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Notice

This dissertation begins with a summary in French. Then, Chapter 1 intro-
duces the main concepts and models that are used in the other chapters. Chapter 2
(joint work with Bram DRIESEN 2 and Peter P. WAKKER2) is dedicated to modeling
risk and ambiguity attitudes through marginal utility. In Chapter 3 (joint chapter
with Laure CABANTOUSPY), we propose and implement tools to analyze how deci-
sion makers combine experts’ judgments. Chapter 4 (joint work with Mohammed
ABDELLAOUI ¢ and Peter P. WAKKER 9) studies how combining Bayesian beliefs
and willingness-to-bet allows for analyzing attitude towards uncertainty. Chapter
5 investigates the robustness of several choice-based techniques for eliciting sub-

jective probabilities. Chapter 6 discusses and concludes.

La thése comporte tout d’abord un résumé détaillé en langue francaise. Le
reste de la these est rédigé en langue anglaise. Le chapitre 1 introduit les princi-
paux concepts et modéles utilisés dans la thése. Le chapitre 2, travail en commun
avec Bram DRIESEN? et Peter P. WAKKER?3, étudie la modélisation de [l'attitude
face au risque et a I'ambiguité via l'utilité marginale. Le chapitre 3 est issu d’une
collaboration avec Laure CABANTOUS?. 1[I propose et met en ceuvre des outils
pour analyser comment les décideurs prennent en compte les jugements de pro-

babilité donnés par des experts. Le chapitre 4, fruit d’une collaboration avec Mo-

4



hammed ABDELLAOUI¢ et Peter P. WAKKERY, combine 'analyse des probabilités
subjectives avec celle des consentements a parier pour comprendre et mesurer
lattitude des décideurs en situation d’incertitude. Le chapitre 5 étudie plus en
profondeur les techniques d’élicitation des probabilités subjectives. Le chapitre 6

conclut.
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o
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Résumé de la These

0.1. Introduction

0.1.1. Qu’est-ce que l'incertitude ?

Knight (1921) a introduit la distinction entre incertitude mesurable, autre-
ment appelée risque, et incertitude non-mesurable, souvent appelée simplement
incertitude : la premiere incertitude désigne donc le cas ou il existe une mesure de
probabilité sur les événements possibles, tandis qu’il n’en existe pas dans le second
cas. Cette distinction constitue la premiere tentative de décrire et de définir
I'incertitude mais a donné lieu a différents travaux complémentaires ou critiques.

Nous allons ainsi présenter une breve topographie de 'incertitude.

Incertitude et probabilité objective : C'est au XVIéme siécle que Jerome Car-
dan a donné la premiere intuition de la définition des probabilités comme un ratio
du nombre de cas favorables sur le nombre de cas possibles. La vision fréquentiste
associe les probabilités aux limites des fréquences quand le nombre d’observations
tend vers l'infini. Quand il existe de telles probabilités correspondant a des pro-
priétés objectives du monde extérieur, alors nous nous retrouvons dans ce que

Knight appelle le risque.
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Incertitude et probabilité subjective : A 'opposé de la vision fréquentiste,
I'approche subjectiviste considere qu’il n’existe de probabilité que relativement a
un individu faisant face a un événement donné. Cette vision permet de définir des
probabilités méme s’il n’est pas possible d’effectuer un calcul fréquentiste. Par
exemple, les décisions d'un individu peuvent révéler ses croyances. Savage (1954)
a établi les conditions suffisantes pour que les choix révelent I'existence de telles
probabilités. Puisque l'incertitude est ainsi mesurable, ne serait-ce que subjecti-
vement, elle peut aussi étre qualifiée de risque. Mais reste-t-il alors une incerti-

tude qui ne se réduise pas au risque ?

Incertitude sans probabilité subjective: Ellsberg (1961) propose des
exemples dans lesquels les axiomes de Savage sont violés, et par conséquent, ne
permettent pas de définir de probabilités subjectives. Il désigne par ambiguité de
telles situations. Toutefois, comme nous le verrons dans cette these, il n’est pas
certain qu'il n’existe pas de probabilités subjectives. Des généralisations du résul-
tat de Savage tentent d’étendre la définition des probabilités afin de couvrir des
situations que les axiomes de Savage ne prenaient pas en compte (voir sous-

section 0.1.4).

Incertitude radical : Suivant Keynes (1936), I'approche post-keynésienne
explique que la vraie incertitude signifie que I'on ne sait tout simplement rien, et
que par conséquent les approches traditionnelles, fondées sur la description de
tous les événements possibles et toutes leurs conséquences, sont limitées. Dans
ces situations, les post-keynésiens expliquent que le décideur peut préférer ne pas

décider ou suivre ses « esprits animaux » (Davidson, 1991).

Par la suite nous nous contenterons d’appeler risque toute situation ou /es
probabilités sont connues. Dans ces cas nous nous réfererons explicitement a ces
probabilités objectives. Quand les probabilités ne sont pas connues, nous nous
réfererons a des événements ou des ensembles de probabilités possibles.
L’incertitude comprend aussi bien le risque que ces autres cas. Nous utiliserons
parfois le terme ambiguité pour désigner de maniere un peu abusive des situations
ou aucune probabilité objective n’existe, mais ou des probabilités subjectives peu-

vent étre définies. Ceci se justifiera par le fait que méme s’il existe des probabilités

14



(subjectives), celles-ci apparaissent moins certaines au décideur. Nous allons pré-

senter a présent le principal modele de décision en situation d’incertitude.

0.1.2. Utilité Espérée Subjective (SEU)

Par la suite, nous utiliserons les notations suivantes. Tout d’abord les con-
séquences pour le décideur seront toujours exprimées comme des éléments de R.
Quand les probabilités sont connues, alors le décideur fera face a des /oteries (sou-
vent notées ), c'est-a-dire a des distributions de probabilités sur les consé-
quences. Nous désignerons par L /‘ensemble des loteries. Dans ce chapitre, nous
utiliserons souvent des /oteries simples, qui peuvent s’écrire (p1:X1,...,pn:Xn) OU les
pi sont des probabilités qui se somment a 1 et ou le décideur recoit xi avec une
probabilité p; pour tout i=1,...n. Les loteries binaires seront désignées typique-

ment par xpy (obtenir x avec une probabilité p et y sinon).

Lorsque les probabilités ne sont pas connues, alors il existera des états de la
nature dont un seul se révelera vrai. S est l'univers ou ensemble des états de la
nature. Nous parlerons d’événements pour désigner des sous-ensembles de S. Par
simplicité dans cette premiére section, l'univers sera fini et s’écrira donc
S={1,...m} avec m fini. Un acte sera alors une fonction qui associe a chaque élé-
ment de S une conséquence et sera représenté par f, g... Comme S est fini, de tels
actes peuvent s’écrire comme des éléments de R™, (x1,..,.Xm) OU X; est la consé-
quence associée a I'état i. Les actes binaires seront parfois écrits xEy, ou le déci-
deur obtient la conséquence x si I'’événement ECS se réalise et y sinon. Un acte ou
une loterie qui donne uniquement la conséquence x sera désigné par cette consé-
quence. > désigne la relation de préférence sur 'ensemble des actes ou des lote-

ries.!

L]l est possible de définir rigoureusement, en présence d’'une mesure de probabilité (objec-
tive) sur S, 'ensemble des loteries comme un sous-ensemble des actes afin que la relation de préfé-

rence soit définie sur un seul ensemble (homogene). Nous ne détaillerons pas ici.
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Lorsque les probabilités sont connues, la premiere intuition a été de penser
que les décisions se faisaient en fonction de 'espérance mathématique. Nicolas
Bernoulli a alors suggéré le paradoxe suivant. Pourquoi ne sommes-nous préts
qu’a payer un montant limité pour jouer a un jeu qui nous permettrait de gagner 2»
euros si une piece tombe sur pile au ni¢me lancer alors que I'espérance mathéma-
tique de ce jeu est infinie. Daniel Bernoulli (1738) a alors suggéré que ce n’était
pas l'espérance de gain mais 'espérance d’utilité qui entre en considération. Il a
ainsi introduit le modele d’utilité espérée qui a ensuite été axiomatisé par von
Neumann & Morgenstern (1944). Dans ce modele, chaque loterie est représentée
par (p1:Xy, -, Pn: Xn) M Xizq PiU(X), ou u est une fonction d’utilité, continue et

strictement croissante, définie sur R et unique a une transformation affine pres.

Savage (1954) a produit la premiere axiomatisation de ce modele lorsque
les probabilités ne sont pas connues. Il a donné des conditions suffisantes pour
que la relation de préférence sur les actes permette de définir une mesure de pro-
babilité (une fonction P définie de P(S), l'ensemble des parties de S, vers [0,1]
pour laquelle P(S)=1 et pour tout couple d’événements E et F tels que ENF=0,
P(EUF)=P(E)+P(F)), telle que les préférences du décideur soient représentées par
une fonctionnelle d’utilité espérée. En effet dans le cadre des hypotheses de Sa-
vage, les préférences sont représentées par l'utilité espérée subjective, i.e.
(X1, -, Xm) — 2iq P(D)u(x;), ot u est une fonction d’utilité unique a une transfor-
mation affine pres et ou P est une mesure de probabilité unique. Il est important
de noter que Savage a ainsi fourni une premiére fondation au concept de probabili-

té subjective.
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0.1.3. Les paradoxes

Allais (1953) a suggéré une célebre violation de la théorie d’'utilité espérée.

Le tableau suivant décrit les loteries.

Tableau 0.1.1 : Le paradoxe de Allais

p=89% P=10% p=1%
£ €1,000,000 €1,000,000 €1,000,000
2 €1,000,000 €5,000,000 €0
2 €0 €1,000,000 €1,000,000
24 €0 €5,000,000 €0

£1, .., Y4 désignent quatre loteries. Pour la plupart des gens, £1>¢> mais
#3<?4. Dans le cadre de I'utilité espérée, avec u(0)=0 et u(1)=1 (les conséquences

sont en millions d’euros):

0.89%xu(1)+0.10xu(1)+0.01xu(1) > 0.89%xu(1)+0.10xu(5)+0.01xu(0),
et

0.89%xu(0)+0.10xu(1)+0.01xu(1) < 0.89%xu(0)+0.10xu(5)+0.01xu(0).

Ceci implique la contradiction suivante: 0.11>0.10xu(5) et 0.11<0.10xu(5). 1l
est clair dans le tableau que la premiere paire de loterie ne difféere de la seconde
que pour ce qui arrive avec une probabilité de 89% et que dans ce cas, la consé-
quence est commune aux deux loteries dans chaque paire. Dans un modele sépa-
rable comme SEU, ou ce qui est commun n’importe pas, une telle inversion des pré-
férences n’est pas possible. Pourtant, l'intuition derriere ce paradoxe réside dans
le fait que le changement de conséquence entre #1 et £3 a un fort impact car il
transforme une /oterie dégénérée (un montant certain) en une loterie non dégéné-
rée (donc risquée). Par contre, la méme modification apportée a £> (devenant ¥4),
une modification de loterie risquée a loterie risquée, ne change donc pas sa nature
et a moins d'impact. Le paradoxe de Allais est aussi vérifié quand les probabilités

ne sont pas connues (MacCrimmon & Larsson 1979 ; Tversky & Kahneman 1992).
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Ellsberg (1961) a proposé un autre paradoxe que ne peut expliquer 'utilité
espérée subjective. Il sera désigné par la suite sous le terme paradoxe d’Ellsberg a
deux couleurs. Soient deux urnes: la premiere contient 50 boules rouges et 50
boules noires. La seconde contient 100 boules, rouges ou noires mais dans une
proportion inconnue. S’ils peuvent gagner en tirant une boule rouge, la plupart des
gens vont préférer tirer dans la premiére urne. Idem s’ils peuvent gagner en tirant
une boule noire. Dans le modele d’utilité espérée, de tels choix révelent que la
probabilité de tirer une boule rouge (respectivement noire) est plus grande dans
I'urne connue que dans I'urne inconnue. Sachant que les probabilités dans I'urne
connue sont de 1/2 pour les deux couleurs, alors la somme des probabilités subjec-

tives dans l'urne inconnue est inférieure a 1.

Une seconde version de ce paradoxe (dite paradoxe d’Ellsberg a trois cou-
leurs) utilise une seule urne, contenant 30 boules rouges (R) et 60 boules jaunes
(J) ou noires (N). La plupart des gens vont préférer pour gagner 100€ parier qu'’ils
tireront une boule rouge plutét qu’'une boule noire car ils sont siirs que la probabi-
lité d’avoir une boule rouge est 1/3 alors que la probabilité d’avoir une boule noire
est inconnue. Inversement, ils préféreront parier qu'ils tireront une boule noire ou
jaune (probabilité connue de 2/3) plutot qu'une boule rouge ou jaune (probabilité
inconnue). Par conséquent dans le cadre de 'utilité espérée subjective, P(R)>P(N)

mais P(R)+P(J)<P(N)+P()).

Dans la prochaine sous-section nous allons présenter différents modeles vi-

sant a intégrer ces paradoxes.

0.1.4. Généralisations de SEU

Sophistication probabiliste : Machina & Schmeidler (1992) ont proposé une
définition plus robuste des probabilités subjectives en modifiant les axiomes de
Savage, afin de prendre en compte les comportements tels que le paradoxe de Al-
lais. Ils en déduisent un modele appelé sophistication probabiliste, ou les choix
sont toujours déterminés par une distribution de probabilité subjective sur les

conséquences, mais ou l'utilité espérée peut étre violée. Chew & Sagi (2006a) ont

18



fourni une axiomatisation plus générale des probabilités subjectives que nous uti-

liserons dans les sections 0.4 et 0.5.

Utilité espérée de Choquet (CEU) : 11 s’agit dans ce modele proposé par
Schmeidler (1989) de garder la structure de l'utilité espérée mais en acceptant que
les probabilités ne soient pas additives. Par simplicité, et parce que nous
n’utiliserons que ce cas dans ce chapitre, nous allons en présenter la formulation

pour les actes binaires :
XEy—W(E)u(x)+(1-W(E))u(y),

ou x>y, u représente toujours la fonction d’utilité (toujours définie a une fonction
affine pres) mais W(E) est maintenant une fonction définie telle que W(®)=0,
W(S)=1 et W(A)<W(B) pour tout ACB. W n’a pas a étre additive. L'équivalent de
CEU quand les probabilités sont connues est |' utilité a dépendance de rang (RDU),
xpy—w(p)u(x)+(1—w(p))u(y) ou x=y et p est une fonction de transformation de
probabilités strictement croissante sur [0,1], avec w(0)=0 et w(1)=1. Tversky &
Kahneman (1992) ont introduit une version de ces modeles qui dépend du signe,
c’'est-a-dire w et W sont différentes selon qu'’il s’agisse de gains ou de pertes par
rapport a un point de référence. Ce modele est appelé Théorie Cumulative des
Prospects (CPT). Tous ces modéles permettent de prendre en compte les para-

doxes de Allais et Ellsberg.

