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St. Paul, près de l’hôtel que Patrick avait choisi pour moi. J’ai tout de suite
su, avant même de connâıtre le sujet de thèse qu’on allait me proposer, où je
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Mon travail a beneficié des contributions intellectuelles importantes de
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Chapter 1

Introduction

Scientific exploration of jet instability phenomena was initially inspired by
their visual beauty. In 1858, Le Conte [75] discovered during a lamp-lit
classical concert that music stimulated rhythmic flickering in a gas flame:

“Soon after the music began, I observed that the flame exhibited
pulsations that were exactly synchronous with the audible beats.
This (...) phenomenon was very striking, [especially] when the
strong notes of the cello came in. It was exceedingly interesting
(...) how perfectly even the trills (...) were reflected on the sheet
of flame.”

Tyndall, in 1867, explored the sensitivity of a flame to the poetry of Edmund
Spenser [104]:

Sweet words like dropping honny she did shed,
And twixt the perles and rubins softly brake
A silver sound, which heavenly musicke seemed to make.

Sketches of the flame response to these verses are shown in figure 1.1, a
full account is given in the chapter “Sensitive naked flames” of Tyndall’s
notes on lectures held at the Royal Institution in London [109]. In similar
experiments conducted during these lectures, Tyndall also observed that non-
reacting hot jets are receptive to musical excitation1. Instability phenomena
in non-reacting jets are the subject of my dissertation.

1Accounts on the discoveries by Le Conte and Tyndall are due to Lienhard [70].
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Figure 1.1: Poetry response of a gas flame in various régimes, taken from
Tyndall [109]

On the basis of Lord Kelvin’s description of the Kelvin–Helmholtz insta-
bility mechanism in plane shear layers, Lord Rayleigh [98] was the first to
attempt a theoretical investigation of the instability of an inviscid cylindrical
vortex sheet in 1879. His analysis revealed that round jets are unstable to
axisymmetric disturbances.

In the twentieth century, purely æsthetic fascination has given way to
more practical considerations. Industrial interest in hot jet dynamics, espe-
cially with regard to laminar-turbulent transition, has been primarily moti-
vated by aircraft propulsion and combustion applications. In recent years,
the reduction of jet noise has become the object of intensive research. Sound
may emanate both from large-scale instability structures, as well as from
small-scale turbulence. Jet noise today accounts in large measure for the
acoustic nuisance of aircraft traffic. In internal combustion applications, it
may cause resonant vibrations of the surrounding structure, among other
undesirable effects.

1.1 Amplifiers and oscillators

All flows may be divided into three categories: in response to perturbations,
they may be stable, or otherwise act as amplifiers or oscillators. In stable

flows, any external disturbance is temporally damped. If, for instance, music
had played while Spenser [104] contemplated an actual stream of honey flow-
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Figure 1.2: Vortical ring structure in an unheated round air jet at Reynolds
number ReD = 104, axisymmetrically forced at Strouhal number St = 0.55
(ReD and St based on jet diameter and exit velocity). Taken from Parekh
et al.[91]

ing from his muse’s mouth, he would not have observed it pulsate in tune to
cello notes. By contrast, the ripples that Le Conte [75] noticed in a gas flame
in response to flute trills characterize the flame as an amplifier of external
noise, or indeed music. A flow that acts as an amplifier displays instabilities
driven by external excitation: perturbations introduced upstream experi-
ence growth as they travel downstream. In perfectly quiet surroundings, an
amplifier-type flow remains unperturbed.

Jets display amplifier-type behavior over a large commonly observed pa-
rameter range. Amplification of controlled harmonic perturbations in a typ-
ical round laboratory jet is visualized in figure 1.2. In this photograph, a
laser sheet illuminates the meridional plane of the jet during 25 ns, thereby
giving an instantaneous picture of the flow, which is seeded with cigar smoke
in the shear layer. Low-amplitude flow forcing at the nozzle exit engenders
rapidly growing disturbances, resulting in a regular roll-up of the shear layer
into vortex rings. The passage frequency of these convected vortex rings
corresponds to the frequency of the upstream forcing.

Oscillator flows display self-excited behavior: starting from a steady
state, such a flow develops persisting oscillations in response to an initial
perturbation, and it never returns to the unperturbed state. The long-time
dynamics of an oscillator are intrinsic to the flow system.

The best-known archetype of an oscillator-type flow is the wake of a
circular cylinder, which may serve as an illustration. At Reynolds numbers
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Figure 1.3: Bénard–Kármán vortex street in the wake of a circular cylinder
at Reynolds number ReD = 140. Photograph by Sadatoshi Taneda, taken
from van Dyke [110].

between 48.5 and 180, the instability of the wake gives rise to a periodic
shedding of counter-rotating vortices that form the Bénard–Kármán vortex
street, pictured in figure 1.3. The steady wake flow, as observed for Re <
48.5, is still a solution to the Navier–Stokes equations, but this solution is
unstable: subjected to an arbitrary perturbation, the steady flow bifurcates
to a synchronized oscillating state of the form

q(x, t) = Q(x) e−iωgt , (1.1)

where the vectors q, Q contain all flow variables, and ωg is the global fre-

quency. A time-harmonic solution (1.1) to the unforced Navier–Stokes equa-
tions is referred to as a nonlinear global mode. A steady flow that bifurcates
to a global mode is characterized as being globally unstable.

The term global emphasizes that the oscillating solution encompasses the
entire flow field. Nonlinear effects cause the fluctuation amplitudes to satu-
rate at finite levels, thus limiting the temporal as well as spatial growth of
the instability to an asymptotic state (1.1) with real global frequency ωg.

Intrinsic oscillations in the cylinder wake were first observed and described
by Bénard [6] in 1908. Some eighty years later, it has been found that hot
jets may display a similar behavior.
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(a) (b)

Figure 1.4: Synchronized oscillations visualized in a hot jet at S = 0.47
and ReD = 10 000. Smoke illuminated by a strobed laser sheet through
the jet axis, photograph shutter speed 1/30 s. (a) stroboscope frequency
f = 700 Hz; (b) stroboscope frequency f = 350 Hz. Unpublished pictures
from the experiments of Monkewitz et al. [82], courtesy Hermann-Föttinger-
Institut, TU Berlin.

1.2 Self-sustained oscillations in hot jets

Monkewitz, Bechert, Barsikow & Lehmann [82] were the first to observe the
spontaneous onset of self-sustained oscillations in hot jets under controlled
experimental conditions. Over a large streamwise region downstream of the
nozzle, these oscillations were highly synchronized to a common frequency.
Flow visualizations showed that the synchronized oscillations were associated
with a street of regularly spaced axisymmetric ring vortices extending well
into the downstream turbulent jet region. These ring vortices typically un-
derwent one stage of vortex pairing, or “leap-frogging”, at a fixed streamwise
station.

The spatial structure of such a vortex street is pictured in figure 1.4,
which presents two flow visualizations from the experiments of Monkewitz
et al. [82]. The Reynolds number, based on jet diameter, is given as 104, and
the jet temperature is 626 K. Both pictures are phase-averaged photographs
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Figure 1.5: Snapshot of synchronized oscillations in a direct numerical sim-
ulation of a low-density jet at S = 0.25 and ReD = 1000. Isosurface of a
passive scalar, taken from Nichols [86].

of the same jet configuration, illuminated by a laser sheet strobed at the
fundamental frequency f = 700 Hz in figure 1.4a, and at the subharmonic
frequency f = 350 Hz in figure 1.4b. Four equidistant ring vortices may
be distinguished in figure 1.4a. In figure 1.4b, a distinctive doubling of the
vortex spacing is observed about three jet diameters downstream of the noz-
zle, where the regular structure in figure 1.4a vanishes as a result of vortex
pairing.

The experiments of Monkewitz et al. [82] have shown that self-sustained
oscillations set in as the ambient-to-jet temperature ratio S = T∞/Tc falls
below a critical value S = 0.73. The typical Strouhal number St, based on
jet diameter and exit velocity, is given as St ∼ 0.35 for the “mode I” state
observed over the range of temperature ratios 0.63 ≤ S ≤ 0.73. Below a
second threshold value S = 0.63, a distinct new oscillating “mode II” state is
reported to be dominant, with a new typical Strouhal number around 0.45.
The pictures in figure 1.4 display the “mode II” state at temperature ratio
S = 0.47; the fundamental Strouhal number may be estimated as St ∼ 0.48.

Around the time of the Monkewitz et al. [82] experiments, Sreenivasan
et al. [105] made similar observations in helium jets: these authors report the
occurrence of intense self-sustained oscillations, also in the form of axisym-
metric vortex rings, in jets with a jet-to-ambient density ratio below 0.6. A
variable density ratio in these experiments was controlled by the mixing of
helium and air in a jet emerging into pure air. Under the perfect gas assump-
tion, the control parameter S = T∞/Tc ([82]) may be equivalently defined
as the jet-to-ambient density ratio S = ρc/ρ∞ ([105]). Only one oscillating
state was observed by Sreenivasan et al. [105], with typical frequencies in
good agreement with the “mode II” state of Monkewitz et al. [82].
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Self-sustained oscillations in a jet with density ratio S = 0.25 have also
been observed in recent direct numerical simulations by Nichols, Schmid &
Riley [88]. A snapshot of a passive scalar field from these calculations is
reproduced in figure 1.5. Unlike in the experiments [82, 105], no vortex pair-
ing is observed by Nichols et al. [88], probably due to the choice of a low
Reynolds number and a rather thick initial shear layer in comparison to the
experimental settings. Instead, figure 1.5 demonstrates strong helical defor-
mations of the initially axisymmetric ring vortices, setting in approximately
five diameters downstream on the inlet.

1.3 Absolute instability in hot jets

The experiments of Monkewitz et al. [82] were theoretically motivated by the
discovery that axisymmetric jets may undergo a transition from convective to
absolute instability, if the jet is sufficiently heated with respect to the ambi-
ent air (Monkewitz & Sohn [85]). The concept of convective versus absolute
instability has originally been formulated by Briggs [14] and Bers [7] for in-
stability problems related to plasma physics. In the context of open shear
flows, such as jets, absolute instability implies that an arbitrary initial per-
turbation in an infinite parallel flow gives rise to a wave packet which spreads
simultaneously in the upstream and downstream directions, according to the
linear equations of motion. The spatio-temporal spreading of the instability
wave packet withstands the downstream advection, and hence contaminates
the entire flow domain as t → ∞. By contrast, in a convectively unstable
setting, the downstream advection dominates over the upstream spreading of
the instability, and the entire wave packet is convected away from the initial
perturbation location. A precise definition of convective versus absolute in-
stability in parallel open flows is given by Huerre & Monkewitz [54], together
with the mathematical Briggs–Bers criterion used to discriminate between
these two situations.

The linear instability analysis of Monkewitz & Sohn [85] revealed that
absolute instability in hot round jets in the inviscid, zero-Mach-number limit
first sets in for axisymmetric disturbances, at a temperature ratio S = 0.72.
This critical upper limit is found for a velocity profile of finite vorticity thick-
ness, given as θω = 0.087D in terms of the jet diameter D. The absolute
instability threshold in a cylindrical vortex sheet has been determined as
S = 0.66. Figure 1.6 is taken from Monkewitz & Sohn [85]. It displays the
critical temperature ratios for the axisymmetric and first helical modes in a
cylindrical vortex sheet as a function of Mach number: the transition to ab-
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Figure 1.6: Absolute instability boundaries for the axisymmetric mode (◦)
and the first helical mode (•), in a cylindrical vortex sheet without counter-
flow. The hatched areas are the absolutely unstable regions, labels indicate
the Strouhal number. Taken from Monkewitz & Sohn [85].

solute instability first sets in for axisymmetric disturbances, and the required
heating increases with the Mach number.

1.4 From absolute to global instability

The distinction between convective and absolute instability in parallel flows
can be related to the amplifier and oscillator behavior of non-parallel flows.
This connection will be further elucidated in section 4.1; for introductory
purposes, a heuristic argument may suffice to convey the principal idea.

If the streamwise development of the baseflow is slow over an instability
wavelength, it may be assumed that perturbations at any streamwise sta-
tion develop as if the baseflow was locally parallel. A baseflow that is only
convectively unstable everywhere may amplify external perturbations, but in
the absence of continuous forcing, the flow will ultimately return to a steady
state. Intrinsic global oscillations can only be sustained in the presence of
an absolutely unstable flow region, where initial perturbations may grow in

situ. In the long-time limit, energy is continuously extracted from the base-
flow within this region and transferred to perturbations that may drive a
downstream global mode.

On the basis of this simple model, the local instability analysis of Monke-
witz & Sohn [85] provides a convincing explanation for the observed global
instability of low-density jets. Particularly striking is the agreement between
the predicted critical temperature ratio S = 0.72 for the onset of absolute
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instability and the experimental threshold value S = 0.73 for global instabil-
ity, although no plausible argument for the occurrence of two distinct global
modes has been proposed so far.

At the time of the Monkewitz et al. [82] experiments, global mode con-
cepts were not yet sufficiently advanced to allow for further examination of
the relationship between the observed oscillating states and local instability
characteristics. It is precisely the goal of the present dissertation to ascertain
whether recent developments in nonlinear global mode theory may predict
the main features of synchronized oscillations in hot jets. A first result in
this direction, for one parameter setting, is given by Nichols et al. [88], who
report that the numerically observed global frequency in the low-density jet
shown in figure 1.5 matches the absolute frequency of the inlet profile within
13.5%.

1.5 Acoustic field of instability wave packets

Linear perturbations of a parallel baseflow can be represented in the form
of normal modes evolving independently in time and space. Acoustic and
instability-related waves in a linear parallel system are decoupled, and at
low Mach numbers may be distinguished with regard to their phase veloc-
ity. In non-parallel situations, or via nonlinear effects, acoustic and instabil-
ity perturbations are coupled: an instability wave packet therefore radiates
sound.

The starting point of modern aeroacoustics has been marked by the sem-
inal work of Lighthill [71], who cast the equations of fluid motion in the
form of a free-space wave operator for acoustic fluctuations, separated from
nominal aeroacoustic source terms. Even though this separation is physically
meaningful only when the ambient medium is at rest, Lighthill’s theory has
paved the way for most of the progress made in aeroacoustic sound prediction
ever since.

Whereas Lighthill conceived a jet as made up of uncorrelated convecting
quadrupoles associated with turbulent eddies, Huerre & Crighton [52], fol-
lowing the work of Tam et al. [107], envisioned the jet dynamics as resulting
from deterministic instability waves superposed on an appropriate baseflow.
On this basis, Huerre & Crighton [52] analysed the acoustic field emitted by
an instability wave packet in a spatially developing round jet. Their theoret-
ical study was motivated by experimental investigations of sound radiation
due to vortex pairing in a forced isothermal jet, conducted by Laufer & Yen
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Figure 1.7: Polar diagram of superdirective sound radiation. Dashed line:
expression (1.2), given by Laufer & Yen [65]; solid line: Lighthill solution de-
rived by Huerre & Crighton, quadrupole pattern with superdirective antenna
factor.

[65]. These measurements displayed a decay of far-field acoustic intensity I as
a function of the observation angle ϑ, taken with respect to the downstream
jet axis, in the form

I(ϑ) ∝ exp
[

−A(1−Ma cosϑ)2
]

, A = 45. (1.2)

Acoustic fields exhibiting such an exponential decay in their directivity pat-
tern have been named superdirective [32]. Expression (1.2) is plotted in figure
1.7 as a dashed line. The streamwise variation of the vortex pairing ampli-
tude, in the experiments of Laufer & Yen [65], displayed the shape of a Gauß
distribution, with a half-width of only one tenth of the acoustic wavelength.
Superdirective radiation from such a compact source appeared to contradict
usual aeroacoustic assumptions.

Huerre & Crighton [52] demonstrated that evaluation of Lighthill’s equa-
tion for a Gaussian shaped near-field source distribution indeed yields an
antenna factor of the general form (1.2), although their analysis predicted a
factor A = 26 for the source envelope width measured by Laufer & Yen [65].
However, in the theoretical description this antenna factor only provides a
modulation of the underlying classical quadrupole directivity that Lighthill’s
theory predicts for vortex sound, resulting in a pattern of several acoustic
lobes, separated by angles where the intensity is zero (solid line in figure 1.7).
No such lobe structure was detected by Laufer & Yen [65]. In a following
study, Crighton & Huerre [32] examined a “wavy wall” model problem for
acoustic radiation caused by amplitude-modulated near-field pressure fluctu-
ations, neglecting the quadrupole character of the dominant Lighthill source
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Figure 1.8: Vortex pairing sound measurements. (a) Superdirectivity mea-
sured by Fleury et al. [40] (▽), and according to expression (1.2), where
I ∝ |p′s1|2 (—). (b) Two-lobe directivity pattern measured by Fleury
et al. [40] (�) and by Bridges & Hussain [13] (· ◦ ·). Both figures taken
from Fleury et al. [40].

terms. It was demonstrated that the form of the antenna factor due to near-
field amplitude modulations depends crucially on the precise spatial envelope
shape, not only in the streamwise region of strong oscillations, but also in the
very low-amplitude wings of the wave packet. Only a generalized Gaussian
envelope shape of near-field oscillations |p′| ∝ exp [−(x/σ)n] was found to
produce a superdirective radiation pattern (1.2).

Experimental evidence for superdirective acoustic radiation is scarce. The
observations of Laufer & Yen [65] have been confirmed only in one instance
by Fleury et al. [40, 41]: a superdirective pattern of the form (1.2) is reported
in one particular flow configuration, where the jet shear layer at the nozzle is
transitional (figure 1.8a). In a jet with a laminar exit profile, Fleury et al. [40]
measure instead a two-lobe directivity pattern, in good agreement with the
experiments of Bridges & Hussain [13](figure 1.8b). The two-lobe pattern is
well described by an analytical expression derived by Fleury et al. [41] from
an axisymmetric “wavy wall” approach.

The theoretical analyses [52, 32] make no assumptions explicitly con-
nected to vortex pairing; any amplitude-modulated wave packet may be
considered as aeroacoustic source. In chapter 5, the approach of Huerre
& Crighton [52] will be pursued in order to investigate the acoustic field
associated with a nonlinear global mode in a hot jet.
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1.6 Objectives

Since the experimental discovery of self-sustained oscillations in hot jets, con-
siderable progress has been made in the theoretical description of nonlinear
global modes. Specifically, model analyses of Couairon et al. [24, 25, 26, 27]
and Pier et al. [94, 95, 96] have led to new insights into the frequency selec-
tion process in fully nonlinear globally unstable systems. These models have
been developed from arguments based on front dynamics, in the context of
Ginzburg–Landau model equations. Fundamental criteria derived from the
Ginzburg–Landau model, concerning the global frequency selection as well
as the spatial structure of global modes, have since been verified to hold
true in real flow situations for wakes (Zielinska & Wesfreid [117], Couairon
& Chomaz [27], Pier & Huerre [94], Chomaz [18], Pier [93]) and for swirling
jets (Gallaire et al. [44]). The main objective of this dissertation is to ex-
amine whether the intrinsic dynamics of hot jets bear the characteristics of
front-dominated nonlinear global modes, and whether their frequency can be
accurately predicted from the theoretical model described in section 4.1.

Such comparison between physical flow behavior and model predictions
demands highly controlled flow conditions, as well as the liberty to study ide-
alized flow situations, wherever this may be necessary in order to approach
the assumptions of the theoretical model. The dynamics of physical jets are
therefore studied via direct numerical simulations. Based on experimental
evidence, and in agreement with theoretical predictions derived from the lin-
ear instability analysis of Monkewitz & Sohn [85], the relevant flow dynamics
are assumed to be axisymmetric. The numerical code is therefore developed
for an axisymmetric geometry.

The spatial structure of a global mode takes the form of an extended wave
packet, modulated in amplitude and phase along the streamwise direction of
the jet. The second objective of this dissertation is to compute the sound
field associated with this structure, and to compare the numerical results to
a prediction based on Lighthill’s equation. The theory of Crighton & Huerre
[32] predicts that an extended wave packet, under certain conditions, may
emit a superdirective acoustic far field. The analysis of Huerre & Crighton
[52] will be adapted to the hot jet configuration, and predictions will be
compared to the acoustic field computed directly from the Navier–Stokes
equations. The direct numerical simulation is therefore implemented for the
compressible equations of motion, and the numerical domain is chosen large
enough to extend into the acoustic far field. Simulations of this genre are
also referred to as direct noise computations (DNC).
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1.7 Outline

The body of this dissertation is composed of four chapters:

Linear local instability properties of hot jets are analysed in chapter 2.
New results with regard to the existing literature have been compiled into a
self-contained article, which alone forms this chapter. The spatio-temporal
instability characteristics of parallel jets are retrieved from the linear impulse

response wave packet, obtained numerically by solving the compressible dis-
persion relation. It is demonstrated that the action of the baroclinic torque is
alone responsible for the transition from convective to absolute instability in
hot jets. The competition between jet column and shear layer modes is in-
vestigated for parallel jets. An appendix to the article of chapter 2 describes
in detail the numerical method used for the linear instability analysis. The
results of this chapter form the basis for the later global instability studies.

Direct numerical simulation is used as a means to investigate physical
jet dynamics. The numerical method is exposed in chapter 3. Spatially de-
veloping baseflows are computed according to the boundary layer equations
prior to the direct simulation of perturbations according to the unsteady
compressible equations of motion. Spatial and temporal schemes of the flow
solver are documented in full detail. The greatest numerical difficulty lies
in the numerical boundary treatment, which receives due attention in this
chapter. Validation tests demonstrate the accuracy of baseflow and pertur-
bation computations as well as the performance of the numerical boundary
conditions.

Nonlinear global instability of hot jets is investigated in chapter 4. First,
the existing theoretical model for the description of global modes is intro-
duced. Theoretical predictions about the onset of global instability and about
the global frequency are then compared to DNS results. These studies are
presented in the form of two publications. The first, section 4.2, establishes
the validity of the theoretical model for a family of jets with rather thick

shear layers. The second article, section 4.3, extends the investigation to
the numerically less benign case of jets with thin shear layers in order to
approach the experimental conditions of Monkewitz et al. [82].

Sound generation by a nonlinear global mode is the topic of chapter 5.
Explicit solutions of the Lighthill equation are derived for axisymmetric jets,
thereby providing a prediction of the acoustic far field associated with a
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given instability wave packet. These predictions are compared to the di-
rectly computed sound field. The Lighthill formulation allows to examine
the contribution of individual source terms to the total acoustic field. The
procedure is validated for the case of a forced isothermal jet, then applied to
a typical global mode in a hot jet.



Chapter 2

Linear impulse response in hot round jets

Lutz Lesshafft and Patrick Huerre
Laboratoire d’Hydrodynamique (LadHyX), CNRS – École Polytechnique,

91128 Palaiseau, France

published in Physics of Fluids, volume 19, issue 2

Abstract

The linear impulse response of axisymmetric jets is examined for a family
of variable-temperature profiles typical of the potential core. The influence
of jet heating, shear layer thickness, Reynolds and Mach number on the
spatio-temporal stability of both axisymmetric and helical modes is investi-
gated. The linear impulse response is retrieved from a numerical solution of
the spatial eigenvalue problem, which is derived from the fully compressible
equations of motion. Changes in the spatio-temporal stability of heated ver-
sus isothermal jets are shown to arise solely from the effect of the baroclinic
torque. By considering the full linear impulse response, the competition be-
tween jet column modes and shear layer modes is characterized. Jet column
modes are only found to occur for axisymmetric disturbances. In thin shear
layer jets, the jet column mode is shown to prevail at low group velocities,
whereas axisymmetric and helical shear layer modes dominate at high group
velocities. The absolute mode of zero group velocity is found to always be
of the jet column type. Although only convectively unstable, the maximum
growth rates of the shear layer modes greatly exceed those of the jet column
modes in thin shear layer jets. In thick shear layer jets, axisymmetric modes
of mixed jet column / shear layer type arise. The weakened maximum growth
rate of mixed modes accounts for the dominance of helical modes in temporal
stability studies of thick shear layer jets.
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2.1 Introduction

The theoretical and experimental studies of Monkewitz & Sohn [85] and
Monkewitz, Bechert, Barsikow & Lehmann [82] have provided strong evi-
dence that the occurrence of self-sustained oscillations in sufficiently heated
jets is connected to a transition from convective to absolute instability of the
unperturbed flow state. The objective of the present investigation is to fully
characterize the linear instability modes that are observed in hot jets, as a
function of their group velocity. Such instability modes precisely constitute
the ingredients of the linear impulse response. A family of parallel velocity
and temperature profiles typical of the potential core region in spatially de-
veloping jets is considered, and their spatio-temporal stability characteristics
are determined from the full linear impulse response wave packet. An anal-
ysis of the dispersion relation allows to identify the physical mechanism by
which hot jets become absolutely unstable. It should be understood that all
results obtained for hot jets equally pertain to cases where density variations
are due to the mixing of nonhomogeneous fluids, as for instance Helium jets
in air [105, 11, 116].

The effect of temperature variations on the spatial instability of axisym-
metric jets has been studied theoretically by Michalke [77, 78]. In agreement
with earlier predictions drawn from the analysis of plane shear layers (Blu-
men [8]), heating of the jet with respect to the surrounding fluid was shown
to promote the spatial growth of externally forced perturbations. Michalke
identified a “regular” and an “irregular” unstable axisymmetric mode. Unex-
plained at the time, the eigenvalues of these two modes seemed to interchange
as the ambient-to-jet temperature ratio fell below 0.7. Once the concepts of
absolute and convective instability [14, 7] had been introduced to fluid me-
chanics, Huerre & Monkewitz [53] later interpreted the “irregular” mode as
an upstream-travelling k−-branch, and the apparent mode interchange as a
result of the onset of absolute instability.

The occurrence of absolute instability in hot round jets without counter-
flow has been firmly established by Monkewitz & Sohn [85]. These authors
investigated the transition from convective to absolute instability in terms
of the temperature ratio, the Mach number, and the shear layer thickness
relative to the jet radius. Absolute instability was found to first set in for
axisymmetric perturbations, at a critical temperature ratio of 0.72 and finite
shear layer thickness. In contrast, Pavithran & Redekopp [92] demonstrated
that nonhomogeneous plane shear layers only display absolute instability in
the presence of counterflow.
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Jendoubi & Strykowski [56] extended the analysis of Monkewitz & Sohn
[85] to jets with ambient co- and counterflow. Their study remains the most
comprehensive spatio-temporal analysis of axisymmetric jets to this day. Re-
stricted to axisymmetric disturbances, their investigation revealed the pres-
ence of two distinct instability modes. In a thin shear layer jet, the first of
these axisymmetric modes was shown to be closely related to the plane shear
layer instability described by Pavithran & Redekopp [92]: All perturbations
are concentrated within the jet shear layer region, and absolute instability
only occurs in the presence of sufficiently strong counterflow. This mode will
be denoted as the shear layer mode throughout this paper. The second mode
was shown to be identical with the absolute instability mode discovered by
Monkewitz & Sohn [85]. Its pressure eigenfunction peaks on the jet axis.
Henceforth, this mode will be denoted as the jet column mode.

While the study of Jendoubi & Strykowski [56] clearly identifies the con-
vective/absolute transition of the shear layer and jet column modes as a func-
tion of temperature ratio and external flow, the respective roles of these two
competing modes in a given base flow cannot be understood by considering
the absolute instability mode of zero group velocity alone. Arbitrary pertur-
bations in real flows will always create non-zero group velocity modes, that
may experience strong temporal amplification. The aim of the present paper
is to provide a spatio-temporal instability analysis in terms of the full linear
impulse response. The whole wave packet evolving from an initial Dirac-type
perturbation according to the linear equations of motion is considered. This
wave packet is composed of a continuous spectrum of jet column and shear
layer modes, each one traveling in the axial direction at a distinct group ve-
locity vg. The simultaneous growth of jet column and shear layer modes can
therefore be characterized as a function of their group velocity. For a review
of spatio-temporal instability theory, the reader is referred to Huerre [51].
Unlike Ref. [56], axisymmetric as well as helical modes are considered. The
inviscid results of Monkewitz & Sohn [85] and Jendoubi & Strykowski [56]
are further complemented by parameter studies of the convective/absolute
instability boundary at finite Reynolds and Mach numbers and for thin and
thick shear layers. The analysis is restricted to situations with zero external
flow without loss of generality, as the effect of co- or counterflow on the lin-
ear impulse response wave packet in parallel jet profiles can be obtained by
a simple transformation provided in section 2.2.

The paper is organized as follows: The formulation of the base flow and
the mathematical model for the linear instability analysis are defined in sec-
tion 2.2. The numerical solution of the dispersion relation is briefly outlined
in section 2.3. The eigenvalue problem representing the compressible viscous
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dispersion relation is documented in the appendix, together with further
details of its numerical discretization. The linear impulse response of an
isothermal thin shear layer jet is examined in section 2.4.1 and compared to
corresponding results obtained for a hot jet in section 2.4.2. Modifications of
the dispersion relation lead to identify the physical mechanism responsible
for the occurrence of absolute instability in hot jets. The linear impulse re-
sponse of a thick shear layer jet as well as the influence of the Reynolds and
Mach number on the onset of absolute instability are examined in section
2.4.3. The paper concludes with a summary of the main results.

2.2 Problem formulation

The linear impulse response is determined for an axisymmetric compressible
jet base flow of density ρb, temperature Tb, pressure pb and axial velocity ub.
The base flow is considered to be parallel in the axial direction and swirl-
free, the radial and azimuthal velocity components vb and wb therefore are
zero. The flow geometry is formulated in cylindrical coordinates (x, r, φ).
All flow variables are given in non-dimensional form, scaled with respect to
the jet radius R and the jet centerline values Uc, ρc and Tc. An analytical
expression for base flow velocity profiles, typical of the potential core region
in laboratory jets, is taken from Michalke [77]:

ub(r) =
1

2
+

1

2
tanh

[

R

4θ

(

1

r
− r

)]

. (2.1)

The velocity profile is characterized by the parameter R/θ, where θ denotes
the momentum thickness of the shear layer. The radial temperature variation
for a given ambient-to-jet temperature ratio S = T∞/Tc is linked to the
velocity profile via the Crocco–Busemann relation [78]

Tb(r) = S + (1− S)ub(r) +
γ − 1

2
Ma2 [1− ub(r)]ub(r). (2.2)

The Mach number is defined as Ma = Uc/cc, with cc the speed of sound on
the jet centerline, and the ratio of specific heats γ is chosen as 1.4 throughout
this study. The pressure pb in the unperturbed jet is constant and can be
obtained from the equation of state for a perfect gas

p =
1

γMa2ρT. (2.3)
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On the centreline, where ρb and Tb are unity, one finds

pb =
1

γMa2 . (2.4)

The density profile is then given as

ρb(r) = Tb(r)
−1. (2.5)

The flow is assumed to be governed by the compressible equations of
continuity, momentum and energy, written in total flow quantities as

dρ

dt
= −ρdiv u (2.6)

ρ
du

dt
= −grad p+ div τ (2.7)

ρ
d

dt

(

p

ρ

)

= −(γ − 1)p div u (2.8)

+ (γ − 1)τ : ε +
γ

Re Pr
∆

(

p

ρ

)

,

with the Reynolds and Prandtl numbers defined as

Re =
ρcRUc

µ
, Pr = cp

µ

κ
. (2.9)

The viscous stress tensor τ and the rate of strain tensor ε are given by

τ = − 2

3Re
(div u)I +

2

Re
ε (2.10)

ε =
1

2

(

grad u + gradT u
)

. (2.11)

The dynamical viscosity µ and thermal conductivity κ are taken to be con-
stant throughout the flow and related by a Prandtl number of unity.

Small perturbations (ρ′, u′, v′, w′, p′) to the base flow, where (u′, v′, w′) de-
note the (x, r, φ) components of the perturbation velocity, are now expressed
as normal modes of complex axial wave number k, integer azimuthal wave
number m and complex angular frequency ω according to:
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ei(kx+mφ−ωt) + c.c. (2.12)
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The notation (H,F,G, P ) in equation (2.12) has been chosen to correspond
to the incompressible problem formulation of Khorrami et al. [57]. Substitu-
tion of (2.12) into the equations of motion (2.6–2.8), linearized about the base
flow, yields a linear system of ordinary differential equations. In the same
manner as in Ref. [57], this system is cast in the form of a generalized eigen-
value problem which, for prescribed values of the frequency ω, admits spatial
eigenvalues k and corresponding complex eigenfunctions (D,H,F,G, P ). The
compressible spatial eigenvalue problem is stated explicitly in the appendix.

At large times t, the linear impulse response along each spatio-temporal
ray x/t = const is dominated by the absolute instability mode in the reference
frame moving at v = x/t with respect to the laboratory frame (see Ref. [55]).
In order to construct numerically the linear impulse response, values of ω(vg),
k(vg) for a given group velocity vg can therefore be computed as the absolute
instability modes in the co-moving reference frame (r̃, x̃) = (r, x−vgt), where
the axial base flow velocity profile becomes ũb(r) = ub(r)− vg. The resulting
values ω̃0, k̃0 are then transformed back into the laboratory reference frame
according to the relations ω(vg) = ω̃0 + k̃0vg and k(vg) = k̃0. For each
azimuthal wave number m, results are presented in the laboratory frame
in terms of real frequency ωr(vg) and spatio-temporal growth rate σ(vg) =
ωi(vg)− ki(vg)vg = ω̃0,i along each ray x/t = vg.

By construction, it is clear that the effect of external co- or counterflow
on the linear impulse response merely results in an offset of vg and a Doppler
shift of the real frequency [35]. From the distributions ωr(vg), σ(vg), kr(vg),
ki(vg) in a situation with zero external flow, the corresponding distributions
ω̃r(vg), σ̃(vg), k̃r(vg), k̃i(vg) in a situation with external flow ũb = ub +ue are
obtained as

ω̃r(vg)=ωr(vg − ue)− uekr(vg − ue)
σ̃(vg) =σ(vg − ue)

k̃r(vg)=kr(vg − ue)

k̃i(vg) =ki(vg − ue) .

(2.13)

2.3 Numerical method

In order to compute values of the absolute frequency and wavenumber,
Monkewitz & Sohn [85] as well as Jendoubi & Strykowski [56] used a shooting
method to numerically solve the dispersion relation in the form of a single-
variable ordinary differential equation [77]. The numerical procedure used
in the present study closely follows the Chebyshev collocation method de-
scribed by Ash & Khorrami [2], which only had to be extended to include
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compressible effects. For a given set of parameters (m, vg, R/θ, S,Re,Ma),
the eigenvalue problem (2.20–2.24) is discretized and solved numerically for
the spatial branches k(ω). A code provided by Olendraru & Sellier [89] has
been adapted to the compressible jet problem. The complex pair (k0, ω0) is
then determined by tracking the point where a k+ and a k− branch pinch in
the complex k-plane[14, 8]. For this purpose, the iterative search algorithm
described in Ref. [85] was found to be reliable and very time-efficient. The
transformation used for an appropriate distribution of collocation points for
thin shear layer jet profiles is given in the appendix. A validation of the
numerical procedure has been presented in Ref. [69] by comparing the σ(vg)
distribution computed from the dispersion relation for m = 0 to the results
of a direct numerical simulation of the axisymmetric linear Navier–Stokes
equations.

