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Résumé 
 
 

A l’origine, les services basés sur la localisation trouvaient la justification de leur 
développement dans les nouvelles directives sur les appels d’urgence émises d’abord aux Etats-Unis 
avec le E-911. Mais aujourd’hui, ils prennent de plus en plus d’importance dans la vie de tous les 
jours. Plusieurs technologies de positionnement peuvent répondre au besoin de localisation d’un 
individu, qu’il soit à l’intérieur ou à l’extérieur d’un bâtiment. Parmi ces techniques, le système 
GPS, et plus généralement GNSS, est particulièrement adapté aux applications nécessitant un 
positionnement précis dans tous types d’environnements. Il ne requiert aucune infrastructure, si ce 
n’est une antenne de réception et une puce pour décoder et traiter les messages transmis au travers 
des signaux. Aussi, ce moyen de localisation est à même de répondre aux besoins de 
positionnement d’applications comme les services d’urgence, la navigation en voiture, l’e-
tourisme… 
 

Le positionnement par GPS a néanmoins des limites liées aux phénomènes affectant les 
signaux lors de leur propagation. Dans la mesure où les services liés à la localisation des personnes 
sont déployés dans des zones urbaines, la solution de position peut être entachée d’erreurs dues aux 
multitrajets qui se combinent au trajet direct des signaux reçus. Par ailleurs, il est probable que les 
signaux GPS puissent être bloqués ou fortement atténués par les bâtiments, contribuant de fait à une 
augmentation de la sensibilité aux intercorrelations et donc une dégradation de la précision et de la 
disponibilité du service de positionnement. Les récentes évolutions des récepteurs GPS dites « haute 
sensibilité » (HSGPS) ou « assistées » (AGPS) peuvent partiellement surmonter les difficultés de 
fournir une position à l’intérieur d’un bâtiment. Néanmoins, les améliorations apportées par ces 
nouvelles architectures restent limitées lorsque des signaux à très faible puissance doivent être 
traités. En conséquence, des techniques complémentaires doivent être utilisées pour aider, voire 
remplacer le cas échéant, les systèmes basés sur le traitement des signaux GPS. 
 

Parmi les systèmes candidats, ceux basés sur des capteurs inertiels bas coûts sont 
prometteurs. En effet, ils sont susceptibles d’améliorer les performances globales du système de 
navigation intégré tout en minimisant son surcoût, et ce, malgré la faible qualité des capteurs 
utilisés. Cette thèse est dédiée à l’utilisation de tels senseurs comme moyen complémentaire de 
navigation. Plusieurs objectifs sont fixés parmi lesquels l’amélioration de la précision et de la 
disponibilité de la solution de position, mais aussi l’étude de la réduction de la charge de calcul des 
récepteurs HSGPS et AGPS tout en conservant les performances des systèmes actuels. 
 

Les techniques avancées de traitement du signal (modes « haute sensibilité » et « assisté ») 
sont dans un premier temps étudiées à la fois théoriquement et sur la base d’analyses de 
performance en conditions réelles. Les résultats obtenus lors de tests montrent que le 
positionnement urbain est rendu possible grâce à ces techniques, même si les effets des multitrajets 
et des intercorrelations dégradent sensiblement la précision. L’AGPS fournit des solutions de 
position plus précises que l’HSGPS, ce qui privilégie son utilisation dans un système intégré de 
navigation. Néanmoins, il est clairement démontré que même avec ces techniques avancées de 
traitement du signal, le positionnement à l’intérieur d’un bâtiment reste très difficile, voire 
impossible pour une grande majorité des cas. 
 

Les algorithmes alternatifs de navigation basés sur l’utilisation de capteurs tels que des 
accéléromètres, des gyroscopes, mais aussi des magnétomètres ou encore un capteur de pression 
sont étudiés dans un second temps. Différentes architectures sont détaillées et optimisées pour 
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compenser les dérives introduites par les erreurs de mesure intrinsèques aux senseurs. Un filtre 
permettant l’estimation dynamique des biais affectant les mesures des gyroscopes est dans ce 
contexte proposé à la fois pour la navigation pédestre et la navigation en voiture. 
 

La possibilité de réduire la complexité du traitement effectué par les récepteurs AGPS et 
HSGPS est également abordée dans cette thèse. Plus particulièrement, une technique permettant 
d’estimer la contribution utilisateur sur le Doppler total affectant la porteuse du signal reçu est 
proposée. Ses performances sont testées sur des données réelles collectées en environnement urbain. 
Il est démontré que cette contribution peut être estimée dans la plupart des cas avec précision quelle 
que soit la dynamique de l’utilisateur, réduisant de fait la complexité de l’étage d’acquisition des 
signaux GPS. De meilleures performances sont néanmoins atteintes dans le cas particulier de la 
navigation pédestre. 
 

Enfin, l’amélioration de la disponibilité et de la précision de la solution de position en 
environnement urbain et à l’intérieur de bâtiments est étudiée. Plusieurs schémas d’hybridation 
ayant pour but de combiner les différents modules GPS (AGPS, HSGPS) et les systèmes de 
navigation inertielle basés sur les capteurs bas coûts sont analysés. Une approche différente de celle 
traditionnellement suivie est proposée dans le cadre de la navigation en voiture pour coupler de 
façon serrée les modules GPS et le système de navigation inertielle. Ce schéma d’hybridation 
permet de corriger les erreurs des capteurs bas coûts dès lors que deux mesures de pseudodistance et 
de Doppler sont disponibles, même si cette technique est sensible à la géométrie des satellites 
utilisés par rapport au cap du véhicule. Dans le cadre de la navigation pédestre, une hybridation 
lâche en temps réel est proposée et implantée. La performance du système intégré de 
positionnement à l’intérieur des bâtiments a été testée en conditions réelles, montrant une précision 
de 10 mètres par rapport à la trajectoire de référence, y compris lors d’interruptions complètes du 
service GPS (2 min dans les tests effectués). 
 
 
Mots clés : HSGPS, AGPS, acquisition, MEMS, INS, hybridation, Kalman 
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Abstract 
 
 

First driven by the regulation on emergency calls in the United States (E-911), Location 
Based Services (LBS) are currently gaining more and more importance in everyday life. Numerous 
positioning technologies are foreseen to allow the location of one user whether he is indoors or 
outdoors. Among these techniques, GPS and even more GNSS are well adapted to applications 
requiring accurate positioning whatever the environment (urban or rural). Such a positioning 
technique requires no extra infrastructure but a chipset to decode and process GPS signals. As a 
consequence, this makes it very suitable to fulfil the location requirements of applications such as 
emergency services (US E911), guidance of rescue teams, in-vehicle navigation, e-tourism… The 
technique has nevertheless limitations due to errors that affect the incoming signals. Because 
Location Based Services are likely to be deployed in urban areas, strong multipath may affect the 
signals, contributing to a high position bias. GPS signals may also be blocked or faded by buildings, 
which may expose the receiver to cross-correlation distortions in case of large difference between 
the Signal-to-Noise Ratios (SNRs), decreasing in the same time the accuracy and the availability of 
the positioning service. 
 

The ability of providing a position solution especially indoors is then a great challenge that 
can be partially handled with High Sensitivity GPS or Assisted GPS solutions. However, such 
processing improvements still encounter big issues in the aforementioned harsh environments 
because of the weak power of the signals to acquire and process. As a consequence, complementary 
techniques shall be used to support or replace GPS-based positioning systems. Among the possible 
augmentations, inertial sensor-based techniques are promising ones since they may offer a cost-
effective means of improving the overall performance despite the intrinsic low accuracy and 
stability of the sensors output. 
 

The purpose of this thesis is to investigate the use of such low-cost sensors as a self-
contained augmentation of a GPS-based positioning system. More specifically, this study addresses 
the improvement of the position solution availability and accuracy, as well as the decrease of the 
processing load of HSGPS/AGPS receivers thanks to information provided by the set of sensors. 
 

In the first place, the performance of the new GPS processing techniques (HSGPS and 
AGPS) is analysed based on theoretical simulations and field test trials. Results from these test 
campaigns show that a good accuracy is achievable in urban areas, even if multipath and cross-
correlations degrade the overall performance. AGPS is shown to give better measurements than 
HSGPS, which makes it more suitable for hybridisation purposes. However, there is an unavoidable 
lack of availability indoors where GPS signals are too weak to be processed.  
 

The augmentation of the aforementioned GPS-based navigation solutions is then addressed 
through the use of low-cost sensors (typically accelerometers, gyroscopes, magnetometers and a 
pressure sensor). Different pure inertial navigation algorithms are detailed and optimised 
mechanisations designed to compensate for the low performance of the low-cost sensors used 
throughout this thesis are proposed. In particular, an attitude filter capable of dynamically 
estimating the gyroscope biases is developed and tested in actual conditions. 
 

The improvement of the acquisition stage of AGPS and HSGPS receivers is investigated 
based on the self-contained augmentations previously described. The reduction of the Doppler 
uncertainty due to user’s motion is more specifically addressed. Tests on data collected during 
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urban vehicle trials are used to assess the performance of the proposed technique. It is shown that 
the user’s Doppler contribution can be well estimated whatever the dynamic experienced by the 
receiver, which contributes to the decrease of the acquisition stage complexity. However it should 
be pointed out that better performances are obtained in the pedestrian navigation case than in the 
land vehicle navigation case. 
 

The position solution availability and accuracy in urban canyons and indoor environments is 
finally addressed through several hybridisation schemes aimed at fusing the different GPS modules 
(HSGPS or AGPS) and the low-cost inertial sensors. A non-standard tight coupling scheme is 
proposed in the frame of land vehicle navigation. Results show that urban navigation using only 2 
pseudorange and Doppler measurements is possible, even if the accuracy of the integrated 
navigation system is sensitive to the geometry of the satellite used for hybridisation. A real time 
loose coupling prototype is implemented and tested for the specific pedestrian navigation case. The 
accuracy of the integrated navigation system is shown to stay within 10 metres from the reference 
trajectory even during complete GPS outages of about 2 minutes according to the trials exercised. 
 
 
Key words: HSGPS, AGPS, Acquisition, MEMS, INS, Hybridisation, Kalman filter. 
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Chapter 1: Introduction 
 

1.1 Background 

 
Service sets around the location of a mobile, often referred as Location Based Services 

(LBS), are currently gaining more and more importance in the all day life. First driven by regulation 
issues under the E911 law dedicated to provide a location mean to the emergency call, many 
commercial applications or services are available today. Some are aimed at reaching a large public 
with mass-market perspectives such as in-vehicle or personal navigation, the others focus on 
specific applications such as fleet management, e-tourism, and location of workers… 
 

Several techniques can be used to enable the location of one user in many environments. 
Among them, GPS-based techniques are today very attractive due to the great effort made by the 
industry to miniaturise front-ends and processing cores into one single chipset while increasing both 
acquisition and tracking sensitivity and availability of the position solution especially in urban 
environments. Software-based solutions are also taking more and more importance since they offer 
more flexibility and cost effective means to enable GPS in handsets, even if they require today non 
negligible computational load. The recent convergence of wireless communication providers and 
cell-phone industry roadmaps also tremendously accelerate the use of the GPS-based positioning 
techniques and more specifically Assisted GPS (AGPS). For all these reasons, it seems obvious that 
satellite-based techniques will become an essential part of seamless positioning systems. 
 

However, GPS-based positioning techniques still encounter issues in indoor areas where 
users are very likely to go in. The processing of GPS signals is indeed very challenging as the 
chipsets have to deal with signals of very weak power. Receivers have to use long coherent 
integration time to reduce the effect of noise and increase the probability of detecting a specific 
satellite signal, but it makes them very sensitive to local oscillator stability, user’s Doppler 
contribution as well as cross-correlation peaks that might be wrongly considered as a true 
correlation one (often referred as near far effect). Strong multipath may also affect incoming 
signals, reducing at the same time the accuracy of the position solution. 
 

As a consequence, even if GPS is a good mean to fulfil the needs of most of location 
applications, it still encounters big issues in harsh environments. It is therefore very likely in many 
indoor cases to have a complete interruption of the positioning service. In order to get the position a 
user whatever his location, alternative systems shall be coupled with GPS. Many exist based on the 
processing of WIFI, UWB, pseudolites, TV or mobile phone signals, with all different accuracies. 
However, all the previously mentioned augmentations require infrastructure that can largely be 
found in urban environments but certainly not in rural areas making indoor location still an issue. 

 
Self-contained augmentations have the advantage of being available wherever the user is. 

Inertial sensors, and more generally small sensors, are the typical example of self-contained 
augmentation that does not require any extra infrastructure to give information about the motion 
experienced by a mobile. As they are currently gaining more and more importance in many 
products, their use to support or replace GPS inside buildings can be a great opportunity to improve 
the performance of the positioning system, even if their respective intrinsic performance is 
somewhat too poor to allow traditional inertial navigation. 
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1.2 Motivations and Objectives 

 
The efforts of the semiconductor industry to produce small, low consumption and powerful 

chipsets are bearing fruit for now a couple of years. Today, many portable devices such as PDA or 
cell phones are now equipped with small GPS chipsets that includes both the RF front-end and the 
base-band signal processor. This trend is all the more stressed in the sensor industry as the demand 
is far more important [54]. Automotive industry is currently the leading sector that drives the design 
and the performance of the mass market sensors, but applications at consumer level are taking more 
and more importance. Table 1.1 illustrates the recent needs for accelerometer and gyroscope sensors 
in consumer products according to [54]. 
 
Consumer 

product 
Function Examples of products MEMS inertial 

device(s) 
Status of 

commercialisation 

Cell phones 

Pedometer, image rotation, 
menu scroll, gaming, free-fall 
detection (HDD protection), 
navigation 

NTT DoCoMo pedometer (2003) 
Vodafone image rotation (2004) 
Samsung SGH E760, Nokia 3230 
(navigation and gaming) 

2- or 3-axis accelerometer, 
1- or 2-axis gyroscope 

Accelerometer in cell 
phone since 2003 
Gyroscope expected in 
2007–2008 

PDA 
Navigation IMU, Web content 
navigation 

Toshiba PocketPC e740 
2- or 3-axis accelerometer 
2-axis gyroscope 

Demonstrator in 2002 at 
Paris PDA show 

Digital Still 
Cameras (DSC) 

Image stabilisation 
All Panasonic DSCs, e.g. Lumix 
($200), Pentax Optio A10 ($350) 
Canon, Sony DSCs 

Two 1-axis gyroscopes or 
one 2-axis gyroscope 
Two 2-axis accelerometers 

Gyroscope established 
since late 1990s 
Accelerometer emerging 

Camcorders 
Image stabilisation, free-fall 
detection (HDD protection) 

Upper end: Panasonic (over $1500) 
High end: JVC 30Gb, Toshiba 60Gb 

Two 1-axis gyroscopes or 
one 2-axis gyroscope 

Gyroscope established 
since late 1990s 

Laptops 
Free fall detection (HDD 
protection), GPS dead-
reckoning assist (anti-theft) 

IBM, Toshiba, Apple laptops 2- or 3-axis accelerometer 

Free-fall detection 
established 
Other applications 
emerging 

MP3 players Free fall (HDD protection) iPod with hard disc drive 3-axis accelerometer Established 

Others: toys, 
games, personal 
transporter, 
robots 

Realistic motion 

Nintendo’s Kirby “Tilt-n-Tumble” 
GameBoy, Microsoft gamepad 
“Sidewinder Freestyle Pro”, Segway, 
Sony Aibo robot, Sony PS3 

2- or 3-axis accelerometers, 
1- or 2-axis gyroscopes 

Established 

Table 1.1 – Applications of MEMS Accelerometers and Gyroscopes in Consumer Products [54]. 

 
The use of such sensors is all the more interesting as the sensor industry is constantly 

improving their integration in small packages while lowering their power consumption. Three-axis 
accelerometers are now widely available, as for instance [56], as well as three-axis magnetometers 
[57]. Gyroscopes are more difficult to integrate in a single chip due to the more complex 
measurement procedure. However, a major integration step has been reached with the recent 
announcement of mass production of a two-axis low cost gyroscope [55] in a single small die. 
 

At the time this thesis started, the market perspectives of MEMS inertial sensors were 
obviously not known but somewhat expected due to the increase of their use in consumer products. 
Furthermore, the packaging of these low-cost sensors was already small enough to make them 
easily incorporable in Personal Navigation Devices (PND) such as cell phones, PDA even GPS for 
cars. Studying the pertinence of their use to supply GPS in order to meet LBS requirement was 
therefore already motivated. 
 

All along the three years this Ph.D. lasted, the MEMS performance and market perspective 
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evolutions has strengthened the idea that they could represent a cost effective augmentation system. 
The use of such small sensors in combination with hardware-based or software-based GPS receivers 
is very likely to become a real low-cost possibility in a quite near future. As a result of these 
motivations, several objectives were set along this thesis with respect to typical navigation use 
cases. They all can be summarised in three main categories. 
 

Given a set of low-cost sensors, a first objective was to determine what improvement could 
be brought in the different inertial navigation algorithms used for land vehicle or pedestrian 
navigation in order to enhance the navigation systems performance. Several points were of 
particular interest, and more specifically those listed below: 
 
• The effectiveness of using a pressure sensor. 
• The effectiveness of using a triad of magnetometers. 
• The possibility of reducing the impact of the typical errors that dramatically affect the inertial 

navigation systems (gyroscope biases, accelerometer biases). 
• The performance of self-contained augmentations based on the set of low-cost sensors. 
 

A second objective was to analyse the feasibility of combining information from the set of 
low-cost sensors to reduce the HSGPS/AGPS processing core complexity or equivalently 
computational load when dealing with weak signals. The following points were consequently 
investigated: 
 
• Improvement of the acquisition stage (especially in cold start mode) within the scope of a 

software-based receiver. 
• Decrease of the Time to First Fix using the external set of low-cost sensors. 
• Decrease of the computational load / increase of sensitivity. 
 

Finally, the last objective was to get insights of several hybridisation schemes. The main 
goal was to improve the position solution availability and accuracy in harsh environments where 
GPS modules (either HSGPS or AGPS) can not provide accurate and reliable position solutions. 
The following points were thus addressed: 
 
• Investigation of the feasibility of integrating the set of sensors in handheld devices. 
• Improvement of both availability and reliability of the position solution as provided by the 

integrated navigation system. 
• Use of very few GPS measurements to enable the correction of the error affecting the low-cost 

sensors output. 
• Research of criteria to monitor the quality of GPS measurements in the perspective of GPS/INS 

hybridisation for Pedestrian Navigation System. 
 

1.3 Contributions 

 
The different topics studied in this thesis are detailed throughout the report. Here are 

summarised the main subjects that were investigated. Some of these points have been published in 
conferences (papers published are mentioned in the different chapters of this report – see the 
bibliography for details). 
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• Simulation of the performance of a software-based AGPS acquisition stage. The main goal 
of this simulation methodology is to assess the performance that can be expected from a 
software-based AGPS in order to estimate the computational load for a given use case and 
consequently the acquisition time performance of such a receiver in typical urban / indoor 
environments. 

 
• Analysis of the performance of both HSGPS and AGPS in typical urban environments. 

This analysis is done through field test trials in real conditions in order to analyse the 
performance of the Assisted solution with respect to the High Sensitivity one in terms of time to 
fix and accuracy. In the same time, the position solutions quality is compared to determine 
which module is more suited to hybridisation with the low-cost sensors. 

 
• Optimisation of INS algorithms for both land vehicle and pedestrian navigation. An 

exhaustive analysis of the mechanisations is provided with a particular focus on the Pedestrian 
Navigation System (PNS). A detailed analysis of the relationship between parameters computed 
from the acceleration magnitude and the velocity of the pedestrian is done, aiming at elaborating 
a simple but reliable model that is used to compensate for accelerometer biases. 

 
• Euler’s angle singularity resolution algorithm. Within the scope of this thesis and in the 

particular case of the pedestrian navigation, the possibility of combining a GPS chipset with 
low-cost sensors in a handheld device is investigated. As a consequence, the Portable 
Navigation Device (PND) may experience all possible attitudes including those introducing 
singularity in the computation of the Euler’s angles (and so the heading). A specific 
compensation algorithm is described in the thesis that prevent from using an unreliable heading 
information caused by pitch angle values of +/-90°, allowing the tracking of the heading of a 
PND while moved during the walk. 

 
• Improvement of the heading accuracy. An attitude filter capable of estimating the gyroscope 

biases as they occur during the motion is provided in this thesis. The capability of estimating 
these biases while the unit is in motion is especially addressed and discussed. This filter 
includes the Euler’s angles singularity resolution algorithm mentioned above. It also includes a 
magnetic mitigation technique that prevents magnetic interferences from dramatically degrading 
the heading accuracy, especially when the user is nearby iron objects. 

 
• Tracking of the pedestrian heading with respect to a moving handheld device. If the PND 

contains the low-cost sensors that shall be combined with GPS data to provide an integrated 
navigation system, and because the PND may be handheld while the user is requesting its 
location, the heading of the PND may differ from that of the user. An algorithm dedicated to 
keep track of the true pedestrian heading is proposed for medium handset motions. 

 
• Analysis of the improvement brought by the use of a barometer. The possibility of using a 

pressure sensor in order to get absolute or differential altitude measurements is studied to 
enhance the position solution using less than four GPS measurements. Discussion of the 
methodology used to incorporate the altitude measurements is also done. 

 
• Improvement of the GPS acquisition stage. The processing of attitude and velocity 

information provided by the sensors assembly is used to estimate the user’s Doppler, which 
consequently allow a reduction of the number of Doppler bins to explore and therefore reduces 
the acquisition complexity. The capability of the attitude filter to provide sable attitude 
measurements is tested within this contribution for “on-demand” user’s Doppler estimation. 
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• Tight integration architecture taking advantage of very few GPS measurements. Designed 
for land vehicle application, the proposed tight integration architecture is demonstrated to allow 
the navigation using only 2 Doppler measurements, but accumulating errors. As soon as 2 
pseudoranges are added, the integrated navigation system does not accumulate errors anymore 
and accuracy within 40m from the reference trajectory is shown possible with low-cost sensors. 
However, the proposed hybridisation architecture is very sensitive to geometry of the satellite 
used in the integration filter. 

 
• Real time low-cost sensors/AGPS (or HSGPS) integrated pedestrian navigation system. A 

real time integrated navigation system prototype that fuses MEMS sensors with AGPS (or 
HSGPS) is developed to ease the characterisation of such a seamless positioning system 
especially in outdoor to indoor and indoor to outdoor transition phases. Several GPS quality 
monitoring criteria are proposed and their pertinence is tested on actual data, which 
demonstrated a 2D error within 10 metres from the reference trajectory even during GPS outage 
of about 2 minutes. 

 

1.4 Thesis Outline 

 
This thesis report is organised as follows: 

 
Chapter 2 recalls the basics of the GPS positioning techniques and gives insights of current 

enhancements in the processing core of mass-market receivers such as HSGPS and AGPS. 
Simulations are done to estimate signal processing performance such as time to fix with respect to 
typical satellite configurations. Both types of low-cost receivers are tested in urban and indoor 
environment to assess their respective performances and find the module that gives the best ones. 
 

Chapter 3 introduces the alternative navigation systems based on inertia principles. First the 
classical Inertial Navigation System (INS) mechanisation is derived in details and its performance 
relative to the quality of the sensors used within the scope of this thesis is discussed. The particular 
case of the pedestrian navigation is then addressed in great details and the mechanisation chosen in 
the thesis is justified. The performance of such a mechanisation is simulated according to several 
error models and compared to what can be obtained using the classical INS. 
 

Chapter 4 deals with the possible self-contained augmentations that can be implemented in 
order to improve the performance of the algorithms described in chapter 3. In particular, the 
addition of a pressure sensor and magnetometers are discussed. Several well-known error limitation 
principles are recalled. This chapter focuses also on the dynamic estimation of gyroscope drifts and 
an attitude filter capable of providing stable heading information is proposed. The possibility of 
mitigating magnetic interferences is also addressed. 
 

Chapter 5 focuses on the improvement of the HSGPS/AGPS processing stage and more 
specifically on the acquisition stage. The different Doppler contributions affecting the incoming 
signal are analysed, with more attention paid to that of the user. The possibility of estimating the 
user’s Doppler prior to engage the acquisition process and assuming the unit containing both the 
GPS chipset and the sensors assembly in motion is then investigated. The sensors fusion algorithm 
is tested for pedestrian and land vehicle navigations. Both static and dynamic cases are studied. 
 

Chapter 6 addresses more specifically the improvement of the position solution via the 
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hybridisation of the different navigation systems described in chapter 2 and chapter 3. The land 
vehicle navigation case is studied through a tight integration scheme which differs from the 
standard one usually used to fuse GPS and INS. The pedestrian navigation case is addressed 
through a loose coupling scheme. A real time pedestrian navigation system is developed for that 
purpose. These different hybridisation algorithms are tested in typical urban conditions and 
respective performance results are detailed. 
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Chapter 2: GPS-Based Positioning 
 
 

This chapter is dedicated to the presentation of the GPS-based positioning technique for 
personal positioning. In a first part, the GPS fundamentals are recalled and a focus is put on the 
measurements available at the output of a GPS receiver for further integration with another 
navigation system and more specifically with an Inertial Navigation System (INS). The main 
processing stages of a standard GPS receiver are then briefly presented. In a third time, new 
architectures such as HSGPS and AGPS are discussed. The weakest points of the standard GPS 
processing are highlighted and solutions implemented in the new processing architectures are 
described. The performance of each type of positioning method is finally discussed in terms of time 
to acquire, time to fix and position accuracy. A comparative test between HSGPS and AGPS is also 
presented in typical indoor environments and the need for augmentations in harsh environment is 
demonstrated. 
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2.1 The Global Positioning System 

2.1.1 Fundamentals 
 

The Global Positioning System (GPS) is a satellite radionavigation system that can provide 
any user on Earth at any time with the signals necessary for an accurate determination of its 
position, velocity as well as the bias of its own clock, independently of weather conditions. 
 

The basic principle of getting its position using GPS relies on range measurement. A user 
equipped with a receiver computes its location by measuring the delay of propagation of the signals 
coming from several transmitting satellites. These satellites have a known position, so that once the 
clock bias of the local receiver oscillator with respect to the satellite transmitter has been solved, 
these propagation delays can be converted into geometric distance, allowing the resolution of the 
2D / 3D user’s position. The velocity of the user can also be computed using the rate of change of 
these propagation delays. 
 

In such a positioning system, timing is a very critical point. Indeed, the satellites are 
transmitting permanently continuous waveforms (the GPS signal) that are designed to be easily 
related with a time scale. Transmitters and receivers are aware of the signal characteristics and 
properties, so that the demodulation of the GPS navigation message is done trough a processing 
designed to take advantage of the GPS signal modulation. The propagation delay is thus measured 
by comparing the received signal to a locally generated copy of that signal. However, as the 
receiver clock is not synchronised with the satellites clocks, the time delay measurement is biased 
by the clock bias between the receiver and the satellite. Thus, in order to determined that bias, GPS 
satellites broadcast in their navigation message satellite clocks biases with respect to that reference 
time. As a consequence, the propagation measurements can be considered to be only biased by the 
receiver clock bias so that this remaining unknown is just simply added to the three basic unknown 
user’s coordinates. Four satellites are thus at least needed to compute the user’s location. 
 

GPS is composed of three segments defined as space, control and user. They all are 
described in the following subsections. 
 

2.1.1.1 Space Segment 
 

The space segment is the satellite part of the positioning system. It is composed of 24 
satellites orbiting in 6 different orbit planes inclined at about 55°, with a radius of about 26600km 
[1]. The period of revolution of a GPS satellite is 12 sidereal hours, so that the ground track of each 
satellites is repeated every 24 sidereal hours, that is 23h56min. The satellite payload contains four 
atomic clocks, two based on Rubidium and two on Caesium, for a precise signal generation. The 
satellites are currently emitting a signal propagated on two carriers (L1, L2) with the following 
properties: 
 
– L1 at 1575.42MHz with a QPSK modulation. The in-phase channel is modulated by a known 

Gold code of length 1023, the C/A code, with a rate of 1.023MHz. The quadrature channel is 
modulated by a known P code or unknown encrypted version Y code, both clocked at 
10.23MHz. 

– L2 at 1227.6MHz, with a BPSK modulation of the carrier by the P(Y) code. 
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C/A codes are widely known so that the service provided through the L1 C/A carrier called 
Standard Positioning Service (SPS) is accessible by everybody. Opposite, the Precise Positioning 
Service (PPS) supported by L2 and the quadrature channel at L1 is reserved to US military and their 
allies since they are the only ones capable of decoding the Y code. The service provided on L2 and 
L1 with the P(Y) code is not within the scope of this thesis. Consequently, the following will focus 
on the L1 C/A carrier. 
 

All the satellites use the same frequencies to transmit the GPS navigation message. The 
generation of the L1 signal is as described below in Figure 2.1. The transmitted signal is the result 
of the 2-modulo sum of the spreading codes c and p (or y) and the navigation message d, which are 
then QPSK modulated. The spreading code c used on GPS modulation is a Gold code, with length 
N=1023 bits. Its rhythm is larger than the data rate, so that the modulation is a spread spectrum 
modulation. 
 

 
Figure 2.1: GPS L1 signal generation architecture. 

 
The signal transmitted on L1 by the GPS satellite i is a combination of the C/A and P(Y) 

codes, which is 3dBW lower than the C/A component. Omitting the P(Y) component, the GPS L1 
signal transmitted by satellite i is then as written in equation (2.1): 
 

( )tLtctdAts iii

12cos)()()( π⋅=  (2.1) 
 
where: 
− id  is the P/NRZ/L materialisation of the satellite i  navigation message at 50 Hz. 
− ic  is the P/NRZ/L materialisation of satellite i  C/A code at 1,023 MHz. 
− m  is the P/NRZ/L materialisation waveform. 
− A  is the amplitude of the C/A component. 
 

It is then straightforward to compute the Power Spectral Density (PSD) of the signal 
transmitted on L1, according to equation 2.1. The L1 PSD is thus as follows [3]: 
 

( ) ( ) ( ) 






 ++−⊗⊗⋅=
4

)()( 112 LfLf
fSfSAfS cds i

δδ
 (2.2) 

 
where: 
– cT  is the spreading code chip period. 
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– )( fSd  is the PSD of the GPS navigation data. 

– )( fSc  is the PSD of the C/A code. 

– Rf  is the repetition frequency of the spreading code c. 
 

The PSD of the base band C/A component ( ) ( )fSfSfS cddc ⊗=)(  is plotted in Figure 2.2. 
The total bandwidth of the transmitted GPS signal on L1 is larger than 20 MHz. Due to the 
spreading code properties, the spectrum lies below the noise spectrum. 
 

 
Figure 2.2: Baseband C/A PSD. 

 

2.1.1.2 Control Segment 
 

The role of the control segment is to ensure the surveillance of the received signal 
characteristics, to compute the ephemeris data and the satellites clock corrections, and to download 
the navigation message into the satellites payload. The control segment is composed of 5 
surveillance stations scattered around the globe, 1 main control station called the Master Control 
Station (MCS) located in Colorado, 4 download stations. These stations perform normally 1 
download per day per satellite, with the possibility to do 3 downloads per day per satellite. 
 

Subframe 1 TLM HOW
GPS Week Number - Space Vehicle Accuracy and Health - Satellite 

Clock Correction Terms

Subframe 2 TLM HOW Ephemeris Parameters

Subframe 3 TLM HOW Ephemeris Parameters

Subframe 4 TLM HOW
Almanac and Health Data for Satellites 25-32, Special Messages, 
Satellite Configuration Flags, and Ionospheric and UTC Data

Subframe 5 TLM HOW
Almanac and Health Data for Satellites 1-24 and Almanac Reference / 

Time and Week Number

30 bits
300 bits

 
Figure 2.3: Structure of a GPS frame. 

 
The navigation message generated for each satellite is necessary for the receivers to compute 

Noise level 
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the position and the velocity of the user. This 50 bits per second data stream is synchronous with the 
1 kHz C/A spreading code epochs. The navigation message is periodic. It contains 37500 bits, and 
thus, lasts 12,5 min. The data is formatted into 30-bits word, and words are grouped into subframes 
of 10 words. A subframe is then composed of 300 bits, and lasts 6 seconds. Five subframes form a 
frame. Therefore, a frame is composed of 1500 bits, and lasts 30 seconds. Frames are grouped 
together, and the 25 frames of 37500 bits compose the navigation message. Figure 2.3 illustrates the 
navigation message structure. 
 

In the message, much of the data is repeated every frame, and some every subframe. The 
navigation dataframes are periodically updated, approximately every 2 hours, and are valid for 4 
hours. According to the above description, it is clear that without any external aid, the minimum 
time required for a receiver to incorporate the pseudorange measurements made on a new specific 
satellite in the position solution is then 30 seconds because satellite clock correction and ephemeris 
data are repeated in each frame. Details about the messages can be found in [1]. 
 

2.1.1.3 User Segment 
 

That segment is composed of the authorised users (military) and non-authorised users 
(civilians). The receivers can be static on Earth, or mobile in a vehicle on Earth, in an aircraft or a 
spacecraft. They permanently collect GPS signals and process them to compute the position and 
velocity of the user. At the input of the receiver’s antenna and compared to what is transmitted by 
the different satellites, the GPS signals are affected by delays accumulated during the different 
phases of the propagation. At the output of the receiver’s antenna, the signal is as follows: 
 

)()()()()( tjtwtstgtr ++⊗=  (2.3) 
 
where: 
− g  is the pulse response of the propagation channel. 

− w  is an additive white noise. 
− j  is the sum of the jammer signals. 
 

Assuming that the propagation channel modifies the received signal such as g is a pure delay 
( )()( τδ −= ttg ), at the output of the receiver’s antenna, the complete expression of the continuous 
signal is then given by equation (2.4): 
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where: 
− i

kA  is the amplitude of the received signal at epoch k . It is time dependent. 

− i

kτ  is the propagation delay affecting the received signal at epoch k . It is time dependent. 

− i

kθ  is the carrier phase shift, including Doppler effect at first order at epoch k . 

− N  is the number of received satellite signals. 
− iM  is the number of satellite i  signal replica due to multipath. 
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2.1.2 GPS Signal Processing 
 

The main elements of a GPS receiver are illustrated in Figure 2.4. The purpose of the 
receiver is to make the pseudorange measurements and demodulate the navigation message in order 
to compute the position of the receiver’s antenna. After being digitised, the signal is processed to 
enable the data demodulation. It first goes through the detection process, i.e. the acquisition stage. 
Once the signal has been acquired on a specific receiver channel, the tracking of the signal is 
engaged. DLL are used to track the spreading code phase, whereas PLL (or FLL) are used to track 
the phase (frequency) of the carrier. Finally, the SIS data are demodulated and processed with the 
pseudorange measurements to compute the user’s location. All these stages are described in the next 
subsections. 
 

 
Figure 2.4: General GPS receiver architecture. 

 
As a first approximation and neglecting multipath, interference, and the other GPS satellite 

signals, the received signal is amplified, filtered and the frequency of modulation L1 reduced to an 
Intermediate Frequency (IF), as illustrated in Figure 2.4. The digitised received signal at the output 
of the RF Front-End can thus be modelled as written in equation (2.5). 
 

( ) ( ) ( ) ( ) )()(2cos
:
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where: 
− fc  is the result of the filtering of the code modulation of the signal sensed by the user’s antenna 

by the selection filter H. 
− If  is the IF. 

− n  is a white Gaussian thermal noise with PSD N0/2 dBW.Hz-1. 
− θ  is the random phase offset affecting the received signal. 
 

Details about the relationship of the phase of the received signal and the Doppler frequency 
can be found in appendix A. It is just recalled here to clearly show that the GPS processing stages 
can be based on the processing of the phase θ or the Doppler frequency fd. 
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where: 
– df  is the Doppler frequency affecting the received signal at epoch k . 
 

2.1.2.1 GPS Signal Acquisition 

2.1.2.1.1 Principle and General Architecture 
 

The GPS signal acquisition is an energy search process that requires the replication of both 
code and carrier of the transmitted signal to acquire. Because of the propagation of the emitted 
signal and the velocity of the satellites relative to the user, the received signal at the input of a GPS 
receiver is delayed and attenuated. Free space losses, user’s antenna pattern and the user’s 
environment (whether he is indoors, in urban canyons or outdoors…) are the main factors 
responsible for delays and attenuations. In order for the tracking process to be properly initialised, 
the initial estimates of the code delay τ and the carrier phase shift θ must have a low uncertainty. 
The goal of the acquisition process is then do determine such values. 
 

This rough estimation is done while the acquisition process tries to detect a GPS signal, i.e. 
while the acquisition process is searching for the right PRN code used for transmission and needed 
to demodulate the navigation message. This PRN search is done by exploring all possible PRN 
codes as well as all possible code and phase shifts by performing correlations with a local generated 
spreading code replica. Since C/A code are characterised by a high correlation value and low cross-
correlation values, the PRN is declared detected once the output of the correlator is higher than a 
predetermined threshold. 
 

The length of a C/A-code is of 1023 chips so that all the 1023 C/A-code phase bins have to 
be explored. To be initiated properly, the code tracking loop (DLL) needs roughly a precision of 
half a chip on the code delay. Thus, the acquisition process explores the code with a half chip step, 
which is 204610232 =×  C/A-code bins. 
 

The phase or Doppler research depends directly on the dynamic of the satellite relative to the 
user’s antenna. According to satellite and user velocities, the Doppler variation lies in the range of 
±5 kHz (see appendix A fore more details). This range can be increased to ±6kHz because of the 
drift of the receiver local oscillator. The true Doppler affecting the received signal is then to be 
found in that range. The Doppler bin size is directly related to the coherent integration time used in 
the acquisition process, as demonstrated in [4]. It is equal to half the inverse of the coherent 
integration time Tp. 
 

The coherent integration time Tp can vary from 1 ms up to the duration of a GPS data bit, 
that is 20 ms. We define the dwell time τd as the product of the coherent integration time Tp by the 
number of non-coherent integrations M, as given in equation (2.7). 
 

pd MT=τ  (2.7) 
 

The most classical acquisition structure is shown below in Figure 2.5. The output T is used 

as a test statistic to detect whether the estimated code delay τ̂  and the Doppler shift df̂  (or the 

phase shift θ̂ ) match the true ones or not. 
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Figure 2.5: Single dwell serial search acquisition structure. 

 
This classical acquisition scheme is called the single dwell serial search acquisition scheme. 

It is one out of several techniques that can be used to acquire GPS signals, whose basic principle is 
to perform coherent and non-coherent integrations for a given Doppler/Phase bin and code bin. The 
signal is first correlated over the coherent integration time Tp, then squared and the process is 
repeated M times. After a given dwell time τd, the output signal T is compared to a decision 
threshold. If higher, the tracking mode is engaged for certain amount of seconds. If during this 
period the tracking loops fail to compute an estimation of the code delay and the Doppler/Phase 
shift yielding a high energy, the search process continues from where it had stopped to switch into 
tracking mode, incrementing the bins according to the search strategy. If no signal has been 
detected after exploring the whole uncertainty region, the search process restarts from the 
beginning, or searches another GPS PRN code. 
 

Assuming some Doppler affects the received signal making the signal phase time dependent, 
assuming also that no data bit transition while correlating the signal, equations (2.8) and (2.9) give 
the expressions of the outputs of the correlators for both in-phase and quadrature channels [3]: 
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where: 
− In , Qn  are centred Gaussian noises with power 2

In
σ  and 2

Qn
σ  respectively. 40

22
pnn fN

QI
== σσ  

− cc f
R  is the cross-correlation between the received filtered spreading code (which has been 

filtered by the RF front-end filter) and the local replica code. 
− τ̂  is the estimation of the group propagation delay. 
− θ̂  is the estimation of the received phase shift. 
− f∆  is the Doppler uncertainty. dd fff ˆ−=∆ . 
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2.1.2.1.2 Statistical Hypothesis Test 
 

The detection process of a GPS signal, and thus the rough estimation of the code delay and 
carrier shift, is based on a statistical hypothesis test. Two basic assumptions can be made on the 
acquisition status, either the GPS signal to acquire is present at the input of the acquisition channel 
or not. According to the acquisition structure of Figure 2.5, the output of the acquisition stage T can 
be written as given follows: 
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In the absence of the GPS signal to acquire, the test statistic T is equal to T0:  
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Because both In  and Qn  follow a normal distribution with zero mean and a variance of 2

nσ , 

they can be re-written as Inn'σ  and Qnn'σ , with In'  and Qn'  two centred Gaussian random variables 

with unitary variance. Thanks to Gaussian properties, the squared sum of these new centred 
Gaussian random variables becomes a new statistic, which follows a Chi-square distribution, with 
2M degrees of freedom (M+M). As a consequence, 2

0 nT σ  is a random variable following a Chi-

square distribution with M2  degrees of freedom. Given a probability of false alarm faP  defined as 

the probability that the statistic T0 is greater than a predetermined threshold Th, [ ]hfa TTP >= 0Pr , it 

is then possible to compute that decision threshold Th using the inverse of the chi-square cumulative 
distribution function. 
 

Opposite, in presence of the GPS signal to acquire, the test statistic T becomes: 
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where: 
– ττετ ˆ−=  is the residual code delay uncertainty. 

– θθεθ
ˆ−=  is the residual phase shift uncertainty. 

 
Following the same approach as in the previous case, it can be shown that the test statistic 

2
1 nT σ  follows a non-central Chi-square distribution with 2M degrees of freedom, whose non-

centrality parameter is given below in equation (2.13). The probability of successful detection dP  is 

then defined as [ ]hd TTP >= 1Pr . 
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where: 
– C  is the power of the RF signal. 2/2AC = . 
 

2.1.2.1.3 Performance and Mean Acquisition Time 
 

The choice of the coherent and non-coherent integration times is of tremendous importance. 
The higher the coherent integration time Tp, the lower the decision threshold because the correlator 
output noise power will be lowered. However, this time can not exceed the GPS data bit duration, 
which is 20ms. Moreover, selecting a high value for the coherent integration time implies the 
reduction of the Doppler bin size, thus the increase of the number of frequency bins to explore. As a 
consequence, the acquisition time needed to successfully detect a GPS signal will increase 
significantly. The non-coherent integration time has also a great impact on the acquisition 
performance. It is used to enhance the property of noise power reduction of the coherent integration 
time (which can not exceed 20ms) but with less efficiency. There is a close relationship between 
this time and the mean acquisition time through the dwell time τd, as it can be seen in equation 
(2.14) [4]: 
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where: 
− q  is the uncertainty region, which is defined as the number of cells to explore to achieve the 

code acquisition. It is then the product of both the number of code and Doppler bins. 
− K  is the penalty factor, dKτ  being the time spent by the tracking loops to try and track a non 

existing signal. 
 

For both coherent and non-coherent integration times, a trade off has then to be found. As an 
example, Figure 2.6 illustrates the probability of detecting a signal, assuming no interferences, no 
residual Doppler effect (∆f = 0), and no residual code delay uncertainty (ετ = 0). The figure shows 
clearly that the larger the coherent integration time, the more the signal detection stage will succeed 
in processing GPS signals with low C/N0. 
 

One the other hand, this statement has to be balanced with the increase of the acquisition 
time. Indeed in Figure 2.7 is plotted the mean acquisition time for several couples (M,Tp) so that the 
dwell time stays always equal to 20ms. For this simulation, a 12 kHz Doppler range has been taken 
into account, with a Doppler bin of 1/2Tp, so that the uncertainty region equals 40920000Tp cells. 
The penalty factor has been chosen such as Kτd = 1s. For a constant dwell time, performances in 
terms of time to acquire are better with a small coherent integration time and a high non-coherent 
integration time. These integration times have opposite effects on the performance of the acquisition 
process. Their tuning has then to be carefully according to the aimed application. 
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Figure 2.6: Probability of detection for a constant 

dwell time of 20ms. 

 
Figure 2.7: Single dwell serial search mean 

acquisition time for a constant dwell time of 20ms

 

2.1.2.2 GPS Signal Tracking 
 

To continuously estimate the code delay and the phase shift in order to enable the 
demodulation of the signal, the tracking of the signal around the initial estimates provided by the 
acquisition stage has to be done. This tracking is achieved trough the use of two different loops. The 
first one is the carrier tracking loop (PLL) dedicated to track the carrier phase. A frequency loop can 
be used instead depending on the receiver’s requirements. The second loop is the code tracking loop 
(DLL), which tracks the code propagation delay affecting the received signal. Both loops are 
described in the following. Only the basics are presented here. 
 

2.1.2.2.1 Phase Lock Loop 
 

Figure 2.8 illustrates the block diagram of a carrier tracking loop. 
 

 
Figure 2.8: Generic Phase Lock Loop architecture [3]. 
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This loop is mainly composed of Integrate and Dump filters, a carrier loop discriminator and 
a carrier loop filter F. These three components determine also the carrier loop thermal noise error, 
and the maximum dynamic stress threshold of the loop. The left hand side part of the loop works at 
the sampling frequency and generally is hardware implemented in the GPS receiver. The right hand 
side part is software implemented. The software processing rate is generally different from the 
hardware one, and closely related to the dwell time used in the loop. 
 

The purpose of the PLL is to generate a local carrier, whose phase θ̂  shall be as identical as 
possible to the one of the received carrier θ. The main difficulty remains in the estimation of the 
Doppler affecting the received signal. The output of the prompt in-phase channel and prompt 
quadrature channel are given by the equations (2.8) and (2.9). These two outputs are then processed 
in a discriminator in order to determine the phase offset between the received and the local phase. 
 

The configuration of the carrier tracking loop depends on the dynamic of the signal to be 
tracked. Indeed, to tolerate dynamic stress, the pre-detection integration time should be short, the 
discriminator should be a FLL, and the carrier loop filter bandwidth should be wide. On the other 
hand, to better resist noise and have accurate Doppler phase measurements, a PLL discriminator 
should be taken with a long pre-detection integration time and a narrow loop filter noise bandwidth. 
 