Les modéles de type multi-prior : Le modele Maximin de Gilboa & Schmei-
dler (1989) permet d’intégrer le paradoxe d’Ellsberg en représentant les préfé-
rences par la considération de la pire possibilité parmi un ensemble de distribu-
tion de probabilités possibles (les priors). Des extensions de ce modele ont été
proposées par Ghirardato et al. (2004), Gajdos et al. (2007) et Maccheroni et al
(2006).

Les modéles a deux étages : Klibanoff, Marinacci & Mukerji (2005) ont sug-
géré un modele a deux étages, ou le décideur a une distribution de probabilités
subjectives (dites croyances de second ordre) sur les distributions possibles. Ils
considerent en outre que le décideur ne réduit pas ces deux distributions en une

distribution moyenne mais maximise une fonctionnelle d’utilité espérée, ou les
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probabilités sont les croyances de second ordre et ou les conséquences sont les

utilités espérées obtenues quand chacune des distributions possibles se réalise.

0.1.5. L'approche de Ia thése

Dans les sections suivantes nous allons présenter les apports de la these par
rapport a la littérature que nous venons d’étudier. Il s’agira de comprendre dans
quelles conditions les probabilités subjectives peuvent exister, mais aussi com-
ment les observer et comment séparer ce qui releve de I'attitude de ce qu’on peut
considérer étre des croyances. Chacune des sections suivantes correspond a un

chapitre de la these, et chaque chapitre constitue un travail indépendant.

0.2. Modéliser I'aversion au risque et a I’ambiguité par I'utilité marginale

décroissante

Nous avons vu dans la section précédente que Bernoulli (1738) expliquait
le paradoxe de St Petersburg par l'introduction d’une fonction d’utilité. Son intui-
tion était que la valeur psychologique associée aux montants monétaires n’est pas
linéaire mais concave, c’est-a-dire que chaque nouvelle hausse de la richesse ap-
porte un supplément d’utilité de plus en plus petit. L’aversion au risque désigne le
fait qu'un individu préfére avoir de maniere certaine I'espérance mathématique
d’une loterie que la loterie elle-méme. Dans le cadre de l'utilité espérée, I'aversion
au risque est équivalente a la décroissance de I'utilité marginale. Des différences
d’utilité marginale sont aussi utilisées dans d’autres modeles pour capter 'attitude
face a I'ambiguité ou face a la résolution de l'incertitude. Ainsi Kreps & Porteus
(1978) modélisent la préférence pour une résolution de l'incertitude le plus tot
possible en laissant I'utilité marginale varier selon la date de résolution. Klibanoff,
Marinacci & Mukerji (2005) représentent 'aversion a 'ambiguité par une utilité
plus concave dans l'incertitude qui détermine la ‘vraie’ distribution que dans le

risque.

Le chapitre 2 de la these utilise une relation dite d’arbitrage, issue des pré-

férences, qui permet de caractériser l'utilité marginale et propose ensuite de nou-
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velles axiomatisations plus générales des modeles précédemment évoqués. En
outre, cette relation est utilisée pour établir des conditions permettant d’observer
les attitudes (face au risque et a I'ambiguité) via I'utilité marginale et méme de les
comparer pour des décideurs différents. Nous allons présenter maintenant ces
résultats mais pour cela, il nous faut légérement modifier notre cadre de travail.
Les conséquences restent des nombres réels mais maintenant I’ensemble des états
de la nature S peut étre infini. Un acte, noté f (ou g), associe donc pour tout état
s€S la conséquence f(s). Un acte sera dit simple s’il comporte un nombre fini de
conséquences. L’acte f pour lequel on aura remplacé les conséquences par o pour

tout s€E avec ECS s’écrira oEf.

0.2.1. Cohérence en arbitrage et Utilité Espérée

Définissons tout d’abord la relation d’arbitrage (tradeoff). Pour quatre con-

séquences «, 3, y, SER, nous écrirons :
af~*yd

des lors qu'’il existe deux actes simples f et g et un événement E tels que
aEf~BEg et YEf~8Eg

Pour interpréter cette relation, supposons que a>f : cela signifie que le décideur
compense le fait que f soit moins intéressant que g si E ne se réalise pas, en de-
mandant plus si E se réalise. De la méme manieére, il fait le méme arbitrage en de-
mandant y au lieu de 6 dans la seconde indifférence. En d’autres termes, ce que lui
ameéne o par rapport a 8 est équivalent a ce que lui apporte y par rapport a §. Ce

sont deux arbitrages équivalents.

L’intuition derriere cela est que ce qui se passe lorsque E ne se réalise pas,
sert d’étalon pour mesurer des arbitrages. Si on veut un modele avec séparabilité,
c’est-a-dire ou I'évaluation psychologique des conséquences est indépendante des
événements, alors il faut souhaiter que I’équivalence entre deux arbitrages ne
soient pas remise en cause par d’autres observations. En effet, dans le cadre de

'utilité espérée subjective, cette relation est équivalente avec u(a)—u(f) =
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u(y)—u(6). Il est donc nécessaire qu’'une fois une telle relation obtenue, elle ne

puisse étre contredite pour d’autres actes ou d’autres événements.

C’est ce que fait la condition de cohérence en arbitrage (tradeoff consisten-
cy) définie par le fait que toute augmentation d'une seule conséquence dans une
relation af~*yd brise cette relation. Kobberling & Wakker (2003, 2004) montrent
que sous certaines hypothéses et pour un ensemble fini d’états de la nature, cette
condition est nécessaire et suffisante a I'existence de I'utilité espérée. Le chapitre 2

de la thése fournit une généralisation de ce résultat pour S infini.

La relation d’arbitrage peut permettre de mesurer l'utilité (voir Wakker &
Deneffe 1996). En effet, en mesurant une suite o telle que pour un événement E

non-nul et pour deux actes fet g:
oEf~o 1Eg pour toutj =1, .., n,

on obtient la suite standard suivante of,...a" avec atla) ~* alal pout tout j.
Chaque élément de la suite est a la méme distance du précédent que du suivant
dans l'espace des utilités, ce qui permet en normalisant l'utilité (et si al>a?), que
u(al)=i/n pour touti. Le graphique suivant représente I'utilité déduite d’une suite

avec 4 éléments.

u 1
3/4
2/4
1/4_ ...... s
ad ol o? ol ot
€

Graph 0.2.1 : L’utilité mesurée par une suite standard

Nous pouvons d’ores et déja remarquer que la relation d’arbitrage peut

nous informer sur la forme de u. Si les ai s’éloignent les uns des autres quand i
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grandit, alors la fonction est concave. De cela découle I'idée suivante : supposons
que pour trois conséquences a<<YyE€R, nous ayons af3~*By. Si B est plus proche
de o que de vy, alors 'utilité doit étre concave (si c’est le cas pour tous les trios de
conséquences ainsi reliés par ~*). Puisque la décroissance de I'utilité marginale
correspond a I'aversion au risque dans le cadre de I'utilité espérée, alors la relation
d’arbitrage permet d’observer l'attitude face au risque ; et si pour un individu, § est
plus proche de a que pour un autre alors son utilité est plus concave et il prendra

moins de risque.

Expliquons d’ou vient la nécessité de déterminer des conditions pour ob-
server l'attitude face au risque. Lorsque les probabilités ne sont pas connues, il
n’est pas possible de définir et d’observer I'aversion au risque par la préférence
pour I'espérance mathématique sur un acte, puisque celle-ci dépend des probabili-
tés subjectives et donc dépend de ce que pense le décideur. Il existe toutefois une
définition observable de 'attitude face au risque par la guasi-concavité des préfé-
rences (voir Chateauneuf & Tallon 2002 ; Debreu & Koopmans 1982), i.e. pour tout
acte f, g, f~g implique Af4+(1-A)g>f ou Af+(1-A)g est I'acte qui donne pour chaque
s M(s)+(1-A)g(s). Toutefois, il ne semble pas exister de telle condition pour com-
parer l'attitude de deux décideurs, a moins de faire ’hypothese qu’ils aient les

mémes croyances.

0.2.2. Comparaison d attitude face au risque

Pour comparer 'attitude de deux décideurs face au risque quand les proba-
bilités sont connues, il est possible de comparer leurs équivalents certains pour
une loterie donnée. Celui qui a le plus faible est le plus averse au risque. Quand les
probabilités ne sont pas connues, Yaari (1969) a montré que définir I'aversion
comparative (« A est plus averse au risque que B ») via I'équivalent certain impli-

quait des deux décideurs d’avoir la méme mesure de probabilité.

Le théoreme 2.4.1 du chapitre 2 utilise les relations d’arbitrage des deux
agents pour observer lequel des deux est le plus averse, puisque l'aversion au
risque est assimilable a la décroissance de l'utilité marginale dans le cadre de

l'utilité espérée. Ce théoreme donne donc I'équivalence des trois propositions sui-
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vantes des lors que les deux décideurs, A et B, sont des maximisateurs d’utilité es-
pérée dans le risque (avec respectivement >4, ~*A uA et PA pour A et >B, ~*B, uB et

PB pour B) :

(i) uA est plus concave que uB et PA=PB;
(ii) Pour tout acte, B a un équivalent certain au moins aussi grand que A ;

(iii) ap~*BBy et af'~*AB'y implique que B'<P; en outre, PA = PB,

Ce résultat rend aisément observable I'attitude de deux décideurs. Rappe-
lons que (iii) désigne une utilité marginale qui décroit plus vite pour A que pour B.
Nous allons a présent nous intéresser a un seul décideur, faisant face a des situa-
tions ou les probabilités sont parfois connues, et parfois non. Nous pourrons ainsi
étudier son attitude face a la non-connaissance des probabilités, son attitude face a

I'ambiguité.

0.2.3. Représentation de l'attitude face a 'ambiguité

Nous avons introduit dans la sous-section 4.0.1 de ce résumé le modele de
Klibanoff, Marinacci et Mukerji (2005) (désignés par KMM ci-apres). Nous allons
ici considérer ce type de modele a deux étages. Dans cette sous-section et la sui-
vante, les actes seront d /a Anscombe-Aumann, c’est-a-dire des fonctions de S vers
L, I'ensemble des loteries sur les conséquences (voir Anscombe et Aumann 1963).
Ainsi pour l'acte f, f(s) sera une loterie €L spécifique. Nous appellerons acte de
premier étage les actes f tels que chaque loterie f(s) est dégénérée (i.e. ne donne
qu’une conséquence avec certitude). Les actes f tels que f(s)=¢ pour tout s seront

appelés actes de deuxieme étage, ou abusivement, loterie.

Ainsi selon I'état s qui se réalise, 'acte génére une loterie spécifique. Le dé-
cideur ne connait donc pas avec précision le risque auquel il fait face mais posse-
dera une distribution de probabilité subjective sur la distribution objective qui
apparaitra. Neilson (1993) a ainsi modélisé 'ambiguité. Pour KMM, le décideur a
de méme une distribution de probabilité subjective mais sur les distributions sub-
jectives possibles (en termes de notation, leurs actes de second-ordre correspon-
dent a nos actes de premier étage). Toutefois, chacune de ces distributions peut

étre répliquée par une loterie (voir leur Lemme 1) et méme remplacée par
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I’équivalent certain de la loterie correspondante (cf. leurs Définition 2 et Hypo-

these 3).

Dans notre modele nous utilisons aussi une telle rétro-induction: le déci-
deur est indifférent entre tout acte f et I'acte de premier étage obtenu en rempla-
cant chaque loterie f(s) par son équivalent certain. D’apres le théoréme 2.5.3 du

chapitre 2 :

() Le décideur vérifie les trois hypotheses suivantes :

(a) Larétro-induction est satisfaite ;

(b)  Ses préférences restreintes aux actes de premier étage >1
sont représentées par une fonctionnelle d’utilité espérée sub-
jective aveculetP;

(© Ses préférences restreintes aux actes de deuxiéeme étage >2
sont représentées par une fonctionnelle d'utilité espérée
nommeée EuZ.

(ii)  Les préférences > sont représentées par

fio fs o (Ew?(£(s))) dP(s).

Dans ce modele, nous allons voir que ¢ représente l'attitude face a
I'ambiguité. L’aversion a I'incertitude a été définie par Schmeidler (1989) et Gilboa
& Schmeidler (1989) comme la quasi-concavité des préférences, i.e., pour tout acte
f, g, f~g implique pour tout A€[0,1], Af+(1-A)g>f ou Af+(1-A)g est 'acte qui donne
pour chaque s la loterie Af(s)+(1-A)g(s). Dans le cadre de ce modele, cette défini-
tion observable est équivalente a la définition d’aversion a l'ambiguité lisse
(smooth ambiguity aversion) de KMM. Le théoreme 2.5.5 du chapitre 2 montre
alors que sous les conditions (i)(b) et (i)(c) ci-avant, les 2 propositions suivantes

sont équivalentes :

(i) La fonction ¢ est concave ;

(i)  ap~*?Pyet apf'~*1B'y implique que B'<P.
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En outre, sous certaines conditions de richesse que nous ne détaillerons pas
ici et si la condition (i)(a) est satisfaite, alors les deux propositions précédentes

sont aussi équivalentes a :

(iii) l'aversion al'incertitude ;

(iv) l'aversion a 'ambiguité lisse.

Nous pouvons d’ores et déja remarquer qu’il n’y a pas besoin de vérifier la
rétro-induction pour observer I'attitude a travers la condition (ii). La sous-section

suivante va s’intéresser a la comparaison d’attitudes entre décideurs.

0.2.4. Comparaison d attitude face a I'ambiguité

En termes de notation, nous allons réutiliser les notations précédentes en
ajoutant en indice le décideur, A ou B. KMM proposent de définir qu'un individu A
est plus averse a I'ambiguité lisse qu'un individu B quand ils ont les mémes
croyances PA=PB sur S par la condition suivante pour tout acte f et loterie ¢ :
f=AP=f=Bf. Cette condition implique aussi que les deux agents ont les mémes
préférences (=24 et >2B) sur les loteries. En supposant que les préférences des
deux décideurs A et B vérifient les hypotheses (i)(b) et (i)(c) évoquées dans les

deux derniers résultats, alors les deux propositions suivantes sont équivalentes :

(1) @A est une transformation concave de @B et u?2A=u?B;

(i) Siap ~*BByetoaf” ~*14[B%, alors B"<B; en outre, ~*24 = ~*2B,

Si en outre la rétro-induction est satisfaite pour les deux décideurs, si les
mémes conditions de richesse que dans la section précédente sont vérifiées et en-

fin si PA=PB alors ces propositions sont aussi équivalentes a :
(iii) A estplus averse a I'ambiguité lisse que B.