2.4 Results

2.4.1 Incompressible inviscid jet

We first consider the linear impulse response of an isothermal jet (S = 1)
in the inviscid, zero-Mach-number limit. The velocity profile parameter for
this thin shear layer example is chosen as R/θ = 20. While such a profile
may not be considered ‘thin’ by some readers, comparison with the results
discussed in section 2.4.3 will show that the separation of scales between
jet radius and shear layer thickness is sufficient to allow a discussion of the
spatio-temporal characteristics of arbitrarily thin shear layer jets. The spatio-
temporal growth rate σ, real frequency ωr, real wavenumber kr and spatial
growth rate −ki of the axisymmetric (m = 0) component are presented in
figure 2.1 (thin lines) as functions of their group velocity vg.

A discontinuity in the spectrum at vg = 0.182 divides the wave packet
into two regions, each composed of a distinct class of instability modes. The
low group velocity modes correspond to absolute instability modes in jets
with zero or moderate counterflow. According to Jendoubi & Strykowski
[56], these modes are of the jet column type. Modes travelling at group
velocities vg > 0.182 correspond to absolute instability modes in jets with
strong counterflow, characterized as being of the shear layer type[56]. This
distinct jet column / shear layer character is confirmed in figure 2.2: For two
profile parameters R/θ = 20 (thin line, same as in figure 2.1) and R/θ = 40
(thick line), the σ(vg) distributions are compared when scaled with respect
to the jet radius R (figure 2.2a) and the shear layer momentum thickness θ
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Figure 2.1: Axisymmetric linear impulse response for flow parameters R/θ =
20, Re =∞, Ma = 0. Isothermal case S = 1 (thin line); heated case S = 0.5
(thick line); heated case S = 0.5 in the absence of baroclinic torque (•). (a)
Spatio-temporal growth rate; (b) real frequency; (c) real wavenumber; (d)
spatial growth rate, all as functions of group velocity vg.
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Figure 2.2: Comparison of the spatio-temporal growth rates σ in jets for
R/θ = 20 (thin line) and R/θ = 40 (thick line); m = 0, S = 1, Re = ∞,
Ma = 0. (a) σ scaled with jet radius R; (b) σ scaled with shear layer thickness
θ.

(figure 2.2b), respectively. The growth rate is found to scale with R for the
low group velocity modes and with θ for the high group velocity modes.

Jendoubi & Strykowski [56] have shown that the absolute instability mode
in jets with variable external flow arises from pinching events involving the
same unstable k+ branch, but two distinct k− branches for the shear layer
and jet column modes. It should be pointed out that only one of these two
pinching events, i.e. the one occurring at a higher value of σ, is to be regarded
as physically relevant [54]. The interaction of a unique k+ branch with one
out of several k− branches has also been reported by Loiseleux, Chomaz &
Huerre [72] to produce distinct absolute instability modes in swirling jets
with counterflow. The pinching between branches in the complex k-plane is
presented in figure 2.3 for the case considered here, for two group velocities
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vg = 0 and vg = 0.3. The displayed branches are obtained as solutions of the
dispersion relation for given values ω = ωr + iωi, where ωr is continuously
varied for three fixed values of ωi. Consistent with the notation of Ref. [72],
let k−1 denote the spatial branch in our problem which upon pinching with
the k+ branch gives rise to a jet column mode, and k−2 its counterpart for
the shear layer mode. At vg = 0 (figure 2.3a), the k+,k−1 ,k−2 branches are
well separated for ωi = 0 (thin solid lines). With ωi = ω0,i = −0.150 (thick
lines), the k+ and k−1 branches pinch at the saddle point k0 = 0.901− 1.808i
for a real frequency ω0,r = 1.436. These values correspond to those plotted
in figure 2.1 at vg = 0. If ωi is lowered further, a second saddle point is
eventually formed by the merged k+/k−1 branch and the k−2 branch (dashed
lines). However, formal solutions of the dispersion relation for ωi < ω0,i are
non-causal [51], and therefore do not correspond to physical situations. Only
the pinching events between k+ and k− branches occurring at the highest
value of ωi are taken into account in this study.

Corresponding k branch diagrams in figure 2.3b display that the relevant
saddle point for vg = 0.3 is formed between the k+ and k−2 branches; the
associated instability mode is of the shear layer type, as for all group velocities
vg > 0.182. A different scenario is observed in thick shear layer jets, as
discussed in section 2.4.3.

According to figure 2.1, a real wavenumber k ∼ 1 is found to be typical
of the jet column modes. This value corresponds to a wavelength λ ∼ 2π,
large when compared to the shear layer mode wavelengths, and a real phase
velocity ωr/kr larger than the jet centreline velocity. The parabola-shaped
variation of σ(vg) at group velocities vg > 0.182 is typical of the Kelvin–
Helmholtz instability for a plane shear layer. The mode of maximum spatio-
temporal growth, which corresponds to the most unstable temporal mode
with ωi,max = σmax and ki = 0 (see for instance Huerre [51]), is of the shear
layer type. Since σ(0) < 0 and σmax > 0, the isothermal jet is convectively
unstable, in agreement with Monkewitz & Sohn [85].

The growth rates of the first four azimuthal modes (m = 1, 2, 3, 4) are
compared to the m = 0 mode in figure 2.4. The maximum values σmax of
each individual curve are seen to slowly diminish with increasing azimuthal
wave number m. However, the growth rates of the m = 0 shear layer modes
and the m = 1 modes are nearly identical. All modes m ≥ 1 are of the
shear layer type, whatever the value of vg. At low group velocities, and in
particular at vg = 0, the linear impulse response is clearly dominated by the
axisymmetric jet column mode.
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Figure 2.3: Branches in the complex k-plane for R/θ = 20, S = 1, Re = ∞
and Ma = 0.
a) vg = 0, three constant values of ωi: 0 (—), 0.15 (----), 0.63 (---); b) vg = 0.3,
three constant values of ωi: 0.8 (—), 0.61 (----), 0.45 (---).
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Figure 2.4: Growth rates σ of the axisymmetric m = 0 mode (thick line) and
azimuthal modes m = 1, 2, 3, 4 in a thin shear layer jet; R/θ = 20, Re =∞,
Ma = 0. (a) S = 1; (b) S = 0.5.
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2.4.2 Influence of the temperature ratio S: Baroclinic

torque

The effect of a non-uniform temperature profile on the spatio-temporal in-
stability of a jet is demonstrated for a temperature ratio S = 0.5, with all
other parameters identical to the isothermal case described in the previous
section.

The axisymmetric linear impulse response of the heated jet is given in
figure 1 (thick lines) for comparison with the isothermal case. For the jet
column mode (vg < 0.170), the heating is seen to give rise to an overall
increase of the growth rate σ, while the real frequency takes on lower values.
In agreement with the analysis of Monkewitz & Sohn [85], the S = 0.5 case
is found to be absolutely unstable (σ(0) > 0). The complex wavenumbers
of the jet column modes are hardly affected by the temperature ratio. The
parabola-shaped σ distribution of the shear layer modes is shifted towards
lower group velocities as compared to the isothermal case, but the maximum
growth rate σmax remains approximately the same. The growth rates of
the azimuthal modes of the heated jet, displayed in figure 2.4b, are found
to display the same trend. As in isothermal jets, the axisymmetric and
first azimuthal modes are in close competition for high group velocities. All
azimuthal modes are convectively unstable at S = 0.5.

It has been suggested by Soteriou & Ghoniem [103] that differences in the
instability characteristics of homogeneous and non-homogeneous shear layers
may be ascribed to the action of the baroclinic torque. According to these
authors, the presence of a baroclinic vorticity dipole within a rolled-up eddy
may explain the lateral displacement of the eddy core into the low-density
stream as well as the bias of its convection speed towards the velocity of the
high-density stream. Both of these features are in qualitative agreement with
numerical observations [103].

Following this idea, the role of baroclinic effects in the linear impulse
response of a heated jet is quantitatively assessed by solving a modified dis-
persion relation, in which the baroclinic torque term is counterbalanced by
appropriate forcing. Only the axisymmetric case is considered here. In the
presence of source terms denoted as Sx and Sr, the linear inviscid momentum
equations become

∂u′

∂t
= −v′∂ub

∂r
− ub

∂u′

∂x
− 1

ρb

∂p′

∂x
+ Sx (2.14a)

∂v′

∂t
= −ub

∂v′

∂x
− 1

ρb

∂p′

∂r
+ Sr, (2.14b)
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and the azimuthal perturbation vorticity Ω′

θ = curl u′ is found to evolve as

∂Ω′

θ

∂t
= v′

∂2ub

∂r2
+ ub

∂2u′

∂x∂r
− ub

∂2v′

∂x2

+
∂ub

∂r

(

∂u′

∂x
+
∂v′

∂r

)

− 1

ρ2
b

∂ρb

∂r

∂p′

∂x
+
∂Sr

∂x
− ∂Sx

∂r
. (2.15)

In order to eliminate the effect of the baroclinic torque (∇ρ × ∇p)/ρ2, the
source terms Sx and Sr are selected so as to satisfy the constraint

∂Sr

∂x
− ∂Sx

∂r
=

1

ρ2
b

∂ρb

∂r

∂p′

∂x
(2.16)

without introducing mass sources in the continuity equation, i.e.

1

r

∂

∂r
(rρbSr) +

∂

∂x
(ρbSx) = 0. (2.17)

A modified dispersion relation is now constructed from the forced momentum
equations (2.14) and the unforced continuity and energy equations, together
with the forcing conditions (2.16,2.17). The source terms Sx and Sr are
considered as new additional variables of the generalized eigenvalue problem.

The resulting linear impulse response is included in figure 2.1 for S = 0.5
(bullet symbols). Without the action of the baroclinic torque, all curves for
S = 0.5 and S = 1 are found to be identical within the accuracy of the
calculations, which we believe to be exact to at least four significant digits in
ω0. It may therefore be concluded that the baroclinic torque is responsible for
the onset of absolute instability in heated jets, whereas other terms involving
S in the continuity and energy equations are negligible. Note that the role
of gravity has been neglected in these calculations, and that the baroclinic
torque arises only from the base flow temperature gradient and the pressure
eigenfunction.

A physical interpretation of how the baroclinic torque contributes to the
destabilization of the absolute mode can be deduced from an inspection of the
eigenfunction. In figure 2.5, the spatial distribution of the baroclinic torque
Γbc is superposed with the total displacement η of the shear layer at r = 1,
both computed for the absolute mode of the R/θ = 20, S = 0.5 jet. The
displacement follows from the radial perturbation velocity according to ∂tη+
ub∂xη = v′. For a better visualization, the spatial amplitude growth −k0,i
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Figure 2.5: Absolute mode eigenfunction of the displacement η(x, r = 1) and
of the baroclinic torque Γbc(x, r), according to equations (2.18,2.19), for the
R/θ = 20, S = 0.5 jet.

has been neglected in figure 2.5. At a given time t0, the spatial distributions
are then obtained with equation (2.12) as

η(x, r) =
F (r)

k0 ub − ω0

ei(k0,rx−ω0t0) , (2.18)

Γbc(x, r) =
ik0 P (r)

ρ2
b

∂ρb

∂r
ei(k0,rx−ω0t0) . (2.19)

Both F (r) and P (r) have been scaled with the same arbitrary factor in figure
2.5. Equispaced isocontours of Γbc(x, r) are shown together with the displace-
ment of the center of the shear layer 1 + η(r = 1). The orientation of Γbc is
indicated by arrows. It is found that the baroclinic torque is concentrated in
regions of alternating sign within the shear layer. The center of rotation of
each such region, where the maximum absolute value occurs, approximately
coincides with a point where the displacement is zero. The baroclinic torque
arises from the shear layer undulation, and in turn it induces a further de-
formation that is in phase with the total shear layer displacement. Thus the
temporal growth of the absolute instability mode is increased by the action
of the baroclinic torque.

2.4.3 Influence of the shear layer thickness, Reynolds

number and Mach number

The distinction between jet column and shear layer modes implies a sep-
aration of scales between the jet radius R and the momentum shear layer
thickness θ. For low values of R/θ, towards the end of the potential core in
a spatially developing jet, this assumption is no longer valid. The effect of
R/θ on the transition from convective to absolute instability in hot jets is ex-
plored in figure 2.6. Contours of marginal absolute instability (ω0,i = 0) are
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Figure 2.6: Convective/absolute instability boundaries in the S–R/θ plane
for m = 0 and m = 1. Re =∞, Ma = 0.

displayed in the S–R/θ plane for the axisymmetric and the first azimuthal
mode. The absolute/convective boundary of the axisymmetric mode is iden-
tical with figure 8 of Ref. [56] and also in excellent agreement with the re-
sults given in Ref. [85]. Absolute instability is found to first occur for the
axisymmetric jet column mode at a critical temperature ratio S = 0.713
for R/θ = 26. Higher values of R/θ have a slight stabilizing effect. Below
R/θ∼ 15 the critical value of S decreases sharply. Monkewitz & Sohn [85]
have shown that absolute instability of the m = 1 mode in a top-hat jet
profile requires much stronger heating than is necessary for the m = 0 mode.
However, in temporal [4, 43] as well as in spatial [78] jet instability stud-
ies, the m = 1 mode has been found to display larger growth rates than its
axisymmetric counterpart at very low R/θ. The m = 1 absolute instability
boundary in the S–R/θ plane has therefore been included in figure 2.6. It is
confirmed that absolute instability always occurs first for the axisymmetric
mode, even at values of R/θ as low as 6.

Growth rates of the full linear impulse response in a thick shear layer jet
with R/θ = 5, S = 1, Ma = 0 and Re = ∞ are displayed in figure 2.7 for
azimuthal wave numbers m ≤ 2. Higher-order azimuthal modes are stable
everywhere. The σ(vg) distributions should be compared to the thin shear
layer case R/θ = 20 of figure 2.4. Note that the discontinuity that separates
the axisymmetric jet column and shear layer modes in the R/θ = 20 jet
is not observed in figure 2.7. A detailed inspection of the spatial branches
reveals that the axisymmetric absolute instability mode (vg = 0) still arises
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Figure 2.7: Spatio-temporal growth rates in an isothermal R/θ=5 thick shear
layer jet for azimuthal wave numbers m = 0, 1, 2. Re =∞, Ma = 0.

from the pinching of the k+- and k−1 -branches, as defined in section 2.4.1.
However, at higher group velocities, both k−-branches first merge with each
other, and the pinching at σ(vg) then takes place between the k+- and a
combined k−1/2-branch. This behavior is illustrated in figure 2.8 for a profile

with R/θ = 10, S = 1 and a group velocity vg = 0.3. Note that the k−1 and k−2
branches are no longer distinct for ωi < 0.487, whereas pinching with the k+

branch occurs for ωi = 0.259. The resulting spatio-temporal modes cannot
be categorized as being distinctly of the jet column or shear layer type, but
rather of mixed character. These mixed axisymmetric modes display lower
growth rates than the formerly distinct shear layer modes. In the R/θ = 5
case of figure 2.7, the maximum axisymmetric temporal growth rate has now
fallen below the σmax of the first helical mode. The merging of the k−1 and
k−2 branches therefore explains the dominance of the m = 1 over the m = 0
mode observed in temporal stability studies of thick shear layer jets [4, 43].

The action of viscosity has been neglected in all instability calculations
presented so far. If the Reynolds number takes on finite values, the inviscid
instability modes described above are affected by viscous damping. The effect
of viscosity on the absolute instability of the axisymmetric mode is exhibited
in figure 2.9. As the Reynolds number decreases, the absolute/convective
transition is delayed towards lower values of S. At high Reynolds numbers,
viscosity first affects the critical temperature ratio at high values of R/θ. The
slight stabilizing effect of R/θ→ ∞ observed in the inviscid limit becomes
more pronounced in viscous jets.
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Figure 2.8: Branches in the complex k-plane for vg = 0.3, R/θ = 10, S = 1,
Re = ∞ and Ma = 0. Four constant values of ωi: 0.6 (—), 0.487 (---), 0.3
(· · · ), 0.259 (----).
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Figure 2.9: Convective/absolute
instability boundaries in the S–
R/θ plane for Ma = 0. Re = 100,
500, 1000, 2000, 5000 (thin lines),
Re =∞ (thick line).
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Figure 2.10: Convective/absolute
instability boundaries in the S–
R/θ plane for Re = ∞. Ma = 0
(thick line), Ma = 0.1, 0.2, 0.3, 0.4,
0.5 (thin lines).
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Corresponding curves of the absolute instability boundary for various
Mach numbers at Re = ∞ are presented in figure 2.10. In agreement with
earlier studies[85, 56], the stabilization of the jet column mode is quite sig-
nificant already at moderate Mach numbers. The offset ∆S of the convective
/ absolute transition that is induced by a given Mach number over the in-
terval 0 ≤ Ma ≤ 0.5 is found to be uniform for all R/θ, and can be well
approximated as ∆S = −1.4Ma2.

2.5 Conclusions

The linear impulse response of isothermal and heated round jets has been in-
vestigated for axisymmetric and higher-order azimuthal modes. A fully com-
pressible formulation of the spatial instability problem has been developped,
and results for the linear impulse response have been presented in terms of
complex frequency and wavenumber as functions of the group velocity. In
agreement with Jendoubi & Strykowski [56], the absolute mode (vg = 0) in
jets without counterflow has been found to always be of the axisymmetric
jet column type. However, shear layer modes have been shown to dominate
the linear impulse response for high group velocities in thin shear layer jets.
Axisymmetric and helical modes are in close competition throughout this
portion of the wave packet. The most amplified spatio-temporal mode in
thin shear layer jets is of the shear layer type. Jet column type solutions
are only admitted for axisymmetric perturbations, and their prevalence over
shear layer modes is restricted to a small range of low group velocities.

In the presence of sufficiently strong heating, the jet column mode be-
comes absolutely unstable. In excellent agreement with Refs. [85, 56], the
critical temperature ratio for this transition has been determined as Sc =
0.713 for a shear layer thickness given by R/θ=26. The onset of absolute
instability in heated jets has been demonstrated to arise from the action of
the baroclinic torque, and a physical interpretation has been proposed. An
inspection of the absolute mode eigenfunction has shown that the additional
deformation induced by the baroclinic torque is in phase with the total shear
layer deformation. If the baroclinic torque is eliminated from the dispersion
relation, the linear impulse responses of heated and isothermal jets in the
inviscid, zero-Mach-number limit are identical.

The clear cut duality of jet column versus shear layer modes is lost as
the shear layer thickness approaches the jet radius. The axisymmetric linear
impulse response of a R/θ=5 jet profile displays a smooth transition between
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the formerly clearly divided jet column/shear layer dominated regions of the
wave packet. It has been found from examination of the complex k-branches
that in thick shear layer jets, modes of a mixed character arise from the
merging of jet column and shear layer type k−-branches prior to the pinching
with the k+-branch. This mixed character accounts for a lowered maximum
temporal growth rate of axisymmetric disturbances relative to their helical
counterparts, as it has been observed in temporal instability studies of thick
shear layer jets[4, 43].

The influence of viscosity on the absolute/convective transition has been
analysed by tracking the critical temperature ratio as a function of R/θ for
Reynolds numbers between 100 and infinity. As may have been expected,
viscosity has a purely stabilizing effect, but its influence lessens for low values
of R/θ. In contrast, a finite Mach number delays the critical temperature
ratio by a constant offset for all R/θ.
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Appendix: the compressible spatial eigenvalue

problem

If the equations of motion (2.6–2.8) are linearized about the base flow defined
in section 2.2, and all perturbation quantities are expressed in normal mode
form (2.12), the following system of equations is obtained:

continuity:

rωD + (ρb + rρ′b)F + rρbF
′ +mρbG = −rubkD − rρbkH (2.20)

x-momentum:

(

ir2ρbω −
m2

Re

)

H +
r

Re
H ′ +

r2

Re
H ′′ − ir2ρbu

′

bF (2.21)

= ir2ρbubkH +
r

3Re
kF +

r2

3Re
kF ′ +

mr

3Re
kG+ ir2kP +

4r2

3Re
k2H
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r-momentum:
(

ir2ρbω −
4 + 3m2

3Re

)

F +
4r

3Re
F ′ +

4r2

3Re
F ′′ − 7m

3Re
G+

mr

3Re
G′ + ir2P ′(2.22)

= − r2

3Re
kH ′ + ir2ρbubkF +

r2

Re
k2F

φ-momentum:

7m

3Re
F +

mr

3Re
F ′ +

(

−ir2ρbω +
3 + 4m2

3Re

)

G− r

Re
G′ − r2

Re
G′′ + imrP(2.23)

= − mr

3Re
kH − ir2ρbubkG−

r2

Re
k2G

energy:

1

γ − 1

[

iωr2

ρb

− γ

ρ2
bRePr

(

m2 − 6r2ρ
′2
b

ρ2
b

+ 2r
ρ′b
ρb

+ 2r2ρ
′′

b

ρb

)]

D

+
γ2Ma2r2

(γ − 1)ρ2
bRePr

(

1− 4r
ρ′b
ρb

)

D′ +
γr2

(γ − 1)ρ2
bRePr

D′′ − 2γMa2

Re
r2u′bH

′

+

[

ir − ir2ρ′b
(γ − 1)ρb

]

F + ir2F ′ + imrG

+
γMa2

γ − 1

[

−ir2ω − γ

ρbRePr

(

2
r2ρ′2b
ρ2

b

− r2ρ′′b
ρb

− rρ′b
ρb

−m2

)]

P (2.24)

+
γ2Ma2r

(γ − 1)ρbRePr

(

2r
ρ′b
ρb

− 1

)

P ′ − γ2Ma2r2

(γ − 1)ρbRePr
P ′′

= i
r2ub

(γ − 1)ρb

kD − ir2kH − 2

Re
γMa2r2u′bkF − i

γMa2

γ − 1
r2ubkP

+
γr2

(γ − 1)ρ2
bRePr

k2D − γ2Ma2r2

(γ − 1)ρbRePr
k2P.

Primes in the above equations denote radial derivatives. In the incom-
pressible limit Ma = 0, ρ′b ≡ 0, D ≡ 0, the continuity and energy equations
(2.20,2.24) are identical, and equations (2.20-2.23) are equivalent to the in-
compressible formulation given by Ash & Khorrami [2].

The system (2.20-2.24) may now be written in the form of a generalized
eigenvalue problem

AX = kBX (2.25)

involving the eigenvector X = (D,H,F,G, P, kD, kH, kF, kG, kP ) and two
linear operators A and B.
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Boundary conditions

In the coordinate singularity at r = 0, compatibility conditions [4] must be
imposed so as to ensure bounded solutions for all perturbations. Khorrami
et al. [57] obtained these conditions for H,F,G, P in a formal way by re-
quiring the azimuthal derivatives of velocity and pressure perturbations to
vanish as r → 0. Accordingly, density variations ρ′ must obey

lim
r→0

∂ρ′

∂φ
= imD(0) = 0. (2.26)

Together, these requirements impose (see Ref. [2]):

F (0) = G(0) = 0
D(0), H(0) and P (0) finite

}

for m = 0

F (0)±G(0) = 0, F ′(0) = 0
D(0) = H(0) = P (0) = 0

}

for m = ±1

D(0) = H(0) = F (0)
= G(0) = P (0) = 0

}

for |m| > 1.

Explicit expressions forD(0), H(0) and P (0) in them = 0 case are further
deduced from Taylor expansions of equations (2.21,2.22,2.24) around the jet
centerline. In the limit r → 0, these equations admit

H ′(0) = 0 (2.27)

P ′(0) = i
2

Re
F ′′(0) (2.28)

D′(0) = γMa2P ′(0). (2.29)

According to Ash & Khorrami [2], all eigenfunctions decay exponentially
as r →∞. The far field conditions to the spatial eigenvalue problem for all
m are simply

D(∞) = H(∞) = F (∞) = G(∞) = P (∞) = 0. (2.30)

Chebyshev collocation

Following Ref. [57], the eigenfunctions (D,H,F,G, P ) are mapped from the
physical domain 0 ≤ r ≤ rmax onto the Chebyshev interval −1 ≤ ξ ≤ 1,
where they are discretized in N collocation points

ξj = cos

(

jπ

N − 1

)

, j = 0, . . . , N − 1. (2.31)
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Figure 2.11: Discrete resolution of a R/θ = 20 velocity profile as obtained
from transformation (2.32) with rc = 1.8, rmax = 100, N = 100.

For the problem at hand, a suitable mapping function ξ(r) had to be con-
ceived to concentrate most collocation points within the shear layer region
of the physical domain. With the two-parameter transformation

ξ(r) =
rc

2r
−

√

1 +
r2
c

4r2
+

2rc

rmax

− rc

r
(2.32a)

r(ξ) = rc
1− ξ

1− ξ2 + 2rc/rmax

, (2.32b)

approximately half of the points rj = r(ξj) are placed in the interval 0 ≤
r ≤ rc, concentrated around r = rc/2. The far field conditions (2.30) are
imposed at rmax ≫ 1. Values of rc = 1.8 and rmax = 100 have been used
in all calculations. The discretization of a R/θ=20 velocity profile obtained
with these settings and with a typical resolution N = 100 is shown in figure
2.11.
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Chapter 3

Direct numerical simulation

method

3.1 Introduction

The code AJAX (Aéroacoustique des Jets AXisymétriques) has been designed
for the investigation of instability characteristics of subsonic axisymmetric
jets, and of the aeroacoustic sound field that emanates from the instability
structures. This is done by directly resolving the Navier-Stokes equations.
No modelling is used, neither for the small flow scales nor for the sound
field. The acoustic far field is included in the computational domain of the
DNS. This approach has become known as Direct Noise Calculation (DNC).
It marks the advent of the “Second Golden Age of Aeroacoustics”, based
on modern computational capacities, that Lighthill prophecied in the early
1990s.

This code is conceived to handle an axisymmetric geometry. The calcula-
tions may therefore be carried out in two dimensions – the polar coordinates
r and x – for flow quantities that do not depend on the azimuthal coordinate
ϕ. The restriction to axisymmetric disturbances is justified by the experi-
mental observations of Monkewitz et al. [82] and Kyle & Sreenivasan [62],
who report that self-sustained oscillations in globally unstable jets always
appear in the form of axisymmetric ring vortices.

The aim of the simulations is not to predict or reproduce the flow be-
havior in a highly specific experimental configuration, but to explore the
validity of recent theoretical models for nonlinear global instability in open
flows when applied to heated round jets. The nozzle and duct delivery system
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in an experimental setting are therefore replaced by generic inflow bound-
ary conditions. These must be designed to match as closely as possible the
assumptions made about the inflow conditions in the theoretical model de-
scribed in chapter 4. The choice of appropriate boundary conditions is one
key issue in the code design and will receive special attention in section 3.5.

The theoretical predictions that the simulation results will be compared to
are further based on the instability properties of the unperturbed steady base

flow for a given set of flow parameters. For a rigorous analysis, this base flow
must be known a priori. The governing equations are therefore formulated so
as to allow the simulation of perturbations temporally evolving in a prescribed
base flow. For the purpose of the present investigation, it is essential that
base flow and perturbation quantities be resolved independently, i.e. that
their amplitude ratio not be limited by the numerical mantissa length. The
accurate resolution of very low-amplitude instability perturbations presents
a much more demanding requirement in terms of numerical precision than
the resolution of acoustic wave amplitudes in the far field.

This chapter is organized in the following way: The mathematical model
and the governing equations are developed in section 3.2. Section 3.3 presents
the numerical procedure that is used to construct the base flow. The algo-
rithm is validated against a self-similar solution of spatially developing com-
pressible round jets. The numerical method used in the direct numerical
simulation is detailed in section 3.4, while section 3.5 is dedicated to the
boundary treatment. Test computations are also presented in section 3.5
to characterize the performance of the employed inlet boundary conditions.
The numerical precision of the flow solver is demonstrated in a validation
test in section 3.6.

3.2 Flow model

3.2.1 Flow Variables

The governing equations are formulated in terms of the conservative variables
(ρ, ρu, ρv, ρE), where ρ denotes density, u and v are the axial and radial
components of the flow velocity u, and the total energy E is defined with
pressure p as

E =
p

ρ(γ − 1)
+

1

2
|u|2 . (3.1)
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The generic symbol q will be used to denote any of the conservative variables,
or q for their ensemble. Each total variable q(x, r, t) is expressed as the sum
of a steady base flow qb(x, r) and a time-dependent perturbation component
q′(x, r, t):

q(x, r, t) = qb(x, r) + q′(x, r, t) . (3.2)

The following notation will be used for the conservative variables:

ρu = ρbub + (ρu)′ (3.3)

where (ρu)′ = ρbu
′ + ρ′ub + ρ′u′

and accordingly: (ρv)′ = ρbv
′ + ρ′vb + ρ′v′

(ρE)′ = ρbE
′ + ρ′Eb + ρ′E ′ .

All expressions will be given in non-dimensional form throughout this
chapter. The reference quantities used are

R - jet radius (where the inlet velocity is ub = 0.5)
Uc - centerline velocity at the inlet
ρc - centerline density at the inlet
Tc - centerline temperature at the inlet.

3.2.2 Perturbation equations

The governing equations for a compressible, viscous, non-isothermal flow are
the continuity, momentum and energy equations, closed by an equation of
state. In terms of the total conservative variables, these can be written as
follows.

Continuity:
∂ρ

∂t
= −div (ρu) (3.4)

Momentum:

∂

∂t
(ρu) = −div (ρu⊗ u)− grad p+ div τ (3.5)

Energy:

∂

∂t
(ρE) = div

[

−(ρE + p)u + τ · u +
grad T

(γ − 1)Ma2RePr

]

(3.6)
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Equation of state for a thermally and calorically perfect gas:

p =
1

γMa2ρT (3.7)

In these equations, τ is the viscous stress tensor, and the symbol ‘⊗’ de-
notes the tensor product (a⊗ b)ij = aibj. The Reynolds, Prandtl and Mach
numbers are defined as

Re =
ρcUcR

µ
, Pr =

µcp
κ
, Ma =

Uc

cc
, (3.8)

where the viscosity µ, the thermal conductivity κ and the specific heat cp are
assumed to be constant throughout the flow, and cc is the speed of sound on
the centerline at the inlet. The ratio of specific heats γ = cp/cv is taken as
1.4 in all computations.

The equations that govern the temporal evolution of perturbations q′ in
a prescribed base flow qb are obtained by subtracting equations (3.4–3.7)
written in terms of qb from the same equations written in terms of the total
flow variables. In order to arrive at the axisymmetric perturbation equations,
the resulting expressions must first be written out in cylindrical coordinates
(x, r, ϕ), then all terms containing azimuthal derivatives or velocities may be
eliminated. The cylindrical components of the viscous stress tensor for an
axisymmetric velocity field u = uex + ver are

τrr(u) =
4

3Re

∂v

∂r
− 2

3Re

(

v

r
+
∂u

∂x

)

τϕϕ(u) =
4

3Re

v

r
− 2

3Re

(

∂v

∂r
+
∂u

∂x

)

τxx(u) =
4

3Re

∂u

∂x
− 2

3Re

(

∂v

∂r
+
v

r

)

(3.9)

τrx(u) = τxr(u) =
1

Re

(

∂v

∂x
+
∂u

∂r

)

τrϕ(u) = τϕr(u) = τxϕ(u) = τϕx(u) = 0 .

Short notation τ b
ij = τij(ub) and τ ′ij = τij(u

′) will be used. Note that τϕϕ

is not automatically zero for an axisymmetric flow. This term does appear
in the expansion of div τ . The final perturbation equations (3.10–3.13) are
given on the following page.
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∂

∂t
ρ′ = − ∂

∂r
(ρv)′ − (ρv)′

r
− ∂

∂x
(ρu)′ (3.10)

∂

∂t
(ρv)′ = − ∂

∂r
[p′ + ρbvbv

′ + (ρv)′vb + (ρv)′v′ − τ ′rr]

− 1

r

[

ρbvbv
′ + (ρv)′vb + (ρv)′v′ −

(

τ ′rr − τ ′ϕϕ

)]

− ∂

∂x
[ρbvbu

′ + (ρv)′ub + (ρv)′u′ − τ ′rx] (3.11)

∂

∂t
(ρu)′ = − ∂

∂r
[ρbubv

′ + (ρu)′vb + (ρu)′v′ − τ ′rx]

− 1

r
[ρbubv

′ + (ρu)′vb + (ρu)′v′ − τ ′rx]

− ∂

∂x
[p′ + ρbubu

′ + (ρu)′ub + (ρu)′u′ − τ ′xx] (3.12)

∂

∂t
(ρE)′ = − ∂

∂r
{[ρbEb + pb] v

′ + [(ρE)′ + p′] vb + [(ρE)′ + p′] v′ −Dr}

− 1

r
{[ρbEb + pb] v

′ + [(ρE)′ + p′] vb + [(ρE)′ + p′] v′ −Dr}

− ∂

∂x
{[ρbEb + pb]u

′ + [(ρE)′ + p′]ub + [(ρE)′ + p′]u′ −Dx} (3.13)

with Dr =
1

(γ − 1)Ma2RePr

∂T ′

∂r
+ τ b

rrv
′ + τ b

rxu
′

+ τ ′rrvb + τ ′rxub + τ ′rrv
′ + τ ′rxu

′

Dx =
1

(γ − 1)Ma2RePr

∂T ′

∂x
+ τ b

rxv
′ + τ b

xxu
′

+ τ ′rxvb + τ ′xxub + τ ′rxv
′ + τ ′xxu

′
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3.3 Baseflow

3.3.1 Boundary layer equations

As the base flow is assumed to slowly develop in the streamwise direction, it
is sought as a solution of the steady compressible boundary layer equations.
In non-dimensional form, these equations read

∂

∂x
(ρu) +

1

r

∂

∂r
(rρv) = 0 (3.14)

ρu
∂u

∂x
+ ρv

∂u

∂r
= −∂p

∂x
+

1

rRe

∂

∂r

(

r
∂u

∂r

)

(3.15)

ρu
∂T

∂x
+ ρv

∂T

∂r
= (γ− 1)Ma2u

∂p

∂x
+

1

rRePr

∂u

∂r

(

r
∂T

∂r

)

+(γ− 1)
Ma2

Re

(

∂u

∂r

)2

,

(3.16)
with the equation of state

p =
1

γMa2ρT . (3.17)

The procedure for a numerical solution of this system of equations has
been implemented to allow for ∂p/∂x 6= 0 and Pr 6= 1. However, in practice,
only base flows with zero pressure gradient and Pr = 1 are used in the
simulations. In this case, the energy equation (3.16) can be replaced by the
Crocco–Busemann relation

T (r) = S + (1− S)u(r) +
γ − 1

2
Ma2u(r) [1− u(r)] . (3.18)

The Reynolds number dependence in the momentum equation is dropped by
introducing a slow streamwise coordinate X = x/Re. With the substitution

ρ(r, x)→ ρ0(r,X) v(r, x)→Re−1v0(r,X)
u(r, x)→ u0(r,X) T (r, x)→T0(r,X)

(3.19)

and with

p0 =
1

γMa2 , (3.20)
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the boundary layer equations can be written as

∂ρ0u0

∂X
+

1

r

∂

∂r
(rρ0v0) = 0 (3.21)

ρ0u0
∂u0

∂X
+ ρ0v0

∂u0

∂r
=

1

r

∂

∂r

(

r
∂u0

∂r

)

(3.22)

T0 = S + (1− S)u0 +
γ − 1

2
Ma2u0(1− u0) (3.23)

ρ0 = T−1
0 . (3.24)

The system (3.21–3.24) is parabolic, and therefore can be integrated numer-
ically stepping forward in X.