The discriminator used in the carrier tracking loop defines the type of loop as PLL, Costas 
PLL (which is a PLL, whose discriminator tolerates the presence of data bits in the baseband signal) 
or FLL (Frequency Locked Loop). PLL and Costas PLL are the more accurate, but also more 
sensitive to the dynamic stress than FLL. Their discriminators output phase errors, whereas FLL 
discriminator output frequency errors. Most of GPS receivers use a Costas carrier tracking loop 
because of its insensitiveness to 180-deg phase reversal. Indeed, the 50Hz navigation message, 
which is composed of “+1/-1” remains after carrier and code have been wiped off. 
 
Product or Costas Discriminator: 

 
The output of the phase discriminator Ve is the result of the multiplication of the prompt in-

phase and the quadrature channels, so that Ve is equal to equation (2.15): 
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This discriminator is near optimal at low Signal to Noise Ratio (SNR). Ve is a π-periodic 

signal, so that we can zero the sine without having exactly θθ ˆ= , but rather Ζ∈+= kk ,ˆ πθθ . It 
emphasizes the fact that the tracking loop can lock on the phase of the received signal with an 
ambiguity of π. Furthermore, this discriminator depends directly on the power of the received 
signal. In order to get rid of the signal amplitude, this discriminator is usually normalised. 
Assuming that the variation between the Doppler shift and the estimated Doppler ∆f is small, and 
considering a small phase tracking error, equation (2.15) can be approximated by equation (2.16) 
[6], as given below: 
 

( ) ( )nnnV ee

'+≈ θε  (2.16) 
 

From equation (2.16), it is obvious that to lock the phase loop, the estimated phase and the 
received phase need to be equal. In the receiver, this is done by zeroing Ve. Indeed, if Ve >0 then the 
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loop filter F commands the DCO trough the signal Vc to increase the estimate of the phase. 
Conversely, if Ve < 0, then the loop filter commands the DCO to decrease the estimate of the phase. 
The control signal Vc is the filtering result of Ve through the low-pass filter (or loop filter) F. 
 

The variance of the noise affecting the phase estimate θ̂  is equal to [2] (in rad): 
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where: 
– LB  is the PLL bandwidth. 
 
Arc Tangent Discriminator: 

 
This discriminator is the two quadrant arctangent discriminator. It is optimal in the sense of 

the maximum likelihood estimator, especially at high and low SNR. It is defined as given in 
equation (2.18). 
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Given the expression of Qp and Ip, it is straightforward to expand equation (2.18). At first 

order, equation (2.18) can be rewritten as equation (2.19). This discriminator does not depend on 
the signal amplitude itself. 
 

( ) ( ) ( )nnnnV ee += θε  (2.19) 
 
 

The variance of the noise affecting the 

phase estimate θ̂  of the PLL implementing 
such a discriminator is well approximated by 
equation (2.17) [2]. As an illustration, Figure 
2.9 shows the performance of some PLL 
discriminators. 

It can be seen that the more the 
discriminator is linear, the better is the 
correction that is applied on the local 
generated carrier phase. The figure opposite is 
plotted under the assumption that no noise is 
affecting the discriminators. In the case of the 
presence of additive noise, these plots are 
flattened. 

 
Figure 2.9: Performance of several Costas PLL 

discriminators. 

 

2.1.2.2.2 Delay Lock Loop 
 

Figure 2.10 illustrates the block diagram of a code tracking loop. This loop requires more 
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Integrate and Dump filters than the phase tracking loop, since an early and late version of the same 
PRN code is needed to find the code delay affecting the received signal. As for the phase tracking 
loop, the left hand side part works at the sampling frequency and is generally hard implemented in 
the GPS receiver. The right hand side part is soft implemented. The processing rate is generally 
different from the hard one, and is closely related to the dwell time used in the loop. The 
discriminator is completely different from the previous ones described above. 
 

 
Figure 2.10: Generic Delay Lock Loop architecture [3]. 

 
The DLL can be coherent or non-coherent. A DLL is said coherent if it requires a quite 

accurate estimation of the carrier phase or carrier frequency to work properly. A non-coherent DLL 
is a loop which can estimate the code delay without having a good estimation of the phase shift or 
frequency shift. According to Figure 2.10, the signals in the in-phase (I) and quadrature (Q) Early 
and Late channels are given respectively in equations (2.20) and (2.21). 
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where: 
– sC  is the chip spacing between Early and Late channels. 2<sC . 
 
Early Minus Late Power Discriminator: 

 
The Early minus Late Power discriminator is defined has follows: 

 
( ) ( ) ( ) ( ) ( )nQnInQnInV LLEEe

2222 −−+=  (2.22) 
 

As a first approximation, it is here again assumed that the cross-correlation between the 
filtered code and the local generated code equals the autocorrelation of the code ( ccc RR

f
≈ ). It is 

also assumed that the Doppler frequency residual f∆  is small. At the end of the acquisition process, 

the propagation delay tracking error τε  can be considered low enough to have 2sC<τε  (a basic 

value of chip spacing sC  is cT , some narrow correlators have chip spacings of 0.1Tc). As a 
consequence, the error signal Ve can be approximated by equation (2.23) [6]: 
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The error signal Ve is independent from the phase tracking error εθ, so that this discriminator 

is said to be non-coherent. However, the error signal Ve depends on the signal power. Therefore, the 
use of the normalised Early minus Late Power is often preferred. 
 

The variance of the noise affecting the code delay estimate τ̂  of a DLL using this 
discriminator is given by equation (2.24), [2] (in chips): 
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Dot Product Discriminator: 

 
This discriminator uses all the three code replicas of the in-phase and quadrature channels. It 

is defined as given in equation (2.25): 
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Again, assuming ccc RR
f

≈  and 2sC<τε , the output of the discriminator is given by: 
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Equation (2.26) is not linear, not normalised but is independent from the phase tracking 

error, so that it is a non-coherent discriminator. Once linearised and normalised, it represents the 
most popular DLL discriminator. The variance of the noise affecting the code delay estimate τ̂  is 
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given in equation (2.27) in unit of chips. Compared to the previous one of equation (2.24), it is 
obvious that for signals with low C/N0, this kind of DLL is less affected by noise. 
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2.1.3 GPS Measurements  
 

The basic GPS principle and the main processing stages of a GPS receiver have been 
described. This section deals with the measurements that are used to compute the location of the 
receiver’s antenna. Basically, one civilian user can process three measurements by satellite to get its 
position: the code phase, or pseudorange, the carrier phase and the Doppler. The carrier phase 
measurements offer the best accuracy (centimetre-level) when used to compute the user’s location 
compared with pseudoranges. It is however a more complex processing implementation that 
requires a rover and a master receiver to process data differentially, and at least 5 satellites in order 
to remove the phase ambiguity. It is typically used in high-accuracy application such as geodetic 
surveying. It does not cover the scope of this thesis, so that no further details are given about it in 
the following. Many references are available on this topic, as for example [7]. The next subsections 
describe the measurements that are used in this thesis and detail their respective models. 
 

2.1.3.1 Pseudorange Measurement 
 

As discussed in the above section, GPS receivers measure the propagation time of the 
transmitted signal from the satellite to the user, taking into account the fact that both user and 
satellite clocks are not accurate and not synchronised. This propagation time once multiplied by the 
velocity of light represents an apparent distance, which is called pseudorange. The pseudorange to 
satellite i is thus the true range between the receiver’s antenna and the satellite’s antenna, plus the 
offset between receiver and satellite clock converted into distance. The general pseudorange model 
is given in equation (2.28) [3]: 
 

( ) ρµρ nvITcbcDcbttc iiiii
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su

i ++∆+∆+∆+∆−∆++−= )(  (2.28) 
 
where: 
− ut  is the user time at time of reception (s). 

− ub  is the user clock bias (s). 

uuu btt +='  is thus the actual user clock time at time of reception. 

− i

st  is the time of transmission of the i
th satellite (s). 

− ib∆  is the ith satellite clock bias (s). 
ii

s

i

s btt ∆+='  is thus the actual satellite clock reading. 

− iD∆  is the ith satellite position bias error effect on range (m). This term has to be taken into 
account if the position of the satellites is modelled with some error. 

− iT∆  is the tropospheric delay regarding satellite i  (s). 
− iI∆  is the ionospheric delay regarding satellite i  (s). 
− iv∆  is the relativistic time correction for satellite i  (s), usually negligible. 
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− µ  is the multipath affecting the measurement (m). 

− ρn  is the noise affecting the pseudorange measurement (m). 

− c is the velocity of light. c=299792458 m/s. 
 

All the above errors terms will be briefly discussed in the next section. For practical 
considerations, the measured pseudorange of equation (2.28) can be rewritten as equation (2.29). 
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− iy  is the pseudorange to satellite i  at time of reception. 

− ux , uy , uz  are the user position in ECEF coordinates. 

− i

sx , 
i

sy , 
i

sz  are the satellite position in ECEF coordinates. 

− ie  is the vector containing all the residual errors affecting the measurement of the geometric 
distance (except receiver clock bias) after correction using double frequency measurements or 
models involving data transmitted in the navigation message. 

 
The the computation of the user’s position requires at least four satellite pseudoranges. The 

unknowns are the user’s coordinate and the receiver’s clock bias. Since pseudoranges involve the 
position of the user, they are well suited for correction purposes if used as a reference with another 
navigation system. 
 

2.1.3.2 Doppler Measurement 
 

The Doppler frequency is closely related to the instantaneous rate of change of the received 
carrier phase. It is usually measured in L1 cycles per second (Hz). The model used in the following 
is given below through equations (2.30) and (2.31). 
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where: 
− ir

df
,  is the Doppler affecting the received signal and measured by the GPS receiver (Hz). 

− · is the time derivative operator. 
 

As for pseudorange measurements, the errors terms can be regrouped into one single noise 
term so that equation (2.30) can be rewritten as follows: 
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where: 
– LO

df  is Local Oscillator’s Doppler contribution (Hz). 

– user

df  is the user’s Doppler contribution (Hz). 

– satellite

df  is the satellite’s Doppler contribution (Hz). 

– fn  is the overall noise affecting the measurement (Hz). 
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These Doppler measurements can be used as a reference in order to correct any velocity 
error of another navigation system. 
 

2.1.3.3 Carrier Phase Measurement 
 

Another measurement that can be used to compute the position of the receiver’s antenna is 
the phase of the incoming carrier. The geometric distance from the satellite to the receiver’s antenna 
is then the number of cycles the carrier has done when propagating. As a carrier cycle is about 20 
centimetres at GPS L1, the positioning using such a measurement provides a much better accuracy 
than the positioning using pseudorange measurements, the counterpart being a more complex data 
processing. Phase measurements are provided by the PLL. The general model is as follows: 
 

( ) ( ) ( ) ( ) ϕϕ λµϕ nNTIbbczzyyxx satusersatusersatusersatuser +⋅++∆+∆−−⋅+−+−+−= 222   

 
where: 
− φ is the carrier phase (in metre). 
− µφ is the multipath contribution affecting the carrier phase measurement (0-λ/4 metre). 
− N is the carrier phase ambiguity (random number). 
− λ is the carrier phase wavelength. 
− nφ is the noise affecting the carrier phase measurement (≈ 1 millimetre). 
 

Carrier phase measurements will not be used in this thesis. 
 

2.1.4 Measurement Errors 
2.1.4.1 Satellite Orbital Error ∆D 
 

The satellite orbital errors are the discrepancies between the true satellite positions and the 
positions that are computed by the user’s receivers. The prediction of the orbit is modelled and sent 
as part of the navigation message [1]. Although the satellite orbits are monitored continuously, the 
accuracy of the satellite position prediction model in the navigation message is limited because of 
the accuracy of the orbit model and the number of orbital parameters to upload per day per satellite. 
The error on the computed satellite position translates into an equivalent measurement error. That 
equivalent measurement error is equal to the projection of the user-to-satellite position error on the 
satellite Line-of-Sight (LoS). Therefore, that error is bounded by the satellite position error. It is 
usually limited to a few metres in a nominal mode. 
 

2.1.4.2 Ionospheric Error ∆I 
 

The ionosphere is the layer extending from the altitude of about 50 km to about 1000 km. It 
is composed of free electrons and ions, whose physical properties change widely between day and 
night [8]. The free electrons disturb the refractive indices of the various layers of the ionosphere, 
affecting in the same time the propagation of the GPS signals (change in propagation velocity [9]). 
When using double frequencies measurements, the ionospheric error can be almost completely 
removed (not in the scope of this thesis). To reduce the error due to the propagation through the 
ionosphere, special algorithms have to be used, as for example the Klobuchar algorithm. This 
algorithm requires coefficients that are transmitted in the navigation message in order to remove 
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nearly 50% of the ionospheric error [1]. In a nominal mode, the typical ionospheric error is within 0 
to 50m. 
 

2.1.4.3 Tropospheric Error ∆T 
 

The troposphere is the neutral region of the Earth’s atmosphere extending from the Earth’s 
surface up an altitude of 50 km. The propagation delay introduced by the troposphere has a wet 
component and a dry component [9]. The dry component is responsible for about 90 % of the whole 
error and can be well predicted. The wet component is far more difficult to estimate because vapour 
density vary with the local weather. The typical tropospheric error is within 2-30m. There are many 
models to correct the tropospheric error. It has to be computed by the user, because no information 
is transmitted trough the navigation message. One simple model that is often used is the Hopfield 
model [59], [12]. 
 

2.1.4.4 Multipath µ 
 

Multipath refers to the phenomenon of a signal reaching an antenna via two or more paths 
along with the direct Line-of-Sight GPS signal. It generally occurs when the user is near tall 
building, inside buildings, under trees… Its mitigation is very hard to completely achieve. 
Multipath can introduce negative and positive error on the pseudorange measurement depending on 
the phase of the multipath signal. The position solution accuracy may be very affected by such 
error, especially in urban environments. In a nominal mode, this error is bounded by ±150m [2]. For 
non-LoS signals, often called echo-only signals, this error is much greater than the previous one. As 
discussed in [10], it depends on the reflected signal geometry. Several techniques have been 
developed for mitigating multipath based on the design of the receiver but also the antenna. One of 
the most effective techniques based on the design of receiver architecture is the Narrow Correlator 
technique [11], which is extensively used. 
 

2.1.4.5 Time Synchronisation ∆b 
 

Even if high accuracy clocks are used to generate GPS signals on board, the satellite clocks 
are affected by some drift. The clock correction for each satellite clock is transmitted in the 
navigation message. It is composed of several parameters that represent a second-order polynomial 
in time [1]. Taking also into account some relativistic effects and the group delay [1], the error 
introduced by satellite clock bias can be reduced to only 0.1m. 
 

2.1.4.6 Tracking Loops Jitter 
 

As discussed above, the tracking loops, namely PLL (or FLL) and DLL continuously 
estimate the carrier phase shift (or Doppler) and the code delay. Given the discriminator used in the 
loops, the standard deviation of the estimations may vary but whatever its type, the tracking process 
introduces noise on the phase shift and code delay measurements, which consequently increases at 
some extend the error on the pseudorange. Expressions of phase (PLL) and code (DLL) jitters due 
to thermal noise are given in section 2.1.2.2. 
 



GPS-Based Positioning 

Page 26 

2.2 GPS Processing Enhancement 

2.2.1 Positioning Technologies and Issues 
 

The GPS is part of a series of complementary location solutions. Indeed various positioning 
technologies have been developed for GSM/EDGE & UMTS applications in order to enable the 
localisation of one person. 
 

The Cell-Id (Cell Identity) also called COO (Cell of Origin) or CGI (Cell Global Identity) is 
the simplest network-based technology. The network based solutions rely only on intrinsic 
capabilities of the network such as the identity of the originating cell for the standard Cell-Id 
technology. Several other techniques are deduced from it. It is the case for Cell Id + timing advance 
for instance. This technique involves the timing advance measurement giving information of the 
distance separating the user from the BTS. Cell Id ++ is also a derivation from Cell-Id. It adds a 
measurement of signal strength viewed from several adjacent cells (called NMR techniques). The 
performances of such methods depend on the density of the cells. It can be between 100m to several 
kilometres. 
 

The Time of Arrival (TOA) and Angle of Arrival (AOA) are network-based positioning 
technologies. Both are up-link methods where a known signal is sent by the mobile and received by 
three or more BTS equipped with Location Measurement Units (LMU). The Cell-Ids, TOA values 
and TOA measurement quality are returned to the Service Mobile Location Center (SMLC) where a 
hyperbolic triangulation is performed by using a Positioning Calculation Function (PCF), based on 
the known Relative Time Difference (RTD) and the BTS positions. The TOA method is 
standardised, the available standards are within GSM TS 03.71, under ETSI 101 724. It is to be 
noted that the BTS are not synchronised in the GSM architecture. One of a key role of the LMU is 
to manage the synchronisation with an external system, typically GPS. The performances are within 
50m to 100m, with non negligible difficulties to enable the 3D location of the user. 
 

The Enhanced Observed Time Difference (E-OTD) technology is one of the various 
handset-based technologies. It is a down-link method where the handset measures the relative time 
of arrival of the signals transmitted by at least 3 BTS: this difference is called Observed Time 
Difference (OTD) and allows triangulation computation. It is the opposite of the TOA. It is also 
standardised. The performances and the limitation are quite identical to the TOA.  
 

All these solutions are complementary and each solution is more suited to the requirements 
of a given application. But they all involve some extra infrastructure making some solution not cost 
effective, and the accuracy of the position solution is medium. GPS, and even more GNSS, is more 
adapted to applications requiring precise positioning. It also requires no extra infrastructure but a 
chipset to decode and process GPS signals. As a consequence, this makes it very suitable to fulfil 
the location requirements of applications such as: 
– Emergency services: E911, E112, guidance of rescue teams etc… 
– Tracking services: fleet tracking, dangerous goods, worker safety… 
– Billing: variable billing depending on the location of the user, tailoring billing etc… 
– Navigation services: information to find a given destination, real time traffic information 
 

Nevertheless, the technique has limitations due to errors that affect the incoming signals. 
Indeed, such Location Based Services are likely to be deployed in urban areas. High multipath may 
affect the signals contributing to a high position bias. Moreover, GPS signals may be blocked or 
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faded by buildings, which consequently will decrease the availability of the positioning service. 
Improvements are thus needed. 
 

2.2.2 High Sensitivity GPS 
2.2.2.1 Principle 
 

To deal with weak GPS signals, new techniques have been developed since now several 
years. As discussed in the above section dealing with the GPS processing core, the noise power 
affecting the incoming GPS signal is reduced after the correlation with a local replica of the 
spreading code to detect. For a given integration duration, the higher the coherent integration time, 
the better the reduction of the noise power at the output of the correlator, i.e. the higher the 
probability of detection (see Figure 2.6). 
 

To enhance the sensitivity and thus the availability of the position solution using GPS, High 
Sensitivity techniques based on the use of long integration times have been developed [13], [14]. 
The processing gain is tremendously increased with such long coherent / non-coherent integration 
times so that the processing of signal with power as low as -188 dBW is possible, as done with 
current HS chipset (see for instance [23] or [24]). 
 

One of the main drawbacks of such technique is the computational burden that tremendously 
increases for a typical 12 channels receiver trying to process weak GPS signals. As shown in Figure 
2.11, the acquisition of signals with very low C/N0 (let say below 25dBHz) requires long dwell 
time. As a consequence, the time needed to successfully acquire such signals dramatically increases, 
as shown in Figure 2.12 for the typical single dwell serial search technique. Computation resources 
are also needed to fight heavy multipath and cross-correlations that affect the incoming signals. 
 

 
Figure 2.11: Single dwell serial search probability of 

detection for a constant dwell time of 500ms. 

 
Figure 2.12: Single dwell serial search mean 

acquisition time for a constant dwell time of 500ms 

 
To face the increase of the computational load due to the processing of signals with very 

weak power, two techniques are mainly used. The first one handles the computational issue by 
integrating hundred thousands correlator in a single die [15]. The massive correlation capabilities of 
such hardware designed HSGPS receiver allow the navigation in light indoor-like environments as 
well as in most of urban streets. 
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The second technique is rather based on a software implementation of the correlation 
process. To reduce the acquisition time, a technique based on the Wiener-Kinchtine relation and 
basic Fast Fourier Transform (FFT) is used. Instead of having a coherent integrator where the 
spreading codes are correlated, the new method based on FFT performs directly the correlations for 
all code bins at once. To compute the cross-correlation, we need at least one period samples of the 
spreading code. If not, only partial correlation can be computed, which decreases the performances. 
Since the spreading code is periodic with period N, the cross-correlation is also periodic with the 
same period. It is then possible to express the cross-correlation function of the spreading code as a 
function of Discrete Fourier Transforms (DFT). The digital cross-correlation function of a 
spreading code can be written as given in equation (2.32). 
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− N is the period of the C/A spreading code (1ms). 
 

The cross-correlation of the spreading code is thus as given in equation (2.33): 
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Given the fact that the sum of complex exponentials is equal to zero if k+l is different from 

zero, the cross-correlation of the spreading code is thus as follows: 
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where: 

– [ ])(ncDFT  is the complex conjugate of the DFT of the spreading code. 
 

∑
M

 
Figure 2.13: FFT-based acquisition scheme. 

 
Once the received signal has been cumulated over Tp seconds, the FFT process is engaged to 
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compute the correlation between the incoming signal and the locally generated spreading code. 
Since Tp equals at least the period of the spreading code, we obtained after one processing the cross-
correlation function over the coherent integration time Tp for a given Doppler shift. The basic 
scheme of an FFT acquisition structure is shown below in Figure 2.13. 
 

2.2.2.2 Performance Overview 
 

Even with the increase of correlation computation capabilities, the sensitivity of HSGPS 
found its limitation in the tracking of weak signals. Once the signal is acquired, the time and the 
frequency shall indeed be tracked and the navigation data have to be retrieved. The most prone to 
difficulties steps are on the one hand the carrier phase tracking for sensitivity purposes and on the 
other hand the data demodulation for sensitivity reasons as well but also for Time to First Fix. 
 

The first limitation is the phase tracking. The jitter of a typical Costas PLL applied to a GPS 
L1 signal is given in equation (2.17). Given the typical use case of a tracking loop bandwidth of 
20Hz and an integration time of 20ms, the 3-sigma tracking jitter is represented in Figure 2.14. A 
good rule of thumb for such a tracking loop is that the 3-sigma jitter shall not exceed 45° to keep 
the loop locked. This yields the working threshold of such a PLL to be approximately 25dBHz. As a 
consequence, the carrier phase tracking of signal weaker than 25dBHz is not possible. HSGPS 
performs then code-only tracking. 
 

The second limitation comes from the demodulation of the data. To be able to compute a 
position, the receiver shall demodulate a number of absolutely necessary data such satellite 
ephemeris, satellite clock corrections, handover word (HOW), ionosphere corrections (even if it is 
not absolutely necessary if we can tolerate an error of several metres). This limitation is also 
twofold. First, for a functioning point of view, where the probability of making no error on the 
demodulation of the ephemeris/clock block is higher than 0.9 (i.e. with a very low Bit Error Rate), 
the minimum required signal to noise ratio is 25dBHz, as shown in Figure 2.15. Second, the TTFF 
is at least 30 seconds since the ephemeris and the clock block are broadcast every 30 seconds, as it 
was explained in a previous section. 
 

 
Figure 2.14: Costas Phase Lock Loop tracking 

performance. 

 

Figure 2.15: Probability of no error (BER of 0) in 

the demodulation of the ephemeris/clock block 

(White Gaussian Noise Channel). 
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An overview of the performance that 
can be achieved with a HSGPS receiver is 
shown opposite. In this test, a HSGPS SiRF 
Star III based receiver was put on the 
dashboard of a car. In the same time, a 
geodetic grade GPS receiver OEM4 from 
Novatel was also embedded with its own 
antenna set outside the vehicle. The test took 
place in a residential area of Toulouse with 
medium buildings and streets bordered with 
trees. The OEM4 position solution is clearly 
not relevant of the true trajectory followed 
during the test (shown in grey). Opposite, the 
red path of the HSGPS position solution is far 
more relevant of the true trajectory, even if in 
some areas large multipath affect the solution. 
The HSGPS outperforms the geodetic grade 
receiver in such urban environment.  

Figure 2.16: Comparative navigation test in urban 

environment. 

2.2.3 Assisted GPS 
2.2.3.1 Principle 
 

The Assisted GPS (AGPS) technology appeared in recent years and represents a key turning 
point. It stands indeed for the technology which paves the way for mass-market-location-oriented 
applications. The great success of such a technology finds its origins in a powerful hybridisation 
between a world wide location means – GPS – and a mass market communications means – 
GSM/UMTS. AGPS is a break-even technology since it significantly compensates the major 
difficulties encountered when processing weak signals using High Sensitivity techniques. 
 

AGPS is a positioning system sharing the same processing core as HSGPS, but using 
external sources to help the receiver to perform ranging measurements and position computation. 
These external sources are mainly composed of an assistance server and a reference network. The 
assistance data provided to the AGPS receiver by the assistance server are transmitted through the 
reference network. The assistance from the network makes the AGPS receiver operate faster than it 
would unassisted, as for example HSGPS, because a set of task it would normally handle is shared 
with the assistance server. 
 

Basically, AGPS provides the user with some interesting features compared with standard 
GPS and HSGPS: 
– It reduces the TTFF (very short latency) to get a position by sending satellite data much more 

rapidly through the mobile network instead of demodulating the GPS signal in space. As a 
consequence, AGPS improves the power consumption of the GPS chipset. 

– It increases the sensitivity, and then increases the availability of the location service, particularly 
in dense urban area and indoor environments 

 
As presented earlier, the principle of assisted-GPS consists of coupling satellite positioning 

and communication networks, sending assistance data to the receiver to improve its performance. 
Its basic principle is illustrated in Figure 2.17 and described in details below. 

Start 
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�On demand assistance
data is sent
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GPS

 
Figure 2.17: Assisted-GPS basic principle. 

 
Step 1: 
The AGPS server is integrated in the mobile operator network and collects permanently the satellite 
data provided by the GPS constellation. 
 
Step 2: 
The location can be requested by the mobile user or by an external application on the network. To 
help its location process (satellite signals acquisition, pseudo ranges (PR) measurement), the mobile 
phone requests some assistance data to the Assisted GPS server. The mobile chooses the type of 
assistance data it requires among the standardised data defined in the 3GPP TS 44.031 for 
GSM/EDGE and TS23.371 for UMTS. 
 
Assistance data help improving both acquisition and tracking of GPS signals. For the acquisition 
phase, the sensitivity and the TTFF are tremendously improved. The very first step of the 
acquisition phase is to synchronise on the GPS signal in space. This process is based on a time-
frequency search in a given domain, as illustrated in Figure 2.18. 
 

 
Figure 2.18: AGPS acquisition enhancement. 

 
The frequency range research is linked to uncertainties coming from the preponderant 

� Reduced 

Time range 

(pre synchronisation) 
� Reduced 

Frequency range 
(ephemeris + Cell Id) 
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unknown satellites Doppler, the local oscillator drift, and the user dynamic. The sensitivity, and the 
complexity of the receiver processing are directly linked to the frequency range to be checked. The 
assistance data allows a terminal to pre compute the satellite Doppler, and to remove the local 
oscillator drift. The reduction of the scanned frequency domain directly improves the sensitivity and 
the time to fix. In the same sense the time uncertainty to be swept is directly linked to the time 
uncertainty of the receiver. The assistance data allows the receiver to reduce this time uncertainty 
and then to focus even more the processing on the smaller time-frequency domain, and then 
improve the sensitivity. 
 
After the first step of the acquisition process and before being able to provide a position solution, a 
standalone receiver shall demodulate the navigation model. The necessary data are broadcast every 
30 seconds, which presents a TTFF limitation for a standalone GPS receiver. This limitation is 
completely removed thanks to the assistance data. In addition, the demodulation of the SIS data 
presents a great limitation in terms of sensitivity. The constraints being removed thanks to the 
assistance data, the sensitivity is also improved. 
 
For the tracking phase, the sensitivity is again increased. Thanks to the assistance data, the 
processing can be improved in order to focus on the code tracking. It tremendously improves the 
tracking sensitivity with respect to a standard standalone processing. 
 
The A-GPS server elaborates and sends the assistance data with respect to the data requested and 
the location of the users. For the time being, there are two standardised ways to transmit the 
assistance data: 
– Control plane implementation. This implementation uses the signalling layers of the 

communication network to convey the assistance data to the mobile phone and to retrieve 
position information from the telephone. The protocol is standardised in the TS44.031 (RRLP) 
for GSM and the TS23.371 (RRC) for UMTS. The advantage of the control plane 
implementation is precisely that it uses the low layers of the communications which means that 
assistance data can be conveyed to the users even if they have no SIM cards (E112 emergency 
calls requirements). 

– Secure User plane Implementation; This implementation uses the high level layers of the 
communication network, i.e. the applicative layers. This is dealt with by the OMA 
standardisation group. Nevertheless the protocol used for assistance data transmission is the 
protocol defined at 3GPP level (RRLP for 2nd generation cellular networks, RRC for 3rd 
generation cellular networks). The data are then exchanged through IP. The advantage of such a 
solution is that the applicative layer has a much higher data rate. Nevertheless, the user can 
access to this layer only if it has subscribed, which raises an issue when it is question to deal 
with emergency calls. 

 
Step 3 and 4: 
The handset equipped with the AGPS receiver processes the GPS satellites signals and computes its 
position. There are two ways to compute the location: 
– MS-Based: the AGPS chipset in the mobile phone computes itself the location. 
– MS-Assisted: the pseudoranges are sent back to the server. The server computes the location 

that is sent back to the handset. 
 

2.2.3.2 Enhanced AGPS 
 

The Enhanced AGPS is the technology developed by Alcatel Alenia Space that enhances 
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AGPS in using EGNOS data to add in the standard assistance data. EGNOS is a system for which 
Thales Alenia Space is the prime contractor. It is composed of a network of stations deployed 
world-wide, collecting GPS data and measurements to deliver measurement corrections, end user 
accuracy estimation and alarms to any user via 3 geostationary satellites. The system is operational 
since 2005. 
 

The Enhanced AGPS technology provides a number of enhancements compared to the 
standard AGPS. First, the accuracy is improved thanks to the corrections computed by the EGNOS 
system (correction of the propagation errors as well as satellite orbital and onboard clock errors) 
and transmitted to the handset receiver. It enables to reach the best achievable accuracy 
performances thanks to an optimal combination of the local differential data and the EGNOS wide 
area data. Moreover, EGNOS may enable the increase of the position solution, particularly in urban 
areas where the receiver faces an important masking angle, so that the satellite geometry may be 
very poor leading to a degraded accuracy. As an example, for an ideal receiver the accuracy over 
France with only one AGPS server is illustrated in Figure 2.20. 
 

 
 
 

 
Figure 2.19: EGNOS coverage. 

 
 

Figure 2.20: Positioning server accuracy. 

 
EGNOS also allows the increase of integrity thanks to the detection and correction of any 

GPS system failure using EGNOS integrity function even in indoor conditions, typically where 
classical RAIM techniques fail [50]. 
 

2.2.3.3 Acquisition Performance 
 

To analyse the performance of the acquisition stage of an AGPS receiver in terms of time to 
successfully acquire one signal, several statistic simulations are conducted. More specifically, the 
analysis focuses on the performance of a software-based acquisition stage. As described in a 
previous section and also detailed in [16], it is possible to give an expression of the test statistic T at 
the output of the acquisition stage given in equations (2.11) and (2.12). Therefore, it is possible to 
simulate the entire acquisition process by directly generating the output T as a function of the 
coherent integration time and non-coherent integration time. Consequently, in order to estimate the 
performance of the acquisition stage to successfully acquire one GPS signal, the output of the 
acquisition loop is generated according to a randomly chosen correlation peak position and given 
the number of non-coherent integrations, coherent integrations as well as the C/N0 of the signal to 
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acquire and the residual Doppler. 
 

Once the criterion T is generated, the detection process based on maximum peak detection is 
done. If the detection fails, the dwell time is increased until the correlation peak is successfully 
detected. For each C/N0 within the range 17dBHz – 30 dBHz (which is considered as typical C/N0s 
encountered indoors and in urban environements), the acquisition procedure is repeated 10000 
times to get a statistic estimate of the required signal duration Probability Density Function (PDF) 
and Cumulative Density Function (CDF). Simulations are run for a static user and typical indoor 
C/N0s (C/N0s values have to be understood as C/N0s at the output of the quantifier stage, which is 
the last filter of the RF front-end part). 
 

For each simulation, the mean time required to have a successful acquisition is computed. 
Figure 2.21 presents these mean times as a function of the C/N0, given a false alarm probability of 
10-5 and for three different coherent integration times of 1ms, 10ms and 20ms (20ms being the 
upper coherent integration limit due to the navigation message data bit transition). As expected, the 
higher the coherent integration time, the lower the length of signal that has to be processed. Signal 
durations are very small compared to the ones obtained with a standard single dwell serial search 
procedure (see Figure 2.7). This demonstrates that the FFT acquisition strategy based on a 
maximum detection test is much more efficient. 
 

 
Figure 2.21: Mean signal duration required for a successful acquisition. Pfa = 1e-5, no frequency error. 

 
Following the result of the above simulation, the overall time needed to acquire one satellite 

with respect to its C/N0 is deduced. This time can be divided into two parts, the first one being the 
useful signal duration (or required signal duration, as estimated above), the second one the time 
needed to process that signal. The processing time is related to the performance of the processor 
used for computations. This time can not be neglected since many FFT operations are done in the 
acquisition stage. In the following the processing time is estimated based on the mean signal 
duration as shown in Figure 2.21. 
 

The time needed to process the required mean signal duration is analysed with the 
characteristics of a TMS320C55x DSP from Texas Instruments with a clock speed of 168MHz. The 
overall mean acquisition time taking into account both the mean signal duration and the processing 
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time for three coherent integration times is plotted in Figure 2.22. For light indoor environment 
where C/N0s are typically between 20dBHz and 30dBHz, the overall time needed to successfully 
acquire one satellite is well below 5 seconds for large coherent integration times, and less than 8 
seconds for the other cases. Obviously, the lower the C/N0s, the greater the time to successfully 
acquire one signal. 

 
From these simulations, it is interesting to notice that long coherent integration times are 

needed in order to acquire and consequently use weak signals to compute the position of the user in 
indoor environments. Even if the computational power has well increased in the up-to-date chipsets 
which makes possible the use of such long integration times, it nevertheless makes the receivers 
very sensitive to the user’s dynamic. Any motion may indeed change the position of the correlation 
peak in the search matrix as shown in Figure 2.18 while performing long integrations, which in turn 
may reduce the correlation processing gain at the output of the correlation stage. Such an effect is 
partially handled with the computational power available in the receiver, but still is one major issue 
in harsh environments. 
 

 
Figure 2.22: Mean acquisition time for a successful acquisition. Pfa=1e-5, no frequency error. 

 

2.3 HS-GPS / AGPS Performance Analysis 

2.3.1 HSGPS / AGPS Modules 
 

In order to analyse the performance of AGPS versus HSGPS, a comparative test campaign 
has been conducted within the Thales Alenia Space field trial. A complete report of the test 
campaign can be found in [17]. It consists in using an A835 and A1000 Motorola handset, an 
assisted GlobalSat BT338 and an HP 6515 handset connected to the Thales Alenia Space server that 
provides with assistance data. The aforementioned handsets are fully implemented with AGPS 
technology. Pictures as well as basic characteristics are given below. The performance of the 
different navigation modules are compared with those obtained with a standalone HSGPS bluetooth 
BT 338 module. In all the following test cases, it is considered that a valid position fix is obtained 
when the location procedure (including protocols with the assistance data server, if any) ends up 
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with at least 4 acquired satellites and position solution accuracy better than the cell size the user 
relies on. 
 

 
HP 6515 

(Global Locate) 
MS-Based 

 
GlobalSat BT338 
(SiRF star III) 

Standalone / MS-Based 

 
Motorola A835 
(SiRF star II) 
MS-Based 

 
Motorola A1000 
(Motorola) 
MS-Based 

 

2.3.2 Performance Assessment 
 

The performances of the AGPS modules are assessed through the position accuracy with 
respect to a reference position, the TTFF and the availability of the position solution. The reference 
position is whether computed using geodetic grade receiver whose antenna is placed outdoors 
approximately at the vertical of the position of the indoor handsets, or using a reference point on a 
digital map. In both cases, the accuracy of the reference point is known at most within ±3 metres. 
 

2.3.2.1 Accuracy 
 

The accuracy of the position solution is characterised by three different quantities. The first 
one is the RMS error computed according to equation (2.35), which involves as a first 
approximation the latitude and longitude errors. The 2D bias affecting the different position 
solutions is defined according to equation (2.36), whereas the sigma 2D error is computed 
according to equation (2.37). 
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where: 
– N is the number of valid position fixes 
– long_error is the longitude difference [m] between the ‘true’ position and the measured one.  
– lat_error is the latitude difference [m] between the ‘true’ position and the measured one. 
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where: 
– kk ϕλ ,  are the longitude and latitude result of the kth trial. 
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– refϕ  is the latitude of the reference position. 

– tR  is the earth’s radius at equator. 
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2.3.2.2 Time-To-First-Fix 
 

It corresponds to the time to get a valid position fix when activating the location function. It 
is only relevant when performing a cold start fix. For the AGPS receivers, the TTFF includes the 
transmission duration of the assistance data from the AGPS server to the AGPS handset. 
 

2.3.2.3 Availability 
 

It corresponds to the ratio between the number of valid fixes and the total number of trials. It 
is expressed in percentage. A fix is considered valid only if it is computed with at least 4 satellites 
and within 2 minutes timeout. 
 

2.3.3 Comparative Test Results 
 

The tests are performed in two types of environments. The first environment is light indoors 
in the office of a building with steel walls, as shown in Figure 2.23. The second environment is a 
urban canyon as illustrated in Figure 2.26. Outdoors tests under clear sky conditions have also been 
conducted, but since the positions where all accurate, no detail about the performance of the 
different location modules are given in the following. This section ends with kinematic tests. 
 

2.3.3.1 Light Indoor Environment 
 

Table 2.1 gives the cold start results inside the light indoor environment shown in Figure 
2.23 of the three types of handsets. As expected, the MS-based handsets give the best performance 
in terms of TTFF (21s for the Motorola A835, 15s for the BT-338) compared to the reference 
HSGPS (BT-338 in standalone mode). The accuracy of the first position solution depends on the 
chipset that is used, but comparing handsets using the same SiRF star III processing core, the AGPS 
solution is of better accuracy than those of the HSGPS reference receiver, maybe due to a better 
Dilution of Precision. 
 

These results are just an illustration of the performance that can be achieved with such 
receivers and shall not be considered as typical cold start performance, as the number of trials is 
sometimes quite small. 
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Figure 2.23: Light indoor environment. 

 

 

Handset A835 
BT-338 

Standalone 
BT-338 
MS-Based 

Nb of trials 200 4 4 
Bias 2D 5.21m 3.5m 0.1m 
Bias 3D 5.9m - - 
σ2D 57m 0.2m 0.6m 
σ3D 45m 0.7m 2.9m 
TTFF 21s 68s 15s 
Availability 100% 100% 100% 

Table 2.1: Light indoor cold start test results. 

The tracking test results are summarised in Table 2.2 for all the handsets used in the field trial. All 
the receivers give an accurate position solution (except the A1000 handset). The solution provided 
by the assisted receivers is less noisy, as it is shown in Figure 2.24 and Figure 2.25. This may be 
explained by the better DOP experienced by AGPS receivers that improves the accuracy of the 
position solution. 
 

Handset A835 
BT-338 

Standalone 
BT-338 
MS-Based 

HP 6515 A1000 

Nb of trials 152 200 645 182 264 
RMS Error 9.9m 11.8m 1.1m 6.9m 35m 
Bias 2D 9m 3m 0.6m 7m 23m 
Bias 3D 9m 9m - 11m 35m 
σ2D 4m 11m 0.9m 1m 26m 
σ3D 23m 20m 2.6m 1.7m 60m 
Availability 100% 99% 100% 99.5% 100% 

Table 2.2: Light indoor tracking test results. 

 

 
Figure 2.24: 2D plot of BT-338 (standalone) in light 

indoor environment. 

 
Figure 2.25: 2D plot of BT-338 (MS-based) in light 

indoor environment 
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2.3.3.2 Urban Street Environment 
 

This test was conducted in a very narrow street in Toulouse, France. Figure 2.26 and Figure 
2.27 give an overview of the location where the test was conducted. All the handsets were put on 
the roof of a vehicle so that the antennas were pointing to the sky with no obstacle. 
 

 
Figure 2.26: Urban street environment (heading 

north). 

 
Figure 2.27: Urban street environment (heading 

south). 

 
In a first time, static cold start positioning was tested. Results are given in Table 2.3 using a 

mask angle of 5 degrees. It is obvious that the AGPS receivers outperform the HSGPS reference 
receiver in terms of TTFF. Providing through the cellular network the ephemeris of the satellite in 
visibility is a clearly advantage that faces quite well the issue of the reduction of the noise power as 
well as the demodulation of the navigation message for each satellite. 
 

Handset A 835 
BT-338 

Standalone 
BT-338 
MS-Based 

Nb of trials 85 5 4 
TTFF  42s 2min30s 31s 
Availability 76% 100% 100% 

Table 2.3: Urban street cold start test results 

 
The tracking of the position of the user shows again that AGPS receiver gives the more 

accurate position solution in such harsh environment, as it can be seen in Table 2.4. 
 

Handset A 835 
BT-338 

Standalone 
BT-338 
MS-Based 

HP 6515 

Nb of trials 152 >1000 79 >1000 
RMS Error 18.8m 23m 8.5m 17.5m 
Bias 2D 17m 20m 8.3m 5m 
σ2D 7m 10m 1.8m 17m 
Availability 100% 100% 100% 100% 

Table 2.4: Urban street tracking test results. 

 
The different position solutions are again less noisy with AGPS receivers. As a comparison, 
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the position solutions computed with both BT-338 (one HSGPS, one AGPS) are plotted in Figure 
2.28 and in Figure 2.29. To explain such results, it would have been useful to analyse to number of 
satellites used to compute the position as well as the Dilution of Precision. However, both quantities 
were not available in the data recorded during the trials. 
 

 
Figure 2.28: 2D plot of BT-338 (standalone) in 

urban street environment. 

 
Figure 2.29: 2D plot of BT-338 (MS-based) in urban 

street environment. 

 

2.3.3.3 Kinematic Urban Test 
 

A dynamic test has been conducted in dense urban area to assess the tracking capabilities of 
the different chipsets. It clearly appears that once again, AGPS outperforms HSGPS, as illustrated 
in Figure 2.30 and in Figure 2.31. 
 

 
Figure 2.30: 2D plot of BT-338 (standalone) in 

urban dynamic test. 

 
Figure 2.31: 2D plot of BT-338 (MS-based) in urban 

dynamic test. 

 
There is indeed no need to demodulate the ephemeris of the satellite in visibility since they 

are transmitted through the assistance data. As a consequence, as soon as a satellite is acquired and 
tracked, it can be integrated into the set of measurements used to compute the user’s position. This 
is a clear advantage of AGPS against HSGPS. The DOPs are therefore better in that case, which in 

Tall 
buildings 
area 
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part explains why the position solution is more smoothed and accurate. 
 

2.3.3.4 Indoor Test 
 

The performances of AGPS and HSGPS receivers in harsh environment have been finally 
tested. The results presented hereafter have been obtained using one GlobalSat BT338 module 
which can be configured whether in AGPS or in HSGPS mode. 
 

The tracking result of a pedestrian going inside and outside buildings are shown in Figure 
2.32 and in Figure 2.33 for the AGPS and HSGPS mode respectively. In both cases, the pedestrian 
starts its walk outside and follows the trajectory as illustrated by the yellow dashed plot in the 
direction indicated by the arrow. He then enters the building in ‘A’ and keeps walking inside until 
point ‘B’, and finishes its walk outside. 
 

As it can be seen in the two figures, the trajectory of the pedestrian inside the building is 
clearly not observable with the outputs of the GPS modules. As soon as the pedestrian enters the 
building, the position solutions become very inaccurate due to multipath and cross-correlation that 
dramatically affect the position computation stage. This clearly demonstrates the need of an 
alternative positioning system that would replace GPS during outages in order to provide positions 
inside buildings. 
 

 
Figure 2.32: AGPS tracking result of a pedestrian 

going outside / inside buildings. 

 
Figure 2.33: HSGPS tracking result of a pedestrian 

going outside / inside buildings. 

 

2.4 Conclusion 

 
This section recalled the basics of the GPS positioning technique. The typical issue (weak 

signal processing, multipath and cross-correlation impact, quality of the position solution…) 
encountered when using GPS to locate people in urban areas (even indoor) have been discussed. 
New GPS architectures designed to face these issues such as HSGPS and AGPS have been 
presented, and their performance have been analysed in terms of time to acquire, time to fix and 
position accuracy. Both AGPS and HSGPS have shown sensitivity and availability improvement as 
compared to standard GPS. Even if the number of trials that have been excersised are not large 

A B A B 
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enough to draw definitive conclusions, it nevertheless tends to demonstrate they both are suitable 
for urban positioning, although their respective accuracy degrades when the receiver operates close 
to tall buildings or inside infrastructures. 
 

The improvement of the processing core (HSGPS) and the architecture of the positioning 
system (AGPS) are somehow useless in very harsh environments such as inside big buildings or in 
deep urban areas, as shown with the two latter position solutions in Figure 2.32 and Figure 2.33. 
There is therefore a needed for augmentations if one would like to increase the position availability. 
 

