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ABSTRACT

ON THE EFFECTIVE BEHAVIOR, MICROSTRUCTURE EVOLUTION,
AND MACROSCOPIC STABILITY OF ELASTOMERIC COMPOSITES

Oscar Lopez-Pamies

Pedro Ponte Castanieda

Elastomeric composites are currently used in numerous commercial applications and have
shown great promise for utilization in new technologies. This raises the practical—as well
as theoretical—need to understand the connection between the underlying microstruc-
ture of elastomeric composites and their mechanical and physical properties, and how
the latter may be enhanced with changes in the former. In this connection, the prin-
cipal aim of this thesis is the development of an analytical, nonlinear homogenization
framework for determining the overall response of elastomeric composites subjected to
finite deformations. The framework accounts for the evolution of the underlying mi-
crostructure, which results from the finite changes in geometry induced by the applied
loading. This point is essential as the evolution of the microstructure can have a sig-
nificant geometric softening (or stiffening) effect on the overall response of the material,
which, in turn, may lead to the possible development of macroscopic instabilities. The
main concept behind the proposed nonlinear homogenization method is the construction
of suitable variational principles utilizing the idea of a “linear comparison composite,”
which ultimately allow for the conversion of available linear homogenization estimates
into analytical estimates for the large-deformation overall response of the nonlinear elas-
tomeric composites. This thesis includes applications of the proposed theory to various
classes of reinforced and porous elastomers with random and periodic microstructures.
A comprehensive analysis of the effective behavior, the microstructure evolution, and the

development of macroscopic instabilities is provided for all these applications.
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Chapter 1

Introduction

Elastomeric materials are used pervasively in industry. Applications include rubber tires, shoes, flex-
ible tubes and catheters, cable coatings, conveyor and transmission belts, balloons, shock absorbers,
floatation devices, insulators, fire retardants, packaging and cushioning materials, noise abating
structures, etc. In many of these applications, the elastomers are reinforced with particles and/or
fibers to improve their mechanical properties and, in particular, their overall stiffness. In contrast,
there are also numerous situations in which light weight and high compliance are desirable. The
elastomeric materials used for such applications are then weakened with voids or softer materials.

The standard example of a reinforced elastomer is that of a rubber tire, which derives its black
color from the presence of carbon-black particles that are distributed randomly in a matrix of a
synthetic rubber (see, for instance, the monograph by Mark et al., 2005 and the references therein).
At a larger length scale, rubber tires are also reinforced with steel or other types of fibers. Other
commonly used micron- and nano-sized fillers include silica, mica, talc, clay, calcium carbonate
particles, as well as carbon nanotubes. In addition, there is a large class of thermoplastic polymers,
which exhibit rubber-like behavior, namely, thermoplastic elastomers (TPEs). These materials are
block copolymers where the “hard” glassy blocks self-aggregate into an “inclusion” phase that is
embedded in a “matrix” of the “soft” rubbery blocks, thus leading to a “particulate” microstructure
with an overall rubbery response (Honeker and Thomas, 1996). The hard blocks, which can appear
in the form of particles (Prasman and Thomas, 1998), fibers (Honeker et al., 2000), interconnected
networks (Dair et al., 1999), or layers (Cohen et al., 2000), are distributed in a periodic arrangement,
and play the role of the reinforcing phase. They are increasingly being used in industry—where they
are replacing standard cross-linked rubbers in many technological applications—due to their superior
mechanical and recycling properties.

The standard example of a weakened elastomer is that of (elastomeric) foams (see the monograph
by Gibson and Ashby, 1997 and the references therein). These materials are essentially made out
of an elastomeric matrix in which there is a distribution—usually random—of vacuous or gas-filled
inclusions. Foams can be found in an “open cell” form, in which the (vacuous) inclusions are
interconnected, as in an absorbent sponge, or in a “closed cell” form, in which all the inclusions are
completely surrounded by matrix phase, as in a car seat. In addition to the just-described foams,
in which the vacuous of gas-filled inclusions are deliberately introduced in elastomers as part of

the manufacturing process, there also other elastomeric materials in which a significant amount of
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porosity may be introduced unintentionally via defects or forming processes.

In many of the above-mentioned applications, the composite elastomers are subjected to large
deformations. It is therefore of practical-—as well as of theoretical—interest to develop constitu-
tive models for the mechanical behavior of elastomeric composites under such loading conditions.
Ideally, these models should be accurate and relatively simple, so that they are amenable to direct
implementation into standard finite element packages for solving structural problems of interest.
This presents a substantial challenge for at least three reasons. First, there is the strong material
nonlinearity that is present in constitutive models for pure, or “neat” elastomers. Second, the me-
chanical behavior of elastomeric composites is known to depend critically on their underlying initial
microstructure, which is by and large very complex. Indeed, more often than not, the distribution
of the constituents (e.g., particles, fibers, voids) is random. Also, depending on the application,
the relative proportions of the various phases may range from very small to very large, which ev-
idently leads to a vast range of diverse behaviors. Finally, there is the additional complication of
the evolution of the microstructure due to the finite changes in geometry induced during loading.
Presumably because of the technical difficulties associated with modeling this complex behavior,
most of the work in the literature to date has been based on empirical or ad hoc models. In the next
two paragraphs, we briefly enumerate previous attempts to model the effective behavior of reinforced
and porous elastomers. The list is by no means exhaustive, but merely aims to provide an overview
of available methods.

In the context of reinforced elastomers, most of the modeling work has been focused on “partic-
ulate” microstructures where the reinforcing phases are particles of various shapes, or long cylindri-
cal fibers. Micromechanics-based approaches for particle reinforced elastomers include, for instance,
models that make use of the notion of a strain-amplification factor (Mullins and Tobin, 1965; Treloar,
1975; Meinecke and Taftaf, 1988; Govindjee and Simo, 1991, Bergstrom and Boyce, 1999). More
specifically, these models make use of the idea that the average strain in the elastomeric matrix phase
of filled elastomers is larger than the applied macroscopic strain in the composite (simply because the
fillers are much stiffer than the elastomeric matrix). Having selected a strain measure and determined
a phenomenological amplification factor to multiply it with, the model for the reinforced elastomer is
then given essentially by that of the corresponding matrix phase evaluated at the selected amplified
strain. There are also recent two-dimensional (2D) numerical simulations based on unit-cell compu-
tations (Lahellec et al., 2004), or for systems with more complex microstructures (Govindjee, 1997;
Bergstrom and Boyce, 1999). In addition, also in the context of 2D numerical simulations, there
is the recent work of Triantafyllidis et al. (2006) which—based on earlier work of Triantafyllidis
and co-workers (see, e.g., Triantafyllidis and Maker, 1985; Geymonat et al., 1993)—provides an in-
depth analysis of the stability of reinforced elastomers at a microscopic, as well as at a macroscopic
level. In connection with the above simulations, it is important to emphasize that, on one hand,
they correspond to rigorous results, but that, on the other hand, they are computationally very
intensive. In terms of approaches based on homogenization, there is the Voigt-type upper bound
(Ogden, 1978), as well as some non-trivial Reuss-type lower bounds (Ponte Castaneda, 1989). Un-

fortunately, these bounds are microstructure-independent, and therefore not very useful in general.
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An ezact result has been generated recently (deBotton, 2005) for hyperelastic composites with a
very special type of microstructure known as sequentially laminated microstructures. The drawback
of this result is that it is not clear whether, or not, it corresponds to filled elastomers with more
realistic types of microstructures. For fiber reinforced elastomers, there is a voluminous literature on
phenomenological constitutive models. In a pioneering contribution, Spencer (1972) idealized fibers
as inextensible material line elements to develop a simple theory for incompressible fiber-reinforced
materials that permitted the analytical treatment of numerous boundary value problems. Other
(less idealized) phenomenological models are based on the idea of augmenting existing isotropic
stored-energy functions with additional terms—which depend on the invariants associated with the
fiber direction (Spencer, 1984)—that penalize deformation in a particular direction (see, e.g., Qiu
and Pence, 1997; Merodio and Ogden, 2005; Horgan and Saccomandi, 2005). The main appeal of
these phenomenological models is that they are simple. In addition, they can be “calibrated” to
become macroscopically unstable—via loss of strong ellipticity—for loading conditions where such
instabilities are expected to occur from physical experience (Triantafyllidis and Abeyaratne, 1983).
In spite of these desirable features, the predictive capabilities of phenomenological models for the
general response of actual fiber-reinforced elastomers remain limited. Following a micromechanics
approach, Guo et al. (2006) have recently proposed a hyperelastic model with incompressible Neo-
Hookean matrix phases. In addition, there is also a number of numerical studies based on (2D)
periodic microstructures which include the stability analyses of these materials (Triantafyllidis and
Maker, 1985; Triantafyllidis and Nestorvié, 2005). In terms of homogenization-based methods, in
addition, of course, to the microstructure-independent Voigt-type (Ogden, 1978) and Reuss-type
(Ponte Castaneda, 1989) bounds, there is a recent estimate due to deBotton et al. (2006) for
fiber-reinforced elastomers with incompressible Neo-Hookean phases and the Composite Cylinder
Assemblage (CCA) microstructure of Hashin (1962). One of the strengths of this model is that it is
exact for axisymmetric and out-of-plane shear loading conditions. Moreover, it should be recorded
that He et al. (2006) have recently provided a set of non-trivial conditions—in terms of the local
material properties and the applied loading conditions—for which the Voigt-type bound is attained
in fiber-reinforced elastomers. Finally, it should be mentioned that constitutive models for hyper-
elastic solids with orthotropic material symmetry have also been developed (Bischoff et al., 2002)
from a statistical mechanics approach.