3.3.2 Numerical method

The boundary layer equations (3.21–3.24) are discretized and solved at N
equispaced radial points

ξi =
i− 1

N − 1
i = 1, . . . , N . (3.25)

The computational domain 0 ≤ ξ ≤ 1 is mapped onto the physical domain
0 ≤ r ≤ rmax via an analytical mapping function. The resulting distribution
ri = r(ξi) should at least be close to the radial grid point distribution used
in the direct numerical simulation. In practice, the mapping function r(ξ)
has been defined as a piecewise 5th order polynomial. The coefficients of
this polynomial are computed by prescribing appropriate values of the grid
spacing ∆ri = r′(ξi)∆ξ at r = 0, r = 1 and r = rmax, and by requiring the
distribution to be continuous in r, r′ and r′′ at the junction points. As the
convergence order of the numerical scheme used in the baseflow computation
is lower than the one used in the DNS (see section 3.4.2), the radial step size
has usually been chosen as half the value of the DNS grid. The distribution
∆r = f(r) of the mapping function used to generate the base flows for the
simulations presented in section 4.2.5 is shown in figure 3.1.

To perform the numerical integration, the boundary layer equations (3.21–
3.24) are cast in the computational coordinates (X, ξ) and discretized at the
collocation points (Xi, ξj). Radial derivatives are expressed as

∂

∂r
=

1

r′(ξ)

∂

∂ξ
. (3.26)
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Figure 3.1: Radial grid spacing used for baseflow calculations in section 4.2.5.
Junction points of the piecewise polynomial r(ξ) are marked by dotted lines.

The numerical scheme is taken from Lu & Lele [74], who adapted an al-
gorithm given by Anderson, Tannehill & Pletcher [1]. The subscript ()0 is
dropped in the following expressions for better readability.

The continuity equation (3.21) is discretized around (Xi+1/2, ξj+1) via an
implicit Euler scheme:

ρi+1
j+1u

i+1
j+1 − ρi

j+1u
i
j+1 + ρi+1

j ui+1
j − ρi

ju
i
j

2∆X
+
rj+1ρ

i+1
j+1v

i+1
j+1 − rjρ

i+1
j vi+1

j

rj+1/2r′j+1/2∆ξ
= 0

(3.27)
A Crank–Nicholson method is used for the momentum equation (3.22), ex-
panded around (Xi+1/2, ξj):

(ρi+1
j ui+1

j + ρi
ju

i
j)(u

i+1
j − ui

j)

2∆X

+
(ρi+1

j vi+1
j + ρi

jv
i
j)(u

i+1
j+1 − ui+1

j−1 + ui
j+1 − ui

j−1)

8r′j∆ξ

=
1

2rjr′j∆ξ
2

[

rj+1/2

r′j+1/2

(

ui+1
j+1 − ui+1

j + ui
j+1 − ui

j

)

− rj−1/2

r′j−1/2

(

ui+1
j − ui+1

j−1 + ui
j − ui

j−1

)

]

. (3.28)

Application of the same Crank–Nicholson scheme to the energy equation
(3.16) is straightforward, but leads to a lengthy expression. In the calcula-
tions presented in this study, the Crocco–Busemann law has been employed
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instead:

T i+1
j = S + (1− S)ui+1

j +
γ − 1

2
Ma2ui+1

j (1− ui+1
j ) . (3.29)

It has been verified that a numerical solution of the full energy equation
yields identical results in zero-pressure-gradient situations with Pr = 1. The
discrete equation of state is simply

ρi+1
j = (T i+1

j )−1 . (3.30)

The computation starts from an analytical jet velocity profile (Michalke [77])

u(r,X0) =
1

2
+

1

2
tanh

[

R

4θ

(

1

r
− r

)]

, v(r,X0) ≡ 0 (3.31)

prescribed at X0. Corresponding temperature and density profiles are ob-
tained from equations (3.23,3.24). The velocity profile is characterized by
the parameter R/θ, where θ is the shear layer momentum thickness

θ =

∫

∞

0

u(r)(1− u(r)) dr . (3.32)

As equations (3.27–3.30) are coupled, radial profiles at Xj+1 must be
computed in an iterative process. Each iteration substep consists of the fol-
lowing procedure: The nonlinear term (ui+1

j )2 in equation (3.28) is linearized

as (ui+1
j )2 = 2ũi+1

j ui+1
j − (ũi+1

j )2, where ũi+1
j denotes the value from the pre-

vious iteration substep. The axial velocity profile ui+1 is then obtained from
equation (3.28) as the solution of a tridiagonal system, with all other variable
values at Xi+1 taken from the last iteration substep. Boundary conditions
are imposed as

∂u

∂r
(r = 0) = 0 and u(rmax) = 0 . (3.33)

New values T i+1 and ρi+1 follow directly from equations (3.29) and (3.30).
The radial velocity vi+1 is then obtained explicitly from equation (3.27) in
the form vi+1

j+1 = f(vi+1
j ), with v(r = 0) = 0 as boundary condition. The next

iteration substep is started by recalculating ui+1 with the updated values
of vi+1, T i+1 and ρi+1. The iteration at Xi+1 is taken as converged when
maxj(|ui+1

j − ũi+1
j |) < 10−14. Starting values for the iteration procedure

at the next streamwise station are extrapolated from previous results. A
second-order extrapolation qi+1

j ∼ f(qi
j, q

i−1
j , qi−2

j ) has been found to work
best.

At the starting location X0, the radial velocity profile (3.31) is prescribed
to be zero for want of a better guess. This inconsistency of the initial profile
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Figure 3.2: Streamwise development of R/θ from calculations without (blue)
and with (red) averaging procedure at the first five X locations. The step
size ∆X is untypically large in this example.

results in an over-adjustment of v in X1 and leads to spurious oscillations
further on along X that die out very slowly. The blue line in figure 3.2
shows the resulting development of R/θ. In order to quickly adjust the
radial velocity profile to the natural spreading of the jet, an averaging tech-
nique proposed by Shin & Ferziger [102] has been employed: after a first
estimation of the flow profiles at X1 = X0 + ∆X, the calculation is restarted
from the midway location X1/2 = X0 + 0.5∆X with the averaged solution
q(X1/2, ξ) = 0.5[q(X0, ξ) + q(X1, ξ)] in order to obtain a new estimate at
X1. The solutions at X1/2 and X1 are again averaged, and q(X1, ξ) is again
recalculated from the location X0 + 0.75∆X. For the precision needed in
the present simulations, five such averaging steps are performed to arrive at
the final solution at X1, and the same procedure is repeated for X2, . . . , X5.
Beyond X5 the calculation is continued normally. Figure 3.2 demonstrates
that this procedure efficiently eliminates spurious oscillations. The first five
points in X are truncated before the baseflow is used in the direct numerical
simulations. The initial profile parameter R/θ in equation (3.31) therefore
must be chosen sufficiently larger than the value needed at x = 0 in the DNS.

The streamwise development of the local profile parameter R/θ in X is
presented in figure 3.3 for two Ma = 0.1 jets with temperature ratios S = 1
and S = 0.5. The first five computational points are not included in the
diagram.
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Figure 3.3: Streamwise development of the profile parameter R/θ at tem-
perature ratios S = 1 (isothermal, blue line) and S = 0.5 (hot, red line),
according to numerical integration of the boundary layer equations.

3.3.3 Validation

The numerical integration of the boundary layer equations is validated against
an analytical self-similar solution for developing jet profiles downstream of
the potential core. For an incompressible axisymmetric jet, a closed-form so-
lution has been developed by Schlichting [101]. Pack [90] later extended the
formalism to include compressibility effects for S=1, Pr=1 and Ma<1 and
found an approximative solution in the form of a power series. Pack’s formu-
lation will be rewritten here in a notation analogous to that of Schlichting
[101], adapted to the baseflow assumptions made in this study, and it will be
demonstrated how the self-similar jet profiles can be retrieved without the
necessity of a power expansion. For a detailed derivation of the formalism,
the reader is referred to the original work [90].

The radial variations of the velocity and density profiles are expressed in
terms of a scaling variable η = ξ/X, where ξ is defined at each streamwise
station through

ρ∞ξ = 2

∫ r

0

ρ(r′) r′ dr′ . (3.34)
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Note that ξ is distinct from the quantity used in the previous section. For a
numerical implementation, an explicit expression is needed for the transfor-
mation between r and ξ. With the approximation

ξ =

√

ρ(r)

ρ∞
r (3.35)

a stream function can be defined, which takes the same form as in the in-
compressible case (Schlichting [101]):

ψ(η) = X
γ2η2

(1 + 1
4
γ2η2)2

. (3.36)

The velocities at a given streamwise station X are computed from the stream
function as

u0(ξ) =
1

ρ∞ξ

∂ψ

∂ξ

∣

∣

∣

X
(3.37)

v0(ξ) =
1

ρ(ξ)r(ξ)

[

∂ψ

∂X

∣

∣

∣

ξ
+
∂ψ

∂ξ

∣

∣

∣

X
× ∂ξ

∂X

∣

∣

∣

r

]

(3.38)

Pack [90] shows that even for a Mach number of 0.9 the error committed in
u0 by using the approximation made in equation (3.35) is not greater than
2%.

Using the jet radius R and the centerline values Uc, ρc and Tc as reference
quantities, the velocities in nondimensional form become:

u0(η) =
1

ρ∞X

2γ2

(1 + 1
4
γ2η2)2

(3.39)

v0(η) =
1

ρ(η)r

{

2γ2η2

(1 + 1
4
γ2η2)2

− γ2η2

1 + 1
4
γ2η2

+
2γ2η

(1 + 1
4
γ2η2)2

(

∂ξ

∂X

)

r

}

(3.40)

The streamwise derivative of ξ can only be determined numerically. The
density profile ρ(η), needed for the evaluation of equation (3.40), is found
from the Crocco-Busemann law (3.23) together with the equation of state
(3.24). The physical coordinate r(ξ,X) can then be calculated from the
transformation (3.35), and the radial velocity from equation (3.40).

The term ∂ξ/∂X in equation (3.40) can only be evaluated once r(ξ,X) is
known for the whole flow field. At each streamwise station Xj, the values of
ξ(r,Xj−1) and ξ(r,Xj+1) are then interpolated onto the points rj = r(ξ,Xj),
and the derivative ∂ξ/∂X at constant r is obtained as a second-order central
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difference. However, the contribution of this metric term to v is negligible
for small Mach numbers.

In order to obtain start profiles for a boundary layer calculation, the
parameters γ and X0 must be chosen appropriately, so that u0(r = 0, X0) = 1
and u0(r = 1, X0) = 0.5. With equation (3.35), r = 1 can be replaced with
ξ = (ρ1/ρ∞)1/2. This leads to the parameter values

X0 = (1 +
√

2)
ρ1

8
γ2 = (1 +

√
2)
ρ1ρ∞
16

, (3.41)

where ρ1 = ρ(u0=0.5) and ρ∞ = ρ(u0=0) are calculated from equations
(3.23,3.24).

Results obtained from the numerical boundary layer integration are com-
pared to the corresponding self-similar solutions for Ma=0.9 (figure 3.4a) and
for Ma=0.1 (figure 3.4b–d). The initial profiles used in the boundary layer
integration have been taken from equations (3.39,3.40), with X0 and γ as
given in equation (3.41). The agreement is excellent. Note that the radial
velocity in figure 3.4c has been scaled with the Reynolds number according
to equation (3.19).

3.4 Numerical solution of the perturbation

equations

3.4.1 Time advancement

The time derivatives of the conservative flow variables q are given by equa-
tions (3.10–3.13) in the form

∂q

∂t
= F (q) (3.42)

and can be evaluated at each time step. F (q) contains spatial derivatives
that will be discretized by use of appropriate spatial schemes. From ∂q/∂t,
the flow variables are advanced in time using a third order Runge-Kutta
algorithm in the low-storage version of Lowery & Reynolds [73]. A new time



60 Direct numerical simulation method

r

u0

(a)

r

u0

(b)

r

v0

(c)

r

ρ0

(d)

0 1 2 3 4 50 1 2 3 4 5

0 1 2 3 4 50 1 2 3 4 5

0.9995

1

-0.5

0

0.5

0

0.5

1

0

0.5

1

Figure 3.4: Radial jet profiles at X = X0 (blue), X = X0 + 0.2 (red),
X = X0 + 0.4 (green). Solid lines: boundary layer equation; dots: self-
similar solution according to Pack [90]. a) Ma = 0.9, b)–d) Ma = 0.1.
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step qn+1 is calculated from qn in three substeps:

∆q1 = F (qn)

q1 = qn + α1∆q1∆t

∆q2 = F (q1) + β1∆q1

q2 = q1 + α2∆q2∆t

∆q3 = F (q2) + β2∆q2

qn+1 = q2 + α3∆q3∆t

with the coefficients

α1 = 0.5 β1 = −0.6830127018922193
α2 = 0.9106836025229591 β2 = −4/3
α3 = 0.3660254037844387

The scheme can be expected to be stable when the Courant-Friedrich-
Levy (CFL) number is lower or equal to

√
3. With a CFL number of unity,

no information is transported further than one computational cell within one
time step. For convective transport, the criterion is

∆tc =
min(∆r,∆x)

1 + Ma−1 , (3.43)

and for viscous transport:

∆tv =
Re

2γ
min{(∆r)2, (∆x)2} . (3.44)

The time step has to be chosen according to the more restrictive of the two
criteria: ∆t = CFL min(∆tc,∆tv). In computations at moderate Reynolds
and low Mach numbers, the time step is always dictated by the convective
transport.

3.4.2 Spatial derivatives

Derivatives with respect to r and x in (3.10–3.13) are discretized via a classi-
cal sixth-order-accurate explicit centered finite difference scheme, which uses
a seven point stencil (see Desquesnes et al. [36]):

∂q

∂r

∣

∣

∣

i,j
=

1

mr
ij

3
∑

k=1

ak(qi+k,j − qi−k,j)

∂q

∂x

∣

∣

∣

i,j
=

1

mx
ij

3
∑

k=1

ak(qi,j+k − qi,j−k) (3.45)
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with a1 =
45

60
, a2 = − 9

60
, a3 =

1

60
.

The subscripts i, j denote the grid point at location (ri, xj). The matrices mr
ij

and mx
ij are metric terms that stem from the transformation between the grid

in the physical domain (r, x), with nonuniform spacing, and a computational
grid (ξ, η) where ∆ξ ≡ 1 and ∆η ≡ 1. The derivatives with respect to (ξ, η)
and with respect to (r, x) are related as

∂q

∂r

∣

∣

∣

i,j
=

(

∂r

∂ξ

)

−1

i,j

∂q

∂ξ

∣

∣

∣

i,j

∂q

∂x

∣

∣

∣

i,j
=

(

∂x

∂η

)

−1

i,j

∂q

∂η

∣

∣

∣

i,j

⇒ mr
ij =

∂r

∂ξ

∣

∣

∣

i,j

⇒ mx
ij =

∂x

∂η

∣

∣

∣

i,j

(3.46)

Near the boundaries of the domain, less than three points away from
the last grid point, centered spatial schemes of lower order are employed.
Decentered finite differences are diffusive, and should generally be avoided.
Only on the outermost points, a decentered first order two-point stencil is
applied for lack of alternatives. These points near the boundary, where low-
order derivative and filtering schemes are used (see also section 3.4.3), will
be referred to as ghost points. The quantities computed at these points are
not regarded as being physically relevant. The reduction of the stencil sizes
is sketched in figure 3.5.

The coefficients of the lower-order schemes are:

4th order: a1 =
2

3
a2 = − 1

12

2nd order: a1 =
1

2

Second derivatives ∂2

∂r2 and ∂2

∂x2 in the diffusion terms are approximated
by successive application of the above finite difference schemes.

The efficiency and precision of the implemented spatial and temporal
schemes for both aerodynamic and aeroacoustic applications has been demon-
strated in recent studies by Desquesnes et al. [36] and by Terracol et al. [108].

3.4.3 Spatial filtering

Centered finite-difference schemes are non-diffusive and known to give rise
to under-resolved spurious oscillations on the scale of the grid spacing. Such
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x

r

Figure 3.5: Stencil size for filter and derivative scheme; treatment near the
boundaries. Interior domain (—), ghost points (+) and axis (---). The points
marked ◦ are used for the filtering scheme, the grey points for the filter and
the derivative.

oscillations especially arise from discontinuities in the numerical approxima-
tion, such as grid stretching or boundary treatment. As a result, unphysical
waves can spread throughout the whole computational domain, pollute the
solutions and give rise to numerical instabilities. It is therefore necessary to
introduce a spatial filtering procedure that very selectively eliminates high,
under-resolved frequencies.

In the present study, an explicit 10th order filter scheme is implemented,
as proposed by Lele [66] and further discussed by Visbal & Gaitonde [113].
For the 10th order filter, an 11-point stencil is used to compute the value in
one point with high frequency variations filtered out in one spatial direction.
The filter is applied to all conservative variables at the end of each time step,
first in the axial, then in the radial direction. On the ghost points, the stencil
size is progressively reduced (see figure 3.5).

If q̃ij is the unfiltered result obtained from the Runge-Kutta algorithm,
then the end result qij of the time step is

qij = fr (fx(q̃ij)) ,
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computed as

fx(qij) =
n

∑

k=−n

bxkqi,j+k (3.47)

fr(qij) =
n

∑

k=−n

brkqi+k,j . (3.48)

As the filter stencils are larger than those used for the spatial derivative
schemes, the necessary number of ghost points is determined by the filtering
scheme. For application of a 10th order filter in the physical region of the
computational domain, five layers of ghost points are needed.

Following a procedure proposed by Falissard [38], the coefficients b
[x,r]
k are

defined locally such that the 10th order precision is preserved also on non-
uniform computational grids. At each position xj, the bxk are obtained as a
solution of the linear system
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, (3.49)

where ∆xk denotes xj+k − xj. The coefficients brk are computed accordingly
for each radial position ri.

3.4.4 Computational grids

The grid point distributions used in the simulations presented in the following
chapters are briefly documented here.

In section 4.2, two types of flow configurations are considered. Both are
computed on the same radial grid point distribution (figures 3.6a,c). As
only acoustic wave lengths λ ∼ 35 need to be resolved in the far field, ∆r
can be chosen very large for r & 5. However, the stretching rate from one
radial point to the next is kept below 4% in the physical region, in order to
minimize the generation of spurious waves. The radial grid distribution in
figures 3.6a,c within the physical region r < 46 corresponds to the function
∆r = 2f(r), with ∆r = f(r) being the grid spacing that has been used in the
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calculation of the baseflow (see figure 3.1). Thus the baseflow quantities are
available directly at the grid points used in the DNS, without necessitating
interpolation. The axial grid spacing (figure 3.6b) is kept constant throughout
the physical region. In the computations of section 4.2.4, ∆x = 0.05 was
chosen in order to provide a high resolution of baseflow variations. The
baseflows considered in section 4.2.5 vary very slowly, and a resolution ∆x =
0.1 was found to be sufficient.

Since the computations of section 4.2 were the first published attempt to
capture global modes in a direct numerical simulation, the construction of
the grid was guided by great prudence. Later tests showed that in particular
the radial resolution of the near field (figure 3.6c) is excessive, and that a
bicubic interpolation, as implemented in Matlab, of the baseflow onto a
well-designed DNS grid yields highly accurate results. The computational
grid used in the simulations presented in section 4.3 is conceived to allow
more time-efficient simulations for a parametric study. The radial and axial
grid point distributions are displayed in figure 3.7. The axial sponge region,
not shown entirely in figure 3.7b, extends down to x = 125, where ∆x = 3.35.
Grid independence of the results has been demonstrated in test calculations
with a R/θ = 25, S = 0.5 baseflow profile on a finer grid, where ∆r and
∆x were decreased by a factor 1.5. Any influence of box effects (see Buell &
Huerre [16]) on the simulation results has been excluded in tests on a larger
computational domain, with a physical region 0 ≤ x ≤ 50.

3.5 Boundary Conditions

The theoretical model assumes a flow domain that extends to infinity in
the downstream and radial directions. Instability-related perturbations are
supposed to be zero at the upstream boundary of the flow domain, whereas
acoustic waves should propagate upstream as in an infinite medium. By con-
trast, the computational domain is inevitably finite in size. Boundary condi-
tions must therefore be conceived that mimic a continuous infinite medium.
Specifically, all radiated sound waves and all convected vorticity and entropy
waves must be allowed to leave the computational domain without signifi-
cant interaction or reflection at the boundaries, but upstream-propagating
instability waves must be blocked at x = 0.

Each of the four boundaries in the implemented numerical method has
distinct characteristics. The top boundary at r = rmax has to be nonreflecting
to acoustic waves. The outflow boundary must let acoustic, vorticity and



66 Direct numerical simulation method

r

∆r

x

∆x

r

∆r

r

ub

(a)

(c)

(b)

(d)

0 0.5 1 1.5 20 1 2 3 4 5

0 50 1000 50 100 150 200

0

0.5

1

0

0.05

0.1

0

0.5

1

1.5

2

4

6

Figure 3.6: Computational grid used in the simulations of section 4.2. (a)
Radial grid spacing, sponge zone in grey; (b) axial grid spacing, solid: section
4.2.5, dashed: section 4.2.4, sponge zones in grey; (c) radial grid spacing in
the jet region; (d) radial resolution of a R/θ = 10 velocity profile.
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entropy waves pass. The inflow boundary must be transparent for outgoing
acoustic waves and impermeable for vorticity and entropy waves. Forcing
will also be applied at the upstream boundary in some computations. Across
the axis, all quantities must fulfill symmetry conditions.

The many existing numerical concepts for nonreflecting boundary condi-
tions have been reviewed by Colonius [22]. None of these can claim to be
conclusive. In practice, most CAA calculations rely on the use of “sponge
zones” surrounding the interior domain, where all fluctuations are progres-
sively damped to negligible levels through artificial dissipation, before they
reach the boundary of the computational domain.

3.5.1 Symmetry conditions at the jet axis

Equations (3.10–3.13) are singular at r = 0, and therefore cannot be evalu-
ated directly on the jet axis. The easiest and most obvious way to circumvent
this problem is to place the first physical radial grid point at r = ∆r/2, as
sketched in figure 3.5. No problems have been encountered with this treat-
ment of the coordinate singularity.

Of the conservative flow variables, density, axial momentum and total
energy are symmetric with respect to r = 0, whereas the radial momentum is
antisymmetric. The inverse is true for the respective radial derivatives. These
conditions are enforced by placing ghost points on the negative side of the axis
and by copying the values of the flow quantities from the corresponding points
on the positive side of the axis after each calculation. The use of reduced-
order schemes is not necessary for the calculation of radial derivatives near
the axis, as the values of the derivatives that have been computed with a
seven-point stencil on the physical side of the axis can be copied onto the
ghost points.

3.5.2 Sponge zones

The treatment of the top and outflow boundaries does not involve any phys-
ical modelling. Reflection is prevented by attenuating all perturbations q

within a sponge zone, where a damping term −λq′ is added to the right hand
side of the perturbation equations (3.10–3.13). The computed values in these
regions are not considered as physically meaningful. Within the exit sponge
zone, the damping coefficient λ increases smoothly from 0 to λmax over a
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streamwise distance x1 < x < x2, according to the function

λ(x) = λmax

[

1 + exp

(

x2 − x1

x− x2

+
x2 − x1

x− x1

)]

. (3.50)

Within the sponge zone at the top boundary, λ varies accordingly in r. In
addition to the artificial damping, numerical dissipation in the sponge zones
is increased by significant progressive grid stretching. For a discussion of the
use of sponge zones, see the review by Colonius [22].

On the ghost points near rmax and xmax, the reduction of the filter stencil
size (see section 3.4.3) provides another strong increase of numerical dissipa-
tion. On the outermost grid point, all disturbance quantities are set to zero.
The properties of this boundary treatment have been extensively studied by
Redonnet [99].

3.5.3 Inflow Conditions and Forcing

Unlike the top and outflow boundaries, the jet inflow conditions are to be
specified at a precise streamwise location. The use of an upstream sponge
zone is therefore prohibited. Conceptually, a characteristics method seems to
be the best suited: It allows to specifically define all modes that are entering
the domain. This procedure is particularly convenient if forcing is to be
applied at the upstream boundary. However, the required decomposition
of the flow variables into acoustic, vortical and entropy modes cannot be
exact for the axisymmetric Navier–Stokes equations, and several approximate
methods have been proposed (see Colonius [22]). Following the example of
Mitchell et al. [79, 80], the conditions formulated by Giles [46] are used at
the upstream numerical boundary.

In the increment calculation of each Runge-Kutta substep, the conser-
vative variables q′ at the ghost points are transformed first to primitive,
then to characteristic variables w. These are the characteristics of the
one-dimensional Euler equation in the direction perpendicular to the inflow
boundary, propagating at a velocity uλ, which is positive for incoming char-
acteristics and negative for outgoing characteristics:

w1 = p′ − c2ρ′ entropy uλ = ub

w2 = ρbcv
′ vorticity uλ = ub

w3 = p′ + ρbcu
′ acoustic uλ = ub + c

w4 = p′ − ρbcu
′ acoustic uλ = ub − c

(3.51)

with c =

√

γ
pb

ρb

. (3.52)
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For a subsonic jet without counterflow, w1, w2, w3 are incoming, whereas w4

is an outgoing characteristic. The form of the characteristics in cylindrical
coordinates given above has been derived by Mitchell et al. [79] from the
three dimensional Cartesian form given by Giles [46].

For “zero-order” boundary conditions, perfectly suited for a one-dimen-
sional flow, all wi could directly be imposed and retransformed into conser-
vative variables. For example, in order to prevent any perturbations from
(re-)entering the computational domain, all incoming characteristics can be
set to zero while leaving w4 unchanged. However, this treatment performs
poorly for waves hitting the boundary at oblique angles of incidence (see
section 3.5.4). Giles [46] proposed conditions not for wi, but for their time
derivatives, which take into account oblique incidence at first order. Unless
explicitly stated otherwise, these conditions are employed in all simulations
presented.

The algorithm described by Giles eliminates reflections. In order to in-
clude the possibility of forcing, the characteristic variables are split into a
“non-reflective” component w̃i and a forcing component wf

i :

wi = w̃i + wf
i . (3.53)

Following the procedure outlined by Mitchell et al. [79], the non-reflective
parts w̃2 and w̃3 are calculated according to the first order Giles conditions,
while using zeroth order for w̃1:

w̃1 = 0 (3.54)

∂w̃2

∂t
= −vb

∂w̃2

∂r
− 1

2
(c+ ub)

∂w̃3

∂r
− 1

2
(c− ub)

∂w̃4

∂r
(3.55)

∂w̃3

∂t
= −vb

∂w̃3

∂r
− 1

2
(c− ub)

(

∂w̃2

∂r
+
w̃2

r

)

. (3.56)

The outgoing characteristic w̃4 is left unchanged. Its time derivative has to
be computed by differentiation of equation (3.51):

∂w̃4

∂t
=
∂p′

∂t
− ρbc

∂u′

∂t
. (3.57)
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with

∂p′

∂t
= (γ − 1)

{

∂(ρE)′

∂t
− 1

2

∂ρ′

∂t

[

(vb + v′)2 + (ub + u′)2
]

−(ρb + ρ′)

[

(vb + v′)
∂v′

∂t
+ (ub + u′)

∂u′

∂t

]}

∂v′

∂t
=

1

ρb + ρ′

[

∂(ρv)′

∂t
− (vb + v′)

∂ρ′

∂t

]

∂u′

∂t
=

1

ρb + ρ′

[

∂(ρu)′

∂t
− (ub + u′)

∂ρ′

∂t

]

.

The inflow forcing is first specified in terms of the primitive variables
(ρf , uf , vf , pf ) and then transformed through equations (3.51) into their cor-
responding characteristic forms (wf

1 , w
f
2 , w

f
3 , w

f
4 ). No forcing is imposed on

the outgoing characteristic.

Implementation. The inflow boundary conditions are imposed at each
Runge-Kutta substep in the following manner: First, the time derivatives of
the conservative variables are computed for the entire computational domain
including all ghost points. Next, the characteristic variables wi are computed
on the ghost points of the inflow boundary according to equations 3.51. The
forcing terms wf

i are computed and subtracted from the wi to obtain the
non-reflective parts w̃i. Then the time derivatives (3.55–3.57) are imposed.
After the whole flow field has been time advanced – characteristic variables
on the inflow ghost points, conservative variables everywhere else – the 0th

order condition (3.54) is applied to w̃1 and the forcing terms wf
i are added to

w̃i. Finally, the conservative variables are recovered from the characteristics.

Note that when adding and subtracting the forcing components of the
characteristics, they must be evaluated at the appropriate time step. In the
compact, three-step Runge-Kutta algorithm described in section 3.4.1, the
effective time at the three substeps is to be taken as follows:

First substep:
∆q1(tn) = F (q(tn)) conservative increment
∆w̃(tn)← w(tn)− wf (tn) subtract wf (tn)
q(tn + δ1∆t) = q(tn) + α1∆q1∆t time advancement
w(tn + δ1∆t) = w̃(tn + δ1∆t) + wf (tn + δ1∆t) add wf (tn + δ1∆t)
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Second substep:
∆q2(tn + δ1∆t) = F (q(tn + δ1∆t)) + β1∆q1 conservative increment
∆w̃(tn + δ1∆t)← w(tn + δ1∆t)− wf (tn + δ1∆t) subtract wf (tn + δ1∆t)
q(tn + δ2∆t) = q(tn + δ1∆t) + α2∆q2∆t time advancement
w(tn + δ2∆t) = w̃(tn + δ2∆t) + wf (tn + δ2∆t) add wf (tn + δ2∆t)

Third substep:
∆q3(tn + δ2∆t) = F (q(tn + δ2∆t)) + β2∆q2 conservative increment
∆w̃(tn + δ2∆t)← w(tn + δ2∆t)− wf (tn + δ2∆t) subtract wf (tn + δ2∆t)
q(tn + δ3∆t) = q(tn + δ2∆t) + α3∆q3∆t time advancement
w(tn + δ3∆t) = w̃(tn + δ3∆t) + wf (tn + δ3∆t) add wf (tn + δ3∆t)

where

δ1 = α1 = 0.5

δ2 = α1 + α2(1 + β1) = 0.7887

δ3 = α1 + α2(1 + β1) + α3(1 + β2 + β1β2) = 1.

3.5.4 Tests of the inflow boundary conditions

The performance of the numerical inflow boundary conditions has a strong
impact on the simulation results. The following tests are presented to as-
sess the non-reflecting properties and the quality of the upstream condition
provided by the inflow boundary treatment.

Acoustic reflections

The reflection of acoustic waves is compared for three types of boundary
conditions:

• Dirichlet boundary conditions for the conservative perturbation vari-
ables q′ = 0 at the outermost ghost point. These are employed at the
lateral and the downstream boundary of the computational domain,
behind the sponge zones, in the simulations presented in chapter 4. No
sponge zone is added in these tests.

• Zero-order characteristic boundary conditions: (w1, w2, w3) = 0.

• First-order characteristic boundary conditions as described in section
3.5.3.
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The reflections of a plane wave parallel to the boundary and of a spherical
wave are examined.

Plane wave. An upstream travelling acoustic pulse parallel to the inflow
boundary in an inviscid homogeneous fluid at rest is created as

p′(x) = 0.001 exp

[

(x− x0)
2

0.32

]

ρ′(x) =
p′(x)

c2
u′(x) = −p

′(x)

c
,

(3.58)
All flow variables are invariant in r. A Neumann condition ∂q′/∂r = 0 at
rmax guarantees a one-dimensional flow field at all times. As the flow is
inviscid and one-dimensional, the shape and amplitude of acoustic signals
remains unchanged as they propagate through the interior of the computa-
tional domain. The pressure signal of the original pulse is shown in figure
3.8a before it reaches the boundary at x = 0, and the downstream travelling
reflected pressure waves some time later are compared in figures 3.8b–d for
the three different boundary conditions. Ideally, the reflected signal would
be zero. The ratio of the peak-to-peak amplitudes of the reflected waves and
the original pulse defines a reflection coefficient of 2.0×10−4 for the Dirichlet
condition, and of 3.5×10−6 for both characteristic boundary schemes. Indeed
the zero- and first-order characteristic boundary conditions perform almost
identically well for an incident plane acoustic wave parallel to the boundary.

Spherical wave. A spherical acoustic wave in an inviscid homogeneous
fluid at rest emerges from an initial pulse at (x, r) = (10, 0) of the form

p′(x, r) = 0.001 exp

[

(x− x0)
2 + r2

0.32

]

T ′(x, r) =
p′(x, r)

pb

ρ′ = u′ = 0 .

(3.59)
The speed of sound is chosen to be c = 10, and the ambient pressure is given
by pb = c2/γ. The computation is performed on an equidistant grid with
spacing ∆x = ∆r = 0.05.

The pressure field at t = 2 is displayed in figure 3.9 for all three numer-
ical boundary conditions. Only the relevant part of the domain is shown,
including the upstream ‘ghost points’ at x < 0. The acoustic wave has not
yet reached the lateral and downstream boundaries. Isocontours are plotted
for values −10−6 ≤ p′ ≤ 10−6 in order to visualize the reflections, whereas
the amplitude of the original pressure wave at t = 2 is ±3.4× 10−6.
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Figure 3.8: Reflection of a plane acoustic wave at x = 0, pressure signals.
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The amplitude ratio of the reflected waves in figure 3.9 and the unre-
flected wave can be examined as a function of the angle α, formed between
the propagation direction and the axis r = 0, which corresponds to the an-
gle of incidence at the upstream boundary when the reflection was formed.
The resulting curves are given in figure 3.10. Interestingly, it is found that
the Dirichlet and zero-order characteristic conditions reflect a spherical wave
almost identically. The first-order correction of the characteristic boundary
condition is seen to yield a significant improvement, not only for large angles
of incidence, but also for α = 0 in the case of a curved wave front.

Impermeability of the upstream boundary to instability waves

The theoretical model of nonlinear global modes discussed in chapter 4 is
based on the assumption that all upstream propagating instability waves
are blocked at the upstream boundary, i.e. that the fluctuation amplitudes
associated with vortical instability modes are forced to zero. This imper-
meability requirement is tested for the zero- and first-order characteristic
boundary conditions.

