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Introduction

Thanks to the appearance of e�cient blue and white light-emitting diodes, solid-state lighting is in a
position to replace conventional lighting sources within years. However, for LEDs to be competitive
with the best current sources such as �uorescence lamps, ultimate optimization of all aspects of LEDs'
e�ciency is necessary.

Several processes are likely to limit the e�ciency of LEDs. One may naively think that the main
limiting factor is internal light generation. However, this is not the case in a variety of materials, where
the conversion from carriers to photons reaches 50% to 90% if the material's quality is high enough. In
this case, the strongest limiting factor is that of light extraction, i.e. the ability for photons generated
inside the semiconductor to escape into air.

Unfortunately, most of the light emitted inside the LED turns out to be trapped by total internal
re�ection at the interface with air. Although many e�cient light extraction strategies have already
made their way to commercial applications, they are mostly based on the principle of randomizing the
paths followed by light, which gives limited control on the emission pattern of LEDs. Typical examples
of such methods are shaping of the LED (for instance in a pyramid form) or surface roughening. These
structures sometimes su�er from complex fabrication processes which are not compatible with a fully
planar fabrication.

The case of blue InGaN LEDs is somewhat special because their material and growth constraints
di�er from that of other III-V compounds. In particular, their refractive index is rather low (∼ 2.5),
they bene�t from the presence of a transparent substrate, and they require thick layers to be grown for
su�cient material quality. Owing to its comparatively recent availability, the issue of light extraction
has not yet been fully explored in this material: this is currently a topic of active research, which has
seen a �urry of interest and of publications recently. As in other semiconductors, light extraction based
on randomization is currently the preferred choice in commercial products. This is partly due to the
simpler conceptual framework of such approaches which makes them reasonably easy to implement.

During this thesis, I explored several alternative strategies to obtain high-e�ciency LEDs in GaN-
based materials. The basic objective was to consider light extraction methods which would avoid
randomizing the paths followed by light, in order to keep a better control on the radiation properties
of the LEDs. To this e�ect, I used light extraction strategies which rely on the wave nature of light
rather than a geometric approach. The two methods explored in this thesis are:

• Microcavity LEDs (MCLEDs), where the presence of close mirrors around the LED modi�es the
radiation pattern of the light source due to interference e�ects, and increases light emission in
directions where it can escape the LED

• Photonic crystal LEDs, where a periodic dielectric structure is used as a di�raction grating to
scatter out-of-plane the light guided in the LED. Most of the work of this thesis focused on this
second approach, which presents greater theoretical and fabrication challenges but also o�ers a
vast space of parameters to �nely control the emission properties of a light source.
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Both of these approaches have been extensively studied in the 90's, notably at EPFL, Ecole Poly-
technique and the University of Glasgow. These studies focused on more conventional III-V semicon-
ductors such as GaAs, and demonstrated the soundness of both methods for e�cient light extraction.
Generalization to address the case of GaN structure presented the main objective of this thesis.

An important advantage of both these methods is their deterministic approach: the phenomena
responsible for light extraction can be described exactly. Therefore, suitable design enables one to tune
the emission properties of the light source by varying its parameters.

Besides, from a practical point of view, both methods are well adapted to planar processes and are
thus reasonable candidates for integration in actual mass-produced devices.

The �rst Chapter of this thesis is devoted to Microcavity LEDs. Chapter 2 introduces the theoretical
concepts and �rst experiments on light extraction by photonic crystals. Chapter 3 presents results on
several implementations of LEDs with photonic-crystal-assisted light extraction, which aim at adressing
the speci�c limitations of GaN photonic crystals. Finally, Chapters 4 and 5 describe the theoretical
tools used for the design and modeling of photonic structures, and report on advances in 2D and 3D
modeling.



Chapter 0

Resumé en français

0.1 Contexte

Une diode électroluminescente (LED), c'est-à-dire une jonction pn où les porteurs électriques sont
convertis en lumière au niveau de la jonction, constitue en principe un convertisseur idéal d'énergie
électrique en énergie lumineuse. Depuis la découverte, dans les années 1990, des LEDs à base de GaN
émettant dans le bleu, tout le spectre visible est couvert par les LEDs. Elles constituent donc une
technologie prometteuse pour remplacer les sources de lumière conventionnelles: des LEDs de haute
e�cacité permettraient des économies d'énergie considérables, tout en apportant d'autres avantages
(robustesse et grande durée de vie, compacité, rapidité, contrôle du rendu des couleurs et de l'intensité
lumineuse...).

Toutefois, de nombreux facteurs limitent en pratique l'e�cacité des LEDs. Outre la qualité du
matériau, qui conditionne l'e�cacité de la conversion interne de l'électricité en lumière, la question de
l'extraction de la lumière est un obstacle majeur à l'obtention de LEDs à haute e�cacité. En e�et, la
lumière étant générée dans un matériau de haut indice (∼ 2.5− 3.5), la plus grande partie de celle-ci
reste piégée dans la LED par ré�exion totale interne. Seuls 4 à 5% de la lumière peuvent s'échapper
par une face d'une LED cubique.

De nombreuses stratégies ont été proposées au cours des décennies passées pour remédier à ce
problème et augmenter l'extraction lumineuse. Dans leur grande majorité, les solutions actuellement
appliquées dans les produits commerciaux emploient une approche dite géométrique, qui consiste à
faire varier l'angle de propagation des rayons lumineux dans la LED (idéalement, à le rendre aléatoire)
pour que la lumière s'échappe de la LED après quelques rebonds. Ceci peut être obtenu en modi�ant la
forme de la LED (c'est de cas des pyramides tronquées inversées de Lumileds), ou encore en texturant
la surface de la LED a l'échelle microscopique pour briser la conservation de l'angle à la ré�exion.
Aujourd'hui, ces solutions s'avèrent e�caces et l'e�cacité totale d'une bonne LED est de plusieurs
dizaines de %. Toutefois, les approches géométriques ne sont pas forcément idéales. Les trajectoires
suivies par les rayons lumineux ne sont en général pas (ou mal) contrôlées, ce qui rend certaines pertes
par absorption inévitables (par exemple lors de la ré�exion sur les contacts métalliques). En outre, le
diagramme de rayonnement de telles sources est peu directionnel (en l'absence d'optiques collimatrices
supplémentaires).

A l'opposé, les approches dites ondulatoires reposent sur les propriétés ondulatoires de la lumière.
Ainsi, les LEDs à microcavités (MCLEDs) permettent de modi�er le diagramme angulaire d'émission
de la LED, et d'augmenter ainsi la fraction de lumière qui pourra être extraite directement. Les LEDs
à cristaux photoniques (PhC) emploient des structures périodiques (réseaux bidimensionnels) pour ex-
traire par di�raction la lumière piégée dans le semi-conducteur. Ces approches sont conceptuellement
plus complexes, ce qui explique sans doute qu'elles n'aient que rarement été retenues à l'échelle indus-
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trielle. Toutefois, au prix de cette complexité, elles o�rent un plus grand contrôle sur les trajectoires
de la lumière, et permettent donc en principe d'obtenir des sources 'déterministes' dont le diagramme
d'émission est directionnel.

Le travail de ma thèse a porté sur l'application des stratégies ondulatoires d'extraction de la lumière,
aux diodes à base de GaN. La plus grande partie du travail s'est concentrée sur l'exploration (théorique
et expérimentale) des LEDs à cristaux photoniques.

0.2 LEDs à microcavité

0.2.1 Principe

Une MCLED est formée d'une couche mince (quelques longueurs d'onde optiques) placée entre deux
miroirs. Les ré�exions multiples causées par ces miroirs produisent des interférences (constructives
ou destructives, selon l'angle d'émission de la lumière), ce qui modi�e le diagramme d'émission: la
lumière est répartie dans des modes appelés modes Fabry-Pérot. Idéalement, une plus grande partie
de la lumière est alors émise à des angles où elle est extraite (le cône de lumière). Pour obtenir une
bonne MCLED, les miroirs doivent ré�échir avec de basses pertes.

Intuitivement, il est clair que dans le cas d'une LED épaisse, les directions d'interférences construc-
tives et destructives sont très nombreux : l'extraction de la lumière est ainsi moyennée et peu sensible
à L. Les écarts à cette statistique ne peuvent être atteints que pour une LED su�samment mince, où
seuls quelques modes Fabry-Pérot subsistent. Dans ce régime, l'e�cacité d'extraction lumineuse est
approximativement donnée par:

η =
λ

nL
(1)

Où λ est la longueur d'onde de la lumière, n l'indice du matériau et L l'épaisseur de la cavité. Il
apparaît donc que pour être e�cace, une MCLED doit être mince (quelques longueurs d'onde).

En outre, on peut montrer pour une e�cacité d'extraction optimale, l'épaisseur de la cavité doit
être contrôlée avec une précision d'une dizaine de nm (le 'désaccord' de la cavité). De même, pour un
couplage optimal entre les modes optiques extraits et les puits quantiques, ces derniers doivent être
placés aux ventres des modes − donc encore une fois avec une précision de quelques nm.

On voit donc que les contraintes de fabrication sont considérables : miroirs e�caces et sans pertes,
épitaxie et fabrication avec une haute précision.

0.2.2 Application aux LEDs GaN

En pratique, peu de bons miroirs existent dans le GaN. De bons miroirs diélectriques (injectables
électriquement) n'étant aujourd'hui pas disponibles, on doit se tourner vers les miroirs métalliques en
Ag. La fabrication de MCLEDs nécessite alors le report sur un substrat métallique, l'ablation laser
du substrat saphir initial, et l'amincissement chemico-mécanique de la cavité GaN. Ce processus est
complexe et ne permet pas un bon contrôle de l'épaisseur �nale de la cavité.

De nombreuses MCLEDs ont ainsi été fabriquées, et étudiées à l'aide d'une mesure de lumines-
cence résolue en angle. Les mesures donnent accès au diagramme d'émission en champ lointain, et
permettent d'étudier la modi�cation de sa dépendance angulaire avec l'épaisseur de la cavité. On peut
ainsi observer le passage au régime de microcavité lorsque cette épaisseur diminue. En revanche, les
propriétés électriques de la LED sont altérées lors de la fabrication et il est impossible de mettre en
évidence une augmentation de l'extraction de lumière. Ce résultat semble hélas inhérent à la méth-
ode de fabrication, et nous pousse à conclure que les MCLEDs GaN nécessiteraient un processus de
fabrication plus contrôlé.
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0.3 Extraction de la lumière par cristaux photoniques

Face aux insu�sances des MCLEDs GaN, une autre stratégie d'extraction de la lumière a ensuite
été explorée: la di�raction par des cristaux photoniques (PhCs). Plutôt que de tenter de modi�er le
diagramme d'émission de la source, on accepte qu'une partie importante de la lumière soit émise dans
des modes guidés, mais on intègre un réseau de di�raction à la LED pour di�racter ces modes vers
l'air.

Le principe de l'extraction de lumière par PhC a d'abord été testé en photoluminescence. Des
PhC à réseau triangulaire, avec un pas de a = 200 nm et une profondeur ∼ 200 nm, ont été formés
dans des échantillons à puits quantiques. Les échantillons ont été excités par un laser HeCd, et la
luminescence collectée avec une mesure résolue en angle. En plus du signal de luminescence directe
des puits quantiques, la di�raction des modes guidés par le PhC apparaît comme un signal additionnel
sur les spectres.

En isolant le signal de di�raction de la luminescence directe, et en transformant les axes du spectre
(angle → vecteur d'onde, longueur d'onde → fréquence), on obtient la relation de dispersion du PhC.

Cette relation de dispersion peut être expliquée qualitativement en convoluant la relation de dis-
persion d'un guide d'onde GaN épais (plusieurs µm, correspondant à des dizaines de modes guidés)
avec la relation de dispersion d'un PhC bidimensionnel de faible force photonique. Cette interprétation
qualitative est con�rmée par un calcul rigoureux (résolution des équations de Maxwell à 3 dimensions),
qui reproduit précisément la mesure sans paramètre ajustable. Les mesures e�ectuées dans di�érentes
directions cristallographiques et polarisations con�rment les propriétés théoriques des bandes d'un
PhC.

En outre, le calcul numérique révèle l'existence d'un grand nombre de bandes photoniques qui
n'apparaissent pas sur la mesure. Ces bandes correspondent aux modes de bas ordre du guide d'onde
GaN (le mode fondamental et les modes peu excités). En e�et, ces modes de haut indice e�ectif ont
une faible pénétration dans le PhC, et sont donc faiblement di�ractés. Ils se propagent à travers la
zone de PhC sans être extraits, et n'apparaissent pas dans la mesure expérimentale. Or, 40% environ
de la lumière guidée dans le GaN est émise dans ces modes de bas ordre. Il convient donc de proposer
une stratégie permettant l'extraction de ces modes.

0.4 Diodes à cristaux photoniques

Plusieurs types de LEDs à cristaux photoniques ont été proposées et testées.

0.4.1 Modi�cation de la distribution de modes guidés

La première implémentation vise à résoudre le problème des modes de bas ordres non extraits. A cet
e�et, la structure épitaxiale de la LED est légèrement modi�ée: une couche d'AlGaN de bas indice
(n = 2.4, contre n = 2.5 dans le cas du GaN) est insérée sous la zone active. La LED est alors constituée
de trois régions optiques : une couche épaisse ('bu�er') de GaN, une couche d'AlGaN (1 µm) servant
de barrière optique, et un mince guide d'onde (∼ 300 nm) contenant la jonction pn. Le guide d'onde
est conçu pour qu'un mode guidé, dit mode de surface, puisse s'y propager.

Les puits quantiques étant situés dans le guide d'onde, leur couplage avec le mode de surface est
bon: ainsi, une grande partie de la lumière y est émise. En revanche, les modes de bas ordres localisés
dans le bu�er de GaN sont évanescents dans la barrière d'AlGaN et se couplent donc peu à l'émission
des puits. En outre, le mode de surface interagit bien avec les PhC, situés eux aussi en surface, et est
donc extrait e�cacement. Ainsi, tous les modes guidés recevant de la lumière sont susceptibles d'être
bien extraits par le PhC.
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Après véri�cation de cette approche par des calculs numériques, des LEDs à PhC incorporant cette
couche de bas indice ont été fabriquées. Comme précédemment, des mesures résolues en angle ont été
e�ectuées pour étudier la structure de bande correspondante. Sur cette structure de bande, on voit
apparaître les bandes photoniques déjà observées en photoluminescence (correspondant aux modes de
haut ordre), mais aussi un nouveau mode apparaissant de façon très intense sur les spectres. Le haut
indice e�ectif de ce mode con�rme qu'il s'agit du mode de surface attendu. Son intensité indique
qu'une grande partie de la lumière est bien émise dans ce mode, et justi�e la validité de l'approche.

Des comparaisons de puissance ont ensuite été réalisées entre ces LEDs et des LEDs classiques.
L'augmentation de puissance n'est que de +70%, ce qui est assez modeste en vue de la grande quantité
de lumière guidée dans la LED. Néanmoins, ces performances peuvent en partie être imputées au
manque d'optimisation de la structure, et les mesures constituent au moins une bonne preuve de
concept.

0.4.2 Pavages d'Archimède

On s'intéresse ici au choix du réseau cristallin du PhC. Une approche cinématique bidimensionnelle
est d'abord utilisée pour comparer di�érents réseaux cristallins. Deux phénomènes opposés entrent
en jeu : d'une part l'augmentation du nombre de points du réseau réciproque augmente les canaux
de di�raction vers l'air, mais d'un autre côté les di�ractions (pertes) vers le substrat sont également
augmentées. En outre, un réseau simple n'est e�cace qu'autour du second ordre de Bragg (a ∼ λ/n),
ce qui contraint fortement le régime de fonctionnement du PhC. Dans ces conditions, il apparaît que le
réseau simple le plus e�cace (pour une structure GaN sur saphir) est un réseau triangulaire : bien que
certains angles de propagation (autour de la direction ΓK du PhC) ne soient pas extraits vers l'air, les
pertes vers le substrat sont limitées et ce compromis est optimal.

Cependant, on peut également concevoir des structures plus complexes où les pertes vers le substrat
sont limitées par un autre mécanisme (ablation laser du substrat ou ajout d'un DBR par exemple).
Dans ce cas, la limitation liée aux pertes dans le substrat est levée et on peut utiliser un réseau
omnidirectionnel, c'est-à-dire tel que tous les angles azimutaux de propagation soient di�ractables vers
l'air. Cette propriété est véri�ée par les pavages d'Archimède A7, réseaux cristallins complexes (réseau
triangulaire, 7 trous par maille) qui possèdent 12 directions de di�raction forte dans l'espace réciproque
(contre 6 seulement pour un réseau triangulaire simple).

Des LEDs à PhC comportant un réseau A7 ont donc été fabriquées. Leur structure de bande
photonique, étudiée grâce à la mesure résolue en angle, con�rme les propriétés attendues de ce réseau
cristallin. La dispersion des bandes photoniques est conforme à la théorie; de plus, l'ensemble de la
structure de bandes se trouve dans le cône de lumière, ce qui con�rme que le réseau extrait de façon
omnidirectionnelle. En�n, on peut identi�er les bandes photoniques avec le point du réseau réciproque
responsable de leur di�raction : on s'aperçoit alors que les bandes observées correspondent bien aux
12 points de forte di�raction. Ceci con�rme que l'extraction de lumière est réalisée de façon e�cace,
c'est-à-dire sur une échelle comparable à celle d'un réseau triangulaire simple (en d'autres termes,
l'omnidirectionnalité n'a pas été obtenue au prix d'une distance d'extraction excessive).

0.4.3 PhC-LEDs à report sur substrat

On s'intéresse ensuite à des LEDs combinant les propriétés des MCLEDs avec les cristaux photoniques.
Ces LEDs sont obtenues en fabriquant des MCLEDs (report sur substrat métallique et ablation laser
du substrat saphir, amincissement de la LED) puis en y ajoutant des PhC pour l'extraction de la
lumière guidée. On peut espérer que de telles LEDs soient particulièrement e�caces : l'absence de
substrat diélectrique évite les pertes dans le substrat ; et l'utilisation d'une couche mince ramène à un
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guide d'onde faiblement multimode où tous les modes peuvent bien interagir avec le PhC (on évite le
problème des modes de bas ordre).

En contrepartie, la fabrication de telles LEDs est particulièrement délicate, car l'ajout d'un PhC
augmente les possibilités de dommages à la LED (court-circuit causé par le PhC par exemple). De
fait, la plupart des LEDs fabriquées ne fonctionnaient pas, et les quelques LEDs restantes possédaient
de forts courants de fuite et de très mauvaises propriétés électriques. Elles ont toutefois été analysées
avec la mesure résolue en angle pour caractériser leurs propriétés photoniques.

Ces mesures, e�ectuées sur des LEDs de di�érentes épaisseurs (400 nm à 1 µm), con�rment la
raréfaction des modes guidés lorsque de la couche de GaN est amincie. Elles indiquent en outre que
le phénomène d'absorption des modes guidés est important dans ces LEDs : les bandes photoniques
semblent disparaître à certaines fréquences, correspondant à une forte absorption dans le substrat
métallique.

Un calcul numérique con�rme cette observation : dans les LEDs fabriquées, le miroir en or absorbe
une grande partie de l'énergie des modes guidés. En revanche, l'emploi d'un miroir à faible absorption
(comme de l'argent) limiterait fortement ce phénomène.

0.4.4 PhC-LEDs à recroissance latérale

Les implémentations précédentes de PhC-LEDs (couche de bas indice, PhC LED à report sur substrat)
mettent en évidence la nécessité de structurer la LED dans la direction verticale pour s'assurer que
la lumière guidée interagit bien avec le PhC. Une nouvelle approche est étudiée ici: l'insertion d'un
réseau de di�raction en SiO2 dans la structure épitaxiale, puis la recroissance de la jonction pn sur ce
réseau.

De telles structures permettent un contrôle de la distribution de modes guidés (car la couche
contenant le PhC agit comme une couche de bas indice) et possèdent une géométrie avantageuse : le
PhC étant intégré dans la LED, sa surface est plane et peut entièrement être recouverte par un contact
électrique, ce qui n'était pas le cas avec les PhC creusés en surface des LEDs.

Les calculs numériques révèlent que pour être e�cace, ces structures doivent êtres minces (plus
précisément, la jonction pn crûe sur le PhC ne doit pas dépasser 300 nm d'épaisseur). Cela rend
l'épitaxie délicate, car la coalescence au-dessus du PhC peut nécessiter une certaine épaisseur.

Les premiers échantillons, réalisés avec des PhC unidimensionnels, répondent à cette exigence. S'ils
ne permettent pas d'être quantitatif quant à l'e�cacité de l'extraction de lumière (un PhC bidimen-
sionnel serait nécessaire pour de bonnes performances), leur structure de bande photonique con�rme
la double action du PhC : di�raction des modes guidés et barrière optique modi�ant la distribution
des modes guidés.

0.4.5 Emission dans le PhC

En�n, on s'intéresse à des structures atypiques où le PhC traverse les puits quantiques (en photolumi-
nescence). On pourrait s'attendre à ce que la présence du PhC induise d'importantes recombinaisons
non-radiatives et diminue fortement la luminescence. Pourtant, comme l'ont démontré Keller et. al, un
recuit du matériau à haute température semble 'guérir' le matériau et restaure la luminescence. On a
donc a�aire à des structure à grande force photonique, où l'émission spontanée a lieu directement dans
une couche périodique où la densité d'états photoniques est fortement modi�ée − ceci est en contraste
avec les structures précédentes, où le PhC ne servait que comme réseau de di�raction et où l'émission
spontanée était très peu altérée.

On s'intéresse donc aux propriétés théoriques de l'émission spontanée dans de telles structures.
On peut en e�et craindre qu'un e�et Purcell (modi�cation du taux d'émission spontanée) négatif
n'ait lieu, en raison de la diminution de la densité d'états photonique. Les calculs révèlent que l'e�et
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Purcell reste heureusement modéré (notamment si les puits quantiques sont placés adéquatement). En
outre, ils indiquent que si la source est située au coeur du PhC, l'émission se distribue sur des modes
localisés dans la couche du PhC. L'existence de ces modes est a priori surprenante, car ils parviennent
à se localiser dans une couche de bas indice malgré l'existence d'un bu�er GaN de plus haut indice.
On peut toutefois expliquer la présence de ces modes, et montrer qu'il s'agit d'une généralisation de
modes quasi-guidés unidimensionnels. L'existence de ces modes permet de comprendre les propriétés
d'émission spontanée (e�et Purcell) de façon intuitive.

0.5 Modélisation 2D de cristaux photoniques

Ce chapitre et le suivant concernent la modélisation numérique des structures à base de cristaux pho-
toniques. On s'intéresse ici aux structures bidimensionnelles, modélisées par la méthode de l'expansion
en ondes planes (PWE). On rappelle tout d'abord la formulation générale de cette méthode. On
présente ensuite la factorisation de Fourier rapide (FFF), méthode qui permet d'améliorer la con-
vergence numérique de l'algorithme en modi�ant le calcul de la transformée de Fourier de la carte
diélectrique ε(r). La FFF est appliquée à di�érents types de PhC, et les gains en convergence sont
con�rmés dans chaque cas. En�n, la PWE est formulée dans le cas d'une propagation hors du plan.

0.6 Modélisation 3D de cristaux photoniques

Ce dernier chapitre traite de la modélisation rigoureuse de cristaux photoniques en 3 dimensions. Après
un passage en revue rapide des di�érentes méthodes trouvées dans la littérature, deux méthodes sont
développées en détail.

La première, dite méthode hybride, est une méthode originale mise au point durant cette thèse.
Elle permet de calculer les modes de Bloch d'une structure multicouche contenant des PhC. Elle
s'appuie sur une discrétisation à 3 dimensions (développement en ondes planes avec FFF dans les deux
directions horizontales, et en di�érences �nies dans la direction verticale). Grâce à des conditions aux
limites transparentes, le taux de perte du mode peut être calculé par une procédure itérative : on
résout ainsi rigoureusement les équations de Maxwell. Bien que coûteuse numériquement du fait de la
discrétisation 3D, cette méthode s'avère bien adaptée aux calculs sur des structures GaN multimodes,
car il est possible de calculer approximativement la dispersion de plusieurs modes simultanément.

La seconde méthode est une méthode de matrice de di�usion (S-matrix, ou RCWA) classique.
Son implémentation est rappelée, y compris lorsque la FFF est appliquée. Cette méthode permet de
calculer les propriétés di�ractives (ré�exion, transmission) d'une structure périodique, ainsi que d'en
calculer les modes de Bloch. En�n, l'ajout d'une discontinuité électromagnétique dans la structure
permet de calculer le diagramme d'émission d'un dipôle émetteur. Le calcul des modes de Bloch est
plus rapide avec cette méthode qu'avec la méthode hybride, mais seul un mode peut être calculé à la
fois, ce qui rend les structures GaN épaisses pénibles à traiter.

0.7 Conclusion

De nombreuses structures ont été proposées et réalisées durant cette thèse pour augmenter l'extraction
de la lumière des LEDs GaN, en employant des approches ondulatoires. Les LEDs à microcavités se
sont avéré délicates à fabriquer, et le manque de contrôle du processus de fabrication n'a pas permis
d'en tirer des résultats quantitatifs convaincants. La plus grande partie du travail s'est ensuite concen-
trée sur les LEDs à cristaux photoniques. L'aller-retour entre modélisation numérique et réalisations
expérimentales a permis de comprendre les propriétés optiques des PhC sur GaN et de proposer des
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stratégies d'optimisation pour les LEDs à PhC. La principale di�culté consiste à structurer la LED
dans la direction verticale pour s'assurer que tous les modes guidés interagissent bien avec le PhC.
En général, les structures de grande force photoniques permettent un meilleur contrôle des propriétés
photoniques mais sont plus délicates à mettre en oeuvre (tant du point de vue de la fabrication que
de la compréhension et de l'optimisation). Malgré les performances modestes obtenues jusqu'ici, le
grand contrôle o�ert par les PhC-LEDs permet raisonnablement d'espérer qu'elles pourraient trouver
une application industrielle dans les années à venir, une fois les problèmes d'optimisation surmontés.





Chapter 1

Light-emitting diodes

This chapter outlines the basic theory of light-emitting diodes and introduces the issue of light extrac-
tion, as well as strategies commonly adopted in order to enhance the latter. Readers familiar with
these concepts may skip the following and resume their reading at Chapter 2, where the �rst results
of the thesis work itself are presented. For a complete treatment of pn junctions, the reader is referred
to [1].

1.1 Basics on light-emitting diodes

1.1.1 Luminescence from a semiconductor

A semiconductor is characterized by an electronic band structure with a small energy gap between the
last �lled band (valence band) and the �rst empty band (conduction band). Electrons can be excited
from the valence to the conduction band, for instance by thermal energy (at nonzero temperature),
or absorption of an incoming photon. The vacancy left by such an electron in the Fermi sea of the
valence band can be treated as a particle, and is called a hole. Alternately, electrons and holes can be
injected by applying a current through a semiconductor.

Figure 1.1: Luminescence in a semiconductor. Eg is the band gap, and k the wavevector of the electrons. The
dispersion of the bands is parabolic close to the Γ point.

Once an electron is in the conduction band, it can return to the valence band (thus '�lling the hole')
by emitting a photon. Light-emitting diodes (LEDs) rely on this phenomenon, called spontaneous
emission. Spontaneous emission is characterized by conservation of energy and momentum between
the electron-hole pair and the emitted photon. Notably, energy conservation implies that the photon is
emitted with an energy close to the band gap of the semiconductor: light emitted by a semiconductor

13
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is thus nearly monochromatic, in contrast with the emission of a blackbody radiator which spreads
over a wide frequency range.

A quantum well (QW) is formed by a double heterostructure where a thin layer of a semiconductor
(the well) is sandwiched between to thick layers of a semiconductor with a larger gap (the barriers).
If the well is thin enough (typically one to a few nm), the separation between quantized electronic
energy levels (in the direction of the well) is much larger than the thermal energy kBT and only the
lowest-energy levels are populated. Since electrons are still free in the plane perpendicular to the
well, they still possess a dispersion relation in this direction. As can be seen on Fig. 1.2, this results in
luminescence at a higher energy than the gap of the well material, because of the quantum con�nement
energy.

Figure 1.2: (Left) Geometry of a quantum well (grown along z) (Middle) First energy levels in a quantum well,
and associated wavefunctions along z (i.e. density probabilities of electrons and holes). (Right) Dispersion in a
quantum well. k‖ is the electron's wavevector in the plane of the QW. The luminescence energy is shifted with
respect to the well material's band gap.

1.1.2 The p-n junction

Electroluminescence from a semiconductor was �rst documented in 1907 by H. J. Round, when he
observed a visible glow from a SiC crystal upon imposing an electrical bias.[2] However, the theory of
the p− n junction was not understood until Shockley's article in 1949 [3], which led Lehovec et. al in
1951 to interpret the electroluminescence of SiC as the radiative recombination of electron-hole pairs
in a p− n junction.[4].

The most simple form of p−n junction, called homojunction, is depicted on Fig. 1.3. It consists of
a junction between a piece of p-doped semiconductor (where the holes concentration is higher than the
electrons concentration) and a piece of n-doped semiconductor. At the interface between both regions,
the conduction and valence bands bend so that the bulk values of the Fermi level (i.e. far away from
the junction) are aligned. Microscopically, this band bending is due to the di�usion of carriers in the
opposite region (e.g. electrons in the p-region and vice-versa), which in turns yields an electric �eld
between the carriers and the vacancies they left behind them. This electric �eld in turn produces a
conduction current, which exactly balances the di�usion current in equilibrium conditions.

When an external voltage V > 0 is applied on the junction, the equilibrium between both currents
is broken and a net di�usion of carriers is favored. It can be shown (Shockley's law) that the current
�owing through the p− n junction varies exponentially with V :

I(V ) ∼ exp
(
eV

kBT

)
(1.1)
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This results in an excess of minority carriers on both sides of the junction. These carriers recombine
radiatively, producing electroluminescence.

Figure 1.3: (Left) Zero-biased homojunction. The di�usion current and the conduction current created by the
electric �eld in the junction balance each other (dashed arrows). (Right) When a positive bias V is applied,
the bands bending decreases and the di�usion of carriers increases. More minority carriers are present in the
opposite region where they can recombine and emit light.

However, the e�ciency of the phenomenon is limited by absorption of the emitted light (re-
absorption at the junction, and free-carrier absorption in the p and n regions). To avoid this, one
resorts to heterostructures where the energy gap at the p − n junction is smaller than in the p and
n regions, thus decreasing light reabsorption in these regions (Fig. 1.4). When the thickness of the
central region decreases below the De Broglie wavelength of carriers, it becomes a quantum well. Quan-
tum well structures are more e�cient than simple heterostructures, because they enable higher carrier
density in the active region (and hence a lower recombination time) at a given current density, and
because they e�ciently decrease re-absorption in the host material. Besides, they o�er more control
on the wavelength of emission thanks to the controlled quantum con�nement energy shift.

Figure 1.4: Heterostructure p − n junction: the gap is lower in the central region, avoiding re-absorption of
photons in the p and n regions.

Thus, in an ideal p − n junction, all the injected carriers are converted into light at a given
wavelength: this constitutes a perfectly e�cient conversion of electricity into light. Unfortunately, a
number of factors limit the e�ciency in actual light-emitting diodes, as will be seen below.
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1.2 Solid-state lighting

1.2.1 Uses of LEDs

Until a decade ago, the only available materials for visible light emission were AlGaAs and AlGaInP
compounds. LEDs were mostly used for cheap alpha-numeric displays (red to green LEDs), and for
telecommunications (infrared LEDs). The only blue-emitting devices were based on SiC and possessed
very poor e�ciency.

In 1993, Shuji Nakamura's work at Nichia led to the development of the �rst high-brightness InGaN
blue LEDs.1[6] This achievement completed the range of primary color, greatly extending the possible
applications toward the �eld of solid-state lighting. Solid-state sources with various colors can be
obtained either by combining several LEDs, or by down-converting part of the light emission of an
UV or blue-emitting LED with phosphors. The latter is typically used to obtain white LEDs: a
blue-emitting LED is coated by phosphors which absorb part of its emission and re-emit yellow light.

The greatest potential market of visible LEDs is that of general lighting, although the development
of high-e�ciency white LEDs is still in progress (see below) and it is likely that LEDs will not replace
conventional light sources before a decade. It should be noted that general lighting is a major market:
according to the US department of Energy, the sales of lighting products represent 60 billions $ each
year worldwide.

Besides the economic potential of this market, opportunities are also huge in terms of energy savings.
Indeed, in the US lighting represents 8% of the total energy consumption and 22% of the electricity
energy consumption. The ine�cient incandescent bulbs remain the most widespread sources so far:
they consume 40% of the lighting energy to produce only 15% of the light ouptut! A penetration
of LEDs of 50% in the general lighting market would yield considerable energy savings of more than
350 TWh, or the equivalent of the continuous energy production of 100 nuclear plants.

Meanwhile, along its development, solid-state lighting has unlocked a number of niche markets. Let
us quote the automotive market (LEDs are now integrated in headlamps in a number of car models),
backlighting of display screens (including TVs), display projectors, street signals, and most recently
the important market of cell phones (screens, keyboards and camera �ashes).

Currently, the LED market represents 3.7 billions $ each year globally. 58% of this �gure corre-
sponds to the cell phone market, while illumination only represents 5% of the market.

1.2.2 Performance of an LED

External quantum e�ciency

In general the performance of a lighting device is characterized by its external quantum e�ciency or
wall-plug e�ciency η, de�ned as the ratio of emitted (optical) power to injected (electrical) power:

η =
Popt

Pel
(1.2)

Several factors contribute to η, which may be decomposed as follows:

η = ηinj × ηint × ηf × ηextract (1.3)

The injection e�ciency ηinj is the fraction of electron-hole pairs injected into the LED which
reaches the p−n junction. This value is for instance limited by leakage of the current in the LED and
by Joule losses in the electrical contacts of the LED.

1More precisely, Nakamura demonstrated how GaN could be p-doped and thus injected electrically. This was obtained
by Mg doping of p-GaN, followed by a thermal annealing to activate the Mg donors.[5]
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The internal quantum e�ciency ηint is the fraction of electron-hole pairs reaching the p−n junction
which recombine radiatively. It is limited by nonradiative recombinations of electron-hole pairs.

The feeding e�ciency ηf is the ratio of the energy of an emitted photon2 ~ω to the energy of an
electron-hole pair injected in the LED:

ηf =
~ω
qV

(1.4)

Where V is the voltage drop across the LED and q the elementary charge. In general, part of the
electrons'energy can be lost to phonons and ηf < 1.

Finally, the light extraction e�ciency ηextract is the fraction of the photons emitted at the p − n
junction which actually escape the LED. Its value is limited by light re�ection which traps photons
inside the LED where it is eventually absorbed (either by the semiconductor or by the metal contacts).

It should be noted that, in the case of a white LED where phosphors are used for down-conversion
(for instance, by absorbing blue light and re-emitting yellow light) the e�ciency of this process also
has to be taken into account in the overall LED's e�ciency.

Fig. 1.5 summarizes the state of the art in LEDs' external quantum e�ciency in 2005.

Figure 1.5: [After Lumileds' presentation] Best external quantum e�ciency obtained in LEDs in 2005. Note
the collapse of η in the yellow-green region: AlGaInP compounds are limited by band structure e�ects (the
gap becomes indirect, and the barriers of heterostructures too small, leading to carriers leakage) while InGaN
compounds with high In contents su�er from higher dislocation densities, and hence low internal quantum
e�ciency.

Photometry

Power output

Besides the wall-plug e�ciency of an LED, other �gures of merit may be used to characterize its
e�ciency. In the case of a visible-light LED, on may consider the luminous power Plum of the LED
(expressed in lumens per watts), which takes into account the response of the human eye to light and
is de�ned as:

Plum = 683VCIE × Popt (1.5)
2In the realistic case of a polychromatic source, the average energy of the emitted photons should be considered.
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VCIE is the photoptic response curve of the human eye adopted by the Commission Internationale
d'Éclairage (CIE), as shown on Fig. 1.6. The maximal value of VCIE is 1, at λ = 555 nm.

Figure 1.6: CIE response curve VCIE . It reaches unity at λ = 555 nm. The visible spectrum is conventionally
de�ned as the wavelength range between 400 nm and 700 nm.

The luminous e�ciency of the LED is then de�ned as:

ηlum =
Plum

Pel
(1.6)

We also have ηlum = 683VCIE×ηext, so that the maximal possible luminous e�ciency is 683 lm/W
and can only be obtained for a green-emitting light source.

Currently, high-power white LEDs are routinely in the 30-50 lm/W range. The US Department
of Energy's objective of 100 lm/W for a white-emitting LED in 2010 has already been reached by
several companies at the laboratory level (Cree announced a record e�ciency of 130 lm/W in the
summer of 2006), and should be available in commercial products by the end of 2006. This is to be
compared to 10-20 lm/W for good incandescent sources, and 50-100 lm/W for good �uorescent sources.
Obtaining LEDs with e�ciency of 150 lm/W is generally considered a target for competitiveness against
conventional sources.

Of course, if LEDs are to supplement other white light sources, plain e�ciency is not enough: they
must also be available at a competitive price. In this context, light sources are then described in terms
of lm/$ or even lm/W/$. Currently, high-power LEDs are still more expensive by a factor 25-100 than
conventional light sources if only the initial (buying) cost is considered. However, considering their far
longer lifetime and higher robustness, they are already competitive with incandescent sources if costs
are considered over time (although still 10 times more expensive than the best �uorescent sources).

Considering the various aspects in which LEDs can still be optimized, it is quite reasonable to
expect that this factor of 25-100 in e�ciency will be reached within one decade. Besides, LEDs o�er
additional potential advantages such as small size, fast response time, control of the output intensity,
good color rendering and high brightness (see below).

Brightness

Another important �gure of merit is the brightness (or luminance) of an LED:

L =
dPopt

dΩdA
(1.7)
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Here, dΩ is the solid angle of light emission and dA is the area of the light source (Fig. 1.7). The
total optical power emitted by the LED can be obtained by integrating L over solid angles and over
the LED's surface.

Figure 1.7: Brightness corresponds to the optical power emitted per unit surface and solid angle.

Brightness is a meaningful quantity because under common imaging conditions, the human eye
is sensitive to the light emitted by unit surface, rather than to the total emitted light. Therefore, a
light source with a high brightness (such as an LED where all the light is emitted in a given direction
directly from the chip) will appear brighter to an observer than a lower-brightness source (for instance,
an LED emitting the same intensity in the same direction, but through additional redirecting optics
which make the light source seem larger).

Besides, light emission can be strongly angle-dependent, and for some applications (such as video
projectors, screens backlighting or coupling to an optical �ber), a directional emission within a given
angular range can be a desirable feature: the directionality of emission can be evaluated by integrating
brightness over the desired solid angle.

Color rendering

Figure 1.8: CIE chromaticity diagram: colors can be described as a mix of red, green and blue, and can be
characterized by tow chromaticity coordinates x and y.

The concept of color rendering describes the ability of a light source at illuminating objects with
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satisfying colors to the human eye. Unfortunately, perception of colors is much harder to de�ne than
concepts such as brightness.

Most colors can be reproduced as a suitable superposition of three basic colors, such as red, green
and blue. This is represented in the CIE's chromaticity diagram of Fig. 1.8.

As can be seen on Fig. 1.8, a given color can be obtained by several mixes of other colors, and hence
by several light sources (called metameric sources). However, if these metameric sources are used to
light a same object, they do not produce the same e�ect because the object's re�ectivity depends on
the detailed spectrum of a light source, not only on its overall color. Therefore, one has to introduce the
color rendering index (CRI) of a light source, which describes its ability at rendering objects' colors.

To measure the CRI of a light source, several test samples are illuminated by the light source and
by a reference source (usually a blackbody because a color seems 'natural' when seen under the sun's
light). The color of the object illuminated by both sources is then compared, and the tested source
obtains a high CRI if it closely matches the reference source. The maximal CRI is 100. Typical cool
white �uorescent lamps have a CRI of 62, but more expensive and sophisticate lamps with phosphors
have a higher CRI (∼ 80). Sources like low pressure sodium lamps can have a negative CRI. Good
white LEDs currently have a CRI of ∼ 85− 90 but use expensive phosphors, and do not always have
the best external quantum e�ciency. On the other hand, cheap white LEDs made of a blue LED with
yellow phosphors, usually o�er poor and non-uniform color rendering. This tradeo� between high CRI
and high e�ciency is a general feature, which may be improved by future, more e�cient phosphors.

Fig. 1.9 summarizes the US Department of Energy's expectations for LED performances for the
next decade.

Figure 1.9: Prospective evolution of LED performances according to the US DOE (while keeping a high CRI
∼ 85− 90).
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1.3 Light extraction from an LED

1.3.1 The issue of light extraction

As can be seen, the e�ciency of an LED is limited by several factors which are to a large extent
decoupled. Better contacts and optimized doping pro�le of the semiconductor lead to higher injection
e�ciency, while higher semiconductor quality increases the internal quantum e�ciency. In order to
obtain a very high external e�ciency (dozens of %), each of these factors needs to be optimized. The
work of this thesis focuses on the optimization of light extraction e�ciency, but one should keep in
mind that an ultimate high-e�ciency LED must address all other limitations.

Most of the light emitted inside an LED is unable to escape the LED and to reach the outside
medium (air) because of the refractive index contrast between the semiconductor (typically n1 ∼
2.5 − 3.5) and air (n2 = 1). According to Snell-Descartes' law at the semiconductor/air interface
n1 sin θ1 = n2 sin θ2, light can escape to air only if it propagates in the semiconductor with an angle
smaller than the critical angle θc:

θc = sin−1

(
n2
n1

)
(1.8)

The range of angles θ < θc is called the extraction cone. Light impinging on the interface beyond the
extraction cone is re�ected (total internal re�ection) and eventually re-absorbed in the semiconductor
or in the metallic contacts (Fig. 1.10).

Figure 1.10: (Left) Trajectories of extracted and trapped light emitted in a semiconductor: only light emitted
within the extraction cone (dotted lines) can escape. (Right) Illustration of Snell-Descartes'law n1 sin θ1 =
n2 sin θ2.

Of course, it may be argued that part of this trapped light will eventually reach the side of the
LED and be extracted (Fig. 1.11). However, this phenomenon is limited by re-absorption in the
semiconductor layer. Besides, even if six extraction cones (one per side) are considered, most of the
light is still trapped: the solid angle spanned by each extraction cone corresponds to 4% of the total
solid angle (in the case of GaN with n = 2.5), limiting the light extraction to 24% at best.3

1.3.2 Epoxy encapsulation

The easiest way to enhance light extraction is to encapsulate the LED in an large epoxy dome, which
also protects the LED mechanically (Fig. 1.12). In this case, light �rst escapes to the epoxy, of index
n ∼ 1.5.4 Because the LED chip is small compared to the dome, all the emitted light then impinges

3This holds for an LED with a transparent substrate, as is the case for GaN-on-sapphire. Other materials, such as
InGaAsP, possess opaque substrates which further limit light extraction.

4Unfortunately, materials with higher refractive index can not be used. This is mainly due to the unavailability of
high-index materials sustaining high temperatures over a long period of time: degradation of the encapsulant because
of heat causes strain on the contacts and eventually destroys the LED. This is a major issue regarding the lifetime of
LEDs.
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Figure 1.11: Six extraction cones are available for light extraction (if re-absorption is neglected).

on the epoxy/air interface near normal incidence and is extracted.5 Besides, brightness is conserved
under certain angles where the dome adequately images the chip surface.

Figure 1.12: LED chip encapsulated in an epoxy dome.

The extraction cone for a GaN/epoxy interface represents 10% of the total solid angle (against 4%
only in the case of GaN/air). In the most optimistic case, the total light extraction e�ciency is then
6 × 10% = 60%. However, this value is actually never reached because of re-absorption of laterally
travelling light in the GaN layer, and of absorption by the metallic contacts − notably by the semi-
transparent Ni/Au p-contact. Although it is di�cult to �nd accurate �gures for such 'simple' GaN
LEDs as that of Fig. 1.12, an extraction e�ciency of 20% at best seems realistic, and is substantiated
by Monte-Carlo simulations.[7]

1.3.3 Advanced light extraction schemes

In the following, we brie�y present the main strategies for e�cient light extraction. The �rst two
schemes can be classi�ed as 'geometric' approaches, while the latter rely on the wave nature of light.
For a review and a comparison of these di�erent schemes applied to a 'classic' material (AlGaInP) the
reader is referred to Ref. [8].

5The Fresnel re�ection coe�cient near normal incidence is only 4%.
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Shaped LED chip

In order to further enhance light extraction, a straightforward idea consists in modifying the shape of
the LED chip, in order to avoid trapped trajectories. Ideally, light rays then span all possible angles
inside the LED, and are able to escape after a few bounces. An implementation of this concept is
Hewlett-Packard's truncated-inverted pyramid (Fig. 1.13), which in 1999 reached a record external
quantum e�ciency η = 60.9% at λ = 650 nm (under pulsed operation).[9]

Figure 1.13: (After Ref. [9]) Hewlett-Packard's high-e�ciency truncated-inverted pyramid LED.

This solution is e�cient in terms of light extraction, but does not necessarily yield high brightness
(the whole surface of the chip emits light) and above all it can be costly because the chips have to be
shaped individually.

Small-scale structuration

Rather than modifying the overall shape of the LED, one may also consider altering its surfaces on
a smaller scale (for instance by texturing or roughening it) in order to avoid total internal re�ection.
This idea was �rst introduced in Ref. [10], leading to η = 30%. Since then, numerous implementations
of surface-textured LEDs have been introduced. Let us quote for instance OSRAM's buried micro-
re�ector LEDs.[8] As regards GaN-based LEDs, a clever fabrication scheme for substrate-less roughened
LEDs was introduced by Fujii et. al (Ref. [11]), leading to a demonstration of η = 38% at λ = 440nm
by Lumileds.[12] Likewise, the sapphire substrate is textured in Nichia's GaN-based LEDs.

Figure 1.14: (After Ref. [12]) Lumileds' �ip-chip, laser-lift-o� roughened GaN LED.

An advantage of small-scale structuration over the global shaping of the LED chip is that light can
be extracted after traveling a short distance (especially in the case of thin-�lm LEDs). This avoids
re-absorption of trapped light and reduces the emitting area, which can increase the LED's brightness.
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Microcavity LEDs

Micro-cavity LEDs (MCLEDs) will be studied in Chapter 2. In a MCLED, light is emitted inside a
thin planar cavity where multiple re�ections lead to Fabry-Pérot interferences. The angular emission
pattern of the LED is then modi�ed, so that a larger fraction of the emitted light can fall within the
extraction cone.

Photonic Crystals

Light extraction by photonic crystals (PhCs) will be studied in the rest of this thesis. More precisely,
we will focus on the possibility of di�racting guided lights thanks to a photonic crystal grating. For
the sake of completeness, let us quote another approach often found in the literature, which consists
in preventing emission of guided light by producing a band gap for guided modes.[13] This second
approach, which implies 'stronger' photonic structurations, will be addressed shortly at the end of
Chapter 4.

Geometric vs. wave optics

Clearly, the two �rst solutions presented above rely on geometric optics: they aim at modifying (ideally,
randomizing) the propagation direction of light rays. Such approaches typically result in a nearly
isotropic light emission pattern. Besides, the trajectories followed by light in the semiconductor are
likely to be ergodic, and hence to bounce several times on the lossy metal contacts.

The two latter approaches, on the other hand, explicitly use wave properties of light. While they
rely on more complex concepts, they also give greater control on the emission properties of a light
source, and notably on its emission pattern. This is useful for two reasons. First, the external far-�eld
pattern of the LED can be manipulated to obtain a directional source, without using any additional
optics. Second, and more subtly, the path followed by light inside the LED before extraction can also
be controlled. In a sophisticated stucture, one could thus consider taloring the trajectory of guided
light so that it propagates in dielectric until it is extracted, in order to avoid excessive losses (in the
metallic contacts for instance).
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1.4 A few words on GaN LEDs

To close this chapter, let us give a few details on the speci�cs of GaN-based LEDs. Two major
di�culties characterize this material: the choice of the substrate and the doping (especially p-doping).

1.4.1 Choice of the substrate, material defects

Unlike many other semiconductors, bulk wafers of GaN are currently not available (at least, not at a
price compatible with lighting objectives) and other possible substrates generally su�er from a large
lattice mismatch. The most common substrate is sapphire (Al2O3) because it is very cheap − although
the lattice mismatch is as large as ∆a = 16%. Sapphire is transparent and has a refractive index n ∼ 1.7
in the blue region. It is also perfectly insulating. Another possible substrate is 6H-SiC: although much
more expensive, the lattice mismatch is only 3.5%. Companies like Cree use SiC as a substrate for
high-power LEDs, whose high retail price make the cost of this substrate acceptable. Unfortunately
SiC is partially absorbing in the blue region (absorption coe�cient α ∼ 10 to 20 cm−1 at λ = 400
nm [14]), which is not ideal for light extraction. Finally, ZnO is seen as a promising substrate with a
lattice mismatch of only 2%, although this material is still being explored.

In general, a high lattice constant mismatch implies a high density of dislocations, caused by
the strain in GaN. Dislocations act as sites for non-radiative recombinations, decreasing the internal
quantum e�ciency of GaN compounds. Indeed, substrates with a better lattice matching generally
result in higher internal e�ciency. In order to reduce dislocations, a thick (several µm) GaN bu�er
layer is usually grown over the substrate in order to accommodate strain, before the p − n junction
itself is grown.

However, it must be pointed out that the mechanisms responsible for recombinations (both radiative
and non-radiative) in GaN compounds are not well understood, especially in the presence of InGaN
quantum wells. Notably, the dislocations density in GaN-on-sapphire is typically ∼ 1010 cm−2: at
such a density, luminescence would be quenched in any typical III-V semiconductors. Surprisingly,
the internal e�ciency reaches several dozens of % in InGaN. Several hypotheses have been introduced
to account for this high e�ciency. The most popular scenario involves the existence of small-scale
In-rich clusters, forming 'quantum dots' where carriers are localized and can recombine radiatively
without feeling the e�ect of dislocations. While TEM images of InGaN quantum wells initially seemed
to support this thesis, it is not fully accepted yet and it seems that more recent measurements put
it in question. Numerous other experiments, such as time-resolved photomuminescence and micro-
cathodoluminescence, led to other possible explanations of the properties of InGaN, but there is so
far no consensus. Let us note that indium-related carriers localization may take place even in the
absence of indium-rich clusters (for instance, because of monolayer �uctuations at the quantum well's
interfaces, or because of indium potential barriers forming around the dislocations [15]). One of the
di�culties in this matter may be the variety of growth conditions between di�erent groups, which
probably lead to GaN with rather di�erent microscopic properties: in the end, it is not certain that
one single explanation will prove de�nitive for all groups.

In any case, the high density of dislocations undoubtedly degrades the optical properties of GaN
compounds, prompting numerous e�orts in order to reduce it, such as lateral epitaxial overgrowth (see
Chapter 4, Section 4.4) or growth of GaN on alternate substrates.

1.4.2 Doping of GaN

In addition to the growth of GaN itself, doping also proves challenging and has constituted a hurdle
to GaN injection for decades. Si is used for n-doping and is usually not an issue. On the other hand,
the best p-donor is Mg and is still quite a poor donor: the formation of Mg-H complex degrades
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the electrical properties of p-GaN. In the 1990's, the demonstration by Shuji Nakamura of a thermal
annealing process which activates this complex �nally yielded GaN LEDs with acceptable electrical
properties. However, p-GaN remains problematic even today: its lateral resistivity is still very high,
so that holes tend to �ow 'vertically' below the p-contacts rather than to spread laterally. Besides, Mg
tends to contaminate MOCVD reactors so that p-GaN is always grown as the last layer in a structure.

As a consequence, GaN LEDs are topped with p-contacts under which luminescence occurs. Un-
fortunately, the optical properties of p-contacts are usually rather poor. The most frequent p-contact
is made of a thin (a few nm) 'semi-transparent' NiAu layer, whose absorption is ∼ 25% after a suitable
annealling process. Another option is the use of a transparent material such as ITO (indium tin oxide).
Although absorption in ITO is low, it su�ers from other drawbacks. Notably, its lifetime is limited,
and a GaN/ITO interface forms a Schottly barrier so that a thin Ni layer usually has to be placed at
the interface to make the contact ohmic, thus increasing optical losses.

As a conclusion, there is a clear need for p-contacts with good optical properties (or of an injection
scheme which limits contact losses) for e�cient light extraction from GaN LEDs.

Fig. 1.15 presents a sketch of a typical GaN-on-sapphire LED, and illustrates some of the constraints
mentioned above.

Figure 1.15: Simple GaN-based LED on a sapphire substrate. The arrows indicate the �ow of carriers: light
is only generated below the p-contact, so that absorption losses are di�cult to avoid.

1.4.3 Guided light in GaN

As has already been pointed out, most light generated in a high-index material is trapped by total
internal re�ection, prompting the need for an e�cient light extraction strategy. More speci�cally,
roughly two thirds of the emitted light remain trapped in the GaN layer. Due to the dimensions
of this thin-�lm GaN layer (a few µm high and hundreds of µm wide) it behaves as a waveguide:
light is distributed in a series of so-called guided modes, which will be studied in Chapter 3. Without
anticipating the following chapters, let us point out that due to the thin-�lm nature of GaN, wave optics
properties can be applied and light extraction strategies based on these properties (e.g. microcavities
and photonic crystals) seem naturally suited to GaN structures.
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1.5 Conclusion

In principle, light-emitting diodes constitute an e�cient means of converting electrical power
to visible light because photons are only generated around a desired visible energy, in contrast
to incandescent sources. However, several factors limit their ultimate e�ciency, among which
the di�culty to extract the generated light outside of the semiconductor.
While this fact has been known and addressed for years, most technical solutions found on
the market are based on the principle of randomizing the directions accessible to light, so
that it eventually escapes the LED. This approach is e�cient but yields little control over
the far-�eld pattern of the LED (which is essentially isotropic). Solutions relying on wave
optics, on the other hand, are based on more complex principle but should allow a better
control of the LED's directionality, while keeping a planar fabrication process. The work
of this thesis is focused on the study of two such strategies for GaN-based LEDs, namely
micro-cavity LEDs and photonic crystal LEDs.
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Chapter 2

Micro-Cavity LEDs

As has been seen in the previous chapter, only ∼ 5% of the light emitted by an LED naturally escapes
the semiconductor by one face. In order to enhance this value, one may consider altering the emission
pattern of the quantum wells, so that a greater fraction of the emitted light is directly directed in
the extraction cone. This leads to the concept of MicroCavity LED (MCLED), where a thin LED is
embedded between two mirrors.[1] The resulting multiple interferences modify the pattern of emitted
light, thus enhancing light extraction (Fig. 2.1). In this chapter, we present theoretical results and
experimental measurements on GaN-based MCLEDs.

Figure 2.1: Principle of a microcavity LED. (Left) In a bulk medium, light emission is isotropic. Only a few
% of the total emission fall above the critical angle (dashed line). (Right) The presence of mirrors modi�es the
emission pattern of the source, yielding preferential emission above the light cone.

2.1 MCLEDs: Theory

2.1.1 Principle of MCLEDs

To introduce the principle of microcavity LEDs, let us �rst explore semi-quantitatively the behavior of
a light source in a Fabry-Pérot cavity, following the tutorial description of Ref. [2]. We will then resort
to exact simulations in order to quantify the potential of this approach in the case of GaN LEDs. A
more thorough treatment of the theory of MCLEDs can be found in Refs. [3, 4].

31
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Fabry-Pérot cavity

We consider a plane wave whose wavelength in the vacuum is λ0. In a medium of index n, the
wavevector of this wave is:

k = nk0 = n
2π
λ0

(2.1)

Where k0 is the wavevector of light in the vacuum. If we take the convention c = 1, the frequency
of light is:

ω =
2π
λ0

= k0 (2.2)

Let us now consider a Fabry-Pérot cavity made of a dielectric of index n and thickness L placed
between two mirrors, as depicted on Fig. 2.2. We assume that this structure is illuminated from top
by an incident plane wave of intensity I0 = E2

0 , impinging at an angle θ.

Figure 2.2: Sketch of a Fabry-Pérot cavity.

Let us denote as r1 and R1 (respectively r2 and R2) the �eld and intensity re�ection coe�cients
of mirror 1 (resp. 2). We also introduce the corresponding transmission coe�cients t1, T1, t2 and T2.
The plane wave transmitted by the structure has an amplitude:

Et = E0t1t2

(
1 + r1r2e

2iφ +
(
r1r2e

2iφ
)2

+ . . .

)
= E0

t1t2
1− r1r2e2iφ

(2.3)

Here, 2φ is the phase shift of the wave during a round-trip in the cavity, given by:

2φ = 2nk0Lcos(θ) (2.4)

Therefore, the transmission (in intensity) of the Fabry-Pérot is:

TFP =
|Et|2

|E0|2
=

T1T2

1 +R1R2 − 2r1r2 cos 2φ

=
T1T2

(1− r1r2)2
A(φ)

(2.5)

Where A is the Airy function:

A(φ) =
1

1 + C sin2 φ
with C =

4r1r2
(1− r1r2)2

(2.6)

The Airy function is thus characteristic of the transmittive behavior of a Fabry-Pérot.
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Fabry-Pérot with embedded light source

Let us now consider the same structure, with a light-emitting source located at a position z inside the
cavity (Fig. 2.3). We assume that this source emits plane waves isotropically in all directions θ.

Figure 2.3: Fabry-Pérot cavity with an embedded source.

We now introduce two phase shifts:

φ = nk0Lcos(θ)

φ′ = nk0zcos(θ)
(2.7)

As before, φ is the phase shift of a plane wave going through the cavity of size L, and φ′ is the
analogous for propagation on a vertical distance z. We can now express the amplitude of the �eld
above the cavity in direction θ:

E1 = E0e
i(φ−φ′)t1

(
1 + r1r2e

2iφ + . . .
)

+ E0e
i(φ+φ′)r2t1

(
1 + r1r2e

2iφ + . . .
)

= E0t1
1 + r2e

2iφ′

1− r1r2e2iφ

(2.8)

We de�ne the so-called antinode factor, which describes the density of the electromagnetic �eld
inside the cavity:

ζ(φ′) = 1 +R2 + 2r2cos2φ′ (2.9)

We can thus express the intensity emitted above the cavity:

I1 = |E1|2 = I0
T1

(1− r1r2)2
A(φ)ζ(φ′) (2.10)

Likewise, the intensity emitted below the cavity is:

I2 = I0
T2

(1− r1r2)2
A(φ)ζ(φ′) (2.11)

Thus, it appears that the emission intensity in a given direction is a product of two factors: the
Airy function, which indicates the resonant behavior of the bare Fabry-Pérot cavity, and the antinode
factor, which governs the coupling e�ciency of the light source to the Fabry-Pérot modes. Indeed, ζ
is maximal when the source is located at an antinode of a given mode: in this case, emission in the
mode is favored.
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For instance, when z = L/2 (source at the middle of the cavity), A is maximal whenever φ = mπ,
corresponding to constructive interferences of the Fabry-Pérot. However, whenm is odd, ζ = 0 because
the corresponding Fabry-Pérot mode is odd and has a node in the middle of the cavity, at the position
of the source.