In the frame of this thesis, the alternative system used to support or replace GPS during 
outages will be made of low-cost inertial sensors. The next chapter will present navigation 
algorithms based on these sensors. 
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Chapter 3: Inertial Navigation Systems 
 
 

This chapter describes the navigation algorithms that can be used with inertial sensors (i.e. 
accelerometers and gyroscopes). In a first time the basics on inertial navigation are recalled and 
notations used throughout this thesis are defined. A particular attention is then paid to the sensors, 
their intrinsic accuracy and expected performance with respect to their grade. In particular, the 
sensors unit assembly used in this thesis (the MTi IMU made by Xsens) is analysed. As the typical 
inertial sensors issues are described, this chapter details then the standard Inertial Navigation 
System (INS) mechanisation and discusses its performance regarding the sensors that are used. 
Finally, a specific analysis of the so-called Pedestrian Dead Reckoning mechanisation is given and 
a performance comparison with the standard INS is done. 
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3.1 Inertial Navigation Overview 

3.1.1 Basic principle 
 

The inertial navigation relies on the measurements provided by sensors contained in an 
Inertial Measurement Unit (IMU). The IMU is basically composed of a triad of accelerometers and 
gyroscopes orthogonally mounted. Such sensors can be integrated into two main types of inertial 
systems, namely gimbaled and strap-down systems. Gimbaled systems are actuated platforms, 
whose principle is to maintain the platform frame aligned with a specific navigation coordinate 
system. When achieved, the accelerometers mounted on the platform are used to measure the 
specific force along the navigation axes. These measurements are then processed to compute the 
position of the vehicle. The attitude of the vehicle is measured as the relative angles between the 
platform and the vehicle axes. Gimbaled systems are expensive and often used for high accuracy 
applications (aircraft, spacecraft…). 
 

In strap-down systems, the inertial sensors are fixed to in the vehicle itself, rather than in a 
stabilised platform. The sensors measure the dynamic of the vehicle so that the relationship between 
the measurements and the navigation state of the vehicle must be permanently computed. As a 
result, the computation load is increased compared to gimbaled systems. Such a drawback is 
currently of no problem due to major improvements in computer technology. Moreover, strap-down 
systems allow the reduction of the IMU size as well as its cost but at the expense of some accuracy. 
More details about gimbaled and strap-down systems can be found in [18] and [19]. Strapdown 
systems will be used within the scope of the study, since they are less expensive and more suited to 
miniaturisation. 
 

An Inertial Navigation System (INS) is a system composed of an IMU and a computer. It 
estimates the position of a mobile the IMU is mounted on by processing the measurements of the 
sensors contained in the IMU. It relies on Newton’s laws of motion. Any external force applied to 
an IMU generates acceleration and a rotation signal that are expressed in a specific reference frame. 
These measurements are processed to get the position, velocity of the vehicle in a coordinate system 
adapted to the navigation of the vehicle. Several coordinate systems and transformations are thus 
required to enable a relevant processing of the inertial data. 
 

3.1.2 Frames and Coordinates 
 

The relationship of the inertial measurements with the navigation state of a vehicle involves 
four reference frames. 
 
Inertial Reference Frame (I): 
It is a non-rotating Galilean frame, attached to the centre of the Earth with the ZI axis pointing 
toward the North Pole, whereas XI and YI axes both lie in the plane of equator, with the XI axis 
pointing toward the vernal point direction (i.e. the intersection between the orbital plane and the 
equatorial plane). The three axes are always pointing toward their respective direction. The inertial 
reference frame is illustrated in Figure 3.1. 
 
Earth-Centred Earth-Fixed (ECEF) Reference Frame (e): 
The ECEF reference frame is linked to the Earth. It is deduced from the inertial reference frame by 
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a rotation around the common Z axis (ZI or zECEF) of angle ΩE. xECEF of the ECEF coordinates is on 
the Greenwich meridian. The ECEF frame is illustrated in Figure 3.1. 
 

 
Figure 3.1: Inertial (I), ECEF (e) and navigation (n) 

frames. 

 
Figure 3.2: Navigation (n) frame. 

 
Local Geodetic Reference Frame or Navigation Frame (n): 
It is defined by a tangent plane, which is attached to a fixed point on the surface of the Earth. This 
point is the origin of the local frame. The north axis points toward the true north, the east axis points 
to the east and the down axis completes the right handed coordinates system pointing toward the 
interior of the Earth, but not necessary to the Earth’s centre. The down axis is perpendicular to the 
reference ellipsoid. The navigation frame is illustrated in Figure 3.1. 
 
Mobile Reference Frame (m): 
The mobile reference frame is defined by the orthogonal triad (xm, ym, zm) of Figure 3.2 attached to 
the mobile. The axes are assumed aligned with the IMU frame. In case where xm is defined as the 
forward axis, i.e. the axis in the direction of displacement, xm is called the roll axis. ym is then 
defined as the pitch axis and zm completing the direct reference frame is the yaw or heading axis. 
 

3.1.3 Sensors 

3.1.3.1 Accelerometer 
 

A simple and quite general way of understanding the principle of an accelerometer is to 
imagine it as a device that measures the force applied on a proof mass to accelerate it. Rigidly 
mounted in a vehicle, it then measures its acceleration. Details about various accelerometer 
operation principles can be found in [18], but basically, it can be considered as a spring with a proof 
mass µ at an extremity (the other being linked to the host vehicle). According to the fact that the 
proof mass is a punctual mass at position M , the second Newton’s law applied to the proof mass in 
an inertial reference frame (I) yields the following equation: 
 

MDRIM GFFa
rrrr ⋅++=⋅ µµ /  (3.1) 
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where: 
− IMa /

r
 is the inertial acceleration of the punctual proof mass µ  at position M , relative to (I). 

− RF
r
 is the resulting force applied on the proof mass by the restoring spring, and caused by the 

vehicle movement. 

− DF
r
 is a disturbing force regrouping all effects caused by friction, mechanical damping… 

− MG
r
 is the universal gravitational force, applied at M  on the mass µ . 

 

Neglecting the disturbing force DF
r
, equation (3.1) can be rewritten as follows: 

 

MIMR GaFf
rrrr

−== /µ  (3.2) 

 
where: 

− f
r
 is called the specific force. It is the true acceleration that is measured by the accelerometer. 

 
The accelerometers are orthogonally mounted into a measurement unit, whose axes can be 

as illustrated in Figure 3.2. Since this measurement unit is also rigidly mounted on the vehicle, the 
acceleration measurement is done in the reference frame linked to the mobile (the vehicle), i.e. the 
mobile frame. As a consequence, the accelerometer does measurements with respect to the inertial 
frame (I) that are expressed in the mobile frame (m). 
 

Due to the manufacturing process of the sensor, the measurements are affected by errors that 
vary with time, temperature, as well as the motion experienced by the sensor. The impact of these 
errors on the measurements accuracy is closely related to the quality of the sensor and the 
technology used. Nevertheless, a common output model can be derived in all cases. Equation (3.3) 
gives the general first order accelerometer output model: 
 

( ) aaa

out nbfSFa ++⋅+= 1  (3.3) 
 
where: 
– aout is the output of the accelerometer. 
– SFa is the scale factor affecting the true acceleration. 
– ba is the bias affecting the measurement. 
– na is the accelerometer noise. 
 

3.1.3.2 Gyroscope 
 

The gyroscope is the sensor used to compute the attitude of an Inertial Navigation System. It 
senses the rotation rate along the axis it is placed with respect to the inertial frame (I). As for 
accelerometers, the rotation rate is expressed in the frame the sensors are attached, i.e. the mobile 
frame (m). Details about various gyroscope technologies and principles of operation can be found 
in, for example, [18] and [19]. The general first order output model of a gyroscope is given in 
equation (3.4): 
 

( ) ωωω ωω nbSF trueout ++⋅+= 1  (3.4) 
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where: 
– ωout is the output of the gyroscope. 
– ωtrue is the true rotation rate experienced by the sensor. 
– SFω is the scale factor affecting the true rotation rate. 
– bω is the bias affecting the measurement. 
– nω is the gyroscope noise. 
 

3.1.3.3 Measurements Errors 
 

Both gyroscope and accelerometer measurements are affected by the same type of errors. 
The impact of these errors on the accuracy of the measurements is very dependent on the quality of 
the sensors that are used. Compared to the dynamic that is measured by the sensors, these errors 
have quite low magnitude, but since measurements are likely to be integrated, they dramatically 
decrease the inertial navigation performance as time increases. 
 

The noise affecting the measurement is the result of the electronic equipment needed for the 
sensor to work properly. It has random properties and usually can not be removed with 
deterministic models. It is rather considered as a first approximation as zero mean white Gaussian 
noise. In datasheets, it is often characterised by velocity random walk for accelerometers and 
angular random walk for gyroscopes, with a density expressed in unit of signal / √Hz. 
 

The bias is mainly composed of two parts. The first one is the turn-on bias, which varies 
every time the sensor is powered on. The repeatability of this part is quite poor for typical low-cost 
sensors, and thus should often be estimated. The second part is the in-run bias, whose variation is 
closely related to the motion experienced by the sensor. The latter contribution is the more difficult 
to estimate since the movement of the sensor is unpredictable. It will consequently introduce non-
negligible systematic errors in the measurements and thus must be modelled. Both bias components 
depend also on the operating temperature. 
 

The scale factor is the ratio usually expressed in PPM that characterises the non linear 
change in the output with respect to the change in the input, as shown in equations (3.3) and (3.4). It 
is a non deterministic error that also depends on the motion and the temperature experienced by the 
sensor. 
 

The IMU performance is driven by the three main errors described above. However, it also 
depends on the manufacturing process in the construction of the sensor triad. As a result of the 
possible misalignment of the sensors, each axis is affected by measurements of the other two axes 
in the body frame. Usually, such error is calibrated in laboratory by the manufacturer quite 
accurately. This kind of error is therefore not taken into account in the following. 
 

3.2 Strap Down Attitude Computation 

 
As described above, navigation and motion measurements are done in two different frames. 

It is usual to express the navigation status such as position and velocity in the navigation frame (n) 
North, East, Down rather than in any other reference frame. As part as inertial sensors properties, 
measurements are done in the mobile frame (m) that is attached to the vehicle. To express the 
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measurements in the navigation frame and perform inertial navigation, the relative orientation 
between these two frames has to be known. 
 

 
 

This relationship can be fully described by the position of the mobile frame origin expressed 
in navigation coordinates and the rotation matrix from the mobile frame to the navigation frame 
involving Euler’s angles. Euler’s angles are defined as three distinct rotations around particular 
axes, as shown below in Figure 3.3. They also are known as roll, pitch and yaw (heading) angles. 
 

 
Figure 3.3: Euler’s angles definiton. 

 
The triad of gyroscopes in the IMU provides the rotation rates along the three axes of the 

mobile frame. The global rotation rate of the vehicle the IMU is mounted on is thus given by 
equation (3.5): 
 

mmm

m

Im zryqxp
rrrr

⋅+⋅+⋅=Ω )(
/  (3.5) 

 
where: 

– )(
/
m

ImΩ
r

 is the global rotation rate vector of the mobile with respect to the inertial frame expressed 
in the mobile frame. 

– p  is the roll angle rate as measured by the gyroscope along the xm axis. 
– q  is the pitch angle rate as measured by the gyroscope along the ym axis. 
– r  is the yaw angle rate as measured by the gyroscope along the zm axis. 
 

3.2.1 Attitude Algorithm 
 

Several methods exist to compute the attitude of a mobile with respect to a particular frame. 
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Among them, the most well known and widely used are Euler’s angles and the rotation quaternion. 
Euler’s angle methodology was the first method used to continuously track the attitude of a vehicle. 
It relies on the integration of non linear differential equations as given in equation (3.6) [20]. 
However, this method requires numerous trigonometric operations and singularity issues may affect 
the computation of the Euler’s angles, especially for pitch angles of ±90°. 
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A more convenient and efficient method based on Hamilton quaternion [21] is used 

throughout this thesis. A Quaternion is a hyper-complex number invented by W.R. Hamilton for 
mathematical purposes. It is a combination of real and complex values, and is often written as given 
in equation (3.7). The real part of a quaternion is called the scalar part, whereas the imaginary part 
is often called the vector part. The unit vectors are the complex numbers i, j, k. 
 

{ 444 3444 21

rrrr

partvectorpartscalar

kqjqiqqq ⋅+⋅+⋅+= 3210  
(3.7) 

 
The quaternion as defined above can also be used to represent a rotation of a vector in a 

three dimensions space. The rotation of angle θ about the fixed axis D can be represented by the 
quaternion q, whose corresponding definition (equivalent to that of equation (3.7)) is given below in 
equation (3.8). A rotation quaternion is thus of unitary magnitude. 
 








+






=
2

sin
2

cos
θθ

uq
r

 (3.8) 

 
where: 
– u

r
 is a unit vector of the rotation axis D. 

 
According to quaternion operation rules, it can be demonstrated that for a small rotation, the 

time derivative of quaternion q can be expressed as a function of itself and the rotation rates of the 
mobile to characterise [21]. The classical quaternion differential equation, as given in equation (3.9) 
is used as the input of the quaternion-based attitude determination algorithm detailed in [20] and 
recalled in appendix B. It allows then the computation of the rotation quaternion from (m) to (n) in 
real time. 
 

)(
/2

1 m

nmqq ωo& =  (3.9) 

 
From a practical point a view, once the rotation quaternion has been computed, the 

relationship with the more convenient Euler’s angles is used for navigation. As it is shown in [20] 
or [21], the rotation matrix from the mobile frame (m) to the navigation frame (n) can be expressed 
as a function of quaternion’s components but also as a function of Euler’s angles. The two 
expressions are given below, where this rotation matrix from (m) to (n) is noted Rm2n, a cosine is 
noted c and a sine s. 
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It is then straightforward to determine the attitude angles based on the rotation matrix 

expressions as a function of quaternion’s components. The three equations are given below: 
 

( )( )20312arcsin qqqq +−=θ  (3.12) 
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3.2.2 Attitude Initialisation 
 

One issue dealing with gyroscopes measurements is that only relative rotation rates are 
sensed. The angles of attitude have thus to be initialised first before any real time tracking can be 
done. The initialisation of these angles is of tremendous importance since it can introduce some 
permanent angle offsets in the estimated attitude. The attitude initialisation can be divided into two 
procedures. They are the horizontal and azimuth alignment. The horizontal or inclination 
initialisation is often performed with the use of accelerometer measurements. Indeed, when the 
IMU is not moving, the accelerometers are likely to sense the gravity vector, as shown with 
equation (3.15). One can then use the gravity vector components to determine the inclination, i.e. 
the roll and pitch angles experienced by the IMU, as given in equation (3.16) and (3.17). 
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( )

zy aaarctanˆ =φ  (3.16) 

( )22arctanˆ
yzx aaa +−=θ  (3.17) 

 
The accuracy of the inclination estimation is very dependent on the quality of the 

accelerometers that are used. The inclination measurement procedure is illustrated in Figure 3.5. 
Assume an accelerometer whose measurements are affected by a bias, the estimated inclination 
angle may be corrupted depending on the intensity of that bias. In Figure 3.4 is shown the impact of 
typical biases on the estimation of the inclination angle (whether the pitch or roll angle) given 
typical true inclination angles. Obviously, the larger the bias, the larger the error on the estimation 
of the inclination. Moreover, the error increases as the inclination to estimate increases as well. 
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Figure 3.4: Estimated inclination angle error as a 

function of several accelerometer biases. 

 
Figure 3.5: Accelerometer inclination measurement 

scheme.

 
Azimuth initialisation requires fairly accurate gyroscope sensors to perform gyrocompassing 

[19]. In such an initialisation method, gyros affected by a drift rate far below the Earth’s rotation are 
required. Other methods using external sensors such as GPS or magnetometers can be employed for 
azimuth initialisation. The GPS-based method is the most robust one but needs special conditions to 
give accurate results. First, GPS azimuth is only available while the mobile is in motion, so that no 
static calibration can be done. Second, measurements are likely to be affected by noise and 
multipath in harsh environment such as indoors or in urban canyon, so that the GPS heading 
information may be very noisy as well. 
 

Magnetometers can also be used to initialise the heading computed based on IMU 
measurements. The magnetic heading is computed using the Earth’s magnetic field vector 
horizontal components (i.e. perpendicular to the gravity vector). This heading differs from the 
geographic north by an angle called declination, which is known and can be found for example in 
[22]. The magnetic heading accuracy depends on the quality of the magnetic measurements and on 
the interferences that may occur. It is also related to the accuracy of the inclination angles (i.e. roll 
and pitch angles) used to rotate the measurements from the mobile frame (m) to a horizontal frame. 
 

3.2.3 Euler’s Angles Singularity Issue 
 

The usual definition of the rotations associated to Euler’s angles φ, θ and ψ are given below. 
The rotation matrix Rn2m from (n) to (m) is the successive composition of the three rotations defined 
above, i.e. Rn2m=Rφ×Rθ×Rψ. The rotation matrix Rm2n from (m) to (n) is computed by transposing 
the transposition of Rn2m. 
 

 
 

When the pitch angle θ reaches ±90°, which may occur especially if the IMU is carried in a 
handheld device, singularities appear in the definition of the other attitude angles so that both roll 
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and heading angles computed based on equations 3.14 and 3.15 are no more relevant of the true 
ones. Indeed, as defined in equation 3.11, the rotation matrix Rn2m for such extreme values of pitch 
becomes as follows: 
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Only the difference between the roll and heading angles is observable. Both angles can not 

be extracted as individual values from this matrix. This issue is also well addressed if equation (3.6) 
is used to compute the attitude angles. Figure 3.6 illustrates the problem of the attitude angles 
restitution. In this test, the IMU is intended to be moved such as the pitch angle reaches 90°. As the 
pitch experiences extreme values, both roll and yaw (heading) are no more reliable. 
 

To get rid of this singularity issue, a basic idea is to virtually rotate the IMU when the pitch 
angle crosses a pre-determined threshold. If the pitch angle goes above this threshold, the IMU is 
rotated by an angle θ’ along the pitch axis while keeping both yaw and roll constant to decrease the 
pitch angle value. The attitude is computed taken into account this virtual rotation in order for the 
attitude angles to be relevant of the true attitude experienced by the IMU. The new rotation matrix 
available for Euler’s angles estimation is then as follows: 
 

TTT

nm

new

nm RRRRR '''22 ϕθψ ×××=  (3.18) 

 
where: 
– TR 'ψ  is yaw rotation with 0'=ψ . Thus 3' IRT =ψ . 

– TR 'θ  is the virtual pitch rotation. )(' threshold−−= θθ . 

– TR 'ϕ  is roll rotation with 0'=ϕ . Thus 3' IRT =ϕ . 

 
The effectiveness of this method is illustrated in Figure 3.7. Corrected angles are plotted 

using thick lines. As the pitch angle reaches ±90°, both roll and yaw are still observable and can be 
used for navigation purposes. The efficiency of such an algorithm is also demonstrated in chapter 6 
in the case of a pedestrian navigation where the IMU is worn in a pocket with a random attitude. 
 

 
Figure 3.6: Euler’s angles singularity issue. 

 
Figure 3.7: Euler’s angles singularity resolution. 

Singularity leading to unreliable 
roll and yaw estimates 
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3.3 MEMS Sensor Unit Performance Overview 

 
The objective of this subsection is not to build a measurement unit from sensors in order to 

meet any size constraint, sensors assembly cost or accuracy requirements, but rather to analyse the 
performance of a typical current off-the-shelf IMU. As a consequence, no detail is provided in the 
following about the sensors technology or the integration issues. The focus is rather put here on the 
errors that affect the different measurements of the sensors assembly. The Xsens Mti sensors 
assembly was selected regarding its cost and size for any possible further integration in a handheld 
device. As a consequence, the MEMS technology is of particular interest. The following presents 
the IMU used throughout the thesis. 
 

3.3.1 Xsens Motion Tracker 
 

The off-the-shelf IMU used in this thesis is a typical low-cost MEMS-based IMU. Figure 
3.8 presents the Xsens Motion Tracker as well as the sensors performance as given by the 
manufacturer. This IMU is composed of a triad of accelerometers, a triad of gyroscopes and a triad 
of magnetometers. A temperature sensor and a micro-controller are also comprised in the sensors 
package. This measurement unit is capable of outputting raw measurements affected by noise, 
temperature and bias, as performed by an Inertial Sensor Assembly (ISA), as well as calibrated data 
as done by an IMU. 
 

  
Figure 3.8: Xsens motion tracker and sensors performance. 

 
Laboratory calibration procedures are done to minimise the impact of the measurements 

errors such as biases, scale factors or temperature dependency. As a consequence, they contribute to 
the increase of the overall IMU cost. The Xsens MTi price is about $2000, which still makes it a 
low-cost IMU, because each sensor is about $10 if bought in large volume. 
 

Since the IMU is made of low-cost MEMS sensors, its performance can be expected to be 
low as well. The next subsections deal with the sensors of the MTi as part of the IMU, i.e. 
accelerometers and gyroscopes, and give a rough overview of their intrinsic performance. 
 

3.3.1.1 Accelerometer 
 

The accelerometer triad of the IMU is composed of a set of Analog Devices accelerometers 
orthogonally mounted [27], [28]. According to the corresponding datasheet, they are capable of 
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0.001 m/s²/√Hz noise for a bandwidth of 30 Hz. To roughly characterise the turn-on biases and 
scale factors that affect the accelerometer measurements, 10 data sets have been collected while the 
IMU was idling. The procedure was to let each axis of measurement idle while sensing the gravity 
vector along the local vertical upwards and then downwards. The biases and scale factors affecting 
the measurements are estimated according to the following equations: 
 
Measurement n°1 : bgSFm ++= )1(1  

Measurement n°2 : bgSFm ++−= )1(2  

Estimated turn-on bias : ( ) 221 mmb +=  

Estimated Scale Factor : ( ) ggmmSF 2221 −−=  
 

To limit the impact of the noise on the bias estimation, the output of the each accelerometer 
is averaged for 1 minute for both upward and downwards measurements. Then, bias and scale 
factors are estimated based on these averaged measurements. The procedure is repeated for each of 
the three axes of the IMU. Results are given in Figure 3.9 and in Figure 3.10. 
 

 
Figure 3.9: Accelerometers turn-on bias. 

 
Figure 3.10: Accelerometer turn-on scale factor. 

 
Table 3.1 summarises the errors as mean value and standard deviation for each axis of 

measurement. Turn-on biases and scale factors are quite stable regarding the quality of the sensors. 
 

X axis Y axis Z axis 
 

Bias S.F. Bias S.F. Bias S.F. 

Mean -0.061 m/s² -0.096 % -0.005 m/s² -0.076 % 0.182 m/s² -0.058 % 
Std 0.003 m/s² 0.028 % 0.001 m/s² 0.004 % 0.004 m/s² 0.008 % 

Table 3.1: Accelerometer triad turn-on biases and scale factors. 

 

3.3.1.2 Gyroscopes 
 

The gyroscopes of the IMU are also from Analog Devices [26]. They are affected by a 0.1 
deg/s/√Hz noise for a bandwidth of 40 Hz. The turn-on bias of the three sensors is characterised 
using the above 30 measurements by averaging each gyroscope static output. The scale factor of 
each sensor can be theoretically computed as given in the table below. However, measurements are 
affected by noise such as the Earth’s rotation rate (of the order of 4.10-3) is not distinguishable, as 
illustrated in Figure 3.12. Therefore, no valuable scale factor estimation was found possible using 
this methodology, and consequently no characterisation has been done. 
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Measurement n°1 : bSFm E +Ω⋅+= )sin()1(1 λ  

Measurement n°2 : bSFm E +Ω⋅+−= )sin()1(2 λ  

Estimated turn-on bias : ( ) 221 mmb +=  

Estimated Scale Factor : ( ) )sin(2)sin(221 λλ EEmmSF ΩΩ−−=  
 

Figure 3.11 shows the results of the gyroscopes turn-on biases estimation. Compared to the 
results obtained for accelerometers, the stability of the gyroscopes turn-on bias is worse. 
Nevertheless, it can be considered to stay within acceptable limits regarding the quality of the 
sensors. Table 3.2 summarises the bias mean and standard deviation for each axis of measurement. 
 

 
Figure 3.11: Gyroscopes turn-on bias. 

 
Figure 3.12: Gyroscope triad static outputs. 

 
 X axis Y axis Z axis 

Mean 0.122 deg/s -0.381 deg/s -0.622 deg/s 
Std 0.033 deg/s 0.060 deg/s 0.036 deg/s 

Table 3.2: Gyroscope triad turn-on biases. 

 

3.3.2 Gyroscope Output Approximation 
 

As pointed out in the above section, the output of each gyroscope is used to update the 
rotation quaternion that characterises the attitude of the IMU. The rotation rates of the IMU with 
respect to the navigation frame (n) is then required. Omitting the effect of the noise, bias and scale 
factor, the output of a gyroscope can be decomposed as given in equation (3.19).The rotation rate of 
the mobile with respect to the navigation frame (n), expressed in the mobile frame (m) is more 
specifically detailed. 
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The rotation rate of the Earth (i.e. ECEF frame with respect to Inertial frame) is well known 
and is equal to ωE. Using the coordinate transformation as detailed in [9], the rotation rate of (e) 
with respect to (I) and expressed in (n) is given in equation (3.20). Figure 3.14 illustrates the 
components in the navigation frame of such a rotation rate for typical latitude angles. The maximum 
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rate is obtained either when the centre of the navigation frame is at the equator or at the Earth’s 
pole. It is equal to the Earth’s rotation rate magnitude 4.17×10-3 deg/s. 
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where : 
− Eω  is the Earth rotation rate. ( ssrad deg/104.17/102924.7 35 −− ⋅=⋅≈ ) 
 

The rotation rate of (n) with respect to (e) and expressed in the navigation frame (n) is 
application dependent. In the navigation frame, the rotation vector can be expressed as given in 
equation (3.21) [9]: 
 

[ ]Tn

en )sin()cos()(
/ λλλω Φ−−Φ= &&&  (3.21) 

 
where : 
− λ  is the geodetic latitude of the mobile. 
− Φ  is the geodetic longitude of the mobile. 
− λ&  is the latitude rate. 
− Φ&  is the longitude rate. 
 

The longitude and latitude rates are not directly used as measurements. It is rather preferred 
to introduce the velocity of the mobile in the navigation frame, using the basic three relationships 
given below [9]. Consequently, the rotation vector from (n) with respect to (e), expressed in (n) is 
given by equation (3.22). 
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where : 
− h is the geodetic height of the mobile. 
− Rλ is the radius of curvature in a meridian. 
− RΦ is the transverse radius of curvature. 
− a is the semi-major axis of the WGS-84 ellipsoid. 
− e is the eccentricity of the WGS-84 ellipsoid. 
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In Figure 3.13 is plotted the corresponding three components and the rotation rate 

magnitude, assuming no altitude (h=0) and North and East velocities of 140 km/h, such that the 
velocity magnitude is roughly equal to 200 km/h, which is an extreme use case given the 
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application field of personal positioning. For a gyroscope used in medium latitudes (as it is the case 
for France), it can be considered that the upper bound does not exceed 1.4×10-3 deg/s. 

 
Figure 3.13: Rotation rate of (e) with respect to (I) 

expressed in (n). vN=vE=140 km/h, h=0. 

 
Figure 3.14: Rotation rate of (e) with respect to (I) 

expressed in (n).

 
From the previous statements and taking into account the performance of the gyroscopes in 

the IMU, the two above rotation rates can be considered of negligible magnitude. In other words, 
they can be considered as acting as a constant bias brr of magnitude about 5.5×10

-3 deg/s, which is 
far below the noise affecting the measurements. 
 

As a consequence, it is assumed throughout the thesis that the rotation rate of the mobile 
with respect to the navigation frame can be approximated by the output of the gyroscope, i.e. the 
rotation rate of (m) with respect to (I), as written below in equation (3.23). 
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3.4 Classical Inertial Navigation System 

 
In this section, the relationship between the specific force sensed by the accelerometers as 

defined in equation (3.2), and the velocity of the mobile with respect to (e) expressed in (n) is 
derived in order to establish the basic INS mechanisation. In the following, superscript between 
brackets will stand for the coordinate system in which vectors are expressed, whereas index will 
stand for frames in which the expressions are computed. 
 

3.4.1 Fundamental Inertial Differential Equation 
 

Let M be a point of a moving mobile, O the origin of the inertial frame (I), and O’ those of 
the ECEF frame (e). The time derivative of the vector associated to the position of M with respect 
to (I) and expressed in (I), is given by equation (3.24). 
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where : 
− IeR 2  is the rotation matrix from (e) to (I). 

− )(IM
r

 is the position vector of the mobile, expressed in (I). 
− )(eM

r
 is the position vector of the mobile, expressed in (e). 

− )(
/
I

IeΩ
r

 is the rotation vector of (e) relative to (I), expressed in (I). 

− )(
/
I

emv
r

 is the velocity of the mobile relative to (e), expressed in (I). 

− ^ is the cross-product operator. 
 

The acceleration of M expressed in the inertial frame (I) is then deduced from equation 
(3.24) as its time derivative. Its expression is given below in equation (3.25). 
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 (3.25) 

 
The accelerometers measure a specific force as described in equation (3.2), which is the 

acceleration of the mobile the sensors are mounted on with respect to (I) and expressed (m). On the 
other hand, the acceleration of the mobile relative to (I) and expressed in (m) is also given by 
equation (3.26). 
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where : 
− mIR 2  is the rotation matrix from (I) to (m). 

 
The combination of equations (3.2) and (3.26) yields the following equation involving the 

acceleration of the mobile, the specific force and the gravitational field: 
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Equation (3.27) shows that the acceleration of the mobile can be fully expressed as a 

function of two known variables that are the specific force f and the gravitational field GM. 
Equation (3.25) can then be transformed into equation (3.28), as detailed below: 
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where: 

− )(I
Mg
r

 is the local gravity vector, which is defined as ( ))()(
/

)(
/

)( II

Ie

I

Ie

I

M MG
rrrr

∧Ω∧Ω− . 
 

The (e) frame is used as a reference for navigation purposes (i.e. all displacements are done 
relative to that reference). However, it is more suitable to express the displacement directions in the 
navigation frame, which is more adapted to understand the change in position velocity and attitude. 
Consequently, equation (3.28) shall be rewritten in the navigation frame for further use. 
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where : 
− )(

/
n

emv
r

 is the velocity of the mobile relative to (e), expressed in (n). 

− )(
/
n

enΩ
r

 is the rotation vector of (n) relative to (e), expressed in (n). 

− )(
/
n

IeΩ
r

 is the rotation vector of (e) relative to (I), expressed in (n). 
 

The rotation vector from the navigation frame (n) with respect to the ECEF frame (e) is 
application dependent. It has been detailed in the previous subsection and its expression is given in 
equation (3.22). It is obvious that the rotation vector from (e) with respect to (I) and expressed in (e) 
has only one component along the z axis of the ECEF frame (e). The expression of the rotation rate 
of (e) with respect to (I) and expressed in (n) is given in equation (3.20). All the terms in equation 
(3.29) are then fully described as functions of known quantities. The classical inertial differential 
equation involving the velocity of the mobile expressed in (n) is: 
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 (3.30) 

 
where : 

– [ ]T
mzyx aaaa =  is the acceleration measured by the accelerometers in (m). 

– [ ]Tngg gg ηξ −=r
 is the local gravity vector, expressed in (n). The ng  component can be 

computed using for example the Somigliana model [20]. 
 

3.4.2 INS Mechanisation in the Navigation Frame 
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Figure 3.15: Inertial Navigation System (INS) mechanisation. 
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According to equation (3.30), the mechanisation of the classic inertial navigation system is 
illustrated above in Figure 3.15. 
 

3.4.3 Expected Accuracy 
 

The accuracy of the navigation system presented in Figure 3.15 mainly depends on two 
factors. The most important one is the quality of the sensors used in the IMU, which relies on the 
manufacturing process and the sensor technology. Both accelerometers and gyroscopes 
measurements are indeed affected by biases and scale factors that introduce drift at the different 
stages of the INS mechanisation. All these errors contribute to the decrease of the overall INS 
accuracy. 
 

The second factor responsible for position, velocity and attitude errors comes from the 
approximations made in the INS mechanisation. These approximations are twofold: the first order 
Taylor expansion models used to compute some parameters (as for example quaternion), and the 
use of some quantities estimated at epoch k for the computation process at epoch k+1. These 
approximations are nevertheless considered negligible with respect to the impact of the biases. 
 

In order to model the performance of such a mechanised Inertial Navigation System, a 
propagation error methodology is used. The derivation of the dynamic error model of the INS in the 
navigation frame, whose mechanisation is illustrated in Figure 3.15, is fully described in [9]. No 
more detail about it is given in the following. According to [9], the state transition model of the 
position, velocity, attitude and sensors errors is those of equation (3.31), where all sub-matrices are 
developed in details in [9]. 
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 (3.31) 

 
where: 
– δp is the position error in the navigation frame. 
– δv is the velocity error in the navigation frame. 
– δρ is the attitude error. 
– δεa is the accelerometers bias and scale factor error. 
– δεg is the gyroscope bias error. 
 

The minimal state vector is augmented by accelerometers errors δεa including bias and scale 
factor models, and gyroscopes errors δεg only including the bias model. The performance of the 
IMU can then be assessed using the propagation model of equation (3.31) and the sensors errors as 
determined in subsections 3.3.1.1 and 3.3.1.2. Gyroscope scale factors are not modelled in the 
following since no actual characterisation has been done, as justified in subsection 3.3.1.2. 
 

The horizontal RMS position error predicted through the propagation of the INS errors is 
illustrated in Figure 3.16. It corresponds to the dashed blue plot. Given the low-cost sensors used in 
the IMU, the horizontal RMS error is predicted to be nearly 570 metres after 60 seconds. 
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In order to assess this simulation result, real data were collected from the idling Xsens IMU 
over 60 seconds and processed through the navigation algorithm of Figure 3.15. Prior to data 
collection, the IMU was switch on about 10 minutes in order for the temperature inside the sensors 
assembly to be quite homogenous, preventing in-run biases from introducing additional errors. The 
resulting horizontal RMS error is plotted Figure 3.16 as the red solid curve. Both horizontal RMS 
errors are close from each other. There is only a slight difference mainly due to the accuracy of the 
stochastic models chosen for biases and scale factor modelling, which certainly do not match 
perfectly the reality. Nevertheless, the error propagation model matches quite well the INS static 
behaviour so that the error model is used in the following to find ways for improving the navigation 
solution. 
 

To analyse the contribution of each error factor onto the overall horizontal RMS error, three 
independent error propagation simulations are conducted. They all involve only one error parameter 
among accelerometer bias, accelerometer scale factor and gyroscope bias to avoid any interference 
between these factors. The values used in the different error models are again these determined in 
subsections 3.3.1.1 and 3.3.1.2. The results of the three simulations are plotted in Figure 3.17. 
Among the three error sources, the bias affecting the gyroscope measurements has the highest 
impact on the horizontal RMS accuracy, as shown by the blue solid curve (more than 650 metres 
error due to gyroscope bias only). It significantly degrades the INS position accuracy. Opposite, the 
accelerometer scale factor has a very little effect on the overall accuracy. The impact of the 
accelerometer bias is non negligible (about 100 metres per minute) but less important than the 
gyroscope one. 
 

 
Figure 3.16: Predicted and actual INS horizontal 

RMS error. 

 
Figure 3.17: Biases and scale factor impact on INS 

horizontal accuracy. 

 
As a consequence of the above simulations, the improvement of the navigation algorithm 

relies first on the reduction of the effect of the gyroscope bias and then accelerometer bias. Scale 
factor effect will be neglected in the following. 
 

3.5 The Particular Case of the Pedestrian Navigatio n 

 
According to the previous results, the inertial navigation using a low-cost IMU as for 

instance the Xsens’s MTi is very sensitive to large errors that affect all the computation stages of a 
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classic Inertial Navigation System. In order to enhance the accuracy of a low-cost INS, errors 
affecting the sensors have to be accurately modelled. This section focuses on the particular case of 
the pedestrian navigation, which aims at avoiding the double integration of the acceleration in the 
navigation frame to limit the impact of the different biases. It presents another approach consisting 
in the modification of the classic mechanisation taking into account the relationship between the 
acceleration of the pedestrian and its velocity or step length. 
 

3.5.1 Mechanisation in the Navigation Frame 
 

According to medical researches as introduced for instance in [29] and [30], one can 
establish a relationship between the velocity or step length of a walking pedestrian and some 
parameters that characterise the acceleration experienced by this pedestrian. The basic relationships 
are given below in equation (3.32) and equation (3.33). 
 

)(1 parametersindividualfs p =  (3.32) 
 

)(2 parametersindividualfvp =  (3.33) 
 
where: 
− ps  is the step length of the walking pedestrian. 

− pv  is the velocity of the walking pedestrian. 

− 1f , 2f  are the model functions. They both can be linear or non linear. 

− parametersindividual  are the processing result of the acceleration magnitude. They are 
detailed in the following. 

 
The individual parameters used to model the actual pedestrian velocity / step length are 

computed based on the measured acceleration of the walking pedestrian. However, this acceleration 
is biased by the gravity vector so that the sensors mounted onto the pedestrian do not exactly 
measure the actual acceleration. Moreover, the acceleration may change very much depending on 
the measurement direction [29] (the longitudinal acceleration pattern of a pedestrian is completely 
different from the lateral one). To get rid of the orientation of the IMU containing the 
accelerometers, the characterisation of the pedestrian velocity / step length is done using the global 
acceleration signal (i.e. the acceleration magnitude) defined below in equation (3.34): 
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kxk aaaa ++=  (3.34) 

 
where: 
− ka  is the global acceleration magnitude sensed by the IMU at epoch k. 

− )(
,
m

kxa  is the acceleration along the x axis of the IMU, expressed in (m) at epoch k. 

− )(
,
m

kya  is the acceleration along the y axis of the IMU, expressed in (m) at epoch k. 

− )(
,
m

kza  is the acceleration along the z axis of the IMU, expressed in (m) at epoch k. 

 
Based on the global acceleration signal of equation (3.34), the individual parameters (as 

defined in the following) are computed to model the velocity / step length of the walking pedestrian. 
These parameters are chosen in such a way they reflect the behaviour of the walk (a non exhaustive 
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list is given in the next subsection 3.5.2.1). To fit the mathematical model with the actual 
velocity/step length model, a regression algorithm (Least Squares) is then applied on the computed 
parameters, which requires an external positioning source to give a reference for velocity 
measurements or travelled distance. 
 

In the application aimed within this thesis (localisation of one user indoors), the user is 
likely to go in locations where GPS measurements are very affected by multipath. It is well known 
that Doppler measurements are less affected in such environments, so that it is theoretically more 
interesting to use velocity measurements rather than position measurements for the model 
calibration. As a consequence, the focus is from this point put on the modelling of the pedestrian 
velocity, which can be expressed as given in equation (3.35). The curvilinear distance travelled by 
the pedestrian is then estimated by integrating the modelled velocity. 
 

i

iip ParamParamv
ββ αα ⋅++⋅= L1

11  (3.35) 
 
where: 
– i is the index of the parameters used to model the pedestrian velocity. 
− αx and βx are the regression coefficients. 
− Paramx are the parameters computed based on the total acceleration. 
 

The azimuth of displacement must then be estimated to reconstruct the trajectory followed 
by the pedestrian. There are two typical ways of estimating the azimuth of displacement, depending 
on the motion of the IMU, i.e. whether it follows those of the pedestrian or not. In the first case, the 
heading computed by the IMU is the displacement direction biased by an additive constant due to 
the non alignment of the IMU heading axis with the direction of walk of the pedestrian. In the 
second case, the true azimuth of displacement is not the heading provided by the IMU, since the 
IMU has got its own movement relative to the pedestrian. This use case is very difficult to handle. It 
is specifically addressed in subsection 3.5.4.  
 

Finally, once the curvilinear travelled distance and the displacement direction are estimated, 
the trajectory can be reconstructed through a classical Dead Reckoning algorithm, whose equations 
are given below. 
 

[ ] ( )kkkkk dNN ψcos1,1 ⋅+= ++  (3.36) 
 

[ ] ( )kkkkk dEE ψsin1,1 ⋅+= ++  (3.37) 
 
where : 
− kψ  is the azimuth of displacement at epoch k. 

− kN  is the position of the pedestrian at epoch k. 

− kE  is the position of the pedestrian at epoch k. 

− [ ]1, +kkd  is the curvilinear distance travelled between epoch k and k+1. 

 
The following focuses on the parameters used in the model, the choice of their combination 

and the model to estimate the velocity of the pedestrian. The stability of the regression coefficient 
and the minimum amount of information needed to build an accurate pedestrian velocity model are 
also addressed. 



Inertial Navigation Systems 

Page 65 

3.5.2 Travelled Distance Estimation 

3.5.2.1 Parameters 
 

A non-exhaustive list of potential parameters that may be used to model the pedestrian 
velocity is given below. As explained above, all the parameters are computed based on the total 
acceleration expressed in equation (3.34) to get rid of the IMU orientation. These parameters can be 
computed over one stride or over a predetermined time window depending on the time tag that is 
chosen to update the position solution. The parameters used in the following of the document are 
defined in Table 3.3 and given according to a time-tagged reference time. It is straightforward to 
derive the corresponding expressions for a step-tagged navigation system (i.e. navigation systems 
based on step occurrences). 
 
Parameter Equation Comments 

MEAN ∑
−=+

k

nki

ia
n 1
1

 This parameter is the mean of the signal computed at 
epoch k over n samples 

VAR1 ( )],[var knka −  This parameter is the variance of the signal computed 
from the last n samples of the total acceleration 

VAR2 
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∑
+−=
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nki
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n

MEANa
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2

 

This parameter is slightly different from the above VAR1 
parameter. It represents the jerk relative to the mean of 
the total acceleration during the time span n instead of 
the jerk relative to contiguous samples. 

RMS1 kVAR ,1  This parameter is the square root of VAR1 at epoch k. 

RMS2 kVAR ,2  This parameter is the square root of VAR2 at epoch k. 

ABS ∑
+−=

−k

nki
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n

MEANa

1

 
This parameter is the absolute value of the acceleration 
amplitude over n samples at epoch k. 

AMP 
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k

stepstep
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)min()max(
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−
 

This parameter is the relative amplitude of the total 
acceleration in a window of length n. 
This parameter is more adapted to system with step-
based reference time, in which it is defined as the relative 
amplitude of the acceleration signal in one stride. 

M3 
( )

∑
+−=

−k

nki

ki

n

MEANa

1

3

 

This parameter is the third order moment computed from 
the total acceleration signal. Its main benefit is that the 
sign of this parameter depends on the jerk of the signal 
used for computation. 

FREQ 

– Step detection 
– Periodogram 
– HR techniques 
– Kalman filtering 

This parameter is the frequency of the acceleration signal 
that can be estimated using the four methods listed 
opposite over a specific time window. The efficiency of 
the four methods is discussed in appendix D 

Table 3.3: Candidate parameters to the pedestrian velocity model. 

 
Once the parameters are defined, one has to choose some of them to establish a velocity 

model. The selection is based on a correlation analysis between these candidate parameters and the 
pedestrian velocity. In order not to get the model too complex and also avoid redundancy, a second 
correlation analysis between the selected parameters is also conducted. 
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Two sets of data have been collected for parameters selection. For these two records, the 
IMU was placed in a pocket of the pedestrian and not moved. The walks took place in a flat surface 
with various paces in order to cover the whole velocity spectrum of a pedestrian, as shown in Figure 
3.18 and Figure 3.19 (another solution would have been to collect data for several tests done with 
different constant velocities and then process these tests together to find the best parameters). The 
velocity of reference is computed in each test by differentiating the post-processed DGPS positions. 
Both rover and base station GPS data are recorded at a sampling rate of 4Hz, and then re-sampled to 
match the sampling frequency of IMU data (50 Hz). The Shannon requirement is not met by the 
GPS sampling rate, but the true mean velocity of displacement is nevertheless very accurately 
estimated. Only the typical oscillations of the walk are not clearly observable due to the low GPS 
sampling rate, but this will not impact the identification of the best parameters. 
 
 

 
Figure 3.18: DGPS velocity of reference. Walk n°1. 

 
Figure 3.19: DGPS velocity of reference. Walk n°2. 

 
The correlation coefficient used to characterise each parameter is defined in equation (3.38). 

Correlations are computed before the regression process, as explained in section 3.5.2.3. If a linear 
or non-linear regression process would have first been applied to fit the parameters’ shape to the 
velocity of reference, the correlation result would have been better. Nevertheless, the way the 
correlations are computed provides results representative of the importance of the different 
parameters. 
 

( )
( ) ( )refrefii

refi

vp
vvpp

vp
R

refi ,cov,cov

,cov
, ⋅

=  (3.38) 

 
where : 
− ip  is the i

th parameter. 

− refv  is the velocity of reference. 

− cov  is the covariance operator. 
 

The focus is first put on the characterisation of the parameters based on a step-tagged 
reference time. In this approach, the parameters are computed between step occurrences. The 
correlation results for the parameters computed each step using the signal between two successive 
step occurrences are presented in Table 3.4. The frequency FREQ is the only parameter that 
matches the variations of the reference velocity quite well, whatever is the test walk. The MEAN 
and ABS parameters have the next two best (but poor) correlation coefficients. 
 

The correlation results for the parameters computed every two steps using the acceleration 
signal between three successive step occurrences are detailed in Table 3.5. All the parameters are 
well suited to model the reference velocity, except the parameter M3. The averaging effect of 
processing a signal with a longer duration increases the correlation property of the parameters with 
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respect to the actual pedestrian velocity. However, this reduces the capability of estimating high 
dynamic changes in the pace of the pedestrian, so that a trade-off shall be found. From the various 
tests that have been conducted, it has been found that a 2 steps smoothing can be considered as the 
upper bound of an averaging time window. 
 

Parameters MEAN FREQ VAR1 VAR2 RMS1 RMS2 ABS AMP M3 

Walk n°1 0.726 0.944 0.405 0.404 0.403 0.400 0.440 0.358 0.247 

Walk n°2 0.692 0.942 0.379 0.379 0.399 0.386 0.421 0.419 0.269 

Table 3.4: Correlation results. Parameters computed each step. 

 

Parameters MEAN FREQ VAR1 VAR2 RMS1 RMS2 ABS AMP M3 

Walk n°1 0.919 0.968 0.924 0.924 0.940 0.940 0.949 0.821 0.536 

Walk n°2 0.897 0.966 0.894 0.893 0.908 0.906 0.939 0.906 0.567 

Table 3.5: Correlation results. Parameters computed every 2 steps. 

 
For both reference walk n°1 and n°2, the parameters with the highest correlation coefficient 

are plotted in Figure 3.20 and Figure 3.21. The relationship between the parameters and the true 
displacement velocity computed with DGPS measurements is clearly observable. Among all, the 
frequency FREQ is the best one that closely matches the pedestrian displacement velocity. 
 