Un autre théoreme du chapitre 2 permet d’observer et de comparer la con-
cavité des fonctions ¢ des deux décideurs, quelles que soient leurs croyances (les
mesures PA et PB peuvent étre différentes) et leurs utilités pour les loteries

('utilité u2Apeut étre différente de u?B).
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0.2.5. Discussion

Pour conclure cette section, nous pouvons tout d’abord remarquer que les
relations d’arbitrage permettent de rendre observables et comparables les atti-
tudes des décideurs. Cette relation permet de capturer I'utilité marginale de diffé-
rents décideurs ou du méme décideur dans des situations différentes. Or, tous les
modeles utilisés dans cette section représentent les attitudes via des utilités mar-
ginales différentes. En outre, I'intérét de cette relation réside dans ce qu’elle n’est
pas influencée par les croyances des décideurs et permet donc de les exclure de

I'analyse.

Toutefois, ces résultats peuvent étre réinterprétés de maniere différente,
des lors que I'on constate que nous avons défini des conditions, qui justement ex-
cluent de I'analyse tous les aspects du risque et ne conservent que l'utilité margi-
nale. Le chapitre 2 discute ainsi de 'opportunité d’utiliser des modeles réduisant
ainsi toutes attitudes aux conséquences. Dans les sections suivantes, nous consi-
dérerons des modeles ou l'attitude en situation d’incertitude est décrite via

I'influence a la fois des conséquences et des probabilités.

0.3. Agrégation des jugements d’experts

Dans de nombreuses situations, un décideur doit demander I'avis d’experts
pour obtenir une évaluation du risque auquel il fait face. Selon les cas, les experts
peuvent étre d’accord et donner une évaluation précise du risque (« la probabilité
de perdre x€ est p »), mais ils peuvent étre parfois imprécis («la probabilité de
perdre x€ est comprise entre p—r et p+r») ou en désaccord («la probabilité de
perdre est p—r » selon A mais « elle est de p+r » selon 'expert B). Dans cette sec-
tion, nous désignerons le premier cas par risque, le second par ambiguité impré-
cise (A'), et le troisieme par ambiguité conflictuelle (A¢). Que faisons-nous dans
ces cas ambigus ? Considérons nous le pire comme certain ou n’agissons-nous
qu’en fonction de la probabilité moyenne ? Percevons-nous différemment la situa-

tion conflictuelle de la situation ambigué ? Le chapitre 3 de la thése expose une
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méthode pour étudier de telles situations et rapporte les résultats d’'une étude ex-

périmentale.

0.3.1. Qu’en dit Ia littérature ?

L’agrégation des jugements d’experts est un sujet tres étudié dans la littéra-
ture de théorie de la décision. Une premiere approche vise a déterminer des regles
mathématiques (telles que la regle de Bayes) pour obtenir une évaluation unique
malgré des avis multiples (par exemple Genest 1984 ; Winkler 1968 ; Clemen &
Winkler 1993). Il est aussi possible de faire collaborer, discuter, débattre les ex-
perts afin d’obtenir un consensus (par exemple Dalkey, 1969 ; Delbecq, Van de Ven
& Gustafson 1975). Une troisiéme approche ambitionne a comprendre comment
un agent associe dans son esprit les différents avis (par exemple Sniezek & Buckley
1995) ou comment il les associe dans ses choix (par exemple Du & Budescu 2005).

C’est a cette derniére approche que se rattache la présente étude.

Parallelement, de nombreuses études expérimentales se sont intéressées
aux situations ambigués (sans référence a des experts). Aux vues de ces études,
'attitude face a 'ambiguité dépend des conséquences (gain ou perte) mais aussi
du niveau absolu des conséquences et du niveau des probabilités (cf Cohen, Jaffray
& Said 1985, 1987; Hogarth & Einhorn 1990; Lauriola & Levin 2001; Viscusi &
Chesson 1999).

Des résultats similaires ont été trouvés lorsque les possibilités de gains et
de pertes sont adossées a des événements (dont les probabilités ne sont pas con-
nues). Ne pas connaitre les probabilités de maniere certaine engendre deux types
d’effets : plus de pessimisme et une moindre sensibilité aux changements de ni-
veau de vraisemblance (cf. Kilka & Weber 2001 ; Tversky & Fox 1995 ; Tversky &
Wakker 1995 ; Wakker 2004). La plupart de ces derniéres études font d’ailleurs
appel au modele CPT comme cadre d’analyse, ce dernier permettant de capter les
changements d’attitudes en fonction du signe des conséquences et du niveau de

probabilité. C’est aussi ce que nous allons faire dans la section suivante.
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0.3.2. Cadre théorique

Par la suite, nous ne considérerons que des pertes (c’est-a-dire les consé-
quences appartiennent a R~). L’ambiguité imprécise sera représentée par un in-
tervalle de probabilité [p—r,p+r] et I'ambiguité conflictuelle par un ensemble de
deux possibilités {p—r,p+r}. Une loterie sera représentée par xpy, X[p—r,p+r]y ou
x{p—r,p+r}y selon que le décideur se retrouve en situation de risque, d’ambiguité
imprécise ou d’ambiguité conflictuelle (par convention x<y<0). Une croyance
révélée associée a [p—r,p+r] (respectivement {p—r,p+r}) sera une probabilité q
telle que il existe des conséquences x<y et z appartenant a R- vérifiant
x[p—r,p+r]y~z (respectivement x{p—r,p+r}y~z) et xqy~z. Nous écrirons

[p—r,p+r]=Rq (respectivement {p—r,p+r}=Rq).

Le décideur exhibera une moindre sensibilité en situation d’ambiguité im-

précise qu’en situation de risque si la condition suivante est vérifiée :
Si [p—r,p+r]~*q et [p'~r,p'+r]~Rq’, alors |q—q'|<[p—p’.

Cette condition signifie que le décideur réagit moins a un changement de vraisem-
blance en situation ambigué qu’en situation risquée. La condition suivante repré-

sente I'aversion a 'ambiguité imprécise :
If [p—r,p+r]=Rq, then q=p.

Ne disposant d’aucune autre information que l'intervalle de probabilité, le déci-
deur n’aime pas I'ambiguité s’il agit comme si la ‘vraie’ probabilité était inférieure a
la moyenne. Des conditions similaires peuvent étre exprimées pour 'ambiguité

conflictuelle.

A présent, nous allons faire 'hypothése que toutes les loteries ambigués ou

non peuvent étre représentées par CPT. Soit:

xpy = w(p)u(x) + (1 —w(p))u(y),

x[p—1,p +1ly = Wi([p — ,p + rDu + (1 = W(p — 1,p + 1) u@),
et
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x{p—1,p+ 1}y — W({p —1,p + rPu) + (1 = W({p — r,p + r}))u(y),

avec u la fonction d’utilité, w la fonction de transformation de probabilité et Wi et
We les fonctions de pondération en situation ambigué. En conséquence, il est pos-

sible de décomposer les poids de décision ainsi :

x[p = 1,p +rly — w(a*([p — 1, p + r1))u(x) + (1= w(q®([p — r,p + 1)) ) u(),

et

x{p —1,p +rly — w(a°({p — 1,p + D)u) + (1 - w(q°(lp — r,p + 1) ) u®)

La fonction w conjointement avec l'utilité capture l'attitude face au risque. Les
fonctions q¢ et g' représentent les croyances révélées. Ce sont elles que nous allons

étudier pour comprendre I'attitude face a 'ambiguité des décideurs.

0.3.3. L'expérience

Une expérience a été conduite en octobre 2006 aupres de 61 éléves de

I'ENSAM, confrontés aux différents types de choix suivants :

e Dans le premier cas, deux experts sont d’accord sur une probabilité pré-
cise de perte. Ce type de loterie peut s’écrire xpy. En sont déduits des
équivalents certains (z tel que z~xpy) a partir de choix hypothétiques et
avec une méthode de bissection. En faisant varier x et y entre 0 et
—1000, et en conduisant une optimisation non linéaire sur les équiva-
lents certains, nous pouvons obtenir une estimation paramétrique de u
et de w.

e Dans le second cas, les deux experts sont d’accord sur un intervalle de
probabilité. Pour 5 valeurs de p (respectivement 0.1, 0.3, 0.5, 0.7, 0.9),
t~—1000[p—0.1,p+0.1]0, on peut déduire w(qi([p—0.1,p+0.1])) =
—u(t) puis qi(([p—0.1,p+0.1])=w~1(—u(t)).

e Le méme processus a été conduit avec les situations d’ambiguité conflic-

tuelle —1000{p—0.1,p+0.1}0 (avec les mémes valeurs de p).
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Enfin, des indices ont été calculés pour mesurer I'aversion a 'ambiguité et la
moindre sensibilité par rapport au risque. En prenant une estimation linéaire de q'
(ou q°) sur le centre des intervalles ou ensembles (p dans [p—0.1,p+0.1] ou dans
{p—0.1,p+0.1}), il est possible de comparer la droite ainsi obtenue avec la diago-
nale car celle-ci représenterait un agent qui utilise toujours le centre p dans sa dé-
cision, et qui est donc totalement neutre a 'ambiguité. La pente donne un indice
de sensibilité en ce qu’elle indique la discriminabilité en situation ambigué relati-
vement au risque. L’élévation de la droite correspond enfin a I'aversion a

I'ambiguité en ce qu’elle mesure I'attractivité relative des loteries ambigués.

0.3.4. Les résultats

0.8¢

0.7r
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Graphique 0.3.1 : Les croyances révélées.

En abscisse sont représentés les centres des intervalles étudiés ([0,0.2],
[0.2,0.4], [0.4,0.6], [0.6,0.8], [0.8,1]) ou des ensembles correspondants ({0,0.2}...).
Les ordonnées représentent les croyances révélées. Elles different significative-
ment des centres (c’est-a-dire 0.1,...0.9) pour les cas [0,0.2], {0,0.2} et [0.8,1] (tous
ces résultats ainsi que les suivants sont issus de tests de Student appariés). C'est
pour ces mémes situations extrémes (lorsque les centres sont 0.1 ou 0.9) que les
valeurs sont significativement différentes entre Al et Ac. Par exemple, lorsque les

deux experts sont d’accord pour dire que la probabilité de perte est comprise entre
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0 et 20%, 'individu médian agit comme si la ‘vraie’ probabilité est de 19%. Le pes-
simisme I'emporte et I'individu agit comme si le pire était presque siir. A l'inverse,
lorsque un des experts annoncent une probabilité de 0 et 'autre de 20% alors
I'individu médian semble considérer que la ‘vraie’ probabilité est de 6%. Il semble
ainsi étre plus influencé par le caractere extréme d'un expert disant qu'’il n’y a au-
cun risque. Cecile pousse a l'optimisme. Il y a donc préférence pour le conflit dans
cette situation par rapport a I'imprécision. Par contre, la préférence est inversée
(préférence pour I'imprécision par rapport au conflit) lorsqu'un des experts an-

nonce que la perte est stire.

Pour chaque sujet et pour chaque contexte ambigu, une estimation paramé-
trique a permis de déterminer un indice d’aversion a l'ambiguité (I'élévation
moyenne des croyances révélées, i.e. si la courbe précédente est significativement
au dessus de la diagonale), et un indice de sensibilité (i.e. si la pente des croyances
révélées est ou non différente de 1, cas qui représenterait la méme sensibilité en
situation ambigué qu’en situation de risque). Il s’est avéré que l'aversion a
I'ambiguité n’est significative que dans le cas imprécis. Dans ce méme cas, les su-
jets ont aussi montré une moindre sensibilité par rapport au risque. Inversement,
ils exhibent plus de sensibilité a I'ambiguité conflictuelle qu’au risque. Les deux
indices sont en tout cas significativement différents entre les deux situations ambi-
gués, révélant par la méme que 'implémentation de I'ambiguité a un impact non

nul sur les résultats.

0.3.5. Conclusion de l'étude

Différents points de I'étude peuvent étre discutés. Le choix du modele, tout
d’abord, parmi les différents modeles que nous avons présentés dans la premiere
section, nous a semblé justifié par la nécessaire prise en compte d’une attitude face
a 'ambiguité qui varie selon le niveau de probabilité. La méthode d’élicitation, re-
posant sur des équivalents certains puis sur des estimations paramétriques a été
déterminée apres une étude pilote. Dans cette derniere, nous obtenions (via un
processus de bissection) directement la probabilité q telle que xqy~x[p—r,p+r]y.
Mais il s’est avéré que les sujets ne considéraient pas les conséquences et per-

daient ainsi un aspect important du choix. Enfin, des choix hypothétiques ont été
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utilisés parce que la mise en place d’'une procédure incitative était difficilement
compatible avec la volonté de contextualiser I'expérience (faire référence aux ex-

perts) et de controler les niveaux de croyances donnés par les experts.

Pour conclure nous pouvons présenter ainsi les principaux résultats de

notre étude.

e Il existe des situations significatives ou le décideur n’est pas neutre a
I'ambiguité, particulierement pour les niveaux de vraisemblance proche
des extrémes (0 et 100%).

e Le contexte conflictuel differe significativement de I'ambiguité impré-
cise, car il génere moins de pessimisme (donc moins d’aversion a
I'ambiguité) mais une plus forte sensibilité aux changements de vrai-
semblance.

e Une position extréme d’'un expert (annongant une perte impossible ou
certaine) influence plus fortement le décideur qu’'un expert donnant

comme évaluation une probabilité intermédiaire.

L’influence du type d’incertitude est un résultat important de la littérature,
avec les concepts de sources d’incertitude et de dépendance de l'attitude face a la
source. La section suivante rapporte les résultats du chapitre 4 qui met en lumiere

de tels résultats.

0.4. Croyances Bayésiennes et consentement a parier pour étudier

I'ambiguité

Le chapitre 4 de la these s’intéresse aux situations ou le décideur fait face a
des situations décrites par des événements. Nous allons rapporter ici le modele
utilisé et les résultats de I'étude expérimentale visant a tester ce modele. Il s’agit
de déterminer dans quelles conditions le décideur peut agir en fonction de
croyances Bayésiennes (ou probabilité subjectives), puis d’étudier le consente-
ment a parier sur des événements avec la méme croyance Bayésienne afin de

mettre en évidence les déterminants de I'attitude face a 'ambiguité.

33



0.4.1. La rencontre de deux concepts

Le modele que nous allons utiliser s’appuie sur deux concepts fondamen-

taux : la sophistication probabiliste et les sources d’incertitude.

Tout d’abord, rappelons que les préférences d'un individu satisfont la so-
phistication probabiliste s’il existe une distribution de probabilité telle que
I'individu est indifférent entre deux actes générant la méme distribution de proba-
bilité sur les conséquences. Par exemple, si un décideur pense que la probabilité
qu’il pleuve est égale a la probabilité que la température soit inférieure a 20°C,
alors il doit étre indifférent entre gagner 500€ s'il pleut et gagner 500€ si la tem-
pérature est effectivement sous la barre des 20°C. Machina & Schmeidler (1992)
ont proposé une axiomatisation de la sophistication probabiliste dans un cadre

Savagien.