Light extraction, cavity order

So far, we have only considered that both the cavity and the outer media had the same index n, and
thus neglected the possibility of total internal re�ection. We now turn to a case where the upper
medium has an index next. Thus, light emitted in the cavity beyond the critical angle θc can not
propagate in this medium. The critical angle is given by:

θc = asin
(next

n

)
(2.12)

Moreover, we make several simplifying assumptions. The lower mirror is assumed to be perfect, so
that r2 = 1. The re�ectivity of the upper interface is still taken as constant and equal to r1. Finally,
we assume that the source is located at the center of the cavity, e.g. z = L/2.

With all these assumptions, the intensity emitted upward simpli�es to:

I1 = 2I0T1
1 + cosφ

1 +R1 − 2r1cos2φ
(2.13)

Of course, this simple form should no longer hold when θ > θc because then r1 jumps to unity.
However, we disregard this fact for now and assume that this expression still gives a fair estimate of
the power emitted beyond the critical angle. We consider a model case where n = 2.5 (a typical value
for GaN), next = 1 and R1 = 0.2.1 The cavity thickness is taken so that the so-called cavity order mc

is integer, where:

mc =
nL

λ
(2.14)

This condition simply corresponds to requesting that I1 be maximal at θ = 0. Fig. 2.4 shows
several examples of I1 as a function of θ, for mc = 15, 3 and 1 respectively

I1 consists of peaks corresponding to the Fabry-Pérot modes excited by the source. The modes
falling above θc are extracted. As can be seen, mc governs the number of peaks in I1, e.g. the number
of Fabry-Pérot modes supported by the cavity. The power carried by each of these peaks is constant.
Indeed, integration of I0 over peak p, taking solid angles into account, is best carried out by integrating
over φ and yields: ∫

p
I0 sin θdθ ∼

∫ (2p+1)π

(2p−1)π
I0dφ = 2πI0 (2.15)

We are now ready to draw conclusions on the e�ect of L on the light extraction e�ciency. It is
given by the ratio of light emitted above θc and the total emission:

η =

∫ θc

θ=0
I1sinθdθ∫ π/2

θ=0
I1sinθdθ

(2.16)

1This corresponds to the Fresnel re�ection coe�cient at normal incidence for an interface between n = 2.5 and n = 1.
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Figure 2.4: Intensity emitted by a source in a GaN Fabry-Pérot cavity, with cavity orders mc = 15, 3 and 1
from top to bottom. Thinner cavities feature less emission peaks. Light emitted above θc (dashed vertical line)
is extracted to air.

When L >> λ, in the thick cavity regime, I1 features many peaks both above and below θc, and η
is simply the ratio of the solid angles of integration:

η ∼ 2π(1− cosθc)
2π

∼ n2
ext

2n2
(2.17)

When L ∼ λ, we depart from this statistical limit. When L is small enough that only one peak
is in the escape cone, we reach the so-called microcavity regime. Since the intensity is equally shared
between peaks, the extraction e�ciency is then simply:
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η =
1
mc

(2.18)

This relation shows that high-e�ciency MCLEDs should have a low cavity order, e.g. be as thin

as possible. As will be seen, the relation is only approximate and no longer holds for very thin cavities
(mc ∼ 1) where the extraction e�ciency saturates around 50% at best.

The crossover between the thick cavity and microcavity regimes, when η becomes higher than the
thick cavity limit, corresponds to:

mc =
2n2

n2
ext

(2.19)

In the case of GaN, this yields mc ∼ 12 or a thickness ∼ 2µm.

Finesse

A useful quantity in the description of a cavity is its �nesse, which describes the relative width of the
Fabry-Pérot peaks. It is de�ned as:

F =
∆φ
φ
≈

π
√
r1r2

1− r1r2
(2.20)

Where ∆φ is the full width at half maximum of the cavity's Airy function (Eq. 2.6). The last part
of Eq. 2.20 is valid when r1 and r2 are large enough. Fig. 2.5 compares emissions of two cavities (as
given by Eq. 2.13) with R1 = 0.1 and R1 = 0.5 respectively (and R2 = 1), corresponding to �nesses of
∼ 2.6 and 9. For the cavity of higher �nesse, most of the extracted peak falls in the extraction cone,
while a larger part of this peak lies beyond the critical angle for the cavity of lesser �nesse. However,
this e�ect is seen to be quite modest in our case: thanks to its low refractive index (2.5), GaN has a
rather large critical angle which can easily accommodate a Fabry-Pérot mode.

Figure 2.5: Intensity emitted by a source in a cavity with mc = 3, and a �nesse F = 2.6 (thick line) and F = 9
(thin line) respectively. For the cavity of lower �nesse, a larger part of the extracted mode leaks beyond the
critical angle, but this e�ect is small.

Detuning

The e�ciency of Eq. 2.18 can easily be enhanced if the cavity thickness slightly departs from the value
λmc/n. More precisely, we de�ne the detuning δ by:
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δ = λ− Ln

mc
(2.21)

It can then be shown (Ref. [5]) that the extraction e�ciency is roughly maximal for an optimal
value:

δopt = −λn
2
ext

4n2
(2.22)

Figure 2.6: Detuned emission for the same cavity as mc = 3 above. Full line: optimal detuning, the extracted
peak is entirely in the extraction window. Dashed line: worst case, the peak is nearly entirely outside of the
extraction window.

Indeed in this case, as can be seen on Fig. 2.6, the extracted peak is fully located in θ ∈ [0; θc],
and the extracted intensity is doubled. Another consequence is that maximum emission now occurs
for θ > 0; in terms of external angle, the maximum is close to θ = 45o. The resulting far-�eld pattern
of such an LED is sometimes described as 'rabbit's ears' because of its appearance (see Fig. 2.12 for
examples).

On the other hand, a detuning with the inverse sign has the opposite e�ect: the mode is pushed
outside of the extraction window, and the e�ciency is spoiled. This implies that L should be controlled
with a good accuracy, because the optimal and worst detunings are separated by a short distance, only
∼ 30 nm in the case of GaN.

In summary, the microcavity regime corresponds to thin cavities, where the extraction e�-
ciency departs from the average value of thick cavities because only a few Fabry-Pérot modes
are present. If the cavity thickness is correctly tuned, one of these peaks is fully extracted,
and the extraction e�ciency is ∼ 2/mc: it is highest for very thin cavities. For optimal light
extraction, the thickness of the cavity has to be controlled with accuracy: a 30 nm error
completely spoils its e�ciency.

2.1.2 Application to the case of GaN

So far, we have accounted for the microcavity e�ect with a simplistic model: all re�ectivities were kept
constant and absorption and polarization e�ects were neglected, as well as possible modi�cations of
the radiative lifetime of the light emitter.



38 CHAPTER 2. MICRO-CAVITY LEDS

To treat the case of GaN structures, we now turn to exact electromagnetic simulations. We model
the emission of a quantum well in a multilayer structure with the method of the transfer matrix with a
dipole source, introduced in Ref. [6]. In this method, described in more details in Chapter 6, Maxwell's
equations are solved exactly in the presence of a light source, and yield its emission pattern as well as
its extraction e�ciency. More speci�cally, here and in all the remainder of the thesis, we model InGaN
quantum wells as a superposition of horizontal dipoles with random orientation.2

Emission in a typical GaN structure

As a comparison basis, let us �rst study the emission diagram of a typical GaN LED. Our test structure
is made of a sapphire substrate (of index nsapphire = 1.7), a 3µm thick GaN layer (of index nGaN = 2.5)
with a quantum well located 150 nm below the GaN surface, and an air superstrate. Fig. 2.7 displays
the emission diagram of the quantum well.

Figure 2.7: Emission diagram of a quantum well in a GaN structure, representing the power emitted per solid
angle as a function of polar angle of emission θ (on a logarithmic scale). The horizontal axis corresponds to the
position of the quantum well. E = directly extracted light, S = substrate light, G = guided light. The radial
lines represent the critical angles θair

c and θs
c .

2This is consistent with the Hamiltonian of wurtzite InGaN grown along the c-axis, where the spin-orbit valence band
is splitted from the heavy and light holes bands by the anisotropy of the crystal along the c-axis. [7] In this case, the
emission is expected to correspond mostly to that of horizontal dipoles, as shown in Apppendix B. However, to my
knowledge, no experimental veri�cation of this property has been published yet.
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Let us analyze this diagram. We de�ne the critical angles of air and sapphire as:

θair
c = asin

(
1

nGaN

)
θs
c = asin

(
nsapphire

nGaN

)
(2.23)

Light emitted close to the vertical (θ ∈ [0, θair
c ]) is in the escape cone of air and can thus exit the

LED. Of course, part of this light is emitted downward in the sapphire substrate. However, sapphire is
transparent to visible light and this light can simply be redirected upward by placing a metallic mirror
under the substrate. Alternately, one may place a metallic mirror on top of the LED and emit light
through the substrate side, as is commonly done for basic GaN LEDs. We call this light extracted light.
It amounts to 12% of the total emitted light.3 This value neglects the possible absorption in metallic
contacts, which can be quite high (40% in a simple NiAu semitransparent contact).

Light emitted at angles θ ∈ [θair
c , θs

c ] is propagative in sapphire but not in air. This light is called
substrate light,4 and carries away 25% of the total light emission. Because of the thickness of the
substrate (∼ 500µm), this light propagates mostly in sapphire and su�ers very little absorption. Thus,
it can propagate for several cm and is usually observed at the cleaved edge of the sample. Part of it
can usually be redirected upward by a geometric approach (such as mirrors on the sides of the LED),
and actually accounts for most of the light emission in a basic mounted LED.

Finally, light emitted at angles θ > θs
c is only propagative in GaN. This light forms so-called guided

modes in the GaN layer, which acts as a thick waveguide. The properties of guided modes will be
explored in the following chapters. Here, this guided light carries away 66% of the total light emission:
this is the light we aim at extracting!

GaN MCLEDs: choice of the materials

Let us now discuss possible structures for GaN microcavity LEDs. In general, two kinds of mirrors can
be considered: dielectric and metallic mirrors.

Dielectric mirrors, also called Distributed Bragg Re�ectors (DBRs), are made of stacks of two di-
electrics of di�erent indices n1 and n2. Light is re�ected by the constructive interference of the multiple
re�exions occurring at the dielectric interfaces (Fig. 2.8). In principle, re�exion can be arbitrarily high
in a given direction provided the DBR has a su�cient number of layers. Good re�ectivity is obtained
with fewer layers if the index contrast ∆n = n2 − n1 is high. Likewise, a high ∆n ensures high re-
�ectivity in a large angular range. An important advantage of DBRs is that conductive DBRs can be
grown epitaxially and thus embedded in the LED.

Figure 2.8: Principle of a Distributed Bragg re�ector: alternated layers of indices n1 and n2 produce multiple
re�ections of an incoming wave. If all re�ections interfere constructively, the re�exion coe�cient (R) can be
arbitrarily high for a su�cient number of layers. The optimal layer thicknesses of the layers for re�ection at a
wavelength λ are λ/n1 and λ/n2, respectively.

3One must be careful to take solid angles into account when evaluating light emission: glancing polar angles (θ ∼ 90o)
correspond to a large solid angle and thus carry away a large fraction of the light emission.

4The name leaky light is also found in the literature, but we avoid it here because of a possible confusion with the
leaky modes of photonic crystals which will be studied in the next chapters.
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In the case of GaN unfortunately, good conductive DBRs are very di�cult to grow. The available
compounds are AlGaN and InGaN. AlGaN has a higher gap (and therefore a lower index) and InGaN
a lower gap.

Figure 2.9: (After Ref. [7]) Band parameters of AlInGaN compounds in wurtzite form.

However, the crystal lattice mismatch increases rapidly with the Al or In content, leading to strain
and to cracks in the epitaxial layers. One has to maintain low contents of Al and In in order to avoid
this: the index contrast in this case is quite limited, ∆n ∼ 0.2 being a typical value. This implies that
even if a high number of pairs is used, leading to good re�ectivity at normal incidence, the angular
width of the re�ectivity plateau is limited. Besides, the penetration length (the distance of penetration
of evanescent light in the DBR) goes up, leading to a higher cavity order mc.

It should be mentioned however that excellent results have been reported recently at EPFL. These
are based on the use of AlInGaN compounds, where the strain is mitigated and overall higher index
contrasts can be obtained.[8]

Metallic mirrors have the advantage of o�ering high re�ectivity at all angles. They usually have
very small penetration lengths (the skin depth in a good metal is of a few nm), making small cavity
orders accessible. On the other hand, they can absorb light and can not be embedded in the LED
during growth. The e�ect of absorption is especially strong if the active region is too close to the
mirror (a few tens of nm): in this case, surface plasmons can be e�ciently excited by the electron-hole
pairs of the quantum well and non-radiative loss becomes very strong.[9]

On the side of metallic mirrors, Ag and Al are reasonable choices. They both have high re�ectivity
(∼ 90%) in the visible, down to 400 nm. Surface plasmons are still a possible concern, so that the
quantum wells should be kept at least 50 nm away from the metal.

Overall, the choice of a material system is not straightforward, because of the relative advantages of
DBRs and metallic mirrors. As a consequence, we consider in the following several kinds of structures,
which combine both kinds of mirrors.

Simulation of GaN MCLEDs

To determine the optimal structure, we take various combinations of mirrors, and consider extraction
both in air and epoxy. For the top mirrors, we compare a DBR with N = 13 pairs (indices n = 2 and
2.5, leading to an optimistic index contrast ∆n = 0.5), and an Ag mirror (n = 0.05 + 2.5i). For the
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bottom mirrors we compare a DBR with N=35 and a simple interface between GaN and air/epoxy.
The emitting wavelength is λ = 405 nm. Both the cavity thickness and the position of the quantum
well are varied in order to determine the optimal extraction in each structure. We obtain optimization
diagrams as shown on Fig. 2.10.

Figure 2.10: Optimization diagrams of GaN MCLEDs. (Left) Ag bottom mirror and simple air/GaN interface
on top. (Right) DBRs on both sides (with N = 15 for the bottom and N = 4 for the top mirror), and extraction
to air. 'QW position' refers to the relative position of the quantum well in the cavity, 0 corresponding to the
bottom and 1 to the top. As can be seen, the windows of optimal extraction are quite narrow (a few dozens of
nm), especially in the presence of DBRs which increase the �nesse of the MCLED and hence produce sharper
resonances.

Notably, it appears that the extraction e�ciency does not rise to 1 for very thin LEDs, as could
be expected from the approximate expression of Eq. 2.18. Indeed, the simpli�ed treatment used to
obtain this equation no longer holds in this regime: a large fraction of the light (at least 50%) always
remains trapped as guided modes in the GaN layer. Strategies to extract this light will be adressed in
the following chapters.

The optimal extraction e�ciency of each structure is then taken as the maximum of the diagram
(disregarding cavity thicknesses below 100 nm, which are not realistic). Fig. 2.11 summarizes the
results.

DBR (N=3) Interface

DBR (N=13) 23 24

Ag 31 31

DBR (N=3) Interface

DBR (N=13) 27 27

Ag 43 44

Figure 2.11: Optimal extraction e�ciencies (in % of total emission) for various MCLED geometries
(rows=bottom mirror, columns=top mirror). Left table: extration in air, right table: extraction in epoxy.
N is the number of pairs of the DBR. 'Interface' refers to a simple GaN/outer medium interface.

As can be seen, the optimal values are always found using a metal bottom mirror: the penetration
length in a DBR is too detrimental in terms of cavity order. Extraction to epoxy is of course favorable

5Indeed, a modest re�ectivity is su�cient for the top DBR, which should always be less re�ective than the bottom
mirror.
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because it leads to a larger critical angle. In general, use of a top DBR does not enhance e�ciency.
This is simply because for very thin MCLEDs with cavity orders mc ∼ 2, the escape cone of a GaN/air
(resp. GaN/epoxy) interface is naturally large enough to accommodate most of the extracted peak:
increasing the �nesse of the cavity has no strong bene�cial e�ect. This feature is already visible on
the approximate treatment of Fig. 2.6, where it is apparent that the extracted mode �ts well within
the extraction cone. Besides, the e�ective cavity length increases when a DBR is present (the modes
can leak in the dielectric more than in air), which leads to more emission in guided modes: this turns
out to outbalance the positive e�ect of the top DBR in the case of epoxy, leading to an overall lower
extraction.

On the other hand, a top DBR has a direct impact on the far-�eld pattern of the LED, as shown on
Fig. 2.12: because of the higher �nesse of the cavity, the extracted peak has a much narrower angular
aperture. This can be useful for some applications, especially if one wants to couple the emitted light
to an optical �ber, or to obtain a spectral selectivity (indeed, the angle of the ears shifts with λ).

Figure 2.12: Emission diagrams (λ = 405 nm) of GaN MCLEDs with an Ag bottom mirror, a 185 nm thick
cavity and a relative quantum well position 0.55. (Top) Internal emission of the source, logarithmic scale.
(Bottom) External emission through the top surface, linear scale. (Left) GaN/air interface. (Right) DBR
(N=3) on top of the GaN layer. In the presence of the top DBR, notice the more numerous guided mode peaks
(internal emission) and the sharper extracted peak.

In accordance with these simulations, experimental e�orts at UCSB have been directed toward
MCLEDs made of a metallic mirror and a simple GaN/air interface. These are reported in the next
section.
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Microcavity LEDs constitute a simple approach to enhancing light extraction. Their poten-
tial is well assessed in usual III-V materials. In the case of GaN however, unlike in GaAs, the
material characteristics are not favorable to an e�cient implementation. Good conductive
DBRs are not available. The best structures are made of a thin GaN layer reported on a
metallic substrate. For these structures, calculations predict an optimal extraction e�ciency
of 31% in air and 44% in epoxy.
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2.2 Fabrication and measurement of GaN MCLEDs

This section presents experimental results on MCLEDs obtained at UCSB. All the following were
measured on structures fabricated by Tetsuo Fujii. A �rst report on these e�orts can also be found in
Ref. [10].

2.2.1 GaN MCLEDs: fabrication process

The fabrication process of these LEDs is complex: one has to bond the GaN layer on a metallic
substrate (Ref. [11]) and get rid of the sapphire substrate. This is done by a laser lift-o� process where
the sample is illuminated through the sapphire by a pulsed 245 nm KrF excimer laser. This laser is
strongly absorbed at the sapphire/GaN interface, the heat shock leading to separation of the substrate
from the GaN layer. The resulting structure, made of a ∼ 4µm GaN layer on a metal submount, is
then thinned down by chemical-mechanical polishing (CMP) to obtain the desired GaN thickness.

Table 2.13 details the fabrication process.

p-contact p-type activation RTA

p-contact area de�nition SiO2 deposition

Lithographic patterning

SiO2 etching

p-contact formation Metal deposition

Lift-o�

Wafer bonding Thick metal deposition e-beam 1

Bonding to submount

Laser lift-o� Laser rastering on whole surface Krf Eximer laser

Ga metal removal HCl dip

GaN thinning Coarse Gan etching RIE 5 (Cl2)

Polishing Chemico-mechanical polishing

Device separation Mesa de�nition Lithographic patterning

SiO2 deposition

SiO2 etching

Mesa etching by RIE 5 (Cl2)

n-contact n-contact de�nition Lithographic patterning

n-contact formation Metal deposition

Lift-o�

Figure 2.13: MCLED fabrication process.

An advantage of the CMP is that is naturally non-uniform: di�erent mesa thicknesses can be
obtained on the same sample. This wedge e�ect is very useful to characterize di�erent cavity orders at
the same time. Moreover, owing to the di�culty to obtain an accurate thickness (as already mentioned,
the desired precision is on the order of 10 nm), it is hoped that at least some of the mesas will be close
to the desired thickness.

In practice, Ni/Ag is usually chosen as a p-electrode. Ag provides good re�ectivity, while a thin Ni
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layer (a few nm) ensures good electrical injection. The bonding metal is Au, which has a low melting
point and e�ciently sticks the GaN to the submount. The submount can be Si or a ceramic. Fig. 2.14
depicts the cross-section of the resulting device.

Figure 2.14: Cross-section of a laser-lift-o� MCLED. Arrows depict carriers �ow. Due to good current spreading
in n-GaN and poor current spreading in p-GaN, light is generated only above the highly re�ective p-contacts.

2.2.2 Characterization of GaN MCLEDs

Angle-resolved luminescence setup

The micro-cavity e�ect should signi�cantly modify the far-�eld emission pattern of LEDs. Therefore, in
order to characterize MCLEDs, I resorted to an angle-resolved luminescence setup, whose installation
at UCSB was initiated by Carole Schwach (Fig. 2.15). This setup consists of an optical �ber mounted
on a rotating arm, which collects luminescence spectra at various polar angles around the measured
sample. A polarizer is placed before the �ber, to distinguish between TE and TM-polarized light. The
signal is then analyzed by a spectrometer. The distance between the sample and the �ber is ∼ 15 cm,
and the collection is limited by an aperture with 1 mm diameter, leading to an angular aperture 0.5o.
Since most light sources are at most 1 mm large, they can be considered punctual.6

Figure 2.15: Angle-resolved luminescence setup: the luminescence is collected at all polar angles around the
source.

Thinning of GaN LEDs: the onset of the micro-cavity regime

The criterion usually considered to characterize the micro-cavity regime is that of Eq. 2.19. This
condition just amounts to reaching a thickness where the extraction e�ciency departs signi�cantly
from the thick-LED regime. Due to the non-uniform thinning process of the MCLEDs, a wide range
of thicknesses is naturally obtained on the same sample. This proves useful to observe the evolution
of the LED far-�eld pattern with decreasing thickness.

6The area of collection by the optical �ber is larger, on the order of 1cm2, but this is not a problem if the emitting
surface is small.
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Fig. 2.16 presents spectra obtained at various angles on a thick laser-lift o� GaN LED, and the
collection of several of these spectra in a 2-dimensional plot of emission versus wavelength and angle
of emission. Such plots fully characterize the far-�eld emission pattern of an LED7 and will frequently
be used in the remainder of this thesis as an analysis tool.

Figure 2.16: (Left) Angle-resolved spectra of a thick laser-lift-o� LED, taken at θ = 0o (full line) θ = −60o

(dashed line). (Right) 2D Angular spectrum of a �ip-chipped and laser lift o� LED with regular thickness
(several µm). This plot is obtained by collecting spectra taken at various angles between θ = −90o and 90o.

The LED of Fig. 2.16 was not thinned down after the LLO process, and the GaN layer remains
thick (∼ 3µm). Thus, it displays Fabry-Pérot interferences with an short fringe spacing (∼ 5nm).
The resulting spectrum is quite similar to typical luminescence spectra of GaN-on-sapphire structures
(although the contrast of the Fabry-Pérot fringes is modi�ed because sapphire is replaced by a metal
mirror).

Fig. 2.17 presents angular spectra obtained on thinned-down MCLEDs. All spectra come from the
same sample, processed by Tetsuo Fujii. As can be seen, the number of Fabry-Perot fringes varies from
LED to LED, evidencing non-uniform mechanical polishing of the sample.

To determine accurately the thickness of the LEDs, we need to deconvolve the intrinsic Fabry-Pérot
e�ect from other factors such as the emission lineshape of the quantum wells. The spectral and angular
dependence of the spectra is of the general form:

I(λ, θ) = f(λ)g(λ, θ)F (θ)cos(θ) (2.24)

Here, f(λ) is the emission lineshape of the quantum well (e.g. how much light is emitted at each
wavelength); g(λ, θ) is the emission per unit solid angle of the Fabry-Perot cavity; F (θ) is the Fresnel
re�ection coe�cient at angle θ; and the term cos(θ) is a solid angle correction.8 Of course, g(λ, θ)
and F (θ) are both part of the cavity's response and there is no formal reason for distinguishing them.
However, it is convenient in practice to remove the Fresnel contribution and keep only g(λ, θ) which
does not vanish at glancing angles.

7At least in a given azimuthal direction
8More precisely, the surface of collection of the angular setup is always orthogonal to the radial direction. On the

other hand, the emission of a Fabry-Perot cavity is usually expressed as a �ow across a horizontal cross-section, so that
a cos θ projection appears.
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Figure 2.17: Angular spectra of thinned-down MCLEDs processed on the same wafer, both with nearly-optimal
detuning (Left: collection in TE polarization, right: in TM polarization). (Top) Rather thick MCLED (t ∼ 900
nm). The dispersion of the extracted Fabry-Pérot mode (curvature with varying angles) is still visible. (Bottom)
Thinner MCLED (t ∼ 500 nm): because the layer is very thin, the dispersion of the extracted mode is now
barely visible over the spectral width of the LED.

The thickness of each LED can be determined from the spectral distance between two Fabry-Perot
fringes. In order to do this, the angular spectra �rst need to be renormalized to remove the e�ect of
the emission lineshape of the quantum wells f(λ). This lineshape can be obtained by measuring the
emission of a regular LED made from the same sample, using an objective with a large enough numerical
aperture to average the Fabry-Perot fringes. An equivalent method consists in simply summing the
angle-resolved spectrum over all angles, thus averaging the Fabry-Perot fringes. It may be argued that
in the case of thin MCLEDs, this averaging is no longer e�cient because there are too few modes in
the air cone (ultimately, only one mode). However in practice, this method turns out to be suitable
even for thin LEDs − even though the actual quantum well lineshape is not exactly recovered, the
fringe spacing can usually be estimated with good accuracy.

Likewise, the cavity thickness can also be determined from the angular distance between two
Fabry-Perot modes. Again, one �rst has to normalize the spectra by the factor F (θ)cos(θ) in order
to measure the true fringe spacing of the Fabry-Perot cavity. This justi�es the collection of polarized
spectra, because F (θ) depends on polarization.
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In practice, one can thus normalize the initial spectra by the factor f(λ)F (θ)cos(θ) to obtain
g(λ, θ) and determine the thickness with both approaches. Clearly, for the thinnest MCLEDs, this
normalization procedure is crucial in order to recover the Fabry-Perot fringes and estimate the fringe
spacing.

For a given angle, if two maxima (or minima) of the Fabry-Perot fringes occur at wavelengths λ1

and λ2, those are linked to the cavity thickness L by:

L =
1

2 (n/λ− n′/λ′)
(2.25)

Here n and n′ are the refractive indices of GaN at wavelengths λ and λ′. This simple formula comes
from neglecting the penetration length of the modes in the bottom metallic mirror and in the top air
mirror. This is a good approximation since both lengths are on the order of a few nm. On the other
hand, inclusion of refractive index dispersion n(λ) (taken from Ref. [12]) is essential for good accuracy,
especially for thinner cavities, where the correction can be larger than 20%.

At a given wavelength, if two maxima occur at angles θ1 and θ2, the cavity thickness can be deduced
from:

L =
λ

2n (cosθ1 − cosθ2)
(2.26)

Usually, values obtained by both methods agree well (within 10-20 nm).
As an example, Fig. 2.18 displays the normalized spectra at normal incidence corresponding to the

two LEDs of Fig. 2.17.

Figure 2.18: Determination of MCLED thickness on normalized spectra, for the two LEDs of Fig. 2.17 (left:
thicker LED, right: thinner LED). The normalization restores the intrinsic fringe spacing of the cavity.

Application of Eq. 2.25 to these LEDs yields respective thicknesses : 900 nm and 500 nm. The
position of the rabbit's ears for both LEDs indicate that they are well detuned, so that the extracted
mode is fully inside the extraction cone. In principle, this should correspond to a large extraction
e�ciency.

Unfortunately, the epitaxial wafers used in these LEDs contained a multi-quantum well layer made
of 5 InGaN quantum wells with 12-nm-thick GaN barriers between the quantum wells. Therefore, the
active region spreads over 50 nm: if some quantum wells are optimally placed (at the antinode of the
extracted mode), others are placed at the node of this same mode and degrade the e�ciency of the
device.
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Optimally detuned MCLEDs

In order to prevent this e�ect, additional generations of MCLEDs were processed using a single quantum
well grown by Rajat Sharma at UCSB. Interestingly, although it is generally considered that multi-
quantum wells are necessary for e�cient LEDs, very good luminescence performances were obtained
on these wafers.

As previously, very thin LEDs (down to ∼ 350 − 400 nm) with good detuning could be obtained.
In principle, this should correspond to fairly large light extraction, although the uncertainty on the
LEDs' thickness makes theoretical estimations uncertain.

Unfortunately, light extraction enhancement could not be quanti�ed on these samples. This is
mainly due to the fact that, in general, the electrical properties of thin MCLEDs are poor, with
unstable contacts and sometimes high sheet resistivity. Therefore, no safe comparison with thick
laser-lift-o� LEDs could be obtained.

This di�culty was encountered over several generations of MCLEDs. Considering the complexity
and the modest yield of the process, and the fact that only a few of the fabricated devices possess the
proper thickness, the chances of evidencing optimal light extraction seem dim at this point. It leads
us to conclude that a new, more robust fabrication process is desirable in order to obtain MCLEDs
with well-controlled thickness and good electrical injection. A very selective dry etch, stopping at
the required thickness with an accuracy ∼ 10nm, may be an acceptable solution as regards thickness
control.

High �nesse MCLEDs

According to calculations, the optimal extraction e�ciency of GaN MCLEDs is reached for a combina-
tion of a metallic mirror and a simple GaN/air (or epoxy/air) interface. However, these LEDs are also
characterized by a poor �nesse, because of the weak re�ectivity of this interface. For some applications,
it may be interesting to compromise somewhat the extraction e�ciency to achieve a higher �nesse −
for instance if light has to be coupled at a more speci�c angle, as in the case of coupling to an optical
�ber.

This can best be obtained by increasing the re�ectivity of the top mirror. To this e�ect, some
of the LEDs studied above were coated with a dielectric mirror composed of SiO2 (n ∼ 1.5) and
Ta2O5 (n ∼ 1.95). Since these dielectrics are insulating, the top p-contact had to be protected before
deposition. The DBRs were characterized and deposited by Tetsuo Fujii. The optical indices of
both dielectrics were estimated by ellipsometry and by �tting a re�ectivity curve at normal incidence
(Fig. 2.19).

The DBR-coated LEDs were again analyzed by angle-resolved measurements. The spectra, dis-
played on Fig. 2.21, reveal a peculiar emission. The spectra are very strongly TM-polarized (by a
factor 30) and with maximal TM emission around 55o.

The unusual TM-polarized emission of these LEDs is sketched on Fig. 2.21.
In order to understand this behavior, the angle-dependent re�ectivity of the DBR was investigated

(Fig. 2.22). It turns out that there is indeed a strong dip in TM re�ectivity around 65o (angle in
air). This re�ectivity dip is linked to the Brewster angles of SiO2 and Ta2O5: all partial re�ections
are weak around the same angle, which yields an overall poor re�ectivity. On the other hand, the
TE re�ectivity remains rather high at all times. Moreover, the experimental fact that barely any TE
light escapes from the LED tends to indicate that there is some loss in the LED (possibly in the metal
layer), so that the excessive TE re�ectivity prevents light from escaping before being absorbed. This
phenomenon depends quite critically on the accurate values of the optical indices: here, the indices
obtained from ellipsometry lead to a high TE re�ectivity at all angles which is compatible with the
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Figure 2.19: Re�ectivity of a 4 pairs SiO2/Ta2O5 DBR, with respective thicknesses 76 nm and 58 nm. (Full)
Measured data. (Dotted) Theoretical calculation with indices nSiO2 = 1.48 and nTa2O5 = 1.95 (values obtained
by ellipsometry). (Dashed) Best theoretical �t obtained by varying nTa2O5 (obtained for nTa2O5 = 1.85).

Figure 2.20: Angular spectra of MCLEDs with a 4 pairs SiO2/Ta2O5 DBR. The scale of the TE spectrum is
30 times smaller than that of the TM spectrum. Note that TM emission is maximal around 55o.

Figure 2.21: TM-polarized emission from a MCLED with a DBR.

experimental observation. On the other hand, the �tted index of Ta2O5 yields a lower TE re�ectivity
which can not account for the measurement.
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Figure 2.22: Calculated re�ectivity spectra of the deposited DBR as a function of the angle in air (for light
coming from the GaN side). Dashed line: TE, full line: TM. Left: optical indices taken from ellipsometry
measurements. Right: indices best �tting a normal-incidence re�ectivity measurement.

In summary, these LEDs su�er from an excessive DBR re�ectivity which prevents TE light from
escaping the LEDs and spoils their e�ciency. Still, they possess uncommon polarization properties.

2.3 Conclusion

Microcavity LEDs are an e�cient approach to enhance light extraction by redistributing the
emission pattern of the LED. Their potential is well assessed in conventional III-V materials.
However, implementation of MCLEDs in GaN proves challenging. The fabricated structures,
obtained by bonding to a metallic submount and laser lift-o� of the sapphire substrate,
require complex processing. The microcavity e�ect was clearly observed with GaN cavities
as thin as 500 nm, and the peculiar emission properties of hybrid metal/DBR MCLEDs were
investigated. On the other hand, enhanced light extraction could not be quanti�ed. The
very demanding accuracy of the fabrication process − notably as concerns the GaN thickness
− lead us to conclude that a more controlled process is necessary. Besides, guided modes
are present even in the thinnest structures and limit their ultimate e�ciencies.
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Chapter 3

Photonic crystals and light extraction

The previous chapter evidenced the detrimental role of guided modes for light extraction: even in the
most optimistic cases, more that 50% of the light is emitted in these. In this chapter, we introduce and
explore the concept of light extraction of guided modes by photonic crystals (PhCs). After a qualitative
justi�cation of the phenomenon of light extraction by a periodic medium, we give more quantitative
trends based on electromagnetic calculations. We then present the �rst photoluminescence experiments
performed at UCSB, which give us insight on the speci�c features of light extraction in GaN structures.

3.1 Basics of light extraction by periodic structures

In this part, we present a qualitative justi�cation of how periodic structures can extract guided light.
Our discussion begins with a description of guided modes in a dielectric layer. Then, we discuss how
introduction of a periodic index modulation modi�es the structure of guided modes. Finally, we discuss
how stronger modulations modify the overall dispersion of light and how they impact extraction.

3.1.1 Guided modes

The Fabry-Pérot model presented in the previous chapter allows us to understand the origin of fringes
in the re�ectivity (or emission) spectra of a thin-�lm layer: these arise from multiple re�exions at
the interfaces of the dielectric layer, which interfere constructively or destructively depending on their
angle and modulate the far-�eld intensity in the corresponding direction.

Figure 3.1: Bouncing ray inside a waveguide.

Let us now see what happens when we consider a plane wave (of wavelength λ) which propagates
inside the dielectric layer (thickness L, index n), at an angle θ larger than the critical angle (Fig. 3.1).
This wave can not propagate in air. It bounces at the dielectric/air interface, where it is re�ected (total
internal re�ection). Hence, it interferes with itself, just as Fabry-Pérot modes do. However, in the
case of a Fabry-Pérot mode, the successive bouncing rays have decreasing amplitude because part of
the energy is transmitted outside of the dielectric each time it bounces. Here, in contrast, re�ectivity
reaches unity and all interfering rays have the same amplitude, leading to a singular summation:
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E(θ) = E0

∞∑
p=1

ei2pφ , φ = nk0Lcos(θ) (3.1)

Where k0 = 2π/λ = ω.1 In general, all terms of the series average out and it is equal to zero,
except when φ = pπ, in which case the series diverges. In summary, we obtain a comb for phases:

E(θ) ∼
∞∑

p=1

δ(φ = pπ) (3.2)

Where the δ are Dirac functions. The angles corresponding to φ = pπ are those where the �eld
interferes constructively with itself and can thus propagate inside the dielectric layer, without attenu-
ation. Such propagating light is called a guided mode.

Of course, the condition φ = pπ is only approximate because, to establish it, we neglected the
fact that light can penetrate (albeit with an exponential decay) in the air region surrounding the
waveguide: the optical path given by Eq. 3.1 corresponds to a geometrical approximation where light
bounces exactly at the interfaces − in other words, we neglected the so-called Goos-Hänchen e�ect.[1]
In order to go further, we need to solve Maxwell's equations. Fortunately in the present case where
the structure is invariant in the y and z directions, Maxwell's equations are greatly simpli�ed. As
the structure is invariant in the y direction, solutions to this equation can be classi�ed in TE and
TM modes. These stand for 'transverse electric' and 'transverse magnetic', and indicate that �eld E
(respectively H) is in the transverse y direction:

TE → E =

∣∣∣∣∣∣∣
0
Ey

0

,H =

∣∣∣∣∣∣∣
Hx

0
Hz

TM → E =

∣∣∣∣∣∣∣
Ex

0
Ez

,H =

∣∣∣∣∣∣∣
0
Hy

0

(3.3)

Maxwell's equations can then be reduced to the scalar Helmholtz equation, acting on the transverse
�eld (Ey or Hy) only:

TE:
(
∂2

x + ∂2
z + µ0εω

2
)
Ey = 0

TM:
(
∂2

x + ∂2
z + µ0εω

2
)
Hy = 0

(3.4)

With ω = 2π/λ. The solutions are then of the form:

Ey = Ey(z).ei(k//x−ωt) , Hy = Hy(z).ei(k//x−ωt) (3.5)

Where k// is called the wavevector of the guided mode. In general, the time dependence is dropped
in all equations for convenience. It is worth noting that the TE Helmholtz equation is very similar to
the Schrödinger equation for an electron in a 1D quantum well (this is not true for TM polarization
because the boundary conditions di�er). The equivalence is best seen in this form:(

−∆ +
2m
~2
V

)
ψ = U

2m
~2
ψ ↔

(
−∆ + (1− ε)µ0ω

2
)
E = µ0ω

2E (3.6)

1Here c=1.
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Finding the guided modes amounts to solving the Helmholtz equation. The continuity conditions
lead us to a transcendent relation between wavelength and wavevector, for instance in TE polarization:

kWG
L

2
tan

(
kWG

L

2

)
= kair

L

2
with:

 kWG =
√
k2

0n
2 − k2

//

kair =
√
k2

0 − k2
//

(3.7)

Figure 3.2: Band structure of a dielectric waveguide of index n = 2.5 (full: TE modes, dashed: TM modes); λ
and k// are in arbitrary units and the thickness of the waveguide is 1 in the same units. The modes are between
two lines of equations ω = k//c ('air line') and ω = k//c/2.5 ('dielectric line'), evidencing that they must be
propagative in the dielectric and evanescent in air.

This is a classic problem which can be solved graphically or numerically. As an example, we consider
the following structure: a waveguide of thickness 1 (in arbitrary units) and index 2.5 surrounded by
air. The relationship between λ and k//, called the dispersion relation of the guided modes, is plotted
for a few modes on Fig. 3.2.

It is now clear that the approximate solution we �rst derived, φ = pπ, corresponds to an in�nitely
con�ning waveguide (next = 0, e.g. a quantum well with in�nite barriers) where the solutions are
simply k// = pπ/L. Indeed, in this case there is no evanescent penetration in the barriers, and the
geometric approximation coincides with Maxwell's equations.

We can also introduce a useful variable, called the e�ective index, de�ned as:

neff = k///k0 (3.8)

The e�ective index is convenient because it is always bounded by the extreme values of refractive
index of the problem: in our case, 1 < neff < 2.5. In addition, neff gives information on the index
'felt' by a guided mode. For instance, a mode with neff ∼ 2.5 is very well con�ned in the waveguide
and only 'sees' the dielectric (its wavevector is nearly that of a plane wave in a medium of index 2.5),
whereas a mode of index neff ∼ 1 strongly leaks outside of the waveguide and feels the presence of
air. This is illustrated on Fig. 3.3 which translates the relation dispersion in terms of e�ective index
and shows the �eld distribution corresponding to the �rst guided modes.
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Figure 3.3: (Left) E�ective index of guided modes for the same structure as in Fig. 3.2 (full: TE, dashed:
TM). Close to cuto�, the e�ective index of a mode is close to 1 because it leaks strongly in air. With increasing
frequency neff increases toward 2.5 as the modes are more and more con�ned in the waveguide. (Right) Pro�le
of |E|2 for the TE modes at 1/λ = 0.5 (full: TE1, dashed: TE2, dotted: TE3). As can be seen, modes of higher
neff are more con�ned in the waveguide.

We have only discussed the simple case of one dielectric layer embedded in air. Generalization to
multilayer structures is straightforward in principle. The Helmholtz equation is solved by stating that
the solution in each layer is a sum of two counterpropagating waves (either propagative or decaying)
and writing the �eld continuity conditions at the interfaces between layers. These continuity conditions
come down to a transcendent relation between λ and k// (as in Eq. 3.7), whose solutions give the guided
modes of the structure. In practice, when more than two layers are considered, the equation becomes
untractable and has to be established and solved numerically. An elegant way to handle this is the
Transfer Matrix formalism, where the continuity conditions are written in the form of 2x2 matrices.
One then obtains a transfer matrix T which describes the whole multilayer system, and �nding the
modes amounts to �nding the poles of T, e.g. the values of k// and λ such that det(T) = 0. A detailed
presentation of this formalism can be found in Ref. [2], Chapter 5.

One may wonder about the physical signi�cance of the appearance of delta functions in Eq. 3.2,
or equivalently the fact that the solutions of the Helmholtz equation are discrete. These should be
understood in the same way as the discrete energy levels of an isolated atom (or quantum well) in
quantum mechanics. Notably, it is well known that any interaction which enables exchange of energy
between an atom and another system, also confers a �nite lifetime to the atom. In turn, the energy
levels of the atom then lose their discreteness, which can be seen from Heisenberg's relation ∆E∆t ∼ ~.

The same phenomenology applies to guided modes. The easiest way to see this is to add an
interaction between guided light and matter in the form of a small absorption in the dielectric material.
This can be done by adding a small imaginary part to its refractive index: n = n′ + i.n′′. If the whole
space is �lled with dielectric, we still have k// = n.k0 and the solutions of Maxwell's equations are
decaying plane waves:

E = E0.exp

(
i

(
ωn′

c
x− ωt

)
− ωn′′

c
x

)
(3.9)

Likewise, if the dielectric is a slab surrounded by air, the solutions of the dispersion relation have
to be found in the complex plane, and k// acquires a small imaginary part: k// = k′ + ik′′. The
exponential decay length Ldecay of the mode (in intensity) is related to k′′ by:
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I = |E|2 ∼ e−2k′′x → Ldecay =
1

2k′′
(3.10)

To see the impact of this on the guided mode's discreteness, we turn back to the geometric approach
of Eq. 3.1. Because of absorption, the light rays lose a small part of their amplitude upon propagation,
so that we now get:

E(θ) = E0

∞∑
p=1

η2pei2pφ =
E0

1− η2e2iφ
(3.11)

Where the small amplitude loss per pass is 1 − η. The resulting intensity of the rays, I = |E0|2,
is depicted on Fig. 3.4: the Dirac functions of Eq. 3.2 is replaced by Lorentzians whose parameter is
sin(φ) = k//. Therefore, the discrete guided modes are broadened due to their interaction with matter.

Figure 3.4: Normalized intensity of a ray bouncing in an absorbing waveguide as a function of φ, for two values
of η.

While the above discussion uses the geometrical approach, the results still hold for the rigorous
Maxwell equations. The dispersion relation has to be solved numerically to obtain the imaginary part
of the wavevector. In practice, the transfer matrix formalism already evoked can still be used to treat
the problem: again, �nding the eigenmodes reduces to �nding the poles of the transfer matrix T, e.g.
the values of k// for which det(T) = 0 (for a �xed ω). However, the poles now have to be found in the
complex plane. This can be done by an iterative method such as a gradient method. Fig. 3.5 shows
how the solutions depart from the real axis when absorption is introduced.

Finally, let us note that while in this discussion we assumed a real value of ω and obtained an
imaginary value of k//, another valid choice consists in setting a real value for k// and �nding a
complex ω. In the �rst convention, k′′ gives the exponential decay length of a mode upon propagation,
while in the second convention ω′′ gives the time decay of a mode excited uniformly in all space.2

2An even more general choice consist in taking a complex ω and �nding the associated complex k//: the solutions
of the dispersion relation form a hypersurface of C2. These general solutions correspond, for instance, to the time and
space decay of a lossy pulse. They give a rather limited physical insight in our case.
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Figure 3.5: |det(T)| as a function of the real and imaginary part of neff , for the same waveguide as previously.
(Top) When the index of the waveguide is real (n = 2.5) the poles are on the real axis: guided modes have a real
wavevector. Here, we recover the 3 TE modes already described. (Bottom) With absorption (n = 2.5 + 0.2i)
the poles shift to complex values. In this case, the third mode is cuto� and a complex behavior emerges near
the cuto� region.
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3.1.2 Periodic corrugation of a waveguide

Bloch modes

Let us now introduce a periodic corrugation (period a) in the waveguide (Fig. 3.6) and look for its
propagating modes. As a preliminary, let us decompose the dielectric constant in region (2) ε = n2 in
Fourier series:

ε =
∞∑

p=−∞
εpe

ipG0x , G0 =
2π
a

(3.12)

Figure 3.6: Waveguide with a periodic corrugation in region (2). We consider propagation along x, and grooves
along y.

As was the case for simple waveguides, the solutions of Maxwell's equations can still be divided in
two sets, TE and TM Bloch modes, with the same de�nition as previously: the electric �eld of a TE
(magnetic �eld of a TM) mode is along the invariance direction y. Let us for instance look for a TE
mode. To hint at the general solution of the Helmholtz equation, let us �rst try to proceed as for a
'bare' waveguide and look for a solution of the form:

E = E0(z)eik//x (3.13)

Upon inserting such a solution in Maxwell's equation in region (2), we obtain:

k2
//E0(z) = k0

∑
p

εpe
ipG0xE0(z) (3.14)

Therefore, a �eld with a simple exp(ik//x) dependence in the x direction cannot be solution of
Maxwell's equations: injecting this form generates an in�nity of exponential terms associated with the
Fourier harmonics of ε. Obviously, the solution has to be of a more general form in all space:

E =
∑

p

Ep(z)eipG0xeik//x (3.15)

By introducing this form in the Helmholtz equation, it can be checked that this is indeed a suitable
solution, provided the coe�cients Ep obey a series of linear relations whose coe�cients depend on ε:

(k// + pG0)2Ep = k2
0

∞∑
p′=−∞

εp−p′Ep′ (3.16)

Eq. 3.15 is an expression of the Bloch theorem, well-known in solid-state physics, and also called the
Floquet or Floquet-Bloch theorem. Such solutions are called Bloch modes. In each region of Fig. 3.6,
the �eld is a solution of Eq. 3.16, and Maxwell's equations are fully solved by satisfying the continuity
conditions of the �eld at the boundaries between di�erent regions, which link Ep(z+) to Ep(z−). As
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for simple waveguides, solving this equation leads to a relationship between k0 and ω − the dispersion
relation of the structure.

In the above, it is apparent that the periodicity of ε mixes di�erent harmonics in the corrugated
region. In regions where n is homogeneous (i.e. outside of the corrugated region), the Fourier transform
of the dielectric constant is diagonal and all harmonics are independent. It can then be checked that
the z-dependence of each harmonic p is the same as for a plane wave of horizontal wavevector k//+pG0:

Ep(z) = Ape
ikp

zz +Bpe
−ikp

zz , kp
z =

√
n2k2

0 − (k// + pG0)2 (3.17)

It is worth noting that, in the expression of a Bloch mode, there is an ambiguity in the de�nition
of k//: it is only de�ned modulo 2π/a. While it is still convenient to refer to the wavevector of a Bloch
mode, one should bear in mind that this quantity is ill-de�ned. Although this fact may seem trivial, it
is often disregarded, which sometimes leads to controversial interpretations (see the discussion below).

If the e�ect of the corrugation is weak, most coe�cients of the Bloch mode are small, and a
convenient convention is to assign k// to the fundamental harmonic which carries most of the mode's
power. This convention has the advantage of o�ering continuity with the case of a guided mode in
the absence of corrugation: a guided mode is simply a Bloch mode with a single non-zero harmonic.
Moreover, in this case, the Bloch mode can be understood in a kinematic view: upon its propagation,
the fundamental is scattered by each corrugation of the periodic region; because of the periodicity the
scattered �eld is concentrated in di�raction orders corresponding to the other harmonics of the Bloch
wave.

On the other hand, when the e�ect of the corrugation is not weak, several harmonics carry a
signi�cant fraction of energy and the Bloch mode can only be considered as a whole. In this case, there
is no canonic choice for k//. From Eq. 3.16, it is seen that the coupling between di�erent harmonics
of a Bloch mode are caused by the Fourier coe�cients ε(pG0) of the dielectric constant. Therefore,
this quantity is often called the photonic strength of the periodic structure. In a structure with high
photonic strength, mixing of harmonics is signi�cant. In general, a high photonic strength is caused
by a high contrast in refractive index in the periodic corrugation and a high �lling factor (de�ned in
our case as the volume fraction of air holes in the corrugation).

Band gaps

Let us now come to the peculiar situation where k// = G0/2. In this case, the wavevector corresponding
to harmonic p = −1 is −k//, and harmonics (0) and (−1) have a symmetrical role in the Helmholtz
equation: if we neglect all other harmonics, the Bloch mode is made of two counter-propagating
harmonics with equal amplitude. This classic approximation, called the Coupled wave theory, is
justi�ed if the photonic strength is small and all other harmonics are negligible. In this case, it
can easily be shown analytically that k// acquires an imaginary component (even in the absence of
absorption).[3, 4] Moreover, from our symmetry argument it is clear that the �ow of the Poynting
vector in the x direction is zero. The interpretation of this phenomenon is that, due to coherent
scattering from the (0) to the (−1) harmonic, all incoming light is re�ected back. The frequency band
where re�ection occurs and the generated Bloch mode carries no energy is called a stop band or a band
gap, in analogy with the energy gaps of electronic bands in crystals. This phenomenon explains the
re�ective e�ect of DBRs and the feedback phenomenon in DFBs.

More generally, harmonics (p) and (−p−1) have symmetrical roles in Maxwell's equations.3 There-
fore, the existence of band gaps is general and not linked to a truncation of harmonics of the Bloch

3At least in the absence of absorption in the medium.
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Figure 3.7: (Left) Full line: Dispersion relation of a Bloch mode around a band gap: the gap opens when
k// = π/a. Dashed line: dispersion of a guided mode in a structure with the same average index: there is no
gap opening. (Right) Imaginary part of k//. Inside the gap, the Bloch mode is evanescent and light is re�ected
back.

mode. An example of such a stop band is shown on Fig. 3.7. The result is obtained by solving numer-
ically Maxwell's equations, taking a �nite number of harmonics into account, by one of the methods
described in Chapter 6. The structure considered in this case is a waveguide of index 2.5 and total
thickness 0.6a, surrounded by air and perforated to a depth 0.2a by an air grating of period a, with
square teeth of �lling factor 0.3.

The next case of interest happens when k// = G0. From the same arguments, another band gap
then appears due to interaction between harmonics (0) and (−2). More generally, a gap opens whenever
k// = p.G0/2.

Leaky modes

As was already stated, outside of the grating, the z-dependence of each harmonic (p) of the Bloch
mode is that of a plane wave of horizontal wavevector k// + pG0. Notably, in the substrate of index
nsubs the vertical wavevector of each harmonic is:

kp
z,subs =

√
n2

subsk
2
0 − (k// + pG0)2 (3.18)

A similar relation holds in the superstrate, with the modi�cation nsubs → nsup. As long as kp
z is

imaginary for all p, all harmonics are evanescent and no power can be radiated in the vertical direction.
The Bloch mode is truly guided, in the sense that it propagates in the x direction without losing energy
to the substrate and superstrate. However, if kz becomes real for one harmonic, power is radiated to the
substrate or superstrate by that harmonic. Therefore, the Bloch mode loses energy upon propagation
and can no longer be seen as strictly guided. Accordingly, its wavevector acquires an imaginary part,
which describes the energy loss rate. Such a mode is called a leaky mode. The condition for harmonic
(p) to di�ract to the substrate is:

kp
z,subs ∈ R→ nsubsk0 > k// + pG0 (3.19)

In other words, the in-plane wavevector of the harmonic should be smaller than the total wavevector
in the substrate (a similar relation holds for the superstrate). This is best seen graphically on the so-
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called Ewald construction, by representing the in-plane wavevector of each harmonic by a point and
seeing which points fall within a circle of radius nsubsk0 (Fig. 3.8).

Figure 3.8: Ewald constructions for a one-dimensional grating. The arrow represents the in-plane wavevector
k//, the points are the reciprocal lattice points (giving the in-plane wavevectors of the Bloch mode's harmonics),
and the full and dashed circles have radiuses nsubsk0 and nsupk0. (Left) Normal incidence: k// is orthogonal
to the grating. Here, two points fall in the substrate circle, causing di�raction to the substrate, and one point
in the superstrate circle, causing di�raction to the superstrate. (Right) Same as previously, but with k// in a
di�erent direction. Only one point falls in the substrate circle.

Let us exemplify this phenomenon on the same structure as previously. The dispersion relation of
the Bloch mode is now plotted for a wider range of frequencies on Fig. 3.9. For a more convenient
representation, the band structure is folded back in the region 0 < k// < G0, or �rst Brillouin zone

(FBZ). This representation is inspired by the electronic band structure of solids. It takes advantage of
the fact that, whenever a harmonic k// + pG0 leaves the FBZ, another harmonic enters it, so that the
dispersion can always be brought back to the FBZ 'modulo G0'.

Figure 3.9: (Right side) Dispersion relation of the Bloch mode for the same structure as previously, on a
wider range. When the dispersion crosses the air line (dotted line), the di�raction condition is ful�lled and the
mode becomes leaky. Gaps open when the dispersion reaches either edge of the �rst Brillouin zone. All these
phenomena are manifested by the evolution of k′′, the imaginary part of k// (Left side). Notice the di�erence
in horizontal scale between both plots.
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In addition, the line corresponding to ω = k//c is plotted on the band structure. This line simply
represents the di�raction condition of Eq. 3.19, and is called the air line, air cone or air lightline.
When the relation dispersion of the Bloch mode crosses this line, the di�raction condition is ful�lled
and the Bloch mode becomes leaky. As can be seen on Fig. 3.8, this corresponds to harmonic p = −1
becoming radiative to air. Accordingly, k// acquires an imaginary part k′′ = Im(k//). Whereas in the
�rst bandgap this was associated to re�ection of energy, this imaginary part represents loss to air.

Finally, when the frequency of the Bloch mode increases further, it reaches another Brillouin zone
boundary (corresponding to k// = G0) and another gap opens, as already predicted. However, several
features di�er from the �rst band gap. First, the second band gap is not vertical, e.g. the dispersion
relation does not stick to the axis k// = 0. This is simply due to the fact that the �eld symmetry
between x and −x which guaranteed the verticality of the �rst gap, no longer holds in the presence of
di�raction losses. Moreover, whereas the imaginary part of k// in the �rst gap could unambiguously
be attributed to a phenomenon of re�ection, this is no longer true in the second gap because re�ection
(due to the p = −2 harmonic) has to compete with di�raction to air (due to p = −1).

In order to distinguish the contribution of both phenomena, we have to compute the energy �ows
(�ows of the Poynting vector) of the Bloch mode in various directions. This can be done easily because
crossed terms corresponding to two di�erent harmonics interfere destructively, so that the balance of
power of the Bloch mode can be performed separately for each harmonic. The details of the derivation
are given in Annex A. We can thus compute the di�raction and re�ection rates of the Bloch mode.
We de�ne Pin, Pref , Pup and Pdown as the total power �ow forward, backward, upward and downward
respectively (per unit length). We then have:

R = Pref/Pin

U = Pup/Pin

D = Pdown/Pin

(3.20)

Where R is the re�ection coe�cient of the Bloch mode, and U (respectively D) is the fraction
of the Bloch mode's power radiated upwards (downwards). Due to energy conservation, we have
R + U + D = 1.4 Fig. 3.10 presents the respective contribution of R, U and D to the Bloch mode's
loss.

Figure 3.10: Balance of power for the Bloch mode of Fig. 3.8. For a/λ > 0.25, the re�ection coe�cient
increases and reaches 1 in the band gap. For a/λ ∼ 0.33, the Bloch mode crosses the light line and becomes
leaky. U and D are di�erent because the structure is not symmetric vertically. The second band gap is reached
for a/λ ∼ 0.46: R increases sharply, but part of the mode's power is still lost by di�raction. Notice the large
asymmetry of the second band gap.

4For a leaky mode, there is no energy transmitted at x →∞
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As can be seen, di�ractive loss still plays a non-negligible role in the second band gap. This result
depends on the structure and should not be considered general. It is also interesting to note the non-
symmetric shape of the second stop band: the re�ective e�ect is much more e�cient at the beginning
of the band and then degrades as radiation losses become stronger. This is actually a well known
property of band gaps: in the presence of losses (be they di�ractive or due to absorption) re�exion is
highest at the low-frequency edge of the stop band.[5]

For the sake of completeness, we also represent on Fig. 3.11 the pro�le of the electric �eld Ey in
the structure for a/λ = 0.4. The main harmonic p = 0 looks like a guided mode. Harmonic p = −1
is propagative in air where it di�racts the Bloch mode's energy. All other harmonics have small
amplitude, as can be seen on the next largest harmonic is p = −2. It is also interesting to note that
this harmonic is largest in the grating region, where it is 'generated' by scattering of the fundamental
harmonic; outside of the grating it is strongly evanescent and decays rapidly.

Figure 3.11: Amplitude (along the z direction) of a few harmonics of the Bloch mode for a/λ = 0.44. Thick
line: main harmonic p = 0. Thin line: radiative harmonic p = −1. Dashed line: p = −2. The average index
pro�le of the structure (n(z) =< n(x, z) >) is superimposed. Note that harmonic (−1) slowly decays away from
the structure, as discussed in Annex A.

Finally, it is important to note that, while the existence of a leaky mode can be obtained simply
from a graphic construction (Ewald construction, or intersection of the band structure with the air
line), this gives us no information about the strength of the di�raction phenomenon. This can only be
obtained by solving Maxwell's equations and determining all the properties of the Bloch mode.

2-dimensional photonic crystals

We now consider a structure which includes a corrugation periodic in two dimensions , usually called
a photonic crystal (PhC), and generalize the above results. We �rst discuss the textbook problem of a
strictly 2-dimensional crystal with no third dimension, before embedding this crystal in a 3D structure.

