Reduction and Graph Update
In the previous section, we have explained that discriminative training reduces

the training errors by correcting the word pairs so as to make the reference and
the hypothesis strings get more similar. This means that the number of updates

Experiments

106 4.5 Improvements and Discussion

should also be decreased if the training procedure is effectively performed. To
investigate the number of graph updates with respect to the training iterations,
we take the sum of updates from the log file recording the details of
discriminative training. The files are obtained from the experiments performed
on Graphl and Graph2Z using the DEVSet. For the first 8 iterations, the
corresponding number of updates is displayed on Figure 4.8.

Number of Updates and Graph Parameters

The GraphZ starts from a good baseline (fewer updates) and the number of
updates is gradually reduced both on Graph1 and GraphZ2. Notice that the number
of updates converges on Graphl while it continues to go down on GraphZ2 due to
the over-fitting effect.

X 104

6.5

—&— Graph1 —e— Graph2

55

Number of updates

4.5} 1

Iteration

Figure 4.8: Number of parameter updates on Graph1 and GraphZ2 using the DEVSet.

4.5.3 Score Difference

When discriminative training using the MCE criterion is performed, the error
reduction is achieved by adjusting the transition weights on the correct and
incorrect words. In this section, we focus on the analysis of score differences
between the reference and the hypothesis strings.

The score is a sum of the acoustic likelihoods and of the transition weights along
the decoding path, as given in (3.1) (p. 50). When discriminative training is
performed, the score difference between the reference and the hypothesis
should be getting smaller. We investigate this issue by analyzing at the 1st and

Experiments

4.5 Improvements and Discussion 107

the 6t training iteration on the log file mentioned in the previous section. Score
difference in the intervals [0, 5), [5, 10),..., [45, 50) are grouped together. Their
corresponding number of occurrences is shown in Figure 4.9.

From the 1st to the 6 training iteration, the number of files in each score interval
is reduced, except for the range [0, 5), indicating that more hypotheses are closer
to their references. Further investigation of the training samples also show that
there are 1388 files whose reference and hypothesis are identical, both in scores
and word strings at the 1st iteration. This means that the paths of state-level
decoding and alignment are the same. Moreover, an increase of 217 files is
obtained at the 6t iteration, meaning that discriminative training performs a
proper transition weight adjustment to reduce the errors.

2000

[]1stiteration —e— 6th iteration

1500 |~~~ | N .

1000

Number of files

BOO | | || P .

x5
1 2 3 4 5 6 7 8 9 10
Score difference

Figure 4.9: Number of files within the range of score difference. Experiments are
performed on GraphZ2 over the development set.

4.5.4 Coverage of Word Pairs
Parameter Coverage and the Improvements

The experiments reported in the previous sections have shown that
discriminative training successfully reduces the training errors on various
graphs and data sets. In Section 4.5.2, we observed that the number of updates is
relatively small as compared to the number of graph parameters. This means
that even if the WER has been reduced, the improvement may not yield a
comparable error reduction on the test set, since only a small fraction of the
transition weights have been updated.

Experiments

108 4.5 Improvements and Discussion

An interesting issue in the above discussion is: among the parameters updated
by numerous training samples, how many of them could yield the improvement
on the test set? In Section 4.4.5, this issue had been addressed experimentally, as
we tried to increase the number of updated parameters; our experiments have
shown that more improvements can be obtained both on the training data and
the test data when a larger training data set is used. In this section, our
investigation is based on the coverage of the updated parameters and the
corresponding transition paths, to further explore the potential of discriminative
training.

Coverage of Word Pairs

The word pairs are extracted from two consecutive words from the
transcriptions in the data set, including the symbols <s> and </s> which
respectively indicate the beginning and the end of an utterance. We extract the
unique word pairs from the DEVSet and the TESTSet. The number of these pairs
and the coverage on each data set are displayed on Figure 4.10.

The DEVSet and TESTSet respectively contain 37705+6632 and 16530+6632
word pairs, where the 6632 pairs exist on both sets. When discriminative
training updates graph parameters, transition weight adjustment on the word
pairs that exist in the training set only may not influence the performance on the
test set. Figure 4.10 shows that this kind of word pairs is in the majority (85%).
The test set contains 16530 pairs (approximately 71% of pairs on the test set)
that are never be touched by discriminative training. To give further
improvements, error rate reduction would have to benefit more from the word
pairs that exist in both sets.

DE VS et

37705 In the training
set only
B 6632
<t In both sets

16530

In the test set
only

Figure 4.10: Number of occurrence and the coverage of word pairs in the training
set and in the test set.

Experiments

4.5 Improvements and Discussion 109

Transition Paths of Word Pairs

We thus analyze the transition paths of the 6632 word pairs that exist in the
training set (approximately 15%) to examine the transition weight updates at
the state level. For each word pair, we compare its transition path on the training
set and that on the test set. Assume that the word pair is W,W,. The results in
Table 4.15 show that only 408 word pairs have identical transitions on both sets.
There are 1920 pairs that do not match on the transition paths of W,. This
means that they only differ at some variant (or an optional silence) of a word.
However, most of the word pairs differ in the beginning of the state sequence.
This implies that these pairs are produced given different word history; one may
benefit from the transition of an n-gram while the other goes through the
back-off state.

Num. of Pairs Description

4304 (9.7%) | State sequences are different on W, (different history)

1920 (4.2%) | State sequences are the same on W, but different on W, (variants)

408 (0.9%) | State sequence exact match

Table 4.15: Comparison of transition paths.

4.5.5 Discussion

In this chapter, we presented and discussed the results of a series of experiments
to investigate the potential of discriminative training on integrated decoding
graphs. Our proposed fast decoding techniques make the training procedure
practical and yield an extremely fast alignment. To deal with the dependencies
between the transition weights, a random updating scheme has been proposed,
which gives a better error rate reduction. It is noteworthy that G. Zweig and his
co-authors (Kuo et al, 2007), using a different implementation of the same idea,
have independently observed the same kind of improvement of the first pass
decoding, using the data of the RT-03 campaign and state-of-the art acoustic
models.

Despite these successes, several problems still affect the effectiveness of
discriminative training.

Over-fitting Effect and Generalization Problem

One problem commonly encountered in many parameter estimation methods is

Experiments

110 4.5 Improvements and Discussion

the over-fitting effect. It occurs when the estimation procedure continues to
maximize the likelihood or to reduce the score difference, while the
improvement on the training data yields an opposite result on the test data.
Discriminative training on the decoding graph suffers from this drawback;
experiments on various decoding graphs and data sets all yield limited error rate
reduction on the test set.

To reduce this effect, several heuristics could be used to decide when to stop the
training iterations: setting a threshold for the reduction of errors between
iterations, using cross-validation techniques, etc. A more principled approach,
yet to be precisely defined, would be to penalize the transition weight updates.

Possibility to Translate the Error Reduction

In Section 4.5.4, we made a comparison to investigate how discriminative
training translates the improvements on the training data to the test data.
Results show that only a small portion of word pairs in the training data have
more possibility to translate the improvements to the test set. Moreover, a
further comparison on the transition paths show that the majority of the word
pairs either use lower order n-gram probability or go through the back-off
transition. Finally, it is worth pointing out that this discriminative training
framework does not update the acoustic parameters. If the speaking style and
the accent are different from those in the training set, updating just the transition
weights may not be able to yield significant improvements on the test set.

Experiments

5.1 Integrated Decoding Graph 111

Chapter 5. Conclusion and

Perspectives

This thesis investigates the modeling problem in conventional automatic speech
recognition (ASR) systems under a unified training framework. In our
implementation, the search space is constructed in the form of an integrated
decoding graph combining various knowledge sources. Discriminative training
using minimum classification error (MCE) criterion is applied to update the
graph parameters so as to reduce the number of decoding errors. In this chapter,
we review the main achievements of this work and discuss the perspectives it
opens.

5.1 Integrated Decoding Graph

Integration of Knowledge Sources

Typical ASR systems require knowledge sources taking the form of a dictionary,
acoustic models and a language model. The performance heavily depends on the
way these models are estimated. However, most of the current research focuses
on model optimization in isolation, thus neglecting the interdependency between
different sources. Our implementations use WFST techniques to combine these
sources into a single decoding graph. Based on this unified representation, we
have formulated the WER minimization problem as the minimization of a
function of the graph parameters. With a proper training approach, any
transition weight adjustment would yield the reduction of the decoding errors.

Unified Framework and Discriminative Training

The decoding graph combining different knowledge sources can be considered as
a search space involving a set of parameters. In the training framework, these
parameters are taken as the input of an optimization function. Traditional
parameter estimation approach applies maximum likelihood estimation (MLE)
method to increase the likelihood. However, due to the lack of training samples,
the MLE training approach may not yield the best performance. Therefore,
instead of maximizing the likelihood, we apply discriminative training to update
the graph parameters so as to minimize the errors.

Conclusion and Perspectives

112 5.2 Efficiency and Improvements

5.2 Efficiency and Improvements

The main contributions of the thesis are:
A Less Graph Complexity, yielding a High Decoding Efficiency

In terms of time and space complexity, the WFST techniques are effective in
building large scale systems. Our graph construction procedure achieves a great
reduction in graph complexity when constructing a search space from large
knowledge sources. In addition, we have proposed several fast-decoding
techniques to make discriminative training practical. The first is weight pushing.
Our algorithm follows the language model look-ahead principle to re-distribute
the transition weights on the decoding graph so as to improve pruning. The
second is the look-up table technique aiming at decreasing the search overhead
of token passing in a large and complex graph. Moreover, the general principle of
graph inversion allowed us to develop a sub-graph extraction approach for fast
alignment. This approach extracts the possible paths from a large graph and
represents the connections in a small search space. Our proposed fast-decoding
techniques yield 3.0xRT decoding time and extremely fast 0.05xRT alignment
speed.

Random Updating Scheme and Dynamic Adjustment

Our training framework applies MCE approach to update the graph parameters.
After several training iterations have been performed, decoding errors are
gradually reduced. The random updating scheme proposed in this thesis has
been shown to yield better error rate reduction than deterministic update on a
large decoding graph. Moreover, to give adequate parameter update for each
individual training sample, the line search method is applied to dynamically
determine the scale of transition weight adjustment.

Performance Improvements

With the above parameter update rule in our training framework, discriminative
training yields an absolute of 3% WER reduction on the training set, and
achieves a stable convergence. To investigate in more details the effect of
discriminative training, we have examined the reduction of errors, the number of
graph updates and the score difference between the reference and the
hypothesis. Experimental results have demonstrated that not only the score

Conclusion and Perspectives

5.3 Future Directions 113

difference is getting smaller, but also the number of incorrect word pairs is
reduced. A smaller, yet significant improvement of the performance is also
observed on the test data. An investigation on the state transition paths of word
pairs has shown that to effectively generalize to the test data, higher coverage of
word pairs is required.

5.3 Future Directions

Discriminative training on large decoding graph has been demonstrated to
produce less decoding errors by updating the transition weights. Several
directions are conceivable to provide additional performance improvements.

Transition Weight Distribution

Transition weight distribution plays an important role on decoding performance.
In this discriminative training framework, we have proposed a random updating
scheme to alleviate the influence. Although the choice of the update position is
very simple, more improvement could be achieved by determining the position
sample-by-sample. For instance, instead of updating one single arc, transition
weight adjustment could be performed along the path of a word string, where
the position towards the initial state is given more weights so as to improve
pruning.

Dynamic Decoding Graph

In our training framework, parameter update is performed on a static decoding
graph. When the transition arcs of a word pair are along the path which is greatly
determinized, parameter update is usually a compromise between the
dependency and the effective adjustment. A further improvement could be
achieved by creating an arc connecting states or duplicating partial paths with
updated transition weights, thus providing additional degrees of freedom in the
model. These new connections would make the graph non-deterministic.
However, if they are created only on the path where weights are highly
dependent, graph size would slightly increase while the decoding performance
could be further improved.

Alternative Loss Function

Many MCE based training approach use the sigmoid function so that the several
numerical search methods can be applied to find function's minimum. This

Conclusion and Perspectives

114 5.3 Future Directions

function translates the score difference into a 0-1 domain. However, the mapping
curve and the domain range may not be suitable for a certain task. Several
alternative loss functions such as the exponential loss or the hinge loss could be
used as an alternative.