The base flow chosen for this test is an absolutely unstable parallel jet
profile with the parameters R/θ = 14.8 and S = 0.5. Direct numerical
simulations of nonlinear perturbations in this base flow are carried out at
Re = 3750 and Ma = 0.1. The computations start from an initial pulse at
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(x, r) = (2, 1) in the form of a ring vortex (Bogey, Bailly & Juvé [10])
(

u′

v′

)

= 0.1

(

1− r
x− 2

)

1

0.2 r
exp

[

−ln2
(x− 2)2 + (r − 1)2

0.22

]

. (3.60)

This strong perturbation gives rise to a roll-up of discrete vortices down-
stream and excites the linear absolute instability mode upstream near x = 0.
For sufficiently long time, the flow settles into a periodic oscillating global

mode state. A detailed investigation of such flow states is postponed to
chapter 4. The aim of the present test computations is to qualitatively
demonstrate the influence of the upstream boundary conditions on the spatial
envelope of the oscillation amplitude.

Once the asymptotic flow state of periodic oscillations is reached, the
temporal rms values of radial velocity fluctuations are computed over one
oscillation cycle at r = 1 and over the interval 0 ≤ x ≤ 5. The resulting
distributions v′rms(x) are displayed in figure 3.11 for the computations with
zero-order (red) and with first-order (blue) characteristic boundary condi-
tions. In both cases, v′rms is strictly zero at the ghost points x < 0. Yet, the
downstream development of the instability wave packet is not identical. The
zero-order condition results in larger oscillation amplitudes near the bound-
ary, and as a consequence, the nonlinear amplitude saturation sets in closer
to the inlet as compared to the computations with first-order boundary con-
ditions. The difference in the spatial structure of the upstream wave front is
associated with different oscillation frequencies: With zero-order conditions,
the global frequency is found to be ωg = 1.206, whereas the simulation with
first order conditions yields ωg = 1.144. The linear absolute frequency of the
base flow is ω0 = 1.019. The radial velocity has been chosen over the per-
turbation vorticity as a measure of the instability wave amplitude, because
evaluation of the vorticity involves a numerical axial derivation of v′, which
is necessarily inaccurate near x = 0 with v′ ≡ 0 in the ghost point region.

Buell & Huerre [16] observed self-sustained global oscillations in numeri-
cal simulations of convectively unstable shear layers. These oscillations have
been shown to be the result of an acoustic feedback mechanism, involving
spurious acoustic waves radiated from the downstream numerical boundary.
No such states have been found to arise in simulations with the numerical
method described here. But even in the absence of acoustic feedback, the
tests presented in this section demonstrate how sensitive the dynamics of a
globally unstable flow observed in direct numerical simulations may be to the
choice of appropriate boundary conditions. Although the first order charac-
teristic boundary conditions seem to display the most desirable properties
for the purpose of the present investigation, it must be expected that the
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Figure 3.11: Instability wave amplitudes near the inlet: radial velocity fluc-
tuations v′rms at r = 1 as a function of x. Red: zero order characteristic
boundary conditions, blue: first order characteristic boundary conditions.
Axial grid point distribution: ghost points are shown in red.

results of the direct numerical simulations are affected to some extent by the
imperfections of this particular boundary treatment.

3.6 Validation: Linear impulse response

The accuracy of the numerical method described in the previous section
with respect to the evolution of instability waves is assessed by computing
the linear impulse response of a parallel jet profile. Nonlinear terms in the
perturbation equations (3.10–3.13) are switched off for this test calculation.
The results of the linear direct numerical simulation can then be compared to
a spatio-temporal instability analysis, obtained from the numerical procedure
that has been outlined in chapter 2.

A parallel base flow with the parameters R/θ = 20 and S = 0.57 is
considered. The temporal evolution of an impulse perturbation

u′(x, r) = A exp

(

−x
2 + (r − 1)2

0.32

)

with A = 10−30 , (3.61)

introduced at a time t0 > 0, is computed at Re = 500 and Ma = 0.1. The
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computational domain extends over 0 < r ≤ 50, −50 ≤ x ≤ 50, resolved
with 900 × 4000 grid points. Periodic boundary conditions are imposed at
x = ±50 in order to simulate an infinite domain in the axial direction.

The first validation result is that with an initial condition q′ = 0, the per-
turbation quantities stay strictly zero at all times, i.e. the numerical method
does not introduce any spurious noise in the absence of explicit external forc-
ing. The same behavior is observed in situations with non-parallel base flows
and non-periodic boundary conditions.

At t = t0, the impulse perturbation (3.61) gives rise to an exponentially
growing wave packet. As demonstrated by Delbende, Chomaz & Huerre [35],
the temporal growth rate σ can be constructed as a function of group velocity
vg (see section 2.2) by comparing the linear impulse response wave packet at
two times t1, t2. Let the perturbation amplitude A(x, t) along x at a given
time t be defined as

A(x, t) =

(∫

∞

0

|ũ(r, x, t)|2 r dr

)1/2

, (3.62)

where ũ(r, x, t) is the Hilbert transform of u′(r, x, t) as given in Delbende
et al. [35].

If the wave packet emanated from an inital pulse at (x0, t0), the amplitude
envelope (3.62) is readily expressed as a function A(vg, t) of the group velocity
vg = (x− x0)/(t− t0). During the time interval t1 ≤ t ≤ t2, the wave packet
experiences an exponential growth

A(vg, t2) = A(vg, t1) e
σ(vg) (t2−t1) (3.63)

along each ray x/t = vg. The growth rate distribution is therefore recovered
as

σ(vg) =
lnA(vg, t2)− lnA(vg, t1)

t2 − t1
. (3.64)

Two curves obtained for σ(vg) in the present simulation are presented
in figure 3.12. The blue line is computed from the amplitude envelope at
t1 = 28 and t2 = 35, the red line from t2 = 35 and t3 = 42. The growth
rates are well converged over the unstable range of group velocities 0 ≤
vg ≤ 0.8. Corresponding results obtained from the numerical solution of the
dispersion relation (see chapter 2), displayed as black symbols in figure 3.12,
show excellent agreement.

The real part of the absolute frequency as found in the DNS can be
determined from the temporal pressure signal at x = 0, r = 1, displayed
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Figure 3.12: Temporal growth rate σ as a function of group velocity vg. (---)
according to DNS over 28 ≤ t ≤ 35; (---) according to DNS over 35 ≤ t ≤ 42;
(·) according to dispersion relation (see chapter 2).
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Figure 3.13: Temporal development of the absolute mode in the linear im-
pulse response calculation. (a) Pressure signal p′(t) at x = 0, r = 1. (b)
Instantaneous frequency measured from the same signal.
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in figure 3.13a. The temporal development of ωr = 2π/∆ti, with ∆ti =
ti+1 − ti−1 such that p(ti) = 0 ∀ i, is given in figure 3.13b: the real absolute
frequency in the DNS converges to

ωr = 1.1476 ,

to be compared to the theoretical result

ω0,r = 1.1475 .

This validation test has demonstrated that the implemented numerical
method for the direct numerical simulation captures the linear instability
characteristics of the base flow with great accuracy. The results also demon-
strate that the separation into base flow and perturbation quantities has been
rigorously preserved in the implementation: the difference of approximately
30 orders of magnitude between base flow and perturbation amplitudes does
not compromise the precision of the calculations. These properties are es-
sential for the direct numerical simulation of the aerodynamic near field of
globally unstable jets. A validation of the acoustic field computed in the
DNS has to be postponed to chapter 5, where the computational results will
be compared to solutions of the Lighthill equation.
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Chapter 4

Nonlinear global instability

The linear impulse response of a parallel baseflow in an infinite domain has
been examined in chapter 2. It will now be investigated how this information
may be useful to describe the nonlinear dynamics of a spatially developing jet,
in a domain that is bounded upstream at the location of an imaginary nozzle.
Theoretical predictions about the onset of nonlinear global instability and
about the frequency selection in globally unstable situations, inferred from
the local linear instability properties of the baseflow, are to be compared to
results obtained from direct numerical simulations of nonlinear perturbations
in spatially developing jets.

The theoretical framework has been established by Arnaud Couairon,
Benôıt Pier and their respective coworkers [25, 26, 27, 93, 94, 95, 96]. Their
analyses in turn rely in large measure on the front dynamics studies by Kol-
mogorov et al. [61], Dee & Langer [34] and van Saarlos [111, 112], among oth-
ers, and on the global instability concepts introduced by Huerre & Monkewitz
[54] and Chomaz [19]. A short survey of the literature on nonlinear global
instability is provided in section 4.2.1.

The outline of the chapter is as follows: on the basis of the insight gleaned
in chapter 2 concerning the linear impulse response, I first discuss the impli-
cations of nonlinearity, non-parallelism, and of the presence of an upstream
boundary on the structure of global modes. The objective is neither to re-
produce the methodology used in the development of the nonlinear global
mode model, nor to establish a rigorous formalism for the present investiga-
tion. The purpose is rather to introduce the conceptual notions of nonlinear
global mode theory in a tangible way, as needed for a physical interpretation
of the numerical simulations. The occurrence of global modes in heated thick

shear layer jets is presented and compared to theoretical predictions in sec-
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v− v+t

x0

Figure 4.1: Schematics of a nonlinear wave packet evolving in an absolutely
unstable flow. Nonlinear absolute instability follows from linear absolute
instability. A pulled front propagates upstream at velocity v−.

tion 4.2. Section 4.3 extends the investigated parameter range to thin shear

layer jets, thereby approaching the conditions of the reference experiments
of Monkewitz et al. [82].

4.1 Introduction to front dynamics

4.1.1 Nonlinear versus linear absolute instability

In order to examine the consequences of nonlinearity on the impulse response
in an infinite parallel jet, consider the following Gedankenexperiment: from
an infinitesimal small perturbation pulse, a linear wave packet forms ac-
cording to the linear scenario studied in chapter 2. In an unstable setting,
nonlinear saturation sets in as the fastest growing modes eventually reach
amplitude levels of the same order as the baseflow. In physical terms, non-
linear amplitude saturation corresponds to the roll-up of the undulated shear
layer into discrete vortices. The linear impulse response described in chap-
ter 2 reveals that the strongest temporal growth occurs near the center of
the wave packet, for modes of typical group velocity around vg = 0.5. The
extent of the saturated inner region of the wave packet increases in time, as
illustrated schematically in figure 4.1.

The nonlinear wave packet is bounded in x− t space by the rays x/t = v−

and x/t = v+, along which the temporal growth rate is zero. For large
time, v− and v+ are the propagation velocities of nonlinear wave fronts that
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separate the unperturbed base state from the bifurcated flow region. In
analogy to the terminology of linear theory, the flow is said to be nonlinearly

absolutely unstable if v− < 0, and nonlinearly convectively unstable if v− > 0
(see Chomaz [17]).

Two possible types of nonlinear absolute instability may typically arise:
If the upstream front velocity v− is identical with the group velocity of the
upstream neutral mode of the linear impulse response, the effects of non-
linearity are confined to the interior of the wave packet. Nonlinear absolute
instability in this case follows from linear absolute instability, and the lead-
ing edge of the nonlinear wave packet is formed by the linear mode of zero
growth rate. Such an upstream traveling nonlinear wave front is referred to
as a pulled front [112]. The real frequency and complex wave number of a
pulled front, as well as its velocity v−, are readily determined from a linear
instability analysis.

In other flow configurations, it is possible that nonlinear modes evolve
which propagate upstream faster than their neutral linear counterpart. These
flows may be nonlinearly absolutely unstable although they remain linearly
convectively unstable [17]. Since the front in this case advances due to mech-
anisms that do not act in the small-amplitude upstream tail, but from within
the interior of the wave packet, such a front is referred to as a pushed front
[112]. In the context of the Ginzburg–Landau equation, Couairon & Chomaz
[25] have demonstrated that pushed fronts only occur over a very restricted
range of control parameters. In the context of real flows, pushed fronts have
not yet been observed. Henceforth, it is assumed that linear and nonlinear
absolute instability in hot jets coincide, i.e. that both the velocity and the
frequency of the upstream wave front are dictated by the linear instability
properties of the baseflow.

4.1.2 Non-parallel baseflows

Many of the instability properties obtained for parallel profiles can be gener-
alized to describe the evolution of perturbations in spatially developing base-
flows, provided that their streamwise variations take place on a sufficiently
large length scale when compared to an instability wavelength. Under this
condition, instability modes at a given streamwise station can be expected
to evolve as if the baseflow was locally parallel.

This condition is formally expressed as a decorrelation of two streamwise
variables: instability oscillations take place on the scale of x, whereas the
baseflow varies on the scale of a “slow” variable X = εx with ε ≪ 1. The
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Figure 4.2: Schematics of nonlinear front propagation in a non-parallel base-
flow with CU/AU transition at xca. The only stable position is around xca,
indicated by a black curve.

slow variable has been introduced in section 3.3.1 as X = x/Re under the
boundary layer assumptions. Under this assumption, the linear absolute
frequency at any given streamwise stationX in a weakly non-parallel baseflow
may be expressed as

ω0 = Ω[k0(X);X] (4.1)

∂Ω

∂k
[k0(X);X] = 0 . (4.2)

In these expressions, Ω[k(X);X] is the frequency corresponding to k(X),
according to the linear dispersion relation of the locally parallel profile at
X. The complex pair ω0(X), k0(X) is then determined from an instability
analysis of an infinite parallel flow, with radial profiles as in the spatially
developing baseflow at the station X.

The spreading of a nonlinear wave packet in a slowly varying infinite
baseflow thus depends on the local linear instability properties at the instan-
taneous location of the upstream front: if the baseflow is (locally) absolutely
unstable everywhere, the wave packet spreads in the upstream and down-
stream directions. If the baseflow is convectively unstable everywhere, the
whole wave packet is convected downstream, and at any streamwise station
the flow will ultimately return to its unperturbed steady state.

In a setting where the baseflow is absolutely unstable downstream of a
streamwise station xca, but convectively unstable upstream of xca, the long
time response to an arbitrary perturbation is given by a nonlinear wave packet
with a stationary upstream front located at the transition station xca. Such a
situation is sketched in figure 4.2: a front originating from the absolutely un-
stable region propagates upstream, whereas within the convectively unstable
region it would be convected downstream. Consequently, the transition sta-
tion xca is a stable front position. Once the front is pinned at the transition
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station, the low-amplitude oscillations at xca must correspond to the linear
absolute instability mode at this location, characterized by a real frequency
ωca

0 and a spatial growth rate −kca
0,i > 0, as implied by the discussion of the

previous section.

Such situations, i.e. a non-parallel basic state exhibiting a transition from
upstream convective to downstream absolute instability in an infinite domain,
have been studied by Pier et al.[96, 95]. From investigations of nonlinear
Ginzburg–Landau model equations with varying coefficients, Pier et al.[95]
have found that a stationary wave front at xca imparts its linearly selected
frequency ωca

0 on the entire downstream nonlinear wavetrain, thereby giving
rise to an asymptotic state in the form of synchronized oscillations with a
fixed spatial structure — a nonlinear global mode, as defined in equation
(1.1), of global frequency

ωg = ωca
0 . (4.3)

Pier & Huerre [94] have demonstrated that the conclusions drawn from
the Ginzburg–Landau model can be generalized to real flow settings: the
global frequency ωg of the von Kármán vortex street, as observed in direct
numerical simulations of a synthetic wake, matches the absolute frequency
ω0 at the transition station xca within 2%. The upstream front of the vortex
street was found to be located at xca. In the naturally developing wake behind
a circular cylinder, the frequency selection criterion (4.3) still provides a 10%
accurate prediction over the range of Reynolds numbers 100 ≤ Re ≤ 180 [93].

In analogy to the study of Pier & Huerre [94], the validity of criterion
(4.3) is investigated in section 4.2.4 for a spatially developing jet.

4.1.3 Semi-infinite flows with upstream boundary

While the typical streamwise development of wakes is appropriately modelled
in an infinite domain with uniform, stable flow conditions upstream of the
obstacle, a jet necessarily emerges from a nozzle, or orifice, that marks a
hard upstream boundary for the development of instability waves in the free
shear layer. Furthermore, the linear analysis of chapter 2 has shown that
a transition from upstream convective to downstream absolute instability is
untypical for a naturally spreading jet (see for instance figure 2.6).

The evolution of a nonlinear wave packet according to the Ginzburg–
Landau equation in a semi-infinite domain, bounded upstream at x = 0, has
been described by Couairon & Chomaz [26, 27]. The perturbation amplitude
at x = 0 is assumed to be zero in their model. In purely convectively unsta-
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Figure 4.3: Schematics of a wave front (—) bent to A = 0 at the upstream
boundary in an AU medium. In the absence of a boundary, the upstream
development would be exponential (- - -).

ble surroundings, or if absolute instability only sets in at some downstream
location x > 0, the presence of the boundary is irrelevant with regard to
the long-time dynamics. By contrast, if an absolutely unstable region ex-
tends up to x = 0, a nonlinear wave packet within this region spreads in the
upstream direction, until the advancement of its upstream front is blocked
by the boundary. An impermeable upstream boundary adjacent to an ab-
solutely unstable baseflow region therefore constitutes another configuration
in which a nonlinear global mode with a stationary upstream front may be
generated.

In view of the spatial structure and the frequency selection, the essen-
tial difference between the global mode scenarios in infinite and semi-infinite
domains lies in the fact that in the former instance, the perturbation am-
plitude envelope A(x) can freely develop upstream of the front location ac-
cording to its spatial growth rate, A(x) ∝ exp[−iki(ωg)x], whereas in the
latter instance, the amplitude is forced to zero at the upstream boundary, as
illustrated in figure 4.3. The implications of the resulting distortion of the
spatial global mode structure for the frequency selection process have been
rigorously examined in the Ginzburg–Landau model by Couairon & Chomaz,
first under the assumption of a parallel basic state [26], then generalized to
weakly non-parallel situations [27]. Their analysis assumes that a matching

layer (see figure 4.3) provides the connection between the A = 0 condition
at the boundary and a region of exponential amplitude growth. The am-
plitude variations within this layer are obtained explicitly from a matched
asymptotic expansion approach [26, 27].

The model analysis of Couairon & Chomaz [26, 27] has shown that the
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onset of global instability in parallel basic states coincides with the onset of
absolute instability. In a weakly non-parallel basic state, provided that ab-
solute instability first occurs at the upstream boundary, it may be concluded
that nonlinear amplitude saturation within the absolutely unstable region is
required before global instability sets in. In both parallel and non-parallel
settings, the global frequency in the Ginzburg–Landau model is found to
obey

ωg = ω0,r +O(ǫ) , (4.4)

where ω0,r is the real part of the absolute frequency at the upstream bound-
ary, and ǫ is a supercriticality parameter that marks the departure from the
global instability threshold. Thus, if the model can be generalized to describe
the behavior of real flows, the global frequency is predicted to correspond to
the absolute frequency at the upstream boundary in a marginally globally
unstable flow. Far above the global instability threshold, this criterion only
provides a leading-order prediction.

One of the principle objectives of the numerical simulations presented in
this chapter is to assess the validity of the frequency selection criterion (4.4),
derived from Ginzburg–Landau model equations, in the context of global
modes in hot jets. A first example of such a global mode observed in an
absolutely unstable parallel jet has already been presented in section 3.5.4
as a test case for the choice of numerical upstream boundary conditions.
Figure 3.11 demonstrates that the spatial structure of the upstream wave
front displays the same characteristics as described in the model analysis
of Couairon & Chomaz: a matching layer region 0 ≤ x . 0.5 is clearly
identified, connecting the zero-amplitude condition at x = 0 to a region of
exponential growth. As has been noted in section 3.5.4, slight differences in
the boundary condition formulation result in a variation of the matching layer
length, and in noticeable differences in the observed frequencies: the global
frequencies in this supercritical absolutely unstable baseflow differ from the
absolute frequency by 18% and 12%, respectively. This behavior indeed
complies with the nonlinear global mode model of Couairon & Chomaz[26].
In what follows, non-parallel jet profiles will be considered.
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Abstract

Since the experiments of Monkewitz et al. [82], sufficiently hot circular
jets are known to give rise to self-sustained synchronized oscillations induced
by a locally absolutely unstable region. In the present investigation, numer-
ical simulations are carried out in order to determine if such synchronized
states indeed correspond to a nonlinear global mode of the underlying base
flow, as predicted in the framework of Ginzburg–Landau model equations.
Two configurations of slowly developing base flows are considered: In the
presence of a pocket of absolute instability embedded within a convectively
unstable jet, global oscillations are shown to be generated by a steep nonlin-
ear front located at the upstream station of marginal absolute instability. The
global frequency is given, within 10% accuracy, by the absolute frequency at
the front location and, as expected on theoretical grounds, the front displays
the same slope as a k−-wave. For jet flows displaying absolutely unstable in-
let conditions, global instability is observed to arise if the streamwise extent
of the absolutely unstable region is sufficiently large: While local absolute
instability sets in for ambient-to-jet temperature ratios S ≤ 0.453, global
modes only appear for S ≤ 0.3125. In agreement with theoretical predic-
tions, the selected frequency near the onset of global instability coincides
with the absolute frequency at the inlet. For lower S settings, it gradually
departs from this value.
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4.2.1 Introduction

Since the landmark investigations of Crow & Champagne [33] and Brown &
Roshko [15], it has been generally acknowledged that high Reynolds number
free shear flows such as circular jets, wakes and mixing layers are domi-
nated by large-scale structures. The observed spreading rates are due in
large measure to the streamwise development and interactions of these vor-
tices (Winant & Browand [115]). It has also been well established that the
dynamics of free shear flows, including their spreading rate, may be manipu-
lated or controlled by applying at the inlet low-level acoustic or mechanical
excitations of appropriate frequency (see Ho & Huang [50] and the review by
Ho & Huerre [48]).

From the point of view of instability theory, vortical structures may be
regarded in Fourier space as a collection of instability waves of distinct fre-
quency and streamwise wavenumber. The above experimental observations
have very early on led theoreticians to adopt the so-called spatial stability
approach, which consists in determining the complex wavenumber associated
with each real frequency, as dictated by the linear stability properties of par-
allel flows (Michalke [76]). A detailed review of spatial stability applied to
parallel compressible circular jets is given in Michalke [78]. Such formula-
tions have been successful in predicting the phase velocity, spatial growth
rate and cross-stream distribution of low-intensity perturbations induced by
external forcing. The generalization of these concepts to weakly non-parallel
flows, in the framework of the WKBJ approximation, was first introduced for
the case of incompressible circular jets by [31], and for the case of turbulent
shear layers by Gaster, Kit & Wygnanski [45]. These analyses provided a
systematic methodology to estimate the streamwise linear response of shear
flows to forcing. In this setting, each shear flow is regarded as an amplifier
of external perturbations, thereby reflecting its sensitivity to noise.

The legitimacy of this approach may only be assessed if one resorts to the
concepts of absolute versus convective instability, first introduced by plasma
physicists (Briggs [14], Bers [7]). The application of these concepts to vari-
ous configurations has led to distinguish between two main classes of shear
flows: noise amplifiers, which are sensitive to external forcing, and oscilla-

tors, which beat at a specific intrinsic frequency. Flows that are convectively
unstable at all streamwise stations have been shown to behave as noise am-
plifiers, whereas intrinsic oscillations only exist for flows displaying a region
of absolute instability (see Huerre & Monkewitz [54] and Huerre [51] for com-
prehensive reviews). Co-flow mixing layers and constant-density jets belong
to the former class, whereas the von Kármán vortex street behind a circular
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cylinder exemplifies an oscillator-type behaviour (Provansal, Mathis & Boyer
[97]). Jets of sufficiently low density constitute yet another striking instance
of shear flows displaying a transition from convective to absolute instability,
as established theoretically by Monkewitz & Sohn [85]. The experiments
of Monkewitz et al. [82] demonstrated that self-sustained oscillations arise
beyond the absolute instability onset in hot air jets. A similar behaviour
was shown to occur in helium jets by Sreenivasan, Raghu & Kyle [105], as
further confirmed by Boujemaa, Amielh & Chauve [11]. In order to predict
the frequency and spatial distribution of such self-sustained oscillations, it
has proven fruitful to represent them as a global mode1 consisting of an ex-
tended wavepacket which beats at a specific frequency (Chomaz, Huerre &
Redekopp [21] and Monkewitz, Huerre & Chomaz [83]). The objective of
the present numerical study is precisely to demonstrate that the synchro-
nized oscillations experimentally observed in hot jets may be ascribed to the
presence of a nonlinear global mode induced by absolute instability.

The main findings of Monkewitz & Sohn [85] and Monkewitz et al. [82]
may be summarized as follows: For a family of analytical velocity profiles
which accurately represent experimentally measured mean flows in hot jets,
absolute instabiliy arises when the ratio S of ambient-to-jet temperature falls
below 0.72. For a top hat inlet velocity profile typical of zero Mach number
laboratory jets, the axisymmetric mode first exhibits a transition to absolute
instability near the nozzle exit, at approximately 0.4 diameters away from
the inlet. Furthermore, the experiments of Monkewitz et al. [82] indicate
that the critical value S = 0.72 very closely coincides with the appearance of
synchronized oscillations. Two axisymmetric modes have been observed to
arise with respective Strouhal numbers, based on jet diameter, St = 0.3 and
St = 0.45.

The present investigation is largely motivated by recent advances which
have been made in extending the theory of global modes to the fully nonlin-
ear régime (see Chomaz 2005 for a review). The comprehensive analyses of
Ginzburg-Landau evolution models by Chomaz [17] and Couairon & Chomaz
[24, 25, 26, 27] have firmly established the intimate connection between non-
linear global modes and front velocity dynamics in systems giving rise to
pattern formation. According to van Saarloos [111, 112], the velocity of the
front separating the bifurcated state from the unperturbed basic state is gov-
erned by either linear or nonlinear mechanisms. In the former instance (Dee
& Langer [34]), the front moves at a velocity such that, in the co-moving

1For clarity, we reserve the term global mode throughout this study to denote a
wavepacket which is dominated by its upstream front dynamics, as opposed to self–
sustained oscillations which may exist due to acoustic feedback.
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frame, the basic state is marginally absolutely/convectively unstable. In the
latter instance, it is determined through a detailed phase space analysis which
must be carried out on a case-by-case basis. As in wake flows, it will be as-
sumed for the present discussion that the front dynamics are governed by
the linear selection criterion. In the context of Ginzburg-Landau equations
on the semi-infinite interval x > 0, Couairon & Chomaz [24, 25, 26, 27] have
shown that the nonlinear global mode is dominated by a stationary front
pinned at the upstream boundary x = 0. If the parameters are constant
in x, the threshold for the appearance of a global mode coincides with the
onset of absolute instability, and explicit scaling laws may be derived for its
spatial structure. At threshold, the global frequency is given by the absolute
frequency at the upstream boundary. In the context of Ginzburg-Landau
equations with variable coefficients displaying a finite pocket of absolute in-
stability in an infinite domain, Pier et al. [96, 95] have demonstrated that the
corresponding nonlinear global mode is also dominated by a stationary front,
this time located at the upstream boundary of the absolutely unstable region.
The global frequency is then given by the absolute frequency prevailing at
this transition station.

Many of the results pertaining to Ginzburg-Landau models have been
shown to also hold in real flow situations. Thus, the scaling law for the
global spatial structure in semi-infinite media has been validated by Coua-
iron & Chomaz [27] in the case of the von Kármán vortex street simulations
of Zielinska & Wesfreid [117] and Wesfreid, Goujon-Durand & Zielinska [114].
The recent numerical simulations of synthetic parallel wakes in a semi-infinite
domain by Chomaz [18] very accurately follow the frequency selection crite-
rion and the scaling law derived from Ginzburg-Landau models. The WKBJ
formulation of Pier et al. [96] in infinite media has been generalized to two-
dimensional wakes by Pier & Huerre [94]. The vortex street frequency com-
puted in a slowly varying streamwise infinite wake is effectively given, within
2% accuracy, by the absolute frequency at the convective/absolute instabil-
ity station. More strikingly, this same criterion has been demonstrated by
Pier [93] to predict within 10% accuracy the von Karman frequency behind
a circular cylinder for a range of Reynolds numbers between 100 and 200.

The experiments of Monkewitz et al. [82] have shown that hot jets be-
come self-excited as soon as absolute instability appears. However, it has
not been hitherto demonstrated that the observed oscillations are due to the
presence of a nonlinear global mode, associated with a front which imposes
its absolute frequency on the entire jet. This issue constitutes the essential
motivation for the present numerical investigation. Nichols, Schmid & Riley
[87] have recently presented direct numerical simulations of low-density jets



92 Nonlinear global instability

in a low Mach number approximation, where acoustic waves are filtered out.
The global frequency was shown to be close to typical absolute frequencies
of the mean flow profiles in the presence of finite-amplitude fluctuations.
The focus of our study is the nonlinear global mode structure of absolutely
unstable heated jets as predicted by the local instability properties of the
underlying base flow profiles. We wish to emphasize that our main concern
is not to reproduce all the detailed dynamics of hot jets in laboratory ex-
periments. In the same spirit as Pier & Huerre [94] and Chomaz [18], we
first seek to isolate and characterize the nonlinear global mode structure in
a “synthetic” hot jet configuration. As the studies of Monkewitz & Sohn
[85] and Monkewitz et al. [82] indicate that absolute and global instability
first sets in for axisymmetric perturbations, we restrict the analysis to a two-
dimensional axisymmetric geometry, thereby avoiding the “contamination”
by secondary, symmetry-breaking helical instabilities. Additionally, in or-
der to compare our results to the previous WKBJ analyses of Couairon &
Chomaz [24, 25, 26, 27], Pier et al. [96] and Pier & Huerre [94], we consider
slowly-varying base flows satisfying the boundary layer equations.

The outline of the study is as follows. The main physical assumptions
and the equations governing the base flow and its perturbations are specified
in section 4.2.2, together with the linear instability concepts essential to the
analysis. Section 4.2.3 presents the main features of the numerical methods
used to obtain the base flow, to determine its linear instability properties,
and to simulate the spatio-temporal evolution of perturbations. Self-excited
oscillations are analysed and compared to nonlinear global mode theory in
two distinct configurations. In section 4.2.4, we examine the case of a base
flow displaying a pocket of absolute instability embedded within convectively
unstable surroundings. In section 4.2.5, base flows with absolutely unstable
inlet conditions are considered. These situations respectively correspond to
the case of nonlinear global modes in infinite and semi-infinite media. The
main results of the study are summarized and discussed in section 4.2.6.

4.2.2 Problem formulation

Consider a laminar, subsonic, heated round jet emerging into an ambient fluid
at rest. Its fundamental dynamics are assumed to be axisymmetric, and the
problem is formulated in two-dimensional cylindrical coordinates r and x.
The evolution of the flow is governed by the compressible, viscous equations
of continuity, momentum and energy, cast in nondimensional conservative
flow variables q = (ρ, ρu, ρv, ρE), where ρ and E denote density and total
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energy, and u and v are the axial and radial components of flow velocity u.
Together with the equations of state for a thermally and calorically perfect
gas, the system is written in compact form as

∂ρ

∂t
= −div (ρu) (4.5)

∂(ρu)

∂t
= −div (ρu⊗ u)− grad p+ div τ (4.6)

∂(ρE)

∂t
= div

[

−(ρE + p)u + τ · u +
1

RePr

grad T

(γ − 1)Ma2

]

(4.7)

p =
1

γMa2ρT , E =
T

γ(γ − 1)Ma2 +
|u|2
2

(4.8)

with

τ = − 2

3Re
(div u)I +

1

Re

(

grad u + gradTu
)

(4.9)

being the viscous stress tensor for a Newtonian fluid, and p, T denoting
pressure and temperature.

All quantities have been made nondimensional with respect to the jet ra-
dius R, the centreline velocity Uc, density ρc and temperature Tc at the inlet.
The viscosity µ and the thermal conductivity κ are assumed to be constant
throughout the flow. The flow parameters defined in terms of dimensional
quantities are: the Reynolds, Mach and Prandtl numbers Re = ρcUcR/µ,
Ma = Uc/cc (with cc the speed of sound on the centreline), Pr = µcp/κ
(with cp the specific heat at constant pressure), the ratio of ambient-to-jet
temperature S = T∞/Tc, defined at the inlet, and the ratio of specific heats
γ = cp/cv. Values of Re = 1000, Ma = 0.1, Pr = 1 and γ = 1.4 are retained
for all cases presented.

The total flow variables are written as q = qb+q′, where the perturbation
components q′(r, x, t) evolve within a steady base flow qb(r, x). The base flow
is assumed to slowly develop in the streamwise direction, as in the case of
sufficiently large Reynolds numbers. As in Pier & Huerre [94], a family of
base flow profiles is then sought in terms of primitive variables ρb, ub, vb and
Tb, whose streamwise development depends on a slow coordinate X = x/Re:

ρb(r, x) ∼ ρ0(r,X), ub(r, x) ∼ u0(r,X),
Tb(r, x) ∼ T0(r,X), vb(r, x) ∼ Re−1v0(r,X).

(4.10)

The “∼” symbol in (4.10) emphasizes the fact that such base states constitute
a leading-order approximation for large Reynolds numbers Re≫ 1, satisfying
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the compressible boundary layer equations

∂ρ0u0

∂X
+

1

r

∂

∂r
(rρ0v0) = 0 (4.11)

ρ0u0
∂u0

∂X
+ ρ0v0

∂u0

∂r
=

1

r

∂

∂r

(

r
∂u0

∂r

)

(4.12)

T0 = S + (1− S)u0 +
γ − 1

2
Ma2u0(1− u0) (4.13)

ρ0 = T−1
0 . (4.14)

For unit Prandtl number and constant pressure, the energy equation has
been replaced by the Crocco-Busemann relation (4.13). This parabolic set of
equations is integrated numerically, with X as the advancing variable. The
boundary condition for the axial velocity atX = X0 is given by the analytical
profile of Michalke [78]

u0(r,X0) =
1

2
+

1

2
tanh

[

R

4θ

(

1

r
− r

)]

, (4.15)

with zero radial velocity, and with temperature and density profiles deduced
from equations (4.13) and (4.14). The steepness of the profile is specified
by the nondimensional parameter R/θ, where θ is its momentum thickness.
The slow variable X has been introduced for formal reasons only. In the
presentation of the results, the base flow profiles will always be rescaled to
the physical coordinate x.

If the right-hand side of (4.5–4.7) is written in shorthand as the nonlinear
operator NL(q), the perturbation equations for q′ are expressed as

∂q′

∂t
= NL(qb + q′)−NL(qb) . (4.16)

This system is solved numerically without modelling assumptions. The only
approximation made in the present study therefore arises from neglecting
higher-order terms in Re−1 in the computation of the base flow. Under this
assumption, the temporal evolution of q′ is computed exactly. This formu-
lation also allows for the investigation of perturbations evolving in parallel
base flows, as in the validation case presented in section 3.

In order to determine the local instability properties of the base flow, the
Navier-Stokes equations (4.5–4.7) are recast in terms of primitive variables
qp = (ρ, u, v, p) and linearized about the parallel flow qb at a given frozen
streamwise station X [31, 54]. Perturbations q′

p are then sought in the form
of normal modes

q′

p(r, x, t) = Q(r) exp [i(kx− ωt)] + c.c. , (4.17)
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with complex axial wavenumber k and complex angular frequency ω. The
linear dispersion relation is expressed as a generalized eigenvalue problem in
k with eigenfunction Q(r), which is solved numerically as a function of ω,
thereby leading to the determination of the spatial instability characteristics.
As ω is allowed to be complex, this algorithm also serves to identify the
complex absolute frequency ω0 and wavenumber k0, at which k+- and k−-
branches first pinch in the complex k-plane [7].