Strictly 2-dimensional structure To any 2-dimensional periodic crystal (rectangular, square, tri-
angular, hexagonal) corresponds a reciprocal lattice (RL). We denote as {G1,G2} the basis of the
RL:

G ∈ RL = uG1 + vG2 (3.21)
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For a square or triangular lattice, we call a the period of the crystal. This de�nition calls for a
few comments. In the case of a square lattice, it is unambiguous. However, in the case of a triangular
lattice, one can de�ne it as the distance between holes, but it is also possible to see a triangular lattice
as generated by three 1D gratings tilted by 60o, in which case a can be taken as the period of the
gratings (Fig. 3.12). In this thesis, following a general convention, the �rst choice is made, but it
should be noted that this modi�es the length of the reciprocal space basis vectors from G0 = 2π/a to
G0 = 4π/a

√
3, and makes comparison with square lattices less straightforward. In addition, we adopt

the convention of expressing all lengths in units of a.

Figure 3.12: (Left) Possible choices for the lattice constant of a triangular lattice: conventionally, the distance
between holes a is chosen, but the distance between hole columns Λ could also be considered. (Middle) Reciprocal
lattice of a triangular lattice. The high symmetry directions and length of the basic RL vector are indicated.
(Right) Detail of the �rst Brillouin zone of a triangular lattice, with high symmetry points Γ, K and M .

We also introduce the �lling factor f of the PhC as the fraction of the PhC surface occupied by
holes. For circular holes in a square and triangular lattice respectively, the �lling factor is related to
the holes radius R by:

Square : f =
πR2

a2
Triangular : f =

2πR2

√
3a2

(3.22)

The �rst Brillouin zone (FBZ) is de�ned as the points of the reciprocal space closest to the origin.
The FBZ is convenient because, as in the 1D case, all band structures can be folded back inside of it
modulo translations by G1 and G2. Therefore, in general, band structures are plotted in the FBZ.
Usually, as for semi-conductors, only the high-symmetry directions ΓM and ΓK are investigated, and
the band structures are expected to behave smoothly between these directions.

Due to the 2D nature of the problem, the solutions of Maxwell's equations (Bloch modes) can be
classi�ed in two families, as was the case above for waveguides (and waveguides with a 1D corrugation):
TE (also called H) and TM (or E) modes.

TE (H) → E =

∣∣∣∣∣∣∣
Ex

Ey

0

,H =

∣∣∣∣∣∣∣
0
0
Hz

TM (E) → E =

∣∣∣∣∣∣∣
0
0
Ez

,H =

∣∣∣∣∣∣∣
Hx

Hy

0

(3.23)
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Here the transverse direction is z, so that a 'transverse electric' mode has an electric �eld along
z (against y for a waveguide). As will be seen later, both conventions collide in the case of a 3D
structure. The Bloch modes of a 2D PhC are of the form:

TE (H) → Hz(r) =
∑
G∈RL

Hz,Gexp
(
i
(
k// +G

)
· r
)

TM (E) → Ez(r) =
∑
G∈RL

Ez,Gexp
(
i
(
k// +G

)
· r
) (3.24)

Typical examples of the band structures of 2D PhCs are given in Fig. 3.13.

Figure 3.13: Band structures of triangular lattice PhCs made of circular air holes in a GaN (n = 2.5) matrix.
(Left) f = 0, e.g. no holes. The dispersion is that of free photons (ω = k.c/2.5), folded in the FBZ. Note that
the folding in 2D introduces curved and locally �at bands. (Right) f = 0.4, the degeneracy between H (full
line) and E (dashed line) modes is lifted. An omnidirectional gap opens in H polarization.

Let us quickly comment on these. When f = 0, there is no photonic crystal and we should recover
the dispersion of plane waves in the matrix material. However, as can be seen, multiple photonic
bands actually appear. These are produced by folding of the free photon dispersion in the FBZ. Their
physical meaning seems unclear since the folding is completely arti�cial in the absence of a periodic
structure. The key to this apparent paradox has already been pointed out: k// is ill-de�ned for a Bloch
mode. Therefore, the photonic bands whose dispersion di�ers from a free photon simply correspond to
Bloch modes where k// has been assigned to a harmonic with zero amplitude, while the only non-zero
harmonic (the actual guided mode) corresponds to some other wavevector k// +G. For more clarity,
one of these Bloch modes is represented in Fig. 3.14. Clearly, when k// scans the ΓM direction, the
wavevector of the actual guided mode has a complex locus (with varying angle with respect to ΓM),
which produces the curved dispersion in the band structure.

When the �lling factor increases (f = 0.4) photonic e�ects appear and band gaps open in some
directions. In our case, there is an omnidirectional band gap (a frequency region without photonic
band) in H polarization but not in E polarization. This classic result can be justi�ed qualitatively by
arguing that, because it is discontinuous at dielectric boundaries, the in-plane electric �eld strongly
'feels' them (and hence the e�ect of the PhC). The 'arti�cial' photonic bands of the f = 0 case now
make sense because they are assigned to an harmonic with non-zero magnitude. However, as can be
easily guessed by continuity with the f = 0 situation, a large part of the power is still concentrated
in the former guided harmonic. It is interesting to note that sometimes, surprising e�ects (negative
refraction, �at dispersion...) of PhCs are only described by considering the band structure in the FBZ.
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Figure 3.14: Arti�cial folding of a guided mode as a Bloch mode. The actual wavevector of the guided mode
k// +G (which does not propagate in a special symmetry direction), is folded by a reciprocal lattice vector G
to obtain the Bloch mode's wavevector k// in the ΓM direction.

From our argument, it appears that seemingly interesting features of the band structure may actually
correspond to a harmonic which carries very little power, and hence correspond to limited physical
e�ects. Sometimes, a full discussion of a PhC's properties requires a detailed study of the Bloch mode's
structure.

2D PhC in a 3D structures The structures we wish to study are 3D structures incorporating a
2D photonic crystal (such as a waveguide partly etched by a PhC, as in Fig. 3.15). In this case, most
notations still hold. The structure can be considered as strictly periodic in the x, y directions although
the index is only periodic in the PhC region, and constant otherwise. Therefore, the reciprocal lattice
can be de�ned as before.

Figure 3.15: Typical structure made of a waveguide partially etched by a 2-dimensional photonic crystal. The
core region corresponds to the unetched part of the waveguide.

Since the periodic structure is embedded between homogeneous media (in the z direction), leaky
modes can once again be de�ned when one Bloch mode harmonic falls in the air or substrate cone. As
before, leaky modes can be characterized with an Ewald construction (Fig. 3.16), where the reciprocal
lattice is now 2-dimensional. As can be seen, 2D PhCs o�er more directions for light di�raction than
1D gratings.

As there is no invariance direction, the classi�cation of Bloch modes in two families is no longer
valid. The Bloch theorem takes the following form for a 2D PhC in a 3D structure:

E(z, r) =
∑
G∈RL

EG(z)exp
(
i
(
k// +G

)
· r
)

(3.25)
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Figure 3.16: Ewald construction for a triangular lattice PhC, with a wavevector along ΓK. The dashed and full
circles represent the di�raction conditions to air and the substrate, respectively. Here, one harmonic di�racts
to air and three to the substrate (as compared to Fig. 3.8 where only one harmonic di�racts to the substrate).

The coe�cients EG of the harmonics are now vectors with x, y and z components.5 Although
TE and TM polarizations no longer hold, it is tempting to assign an approximate polarization, at
least in the case of weak photonic strength (shallow PhC for instance), where the former de�nitions
should still nearly be valid. Unfortunately, the conventions of the 'waveguide approach' and '2D PhC'
approach are not compatible: a �eld with a strong guided-like Ex component would be seen as TM
from a waveguide point of view, and TE from a PhC point of view.

Figure 3.17: Sketch of a pseudo-TE Bloch mode in a 3D structure. All harmonics whose wavevectors are in
the high-symmetry xz plane (e.g. those whose k// +G is along x) are polarized along y. Therefore, if one of
these is leaky and is collected along the xz plane, the spectrum is polarized. On the other hand, harmonics
with Gy 6= 0 (not represented) have no special polarization. Conversely, for pseudo-TM modes the polarized
harmonics are TM.

An interesting symmetry property still holds: along the directions of high symmetry of the PhC
(ΓM , ΓK), the harmonics collinear to k// (e.g. those for which the y component ofG is zero) are either
TE or TM, in the waveguide sense. Although this property is limited, it turns out to be useful from
an experimental point of view when we collect from outside the �eld di�racted by a leaky harmonic,
as we will soon do. In this case, if the PhC is aligned along a symmetry direction, the di�racted

5However, due to the transversality condition of Maxwell's equations, EG is always orthogonal to k// + G: all
harmonics correspond to transverse �elds.
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harmonic is either TE or TM polarized depending on the Bloch mode (Fig. 3.17). This enables us to
experimentally divide the modes in two families by using a simple polarizer. In the following of the
thesis, the Bloch modes are referred to as pseudo-TE or pseudo-TM.

3.1.3 Conclusion

Periodic structures sustain Bloch modes, which are a generalization of the guided modes of a
planar waveguide. Some of these can be leaky modes, which radiate power to air upon their
propagation. Our strategy is to use these leaky modes in order to extract guided light of an
LED. The existence of a leaky mode can simply be determined graphically from the band
structure of the system, but information about the e�ciency of light extraction requires a
full calculation.
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3.2 A few theoretical trends

We have seen how photonic crystals could sustain leaky modes and hence extract guided light. To
gain more insight on the e�ciency of this phenomenon, we now present a few theoretical results which
quantify the extraction e�ciency. We do not wish to discuss the e�ect of all parameters here, but
only to give a few orders of magnitude. Therefore, some parameters are kept constant: we always
consider a triangular lattice PhC (which o�ers more extraction directions than a 1D grating, as seen
on Fig. 3.16) of �lling factor f ∼ 0.3−0.4, a reasonable value from the point of view of fabrication. We
only consider di�raction around the second Bragg order, e.g. using a lattice constant a such that the
reduced frequency is in the range a/λ ∼ 0.4− 0.5. These choices will be justi�ed in the next chapter.

Let us recall that for a Bloch mode with wavevector k// = k′ + ik′′, the exponential decay length
is Ldecay = 1/2k′′. Therefore k′′ is a good quantity to describe the extraction e�ciency of a PhC.

3.2.1 Band structure of a 3D PhC

Figure 3.18: (Right half) Band structure of a 2D PhC in a 3D structure, in the ΓM direction. The band
structure is now more intricate, with several bands stemming from one guided mode due to multiple foldings
(manifesting that the PhC is 2D) and anticrossings which mix TE guided modes and TM guided modes. (Left
half) Imaginary part of k� for the Bloch mode whose dispersion is plotted as hollow circles. Notice the di�erence
in horizontal scale between both plots.

First, let us come back to the model 1D grating studied in Fig. 3.9 and see what happens when
the 1D grating is replaced by a triangular lattice PhC. Our new structure is therefore a waveguide of
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index 2.5 and total thickness 0.6a, surrounded by air and etched to a depth 0.2a by a triangular lattice
PhC of period a, with circular air holes of �lling factor 0.3. Fig. 3.18 presents the band structure in
the ΓM direction.

Many features are reminiscent of the 1D case, but the band structure is more intricate. At low
frequency, λ >> a and the e�ect of the PhC is simply that of an homogeneous layer, the index
modulation being averaged: in this region one recognizes the dispersion of a TE and a TM guided
mode. We label these modes, whose dispersion is close to that of guided modes, as A-type modes. In
the region where λ ∼ a, the e�ect of the PhC appears. Again, we observe band gaps at the FBZ edges,
with a larger gap for the former TE guided mode than for the former TM guided mode. Since the FBZ
is larger than for a 1D grating (the limit being at k// = 2π/a

√
3 rather than k// = π/a), gaps and the

crossing of the light line occur at higher frequency.

Figure 3.19: Construction of B-type modes. We start from two guided modes, which are TE-polarized in
the waveguide sense, e.g. their polarization (dotted arrows) is in-plane. Hybridization of these modes yields
two Bloch-modes which are respectively pseudo-TE and pseudo-TM in the PhC sense, e.g. considering the
polarization of the (small) harmonic along ΓM . This harmonic is responsible for radiation to air, so that its
polarization can indeed be measured in experiments.

Around a/λ = 0.48, two more modes appear from the M point, with a �atter slope than the two
previous modes. We label these as B-type modes. They originate from 'non-collinear' foldings in the
FBZ, i.e. foldings where the harmonic with most of the Bloch mode's power is not in the ΓM direction,
as depicted on Fig. 3.19. One of these B-type modes is pseudo-TM, and the other pseudo-TE.

At a/λ ∼ 0.5, the pseudo-TM B-type mode anticrosses with the pseudo-TM A-type mode. This
shows how one should be careful when understanding the meaning of polarization in a 3D structure.
The pseudo-TM A-type mode is indeed close to a TM guided mode of a waveguide, with some smaller
harmonics. On the other hand, the pseudo-TM B-type mode is mainly made of two TE-like guided
modes (but which do not propagate along x) and has a small radiative harmonic, which is TM-polarized.
Due to their similar symmetry, both modes can couple, and in the anticrossing region there is no simple
description of their structure.

This mode mixing has an additional implication. In general, when considering light emission
from quantum wells in a planar structure, it is safe to ignore TM guided modes (at least in �rst
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approximation), because transitions corresponding to electrons-heavy holes recombinations produce
strongly TE-polarized light at glancing angles: most of the guided light is TE (see Appendix B).
However, we now see that some pseudo-TM Bloch modes are mainly made of TE-polarized guided
modes and certainly couple to electron-heavy holes recombinations. Moreover, due to the anticrossings
just described, the nature of a band can change from being (nearly) a true TM guided mode to a 'fake'
pseudo-TM Bloch mode. Therefore, we have to conclude that all photonic bands can be of importance,
no matter what their polarization is.

Finally, it is worth noting that one should be careful in interpreting the value of k′′ for B-type
modes as obtained from calculations. It is typically larger than for A-type modes, but this is an
artifact due to the fact that the mode's energy is carried by harmonics which propagate at an angle ϕ
with respect to ΓM . Therefore, when the Bloch mode propagates for a distance L in the ΓM direction,
the strong harmonics actually propagate for a longer distance L/ cos(ϕ), and hence lose more energy.
In conclusion, the value of k′′ for such modes should be normalized by a factor cos(ϕ) − at least in
the case where a strong harmonic can be de�ned. In structures with stronger photonic e�ects, many
harmonics can be strong and this simple normalization is no longer possible. Nevertheless, one should
keep in mind that the interpretation of energy �ows for a Bloch mode is non-trivial, and that folding
in the FBZ is a source for possible misinterpretation.

Figure 3.20: Complete band structure along the high-symmetry directions. The left side (ΓM direction) is the
same as Fig. 3.18. In other directions (ΓK and KM), the edge of the FBZ is further and modes become leaky
at higher frequency.

For completeness, let us extend the previous calculation to other high-symmetry directions of the
FBZ (Fig. 3.20). Most features of this band structure are reminiscent of the 2D band structure of
Fig. 3.13.6

The main information of this complete band structure is that, along ΓK, the air cone is reached at
higher frequency than along ΓM (a/λ ∼ 0.4) because the RL points in this direction are further away

6It is worth noting that directions ΓK and KM both correspond to the same physical propagation direction in the
PhC, tilted 30o with respect to ΓM . Their di�erent names just refer to aligned points in the reciprocal space.
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from the center of the reciprocal space. One should not be deceived by the B-type modes which appear
at a/λ = 0.3 and cross the light line at a/λ ∼ 0.36. Their structure is similar to that depicted in
Fig. 3.19. They are mostly made of 2 harmonics which do not propagate along ΓK inside the dielectric
layer. On the other hand, the A-type modes along ΓK do correspond to light propagating along ΓK;
as can be seen, they reach point M at a/λ ∼ 0.45, where they fold back. Thus, they remain under the
light cone everywhere in this �gure. They would only become leaky around a/λ ∼ 0.65. Therefore, the
present PhC is unable to extract guided light in some propagation directions, at least at frequencies
around 0.5.

The band structure of a 3D object is rich with information about its optical properties. It
combines characteristics of 2D PhCs and of dielectric waveguides, and allows a description
of the light extraction phenomenon when photonic bands cross the light line. However, one
should be careful when drawing conclusions from a band structure: band foldings in the �rst
Brillouin zone lead to delicate interpretation.

3.2.2 Etch depth and light extraction

Let us now come to the impact of the PhC depth d on the extraction e�ciency. Before turning to
calculations, we can hint at a few trends. First, the extraction e�ciency should obviously vanish in
the limit d → 0. In the limit d << λ, the trend of extraction e�ciency is well-known. It is that of
scattering by small particles, with a radiating perturbation:

k′′ ∼
∫ ∫

(∆εE)2 (3.26)

The unperturbed �eld E (e.g. in the absence of PhC) can be taken in this integral because of the
weakness of the perturbation, which results in losses:

k′′ ∼ d2 (3.27)

On the other hand, it is also well-known from the literature that if one wants to suppress (or
strongly reduce) the losses of a leaky mode, it is also possible to etch the PhC very deep (e.g. far
into the substrate where the Bloch mode is evanescent). Indeed, in this case, the Bloch mode 'feels' a
dielectric environment which is 'separable' in space (roughly speaking, ε ∼ f(x, y)g(z)) which in turn
leads to reduced loss: this is the so-called intrinsic regime.[6] This approach is routinely used for PhCs
in foreseen telecommunication applications, where one wants to guide the light with as little loss as
possible. Due to this e�ect, the extraction e�ciency of a Bloch mode can be expected to be small
when d→∞ (PhC etched into the substrate).

Besides, it is also possible to give an analytical trend for the extraction e�ciency as a function
of etch depth, in the intermediate regime where both d and the thickness t of the core (the unetched
part of the waveguide) are of the same order of magnitude as λ (Fig. 3.21). More precisely, for a given
Bloch mode, there exists a cuto� thickness tc: intuitively, for t > tc the mode is well localized in the
core, below the PhC, and the e�ect of the PhC is limited. When t < tc the mode leaks signi�cantly in
the PhC region and photonic e�ects become stronger.

Let us consider the case t > tc, and also assume that the PhC is reasonably deep (not small
compared to λ). We now assume that the Bloch mode consists of a fundamental E0, akin to a guided
mode, which generates small harmonics Em through interaction with the photonic crystal region. Let
us take the simple case where only one of these harmonics, E−1, is propagative in the substrate or
superstrate, and therefore gives an imaginary component k′′ to the wavevector because of losses. In
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Figure 3.21: Approximation of a Bloch mode when the core thickness t is su�cient for the fundamental
harmonic of the mode E0 to be strongly localized in the core region. The refractive index felt by E0 in each
region is indicated.

this case, it can easily be shown that the power radiated by this harmonic is proportional to its vertical
Poynting �ow, normalized by the incoming power of the Bloch mode, so that:

k
′′ ∼

kup
z (Eup

−1)
2 + kdown

z (Edown
−1 )2

k//

∫∞
−∞ |E0|

2 dz
(3.28)

Where up (resp. down) refers to quantities in the air (substrate) and kz is the vertical wavevector.
In this expression, the numerator is mostly an oscillating function of the unetched thickness t, with small
variations in average value (for a precise form, the reader can refer to Ref. [7] where this perturbative
approach is treated in great details). On the other hand, the denominator can be easily estimated
using a simple model of 'in�nite quantum well' (Fig. 3.21), where E0 is assumed not to penetrate the
regions of PhC and substrate. The e�ective index neff of the Bloch mode, de�ned as neff = k///k0,
is then approximately given by:

n2
eff = n2

core −
(
π

k0t

)2

(3.29)

We now de�ne

< n >2 = fn2
air + (1− f)n2

core (3.30)

K =
< n >2 −n2

eff

n2
core − n2

eff

(3.31)

It can then be shown after some simple algebra that∫ ∞

−∞
|E0|2 dz =

(1 +K2)t
2

+ o(t3) (3.32)

Which �nally yields

k′′ ∼ 2
(1 +K2)t

∼ t−3 (3.33)

We now have a fairly accurate idea of the evolution of k′′ with etch depth of the PhC: starting from
zero, it quickly reaches a perturbative regime where it increases like t−3. The Bloch mode then enters
a regime of strong photonic interaction where k′′ reaches a maximum before decreasing again in the
intrinsic regime.7

7Of course, all this assumes that the Bloch mode can be sustained for all values of d.
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Let us test this qualitative discussion against electromagnetic simulations. To this e�ect, we con-
sider the following model case: a GaN (n = 2.5) waveguide of total thickness 8a with an air superstrate
and a sapphire (n = 1.7) substrate, etched by a triangular lattice PhC of �lling factor f = 0.35. This
waveguide is rather thick, which gives us room to observe the various regimes of light extraction.

Although such a waveguide supports several guided modes, we only consider the fundamental TE1

mode, propagating along the ΓM direction of the crystal, at a reduced frequency u = a/λ = 0.44
(close to the second Bragg order). The more complex question of multimode light extraction will be
addressed in the next chapter. The e�ective index and radiative losses of this Bloch mode are plotted
on Fig. 3.22 as a function of PhC depth.

Figure 3.22: Extraction e�ciency of the TE1 Bloch mode as a function of PhC etch depth, at a/λ = 0.44.
(Top) E�ective index of the Bloch mode. neff remains constant after d = 8, when the etch goes through the
substrate. (Center) Imaginary part of the wavevector. (Bottom) Same as (Center) in log scale. Dashed lines:
�t by a t−3 function.

As expected, losses increase approximately like t−3 (apart from some interference modulations) as
long as the Bloch mode is mainly located in the core of the unetched waveguide − as can be seen by
the value of its e�ective index, close to 2.5. When the thickness of the unetched WG becomes smaller
than ∼ λ/2n, the mode can not be localized in the core and starts leaking in the etched region. Its
e�ective index decreases, while the radiative loss reaches a maximum. Finally, when the PhC is etched
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through the GaN and into the sapphire substrate, radiative losses decrease rapidly, and reach the
intrinsic regime.8 In summary, the expected extraction regimes correspond well with the simulation.

It should be noted that a Bloch mode always exist in the present example, even when holes are
etched completely through the GaN but not into the sapphire, because the average index of etched
GaN (∼ 2.2) is still higher than that of sapphire (1.7). This is not the case in most optoelectronic
or silica-based materials systems, for instance in a GaAs waveguide (n = 3.6) con�ned by an AlGaAs
(n = 3) cladding, where Bloch modes are cuto� for excessive values of d.

3.2.3 Loss to air and substrate

Let us now come back to the oscillatory behavior of k′′ which can be observed on Fig. 3.22. Our simple
trend k′′ ∼ t−3 does not account for it, because we have considered the numerator of Eq. 3.28 as
constant. It can be checked numerically that the oscillations of k′′ are mainly caused by the variation
of this numerator, which is clearly composed of two terms corresponding respectively to loss toward
air and substrate.

Therefore, we are led to distinguish these two contributions to the total loss k′′. Let us de�ne Pin

as the incident power of the Bloch mode, and dPup and dPdown as the power radiated per unit length
(e.g. per lattice constant) by the leaky harmonic, to air and substrate respectively. We simply have,
with the same notations as above:9

dPup = kup
z (Eup

−1)
2/Pin

dPdown = kdown
z (Edown

−1 )2/Pin

(3.34)

We can now compare dPup and dPdown, as is done on Fig. 3.23. Both quantities undergo strong
oscillations when d varies. This is simply due to Fabry-Pérot type oscillations of the power emitted
upwards and downwards, produced by partial re�ections of the (−1) harmonic at the interfaces with
air and substrate.

Figure 3.23: (Left) Fraction of the Bloch mode's energy radiated per unit length to air (full line) and substrate
(dashed line). For clarity the plot stops at d ∼ 7. Both loss channels oscillate with a chirped phase. (Right)
Fraction of the di�racted light which is radiated to air. The chirp in phases between dPtop and dPbot leads to
beatings.

8The intrinsic regime is reached rapidly here (e.g. even for shallow holes in the substrate) because the mode is strongly
evanescent in the substrate, neff − nsubs being large.

9More details about the calculation of energy �ows of a Bloch mode can be found in Annex A.
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As a result, the fraction of the Bloch mode which is di�racted to air is given by dPup/(dPup +
dPdown). This quantity, also plotted on Fig. 3.23, shows the Fabry-Pérot-like oscillations which can be
expected when collecting light di�racted to air in an experiment. It can be checked that the average
value of this quantity is 1/2.

The origin of the oscillations can be checked by looking at the vertical pro�le of the Bloch mode's
harmonics (Fig. 3.24). The radiative harmonic (−1) is seen to oscillate inside the structure due to
re�exions at the interfaces.

Figure 3.24: Pro�le of the fundamental (dashed line) and (−1) harmonic (full line) of the Bloch mode in the z
direction, for an etch depth d = 6.5. The amplitude of the (−1) harmonic has been multiplied by 10 for clarity.
The average index in the structure is also indicated.

This �eld pro�le also reveals why, in Fig. 3.23, oscillations to air and to the substrate have a
chirped phase relation. Indeed, the radiative harmonic feels two sub-cavities of thicknesses d and t
(with < n >= 2.2 and 2.5, respectively). The radiative harmonic therefore oscillates with a di�erent
phase in each cavity, yielding the beating of Fig. 3.23.

As a consequence of this e�ect, the extracted light can be directed preferentially to air or to the
substrate. One may consider making the most of this e�ect by using a 'hot spot' where most of the
di�raction occurs upwards. Unfortunately, the tolerance around such spots is quite narrow. From a
fabrication point of view, it would require control of the PhC depth within a few dozen nanometers.
Besides, the optimal d varies with wavelength so that an optimum is not necessarily possible for
a polychromatic source. Finally, as will soon be seen, the multimode nature of GaN waveguides
completely averages out this e�ect anyway.

On the other hand, it must be reminded that sapphire substrates are transparent (with virtually
no loss) in the visible. Therefore, a much simpler solution consists in placing a far-�eld mirror (such
as an Ag or Al layer) beneath the sapphire substrate in order to redirect light emitted downward. The
only drawback of this method is that the apparent emitting surface is enlarged due to the round-trip
of light in sapphire, which is somehow detrimental to brightness but still acceptable.10

10The thickness of the sapphire substrate is ∼ 500µm: light propagating in sapphire with an angle ∼ 45o travels 1 mm
laterally before escaping to air: this is still reasonable, especially for high power LEDs whose emitting region is ∼ 1 mm
wide anyway.
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3.3 Photonic crystals in GaN: photoluminescence experiments

We now come to the �rst experimental results on GaN photonic crystals obtained at UCSB. We present
the photoluminescence experiments, their interpretations in terms of photonic band structure, and the
implications for e�cient light extraction.

3.3.1 Photonic crystals fabrication

Photonic crystals regions were formed in PL samples to characterize their optical properties. The
fabrication process is as follows:

Pattern de�nition Hard mask deposition PECVD SiO2 evaporation

E-beam resist deposition ZEP 512 2:1 (4000 RPM,1')

Bake 180oC, 1'

Au layer deposition Thermal evaporator, 10 nm Au

Pattern de�nition E-beam lithography

Gold removal Au etchant, 5s dip

Resist lift-o� Amylacetate 60s dip

MIBK 15s dip

Isopropanol 10s dip

PhC etch SiO2 hard mask etch RIE 3 CHF3 etch, 6 nm/min

GaN etch RIE 5 Cl2 etch, 100 nm/min

The SiO2 hard mask is useful to obtain etch depths larger than 100 nm, because of its good
resistance to the GaN etch. While the maximum depth I used for this thesis was under 300 nm,
deeper-etched structures may be of interest for some applications such as DFB lasers; it has been
checked that a SiO2 hard mask can sustain GaN RIE etchings down to 700 nm. The GaN etch used
above is the regular etch used for most LED processes; it turns out to produce fairly vertical sidewalls,
at least for the small aspect ratios involved, close to 1.

Figure 3.25: Scanning electron microscope (left) and atomic force microscope (right) images of a photonic
crystal on a PL sample, with lattice constant a = 200 nm and �lling factor f = 0.3.
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For the PL experiments, I used epitaxial layers grown by Rajat Sharma, with a total thickness of
2.9µm and a region of InGaN multi-quantum wells, buried ∼ 100nm below the surface. The QWs emit
around 425-450 nm. On these layers, triangular lattice patterns with a lattice constant a = 200 nm
and �lling factors ranging from 0.2 to 0.37 were formed. By calibration of the GaN etch, their depth is
estimated to ∼ 180 nm (atomic force microscope measurements also con�rm that the depth is at least
170 nm). The PhC regions are ∼ 160µm x 320µm large. Fig. 3.25 shows several images of the PhC
regions.

3.3.2 Angle-resolved photoluminescence experiments

The excitation source for PL experiments is a HeCd laser with emission at 325 nm, and a focused
spot of diameter 100 µm. The sample can be measured under two excitation conditions: (1) with the
exciting laser impinging on a bare GaN surface and (2) on the PhC region (Fig. 3.26). In the �rst case,
the excitation spot is focused a few hundred µm away from the PhC, so that its size can be neglected
to the �rst order. In all cases, the total area of the light-emitting region is less than 1 mm2, which is
small compared to the rotating arm of the angular sample (10 to 15 cm). Therefore, the source can be
considered point-like in all measurements.

Figure 3.26: Excitation schemes in PL experiments. (Dotted arrows) UV laser excitation (Full arrows) Direct
emission from the quantum wells (Dashed arrows) Di�raction of guided light by the photonic crystal. (Left)
Scheme (1), the laser excites the bare GaN surface close to the PhC. (Right) Scheme (2), the laser excites the
PhC region directly. Light extraction by the PhC is schematically shown as occurring backward, because the
PhC operates below the second Bragg order.

Let us �rst consider excitation scheme (1). We collect the spectra with a polarizer placed at the
extremity of the collecting arm, in order to discriminate the two families of Bloch modes described
earlier (pseudo-TE and pseudo-TM). Spectra collected at various angles with the angle-resolved setup
are shown on Fig. 3.27. Some features of the spectra are familiar. For instance, the spectrum corre-
sponding to λ = 418nm looks like a regular PL spectrum, with Fabry-Pérot interferences modulating
the light emission to air. However, at other wavelengths, sharp luminescence peaks are collected for
θ > 0. These correspond to light extraction by the PhC. The angular range where di�raction occurs
is as expected: the lattice constant a = 200 nm corresponds to Bloch modes slightly below the second
Bragg order, where the light is di�racted 'backwards' (in other words, the in-plane wavevector of the
(-1) harmonic is in the direction opposite to k//, as in Fig. 3.26).

To characterize the dispersion of these extraction peaks, angle-resolved spectra collected for all
values of θ are merged into a 2D plot on Fig. 3.28. The left part of this 2D plot is very similar to
the measurements on regular GaN LEDs already seen in the previous chapter. Di�raction by the
PhC clearly appears as a series of lines superimposed on this spectrum. As already said, it occurs in
directions θ > 0. The di�raction peaks are dispersive with respect to wavelength.
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Figure 3.27: Monochromatic angle-resolved spectra with excitation scheme 1, for 3 di�erent collection wave-
lengths. Sharp peaks due to light di�raction by the PhC appear at some angles and wavelengths.

3.3.3 Photonic band structure

In order to isolate these peaks in excitation scheme 1, we now take the left half of the angular spectrum
(direct emission from the quantum wells) and subtract it from the right half of the spectrum: therefore,
only the additional signal from the PhC is kept. Moreover, to study the dispersion of the PhC signal,
we change the axes of the plot from (θ, λ) to (k//, a/λ), where k// = 2π sin(θ)/λ. Finally, the
spectrum needs to be normalized by the emission lineshape of the quantum well in order to observe the
PhC's intrinsic extraction e�ciency at all frequencies. To do so, the lineshape of the QW is obtained by
integrating the left half of the plot over all angles, thus averaging the e�ect of Fabry-Pérot modulations
and restoring the intrinsic QW emission. The whole spectrum is then normalized by this lineshape.

We then obtain Fig. 3.29, which is actually a part of the band structure of the PhC. As a guide for
the eye the light line of air, and the folded light lines of sapphire and GaN are also indicated. Their
respective equations are:

ω = k//c, ω = G0 − k//c/1.7, ω = G0 − k//c/nGaN (3.35)

Obviously, this experimental band structure is much more complex than those we encountered so
far in calculations. The main reason for this is that for simplicity, these calculations were performed
on thin �lm layers supporting only one Bloch mode.11 Here, multiple photonic bands are measured
above the light line of air and correspond to the multiple Bloch modes supported by the thick GaN
structure − of course, no signal is collected below the light line of air, which corresponds to θ = 90o.
The photonic bands are also located above the folded GaN line, which con�rms that they correspond
to modes guided (propagative) in the GaN layer.

Most of these bands look like a series of parallel lines whose spacing increases with k//. Notably,
these lines also seem nearly parallel to the light line of GaN, a feature reminiscent of guided modes
strongly localized in a waveguide. A closer look reveals a more complex band structure for k// ∼ 2 and
a/λ ∼ 0.44− 0.46. Finally, it is interesting to note that there is a cuto� in photonic bands above the
sapphire folded line. This is simply due to the fact that light above the sapphire line is propagative
in the sapphire and therefore no longer guided in the GaN layer (this is the so-called substrate light).
In a geometrical view, this light travels large distances in the sapphire substrate between two bounces

11Actually, another mode was sometimes present but neglected for clarity
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Figure 3.28: Angle-resolved photoluminescence measurements on photonic crystals (ΓM direction, TE polar-
ization). (Top) Excitation scheme 1, the PhC only di�racts in one direction. (Bottom) Excitation scheme 2:
more PhC bands are excited, and the spectrum is symmetric.

on the PhC, and therefore has a vanishing extraction e�ciency: hence the absence of signal above the
sapphire line.

Let us now give a qualitative justi�cation of this complex band structure. As the GaN waveguide
is thick (several µm) it supports several dozen guided modes. When a PhC pattern is formed on this
structure, each of these modes gives rise to a set of photonic bands, which can be understood by folding
the dispersion of each guided mode in the �rst Brillouin zone. Fig. 3.31 illustrates this construction.

From this, the set of lines parallel to the GaN light line can be interpreted as the A-type modes
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Figure 3.29: Experimental band structure of the photonic crystal. The signal is plotted as grey levels on a
log10 scale (black corresponding to signal, white to background). k// is in a−1 units. (Top) Experimental band
structure as measured. The red, blue and green lines correspond to the light lines of air, sapphire and GaN
respectively. (Bottom) Same with the result of a 3D calculation superimposed as red dots.

Figure 3.30: (Left) Anticrossing between an A-type and a B-type mode. (Right) Experimental (blue) and
calculated (red) intensity of an A-type mode (speci�cally, the mode corresponding to neff = 2.3), showing
Fabry-Pérot-like oscillations.
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Figure 3.31: Origin of the band structure of a multimode 2D PhC. (Top left) The original GaN waveguide
supports numerous guided modes. (Bottom left) Typical band structure of a 2D PhC, with bands folded in the
FBZ. Notice that the multiple foldings produce 2 bands close to the second Bragg order; (A) is produced by a
simple folding collinear to ΓM , while the nearly degenerate doublet (B) is due to a non-collinear folding such
as in Fig. 3.14. (Right) Folding of the multiple guided modes' dispersions yields the intricate band structure of
the multimode system. Once the photonic bands cross the light line (dotted line) they become leaky and can
be collected experimentally.

of Fig. 3.31: they have a dispersion close to that of a free photon in GaN, due to the weak photonic
strength of the shallow PhC. The spacing between these A-type mode increases with mode number,
as is the case in a waveguide (where the wavevector of the pth mode is typically shifted from the core
index with a ∼ p2 scaling).

In addition, B-type modes appear (although faintly) in the region k// ∼ 2, a/λ ∼ 0.44 − 0.46.
This calls for a quick comment: the structure of such modes corresponds to the sketch of Fig. 3.14.
Hence their fundamental component does not propagate in the ΓM direction of excitation, so that
they should not be excited by the UV laser spot. They observation can be partly justi�ed by the
spread of the laser spot, which makes excitation not strictly directional. In addition, it is worth noting
that A-type and B-type modes undergo multiple anticrossings, as seen on Fig. 3.30. These anticrossing
manifest hybridization of both types of modes, which also indicates a second channel for exciting B-
type modes: at the anticrossings, the simple picture of Fig. 3.14 no longer holds. It is interesting
that these anticrossing occur in spite of the weak photonic strength of the PhC. It may naively be
thought that such a PhC only acts as a sum of three 1D gratings tilted by 60o, because only �rst-order
di�ractions matter. However, hybridization of the modes manifests the 2D nature of the PhC.

After this qualitative analysis, we can resort to electromagnetic calculations to con�rm our un-
derstanding of the band structure. Fig. 3.29 shows the result of a 3D calculation, taking the exact
structure into account. As can be seen, there is an excellent �t between the measured and calculated
band structures (at least in the regions where experimental signal is collected). It is worth mentioning
that this was obtained without any �tting parameter, only using the nominal values of the structure.
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Taking into account the index dispersion of GaN (taken from Ref. [8]) is essential to obtain the correct
band structure (for instance, at λ = 425 nm, the refractive index is n = 2.5 but the group index is
ng ∼ 3.)

Looking at the calculation into more details, it can be seen that the e�ect of cuto� above the
sapphire line is also observed as a disruption in the numerical band structure.12 Besides, �ner details
of the band structure are well reproduced by the calculation (Fig. 3.30). For instance, the bands
anticrossings have a similar strength. The intensity of a given photonic band as a function of frequency
also meets well the experimental value: the Fabry-Pérot type oscillations discussed in section 3.2.3 are
well �tted.

As a side note, the e�ciency of the 'hybrid' calculation method (described in Chapter 6) is high-
lighted here: the strongly multimode band structure is obtained without having to follow each Bloch
mode individually, which would be very tedious in view of the multiple anticrossings displayed.

3.3.4 E�cient light extraction

Let us now comment on some discrepancies between the measurement and the calculation. First, the
experimental signal decreases at high frequency, and no photonic bands are measured for frequencies
higher than 0.48, although Bloch modes exist in theory. Initially, I suggested that bad coupling between
incoming guided modes and these high-frequency Bloch modes could account for the lack of signal.
However, as will be con�rmed in the following section, reabsorption of guided modes by the material
accounts well for the 'darkness' of these bands. Indeed, a/λ ∼ 0.48 corresponds to the high-energy tail
of the QW emission. Although some light is emitted at such wavelengths, guided modes experience
much higher reabsorption in the quantum wells and therefore disappear before reaching the PhC region,
located hundreds of µm away from the excitation region. This absorption e�ect also accounts for the
discrepancy between the measured and calculated intensity at high energy in Fig. 3.30.

More interesting is the non-observation of Bloch modes of high e�ective index, i.e. the Bloch modes
closest to the GaN line, which we call low-order modes. At least seven such modes are calculated
but not measured: the �rst observed Bloch mode has an e�ective index neff ∼ nGaN − 0.1. This
can be understood by considering the extraction e�ciency of each mode. The lowest-order mode
(neff ∼ nGaN ∼ 2.5) is strongly localized in the unetched GaN core, and barely leaks in the PhC region
whose average index is 2.15. Therefore, its extraction e�ciency per unit length is very low, and a very
long PhC would be necessary to e�ciently extract it. Modes of lower neff have higher penetration in
the PhC region, and hence higher extraction e�ciencies. When the extraction e�ciency is su�cient
(e.g. when 1/k′′ is on the order of the PhC's length), the modes can be collected experimentally.
The numerical calculation con�rms that for the modes observed experimentally, or high-order modes,
the imaginary part of the wavevector k′′ is on the order of a few 10−4 to 10−3 (in a−1 units). This
translates into extraction lengths of one hundred to a few hundred µm, comparable to the length of
the fabricated PhC. On the other hand, for low-order modes k′′ collapses: the extraction length would
be of several centimeters for the lowest-order mode. The transition between low and high order modes
seems quite abrupt on Fig. 3.29: only the two �rst A-modes seem fainter than the following. This
is simply a visual e�ect due to the log scale and to the choice of the color scale, which saturate all
well-extracted modes.

12One may actually wonder how modes can be calculated over this line, where they are no longer guided. This
is a virtue of the 'hybrid' numerical method used here: to obtain this �gure, only a few Bloch modes were actually
calculated, but other eigenvalues of the numerical problems also correspond to other solutions (albeit with a larger
numerical imprecision). Therefore, the whole band structure is obtained with only a few calculations. In addition,
the method also naturally �nds 'resonances' above the sapphire line: although these are no longer guided modes, they
correspond to constructive interferences in the GaN layer. These resonances are the theoretical points plotted above the
sapphire line; their extension under the sapphire line corresponds to true Bloch modes.
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This implies that not all of the guided light can be extracted e�ciently using a shallow-etched PhC,
because the PhC does not interact well with all the guided modes of the thick GaN waveguide. Using
larger PhC surfaces would hardly solve the problem because of the very low value of k′′ for low-order
modes. Unfortunately, the low-order modes also carry a very large fraction of the total emitted light:
typically 30% to 40%. This is due to the fact that these modes correpond to the largest solid angle
for light emission. Obviously, this is not acceptable for e�cient guided modes extraction. Several
strategies to deal with this issue will be presented in the next chapter.

3.3.5 Full characterization of the PhC's band structure

Figure 3.32: band structure of the PhC with internal excitation. Top: TE polarization, bottom: TM polariza-
tion. Left: ΓM direction, right: ΓK direction.
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So far, we have only considered PhCs excited following scheme (1), e.g. with excitation outside
of the PhC region. Let us now come to the second excitation scheme, where the UV laser impinges
directly on the PhC. An angle-resolved measurement is presented on Fig. 3.28. Several di�erences
appear with respect to the former excitation scheme. First, the spectrum is now symmetric around
θ = 0. Indeed, as light is generated inside the PhC, Bloch modes propagating both in the +x and −x
direction are excited, as sketched on Fig. 3.26.

Besides, more photonic bands appear than formerly. Again, this is due to the fact that Bloch modes
now propagate in all azimuthal directions. Therefore, B-type modes (whose main component have an
azimuthal angle with respect to the x axis of the setup, see Fig. 3.19) are excited. This is best seen by
considering the band structure corresponding to the angular measurement. We can obtain it by the
same procedure as before. However, we no longer have access to the direct emission of the quantum
well (because the PhC now di�racts in both directions) so that the band structure also displays the
direct emission. Fig. 3.32 displays the experimental band structure in both directions ΓM and ΓK, and
in TE and TM polarization. Thus, the band structure of the PhC's leaky modes is fully characterized.

All the bands which can be expected from the band structure of a 2D PhC are indeed observed,
with proper polarization properties. For instance along ΓM , there are two kinds of B-type modes,
respectively pseudo-TE and pseudo-TM polarized, whereas there is only one kind of A-type mode,
which is pseudo-TE.

Bands are now observed at high frequency, which was not the case with scheme 1. This con�rms
that the guided light propagating at high frequency is reabsorbed by the material on a short scale (less
than the ∼ 400µm separating the excitation from the PhC in excitation scheme 1). Here on the other
hand, as light is generated directly in the PhC, part of it can be extracted even at high frequency. This
indicates that, for e�cient extraction of all the emitted light, one should avoid as much as possible
propagation of guided modes, and ideally generate light directly in the PhC.

In addition, photonic bands are observed in the ΓK direction. This fact has already been discussed
above (section 3.2.1): this signal originates from Bloch modes whose main harmonics do not propagate
along ΓK inside the GaN layer, but whose radiative harmonic is folded along ΓK. On the other hand,
Bloch modes whose main harmonic does propagate along ΓK are under the light cone and are not
measured.

3.3.6 Conclusion

Leaky modes of photonic crystals can be used in order to extract guided light from a GaN
layer. Experimental observation of the photonic band structure of a PhC con�rms that these
leaky modes behave as expected from theory. By varying the experimental conditions, the
structure can be fully characterized above the light line: angular-resolved luminescence is
thus a powerful and accurate analysis tool. The measurements notably point out the exis-
tence of low-order modes, whose interaction with the PhC is insu�cient to provide extraction
within a reasonable scale. These modes carry a large fraction (∼ 30%) of the total emitted
light and any e�cient light extraction scheme needs to address them.
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Chapter 4

Photonic crystal LEDs

The theoretical approach and PL measurements performed in the previous chapter hinted at some
key points for optimization of photonic crystal LEDs. Although the problem of light extraction is
intrinsically 3-dimensional, they indicate that the vertical and horizontal directions can to some extent
be decoupled, at least in �rst approximation. In the horizontal direction, the main parameters of
interest are the choice of the crystal lattice and �lling factor. In the vertical direction, the multimode
nature of GaN LEDs is problematic because the lowest-order guided modes do not interact with the
photonic crystal.

In this chapter, several implementations of PhC-LEDs are introduced. Each of these addresses one
or several issues which limit e�cient light extraction. The three �rst implementations are mostly the
fruit of personal work, and were brought to the level of operating LEDs. The others are larger-scale
projects pursued at UCSB, where I contributed to the theoretical design and modeling, and optical
characterization.

4.1 Tailoring of guided modes distribution

This �rst generation of PhC-LEDs addresses the problem of unextracted low-order modes. As argued
in the previous chapter, modes of low e�ective index (say neff > 2.3) carry a lot of emitted light
(∼ 30% of the total light emission) but are not well di�racted by shallow photonic crystal due to their
poor overlap with the etched region.

4.1.1 Is deep etching a solution ?

The �rst way one may consider to enhance the interaction between low-order modes and the photonic
crystal is to etch the PhC deeper: at some point, even the modes strongly localized in the GaN layer
should leak into the PhC. However, one may readily hint that this will only happen if the un-etched
GaN thickness is small enough that low-order modes are poorly con�ned. Therefore, if one wants the
fundamental mode to interact with the PhC, the un-etched GaN depth should be close to a monomode
waveguide.

A model calculation on a simple system con�rms this intuitive view. Starting from a relatively
thick GaN waveguide of thickness 4a, we compute the extraction e�ciency of each mode when a 1D
grating (�lling factor f = 0.5) is etched into the waveguide (the choice of a 1D grating makes the result
easier to read because possible anticrossing between di�erent in-plane modes are avoided; however the
result also holds for a 2D PhC). The unetched waveguide supports 6 TE modes and 6 TM modes, at a
normalized frequency u = 0.39 (this frequency is just below the second Bragg order for the �rst guided
mode). Fig. 4.1 displays the e�ective index and imaginary part of the wavevector of each mode, as
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Figure 4.1: (a) E�ective index of the TE (solid) and TM (dashed) modes supported by a thick GaN waveguide
with varying PhC depth (b) Corresponding di�raction e�ciencies (TE modes only for clarity)

a function of the grating depth. The modes are progressively cuto� as the grating is etched into the
waveguide. Only the fundamental TE1 and TM1 modes remain guided for all values of t.1 However,
when the sapphire substrate is etched deep enough, mode TE2 reappears as a pseudo-guided mode,
with an e�ective index between that of bulk sapphire and etched sapphire.

As can be seen, for small depths the extraction e�ciency increases with the mode number. If we
set a minimal threshold for su�cient extraction at k′′ = 10−2, only 2 out of 5 modes are extracted
for a grating of depth a (or a depth of ∼ 200nm in real units). As the grating is etched deeper, the
extraction e�ciency of low-order modes increases while the highest-order modes are cuto� because the
e�ective thickness of the GaN waveguide decreases. As seen in Chapter 3, the extraction e�ciency can
be simply linked to the thickness of the un-etched GaN layer, t = 4a− d, by:

k′′ ∼ t−3 (4.1)

This is true apart from some oscillatory behavior, and as long as the waveguide is multimode. This
tells us that the relevant parameter to estimate extraction e�ciency is not the grating depth d but
rather the un-etched GaN core thickness t. This relation also proves that, no matter what etch depth
we use, the number of modes above a given extraction threshold is roughly constant, while the total
number of supported modes decreases.

This is clearly apparent on Fig. 4.1: for the fundamental mode to be above the cuto� chosen earlier,
one has to etch to a depth d = 3a, leaving an un-etched thickness t = a. At such a depth, only 2
modes are supported in the structure: thus, we recover the anticipated result that the un-etched GaN
region should be nearly monomode for e�cient extraction of the fundamental guided mode.

Unfortunately, this strategy also presents serious drawbacks. First, actual deep-etching of GaN is
quite challenging. While the above calculation is simpli�ed, it can be generalized to a realistic structure
of thickness 15a (∼ 3µm) with a 2D PhC of �lling factor f = 0.35. The extraction e�ciency for the
TE1 mode in this structure is shown on Fig. 4.2: even if a modest extraction cuto� of k′′ = 10−3

is chosen (corresponding to an extraction length of ∼ 100µm), the necessary etch depth is 13.5a or
2.7µm. This is by far impossible with the present state of the art in etching techniques. The deepest
GaN PhCs reported so far in literature are 450 nm deep, using a multilayer hard mask (Ref. [1]).

Moreover, if one considers a structure where light is generated outside the etched region and
transferred to the PhC region, one has to wonder about the coupling e�ciency of the incoming guided

1This is simply due to the fact that the average index in the etched GaN layer is ∼ 1.9, higher than the index of the
sapphire substrate, 1.7. Therefore, the etched layer still acts as a waveguide for the fundamental modes.
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Figure 4.2: Extraction e�ciency of the TE0 mode of a realistic GaN waveguide of thickness 15a etched by a
2D PhC of �lling factor 0.35 with varying PhC depth. The extraction e�ciency starts at a lower value than
previously because the waveguide is thicker. It reaches the same peak value close to t = 0.

modes to Bloch modes as their pro�les can di�er signi�cantly. This can lead to insertion loss at the
interface between the bare and etched region, where the guided mode can be strongly scattered.

An approximate treatment of this interface loss was proposed in Ref. [2] in which the overlap
integral of the guided and Bloch modes intervenes. Let us introduce the set of guided modes of the
unetched waveguide Ep

g, p = 1, 2... Moreover, to each actual Bloch mode Ep
B (p = 1, 2...) of the PhC,

we associate the Forward-propagating half Bloch mode Ep
F which is the sum of the Fourier harmonics

of Ep
B propagating in the forward direction:

Ep
B =

∑
G

EGe
i(k//+G)x → Ep

F =
∑

G,k//+G>0

EGe
i(k//+G)x (4.2)

Following Ref. [2], we now describe the transmission from a guided mode Ep
g to a Bloch mode Ep′

B

as resulting from a double scattering process:2 �rst, Ep
g excites the forward-propagating component

Ep′

F of the Bloch mode with an e�ciency ηp,p′ , which in turns generates the backwards-propagating
harmonics of the total Bloch mode along its propagation, with e�ciency 1. Therefore, the coupling
e�ciency we are looking for is simply ηp,p′ , which is given by the projection3 of Ep′

F on Ep
g:

ηp,p′ =
Re

{(∫ ∫
dydz(Ep

g ×H
p′∗
F ) · ux

∫ ∫
dydz(Ep

F ×H
p′∗
g ) · ux

)/(∫ ∫
dydz(Ep

F ×H
p′∗
F ) · ux

)}
Re

{∫ ∫
dydz(Ep

g ×Hp′∗
g ) · ux

}
(4.3)

In this formula, integrations are performed over the whole yz plane, ux is the unitary vector along
the propagation direction x, and Re indicates the real part.

To my knowledge, the domain of validity of this formula, which comes from the classic theory
of waveguides,[3] is currently not fully assessed. Lalanne checked that its results are consistent with
an exact electromagnetic calculation for re�exion of guided modes in the gap of a 1D grating. More

2In Ref. [2], a series of three successive scatterings is considered because the Bloch mode is in a gap and the authors
look for the e�ciency of the re�ection process. We are only interested in the forward coupling.

3The set of guided modes is complete if the evanescent modes are included. Therefore, any half-Bloch mode mode
can be projected on their basis. Here, we only conserve projection on guided mode p.
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generally, it has been argued recently (Refs. [4, 5]) that it was valid for 1D gratings at normal incidence,
while interface coupling with 2D PhCs needs a more complicated treatment. Therefore, we shall apply
it to the 1D grating of thickness 4a studied above (Fig. 4.1).

Fig. 4.3 depicts the coupling e�ciency of the TE guided modes of the unetched waveguide into the
etched region. For each guided mode, we use the expression of Eq. 4.3, but here we take into account
coupling to all the Bloch modes supported in the etched region. Therefore, Eq. 4.3 is computed for
all the Bloch modes (p′ = 1, 2...) and then summed over p′ to yield the total coupling e�ciency of a
guided mode in the etched region.

Figure 4.3: Coupling e�ciency of the guided modes in the etched region for varying PhC depth and f = 0.5.
For clarity, only modes 1, 2 and 6 are depicted here (all other modes follow the same behavior).

As expected, the coupling e�ciency collapses when the etch depth increases. For higher-order modes
(such as mode TE6) shallower etches are su�cient to prevent good coupling. The discontinuities in
the coupling e�ciency are due to the cuto� of Bloch modes.

Somehow unexpectedly, the coupling does not decrease monotonously − see for instance the sharp
increase for coupling of the fundamental guided mode when d→ 4. Indeed, as shown on Fig. 4.4, when
d = 3.5 the PhC region only supports one Bloch mode which is still mostly localized in the unetched
GaN region: its pro�le is very di�erent from that of the incoming fundamental mode, leading to strong
coupling losses. For d = 4, the Bloch mode can no longer be localized in the unetched region, and has
to leak in the PhC region. Its pro�le returns to that of the fundamental guided mode, and coupling
is enhanced. The same phenomenon accounts for the sawtooth-shaped coupling e�ciency of the 6th

guided mode: the e�ciency rises each time a Bloch mode leaks in the PhC region, and then suddenly
collapses when this same Bloch mode is cuto�.

This di�culty in coupling light in the PhC re�ects the fact that, as the etch depth increases, the
PhC carries fewer Bloch modes. In mathematical terms, the set of Bloch mode then constitutes a
poor basis for projection of the guided modes.4 Of course, what happens exactly to the uncoupled
fraction of each mode is unclear: it may be di�racted out-of-plane, either in the substrate or in the
air. However, the lack of insight on this di�raction phenomenon is not encouraging for a deterministic
approach of light extraction. Moreover, Finite Di�erence Time Domain calculations found in literature
indicate that the loss is preferentially directed toward the substrate.[6]

4In other words, it is not possible to build a bijection between two bases of di�erent sizes. In our case, the basis of
guided modes is always larger than the basis of Bloch modes, whose cardinal decreases with etch depth. Of course, this
is due to the fact that all evanescent and non-guided modes have been removed from the basis.
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Figure 4.4: Pro�le of the fundamental harmonic (G = 0) of the y component of the electric �eld Ey across
the structure. The vertical lines are the boundary of the air and substrate regions. (Full) guided mode in the
unetched waveguide. (Dashed) Bloch mode for an etch depth of 3.5a (Dotted) Bloch mode for an etch depth of
4a

Let us note that FDTD calculations carried out in Ref. [1] on a deep-etched GaN structure lead to
similar conclusions regarding coupling e�ciency: Chen et al. observe that light transmission through
a few rows of a deep PhC is very poor (in the absence of a band gap). While they do not discuss in
detail the origins for this poor transmission (light extraction versus bad coupling for instance), their
results are compatible with the present ones.

Finally, it can be argued that the high �lling factor chosen here (f = 0.5) is especially detrimental
to coupling since the deep-etched grating only carries one Bloch mode. To check this, we now consider
the same grating but with a �lling factor of 0.3 only. In this case, the fully etched structure still
supports 4 Bloch modes. Indeed, the coupling loss (Fig. 4.5) is clearly reduced. The fundamental
mode has good coupling regardless of the etch depth. Modes 2, 3 and 4 (not shown) have similar
behavior and a coupling e�ciency above 80% at all depths. On the other hand, modes 5 and 6 are still
poorly coupled in the case of deep etching.

Figure 4.5: Coupling e�ciency of the guided modes in the etched region for varying PhC depth and f = 0.3.
Modes 1, 5 and 6 are depicted here.



96 CHAPTER 4. PHOTONIC CRYSTAL LEDS

This result is inevitable, as the etched region necessarily supports less modes than the original
waveguide. From basic mode-counting arguments, we can argue that the coupling e�ciency averaged
over all modes is roughly the ratio of the number of Bloch modes to the number of guided modes.

Incidentally, Fig. 4.1 gives us another important indication: even if we retain a reasonable depth
(d ∼ a) and accept to extract only some of the modes (the excited modes), it is always preferable to
reduce the core thickness t to enhance the extraction e�ciency of these modes. Unfortunately, t can not
be made arbitrarily low in practice, because of dislocations in GaN close to the sapphire interface. A
value t ∼ 1.5− 2µm seems an acceptable tradeo� between growth requirements and optical properties.

From this discussion, we conclude that deep-etching of GaN is at best a challenging option.
Feasibility of deep-etched (several µm) PhCs is currently unclear. Insertion losses prevent
light from coupling into the PhC. Therefore, we are led to retain shallow PhCs where only
excited modes are well extracted. Even for these, the core thickness t should be kept as
small as possible. In the following, we consider alternative strategies to e�ciently extract all
of the guided modes.

We should note however that the previous discussion leaves aside the case where light is gener-
ated inside the patterned region. Conventional wisdom of semiconductors suggests that luminescence
properties should be strongly degraded in this case, due to the numerous non-radiative recombinations
which can take place at the surface of the PhC holes. We postpone this discussion to section 4.5.

4.1.2 Modi�cation of the epitaxial layers: the Cap Layer Mode

Rather than questioning the geometry of the PhC extractor itself as above, a possible approach consists
in modifying the way light is emitted in order to get rid of low-order modes. In general, modi�cation
of the spontaneous emission of the QWs can be obtained by modifying their optical environment. The
simplest way to do this is to modify the epitaxial layers in order to provide refractive index contrast.
Indium or aluminum can be incorporated to GaN in order, respectively, to increase or decrease the
refractive index. Since InGaN possesses a smaller band gap than GaN, it absorbs more in the visible
region and should ideally be avoided (especially since light tends to be localized in high index materials).
AlGaN, on the other hand, is transparent in the visible and possesses a lower index than GaN. It can
thus be used as an optical barrier. Therefore, we introduce a structure where an AlGaN layer is grown
between the GaN bu�er and the pn junction:

Figure 4.6: Guided modes distribution in a conventional GaN LED (left) and in an LED with a low-index layer
(right). In the conventional LED, only low-order and high-order modes are present. In the modi�ed structure,
the optical barrier repels the low-order modes in the GaN bu�er, and enables a mode to be guided in the thin
cap layer.

The distribution of guided modes in the new structure, shown on Fig. 4.6, can be inferred from an
analogy with a system of coupled quantum wells (Fig. 4.7). The shallow AlGaN barrier only acts on
low-order modes with neff < nAlGaN . It repels these modes below the AlGaN layer. On the other
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hand, high-order modes barely feel this barrier and are not a�ected by its presence. Finally, if the
thickness of the pn junction on top of the AlGaN barrier (or "cap layer") is su�cient, a guided mode
can be localized in this thin e�ective waveguide. For good localization, the AlGaN barrier should be
thick enough for this "cap layer mode" (CLM) to be isolated from the GaN bu�er.