One-Best versus N-Best

Our training approach uses only the score of the one best hypothesis in the
so-called anti-discriminant function. In many ASR tasks, the N-best hypotheses
are often competitive with the best one. The MCE criterion allows the N-best
hypotheses to be used to determine the parameter update: this approach would
greatly affect the number of transitions that are updated for each training
sentence; however, it would also make the computation of the gradient function
more complex. The benefits of this extension remain to be experimentally
assessed.

Acoustic Parameters Adjustment with Fast Alignment Process

In this training framework, discriminative training translates the score
difference which combines acoustic likelihoods and language model probabilities
to change the weights along the decoding path. Strictly speaking, the score
difference sometimes comes much more from acoustic variability. In this case, it
may not be suitable to translate this difference to the transition weight between
words. Therefore, when the improvement by transition weight adjustment
converges, acoustic parameters could be updated for the training samples that
still produce errors. Remark that should we decide to also update the acoustic
parameters, we could do so with very little computational overhead, as our
sub-graph extraction techniques can be used as a very a fast alignment algorithm,
even at the level of HMM states.

Conclusion and Perspectives

115

Appendix

116

A. Derivation of MCE

Following (3.5), the gradient of the loss function is derived respectively on the

partial derivatives.

Vo, AT, = 20 04X AT
odi or

ol;
1)—:
()ad,»

Assume the misclassification function d;(X,A,I';)=uand —yu+6=n. The loss

function can be re-written as below:

_ 1 11
T 14 ehXATOW T { et {4 en

2 (A.1)

Taking partial derivative of the loss function with respect to the misclassification

function yields:

ol; i(1)_i 1)@
od; ou 1+e" oOn 1+e" Ou

(A.2)

which is a product of ﬁi()and?. By restoring temporary variables n and
n u

1+e"

. 0 .
u for the loss function, the term —() is expressed as:

n 1+e"

o 1 1 1
on(l+e") 1+e" 1+e€"
1

-1)
1

1 + e—}/di(X,A,l"t)JrH 1 + e—;/di(X,A,Ft)+60
yielding
£(di)(4(di)—1) (A.3)
on . . .
For the term@—, it is obvious to have a constant form:
u
on 0
—=—(u+d)=-y (A4)
ou aou

Combining (A.3) and (A.4) gives:

a—V{K(dz)[l (di)]} (A.5)

1

117

@ od;(X,A,T) :
or

Suppose N-best hypotheses are used and I'" is a vector that represents the

transition weights along the decoding path. The misclassification function taking

into account the reference W, and the N-best hypotheses {W; , W,,...W,} is:

di(X)Ayrt) :_g(X)M/OIAIFt)+G(XIM/1)M/2)"'IW‘IIAIFt) (A6)

If acoustic model parameters are fixed, the loss function needs to be

differentiated with respect to the transition weights. Thus, taking partial
derivative of d;(X,A,I") with respect to I yields:

9

61“a A

=—/(=logP(W, T) +—G(X W W,,..W,,A,T

ar(gPWu|T:)) GF(1, W2 t)

(—g(X, Wy, A,T2) +airc(x,m,wz,...,wn,A,rt)

which can be represented by:
0
_I(VVO;S)+8_FG(X;W1;W2;---;Wn1Ath) (A7)

where [(W,,s) indicates the number of times a transition weight s on the
decoding path for word sequence W,. The definition of anti-discriminant
function G(X,W,,W,,...W,,A,T’;) can be expressed as below (Juang et al., 1997;
Kuo et al.,, 2002):

1

N kS
G(X; Wl PWZ ""PWn IA’rt) = log(%zeg(X.Wr ’A'rt)ﬂ)’7 (A.8)

r=1

Taking derivatives of G with respect to the transition I" yields:

0
_G(XJVVIJVVZH"JWYHA)Ft)
ar)
=a_r[log(ﬁzegu.wr.mnm)n] (A.9)
r=1

o 1 1
=] — 10 R eg(X:Wr,A,rc)ﬂ
8F[77(g(NZ1)]

Suppose
N
Zegu.wr ATOn — (A.10)
r=1

(A.9) can be simplified as below:

118

0o 1 1
a_F{;[lOg(N‘P)]}

0.1 10
=—1J[—(log¥ -logN)|=———log¥
ar[q(g gN)] s g

and

100y 10 2 _110%
nor n oY or n¥or
To computez—?j in (A.11), let

g(X;VVr;A;Ft):q)

a_\P:i N eg(X‘WrrA‘rt)ﬂ :i N e‘D77
oI’ ol & ol =
_ 0 N0, 0P
oD = or
where
o & $
- e‘DU:?] eq)’]
a(I)r=1 r=1
and
ob o0 0
—=—g(X,W.,, A,) =—(UogP(W, |I")=I(W,,s
ararg()ar(g(l))()
We get
oY ul
—= e® [(W,,s
s 7721‘, (W,,s)

That is, (A.11) can be expressed as:

n
== e®I(W,,s)= > —I(W,,s)

110 11 & X e®
)=2,
ULP ar ﬂ\P r=1 r=1 lP

Replacing @ in (A.17) by (A.12) gives:

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

119

eg(X‘Wr ATt)77

S s

r=1
N
=> CIW,,s)
r=1
where
eg(x,Wr A Te)n
C=—"
Y
Replacing ¥ by (A.10), we get
eg(x'Wr A Te)n eg(X'Wr ATy
Cr = \P = N
Zeg(x,Wr AT
r=1

The derivation of (A.9) is:

N
airG(X,Wl,wz,...,Wn,A,r)=Zcr1(wr,s)
r=1

Thus, (A.7) can be expressed as:

ad;(X,A,T)
or .
=—I(Wo,s)+ D .CA(W,,s)

r=1

Combining (A.5) and (A.20), we get

VI(X,ATY)

= y{0(d)[1 - L)} [-I(Wo,5) + D _CI(W,,5)]

r=1

(A.18)

(A.19)

(A.20)

(A.21)

120

B. LM and Graph

B.1. LM iIn ARPA format

\data\

Ngram 1=7
Ngram 2=7
Ngram 3=3

\1-grams:
-0.6690068
-99
-0.6690068
-0.6690068
-0.6690068
-1.146128
-1.146128

\2-grams:
-0.1249387
-0.30103
-0.5351132
-0.1249387
-0.1249387
-0.2340832
-0.2340832

\3-grams:

-0.1760913
-0.1249387
-0.1249387

\end\

</s>

<s> -0.4973247
de -0.5351131
le -0.4973247
rappel -0.4973247
ses -0.3480265
titres -0.2754759
<s>le 0

de </s>

de ses

le rappel 0

rappel de -0.1760913
ses titres

titres </s>

rappel de </s>
<s> le rappel
le rappel de

W
N

O© O 00 N NN OV O U1 U o W W W INDNNDN R R R R R =R O O

[G Y
N mr O O

Graph Representation of LM

10

11

12

10

12

<F>
le
</s>
de

le
rappel
ses
titres
<F>
</s>
ses
<F>
rappel
<F>
de
<F>
titres
<F>
</s>
<F>
rappel
<F>
<F>
de
<F>
</s>

<F>

-0.497325003
-0.124939002
-0.669007003
-0.669007003
-0.669007003
-0.669007003
-1.14612806
-1.14612806
-0.535112977
0.69897002
-0.535112977
-0.497325003
-0.124939002
-0.497325003
-0.124939002
-0.348026991
-0.234082997
-0.275476009
0.765917003

-0.124939002
1

-0.124939002
-0.176091
0.823908985
1

122

C. Error Reduction

C.1. WER on Graphl

Iteration| # Snt | # Wrd | Corr Sub Del Ins Err S.Err
0 6489 | 75912 | 68.5 23.6 7.9 3.4 35 84.7

6489 | 75912 | 69.1 22.7 8.1 3.1 34 83.9
6489 | 75912 | 69.9 21.8 8.3 2.9 33 83.1
6489 | 75912 | 70.3 21.4 8.2 2.9 32.6 | 82.8
6489 | 75912 | 70.6 | 21.2 8.2 3 32.3 82.6
6489 | 75912 | 71 21 8 3 32 82.1

6489 | 75912 | 71.3 | 20.8 7.9 3 31.7 82

6489 | 75912 | 715 | 20.7 7.8 31 316 | 819

6489 | 75912 | 715 | 20.6 7.8 31 316 | 819
Table C.5.1: Error reduction of Graph1 on the DEVSet.

X|IN|o|n|h|lw|N|F-

Iteration| # Snt | # Wrd | Corr Sub Del Ins Err S.Err
0 3307 | 44004 | 58.1 30.5 11.4 4 459 92.6

3307 | 44004 | 58.8 | 29.2 11.9 35 447 | 92.3

3307 | 44004 | 58.9 29 12 3.5 446 | 92.5

3307 | 44004 | 589 | 29.1 12 3.6 446 | 923

3307 | 44004 | 59.1 289 12 3.6 446 | 923

3307 | 44004 | 59.2 289 11.9 3.6 445 | 92.2

3307 | 44004 | 59.3 289 11.8 3.7 44.5 92

3307 | 44004 | 59.3 29 11.7 3.9 446 | 92.1

IV |W|IN]|F-

3307 44004 | 59.1 | 29.2 | 11.8 4 449 | 923
Table C.5.2: Error reduction of Graph1 on the TESTSet.

[teration 0 indicates the baseline, which is the performance before discriminative
training.

123

C.2. WER on Graph2

[teration| # Snt | # Wrd | Corr Sub Del Ins Err S.Err
0 6489 | 75912 | 73.8 18.3 7.9 2.3 28.5 78.7
1 6489 75912 | 74 18.1 7.8 2.3 28.2 78.3
2 6489 | 75912 | 74.8 17.5 7.7 2.2 274 | 77.3
3 6489 | 75912 | 75.5 17 7.5 2.2 26.7 76.5
4 6489 |75912 | 75.9 16.7 7.4 2.2 26.3 76.2
5 6489 | 75912 | 76.2 16.4 7.3 2.2 26 75.4
6 6489 | 75912 | 76.6 16.1 7.3 2.2 25.6 | 74.7
7 6489 | 75912 | 76.7 16 7.2 2.2 25.5 74.4
8 6489 |75912 | 77.1 15.7 7.2 2.2 25.1 73.7
9 6489 | 75912 | 77.4 15.5 7 2.2 24.8 73.3
10 6489 | 75912 | 77.6 15.4 7.1 2.2 24.7 72.9
11 6489 |75912 | 779 15.1 7 2.2 24.3 72.2
12 6489 |75912| 78 15.1 6.9 2.2 24.1 72
13 6489 |75912 | 78.2 14.9 6.9 2.2 24 71.6
14 6489 | 75912 | 784 14.8 6.8 2.2 23.8 71.1
15 6489 | 75912 | 78.7 14.5 6.8 2.2 23.5 70.7
16 6489 | 75912 | 78.8 14.5 6.7 2.2 234 | 704

Table C.5.3: Error reduction of GraphZ2 on the DEVSet.

124

[teration| # Snt | # Wrd | Corr Sub Del Ins Err S.Err
0 3307 [44004| 64.6 | 23.6 11.9 2.4 379 | 874
1 3307 | 44004 | 64.9 23.1 12 2.4 37.5 86.6
2 3307 | 44004 | 65.1 23 11.9 2.4 374 | 86.6
3 3307 | 44004 | 65.1 23 11.9 2.4 37.3 86.6
4 3307 | 44004 | 65.3 22.9 11.9 2.4 37.2 86.5
5 3307 | 44004 | 654 | 22.8 11.8 2.5 37.1 86.5
6 3307 [44004 | 65.5 22.8 11.8 2.5 37 86.6
7 3307 | 44004 | 654 | 22.8 11.8 2.5 37.1 86.4
8 3307 | 44004 | 65.5 22.8 11.7 2.5 37 86.5
9 3307 [44004 | 654 | 22.8 11.8 2.5 37 86.4
10 3307 | 44004 | 65.5 22.8 11.7 2.5 37 86.4
11 3307 | 44004 | 654 | 22.8 11.8 2.5 37.1 86.4
12 3307 | 44004 | 65.5 22.8 11.7 2.5 37 86.3
13 3307 | 44004 | 65.5 22.7 11.8 2.5 37 86.4
14 3307 [44004 | 654 | 22.8 11.8 2.5 37.1 86.4
15 3307 [44004 | 654 | 22.8 11.8 2.5 37.1 86.5
16 3307 | 44004 | 65.5 22.8 11.7 2.5 37 86.5

Table C.5.4: Error reduction of GraphZ2 on the TESTSet.