In the context of porous elastomers, most of the modeling efforts have been devoted to high-
porosity elastomers (or low-density foams). Indeed, ever since the pioneering work of Gent and
Thomas (1959), there have been numerous contributions concerning the modeling of the mechan-
ical behavior of low-density foams under large deformations (see Gibson and Ashby, 1997 and
the references therein). In contrast, the study of porous elastomers with low to moderate lev-
els of porosity has not been pursued to nearly the same extent. Phenomenological approaches
for this class of materials include, for instance, the model of Blatz and Ko (1962), which was
motivated by experimental work on polyurethane rubber with a random and isotropic distribu-

tion of pores of about 40u in diameter and an approximate volume fraction of about 50%. The
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predictive capabilities of this model for the response of actual porous elastomers is limited. How-
ever, the Blatz-Ko material does have a very appealing physical property: it loses strong ellip-
ticity at sufficiently large compressive deformations (Knowles and Sternberg, 1975). This prop-
erty is in agreement with experimental evidence, as well as with numerical results (Abeyaratne
and Triantafyllidis, 1984), suggesting that porous elastomers can develop macroscopic bands of
strain localization at sufficiently large deformations, which correspond to buckling of the matrix
ligaments at the micro scale. Homogenization approaches include the microstructure-independent
Voigt-type bound (Ogden, 1978), some rigorous estimates for special microstructures and load-
ing conditions (Hashin, 1985), and various ad hoc approximations (Feng and Christensen, 1982;
Levin et al, 2000). There is also a recently proposed estimate by Danielsson et al. (2004) for
isotropic porous elastomers with incompressible, isotropic matrix phases. In fact, this estimate—as
it will be discussed in Chapter 5—can be shown to be a rigorous upper bound for porous elas-
tomers with incompressible matrix phases and the Composite Sphere Assemblage (CSA) microstruc-
ture (Hashin, 1962). In this regard, it should be noted that—admittedly a very special class of
microstructure—the CSA can be considered as a fair approximation to actual microstructures in
actual porous elastomers.

In this thesis, our proposal for generating homogenization estimates in finite elasticity is based on
an appropriate extension of the “second-order” homogenization method proposed by Pedro Ponte
Castanieda (2001; 2002a) in the context of nonlinear dielectrics and viscoplastic materials. This
technique has the capability to incorporate statistical information about the microstructure beyond
the volume fraction of the phases and can be applied to large classes of elastomeric composites,
including reinforced and porous elastomers, as well as other heterogeneous elastomeric systems,
such as the TPEs introduced above. The main concept behind the second-order method is the
construction of suitable variational principles utilizing the idea of a “linear comparison composite.”
The first attempt along these lines for hyperelastic composites was carried out by Ponte Castaneda
and Tiberio (2000) (see also Willis, 2000 and Lahellec et al., 2004), who made use of the so-called
“tangent” second-order variational procedure, initially proposed for viscoplastic materials by Ponte
Castafnieda (1996). While the resulting estimates certainly had some desirable properties, such as the
ability to account for the stiffness of the phases, their shape, concentration and distribution, they also
had some shortcomings. Thus, for example, they were able to recover only approximately the overall
incompressibility constraint associated with rigidly reinforced elastomers with an incompressible
matrix phase (typical of rubbers). In retrospect, this was not too surprising in view of the strong
nonlinearity associated with the incompressibility constraint on the determinant of the deformation.
Here, use will be made of an improved second-order method, also—as already stated—first developed
in the context of viscoplastic composites (Ponte Castaneda, 2002a), which makes use of the local
field fluctuations in the determination of the relevant linear comparison composite. An application of
a preliminary extension of this method to particle-reinforced rubbers with isotropic microstructures
was carried out by Lopez-Pamies and Ponte Castaneda (2004a). It was found to provide much more
accurate estimates satisfying exactly the overall incompressibility constraint for rigidly reinforced

elastomers with an incompressible matrix phase. In this work, we will develop a full extension of
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the “second-order” homogenization method to general elastomeric composites. For simplicity, we
will ignore hysteresis, temperature and rate-dependent effects, which can be important for these
materials (Bergstrom and Boyce, 1998; Khan and Lopez-Pamies, 2002), as well as particle/matrix
interface effects (Ramier, 2004) and the possible development of damage, through particle debonding
at interfaces. However, it should be emphasized that the methods to be developed here apply to
elastomeric composites with general microstructures and arbitrary hyperelastic constituents. In
addition, it is believed that a suitably generalized version of the methods to be developed in this
work could incorporate dependence on all of the above-mentioned effects, as discussed further in the
closure of this thesis.

This thesis in organized into chapters whose main contents correspond to articles that have been
published, or are in preparation to be submitted for publication. For convenience, the list of such
articles is provided at the end of this introduction. Next, a brief description of the main contents of
each chapter is provided.

The next chapter (Chapter 2), which corresponds to references 1, 2 and 4 in the list of publi-
cations, deals with the theoretical aspects regarding the overall behavior of elastomeric composites.
In particular, the mathematical formulation of effective properties for hyperelastic composites is
introduced. This includes the definitions of suitably selected macroscopic variables, as well as the
definitions of microscopic and macroscopic instabilities. Having set the problem on a solid mathe-
matical foundation, the notions of bounds and estimates are then presented. This is followed by the
main result of this thesis, namely, the derivation of the “second-order” homogenization method for
hyperelastic composites. In this connection, it is emphasized that a preliminary attempt to generate
such method was carried out by Lopez-Pamies and Ponte Castafieda (2004a). For completeness, this
article has been included as Appendix A. Within the general second-order formulation—motivated
by experimental findings evidencing that rubber-like solids are isotropic relative to the undistorted
state—special attention is dedicated to hyperelastic composites with isotropic phases. For such a
class of composites, sufficient conditions are provided for the second-order estimates to satisfy overall
objectivity and material symmetry requirements. In addition, for such a class of composites, further
specialization of the second-order estimates is provided for the case of two-phase composites with
“particulate” (random and periodic) microstructures—the motivation for such specialization being
practical interest. Chapter 2 finally presents the consistent identification of microstructural vari-
ables, as well as the required formulae to estimate their evolution along a given macroscopic loading
path.

Chapter 3, which corresponds to reference 3 in the list of publications, is the first of three
chapters dealing with the application of the theoretical framework developed in Chapter 2 to porous
elastomers. The specific problem that is addressed in Chapter 3 is that of the in-plane effective
behavior of a porous elastomer consisting of aligned cylindrical voids with initially circular cross
section that are distributed randomly and isotropically in the undeformed configuration. As it turns
out, this is a very useful model problem that includes all the main features concerning the mechanical
response of porous elastomers subjected to finite deformations, and, at the same time, is amenable to

a more transparent mathematical treatment. In this chapter, second-order estimates are generated
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for materials with compressible and incompressible, isotropic matrix phases. In particular, it should
be emphasized that the estimates generated for porous elastomers with incompressible matrix phases
are ultimately given in closed form. Corresponding estimates derived with the earlier “tangent”
second-order method of Ponte Castafieda and Tiberio (2000) are also generated for comparison
purposes. The chapter concludes with the presentation and discussion of representative results for
the effective stress-strain relation, microstructure evolution, and macroscopic instabilities of porous
elastomers for a wide range of loading conditions and values of initial porosity.

Chapter 4 is—in a sense—a natural continuation of Chapter 3. The problem of interest in this
chapter is also that of the in-plane effective behavior of porous elastomers consisting of aligned
cylindrical voids with initially circular cross section, but the distribution of the voids here is periodic
(as opposed to random). In particular, two types of periodic microstructures are considered: (i)
square and (ii) hexagonal arrangements of pores. The interest to consider such microstructures is
essentially twofold. First, it provides the means to asses the accuracy of the second-order method
through comprehensive comparisons with more accurate FEM calculations available for periodic
microstructures. Second, it allows to study the influence of the initial distribution of pores on the
overall behavior and stability of porous elastomers.

Chapter 5, which corresponds to references 6 and 7, is concerned with the application of the the-
oretical framework developed in Chapter 2 to generate a homogenization-based constitutive model
for porous elastomers consisting of a random and isotropic distribution of initially spherical, polydis-
perse pores in an isotropic, elastomeric matrix. Unlike the microstructures considered in Chapters 3
and 4, this microstructure—though idealized—can be considered as a fair approximation to actual
microstructures in real porous elastomers. For comparison purposes, a brief review is provided at
the beginning of the chapter summarizing earlier estimates available for the effective behavior of
overall isotropic porous elastomers. This is followed by the derivation of the second-order estimates
for porous elastomers with compressible and incompressible matrix phases. Finally, illustrative re-
sults are presented and discussed for the effective stress-strain relation, microstructure evolution,
and onset-of-failure surfaces—in stress and strain space—for a wide range of loading conditions and
values of initial porosity.

Chapters 6 and 7—in contrast to Chapters 3 through 5, which deal with porous elastomers—are
concerned with the application of the theory developed in Chapter 2 to reinforced elastomers. In
particular, Chapter 6, which corresponds to reference 9 in the list of publications, deals with the
effective behavior of reinforced elastomers with a very special class of microstructures: laminates.
This microstructure has repeatedly proved of great theoretical importance, especially in the context
of the classical theory of linear elasticity (see Chapter 9 in Milton, 2002 and the references therein).
In addition, laminates are also of increasing practical interest, as they have been observed to appear
in a number of elastomeric systems such as thermoplastic elastomers. To date, the effective behavior
and stability of hyperelastic composites with layered microstructures have been studied in relative
depth (see, e.g., Triantafyllidis and Maker, 1985; Triantafyllidis and Nestorvié¢, 2005). However, it
seems that no connection has been ever made between the evolution of the underlying microstruc-

ture (induced by the applied finite deformations) and the effective behavior and stability of these
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materials. To establish this connection is precisely one of the main aims of Chapter 6. In addition,
being a limiting-type microgeometry, the results for laminates will be used in the following chapter
to validate the results for more general microstructures.

Chapter 7, which corresponds to reference 5, addresses the problem of in-plane effective be-
havior of elastomers reinforced with aligned cylindrical fibers of elliptical cross section distributed
randomly—with elliptical symmetry—in the undeformed configuration. The main results of this
chapter include closed-form, analytical expressions for the homogenized stored-energy function of
an incompressible rubber reinforced by rigid fibers, as well as corresponding expressions for the
in-plane rotation of the fibers, under general plane-strain conditions. The transparency of these
expressions allows to gain precious insight regarding the subtle interplay between the evolution of
the underlying microstructure and the overall behavior and stability of fiber-reinforced elastomers,
which is comprehensively studied in this chapter.

Finally, Chapter 8 provides a brief summary of the main findings of this work together with some

concluding remarks, as well as some prospects for future work.
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Chapter 2

Theory

This chapter deals with the development of an analytical framework for determining the overall
constitutive response of elastomeric composites subjected to finite deformations, with special inter-
est in two-phase elastomers with “particulate” microstructures. The framework accounts for the
evolution of the underlying microstructure, which results from the finite changes in geometry that
are induced by the applied loading. This point is essential, as the evolution of the microstructure
provides geometric softening/hardening mechanisms that may have a very significant effect on the
overall behavior and stability of elastomeric composites. The theory is founded on a recently de-
veloped “second-order” homogenization method (Ponte Castafieda, 2002a), which is based on the
construction of suitable variational principles utilizing the idea of a “linear comparison composite.”
The theory developed in this chapter will be applied in subsequent chapters to elastomeric systems

of theoretical and practical interest, including various classes of reinforced and porous elastomers.