 
Figure 3.20: Best parameters computed every 2 

steps. Walk n°1. 

 
Figure 3.21: Best parameters computed every 2 

steps. Walk n°2. 

 
As a first conclusion for systems based on step occurrences, the parameters that are suitable 

to model the velocity of the pedestrian are FREQ, MEAN, VAR1 or VAR2, RMS1 or RMS2 and 
ABS. Among these parameters, some may be correlated to each other so that it would be worth to 
decrease the model complexity at the expense of some loss of accuracy by removing some of them. 
 

The cross-correlation between the selected parameters has been computed for every couple 
of parameters. Results are given in Table 3.6 for parameters computed each step, and in Table 3.7 
for parameters computed every two steps. From these tables, it can be seen that the parameter ABS 
has a good correlation with all the three other parameters, whatever the computation time window. 
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As a consequence, ABS is no more considered as part of the pedestrian velocity model. The 
remaining and retained parameters are thus MEAN, FREQ and RMS1. 
 

 MEAN FREQ RMS1 ABS 

MEAN 1 0.602 -0.027 -0.026 

FREQ 0.602 1 0.463 0.498 

RMS1 -0.027 0.463 1 0.989 

ABS -0.026 0.498 0.989 1 

Table 3.6: Cross-correlation coefficients (1 step). 

 MEAN FREQ RMS1 ABS 

MEAN 1 0.871 0.821 0.876 

FREQ 0.871 1 0.895 0.922 

RMS1 0.821 0.895 1 0.982 

ABS 0.876 0.922 0.982 1 

Table 3.7: Cross-correlation coefficients (2 steps). 

 
The same selection method is applied using a time-tagged reference. Several time windows 

have been tested (spans of 1s, 2s and 5s), on which the parameters are computed with a rate equal to 
the IMU sampling rate. This high computation rate allows a better dynamic restitution of the 
velocity of the pedestrian, as it is illustrated in Figure 3.22 and Figure 3.23. The accuracy of the 
model is thus increased. The same conclusion as for step occurrences based analysis can be drawn. 
The parameters FREQ, MEAN, RMS1 and ABS have the best correlation coefficients and the cross-
correlation between the parameters shows that ABS can be removed from the parameters set that 
match the better the dynamic of the pedestrian velocity. 
 

 
Figure 3.22: Best parameters computed over 2s. 

Walk n°1. 

 
Figure 3.23: Best parameters computed over 2s. 

Walk n°2. 

 

3.5.2.2 Velocity Models 
 

The selection of the parameters as discussed in the previous subsection focused on the 
correlation between the parameters and the GPS velocity of reference. Because the computed 
correlation value is relevant of a linear correlation, the parameters MEAN, FREQ and RMS1 shall 
be part of a linear model of the pedestrian velocity. However, a non-linear model might give better 
results. Consequently, the two possible models are studied in the following. The general velocity 
model is given in equation (3.39), whereas the simpler linear model is given in equation (3.40). 
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321
1321
βββ ααα RMSFreqMeanvp ⋅+⋅+⋅=  (3.39) 

1321 RMSFreqMeanvp ⋅+⋅+⋅= γγγ  (3.40) 
 
where: 
– iα  and iβ  are the regression coefficients of the non linear pedestrian velocity model. 

– iγ  are the regression coefficients of the linear pedestrian velocity model. 
 

3.5.2.3 Regression Coefficients 
 

The purpose of this subsection is to assess the efficiency of the velocity models defined in 
equations (3.39) and (3.40). It also aims at analysing whether it is worth using a non linear model or 
a linear model, regarding the expected performance with respect to the increase of complexity. 
 

3.5.2.3.1 Impact of the Velocity 
 

This subsection analyses the impact of the velocity of walk on the regression coefficients. 
Several straight test walks with different paces were recorded for that purpose. In all the tests, the 
IMU is placed in a pocket of the pedestrian and not moved. Three typical velocity ranges (namely 
low, normal and high) have been more specifically tested, as illustrated in Figure 3.28. The blue 
plot with squares stands for the mean pedestrian velocity computed based on DGPS measurements. 
The dashed red plot is the averaged velocity for typical tests in the same range of velocity. 
 

The non-linear model is first analysed. For that purpose, both non-linear iterative least 
square estimation (ILSQ, see Appendix C) method and the Matlab least square (LSQ) curve fitting 
function have been tested. The two methods have been tested on the data recorded during the trials 
and it sometimes appeared that the non-linear model could not be estimated because of the 
divergence of the LSQ algorithm. To cope with this issue, the non-linear regression was performed 
independently for each parameter and the model was reconstructed with equal weight for all the 
single regression models. Even if the methodology is not rigorous, it can nevertheless be used as a 
first approximation. 
 

The regression coefficients associated to the non-linear velocity model computed from the 
eleven reference tests are plotted in Figure 3.24. As it can be seen on the figure, they are sometimes 
badly estimated. The coefficients associated to the parameter MEAN are indeed erroneous for tests 
1, 4, 6, 7 and 9. The reasons of this bad estimation lie in the non-linear estimation which does not 
seem robust enough, especially in that case where the parameters are well correlated between each 
other. However, the other regression coefficients have been estimated correctly. Their variations are 
zoomed in Figure 3.25. Obviously, they can not be considered constant whatever the velocity of 
walk. Even for the same velocities of walk, these coefficients are not constant, especially the power 
of the FREQ parameter. 
 

The linear velocity model is studied following the same principle as for the non-linear one. 
Two regression techniques are here again tested, whether the regression is performed for all 
parameters at once or for each one separately. The results of the first method are plotted in Figure 
3.26. The estimation method seems more robust since the regression succeeded for all the reference 
tests. As expected from the non-linear regression results, the coefficients are not constant whatever 
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the velocity of walk. 
 

To avoid any interference due to the cross-correlation effect between the selected 
parameters, separate least square estimations are done for each parameter and the three results are 
then combined to obtain the velocity model. The pedestrian velocity model could have been 
composed of only one of the three selected parameters, but this would have been at the expense of 
the model accuracy. Therefore, this second method is test even if it is not optimum. Results are 
illustrated in Figure 3.27. The regression coefficients seem in that case constant over the three GPS 
velocity ranges identified in Figure 3.28. The dashed lines are the mean of the regression 
coefficients on the three tested velocity ranges. 
 

 
Figure 3.24: Regression coefficients. Non-linear 

model. 

 
Figure 3.25: Regression coefficients. Non-linear 

model (close-up). 

 

 
Figure 3.26: Regression coefficients. Linear model. 

1
st
 method. 

 
Figure 3.27: Regression coefficients. Linear model. 

2
nd
 method. 

 
According to the above tests, the non-linear model does not seem robust enough to support 

the modelling of the pedestrian velocity. Opposite, the linear model gives good results in terms of 
robustness, i.e. there is always a suitable solution for any of the reference tests. As a consequence, 
the non-linear model will not be used in the following and the linear model will be preferred. Two 
methods can be used to match the linear velocity model to the DGPS measurements. It has been 
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shown that the second method based on the separate fitting of the parameters is interesting since it 
provides computed parameters that do not vary very much for a given velocity of walk. However, it 
could be expected that the final model of the pedestrian velocity is less accurate than the model 
obtained using the global least square estimation method. 

 
Figure 3.29 illustrates the accuracy of both methods on the eleven reference tests. The 

distance resulting from the integration of the estimated velocity modelled using the computed 
regression coefficients is compared to the DGPS reference. The azimuth used to get the pedestrian 
trajectory is provided by the processing of DGPS measurements in order to analyse more 
specifically the impact of the velocity models. The distance estimation error is then computed and 
expressed in percent of the true travelled distance, which is computed with DGPS measurements. 
Figure 3.29 shows the improvement brought by the second method as compared to the first one, 
even if this difference is not of great importance. 
 

 
Figure 3.28: Mean DGPS velocity profile of the 

eleven reference tests. 

 
Figure 3.29: Curvilinear distance estimation error 

with respect to DGPS measurements. 

 
As said above, the second method has the property of providing constant coefficients for 

typical ranges of velocity. This property is very interesting within the scope of a pedestrian 
navigation algorithm since it would allow the off-line establishment of a velocity model for 
different velocity ranges. That is if one is able to estimate the current state of the pedestrian pace, 
one could use a predetermined model for distance estimation until external measurements are 
available to determine a more accurate velocity model. The FREQ parameter can be used to fulfil 
this requirement, since it is has the best correlation with the velocity of the pedestrian, as 
demonstrated in Table 3.4 and Table 3.5. Once the frequency of walk estimated, the navigation 
system could find in a table the most adequate velocity model for the navigation. As an illustration, 
a model implementing the mean value of the regression coefficients computed for low velocities 
(trials from 5 to 8) is tested. Following the same procedure as above, the travelled distance is then 
estimated using these mean regression coefficients and compared to the reference distance as shown 
in Figure 3.29. The corresponding accuracies are given below in Table 3.8. The error is at most 2.92 
percent of the true travelled distance, which can be considered as fairly good. 
 

Test Number 5 6 7 8 
Distance Error (regression coefficients) 0.18 % 0.37 % 0.71 % 0.43 % 
Distance Error (mean regression coefficients) -2.92 % 1.23 % 1.78 % 1.85 % 

Table 3.8: Distance estimation accuracy – Method 2. 
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3.5.2.3.2 Impact of the User 
 

This sub-section analyses the impact of the identity of the pedestrian using the navigation 
system on the regression coefficient as defined above. Only the linear velocity model is studied 
here. Four normal walks were recorded for two different people walking a straight and flat path. 
The corresponding mean DGPS velocities are plotted in Figure 3.30. 
 

The regression coefficients are plotted in Figure 3.31. The pedestrian n°1 corresponds to the 
four first tests (1 to 4), whereas the second pedestrian corresponds to the four last tests (5 to 8). For 
both users, the coefficients are stable but differ from each other. This is basically due to the 
behaviour of the users while walking. Indeed, the movement’s frequency of the legs is dependent on 
the height of the person. To keep an identical velocity of walk, a small person should move his legs 
faster than a taller one. To reduce this anatomical difference, it could be interesting to normalise the 
velocity of reference. However, the results conducted with the references trials showed that the 
regression coefficient were still different. No general velocity model can consequently be found for 
several users, because regression coefficients are dependent on the identity of the person. 
 

 
Figure 3.30: Mean DGPS velocity profile of the 

eight reference tests. 

 
Figure 3.31: Regression coefficients. Linear velocity 

model. 2
nd
 method. 

 

3.5.2.3.3 Impact of the Reference Measurement Quality 
 

In this subsection, the impact of the quality of the external measurements on the 
computation of the regression coefficient is analysed. The DGPS reference measurements used in 
the above subsections were the result of the post-processing of the rover and base station phase 
measurements using the GraphNav software. 
 

In the particular case of the pedestrian navigation, it is unlikely to have differential 
measurements to calibrate the velocity model. A trial in an environment prone to multipath is thus 
done to simulate a typical urban navigation. Only the measurements of the rover are used for 
calibration. Figure 3.32 shows the reference velocities. The blue solid plot stands for the DGPS 
velocity, whereas the red dashed plot stands for velocity estimated using the rover receiver 
measurements only. As it can be seen, the standalone solution is very noisy and inaccurate 
compared to the DGPS one, with a 2D standard deviation of respectively about 4m and 0.04m. 
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The single point velocity solution 
yields a distance estimation error of 27% 
when using the linear velocity model 
presented in subsection 3.5.2.2 compared to 
the true travelled distance computed with 
DGPS measurements. This error is reduced to 
1% if the pedestrian velocity model is 
calibrated with DGPS data. This test is very 
representative of an initialisation in urban or 
in indoor environments. It also reveals the 
need of an alternative calibration procedure in 
such harsh environments, as for example the 
procedure relying on the FREQ parameter as 
described at the end of subsection 3.5.2.3.1. 

 
Figure 3.32: Reference velocity used for regression. 

 

3.5.2.3.4 Impact of the Amount of Data Used for Calibration 
 

The impact of the amount of reference data on the accuracy of the pedestrian velocity model 
is analysed in this subsection. The analysis is addressed through the reference test presented in 
Figure 3.19 and in Figure 3.33 (upper part) with a different scale. Only a percentage of the reference 
velocity is used to calibrate the velocity model, which goes from 2% up to 100%. For each 
regression, the error made on the travelled distance is estimated relative to the true DGPS distance 
of reference. Both linear regression methods are studied hereafter (as defined in subsection 
3.5.2.3.1). Results are plotted in Figure 3.33 (lower part). Figure 3.34 clearly shows the 
convergence of the regression coefficients as soon as about 20% of GPS data are used. There is 
therefore no need of a large amount of data to enable the estimation of the travelled distance with an 
acceptable accuracy (error within ±5% of the true travelled distance). 
 

 
Figure 3.33: DGPS velocity profile (up) and 

distance estimation error (down). 

 
Figure 3.34: Regression coefficients. Linear model. 

2
nd
 method. 

 

3.5.3 Displacement Direction Estimation 
 

As presented in subsection 3.5.1, the pedestrian navigation relies on the distance estimation 
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and the displacement direction (i.e. heading) estimation. The heading estimation is a process 
completely independent of the distance estimation. It relies on gyroscopes measurements as 
described in section 3.2. 
 

Among the three attitude angles, only the heading angle is used as an input of the Pedestrian 
Dead-Reckoning (PDR) algorithm. Pitch and roll angles shall nevertheless be properly initialised in 
order to allow a good computation of the heading. Accelerometers are well suited for that purpose. 
They allow an autonomous inclination initialisation, whose accuracy is closely related to the bias 
affecting the measurements. According to the characterisation of the sensors as described in 
subsection 3.3.1.1 and summarised in Table 3.1, it can be assumed a remaining turn-on bias in the 
accelerometer measurements of less than 0.05 m/s². As plotted in Figure 3.4, the inclination of the 
IMU can thus be estimated within an accuracy of ±1°. If magnetometers are used to initialise the 
heading, this inclination error budget will introduce a bias of about ±1° as illustrated in chapter 4, 
which remains within acceptable limits according to the quality of the sensors of the IMU. 
 

The heading accuracy relies on the gyroscopes biases that vary in time in relationship with 
the operating temperature and the motion experienced by the sensors. Due to the low-cost property 
of the sensors, it is likely that the computed displacement direction will drift over time. One 
improvement would be to limit that drift using external measurements as for example those of the 
magnetometers. This improvement is discussed in great details in chapter 4. 
 

3.5.4 Unconstrained Navigation Issue 
 

The crucial point of the pedestrian mechanisation lies in the close coupling of the IMU with 
the pedestrian. In other words, any movement of the IMU with respect to the user’s body will 
dramatically impact the algorithm performance in terms of travelled distance and displacement 
direction estimation. This is one of the main drawbacks of such mechanisation, which consequently 
is more similar to a constrained navigation. The issue is thus raised when the purpose is to locate a 
pedestrian as the inertial sensors can be put inside a handheld device such as a cell phone or a PDA. 
The constrained assumption is no more valid so that all the benefits brought by the new 
mechanisation (i.e. no double integration of the acceleration biases) may be lost. 
 

As detailed in the above subsections, the distance estimation relies on the computation of 
parameters that characterise the dynamic of the pedestrian. Figure 3.35 illustrates the selected 
parameters computed during a walk where the IMU was moved twice. The test starts with the IMU 
in the pocket of the pedestrian, then the unit is moved to the ear as a cell phone would be and finally 
the IMU is replaced in the pocket. As it can be seen in the figure, the parameters do not have the 
same shape as the velocity of reference provided by DGPS measurements. This is also clearly 
observable in Figure 3.36 where parameters such as MEAN are plotted with the acceleration 
magnitude. The FREQ parameter is nevertheless the most reliable whatever the location of the IMU 
and even in the transition periods. There are however periods of inaccuracy mainly due to the fact 
that the pedestrian step frequency is blurred by the intrinsic motion of the IMU. 
 

The displacement direction of the pedestrian may differ from the heading of the IMU if the 
measurement unit is moved while walking. It is of tremendous importance to keep the sensors 
assembly closely attached to the pedestrian or the vehicle in order to avoid any undetectable 
heading offset. Indeed, the unconstrained navigation implies that the orientation of the heading axis 
of the IMU and the direction of walk are not correlated, making the tracking of the IMU heading no 
more relevant. 
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Figure 3.35: Parameters of the velocity model (unit 

m/s). IMU is moved while walking. 

 
Figure 3.36: Relationship between the acceleration 

magnitude and the parameters (unit m/s
2
). 

 
As an alternative solution, the true displacement direction can be computed based on the 

north and east velocity components. The velocity model elaborated with IMU measurements is the 
velocity of the IMU relative to the ground directly expressed in the navigation frame (n). It can be 
decomposed as follows: 
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where : 
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groundIMUv  is the velocity of the IMU with respect to the ground, expressed in (n). 
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/

n

userIMUv  is the velocity of the IMU with respect to the user, expressed in (n). 

– )(
/

n

grounduserv  is the velocity of the user with respect to the ground, expressed in (n). 

 
Assuming the velocity of the IMU relative to the user negligible compared to those of the 

user relative to the ground, the east and north velocity components can then be used to compute the 
true displacement azimuth α, as given in equation (3.42).  
 

( )NE vvarctan=α  (3.42) 
 

These components are not directly available. However, it is possible to project the 
acceleration measurements in the navigation frame using the rotation matrix from the mobile frame 
to the navigation frame. Assuming a non-drifting attitude and avoiding the integration of these 
projected accelerations to limit the impact of the biases (i.e. estimating the north and east velocities 
as it is done with the pedestrian velocity), it is then possible to get an estimate of the different 
velocity components, and consequently the true displacement direction. 
 

The unconstrained navigation is much more complex to handle than the constrained one. 
Even if the travelled distance can be estimated through the parameter FREQ with medium accuracy, 
the tracking of the true displacement direction is more difficult to achieve. Moreover, the estimation 
of the north and east components relies on the rotation matrix from the mobile frame to the 
navigation frame, which is very sensitive to gyroscopes biases. 
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3.5.5 PNS Mechanisation 
 

Figure 3.37 summarises the Pedestrian Navigation System mechanisation as described 
above. It mainly relies on the processing of the low cost IMU data together with GPS velocity for 
calibration purposes. 
 

 
Figure 3.37: Pedestrian Navigation System (PNS) mechanisation. 

 

3.5.6 Expected Accuracy 
 

The pedestrian mechanisation aims at avoiding the double integration of the acceleration in 
the navigation frame to limit the impact of the biases (from gyroscopes and accelerometers) that 
rapidly degrades the performance of the positioning system. Errors are nevertheless done while 
estimating the velocity of the pedestrian as well as the azimuth of displacement. The following 
proposes a simple analysis of the performance that can be achieved with such a mechanisation. 
 

It is very difficult to analyse the performance of the positioning technique for a pedestrian 
walking freely, so that the straight walk test case is more specifically addressed. The worst case is 
considered, since the error affecting the velocity is assumed to be a constant bias as well as the 
heading rate error, and the pedestrian is assumed to be continuously walking. In addition, the 
particular case of a Gaussian heading error is also assumed in order to predict the performance that 
can be achieved if a stable attitude algorithm is used to compute the heading. 
 

It is assumed in the following that the error on the 2D position of one user can be 
decomposed into two non-correlated contributions (distance error and heading error). In a first time, 
the error due to the velocity model parameters estimation is discussed. Assuming the estimated 
pedestrian velocity is affected by a constant bias (which obviously represents the worst error case), 
the true velocity can be written as given in equation (3.43). 
 

vt vv σ+= ˆ  (3.43) 
 
where: 
– tv  is the true velocity of the pedestrian. 

– v̂  is the estimated velocity. 
– vσ  is the constant error affecting the estimated velocity. 
 

It is then straightforward to estimate the error made on the travelled distance, as it is defined 
in equation (3.44). 
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kvkd ⋅= σσ ,  (3.44) 
 
where: 
– kd ,σ  is the error made on the travelled distance at epoch k. 

 
The error due the estimation of the heading is twofold. It depends on the type of error 

affecting the measurements. Considering the first case of a constant and maximum heading rate 
bias, the error trajectory is illustrated in Figure 42. The red and blue paths are respectively the error 
trajectory due to a positive and negative constant heading rate bias. The heading error contribution 
at epoch k is thus defined as follows: 
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where: 
– kh,σ  is the heading error contribution at epoch k 

– maxα&  is the maximum heading rate bias. 

– nd  is the true travelled distance at epoch n. 
 

In the second case of a constant heading bias, the corresponding error trajectory is plotted in 
Figure 43 with the same notations as for Figure 42. At each estimated position Pi, the heading error 
is here assumed to be within a specific range which depends on the accuracy of the algorithm that 
would estimate the heading. Equation (3.46) gives the expected heading error contribution. 
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where: 
– maxα  is the maximum heading bias. 
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Figure 3.38: Error of a pedestrian walking a straight 

path assuming constant velocity and heading rate 

biases. 

 
Figure 3.39: Trajectory error of a pedestrian walking 

a straight path assuming constant velocity and 

heading biases. 
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Once the two contributions are computed, the overall upper bound 2D RMS error that 
characterises the position accuracy is deduced according to equation (3.47). 
 

2
,

2
,2 khkdD σσε +=  (3.47) 

 
The performance of the pedestrian mechanisation is illustrated in Figure 3.40 and in Figure 

3.41 for typical errors relevant of low-cost MEMS sensors given in Table 3.9. During the whole 
simulation, the pedestrian is assumed walking (i.e. no stop for 10 min). 
 

Parameters Type Value 
Heading Bias Constant 5° 

Heading Rate Bias Constant 300°/hour 
Velocity Bias Constant 2.0 m/s 

Simulation Time - 10 min 

Table 3.9: Pedestrian mechanisation simulation parameters. 

 
Whatever the heading error model, the pedestrian mechanisation outperforms the classical 

INS, whose static performance is shown in Figure 3.16. Figure 3.40 shows that typical errors of 
about 300m / 120m 2D after 10 minutes of navigation can be achieved compared to 600m 2D after 
1 minute of navigation for a standard INS mechanisation. It is obviously not rigorous to compare 
the results of the PDR mechanisation (which assume a walking pedestrian) to the static results of 
the INS. However, this can be justified as one can expect a worse dynamic accuracy of the INS 
because of the biases introduced during the motion of the IMU. 
 

 
Figure 3.40: 2D upper bound position error 

assuming a constant velocity bias. 

 
Figure 3.41: Detail of the contributions of each 2D 

upper bound position error.

 
The simulated position error is smaller in the case of a heading affected by a constant bias, 

as illustrated in Figure 3.40. In this case, there is indeed no memory effect since there is no drift at 
all. The position accuracy is increased and the availability of the positioning service is extended. 
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3.6 Conclusion 

 
This chapter recalled the basics of the inertial navigation principles. In a first time, the 

sensors characterisation was introduced for further performance analysis. Both accelerometers and 
gyroscopes were studied as part of an off-the-shelf IMU used throughout this thesis (Xsens’s MTi). 
The standard inertial navigation system mechanisation was then derived and its performance 
relative to the quality of the sensors embedded in the Xsens’s MTi assessed. It has been shown that 
the use of low-cost sensors makes the standalone inertial navigation only reliable for a very short 
time. 
 

The particular case of the pedestrian navigation has been exhaustively detailed. It has been 
shown that the mechanisation can provide substantial benefits to improve the reliability of the 
system working without any external update. The accuracy of the standalone Pedestrian Navigation 
System depends on two specific and distinct contributions: the travelled distance error and the 
pedestrian heading error. The performance of such a mechanisation relative to a constant velocity 
bias and several types of heading errors was discussed. It was demonstrated that a system affected 
by a constant heading bias would give better long term accuracy than those affected by a drifting 
heading angle. 
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Chapter 4: Sensor-Based Augmentations 
 
 

As discussed in chapter 2, GPS-based positioning systems are a good mean to enable the 
location of one user in many environments. Deep indoor and deep urban canyons are nevertheless 
very harsh environments in which the availability and the accuracy of the GPS position solution 
decreases dramatically. As an augmentation to replace GPS during outages in the aforementioned 
environments, inertial navigation systems have been presented in Chapter 3. The weakest points as 
well as the advantages of such navigation systems have been discussed. The particular case of the 
pedestrian navigation has also been addressed to mitigate the impact of the low-cost sensors bias. 
Such a mechanisation increases the navigation performance, but as for the classical mechanisation, 
the position is drifting due to the accumulating effect of heading drift and velocity errors. 
 

In order to improve the different computation stages of the INS and also the performance of 
GPS/INS hybridised systems, the addition of several low-cost MEMS sensors is studied in this 
chapter. More particularly, the use of a pressure sensor and a triad of magnetometers are addressed. 
In a first time, the two sensors are described, their expected performance discussed, and the way 
they can be used to improve the GPS, INS or GPS/INS position solution is presented. In a second 
time, an algorithm developed in the frame of this thesis that fuses the information of the different 
sensors in order to enhance the attitude computation based on IMU data is detailed. 
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4.1 Pressure Sensor 

4.1.1 Principle and Output Model 
 

As a low-cost sensor, the pressure sensor is very well suited to improve the position 
accuracy and especially the vertical channel. It measures the ambient pressure at the operating level, 
which can then be converted into altitude. The basic pressure-to-altitude relationship is given in 
equation (4.1). This model does not take into account special weather conditions like temperature 
inversion as they often appear during the winter season, and also atmospheric pressure changes 
caused by changes in the weather. 
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where: 
− z is the altitude provided by the pressure sensor, and P  is the pressure at altitude z . 
− hPaP 25.10130 = . 

− 0T  is the temperature at 1013,25hPa. KCT 15.288150 =°= . 

− γ  is the gradient of temperature, fixed for kmz 11≤  to kmCdzdT /5.6/ °−==γ . 

− aR  is a constant. For dry air, KkgJRa //1.287= . 

− 0g  is the gravity acceleration at MSL and latitude 45°N. 2
0 /80665.9 smg = . 

 
The pressure measured by the sensor converted into an altitude z is referenced from the 

1013.25hPa pressure surface. Under standard conditions, the 1013.25hPa pressure surface is 
considered to be the Mean Sea Level (MSL) and as a consequence, the altitude provided is the 
height from that MSL to the operating level. Usually, the MSL and the 1013.25hPa surface do not 
match, as illustrated in Figure 4.1. 

 
Figure 4.1: Pressure measurement principle. 

 

 
Figure 4.2: Altitude-to-pressure relationship. 
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The pressure sensor used throughout the thesis is an Intersema MS5534 [31]. It is a stable 
and temperature compensated sensor capable of 1 mbar (0.1 hPa) resolution (as illustrated in Figure 
4.3), which approximately corresponds to 1 metre (as illustrated in Figure 4.4) with a precision 
within ±0.5 mbar once calibrated (i.e. ±0.5 m). 
 

 
Figure 4.3: Required pressure resolution to enable a 

1m vertical resolution. 

 
Figure 4.4: Impact of the pressure variation on the 

computed altitude. 

 
The output model of a pressure sensor can be written as given in equation (4.3). The scale 

factor has a negligible effect on the altitude restitution. Opposite, the bias and the perturbations due 
to the changes of weather dramatically affect the accuracy and the reliability of the measurements. 
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out nPbpSFp +++⋅+= 1  (4.3) 

 
where: 
– outp  is the output of the pressure sensor. 

– pSF  is the scale factor affecting the measurements. 

– truep  is the true pressure that should be outputted by the sensor. 

– pb  is the bias affecting the pressure measurements. 

– weatherP  is the perturbation due the weather changes. 
– pn  is the noise affecting the pressure measurements. 

 

4.1.2 Performance assessment 
 

To analyse the quality and the stability of the measurements, the pressure sensor is placed in 
a closed room for about 13 hours, with an initial altitude artificially set to 0 metre. The data 
recorded during this static trial are plotted in Figure 4.5. Both temperature and pressure converted 
into altitude according to equation (4.1) are presented. The sensor internal temperature needs about 
2 hours before it converges to a stable value. The computed altitude varies around the initial value 
with a standard deviation of 1.8 metres. There is apparently no relationship between the variations 
of the altitude and the temperature, which tends to prove that the temperature calibration is efficient. 
The observable variations are thus mainly due to the bias affecting the pressure measurements. 
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Figure 4.5: Altitude and temperature variations 

recorded over 13 hours in a closed room. 

 
Figure 4.6: Vertical velocity computed with the 

pressure sensor measurements. 

 
As an illustration of the pressure sensor performance, Figure 4.6 shows the altitude recorded 

during a trial inside a building where the pedestrian was walking from the ground floor up to the 
first floor using staircases. According to the upper part of Figure 4.6, the two floors are separated 
from approximately 3.5 metres, which is consistent with the actual height (4 metres). The 
measurements are very noisy as illustrated by the vertical velocity computed from the raw 
measurements, as shown in the lower part of Figure 4.6 in blue. 
 

The filtered measurements (averaging over 5seconds) plotted in dashed red in both graphs 
are rather more accurate, especially the vertical velocity computed from the altitude measurements. 
The period where the pedestrian is climbing stairs is clearly observable, with a vertical velocity of 
about 0.4 m/s, which is consistent with the true vertical velocity, since 4 metres were climbed in 10 
seconds. The pressure sensor measurements shall then be filtered (averaging over a time window 
for instance) in order to provide useful information, especially if the vertical velocity is used as a 
reference measurement. 
 

4.1.3 Improvement of the Position Solution 
 

There are several ways of using the pressure sensor in order to limit the error on the vertical 
channel. A first approach would be to use the pressure measurements converted into altitude 
measurements at a low level in the position computation process. In other words, the altitude could 
be used as the geometric distance from the user to a fictitious satellite centred at the Earth’s centre. 
This additive pseudorange (not affected by the receiver clock bias) could then be integrated with the 
true satellite pseudoranges and processed to compute the user’s position. However, this 
pseudorange is very likely to be affected by errors due to the measurement accuracy. Moreover, the 
height computed from the pressure sensor measurements is the height with respect to the 
1013.25hPa reference surface, whose altitude may vary depending on the weather conditions. Such 
a discrepancy is of the order of about ±20hPa, which translates into ±200m. Consequently, the 
absolute measurements of the altimeter can not be used directly to provide an accurate pseudorange 
measurement. A first calibration using for example a GPS 3D position solution is thus required. 
 

The above requirement stands also for the use of a pressure sensor providing the vertical 
user’s position component. The number of unknown to find is then reduced to three (east, north 
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components and receiver clock bias) in the case of a 3D position computation. However, 
introducing a ±200m vertical error in the vertical component will impact as much the predicted 
measurements and thus the two others user’s components (north and east). A first calibration of the 
barometer is thus required. 
 

In both cases, it is consistent to assume that once the barometer is calibrated, the error made 
on the altitude estimate does not vary very much over a medium time slot. If no strong weather 
change occurs, any vertical displacement larger than the sensor resolution and accuracy will thus be 
detected. To analyse the benefits of the pressure measurements on the accuracy of the position 
solution, three different Least SQuare (LSQ) position computations are done (see appendix C). The 
first method (case 1) uses only four satellites to compute the user’s position, whose measurements 
are generated with a standard deviation of 3 metres according to a known user reference position on 
Earth. The second method (case 2) uses the pressure measurement as a fictitious pseudorange and 
the third method (case 3) uses the altitude data as the vertical component of the user, reducing to 
three the number of unknowns in the LSQ algorithm. Errors from 0 to 50 metres are introduced in 
the altitude provided by the pressure sensor. For each pressure measurement error, 1000 LSQ 
computations are done. The three mean 3D RMS errors are plotted in Figure 4.7. 
 

 
Figure 4.7: 3D RMS position error using pressure 

measurements with three different computations 

methods. 

 
Figure 4.8: DOPs improvement due to the 

processing of the pressure measurements. 

 
The blue horizontal line is the position error computed with method n°1. Figure 4.8 shows in 

blue the different DOPs characterising the satellite configuration, which in that case is quite bad. As 
soon as the vertical information is added in the LSQ algorithm, the DOPs logically decrease 
(especially the vertical DOP), as shown in Figure 4.8. The position solution 3D RMS error is well 
reduced when using the pressure measurement, especially if the added information from the 
pressure sensor is not very affected by errors (less than 15 metres error for a GPS pseudorange 
standard deviation of 3 metres). Method n°2 outperforms method n°3 especially for large altitude 
information errors, which tends to demonstrate that using the altitude measurement as a fictitious 
pseudorange is more efficient than using it as a vertical coordinate estimate. However, method n°2 
implies to process pseudoranges in order to compute the position of the user, which can not always 
be possible, especially if GPS modules providing information through NMEA frames are used for 
navigation. In that case, method n°3 still is an effective mean of improving the position accuracy. 
 

When altitude measurements are very affected by errors (a typical threshold would be 
between 15 and 20 metres according to Figure 4.7 for typical GPS pseudoranges standard deviation 
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of 3 metres) and as soon as four satellites are available, it should be preferred not to take into 
account the pressure sensor in the position computation as the overall accuracy decreases. However, 
it is very difficult to detect whether the pressure measurements are reliable or not, especially if no 
pure GPS 3D fix can be computed or if only pure GPS 3D fix with high uncertainty is available (as 
for example typical fixes computed with indoors signals). 
 

4.2 Magnetic Field Sensor 

4.2.1 Earth Magnetic Field 
 

One of the particular characteristic of the Earth is that anywhere around its centre, it is 
possible to measure a magnetic field. This field has properties that slowly vary in time (at the scale 
of years) so that they can be considered locally constant. Figure 4.9 and Figure 4.10 illustrate some 
of the Earth’s magnetic field characteristics and Table 4.1 gives typical values for the Earth’s 
magnetic field at Toulouse, France for year 2005. 
 

 
Figure 4.9: Earth’s magnetic field intensity [22]. 

 
Figure 4.10: Earth’s magnetic field declination [22]. 

 
Figure 4.11 presents the Earth’s magnetic field vector He in a horizontal reference frame 

(x,y,z). It is characterised by its inclination or dip angle δ, which is the angle between the horizontal 
projection Hh of He and the magnetic field vector He. The inclination depends on the location on the 
Earth but is locally constant. For a given area, it can be found for example in [22]. 
 

If magnetic measurements are rotated into a horizontal frame, the magnetic heading α can be 
computed. It is the angle between the heading axis x and the horizontal projection Hh of He. This 
angle differs from the true geographic north by a locally constant angle known as the declination λ. 
The declination is also a locally constant characteristic of the Earth’s magnetic field. Typical values 
for a given area can be found in [22] for example. 
 

Dip angle 58,73° - 
Declination -1,299° - 
Magnitude 42921,18 nT 1 (normalised) 

Horizontal magnitude 22279,17 nT 0,5191 (normalised) 

Table 4.1: Toulouse Earth’s magnetic field characteristics (year 2005) [22]. 
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4.2.2 Sensor Output Model 
 

Magnetometers are used to sense the Earth’s magnetic field. The low-cost Xsens 
measurement unit MTi comprises a triad of such sensors. The general magnetometer output model 
is given in equation (4.4). Altough the Scale factor SFm and the bias bm are temperature dependent, 
their respective variations are not taken into account in the following of this report. The temperature 
calibration done by Xsens is assume enough accurate. 
 

( ) mmm

true

m

out nIbmSFm +++⋅+= 1  (4.4) 
 
where : 
− mout is the output of the magnetometer. 
− SFm is the scale factor affecting the true quantity to measure. 
− mtrue is the true quantity to measure. 
− bm is the bias affecting the measurement. 
− Im is the magnetic interference that may occur during the measure. 
− nm is the noise affecting the measurement. 
 

4.2.3 Magnetic Heading 
 

The magnetic heading (also called magnetic azimuth) α is computed using the two 
horizontal components of the Earth magnetic field He as presented in Figure 4.11 and expressed in 
equation (4.5). Measurements have thus to be rotated into a horizontal plane prior to any heading 
estimation. Its accuracy depends on the quality of the data (biases, scale factors) as well as the 
accuracy of the inclination angles used to rotate the measurements into the local horizontal plane. 
 

( )
xy HHarctan=α  (4.5) 

 
where: 
– Hx is the Earth’s magnetic field component along the horizontal x axis standing for the heading 

axis (i.e. the axis with respect to whom the angle is computed) of the horizontal frame (x,y,z). 
– Hy is the Earth’s magnetic field component along the y axis of the horizontal frame (x,y,z). 
 

The impact of the measurement biases and scale factors on the magnetic heading is detailed 
in [25]. This contribution can be partially handled with a calibration procedure (detailed in the next 
subsection) so that it is assumed negligible compared to the error introduced by the tilting of the 
magnetometer triad. According to [25], the magnetic heading error as a function of the inclination 
error is given by the following equation: 
 

( ) ( )( )τδεψ sintanarctan ⋅=
mag

 (4.6) 
 
where: 
– 

magψε  is the magnetic heading error. 

– δ is the dip angle, as illustrated in Figure 4.11. 
– τ is the inclination error. 
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The magnetic heading error depends on the location of the measurement unit on Earth 
through the dip angle δ. In France, the dip angle is comprised between 50° and 60°. The 
corresponding heading error is then plotted in Figure 4.12. This figure shows that the tilt estimation 
plays a crucial role in the heading accuracy since small tilt errors introduce large heading errors. 
 

Under static conditions, the tilt accuracy (i.e. the accuracy of both pitch and roll) depends on 
the quality of the accelerometers measurements. Accelerometers sense the gravity vector, so that 
pitch and roll angles can be computed using the corresponding projections onto the mobile frame 
(m), as explained in chapter 3. Assuming a residual turn-on bias in the accelerometer measurements 
of less than 0.05 m/s² after calibration, the inclination of the IMU can thus be estimated within an 
accuracy of ±1° (detailed in chapter 3). If magnetometers are used to initialise the heading, this 
inclination error budget will introduce a bias of about ±1°, as illustrated in Figure 4.12, which 
remains within acceptable limits according to the quality of the sensors of the IMU. 
 

 
Figure 4.11: Earth magnetic field [25]. 

 
Figure 4.12: Magnetic heading error with respect to 

inclination error. 

 
In a dynamic mode, the tilt accuracy is very dependent on the real time estimation of the true 

acceleration of the pedestrian or the vehicle. No tilt compensation can be done since typical 
inclinometers are disturbed by the motion of the IMU. Such a dynamic tilt compensation algorithm 
has been developed. Details are given in the next section. 
 

4.2.4 Calibration Procedures and Magnetic Interfere nces 
 

The scale factor and the bias as defined in equation (4.4) introduce errors in the magnetic 
heading. These errors need to be estimated in order to increase the heading accuracy. However, the 
magnetic heading is computed once the measurements are rotated in a horizontal plane. Thus, the 
correction needed to limit the impact of both errors can be applied into the mobile frame (m) or in 
the horizontal levelled frame (as shown in Figure 4.11). In the following, the components of the 
magnetic field in the local horizontal plane are corrected for biases and scale factors. 
 

If the measurements were perfect in the local horizontal plane after describing a whole 360° 
rotation about the vertical axis of the navigation frame, the Hx versus Hy plot should be a perfect 
circle centred in (0, 0) with a radius equal to the local horizontal Earth’s magnetic field Hh (i.e. 
0.5191 in Toulouse). The scale factor is responsible for the distortion of the circle into an ellipse 

zoom 
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and the bias de-centres the ellipse. Thus, in an environment with no magnetic interference, the 
calibration procedure of the magnetometers consists in finding the calibrated horizontal magnetic 
components, as given in equation (4.7). 
 

0

0

yySF

calibrated

y

xxSF

calibrated

x

HHYH

HHXH

+⋅=

+⋅=
 (4.7) 

 
where: 
– calibrated

xH , calibrated

yH  are the calibrated horizontal Earth’s magnetic field components. 

– SFX , SFY  are the scale factors affecting the measurements in the horizontal plane. 

– 0xH , 0yH  are the biases affecting the measurements in the horizontal plane. 

 
The calibration procedure allows also the mitigation of permanent magnetic interferences. 

Such typical perturbations occur when the magnetic sensors of the measurement unit are placed 
nearby iron objects. These objects produce a constant magnetic field that disturbs those of the Earth. 
In the calibration diagram, hard interference decentres the circle and act as biases on the horizontal 
components of the sensed magnetic field. 
 

 
Figure 4.13: Calibration test diagram in a non perturbed magnetic environment. 

 
As an example, Figure 4.14 and Figure 4.15 illustrate such hard iron interference effect on 

the sensed magnetic field. The particular case of the land vehicle is more specifically shown since it 
involves the strongest magnetic interferences. 
 

In Figure 4.14 are plotted the magnetic field magnitude (the upper blue plot) and the 
acceleration magnitude (the lower red curve). Five parts are clearly observable on the magnetic 
field magnitude. The 1st and 5th part are epochs where the measurement unit is in the vehicle with 
engine off. As it can be seen, the magnitude is not equal to one but constant and equal to 
approximately 0.82. This typically illustrates the intrinsic hard interference property of the vehicle. 
The 2nd part of the plot stands for the pre-start of the diesel engine. The 3rd part is the start of the 
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engine. The vehicle shakes a little, as it can be seen in the acceleration pattern. Finally, the 4th part 
is for engine started. The vibrations of the vehicle are clearly observable in the acceleration plot but 
not in the magnetic field magnitude one, which remains constant. 
 

 
Figure 4.14: Magnetic field magnitude variation 

during the different vehicle engine start. 

 
Figure 4.15: Magnetic interferences due to the 

dashboard equipments of a vehicle. 

 
Figure 4.15 illustrates typical interferences that may occur while driving and that can not be 

mitigated through a calibration procedure due to their random property. In such cases, the magnetic 
heading is biased and can not be used as a correction source for the drifting gyro-based heading. 
 

4.3 Drift-Free Attitude Filter 

 
As discussed in chapter 3, the inertial navigation is a short term reliable navigation method, 

whose error budget can be split into a heading error contribution and a travelled distance error 
contribution. The position drift due to accelerometer biases can be partially managed with the use of 
modified mechanisations as for example those for pedestrians presented in chapter 3. The position 
accuracy can also be improved with the use of external sensors such as a pressure sensor to limit the 
vertical drift or wheel speed sensors in the land vehicle case, as demonstrated in [32]. 
 

In both inertial navigation cases (i.e. the classical INS or the PNS), the attitude drift is still 
remaining and thus degrades significantly the position solution when no GPS measurement is 
available for update. As the measurement unit studied within the scope of the thesis is composed of 
a triad of accelerometers, gyroscopes and magnetometers, it is possible to limit the impact of the 
gyroscopes bias on the heading accuracy by fusing the information provided by all these low-cost 
sensors of MEMS type. 
 

The recent progresses in the manufacturing of MEMS type sensors make components such 
as integrated 3-axis accelerometers and 3-axis magnetometers very attractive for navigation 
purposes. As an example of the prices foreseen in the next few years, Analog Devices expects to 
provide a 3-axis accelerometer for $1 [56], AKM produces a 3-axis magnetometer for about $5 [57] 
and the new InvenSense 2-axis gyroscope foreshadows new improvements in the integration of 
MEMS gyroscopes in a single die [55], which until these days remains the most expensive sensor. 
Besides the fact that the price of the aforementioned sensors is expected to decrease, their respective 
performance is foreseen to stay at the same level of quality as it currently is. Especially low-cost 
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gyroscopes are likely to still provide measurements affected by errors that would degrade the 
computation of the IMU attitude. Therefore, it could be relevant to use the magnetometers and the 
accelerometers to compensate for the rotation rate errors. Their combination with gyroscopes could 
indeed give a great deal of performance for a minimal additive cost on the overall sensors assembly. 
 

The attitude of the IMU is usually represented by the intuitive Euler’s angles (φ roll, θ pitch, 
ψ yaw or heading), as described in chapter 3. Within the frame of this thesis, the quaternion-based 
method is used to compute the orientation of the IMU using the gyroscopes measurements. It has 
the advantage of being defined whatever the angles the sensors assembly experiences and its 
computation does not require trigonometric functions, which in turn decreases the overall 
computation complexity. 
 

The accelerometers used as inclinometers are likely to provide information about the 
inclination of the IMU. As a consequence, they can be used to estimate the pitch and roll drifts. 
Once rotated into a horizontal plane, the magnetometers measurements can be used to estimate the 
heading drift of the IMU. Inclination and heading estimations are thus two separate processes where 
corrections are done with two independent sensors. 
 

The following presents a sensor fusion algorithm aiming at improving the reliability and the 
accuracy of the attitude of a low-cost IMU. The inclination and the heading estimations are 
performed in two consecutive Kalman filters ([44], [45], Appendix C). This has got the advantage 
of reducing the size of the matrices involved in the filter, which is profitable for real time 
implementation perspectives. It also allows a more flexible heading estimation, enhanced for 
magnetic interference mitigation. 
 

4.3.1 Inclination Filter 

4.3.1.1 State Transition Models 
 

The inclination filter relies on the fusion of accelerometers and gyroscopes data. The attitude 
is computed with the quaternion method. According to the notation of equation (3.7) and equation 
(3.10), the discrete model used in the Kalman filter for the quaternion propagation is given below in 
equation (4.8). This equation is obviously not linear since it involves the product of true rotation 
rates with quaternion components, but it is far easier to get it linear than equation (3.6). 
 

( ) k

mtrue

kk qq o21 )(,
1 ω+=+  (4.8) 

 
where: 
– kq  is the rotation quaternion at epoch k. 

– )(, mtrue

kω  is the true rotation rate vector of the mobile with respect to the (I) at epoch k. 
– o  is the quaternion product. 
 

Quaternion qk at epoch k represents the rotation of the measurement unit from the mobile 
frame to the navigation frame. The rotation rates )(, mtrue

kω  involved in equation (4.8) should be the 

true rotation rates of the measurement unit with respect to the navigation frame. As justified in 
chapter 3, these quantities are approximated by the output of the gyroscopes. Given the sensors 
resolution and sensitivity, the residual error is indeed neglected. However, the true rotation rates are 
not directly accessible since gyroscopes are affected by biases. As a consequence, both gyroscopes 
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bias and true rotation rates will be modelled in the inclination part of the attitude filter. In the 
following, the in-run biases of the gyroscope sensors are assumed to follow a 1st order Gauss-
Markov process, whose discrete expression is given below in equation (4.9). 
 