125

C.3. Performance on the Test Set

Source of Recordings Num. of Files [Hours of Speech
1 [20041006_0700_0800_CLASSIQUE 740 0.75
2 |20041006_0800_0900_CULTURE 917 0.70
3 |20041007_0800_0900_INTER_DGA 996 0.80
4 120041011_1300_1400_INTER_DGA 654 0.70

Table C.5.5: Four different recordings in the test set and associated with an index.

Source | #Snt | #Wrd | Corr Sub Del Ins Err S.Err
1 740 |10493| 70.8 | 21.1 8.1 3.4 32.6 | 86.1
2 917 | 10448 | 63.4 | 24.1 12.6 2.3 39 86.5
3 996 |12226| 67.5 | 20.8 | 11.7 1.8 343 | 839
4 654 | 10837 | 56.3 | 28.6 | 15.1 2.3 46 95.4

Table C.5.6: WER on each source before discriminative training.

Source #Snt | # Wrd | Corr Sub Del Ins Err S.Err
1 740 |10493| 724 | 20.1 7.5 3.8 314 | 84.3
2 917 |10448| 64.6 | 23.1 12.3 2.6 38 85.3
3 996 | 12226 69.2 19.9 10.8 2.2 33 82.5
4 654 |[10837| 57.3 28.5 14.1 2.6 45.3 95.1

Table C.5.7: WER on the TESTSet after the 15t iteration is performed on TRAINSet.

Source #Snt | # Wrd | Corr Sub Del Ins Err S.Err
1 740 (10493 | 714 | 204 8.1 34 32 84.9
2 917 (10448 | 63.8 23.4 12.9 2.3 38.5 86
3 996 |[12226| 679 20.4 11.6 1.8 339 | 83.2
4 654 (10837 56.3 28.4 15.2 2.2 459 | 94.6

Table C.5.8: WER on the TESTSet after the 15t iteration is performed on DEVSet.

Source #Snt | #Wrd | Corr Sub Del Ins Err S.Err
1 740 |10493| 71.9 20.3 7.8 3.6 31.7 | 85.1
2 917 (10448 | 63.8 23.3 12.9 2.3 38.5 85.8
3 996 |[12226| 689 19.9 11.2 1.9 33 83.1
4 654 |10837| 57 27.9 15.1 2.3 45.2 94.5

Table C.5.9: WER on the TESTSet after the 6t iteration is performed on DEVSet.

126

D. Published Papers

Shiuan-Sung Lin, Francois Yvon, "Discriminative Training of Finite State
Decoding Graphs", In INTERSPEECH, pp. 733-736, 2005.

Shiuan-Sung Lin, Francois Yvon, "Optimization on Decoding Graphs by
Discriminative Training", In INTERSPEECH, 2007.

Discriminative Training of Finite State Decoding Graphs

Shiuan-Sung LIN, Frangois YVON

GET/ENST and CNRS/LTCI, UMR 5141

lin@tsi.enst.fr,

Abstract

Automatic Speech Recognition systems integrate three main
knowledge sources: acoustic models, pronunciation dictionary
and language models. In contrast to common practices, where
each source is optimized independently, then combined in a
finite-state search space, we investigate here a training
procedure which attempts to adjust (some of) the parameters
after, rather than before, combination. To this end, we adapted
a discriminative training procedure originally devised for
language models to the more general case of arbitrary finite-
state graphs. Preliminary experiments performed on a simple
name recognition task demonstrate the potential of this
approach and suggest possible improvements.

1. Introduction

Large-vocabulary automatic speech recognition (ASR)
systems integrate three main resources: a set of acoustic
models, a pronunciation dictionary, and a statistical language
model. Acoustic models, usually based on the Hidden Markov
Model (HMM) formalism, match a stream of acoustic
parameters and predefined statistical models of acoustic units.
The dictionary contains a deterministic or probabilistic
mapping between sequences of acoustic units and words. The
language model defines a probability distribution over word
sequences, which encodes the most common local syntactic
regularities. A major breakthrough has been the development
of a methodology for combining these resources in a unified
framework, based on the formalism of Weighted Finite-State
Transducers (WFSTs, see e.g. [1] and the reference therein).
In this formalism, decoding is performed using standard
heuristic search procedures in an optimized finite-state
transducer, yielding fast and accurate decoders.

One issue remains unsettled though, which relates to the
specification of these knowledge sources. Each resource
involves the estimation of myriad of parameters, which,
according to common practices, are estimated in isolation,
using separate training corpora. This means, for instance, that
the definition of dictionary entries is performed independently
from the acoustic modeling and the same goes for language
models. As a result, many “small” decisions made during
specification of these sources, regarding, for instance, the
number and topology of HMMs, the modeling of
pronunciation variants and the complexity of the language
model, have to be experimentally validated, yielding a
significant tuning overhead every time a system has to be set
up. Another downside of this approach is that it yields
unnecessarily large graphs, which are yet difficult to prune.
We contend that a better integration of resources is needed
during the model estimation step and propose a discriminative
training methodology to achieve this goal.

Discriminative training (DT) is a general estimation technique
which aims at setting model parameters so as to directly
optimize the performance of a model or a function thereof,
rather than the likelihood of training data. The availability of

yvon@infres.enst.fr

very-fast (sub real-time) decoders makes this learning strategy
feasible. In the context of ASR, this methodology has been
successfully applied to the estimation of acoustic [2,3] and
linguistic models [3,4,5].

In this paper, we try to take the idea of DT one step further,
and apply this methodology to adjust the various parameters
of the integrated decoding graph. By working directly on a
representation that includes all the knowledge sources, we
expect to eventually come up with a set of parameters which
will play its role better, i.e. improve the efficiency of the
search procedure. Another benefit of this approach is to build
search graphs which are beyond the reach of the standard
combination procedure: for instance graphs where the
probability of pronunciation variants depends on the language
model history.

The integrated decoding graph contains all the resource
parameters, and many more: trying to simultaneously
optimize all of them may well prove infeasible. In this paper,
we thus make the simplifying assumption that acoustic model
parameters are fixed and we only attempt to optimize the arc
transition weights adjusting the graph to increase the
discrimination capacity of the network in areas where the
acoustic confusability is high. Starting with an initial graph
configuration, our algorithm iteratively updates the graph
parameter so as to increase the recognition rate, until
convergence is reached.

This paper is organized as follows: we first introduce our
discriminative training procedure, based on the minimum
classification error (MCE) criterion and detail our own
implementation. We then describe the task used to test this
methodology and report experimental results. We finally
discuss some open issues and draw perspectives for future
work.

2. Discriminative training

2.1. The MCE model

In the MCE approach, the estimation of the model parameters
aims at optimizing a function of the classification error rate
[2]. Since the resulting optimization program does not lend
itself to an analytical resolution, estimation is performed
through an iterative parameter optimization procedure. In this
section, we present this model, which extends the ideas
originally introduced in [5], and from which we borrow the
notations.

We assume that G is an integrated finite-state decoding graph,
devised according to the procedures introduced in [1]. G
contains two kinds of parameters: acoustic model parameters,
associated with HMMs states Gaussian densities, and state
transitions weights.

Given a word string W, a set of acoustic models 4, a set of
transition weights /7 and an observation sequence X, the

" The language model weight, the word insertion penalty...

conditional likelihood of X is approximated as the score of the
best path in G for input X and output . This score combines
the individual acoustic likelihoods and transition weights
according to:

g(X. W, AT)=a(X,W,N)+b(W,I) (1)
where a(X, W,I’) is a sum of acoustic likelihoods and b(W,I’) is
a sum of transition weights. Speech decoding consists in
finding the word sequence /#; maximizing g over all possible
word sequences.

If W) is the known correct word sequence, the performance of
the recognizer can thus be expressed as a function of the
difference between the score of the correct sequence and that
of the best hypothesis. For a given input vector, we thus define
the misclassification function as:
df(XaAar)=_g(X7W03AaF)+g(X9VVI7A7F) (2)

An erroneous recognition hypothesis thus simply translates
into a strictly positive value for d, meaning that the correct
word sequence is not the top ranking one according to g. To
formulate an optimization procedure based on the mis-
classification error function /, the differentiable class loss
function is introduced as:

1,(X,A,T) =I(d (X,A,T)) = !

1+exp(—d (X, A, T') +6)
where y and 0 are parameters which control respectively the
slope and the shift factor of the sigmoid function. A standard
iterative gradient procedure can then be defined, based on the
following update rule for the set of transition weights:
Lio=Ti-eVI (X,AI))

If we consider that acoustic model parameters are fixed, the
loss function needs only be differentiated with respect to the
weight transition probabilities. Given that b(W,I) is a mere
sum of transition weights, the mathematical derivation exactly
follows that of [5], yielding:

Vi (X. AT = b 0 (X AT .
ody or
where o = U(dr(X)(1-U(dr (X))
ody

We continue to work out the mathematics by taking partial
derivatives of the term d(X, W,I’) with respect to the transition
weight vector I', finally yielding:

w =—I(Wo,s)+1(W,,s) (6)
where [(W,s) represents the number of occurrences of the
transition weight s on the best decoding path for W. This
procedure can further be generalized by considering the N-
best hypotheses, rather than the single best one (again, refer to
[5] for the details).

Altogether, the training procedure consists in iteratively
scanning the training corpus until convergence, using for each
training sentence the update rule in (5).

2.2. Implementation

The training data only contains the correct output word
sequence: the corresponding reference path is computed using
a forced alignment procedure. If a transition is more frequent
in the reference path than in the hypothesis path, its weight is
increased; otherwise, it has to be decreased. For transitions
which exist with the same frequency in the reference and in
the hypothesized path, no update is performed.

Based on this general principle, many training regimes
can be considered: in the experiments reported above, we

made the following choices: (i) in all cases, the HMM internal
transitions are frozen and are not updated: this allowed us to
limit the graph expansion at the phone level; (ii) amongst the
remaining transitions, we only update the ones whose output
label is not empty. Two different update strategies were
considered: in the first one, we do not update transitions
which appear (albeit with different counts) in the reference
and hypothesis path. In the second one, we update all the
transitions having a different frequency, according to the
update rule of equation (6).

All the experiments reported above were performed using
our own decoder: a full search (involving no pruning) runs in
about 0.8RT on a 3.0 GHz Pentium IV. The decoding graphs
were prepared using the FSM Toolkit [7].

3. Experiments

The preliminary experiments reported hereafter were carried
out on a simple name recognition task. Our main purpose was
to get a better grasp of the behavior of the training procedure
and of the influence of the various parameters on a well-
understood task, using a relatively simple decoding graph.
We first present the task and the database, before reporting
the results of these experiments.

3.1. Task and database

The task consists in recognizing isolated sequences consisting
of a proper name followed by its spelling, as illustrated by:
frana F-R-A-N-A

The recognizer’s output is accordingly composed of two
parts: a sequence of phone labels, followed by a sequence of
letter labels. No dictionary look-up is performed to match the
output with existing names; performance (WER) is simply
computed as a function of the number of corrected recognized
symbols (phones and letters) in the output. The main
motivation for experimenting with this small vocabulary tasks
was (i) to assess the influence of the various parameters
involved in the procedure and (ii) to be able to analyze the
output decoding graph and get a better understanding of the
benefits of this training procedure.

Data for this task was extracted from the ‘spelled word’
category of the Swiss-French Polyphone database [8]. After
cleaning invalid® entries, the database was randomly split into
a discriminative training set (8427 names) and a testing set
(1150 names), representing respectively 14.16 and 1.95 hours
of recordings. Performance measurement being based on a
phonetic match between hypotheses and references, each
orthographic name was automatically converted into a
sequence of phones, using a pronunciation dictionary
whenever applicable and automatic pronunciation procedures
otherwise.