Figure 4.7: Analogy between the modi�ed epitaxial structure and a system of coupled quantum wells. The
AlGaN layer acts as a shallow potential barrier which decouples the GaN bu�er and the cap layer. The excited
modes, on the other hand, are una�ected.

The expected e�ect of this CLM is twofold. First, because it is maximal at the QWs location, it
should receive a large fraction of the emitted light − whereas low-order modes, localized on the other
side of the AlGaN barrier, have little overlap with the QWs. Second, since this mode is pinched close
to the surface, its penetration into the PhC should be higher and its extraction e�ciency better.

As will now be shown, these two qualitative arguments are well substantiated by modeling.

Light emission in the CLM

Here, we consider the case where current injection is separated from the PhC region. In order to
estimate quantitatively light emission into the CLM, we once again resort to calculations of dipole
emission in a planar structure, based on the transfer matrix approach.[7] Fig. 4.8 presents the fraction
of total dipole emission which goes to the cap layer mode, when the thickness of the cap layer and
the position of the quantum well is varied. This calculation assumes a 1µm thick low-index layer of
index 2.4 (versus 2.5 for GaN), which is rather optimistic. In large areas of the plot, the emission in
the CLM is above 25 %. These zones are rather broad, which means that several quantum wells can
be used around a given position − this is of importance since multi-quantum well structures usually
give much better internal quantum e�ciency than single quantum wells. Note that, when the GaN is
thinner than 120 nm, no mode is supported in the cap layer: the emission into the CLM then drops
to zero. Likewise, above 420 nm, two CLMs are supported, yielding two maxima of the plot.

We now consider a speci�c spot of Fig. 4.8, with a 300 nm thick cap layer and a quantum well
placed in its middle. This cap layer thickness is su�cient to grow a good quality pn junction (this
is mainly limited by the growth of p-GaN, which must usually be at least 100 nm thick to obtain
acceptable Si doping). Fig. 4.9 compares the emission diagrams of this structure with that of a simple
3µm thick GaN structure, in TE polarization.5

In the presence of the AlGaN layer, nearly all the light emitted at neff < nAlGaN is channeled in
the CLM, as evidenced by the presence of only one emission peak for this range of angles. This is
not surprising, since the coupling between a dipole and a mode is of the form d · E, where d is the
dipole moment and E the electric �eld of the mode at the dipole location. The low-order modes are

5We only present the case of TE polarization because most of the guided light is TE-polarized. The TM emission,
corresponding to dipoles oriented perpendicular to the emission plane, has a cos(θ)2 dependence and vanishes at angles
corresponding to low-order modes.
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Figure 4.8: Fraction of the total emission channeled in the cap layer mode, for an epitaxial structure with a
1µm thick layer of index 2.4. The 'relative QW position' refers to the position of the quantum well inside the
cap layer (0 corresponding to the low-index layer and 1 to air).

evanescent in the AlGaN layer, and therefore very weak at the QW. On the other hand, the CLM is
maximal in the region of the QW. Finally, high-order modes are una�ected by the AlGaN layer and
they receive as much light as in the original GaN structure.

Obviously, the refractive index of the AlGaN layer sets the maximum neff which can be guided in
the cap layer. Here, we only considered nAlGaN = 2.4 (or more generally nAlGaN = nGaN − 0.1) which
is a reasonable value (see below). Ideally, an index contrast of 0.2 or 0.3 would even further quench
light emission in low-order modes.

Extraction e�ciency of the CLM

We now turn to the interaction between the CLM and the PhC. First, we consider an epitaxial structure
with a 1µm thick GaN bu�er, a 1µm thick layer of index 2.4 with a 300 nm thick cap layer, with varying
PhC depth d. This structure is somehow optimistic (especially, the GaN bu�er layer is rather thin)
but still reasonable. Fig. 4.10 displays the extraction e�ciency of the CLM and two excited modes
in the ΓM direction, as a function of the depth d of the PhC of �lling factor 0.3 and lattice constant
a = 200 nm.

As can be seen, for values of d ∼ 0.7a the CLM has an imaginary wavevector of more than 10−3,
which translates into an extraction length smaller than 100 µm. This length is acceptable for an LED.
When the PhC is etched deeper, the extraction length of the CLM collapses because it leaks outside
of the cap layer − this is also visible on the e�ective index of the CLM, which decreases below the
value of the AlGaN barrier. As regards excited modes, the extraction e�ciency depends on the mode
considered: modes of lower neff penetrate more in the PhC and their extraction is better. The two
excited modes presented on Fig. 4.10 respectively correspond to neff = 2.25 and neff = 2 (when no
PhC is etched). The former has a modest extraction rate (10−3 at best), but overall the extraction
length of excited modes is acceptable. Low-order modes (not shown on the �gure) now have a vanishing
extraction e�ciency, as could be expected.

We now consider a slightly more optimistic structure with a 1.4µm thick GaN bu�er, a 600 nm
thick layer of index 2.3 with a 400 nm thick cap layer. The total thickness is equivalent to that of the
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Figure 4.9: Emission diagram of a quantum well without (left) and with (right) a low-index layer (TE po-
larization, log scale). The (green) radial lines indicate the angles corresponding to neff = 1 and neff = 2.4,
respectively. In the presence of the low-index layer, the multiple peaks corresponding to the low-order modes
are replaced by only one strong peak which corresponds to emission in the CLM.

Figure 4.10: (Left) Extraction e�ciency (in the ΓM direction) of the CLM (full line), an excited mode of
neff = 2.25 (dashed line) and an excited mode of neff = 2 (dotted line) with an AlGaN layer of thickness 1µm
and index 2.4. The small dip in the CLM's curve at d ∼ 0.4 is due to resonant coupling with a low-order mode.
(Right) E�ective index of the CLM. When nCLM < 2.4 the CLM is no longer guided in the cap layer.

previous structure, but the index of the AlGaN layer is lower. Its thickness is also decreased in order
to account for the di�culty to grow AlGaN layers with high Al content. The extraction e�ciency for
the same modes as above is shown on Fig. 4.11.

The conclusions are only slightly di�erent. The CLM is more e�ciently con�ned by the AlGaN
barrier and therefore reaches higher extraction e�ciencies before being cuto�. As could be expected,
the e�ect on the excited modes with neff = 2 is small. The other excited mode is more a�ected
because its e�ective index is close to that of the AlGaN layer. Even lower AlGaN indices would further
enhance the CLM's extraction and would prevent some excited modes from receiving emitted light.

It should be noted that this whole discussion concerns the ΓM direction. Similar conclusions hold



100 CHAPTER 4. PHOTONIC CRYSTAL LEDS

Figure 4.11: Same as Fig. 4.10 but with an AlGaN layer of thickness 600 nm and index 2.3.

in other directions, as long as extraction to air is possible. For instance, this is not the case in the ΓK
direction at the second Bragg order, where there is no di�raction to air. The choice of the crystal lattice
will be addressed in section 4.2. The current study only concerns vertical design of the structure.

We conclude that in an optimized structure, the CLM can receive all the light otherwise
emitted in the low-order modes. In such a structure, the extraction e�ciency of all excited
modes is su�cient (∼ 10−3a−1), so that all of the guided light can be e�ciently extracted
over a reasonable length − at least in crystal directions where there is a di�raction channel
to air.
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4.1.3 Tailoring of guided modes distribution: implementation in LEDs

A sketch of the target LED structure is depicted on Fig. 4.12

Figure 4.12: GaN-on-sapphire PhC LEDs incorporating a low-index layer. Here, the light generation region is
distinct from the PhC extractor. The arrows indicate carriers �ow, with current spreading in n-GaN.

The main di�culty for practical implementation of such LEDs lies in the growth of the desired
structure. Due to the lattice mismatch between GaN and AlxGa1−xN, GaN grown on top of AlxGa1−xN
can be heavily cracked. The dislocations increase for higher Al content and thicker AlxGa1−xN layers,
thus limiting the strength of the optical barrier. In practice, x certainly has to be smaller than 25%,
and even at that content, cracking is usually heavy. Fig. 4.13 displays the surface of a regular LED
processed on a structure with a 500-nm thick Al20Ga80N layer. The numerous cracks prevent uniform
current injection by damaging the contacts, decrease the internal quantum e�ciency by introducing
non-radiative recombination surfaces, and di�ract the light guided in the CLM.

Figure 4.13: Optical microscope picture of a regular LED on a cracked epitaxial layer, with slight current
injection. All the surface of the LED mesa is covered by a semi-transparent Ni/Au contact, but the cracks
prevent uniform current spreading.

So far, optimization of the growth parameters in order to obtain the best optical barrier while
avoiding cracking have not been established, despite e�orts by Rajat Sharma and Mike Iza. It should
be noted that the AlGaN layer used in these PhC-LEDs is very close to the cladding layers used for
mode con�nement in GaN lasers. These layers are well-known for being di�cult to grow but good
claddings have already been demonstrated, at least in an industrial environment.

Estimating the refractive index as a function of the Al content is not easy since literature on the
subject is scarce. A simple model is proposed in [8]. In this model, valid for low Al contents, it is
assumed that the dispersion of AlGaN follows that of GaN with a rigid shift given by the band gap
di�erence between GaN and AlGaN. The index shift as a function of Al content is shown on Fig. 4.14.
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Figure 4.14: Refractive index contrast with respect to GaN as a function of Al content.

This yields an index contrast of only 0.1 for 20% Al. This value is conservative, as other sources in the
literature suggest an index contrast of 0.15 for the same Al content. Anyway, this curve can be taken
as an estimate of the index contrast and shows that it can only be modest.

The LEDs presented in the following correspond to a structure grown by Rajat Sharma. After a
3 µm thick GaN bu�er layer, a 800 nm thick AlGaN layer was grown with an Al fraction of ∼ 12%,
followed by a 600 nm thick pn junction with a multi-quantum well region at its center. From the
above, the index contrast for this Al content is at least 0.07 (i.e. nAlGaN = nGaN − 0.07), but the
experimental results shown below are compatible with a slightly higher index contrast. In any case,
considering the thickness of the layer, this is su�cient to con�ne e�ciently a cap layer mode. The
wafers displayed limited cracking, but were very inhomogeneous in terms of emission wavelength and
internal quantum e�ciency.

Regular LEDs were processed from this wafer. Integration of PhCs to the process of regular LEDs
causes no di�culty. One simply has to align the optical lithography mask to the PhC region. The
main steps of the process are depicted in table 4.1.3.
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LEDs with lattice constants a = 190, 200 and 215 nm were fabricated. Fig. 4.15 shows images of
the fabricated LEDs.

Figure 4.15: Microscope pictures of PhC-LEDs. The area of the mesas is 300 µm x 300 µm , and the p-contact
is circular with diameter 100 µm. (Left) Under exterior illumination. The dark regions correspond to the PhCs.
(Right) Under current injection. Light is only generated under to opaque p-contact. Light extraction is clearly
visible along the six ΓM directions.

The fabricated LEDs were characterized by angle-resolved electroluminescence. Fig. 4.16 shows
angular spectra of LEDs in various polarizations and along various directions.

Fig. 4.17 shows the corresponding band structures − in this case however, the direct emission from
the quantum well is superimposed on the photonic bands because it can not be easily isolated. As
has already been pointed out in photoluminescence spectra (Chapter 3, section 3.3), although guided
modes propagating along ΓK are not extracted, part of the di�racted light is collected along ΓK.
Actually, this corresponds to a signi�cant part of the light extraction on these spectra (notice the very
strong lines in TM polarization).

When these band structures are compared with those of photoluminescence samples, one recognizes
the numerous bands corresponding to high-order modes. As the current wafer is overall thicker (4 µm)
than the PL samples, it supports more high-order modes which are now close to a continuum. In
addition to these modes, a new, intense set of lines appears. This set stems from the CLM. Its
intensity manifests the macroscopic fraction of the total emission it carries.

In order to check that this set of lines is indeed associated with the CLM, and to further analyze
the spectra, we now superimpose several theoretical dispersion lines on one of these band structures
(Fig. 4.18). For the AlGaN layer, we assume an approximate index contrast of 0.1 with GaN. The
CLM can very well be �tted using an e�ective index neff = nGaN −0.045, between the indexes of GaN
and AlGaN,6 whereas all the high-order modes are on the other side of the AlGaN line. Moreover,
the bands corresponding to the CLM vanish for frequencies above u = 0.52, whereas excited modes
can still be seen −although faintly− until u = 0.53. This suggests that absorption is stronger for the
CLM than for other modes, which is consistent with the fact that it has a much larger modal overlap
with the multi-quantum well region. Finally, a cuto� of the guided modes is clearly observed above
the sapphire line n = 1.7.7 This con�rms that, when light can propagate in the sapphire substrate, its
extraction e�ciency by the grating is very poor: since the PhC is only ∼100 µm wide around the light
generation region, the substrate light is not extracted. In contrast, samples with a PhC area of 1cm2

6As for photoluminescence spectra, the dispersion of the GaN index has to be taken into account for a proper �t.
7Some photonic bands are still present beyond the sapphire line. However, these are of type 'B' in the nomenclature

of Chapter 3. In other words, they correspond to a folding in the �rst Brillouin zone which is not collinear with k//:
their main harmonic is actually below the sapphire line.



4.1. TAILORING OF GUIDED MODES DISTRIBUTION 105

Figure 4.16: Angular spectra collected on PhC-LEDs incorporating an AlGaN layer, with a = 215nm (top: TE
polarization, bottom: TM polarization). The e�ect of the AlGaN layer can already be seen on the raw angular
spectra, where new intense lines appear.

have recently been fabricated by nano-imprint at UCSB by Frederic Diana. When photoluminescence
is performed on such samples, the sapphire cuto� is not observed because the PhC is large enough to
extract substrate light.

We now come to the light extraction enhancement brought by the PhC. This can be measured by
two methods. The �rst is a direct measurement of the total output power of the LED: for identical
injection, the light extraction enhancement is just the ratio of the power of a PhC-LED by that of
a regular LED. The strength of this measurement is that it is direct and in principle accurate. On
the other hand, light is only collected within a given numerical aperture (NA ∼ 0.5 in the case of the
Nakamura power measurement setup), so that the enhancement does not correspond to all directions.

The power measurements were performed on the LEDs with a semi-transparent p-contact (before
the opaque p-contact shown on Fig. 4.15 was deposited). However, even with a semi-transparent p-
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Figure 4.17: Band structures corresponding to the spectra of Fig. 4.16.

contact, the direct upwards emission from classic LEDs is limited by contact absorption. Therefore,
in order to get a fair comparison, an Al mirror was also placed below the sample to redirect the light
emitted downward. The comparison between a classic LED and a PhC LED with a = 215 nm is shown
on Fig. 4.19. The inhomogeneity of the material limits the accuracy of this comparison: in some cases,
the output power of two adjacent classic LEDs varies by as much as 10%.

The light extraction enhancement is rather modest: 70% at an injection current of 10 mA DC.
This is clearly small compared to the amount of guided light available. However, several facors limit
the e�ciency of these LEDs. First, the epitaxial layers are not optimized (the index contrast is still
rather low, and the quantum wells are not located at an optimal position for emission into the CLM).
Moreover, the PhC region only extends over 100 µm around the p-contact. Since the extraction length
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Figure 4.18: Band structure along ΓM in TE polarization with several dispersions superimposed as dashed
lines. Red: GaN line (e.g. ω = k//c/nGaN ). Green: �t of the CLM with an e�ective index nGaN − 0.045. Blue:
approximate AlGaN line with index nGaN − 0.1. Cyan: sapphire line, nsapphire = 1.7.

Figure 4.19: Power collected from two LEDs under electrical injection. Full: PhC LED. Dashed: conventional
LED. Both LEDs are measured under the same conditions, whit a mirror under the sapphire substrate.

of most guided modes is 100 µm at best, they can not be fully extracted.
The second comparison method is an extrapolation using the angular spectra. We take advantage

of the existence of a region of low frequency where the PhC does not emit light, and the collected
signal is only due to direct emission (speci�cally, the triangle with k// ∈ [0; 0.5] and a/λ ∈ [0.45; 0.47]
in Fig. 4.18). The original angular spectra of a regular LED and a PhC LED can thus be normalized
by a multiplying factor so that their emission is equal in this region.8 The underlying assumption is
that direct emission is not a�ected by the PhC's presence, which is reasonable for such perturbative
PhCs − especially since light is emitted in an unpatterned region.

8This is somehow complicated by slight variations of thickness and emitting wavelength between LEDs. Besides, the
presence of the PhC modi�es the average re�ectivity of the top surface and hence the contrast of the Fabry-Pérot fringes.
However, this normalization can still fairly well be performed.
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The extraction enhancement can then be estimated by integrating the normalized angular spectra
(taking into account the proper solid angle factors). The advantage of this method is that one is not
limited by a numerical aperture: all values of the polar angle θ are collected. On the other hand, only
a few azimuthal angles ϕ are scanned and averaged (the ΓM and ΓK directions in our case) so that
its accuracy is limited.

This procedure yields an extraction e�ciency enhancement of 100 % for the same LED as above
(and putting a mirror under the sapphire substrate, as previously). Both enhancements are of the
same order of magnitude, and the discrepancy is acceptable considering the various error factors of
each method.

4.1.4 Fine tuning of a and directionality

From Fig. 4.17, it is clear that the directionality of emission depends strongly of the reduced frequency
u = a/λ. For instance, if u = 0.45 most photonic bands are around the middle of the Brillouin zone, so
that di�raction occurs around 45o in air, whereas if u = 0.5 the photonic bands are distributed around
the Γ point and di�raction occurs closer to the vertical. Fig. 4.20 illustrates this ability at tuning the
LED's directionality by slightly modifying the lattice constant.

Figure 4.20: Normalized wavelength-integrated far-�eld patterns of PhCLEDs (summed over polarizations, and
over the ΓM and ΓK directions). (Blue) regular LED without PhC: the pattern is nearly isotropic. (Magenta)
a = 190, u ∼ 0.44 (Green) a = 200, u ∼ 0.46 (Red) a = 215, u ∼ 0.5. This last LED emits mostly vertically.

4.1.5 Further exploration of the concept

Since this �rst proof of concept, several LED samples have been processed using the same principle,
in order to observe higher extraction e�ciencies. Unfortunately, no better result was observed. On
most of the initial wafer, the internal quantum e�ciency was very inhomogeneous, so that comparison
between adjacent LEDs was impossible (in some cases, variations of output power by a factor of 10
was observed between similar, adjacent LEDs).

So far, the other processed wafers had either too little Al or too much cracking. It should be
stressed that, since internal quantum e�ciency strongly depends on injection current, LEDs can only
safely be compared if their p−electrodes have the same area and similar properties. This is not the
case for cracked wafers, where cracks a�ect the electrode quality.

In addition, I investigated the e�ect of p-injection. In the �rst LEDs, only the center region emits,
and the external region extracts light. This makes processing easy but part of the guided light can be
absorbed before reaching the PhC region, as observed in photoluminescence experiments (Chapter 3).
Therefore, it is desirable to limit the distance between electrode and PhC. This is all the more the
case with metallic electrodes: even the best re�ective electrodes (Ag, Al) have re�ectivities of 90% at
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best. This is acceptable for directly extracted light, which bounces on the mirror once at most before
escaping the LED. Guided light, on the other hand, bounces on the waveguide walls several times
before reaching the PhC region.

I �rst explored the possibility of forming a semi-transparent electrode on top of the patterned
PhC region, in order to obtain uniform current injection in the PhC. Metal evaporation should be
avoided once the PhC is formed because metal deposited at the bottom of the holes is likely to increase
absorption. Another option consists in �rst depositing a large area semi-transparent p-contact, and
forming the PhC on top of this contact. In practice, the usual 2-step dry etch process was used to form
the PhC. The Cl2 etch is likely to etch the thin metal layer (a few nm) without di�culty. However, the
etch was actually found to etch the metal layer too well: in most cases, the semi-transparent electrode
was completely etched away, even under the SiO2 hard mask. The only exception was observed in the
case of PhCs with a larger lattice constant of 215 nm, probably because a larger area was protected
by SiO2 in this case, limiting the e�ect of underetch. This result was only obtained once, and no
conclusion could be drawn as concerns the bene�cial role of injection in the PhC region.

As an alternative to this approach, I also designed a new LED mask where light absorption by the
metallic p−contact is minimized. To this e�ect, the contact area should be limited to avoid complete
absorption of the guided modes before it reaches the PhC. The mask shown on Fig. 4.21 uses a 20 µm
wide grid electrode, where most of the guided light impinges only one or two times on the electrode.

Figure 4.21: Microscope pictures of PhC-LEDs with a semitransparent grid p-electrode and an opaque central
p-pad. The area of the mesas is 800 µm x 800 µm (Left) Under exterior illumination. The PhCs are formed
everywhere around the grid electrode. (Right) Under current injection. Cracks are visible in the material.

Clearly, the question of e�cient schemes for current injection in these LEDs remains open. The
semi-transparent contact used in this work is far from optimal because light absorption is still quite
strong. Possible alternatives would include the use of a tunnel junction, as demonstrated in Refs. [9,
10, 11], or use of a transparent contact such as ITO or ZnO.

4.1.6 Conclusion

By introducing layers of lower refractive index in the epitaxial structure, the distribution of
guided modes can be modi�ed. Light is only emitted in modes which interact well with the
PhC in the vertical direction and can thus be extracted when di�raction to air is possible.
This approach, well supported by modeling, is also con�rmed experimentally by observation
of the cap layer mode in band structures. The current extraction enhancement is limited
to +70% − +100% in un-optimized structures. Fully exploiting this approach requires op-
timization of the epi layers and good current injection, which has proved challenging so
far.
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4.2 Crystal lattice, Archimedean tilings

In this part, we consider the question of the choice of the crystal lattice. As has already been mentioned,
a 2D lattice is usually preferred over a 1D grating because it o�ers more directions for light extraction
(Fig. 4.22). In general, the �gures of merit for a crystal lattice are :

• Omnidirectionality (in inner space)
• Extraction length
• Directionality (in outer space)

Ideally, a good PhC extractor should be omnidirectional, e.g. it should extract guided light incoming
from any azimuthal angle in the GaN layer. Intuitively, one may think that the lattice with most
di�raction directions is the best: for instance, a triangular lattice should extract more light than a
square lattice. However, as will now be seen, a reasonable choice of the crystal lattice can only be made
by considering di�raction losses in the substrate, which sometimes leads to counter-intuitive results.

Moreover, the extractor should be able to extract light over a reasonable distance. This is both
determined by the vertical interaction between modes and the PhC, as seen previously, and by the
reciprocal lattice points responsible for light extraction.

Finally, preferential emission around a given outer direction can be desirable in some applications
such as display.

Figure 4.22: Typical Ewald construction for second-order lattices. The smaller circle corresponds to extraction
to air, the larger circle to the substrate. (a) 1D grating: light incoming at too large an angle is not di�racted
to air (b) Triangular lattice: Di�raction is possible at more angles, but some directions (ΓK here) are still not
extracted to air.

In the following, we �rst discuss which lattice constant (or which di�raction order) should be used
for e�cient di�raction. Then, we explore basics of crystal lattices and discuss the impact of substrate
loss. Finally, we focus on a complex crystal lattice, the so-called A7 Archimedean tiling, which displays
e�cient, omnidirecional light extraction.

4.2.1 Choice of the di�raction order

As seen on Fig. 4.22, even a triangular lattice is not necessarily omnidirectional: when light propagates
along the ΓK direction, no point falls in the air cone. This is due to the fact that the lattice constant
is too small in the case of Fig. 4.22.b. Speci�cally, this �gure corresponds to the second Bragg order
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in the ΓM direction, de�ned by k// = 2G0 (G0 being the length of the basic RL vector). In this
con�guration, the �rst RL points9 fall at the center of the air circle in the ΓM directions but are in
the substrate circle in the ΓK directions.

An easy way to solve this problem is to increase the lattice constant, or operate at a high di�raction
order. This makes fabrication of the PhC easier, and ensures that several RL points will fall in the air
cone for any propagation direction, as seen on Fig. 4.23.

Figure 4.23: High-order di�raction: many RL points are in the air circle, regardless of the mode's direction.

Unfortunately, this also naturally increases the number of points which fall outside the air circle
and in the substrate circle. These points cause scattering of guided modes to angles where light can
propagate inside the substrate, but not to air. In other words, they cause part of the guided light to
be lost to the sapphire substrate. While this light can partially be recovered by a geometric approach
(such as shaping the sapphire substrate), this phenomenon clearly limits the interest of the PhC. We
call such di�raction substrate losses. On average, the ratio of 'substrate points' to 'air points' is the
average of the circles' areas, or n2

subs/n
2
air. This simple fact pleads against use of high order di�raction.

Things are even worse when one considers the photonic strength of the various RL points, e.g. their
ability at di�racting light. From Maxwell's equations, it can be seen that the coupling between two
Fourier harmonics separated by a RL vector G is proportional to ε(G), the Fourier transform of the
dielectric map. Therefore, in a perturbative approach where most of the Bloch mode's energy is carried
by the fundamental harmonic (G=0) and all other harmonics are small, the magnitude of the �eld of a
harmonic is EG ∼ ε(G)E0. In turn, when this harmonic is radiative (either in air or in the substrate),
its radiative rate Prad is given by the �ow of the Poynting vector:

Prad(G) ∼ E2
G ∼ ε(G)2 (4.4)

We de�ne the photonic strength of a harmonic as ε(G)2. It indicates the ability of harmonics to
di�ract light, and can simply be obtained by computing the Fourier transform of the dielectric map.
Fig. 4.24 gives the photonic strength in the case of a triangular lattice of �lling factor f = 0.35.

Obviously, the 6 points closest to the origin of the RL (or closest neighbors) have a much higher
photonic strength than any other point. This shows that light extraction will occur over a much shorter
scale at the second Bragg order than at a high order. More precisely, the closest neighbors have at least
25 times more photonic strength than all other RL points, which means that high-order di�raction
occurs over a scale at least 50 times larger than second-Bragg-order based di�raction !10 As has already

9E.g. the 6 points closest to the reciprocal space origin.
10A factor 25 comes from the photonic strength. In addition, all distances scale with the lattice constant. Therefore,

if the lattice constant is doubled in the case of high-order di�raction, the extraction length is multiplied by an additional
factor of 2.
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Figure 4.24: Photonic strength for the reciprocal lattice of a triangular lattice photonic crystal with �lling
factor 0.35. The color scale and the radius of the points are proportional to ε(G), so that the area of the points
is proportional to their photonic strength.

been said, extraction lengths are problematic in the case of GaN where even the second order provides
modest extraction.

One can wonder how this trend varies with the �lling factor of the PhC, which is the only parameter
intervening in the above discussion. In general, regardless of the crystal lattice, the Fourier transform
for circular holes is ε(G) = f.J1(GR)/GR, where J1 is the �rst Bessel function of the �rst kind, and R
the radius of the holes (R ∼

√
f). The �rst maximum of J1 intervenes for GR ∼ 1.84. This maximum

can easily be achieved for the nearest neighbors because G = G0: reasonable �lling factors (around
0.3) correspond to this �rst maximum. On the other hand, larger G vectors would request very small
�lling factors. Secondary maxima of J1 are unfortunately damped by the 1/GR factor: for large G's,
the photonic strength varies like G−3. Thus, small photonic strength is inherent to high-order RL
points − at least in common PhCs with one circular hole per unit cell.

Figure 4.25: Ewald construction for a Bloch mode with neff = 2.38, at a frequency u = 0.65 (full line: sapphire
cone, dashed line: air cone). One di�raction order (ΓM) falls in the air cone, and three (2ΓM and two ΓK) in
the sapphire cone.

Therefore, the second Bragg order seems to be the most reasonable solution for e�cient light
extraction, in spite of the existence of non-extracted directions. We are still left with the question
of substrate losses. Even close to the second Bragg order, some RL points can cause light to be
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scattered to the substrate. A particularly bad situation is depicted on Fig. 4.25: here, three points
cause substrate losses.

Of course, these points have a small photonic strength in general. Yet it is possible to minimize
their e�ect by optimizing the �lling factor of the PhC. Fig. 4.26 presents the evolution of the photonic
strength with f for the three RL vectors intervening in the case of Fig. 4.25. The photonic strength
is simply ε2, but in general the power Prad di�racted by a harmonic in a realistic case depends on
the full 3D geometry of the system. Therefore, we also consider the following 3D structure: a GaN
waveguide of thickness 0.8a on sapphire etched by a triangular lattice PhC of depth 0.1a (a thin
structure is considered in order to limit the e�ect of vertical interferences and simplify the discussion).
At a frequency u = 0.65, this structure supports the Bloch mode whose Ewald construction is depicted
on Fig. 4.25. We compute Prad for each harmonic and superimpose the result to the photonic strength
on Fig. 4.26.

Figure 4.26: Di�raction losses Prad as a function of holes radius (full: 2D approach, points: 3D calculation).
(a) ΓM di�raction (b) ΓK (c) 2ΓM

In general, the behavior of losses in the 3D structure follows well the photonic strength. The
discrepancy for the 2ΓK di�raction comes from second-order interactions between harmonics (the
kinematic approach is not fully valid). When the holes radius is close to R = 0.3, the useful ΓM
di�raction is maximized and the detrimental di�ractions are minimized. Fig. 4.26 is presented in
arbitrary units for readability, but the 3D calculation gives access to the actual power Prad emitted in
each di�raction order. Fig. 4.27 shows the �nal balance of losses in each channel in the 3D calculation.
For R = 0.3 (f = 0.33), more than 85% of the loss goes in the useful ΓM di�raction order. Let us add
that the case considered here is rather pesssimistic: the second ΓM di�raction is only made possible
because we consider a high frequency (u = 0.65). Closer to the second Bragg order, this channel is
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closed.

Figure 4.27: Cumulative plot of di�raction losses in the 3 di�raction channels as a function of holes radius, as
obtained for the 3D structure in the con�guration of Fig. 4.25. The 'useful' loss in the ΓM direction is maximal
for R ∼ 0.3.

The examples given in this section focused on a triangular lattice, but similar conclusions could be
drawn for a square lattice.

In summary, di�raction at the second Bragg order provides reasonable extraction e�ciency,
while high-order di�raction occurs over a prohibitive scale. Close to the second order, ex-
traction can be maximized and substrate losses can be minimized by using an optimal �lling
factor.

4.2.2 Comparison of crystal lattices

In this section, we consider second-order di�raction and we discuss the choice of a crystal lattice in
simpli�ed terms. We restrict ourselves to a 2D problem in order to clarify the discussion. Thus,
we temporarily ignore the question of interaction between Bloch modes and the PhC in the vertical
direction. This is partly justi�ed by the fact that, as has been seen in the previous part, such a problem
can be treated by taking into account the vertical direction only. Therefore, in the following, we merely
assume that we need to extract guided modes whose e�ective index is between that of GaN and that
of sapphire:

nsapphire < neff < nGaN (4.5)

For a mode to be extracted, we only request that it falls inside the light cone of air. When this is
veri�ed, the extraction e�ciency is assumed to be su�cient, thanks to suitable design in the vertical
direction such as that presented above. Although the distribution of guided modes is discrete, they
are usually very dense due to the thickness of the GaN layer. Therefore, we assume a continuum of
guided light between nGaN and nsapphire.11 Likewise, we assume uniform distribution of guided light
along the azimuthal angle ϕ.

This approach is kinematic − that is, it only takes into account coupling between the fundamental
harmonic of the Bloch mode and other harmonics, but no coupling between the other harmonics. This

11This assumption is somewhat less valid if a CLM is present, because this mode is in a sense more discrete than other
guided modes. However, it only collects the light emitted between nGaN and nGaN − 0.1, so that treating this small
window of neff as a continuum is still acceptable.
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is a good approximation in the case of 'weak photonic regime' where the PhC is shallow and does not
signi�cantly alter the dispersion of guided modes, as is the case for most GaN structures.

Under these assumptions, evaluation of a given lattice just amounts to counting what fraction of
the guided light falls under the light cones of air and the substrate: for each value of neff and ϕ, we
build the Ewald construction of the corresponding mode. The extraction e�ciency of the mode to air
is then:

ηAir =

∑
G∈Air

ε(G)2∑
G∈Substrate

ε(G)2
(4.6)

Here, G ∈ Air means that the wavevector k// + G falls in the air cone, and ε(G) is the Fourier
transform coe�cient of the dielectric map ε corresponding to the reciprocal vectorG. The above formula
simply states that the power carried by the mode is divided among the RL vectors corresponding to
radiation either in air or substrate. The weigh of each RL point is taken as its di�raction e�ciency,
which is proportional to ε(G)2. For instance, if a mode has only one RL point in the air cone (and
therefore, also in the substrate cone), ηAir is equal to one − one may argue that in this case, half of the
power (on average) is radiated downwards to the substrate, but in the case of sapphire this light can
easily be redirected upwards by placing a mirror under the sapphire substrate. Likewise, if a mode has
one RL point in the air cone and another RL point (of equal photonic strength) only in the substrate
cone, its extraction is ηAir = 1/2. Thus, it already appears that having a large density of RL points
in the air cone may actually not be a good strategy, because of the competing e�ect of the substrate.
As previously, we speak of substrate losses for RL points which are in the substrate cone but not in
the air cone.

Using this formula enables a rapid and easy evaluation of various reciprocal lattices. However,
the formula is still limited to existing lattices, where ε(G) can be calculated. A further simpli�cation
consists in only retaining the strongest RL points in the above sum. As was just seen, di�raction
e�ciency is usually strongest for the RL points closest to the origin, and the e�ect of other RL points
is negligible to the �rst order. Therefore, if we only conserve these strongest points of identical photonic
strength in the sum, it simpli�es to the ratio of points in the air and substrate:

ηAir =
Card(G ∈ Air)

Card(G ∈ Substrate)
(4.7)

In this case, the only possible substrate loss is due to the nearest neighbors. Fig. 4.28 depicts a
typical case where a nearest neighbor causes substrate loss and limits the extraction e�ciency.

The interest of this simpli�cation is that we can now consider generalized reciprocal lattices, with
an arbitrary number N of strong RL points. For a 1D grating N = 2, for a square lattice N = 4
and for a triangular lattice N = 6, but one can also conceive hypothetical lattices with other values
of N. Although no such crystal lattice exists in general, quasicrystals or complex crystals with a large
supercell can e�ciently simulate some values of N. Hagelstein et Al. give an example of a complex
crystal which is close to the case N=8.[12] Likewise, in the case of a short-range order where all PhC
holes are separated by a given distance a but where no translational order is present, the Fourier
transform of the dielectric constant is a ring of radius 2π/a, which corresponds to the case N → ∞
(Fig. 4.29). Finally, in the next part, other complex crystals close to N = 12 will be presented.
Therefore, considering generalized lattices with an arbitrary value of N is a problem of interest.

Before coming to numerical results, let us comment on the trends we can expect with varying N.
Initially, the e�ciency should increase with N as the PhC becomes more omnidirectional. In the limit
N →∞, the optimal e�ciency should occur close to the second Bragg order; in this case the e�ciency
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Figure 4.28: Typical 1st-order substrate losses: one �rst neighbor (full arrow) is in the air circle but another
�rst neighbor of equal photonic strength (dotted arrow) is in the substrate circle, taking away half of the guided
mode's energy.

Figure 4.29: (Left) Inverse dielectric map of a supercell producing a pseudo-crystal with N = 8 nearest
neighbors (after Ref. [12]). (Right) 'Statistical' di�raction by a short-range ordered medium, di�raction points
become a ring.

is given by the ratio of the lengths of the air and substrate circle arcs, because the RL is now a circle
which scans all azimuthal angles regardless of the mode's direction. Therefore, the optimal e�ciency
in this case should be ∼ nair/nsubstrate. Between these two extreme regimes, the e�ciency depends
on the precise balance of extraction directions and substrate losses and the optimal value of N is not
obvious.

We now compare numerically several lattices with various values of N. In this section only, we use
the following convention: the lattice constant a of the crystal is de�ned such that the spacing between
reciprocal lattice points is G0 = 2π/a.12

First, we consider a given guided mode of e�ective index 2.5. Fig. 4.30 displays the extraction
e�ciency η to air and to epoxy as a function of the reduced frequency u = a/λ, for N=2 (1D grating),
4 (square lattice), 5, 6 (triangular lattice), 7 and N →∞ (e�ectively obtained with N=20).

In air, extraction is poor for N=2, because a 1D grating o�ers few extraction angles. When N
increases to 4, 5 and 6, the extraction e�ciency increases accordingly, as more extraction directions
become available. When N=7, the e�ect of increased substrate losses starts balancing this bene�cial
e�ect, and the extraction e�ciency decreases. Finally, the N →∞ limit corresponds to a non-optimal

12Conventionally, the relation between a and G0 depends on the lattice. For instance, in the case of a triangular
lattice, G0 = 4π/a

√
3. The de�nition we choose here o�ers a uni�ed de�nition for all lattices which allows for easier

comparison, but modi�es the scale of the reduced frequency u = a/λ. For a triangular lattice, u has to be multiplied by
2/
√

3 to return to the conventional de�nition.
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Figure 4.30: Extraction e�ciency of a mode with neff = 2.5 to air (left) and to epoxy (right) for N=2, 3, 4,
5, 6, 7 and ∞.

case. The best extraction e�ciency in this case is 0.58, very close to the ratio nair/nsubsrate predicted
above. In epoxy, the situation calls for less comments. Since the index of epoxy is very close to that
of sapphire, the question of substrate losses is naturally discarded. Once a su�cient value of N is
reached, all lattices are omnidirectional and provide a similar e�ciency (however, the directionality of
the far-�eld patterns can be di�erent).

In the case of air, it is worthwhile examining the case N = 6 in more details to see how this value
beats the limit N →∞. Fig. 4.31 details the number of di�raction channels to air and to substrate as
a function of the mode's azimuthal angle.

Figure 4.31: Number of di�raction channels to air (black line) and substrate (grey line) as a function of the
mode's azimuthal angle, for neff = 2.5 at the second Bragg order (u = 0.5). The smaller radius corresponds to
1 di�raction channel, the larger radius to 2 di�raction channels.

As can be seen, the result is quite fortunate. Although in some cases 2 di�raction channels cause
substrate losses, this (nearly always) happens at angles where there is no di�raction to air anyway. On
the other hand, when a di�raction channel is open to air, there is usually only one di�raction channel
to the substrate. Therefore, the detrimental situation where several substrate channels compete with
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one air channel is nearly always avoided, and η equals one whenever there is a RL point in the air circle.
On the other hand, when N →∞, the ratio of air channels to substrate channels is ∼ nair/nsubstrate,
and so is η.

So far, our discussion is monomode. To accurately compare lattices, we no need to integrate this
calculation over all guided modes (2.5 > neff > 1.7). This requires additional hypotheses on the
power carried by each guided mode. Assuming that only TE light is emitted in guided modes (e.g. the
emission is due to electron-heavy holes transitions), the intensity emitted by the QW in each mode is
just proportional to the corresponding solid angle dΩ ∼ neff . The same calculation as in Fig. 4.30,
taking into account all modes, is presented on Fig. 4.32.

Figure 4.32: Same as Fig. 4.30, integrated over neff ∈ [1.7; 2.5] (weighed by the corresponding solid angles).

For extraction to air, the results are slightly modi�ed in the multimode case. The best lattice is
now N = 5, with an optimal extraction ηmax ∼ 70%. The triangular lattice is nearly as good, with
ηmax ∼ 67%. As the triangular lattice presents the additional advantage of being an existing lattice
(with no approximation or complicated construction), it can still be retained as the optimal solution.
For extraction to epoxy, we reach the same conclusion as in the monomode case: substrate loss is
nearly irrelevant.

Finally, it is interesting to note that these results are rather robust in terms of frequency: the
maxima are smooth with respect to u, mainly because of the integration over all directions and e�ective
indexes. This implies that PhC extractors are quite tolerant with respect to fabrication (e.g. the
lattice constant does not have to be �nely tuned for a given wavelength), and also that extension to a
polychromatic source is not problematic − at least for typical GaN linewidths of a few %.

Again, let us stress that these results ignore the question of e�cient interaction between the modes
and the PhC, which should be addressed by designing the structure in the vertical direction. The
�gures obtained here simply give the maximal amount of guided light which can be outcoupled by a
PhC provided this mode/PhC interaction is su�cient.

As a conclusion, the triangular lattice appears as a reasonable choice for a simple GaN-on-
sapphire structure. It is optimal both in the case of air and epoxy, with a maximal guided
light extraction e�ciency of ∼ 66% and ∼ 90%, respectivley. In the case of air however,
this result is due to the detrimental losses in the substrate, and the triangular lattice does
actually not provide second-order di�raction at all angles.
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4.2.3 Archimedean tilings

In this section, we study a complex reciprocal lattice whose behavior is close to a crystal lattice with
N = 12 nearest RL neighbors. As just mentioned, such a lattice is of little interest in a simple GaN-
on-sapphire structure where a triangular lattice is more e�cient. On the other hand, one may consider
more sophisticate structures where substrate losses are limited or even made impossible, as will be
discussed below.

In such structures, increasing the number of nearest neighbors could provide omnidirectional ex-
traction, e.g. extraction at all azimuthal angles. If we simply admit that substrate losses are somehow
quenched, omnidirectional extraction of a mode of index neff occurs when N ≥ π/neff , which corre-
sponds to N ≥ 8 in the case of GaN.13 The case N = 12 which we will now consider therefore ful�lls
the omnidirectionality condition.

Quenching substrate losses

First, let us discuss quickly which schemes could limit or ultimately quench substrate losses.
One approach consists in introducing distributed Bragg re�ectors (DBRs) in the epitaxial structure.

Usually, DBRs are introduced to re�ect upwards the fraction of light emitted downwards, and are tuned
for maximal re�ectivity around normal incidence (θ = 0). However, it is also conceivable to detune the
DBR so that it is tuned for maximal re�ectivity at polar angles θ which correspond to substrate losses.
Let us look back at the typical substrate loss caused by a strong photonic points, shown in Fig. 4.33.
We see that (around the second order where k// = 2G0) this con�guration occurs when the substrate-
di�racting wavevector is in between the air and substrate circles, e.g. for k// +G ∼ k0(nair +nsubs)/2.
This corresponds to light propagating in GaN with a polar angle:

θ = asin

(
nair + nsubs

2neff

)
(4.8)

Figure 4.33: (Left) Typical con�guration where a strong reciprocal lattice point falls in the substrate cone and
causes substrate loss. The lossy harmonic is between the circles of air and substrate. (Right) If a DBR is tuned
to polar angles corresponding to this harmonic, substrate loss can be inhibited with respect to extraction to air.

If we now design a DBR to be re�ective for such polar angles, the radiation rate to the substrate
can be strongly suppressed. As mentioned in Chapter 2, good nitride-based DBRs are very hard to
obtain, mainly because the high Al contents needed for good index contrast strain the material and
cause cracking. However, very good results have been reported using GaN/AlInN layers, where the
indium is used to alleviate the strain while leaving a good index contrast.[13]

Another, more direct approach is simply to get rid of the substrate. Flip-chipped LEDs where the
sapphire substrate is removed by laser lift-o� have already been presented in Chapter 2 to obtain thin

13Indeed, each RL point extracts light over an angular range ∼ ±1/neff .
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micro-cavity LEDs. Addition of photonic crystals to these LLO-LEDs will be presented further in this
chapter. In this case, the new substrate is metallic and (ideally) re�ects light emitted downwards, so
that no substrate loss can occur.

As a conclusion, sophisticate yet feasible LED structures should be able to strongly limit or suppress
di�raction losses to the sapphire substrate. While such state-of-the-art structures still require signif-
icant fabrication e�orts, they can eventually be expected to replace simple GaN-on-sapphire LEDs.
Therefore, we feel justi�ed in our e�orts to characterize an omnidirectional lattice which could be
integrated to these structures in the future.

Principle of Archimedean tilings

While only a few 2D crystal lattices exist (namely, with N =2, 4 and 6 closest-neighbors), complex
structures can e�ectively behave as lattices with other values ofN . We already quoted several examples:
a crystal with a large lattice constant and a complex supercell was proposed as equivalent to the
case N = 8.[12] A short-range order lattice yields a di�raction ring instead of di�raction points and
corresponds to N →∞. Several groups have also studied quasiperiodic Penrose lattices.[14, 15]

Yet another class of lattices is the family of Archimedean tilings, �rst introduced by Sylvain David
from IEF in the context of photonic crystals.[16, 17] These lattices are in general made of a regular
Bravais lattice (square or triangular) combined with a basis of several atoms which are all separated
by a same distance (Fig. 4.34).

Figure 4.34: (After Ref. [16]) Archimedean lattices based on a square lattice (left) and triangular lattice (right).

Initially, Archimedean tilings were introduced in order to provide isotropic photonic bandgaps:
because their ΓM and ΓK directions are more similar than for a simple triangular lattice, the magnitude
of the gap is less dependent on the direction.

As was �rst suggested by Rattier, Archimedean tilings can directly be applied in the context of light
extraction where isotropy is also sought. More quantitatively, they provide an interesting alternative
when more than 6 nearest neighbors are needed in the reciprocal lattice.[18]

Figure 4.35: A7 Archimedean tiling, made of a triangular lattice (with lattice constant b) and 7 holes per unit
cell (with distance a between holes).

Here, we focus on the so-called A7 Archimedean tiling, depicted on Fig. 4.35. The A7 is made of
a triangular Bravais lattice with a basis of 7 equi-spaced atoms (or holes, in our case). Here, we chose
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to call a the distance between two holes, and b the actual crystal lattice, with b = a(1 +
√

3). The
existence of these two distances in the lattice implies the presence of two characteristic scales in the
reciprocal space. b naturally sets the RL, which is a triangular lattice with G0 = 4π/b

√
3. However,

the 7 holes should now be considered to get the structure factor of the A7 crystal:

S(G) ∼
∑
holes

exp(iG.rhole) (4.9)

The terms of this structure factor can be expected to add coherently for values of G ∼ 2π/a.
Therefore, the strongest RL points should no longer be the points closes to the origin, for which the
terms of S are out of phase. Indeed, calculation of the Fourier transform of the A7 dielectric map
con�rms that the photonic strength is renormalized by the structure factor, and is now carried by 12
points lying further from the reciprocal space origin (Fig. 4.36).

Figure 4.36: Fourier transform of the dielectric map of an A7 lattice with f = 0.35 (arbitrary units).

An Ewald construction on the A7 lattice con�rms that it is an omnidirectional extractor. However,
unlike a 'simple' high-order triangular lattice (with a >> λ but only one hole per unit cell), the photonic
strength is carried by the points responsible for di�raction to air, with |G| ∼ 2.5G0. Actually, their
photonic strength is roughly half that of the 6 nearest neighbors of a classic triangular lattice, but
since there are twice as many points di�racting to air, the overall extraction length should be the same
for both lattices.

In conclusion, the A7 lattice is expected to provide omnidirectional and e�cient (e.g. on a short
scale) light extraction.

Archimedean tiling PhC-LEDs: implementation

PhC-LEDs with an A7 lattice were fabricated in the same way as the triangular lattice PhC-LEDs
already presented. The same substrate with an AlGaN layer was used. To enable easy comparison
between the two lattices, both triangular and A7 PhCs were fabricated on the same sample. Again,
the PhC pattern was obtained by e-beam lithography − there is no easy way to obtain A7 patterns
with interference lithography (although some convincing demonstrations of complex PhC fabrication
by holography have been reported recently [19]).

Fig. 4.37 is an AFM image of a A7 patterns transferred in the GaN layer. Patterns with lattice
constants of a =190, 200 and 215 nm were fabricated.
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Figure 4.37: Atomic Force Microscope images of A7 patterns in GaN, with a = 215 nm (left) and 200 nm
(right).

TE TM

Figure 4.38: Angular spectra of an A7 PhC-LED with a = 190 nm along the ΓM (top) and ΓK (bottom)
directions, in TE (left) and TM (right) polarization.

The LEDs were characterized by angle-resolved electroluminescence in order to observe the prop-
erties of the A7 lattice. Fig. 4.38 shows raw angular spectra obtained on an LED with a = 190 nm in
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Figure 4.39: Band structures of an A7 PhC-LED with a = 190 nm along the ΓM (top) and ΓK (bottom)
directions, in TE (left) and TM (right) polarizations. The red line denotes the edge of the �rst Brillouin zone
(e.g. point M or K respectively). The most intense lines correspond to the cap layer mode, as in the case of a
triangular lattice PhC.

various directions and polarization conditions. Conversion from angular patterns to band structures is
shown on Fig. 4.39.

There are many more photonic bands than in the case of triangular PhCs. This is expected because
more RL points di�ract to air − in other words, the PhC operates at a larger frequency (b/λ instead
of a/λ) so that more photonic bands are folded back in the �rst Brillouin zone. This is evidenced in
Fig. 4.40, where the band structures of a triangular lattice and an A7 are placed in the same dispersion
diagram. On this �gure, it appears clearly that for the A7 the whole �rst Brillouin zone is included
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in the air cone. This is also the case in the ΓK direction, as can be seen on some of the spectra of
Fig. 4.39. From this observation, we can conclude that all photonic bands have at least one harmonic
in the air cone, or in other terms that the A7 is indeed an omnidirectional extractor. On the other
hand, substrate losses are not measured, so that we can draw no immediate conclusion on the bene�cial
e�ect of the A7.

Figure 4.40: Band structures of a triangular lattice and an A7 lattice PhC-LEDs (ΓM direction, TE polariza-
tion). The A7 lattice operates at higher frequency than the triangular lattice. The theoretical band structure
of a mode with neff = 2.45 is superimposed as black lines above the air cone (extracted modes), dashed lines
between the air and sapphire cones (modes di�racted to the substrate), and dotted lines below the sapphire
cone (guided modes). This theoretical dispersion coincides well with the experimental lines corresponding to
the cap layer mode, for both LEDs. To obtain this good �t without taking index dispersion into account (which
is not possible for both lattices at the same time), the vertical scale of both experimental spectra has been
slightly stretched.
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Figure 4.41: (left) Band structures of A7 PhC-LEDs. Left: a = 215 nm, ΓM direction, TM polarization.
Right: a = 200 nm, ΓK direction, TM polarization. The vertical lines denote the high symmetry points of the
reciprocal space. The bands display symmetry around point M but not along point K. The dotted lines are a
guide to the eye.

Figure 4.42: Theoretical dispersion of the cap layer mode superimposed on an A7's experimental band structure
(b = 215 nm, ΓM direction, TM polarization). For the theoretical lines, the color of the dots indicates which
RL point is responsible for di�raction to air, as shown to the right. Only the red dots, corresponding to the
strongest RL points, are clearly measured experimentally.
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Here, the presence of the cap layer mode due to the AlGaN layer proves a precious tool to study
the A7's band structure. Because many photonic bands are present, it is very hard to distinguish
the individual bands corresponding to the extended modes: they form a quasi-continuum of di�racted
light. On the other hand, the cap layer modes retains a discrete nature and is easily distinguished from
other bands.

Let us now comment on the symmetry properties of the A7's band structures. As can be seen
on the various experimental spectra, the band structures are symmetric around the M point but not
around the K point. This is highlighted on Fig. 4.41 for two spectra, along ΓM and ΓK respectively.
This can easily be understood when considering the path followed in the reciprocal space during the
angular spectra: in the �rst case, the M point is a point of symmetry, whereas in the second case
the K point is not. Therefore, the symmetry properties of the spectra are just a manifestation of the
symmetry of the crystal lattice. It is however quite satisfying to observe these symmetry properties in
such a direct fashion.

We now come to the main point of interest of the A7 lattice: unlike high-order lattices, they provide
e�cient light extraction over a short scale. As already explained, this is due to the fact that the RL
points which carry most of the photonic strength are responsible for di�raction to air. In order to
con�rm this, we now consider the intensity of the measured photonic bands. Again, we focus on the
photonic bands corresponding to the CLM because they are easiest to observe. As we did in the case
of a triangular lattice PhC, we �t these lines by the dispersion of a guided mode of e�ective index
neff = nGaN − 0.1, folded back in the �rst Brillouin zone. The result of this �t is shown on Fig. 4.42.
In addition, each of the folded bands is now identi�ed by a color which corresponds to the reciprocal
lattice point responsible for extraction to air.

As can clearly be seen, only the bands corresponding to the red dotted lines are well observed
experimentally. These lines correspond to the strong points of the reciprocal lattice, while photonic
bands corresponding to weaker RL points are not measured experimentally (a more careful study of
the experimental data reveals that some other bands faintly appear on the band structure: these
correspond to RL points which still carry a small but non-zero photonic strength). This is a direct
observation of the photonic strength of the A7's RL points, and the expected behavior is con�rmed. It
is worth noting that such a direct observation of the photonic behavior of a complex crystal lattice is
not usual, most experiments relying on the observation of band gaps through transmission experiments.

This observation implies that light extraction should be roughly as e�cient for the A7 LEDs as
for the triangular LEDs (although it is not expected to be better for this GaN-on-sapphire structure).
This is con�rmed by direct power measurements on both LEDs: these reveal similar power output
(within 10%) for triangular and A7 PhC-LEDs. In our case, the triangular lattice is slightly more
e�cient, which is most likely due to substrate losses.

4.2.4 Conclusion

Therefore, we conclude that the use of Archimedean tilings is a sound approach for omni-
directional extraction in GaN. The collective behavior of the 7 holes forming the unit cell
was directly con�rmed experimentally, con�rming that extraction is due to reciprocal lattice
points with high photonic strength, and therefore occurs over a reasonably short distance.
Its integration in advanced structures where substrate losses are quenched should enable
e�cient omnidirectional extraction.
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4.3 Laser lift-o� PhCLEDs

In this section, we present advanced LED structures where a light-extracting photonic crystal is com-
bined with the laser lift-o� process already used for the fabrication of microcavity LEDs. We begin with
the fabrication and characterization of these LEDs, which we then model to study the e�ect of metal
losses in these structures. Finally, we discuss the onset of strong photonic e�ects in thin GaN layers,
where interaction between light and the photonic crystal signi�cantly alters the modes' dispersion.

4.3.1 Motivation

As has been seen with the previous LED implementations, the simple GaN-on-sapphire approach is
limited by several facts. First, the presence of the sapphire substrate causes substrate losses which are
di�cult to avoid − apart from introducing e�cient DBRs, which are still di�cult to obtain in GaN
compounds.

Second, because thick GaN layers have to be grown, multiple guided modes propagate and some of
these (low-order modes) tend to virtually ignore the PhC. Although we have presented a reasonable
solution to this problem based on tailoring of the guided modes, this approach still leaves us with a
rather modest extraction e�ciency: typically, extraction occurs over hundreds of microns, which is
still large compared to the scale of an LED (usually 300µm x 300µm). Stronger photonic interaction
would be desirable. As has already been discussed, this can only be obtained if the unetched GaN core
is thin enough.

Third, the question of e�cient p-contacts is still unsolved. One may consider using a semi-
transparent metallic contact over the PhC or even using a transparent injector such as ITO, but
both of these present drawbacks: absorption is present (especially in the case of thin metallic contacts)
and ITO tends to lose its transparency over time.

Finally, other crucial aspects of e�cient LEDs have been ignored, such as thermal management
and mounting into a package. Sapphire is a poor thermal conductor, which limits the maximum
electrical power in GaN-on-sapphire LEDs. Unfortunately, most of the e�ort in GaN LEDs is directed
at obtaining good high-power LEDs, which precisely require high current densities.

For all these reasons, the solution usually adopted in the industry to obtain high-power LEDs
is to bond the GaN layer to a metal-coated substrate, which then becomes a large-area re�ective p-
contact. This substrate also provides enhanced thermal dissipation. The sapphire substrate can then
be removed ant the GaN layer thinned down, as we have done in Chapter 2 to obtain laser lift-o�
microcavity LEDs. However, theoretical study of MCLEDs revealed that even the ultimate structures
have limited e�ciency (40% at best) because a large fraction of the emitted light remains guided, even
for very thin, monomode layers. This called for a strategy to extract this remaining light.

Figure 4.43: Schematic cross-sections of laser lift-o� PhC LEDs, with PhCs formed in n-GaN (top) or p-GaN
(bottom). Arrows represent current �ow in the n and p GaN.
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In the following, we study such �ip-chipped, laser lift-o� LEDs where a photonic crystal is formed
to extract the light guided in the thin GaN layer. Fig. 4.43 presents a sketch of possible structures.
As in the case of MCLEDs, we can take advantage of the current spreading of electrons in n-GaN to
generate light above the p-GaN region. Two con�gurations are possible: the PhC region can be located
at the periphery of the LED as shown on Fig. 4.43, or it can also be formed above the p-contact region,
in which case light is generated in the patterned region.

4.3.2 Fabrication

Choice of the PhC location

The fabrication process of MCLEDs has already been presented in Chapter 2. The only di�erence in
the present LEDs is the addition of a PhC at some point in the fabrication process. As for MCLEDs,
the wafer bonding and laser lift-o� process was performed by Tetsuo Fujii, while I took care of the
PhC formation.

The PhC may be formed at several steps of the process, resulting in di�erent structures as in
Fig. 4.43. A �rst option is to etch the PhC in n-GaN in one of the initial steps (for instance, as a �rst
step) and then proceed with the LLO-LED fabrication. In this case, the PhC is embedded close to the
metal submount in the �nal structure. This also presents the advantage of making alignment rather
easy: if alignment marks are written during the e-beam lithography, these can be used to align the
lithographic masks. On the other hand, if the PhC is formed everywhere on the p-GaN surface, holes
have to be injected through the PhC which may hinder good injection (especially since dry etching of
the PhC is likely to damage the p-doping).

Another choice consists in performing the bonding, LLO and thinning steps before the PhC fabri-
cation. Then, the PhC is formed on the n-GaN layer, either before or after mesa formation. In this
case, alignment problems arise during the e-beam lithography: the e-beam pattern has to be aligned
with the p-contacts already formed below the GaN layer. Moreover, if the PhC is formed as a �nal
step (after the mesas and n-contacts), planarization of the e-beam resit can be an issue.

Fabrication

We fabricated several LLO-LEDs samples, using both of the above approaches. In these, the SiO2

window layer was ∼ 200 nm thick. The p-electrode was made of RuO2/Ni/Ag. The bonding substrate
was an AlN ceramic covered with gold.

In the �rst case (PhCs in p-GaN) all PhC LEDs turned out to be shorted, whereas the classic
LLO-LEDs on the same sample worked well. This is almost certainly due to an excessive etch depth
of the PhC region, so that the metal deposited on the p-GaN before bonding reached the pn junction.
Although the dry etch used was supposed not to exceed the height of the p-GaN layer, �uctuations in
the etch rate are sometimes quite important and this scenario is plausible. Fig. 4.44 shows some of
these LEDs.

Subsequently, we tried the second implementation: starting from fully processed LLO-LEDs, PhCs
were formed on top of some LED mesas. Planarization of the e-beam resist turned out not to be
a serious issue, because the mesas were large (800µm x 800µm), limiting the non-uniformity to the
edges of the mesas. Likewise, alignment of the e-beam pattern with the mesas was made easy by the
di�erence in electron backscattering between GaN and the metallic substrate, which made the edges
of the mesas clearly visible on the e-beam writer.

