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Dominique Salin, Stéphane Santucci, Marcos Silvoso, Romildo Toledo, Reila Velasco,
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précieux. La grande majorité des surfaces de rupture obtenues ont été mesuré dans
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Introduction

Understanding how materials break is both of fundamental and of practical interest.
Most people are confronted to this problem in daily life e. g. when they drop inadver-
tently their cup of coffee. For the engineering standpoint, the question is much more
crucial than in our daily problems: How to create materials with longer life-time and
improved resistance to shock and stress fluctuations.

Since the pioneering work of Griffith, a coherent theoretical framework, the Linear
Elastic Fracture Mechanics (LEFM) has been developed. It states that — in an
elastic material — a crack is initiated when the mechanical energy released by the
crack advance is sufficient to balance the energy needed to create new surfaces. This
approach has been proved to be extremely powerful as long as one considers ideal
homogeneous media, but is more questionable for real disordered materials. Indeed,
as soon as one considers real materials, its microstructural disorder plays a crucial
role and many questions remain, in a great extent, without answers: What sets the
strength of a material? Which factors determine its life-time? How can one relate
these quantities to the material microstructure?

Why is the role of the disorder so crucial to understand the failure of materials?
At first, when we pull on a solid, its resistance to failure is not ruled by an average
response of the material, but by the behavior of little parts of it, that act as ”weak
links” and are responsible for the failure of the whole structure [1]. On the other
hand, when we consider a crack propagating in a solid, some rare specific processes
occurring at the crack tip can have a giant effect on the average macroscopic behavior.
In particular, the presence of a crack enhances catastrophically the effects of the
disorder.

The main objective of this work is precisely to identify and quantify the effects
of the microstructural disorder on the failure of a material. More precisely, we will
study - both theoretically and experimentally - its implication on the path chosen
by the crack to propagate, which sets the morphology of the post mortem fracture
surfaces.

Therefore, we have focused on the roughness displayed by the fracture surfaces,
the morphology of which is expected to encode the various failure processes. But
what is precisely the information we can get from their geometry? Is it possible to
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2 Introduction

analyze the failure processes by studying post mortem the roughness of cracks?
This manuscript is divided into four chapters. In the Chapter 1, I give the context

and motivations of this study. After a brief introduction to the continuum approach of
failure problems, I review recent developments investigating the fracture of disordered
materials.

In the Chapter 2, the morphology of fracture surfaces that were intensively stud-
ied during last two decades is revisited. Five very different disordered materials are
investigated. Using new methods of analysis, we will provide new insights on the scal-
ing properties of cracks. We will show that a full description of the fracture surfaces
requires a 2D description involving two universal scaling exponents, independent of
the material.

The Chapter 3 is devoted to the experimental investigation of fractured sandstone
surfaces that were reported to display puzzling scaling properties [2]. We study an
artificial sandstone, a glass ceramics made of sintered beads, quite comparable with
natural sandstone but with a microstructure that can be tuned experimentally. The
investigation over a broad range of porosities, grain sizes and crack growth velocities
leads us to conjecture the existence of a second universality class for failure problems.

The Chapter 4, mainly devoted to a theoretical investigation of the geometry of
fracture surfaces, makes the link between fracture morphology and failure mechanisms
in disordered materials. By integrating the effects of the material disorder to the
theoretical framework of the Linear Elastic Fracture Mechanics, one gets predictions
on the statistical properties of fracture surfaces of ideal linear brittle materials in
quantitative agreement with the experimental observations of Chapter 3. The origin
of the scaling properties of fracture surfaces studied in Chapter 2 is then discussed.



Chapter 1

Context and motivation

Contents

1.1 At the continuum scale: The Linear Elastic Fracture

mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Failure of disordered materials: The physical approach . 11

Despite the great interest of scientists for solid-state physics during the two last
centuries, the first step to understand how materials break was taken in 1913 [3].
And this first step was to identify the intrinsic difficulty of failure problems, the
fact that its study involves a singularity. Indeed, a crack is only sensitive to a zone
of small extension near its tip so that the macroscopic behavior of the material is
governed by local mechanisms. Developed all over the twentieth century, Linear
Elastic Fracture Mechanics (LEFM) brings a solid theoretical framework to describe
how cracks propagate in homogeneous ideal media. But this continuum approach
neglects the effects of the material structure – defects, microstructural disorder -
– that can have catastrophic consequences on crack propagation. Therefore, the
LEFM leaves many fundamental questions open: How to predict the strength of a
real material? Its life-time? In the vicinity of the crack tip, i.e. at the scale of the
material microstructure, it is difficult to neglect the disorder of a material. And the
crack, sensible to a small zone near its crack tip, enhances the effects of this disorder
so that the crack propagation is not ruled by the average behavior of a material
but by its more vulnerable spots. The influence of the microstructural disorder of
a material on the propagation of a crack is the central point of this study. After
a brief introduction to the continuum approach, we will review recent developments
investigating failure of disordered materials, and will present the challenging questions
about crack propagation that are raised by the presence of disorder.
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4 Chapter 1: Context and motivation

1.1 At the continuum scale: The Linear Elastic

Fracture mechanics

Failure of flawless solids : Let us first consider a very simple solid and estimate
its strength. In first approximation, it appears natural to model the solid as a network
of springs of lengths a (interatomic length) and stiffness E (Young’s modulus), the so-
called Young’s modulus of the material. As represented in Fig. 1.1, when submitted to

Figure 1.1: An ideal flawless solid is submitted to an exterior stress σ. Its atomic
bonds – described by springs of stiffness E and length a – can undergo a deformation
δa = aσ/E ≃ a/5 before rupture. This leads to a ”theoretical” strength E/5 for a
perfect material.

an external stress σ, the atomic bonds stretch over the length δa = aσ/E. Suppose
now that a bond is broken if two neighboring atoms move apart by 20 % of their
original spacing1, i.e. for a deformation δac = a/5. Thus, the failure of the material
is obtained for the critical stress σc = E/5. This estimation is compared to practical

Material Young’s modulus E Theoretical strength E/5 Practical strength
Steel 200 GPa 40 GPa 500 Mpa
Glass 70 GPa 14 GPa 300 Mpa
Al203 400 GPa 80 GPa 100 MPa

Table 1.1: Comparison between theoretical and practical strengths of materials. The
measured strengths are about two orders of magnitude smaller than the predictions
for a flawless solid described in Fig. 1.1.

1Sophisticated quantum-mechanical calculations can confirm that this rough estimate is rather
good [4].



Chapter 1: Context and motivation 5

strengths of materials in Table 1.1. This oversimplified model predicts a strength
σc which is two orders of magnitude larger than the experimental measurements. In
other words, the strength of materials is far from being directly given by bonding
energies. An ingredient is clearly lacking in our simplistic model: the presence of
flaws in materials.

Introduction of cracks : Let us change slightly our previous model by introducing
a flaw in our ideal elastic solid. Inglis, in his work published in 1913 [3], analyzed the
effects of a defect on the stress field in the material. Considering an elliptical cavity
of semi-axes b and c, in the solid submitted to an external stress σ as represented
in Fig. 1.2, Inglis showed that the effective stress acting at point P where the local
radius of curvature ρP = b2/c is minimal, is

σp = σ

(

1 + 2

√

c

ρp

)

(1.1)

Considering the case b ≪ c corresponding to a sharp defect, the ratio σp

σ
of the

normalized stress undergone by the material at the tip P becomes ≃ 2
√

c
ρp

. This ratio

can be much larger than unity for slender cavities. The resulting stress concentration

in the vicinity of defects may explain the discrepancy between practical and theoretical
strengths of materials (see Table 1.1). Indeed, considering micrometer-sized flaws,

i.e. ρp ≃ 1 Å and c ≃ 1 µm, one gets
√

c
ρp

≃ 100. Let us note that it is the

shape of the defect rather than its size that sets the factor of stress concentration.
Moreover, one microscopic flaw in an homogeneous material is enough to modify
crucially the macroscopic behavior of a solid. In part, this explains why the extreme
of the characteristic parameters of the material are often more useful than averaged
quantities to predict the resistance to rupture of materials.

Figure 1.2: Plate containing an elliptical cavity, semi-axes b and c, subjected to
uniform applied tension σ.
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The next step to understand how materials break was achieved by Griffith in 1920
[5]. He considered the limit case c/ρp → ∞ equivalent to a slit crack in our ideal
elastic homogeneous solid. In that case, the stress is diverging at its tip as expected
from Eq. (1.1). Let us investigate in detail the stress field in this geometry.

The rupture modes : To assess the stress field in the vicinity of the slit crack
tip, it is useful to distinguish the three basic modes of crack surface displacement.
Mode I, II and III are displayed in Fig. 1.3 and correspond respectively to the tensile,
shear and tear mode. The relevance of this description lies in the fact that the stress
field near the tip of a slit crack in an elastic solid can be written as the sum of the
contributions of each mode, irrespective of the load/displacement applied to the solid.

Figure 1.3: The three modes of fracture: I, tensile mode; II, shearing mode; III,
tearing mode.

Stress field at the crack tip : Let us focus first on a pure mode I loading2 In
1958, Irwin [6] showed that, in the very vicinity of the crack, the stress field in the
rectangular coordinate system of Fig. 1.4 can be written as

σxx = KI√
2πr

cos(θ/2)(1 − sin(θ/2) sin(3θ/2))

σyy = KI√
2πr

cos(θ/2)(1 + sin(θ/2) sin(3θ/2))

σxy = KI√
2πr

sin(θ/2) cos(θ/2) cos(3θ/2)

(1.2)

Here, KI is the so-called stress intensity factor. This quantity depends both on the
geometry of the system and on the external loading.

2In the following, we will study experimental systems under dominant mode I. loading. This
choice is motivated because (i) mode I generates fracture surfaces avoiding any possible destructive
friction between the two corresponding crack surfaces; (ii) There is always a tendency for cracks to
seek an orientation that minimizes the mode II loading, leading to a dominant tensile mode.
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Let us note that non-diverging terms contribute also to the stress field near the
crack tip. They can be developed as a rk/2 expansion with k ≥ −1

σij =
KI√
2πr

gij(θ) + TIk
ij(θ) + AI l

ij
√
r + ... (1.3)

Here gij are the functions given in Eq. (1.2). kij and lij are also universal functions
of θ (i and j denotes both either x or y).

Mode II and mode III loadings lead to the same form of stress field as given in
Eq. (1.3) but with stress intensity factors Kp as well as the functions gp, kp and lp
depending on the mode p = {II, III}. As mentioned previously, the stress field for
mixed modes is given by the sum of the three contributions.

Figure 1.4: Stress field in the vicinity of the crack tip P.

Stress intensity factor and energy release rate : The value of the stress inten-
sity factors KI , KII and KIII fully determines the diverging part of the stress field
in the vicinity of a slit crack. The stress intensity factor KI in the tensile mode will
be shown to determine the stability of a crack while the value of KII will determine
the path followed by the crack for two-dimensional systems as in Fig. 1.4. Therefore,
many methods have been developed to assess the quantities KI , KII and KIII , ex-
pressed in Pa m1/2. For a sample under a uniform applied tensile stress σ, the stress
intensity factor in mode I takes the form

KI = ψσc1/2 (1.4)

Here, c is the crack length and ψ is a dimensionless quantity depending on the geomet-
rical parameters of the system. For example, for an infinite sample with a slit notch
(Fig. 1.2 with b → 0), one has ψ =

√
π. More generally, for more complex loading
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conditions/geometries, the value of the stress intensity factors can be found in hand
books (see for example Ref. [7]) or determined through finite element calculations.
We used mainly this last method in our work.

First, let us derive a criterion for crack propagation. The amount of elastic energy
δEel released by a solid in pure mode I loading when a slit crack propagates on an

infinitesimal length δc is3 δEel = δc
K2

I

E
(see Ref. [8] for the demonstration) where E

is the Young’s modulus of the material. This energy release rate 4 is

GI =
δEel

δc
=
K2

I

E
(1.5)

For the crack to propagate, the energy released by the system must at least balance
the energy required to create two new surfaces. Therefore, the so-called Griffith’s
criterion4 for crack propagation is5

GI ≥ GIc (1.6)

One can define also the toughness of the material KIc =
√
GIcE. Using Eq. (1.5),

one gets another criterion of crack propagation equivalent to Eq. (1.6)

KI ≥ KIc (1.7)

The toughness – as well as the fracture energy – is an intrinsic quantity of a material.
It can be measured experimentally and is therefore available for various materials.
However, a theory that would relate the microstructural properties of a material to its
toughness is still missing. In particular, we don’t know how to estimate the toughness
of a multi-compound material from the toughness of its elements.

For the ideal elastic homogeneous medium studied here, the behavior of a slit
crack is entirely determined by its stress field in the tip vicinity: Its stability is set
by KI and its possible deflection is set by KII . Indeed, a crack chooses the path for
which the local stress field is of mode I type (”criterion of local symmetry”) [9, 10, 11].
In other words, the mode II stress intensity factor vanishes at the tip

KII = 0 (1.8)

The ”criterion of local symmetry” was proposed to predict the crack path for two-
dimensional problems.6 For three-dimensional systems, the role of KIII on the crack
path is still an open question (see for example Refs. [12, 13]).

3in plane stress conditions (σzz = 0).
4For a pure mode I loading.
5Note that the fracture energy GIc is different from the surface tension because the rupture

involves dissipative and irreversible processes: Once broken, the material cannot be healed by simply
bringing back the two pieces into contact.

6Invariant along z as in Fig. 1.4.
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The case of ductile failure : In this paragraph, we deal with a first obstacle
towards the description of crack propagation in real materials. While until now, a slit
crack in an ideal homogeneous elastic medium, referred to as perfectly brittle crack
propagation, has been addressed, we tackle now the problem of ductile failure. This
is a common thing to say that some materials are brittle while others are ductile.
In fact, this distinction is directly related to the manner a crack propagates in the
material. Let us consider a solid with a sharp preexisting crack. For some materials,
the crack propagates by breaking interatomic bonds one after the other, while for the
others, the material deforms irreversibly before the crack starts to propagate.

But this distinction must be taken cautiously. For example, we keep qualifying
the glass as brittle while it has been shown that, at the nanometer scale, a crack
propagates through nucleation, growth and coalescence of damage cavities [14, 15]:
Is the notion of brittle and ductile a matter of observation scale or a question of
material?

The assumption of ideal brittle rupture – or infinitely sharp crack – is violated
as soon as we consider real materials. At first, the divergence of the stress field
at the crack tip is physically unacceptable. Therefore, mechanisms relaxing this
stress are expected in a more or less extended process zone near the tip. Second,
fracture is an irreversible process; thus, the fracture energy is always greater than the
energy required to create the new surfaces. This suggests the existence of dissipative
processes, even for cleavage of crystals (see for example the Refs. [16, 17, 18] that
debates whether the classical picture of ideal brittle fracture for crystal cleavage is
correct). Finally, let us note that the size of this so-called process zone varies from
one material to the other. The dissipative processes, damage, are material specific.

Figure 1.5: Variation of the tensile stress σ at the crack tip of a single crack. The
distance to the crack tip for which the stress field without damage (σ = KI√

2πr
) is equal

to the intrinsic strength σ∗ of the material gives a good estimate of the process zone
size ℓPZ (see Eq. (1.9)).



10 Chapter 1: Context and motivation

Under some assumptions, it is however possible to reconcile crack propagation
involving these non-linear processes with the framework of Linear Elastic Fracture
Mechanics. This is called the small scale zone assumption. It assumes that these
dissipative processes are localized in a zone of finite extent in the vicinity of the crack
tip.7

In that case, it is possible to assess the extent of this zone. We give here a very
simple argument illustrated in Fig. 1.5 and leading to an estimate of this zone. A
more sophisticated and realistic model is given in Ref. [19]. The size ℓPZ of this
so-called process zone is assimilated to the maximum distance from the crack tip
where the tensile stress imposed by the presence of the crack is sufficient to induce
irreversible damage. At this distance, the stress level is expected to be KIc√

2πℓPZ
(see

Eq. (1.2)). This stress is sufficient to induce irreversible deformation in the material.
Therefore, it is equal to the intrinsic tensile strength σ∗ of the material. Hence8

ℓPZ ≃ π

8

(

KIc

σ∗

)2

(1.9)

Using this approach, a crack involving localized damage processes can be treated
as a slit crack propagating in an equivalent linear elastic medium. The beauty of this
theory lies in the very simple resulting criterion of crack propagation: If the stress
intensity factor KI – that depends only on the imposed boundary conditions and the
geometry – is larger than the toughness KIc, the crack propagates. Unfortunately,
this is also the weakness of this macroscopic approach. Indeed, the quantity KIc that,
admittedly, can be experimentally measured, hides all the irreversible mechanisms of
rupture at the microstructure scale. A complementary approach, that would give the
physical meaning of the toughness of a material, seems necessary.

To summarize, the Linear Elastic Fracture Mechanics provides predictions on the
motion of a crack based on an energy balance: The energy provided to the material
when it is loaded – stored as elastic energy in the solid – must balance the energetic
cost for making a crack propagate – energy required to create two new surfaces. This
framework can be used even for ductile fracture if the process zone is small enough.
Unfortunately, this macroscopic approach is restricted to ideal homogeneous media.
As soon as one considers real materials, its microstructural disorder plays a crucial
role. This is the central point of the following section.

7In other words, we suppose that it is still possible to find a length scale above which the effects
of the dissipative processes localized at the tip have vanished. We will see in the following that such
an assumption is impossible for the effects of the disorder of a material.

8The coefficient in Eq. (1.9) is larger than the one expected from the simple derivation shown
here. To get the correct prefactor, one needs to use the more sophisticated model of the Barenblatt
crack [19].
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1.2 Failure of disordered materials: The physical

approach

Position of the problem : Linear Elastic Fracture Mechanics provides a frame-
work to predict the motion and trajectory of a crack in an ideal homogeneous elastic
medium. In real materials, one would expect that this framework remains valid but
at a scale larger than both the process zone size and the microstructure scale. This is
not the case, unfortunately for engineers and thankfully for physicists. Microscopic
mechanisms, even very localized in a small zone in the vicinity of the crack tip, can
have macroscopic consequences on the motion of the crack and its trajectory. This
effect is characteristic of failure problems: Because of the stress concentration, the
crack enhances catastrophically the effects of mechanisms localized at its tip. In other
words, rare specific processes can have a giant effect on the averaged macroscopic be-
havior. This is true in the case of an ideal elastic homogeneous material where the
crack motion is determined by the quantities KI and KII that are rigorously defined
at the tip by KI = limr→0

√
2πrσyy(r, θ = 0) and KII = limr→0

√
2πrσxy(r, θ = 0) (see

Eq. (1.2) and (1.3)). And this is also true for more realistic cases. Therefore, theoret-
ical approaches – such as homogenization technique – that would amount to neglect
small-scale effects to predict macroscopic behavior must be considered carefully.

The central point of this work is the transition from microscopic processes to
macroscopic behavior in failure problems for real material: What are the effects of
the microstructural disorder of the material on the macroscopic behavior of the crack?
The classical approach defines an ”effective” equivalent homogeneous medium using
”effective” quantities. The macroscopic behavior of the material at length scales
larger than the disorder would then coincide with that of this so-defined ”equivalent”
homogeneous medium. For example, it is natural to define the effective Young’s mod-
ulus Eeff either (i) experimentally by measuring its response to a perturbation with a
wavelength larger than the typical length scale ξd of the disorder/microstructure (see
Annexe A for the experimental setup) or (ii) theoretically by using homogenization
techniques that gives the relation between the effective Young’s modulus Eeff and
the ones of each component of the disordered material (see for example Ref. [20]).
With regard to its elastic response, the macroscopic (at scales larger than ξd) behav-
ior of the disordered material is strictly identical to that of the so-defined effective
homogeneous medium with Young’s modulus Eeff.

For failure problems, this approach is not valid. For example, let us consider a
material characterized by a one-dimensional disorder as represented in Fig. 1.6. It
is made of two compounds a and b characterized by their toughness Ka

I and Kb
I ,

respectively (Ka
I < Kb

I ). To make the crack propagate through the whole material,
one must apply a stress intensity factor Kapplied

I at least equal to Kb
I . Indeed, if

Ka
I < Kapplied

I < Kb
I , the crack is ”pinned” in the grey regions. Therefore, the

macroscopic stress intensity factor of this model heterogeneous material is equal to
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Kb
I , irrespective of the properties of the phase a. We can now consider a material made

of N different sections of toughness Ki
I . The macroscopic toughness is then given by

the maximum value of the Ki
I so that a relatively small part of the disordered material

rules its whole behavior.

Figure 1.6: Ideal two-compounds material characterized by a one-dimensional disor-
der. If the toughness Ka

I of the compound a is lower than Kb
I , that of the compound

b, then the macroscopic toughness of the material is Kb
I , irrespective of the properties

of the compound a.

The morphology of fracture surfaces which is reminiscent of the path followed by
a crack is also a good experimental example of the failure of the classical techniques.
For an ideal homogeneous medium under a pure mode I loading, these surfaces are
flat. For a real material9 under the same loading, it is self-affine, i.e. rough at all
length scales, even much larger than the typical length scale ξd of the disorder. It is
clear that in this example, to reconcile the behavior of the ideal homogeneous system
– the predictions of the LEFM – with that of the disordered material is not an easy
task: There is no length scales at which the behavior of the two media – here the
morphology of the fracture surface – will coincide. In other words, the transition
from homogeneous to disordered material is not ”smooth” in view of the macroscopic
behavior of the crack. Even very slightly disordered material will behave differently
than any homogeneous one. The example of self-affine fracture surfaces leads to the
conclusion that LEFM, as it has been developed for homogeneous media, will never
reproduce all the characteristics of crack propagation in real materials. In order to
prospect the relevant alternative theory, let us review the mean features of the effect
of the disorder on crack propagation.

Clues for a critical phenomenon : Coming back to the example of the geometry
of fracture surfaces, one realizes that the crack enhances the microscopic disorder
so that we cannot define a length scale at which its effects become negligible. This

9therefore characterized by a microstructural disorder.
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lack of characteristic length scales may be reminiscent of a critical phenomenon, and
the exponents involved in the scaling laws measured for fracture problems may be
universal. We give here some clues that support this idea:

(a) As previously emphasized, failure of disordered materials results in fracture sur-
face geometry without characteristic length scales. Moreover, the scaling prop-
erties of the roughness of crack surfaces are characterized by universal quantities
– the scaling exponents – that do not depend on the nature of the materials –
the details of the disorder properties. power-law behavior and universal aspect
of crack surfaces suggest the existence of an underlying phase transition for
failure problems in disordered media. The main properties of fracture surfaces
are reviewed in detail in paragraph 1.2.

(b) The study of the local velocities of a crack front suggests a burst-like dynamic
involving avalanches of all sizes. Studying the dynamical properties of the
crack, it appears impossible to define both a characteristic local velocity and
avalanche size. Fig. 1.7 a displays the distribution of local velocity of a crack
front propagating in a disordered weak plane between two sandblasted plates of
Plexiglas sintered together as measured by Måløy, Santucci et al. [21]. Fig. 1.7 b
shows the avalanche size distribution involved in the burst-like dynamics of the
front motion for the same experiment. In addition to the power-law behaviors,

Figure 1.7: (a): Distribution of the local velocities measured on a crack front in motion
in a disordered weak plane between two plates of Plexiglas sintered together (Courtesy
of K. Måløy, S. Santucci and co-workers [21]). (b) Avalanche size distribution involved
in the burst-like dynamics of the front motion (Courtesy of K. Måløy, S. Santucci and
co-workers [21]). Note that the value of the scaling exponents – the slope of the power-
law fit in this logarithmic scale – do not depend on the mean velocity 〈v〉 of the front.
This ”universal” burst like dynamics suggests that the crack front motion could be
described as a dynamic phase transition.
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one observes that the value of the scaling exponents – the slope of the straight
lines in this logarithmic scale – are very robust: They do not depend on the
mean crack growth velocity of the crack front 〈v〉 and the sample preparation
– the details of the disorder of the weak plane – in the range investigated. This
”universal” burst like dynamics of the crack front seems reminiscent of critical
phenomena.

Figure 1.8: Mean crack growth velocity 〈v〉 of a crack front propagating in a steel
under cyclic loading – fatigue regime – as a function of the stress intensity factor
∆K = Kmax −Kmin [23].

(c) In addition to its local velocity and its geometry, the macroscopic motion of a
crack involves also remarkable properties, however still unexplained. Fig. 1.8
displays the mean velocity of a crack propagating in an aluminum alloy in the
fatigue regime – also referred as subcritical regime because KI < KIc. The
velocity of the crack evolves as a power-law of the applied stress intensity factor
and 〈v〉 ≃ (∆KI)

n. Contrary to the other experimental examples, the exponent
n seems to be material dependant. As suggested in Ref. [22], the remarkable
features of the law relating the crack growth velocity – order parameter in
the theoretical framework of dynamic phase transitions – and the applied stress
intensity factor – control parameter in this same framework – could be explained
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in the frame of a description of crack propagation in disordered material as a
dynamic phase transition.

The features of crack propagation in disordered materials suggest that it could be
described as a critical phenomenon. The fundamental issue in this work is:

(i) Can we provide convincing arguments that crack propagation in disordered
materials is a critical phenomenon?

(ii) To which extend can we characterize it?

Many theoretical efforts have been devoted to this issue. In the last paragraph
of this section, we will briefly review the four main competing theories that were
proposed to explain the universal features observed during the failure of disordered
materials. But first, we will present one of the major results obtained these past
twenty years concerning the scaling properties of the roughness of fracture surfaces.

Scaling properties of fracture surfaces : The Holy Grail : Because fracture
surfaces have been largely experimentally investigated since the 80’s and because their
morphology is the immediate signature of the failure mechanisms, this morphology
has often been chosen as a first test for the various theories of crack propagation in
disordered materials. In other words, a relevant model of failure of disordered ma-
terials is expected to reproduce in the first place the rather remarkable properties of
scaling invariance of the roughness exhibited by fracture surface. Prediction of the
competing models can then be compared with respect to each other. This experimen-
tal test, although indirect, is easier to do than on other aspects of failure in disordered
materials such as the dynamical properties of cracks.

Here, we will give the main experimental results reported on the geometry of
fracture surfaces. In particular, we will focus on their universal properties, i.e. inde-
pendent of the material. Scientists have for a long time studied the morphology of
fracture surfaces to improve their knowledge of the complex processes occurring at
the microstructure scale during the failure of heterogeneous materials [24]. For exam-
ple, engineers have widely used fracture surface analysis to determine the reasons of
failure of a solid. More recently, the roughness of fracture surfaces became the center
of interest of physicists studying the physical aspects of material failure. Indeed, in
the pioneer work published in Ref. [25] in 1984, Mandelbrot et al. showed that frac-
ture surfaces of various kind of metallic alloys exhibited very remarkable properties
of scale invariance. Studying a wide range of aluminum alloys of different toughness,
Bouchaud et al. [26] measured however the same value for the scaling exponent that
characterized the roughness of their crack surface. They conjectured that this value
was ”universal”. Måløy et al. [27] performed the same analysis on fracture surfaces
of six materials (porcelain, steel, graphite ...). All these experimental results led to
the conclusion that the roughness of fracture surfaces is self-affine and characterized
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by a so-called roughness exponent ζ ≃ 0.8 independent of the material. One of the
key consequence of this scaling invariance is

∆h(∆r) ∼ ∆rζ (1.10)

where ∆h is the 1D height−height correlation function computed on height profiles
extracted on the fracture surface and defined as ∆h(∆r) = 〈(h(r + ∆r) − h(r))2〉1/2

r .
Figure 1.9 displays the way we compute this function on a rough profile taken from a
fracture surface of silica glass. Let us note that many other disordered materials were
then investigated (granite [28], wood [29], mortar [30] ... ). All these experiments
confirmed the value of the ”universal” roughness exponent ζ = 0.8.

Figure 1.9: Computation of the 1D height−height correlation function ∆h(∆r) on the
example of a fracture surface of silica glass. The profile of interest (right) is measured
along a given direction of the fracture surface (left). In addition to the use of a 3D
representation, the colors on the left figure correspond to the height of each point of
the fracture surface. This allows for a good visualization of the surface roughness.

Some studies reported exceptions to the universality of the roughness exponent.
Metallic surfaces investigated at the nanometer scale were found to display self-affine
scaling properties, but with a roughness exponent significantly smaller than 0.8, closer
to 0.4 − 0.5 [31, 32, 22]. On the same surfaces, the ”universal” roughness exponent
ζ ≃ 0.8 was also observed, but at larger scales. Similar observations were reported for
silicate glasses [22]. Measurements corresponding to various crack growth velocities
were performed both for a silicate glass and Al-based metallic alloys [32, 22]. They
observed that the crossover length between the two self-affine domains (ζ ≃ 0.45 at
small scales and ζ ≃ 0.8 at large scales) was decreasing when the crack growth velocity
was increasing. In other words, for very small velocities, the small scale domain is
expected to become broader. The universality of this small scale regime was later
questioned since no small scale ζ ≃ 0.4 − 0.5 roughness exponent was observed for
nanoresolved fracture surfaces of silica glass broken under stress corrosion with crack
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growth velocities as small as a picometer per second [33, 34]. The effects of the crack
growth velocity on the morphology of fracture surfaces are widely studied here. No
effects are observed (see Chapter 2) for crack growth velocities varying on more than
12 decades (from some picometers to some meters per second).

On the other hand, recent experiments reported similar values ζ ≃ 0.4−0.5 at large

length scales in sandstone [2, 35]. This ”apparent” exception to the widely reported
roughness exponent ζ ≃ 0.8 will be studied in Chapter 3. This experimental result
will be proved to be the starting point towards the understanding of the fracture
surface morphology.

In the next paragraph, the main models of failure of disordered materials are
reviewed. Unfortunately, we will see in chapter 2 that they are unable to reproduce
the properties of experimental fracture surfaces.

The competing models : We describe now the four main models of failure of
disordered materials. For each of them, we give their predictions for the fracture
surface geometry.