Plus récemment, Chew & Sagi (2006a) ont utilisé le concept
d’échangeabilité pour fournir une nouvelle fondation a la sophistication probabi-
liste. L’échangeabilité, suggérée par Ramsey (1926) et de Finetti (1937) sous les
noms respectifs de « neutralité éthique » et d’« équivalence », est définie ainsi : les
événements disjoints E et F sont échangeables si en permutant les conséquences
affectées a E et a F, on ne change pas la valeur de I'acte en termes de préférence.
Pour les actes binaires, cela peut s’écrire, pour deux conséquences x et y, XEy~xFy.
L’intérét du résultat de Chew & Sagi est de donner des conditions nécessaires et
suffisantes a la sophistication probabiliste beaucoup plus légére que les axiomati-

sations préalables en se basant sur le concept d’échangeabilité.

Le second concept est celui de source d’incertitude. Une source
d’incertitude est un ensemble d’événements générés par un méme mécanisme in-
certain. Par exemple, les événements liés au cours du CAC40 correspondent a une
source d’incertitude, tandis que les événements décrivant la température a Tokyo
en constituent une autre. L’importance du concept de source d’incertitude a été
mis en évidence par différents travaux de Amos Tversky dans les années 1990
(Fox & Tversky 1998 ; Heath & Tversky 1991 ; Tversky & Kahneman 1992 ; Tvers-
ky & Fox 1995 ; Tversky & Wakker 1995). Le principal résultat de ces travaux ex-

périmentaux et théoriques ainsi que de Kilka & Weber (2001) réside dans le fait
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que l'attitude des décideurs dépend de la source d’incertitude. En effet celle-ci af-
fecte leur capacité a discriminer entre les niveaux de vraisemblance et certaines
sources sont préférées a d’autres. Nous verrons plus loin comment tout cela peut

étre représenté.

L’étude exposée au chapitre 4 vise a concilier ces deux concepts de la ma-
niere suivante: un décideur sera supposé vérifier la sophistication probabiliste a
I'intérieure de chaque source, mais pas entre les sources. Il s’agit en effet
d’accepter que le décideur puisse avoir un comportement différent pour deux évé-
nements auxquels il affecte la méme probabilité subjective mais qui appartiennent
a deux sources différentes. Dans notre démarche, nous partirons de différentes
sources et nous vérifierons tout d’abord que la sophistication probabiliste est véri-
fiée a I'intérieure de ces sources. Ensuite, nous représenterons l'attitude du déci-
deur face a cette source. Notons que Chew & Sagi (2006b) utilisent une approche
duale pour fournir une définition des sources a partir des préférences. Ils classent
tous les événements pour lesquels la sophistication probabiliste (restreinte a ces

événements) est satisfaite dans une méme source.

0.4.2. Le paradoxe d’Ellsberg a 2 couleurs

Reprenons maintenant le paradoxe d’Ellsberg a deux couleurs pour présen-
ter les intuitions de la démarche que nous venons d’exposer. Nous avons vu que ce
paradoxe conduit a une violation des propriétés des probabilités subjectives dans
le cadre de SEU. Il s’agit plus généralement d’une violation de la sophistication
probabiliste car ce paradoxe révele que deux événements complémentaires (« tirer
une boule rouge dans 'urne inconnue » et « tirer une boule noire dans l'urne in-
connue ») semblent tous les deux avoir une probabilité strictement inférieure a
1/2 car la plupart des personnes préférent parier sur les événements avec proba-
bilité connue de 1/2 (« tirer une boule rouge dans I'urne connue » et « tirer une
boule noire dans I'urne connue ») que sur ces événements avec probabilité incon-

nue.

Remarquons que chaque urne est un mécanisme d’incertitude différent; la

premiére fournie des événements avec une probabilité siire, la seconde est plus
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ambigué. Ainsi les événements concernant l'urne connue appartiennent a une
source, les événements issus de I'urne inconnue constituant une autre source. Par
conséquent, rien ne prouve que la sophistication probabiliste n’est pas vérifiée a
I'intérieure de chaque urne. Par exemple, elle sera satisfaite si I'agent est indiffé-
rent entre parier sur « rouge » ou sur « noire » dans une urne donnée. Cela signi-
fierait que les événements « rouge dans l'urne connue », « noire dans l'urne con-
nue », « rouge dans l'urne inconnue », et « noire dans l'urne inconnue » ont tous

une probabilité de 1/2, mais que I'attitude differe entre les urnes.

En effet, les préférences du paradoxe d’Ellsberg peuvent alors se réinterpré-
ter simplement comme une préférence pour l'urne connue. C’est un résultat clas-
sique dans la littérature sur les sources d’incertitude que d’obtenir que les agents
préferent parier sur les événements pour lesquels ils disposent de plus
d’'informations. En considérant que l'urne connue représente le risque et que
I'autre urne est ambigué, le paradoxe d’Ellsberg correspond a de l'aversion a
I'ambiguité, ce qui n’est pas incompatible avec la notion de croyance Bayésienne, si

cette derniere est définie a I'intérieure de chaque source.

0.4.3. Sources uniformes

Les différents concepts ayant été introduits et les intuitions exposées, nous
allons a présent définir avec précision I'outil que nous proposons pour étudier
I'ambiguité. Il s’agit du concept de source uniforme. Une source d’incertitude sera
dite uniforme si la sophistication probabiliste est vérifiée entre événements de
cette source. Le terme uniforme capture I'idée que 'ambiguité au sein de cette
source apparait comme uniforme, homogene au décideur et que par conséquent
son attitude ne sera pas influencée par autre chose que la probabilité de
I’événement; en d’autres termes, le décideur a une connaissance uniforme sur la
source et ne pense pas détenir plus d'information pour un événement que pour un

autre.

Considérons a présent une partition de S en événements échangeables,
c’est-a-dire une partition de S en {Ej,..., En} telle que pour tout acte (E1:x1,...,EniXn),

I'agent est indifférent entre cet acte et un acte obtenu par permutation d'un x; et
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d’un x; pour n'importe quelle paire de i et j (prenant des valeurs de 1 a n). Une fois
une telle partition obtenue, il est possible de générer une source en prenant toutes
les unions possibles de ces événements. A partir du résultat de Chew & Sagi
(2006a) on sait alors que cette source est uniforme. Notons que la distribution de

probabilité subjective sur les E;s est uniforme : P(E;)=1/n pour toutide 1 a n.

Un contre-exemple trouve sa source dans le paradoxe d’Ellsberg a 3 cou-
leurs. En effet, 'urne contenant 30 boules rouges et 60 boules noires ou jaunes
n’est pas uniforme, 'agent disposant de plus d’informations pour certains événe-
ments que pour d’autres. Chew & Sagi (2006b) proposent de considérer deux
sources, I'une contenant les événements avec probabilité connue, I'autre les évé-
nements avec probabilité inconnue. Cette seconde source ne couvre pas l'espace
des événements et il n’est donc pas possible de définir une partition de S en évé-
nement échangeables. Ce type de situation ne peut pas étre traité avec la méthode

exposée dans le chapitre 4.

0.4.4. Description des attitudes face a 'ambiguité

Nous ne considérerons dans la suite de cette section uniquement des actes
binaires avec conséquences positives. Dans ce cadre, lorsque les probabilités sont

connues, les modeles RDU et CPT sont équivalents et peuvent s’écrire (avec x>y) :

xpy—w(p)u(x)+(1-w(p))u(y).

Pour le méme type d’actes mais lorsque les probabilités ne sont pas con-
nues, les modeles CEU, CPT et Maximin ont une formulation commune (voir Ghi-

rardato & Marinacci 2001):
xEy—W(E)u(x)+(1-W(E))u(y).

La fonction d’utilité est supposée la méme dans les deux cas, probabilités connues
ou non. Pour des événements appartenant a une source uniforme donnée, puisque

la sophistication probabiliste est satisfaite, alors ceci peut étre réécrit :
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xEy—w(P(E))u(x)+(1-w(P(E))u(y),
ou w est la fonction de transformation de probabilité spécifique a la source en

question.

Dans le cadre de ce modele, en élicitant la fonction w quand les probabilités sont
connues et pour différentes sources uniformes, il est alors possible d’étudier
I'impact précis des différentes sources par rapport au risque. Exposons en effet
comment ces fonctions peuvent étre analysées. Lorsque les probabilités sont con-
nues, w est généralement en forme de S inversé (surévaluation des petites proba-
bilités et sous-évaluation des grandes), et ceci est généré par une sensibilité au
changement de niveau de vraisemblance plus forte vers les extrémes (0 et 100%)
que pour les probabilités intermédiaires. En d’autres termes, 'agent réagit plus a
une variation de probabilité entre 0 et 1% (ou entre 99% et 100%) qu’entre 49 et
50%. En outre, w dans le risque (et pour les gains) a tendance a étre en dessous de
la diagonale, représentant ainsi le pessimisme des agents qui agissent comme si
leur chance de gagner était inférieure a la probabilité. Ceci est équivalent a une
faible attractivité des loteries par rapport aux gains certains. La courbe en noire
du graphique 0.4.1 représente w quand les probabilités sont connues. Elle com-

bine les deux effets, S inversé et tendance a étre en dessous de la diagonale.
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Graph a : w dans le risque Graph b : Aversion a I'ambiguité

Graph c: Perte de sensibilité liée a Graph d : Perte de sensibilité et aver-
I'ambiguité sion a I'ambiguité

Graph 0.4.1 : Attitudes face au risque et a I'ambiguité a 'ambiguité

Lorsque les probabilités ne sont pas connues, le paradoxe d’Ellsberg nous
suggérait que les agents sont moins attirés par les paris que lorsque les probabili-
tés sont connues. Cette baisse d’attractivité des paris, ou de maniére équivalente
cette hausse du pessimisme des agents, devrait se traduire par une fonction de
transformation des probabilités en dessous de celle du risque, comme si un évé-
nement E avec une probabilité subjective de P(E)=p était pénalisé par rapport a
une probabilité objective égale a p lorsqu’il s’agit de parier sur I'un ou l'autre. Il
s’agit d’aversion a 'ambiguité. Le graphique 0.4.1.b représente en pointillé rouge
une telle fonction w pour une source uniforme (avec probabilités inconnues) par

rapport a la fonction de pondération w du risque en noir.
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Un second effet de 'ambiguité est la baisse de la discriminabilité entre ni-
veau de vraisemblance. En effet, s’il est déja difficile lorsque les probabilités sont
connues de distinguer cognitivement entre 49 et 50% de chances de gagner, cela
est d’autant plus difficile lorsqu’il s’agit de probabilité subjective, qui sont avant
tout des niveaux de vraisemblance dans 'esprit du décideur. Ce phénomeéne se
traduit par une plus forte réaction aux changements par rapport a la certitude ou
I'impossibilité, mais a une moindre sensibilité pour toutes les probabilités inter-
médiaires. Le graphique 0.4.1.c représente cette situation avec le méme code cou-

leur que 0.4.1.b.

Enfin, lorsque les deux effets de 'ambiguité sont combinés (aversion a
I'ambiguité et moindre sensibilité a I'incertitude qu’au risque), on obtient le gra-
phique 0.4.1.d. Afin d’obtenir des indices pour ces phénomeénes, les différentes
transformations de probabilité (hors bornes 0 et 1) seront approximées par des
droites. La comparaison des pentes nous permettra d’obtenir une évaluation rela-
tive des sensibilités, et les élévations des droites donneront une indication sur
'attractivité des différentes sources et du risque. Les prochaines sous-sections
présentent la méthode et les résultats d'une étude expérimentale permettant de
tester I'uniformité de différentes sources et d’obtenir les transformations de pro-

babilités pour ces sources et pour le risque.

0.4.5. Méthode expérimentale

Une expérience a été conduite en janvier et février 2006 aupres de 62 étu-
diants de 'ENSAM a Paris. Tous ont recu un paiement fixe de 20€ pour leur parti-
cipation (en moyenne 1h30). 31 sujets faisaient partie du groupe dit « hypothé-
tique » et n'ont rien recu d’autres. En outre, parmi les 31 sujets du groupe dit
« Réel », I'un d’entre eux a été tiré au hasard et un de ces choix (aussi tiré au ha-

sard) a été appliqué réellement.

L’expérience traitait trois sources d’incertitude : le CAC40, la température a
Paris et la température dans un pays étranger lointain, le relevé des valeurs devant
avoir lieu le 31 mai 2006. Il s’agissait tout d’abord d’obtenir une partition de

I'espace des événements en événement échangeables pour chaque source. Nous
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allons exposer la méthode utilisée pour la température a Paris, car elle est similaire
pour les trois sources. Le sujet se voyait proposer de gagner 1000€ si la tempéra-
ture était supérieure a 20°C (par exemple) ou de gagner la méme somme si la tem-
pérature était inférieure ou égale a 20°C. S’il préférait le premier pari, alors la
température seuil était augmentée et les questions étaient posées avec la nouvelle
température. Ceci permettait de déterminer deux événements ( A=« la tempéra-
ture sera inférieure a a1,2°C » et A3=«la température sera supérieure a a1,2°C »)
telle que la permutation des conséquences entre les événements n’influent pas sur
les préférences. Chaque événement était ensuite décomposé en deux nouveaux
sous-événements tels que parier sur I'un ou I'autre n’avait pas plus de valeur pour

le sujet. Le schéma suivant indique le processus.

1 2 3 4
A4 A4 A4 A4
Ay 31./4 d3/;3 QA1  Agyg 33/4 a;7/8

N R IR S
1. A2 0 pA31 A4l A5 A6 A7 0 A8

8

Schéma 0.4.2 : Décomposition de S

Pour vérifier que la partition ainsi obtenue était une partition en événement
échangeable, et pour garantir ainsi I'uniformité de la source, nous testions si A} et

A8, AZ et A%, ou encore A% et A3 étaient bien échangeables.

Une fois une telle partition construite, et pouvant considérer que chaque

événement se voyait associer une probabilité 1/8 par les sujets, nous recherchions
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le consentement a parier sur des événements de probabilité subjective 1/8, 2/8,...
7/8. A cela étaient ajoutés des consentements a parier sur des probabilités objec-
tives équivalentes. A partir de ces derniers, u et w dans le risque étaient élicités.
En utilisant la méme fonction d’utilité u, les transformations de probabilités dans

les trois sources étaient déduites.

0.4.6. Résultats sur les probabilités subjectives

Commentons a présent les résultats concernant les distributions de proba-
bilité pour les trois sources d’incertitude. Pour le groupe Hypothétique et pour la
température a l'étranger seulement, un test d’échangeabilité conduit a rejeter
I’hypothese de source uniforme (avec un seuil de significativité de 5%). L’analyse
s’arréte donc ici pour cette source (pour le groupe Hypothétique). Les graphiques
suivants représentent les différentes distributions de probabilité pour le CAC40 et

la température a Paris.