4.2.3 Numerical methods and validation

The numerical scheme used for the integration of the boundary layer equa-
tions (4.11) is adapted from an algorithm described by Lu & Lele [74]. Start-
ing from the inlet condition (4.15), radial profiles are obtained at successive
streamwise locations. The momentum equation (4.12) is discretized through
a second-order Crank-Nicolson scheme, which yields a tridiagonal system
in u0. Boundary conditions ∂u0/∂r = 0 on the axis and u0 = 0 at the
outer boundary point are imposed. The Crocco-Busemann relation and the
equation of state can then be evaluated directly. The radial velocity v0 is
obtained by integration of the continuity equation along r, using an implicit
Euler scheme, with v0 = 0 as starting value on the axis. Since the equations
are coupled, this procedure has to be iterated at each streamwise station
until the profiles are converged. The algorithm has been validated against a
self-similar solution of a compressible jet, derived by Pack [90].

For the perturbation equations (4.16), spatial derivatives in both direc-
tions are evaluated with sixth-order-accurate centered, explicit finite differ-
ences. A third-order Runge-Kutta algorithm is used for time advancement.
Centered finite difference schemes are known to promote the growth of spu-
rious oscillations of under-resolved wavelength. At each time step, these
oscillations are dissipated by a selective tenth-order explicit filter scheme
(Visbal & Gaitonde [113]), applied in both spatial directions, which uses an
eleven-point stencil. The coefficients of the filter are defined locally, in order
to preserve its high-order accuracy also on nonuniform grids. The temporal
and spatial schemes used in this study have been extensively tested in both
aerodynamic and aeroacoustic applications by Terracol et al. (2005).

The perturbation equations are discretized on an orthogonal grid. Inside
the “physical” region, the spacing of grid points is kept constant in the axial
direction (∆x = 0.05 for the cases presented in section 4.2.4, ∆x = 0.1 in
section 4.2.5), whereas in the radial direction, grid points are concentrated
in the shear layer region. The radial grid is the same for all cases presented,
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with a minimum spacing of ∆r = 0.008 at r = 1, thereby resolving a shear
layer momentum thickness of θ = 0.1R by 12 grid points.

At the lateral and outflow boundaries, the physical domain is padded
with sponge regions, where a damping term −λ(x)q′ is added to the right-
hand side of the flow equations (4.5–4.7) (Colonius 2004), and grid stretching
is smoothly increased up to a rate of 4% from one point to the next. The
purpose of these sponge regions is to minimize numerical box size effects by
gradually attenuating all vortical and acoustic fluctuations before they reach
the boundary of the computational domain. The damping coefficient λ(x)
increases smoothly from 0 to 1, according to the ramping function given
by Chomaz (2003), over a distance lr = 150 in the lateral sponge region
and lx = 10 in the outflow region. At the last five outermost points near
the actual inlet, outlet and lateral boundaries, centered differentiation and
filter schemes of decreasing stencil size are employed, and all fluctuations are
set to zero at the lateral boundary and at the numerical outlet. Symmetry
conditions ∂(ρ, ρu, ρE)/∂r = 0, ρv = 0 are imposed at r = 0 by mirroring the
values of the flow variables onto five virtual points across the axis, whereby
the stencil size of the high-order schemes can be retained. The coordinate
singularity at r = 0 is avoided by placing the first radial grid point of the
physical domain at half the local step size away from the axis.

At the inlet, non-reflecting characteristic boundary conditions developed
by Giles [46], and further discussed by Colonius et al. [23], are applied. At
the first five computational points, which are not considered to be part of the
physical region, the conservative flow variables are transformed to character-
istic variables that represent incoming vorticity, entropy and acoustic waves
and an outgoing acoustic wave. The incoming characteristics are either set
to zero (“zeroth-order approximation”), or they are computed according to
the first-order corrected formulation of Giles [46], which takes into account
oblique incidence of outgoing acoustic waves. This boundary treatment is
not designed to specifically model nozzle effects, but to provide a Dirichlet
condition for instability waves and prevent acoustic reflections. However,
imperfections of the characteristic decomposition, which is based on the as-
sumption of a uniform base flow normal to the boundary, may give rise
to low-level vorticity perturbations that are provoked by outgoing acoustic
waves. This effect may be regarded as qualitatively similar to that of a hard
nozzle in an experimental setting. In the computations presented in section
4.2.4, such perturbations are attenuated within an additional sponge zone at
the inlet, extending over the interval −8 ≤ x < 0, where the damping factor
λ(x) decreases from 1 to 0 over −6 < x < 0, and zeroth order boundary con-
ditions are imposed at x = −8. In the configurations studied in section 4.2.5,
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Figure 4.4: Comparison of the growth rate σ along spatio-temporal rays
x/t as obtained from the numerical simulation (—) and from the dispersion
relation (·) of a parallel jet with the parameters R/θ = 20, S = 0.57, Re =
500 and M = 0.1.

the need for an absolutely unstable and well-localised boundary precludes an
inlet sponge zone. The first-order corrected boundary conditions are used in
these cases.

For the numerical implementation of the linear instability analysis, a code
developed by Olendraru & Sellier (2002) has been adapted to the heated jet
case. The spatial eigenvalue problem is discretized via a Chebyshev colloca-
tion method, as elaborated by Khorrami, Malik & Ash (1989). An iterative
search algorithm (Monkewitz & Sohn 1988) identifies the point k0 in the
complex k-plane where a k+- and a k−-branch pinch. As a validation test,
the results of Monkewitz & Sohn [85] for the inviscid, zero Mach number
limit have been successfully reproduced.

The accuracy of the numerical method used for the perturbation equa-
tions (4.16) is assessed by computing the linear impulse response of a parallel
base flow. Nonlinear terms in q′ are temporarily discarded from (4.16) for
this calculation. A concentrated initial pulse of the form

u′x(r, x, t = 0) = A exp

(

−x
2 + (r − 1)2

0.32

)

, A = 10−30, (4.18)

is introduced into the jet shear layer in order to trigger the linear impulse
response. According to linear theory, the fluctuations along a spatio-temporal
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ray x/t are then dominated for t → ∞ by the most unstable linear mode
with group velocity x/t and associated temporal growth rate σ (Huerre &
Monkewitz 1990). Delbende, Chomaz & Huerre (1998) have proposed a
method to evaluate σ(x/t) from the numerically computed wavepacket at
two distinct times. Results retrieved from the numerical simulation may
then be compared to those obtained directly from the dispersion relation
(Huerre & Rossi 1998), as displayed in figure 4.4. The numerical simulation
is seen to accurately capture the linear instability properties of the base flow.
In particular, the large disparity between the base flow and the perturbation
amplitude (30 orders of magnitude) demonstrates that the formal separation
into base flow and perturbation quantities has been rigorously preserved in
the numerical implementation, so that perturbations are effectively resolved
with full 64-bit machine precision. The slight offset between the two curves
in figure 4.4 is attributed to the residual artificial dissipation introduced
by the numerical method. Numerous tests have confirmed that this small
underprediction of the absolute growth rate ω0,i in the numerical simulation
occurs systematically, whereas the real part ω0,r of the absolute frequency is
reproduced to even much higher precision.

The base flow chosen for this validation test is close to marginal absolute
instability, with an absolute growth rate ω0,i = σ(x/t = 0) near zero. Note
that figure 1 displays a clear discontinuity at x/t = 0.18, for results computed
both from the dispersion relation and from the linear impulse response. A
detailed examination of the pinching process indeed confirms that the same
k+-branch but different k−-branches are involved above and below x/t =
0.18. The mode which is associated with the absolute growth rate ω0,i is seen
to be different from the one exhibiting the maximum temporal growth rate
ωi,max = σmax. The characteristics of these two modes have been discussed
in detail by Jendoubi & Strykowski [56].

4.2.4 Nonlinear global mode in a jet with a pocket of

absolute instability

In this section, we examine the properties of synchronized oscillations in a
jet displaying a transition from convective instability at the inlet to abso-
lute instability within a region of finite streamwise extent, in analogy with
the synthetic wake of Pier & Huerre [94]. For this purpose, a base flow is
conceived in which the streamwise development of the absolute growth rate
ω0,i is controlled by a prescribed variation of the ambient temperature T∞(x)
(figure 4.5a). The momentum thickness at the upstream boundary x = 0 of
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(thin) and ambient temperature T∞ (dotted) as a function of streamwise
distance x. b) Comparison of the local absolute frequency ω0,r(x) (solid) and
the observed global frequency ωg (dashed)

the physical region is taken to be such that R/θ = 11. The computational
grid consists of 430 × 1261 points in the radial and axial directions, with
the physical region extending over 0 ≤ r ≤ 46 and 0 ≤ x ≤ 50. Tests on
a grid of half the streamwise extent and without a lateral sponge zone have
confirmed that the results presented here are not affected by the size of the
computational box. We point out that in the presence of variations in the
ambient temperature, the use of the Crocco-Busemann relation (4.13) has
been stretched beyond its strict limit of validity. This proved to be nec-
essary in order to obtain an absolutely unstable pocket with a sufficiently
pronounced convective/absolute upstream transition. Note that the viscous
spreading of the base flow preserves the potential core over a much larger
streamwise distance than what is typical for mean profiles: In the present
case, u0(0, x99) = 0.99Uc is found at x99 = 46.

The streamwise variations of both ω0,i and the maximum temporal growth
rate ωi,max are sketched in figure 4.5(a). The base flow is seen to be convec-
tively unstable in an upstream region extending from the inlet to xca = 4.63.
Due to the decreasing temperature ratio, absolute instability prevails in the
central region xca < x < xac, with xac = 22.81. Downstream of xac, the
spreading of the jet induces a decrease of ω0,i to negative values, and thus
the flow returns to convective instability. Corresponding variations of the
absolute frequency ω0,r as a function of downstream distance are displayed
in figure 4.5(b).

An initial pulse of the form (4.18) with amplitude A = 10−3, introduced
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Figure 4.6: Total vorticity field ωθ(r, x) at three instants over one cycle in
the periodic régime. Going from top to bottom, the snapshots are separated
by one third of the cycle period.

Figure 4.7: Spatio-temporal evolution of v′(r = 1, x, t) in the periodic régime.
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inside the absolutely unstable region at x = 5, gives rise, after a transient
growth, to a synchronized periodic state at a global fundamental frequency
ωg. Figure 4.6 shows snapshots of the total azimuthal vorticity ωθ over one
cycle in the periodic régime. The flow is seen to be composed of regularly
spaced ring vortices, which roll up at x = 11 and subsequently slowly decay
further downstream. The diagram in figure 4.7 represents the synchronized
oscillation of the radial velocity perturbation v′ at the center of the shear
layer (r = 1) as a function of time and streamwise distance. The periodicity
of the converged oscillatory state is clearly exhibited, as well as the absence
of pairing interactions. As presented in figure 4.5(b), the observed global
frequency is ωg = 0.772, to be compared with the theoretical value ωca

0 =
0.857 predicted by the frequency selection criterion of Pier et al. (1998).

The nonlinear global mode nature of the observed synchronized oscilla-
tions may also be ascertained by inspecting its spatial structure. According
to Pier & Huerre [94], the front that separates the bifurcated régime of satu-
rated nonlinear oscillations from the unperturbed base state is located around
the upstream point xca of marginal absolute instability. Upstream of xca, the
tail of the global mode is then predicted to decay as a k−-wave.

In order to obtain a local measure of the amplitude at each streamwise
station, the perturbation vorticity field ω′

θ(r, x, t) is decomposed into the
Fourier series

ω′

θ(r, x, t) =
∞

∑

n=−∞

Ωn(r, x) e−inωgt, (4.19)

and an amplitude function ηn(x) for each harmonic component is defined as
the square root of its enstrophy integrated over r:

ηn(x) =

(∫ rmax

0

|Ωn(r, x)|2 r dr
)1/2

. (4.20)

The resulting amplitude function η1(x) of the fundamental frequency ωg

is displayed in figure 4.8(a). A sharp upstream front is seen to occur in
the vicinity of xca, followed by a maximum at the vortex roll-up station
x = 11 and a slowly decaying nonlinear wavetrain further downstream. The
spatial structure of the upstream front can be observed in detail in the semi-
logarithmic diagram of figure 4.8(b). A region of exponential growth η1(x) ∝
exp(−kix) is clearly exhibited over the interval 3.5 < x < 7. For x < 3.5, the
front shape is masked by residual low-level vorticity disturbances likely to be
induced by the attenuation of upstream propagating acoustic waves within
the numerical inlet sponge region. The spatial growth rates −k+

i (ωca
0 ) and
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Figure 4.8: a) Oscillation amplitude η1 as a function of streamwise distance.
b) Semi-logarithmic plot of the upstream front region; comparison of the
front slope with spatial growth rates −kca

0,i = 1.26, −k+
i (ωca

0 , x = 4) = 0.88
and −k−i (ωca

0 , x = 4) = 1.68.

−k−i (ωca
0 ) at a typical station x = 4 in the upstream tail are also sketched

in figure 4.8(b), together with the absolute spatial growth rate −kca
0,i. In

the context of the signalling problem, the complex wavenumbers k+, k−

are associated with instability waves propagating in the downstream and
upstream direction, respectively. In figure 4.8(b), the slope of the envelope
in the convectively unstable region x < xca is seen to compare favorably with
the k− spatial growth rate, and to be quite distinct from its k+ counterpart.
This observation strongly indicates that the global oscillation is generated
by a “wave maker” within the flow, rather than by spurious forcing at the
upstream boundary. The location of the front as well as its spatial structure
correspond to the steep front scenario described by Pier & Huerre [94], thus
confirming that the observed oscillations indeed arise from the presence of a
nonlinear global mode triggered by the pocket of absolute instability.

The global frequency ωg = 0.772 agrees reasonably well with the predicted
value ωca

0 = 0.857. The 10% discrepancy is of the same order of magnitude
as in Pier [93] for the cylinder wake. It is markedly narrower than the total
variation in ω0,r over the entire physical domain (figure 4.5b). Considering
the steep streamwise variation of ω0,r around xca, the accuracy of the cri-
terion may be affected by the strong non-parallelism of the base flow. The
effect of numerical dissipation, as discussed in section 4.2.3, may also cause a
slight shift of the transition station xca in the downstream direction, thereby
lowering the effective value of ωca

0 .

While the k−-nature of the front upstream of xca is apparent, the slope
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of η1(x) does not decrease to the absolute spatial growth rate −kca
0,i at xca,

as might have been expected. The observed front shape fails to adjust to
this sharp decrease over a distance much shorter than a single wavelength.
Alternatively, the envelope slope may also be compared to the k−-branch
corresponding to the observed global frequency ωg instead of ωca

0 : the branch
k−(ωg, x), not displayed in figure 4.8(b), is then found to exhibit a slightly
larger spatial growth rate and a smoother streamwise development than
k−(ωca

0 , x), so that it reproduces more faithfully the observed envelope shape.

4.2.5 Nonlinear global modes in jets with absolutely

unstable inlet

The configuration examined in the previous section, namely a pocket of abso-
lute instability embedded within a convectively unstable flow, was designed
by allowing for suitable streamwise variations of the ambient temperature
T∞. It is not typical of laboratory experiments such as those of Monkewitz
et al. [82]. In this section, we examine the global dynamics of a family of
hot jets with absolutely unstable inlet conditions, where T∞ is kept constant
along the stream. According to global mode theory in semi-infinite media
(Chomaz [19]), the self-sustained oscillations are then expected to display a
front which is pinned against the upstream boundary at x = 0, where the
perturbation vorticity is imposed to be zero.

All base flows under consideration start from an initial momentum thick-
ness such that R/θ = 10, with temperature ratios S ranging from 0.1 to 1.
In this range of parameters, a transition from upstream convective to down-
stream absolute instability within the jet is impossible: According to figure
4.9(a), the absolute growth rate is seen to decay monotonically with down-
stream distance. The streamwise variations of ω0,i and ωi,max are plotted
for the least (S = 0.3125) and the most (S = 0.1) heated cases exhibiting
self-sustained oscillations. All base flows in this range are seen to be abso-
lutely unstable at the inlet. Corresponding curves for the absolute frequency
ω0,r(x) are given in figure 4.9(b).

The perturbation equations (4.16) are solved on a grid of 430×876 points
in the radial and axial directions, respectively, the physical region extending
over 0 ≤ r ≤ 46 and 0 ≤ x ≤ 80. Self-sustained oscillations induced by box
size effects have been ruled out by conducting tests on shorter domains with
physical regions 0 ≤ x ≤ 60 and 0 ≤ x ≤ 40. Grid independence has been
demonstrated for ∆x = 0.05 and ∆x = 0.1, and the latter value has been
retained for the present calculations.
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Figure 4.10: Spatio-temporal diagrams of v′(r = 1, x, t) in the asymptotic
régime over a time interval ∆t = 100 for both modes observed at S = 0.3.
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Starting from an initial perturbation of the form (4.18) with A = 0.01,
self-sustained oscillations are observed to develop for temperature ratios S ≤
0.3. The asymptotic states are characterized by the presence of ring vortices
very similar to the ones displayed in figure 4.6. Typical spatio-temporal
diagrams of the synchronized oscillations of the radial perturbation velocity
v′ at the center of the shear layer are presented in figure 4.10: The periodicity
of the asymptotic states is clearly exhibited.

The global frequencies observed for different values of S are represented
in figure 4.11. These numerical results should be compared to the theoreti-
cal prediction from global mode theory given by ω0,r(x = 0) (dotted line in
figure 4.11). While local absolute instability at the inlet sets in as soon as
S decreases below the transition value Sca = 0.453, synchronized oscillations
are observed numerically to persist only below the value Sg = 0.3125. The jet
must therefore exhibit a sufficiently wide region of absolute instability, which
is found to be of the order of one instability wavelength, in order to sustain
a nonlinear front. In the range 0.325 ≤ S ≤ 1, the wavepacket produced by
the initial pulse is advected downstream, ultimately leaving only low-level
residual fluctuations within the physical domain.



106 Nonlinear global instability

The most prominent feature in figure 4.11 is the presence of a branch of
global frequencies, denoted “mode 1” (solid line), covering the entire range
0.1 ≤ S ≤ 0.3. At onset, the global frequency ωg = 0.7282 of this mode
coincides with the absolute frequency at the inlet ω0,r(x = 0) = 0.731 (dot-
ted line). The global frequency selection criterion derived by Couairon &
Chomaz [27], which predicts ωg = ω0,r(x = 0) in the vicinity of the global in-
stability threshold, is therefore recovered. As S decreases, i.e. in the highly
supercritical régime, ωg departs from the absolute frequency. The spatio-
temporal structure of mode 1 is illustrated in figure 4.10(a) at S = 0.3.
Around x = 9, the shear layer rolls up into vortices, which are convected
downstream without pairing. As S decreases, the vortex roll-up location of
mode 1 moves towards the inlet.

Choosing as initial condition a weaker pulse (4.18) with an amplitude
A = 10−4 reveals the existence of another self-sustained oscillatory state
(“mode 2”, empty squares in figure 4.11) for the specific values S = 0.3 and
S = 0.3125. This mode is characterized by a vortex roll-up station located
distinctly further downstream (compare figures 4.10a and b), outside the
absolutely unstable region, while the global frequency stays within 3% of
the absolute frequency at the inlet. As mode 2 is continued towards lower
values of S, the front saturates within the absolutely unstable region, moves
upstream, and mode 1 is recovered as the asymptotic state.

The simulation results are affected to some extent by the choice of the
numerical upstream boundary conditions. Computations in which the first-
order corrected conditions of Giles [46] are replaced by a zeroth-order formu-
lation yield a qualitatively similar behaviour of both modes, but the deviation
of the mode 1 frequency from ω0,r(x = 0) is more pronounced for low values
of S.

4.2.6 Concluding remarks

The occurrence of self-sustained synchronized oscillations in hot axisymmet-
ric jets has been examined numerically for two distinct configurations, one
displaying an absolutely unstable region embedded within a convectively un-
stable flow, the other starting from an absolutely unstable inlet. The results
have demonstrated that in both cases these oscillations are the manifestation
of a nonlinear global mode following the predictions from model analyses in

2In the nearly marginal case S = 0.3 the calculations converge very slowly, and the
asymptotic value of ωg has therefore been obtained from computations in a shorter domain,
with a physical region stretching over 0 ≤ x ≤ 40
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infinite and semi-infinite domains, respectively.

In the case of an embedded pocket of absolute instability, the observed
synchronized oscillations have been shown to be dominated by a steep non-
linear front, located at the convective/absolute transition station xca and
decaying in the upstream direction as a k−–wave. The global frequency
matches within 10% accuracy the absolute frequency at xca. This discrep-
ancy is attributed to the non-parallelism of the flow induced by the stream-
wise gradient of the ambient temperature T∞, which is required in order to
obtain a transition from convective to absolute instability within the flow.
The location and the spatial structure of the front, as well as the global fre-
quency, are in full agreement with the theoretical predictions pertaining to
nonlinear global modes in an infinite domain (Pier et al. [96, 95]).

We note at this point that, according to Monkewitz & Sohn [85], an
embedded pocket of absolute instability may also occur in jets with constant
outside temperature for a narrow range of parameters. However, such a
configuration is replete with numerical difficulties, as it necessitates a very
thin initial shear layer (R/θ well above 50 at the inlet). As a result, the flow
is then prone to spurious acoustic forcing that may contaminate the global
mode oscillations.

The simulations of flow configurations with constant ambient temperature
and absolutely unstable inlet conditions have revealed the existence of two
distinct synchronized oscillatory states close to the onset of global instability.
One of these modes is seen to be dominant throughout the supercritical
range of S, the other being only observed close to the global instability
threshold Sg = 0.3125. At onset, the frequency of mode 1 coincides, within
0.4% accuracy, with the absolute frequency at the inlet. For lower values
of S, the global frequency gradually departs from ω0,r(x = 0). This result
is in agreement with the Ginzburg-Landau model analysis of Couairon &
Chomaz [26], according to which the ω0,r(x = 0) criterion only holds close
to threshold, even in parallel flows. However, as soon as non-parallelism is
present (Couairon & Chomaz [27]), a nonlinear front is only sustainable if its
saturation takes place within the absolutely unstable region. In the present
simulations, it has indeed been observed that the absolutely unstable region
must be of sufficient streamwise extent in order to give rise to a nonlinear
global mode. The non-parallelism of the base flow therefore accounts for
the gap between local absolute instability onset at Sca = 0.453 and global
instability onset at Sg = 0.3125. As a result, the scaling law derived by
Couairon & Chomaz [26] for parallel flows could not be recovered.

Self-sustained oscillations may also be present in the absence of absolute
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instability, which a priori precludes the onset of a global mode (Chomaz,
Huerre & Redekopp [20]). For instance, constant-density jets may, under
carefully tuned conditions, experience synchronized oscillations associated
with a feedback loop consisting of a downstream propagating instability wave
and an upstream travelling acoustic wave, preferentially emanating from vor-
tex roll-up and pairing events [64, 48]. This scenario has been observed, for
instance, in the numerical simulations of convectively unstable, compressible
jets carried out by Grinstein, Oran & Boris [47]. In our study, all calcula-
tions performed in the convectively unstable range S > 0.453 indicate that
self-sustained oscillations induced by acoustic feedback do not arise for our
parameter settings: vortex roll-up is observed not to give rise to synchro-
nized oscillations, and vortex pairing never occurs in any of the asymptotic
states presented. In the experiments of Monkewitz et al. [82], however, vortex
pairing was systematically present. Their parameter régime, which involves
thinner initial shear layers and higher Reynolds numbers, remains to be in-
vestigated numerically.
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Abstract

The self-sustained formation of synchronized ring vortices in globally un-
stable hot round jets is investigated by direct numerical simulation of the
axisymmetric equations of motion. The onset of global instability and the
global frequency of synchronized oscillations are examined as functions of the
ambient-to-jet temperature ratio and the initial jet shear layer thickness. The
numerical results are found to follow the predictions from nonlinear global
instability theory: global instability sets in as the unperturbed flow is abso-
lutely unstable over a region of finite streamwise extent at the inlet, and the
global frequency near the global instability threshold corresponds to the ab-
solute frequency of the inlet profile. In strongly supercritical thin shear layer
jets, however, the simulations display global frequencies well above the abso-
lute frequency, in agreement with experimental results. The inner structure
of rolled-up vortices in hot jets displays fine layers of positive and negative
vorticity that are produced and maintained by the action of the baroclinic
torque.
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4.3.1 Introduction

Axisymmetric jets have been experimentally observed to sustain self-excited
large-scale vortices, synchronized at a well-defined frequency, if the jet is suf-
ficiently heated with respect to the ambient air (Monkewitz et al. [82]). Such
self-excited oscillations are the manifestation of a global instability of the
unperturbed steady flow. Subjected to an arbitrary perturbation, a globally
unstable steady flow will bifurcate and settle into a new organized régime
of highly regular oscillations. This new state is termed a global mode of the
underlying steady flow, and its oscillations are tuned to a well-defined global

frequency. In a large variety of open shear flows, the occurrence of global in-
stability has been shown to be closely connected to the local linear instability
properties (see Huerre & Monkewitz [54] and Chomaz [19] for reviews): if
the unperturbed flow is locally convectively unstable everywhere, externally
induced perturbations are amplified, but the flow is globally stable. In the
absence of continuous forcing, it will ultimately return to a steady state. In
the presence of a locally absolutely unstable flow region, in contrast, the flow
may bifurcate to a global mode. Prominent examples of flows exhibiting
global instability triggered by local absolute instability include the cylinder
wake [97, 27, 94, 93], counterflowing shear layers [53], swirling jets [44] and
jets with counterflow [106, 56].

In the hot jet experiments of Monkewitz et al. [82], self-sustained syn-
chronized oscillations were found to set in as the ambient-to-jet temperature
ratio S = T∞/Tc was lowered below a critical value of 0.73. The Strouhal
number of these oscillations is given as St ≈ 0.3, based on jet diameter and
exit velocity. At temperature ratios below 0.63, a second oscillating state
with St ≈ 0.45 was observed to be dominant. Both of these modes were
axisymmetric. Kyle & Sreenivasan [62] (see also Ref. [105]) investigated the
stability of mixed helium/air jets in ambient air. The jet-to-ambient density
ratio that served as a control parameter in these experiments is equivalent,
under the perfect gas assumption, to the ambient-to-jet temperature ratio
used in Ref. [82]. The experiments of Kyle & Sreenivasan [62] showed only
one oscillating state, also axisymmetric, with Strouhal number and density
ratio ranges in good agreement with the St ≈ 0.45 mode of Monkewitz
et al. [82]. More recent helium jet experiments [100, 116] confirm the results
of Kyle & Sreenivasan [62].

The linear spatio-temporal instability analysis of Monkewitz & Sohn [85]
revealed that hot axisymmetric jets display a region of absolute instability
as the temperature ratio falls below a critical value. In the inviscid, zero-
Mach-number limit, this critical value is S = 0.72, in striking agreement with
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the first threshold value S = 0.73 at which global instability was observed
experimentally [82].

Further theoretical studies by Jendoubi & Strykowski [56] demonstrated
that two distinct axisymmetric spatio-temporal instability modes exist in
round jets: a shear layer mode, similar to the Kelvin–Helmholtz instability
mode in a plane shear layer, and a jet column mode, identical to the one
discovered by Monkewitz & Sohn [85], with maximum pressure perturbations
on the jet axis. In jets without counterflow, the absolute instability mode
is of the jet column type. A recent linear analysis [67] has revealed that
the transition from convective to absolute instability in variable-density jets,
even in the absence of gravity, ensues from the action of the baroclinic torque.

Theoretical discussions of the experimental results on global instability in
variable-density jets have so far essentially been restricted to a comparison
of the temperature or density ratio threshold values for the observed onset of
self-sustained oscillations with the predicted onset of absolute instability in
inviscid, zero-Mach-number parallel flow. For the particular value S = 0.48,
Kyle & Sreenivasan [62] also compared the measured global frequencies with
theoretical values of the absolute frequency given in Ref. [85]. Rather good
agreement was found as long as the jet shear layer at the nozzle exit was
not too thin. For very thin shear layers however, as well as for lower values
of S, the comparison was much less favorable. Furthermore, the shear layer
thickness was determined from a measured boundary layer velocity profile at
the nozzle exit in the experiments [62], and from an analytical free jet profile
in the theoretical study of Monkewitz & Sohn [85].

Theoretical analyses of the frequency selection process in globally unsta-
ble semi-infinite flows, such as jets, have been carried out by Couairon &
Chomaz [24, 25] on the basis of Ginzburg–Landau model equations. Their
criterion for a semi-infinite parallel base flow states that nonlinear global
instability coincides with the onset of linear absolute instability, and that
the selected global frequency at this threshold is given by the absolute fre-
quency of the base flow. In supercritical flows, the absolute frequency only
provides a leading order prediction of the global frequency. However, the
numerical simulations by Chomaz [18] have demonstrated that, in parallel
wakes, this zero-order criterion yields highly accurate predictions far into the
supercritical regime. The theoretical analysis has been extended to account
for slow streamwise variations of the base flow [27]. In such cases, the global
frequency at the global instability threshold is still given by the absolute
frequency at the upstream boundary. However, global instability is expected
to set in only if the region of absolute instability is sufficiently large to allow
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for a nonlinear saturation of the oscillation amplitude.

The objective of the present study is to explore numerically the applica-
bility of nonlinear global mode theory [24, 25, 26, 27] to the self-sustained
synchronized oscillations in hot jets. A recent investigation [69] has estab-
lished that the theoretical predictions of Couairon & Chomaz [27] accurately
match numerical simulation results for a family of heated thick shear layer
jets. The present study extends the investigated parameter range to ap-
proach the experimental settings of Monkewitz et al. [82] and of Sreenivasan
et al. [105].

The paper is organized as follows. In Sec. II, the physical flow model is
presented, and the different flow parameters are specified. Numerical aspects
such as the computational grid, boundary and initial conditions are discussed
in Sec. III. Further details on the employed flow solver can be found in
Ref. [69]. Numerical results are presented in Sec. IV. A comparison with
experiments [82] is included, and the rôle of acoustic feedback is discussed.
Section V describes observations on the inner structure of rolled-up vortex
billows in strongly heated jets. The main results are summarized in Sec. VI.

4.3.2 Problem formulation

Consider an axisymmetric subsonic jet of radius R issuing into a quiescent
ambient medium. The flow is assumed to be governed by the axisymmetric
compressible Navier–Stokes equations and the equation of state for a perfect
gas, cast in cylindrical coordinates x and r. These equations are given explic-
itly in Lesshafft et al. [69]. The system is formulated in terms of conservative
flow variables q = (ρ, ρu, ρv, ρE), where ρ is density, u and v are the axial
and radial velocity components, respectively, and E is the total energy.

The total quantities q are separated into a base flow qb(x, r) and a per-
turbation component q′(x, r, t). By construction, any given base flow qb is a
steady state solution of the governing equations. As in Ref. [69], the stream-
wise development of the base flow is obtained as a numerical solution of the
compressible boundary layer equations, starting at x = 0 from the analytical
velocity profile (Michalke [77])

ub(r) =
1

2
+

1

2
tanh

[

R

4θ

(

1

r
− r

)]

(4.21)

of momentum shear layer thickness θ. All quantities are made non-dimensional
with respect to the jet radius R, velocity Uc, density ρc and temperature Tc,
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where the subscript c denotes the value on the jet centerline in the inlet
plane. The dynamic viscosity µ and the thermal conductivity κ are taken as
constant throughout the flow, and gravity is neglected. A specific flow con-
figuration is then defined by the following set of parameters: the Reynolds
number Re = ρcRUc/µ, the Mach number Ma = Uc/cc with respect to the
speed of sound cc on the jet centerline, the Prandtl number Pr = µcp/κ,
with cp the specific heat at constant pressure, the ambient-to-jet tempera-
ture ratio S = T∞/Tc, the inlet velocity profile parameter R/θ, and the ratio
of specific heats γ = cp/cv.

The flow parameters considered in the numerical study are chosen to
closely correspond to settings of Monkewitz et al. [82]. The Reynolds number
is taken as Re = 3750 (ReD = 7500, based on jet diameter as in Ref. [82])
and the Mach number as Ma = 0.1. Values of Pr = 1 and γ = 1.4 are
retained throughout. The occurrence of global instability is then explored
for combinations of the inlet profile parameter and the temperature ratio
over the ranges 10 ≤ R/θ ≤ 25 and 0.3 ≤ S ≤ 1.

4.3.3 Numerical method

The numerical procedure used in the simulations is identical to that of
Lesshafft et al. [69]. An algorithm described by Lu & Lele [74] is used to
obtain the base flow qb by numerical integration of the boundary layer equa-
tions. The temporal evolution of perturbations q′ within this base flow is then
computed directly from the axisymmetric Navier–Stokes equations. Spatial
derivatives are evaluated from a sixth-order accurate explicit centered finite-
difference scheme, and the solution is advanced in time via a third-order
Runge–Kutta algorithm. Numerical stability of the finite-difference formula-
tion is achieved by applying a tenth-order explicit filter scheme at each time
step [66, 113].

The orthogonal grid that has been used in all computations discretizes
the physical domain 0 ≤ x ≤ 30 and 0 < r ≤ 30 into 500 × 278 grid
points. In the radial direction, these points are concentrated in the shear
layer region around r = 1, with a minimum spacing ∆rmin = 0.01. In the
axial direction, ∆x is kept at 0.05 for x ≤ 15, and then is slowly increased
up to ∆x = 0.1 at x = 25. Sponge regions are introduced at the lateral
and downstream boundaries of the physical domain, where grid stretching
is gradually increased up to a rate of 4%. These sponge regions extend
over 30 ≤ r ≤ 112 and 30 ≤ x ≤ 125, discretized with 37 radial and 200
axial grid points. A damping term −λ(x, r)q′ is added to the Navier–Stokes
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equations within the sponge regions. The value of the damping coefficient
λ(x, r) is smoothly ramped up from zero at the boundary of the physical
domain to 0.3 at x = 50 and r = 50, according to a function given by
Chomaz [18]. Convergence tests on finer grids (750×410 points) and on larger
computational domains have confirmed that the results are grid independent
and unaffected by box effects.

The theoretical model for global modes in a semi-infinite domain studied
by Couairon & Chomaz [27], to which our numerical simulation results are
to be compared, assumes a nonlinear wave front blocked at a Dirichlet-type
upstream boundary that lies within an absolutely unstable flow region. Such
a configuration precludes the implementation of an additional sponge region
at the upstream boundary of the computational domain, which then would
be penetrated by the upstream-traveling wave front up to the streamwise
station where artificial damping induces a transition to convective instability.
Instead, as in Ref. [69], the characteristic boundary conditions of Giles [46]
are used at the inlet. These are designed to provide a first order correction
for oblique incidence of upstream-traveling acoustic waves. Tests have shown
that this correction significantly reduces the coupling of acoustic and vortical
disturbances at the upstream boundary. Numerical instabilities due to these
boundary conditions have been reported by Colonius et al. [23], but they
have not been encountered in the present simulations.