(i) Bouchaud et al. [36] proposed to model the crack front as an elastic line mov-
ing through randomly distributed microstructural obstacles – the dynamics of
which is described through a phenomenological Langevin equation, keeping only
the terms allowed by the symmetry of the system. The fracture surface is then
the trace left by the moving front. The geometry of an elastic line moving in
a 3D random medium has been studied in Refs. [37, 38]. The scaling expo-
nents characterizing the line – and therefore the roughness of fracture surfaces
– depend on the coefficient involved in its motion equation. But on general
grounds, for such a moving line just above its depinning transition, one expects
two scaling regimes: At small (resp. large) scales, the roughness exponent cor-
responds to an effective quenched (resp. thermal) noise [39]. The crossover
length scale between the small-scale and the large-scale regime is expected to
increase with the line velocity. The influence of the crack growth velocity on
the scaling properties of fracture surfaces is a crucial test for the relevance of
such an approach.

(ii) Larralde and Ball [40] and then Ramanathan and Fisher [41] used Linear Elastic
Fracture Mechanics to derive a linear non-local Langevin equation within the
hypothesis of slowly growing crack (elastostatic approximation). Their models
both led to crack surfaces with a roughness increasing logarithmically with the
scale, in contradiction with the experimental measurements.

(iii) Another class of models for fracture is the network models [42, 43] made of
elastic beams, bonds, or electrical fuses with random failure thresholds. For
all network approaches, bonds are supposed to model the material at a meso-
scopic scale and the aim is to investigate the interrelation between disorder and
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properties of the network such as fracture stress and damage spreading. The
surprising result is that properties of the network are related to the system size
by scaling laws involving non-trivial exponents independent of the precise distri-
bution and of the microscopic aspects of the model. It was therefore suggested
to model slow crack propagation in quasi-brittle materials.10 One of the most
studied models is the random fuse model since it leads to self-affine fracture
surfaces. But a precise value of the roughness exponent is still an issue[44, 45].
Recently, large scale numerical simulations were carried out and a discrepancy
in the self-affine exponent was found: Batrouni et al. reported ζ ≃ 0.62 [44]
while Räisänen et al. [45] observed ζ ≃ 0.40 . The results can be used as a very
interesting guideline, but in order to compare with experiments, it is inevitable
to consider the vectorial nature of elasticity.

(iv) Hansen and Schmittbuhl [46] suggested that the universal scaling properties
of fracture surfaces are due to the fracture propagation being a damage co-
alescence process described by a stress-weighted percolation phenomenon in a
self-generated quadratic damage gradient. They obtained a roughness exponent
ζ = 0.80 in apparent agreement with the experimental observations. Moreover,
in this static model, crack surfaces are expected to be isotropic. This point will
be investigated in detail in Chapter 2. The experimental observations reported
in Chapter 2 question the relevance of such a model to describe the scaling
properties of experimental fracture surfaces.

To summarize, every model leads to prediction on the scaling properties of fracture
surfaces. In the following chapter, we study the morphology of experimental fracture
surfaces of five different materials. This study will allow determining the relevant
theoretical descriptions.

10Broken bonds can be present in a rather extended zone ahead of the main crack. To model
brittle fracture, one should prevent that the bonds not immediately ahead of the main crack break.
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During the two last decades, physicists have focused on the properties of crack
surfaces. Their roughness aroused such an attention because it is expected to re-
flect the failure mechanisms of materials. After the work of Bouchaud et al. [26],
it was conjectured that fracture surfaces of disordered materials are self-affine and
characterized by a universal roughness exponent ζ ≃ 0.8. Extensive experimental
investigations on many materials were then performed to test this conjecture (for
example, see the review [47]). On the other hand, various statistical methods were
developed in order to test the self-affine behavior of crack roughness and measure the
roughness exponent with a higher and higher precision [48, 49]. Roughly, all these
studies validated the first conjecture: Fracture surfaces are self-affine with a scaling
exponent ζ = 0.8 ± 0.05 independent of the material.

In this chapter, we revisit the analysis of rough fracture surfaces. We use new
methods that provide new insights on the scaling properties of cracks. At first, we
study the distribution of height variation of the surface in order to investigate whether
profiles extracted on crack surfaces are self-affine or multi-affine. Then, we show that
the current description – with one roughness exponent – of the roughness of fracture
surface is incomplete. A complete description of the crack roughness is shown to

19
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require the use of a two-dimensional analysis. In particular, the fracture surface is
observed to follow a Family−Vicsek scaling involving two scaling exponents.

In order to study the robustness of our observations, we have chosen to study
five very different materials, broken under five different loading conditions1: Sil-
ica glass, an aluminum alloy, mortar, wood and AlPdMn quasicrystal. The new
properties of fracture surfaces reported here will be shown to be independent of the
material/loading conditions. The case of sandstone fracture surfaces that exhibit a
surprisingly low roughness exponent ζ ≃ 0.5 [2, 35] will be studied in the next chapter.

2.1 Materials and methods

In this section, we present in detail the experimental techniques used in this
study. Fracture surfaces investigated here were obtained from various fracture tests,
and scanned using various techniques. They are listed in Table 2.1. The crack growth
velocity and the typical length scale of the features observed on the fracture surfaces
are also given in Table 2.1. The research groups that performed the fracture tests and
the scanning of the fracture surfaces are also listed in this Table. The experimental
procedure is given in details in the following paragraphs for each material.

Silica glass : The experiments were performed by the ”Fracture” Group (CEA
Saclay) [33]. Fracture surfaces of silica glass were obtained by applying a DCDC
(Double Cleavage Drilled Compression) to parallelepipedic (5× 5× 25 mm3) samples
under stress corrosion in mode I (see [54] for details). After a transient dynamic
regime, the crack propagates at low velocity through the specimen under stress cor-
rosion. This velocity was measured by imaging in real time the crack tip propagation
at the free surface through Atomic Force Microscopy (AFM). In the stress corrosion
regime, the crack growth velocity can be controlled by adjusting the compressive load
applied to the specimen [15]. The protocol is then the following: (i) a large load is
applied to reach a high velocity; (ii) the load is decreased to a value lower than the
prescribed one; (iii) the load is increased again up to the value that corresponds to the
prescribed velocity2 and kept constant. This procedure allows to obtain for the same
sample various crack growth velocities ranging from 10−6 ms−1 to 10−12 ms−1 corre-
sponding to zones on the post mortem fracture surfaces which are clearly separated by
visible arrest marks. Each arrest mark is numerated and its distance to the initiation
is measured so that it is possible to identify post mortem the zone corresponding to

1But still in mode I.
2The value of the load F required to get the prescribed velocity is known because: (i) The applied

stress intensity factor is given by KI = Fg(c) where g(c) is a function of the crack length c and
has been estimated through finite element simulations [55, 15] ; (ii) the relation between the applied
stress intensity factor KI and the crack growth velocity has been measured previously for silica glass
sample [15].
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the velocity to investigate on the fracture surface. A higher velocities zone is ob-
tained near the hole where the crack initiated. During the dynamic transient regime,
the crack velocity is estimated to be of the order of 102 ms−1. The topography of
these fracture surfaces is then measured through AFM with in-plane and out-of-plane
resolutions of the order of 5 nm and 0.1 nm, respectively. To ensure that there is
no bias due to the scanning direction of the AFM tip, each image is scanned in two
perpendicular directions and the analyses presented hereafter are performed on the
two sets of images. These images represent a square field of 1 × 1 µm (1024 by 1024
pixels).

Material Fracture
test

Scanning
technique

Crack
velocity

Length
scale

Research
group

Silica glass DCDC AFM 10−12 to
102 ms−1

nm ”Fracture”
Group (CEA
Saclay) [33]

AlPdMn
quasi-
crystal

Cleavage STM rapid nm P. Ebert’s
Group

(Jülich) [52, 53]

Aluminum
alloy

CT SEM and
stereoscopy

rapid µm ONERA
(Châtillon)

[50, 51]

Mortar TDCB optical
profilometer

quasi-static mm S. Morel’s
Group

(Bordeaux) [30]

Wood TDCB optical
profilometer

quasi-static mm S. Morel’s
Group

(Bordeaux) [29]

Table 2.1: For each material studied, the type of fracture test and the scanning
technique used are listed in the second and third column. DCDC, CT and TDCB
mean Double Cleavage Drilled Compression, Compact Tension and Tapered Double
Cantilever Beam, respectively. The crack growth velocity as well as the typical length
scale of the features observed on the fracture surface are then given. The sixth column
gives the research group that performed both the fracture test and the scanning of
the fracture surface. Let us note that except for the quasicrystals fracture surfaces
the propagation direction of the crack is known a priori.
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Quasicrystal : Cleavage of quasicrystals and fracture surface scanning were per-
formed by P. Ebert and co-workers at Jülich in Germany [52, 53]. Single quasicrystal
samples of Al70.5Pd21Mn8.5 were cleaved along two different cleavage plane in ultra-
high vacuum. In order to measure the topography of the fracture surfaces, the sam-
ples were transferred to an Ultra Vacuum Scanning Tunneling Microscope (US-STM)
without breaking the vacuum. As a consequence, the direction of crack propagation
is a priori unknown. We will see in Section 2.3 that this direction can however be
deduced post mortem from the 2D analysis of the scaling properties of the cleaved
surfaces. The lateral resolution of the STM images (500 × 500) was estimated to be
0.1 nm and 0.2 nm parallel and perpendicular to the scanning direction, respectively.

Aluminum alloy : The fracture test was performed by E. Bouchaud (ONERA,
Châtillon) and the scan of the fracture surface was achieved by J. Amman (ONERA,
Châtillon) [50] and J.-L. Pouchou and co-workers (ONERA, Châtillon) [51]. Fracture
surfaces of the commercial 7475 aluminum alloy were obtained from CT (Compact
Tension) specimens, first precracked in fatigue and then broken under uniaxial mode
I. In the tensile zone, the fracture surface has been observed with a scanning electron
microscope at two tilt angles. High resolution surface height maps has been produced
from the stereo pairs using the cross-correlation based surface reconstruction tech-
nique described in [50]. Two reconstructed images of the topography corresponding
to two zones of the same fracture surface has been obtained and correspond to rect-
angular fields of 565 × 405 µm (512 by 512 pixels). The in-plane and out-of-plane
resolutions are of the order of 2 − 3 µm.

Mortar : The experiments on mortar and wood were performed by G. Mourot
and S. Morel (LRBB, Bordeaux) [30]. Fracture surfaces of mortar were obtained
by applying four points bending to a notched beam of square cross section leading
to a mode I failure. The displacement is controlled during the test. The length of
the beam is 1400 mm and its height and thickness are both equal to 140 mm. The
topography of the fracture surfaces has been recorded using an optical profilometer.
The maps is made of 500 profiles of 4096 points (pixel size: 20 µm) recorded along the
direction of the crack front, perpendicular to the direction of crack growth. The first
profile is close to the initial notch. Two successive profiles are separated by 50 µm
along the direction of crack propagation. The lateral and vertical accuracy are of
the order of 5 µm. A transient regime was observed on the fracture surfaces. On
the first 10 mm of the crack propagation, corresponding to the first 200 profiles, the
roughness of the profiles increases with the distance to the initial straight notch. A
full description of the roughness in this region of the fracture surface is given in [30].
The present study focuses on the geometry of the surface far from the initial notch
and the first 200 profiles are therefore systematically removed from the maps.
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Wood : The experiments were performed by S. Morel [29]. Fractured wood surfaces
were obtained from modified Tapered Double Cantilever Beam specimens (TDCB)
subject to uniaxial tension with a constant opening rate leading to mode I failure (see
[56] for details). The wood species used in the study is a Spruce (Picea excelsa W.)
which is strongly anisotropic. The crack propagated along the longitudinal direction
of the wood. As a result, the characteristic length scale of the elementary feature
of the fracture surface is anisotropic: it is respectively of the order of a mm and
of a few tens of micrometer in the longitudinal and transverse directions. These
values correspond respectively to the length and the diameter of the wood cells. As
a consequence, the height of the surface has been scanned by an optical profilometer
over a 50 × 50 mm area with a higher resolution in the transverse direction (25 µm)
than in the longitudinal one (2.5 mm): this map includes 50 profiles parallel to the
crack front with 2048 points each. As for the mortar fracture surfaces, the maps of
the wood fracture surfaces correspond to the zone far from the initial straight notch
where the roughness is statistically stationary, i. e. approximately 50 mm from the
initiation.

Visual features of the surfaces : In all four cases, the reference frame (~ex, ~ey, ~ez)
is chosen so that ~ex and ~ez are respectively parallel to the direction of crack propaga-
tion and to the crack front. Figure 2.1 shows three-dimensional views of the fracture
surfaces as observed in silica glass, AlPdMn quasicrystals, aluminum alloy, mortar
and wood. These surfaces display striking visual differences: the in-plane (along x or
z) and out-of-plane (along h) length-scales of the observed features strongly depend
indeed on the considered material. They are respectively of the order of 50 nm and
1 nm for the silica glass surface, about 3 nm and 1 nm for quasicrystal, approximately
100 µm and 30 µm for aluminum, and 5 and 0.6 mm for mortar. The wood fracture
surface is highly anisotropic: The typical in-plane sizes of the patterns are respec-
tively 50 and 1 mm along the longitudinal (x-axis) and transverse (z-axis) directions
and out-of-plane features have a typical height of 200 µm. Despite their apparent
differences, thesesurfaces share common scaling properties to be discussed in the next
paragraphs.

2.2 Statistics of fracture surfaces

Scaling of the 1D correlation function : Since the 80’s and the pioneering work
of Mandelbrot et al. [25], the roughness of fracture surface has been widely studied.
These works have been motivated by the puzzling scaling invariance properties of
these surfaces. Extensive experimental investigations have lead to the conclusion
that fracture surfaces are self-affine, characterized by a universal roughness exponent
ζ ≃ 0.8 [26, 27]. A key consequence of this scale invariance is that the height−height

correlation function defined as the standard deviation σ∆h(∆r) = 〈(∆h∆r)
2〉1/2

r =
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Figure 2.1: Topographic images of fracture surfaces of silica glass, AlPdMn quasicrys-
tal, aluminum alloy, mortar and wood. Square fracture regions are represented here
for the sake of clarity. The x-axis and z-axis correspond to the crack propagation
direction and to the crack front direction respectively.
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〈(h(r + ∆r) − h(r))2〉1/2
r of the distribution {∆h∆r} of height variation scales as

σ∆h

l
=

(

∆r

l

)ζ

(2.1)

Here ζ is the roughness or Hurst exponent and l the topothesy, i.e. the length scale
at which σ∆h is equal to ∆r. Many other methods have been proposed to study the
scaling properties of signals [57, 48, 49]. The choice of the height−height correlation
function made here is motivated by the fact that this method is most efficient3 when
the signal is characterized by two self-affine regimes – or one regime and one saturation
– which is the usual case for experimental signals.
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Figure 2.2: Height−height correlation function computed on profiles extracted along
the z-axis of fracture surfaces of silica glass (a) and aluminum alloy (b). The straight
lines correspond to power-law fits σ = ℓ1−ζ

z ∆zζ with ζ = 0.81, ℓz = 0.58 fm (a) and
ζ = 0.74, ℓz = 14 µm (b).

Fig. 2.2 shows the evolution of the height−height correlation function computed
on profiles extracted along the z-axis (perpendicular to the propagation direction)
for silica glass and aluminum alloy fracture surfaces. A typical profile is given in the
inset of the same figures. In a given range of ∆z ranging from 4 to 40 nm for silica
glass and from 2 to 35 µm for aluminum, σ is found to evolve as a power-law with
∆z. This evolution is characterized by a roughness exponent corresponding to the
slope of the power-law fit in the logarithmic representation of Fig 2.2 and found to
be ζ = 0.81 and ζ = 0.74 for silica glass and aluminum respectively. These values
are in agreement with the ”universal” value ζ ≃ 0.8 widely reported in the literature.
The topothesy are measured to be ℓz = 0.58 fm and ℓz = 14 µm for silica glass and
aluminum respectively. To summarize, the correlation function computed along the
z-axis is found to be σ∆h = ℓ1−ζ

z ∆zζ .

3This method leads both (i) to physically relevant value of the crossover length scales and (ii) do
not induce bias on the value of the exponents when two self-affine regimes are present on the same
signal.
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Distribution of height fluctuations : This result gives no hint of the actual
statistical distribution of {∆h}∆z giving rise to such a scaling. In this part, we go
beyond the sole computation of the roughness exponent and compute the statistical
distribution for the fluctuations ∆h of height of the fracture surfaces. This study is
motivated by recent experimental results [58] reporting multi-affine scaling of crack
surfaces obtained by rupture of a sheet of paper. In that case of failure of a 2D solid,
one obtains crack lines resulting from the propagation of a point – the crack tip – in
the materials. In the present study, the fracture surfaces result from the propagation
of a crack front in a 3D solid. Although the two systems are quite different, it is of
great interest to study the whole distribution of height variation and so the multi-
affinity of fracture surfaces.
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Figure 2.3: The insets show the distribution of the height fluctuations ∆h for various
values of ∆z for fractured silica glass (a) and aluminum alloy (b) surfaces. The
collapse of the curves was obtained using Eq. (2.2) with the values of the exponents
ζ and topothesies ℓz measured from the calculation of the height−height correlation
function (cf. Fig. 2.2).

We define the statistical distribution P (∆h) of height variation ∆h(∆z) between
two points distant of ∆z along the z-axis. This distribution P (∆h) is plotted in the
insets of Fig. 2.3 for silica glass and aluminum alloy for various values of ∆z corre-
sponding each to a given color. The points corresponding to the standard deviation
σ calculated for the same ∆z values are plotted in the same color in Fig. 2.2. Using
the values of ζ and ℓz calculated previously, it can be seen in the main graphs of these
same figures that a very good collapse of the distributions can be obtained by dividing
the abscissa by ℓ1−ζ

z .∆zζ and multiplying the ordinates by ℓ1−ζ
z .∆zζ . After a normal-

ization of the random variable ∆h by the width of the distribution σ∆h = ℓ1−ζ
z .∆zζ ,

all the normalized distributions corresponding to various ∆z become the same. In
other words:

P (∆h) = 1/(ℓ1−ζ
z ∆zζ) · g(∆h/(ℓ1−ζ

z ∆zζ) (2.2)
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as long as ∆z belongs to the self-affine regime. In other words, not only does the
standard deviation display scale invariance, but also the whole distribution of height
fluctuations and this scale invariance can be described through one single scaling
exponent ζ .

The function g that corresponds to the collapse of all the normalized distribution
does not depend on ∆z. It is plotted in Fig. 2.4 in a semi-logarithmic representation.
At first, it can be seen that even in this new representation, the collapse of the
distributions corresponding to various values of ∆z is rather good. The Gaussian

distribution p(x) = 1√
2π
e

−x2

2 with a standard deviation equal to unity is also plotted
in Fig. 2.4. For small ∆h values, the master curve g is rather well fitted by a Gaussian
distribution. However, deviations to the Gaussian behavior can be observed in the
tail of the distributions. No clear explanation of these deviations has been found yet.
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Figure 2.4: Normalized distribution of height fluctuations presented in Fig. 2.3 in a
semi-logarithmic representation for fractured silica glass (a) and aluminum alloy (b)
surfaces. The Gaussian distribution p(x) = 1/

√
2πe−x2/2 is represented as a dashed

line.

Following the Eq. (2.2), once the roughness exponent and the topothesy are know,
it is possible to give the evolution of the whole distribution of height fluctuation with
the scale of study ∆z. In other words, one exponent is sufficient to describe the
scaling properties of the fracture surfaces studied (from Eq. (2.2), one can easily
show that the nth order moment of P (∆h) scales as ∆zn×ζ). This study brings
new insights into a currently widely debated question. In a recent study [58], it
was reported that fracture surfaces of quasi-two-dimensional (2D) media (e.g. paper
sheet) display multiscaling properties, in the sense that the nth order moments of the
height fluctuations over any distance ∆r scale as a function of ∆r with a characteristic
exponent that depends nonlinearly on the order n of the moment. In other words,
only one exponent is not enough to describe fully the statistical properties of the
roughness of crack in paper sheet (2D medium). An analysis of profiles obtained on
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3D granite samples also display multiscaling properties [28]. A multiscaling analysis
were then performed by Santucci et al. [59] that shown that multiscaling occurs only
at small length scales compared to the typical size of the disorder in the materials,
both for 2D and 3D media. The current models of crack propagation proposed in
the literature (elastic line based models as well as damage coalescence based models)
do not predict such multiscaling properties of fracture surfaces. The study reported
here on five different materials (the results on mortar, wood and quasicrystals are not
shown but their distribution of height fluctuation scales also with a single exponent)
is a strong argument in favor of mono-affinity of fracture surfaces in the investigated
range of length scales.4

2.3 Anisotropy of fracture surfaces

Context and motivation : In the previous part, the statistical properties of the
surface height parallel to the z-axis, perpendicular to the crack growth direction, have
been shown to be fully described by a single scaling exponent, the roughness exponent
ζ . From now on, we will focus on the standard deviation σ∆h (noted ∆h for sake of
simplicity) which is sufficient to estimate this roughness exponent and therefore the
whole statistical properties of the profiles. In this section, we go beyond the analysis
of profiles parallel to the z-direction and we study the statistics of surface height
along other directions.

The scaling properties of fracture surfaces are usually believed to be isotropic
[48, 35]. However, for surfaces obtained by shear fracture (mode II), it was reported
in Ref. [60] that the scaling exponent measured on profiles parallel to the crack
propagation was slightly smaller than for profiles along the perpendicular direction.

The analysis of such an anisotropy on samples obtained under tensile failure (mode
I) is the central point of this paragraph. This point is crucial because, as we will
see in Section 2.5, it will determine the kind of models developed to describe crack
front propagation in heterogeneous materials. As reviewed in Section 1.2, the various
competing theoretical approaches for failure of disordered materials lead to conflicting
conclusions about the isotropy of fracture surfaces.

Scaling behavior parallel and perpendicular to the crack growth direction:

In order to investigate the anisotropy of the experimental fracture surfaces, the 1D
height−height correlation functions ∆h(∆z) = 〈(h(z + ∆z, x) − h(z, x))2〉1/2 along
the z direction, and ∆h(∆x) = 〈(h(z, x + ∆x) − h(z, x))2〉1/2 along the x direction
were computed for each material. They are represented in Figure 2.5.

4We will see in Section 3.4 that an ”apparent” multiscaling is present at length scales smaller
than the grain size in sandstone samples in agreement with the observations made in Ref. [59].
However, one can question the relevance of these observations made at a scale where the roughness
of one individual grain/elementary microstructural feature becomes the dominant factor.
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Figure 2.5: 1D height−height correlation functions measured parallel to the crack
propagation direction and to the crack front for silica glass, quasicrystals, aluminum
alloy, mortar and wood. The straight lines are power-law fits. The scaling exponents,
corresponding to the slope of these lines, are listed in Table 2.2.
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These curves indicate a clear dependence on the measurement direction although
all profiles are self affine. Indeed, the height−height correlation functions ∆h(∆z) and
∆h(∆x) computed respectively along the crack front and crack propagation directions
are found to scale as:

∆h

ℓz
=

(

∆z

ℓz

)ζ

and
∆h

ℓx
=

(

∆x

ℓx

)β

(2.3)

where ζ and ℓz refer to the roughness exponent and topothesy measured along the
direction of the crack front, while β and ℓx refer to the roughness exponent and
topothesy measured along the crack growth direction. Along the crack front, the
scaling exponent is found to be ζ ≃ 0.8 irrespective to the nature of the material
studied. This observation is fairly consistent with the ”universal” value of the rough-
ness exponent reported in the literature [26, 27, 61, 22]. Parallel to the crack front,
the measured Hurst exponent β is significantly smaller, of the order of 0.6, irrespective
of the nature of the material. The values of the scaling exponents ζ and β measured
on the five materials are listed in Table 2.2.

ζ β ℓz ℓx
Silica glass 0.81 ± 0.04 0.64 ± 0.04 0.58 fm 1.7 pm
AlPdMn quasicrystal 0.81 ± 0.03 0.67 ± 0.05 0.32 nm 0.19 nm
Aluminum alloy 0.74 ± 0.04 0.57 ± 0.03 14 µm 5.6 µm
Mortar 0.76 ± 0.05 0.62 ± 0.05 12 µm 18 µm
Wood 0.79 ± 0.05 0.59 ± 0.05 18 pm 2.0 µm

Table 2.2: Scaling exponents and topothesies measured on profiles extracted on frac-
ture surfaces of silica glass, quasicrystal, metallic alloy, mortar and wood. The expo-
nent ζ and the topothesy ℓz corresponds to the value obtained after the analysis of
profiles parallel to the crack front direction. β and ℓx corresponds to profiles extracted
along the crack propagation direction. The error bars correspond to a confidence in-
terval of 95% calculated from the various values of exponents measured on each profile
studied.

On the other hand, the range of length scales on which the power-law behavior is
measured does depend on the material studied. To select the range over which the
scaling exponents are measured, we used the following procedure: The derivatives
∂ log(∆h)
∂ log(∆z)

and ∂ log(∆h)
∂ log(∆x)

are computed. A rather good plateau behavior is in general
observed at smaller scales below the cut-off length scale. The correlation function is
then fitted over a domain of length scales ranging from the resolution of the scanning
apparatus up to this cut-off length scale. The vertical resolution of the apparatus has
never been observed to be the limiting parameter that prevents a fit on smaller length
scales. For the silica glass, the aluminum alloy and the quasicrystals, the lateral res-
olution is of the order of two pixels while it is smaller than one pixel for mortar and
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wood. This size sets the lower bound of the power-law fit for each material. This pro-
cedure leads to self-affine domains that are observed to be roughly the same along the
z and x-axis except for wood which has an anisotropic structure. For this material,
the lower limits are a few tens of µm and a mm along the z and x-axis, respectively,
and correspond to the dimensions of the wood cell.5 The existence of these length
scales creates a lower cut-off for the self-affine domains. It is remarkable that, de-
spite the strongly anisotropic structure of the wood, the same scaling exponents as
for isotropic materials are measured parallel and perpendicular to the crack growth
direction, even though the length scales involved in these two directions are different.

As for the surface height along the z-axis, the profiles along the x-axis are mono-
affine: Their description requires the use of only one single exponent β. This has been
verified by computing the distribution of height fluctuation, using the same procedure
as in Section 2.2.

In addition to the scaling exponents, the topothesies in both directions z and x
were also measured. Their values are listed in Table 2.2 for the five materials studied.
Presently, we do not know what select these topothesies. They provide information
on the roughness amplitude. An interpretation of this quantity will be given in
Section 4.2 for another kind of fracture surfaces. In this chapter, we will only use it
because they will allow us to work with dimensionless quantities in order to compare
the roughness properties of fracture surfaces of different materials irrespective of the
various length scales involved in these experiments.

Scaling behavior along intermediate directions : It is crucial to note that
pure power-law scaling is only observed along the directions x and z parallel and per-
pendicular to the crack growth direction. For instance, the 1D correlation function
computed on an aluminum fracture surface along a transverse direction characterized
by an angle of 30◦ with the z-axis is plotted on Fig. 2.6. To emphasize its peculiar
scaling properties, the correlation function computed along the z and x-axis are also
represented and all three are normalized by ∆rβ with β = 0.57 as measured previously
on this surface. As expected, ∆h(∆x) corresponding to the x-axis displays a plateau
behavior after normalization. Then, ∆h(∆z) corresponding to the z-axis varies fol-
lowing a power-law characterized by the exponent ζ − β = 0.17 after normalization
until a decreasing due to the saturation of the correlation function observed in Fig.
2.2. The behavior of the normalized correlation function computed along the interme-
diate direction is more complex: It remains constant and then scales as a power-law
with the same exponent ζ − β. It means that along this transverse direction, the
correlation function follows two distinct behaviors. At small scales, it evolves as a
power-law characterized by the exponent β and, at larger scales, it evolves as another
power-law characterized by the exponent ζ . We will show in the following that the

5The wood cells are oriented along the x-axis because the crack propagates along the longitudinal
direction of the wood.
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crossover length scale between these two regimes increases with the tilt angle, leading
to pure scaling behavior only along the z and x-axis. Let us note that on Fig. 2.6, the
anisotropy of the fracture surface is very clear. This anisotropy is emphasized by the
normalization of the correlation function by ∆xβ that results in a plateau behavior
along the x-axis and a power-law behavior along the z-axis. In the following, another
method based on 2D measurements will also emphasize the anisotropy.
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Figure 2.6: 1D normalized height−height correlation functions measured on an alu-
minum fracture surface for three directions corresponding to angles of 0◦, 30◦ and 90◦

with the z-axis. The functions are normalized by (∆r)β with β = 0.57. The straight
solid lines correspond to the power-law behavior with exponent ζ − β = 0.17.

Application : The intrinsic scaling anisotropy of fracture surfaces suggests a me-
thod to determine the direction of the crack propagation from a post mortem anal-
ysis of the surface of a broken solid, as follows: Although intermediate directions θ
exhibit a combination of the two scaling behaviors, let’s fit the corresponding cor-
relation function in coarse approximation by a single power-law characterized by an
effective exponent H(θ) between β and ζ . In Fig. 2.7, the evolution of the effective
exponent is plotted versus the direction of analyze for a quasicrystal fracture surface.
θ = 0 coincides here with the scanning direction of the STM tip used to study the
surface. The angle θ where H is minimum (resp. maximum) coincides then with the
direction of the crack propagation ~ex (resp. the crack front direction ~ez). Using this
methodology, it is possible to find the propagation direction of the crack leading to
the fracture surface.