( ) ωβ

ω

ωβω ωω

β
b

k

T

k

T

k webeb ss ⋅−⋅+⋅= −−
+ 1

1
1  (4.9) 

 
where: 
– sT  is the sampling period. 

– ω
kb  is the bias vector affecting the gyroscopes measurements at epoch k. 

– ωβ  is the inverse of the time constant of the 1st order discrete Gauss-Markov process. 

– ωb
kw  is the Gauss-Markov driving noise with variance 2

ωσ b . 

 
The true rotation rate model depends on the motion experienced by the IMU. Figure 4.16 

illustrates two typical use cases, namely the pedestrian navigation (upper part) and the land vehicle 
navigation (lower part). For both cases, the dynamic experienced by the IMU is completely 
different. A rigorous approach would be to adapt the true rotation rate model as a function of the 
detected motion, but this would require extra processing. In the following, the model is rather 
designed to match the highest dynamic the IMU can experience (pedestrian navigation). 
 

In Figure 4.17 is plotted in blue the PSD of the rotation rate measurements of the three axes 
of the IMU recorded during a pedestrian trial. For these three PSD, the basic shape is similar to 
those that could be obtained with a signal composed of multiple sinusoids, whose frequencies are 
related to the frequency of the steps. However, such a characteristic can not be generalised as for 
example in the land vehicle case. As a consequence, general models are rather used with simpler 
PSD shapes, as it is the case with the first order Gauss-Markov process and the second order band-
pass filter. Both PSD expressions are given respectively in equation (4.10) and in equation (4.11). 
 

( ) ( )22
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where: 
– A  is the band-pass filter gain. 
– 0f  is the centre frequency of the band-pass filter. 

– BW  is the filter bandwidth. 
 

( ) ( ) ( )fcc
fPSD

kk

GM ~
2cos21

2

2

π
σ

ωω
ω

⋅⋅−+
=  (4.11) 

 
where: 
– ω

kc  is the time constant setting the bandwidth of the trueω  process. 

– 2
ωσ  is the variance of the driving noise setting the magnitude limit of the modelled motion. 

– f
~
 is the frequency normalised by the sampling rate. fTf s ⋅=~  

 
Figure 4.17 clearly shows that the dynamic of the measurements depends also on the axis of 
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measurement. There is indeed less power in the signal along the Z axis than in the signal along the 
X axis. Here again, the true rotation rate model should take into account each component property 
of the sensor triad. However, in a first approximation, a same model will be used for all of the axes 
of measurement. Consequently, the different parameters of the PSD presented in equation (4.10) 
and (4.11) must be tuned according to the maximum dynamic of the motion experienced by the 
sensors assembly. 
 

 
Figure 4.16: Typical rotation rate patterns for 

pedestrian navigation (upper part) and land vehicle 

navigation (lower part). 

 
Figure 4.17: PSD of the three rotation rate 

components in the mobile frame (m), 1
st
 order GM 

and 2
nd
 order band-pass filter. 

 
The PSD of the Gauss-Markov (GM) and the 2nd order band-pass filter (BPF) adapted to the 

X axis data (worst dynamic) are plotted in Figure 4.17 for the three axes of measurements. The PSD 
of the band-pass filter is the best match for the PSD of the true rotation rates. However, the centre 
frequency f0 must be adjusted depending on the characteristic frequency of the signal in order for 
the model to take advantage of the band-pass properties. The computation load is thus increased. 
The Gauss-Markov PSD approximates nevertheless quite well the true PSD. Such a model also has 
the advantage of being simple to integrate into a state space model (one equation to handle a 
component of the true rotation rate, rather than two if the 2nd order band-pass filter is used), 
reducing in the same time the matrices dimensions, which is interesting for a real time 
implementation perspective. 
 

As a consequence of the model benefits and disadvantages, the true rotation rates are 
modelled as a 1st order Gauss-Markov process tuned according to the Power Spectral Density 
function, whose parameters namely bandwidth and magnitude are chosen according to the highest 
dynamic of the motion experienced by the sensors assembly (found by processing the signals from 
typical pedestrian walks, for different IMU location onto the body of the user). The true rotation 
rate model used in the inclination filter is given below in equation (4.12). 
 

ωω ωω k

mtrue

kk
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1  (4.12) 
 
where: 
– )(, mtrue

kω  is the true rotation rate vector at epoch k, expressed in the mobile frame (m). 

– ω
kw  is the driving noise with variance 2

ωσ  setting the magnitude limit of the modelled motion. 
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The first measurements combined with the gyroscopes outputs are those provided by the 
accelerometers. The aim of this sensor fusion is to limit the drift in both pitch and roll angles. In the 
navigation frame and when no motion affects the sensors assembly, accelerometers sense the 
gravity vector allowing both roll and pitch estimation. However, when the sensors unit is moving, 
this basic inclination estimation is no more possible since the contribution of the IMU acceleration 
is added to those of the gravity vector. There is consequently a need to model the true acceleration 
experienced by the sensors assembly as well as the biases affecting the accelerometers 
measurements in order to track the inclination of the unit under dynamic conditions. The bias of 
each accelerometer is modelled as a 1st order Gauss-Markov process, according to equation (4.13). 
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where: 
– a

kb  is the bias vector affecting the acceleration measurements at epoch k. 

– aβ  is the inverse of the time constant of the 1st order discrete Gauss-Markov process. 

– ba

kw  is the Gauss-Markov driving noise with variance 2
baσ . 

 
The statements made for the true rotation rates are still valid for the acceleration 

measurements. Figure 4.18 shows the different acceleration magnitudes recorded during a 
pedestrian and a land vehicle trial. As it can be seen, the dynamic is much more important in the 
pedestrian case than in the vehicle case. The pedestrian navigation is thus taken as a reference to 
choose the true acceleration model. 
 

 
Figure 4.18: Typical acceleration magnitude 

patterns for pedestrian navigation (upper part) and 

land vehicle navigation (lower part). 

 
Figure 4.19: PSD of the three acceleration 

components in the mobile frame (m), 1
st
 order GM 

and 2
nd
 order band-pass filter. 

 
Figure 4.19 shows the different PSD adjusted to the measurement that experiences the worst 

dynamic (pedestrian case). Again, the 2nd order band-pass filter seems to be more adapted to model 
the true acceleration. However, to simplify the implementation of the inclination filter, the 1st order 
Gauss-Markov model is rather chosen in the following, so that the model of the true acceleration is 
assumed to be as given in equation (4.14). 
 



Sensor-Based Augmentations 

Page 94 

a

k

mtrue

k

a

k

mtrue

k waca +⋅=+
)(,)(,

1  (4.14) 
 
where: 
– )(, mtrue

ka  is the true acceleration vector at epoch k, expressed in the mobile frame (m). 

– a

kc  is the time constant setting the bandwidth of the truea  process. 

– a

kw  is the driving noise with a variance 2
aσ  setting the magnitude limit of the modelled motion. 

 

4.3.1.2 Measurement Models 
 

The inclination filter aims at providing stable pitch and roll angles that will be used to rotate 
the magnetometers measurements into a horizontal plane so as to estimate the heading drift. Three 
different kinds of measurements are used in order to achieve this inclination stabilisation. These 
measurements are used as direct inputs of the Kalman filter in order to simplify the design of the 
filter. The first measurements are those provided by the gyroscopes. The output model given in 
equation (3.4) is simplified as written below. 
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where: 
– .meas

kω  is the gyroscope triad output data vector at epoch k. 

– user

kω  is the true rotation rate vector experienced by the user at epoch k. 

– ωb  is the bias vector affecting the measurements at epoch k. 
– ω

kn  is the measurement noise at epoch k. 
 

The measurement model involving both the acceleration data and the rotation quaternion 
components is given below in equation (4.16). The rotation matrix as a function of the quaternion 
components is given in chapter 3, equation (3.12). Equation (4.16) does not clearly show that the 
acceleration measurements improve more specifically the inclination angles accuracy. It has 
however the advantage of being very simple to implement in the Kalman filter. 
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where: 
– g  is the gravity vector. 

– user

ka  is the true acceleration of the sensors assembly unbiased by the gravity vector at epoch k. 

– mnR 2  is the rotation matrix from the navigation frame (n) to the mobile frame at epoch k. 

– ab  is the bias affecting the measurements at epoch k. 
– a

kn  is the measurement noise at epoch k. 
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The last measurement equation is added to make sure the quaternion magnitude is equal to 
1. Equation (4.17) gives the non-linear normalisation equation, whose notations are equivalent to 
those of chapter 3. 
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4.3.1.3 Inclination Filter Summary 
 

The inclination filter principle is summarised below in Figure 4.20. It uses the state 
equations (4.8), (4.9), (4.12), (4.13) and (4.14). The accelerometer and gyroscope measurements are 
fed into the Kalman filter to enable the estimation of the roll and pitch angles drift. The 
measurements equations are given in (4.15), (4.16) and (4.17). In order to properly initialise the 
attitude angles computation, magnetic measurements are used to find the initial heading angle (as 
described in section 4.2.3). The inclination filter then processes only accelerometers and gyros data. 
 

 
Figure 4.20: Inclination filter principle. 

 
In the proposed filter, scale factors are deliberately assumed not to have significant 

variations that would introduce large errors and thus are not included in the state vector of the 
inclination filter. Equation (4.18) gives the state vector of the inclination filter. It involves 16 
unknowns as defined in the above subsection. 
 

[ ]Tatruetrue

ninclinatio babqX ωω=  (4.18) 

 
The outputs of the inclination filter are the quaternion components estimates from which the 

Euler’s angles can be computed. Only roll and pitch angles are corrected for drift. The true 
acceleration vector, the true rotation rate vector as well as the respective biases that affect the 
measurements are also estimated in the filter. 
 

4.3.2 Heading Filter 

4.3.2.1 State Transition Models 
 

The heading of the sensors assembly is computed in a second Kalman filter, which mainly 
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relies on magnetometers measurements if no magnetic interference is detected. It relies otherwise 
on the heading provided by the inclination filter. Several techniques exist to estimate the magnetic 
heading. In [33], a vector method using the gravity vector and the Earth’s magnetic field both 
expressed in the mobile frame is described. More intuitively, the magnetic measurements once 
rotated in a horizontal plane can be used to sense the direction of the magnetic north, as for example 
it is explained in [34]. Another technique based on the knowledge of the components of the Earth’s 
magnetic field in the navigation frame can be used [35]. 
 

In this study, to reduce the filter complexity and allow a flexible heading estimation, the 
magnetometers measurements are first rotated into a horizontal plane using the attitude provided by 
the inclination filter, as described earlier. Equation (4.5) gives the corresponding magnetic heading 
used as an external measurement. 
 

This magnetic heading is considered as the reference in the Kalman filter. However, it may 
be affected by perturbations due to nearby iron objects that would distort the Earth’s magnetic field. 
Thus, in order to mitigate those interferences, the still biased heading provided by the inclination 
filter is used as a backup. Its bias and scale factor will be estimated using magnetometer data. Once 
magnetic interferences are detected, the correction is stopped and the debiased heading is used as 
the main heading source. The reliability and the accuracy of the heading computed from the 
inclination filter will obviously decrease over time until the next update. The procedure is referred 
in the following as Magnetic Interference Mitigation (MIM). 
 

Given these statements, the state vector is naturally composed of four unknowns, whose 
propagation models are given from equation (4.19) to equation (4.22). The true heading is assumed 
to follow a simple random walk process. It was found to be a good comprise between the random 
property of the heading variation (i.e. the IMU attitude is unpredictable) and the model complexity. 
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where: 
– true

kψ  is the true heading of the sensors assembly at epoch k. 

– ψ
kw  is the driving noise of the true heading at epoch k. It is assumed to be equal to 1° as 

discussed in subsection 4.2.3, which roughly corresponds to the accuracy that can be achieved 
using non-filtered magnetic measurements to compute the heading taking into account a typical 
inclination error of about 1°. 

 
The scale factor affecting the inclination heading (i.e. the heading provided by the 

Inclination Kalman Filter (IKF)) is also assumed to follow a random walk process. The scale factor 
is here taken into account since the heading may have been affected by the inclination filter 
processing. Its variations are nevertheless considered very small over time (variance of the driving 
noise set empirically according to physical considerations to 0.001°). 
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where: 
– IKF

kSF  is the scale factor affecting the inclination filter heading solution at epoch k. 

– SF

kw  is the driving noise of the random walk process. 
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It is intuitive to think about integrated processes to model the heading bias, since the 
heading is computed based on the integration of the gyroscopes measurements. However, it was 
found in the different filter implementations that the increase of model complexity does not provide 
a great deal of performance as compared to the use of simpler models. Nevertheless, the heading 
bias is modelled as a 1st order Integrated Gauss-Markov process, as described in equation (4.21).  
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where: 
– ψ

kb  is the bias (integrated Gauss-Markov) of the inclination filter heading solution at epoch k. 

– ψ
kb
&  is the time derivate of the bias at epoch k, which follows a 1st order Gauss-Markov process. 

– ψβ  is the time constant of the Gauss-Markov model. 

– ψb
kw  is the driving noise of the Gauss-Markov process. 

 
The magnetic interference model is given below in equation (4.22) 
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where: 
– ψ

kI  is the magnetic perturbation that affect the heading at epoch k. 

– P

kc  is the time constant setting the bandwidth of the magnetic interference at epoch k. 

– P

kw  is the driving noise setting the magnitude of the magnetic perturbation at epoch k, which is 
permanently adjusted as a function of the difference between the measured and the theoretical 
magnitude of the magnetic field. 

 
The magnetic perturbation model is tuned with the parameters P

kc  and P

kw  in order to 
mitigate the magnetic interferences. The magnitude of the horizontal component sensed by the 
magnetometers as well as the magnetic inclination angle are checked and compared to the 
theoretical ones that can be found in database such as those provided by the National Geophysical 
Data Centre [22]. If the discrepancy is too high, a magnetic interference is detected and the driving 
noise setting its magnitude is increased. In that case, less confidence is also given in magnetometer 
measurements, so that the true heading estimation relies mainly on the inclination filter heading 
solution. 
 

4.3.2.2 Measurements Models 
 

As discussed above, the measurements are twofold. The heading measurements can be 
provided whether by the inclination filter or by the magnetometers. The magnetic heading 
computed according to equation (4.5) is given below in equation (4.23). 
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where: 
– mag

kψ  is the magnetic heading measurement coming from the processing of magnetometers data. 

– mag

kn  is the magnetic heading measurement noise at epoch k. The variance of the noise is 

adjusted according the intensity of the magnetic interference ψ
kI  that may occur. 

 
The model of the heading computed with the quaternion components estimated in the 

inclination filter is given in equation (4.24). 
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where : 
– IKF

kψ  is the inclination filter heading output at epoch k and used as measurement of the heading 
Kalman filter. 

– IKF

kn  is the inclination filter measurement noise at epoch k. 
 

4.3.2.3 Heading Filer Summary 
 

The heading filter principle is summarised below in Figure 4.21. It uses the state equations 
(4.19), (4.20), (4.21) and (4.22). The heading drift estimation is done through the combination of 
the measurements coming from the inclination filter (rotation quaternion converted into Euler’s 
angles) and the processing of the magnetometers data. The measurements equations are given in 
equation (4.23) and (4.24). 
 

 
Figure 4.21: Heading filter principle. 

 
Equation (4.25) gives the state vector of the heading filter, which involves 5 unknowns as 

defined in the above sub-section. 
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The outputs of the heading filter are the true heading estimate and the errors affecting the 

magnetic heading (i.e. scale factor, bias and interference). 
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4.3.3 Optimised Drift-Free Attitude Filter 
 

Among all the three types of sensors used in the measurement unit, gyroscopes are the more 
expensive ones. Therefore, in order to reduce the overall sensors assembly cost, one could think 
about removing some of them. In this perspective, a single gyro mounted vertically onto the body of 
a pedestrian or mounted in a vehicle should provide the orientation of the sensors assembly. But due 
to the dynamic of pedestrians and even land vehicles, this gyro is not likely to perfectly sense the 
vertical rotation rate of the measurement unit, introducing some errors in the heading estimation. To 
avoid such alignment error, magnetometers measurements are combined with the single gyroscope. 
Equation (4.26) gives the basic relationship between the true rotation rate, the Earth’s magnetic 
field and its derivative, assuming no magnetic interference. 
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where: 
– )(, mtrue

km  is the true magnetic field vector, as defined above in equation (4.4). 

– )(m
kdm  is the time derivative vector of )(, mtrue

km , expressed in the mobile frame at epoch k. 
 

By developing and rearranging equation (4.26), it is possible to give an expression of the 
rotation rates along the two axes where the sensors assembly is not equipped with gyroscopes. 
Assuming the only gyroscope of the measurement unit is pointing upward along the vertical axis, 
equation (4.26) can be developed such that: 
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where: 
– )(

,
m

kdm−  is the ‘-‘ coordinate of )(m
kdm . 

– )(,
,

mtrue

k−ω  is the ‘-‘ coordinate of )(, mtrueω . 

– )(,
,

mtrue

km−  is the ‘-‘ coordinate of )(, mtrue

km . 

 
According to equations (4.27) and (4.28), magnetic measurements can be used to 

compensate the tilt error due the lack of gyroscopes. The computed rotation rates around x and y 
axes as defined in the two above equations are then used as measurements that are fed into the 
inclination Kalman filter. However, when magnetic interferences disturb the Earth’s magnetic field 
so that magnetometer measurements are no more reliable, the two above equations may introduce 
large errors in the heading estimation. To mitigate the effect of these perturbations, magnetometer 
measurements are only used when they are found to be reliable enough. In that case, the attitude is 
computed without errors and the calibration of the heading computed based on the single gyroscope 
can be performed. When interferences occur, the heading provided by the filter is the one computed 
using the calibrated gyroscope. 
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4.3.4 Drift-Free Attitude Filter 
4.3.4.1 Design n°1: Attitude Filter using all the S ensors 
 

The global attitude filter is the combination of the two above filters. However, a well-known 
issue with Euler’s angles rises when the sensors assembly experiences roll angles of ±π/2. This use 
case may occur especially if the sensors assembly is put with a random attitude on the body of a 
user or on the dashboard of a vehicle. In that case, both pitch and heading angles are no more 
defined. This typical singularity disturbs the visual restitution of the attitude of the sensors 
assembly. Thus, an Euler’s Angles Singularity Resolution (EASR) algorithm (detailed in chapter 3) 
is implemented at the output of the inclination filter to detect and correct this issue. It also provides 
a reliable heading estimate whatever the attitude of the sensors unit [36]. 
 

The principle of the algorithm using all the sensors of the measurement unit is summarised 
in Figure 4.22. The first Kalman filter is dedicated to inclination estimation. Its state vector is 
composed of 16 unknowns. Then angles are checked to avoid singularities and heading estimation 
is done through a second Kalman filter of 5 states. 
 
 

 
Figure 4.22: Attitude filter algorithm using all the sensors. 

 
 

4.3.4.2 Design n°2: Attitude Filter using only 1 Gy roscope 
 

Figure 4.23 summarises the algorithm in the case of the use of only one gyroscope mounted 
vertically. In such a use case, the EASR algorithm may not be useful since the measurement unit is 
assumed to be closely attached to the vehicle / pedestrian to localise. 
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Figure 4.23: Attitude filter algorithm with only 1 gyroscope in the sensors unit. 

 

4.3.5 Test Results 
 

This section presents the results of the trials exercised in actual conditions using the sensors 
of the MTi. The attitude filter is tested for both pedestrian and land vehicle navigation under 
dynamic conditions. The purpose of these tests is to analyse the accuracy of the attitude provided by 
the filter and more specifically the accuracy of the heading. As a reference, GPS measurements 
collected during trials are processed differentially to have as accurate as possible heading and 
trajectory references. As a consequence, the tests took place on an open sky car parking lot of a 
supermarket with lots of idling and moving cars to make sure that GPS measurements can be 
differentially processed. Furthermore, such a testing environment allows magnetic interferences to 
disturb the Earth’s magnetic field. 
 

The pedestrian navigation is first tested. In that case, the sensors will be assumed to remain 
fixed with respect to the body. The dynamic experienced during the walk may change depending 
where the sensors are placed. The filter should thus be able to adapt the different propagation 
models according to the pedestrian motion. In the particular case where the sensors are attached to 
the body with a pre-determined attitude (for example, belt mounted with one axis of the sensors 
assembly pointing toward the local vertical), the possibility of using only one gyro, allowing in the 
same time a reduction of the global sensors assembly cost, is more specifically studied. 
 

The land vehicle navigation is tested in second. The IMU is likely to be placed with a 
random attitude on the dashboard of the car or elsewhere. In that case, the sensors assembly will 
thus be considered to remain fixed with respect to the car, as for the pedestrian navigation. The 
possibility of reducing the number of sensors used to provide the attitude of the unit is also 
addressed. The four different use cases tested in the following are summarised in Table 4.2 
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Navigation 
mode 

Pedestrian Land Vehicle 

Test Case Case 1 Case 2 Case 3 Case 4 

Sensors 
configuration 

3 Gyroscopes 
3 Accelerometers 
3 Magnetometers 

1 Gyroscope 
3 Accelerometers 
3 Magnetometers 

3 Gyroscopes 
3 Accelerometers 
3 Magnetometers 

1 Gyroscope 
3 Accelerometers 
3 Magnetometers 

Table 4.2: Measurement unit configuration given typical test cases. 

 
As presented in Figure 4.18 through the acceleration magnitude patterns, the dynamic due to 

the motion of pedestrians and land vehicles are very different. As a consequence and according to 
this dynamic, equations (4.12) and (4.14) have to be tuned adequately. In the attitude filters 
described above, the adaptation of the models to the motion experienced by the sensors assembly is 
performed online using the variance and the time derivative of accelerations and rotation rates. 
Furthermore, the magnetometers of the sensors assembly are calibrated against hard interferences 
caused by nearby iron objects prior to perform the different trials, according to the procedure 
detailed in subsection 4.2.4. 
 

4.3.5.1 The Pedestrian Navigation Case 

4.3.5.1.1 Case 1 Test Results 
 

In this trial, the sensors assembly is put inside the user’s trouser pocket with a random 
attitude. The pedestrian walked a short path in the middle of parked cars. The filter using all the 
sensors is first tested. Figure 4.24 presents the heading provided by the attitude filter with and 
without the Euler’s Angle Singularity Resolution algorithm detailed in chapter 3. As it can be seen, 
the sensors assembly experiences many positions where the pitch angle reaches critical values (i.e. 
±π/2), disturbing the restitution of the estimated heading. The non corrected heading solution 
plotted in blue is biased and very noisy. Its variance between time 160 and 190 reaches about 30 
degrees, which is clearly not realistic of a pedestrian walk. 
 
 

 
Figure 4.24: Attitude filter heading solution. 

 
Figure 4.25: Normalised magnetic field magnitude. 

 
Figure 4.25 shows the magnetic field magnitude as recorded during the trial. Perturbations 

have been automatically detected according to the procedure described at the beginning of the 
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chapter. They are identified by the black lines in Figure 4.25. It can also be noticed that the 
magnitude of these interferences is not very high and their duration never exceeds 15 seconds. As a 
consequence, they are expected not to introduce large errors in the heading estimation. 
 

To analyse the accuracy of the heading provided by the attitude filter, DGPS measurements 
are used as reference. Since the pedestrian has got a low velocity while walking, the DGPS 
reference is quite noisy with a standard deviation of about 3 degrees. 
 

Figure 4.26 presents the heading error with respect to the DGPS measurements of both the 
attitude filter in blue and the classical strapdown gyro-based algorithm in green. The gyro-based 
heading solution is clearly drifting at a rate of about 5°/min. On the contrary, the heading provided 
by the attitude filter seems stable. 
 

 
Figure 4.26: Attitude filter and gyro-based heading 

errors. All sensors are used. 

 
Figure 4.27: Attitude filter heading error. All 

sensors used. 

 
Figure 4.27 gives a focus on the error made in the estimation of the heading as done by the 

attitude filter. The error is nearly centred with a mean value of 0.13 degree over the whole trial 
duration. The standard deviation is about 5.4 degrees, which is quite high. However, it can be 
assumed that the reference heading is mainly responsible for that. 
 

To assess the impact of the attitude filter heading accuracy on the position solution provided 
by an inertia-based navigation system, the trajectory of the pedestrian is reconstructed following a 
dead-reckoning methodology, whose basic equation is given in equation (4.29). The trajectory uses 
the heading estimated with the different algorithms whereas the curvilinear travelled distance is 
computed with the DGPS measurements. The observed error in the reconstructed trajectories can 
thus be entirely attributed to the accuracy of the estimated heading. 
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where: 
– kN  is the north position of the user at epoch k. 

– kE  is the east position of the user at epoch k. 
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– ]1,[ +kkd  is the travelled distance between epoch k and k+1 provided by DGPS measurements. 

– kψ  is the heading at epoch k.  
 

Figure 4.28 illustrates the different trajectories reconstructed using different heading 
sources. 
 

 
Figure 4.28: Trajectories using different heading sources. Pedestrian case with the triad of gyroscopes. 

 
 

The black dotted plot is the DGPS reference path. The red plot is the trajectory reconstructed 
with the heading affected by Euler’s angles singularities. The path is obviously not relevant of the 
true one, which justifies the implementation at some computational expense of an angle ambiguity 
resolution algorithm (as for example the EASR, as detailed in chapter 3). The green plot represents 
the trajectory using the heading computed with the classical strapdown algorithm, which is based on 
gyroscope measurements. The green path is obviously drifting. The blue path is the trajectory using 
the attitude filter heading solution enhanced with the Magnetic Interference Mitigation (MIM) 
procedure described earlier. The corresponding trajectory matches the best the true path followed 
during the trial. 
 

4.3.5.1.2 Case 2 Test Results 
 

In the above pedestrian trial, the x axis of the sensors unit was found to point approximately 
towards the local vertical during the whole test. The attitude restitution using only the gyroscope 
along the x axis of the measurement unit is then tested in the following. 
 

Figure 4.29 illustrates the heading errors with respect to the DGPS reference when only one 
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gyroscope is used in the attitude filter, the other rotation rates being computed using the 
magnetometer data. The blue plot stands for the attitude filter error with only one gyroscope, 
whereas the red plot illustrates the vertical gyroscope-based heading error (without compensation 
due to tilt error and rotation rate bias). As shown in the figure, the gyroscope-based heading is 
clearly drifting at a rate of about 8°/min. This drift rate is higher than the drift rate of the strapdown 
solution since the vertical gyroscope is not perfectly aligned with the true vertical axis. It follows 
indeed the movement of the leg, which introduces non negligible tilt errors in the computed heading 
solution and contributes to the overall decrease of heading accuracy. 
 

To analyse the effect of the magnetic interferences onto the rotation rates generated with the 
magnetometers data, an example of gyro bias estimation in the inclination filter is shown in Figure 
4.30. The internal Kalman standard deviation is also plotted in black. When interferences occur, the 
Kalman covariance increases suddenly so that the gyro bias estimate error increases, and as a 
consequence the tilt angle estimation error as well. 
 
 

 
Figure 4.29: Attitude filter and gyro-based heading 

errors. Only one gyroscope is used. 

 
Figure 4.30: Y axis gyro bias estimate of the 

Inclination Kalman Filter (IKF).

 
What is also interesting to notice is that the Kalman filter needs time to converge to a more 

accurate bias estimate (10s after the end of the magnetic interference to go back to a bias standard 
deviation of less 0.05rad/s). This means that the heading provided by the filter relies on the debiased 
vertical gyro measurements during the perturbation but also a certain amount of time after this 
perturbation is detected in order for the filter to converge towards accurate estimates. 
 

As a consequence of the above statements, it can be expected that the sensors assembly 
using only one gyro will rely exclusively on gyroscope data more often that in the previous case 
because of the time needed for the filter to converge to stable bias estimates (as illustrated above in 
Figure 4.30). 
 

Figure 4.31 illustrates the trajectories reconstructed using different heading sources. The 
gyro-based position solution is plotted in green, the attitude filter heading in blue and the attitude 
filter using only one gyroscope in red. The red path experiences small drift when the heading 
solution relies exclusively on gyroscope measurements. This drift is not observable in Figure 4.29 
due to the too high variance of the DGPS heading reference. 
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Figure 4.31: Trajectories using Different Heading Sources. Pedestrian Case with only one Gyroscope. 

 

4.3.5.2 The Land Vehicle Navigation 

4.3.5.2.1 Case 3 Test Results 
 

The attitude filter algorithm is then tested for typical land vehicle dynamics. As in the 
pedestrian navigation case, the test took place with a car driven on the car parking lot of a 
supermarket with lots of moving and idling cars. In a first time, the attitude filter is tested using all 
the sensors of the measurement unit. Then the performance of the configuration using only one 
gyroscope is analysed. 
 

In the conducted trial, the standard deviation of the reference DGPS heading was found to 
be approximately 0.8 degree, which is better than in the pedestrian case. This is mainly due to the 
medium velocity of the car, much higher than those of a pedestrian, which in turn decreases the 
sensitivity of the velocity measurements with respect to the noise of the GPS signals. 
 

The different heading errors with respect to the DGPS reference are plotted in Figure 4.32. 
High errors are observable near sample 700, but this is due to a stop of the car, making the velocity 
measurements very noisy and as a consequence, the GPS-based heading quasi unobservable. 
 

The green plot stands for the heading computed with gyroscope measurements following a 
gyro-based strapdown algorithm. The inherent drift is again clearly observable with a rate of about 
3°/min, which is less than in the pedestrian case. This can be justified by the dynamic of the vehicle 
which is quite low, so as a consequence, the in run bias which varies as a function of the 
temperature and the motion affecting the sensor has less impact on the overall heading error. The 
red plot stands for the heading computed using the magnetometers data once they are rotated in a 
horizontal plane using the inclination filter outputs (EASR enabled). As it can be seen in the figure, 
the magnetic interferences strongly affect the heading estimation. The blue plot is the heading 
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computed with the attitude filter. The mean of the error is equal to 0.9°, and the standard deviation 
is equal to 3.3°. No drift is remarkable in the solution provided by the filter. 
 

 
Figure 4.32: Heading errors with respect to the DGPS reference. All the sensors are used. 

 
The reconstructed paths using the above estimated headings are plotted in Figure 4.33. 

 

 
Figure 4.33: Trajectories using different heading sources. Land vehicle case with three gyroscopes. 

 
The reference DGPS path is plotted as the dashed black line. The red path is the trajectory 
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computed with the magnetic heading once tilt compensation has been applied on the magnetometers 
measurements. It is obvious that the magnetic interferences that occur during the trial affect the 
trajectory, which still remains recognisable but exhibits a very poor accuracy. 
 

Opposite, the attitude filter solution plotted in blue is more relevant of the true trajectory 
followed during the trial. The Magnetic Interference Mitigation (MIM) performs well. As a 
comparison, the trajectory using the gyro-based heading is also plotted in green. A low drift is 
observable in this path. This drift is lower than in the pedestrian case, due to the smoother 
acceleration experienced by the sensors assembly that does not modify the in run bias significantly. 
This also explains why the attitude filter provides an accurate heading solution during the numerous 
periods where the magnetometers data are flagged as unreliable, as shown in Figure 4.32. 
 

4.3.5.2.2 Case 4 Test Results 
 

The filter is then tested using only the gyroscope of the measurement unit that is pointing 
toward the local vertical during the whole trial. The resulting trajectory computed with this new 
heading source is plotted in Figure 4.34. In order to compare the performance of the different 
position solutions, the path computed with all the sensors is also plotted in blue and the gyroscope-
based strapdown solution in green. As discussed above in subsection 4.3.3, once a magnetic 
interference is detected, the rotation rates generated by the processing of the magnetometers data 
are considered corrupted so that the heading provided by the inclination filter is no more reliable. 
Some time is needed for the filter to converge toward a stable solution, even after the end of the 
magnetic interference. Meanwhile, the vertical gyroscope is the only sensor capable of providing 
useful information to compute the heading of the vehicle. 
 

 
Figure 4.34: Trajectories using different heading sources. Land vehicle case with only one gyroscope. 

 
As a consequence and according to Figure 4.32, the update of the gyroscope-based heading 
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can only be performed at the beginning of the trial and around sample 800. The red plot standing for 
the position solution using the heading computed with one vertical gyroscope follows indeed quite 
well the true path from the beginning to the point marked as “End of Update”, because 
magnetometers are used to estimate the vertical gyroscope drift. The trajectory experiences then 
small drift due to gyroscope measurements affected by bias and tilt error, and that can not be 
corrected. The next update is performed around samples 800 at the “New Update” point, where 
magnetometer data are declared reliable to enable the estimation of the heading errors (bias and tilt). 
 

4.4 Other Augmentation Techniques 

 
The beginning of the chapter presented some sensor-based augmentations that could yield an 

increase of availability and accuracy of GPS-based positioning systems when integrated with the 
GPS sensor. The following described another improvement that can be brought by such low-cost 
sensors as their information can be fused into one filter in order to limit the impact of the 
gyroscopes bias, even if the IMU is in motion, and thus increase the computed attitude. This section 
presents finally some improvements that are rather in relationship with the type of motion 
experienced by the IMU, and that do not require the use of extra sensors. 
 

4.4.1 Zero velocity UPdaTe (ZUPT) 
 

As detailed in chapter 3 and recalled in this chapter, the main issue involved in the INS is 
the impact of the sensors bias (accelerometers and gyroscopes) on the different INS computation 
stages. Basically, these errors can be estimated either if an external accurate source is available to 
perform corrections, or if the motion of measurement unit can be independently characterised. The 
latter case requires a motion detection algorithm, but it can give a great deal of performance for a 
minimal computational cost. 
 

It is straightforward to infer some properties of what should be measured by the sensors if 
the IMU is at rest. Indeed, and whatever the accuracy of the error model of the different sensors, it 
is obvious that once the IMU is idling, the gyroscopes output should be equal to zero, and the 
acceleration sensed by the triad of accelerometers should be exclusively the gravity vector. In such 
a use case, the estimation of the gyroscope bias is easy to do by averaging the output of the sensor. 
 

It is more difficult to estimate the biases affecting the accelerometer triad. However, it is 
straightforward to estimate the error made on the velocity computed from the acceleration 
measurements [38]. When the IMU is detected to be idling, the velocity components can indeed be 
set to zero since no motion affects the measurement unit (Zero velocity UPdaTe - ZUPT). 
 

Figure 4.35 shows the basic principle of the zero velocity update for updates every 30s, 60s 
and 90s. Once the IMU is found idling, the velocity components computed through the integration 
of the accelerations are set to zero. The figure is plotted according to a typical accelerometer bias of 
0.04m/s², which is the average bias affecting the accelerometers measurements as characterised in 
chapter 3. The effect on the position accuracy is illustrated in Figure 4.36. 
 

Such an algorithm will not be used within the scope of this thesis. 
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Figure 4.35: ZUPT. Theoretical velocity error 

profiles. 

 
Figure 4.36: ZUPT. Theoretical position error 

profiles. 

 

4.4.2 Velocity and Height Constraints 
 

In most navigation cases, the measurement unit is attached to the pedestrian or vehicle to 
localise. In such a use case, it is possible to find the displacement direction and the orientation of 
the IMU with respect to it. In the particular case of the vehicle navigation, it can be assumed that 
the measurement axes perpendicular to the displacement direction do not provide any useful 
information (assuming also that the vehicle does not slip and stays on the ground). In other words, 
the velocity components onto these axes can be set to zero [37]. It is more difficult to hold the same 
assumption for pedestrian navigation, since the pedestrian may walk a step backward or forward, 
but also laterally, which makes the velocity constraints obsolete. Such a kind of algorithm-based 
augmentation will be used only for vehicle navigation. 
 

The height constraint follows the same principle as the velocity constraint. For a typical 
travel, the height solution does not vary very much, at most by more than few tens of metres. If the 
height is provided by a pressure sensor for example, the position solution accuracy may increase in 
both 2D and 3D dimensions, especially in urban canyon environments, where GPS signals are weak 
and affected by large multipath. Such an improvement will be assessed in chapter 6. 
 

4.5 Conclusion 

 
This chapter presented some sensor-based augmentations in order to improve the position 

accuracy of both INS and GPS. The pressure sensor has first been introduced. Its performance have 
been assessed and more specifically the altitude and vertical velocity accuracy. It has been found 
that the altitude provided was quite stable with a standard deviation of about 2 metres. Despite the 
known sensitivity of the pressure measurements to the weather conditions, the numerous tests that 
have been conducted did not demonstrate such a relationship. This may be first explained by the 
weather conditions during the trial (no major changes between outside and inside), and second by 
the calibration procedure implemented in the evaluation board that applies corrections to the 
measurements as a function of the temperature sensed at the pressure sensor level. The vertical 
velocity accuracy was also analysed. It was found very noisy if computed based on the raw altitude 
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measurements. However, as soon as the altitude is filtered through a simpler averaging window for 
example, the velocity becomes more accurate and suitable for further integration. Different 
integration techniques have been studied more specifically at the altitude level. The integration of 
the altitude measurements as an additive pseudorange measurement was found to give the best 
improvements in terms of 3D position accuracy. In the perspective of an integration of GPS with 
inertial sensors, height constraint seems however more adapted to give a great deal of performance 
for a minimal increase of algorithm complexity. 
 

The benefits of the magnetometers measurements have been detailed. The Xsens’ MTi has 
the advantage of including in the small sensors package such components, so that the improvement 
of the heading accuracy is easier to do. Since the increase of accuracy of the heading provided by 
the measurement unit leads to an increase of the INS performance as demonstrated in chapter 3 for 
both classical and pedestrian mechanisations, an algorithm has been developed. The sensors fusion 
detailed in this chapter was dynamically tested to assess its performance for typical motions such as 
pedestrian and land vehicle. The models implemented in the attitude filter are dependent on the 
dynamic experienced by the sensors. The models tuned according to the worst case (pedestrian 
navigation) shows good heading accuracy capabilities. A dynamic accuracy of less than 1° was 
found achievable according the results of the trial conducted for pedestrian navigation. The 
mitigation of the magnetic interferences shows also good results, with an efficient and reliable 
detection procedure. However, according to the methodology followed in the design of the filter, 
the heading output relies exclusively on gyroscope measurements during magnetic interferences, 
which introduces drift as long as no update can be performed. The example of land vehicle 
navigation is a typical use case where the magnetometers are not often reliable enough to enable the 
gyroscopes bias estimation. It was nevertheless shown that according to the conducted trials, the 
availability of the magnetic measurements was good enough. As the vehicle did not experience high 
dynamic, the in-run gyroscope bias varied much slowly than in the pedestrian case, allowing long 
and reliable navigation periods without the need of a regular heading update. 

 
The possibility of reducing the number of sensors has also been addressed. The performance 

of the attitude filter has been shown to be quite worse than the full sensors one, according to the 
trial exercised, even if results are within acceptable limits according to the gyroscope-based attitude 
solution. 
 

Others techniques based on the dynamic of mechanical displacement properties of the user / 
vehicle to localise have been discussed. Their performances are likely to be demonstrated in chapter 
6, which addresses the INS/GPS integration, as well as the benefits brought by the attitude filter. 
The next chapter will also show the advantage of such a sensor combination. 
 



Sensors Aiding for GPS Acquisition 

Page 112 

Chapter 5: Sensors Aiding for GPS 
Acquisition 

 
 

This chapter discusses the possibility of using low-cost sensors of MEMS type in order to 
decrease the acquisition complexity of GPS signals by reducing the user’s Doppler uncertainty. The 
extension to general GNSS signals is straightforward. Among all the processing stages involved in 
the position computation process, it seems that the acquisition stage is the more appropriate to 
benefit from the sensors assembly information. As detailed in chapter 3 and chapter 4, the MEMS 
sensors can provide orientation and velocity information, whose respective accuracies mainly 
depend on the mechanisation used for standalone inertial navigation (i.e. classical INS or PNS 
mechanisation) as well as the filters used to limit the impact of sensors errors (as for example the 
attitude filter detailed in chapter 4). 
 

In a first time, the principle of the tight coupling of the GPS receiver with the low-cost 
MEMS sensors is described. The algorithm aiming at estimating the user’s Doppler in order to 
improve the acquisition of GPS signals is discussed and justified. A detailed Doppler contribution is 
provided with respect to the user, the receiver clock and the satellite to acquire. The sensor fusion 
algorithm is then tested in actual conditions and results are presented. 
 



Sensors Aiding for GPS Acquisition 

Page 113 

5.1 Introduction 

 
The recent improvements in the manufacturing of Micro-Electro-Mechanical-Systems 

(MEMS) have made the use of such sensors very common in many areas. Indeed, despite their low 
accuracy, their low consumption, small size and low cost make them very attractive for many 
applications and services. Among them, Location-Based Services (LBS) may experience significant 
improvements in both reliability and availability since GNSS-based location products dedicated to 
pedestrian or land vehicle navigation are likely to be augmented with a set of complementary 
MEMS. However, such an augmentation mainly relies on the quality of the sensors used in the 
hybridised system. Because they usually are low-cost, enhanced algorithms have to be implemented 
to cope with their intrinsic low-performance. 
 

The traditional sensors fusion approach focuses on the correction of the position using a 
reference navigation system, for instance a HSGPS or AGPS receiver. Figure 5.1 illustrates such a 
system combination without getting into the details of the integration algorithm. The usual 
integration part is the data fusion algorithm highlighted in green, whose different architectures are 
described in details in the next chapter. The aim of this chapter is rather to study the performance 
that can be achieved in the reduction of the GPS processing complexity using external information 
provided by the low-cost MEMS sensors, which is illustrated by the thick red line. 
 

 
Figure 5.1: Navigation systems integration principle. 

 
As discussed in chapter 1, the basic processing stages of a GPS receiver are the acquisition 

and tracking stages. The improvement of the tracking loops with external information is well known 
and often termed as ultra-tight integration. The Doppler derived from the inertial measurements is 
used to drive the phase and code loops in order to improve the dynamic response of the integrated 
system. More details can be found in the large available related literature ([60] and [61] for 
instance). Such an integration level requires high quality inertial sensors, and therefore will not be 
discussed in this study. The following rather focuses on the acquisition enhancement and more 
specifically using a triad of low-cost accelerometers, magnetometers and gyroscopes. 
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The approach followed in this chapter concentrates on how acquisition can be improved 
through the reduction of the user dynamic uncertainty by using information from MEMS sensors 
[52]. Such an issue is of dramatic importance especially in the use case of weak signal acquisition 
that involves tiny Doppler bins, which in turn increases the total number of search bins, and the 
overall computation load. The navigation system considered throughout the chapter is composed of 
two parts. The first one is the GPS receiver, which is assumed to work in the previously described 
assisted mode. The second part of the navigation system is composed of a low-cost MEMS-based 
measurement unit, which is mounted onto the pedestrian or the land vehicle. 
 

The different components of the navigation system have already been described in details in 
chapters 2 and 3. Because the mobile – whether the pedestrian or the land vehicle – is likely to 
move in harsh environments such as deep urban canyons or even tunnels, many signal disruptions 
may affect the GPS-based position solution availability. Moreover, a lot of GPS signal re-
acquisitions may be performed in those environments, increasing the power consumption and the 
computation load too. The proposed integration algorithm takes into account all the aforementioned 
issues by using MEMS sensors information to enhance GPS signal acquisition. The result of the 
processing of MEMS data is directly used in the GPS signal processing core to minimise errors and 
maximise processing efficiency. A detailed description of the methodology followed to integrate the 
inaccurate sensors information into the GPS acquisition stage is given. Tests in actual conditions are 
then conducted for both pedestrian and land vehicle navigation and their respective results analysed. 
 

Two use cases would be of interest, either the acquisition is done in the so-called “cold start” 
mode, or in the “hot/warm start” mode. Hot and warm starts show the same issues. In both cases a 
fix has just been computed so that the receiver’s clock synchronisation is done, the Doppler 
contribution of the Local Oscillator is estimated as well as the user one. Consequently, depending 
on the accuracy of the receiver’s clock model, there would be no need of extra information to speed 
up the next acquisition process. A typical example would be the re-acquisition of a GPS signal after 
a short outage. 

 
This chapter rather concentrates on the cold start acquisition aiding under typical dynamics 

encountered in personal navigation (i.e. typical pedestrian and land vehicle motions). The 
acquisition phase is a two dimensions search process so that the acquisition aiding mainly consist in 
the reduction of time and frequency search spans for every GPS signal. In synchronised cellular 
network, it is possible to make the reference time consistent with GPS time, so that the time 
uncertainty can be reduced to only several chips. In non-synchronous cellular networks, the 
accuracy of the reference time provided in the assistance message is only accurate to several 
seconds (typically ±2 seconds), which does not allow any time uncertainty reduction. As a 
consequence, it will not be studied in the following of this chapter. 
 

The focus is put on the frequency uncertainty reduction. Assistance provided by external 
means can help reducing the frequency search span. The frequency uncertainty is composed of three 
independent contributions coming from the motion of the GPS satellites, the receiver’s Local 
Oscillator drift and the motion of the user. The first contribution can be estimated using external 
data (c.f. AGPS positioning). The receiver’s LO drift can be modelled using a mathematical model, 
but its accuracy is not good enough to allow the estimation of the Doppler contribution over 
medium even short time duration. The user Doppler contribution can not be estimated without 
external information, thus is considered to be unknown as well. Consequently in the following, the 
acquisition aiding will be achieved through the estimation of both LO and user Doppler 
contributions. 
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5.2 Receiver Doppler Uncertainty 

 
Basically, the carrier of the GPS signal is affected by the relative motion of the transmitting 

satellite with respect to the receiver’s antenna, and the drift of the clocks used at both sides of the 
transmission channel. As a consequence, for a single channel of a GPS receiver, the Doppler 
affecting the carrier of the signal to acquire can be written as given in equation (5.1). 
 

r

dL

carrier

receiver fff +=
1

 (5.1) 

 
where: 
– carrier

receiverf  is the apparent carrier frequency of the signal to acquire. 

– 
1L
f  is the true carrier frequency of the signal to acquire. 

− r

df  is the overall receiver Doppler effect affecting the carrier of the signal to acquire. 
 