Distributions de Probabilité: CAC40 Distributions de Probabilité: Température a
Paris
1.01 Donnéesréelles L-emTTe 1.0 D ses Réell JUUPEEE
del'année 2006 ¥~/," 1;)(;1(;1-8263806% es Ayl
A / / /7
0.8r Médiane / 0.81 ’
" (Groupe, _ S\Z/ Médiane
0.61 Hypothétique);. 0.6+ (GroupeRéel) /-

/ Médiane /'//\‘Médiane

, A (Groupe
047 (Groupe Réel ) 0.47 Hypothétique)
0.2} . 0.2}
_-—"_,/ L N L | 0.0 ,’/. 1 1 1 '
0™ """ 1 2 3 1 1 2 25 3 35
3 2 1 0 5 0 0

Graphs 0.4.3 : Distributions de probabilité subjectives et données réelles

Nous pouvons remarquer que les valeurs médianes obtenues ne sont pas
aberrantes par rapport aux données réelles. La calibration des deux groupes est
méme particulierement bonne pour la température a Paris, alors qu’il y a une ten-

dance notable des deux groupes (Réel et Hypothétique) a surestimer la probabilité
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des hausses du CAC40. Notons qu’il est plutot normal pour des éléves ingénieurs
vivant a Paris pendant 'année scolaire de mieux maitriser les températures que les

variations de la Bourse.

0.4.7. Résultats sur l'attitude face a 'ambiguité

Nous pouvons a présent étudier les fonctions de transformation de probabi-
lités élicitées pour les différentes sources. Pour simplifier la présentation, nous ne

traiterons ici que le Groupe Réel.

1_.
températurea Paris ' /
0.875T -
0.757
0.5 1
0
0.257
i i températurea
0.125 I'étranger
1] 2 : : : : : :
0 0.125 0.25 0.50 0.750.875 1

Graph 0.4.4 : Transformations de probabilité moyennes pour le groupe Réel

Les graphiques ci-dessus représentent les fonctions de transformation des
probabilités moyennes pour les trois sources et le risque. Il est important de noter
tout d’abord qu’une analyse de la variance des différentes fonctions w entre les
sources permet d’accepter que l'attitude dépend de la source pour les probabilités
0.125, 0.25, 0.75 et 0.875. En d’autres termes, les sujets de I'expérience ont une
attitude qui différe significativement selon la source, confirmant ainsi I'intérét de

ce concept.
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De méme une analyse de la variance sur l'indice de pessimisme (révélant
I'élévation des différentes courbes) conduit a conclure que la source influe signifi-
cativement sur l'attractivité des paris. Ce résultat confirme l'intuition issue du pa-
radoxe d’Ellsberg. Les comparaisons deux a deux des indices de sensibilité confir-
ment la moindre sensibilité en situation d’ambiguité qu’en situation de risque pour

les sources CAC40 et température a Paris.
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Graph 0.4.5 : Transformations de probabilité pour la température a Paris

Le schéma précédent représente des résultats individuels de 4 sujets diffé-
rents. Il s’agit de remarquer ici qu'il est possible de comparer 'attitude des agents
face aux probabilités (sur une source donnée), quelque soient leurs croyances sur
les événements. Par exemple, le sujet 18 a un consentement a parier beaucoup
plus faible que les autres. Le sujet 2 exhibe la plus faible sensibilité aux niveaux de
vraisemblance, c’est-a-dire son consentement a parier (ou a s’assurer) ne variera

que peu méme lorsque ses croyances varient fortement.

0.4.8. Prédictions

Dans la lignée des résultats précédents, il est aussi possible de décomposer

pour un sujet donné en plusieurs éléments sa prime d’incertitude pour un acte.
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Cette prime d’incertitude correspond a la différence entre la valeur espérée (sub-
jective) de I'acte et I'équivalent certain que le sujet lui associe. Cette prime peut se
décomposer en une prime de risque qui correspond a la prime d’incertitude si la
probabilité avait été objective et une prime d’ambiguité qui correspond au surcroit
de prime engendré par le fait que la probabilité ne soit pas connue avec certitude.
Dans le tableau suivant, nous calculons ces primes pour un acte donnant 40000€ si
E se réalise (et rien sinon) ou E est un événement concernant la température a Pa-
ris. Nous ferons les hypothéses simplificatrices que les deux sujets ont la méme

fonction d’utilité u(x)=x%88 et que tous les deux ont la méme croyance.

Tableau 0.4.6 : Calcul des primes d’incertitude, de risque et d’ambiguité

Sujet 2 Sujet 48 Sujet 2 Sujet 48

P(E)=0.125 | P(E)=0.125 | P(E)=0.875 | P(E)=0.875
w(P(E)) 0.35 0.08 0.52 0.67
P(E)x40000 5000 5000 35000 35000
Equivalent certain 12133 2268 19026 25376
Prime d’incertitude -7133 2732 15974 9624
Prime de risque -4034 2078 5717 -39
Prime d’ambiguité -3099 654 10257 9663

Ainsi quand P(E)=0.125, la prime d’incertitude pour le sujet 48 s’explique
principalement par son attitude générale face au risque, la prime d’ambiguité ne
représentant que moins d’'un quart de la prime totale. Par contre pour une tres
grande probabilité (0.875), ce méme sujet serait prét a prendre un risque si la
probabilité était objective (sa prime de risque est légerement positive) mais il de-
vient trés averse a I'ambiguité ce qui explique sa prime d’incertitude élevée. Le
tableau permet aussi de comparer les deux sujets et de comprendre si leur com-
portement (d’assurance, par exemple) provient de l'attitude face au risque ou de
I'attitude face a 'ambiguité : pour la probabilité 0.875, 'ambiguité a un impact as-
sez proche sur le sujet 2 et sur le sujet 48 mais le sujet 2 est moins joueur dans le
risque pour les grandes probabilités ce qui explique que sa prime d’incertitude est

plus élevée.
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0.4.9. Conclusion de l'étude

Plusieurs limites de cette étude peuvent étre mentionnées ici. Tout d’abord
le fait que la méthode développée ne permet pas de prendre en compte le cas de
sources ou 'uniformiteé est violée (cf. les remarques sur le paradoxe d’Ellsberg a 3
couleurs). Sur le point de vue expérimental, le processus incitatif n’est pas sans
défaut car le sujet peut penser qu’il existe une stratégie plus efficace que dire la
vérité, méme si cette stratégie potentielle n’est pas évidente par la complexité et le

nombre important de questions de I'expérience.

Pour conclure, nous avons souhaité par cette étude montrer que la défini-
tion de sources uniformes d’incertitude permettait de réconcilier les résultats tra-
ditionnels en situations d’ambiguité comme le paradoxe d’Ellsberg a deux couleurs,
avec le concept de croyance Bayésienne, puis de comprendre de maniere précise
les attitudes face aux différentes sources. En outre, nous avons développé des ou-
tils pour représenter visuellement ces attitudes et les étudier afin de permettre des
prédictions en termes de comportement assurantiel par exemple. Enfin il peut étre
noté que des travaux récents en neuroéconomie tendent a confirmer I'importance

du concept de sources (Hsu et al. 2005 ; Camerer 2007).

0.5. Une méthode robuste d’élicitation des probabilités subjectives

Dans le chapitre 5 de la these, I'accent est mis sur la technique d’élicitation
des probabilités subjectives que nous venons de décrire dans la section précé-
dente. L’élicitation de probabilités subjectives est utilisée en analyse de la décision
dans le but de recueillir des avis d’experts (cf. section 0.3). En économie compor-
tementale comme en économie expérimentale, il est parfois nécessaire d’éliciter ce
que pensent les participants d'une expérience (voir par exemple Nyarko & Schot-
ter 2002). Dans la littérature de psychologie, sont souvent utilisées des probabili-
tés dites jugées, c'est-a-dire directement exprimées par le sujet comme étant sa
croyance. L’approche des préférences révélées, dominante en économie, est plus
compatible avec des probabilités fondées sur les choix : le sujet doit révéler par ses

choix ce qu'il pense, pour étre str qu'’il a intérét a dire la vérité. Nous allons pré-
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senter différentes méthodes fondées sur les choix, qui permettent d'obtenir les
probabilités subjectives. Pour cela nous ferons I'hypothése que 'agent dont on
veut connaltre les croyances maximise son espérance de gain. Notons au passage

que cette section ne traitera que de gains.

0.5.1. Quatre techniques d’élicitation des probabilités subjectives

La probabilité canonique : La premiere de ces méthodes revient a détermi-
ner la probabilité p telle que xpy~xEy (voir par exemple Raiffa 1968 p110, Wright
1988, Holt 2006). Si I'agent a une probabilité subjective pour E et ne considére
que son espérance de gain, alors il doit choisir p tel que p=P(E). Par exemple, s’il
pense qu'’il va pleuvoir demain avec une probabilité de 1/3, alors il doit étre indif-

férent entre gagner 100€ s’il pleut et gagner 100€ avec 1 chance sur 3.

L’équivalent certain : Imaginons que nous proposions a I'agent un pari ou il
peut gagner 1€ s’il pleut et qu'il est prét a payer 33 centimes pour ce pari. Si nous
faisons I'hypotheése que ces 33 centimes correspondent a son espérance de gain,
alors cela signifie que sa probabilité subjective est 1/3. Formellement, la méthode

de I’équivalent certain revient a déterminer c~1EQ, pour déduire P(E)=c.

Les regles de scores (scoring rule) : Selon Winkler (1969), cette regle de
scores est une fonction de paiement qui dépend de la probabilité rapportée par
I'agent et de la survenance ou non de I'événement; elle sert a la fois a l'inciter a
étre honnéte et permet aussi de mesurer sa performance afin de l'aider a
s’améliorer. La plus connue est la régle quadratique qui peut s’écrire ainsi
[1—(1-r)?]E[1—r?], lorsque I'agent dit que I'’événement E a une probabilité r. Un
agent qui maximise la valeur espérée de ce qu’il peut toucher avant d’indiquer sa
croyance cherche donc a maximiser P(E)[1—(1—r)?]+(1—P(E))[1-r?]; les condi-
tions nécessaires et suffisantes pour cela sont r=P(E) et —2<0, cette derniere

étant trivialement satisfaite.

La méthode d’échangeabilité : 11 s’agit ici de la méthode que nous avons dé-
crite dans la section précédente pour obtenir les probabilités subjectives. Elle con-
siste a partitionner '’ensemble des états de la nature en 2, puis 4, puis 8 événe-

ments échangeables, c’est-a-dire tels qu'une permutation entre les conséquences
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laisse I'agent indifférent. Au premier niveau, cela revient donc a déterminer E tel
que XEy~x(S—E)y. Ensuite il faut déterminer FCE tel que xFy~x(E—F)y, puis con-
tinuer sur I'événement complémentaire (S—E) et de nouveau sur les événements
obtenus. D’une partition en n événements échangeables, on peut déduire la distri-
bution de probabilité subjective, puisque chacun de ces événements est censé avoir
une probabilité de 1/n. La encore, un agent ne considérant que son espérance de
gain ne doit étre indifférent qu’entre parier sur des événements de méme probabi-

lité, ce qui justifie cette méthode.

0.5.2. Les quatre techniques face aux déviations de comportements

vis-d-vis de I'espérance mathématique

Nous avons vu dans la section 0.1 que la plupart des agents ne décident pas
en fonction de I'espérance mathématique. Le paradoxe de St Petersburg a conduit
a I'ajout d’une fonction d’utilité représentant I'attitude face aux conséquences. Le
paradoxe de Allais et celui d’Ellsberg (a deux couleurs) ont conduit a introduire
des modeles plus généraux encore que l'utilité espérée. Dans le chapitre 5, I'effet
de chacun des paradoxes est détaillé sur chaque technique. Par simplicité, nous

allons simplement considérer ici I'effet global de ces paradoxes.

Pour représenter ces trois paradoxes, nous allons considérer des loteries
avec probabilités connues et des actes dont tous les événements appartiennent a la
méme source d’incertitude (cf. section 0.4). Nous utiliserons alors le modele de la
section 0.4 en n’utilisant ici w (fonction continue et strictement croissante) que
lorsque les probabilités sont objectives, et avec ¢ la fonction telle que wo désigne
la transformation de probabilité (aussi continue et strictement croissante) de la

source d’'incertitude considérée (avec x>y=>0) :

xpy—w(p)u(x)+(1-w(p))u(y)

et

xEyr—we@(P(E))u(x)+(1-wee(P(E)))u(y).

Ainsi u représente la fonction d’utilité (nécessitée par le paradoxe de St Peters-

burg), w la fonction de pondération des probabilités dans le risque (pour prendre
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en compte le paradoxe de Allais) et ¢ I'attitude liée au fait que la probabilité ne soit
pas objective (attitude face a I'ambiguité selon la terminologie de la section précé-

dente, 'exemple le plus célébre d’une telle attitude étant le paradoxe d’Ellsberg).

Commengons par étudier ce que devient la méthode des probabilités cano-
niques dans un tel cadre. Déterminer la probabilité p telle que xpy~xEy revient a
trouver p=@(P(E)). La probabilité canonique capture donc la probabilité subjec-
tive mais aussi 'attitude face a 'ambiguité. Considérons le paradoxe d’Ellsberg.
Pour un individu préférant parier sur les boules rouges (ou noires) dans l'urne
connue (p=1/2) plutot que dans l'urne inconnue (événement sans probabilité ob-
jective), cela signifie que ses probabilités canoniques pour les événements « rouge
dans l'urne inconnue » et « noire dans I'urne inconnue » sont inférieures toutes les
deux a 1/2. Outre que ceci violerait I'additivité des probabilités subjectives, il n’est
pas impossible que cet individu pense que la probabilité de ces deux événements
soit vraiment 1/2 mais que ces préférences s’expliquent par son aversion a
I'ambiguité. Ainsi les probabilités canoniques ne permettent pas de distinguer
entre ce qui releve de la croyance et ce qui releve de l'attitude face a I'absence

d’information.

Pour ce qui est de la méthode de I'équivalent certain, c~1EQO correspond
dans notre modeéle a c=u—lowo(P(E)). Il est toutefois imaginable de déterminer
avec des probabilités connues les fonctions u et w, pour nettoyer 'équivalent cer-
tain c de leurs effets respectifs. Cependant, la fonction ¢ n’est pas déterminable
avec des probabilités connues (puisqu’elle est générée par 'ambiguité). En con-
clusion, I'’équivalent certains capturent tous les éléments d’attitudes, et méme s’il
est possible d’en corriger certains, distinguer ce qui reléve strictement de la

croyance ne semble pas possible.

Les regles de score sont elles aussi évidemment touchées par ces déviations
des comportements par rapport a I'espérance de gain puisqu’elles ont été définies
dans le cadre d’'un agent ne s’'intéressant qu’a la valeur espérée. Etudions donc la
regle de score quadratique avec une légere modification (nous allons simplement
ajouter 1 a la conséquence sur E), pour étre sir que la conséquence si E se réalise

soit toujours plus grande que si E ne se réalise pas. Offerman et al. (2007) suggere
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cela pour pouvoir représenter aisément la valeur de la regle dans un modele a dé-
pendance de rang. Rappelons en effet que nous avons défini notre modéle pour
xEy avec x=>y=>0. La régle peut alors s’écrire [2—(1—r)?]E[1—r?], lorsque l'agent
dit que I'événement E a une probabilité r. L’agent va donc choisir r pour maximi-

Ser:

wo(P(E))u(2—(1-1)*)+(1-we(P(E))u(1-r?.