2.1 Hyperelastic composites and effective behavior

2.1.1 Hyperelastic materials

Consider a material made up of N different (homogeneous) phases that are distributed, either ran-
domly or periodically, in a specimen occupying a volume g, with boundary 9, in the reference
configuration, in such a way that the characteristic length of the inhomogeneities (e.g., voids, par-
ticles, etc.) is assumed to be much smaller than the size of the specimen and the scale of variation
of the applied loading.

Material points in the solid are identified by their initial position vector X in the reference
configuration g, while the current position vector of the same point in the deformed configuration
Q is given by

x = x(X). (2.1)
The deformation gradient tensor F' at X, a quantity that measures the deformation in the neighbor-

hood of X, is defined as:

_ X
- 0X
Note that F is not necessarily continuous across interphase boundaries in the composite, but in this

F(X) (X). (2.2)

work we assume that the various phases are perfectly bonded so that x is everywhere continuous.
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Furthermore, in order to satisfy global material impenetrability, the mapping x is required to be

one-to-one on €y. Thus, for all points X and X’ € Qy,
x(X') = x(X) if and only if X' =X. (2.3)

The local form of (2.3) is
detF(X)#0 V X € Q. (2.4)

However, in this work we are interested in physically plausible deformation paths with starting point
F(X) =1V X € Qp, where I denotes the identity operator in the space of second-order tensors.
Thus, by continuity, if follows from (2.4) that

detF(X) >0 V X €. (2.5)

Note that this condition would be automatically satisfied for incompressible materials, where det F
is required to be identically 1.

The constitutive behavior of the phases is characterized by stored-energy functions W (") (r =
1,...,N), which are taken to be non-convex functions of the deformation gradient tensor F. Thus,

the local stored-energy function of the hyperelastic composite is expressible as:

N
W(X,F)=> x"(X) W(F), (2.6)

r=1
where the characteristic functions x"), equal to 1 if the position vector X is inside phase r (i.e.,
X e Qg")) and zero otherwise, describe the distribution of the phases (i.e., the microstructure) in
the reference configuration. Note that in the case of periodic distributions, the dependence of (")
on X is completely determined once a unit cell Dy has been specified. In contrast, for random
distributions, the dependence of x(") on X is not known precisely, and the microstructure is only
partially defined in terms of n—point statistics. The stored-energy functions of the phases are, of

course, taken to be objective, in the sense that
w(QF) = W(F) (2.7)

for all proper orthogonal Q and all deformation gradients F. Making use of the right polar de-
composition F = RU, where R is the macroscopic rotation tensor and U denotes the right stretch
tensor, it follows, in particular, that W) (F) = W) (U). Moreover, to try to ensure material
impenetrability, the domain of W (") is taken to be the set of all second-order tensors with positive

determinant: {F|detF > 0}. Further, W(") are assumed to satisfy the condition:
WO(F) - o0 if detF —0+. (2.8)

It is thus seen that W (") are indeed non-convex functions of F since their domain, {F|det F > 0},

is not convex.!

1This is easy to check by constructing an example where the sum of two distinct second-order tensors F and F/,
with det F > 0 and det F/ > 0, does not have positive determinant (see, e.g., Chapter 31 in Milton, 2002).
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Assuming sufficient smoothness for W on F, it is now useful to define the local constitutive

functions -
19)%% ow\r
(T) =
S(X,F) = 9F —(X,F) and S8Y/(F) 9F F), (2.9)
as well as ) 27ar ()
0*W 0w
(T) frng
LX,F)= FOF ——(X,F) and LY/(F) SFOF (F). (2.10)

It then follows that the local or microscopic constitutive relation for the composite is given by:
S(X)=8(X,F), (2.11)

where S denotes the first Piola-Kirchhoff stress tensor?. Furthermore, note that the local elasticity,

or tangent modulus tensor of the material is given by (2.10);.

2.1.2 Effective behavior

Following Hill (1972) and Hill and Rice (1973), under the hypothesis of statistical uniformity and
the above-mentioned separation of length scales, the effective stored-energy function W of the hy-

perelastic composite is defined by:

W(F)= min (W(X,F))= min Z V(W (F) ™), (2.12)
Fek(F) FeX(F) T

where K denotes the set of kinematically admissible deformation gradients:
K(F) = {F |3 x = x(X) with F = Grad x(X) in Qp, x = FX on 9{}. (2.13)

In the above expressions, the brackets (-) and (-)(") denote volume averages—in the undeformed
configuration—over the composite (2g) and over the phase r (Qér)), respectively, so that the scalars
c(()r) = <X(T)> represent the initial volume fractions of the given phases. Note that w physically
represents the average elastic energy stored in the composite when subjected to an affine displacement
boundary condition that is consistent with (F) = F. Note further that, from the definition (2.12)
and the objectivity of W), it follows that W is objective, and hence that W(F) = W(ﬁ) (For
completeness, the proof of this result is given in Appendix I.) Here, U represents the macroscopic
right stretch tensor associated with the macroscopic polar decomposition F = R U, with R denoting
the macroscopic rotation tensor (of course, (U) # U and (R) # R).

In analogy with the local expressions (2.9) and (2.10), and assuming sufficient smoothness for %

on F, it is convenient to define the following effective quantities:

S(F) = %V(F), (2.14)
and 32N
L(F) (’)ngf (F). (2.15)

2Recall that S is related to the Cauchy stress tensor T by S = det(F) TF~7.
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It then follows that the global or macroscopic constitutive relation for the composite—that is, the re-
lation between the macroscopic first Piola-Kirchhoff stress and the macroscopic deformation gradient
tensor—is given by (see Appendix II):

S =S(F), (2.16)

where S = (S) is the average first Piola-Kirchhoff stress in the composite. Furthermore, the effective
tangent modulus tensor is given by (2.15).

Having defined the local and effective behavior of hyperelastic composites, it is now in order to
make pertinent remarks regarding the ezistence and uniqueness of minimizers for W(X, F) in the

definition (2.12) for the effective stored-energy function w.

2.1.3 Constitutive hypotheses

As is well known, imposing the constitutive requirement that W(X,F) be strictly convez in F for

all X € g, namely,
WX, tF+(1-t)F) <tW(X,F)+ (1 - t)W(X,F) (2.17)

for all ¢ € [0,1] and all pairs F and F’, together with suitable smoothness and growth conditions,
ensures that the solution of the Euler-Lagrange equations associated with the variational problem
(2.12) exists, is unique, and gives the minimum energy (see, e.g., Hill, 1957; Beju, 1971). However,
as explicitly stated above, W (X, F) has been taken to be non-convex with respect to F and cannot
satisfy (2.17). This is because—motivated by material impenetrability requirements—the domain
{F|detF > 0} of W(X,F) is not convex, and further, W (X, F) is required to satisfy the condition
(2.8). Moreover, motivated by experimental evidence, it is also recognized that W (X, F) needs to
be non-convex in F in order not to rule out bifurcation phenomena such as buckling. In short, some
other constitutive condition on W-—Iless restrictive than convezity—is required to guarantee the
existence of minimizers in (2.12) without necessarily guaranteeing the uniqueness of the associated
Euler-Lagrange equations.
Ball showed in his celebrated paper in 1977 that if the stored-energy function W (X, F) is (strictly)
polyconvex, namely,
W(X,F) = f(X,F,F*¥ detF) (2.18)

with f(X,-,-,-) (strictly) convex for each X and F*¥ = det(F)F~7, and if certain growth hypotheses
are satisfied, then there exist minimizers for (2.12). Ball’s remarkable existence theorem applies to
compressible materials that satisfy the physical condition (2.8), as well as to incompressible materials,
which require the constraint det F = 1 (which also poses technical difficulties). It should be noted
that even though the constitutive restriction of polyconvexity (2.18) has yet to be given strict
physical meaning, is general enough as to include many of the more commonly used hyperelastic
stored-energy functions such as the Neo-Hookean, Gent, Arruda-Boyce, Mooney-Rivlin, and Ogden
materials.

A less restrictive constitutive condition than polyconvexity is that of quasiconvexity, which was

introduced by Morrey in 1952. In this celebrated article, Morrey provided (see also Acerbi and Fusco,
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1984) a theorem for the existence of minimizers in problems of the type (2.12) by making use of the
constitutive hypothesis of quasiconvexity together with certain growth conditions. Unfortunately,
the growth hypotheses are too stringent and prohibit the condition (2.8). Thus, as they stand, the
existence theorems for minimizers of integrals of general quasiconvex functions do no apply to finite
elasticity (Ball, 2002). However, it has been suggested (see, e.g., Ball and Murat, 1984 and Ball,
2002) that quasiconvexity might be the more appropriate constitutive requirement—Iless restrictive
than polyconvexity—for existence of energy minimizers in finite elasticity. That such suggestion
is actually correct remains a fundamental open problem in finite elasticity. A key difficulty in
proving this result is that there is no known useful characterization of quasiconvexity, other than its
definition, which is nonlocal.

Finally, it is fitting to spell out an even less restrictive constitutive condition than quasiconvexity,
namely, rank-one convexity. Thus, the stored-energy function W (X, F) is said to be rank-one convex
if it satisfies the Legendre-Hadamard condition, namely, if it satisfies:

B(X,F) = | l‘g?g‘lil{miNjﬁijkl(X,F)mkNl} >0, (2.19)

where it is recalled that £ is given by (2.10); and indicial notation has been used to indicate precisely
the products involved. (In the absence to explicit notice to the contrary, Latin indices range from
1 to 3, and the usual summation convention is employed). Note that the strict inequality in (2.19)
(i.e., strict rank-one convexity) corresponds to strong ellipticity, whose physical meaning is that the
hyperelastic composite never admits solutions with discontinuous deformation gradients within the
given phases (see, e.g., Knowles and Sternberg, 1977; Hill, 1979). In this connection, it is important
to remark that other types of singular solutions, such as cavitation, are not precluded by strong
ellipticity. The interested reader is referred to Ball (1982) for a detailed discussion of such material
instabilities. On the practical side, for many of the cases considered in this work, it should be
mentioned that void nucleation is not expected to occur (Ball, 1982).