For these tasks, acoustic models of varying sizes were
estimated using the ‘phonetic-rich’ category of Polyphone
(totaling 49.79 hours of speech): for each of our 39+2
phonetic units, context-independent models containing from
16 to 64 Gaussian mixtures per HMM state were considered.
The initial decoding graph was set up as follows: two
language models were separately trained, one for phone
sequences and one for letter sequences. The former was
trained using automatic phonetic transcript of the ‘phonetic-
rich’ category items in Polyphone: this yielded a phone-based
language model encoding a general distribution of possible

Entries for which one subpart is missing or which contain non-
conventional spelling directives.

phone sequences. In contrast, due to lack of data, the letter
language model was built using the same dataset that is used
for discriminative training, i.e. spellings extracted from the
‘spelled-name”’ category: this model already integrates some
knowledge regarding the typical sequences of letters that
occur in names. Each of these models was trained
conventionally, using Maximum Likelihood estimation and
standard smoothing procedures. Table 1 gives a quantitative
description of the phone and letter language models,
including the total corpus size used for estimation, their
number of parameters and perplexity (PP).

Bigram Trigram
Copus —— gize PP Size PP
Phone 1,411,699 1237 29.69 16865 10.77
Letter 77,185 1078 13.33 5027 9.51

Table 1: Phone and letter language models

Each language model is then turned into a weighted finite
state acceptor (WFSA). The letter WFSA is then composed
with a FST mapping letters to their spelling. The resulting
WEST s further determinized® and concatenated with the
phone WFSA to produce a phone-based decoding graph. This
construction is illustrated on Figure 1. The bigram graph
contains 516 states and 2,198* arcs; for the trigram graph
these numbers are respectively 8,154 and 32,467.

phone LM letter LM
v v
phone FSA letter FSA dictionary FST
Composition
VY

concatenation

Figure I: Baseline graph construction

3.2. Parameters selection

Before experimenting with the discriminative training
procedure, we performed a number of experiments aiming at
setting two parameters of the procedures: y, which controls
the slope of the sigmoid function, and &, which is the
increment parameter of the gradient descent. For the purpose
of this study, we assumed that a, the language model weight,
and the word insertion penalty, J, are fixed, taking values o =
0.23, & = 0.6 for the phone part and & = 0.4 for the letter part.
We also set 6=0.

The rationale for finding a reasonable parameter set is based
on the following remarks. When the difference d between
reference and hypothesis scores is large, the loss function
tends to one, and the corresponding update tends to zero (see
equation (5). A first decision was made to set an upper bound
on the value of this difference: sentences whose
misclassification score exceed this threshold are not
considered during training. Based on an analysis of the
distribution of for d, in the training data, this upper bound
was fixed so as reject only a small portion of the training data

3 Control experiments were ran without determinization and show no
significant difference on this task.

* The fully expanded network would thus include about three times
more states: the graph is here only expanded at the level of phones.

(about 3% of the sentences). Given the range of possible
values for for dj;, we then choosed y = 0.01 so as to control
the value of the gradient. We finally set =10 to get a total
increment factor of 0.1 for the gradient descent. With these
parameters, the update factor for a transition lies between
0.011 and 0.025 on a log scale.

Choosing a smaller value for y would have the effect of
increasing the average update factor, yielding a faster
convergence of the procedure, at the risk however of
rendering the process unstable. While more experimental
work is required to fine tune these parameters, the values used
for our experiments seemed to yield a reasonable
convergence rate.

3.3. Results

Baseline results are obtained with the 32-mixture acoustic
models before starting the discriminative training procedure.
After each training iteration, the graph is dumped on disk and
used for testing. For each of our experiments, 5 training
iterations were performed.

Figure 2 plots the evolution of recognition performance after
each training iteration for the first training regime (see
Section 2.2). Identical results were obtained with the second,
more costly, training regime. Additional control experiments
carried out with 16 and 64-mixture models also yielded a
similar decrease pattern.

—>— bigram —©— trigram

WER

Iteration

Figure 2: Evolution of the WER

For the bigram curve, most of the performance increase is
achieved after one iteration, and the remaining iterations only
bring a small improvement. Overall, the performance
increases by 6.5 points for the bigram model, by 4 points for
the trigram model. One iteration of training already brings a
very significant increase (4% absolute for the bigram graph)
in performance. The discriminatively trained bigram graph
significantly outperforms the baseline trigram graph, even
though it contains about ten times less parameters. This
illustrates the uselessness of many parameters in the trigram
baseline graph. After five iterations of training, the trigram
graph is still lagging behind. This may be explained by the
fact that this graph contains a larger number of parameters,
resulting in a slower convergence rate: after 5 iterations, the
performance continues to increase, albeit at a small pace.

Another perspective on the convergence of the algorithm is
given by a closer examination of the update pace: for the
bigram graph, after five iterations of training, the number of
updates stops its decrease: the number of updates per
iterations remains very high (about 120,000), suggesting that
the same weights are repeatedly increased and decreased.

This stabilization is not observed for the trigram graph.
Again, more experimental work is required to confirm these
preliminary observations.

To investigate in more details the effect of discriminative
training, we examined the 30 most frequent confusion pairs in
the bigram baseline system. This tracking was performed
independently on the phone part and on the letter part of the
decoded utterances. Figure 3 and 4 display the evolution of
the number of confusions for these pairs before and after
training. As clearly appears on these figures, discriminative
training manages to significantly reduce these frequently
occurring confusions. For the phone part, only a handful of
pairs show an increase in confusion. For most of the
remaining ones, we get an improvement, which is all the more
substantial as the related phones have a different
distributional pattern: this is the case, for instance, of the pairs
a/a, a/t, i/t... In contrast, some pairs which are both
acoustically and distributionally very similar remain difficult

to discriminate: the top remaining errors in the phone part are:
e/g; 0/3;0/0;b/d; t/p...

o— baseline 5th iteration

Number of
confusions

1 4 7 10 13 16 19 22 25 28

Phone pair index

Figure 3: Evolution of the top 30 phone confusion pairs.

The same pattern of improvement is observed for spelled
letters: some confusions are substantially reduced (e.g.
between E (/@/) and 2 (/d@/), or between A (/a/) and K

(/ka/); some pairs nonetheless remain difficult to

discriminate and continue to account for a large number of
errors: B (/be/) vs. D (/de/), L (/el/) vs. N (/en/), M (/fem/)
vs. N, S (/es/) vs. F (/ef/)...

—O— baseline —>¢— 5th iteration

number of confusions

1 4 7 10 13 16 19 22 25 28

Letter pair index

Figure 4: Evolution of the top 30 letter confusion pairs.

4. Conclusions

In this paper, we presented a discriminative training procedure
aiming at adjusting the various parameters of a decoding

graph so as to directly optimize the recognition performance.
Results obtained on a simple name recognition task
demonstrate the effectiveness of this methodology, illustrated
by a 6.5% absolute improvement of the word error rate on a
bigram graph. A close examination of the optimized graph
reveals that discriminative training has the expected effect of
facilitating, whenever possible, the discrimination between
acoustically confusable phone and letter pairs. We are
currently experimenting with alternative training regimes,
such as considering all the available transitions for update, or
taking the N-best recognition hypotheses into account. We are
also trying to revise the graph update procedure so as to
ensure that updates have a “local” impact: to see why this is
important, consider the situation when the updated transition
is a transition leaving a back-off state: its increase (or
decrease) will impact the score of many paths which should
not be changed. The idea is thus to introduce new states in the
graph so as to guarantee that updates only affect the score of
current reference and hypothesis paths. Additional
experiments using richer acoustic models and larger
vocabulary and language models are also required to assess
more precisely the benefits of this new training strategy.

5. References

[1] Mehryar Mohri, Fernando C. Pereira and Michael Riley,
“"Weighted Finite-State Transducers in Speech
Recognition” Computer Speech and Language, 16(1):69-
88, 2002.

[2] Biing-Hwang Juang, Wu Chou and Chin-Hui Lee,
“*Minimum Classification Error Rate Methods for Speech
Recognition”, IEEE Transactions on Speech and Audio
processing, 5:3, pp. 266-277, 1997.

[3] Ralf Schluter, Wolfgang Macherey, Boris Muller and
Herman Ney, '"Comparison of Discriminative Training
Criteria and Optimization Methods for Speech
Recognition”, Speech Communication. Vol. 34, pp. 287-
310, 2001.

[4] Zheng Chen, Mingjing Li and Kai-Fu Lee,
“'Discriminative Training on Language Model", Proc.
ICSLP 00, Beijing, China, 2000.

[5] Hong-Kwang Jeff Kuo, Eric Fosler-Lussier and Hui Jiang,
Chin-Hui Lee, ''Discriminative Training of Language
Models for Speech Recognition”, Proc. ICASSP’02,
Orlando, Florida, 2002.

[6] Brian Roark, Murat Saraclar and Michael Collins,
“"Corrective Language Modeling For Large Vocabulary
ASR With The Perceptron Algorithm”, Proc. ICASSP
2004. Montreal, Canada, 2004.

[7] Mehryar Mohri, Fernando C. Pereira and Michael Riley,
“"General-purpose Finite-State Machines Software
Tools”. http://www.research.att.com/sw/tools/fsm, AT&T
research, 1997.

[8] Jean-Luc Cochard, Gérard Chollet, Philippe Langlais and
Andrei Constantinescu. “Swiss-French Polyphone: a
Telephone Speech Database to develop Interactive Voice
Servers”, Linguistic Databases, CSLI Publications, John
Nerbonne (Ed.), 1997.

Optimization on Decoding Graphs by Discriminative Training

Shiuan-Sung LIN, Frangois YVON

GET/ENST and CNRS/LTCI, UMR 5141

line@etsi.enst.fr,

Abstract

The three main knowledge sources used in the automatic
speech recognition (ASR), namely the acoustic models, a
dictionary and a language model, are usually designed and
optimized in isolation. Our previous work [1] proposed a
methodology for jointly tuning these parameters, based on the
integration of the resources as a finite-state graph, whose
transition weights are trained discriminatively. This paper
extends the training framework to a large vocabulary task, the
automatic transcription of French broadcast news. We
propose several fast decoding techniques to make the training
practical. Experiments show that a reduction of 1% absolute
of word error rate (WER) can be obtained. We conclude the
paper with an appraisal of the potential of this approach on
large vocabulary ASR tasks.

Index Terms: discriminative training, decoding graph,
weighted finite-state transducer

1. Introduction

Most of the ASR research effort focuses on improving the
performance of one specific component of the system, with
the hope that it will improve the overall performance. This
approach, does not take into account the dependency between
the various knowledge sources. For instance, the design and
estimation of acoustic models critically depends on the word
pronunciation(s) that actually occur in the dictionary: a small
dictionary might bear with simple models, while a large
vocabulary system will require complex ones. Language
modeling is performed separately from other resources using
different, and often much larger, corpora. In addition, most
modeling approaches perform parameter estimation
separately for each resource, assuming that all the other
parameters are fixed. The interdependency among knowledge
sources is thus ignored, yielding under optimal performance.

Reliable estimation procedures for the various model
parameters remain therefore a key issue for obtaining good
performances. In the literature, the most commonly used
estimation strategy is maximum-likelihood estimation (MLE).
This approach attempts to estimate the parameters such that
the likelihood of the training data is maximized. The
principles of MLE rely on the availability of large training
samples; however, the improvement in training does not
always translates into better decoding performance [2]. This
observation has led researchers to explore other estimation
techniques, notably such as discriminative training (DT)
techniques. In contrast to MLE, DT aims at optimizing the
separation between good and bad hypotheses on the training
samples. It is performed by formulating an objective function
that, in some ways, penalizes parameters that are liable to
confuse correct and incorrect words.

In the past years, various DT criteria such as maximum
mutual information (MMI) [3] and minimum phone error
(MPE) [4] have greatly improved the estimation of acoustic
models. Discriminative techniques also have been shown to

yvon@enst.fr

yield significant improvements in language modeling, such as
minimum classification error (MCE) [2], minimum sample
risk (MSR) [5], and reranking techniques based on the
perceptron algorithm [6].