Il est évident que la condition nécessaire a cette maximisation va maintenant inté-
grer l'influence de w, @ et u. Pour débiaiser la probabilité reportée, Offerman et al.
(2007) propose de déterminer une fonction R(p), correspondant a la valeur r rap-
portée par I'agent qui pourrait toucher [2—(1-r)?] avec une probabilité p et
[1—r?] sinon. Ils montrent que R(p) permet de prendre en compte l'effet de w et
de u. Ainsi, si 'agent rapporte comme probabilité pour E la valeur rg, alors
R(p)=rg pour une valeur p donnée implique que p=@(P(E)). Dans tous les cas, ce

qui est obtenu comprend encore I'attitude face a 'ambiguité.

Nous savons déja, grace a la section précédente, que la méthode
d’échangeabilité permet dans le cadre du modele considéré de distinguer entre
attitudes et probabilités subjectives. En effet, la recherche d’événements échan-
geables dans une source donnée permet de ne pas utiliser de probabilité objective.
Ainsi xEy~x(S—E)y (avec x=>y>0) implique wo@(P(E))=we@(1—P(E)), en fixant
u(x)=1 et u(y)=0 (car u est définie a une fonction affine pres). En conséquence, si
P représentant la mesure de probabilité (additive), P(E)=1/2. Il est important de
noter que c’est le choix entre deux actes incertains (non-dégénérés) et se référant

a une seule source d’incertitude qui permet cela.

La conclusion de cette analyse est donc que la méthode d’échangeabilité,
méme si elle peut ne pas fonctionner dans certains cas comme le paradoxe
d’Ellsberg a 3 couleurs (cf. sous-section 0.4.3), semble toutefois mieux a méme de
distinguer entre croyance et attitudes. Cette observation a nécessité toutefois plu-
sieurs hypotheses, comme le fait qu'il existe une distribution de probabilité (addi-
tive) cohérente avec les choix des décideurs. Ceci n’est pourtant pas anodin et
c’est pourquoi nous avons conduit une étude expérimentale visant a tester cette

hypotheése ainsi que d’autres propriétés que nous allons a présent décrire.
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0.5.3. Méthode et buts de I'expérience

L’expérience a été conduite de mars a mai 2005 ; 52 éleves de I’Ecole Nor-
mal Supérieure de Cachan y ont participé. Nous pouvons présenter 4 principaux

objectifs de cette étude expérimentale.

Faisabilité et Fiabilité : Si 'expérience décrite dans la section 0.4 nous sug-
gere que la méthode d’échangeabilité est applicable, il est positif de confirmer cette
faisabilité par une nouvelle étude. Les sources utilisées étaient la température a
Paris, le cours Euro contre Dollar et la variation journaliere du CAC40. Il était indi-
qué au sujet que les valeurs seraient relevées 4 semaines aprées leur participation.
Nous avons donc élicité trois distributions de probabilité subjectives par sujet en
obtenant pour chacune des trois sources une partition en 8 événements échan-
geables. En outre, nous avons testé la fiabilité des réponses en répétant certaines

questions a la fin de I'expérience.

Prédictibilité : Est-il possible de prédire a partir de la distribution de proba-
bilité obtenue de nouveaux choix du sujet? Nous avons pour cela estimé pour
chaque sujet deux événements censés avoir une probabilité de 1/3 et nous avons

testé leur échangeabilité.

Additivité et Eftet de Découpage : De nombreuses études en psychologie ont
révélé que les croyances (estimées par des probabilités jugées) des individus ne
sont pas additives; ainsi, Tversky & Koehler (1994) ont proposé d’expliquer la
sous-additivité des probabilités jugées par leur Théorie du Support, c’est-a-dire, la
croyance dépend de la présentation de I’événement, plus ou moins précise. Ainsi
un événement plus général peut avoir une probabilité jugée plus petite que la
somme des probabilités de chacun des sous-événements précis qui le composent.
Dans la méme logique, Starmer & Sugden (1993) et Humphrey (1995) ont intro-
duit le concept d’effet de découpage des événements? (EDE) défini par le fait que

deux événements incompatibles sont plus attractifs dans les paris que leur réu-

2 appelé par les auteurs « Event-Splitting Effect ».
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nion. Puisque nous faisons ex ante I'hypothese d’additivité, il est nécessaire de

tester la validité de ce type de phénomeéne qui peut la contredire.

Dépendance a la source: Puisque c’est l'attitude face a I'ambiguité
(I'attitude spécifique a une source donnée) qui semblait étre mieux distinguée des
croyances par la méthode d’échangeabilité que par les autres techniques
d’élicitation des probabilités subjectives, nous avons testé cette hypothése en pro-
posant aux sujets des paris sur des événements des différentes sources mais pour
lesquels nous avions déterminé qu'’ils affectaient une méme probabilité subjective.
Nous proposions aussi une loterie avec les mémes conséquences et la méme pro-

babilité de gain mais cette fois-ci objective.

0.5.4. Résultats

Nous avons obtenu 156 distributions de probabilité subjective, avec un ré-
sultat intéressant en termes de fiabilité. Lors de la répétition de certaines ques-
tions déja posées, nous avons pu mesurer la constance des choix des sujets. Or
celle-ci est fortement influencée par la proximité (ou non) avec ce que nous avons
déterminé comme étant l'indifférence. En d’autres termes, lorsque la question ré-
pétée demande de choisir entre deux événements préalablement déterminés
comme échangeables, alors la seconde réponse ne coincide avec la premiere que
dans un peu plus de 50% des cas. Ceci correspond d’ailleurs a la notion
d’indifférence, ou I'agent est censé choisir équivalemment une option ou l'autre.
Par contre, le nombre de réponses identiques augmente fortement dés que nous
nous éloignons de l'indifférence avec par exemple 100% de réponses identiques
lorsque pour la température, les événements proposés différent de plus de 2°C des

événements échangeables.

Les tests de prédictibilité n’ont pas conduit a rejeter ’hypothese que les
événements estimés comme échangeables I'étaient réellement (les probabilités de
rejet des tests de Student appariés étant respectivement de 0.4957, 0.2356 et
0.3409 pour la température, le cours de 'euro et le CAC40).

Pour tester I'EDE, en reprenant la notation du schéma 0.4.2, nous avons

cherché a voir si A} U A} et A2 U A3 étaient bien échangeables. En effet chaque
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événement est I'union de deux événements incompatibles de probabilité 1/4, mais
le premier événement n’est pas convexe, il comprend deux parties, alors que le
second est convexe et peut étre représenté ‘en un bloc’. L’EDE doit alors jouer en
faveur du premier événement, sa non-convexité le rendant plus attirant. C’est en
effet la tendance que nous avons trouvé méme si 'EDE n’était significatif a 5% (par
des tests de Student appariés) que pour le cours de 'Euro. Cela renvoie donc a une
limite potentielle de la méthode, ou la description des événements compte beau-
coup. Notons toutefois que lors de I'élicitation méme de la distribution, seule

I’échangeabilité d’événements convexes est utilisée.

Enfin, il s’agissait de parier sur quatre événements, le premier avec une
probabilité objective de 1/4, les autres avec une probabilité subjective identique-
ment de 1/4 et provenant des trois sources. Chaque sujet devait indiquer un ordre
de préférence entre les quatre possibilités, puis recommencer avec une probabilité
de 1/2 et enfin de 7/8 (identique pour les 4 événements a chaque fois). Pour
chaque classement, un test de Friedman comparant les rangs respectifs des diffé-
rentes sources et du risque rejette '’hypothese nulle d’indifférence entre les
sources pour une significativité de 5%. Ceci confirme que l'attitude dépend de la
source. En regardant la position du risque par rapport aux sources incertaines, les
résultats suggerent une attitude face a I'ambiguité représentée par le graphique

0.4.1.d pour la température et 0.4.1.c pour le cours de I’euro et le CAC40.

0.5.5. Conclusion de l'étude

Nous devons rappeler ici une limite inhérente aux techniques d’élicitation
basée sur les choix (limite qui est valable pour les 4 techniques décrites dans cette
section). Sil’agent voit en 'événement une utilité intrinseque, ou s’il a des intéréts
propres a sa réalisation, alors ces techniques peuvent étre biaisées. Ainsi un ven-
deur de glace peut préférer un acte qui lui donne de I'argent s’il pleut un jour don-
né, car cet acte fonctionnera comme une sorte d’assurance, couvrant son manque-
a-gagner lié au temps. Il est donc nécessaire de vérifier que I'agent dont on veut
récolter les préférences évalue les conséquences de maniere indépendante des

événements et n’a pas d’intéréts particuliers a la survenance d'un événement.
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En outre, il doit étre noté que contrairement aux trois autres techniques, la
méthode d’échangeabilité nécessite de pouvoir découper I'ensemble des états de la
nature facilement, prélevant une partie d’'un événement et le greffant sur un autre
afin d’obtenir leur échangeabilité. Les trois autres techniques partent des événe-
ments et recherchent leur probabilité. La méthode de I'échangeabilité part d’'un
niveau de partition (2, 4, 8...) et détermine les événements. Comment faire si
I'ensemble des états de la nature ne comprend que « il pleut » et « il ne pleut pas »
et si ces deux événements ne sont pas échangeables ? Comment obtenir une parti-
tion en événements échangeables ? Une possibilité reviendrait a composer cet en-
semble des états de la nature avec un mécanisme externe générant uniformément
des nombres appartenant a [0,1). Ainsi les événements deviendraient par exemple
« il pleut et le nombre tiré appartient a [0,p) ». Modifier p permettrait de faire va-
rier la vraisemblance de I'événement afin d’atteindre I’échangeabilité. L’étude de

la faisabilité d'un tel mécanisme est laissée pour des recherches futures.

Le principal but du chapitre 5 était de comparer la robustesse théorique des
différentes méthodes d’élicitation des probabilités subjectives dans le cadre d’un
modele qui prend en compte les déviations comportementales par rapport a la
maximisation de I'espérance de gain. Dans ce cadre, nous avons observé que la
méthode d’échangeabilité semblait plus efficace pour séparer l'attitude face a
I'ambiguité des croyances. Ensuite une étude expérimentale visait a tester en pra-
tique cette méthode et a la confronter avec ces points faibles potentiels, tel I'effet
de découpage des événements. Nous avons pu établir ainsi parallelement a ses

avantages, 'existence de limites a son utilisation.

0.6. Conclusion générale

Le but principal de la thése a été de fournir des éléments, théoriques et ex-
périmentaux, qui permettent de comprendre, d’observer et de mesurer a la fois les
attitudes face a l'incertitude mais aussi les croyances des décideurs lorsque les
probabilités ne sont pas connues. Les modeles utilisés n’ont pas de vocation nor-
mative en ce sens qu’ils violent différents principes de rationalité. Pour cela,

l'utilité espérée reste le modele de référence. Toutefois, ces modeles permettent
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de comprendre et de représenter de maniere plus exacte les décisions. Le chapitre
6 expose en outre des limites potentielles de ces modeles en soulevant quelques
récents paradoxes suggérés par la littérature (Birnbaum 2007, Machina 2007).
Enfin sont suggérées quelques pistes de recherche future, visant a compléter les
résultats de la these, comme des améliorations de la méthode d’élicitation des pro-
babilités subjectives ou encore I'analyse de l'effet de nouvelles informations, effet
autant sur les croyances (sont-elles révisées de maniére Bayésienne ?) que sur
I'attitude (I'information augmente-t-elle la confiance du décideur dans ses

croyances 7).

55



Références

Allais, Maurice (1953), “Le Comportement de 'Homme Rationnel devant le Risque:
Critique des Postulats et Axiomes de I'Ecole Américaine,” Econometrica 21,

503-546.

Anscombe, Frank J. & Robert J. Aumann (1963), “A Definition of Subjective Proba-
bility,” Annals of Mathematical Statistics 34, 199-205.

Bernoulli, Daniel (1738), “Specimen Theoriae Novae de Mensura Sortis”. Transla-
tion in “Exposition of a New Measurement of Risk”, (1954) Econometrica, vol.

22, (pp. 23-36).

Birnbaum, Michael H. (2007), “Tests of branch splitting and branch-splitting inde-
pendence in Allais paradoxes with positive and mixed consequences,” Organi-

zational Behavior and Human Decision Processes, 102, 154-173.

Camerer, Colin & Martin Weber (1992), “Recent developments in Modeling Prefe-
rences: Uncertainty and Ambiguity,” Journal of Risk and Uncertainty 5(4): 325-
370.

Chateauneuf, Alain & Jean-Marc Tallon (2002), “Diversification, Convex Prefe-

rences and Non-Empty Core,” Economic Theory 19, 509-523.

Chew, Soo Hong & Jacob Sagi (2006a), “Event Exchangeability: Small Worlds Prob-

abilistic Sophistication without Continuity or Monotonicity,” Econometrica 74,

771-786.

Chew, Soo Hong & Jacob Sagi (2006b), “Small Worlds: Modeling Attitudes towards
Sources of Uncertainty,” Haas School of Business, University of California,

Berkeley, CA; version of June 2006.

Clemen, Robert T. & Robert Winkler (1993), “Aggregating point estimates: A flexi-
ble modeling approach,” Management Science, 39:501-515.

Cohen, Michele, Jean-Yves Jaffray & Tanios Said (1985), “Individual behavior under
risk and uncertainty: an experimental study,” Theory and Decision 18: 203-

228.

56



Cohen, Michele, Jean-Yves Jaffray & Tanios Said (1987), “Experimental comparison
of individual behavior under risk and under uncertainty for gains and for

losses,” Organizational Behavior and Human Decision Processes 39(1): 1-22.

Dalkey, Norman C. (1969), “The Delphi method: An experimental study of group
opinions,”Report No. RM-5888-PR. The Rand Corporation.

Davidson, Paul (1991), “Is Probability Theory Relevant for Uncertainty? A Post

Keynesian Perspective,” Journal of Economic Perspectives, vol 5.1

(pp.129—143)

de Finetti, Bruno (1937), “La Prévision: Ses Lois Logiques, ses Sources Subjec-
tives,” Annales de I'[nstitut Henri Poincaré 7, 1-68. Translated into English by
Henry E. Kyburg Jr., “Foresight: Its Logical Laws, its Subjective Sources,” in
Henry E. Kyburg Jr. & Howard E. Smokler (1964, Eds), Studies in Subjective
Probability, 93—-158, Wiley, New York; 2nd edition 1980, 53—-118, Krieger, New
York.

Debreu, Gérard & Tjalling C. Koopmans (1982), “Additively Decomposed Quasi-

convex Functions,” Mathematical Programming 24, 1-38.