Unfortunately, some damage occurred to the metallic submount during the PhC formation (prob-
ably during a gold etch dip). What happened exactly is unclear, but as a consequence the thermal
dissipation of the LEDs became very poor: upon current injection, the submount started boiling on
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Figure 4.44: Microscope picture of PhC-LLO LEDs with a PhC formed in p-GaN and embedded in the LED.
(Left LED) the PhC is formed around the p-contact. (Right LED) the PhC is formed everywhere under the
mesa, including the p-contact. Both LEDs are shorted.

the periphery of the LEDs, rapidly destroying them. This may be attributed to an accidental thinning
of the Au submount which increased its sheet resistance. Cooling the LEDs while operating them was
unsuccessful. In order to increase thermal dissipation, an additional thick Ag/Au layer was deposited
around the LED mesas. This layer e�ectively solved the problem of heating, but on the other hand
shorted the LEDs (probably due to a minute misalignment of the lithographic mask with the mesas
before this metal deposition). Fig. 4.45 displays several pictures of the fabricated LEDs, and Fig. 4.46
an AFM image of a PhC region.

Figure 4.45: Microscope picture of PhC-LLO LEDs with a PhC formed in n-GaN on top of the mesa. (Left)
Bad thermal dissipation caused the metallic submount to boil and cover the LEDs. (Right) LED after metal
re-deposition: thermal dissipation is increased but the LED is partially shorted.

As a result, these last LEDs could hardly be operated and displayed very poor electrical charac-
teristics. A strong current leakage was present, and high currents (dozens of mA DC) had to be used
to generate a measurable light signal. Thus, electrical characterization of these LEDs makes little
sense. Fortunately, angle-resolved electroluminescence spectra could still be acquired to observe their
photonic properties.
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Figure 4.46: AFM image of the PhC pattern on an LLO-LED which could be characterized (a = 215 nm).

4.3.3 Photonic characterization

Thanks to the naturally non-uniform chemico-mechanical etching process, several mesas height were
obtained on the same sample. These ranged from more than 1µm to a few hundred nm. There-
fore, several PhC-LLO LEDs with varying GaN thickness could be characterized by angle-resolved
electroluminescence. Fig. 4.47 presents some of these angular measurements.

Photonic bands are visible on all LEDs. Depending on the LED thickness, both the direct emission
and the photonic bands are a�ected. The Fabry-Perot fringe spacing of the direct emission increases
for thinner GaN thickness, as in the case of regular MCLEDs. By inspecting the spectra, it can be seen
that the �rst LED of Fig. 4.47 has at least two modes in the air cone (corresponding to a rather thick
LED), while the last LED displays so-called 'rabbit's ears' and is clearly in the micro-cavity regime.
The thickness t of the GaN layer can be estimated accurately by �tting the fringe spacing, using the
same formula as for regular MCLEDs. We obtain respectively for the three LEDs: t = 1µm, ∼ 700
nm and 400 nm. We label these LEDs as 1, 2 and 3. The determination is not as accurate for LED 2
as for the others because the Fabry-Perot fringes are less pronounced in the spectra. This may be due
to a local inhomogeneity in the GaN thickness.

In order to observe the PhC's bands more clearly, we once again convert these spectra to band
structures. The result, shown on Fig. 4.48, con�rms what is already apparent on the angular spectra:
the number of photonic bands decreases for thinner GaN layers. This is of course expected since thicker
GaN waveguides support more guided modes. The theoretical light line of GaN is also superimposed
on these spectra. In addition, the Fabry-Pérot fringes of direct emission are clearly visible on this
spectra, especially for LED 1.

The �rst LED supports numerous guided modes. It is still rather thick and does not di�er signi�-
cantly in nature from the LEDs characterized previously. Among visible modes, those of lowest neff

appear fainter than those of higher neff . The second LED supports less modes (roughly 5). Finally,
the last and thinnest LED only has 2 visible guided modes. Moreover, the blue shift between the
GaN line and the �rst guided mode in this LED is much larger than for the two others, evidencing a
thinner waveguide where even the fundamental guided mode has an index signi�cantly smaller than
nGaN . The photonic regime of this LED is very di�erent from that of thick, multimode LEDs, and the
interaction between the PhC and the modes can be expected to be much stronger.

In addition, modes of low e�ective index (typically neff < 1.7) do not appear on the band struc-
tures. In principle, these modes should now be extracted because no sapphire is present. A possible
explanation for their absence is bad coupling between guided modes of the unpatterned region (where
light is generated) and these Bloch modes, as already evoked in section 4.1.1. Indeed, these Bloch
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Figure 4.47: Angle-resolved spectra of PhC-LLO LEDs with varying GaN thickness t (ΓM direction, TE
polarization). (Top left) t = 1µm. This LED deteriorated while the spectrum was acquired, so that its intensity
decayed from left to right. Therefore, the intensity of the right half of the spectrum is multiplied by a factor
x1.5 to observe photonic modes on both sides. (Top right) t ∼ 600 nm. (Bottom) t = 400 nm. This spectrum
was acquired in two halves, hence the small stitching mismatch at θ = 0.

modes penetrate in the PhC region and have a vertical pro�le very di�erent from that of guided modes
in the unpatterned region. In addition modes with neff < 1.5 are propagative in the SiO2 layer
and may experience strong loss due to direct absorption in the Au submount. The question of metal
absorption will be discussed further.

An unusual feature of all these spectra is the strong variations in intensity along photonic bands.
For instance, in the thinnest LED, the fundamental mode is quite intense at low frequencies but then
disappears at u > 0.48, before reappearing for u > 0.5. Likewise, the associated 'B-type' mode14 is
only visible between u = 0.47 and u = 0.5. Similar oscillations can be seen on other spectra, although
they are less apparent.

These oscillations are best viewed on another spectrum, corresponding to LED 2 measured along

14In the nomenclature of Chapter 3, these are modes whose folding in the �rst Brillouin zone is not collinear to k//,
e.g. modes with a 'curved' dispersion.
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Figure 4.48: Band structure obtained from the angular spectra of Fig. 4.47. The dotted line indicates the light
line of GaN (ω = k//c/nGaN ). The number of photonic bands decreases for thinner GaN, evidencing that less
guided modes are supported.

ΓM in TM polarization. In this spectrum, one photonic band is clearly visible on a wide range
of frequencies, and its oscillations are well de�ned. Therefore, we can follow the band and plot its
intensity as a function of frequency. The total band structure and the intensity of this band are
plotted on Fig. 4.49. Two features are visible on the band's intensity: �rst, it decays with frequency
because of higher absorption at higher energy, a feature already observed for photonic bands in GaN-
on-sapphire LEDs. Second, the oscillations already described modulate the intensity. They have a
rather strong contrast of ∼ 60%, although a precise evaluation is di�cult due to the additional decay
with frequency.

These oscillations are reminiscent of the Fabry-Perot-like oscillations already observed in GaN-on-
sapphire structures. However, these earlier oscillations corresponded to di�racted light being pref-
erentially emitted upwards (to air) or downwards (to sapphire). Here the oscillations manifest the
equivalent phenomenon in the LLO structure: a competition between di�raction to air and absorption
in the metallic mirror. Modeling of metal absorption in the next section will con�rm this interpretation.
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One may also account for the oscillations by suggesting that the extraction e�ciency to air oscillates
with frequency and that only part of the guided light is extracted when the extraction e�ciency is
low. However, direct observation of the LEDs under current injection con�rms that guided light only
propagates for a very short distance in the GaN layer: luminescence of the PhC is only visible within
a few dozen microns of the light generation region. Therefore, we have to conclude that the guided
modes are completely absorbed/extracted within the LED scale.

Figure 4.49: (Left) Band structure of LED 2 along ΓM in TM polarization (log scale). One photonic band
(with dots superimposed) is well-de�ned and can be followed. (Right) Intensity of this band as a function
of frequency (linear scale). The background signal corresponding to direct emission from the LED has been
subtracted to show only the photonic band's signal. The intensity decays with frequency, evidencing overall
higher absorption at higher energy. In addition, it displays rather strong oscillations in intensity.

4.3.4 Modelling, metal losses

It appears that loss in the metallic submount is signi�cant, although we expected this layer to act
as a mirror and guided light to be di�racted to air. To investigate this e�ect, we now resort to 3D
modeling of the structures, which gives access to the balance of power of Bloch modes. LEDs 1 and
3 were modeled to account for the measured band structures. A good �t is harder to obtain than
for GaN-on-sapphire structures, for a number of reasons. First, there is more uncertainty regarding
the structure's parameters (depth and sidewall pro�le of the PhC, exact thickness of the GaN layer
for each LED and of the SiO2 layer between GaN and metal). Second, because photonic interactions
are more intense, small variations in these parameters can have a strong e�ect on the band structure,
especially as regards the oscillatory e�ects we wish to study. This is especially true for LED 3, where
the unetched GaN layer is very thin and the fundamental mode's behavior varies rapidly with the
structure's details. From AFM measurements, the PhC is at least 220 nm deep (this is a lower bound
because the tip's shape prevents us from reaching the bottom of the holes) and has a �lling factor
f ∼ 0.38.

LED 1 was well �tted without much di�culty, with the following parameters: 170 nm of SiO2, a
total GaN thickness of 1000 nm, and a PhC of depth 270 nm and �lling factor 0.39. LED 3 requested
more e�orts, and the �t was obtained with: 200 nm of SiO2, a total GaN thickness of 410 nm, and a
PhC of depth 270 nm and �lling factor 0.37. It should be noted that these values are in good agreement
with the nominal values, and that both LEDs could be �tted using consistent PhC parameters. The
following refractive indexes were used: nSiO2 = 1.5, nAu = 1.47 + 1.95i, nGaN as given in Ref. [20]
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Figure 4.50: Fit of the measured band structures of LEDs 1 and 3 by a 3D calculation. The pink dots represent
the calculated bands. The size of the dots is proportional to the intensity of light di�racted to air.

(taking dispersion into account). The result of the calculations, superimposed with the experimental
band structures, is shown on Fig. 4.50.

The theoretical band structure follows well the dispersion of the measured bands. As already
discussed, bands of low e�ective index (neff < 1.7) are not measured experimentally. Therefore the
corresponding theoretical bands are not displayed. The calculated bands of LED 1 have a nearly free-
photon like dispersion, in accordance with the thickness of the waveguide. On the other hand, the
dispersion of LED 3 di�ers more signi�cantly from the free-photon approximation.

The size of the dots in the theoretical band structures is proportional to the intensity di�racted to
air. More precisely, the radius of the dots is proportional to η = Pair/Pin, where Pair is the power �ow
radiated to air and Pin the incoming power �ow of a Bloch mode. The oscillatory behavior observed
experimentally is rather well reproduced this way. It also appears that some photonic bands are not
di�racted to air at all, especially in the case of LED 3.

In order to study further this e�ect, let us now consider three model structures where metal losses
behave di�erently:

• a) A structure made of an Au mirror, a very thin (20 nm) SiO2 layer and a 600-nm thick GaN
layer etched halfway by a PhC (triangular lattice, �lling factor 0.3, lattice constant 200 nm)

• b) Same as (a) but with 200 nm of SiO2

• c) Same as (b) but with an Ag mirror instead of Au, known to be a poor re�ector for blue
wavelengths

All of these structures are rather thin and support only a few Bloch modes. For each structure, we
compute the ratio η for the lowest-order Bloch mode in the ΓM direction, as a function of frequency
(Fig. 4.51). For structure a, the loss in the mirror is very strong at all frequencies, because the thin
SiO2 layer does not isolate the Bloch mode, which penetrates strongly in the Au layer. More precisely,
the main harmonic of the Bloch mode leaks through the SiO2 into the Au layer, leading to strong loss
at all frequencies. For structure b, direct loss in the mirror is limited by the thicker SiO2 layer. η
oscillates due to vertical interferences of the radiated component of the Bloch mode. More precisely,
the radiation rate to the Au submount only slightly varies with frequency, whereas the extraction rate
to air undergoes large oscillations. In conclusion, high metal losses happen when extraction to air is not
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Figure 4.51: Power �ows of the fundamental Bloch mode. Thin line: Pair/Pin Thick line: Pabs/Pin Dashed
line: Pref/Pin, (Pin: incoming power of the Bloch mode, Pair: power radiated to air, Pabs: power absorbed in
the mirror, Pref : power re�ected backwards). (a,b,c) correspond to the structures described in the text. For
u < 0.34 the mode is under the light cone and Pair = 0. For u ∼ 0.48 − 0.5 the mode reaches the edge of the
Brillouin zone and undergoes mini-gaps and anticrossing with other modes.

su�cient to compete with metal absorption. As a whole, the loss remains rather high in this structure,
on the order or 50%. For structure c, loss is very small thanks to the better re�ective properties of
silver: apart from some sharp absorption dips, η exceeds 90%.

The fabricated LEDs are in the regime of structure b, where a signi�cant fraction of the guided
power is still lost in the metal. The contrast of the oscillations for structure b is 60%, similar to that
estimated experimentally from LED 2. On the other hand the interfrange of the oscillations does not
match, which comes from various reasons: the thicknesses are not the same, index dispersion is not
considered in this calculation, and the modes we considered in Fig. 4.49 are B-type.15

In the case of the last structure, where Ag absorbs little light, large windows of good extraction
e�ciency appear. Therefore, this structure would be a reasonable choice for high-e�ciency LLO-PhC
LEDs.

4.3.5 Photonic e�ects in thin PhC-LLO LEDs

Another interesting feature of the thinnest LEDs is revealed by Fig. 4.51: the presence of regions of
high re�exion, or stop bands. At these frequencies, the PhC acts as a re�ector and a large fraction
of the incident Bloch mode is re�ected backwards. Although in principle any periodic structure can

15This means that we are looking at the projection of the mode on an axis which is not colinear to its 'main' k-
component, so that the mode e�ectively propagates for a larger distance, yielding more oscillations in the measurement
direction.
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open band gaps, this is never observed with shallow PhCs in GaN-on-sapphire because the e�ect of
the photonic crystal is very weak and the gaps are much too small to be seen. On the other hand,
thinning the GaN layer brings us to a regime where the few remaining guided modes interact strongly
with the PhC.

Such e�ects are present in LED 3, which is thin enough to produce strong photonic interactions.
Therefore, it is instructing to draw again its theoretical band structure, making all bands apparent.
However, this structure turns out to be rather complex. Before coming to it, let us �rst observe in a
simpler case the origin and appearance of strongly-modulated photonic structures.

We consider a structure made of an Ag substrate, 100 nm of SiO2, and a 400 nm thick GaN
waveguide (with constant index 2.5 for simplicity) etched halfway through by a PhC (triangular lattice,
f = 0.35, a = 200 nm) with air as a superstrate. This structure supports a few guided modes, depending
on frequency. Moreover Ag acts as a good mirror, so that damping and absorption e�ects should be
limited. We �rst compute the unfolded band structure in a wide range of frequencies (u = 0.2 to 0.5).
The result is shown on Fig. 4.52.

To some extent, the dispersion of 'simple' guided modes can still be recognized. All modes are
located between the lines of GaN and air. Both (pseudo-)TE and TM modes are present, but their
ordering no longer follows that of a simple waveguide because the interaction with the PhC depends
on polarization. At high enough frequency (u > 0.42), 'B-type' modes also appear.

In addition, several band gaps appear. To make them more visible, modes with an imaginary
wavevector k′′ > 0.1 are plotted as red dots. Some gaps are located at the edge of the �rst Brillouin
zone (M point) and correspond to the classic picture of a band gap formed by the interaction of a
forward-propagating mode and its backward-propagating counterpart. Other gaps appear inside the
Brillouin zones and are due to interaction between two di�erent modes (for instance, the forward-
propagating fundamental mode TE1 and the backward-propagating third mode TE3). Such gaps are
sometimes termed mini-stopbands, and are reminiscent of the anticrossings between various modes of
a 2D PhC waveguide.[21] The 'classic gaps' are almost vertical (e.g. they are localized at k// = G0/2)
− they should be exactly vertical in a lossless structure, but the small absorption in Ag breaks this
symmetry property. On the other hand the value of k// varies inside the mini-stopbands.

When the modes cross the folded light line, they become leaky and di�raction to air becomes
possible. Modes which radiate more than 80% of their power to air are plotted as green dots. As can
be seen, this is not the case for all modes. Closer analysis of the modes reveals that the modes which
are not well di�racted to air are mostly (pseudo-)TM modes, whose extraction e�ciency is always
lower than that of (pseudo)-TE modes. This is in principle not a problem for light extraction because
guided light emitted by quantum wells is TE-polarized and should not feed these modes.

We can now fold this relation in the �rst Brillouin zone (Fig. 4.52). The origin of mini-stopbands
now becomes clear: they are located at the anticrossings of two counter-propagating modes of di�erent
natures. Note that pseudo-TE and TM modes do not interact because of their symmetry (this is
only true in the high-symmetry directions of the crystal). However, some mini-stopbands can not be
understood in this way: they occur above the (unfolded) air line where no forward-propagating mode
exists. To account for their existence, we have to consider Fabry-Pérot modes located above the air
light line. Of course, these modes are not well-de�ned in terms of k// (they are very lossy).

However, the central value of k// is approximately found by the hybrid numerical method (see a
discussion of this property in Chapter 6). As can be seen, these modes become con�ned Bloch modes
when they cross the air line. It also appears that some mini-stopbands are due to interaction between
a Fabry-Pérot mode and a Bloch mode. From the point of view of grating theory, such events would
be associated with Fano resonances in the re�exion spectrum of the structure.

We are now ready to study the theoretical band structure of LED 3, where all the photonic bands are
made apparent (Fig. 4.53). Here, the full band structure is revealed. The bands observed on Fig. 4.50
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Figure 4.52: Band structure of a thin LLO structure on an Ag submount. (Top) Unfolded band structure. Blue
points: propagative Bloch modes. Red points: strongly evanescent Bloch modes (Im(k′′) > 0.1), corresponding
to band gaps. Green dots: Air modes (more than 80% of the mode's power is di�racted to air). The red, green
and dashed red lines correspond to the air cone, GaN cone and folded air cone respectively. Air modes only
appear above the folded air cone. (Bottom) Same as above, folded in the �rst Brillouin zone. For clarity, air
modes are not distinguished. In addition, Fabry-Pérot modes located above the air cone appear in green: these
interact with propagative Bloch modes and cause band gap openings.
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Figure 4.53: Theoretical band structure of LED 3, all bands being apparent. A number of 'dark' bands, which
do not appear on the measurement, are revealed. The red dots correspond to mini-stopbands (Im(k′′) > 0.1).

can be recognized, among many other bands. Some of the bands are not observed experimentally
because of their low extraction e�ciency to air, others because they are mostly TM-polarized and do
not receive much emitted light. Again, a few mini-stopbands can be observed. However, they are not
as vertical or properly de�ned as in the previous calculations: this is caused by the damping in the
gold layer, which smooths the gaps and reduces their strength. In general, the dispersion of the bands
di�ers strongly from that of free photons. This is both an e�ect of the higher photonic strength of the
grating, and of the damping in gold.

4.3.6 Conclusion

In summary, PhC-LLO LEDs prove to be promising but very challenging structures. The
fabrication process is di�cult and the yield is still poor. Moreover, while these LEDs may
initially seem like an ideal structure where light can only be extracted to air, losses due to
metal absorption can be strong and spoiled the e�ciency of the fabricated LEDs. As in the
case of other PhC-LEDs, a design e�ort is necessary in order to circumvent these losses.
Calculations indicate that the problem of metal loss can indeed be addressed, and give hope
for ultimate high-e�ciency LEDs.
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4.4 Lateral epitaxial overgrowth PhC-LEDs

Previous implementations have evidenced the key issues for e�cient PhC LEDs: designing the PhC so
that it interacts well with guided modes, and can easily be integrated in an realistic LED structure,
taking into account the question of contacts formation. LLO-PhC LEDs are a viable answer to these
concerns, but su�er from di�cult fabrication. Among other issues, etching the PhC in the GaN surface
is a possible cause for damage because the pn junction can be shorted, as happened in some of our
LEDs. In addition, the GaN layer must be thinned down signi�cantly for the lowest-order modes to
interact with the PhC.

Because of all these limitations, it appears that an ideal structure should avoid surface etching of
the GaN layer altogether: ideally, the PhC should be embedded in the epitaxial layer. Here, we present
a new strategy to obtain such structures.

4.4.1 LEO-PhC LEDs: Principle

If one aims at embedding the PhC in the GaN layer, two options are possible: a PhC made of air
holes (obtained for instance by etching) or of another material such as a dielectric. In any case,
GaN must then be regrown to bury the PhC. Conventionally, GaN regrowth is mainly used in Lateral
Epitaxial Overgrowth (LEO) structures, in order to reduce the density of threading dislocations. This is
particularly interesting to obtain high-quality material for laser diodes, where material defects condition
the laser's threshold and lifetime. Fig. 4.54 shows how LEO improves material quality. The coalescence
of the wings usually poses no problem: they are epitaxially coherent with the underlying crystal.

Figure 4.54: (After Ref. [22]) AFM scan of LEO GaN showing the impact on material quality. The right
half of the image corresponds to GaN grown vertically ('coherent'). Many threading dislocations, appearing as
small black dots in the surface, are present. The left half corresponds to GaN grown laterally from the coherent
region over a Si mask. No dislocation is visible in this region.

The typical feature size for conventional LEO is on the order of dozens of microns, and the mask is
usually a dielectric such as SiN or SiO2. It is well known that, depending on the regrowth parameters
(temperature, partial pressure, introduction of additional species...) the lateral to vertical ratio of the
growth can be control over a wide range. Fig. 4.55 illustrates how variable growth conditions (addition
of Mg here) in�uences the growth morphology. For a more complete discussion, Ref [22] presents a
thorough review of LEO in GaN.

Here, our idea is to adapt the LEO process, using a 2D periodic mask with periods a ∼ 200nm. In
this case, in addition to being a mask for overgrowth, the dielectric layer also acts as a PhC extractor.
Since the PhC is now inside the GaN matrix, its e�ciency should be enhanced. Besides, because the
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Figure 4.55: (After Refs. [22, 23, 24]) LEO on a 2-dimensional patterned SiN mask. (Left) GaN regrows
along the 6 preferential directions of the wurtzite lattice, forming pyramids. (Right) Same growth conditions
as previously, except for the addition of Mg compounds in the vapor phase.

.

average index of the LEO mask layer is lower than that of GaN, it also acts as a lower-index con�ning
layer which can modify the guided modes distribution. Finally, the p-GaN surface is planar and a
large area electrode can now be formed over the PhC region. Therefore, this structure addresses all
the most critical points of GaN PhC-LEDs.

4.4.2 LEO-PhC LEDs: regimes of operation

The most simple case of LEO-PhC LED is depicted on Fig. 4.56. Coalescence is �rst obtained on
an 'usual' scale (more than 1µm) then the pn junction is grown. While this makes coalescence easier
and ensures good material quality, the interest of the structure from a photonic point of view is not
completely obvious. The top GaN region (the region above the LEO mask) is multimode, and supports
numerous low-order modes. As has been seen previously, their interaction with the PhC is small. The
situation may be slightly better than in the case of a PhC etched in air, because the bottom GaN
region tends to attract the guided modes, in contrast to the strongly repelling e�ect of air. Besides,
the average index in the PhC region is a little higher because air is replaced by dielectric, which can
increase mode penetration. All this may lead to slightly higher extraction of low-order modes, but
probably not to a su�cient value.

The second structure depicted on Fig. 4.56 is more promising. Here, coalescence is achieved within
100 to 200 nm and the pn junction is grown as thin as possible. This results in a thin GaN layer
on top of the LEO mask. We are now in the con�guration already explored by adding a low-index
con�ning layer in the epitaxial structure: if the GaN cap layer is thin enough, it de�nes one or a few
'cap layer modes' (CLM) which receive a large part of the light emission and are well di�racted by
the PhC. However, all parameters are now much more favorable. First, the average index of the LEO
layer can be very low (∼ 2 for a �lling factor of 0.5) so that con�nement of the CLM is very e�cient:
it can channel all light emission between e�ective indices 2 and 2.5. Moreover, the overlap between
the CLM and the PhC may be better because the repelling e�ect of air 'pushes' the CLM downwards
to the LEO region. Finally, in a good con�guration, it can be expected that high-order modes as well
will feel the e�ect of the PhC more, because it is now located inside the GaN region.

On the other hand, the challenges raised by this structure are obviously higher. While LEO is well
mastered over 1D stripes of µm-large dielectric, going to a 2D pattern with a period of 200 nm is likely
to change the behavior of growth. Especially, obtaining good coalescence within a few hundred nm is
far from trivial. On the positive side, the wurtzite lattice of GaN is well adapted to the symmetry of
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Figure 4.56: (Left) LEO-PhC structure using a large coalescence thickness (one to a few µm) for good
coalescence. (Right) same with a very thin coalescence (∼ 100 nm) and a pn junction close to the LEO mask

.

triangular PhCs, provided of course both lattices are well-aligned. An additional challenge is raised
by the e�ect of the dielectric on the GaN: the most obvious choice is SiO2 because of its low index
(n = 1.5), but outdi�usion of oxygen may contaminate the doping of GaN. In this case, SiN may be
preferable in spite of its higher index n ∼ 2.

4.4.3 Modeling of PhC-LEO LEDs

Modeling of these structures is made di�cult by the large space of parameters available. In principle,
one can consider varying the mask material, its thickness, the �lling factor of the PhC, and the thickness
of GaN both in the bu�er and cap layer. Of course, fabrication will eventually limit the design: for
instance, thin �lm coalescence over a thick LEO mask is likely to be problematic. Moreover, the pn
junction itself can not be made arbitrarily thin, be it only because p-doping of GaN requires a certain
thickness (100 nm at least).

However, these limitations are still unclear. So far, fabrication e�orts by Kelly McGroddy at UCSB
have been hindered by the di�culty to obtain reproducible large-scale patterning of SiO2 on a GaN
substrate. This is mainly due to the use of holographic lithography to de�ne the PhC pattern, a
technique which critically depends on the re�ectivity of the sample's surface and hence on the exact
thickness of the SiO2 and resist layers. However, Frederic Diana recently obtained very promising
results using nano-imprint lithography on structures with a similar scale. Use of this method can be
expected to solve the issue of process control as regards the PhC formation. The real limitation is
expected to be found in the coalescence thickness needed for regrowth on small-scale 2D patterns.

Therefore, optimization of the photonic properties an LEO-LED makes little sense at this point,
because the result is likely not to be within the bounds of feasible structures. I will only give a simpli�ed
discussion of the in�uence of a few parameters.

One of the most important �gures of merit for such LEDs is their ability to con�ne and extract a
CLM: their e�ciency relies on this principle. However, studying the behavior of the CLM in a realistic
structure is made awkward by multiple anticrossings with the excited modes: it is very di�cult to
'follow' the mode properly. This phenomenon is similar to that observed on Fig. 4.10 for the CLM
created by an AlGaN layer, but its magnitude is here greatly enhanced by the stronger photonic
strength of the grating and its position. To circumvent this di�culty, we replace the actual structure
(GaN bu�er + sapphire substrate) by an in�nite GaN substrate. Thus, high order modes no longer
exist and anticrossings are avoided. For the CLM to be well-de�ned, we deliberately attribute an index
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of n = 2.5 to GaN in the cap layer, and n = 2.4 to the GaN substrate. This avoids leakage of the
CLM in the GaN substrate, and does not modify excessively the dispersion of the CLM because its
index is typically neff = 2.45 (even in the absence of this trick). With these approximations, the CLM
can easily be followed when the structure's parameters are varied. Fig. 4.57 shows the variation of the
extraction e�ciency of the CLM with the thicknesses of the GaN cap layer and of the LEO layer.

Figure 4.57: Imaginary part of the wavevector (k′′) as a function of the GaN cap layer thickness and SiO2
LEO mask thickness (for a PhC with f = 0.5 along ΓM and a normalized frequency u = 0.44, close to the
second Bragg order.). The saturation of the scale for thin GaN and SiO2 is an artifact: it corresponds to a
non-localized CLM. k′′ is higher than 10−3 only for thin GaN cap layer (less than 2). An oscillatory behavior
is observed with the SiO2 thickness (see the local maxima with varying tSiO2 for tGaN = 1.7). It is linked to
vertical interferences of the radiative harmonic of the Bloch mode, as in the case of classic GaN-on-sapphire
structures.

The conclusion is somewhat lukewarm: e�cient extraction of the CLM (say k′′ > 10−3a−1) is
only attained for very thin cap layers: tGaN less than 2a. This result is actually fully consistent with
the discussion of section 4.1.1 where we came to the conclusion that a waveguide needs to be close
to cuto� for e�cient extraction of the fundamental mode. Here, when tGaN > 2a, the CLM is well
accommodated in the cap layer and extraction is modest. This highlights the fabrication challenge
represented by the LEO approach. In practice, good values are still obtained around tGaN ∼ 1.7a,
corresponding to a total GaN thickness∼ 350−400 nm. Although thin, this value still seems reasonable.

As regards the SiO2 thickness, smooth oscillations appear. This is convenient because the SiO2

thickness can be accurately controlled during fabrication, so that an optimal point can be targeted -
for instance tSiO2 = 1 according to Fig. 4.57.

4.4.4 First structures and measurements

The work on PhC-LEO LEDs at UCSB is still at an early stage. The �rst proof of concept has been
demonstrated with 1D gratings of SiO2 embedded in a GaN layer. The grating patterns were prepared
by lithographic holography by Kelly McGroddy, and the LEO growth and processing of devices were
performed by Brendan Moran.

The fabricated structures consist of a several µm thick GaN bu�er, a 90nm thick 1D grating made
of SiO2 and GaN (with a �ling factor f ∼ 0.5) and a cap layer integrating the pn junction. Several
cap layer thicknesses could be obtained. Here, I present angular measurements on the thinnest sample,
where the total cap layer thickness could be brought down to ∼ 500 nm.16 This cap layer is already

16More precisely, GaN coalescence was obtained over 150 nm, followed by a 100 nm thick n-GaN region, the multi-
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quite thin, even though the growth conditions have not been fully optimized yet. This leaves good
prospect to thin it down further by another 100 nm (possibly by thinning the doping regions) to reach
the high e�ciency region of Fig. 4.57.

Fig. 4.58 presents an angular measurement and the corresponding band structure for one of these
samples.

Figure 4.58: (Left) Angular measurement on a LEO-PhC LED with a 1-dimensional grating embedded in
the GaN layer. The measurement is performed in a direction perpendicular to the grating groves and in TE
polarization. (Right) Corresponding band structure. A well-de�ned cap layer mode is visible. In addition, a
second multiplet resonant feature can be seen at lower neff (follow by other, much fainter resonances at even
lower neff ).

The general features of the band structures are reminiscent of those observed in the case of PhC-
LEDs with an AlGaN cap layer. In addition to a quasi-continuum of excited modes, an intense photonic
band can be observed. It corresponds to the cap layer mode (CLM) trapped above the grating. This
con�rms that a well-de�ned CLM is supported in the structure. However, no direct conclusion can be
drawn as regards the extraction e�ciency of this mode: in these LEO samples, the grating is present
on the whole surface, so that guided modes can be di�racted over very large distances (∼ 1 cm).
This is in contrast with the LEDs of previous sections, where the PhC region was of small extent and
observation of a mode implied e�cient extraction. It is therefore not possible to estimate over which
length the CLM has been extracted.

Besides, a second resonant feature appears in the band structure: the few excited modes closest
to the CLM are much more intense than other excited modes. If this resonance were fully discrete
and corresponded to one photonic band, it would simply be attributed to a second mode localized in
the cap layer. Here, although this resonance is not fully discrete, the image of a second CLM still
gives us insight: the resonance can be seen as linked to a quasi-mode which is not well localized in
the cap layer (its e�ective index is close to the average index of the LEO mask, so that it is not well
con�ned). In practice, there is a peak in light emission in the direction of this quasi-mode, but which
is redistributed over the many excited modes of similar direction. This observation may slightly relax
our strict requirement that light be emitted in CLMs to be well extracted: it suggest that a quasi-CLM
may play a similar role. However, it is di�cult to draw de�nite conclusions on this point in the absence
of extraction length measurements.

quantum well region (∼ 100 nm) and a 150 nm thick p-GaN region.
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4.4.5 Conclusion

LEO-PhC LEDs are promising structures for light extraction because they combine good
photonic properties − de�nition of a well-extracted cap layer mode − with a geometry
which is suitable for practical integration to high e�ciency LEDs. The �rst experimental
results on 1D structures are encouraging and compatible with the expectations of these
LEDs. However, their fabrication remains a challenge whose constraints are as yet unknown.
Their ultimate e�ciency will be determined by fabrication limitations, especially as concerns
thin-�lm coalescence of overgrown GaN.
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4.5 PhC-LEDs with patterned emitting region

The previous implementations of PhC-LEDs tend to show how, to push extraction e�ciency to its
limits, one needs to depart from the geometry of a classic GaN structure. Simple surface PhCs su�er
from limited e�ciency, while the highest theoretical e�ciencies are obtained in structures which modify
signi�cantly the photonic regime of the LED.

We now discuss an even more peculiar GaN light-emitting structure, where the quantum wells are
located in the PhC region itself.

4.5.1 Patterned emitting region: qualitative discussion

The 'Band Gap' approach

Up to now, we have only considered PhCs acting as di�raction grating − and, possibly, modifying
the average index in the vertical direction: this consists of a regime of weak to moderate photonic
interaction.

It is now worth mentioning another strategy often considered in the literature to enhance light
extraction with PhCs. It consists in using the PhC to create a full band gap in all in-plane directions,
so that guided modes no longer exist and all the emitted light is emitted out-of-plane, in the air cone.[25]

This approach typically su�ers from two caveats. First, in the presence of non-radiative losses, the
internal quantum e�ciency is severely degraded. Indeed, if we denote as τair, τguided, and τNR the
lifetimes corresponding to radiation in air, in guided modes and to non-radiative recombinations, the
internal quantum e�ciency is given by:

No PhC → ηIQE ∼
τ−1
air + τ−1

guided

τ−1
air + τ−1

guided + τ−1
NR

PhC → ηIQE ∼
τ−1
air

τ−1
air + τ−1

NR

(4.10)

In a rather good semiconductor, ηIQE ∼ 80%.17 Besides, if we consider that ∼ 10% of the emitted
light is in the air cone, we have τguided ∼ τair/10. This leads to a value of τNR ∼ τair/3. In this
case, when the PhC is etched, ηIQE drops to 25% ! This e�ect is simpy due to the reduction of
radiative channels, while all loss channels remain constant. This assumption is actually optimistic,
because surface-states related non-radiative losses are likely to increase in presence of the PhC. Ref. [26]
discusses (theoretically and numerically) the e�ect of non-radiative losses, and concludes that if these
losses are too high the 'band gap' approach is not competitive.

Second, in order to obtain a full, omnidirectional band gap, one has to obtain a thin membrane
by etching some sacri�cial layer (usually with a wet etch) located below the membrane. In such a
geometry, it is very hard to place electric contacts to obtain an LED, especially under the membrane.

For all these reasons, this band-gap approach has so far only been successful in photomulinescence
demonstrations at cryogenic temperatures, where non-radiative channels are quenched − see Ref. [27]
for a clear experimental evidence of the modi�cation of radiative lifetime at low temperature by Noda's
team.

Emission of patterned InGaN

However, recent results obtained by Stacia Keller, Chris Schaake et al. at UCSB have led to a rather
surprising result.[28] Starting from a regular GaN photoluminescence structure with InGaN quantum

17In GaN/InGaN structures, even ηIQE ∼ 50% is very good at high current injections.
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wells close to the surface, they pattern the sample with a square lattice PhC (a ∼ 200 nm). The PhC
pattern is more than 200 nm deep and the QW region is fully etched. The resulting samples have a poor
photoluminescence signal, as could be expected from the above discussion. However, after annealing of
the samples under suitable conditions (typically ∼ 1000o C), they observe that the photoluminescence
signal is more than restored. Fig. 4.59 illustrates this experiment and the corresponding structure.

Figure 4.59: [After Ref. [28]] Left: TEM image of a patterned sample. The active region is visible in the pat-
terned layer. Right: Photoluminescence of the sample. (Bottom) Before patterning. (Center) After patterning
of a PhC. (Top) After annealing at 900o C: the PL signal is more intense than on the original sample. Note the
small peak-like features of the last spectrum, probably due to di�racted guided modes.

Of course, conclusions of this experiment should be drawn with care. The enhancement in PL
signal may be attributed to restoration of the internal quantum e�ciency of the material, but also to
enhanced light extraction due to the PhC's presence, and possibly to a more e�cient absorption of the
exciting laser in the presence of the PhC − a common and possibly large e�ect which is unfortunately
often disregarded in literature!

Angular measurements on one of these samples (Fig. 4.60) con�rm that light extraction indeed
contributes to the PL intensity. However, it is also clear that the PhC's di�raction does not produce
the entirety of the signal: from Fig. 4.60, contribution of di�racted modes can roughly be estimated
to a few dozen % of the total signal.

Likewise, enhancement of the excitation in the presence of the PhC is possible but is not expected
to be a strong e�ect, because excitation of InGaN PL structures by a HeCd laser is usually e�cient.

In conclusion, these results strongly suggest that a proper annealing restores the internal quantum
e�ciency of an etched surface in GaN structures, although the e�ect is not fully quanti�ed yet. A
more detailed discussion can be found in Ref. [28].

Patterned InGaN: photonic regime

We are thus led to consider these atypical structures, which are at the crossing of the 'grating' and
'band gap' approaches.

On the one hand, it is clear that the PhC can no longer be considered as a mere grating. A source
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Figure 4.60: Angle-resolved PL spectrum of a GaN sample with a square lattice PhC etched through the
active layer (ΓX direction, TE polarization). The photonic bands di�ers slightly from those of other angular
measurements found in this thesis, because of the di�erent lattice.

embedded in a PhC directly feels a modi�ed local density of states (DOS), which modi�es its emission
properties. Besides, the photonic strength of the PhC is now too strong to retain a nearly-free photon
approximation.

On the other hand, the simple picture of a complete bandgap does not hold either. Of course, some
band gap e�ects are de�nitely expected for such high air �lling factors. As a reference, Fig. 4.61 gives
the gap map for a 2D GaN/air PhC and shows that large gaps should open for in-plane propagation,
for air �lling factors around f = 50%.

Figure 4.61: Gap map for a 2D PhC made of air holes in a GaN matrix (n = 2.55, triangular lattice) in H
polarization, as a function of the air �lling factor. Although the structures of interest here are inverted (GaN
rods embedded in air), gaps with similar magnitude can be expected in one or the other polarization.

This calculation gives a fair idea of the magnitude of gaps in a thin membrane, which is optically
close to a 2D PhC. However, the present structure is very di�erent from a membrane: the PhC region
lies on a GaN bu�er layer, which still carries a large density of modes. These modes can to some extent
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be excited by the source, either by propagative or evanescent coupling. In other words, all polar angles
have to be taken into account because, unlike in a membrane, there is no index con�nement by air in
the vertical direction. It is therefore hard to guess to what extent emission at non-glancing angles will
be quenched.

However, even if light is emitted beyond the critical angle, the di�raction e�ect of the PhC is
expected to be strong and one can hope that leaky modes will be e�ciently extracted.

Let us here summarize the various photonic e�ects likely to occur in this structure:

• Lowering of the average index in the vicinity of the emitting source, leading to a lower density
of states (DOS)

• Further suppression of the photonic DOS, either because band gaps open, or more generally
because the dispersion of the remaining photonic modes is a�ected by the PhC

• Scattering of leaky modes (propagating at neff > 1.7) by the PhC, to the sapphire substrate
and to air

4.5.2 Patterned emitting region: modeling / quantitative discussion

In this section, we attempt a quantitative discussion of the mentioned photonic e�ects. A convenient
way to investigate these is to compute the emission diagram of a dipole in the structure, which gives
access to relevant quantities such as light extraction and radiative lifetime.18

As such calculations are time-intensive, we are led to restrict ourselves to a simple case where
results can be interpreted easily. In practice, we consider a structure made of a sapphire substrate, a
1µm thick GaN bu�er (this value is rather thin but should not signi�cantly alter physical insight), a
400 nm thick PhC (triangular lattice of circular GaN columns in air with a = 200 nm and f = 0.5),
and an air superstrate (Fig. 4.62).

Figure 4.62: Geometry of the structure considered in the calculations (distances in units of a). (Dotted line)
The source is moved from GaN to air through the center of a GaN column

We investigate the emission of a dipole source whose vertical direction is varied between z = −1
(embedded in the GaN bu�er) and z = 3 (in air). The source is made of a sheet of dipoles with
in-plane alignment. This choice corresponds to emission from delocalized excitons. Alternately, one
could consider emission from point-like dipole sources, but the position of the source would introduce
an additional parameter (see Annex C for a more complete discussion).

Besides, the normalized frequency of the dipole is taken as u = 0.58, which corresponds to a
favorable situation in the ΓM direction. As seen on the Ewald construction of Fig. 4.63, in this case,
there is always at least one di�raction channel to air (either the ΓM or 2ΓM order), and the ΓK
di�ractions do not enter the sapphire circle. On the other hand, extraction is not omnidirectional in
this case: there is no di�raction channel to air in the ΓK direction.

18One may also consider computing the Bloch modes of the structure instead. However, it is more di�cult to draw
direct conclusions from the sole knowledge of Bloch modes: in this intricate case, it is unclear which modes will be
excited by a source. Direct calculation of emission diagrams seems a more straightforward approach.
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Figure 4.63: Ewald construction (u = 0.58) for a Bloch mode with the parameters considered in calculations:
the second ΓM di�raction enters the light cone while the �rst ΓM di�raction still lies inside of it, so that all
light emitted in the ΓM direction is extracted to air.

We are interested in the emission lifetime of the dipole and in the extraction e�ciency to air of the
light it emits. Here, we de�ne the Purcell e�ect of the dipole with respect to a dipole in bulk GaN:

Fp =
τGaN

τ
(4.11)

Fp is simply the inverse lifetime of the dipole, normalized so that Fp = 1 for a dipole in GaN.

Purcell e�ect: average index approximation

First, let us discuss the simple e�ect of the average index on the source emission. A dipole embedded
in a medium of index n has a radiative rate proportional to n.This is a very simple form of Purcell
e�ect, linked to the increased bulk density of modes in a medium of higher index.19 Here, we discuss
this simple e�ect of average index, disregarding all e�ects due to in-plane Bragg scattering (in practice,
we ignore all terms others than G = 0 in Maxwell's equations).

Figure 4.64: Purcell e�ect for a dipole moved through the PhC along the path of Fig. 4.62, in the e�ective
index approximation. The dashed lines represent the values of Fp in bulk media of indices n = 1.9 (average
index in the PhC) and n = 1 (i.e. in air).

When the source is embedded in the PhC, it feels a lower average index than in bulk GaN. Therefore,
we can expect that its radiative lifetime decreases. This e�ect can be estimated by computing the

19The photonic DOS actually scales like n3. However, in the case of bound charges of interest here, screening of the
dipole by ε removes a n2 contribution, leading to an enhancement factor by only n.
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emission diagram in a multilayer structure, where the source is moved through the structure as in
Fig. 4.62. This 1-dimensional calculation has the advantage of being very light on computation time.
In the average index approach, the PhC region is a medium of index 〈n〉 = 1.9.

The result of the calculation, shown on Fig. 4.64, con�rms the expected result. Apart from some
small oscillations due to re�ections at the various interfaces, the Purcell e�ect is equal to 1 in GaN,
1.9/2.5 = 0.76 in the PhC and 1/2.5 = 0.4 in air. This means that spontaneous emission has a longer
lifetime in the PhC than in bulk GaN. On the one hand, this means that the relative e�ect of non-
radiative losses will be stronger. On the other hand, it also indicates that the dipole 'sees' a medium
of index 1.9, which is advantageous in terms of light extraction: the weigh of guided modes is much
smaller than in GaN.

In the following we denote this 'average index' Purcell e�ect as F̄p.

Purcell e�ect: inclusion of scattering terms

The previous results need to be confronted against a 3D approach which takes scattering e�ects into
account, e.g. retaining G harmonics.20 In presence of the PhC, azimuthal directions ϕ are no longer
equivalent. Therefore, we introduce the emission rate in a given azimuthal direction:

fp(ϕ) =
∫
I(θ, ϕ)sin(θ)dθ (4.12)

Where I(θ, ϕ) is the intensity emitted by the source in a given direction, and the term sin(θ)
accounts for solid angles; fp represents the radiative rate in direction ϕ and is sometimes called the
partial Purcell factor in the direction ϕ. It is related to the total Purcell factor by:

Fp =
∫
fpdϕ (4.13)

First, let us consider the impact of scattering e�ects in the ΓM direction only, by computing
fΓM

p = fp(ϕ = 0o). As can be seen on Fig. 4.65, the result is rather close to the average index result
when the source is not located inside the PhC, because scattering e�ects do not signi�cantly a�ect
the emission pattern. Inside the PhC on the other hand, fΓM

p is smaller than F̄p. For instance, for
z ∼ 1.5, the lifetime is twice as large. As will be seen next, this e�ect is due to a partial suppression
of the photonic DOS along ΓM , e.g. to partial band gaps.

Let us now compute the overall Purcell e�ect Fp and compare it to fΓM
p . Note that this calculation

is rather tedious because sharp resonances appear in the spectra, so that a �ne mesh is needed both
along θ and ϕ. Therefore, the calculation is only performed for source positions inside the PhC region,
where interesting e�ects can be expected. The result is shown on Fig. 4.65.

Interestingly, the overall Fp is in general closer to F̄p than fΓM
p was: part of the emission which is

inhibited along ΓM is thus redistributed in other directions − a phenomenon reminiscent of intensity
redistribution in interference fringes. This is best seen on Fig. 4.66, where fp is detailed as a function
of ϕ: the DOS is indeed reduced along ΓM , but is also increased in other directions, which limits the
Purcell e�ect.

20The parameters of the calculation are as follows. Only 37 plane wave harmonics are considered, and an imaginary
part n′′ = 0.005i is added to the refractive index of the GaN bu�er in order to add absorption and to resolve all modes
properly (see the discussion on this subject in Chapter 6). It has been carefully checked that this modest plane wave
cuto� leads to numerical errors of the order of 1% or less. It has also been ckecked extraction e�ciency to air could
still be estimated in the presence of absorption, provided energy calculations were renormalized to remove the e�ect of
absorption. In all cases, a dipole along x and a dipole along y are added incoherently to simulate an average distribution
of in-plane dipoles.
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Figure 4.65: (Left) Partial Purcell factor fΓM
p in the ΓM direction for the same structure as previously, taking

scattering e�ects into account. (Right) Purcell factor Fp (properly integrated over ϕ). In both plots, the dashed
line is the average index result F̄p.

Figure 4.66: Partial Purcell factor as a function of ϕ, for a source located at zs = 1.3. Close to ΓM (e.g.
ϕ = 0) the photonic DOS is reduced and emission is inhibited. At larger values of ϕ however, the DOS increases
over the F̄p value (dashed horizontal line). In this case the integrated Purcell factor is Fp = 0.75, very close to
F̄p = 0.76

In the context of light emission, this result lifts some of our worries: the inhibition of spontaneous
emission lifetime can be quite limited. Especially, at the best points of Fig. 4.65, Fp = 0.80 and the
radiative lifetime is modi�ed by only 20% with respect to bulk GaN. In this case, and assuming an
original internal quantum e�ciency of 50%, the new quantum e�ciency is 0.8/1.8 = 45% which is still
reasonable − especially if the emitted light is e�ciently extracted, as can be hoped in a well-designed
structure.

Extraction e�ciency

Let us now evoke the extraction e�ciency of this structure. A thorough exploration is out of the
scope of this short discussion. From a qualitative point of view, the detrimental e�ect of guided light
is expected to be limited because emission should be quenched at e�ective indices over 1.9: thus a
large part of the guided modes emission is simply avoided. Besides, if the remaining guided light
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(1 < neff < 1.9) is well-di�racted, extraction should be very high. Especially, in the case of extraction
to epoxy, only modes with (1.5 < neff < 1.9) need to be di�racted.

For a quick quantitative perspective, we restrict ourselves to giving the extraction e�ciency to air
in the ΓM direction (Fig. 4.67).

Figure 4.67: Light extraction e�ciency to air in the ΓM direction as a function of dipole position.

When the dipole is in GaN, the extraction e�ciency is mainly limited by di�raction losses to the
sapphire substrate. However, when the dipole is moved in the PhC, regions of high extraction e�ciency
appear in the ΓM direction (for instance when zs =1). This e�ect may be linked to resonant emission
in a well-extracted leaky mode. One may also wonder why the extraction e�ciency does not reach
unity when the dipole is largely placed in air (z = 3): instead, it saturates around 90 %. It can be
checked that this is because a sizable part of the light emitted downward is scattered by the PhC at
angles where it is trapped in the sapphire.

Again, let us stress that only a full integration would determine the total e�ciency. Because we
consider a high frequency in the model structure, substrate losses would probably be strong in our
case. A well-designed structure with extraction to epoxy would be more suitable for an assessment of
the extraction e�ciency performance.

4.5.3 Analysis of emission in a patterned layer by source emission diagrams

The previous discussion presents global results on the emission properties of patterned QW layers, but
limited insight on the detailed emission behavior at the source level. A convenient way to access the
latter is through study of the source emission diagram, which underlies all the properties studied above.
The source emission diagram I(θ, ϕ) = I(k//) indicates the intensity emitted by a quantum well in a
given direction. In order to introduce such a diagram, let us �rst consider the emission diagram of a
simpler structure: a PhC membrane without a substrate or GaN bu�er layer.

Emission in a PhC membrane

For now, we consider a simple GaN membrane of thickness 1 (in units of a), etched by a triangular PhC
of air holes with f = 0.5, and surrounded by air. Figure 4.68 presents the emission diagram of a source
located in the middle of this membrane, at a frequency u = 0.6. Here, directions are characterized by
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their in-plane wavevectors kx = k//cosϕ and ky = k//sinϕ (expressed in units of k0). Therefore, the
air cone corresponds to k// < 1 (i.e. neff < 1 with our units).

Figure 4.68: PhC membrane emission diagram. (Left) Emission diagram of a quantum well in a GaN PhC
membrane (log scale). kx and ky are the components of the wavevector, in units of k0. The small full circle is the
air cone (neff = 1), and the large dashed circle corresponds to the average index of the membrane (neff = 1.9):
emission is strongly suppressed beyond this circle. (Right) Emission diagram with the equifrequency contours
of a mode (neff = 1.6) superimposed as red lines. The full red circle is the dispersion of a guided mode with
neff = 1.6, and the dashed circles correspond to periodization by the reciprocal lattice.

As can be seen, the emission diagram is mainly composed of a somehow uniform background for
k// < 1.9, and of additional shield-shaped sharp features with a sixfold symmetry. The background
simply corresponds to direct light emission to air. Let us note that at u = 0.6, all directions (θ, ϕ) fall
within the light cone due to periodicity (Apart from six small zones around the K points). Therefore,
emission to air is possible in all these directions, hence the uniformity of the background everywhere
(apart from the K points). However, this background is seen to collapse when k// ∼ 1.9. Indeed,
the average index of the membrane is 1.9, so that light with a higher e�ective index is evanescent in
the membrane (and still more of course in the surrounding air). Therefore, light emission is strongly
frustrated for e�ective indices over 1.9.21

Let us now come to the sharp lines appearing over the background. These correspond to emission
in a resonant Bloch mode of the PhC slab, with an e�ective index neff = 1.6. This is apparent
on Fig. 4.68 (right), where the simpli�ed isofrequency curve of a Bloch mode with neff = 1.6 is
superimposed on the emission diagram. This curve corresponds to a nearly-free photon: zero photonic
strength is assumed, so that the isofrequency is only made of periodized circles of radius 1.6. As can be
seen, the sharp lines of the actual emission diagram very closely follow this curve, apart from some gaps
openings occurring when di�erent circles intersect. This Bloch mode, although leaky, is well con�ned
inside the PhC membrane so that it couples well to the quantum well (roughly as much as a classic
guided mode would).

This kind of emission diagram is typical of thin PhC membranes: light emission occurs through

21Emission is not completely suppressed however: this is because light emitted in modes evanescent everywhere
(neff > 1.9) can still be di�racted back to propagative modes by the grating.
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two channels, a continuous background (direct emission in the air cone) and a 'discrete' component
corresponding to the Bloch modes supported by the membrane. Of course, if no Bloch mode is
supported (as happens when the frequency falls in an omnidirectional band gap) only the �rst channel
remains. This is the basis of the 'band gap approach' to light extraction described above.

Emission in a realistic structure

We now come back to the problem of emission in our structure of interest, including the unetched GaN
bu�er and sapphire substrate. In this case, the distribution of guided modes is expected to change
drastically. Indeed, in the absence of total internal re�ection at the PhC/GaN interface, there is no
more well-de�ned guided mode in the vertical direction on which highly resonant PhC Bloch modes
can build up. Rather, we can expect the presence of low-order modes localized in the GaN bu�er (with
an e�ective index larger than the average index 〈n〉 of the PhC layer), and of high-order modes which
can penetrate the PhC. Possibly, some of these modes may be resonant in the PhC layer. Fig. 4.69
describes this guided modes distribution.

Figure 4.69: Expected guided modes distribution in the structure. (a) Low-order mode with neff > 〈n〉 (b)
High-order mode (c) High-order mode with high localization in the PhC layer, due to a vertical resonance.

In addition, modes may be suppressed in some directions due to band gap e�ects. More speci�cally
in our structure, u = 0.58 so that a band gap is expected at the second Bragg order, around an e�ective
index neff = 2/

√
3u ∼ 2.

After this preliminary discussion, let us now study the emission diagrams in the structure. Fig. 4.70
depicts the source emission for various source positions, starting in the GaN bu�er and moving in the
PhC.

When the source is located at the interface between the unetched GaN bu�er and the PhC (zs =
0), the emission is very close to that in a regular waveguide. Light is collected in circular rings
corresponding to the guided modes of the GaN bu�er, and the in�uence of the PhC is very weak: it
only acts as a di�raction grating but does not modify the source's behavior. We are thus in the same
regime as in all other PhC structures previously studied in this chapter. For any given azimuthal angle
ϕ, the intensity I(θ) is composed of a series of peaks corresponding to the propagation angles of guided
modes.

On the other hand, when the source is placed at the entrance of the PhC (zs = 0.2), the spontaneous
emission itself su�ers some alterations. The most obvious is a strong quenching of light emission
for e�ective indices larger than 〈n〉. This e�ect was anticipated: in the PhC, the source 'sees' an
e�ective medium of index 〈n〉. This leads to the average index Purcell e�ect F̄p already evoked: indeed
Fp = 0.75, very close to F̄p = 0.76. Clearly, scattering by the PhC has little to do with this Purcell
e�ect: the emission diagram barely depends on the azimuthal direction ϕ.

When the source is placed deep in the PhC (zs = 0.7), the scattering e�ects of the PhC become
predominant. The emission diagram now shows a strong ϕ-dependence, with a sixfold symmetry
stemming from the triangular lattice of the PhC. Emission occurs in bands which interact well with
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Figure 4.70: Emission diagram for a light source in a 'realistic' PhC structure (with GaN bu�er and sapphire
substrate), for di�erent positions zs of the source (log10 scale, all �gures have the same scale), the PhC layer's
thickness being 2. The full white circles are the folded air cones. (Top left) zs = 0: the source is at the interface
between the PhC and the GaN bu�er, emission is distributed in regular guided modes and does not depend on
ϕ. (Top right) zs = 0.2: the average index felt by the source decreases from 2.5 to 1.9. Emission at e�ective
indices beyond 1.9 is quenched. (Bottom left) zs = 0.7: the source is deep within the PhC, where the photonic
density of states is strongly altered. Most of the emission is collected in a sharp peak reminiscent of a Bloch
mode's equifrequency contours. (Bottom right) zs = 0.9: when the source is moved through the PhC, vertical
resonances modify the overall emission, leading to modi�cations of the Purcell e�ect. The Purcell factor drops
from 0.8 at zs = 0.7 to 0.6 at zs = 0.9.
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the PhC, and are thus observed intensely in the FBZ.22

The most striking feature of this third diagram is the presence of very intense resonances in the
emission diagram. This sharp emission peak has an egg-like shape centered around point K in the
reciprocal space, and is reminiscent of the shield-shaped isofrequency curves observed in the case of a
PhC membrane. The intensity and dispersion of this peak allow us to understand Fig. 4.66: the peak
is present around K but not aroundM , and represents a large fraction of the emitted light. Therefore,
emission is weaker along M and larger around K, which explains the behavior of fp(ϕ). Notably, the
peak of fp for ϕ ∼ 7o is caused by the in�exion of the egg at the corresponding angle. The presence
of this feature is surprising since we do not expect this PhC structure on a high-index substrate to
support well-de�ned resonant modes (more precisely, resonant modes in a large range of directions k//

for a given ω). We will comment further on its origin in the next section.
Finally, when the source is moved between various positions within the PhC region (zs = 0.9),

the emission diagram keeps most of the characteristics described above, but the relative intensity of
some regions of the diagram varies. While the resonant peak is always intense, the emission in the
quasi-continuum of the other modes strongly depends on zs. For instance, light emission in the central
air cone is much stronger for zs = 0.7 than for zs = 0.9.

Quasi-guided modes of a PhC

As we will see, the intense features of the emission diagram are indeed caused by the existence of a
resonant Bloch mode which is strongly localized in the PhC. This is quite unexpected because the
e�ective index of this mode is ∼ 1.6, inside the light cone of the sapphire substrate.

Therefore, such a mode is in principle propagative in the GaN bu�er layer and in the sapphire
substrate, and one could assume that its energy will not localize in the PhC layer under most cir-
cumstances. In other words, this mode should be very lossy (due to direct leakage in the GaN and
sapphire), and unable to 'build up' in the PhC region − which would require multiple re�ections with
moderate losses.

The existence of this mode can however be checked by a direct Bloch mode calculation: one indeed
�nds a leaky mode whose isofrequency curve exactly follows the sharp feature of the emission diagram
(Fig. 4.71). As expected, this mode is rather strongly localized in the PhC region. Its unfolded
wavevector is k = 5.8 + 0.027i.23

To appreciate this value of k′′,let us consider light propagating at the same e�ective index neff in a
1D multilayer system (i.e. in the average index approximation where scattering e�ects are neglected).
In the following, we denote modes in the 1D approximation as guided modes and actual modes of the
PhC as Bloch modes. For simplicity, we ignore the sapphire substrate − this is legitimate since the
e�ective index considered is smaller than the sapphire's index. As shown on Fig. 4.72, light rays are
perfectly re�ected at the PhC/air interface, and re�ected at the PhC/GaN interface with a Fresnel
coe�cient:

r =
n1cosθ1 − n2cosθ2
n1cosθ1 + n2cosθ2

(4.14)

Where θ1 (resp. θ2) is the propagation angle in the PhC (resp. GaN) layer corresponding to neff ,
and L the thickness of the PhC layer. In a round-trip in the PhC layer, light travels a distance 2Ltanθ1
in the x direction, so that the loss coe�cient for this light ray is:

22More precisely, the harmonic of these modes which is folded in the FBZ has a rather strong weight in the total Bloch
mode, so that the mode can couple e�ciently to dipole emission. In contrast, a vanishingly weak harmonic would collect
very little dipole emission.