The conditions of convexity, polyconvexity, quasiconvexity, and rank-one convexity introduced

above satisfy the following chain of implications (see, e.g., Dacorogna, 1989):
Convexity = Polyconvexity = Quasiconvexity = Rank—One Convexity. (2.20)

As explained above, convexity is not a valid assumption for materials in finite elasticity. On the
other hand, polyconvexity, for which Ball’s existence theorems apply, is valid for many common
non-linear elastic materials. In addition, polyconvexity—as opposed to quasiconvexity and rank-one
convexity—is a relatively easy assumption to impose in practice (at least for isotropic materials).
Hence, in this work we will adopt the constitutive assumption of polyconvexity for the local behavior
of hyperelastic materials. More specifically, we will insist in local strict polyconvexity. In this

connection, it is convenient to record that (see, e.g., Marsden and Hughes, 1983)
Strict Convexity = Strict Polyconvexity = Strict Rank—One Convexity. (2.21)

This chain of implications, together with (2.20), entails that strictly polyconvex hyperelastic mate-

rials are also quasiconver and strongly elliptic. In this regard, it is important to make the following
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remark. In spite of the fact that the local behavior is assumed to be locally strongly elliptic, the
effective stored-energy function 1% may lose strong ellipticity. This can be seen by recognizing that
W, as defined by (2.12), is quasiconvex and therefore—according to (2.20)—rank-one convex, but
not necessarily strictly so (Geymonat et al., 1993). One of the issues of interest in this work is
establishing under what conditions the overall behavior of the composite can lose strict rank-one

convexity, that is, under what conditions

B(F) = | ”r_n”ilr\lw_l{miNjﬁijkl(F)mkNl} >0 (2.22)

ceases to hold true. Recall that in this last expression £ is given by (2.15).

Specific stored-energy functions for the phases

In subsequent chapters dealing with applications to specific material systems, we will restrict at-
tention to a special class of stored-energy functions W) for the phases of hyperelastic composites.
In particular, motivated by experimental evidence indicating that elastomers are normally isotropic
with respect to the undistorted state, special attention will be given to isotropic stored-energy
functions W),

Recall that the restriction of isotropy (together with that of objectivity) implies that the stored-
energy functions W) of the material constituents can be expressed as functions of the principal

invariants of the right Cauchy-Green deformation tensor C = F” F:

I = t1C = A} + A3 + A3,
1
L= [(trC)? — trC?] = ATA3 4+ A3A3 + A3AT,
13 =Vdet C = )\1)\2)\3, (2.23)

or, equivalently, as symmetric functions of the principal stretches Ai, A2, A3 associated with F.

Namely, W) may be written as:
WUNF) = o) (11, Iy, Is) = @) (Mg, Ag, Aa), (2.24)

where ®(") are symmetric. A fairly general (and relatively simple) class of stored-energy functions
(2.24), which has been found to provide good agreement with experimental data for rubberlike
materials, is given by:

WN(F) = g™(I) + b () + %(J —-1)2 (2.25)
where I = I and J = I3 have been introduced for convenience. The parameter k(") corresponds
to the three-dimensional® bulk modulus of phase r at zero strain, and ¢(") and A" are twice-
differentiable, material functions that satisfy the conditions: ¢((3) = h("(1) = 0, gy) (3) =
w /2, hgr)(l) = —u"), and 49%)(3) + hL(,T}(l) = u"/3. Here, u(") denotes the shear modulus
of phase r at zero strain, and the subscripts I and J indicate differentiation with respect to these

invariants. Note that when these conditions are satisfied W) (F) = (1/2)(s") — 2/3u(")(tre)? +

3In terms of the Lamé moduli, p/(") and p(7), (") = 1/ 4 2/3,(7),
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wtre? + o(e3), where € is the infinitesimal strain tensor, as F — I, so that the stored-energy func-
tion (2.25) linearizes properly. Furthermore, note that to recover incompressible behavior in (2.25),
it suffices to make the parameter (") tend to infinity (in which case W()(F) = ¢g(")(I) together
with the incompressibility constraint J = 1).

Experience suggests that “neat” elastomers normally do not admit localized deformations. Within
the context of the material model (2.25), this property can be easily enforced by simply insisting that
g(I) and h(J)+ %(J —1)? be strictly convex functions of their arguments, which renders the stored-
energy function (2.25) strictly polyconvex, and in turn—according to (2.21)—strongly elliptic. Note
also that the stored-energy function (2.25) is an extension of the so-called generalized Neo-Hookean
(or I;-based) materials to account for compressibility. It includes constitutive models widely used
in the literature such as the Neo-Hookean, Arruda-Boyce 8-chain (Arruda and Boyce, 1993), Yeoh
(Yeoh, 1993), and Gent (Gent, 1996) models.

In the sequel, we will consider a number of applications in the context of plane-strain deforma-
tions. For this type of loading conditions, the problems at hand will be essentially two-dimensional
(2D). In this regard, for such problems, it will prove more helpful to work with the 2D form of (2.25)
rather than with (2.25) itself. Thus, by fixing—without loss generality—A3 = 1 and defining the

in-plane principal invariants of C = FT F as:
IT=X4+X3, and J =\, (2.26)

the stored-energy function (2.25) under plane-strain conditions can be conveniently rewritten as:

R — 0

WOF) = gD + 0 () +

J—1)2, (2.27)

where now the parameter (") corresponds to the two-dimensional* bulk modulus of phase r at zero
strain, and §(") and h(") are such that: §((2) = A" (1) =0, ggf)(Q) =pu/2, 71?(1) = —u, and
4{7%)(2) +h§;}(1) = p("). Here, similar to (2.25), the subscripts I and J indicate differentiation with
respect to these invariants. Further, the above conditions make the stored-energy function (2.27)
linearized correctly in the limit of small deformations. In the sequel, the above-utilized check mark

““7” to denote 2D quantities will be dropped if there is no potential for confusion.

2.1.4 Macroscopic and microscopic instabilities

Next, it is important to recall that more mathematically precise definitions of the effective energy W,
other than (2.12), have been given by Braides (1985) and Miiller (1987) for periodic microstructures.
Such definitions generalize the classical definition of the effective energy for periodic media with
convex energies (Marcellini, 1978), by accounting for the fact that, in the non-convex case, it is not
sufficient to consider one-cell periodic solutions, as solutions involving interactions between several
unit cells may lead to lower overall energies. Physically, this corresponds to the possible development
of “microscopic” instabilities in the composite at sufficiently large deformation (see Appendix III

for a more precise definition of microscopic instabilities). In this connection, it is important to

4In terms of the Lamé moduli, p/(") and p(7), &(") = p/(") 4 (7)),
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remark that Geymonat et al. (1993), following earlier work by Triantafyllidis and Maker (1985)
for laminated materials, have shown rigorously that loss of strong ellipticity in the homogenized
behavior of the composite corresponds to the development of long-wavelength (i.e., “macroscopic”)
instabilities in the form of localized shear/compaction bands. Furthermore, the “failure surfaces”
defined by the loss of strong ellipticity condition of this homogenized behavior provide upper bounds
for the onset of other types of instabilities.

In view of the difficulties associated with the computation of the microscopic instabilities men-
tioned in the previous paragraph, especially for composites with random microstructures, a more
pragmatic approach will be followed here. By assuming—for consistency with the classical theory
of linear elasticity—that W) = le. Le + o(e?) as F — I, where € denotes the infinitesimal

lin
strain tensor and Ll(;)L are positive-definite®, constant, fourth-order tensors, it is expected (except
for very special cases) that, at least in a neighborhood of F = I, the solution of the Euler-Lagrange
equations associated with the variational problem (2.12) is unique, and gives the minimum energy.
As the deformation progresses into the nonlinear range, the composite material may reach a point
at which this “principal” solution bifurcates into lower-energy solutions. This point corresponds
to the onset of a microscopic instability beyond which the applicability of the “principal” solution
becomes questionable. However, it is still possible to extract useful information from the principal
solution by computing the associated macroscopic instabilities from the loss of strong ellipticity of
the homogenized behavior. This means that, in practice, we will estimate the effective stored-energy

function (2.12) by means of the stationary variational statement:

N
W(F) = stat > ) (WO(E), (2.28)

Fek(F) -

where it is emphasized that the energy is evaluated at the above-described “principal” solution of
the relevant Euler-Lagrange equations. From its definition, it is clear that W(F) = W(F) up to
the onset of the first microscopic instability. Beyond this point, and up to the onset of the first
macroscopic instability, W(F) < W(F). The point is that while the microscopic instabilities are
difficult to compute, the macroscopic instabilities are easy to estimate from W(F) Furthermore, it is
often the case (Geymonat et al., 1993; Triantafyllidis et al., 2006) that the first instability is indeed
a long-wavelength instability, in which case W(F) = W(F) all the way up to the development
of a macroscopic instability, as characterized by the loss of strong ellipticity of the homogenized
moduli associated with W(F) More generally, the first instability is of finite wavelength (i.e., small
compared to the size of the specimen), but even in this case, it so happens, as we have already
mentioned, that the loss of strong ellipticity of the homogenized energy /W(F) provides an upper
bound for the development of microscopic instabilities. In other words, the composite material
will become unstable before reaching the “failure surface” defined by the macroscopic instabilities.
Furthermore, recent work (Michel, 2006) suggests that the macroscopic instabilities may be the more
relevant ones for random systems, since many of the microscopic instabilities in periodic systems

tend to disappear as the periodicity of the microstructure is broken down.

5This condition can be relaxed to include composites with voids, in which case Ll<:’F)L =0.
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2.2 Bounds and estimates

Following up on the preceding framework, the primary objective of this work is to generate estimates
for the effective stored-energy function W of hyperelastic composites subjected to finite deformations.
A second objective is to study the evolution of the underlying microstructure, as well as the possible
onset of macroscopic instabilities—as measured by loss of strong ellipticity of the homogenized
behavior—in these materials. This is an extremely difficult problem, because it amounts to solving
a set of highly nonlinear partial differential equations with oscillatory coefficients. As a consequence,
there are precious few analytical estimates for w. Ogden (1978) noted that use of the trial field
F = F in the definition (2.12) for W leads to an upper bound analogous to the well-known Voigt
upper bound (Voigt, 1889) in linear elasticity, namely

N
W(F) < Z ) W) (F (2.29)

Note that this rigorous upper bound depends only on the initial volume fractions of the phases, and
contains no dependence on higher-order statistical information about the microstructure. Under ap-
propriate hypotheses on W, ensuring the existence of a principle of minimum complementary energy,
Ogden (1978) also proposed a generalization of the Reuss lower bound (Reuss, 1929). However, the
required constitutive hypothesis on W was too strong and excluded the majority of physically sound
hyperelastic materials used in the literature. For this reason, Ponte Castanieda (1989) proposed an
alternative generalization of the Reuss lower bound, exploiting the polyconvexity hypothesis. For

polyconvex materials of the type:
W(X,F) = f(X,F,F*¥ detF), (2.30)

where f is convex in F, F“dj(: det F F~T), and det F, this lower bound takes the form:

W(F) > Wpe(F) = (F)"(F,F*Y, det F). (2.31)
Note that—due to the lack of convexity of the function W—this lower bound is much sharper (see
Ponte Castatnieda, 1989) than the bound that would be obtained by means of the standard Legendre-
Fenchel transform applied directly to the function W, which would lead to a bound of the type
(W)* (F). Note further that, similar to (2.29), the rigorous lower bound (2.31) is microstructure
independent (but see Ponte Castaneda, 1989 to incorporate higher-order statistical information).
As stated in the Introduction, there are also numerous estimates for special microstructures
and special loading conditions, as well as empirically based and ad hoc estimates for various spe-
cial systems, including the cases of reinforced rubbers (see, e.g., Mullins and Tobin, 1965; Treloar,
1975; Meinecke and Taftaf, 1988; Govindjee and Simo, 1991; Bergstrom and Boyce, 1999; de-
Botton, 2005; deBotton et al., 2006) and porous elastomers (see, e.g., Gent and Thomas, 1959;
Feng and Christensen, 1982; Hashin, 1985; Danielsson et al, 2004). Our aim here is to de-
velop a general class of analytical estimates that are based on homogenization theory and that
are applicable to large classes of composite systems, including reinforced rubbers, porous elas-

tomers and other heterogeneous elastomeric systems, such as TPEs. Such estimates should allow
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for the incorporation of statistical information beyond the phase volume fractions, thus allowing
for a more precise characterization of the influence of microstructure on effective behavior. Some
progress along these lines has already been accomplished (Ponte Castaneda and Tiberio, 2000;
Lahellec et al., 2004) with the extension of the “tangent” second-order nonlinear homogenization

technique (Ponte Castaneda, 1996) to finite elasticity.

2.3 Second-order homogenization method

Our proposal for generating homogenization estimates in finite elasticity is based on an appropriate
extension of the “second-order” homogenization procedure that has been recently developed by
Ponte Castafieda (2001; 2002a) in the context of nonlinear dielectrics and viscous composites with
convex, nonlinear potentials. This new method is in turn a generalization of the “linear comparison”
variational method of Ponte Castafieda (1991) in a way that incorporates many of the desirable
features of an earlier version of the second-order method (Ponte Castafieda, 1996; Ponte Castaneda
and Willis, 1999), including the fact that the estimates generated should be exact to second order
in the heterogeneity contrast (Suquet and Ponte Castaneda, 1993). It is relevant to mention in this
context that earlier works (e.g., Talbot & Willis 1985, Ponte Castanieda 1991) delivered bounds that
are exact only to first order in the contrast. Next we give the description of the proposed method.
For completeness, the descriptions of (relevant) earlier versions of the method have been included
in Appendix V.

The main idea behind the second-order homogenization theory is the construction of a fictitious
linear comparison composite (LCC) with the same microstructure as the nonlinear composite (i.e.,

the same x(")). Thus, the local stored-energy function of the LCC may be written as:
N
Wr(X,F) = x"(X) Wi (F), (2.32)
r=1

where the quadratic functions WT(J') are given by the second-order Taylor approximations of the

nonlinear stored-energy functions W) about some reference deformation gradients F("):
T T T r T T 1 T T T
Wi (F) = WOFED) + SOFO) . (F - F0) + 5 (F—F") LO(F —F0). (2.33)

Here, it is recalled that 8™ are given by expression (2.9)2, and the L) are fourth-order tensors
with major symmetry to be determined later. Note that, in general, L(") # el
Next, “corrector” functions V(") are introduced such that:

VOE® L0 = sta [WW (B — Wi (E0)] (2.34)

These functions, which are multiple-valued depending on the parameters F(") and L) serve to
measure the nonlinearity of the phases of the original material, so that, under appropriate hypotheses
(essentially, when the functions V(") are smooth with respect to the moduli L("), the local stored-
energy functions of the phases of the nonlinear composite may be written as:

WO(F) = stat {W}”) (F) + VO (R, L<’“))} : (2.35)
L'
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for any choice of the reference deformations F("). In connection with this expression, it should be
emphasized that the appropriate branches of the functions V(") must be chosen in order to recover
the equality. Note that this relation may still be used in an approximate sense, even when the local
potentials are such that the equality in relation (2.35) does not hold strictly.

Now, by making use of (2.35) in expression (2.28), it follows that the effective stored-energy

function W of the nonlinear composite may be expressed as:

o~

N
W(F) =stat stat > ¢ <W}”(F)+V(T>(F<T>,L(T>)>

(r)
’
Fek 1,(s) (X) p—t

(2.36)

which after interchanging the stationarity operations with respect to F and L(") may be recast as

N
_ . ()
W(F) = stat {WT(F;F<S>,L<S>)+§ R <V(T)(F(T),L(T))> } (2.37)

()
LX) r=1

In this last expression, use has been made of the fact that the corrector functions V(") do not depend
on F(X), and

N
. A (D)
Wi (Fs ), L) = stat (Wr (X, F)) = stat > _c§ ) <W} )(F)> (2.38)
r=1

is the effective stored-energy function associated with the LCC defined by relations (2.32) and (2.33).

It is important to emphasize at this point that expression (2.37) provides a variational principle
for the effective stored-energy function W of the elastomeric composite, where the relevant trial
fields are the modulus tensors L(*)(X) of the N phases in the LCC. The main advantage of this
variational principle over the original form (2.28) is that the trial fields L(*)(X) do not need to satisfy
any differential constraints, such as the compatibility requirement. Of course, for the resulting
estimates to make sound physical sense, the compatibility requirement must be, and indeed is,
enforced through the use of the LCC with effective stored-energy function WT given by (2.38). In
this context, it is natural to exploit the variational structure of (2.37) by restricting our attention

to constant-per-phase trial fields L(®) in order to generate the following estimate for W

N
W (F) ~ stat {WT@; FOLLO) 4+ 3 e VO R, L“‘U} 7 (2:39)

(s)
L r=1

where the stat(ionary) condition in this last expression is now over constant-per-phase, fourth-order
tensors L(®).
Next, it is relevant to spell out the stationarity conditions in expressions (2.34) and (2.39). They

read as follows:
S(r)(f:\(r)) _ 8 (F(’“)) —_ L™ (F(T) _ F(T)), (2.40)

and —
Wr oV

L) + ¢ o O (2.41)
respectively. But using the facts that:
w (r)
OWr | _ % g 50 F - FO)0), (242)

OL() 2
F()
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and -
oV 1 - R
= ——(F" —FM) g (F - F"), (2.43)
OL™ gy 2

where the notation .|p(, has been used to emphasize that the derivatives with respect to L") are

taken with F(") fixed, the stationary condition (2.41) can be rewritten in the form:
(F-F") @ (F -FO)NO = (FO _F0)) g ") —F0), (2.44)
or, equivalently, as:
cl) = (FD —F) g (FD —F0) — (F —F0) g F —F0), (2.45)

where F") = (F)(") and Cg) = ((F - F(r)) ® (F - F(T))W') have been introduced to denote the
average and covariance tensor of the fluctuations of the deformation gradient over phase r in the
linear comparison composite. Thus, expression (2.45) can be seen to provide a set of conditions on
the fluctuations of the deformation-gradient fields in the phases of the LCC. It is important to realize
that these conditions are overly constraining, in general, as they would require that the fourth-order
tensors ((F — F(T)) ® (F — F(T)»(’”) be of rank 2. This suggests that it may not be possible to
optimize with respect to completely general tensors L(") in the variational statement (2.39). As will
be discussed in more detail in the next subsection, one possible way out of this problem is to optimize
with respect to suitably chosen subclasses of tensors L("). In this case, the optimality conditions
with respect to the L(") would still be of the form (2.41), where the derivatives would be taken with
respect to the appropriate components of the L(") in the relevant subclass. But the form (2.45) of
these conditions would need to be replaced by suitable traces of these expressions, depending on the
specific form selected for the L"),

By making use of conditions (2.40) and (2.41), the general second-order estimate (2.39) may be
shown to reduce to:

N
WE) =3 [W“)(ﬁ(ﬂ) —SMEM). (RO F(”)] . (2.46)
r=1
It is interesting to remark that relation (2.46) depends directly on the average deformation gradients
F(r) in the phases of the LCC. In addition, expression (2.46) also exhibits an explicit dependence on
the variables ]?‘(’”), which are associated with the field fluctuations of the deformation fields in the
phases of the LCC through relations of the type (2.45). Moreover, the estimate (2.46) can be shown
to be exact to second order in the heterogeneity contrast, provided that the corresponding estimates
for the LCC are also taken to be exact to second order in the contrast, and that the reference
variables F(") be assumed to tend to the macroscopic average F in the small-contrast limit.

In connection with the general second-order estimate (2.46), it should be emphasized that this
estimate is, in principle, valid for any choice of the reference deformation gradients F(), which
suggests optimizing with respect to these variables. However, it has been found (Lopez-Pamies and
Ponte Castaneda, 2004a) that the result of such an optimization appears to be inconsistent with
conditions of the type (2.45) on the field fluctuations. As a consequence, it becomes necessary to

appeal to other physically based considerations to make a choice for the variables F("). Among such
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considerations is the requirement of objectivity of the effective stored-energy function w. Indeed,
this is a non-trivial requirement in the context of the second-order variational estimate (2.46), which
makes use of a LCC with local stored-energy functions Wr}r), defined by (2.33), that are a priori not
objective (i.e., Wj(f)(QF) £ W;T) (F), for all proper orthogonal Q). However, remarking that the
reference variables F("), as well as the modulus tensors L("), ultimately depend on the macroscopic
deformation gradient F, it follows that these tensors must be objective quantities in order to ensure
the objectivity of the effective stored-energy function: /W(QF) = W(F) for all proper orthogonal
tensors Q. Therefore, it will be required here that the tensors F(") and L") satisfy the following

invariance relations under the change of observer (frame) defined by the rotation tensor Q:
Fi(;) — Qix Fé;), and LE;I)CZ — @ip@k)q[’;:")qh (2.47)

where indicial notation has been used to indicate precisely the products involved in the second
relation for the L("). Parenthetically, it is interesting to remark that, under conditions (2.47), the
effective stored-energy function /WT of the LCC can also be shown to be an objective scalar function
of F, even though, again, the constituent phases Wg) are locally not objective.