A different set of characteristic upstream boundary conditions, without
any correction for oblique incidence of acoustic waves, was employed in an
earlier study [68]. The global dynamics observed in the simulations are quite
sensitive to the quality of the upstream boundary conditions. It must be
pointed out that the use of the term “first order” in the context of the
boundary conditions given by Giles [46] is ambiguous in the literature. In
compliance with Ref. [23], we will henceforth denote as “first order” bound-
ary conditions those used in Ref. [69] as well as in the present study. The
boundary conditions used in Ref. [68], which assume acoustic wave fronts
to be parallel to the upstream boundary, will be denoted as being of “zero
order”.

All computations start from a divergence-free initial velocity perturbation
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in the form of a vortex ring (Bogey et al. [10])

u′(r, x) = −Ar0(r − r0)
rs

g(r, x) ,

v′(r, x) = A
r0(x− x0)

rs
g(r, x) , (4.22)

g(r, x) = exp

[

− ln 2
(x− x0)

2 + (r − r0)2

s2

]

,

with (r0, x0) = (1, 2), s = 0.3 and A = 0.1 .

We have found that the jet column mode, which alone may give rise to the
growth of a nonlinear global mode induced by absolute instability, is most
efficiently excited by a high-amplitude initial pulse that quickly leads to
vortex roll-up. That way, a strong exponential temporal growth of shear layer
modes is bypassed, and the jet-column mode grows to nonlinear saturation
within a short time interval.

In section 4.3.4, the numerical results are compared to predictions drawn
from a linear stability analysis of the underlying base flow. A detailed de-
scription of the numerical method used to solve the linear instability problem
is given in Ref. [67].

4.3.4 Onset and frequency of self-sustained oscillations

Numerical observations and comparison with theoretical predic-

tions

The long-time flow behavior, after the transient wave packet induced by the
initial perturbation (4.22) has left the computational domain, is radically
distinct for globally stable and globally unstable situations. For subcritical
combinations of R/θ and S, only low-level broadband fluctuations persist
near the inlet, followed by irregular vortex roll-up and pairing events. At
sufficiently high values of R/θ and strong heating, the flow settles into a
highly periodic oscillatory state. The jet shear layer in these cases rolls
up at a fixed streamwise station, forming a street of regularly spaced ring
vortices that are slowly attenuated as they travel downstream. Periodic states
obtained in two typical configurations are visualized in figure 4.12. Note that
the rolled-up vortices in the thin shear layer jet (figure 4.12b) undergo one
pairing event around x = 13. In the present simulations, precisely one such
stage of vortex pairing is observed in all globally unstable cases with inlet
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a) R/θ = 10, S = 0.4

b) R/θ = 20, S = 0.6

Figure 4.12: Snapshots of synchronized oscillations in two globally unstable
jets. Vorticity isosurfaces Ω = 1 (blue) and Ω = 3 (red), isocontours 1 ≤
Ω ≤ 3. (a) Thick shear layer jet, no vortex pairing; (b) thin shear layer jet,
with vortex pairing.
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Figure 4.13: Spatio-temporal diagrams of the radial perturbation velocity
v′(r = 1, x, t) in the long-time régime. a) globally stable case R/θ = 25,
S = 0.65; b) globally unstable case R/θ = 25, S = 0.55.

profiles R/θ > 10. Vortex pairing in the asymptotic flow state shows the
same high degree of repeatability as the initial vortex roll-up.

The qualitative difference between synchronized and non-synchronized
asymptotic states is demonstrated in the spatio-temporal diagrams in figure
4.13. The thinnest shear layer jet considered in this study, with temperature
ratios just above and below the critical value, is chosen as an example. The
radial perturbation velocity v′(r = 1, x, t) at the center of the shear layer
is presented as a function of streamwise distance and time. In order to
clearly visualize all flow regions, v′ has been normalized independently at
each streamwise station x with respect to its maximum amplitude over the
displayed time interval in figure 4.13.
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Figure 4.14: Spectral density of v′(r = 1, x = 1, t) as a function of Strouhal
number for the two configurations of figure 4.13. Thin line: globally stable
case R/θ = 25, S = 0.65; thick line: globally unstable case R/θ = 25,
S = 0.55.

The corresponding Strouhal number spectra, computed from v′(r = 1, x =
1, t), are displayed in figure 4.14. As in Monkewitz et al. [82], the Strouhal
number is defined as St = 2fR/Uc. In the globally stable configuration with
S = 0.65 (thin line), the spectrum is broadband. As the base flow in this
case is convectively unstable throughout the entire physical domain, persist-
ing perturbations at long times can only arise from a continuous, spurious
excitation at the numerical inlet boundary. This excitation is caused by
upstream-travelling acoustic waves that in turn are emitted from the down-
stream vortices. The jet shear layer then acts as a band-pass filter, promoting
the growth of the most amplified spatial instability modes. In contrast, the
spectrum of the synchronized flow case (thick line in figure 4.14) is marked
by sharp peaks, while the background noise level is significantly lowered.
As the spectra are taken near the upstream boundary, the dominant peak
corresponds to the fundamental global frequency Stg of vortex roll-up. A
subharmonic peak in the spectrum of the synchronized case announces the
occurrence of vortex pairing further downstream. Some peaks in the line-
dominated spectrum in figure 4.14, e.g. at St = 1.1, are accompanied by
small ‘side peaks’ on both sides. Whether these are the result of a sideband

instability [81], or just an effect of the FFT algorithm (a Hanning windowing
technique has been used), cannot be decided at present.

The globally unstable region of the S-R/θ parameter plane is identified
in figure 4.15. Flow cases exhibiting self-sustained synchronized oscillations
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Figure 4.15: State diagram of hot jets: synchronized (•) and non-
synchronized (◦) asymptotic states observed over the investigated ranges of
temperature ratio S and inlet profile parameter R/θ; absolute/convective
instability boundary of inlet profile ( ).

are marked as solid circles, whereas open circles represent non-synchronized
cases. The black line marks the absolute/convective instability boundary
of the inlet profile, computed for Ma = 0.1 and Re = 3750. Base flows in
the parameter region to the left of this boundary display absolute instability
at the inlet, and they do so over an increasingly large streamwise interval
for stronger heating and thinner initial shear layers. Figure 4.15 clearly
demonstrates that global instability is detected only in base flows with an
absolutely unstable inlet profile. The boundary of global instability in the
S-R/θ plane closely follows that of local absolute instability, with a slight
offset into the absolutely unstable parameter region. In full agreement with
the theoretical predictions of Couairon & Chomaz [27] as well as with earlier
numerical simulations [69], the present results confirm that global instability
occurs only in the presence of a sufficiently large pocket of local absolute
instability.

Due to the high quality of the flow synchronization, the global frequency
can be determined by measuring the oscillation period τ directly from the
temporal signal v′(r = 1, x = 1, t) of the asymptotic state. The temporal
development of St = 2/τ is shown in figure 4.16 for the three globally un-
stable cases encountered at S = 0.5. The asymptotic values Stg in these
cases are converged to at least three significant digits. Corresponding FFT
frequency spectra of the v′ signal, similar to the thick line in figure 4.14, are
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Figure 4.16: Temporal development of the oscillation Strouhal number in
jets at S = 0.5. Labels indicate the value of R/θ.

fully consistent with the results obtained for Stg from figure 4.16, but they
would require much larger signal samples of the asymptotic régime in order
to give the same accuracy.

The model analysis of Couairon & Chomaz [27] predicts the frequency of a
global mode in a semi-infinite domain to correspond to the absolute frequency
at the upstream boundary in the limit of marginal global instability. As
the base flow becomes increasingly supercritical, the global frequency may
depart from this leading-order criterion. In figure 4.17, values of the global
frequency Stg, observed in the numerical simulations, are compared to the
Strouhal number St0 of the absolute instability mode, obtained from a linear
stability analysis of the inlet base flow profile. For each R/θ, values of St0 are
given over the absolutely unstable range of temperature ratios. Experimental
measurements from Monkewitz et al. [82] are also shown and will be discussed
in section 4.3.4.

The thickest shear layer jet with R/θ = 10 synchronizes to the absolute
frequency within 0.5% at its global instability threshold S = 0.4. At super-
critical temperature ratios, Stg gradually shifts to values slightly higher than
St0. The same general trend is observed for jets with thinner initial shear
layers, but as R/θ increases, the interval of S over which the frequency se-
lection criterion Stg = St0(x = 0) may be regarded as valid is confined to an
ever smaller vicinity of the global instability threshold. Note that the occur-
rence of vortex pairing, which distinguishes the configurations with R/θ ≥ 15
from those with R/θ = 10, is not associated with any sudden change in the
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Figure 4.17: Global frequency compared to absolute frequency of the inlet
profile, both as functions of the temperature ratio S for various values of the
inlet profile parameter R/θ. Black solid lines: global frequencies observed in
the present simulations; grey solid line: experimental values from Monkewitz
et al. [82]; dashed lines and open symbols: corresponding absolute frequency
of the inlet profile, shown over the absolutely unstable range of S.
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global flow dynamics, in particular with respect to the frequency selection
mechanism. The global frequencies close to onset in jets with R/θ = 15 are
also remarkably well predicted by the absolute frequency at the inlet. At
the highest value of S for which synchronization is observed in an R/θ = 20
jet, the selected frequency still falls within 3% of the expected value, but the
frequency prediction degrades rapidly as S is lowered. For R/θ = 25, only
the 8% agreement between St0 and Stg at S = 0.6 closest to threshold may
still be considered satisfactory.

Tests have shown that the numerical values of Stg are quite sensitive to the
choice of upstream boundary conditions. For instance, when the zero order
characteristic boundary conditions (see section 4.3.3) were used in earlier
simulations [68], the global frequency of an R/θ = 20, S = 0.5 jet was
measured as Stg = 0.443, whereas the first order formulation employed in
the present study leads to Stg = 0.404.

It should be noted that the only difference between the R/θ = 10 cases
presented in figure 4.17 and those studied in section 4.2.5 lies in the choice
of the Reynolds number (Re = 3750 here, Re = 1000 in section 4.2.5). The
results are fully consistent: in the present study, global instability sets in at
a slightly higher value of S, because the streamwise development of the base
flow scales with Re, and the absolutely unstable region at a given temperature
ratio is therefore 3.75 times as long as in the Re = 1000 case.

Limited parameter range in the DNS

In simulations of strongly heated thin shear layer jets, the pairing of large-
scale vortices gives rise to an irregular ejection of free vortical structures
into the outer flow. These structures visually resemble pictures of two-
dimensional turbulence, and their generation is not a matter of numerical
discretization, but seems to be a genuine feature of the axisymmetric equa-
tions of motion. Unsteady flow visualizations suggest that the formation of
these structures results from a secondary instability due to the finely-spun
layer structure of rolled-up vortices in strongly stratified shear layers, which
is documented in section 4.3.5 below.

The pairing of two such layered vortices generates violent accelerations
that easily lead to folding and ejection of the outer vorticity layers. These
folded layers then tend to form vorticity dipoles that are propelled into the
outer flow through their self-induced motion. The dipoles are only slowly
dissipated by viscosity and therefore may accumulate in the vicinity of the
vortex pairing location. Such structures certainly would be highly unstable
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in a three-dimensional geometry, and their long-time dynamics observed in
the axisymmetric simulations therefore should not be regarded as physical.

If the pairing takes place several jet diameters downstream of the inlet,
the eventual ejection of free vorticity dipoles into the outer flow has no im-
pact on the global flow dynamics. In cases of strong heating and thin initial
shear layers, however, the location of vortex pairing moves further upstream.
The free vorticity dipoles may then contaminate the upstream boundary re-
gion and induce high-amplitude perturbations that disrupt the global flow
synchronization. This behavior has been observed in three base flow config-
urations (R/θ=20, S=0.3), (R/θ=25, S=0.3) and (R/θ=25, S=0.35), and
these cases therefore have been excluded from the presentation of results
in section 4.3.4. Throughout the present study, only such cases have been
considered where the upstream region down to at least x = 4 is free of spuri-
ous vorticity structures in the outer flow. The accessible ranges of the inlet
velocity profile parameter R/θ and temperature ratio S in the numerical
simulation are limited due to this restriction.

Comparison with experiments

In figure 4.17, experimental values given by Monkewitz et al. [82] for the
global frequency are included as grey symbols together with present numeri-
cal results. Only the “mode II” [82] oscillating state is considered. According
to a relation given in Ref. [82], at a Reynolds number Re = 3750 based on the
jet radius, the inlet conditions for these measurements should correspond to
R/θ ∼ 35. The dimensional frequencies reported by Monkewitz et al. [82] are
scaled in figure 4.17 with respect to jet exit velocities that had to be deduced
from the Reynolds number. The Mach number in these experiments varies
within the interval 0.025 < Ma < 0.05.

Numerical simulations at R/θ = 35 were too much contaminated with free
vortices in the outer flow to be presented here. However, the experimentally
measured Strouhal numbers align very well with the extrapolated trend of the
numerical values as R/θ increases. A comparison with the linear instability
properties of the base flow displays the same behavior that has been found
in the simulations. Global instability almost coincides with the onset of
absolute instability at the nozzle. At threshold, the global frequency Stg sets
in 9% above the absolute frequency St0 (grey dashed line in figure 4.17), but
while St0 decreases with stronger heating, Stg remains nearly constant over
the covered range of temperature ratio S.
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Influence of acoustic feedback

In several convectively unstable flow configurations, such as flow over cavi-
ties [63] or jets impinging on an obstacle [49], self-sustained oscillations are
known to arise from the synchronization of a feedback loop consisting of a
downstream-travelling vortical branch and an upstream-travelling acoustic
branch. In numerical simulations of compressible free jets, such a feedback
loop may involve acoustic waves that are emitted from nonlinear vortex roll-
up and pairing events [64, 48], but also spurious acoustic noise generated at
the numerical outflow has been reported to potentially give rise to unphys-
ical self-excitation in numerical simulations of mixing layers [16]. Grinstein
et al. [47] observed self-sustained oscillations due to acoustic feedback from
vortex pairing in their simulation of a convectively unstable jet.

In the present simulations, in the absence of a hard nozzle, such acoustic
feedback may only arise from spurious coupling between outgoing acoustic
and incoming vortical waves at the numerical upstream boundary. Certainly
the irregular perturbations that are observed to persist in simulations of en-
tirely convectively unstable base flows must be the result of such spurious
acoustic forcing, and these configurations therefore can be used to character-
ize the quality of the numerical upstream boundary conditions. Measures of
typical conversion rates from outgoing acoustic to incoming vortical waves in
these globally stable cases may then serve as a criterion to examine whether
or not the synchronized oscillations observed in the globally unstable regime,
considering their amplitude levels near the inlet, are likely to be influenced
by spurious acoustic forcing.

Pressure fluctuations p′ outside the jet at the upstream boundary x = 0
are purely acoustic in nature, whereas v′ fluctuations inside the shear layer
are strongly dominated by vortical instability waves. An ad hoc measure of
the acoustic-vorticity conversion at the inlet in a convectively unstable flow
may be defined as the ratio

Cav =
v′rms(r = 1, x = 1)

p′rms(r = 2, x = 0)
, (4.23)

evaluated in the asymptotic regime. Values of Cav for all flow cases are
given in figure 4.18. In all globally stable configurations (open symbols in
figure 4.18, compare to figure 4.15), Cav varies between 10−2 and 10−1. This
order of magnitude seems to be characteristic of situations where instabilities
are driven by acoustic forcing at the inlet. Such forcing naturally is more
efficient in thin shear layer jets, but for constant values of R/θ it is found to
vary only slowly with S in the globally stable regime. In contrast, Cav takes
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Figure 4.18: Values of the conversion ratio Cav = v′rms(1, 1)/p′rms(2, 0), as
defined in (4.23), as a function of S for different values of R/θ. Symbols
as in figure 4.17: N,△ R/θ = 10; •, ◦ R/θ = 15; �,� R/θ = 20; �,♦
R/θ = 25. Solid symbols denote synchronized cases, open symbols denote
unsynchronized cases.

on significantly higher values in most configurations exhibiting synchronized
oscillations. The v′ fluctuations in these cases are too strong to be the result
of acoustic forcing, and the noise-driven oscillations therefore appear to have
been replaced by a global mode induced by absolute instability.

According to figure 4.18, one might wonder whether the cases (R/θ = 10,
S = 0.4) and (R/θ = 15, S = 0.55) are likely to be dominated by acoustic
feedback. We feel that these two marginal cases quite accurately mark the
onset of a supercritical bifurcation. The configuration (R/θ = 15, S =
0.6) is atypical: Although it marks the onset of self-sustained oscillations,
this threshold does not coincide with a significant increase of Cav. This
observation suggests that acoustic feedback is indeed involved in the self-
excited behavior. However, the inlet profile in this case is already absolutely
unstable, and the global frequency has been found to very accurately obey the
selection criterion for a global mode (see figure 4.17). We therefore believe
this flow configuration to exhibit the behavior of a slightly damped oscillator,
in the sense of Huerre & Monkewitz [54]: in the absence of any upstream
forcing, such a flow would be globally stable, but very close to threshold. The
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low-level acoustic forcing introduced by the numerical boundary conditions
seems to be sufficient to destabilize the otherwise slightly damped global
mode. Note that the ‘mode 2’ oscillatory states reported in Ref. [69] bear
the same characteristic features as the one observed here in the (R/θ = 15,
S = 0.6) base flow. It may be surmised that the occurrence of these ‘mode
2’ states [69] are also the manifestation of a slightly damped global mode
destabilized by low-level acoustic feedback.

4.3.5 Inner structure of rolled-up stratified vortices

In an isothermal jet, vortex roll-up is a process involving only the redis-
tribution and viscous dissipation of the vorticity initially contained in the
unperturbed shear layer. Figure 4.19a shows a vortex rolling up in a per-
turbed isothermal jet with R/θ = 10. The action of viscosity leads to a
smooth vorticity distribution inside the vortex core, and to a preferred dis-
sipation in the thin braids that connect neighboring vortices. No negative
vorticity is produced. In contrast, in the regime of low S, where global in-
stability is observed, the simulations display a more complex inner structure
of the rolled-up vortex billows, as demonstrated in figure 4.19b for a typical
newly-formed vortex in a jet with R/θ = 10 and S = 0.4. Isocontours of
the total vorticity Ω = Ωb + Ω′ are shown. The rolled-up sheets of positive
vorticity from the initial shear layer are interlaced with regions of negative
vorticity, and their absorption into the compact vortex core takes place on a
slower time scale than in the isothermal jet.

In the context of non-isothermal planar shear layers, Klaassen & Peltier
[59, 60] conclude that baroclinic production of vorticity in the vortex braids
may dominate over viscous dissipation if the temperature gradient is suffi-
ciently strong. Thin layers of high vorticity from the braids are then suc-
cessively wrapped around the vortex core, forming a more pronounced spiral
sheet structure than is found in isothermal shear layers. In Refs. [59, 60],
the braid regions are identified as the prevalent site of baroclinic vorticity
production.

A closer investigation of the vortex roll-up process in the heated jet con-
firms that the baroclinic torque is responsible for the formation of the layered
vorticity structure. Figure 4.20a displays the total density distribution cor-
responding to figure 4.19b. The vortex billow is composed of two entwined
spiraling fingers of high and low density fluid. Mixing between these two
densities only occurs in the very core of the vortex. The vorticity layers dis-
played in figure 4.19b are located on the interfaces between regions of high
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Figure 4.19: Vortex roll-up in jets with parameters (a) R/θ = 10, S = 1
(isothermal), (b) R/θ = 10, S = 0.5 (heated). Vorticity isocontours: Light
shading and black lines are positive, dark shading and white lines are nega-
tive.
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Figure 4.20: (a) Total density: black is light fluid, white is heavy fluid.
(b) Baroclinic torque, (c) viscous vorticity dissipation, (d) total vorticity
production DtΩ. Greyscale values are identical in (b–d): light is positive,
dark is negative. All snapshots are taken at the same time as in figure 4.19b.
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and low density. The density and pressure gradients are misaligned, and
therefore exert a baroclinic torque (∇ρ×∇p)/ρ2, mapped in figure 4.20b. A
fluid particle on an anti-clockwise trajectory around the center of the vortex
successively passes through alternating regions of positive and negative baro-
clinic torque. Such alternating regions in figure 4.20b are perfectly aligned
with the outer vorticity layers displayed in figure 4.20a. Written in total flow
quantities, the vorticity equation reads

DtΩ = −Ω (∂xu+ ∂rv) +
∇ρ×∇p

ρ2
+ curl

(

divτ

ρ

)

. (4.24)

The distribution of the viscous dissipation term is displayed in figure 4.20c.
Dissipation is concentrated in layers that align with those of 4.19b. The ma-
terial derivative DtΩ = ∂tΩ+∇Ω ·u is presented in figure 4.20d. Comparison
with figure 4.20b clearly demonstrates that the dominant contribution toDtΩ
in the outer layers of the vortex is provided by the baroclinic torque. How-
ever, in contrast to the study of Klaassen & Peltier [59, 60], the vorticity
production does not take place in the braids between neighboring vortices,
but inside the vortex billow.

4.3.6 Conclusion

The global stability of hot round jets has been examined via direct numer-
ical simulation of the axisymmetric equations of motion. The shear layer
thickness of the inlet profile and the ambient-to-jet temperature ratio have
been systematically varied over the ranges 10 ≤ R/θ ≤ 25 and 0.3 ≤ S ≤ 1.
Globally unstable situations are characterized by the onset of self-sustained
synchronized oscillations that give rise to highly regular ring vortices.

The numerical results have clearly demonstrated that global instability,
over the investigated parameter range, is associated with the presence of a
finite region of local absolute instability. No synchronized oscillations have
been found to persist in flow configurations that are convectively unstable
everywhere. At any fixed value of R/θ, global instability has been observed
to set in at a temperature ratio just slightly below the critical value at which
local absolute instability starts to develop at the upstream boundary of the
flow domain. As S is lowered further beyond the global instability threshold,
and the streamwise extent of the absolutely unstable flow region consequently
grows larger, the flow never returns to a globally stable behavior. These
numerical observations are in excellent agreement with the theoretical model
of nonlinear global modes in a semi-infinite domain described by Couairon
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& Chomaz [27]. Spurious excitation from upstream-travelling acoustic waves
does not qualify as the driving mechanism of the flow synchronization. Its
influence seems to be limited to a possible slight destabilization of flows on
the brink of global instability.

It has further been shown that the frequencies of globally unstable jets
obey the theoretical predictions [27]: at threshold, the global frequency of
the thickest shear layer jet (R/θ = 10) matches the absolute frequency at
the inlet within 0.5% accuracy. An agreement of 8% is found in the thinnest
shear layer jet considered (R/θ = 25). The conclusions drawn in Ref. [69]
from the investigation of jets with R/θ = 10 and over a range of temperature
ratios 0.1 ≤ S ≤ 1 are found to hold true also in jets with thinner initial shear
layers. However, the numerical results indicate that in thin shear layer jets
the validity of the theoretical frequency selection criterion [27] is restricted
to the immediate vicinity of the global instability threshold.

The numerical observations pertaining to the onset of global instability
and the selection of the global frequency seem to be consistent with the
‘mode II’ oscillations reported in the experiments of Monkewitz et al. [82].
In agreement with Kyle & Sreenivasan [62], no oscillating states have been
detected that would correspond to ‘mode I’ of Ref. [82]. The comparison
remains qualitative, because the experimentally investigated range R/θ ≥ 35
[82, 62] could not be attained in the present study. Above the upper limit
R/θ = 25, free vortical structures in the outer flow quickly contaminate the
numerical inflow region.

The inner structure of the rolled-up ring vortices in hot jets has been
documented. It is characterized by thin vorticity layers of alternating sign,
wrapped around a compact core. This layer structure has been shown to
arise from vorticity production due to the baroclinic torque.

It may be concluded that the nonlinear global mode model of Couairon
& Chomaz [27] accurately describes the physical mechanism that causes the
onset of global instability in hot jets: a nonlinear wave front moves upstream
in an absolutely unstable environment, until it is blocked at the upstream
boundary. In the asymptotic state, the front then imparts its linearly selected
frequency to the entire flow. In supercritical flow situations, the model [27]
foresees a departure of the global frequency from the absolute frequency, as
the spatial envelope of the oscillations must satisfy a matching condition
between a region of exponential growth and the upstream boundary condi-
tions. Whether this mechanism alone accounts for the numerically observed
discrepancy between absolute and global frequencies in highly supercritical
thin shear layer jets remains to be clarified.
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4.4 Further remarks

4.4.1 Influence of inflow boundary conditions

The crucial importance of clean numerical boundary conditions, in particular
with regard to the frequency selection, has been stressed in section 4.3.4.
An earlier published study [68], where zero order boundary conditions have
been used at the inlet, is included as an appendix to this manuscript for
quantitative comparison.

Laufer & Monkewitz [64] have proposed a scenario for the influence of
boundary conditions on the possible global instability of a class of isother-
mal jets: these authors assume that synchronized oscillations may arise from
a resonance between the vortex pairing station, as a source of sound gen-
eration, and the jet inlet, where acoustic waves are partially converted to
downstream traveling instability waves. Such an acoustic feedback would
constitute a mechanism for the occurrence of synchronized states radically
different from the global modes investigated in this chapter. From the results
presented here, it can be safely concluded that the global instability observed
in the direct numerical simulations is due to the presence of an absolutely
unstable region in the baseflow, as opposed to acoustic resonance. The inves-
tigation presented in the appendix confirms this conclusion: the frequency
selection criterion derived by Laufer & Monkewitz [64] for an acoustically
driven synchronization fails to predict the observed global frequencies.

Yet, if the present study has allowed to identify the physical mechanism
by which hot jets become globally unstable, it has at the same time demon-
strated that the underlying theoretical model falls short of providing a reliable
quantitative prediction of the global frequency in hot jets far from threshold.
In the simulations, the inlet boundary conditions play a determining rôle in
the frequency selection process. The same must be expected to hold true in
experimental settings. If numerical simulations are to be used as a tool for
the prediction of global jet dynamics in real life situations, the quality of the
results will largely depend on a faithful numerical reproduction of nozzle ef-
fects. Including the quantitative influence of non-trivial boundary conditions
into the theoretical model promises to be a very challenging task. A simpli-
fied model of the unsteady Kutta condition at the trailing edge of a splitter
plate in compressible flow has been proposed by Bechert et al.[5]. The com-
plexity of the issue in convectively unstable shear flows alone is discussed in
a review article by Crighton [30].
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Figure 4.21: Pseudo-turbulent structures in the simulation of a jet with
R/θ = 15, S = 0.3. (a) Total azimuthal vorticity; blue: Ω ≤ −1.5, red:
Ω ≥ 1.5. True range: −4.8 ≤ Ω ≤ 8.0. (b) Total density; red: ρ ≤ 1, blue:
ρ ≥ 3.3. True range: 0.98 ≤ ρ ≤ 3.63.

4.4.2 Pseudo-turbulent states in thin shear layer jets

As briefly described in section 4.3.4, numerical simulations of strongly heated
thin shear layer jets display vortical structures in the outer flow, reminiscent
of two-dimensional turbulence as observed, for instance, in the soap film
experiments of Couder, Chomaz & Rabaud [28]. Pictures of the resulting
vorticity and density distributions are displayed in figure 4.21 for a rather
extreme situation.

Due to their visual resemblence, it is tempting to seek a connection be-
tween the ejection of free vorticity dipoles in the present axisymmetric sim-
ulations and the experimentally observed formation of side jets (Monkewitz
et al.[82]). Yet, the studies of Monkewitz & Pfizenmaier [84] and of Brancher
et al.[12] have clearly demonstrated that these side jets are the result of three-
dimensional effects. Whether the axisymmetric instability that leads to the
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chaotic structures in figure 4.21 may be involved in early stages of side jet for-
mation, or whether it may provide a route to turbulence, cannot be decided
from our present understanding.



Chapter 5

Acoustic field of a global mode

Objective

The aim of the following investigation is to characterize the acoustic field as-
sociated with the global mode in a hot jet, as observed in the direct numerical
simulations discussed in the previous chapter. The directivity pattern of the
sound radiated at the global frequency will be described for a suitable glob-
ally unstable flow configuration, and the simulation data will be compared
to results obtained from the acoustic analogy due to Lighthill [71]. An anal-
ysis of the contributions of individual source terms in the Lighthill equation
leads to identify the dominant noise generation mechanisms. Strategies for
the use of the Lighthill equation in the analysis of jet noise are explored, and
some difficulties related to the analogy’s capabilities as a predictive tool are
exposed.

5.1 Integration of the Lighthill equation

Lighthill [71] obtained an inhomogeneous wave equation for acoustic fluctua-
tion quantities from a simple algebraic manipulation of the exact continuity
and momentum equations. In Cartesian coordinates xi, and with the physi-
cal assumptions made in sections 4.2 and 4.3, the complete Lighthill equation
for pressure fluctuations reads (see Crighton [29] and Dowling [37])

1

c2
∞

∂2p′

∂t2
− ∂2p′

∂x2
i

=
∂2Tij

∂xi∂xj

− ∂2ρe

∂t2
, (5.1)
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where c∞ denotes the speed of sound in the far field. The Lighthill stress
tensor

Tij = ρbub,iu
′

j + (ρui)
′ub,j + (ρui)

′u′j − τ ′ij (5.2)

is composed of Reynolds stresses and viscous terms, while the ‘excess density’

ρe = ρ′ − p′/c2
∞

(5.3)

is related to entropy fluctuations. Expressed as (5.1), the Lighthill equation
is exact.

One possible way to proceed is to solve for p′ via numerical time inte-
gration of equation (5.1), simultaneously with a DNS of the near field, from
which the right hand side terms are determined at each time step. Contri-
butions to the acoustic far field due to individual source terms can then be
examined separately. This strategy has been applied, for instance, by Freund
[42] and by Boersma [9].

The more classical approach, known as the Lighthill acoustic analogy,
is pursued in the present investigation: the left hand side of equation (5.1)
is regarded as the acoustic wave propagation operator, and a solution for
the acoustic pressure is sought in terms of a Green function that is to be
evaluated for the the right hand side source terms of (5.1). The derivation
below follows the analysis of Crighton [29].

A first approximation is introduced by choosing the free space Green
function

G(x, ξ, t′, t) =
δ(t− t′ − |x− ξ|/c∞)

4π|x− ξ| (5.4)

to describe the acoustic signal observed at the far field position ξ at time t,
radiated from the source position x at time t′. This approximation neglects
the influence of density and velocity inhomogenities within the jet on acoustic
waves, and it is valid only if the propagation distance through the jet region
is small compared to the acoustic wavelength. With (5.4), a first formal
solution to (5.1) is found as

p′(ξ, t) =
∂2

∂xi∂xj

∫

[

Tij

] d3x

4π|x− ξ| −
∂2

∂t2

∫

[

ρe

] d3x

4π|x− ξ| . (5.5)

The integrands
[

Tij

]

,
[

ρe

]

are to be evaluated at the retarded time t− |x− ξ|/c∞.
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With the Fraunhofer far field approximation

t− |x− ξ|
c∞

→ t− ξ

c∞
+

x · ξ
ξ c∞

|x− ξ|−1 → ξ−1

∂

∂xi

→ − ξi
ξ c∞

∂

∂t
,

where ξ is written for |ξ|, the solution (5.5) becomes

p′(ξ, t) =
ξiξj

4πξ3c2
∞

∂2

∂t2

∫

[

Tij

]

d3x− 1

4πξ

∂2

∂t2

∫

[

ρe

]

d3x . (5.6)

Finally, with the temporal and spatio-temporal Fourier transformations
defined as

f̂(x, ω) =

∫

f(x, t) eiωtdt (5.7)

f̃(k, ω) =

∫∫

f(x, t) ei(ωt−k·x)d3x dt , (5.8)

the temporal Fourier-transformed acoustic pressure reads

p̂(ξ, ω) = − k2
a

4πξ
eikaξ ξiξj

ξ2

∫

T̂ij(x, ω)e−ika·x d3x

+
ω2

4πξ
eikaξ

∫

ρ̂e(x, ω)e−ika·x d3x (5.9)

= − k2
a

4πξ
eikaξ ξiξj

ξ2
T̃ij(ka, ω) +

ω2

4πξ
eikaξ ρ̃e(ka, ω),

where the acoustic wave number is taken as

ka =
ω

c∞
eξ . (5.10)

As pointed out by Crighton [29], the acoustic radiation observed at a far field
location ξ is caused by a single spectral component of the Lighthill source
terms: a plane wave of wavenumber ka, travelling in the radiation direction.
Bastin, Lafon & Candel [3] compared numerical results obtained from various
formulations of the Lighthill solution. In particular, it has been shown that
for a numerical treatment the Fourier-transformed formulation (5.9) must
be preferred over a formulation that relies on retarded times, like expression
(5.6).
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5.1.1 Axisymmetric source terms

Under the assumption of an axisymmetric source term distribution, the three-
dimensional equation (5.9) was rewritten by Huerre & Crighton [52] for the
particular case of a Gaussian envelope function Tij(r, x) ∝ exp(−x2/σ2), and
in a more general form by Fleury [39]. The formulation of Fleury is extended
here to include viscous and entropy-related source terms.

Source locations in equation (5.9) are expressed in cylindrical coordinates
(x, r, ϕ), while the observer location ξ in the axisymmetric far field is charac-
terized by its spherical coordinates (ξ, ϑ). The observation angle ϑ is taken
relative to the downstream jet axis. The resulting source term integral can
be solved numerically in all three (x, r, ϕ) directions (see Mitchell et al.[80]),
yet Huerre & Crighton [52] have demonstrated that the circumferential inte-
gration admits closed-form solutions. After integration in ϕ, equation (5.9)
becomes

p̂(ξ, ϑ, ω) = −k
2
a

2ξ
eikaξ

∫∫

(Ixx + Irx + Irr + Iϕϕ − c2∞Ie) r dr dx, (5.11)

with the integrand given by

Ixx = J0(α) cos2 ϑ e−ikax cos ϑ T̂xx(x, r, ω) (5.12)

Irx = i2J1(α) sinϑ cosϑ e−ikax cos ϑ T̂rx(x, r, ω) (5.13)

Irr =
1

2
[J0(α)− J2(α)] sin2 ϑ e−ikax cos ϑ T̂rr(x, r, ω) (5.14)

Iϕϕ =
1

2
[J0(α) + J2(α)] sin2 ϑ e−ikax cos ϑ T̂ϕϕ(x, r, ω) (5.15)

Ie = J0(α) e−ikax cos ϑ ρ̂e(x, r, ω). (5.16)

The argument of the Bessel functions is α = −kar sinϑ. Expression (5.11)
explicitly gives the far field pressure amplitude in terms of a spatial phase, a
radial decay ∝ ξ−1, and a ϑ-dependent far field directivity function:

p̂(ξ, ϑ, ω) =
eikaξ

ξ
D(ϑ) → D(ϑ) = ξ |p̂(ξ, ϑ, ω)| . (5.17)

The Bessel functions Ji(α) represent the effect of azimuthal interference,
whereas the cos2 ϑ, sin2 ϑ and cosϑ sinϑ factors produce the well-known
quadrupole directivity of sources related to the viscous and Reynolds stresses.
Note that the entropy-related term Ie a priori takes the form of a monopole
source.
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The source distributions T̂ij(r, x, ω), ρ̂e(r, x, ω) are available from the
DNS. The associated far field pressure p̂(ξ, ϑ, ω) according to the Lighthill
equation can then be evaluated by numerically solving the integration over
r and x in equation (5.11).