As detailed in equation 2.35 of chapter 2, the Doppler of the received signal is composed of 
several contributions. All these contributions are more specifically analysed in the following 
subsections. 
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where: 
– user

df  is the user’s Doppler contribution (Hz). 

– satellite

df  is the satellite’s Doppler contribution (Hz). 

– LO

df  is Local Oscillator’s Doppler contribution (Hz). 

– fn  is the overall noise affecting the measurement (Hz). 

 

5.2.1 Satellite Contribution 
 

The satellite Doppler contribution can be predicted when the ephemeris of the satellite to 
acquire is known, as well as the position of the receiver’s antenna and the GPS time. In the 
particular case of an A-GPS positioning system, the ephemeris are transmitted though the assistance 
data. The rough GPS time information is also given with a rough user’s position whose accuracy is 
consistent with the cell size the mobile phone relies on. The satellite Doppler contribution is 
computed according to equation (5.2). It involves the satellite velocity expressed in the navigation 
frame (n) or in the ECEF frame (e). 
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where : 
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r
 is the LOS unit vector between the user and the satellite. 

− satv
r

 is the satellite velocity vector. 



Sensors Aiding for GPS Acquisition 

Page 116 

− 1L  is the true carrier frequency. 

− c  is the velocity of light. 
 

According to Figure 5.2, the LOS unit vector can be expressed as given in equation (5.3). 
The coordinates are related to the position of the user through the well known parameters that are 
the satellite elevation and azimuth. The unit vector is expressed in the navigation frame (n). 
 

dEeAzEnAzEu n
rrrr ⋅+⋅+⋅= )sin()sin()cos()cos()cos()(  (5.3) 

 
where : 
− E  is the elevation of the satellite. 
− Az  is the azimuth of the satellite. 
− den

rrr
,,  are the unit vectors of the navigation reference frame (n). 

 

 
Figure 5.2: Satellite position definition with respect to the user’s position. 

 
Using equations (5.2) and (5.3), the satellite Doppler contribution is then fully described by 

equation (5.4), as detailed below: 
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c
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f ⋅+⋅+⋅−= )sin()sin()cos()cos()cos(1  (5.4) 

 
The ephemeris data are used to compute the velocity of the satellite in the ECEF reference 

frame at the GPS time transmitted in the assistance message. Thus, since the time information 
accuracy is within ±2 seconds (typical assistance time uncertainty in a non-synchronous network), 
errors are introduced in both satellite velocity and position prediction. 
 

The impact of the time accuracy on the satellite Doppler prediction is illustrated in Figure 
5.3. In this simulation, the user is assumed static, located at a perfectly known position that is used 
as a reference (ENAC laboratory). The YUMA almanac for week 254 is used in order to simulate 
the satellite positions and velocities. PRN 1 has been arbitrarily chosen for the simulation. As it can 
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be seen, the uncertainty due to the inaccuracy of the GPS time available in the assistance data is 
quite small and never exceeds 1.5 Hz. 
 

 
Figure 5.3: Satellite Doppler uncertainty. GPS time 

known at ±2s. 

 
Figure 5.4: Satellite Doppler uncertainty. User’s 

position uncertainty of ±15km. 

 
The impact of the user’s position uncertainty is rather more important, as shown in Figure 

5.4. For the highest horizontal uncertainty of ±15km (the maximum size of a GSM cell), the error 
made on the prediction of the satellite Doppler can reach up to 13 Hz. In Figure 5.5 is shown the 
combined effect of the inaccurate position and reference time in the satellite Doppler prediction. 
The error is very close to the one plotted in Figure 5.4, due to the very limited impact of the time 
uncertainty. The typical remaining uncertainty is reduced to several tens of Hertz. 
 

Figure 5.6 gives an example of the satellite Doppler estimation accuracy obtained through 
the processing of ephemeris data recorded in actual conditions. The GPS receiver used for that 
purpose is a Novatel ProPak GLplus receiver operating under clear sky conditions. In this 
simulation, the exact user’s position is known. For Doppler prediction accuracy analysis, several 
position uncertainty values are applied to that reference position. Results are plotted in Figure 5.6. 
They are consistent with the previous conclusions drawn when considering almanacs (see Figure 
5.3 and Figure 5.4). 
 

 
Figure 5.5: Satellite Doppler uncertainty. GPS time 

known at ±2s. User’s position uncertainty of ±15km. 

 
Figure 5.6: Satellite Doppler uncertainty. GPS time 

known at ±2s. Results with real GPS ephemeris. 
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As a conclusion on the satellite Doppler contribution, it can be assumed that once the 
predicted satellite Doppler is obtained using the information provided by the assistance message 
inherent to the AGPS technology, the remaining satellite Doppler estimation error stays within ±15 
Hz at most. 
 

5.2.2 Local Oscillator Contribution 
 

The contribution of the Local Oscillator (LO) depends on its quality. A typical 1ppm 
accurate LO introduces an uncertainty of about ±10-6×L1 Hertz at L1 (approximately ±1.5kHz), 
which is likely to be the case of the components embedded in mobile phones. In the standard 
conditions of a cold start and as soon as four satellites are acquired or tracked, the LO Doppler 
uncertainty can be removed. During the acquisition of the first four satellites, no useful information 
can be used in order to remove such an uncertainty, which as a consequence remains in the overall 
Doppler affecting the carrier frequency. 
 

The analysis of the LO of the Novatel ProPak GL2plus GPS receiver has been conducted in 
order to assess the performance of a typical GPS clock (such a component is obviously not typical 
of a cell phone LO unit). Under static conditions, the clock drift has been recorded for about 2 
hours. Figure 5.7 illustrates such a drift over time. No particular steering of the clock is done during 
the data collection, so that what is plotted can be considered as the real on-board receiver clock 
drift. The receiver is said to have a clock stability better than ±0.5 ppm, which means for the L1 
carrier a frequency accuracy within about ±0.5·10-6×L1 (approximately ±800 Hz), which is 
consistent with the measurements shown in Figure 5.7 (-19 m/s represents about -100 Hz). 
 

 
Figure 5.7: Local Oscillator drift (ProPak GL2plus, static test case). 

 
Despite some jumps that are clearly noticeable (mainly due to the number of satellite used in 

the position computation stage as well as the quality of the measurements), the LO drift remains 
bounded around its initial value which tends to demonstrate its stability. This is of particular interest 



Sensors Aiding for GPS Acquisition 

Page 119 

since as soon as the LO Doppler contribution has been estimated (i.e. as soon as four satellites are 
acquired and tracked), there is no need to include it again into the overall Doppler uncertainty in 
order to optimise the acquisition stage (its accurate estimation is nevertheless required in the 
position computation stage since the position solution will otherwise drift over time. Such a result 
should also be balanced with respect to the LOs used for mass market receivers, or LOs embedded 
in portable devices). 
 

5.2.3 User Contribution 
 

The final contribution to the overall Doppler affecting the carrier frequency is the user’s 
Doppler. Such a contribution is totally unpredictable since the movement of the user is unknown. 
The typical use cases within the scope of the thesis are pedestrian and land vehicle dynamics. 
Assuming a maximum user’s velocity of 180 km/h (in the obvious land vehicle use case), the upper 
bound of user’s Doppler contribution is about 250 Hz. 
 

For a given total integration duration, the higher the coherent integration time, the better the 
sensitivity. The frequency slots are nevertheless all the more thinner as the coherent integration is 
long. In order to bound the energy loss to 1dB, their width shall not exceed half the inverse of the 
coherent integration time [2]. Figure 5.8 illustrates the different frequency bins that are used in 
relationship with the different coherent integration times covering the whole 20ms data bit duration 
(vertical bars). In the figure is also plotted the number of frequency bins to explore assuming a 
user’s Doppler uncertainty of ±250 Hz. As it can be seen in the figure, the larger the coherent 
integration time, the more the frequency bins to explore. As the acquisition and the tracking of weak 
signals require long coherent integration times in order to decrease the noise power level, the 
computation load required to process weak GPS signals is greater than the computation load needed 
for signals with nominal power. The impact on the time to fix is obvious: the overall processing 
time is all the more increased as the number of frequency bins to explore is high. Thus, any 
reduction of the frequency search range will improve the processing time performance. 
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Figure 5.8: Frequency bins and number of frequency bins to explore with respect to a user Doppler uncertainty 

of +/- 250 Hz. 
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The purpose of this chapter is to analyse the possibility of providing any useful information 
using the MEMS-based sensors assembly in order to decrease the acquisition processing time. The 
aim of the sensors assembly is to enable the reduction at its minimum of the residual frequency 
uncertainty due to the user’s motion. The following describes the sensors combination and 
integration scheme that is used to reduce the number of frequency bins to explore. 
 

5.3 Sensors Aiding for Doppler Uncertainty Reductio n 

 
This section presents the methodology followed to estimate the user’s Doppler contribution 

onto the overall Doppler. First, a basic motion recognition method using the information provided 
by the sensors assembly is discussed. This step allows a first reduction of the user’s Doppler 
uncertainty. A more accurate methodology is then detailed together with its inherent issues that 
degrade the overall Doppler prediction performance. 
 

5.3.1 Motion Recognition 
 

Given the above statements, the acquisition improvement can only be achieved through the 
reduction of the frequency range. Two typical use cases are mainly studied in the following, namely 
pedestrian navigation and land vehicle navigation. Both navigation methods experience completely 
different dynamics and displacement velocities (up to 10 km/h for pedestrians, much more for land 
vehicles), as shown in Figure 4.18 of chapter 4. 
 

Since a vehicle goes faster than walking people, the possibility of detecting if the GPS 
receiver is carried by a person or mounted onto a vehicle is of tremendous importance in the 
reduction of the number of frequency bins needed to estimate the user’s Doppler contribution. As 
discussed in chapters 3 and 4, a motion can be characterised by the variance of the acceleration (see 
Figure 4.16 and Figure 4.18). 
 

Figure 5.9 illustrates the processing of the acceleration magnitude in different trials that 
have been exercised. The left-hand side of the figure shows the sliding window variances computed 
on different acceleration magnitude. The computation step is equal to the sampling period, and the 
length of the window used for variance estimation is 2 seconds. The upper green and red plots show 
the sliding window variance of the acceleration magnitude recorded during a pedestrian walk where 
the sensors assembly was located respectively in the pocket and on the belt of the pedestrian (5 
stops occurred in the trial plotted in green). The blue plot illustrates the sliding window variance of 
the acceleration magnitude recorded during a land vehicle trial. In this test, the measurement unit 
was fixed onto the dashboard of the vehicle and not moved during the whole trial. The right-hand 
part of Figure 5.9 presents a close-up on the low values of the sliding window variances. It clearly 
shows that the variance of the acceleration of an idling pedestrian (green plot) is lower than those of 
a vehicle, whatever its dynamic. 
 

The analysis of the two figures provides means to distinguish the two typical motions. These 
two figures show indeed that thresholds can be adjusted in order to detect two main motions, 
namely an idling and a walking pedestrian (as the biases that affect the acceleration measurements 
are varying slowly, it can be reasonably assumed that they will not impact the computation of these 
two thresholds). An idling pedestrian is characterised by a quite low sliding window variance, as 
shown in the right-hand figure with the green plot (5 stops), whereas a walking pedestrian is rather 
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characterised by a high sliding window variance, as shown with the red and green plots in the left-
hand figure. Threshold 1 and Threshold 2 can thus be adjusted in order to distinguish from the 
different motion areas. Between the two thresholds, the motion can be either those of a vehicle or a 
pedestrian starting to move. As a consequence, the considered velocity range will be the worst, i.e. 
that of a vehicle (the dynamic that implies the highest velocity and consequently the highest 
Doppler contribution). 
 

 
Figure 5.9: Sliding window variances computed from three different acceleration magnitude sources. 

 
The ability of detecting the motion experienced by the sensors assembly allows a first 

reduction of the user’s Doppler uncertainty. Given the fact that a pedestrian is likely to go up to 
approximately 10 km/h, it represents a Doppler contribution at most equal to ±14 Hz. A vehicle is 
supposed to go obviously faster. The upper bound of ±250 Hz is thus in that case rather considered. 
 

5.3.2 Sensor Fusion & Integration Scheme 
 

As discussed in the previous sections, the information provided by the MEMS sensors 
assembly is used in this study to estimate the user’s Doppler contribution. Taking into account that 
ephemeris data are known since they are transmitted in the assistance message, the computation of 
the satellites position and Doppler contribution is straightforward. The remaining unknowns are the 
Local Oscillator and the user’s contributions. The user’s Doppler contribution can be estimated 
given the elevation and azimuth of one satellite, the direction of the land vehicle or the pedestrian 
and the along track velocity. According to the notations of Figure 5.2, the user’s Doppler 
contribution can be expressed as follows: 
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Equation (5.5) can be expanded to equation (5.6), which involves the along track velocity 

magnitude of the user, the pitch θ and heading ψ of the user (or vehicle) the measurement unit is 
attached on. 
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where: 
– userv  is the true along track velocity in the navigation frame. 
 

An example of the impact of the user’s position and GPS time uncertainties on the elevation 
and azimuth angles is given below. The worst case is here taken into account, meaning that the 
position uncertainty is ±15km and the GPS time uncertainty is ±2s. For the simulation, almanacs are 
downloaded from satellites in visibility at the ENAC laboratory. They are preferred to ephemeris 
data since the latter are only valid for 4 hours and their processing outside their validity range are 
expected to give bad results in terms of satellite position and velocity accuracy. 
 

Figure 5.10 illustrates the error made on the estimation of the elevation angle and the 
azimuth for a whole day. It can be seen that the elevation error stays below 0.05 degree (worst 
case), which may not have a significant impact on the accuracy of the user’s Doppler contribution 
as given in equation (5.6). Opposite, the azimuth error is sometimes quite large (a few degrees), 
even if in the presented case, the largest error occurs when the satellite is not visible. As soon as the 
subsatellite point nears the location of the user (i.e. when the elevation angle reaches 90 degrees) 
the azimuth can be inaccurate to several degrees and therefore may introduce non negligible errors 
in the computation of the user’s Doppler contribution. 
 

  
Figure 5.10: Illustration of elevation (left) and azimuth (right) errors for a user’s position uncertainty of ±15km 

and a GPS time of ±2s. 

 
Because the sensors of the measurement unit are affected by random errors such a bias and 

scale factor, the computation of the pitch and heading angles is likely to introduce large errors in a 
short time. To compensate for those drifts, the attitude angles involved in equation (5.6) are 
computed using the drift-free attitude filter presented in the previous chapter. It can then be 
expected to enable the long term prediction of the user’s Doppler onto other LoS. As a 
consequence, there are only two unknowns remaining in equation (2.35) of chapter 2, namely the 
LO Doppler contribution and the true along track velocity. At this point, as soon as two satellites 
are acquired, it is possible to enable the prediction of the user’s Doppler contribution onto the 
carrier of the other GPS signals to acquire. 
 

In the pedestrian navigation case, the along track velocity can be estimated using the 
dynamic properties of the acceleration magnitude, as detailed in chapter 3. Moreover, there is a 
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close relationship between the frequency of walk of a pedestrian and its velocity. Consequently, it is 
also possible to calibrate the velocity model relative to the frequency of walk by loading pre-
recorded regression coefficients computed off-line for typical velocities of walk. Even if this 
method is not as accurate as the online calibration using GPS measurements (about ±0.3m/s 
accuracy in the trials exercised), it allows the velocity estimation as soon as the measurement unit is 
switched on, even in deep indoor environments. This has for main consequence to enable the 
estimation the user’s Doppler contribution as soon as the measurement unit is powered on and the 
attitude filter has converged to stable attitude estimates. 
 

The case of the land vehicle navigation is more complex to handle since no reliable along 
track velocity estimate is available through the processing of the measurements of the sensors 
assembly due to the gyroscopes and accelerometers biases. These biases do not allow even short 
term (about 20seconds) accurate estimate, as it is possible in the particular case of the pedestrian 
navigation. 
 

5.3.3 Satellite Geometry Issue 
 

To ease the understanding, equation (2.35) can be rewritten as given below in equation (5.7). 
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where: 
– g  is the function used to compute the user’s Doppler contribution as given in equation (5.6). 

– userv  is the true along track velocity given in the navigation frame (n). 

– LoSAT /α  is the along track to LoS projection coefficient as given in equation (5.6). 
 

The projection coefficient is a function of the pitch and heading angles computed either with 
the gyroscope measurements or the attitude filter (both elevation and azimuth angles are assumed 
deterministic and do not significantly affect the accuracy of the projection coefficient, as shown 
previously). It is then considered as a known variable which may nevertheless be affected by some 
errors due to long term magnetic interferences for instance. 
 

Equation (5.7) clearly shows that two unknowns need to be computed in order to enable the 
Doppler prediction onto the other GPS signals to acquire (the LO Doppler contribution and the 
along track velocity of the user). As discussed in the previous subsection, the along track velocity is 
available in the pedestrian navigation case but not in the land vehicle navigation due to the biases 
that affect the velocity measurements. As a consequence, there is a need to acquire at least two 
satellites in order to estimate the user’s velocity and thus the user’s Doppler contribution, and 
thanks to the stable attitude provided by the sensors assembly, the corresponding prediction onto 
new signals as well. However, once two satellites are acquired, the combination of their respective 
Doppler measurements according to equation (5.7) may lead to an unobservable estimated user 
velocity if the two projection coefficients are equal. Such a typical case of bad satellite geometry 
configuration is illustrated in Figure 5.11. Assuming satellite 1 and satellite 2 equally positioned 
from both sides of the user’s heading. The geometric distance between the two satellites with 
respect to the user may be different, but in such a configuration, their respective rates of change are 
likely to be the same so that the Doppler affecting the two signals may be the same as well. With 
such a configuration, the two-equation system based on equation (5.7) can obviously not be solved 
to estimate the user’s velocity and the LO Doppler. 
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Figure 5.11: Bad satellite geometry configuration with respect to the user’s heading. 

 
Figure 5.12 shows the along track velocity estimation in the case of land vehicle using two 

satellites (PRN 3 and PRN 11) during a real urban test. The ephemeris data of the satellites are 
collected with the embedded GPS receiver, and the attitude is provided by the processing of the 
sensors assembly measurements. The upper part shows the azimuth of the satellites as well as the 
heading of the vehicle. The black dashed lines represent the theoretical heading leading to an 
ambiguous estimation of the velocity. It can be seen on the lower plot that when the upper user’s 
heading curve crosses the black dashed lines the velocity profile experiences sudden variations. 
 

 
Figure 5.12: Typical issue of the user’s velocity estimation. Land vehicle case. 

 
A protection criterion shall then be implemented to avoid this bad velocity estimation. 

However, this will decrease the user’s Doppler prediction availability, especially if such a 
configuration lasts quite long. Inertial measurements can then be used to estimate the true velocity 
of the vehicle, but it will not provide reliable estimate due to the rapid drift introduced by the 
integration of the different biases. 
 

Error 
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5.3.4 On-Demand Doppler Estimation 
 

A typical cold start implies the need for an estimation of the user’s Doppler on demand. 
According to what has just been detailed, the estimation of such a contribution is completely 
dependent on the ability of the drift-free attitude filter to provide a stable attitude. In order for the 
attitude filter to provide reliable information, an initialisation step where the sensors assembly is not 
moving is required. An issue may arise in the case of a sensor-aided acquisition demand while the 
sensors assembly is moving. The purpose of this subsection is then to assess the feasibility of an 
acquisition aiding under dynamic conditions (i.e. dynamic initialisation of the attitude filter). 
 

When the attitude estimation is required while the sensors assembly is moving, the attitude 
filter is initialised according to the principle described in Figure 5.13. The data provided by the 
sensors are averaged in order to smooth the dynamic due to the motion and limit its impact on the 
initial estimation of both inclination and heading. The initialisation of the covariance matrix is done 
empirically according to the variance of the signals. If the variance is high, it is assumed the sensors 
assembly experiences a quite high dynamic so that the variance on the initial values of the state 
vector is high as well, and conversely. The only quantities that are not estimated when in-motion 
initialisation is requested are the gyro biases, which consequently remain completely unkown. 
 

 
Figure 5.13: Drift-free attitude filter with in motion alignment aiding. 

 
The proposed aiding method for the in-motion initialisation of the developed drift-free 

attitude filter is tested hereafter for the worst dynamic case, i.e. the pedestrian navigation. The 
acceleration experienced by the sensors assembly is indeed very high in such a navigation mode, 
making the in-run initialisation very inaccurate. 

 
To assess the performance of the proposed initialisation method, a trial has been exercised in 

three steps. First, the pedestrian is not moving allowing the “standard” initialisation of the attitude 
filter, then the pedestrian walks for a certain time, and finally he stops. The attitude computed with 
these measurements is used as a reference; even if it is affected by some errors (no other means of 
characterising the attitude was available). Based on the data recorded during the trial, another 
attitude computation is done, but initialising the filter during a dynamic period (i.e. when the 
pedestrian is already walking). The two attitudes are then synchronised in order to be compared. 
Figure 5.14 show the result of the attitude angles estimation difference. 
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Figure 5.14: Attitude angles error with respect to 

the estimated angles with a static initialisation of the 

filter. 

 
Figure 5.15: Close-up on the first epochs. The 

convergence of the filter is shown here and lasts 

about 10 seconds. 

 
The close-up in Figure 5.15 shows that the filter needs less than 10 seconds to give a stable 

attitude estimate, which may be too long for real time applications but still demonstrates the 
feasibility of the principle. The attitude angles converge then very closely to what is obtained with 
the filter initialised at rest, as illustrated in Figure 5.14. Small constant deviations are however 
noticeable due to the error in the inclination initialisation that impact the heading too. 
 

5.3.5 Doppler Reduction Procedure 
 

Figure 5.16 summarises the user’s Doppler uncertainty reduction using the combination of 
MEMS sensors data. A first Doppler uncertainty reduction is done through the motion detection 
procedure. Then, depending on the detected motion, the user’s Doppler contribution can be 
estimated without GPS measurements (pedestrian navigation case), or using at least two satellites 
(land vehicle navigation case). 
 

Sensors Motion Detection

Attitude Estimation

Velocity Estimation

Attitude Estimation

1st Doppler 
Uncertainty 
Reduction

2nd Doppler
Uncertainty
Reduction

P
edestrian N

avigation
Land V

ehicle 
N
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Figure 5.16: User’s Doppler uncertainty reduction procedure. 
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5.4 Test Results 

 
The integration scheme proposed in this paper is not directly tested in real time with a 

HSGPS or an AGPS receiver since none capable of outputting raw measurements (including 
Doppler) were available at the time the trials were conducted. The ephemeris data of each satellite 
in visibility is rather collected with a base station operating under clear sky conditions and post 
processed together with the sensors assembly data, allowing a realistic MEMS/AGPS integration 
simulation. The base station is used to make sure that all the ephemeris data are available. The two 
GPS receivers used for data collection are the Novatel ProPak GL 2 plus (rover) and Novatel OEM4 
(base station). 
 

The algorithm presented above is tested in actual conditions. Test results are presented in 
this section for both pedestrian and land vehicle navigation. These two navigation modes are 
studied separately to clearly identify the benefits of the user’s Doppler estimation algorithm. For 
each case, the sensors assembly was first calibrated against hard iron magnetic interference and the 
initial heading offset was solved using first GPS measurements. 
 

5.4.1 The Pedestrian Navigation Case 
 

In a first trial, a pedestrian walks in the car parking lot of a supermarket with the sensors 
assembly put inside his trouser’s pocket with a random attitude. Thanks to the motion detection and 
recognition, the sensors assembly detects the unit is carried by a walking pedestrian and the velocity 
of walk is consequently modelled as described in the section above. To avoid the calibration using 
GPS measurements, the velocity is modelled using regression coefficients stored in memory and 
recorded during off-line trials operated at different velocities of walk to cover the whole pedestrian 
velocity spectrum (5 significant runs with different paces). The velocity of the pedestrian was then 
found to be accurate within ±0.3 m/s from the true velocity (computed through post processing of 
DGPS measurements). 
 

The left plot in Figure 5.17 shows the user’s Doppler prediction accuracy onto the LoS of 
the visible satellites (PRNs 1, 3, 11, 14, 19 and 20) and using the filtered attitude that is provided by 
the fusion of all MEMS data. As it can be seen and even if the pedestrian velocity is accurate within 
±0.3 m/s, the user’s Doppler prediction error onto the LoS of the satellites in visibility stays within 
±6 Hz, with 100% availability. It tremendously reduces the initial uncertainty which was ±250Hz. 
This improvement is all the more important the coherent integration time is high. Indeed, assuming 
a 20ms coherent integration, Doppler bins of 25Hz large shall be explored for a total amount of 20 
given the initial uncertainty of ±250Hz. Opposite, only one Doppler bin can be searched if 
information provided by the sensors assembly is used, which consequently represents a complexity 
reduction of 95%. Figure 5.17 (b) shows the user’s Doppler estimation on the same LoS, using the 
same pedestrian velocity model but with the attitude computed based on gyroscope measurements 
whose initial biases have been removed (the attitude filter is not used in that case). As the path is 
travelled, biases introduce drift in the attitude angles that are used to compute the projection 
coefficients. This clearly impacts the user’s Doppler prediction accuracy over time. 
 

Figure 5.18 shows the user’s Doppler prediction accuracy using the prediction method based 
on equation (5.7) for the same trial as the one presented above. In this use case at least, two 
satellites are needed to be able to compute the user’s Doppler contribution onto every LoS of the 
satellites in visibility. Given the fact that 6 satellites are visible all the time during the trial, the 
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combination of the satellites measurements that leads to the less accurate user’s velocity estimate 
was taken into account. This most inaccurate velocity estimation once combined with the different 
projection coefficients allows the prediction of the user’s Doppler onto the different LoS. In this 
test, the combination of PRN 1 and 3 was found to give the poorest velocity estimate. 
 

 
Figure 5.17: User’s Doppler prediction accuracy using filtered (a) and gyro-based (b) attitude as well as the 

modelled pedestrian velocity. The reference user’s Doppler is taken from GPS measurements. 

 
Figure 5.18 (a) illustrates the user’s Doppler prediction accuracy using the filtered attitude 

provided by the attitude filter with bad satellite geometry detection criterion enabled. On the one 
hand, the overall Doppler prediction is less accurate than in the previous case of Figure 5.17. 
Indeed, the error stays within ±11 Hz. On the other hand, the availability of the Doppler prediction 
is reduced, as it is indicated by the dots located on the top of the figure and circled in black. In this 
trial, the largest unavailability slot never exceeded 1 second (there are indeed numerous holes in the 
apparent straight unavailability lines circled in black). 
 

 
Figure 5.18: User’s Doppler prediction accuracy using filtered and gyro-based attitude and the Doppler model of 

equation (5.7). The reference user’s Doppler is taken from GPS measurements. 

Unavailable Doppler prediction 
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Figure 5.18 (b) shows the same user’s Doppler prediction accuracy, but using the gyro-based 
attitude. Again, the accuracy decreases compared to the previous results due to both user’s velocity 
estimation and projection coefficients computation. The drifting properties of the Doppler 
prediction error make such estimation not reliable for medium to long term use. 
 

Table 5.1 summarises the results obtained for pedestrian navigation. Using the modelled 
velocity of walk and the stable attitude provided by the attitude filter, the number of frequency bins 
required to search the user’s Doppler is well reduced. The greater the coherent integration time, the 
more interesting the combination of MEMS sensors with the GPS acquisition stage. Furthermore, 
the availability of the prediction is in that case 100%. Figure 5.19 illustrates the results of Table 5.1. 
 

 
Table 5.1: Number of frequency bins to explore given an initial user’s Doppler uncertainty of ±250Hz. 

Pedestrian navigation case. 
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Figure 5.19: Reduction of the number of user’s Doppler bins with respect to different coherent integration times 

for an initial uncertainty of ±250 Hz using data provided by MEMS senors. 

 

5.4.2 The Land Vehicle Navigation Case 
 

The Doppler prediction methodology is then tested for the land vehicle navigation case. 
Opposite to the pedestrian navigation, it is not possible to use a reliable estimate of the vehicle 
velocity mainly because of the biases that affect the accelerometer measurements, making the 
estimated velocity biased as well. Therefore, the improvement on the acquisition of GPS satellites 
through the prediction of the user’s Doppler is analysed assuming two satellites already acquired. 
 

Figure 5.20 illustrates the user’s velocity estimation error using all possible combinations of 
two Doppler measurements, according to the satellites in visibility. The upper part shows the 
estimated velocity error without avoiding satellite configurations that lead to unobservable user’s 
Doppler. In that case, the error can reach up to 1500 m/s. The lower part is a close-up of the upper 
part, showing that bad satellite configuration can not be neglected as they occur quite often and are 
very large. In this trial, PRN 3, 11, 19, 20 and 28 were visible all the time. In the following, the 
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satellite combination that leads to the less accurate user’s velocity estimate assuming a good 
geometry is used for Doppler prediction (in the present test, it is the combination of PRNs 3 and 
11). 
 

 
Figure 5.20: User’s velocity estimation using all possible combinations of measurements from two GPS satellites. 

 
Figure 5.21 shows the user’s Doppler prediction accuracy using the filtered heading and the 

estimated velocity based on the measurements from PRN 3 and 11. The lower part shows the user’s 
Doppler prediction error using all the possible combinations of satellite without taking into account 
the position of the satellites with respect to the vehicle heading in order to avoid unobservable cases 
(as explained in subsection 5.3.3). Large errors are made in the estimation (up to 100 Hz). The 
upper part shows the user’s Doppler prediction accuracy when the detection criterion is applied. 
The prediction accuracy stays within ±20 Hz during the entire test, but the availability of prediction 
decreases below 100%. In the trial, the largest prediction unavailability slot never exceeded 1s. 
 

 
Figure 5.21: User’s Doppler prediction accuracy using the filtered attitude. 

unavailability 
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Table 5.2 summarises the results obtained for land vehicle navigation. Using the stable 
attitude provided by the attitude filter and as soon as two satellites are acquired, the number of 
frequency bins required to find the user’s Doppler is well reduced. As for the pedestrian navigation 
case, the information provided by MEMS improves all the more the acquisition performance as the 
coherent integration time is long. One weak point in the methodology used to predict the user’s 
Doppler is that the availability of the prediction closely depends on the configuration of the two 
satellites used with respect to the user’s heading. 
 

 
Table 5.2: Number of frequency bins to explore given an initial user’s Doppler uncertainty of ±250Hz. Land 

vehicle navigation case. 

 
Figure 5.22 illustrates the results presented above in Table 5.2. 
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Figure 5.22: Improvement of the combination of MEMS. 

 

5.5 Conclusions 

 
This chapter focused on the improvement of the acquisition process through the use of 

MEMS type sensors. It seems obvious that the acquisition stage can be identified as a potential high 
processing load stage, whose performance could be improved using external data provided for 
instance by inertial sensors. An acquisition aiding strategy has been described and tested in actual 
conditions for both pedestrian and land vehicle navigation. This strategy mainly relies on the 
estimation of the velocity and the heading of the user. 
 

The analysis of the conducted trials have shown that in the pedestrian case where the 
velocity can be modelled within 0.3m/s accuracy, the information provided by MEMS sensors 
decreases tremendously the user’s Doppler uncertainty to ±6Hz. The frequency search time is 
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consequently reduced by at most 95% compared to the frequency search time assuming a user’s 
Doppler uncertainty of ±250Hz. The availability of the Doppler prediction is furthermore 100%. 
 

In the land vehicle case, the prediction performs as well by reducing the user’s Doppler 
uncertainty down to ±25Hz. However, the Doppler prediction can only be done once two satellites 
are acquired since the velocity provided by the sensors assembly is not enough reliable. Moreover, 
the user’s Doppler prediction availability is degraded and depends on the geometry of the satellites 
with respect to the user’s heading. 
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Chapter 6: GPS/IMU Hybridisation for 
Personal Navigation 

 
 

This chapter is dedicated to the study of the position solution availability and accuracy 
improvement in urban and indoor environments. More specifically, it focuses on the analysis of the 
hybridisation performance of either a HSGPS or an AGPS with a low-cost Inertial Measurement 
Unit in two different use cases: the land vehicle navigation and the pedestrian navigation. A brief 
summary of the hybridisation schemes is first given. Then the two navigation methods are discussed 
separately. The land vehicle is addressed within the scope of a tight integration scheme in the 
perspective of using very few measurements as it is likely the case in urban environments. The 
pedestrian navigation is detailed through a simpler loose coupling architecture and the developed 
real time pedestrian navigation system software is detailed. 
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6.1 Integration Strategies & Architectures 

 
There are several ways of integrating a GPS receiver together with an INS. They all depend 

on what measurements are available at the GPS level. If the GPS position and velocity information 
are available, both systems can be integrated according to the so-called loose coupling architecture. 
If the raw GPS measurements are available (i.e. Doppler and pseudorange measurements), a tight 
integration scheme can be used. Finally, if one has access to the processing core of the GPS receiver 
and especially the tracking loops, the integration can be done at such a very high level. We talk then 
about ultra-tight coupling. The integration strategies depend on the type of application aimed by the 
integrated navigation system, the environment the system is likely to operate in as well as the 
acceptable system complexity. In all the aforementioned integration strategies, the combination of 
the different information is done through Kalman filtering (see for instance appendix C or [45]). 
 

Two implementations are possible regarding each integration strategy. The integrated 
navigation system can indeed operate in an open-loop or in a closed-loop mode. The first one 
involves the correction of the INS output errors (i.e. position, velocity and attitude) using GPS 
measurements, whatever their type. In such an implementation, the INS mechanisation operates 
independently without being aware of the existence of an error estimator. The Kalman filter 
estimates the errors that are used to correct the output of the INS. The INS error model implemented 
in the Kalman filter is obtained through linearisation of the inertial differential equations, as 
detailed in chapter 3, in which the second order (and higher) terms are neglected. Without feedback, 
the mechanisation error grows rapidly, which can make the neglected terms significant, and thus 
can introduce large errors into the integrated system. In a closed loop integration scheme, a 
feedback loop is used to correct the raw sensor output and other mechanisation parameters using the 
error estimates obtained from the Kalman filter. In this way, the mechanisation propagates small 
errors thus maintaining the small error assumptions used to get the inertial error model linear. The 
error states in that case must be reset to zero after every filter update. 
 

6.1.1 Loose Coupling 
 

The loose integration scheme fuses GPS with INS at the lowest level. It uses GPS position 
and velocity to correct the INS errors. This integration method is suboptimal because the GPS 
position and velocity are computed in a separate filter using the estimated pseudoranges of the 
satellites that are tracked. If one of these measurements is affected by a non-negligible error, it will 
consequently impact the accuracy of the GPS position and the hybridisation performance will be 
degraded accordingly. The tracking of four satellites at least is required to enable such an 
integration principle, which limits its operational environments, especially if the GPS receiver used 
is not capable of tracking weak signals. However, with the increase of the position solution 
availability brought by AGPS and HSGPS in urban environments, such an integration scheme can 
be very attractive. It furthermore can give a great deal of performance for a minimal software 
integration complexity. 
 

Figure 6.1 illustrates the open-loop loose coupling architecture. The GPS receiver processes 
independently the pseudoranges of the satellites that are tracked, and provides the position and the 
velocity of the receiver’s antenna. The motion experienced by the IMU is measured by the sensors 
and all the measurements are processed to get the position, velocity and attitude of the IMU. Data 
from both navigation systems are then combined and fed into the Kalman filter as measurements. 
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The filter estimates the INS errors according to the models implemented, and the corrections are 
added to the output of the inertial navigation algorithm. In such an integration scheme, the 
measurement noise matrix for the Kalman filter is often constructed based on the position/velocity 
covariance matrix from the GPS filter. 
 

 
Figure 6.1: Loose coupling integration scheme. Open-loop architecture. 

 
Figure 6.2 illustrates the typical closed-loop architecture of a loose-coupling integration 

scheme. Opposite to the previous architecture of Figure 6.1, the error estimates as provided by the 
Kalman filter are not used to correct the outputs of the navigation computer but rather the inertial 
sensors errors (mainly biases) and the position, velocity and attitude used as inputs in the navigation 
mechanisation. This has the advantage of keeping the error estimates small, which is more coherent 
to the approximations made when derivating the INS error model. 
 

 
Figure 6.2: Loose coupling integration scheme. Closed-loop architecture 

 

6.1.2 Tight Coupling 
 

The tight integration combines the INS outputs with the raw GPS measurements made of 
pseudoranges and pseudorange rates (Doppler), even carrier phases (not in the scope of this study). 
This coupling method is more optimal than the previous one since each GPS measurement is 
combined independently with the INS outputs. Outliers are more likely to be detected and removed 
using appropriate fault detection and exclusion algorithms based on the combination of the two 
different navigation systems. There is furthermore no need to track at least four satellites to enable 
the correction of the INS errors, which makes such a hybridisation strategy very attractive, 
especially in urban canyon or indoor environments. However, there are much more non-linear 
equations in the Kalman filter design to fuse all the measurements, so that this integration scheme is 



GPS/IMU Hybridisation for Personal Navigation 

Page 137 

more complex to implement as compared to the previous one. 
 

Figure 6.3 illustrates the tight coupling integration scheme according to the open-loop 
architecture. The GPS receiver provides pseudorange and pseudorange rate or Doppler 
measurements, as well as the ephemeris of each satellite that is tracked. These ephemeris data are 
used to form estimates of the pseudorange and pseudorange rate measurements from the INS 
measurements, which requires a good synchronisation between the two navigation systems in order 
to correctly form the error measurements. A small time offset may indeed introduce a non 
negligible bias in the INS pseudorange and Doppler estimates due to the high velocity of the 
satellites. The Kalman filter estimates the INS errors and the corrections are done directly on the 
outputs of the INS navigation computer. 
 

 
Figure 6.3: Tight coupling integration scheme. Open-loop architecture. 

 
The closed-loop architecture is shown in Figure 6.4. As discussed above, the corrections are 

rather done at the sensors and navigation computer level, which maintains the small error 
assumption especially if low-cost sensors are used. 
 

 
Figure 6.4: Tight coupling integration scheme. Closed-loop architecture. 

 

6.1.3 Sensors Augmentation 
 

Other sensors than GPS can be used to provide extra information in order to estimate the 
inertial errors, and consequently improve the integrated navigation system performance especially 
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during GPS outages. Chapter 4 discussed the possible aids using the sensors presented in the frame 
of the thesis. In all cases, the addition of external information impacts the measurement equations 
and consequently the measurement matrix complexity. Figure 6.5 shows how such external 
measurements are fed in the Kalman filter. The loose coupling is here shown as an example, but the 
integration principle is the same whatever the architecture. 
 

 
Figure 6.5: Hybridisation architecture using external measurements for correction purposes. 

 

6.1.4 Practical Use Cases 
 

The following of this chapter focuses on the hybridisation of either a HSGPS or an AGPS 
with a low-cost Inertial Measurement Unit in two different cases: the land vehicle navigation and 
the pedestrian navigation. As discussed previously in chapter 3, both navigation methods involve 
different mechanisations. As a consequence, the need for corrections is different in the two cases. It 
has been shown for instance that the pedestrian mechanisation allows more accurate standalone 
navigation, so that a tight architecture that takes benefit of very view GPS measurements may be 
not mandatory in order to increase the integrated system reliability and accuracy. Opposite, the 
traditional inertial mechanisation involved in the land vehicle navigation requires corrections as 
often as possible and therefore rather suits such a tight coupling architecture. For these reasons, the 
two navigation methods are discussed separately in the following. The land vehicle is addressed 
within the scope of a tight integration scheme, whereas the pedestrian navigation is detailed through 
a simpler loose coupling architecture. 
 

6.2 Land Vehicle Navigation Case 

6.2.1 Introduction 
 

When a vehicle navigates in urban environments and more specifically in city centres, its 
location becomes very challenging because of the buildings that are very likely to fade and bloke 
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the GPS signals and to introduce large multipath. Pure non Line-of-Sight signals may also be 
integrated in the position computation stage. As a consequence, the positioning system relying on 
the processing of GPS signals may experience long unavailability and large inaccuracy. 
 

A hybridised system made of a GPS receiver and an INS could handle such issues by taking 
advantage of the two navigation systems. Numerous studies have already been conducted on this 
topic, as for example [39], [40] or [41]. In this section, the feasibility of using very few GPS 
measurements to estimate IMU errors and thus provide a smoothed and accurate position solution is 
more specifically studied. As discussed and justified in [41], the augmentation of the GPS receiver 
needs to be small and cheap for LBS perspectives. The hybridisation with the low-cost IMU 
presented in chapter 3 is therefore addressed hereafter. 
 

The typical environment the hybridised system will operate in is the urban area. 
Consequently, numerous outages and signal re-acquisitions may increase the computation load of 
the GPS receiver core, whose position solution availability may furthermore be degraded. In such 
conditions, the tight coupling integration of both navigation systems is obvious. This choice is 
furthermore motivated by the use of a low-cost IMU, whose measurements are very likely to be of 
bad accuracy, requiring corrections from an external sensor as often as possible. However, as 
discussed above, this implies an increase of the filter complexity. 
 

In the tight integration scheme, the equations involved at both state transition and 
measurement level are indeed highly non-linear. As all the INS errors must be estimated in order to 
improve the performance of the integrated navigation system, they are included in the state vector 
of the Extended Kalman Filter (EKF) used to fuse the two navigation systems. Equation (6.1) 
recalls the error model as defined in [9] in the navigation frame. It is basically composed of 15 
states that consequently is the minimum dimension of the state transition and covariance matrices. 
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 (6.1) 

 
where: 
– δp is the position error in the navigation frame. 
– δv is the velocity error in the navigation frame. 
– δρ is the attitude error. 
– δεa is the accelerometers errors (bias and/or scale factor). 
– δεg is the gyroscopes errors (bias and/or scale factor). 
 

At the measurements level, the complexity is rather due to the use of the pseudorange rates 
measurements (equivalent to Doppler by a multiplicative constant) of the GPS receiver. As a 
reminder, the typical pseudorange and pseudorange rate measurement equations as given in chapter 
2 are recalled below in equations (6.2) and (6.3) where all the error terms are grouped together in 
the single noise term N for more simplicity. 
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where: 
− )(e

ux , )(e
uy , )(e

uz  are the user’s position coordinates expressed in the ECEF frame. 

− )(e
sx , )(e

sy , )(e
sz  are the satellite’s position coordinates expressed in the ECEF frame. 

− t∆  is the GPS receiver clock bias. 
− ρN  accounts for all errors affecting the pseudorange measurement. 
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 (6.3) 

 
where: 
− )(e

ux& , )(e
uy& , )(e

uz&  are the user’s velocity coordinates expressed in the ECEF frame. 

− )(e
sx& , )(e

sy& , )(e
sz&  are the satellite’s velocity coordinates expressed in the ECEF frame. 

− dttd∆  is the GPS receiver clock drift. 

− ρ&N  accounts for all errors affecting the pseudorange rate measurement. 

 
Equation (6.3) is highly non-linear and therefore needs to be expanded with Taylor’s series 

in order to be implemented in the Kalman filter. As an example, the measurement sub matrices 
designed with the user’s position, velocity as well as the receiver clock bias and drift as unknowns, 
are given in equations (6.4) and (6.5) for respectively the pseudorange and pseudorange rate 
measurements. The measurements matrix H defined in equation (6.6) is the combination of these 
two sub matrices, whose dimensions depend on the number of available pseudoranges and 
pseudorange rates. 
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The aim of the integration filter proposed in the following is to take advantage of the tight 

coupling properties while using simpler equations. The modification of both the state transition 
matrix and the measurement equations is investigated. The ability of the filter to provide useful 
correction as soon as two satellites are tracked is furthermore specifically addressed. 
 

6.2.2 Integrated Navigation System 
6.2.2.1 INS Mechanisation 
 

To reduce the complexity of the integration filter and improve its correction capabilities 
especially when very few GPS measurements are available (i.e. as soon as two satellite 
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measurements are available) the classical tight coupling architecture has to be modified. It seems 
obvious that the tight architecture as shown in Figure 6.4 is optimum in the sense it allows a 
rigorous combination of the GPS and the INS. However as discussed above, the errors of the INS 
are characterised by non-linear equations that introduce at least 15 unknowns in the state vector. As 
a consequence, a first improvement would be to use a different INS mechanisation in order to get 
the state transition matrix simpler with less states to estimate. 
 

To choose a different mechanisation, let’s first discuss the use of the positioning system 
from an operational point of view. The location of one user in the land vehicle navigation requires 
that the IMU made of low-cost sensors must follow the motion of the vehicle, meaning that it has to 
be closely attached to the vehicle during the motion. Given this statement, assuming the IMU is 
oriented such that one of its axis is aligned with the forward direction of the vehicle as shown in 
Figure 6.6, a simpler mechanisation can be deduced, which is based on the integration of the 
acceleration sensed along the vehicle displacement direction. The lateral velocity of the vehicle is 
assumed negligible and not relevant of a typical vehicle motion, as done in [37] or [42] for example. 
The attitude of the vehicle is likely to be computed using the drift-free attitude filter detailed in 
chapter 4. Neglecting the roll impact on the restitution of the vehicle trajectory, only heading and 
pitch angles are used for a complete 3D positioning. 
 

In such a mechanisation, the heading axis of the IMU and the forward direction of the 
vehicle may not be perfectly aligned. This may introduce an additive bias in the computation of the 
velocity, and consequently degrade more rapidly the performance of the INS. The estimation of 
such a heading bias can be done using GPS measurements when the vehicle is detected to move. 
This initial bias issue is therefore no more considered in the following. The issue arises also with 
the inclination angle (pitch angle) from the IMU with respect to the vehicle. Assuming the IMU 
lays on the floor of the vehicle, such an angle error is very small and thus can be neglected as well. 
 

 
Figure 6.6: IMU placement with respect to the vehicle. 

 
The basic equations characterising the INS mechanisation are given below. Equation (6.7) 

shows how the along track velocity (i.e. the velocity in the forward direction) is computed. Using 
the pitch angle as estimated by the processing of the IMU data, the contribution of the gravity 
vector onto the forward acceleration is removed. The resulting acceleration is then integrated to get 
the along track velocity. 
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where: 
– INS

AlongTrackv  is the along track velocity of the vehicle. 