In addition to the previous studies presented here where the propagation direction
of the crack was known a priori, we decided to perform a blind-test of this technique
on fracture surfaces of an AlPdMn quasicrystal. The experiments were performed
by P. Ebert and co-workers at Jülich in Germany [52, 53] while we performed the
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Figure 2.7: Variation of the effective Hurst exponent H measured along a direction
making an angle θ with the z-axis. The maximum and minimum (at 0◦ and 90◦ re-
spectively) of H coincide with the z and x-axis, i.e. the direction of crack propagation
and the direction of the crack front respectively.

analysis of the fracture surfaces. The aim was to guess the propagation direction of the
crack without knowing a priori the experimental procedure. These guesses were then
sent to Ebert and co-workers that confronted it with their experimental procedure.
We proceeded as follows: Two samples of quasicrystals were cleaved under ultra-
vacuum (see Section 2.1 for details). For each sample, three images of the fracture
surface are then recorded through STM measurement. The scanning direction of the
STM tip was chosen in order to scan along the local minimum apparent slope of
the surface to avoid rapid vertical motion of the tip. Thus, this direction is chosen
independently of the propagation direction of the crack and can change from image
to image. They then sent us the images without providing us with any additional
information. We sent them back our guess for the propagation direction of the crack
for each images. Knowing the experimental procedure, it was possible to show that
our proposed propagation direction for the crack corresponded to an angle of 35◦±5◦

with respect to the sides of the cleavers irrespective to the STM image and so to
the scanning direction. This result is a quite good agreement with what is expected
from a cleavage experiment.6 This result validates the method and confirms that the
anisotropy measured on quasicrystal surfaces is not linked to a possible anisotropy
induced by the scanning apparatus.

It is worth mentioning that this technique of analysis of fracture surfaces may
have interesting appraisal application. Applied on various zones of a fracture surface

6In a cleavage experiment, the crack is expected propagating within a well-defined plane, but
along an a priori unknown direction. However, the same fracture surface is expected to reveal the
same crack propagation direction, irrespective to the scan direction, as it is observed here.
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of a broken structure, this method allows the post mortem determination of the field
of local orientation of crack propagation direction. Therefore, one can reconstruct the
history of the process that led to the failure of a structure. This may have interesting
applications in domains such as aeronautics or civil engineering. This led us to register
a patent[62, 63].

2.4 Two-dimensional scaling properties of fracture

surfaces

Motivation : The observation of the anisotropy of fracture surfaces raises a crucial
question debated in [33] and [64]: Is this anisotropy a universal property of the
fracture surface due to a physically relevant underlying phenomenon? Or is it a
simple perturbation of the isotropic case and thus an experimental bias due to the
choice of a particular fracture test configuration?

In this last case, the fracture surface might be described as an isotropic object
with an additional anisotropic perturbation: this would lead to a roughness exponent
that would vary continuously with the direction of analysis without any remarkable
structure. In the former case, the whole anisotropic geometry of the fracture surface
is expected to display universal properties that would be a signature of an underlying
physical phenomenon. The analysis of profiles extracted along a random directions
suggests that they are not self-affine, but display two distinct scaling behaviors (cf.
Fig. 2.6). In order to study in detail the two-dimensional structure of the fracture
surface roughness, the computation of the 1D correlation function only is not enough.
A new approach based on the analysis of the 2D height−height correlation function
∆h(∆~r) = 〈(h(~r+∆~r)−h(~r))2〉1/2

~r has therefore appeared to be necessary. This anal-
ysis should confirm the anisotropy measured by 1D technique and provides additional
information on the 2D properties of fracture surfaces.

2D height−height correlation function : The observation of two pure scaling
behaviors along the two different directions z and x of the fracture surface (see Section
2.3) suggests that the 2D height−height correlation function defined in the Cartesian
frame (~ez,~ex) could be the appropriate quantity. This function ∆h is defined as:

∆h(∆z,∆x) = 〈[h(z + ∆z, x + ∆x) − h(x, z)]2〉1/2
z,x (2.4)

The variations of correlation functions ∆h∆x(∆z) corresponding each to a fixed ∆x
value are plotted as a function of ∆z in Fig. 2.8 a for an aluminum fracture surface.
For the smallest values of ∆x, the correlation function ∆h varies as ∆zζ with ζ = 0.74
in perfect agreement with the result obtained for the 1D correlation function along the
z-axis. The other curves corresponding to larger values of ∆x display a plateau regime
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Figure 2.8: (a): 2D correlation function variations computed on a aluminum alloy
fracture surface. The straight line correspond to a power-law fit with ζ = 0.74. (b):
The data collapse is obtained from Eq. (2.5) using β = 0.58 and z = 1.26.

followed by a power low variation also characterized by the scaling exponent ζ . The
crossover length scale between the two regimes increases with ∆x. More precisely, it
varies as ∆x1/z while the plateau value varies as ∆xβ . Indeed, by dividing the abscissa
by ∆x1/z with z = 1.26 and the ordinates by ∆xβ with β = 0.58 as shown in Fig.
2.8 b, the curves collapse onto a single master curve characterized by a plateau regime
and then a power-law regime with exponent ζ . The part of the curves that correspond
to ∆z values larger than the upper limit of the self-affine domain of the 1D correlation
function plotted in Fig. 2.2 does not collapse. The curves corresponding to ∆x values
that do not belong to the self affine domain of the 1D correlation function ∆h(∆x)
does not collapse either (they are not represented here). In other words, as long as
∆x and ∆z values belong to the self-affine domains:

∆h(∆z,∆x) ∼ ∆xβf(∆z/∆x1/z)

where f(u) =

{

1 if u≪ 1
uζ if u≫ 1

(2.5)

The following procedure is then applied to the fracture surface: 2D correlation
functions ∆h∆x(∆z) are computed for ∆z and ∆x values belonging to the self-affine
domain as measured in Fig. 2.5. These functions are represented in the insets of
Figure 2.9 for the five materials studied. The values of β and z that optimize the
collapse of the curves by normalizing the abscissa and the ordinates by ∆x1/z and
∆xβ respectively are then computed. It can be seen in the main graphs of Fig. 2.5
that a very good collapse is obtained. The resulting master curve is characterized by
a plateau region and followed by a power-law variation of exponent ζ .
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Figure 2.9: Normalized 2D height−height correlation function variations with ∆z for
various values of ∆x for silica glass, AlPdMn quasicrystals, aluminum alloy, mortar
and wood. The data collapse was obtained from Eq. (2.5) using exponents reported
in Tab. 2.3.
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The exponents β and z which optimize the collapse, and the ζ exponent deter-
mined thereafter by fitting the large scale regime followed by the master curve are
listed in Table 2.3. The three exponents are found to be ζ ≃ 0.76±0.03, β ≃ 0.61±0.04
and z ≃ 1.23±0.05, independent of the material and of the crack growth velocity over
the whole range from ultra-slow stress corrosion fracture propagation (picometer per
second) to rapid failure (several meters per second). They are therefore conjectured
to be universal.

ζ β z ζ/β
silica glass 0.77 ± 0.03 0.61 ± 0.04 1.30 ± 0.15 1.26
AlPdMn quasicrystal 0.76 ± 0.03 0.65 ± 0.04 1.20 ± 0.08 1.17
aluminum alloy 0.75 ± 0.03 0.58 ± 0.03 1.26 ± 0.07 1.29
mortar 0.71 ± 0.06 0.59 ± 0.06 1.18 ± 0.15 1.20
wood 0.79 ± 0.05 0.58 ± 0.05 1.25 ± 0.15 1.36
average 0.76 ± 0.03 0.61 ± 0.04 1.23 ± 0.05 1.25

Table 2.3: Scaling exponents measured from the calculation of the 2D correlation
function (see Eq. (2.5)) on fracture surfaces of silica glass, AlPdMn quasicrystals,
metallic alloy, mortar and wood. ζ , β, z and ζ/β are respectively the roughness
exponent, the growth exponent and the dynamic exponent z while the fourth column
contains the ratio of ζ to β. Error bars are computed from the values of the exponents
measured on the various local height maps studied.

Comparing Table 2.2 and Table 2.3, one observes that the exponents ζ and β
depend slightly on the method used here (computation of the 1D or 2D correlation
function). The computation of the 2D correlation function involves a larger number
of data and should lead therefore to slightly more accurate values of the scaling
exponents.

The ratio ζ/β, measured from the 2D correlation function, is given in the fourth
column of Table 2.3. It is worth noting that the exponent z satisfies the relation
z = ζ/β. This makes perfectly coherent the 1D and 2D measured scaling properties
of the fracture surfaces as given in Eq. (2.3) and (2.5).

Finally, the results presented in this paragraph confirm the anisotropies obtained
thanks 1D measurements. The best collapse of the curve that can be obtained under
the condition z = 1 (that corresponds to ζ = β, i.e. to an isotropic surface) is shown
in Fig. 2.10 for an aluminum fracture surface. It appears clearly that the best collapse
is obtain for z = 1.26 as shown in Fig. 2.9.

Crossover function : Let us now look more closely at the crossover function f(u)
involved in the 2D correlation function for the five materials. Its asymptotic behavior
u → 0 and u → ∞ was shown to be universal: It exhibits a plateau regime at
small scales and a power-law regime with a scaling exponent ζ ≃ 0.75 at large scales
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Figure 2.10: Normalized 2D height−height correlation function for an aluminum
fracture surface under the condition z = 1 corresponding to an isotropic surface. The
collapse is found clearly better if the value z = 1.26 is chosen as in Fig. 2.9. This is
an additional proof of the anisotropy of fracture surfaces.

(see Eq. (2.5)). In order to compare quantitatively the crossover function for different
materials, one needs to define dimensionless variables because the latter involve length
scales that depend crucially on the material considered. Using the topothesies ℓz and
ℓx defined in Eq. (2.3), the 2D correlation function can be rewritten:

∆h(∆z,∆x) = ℓx(
∆x
ℓx

)βf [( ℓz

ℓx
)1/ζ (∆z

ℓz
)

(∆x
ℓx

)1/z ]

where f(u) =

{

1 if u≪ 1
uζ if u≫ 1

(2.6)

In other words, introducing the topothesies allows to replace all the signs ∼ by
signs =, and consequently to qualitatively compare the structure functions measured
in the various materials. Assuming that the scaling properties of the 2D correlation
function given in Eq. (2.5) are satisfied, the form given in Eq. (2.6) is the only one
compatible with the definition of the topothesies given in Eq. (2.3). For various
values of ∆z and ∆x, f = ∆h/(ℓx.

∆x
ℓx

) is plotted in Fig. 2.11 as a function of the

dimensionless variable u = ( ℓz

ℓx
)1/ζ (∆z

ℓz
)

(∆x
ℓx

)1/z using the values of the topothesies listed in

Table 2.2 and the exponents ζ = 0.76 and z = 1.23 corresponding to the mean of
the exponents measured on the various materials. f has been plotted for silica glass,
quasicrystal, aluminum alloy and mortar fracture surfaces. The crossover function is
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observed to be independent of the material, not only in the plateau and power-law
corresponding to u ≪ 1 and u ≫ 1, but also in the crossover domain, i.e. for u ∼ 1.
The crossover function calculated on the wood fracture surface is not represented in
Fig. 2.11. Its shape is observed to be slightly different in the crossover domain. The
highly anisotropic microstructure of the wood may account for this observation.
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Figure 2.11: Scaling function f involved in Eq. (2.6) and measured on four different
materials.

2.5 Physical interpretation

In this section, we give the physical interpretation of the very specific 2D scaling
properties of fracture surfaces. In particular, we will show a new representation of the
2D correlation function (represented in Fig. 2.9) that reveals more clearly the physical
meaning of its scaling (given in Eq. (2.5). This will lead us to give the physical sense
of the second ”universal” exponent measured on fracture surfaces, i.e. the exponent
z ≃ 1.2. The implication of the 2D scaling properties of fracture surfaces on the
models of failure will then be discussed.

Family−Vicsek scaling of fracture surfaces : At first, let us return to the shape
of the 2D height−height correlation function. Figure 2.12 a displays a color scale
representation of ∆h in the (∆z,∆x) plane for the fractured aluminum alloy surface.
The function ∆h is normalized by ∆xβ and logarithmic scales are used to emphasize
the anisotropy of the power-law scaling. This representation clearly demonstrates two
distinct behaviors of the 2D correlation function depending on the orientation of the
vector ~AB of components (∆z,∆x).
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Figure 2.12: (a): 2D representation of the height−height correlation function for an
aluminum fracture surface (∆h is normalized by ∆xβ with β = 0.58). (b): Domains of
different types of variation of the height−height correlation function in the (∆z,∆x)
plane. The grey zone corresponds to a height−height correlation function varying as
∆h ∝ ∆xβ .

If ~AB lies within the grey region in Figure 2.12 b (corresponding to the blue domain
in Figure 2.12 a), the 2D correlation function scales as ∆xβ and does not depend on
∆z. In formula 2.5, this correspond to the regime where u = ∆z/∆x1/z ≪ 1, and
so f(u)=1. The straight boundaries of this domain in these logarithmic coordinates
indicate that its width ξ (Fig. 2.12 b) increases following a power-law ξ ∝ ∆x1/z

where z ≃ 1.2. In other words, from any given point A of the fracture surface, a
domain where the 2D correlation function scales as ∆xβ develops over a width ∆z = ξ
increasing as ∆x1/z (the crack propagates parallel to x). Outside of this domain, the
2D correlation function depends only on ∆z. In formula 2.5, this corresponds to the
regime where u = ∆z/∆x1/z ≫ 1, and so f(u) = uζ.

Considering now the simple following scenario, we give the physical meaning of the
development of this correlation domain (represented in grey in Fig. 2.12 b) from any
point of the fracture surface: Let’s consider a line, a straight crack front, propagating
in a 3D space. The fracture surface is then the successive positions of the crack line.
For the sake of simplicity, a constant crack velocity will be assumed, x and t being thus
proportional. Let’s assume that the front is perturbed at a given point A inducing a
local out-of-plane displacement (along h, perturbation that will be then observed on
the fracture surface) at time t=0. In agreement with the experimental observation
of the development of a correlation cone in front of any point of the fracture surface,
this perturbation will have repercussions on the resulting fracture surface in a zone of
width (∆x)1/z where ∆x is the distance to the point A, as represented in Fig. 2.12.
This can be simply understood by considering that the information represented by
the perturbation can propagate along the crack line as the crack propagates. More
precisely, the information will propagate over ∆z ∼ t1/z along the crack line during
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time t leading to a correlation domain ∆z ∼ ∆x1/z since t is proportional to ∆x.
This anomalous ”diffusion” like process – very different from the classical diffusion

process for which ∆z ∼
√
t – along a line has been widely studied theoretically and

referred to as kinetic roughening processes [65]. The latter appears for example when
an elastic line (of minimal energy when it is straight) is perturbed by an external
disorder which roughens its profile. The competition between these two antagonist
effects can be described in the theoretical framework of an elastic manifold driven in
a random medium. The transient roughening development of a line h(z, t) starting
from an initially straight line h(z, t = 0) = 0 is generally studied. It is characterized
by a 1D height−height correlation function ∆h(∆z, t) scaling as [65]:

∆h(∆z, t) = tβg(∆z/t1/z)

where g(u) ∼
{

uζ if u≪ 1
1 if u≫ 1

(2.7)

where ζ , β and z refer to the roughness, growth and dynamic exponents respec-
tively. Signature of this roughening scaling can also be found in the steady state
regime reached at long times when the mean roughness of the line remains constant
even though it fluctuates. In this regime, the 2D height−height correlation function
∆h(∆z, t) is expected to scale as [39, 38]:

∆h(∆z,∆t) = ∆tβf(∆z/∆t1/z)

where f(u) ∼
{

1 if u≪ 1
uζ if u≫ 1

(2.8)

which is exactly the scaling law (2.5) followed by the experimental surfaces after the
time t has been replaced by coordinate x parallel to the crack propagation. This
so called Family−Vicsek scaling [66], provides a rather strong argument in favor of
models like [36, 41, 67, 68] that describe the fracture surface as a juxtaposition of
successive positions of the crack front – modeled as a pseudo elastic line – moving
through materials with randomly distributed local toughness. In this scenario, the
Hurst exponents ζ ≃ 0.75 and β ≃ 0.6 measured along the crack front direction and
that of crack propagation respectively coincide with the roughness and the growth
exponents as defined within the framework of elastic string models [65]. Let us note
moreover that in such models, the dynamic exponent z is expected to be related to
ζ and β through z = ζ/β [66]. This leads to a value of z = 1.2 in perfect agreement
with the value measured experimentally.

Physical meaning of the scaling exponents : Finally, we can give the physical
meaning of these three exponents: The roughness exponent ζ ≃ 0.75 characterizes the
geometry of the fracture surface perpendicularly to the crack propagation direction.
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It furnishes information on the static geometrical properties of the crack front. The
second independent exponent z ≃ 1.2 characterizes the way a relief on the crack front
”diffuses” along the line when it propagates in the material. On a general manner,
the exponent z furnishes information on the dynamical properties of the elastic line in
motion. However, we will see in chapter 4 that this dynamical exponent z measured
on the fracture surface gives no hint on the local velocities of a crack front propagating
in a solid. To be more precise, we will show in Section 4.1 that the properties of the
fracture surface – the trajectory of the crack front – and its dynamical properties
– its local velocity – are two independent problems. Finally, the third exponent,
β = ζ/z ≃ 0.6, characterizes the fracture surface morphology along the direction
of propagation. The value of these experimental scaling exponents as well as the
universal shape of the crossover function will be crucial in the following to discriminate
between the various models of crack propagation.

Implications on the models of fracture : Let us discuss now the implications
of the two-dimensional scaling of fracture surfaces on the various models of fracture
suggested in the literature. The observation of the Family−Vicsek scaling for all the
fracture surfaces investigated represents a rather strong argument in favor of two of
the four classes of models put forward to explain the fracture surface morphology
and reviewed in Section 1.2. For the kind of models published in Refs. [46] and re-
ferred as (iv) in this section, fracture surfaces are suggested to result from a damage
coalescence process. Whenever no crack front can be defined, the fracture surface is
expected to be isotropic. As proposed in [64], a slight anisotropy could however be
observed, but it would be induced by possible geometrical constraints and would not
reflect an underlying relevant physical phenomenon.7 In other words, the fracture
surfaces resulting from this kind of models would not display Family−Vicsek scal-
ing. For the models published in Refs. [42, 43] and referred as (iii) in section 1.2,
this question has not been directly addressed yet. But to our knowledge, none of
the simulations of failure in 3D bond networks led either to anisotropic surfaces or to
Family−Vicsek scaling. In the types of models published in Refs. [36, 68] and [40, 41],
and referred as (i) and (ii) in Section 1.2, cavities and microcracks – that are allowed
in the other models – are neglected and the path followed by the crack front through
the defects of the material is suggested to explain the full fracture surface morphol-
ogy. In that case, fracture surfaces are expected to be anisotropic and characterized
by a Family−Vicsek scaling. Even though damage cannot be neglected to explain
the scaling of fracture surfaces reported here (see chapter 4), the observation of a
Family−Vicsek scaling irrespective of the various materials studied and the various
geometries used suggests that the latter approach is more suitable to reproduce our

7In a similar way, turbulence which is an intrinsically isotropic process has been observed to
display slight anisotropic properties in experiments where boundary conditions favored a particular
direction. But this anisotropy is not characterized by a Family−Vicsek scaling.



Chapter 2: Morphology of fracture surfaces revisited 43

experimental observations. In other words, the two-dimensional scaling of fracture
surfaces bring a strong argument in favor of models (i) and (ii).

Another remarkable property of fracture surfaces will help us to identify the rele-
vant theoretical approach to describe failure of disordered materials: Silica glass frac-
ture surface obtained from a broad range of crack growth velocities in the quasi-static
regime limit (from 10−12 ms−1 to 100 m s−1) have been investigated. No influence
of the velocity on the value of the scaling exponents has been observed. We will see
in Chapter 4 that only the upper cut-off length is influenced by the crack growth
velocity. This experimental observation questions the scenario proposed in Refs. [36]
and referred to model (i) in Section 1.2. In these studies, the roughness of fracture
surfaces is interpreted as resulting from a pinning/depinning transition of the crack
front within the microstructural obstacles of the material. In these models, two kinds
of scaling exponents were predicted: At small scales, ζquenched was expected to result
from a quenched noise due to the microstructural obstacles present in the material
whereas at larger scales, ζthermal was expected to result from an effective thermal noise
induced by the finite crack growth velocity as predicted in pinning/depinning models
[39]. The crossover length between both regimes is also expected to increase with the
crack growth velocity. This was observed on TiAl3 based metallic alloy fracture sur-
face as well as for soda-lime glass [22] where ζquenched was measured to be of the order
of 0.5 and ζthermal ≃ 0.8 at small and large scales respectively. In this present work,
no influence of the crack growth velocity was observed in a very broad range of crack
growth velocity (14 decades) on another amorphous material. This questions the uni-
versality of such observations and the validity of the pinning/depinning scenario. The
observation of a self-affine regime characterized by ζ ≃ 0.8 until the atomic scale on
fractured quasicrystal surfaces is an additional argument that questions the existence
of a second universal small roughness exponent at small scales on fracture surfaces.

The observation of (i) the Family−Vicsek scaling of fracture surfaces and (ii)
the robustness of their scaling properties with respect to the crack growth velocity
has brought precious information on the relevant theoretical approach: To describe
failure in disordered materials, pinning/depinning scenarios and damage coalescence
processes appears limited. At the opposite, models based on the Linear Elastic Frac-
ture Mechanics and that describe crack surfaces as solution of a Langevin equation
[40, 41] reproduce these two properties. Unfortunately, they do not lead to the experi-
mental value of the scaling exponents. We will explain the reasons of this discrepancy
in Section 4.1 and will propose an alternative model leading to their correct value.

2.6 Concluding remarks

In this chapter, the statistical properties of five very different fracture surfaces
have been investigated. The main experimental results can be summed up as follows:

(i) Profiles parallel and perpendicular to the crack growth direction are self-affine,
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in fact they are perfectly mono-affine. They are fully described by the value
of their self-affine exponent: ζ = 0.76 ± 0.04 and β = 0.61 ± 0.04 in the crack
front direction and the crack growth direction respectively. The value of these
exponents depends very weakly on the material, the crack growth velocity, the
loading conditions and the fracture test geometry in the experimental ranges
studied. Their value is conjectured to be universal.

(ii) In all the experimental cases studied, the 2D height−height correlation func-
tion computed in the set of coordinates parallel to the crack front and the
propagation directions follow a specific shape given by Eq. (2.5) referred to
as Family−Vicsek scaling. Among other implications, this scaling implies that
profiles extracted along a direction that is neither the crack front direction nor
the crack propagation direction are not self-affine.

(iii) The various scaling properties of the correlation function are universal: the three
scaling exponents and the crossover function (if the material has an isotropic
microstructure) do not depend on the three following parameter: the material,
the crack velocity and the geometry of the fracture test.

(iv) These properties of fracture surfaces have led us to identify the relevant ap-
proach for future theoretical investigations of crack propagation in disordered
materials (a model based on the Linear Elastic Fracture Mechanics describing
the toughness of the disordered material as an uncorrelated noise as in Refs.
[40, 41]; see Chapter 4) and to eliminate other ones (pinning/depinning transi-
tion [36, 22], damage coalescence process [46]). It is worth noting that weakly
disordered materials have been studied here. Failure of strongly disordered ma-
terials could lead to a different fracture surface morphology with, in particular,
isotropic properties. Let us note also that, without the presence of a notch
used in all our experimental situations, damage spreading would have been
larger. In these other cases, a damage coalescence approach could capture the
whole physics of the failure process as suggested by Hansen and Schmittbuhl
[46] and anisotropic geometrical conditions could induce a slightly non-universal
anisotropy of fracture surfaces as predicted in Ref. [64] by Bouchbinder, Pro-
caccia and Sela.

While our analysis have mainly focus on the universal properties of fracture sur-
faces, an important feature of their morphology has been shown to depend crucially
of the nature of the material: The upper bound of the self-affine domain.8 Indeed,

8The lower bound of the self-affine domain not been studied. Indeed, we were in most cases limited
by the resolution of the scanning technique. However, for the STM images (atomic resolution) of
fracture surfaces of quasicrystal, self-affine behavior of the roughness were observed down to the
atomic scale. This suggests that in the general case, self-affine behavior with exponents {ζ ≃
0.75;β ≃ 0.6} exists down the atomic scale.
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it was observed to vary from some nanometers in quasicrystal or silica glass to some
millimeters in mortar and wood. The mechanisms that set this length scale will be
investigated in the following. This material dependent length scale will be proved to
be crucial to capture the physics of fracture of heterogeneous materials.

But at first, we investigate in the following chapter the scaling properties of frac-
tured porous materials for which a surprisingly low roughness exponent ζ ≃ 0.4− 0.5
has been recently reported [2, 35].
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In the previous chapter, morphology of fracture surfaces has been studied. It was
observed that their scaling properties can be described by two independent ”universal”
scaling exponents ζ = 0.76±0.03 and z = 1.23±0.05. But somehow, the robustness of
their scaling behavior makes difficult the investigation of its physical origin. However,
in a recent study, Boffa et al. reported in Ref. [2] a surprisingly low roughness
exponent ζ ≃ 0.45 on fractured sandstone surfaces. Understanding why sandstone
surfaces display such a scaling and why the other materials studied in Chapter 2
display other one is a quite interesting challenging: It would certainly help us to
identify the physical origin of their self-affine geometry.

The observation of a low exponent on sandstone surfaces was interpreted as a
signature of the intergranular propagation of the crack between the cemented grains
that composed it. On the other hand, an transgranular rupture was suggested to
lead to ζ ≃ 0.75 [2]. To test this scenario, we will study artificial sandstone obtained
by sintering of glass beads and referred as glass ceramics. Despite the wide range of
porosities investigated – from 3 % to 26 % –, fracture surfaces have been observed
to display the same scaling properties, characterized by the roughness exponent ζ =
0.40 ± 0.03 – perpendicularly to the crack growth direction. At the opposite, the
amplitude of the roughness varies considerably with the porosity φ : It is observed to

46
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be roughly proportional to φ. We will show that this result leads to the conclusion that
the fracture mode in glass ceramics with low porosity is transgranular while a high
porosity implies an intergranular fracture, without, however, any effect on the value
of the roughness exponent. In addition to the broad range of porosities investigated,
two sets of bead diameter and various crack growth velocities have been studied
to determine to what extent this apparent ”second class” of fracture surfaces with
ζ ≃ 0.4 is robust to system changes. Finally, following the same approach than in the
chapter 2, we will study the two-dimensional scaling properties of fracture surfaces
of glass ceramics. They are also observed to be anisotropic, but characterized by
two different ”universal” scaling exponents ζ = 0.40 ± 0.03 and β = 0.48 ± 0.05 –
corresponding to the crack front and the crack growth direction, respectively.

In the following section, the geometry of fractured sandstone surfaces are studied.
Their scaling properties are observed to be quite similar to those of glass ceramics. On
the other hand, the influence of sample width is systematically studied. We observe
that only the upper bound of the self-affine domain is changing. The latter increases
linearly with the sample width L and the roughness at this scale evolves as Lζ with
ζ ≃ 0.4. For the very first time, fracture surfaces are observed to display a perfect
Family−Vicsek scaling when the width of the system is changing. In other words,
the so-called anomalous scaling that refers to the existence of two different roughness
exponents – one for the scaling of the roughness with the system size and one for
the local properties of the roughness of one sample – is found to be irrelevant for
describing our system.

For the two materials, the approach is therefore the following: At first, we analyze
the 1D self-affine properties of their fracture surfaces. In particular, possible multi-
scaling is investigated through the analysis of the distribution of height fluctuations.
Then, the effects of the microstructure and the system size on the self-affine domain
are systematically studied. Finally, the 2D height correlations are investigated in
order to reveal the anisotropy of fracture surfaces.

3.1 Materials and methods

Preparation of fracture surfaces of glass ceramics : First, fracture surfaces
of an artificial material comparable to sandstone, glass ceramics made of sintered
glass beads, are studied. The synthesis as well as the characterization of the samples
of glass ceramics have been performed by P. Vié (LCPC, Marne la Vallée). The
glass ceramics are prepared by heating a mold filled with glass beads. Two series of
beads are used: Beads with diameters ranging from 104 to 128 µm and beads with
diameters 50− 65 µm. The beads are made of a soda-lime glass mainly composed of
SiO2, Na20 and Ca0 represented at 73 %, 14 % and 8 % respectively. The mold is then
heated at 700 oC during a defined duration ranging from 20 to 200 minutes. This
duration sets the porosity φ that can be tuned from 3 % to 26 %. In the following, the
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characteristic microscopic length scale d is taken equal to the mean bead diameter.
The open porosity is measured by saturating the sample with water and the profile
of the total porosity (open + closed) along the sample is measured by gamma-ray
absorption.1 Porosity variations along the samples are measured to be of the order
of 1 % so that φ may be considered as constant and equal to the mean value within
±1 %. This process produce cylinders of glass ceramics of radius and height equal to
40 mm and 130 mm, respectively. The samples used in the fracture tests are cut out
from this cylinder.

Two kinds of mode I fracture tests were performed. Some of these tests were
performed in the laboratory of structural engineering at the federal university of
Rio de Janeiro in collaboration with E. Fairbairn and R. Toledo and the others in
Laboratoire de Rhélogie du Bois at Bordeaux in collaboration with S. Morel and
G. Mourot. Fast fracture propagations are generated through modified Brazilian
fracture tests: A uniaxial compressive load is applied to an annular specimen of inner
and outer radii equal to 15 mm and 40 mm, respectively, and width equal to 20 mm.
Two symmetrical cracks are then initiated. They propagate from the inside toward
the outside where the compressive forces are applied. A picture of the samples used
in the experiments is shown in Fig. 3.1.

Figure 3.1: Two samples that have been used to generate fracture surfaces of glass
ceramics: Modified Brazilian test geometry that leads to rapid mode I fracture (left)
and modified Tapered Double Cantilever Beam geometry that leads to stable mode I
fracture (right). The outside diameter of the annular sample is 80 mm.