Recent advances in ASR systems have also promoted the
use of weighed finite-state transducers (WFST), as a common
underlying formalism for representing homogeneously the
various knowledge sources [7]. A WFST is a type of finite
state machine, whose state transitions carry input symbols,
output symbols and arbitrary weights. A transition sequence
from the initial state to the final state of a WFST represents a
weighted mapping from inputs to the corresponding outputs.
Using WFSTs to represent the various ASR components,
different resources can be easily integrated in a single graph.
Various optimization algorithms, such as determinization’
and minimization, can be applied off-line, prior to decoding.
These optimization techniques eliminate redundant arcs and
states to yield an equivalent but more efficient graph.

Our previous work [1] proposed to combine these two
techniques into a unified training framework: WFST are used
to combine various sources into a finite-state graph, whose
parameters are trained using DT. Our positive results on a
simple name recognition task were recently confirmed in [8],
which reports significant error rate reduction on a large
vocabulary application.

In this paper, we extend our previous work to a much
more complex large-vocabulary task, and analyze the
achieved performance from several different perspectives. We
detail several decoding techniques that had to be introduced
in order to make training practical. In addition, we also
investigate the strengths and shortcomings of this approach
and discuss the new directions it opens.

2. Discriminative training on decoding
graphs

2.1. MCE criterion

We follow here the notations of our previous work [1].
Assume G is an integrated finite- state graph. G contains two
kinds of parameters: state transition weights and acoustic
model parameters, which are associated with HMM states
Gaussian densities. Given a word string W, a set of acoustic
model A, a set of transition weights I and an observation
sequence X, the conditional log-likelihood of X is
approximated as the score of the best path in G for input X

! Determinization of finite-state transducers is not a well-
defined notion [7]: in conformance with the literature, we will
use the term here in a rather loose sense to denote exact and
heuristic techniques aiming at removing duplicate paths on
the input type of the transducer.

and output W. This score combines the individual acoustic
log-likelihoods and transition weights along the decoded path:

g X, W, AT)=a(X,W,A)+b(W,T) (1)

where a(X,W,A) is the sum of acoustic log-likelihood and
b(W,I') is the sum of transition weights along the path from
the starting state to the final state. Speech decoding consists
of finding a word hypothesis },,, which maximizes g over all
possible word sequences. If ¥, is the correct word sequence,
the performance of the recognizer can be expressed as a
function of the score difference between the reference and the
best hypothesis. For a given input vector, the
misclassification function is defined as:

d(X,AT)=—-g(X, W, A\,T)+ g(X, Wiy, A, T") ?)

An erroneous recognition hypothesis simply translates
into a positive value of d(X,A,T), meaning that the correct
word sequence is not the top ranking one according to g. The
next step is to define a continuously differentiable loss
function, /(X, A,T'), integrating the misclassification measure
d(X,A,T):

1
[(d(X,AT)) = 3)
1+ exp(—yd (X, A,T) +6)

where y and 6 are the parameters which control respectively
the slope and the shift factor of the sigmoid function. Using
generalized probabilistic descent (GPD) algorithm, a standard
iterative procedure can be defined, based on the following
parameter update rule for the transition weights:

| ZD—SVI(X,A,D) (4)

Assuming that the acoustic model parameters are fixed,
the loss function needs to be differentiated only with respect
to the transition weights. The derivation of (4) yields:

ol adi(X,A,T.)
VI(X,A,T)) = ———22"" ©)
od, or

Viewing I as a transition weight vector and taking partial
derivatives of di(X, A,T') with respect to I, the derivation of

(5) finally yields:

ol
— =yl(d)(1-1(d) (6)
od;

8di(X, AT

— - —I(Wr,$) + I (Wi,))

where I(W,s) represents the number of transition weight s on
the best decoding path for .

2.2. Parameter update rule

In MCE training, the parameters that have to be carefully
selected are y and &, which respectively represent the slope of
sigmoid function, that transfers a misclassification measure to
the 0-1 domain, and a scale factor to update the parameters.
Also recall that training is performed on a weighted finite-
state graph, where each word is represented by a sequence of
phones. A first requirement is thus to recover, through
alignment, the complete (i.e. phone level) best path for the

reference. In addition, implementing the update rule (7)
requires to address two issues: 1) the choice of n-gram terms
from the hypothesis and the reference word strings and 2) the
arc position for transition weight update.

Since a correctly decoded word may follow an incorrect
word, meaning that parameter update is based on an incorrect
word history, we focus on the relationship between two
consecutive words rather than considering a certain word
history. The choice of the updated arc has a great influence on
the overall transition weight distribution. In this
implementation, the arc for parameter update is randomly
chosen by random sampling with uniform probability
amongst all possible candidates.

In addition, the value of vy is selected by relating the effect
on the parameter adjustment to the score difference. Our
experiments suggest that y=0.02 is a suitable choice. The
learning rate ¢ is determined dynamically for each training
sample, using the line-search technique, so as to give an
effective parameter update while keeping stable convergence.

2.3. Implementation

The decoding graph is built by compiling knowledge sources
from typical ASR systems, namely the dictionary, the
acoustic models and the language model, as weighted finite-
state transducers (WFST). Using WFST techniques, the
composition allows different level’s representations (from a
word to pronunciation sequence(s) and to associated HMMs)
to be combined in a single graph. The determinization is used
to reduce the graph size by eliminating the redundant paths,
yielding an equivalent, yet more efficient graph. An optional
silence (short pause model) is added at word boundaries;
finally, a word insertion penalty (WIP) is added to balance
the length of output word sequences.

Our decoder performs the search by using the general
token passing [9] over a finite-state network. To speed up
token propagation over e-transitions, we use a look-up table
to store the e-closure relationship between states. This table is
built off-line by traversing the graph and recording ¢ paths.
Using a look-up table, a token is easily re-directed to its
destination states without having to re-search the graph.

Alignment is different from decoding: the search
procedure must find in the graph all the path which output a
given word string W. Conceptually, this amounts to
intersecting the output language of the WFST with W: our
approach thus uses the general principle of graph inversion,
which exchanges the input and output symbols on every
transitions. By searching for # in this inverted graph, the
relevant phonetic sequences can be computed in advance. The
extracted graph generally consists of hundreds of states and
arcs, no matter how large the original graph is.

Weights in the WFST can be distributed in many ways,
which still result in an equivalent WFST. In typical ASR
systems, it has been demonstrated that if the probability is
properly redistributed, both the pruning efficiency and the
search speed can be improved [10]. Our weight pushing
algorithm is conceptually similar to the “tropical semiring”
algorithm introduced in [7] and proceeds as follows: the
graph is first reversed (i.e. all transitions are reversed); for all
the states, the maximum transition weight among the
incoming arcs is pushed towards the word boundary; finally
the graph is reversed again. Some caution is taken to prevent
weights from becoming too small, which would penalize too
strongly the corresponding transition. This algorithm has a
time complexity comparable with the algorithm of [10] but is
more space efficient, as it is linear in the number of states.

3. Experiments

3.1. Experimental setup

Our experiments are carried out on a French radio broadcast
news database ESTER [11]. Approximately 62.88 hours of
manually transcribed data (TRAINSet) was used for training
the parameters of acoustic models and a 3-gram language
model (LM). The development set (DEVSet) and test set
(TESTSet) respectively contains 5.3 and 2.95 hours of audio.
Transcriptions containing out-of-vocabulary (OOV) words
were removed from TRAINSet and DEV Set.

Our original HMM set contains 21466 acoustic models.
Additionally, 1369 models are synthesized according to the
decision tree by state-tying. Each model consists of 3 states,
except the short pause model (one-state model) used to model
the short inter-word silence. There are a total of 6238 distinct
states, each of which is associated with a 39-dimensional
probability density function taking the form of a mixture of
32 Gaussians, assuming a diagonal covariance.

Two 3-gram LMs are used to construct the decoding
graphs: one is the above-mentioned 3-gram model; the other
is a much larger 3-gram obtained by linear interpolation of
several models trained on archives of the newspaper LeMonde,
covering approximately 400M words. Both LMs contain 65k
words of vocabulary. The resulting graphs respectively
contain 824,845 states for 1,655,723 arcs and 6,997,044 states
for 19,676,349 arcs. The so-called “fudge” factor a is used to
balance the acoustic and language model scores in the log
domain. Using empirically determined values for o, y and
WIP, the baseline word error rate for each decoding graph is
shown in the following table:

LM 2-gram | 3-gram |perplexity | Baseline
Graphl | 248739 [102461 158.92 459
Graph2 | 5052090 |4033834 [86.42 37.9

Table 1. The number of n-grams, perplexity and
baseline WER of individual decoding graphs.

The decoder used in our experiments runs respectively at
0.7%RT and at 3xRT on Graphl and Graph2 on a 3.6Ghz
Xeon processor'. The alignment procedure runs in 0.05xRT.
Faster decoders have been reported in the literature (eg. [12]),
but these decoders only need to keep track of the word history
of hypotheses. In these cases, crucial information for DT,
such as the complete state transition sequence, cannot be
recovered. Our decoder has to store the full state history of
the top 20k candidate hypotheses at each time frame, yielding
an extra-layer of book-keeping activity: this explains why we
could not achieve real-time decoding speed on very large
graphs.

3.2. Results

3.2.1. Deterministic versus random update

Consecutive words extracted from the reference and
hypothesis word strings are represented as sequences of
phones, and the MCE criterion does not precisely prescribe

' These figures are obtained using pre-computed acoustic

likelihoods. We estimate that the on-line computations of
likelihoods would increase the run-time by less than 0.7xXRT
for decoding and by about 0.1xRT for alignment.

the exact transition weight to update. This leaves us with
several options: 1) update all the weights along the transition
paths, or 2) select (deterministically or randomly) one arc to
update. 3) for paths which contain a back-off transition, an
option would be to leave the weight unchanged when an
update would yield a higher back-off probability than the n-
gram probability.

36
4
34r

WER

32r

‘ —6— Random Arc —<— First Arc —*— Last Arc

30 T T T T T T
0 1 2 3 4 5 6 7 8
Iteration

Figure 1: Performance of different updating schemes.

Our implementation treats back-off transitions as regular
ones, and considers only one arc from the transition path for
parameter adjustment. Experiments are performed using
Graphl, starting from the baseline (WER=35) on the DEV Set.
Two deterministic updating schemes are compared: update on
the first arc and update on the last arc (see Figure 1). The
random update scheme not only converges more quickly but
also achieves a lower WER, confirming our previous findings
[1]. This strategy is used in all the following experiments.

3.2.2. Error rate reduction on a large graph

A decoding graph contains a large number of parameters.
Some of the parameters, notably the transition weights, are
not entirely independent. This makes the training process
difficult to reach the minimum error rate. However, a large
graph usually provides a better baseline for DT. Therefore,
given the same amount of training data, we compare two
graphs of different sizes: DT is performed using DEVSet on
Graphl and Graph2. TESTSet is used to evaluate the
performance of decoding graph after parameter adjustment.
After 8 training iterations, we get the results displayed in
Table 2.

DEVSet
Graphl | 35—31.6 (-3.4)
Graph2 | 28.5—25.1 (-3.4)

TESTSet
45.9544.9 (-1)
37.937 (-0.9)

Table 2. WER reduction on the development set and
on the test set, using graphs of different size.

The improvement on the DEVSet is similar for both
graphs, with Graph2 starting from a much better baseline. On
the TESTSet, WER reduction is smaller (:1% absolute), half
of which is obtained after the 1% iteration itself.

In practical applications, a graph may be constructed from
a language model containing a large number of n-grams,
while the number of word pairs in the development set, which
is used to optimize the graph, is comparatively much smaller.
This means that DT updates only a small portion of the
transition weights (no matter the number of iterations). In the
next section, we use a larger training set for DT, so as to
better evaluate the potential of this approach.

3.2.3. Training with a larger data set

These experiments are carried out using Graph2. One single
training iteration is performed using the entire 62 hours of

TRAINSet for DT. This dataset contains approximately 11
times more word pairs, out of which 7 times more different
word pairs than DEVSet. Results are presented in Table 3.
With this larger dataset, decoding results on the test set give a
total of 1.1% absolute WER reduction in the I*' iteration,
approximately 3 times more than that obtained using DEV Set.
Based on our experiments, it is likely that running additional
training iterations with the large graph could bring us another
1% absolute WER reduction on the test set.

Sub. | Del. Ins. | WER
DEVSet 23.1 120 |24 37.5
TRAINSet | 22.8 112 |28 36.8

Table 3. WER reduction using different training data.