23In units of a−1. The corresponding e�ective index is thus k/2πu = 1.6.
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k′′1D = − ln(−r)
2Ltanθ1

(4.15)

In our case, we obtain k′′1D = 0.38 (corresponding to a decay length of 1.3a), whereas the actual
loss coe�cient of the Bloch mode is only k′′ = 0.027 (corresponding to a decay length of 20a)! The
value of k′′ for the Bloch mode is indeed unexpectedly small and explains why the mode is able to
localize in the PhC.

Let us now try to justify how this low-loss mode is built. As we have seen, propagation in the 1D
system at neff = 1.6 is very lossy, because the Fresnel coe�cient is low (r = −0.3). On the other
hand, r increases quickly when neff → 1.9: light propagating close to glancing angles can actually be
well re�ected at the PhC/GaN interface. When the angle of propagation enables phase-matching of
the light bouncing in the PhC layer, light can localize in this low-index layer and form a quasi-guided

mode (QGM). Phase-matching is expected to occur around:

kz =
π

L
→ cosθ1 =

1
2Ln1u

(4.16)

In our case (L = 2a), this yields θ1 = 77.3o (this value neglects the small phase shift at the PhC/air
interface). A 1D numerical calculation con�rms the existence of a resonant solution of Maxwell's
equations at an angle θ1 = 78o, very close to the above value.24 This QGM has an e�ective index
neff = 1.86 and losses k′′ = 0.025. The vertical pro�le of this QGM is shown on Fig. 4.73.

24This calculation is performed with the hybrid method: this method does converge to a resonant solution, although
it is not a proper Bloch mode.

Figure 4.71: (Left) Emission diagram for zs = 1.45 (same scale as Fig. 4.70). The isofrequency of the Bloch
mode localized in the PhC region is superimposed as a blue dashed line: it follows exactly the emission peak
of the diagram. The green lines correspond to the boundary of the �rst Brillouin zone. (Right) Modulus of the
electric �eld (|E|) along z for the localized Bloch mode, in the ΓK direction. Blue line: fundamental harmonic.
Magenta line: second-largest harmonic. The average index pro�le is represented by the black line.
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Figure 4.72: Light ray bouncing in a 1D structure made of a low-index 'PhC' layer between GaN and air. The
ray loses energy at each bounce due to its imperfect re�ection at the PhC/GaN interface.

Figure 4.73: Blue: |E| for the 1D GM propagating at neff = 1.86. Red: |E| for the fundamental harmonic of
the corresponding Bloch QGM (taking scattering by the PhC into account), propagating at neff = 1.6. The
pro�le of both modes is nearly identical.

This 1D QGM is the basis on which the quasi-guided Bloch mode is built in the PhC. To see this,
let us compute the Bloch mode numerically, taking scattering e�ects into account. Fig. 4.73 compares
the electric �eld pro�le of the 1D QGM with that of the fundamental harmonic of the Bloch QGM.
Both are nearly identical, con�rming the origin of the quasi-guided Bloch mode: light is con�ned in
the PhC layer due to a strong enough re�ectivity at the PhC/GaN interface.

We still have to understand how this strong re�ectivity can be obtained at such a low e�ective
index in the case of the Bloch QGM. To this e�ect, let us use a simple coupled-wave model with two
waves, where a 1D quasi-guided mode E+ can coupled to a counter-propagating harmonic E− through
a reciprocal vector G. In this simple case, Maxwell's equations become:25

ω2

(
ε0 ε1

ε1 ε0

)∣∣∣∣∣ E+

E−
=

∣∣∣∣∣ k2
‖ + k2

z

(k‖ −G)2 + k2
z

·

∣∣∣∣∣ E+

E−
(4.17)

Here, ε0 is the dielectric constant of the propagation medium, k‖ and kz are the in-plane and
vertical wavevectors of the mode. G is the reciprocal vector coupling the waves, and ε1 the strength
of the coupling.

This system can of course be solved numerically, but we will also look for an analytical solution.
Let us call k‖1D the in-plane wavevector in the absence of coupling, and k‖ = G/2 + K the in-plane
wavevector in the presence of coupling. To obtain a simple analytical solution, let us assume that,

25With c = 1, implying ω = k0 = 2πa/λ.
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at a given frequency, the vertical wavevector kz is imposed by the phase matching condition and is
therefore unchanged by the presence of the coupling, i.e.:

k2
z = ε0ω

2 − k‖1D (4.18)

The solution of Eq. 4.17 is then:

K2 =
G2 + 2(k2

‖1D −G
2/4)−

√(
G2 + 2(k2

‖1D −G2/4)
)2

+ 4ω4ε21 − (k2
‖1D −G2/4)2

2

≈ 1
2

(k2
‖1D −G

2/4)2 − ω4ε21

k2
‖1D +G2/4

(4.19)

Where the approximation of the second line is valid in the region k‖1D ∼ G/2. To study the
properties of Eq. 4.19, let us neglect the small losses of the mode and assume that k‖1D is real. In this
case, three regions of interest appear:

k2
‖1D −G

2/4 < −ω2|ε1| → K ∈ R,K < 0 (dielectric band)

−ω2|ε1| < k2
‖1D −G

2/4 < ω2|ε1| → K ∈ iR (gap)

ω2|ε1| < k2
‖1D −G

2/4 → K ∈ R,K > 0 (air band)

(4.20)

Where the sign of K has been deduced from its asymptotic behavior.26 We recover the well-known
opening of a band gap at k‖ = G/2. The band located below the band gap is bent 'down', corresponding
to a higher e�ective index (i.e. a stronger localization of the mode in the dielectric) and is therefore
termed dielectric band. Likewise, the band above the band gap corresponds to localization in the air
and is called the air band. These results are exempli�ed on Fig. 4.74, where the parameters correspond
to a PhC membrane of GaN rods in air with f = 0.5 and only two coupled waves (air superstrate,
GaN substrate).

Notably, it appears that although the coupling signi�cantly modi�es the e�ective index, it has
little impact on the loss coe�cient (except in the gap region of course) because losses are dominated
by the leakage of the fundamental harmonic, whose vertical phase-matching condition (Eq. 4.16) is not
modi�ed by the coupling.

The nature of the QGM Bloch mode can thus be understood as follows: the 1-dimensional QGM
supported in the low-index region gets preferentially localized in air due to the scattering of the PhC.
This lowers its e�ective index, while keeping the loss coe�cient low. The resulting Bloch mode displays
low losses at an 'anomalously low' e�ective index, i.e. in spite of its ability to leak in the GaN bu�er.

Let us note that, while we ignored the presence of the sapphire substrate when justifying the
existence of this mode, our arguments still hold in its presence − although additional re�ections at the
GaN/sapphire interface may somehow modify the loss coe�cient of the mode.

26Namely, K < 0 when ω → 0 and K > 0 when ω →∞.
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Figure 4.74: Propagation properties of the uncoupled 1D QGM (thin blue line), and the coupled Bloch
QGM (red thick line: numerical result, magenta dashed line: analytical result of Eq 4.19). As can be seen,
the analytical solution is in general very close to the numerical solution. (Top left) Dispersion relation. The
coupling causes a gap opening at G/2 (dashed vertical line). (Top right) Loss coe�cient k′′. In the presence
of coupling, k′′ is high in the gap due to re�ection. Outside of the gap, losses are dictated by the leakage of
the fundamental harmonic and barely modi�ed by the coupling. (Bottom left) E�ective index neff . Below the
gap, the mode localizes in the dielectric and neff increases with respect to the 1D value. Above the gap on the
other hand, the mode localizes in air and neff decreases. Notice the rigid shift of neff caused by the coupling

at high frequency: its asymptotic value is not 〈n〉 but 〈n〉
√

1− (ε1/ 〈n〉)4. (Bottom right) Corresponding angle
of propagation.

Emission in a patterned layer: consequences

Several conclusions may be drawn from the existence of such a mode.
First, this mode might play a role in practical applications. Di�ractive �lters, for instance, may

make use of such a resonance (in contrast to the common view that optical con�nement by a substrate
is necessary to obtain sharp Fano resonances in a �lter). Besides, the existence of this QGM holds
even if GaN is present on both sides of the PhC region, instead of an air superstrate (the mode's
losses are simply doubled). Current is easy to inject in such a structure (Fig. 4.75). Thus, we obtain
a photonic structure which keeps some properties of a PhC membrane (such as a vertically-localized
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mode with band gaps, which collects most of the light emission) but is easy to inject, in contrast to
usual membranes. Such a structure may be considered for a PhC-based laser: current injection is easy,
and the mode is naturally con�ned vertically in the low-index region.

Figure 4.75: (Left) QGM in a GaN/PhC/GaN structure: the mode is trapped in the low-index region, and
constitutes an easily injectable photonic crystal membrane. (Right) Generalization of the QGM to higher-order
quasi-guided resonances in the PhC region. Here, the �rst and second resonances are depicted.

Second, it is tempting to generalize the existence of the QGM and assume the presence of other,
higher-order quasi-guided resonances (Fig. 4.75). Obviously, such higher order resonances are more
lossy, and less well con�ned in the PhC region, than the QGM we just studied. Nevertheless, if we
assume that these resonances dominate the optical properties in the PhC layer, we obtain a very
simple picture of the spontaneous emission properties: the active region can couple to a few vertical
resonances, much as it does in a thin microcavity supporting a few guided modes.

Of course, computing the precise pro�le and kz of each resonance would be necessary for an accurate
evaluation of spontaneous emission. However, we can simply assume that these resonances are those
of a simple Fabry-Pérot of thickness L:

kp
z =

pπ

L
,Ep ∼ cos(kp

zz) in the PhC region. (4.21)

As in a microcavity, the spontaneous emission rate at position z is then proportional to the coupling
to each mode:

Fp(z) ∼
∑

p

sin(kp
zz)

2 (4.22)

In the structure considered so far, four vertical resonances are supported in the PhC region.27 The
Purcell e�ect obtained with this heuristic approach is compared with the previous rigorous numerical
results on Fig. 4.76. As can be seen, the �t is acceptable. The amplitude of the oscillations of Fp are
of the right order. The position of the �rst and last peaks, on the other hand, are not well reproduced
− which is not surprising since they correspond to the fourth and last resonance, for which Eq. 4.21 is
least valid.

In conclusion, our assumption that spontaneous emission takes place in a few quasi-guided vertical
resonances gives at least a qualitative and intuitive picture of emission in a patterned region. From
a practical point of view, it gives us a �rst hint of the optimal quantum well position (highest Fp)
without resorting to lengthy calculations.

27The cuto� condition being kz < 〈n〉 k0.
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Figure 4.76: (Dashed line) Average index Purcell Factor F̄p. (Line with circles) Purcell factor Fp (rigorous
numerical result). (Full line) Fit of Fp using Eq. 4.22 − to account for the slight leakage of the resonances in
air and GaN, the Fabry-Pérot cavity has been assumed to extend in the range z ∈ [−0.2, 2.1] rather than [0, 2].
The �t yields a reasonable qualitative approximation of the actual Purcell factor, although the position of the
most extreme peaks is largely o�.

4.5.4 Conclusion

Overall, the emission properties of a light source embedded in a patterned region are complex
and depart from the simple case of planar multilayer structures. The source feels a lower
average index, which decreases the emission of guided light. Additional modi�cations to the
photonic DOS further impact the lifetime and extraction e�ciency. Unexpected quasi-guided
Bloch modes are localized in the patterned region in spite of the high index bu�er, and seem
to dominate the spontaneous emission properties. While the current analysis is insu�cient
to estimate the potential of such sources, their peculiar behavior leaves good prospects that
such strong photonic e�ects may be used in favor of e�cient light extraction.
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4.6 Photonic crystal LEDs: conclusions

In this Chapter, we explored several strategies aimed at enhancing the e�ciency of PhC-
LEDs. The most important questions to address are:

• How much of the emitted light can be di�racted to air by the PhC ?
• How e�cient is this phenomenon ?
• What are the optical properties of the resulting source ?

These questions can mostly be addressed by decoupling the two in-plane directions (choice
of the crystal lattice) and the vertical direction (vertical structuration).

According to our discussion of crystal lattices, a triangular lattice (operating at the second
Bragg order) is in general a suitable solution, while Archimedean tilings may eventually
prove more e�cient.

Vertical structuration is necessary to ensure a good extraction e�ciency for all leaky
modes − especially in thick, multimode GaN structures. Our �rst approach −insertion of
a low-index layer in the structure− proved e�cient in spite of its simplicity. To control
more tightly the properties of spontaneous emission, other schemes with stronger photonic
interaction were introduced: LLO-PhC LEDs, where metal losses are currently challenging,
and LEO-PhC LEDs, whose high potential e�ciency comes at the cost of a complex growth.
Finally, our study of light emission in patterned layers evidenced the unusual properties of
these structures. In addition to ensuring extraction on a short scale, all these approaches
alter the angular pattern of spontaneous emission in di�erent fashions, and o�er as many
possible ways to control the far-�eld pattern of the resulting light source.

It is di�cult at this point to determine which PhC-based approach will prove the most
e�cient. All schemes face speci�c technical challenges, and overcoming these will eventually
decide if any of these strategies can beat 'classic' light extraction schemes.
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Chapter 5

2D Simulation of photonic structures

5.1 Aims of Photonic crystal modeling

In the �eld of Photonic crystals, there has been a widespread interest in a variety of new optical e�ects,
much beyond the quest for large bandgaps of the early 90's. It is possible to classify the modeling
and theory e�orts along the kind of e�ects sought rather than with reference to a particular method.
This is because few e�ects have their single distinctive method, to date. A reasonable classi�cation
follows the way optical waves are managed at least in a linear regime. According to this view, we may
distinguish:

• Dispersive e�ects
• Con�nement and extraction e�ects
• Signal routing/�ltering studies

For now, we shall intersperse the methods of interest, assumed for brevity to be known by the
reader, along this description. The following Chapter presents a more thorough description of some of
these methods.

5.1.1 Dispersion

Dispersion is a basic property of a photonic band. As such it can essentially be captured by any photonic
band calculation, such as the plane-wave expansion method. In a broad sense, it may encompass the
low-frequency e�ective medium behavior of PhC's, their birefringence in 2D for example. Similar
methods are adapted to waveguides and or any periodic system (e.g. coupled cavities) by the use
of supercell. 'Bulk' PhC bands are also of interest for phenomena such as the superprism and the
supercollimator, taking advantage of singular region of the dispersion relation ω(k). Dispersion studies
of uniform objects are also a preferred validation means for further more sophisticated studies. Just
as in semiconductors, the bands should be set before novel e�ects can be sought. The idea to develop
a gradient of photonic crystal parameters, mimicking the 'GRIN' (GRaded INdex) systems, opens the
perspective of even richer and more functional behavior. It may for example include the issue of in-and
outcoupling by transition regions. In this area, one would expect an 'envelope' method to be relevant.
However, there have been few attempts which are really widespread in this direction. The work by
Johnson et al. unravels some of the conceptual di�culties along this path.[1] The work performed
during this thesis could be classi�ed in this area. However, the account given of losses or coupling to
extended modes is generally secondary in the many available dispersion studies, whereas dispersion in
our case is not a primary concern (or only in a broad sense of depicting the phase space of photons we
want to extract) and losses are clearly the main concern.
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5.1.2 Con�nement and extraction

The quest for fully con�ned modes has been relatively simple as long as lossless systems were concern.
The basic method involves a superperiodic defect mode using the plane-wave expansion or the Finite-
Di�erence-Time-Domain method.

However, leakage in real system is the main property of interest as no dispersion is sought here. In
this framework, the FDTD method has been a workhorse of many research groups, with a clear success
when it comes to the last generation of ultra-high Q cavities (Q >100,000 and up to 1,000,000) by
e.g. Japanese teams.[2] The conceptual e�orts that led to this particular design are however based on
dispersion consideration, indicating that no single tool can serve all purposes. The topic of waveguides
is naturally at a crossroad in this game : good propagation also means good con�nement in the
concerned directions. Several approaches (FTDT, numerous scattering matrix and modal methods,
Andreani�s...) have been applied to the understanding of losses in waveguide modes that couple to the
continuum for intrinsic or extrinsic reasons. Recently, the approaches by Hugues et al. have revived
the potential of the Green function as a central tool to establish this property, a tool that was rather
common in the near-�eld studies community. This shows that nanophotonics is a �eld that naturally
fosters transverse use of several tools. Extraction has been studied more for enhanced light collection
(e.g. in micropillars, or from PhC nanocavities in a quantum optics perspective) than for high-e�ciency
LEDs. In this sense, we believe the present work is rather original. An exception worth quoting is the
work by Ghent university on chip-to-�ber vertical coupling by gratings.([3])

5.1.3 Routing and �ltering

A broad class of modeling studies has been performed with the aim of applying photonic crystals to
the routing of optical signals, in the spirit of telecoms applications (wavelength domain multiplexing,
dispersion compensation...). Cavities in interaction with waveguides have been at the heart of many
of these studies, the more classic microrings being known to perform very well in integrated optics for
decades, be it with stringent requirements on the coupling geometry. FDTD has been the preferred
tool for these studies. Other basic functions include splitters, bends, etc. The trial-and-error procedure
has been the basic method in the �rst studies, e.g. adding or removing holes here and there, followed
by shifts or changes in diameters of these holes for �ner control. A Danish team has introduced a more
thorough search in terms of inverse problem, letting the dielectric map vary toward more arbitrary
shapes.[4, 5] This has proved e�cient at the simulation level in 2D, and successful in 3D. Yablonovitch
also touts the merits of the inverse problem approach to get the best grip on the delicate design issues
facing the engineer when it comes to ful�ll predetermined functions with a tight tolerance, to take
into account fabrication tolerances, etc.[6] Commercial optimization packages (PhotonDesign) indeed
implement some complex multiparametric approach, indicating that this topic is gradually maturing.
This kind of investigation methods could also be of some use in the future of extraction researches,
either for ultimate light emitters, or to manage sources that would emit a predetermined arbitrary
radiation pattern.

After this tour, it is worth saying that the methods we have chosen are dictated by the basic
physics of extraction of quasi-guided modes. No e�cient recognized methods existed when I started
this e�ort, especially in the atypical case where numerous bands have to be considered in the presence
of a substrate.

With this introduction in mind, we now open a more detailed study of 2D and 3D modeling of PhCs.
In this chapter and the following, we describe the numerical methods used in the thesis for calculations
on photonic structures. This chapter is devoted to 2D calculations. We begin by introducing the
well-known plane-wave expansion. We then derive and exemplify Fourier factorization rules ensuring
faster numerical convergence. Finally, we discuss the extension to o�-axis propagation.
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Figure 5.1: In the 2D+1D approximation, the e�ects of the photonic crystal and of the vertical waveguide are
separated.

5.2 Plane wave expansion

5.2.1 Regular Plane wave expansion

Historically, 2D calculations have played an important role in the development of PhCs, especially at
earlier stages when 3D calculations were prohibitive. They still constitute a powerful tool, well adapted
to numerous situations. Their applicability to actual problems stems from the fact that most deter-
ministic PhC structures use a '2D+1D' con�nement approach: light is guided in the vertical direction
by index contrast, and its dispersion is controlled in-plane by photonic crystal e�ects (Fig. 5.1). Such
problems are then approximately separable[Benisty], so that calculations of the photonic e�ects can
be handled as a 2D problem, that is, considering that the PhC is made of in�nitely high rods.

Several methods can be considered when looking for eigenmodes of a 2D periodic structure, but
the plane wave expansion (PWE) is probably the most straightforward. Fields are decomposed on a
plane wave basis which is naturally adapted to the periodicity of the problem. Maxwell's equations
then take the form of an eigenvalue problem, which can readily be solved numerically.

Due to the symmetry of the problem, modes can be classi�ed in two categories corresponding to
their polarization. For E (or TM) polarized modes the electric �eld is along the invariance direction z
(and the magnetic �eld is in the x− y plane), while for H (or TE) polarized modes the magnetic �eld
is along z. For each polarization Maxwell's equation can then be reduced to one equation, on the z
component of the �eld, for E and H polarization respectively:

1
ε

(
∂2

xEz + ∂2
yEz

)
= −µ0ω

2Ez (5.1)

∂x

(
1
ε
∂xHz

)
+ ∂y

(
1
ε
∂yHz

)
= −µ0ω

2Hz (5.2)

We now Fourier transform these equations. Let us introduce the following notations: if A is a
real-space column vector, [A] is the vector column of its Fourier transform. If B is a matrix, JBK is
the Matrix of its Fourier transform (more precisely, the Toeplitz matrix whose (n,m) element is the
Fourier coe�cient Bn−m).1

According to the Bloch-Floquet theorem, the �elds can be written:

Ez =
(∑

G[Ez]GeiG.r
)
eik//.r

Hz =
(∑

G[Hz]GeiG.r
)
eik//.r (5.3)

1A few remarks can be made on these notations. First, [A] and JBK are a priori in�nite since an in�nity of harmonics
appear in Fourier transforms. However, they will later be truncated to a �nite number of harmonics for numerical
computation − say, Nx terms in the x direction and Ny terms in the y direction. Second, we are working on 2D periodic
functions (depending on both in-plane coordinates x and y) so that their Fourier transforms are initially characterized
by two coe�cients, say nx and ny. In order to use the present notations, these coe�cients need to be reindexed along
one dimension, for instance by letting n = nx + Nxny.
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Here, k// is the in-plane wavevector of the Bloch mode and G are the reciprocal lattice vectors.
By introducing this in Maxwell's equations (5.1, 5.2) we obtain:∑

G′(k// +G')2J1/εKG−G′ [Ez]G′ = µ0ω
2[Ez]G∑

G′(k// +G) · (k// +G')J1/εKG−G′ [Hz]G′ = µ0ω
2[Hz]G

(5.4)

This is a standard eigenvalue problem, whose solutions yield the Bloch modes of the PhC. Other
Fourier forms of Maxwell's equations can also be written, as will be discussed later. The above form
is that of the original article by Plihal and Maradudin.[7]

In order to solve the eigenproblem numerically, one has to truncate the in�nite sums over the
reciprocal lattice to a �nite number N of harmonics. Obviously, the accuracy of the calculation
increases with N . Usually, only a few eigenvalues are needed (those of lowest-energy), even though
N ∼ 103 is sometimes needed for good precision. Therefore, it is often advantageous to use numerical
packages (such as Lapack) which only look for a few eigenvalues and are much less time-consuming
than a full diagonalization.

5.2.2 Inversion of the eigenvalue equation

In the form (5.4) of the eigenvalue problem, it is straightforward to impose a value of k// and look
for a value of ω. This is inherited from band structure calculations methods in semiconductors, where
the energy and momentum of electrons are equally "good" unknowns. However, in photonic structure,
the frequency of light is usually imposed, so that it can be more useful to set ω and look for the
corresponding k// values. In order to do this, we introduce the following notations: Gx, Gy are the
coordinates of a reciprocal lattice vector G. k// can be decomposed as k// = k//(cux + suy) , where
ux and uy are unitary vectors. The Fourier transform of Maxwell's equation can then be written:∑

G′

(
(G

′2
x +G

′2
y ) + 2k//(cG′

x + sG′
y)) + k2

//

)
J1/εKG−G′ [Ez]G′ = µ0ω

2[Ez]G (5.5)

∑
G′

(
(GxG

′
x +GyG

′
y) + k//(cGx + cG′

x + sGy + sG′
y) + k2

//

)
J1/εKG−G′ [Hz]G′ = µ0ω

2[Hz]G (5.6)

The above equations are now generalized eigenvalue problems, as both k// and k2
// intervene. In

order to get back to conventional eigenvalue problems, one can use the following canonical method.
Both equations are of the form:

A0X + k//A1X = k2
//BX (5.7)

Where X is the unknown �eld (respectively, Ez or Hz). By letting:

A =

(
A1 A0

1 0

)
,B =

(
B 0
0 1

)
, Y =

∣∣∣∣∣ k//X

X
(5.8)

The initial problem can be rewritten as:

AY = k//BY (5.9)

This results in a regular (�rst-order) eigenvalue problem, at the cost of doubling the size of the
problem − as matrices scale as N2, memory requirements are multiplied by 4. In this new form
however, it is not possible to compute only a few of the eigenvalues because matrix B is not de�nite
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positive. This results in long computation times, especially when the truncation order N is large. It
is possible to avoid this by writing Maxwell's equations di�erently. For E polarization, one just has to
multiply Eq. (5.1) by ε before the Fourier transform, thus getting:

µ0ω
2
∑
G′

JεKG,G′ [Ez]G′ − (G2
x +G2

y)[Ez]G − 2k//(cGx + sGy))[Ez]G = k2
//[Ez]G (5.10)

Then, using the same procedure as above, one can get back to a conventional eigenvalue problem
where B is an identity matrix.

For the case of H polarization, such a simple trick is not possible: ε appears in derivative terms in
Eq. (5.2). One has to work on �elds Ex and Ey rather than on Hz, yielding the following system:

k2
//(s2[Ex]G + cs [Ey]G) = µ0ω

2
∑

G′JεKG,G′ [Ex]G′ −G2
y[Ex]G +GxGy[Ey]G

+k//(−2sGy[Ex]G + (cGy + sGx)[Ey]G)
k2

//(c2[Ey]G − cs [Ex]G) = µ0ω
2
∑

G′JεKG,G′ [Ey]G′ −G2
x[Ey]G +GxGy[Ex]G

+k//(−2cGx[Ey]G + (cGy + sGx)[Ex]G)

(5.11)

Once again, using (5.8), one is then led to an eigenvalue problem with a de�nite positive B, which
can be solved for a few eigenvalues.

When comparing the new expressions (5.10-5.11) to the more conventional PWE form (5.4), mem-
ory demands are multiplied by 4 in order to get back to an eigenvalue problem, and by an additional
factor 4 in H polarization in order to work on two �elds instead of one.

In spite of the additional computational task, this form presents several advantages over the con-
ventional formulation. First, index dispersion can be readily included, since a calculation is performed
for each value of ω. Second, bands can also naturally be investigated inside the band gaps, where k//

acquires an imaginary part. The eigenvalue is then of the form k// = k′// + ik′′//, and k
′′
// characterizes

the exponential decay of Bloch modes. Finally, isofrequency contours (e.g. Fermi surfaces) can be
easily calculated. This is especially interesting for local density of states (LDOS) calculations, where
one otherwise has to interpolate a mesh in k//-space in order to �nd the Fermi surfaces.[8] Fig. 5.2
presents examples of such calculations.

Figure 5.2: Applications of the inverted eigenvalue problem. (left) Real and imaginary branches of the
dispersion of a triangular PhC (εcore = 12, εrods = 1, f = 0.3, H polarization). Im(k//) is in a

−1 units. (right)
Isofrequencies of the same PhC, for a/λ ranging from 0.1 to 0.22. G0 is the norm of the basis vector of the
reciprocal space.
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5.2.3 Supercell calculations

The PWE is limited to periodic structure. However, more complex objects can also be studied by
using a supercell provided the �elds are decaying far enough from such objects. For instance, PhC
waveguides or cavities fall in this category because their guided or defect modes have localized �elds
which are evanescent in the PhC cladding. In this case, the object can be arti�cially periodized, as will
be illustrated in Fig. 5.8. If the PhC cladding separating the instances of the object is large enough,
the �elds in each supercell do not contaminate each other.

5.3 Fourier rules for fast convergence

5.3.1 A history of Fourier rules

In the above, depending on the PWE form used, the dielectric map appeared in two ways: the "simple"
Fourier transform JεK (as in the article by Ho Ref. [9]) and the Fourier transform of the inverse dielectric
map J1/εK (as in Ref. [7]). This simply stemmed from the way Maxwell's equation were written before
the Fourier transform was performed. Both forms are mathematically equivalent, because the in�nite
Toeplitz matrices involved commute, so that JεK−1 = J1/εK.

However, this commutation no longer holds when the matrices are truncated to a �nite number of
harmonics. As was soon realized, numerical convergence (that is, the number of harmonics needed to
reach a given accuracy) actually strongly depends on the way the Fourier transform of ε is performed.

Several years were needed before this problem was properly solved. After Lalanne introduced semi-
empirical expressions for enhancing numerical convergence,[10] Li �nally derived general mathematical
rules which govern proper factorization of the Fourier transform of functions products.[11] He showed
that they stem from the discontinuities of the electromagnetic �eld at dielectric interfaces. The key
results are summarized below.

In general, when considering the Fourier transform h of a product of functions f and g, it is natural
to write Laurent's rule:

hn =
∞∑

m=−∞
fn−mgm (5.12)

Here hn is the nth Fourier coe�cient of h. In matrix notation, this becomes:

[h] = JfgK = JfK [g] (5.13)

However, according to Li, when the sums are truncated to a �nite number of harmonicsN , Laurent's
rule is no longer true if both f and g are discontinuous at the same point while the product fg remains
continuous at that point. In this case, the discontinuities prevent uniform convergence of the partial
sums toward the series. Rather, one should use the so-called inverse rule:

hn =
M∑

m=−M

(
1
f

)−1

n−m

gm (5.14)

Or, in matrix notations:

[h] = JfgK = J1/fK−1 [g] (5.15)

While both (5.13) and (5.15) are mathematically equivalent when N →∞, the convergence speed
is signi�cantly enhanced using the inverse rule. The cuto�M in the sums is related to the total number
of harmonics by:



5.3. FOURIER RULES FOR FAST CONVERGENCE 175

M = 2N + 1 (5.16)

This result was �rst applied to 1D gratings, and then generalized to 2D and 3D periodic structures.
[12, 13, 14] At that point, focus was only brought onto structures with piecewise-straight dielectric
boundaries along the crystal axes, such as square holes, but it was argued that any boundary can be
approximated by a piecewise-smooth boundary − this is the so-called staircase approximation (Fig.
5.3). In Ref. [14], Lalanne detailed the use of these rules in the context of PWE. Shortly after, Nevière
and Popov noted that for 1D gratings with smooth boundaries, such as sine gratings, the staircase
approximation was actually not valid [15], a fact that they attributed to the appearance of electric
�eld divergences at the corners of the stairs. They showed that the expression of the rules had to be
modi�ed to ensure fast convergence, yielding the so-called "fast Fourier factorization" (FFF) [16]. At
this point, the theoretical background governing e�cient Fourier factorization was essentially complete.

Figure 5.3: Staircase approximation of a sine grating (left) and an array of circular rods (right)

5.3.2 FFF implementation for 2D PhCs with arbitrary hole shape

During this thesis, the analogous problem for 2D PhC was tackled. It was �rst checked that the
staircase approximation does not enhance convergence for circular holes. The FFF rules were then
adapted to the case of 2D PhCs with curvilinear boundaries. Of course, this includes the important
case of a PhC with circular holes, which is by far the most frequently studied structure, both in
theory and experimentally. Other interesting applications include the case of elliptic holes (which are
sometimes considered in order to lift degeneracy in a structure [17] and also appear as an e�ect of
imperfect fabrication), and the application to supercell calculations, where the computation task is
heavy and fast convergence is welcome. Here, we only present the main results; a more complete
discussion can be found in [18].

In order to express these rules, we now consider a Fourier transform of the most general form:

JεExK
JεEyK
JεEzK

=
=
=

εxx [Ex] + εxy [Ey]
εyx [Ex] + εyy [Ey]
εzz [Ez]

(5.17)

In this framework, the so-called Ho's method corresponds to the simple choice:

εxx = εyy = εzz = JεK
εxy = εyx = 0

(5.18)

while in the method of Plihal and Maradudin, also called E-method, we have

εxx = εyy = εzz = J1/εK−1

εxy = εyx = 0
(5.19)
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Let us now express the FFF rules. In the above expressions, the possibility is left to mix both
coordinates x and y during the Fourier transform. Intuitively, this is justi�ed by the fact that, at a
curved dielectric boundary, neither x nor y is a relevant direction regarding the �eld discontinuities.
Rather, one should consider the (local) normal and tangential coordinates. On the other hand, z is
along the PhC rods and constitutes a "good" direction for discontinuity properties.

Namely, across any dielectric boundary, the vertical component Ez and the tangential component
ET of the electric �eld are continuous, and the normal component EN is discontinuous, while the
product εEN remains continuous. According to Li's theorem, a correct factorization is then:

JεEN K
JεET K
JεEzK

=
=
=

J1/εK−1 [EN ]
JεK [ET ]
JεK [Ez]

(5.20)

Following this principle, let us de�ne two adequate functions c(x, y) and s(x, y) and two vector
�elds associated with them (see Fig. 5.4):

Ex

Ey

=
=

cEN − sET

cET + sEN

(5.21)

Figure 5.4: De�nition of local normal and tangential vectors at the dielectric boundaries for : (a) a sine grating
(b) an elliptic hole

The functions c and s must be continuous (at least at the discontinuities of ε) and such that at the
discontinuities of ε, EN be normal to the pro�le of the discontinuity, and ET tangent to it. Moreover,
one must have:

c2 + s2 = 1 ∀(x, y) (5.22)

The above relation can be inversed as:

ET

EN

=
=

cEy − sEx

cEx + sEy

(5.23)

Therefore, we obtain:

εEx = ε(cEN − sET ) (5.24)

so that, according to Laurent's rule and the inverse rule:

JεExK = J1/εK−1JcEN K− JεKJsET K (5.25)

We then get back to Ex and Ey using Eq. 5.23, and get:
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JεExK =
(
J1/εK−1Jc2K + JεKJs2K

)
[Ex] +

(
J1/εK−1 − JεK

)
JcsK [Ey] (5.26)

Using similar arguments for the y coordinate, we �nally �nd:

εFFF =

 εxx εxy

εyx εyy

εzz

 =

 J1/εK−1Jc2K + JεKJs2K
(
J1/εK−1 − JεK

)
JcsK(

J1/εK−1 − JεK
)
JcsK J1/εK−1Js2K + JεKJc2K

JεK

 (5.27)

As expected, εxy and εyx no longer vanish, because the continuity conditions mix the �elds Ex and
Ey. We will now express the eigenvalue equations using this dielectric tensor. Let us de�ne:

M =

(
εxx εxy

εyx εyy

)
(5.28)

and

M−1 =

(
α β

γ δ

)
(5.29)

Maxwell's equations can then be brought down to second-order equations on [Ez] and [Hz] only:

∂2
x[Ez] + ∂2

y [Ez] = −µ0εω
2[Ez] (5.30)

(−∂xδ∂x + ∂xγ∂y + ∂yβ∂x − ∂yα∂y) [Hz] = µω2 [Hz] (5.31)

Under this form, [Ez] and [Hz] can be developed according to Floquet's theorem and Maxwell's
equations take the form of an eigenvalue problem. As above, various forms can be considered, depending
whether one wants to compute k//(ω) or ω(k//). The general recipe for implementation, independent
of the precise way the eigenproblem is derived, is given by Eq. 5.17.

It is worth noticing that, for E polarization, the correct Fourier factorization is just that given by

Ho's method.2 This explains why, even at the early stages of PhC calculations, good convergence was
reached in E polarization while H polarization remained problematic.[19]

5.3.3 Applications of the FFF rules

In order to get M , one needs to compute the 2D Fourier transform of functions c2, s2 and c.s over the
unit cell. This can easily be done numerically using an FFT algorithm (the fact that the functions are
not de�ned at the origin of the plane and the cell boundaries can just be ignored numerically) - and
taking advantage of the fact that:

Jc2K + Js2K = 1 (5.32)

For a given PhC geometry, it is generally easy to �nd suitable functions c and s, either analytically
or numerically (if the pro�le of the holes is arbitrary). Of course, the choice of c and s is not unique
away from the dielectric interfaces. However a "canonical" form generally exists. In the following, we
illustrate this by three examples.

2In his article [9], Ho used the PWE to compute the band structure of a 3D PhC made of spheres: in this case,
of course, the simple use of JεK does not provide good convergence. However, this factorization choice was called Ho's
method in general, and does provide fast convergence when applied to 2D PhCs in E polarization !
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Circular holes We simply de�ne c = cos(θ) and s = sin(θ), where θ is the angle between the x-axis
and the radial unit vector ur. This de�nes c and s everywhere in space. The convergence of the FFF
and Ho's method is compared on Fig. 5.5, for a square lattice PhC with circular holes. The FFF clearly
performs better, with a relative error below 10−3 as soon as M ≥ 5.

Figure 5.5: Normalized frequency of the second band at the X point for a square PhC lattice with circular
holes, made of a dielectric matrix (ε = 12) and air holes with f = 0.4. Ho's method (squares) converges more
slowly than the FFF (circles).

Elliptic holes In the case of elliptic holes of half-axis parameters a and b (Fig. 5.4), we de�ne the
parameter t by:

tan(t) =
a

b
tan(θ) (5.33)

One can then de�ne normal and tangent vectors at the boundaries of the ellipse using:

c = b.cos(t)/
√
b2cos2(t) + a2sin2(t)

s = a.sin(t)/
√
b2cos2(t) + a2sin2(t)

(5.34)

Figure 5.6: Vector �eld of the normal vectors for an elliptic hole. The bold line indicates the dielectric
boundary.

If we extend this de�nition to the whole (x, y) plane, we obtain functions c and s which ful�ll the
above conditions. As an example, we consider the case of a square lattice of elliptic air holes (with
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parameters a = 0.3 and b = 0.4 in units of the crystal lattice, corresponding to a �lling factor f ≈ 0.38)
in a dielectric material (ε = 12). For reference, the vector �eld corresponding to the normal vectors is
shown on Fig. 5.6. As before, we choose Nx = Ny = 2M + 1. Convergence is shown on Fig. 5.7. Here
again, convergence is much faster with the new method: the relative error is below 10−3 for M=7 (225
plane waves), a precision which is not reached by Ho's method even for M=21 (1849 plane waves).

Figure 5.7: Normalized frequency of the second band at the X point for a square PhC lattice with elliptic
holes, as obtained with Ho's method and with the FFF.

Figure 5.8: (a) Geometry of the defect waveguide. The supercell boundaries are indicated by the dotted line.
(b) De�nition of the subcells of the supercell.

Supercell calculations Functions c and s can be de�ned piecewise in subcells of the supercell.
Choice of the subcells is arbitrary as long as their boundaries do not coincide with a discontinuity of
ε. For instance, one can de�ne the subcells as the closest points to the center of each PhC hole (Fig.
5.8), and then de�ne c and s as previously, by centering the (x, y) coordinates at the center of the hole
in each cell. Functions c and s are plotted on Fig. 5.9.

Here, we consider a waveguide displaying an ultra-�at band dispersion. Such bands display low
group velocity and have aroused much interest lately because they open new perspectives for e�cient
manipulation of 'slow' light. Namely, we study a W-0.7 defect waveguide in a triangular PhC of air
holes of radius 0.33 in a medium of index n = 3 (a typical e�ective index value for a silicon membrane).
We use a cladding of 7 holes to avoid interaction between supercells, so that we choose Nx = 2M + 1
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Figure 5.9: Functions c (left) and s (right) for the supercell calculation

and Ny = 14M + 1. Rather than the frequency, we focus on the e�ective mass of photons at the edge
of the Brillouin zone, which characterizes the �atness of the band. A good precision can be essential
since some phenomena (such as the penetration of evanescent waves) vary exponentially with meff .
We choose the convenient following de�nition for meff (getting rid of prefactors):

m−1
eff =

d2u

dk2

The results of calculations, displayed on Fig. 5.10, evidence the di�culty of convergence. With
the FFF, the value of m−1

eff stabilizes around 3.10−4, and oscillations around this value are still as
high as ∼ 10%. Even though the relative error is rather high, the value of meff can be reasonably
inferred. For reference, a typical value for a usual photonic band is two orders of magnitude higher
−for instance, the other (non-�at) guided mode of this waveguide yields m−1

eff ∼ 4.10−2. With Ho's
method, the inverse e�ective mass is strongly over-estimated (notice the scale), typically more than
twice the value obtained above.

Figure 5.10: Inverse e�ective mass (∂2u/∂2k) at the edge of the Brillouin zone for the guided mode of a W-0.7
waveguide with ultra-�at dispersion.
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5.4 Generalization to o�-plane propagation

In all of the previous, the wavevector of the Bloch mode has been taken in-plane, e.g. perpendicular
to the PhC rods. We now consider the case of o�-plane propagation, and write the wavevector as
k = k// + kz. The interest of this situation goes beyond the frame of 2D calculations, as it provides
the ground for 3D scattering matrix calculations. For the problem to be well-de�ned, one needs to
specify two of the three quantities

{
k//,k⊥, ω

}
and look for the third quantity as an eigenvalue of

Maxwell's equation.
E and H polarizations are not de�ned anymore, so that one may no longer work on one �eld. It is

still possible to eliminate H and Ez, and work on Ex and Ey. Usually, derivation of the eigenproblem
is rather tedious. It can be easily found in various forms in the literature [20, 21, 22], although without
an FFF implementation for arbitrary holes shapes. The di�erence between these forms simply stems
from the order in which one gets rids of the �elds of Maxwell's equations to keep only Ex and Ey. In
the following, we explicit the FFF implementation for two popular forms found in literature (keeping
the same notations as in the original articles), and maintain details of the derivation to a minimum.

5.4.1 Moharam form

This form is found in many works using the rigorous coupled-wave analysis (RCWA) method, �rst
introduced by Moharam (see Chapter 6). It can for instance be found in [21] and slight variations
exist,[10, 23, 24] mainly depending on the Fourier factorization rules used. From Maxwell's equations,
one starts by getting rid of the vertical �eld components Ez,Hz, yielding four �rst-order equations on
Ex, Ey,Hx,Hy:

1/k0

∣∣∣∣∣ ∂zEx

∂zEy

=

(
−Kxε

−1Ky Kxε
−1Kx − 1

1−Kyε
−1Ky Kyε

−1Kx

) ∣∣∣∣∣ Hx

Hy

(5.35)

1/k0

∣∣∣∣∣ ∂zHx

∂zHy

=

(
−KxKy − εyx K2

x − εyy

−K2
y + εxx KyKx + εxy

) ∣∣∣∣∣ Ex

Ey

(5.36)

The above are matrix notations. Kx is a diagonal matrix whose (n, n) coe�cient is (kx +Gx,n)2 −
where Gn is the nth reciprocal lattice vector. εxx and others are the components of the FFF dielectric
tensor (5.17), and ε−1 = (εzz)−1 (we omit the zz indices for clarity). The only di�erence with respect
to the standard (non-FFF) formulation found in literature lies in the ε coe�cients of Eq. 5.36. As
expected, all terms of Eq. (5.27) are used in this formulation: since polarizations are no longer de�ned,
all the terms of the FFF dielectric tensor intervene. The FFF form leads to similar convergence
enhancement as in previous sections.

Both equations can then be reduced to a second-order set of equations on Ex, Ey only, yielding:

ω2

(
εxx εxy

εyx εyy

)∣∣∣∣∣ Ex

Ey

= (5.37)(
k2

z +K2
y +Kxε

−1Kxε
xx +Kxε

−1Kyε
yx −KyKx +Kxε

−1Kyε
yy +Kxε

−1Kxε
xy

−KyKx +Kyε
−1Kxε

xx +Kyε
−1Kyε

yx k2
z +K2

x +Kyε
−1Kyε

yy +Kyε
−1Kxε

xy

)∣∣∣∣∣ Ex

Ey

We label this form of the eigenproblem as the Moharam form. It is here written to obtain ω as a
function of {kx, ky, kz}. However, as k0 and kz are independent of other terms, it can also easily be
reordered in order to obtain kz as a function of {kx, ky, ω}.



182 CHAPTER 5. 2D SIMULATION OF PHOTONIC STRUCTURES

Figure 5.11: (left) In-plane band structure of a triangular lattice PhC (εcore = 12, εrods = 1, f = 0.3) in the ΓM
direction for kz = 0. Dashed=H polarization, full=E polarization. (right) Band structure at the M point (e.g.
k// = G0/2) as a function of the o�-plane angle θ = tan(kz/k//). The gap narrows for o�-plane propagation.

As an application of this formula, Fig. 5.11 displays the evolution of the band gap at the edge of
the Brillouin zone (point M) when kz di�ers from 0. For all bands, the frequency increases with kz

because the total wavevector is larger. In addition, the gaps get narrower; for θ > 52o the gap closes.
This is best seen by looking at the distance between consecutive bands (Fig. 5.12).

5.4.2 Tikhodeev form

Another derivation of the eigenvalue problem can be found in [22], using only Laurent's rule. This form,
which we call the Tikhodeev form, will be used in the next chapter for construction of the scattering
matrix. In the Tikhodeev approach, one �rst gets rid of H and works only on E. Then, one expresses
Ez as a function of Ex and Ey. This derivation is slightly di�erent from that of Moharam, hence the
di�erent form of the �nal equations. Including the FFF is straightforward and does not modify the
derivation method, so that we restrict ourselves to giving the resulting eigenproblem with the FFF
rules.

We �rst de�ne the 2N -dimensional column vector of the electric �eld components,

→
E=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ex,G1

...

Ex,GN

Ey,G1

...

Ey,GN

(5.38)

and 2N × 2N matrices

M =

(
M11 M12

M21 M22

)
, N =

(
N11 N12

N21 N22

)
(5.39)

whose components are:
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Figure 5.12: Magnitude of the band gaps (e.g. distance between photonic bands) as a function of kz for the
same structure as previously. The bands are sorted from 1 to 4 by increasing frequency at the M point. When
θ ∼ 52o, the second band crosses the third band and the gap closes.

M11 = µ0ω
2εxx − (ky +Gy)21

M22 = µ0ω
2εyy − (kx +Gx)21

M12 = µ0ω
2εxy + (kx +Gx)(ky +Gy)1

M21 = µ0ω
2εyx + (kx +Gx)(ky +Gy)1

N11 = 1− (kx +Gx)Z−1(kx +Gx)

N22 = 1− (ky +Gy)Z−1(ky +Gy)

N12 = −(kx +Gx)Z−1(ky +Gy)

N21 = −(ky +Gy)Z−1(kx +Gx)

(5.40)

All the above notations should be understood in a matrix sense: 1 is the N ×N identity matrix,
(kx +Gx)2 is a diagonal matrix whose (n, n) coe�cient is (kx +Gx,n)2, and Z is:

Z = −µ0ω
2εzz +

(
(kx +Gx)2 + (ky +Gy)2

)
1 (5.41)

The eigenproblem then takes the form:

M
→
E= k2

zN
→
E (5.42)

In this form, one has to set the value of {kx, ky, ω} and look for the corresponding kz. Unlike the
Moharam form, it can not easily be reordered to look for ω as a function of {kx, ky, kz} because ω
appears in the de�nition of Z.

5.4.3 Comment on the various forms of the eigenproblem

As can be seen, many equivalent forms of the eigenproblem can be derived. One may wonder whether
they all perform equally as regards numerical convergence. From various trials, it appears that all forms
display similar convergence for a given dielectric tensor. In other words, the choice of factorization
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Figure 5.13: Frequency of the �rst H-polarized band at the M point of a triangular lattice PhC (εcore =
12, εrods = 1, f = 0.5), as a function of plane-wave truncation order M. Dashed line: Ho's method. Full line,
points: original PWE with FFF. Full line, circles: Moharam form with FFF.

rules (Ho's method, FFF...) sets the convergence behavior, and the precise form of the eigenproblem
only adds small �uctuations around this convergence curve.

As an illustration, we compare in Fig. 5.13 the original PWE expressed on Hz (Eq. 5.31) to the form
of Moharam (Eq.5.37) restricted to kz = 0. As can be seen, Ho's method identical slow-converging
result with the original and the Moharam forms, while the FFF gives fast-converging and very similar
results for both forms.

A potential advantage of the Tikhodeev form over the Moharam form is that the eigenproblem
is hermitian (when the hermitian form of the FFF is used, see below), which is sometimes a useful
property in numerical implementations. This is not the case of the Moharam form.

5.4.4 FFF and hermiticity

While the FFF provides enhanced convergence, it is worth noticing that it transforms a Hermitian
problem into a non-Hermitian one: the dielectric tensor εFFF of Eq. (5.27) is no longer symmetric
because it involves products of non-commuting matrices.

Some algorithms can take advantage of the symmetry of matrices for faster diagonalization; there-
fore, in some cases it is desirable to recover the hermiticity of the problem. This can be done simply,
by noticing that the arguments used above to obtain εFFF can also lead to its transpose tεFFF . It is
easily checked that, numerically, using εFFF and tεFFF is equivalent. Therefore, and since Maxwell's
equations are linear with ε, hermiticity is straightforwardly recovered by using the following dielectric
tensor:

1
2
(
εFFF +t εFFF

)
(5.43)

This hermitian dielectric tensor can be used with the Moharam and Tikhodeev formulations. It
conserves the fast-converging property of the FFF. It will also be of interest in Chapter 6, when
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checking for energy conservation.

5.5 Conclusion

The 2D plane wave expansion is a simple method for band structure computation. Depending
on its formulation, it can yield the frequency ω or the wavevector k// of Bloch modes.
Numerical convergence of the PWE strongly depends on the form of the dielectric tensor (the
Fourier transform of the dielectric map), and using the FFF form ensures fast convergence.
The PWE method can also handle o�-axis propagation, which will be of interest for 3D
calculations.
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Chapter 6

3D Simulation of photonic structures

In this chapter, we discuss three-dimensional calculations on photonic structures. We �rst present an
overview of various photonics methods, both in 2D and 3D. Then, we introduce an original method
suited for 3D calculations of di�raction losses, which is used throughout the thesis. Finally, a Fourier
modal method is implemented for comparison and validation of the previous method.

6.1 Photonic calculation methods: a quick overview

It is quite delicate to sort the multitude of numerical methods for photonics calculations, since many
criteria can be considered. For instance, one can sort them according to the mathematical tools they
use (�nite di�erences, expansion on a function basis such as a Fourier basis...), to the kind of problems
they can handle (simulation of �nite structures, eigenmodes...), to the kind of objects they use to solve
the equations (total electromagnetic �eld in real space, eigenmodes of sub-structures...) and so on.
Neither of these criteria is ideal or universal.

The following is a personal view of how the most popular methods can be sorted. Needless to
say, it does not claim to be comprehensive, were it only because many groups use personal methods
which do not fall exactly in any category. However, I believe it gives a reasonable overview of the main
popular approaches at solving Maxwell's equations. I restricted this review to rigorous methods, which
solve Maxwell's equations exactly (apart from numerical approximations). Of course, a multitude of
approximate methods also exist, which can perform very well in their domain of validity.

Fig.6.1 gives a schematic view of the classi�cation of methods described below.

6.1.1 Time-domain method - FDTD

Since the 2000's, the Finite Di�erence Time Domain (FDTD) method is by far the most popular
calculation method in the time domain − that is, using Maxwell's equations as a function of time
rather than frequency.

The di�erentials in Maxwell's equations are approximated by �nite di�erences operators. Both the
electric and the magnetic �elds are used, with interlocked discretization grids (both in time and space).
The magnetic �eld at time (t+1/2) is deduced from the electric �eld at time (t), then the electric �eld
at time (t + 1) is deduced from the magnetic �eld at time (t + 1/2), and so on. This initial scheme
was introduced by Yee[1] − numerous re�nements have since then been introduced. In the FDTD,
�elds are excited by placing dipole sources in the structure. For boundary conditions, the structure is
usually surrounded by a region of Perfectly Matched Layers (PMLs).[2] These are numerical material
regions (with either complex refractive index, complex distances, or both) which have the property
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Figure 6.1: Overview of numerical methods.

of absorbing any incoming �eld and hence simulate an in�nite open region. E�cient PMLs are more
demanding to implement but yield less parasitic re�ections of the �eld.

The great advantage of the FDTD is that it can handle any object, with no restriction of shape. One
simply needs to de�ne the object in space and let the code run long enough to reach good numerical
convergence. The FDTD can readily treat propagation problems (such as a wave incoming on a PhC
structure). It can also be used to determine band structures or cavity modes. Currently, it is the only
method suited for calculation of critical phenomena which require very accurate convergence, such as
ultra-high quality factor cavities.

However, the FDTD su�ers from drawbacks. First, implementation of an e�cient 3D FDTD code
is reputedly di�cult. Second, the method is very demanding in terms of calculation power, especially
for 3D calculations of large objects where computer clusters are necessary. Third, while the method
gives access to the value of the �eld, the insight it provides is debatable − for instance, there is no
universal way to distinguish di�erent di�racted orders. In some cases, a description in terms of Bloch
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modes is much preferable.
It is worth noting that the FTDT scheme is quite clever and e�cient: in spite of a discretization

in four dimensions, it is capable of treating extremely complex systems. As will be seen below, "brute
force" discretization in only three dimensions is often prohibitive for spectral methods. While 3D FDTD
calculations are reputed to be time-and resources-consuming, it may be argued that their demands are
after all reasonable considering the basic paradigm of discretization.

In the context of my research, the FDTD seems of limited use. First, large structures should
be simulated since di�raction occurs over long scales. This would probably lead to unacceptable
computation demands − the few simulations of PhC-LEDs that can be found in literature are limited
to a few crystal periods, which is not even su�cient to obtain a coherent behavior. Second, I believe
modal approach gives precious insight for optimization strategies.

For reference, other hybrid time-domain methods also exist, such as the time-domain moments
method (which works on the current density J rather than on the �elds), although they are not
widespread.

6.1.2 Spectral methods

Nearly all methods except the FDTD operate in the frequency domain, assuming an eiωt time-
dependence for the �elds. The time derivative in Maxwell's equation is then changed to a scalar
multiplication, which makes them easier to handle. Spectral domain methods can be divided accord-
ing to their basic strategy for solving Maxwell's equations: either all-numerically or semi-analytically.

A) All-numerical methods

All-numerical (or "brute force") methods discretize the problem in all directions at the same time

and solve the resulting equation. For instance, the 2D plane wave expansion exposed in the previous
chapter falls within this category, as the Maxwell's equations are expanded along x and y at the same
time. This approach typically results in a straightforward formulation at the expense of a heavier
computation burden.

a) Finite Di�erences and others It is of course possible to solve Maxwell's equations in real
space directly, for instance by �nite di�erences. Finite di�erences approximate di�erential operators
by discrete di�erences. For PhCs, this approach is not very popular because it makes no use of
the periodicity of the problem. Some results have been reported for fast-converging band structure
calculations in 2D PhCs, but they require an adaptive mesh (�ner close to the dielectric boundaries)
which limits their versatility. For non-periodic structures, such as a random set of dielectric rods, �nite
di�erences are sometimes used and have the advantage of being very simple to implement.

Other conventional methods for solving di�erential equations can also be used: Finite Elements,
Method of Moments... They are traditionally more complex and more e�cient numerically than �nite
di�erences. However, in the context of photonics, if one can a�ord complexity, one is usually better
o� with more speci�c methods than these generic approaches.

b) Plane Wave Expansion The Plane Wave Expansion (PWE) is described in detail in the pre-
vious Chapter. It consists in expanding the �eld in a Fourier basis and solving the eigenproblem
corresponding to Maxwell's equations. It is therefore a straightforward method for band structure cal-
culations in strictly periodic structures − both in 2D, as in the previous chapter, and for 3D crystals
such as woodpiles or inverted opals. 2D PWE is also often used by 3D modal methods for calculation
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of 2D eigenmodes (see below). Moreover, use of the FFF rules signi�cantly enhances the convergence
properties of the PWE.

For non-periodic 2D problems such as defect problems (PhC waveguides or cavities), the PWE can
be used with a supercell approach (see previous chapter). This is easily implemented, and reasonably
e�cient.

3D problems which are only periodic in 2 dimensions (typically, 2D PhCs embedded in planar
waveguides) can also be treated with a supercell, by stacking the object vertically (Fig. 6.2). For
instance, the popular software package MIT-PBG uses this approach, and solves the eigenproblem
e�ciently using optimized algorithms for �nding a few eigenvalues.[3] However, this assumes that all
�elds are decaying far enough from the waveguide in the vertical direction, so that all supercells are
independent. Calculations of leaky modes above the light cone are therefore not possible (or at least not
accurate), because the modes become propagative outside of the waveguide and leak though supercells.
It has also been suggested to introduce perfectly matched layers to isolate the supercells.[4] However,
this introduces serious complications, such as the appearance of spurious modes localized in the PMLs
which have to be discriminated from actual modes.

Figure 6.2: a) A supercell enables treatment of 2D PhCs embedded in planar waveguides. b) If the �elds are
leaky outside the waveguide, PMLs can be inserted to isolate the supercells.

c) Multipole Expansion While the PWE is a good general-purpose method, its main strength (a
straightforward decomposition in a Fourier basis) can also be a weakness. Plane waves are not well
suited to increase accuracy in a speci�c region of space, which can be necessary for objects with a
complex geometry (either because of a complex non-circular shape or a non-periodic arrangement).
Therefore, other basis functions can be considered for expansion of the �eld. A e�cient choice, found
in the literature under the names Multiple Multipole Expansion, Generalized Multipole Ex-
pansion,Multiple-Scattering Method orDiscrete Sources Method, consists in choosing a basis
of spatial Bessel and Hankel functions. Many functions with multiple origins can be used to increase
the accuracy, and the origins can be localized close to the regions where accuracy is needed. This is
de�nitely a more complex method which requires far more programming involvement than the PWE,
but it proves e�cient for di�cult calculation such as plasmonic modes in metallic PhCs [5].

Another implementation using a Hankel-Bessel basis is detailed in [6], where the structure is made
of rods with arbitrary shape and position. In [7] it is applied to the study defect modes in 2D PhCs of
�nite extension without using a supercell.