– INS

AlongTracka  is the acceleration sensed along the forward axis of the vehicle. 

– g  is the local gravity vector. In a first approximation, it is assumed perfectly vertical. 
– θ  is the pitch angle as estimated by the processing of IMU data. It characterises the incline of 

the road. 
 

The position of the vehicle is obtained by integrating the along track velocity projections 
onto north, east and down axes according to equations (6.8), (6.9) and (6.10). This integration stage 
requires both pitch and heading angles. 
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where: 
– INS

np , INS

ep , and INS

dp are respectively the north, east and down vehicle position coordinates. 

– ψ  is the heading of the vehicle. 
 

Figure 6.7 summarises the mechanisation of the Inertial Navigation System according to the 
simplifications described above. The computation of the attitude of the IMU (and consequently 
those of the vehicle since the IMU is not moved with respect to it) can be done whether by 
processing the rotation rate measurements using the standard strapdown algorithm based on the 
rotation quaternion, as described in chapter 3, or using the attitude filter as detailed in chapter 4. In 
the latter case and according to the results of chapter 4, the attitude is assumed enough reliable to be 
considered as external measurements that do not need corrections. This assumption may be 
somehow wrong since the estimation of the gyroscopes bias in the attitude filter is obviously not 
perfectly accurate, but it is nevertheless interesting to test it as a first approximation. 
 

 
Figure 6.7: Simplified INS mechanisation for land vehicle navigation. 
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6.2.2.2 Measurement Equations 
 

At the measurement level, a first improvement that would slightly decrease the equations 
complexity would be to use an INS mechanisation expressed in the ECEF frame rather than in the 
navigation frame, as for instance it is done in [39]. To have a more drastic simplification of the 
measurement equations implemented in the Kalman filter, it is better to use the GPS raw 
measurements from a different point of view. 
 

The pseudorange is very well suited to introduce the position of the integrated navigation 
system in the filter equations. Its linearisation is quite obvious and consequently its integration into 
the measurements will not be modified in the following. The pseudorange rates are opposite far 
more complex to incorporate, as illustrated in equation (6.3). However, they can be equivalently 
interpreted as Doppler measurements according to the relationship given in chapter 2 and recalled 
hereafter in equation (6.11). 
 

ρ&
c

L
f rd

1−=  (6.11) 

 
where: 
– f

LO

d

satellite

d

user

d

r

d nffff +++=  is the Doppler affecting the received signal, as defined in 

chapter 2. 
 

Following the theoretical derivation detailed in chapter 5, the user’s Doppler contribution 
expression is recalled hereafter in equation (5.4). Such an expression is a function of the satellite 
position with respect to the user through elevation and azimuth angles, but it also depends on the 
attitude of the vehicle and more specifically on the pitch and heading angles. 
 

[ ])sin()sin()cos()cos()cos( EAzEvf true

AT

user

d θψθ +−⋅=  (6.12) 
 
where: 
– true

ATv  is the true along track velocity of the vehicle. 
 

If the attitude of the IMU is computed by processing the rotation rates, both pitch and 
heading angles can not be used as external attitude measurements in order to increase the correction 
capabilities of the integration filter. The main reason for that is the non negligible impact of the 
biases that dramatically decreases the accuracy of the gyro-based attitude over time. 
 

Opposite, assuming the attitude is provided by the attitude filter developed and detailed in 
chapter 4, the number of unknowns to estimate in equation (5.4) can be significantly reduced. 
Indeed, the results presented in chapter 4 have shown that a good heading restitution of one user is 
possible by fusing the information of accelerometers, gyroscopes and magnetometers, for both land 
vehicle and pedestrian navigation. No accurate reference measurements was available to 
characterise the accuracy of all angles, but as the magnetometers require good tilt compensation to 
provide accurate heading estimation, it can be inferred that inclination estimation performs quite 
well too. As a consequence, both pitch and heading angle estimates can be used as reliable known 
attitude measurements in the Kalman filter. The only unknown remaining in equation (5.4) is then 
the along track velocity of the user, which dramatically decreases the impact on the filter 
complexity due to the use of Doppler measurements. 
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This approach is obviously less rigorous than the approach of the standard tight integration. 
It indeed directly relies on the accuracy of the estimated pitch and heading angles and also assumes 
that no bias affects these attitude measurements (which can be wrong in case of long term magnetic 
interference for instance). It has nevertheless the advantage of simplifying the design of the 
integrated navigation filter. 
 

6.2.2.3 Coupling Methodology 

6.2.2.3.1 Kinematic Model and State Vector 
 

According to the two previous subsections, it is then possible to design a Kalman filter that 
fuses both navigation systems using the raw GPS outputs to correct the position and the along track 
velocity as computed by the INS. In the following integration filter, the first variables that are 
included in the state vector are the true north, east and down components of the user’s position, 
whose kinematic equations are given respectively in equations (6.13), (6.14) and (6.15). Since the 
position is rigorously the integration of the velocity, no state noise is introduced in these equations. 
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The true along track velocity is modelled as a 1st order Gauss-Markov process tuned 

according to a Power Spectral Density function, whose parameters namely bandwidth and 
magnitude are chosen according to the highest dynamic of the motion experienced by the sensors 
assembly (found by processing the GPS velocity recorded during a typical vehicle trial). The true 
along track velocity model is given below in equation (4.12). Such an implementation in the 
Kalman filter also has the advantage of smoothing the velocity solution as corrected by the GPS 
measurements. In other words, the model allows the prevention of too rapid changes in the velocity 
magnitude due to GPS outliers used for correction purposes. This is of particular interest since the 
system will be tested in urban environments. 
 

ATAT v
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where: 
– 

ATv
c  is the time constant setting the bandwidth of the true along track velocity. 

– 
ATv

w  is the driving noise, whose variance sets the order of magnitude of the modelled motion. 

 
The velocity as computed by the INS is impacted by the errors of the accelerometer 

measurements. Since the accelerometer is a low-cost sensor, both bias and scale factor have a non-
negligible impact on the accuracy of the computed velocity. As the INS mainly relies on the 
integration of the forward acceleration, the estimation of all the errors affecting the along track 
velocity may improve the integrated navigation system performance, especially during GPS 
outages. Both scale factor and bias are consequently included in the state vector. 
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Although the turn-on component of the scale factor has been estimated as given in chapter 3, 
the precise characterisation of its drift has not been done. The scale factor model is empirically 
chosen as a 1st order Gauss-Markov process with a long correlation time (2 hours), whose driving 
noise is set according to the specifications provided by the manufacturer. For simplicity, the same 
model is used for the scale factor of the along track velocity computed by the INS, and whose 
kinematic model is given below in equation (6.14). 
 

)(2)()( twtSFtSF vvvv ⋅+⋅−=
•

ββ  (6.17) 

 
where: 
– vβ is the inverse of the correlation time of the Gauss-Markov process. 

– w  is the driving noise. 
 

The bias affecting the acceleration measurements is definitely the contribution of the overall 
error that has the biggest impact on the performance of the Inertial Navigation System. It is 
modelled as a 1st Gauss-Markov process, whose characteristics have been found according to 
autocorrelation identification procedure as described in [47] with long static measurements, even if 
this method does not provide accurate results, as explained in [47] or [48]. As a consequence, the 
bias affecting the along track velocity is modelled as an integrated Gauss-Markov process 
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where: 
– vb  is the integrated Gauss-Markov process used to model the velocity bias. 

– xβ  is the inverse of the correlation time characterising the integrated Gauss-Markov process. 

– xw  is the driving noise. 
 

Finally, the last unknowns included in the state vector are the GPS local oscillator bias and 
drift, whose kinematic model is chosen as detailed for instance in [44] and recalled hereafter in 
equation (6.19). The corresponding discrete covariance matrix is defined according to the quality of 
the local oscillator which is characterised by Allan constants [44]. Its expression is given below in 
equation (6.20). 
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where: 
– LOw  is the noise affecting the clock drift time derivative. 
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– sT  is the sampling period. 
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Table 6.1 gives typical characteristics of local oscillator as commonly used in GPS receivers 

 
Oscillator Grade h0 h-1 h-2 
Temperature 

Compensated Crystal 
2.10-9 7.10-9 2.10-9 

Ovenized Crystal 8.10-9 2.10-9 4.10-9 
Rubidium 2.10-9 7.10-9 4.10-9 

Table 6.1: Typical Allan constants for different types of oscillators (units of seconds) [44]. 

 
The state vector of the integrated system is thus defined as given in equation (6.21). It 

involves 9 states which are the 3D position of the vehicle in the navigation frame, the along track 
velocity scale factor and bias, the true along track velocity and the GPS receiver clock bias and 
drift. 
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vv
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 (6.21) 

 
The kinematic model given below in equation (6.22) is then fully described by the 

combination of the state transition equations given above. 
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where: 

− [ ]( )TdiagtG 11101000)( =  

− w  is the state noise vector, whose covariance matrix is ( ))(cov)( twtQ =  
 

The continuous definition of the kinematic part of the Kalman filter has no physical meaning 
but is rather a rigorous implementation methodology. Digital data are provided by the different 
sensors so that a discrete Kalman filter is more adapted. The discrete form of the model given in 
equation (6.22) is computed according to the procedure detailed in [44] and recalled in appendix C. 
 

6.2.2.3.2 Measurements Equations 
 

The first measurement equation is provided by the INS. It involves the true along track 
velocity obtained through the integration of the forward acceleration, and the errors affecting that 
measurement as given in equation (6.23). It is very easy to get this equation linear. 
 

vV
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INS
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where: 
– vn  is the noise affecting the velocity measurement. 
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The other measurements are those provided by the GPS receiver modules, which are the 
pseudorange and Doppler measurements. The pseudorange measurement is given in equation 
(6.24). The processing of the ephemeris of each satellite allows the estimation of the ionospheric, 
tropospheric and satellite clock errors. They are removed from the pseudorange so that corrected 
pseudoranges are actually used as measurements in the Kalman filter. The position of the satellite at 
time of transmission is computed by processing the ephemeris in the navigation frame to ease the 
implementation. A first position is thus required to allow such coordinate transformation, which is 
not a limiting point since the INS also requires a first position to start the dead reckoning 
navigation. 
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where: 
– ρn  is the noise affecting the pseudorange measurement. 

 
Because the vehicle is aimed at going in urban / deep urban canyons, multipaths are very 

likely to affect the pseudorange measurements and as a consequence the position solution as well. 
The receiver Doppler corrected for the satellite contribution (estimated using ephemeris data) is 
thus used as the second raw GPS measurement in the Kalman filter because it offers more 
robustness against such perturbations. Its model is as follows: 
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where: 
– LOSAT /α  is the projection coefficient of the along track velocity onto the user to satellite LoS. 

– 
df

n  is the noise affecting the Doppler measurement. 

 
Another improvement tested within the proposed tight integration architecture is the use of a 

low-cost pressure sensor. In that case, the pressure measurements once calibrated and converted 
into altitude (height) measurements are used to directly correct the vertical position as estimated in 
the Extended Kalman Filter. 
 

6.2.2.3.3 Mechanisation 
 

Figure 6.8 summarises the principle of the integrated navigation system. The GPS receiver 
provides raw measurements that are used as measurement inputs of the Kalman filter. Ephemeris 
data are used to compute the satellites position and Doppler contributions. They also are combined 
with the attitude estimates as provided by the attitude filter detailed in chapter 4 to compute the 
projection coefficient from the user to satellite Line-of-Sight, as defined in equation (6.25). 
 

This coupling methodology is somehow not optimum but it allows the reduction of the 
number of unknowns in the state vector and it furthermore enhances the capability of the filter to 
provide corrections as soon as two satellites are available. A closed-loop architecture is proposed 
here, in which the Kalman filter estimates the position and velocity errors (including bias and scale 
factor) that are fed back into the INS to keep the INS errors as small as possible. 
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Figure 6.8: Integrated Navigation System mechanisation as designed for land vehicle navigation. 

Closed-loop architecture. 

 

6.2.3 Test Results 
 

This section presents the results of the tests conducted with the system described above. The 
capability of the integrated navigation system to provide a position solution in challenging urban 
canyon conditions is more specifically addressed. When the tests were performed, no HSGPS or 
AGPS receiver capable of providing raw GPS measurements was available. Consequently, the trial 
detailed in the following has been done using a geodetic grade OEM4 GPS receiver from Novatel. 
As a result, the GPS position solution availability can be expected to be quite low. This is not an 
issue regarding the performance analysis the subsection is aimed at since one of the objective is to 
evaluate the capability of the integrated navigation system to correct INS errors using very few GPS 
measurements. The use of such a geodetic grade receiver nevertheless increases the quality of the 
raw measurements available for hybridisation due to particular processing techniques that are 
implemented to mitigate errors such as multipath, as compared to what HSGPS and AGPS can do 
(indeed, their aim is not primarily to deal with signals of good quality but rather to have the highest 
possible availability). 
 

The data provided by the Motion Tracker from Xsens are recorded at 25Hz, whereas GPS 
data are recorded at 1Hz. The IMU was lying on the ground of the vehicle and not moved during all 
the trial. The calibration of the magnetometers is also done before the test starts and a first GPS 
position is computed to initialise all the algorithms. 
 

The urban reference trajectory is plotted in Figure 6.9 as the red path. The travelled distance 
in the exercised vehicle trial is about 4.5 km for 15 minutes of pure urban navigation. The position 
solution given by the OEM4 GPS receiver is plotted in blue as an illustration of its urban 
performance. The corresponding tracking statistics are given below in Table 6.2. 
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 OEM4 Tracking Status 
Nb of satellites 0-1 2 3 ≥4 
% of time 7.2% 12.3% 14% 66.5% 

Table 6.2: OEM4 tracking performance in urban environment. 

 
As illustrated in Figure 6.9, the position solution availability is medium (66,5 %), which 

does not allow a full urban navigation. The receiver tracked at least 2 satellites about 93% of the 
time, which makes the trial suitable for testing the proposed tight integration. During the trial, GPS 
measurements experienced large errors probably due to multipath, as shown by the position 
solutions inside the green circles. 
 

 
Figure 6.9: Reference trajectory (red) and OEM4 position solution (blue). Urban trial. 

 
In the following, the measurements of the two latest satellites that are acquired and tracked 

will be used as inputs in the integrated navigation system in order to process data from many 
satellite configurations (i.e. combination of two GPS measurements) and thus simulate real 
conditions where only two GPS measurements are available. In the exercised trial, the satellite 
configuration changes approximately every 8 seconds.  
 

As an illustration of the performance of the attitude filter during the trial, Figure 6.10 
presents the headings computed with different algorithms. The GPS-based heading is plotted as well 
as the gyroscope-based heading, the magnetometer-based heading and the heading estimated by the 
attitude filter. The upper part shows the drift of the gyro-based heading (dashed red plot) with 
respect to the magnetometer-based one (green plot). The GPS derived heading assesses the long 
term reliability and accuracy of the magnetic heading. The lower part of Figure 6.10 is a close-up of 
the upper part that illustrates the magnetic interference mitigation. As expected, interferences 
occurred during the test conducted in the city centre. This close-up shows a 15-second magnetic 
perturbation disturbing the heading restitution during which the attitude filter succeeded in 
mitigating the perturbation. 

multipath 

OEM4 Trajectory 

Ref. Trajectory 
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Figure 6.10: Different heading estimates as computed during the urban trial. 

 
As a comparison of both GPS and INS intrinsic performance, the trajectory as computed by 

the standalone INS is plotted in Figure 6.11. The OEM4-based trajectory is also plotted in blue. The 
INS initial position and velocity is given by GPS measurements, whereas the heading is initialised 
using the magnetometers and the declination correction at the test location, as explained in chapter 
4. The heading initialisation is then checked by the first GPS velocity measurements. As recalled 
above, the magnetometers have been calibrated before the trial, so that the magnetic heading is not 
affected by interference due to the vehicle itself. 
 

 
Figure 6.11: Standalone Inertial Navigation System position solutions using different heading sources. 
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Two trajectories have been computed using different heading sources. The first one is based 
on the processing of the gyroscopes measurements and is illustrated in Figure 6.11 as the green plot. 
The second one uses the attitude measurements provided by the attitude filter detailed in chapter 4. 
The corresponding trajectory is plotted in red. As it can be seen in the figure, both trajectories are 
rapidly drifting as compared to the GPS reference path plotted in blue. This illustrates the non-
negligible impact of the accelerometer bias that varies during the trial and significantly degrades the 
accuracy of the computed velocity and position (it is indeed never estimated). The trajectory using 
the filtered heading provides however the best position solution. 
 

In order to test the ability of the integrated navigation system to provide a reliable position 
solution using very few GPS measurements and also the accuracy of the heading provided by the 
sensors assembly, a first hybridisation is performed using only two Doppler measurements. Results 
are illustrated below in Figure 6.12. 
 

 
Figure 6.12: INS/GPS position solution using filtered and non-filtered heading. Two Doppler measurements used 

for hybridisation when available. 

 
As it was expected, the trajectory using these two Doppler measurements and the gyroscope-

based heading is drifting. The gyroscopes drift affects the heading but also the estimation of the 
along track velocity, as shown by the green circles. Opposite, the position solution using the filtered 
heading and the two Doppler measurements is far more accurate. The trajectory shape is clearly 
recognisable and follows the true path quite well, with a horizontal error bounded by 70 metres after 
15 minutes of navigation. Even if two Doppler measurements are used in that test case, the error of 
the trajectory computed by the integrated navigation system was clearly predictable since no 
external position measurement is used to correct the position errors and no estimation of the 
heading error is done using GPS measurements. However, in such conditions, the performance of 

Discontinuities 
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the system seems very good. The attitude as provided by the attitude filter is quite accurate. No 
precise quantification of the attitude filter contribution onto the overall horizontal error has been 
done, but regarding the trajectory of Figure 6.12, it can reasonably account for almost all the error 
(i.e. 70 metres after 15 minutes of navigation with only two Doppler measurements), which is an 
interesting result using such low-cost sensors. Because the INS provides a position solution in a 
Dead Reckoning mode by integrating the debiased velocity, error accumulates so that the position is 
getting unreliable and consequently prevent from any long term positioning. It can also be noticed 
that the trajectory as computed by the integrated navigation system and the two Doppler 
measurements is robust to multipath opposite to the GPS-based position solution. This is mainly 
due to the fact that Doppler measurements are less sensitive to multipath than pseudoranges. 
 

This first hybridisation scheme shows that the use of only Doppler measurements does not 
allow the computation of a reliable position with an error bounded in time. As a consequence, 
pseudorange measurements seem necessary in the integration process. They can be used to correct 
the position drift as soon as they are available, or according to the performance of the navigation 
system as presented above, only when they are detected no to be affected by large multipath. 
Another hybridisation including to the former Doppler measurements the two corresponding 
pseudorange measurements is therefore processed. The resulting trajectory provided by the 
integrated navigation system using the attitude filter outputs as well as two Doppler and two 
pseudoranges measurments is plotted in Figure 6.13 in red. As a comparison, the GPS trajectory is 
also plotted in blue. 
 

 
Figure 6.13: Integrated Navigation System trajectory. 2 Doppler and 2 pseudorange measurements used when 

available. 

 
The overall accuracy is tremendously increased with the use of pseudorange measurements. 

The horizontal error stays indeed within 40 metres from the reference trajectory during all the trial. 
Even if pseudoranges are used, the trajectory computed with the hybridised system is again resistant 
to multipath affecting the GPS measurements because of the high confidence in the Doppler 
measurement model and the position computation strategy implemented in the Kalman filter. 

OEM4 Trajectory 
INS Trajectory corrected with 
2 Doppler & 2 Pseudoranges 

Residual « gaps » 
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The along track velocity profile of the vehicle computed using two Doppler and two 
pseudorange measurements is plotted in Figure 6.14 in blue. The velocity of the integrated 
navigation system is well debiased compared to the one provided by the integration of the forward 
direction corrected for the incline of the road. However, the along track velocity profile experiences 
sudden variations that affect the position solution. Some holes appear in the computed path, which 
sometimes may be very large, as shown with the black circles in Figure 6.13. Two velocity profile 
close-ups are plotted in Figure 6.15 that both clearly show the discontinuities that sometimes 
appear. In these two examples, discontinuities clearly occur around samples 6750 and 39600. They 
can be due to two events. 
 

 
Figure 6.14: Biased (red) and unbiased (blue) along 

track velocity profile. 

 
Figure 6.15: Two particular velocity profile 

discontinuities.

 
The first one occurs when the hybridised solution relies exclusively on IMU data, thus 

accumulates errors, and then is corrected by GPS data. The second one occurs when low quality 
GPS data are used to correct the velocity and the position provided by the IMU. Since in our case, 
discontinuities appear when GPS measurements are combined with IMU data, the hybridisation 
methodology can be considered responsible for these issues. 
 

Figure 6.16 presents three different plots that explain the reasons of this bad velocity 
estimation when GPS and IMU data are tightly integrated. The middle plot gives the PRNs used in 
the Kalman filter, the right hand side plot the velocity computed using these different PRNs and the 
left hand side plot the satellite geometry and user heading at time of data combination. At the 
beginning, PRN 14 and 6 are used for hybridisation. Based on these two PRNs, the user’s velocity 
along the track followed by the vehicle has been computed and plotted. It corresponds to the green 
dots in the right hand side plot. This velocity has got a large variance. The position of PRN 14 when 
it is used in the Kalman filter is plotted on the left as the blue dots, whereas the position of PRN 6 is 
plotted as the red dots. The heading of the user is also referenced as the black dots. 
 

Given this satellites configuration with respect to the user’s heading, the estimation of the 
user’s Doppler contribution from the two Doppler measurements is obviously very difficult, even 
not possible. This explains why the GPS-based user’s velocity is very noisy. The Kalman filter uses 
then PRNs 14 and 5 to estimate the along track velocity. The configuration of the satellite’s position 
with respect to the user’s heading is far better, as it can be seen in the left plot. This also explains 
why the user’s velocity is computed with much accuracy, as shown with the red curve in the upper 
right plot. It can thus be stated that the satellite geometry is of tremendous importance to estimate 
the velocity of the vehicle, as the DOP is for GPS positioning accuracy. 

Sudden changes 
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Figure 6.16: Satellite geometry issue. 

 
The bad satellite geometery impacts the efficiency of the proposed tight coupling 

architecture. To avoid this discontinuity issue, a protection criterion based on the geometry of the 
satellites used for hybridisation is implemented according to the previous statements. When bad 
geometry configurations are detected, GPS measurements are no more taken into account and the 
integrated navigation system relies exclusively on the processing of IMU data. In such a case, the 
accuracy of the navigation system relies on the quality of the inertial sensors that are used. 
 

 
Figure 6.17: Along track velocity profile corrected by the Inertial Navigation System when bad satellites 

configurations are detected. 

 
The results of the along track velocity estimation taking into account the aforementioned 

protection principle is plotted above in Figure 6.17 using only two Doppler measurements to avoid 
the pseudoranges to interfere in the velocity and the position computation stages. The improvement 

GPS measurements re-used 
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is not obvious. The upper part of Figure 6.17 shows one case where the correction improves the 
accuracy. Opposite, the lower part shows an example where the velocity estimated by the Inertial 
Navigation System is less accurate than the velocity computed using the integration Kalman filter. 
Sudden variations are still observable, but in that case, they are due to the re-use of new good GPS 
measurements. The performance of the INS without GPS updates directly depends on the quality of 
the INS sensors that are used. 
 

The impact of the use of pure INS velocity estimates during the detected bad satellite 
configurations is shown in Figure 6.18 as the green plot (for comparison, the uncorrected trajectory 
is plotted in red). Even if the horizontal accuracy stays within 100 metres from the reference 
trajectory, the final error is worst than without IMU-based corrections. 
 

 
Figure 6.18: Corrected and non-corrected Integrated Navigation System trajectories. 2 Doppler measurements 

used for hybridisation when available. 

 
In the previous test, position estimations with and without height-aiding were performed. 

However, the horizontal position solution does not vary very much from each integration scheme 
that is why only the non height-aided solution is plotted in Figure 6.13. Figure 6.19 shows the 
vertical performance of the hybridised system using only two Doppler and two pseudorange 
measurements. The upper part of the figure gives the vertical accuracy, with respect to the pressure 
sensor measurements. 
 

As it can be seen in the figure, the vertical error reaches about 30 metres without height-
aiding, whereas it stays below 5 metres when the altitude from the pressure sensor is used in the 
Kalman filter. The path followed during the test was however quite flat as shown in the lower part 
of the figure. Thus, the capability of the filter to bound the vertical error when height-aiding is 
performed has to be considered with care. The vertical accuracy should be assessed with a hillier 
path. 
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Figure 6.19: Vertical performance of the Integrated Navigation System (upper plot). Vertical profile of the 

exercised trial (lower plot). 

 

6.2.4 Conclusion 
 

According to the trials detailed above, the proposed hybridisation architecture allows the 
estimation of the errors affecting the along track velocity provided by a low-cost MEMS-based 
IMU using only two Doppler and two pseudorange measurements. The use of only two Doppler 
measurements shows that the accuracy of the heading provided by the IMU was reliable enough to 
provide a good short term position solution (<5 min). Long term (>15min) positioning is rather 
difficult since the trajectory is slowly accumulating errors due to the residual attitude errors of the 
filter detailed in chapter 4. These errors permanently affect the computed trajectory because of the 
dead reckoning algorithm memory effect, so that the integrated system may be unreliable if used 
without any pseudorange measurements during a long navigation period. However, and according 
to the conducted tests, it has been shown that a horizontal error within 70 metres is achievable for 
15 min of navigation with only two Doppler measurements. 
 

The adjunction of two pseudorange measurements tremendously improves the position 
accuracy. A horizontal error within 40 meters of the reference trajectory can indeed be achieved 
using only two Doppler and two pseudorange measurements. No more shift is noticeable in the 
integrated navigation system position solution. However, it increases the multipath sensitivity of the 
system so that their use shall be done with care. The tight coupling architecture allows accurate 
short term navigation, so that it is possible to choose good epochs where pseudoranges shall be 
integrated in the filter for position correction. 
 

Height aiding improves the vertical accuracy. In the test conducted, the vertical error is 
reduced from 30 metres to 5 metres with the adjunction of pressure sensor measurements in the 
Kalman filter. The trial exercised here is however quite flat, so hilly tests should be performed to 
assess this vertical improvement. 
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However, the performance of the proposed tight coupling architecture is closely dependent 
on the geometry of the satellites used for hybridisation, especially if only two measurements are 
used. Bad satellites configurations with respect to the user’s heading yield erroneous velocity 
updates. A protection criterion has thus been implemented to prevent these configurations from 
biasing both the velocity and the position of the vehicle. During these periods, the performance of 
the integrated navigation system relies exclusively on the quality of the sensors used in the IMU, 
which can lead to rapid drift of the position solution in our case. 
 

As the hybridisation was tested with a geodetic grade receiver, the measurements used may 
be of good quality. A future work would be to assess the performance of such hybridisation 
architecture in the case where only two HSGPS or AGPS measurements are available. 
 

The proposed tight coupling architecture gives good results according to the trial exercised. 
Although the proposed integration of all the sensors seems less optimised than the standard tight 
integration (because of the residual biases that affect the attitude measurements), it nevertheless 
shows what performance can be achieved with low-cost sensors. Such a performance should be 
compared to what would have been obtained with a standard tight integration scheme aided with 
drift-free attitude measurements and velocity constraints, and involving the standard INS 
mechanisation. This also remains to be done in a future work. 
 

6.3 Pedestrian Navigation Case 

6.3.1 Introduction 
 

Another application that is expected to tremendously grow is the location of a pedestrian. As 
demonstrated in chapter two, even the powerful HSGPS and AGPS receivers can not fulfil such a 
requirement especially indoors and in deep urban canyon where not enough satellite can be tracked 
in order to compute a position solution. In some cases, they are likely to compute the position of the 
user using only pure multipath replicas which as a consequence decreases the accuracy of the 
positioning system. 
 

As discussed in chapter 3, the Pedestrian Navigation System mechanisation is very likely to 
tremendously improve the accuracy of the sensor-based navigation system even if low-cost sensors 
are used. When proper initialisation and calibration is done, the accelerometer bias impact onto the 
performance of the navigation system can be well reduced. The use of an attitude filter capable of 
estimating the gyroscopes bias may also tremendously improve the system accuracy and also 
availability. 
 

In order to assess the performance of the PNS in actual conditions, the first following 
subsection discusses the use of the different inertial navigation algorithms as detailed in chapter 3. 
The focus is more specifically put on the performance of the systems in actual conditions once they 
properly have been initialised and calibrated. The second part rather deals with the hybridisation of 
GPS modules with the chosen pedestrian navigation system. The selection of the sensor fusion 
algorithm is discussed and detailed. Its performance is assessed trough real test in actual urban and 
indoor conditions using a real time demonstrator developed for that purpose. The issue of GPS 
measurements quality is also addressed. 
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6.3.2 PNS Mechanisation Performance 
 

As a first assessment of the Pedestrian Navigation System (PNS) performance, this section 
analyses the position accuracy that can be achieved with such a particular mechanisation. The 
classical Inertial Navigation System algorithm is also tested to show the improvement brought by 
the PNS. Whatever the navigation algorithm, the attitude filter that fuses accelerometers, 
gyroscopes and magnetometers information (detailed in chapter 4) is used to provide the attitude 
estimates. 
 

As discussed in chapter 3, there are mainly two use cases in which the azimuth of 
displacement has to be estimated. It depends on the motion of the sensors assembly relative to the 
user, whether it follows the movement of the pedestrian or not. In the first case called constrained 
navigation, the sensors unit is fixed anywhere onto the user, or simply put in a pocket of the user. 
The computed heading is thus the displacement azimuth that is biased by an additive constant 
because of the non alignment of the sensors unit heading axis and the true direction of walk. In the 
second case called unconstrained navigation, the true azimuth of displacement is not the heading 
provided by the sensors assembly since it has its own movement relative to the pedestrian. 
 

The two navigation modes are tested in the following. As discussed in chapter 3, the 
unconstrained navigation issue lies in the computation of the true displacement direction. The 
method used to get such an estimated heading is based on the projection of the pedestrian velocity 
of displacement along the north and east axes of the navigation frame. The attitude filter detailed in 
chapter 4 is used for that purpose. 
 

In the tests presented hereafter, the pedestrian velocity model is calibrated using GPS 
measurements. A step counting algorithm is developed to detect the motion of the pedestrian and 
the distance travelled between two consecutive steps is estimated by integrating the estimated 
velocity. The true displacement direction is computed based on attitude filter outputs. GPS heading 
measurements are used at the beginning of the trials to estimate the constant bias that affects the 
heading as provided by the attitude filter. 
 

Experiments are conducted in three phases. First, the static behaviour of the algorithms 
detailed in chapter 3 and augmented with the developed attitude filter is tested. The performance of 
the constrained navigation algorithm is analysed in second and the unconstrained navigation in 
third. In all the trials exercised, GPS data are processed differentially to get accurate position 
solutions that will be used as reference trajectories. 
 

6.3.2.1 Static Performance 
 

In this test, the sensors assembly is laying at rest in a pocket of the user for 60 seconds with 
a random attitude. Three algorithms used in the frame of pedestrian navigation are compared: the 
Classic Inertial Navigation System (C-INS) which uses attitude estimates provided by the 
processing of gyroscope measurements, the Enhanced Inertial Navigation System (E-INS) which 
uses attitude estimates provided by the attitude filter and the Pedestrian Navigation System (PNS) 
based on step counting using the attitude filter. Results are plotted in Figure 6.20. As it could be 
expected, The PNS clearly outperforms the two other algorithms. The error is indeed 0 metre at the 
end of the trial since no motion has been detected. Although it still remains some residual error 
mainly due to the integration of the accelerometer biases, the Enhanced INS gives good results 
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compared to the Classic INS. After 60 seconds of navigation, the error is indeed reduced by 95% by 
the use of non-drifting attitude estimates (570 metres for the C-INS algorithm versus 25 metres for 
the E-INS algorithm). The improvement provided by the attitude filter is assessed and very 
effective. 
 

 
Figure 6.20: Static errors of three different inertial navigation algorithms using low-cost sensors. 

 

6.3.2.2 Constrained Navigation 
 

To compare the behaviour of the three inertial navigation algorithms in dynamic conditions, 
a short trial is exercised which lasts slightly more than 1 minute. Only the constrained pedestrian 
navigation is addressed through this test, meaning that the sensors assembly is put on a pocket of 
the user with a random attitude and is no more moved until the end of the test. The velocity model 
is calibrated using the GPS measurements (post-processing calibration). In all cases, the initial 
heading offset is found and removed by processing GPS heading measurements. 
 

Figure 6.21 shows the different trajectories as computed by the three navigation algorithms. 
The PNS solution, which is plotted in dashed red, is the most accurate. The final horizontal RMS 
error is about 5 metres. No major drift either in attitude or in position is noticeable on this short 
duration. Opposite, the solutions based on the traditional inertial mechanisation perform worst. The 
green dotted plot illustrates the E-INS position solution. In that case, the final horizontal error is 
about 90 metres. At the beginning of the test, the pedestrian was standing for 3 seconds. No drift is 
remarkable on the green trajectory. This is however not the case at the end of the run identified as 
the black asterisk, which clearly illustrates the position drift while the pedestrian is stopped for 
another 3 seconds. The attitude of the pedestrian matches quite well the reference attitude plotted in 
blue and obtained with DGPS data. It can thus be stated that the attitude provided by the attitude 
filter is reliable. The attitude filter is efficient in removing gyro drifts, but it experiences difficulties 
in removing the acceleration biases affecting the measurements, leading to a drifting position 
solution. Nevertheless, the E-INS clearly outperforms the C-INS, whose position solution is 
represented by the black dash-dotted plot. The improvement is of about 90% since the 
corresponding C-INS final horizontal error is 950 metres (The whole trajectory is not plotted here 
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for visual convenience). 
 

 
Figure 6.21: Position solutions as provided by three different navigation systems. Short dynamic test. 

 
To assess the complementary nature of the attitude filter and the PNS, another dynamic test 

is conducted over a longer period. In this trial, the pedestrian walks about 1 km in 13 minutes with 
the sensors assembly being in a pocket with a random attitude. The sensors assembly is still not 
moved compared to the user’s body during the trial. The resulting trajectory using 100% of GPS 
data for velocity model calibration is plotted in Figure 6.22. 
 

 
Figure 6.22: PNS position solutions using 100% of GPS data for velocity model calibration. Long dynamic test. 

 

Start 

Finish 

Euler Singularity Issue 
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As a comparison, the trajectory computed with the PNS mechanisation using the gyroscope-
based heading is plotted in green. The position solution is obviously drifting, which demonstrates 
the very interesting improvement brought by the magnetometers in terms of position solution 
accuracy over time. The PNS position solution using the filtered heading is accurate to within 20 
meters over the whole test period, with a final horizontal RMS error of 16 meters. Opposite, the 
solution using the gyroscope-based heading is continuously drifting as shown below in Figure 6.23. 
The error reaches up to 110 meters after 13 minutes of navigation. 
 

 
Figure 6.23: PNS horizontal RMS error. Long dynamic test. 

 
Based on the same trial, the trajectory using only the first 10% of GPS data for velocity 

model calibration is computed and illustrated in Figure 6.24 
 

 
Figure 6.24: PNS position solutions using the first 10% of GPS data for velocity model calibration. Long 

dynamic test. 
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These 10% of data are collected between the beginning of the walk and the green asterisk, as 
shown in Figure 6.24, which represents approximately 1 minute. The accuracy of the PNS position 
solution stays within 25 metres from the reference trajectory during the whole path. This 
corresponds to 12 minutes of navigation without any GPS data. The final horizontal RMS error is 
18 metres. 
 

Even with a little part of data for calibration, the velocity model provides good estimates of 
the curvilinear travelled distance. Accuracy stays within acceptable limits that are suitable for LBS 
applications during GPS outages. Moreover, trajectories reconstructed using the heading provided 
by the attitude filter and illustrated in Figure 6.21 and in Figure 6.22 are not affected by Euler’s 
angles singularities, opposite to the gyroscope-based solution of Figure 6.22. According to the 
attitude computation algorithm, the position solution can then be provided regardless of the 
orientation of the sensors assembly. 
 

6.3.2.3 Unconstrained Navigation 
 

The position solution accuracy is very likely to be affected by the movement of the sensors 
assembly with respect to the user’s body, especially if the latter is contained in a handheld device 
such as a cell phone or a PDA. To assess the capability of the PNS to provide a reliable position 
solution while the sensors unit is moved during the walk, another dynamic test is performed. 
 

In this test, a pedestrian follows an athletic track of 250 metres for 4 minutes. At the 
beginning of the test, the sensors assembly is in the pocket of the pedestrian, with a random attitude. 
While walking, he pulls randomly the sensors unit out of his pocket and moves it as if he was 
looking at his cell phone. Then he replaces it inside his pocket. The movements of the unit with 
respect to the pedestrian are not stressed but rather reflect typical low motions cell phones may 
experience. The resulting trajectories are given in Figure 6.25. 
 

 
Figure 6.25: Unconstrained navigation solutions. 
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The sensors unit is moved 13 times during the trial as indicated by the black squares 
(excepting the first one indicating the start position). The PNS trajectory as computed above is 
represented by the green plot. The trajectory is clearly not relevant of the true path. Opposite, the 
PNS position solution whose heading is estimated by processing both north and east projections of 
the pedestrian velocity as detailed in chapter 3 is far more accurate. The performance is degraded as 
compared to the constrained navigation, but the corrected trajectory nevertheless matches quite well 
the true trajectory. 
 

Both travelled distance and displacement direction are coherent with the actual ones. There 
is no noticeable drift in the curvilinear travelled distance. The velocity model once calibrated is thus 
robust to such sensors assembly movements during the walk. For visual convenience, the trajectory 
provided by the modified E-INS, (i.e. the E-INS algorithm modified to estimate both North and East 
velocities) is not plotted here for comparison. The acceleration biases yield a drifting position that 
goes quickly out of the figure. 
 

Figure 6.26 illustrates the headings estimated with the two different PNS algorithms. The 
GPS solution plotted in blue is shown here as a reference. The processing of both north and east 
velocities tends to prove the efficiency of the displacement direction detection algorithm discussed 
above and detailed in chapter 3. However, it still is sensitive to the dynamic experienced by the 
sensors assembly which shall not be too high as compared to those of the pedestrian. 
 

 
Figure 6.26: Displacement direction detection result. 

 

6.3.2.4 Conclusion 
 

The aim of this subsection was to analyse the performance of two different inertial 
navigation algorithms used as an alternative positioning system during GPS outages. Both were 
tested with low-cost sensors for the so-called constrained navigation. The classic inertial navigation 
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algorithm has been found to give the worst performance, whether the drift-free attitude filter is used 
or not. Its integration with the C-INS has indeed led to the implementation of the E-INS, whose 
performance is improved by more than 90% compared to what can be achieved with the C-INS 
using the same low-cost sensors. However, even if the navigation solution drift is well reduced 
because of the attitude filter, this is not enough to be used as an alternative positioning system for 
pedestrians. Indeed, accelerometer biases are badly estimated and consequently are responsible for 
the residual errors. The position is drifting so that this algorithm can only be used for short term 
positioning for both constrained and unconstrained navigation. 
 

To cope with this issue, the PNS mechanisation has been implemented and tested on the 
same trials. Coupled with the attitude filter and properly calibrated and initialised, this algorithm 
provides reliable position solutions over time, with a horizontal RMS error within 25 metres for 12 
minutes of constrained navigation without GPS assistance for velocity model calibration. 
 

The unconstrained navigation mode was also studied and tested with the PNS algorithm 
modified to enable the estimation of the true pedestrian displacement direction. In this mode, the 
sensors assembly has got its own motion relative to those of the pedestrian. Assuming a low 
dynamic with respect to pedestrian motion, it was shown that the true displacement direction could 
be estimated with an acceptable accuracy (25 metres for 4 minutes of navigation). Even if the 
horizontal error is higher than in the constrained navigation mode, the modified algorithm makes 
the system robust to low motion of the sensors assembly. However, it obviously does not reflect the 
all day life behaviour of a handheld positioning device, and therefore does not allow the total 
generalisation of the pedestrian mechanisation concept. 
 

According to these first conclusions, only the PNS mechanisation within the frame of the 
constrained navigation will be considered in the following. In this context, a real time integrated 
system is developed to assess the performance that can be achieved with the use of low-cost sensors 
to supply GPS during outages and improve the accuracy of the position computed by the navigation 
system. This real time software is based on the attitude filter detailed in chapter 4 and the pedestrian 
mechanisation discussed in chapter 3 and recalled above. Details and performance assessment are 
given in the next subsection. 
 

6.3.3 Integrated Navigation System 
6.3.3.1 Introduction 
 

The hybridisation of the GPS modules with other sensors is a good mean to improve the 
availability and the accuracy of the navigation system. As discussed in the beginning of this 
chapter, several integration schemes are possible (loose and tight coupling). Considering the use of 
low-cost inertial sensors of MEMS type, the approach can be the same as in the land vehicle case. 
The tight integration would be very well suited in this typical navigation use case since the 
pedestrian is very likely to go inside buildings where only few GPS measurements are available. 
However, ENAC lab did not own any HSGPS or AGPS receiver capable of providing raw 
measurements (i.e. pseudoranges and pseudorange rates) at the time the study was conducted, which 
would have allowed a tight coupling implementation. Since HSGPS and AGPS modules capable of 
providing processed measurements (i.e. position and velocity) were nevertheless available, the 
following will address the loose coupling of such GPS-based modules with the low-cost sensors 
assembly described in chapter 3. A real time C/C++ implementation is described hereafter that also 



GPS/IMU Hybridisation for Personal Navigation 

Page 165 

includes as an important feature the attitude filter described in chapter 4. This real time software is 
then used to assess the performance of the system in typical pedestrian environments. 
 

One important issue that must be handled when dealing with hybridisation in urban area is 
the detection of outliers and bad GPS measurements since they are used to correct the inertial 
navigation system errors. Such an issue is all the more important since raw measurements are not 
available in our hybridisation case. No particular RAIM or integrity monitoring algorithm have 
been used. GPS processed measurements are rather used in the software when signals are strong 
enough to reasonably assume that no major degradation in the position accuracy may happen. This 
will certainly decrease the amount of GPS data used for correction purposes, but as shown above, 
the PNS mechanisation provides good performance up to about 15 minutes without any update, 
assuming a proper initialisation of the navigation algorithm. 
 

The PNS mechanisation is used in the following as the primary navigation system that 
provides the position of the user. The GPS modules are used to correct the position and attitude 
errors when the measurements are declared reliable. An Extended Kalman Filter is used to fuse both 
navigation systems. The PNS mechanisation is based on the estimation of the velocity of the 
pedestrian, whose model has been detailed in chapter 3 and is recalled hereafter in equation (6.26). 
 

StdtCFreqtBMeantAtv pedestrian ⋅+⋅+⋅= )()()()(  (6.26) 
 

In the developed software, no step detection algorithm is implemented. The reason for that is 
first to get a more robust travelled distance estimation procedure with respect to miss and fault step 
detections that may occur, and second to ease the integration of data in the EKF. In the proposed 
implementation, the parameters MEAN, FREQ and STD are computing over a time window of 2 
seconds every sampling period. The variance of the acceleration magnitude is checked to declare 
whether the user is walking or not according to a predetermined threshold. This methodology also 
has the advantage of rendering the synchronisation of the GPS modules with the sensors easier. 
 

The following describes in details the Kalman filter designed to fuse the two navigation 
systems according to a loose coupling architecture. 
 

6.3.3.2 Coupling Methodology 

6.3.3.2.1 Kinematic Model and State Vector 
 

As a result of the motivations detailed above, the integration of the different navigation 
systems is done through a Kalman filter according to a loose coupling architecture. The filter is 
naturally designed to estimate 8 error states, which basically are the 2D position error, the errors 
affecting the heading provided by the PNS and the error made on the regression coefficients used to 
model the pedestrian velocity. The corresponding state vector is given in equation (6.27). 
 






=
•

CBAbbbENX alirir δδδδδδ ψψψ ,,,  (6.27) 

 
where: 
– δX is the state vector. 
– δN, δE are respectively the error made on the north and east component of the user’s position. 
– bψ,ir is the in run bias affecting the PNS heading. 
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– bψ,al is the initial offset between the GPS heading and the PNS heading. 
– δA is the regression coefficient error for the MEAN parameter. 
– δB is the regression coefficient error for the FREQ parameter. 
– δC is the regression coefficient error for the STD parameter. 
 

The general model of the errors included in the Kalman filter is given in equation (6.28). It 
is defined as the difference between the value provided by the PNS and the GPS. The “x” in 
equation (6.28) is a general variable that could stand for the north, east, velocity and heading or 
regression coefficients error. 
 

)()()( txtxtx GPSPNS −=δ  (6.28) 
 

The stochastic part of the state transition matrix is composed of the biases affecting the 
heading of the PNS and the error made on the regression parameters used to model the velocity 
magnitude of the pedestrian. The heading used in the PNS mechanisation can be based either on 
gyroscope measurements or on the attitude filter. As the pedestrian is very likely to go inside 
buildings where magnetic interferences may occur, the error affecting the PNS heading can not be a 
priori characterised. 
 

The worst case that may degrade the performance of the PNS is a long term magnetic 
interference that would degrade the efficieny of the heading drift correction by processing 
magnetometer measurements. However, it is difficult to estimate the probability of occurrence of 
such a use case. Therefore, in order to take into account that worst case in the design of the Kalman 
filter, the error affecting the PNS heading is assumed to follow an integrated random walk as 
described in equation (6.29), whose driving noise is a function of the magnetic interference 
magnitude. 
 

)(,, twb irbir =
••

ψ  (6.29) 

 
The second part of the bias affecting the PNS heading is the offset that is introduced by the 

position of the sensors assembly onto the user’s body. It indeed introduces an offset between the 
true azimuth of displacement given by the GPS and the heading provided by the assembly. This bias 
is modelled as a constant random process, as described by equation (6.30). 
 