Delbecq, Andre L., Andrew H. Van de Ven & David H. Gustafson (1975), “Group

Techniques for Program Planning’, Glenview, IL:Scott Foresman.

Du, Ning & David .V. Budescu, (2005), “The Effects of Imprecise Probabilities and
Outcomes in Evaluating Investment Options,” Management Science 51:1791-

1803.

Ellsberg, Daniel (1961), “Risk, Ambiguity and the Savage Axioms,” Quarterly Jour-
nal of Economics 75, 643—669.

Fox, Craig R. & Amos Tversky (1998), “A Belief-Based Account of Decision under

Uncertainty,” Management Science 44, 879-895.

Gajdos, Thibault, Takashi Hayashi, Jean-Marc Tallon and Jean-Christophe Vergnaud
(2007), “Attitude toward Imprecise Information” Travail en cours, Université

de Paris 1.

Genest, Christian (1984), “Pooling operators with the marginalization property,”

Canadian Journal of Statistics, 12:153-163.

57



Ghirardato, Paolo, Fabio Maccheroni, & Massimo Marinacci (2004), “Differentiating
Ambiguity and Ambiguity Attitude,” Journal of Economic Theory 118,
133-173.

Ghirardato, Paolo & Massimo Marinacci (2001), “Risk, Ambiguity, and the Separa-
tion of Utility and Beliefs,” Mathematics of Operations Research 26, 864—890.

Gilboa, Itzhak & David Schmeidler (1989), “Maxmin Expected Utility with a Non-

Unique Prior,” Journal of Mathematical Economics 18, 141-153.

Heath, Chip & Amos Tversky (1991), “Preference and Belief: Ambiguity and Com-

petence in Choice under Uncertainty,” Journal of Risk and Uncertainty 4, 5-28.

Hogarth, Robin M. & Hillel ]. Einhorn (1990), “Venture Theory: A Model of Decision
Weights,” Management Science 36, 780—-803.

Holt, Charles A. (2006), “ Webgames and Strategy: Recipes for Interactive Learn-

ing’ in press.

Hsu, Ming, Meghana Bhatt, Ralph Adolphs, Daniel Tranel, & Colin Camerer (2006),
“Neural Systems Responding to Degrees of Uncertainty in Human Decision

Making,” Science 310, 9 Dec., 1680-1683.

Humphrey, Stephen J. (1995), “Regret Aversion or Event-Splitting Effects? More
Evidence under Risk and Uncertainty,” Journal of Risk and Uncertainty 11,

263-274.

Keynes, John Maynard (1936), “ The General Theory of Employment, Interest and

Money,”New York: Harcourt Brace

Kilka, Michael & Martin Weber (2001), “What Determines the Shape of the Proba-
bility Weighting Function under Uncertainty,” Management Science 47,

1712-1726.

Klibanoff, Peter, Massimo Marinacci, & Sujoy Mukerji (2005), “A Smooth Model of
Decision Making under Ambiguity,” Econometrica73, 1849-1892.

Knight, Frank H. (1921), “Risk, Uncertainty, and Profit,”Houghton Mifflin, New
York.

58



Kobberling, Veronika & Peter P. Wakker (2003), “Preference Foundations for Non-
expected Utility: A Generalized and Simplified Technique,” Mathematics of Op-
erations Research 28, 395-423.

Kobberling, Veronika & Peter P. Wakker (2004), “A Simple Tool for Qualitatively
Testing, Quantitatively Measuring, and Normatively Justifying Savage’s Subjec-

tive Expected Utility,” Journal of Risk and Uncertainty 28, 135-145.

Kreps, David M. & Evan L. Porteus (1978), “Temporal Resolution of Uncertainty
and Dynamic Choice Theory,” Econometrica 46, 185-200.

Lauriola, Marco & Irwin P. Levin (2001), “Relating individual differences in Atti-
tude toward Ambiguity to risky choices,” Journal of Behavioral Decision Mak-
ing14(2):107-122.

Maccheroni, Fabio, Massimo Marinacci, & Aldo Rustichini (2006), “Ambiguity

Aversion, Robustness, and the Variational Representation of Preferences,”

Econometrica74, 1447—-1498.

MacCrimmon, Kenneth R. & Stig Larsson (1979), “Utility Theory: Axioms versus

nn

“Paradoxes”.” InMaurice Allais & Ole Hagen (eds.), Expected Utility Hypothes-
es and the Allais Paradox, 333—409, Reidel, Dordrecht, the Netherlands.

Machina, Mark J. (2007), “Risk Ambiguity, and the Rank-Dependence Axioms,”

Travail en cours, University of California, San Diego.

Machina, Mark J. & David Schmeidler (1992), “A More Robust Definition of Subjec-
tive Probability,” Econometrica 60, 745-780.

Neilson, William S. (1993), “Ambiguity Aversion: An Axiomatic Approach Using
Second Order Probabilities,” Mimeo, Dept. of Economics, University of Tennes-

see, Knoxville, TN.

Nyarko, Yaw & Andrew Schotter (2002), “An Experimental Study of Belief Learning
Using Elicited Beliefs,” Econometrica70,971-1005.

Offerman, Theo, Joep Sonnemans, Gijs van de Kuilen, & Peter P. Wakker (2007), “A
Truth-Serum for Non-Bayesians: Correcting Proper Scoring Rules for Risk Atti-

tudes,” CREED, University of Amsterdam, the Netherlands.
Raiffa, Howard (1968), Decision Analysis. Addison-Wesley, London.

59



Ramsey, Frank P. (1926) “Truth and Probability,” in (1931) The Foundations of
Mathematics and Other Logical Essays, ed. by R. B. Braithwaite. London: Rout-
ledge, Chapter 7, 156-198.

Savage, Leonard ]. (1954), “ The Foundations of Statistics.” Wiley, New York. (2nd
edition 1972, Dover Publications, New York.)

Schmeidler, David (1989), “Subjective Probability and Expected Utility without
Additivity,” Econometrica57,571-587.

Sniezek, Janet A. & Timothy Buckley (1995), “Cueing and cognitive conflict in
judge-advisor decision making,” Organizational Behavior and Human Decision

Processes 62:159-174.

Starmer, Chris & Robert Sugden (1993), “Testing for Juxtaposition and Event-
Splitting Effects,” Journal of Risk and Uncertainty 6, 235-254.

Tversky, Amos & Craig R. Fox (1995), “Weighing Risk and Uncertainty,” Psycholog-
ical Review 102, 269-283.

Tversky, Amos & Daniel Kahneman (1992), “Advances in Prospect Theory: Cumu-
lative Representation of Uncertainty,” Journal of Risk and Uncertainty 5,

297-323.

Tversky, Amos & Derek ]. Koehler (1994), “Support Theory: A Nonextensional Re-
presentation of Subjective Probability,” Psychological Review 101, 547-567.

Tversky, Amos & Peter P. Wakker (1995), “Risk Attitudes and Decision Weights,”
Econometrica 63, 1255-1280.

Viscusi, W. Kip & Harrell Chesson (1999), “Hopes and Fears: the Conflicting Effects
of Risk Ambiguity,” Theory and Decision47(2): 157.

Wakker, Peter P. (2004), “On the composition of risk preference and belief,” Psy-
chological review 111(1): 236-241.

Wakker, Peter P. & Daniel Deneffe (1996), “Eliciting von Neumann-Morgenstern
Utilities when Probabilities Are Distorted or Unknown,” Management Science

42,1131-1150.

60



Winkler, Robert L. (1968), “The consensus of subjective probability distributions,”
Management Science 15:361-375.

Winkler, Robert L. (1969), “Scoring Rules and the Evaluation of Probability Asses-

sors”, Journal of the American Statistical Association, vol. 64, n°327.

Wright, William F. (1988), “Empirical Comparison of Subjective Probability Elicita-

tion Methodes,” Contemporary Accounting.

Yaari, Menahem E. (1969), “Some Remarks on Measures of Risk Aversion and on

Their Uses,” Journal of Economic Theory 1, 315-329.

61



Chapter 1.

Introduction

“1will suggest, as does Ellsberg, that subjective probability

judgments relating to various processes are not strictly comparable.”

Fellner (1961)

1.1. Introductory examples

Imagine you have to choose between a bet that gives you €1000 with prob-
ability 1/2 (and nothing otherwise) and a sure gain of €500: if you prefer the bet
to its expected value, then you like taking risk (at least in this situation), you are a
risk seeker. 1If you prefer the sure gain, then you dislike risk and you are risk
averse. Risk neutralityis defined as being indifferent between getting a lottery and
receiving its expected value for sure. This simple choice shows us that observing
preferences can enable us to determine an agent’s attitude. It then makes it possi-
ble to study whether, for instance, attitude towards risk depends on probabilities
or not. But in most real life situations we do not know the exact probabilities of
the risks we are facing; we do not often base our decisions on a precise description

of the likelihood of each consequence.
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Consequently, let us replicate the previous choice situation in a context in
which probabilities are not clearly known. You have now to choose between win-
ning €500 for sure and €1000 if it rains in Paris tomorrow (and nothing other-
wise). Let us assume that you prefer €500 for sure: does it mean that you are risk
averse or that you simply think that it will not rain (or at least that the probability
of rain is quite low)? Analyzing attitudes when probabilities are unknown gene-
rates new issues: how can we distinguish between beliefs (“I think that the proba-

bility of rain is p”) and the attitude of the agent (“I dislike taking risk”)?

We could think that a way of deriving beliefs from choices would consist in
comparing the two previous bets, i.e. winning €1000 with probability 1/2 and
winning €1000 if it rains tomorrow in Paris. But let us assume that you prefer the
probability bet: does it mean that you think the probability of rain is less than 1/2
or that you believe rain is at least as possible as no rain but you do not like betting
when you are not totally sure of the probability? Most people prefer bets on
known probabilities to bets on vague or unknown ones; we will see in subsections
1.2.3 and 1.4.2 below that this phenomenon was highlighted by Ellsberg (1961).
As a consequence, these three examples reveal that when probabilities are un-
known, choices come from a complex mixture of beliefs, attitudes towards risk but
also attitudes towards the knowledge about the risk we encounter. This consti-
tutes the core issue of this dissertation: how can we distinguish between beliefs
(subjective probabilities), risk attitude (the taste for taking risk) and ambiguity
attitude (the impact of not knowing precisely the risk).

Of course, the examples we described were only used so as to reveal the in-
tuitions underlying our topic. However, this reasoning can easily be applied to
real-life examples as in the case with global warming, for instance. Let us seek ad-
vice from two groups of experts found on Wikipedia3. The first one says that there
is a “90 percent certainty that global warming is caused by man's burning of fossil
fuels”. The second group of experts tells us that “Detailed examination of current

climate data strongly suggests that current observations do not correlate with the

3 See http://en.wikipedia.org/wiki/Scientific_opinion_on_climate_change (June 2007)
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assumptions or supportable projections of human-induced greenhouse eftects’.
This conflicting set of opinions may make us hesitate: Should we apply the Kyoto
protocol? Should we decrease our consumption of fossil fuels? Are ecological poli-
cies for decreasing our carbon dioxide emission really useful? When we have to
base our decisions on experts’ opinions, such disagreements are common and we
have to face conflicting or imprecise descriptions of the situations. In this disserta-
tion, we will report the results of an experimental study that describes how ex-
perts’ judgments are combined and, consequently, what determines our decision in

those situations.

As a conclusion to these examples, we hope that the main issues of studying
individual decisions under uncertainty (or at least the intuitions behind these is-
sues) appear more transparent for the reader. Obtaining beliefs and describing
attitudes will constitute the main topics of this work. But before presenting our
results, let us introduce explicitly what uncertainty is, how it is modeled through
probability, and the limitations of this model. Section 1.2 thus presents the con-
cept uncertainty as it appears in the literature. Then, section 1.3 describes the
main model and section 1.4 its limits. Section 1.5 and 1.6 are dedicated to new

models of uncertainty. Section 1.7 concludes.

1.2. Risk, uncertainty and ambiguity

Knight (1921) clearly distinguishes between risk or “measurable uncertain-
ty’, in which probabilities exist and “unmeasurable uncertainty”also simply called
“uncertainty”. Since this first distinction, the notions of uncertainty, risk and even
ambiguity have been abundantly debated. The following subsections will provide
a basic topography of the notion of uncertainty taken, in a very broad sense, as
everything that is not sure, everything that we cannot assert with probability 0 or

1.
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1.2.1. Uncertainty and ‘objective probabilities’

In his Liber de Ludo Aleae (1663, but written a century before), Jerome
Cardan*is the first to define probability as a ratio of favorable elementary events
on possible results. Nowadays, we use probabilities as a measure of uncertainty in
many decisions and the standard frequentist viewpoint assimilates probabilities
with frequencies for future events. According to Poirier (1988) ‘“frequentists in-
terpret probability as a property of the external world, i.e. the limiting relative fre-
quency of the occurrence of an event as the number of suitably defined trials goes
to infinity”. Those probabilities are often seen as “objective”: for instance the
probability of a ball stopping on a given number in a roulette game is 1 (one favor-

able elementary event, the given number) over 37 (possible numbers).

Uncertainty, in which probabilities are known, clearly belongs to the Knigh-
tian “measurable uncertainty”, risk. But does it exist? “Probability is always a sub-
jective notion, inasmuch as it is the measure of uncertainty felt by a given person
facing a given event. ‘Objective probability’ is a meaningless notion” (de Finetti

1974). The next subsection is dedicated to this viewpoint.

1.2.2. Uncertainty and ‘subjective probabilities’

Let us try to understand the subjective view of probabilities. Subjectivists
think that probability is above all a degree of belief, measuring a person’s know-
ledge about an event. Jacob Bernoulli (1713) firstly introduces this subjective
view in his concept of subjective degree of certainty. But his subjectivism is re-
lated to the fact that for him, everything that will occur is objectively certain, de-
termined by God (Hacking 1971). The subjectivism of Ramsey, de Finetti and Sa-
vage is different in essence. According to them, there is neither such determinism,
nor frequencies that would be probabilities: “We are never entitled to predict fu-

ture frequencies with certainty, [...] since that would only be legitimate under

4 See Bernstein (1996) for the history of risk and probability.
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some deterministic hypothesis. If we accepted such a deterministic hypothesis, no

question of probability would exist.” (de Finetti 1974).

Probabilities are subjective because they depend on our knowledge and on
our reasoning. For Borel (1924), Ramsey (1926) and de Finetti (1931), probabili-
ties could be revealed by choices. Savage (1954) then provided an axiomatization
(presented in section 1.3) of subjective probabilities based on preferences. He
gives conditions under which decisions are based on subjective probabilities.
Since it allows measuring uncertainty, this part of uncertainty on which there are
subjective probabilities may be viewed as belonging to risk. For a rational man,
whose preferences satisfy Savage’s axioms, uncertainty can be reduced to risk.

That is why Ellsberg (1961) asks: “Are there uncertainties that are not risks?”