Similarly, the stored-energy function W of the composite must satisfy the overall symmetry
requirements of the system, that is, W(FK) = W(F) for all orthogonal, second-order tensors K
belonging to the symmetry group of the material, G. For instance, for a composite with isotropic
constituents and an isotropic distribution of the phases, the symmetry group G would correspond
to the full orthogonal group. In this work, attention will be focused on composite elastomers with
isotropic phases, but with anisotropic distribution of the phases. For this class of materials, it can
be shown that requiring the variables F(") and L) to be invariant under each of the transformations
(changes of reference configuration defined by) K € G leads to estimates (2.46) for the stored-energy
function that satisfy the overall symmetry requirements of the material. Hence, it will be required

here that the tensors F(") and L(") satisfy the following invariance relations:

E z'(jT) — Fy Ky, and Lz(’;gcl — Lgiq KpiKq, (2.48)

for all symmetry transformations defined by orthogonal, second-order tensors K € G.

In essence, conditions (2.47) and (2.48) provide general invariance requirements that must be
satisfied by the reference deformation gradients F(") and the modulus tensors L(") in the phases of
the LCC. In practice, however, enforcing conditions (2.47) and (2.48) is not a simple matter because
of the implicit manner in which F(") and L(") enter the stationary conditions (2.40) and (2.41). In
the next subsection, we provide specific choices (motivated by the local isotropy of the phases) for

F(") and L(") that satisfy the invariance requirements (2.47) and (2.48).

2.3.1 On the specific choice of the variables F(") and L) for isotropic
phases
It is clear from the expressions (2.33) for the stored-energy functions W}r) of the phases in the LCC

that requiring the variables F(") and L(") be isotropic functions of the local deformation gradient F

would be sufficient to ensure the isotropy of these linear phases. However, given the approximation
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(2.39) for W, the variables F(") and L") are constant per phase, and therefore it is not possible
to choose them in this manner. On the other hand, recalling that the “generalized secant” tensors
L") provide a generalization of the tangent moduli tensors LZ(T)(F(T)), it is sensible to require L(")
to satisfy the same objectivity and material symmetry restrictions, with respect to F(") as those
satisfied by £ (F(T)). In the particular context of phases that are characterized by objective and
isotropic stored-energy functions W (), the corresponding tangent moduli tensors E(")(F(T)) must

satisfy the following conditions:
‘Cz(';l)cl(Q F" Q') = QimQkn E(m”;mq(F(T)) Qi Qs (2.49)

for all proper orthogonal, second-order tensors Q and Q’. In other words, the sy (F(")) are objective
and isotropic tensor functions of the variables F() .

Next, note that the “reference” deformation gradient tensors F(") may be expressed in the form:
F =RM UM =RM QM DM (QM)T, (2.50)

where R(™ and U correspond, respectively, to the “rotation” and the “right stretch” tensors
associated with the polar decomposition of F("), D(") is a symmetric, second-order tensor with matrix
representation (relative to the laboratory frame of reference) D(") = diag ()\Y), )\ér), )\ér)), with )\Y)7
)\g), and /\gr) denoting the principal stretches of U™, and (Q(T))T is the proper orthogonal, second-
order tensor describing the orientation of the principal axes of U(") relative to the laboratory frame

of reference. It then follows from conditions (2.49) that:
LLED) = Q4)Q5 Q% Q) R R LD, (D), (251)

where it is noted that Eﬁpq(D(’")) will exhibit orthotropic symmetry—characterized by 12 indepen-
dent principal components® —with respect to the laboratory frame of reference. Since, as already
stated, the generalized moduli tensors L(") are expected to also be objective and isotropic tensor
functions of F(") | it is reasonable to prescribe the following requirement for the functional dependence
of the moduli tensors L(") on the variables F("):

P = Q410105 0 Ry R L), 0, 2

npq

where the L*(") = L(T)(D(T)) will be assumed to be orthotropic, fourth-order tensors with respect to
the laboratory frame of reference. Thus, since R("™ and Q(") can be readily determined from F("),
it is seen that prescription (2.52) reduces the number of independent components of L") from 45
to only 12, namely, the 12 independent components of the orthotropic tensor L,ﬁ%gq. At this stage
it is useful to note that relation (2.44) (or (2.45)) can be thought of as a set of equations for the 9
components of the second-order tensor F™ (for each r = 1,..., N). Therefore, the simplest way to
generate a consistent system of equations out of relation (2.44) is to further reduce the number of
independent components of Lf,%,q t0 9. (Recall that our objective in the present work is not to obtain

the best possible results.) In this case, only 9 equations will be generated by differentiating with

6Recall that an orthotropic fourth-order tensor with only major symmetry has 15 independent principal compo-
nents. However, tangent modulus tensors derived from isotropic stored-energy functions contain only 12 independent
principal components.
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respect to these 9 independent components, which will involve only certain traces of the fluctuations
tensors Cg), as will be seen below. Prescriptions of the type (2.52), as it will be seen in more detail
in the applications presented in the sequel, turn out to be consistent with the physical requirements
of objectivity (2.47)2 and overall material symmetry (2.48),.

Having established the result (2.52) for the modulus tensors L(") for composite elastomers with
isotropic phases, it remains to establish a consistent prescription for the variables F("). The sim-
plest prescription satisfying the objectivity and overall material symmetry requirements, (2.47); and

(2.48)1, as well as the requirement that the reference variables F () tend to the macroscopic average

F in the small-contrast limit, is, of course,

F") =F, (2.53)

An alternative prescription, also satisfying these requirements, would be to set F(") = F(T), as

7

initially proposed by Lopez-Pamies and Ponte Castaneda (2004a).” However, it has been shown

2 lead to inconsistencies (see Appendix

that for certain limiting cases, the prescriptions F(") = F
VI). For this reason, in this work, dealing with general elastomeric systems, use will be made of the
prescription (2.53), which has been found to lead to more physically consistent results. However,
it should be re-emphasized that it is not yet known what the best prescription for the reference
variables F(") is.

In the next section, we will make use of conditions (2.53) for the F(") and of conditions (2.52) for
the L(") to specialize the general second-order estimate (2.46) to the case of two-phase elastomeric

composites with “particulate” microstructures, where both the matrix and the inclusion phase will

be taken to be isotropic.

2.4 Effective behavior of two-phase hyperelastic composites

with “particulate” microstructures

In this section, we specialize the general second-order estimate (2.46) for the effective stored-
energy function W to the specific case of two-phase composites consisting of ellipsoidal parti-

82) = ¢g and characterized by the isotropic stored-energy

cles,® with given initial volume fraction c
function W) which are distributed either randomly with “ellipsoidal symmetry” (Willis, 1977,
Ponte Castaneda and Willis, 1995) or periodically (Nemat-Nasser et al., 1982; Suquet, 1990) in a

compressible elastomeric matrix with isotropic stored-energy function W) (see Fig. 2.1).

2.4.1 Classical bounds

Before proceeding with the specialization of the second-order estimates, it is important to make cer-
tain remarks with regard to the classical Voigt upper bound (2.29) and the Reuss-type polyconvex
lower bound (2.31), which depend only on the initial volume fractions of the phases. (The special-

izations of these bounds to the case of two-phase elastomers with hyperelastic matrix phase W)

7This article has been included as Appendix A at the end of this thesis.
8This assumption could be relaxed to admit other particle shapes, but, for conciseness, this will not be done here.
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(a) (b)

Figure 2.1: Schematic representation of the “particulate” microstructures considered in this work. (a)
Ellipsoidal particles distributed randomly with “ellipsoidal symmetry;” the solid ellipsoids denote the inclu-
sions, and the dashed ellipsoids, their distribution. (b) Ellipsoidal particles distributed periodically; the solid
ellipsoids denote the inclusions, and the dashed parallelepipeds, their distribution.

and inclusion phase W(?) are straightforward and therefore will not be detailed here.) First, note
that in the limit when the inclusion phase is made rigid, the Voigt upper bound becomes infinite.
Although rigorously an upper bound, the Voigt estimate is physically unrealistic in this limiting
case, as it would suggest that the addition of any fraction (even infinitesimal) of rigid reinforce-
ment into an elastomeric matrix would result in a rigid material, which is in contradiction with
experimental evidence. On the other hand, the polyconvex lower bound remains finite in this limit,
and therefore it can be of use. However, it should be recalled that this bound does not linearize
properly (Ponte Castafieda, 1989), i.e., it does not reduce to the classical Reuss lower bound for
infinitesimal deformations. Second, note that in the limit when the inclusion phase becomes vacu-
ous (i.e., W) = 0) and the matrix phase is incompressible (typical of rubbers), the Voigt bound
becomes unbounded for all loadings, except for isochoric deformations. That is, the Voigt bound
suggests that a porous elastomer with incompressible matrix phase is itself incompressible, which
is in contradiction with experience. Moreover, the polyconvex lower bound vanishes identically in
the limit when the inclusion phase becomes vacuous. The corresponding failures of the Voigt upper
bound and the polyconvex lower bound can be used as motivation for generating the new type of
estimates that we propose to develop in this work. Although, they are less rigorous in the sense
that they are not bounds, they will be much more accurate, providing more realistic predictions,

especially, for cases when the inclusion phase is significantly stiffer or softer than the matrix phase.

2.4.2 The linear comparison composite

The computation of the second-order estimates for two-phase elastomeric composites requires the
determination of the effective stored-energy function associated with a fictitious linear comparison
composite (LCC) with the same microstructure as the original elastomer, as well as the corresponding
phase averages F and fluctuations Cg ) (r =1,2). It is remarked that the LCC problem at hand

involves non-symmetric measures of “stress” and “strain” and hence a suitable generalization of the
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classical problem is required. This generalization is straightforward and it was carried out by Ponte
Castanieda and Tiberio (2000) in the broader context of N-phase “thermoelastic” composites. The
general expressions will not be repeated here, instead, only the relevant results specialized to two-
phase systems will be considered. In this regard, it is recalled that great simplification of the general
relations for thermoelastic composites is available for the special class of two-phase composites.
Thus, making use of an appropriate generalization of the Levin relations (Levin, 1967), the effective

stored-energy function WT for the two-phase LCC may be written simply as:

Wr (F)=f+T F+

F-LF, (2.54)

DN | =

where f = f + i (AL)T'AT - (f; —f) (AL)Y'AT, T =T + <:E —f) (AL)7YAT are effective
“specific-heat” and “thermal stress” quantities, depending on the effective modulus tensor f;, which
is characterized in more detail further below. Also, in these expressions, f(") = W) (F(T)) -
T . FO) — Ip0) . LOFO, T0) = S(F)) — LOF® (r = 1,2), and AL = LO — L3,
AT = TM — T®) | Furthermore, f, T, and L are the volume averages of f, T, and L. Note that
the effective stored-energy function W\T is completely determined in terms of L.