Variations of the multipole expansion also use other functions analogous to Bessel/Hankel functions,
for instance spherical harmonics. The principle is the same as above, but spherical symmetry is
privileged over cylindrical symmetry. This choice is well suited for scattering by random 3D particles,
in the context of light scattering for instance.[8]
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d) Wannier Functions Wannier functions are yet another projection basis for Bloch-modes, inspired
by their equivalent in electronic structures. Their main feature is their localization in space. They have
been proposed for calculations in 2D PhC circuits incorporating waveguides, bends and cavities. In
order to build the Wannier functions, one �rst �nds the Bloch modes of an in�nite PhC (for instance
with the PWE or another of the above methods). From these, a basis of Wannier function is built.
This basis is subsequently used to compute the �elds of more complex PhC systems, such as defects,
waveguides and PhC circuits in general. As the Wannier functions are localized in space, they constitute
an e�cient basis for these systems where the �eld is localized in the defect regions. They claim to
compete with multipole expansions in the case of objects with complex shape. A thorough review of
photonic Wannier functions can be found in Ref. [9].

e) Andreani Method This method, introduced by Andreani et al., is adapted to 3D Bloch modes
calculations of 2D PhCs in planar waveguides.[10] It uses a plane-wave expansion in the two periodic
(horizontal, x and y) directions and a basis of guided modes in the vertical (z) direction. More precisely,
the actual PhC waveguide is �rst approximated by an e�ective waveguide whose index depends only
on z and is averaged along x and y. The guided modes of this waveguide are computed −this is a
simple 1D problem− and are then used as a basis for the decomposition of Bloch modes. As noted
by Andreani, "The guided modes of the 'e�ective' waveguide represent an orthonormal set of states,

however the basis set is not complete since the leaky modes of the waveguide are not included." Because
of this, this method is actually not strictly rigorous. Notably, losses above the light line are not
obtained immediately, but can be deduced as a perturbation by coupling the obtained solutions to the
continuum of radiative modes through Fermi's golden rule. This approximation is obviously only valid
if the loss of the modes is small − this is not a problem for most propagative modes, but calculation
of purely evanescent modes in gaps is impossible.

On the other hand, the basis of "e�ective guided modes" is well suited to expand the vertical pro�le
of Bloch modes, since it is naturally adapted to the vertical pro�le of the waveguide. Therefore, only a
few terms are needed to expand the �elds, and computations are fast. A supercell can be used in the
horizontal directions to treat the case of defects (PhC waveguides or cavities). The good computation
speed of the method enabled Gerace and Andreani to investigate the e�ect of disorder on loss in PhC
waveguides, by averaging their calculations over numerous con�gurations with random disorder. [11]

f) Hybrid Plane Wave/Finite Di�erences Method During this thesis, I developed a 3D method
adapted to calculation of leaky Bloch modes in 2D PhCs embedded in planar waveguides. It consists
in a plane-wave expansion in the two periodic (horizontal) directions, and a �nite di�erence expansion
in the non-periodic (vertical) direction. Its main originality is to naturally take into account radiation
losses thanks to transparent boundary conditions, without resorting to a supercell or perfectly matched
layers. This method will be exposed in greater details in section 6.2. It su�ers from the main drawback
of 3D all-numerical methods, their need for computation power. On the other hand, it has proved
quite e�cient in treating the strongly multimode structures investigated in this thesis.

B) Semi-analytical methods

Unlike all-numerical methods, semi-analytical methods partially solve the problems along some direc-
tions, and then "integrate" the resulting solutions along the remaining direction (which we shall call
analytical direction). This last integration is usually performed numerically as well, but deserves the
"analytical" quali�cation in the sense that one takes advantage of the propagation properties speci�c
to the electromagnetic �eld − rather than considering Maxwell's equations as any standard set of par-
tial di�erential equation. Semi-analytical methods are usually more sophisticated to implement than
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all-numerical methods, but less demanding in terms of computation power.
Most of these methods originate from the �eld of di�ractive optics, or grating theory. A more

thorough presentation of grating theories can be found in [12], and an up-to-date review including the
latest developments of the theory in [13]. Following a well-established tradition in this �eld, there have
been numerous heated debates between proponents of each grating method to impose its supremacy.[14]
There is now a consensus that each method can be the best for a particular set of problems − it is
however true that some are more versatile than others.

a) Integral Method The integral method, introduced in the 1960s by Maystre and others, di�ers
from other spectral methods because, instead of using Maxwell's equations in the form of partial
di�erential equations, it recasts them as a system of coupled linear integral equations.[15, 12] In other
words, rather than numerically integrating the equations in the vertical direction, they are directly
expressed in integral form. This method is reputedly powerful, but its mathematical background and
implementation are heavier than that of di�erential methods. For instance, it was used by Popov and
Neviere as a reference to assess the fast convergence of the FFF (see Chapter 5) in their original paper
[16].

Stemming from the �eld of di�ractive optics, it is mostly used in 1D grating calculations. However,
adaptation to 2D PhCs has been proposed to access the transmission of a �nite PhC.[17] In this
case, the PhC is periodic (in�nite) in the horizontal direction and can be non-periodic in the vertical
direction, for instance because it is made of a �nite number of periods. Actually, this just consists
in viewing the PhC as a 1D grating with a complicated vertical pro�le made of the PhC rods (see
Fig. 6.3b). This approach was later extended to compute the Bloch modes of an in�nite 2D PhC: in
that case, the integral method is used to obtain the scattering matrix (see below for a general de�nition
of scattering matrices) of one PhC layer, and the poles of this matrix correspond to the Bloch modes
of the in�nite PhC.[18]

To my knowledge, 3D problems such as 2D PhCs in a planar structure have not been tackled.

b) Classical Di�erential Method The classical di�erential method is essentially used in the con-
text of grating theory, to compute the di�raction e�ciency of 1D gratings. Unlike other di�erential
methods, it does not "slice" the grating in the vertical direction, but considers its actual pro�le.
Quoting Popov et al. [19], "The classical di�erential method uses Fourier basis in x with numerical

integration of a �nite set of ordinary di�erential equations in z". These di�erential equations in z
correspond to the vertical pro�le of the grating and are integrated numerically (typically, using a
Runge-Kutta algorithm). This is an advantage for gratings with smooth boundaries, because the ac-
tual shape can be considered. It also allows use of the FFF rules for smooth gratings, as in [16]. On
the other hand, numerical integration along z requires heavier calculations than other methods.

The classical di�erential method has also been proposed for calculations in 2D photonic crystals.[20]
As for the integral method, the principle is to consider the PhC as complex grating. Likewise, 3D PhCs
and 2D PhCs in planar structures can be treated, using a Fourier basis in the x − y directions and
numerical integration along z.[13] Again, due to the numerical integration, this approach is charac-
terized by a heavier numerical burden than some other semi-analytical methods − such as the FMM
(see below). On the other hand, it enables use of the FFF in any geometry (even for anisotropic
materials [21]) whereas the FMM is limited by the staircase approximation.

A very complete review of the classical di�erential method can be found in [13].

All remaining semi-analytical methods can be classi�ed as Modal Methods (or Eigenmode
Expansion Methods, or Mode Matching Methods). Their basic principle is to slice the object
(for instance by using the staircase approximation) along the analytical direction, obtain a basis of
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the electromagnetic �eld in each slice, and match the boundary conditions between di�erent slices to
express Maxwell's equation for the whole object. This usually results in a description of the object
by a matrix such as a Scattering matrix (see section 6.3 for more details). Depending on the method,
there can be di�erences in the choice of slices, in the basis in each slice, and in the way this basis is
computed. Fig. 6.3 illustrates possible slicing of objects in the particular case of the Fourier Modal
Method described below − other methods use similar slicing.

c) Fourier Modal Method The Fourier Modal Method (FMM) is very popular, probably thanks
to its great versatility. Historically, the method is hard to trace but some of the �rst implementations
date back from the mid-1960s ([22], see also [23]). It proceeds as follows:

i) The object is divided in slices along the analytical direction −say z− and approximated by a
staircase pro�le so that the index pro�le is constant along z in each slice. The index pro�le can still
depend on x (for instance, if one studies a 1D grating) or on x and y (if one studies a 2D PhC or
another complex object). Usually, one chooses the "longest" dimension of the object for the z direction,
so that determination of the eigenmodes in the other direction(s) is fast.

ii) The eigenmodes of each slice are found in a Fourier basis − hence the name of the method. The
�eld in the total object can now be described as a superposition of the eigenmodes in each slice.

iii) Matching the continuity conditions at the interface between slices imposes linear equations on
the coe�cients of the eigenmodes in each slice. This set of equations is cast in the form of a matrix
(usually a Scattering matrix). All the properties of the object are then contained in the matrix. For
instance, re�ectivity/transmission properties can be derived immediately, and the poles of the matrix
correspond to the eigenmodes of the object.

In a sense, the FMM can be seen as a restriction of the Classical Di�erential Method to gratings
with staircase pro�les, in which case solving the di�erential equation along z amounts to �nding the
eigenmodes in each slice.

The FMM is also often called Rigorous Coupled Wave Analysis (RCWA), a name introduced
by Moharam and Gaylord, [24, 25, 26] and Coupled Wave Method. In addition, many groups use
the same method but give it other (and sometimes inaccurate) names. It is sometimes designated
as a Scattering Matrix algorithm (for instance by Whittaker and Culshaw), although in principle
a S-matrix can make use of other bases than a Fourier basis, and can be derived by other methods
than the FMM (Classical Di�erential and Integral methods for instance [18]).1 It has even been called
a Transfer Matrix algorithm, even though a scattering matrix was used (see the distinction between
S-matrix, T-matrix and others in section 6.3 below).[27] The name RCWA is the most widespread
in the �eld of grating optics, while the term S-matrix can be found more frequently for multilayer
structure with photonic crystals.

The e�ciency of the FMM has sometimes been debated in the past, notably because of its con-
vergence di�culties for certain polarizations compared to other semi-analytical methods. However,
implementation of the FFF rules seems to have solved most of these di�culties. Use of the staircase
approximation can still represent a limitation of this method, as shown in [19].

The main strength of the FMM is that it can treat a great variety of problems e�ciently (see
Fig. 6.3 for a sketch of the slices de�nition in various situations). It was initially used to study
di�raction gratings; in which case the eigenmode problem is cast in one dimension (Fig 6.3a). Just as
for the integral method and the classical di�erential method, 2D PhCs can also be treated this way
(considering the PhC as a complex grating). 3D problems, such as a 2D PhCs in a planar structure,
can also be treated; the eigenmode problem is then cast in 2 dimensions.

1One may argue that, for lamellar geometries, there is no di�erence between the Classical Di�erential Method and
the FMM, so that the name S-matrix should be preferred over those.
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Figure 6.3: Slices de�nition in the FMM for various objects. In each case, z is the analytical direction. a) a
sine grating is decomposed using a staircase approximation, each of the stairs is a slice where eigenmodes are
computed by a 1D PWE. Typical boundary conditions consist in one incoming plane wave (full line arrow).
The calculation gives access to the di�raction e�ciencies in various orders (dashed arrows). b) In the same
way, a 2D PhC (here, in�nite along x and made of two rows along z) can be seen as a 1D grating and treated
as previously. c) A 2D PhC embedded in a planar waveguide can be treated as above, using 4 slices in the
present case (air, patterned region, substrate region, air). The only change is that the PWE in each slice is
now 2-dimensional. d) A non-periodic object needs introduction of PMLs and use of a supercell (the object is
periodized vertically). The analytic direction is now along the "horizontal" direction: the vertical dotted lines
correspond to the slices. The incoming boundary condition is here a guided mode, and the computation gives
access to the scattering losses (dashed arrows) and transmission (dashed guided mode). Of course, each slice
can also be y-dependent in the case of a fully 3D object.

Finally, the FMM can also deal with strictly non-periodic problems like a �nite PhC structure (see
Fig.6.3 d).[28] This is done by use of a supercell and perfectly matched layers, like in some all-numerical
methods, but the lower computation demands of the FMM enable treatment of very complex objects
with good convergence. At this time, the FMM is probably the only method which may claim to
compete with the FDTD for very accurate calculations on such objects, such as optical cavities with
ultra-high quality factor. On the other hand, it must be acknowledged that the introduction of PMLs
greatly increases the complexity of implementation − especially for e�cient PMLs, which are a �eld
of study by themselves.[29] Another remarkable advantage of this formulation of the FMM is that
determination of eigenmodes takes the form of an eigenvalue problem − whereas usually, one has to
�nd the pole of a scattering matrix, which is way more tedious and less systematic.

d) Classical Modal Method In the Classical Modal Method, or Modal Method by Modal
Expansion (MMME), one avoids use of a Fourier basis in each slice. Rather, one directly uses the
exact, analytical basis of eigenmodes in each slice (e.g. the solution of Maxwell's equations in the slice
if it is considered in�nitely high in the analytical direction). Of course, this is not always possible
since the exact basis of eigenstates is only known for a few geometries − namely, lamellar gratings
and gratings with sinusoidally-varying index. Use of the staircase approximation somehow extends the
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domain of validity of this method, but it still remains limited to a few 1D gratings. When it can be
used, the classical modal method has a better convergence than the FMM − see [30] for a comparison
of the two methods, and [19] for a comparison with the classical di�erential method with FFF rules.

e) C-method The C-method, or Method of Chandezon after its author, is a coordinate trans-
formation method.[31] It uses a nonorthogonal curvilinear system in which the surface of the grating
is 'planar'. Quoting Granet, Chandezon and Coudert[32]: "Everything happens as if the interface was
plane, but the media become nonhomogeneous and nonisotropic". This greatly simpli�es the formula-
tion of boundary conditions at the grating interface, but writing Maxwell's equations in this coordinate
system becomes complicated. Maxwell's equations are developed in a Fourier basis and a scattering
matrix is built, like in the FMM. Obviously, this method is especially well suited for some grating
geometries, such as multicoated conformal surfaces.

Other coordinate transformation methods also exist, such as the Conformal Mapping technique.[33]

f) Method of lines In the Method of Lines, the eigenmodes in each slice are simply found by �nite
di�erences. Each slice is characterized by a matrix called impedance matrix (analogous to a scattering
matrix), and combination of these matrices gives the total impedance matrix of the structure.[34]
This method is mainly adapted to waveguide calculations where the cross-section of the waveguide
varies piecewise along the propagation direction. It was also used for grating calculations by Lalanne
and Hugonin who showed that good convergence can be reached for metallic gratings, when using a
speci�c form of the �nite di�erence operators.[35]. Finally, Ref. [36] presents the result of the COST268
coordinate action and presents a numerical comparison of the method of lines, the FDTD and several
modal method implementations (FMM and Eigenmode expansion method, see below), where a Bragg
grating in a planar waveguide is studied. The main conclusion of this benchmark is the consistency
between the results obtained by all methods.

g) Eigenmodes Expansion Method / Bloch Mode basis method The Eigenmodes expansion
method is rather close in its concept to the FMM. The structure of interest is again divided in slices
of constant pro�le, perpendicular to the analytical direction. The eigenmodes of each slice are then
found, and connection between the slices yields the scattering matrix of the structure, as for the
FMM. However the eigenmodes of each layer are not projected in a Fourier basis. Rather, in each
layer, they are found by solving the transcendent equation of the relation dispersion of this layer. In
very simple cases (when the structure of each slice is very simple) this transcendent relation can be
expressed explicitly. Otherwise, one can resort to a Transfer (or Scattering) matrix in each slice2 to
solve the transcendent equation and �nd the eigenmodes. In general, PMLs have to be placed around
the structure to properly account for radiated �elds, which makes implementation more complex.

This method is well adapted for structures of �nite size such as VCSELs or �nite Bragg gratings
as in Fig. 6.3d. The freely available software package CamFR uses this approach (Refs. [37, 38]).

The Bloch mode basis method is a rather recent method which deals speci�cally with photonic
crystals, and can be seen as an extension of the Eigenmode Expansion Method. It emerges from the
realization that Bloch modes are a relevant object to describe propagation in photonic crystals. Its
main goal is to deal with complicated 2D photonic circuits. First, the circuit is divided in elementary
PhC objects (such as waveguides, bends...). The Bloch modes of each object are then computed by one
of the numerical methods already described, which is not a heavy task since the object is basic. Then,
the elementary objects are connected. Propagation in each object and interface between objects are

2This matrix then has a reduced dimensionality with respect to the S-matrix of the total structure, and its analytical
direction is perpendicular to that of the total structure.
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described by Scattering matrices expressed in the Bloch modes bases. In other word, this method is a
Scattering matrix method where the elementary objects are simple PhC structures − rather than the
slices used in other modal methods − and where the projection basis is made of Bloch modes.[39, 40]

6.1.3 Green's function

In general, Green's functions are a mathematical tool which can be used to obtain analytical expressions
of quantities related to di�erential equations. In the context of photonics, they are usually not used
to solve Maxwell's equations themselves, but rather to obtain useful quantities which derive from the
electromagnetic �eld.

Typically, the electromagnetic �eld (or a basis of �elds) is �rst computed by another method − for
instance the FDTD. Then, this �eld is used to obtain Green's functions which give access to derived
quantities. Alternately, the di�erential equation de�ning the Green's function can be solved directly
using one of the methods above, but this is less frequent.[41]

Green's functions can be used to compute the local density of states or the spontaneous emission
rate of dipoles (Purcell e�ect), which are immediately given by the unperturbed Green's functions.[42]
Moreover, the unperturbed Green's function can serve as a basis to obtain Green's functions of per-
turbed systems (due to disorder, defects in PhCs...). Hughes et al. recently applied this approach to
the calculation of cavity electrodynamics e�ects (strong coupling) [43, 44] and disorder-related scatter-
ing and losses in PhC waveguides[44]. Remarkably, this last result explicitly gives the e�ect of group
velocity on losses.

In summary, Green's functions methods are most useful to study photon propagation in complex
structured dielectrics and quantum optics e�ects, and usually come in combination with one of the
previous calculation methods.

6.1.4 Choice of a method

In summary, the choice of a method should be dictated by two criteria : the problem of
interest and the intended involvement in implementation. A speci�c problem is usually
best tackled by a given method; on the other hand, a versatile method which will perform
reasonably well in a wide range of problems may be preferable. Moreover, the most e�cient
methods require more implementation e�ort, especially if one wants to include additional
re�nement (very e�cient PMLs, FFF rules...). One should keep in mind this tradeo� between
the convergence speed, versatility and ease of implementation of a code.
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6.2 Hybrid Plane Wave/Finite Di�erences method

6.2.1 Principle of the hybrid method

The basic motivation behind my developing this hybrid method is the fact that, while 3D plane-
wave expansions (such as the MIT-PBG toolbox) are simple and powerful enough for Bloch modes
calculations of 2D PhCs embedded in planar waveguides, they fail to describe di�raction losses above
the light line because of the boundary conditions they assume, namely decaying �elds far from the
waveguide. Attempts at dodging this di�culty by introducing PMLs raise other di�culties, such as
spurious modes.[4]

The alternative is then to avoid the use of the supercell approach in the z direction. However, this
imposes giving up the use of a plane wave basis. In the hybrid method, Bloch modes are therefore
Fourier transformed in the x and y directions, while their z dependence remains in real space and is
treated with �nite di�erences. Maxwell's equations take the form of an eigenproblem on a large but
sparse matrix. In order to take into account di�raction losses, transparent boundary conditions are
introduced.

6.2.2 Implementation of the hybrid method

Basic implementation

According to the Floquet-Bloch theorem, the Bloch modes of a multilayer structure with a 2D PhC
are of the form:

E(z, r) =
∑
G∈RL

EG(z)exp
(
i
(
k// +G

)
· r
)

=
∑
G

ei(kx+Gx)xei(ky+Gy)y

∣∣∣∣∣∣∣
EG

x (z)
EG

y (z)
EG

z (z)

(6.1)

We also introduce c and s as:

c = kx/k// s = ky/k// (6.2)

The dielectric permittivity of the material can be written:

ε(z) = ε0(z) +
∑
G

εG(z).ei(Gxx+Gyy) (6.3)

Starting from Maxwell's equations:

∇×H = −iωεE (6.4)

∇×E = iωµ0H (6.5)

We get rid of H to get a system of second-order equations on E only:

∇×∇×E =

∣∣∣∣∣∣∣
−∂2
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−∂2
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= µ0εω
2
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Ex

Ey

Ez

(6.6)
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We now perform the Fourier expansion, and approximate derivatives in the z direction by �nite
di�erences. Therefore, for a given reciprocal lattice vector G, di�erential operators on a function f
become:

∂xf → i(kx +Gx)f
∂yf → i(kx +Gx)f
∂zf → (fn+1 − fn)/∆z

(6.7)

After inserting these forms of ε and E in Eq. 6.6, and collecting terms with the same exponential
factor, we are led to a system of 3 equations for each value of G:

(−(ky +Gy)2 + ∂2
z )EG

x + (kx +Gx)(ky +Gy)EG
y − i(kx +Gx)∂zE

G
z + k2

0

∑
G'

εG−G'E
G′
x = 0

(kx +Gx)(ky +Gy)EG
x + (−(kx +Gx)2 + ∂2

z )EG
y − i(ky +Gy)∂zE

G
z + k2

0

∑
G'

εG−G'E
G′
y = 0

−i(kx +Gx)∂zE
G
x − i(ky +Gy)∂zE

G
y − ((kx +Gx)2 + (ky +Gy)2)EG

z + k2
0

∑
G'

εG−G'E
G′
z = 0

(6.8)
Each of these terms ∂z, ∂2

z is written in �nite di�erences form: we discretize the vertical direction
with Nz points. We also retain an arbitrary number of terms in the series - say Nx (resp. Ny) terms
in the x (y) direction. We de�ne the total number of plane wave harmonics NPW = 2M + 1 = NxNy.
Factorizing the terms of Eq. 6.8 by k//, the system can be expressed in matrix form as:

A0X + k//A1X = k2
//A3X where X =

∣∣∣∣∣∣∣
Ex

Ey

Ez

(6.9)

Here A0, A1 and A2 are matrices containing the coe�cients of 6.8. Making use of Eq. 6.2, their
expression is:

A0 =

 −G2
y + ∂2

z + ε GxGy −i.Gx∂z

GxGy −G2
x + ∂2

z + ε −i.Gy∂z

−i.Gx∂z −i.Gy∂z ε



A1 =

 −2sGy cGy + sGx −ic∂z

cGy + sGx −2cGx −is∂z

−ic∂z −is∂z −2cGx − 2sGy



A2 =

 s2 −c.s 0
−c.s c2 0

0 0 1



(6.10)

In the above, each element is a NPWNz by NPWNz matrix. For instance, GxGy is a diagonal
matrix, where each diagonal NzxNz sub-block corresponds to a given G and is a diagonal matrix with
a constant coe�cient GxGy:
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GxGy =



. . .

GxGy

. . .

G′
xG

′
y

. . .


(6.11)

Likewise, ε is roughly a Toeplitz matrix. Each sub-block of size NzxNz corresponds to two RL
vectors G andG', and is a diagonal matrix with coe�cient ε(G − G'). This coe�cient gives the
z-pro�le of the harmonic G−G′ of ε and varies along the diagonal for a given sub-block:

ε =



. . .

ε(0) . . . ε(G−G')
. . .

ε(G'−G) . . . ε(0)
. . .


with ε(G−G') =


εG−G'
nz=1

. . .

εG−G'
nz=Nz
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(6.12)

Finally, ∂z and ∂2
z represent the �nite di�erences operator which discretize derivative. In our case

however, choice of the discretization scheme is not arbitrary. In general, it is well known that derivative
operators can be written in several ways with �nite di�erences (two- or three-points derivatives...).
Three-point derivatives are usually considered to lead to faster convergence, even though this is not
a systematic result. In our case however, numerical convergence requires that the problem be cast in
hermitian form. For this reason, we have to use two-points derivatives for the ∂z terms. These must be
backward derivatives for upper terms of A0 (e.g. terms located above the diagonal of A0) and forward

derivatives for lower terms of A0.3 With this choice, A0 remains hermitian. On the other hand, ∂2
z is

naturally symmetric. In summary, we have:

∂2
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(6.13)

3Or the contrary: forward for upper terms and backward for lower terms. The goal is to obtain a hermitian matrix.
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We still have to solve Eq. 6.9, which is a Quadratic Eigenvalue Problem. As has already been done
in Chapter 5 in the context of 2D plane wave expansion, it can be rewritten in the form of a usual
eigenvalue problem using a canonical transformation. We de�ne:

A =

(
A1 A0

1 0

)
, B =

(
A2 0
0 1

)
, Y =

∣∣∣∣∣ k//X

X
(6.14)

The problem then takes the form of a standard eigenvalue problem with doubled size:

AY = k//BY (6.15)

Solving this problem yields the Bloch modes of the structure. Its �nal size is (6NPWNz)2.

Transparent boundary conditions

In the above discussion, we have postponed the issue of boundary conditions. In a �nite di�erences
scheme, they are carried by the outer points of the vertical mesh (say z = 0 at the bottom of the
structure, and z = L at the top of the structure). They are typically of a Dirichlet or Von Neumann
form, which are both easy to implement. However, in our case, such a choice is not possible. Of course,
for strictly guided Bloch modes, it would be possible to approximate the exponential decay of the �eld
by taking a large enough computation box and letting E(0) = E(L) = 0. This is routinely done for
simple FD calculations, such as computation of a guided mode in a slab or of an electronic level in a
quantum well. The small error introduced by approximating the BCs is acceptable − it amounts to
embedding the actual quantum well in a wide quantum well of in�nite height.

However, we are mainly interested in leaky modes for which at least one harmonic is propagative
and thus does not decay away from the structure. We introduce the z-wavevector of the harmonic in
the substrate of index ns:

kG
z =

√
n2

sk
2
0 −

∣∣k// +G
∣∣2 (6.16)

In general, the actual z-dependence of harmonic G is then:

EG ∼ exp(i · z · kG
z ) (6.17)

Which translates into the following boundary condition at z = 0:

EG(z = dz) = EG(z = 0) · exp(i · dz · kG
z ) (6.18)

Similar boundary conditions hold in the superstrate at z = L. In the above de�nition, the sign of
kG

z is such that all leaky harmonics decay away from the structure. For propagative harmonics, the
sign should correspond to outgoing waves, e.g. Re(kG

z ) > 0 in the superstrate and Re(kG
z ) < 0 in

the substrate. This sign convention is naturally met if k// is real, but generally needs to be enforced
'manually' when the square root of an imaginary number is taken.

The di�culty here is that these BC depend on k//, which we are precisely trying to determine as
a solution of the eigenproblem. In order to solve this last hurdle, we introduce an iterative scheme.
We start from a trial value of k//. We write the BC given by Eq. 6.18 corresponding to this trial
value; thus, these BC are only approximate. We can then solve the eigenproblem of Eq. 6.15, which
yields a corrected value of k//. We reinject this value in the boundary conditions, and iterate until the
correction to k// is close enough to zero. At this point, the BC are correct because they incorporate
the correct value of k//: the solution of Maxwell's equations is then rigorous.
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In practice, this iterative scheme is fortunately e�cient. Starting from some trial value of k// inside
the �rst Brillouin zone, the �rst iteration gives us a choice of several possible solutions of Eq. 6.15, in
the vicinity of this trial value. Several criteria can be used to pick one of these (value of k//, symmetry
properties of the mode...). The subsequent iterative scheme typically leads to corrections smaller than
10−5 on k// within 3 to 5 iterations.

The main drawback of these boundary conditions is that they can only be applied to one mode at a
time. In other words, although Eq. 6.15 in principle applies to all Bloch modes, the iterative procedure
can only be followed for one value of k// at a time. Therefore, when convergence is reached, only one
solution of Eq. 6.15 has proper boundary conditions and is correct. However, the inaccuracy of the
other solutions turns out to be rather small in many cases of interest. This property will be discussed
in more details below.

Introduction of the FFF

Introducing the FFF in this method is straightforward, because εE appears directly in the �nal equation
(it is simply the last term of Eq. 6.6). Following the prescriptions of Chapter 5, we simply replace the
dielectric tensor:

ε =

 εzz

εzz

εzz

 → εFFF =

 εxx εxy

εyx εyy

εzz

 (6.19)

This simply modi�es matrix A0 to:

A0 =

 −G2
y + ∂2

z + εxx GxGy + εxy −i.Gx∂z

GxGy + εyx −G2
x + ∂2

z + εyy −i.Gy∂z

−i.Gx∂z −i.Gy∂z εzz

 (6.20)

Summary

The procedure of the hybrid method is now fully described. It can be summarized as follows:

• Obtain ε with the FFF, and write A0, A1 and A2

• Pick a trial value of k// and use it to express the (approximate) boundary conditions at the
extremities of A0, A1 and A2

• Form the double-sized matrices A and B and solve the resulting eigenvalue problem (Eq.6.15)
• Deduce the correction to the trial value of k//, and reiterate the procedure with the new boundary
conditions imposed by this correction

6.2.3 Applications

Multimode calculations

Many examples of Bloch mode calculations using the hybrid method can be found in this thesis.
Whenever a strongly multimode system is investigated, the method proves convenient. Indeed, the
general procedure to obtain the band structure of a 3D multimode system consists in �nding each
band individually (for instance, by looking for all the poles of the scattering matrix of the system). In
principle, this is also true with the hybrid method because the transparent boundary conditions are
only valid for one Bloch mode at a time.
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However, it is well-known that �nite di�erences are in general robust with respect to boundary
conditions. For instance, when solving for guided modes E(x) of a dielectric slab (or electronic wave-
functions Ψ(x) of a quantum well), the proper BCs in a computation box of �nite size are of the
form E(xlim) ∼ exp(−kx). However, one often approximates these by Dirichlet conditions of the type
E(xlim) = 0. The eigenvalue problem nevertheless converges, with a minute error on the eigenvalue
(wavevector or energy) if the computation box is large enough. This is often considered as legitimate
because the �eld decays exponentially, so that a small error on the BCs 'should not matter'. However,
the same argument clearly fails with other methods such as the shooting method: on the contrary, the
BCs completely determine the �eld and even a small error in these leads to wrong �eld pro�les (this
is precisely how shooting methods work).

The reason is that in the latter case, the �eld is built by propagating the BCs. On the other hand,
for �nite di�erences, the di�erential equation has to be met at all points in space simultaneously:
intuitively, points far enough from the boundaries 'forget' their e�ect and are more immune to an error
in BCs. Of course, this property comes at a cost in terms of computational burden: in our example,
the memory occupancy for a discretization of size N would be O(N) with �nite di�erences, against
O(1) for a shooting method or a transfer matrix.

This property is conserved in the hybrid method: in principle, only the eigenvalue of Eq. 6.15
closest to the desired solution should be considered during the iterative scheme. However, a few other
eigenvalues can be computed at the same time: in general, they are very close to the actual eigenvalue
of other Bloch modes. This means that, when a strongly multimode structure is computed, one can
get a good estimate of the total band structure with only one or a few calculations, each of which
yields the dispersion of several Bloch modes. In practice, the position of these bands in the dispersion
diagrams zone is usually within one to a few percents of the converged value. As regards their loss
rate, the conservation of energy is met with a precision in the order of 10% in all the light cone. Of
course, if one wants to know precisely the properties of a given band, the full calculation for this band
has to be performed.

Convergence

As regards convergence against the number of plane wave, the hybrid method's behavior is set by
the Fourier factorization used in the plane wave expansion. The convergence therefore bene�ts from
the use of the FFF. This is fortunate, because the 3D discretization of the problem clearly puts a
severe limit on the plane waves cuto�. Use of the FFF enables a good accuracy with relatively low
plane-wave cuto�s. Besides, the structures generally considered in this thesis are of weak to moderate
photonic strength: the PhC usually isn't etched through the whole structure. In this regime, the cuto�
can typically be lower than in the case of strong photonic interaction (as for instance in a membrane
completely perforated by a PhC).

Figure 6.4 compares the convergence with plane-wave cuto�M (de�ned as 2M +1 = NxNy), using
the method of Ho and the FFF in the PWE, for a structure of moderate photonic strength. The usual
trends of Chapter 5 can be observed. With the FFF, the relative error on neff is less than 5.10−5 for
M ≥ 5 and the relative error on k′′ is less than 3.10−3 for M ≥ 3. This result is rather general, and
most calculations on light-extracting structures are well described using M = 3 e.g. 49 plane waves.

The convergence also depends on discretization in the z direction. In this case, the error decreases
monotonously with �ner vertical step dz, as is usual with �nite di�erences. Fig. 6.5 shows the conver-
gence with respect to dz, on the same vertical scale as Fig. 6.4 for easier comparison. Ideally, the values
of M and dz should be matched so that both imprecisions are of the same orders. In our case, taking
M = 3, the error brought by the vertical discretization is comparable to the PW error for dz ∼ a/50.
This rather �ne mesh is in part needed because the PhC is quite shallow and needs enough points to
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Figure 6.4: Convergence of the hybrid method against plane wave cuto� M with the method of Ho (line) and
the FFF (circles). (Left) E�ective index neff . (Right) Imaginary part of the wavevector k′′. The structure
considered is that of Fig. 3.18: a waveguide of index 2.5 and total thickness 0.6a, surrounded by air and pierced
to a depth 0.2a by a triangular lattice PhC of period a, with circular air holes of �lling factor 0.3. The frequency
of the fundamental Bloch mode is computed at a reduced frequency a/λ = 0.45, above the light line. As the
core of the waveguide is rather thin, the Bloch mode leaks in the PhC region and the photonic interaction is
moderate.

Figure 6.5: Convergence of the hybrid method against vertical step dz (in units of a) with the FFF. (Left)
E�ective index neff . (Right) Imaginary part of the wavevector k′′. The plane wave cuto� is M = 3, and the
vertical scale is the same as for Fig. 6.4.

be resolved. In structures where all thicknesses are ∼ a, the �nite di�erences converge slightly faster.
It is interesting to note that the memory requirements of the method are actually not proportional

to the total vertical size of the system, but rather to the vertical size of the patterned region. Indeed,
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looking back at the form of the sparse matrices of Eq. 6.10, it appears that all values of z outside of the
PhC region lead to nearly diagonal submatrices with only a few nonzero terms − this is because the
dielectric tensor is diagonal. In contrast, inside the PhC the dielectric tensor is a full matrix and leads
to numerous nonzero coe�cients. These generally dominate the total number of nonzero coe�cients
in the �nal matrices, so that most of the memory storage is due to the points inside the PhC. As
a consequence, structures with a very deep PhC (d >> a) are calculation-intensive with the hybrid
method.

Finally, it should be emphasized that the simple �nite di�erences scheme used (two-point deriva-
tives) is clearly not optimal from the point of view of numerical e�ciency. Although I have not explored
this direction, it is likely that more elaborate schemes would enhance convergence.4

4However, one should keep in mind the di�culty evoked previously: not all schemes can be used because the matrices
need to be Hermitian for numerical convergence.



6.3. IMPLEMENTATION OF A FOURIER MODAL METHOD 207

6.3 Implementation of a Fourier Modal method

In addition to the hybrid method introduced above, I also implemented a Fourier Modal Method for
3D calculations. This was done for several reasons. The �rst is the validation of the hybrid method.
Second, besides Bloch modes calculations, the FMM can treat other kinds of problems. Its ability to
compute the emission of a dipole source was useful for Chapter 4, section 4.5. Finally, the FMM is in
general able to treat systems where the computation task is too heavy for the hybrid method, but this
turned out not to be a limitation in this thesis.

In this section, the FMM is �rst quickly introduced, then implemented, and some of its applications
are presented.

6.3.1 Scattering matrix: principle

The principle of the FMM has already been exposed. The system is separated in layers which are
invariant along z, the eigenmodes of each layer are computed by a 2D PWE, and the continuity
conditions linking the eigenmodes of adjacent layers are cast as a matrix which connects the amplitudes
of the �elds outside the structure. Once this matrix is built, it can be used for several tasks, such as
re�ectivity/transmission measurements (or, in terms of di�ractive optics, di�raction e�ciencies) and
Bloch modes computation. Therefore, the system can be seen as a quadrupole, whose ports are the
incoming and outgoing �elds on each side of the structure.

In the following, we assume that the system is made of N+1 layers. The layers are characterized by
their thickness and optical parameters (refractive index or more parameters if the layer is patterned).
Layers 0 and N are semi-in�nite. The regions of interest are the layers themselves, and the interfaces
between layers.

The �elds are decomposed in a plane wave basis in each layer. To describe the �eld, we use column
vectors of �eld amplitudes A, which represent the amplitudes of plane waves propagating along the
z-axis. These amplitudes will be related formally to the electromagnetic �eld in the next section. We
assign the superscript + to plane waves going in the +z direction, and − to waves going in the −z
direction.

Figure 6.6: Notations for construction of the S-matrix. The system is made of N +1 layers, and of N interfaces
between layers. Amplitudes are indexed by their layer, direction of propagation and position in the layer (left
or right). For instance A+

2,l corresponds to the amplitude of �elds propagating in the +z direction, at the left

side of the 2nd layer.

We now index these amplitudes as described in Fig. 6.6. The boundary �elds (i.e. the �elds outside
the structure) are then A+

0,r and A−0,r at the left of the structure, and A+
N,r and A−N,r at the right of
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the structure.
Several matrices can be built to characterize the structure. The easiest to implement is the Transfer

matrix (T-matrix), which connects the �elds on one side to the �elds on the other side:∣∣∣∣∣ A+
N,l

A−N,l

= T

∣∣∣∣∣ A+
0,r

A−0,r

(6.21)

For instance, with this matrix, one can impose the �elds incoming and outgoing on the left side of
the structure, and deduce the �elds on the right side. While the T-matrix formalism is mathematically
exact, it su�ers from numerical instabilities which make it unusable for nearly any practical use.
Namely, when building the T-matrix, one has to deal with growing and decaying exponential terms.
Due to unavoidable numerical roundo�s in the computation of the matrix coe�cients, the growing
exponential terms rapidly diverge and dominate all other matrix coe�cients.5

For this reason, one rather uses a Scattering-matrix (S-matrix), which connects the incoming �elds
to the outgoing �elds: ∣∣∣∣∣ A+

N,l

A−0,r

= S

∣∣∣∣∣ A+
0,r

A−N,l

(6.22)

This can simply be expressed as:

Aout = SAin (6.23)

This form is convenient in terms of boundary conditions, since one typically imposes incoming �elds
and looks for outgoing �elds. The major advantage of the S-matrix is that no growing exponentials
appear in its construction, so that the numerical divergences of the T-matrix are avoided, no matter
what the thickness of the structure is.

It should be noted that in some cases (determination of di�raction e�ciency for instance) one still
needs to work on the corresponding T-matrix rather than on S directly. This should be done carefully
to avoid numerical instabilities, for instance by using (T− 1)−1 instead of T.[13]

For the sake of completeness, let us mention another quadrupole matrix which can described a
multilayer system: the R-matrix, which is similar to the S-matrix but uses a sinusoidal basis rather
than an exponential basis in each layer. This does not especially improve the algorithm and makes
implementation slightly more complicated.[45]

6.3.2 Scattering matrix: implementation

The implementation of the S-matrix is vastly detailed in literature. While it is described in many
articles related to grating theory, some articles focus on multilayer photonic crystal structures and are
more closely related to the subject of this thesis. A classic reference is the article by Whittaker.[46]. A
discussion of the various algorithms which can be used to build the S-matrix can be found in Ref. [45],
which also discusses some interesting properties of S-matrices. Another good and detailed reference
for practical implementation of the S-matrix is [47]. In the following, I use the notations of the latter
reference, where derivation of the formalism is detailed in depth. Therefore, only the key steps of the
implementation are presented here.

5This happens more rapidly for strongly evanescent harmonics, which correspond to large reciprocal vectors. Therefore
we obtain a paradoxical behavior: the T-matrix becomes more unstable as one tries to increase accuracy by adding
reciprocal vectors. On the other hand, this means that T-matrices can safely be used in the case of thin unpatterned
layers, where only one harmonic is involved.
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Eigenmodes of a layer - Homogeneous problem

The �rst step consists in �nding the eigenmodes of each layer, considered in�nitely high in the z
direction. This is the so-called homogeneous problem, which we simply solve using the 2D PWE
exposed in Chapter 5. The input parameters in this case are the values of ω and k//, and one now
looks for the values of kz corresponding to eigenmodes in the layer. As was seen in section 5.4 of
Chapter 5, the homogeneous problem can be cast in various form. Here, we retain that of section 5.4.2
(the so-called Tikhodeev form).

Let us introduce the following notations: {G} are the reciprocal lattice vectors, which are truncated
to a number NG. The in-plane wavevector k// has coordinates kx and ky. The electric �eld in each
layer is written as:

→
E=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Ex,G1

...

Ex,GNG

Ey,G1

...

Ey,GNG

(6.24)

As seen in Chapter 5, Maxwell's equations then take the form:

M
→
E= k2

zN
→
E (6.25)

WhereM and N have been de�ned in section 5.4.2 of Chapter 5, and include the FFF implemen-
tation. Since this equation admits 2NG solutions, the eigenproblem can be rewritten by stacking all
the solutions into a matrix:

ME = K2NE (6.26)

Under this form, E is a matrix whose columns are the vectors
→
E , and K is a diagonal matrix whose

elements are the corresponding eigenvalues kz. As can be seen, the eigenvalues of Eq. 6.26 are the
squares of kz. This is because the structure is symmetric vertically, so that each eigenvalue corresponds
to a pair of eigenmodes (one mode propagating in the +z direction and one in the −z direction). Here,
we choose to take the square roots of positive imaginary part in the de�nition of K − this convention
is important for the numerical stability of the algorithm.

De�nition of the �eld amplitudes A

Coming back to the 3D structure, we can now formally de�ne the column vector of amplitudes A
already introduced earlier. It is related to the total in-plane electric �eld in the structure E// as
follows:

E//(z) =

∣∣∣∣∣ Ex

Ey

=
(
E E

) ∣∣∣∣∣ A+(z)
A−(z)

(6.27)

In other words, at each point z, A(z) just contains the coe�cients of the electric �eld projected on
the basis of eigenmodes. Matrices E only depend on the layer, whereas the coe�cients in A vary with
z. The fact that the same matrix E can be used for modes propagating to the right (+) and left (−)
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is just due to the vertical symmetry in each layer. The indexing A+
j,r introduced earlier corresponds to

particular values of z (namely, at the extremities of a layer).
The S-matrix is built iteratively. We initiate the recursion with S0 = 1. We assume that we know

matrix Sj−1 corresponding to propagation through layers 0 to j− 1. More precisely, Sj−1 connects the
�elds A0,r on the left of the 0/1 interface to the �elds Aj−1,r on the left of the (j − 1)/j interface:(

A+
j−1,l

A−0,r

)
= Sj−1

(
A+

0,r

A−j−1,l

)
(6.28)

We look for Sj . The e�ect of the structure on the �eld can be described in terms of two phenomena:
connection between layers and propagation inside a layer.

Connection between layers

We �rst consider the interface between layers j − 1 and j. In order to express the �eld continuity
conditions in matrix form, let us �rst decompose Sj−1 as:

Sj−1 =

(
S11 S12

S21 S22

)
(6.29)

In each layer j we de�ne the following matrices:

C =

(
−N21 −N22

N11 N12

)
(6.30)

Fj =

(
E E

1
ωCEK − 1

ωCEK

)
(6.31)

The components N of matrix C are those de�ned in the PWE (see Chapter 5, section 5.4.2).6

Matrix Fj is called the material matrix for layer j. It has the important property of converting the
�eld amplitudes A into electric and magnetic �elds (as shown in Ref. [47]):

Fj

∣∣∣∣∣ A+
j

A−j
=

∣∣∣∣∣ E//

H//

(6.32)

This is useful because the continuity of the tangential �elds E// and H// between layers j − 1 and
j can now be expressed on A:

Fj

∣∣∣∣∣ A+
j

A−j
= Fj+1

∣∣∣∣∣ A+
j+1

A−j+1

(6.33)

To rewrite these continuity conditions, we de�ne the interface matrix between layers j − 1 and j:

Tj−1,j =

(
T11 T12

T21 T22

)
= F−1

j−1Fj (6.34)

The interface matrix then links �elds on the left and the right of the interface as follows:

6Note that C is a 'skewed' form of matrix N introduced in Chapter 5. This skewing of matrix blocks is characteristic
of the transition from the formalism of transfer matrices to that of scattering matrices
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∣∣∣∣∣ A+
j−1,r

A−j−1,r

= Tj−1,j

∣∣∣∣∣ A+
j,l

A−j,l
(6.35)

However, the above amplitudes are sorted for a Transfer-matrix algorithm. This relation can not
be used directly for the Scattering-matrix formalism where the amplitudes needs to be reordered. We
have to de�ne:

D = (T11 − S12T21)−1 , F = (S12T22 − T12) (6.36)

The continuity conditions of Eq. 6.35 can �nally be expressed in a scattering matrix form. We
obtain:

Ŝ =

(
DS11 DF

S21 + S22T21DS11 S22T21DF + S22T22

)
(6.37)

The new matrix Ŝ connects A0,r to the �elds on the right of the (j − 1)/j interface, Aj,l.

Propagation inside a layer

Let us now consider propagation through layer j, of thickness L and whose eigenvalues of the homoge-
neous problem are stacked in matrix K(j). For each of the layer's eigenvectors

→
E with a corresponding

eigenvalue kz, the z-dependence is just eikzz. This can be put in matrix form:∣∣∣∣∣ A+
j,r

A−j,r
=

(
φ+

j 0

0 φ−j

)∣∣∣∣∣ A+
j,l

A−j,l
(6.38)

Where matrices φ are de�ned as:

φ+
j = eiK

(j)L , φ−j = e−iK(j)L (6.39)

Matrix φ− is responsible for the numerical instabilities evoked earlier, because it contains growing
exponentials.7 However, it needs not be used if one only propagates (+) �elds from left to right, and
(−) �elds from right to left. This is precisely the principle of the S-matrix algorithm, where propagation
is described by:

Sj =

(
φ+

j 0

0 1

)
Ŝ

(
1 0
0 φ+

j

)
(6.40)

Thus, we obtain Sj , which connects A0,r to Aj,r. By repeating the iteration until layer N , we build
the total S-matrix of the system.

6.3.3 Applications of the S-matrix

Re�ectivity calculations

Once the S-matrix of the system is known, it is straightforward to obtain the system's re�ectivity and
transmission, by using Eq. 6.23. One simply has to impose an incoming �eld Ain. As an example,
Fig. 6.7 gives the re�ectivity of a membrane etched by a PhC and illuminated by TM light. Sharp
dips and peaks in the re�ectivity (Wood anomalies) are present, some of which manifest coupling with
leaky modes of the structure.

7This is due to our convention on the sign of Im(K).
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Figure 6.7: Re�ectivity of a membrane with index n = 3 and total thickness 0.7 embedded in air, with a
triangular lattice (f = 0.5) etched to a depth 0.2. The structure is illuminated along ΓM by a TM-polarized
plane wave at a normalized frequency 0.4.

Bloch modes calculations

The Bloch modes of the structure correspond to self-sustained excitations, able to exist without energy
feed from the outside. They are characterized by the condition Ain = 0,Aout 6= 0. Therefore, one
should have:

S−1Aout = Ain = 0 (6.41)

For this to admit non-trivial solutions, one must have det(S−1) = 0. Therefore, Bloch modes can
be obtained by looking for the poles of R = S−1. This can be done either by setting k// and varying
ω, or the contrary. In practice, searching for poles in the complex plane is no easy task: one is looking
for the complex roots of det(S−1) as a function of the complex variable ω, which requires several costly
computations of S. Another di�culty is that many poles can exist, so that one should usually start
'close enough' to a given pole to reach it. Typically, this is solved by starting from a trivial problem
(holes of vanishing depth or �lling factor...) and 'following' the pole in the complex plane as the
parameter varies.

Anyway, one must still choose a mathematical method to �nd the pole. Mapping systematically
a region of the complex plane, as was shown in Fig. 3.5 of Chapter 3 is ine�cient and prohibitive in
terms of calculation time as soon as a reasonable number of plane waves is kept. Usually, one rather
uses an iterative method such as a gradient method, which follows the steepest descent path in the
surface de�ned by |det(S−1)|.

In this thesis, I used an iterative scheme introduced by Gippius et al. [48] which I found e�cient and
simple to implement: once the S-matrix building algorithm is written, it only requires a few additional
lines of code. Let us look for a given pole ω0 of S. One �rst assumes a trial value for ω, and computes
R(ω) and ∂ωR(ω).8 Eq. (6.41) can then be linearized as:

R(ω0)Aout = 0⇒ (R(ω) + ∂ωRδω)Aout = 0 (6.42)

8This is done numerically by computing R(ω + ∆ω) with ∆ω small enough with respect to ω. Hence, two S-matrices
have to be built, which doubles the computational time. On the other hand, the ensuing iterative scheme converges
rapidly.
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This last equation takes the form of an eigenproblem:

−(∂ωR)−1R(ω)Aout = δωAout (6.43)

Only the smallest (or the few smallest) eigenvalues are of interest, which relieves the computational
e�ort. The eigenvalue provides a correction to the trial value of ω: ω ← ω+ δω. One then repeats the
calculation of S and the procedure, until convergence of ω to ω0.

This method turns out to be e�cient for pole-searching. Usually, a few (less than ten) iterations
give an accuracy better than 10−5 on δω. I haven't faced cases where the iteration would fail (bouncing
between two poles), except for some calculations at the edge of the Brillouin zones. In that case, the
issue was solved by �rst looking for poles very close to the edge of the Brillouin zone, and then following
the desired pole at the edge.

The same iterative procedure can be applied with inverting the roles of k// and ω, if one wants to
look for the eigenmodes at a given frequency. As pointed earlier, this is very useful for implementation
of index dispersion.

Source terms

Previous work An interesting feature of Transfer and Scattering matrices is the possibility to insert
a source term in the structure, in order to simulate the emission of a point dipole. Mathematically,
dipole emission translates into a discontinuity of the �elds across the dipole, which can easily be
imposed in matrix form. The �rst implementation of this principle was introduced by Benisty et. al.

([49]) in the context of 1D planar structures, based on initial work at EPFL. It made use of transfer
matrices. Since then, the formalism has been adapted to 3D structures, which actually requests little
change with respect to the 1D case.

The �rst 3D implementation of dipole emission is proposed by Whittaker and Culshaw (Ref. [46]).
Here, the source is treated exactly as in the 1D case of Ref. [49]. The partial S-matrices for the left and
right halves of the structure (on each side of the source) are computed, and the �eld emitted by the
source is expressed as a function of these and the discontinuity brought by the source. This �eld can
then be propagated everywhere to obtain the emission of the source. This method is straightforward.
On the other hand, the authors do not comment on the precise form of the source, and more precisely
on the angular normalization factors which should be used in order to model a horizontal or vertical
dipole.

A second implementation, proposed by Rigneault et. al. (Ref. [50]), follows the same approach.
The article describes the mathematical formalism in greater details. Moreover, in order to build the
S-matrices of the system, the di�erential method is used instead of the FMM.

A third implementation is introduced by Delbeke et al. (Ref. [51]). In this paper, the authors
treat the e�ect of the source by expressing the �elds outside of the structure in a closed form which
involves the discontinuity and partial re�ection/transmission matrices (corresponding to each half of
the structure around the source layer). In my opinion, this o�ers the slight disadvantage that these
re�ection and transmission matrices are not directly given by the S-matrix algorithm and have to be
built. However, the authors discuss angular normalization factors in greater details and comment on
important aspects, such as the position of the source and its refractive index.

In this section, I follow the treatment of Whittaker and Culshaw and adapt it to the notations of
this thesis. I also indicate the proper normalization coe�cients for in-plane dipoles in this formalism.

Insertion of a dipole source Let us assume that a dipole is located in layer p, at position zs.
We assume for now that the source is embedded in a layer with thickness 0 and refractive index ns

(Fig. 6.8).
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Figure 6.8: Structure with a source at layer p. The structures to the left and right of the source should end
with an homogeneous layer of index ns, the index of the source layer.

This dipole a discontinuity of the electromagnetic �eld, whose details depend on the orientation of
the dipole. For now, let us consider that the dipole has general coordinates:9

p̃ =

∣∣∣∣∣∣∣
px

py

pz

(6.44)

Let us note that the above are Fourier-transform coordinates: px itself is a column vector of height
M , whose coe�cients are the Fourier coe�cients of px. Their precise form will be clari�ed later. As
explained in Ref. [46], the presence of the dipole translates into the following discontinuities for the
in-plane electric and magnetic �elds:

E//(z+)−E//(z−) =

∣∣∣∣∣ pz

pz

H//(z+)−H//(z−) =

∣∣∣∣∣ py

−px

(6.45)

These can be summarized by:

∣∣∣∣∣ E//(z+)
H//(z+)

−

∣∣∣∣∣ E//(z−)
H//(z−)

= ∆ with ∆ =

∣∣∣∣∣∣∣∣∣∣
pz

pz

py

−px

(6.46)

We introduce Sleft and Sright, the scattering matrices for the left and right sides of the structure
(i.e. on each side of the source). At this point, let us mention that Sleft should end (and Sright should
start) with a layer of index ns (and of thickness 0 if so desired), for proper continuity.10 We also
introduce Ep, Cp, Kp and Fp which are de�ned as previously, for a homogeneous medium of index ns.
Eq. 6.46 takes the form:

Fp

∣∣∣∣∣ A+
p,r

A−p,r

− Fp

∣∣∣∣∣ A+
p,l

A−p,l

= ∆ (6.47)

Moreover, the boundary conditions of this problem state that no �eld should be incoming on the
structure from outside, e.g. A+

0,r = A−N,l = 0. Thus, the de�nition of Sleft and Sright leads us to:

9For reference, in the case of GaN heterostructures grown along the c-axis, the dipoles are usually assumed horizontal.
10More precisely, the �eld discontinuity should only be due to the presence of the source. Therefore the source must

be embedded in a medium of index ns to avoid discontinuities due to dielectric boundaries.
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A+
p,l = Sleft

12 A
−
p,l

A−0,r = Sleft
22 A

−
p,l

A−p,r = Sright
21 A−p,r

A+
N,l = Sright

11 A+
p,r

(6.48)

This and the de�nition of Fp leads to the following equation for the outgoing �eld on the left and
the right of the structure:(

Ep(1+ Sright
21 ) −Ep(1+ Sleft

12 )
1
ωCpEpKp(−Sright

21 + 1) 1
ωCpEpKp(−Sleft

12 + 1)

) ∣∣∣∣∣ A+
p,r

A−p,l

= ∆ (6.49)

Solving this equation yields the outgoing �elds on each side of the source. From these, all other
�elds can be computed by applying the partial scattering matrices. The most interesting �elds in our
problem are the �elds around the source, and the outgoing �elds outside of the structure: all of these
can be obtained directly from Eq. 6.48. Once the �elds around the source are obtained, the power
emitted at the source can be computed. Thanks to the outgoing �elds, the power radiated outside of
the structure can be computed.

Simple source or folded source As has been said, p̃ is the Fourier transform of the dipole p. For
a dipole localized at point (r0, z0), we have:

p(r, z) = p0δ(r− r0)δ(z − z0) (6.50)

Its Fourier transform can thus be expressed in two ways:

(1) p = p0δ(z − z0)
∫
k//

exp
(
−ik// · (r− r0)

)
dk//

(2) p = p0δ(z − z0)
∫
k//∈FBZ

∑
G

exp
(
−i(k// +G) · (r− r0)

)
dk//

(6.51)

The �rst form should be understood with caution. At �rst glance, it could be seen as a point dipole
localized in space, which can hence couple to any value of k//. However, this is not quite true because
here, emission at wavevectors k// and k// + G occurs incoherently. This form actually describes a
collection of delocalized dipole sheet sources, incoherently emitting light in all directions (see Annex C
for a short discussion of this question). We then have:

px =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0
...

0
pxexp

(
−ik// · (r− r0)

)
0
...

0

(6.52)

Where the only nonzero coe�cient corresponds to G = 0; py and pz have similar forms.
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The second form may seem equivalent to the �rst, but the integral on k// is cut in parts, each of
which is folded back in the FBZ. There is a subtle di�erence in this case: emission in directions k//

and k// +G is coherent. As explained in Annex C, this correspond to a point-like source which emits
coherently in all space directions. In this case:

px =

∣∣∣∣∣∣∣∣
...

pxexp
(
−i(k// +G) · (r− r0)

)
...

(6.53)

Note that in principle, both forms do not yield the same results for the dipole emission. Therefore,
the choice of the source term depends whether the emitter (exciton or electron-hole pair) is localized
in the horizontal direction or not.

The �rst form is easy to interpret, because the source only couples to the harmonic G = 0, and
the �eld carried by other harmonics is generated by scattering in the patterned regions. Therefore, it
is easy to determine the contribution of the PhC to light extraction when considering the �eld outside
of the structure. The main disadvantage of this choice is that in principle the integral runs from −∞
to ∞, which is rather unpractical for numerical implementation. In practice, the maximum value of
k// supported in the source layer is nsk0, so that the integral is bounded through the choice of ns.
This calls for a discussion. In the case where there is no PhC, ns can just be taken equal to the largest
index in the multilayer structure, so that even tunnel emission through evanescent waves is taken into
account.11. When there is a PhC, ns should in principle be taken in�nite so that all light emission
events can be accounted for: any value of k// can be scattered by a large enoughG vector, and brought
back to a propagative k// +G. However, the strength of such coupling is determined by ε(G) and thus
becomes very small for large G. In most cases of interest, it is thus reasonable to ignore these events
and to take ns large enough to couple the source only to the strongest reciprocal lattice points. Of
course, these vary with the crystal lattice: for a typical triangular lattice, only the smallest G vectors
are strong, whereas for an Archimedean tiling the photonic strength spreads further in the reciprocal
lattice (see Chapter 4 for a detailed discussion) .

The second form has the advantage that the values of k// to be considered are bounded by the FBZ.
On the other hand, the source couples directly to all harmonics, which makes physical interpretation
less intuitive.

In our case, it is not clear whether excitons (or electron-hole pairs) are localized horizontally in
InGaN quantum wells: the choice of the source term is thus not determined. Therefore, we generally
opt for the �rst form because it o�ers easier physical insight, and because it avoids introducing the
horizontal position of the source as an additional parameter (in a sense, the source 'feels' the total
density of states in the horizontal direction, rather than the local density of states).

Fig. 6.9 illustrates a few of these remarks.

Normalization of source terms In the above treatment, each value of k// (e.g. each angle of
emission) is treated separately. However, if one wants to simulate the e�ect of a dipole source (or
equivalently an exciton recombination), the proper angular dependence of emission has to be inserted in
the source's normalization. This factor should be such that the emission in a bulk medium corresponds
to the theoretical emission of a dipole in bulk.

In practice, as explained in Ref. [49] and depicted in Fig. 6.10, a dipole oriented along y emits a
TE-polarized �eld, whose amplitude is constant at all angles. A dipole oriented along x emits a TM-
polarized �eld, whose amplitude varies like cos(θ). In conclusion, the proper source term normalization

11In the case of a metal, a larger value has to be taken to account for possible coupling to surface plasmons.
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Figure 6.9: Integration intervals for the two forms of the source dipole. (1) If ns is too small, the light cone of
the source is inside the FBZ and some emission channels are neglected . (2) With the second form the integral
is restricted to the FBZ, even if the light cone of the source is large.