Radially compact source terms

Following the approach of Huerre & Crighton [52], the aeroacoustic source
distributions in a jet can be assumed to be compact in the radial direction,
whereas their axial distribution may strongly influence the far field directivity
pattern. As in the analysis of Fleury [39], the source terms are modelled as
being concentrated in the center of the shear layer at r = 1 such that

T̂ij(x, r, ω) = T̂ x
ij(x, ω) δ(r − 1), (5.18)

and therefore

T̂ x
ij(x, ω) =

∫

∞

0

T̂ij(x, r, ω) r dr . (5.19)

A radially compact entropy source term ρ̂x
e(x, ω) is obtained accordingly.

Under this assumption, equation (5.11) simplifies to

p̂(ξ, ϑ, ω) = −k
2
a

2ξ
eikaξ (Ix

xx + Ix
rx + Ix

rr + Ix
ϕϕ − c2∞Ix

e ) , (5.20)

with

Ix
xx = J0(α) cos2 ϑ T̃ x

xx(ka cosϑ, ω) (5.21)

Ix
rx = i2J1(α) sinϑ cosϑ T̃ x

rx(ka cosϑ, ω) (5.22)

Ix
rr =

1

2
[J0(α)− J2(α)] sin2 ϑ T̃ x

rr(ka cosϑ, ω) (5.23)

Ix
ϕϕ =

1

2
[J0(α) + J2(α)] sin2 ϑ T̃ x

ϕϕ(ka cosϑ, ω) (5.24)

Ix
e = J0(α) ρ̃x

e(ka cosϑ, ω). (5.25)

The Bessel functions now take the argument α = −ka sinϑ.

This formulation, if the assumption of radial compactness holds, is par-
ticularly convenient for an analysis of aeroacoustic sound generation, as the
influence of the spatial source term distribution on the directivity pattern
of the radiated sound is explicitly expressed in terms of the one-dimensional
Fourier transform along x. For long wavelengths, ka ≪ 1, the variations
of the Bessel functions are negligible. The directivity of the acoustic field



140 Acoustic field of a global mode

is then given as the superposition of viscous and Reynolds stress related
quadrupoles and one entropy-related monopole, each term modulated along
ϑ by an “antenna factor” [52], according to the variation of the spatial Fourier
spectrum T̃ x

ij(ka cosϑ, ω), ρ̃x
e(ka cosϑ, ω) of the corresponding source term

over the interval −ka ≤ k ≤ ka. As a general rule, a source distribution of
large streamwise extent in physical space displays strong variations along k
in Fourier space, and therefore may radiate a highly directional sound field.
The Fourier spectrum of a more localized sound source, by contrast, varies
slowly in k. In the limit of fully compact source distributions

T̂ij(x, r, ω) = T̂ δ
ij(ω) δ(x) δ(r − 1) (5.26)

⇒ T̂ δ
ij(ω) =

∫∫

T̂ij(x, r, ω) r dr dx , (5.27)

the antenna factors vanish, and the contributions of the individual source
terms in equation (5.20) simplify further to

Iδ
xx = J0(α) cos2 ϑ T̂ δ

xx(ω) (5.28)

Iδ
rx = i2J1(α) sinϑ cosϑ T̂ δ

rx(ω) (5.29)

Iδ
rr =

1

2
[J0(α)− J2(α)] sin2 ϑ T̂ δ

rr(ω) (5.30)

Iδ
ϕϕ =

1

2
[J0(α) + J2(α)] sin2 ϑ T̂ δ

ϕϕ(ω) (5.31)

Iδ
e = J0(α) ρ̂δ

e(ω). (5.32)

5.2 Test: a linearly diverging forced jet

5.2.1 Baseflow

A test case is designed to correspond closely to the assumptions made about
the hydrodynamic field in the study of Huerre & Crighton [52]. A linearly
diverging jet of momentum thickness θ(x) ∝ x is forced at a frequency which
is locally unstable near the inlet, but becomes stable at some downstream
distance. Assuming that ki ∝ θ, local linear stability theory predicts a
Gaussian variation of the perturbation amplitude along x [52]. The aim of
this test case is to produce such a Gaussian instability wave packet as a
nominally compact acoustic source, i.e. with a half-width much smaller than
the acoustic wavelength λa. The streamwise variation of θ must therefore
be sufficiently fast to yield a narrow envelope width, and at the same time
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Figure 5.1: Grid point distribution used in the direct numerical simulation
of a linearly diverging jet; sponge zones in grey.

should respect the assumption of a locally parallel baseflow in order for the
local instability analysis to hold.

The chosen baseflow starts out with a momentum thickness θ = 0.1 and
grows to θ = 0.5 between x = 0 and x = 40. Throughout the rest of the phys-
ical region down to x = 70 and in the adjacent sponge region 70 < x ≤ 150,
the baseflow remains parallel. Near x = 0, the spreading rate ∂xθ changes
smoothly from zero to 0.1 and smoothly back to zero near x = 40. If the
flow is forced with appropriate instability eigenfunctions at x = 0, test cal-
culations with various forcing frequencies have shown that the instability
wave packet develops cleanly, but the acoustic far field is dominated by di-
rect sound emitted from the forcing at the upstream boundary. In order to
minimize this spurious radiation, a parallel flow region with θ = 0.1 is added
upstream of the spreading jet. Instability waves grow exponentially within
the parallel flow, and the amplitude of the upstream forcing can therefore
be significantly lowered. The length of the parallel flow region must be cali-
brated such that the forcing amplitude is several orders of magnitude below
the peak amplitude of the instability wave packet, but at the same time the
explicitly applied forcing must remain dominant over spurious fluctuations
at the numerical inlet, that may be provoked by upstream traveling acoustic
waves. A length of −20 ≤ x < 0 has been found to be optimal. A shorter
length of 15 yields the same results for the near field development, a length
of 30 gives rise to a contamination from spurious acoustic forcing at the inlet
boundary conditions.

The baseflow profiles are not computed from an analytical model, but
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from a numerical solution of the boundary layer equations (see section 3.3).
The x-axis is then mapped in such a way as to give the linear θ(x) dis-
tribution, and the resulting ub(x, r) field is interpolated on the grid point
distribution shown in figure 5.1. Finally, vb is recalculated from div ~ub = 0
using second-order finite differences. Pressure, temperature and density of
the baseflow are uniform throughout the domain.

5.2.2 Forcing

A Gaussian envelope function of the instability wave packet amplitude evolves
if the spatial growth rate −ki decreases linearly with x (Huerre & Crighton
[52]). A spatial instability analysis of the baseflow described above shows
that this assumption is adequate if ωf > ωmax, with ωmax the spatially most
amplified frequency of the inlet profile. For an optimal amplification of the
forcing frequency within this zone, ωf should in practice be chosen close to
ωmax. The spatial growth rate −ki as a function of forcing frequency ω is
given in figure 5.3a for the inlet profile (R/θ = 10). A value of ωf = 2 is
used in these calculations. At a Mach number Ma = 0.1, this choice results
in an acoustic wavelength λac = 10π. The precise eigenfunctions of velocity,
density and pressure perturbations for ωf = 2 are used for the inflow forcing.

5.2.3 Near field results

The temporal evolution of the forced flow is computed directly according to
the linear equations of motion. The Reynolds number is chosen as Re = 1000.
As the inflow forcing sets in abruptly at the start of the computation, with an
initially unperturbed baseflow, a transitional wavepacket forms. Once this
wavepacket is convected out of the computational domain, a periodic flow
state is reached, highly synchronized at ωf = 2 at all streamwise stations.
The amplitude envelope function of the pressure perturbation at r = 1 along
x, displayed in figure 5.2, grows exponentially over the parallel flow region
x < 0 and is close to a Gauß distribution for x > 0. The envelope width,
defined as the streamwise distance between the two stations where |p| =
|p|max e

−1, is 2σ = 12.5 ≈ 0.4λac. The ratio of the maximum and the forcing
amplitude is 4.6 × 105. Downstream of the maximum location, down to
x = 40, the perturbation amplitude decreases to approximately the level of
the forcing applied at the inflow. A slower decay of what appears to be
residual fluctuations, probably a stable k+ wave, is observed downstream
of x = 40, also highly synchronized at ωf = 2. It has been verified by
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Figure 5.2: Amplitude envelope of near field pressure oscillations at r = 1 as
a function of downstream distance.

comparison with further spreading baseflows that these fluctuations are not
due to the re-parallelization of the baseflow at x = 40.

The local spatial growth rate in the non-parallel flow, obtained from the
simulation as −knum

i = ∂(ln |p|)/∂x, is compared to the results of the strictly
parallel local stability analysis in figure 5.3b: the instability wavepacket is
well described under the assumption of a locally parallel baseflow. Note that
the theoretical curve in figure 5.3b ends at x = 15; the k+ branch could not be
retrieved beyond this point due to numerical difficulties with the dispersion
relation for very thick shear layers.

5.2.4 Acoustic field in the DNS

The acoustic far field from the numerical simulation is investigated in terms
of the temporal Fourier coefficient of the pressure p̂(r, x, ωf ). In the synchro-
nized flow regime, the real pressure is given by p(r, x, t) = p̂(r, x, ωf ) e

iωf t+c.c.
The Fourier coefficient at each computational grid point is computed dur-
ing the simulation, once the periodic state has been reached, over one cycle
period as

p̂(r, x, ωf ) =
1

N

N
∑

j=1

p(r, x, tj) (cosωf tj + i sinωf tj) (5.33)
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Figure 5.3: (a) Spatial growth rate as a function of frequency for the R/θ =
10 profile in the upstream parallel region; (b) spatial growth rate as a function
of x for ωf = 2. Solid: local instability analysis, dashed: −knum

i obtained
from the pressure amplitude envelope in the DNS.

with tj = t0 + j∆t, N =
2π

ωf ∆t
.

Absolute values of the resulting p̂(x, r, ωf ) distribution are shown in figure
5.4. Only isocontours in the acoustic field are represented. Three acoustic
lobes are visible in the (r, x) half-plane, separated by extinction lines at angles
of 62 and 126 degrees from the jet axis. Both lines cross the axis at x = 2,
which is taken as the apparent source location. The directivity factor D(θ)
(as defined in equation 5.17) is evaluated by interpolating the values ξ |p̂| in
equidistant points on an arc of radius ξ around the apparent source location.
The results obtained for radii ξ = 20, 30 and 40 are compared in figure 5.5. It
is found that the directivity is almost independent of the radius ξ already at
ξ = 20. The sound pressure level in figure 5.5 is given in decibels according
to

SPL = 20 log10

(

D(ϑ)

pref

)

. (5.34)

The transition from the hydrodynamic field to the acoustic field is ex-
plored in figure 5.6: Along the ray (x = 2, r), the pressure amplitude decays
exponentially for r < 5. Beyond this point, the decay is algebraic. Within the
acoustic near field, stretching over approximately one wavelength λa = 10π,
the slope adjusts to the asymptotic decay |p̂| ∝ ξ−1. The acoustic pressure
amplitude at r = 20 and the maximum near field pressure amplitude are
separated by seven orders of magnitude.
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Figure 5.4: Pressure amplitude |p̂(r, x, ωf )| in the acoustic far field, exponen-
tially spaced isocontours. Apparent sound source on the jet axis at x = 2,
three arcs of radius 20, 30 and 40.
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Figure 5.5: Far field directivity D(ϑ) from the DNS along three arcs of radius
ξ = 20 (green), ξ = 30 (red), ξ = 40 (blue).
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Figure 5.6: Radial variation of the pressure amplitude |p̂(r, x = 2)|. (a) Ex-
ponential decay in the near field; (b) algebraic decay in the far field.
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Figure 5.7: Directivity of the acoustic far field according to the DNS at
ξ = 40 (•) and ξ = 20 (×); and according to the Lighthill equation (—)
without compactness assumption.

5.2.5 Acoustic field according to the Lighthill equation

No compactness assumption

For comparison with the DNS solution, the acoustic far field according to
the Lighthill equation is first computed from (5.11) without any assump-
tion about the compactness of the source region. The source distributions
Tij(x, r, t) and ρe(x, r, t) are directly available from the DNS, and their tem-
poral Fourier coefficients are computed in the same way as p̂(x, r, ωf ) from
equation (5.33) over one period during the simulation. The integrands speci-
fied in equations (5.21–5.25) can then be evaluated for any observer angle ϑ,
and the spatial integration in equation (5.11) is performed numerically first
along r, then along x, using the trapezoidal rule. The directivity factor D(ϑ)
of the acoustic far field obtained from the Lighthill equation is compared
to the direct Navier–Stokes solution in figure 5.7. DNS values along arcs of
ξ = 20 (×) and ξ = 40 (•) are combined in this figure.

Agreement between DNS results and those obtained from the Lighthill
equation (5.11) is excellent. The pressure level of the Lighthill solution at
ϑ = 0 has been used as reference value pref in the dB-scaling (5.34) for
both the simulation and the Lighthill results. The extinction angles ϑ = 62◦

and ϑ = 126◦ observed in the simulation are retrieved within 1◦ accuracy
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Figure 5.8: Prediction of the far field directivity according to the Lighthill
equation: (—) without compactness assumption, (---) sources compact in r,
(· · · ) sources compact in r and x.

in the Lighthill solution. In the interior of the lobes, both solutions match
within less than 0.5 dB, except very near the upstream boundary of the
computational domain.

Figure 5.7 also clearly demonstrates that the sound field computed in
the direct numerical simulation is barely affected by the numerical boundary
conditions. A slight deformation of the directivity curve is observed along
the ξ = 40 arc (bullet symbols) at angles 115◦ < ϑ < 125◦, i.e. less than
five jet radii away from the upstream boundary. The numerical treatment at
all computational boundaries is seen to yield highly accurate results for the
acoustic field in the interior of the domain.

Compact sources

Assuming that the source distributions are acoustically compact in r, the
sound field in the present flow example is computed from the simplified
Lighthill solution (5.20). The resulting far field directivity is compared to
the solution obtained from the non-compact source terms in figure 5.8: the
dashed and solid curves are nearly identical. Acoustic interference from ra-
dial source variations has indeed a negligible impact on the far field in the
present flow case.

Also shown in figure 5.8 is the directivity pattern obtained under the as-
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Figure 5.9: Acoustic directivity pattern according to equation (5.20) with
(solid) and without (dashed) the entropy-related source term ρ̂x

e .

sumption of fully compact sources (5.20). The lobe structure of the acoustic
field is very well predicted from just the superposition of compact multipoles.
The upstream and downstream lobes are of equal amplitude in this approx-
imation, but the omitted antenna factor in the present example only causes
a 3 dB difference between the ϑ = 0◦ and 180◦ directions.

The entropy-related source term ρe is often neglected in calculations of
the Lighthill equation for isothermal flows. However, in agreement with
the results of Mitchell, Lele & Moin [79], the entropy term is found to be
important for an accurate predicition of the acoustic field in the present case.
Figure 5.9 compares the solutions of equation (5.20) with and without the
influence of ρx

e . While the overall lobe pattern is due to the T x
ij terms, the

positions of the extinction angles as well as the amplitude of the lobe around
ϑ = 90◦ are noticably altered by the contribution of entropy sound.

5.3 Acoustic radiation from a globally unsta-

ble jet

5.3.1 Acoustic field in the DNS

The typical characteristics of the acoustic field associated with the global
mode of a hot jet are investigated for the case studied in section 4.2.5 with
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Figure 5.10: Pressure amplitude |p̂(r, x, ωg)| in the acoustic far field, expo-
nentially spaced isocontours. Apparent sound source on the jet axis at x = 9,
arc of radius 30.

parameters R/θ = 10, S = 0.3, M = 0.1 and Re = 1000. No vortex pairing
occurs in this flow configuration, the radiated sound therefore is monochro-
matic, tuned to the synchronization frequency ωg = 0.728. The acoustic
wavelength is then λa = 2πc∞/ωg = 47.3. The physical region of the compu-
tational domain was chosen rather large (0 ≤ x ≤ 80, 0 ≤ r ≤ 46), and the
acoustic far field therefore can be expected to be accurately resolved. Iso-
contours of the acoustic amplitude |p̂(x, r, ωg)| are shown in figure 5.10. The
acoustic field is composed of two lobes, with an extinction angle at about
90◦. The apparent source location is x = 9. Values of |p̂| are interpolated
along an arc of radius ξ = 30 for a quantitative examination. Figure 5.11
reveals that the directivity pattern is that of a dipole.

5.3.2 Acoustic field according to the Lighthill equation

Evaluation of the Lighthill solution (5.11) with all source terms obtained
from the DNS, integrated over the whole physical domain without any com-
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Figure 5.11: Acoustic directivity D(ϑ) as found from the DNS (•), compared
to a dipoleD(ϑ) ∝ cosϑ (dashed line). Prediction from the Lighthill equation
with (•) and without (—) assumption of radially compact sources.

pactness assumption, yields the directivity pattern displayed in figure 5.11
(solid line). The Lighthill solution at this point fails completely to predict the
directly computed acoustic field. Also included in figure 5.11 are the results
found under the assumption of radial compactness from equation (5.20). As
in the test case described in the previous section, the acoustic sources seem
to be well approximated as being compact in the radial direction. For con-
venience, the further investigation will focus on the radially compact source
terms T̂ x

ij, ρ̂
x
e . All viscous terms have been retained, although their effect on

the acoustic field is indeed found to be negligible.

The axial variations of the radially compact source distributions are pre-
sented in figure 5.12 in terms of their absolute values and phase. The phase
is only shown for ρ̂x

e , but the picture is very similar for all other source terms.
The amplitude functions in figure 5.12a all display a sharp front near x = 0,
and a slow decay downstream of the vortex roll-up location around x = 10.
So slow indeed that |ρ̂x

e | only decreases by a factor of 35 between the position
of its maximum and the end of the physical domain. The truncation of the
integration interval at x = 80 in equation (5.20) therefore is likely to produce
significant errors in the spatial Fourier spectrum.
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Extrapolated source distributions

Mitchell et al.[79, 80] faced the same problem in their computations of the
acoustic field of forced isothermal round jets. These authors propose to
extrapolate the source term distributions from the end of the computational
domain over a sufficiently long downstream region prior to the evaluation of
the Lighthill solution. The results obtained from this procedure are in good
agreement with the directly computed acoustic fields of Mitchell et al.[80].
For the hot jet case investigated here, figure 5.12a indicates indeed that the
downstream decay of the source term amplitudes is nearly exponential, and
that the axial wavenumber is nearly constant. Following the procedure of
Mitchell et al.[80], the source terms T̂ x

ij, ρ̂
x
e downstream of x0 = 40 are taken

to develop as

f(x) = f(x0) e
ikx(x−x0) with kx = −if

′(x0)

f(x0)
(5.35)

down to x = 400. The shape of the extrapolated |ρ̂x
e | distribution is shown

in figure 5.13.

The Lighthill prediction obtained from the extrapolated source terms, ac-
cording to (5.20), is compared to the DNS results in figure 5.14: The solid
line represents the total sound emitted by all source terms, the dashed line
shows the contribution of the entropy-related term ρ̂x

e alone. Both curves
are nearly identical. The dB scaling takes the Lighthill solution at ϑ = 0◦

as reference value for all curves. The amplitude at low angles ϑ is very
accurately predicted, and the overall dipole character is satisfactorily recov-
ered. However, the extinction angle in the Lighthill solution is shifted by
15◦ with respect to the DNS data. In spite of this imperfect match, it seems
safe to conclude from figure 5.14 that the entropy source is dominant in this
flow configuration, whereas contributions from the Reynolds stresses to the
acoustic field are negligible.

Since the entropy-related term in (5.20) appears in the explicit form of
a monopole source, the dipole-like radiation observed in the hot jet example
under investigation must result from subtle phase cancellation effects due to
the spatial modulation of ρ̂x

e . In the formulation (5.20), these effects are con-
tained in the Fourier transform ρ̃x

e(ka cosϑ, ω). These spectral distributions
are examined in figure 5.15. FFT-spectra of the original source distribution,
defined over 0 ≤ x ≤ 80, and of the extrapolated source are compared in
figures 5.15a, b: over a range of the dominant wavenumbers, say 1 < k < 4,
both spectra are essentially identical. By contrast, the spectral components
in the vicinity of k = 0 are strongly affected by the truncation of the domain
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Figure 5.14: Directivity computed from the Lighthill equation (5.20) with
extrapolated source terms, compared to DNS data (•). Solid line: total
acoustic field from all source terms, dashed line: acoustic field of the entropy
term alone.

at x = 80, visible in figure 5.15c. The dashed line shows the spectrum of
the truncated source distribution, the solid line is obtained from the extrap-
olated source. The acoustically relevant portion of the Fourier transform,
−ka ≤ k ≤ ka with ka = 0.132, is indicated by dotted lines. Comparison
of this small interval of low spectral density to the full spectrum gives an
idea of the precision that is required if a reliable prediction of the acoustic
field is sought based on the spatial source term distribution. In particular,
the sensitivity of the position of the dip in the solid line near k = 0, which
determines the extinction angle in the Lighthill solution, does not seem sur-
prising. Figure 5.15d shows the real (solid) and imaginary (dashed) part of
ρ̃x

e(k, ω), obtained from the extrapolated source. If both were zero at k = 0,
the predicted extinction angle would be found at ϑ = 90◦, in agreement with
the DNS results.

It is clear from the discussion of figure 5.15 that the axial non-compactness
of the entropy-related acoustic source is essential when a dipole field is caused
by a nominally monopole-type source. The data available from the present
simulations is sufficiently accurate to allow for such an analysis. Yet, for a
precise prediction of the extinction angles, similar to the test case of section
5.2, it is necessary to use source terms in the Lighthill formulation that are
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Figure 5.15: Fourier transform ρ̃x
e(k, ωg). (a) FFT spectrum |ρ̃x

e(k, ωg)| of the
original source distribution; (b) FFT spectrum |ρ̃x

e(k, ωg)| of the extrapolated
source distribution; (c) Zoom of the spectra in (a, b) around k = 0, solid:
extrapolated source, dashed: original source, dotted: ±ka; (d) Real (solid)
and imaginary (dashed) parts of ρ̃x

e(k, ωg) computed from the extrapolated
source.
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explicitly of the appropriate multipole type. The following section attempts
to identify explicit acoustic dipole sources due to entropy effects.

5.3.3 Decomposition of the entropy-related source term

According to Dowling [37], the entropy-related source term in dimensional
quantities can be decomposed in the following way:

∂2ρe

∂t2
=

∂

∂t

ρ∞
cpρT

(

κ∆T ′ − ∂ui

∂xj

τij

)

(5.36)

− 1

c2
∞

∂

∂t

[(

1− ρ∞c
2
∞

ρc2

)

Dp

Dt
− p′

ρ

Dρ

Dt

]

− ∂2(uiρe)

∂t ∂xi

,

where all unprimed symbols represent total flow variables. Only the last term
is explicitly of a dipole type. It describes the effect of momentum changes of
density inhomogenities, which may indeed be expected to be appreciable in
an oscillating hot jet. For shorter writing, let

mx = (uxb + u′x)ρe , mr = (urb + u′r)ρe. (5.37)

In a similar way as in (5.11), the contribution p̂e,di of this term to the acoustic
far field is expressed as

p̂e,di(ξ, θ, ω) =
ω2

2c∞

eikaξ

ξ

∫∫

[

J0(α) cosϑ m̂x(x, r, ω) (5.38)

+i J1(α) sinϑ m̂r(x, r, ω)
]

e−ikax cos ϑ r dr dx.

Under the assumption of radial compactness, the explicit dipole compo-
nent of the entropy sound can be computed as

p̂e,di(ξ, θ, ω) =
ω2

2c∞

eikaξ

ξ
Ix
e,di , (5.39)

with

Ix
e,di = J0(α) cosϑ m̃x

x(ka cosϑ, ω) + iJ1(α) sinϑ m̃x
r (ka cosϑ, ω) , (5.40)

m̃x
[x,r](k, ω) =

∫∫

m̂[x,r](r, x, ω) e−ikx r dr dx. (5.41)

The acoustic field p̂e,di computed from equation (5.39) with the physical
region 0 ≤ x ≤ 80 as integration interval is compared to the directly com-
puted solution in figure 5.16 (blue line). The extinction angle is very well
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Figure 5.16: Acoustic directivity of entropy dipole sources m̂x
r , m̂

x
x compared

to the DNS results (•): Direct evaluation of equation (5.39) (— blue); Eval-
uation of m̃x

x, m̃
x
r from interpolation of the FFT spectrum (---- black), as

displayed in figure 5.17b.
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Figure 5.17: Fourier transform of m̂x
r . (a) FFT spectrum; (b) spectrum

around k = 0: points from FFT (×); numerical Fourier integration as in
equation (5.41) (— blue); interpolation of the FFT spectrum (---- black),
excluding k = 0.
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retrieved, but the amplitude level at small angles is underpredicted by 4dB,
which corresponds to a factor 1.6 in the pressure amplitude. The truncation
of the integration domain at x = 80 causes an undulation of the predicted
directivity curve. As before, the source terms could be extrapolated in x.
Depending on the parameters used in the extrapolation, this procedure can
yield some improvement (not shown). However, a cleaner method can be
employed here.

Means to improve the Lighthill solution should first be sought from an
examination of the spectral distributions m̃x

x, m̃
x
r . The m̃x

x(k) variation as
obtained from an FFT algorithm is displayed in figure 5.17a. As a result of
the long acoustic wavelength, the relevant interval −kac ≤ k ≤ kac, magnified
in figure 5.17b, is resolved by only three points, and the value at k = 0 is
clearly affected by the domain truncation. Direct evaluation of the Fourier
integral (5.41) therefore yields a strongly oscillating solution (blue line).Given
the available data, the most accurate way to proceed seems to consist in an
interpolation of m̃x

x(k) over −kac ≤ k ≤ kac, excluding the value at k = 0
which is contaminated by domain truncation. A spline interpolation curve
for ln(m̃x

x) seems to follow well the global trend of the spectral distribution
(black line).

The acoustic directivity computed according to (5.39) from these inter-
polated values is presented in figure 5.16 as a black line. The relative dipole
directivity pattern is very well retrieved, and the extinction angle is predicted
within about 2◦ accuracy. However, the absolute sound pressure level is still
underpredicted by 4dB. The m̃x

x-related cosine dipole is clearly dominant over
the sine dipole. Yet it seems that the relevant entropy-related dipole sound
sources in this flow are not given by the m̃ terms alone.

5.4 Conclusion

Based on the studies of Huerre & Crighton [52] and Fleury [39], the far-field
solution of the Lighthill equation in an axisymmetric geometry has been
formulated for non-compact, radially compact and fully compact source dis-
tributions. In full agreement with the discussion of Huerre & Crighton [52],
axial non-compactness of the Lighthill sources has been found to result in an
antenna factor that modulates the quadrupole radiation pattern of Reynolds
stress-related sources and the monopole pattern of entropy-related sources.
Under the assumption of radially compact sources, this antenna factor is
given explicitly by the spatio-temporal Fourier transform of the axial source
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Figure 5.18: Fourier transform |T̃ x
xx(k)| of the source distribution from the

test case of section 5.2. Dotted lines: ±ka.

distributions, according to equation (5.20).

Investigations of a forced isothermal jet have demonstrated that the cho-
sen formulation of the Lighthill solution yields highly accurate predictions
of the acoustic far field, as compared to direct numerical simulations, in a
case where the near field wave packet is given over its entire streamwise
extent. In the present example, the extinction angles in the acoustic field ac-
cording to DNS and Lighthill solutions match within 1◦, and the maximum
amplitudes of the individual acoustic lobes agree within 0.5 dB accuracy. Al-
though the baseflow is isothermal, entropy-related acoustic radiation is found
to noticeably influence the position of the extinction angles. These results
demonstrate the high quality of the DNS results in the acoustic field, and at
the same time they confirm the validity of the Lighthill far field solution.

According to the predictions of Huerre & Crighton [52], the test case
of section 5.2 should display a superdirective acoustic field, i.e. an antenna
factor of the form

T̃ x
ij(ka cosϑ) = e−A(1−Ma cos ϑ)2 , (5.42)

where A can be estimated as being of the order of 10 for the present config-
uration. The observed antenna factor only yields a 3 dB difference between
ϑ = 0◦ and 180◦, significantly less than expected from (5.42): 3 dB approx-
imately corresponds to A = 0.86. The prediction in the theoretical model
has been derived for an ideal, perfectly Gauß-shaped source term envelope
in an infinite jet. In this case, its Fourier transform T̃ x

ij(k) is also of Gaus-
sian shape. While the numerical test case presented in section 5.2 has been
designed to mimic these conditions as closely as possible, figure 5.18 clearly
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shows that the acoustically relevant interval −0.2 ≤ k ≤ 0.2 of the Fourier
transform T̃ x

xx(k) is dominated by non-Gaussian portions of the spatial en-
velope. Indeed, from the slope of the quasi-Gaussian peaks around k = ±3
in figure 5.18 it can be estimated that their spectral in the vicinity of k = 0
could not even be resolved with 64-bit precision. The sound pressure level
emitted from the quasi-Gaussian part of the source envelope is unobservably
low in this example.

Nonetheless, the validation study of section 5.2 has demonstrated that
the proposed Lighthill formulation may be used as an efficient tool for the
analysis of acoustic radiation from instability structures in axisymmetric jets.
With the insight gained from the test calculation, strategies for further in-
vestigation of superdirective sound radiation can be proposed: In order to
observe the superdirective component of the acoustic field in direct numer-
ical simulations, one will probably have to resort to Mach numbers in the
transsonic or supersonic régime, such that ka is comparable to the wavenum-
ber of the instability carrier wave. A very narrow envelope width of the
instability wave packet in physical space results in a wider Gauß distribution
in Fourier space. Superdirective decline of the acoustic amplitude with the
observation angle ϑ in this case will be slower, but observable over a larger
range of ϑ. Finally, the physical envelope shape of the Lighthill source terms
must be of Gaussian form over a large streamwise interval in both directions
from the maximum amplitude location. With the approach of section 5.2, i.e.

low-level forcing at the inlet of an unstable baseflow, the generation of such a
wave packet in a numerical simulation is restricted by considerable numerical
difficulties. Such a scenario may first be investigated in calculations where
ideal near field oscillations are prescribed directly at all streamwise stations.

The acoustic field radiated by a global mode in a hot jet has been investi-
gated in section 5.3 for a thick shear layer configuration, with an inlet profile
parameter R/θ = 10 and heating ratio S = 0.3. No vortex pairing arises in
this example, the spatial global mode structure therefore is not altered by
secondary instabilities. The direct numerical simulation displays the acous-
tic field of a pure dipole, with maximum amplitude along the jet axis. Due
to the slow streamwise amplitude decay of the acoustic source terms, the
Lighthill solution for the acoustic far field has been found to be strongly con-
taminated by the truncation of the computational domain at x = 80. Good
results have been recovered once the source distributions were extrapolated
over a large streamwise interval down to x = 400, under the assumption
of their radial compactness: At observation angles ϑ < 30◦, the acoustic
far field amplitudes obtained from the numerical simulation and from the
Lighthill prediction agree within 1 dB, and the dipole pattern observed in
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the simulation is well retrieved. However, the extinction angle is predicted
at ϑ = 77◦, as opposed to ϑ = 92◦ in the direct simulation.

The global mode acoustic field is strongly dominated by radiation due to
the entropy-related source term. In the Lighthill solution (5.20), this term
appears as a monopole source. The observed dipole pattern results from
amplitude modulations via the antenna factor, and the prediction of the
extinction angle position therefore is highly sensitive to subtle details of the
spatial envelope shape. An explicit dipole-type entropy source component
has been extracted via a decomposition of the full entropy source term given
by Dowling [37]. The predicted acoustic field due to this isolated component
accurately reproduces the relative directivity pattern of the direct solution,
but the absolute amplitude is underpredicted by 4 dB. It is concluded that
other components of the entropy source term must also contribute to the
total acoustic dipole field. According to Dowling [37], although only the
source component investigated in section 5.3.3 explicitly displays a dipole
directivity in its general analytical form, dipole-type radiation may indeed
be caused by various entropy source components in physical situations.

In the global mode case, Lighthill predictions of the acoustic field suffered
from errors due to the finite size of the computational domain. Two proce-
dures have been successfully applied to manipulate the source term distribu-
tion either in physical space or in Fourier space. For an a posteriori analysis
of the directly computed acoustic field, the proposed Lighthill formalism has
provided valuable insights on the dominant sound generation mechanisms.
By contrast, for the purpose of reliable a priori predictions, the presented
spectral formulation requires a detailed knowledge of the source term dis-
tributions throughout a domain that includes the entire amplitude envelope
down to very low values. In addition, the correct prediction of extinction
angles depends crucially on the appropriate formulation of the source terms.
An interesting topic for future investigations would be how these restric-
tions of a spectral representation of the Lighthill solution translate to the
physical sound generation mechanisms. In other words, to what extent does
the spatial structure of the very low-amplitude wings of an instability wave
packet influence the acoustic directivity in a physical setting? In particular,
the answer to this question may lead to a criterion for the observability of
superdirective sound radiation in numerical and experimental configurations.
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Chapter 6

Épilogue

6.1 Conclusions

The main objective of this dissertation has been to establish whether in-
trinsic synchronized oscillations in hot jets may be described as nonlinear
global modes, according to the theoretical framework recently developed in
the context of Ginzburg–Landau model equations. The main conclusion to
be drawn from the results presented herein is affirmative: nonlinear global
mode theory has indeed proven to successfully predict the features of these
oscillations.

Linear local instability. Theory predicts that the nonlinear global flow
dynamics are determined by linear local mechanisms. A numerical method
for the linear instability analysis of parallel baseflows has been implemented.
Parametric studies have elucidated the competition of jet column and shear

layer modes in the linear impulse response of axisymmetric jets. The dom-
inant absolute mode of zero group velocity is always of the jet column type
and axisymmetric; its temporal growth rate is positive if the jet is sufficiently
hot with respect to the ambient medium. However, in jet profiles typical of
the potential core, the most unstable convected shear layer modes display
much larger temporal growth rates than the jet-column-type absolute mode.

The transition from convective to absolute instability in hot jets has been
demonstrated to arise from the action of the baroclinic torque. In its absence,
heating has no effect on the instability of a jet. Inspection of the absolute
mode eigenfunction has yielded a physical argument for the destabilizing
effect of the baroclinic torque.
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Nonlinear global instability. Global jet dynamics have been investi-
gated via direct numerical simulation. A suitable numerical method for
this purpose has been conceived, relying on highly accurate discretization
schemes and boundary conditions. Simulations of strongly heated jets dis-
play self-sustained oscillations, in qualitative agreement with the experiments
of Monkewitz et al. [82] and Sreenivasan et al. [105].