In the above relations, L is the effective modulus tensor of the two-phase, linear-elastic compar-
ison composite with modulus tensors L(*) and L(®), and the same microstructure, in its undeformed
configuration, as the nonlinear hyperelastic composite. A reasonably good estimate for the type of
“particulate” microstructures considered in this section is the generalized estimate of the Hashin-

Shtrikman (HS) type (Willis, 1977):

1

L=LY 4 [(1-co)P— (AL . (2.55)

Here, P is a microstructural tensor that depends on the size, shape and orientation of the inclu-
sions, as well as on their spatial distribution. In particular, the tensor P depends on whether the
distribution of the inclusions is random (Willis, 1977; Ponte Castafieda and Willis, 1995), or periodic
(Nemat-Nasser et al., 1982; Suquet, 1990). In passing, it is appropriate to remark that the HS-type
estimate (2.55) reduces to the classical result in the limit of small deformations (see Appendix IV
for details). Furthermore, the estimate (2.55) is known to be accurate for small to moderate initial
volume fractions of inclusions, ¢y, and that it may become inaccurate for large cg, when the inter-
actions among the particles become especially strong. Since the volume fraction of inclusions, as
well as their shape, orientation, and distribution, in a elastomeric composite can evolve (see Section
2.5) as a function of finite deformation histories, this has the practical implication that the second-
order estimates of the HS type may become inaccurate once the volume fraction, or other relevant
microstructural variables, reach values approaching the percolation limit (as explained in detail in
Section 2.5). However, it should be emphasized that the second-order estimates (2.46) could still be
used beyond this range, provided that a more sophisticated estimate was used for the LCC. Next,
we provide explicit expressions for P for the random and periodic microstructures considered in this
work.

For a random, “ellipsoidal” distribution of ellipsoidal inclusions, the microstructural tensor P
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can be written as (Willis, 1977; 1982):

= 1 - 1\ —3/2
P = rdet(zo) /|£ _ H©O (2 '€ Zy7¢) 7T ds. (2.56)

In this relation, H;;ri(§) = Ki;lé“jfl, with K, = Lg;l)clgjfb and the symmetric second-order tensor Zg
serves to characterize the “ellipsoidal symmetry” of the microstructure in the reference configuration.
More specifically, the tensor Zg serves to define the shape and orientation of the ellipsoidal particles,
as well as the “shape” and “orientation” of their two-point correlation function, which are assumed
to be initially identical to those of the particles. (This assumption could be relaxed by allowing
the shapes and orientations of the particles and of their distribution functions to be different (Ponte
Castaneda and Willis, 1995), but this is not done here as it would necessitate the use of two different
P tensors.) For later use, it will prove convenient to spell out three limiting cases of practical interest
in expression (2.56). The first one corresponds to an isotropic distribution of spherical particles,
and is simply obtained by setting Zg = I in (2.56). The second limiting case corresponds to aligned
cylindrical fibers distributed with “elliptical” symmetry in the plane transverse to the fiber direction,
and can be obtained by setting Z, = diag(1/z?,1/23,€) in (2.56) and taking the limit € — 0. The
analysis of this limit is given in Appendix V, but the final expression for the tensor P can be written

as follows:
wo Hijri(€1,82,83 = 0)
2T £24£2=1 f% + w% 55

Here, it should be noted that the components in (2.57) are relative to the principal axes of Zg, as

Pijp = ds. (2.57)

defined by the rectangular Cartesian basis {e;}. Moreover, in expression (2.57), wo = 29/2% and the
fibers have been aligned—without loss of generality—in the es direction. Finally, the third limiting
case corresponds to layers forming a laminate, and can be obtained by setting Zy = diag(1/2}, €, €)
in (2.56) and taking the limit ¢ — 0, or, equivalently, by taking the limit wy — oo (or wg — 0)
in (2.57). The analysis of this limit is also included in Appendix V, but the corresponding final

expression for the tensor P characterizing a laminate microstructure reads as follows:
P =H(N), (2.58)

where N denotes the direction of lamination in the undeformed configuration.
For a periodic distribution of ellipsoidal inclusions, the microstructural tensor P can be written

as (Suquet, 1990):

P= T Y HEG(-6GHE), (2.59)
§er*—{0}
where H(¢) has already been defined above, G;(£) = 3(sinn—ncosn)/n® with n = (Z5'¢ Z51£)1/2,
and R* denotes the reciprocal periodic lattice (i.e., in Fourier space). Note that here, similar
to (2.56), the tensor Z, characterizes the shape and orientation of the ellipsoidal particles in the
undeformed configuration. On the other hand, the initial distribution of the (center of the) particles
is completely characterized by R* (see, e.g., Chapter 2 in Kittel (1968)). Finally, it is worth noticing
that the computation of (both, (2.56) and (2.59), tensors) P depends on the anisotropy of the

modulus L), which in turn depends on the functional form of the potential W) as well as the

particular type of loading, as determined by F.
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Next, it can be shown (see, for example, Ponte Castafieda and Suquet, 1998) that the average

deformations F(l) and F(Q) in the matrix and inclusion phase of the LCC can be conveniently

determined from the overall average deformation condition, together with the stored-energy function

(2.54), through the relations:

R S ) — 1 dWr—7)
FV=——(F-«F”). ad F = | (2.60)

respectively. Note that the derivative of WT — f with respect to T in the second of relation (2.60)
must be carried out with L(?) held fixed.

Furthermore, the fluctuations CS ) and Cg ) in the matrix and inclusion phase of the LCC can
be readily determined through the relations:

2 oW
cy = T

2
== 3L , and C¥ =o, (2.61)

FO=F®

respectively. Note that the derivative of Wr with respect to L) in the RHS of (2.61); must be

carried out with F(!) held fixed. Moreover, the vanishing of the fluctuations in the inclusions,
as stated by (2.61)s, is a direct consequence of the use of the HS-type estimates (2.55) in the

homogenization process.

2.4.3 Second-order homogenization estimates: compliant particles

In this subsection, we specialize the general second-order estimate (2.46) to the case of the two-phase,
particulate, elastomeric composites introduced above. For later use, it is convenient to present the
development for a general reference deformation gradient F(!). On the other hand, in view of the
fact that the fluctuations associated with the HS-type estimate for the LCC vanish identically in
phase 2, it proves computationally simpler to set the reference deformation gradient F(2) = F(Q).
It is emphasized that any other prescription (satisfying the conditions of objectivity (2.47); and
overall material symmetry (2.48);) for F(?) would lead to exactly the same second-order estimate

(as a consequence of the use of the HS-type estimates (2.55) for the LCC). Thus, the second-order

estimate for two-phase elastomeric materials simplifies to:
W(F) = (1 - co) [WwOED) - sOE®) . (30 _FY)| £ wFE?), (2.62)

Here, F(l), F(2), l:"(l), 13‘(2), together with the modulus tensors L(Y) and L(®, need to be made

(2)

explicit. To this end, it is important to realize that by setting F(?) = F it follows (from the

appropriate specialization of equations (2.40) and (2.41)) that F® = F(Q), and that the modulus

tensor of the inclusion phase in the LCC reduces to L(?) = 9?W®?) (F(2))/8F2. Next, it is noted

@ in the matrix phase of the relevant LCC is determined,

(2

that the average deformation gradient F
in terms of the applied macroscopic loading F and the average deformation gradient F' in the
inclusion phase of the LCC, from the overall average deformation condition (2.60);.

Now, with the above simplifications, equation (2.60)s leads to:

F® = Fo L (AL) D - L)AL [AS + LOF - FO)

Co

LOF-FN], (263
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where AS = SW(FM) — 8(2)(F(2)). Making use of the HS estimate (2.55), this expression can be

shown to simplify to:

|

B F(2) — (1—c)P [L(l) (F(l) _ F(2)> _ 5(1)(F(1)) +8®@ (F(Z))} , (2.64)

which can be seen to constitute a system of 9 nonlinear algebraic equations for the 9 components of

the average deformation gradient F(Q)

. Note that these equations depend directly on the modulus
tensor L1 of the matrix phase, but, remarkably, not on the modulus tensor L(?) of the inclusion
phase.

Next, the generalized secant condition (2.40) for the matrix phase provides an equation for the

variable ﬁ‘(l)7 which is given by:
8(1)(F(1)) _ 5(1)(]_:‘(1)) = L(l)(F(l) _ F(l)). (2.65)

This relation can interpreted as a set of 9 nonlinear algebraic equations for the 9 components of
FO,

As discussed in the previous section, the modulus tensor L") for the isotropic matrix phase will
be taken to be of the form (2.52), which is now written as:

L), =WV RV R L,

q mnpq’

(2.66)

where the notation L}, = Lg;,)cl(D(l)) has been introduced for convenience. It is recalled that L*
should be assumed to have orthotropic symmetry relative to the laboratory frame of reference. In
order to avoid the potential inconsistencies associated with equation (2.45) for the second moments
of the deformation gradient field in the matrix phase of the LCC, the tensors L* will be chosen
here to have only 9 independent components, instead of the 12 components that would normally
be associated with orthotropic symmetry (for fourth-order tangent modulus tensors derived from
isotropic stored-energy functions). As it will be seen in the applications to follow, the choice of the
9 independent components of L* is somewhat arbitrary, and depends on the specific constitutive
behavior of the hyperelastic matrix phase. However, at this stage, it is only important to recognize
that the restriction to 9 independent components for L* will translate into internal constraints among
the 12 standard components of the orthotropic tensor L*. Then, denoting by £% (o = 1,2,...,9)
the 9 independent components of L*, and repeating the procedure that led from the stationarity

condition (2.41) to expression (2.44) now gives:

(}f:\(l) _F<1>) oLt (}f:\(l) _F<1>) _ 2 oW

2.
* 1—00 8@; ( 67)

F1)

In this expression, WT is the stored-energy function of the relevant LCC given by (2.54) with
F® = F(Q), and L = 82W(2)(F(2))/8F2. Thus, the right-hand side of this equation can be
computed by performing the indicated derivatives with respect to the moduli £}. The resulting
expressions, which involve suitable traces of the fluctuation tensor Cg ), are rather complicated, but

can be simplified dramatically by repeated use of the expression (2.64) for F(2). In the end, the
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equations (2.67) can be rewritten in the simple form:

(Fu) _ F(l)) oLt (Fu) _ F<1>)

(F— F(U) oL (F— F(l))

ng 1—co %

(2.68)

They constitute a system of 9 scalar equations for the 9 scalar variables £}, which, remarkably, are

also independent of the modulus tensor L of the inclusion phase. (Recall that F(Q)

by equation (2.64), is independent, of L(2).)