Quasistatic fracture propagations are generated within modified Tapered Double
Cantilever Beam (TDCB) samples. A typical sample is shown in Fig. 3.1. The
fracture is initiated from a straight notch (thickness 1 mm) by applying on both sides
a uniaxial tension with a constant opening rate: The tapered shape of these specimens
results in a stable mode I crack growth (see Ref. [69]). 2D finite element calculations

1The open porosity of a material is made of the pores that are connected to a free surface by
connections with the other pores so that the open porosity can be measured by saturating the
material of water. The close porosity is made of the pores that are not connected to a free surface.
The total porosity is defined as the sum of the open and close porosity.
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were performed to determine both the stress intensity factor and the compliance
variations for various specimen dimensions. Therefore, it was possible to choose the
dimensions of the samples to get a nearly constant crack growth velocity on the first
20 mm: In particular, their height and length are respectively 20 mm (perpendicular
to the crack propagation) and 60 mm (parallel to it). Their width along the crack
front direction is 20 mm. The crack propagation velocity vcrack is determined from
the variations of the electrical resistance of a thin gold layer deposited on the side of
the sample. As expected, vcrack has been observed to remain fairly constant during
the propagation. Crack growth velocity ranging from 50 µms−1 to 40 mm s−1 were
obtained by varying the opening rate of the testing machine. A force sensor measures
the applied loading. The experimental setup used for the quasistatic fracture tests is
shown in Fig. 3.2. The mechanical parameters that have been measured during the
fracture tests are analyzed in Annexe A.

Figure 3.2: Experimental setup used to perform the quasistatic fracture tests.

Typical 1D profiles of fracture for three samples with three different porosities are
displayed in Fig. 3.3. The roughness amplitude increases by almost two orders of
magnitude from ≃ 1 µm when φ = 3 % up to ≃ 100 µm when φ = 26 %: Different
profilometers are therefore needed to scan all the samples. For surfaces with very low
rms roughness – and at the same time porosity – we use an interferometric optical
profilometer2 (TMTalysurf CCI 6000) with a vertical resolution better than 0.1 nm
and a lateral resolution ≃ 1 µm. Unfortunately, such an interferometric optical pro-
filometer remains confined to very smooth surfaces, with local slope smaller than 5 %.
In practice, the fracture surfaces are too rough for such an interferometric technique

2These scans were realized at Taylor Hobson with C. Buisson.
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when the porosity is larger than 7 %. We then use a mechanical stylus profilome-
ter (TMTalysurf Intra) with respective vertical and lateral resolutions ≃ 10 nm and
≃ 2 µm. For lower porosities (φ < 7 %), both profilometers are usable (although
the mechanical one has a poorer resolution) which allowed to check the consistency of
the two measurements. For both profilometers the maps contain 1024 × 1024 points
and the fields of view are respectively 3 × 3 and 6 × 6 mm. In the second technique,
the stylus remains in contact with the surface and, for porosities higher than 18 %, it
often gets jammed into the deepest asperities of the surface. One then uses a point
by point mechanical profilometer. A sensor tip is lowered until it touches the surface
in order to measure its height; the tip is then raised by 200 µm before getting moved
laterally by 25 µm to the next measurement point. The vertical and the lateral reso-
lutions are respectively ≃ 3 µm and ≃ 10 µm. The typical field of view is 8× 8 mm.
The consistency of the measurements was verified by comparing profiles provided by
the two mechanical systems for φ = 18 %. The scanning technique used for each
porosity is listed in Tab. 3.2. These measurements provide 3D maps of the surface
and thus surface elevation profiles of the type shown in Fig. 3.3.
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Figure 3.3: Height profiles extracted from fracture surfaces of three sintered glasses
with three different porosities but with beads with the same diameter 104− 128 µm.

Preparation of fracture surfaces in sandstones : Fracture surfaces of a natural
sandstone are also analyzed. Mode I fracture tests have been performed on samples
cut out from the same block of Fontainebleau sandstone. The latter is characterized
by the distribution of grain diameter plotted in Fig. 3.4 a. It was possible to measure
its granulometry after that a small piece of the block has been crushed. The mean
grain size is d ≃ 240 µm. The porosity of the sandstone is measured from SEM
images performed on thin strips of sandstone. A typical example of these images
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is represented in Fig. 3.4 b. We measure φ = 10 % ± 1 %. Its grain composition
measured through X-ray is quartz at 99 %.
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Figure 3.4: (a) : Diameter distribution of grains composing the sandstone. The mean
grain size is d ≃ 240 µm; (b) : Typical example of SEM images of thin strip of
sandstone. The analysis of various images corresponding to different zones of the
sandstone block leads to a mean porosity φ = 10 %.

Fracture surfaces are induced by fast growing cracks, using a modified Brazilian
fracture test (inner and outer radii equal to 13 mm and 50 mm respectively) in
the same spirit as the tests performed on glass ceramics (see preceeding paragraph).
Samples of width ranging from 7.8 mm to 52 mm are studied. One uses then the
point by point mechanical profilometer previously used to scan the fracture surfaces
of glass ceramics for porosities φ > 15 %.

Sample L dz ( µm) dx ( µm) nz nx

♯ 1 8 mm 25 250 272 133
♯ 1 8 mm 50 500 95 45
♯ 2 14 mm 50 250 263 136
♯ 2 14 mm 25 526 1
♯ 3 26 mm 100 100 248 252
♯ 3 26 mm 25 25 972 8
♯ 4 52 mm 50 1000 1007 30
♯ 4 52 mm 25 1991 1

Table 3.1: Elevation maps recorded on fracture surfaces of sandstone with various
sample width L. For each scan of the surfaces, the pixel size dz × dx as well as the
size nz × nx of the scan (in number of pixels) are given.

For each sample, the fracture surface is scanned twice: First, a height map of the
whole fracture surface (L× 37 mm) is recorded. The pixel size dz × dx – the distance
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between two successive points of the scan along the z and x-axis respectively – as
well as the size nz × nx of the scan (in number of points) are listed in Tab. 3.1.
Moreover, a small part – generally one profile – of the surface is also scanned with
a smaller pixel size (see Tab. 3.1). Therefore, it is possible to test the robustness
of our analysis by studying height maps with different sizes. To avoid any influence
of the transient roughening regime, only the part of the surface far enough from the
initiation (some millimeters) is then analyzed. The full procedure is described in
Section 3.3. A typical snapshot of a fractured sandstone surface corresponding to a
specimen width of L = 26 mm is shown in Fig. 3.5. The in-plane (along x and z) and
out-of-plane (along h) length scales of the largest features observed on this surface
are of the order of 5 mm and 300 µm respectively.
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Figure 3.5: Topographic image of a fractured sandstone surface. The x-axis and z-
axis correspond to the crack propagation direction and to the crack front direction,
respectively.

3.2 Fracture surfaces of glass ceramics

In a recent study [2], fracture surfaces of sandstone were observed to display
a roughness exponent ζ ≃ 0.45 remarkably lower than the ”universal” exponent
ζ ≃ 0.75 (see Chapter 2). In this section, we study the fracture surfaces of an artificial
sandstone, glass ceramics. This study is motivated by two main reasons: (i) We will
test the scenario proposed in Ref. [2] for which the low roughness exponent observed
for sandstone samples is a signature of their intergranular mode of rupture. This
point will be discussed in Section 3.3 where a transition from trans to intergranular
failure mode when φ is increasing will be observed, without, however, any effect on
the value of the roughness exponent. (ii) We study materials with slightly different
microstructures compared to sandstone. In other words, we test the robustness of
the observations reported by Boffa et al. in an artificial material, glass ceramics,
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which is also made of cemented grains, but with a microstructure that can be tuned
experimentally. In particular, both the porosity and the grain size can be chosen
independently, so that their influence on the morphology of fracture surfaces can be
characterized.
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Figure 3.6: Log-log representation of ∆h (averaged over profiles at different x values)
as a function of ∆z for surface roughness profiles of several sintered glass samples. -
Samples fractured using the TDCB test with porosities φ = 7 % (×), 15 % (�) and
26 % (+) - Samples fractured using the Brazilian test with porosities φ = 3 % (◦)
and 25 % (♦) - Range of bead diameters used to realize samples : 104 − 128 µm -
Straight lines: linear fits with slope ζ (Table 3.2).

One-dimensional scaling properties : Figure 3.6 displays the variations of the
1D correlation function ∆h(∆z) as a function of ∆z in a log-log scale for several
samples with different porosities ranging from 3 % to 26 %. They have been fractured
either quasistatically (vcrack ranging from 50 µms−1 to 40 mm−1) mode or after a fast
crack propagation (vcrack of the order of ≃ 1 m s−1). The curves correspond to an
average of ∆h(∆z) over profiles corresponding to different distances x to the initiation
and lying within the region where the statistics of the roughness is stationary.

Let us examine, for instance, the lowest curve corresponding to a 3 % porosity
sample fractured using the modified Brazilian test procedure. The variation can
clearly not be fitted by a single power-law over the full range of ∆z values investigated:
three domains of variation are visible and correspond to exponents respectively equal
to 1, 0.36 and 0 (straight lines). The last value indicates that the surface appears
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as a plane at large length scales and the first one reflects the Euclidean geometry of
individual grains. The surface profile is therefore self-affine (here with an exponent
ζ = 0.36) only in the intermediate domain between two limiting length scales : In
the log-log plot of Fig. 3.6, these boundaries correspond to the intersections between
the straight lines fitted in the different domains. The lower boundary is of the order
of the bead radius d/2 and the upper one is referred to as L⊥

c .
This result is generalized by comparing the different curves in Fig. 3.6 corre-

sponding to samples of various porosities and fractured both in the quasistatic and
fast propagation modes. All the curves have the same general shape and, in log-log
coordinates, their slopes are nearly the same in the intermediate domain: This shows
that the roughness exponent is very similar in all cases while the vertical shift between
the curves reflects different roughness amplitudes.

φ = 3 % φ = 7 % φ = 15 % φ = 18 % φ = 25 % φ = 26 % Average value

B.D.1 B.D.1 B.D.1 B.D.2 B.D.1 B.D.1
Dyn. Q.S. Q.S. Dyn. Dyn. Q.S.

Tech. 1 − 2 2 3 2 − 3 3 3

ζ 0.36 0.43 0.43 0.40 0.39 0.39 0.40 ± 0.03
ζFT 0.38 0.44 0.38 0.37 0.39 0.39 0.39 ± 0.02
β 0.43 0.48 0.51 0.43 0.42 0.45 0.46 ± 0.03
ζ2D 0.42 0.41 0.37 0.36 0.36 0.42 0.40 ± 0.03
β2D 0.44 0.52 0.53 0.42 0.46 0.51 0.49 ± 0.04
z 0.91 0.79 0.73 0.84 0.76 0.83 0.81 ± 0.06
∆h(d) 3.3 7.9 32 15 54 44
L⊥

c 1.1 1.9 2.4 0.8 1.1 1.6

Table 3.2: Physical and statistical characteristics of the glass ceramics - (φ) sample
porosity; glass beads diameter range (B.D.1) 104−128 µm, (B.D.2) 50−65 µm; crack
propagation mode (Rap.) rapid, (Q.S.) quasi-static; (Tech..) surface measurement
technique (1) interferometric, (2) stylus profilometer (3) point by point. - Statistical
characteristic parameters of 1D profiles normal to crack propagation (ζ , ζFT) self-
affine exponent values obtained respectively from the variation of ∆h with ∆z and
from the Fourier power spectrum; (∆h(d)) roughness amplitude in µm; (L⊥

c ) upper
boundary of self-affine domain along the z-axis in mm.

The numerical values of the parameters characterizing all these curves are listed in
Table 3.2 for all samples investigated in the present work. Table 3.2 confirms that ζ
has a very similar value ζ = 0.40±0.04 for all samples independent of the bead size, of
the porosity and of the crack propagation velocity: this common value is much lower
that the value 0.75 reported for many materials and closer to the value 0.45 obtained
for sandstone in paragraph 3.4. This result is robust with respect to the method used
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to determine ζ as shown by the comparison with the values ζFT in Table 3.2 obtained
from the analysis of power spectra [57]. The upper boundary L⊥

c of the self-affine
domain is of the order of 1 mm for toroidal samples, i.e. a twentieth of the sample
width. The variation of the upper limit of the self-affine domain as a function of the
sample width is systematically studied in Section 3.4 for sandstone. The ratio of the
cut-off length over the width is found to be slightly larger for the TDCB geometry, of
the order of a tenth. Finally, let us note that the roughness amplitude ∆h(d) depends
strongly on the porosity. This will be quantitatively analyzed in Section 3.3.

−5 0 5
10

−4

10
−3

10
−2

10
−1

10
0

∆h/(l
z
1−ζ∆zζ)

p.
l z1−

ζ ∆z
ζ

10
2

10
3

10
4

10
1

10
2

10
3

∆z (µm)

∆h
 (

µm
)

−5 0 5
10

−4

10
−3

10
−2

10
−1

10
0

∆h/(l
x
1−β∆xβ)

p.
l x1−

β ∆x
β

10
2

10
3

10
4

10
1

10
2

10
3

∆x (µm)
∆h

 (
µm

)

Figure 3.7: Normalized distribution of height variations on a fracture surface of glassy
ceramics with a porosity φ = 26 % in a semi-logarithmic representation for profiles
parallel (a) to the crack front and (b) to the crack propagation for ∆z (respectively
∆x) equal to 200 µm (blue), 400 µm (red) 700 µm (green) and 1.1 mm (cyan).
The master curves obtained with ζ = 0.39 and ℓz = 23 µm (resp. β = 0.45 and
ℓx = 21 µm) along the z-axis (resp. the x-axis) are found to be Gaussian distributions
p(x) = 1/

√
2πe−x2/2 (dashed line). The variation of the 1D correlation functions, i.e.

the standard deviation of the distribution, is shown in the inset. The dashed lines
are power-law fits from which the values of ζ , β, ℓz and ℓx are determined

Statistics of height variations : In order to analyze further the geometry of the
profiles, we shall now focus on the distribution of height variation P (∆h). This dis-
tribution is computed at various scales ∆z and ∆x parallel to the crack front (z-axis)
and to the crack growth (x-axis) respectively. After normalization, the distributions
∆zζP (∆h/∆zζ) and ∆xβP (∆h/∆xβ)) collapse on the same curve shown in Fig. 3.7 a
and b. In other words, the profiles studied do not exhibit multiscaling and one scal-
ing exponent (ζ = 0.39 or β = 0.45 in the present case depending on the direction
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investigated) is enough to describe the statistics of the variations of height. These
exponents can be calculated by normalizing these distributions to get a collapse but
also from the power-law variation of any of their moment. For example, the variation
of the square root of the second order moment referred to as the 1D correlation func-
tion ∆h(∆z) and ∆h(∆x) is shown in the insets of Fig. 3.7 a and b along the z-axis
and x-axis respectively. The fit of these variations to a power-law leads also to the
values ζ = 0.39 and β = 0.45. The scaling exponents measured through this second
technique are listed in Table 3.2 for various samples: the exponent β = 0.46 ± 0.03
is found systematically larger than the other one ζ = 0.40 ± 0.03 irrespective of the
sample porosity, its bead diameter as well as the crack growth velocity. However, and
in spite of different scaling properties, profiles parallel to the z and x-axis display
both Gaussian distributed height variations.

Two-dimensional structure : To capture the physical origin of this anisotropic
scaling, one suggests to study in detail the two-dimensional structure of the glass
ceramics fracture surfaces. The appropriate statistical tool is the 2D height−height
correlation function ∆h(∆z,∆x) defined in Formula 2.4 as the typical difference of
height3 between two points separated by the distance ∆z and ∆x along the crack front
and the crack growth direction respectively. Figure 3.8 displays the variations of the
normalized function ∆h∆x/∆x

β
2D as a function of the normalized variable ∆z/∆x1/z

for different values of ∆x. All curves collapse onto a single master curve with a
plateau behavior at small distances and then a power-law variation. In other words,
the scaling of the correlation function can be described by Eq. (2.5) referred to as a
Family−Vicsek scaling [66]:

∆h(∆z,∆x) ∼ ∆xβ2Df(∆z/∆x1/z)

where f(u) =

{

1 if u≪ 1
uζ2D if u≫ 1

(3.1)

The set of scaling exponents used to obtain the collapse of the curves is β2D ≃ 0.5
and z ≃ 0.8 and the exponent of the power-law behavior of the collapsing curve is
ζ2D ≃ 0.4. Their numerical value obtained for each sample investigated is listed in
Table 3.2: This indicates that the two-dimensional scaling properties depend very
weakly on the microstructural properties of the glassy ceramics.

These results are in agreement with the values of the scaling exponents ζ and β
obtained from the scaling of the 1D correlation function. Letting ∆z tend to zero in

3The typical difference of height is defined here as the square root of the second order moment
of the distribution P (∆h) of the variations of height between two points of the surface separated by
the distance ∆z along the z-axis and ∆x along the x-axis. With this definition, ∆h(∆z,∆x = 0)
and ∆h(∆z = 0,∆x) coincide with the 1D correlation function computed along the z-axis and the
x-axis respectively.
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Figure 3.8: The inset displays the 1D correlation functions computed along the crack
front direction (◦) and the crack propagation direction (+). The main panel shows the
2D height−height correlation functions ∆h∆x(∆z) corresponding to different values
of ∆x vs ∆z for a fracture surface of glassy ceramic with porosity φ = 6%. The
data collapse was obtained using Eq. (2.5) with exponents ζ ≃ 0.4, β ≃ 0.5, and
z = ζ/β ≃ 0.8.

Eq. (3.1) leads to ∆h ∼ ∆xβ2D so that β2D = β is expected. Letting ∆x tend to zero
in formula 3.1, one obtains ∆h ∼ ∆xβ2D−ζ2D/z∆zζ2D so that, in addition β2D = β
and z = ζ2D/β2D. The last column of table 3.2 giving the mean value of the various
scaling exponents confirms that these relations are respected.

To conclude this first section, let us insist on the high robustness of the roughness
properties investigated here: The distribution of the variations of height, the 2D
structure of the surface and the value of its three scaling exponents are observed to
depend nor on the characteristic length scale of the microstructure neither on the
porosity. The comparison of these scaling properties with a natural material with a
similar microstructure, a sandstone, is performed in Section 3.4. But at first, let us
focus on characteristics of fracture surfaces that depend on the microstructure.

Up to now, the discussion has been focused on the scaling laws verified by the
roughness at different length scales. We shall now be concerned with the overall
amplitude of the roughness and with its dependence on the characteristic parameters
of the material.
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3.3 Roughness amplitude

The previous section has been devoted to the study of the self-affine properties of
fracture surfaces. For instance, the 1D correlation function ∆h computed on profiles
perpendicular to the crack growth direction was found to be proportional to ∆zζ .
One can replace this proportionality relation by the following equality:

∆h

∆h(d)
=

(

∆z

d

)ζ

, (3.2)

where d can be taken equal to the characteristic length scale of the microstructure of
the material (we will take the mean grain size). As a consequence, the amplitude of
the roughness may be characterized by the value of ∆h(d) (amplitudes corresponding
to other ∆z values can then be obtained from Eq. (3.2)). In the following, we will
use the normalized amplitude ∆h(d)/d because its value can be interpreted in terms
of fracture mode (trans- and inter-granular rupture) as will be discussed at the end of
this section. The amplitude defined in such a way is directly linked to the topothesy
ℓz, i.e. the scale at which ∆h is equal to ∆z, by the relation ∆h(d)/d = (ℓz/d)

1−ζ .
If an important effort has been devoted in the past to the scaling properties of

fracture surfaces, very few studies have dealt with the amplitude of the roughness
in spite of its obvious practical interest and its possible relevance to understand
the underlying mechanisms of failure of materials. The series of sintered materials
we are using allows, for the very first time, to study specifically the influence of
microstructural parameters (the porosity φ and the typical microstructural length
scale d) on the roughness amplitude. But in order to estimate quantitatively the
effect of the microstructure on this quantity, we will study at first the influence of the
fracture test geometry as well as of the distance to the crack initiation.

Effect of the crack initiation : Various authors [70, 29] have reported that rough-
ness properties were not stationary in a small zone of the fracture surface near the
initiation of the crack. This transient regime is studied in Fig. 3.9 for a fracture
surface of glassy ceramics with φ = 3 % broken in the modified Brazilian geometry.
In this figure, data points correspond to single profiles parallel to z at a given distance
x from the side of the sample where the crack was initiated. The local roughness is
characterized by its normalized amplitude ∆h(d, x)/d. A transient regime in which
∆h(d, x)/d decreases with the distance x is indeed observed: The width of this zone
is xc ≃ 1 mm. At larger distances, ∆h(d, x)/d merely fluctuates around an average
value (dashed line). This mean value will correspond to the roughness amplitude and
the corresponding error will be taken equal to three times the standard deviation of
the fluctuations observed, i.e. representing an interval of confidence of 95%. For the
other glass ceramics and sandstone samples investigated, the width xc of the transient
regime zone has the same order of magnitude.These results allow to restrict (as in the
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Figure 3.9: Variations of the roughness characteristic exponent ζ and amplitude
∆h(d) with the distance x to the initiation notch for the same sample (φ = 3 %)
as in Fig. 3.6.

previous sections) the statistical analysis to distances larger than 1 mm where the
roughness is statistically stationary : This justifies our use in Fig. 3.14 and Fig. 3.6
of curves obtained from an average over several profiles corresponding to different x
values.

Effect of the sample width : After a brief study of the transient regime near
the crack initiation, let us study the effect of the sample width on the roughness
amplitude. The effect of the specimen geometry on its roughness has only been
studied for fractured sandstone surfaces. The detailed analysis of these surfaces is
shown in the next section.

Studying the transient roughening development during fracture test starting from
a straight notch, Lopez and Schmittbuhl [71] have observed on granite fracture sur-
faces that this amplitude depends on the distance to the initiation. This evolution
has been described through a scaling law referred to as anomalous involving the exis-
tence of a second exponent ζg referred to as global roughness exponent different from
the local roughness exponents ζ measured until now. This anomalous scaling of the
transient roughening has then been observed on other quasi-brittle materials such as
mortar [30] and wood [29]. The local exponent was measured to be ζ ≃ 0.75 for these
three materials whereas the value of the global exponent was shown to change from
material to material. As reported in [72], the anomalous scaling can also be measured
in the stationary part of the fracture surface, i.e. far enough from the initiation so
that the roughness amplitude can be considered as independent of the distance to the
initiation. Indeed, the value of the amplitude depends on the width L of the broken
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sample and scales as:

∆h(∆z = cst) ∼ Lζg−ζ (3.3)

Here, we have investigated such a scaling for fractured sandstone surfaces. Fig.
3.10 presents the variations of the roughness amplitude with the width L of the
sample. In order to test the robustness of the measurement, the amplitude ∆h(∆z)
is measured at two different length scales ∆z = 100 µm and ∆z = 1 mm. The mean
value of the amplitude is found to fluctuate by less than 5% from sample to sample
at the two scales studied: The roughness amplitude remains therefore independent
of the sample width in the range investigated. This result can also be qualitatively
observed in Fig. 3.14 a where the correlation functions ∆h(∆z) corresponding to
various sample widths are plotted on the same graph: the curves superimpose each
other in the domain of length scales where they are all evolving as a power-law. As a
consequence, sandstone fracture surfaces do not exhibit anomalous scaling as defined
by Eq. (3.3).
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Figure 3.10: Absence of variation of the roughness amplitude of fracture surfaces of
sandstone with the width L of the sample – the roughness amplitude is measured as
the value of the 1D correlation function ∆h(∆z) for two values of ∆z.

This result suggests strongly that the roughness amplitude does not depend on
the geometry of the fracture test (even if we only studied the influence of the sample
width) if it is measured in the stationary part of the fracture surface. This suggests
that the only parameter that may change its value is the crack growth velocity and
the microstructure of the material.

Effect of the crack growth velocity : The effect of the crack growth velocity on
the amplitude of crack roughness has been studied by Backers et al. [73] for sandstone
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samples. Analyzing fracture surfaces resulting from crack growth velocities ranging
from 1 µms−1 to 10 mm s−1, they only observed fluctuations – on the order of 15 %
– of the roughness amplitude around the mean value. This suggests that for a very
similar material such as glass ceramics, the crack roughness may be also independent
of the crack velocity. This is confirmed by our experimental results: the amplitude
roughness corresponding to glass ceramics samples with φ ≃ 25 − 26 % differs from
20 % (see Table 3.2) when the crack growth velocity is changed by almost 3 decades.
In the following section, we will see that the roughness amplitude of all the samples
follow the same function of the porosity and the bead diameter, irrespective of the
broad range of velocities investigated in this study. This is an additional argument
in favor of the weak influence of the crack velocity on the roughness amplitude.4

Effect of the microstructure : As stressed in the previous sections, the roughness
amplitude depends strongly on the microstructure and very weakly on the other pa-
rameters such as crack growth velocity and sample width. In this section, we identify
the microstructural parameters that set the amplitude and give the quantitative rela-
tion between glassy ceramics microstructure and amplitude of their crack roughness.
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Figure 3.11: Variation of ∆h(d)/d as a function of porosity φ for the glass ceramics
samples: Range of bead diameters used to realize samples - 104 − 128 µm (△) :
dynamic fracture (◦) : quasistatic fracture - 50−65 µm (♦) rapid fracture. The slope
of the dashed line is 1.7.

In Fig. 3.11, the normalized amplitude ∆h(d)/d obtained for all the glass ceramics
and sandstone samples studied is plotted as a function of their porosity. The frac-
ture surfaces have been obtained either after a quasistatic rupture (◦) or a dynamic

4From a theoretical point of view, we will see in Section 4.2 that an effect of the crack growth
velocity is only expected for vcrack of the same order than the sound velocity.
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one (△). Except one glass ceramics sample which is composed of glass beads with
d ≃ 58 µm (⋄), the samples are made of grains with d ≃ 116 µm.

Let us consider at first the sample of glass ceramics made of small beads (d ≃
58 µm and φ = 18 %). Although d is two times smaller than in the other samples,
its normalized roughness amplitude ∆h(d)/d is close to the one of a glass ceramics
with a similar porosity (φ = 15 %) but with larger beads (d ≃ 116 µm). This result
suggests that the roughness amplitude ∆h(d) is roughly proportional to the typical
size of the microstructure.5

On the other hand, the normalized amplitude seems to evolve linearly with the
porosity φ. A linear fit of the experimental data leads to

∆h(d)/d ≃ 1.7φ (3.4)

This result is quite remarkable in view of the large range of crack velocities investi-
gated as well as the two fracture test geometries used in this study. In other words,
within our domain of study of the various experimental parameters, the amplitude is
found to be given by the very simple proportional law given in Eq. 3.4.

The increase of ∆h(d)/d with φ may be related to phenomena at the scale of a
bead diameter. For high porosity samples, the crack propagates by breaking cemented
necks binding two beads : the difference in height between neighboring beads is then
of the order of their radius and ∆h(d)/d ≃ 0.5. For low porosity samples, neighboring
beads are more strongly welded to each other and the crack propagates through the
beads : The deflections of the surface are weaker compared to the bead radius and
∆h(d)/d is lower. This is consistent with the increase of ∆h(d)/d from 0 to 0.5 shown
in Fig. 3.11 when φ is increasing from 0 to 30 %. These differences in the propagation
of the cracks are confirmed by scanning electron microscope (SEM) images of fractured
samples: These display a transition from transgranular to intergranular propagation
as the porosity increases. It is remarkable that this transition has no influence on the
characteristic exponent ζ .

Concluding remarks : This study on the roughness amplitude of glass ceramics
has allowed to identify the relevant parameter that sets its value: the microstructure
of the material. In particular, we have shown that the amplitude defined as the value
∆h(d) of the correlation function at a distance of the order of the grain diameter
d is proportional both to the grain diameter d and the porosity φ. An important
implication of this observation is the inter- to trans-granular propagation of cracks as
the porosity increases. At the opposite, the scaling properties of crack surfaces – and
in particular the roughness exponent ζ = 0.4 – was shown to be independent of the
porosity (see Section 3.2). These results question the scenario proposed in Ref. [2]
that suggested that a transgranular rupture could explain the low roughness exponent
measured on porous materials. The origin of this exponent will be the challenging

5Even though one single example of glass ceramics with d different from 116 µm has been studied.
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question addressed in Chapter 4. But at first, let us study in detail the properties of
sandstone surfaces.

3.4 Morphology of fractured sandstone surfaces

Why did we study the morphology of fracture surfaces of natural sandstone while
glass ceramics present the advantage to have a microstructure that can be tuned in a
control manner? At first, it is important to verify that the scaling properties of the two
materials are similar. Moreover, because sandstone is an abundant natural material,
it is possible to investigate relatively large samples. Therefore, in this section devoted
to fracture sandstone surfaces, we will investigate the influence of the system size on
the roughness of crack surfaces.

Statistics of height variations : We will start this study by the analysis of pro-
files parallel to the z-axis (i.e. to the crack front) and located far enough from the
initiation region so that the roughness properties are statistically stationary. We will
reproduce for fractured sandstone surfaces the same approach than for glass ceramics.
The scaling properties of these profiles are characterized by their 1D height−height
correlation function, ∆h(∆z) = 〈(h(z+∆z)−h(z))2〉1/2

z . This function (◦) is plotted
in the main panel of Fig. 3.12 in a log-log scale for the sample of width L = 8 mm. One
can see a nice power-law behavior characterized by a roughness exponent ζ = 0.43up
to a cut-off length scale L⊥

c , and a plateau above L⊥
c (straight and dotted lines respec-

tively). In other words, the surface appears as a plane at length scales larger than
L⊥

c = 1.7 mm defined as the abscissa of the intersection between the power-law fit and
the plateau. At length scales ∆z < L⊥

c , the profiles are self-affine with an exponent
ζ = 0.43. The variation (+) of the correlation function computed on the second height
map scanned on the same fracture surface (see Tab. 3.1) is represented on the same
graph. This scan contains 45 × 95 pixels and represents a field of 23 × 5 mm2 while
the first analysis was performed on a larger map (133×273 pixels representing a field
of ≃ 33 × 7 mm2). As it appears on Fig. 3.12, changing the number of pixels do not
change the general shape of the correlation function as well as the value of the cut-off
length L⊥

c . In other words, the finite number of data points is not responsible for the
saturation of the correlation function observed at large scales.

The inset of Fig. 3.12 that represents the variation of the local slope of the
logarithm of the correlation function – defined as ∂ log(∆h)

∂ log(∆z)
– computed on the larger

height map (◦), confirms this self-affine property which is reflected by a domain of
constant slope in this representation. However, if we look carefully at this curve, one
can observe slight deviations to the self-affine behavior for ∆z < d ≃ 240 µm. This
precise point requires a deeper analysis of the profile morphology.