4. Discussion and Improvements

Our experiments have shown that DT has the potential of
effectively reducing the WER, even for large-vocabulary
tasks. A first worry is the stability of our iterative
optimization procedure: a close examination of the training
log reveals that the number of updates is gradually reduced on
both graphs; yet, even after 8 training iterations, the number
of parameter updates performed during one iteration remain
substantial (in the tens of thousands), suggesting that some
transition weights do not completely stabilize.

We have explained that DT reduces the training errors by
re-distributing the transition weights, yielding similar output
strings to the reference, and smaller score differences between
the reference and the best hypothesis. This is confirmed by
the analysis of the score difference between the reference and
the best hypothesis of the DEVSet: after 6 training iterations,
the score of the reference has increased for almost all the
training samples; and 217 originally erroneous training
samples (3.34% of the training sentences) are completely
corrected (reference and hypothesis are fully identical).

Results on the test set are positive, albeit by a smaller
margin, suggesting that our algorithm is not generalizing well.
In fact, a study of the word pairs that occur both in the test
and in the training set reveals that about 40% of the word
pairs in the former also occur in the latter. The situation is in
fact much worse: even if an update is performed on a
transition u—v during training, it might still not be useful
during testing due to the difference in language model history
(e.g. wuv appears in the training set and w uv in the test set).
Finally, only about 2.5% of the total number of word pairs in
the test set are updated during training, clearly demonstrating
the fact that our parameter update procedure can only provide
with a limited improvement on this dataset.

Throwing in more training data is an effective, albeit
computationally demanding, remedy to this situation. The
improvements to our training procedure that are really needed
should make the parameter updates less local: this is in fact
what happens with traditional LM estimation procedures: any
new instance of uvw will increase the likelihood of w in the
context of uw; it will also increase, by a smaller margin, the
likelihood of w following v. Two ways to make parameter
update less “local” are being explored: one is to consider the
top-N hypotheses rather than just the best one (see [13]); the
second is to consider updating arcs on every possible
alignment of the reference, rather that just the best one.

5. Conclusion and perspectives
DT on large decoding graph has been shown to be both

computationally tractable and effective. In this training
framework, parameter optimization is performed on a static
decoding graph, whose transition weights are iteratively
adjusted. We have presented the results of experiments on
large vocabulary tasks which confirm the findings of [8] and
discussed the strength and shortcomings of our DT procedure.
Two other improvements are foreseen: 1) to get a fine-grained
control of the effect of parameter updates. On a compact
WEST, updating of one parameter changes the score of all the
paths that use this transition, which can prove detrimental to
the overall performance. 2) to create (and update) new
transitions as needed, so as to minimize this effect; the
downside being an increase of non-determinism in the graph.

Finally, we have thus far consider the acoustic parameters
to be fixed; for some training samples, though, the acoustic
mismatch is so bad that updating the transition weights only
cannot recover the reference, or would do so at the price of
unreasonable weight changes. Better ways to interleave
acoustic and linguistic training are definitely needed to
accommodate this kind of situation.

6. References

[1] S.S.Lin and F. Yvon, "Discriminative Training of Finite
State Decoding Graphs," Proc. InterSpeech, pp. 733-736,
2005.

[2] Z. Chen, M.J. Li and K.F. Lee, "Discriminative Training
on Language Model," Proc. ICSLP, 2000.

[3] L. R. Bahl, F. Jelinek and R. L. Mercer, "A Maximum
Likelihood Approach to Continuous Speech
Recognition", IEEE Trans. on Pattern Analysis and
Machine Intelligence., vol(5), pp. 179-190, 1983.

[4] D. Povey and P. C. Woodland, "Minimum Phone Error
and I-Smoothing for Improved Discriminative Training,"
Proc. ICASSP, pp.105-108, 2002.

[5] J. Gao, H. Yu, W. Yuan and P. Xu, "Minimum Sample
Risk Methods for Language Modeling," Proc.
HLT/EMNLP, 2005.

[6] B. Roark, M. Saraclar and M. Collins, "Corrective
Language Modeling for Large Vocabulary ASR with the
Perceptron Algorithm," Proc. ICASSP, 2004.

[7] M.Mohri, "Finite-State Transducers in Language and
Speech Processing," Computational Linguistics, 23:2, pp.
269-311, 1997.

[8] H. K. Jeff Kuo, B. Kingsbury and G. Zweig,
"Discriminative Training of Decoding Graphs for Large
Vocabulary Continuous Speech Recognition," Proc.
ICASSP 2007.

[91 S.J. Young, N.H. Russel, and J.H.S. Thornton, "Token
Passing: a Simple Conceptual Model for Connected
Speech Recognition Systems," Technical Report,
Cambridge University: 1989.

[10] M. Mohri and M. Riley, "A Weight Pushing Algorithm
for Large Vocabulary Speech Recognition," Proc.
EuroSpeech, pp. 1603-1606, 2001.

[11] G. Gravier, J.-F. Bonastre, S. Galliano, E. Geoffrois, K.
McTait and K. Choukri. “The ESTER evaluation
campaign of Rich Transcription of French Broadcast
News”, Proc. LREC, 2004

[12] G.Saon, D.Povey, and G.Zweig, "Anatomy of an
Extremely Fast LVCSR Decoder," Proc. InterSpeech, pp.
549-552, Lisbon, 2005.

[13] H.-K. Jeff Kuo, E. Fosler-Lussier, H. Jiang and C.-H.
Lee, "'Discriminative Training of Language Models for
Speech Recognition”, Proc. ICASSP’02, Orlando,
Florida, 2002.

135

Bibliography

136

137

Aho, A. V., Sethi, R., and Ullman, J. D., (1986) "Compilers: Principles, Techniques
and Tools," Addison Welsey: Reading, MA.

Aldrich, J., (1997) "R.A. Fisher and the Making of Maximum Likelihood
1912-1922," vol(12), Statistical Science, pp. 162-176.

Allauzen, C., Mohri, M., and Roark, B., (2003) "Generalized Algorithms for
Constructing Statistical Language Models," Proceedings of the 41st Annual
Meeting of the Association for Computational Linguistics, pp. 40-47.

Altun, Y., Johnson, M., and Hofmann, T., (2003) "Investigating Loss Functions and
Optimization Methods for Discriminative Learning of Label Sequences,"
Proceedings of the 2003 Conference on Empirical Methods in NLP, pp. 145-152.

Armijo, L., (1966) "Minimization of Functions Having Lipschitz-Continuous First
Partial Derivatives," Pacific Journal of Mathematics, pp. 1-3.

Aydin, Z., Akgun, T., and Altunbasak, Y., (2005) "A Modified Stack Decoder for
Protein Secondary Structure Prediction,” IEEE International Conference on
Acoustics, Speech and Signal Processing.

Azzopardi, L., Girolami, M., and van Rijsbergen, K., (2003) "Investigating the
Relationship between Language Model Perplexity and IR Precision-Recall
Measure," 26th Annual ACM Conference on Research and Development in
Information Retrieval, SIGIR.

Bacchiani, M. and Ostendorf, M., (1999) "Joint Lexicon, Acoustic Unit Inventory
and Model Design," vol(29), Speech Communication, pp. 99-114.

Bahl, L. R, Brown, P. F., de Souza, P. V., and Mercer, R. L., (1986) "Maximum
Mutual Information Estimation of Hidden Markov Model Parameters for Speech
Recognition," Proceedings of IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. 49-52.

Bahl, L. R, Jelinek, F., and Mercer, R. L., (1983) "A Maximum Likelihood Approach
to Continuous Speech Recognition," IEEE Transactions on Pattern Analysis,
Machine Intelligence, pp. 179-190.

Baum, L. E., (1972) "An Equality and Associated Maximization Technique in
Statistical Estimation for Probabilistic Functions of Markov Processes,"
Inequalities, pp. 1-8.

Baum, L. E. and Eagon, |. A., (1967) "An Inequality with Applications to Statistical

138

Estimation for Probabilistic Functions of Markov Processes and to a Model for
Ecology," Bulletin of the American Mathematical Society, pp. 360-363.

Bellegarda, J. R., (2004) "Statistical Language Model Adaptation: Review and
Perspectives," vol(40), Speech Communication.

Bellman, R,, (1952) "On the Theory of Dynamic Programming," Proceedings of
National Academy of Science of the USA, pp. 716-719.

Beulen, K., Ortmanns, S., and Elting, C., (1999) "Dynamic Programming Search
Techniques for Across-Word Modelling in Speech Recognition," Proceedings of
International Conference on Acoustics, Speech, and Signal Processing, pp.
609-612.

Biem, A., (2006) "Minimum Classification Error Training for Online Handwriting
Recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence,
pp. 1041-1051.

Bishop, C. M., (1995) "Neural Networks for Pattern Recognition," Oxford
University Press.

Blum, J. R, (1954) "Multidimensional Stochastic Approximation Methods,"
vol(25), Annals of Mathematical Statistics, pp. 737-744.

Caseiro, D. and Trancoso, ., (2002) "Using Dynamic WFST Composition for
Recognizing Broadcast News," Proceedings of International Conference on
Spoken Language Processing.

Chen, S. F.,, (2003) "Compiling Large-Context Phonetic Decision Trees into
Finite-State Transducers," EUROSPEECH, pp. 1169-1172.

Chen, S. F., Beeferman, D., and Rosenfeld, R., (1998) "Evaluation Metrics For
Language Models," DARPA Broadcast News Transcription and Understanding
Workshop.

Chen, S. F. and Goodman, J., (1996) "An Empirical Study of Smoothing Techniques
for Language Modeling," Proceedings of the 34th Annual Meeting of the ACL, pp.
310-318.

Chen, S. F. and Rosenfeld, R., (2000) "A Survey of Smoothing Techniques for ME
Models," vol(8), IEEE Transactions on Speech and Audio Processing, pp. 37-50.

Chen, Z., Li, M.],, and Lee, K. F., (2000) "Discriminative Training on Language

139

Model," International Conference on Spoken Language Processing.

Chien,]J. T., Huang, C. H., Shinoda, K., and Furui, S., (2006) "Towards Optimal
Bayes Decision for Speech Recognition," vol(1), Proceedings of International
Conference on Acoustics, Speech, and Signal Processing, pp. 45-48.

Chollet, G., Cochard, J. L., Langlais, Ph., and van Kommer, R., (1995) "Swiss-French
Polyphone: a Telephone Speech Database to Develop Interactive Voice Servers,"
Linguistic Databases.

Chou, W., (2000) "Topics on Minimum Classification Error Rate Based
Discriminant Function Approach to Speech Recognition," International
Symposium on Chinese Spoken Language Processing.

Chow, Y. L., (1990) "Maximum Mutual Information Estimation of HMM
Parameters for Continuous Speech Recognition Using the N-best Algorithm,"

vol(2), International Conference on Acoustics, Speech and Signal Processing, pp.
701-704.

Clarkson, P. and Rosenfeld, R., (1997) "Statistical Language Modeling Using The
CMU-Cambridge Toolkit," Proceedings of EUROSPEECH, pp. 2707-2710.

Clarkson, P. R. and Robinson, A.]., (1997) "A Language Model Adaptation Using
Mixtures and an Exponentially Decaying Cache," Proceedings of International
Conference on Acoustics, Speech, and Signal Processing, pp. 799-802.

Collins, M., (2002) "Discriminative Training Methods for Hidden Markov Models:
Theory and Experiments with Perceptron Algorithms," Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
1-8.

Collins, M. and Duffy, N., (2002) "New Ranking Algorithms for Parsing and
Tagging: Kernels over Discrete Structures, and the Voted Perceptron,”
Proceedings of ACL, pp. 263-270.

Collins, M. and Koo, T., (2000) "Discriminative Reranking for Natural Language
Parsing,” Proc. 17th International Conf. on Machine Learning, pp. 175-182.

Darken, C. and Moody,], (1992) "Towards Faster Stochastic Gradient Search,"
vol(4), Neural Information Processing Systems, pp. 1009-1016.

Davis, H., Biddulph, R., and Balashek, S., (1952) "Automatic Recognition of
Spoken Digits," vol(24), Journal of the Acoustical Society of America, pp. 637-642.