Numerical results have been quantitatively compared with predictions
drawn from nonlinear global mode theory . A first study was performed for
an idealized infinite baseflow featuring a finite pocket of absolute instability.
The emerging oscillatory state displayed all the features of a global mode
according to the model of Pier et al. [96, 94]. The investigations of realistic
hot jet baseflows in a semi-infinite domain have then been compared to the
theory of Couairon & Chomaz [26, 27]: as predicted, global instability has
been observed to set in at heating ratios slightly below the onset of absolute
instability. A finite minimum length of the absolutely unstable region is
necessary to sustain synchronized oscillations. At different values of the inlet
shear layer thickness, the global frequency near onset has been found to
correspond to the absolute frequency at the inlet.

The simulations have shown that the global frequency shifts to values
above ω0 as the heating exceeds the global threshold value. This trend is
increasingly strong in thin shear layer jets. The measurements of Monkewitz
et al. [82] (see figure 4.17) appear to display the same behavior. Although
this result is not in contradiction with the theory, which only provides a
leading-order frequency prediction near threshold, it contrasts with the be-
havior of wakes: the simulations of Chomaz [18] display perfect agreement
between global and absolute frequency in parallel wakes even for highly su-
percritical parameter settings. A parallel jet example given in section 3.5.4
indicates that non-parallelism in the present simulations is not alone respon-
sible for this difference, but that the numerical boundary conditions have an
appreciable impact on the frequency selection.

Sound radiation. A method has been presented to obtain predictions of
the far field sound from Lighthill’s acoustic analogy, based on the knowledge
of the near field oscillations from the DNS. These predictions allow for a
detailed analysis of the contribution of individual source terms to the total
radiated sound.

Excellent agreement between Lighthill predictions and directly computed
sound has been demonstrated in test calculations for a forced isothermal
jet. The acoustic field in this case is dominated by quadrupole source terms
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related to Reynolds stresses. Yet, similar to the findings of Mitchell et al. [79],
entropy-related sound noticeably influences the position of the extinction
angles. The nearly Gaussian wave packet in this example had been a priori

expected to emit a superdirective acoustic field. An analysis of the Fourier
transform of the spatial source distribution revealed that the observation of
superdirective sound fields in numerical simulations at low Mach numbers is
extremely delicate, as it requires almost perfectly Gaussian tails of the wave
envelope.

The acoustic field of nonlinear global modes in hot jets has been deter-
mined to be that of a dipole. Its radiation is due to entropy-related source
terms, whereas Reynolds stress sources are negligible. An extrapolation of
the source distribution far beyond the exit boundary of the DNS domain had
to be performed in order to reproduce the directly computed far field direc-
tivity from the Lighthill analogy. Since the nonlinear global mode envelope
is far from being a simple Gaussian wave, superdirectivity of the sound field
has not been observed.

The analysis of the global mode acoustic field has once more confirmed
that the Lighthill analogy represents a very useful tool for analytical pur-
poses, if the nature of the sound field is known a priori. For a reliable
prediction of the sound field, the near field wave packet must be resolved
over its entire streamwise extent, including the very low-amplitude regions.
This requirement appears to be a weakness of the formulation of the Lighthill
solution in Fourier space. The directly computed acoustic field of the global
mode is unaffected by the downstream truncation of the computational do-
main, the acoustically active region in physical space is apparently localized
around the station of vortex roll-up.

6.2 Suggestions for future work

The insights gained from the investigation of axisymmetric global instability
in hot jets immediately lead on to the question: how do the intrinsic dynam-
ics persist in a three-dimensional setting? For instance, the experiments of
Monkewitz et al. [82] have indicated that synchronized oscillations may be
accompanied by the formation of spectacular side jets, later interpreted by
Brancher et al. [12] as the result of a three-dimensional secondary instability
of the axisymmetric vortex street. Helical secondary instabilities of rolled-up
vortex rings in hot jet simulations have been reported by Nichols [86]. Also,
vortex pairing as an axisymmetric secondary instability of the nonlinear wave
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train has been observed in the present simulations, as well as in the reference
experiments, but a theoretical analysis remains to be conducted.

Vortex streets in bluff body wakes may be observed in any bathtub,
whereas global modes in hot jets so far appear as a rara avis in terris, only
studied under highly controlled conditions. Whether this phenomenon is of
practical importance, especially in the context of jet engine exhaust, remains
to be determined by investigating larger parameter ranges, including unfa-
vorable conditions like high Mach numbers, turbulent régimes and co-flow.

Numerical results have exposed the sensitivity of global jet dynamics to
the inlet boundary conditions, discussed in sections 3.5.4 and 4.3.4. In order
to predict the global frequency in a jet of practical interest on the basis of
global mode theory, the quantitative influence of nozzle effects will have to be
included into the theoretical model. Such an extension of the theory would
probably have to start again from studies of the Ginzburg–Landau equation,
which could be coupled with a wave equation in order to account for sound
radiation.

The aeroacoustic results of chapter 5 have demonstrated the capacity of
the proposed Lighthill formulation for further jet noise analysis. In particu-
lar, the method may prove useful in the investigation of superdirective sound
radiation, both in the subsonic and supersonic régimes. A strategy for such
an investigation has been outlined in section 5.4. Finally, the study of global
mode sound presented herein has been restricted to a case without vortex
pairing, but the analysis can be extended with relative ease to situations
where vortex pairing occurs.
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Abstract

The occurrence of self–sustained synchronized oscillations in a family of
hot axisymmetric jets is investigated in direct numerical simulations. With
parameter settings close to those used in the experiments of Monkewitz,
Bechert, Barsikow & Lehmann [82], such synchronized states are found nu-
merically to arise when the ambient–to–jet temperature ratio S falls below
a critical value. At a Reynolds number Re = 3750, based on the jet radius,
global oscillations of Strouhal number St ≈ 0.45 occur for S ≤ 0.6, which
corresponds well to the ‘mode II’ state of Monkewitz et al.[82]. The distinct
‘mode I’ oscillations of St ≈ 0.3 reported in the experiments [82] are assumed
to correspond to the subharmonic of a synchronized state that is numerically
observed only to arise at a higher Reynolds number Re = 7500. Both modes
are compared to theoretical predictions pertaining to nonlinear global modes
which may exist due to the presence of absolute instability, as well as to the
subharmonic acoustic resonance model of Laufer & Monkewitz [64]. It is
found that the synchronization of the ‘mode I’ state sets in at temperature
ratios for which the entire flow is convectively unstable. A nonlinear global
mode therefore cannot exist in these cases. The onset of the ‘mode II’ state
occurs in the presence of an absolutely unstable flow region of finite stream-
wise extent; however, even near the global instability threshold, the ‘mode
II’ frequency does not match the absolute frequency at the inlet, as should
be expected from global mode theory. The subharmonic acoustic resonance
model [64], which assumes a feedback loop between the inlet and the sta-
tion of vortex pairing, is found not to apply in any of the observed cases of
self–sustained synchronized oscillations.
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A.1 Introduction

The spontaneous formation of regular large–scale vortical structures in the
absence of external forcing is a commonly observed phenomenon in jet flows
over wide ranges of Reynolds and Mach numbers. In particular, the exper-
iments of Sreenivasan, Raghu & Kyle [105] and Monkewitz et al.[82] have
firmly established that self–excitation leads to perfectly synchronized oscil-
lations in low-density jets if the jet–to–ambient density ratio falls below a
critical value. Studies of the underlying mechanisms that are responsible
for such behavior in hot jets are largely motivated by aeroacoustic problems
related to jet engine exhaust. Specifically, synchronized vortex structures
have been observed to give rise to a superdirective acoustic radiation pattern
(Laufer & Yen [65], Freund [42]).

In the hot air jet experiments of Monkewitz et al.[82], the threshold
value of the ambient–to–jet temperature ratio S for the appearance of self–
sustained synchronized oscillations was found to coincide with the value at
which local absolute instability first occurs (Monkewitz & Sohn [85]). This
result strongly supports the idea that the observed oscillations are the mani-
festation of a global mode of the base flow, the existence of which is due to a
region of absolute instability. Vorticity perturbations within this region can,
by definition, grow faster in time than they are advected, thereby extract-
ing energy from the base flow without being forced externally. According
to global mode theory (see the review of Chomaz [19]), a nonlinear front
may be sustained within the absolutely unstable region, which then gener-
ates instability waves into the downstream convectively unstable flow. The
von Kármán vortex street in the cylinder wake is the paradigm for such a
nonlinear global mode (Pier & Huerre [94]). Just recently, the authors have
demonstrated in a numerical investigation of hot jets at Re = 1000, based
on the jet radius, and with moderately steep velocity profiles, that the ob-
served self–sustained oscillations in such jets display all the characteristics of
a nonlinear global mode due to local absolute instability (Lesshafft, Huerre,
Sagaut & Terracol [69]).

Another possibility for the occurrence of self–sustained synchronized os-
cillations may arise from the presence of a feedback loop consisting of down-
stream traveling vortical instability waves and upstream traveling acoustic
waves that are suitably synchronized. These acoustic waves may be gener-
ated at a downstream obstacle, as in the case of cavities or impinging jets,
or they can be induced by dynamical events within the jet, such as vor-
tex roll–up and pairing. Laufer & Monkewitz [64] first proposed a feedback
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model for acoustically driven self–excitation in jets, which assumes that the
upstream propagating acoustic branch originates from vortex pairing events
taking place at fixed streamwise stations. The frequency selection criterion
deduced from this model has been shown to be in good agreement with the
experimental data of Kibens [58]. In an early numerical simulation of a low-
density jet, Grinstein, Oran & Boris[47] also found that the position of vortex
pairings obeys the acoustic resonance criterion of Laufer & Monkewitz [64].

In the light of recent advances in the theoretical description of fully nonlin-
ear global modes (Chomaz [19]), one of the goals of the present investigation
is to determine if one of the two competing interpretations for the occurrence
of self–excitation in jets can be proven to be consistent with the results of
direct numerical simulations. The test case under consideration is chosen to
correspond to the parameter settings of the Monkewitz et al.[82] experiments.
At a Reynolds number of ReD = 7500 based on jet diameter, two axisymmet-
ric modes have been experimentally observed to exist over different ranges
of the ambient–to–jet temperature ratio S: The first (‘mode I’ in Monkewitz
et al.[82]), with a Strouhal number St ≈ 0.3, is seen to be dominant in the
range 0.62 < S < 0.73. The second (‘mode II’), with St ≈ 0.45, is observed
throughout the highly supercritical régime 0.47 ≤ S < 0.63 that has been
investigated. Despite the striking agreement of the threshold value S = 0.73
for the onset of first global instability with the value Sca = 0.72 at which local
absolute instability first occurs in the inviscid, incompressible limit (Monke-
witz & Sohn [85]), several open questions remain to be elucidated: First, a
theoretical interpretation for the co-existence of two distinct global modes is
not obvious. Second, in order to ascertain the character of the observed os-
cillations, their frequencies need to be compared to the respective theoretical
frequency selection criteria pertaining to global modes and acoustic feedback
modes. These two questions are addressed in the present study.

A.2 Governing equations and numerical method

According to experimental observations [105, 82], self-sustained oscillations
in round jets appear in the form of axisymmetric ring vortices. The present
numerical simulation is therefore restricted to an axisymmetric geometry,
and the compressible, viscous conservation equations of mass, momentum
and energy are cast in two-dimensional (r, x) coordinates. These equations
are formulated in conservative flow variables ~q = (ρ, ρu, ρv, ρE), where ρ
denotes density, u and v are the axial and radial components of the flow
velocity ~u, and E is the total energy. The total flow variables are written as
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a superposition ~q = ~qb + ~q′ of a steady base flow ~qb(r, x) and perturbation
components ~q′(r, x, t). The equations that govern the evolution of ~q′ are ob-
tained by subtracting the conservation equations written in terms of ~qb from
the same equations written out in terms of total variables. The perturbation
equations are then readily found to be

∂ρ′

∂t
= −div (ρ~u)′ (A.1)

∂

∂t
(ρ~u)′ = −div [ρb~ub ⊗ ~u′ + (ρ~u)′ ⊗ ~ub + (ρ~u)′ ⊗ ~u′]− grad p′ + div τ(~u′)(A.2)

∂

∂t
(ρE)′ = div

{

− [(ρE)′ + p′] ~ub − [ρbEb + pb] ~u
′ − [(ρE)′ + p′] ~u′ (A.3)

+ τ(~ub) · ~u′ + τ(~u′) · ~ub + τ(~u′) · ~u′ + 1

RePr

grad T ′

(γ − 1)M2

}

with

τ(~u) = − 2

3Re
(div ~u)I +

1

Re

(

grad ~u+ gradT~u
)

(A.4)

being the viscous stress tensor for a Newtonian fluid, and p, T denoting
pressure and temperature. All quantities have been made nondimensional
with respect to the jet radius R, the jet exit velocity Uc, density ρc and
temperature Tc. The viscosity µ and the thermal conductivity κ are assumed
to be constant throughout the flow. The flow parameters defined in terms
of dimensional quantities are: the Reynolds, Mach and Prandtl numbers
Re = ρcUcR/µ, M = Uc/cc (with cc the speed of sound on the centerline),
Pr = µcp/κ (with cp the specific heat at constant pressure), the ratio of
ambient–to–jet temperature S = T∞/Tc, and the ratio of specific heats γ =
cp/cv. Values of M = 0.1, Pr = 1 and γ = 1.4 are used throughout the
present study.

We consider base flows that slowly develop in the streamwise direction,
and which are therefore sought as solutions of the compressible boundary
layer equations

∂ρbub

∂x
+

1

r

∂

∂r
(rρbvb) = 0 (A.5)

ρbub
∂ub

∂x
+ ρbvb

∂ub

∂r
= − 1

Re

∂

∂r

(

r
∂ub

∂r

)

(A.6)

Tb = S + (1− S)ub +
γ − 1

2
M2ub(1− ub) (A.7)

ρb = T−1
b . (A.8)

Note that for Pr = 1 and zero pressure gradient the temperature is given
explicitly by the Crocco–Busemann relation (A.7). This set of equations is
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integrated numerically using an algorithm adapted from Lu & Lele [74]. As
the system is parabolic, radial profiles can be obtained stepping forward in x.
An analytic hyperbolic tangent profile, taken from Michalke [78] (his profile
2), is prescribed as boundary condition for ub at x = 0.

For the perturbation equations (A.1–A.3), spatial derivatives in r and x
are discretized by a classical sixth–order–accurate explicit centered finite dif-
ference scheme, which uses a six–point stencil. The solution is advanced in
time using a third–order Runge–Kutta algorithm. As centered finite differ-
ences are known to give rise to spurious oscillations of under–resolved wave-
length, a selective tenth–order explicit filter scheme is applied in both spa-
tial directions at each time step (Visbal & Gaitonde [113]). This technique,
which consists of recalculating the flow variables as a weighted average of the
non-filtered solution on an eleven–point stencil, dissipates all oscillations on
the scale of the grid spacing, while it leaves well–resolved wavelengths unaf-
fected. The numerical schemes have been extensively tested in aerodynamic
and aeroacoustic computations by Terracol, Manoha, Herrero, Labourasse,
Redonnet & Sagaut [108]. A validation case for the implementation used in
the present study is given in Lesshafft, Huerre, Sagaut & Terracol [69].

The simulations presented in this paper have been performed on an or-
thogonal grid composed of 355×706 points in the radial and axial directions,
respectively. The computational domain consists of a ‘physical region’, span-
ning over 0 ≤ x ≤ 30 and 0 < r ≤ 30, where the perturbation equations
are solved in the form (A.1–A.3). Great care was taken to prevent reflection
of acoustic waves at the boundaries, as these are known to potentially give
rise to non-physical self-excited states (Buell & Huerre [16]). Tests on larger
meshes have confirmed that the self–excited states that are documented be-
low are not due to such numerical box resonances. At the lateral and outflow
boundaries of the physical domain, ‘sponge regions’ are added, in which all
perturbations are gradually attenuated before they reach the actual bound-
aries of the computational box. Inside these sponge regions, strong artificial
dissipation is achieved by adding a damping term −λ~q′ to the right–hand
side of Eqs. (A.1–A.3), while the grid is significantly stretched (Colonius
[22]). The damping coefficient λ increases smoothly from 0 to 0.3 over a
distance lx = 20 in the axial direction within the outflow region, and from 0
to 1 over a distance lr = 70 in the radial direction within the lateral sponge
region. Axial symmetry is imposed at r = 0 by appropriately copying the
values of ~q′ onto five virtual points across the axis. The first physical radial
grid point is placed at half the local step size away from the axis, in order to
avoid the coordinate singularity at r = 0. Near the other three boundaries
of the computational domain, the stencil size of the spatial differentiation
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and filter schemes is successively reduced, while centered formulations are
retained. All fluctuations are set to zero at rmax and xmax. At the inlet, the
first–order formulation of the non–reflecting characteristic boundary condi-
tions developed by Giles [46] and further discussed by Colonius, Lele & Moin
[23] is applied.

In the radial direction, grid points are clustered in the shear layer region,
with a minimum spacing of ∆r = 0.01 at r = 1. The radial distribution of
physical grid points ri is computed from equidistant computational points
ηi via a mapping function ri = f(ηi) which is composed of piecewise fifth–
order polynomials with continuous first– and second–order derivatives at the
junction points. Thus the metric Jacobian ∂r/∂η can be computed to high
accuracy with the implemented differentiation scheme. In the axial direction,
the grid spacing is kept constant at ∆x = 0.05 between the inlet and x = 15,
from whereon it smoothly increases over 100 points to ∆x = 0.1. In the
sponge regions, grid stretching is gradually brought up to a rate of 4% from
one point to the next, placing the outermost points at rmax = 100 and
xmax = 125. Numerical grid convergence has been verified in test calculations
on finer meshes.

A.3 Linear stability analysis

The results of the numerical simulation are to be compared with the linear
stability properties of the underlying base flow. These features are analyzed
by solving the linearized compressible Navier–Stokes equations around par-
allel base flow profiles prevailing at frozen streamwise stations, and seeking
solutions for perturbations in normal mode form (Huerre & Monkewitz [54]).
The dispersion relation, relating a complex frequency ω to its associated com-
plex streamwise wavenumbers k, takes the form of a generalized eigenvalue
problem, which is discretized by Chebyshev collocation and solved numer-
ically (Khorrami, Malik & Ash [57]). The numerical implementation has
been adapted from a code developed by Olendraru & Sellier [89]. If ω is
given real, values for k+ and k− are obtained, which respectively correspond
to downstream and upstream traveling instability waves, thereby providing
a prediction for the local flow response to external forcing. By allowing com-
plex values for ω and varying its imaginary part, the stability code also serves
to determine the complex absolute frequency ω0: An iterative search algo-
rithm (Monkewitz & Sohn[85]) identifies the point k0 in the complex k–plane
where a k+– and a k−–branch pinch. The sign of the imaginary part ω0,i

of the absolute frequency determines the absolute (ω0,i > 0) or convective
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(ω0,i < 0) nature of the local instability.

A.4 Numerical results

Direct numerical simulations are performed for a family of jet profiles at
Re = 3750 (based on the jet radius) and M = 0.1, with temperature ratios
S ranging from 0.4 to 1. The steepness parameter of the inlet velocity profile
is chosen to be R/θ0 = 20, where θ0 is the initial shear layer momentum
thickness. These settings closely match the parameter range for which most
experimental data are available from Monkewitz et al.[82] (ReD = 7500 in
their nomenclature). Some calculations have also been carried out for a
Reynolds number Re = 7500.

In order to trigger instabilities, an initial perturbation in the form of a
ring vortex

u′(r, x) = −Ar0(r − r0)
rσ

exp

[

− ln 2
(x− x0)

2 + (r − r0)2

σ2

]

(A.9)

v′(r, x) = A
r0(x− x0)

rσ
exp

[

− ln 2
(x− x0)

2 + (r − r0)2

σ2

]

(A.10)

with (r0, x0) = (1, 2) and A = 0.1 (A.11)

is introduced into the shear layer, and the flow is allowed to evolve without
further forcing. If the base flow is globally unstable, its intrinsic oscillations
should develop regardless of the precise form of the initial perturbation.

Strouhal number spectra of the long–time flow response at Re = 3750
and various S are shown in figure A.1a. These spectra are calculated from
the time signal of the radial perturbation velocity v′(r = 1, x = 2, t) over
the interval 200 ≤ t ≤ 600, after initial transients have died out. In the
unheated and slightly heated cases 0.65 ≤ S ≤ 1, only low-level broadband
oscillations persist. The behavior changes drastically as S falls below 0.65:
In this range, the spectra are clearly dominated by pronounced peaks, while
the background noise level is lowered. The flow in these cases synchronizes
to a fundamental frequency of Strouhal number St ≈ 0.45, which remains
approximately constant over 0.4 ≤ S ≤ 0.6. In the presence of strong heating,
the level of background noise rises again, and the quality of the dominant
peaks gradually deteriorates.

The qualitative difference between synchronized and non-synchronized
states is clearly visualized in the spatio–temporal diagrams of figure A.2,
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Figure A.1: Strouhal number spectra of the radial perturbation velocity sig-
nal v′(r = 1, x = 2, t) for temperature ratios 0.4 ≤ S ≤ 1 and two different
Reynolds numbers; all abscissae are scaled to the same logarithmic units.
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a) d)

b) e)

c) f)

Figure A.2: Spatio–temporal diagrams of the radial perturbation velocity at
r = 1 as a function of x and t. Red: positive, blue: negative. a) S = 1,
Re = 3750, b) S = 0.75, Re = 7500, c) S = 0.7, Re = 7500 d) S = 0.6,
Re = 3750, e) S = 0.5, Re = 3750, f) S = 0.4, Re = 3750

which display the fluctuations of the radial velocity at the center of the shear
layer (r = 1) as a function of time and streamwise distance for typical val-
ues of S. For all cases at Re = 3750 and S ≤ 0.6 (figures A.2d,e,f), the
flow settles into a limit cycle, displaying perfectly periodic oscillations at
each streamwise station. Note that in the non–synchronized cases, relatively
regular structures evolve far downstream, after the merging of typically two
rolled-up vortices (figure A.2a). We point out that any eventual organi-
zation of the flow in this region may not correspond to observations from
experiments, where the downstream dynamics are altered by the onset of
turbulence. From flow visualizations presented in Monkewitz et al.[82], the
transition to turbulence at this Reynolds number can be estimated to take
place between x = 6 and x = 8.

As the global frequencies of the synchronized states are to be compared
to results of a local linear stability analysis, which assumes a slow streamwise
development of the base flow, the influence of the non-parallelism of the base
flow on the global frequency selection should be assessed. For this purpose,
calculations have been performed at a Reynolds number Re = 7500, while all
other parameters are retained from the cases presented above. The Strouhal
number spectra for typical values of S are shown in figure A.1b. For S ≤ 0.6
and S ≥ 0.8, the spectra display the same behavior as those obtained at
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Re = 3750: Below S = 0.6, self–sustained oscillations synchronize at a fun-
damental Strouhal number St ≈ 0.45. In the cases S = 0.75 and S = 0.7,
however, new synchronized states arise, that were not observed at the lower
Re setting. These states are characterized by a dominant spectral peak at
St ≈ 0.55 and a strong subharmonic associated with downstream vortex
pairing. The additional low–amplitude peaks that appear in these two spec-
tra will not be further discussed. Although these peaks occur to some extent
independently of the various windowing techniques that have been tested (a
Hanning window function has been used to generate all spectra presented in
this study), we do not rule out that they may be aliasing artefacts of the
FFT.

Whereas the global oscillations at St ≈ 0.45 develop very quickly during
only a few oscillation periods after the initial perturbation, a satisfactory
synchronization of the St ≈ 0.55 mode does not take place before the much
longer time t = 300. The spectra presented in figure A.1b for S = 0.7 and
S = 0.75 are therefore calculated from a time signal v′(r = 1, x = 2, t) over
the time interval 300 ≤ t ≤ 600.

A.5 Comparison with the experiment

The numerical results presented above agree very well with the experimen-
tal observations of Monkewitz et al.[82]: The self–sustained synchronized
oscillations of Strouhal number St ≈ 0.45 that arise at temperature ratios
S ≤ 0.6 in the simulations are easily identified with the ‘mode II’ state re-
ported from the experiments, which displays the same frequency and sets in
at S = 0.63. Both the numerical and the experimental data show that the
frequency, beyond onset, is nearly independent of S, and that the rolled–up
vortices experience one pairing event.

A second synchronized state of Strouhal number St ≈ 0.3, found exper-
imentally to set in at S = 0.73 (‘mode I’ in Monkewitz et al.[82]), does not
arise in the numerical simulations at Re = 3750. However, it seems likely
that the distinct synchronized oscillations in the cases S = 0.7 and S = 0.75
at Re = 7500 (figures A.1b and A.2b,c) are indeed identical with ‘mode I’
of Monkewitz et al.[82] The subharmonic component of this mode is seen to
be very close to St = 0.3. We speculate that this subharmonic appeared
as the dominant spectral peak in the experimental measurements, due to
the non-local sensitivity of the microphone probe that was used. The fact
that this mode is only observed in calculations at a higher Reynolds num-
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ber may well be ascribed to differences in the numerical and experimental
flow configurations. In support of our numerical results, only one single self-
sustained synchronized state was identified in the helium jet experiments of
Sreenivasan et al.[105], and as Monkewitz et al.[82] point out, this state most
likely corresponds to their ‘mode II’ of St ≈ 0.45.

An important point that calls for discussion is the choice of the momen-
tum thickness of the inlet velocity profile. Monkewitz et al.[82] provide a
semi–empirical formula from measurements in a cold jet, which gives the
vorticity thickness θω at the nozzle as θω/D = 4.9Re−0.5

D . In our nomen-
clature, this corresponds to a profile parameter R/θ0 = 35 for Re = 3750.
Numerous calculations have been carried out for base flows with an inlet ve-
locity profile of R/θ0 = 30, but no satisfactory synchronization was achieved
in any of these cases. The frequency spectra, not presented here, show only
broad peaks of rather low amplitude even at S ≤ 0.6, more reminiscent of
the behavior displayed in figure A.1 for high (globally stable) values of S.
Steeper profiles exhibit larger growth rates for shear–layer–type instability
modes of short wavelength. The range of parameters R/θ0 that is accessible
to the numerical study of intrinsic jet dynamics is therefore limited by the
capacity of the numerical upstream boundary conditions to prevent the gener-
ation of vortical disturbances by incident acoustic waves. Note that the same
qualitative behavior is observed in the experiments (figure 13 of Monkewitz
et al.[82]), where in cases of very thin initial shear layers the dominance of
short–wavelength modes prevents the formation of synchronized structures.
The experimental value of R/θ0 in the heated jet cases at Re = 3750 is not
precisely known. However, the Strouhal numbers of the numerically obtained
spectral peaks, as well as their very narrow shape (compare with figure 4 of
Monkewitz et al.[82]), seem to indicate that the chosen value of R/θ0 = 20
adequately represents the effective experimental conditions in the numerical
simulation.

A.6 Comparison to theoretical predictions

In this section, the simulation results are compared to criteria that can be
drawn from theoretical models of acoustic feedback versus nonlinear global
modes linked to absolute instability.

Acoustic feedback The possibility of an acoustic feedback loop between
the inlet and the vortex pairing location is considered first. The criterion
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given by Laufer & Monkewitz [64] states that subharmonic resonance takes
place if the fundamental frequency and its subharmonic are in phase, which
means that the period of the subharmonic must match the time that it takes
for one vortical instability wave to travel from the inlet at x = 0 to the
vortex pairing location xp, and for the acoustic disturbance generated at xp

to propagate back to the inlet. In a low Mach number approximation, the
propagation time of the acoustic signal can be neglected (Ho & Huerre [48]),
and the resonance criterion simply relates the first pairing location and the
fundamental Strouhal number as

xp = 4N
cph

St
, (A.12)

where N is an integer and cph the phase velocity of the instability wave. Over
the entire range of S, the phase velocity is measured from the numerical
results to always lie within the interval 0.55 < cph < 0.65. The mean value
cph = 0.6 can be chosen for the discussion without significant loss of precision.
For Strouhal numbers St = 0.44 ± 0.01, the criterion (A.12) with N = 1
then predicts vortex pairing to take place at xp = 5.46 ± 0.12. From the
calculations at Re = 3750 and temperature ratios S of 0.4, 0.5 and 0.6
however, the respective pairing locations xp are determined to be 5.5, 6.5 and
8.5, defined as the streamwise stations at which the vortex cores are vertically
aligned (Grinstein et al.[47]). Granted that the precise location of vortex
pairing is somewhat ambiguous, the measured differences between the three
cases are much less so (compare figures A.2d,e,f). Within the simplifying
assumptions made in Eq. (A.12), the almost identical global frequencies that
are obtained for S ≤ 0.6 should correspond, if their synchronization is due
to an acoustic feedback loop, to identical vortex pairing locations. But even
if the finite speed of sound and the small differences in the measured phase
velocities are taken into account, the quality of the predictions for xp does
not improve. The subharmonic resonance model clearly does not describe
the numerical observations.

Only two cases of the states that synchronize at Strouhal numbers around
St ≈ 0.55 are available from the simulations, associated earlier with ‘mode I’
of Monkewitz et al.[82]. This will not be sufficient for a definite interpreta-
tion. With cph = 0.64, identical in both cases, and with St(S = 0.75) = 0.55
and St(S = 0.7) = 0.565, the criterion (A.12) yields xp(S = 0.75) = 4.65 and
xp(S = 0.7) = 4.53. These values do not at all match the positions of vortex
pairing, which are found to lie between x = 7 and x = 8(figures A.2b,c).
However, they correspond remarkably well to the streamwise stations where
vortex roll–up is seen to take place. Vortex roll–up events in the simulations
are indeed observed to radiate sound. If in future calculations a sufficient
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Figure A.3: Absolute growth rate ω0,i of the inlet profiles at R/θ0 = 20 and
Re = 3750 as a function of ambient–to–jet temperature ratio S. Absolute
instability occurs below Sca = 0.676.

number of cases of this mode can be generated, a feedback loop between the
inlet and the vortex roll–up station might be found to provide a satisfying
explanation for its synchronization.

Nonlinear global mode The characteristics of nonlinear global modes
that arise from local absolute instability have been extensively studied in the
context of Ginzburg–Landau model equations and, in some instances, these
characteristics have been demonstrated to describe very well the behavior of
real flows (see Chomaz [19] for a review). In particular, it has been shown in
the numerical investigation of Lesshafft et al.[69] that in similar hot jet cases
as those considered here (but at Re = 1000 and R/θ0 = 10), global instability
sets in at a value of S for which the streamwise extent of the absolutely
unstable region is sufficiently large to sustain a nonlinear front. Close to
onset, the global frequency is then given by the absolute frequency ω0,r at the
inlet, whereas for highly supercritical values of S it gradually shifts away from
this value. These results are in full agreement with the predictions deduced
from the Ginzburg–Landau model. If the dominant synchronized states of
St ≈ 0.45 presented above are indeed the manifestation of a nonlinear global
mode, as conjectured by Monkewitz et al.[82], the same criteria should be
expected to apply.

From figure A.3, which displays the absolute growth rate ω0,i(x = 0) as
a function of S for Re = 3750, the flow is seen to exhibit absolute instability
for values of S below Sca = 0.676. Note that in the range of parameters used
in the present study, absolute instability always appears first at the inlet.
We also point out that the absolute frequencies for both Reynolds numbers
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Figure A.4: Comparison of global frequencies (× Re = 3750, • Re = 7500)
and absolute frequency of the inlet profiles at Re = 3750 (—), expressed as
Strouhal numbers, as functions of S.

used in the simulations coincide within about 1% accuracy. The fact that the
synchronization at Strouhal numbers St ≈ 0.45 sets in below Sca at S = 0.6
seems to strongly indicate the global mode nature of these oscillations.

The mode of St ≈ 0.55 appears in a range of temperature ratios where
the entire flow is still convectively unstable, which a priori precludes the
existence of a global mode. Monkewitz et al.[82], who compare the critical
S for the onset of this mode to the absolute instability threshold Sca = 0.72
obtained in the incompressible, inviscid limit for a near–top–hat velocity
profile (Monkewitz & Sohn [85]), already express their doubts about whether
a global mode can be expected to exist in this range of S. The present
results obtained from a compressible, viscous instability analysis applied to
the precise base flow profiles used in the simulation (figure A.3) confirm that
absolute instability is not responsible for the occurrence of this synchronized
state.

Figure A.4 compares the observed global frequencies in the absolutely
unstable range of S with the real part of the absolute frequency at x = 0,
both expressed as Strouhal number. Surprisingly, even near the onset of
global instability, at S = 0.6, the agreement is seen to be quite unsatisfactory.
This discrepancy cannot be attributed to the non-parallelism of the base flow,
since the agreement between global and absolute frequency does not improve
with higher Reynolds number.
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A.7 Conclusion

Direct numerical simulations of hot axisymmetric jets have been carried out
at parameter settings close to the experimental configuration of Monkewitz
et al.[82]. The experimental results have been reproduced to good accuracy:
At temperature ratios S ≤ 0.6, the simulated flow exhibits self–sustained syn-
chronized oscillations of fundamental Strouhal number St ≈ 0.45, precisely
as observed experimentally. A different mode of Strouhal number St ≈ 0.55
has been numerically observed at a higher Reynolds number over a narrow
range 0.75 ≤ S ≤ 0.7. Its subharmonic appears to coincide with the experi-
mentally reported ‘mode I’ state at St ≈ 0.3 of Monkewitz et al.[82].

The latter mode occurs at temperature ratios for which the flow is still
convectively unstable everywhere, and the existence of a nonlinear global
mode due to absolute instability therefore is readily dismissed in these cases.
The synchronization of this mode must then be due to an acoustic feedback
mechanism, although the subharmonic resonance criterion given by Laufer
& Monkewitz [64] could not be recovered. Indeed, the streamwise station of
vortex pairing appears to be uncorrelated with the global frequency in all
cases for which self–sustained oscillations are observed. Vortex pairing then
only occurs as a secondary instability of the nonlinear wavetrain, but it does
not seem to be involved in the synchronization process.

The dominant mode, with Strouhal numbers around St ≈ 0.45, sets in
shortly after absolute instability first develops at the inlet, which seems to
identify these oscillations as being due to the presence of a nonlinear global
mode. However, even close to the global instability threshold value of S,
the selected global frequency does not correspond to the absolute frequency
at the inlet. This result is in contrast with the theoretical model of nonlin-
ear global modes (Chomaz [19]), as well as with the behavior found in jets
at lower Reynolds numbers and R/θ0, as documented in Lesshafft et al.[69].
In the context of the linear impulse response, the observed global frequen-
cies correspond to linear modes of non-zero group velocity that would be
advected for long times in the absence of forcing at the inlet. It seems plau-
sible to assume that upstream traveling acoustic waves are involved in the
destabilization of this mode, even though the resulting frequency selection
process is not adequately described by the subharmonic resonance model of
Laufer & Monkewitz [64]. Such effects involving the interaction of acoustic
and vortical modes are not accounted for in the framework of global mode
theory. From our ongoing investigations of the influence of the various flow
parameters on the frequency selection, we hope to report on further insights
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into these mechanisms.
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