The whole distribution P (∆h) of height variation for a given distance ∆z is now
analyzed. For perfectly self-affine profiles, one would expect that the distributions
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corresponding to various ∆z values collapse onto a single curve when they are normal-
ized according to the formula 2.2. Fig. 3.13 displays these normalized distributions
for various values of ∆z in a log-lin scale. Within the range d < ∆z < L⊥

c (solid
lines), the curves collapse nicely onto a same Gaussian distribution (dashed line).
For ∆z values lower than the grain diameter d (dotted lines), the curves and, more
precisely, their tail do not collapse. The surface profiles are therefore self-affine (here
with an exponent ζ = 0.43) only in the intermediate domain between the two limiting
length scales d and L⊥

c although the 1D correlation function behaves as a power-law
even for length scales smaller than d (see Fig. 3.12). Let us note that the effect of
the grain size on the analysis of the roughness of fracture surfaces can lead to a mis-
understanding of their properties. The ”effective multi-scaling” observed here is an
artifact related to the presence of a typical length scale in the microstructure of our
system – the grains here. Finally, the investigation domain for the scaling behavior is
relatively small (between d = 240 µm and L⊥

c = 1.7 mm) for the sample studied here.
In the next paragraph, we show that L⊥

c increases with the sample width. This leads
to larger self-affine domains for larger samples that will confirm the results obtained
here.
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Figure 3.12: Height−height correlation function computed along the crack front di-
rection (z-axis) on two different scans of the same fractured sandstone surface. (◦):
133 × 273 pixels representing ≃ 33 × 7 mm2; (+) : 45 × 95 pixels representing
≃ 23 × 5 mm2. The straight line is a power-law fit of the larger height map (◦)
in the self-affine regime for ∆z > d = 240 µm. Its slope is found to be ζ = 0.43. The
inset displays the variations of the local slope – defined as ∂ log(∆h)

∂ log(∆z)
– of the logarithm

of the correlation function computed on the larger height map (◦).
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Figure 3.13: Normalized distribution of height fluctuations in a semi-logarithmic
representation. For ζ = 0.43 and ℓz = 35 µm, all variation curves corresponding to
∆z > d = 240 µm collapse onto a single Gaussian distribution p(x) = 1/

√
2πe−x2/2

displayed as a dashed line. It is worth noting that for ∆z < d = 240 µm, data points
do not collapse any more onto the master curve (dotted lines).

Effect of the sample size on the scaling properties : The dependence of this
self-affine range with the size of the samples will now be studied on samples with four
different widths: 1D height−height correlation functions computed for these four
samples on profiles parallel to the crack front are displayed in Fig. 3.14 a. For each
fracture surface, ∆h varies first following a power-law of ∆z and becomes constant.
All curves are superimposed in the self-affine regime which is characterized by the
roughness exponent ζ ≃ 0.47 corresponding to the slope of the global power-law fit
on data from all samples in the range d < ∆x < L⊥

c (L). The roughness exponent
measured on each sample is listed in Tab. 3.3. The variations from sample to sample
lead to the following error bar for the global roughness exponent ζ = 0.47 ± 0.04
measured through the 1D correlation function. This value is in agreement with other
experimental studies performed on sandstone fracture surfaces [2, 35]. The roughness
exponent measured here is remarkably lower than those measured on various other
materials and which were discussed in Chapter 2. In order to confirm this low value by
an independent determination of the self-affine exponent, the Fourier power spectrum
of the profiles has been computed and is shown in Fig. 3.14 b for the various samples.
A power-law fit is made on all data points in the range 1/L⊥

c (L) < f < 1/d. The
slope of the fit (dashed line) is found to be −(1 + 2ζ) with ζ = 0.46 in agreement
with the other method.

The Fourier power spectrum displays a power-law behavior up to a higher length
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Figure 3.14: (a): Height−height correlation function for profiles parallel to the crack
front direction (z-axis) on fractured sandstone samples of various widths. The straight
line is a power-law fit to all curves in the self-affine regime for ∆z > d ≃ 240 µm,
with slope ζ1D = 0.47. (b) Fourier power spectrum of profiles parallel to the direction
of the crack front. The slope of the power-law fit is found to be −(1 + 2ζFT) with
ζFT = 0.45.

scale value than the upper bound of the self-affine domain determined by the analysis
of the correlation function. The latter is more reliable to measure a cut-off length
scale than the Fourier analysis (see Ref. [54]). Thus, we will use only Fig. 3.14 a
that displays correlation function variations for studying the plateau regime observed
at large scales. One can observe that these regimes clearly do not coincide for the
various sample widths.

Table 3.3: Scaling exponents measured from the calculation of the 1D correlation
function (ζ1D and β1D), the Fourier analysis (ζFT and βFT) and the 2D correlation
function (ζ2D, β2D and z) on fracture surfaces of sandstone for samples with various
widths L.

Sample L ζ1D β1D ζFT βFT ζ2D β2D z

♯ 1 8 mm 0.43 0.40 0.45 0.46 0.38 0.38 1.03
♯ 2 14 mm 0.46 0.51 0.43 0.50 0.43 0.50 0.90
♯ 3 26 mm 0.48 0.46 0.46 0.47 0.42 0.43 0.99
♯ 4 52 mm 0.51 0.53 0.50 0.48 0.50 0.56 0.90

Average 0.47 0.48 0.46 0.48 0.43 0.47 0.95

ζ = 0.45 ± 0.06 β = 0.48 ± 0.05 z = 0.95 ± 0.1
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The cut-off length L⊥
c is plotted in Fig. 3.15 as a function of the specimen width.

This quantity L⊥
c can be interpreted as the in-plane size of the largest features ob-

served on the fracture surfaces. This length is observed to increase linearly with the
specimen width as L⊥

c = 0.15L.
This observation suggests that there is no intrinsic upper bound to the scale

invariance behavior of fractured sandstone surfaces – and more generally on surfaces
with a low roughness exponent. This observation represents a major difference with
fracture surfaces characterized by ζ ≃ 0.75. Indeed, we will show in Chapter 4 that
the upper bound of the self-affine domain is an intrinsic quantity of the material (and
do not depend on the sample width when the latter is large enough). The implications
of this result on the origin of the self-affine geometry of fracture surfaces are largely
debated in the next chapter.
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Figure 3.15: The correlation length L⊥
c (△) (resp. L

‖
c (⋄)) is plotted as a function of

the specimen width (resp. the specimen length). The slope of the dashed line is 0.15.

2D scaling properties : In chapter 2, we have shown that the analysis of profiles
parallel to the z-axis was insufficient to fully describe the 2D scaling properties of
fracture surfaces. The full characterization calls for the use of the 2D height−height
correlation function.

We will now use the same type of analysis to study the 2D properties of the sand-
stone fracture surfaces in order to determine whether their properties are isotropic
or not. Figure 3.16 displays the 1D correlation functions ∆h(∆z) and ∆h(∆x) com-
puted along the crack front (z-axis) and parallel to crack growth (x-axis), respectively
(sample width L = 14 mm). Both variations can be fitted to a power-law. However,
the curves do not exactly coincide. The roughness amplitude is slightly larger along
the crack front direction. This has been systematically observed on all samples. More-
over, the scaling exponents corresponding to the slope of the power-law fits performed
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in the self-affine domains [d, L⊥
c ] and [d, L

‖
c ] are found to be slightly different: The

roughness exponent ζ = 0.46 measured parallel to the direction of the crack front
is found to be slightly smaller than β = 0.50 measured along the direction of the
crack growth. However, fluctuations of the same order of magnitude as the value of
these exponents are observed for samples of different widths – ζ1D and β1D measured
on each sample are listed in Table 3.3. The difference measured between the two
scaling exponents is therefore not large enough to determine whether the surfaces are
isotropic or not. As shown in Chapter 2, the analysis of the 2D correlation function
brings more precise information because it involves a larger statistical ensemble.6
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Figure 3.16: 1D height−height correlation functions measured parallel to the direction
of crack propagation and to the crack front for the surface of a fractured sandstone
sample with L = 14 mm. The straight lines are power-law fits in the self-affine domain
for ∆z > d ≃ 240 µm. The scaling exponents, corresponding to the slope of these
lines, are respectively equal to 0.46 and 0.50 parallel to the crack front and to the
crack propagation.

The 2D correlation function computed on the sandstone fracture surface analyzed
previously is shown in the insets of Fig. 3.17. At first, we look for the two exponents
β and z that optimize the collapse of the curve after normalization of the axis using
the Eq. (2.5). These are found to be β = 0.43 and z = 0.90. The obtained collapse
is shown in Fig. 3.17 a. As a comparison, one sets z equal to unity, and looks for the
value of β that optimizes the collapse, also following the Eq. (2.5). The best possible

6If the surface studied is composed of n × n data points, the method based on the power-law
fit of the 1D correlation function involves about n points (∆h(∆r)) each computed as the mean of
n2 experimental points while the method based on the calculation of the 2D correlation function
involves the collapse of n2 points (∆h(∆z,∆x)) each computed from n2 experimental points.
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collapse, obtained for β = 0.47, is shown on Fig. 3.17 b. The good collapse of
the curves obtained using the first procedure (figure a) and the poorer one obtained
in the second case by setting z = 1 (figure b) suggests that the anisotropy effect
indeed exists and that the 2D correlation function follows the Family−Vicsek scaling
given in Eq. (2.5) with z < 1. According to Eq. (2.5), the roughness exponent
corresponds to the scaling exponent of the power-law regime of the collapsing curve.
By fitting the experimental variations, one obtains ζ = 0.43. Computing the 2D
correlation function on the other fracture surfaces of samples with other widths, one
observes systematically that the exponent ζ is smaller than β.7 In addition to ζ1D
(resp. ζFT) and β1D (resp. βFT) calculated from the calculation of the 1D correlation
function (resp. 1D Fourier power spectrum) of each investigated surface, the two
exponents β2D and z that optimize the collapse of the curves as well as the exponent
ζ2D corresponding to power-law behavior of the collapsing curve are listed in Table
3.3. Compiling the three different techniques, one finds ζ = 0.45±0.06, β = 0.48±0.05
and z = 0.97 ± 0.08.
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Figure 3.17: Normalized 2D variations with ∆z of the height−height correlation
function at various values of ∆x for the surface of the fractured sandstone sample of
width L = 14 mm: (a) β = 0.50 and z = 0.90 are chosen to optimize the data collapse
using Eq. (2.5). The straight line that corresponds to the fit of the power-law regime
of the collapsing function has a slope of ζ = 0.43; (b) Best data collapse obtained by
setting z = 1.

7Even though their values lie within the error bars of each of them.
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3.5 Concluding remarks

In this chapter, the morphology of fracture surfaces of materials made of cemented
grains has been investigated. This study was motivated by the observation of a rough-
ness exponent ζ ≃ 0.4 − 0.5 on sandstone fracture surfaces [2, 35] much lower than
the universal roughness exponent ζ ≃ 0.75 (see Chapter 2). A series of fractured
glass ceramics samples realized by the same process but displaying very different
characteristics (porosity, grain size, fracture propagation velocity) has been studied
systematically: The fact that the same roughness exponent was found in these mate-
rials as in natural sandstone samples in a broad range of porosities (3 % < φ < 26 %)
and of grain diameters (50 µm < d < 240 µm) has demonstrated the robustness of
this low value.

More precisely, fracture surfaces of artificial and natural sandstone were observed
to exhibit self-affine properties with a roughness exponent ζ ≃ 0.42 ± 0.05 measured
along the crack front direction in both the quasi-static and rapid failure regimes.
Moreover, the fracture surfaces investigated were shown to display clear Gaussian
distribution of the height variation in the self-affine domain of length scales ranging
from the grain size to a given fraction of the sample width. In other words, the whole
geometry of profiles parallel to the crack front is entirely described by one exponent
up to a cut-off length scaling with the system size. The two-dimensional geometry
of the two-dimensional fracture surface is rather more complex: Profiles parallel to
the crack growth direction are also mono-affine with Gaussian height fluctuations but
characterized by a slightly larger scaling exponent β ≃ 0.48 ± 0.05. More gener-
ally, these anisotropic fracture surfaces are well described by their 2D height−height
correlation function that follows a Family−Vicsek scaling (see Eq. (3.1)).

The roughness amplitude was observed to depend very weakly on both the fracture
test geometry and the crack growth velocity, and to increase linearly with both the
grain diameter and the porosity. This result suggests that the transition from trans-
to inter-granular fracture propagation that occurs with increasing porosity does not
affect the value of the scaling exponents.

In the following chapter, we will suggest an explanation for the observed low value
of the roughness exponent. In particular, we will explain why the materials studied in
Chapter 2 display a roughness exponent ζ ≃ 0.75 and while those studied in chapter
4 display a lower value ζ ≃ 0.4. As a starting point, we will study the propagation
of a crack in a perfectly brittle heterogeneous material and will give the properties of
the fracture surface roughness expected in that case. The effect of the damage at the
crack tip on the fracture surface morphology will be also discussed.
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In the previous chapters, the minimal set of relevant parameters necessary to
characterize the 2D scaling properties of fracture surfaces was identified: Their 2D
scaling properties can be described by the so-called Family−Vicsek scaling charac-
terized by two independent roughness exponents, ζ and β, measured respectively
perpendicularly and parallel to the direction of the crack growth. The second impor-
tant experimental result is the existence of two sets of exponents, namely ζ ≃ 0.75 and
β ≃ 0.60 for fractured aluminum alloy, silica glass, mortar, wood and quasi-crystal
samples and ζ ≃ 0.40 and β ≃ 0.50 for glassy ceramics and sandstone samples. The
value of the exponents is robust as it depends neither on the crack growth velocity1

nor on the details of the microstructure. This suggests the existence of, at least, two

universality classes for failure problems in heterogeneous materials.
These experimental observations raise many questions: What is the origin of these

two universality classes? What is the origin of their universal properties? The pe-
culiar rupture mode of glass ceramics is a key element: In these materials, the crack
is expected to propagate by breaking the solid bridges between the sintered grains
sequentially, one after the other. In other words, the fracture of glass ceramics re-
produces at the scale of the bead diameter the ”classical” picture of perfectly brittle

1In the quasi-static limit.
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rupture [8]. Annex A is devoted to the study of the mechanical properties of glass
ceramics. Strong arguments in favor of a scenario of brittle fracture in these materials
are given there. This suggests that a model of crack propagation in an ideal perfectly
linear elastic brittle disordered material could explain the experimental measurements
of Chapter 3. In the first section of this chapter, we will predict within the Linear
Elastic Fracture Mechanics (LEFM) framework the surface properties of these ideal
materials. We will show that - in this framework - fracture surfaces are expected
to be anisotropic and to satisfy the Family−Vicsek scaling. Moreover, the predicted
exponents are ζ = 0.39 and β = 0.49, in very good agreement with the experimen-
tal observations reported for glass ceramics and sandstone samples. In the second
section, model and experimental measurements will be compared quantitatively. The
assumptions performed to predict theoretically the surface properties will be con-
fronted independently with experiments. This analysis will establish the extent up to
which the theoretical model describes the fracture of sandstone and glass ceramics.
Finally, the second universality class {ζ ≃ 0.75 and β ≃ 0.6} for failure problems
will be investigated. As the archetype of minimal elastic material, the fracture of
silica glass will be studied in detail: Mechanisms that are not taken into account in
the theoretical description of brittle fracture will be shown to take place at length
scales consistent with those at which the self-affinity with exponents ζ ≃ 0.75 and
β ≃ 0.60 is observed. In other words, the geometry of surfaces of fractured silica
glass at the nanometer scale does not result from brittle failure. The case of the
aluminum alloy, mortar, wood and quasi-crystal fracture will be also discussed. A
scenario where damage processes play a central part is suggested to explain the value
of the exponents measured on these materials.

4.1 Model of crack propagation in ideal linear elas-

tic disordered materials

The objective of this section is to predict the morphology of crack surface in a
perfectly linear elastic disordered material. In the next section, the predictions will be
compared to the experimental results obtained for glass ceramics representing a good
example of such a material (see Annexe A). We consider a single crack propagating
in an ideal linear elastic disordered material. We restrict the following analysis to
the case where the crack speed is small enough compared to the sound speeds2 in the
material so that the quasi-static approximation is relevant. We will focus here on a
mode I loading corresponding to the experimental situations studied in chapter 2 and
3. The crack front (oriented along the z-axis) is thus confined roughly to a plane (x, z)
perpendicular to the tensile forces (along the y-axis) and propagates along the x-axis.
In a homogeneous material, the crack would propagate at uniform velocity and would

2Speed of longitudinal, transverse and Rayleigh waves.
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lead to a planar fracture surface (the plane (z, x)). But the heterogeneities of the
material induce both in-plane (along x) and out-of -plane (along y) perturbations
of the shape of the edge. Schematic views of the in-plane f(z, t) and out-of-plane

Figure 4.1: Geometry of perturbed cracks subject to mode I loading (large arrows
indicating the direction of macroscopic loading). (a): In-plane perturbations. (b):
Out-of-plane perturbations. The shape of the fracture surface is effectively the history
of the out-of-plane perturbations of the crack front. (Taken from Ref. [40]).

h(x = x0 + f(z, t), z) displacements are shown in Fig. 4.1. For simplicity, the out-of-
plane perturbations are represented for a crack front without in-plane perturbations
(f(z, t) = 0). The fracture surface is the print of the out-of-plane perturbations h(x, z)
of the crack front. In the following, we will see that, for small enough perturbations,
the out-of-plane displacements are independent of the in-plane displacements so that
the shape of the fracture surface can be predicted independently of f(z, t). This
implies that the dynamical properties of the crack – the local velocities of the crack
front ∂f

∂t
(z, t) – are decoupled from the crack trajectory h(x, z). An experimental

argument based on the analysis of fracture surfaces will also support this statement
(see Section 4.2 ).

Stress field in the vicinity of a slightly perturbed crack front : We consider
now a point M of the crack front characterized by its position (x = x0 + f(z, t), y =
h(x, z), z). The local stress field around M determines its trajectory. The stress at a
distance r ahead of the point M in the direction θ can be written as the sum of the
contributions of each of the three fracture modes (see Section 1.1), each mode being
developed as a rk/2 expansion with k ≥ −1

σij =

III
∑

p=I

Kp√
2πr

gij
p (θ) + Tpk

ij
p (θ) + Apl

ij
p (θ)

√
r + ... (4.1)

where Kp (the so-called stress intensity factors), Tp (T -stress) and Ap are constants
depending on the loading and the geometry of the sample. gij

p , kij
p and lijp are universal
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functions of θ (see Eq. (1.2) for the complete expression of gij
I (θ) for example).

Even though we focus here on a dominantly mode I loading situation, KII and
KIII are not equal to zero. The perturbations h and f of the crack shape induce
small shearing loading around the crack front. Assuming h and f to be small, the
value of the stress intensity factors Kp can be developed to first order as

KI = K
(0)
I +K

(1)
I + ... (4.2)

KII = K
(0)
II +K

(1)
II + ... (4.3)

KIII = K
(0)
III +K

(1)
III + ... (4.4)

The first terms K
(0)
p in these developments are equal to the stress intensity factors

in the unperturbed planar case with a straight crack front while the second terms
K

(1)
p in the developments are linear in h or f. We assume that the perturbations f

and h are small so that terms of higher order than 1 can be neglected. K
(0)
p is set by

boundary loading conditions supposed far from the crack front. The external loading
is of mode I type so that K

(0)
I = Kext

I and K0
II = K0

III = 0. The dependence of

the term K
(1)
I on f has been studied in Ref. [74] and then in Ref. [75]. The terms

K
(1)
II and K

(1)
III were analyzed in Ref. [76]. They showed the existence of two terms

depending on h. The study of Mochvan et al. [77] confirmed only the form of the first
one. The second term, so-called ”memory term” because it gives the dependence of
the stress intensity factor with the whole shape of past trajectory of the crack front,
was shown to be much more complicated than the expression proposed in Ref. [76].
The authors derived also an another term linear in h (the last term of Eq. (4.6)). All
these results calculated through linear elasticity for an infinite sample of Poisson’s
ratio ν broken under a mode I loading in the quasi-static limit can be summarized as

KI = K
(0)
I +

K
(0)
I

2π

∫ +∞

−∞

f(z′) − f(z)

(z′ − z)2
dz′ (4.5)

KII =
K

(0)
I

2

∂h

∂x
− K

(0)
I

2π

2 − 3ν

2 − ν

∫ +∞

−∞

h(x, z′) − h(x, z)

(z′ − z)2
dz′ + ∆Kmemory

II +

√

π

2
AIh(x, z)

(4.6)

KIII = K
(1)
III(h, z,K

(0)
I ) (4.7)

where the ”memory” term Kmemory
II is given by

∆Kmemory
II (x, z) = −

∫ x

−∞
∫ +∞
−∞

{

wII
x (x− x′, z − z′)

(

∂(hTxx)
∂x

|(x′,z′) + ∂(hTxz)
∂z

|(x′,z′)

)

+ wII
z (x− x′, z − z′)

(

∂(hTxz)
∂x

|(x′,z′) + ∂(hTzz)
∂z

|(x′,z′)

)}

dx′dz′

(4.8)
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with

wII
x (x, z) =

√
−2xH(x)

π3/2∗(x2+z2)

(

1 + 2ν
2−ν

1−(z/x)2

1+(z/x)2

)

wII
z (x, z) =

√
−2xH(x)

π3/2∗(x2+z2)
2ν

2−ν
2z/x

1+(z/x)2

(4.9)

where H(x) is the Heaviside function.

Equation of the crack path in a homogeneous material : From these three
equations and Eq. (4.1), one can calculate the diverging part of the stress field in the
vicinity of a crack front for given distortions h and f . This stress field determines
the crack trajectory. Indeed, the path chosen by a crack propagating in an elastic
isotropic material is the one for which the local stress field is of mode I type (”criterion
of local symmetry” [9, 10, 11]).3 In other words, the net mode II stress intensity factor
should vanish in each location z along the crack front and any position x of the mean
line. Taking the right part of Eq. (4.6) equal to zero, one gets

∂h

∂x
=

1

π

2 − 3ν

2 − ν

∫ +∞

−∞

h(x, z′) − h(x, z)

(z′ − z)2
dz′ − 2

∆Kmemory
II

Kext
I

− AI

Kext
I

√
2πh (4.10)

This means that the path – the angle ∂h
∂x

(x, z) – followed by the crack in M =
(x, h(x, z), z) depends only on the out-of-plane perturbation h of the crack shape.
This represents an important simplification of the problem because the knowledge
of the in-plane displacement f is not necessary to predict to first order the fracture
surface morphology. Moreover, Eq. (4.10) is time independent. In other words, this
so-called path equation predicts the path followed by the crack is independent of the
dynamics of the propagation. The dynamics, i.e. the local velocities of the crack
front, is described by a decoupled equation of motion satisfied by f .

In the right part of Eq. (4.10), three terms are involved: The first one gives the
dependence of the crack path on the full shape of the crack front at its current position
x. The second term shows that the crack keeps the ”memory” of the path followed in
the past, its contribution resulting from an integral over the crack front shape on all x′

and z′ values such as x′ ≤ x (see Eq. (4.8)). Finally, the third contribution is purely
local and depends only on the position h(x, z) of the point M . These three contri-
butions are in fact not equivalent. In order to compare the various terms involved
in the right part of Eq. (4.10), one calculates their Fourier transform. Denoting
by ĥ(kx, kz), ŵ

II
x (kx, kz), and ŵII

z (kx, kz) the Fourier transform of h(x, z), wII
x (x, z),

and wII
z (x, z), respectively, the first term leads to 2−ν

2−3ν
|kz| ĥ(kx, kz), the second to

3The ”criterion of local symmetry” was proposed to predict the crack path for two-dimensional
problems invariant along the z-axis. In the three-dimensional case treated here, we make the as-
sumptions – widely used in the literature [41, 40] – that the crack only propagates along the x-axis
and that the criterion of local symmetry is still valid. This assumption neglects the effects of the
mode III contribution for which we ignore until now the consequence on the crack path.
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[

ŵII
x (kx, kz)

(

Txx

Kext
I

kx + Txz

Kext
I

kz

)

+ ŵII
z (kx, kz)

(

Txz

Kext
I

kx + Tzz

Kext
I

kz

)]

2iĥ(kz, kx)
4 and the

third one to −
√

2π AI

Kext
I

ĥ(kx, kz). The ratio – in absolute value – of the second and

the third term to the first one leads to5

(2)

(1)
≤ (|Txx| + 2|Txz| + |Tzz|)

√
c

Kext
I

(
1

√

|kx|c
+

1
√

|kz|c
)

(3)

(1)
≃ |AI | c

Kext
I

1

|kz|c
(4.11)

Thus, as soon as the scale of interest ∆z = 2π
kz

along the crack front is smaller than a
typical length scale c of the system, e.g. the crack length, the first term is dominant
compared to the third one.6

This is a great simplification because the path followed by the crack depends only,
to first order, on the perturbation of the crack edge and does not keep memory on
its past, i.e. of its trajectory. Let us note that the term ∂h

∂x
is of the same order than

(1) that’s why it is also relevant compared to (2) and (3). A direct experimental
confirmation of this hierarchy will be given in Section 4.2.

Effect of the imperfect mode I loading : Until now, the model predicting the
crack path, and especially the stress field in the vicinity of the crack tip, has been

4Txx, Tzz and Txz have been supposed to have weak dependence in x and z compared to h so that
the second term in the expressions

∂hTij

∂x
= Tij

∂h
∂x

+h
∂Tij

∂x
and

∂hTij

∂z
= Tij

∂h
∂x

+h
∂Tij

∂x
can be neglected

in Eq. (4.8). In view of the important fluctuations of height, this assumption seems justified.
5The details of the calculation of the Fourier transform (2) of the second term in

Eq. (4.10) are the following. First, the calculation of the Fourier transform of
wII

x and wII
z leads to ŵII

x = 1√
|kx|

α( kz

kx
) and ŵII

z = 1√
|kx|

β( kz

kx
) with α(X) =

∫ ∫ +∞
−∞ e−iue−ivXwII

x (u, v)dudv and β(X) =
∫ ∫ +∞

−∞ e−iue−ivXwII
z (u, v)dudv. Numerical integra-

tion of the preceding expressions leads to α(X)
X∼0∼ β(X)

X∼0∼ X , α(X)
X∼1∼ β(X)

X∼1∼ 1

and α(X)
X∼+∞∼ β(X)

X∼+∞∼ 1√
X

. Therefore, one deduces the asymptotic behaviors (2)
kz≪kx∼

kz

Kext
I

(

Txx+Txz√
|kx|

+
(

kz

kx

)

Txz+Tzz√
|kx|

)

≃ kz
(Txx+Txz)

√
c

Kext
I

1√
|kx|c

, (2)
kz∼kx∼ kz

(Txx+2Txz+Tzz)
√

c

Kext
I

1√
|kz |c

and

(2)
kz≫kx∼ kz

Kext
I

(

Txz+Tzz√
|kz|

+
(

kx

kz

)

Txx+Txz√
|kz |

)

≃ kz
(Txz+Tzz)

√
c

Kext
I

1√
|kz|c

. Finally, whatever the value of

kx and kz, one gets (2) ≤ kz
(|Txx|+2|Txz|+|Tzz|)

√
c

Kext
I

(

1√
|kx|c

+ 1√
|kz |c

)

. This leads to the ratio (2)
(1)

given in Eq. (4.11).
6We assume here that both Tij

√
c and AIc are of the same order as the applied stress intensity

factor Kext
I . For example, considering for pedagogical reasons the case of the semi-infinite sample

with a notch and submitted to a constant loading σext, one can show [78] that Kext
I =

√
πc σext,

Txx

√
c = Tzz

√
c = −(1 − ν)σext, Txz = 0 and AI = 0. This leads to ratios in Eq. (4.11) inferior to

one for all length scales ∆x and ∆z smaller than the crack length c. In this geometry, the terms (2)
and (3) of Eq. (4.10) are negligible at all length scales. Finite element calculations have shown that
this result can be generalized to various geometries, and in particular remains valid for the fracture
test geometries used experimentally for the work of chapter 3.
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derived in the ideal case of a mode I loading (K
(0)
I = Kext

I andK
(0)
II = K

(0)
III = 0). From

an experimental point of view, a pure mode I loading is hypothetic. Resulting from
unavoidable imperfections of the loading system or in crack alignment, the sample
is submitted to small mode II and mode III loadings that imply K

(0)
II = Kext

II and

K
(0)
III = Kext

III that are small compared to Kext
I . In particular, the expression of KII

given in Eq. (4.6) does not reduce to the lonely term K
(1)
II . Another term K

(0)
II = Kext

II

has to be added. Using the same argument as in the previous paragraphs to derive
the path of the crack front (KII = 0), one gets

∂h

∂x
=

1

π

2 − 3ν

2 − ν

∫ +∞

−∞

h(x, z′) − h(x, z)

(z′ − z)2
dz′ + F0 (4.12)

where F0 = −2
Kext

II

Kext
I

. Although this term is very small7, we will see in the next

paragraphs that it is relevant for setting the scaling properties of fracture surfaces.

Effect of disorder : Until now, the elastic material has been considered as perfectly
homogeneous. In that case, we have shown that the out-of-plane displacement of the
crack front - which determines the shape of the fracture surface - satisfies Eq. (4.10)
where the two last terms can be neglected at small scales compared to the system
size. The second term of this equation acts as a restoring force: Any perturbation of
the straight crack vanishes and the resulting fracture surface is flat.8 The elasticity
competes with the effect of the disorder which makes the crack front rough: Even
though elasticity theory predicts a straight propagation of the crack front, the disorder
of the material can favor some directions because they correspond to ”weak planes” in
which the bonds are easier to break. In other words, the crack front takes advantage
of the disorder of the material by wandering between stronger zones. One can model
this effect by adding a new term Kdis

II to the stress intensity factor in mode II in
Eq. (4.6). Using then the equation of trajectory KII = 0, one gets another term

η = 2
Kdis

II

K
(0)
I

in Eq. (4.10). In other words, the direction of propagation of a point M of

the crack ∂h
∂x

predicted by the linear elasticity deviates from η(x, h(x, z), z) because of
the disorder. This additional noise depends on the position of this point M and has a
zero mean value since the heterogeneities of the material do not favor particularly the
deviation of the crack front toward either positive or negative h values. Finally, from

7From the measurement of the slight deviation α of the mean plane of the fracture surface with
respect to the plane perpendicular to the direction of the external mode I loading, it is possible to

estimate F0 = −2
Kext

II

Kext
I

= −3α. Measured values of α ≃ 2 ◦ leads to |F0| ≃ 0.07.