0, =
•

albψ  (6.30) 

 
Once GPS measurements are available, it is possible to compute the regression coefficient 

A, B and C as given in equation (6.26) in order to get a model of the pedestrian velocity. In this 
EKF, the regression coefficients errors are modelled as random walk processes. The corresponding 
equations are given below from equation (6.31) to (6.33). The stochastic models are chosen 
empirically with low driving noise variances (2ּ10-3) according to what has been observed during 
several trials. 
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 (6.33) 
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According to the Pedestrian Navigation System mechanisation, the position along the north 
axis is the integration result of the pedestrian velocity projection. Both PNS and GPS north position 
estimates are given below. The initial position is assumed known. The same  
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The estimation of the PNS errors is only possible when GPS measurements are considered 

reliable. The north position error as defined in equation (6.28) is obviously not linear with respect to 
the pedestrian heading and velocity errors. It should be linear with respect to the errors included in 
the state vector in order to ease the design of the Kalman filter. Assuming ψPNS the linearisation 
point and neglecting as a first approximation the second order derivation terms, the position error 
along the north axis δN as defined in equation (6.28) can be written as follows: 
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It is then straightforward to get the time derivative of the north position error as expressed in 

equation (6.34). It is given below in equation (6.35), which stands for the first state transition 
function needed to build the kinematic part. 
 

( ) ( ) )()(sin)()()(cos)( tttvtvttN PNSPNSPNS δψψδψδ ⋅⋅−⋅=
•

 (6.35) 

 
Following the same methodology, the time derivative of the east position error is as given in 

equation (6.36). 
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•

 (6.36) 

 
It is straightforward to get the velocity error model as a function of the stochastic errors. 

Based on the velocity model used in the frame of this subsection, Equation (6.37) gives the time 
derivative of the velocity error as a function of the regression coefficient errors. 
 

StdtCFreqtBMeantAtv ⋅+⋅+⋅=
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The kinematic model given below in equation (6.38) is then fully described by the 

combination of the equations (6.29), (6.30), (6.31), (6.32), (6.33), (6.35), (6.36) and (6.37). The 
continuous state transition matrix F is obvious to compute. Hereafter is recalled the continuous 
covariance matrix Q. 
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where: 
− [ ]( )TdiagtG 11101000)( =  

− w  is the state noise vector, whose covariance matrix is ( ))(cov)( twtQ =  
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As the hybridisation is done with navigation systems capable of providing digital data, the 
continuous definition of the kinematic part of the Kalman filter has no physical meaning but is 
rather a rigorous implementation methodology. The discrete form of the model given in equation 
(6.38) is done according to the procedure detailed in [44] and recalled in appendix C. 
 

6.3.3.2.2 Measurements Equations 
 

In the integrated pedestrian navigation system developed within section 6.3, the GPS 
receiver is assumed to be the reference sensor (i.e. the sensor that provides non biased information). 
The number of external measurements used to correct the PNS errors at each hybridisation epoch 
(position, velocity, heading…) mainly depends on the quality of the GPS data as well as the 
dynamic of the user. 
 

As discussed in chapter 2, the different GPS-based positioning modules are designed to 
increase the availability of the position solution. As a consequence, even if weak signals are 
tracked, the modules are likely to compute the location of the user. However, such measurements 
(namely position and velocity) are very noisy and affected by multipath in harsh environments. In 
such conditions, the initialisation and the calibration of the pedestrian navigation algorithm may be 
unreliable, which consequently will degrade the positioning performance of the integrated 
navigation system during outages. RAIM techniques could have been implemented to detect and 
exclude bad GPS measurements as discussed for example in [49] and [50], but the integration level 
chosen here does not allow such measurement quality monitoring (we only have to deal with 
position and velocity measurements). Furthermore, such quality monitoring techniques do not 
provide reliable results in harsh environments due to the limited amount of data that are not affected 
by errors (multipath, cross-correlation, noise…) as compared to the data set used for analysis 
purposes [50]. In the following, the GPS measurement reliability assessment is rather based on a 
practical approach. The C/N0 of the satellites that are used to compute the position solution is 
permanently checked, together with the current Horizontal Dilution of Precision (HDOP) figure of 
merit. According to several tests that have been conducted in different urban environments, it has 
been found that in most of the cases when the HDOP was below 2.5 and the C/N0 of the 4th worst 
satellite used to compute the position of the user was higher than 25 dBHz, the measurements were 
enough reliable to allow the calibration of the velocity model and correct the position error. 
Otherwise, the integrated navigation system relies exclusively on the data provided by the IMU. 
Such a decision algorithm has then been implemented in the real time positioning software. 
 

The choice of the external measurements is basically illustrated in Figure 6.27. The first use 
case occurs when GPS processed data are declared reliable. In that case, the velocity as estimated 
by the receiver is checked to detect whether the user is moving or not. A cross-check is also 
performed with the simple motion detection algorithm discussed in chapter 5 and based on the 
processing of the acceleration magnitude of the sensors unit. If a motion is detected, GPS positions, 
velocities and headings are used as measurements. If not, the heading is provided by the attitude 
filter if no magnetic interference is detected, and no measurements are used for heading correction 
if interferences are detected. When GPS measurements are declared not reliable, the only external 
measurement than can be used to correct the PNS errors is the heading provided by the attitude 
filter, assuming no magnetic interference. 
 

The measurements errors are computed as defined below in equation (6.39). The index ‘i’ 
stands for the possible measurements that can be used for correction purposes, as discussed above 
and illustrated in Figure 6.27. The observation matrix Hk at epoch k is then straightforward to 
compute. The general observation model is given in equation (6.40). 
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Figure 6.27: Possible measurement configurations. 
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6.3.3.2.3 Mechanisation and System Configuration 
 

Figure 6.28 summarises the hybrid system architecture, as implemented in the real time 
positioning software. A closed-loop loose coupling methodology is used. The GPS module (which 
can be either a HSGPS or an AGPS) provides position, velocity and heading measurements. The 
attitude filter provides an estimate of the pedestrian heading. The measurement data set is chosen 
according to the decision logic described in the previous subsection. 
 

 
Figure 6.28: Real time sensor fusion architecture (closed-loop loose coupling architecture). 
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All the filters described above as well as the pedestrian mechanisation are implemented in 
C/C++ in order the integrated navigation system to be able to provide a position solution in real 
time. As part of the functionalities of the software, raw data from all sensors can be stored while 
operating the navigation system for post-processing analysis. 
 

The synchronisation of the data is done prior to the hybridisation. The sampling rate of the 
data provided by the Xsens MTi is 50Hz whereas the GPS modules are configured to output 
measurements at 1Hz. Both are not synchronised to each other using a specific hardware so that an 
offset is likely to affect the time stamping of the data. The left hand part of Figure 6.29 illustrates 
such an issue. As the sampling rate of the MTi is 50Hz, this shift is at most equal to 10ms, which is 
considered negligible with no major impact on the further processing of the measurements. 
 

 
Figure 6.29: Data synchronisation principle. 

 
Once the data have been collected, they are synchronised in order for the time window used 

to compute the pedestrian velocity model parameters to match the GPS measurements occurrences, 
as illustrated in the right hand part of Figure 6.29 (parameters are computed at the MTi sampling 
rate). As a result, the synchronisation method introduces a time lag of one second in the position 
solution computed by the integrated navigation system, which remains acceptable. 
 

Figure 6.30 illustrates the integrated pedestrian navigation system developed within the 
scope of this study. The off-the-shelf MTi is connected via the USB port to the processing unit 
(Dialogue FlyBook) and provides accelerations, rotation rates and magnetic field measurements. 
The GPS module we used is Bluetooth capable and can be configured either in a high sensitivity or 
assisted mode. Data are provided through NMEA frames to the processing unit. The Thales Alenia 
Space assistance server processes the GPS signals to elaborate the assistance data that are 
transmitted to the processing unit on the demand of the user through a wireless connection (in the 
test conducted, the wireless connection is the GPRS, which is supported on the GSM cellular 
network). The data are then uploaded into the assisted GPS chipset for further processing. The 
processing unit computes and displays the position of the user on a map that can be whether on its 
screen or a distant one. 
 

The interface of the real time pedestrian navigation software is shown in Figure 6.31. It is 
basically composed of a local map where are displayed the HSGPS or AGPS position solutions as 
well as the hybrid position solution. The interface also allows the user to see in real time the current 
navigation mode (i.e. GPS, MEMS standalone or hybrid mode). As raw data can be collected while 
the software computes the position of the pedestrian, it offers some post-processing capabilities 
using for instance Matlab, in order to adjust some algorithms and emphasizes typical pedestrian 
navigation issues. 
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Figure 6.30: Integrated Pedestrian Navigation System. 

 

 
Figure 6.31: Real time Pedestrian Navigation System interface [53]. 

 

6.3.3.3 Test Results 
 

The integrated pedestrian navigation system described in the previous section has been 
tested in actual conditions [53]. Test results are presented in this section. As a first assessment of 
the hybridisation algorithm described above, the two HSGPS and AGPS outdoor/indoor trials 
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presented in chapter 2 are used as short-term test cases. The two paths as computed by the two GPS 
modules are plotted hereafter in blue as a reminder in Figure 6.32 and in Figure 6.33. As focused by 
the green rectangles, outages occur when the pedestrian walks inside the buildings. 
 

 
Figure 6.32: HSGPS tracking performance in urban 

and indoor environments. 

 
Figure 6.33: AGPS tracking performance in urban 

and indoor environments. 

 
The result of the hybridisation of the HSGPS module with the low-cost IMU is shown in 

Figure 6.34. In the figure, the output of the integrated navigation system using both information of 
the PNS and the HSGPS module is plotted in green. This trajectory illustrates the output of the PNS 
that has been corrected using HGSPS measurements. Since no measurement quality monitoring 
algorithm is applied on GPS measurements, the hybrid solution may sometimes be affected by 
errors as for instance multipath, as shown within the magenta circle in Figure 6.34. This is clearly a 
drawback of the loose coupling architecture used here to fuse the two navigation systems. In red is 
plotted the position solution of the integrated navigation system relying exclusively on the MTi 
data. In that case, the GPS measurements are whether declared not reliable according to the empiric 
decision logic added in the sensors fusion filter (HDOP and 4th worst C/N0 thresholds of 
respectively 2.5 and 25 dBHz), or simply not available (outage). As it can be seen in Figure 6.34, 
the hybridisation tremendously improves the position availability and accuracy, especially when the 
pedestrian is inside the building. 
 

 

Figure 6.34: HSGPS/IMU hybridisation results. 

 

Figure 6.35: AGPS/IMU hybridisation results. 

Hybridised Solution PNS standalone Hybridised Solution PNS standalone 

HSGPS solution AGPS solution 
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The same conclusions can almost be drawn in the case of the hybridisation of the low-cost 
sensors assembly with the AGPS module, as shown in Figure 6.35. The hybrid position solution is 
nevertheless more accurate than in the previous case, as graphically compared with the reference 
trajectory followed during the trial. 
 

One interesting point to notice according to the results shown in the two figures is that there 
are more epochs where the navigation system relies exclusively on the IMU in the HSGPS 
hybridisation case than in the AGPS hybridisation case. The measurements are indeed less noisy 
and more reliable according to our empiric decision logic. The position solution is also more 
accurate thanks to a better dilution of precision due to the availability of the ephemeris of all the 
satellites that are tracked (as compared to the HSGPS case where each navigation message has to be 
demodulated for each satellite). This suggests that AGPS is more suited for hybridisation purposes. 
 

In order to assess the medium to long term performance of the integrated system, a longer 
test using only the AGPS module is conducted. The reference trajectory and the AGPS position 
solution are plotted below in Figure 6.36. The reference trajectory is plotted in two colours. The 
yellow dashed part shows the outdoor path followed by the pedestrian while walking and the orange 
part illustrates the indoor path of the trial. As it can be seen in the figure, two outages in the AGPS 
single point position solution plotted in blue can be observed (identified as the magenta circles), 
which makes impossible the tracking of the pedestrian inside the buildings. In these two areas, the 
integrated navigation system is expected to tremendously increase the tracking of the pedestrian. 
 

 

Figure 6.36: Pedestrian trial inside and outside buildings. AGPS single point position solution (blue) and 

reference trajectory (yellow outdoors, orange indoors). 

 
The performance of the hybrid positioning system is plotted in Figure 6.37 using the same 

colour legend as in the previous figures (Figure 6.34 and Figure 6.35). The green plot stands for the 
hybrid solution corrected with GPS measurements, whereas the red plot is the pure PNS trajectory. 
The hybrid position solution is far more relevant of the true trajectory followed during the trial, as it 
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was expected. There are two main periods where the integrated navigation system relies exclusively 
on the IMU data, which corresponds approximately to the outages experienced by the AGPS 
receiver. This tends to prove the reliability of the AGPS measurements. The estimation of the 
heading is quite good, but the travelled distance is sometimes very badly estimated, as for example 
during the first outage (identified by the magenta circle in Figure 6.37). In that case, the travelled 
distance is under-estimated. 
 

 

Figure 6.37: AGPS/IMU hybridisation. Long test. 

 
This bad travelled distance estimation is directly the consequence of a bad pedestrian 

velocity modelling, which in turn is closely related to the quality of the GPS measurements used for 
calibration purposes. To analyse the reason of this bad travelled distance estimation, Figure 6.38 
presents the regression coefficients as corrected by the Kalman filter, as well as the availability of 
the GPS measurements (including the epochs where GPS measurements are declared unreliable). 
 

Just before the first outage (around time 2min), the regression coefficients experience very 
large variations due to very noisy GPS measurements that have not been excluded according to the 
decision logic implemented in the sensors fusion filter (i.e. the 4th satellite used to compute the 
position solution is higher than 25 dBHz). Outliers or large multipath may have affected the 
measurements used for correction, which consequently are responsible for this large variation, 
clearly not relevant of what physically should have been observed. 
 

When the first GPS outage occurs, the inaccurate regression coefficients are kept constant 
leading to a bad estimation of the travelled distance. In the case presented hereafter, the coefficients 
are lower than their value estimated with good GPS measurements, which explains why the 
estimated travelled distance is under-estimated. The first decision logic is therefore not enough 
efficient to prevent bad GPS measurements from degrading the initialisation of the PNS for further 
standalone navigation. 
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Figure 6.38: GPS measurements availability and 

regression coefficients (unitless) without variability 

detection (real time results).  

 

Figure 6.39: GPS measurements availability and 

corrected regression coefficients (unitless) after 

variability detection (post processing results). 

 
 

In order to enhance the monitoring of the quality of the GPS measurements and get the 
integrated navigation system more robust, another condition is added to the sensors fusion filter 
according to the conclusions that have just been drawn. If a strong variability in the regression 
coefficients is detected (which obviously does not reflect a real change in the pace of the 
pedestrian), then the GPS measurements are assumed unreliable. The regression coefficients are 
furthermore corrected by their mean value over the previous minute, which is an approximation of 
their actual values (it is important to say here that another option would have been to check the 
innovation of the EKF in order to detect strong difference between measurements and predictions, 
meaning that GPS measurements may be unreliable). 
 
 

The effect of the correction brought to the regression coefficients is illustrated in Figure 
6.39. These results are obtained using the raw data collected during the trial with the real time 
software. The proposed correction method is clearly efficient as compared to the previous 
estimation, even if in that case it requires some time to detect bad GPS measurements. Such a 
quality test on the estimated regression coefficients has been found enough reliable to remove the 
first decision logic based on the C/N0 of the 4th satellite used in the computation of the user’s 
position. As it can be seen in Figure 6.39, the regression coefficients have a smoother shape with is 
consistent with the typical pace of a pedestrian, whatever its velocity. 
 
 

The impact of correction method onto the accuracy of the position solution as provided by 
the integrated pedestrian navigation system is illustrated in Figure 6.40. The travelled distance 
accuracy is tremendously increased during the first GPS outage and the position solution is clearly 
relevant of the true path followed inside the building. The 2D horizontal accuracy stays within 10m 
from the true trajectory for the whole test, even during the two outages which both last about 2min. 
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Figure 6.40: AGPS/IMU hybridisation results. Long test with corrected regression coefficients (post processing 

results). 

 

6.3.4 Conclusion 
 

A real time pedestrian navigation system has been developed based on the combination of 
different GPS modules (HSGPS and AGPS) with a low-cost IMU made of accelerometers, 
gyroscopes and magnetometers. The purpose of this integration was twofold: first, to face typical 
GPS outages that occur inside buildings and second to increase the position solution availability 
(and somehow accuracy as well) whatever the location of the pedestrian. An optimised pedestrian 
mechanisation has been used to limit the impact of both accelerometers and gyroscopes bias and 
consequently improve in the same time the performance of the navigation system during outages. 
Both integrations with HSGPS and AGPS have been tested. 
 

The results of the conducted trials have shown that AGPS provides measurements less noisy 
than HSGPS does, which makes it more suited to hybridisation purposes. Because there is no need 
to demodulate the ephemeris of the satellite in visibility, the AGPS receiver produces measurements 
of better quality which is of tremendous importance since no RAIM or no GPS measurement 
quality monitoring algorithm has been implemented as part of the integration navigation system. 
However, a method aimed at detecting unreliable AGPS measurements through the dynamic of the 
estimated regression coefficients has been developed. Its implementation and test on real data 
collected with the developed software during the different trials has demonstrated its efficiency. 
 

The accuracy of the developed integrated pedestrian navigation system stays within 10 
metres (horizontal position error) from the true trajectory according to the trial exercised, which 
makes such an integrated pedestrian navigation system very promising for indoor applications. 
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6.4 Conclusion 

 
In this chapter, the enhancement of the availability and the accuracy of a positioning system 

based on GPS have been discussed. The hybridisation of a receiver with low-cost sensors of MEMS 
type was more specifically addressed. In a first time, a non-conventional tight coupling architecture 
build around the attitude filter developed in chapter 4 and a simplified INS mechanisation was 
detailed. It was shown that such a coupling methodology involving more linear equations than the 
standard tight hybridisation can give quite accurate position solutions using very few GPS 
measurements (at least 2). Indeed, the hybridised system was found to be accurate within 70 metres 
for 15 minutes of navigation using only 2 Doppler measurements (horizontal error). To prevent the 
position error from cumulating because of the memory effect of the dead reckoning algorithm, 
pseudorange measurements were found necessary to be integrated as measurements. Due to the 
good performance of the Doppler-based navigation system, their use is not mandatory, which makes 
possible the accurate navigation (2D error below 70 metres) in environments very affected by 
multipath. 
 

The pedestrian navigation was also addressed through the pedestrian mechanisation. The 
integration with both HSGPS and AGPS was tested. Assuming the sensors unit attached to the 
body, it was shown that the combination of AGPS, the attitude filter detailed in chapter 4 and the 
pedestrian mechanisation can give position solutions with interesting an interesting accuracy, as 
compared to what is currently achievable with HSGPS and AGPS receivers. The real time 
pedestrian navigation system has indeed shown a 2D error of 10 metres from the reference 
trajectory, even during complete GPS outages of about 2 min, according to the trials exercised. 
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Chapter 7: Conclusions and Future Work 
 
 

This chapter recalls the main objectives set up at the beginning of the thesis and discusses 
the achievements of the contributions that have been detailed throughout the report. A discussion of 
the technical points that would be interesting to further investigate is also provided. 
 

7.1 Conclusions 

 
As discussed in the introduction, the purpose of this Ph.D thesis was to analyse the benefit 

that can be brought to GPS-based positioning techniques (namely HSGPS and AGPS) with the use 
of low cost sensors. In chapter 1, the performance of the new processing techniques such as AGPS 
and HSGPS have been analysed and detailed. Given the low performance of the systems in harsh 
environments, inertial navigation algorithms based on gyroscopes, accelerometers, magnetometers 
as well as a pressure sensor have been studied for both pedestrian and land vehicle cases. Weak 
points relative to the inertial algorithms and sensors quality have been stressed, motivating the study 
of augmentations based on low cost sensors. Several techniques were proposed to enhance the 
performance of the standalone inertial navigation systems. Some of them can be used to reduce 
AGPS/HSGPS acquisition stage complexity; the others can rather be used in GPS/low cost sensors 
hybridisation schemes. 
 

In chapter 2, the new GPS architectures designed to face urban and indoor issues such as 
HSGPS and AGPS were presented, and their performance were analysed theoretically and 
practically in terms of time to acquire, time to fix, as well as position accuracy. It was shown that 
AGPS clearly outperforms HSGPS in terms of time to first fix. Even if such a result was 
predictable, it was also shown that AGPS produces measurements of better quality than HSGPS 
probably due to ephemeris data transmitted to the handset. It indeed relieves the GPS chipset from 
decoding the navigation message of the tracked signal in order to compute the position of the user. 
This navigation data demodulation can be very difficult in urban areas as soon as the C/N0 of the 
satellite goes below 25 dBHz. However, it finally was demonstrated that these AGPS techniques 
were somehow inefficient in very harsh environments such as inside buildings or in deep urban 
areas. 
 

Chapter 3 was dedicated to the analysis of inertial navigation algorithms performance. 
Mechanisations for land vehicle and pedestrian navigation were analysed in great details and their 
respective weakest points were discussed. In the particular case of pedestrian navigation (PNS), a 
relationship between the frequency, the standard deviation and the mean of the acceleration 
magnitude and the pedestrian velocity was established in order to compensate for accelerometer 
biases. Theoretical simulations showed that it was possible to stay below 150 metres from the 
reference trajectory for 10 minutes of autonomous navigation, clearly outperforming the classical 
INS mechanisation. However, such a comparison may be somehow unfair as such a comparison 
involves a non-optimised classical INS, including improvements comparable to those of the PNS. 
As the unit containing the sensors may be packed in handheld devices, the singularity issue that 
may affect the Euler’s angles and so the heading was analysed. An algorithm dedicated to avoid 
such singularities was proposed and successfully tested on real data collected during pedestrian 
walks. The problem of estimating the true pedestrian heading that arises when sensors are 
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embedded in handheld devices was also addressed. A heading estimation technique was proposed 
and results demonstrated the effectiveness of the methodology especially for low to medium 
motions of the unit with respect to the user. However, typical cell phone movements render the true 
heading measurement inaccurate. 
 

As the two independent navigation systems were characterised, chapter 4 discussed the 
improvement of the inertial navigation algorithms performance in order to increase the accuracy of 
the data that seemed to be useful in further integration. Algorithms based on the processing of 
sensors data were set up to reduce the impact of the biases that dramatically decrease the accuracy 
of the inertial position solution and attitude angles. In particular, an attitude filter was developed to 
limit the impact of gyroscope biases on the heading accuracy. The accuracy of the filter was tested 
on actual land vehicle and pedestrian trials. It was found that 1-degree accuracy was achievable in 
the pedestrian navigation case, according to the tests that were conducted. However, such accuracy 
is very dependent on the duration of magnetic interferences that may occur. The land vehicle trial 
demonstrated that in such navigation type, magnetometer data were often unreliable. The use of a 
pressure sensor as a barometer was studied as well. The vertical velocity was found very noisy 
making mandatory a low-pass filtering of the measurements. Different integration techniques have 
been studied. The integration of the altitude measurements as an additive pseudorange measurement 
was found to give the best improvements in terms of 3D position accuracy. In the perspective of an 
integrated GPS / inertial sensors system, height constraint seems however more adapted to give a 
great deal of performance for a minimal increase of algorithm complexity. 
 

Chapter 5 discussed the integration of the low-cost sensors and augmentation algorithms 
studied in chapter 4 with AGPS / HSGPS receivers in order to decrease the complexity of the 
acquisition stage by reducing the number of frequency bins to search in. Results have shown that in 
the pedestrian case where the velocity can be modelled within ±0.3m/s accuracy, the information 
provided by MEMS sensors decreases the user’s Doppler uncertainty to ±6Hz. The user’s 
contribution on the overall frequency search time is consequently reduced up to 95% compared to 
the frequency search time assuming a user’s Doppler uncertainty of ±250Hz. The availability of the 
Doppler prediction is furthermore 100%. In the land vehicle case, the prediction performs as well 
by reducing the user’s Doppler uncertainty down to ±25Hz. However, the Doppler prediction can 
only be done once two satellites are acquired since the velocity provided by the sensors assembly is 
not enough reliable in that case. Moreover, the user’s Doppler prediction availability is degraded 
and depends on the geometry of the satellites with respect to the user’s heading. 
 

Finally, chapter 6 discussed the hybridisation of the low cost sensors with AGPS and 
HSGPS. A non-conventional tight coupling architecture built around the attitude filter developed in 
chapter 4 and a simplified INS mechanisation was found to be accurate within 70 metres for 15 
minutes of navigation using only 2 Doppler measurements (horizontal error). To prevent the 
position error from cumulating because of the memory effect of the Dead Reckoning algorithm, 
pseudorange measurements were found necessary to be integrated as measurements. Due to the 
good performance of the Doppler-based navigation system, their use is not mandatory, which makes 
possible the accurate navigation (2D error below 70 metres) in environments very affected by 
multipath. The pedestrian navigation was addressed assuming the sensors unit attached to the body. 
The real time pedestrian navigation prototype system developed to assess the performance of such a 
navigation method has demonstrated a promising accuracy with respect to the trials exercised (2D 
error of 10 metres, even during complete GPS outage of approximately 2 minutes). 
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7.2 Future Work 

 
Although the integration of low cost sensors together with hardware-based or software-

based GPS receiver in handheld devices is being more and more obvious, the possible motion of the 
sensors with respect to the user is a big issue. It is very difficult to keep track of the user’s heading 
as the handset may have its own attitude, which consequently limits the use of the pedestrian 
mechanisation. Opposite, if sensors are attached to the user’s body, a good accuracy can be 
achieved and the performance of an integrated pedestrian navigation system can be significantly 
increased. 
 

As a consequence, the opinion of the author would be to focus further researches on the 
processing improvement of AGPS and HSGPS cores. In particular, algorithms using a motion/static 
status of one user (thanks to accelerometers) as well as attitude measurements of the receiver’s 
antenna (thanks to an attitude filter or simply gyroscopes) may be further investigated from both 
standalone and differential positioning point of view. A more sophisticated motion recognition 
algorithm should be developed in order to precisely detect the type of motion experienced by the 
handset containing the sensors, including states such as idling pedestrian with a moving sensors 
unit, walking pedestrian with moving sensors assembly… 

 
The attitude filter proposed in this thesis may also be improved by estimating magnetic 

interferences rather than relying exclusively on gyroscope data. This would certainly increase the 
complexity of the filter but would in turn decrease the sensitivity to magnetic perturbations. 

 
Another interesting point to focus on would be the use of sensors information in order to 

improve the acquisition of GPS signals. With the modernisation of the GNSS signals, the 
combination of MEMS sensors with the GPS acquisition stage can indeed by fruitful for acquiring 
pilot tones, especially when the receiver is moving and the signal to acquire exhibit a low power. 
 

Improving the land vehicle navigation with a set of low-cost sensors is difficult to achieve 
due to large biases that affect the acceleration measurements. Even if the heading accuracy can be 
improved with an attitude filter as the one developed in this thesis, the travelled distance estimation 
is still an issue. One interesting point would be to analyse the benefit brought by wheel speed and 
steering sensors, whose information is accessible through the vehicle local area network. In that 
perspective, the performance of the proposed hybridisation scheme could be studied. The use of 
AGPS or HSGPS receivers may also be of great interest. 
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Appendix A: Doppler Effect 
 
 

Definition 
 

The Doppler effect is the variation of communication signal frequencies caused by the 
relative motion of the transmitter with respect to the receiver. In GPS transmissions, this effect can 
be decomposed into a first effect due to satellite motion with respect to the Earth and a second 
effect caused by user's motion with respect to the Earth (the effect of the receiver local oscillator is 
here neglected). Assuming time synchronisation, the received phase of the GPS signal carrier from 
satellite i  at epoch t  is equal to: 
 

( ) iiii ftttLt 001 2)(2)( θπθτπϕ −=−−=  

 
where: 
– 1L  stands for the L1 carrier frequency. 

– iτ  is the propagation delay affecting the signal from satellite i . 

– f  is the instantaneous frequency of the received signal. 

– i

0θ  is the initial phase offset affecting the received signal. 

– iϕ  is the phase of the received signal. 
 

The geometric distance between satellite i  and the user depends on both movements of the 
GPS emitter satellite on its orbit with respect to an Earth-Centred Earth-Fixed (ECEF) reference 
frame, and the user (or more precisely receiver’s antenna) on the Earth. The instantaneous 
frequency of the received signal is given by : 
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where: 
– )()( tctDi τ⋅=  is the satellite-to-user geometric distance. 

– i

dv  is the Doppler velocity (i.e. the rate of change of the satellite-to-user geometric distance) 
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d −=  is the Doppler frequency affecting the received signal. 

 
Given the above notations, and assuming i

df  constant over a short time interval, the phase of 
the received signal can be written as given below. In that case, it is then fully described by the L1 
carrier frequency, the initial phase and the Doppler affecting the carrier. 
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Doppler Frequency for Typical Use Cases 
 

Let’s assume a configuration with one satellite in motion and a user on ground, as illustrated 
in the figure below. The projection of the satellite velocity onto the user’s Line of Sight is equal to 
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vds [5]. It can be written as a function of the satellite velocity according to the following equation: 
( )βsinsds vv =  

 

 
 

Given the basic relationships that characterises the OAS triangle, it is straightforward to 
express the projected satellite velocity as a function of the θ  angle: 
 

OAS relationships: 
( ) ( )

iDOA

αβ sinsin =  and ( )θcos2222 ⋅⋅⋅−+= ii

s DOADOAr  
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The period of an orbit in seconds of solar time is given by µπ 32 aT = . The period of the 
GPS satellite is 12 sidereal hours, that is 11h 58min and 2.045s solar time. Sidereal time is slightly 
shorter than solar time. One sidereal day is equal to 86164.1 seconds of mean solar time [5]. Thus, 
assuming the orbit of GPS satellites a circle with a mean radius of kma 26560= , the velocity sv  of 
a GPS satellite with respect to an ECEF reference frame is then: 
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The maximum satellite Doppler velocity is obtained when the θ -derivative of vds is equal to 

zero, or equivalently when maxdθθ = . This occurs when the satellite is at the horizontal of the user. 

In such a case, 1.929
max

−≈= smrRvv sEsds  which gives a maximum Doppler shift due to satellite 

motion of about kHzfds 9.4
max

≈ . 
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Following the same methodology, the effect of the user’s motion on the overall Doppler will 
be maximum for a null elevation E. Assuming the user is walking, his maximum velocity is about 
10 km/h (2,8 m/s), which introduces a maximum Doppler shift on the received GPS L1 carrier 
frequency of about HzcvLcEvLf duudu 6.14)cos(

maxmax 1min1 ≈== . Assuming the maximum 

velocity of a user in a vehicle of about 150 km/h (41.7 m/s), the maximum Doppler shift introduced 
by the user’s motion is equal to Hzfdu 219

max
≈ . 

 
The overall Doppler affecting the received signal at the user’s antenna is then the 

combination of the two contributions described above plus an extra contribution due to the receiver 
local oscillator drift. That contribution, for a 1 ppm local oscillator is around 

kHz5.110105.1 69 =×⋅ − . 
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Appendix B: Quaternion-Based Attitude 
Computation 

 

Edward’s Algorithm 
 

This section describes the Edouard’s algorithm that is used to compute the attitude of a 
mobile based on gyroscopes measurements [20], [21]. Assume a triad of gyroscopes mounted on the 
mobile. The measured values are the rotation rates of the mobile with respect to the inertial frame 
(I), expressed in the mobile frame (m). Using the quaternion-based attitude determination, the 
differential equation to solve for is equation 3.9. This equation involves the rotation rate of (m) with 
respect to (n), which can be decomposed as follows: 
 

)(
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)(
/

)(
/

m

In

m

Im

m

nm ωωω −=  
 
where: 
– )(

/
m

Imω  is the sensed values coming from the gyros output. 

– )(
/
m

Inω  can be decomposed into the sum of: 
)(

/
m

enω , which is the rotation rate of the navigation frame (n) with respect to the ECEF-frame (e) 
)(

/
m

Ieω , which is the rotation rate of (e) with respect to (I). 

− ( ) ( ) ( )[ ]TENEnm

m

en hRvhRvhRvR +−+−+⋅= ΦΦ
− )tan(1
2

)(
/ λω λ  

− [ ]Teieinm

m

Ie R )sin(0)cos(1
2

)(
/ λωλωω −⋅= −  

− Nv , Ev  are the North and East velocity components of the mobile. 

− λ  is the current latitude of the mobile. 
− eiω  is the actual rotation rate of the Earth with respect to the inertial frame. 

− ΦR  is the transverse radius of curvature (See section 3.3.2 for details). 

− λR  is the radius of curvature in a meridian (See section 3.3.2 for details). 

− h  is the current altitude of the mobile. 
 
a) Initialisation of the Rotation Quaternion 
 

The computation of the rotation quaternion is mainly composed of three steps. The first step 
is the initialisation of the rotation quaternion Q. It is usually done with initial values of roll 0φ , pitch 

0θ  and heading 0ψ  according to the following equations: 
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Consequently, the rotation quaternion Q at first epoch is given by: 
 

kqjqiqqQ
rrr

⋅+⋅+⋅+= 32100  
 
b) Initialisation of Angular Increments 
 

Angular increments are intermediate variables needed all along the Edward’s computation 
process. They are used to store angular increment information experienced by the sensors assembly 
between two consecutive epochs. Edward introduced two areas before and after the instant at which 
the quaternion associated to the rotation is computed, as described below. 
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− Θ  is the last angular increment. kji kji

rrr
⋅Θ+⋅Θ+⋅Θ+=Θ 0 . 

− *Θ  is the next to last angular increment. kji kji

rrr
⋅Θ+⋅Θ+⋅Θ+=Θ **** 0 . 

 
The current angular increment Θ  is initialised to zero: ( ) ( ) ( ) 0000 =Θ=Θ=Θ kji . 

 
c) Update of the Rotation Quaternion 
 

The third step is the update of the quaternion Q. The angular increment Θ  is computed from 
the values of )(

/
)(

/
)(
/
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/

m

Ie

m

ne

m

Im

m

nm ωωωω −+=  as described above. The next to last increment is first 

updated ( Θ=Θ* ), and then the current increment angle is computed ( ttm

nm δω ⋅≈Θ )( 0
)(
/ ). The 

quaternion Q is updated according to the following equation [20], [21]: 
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with 222
kji Θ+Θ+Θ=Θ  

 
Quaternion Q is then normalised since a rotation quaternion must be unitary: 
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Once the computation process is done, it is straightforward to get the rotation matrix from 

(m) to (n), or the attitude angles pitch, roll and heading. 
 
Rotation matrix from (m) to (n): 
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Attitude angles: 
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Appendix C: Least Squares and Kalman 
Filtering 

 
 

The purpose of this appendix is not to set up Least Squares and Kalman Filtering theories 
and algorithms, but it rather aims at simply describing their respective basic principles and 
fundamental implementation steps as they are widely used in GPS and INS/GPS integration. For 
more details, see for instance [44], [45] or [51]. 
 

Least Squares 
 
a) Least Squares Solutions 
 

Least Squares aim at fitting measurements provided by an external source to a mathematical 
model depending on several parameters to estimate. Ideally, the system shall be linear in order to 
implement the algorithm. But in most of cases it is not so that the system must be linearised prior to 
use the algorithm under its iterative form. 
 

In the linear case, let’s assume the mathematical model of the system as follows: 
 

)()()( tBtXHtY +⋅=  
 
where : 
− Y  is the vector of external measurements. 
− X  is the vector of the parameter to estimate. It is a deterministic vector. 
− H  is the measurement matrix. 
− B  is the noise affecting the measurements. It is assumed stationary with the following 

properties: [ ] 0=BE  and ( ) RBCov = . 
 

It can be shown [45] that the LS solution X̂  of the system previously described is given by: 
 

[ ] YHHHX TT ⋅⋅⋅= −1ˆ  
 

An optimal estimator is obtained if we have information about the noise affecting the 
measurements. In such a case, the addition of the inverse of the noise covariance matrix allows to 
weight each of the measurements according to the power and the correlation of the noise affecting 
those measurements. The optimal LS solution is thus as follows: 
 

[ ] YWHHWHX TT ⋅⋅⋅⋅⋅= −1ˆ , with 1−= RW  
 
b) Iterative Least Squares Algorithm 
 

In the usual case of non-linear system, the mathematical model can be written as follows. 
Same notations are reused here with h  standing for the non-linear measurement function. 
 

( ) )()()( tBtXhtY +=  
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In such a non-linear case, the parameters are estimated iteratively once the model has 
become linear. Let’s note X̂  an estimation of X  at epoch t . The first step is to get h  linear. With 
X∆  defined as the difference between the actual parameters and their respective estimation (i.e. 

)(ˆ)()( tXtXtX −=∆ ) h  can be written as follows: 
 

( ) ( ) ( ))(ˆ)()(ˆ)( tX
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h
tXtXhtXh

∂
∂⋅∆+=  

 
The non-linear system can then be rewritten as: 
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The new system is linear. Therefore the error vector X∆  can be computed through the 

classical Least Square estimation method for a given epoch t . However, since approximations have 
been made when getting the model linear, the vector X∆  of unknown parameters will contain 
errors. Therefore, to ensure a good result to the Least Square estimation computation, an iterative 
process has to be implemented for each epoch. At epoch t  and according to Least Square theory, 
the estimation of the unknown parameters contained in X∆  are thus given by: 
 

[ ] YHHHX TT ∆⋅⋅⋅=∆ −1ˆ  
 

The iterative process for epoch ends when the error vector X̂∆  has a norm below a 
predefined threshold, or when the difference between the observed measures and the noiseless 
predicted ones Y∆  is small enough. As a summary, the Iterative Least Square algorithm is given 
below. 
 

Steps Operations Comments 

1 )(ˆ)(ˆ 0 tXtX =  Set initial value of estimates for iteration 0 

2 

( )ii X
X

h
H ˆ

∂
∂=  

( ))(ˆ)( tXhtYY ii −=∆  

( ) [ ] ( )tYHHHtX i

t

ii

t

ii ∆×=∆ −1ˆ  

Iteration i : do Least Square estimation 

3 iii XXX ˆˆˆ
1 ∆+=+  Update estimates 

4 
ThresholdYi <∆ , or 

ThresholdX i <∆ ˆ  
If iY∆  or iX̂∆  has significant low norm, stop 
iterative process, otherwise return to step 2 
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Kalman Filtering 
 

Kalman filtering is a recursive technique that allows the estimation of a state vector 
characterising a system. It differs from the Least Squares in the sense it uses a mathematical model 
that gives the relationship between the state vector and the system, and also observations (or 
measurements) collected from that system. For a given epoch k, the estimation of the sate vector is 
done by combining its previous value at epoch k-1 with observations collected from that epoch. 
Usually, the system is described in its continuous form and then as to get discretised in order to 
adapt its use on real use cases that only involve sampled data. 
 
a) State Model 
 

The general model of a system is as follows: 
 

( )
( ) )()()(

)()()(

tvtxhty

twtxftx

+=
+=&

 

 
where: 
– f  is the sate transition function. 
– h  is the observation (or measurement) function. 
– x  is the state vector. 
– w  is the state noise. 
– y  are the observations (measurements). 
– v  is the measurement noise. 
 

This model is composed of two parts. The first one is the stochastic part that involves the 
time derivative of the state vector. The second one involves the measurements obtained from the 
system. These two equations fully describe the system. 
 
b) Discretisation Process 
 

The Kalman equations as given above shall be used on a discreet system. As the system may 
be described in its continuous form, one has first to get it discreet. The discretisation procedure is 
based on Taylor series. Equations are given below for each matrix involved in the algorithm. 
 
State Transition Matrix: 

( ) ( ) ( )2
2

!2
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)()(exp s

s
ssk To
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State Covariance Matrix: 

( ) ( )2
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Measurement Matrix: 

)( ktYYk ==  
 
Measurement Covariance Matrix: 
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)( ktRRk ==  
 

One important thing to notice is that discretisation of the continuous state transition matrix F  
is valid if and only if it can be considered constant during the discretisation time sT . It is generally 

not the case in GNSS/INS integration, which is therefore usually processed on subdivisions of sT  
[20]. 
 
c) Kalman Filter Equations 
 

The equations of the discrete Kalman filter are deduced from the above system model. There 
are 5 equations that must be sequentially computed as follows: 
 

1 Prediction )ˆ(ˆ
1 kkkk
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2 Covariance Prediction k

T

kkkkkk
QFF +Σ=Σ +1  
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1111111 )( −
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4 State Vector Update )]ˆ([ˆˆ
111111 kkkkkkkk
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5 Covariance Update kkkkkkkk
HK 111111 ++++++ Σ−Σ=Σ  

 
where: 

– ( )
kkk X

X
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F ˆ

∂
∂=  and ( )

kkk X
X

h
H 11

ˆ
++ ∂

∂= . 

– kQ  is the state noise covariance matrix at epoch k. 

– kR  is the measurement noise covariance matrix at epoch k. 

– kY  is the measurement vector at epoch k. 
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Appendix D: Frequency Estimation 
Techniques 

 
 

This appendix assesses the performance of four methods dedicated to the estimation of the 
step frequency characterising a pedestrian acceleration signal. These methods are compared using 
real data recorded during typical pedestrian walks. The focus is put in the frequency estimation 
using very few samples. Details about these techniques are given below in the table. 
 

Description of the Techniques 
 
Technique 
Number 

Principle of the Frequency Estimation Technique 

1 

The first method is to detect step occurrences in the total acceleration signal, as 
defined in equation 3.34. Occurrences are time tagged and the step frequency is then 
deduced. As the frequency estimation is performed at each step; this technique is a 
step-based frequency determination 

2 

The second technique uses the well-known periodogram as a tool to estimate the 
frequency. This technique is applied on a signal that contains at least two step impacts 
in order to detect a periodicity. The frequency estimation accuracy depends on the 
number of samples available to compute the periodogram. One solution to get rid off 
this lack of resolution is to increase the number of samples used in the computation 
process, even if it reduces the capability of detecting rapid frequency variations. 

3 

To cope with the resolution issue of technique n°2, the use of High Resolution 
techniques is investigated. Several High Resolution methods exist, namely the 
correlation technique using the Levinson-Durbin algorithm, the modified covariance 
and the Prony techniques. Details about their principles and properties can be found 
in [58]. All the three methods are implemented and tested. 

4 

The last technique used to estimate the frequency characterising the pedestrian walk 
is based on filtering the acceleration signal through a Kalman filter. Two filters are 
tested, one able to track one sinus-like signal, the other one able to track a 
combination of two sinus-like signals. Observation models are given below, as well 
as the common state vector composed of the amplitude, the frequency, the mean and 
the phase of the acceleration signal. 
 

Observation model: ( )Φ+⋅⋅+= tFAMak π2sin  

State Vector [ ]TFAMX Φ=  
or 

Observation model: ( ) ( )222111 2sin2sin Φ+⋅⋅+Φ+⋅⋅+= tFAtFAMak ππ  

State Vector: [ ]TFFAAMX 212121 ΦΦ=  

 
The comparison of the four techniques is done with both time-tagged and step-tagged 

systems. The signal used to assess the accuracy of technique 1 to 4 is recorded during a walk on a 
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flat surface. The acceleration magnitude ka  as defined in equation 3.34 is shown below. 
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Performance Assessment 
 
a) Step-tagged Frequency Estimation 
 

The first technique was tested using a step detection algorithm in order to get step 
occurrences from the acceleration magnitude. As the other techniques requires more than exactly a 
period of data in order to estimate the step frequency, half a second of signal was added before and 
after the two consecutive step occurrences. That new short signal was then used as an input for 
techniques n°2, n°3 and n°4. Tests were conducted to find the best order needed compute the Prony, 
correlation and modified covariance High Resolution models. The best order was empirically found 
to be 14 (usual order estimation methods such as AIC, CAT or FPE [58] did not provide any 
relevant information). 

 
Results of frequency estimation over 1 and 2 steps are shown below. In both figures, the 

cyan plot is the mean GPS velocity averaged over 1 and 2 steps. From both figures, it is obvious 
that the frequency parameter has the same behaviour as the GPS velocity, thus shall be included in 
the velocity model. As it could have been expected, the step-based technique produces noisy step 
frequency estimates. Opposite, techniques n°2, n°3 and n°4 give smoother frequency estimations. 
Results from technique n°4 based on Kalman filtering are not presented here. Although the 
implementation works well on synthetic data, the convergence of the filter processing real data was 
found very difficult to achieve. The main reason for that is that variables carried by the state vector 
(i.e. mean, amplitude, frequency and phase) compensate each other for individual variations, and 
the real acceleration signal is not stationary. 
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The table below gives the correlation computed between the mean GPS velocity and the 
different estimated frequency. Whatever the computation span (i.e. 1 or 2 steps), the periodogram 
and PSD methods are the best ones. 
 

Methods Step Prony Levi Mod. Cov. Periodogram PSD 
Correlation for freq. 
estimated over 1 step 

0,440 0,941 0,888 0,943 0,944 0,944 

Correlation for freq. 
estimated over 2 steps 

0,908 0,966 0,912 0,964 0,967 0,967 

 



Appendix D: Frequency Estimation Techniques 

Page 197 

b) Time-tagged Frequency Estimation 
 

As a comparison, results of step frequency estimation by processing data at each sampling 
period over a time widows of 1 and 2 seconds are shown below. 
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High Resolution techniques fail to estimate the frequency in many cases. This explains the 
poor correlations between frequency estimations and the mean GPS velocity, as presented in the 
table below. This is mainly due to bad order of the model used in the respective high resolution 
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algorithms (usual methods that estimate this order such as AIC, CAT or FPE did not provide 
relevant information), as well as the non stationary property of the signal to analyse. 
 

Methods Prony Levi Mod. Cov. Periodogram PSD 
Correlation for freq. 

estimated over 1 second 
0,314 0,661 0,402 0,765 0,834 

Correlation for freq. 
estimated over 2 seconds 

0,375 0,920 0,796 0,931 0,931 

 
As a conclusion, according to correlation performance presented in both tables, the 

techniques that give the best performance are the periodogram and PSD estimation. The 
periodogram technique is used throughout this thesis. 
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