Figure 6.10: (After Ref. [49]) Angular dependence of the emission patterns of horizontal dipoles oriented along
x and y.

factors for the electric �eld emitted by a dipole are:

dipole along y (TE source) → Ey ∼ 1
dipole along x (TM source) → |E| ∼ cos(θ)

(6.54)

This normalization is commented in greater details in Ref. [49], where they are straightforwardly
applied because the authors work directly on the amplitude of the electric �eld. A possible caveat in
our case is that for horizontal dipoles (terms px and py), the discontinuity conditions we introduced
concern the magnetic �eld. Therefore, the above normalization can not be applied blindly. Rather, we
notice that the angular relationship between E and H for plane waves is:

TE → Hx ∼ cos(θ)Ey

TM → Hy ∼ |E|
(6.55)

Therefore, for the electric �eld's angular dependence to vary as prescribed, the normalization of
discontinuities in Eq. 6.46 should �nally be:
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py = cos(θ)

√
3
4π

px = cos(θ)

√
3
4π

(6.56)

In addition to the angular dependence, the above expression also includes the proper multiplying
constants to normalize the emission so that the total power (integrated over all directions) emitted by
a dipole in a bulk material of index ns is:

TE → P = 3ns/4
TM → P = ns/4

(6.57)

This normalization is convenient because both contributions (TE and TM) can then be summed
incoherently in order to obtain the emission of a dipole averaged in all in-plane directions. The
convention we chose is that an average in-plane dipole emits a power ns in a bulk material of index
ns: this re�ects the change in radiative lifetime with respect to the same dipole in air.12

Calculation of emitted power Once the �elds in the structure are known, we have to obtain the
far-�eld power emission of the dipole outside of the structure. One approach consists in integrating
emission over k// in the FBZ. This approach, well suited to the case of a 'folded source' (e.g. using
the second Fourier transform of the dipole described above), is well described in Ref. [51].

The second option is to describe the emission in terms of power emitted per solid angle. This
method is more directly suited to the choice of an 'unfolded source' where the polar angle of emission
at the source θ is a natural variable. In my opinion, it also o�ers easier interpretation. Unfortunately,
using solid angles is not a trivial task. Indeed, we need to switch from the plane-wave formalism, well
adapted to in�nite in-plane structures, to that of solid angle which is suited for spherical symmetry
and hence for the far �eld of the dipole.

A detailed discussion of the transformation can be found in Ref. [49] and Ref. [52] in the case of a
1D multilayer structure. Here, I give the corresponding form in the case of patterned layers. Note that
in the case of an unfolded source, all the power emitted at the source is carried by harmonic G = 0.

Using the normalization conventions of Eq. 6.56, the power emitted at the source to the right and
the left in the in�nitesimal angle dϕ is simply expressed as:

right→ dPp,r =
∫ π/2

θ=0

(
|E+

G=0,p,r|
2 − |E−

G=0,p,r|
2
)

sin(θ)dθdϕ

left→ dPp,l =
∫ π/2

θ=0

(
|E−

G=0,p,l|
2 − |E+

G=0,p,l|
2
)

sin(θ)dθdϕ

(6.58)

The total emission at the source in dϕ is the sum of both contributions, dPp,r + dPp,l. The total
power emitted at the source is obtained by integrating this value over ϕ (in practice, by summing over
a discrete number of calculations):13

12Neglecting possible local �eld e�ects... This point would certainly call for a longer discussion but is out of the context
of the present work. Fortunately, in our case, in-plane dipoles do not lead to a direct paradox when they are moved
across horizontal interfaces. On the other hand, when vertical dipoles are included, their emitted power is discontinuous
at such interfaces. The key to this paradox probably lies in the way the polar �eld screens the charges in the vicinity of
the dipole.

13One should be careful in this integration: in a triangular lattice PhC, the additional presence of a dipole breaks the
sixfold symmetry of the PhC: for instance all ΓM directions are not equivalent, so that the calculation can not simply
be reduced to ϕ ∈ [0; π/6].
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Psource =
∫ 2π

ϕ=0
dPp,r + dPp,l (6.59)

As already stated, an important property of the normalisation taken in Eq. 6.56 is that the value
of Psource is equal to ns in bulk (when one sums the contributions of horizontal dipoles along x and y,
in order to obtain an averaged horizontal dipole). This means that, in general, Psource is simply equal

to the inverse of the spontaneous emission lifetime modi�cation of the dipole with respect to air, or
Purcell e�ect :

Psource = τ0/τ = Fp (6.60)

Here τ0 is the lifetime of a dipole in air. Of course, this Purcell e�ect should be used with caution:
emission in air is taken as a reference. Therefore, Fp is composed of two e�ects: change of the index
of the source (which increases the 'bulk density of modes', and contributes to Fp by a factor ns) and
modi�cation of the photonic density of states by the structuration (multilayers, patterning...). In
general, one is rather interested in the modi�cation of lifetime between an dipole in bulk of index ns

and a multilayer structure with a PhC patterning. In this case, the relevant reference is the emission
in bulk, and Fp should be divided by ns:

F ref=bulk
p =

F ref=air
p

ns
(6.61)

As regards the power emitted by the source outside of the structure to the right (similar expressions
hold to the left), the contribution of each harmonic can be distinguished. We introduce the polar angle
of each harmonic in the right medium:

sin(θG,right) =

∣∣k// +G
∣∣

nrightk0
(6.62)

We can then de�ne the power emitted to the right (corresponding to layer N), in the in�nitesimal
angle dϕ, by harmonic G:

dPG,right =
∫ π/2

θG,right=0

(
nright

ns

)3(cos(θG,right)
cosθs

)2

|E+
G,N,r|

2 sin(θG,right)dθG,rightdϕ (6.63)

Note that the coe�cient intervening in this expression is not trivial. As already mentioned, it stems
from the transition between plane-wave formalism and solid angle formalism − the reader is referred
to Refs. [49, 52] for its demonstration in a 1D case, which is here generalized to a periodic medium.

The form of Eq. 6.63 is not very convenient, because each harmonic has to be integrated over its
speci�c angle θG,right. Besides, the in�nitesimal integrand dθG,right needs to be found, and it is not
constant even in the case where dθ is (that is, when θ is discretized on a uniform mesh). It is therefore
more convenient to come back to an integration over the inner angle θ. To this e�ect, we di�erentiate
Snell's law and obtain:

nrightdθG,right cos(θG,right) = nsdθ cos(θ) (6.64)

Eq. 6.63 can then be recast as:

dPG,right =
∫ π/2

θ=0
|E+

G,N,r|
2nright cos(θG,right)

ns cos(θ)
sin(θ)dϕ (6.65)
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This integration runs over solid angles of the inner angle, and is more convenient. For instance,
for a given angle θ, one can compare this value to the power emitted by the source to determine what
fraction of the emitted power is extracted to the right by a given harmonic.

The power emitted to the right in dϕ is the sum over the harmonics:

dPright =
∑
G

dPG,right (6.66)

Finally, the total power emitted to the right is the sum over ϕ:

Pright =
∫ 2π

ϕ=0
dPright (6.67)

The light extraction e�ciency of the structure is simply given by

ηright =
Pright

Psource
(6.68)

It should be noted that even for an omnidirectional light extractor (e.g. when the whole FBZ is in
the air cone), Psource can be di�erent from Pleft + Pright if absorption is present in the materials. In
this case, the missing power is lost by absorption.

Introduction of arti�cial absorption In some situations, light emitted at an angle θ remains
trapped in the structure. This is the case if no PhC is present (true guided modes) but also in the
presence of a PhC, if some Bloch modes are under the light lines of air and substrate. Such modes
correspond to a discrete real value of θ and cause a numerical di�culty: their density of state is a
Dirac function which can't be resolved by a discrete meshing of θ.

In 1D multilayer structures, this problem is routinely dodged by a simple trick: a very small
imaginary part n′′ is added to the refractive index of some guiding layers. In this case, guided modes
acquire a �nite lifetime and the delta function is broadened into a Lorentzian, as described in Chapter 3,
section 3.1.1. They can then be treated numerically. Provided the broadening is small compared to
the separation between guided modes, the emitted power does not depend on the value of n′′, and does
represent the actual power emitted in the limit of non-absorbing material.

When a PhC is present, the same trick can be used, but with some care. Especially, in the case of a
PhC with small extraction e�ciency, this arti�cial absorption may dominate the extraction e�ect of the
PhC for some leaky modes. This has two consequences. First, the angular width of the corresponding
peaks is then set by absorption rather than by the extraction e�ciency of the PhC. Second, the value
of Pright and Pleft obtained in this case is wrong: some modes are counted as absorbed rather than
extracted. One may still estimate the extraction e�ciency by integrating the power at the source over
the angles where extraction is possible.

On the other hand, introduction of a small n′′ can be convenient because it broadens peaks, so that
a coarser mesh can be used when discretizing θ, leading to faster calculations. Moreover, taking the
mere value of the extraction e�ciency, one sometimes misses a crucial fact: the extraction length of the
modes. In some cases, the extraction is close to 1, but with a PhC of in�nite extent. This is especially
the case in some structures studied in this thesis, where low-order Bloch modes are extracted over an
unacceptable distance. In this case, one can use n′′ to arti�cially introduce a limit extraction length.
Modes whose extraction is too large are absorbed, and no longer counted as extracted.

Fig. 6.11 gives an example of dipole emission calculation in the following structure: a GaN
waveguide (n = 2.5) of total thickness a embedded in air, etched to a depth 0.5a by a triangular
lattice PhC (f = 0.5). A horizontal dipole sheet polarized along y is placed midway in the unetched



6.3. IMPLEMENTATION OF A FOURIER MODAL METHOD 221

GaN core, and emits light at a frequency u = 0.4.14 The calculation is performed along the ΓM
direction perpendicular to the dipole, e.g. along x.

Beyond the critical angle, the source emits in two guided modes (narrow and sharp peaks, observed
because a small imaginary part n′′ = i.10−4 is added to the index of GaN) and in a leaky mode (broader
peak close to θ = 60o). The leaky mode is extracted to air by harmonic (−1) along ΓM , as can be
seen on the outer emission diagram. Moreover, it is interesting to notice that there is a small cusp in
the direct emission (e.g. light emitted directly in the light cone) at the angle of extraction of the leaky
mode. This feature can be seen as an analogous to a Wood anomaly for light emission.

Figure 6.11: Power emission of a point dipole in a patterned multilayer (log scale). (Left) Emission at the
source (the top corresponds to the side etched by the PhC, the horizontal line to the x axis). Dotted lines:
critical angle of the GaN/air interface. Two guided modes and a leaky mode are present beyond the critical
angle. (Right) Emission outside the structure, to top and bottom respectively. Full lines: direct emission by
the harmonic G = 0. This is very similar to the emission in an unpatterned structure, except for the cusp at
the position of the leaky mode. Dashed lines: extraction by the harmonic G = 1 along ΓM . The leaky mode is
extracted around θ = 50o.

This closes our discussion of applications of the FMM.

14As already mentioned, modeling a dipole sheet (rather than a point dipole) corresponds to the unfolded form of the
source term, Eq. 6.51.
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6.3.4 A note on energy conservation:

It is often argued in literature that energy is analytically conserved by the FMM, regardless of the
number of harmonics involved.[53] For instance, in the case of a re�ectivity calculation, the sum of
all scattered e�ciencies is always equal to one. In the case of a Bloch mode calculation, the sum
of outgoing and re�ected power is equal to the incoming power. This is usually convenient because
energy balance can be estimated even with a small number of harmonics, but it also implies that energy
conservation cannot be used as a criterion for numerical convergence.

However when the FFF is used, the matrices lose their hermiticity, as argued in Chapter 5, sec-
tion 5.4.4. This means that energy balance is no longer veri�ed: for instance, the sum of all scattered
e�ciencies may be smaller or larger than one. This can be circumvented by using the hermitian form
of the FFF described in Chapter. 5. Alternately, one may take advantage of this and use energy con-
servation to estimate numerical convergence, because violations to energy conservation tend to zero
when the number of harmonics is increased.

This e�ect is illustrated on Fig. 6.12 for a re�ectivity calculation. The energy conservation reads
R+T = 1, but this is not exactly veri�ed with the 'original', non-hermitian FFF form. More speci�cally,
violations to energy conservation are stronger when the incoming wave is nearly resonant with a leaky
mode − this is the case on Fig. 6.12.

Figure 6.12: Energy conservation (R+T) with the 'original' FFF expression (full line) and with the symmetrized
FFF (dashed line) as a function of truncation order. The calculation is performed for the same structure as in
Fig. 6.7, and for sin(θ) = 0.583, which corresponds to the excitation of a leaky mode of the structure.

6.3.5 Computation of the electromagnetic �elds in the structure

In all of the above calculations (either when computing re�ectivity or eigenmodes), one only gets access
to the amplitude of the �elds at the boundaries of the structure, Ain and Aout, with:

S−1Aout = Ain (6.69)

If one wants to obtain the �elds everywhere inside the system, one has to use again the partial
S-matrices of the system. As this procedure is not described in [47], I will explicit it here.15 As

15Of course, one could also consider using T-matrices, in which case the �elds can be built immediately from the
boundary �elds. However, the numerical stability issues evoked earlier cause the same di�culties, and the resulting �elds
diverge rapidly, even for a very accurate value of the boundary �elds.
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above, the principle consists in avoiding matrices where growing exponentials intervene and using their
inverses instead.

Amplitudes

First, starting from the �eld amplitudes on the right of the last (N − 1/N) interface, one gets the
amplitudes on the left of this interface by using the interface matrix TN−1,N :∣∣∣∣∣ A+

N−1,r

A−N−1,r

= TN−1,N

∣∣∣∣∣ A+
N,l

A−N,l

(6.70)

One can then propagate A−N−1,r to the left until interface (N − 2)/(N − 1), because only decaying
exponentials are involved in this propagation:

A−N−1,l = φ+
N−1A

−
N−1,r (6.71)

One then deduces A+
N−1,l by using SN−1 (which has already been computed when building the

total S-matrix) : ∣∣∣∣∣ A+
N−1,l

A−0,l

= SN−1

∣∣∣∣∣ A+
0,l

A−N−1,l

(6.72)

Thus, one went from the amplitudes AN,l to AN−1,l, without using any unstable φ− matrix. By
iterating this procedure, one gets A at all the interfaces of the system. Finally, one gets the amplitudes
at any point z inside layer n (of thickness L) by using:

A+
n (z) = φ̂+

nA+
n,l

A−n (L− z) = φ̂+
nA−n,r

(6.73)

Where φ̂+ is the analogous of φ+ for a propagation over a distance z:

φ̂+ = eiKz (6.74)

Fields

Once the amplitudes are known at any point z, one deduces the �elds E// and H// by using the
material matrix F in the corresponding layer:∣∣∣∣∣ E//(z)

H//(z)
= F

∣∣∣∣∣ A+(z)
A−(z)

(6.75)

Finally, one gets Ez et Hz. There are several ways to obtain Ez: from E// or H//. Here, we make
the �rst choice. For this, Ez is �rst decomposed as Ez = E+

z + E−
z . For a given kz, the link between

E+
z and E+

// is (Ref. [47]):

E+

z,G
=
∑
G'

Z−1

GG'
kz[(kx +G′

x)E+

x,G'
+ (ky +G′

y)E
+

y,G'
] (6.76)

A similar relation links E−
z to E−

//. Let us now introduce the matrix:

Cz =
(
Z−1(kx +G′

x) Z−1(ky +G′
y)
)

(6.77)
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Eq. 6.76 takes the matrix form:

E+
z (z) = CzEKA+(z) (6.78)

And similarly for E−
z . Therefore, Ez can be linked to A:∣∣∣∣∣ E+

z (z)
E−

z (z)
=
(
CzEK −CzEK

) ∣∣∣∣∣ A+(z)
A−(z)

(6.79)

As regards Hz, it is simply linked to E// by Maxwell's equations:

∂xEy − ∂yEx = iωµ0Hz (6.80)

Therefore, the plane wave coe�cients directly verify:

Hz =
1
k0

(
−(ky +Gy) (kx +Gx)

) ∣∣∣∣∣ Ex

Ey

(6.81)

6.3.6 Comparison with the hybrid method

The main goal of this implementation was to check the accuracy of the hybrid method I developed
during the thesis. To exemplify the comparison between both methods let us consider a structure
made of a 1.5a-thick GaN membrane in air, etched to a depth 0.5a by a triangular PhC of �lling factor
0.3. The fundamental pseudo-TE mode of this structure is studied by both the FMM and the hybrid
method, using the same plane-wave cuto� NG = 81 and the FFF implementation (for the hybrid
method, the vertical step is 0.02a). As can be seen on Fig. 6.13, the real part of the wavevector (k

′
)

is nearly identical for both methods (the relative error on the e�ective index is less than 10−5). The
imaginary part of the wavevector (k

′′
) is also very similar for both methods: here, the relative error is

about 10−3. This is very satisfying considering that k
′′
is already a correction to k

′
, by three orders

of magnitude. The residual disagreement is likely to be due to the spatial discretization of the hybrid
method.

As regards numerical e�ciency, the FMM is clearly less demanding: as any semi-analytical method,
its computational burden is greatly relieved by the fact that only two dimensions are discretized at the
same time. However, this advantage is somehow limited by two points. First, the 2D PWE in each
layer requires all the eigenvalues to be found (whereas in the hybrid method only a few eigenvalues of
the very large and sparse matrix are needed). Second, construction of the S-matrix requires numerous
matrix inversions, an expensive operation in terms of memory and computation time. In the end, the
number of discretization points which can be used in the FMM is certainly superior than for the hybrid
method, but not by a power 3/2 as could naively be expected.

The main advantage I found in using the hybrid method lies in its insensitivity to boundary condi-

tions. This has already been discussed: even though only one Bloch mode is accurately computed at
a time, the other eigenvalues of the large matrix are usually reasonably close to actual Bloch modes.
This is very useful for the strongly multimode structures studied in this thesis: it means that one can
obtain a good idea of the overall dispersion for dozens of mode in one calculation. This proved to be
very convenient when �tting the experimental results, because the �ts had to account for the dispersion
of all modes at the same time. Of course, if better convergence is requested for a given mode, it still
has to be computed individually.

One could hope that the FMM displays a similar property: indeed, in the pole-tracking method
described earlier, the correction to the pole's frequency (or wavevector) is the smallest eigenvalue of
a matrix. Therefore, one could expect that other small eigenvalues of this matrix lead to other Bloch
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Figure 6.13: (Top) E�ective index of the fundamental TE mode obtained by the hybrid method (full line) and
the FMM (dots): the di�erence is indistinguishable. (Middle) Imaginary part of the wavevector. The mode
enters the light cone at u ∼ 0.345 and reaches the end of the Brillouin zone at u = 0.48. Dots: hybrid method,
Circles: FMM. (Bottom) Relative error between the two methods on k

′′
.

modes. Unfortunately, this is not the case. This is evidenced on Fig. 6.14, where the FMM is used to
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Figure 6.14: Modeling of a thick GaN PhC structure using the FMM. The structure consists of a GaN layer
of thickness 6a etched to a depth a by a triangular lattice PhC of �lling factor 0.3, with air substrate and
superstrate. (left) Actual dispersion of the Bloch modes: the structure supports up to 10 TE modes (full lines)
and 10 TM modes (dotted lines). A computation is needed for each Bloch mode. (right) Computation of only
one mode (mode TE5, plotted as red stars) where the other eigenvalues of Eq. 6.43 are also plotted (blue dots):
these do not correspond to any other Bloch mode.

model a thick GaN layer. If one plots several of the eigenvalues of Eq. 6.43, they do not correspond
to any of the Bloch modes supported by the structure. This may be due to the fact that in the
FMM the �elds are propagated exponentially in the analytic direction, which would account for the
sensitivity to the input value of ω. This limitation of the FMM is not just a matter of convenience: all
modes of Fig. 6.14 could easily be obtained "manually" because there was no anticrossing at such low
frequencies. However, above the light cone where many anticrossings occur, it becomes very di�cult
to follow a given band at a time, and therefore account for the total band structure.

As a conclusion, the hybrid method is a precious tool for analysis of multimode structures.
Its accuracy was con�rmed by comparison with the FMM. Due to its memory requirements,
it is limited to structures with somewhat limited photonic e�ects where few plane waves (in
the range of 100-200) are required for good convergence. It was thus e�cient for modeling the
structures studied during this thesis. For structures which demand many harmonics −such
as PhC waveguides which request a supercell and display strong photonic interactions− a
semi-analytic method such as the FMM is preferable.
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Conclusion

During this thesis, I explored several deterministic strategies to obtain high-e�ciency LEDs in GaN-
based materials. The peculiarities of AlInGaN compounds, and especially of their epitaxial require-
ments, appeared as determining and led to di�erent optimal solutions than in conventional III-V
semiconductors.

The �rst path I considered was that of Microcavity LEDs, because of the solid theoretical framework
already developed to describe these light sources over the two past decades. Here, the rather low
refractive index of GaN proves to be bene�cial to performances. On the other hand, in part because
of the absence of good DBRs, MCLEDs with an ultimate e�ciency request a complex fabrication
process which involves bonding to a new substrate and removal of the initial sapphire substrate. Very
thin MCLEDs obtained by this method could be characterized, and evidenced the peculiar emission
properties of thin-�lm LEDs. However, the complexity and low yield of the process − especially the
need for a very high precision on layers thickness − prevented a quantitative demonstration of high
e�ciency MCLEDs. These di�culties lead me to conclude that a new fabrication strategy is necessary
if MCLEDs GaN are to be considered as a viable option. In any case, even the best structure would
still not fully address the issued of light extraction because at least 50% of the light remains guided in
the GaN layer.

Faced with the unavoidable strong light emission into these guided modes, I then considered the
use of photonic crystals to di�ract these modes into air. While this phenomenon had already been
studied quite extensively in the past, quantitative description of the approach was still rather scarce
− especially in the context of optimizing a light emitter. Moreover, application of the concept to
GaN-based structures was still in its infancy, with very little existing work discussing the possible
speci�cities of photonic crystal extraction in GaN: most of the published results consisted in experi-
mental demonstrations of PhC-LEDs which lacked an analysis of the underlying mechanisms.

The �rst experimental results obtained during this thesis outlined the peculiarities linked to the
thickness of GaN LEDs: the conventional shallow-etch approach which is successfully used in other
materials can not straightforwardly be applied in GaN, because such photonic crystals interact poorly
with a large fraction of the guided light. It appeared that a multimode view was relevant to describe
the behavior of the PhC and tackle its optimization.

I then explored several possible strategies to optimize the e�ciency of a PhC extractor. As regards
the crystal lattice, the study of Archimedean tilings con�rmed their potential as an omnidirectional
light extractor. Other e�orts were rather devoted to the 'vertical' (or epitaxial) direction, where
the need for optimization is most stringent due to the multimode nature of the problem. First, the
distribution of guided modes was tailored by modifying the epitaxial layers, so that all guided modes
could interact well with the PhC. The proof of concept of this approach was demonstrated, although
full optimization was hindered by the di�culty to grow the desired structures. Second, I considered
more advanced structures where the microcavity and the PhC approach were combined. The regime
of strong photonic interaction reached in these thin devices opens promising perspectives because it
moves away from the loose optical con�nement of previous schemes, where photonic interaction is
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barely su�cient to extract light e�ciently. However, in this case as well, fabrication di�culties still
remain a challenge.

More recently, I was also involved in two other projects which push this principle further, and
strongly modify the optical environment of the LEDs. Lateral Epitaxial Overgrowth LEDs combine
the modi�cation of guided modes distribution with a structure which is well adapted to large-scale,
high-power LEDs. However, the fabrication limitations which will eventually set the e�ciency of such
devices still need to be assessed. E�cient luminescence from deeply patterned layers is a surprising
result which adds to the unusual properties of GaN. It opens new perspectives for very strong photonic
interaction, where the PhC serves not only as a grating but also to modify the emission lifetime and
strongly alter the photonic density of states. Here, the experimental and theoretical work are just
beginning.

Throughout this thesis, the experimental work was sustained and guided by rigorous modeling
of the optical properties of photonic structures. Various tools were implemented to this e�ect, and a
speci�c method was developed to treat the case of thick GaN structures, whose study is challenging with
conventional methods. Important e�orts were also directed to alleviate the computational burden of
photonic calculations. The e�cient interplay between modeling and experiments con�rm the soundness
of a deterministic approach: it may eventually yield light sources which not only e�ciently emit light,
but emit it in a controlled and tailored fashion.

Overall, the general trend suggested by the results of this thesis is that light extraction
from GaN is hindered by the poor control one initially has on light generation, mainly
because of the thickness of the layers. Therefore, a need appears to control more strongly
the photonic behavior of the structures. This regime of strong photonic interaction
enables a more direct in�uence on light emission, but it also relies on more complex
physical phenomena and more advanced fabrication. The challenges, both theoretical and
technological, increase accordingly. Therefore, the commercial potential of the methods
presented in this thesis still remains as an open question, but with good prospects in my
opinion. In particular, the e�cient use of modeling as a diagnosis and design tool opens
promising perspectives toward ultimately controlled light sources, which may eventually
be designed to emit light e�ciently with a predetermined radiation pattern.



Appendix A

Power �ow of a Bloch mode

Here, we derive various quantities which enable us to describe the power �ow and loss channels of a
Bloch mode. The electric �eld of the Bloch mode is of the form:

E =
∑
G

EG(z)ei(k//+G)·r (A.1)

For simplicity, we assume that the Bloch mode is propagating along x (e.g. k// is parallel to x).
We look for the various power �ows of the Bloch mode through a plane yz located at x = 0. This
corresponds either to a problem where the PhC is in�nite and we look for power �ows at an arbitrary
value of x, or to a problem where the medium for x < 0 is a 'black box' where the �eld continuity
conditions are matched, so that the Bloch mode can be fed in the x > 0 region. This has the interest
of giving us access to intrinsic quantities of the Bloch mode, rather than coupling e�ciencies which
necessarily depend on the incoming �eld.

First, let us notice that whenever one considers a Poynting vector related to the Bloch mode, all
crossed terms involving two di�erent harmonics G and G′ contain a term of the form:

ei(G−G′
)·r (A.2)

Which averages out to zero when the Poynting vector is integrated over y. Therefore, each harmonic
can be considered as independent in power-related calculations. We now divide the harmonics of the
Bloch mode into three categories: forward, backward, and leaky. Forward and backward harmonics
are de�ned by the sign of their wavevector along x:

k// +Gx > 0 → Forward

k// +Gx < 0 → Backward
(A.3)

Leaky harmonics are those whose vertical wavevector kz is propagative, either in the substrate or
the superstrate. Fig. A.1 depicts the three kinds of modes, and the integration box used for power
calculations. This box starts at x = 0 and extends to x = ∞. It extends to all space in the y and z
direction.

First, let us consider a non-leaky harmonic (p). We call φx
p the �ow of the Poynting vector through

an in�nite vertical cross-section located at x = 0, with a sign convention such that φx
p is always positive:

233



234 APPENDIX A. POWER FLOW OF A BLOCH MODE

Figure A.1: From left to right, backward, leaky-backward, and forward harmonics of a Bloch mode. The large
dashed box is the integration box.

Forward → φx
p = +

∫ ∞

−∞
Πp,xdydz

Backward → φx
p = −

∫ ∞

−∞
Πp,xdydz

With: Πp,x = Re(Ep,y ·H∗
p,z −Hp,y ·E∗p,z)

(A.4)

Let us now come to leaky harmonics. Firts, it is worth commenting on their exponential decay
outside of the structure in the z direction (dotted box in Fig. A.1). As shown on Fig. A.2, the energy
of the Bloch mode decays exponentially in the x direction, with a decay constant 1/2k′′. Moreover,
at a given time and x position, the power radiated outside through a vertical cross-section Σ1 stems
from the power radiated at an earlier time through a horizontal cross-section Σ2. This explains the
exponential decay of leaky harmonics outside of the structure. In this example, the leaky harmonic
propagates backward. If it propagated forward on the other hand, the pro�le of the leaky harmonic
would increase exponentially with z because power emitted at an earlier time would propagate forward.
Such diverging exponential are not unphysical, they simply corresponds to energy emitted by the Bloch
mode in an in�nite time.

Figure A.2: Inside the structure, the power of the Bloch mode decays along x like exp(−x/2k′′). Therefore,
the power radiated at a given time by a leaky harmonic through the horizontal section Σ2 also decays along x.
This power then propagates backwards in the −x direction and reaches the vertical section Σ1 at a later time.
Hence, the intensity of the leaky harmonic along Σ1 decreases with z, because it stems from power radiated at
a larger x.
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This discussion also shows that for a leaky harmonic, power �ows can be calculated by taking the
�ow of the Poynting vector through Σ1 and Σ2. Since we are interested in vertical radiation, it is more
intuitive to use horizontal sections like Σ2 in the case of leaky harmonics. More precisely, we consider
sections as depicted on Fig. A.3.

Figure A.3: Sections used for energy �ow calculations for a leaky mode. (Left) If the mode is leaky both in
the substrate and superstrate, three sections are used. (Right) If the mode is only leaky in the substrate, only
two sections are needed: the evanescent half of the leaky mode is treated in Σleft.

We can then de�ne φx
p , dφ

x
up and dφx

down for a leaky mode:

φx
p = ±

∫
Σleft

Πp,x dydz

dφup
p =

∫
Σup,x=0

Πp,z dy

dφdown
p =

∫
Σdown,x=0

Πp,z dy

(A.5)

Again, the sign of φx
p is always positive. We can now introduce Pin, Pref , dPup and dPdown:

Pin =
∑

p|Forward

φx
p

Pref =
∑

p|Backward

φx
p

dPup =
∑

p|Leaky

dφup
p

dPdown =
∑

p|Leaky

dφdown
p

(A.6)

Pin is the �ow of incoming power on the integration box from the left, and Pref is the �ow of
outgoing power, or in other words the re�ected power. Therefore, the re�exion coe�cient R of a Bloch
mode is given by:

R = Pout/Pin (A.7)

For instance, for a non-leaky Bloch mode inside a band gap (and in the absence of absorption), we
have R = 1 which is simply an expression of energy conservation.
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The fraction of the Bloch mode's power which is radiated upwards (resp. downwards) per unit
length (e.g. per period a) is:

u = dPup/Pin

d = dPdown/Pin

(A.8)

The total fraction of the Bloch mode's power which is radiated upwards (resp. downwards) is then
obtained by integrating this quantity along x, which just yields a factor 1/2k′′ because all harmonics
have the same amplitude dependence ∼ exp(−x/2k′′). If we call U (resp D) this quantity, we have:

U =
∫

x
u.dx =

dPup

2k′′Pin

D =
∫

x
d.dx =

dPdown

2k′′Pin

(A.9)

When the Bloch mode is lossy, no energy can escape of the box (even at x = ∞). Energy conser-
vation then simply reads:

R+ U +D = 1 (A.10)

In principle, this is always veri�ed in a coupled-wave approach, because the numerical problem
is haermitian and hence conserves energy (even when the in�nite plane wave basis is truncated).
Therefore, energy conservation can't be used as a check for energy balance, only as a check for possible
errors in the code. There is a possible exception when the FFF is written in a non-hermitian way.
In this case, energy balance is not analytically veri�ed, and can inddeed be used as a convergence
criterion.

As an example, we reproduce here Fig. 3.10. It is interesting to note that the re�exion coe�cient
rises just before the reaching the light line, and then collapses. This is due to the fact that, around the
light line, harmonic (−1) is always strong.1 Therefore, as long as it is not leaky, its power is counted
as re�ected power. Once the light line is reached, the same power is counted as radiated and R goes
down.

Figure A.4: Balance of power a Bloch mode in a 1D grating. For a/λ > 0.25, the re�ection coe�cient increases
and reaches 1 in the band gap. For a/λ ∼ 0.33, the Bloch mode crosses the light line and becomes lossy. We
then have R+U+D=1.

1Indeed, harmonic (-1) crosses the light line precisely when a new Bloch mode reaches cuto� and becomes propagative
inside the PhC. There is always a mini-stop band, of varying strength, at this point.
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When R is very small (in practice, everywhere outside of band gaps), the energy balance also takes
an interesting form:

k′′ =
1

2Pin

∑
p

dφup
p + dφdown

p (A.11)

This equation gives the contribution of each radiative channel (e.g. each harmonic (p) which
radiates upwards and/or downwards) to the total decay constant of the Bloch mode k′′.

In the case where the refractive index in the structure has an imaginary part, the Bloch mode
experiences material absorption upon propagating. Again, it is possible to give a modal expression of
this absorption ([1, 2]). We denote the complex refractive index as n = n′ + in′′, and introduce dPabs:

dPabs = 2k0

∫
n′.n′′.|Ep|2 (A.12)

dPabs is then the equivalent of dPup for absorption: the fraction of the Bloch mode's power which
is absorbed per unit length is:

a = dPabs/Pin (A.13)

Likewise, the total fraction of the Bloch mode's power which is absorbed upwards (resp. downwards)
is obtained by integrating a along x:

A =
∫

x
a.dx =

dPabs

2k′′Pin
(A.14)

The conservation of energy then reads:

R+ U +D +A = 1 (A.15)

An example of energy balance in the case of absorption in metal is given in Fig. 4.51 of Chapter 4.
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Appendix B

Wurtzite and zinc-blende Hamiltonians

In this annex, we discuss the electronic band structures of semiconductors and their consequences for
optical properties. We begin with a simple presentation of general properties. We then study the
well-known case of zinc-blende crystals and derive the corresponding emission diagrams for optical
transitions. Finally, we come to the case of wurtzite crystals (which applies to AlInGaN compounds);
we compare their properties with those of zinc-blende crystals and discuss the peculiar case of nonpolar
GaN.

B.1 Band structure and optical properties: basic discussion

B.1.1 Energy bands of a crystal

The electron wavefunctions in the bands of a semiconductor crystal are solutions of Schrödinger's
equation:

Hψ =
(
p2

2m
+ V

)
ψ = Eψ (B.1)

In a bulk semiconductor, the solutions are simply Bloch modes:

ψ = eik·ru(k, r) (B.2)

Where k is the electron's wavevector and u is the periodic part of the Bloch function (PPBF). In
most semiconductor heterostructures, one makes the assumption that u is a slowly varying function
of k (at least in the vicinity of k=0, where electrons are usually located) and hence lets u(k, r) ≈
u(0, r) ≈ u(r). In this approximation, it can be shown that solutions of Eq. B.1 are of the form:

ψ = F (r)u(r) (B.3)

F (r) is the so-called envelope function and the corresponding approximation is called the envelope
approximation.

In the energy range of interest in a semiconductor (i.e. around the band gap), the solutions of
Eq. B.1 have the following general properties:

• They are divided in distinct energy bands. There exist an energy range (the band gap) where no
solution exists, and hence no electron can propagate in the crystal at such energies (Fig. B.1).

• At zero temperature, the bands located below the gap (valence bands, VB) are fully �lled with
electrons while the bands located above the band gap (valence bands, CB) are empty.
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• Electrons can hop from the VB to the CB (leaving holes behind them), for instance due to �nite
temperature or to the absorption of a photon. Likewise, they can fall back in th VB by emitting
a photon.

Figure B.1: Schematic dispersion of a semiconductor. k is the total electron's wavevector and Eg the gap.
Close to the Γ point, the dispersion of the bands is roughly parabolic. In realistic cases, the valence band is
usually composed of several degenerate bands.

In order to fully determine the band structure of a realistic semiconductor, one needs to fully
diagonalize the corresponding Hamiltonian. This leads to heavy calculations as the Hamiltonian is
large (typically 6 × 6 or 8 × 8) in order to account for all bands couplings, and all the material
parameters of the semiconductor must be used. While calculations for the CB are usually simple
(thanks to the use of an e�ective mass approximation), the VB is more complex to treat. This is
because one usually starts from a 'simple' semiconductor without interactions where the valence band
is made of several degenerate bands; when interactions are subsequently 'plugged in', the degeneracy
is lifted (see below) and the formerly degenerate bands interact strongly.

B.1.2 Optical transitions in a semiconductor

Let us consider the interaction between an electron in a semiconductor crystal and a photon. This
corresponds to the absorption of a photon with energy ~ω and the transition of an electron from the
VB to the CB, or to the symmetric process (i.e. spontaneous emission). The matrix element for this
process can be obtained from Fermi's golden rule and is (Ref. [3]):

∣∣H ′∣∣2 =
(
qA
2m0

)2

|〈uc| e · p |uv〉|2 |〈Fc|Fv〉|2 (B.4)

In this expression, A is the amplitude of the photon's vector potential and e its unit polarisation
vector; m0 is the free electron mass, and p the momentum operator of the electron. Fc and Fv are
the envelope functions of the electron in the conduction and valence bands (in the case of a bulk
semiconductor, these are just plane waves as in Eq. B.2); uc and uv are the corresponding PPBF.

Thus, it appears that several factors govern the strength of an optical transition: the polarization of
the photon, the overlap properties of the PPBF (coupled by the momentum operator) and the overlap
of the envelope functions.

B.1.3 Basis for the periodic part of the Bloch functions

As has been said, full determination of a semiconductor's band structure is a complex task. However,
it appears from Eq. B.4 that a number of useful trends can be obtained from the symmetry properties
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of the periodic part of the Bloch functions at the Γ point (i.e. k = 0). We will follow this approach
here.

To his e�ect, let us for now consider a bulk semiconductor in the absence of either spin-orbit coupling
or built-in electric �eld. In general, the various bands of the semiconductor can be characterized by
their symmetry at the Γ point (k = 0). Because crystal bands can be interpreted as originating from
atomic orbitals (in a LCOA approach), one often describes their symmetry properties in analogy with
those of atomic orbitals.

If we quantize the orbital momentum along an arbitrary axis z, the conduction band corresponds
to a state with total agular momentum J=1/2 (Γ6 group symmetry). Therefore, it is not degenerate
(apart from a twofold spin degeneracy), and the PPBF possess s-like symmetry (that is, it is even with
respect to x, y and z).

The valence band, on the other hand, corresponds to a total momentum J=3/2 and is threefold
symmetric (sixfold including spin). In analogy with the p orbital atomics of a hydrogen atom, one
can choose a basis of PPBF with px, py and pz symmetries respectively. Here, we denote these states
as |X〉, |Y 〉 and |Z〉. Besides, if we include spin, each of these states is twofold-degenerate: the basis
becomes

{
|X〉 , |Y 〉 , |Z〉 ,

∣∣X̄〉 , ∣∣Ȳ 〉 , ∣∣Z̄〉} where the �rst three states have spin up and the three last
states have spin down.

When the speci�c details (interactions) of the Hamiltonian are 'plugged in', the degeneracy of
the valence band is lifted. The eigenstate of the Hamiltonian can then be expressed in the former
basis. Group theory enables us to deduce useful properties, depending on the symmetry of the new
hamiltonian. In the following, we will apply this approach to two speci�c cases: the zinc-blende and
wurtzite hamiltonians.
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B.2 Zinc-blende structure

The results and notations of this section summarize those of Refs. [3, 4]. Historically, the zinc-blende
valence band structure was �rst solved by Luttinger (Ref. [5]). The corresponding Hamiltonian is called
the Luttinger-Kohn Hamiltonian.

B.2.1 Bulk

For a bulk semiconductor with cubic zinc-blende structure, the spin-orbit coupling lifts the degeneracy
of the valence band: instead of a triplet, the states split in a singlet and a doublet state, in analogy
with the atomic singlet |J = 1/2〉 and doublet |J = 3/2〉.

The eigenstates of the Hamiltonian in presence of spin-orbit coupling become:

Heavy holes |uhh〉 =
∣∣∣∣32 , 32

〉
= − 1√

2
(|X〉+ i |Y 〉) |ūhh〉 =

∣∣∣∣32 ,−3
2

〉
=

1√
2

(∣∣X̄〉− i ∣∣Ȳ 〉)

Light holes |ulh〉 =
∣∣∣∣32 , 12

〉
= − 1√

6

(∣∣X̄〉+ i
∣∣Ȳ 〉− 2 |Z〉

)
|ūlh〉 =

∣∣∣∣32 ,−1
2

〉
=

1√
6

(
|X〉 − i |Y 〉+ 2

∣∣Z̄〉)

Spin-Orbit |uso〉 =
∣∣∣∣12 , 12

〉
= − 1√

3

(∣∣X̄〉+ i
∣∣Ȳ 〉+ |Z〉

)
|ūlh〉 =

∣∣∣∣12 ,−1
2

〉
=

1√
3

(
|X〉 − i |Y 〉 −

∣∣Z̄〉)
(B.5)

The �rst four states are degenerate at the Γ point. They are called heavy and light hole states
respectively. The two last states are degenerate and are called spin-orbit holes. To each kind of hole
corresponds a given e�ective mass, which can be obtained by fully diagonalizing the Hamiltonian.1

The dispersion relation of a typical zinc-blende semiconductor is depicted in Fig. B.2.

Figure B.2: Typical dispersion of a bulk zinc-blende semiconductor. k is the total electron's wavevector, Eg

the gap and ∆so the spin-orbit splitting.

From this �gure, the meaning of 'heavy' and 'light' holes become clear: this refers to the e�ective
mass of the holes around the Γ point. In GaAs for instance, mhh = 0.5m0 and mlh = 0.08m0 (m0

being the free electron's mass). The spin-orbit band is shifted to a lower energy than the HH and LH
bands. This spin-orbit splitting ∆so is usually quite large (0.34 eV in GaAs). Therefore, only the top

1Actually, in realistic semiconductors the e�ective mass is not isotropic but this simple assumption is su�cient for
the present discussion.
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of the HH and LH bands are populated at usual temperatures and optical transitions involving the SO
bands can be neglected, as we will do in the following.

B.2.2 Quantum Wells

Let us now come to the case of a quantum well heterostructure. Due to con�nement in the quantum
well, each energy band is shifted from its original level by an amount corresponding to its ground
state energy level (Fig. B.3). Because of its higher e�ective mass, the shift (εhh) of the HH band is
much smaller than that (εlh) of the LH band. Therefore, the lowest energy transition in a quantum

well corresponds to a conduction band to heavy hole band transition. The energy of this transition is
Eg + εc + εhh.

Figure B.3: Typical dispersion of the �rst con�ned levels in a zinc-blende quantum well: the degeneracy of the
HH and LH bands is lifted. k‖ is the in-plane electron's wavevector. εc, εhh and εlh are the con�nement energies
(i.e. the fundamental energy levels of the quantum well) for the conduction, HH and LH bands. Note that in a
QW, the in-plane masses of the HH and LH are light and heavy, respectively! This leads to an anticrossing of
these bands at k 6= 0.

It follows that, in �rst approximation, one can consider only these transition in optics experiments
− of course, the accuracy of this approximation depends on the magnitude of the quantum well's
energy shifts, and on the temperature (at high temperature, lower valence bands become populated).
Below, we will study the angular dependence of this transition and see how it can be incorporated in
electromagnetic modeling.

In addition, it should be noted that growth of a quantum well may be cause strain because of the
lattice mismatch between the matrix and the well. This strains can further break the crystal symmetry,
and therefore slightly mix the HH and LH PPBF at the Γ point. However, this phenomenon depends
on the details of the semiconductor and is out of the scope of this general discussion.

B.2.3 Electromagnetic modeling of an electron-heavy hole transition

Periodic part of the transition matrix element

Let us now come back to Eq. B.4 and evaluate it in the case of an C-HH transition. We can write:

e · p = −i~ (ex∂x + ey∂y + ez∂z) (B.6)

Due to the s-symmetry of uc and to p-symmetry of {|X〉 , |Y 〉 , |Z〉}, most components of 〈uc|p |uv〉
vanish, except for three terms:

|〈uc| i~∂x |X〉|2 = |〈uc| i~∂y |Y 〉|2 = |〈uc| i~∂z |Z〉|2 = Π (B.7)
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All three terms are equal, and are denoted (in absolute value) as Π, the interband matrix element

of the semiconductor. The numerical value of Π can be determined experimentally. We are now ready
to evaluate the periodic part of Eq. B.4:2

|〈uc| e · p |uhh〉|2 =
∣∣∣∣− 1√

2
〈uc| − i~ (ex∂x + ey∂y + ez∂z) |X + iY 〉

∣∣∣∣2

=
Π
2

(e2x + e2y)

(B.8)

Thus, we obtain the angular dependence of light emission (or absorption), which is a function of
polarization. It is convenient to decompose it on the basis of TE and TM polarizations:

|〈uc| eTE · p |uhh〉|2 =
Π
2

|〈uc| eTM · p |uhh〉|2 =
Π
2
cos(θ)2

(B.9)

Conveniently, these angular dependencies can easily be reproduced by those of in-plane electro-
magnetic dipole emitters.[6, 7] Namely, let us consider emission in a given direction (θ, ϕ). It can be
veri�ed that an in-plane dipole parallel to the unit vector uϕ emits TE-polarized light with an intensity
which does not depend on θ (Fig. B.4). Likewise, an in-plane dipole perpendicular to the unit vector
uϕ emits TM -polarized light with an intensity varying like cos(θ)2.

Figure B.4: Emission diagrams of dipoles (dotted arrows). The thick line represents the intensity of emission
in a given direction, and the gray arrows the polarization of light. (Left) An in-plane dipole perpendicular to
the plane of emission emits TE light with a constant intensity. (Right) An in-plane dipole parallel to the plane
of emission emits TM light with an intensity ∼ cos(θ)2.

The modeling of electron-hole recombinations by dipole source terms in S-matrix calculations is
based on this correspondence.

2Actually, we need to sum over transitions between spin up and spin down PPBF, but in the current case this simply
leads to a factor of 2 which is included in the present result. Things are more subtle for C-LH transitions. See Ref. [3]
p.518-519 for an accurate discussion.
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Envelope part of the transition matrix element

For transitions in a quantum well, the term 〈Fc|Fhh〉 of H ′ also needs to be evaluated.3 This overlap
simply consists in an integral of the envelope wavefunctions in the z directions. As sketched in Fig. B.5,
both wavefunctions are generally quite similar so that this overlap is close to 1.

Figure B.5: Envelope wavefunctions of the fundamental levels of the conduction and heavy hole bands. Both
functions are quite similar, leading to an overlap close to 1 (although their di�erent penetrations in the barriers
of the well make the overlap slightly smaller than 1).

3In general, the envelope function Fhh can be mixed with light holes terms when k‖ 6= 0. However, this e�ect is
neglectable for optical transitions because the in-plane wavevector of photons is very small, so that we always have
k‖ ≈ 0.
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B.3 Wurtzite structure

The wurtzite lattice corresponds to the stable structure of GaN under usual conditions. It is depicted
on Fig. B.6. The Hamiltonian describing the wurtzite structure was established by Bir and Pikus, and
is thus called the Bir-Pikus Hamiltonian.[8]

Figure B.6: [After Ref. [9]] Wurtzite crystal lattice, composed of two hexagonal closely packed lattices. Usually,
GaN is grown along the c(0001) axis.

B.3.1 Bulk

There is a signi�cant di�erence between zinc-blende and wurtzite lattices. In zinc-blende crystals,
the three crystallographic axes x, y and z are equivalent whereas in wurtzite crystals the c-axis (the
'vertical' axis of the hexagon) is not equivalent to the 'in-plane' axes. This symmetry breaking, called
crystal �eld, leads to a strong anisotropy in the band structure. One of the valence bands (the crystal
�eld holes, or CH) is split from the two others by an amount ∆CF . In bulk GaN ∆CF ∼ 10meV
(Ref. [10]).

Figure B.7: (Left) [After Ref. [9]] The crystal �eld splits one of the valence bands. The spin-orbit interaction
further splits the two remaining valence bands, yielding the three valence bands HH, LH and SH. (Right) [After
Ref. [10]] Actual valence band structure of wurtzite GaN. Dispersions are di�erent along z and the in-plane
direction x because of the anisotropy of the lattice. Besides, note that the spin-degeneracy of each valence band
is lifted: because of the crystal �eld, spins up and down are no longer equivalent. However, this e�ect is weak
for the HH band and close to k = 0.

The spin-orbit interaction further splits the two remaining bands in a heavy hole (HH) and a light
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hole (LH) bands (Fig. B.7). As for zinc-blende, since we are mainly interested in the lowest energy
optical transitions, it will be su�cient for us to investigate the properties of the C-HH transition.

Let us insist on the di�erence with the zinc-blende case. In bulk zinc-blende crystals, the choice of
the z-axis (the axis of quanti�cation for the orbital momentum and spin) is arbitrary and the heavy
and light hole bands are degenerate. In presence of a quantum well, the symmetry is broken. The
z-axis is imposed as that perpendicular to the quantum well, and the degeneracy between heavy and
light holes is lifted. In wurtzite crystals on the other hand, the symmetry is broken even in bulk and
the z-axis is the c axis. This di�erence will be re�ected in the polarization of luminescence in GaN.

As regards the PPBF in the valence band, they are of the following form (Ref. [9]):

Heavy holes |uhh〉 = − 1√
2

(|X〉+ i |Y 〉) |ūhh〉 =
1√
2

(∣∣X̄〉− i ∣∣Ȳ 〉)
Light holes |ulh〉 = −a

(∣∣X̄〉+ i
∣∣Ȳ 〉)+ b |Z〉 |ūlh〉 = a (|X〉 − i |Y 〉) + b

∣∣Z̄〉
Crystal holes |uso〉 = −b

(∣∣X̄〉+ i
∣∣Ȳ 〉)− a |Z〉 |ūlh〉 = b (|X〉 − i |Y 〉)− a

∣∣Z̄〉
(B.10)

The precise form of coe�cients a and b depends on the crystal's parameters and can be found in
Ref. [9]. The most important point for us is to note that the PPBF for heavy holes are identical to
those of the zinc-blende Hamiltonian (note that this is not the case for the LH and CH bands).

B.3.2 C-axis quantum wells, e�ect of built-in electric �elds

Let us now consider the optical properties of a quantum well grown along the c-axis. Since the PPBF
of the HH band is similar to that of zinc-blende, the periodic part of Eq. B.4 is unchanged. In other
terms, the polarization properties of light emission depicted in Fig. B.4 still holds.

This result is often used during this thesis to argue that guided modes are mainly TE-polarized.
This is also compatible with the experimental results obtained in the thesis. It is worth noting, however,
that the LH band may mix with the HH band and contribute to optical transitions in the presence
of strain, or if emitting regions of InGaN quantum wells are actually not fully planar.4 Thus more
accurate measurements would be desirable to estimate this mixing, although it is likely to be small at
best.

Speci�cally, wurtzite Its existence leads to a strong anisotropy in the band structure.
On the other hand, the envelope part of Eq. B.4 deserves some attention. Again, the anisotropy

of the Wurtzite structure along the c axis has a consequence here: the crystal is polar (the Ga and
N atoms are partially charged) so that a macroscopic spontaneous polarizationn �eld appears. This
bult-in polarization �eld is aligned with the c-axis. In addition, a piezoelectric polarization �eld may
be caused by strain in the crystal.[11] This modi�es the band structure as depicted on Fig. B.8.

As can be seen, the existence of this �eld strongly decreases the overlap integral 〈Fc|Fhh〉 because
the electron and hole wavefunctions are con�ned to di�erent sides of the quantum well. Incidentally,
the energy of the optical transition is also signi�cantly reduced with respect to what one would deduce
in a �at band situation.

This low overlap integral implies a low radiative recombination rate. This is all the more true in
wide quantum wells, a fact which is considered responsible for the collapsing internal quantum e�ciency

4Indeed, the existence of In-rich clusters in InGaN quantum well is often suggested in literature to account for their
high quantum e�ciency in spite of their high dislocations density.
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Figure B.8: E�ect of the polarization �elds on the bands of a heterostructure. Note that the sign of the �eld
is opposite in the GaN and InGaN regions.

in low-energy (green) InGaN LEDs. Let us note that the strength of this e�ect is not fully assessed
and may be mitigated by some phenomena, such as localization of carriers in In-rich clusters of the
quantum well. Besides, current injection in an LED modi�es the bands and may bring them closer to
a �at-band situation (this is compatible with the experimental observation that the internal quantum
e�ciency initially increases with current density, before decreasing when the 'e�cient' localized states
are saturated).

B.3.3 Nonpolar quantum wells

Nonpolar GaN for increased quantum e�ciency

In any case, it seems desirable to get rid of these piezoelectric �elds which reduce the wavefunctions
overlap, at least to some extent. For this reason, a number of teams actively pursue the growth of
nonpolar GaN, e.g. GaN structures grown along other axes than the c-axis. Indeed, in this case the
piezoelectric �eld is no longer perpendicular to the quantum well and the overlap of electron and hole
wavefunctions is restored.

Figure B.9: [After Ref. [12]] Actual calculations of electron and hole wavefunctions in a c-plane quantum well
(left) and an m-plane quantum well (right). In the m-plane quantum well, the wavefunctions overlap is restored
and the transition energy is modi�ed.

There have been numerous reports of optical experiments on nonpolar GaN in recent years - �rst
in photoluminescence [12], and more recently in LEDs in a-plane [13] and m-plane [14] structures.
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Polarized emission

In addition, nonpolar GaN possesses an unusual property: light emission from its top surface is strongly
polarized. At normal incidence, the polarization is orthogonal to the c-axis.[15] It has often been argued
that this property was desirable because it could lead to e�cient, polarized light sources − a feature
which is necessary in some applications like backlighting of LCD screens − without resorting to an
external polarizer, which induces some losses (50% of the light in the worst case).

Let us account for this polarized emission and discuss its interest for a polarized light source. As
has been explained, the z axis in the quanti�cation of the PPBF of Eq. B.10 is �xed as the c-axis
rather than the axis of the quantum well. Therefore, the emission diagram of C-HH transitions now
has to be rotated by 90o. Eq. B.9 becomes:

|〈uc| eTE · p |uhh〉|2 =
Π
2
sin(ϕ)2

|〈uc| eTM · p |uhh〉|2 =
Π
2
(
cos(θ)2cos(ϕ)2 + sin(θ)2

) (B.11)

The corresponding emission diagrams are depicted on Figs. B.10 and B.11, in two special cases.
Again, they can be reproduced by the emission diagrams of two orthogonal dipoles perpendicular to
the c-axis.

Figure B.10: Emission diagram when ϕ = π/2. (Left) TE emission corresponds to a dipole perpendicular
to the c-axis and to the plane of emission. (Right) TM emission corresponds to a dipole perpendicular to the
c-axis and parallel to the plane of emission.

Figure B.11: (Left) Emission diagram when ϕ = 0. (Right) This emission diagram is once again the sum of
two orthogonal dipoles perpendicular to the c-axis.

The polarization of emission in the z direction can be deduced from Eq. B.11 (or from Figs. B.10
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and B.11). We �nd that light emitted at normal incidence has a polarization perpendicular to the
c-axis, in agreement with experimental observations.

However, we also realize that less light is now emitted in the z direction! In the case of polar GaN,
the dipoles responsible for emission lie in the quantum well plane so that they all emit light vertically.
Here on the other hand one of the dipoles is perpendicular to the quantum well plane (e.g. vertical),
and does not radiate any light vertically. Therefore, there is twice less light emitted in the z direction.
On the other hand, much more light is now emitted into guided modes by the vertical dipole.5 This
intuitive 'dipole view' is sketched in Fig. B.12

Figure B.12: (Left) In zinc-blende crystal and polar GaN the emitting dipoles all lie in the quantum well plane.
(Right) In nonpolar GaN, the dipoles lie in a plane perpendicular to the c-axis.

From this, we conclude that although the internal quantum e�ciency may be increased in nonpolar
GaN, there is a price to this: the light extraction e�ciency is now divided by two. This implies that
the use of nonpolar GaN requires even more e�orts in strategies for light extraction. Unfortunately,
when guided light is extracted it is di�cult to control its polarization state (random approaches such
as roughening also randomize polarization, and 2D PhCs do not conserve polarization when di�ract-
ing light). Therefore, the advantage of nonpolar GaN as a naturally polarized light source seems
questionable.

One should note that we have neglected all band-mixing e�ects (such as HH-LH mixing) which
may for instance be produced by strain. Should these occur, their main e�ect would be to add a
|Z〉 component to the HH PPBF uhh. This in turn would add a dipole component parallel to the
c-axis in the emission diagrams, thus mitigating the issue of reduced light extraction while reducing
the polarization of vertically-emitted light.

5Besides, this guided light is now TM -polarized.
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Carriers localization and source terms in

Maxwell's equations

Here, we shortly discuss the impact of carriers localization on their emission properties. We aim at
determining whtther light emitted in di�erent directions k// is coherent. It is interesting to note that
this question has not aroused much interest in the past, probably because light emitted in di�erent
directions does not interfere in the far-�eld (except in experimental schemes like that of Ref. [16], see
below), so that the question is irrelevant for simple emission from a semiconductor. In our case however,
di�raction by the photonic crystal mixes di�erent k// so that we have to consider the question.

C.1 Quantum well

Let us �rst consider the case of carriers localized vertically in a quantum well, but with no in-plane
localization (i.e. the quantum well is perfect, with no interface �uctuations). In this case, the in-plane
dependence of an electron (or a hole) in the well is a plane wave:

ψe,h ∼ eik//r (C.1)

For an electron-hole (e-h) pair to recombine radiatively, their wavevector k// must match, so that
a recombining e-h can be characterized by a single k//.

If the electron-hole pair forms an exciton (usually, this e�ect is only predominant at low tempera-
ture) the in-plane delocalization is re�ected on the center-of-mass motion (CM) of the excition:

ψCM ∼ eik//r (C.2)

Therefore, both in the case of a free e-h pair and of an exciton, the in-plane wavevector is well-
de�ned (this simply re�ects translation invariance). The photon produced in a radiative recombination
carries this wavevector k//. Photons with di�erent k// are thus produced by di�erent transitions, and
are incoherent.

Therefore, when modeling emission from a quantum well, the intensities emitted at di�erent k//

must be summed, to re�ect this incoherence. This implies that source term calculations must be
performed for each k// independently, and their sum constitutes the total emission. Therefore, the
'unfolded' source described in Chapter 6, Section 6.3.3 should be used.

Of course, it may be argued that the in-plane dependence of an e-h pair can not exactly be a plane
wave (either because the quantum well is perfect, or because e-h pairs have a �nite lifetime anyway),
but rather an enveloppe function with a characteristic wavevector K. However, our argument is valid

251
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as long as K is much larger than the typical free photon wavevector k0 (this amounts to comparing the
spatial extent of the wavefunction to the photon's wavelength). In other words, since only e-h pairs
close to the Γ point can recombine radiatively, we are only interested in delocalization on this scale.

Let us note that an experimental evidence of this e�ect was reported in Ref. [16], where the authors
studied the coherence of light emitted in di�erent directions by a quantum well and showed that only
photons with the same k// interfered.

C.2 Quantum dot

The opposite situation is found in an ideal quantum dot, where the electron and hole (or the exciton
center-of-mass) is fully localized at a given position:

ψ ∼ δ(r− r0) (C.3)

The Fourier transform of this wavefunction is a constant function: ψ contains all wavevectors k//

(the wavevector of the e-h pair is completely unde�ned). In this case, the emitted photon carries all
values of k//, so that light corresponding to di�erent k// is coherent and can interfere. In the modeling
of a source emission, one should use the 'folded' source described in Chapter 6, Section 6.3.3.

Here again, carriers can be considered localized as long as their spatial extent is much smaller than
the typical photon scale λ.
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