8The presence of the first term in the right part of Eq. (4.10) ensures the stability of the crack
for perturbations of small sizes. To ensure the stability of the crack with respect to perturbations of
all sizes, the second term is required. This stability condition is fulfilled if the T -stress is negative
[10].
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Eq. (4.10) derived for a homogeneous material, one obtains the following equation
for the crack trajectory

∂h

∂x
= A(ν)

∫ +∞

−∞

h(x, z′) − h(x, z)

(z′ − z)2
dz′ + η(x, h(x, z), z) + F0 (4.13)

where A(ν) = 1
π

2−3ν
2−ν

is a constant depending only on the Poisson’s ratio of the
material.

It must be emphasized that time does not play any role in this equation. In
particular, the x coordinate is not necessarily proportional to time. Equation (4.13)
only provide the path followed by the crack but give no information on the time
dependence of the crack front position. In contrast with models as in [36] where
the fracture surface is described as the trace left by the crack front, the dynamics
of which is described through a Langevin equation, the path equation proposed here
gives no information on the motion – the dynamics – of the crack front. The impor-
tant consequences for the expected fracture surface morphology are discussed in the
following.

Family−Vicsek scaling of fracture surfaces : Equation (4.13) describes the
path followed by a crack in a brittle disordered material in the quasi-static limit for
small perturbations h and at small scales compared to the system size. Its solution
h(x, z) is the map of the heights of the fracture surface under these hypotheses.

This equation describes the propagation of an elastic line in a random potential.
A general property of the solution of such equations is already known [39, 38]: h(x, z)
follows the so-called Family−Vicsek scaling [66]

〈(h(x+ ∆x, z + ∆z) − h(x, z))2〉1/2
x,z ∼ ∆xβg(∆z/∆x1/z) (4.14)

where g(u) is a scaling function equal to a constant when u ≪ 1 and to uζ when
u≫ 1. The roughness exponent ζ , the growth exponent β and the dynamic exponent
z are related by ζ = βz. The general solution of this equation is in agreement with the
2D scaling properties of fracture surfaces: They follow the Family−Vicsek scaling and
are characterized by two different exponents ζ and β, perpendicularly and parallel to
the crack growth direction, respectively. In other words, fracture surfaces resulting
of brittle failure are expected to be anisotropic.

The properties of the noise η(x, h, z) will set the value of these scaling exponents.
Equations similar to Eq. (4.13) are rather well understood in cases where 2D random
potentials – either η(x, z) or η(h, z) – are involved. But the effect of a 3D random
potential η(x, h, z) on the value of the scaling exponents is still an open question. In
the next paragraph, we will give simple arguments that demonstrate some links be-
tween the two problems. They will be used to interpret the value of the experimental
exponents measured on fracture surfaces of brittle materials but cannot be considered
as sufficient to solve the difficult theoretical question of the line propagation in a 3D
random potential.
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Quenched versus thermal disorder : We focus here on the properties of the 3D
random potential. Although its three arguments are the three variables of space, they
are not equivalent. In particular, the variable x may be considered as representing
time because it does not play any explicit role in Eq. (4.13). In this, the noise
η(x, h, z) do not appear as a three dimensional quenched noise9, but rather as a
two-dimensional noise η(h, z)x slowly varying with an effective ”time” x.

In the following, we will use qualitative arguments to assess roughly the relative
contribution of the quenched and thermal fluctuations. At first, let’s analyze the
variations of the noise η when a point M(x0, h0, z0) of the crack front is moving
forward in the plane (x, z)10 to another point M ′(x0 + ∆x, h0 + ∆h, z0) (see Fig.
4.2). According to Eq. (4.14), when the point M of the crack front propagates over a
distance ∆x along the x-axis, its typical height moves over a distance ∆h = ℓ1−β

x ∆xβ

along the h-axis.11 As a result, the variation of the normalized noise η = η√
<η2>

felt

by the crack tip for a small increment ∆x is

η(M ′) − η(M) = ~▽ηM .
~dM =

∂η

∂x
dx+

∂η

∂h
dh =

∂η

∂r
(dx+ ℓ1−β

x dxβ) ≃ dx

rη
+
ℓ1−β
x dxβ

rη

(4.15)
The first term in the noise variation plays the role of the ”thermal” contribution to
the fluctuations while the second one corresponds to the ”quenched” contribution.
We consider here an isotropic material so that the spatial correlation length rη of the
noise η(x, h, z) is the same in all directions. Thus, the gradient of the normalized
noise ∂η

∂r
≃ 1

rη
is also the same in all directions.

Let’s consider now a point M propagating over the distance rη along the x-axis. It
will thus feel a normalized ”thermal” fluctuation of the order of unity. According to

Eq. (4.15), it will also undergo a ”quenched” fluctuation of amplitude
ℓ1−β
x rβ

η

rη
caused

by its propagation along the h-axis. This incremental path is represented Fig. 4.2.
As a consequence, the ratio ( rη

ℓx
)1−β is a good estimate for the relative strength of the

thermal noise compared to the quenched noise. Assuming that the noise η can be
written without loss of generality as the sum of its thermal and quenched contribution,
Eq. (4.13) becomes

∂h

∂x
= A(ν)

∫ +∞

−∞

h(x, z′) − h(x, z)

(z′ − z)2
dz′ + ηq(h, z) + ηt(x, z) + F0 (4.16)

with 〈ηq(h, z) ηq(h
′, z′)〉 = D∆(h−h′)∆(z− z′) and 〈ηt(x, z) ηt(x

′, z′)〉 = D ( rη

ℓx
)2(1−β)

9The expressions ”quenched” and ”thermal” will be used here to designate a noise that depends
on the position and the time respectively.

10Using the ”criterion of local symmetry” that is a two-dimensional criterion to derive the Eq.
(4.13), we limited previously our model to cracks for which all the points of the front propagate in
the plane (x,y). Motion along the z-axis are in fact forbidden.

11We use here the topothesy ℓx, or scale at which ∆h is equal to ∆x, in order to work with
equalities and not proportionality relations.
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∆(x − x′) ∆(z − z′). Here, D is the strength of the disorder η(x, h, z) and ∆(u) is a
rapidly decreasing function of u for u > 0 with ∆(0) = 1 and decays exponentially to
zero over a distance rη.

12 The experimental measurement of rη (typical length scale
of the disorder in the material) and ℓx (related to the roughness amplitude) are of the
same order for glass ceramics so that thermal and quenched contributions of the noise
are also of the same order. The consequences on the fracture surface morphology are
now discussed.

Figure 4.2: Trajectory of a point M of the crack front. While the point is moving
over a distance ∆x along the x-axis, it is also moving over the distance ∆h = l1−β

x ∆xβ

along the y-axis (see Eq. (4.14)).

Fracture surface morphology : The morphology of the fracture surface is given
by Eq. (4.13). We made the hypothesis that it can be written as Eq. (4.16). We
have then shown that thermal and quenched noise have roughly the same amplitude.
This last equation describes the motion of an elastic line h(z) that ”creeps” – the x
coordinate playing the role of time – in a random potential ηq due to the thermal
fluctuations ηt. The geometry of the line – and so the crack surface morphology – is
described by its 2D correlation function ∆h(∆z,∆x) that follows a Family−Vicsek
scaling (see Eq. (4.14)) involving two independent scaling exponents ζ and β. Let’s
focus at first on the value of ζ . Recent numerical works [79, 80] lead to the following
picture: The line is characterized either by its properties at equilibrium (ζeq = 1/3
[81]) or at the depinning threshold (ζdep = 0.39 [82, 83]).13 These properties are
observed at different length scales and ζeq = 1/3 (resp. ζdep = 0.39) corresponds to
small length scales (resp. large length scales). Moreover, one can also predict that the

12We suppose that the disorder is spatially uncorrelated in the material (see the discussion in
Section 4.2).

13For an elastic line in a quenched random potential, the geometry that minimized its energy
(elastic plus potential) is characterized by the roughness exponent at equilibrium ζeq. Considering
now a line driven by an external constant force in a quenched potential, its motion is possible only
for F > Fc. For F = Fc corresponding to the depinning threshold, the line is characterized by the
roughness exponent ζdep.
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geometry of the line at very short distances is governed by its thermal fluctuations so
that ζ = ζth = 0 (logarithmic correlation of height). On the other hand, because of
the finite velocity of the line, quenched disorder acts effectively as a thermal noise at
very large length scales so that the roughness exponent is also ζth at these distances
[39]. These results can be summarized by the phase diagram shown in Fig. 4.3.

Two features of the equation governing the morphology of fracture surface are
crucial here: (i) F0 is very small so that the effect of the finite velocity (that tends
to zero when the driving force tends to zero) acts at very large length scales; (ii) the
thermal and quenched contributions of the noise are of the same order – at least for
the case of glass ceramics – so that the effect of thermal fluctuations at short distances
is confined to very small length scales.

Figure 4.3: Phase diagram giving the geometry of an elastic line driven in random
potential at finite temperature. The roughness exponent of the line -perpendicularly
to the crack growth direction of the fracture surface - depends both on the length scale
∆z and the driving force F . The relevant situation to predict the fracture surface
morphology (Eq. (4.16)) corresponds to F0 ≪ Fc.

For these reasons, the expected roughness exponent resulting from the path equa-
tion of the crack front is ζeq at small length scales and ζdep at larger ones. Therefore,
the large scale exponent expected on fracture surfaces of brittle materials corresponds
to the one measured at the pinning/depinning transition (ζdep = 0.39). The corre-
sponding growth and dynamic exponents are β ≃ 0.50 and z ≃ 0.80, respectively
[84]. Their values coincide, within the error bars, with the experimental measure-
ments ζ = 0.42 ± 0.05 and β = 0.48 ± 0.05 made on glass ceramics and sandstone
fracture surfaces, that are archetypes of brittle materials (see Annexe A).

Concluding remarks : Within the framework of the linear elastic fracture me-
chanics, we have shown that a single crack propagating quasi-statically in a brittle
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material leads to a self-affine fracture surface with, at large scales, a roughness expo-
nent ζ = 0.39.14 According to Eq. (4.14), the two-dimensional scaling of the fracture
surface is also predicted: Its anisotropic scaling properties are characterized by a
slightly larger scaling exponent β = 0.50 along the crack propagation direction. Its
2D correlation function is expected to follow Family−Vicsek scaling. These results are
in agreement with the experimental measurements made on glass ceramics, archetype
of brittle material, at least at scales larger than their bead size (see Annex A). We
now compare the predictions of our theoretical model with the experimental facts on
fracture surfaces established in Chapter 3.

4.2 Fracture surface of porous materials: Interpre-

tation

In the previous section, the equation of the path of a crack propagating in a ideal
elastic brittle disordered material has been derived from linear elastic fracture me-
chanics. Within the hypothesis of quasi-static crack propagation, the fracture surface
is predicted to display anisotropic Family−Vicsek self-affine properties characterized
by the scaling exponents ζ = 0.39 and β = 0.50 along the crack front and the crack
growth directions respectively. This result is consistent with the experimental mea-
surements made on glass ceramics which is very close to an ”ideal” elastic brittle
material at scales larger than its bead diameter.

In this section, we go beyond the comparison between the experimental exponents
and those predicted by the model. We will show that this model reproduces quan-

titatively many other statistical properties of experimental fracture surfaces. This
section has two purposes: (i) To validate this model for describing crack propaga-
tion in brittle materials. In particular, many hypothesis of the theoretical analysis
of brittle crack propagation will be directly confronted to the experimental fracture
surfaces through appropriate statistical analysis of their roughness; (ii) To discuss the
physical origin of the properties of crack roughness.

We will show that analyzing the roughness of crack surfaces through the proposed
theoretical model can provide information on the broken material. Before this study,
we return to the main hypothesis of this model of brittle cracks.

14Previous models discussed in Refs. [40] and [41] and based on the same theoretical framework
predicted logarithmic correlations for the height fluctuation of fracture surfaces. The main difference
between these models and the present analysis is the properties of the disorder: We have considered
a more general case where the disorder of the material is three dimensional. Especially, the h-
dependence of the mechanical properties of the material are not neglected as in Refs. [40] and
[41]. This is crucial because in the latter case, the disorder would play the role of an effective
temperature. Therefore, the crack surface morphology would be given by the line fluctuations at
thermal equilibrium.
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Effect of the crack growth velocity : One of the basic assumptions of the model
proposed in Section 4.1 is the quasi-static propagation of the crack within the material,
i.e. vcrack ≪ vsound. If the crack growth velocity vcrack is a non negligible fraction of
the sound speed vsound, inertial effects occur and another approach is required [85]
(see for example [41] for the theoretical analysis of the implication on fracture surface
roughness). In table 4.1, the crack growth velocities and the sound velocity are listed
as a function of their porosity for the samples used in the present study. They have
been measured using the experimental technique described in Annex A.

φ = 3 % φ = 7 % φ = 15 % φ = 25 % φ = 26 %

Dyn. Q.S. Q.S. Dyn. Q.S.
vcrack ≃ 1 m s−1 40 mms−1 50 µms−1 ≃ 1 m s−1 2 mm s−1

vsound 3.35 km s−1 3.31 km s−1 3.23 km s−1 3.11 km s−1 3.11 km s−1

Table 4.1: Crack growth velocity vcrack and velocity of the sound vsound for glass
ceramics samples with various porosities φ and the same mean glass bead diameter
d = 116 µm broken either in the Brazilian test geometry (Dyn.) or in the TDCB
geometry (Q.S.). The hypothesis of quasi-static crack propagation (vcrack ≪ vsound)
is always valid.

Sound velocity in the glass ceramics decreases slightly with the porosity but re-
mains on the order of 3 km s−1, three orders of magnitude larger than the crack
growth velocity: This justifies the quasi-static approximation used to analyze the
crack propagation in the theoretical investigation of the fracture surface morphology.

It must also be emphasized that a broad range of crack growth velocities has
been investigated. As underlined in Chapter 3, this parameter apparently did not
influence the scaling properties of the fracture surfaces for the various samples of
glass ceramics investigated. This observation questions previous theoretical analysis
[36] that described the crack front propagating in a disordered material as a moving
line close to its depinning transition. In that case, one expects to observe two different
self-affine regimes on the fracture surface: At small (resp. large) length scales, the
scaling exponent correspond to an effective quenched noise (resp. thermal noise). The
crossover length scale between these two regimes is expected to decrease with the crack
growth velocity. This effect is not observed although the velocity investigated varies
over more than five decades.

Moreover, the roughness amplitude depends very weakly on the velocity. Plotted
on the same graph (see Fig. 3.11) as a function of the porosity, these amplitudes lie
on the same linear curve although these measurements correspond to different crack
growth velocities. This is in perfect agreement with one of the major prediction of
the model presented in Section 4.1: The trajectory and velocity of the crack front
are fully decoupled. The parameters involved in the path equation (Eq. (4.12)) -
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some properties of the disorder in the material and its Poisson’s ratio - depend on
the material but not on crack growth velocity. This equation holds only in the quasi-
static limit: As soon as the crack growth velocity approaches the velocity of sound,
the dynamics of the crack front will influence its trajectory, leading for example to
the patterns observed on mist and hackle zones on glass fracture surfaces.

Time symmetry of fracture surfaces : The morphology of the fracture surfaces
has been observed to be independent of the crack growth velocity. This is in agreement
with the theoretical argument showing the decoupling between the dynamic (or in-
plane perturbations) and the trajectory (out-of-plane perturbations) of the crack.
After discussion with J. P. Bouchaud from Service de Physique de l’Etat Condensé
(CEA, Saclay), we decided to go deeper into this analysis and to tackle the following
related problem: Because of clear geometrical reasons, the in-plane motion of the
crack is oriented along the x-axis toward the positive value of x (see Fig. 4.1). Is
there any signature of this directionality on the out-of-plane perturbations of the
crack? In other words, is it possible to distinguish between backward and forward of
crack propagation from the analysis of a fracture surface?

The issue of the determination of the orientation of the crack propagation from the
fracture surface morphology has been already addressed in Section 2.3: It is possible
to take advantage of the anisotropic scaling properties of the fracture surface to know
after complete rupture the propagation orientation of the crack that led to the failure
(see the patent in [62]). To test the possible presence of a signature of the direction of
the crack propagation on the fracture surface, we will use statistical tools developed
by Pomeau [86]: Instead of using the classical time two points correlation function
< h(t) h(t+∆t)−h(t)h(t−∆t) >t, we will compute a four points correlation function
defined as

ψ(∆t) =< h(t) h(t+ 2∆t) − h(t+ ∆t) h(t+ 3∆t) >t (4.17)

which is a priori not invariant under the transformation ∆t→ −∆t and thus sensitive
to the propagation direction. In the following, the correlation function ψ will not be
computed on h(x = t, z) where x and z are the propagation and crack front direction

respectively, but on its derivative ∂h(x=t,z)
∂t

.15 The correlation function ψ is calculated
for various values of z and then averaged over these z values.

To illustrate the properties of this correlation function, one can compute it on
signals for which we know a priori their properties of symmetry. Fig. 4.4 displays
the correlation function as defined in Eq. (4.17) for a signal h(t, z) solution of the
Edwards-Wilkinson equation [87] with either thermal (◦) or quenched disorder (⋄)

15We compute the correlation function on the derivative in time - or in x - of the studied signal
in order to have a stationary signal with a constant mean value. This justifies the use of an average
over the time t as required in the definition of ψ given in Eq. (4.17). Indeed, for the signals that will
be studied in the following, i.e. elastic line propagating in a random medium, h(t, z) is increasing
in average while its derivative ∂h

∂t
keeps a constant mean value.
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(see footnote 9). While the equation with thermal disorder is invariant under the
transformation ∆t to −∆t, the solution of the equation with quenched disorder is
expected to be asymmetric in time (see footnote 16). The signature of this asymmetry
is obvious on its correlation function represented in Fig. 4.4.
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Figure 4.4: Correlation function as defined in Eq. (4.17) computed on simulated

signals hz(t)
∂t

where hz(t) is solution of the Edwards-Wilkinson equation with thermal
(◦) and quenched disorder (⋄). The equation of motion of the line is invariant under
the transformation ∆t to −∆t only in the first case. The signature of these properties
is obvious on the variation of correlation function ψ.

We use now this statistical tool to reveal possible signature of the propagation
sense of the crack front on the roughness of fracture surfaces of porous materials. Fig.
4.5 displays the variations of this correlation function computed on the experimental
height map h(x, z) of the fracture surface of glass ceramics with porosities φ = 26 %
(a) and φ = 7 % (b). In both cases, the mean bead diameter that corresponds also to
the pixel size of the height map of the surface is ≃ 100 µm. We do not observe any
significant signature of a time asymmetry as found on simulated signals in Fig. 4.4.
Moreover, the slight deviations of ψ to the zero value were found to be uncorrelated
with the physical direction of propagation measured during the fracture test. They
are interpreted as statistical fluctuations.

This result agrees with the structure of the equation of trajectory proposed in
Section 4.1. Indeed, the latter is invariant by the transformation x→ −x.16 Finally,

16To realize it, let’s come back at first on the Edwards-Wilkinson equations. With a thermal

disorder, one can use the variable change h = ĥ + F t so that the equation ∂h
∂t

= ∂2h
∂z2 + η(z, t) + F

becomes ∂ĥ
∂t

= ∂2ĥ
∂z2 +η(z, t) which is invariant by the transformation t to −t. This change of variable

in the case of the Edwards-Wilkinson equation with a quenched disorder η(h, z) leads to a noise

η(ĥ + F t, z) which is not symmetric in time. The constant term F0 in the equation of trajectory
of the crack front (Eq. (4.13)) is so small that it can be neglected. Thus, the variable change
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let us note that at scales smaller than the grain size where the surface is not self-
affine, a signature of the propagation sense can be observed as shown in the insert
of Fig. 4.5 b. It displays the variations of the correlation function computed on the
height map of the same fracture surface that in the main panel, but with a better
lateral resolution (pixel size of 20 µm). The curves are clearly asymmetric in the
range −100 µm < ∆x < 100 µm similar to those observed in Fig. 4.4 for simulated
signals with time-asymmetry properties.
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Figure 4.5: Correlation function ψ as defined in Eq. (4.17) computed on experimental
signals ∂h

∂x
and averaged over various values z where h(x, z) is the fracture surface of

glass ceramics with porosities φ = 26 % (a) and φ = 7 % (b). The x-axis corresponds
to the direction of propagation. In the both cases, we do not observe any significant
signature of a time asymmetry as found on simulated signals in Fig. 4.4. The analysis
performed on a fracture surface with a smaller resolution (pixel size of 20 µm in
insert instead of 100 µm in the main graph) suggests that a sense signature could be
found on fracture surface, but for length scales that are not in the self-affine domain
(100 µm < ∆x).

Three concluding remarks result from this statistical analysis of the fracture surfaces:

(a) Their roughness, i.e. the out-of-plane perturbations of the crack front, is found
to be symmetric with respect to the direction of propagation. In contrast, the
in-plane perturbations of the crack front are not symmetric by the transforma-
tion x → −x. This confirms the decoupling – at least for small perturbations
– between these two problems as predicted by the Linear Elastic Fracture Me-
chanics: The dynamics of the crack and its trajectory are independent.

(b) Fracture surfaces are symmetric by the transformation x → −x. Therefore,
the corresponding path equation of the crack front must be invariant by the

h = ĥ+ F t is not required and the equation is symmetric with respect to x.
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transformation x → −x. To derive this equation in Section 4.1, we compared
the various contributions to the mode II stress intensity factor. It was shown
that the effect of the fracture surface morphology – the ”memory” term in
Eq. (4.10) – on the path chosen by the crack is negligible. Contrary to the
other terms involved in the path equation, this one is not symmetric when x is
changing to −x. We confirm by the present analysis that the ”memory” term
is negligible.

(c) The roughness of the fracture surface cannot reveal all the history of the failure
of a material. In particular, if the orientation of the crack propagation is possible
through a statistical analysis of fracture surfaces [62], the determination of its
direction is impossible, at least on length scales for which the fracture surface
is self-affine. This result holds for fracture surfaces of porous materials that
exhibit a low roughness exponent ζ ≃ 0.4 but also for the broader range of
materials studied in chapter 2 with ζ = 0.75.17 However, a determination of
the crack propagation direction is possible when the path equation of the crack
front does not hold, i.e. at scales smaller than typical disorder length scale in
the material beyond the self-affine domain of crack surfaces.18

Inverse method on fracture surfaces : Here, we will compare quantitatively the
model of brittle crack and the experimental fracture surfaces. After discussion with
J. P. Bouchaud, we decided to follow this procedure: From the experimental fracture
surfaces, we determine the coefficients of the Eq. (4.13) that describes its roughness.
The values obtained for the coefficients are then compared to a priori expectations.
This methodology is shown to be useful both for measuring the Poisson’s ratio of a
material as well as for quantifying some properties of its mechanical disorder. Let
us note however that most results presented here are preliminary and that works
to improve the method of coefficient determination described here are currently in
progress.

Measure of the Poisson’s ratio from the roughness of fracture surfaces : Here,
we will give a method to determine the Poisson’s ratio ν of a brittle material by
measuring the coefficient of the elastic restoring force A(ν) = 1

π
2−3ν
2−ν

involved in the
path equation of the crack front. This coefficient is extracted from the experimental
fracture surfaces through a method inspired by the work of Lam and Sanders [88].
They estimated the coefficients of Langevin equations ∂h

∂t
= A.H(z, {h}) + η(z, t)

from profiles h(z, t) solution of these equations. We will use this inverse method in

17The time-symmetry of these surfaces is not shown here. This point will be discussed in the
Section 4.4 devoted to these kinds of surfaces.

18One mentions also that once the field of local orientation of propagation on a fracture surface is
determined through the method proposed in Ref. [62], the propagation sense can be deduced from
the geometry of this field, the crack propagating from zone of high divergence to low divergence (see
Ref. [62] for details).
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a different context because the noise involved in Eq. (4.13) depends on the space
variables x, h and z and not on the time t. The method is the following: At any time
t and any position z (resp. any point on the fracture surface (x,z)), one can estimate
both H(z, {h}) and ∂h

∂t
(resp. ∂h

∂x
). According to the associated equation, the mean

value of these quantities are proportional on providing that 〈η(z, t)〉z,t = 0 (resp.
〈η(z, h, x)〉z,h,x = 0), irrespective of the value of ∂h

∂t
(resp. ∂h

∂x
). This assumption is

clear for a thermal noise but could be questionable for a quenched noise for which the
noise value at a point of the line can be strongly correlated with the local line geometry
at this point. The assumption that this effect can be neglected is made a posteriori

by comparing the results of the method with expected values. The coefficient of
proportionality between ∂h

∂x
and H(z, {h}) =

∫ h(x,z′)−h(x,z)
(z′−z)2

dz′ gives an estimate of

the coefficient A in front of the elastic interaction term H(z, {h}).19 Fig. 4.6 shows
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Figure 4.6: Variation of the angle ∂h
∂x

with respect to the elastic restoring force
∫ h(x,z′)−h(x,z)

(z′−z)2
dz′. These quantities are estimated on all the points of a fracture sur-

face of glass ceramics with φ = 26% for δz = δx = 100 µm. Even though the drawn
quantities seems very slightly correlated - they are expected to be proportional (see
Eq. 4.13) within the noise η which explained the important scattering of the data -

, we make a linear fit of the points. It leads to ∂h
∂x

= A
∫ h(x,z′)−h(x,z)

(z′−z)2
dz′ (dashed line)

with A ≃ 0.2.

the variation of ∂h
∂x

with respect to
∫ h(x,z′)−h(x,z)

(z′−z)2
dz′ for a fracture surface of glass

ceramics with a porosity φ = 26%. These two quantities are estimated in every point
(zi,xi) of an experimental fracture surface made of N × N points representing a field
of 100 N× 100 N µm2 with N ≃ 300 by the relations ∂h

∂x
= (h(xi+1, zi) − h(xi, zi))/δx

with δx = 100 µm and
∫ h(x,z′)−h(x,z)

(z′−z)2
dz′ =

j=N
∑

j=1

h(xi,zj)−h(xi,zi)

(zj−zi)2
. Even though the drawn

19Note that the constant term F0 of Eq. (4.13) cannot be measured through this method because
the mean plane of the fracture surface is systematically subtracted to the height map.
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quantities seems very slightly correlated - they are expected to be proportional (see
Eq. 4.13) within the noise η which explained the important scattering of the data -

, we make a linear fit of the points. It leads to ∂h
∂x

= A
∫ h(x,z′)−h(x,z)

(z′−z)2
dz′ (dashed line)

with A ≃ 0.2.
To test the robustness of the method, we apply the same procedure after hav-

ing coarse grained the profiles over a length δz.20 The coefficient A is expected to
be independent of the coarse graining length scale δz, provided that the associated
equation is correct [88, 89]. The value obtained for the coefficient A is plotted in
Fig. 4.7 as a function of δz for four glass ceramics samples with different porosities.
The coefficient A depends very slightly on the coarse graining length scale as long as
this one lies within the self-affine domain 100 µm < δz < 1 mm. This is a strong
argument in favour of the proposed equation.
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Figure 4.7: Estimation of the coefficient A of Eq. (4.13) from the experimental
fracture surfaces of three glass ceramics. Their value do not depend on the length scale
of the coarse graining of the profiles over their self-affine domain 100 µm < δz < 1 mm
as expected if Eq. (4.13) describes the fracture surface morphology. The obtained
value A(ν) = 1

π
2−3ν
2−ν

≃ 0.22 depends very slightly on the porosity. This value is quite
comparable with the value A ≃ 0.24 (plotted in dashed line) obtained using the mean
value of the Poisson’s ratios ν = 0.21 measured for the glass ceramics samples for
glass ceramics (see Tab. A.1).

On the other hand, we observe that the coefficient A depends very slightly on the
sample porosity. Thus, one gets A(ν) = 1

π
2−3ν
2−ν

≃ 0.22 independently of porosity. To
test the relevance of this value, we measure the Poisson’s ratio in our samples. The
propagation velocity of compressive and shear waves are measured and we obtain a
value ν ≃ 0.21 irrespective of the glass ceramics porosity (see Tab. A.1). The cor-
responding value for the coefficient A is therefore A = 1

π
2−3ν
2−ν

≃ 0.24. The expected

20The coarse graining of the profiles is obtained by truncating their Fourier components with
wavelengths smaller than δz. See Ref. [88, 89] for the details of the procedure.
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value for A is plotted in Fig. 4.7 (dashed line) to enable a comparison with the results
of the inverse method: The value of the coefficient A obtained from a direct measure-
ment of the Poison’s ratio and the value obtained from the analysis of the fracture
surfaces are very close (within less than 10 %). This agreement confirms experimen-
tally that the non-local elastic interaction term in Eq. (4.13) describes the elastic
force of the crack front in glass ceramics. This also confirms that the other terms in
the development of KII (see Eq. 4.10) can be neglected in first approximation.

Properties of the disorder : We have estimated the coefficient of the elastic restor-
ing force and therefore the Poisson’s ratio of glass ceramics through the statistical
analysis of the crack roughness. The value is found in agreement with those measured
directly for glass ceramics samples. Now, we can go further in the inversion process
and analyze the properties of the disorder term η(x, h, z) in the equation of crack
propagation. This method should give interesting information on the mechanical dis-
order of the material. These properties are estimated here for glass ceramics samples
with various porosities.

Eq. (4.13) leads to the relation

η(x, h, z) =
∂h

∂x
− A

∫

h(x, z′) − h(x, z)

(z′ − z)2
dz′ (4.18)

where the coefficient A is taken equal to the value measured previously for each
porosity. It should be emphasized that the noise η(x, y = h(x, z), z) obtained by this
analysis corresponds to the one encountered by the crack front during its motion,
and can be biased compared to the one describing the structural disorder of the glass
ceramics.21 From Eq. (4.18), it is possible to draw a map of η(x, z) by measuring at
each point of the fracture surface, the angle ∂h

∂x
and the elastic restoring force.22 Fig.