, as determined

The only variable that remains to be specified is the reference deformation gradient F(!)| which
in this work will be set equal to F (i.e., F(') = F). Therefore, in conclusion, equations (2.64), (2.65),
and (2.68) constitute a closed system of 27 nonlinear algebraic equations for the 27 scalar unknowns

)7 the 9 components of 1:"(1), and the 9 independent components

formed by the 9 components of F<2
of L™ (i.e., the 9 independent components of L*, denoted by £% ), which, in general, must be solved
numerically. Having computed the values of all the components of F(z), F®, and LM for a given

loading F, the values of the components of F(l)

can be readily determined using relation (2.60);. In
turn, the second-order estimate for the effective stored-energy function W for two-phase, particulate,
elastomeric composites can now be computed, from relation (2.62), using these results. It should
be emphasized that the resulting estimate is objective, as will be seen in more detail in subsequent
chapters of this work.

To conclude, it interesting to remark that the just-defined system of equations defining the ef-
fective stored-energy function W for a general, two-phase, hyperelastic composite with particulate
microstructure does not depend explicitly on the modulus tensor L of the inclusion phase (al-
though, of course, it does depend on the behavior of the hyperelastic inclusion phase through the
energy function W(?). This unexpected result is a consequence of the use of the HS-type estimate
(2.55), which implies vanishing fluctuations in the inclusion phase of the LCC. In any event, the in-
dependence of the second-order estimate (2.62) (together with expressions (2.64), (2.65), and (2.68))

on L® will greatly facilitate the computation of the limiting cases of vacuous inclusions and rigid

particles, which are considered next.

2.4.4 Second-order homogenization estimates: porous elastomers

The specialization of the second-order estimate (2.62) for general two-phase elastomers with partic-
ulate microstructures to porous elastomers can be simply obtained by setting W) = 0. The result
reads as follows:

W(E) = (1= fo) (WO ED) - sOF) - @0 -F)], (2:69)

(1), FO, and LM are deter-

)

mined by suitably specializing the relations (2.60);, (2.64), (2.65), and (2.68), and eliminating the

where fy = ¢ for consistency with later chapters, and the variables F
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) 1)

variable F(2 in these equations in favor of F' '. Thus, having set F(!) = F, the resulting equa-

tions are (2.65), which does not change, the following explicit equation for the average deformation

1

. =(1) . .
gradient F' ~ in the matrix phase:

FU=F_ (E“))*ls(l)(F), (2.70)

where

EW =P~ — (1 - f)L.V (2.71)

is a fourth-order tensor with major symmetry depending only on L), and the field-fluctuations

equation:

. — oL . — 1 /— —ay OEM @)
o_7. B sl (Fo VOB m
(B —F) (B - F) = - (F F ) 50s (F F ) (2.72)

In short, equations (2.65) and (2.72) constitute a closed system of 18 nonlinear, algebraic equa-
tions for the 18 unknowns formed by the 9 components of FO and the 9 independent components
of LY (i.e., the parameters ¢*). Having computed all the components of FO and LW, for a given

loading F and initial microstructure, the components of F(l)

can be readily obtained from (2.70).
In turn, these results can be used to finally compute the second-order estimate (2.69)

Finally, it is worth mentioning that the above-developed expressions are equivalent to those given
in Section 4.3 of Lopez-Pamies and Ponte Castaneda (2004b) (for version 3 of the second-order
estimates) for porous elastomers, but the expressions given here are more explicit (and therefore

easier to implement).

2.4.5 Second-order homogenization estimates: rigid particles

In this subsection, we specialize further the general second-order estimate (2.62) to the limiting case
when the particles are taken to be rigid. To this end, for simplicity and without loss of generality,
the following choice is made for the stored-energy function of the inclusion phase:

(2)

W (F) = “7 (F-F —3) — u® In(det F) (2.73)
where the shear modulus p(?) will be taken to tend to infinity in order to model rigid behavior. Note
that this form for W is objective and consistent with the requirement that the deformation gradient
F within the particles should tend to an orthogonal tensor R (i.e., the particles should undergo a
rigid body rotation) in the limit u(?) — oco. Based on this choice for the stored-energy function of

the inclusion phase, an expansion for the average deformation gradient F( ) in the particles of the

LCC is attempted in the limit as (?) — oo of the following form:
FP =RY + F 1 0(e), (2.74)

where € = 1/pu(?) is a small parameter, and R® and F(lz) are second-order tensors to be determined
from the asymptotic analysis that follows. As suggested by (2.73), ﬁ@) is assumed to be orthogonal.

It is now relevant to spell out the asymptotic expansions for the stored-energy function W), as
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well as for the associated stress 8(2), evaluated at the average deformation gradient (2.74) in the

limit as € — 0. The results read as follows:

wOFEY) =0+ 0(), sOFY)= a‘gfiF@)(F@)) =89 +0(0), (2.75)
where the second-order tensor & 5)2) is given by:
s =F? +RYF")TRY. (2.76)
We remark, for later use, that
R?)TsP = (s2)"R™. (2.77)

Although this identity can be easily verified algebraically, it is a simple consequence of the objectivity
of the stored-energy function (2.73).
Now, using F(1) = F for the reference deformation, it follows from the above asymptotic results

that the leading-order term in equation (2.64) can be written in the form:
EVF -RY)+ (1-c) [SVF) - sP] =0, (2.78)

where E) and 822) are given, respectively, by expressions (2.71) and (2.76).

The expression (2.78), which is a full second-order tensorial relation (i.e., it contains 9 indepen-
dent scalar equations), can be used to generate an equation for the rotation tensor ﬁ(2), which has
7(2))’1‘

only 3 independent components, by first left-multiplying expression (2.78) by (R , extracting

the skew-symmetric part of this expression, and making use of the identity (2.77). The resulting

. C . . (2
equation for the average rigid rotation R( )

()" [e0 (F-&?)] - [£® (F-R®)] B

(1 - ) {(R(2)>TS(1)(F) - (s<1>(F))TR(2)} -0, (2.79)

of the particles may be written in the form:

. . . . (2
which provides a set of 3 independent equations for the 3 components of R( ).

It should be clear
from the derivation that this equation is independent of the form of the constitutive behavior (2.73)
assumed for the inclusion phase, since the only property that we have really used is the objectivity
of W®,

Having determined ﬁ@) from equation (2.79), it is now a simple matter to obtain FY with the
help of relation (2.60);. The result is:

F(l) 1

-1 (F - coﬁ(2)) +O0(0). (2.80)

The generalized secant modulus expression (2.65) remains unchanged in the limit as ¢ — 0, but

the expression (2.68) involving the field fluctuations can be easily shown to reduce to:

(ﬁ(l) _ F) . %LT(:) (Fu) _ F) _ (1—070%)2 (F - ﬁ<2’) . 55:) (F - ﬁ@’) L (28])

Finally, making use of expressions (2.75); and (2.80) in (2.62), it is easy to show that the second-
order estimate for the effective behavior of elastomers reinforced with rigid particles reduces to:

—

W(F) = (1 - co)WO(EFED) + SOF). [F P cO)F(U} . (2.82)
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In summary, equations (2.65), (2.79) and (2.81) constitute a closed system of 21 nonlinear alge-

), the 9 components of

braic equations for the 21 scalar unknowns formed by the 3 components of ﬁ(Z
F(l), and the 9 components of L) (i.e., the independent components £%), which, in general, must
be solved numerically. Having computed all the components of ﬁ(2), FO, and LY, for a given
loading F and initial microstructure, the second-order estimate (2.82) for the effective stored-energy
function W of the rigidly reinforced elastomers can be readily obtained.

In passing, it is noted that the above results for rigidly reinforced elastomers provide a general-
ization of the earlier results of Ponte Castanieda and Tiberio (2000) and Lopez-Pamies and Ponte
Castafnieda (2004a), where, on account of the considered isotropic symmetry of the microstructure,

it was sufficient to set the average rigid rotations for the rigid inclusions equal to the identity (i.e.,

R® =1).

2.5 Microstructure evolution

When a composite material is subjected to finite deformations on its boundary, its microstructure
will not remain fixed, but instead will evolve at every step of the deformation. In general, the
problem of characterizing the evolution of the microstructure in a detailed manner is a hopelessly
difficult task, due to the large number of microstructural variables that would be involved. However,
for special classes of microstructures, such as the “particulate” microstructures discussed above, it
is possible to develop consistent models for the evolution of suitably chosen microstructural vari-
ables. For viscoplastic composites, such types of models have been proposed by Kailasam and Ponte
Castarieda (1998), the central idea being that the evolution of the size, shape and orientation of the
inclusions should be controlled—on the average—by the average strain-rate and spin fields in the
inclusion phase, essentially generalizing notions introduced by Eshelby (1957) for linearly viscous
composite systems with dilute concentrations of inclusions. Thus, for the viscoplastic composites
with particulate microstructures, the relevant microstructural variables were identified to be the
volume fraction of the inclusion phase, and the average aspect ratios and orientation angles of the
inclusions, and evolution laws for these variables were generated combining basic kinematics prin-
ciples with nonlinear homogenization estimates for the average strain-rate and spin fields in the
inclusion phase. For non-dilute systems, additional microstructural variables were also identified
(Ponte Castaneda and Willis, 1995) serving to characterize the “distribution” of the inclusions in
the matrix phase, and evolutions laws for these variables have also been proposed (Kailasam et al.,
1997).

For the viscoplastic composites mentioned in the previous paragraph, the development of evo-
lution laws for the relevant microstructural variables was essential to be able to describe the con-
stitutive response of these materials under finite-deformation histories. Given that the constitutive
behavior of these materials is most naturally characterized by means of a Eulerian description of
the kinematics, the relevant homogenization procedure is carried out by taking a snapshot of the
microstructure at the current instant of time and generating an estimate for the instantaneous con-

stitutive response of the material. This means that this snapshot homogenization process must be
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supplemented by appropriate laws serving to characterize the evolution of the microstructure from
one instant to another instant in time.

In the present work, the interest is on hyperelastic composites, which are characterized, as we
have seen, by a Lagrangian description of the kinematics. This means that—unlike the example
of viscoplastic composites—the evolution of the microstructure resulting from the finite changes in
geometry is already accounted for in the homogenized constitutive description, given by equations
(2.16) with (2.12) for these materials. In other words, it is not necessary to obtain additional equa-
tions to characterize the evolution of the microstructure in these systems. Indeed, the minimizing
solution in expression (2.12) for the effective stored-energy function of the composite elastomer con-
tains implicitly all the necessary information to describe how every point in the specimen moves,
and therefore, also how the microstructure evolves. Nevertheless, even if it is not necessary to know
how the microstructure evolves in order to determine the effective behavior of a composite elas-
tomer, it is still of interest to have 