140

Digalakis, V., Monaco, P., and Murveit, H., (1996) "Genones: Generalized Mixture
Tying in Continuous Hidden Markov Model-Based Speech Recognizers," IEEE
Transactions Speech and Audio Processing, pp. 281-289.

Dijkstra, E. W,, (1959) "A Note on Two Problems in Connexion with Graphs,"
Numerische Mathematik, pp. 269-271.

Driessen, B.]., Sadegh, N., and Kwok, K. S., (1998) "A Robust Line Search for
Learning Control," Proceedings of the 37th IEEE Conference on Decision and
Control, pp. 3888-3892.

Duda, R. 0. and Hart, P. E., (1973) "Bayes Decision Theory," Pattern Classification
and Scene Analysis, pp. 10-43.

Finette, S., Bleier, A., Swindel, W., and Haber, K., (1983) "Breast Tissue
Classification Using Diagnostic Ultrasound and Pattern Recognition Techniques: L.
Methods of Pattern Recognition," vol(5), Ultrasonic Imaging, pp. 55-70.

Galliano, S., Geoffrois, E., Mostefa, D., Choukri, K., Bonastre, |. F., and Gravier, G.,
(2005) "The ESTER Phase Il Evaluation Campaign for the Rich Transcription of
French Broadcast News," Proceedings of INTERSPEECH, pp. 1149-1152.

Gao, J., Yu, H,, Yuan, W,, and Xu, P., (2005) "Minimum Sample Risk Methods for
Language Modeling," HLT/EMNLP.

Gao,]. and Zhang, M., (2002) "Improving Langauge Model Size Reduction Using
Better Pruning Criteria," ACL2002.

Good, I.]., (1953) "The Population Frequencies of Species and the Estimation of
Population Parameters," vol(40), Biornetrika, pp. 237-264.

Goodman, J., (2000) "Putting It All Together: Language Model Combination,"
vol(3), Proceedings of IEEE International Conference on Acoustics, Speech and
Signal Processing, pp. 1647-1650.

Goodman, J., (2004) "Exponential Priors for Maximum Entropy Models,"
Proceedings of HLTNAACL, pp. 305-312.

Goodman, J. and Gao, J., (2000) "Language Model Size Reduction by Pruning and
Clustering," Proceedings of International Conference on Spoken Language
Processing.

Gopalakrishnan, P. S., Kanevsky, D., Nadas, A., and Nahamoo, D., (1991) "An

141

Inequality for Rational Functions with Applications to Some Statistical
Estimation Problems," IEEE Transactions on Information Theory, pp. 107-113.

Gravier, G., Bonastre,]. F., Galliano, S., Geoffrois, E., Tait, K. M., and Choukri, K.,
(2004) "The ESTER evaluation campaign of Rich Transcription of French
Broadcast News," Proceedings of Language Evaluation and Resources
Conference.

Haeb-Umbach, R. and Ney, H., (1994) "Improvements in Beam Search for
10000-Word Continuous Speech Recognition,” I[EEE Transactions on Speech and
Audio Processing, pp. 353-356.

Hart, P. E., Nilsson, N.], and Raphael, B., (1968) "A Formal Basis for the Heuristic
Determination of Minimum Cost Paths," IEEE Transactions on Systems Science
and Cybernetics SSC4, pp. 100-107.

Hoare, C. A. R, (1961) "ACM Algorithm 64: Quicksort," Communications of the
ACM, p. 321.

Imai, T., Ando, A., and Miyasaka, E., (1995) "A New Method for Automatic
Generation of Speaker-Dependent Phonological Rules," Proceedings of
International Conference on Acoustics, Speech, and Signal Processing, pp.
864-867.

Iyer, R., Ostendorf, M., and Meteer, M., (1997) "Analyzing and Predicting
Language Model Improvements," Proceedings of the IEEE Workshop on
Automatic Speech Recognition and Understanding.

Jelinek, F., (1969) "A Fast Sequential Decoding Algorithm Using a Stack,” vol(13),
IBM J. Res. Develop.

Jelinek, F., (1976) "Continuous Speech Recognition by Statistical Methods,"
vol(64), Proceedings of the IEEE, pp. 532-536.

Jelinek, F., (1997) "Statistical Methods for Speech Recognition,"” The MIT Press,
Cambridge, Massachusetts.

Jelinek, F. and Mercer, R. L., (1980) "Interpolated Estimation of Markov Source
Parameters from Sparse Data," Proceedings of the Workshop on Pattern
Recognition in Practice, pp. 381-397.

Jelinek, F., Mercer, R. L., and Bahl, L. R,, (1975) "Design of a Linguistic Statistical
Decoder for the Recognition of Continuous Speech,” vol(21), IEEE Transactions

142

on Information Theory, pp. 250-256.

Johansen, F. T., (1996) "A Comparison of Hybrid HMM Architectures Using Global
Discriminative Training," Proceedings of the Fourth International Conference on
Spoken Language Processing, pp. 498-501.

Juang, B. H., Chou, W., and Lee, C. H., (1997) "Minimum Classification Error Rate
Methods for Speech Recognition," vol(5), IEEE Transactions on Speech and Audio
Processing, pp. 257-265.

Juang, B. H. and Katagiri, S., (1992) "Discriminative Learning for Minimum Error
Classification," vol(40), IEEE Transactions on Signal Processing, pp. 3043-3054.

Juang, B. H. and Rabiner, L. R,, (2005) "Automatic Speech Recognition-A Brief
History of the Technology Development,” Elsevier Encyclopedia of Language and
Linguistics, Second Edition.

Junqua, J. C. and Haton, J. P., (1995) "Robustness in Automatic Speech
Recognition, Fundamentals and Applications,” Kluwer Academic Publishers.

Kanthak, S., Ney, H., Riley, M., and Mohri, M., (2002) "A Comparison of Two LVR
Search Optimization Techniques," Proceedings of International Conference on
Spoken Language Processing.

Kanthak, S., Sixtus, A., Molau, S., Schluter, R., and Ney, H., (2000) "Fast Search for
Large Vocabulary Speech Recognition," Verbmobil: Foundations of
Speech-to-Speech Translation, W. Wahlster, Ed., pp. 63-78.

Katagiri, S., Lee, C. H., and Juang, B. H., (1990) "A Generalized Probabilistic
Descent Method," Proceedings of the Acoustic Society of Japan, pp. 141-142.

Katz, S. M., (1987) "Estimation of Probabilities from Sparse Data for the
Language Model Component of a Speech Recognizer," I[EEE Transactions on
Acoustics, Speech, and Signal Processing, pp. 400-401.

Kenny, P., Hollan, R., Boulianne, G., Garudadri, H., Lennig, M., and O'Shaughnessy,
D., (1992) "An A* Algorithm for Very Large Vocabulary Continuous Speech
Recognition," Proceedings of the workshop on Speech and Natural Language, pp.
333-338.

Kneser, R. and Ney, H., (1995) "Improved Backing-off for m-gram Language
Modeling," Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 181-184.

143

Kuo, H. K.]., Fosler-Lussier, E., Jiang, H., and Lee, C. H., (2002) "Discriminative
Training of Language Models for Speech Recognition," Proceedings of IEEE
International Conference on Acoustics, Speech, Signal processing, pp. 325-328.

Kuo, H. K.],, Kingsbury, B., and Zweig, G., (2007) "Discriminative Training of
Decoding Graphs for Large Vocabulary Continuous Speech Recognition,"
Proceedings of International Conference on Acoustics, Speech, and Signal
Processing.

Lai, C. R, Lu, S. L., and Zhao, Q. W., (2002) "Performance Analysis of Speech
Recognition Software," Proceedings of the Fifth Workshop on Computer
Architecture Evaluation using Commercial Workloads.

Le Roux, J. and McDermott, E., (2005) "Optimization Methods for Discriminative
Training," INTERSPEECH, pp. 3341-3344.

Lin, S. S. and Yvon, F., (2005) "Discriminative Training of Finite State Decoding
Graphs," INTERSPEECH, pp. 733-736.

Lippmann, R. P., (1989) "Review of Neural Networks for Speech Recognition,"
vol(1), Neural Computation, pp. 1-38.

Lowerre, B., (1976) "The Harpy Speech Understanding System," Ph.D. thesis,
Computer Science Department, Carnegie Mellon University.

Lowerre, B. and Reddy, R, (1990) "The Harpy Speech Understanding System,"
Readings in Speech Recognition, Morgan Kaufmann Publishers, San Mateo, CA,
pp. 576-586.

Luenberger, D. G., (1989) "Linear and Nonlinear Programming," Second ed.,
Addison-Wesley, New York.

lyer, R. and Ostendorf, M., (1999) "Modeling Long Distance Dependence in
Language: Topic Mixtures versus Dynamic Cache Models," IEEE Transactions on
Speech and Audio Processing, pp. 30-39.

Magoulas, G. D., Vrahatis, M. N., and Androulakis, G. S., (1999) "Improving the
Convergence of the Backpropagation Algorithm Using Learning Rate Adaptation
Methods," vol(11), Neural Computation, pp. 1769-1796.

Mahajan, M., Beeferman, D., and Huang, X. D., (1999) "Improved
Topic-Dependent Language Modeling Using Information Retrieval Techniques,"
Proceedings of International Conference on Acoustics, Speech, and Signal

144

Processing.

Maurice, G., (1987) "The Use of Finite Automata in the Lexical Representation of
Natural Language," Lecture Notes in Computer Science, 377.

McDermott, E., Biem, A., Tenpaku, S., and Katagiri, S., (2000) "Discriminative
Training for Large Vocabulary Telephone-based Name Recognition," Proceedings
of International Conference on Acoustics, Speech and Signal Processing.

McDermott, E. and Hazen, T.]., (2004) "Minimum Classification Error Training of
Landmark Models for Real-Time Continuous Speech Recognition," Proceedings of
International Conference on Acoustics, Speech, and Signal Processing, pp.
937-940.

McDermott, E., Hazen, T.]., Le Roux, J., Nakamura, A., and Katagiri, S., (2007)
"Discriminative Training for Large Vocabulary Speech Recognition Using
Minimum Classification Error," IEEE Transactions on Audio, Speech and
Language Processing, pp. 203-223.

McDermott, E. and Katagiri, S., (1994) "Prototype-Based Minimum Classification
Error / Generalized Probabilistic Descent Training for Various Speech Units,"
vol(8), Computer Speech and Language, pp. 351-368.

McDermott, E. and Katagiri, S., (2005) "Minimum Classification Error for Large
Scale Speech Recognition Tasks using Weighted Finite State Transducers," vol(1),
[EEE International Conference on Acoustics, Speech, and Signal Processing, pp.
113-116.

Mohri, M., (1996) "On Some Applications of Finite-State Automata Theory to

Natural Language Processing," Journal of Natural Language Engineering, pp.
61-80.

Mohri, M., (1997) "Finite-State Transducers in Language and Speech Processing,"
vol(23), Computational Linguistics, pp. 269-311.

Mohri, M., (2000) "Minimization Algorithms for Sequential Transducers,"
vol(234), Theoretical Computer Science, pp. 177-201.

Mohri, M., (2002) "Generic Epsilon-Removal and Input Epsilon-Normalization
Algorithms for Weighted Transducers," International Journal of Foundations of
Computer Science, pp. 129-143.

Mohri, M., Pereira, F., and Riley, M., (1996) "Weighted Automata in Text and

145

Speech Processing," Extended Finite State Models of Language: Proceedings of
the ECAI Workshop, pp. 46-50.

Mohri, M., Pereira, F., and Riley, M., (2000a) "The Design Principles of a Weighted
Finite-State Transducer Library," vol(231), Theoretical Computer Science, pp.
17-32.

Mohri, M., Pereira, F., and Riley, M., (2000b) "Weighted Finite-State Transducers
in Speech Recognition," ISCA ITRW Automatic Speech Recognition: Challenges
for the Millenium, pp. 97-106.

Mohri, M. and Riley, M., (1997) "Weighted Determinization and Minimization for
Large Vocabulary Speech Recognition,” EUROSPEECH, pp. 131-134.

Mohri, M. and Riley, M., (1998) "Network Optimizations for Large-Vocabulary
Speech Recognition," vol(28), Speech Communication, pp. 1-12.