4.8 displays a 3D representation of a typical disorder η(x, z) obtained on the surface
of a fractured glass ceramic (φ = 26 %).

To study quantitatively its properties, its spatial correlation functions C(∆x) =
〈η(x+∆x,z).η(x,z)〉x,z

〈η(x,z)2〉x,z
and C(∆z) = 〈η(x,z+∆z).η(x,z)〉x,z

〈η(x,z)2〉x,z
are computed along the x and z-axis

respectively. The curves corresponding to the same sample (φ = 26%) are shown on
Fig. 4.8. This analysis gives qualitatively similar results for other porosities. The
correlation function along the crack propagation direction becomes uncorrelated after
a distance ∆r ≃ 100 µm. This is in rather good agreement with the length scale of
mechanical heterogeneity expected for a porous material characterized by its grain
size d ≃ 116 µm. On the other hand, the function η(x, h(x, z), z) exhibits long-
range correlation along the crack front direction. This result is clearly incompatible
with the isotropic properties of the sample. However, as mentioned in footnote 22,

21See for example Ref. [90] for a comparison between the disorder of the material and the effective
noise encountered by the moving crack front in the slightly different context of interfacial fracture.

22In fact, we can measure η(x, h(x, z), z) where h is imposed by the position of the crack front. In
other words, we do not measure the disorder of the material in a given plane (x,z) but the disorder
on the rough surface defined by the crack front trajectory.
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Figure 4.8: (left): 3D representation of the disorder η(x, z) on a fracture surface of
a glass ceramics with φ = 26 % obtained by the inverse method described in the
text using Eq. (4.18). (right): The solid and dotted lines are the spatial correlation
functions computed along the z-axis and x-axis respectively.

the measured disorder corresponds to that encountered by the crack front during
its propagation. It can have properties differing from those of the material. Such
a structure would have been certainly impossible if the disorder used in the path
equation of the crack front (Eq. (4.13)) had been annealed and not quenched. Indeed,
in a recent work [91], Bolech and Rosso have considered the problem of an elastic
line of position x = h(z) in a random quenched potential U(z, x) at the depinning
threshold (F = Fc). They showed that the noise η(x = h(z), z) along the line is
strongly correlated, characterized by a spatial correlation function with a power-
law decreasing tail. This was interpreted as a signature of the critical transition of
pinning/depinning. This suggests that the measurement of noise correlation along
the crack front is also reminiscent of its subcritical motion.

After studying the spatial distribution of the disorder measured on the glass ce-
ramics, let us now focus on its magnitude. Fig. 4.9 displays the distribution of η
measured on two fracture surfaces corresponding to two porosities. Each curve is
well fitted by a Gaussian distribution although they display different second order
moments σ that characterize here the amplitude of the disorder. In the inset of Fig.
4.9, this standard deviation σ is plotted as a function of the porosity of the broken
sample. The latter is found to be roughly proportional to the porosity.

We recover the simple picture that the more porous the glass ceramics is, the more
disordered it appears from a mechanical point of view - the limiting case being the
homogeneous material corresponding to φ = 0. We suggest here a simple quantitative

explanation of this variation. At first, one recalls the definition η = 2
Kdis

II

〈KIc〉 of the

disorder given in Section 4.1. Therefore, the standard deviation σ of η is given by
δKdis

II

〈KIc〉
where δKdis

II is the standard deviation of the toughness Kdis
II . Let us assess first the
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mean toughness 〈KIc〉 of the glass ceramics. Using the Eq. (A.3) and (A.7) giving the
variation of their Young’s modulus E(φ) and their fracture energy GIc(φ), one gets the

variation of their toughness 〈KIc〉(φ) =
√

G(φ)E(φ) =
K0

Ic√
1−c

2
3

√

(1 − 2φ)(1 −
(

c
1−φ

)

)

where K0 is the toughness of the glass and c = 0.63. Note that this expression has
been validated experimentally (see the insert of Fig. A.3 in Annex A). To estimate
δKdis

II , one has to notice that the spatial fluctuations of any quantity Q in a porous
material made of solid grains characterized by Q = Q0 in the bulk and Q = 0 in the
voids are given by δQ = Q0

√

φ(1 − φ).23 Finally, one gets the following estimate of

the standard deviation σ ≃ 2δKdis
II

<KIc>
=

2K0
II

K0
Ic

√

φ(1−φ)(1−c
2
3 )

(1−2φ)(1−( c
1−phi)

2/3
)
. The coefficient

2K0
II

K0
Ic

is

not so simple to estimate because even the meaning of the toughness in mode II is not
so clear. We have simply taken this coefficient equal to 1/2 and plotted the expected
variations of σ with respect to φ in solid line in the insert of Fig. 4.9. Experimental
points and the theoretical curve are in correct agreement.
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Figure 4.9: Distribution of the disorder η of two samples of glass ceramics with two
different porosities measured from the fracture surfaces using the inverse method
suggested in [88]. The disorder is Gaussian with standard deviation σ, which is
plotted in inset with respect to the porosity φ and found to be roughly given by
σ ≃ 1.8 φ (dashed line). The theoretical estimation of the standard deviation of the
disorder in glass ceramics proposed in this paragraph is also plotted in the inset (solid
line).

Using the inverse method presented in [88], we have determined the coefficients

23One can calculate the standard deviation of the spatial distribution of the quantity Q of a
two-phase material characterized by Q = Q0 and Q = 0 in the solid and empty phase, respec-
tively. One gets (δQ)2 = 〈Q2〉 − 〈Q〉2 = 1
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of the Eq. (4.13) from the analysis of the morphology of the fracture surface. The
obtained values are quite reasonable in view of the mechanical properties of the glass
ceramics. This supports the relevance of the model of crack propagation in disordered
media discussed in Section 4.1. The previous result suggests also that fracture surfaces
could be a tool to measure the disorder properties of a material. Using the preceding
method, it is possible to measure both the correlation length rη of the disorder and
its strength σ from a statistical analysis of the roughness of their crack surfaces. This
method of characterization will be greatly improved when the link between material
disorder and disorder encountered by the crack front will be theoretically made.

In the next part, we will focus on the amplitude of the crack surface roughness.
This quantity is reminiscent of the properties of the material disorder, i.e. rη and σ,
studied previously. At first, the relation between this property of fracture surfaces
and the material properties is established. Then, we will test it on the experimental
case of glass ceramics.

Roughness amplitude : One of the most striking features of the experimental
results reported in Chapter 3 is the robustness of the roughness exponents of the
fracture surfaces with respect to the type of porous materials. On the other hand,
the amplitude of the roughness – the proportionality coefficient in the power-law
relation between the distance between two points of the fracture surface and their
height difference – was shown to be sensitive to structural properties of the material
such as the grain size d or the porosity φ. The analysis of various samples of glass
ceramics led to

∆h(d)/d ≃ 1.7φ (4.19)

where ∆h(∆z) is the 1D correlation function computed along the direction of the
crack front on the fracture surfaces (see Section 3.3 for details). This relation was
shown to reproduce rather well the experimental results irrespective of the crack
growth velocity. This point was then discussed in the first paragraph of Section
4.2 and shown to be in agreement with the suggested model of crack propagation in
brittle materials. In the present paragraph, we use again this model: We will compare
theoretically the relation between the structural properties of the disordered brittle
material and the amplitude of the fracture surface roughness. This prediction will
then be compared to the experimental results summarized by Eq. (4.19) obtained on
the model disordered brittle material discussed in this chapter, the glass ceramics.

The morphology of the fracture surfaces has been shown to be well described by
the motion of an elastic string creeping within a quenched disorder (see Eq. (4.12)).
Its scaling properties along the crack front direction are given by the properties of
this elastic string and characterized by ζ = 0.39. The amplitude of the roughness
along this direction is also given by the geometry of the string. We investigate here
this geometry at the depinning threshold – driving force applied to the line is equal
to the critical force (F = Fc) – and not in the creep regime (F < Fc) while assuming
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that the roughness amplitude is comparable in both situations. In the first situation,
the correlation function of the string is

∆h = k0rη

(

∆z

LLarkin

)ζ

(4.20)

Here, k0 is a constant of the order of unity, rη is the correlation length of the disorder,
ζ is the roughness exponent and LLarkin is the Larkin length, i.e. the length scale
at which the elastic restoring force is equal to the pinning force of the disorder.
For the model of crack propagation with non-local elasticity, one gets ζ = 0.39 and

LLarkin = rη

(

A
σ

)2
where A = 1

π
2−3ν
2−ν

is the coefficient of the elastic restoring force.
This leads to

∆h = k0r
1−ζ
η

(σ

A

)2ζ

∆zζ (4.21)

To obtain the constant k0, we solve numerically (see the following paragraph for
details) the equation giving the path of the crack (Eq. (4.13)) with all the coefficients
– rη, σ, and A – equal to unity. The approximation of a 2D quenched disorder η(h, z)
instead of the noise η(x, z, h) is used. The solution is characterized by its height
correlation function ∆h∗(∆z∗) = k0(∆z

∗)ζ with k0 = 0.35±0.01. Using the following
estimates derived both theoretically and experimentally (see previous paragraphs)
σ ≃ 1.8φ, A = 0.22 and rη ≃ d/2 for a glass ceramics of porosity φ and a mean bead
diameter d, one gets from Eq. (4.21) the expression of the roughness amplitude for
these materials

∆h(d)/d = 1.18φ2ζ (4.22)

First at all, this confirms theoretically what was observed experimentally: ∆h(d) is
proportional to d and the coefficient depends only on the porosity φ of the material.
The variations of ∆(d)/d with φ are plotted in Fig. 4.10 and compared to the ex-
perimental measurements. The agreement between the two is rather good. Let us
note that the model proposed here uses no adjustable parameters. The apparent lin-
ear variation of the amplitude with φ observed experimentally – compare Eq. (4.22)
and Eq. (4.19)) – is rather close to the expected variation in φ2ζ ≃ φ0.8. However,
the amplitude is overestimated at low porosities. The possible decreasing trend of
the correlation length rη of the disorder with φ could be responsible for this slight
discrepancy.

In this paragraph, we have shown that the amplitude of the roughness in the case
of a brittle rupture is set by two microstructural parameters of the material: the
”strength” σ of the disorder in the material and its spatial correlation length rη. In
the case of glass ceramics, we established the relation between these two parameters
and the porosity φ and the bead diameter d which could be varied in a controlled
manner. Therefore, it was possible to check experimentally the relation between
the microstructure and the fracture surface morphology. It must be emphasized
that this relation – Eq. (4.21) especially – applies to any material after a brittle
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Figure 4.10: Variation of the amplitude of the roughness ∆h(d)/d of fracture surfaces
of glass ceramics samples with respect to their porosity φ. The solid line is the
theoretical prediction of the model proposed in this chapter. Note that this curve has
been derived without any adjustable parameters.

fracture. Therefore, the roughness amplitude reflects the properties of the disorder
in the material while the roughness exponent will be shown to be determined by the
rupture mode of the material.

Height variation distribution : In this paragraph, we will interpret an impor-
tant feature of fracture surfaces of porous materials using the model described in
the present chapter: The distributions of height differences P∆z(∆h) between two
points for various distances ∆z collapses after normalization by ∆zζ onto a Gaussian
distribution (see Section 3.4 and 3.2). In other words

P (∆h) = 1/∆zζ g(∆h/∆zζ) (4.23)

where g is a Gaussian distribution. In the model, the crack surface is given by an
equation of motion of a line in a disordered medium which leads to a mono-affine
geometry of the line [65] so that the collapse described in Eq. (4.23) with a unique
exponent ζ is expected. More interestingly, one can wonder whether such a model can
reproduce, in addition to the value of the roughness exponent and to the roughness
amplitude, the shape of the distribution of the height variations. This is a crucial
point because all the geometrical features of the surface would then be explained.24 To
answer this question, we shall solve numerically the equation of trajectory25 proposed

24Statistically speaking, the geometry of a self-affine profile is entirely defined by the three fol-
lowing parameters: the self-affine exponent, the roughness amplitude and the distribution of height
differences.

25The morphology of the fracture surface is set by the subcritical motion (F < Fc) of an elastic
line in a random potential (see Eq. (4.12)). Here, we will solve numerically the same equation but
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Figure 4.11: Normalized distribution of height variations of the elastic line on a
simulated fracture surface obtained by (a) a direct resolution of the path equation
of the crack front and (b) an extreme dynamics algorithm (see text for details) for
various value of ∆z. The two collapsing master curves obtained with ζ = 0.39 are
found to be Gaussian distributions p(x) = 1/

√
2πe−x2/2 represented in dashed line.

The variation of the 1D correlation functions, i.e. the second order moment of the
distribution, is shown in inset. The dashed lines are power-law fits characterized by
their slope ζ = 0.39. The coloring points correspond to values of ∆z for which the
distributions P∆z(∆h) have been plotted in the main panel.

in the model and then compute the distribution P (∆h). Two types of simulation are
used. The Eq. (4.12) is solved through a Runge−Kutta algorithm. The thermal noise
term in this equation is removed and a constant driven force along the line is added
so that the motion of the line above the critical threshold (F > Fc) is simulated (see
note 25). The second simulation is a discrete model using an extreme dynamics: At
any time step, one point of the line moves forward by a unit length, the position of
the moving point being given by the weakest link on the line, defined as the point
where the difference between the elastic restoring force Fel and the pinning force η is
maximum. This process leads to line morphologies corresponding to a motion at the
critical threshold (F = Fc) [92].

The insets of Fig. 4.11 display the height−height correlation function computed on
the profiles (along the z-direction of the simulated) fracture surfaces) generated by (a)
the direct resolution of the path equation and (b) the extreme dynamics algorithm. In
both cases, the measured roughness exponent is found to be ζ = 0.39± 0.01 in agree-
ment with the literature [83, 82, 93]. The normalized distributions 1/∆zζ P (∆h/∆zζ)

at the critical threshold (F = Fc) and above it (F > Fc), the height variation distribution of the
rough line being expected to be nearly the same in all these cases [80].
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collapse onto a single master curve as expected for a mono-affine geometry (Eq.
(4.23)). The main curve is a Gaussian distribution irrespective of the used numeric
algorithm. Moreover, both Gaussian and constant distributions of disorder were used
with no effects on the height variation distribution. This supports the robustness of
this result.26 This is in agreement with the observation of Gaussian distributed vari-
ations of height observed on the experimental fracture surfaces of porous materials.

Concluding remarks : The model of crack propagation in a brittle materials pro-
posed in Section 4.1 explains the three important features of the experimental fracture
surfaces of porous materials: the value of the scaling exponents, the amplitude of the
roughness and the shape of the Gaussian distribution of height variation. In other
words, one can reproduce quantitatively all the statistical properties of fracture sur-
faces. Thus, one can conclude that the proposed model is able to describe the fracture
surfaces after brittle fracture in the case of glass ceramics. The natural next step is
to enlarge the investigated experimental systems: We will focus now on other mate-
rials broken in a brittle manner for slow crack propagation. The roughness of their
fracture surfaces will be studied. Their scaling properties will be then confronted to
the predictions of the model.

4.3 Fracture surfaces of other brittle materials

The model of crack propagation discussed in Section 4.1 may explain the ”uni-
versal” features of the morphology of fracture surfaces observed on a broad range of
porous materials and described in Chapter 3. The main ingredients of this model are
a low crack growth velocity, a brittle fracture as well as a mechanical disorder of the
material so that the theoretical framework of the Linear Elastic Fracture Mechanics
in the context of disordered materials may be used. After explaining quantitatively

the crack morphology in the case of the glass ceramics chosen both for its simple
microstructure and because its properties can be adjusted, it is now very tempt-
ing to study more complex disordered materials broken within the same hypothesis
(quasi-static and brittle fracture). Especially, do their fracture surfaces exhibit sim-
ilar properties? Can one explain them with the proposed model? In the present
paragraph, we will focus on two examples of brittle failure. This part will present
the questions that remain open about the study of fracture surfaces resulting from a
brittle failure. The complete study of the problem is left for future work.

26This result must not be confused with the Gaussian geometry of elastic line driven in random
media observed numerically by A. Rosso et al. [94]: They showed that the geometry of elastic lines
at the depinning threshold is very well approximated by the one of a Gaussian signal. The latter
is defined so that all their Fourier modes are independent and Gaussian distributed. This property
induces necessarily the Gaussian distribution of height variation ∆z. But the reciprocal is not true.
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Silica glass at the micrometer scale : Experiments : Fracture surfaces of silica
glass were investigated from the micrometer scale to the millimeter scale.27 DCDC
samples broken in a tensile mode in the stress corrosion regime are used. The ex-
perimental setup is described in detail in Section 2.1. The velocities investigated are
smaller than 1 µms−1. A mechanical profilometer, with vertical and lateral resolutions
of the order of 0.5 nm and 1 µm respectively, is used to get profiles perpendicular to
the crack growth direction (z-axis). Surprisingly, at very large length scales compared
to the nanometric structure of the glass, the fracture surface is observed to be rough
as shown in Fig. 4.12. The 1D correlation function of the profiles is shown in insert
of the same figure. Its power-law behavior suggests that fracture surfaces of glass in a
domain of length scales around some tenths of millimeters are self-affine. The profiles
perpendicular to the crack growth direction are characterized by a roughness expo-
nent on the order of ζ ≃ 0.3, slightly smaller than those observed for glass ceramics.
Let us note that similar observations were reported on more complex glasses [95] at
length scales between 100 nm and 10 µm.
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Figure 4.12: Profile extracted on a fracture surface of silica glass broken in the stress
corrosion regime (vcrack < 10−6 ms−1).

Interpretation: Since the scaling properties investigated here were observed at length
scales larger than the process zone size of silica glass (ℓPZ ≃ 100 nm [14, 96]), it is
natural to interpret them within the model of brittle failure developed in Section 4.1.
The theoretical investigation of the fracture surfaces within the framework of Linear
Elastic Fracture Mechanics leaded to the conclusion that, in the quasi static limit,
brittle failure in disordered materials leads to self-affine fracture surfaces characterized

27The length scale of observation is crucial here. Fracture surface of silica glass has already been
investigated in Chapter 2. At scales smaller than ξ ≃ 100 µm, it has been shown to be self-affine
characterized by a roughness exponent ζ ≃ 0.75. We focus here on larger length scales.
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by a ”small” roughness exponent (ζ < ζdep = 0.39). Moreover, it was shown -
according to the phase diagram presented in Fig. 4.3 - that three cases are possible:
Logarithmic correlation of height or power-law correlations characterized either by
ζeq = 1/3 or by ζdep = 0.39. The experimental measurement of a ”small” roughness
exponent ζ ≃ 0.3 on fracture surfaces of silica glass in a domain of length scale
much larger than the process zone size seems compatible with the predictions of the
model. However, it is difficult to affirm whether these observations are reminiscent
of the roughness exponent at equilibrium or at the depinning threshold and further
experimental investigations would be required to decide.

Metallic alloy failure at low temperature : Experiments : In the previous
paragraph, fracture surfaces of silica glass has been shown to exhibit scaling properties
reminiscent of a brittle failure when observed at large length scales.28 We will focus
now on the failure of a metallic alloy, archetype of ductile materials. But we will
study their fracture surfaces in a domain of length scales much larger than its process
zone size, so that we could define at these scales an equivalent material the behavior
of which would be perfectly elastic. We will see that at these scales, the geometry of
fracture surfaces is reminiscent of a brittle mode of failure.

Stéphane Chapuliot and co-workers from the laboratory DEN/LISN at the CEA
kindly provided us with compact tension specimen of 16MND5 steel broken at various
temperature ranging from T = 30◦K to T = 300◦K.29 We will focus here only
on the low temperature specimen. The complete study is currently performed by
Claudia Guerra and coworkers in the ”Fracture” Group. The height map (1024 ×
1024 points corresponding to a field 5 mm × 5 mm2) of its fracture surface obtained
after scanning by a mechanical profilometer is represented in Fig. 4.13 a. The 1D
height−height correlation functions computed perpendicularly and parallel to the
crack growth direction on the surface is plotted in Fig. 4.13 b in semi-logarithmic
scales. Surprisingly, the correlations of height do not follow a power-law behavior,
but rather a logarithmic law in both directions

∆h(∆z) = Azlog(∆z/ℓz) and ∆h(∆x) = Axlog(∆x/ℓx) (4.24)

In that case, it is still possible to define a dynamic exponent as z = Az

Ax
.30 Here, the

fracture surface is isotropic so that Ax ≃ Az ≃ 19 µm and ℓx = ℓz ≃ 7.5 µm. This
leads to z = 1 ± 0.1.

28compared to its process zone size; see Section 4.4 for a quantitative analysis of this effect.
29The experimental setup is similar to the one described in section 2.1 and used for aluminum

alloy samples. In particular, the crack growth velocity is rapid, but not dynamic. See Ref. [97] for
details.

30The 2D correlation function of the surface follows a pseudo Family−Vicsek scaling where all
power-laws are changed by logarithms. In particular, the pseudo scaling function involved in Eq.

(4.14) is g(u) = log(u) with u = ∆z/∆x
Ax
Az that defines the dynamic exponent z = Az

Ax
.
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Figure 4.13: (a): Fracture surface of a metallic alloy broken at low temperature
T = 20◦K. (b): Its correlation function computed along the z and x-axis does not
follow a power-law. The corresponding curves plotted in a semi-logarithmic scales
suggest that the correlation of height are logarithmic.

Interpretation : At such a low temperature, metallic alloy does not break in a
ductile manner. From the measurement of its toughness KIc = 10 MPa m1/2 and its
intrinsic strength σ∗ = 1.3 GPa, one gets from Eq. (A.1) an estimate of the process
zone size ℓPZ ≃ 20 µm in these materials at T = 30◦K [97]. In other words, at
scales much larger than the micrometer scales, failure in these materials is brittle.
Therefore, it is tempting to interpret the statistical properties of its fracture surface
with the model proposed in Section 4.1. Within the framework of the Linear Elastic
Fracture Mechanics, it was shown that for a given range of parameters (see the phase
diagram in Fig. 4.3), the fracture surface morphology could be set by the geometry of
a line at thermal equilibrium with long range elastic interactions. In other words, the
fracture surface can be characterized by the scaling exponents ζth = 0 and zth = 1,
i.e. by isotropic logarithmic correlations of height. Such a prediction for brittle
fracture surfaces was also made in Refs. [40, 41]. These predictions are in apparent
agreement with the experimental measurements made on fracture surface of brittle
metallic alloy. However, the reasons for which height correlations are logarithmic and
not characterized by ζdep or ζeq remains unclear. In other words, the position of the
various brittle materials in the phase diagram presented in Fig. 4.3 is still an open
question. Both experimental study of various brittle materials on a great range of
length scales and theoretical study of Eq. (4.13) to improve our knowledge of the
parameters that sets the limits between the various phases are required.

Concluding remarks : The experimental study of various kinds of fracture sur-
faces resulting from a brittle failure suggests that their scaling properties is charac-
terized in a general manner by ”low” roughness exponents, ζdep = 0.39, ζeq = 1/3
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and ζth = 0. Theoretically, these three phases correspond to the three possible ge-
ometries predicted by the model of crack propagation in brittle materials, although
the parameters that delimit each phase remain yet to be identified. On the other
hand, the morphology of fracture surfaces studied in Chapter 2 and characterized by
the ”universal” roughness exponent ζ ≃ 0.75 is clearly incompatible with the model
of brittle failure proposed in section 4.1. The origin of this apparently abnormal31

scaling property is discussed in the next section.

4.4 Fracture surfaces of ductile materials : Inter-

pretation

The experimental investigation of various fracture surfaces have shown that their
morphology satisfies a Family−Vicsek scaling, without exceptions. But the measure-
ment of the exponents involved in this scaling suggests the existence of two classes for
the morphology of fracture surfaces that are characterized by two different roughness
exponents. We investigate here the underlying physical processes responsible for the
scaling characterized by the roughness exponent ζ ≃ 0.75.

Relevant length scales on fracture surfaces : At first, to identify the physi-
cal mechanisms leading to this roughness exponent, let us investigate the following
scenario: Naively, one could imagine that some materials – silica glass, aluminum
alloy, mortar, wood (see Chapter 2) – leads to one class of fracture surfaces while
the other materials – sandstone, glass ceramics (see Chapter 3) – leads to fracture
surfaces characterized by ζ ≃ 0.4. The experiments on fracture surfaces of silica glass
and metallic alloy over ”unusual” domain of length scales, i.e. at length scales large
compared to the typical length scale of non-linear processes involved in the failure of
these materials, have cast doubts on this possibility because both scalings are found
on same materials. Indeed, at small (resp. large) length scales, the fracture surface is
characterized by a roughness exponent ζ ≃ 0.75 (resp. ζ ≤ 0.4). This suggests that
the roughness exponents characterise length scales rather than materials. Therefore,
to understand the origin of the small scale regime, it is of interest to study the domain
of length scales for which ζ ≃ 0.75 is observed.

To investigate the self-affine domain of fracture surfaces with ζ ≃ 0.75, we have
focused on failure of silica glass.32 For this material, the self-affine domain ranges
at least from the nanometer scale – for experimental reasons, it is unfortunately

31The expression ”abnormal” is used here because the normal case is considered to be the failure
of a brittle material that leads to low roughness exponent. However, from an historical point of view,
fracture surfaces with low roughness exponents could be considered as exceptions because they were
observed after fracture surfaces with ζ ≃ 0.75 [25, 26].

32This experimental work has involved many co-workers in the ”Fracture” Group that are also
the authors of the Ref. [98].
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impossible to investigate their fracture surfaces at smaller length scales – up to an
upper bound ξz (along z) of the order of one hundred of nanometers. The latter is
defined in Fig. 4.14 a as the abscissa of the intersection between the power-law fit
of the self-affine regime (with ζ ≃ 0.75) and the plateau regime (horizontal line).
This length is measured on fracture surfaces corresponding to various crack growth
velocities vcrack (the experimental procedure to obtain a fracture surface which has
clearly separated zones corresponding to different velocities is described in Section
2.1). The scaling exponents do not show any noticeable dependence on vcrack. On the
other hand, the cutoff length ξz was observed to decrease slowly, as the logarithm of
vcrack (Fig. 4.14 b). For the smallest value of vcrack, ranging from 10−12 to 10−9 m/s, we
were able to observe in real-time, at the nanometer scale, the crack propagation during
the specimen failure [34, 15]. At these scales, the crack was shown to grow through
the growth and coalescence of nanoscale damage cavities [34, 15]. This cavitation
process was shown to set the size of the process zone, i.e. the zone in the vicinity
of the crack tip where linear elasticity stops being relevant [15]. The variation of the
process zone size ℓPZ with respect to the crack velocity vcrack is presented in the inset
of Fig. 4.14 b. First, ℓPZ is found to be larger, but of the same order of magnitude
as ξz. Second, ℓPZ, like ξz, is observed to decrease as the logarithm of v. This leads
us to the conjecture that the process zone size ℓPZ is the relevant length-scale that
sets the crossover length ξz. At length scales smaller than ξz, the material cannot be
identified with a coarse-grained equivalent linear elastic medium, which explains the
failure of the model of brittle crack.
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Figure 4.14: (a) Variation of the correlation function computed along the z-axis on a
fracture surface of silica glass broken in the stress corrosion regime with vcrack =
6.10−11 ms−1. (b) Variation of the crossover length ξz (measured along z) as a
function of the crack growth velocity v. The axes are semilogarithmic. The straight
line corresponds to a fit ξ ∝ log(v). Inset: Variation of the size of the process zone
Rc (measured along x) as a function of the crack growth velocity v. The axes are
semilogarithmic. The straight line correspond to a fit Rc ∝ log(v).
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Let us note that the upper bound ξx of the self affine domain with β = 0.6 observed
along the x-axis of fracture surfaces is of the same order than ξz. Therefore, the 2D
length scales domain with ∆x < ξx and ∆z < ξz where scaling regime of fracture
surfaces of glass is characterized by the exponents {ζ ≃ 0.75, β ≃ 0.6, z ≃ 1.2}, is
observed at length scales where failure occurs through non-linear processes (such as
damage or cavitation) that cannot be described through the LEFM framework.

To investigate the generality of this result, let us return to the other materials
where such a scaling was observed. In Table 4.2, the upper cutoff length ξz that
limits (along the z-axis) the scaling regime with the exponents {ζ ≃ 0.75, β ≃ 0.6, z =
ζ/β ≃ 1.2} as well as the expected process zone size ℓPZ – either estimated using Eq.
(A.1) or directly measured experimentally as for silica glass samples – are listed for
each material. The width Lsample of the sample is also listed. The comparison of
these three lengths suggests that two cases are possible: (i) ℓPZ ≪ Lsample: The cut-
off length is smaller, but of the same order of magnitudes, than the process zone
size (ξz ≃ ℓPZ

2
). (ii) ℓPZ > Lsample: The cut-off length is of the order of a tenth of

the sample width (ξz ≃ Lsample
10

). The latter relation, that has also been observed
for sandstone samples (see Fig. 3.15), has been reported for mortar [72] and wood
[29] samples of various widths. In other words, when finite size effect due to finite
geometry of the sample do not occur, i.e. all length scales are smaller compared to
Lsample, the process zone size ℓPZ sets the upper bound ξz of the self-affine regime.

Material ξz ℓPZ Lsample

Silica glass33 80 nm ± 20 nm 150 nm ± 30 nm [98] 5 mm
Quasicrystal 2.1 nm ± 0.5 nm ≃ 4 nm [18] 10 mm

Aluminum alloy 80 µm ± 10 µm ≃ 200 µm 15 mm
Mortar 2.5 mm ± 0.5 mm > 20 mm 20 mm
Wood 1.0 mm ± 0.1 mm > 11 mm 11 mm

Table 4.2: Cut-off length ξz (measured along z) of the self-affine domain for various
materials. This length can be compared with both the sample width Lsample and the
estimated value of the process zone size of the materials. Note that when ℓPZ ≪
Lsample, the cut-off length is of the same order than the process zone size .

This result leads to the following picture: Below the process zone size, i.e. at
length scales where the material cannot be identified with a coarse-grained equiva-
lent linear elastic medium, the model of brittle crack presented in Section 4.1 fails
and fracture surface exhibits universal features (see Chapter 2) characterized by the
exponents {ζ = 0.75, β = 0.6, z = 1.2}. The identification of the underlying physical
process responsible for such as scaling raises many questions: How can non-linear
processes proper to each material let universal signature on the fracture surfaces?
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A possible model of crack propagation in quasi-brittle and ductile ma-

terials : We propose here a simple model that is able to reproduce the scaling
properties of fracture surfaces at the scale of the non-linear processes of rupture. It
gives the important physical mechanisms at the origin of its scaling properties. But
the heart of this problem, i.e. the complex interactions between damage, crack front
and microstructure, will not be analyzed quantitatively here and are let for future
works.

The theoretical investigation of fracture surfaces characterized by ζ ≃ 0.75 would
require to integrate the effects of damage to the model of crack propagation in an
ideal elastic brittle material of Section 4.1. This would require understanding the
complex interactions between a crack front and a microcrack/cavity. We will avoid
this difficulty by using here another approach. We will analyze the theoretical im-
plications of the very basic properties of these fracture surfaces, i.e. their symmetry
and their anisotropic scaling. The more general equation that satisfies them will then
be derived.

Ductile crack surfaces display a Family−Vicsek scaling (see Section 2.4). Such
a scaling results from the competition between the disorder of the material and the
elasticity of the front – which displays long range elastic interactions. These two
ingredients will lead to the two competing terms Fel and Fdis in the investigated
equation for ductile fracture surfaces. Family−Vicsek scaling of fracture surfaces
is the signature of the propagation of a line. Fracture surfaces resulting from a
damage coalescence process as proposed in [46] would not have such a property.
This suggests that an effective crack front can still be defined at all length scales,
even if damage processes can be very spread.34 These microcracks/cavities will be
simply considered as external perturbations. In our very simplistic model, they will
contribute to enhance the disorder of the material. Within this hypothesis, the term
for the disorder Fdis = η(x, h, z) will be similar to the one involved in our model of
brittle failure.

On the other hand, the microcracks/cavities will affect the crack front trajectory.
This effect will be considered in average so that it is the same for all points of the
front.35 This effect is modeled by changing the elastic term in the path equation
of the crack. In other words, we take in consideration the effect of the damage by
defining an effective crack front with new properties – especially a new elastic energy
– that are still to define.

Using symmetry arguments, let us now derive the properties of the elastic term.
As for brittle fracture surfaces, these surfaces are invariant by the transformation
x → −x. The methodology described in Section 4.2 has been applied on fracture
surfaces of silica glass and aluminum alloy. No signature of the propagation direction,

34At least in the experimental systems investigated in this work. For some fracture test geometries,
e.g. without notch, the definition of this effective crack front may be impossible.

35The very simple model proposed here is a mean field like theory in the sense that the interaction
of each microcrack/cavity with the front is equivalent to one effect applying uniformly on the front.
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i.e. crack growth along +x or along −x, can be observed. This suggests also that the
problem of crack propagation in ductile materials can be divided into two problems:
(i) The dynamics of the crack that will be given by a motion equation applying on
the in-plane perturbations of the effective crack front - this equation is not time-
symmetric; (ii) The path of this front leading to the geometry of the fracture surface
that is given by a time-symmetric equation applying on its out-of-plane perturbations.
This simplifies greatly the investigated equation: It depends on the sole out-of-plane
perturbation h of the effective crack front. Moreover, terms such as the ”memory”
term involved in Eq. (4.10) that are not time-symmetric are excluded. In other
words, the path followed by the crack front in M(x0, h(x0, z0), z0) depends on the
current geometry of the front (on h(x = x0, z)) but not on the whole fracture surface
(h(x < x0, z)). Therefore, we expect the path equation to have the form.36

∂h(x, z)

∂x
= Fel(h, z) + η(x, h, z) + F0 (4.25)

Limiting our investigation to linear models with h, the only elastic force that
supplies all the previous requirements plus the various symmetric constraints linked
to the system geometry (see the pages 46-48 of Ref. [65]), is Fel(h, z) ∼

∫ h(z′)−h(z)
(z′−z)α dz′.

If α = 2, we recover the long-range elasticity of the crack front in an ideal elastic
brittle material. If α = 3, the elastic term is equivalent to a Laplacian term ∂2h

∂z2

[99] so that the elasticity of the effective crack front becomes purely local and the
restoring force depends only on the local curvature. Tanguy et al. [99] have shown
that the cases α < 2 and 3 < α, respectively, are equivalent to the two previous cases,
so that limiting our model to the range 2 ≤ α ≤ 3 is sufficient to test all the possible
equations. Finally, within the various assumptions made here, the path equation for
ductile fracture is

∂h(x, z)

∂x
= A

∫

h(z′) − h(z)

(z′ − z)α
dz′ + η(x, h, z) + F0 (4.26)

where α is a free parameter to be fixed in the range 2 ≤ α ≤ 3. The noise η is
supposed to be uncorrelated. Its properties – the spatial correlation lengths rx

η , ry
η

and rz
η and its magnitudes σx, σy and σz – as well as the coefficient A depend both

on the material properties and the damage processes but are fixed and uniform in the
material.

As in Section 4.1, the noise η(x, h, z) is interpreted as a quenched noise so that
the scaling exponents characterizing the solution of the Eq. (4.26) are ζdep and zdep

corresponding to the critical exponents at the depinning threshold. These exponents
have been shown to depend only on the range α of the elastic term in Eq. (4.26)
[99]. Renormalization group (RG) methods [39, 100] predict ζdep = (2α − 3)/3 and

36Inevitable imperfections in the loading system or in crack alignment are taken in consideration
so that a small constant term F0 is expected (See Section 4.1 for details).
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zdep = (5α − 3)/9 to first order in ε = 2α − 3. Numerical simulations have been
shown to be very powerful to solve pinning/depinning problems [92, 101]. The crit-
ical exponents ζdep(α) and zdep(α) has been measured very precisely through these
numerical techniques for two situations: (i) α = 2 leads to ζdep = 0.39±0.005 [82, 93]
and zdep = 0.78± 0.02 [84, 83] and (ii) α = 3 leads to ζdep = 1.26± 0.01 [39, 101] and
zdep = 1.51 ± 0.03 [102]. To get a rough estimation of ζdep(α) (resp. zdep(α)) in the
range 2 < α < 3, one can make a linear interpolation between these two values.

On the other hand, the experimental measurements made on ductile fracture
surfaces have led to the ”universal” exponents ζexp = 0.76±0.04 and zexp = 1.24±0.06
(see Tab. 2.3) irrespective of the studied material. An ”arbitrary” value α ≃ 2.6 used
in our model would then allow to account for their values.

In other words, an effective crack front with non-local but rapidly decreasing
interactions – with an elastic kernel in 1

rα with α ≃ 2.6 > 2 – reproduces the
Family−Vicsek scaling with the correct exponents observed on ductile crack sur-
faces. This suggests that, in average, the microcracks/cavities shield the interactions
between two points of the crack. This is in agreement with the naive picture of duc-
tile fracture: Damage ahead of the main crack concentrates the stress and makes the
propagation of the information through the stress field of the unbroken material ahead
the crack less efficient than in the ideal elastic case. In simple words, the effective
crack front for a ductile failure is less stiff than in the brittle case. This results in a
fracture surface with a higher roughness exponent.

Understanding the selected value α ≃ 2.6 for this effective ductile crack front is
a significant challenge for future investigations. This approach remains insufficient:
With this simple model, it is not possible to account for the deviation to the Gaussian
distributions of height variation fluctuations observed on the experimental ductile
crack surfaces (see Section 2.2). This effect, which is not observed on brittle crack
surfaces, suggests that the complex interactions with one microcrack/cavity and the
main front must be investigated. In other words, the local disorder properties – taken
constant everywhere in the material in our model – should depend on the local front
shape. Models based on a coupling between disorder and line geometry is certainly the
next step in the theoretical investigation of fracture surfaces resulting for non-linear
processes of failure.



Conclusion

This study has related the morphology of fracture surfaces and the failure mechanisms
in disordered materials. In particular, we have shown how the microstructural disor-
der influences the path followed by a crack and how it sets the self-affine geometry of
fracture surfaces.

First, the relevant statistical properties of the roughness of experimental fracture
surfaces have been identified. Two questions have been more specifically examined:
Are they anisotropic with respect to the direction of propagation? This question
is crucial because it may have very important applications: From the post mortem

analysis of broken structures, one could find the direction of crack propagation and so
the origin of the failure. On the other hand, to which extent do the surface properties
depend on the material? To address these questions, five different materials have been
studied: Aluminum alloy, silica glass, mortar, wood and quasicrystal. We have shown
that the full description of fracture surfaces calls for the use of the 2D height−height
correlation function, rather than just an analysis of 1D surface profiles. This function
has been shown to follow a Family−Vicsek scaling that involves two independent
scaling exponents: The roughness exponent ζ = 0.76±0.03 and the growth exponent
β = 0.61 ± 0.04. They were shown to correspond to the self-affine exponents along
the directions perpendicular and parallel to the crack propagation, respectively. Their
value has been found to be independent, within experimental errors, of the material
(aluminum alloy, silica glass, mortar, wood and quasicrystal) and of the crack growth
velocity (within the range 10−12 − 102 ms−1). On the other hand, we showed that
the distributions of height variations collapse onto a single master curve. This proves
that the profiles along and perpendicular to the crack growth direction do not display
multi scaling.

Regarding the dependence of the surface properties on the material, we found that
materials made of cemented grains as sandstone displayed different scaling properties
involving lower exponents ≃ 0.4 − 0.5. To understand the physical origin of their
difference, we have studied an artificial material with a similar microstructure to
sandstone, glass ceramics made of sintered glass beads. The characteristic size of
their microstructure and the cohesion between grains can be tuned experimentally by
modifying the bead diameter and the sample porosity. We showed that the fracture
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surfaces of these materials display a Family−Vicsek scaling involving two exponents
ζ = 0.40± 0.03 and β = 0.48± 0.04 independent of the structural parameters and of
the crack growth velocity in the range investigated. These exponents are significantly
lower than those observed on various other disordered materials. This suggests the
existence of a second ”universality class” for failure problems.

To understand these results, and particularly the existence of two a priori different
classes of fracture surfaces, we have then investigated theoretically the crack roughness
in ideal linear elastic disordered materials. At first, we analyzed the stress field in
the vicinity of a perturbed crack in a homogeneous elastic medium. Integrating the
effect of the disorder on the crack motion, we derived a path equation for a crack in a
disordered elastic material. This equation provides the fracture surface morphology
that is shown to result from the motion of an effective elastic string that ”creeps”
within a 2D random quenched potential where the spatial position along the direction
of crack propagation plays the role of time. The resolution of this equation leads
to anisotropic fracture surfaces displaying a Family−Vicsek scaling with exponents
ζ = 0.39 and β = 0.49, irrespective of the crack growth velocity. These predictions
are in good agreement with the experimental observations reported in glass ceramics
and sandstone. Careful measurements of their macroscopic mechanical properties
showed indeed that they behave as perfectly brittle materials, in coherence with the
assumptions of the model. In other words, if one integrates the effect of the material
disorder to the Linear Elastic Fracture Mechanics, one can explain quantitatively the
morphology of fracture surfaces of brittle materials. Finally, we conjecture that the
geometry of fracture surfaces of ductile materials may be captured if one takes into
account the effects of the damage that screens the elastic interactions along the crack
front.

Our study has been mainly devoted to the fracture surfaces of 3D materials. Other
experiments have been performed in 2D geometries: Interfacial cracks propagating
within the weak plane between two plates of Plexiglas [107, 108] and crack propagating
in thin sheets of paper [109, 110]. The resulting crack surfaces have been shown to
display also self-affinity, but they are characterized by roughness exponents different
from those reported here for 3D fracture problems. Their value ζduc

exp is listed in

Fracture geometry ζbr
th ζduc

exp ζbr
exp

Interfacial 0.39 [83] 0.63 ± 0.03 [21] ?
2D 0.50 [103] 0.65 ± 0.05 [58, 104] ?
3D 0.39 [98] 0.76 ± 0.04 [33, 105] 0.40 ± 0.04 [106]

Table 4.3: Comparison between theoretical roughness exponent ζbr
th for brittle fracture

and measured roughness exponents ζduc
exp and ζbr

exp for ductile and brittle fracture,

respectively.
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Tab. 4.3 and compared with the theoretical predictions ζbr
th for a brittle failure in

the same geometries. The experimental exponents are systematically larger than
those expected for a brittle failure. We interpreted this abnormally high roughness
exponent for 3D material as a signature of the damage processes occurring during the
crack propagation. We suggest that the same interpretation is valid for interfacial
crack and cracks in 2D media as previously proposed in Refs. [111, 103]. It should
be noted that the present study of fracture in brittle materials is, to our knowledge,
a unique example of agreement between the theoretical models and the experimental
observations. Measurements for brittle materials in 2D geometries are still lacking
and represent an important challenge for future experimental investigations.

Finally, the present study has focused on the geometrical properties of cracks. The
natural next step will certainly be the study of their dynamical properties. One can
imagine to compare the predictions of pinning/depinning models of crack propagation
with crack front dynamics experimentally observed in interfacial failure [21]. This kind
of models provides also some predictions on the relation between mean crack growth
velocity and stress intensity factor. It would be interesting to test experimentally
the relevance of these predictions. In this theoretical framework, the distribution of
strength is also predicted to obey some peculiar scaling relations [90, 91] that would
be interesting to investigate experimentally. Works in these directions are currently
under progress.
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Appendix A

Mechanical properties of glass

ceramics

In this appendix, we will investigate the mechanical properties of glass ceramics.
More precisely, our goal is to examine their rupture mode. The scaling properties of
surfaces of fractured glass ceramics have been shown to be similar to those expected
for an ideal brittle elastic heterogeneous material. We will see in this section that, at
length scales larger than the size of the beads that constitutes it, glass ceramics can
indeed be considered as perfectly brittle materials.

In the first paragraph, the presence of damage/microcracks during failure of glass
ceramics in tension will be investigated. Then, macroscopic mechanical properties of
these materials will be measured as a function of their porosity. The experimental
results will be compared with the expected values for an ideal brittle elastic porous
material.

Microcracks in glass ceramics : Let’s investigate the presence of microcracks
during the failure of glass ceramics. We can use the argument presented in Section
1.1 to assess the extent of the process zone – the zone in front of the main crack where
microcracks are localized – in the glass ceramics samples. This leads to the following
equation (see Eq. 1.9)

ℓpz ≃
π

8

(

KIc

σ∗

)2

(A.1)

Here, the quantities KIc and σ∗ are defined at the macroscopic scale and we can
measure it from the fracture tests performed on glass ceramics. In particular, the
TDCB geometry used to obtain a quasi-static crack propagation (see Section 3.1), is
well adapted to measure the toughness of a material because the crack is initiated
from a notch. The curves load versus displacement obtained during the tests for
samples of glass ceramics with three different porosities are shown in Fig. A.1. After
an elastic regime where the displacement δ between the two points of force application
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is proportional to the applied tensile force F , the crack initiates. Let us note that
we cannot use this curve to assess the Young’s modulus of the glass ceramics because
the measured displacement is measured by the tensile machine and not directly on
the sample. The force applied to initiate the crack is called Fc and coincides with the
departure to this elastic regime. The toughness is then estimated using the expression
KIc = kI Fc where kI is the stress intensity factor for an applied force of magnitude
unity in the same geometry.1 This factor depends only on the geometry of the test
and is found to be kI = 1250 m−3/2 through finite element calculation. Toughness
values measured on glass ceramics samples with porosities φ ranging from 3% to 26%
are listed in Table A.1.
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Figure A.1: Typical load versus displacement values obtained from three TDCB
samples of glass ceramics with different porosities.

To assess their intrinsic strength σ∗, one will use the experimental study of N. Bonn
et al. [112] performed on the same glass ceramics. In their work, they performed three
points bending tests on bars of various porosities φ ranging from 23 % < φ < 47 %.
We will fit their experimental results on σ∗ with respect to φ on this range and will use
them to extrapolate the values of σ∗ on our range of interest, i.e. 3 % < φ < 26 %.
Imposing a stress σ to the bar, they measured the span before failure tb(σ). This

function is well fitted by tb ≃ c1e
Uact
kBT with Uact = g(φ)/σ4 as shown in Fig. A.2. The

function g(φ) is itself well fitted2 by g(φ) ≃ c2exp
−c3φ as shown in the inset of Fig.

A.2. In their experiments, the stress at rupture depends on the waiting time, the crack
nucleation in these materials being a thermally activated process. To estimate the
process zone size, one requires to assess the stress at rupture for a time t∗ ≃ d/vcrack

1The notch used in the experiments is 1 mm width. Therefore, the stress concentration at the
notch tip is altered. As a consequence, this method is expected to slightly overestimate the value of
the toughness of the glass ceramics samples .

2Let us note that N. Bonn et al. [112] used the following functions g(φ) ≃ (1 − 2φ)5 to fit the
same experimental data.
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where d is the distance between two successive solid bridges in the material and
vcrack the crack growth velocity. Taking d ≃ 100 µm the bead glass diameter and
vcrack = 50 µms−1 as the minimum crack speed observed during the various fracture
tests – the crack growth velocity of each fracture test is listed in Table 4.1 –, we get
a lower bound for σ∗ that corresponds to the time scale t∗ ≃ 2 s. This lower bound
is given by

σ∗ = e−c3/4φ

(

c2/kBT

ln(t∗/c1)

)1/4

= σ0 e
− φ

0.18 (A.2)

with σ0 ≃ 90 MPa. The real value of the intrinsic strength is certainly under estimates
for small porosities – indeed, one would expect σ∗ ≃ σglass ≃ 3 GPa when φ ≃ 0 –
but this point is not crucial because we are looking for a lower bound of the intrinsic
strength. The latter are listed in Table A.1 as a function of the sample porosity φ.
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Figure A.2: Variation of the breaking time tb of a test bar made of glass ceramics
with the applied stress to the fourth power for three different porosities (courtesy of
N. Bonn et al. [112]). The data can be well fitted by tb ≃ c1e

g(φ)/σ4
. The function

g(φ) is plotted as a function of φ in the inset (courtesy of N. Bonn et al. [112]). It is
found to be well fitted by g(φ) ≃ exp(−c3φ). From these expressions, one can assess
the intrinsic strength σ∗ of the glass ceramics corresponding to a given time scale t∗.

Using Eq. (A.1), we can now estimate an upper bound of the size of the process
zone. The corresponding values are listed in Table A.1 for each broken sample. They
are of the order of 1 − 2 bead diameters for the largest porosities and smaller than
1 bead diameter for the lowest porosities. This result is in good agreement with the
small R-curve effect3 observed on a crack length propagation of 1− 2 bead diameters

3The R-curve effect is the observation of a transient regime in a fracture test where the crack is
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during the fracture of samples with large porosities (φ ≃ 26 %). The absence of
R-curve effect for lower porosities confirms also this result.

The previous analysis based on the estimation of the process zone size of glass
ceramics with Eq. (A.1) suggests that non-linear effects during the rupture of these
materials occur at a scale smaller than the bead size. In other words, the roughness of
fracture surfaces at larger scales than the bead size would be reminiscent of a brittle
fracture in these materials. To confirm this important result, we propose a second
argument based on the measurement of the fracture energy in the glass ceramics
samples.

φ = 3 % φ = 6 % φ = 15 % φ = 25 % φ = 26 %

KIc 0.73 MPa m1/2 0.71 MPa m1/2 0.60 MPa m1/2 0.40 MPa m1/2 0.39 MPa m1/2

σ∗ 75 MPa 64 MPa 39 MPa 29 MPa 22 MPa
ℓpz 40 µm 50 µm 90 µm 120 µm 120 µm
E 20.6 GPa 18.7 GPa 15.3 GPa 10.9 GPa 10.9 GPa
ν 0.21 0.22 0.18 0.21 0.21
GIc 26 Jm−2 27 Jm−2 23 Jm−2 15 Jm−2 14 Jm−2

Table A.1: Mechanical properties of glass ceramics samples with various porosities φ
and the same mean glass bead diameter d = 116 µm; (KIc) Toughness; (σ∗) Yield
stress (lower bound); (ℓPZ) Process zone size estimated using Eq. (A.1) (upper
bound); (E) Young’s modulus; (ν) Poisson’s ratio (GIc) Fracture energy

Griffith criterion for glass ceramics samples : Non-linear effects occurring
during the failure of glass ceramics are very localized: (i) Damage processes induced
by the high stress field at the tip of the (micro)cracks is essentially concentrated in a
zone of 100 nm at their vicinity. (ii) Possible microcracks between consolidated glass
beads around the front of the main crack are confined in a zone of the order of 1− 2
grains ahead the tip. They probably do not exist during the failure of glass ceramics
with a low porosity. Therefore, one expects that a crack in these materials propagates
roughly by breaking the solid bridges between grains one after the other. In other
words, a single crack propagating in a glass ceramics sample is essentially made of
broken bridges. In addition, very few broken bridges are present ahead of the main
crack. To test this picture, we propose to estimate experimentally the variations of the
fracture energy GIc

4 with the porosity φ of the glass ceramics samples. Comparing

initiated from a straight notch. In the first time of the fracture test, the process zone is growing
and it is possible to reveal its presence by looking at the load versus displacement curve and its
deviation to the brittle behavior. The distance covered by the crack during this transient regime is
of the same order than the process zone size [56].

4The fracture energy GIc is the energy required to create two new fracture surfaces of unit area.
GIc is always larger than the surface tension because the rupture involved dissipative and irreversible
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this energy with the one required to break the solid bridges that constitutes the
fracture surface, we will test the relevance of the scenario of brittle fracture of glass
ceramics.

The relation GIc =
K2

Ic

E
is used to obtain the fracture energy for the samples used

in the present study (Table A.1). We determine first the Young’s modulus E of the
samples: The velocity of sound in these materials as a function of their porosity5 is
measured with the help of Dominique Salin, Jérôme Martin and Fabrice Célarié. The
experimental data plotted in Fig. A.3 a (see also Table A.1) are very well described
by the relation

E ≃ E0(1 − 2φ) (A.3)

with E0 = 22 GPa. This relation is in excellent agreement with both experimental
measurements performed on the same glass ceramics [112] and the predictions of a
micromechanical model for the linear elasticity of porous media [20] (see [112] for
details). The experimental procedure used to measure the toughness KIc of the glass
ceramics has been described in the previous paragraph. Its variation with respect

to the porosity is plotted in inset of Fig. A.3 b. Using the relation GIc =
K2

Ic

E
, one

obtains the fracture energy of glass ceramics plotted on the main panel of the same
figure as a function of their porosity.

We now examine the compatibility of these experimental measurements with the
proposed picture of the crack propagation in these materials. According to this sce-
nario, the fracture energy GIc should be set by the total area of broken solid bridges
between grains. The number of broken bridges is expected to vary very weakly with
the sample porosity – the number of grains by unit volume is nearly constant. At
the opposite, the area of one bridge depends crucially on the porosity. Therefore, one
expects

GIc ∼ Sbridge = πr2
b (A.4)

A bead with one broken bridge is represented in Fig. A.4. The radius rb of the
fracture surface is fixed by the geometry of the bead

r2
b = (d/2)2 − (d/2 − ℓ)2 (A.5)

Here, d and ℓ are the bead diameter and the distance a bead moves towards a neigh-
boring sphere during sintering, respectively. The latter are related to the porosity φ

processes: Once broken, the material cannot be healed by simply bringing back the two pieces back
into contact.

5Young’s modulus E and sound velocity vsound, i.e. propagation velocity of compressive waves,

are linked in an homogeneous material by the relation vsound =
√

E
ρ

√

1−ν
(1−2ν)(1+2ν) [113] where ν is

the Poisson’s ratio and ρ = ρglass(1−φ) with ρglass = 2530 kg m−3 the density of the glass ceramics.
The frequency of the compressive waves is of the order of f ≃ 500 kHz so that the material is
homogeneous at the scale of the corresponding wavelength λ = vsound

f
≃ 5 mm. To assess the

Poisson’s ratio, we have also measured the propagation velocity vshear of shear waves in the glass

ceramics samples equal to vshear =
√

E
ρ

√

1
2(1+ν) .
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Figure A.3: Young’s modulus (a) and fracture energy (b) variation with the porosity
φ of the glass ceramics samples. The data presented in (a) and (b) are well described

by the relations E = E0(1 − 2φ) and GIc = G0
1

1−c
2
3
(1 − ( c

1−φ
)

2
3 ) with E0 = 22 GPa,

G0 = 32 Jm−2 and c = 0.64 (represented in solid lines), respectively, in agreement
with a brittle rupture model for these materials. The variations of the toughness
measured experimentally are displayed in inset. The solid line displays the equation
√

E(φ)GIc(φ) using the relations above.

by the expression

(1 − φ)(1 − 2d

ℓ
) = c (A.6)

that is obeyed by any isotropically sintering body that preserves its solid mass [114].
c=0.64 is the random close packing compacity. Using Eq. (A.4), (A.5) and (A.6),
one obtains

GIc ∼ 1 − (
c

1 − φ
)

2
3 (A.7)

The corresponding curve is plotted in Fig. A.3 b and compared to the experimental
measurements. The only adjustable parameter is the proportionality coefficient in the
previous relation of proportionality (Eq. (A.7)). The fracture energy of a compact
glass ceramics (φ = 0 %) is adjusted to G0 = 32 Jm−2 which is a reasonable value
compared to the fracture energy of the homogeneous glass Gglass ≃ 10 Jm−2. From
Eq. (A.3) and (A.7) giving the variations of the Young’s modulus and the fracture
energy with respect to the porosity, one also gets the variations of the toughness
– shown in inset of Fig. A.3 b. Variations of both fracture energy and toughness
predicted within the assumption of brittle fracture of glass ceramics are in correct
agreement with the experimental measurements. In other words, their macroscopic
mechanical behavior is compatible with the proposed microscopic scenario of rupture.
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Figure A.4: Scheme of a bead with one broken bridge.

Concluding remark : Finally, from the previous analysis, we obtain a rather
simple picture of crack propagation in glass ceramics samples under tensile condition:
The crack is a well defined plane that propagates within the material by breaking
the solid bridges between the sintered grains one after the other. In other words, the
fracture of glass ceramics reproduces at the scale of the bead diameter the ”classical”
view of a perfectly brittle rupture usually applied to the cleavage of monocrystals
at the atomic scale [8]. The choice of the glass ceramics motivated originally to the
possible controlled variation of the microstructure of the broken material proved to be
very relevant: In addition to the wide range of microstructures and related mechanical
properties (see Eq. (A.3) and (A.7)) they allow to investigate, the fracture of glass
ceramics represents an ideal tool to test the models of crack propagation in brittle
disordered materials.
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de rupture créée(s) par cette ou ces fissure(s), demande française de brevet,
511058 (2005), demande américaine de brevet, 11/311, 280 (2005).



Résumé - Depuis près d’un demi-siècle, les ingénieurs savent décrire et prévoir
la propagation d’une fissure dans un milieu élastique homogène modèle. Le cas
des matériaux réels est beaucoup plus complexe. En effet, on ne sait pas relier
leur durée de vie ou leur résistance à leur microstructure. Passage obligé avant de
telles prédictions, il est nécessaire de comprendre comment le désordre structural du
matériau influe sur le comportement d’une fissure. Dans cette optique, les surfaces
de rupture représentent un champ d’investigation très prometteur.

A travers une étude portant sur divers matériaux hétérogènes, nous caractérisons
les propriétés statistiques de leur rugosité et déterminons dans quelle mesure elles sont
indépendantes du matériau. Nous montrons notament que les surfaces de rupture
présentent des propriétés d’invariance d’échelle anisotropes, caractérisées par deux
exposants universels. Etudiant ensuite une céramique de verre, matériau hétérogène
modèle dont on peut contrôler la microstructure, on montre qu’il existe une seconde
classe de surfaces de rupture caractérisée par la même structure anisotrope mais
présentant des exposants plus faibles. Utilisant enfin des outils théoriques issus de la
physique statistique hors équilibre combinés avec la mécanique de la rupture, nous
établissons le lien entre ces propriétés et les mécanismes généraux de rupture à l’échelle
microscopique. Cette étude nous permet notament d’associer les deux classes de
surfaces de rupture à un processus de fissuration mettant en jeux de l’endommagement
pour l’un et à une rupture parfaitement fragile pour l’autre.

Mots-clés : rupture, matériaux désordonnés, rugosité des surfaces de rupture,
invariance d’échelle, mécanique de la rupture, ligne élastique en milieu aléatoire.

Abstract - For a half-century, engineers know how to describe and predict the
propagation of a crack in a model elastic homogeneous medium. The case of real ma-
terials is much more complex. Indeed, we do not know how to relate their lifetime or
their resistance to their microstructure. To achieve such a prediction, understanding
the role of the microstructural disorder on the behavior of a crack is determinant.
Fracture surfaces represent a promising field of investigation to address this question.

From the study of various disordered materials, we propose a statistical descrip-
tion of their roughness and determine to which extent their properties are dependent
of the material. We show that fracture surfaces display an anisotropic scale invariant
geometry characterized by two universal exponents. Glass ceramics is then stud-
ied because its microstructure can be tuned in a controlled manner. Their fracture
surfaces display the same general anisotropic properties but with surprisingly low ex-
ponents independent of the detail of the ceramics microstructure. This suggests the
existence of a second universality class in failure problems. Using finally theoretical
tools from out-of-equilibrium statistical physics and fracture mechanics, we relate the
statistical properties of fracture surfaces with the mechanisms occurring at the mi-
croscopic scale during the failure of a material. In particular, we show that the first
class of fracture surfaces results from a failure involving damage processes while the
second one results from a perfectly brittle failure.

Keywords : fracture, disordered materials, roughness of fracture surfaces, scaling
invariance, fracture mechanics, elastic line in random medium.