Mohri, M. and Riley, M., (1999) "Integrated Context-Dependent Networks in Very
Large Vocabulary Speech Recognition,” EUROSPEECH, pp. 811-814.

Mohri, M. and Riley, M., (2001) "A Weight Pushing Algorithm for Large
Vocabulary Speech Recognition," Proceedings of EUROSPEECH, pp. 1603-1606.

Mor'e, J. and Thuente, D., (1994) "Line Search Algorithms with Guaranteed
Sufficient Decrease," vol(20), ACM Transactions on Mathematical Software, pp.
286-307.

Nadas, A., Nahamoo, D., and Picheny, M., (1988) "On a Model-Robust Training
Method for Speech Recognition," IEEE Transactions on Acoustics, Speech and
Signal Processing, pp. 1432-1436.

Nekrylova, Z. V., (1975) "Rate of Convergence of the Stochastic Gradient Method,"
Cybernetics and Systems Analysis, pp. 218-222.

Ney, H. and Aubert, X., (1994) "A Word-Graph Algorithm for Large-Vocabulary
Continuous-Speech Recognition," Proceedings of International Conference on
Spoken Language Processing, pp. 1355-1358.

Ney, H. and Ortmanns, S., (1997) "Extensions to the Word Graph Method for
Large Vocabulary Continuous Speech Recognition," International Conference on
Acoustics, Speech, and Signal Processing, pp. 1791-1794.

Nilsson, N., (1997) "Artificial Intelligence: A New Synthesis," ISBN:

146

1-55860-535-5, MORGAN KAUFFMAN.

NIST, (2000) "NIST Spoken Language Technology Evaluation and Utility,"
http://www.nist.gov/speech/tools/index.htm.

Normandin, Y., (1991) "Hidden Markov Models, Maximum Mutual Information
Estimation and the Speech Recognition Problem," Ph.D. thesis, McGill University.

Normandin, Y., (1995) "Optimal Splitting of HMM Gaussian Mixture Components
with MMIE training," Proceedings of International Conference on Acoustics,
Speech, and Signal Processing, pp. 449-452.

Och, F.]., (2003) "Minimum Error Rate Training in Statistical Machine
Translation," Proceedings of the 41st Annual Meeting of the Association for
Computational Linguistics, pp. 160-167.

Odell, J., Valtchev, V., Woodland, P., and Young, S., (1994) "A One Pass Decoder
Design for Large Vocabulary Recognition," Proceedings ARPA Workshop on
Human Language Technology, pp. 405-410.

Oerder, M. and Ney, H., (1993) "Word Graphs: An Efficient Interface between
Continuous Speech Recognition and Language Understanding,” vol(12),
Proceedings of International Conference on Acoustics, Speech, and Signal
Processing, pp. 119-122.

Ohler, U., Harbeck, S., and Niemann, H., (1999) "Discriminative Training of
Language Model Classifiers," EUROSPEECH, pp. 1607-1610.

Ortmanns, S., Eiden, A., Ney, H., and Coenen, N., (1997a) "Look-Ahead Techniques
for Fast Beam-Search," International Conference on Acoustics, Speech, and Signal
Processing, pp. 1783-1786.

Ortmanns, S., Ney, H., and Aubert, X, (1997b) "A Word Graph Algorithm for Large
Vocabulary Continuous Speech Recognition," vol(11), Computer, Speech and
Language, pp. 43-72.

Ortmanns, S., Ney, H., and Eiden, A., (1996a) "Language-Model Look-Ahead for
Large Vocabulary Speech Recognition,” Proceedings of International Conference
on Spoken Language Processing, Philadelphia, PA, pp. 2095-2098.

Ortmanns, S., Ney, H., Eiden, A., and Coenen, N., (1996b) "Look-Ahead Techniques
for Improved Beam Search," Proceedings of CRIM-FORWISS Workshop, pp.
10-22.

147

Ortmanns, S., Ney, H., Seide, F., and Lindam, I., (1996c) "A Comparison of Time
Conditioned and Word Conditioned Search Techniques for Large Vocabulary
Speech Recognition," Proceedings of International Conference on Spoken
Language Processing, pp. 2091-2094.

Paciorek, C. and Rosenfeld, R., (2000) "Minimum Classification Error Training in
Exponential Language Models," Proceedings of the NIST/DARPA Speech
Transcription Workshop.

Paul, D. B,, (1992) "An Efficient A* Stack Decoder Algorithm for Continuous
Speech Recognition with a Stochastic Language Model," Proceedings of
International Conference on Acoustics, Speech, and Signal Processing, pp. 25-28.

Pereira, F., Riley, M., and Sproat, R., (1994) "Weighted Rational Transductions
and Their Application to Human Language Processing," ARPA Workshop on
Human Language Technology, pp. 249-254.

Pereira, F. C. N. and Riley, M., (1997) "Speech Recognition by Composition of
Weighted Finite Automata," Finite-State Language Processing, MIT Press, pp.
431-453.

Pietra, S. D., Pietra, V. D., Mercer, R. L., and Roukos, S., (1992) "Adaptive Language
Modeling Using Minimum Discriminant Estimation," Proceedings of International
Conference on Acoustics, Speech, and Signal Processing, pp. 633-636.

Povey, D. and Woodland, P. C,, (2002) "Minimum Phone Error and I-Smoothing
for Improved Discriminative Training," Proceedings of International Conference
on Acoustics, Speech, and Signal Processing, pp. 105-108.

Printz, H. and Olsen, P., (2000) "Theory and Practice of Acoustic Confusability,"
ASR 2000, pp. 77-84.

Rabiner, L. R., (1989) "A tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition," vol(77), Proceedings of the IEEE, pp.
257-286.

Roark, B., Saraclar, M., and Collins, M., (2004) "Corrective Language Modeling for
Large Vocabulary ASR with the Perceptron Algorithm," Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing.

Roche, E. and Schabes, Y., (1997) "Finite-State Language Processing," MIT Press,
Cambridge, MA..

148

Rosasco, L., De Vito, E., Caponnetto, A., Piana, M., and Verri, A., (2004) "Are Loss
Functions All the Same?," Neural Computation, pp. 1063-1076.

Rosenblatt, F., (1958) "The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain," Psychological Review, pp. 386-408.

Rosenfeld, R., (2000) "Two decades of Statistical Language Modeling: Where Do
We Go From Here?," Proceedings of the IEEE.

Sakti, S., Nakamura, S., and Markov, K., (2006) "Improving Acoustic Model
Precision by Incorporating a Wide Phonetic Context Based on a Bayesian
Framework," IEICE Transactions on ED, Special Section of Statistical Modeling
for Speech Processing, pp. 946-953.

Sandness, E. and Hetherington, 1., (2000) "Keyword-Based Discriminative
Training of Acoustic Models," Proceedings of International Conference on Spoken
Language Processing.

Sankar, A. and Lee, C. H,, (1996) "A Maximum-Likelihood Approach to Stochastic
Matching for Robust Speech Recognition," vol(4), IEEE Transactions on Speech
and Audio Processing, pp. 190-202.

Saon, G., Povey, D., and Zweig, G., (2005) "Anatomy of an Extremely Fast LVCSR
Decoder," INTERSPEECH, pp. 549-552.

Schluter, R. and Macherey, W., (1998) "Comparison of Discriminative Training
Criteria," vol(1), Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing, pp. 493-496.

Schluter, R., Macherey, W., Boris, M., and Ney, H., (2001) "Comparison of
Discriminative Training Criteria and Optimization Methods for Speech
Recognition," Speech Communication, pp. 287-310.

Schluter, R., Macherey, W., Kanthak, S., Ney, H., and Welling, L., (1997)
"Comparison Of Optimization Methods For Discriminative Training Criteria,"
vol(1), EUROSPEECH, pp. 15-18.

Schultz, T. and Waibel, A., (1998) "Adaptation of Pronunciation Dictionaries for
Recognition of Unseen Languages," Speech and Communication.

Shen, L., Sarkar, A., and Och, F.]., (2004) "Discriminative Reranking for Machine
Translation," Proceedings of HLTNAACL.

149

Shimodaira, H., Rokuli, J., and Nakai, M., (1998) "Improving the Generalization
Performance of the MCE/GPD Learning," Proceedings of International
Conference on Spoken Language Processing.

Singh, R, Raj, B, and Stern, R. M., (2002) "Automatic Generation of Sub-Word
Units for Speech Recognition Systems," IEEE Transactions on Speech and Audio
Processing, pp. 89-99.

Sloboda, T. and Waibel, A., (1996) "Dictionary Learning for Spontaneous Speech
Recognition," Proceedings of International Conference on Spoken Language
Processing.

Soong, F. K. and Huang, E. F., (1991) "A Tree-Trellis Based Fast Search for Finding
the N-Best Sentence Hypotheses in Continuous Speech Recognition," ICASSP, pp.
705-708.

Spall, J. C., (2003) "Introduction to Stochastic Search and Optimization:
Estimation, Simulation, and Control," ISBN 0-471-33052-3.

Steinbiss, V., Tran, B. H.,, and Ney, H., (1994) "Improvements in Beam Search,"
Proceedings of International Conference on Spoken Language Processing, pp.
2143-2146.

Stolcke, A., (2002) "An Extensible Language Modeling Toolkit," Proceedings of
International Conference on Spoken Language Processing.

Viterbi, A.]., (1967) "Error bounds for Convolutional Codes and an
Asymptotically Optimal Decoding Algorithm," vol(13), IEEE Transactions on
Information Theory, pp. 260-269.

Warnke, V., Harbeck, S., Noth, E., Niemann, H., and Levit, M., (1999)
"Discriminative Estimation of Interpolation Parameters for Language Model
Classifiers," vol(1), International Conference on Acoustics, Speech and Signal
Processing, pp. 525-528.

Widrow, B. and Hoff, M. E., (1960) "Adaptive Switching Circuits," IRE WESCON
Convention Record Part IV, pp. 96-104.

Witten, I. H. and Bell, T. C., (1991) "The Zero Frequency Problem: Estimating the
Probabilities of Novel Events in Adaptive Text Compression,” vol(37), IEEE
Transactions on Information Theory, pp. 1085-1094.

Woodland, P. C,, Leggetter, C.]., Odell, |. J., Valtchev, V., and Young, S.]., (1995)

150

"The 1994 HTK Large Vocabulary Speech Recognition System," vol(1),
Proceedings of International Conference on Acoustics, Speech, and Signal
Processing, pp. 73-76.

Woodland, P. C. and Povey, D., (2002) "Large Scale Discriminative Training of
Hidden Markov Models for Speech Recognition,” Computer Speech and Language,
pp. 25-47.

Ynoguti, C. A., Morais, E. S., and Violaro, F., (1998) "A Comparison between HMM
and Hybrid ANN-HMM-based Systems for Continuous Speech Recognition,"
vol(1), Telecommunications Symposium, 1998. ITS '98 Proceedings. SBT/IEEE
International, pp. 135-140.

Young, S.]., Evermann, G., Kershaw, D., Moore, G., Odell,], Ollason, D., Valtchev, V.,
and Woodland, P., (2002) "The HTK Book," Cambridge University Engineering
Department.

Young, S.]., Odell,], and Woodland, P., (1994) "Tree-based State Tying for High
Accuracy Acoustic Modelling," Proceedings ARPA Workshop on Human Language
Technology, pp. 307-312.

Young, S.]., Russel, N. H., and Thornton, J. H. S, (1989) "Token Passing: a Simple
Conceptual Model for Connected Speech Recognition Systems," Technical Report,
Cambridge University.

Yu, X. H,, Chen, G. A,, and Cheng, S. X,, (1995) "Dynamic Learning Rate
Optimization of the Backpropagation Algorithm," IEEE Transaction on Neural
Networks, pp. 669-677.

Zheng,]., Butzberger, |., Franco, H., and Stolcke, A., (2001) "Improved Maximum
Mutual Information Estimation Training of Continuous Density HMMs,"
Proceedings of EUROSPEECH.

Zhou, D.X,, (2002) "The Covering Number in Learning Theory," Journal of
Complexity, pp. 739-767.

Zhuy, X. and Rosenfeld, R., (2001) "Improving Trigram Language Modeling with
the World Wide Web," Proceedings of International Conference on Acoustics,
Speech and Signal Processing, pp. 592-597.