1.2.3. Uncertainty without ‘subjective probabilities’

Ellsberg proposes different choice situations, under which Savage’s axioms
are violated. We will extensively discuss them later but we can already explain the
main one. Consider an urn, whose content is known (50 black balls and 50 red
balls), and another, in which the proportion of red and black balls is unknown.
Most people prefer betting on red (black) balls in the first urn to betting on red
(black) balls in the unknown urn. This behavior suggests that drawing a red
(black) ball from the first urn is more likely than drawing a red (black) ball in the
second urn. Hence, subjective probabilities in the first urn are violated because

their sum cannot be equal to one>.

Ellsberg refers to this situation, in which probabilities are vaguely known or
even unknown, as ambiguous. Uncertainty is then often divided into risk (in which
there are objective or subjective probabilities) and ambiguity (in which no proba-
bility exists). However, this distinction is not obvious: most people do believe that

red and black balls are equally likely in the unknown urn but they prefer the bet on

5P(“The ball is red”)<0.5 and P(“The ball is black”)<0.5 imply P(“The ball is red or
black”)<1.
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‘sure’ probabilities. Fellner (1961) suggests that “subjective probability judgments
relating to various processes are not strictly comparable”. He does not deny the
existence of probabilistic beliefs; he just explains “distortion of probabilities as a
reaction to uncertainty”. This ambiguity may be high or not and may distort more
or less subjective probabilities, which can still exist. In other words, Ellsberg’s ex-
ample may be equally interpreted either as a proof of distortion or as a proof of

nonexistence of subjective probabilities.

We shall mention that preference-based definitions of ambiguity have also
been developed, for instance in Epstein & Zhang (2001) or Ghirardato & Marinacci
(2001). We will present them in subsection 1.6.3 and see how they may fail to

clearly characterize ambiguity without error.

1.2.4. Radical uncertainty

Radical uncertainty corresponds to situations, in which we do not even
know what can possibly happen. That is what Keynes calls uncertainty: "7he sense
in which I am using the terms is that /...] there is no scientific basis on which to
form any calculable probability whatever. We simply do not know.” (Keynes,
1936). Post-Keynesians think that this radical uncertainty corresponds to the
“true uncertainty”. Under radical uncertainty, decision makers may prefer not to
decide or may “follows their ‘animal spirit’/...] Post Keynesians believe that this
behavior is sensible and understandable only in a world where uncertainty is dis-

tinguished from probabilistic concepts” (Davidson, 1991).

1.2.5. Definitions

First, the current dissertation will not follow the Post-Keynesian approach,
i.e. it will not deal with radical uncertainty, because our primary topic is the rela-
tion between uncertainty and probabilistic beliefs. Then, because ambiguity does
not totally rule out probabilities (that may exist and be distorted), we need to cla-
rify some definitions. The definitions we are proposing do not exactly match the
current literature for the reason that the literature itself is controversial. We will

denote by risk the cases in which probabilities are known’ In choice problems,

67



this will correspond to given’ or ‘objective’ probabilities (e.g. winning €x with
probability p). Risk is a subset of uncertainty. In some other uncertain situations,
probabilities are ‘unknown’or ‘vaguely known’ These situations will sometimes
be referred to as ambiguity (mostly in chapters 3 and 4) and they will be
represented either by sets or intervals of possible probabilities (e.g. the probability
of winning is between p and p') or by events (e.g. you can win if it rains). The fol-
lowing section presents the principal model of behavior under uncertainty and

how subjective probability can be derived from preference.

1.3. Subjective Expected Utility

1.3.1. Introduction to Subjective Expected Utility

Uncertainty and risk being defined, we have now to understand how beha-
viors are modeled. We will refer throughout this section to a decision maker called
‘vou’ and your preference relation over a set of choice objects (goods, lotteries,
acts...) will be denoted by >, as usual. For any two choice objects a and b, a’>b
means that a is at least as preferred as b. If not a’>b, we will write b>a. The case
where a>b and b>>a will be denoted by a~b. We will say that a real-valued func-
tion V represents an agent’s preferences > if a>b is equivalent to V(a)=V(b). We

will sometimes use < and < defined such that a>*b<b<a and a>b<b<a.

The first and most used representation under uncertainty is Savage’s
(1954) Subjective Expected Utility (SEU). In order to introduce Savage’s model, let

us develop three key elements, the three ‘pillars’ of this model®.

First Pillar (State Space): First of all, SEU is built on a state space frame-
work: all the possible states of the world that can occur are known and only one

such state will be true. Savage (1954) said that a state of the world is “a descrip-

6 The presentation through those three key elements is inspired by Pr Simon Grant’s lec-

ture in Paris in May 2007.
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tion of the world, leaving no relevant aspect undescribed’. The state space S, also
called the universe or the world, contains all the states of the world. An eventis a
subset of S, e.g. the event ECS. It is thus an element of the set of all subsets of S,
denoted 25. The empty setis denoted @. Depending on the state that occurs, you
face a consequence that belongs to C, the space of outcomes. You must choose be-
tween acts, which are mapping from S to C. An act f associates a consequence
f(s)eC to each s from S. In this chapter, we will always work on finite-outcome
acts, that can be denoted (E1:X1,...Em:Xm) for some positive integer m where x; is
the outcome if E; obtains. For a finite S of cardinality n and a given ordering of
these n events, these acts can be equivalently written as members of C», e.g.
(X1,..oXn). An act that matches with f on an event E and with g otherwise is denoted
by fEg. The same rule can be used with several disjoint events, e.g. fEgFh gives f on
E, g on F and h otherwise. Constants acts will be designated by their unique out-
come. The preference relation > is defined over the set of such acts. An eventE is
nullif you are indifferent between any two acts that only differ on the outcome on
E; otherwise the event is nonnull 1t is worth nothing that this way of describing
the choice situation must not be neglected. It rules out radical uncertainty. You
(as the decision maker) fully understand and fully know what can arrive; you have
a complete description of the possible states of the world and you know that you
know everything, i.e. you do not take into account that “something else” could oc-
cur. When uncertainty is modeled like that, there is no place for unforeseen con-

tingencies (see Dekel et al. 1998).

Second Pillar (“Subjective Probability”): The second key element of SEU is
constituted by Probabilistic Sophistication: you are said to be probabilistically so-
phisticated if your behavior is consistent with a subjective probability distribution
over outcomes. Formally, a probability measure is a function P defined over 25
that associates P(E)€[0,1] to each event E with P(S)=1 and for all events E and F
such that ENF=@, P(EUF)=P(E)+P(F). For any act f, we can define the probability
measure over 2C that is induced by P, ie. the function Pf such that
P:(C")=P({s:f(s)€C'}) for all subset of consequences C'CC. Note that Pr gives the
subjective probability distribution over outcomes associated with act f. Probabilis-

tic sophistication holds if there exists a probability measure P over S such that for
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all acts f and g, Pr=P; implies f~g. The probability distribution P is often described
as representing beliefs but what your choices reveal may not match your conscious
thoughts. In addition, what your choices reveal may also not correspond to addi-
tive probabilities. In fact, allowing for non-additivity is a generalization of this

model (see subsection 1.5.2).

Third Pillar (“Utility”): Eventually, you are supposed to be an expected utili-
ty maximizer with respect to your subjective probabilities. Let us first study the
simple situation, when probabilities are known. Under risk, a choice object is a /ot-
tery (p1:X1,..,pn:Xn) with pi€[0,1] for all i from 1 to n and with the pis summing to 1.
Imagine for instance that you can win €2n if the first tail of a coin appears at the nth
toss. Since the probability of the event “tail at the nth toss” is 1/2n, the expected
value of this lottery is infinite. But nobody would agree to pay more than a few
Euros to play. This is known as the St Petersburg paradox. Daniel Bernoulli
(1738) argues that agents do not maximize their expected gain but focus on the
satisfaction or the wutility’ they can expect from their choices. Consequently, the
representation of the preference relation over the Ilottery set
comes (Py:Xq, -, Pn:Xn) M Nieq Pi U(X;) where u is the uwtility function defined

over the outcome space.

Von Neumann & Morgenstern (1944) present the first axiomatization of
this model. With L the set of finite-outcome lotteries (lotteries that can be written
£=(p1:X1,..,pPn:Xn) for some n finite) over an outcome set X, Expected Utility is

equivalent to the following 3 axioms:

AxioM A1 (Weak Ordering): the preference relation >! over L is transitive

and complete

AxioM A2 (Independence): for all lotteries #,£',£", and a€[0,1], £>'¢' implies
af+(1—a)f" Flot'+(1—o) "

AxioM A3 (Jensen Continuity): for all lotteries #,£',£", if £>1¢' then there exist
a,€(0,1) such that af+(1—a)¢">¥" and £>1£'+(1—B)¢".
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Moreover, the utility function is unique up to an affine transformation.

Combining the state space framework, probabilistic sophistication and ex-
pected utility enables us to obtain subjective expected utility. SEU holds if there
exist a utility function u (unique up to an affine transformation) and a subjective
probability measure P such that f>g if and only if the expectation of u(f(.)) using P
is higher than the expectation of u(g(.)) (using the same probability measure P).
Savage (1954) provides axioms that are necessary and sufficient for SEU. Let us

now go through these axioms.

1.3.2. Savage’s axiomatization of SEU

We are going to describe each axiom and its usefulness, focusing on the ex-
istence of probabilities. This subsection is based on Savage (1954) of course, but

also on the presentations by Fishburn (1970) and Machina & Schmeidler (1992).

AXioM P1 (Weak Ordering): > is a weak order, i.e. it is transitive and com-

plete.

This axiom is obvious and widely used in the literature because it is neces-
sary for the representation theorem. If there exists a real-valued function V that
represents > (i.e. f>>g iff V(f)=V(g)) then > must be a weak order. Indeed, assume
that V represents > and take any two acts f and g. Among the real numbers V(f)
and V(g), three situations may occur: V(f)=V(g), V(g)=V(f) or both. As a conse-
quence, we must have f>>g or g>>f or both, which means that > is complete. Assume
that for any three acts f, g and h, f>g and g*h. Consequently, V(f)=V(g) and
V(g)=V(h) and therefore V(f)=V(h). This is equivalent to f>>h: transitivity holds.

AxioM P2 (Sure-Thing Principle): For all events E and acts f, g, h and k,
fEg=kEg implies fEh>kEh.

This second axiom is really intuitive and may look innocuous but in fact, it
constitutes a weak point that is violated in some famous paradoxes (see section 1.4
below). It simply says that what is sure does not matter for you. Choosing be-

tween fEg and kEg means that whatever you choose, you will have g when E does
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not occur. If you prefer fEg to kEg, this should mean that when E occurs, you pre-
fer f to k. As a consequence, remark that for the two new acts fEh and kEh, you are
also sure to obtain h when E does not occur and if you are consistent, if the “Sure-
Thing Principle” applies, you should still prefer f to k on E, and thus fEg>KkEg
should imply fEh>>kEh. This axiom implies that your choices are independent from

what is sure.

AxioM P3 (Eventwise Monotonicity): For all outcomes x and y, non-null

events E and act g(.), x>y iff xEg>=yEg.

Assume you prefer outcome x to outcome y (for sure) and consider an act g
and an event E; if you can choose between xEg and yEg, that only differ on E, it
seems rational to prefer xEg. Eventwise monotonicity means that tastes for out-

comes remain constant no matter the event they are associated to.

AxioM P4 (Weak Comparative Probability): For all events A, B and outcomes

x'>x and y'>y, x'Ax>x'Bx implies y'Ay>y'By.

Imagine that we want to know if you think that an event A is more likely
than an event B. We know that you like money and hence, that you prefer winning
€20 to nothing; thanks to P3, we also know that your tastes are not influenced by
events. If you prefer 20A0 to 20B0, we can infer that A is more likely than B ac-
cording to your choice. But if we want this technique to be reliable, we need to be
sure that your decision will not change if we propose for instance €30 instead of
€20 or €2 instead of nothing (i.e. you still prefer 30A2 to 30B2): if that is the case,
your choice still reveals the same beliefs. This axiom ensures that we can derive
your belief from your choices without any contradiction and that we can infer an
ordering of events in terms of likelihood. But we have to be sure that you like at

least one outcome more than another:

AxioM P5 (Nondegeneracy): There exist outcomes x and y such that x>y.

We cannot infer anything about your beliefs if you do not care about the

rewards that we are proposing to you. That is why nondegeneracy is so important.
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Axioms from P1 to P5 enable us to define a gualitative probability. 1t is a binary
relation =P on events that satisfies the following four properties (for all events A, B

and CES):

Weak Ordering; (1.3.1)
S>P@: (1.3.2)
A>PQ; (1.3.3)
If ANC=BNC=0, then A>FB iff AUC>PBUC. (1.3.4)

As we suggested when we commented P4, the qualitative probability =P will
be defined using comparison between simple bets: for some events A and B, A is
revealed more likely than B or equivalently, A>PB whenever there exists some out-
comes x>y such that xAy>xBy. A>FB and not B>PA define A>FB. A>"B and B>>PA
defines A~PB. Thanks to P5, we know that there is at least one outcome that is
strictly preferred to another (let us call them x and x respectively). P4 ensures that
we cannot find inconsistencies depending on the outcomes we used: it is thus suf-
ficient to determine the qualitative probability for the two outcomes, between
which you are not indifferent. Hence, for all events A,BCS, XAx > XxBx < A*>FB.
Completeness of > implies that we can always compare XAx and XBx for all A,BES
and transitivity of the preference relation implies that A>PB & B>FC = XAx>XBx &
XBx>X(Cx = XAx>XCx = A>¥PC. Under P4 and P5, P1 implies weak ordering of >P
(Eq. 1.3.1). By definition of constant acts, X>x means XSx>X@x and thus not @S.
Eq. 1.3.2 follows from this result and from completeness. For all ACS, if A is null
then by definition XAx~x or equivalently, XAx~ X@x. Therefore, A>@. If A is not

null, P3 implies XAx>xAx, which can be rewritten XAx> X@x. Eq. 1.3.3 follows.

Last we are going to see that P2 is central in the elaboration of Eq. 1.3.4. Let
us note first that this last condition is the qualitative equivalent to additivity of a
probability measure. Secondly, let us remark that we are going to use this axiom
only on two-outcome acts because we defined the qualitative probability only on

this family of simple bets. Assume first that for some A, B and CES, ANC=BNC=0Q
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and A>>PB. We have thus XAx>XBx. Note that, if C occurs, you are sure to get x. The
Sure-Thing Principle tells us that your preference should be unchanged if you are

now sure of getting X if C occurs. Indeed, P2 implies

XAx>=XBx = XAUCx>=XBUCx

A>PB <  AUC>PBUC.

However, a qualitative probability is not sufficient for defining a unique
probability measure. Assume that 25={@,A,S—A,S} and that S>PA, A>PS—A and
S—A>P@. >Pis a qualitative probability but there exist an infinite number of prob-
ability measures that agree with >P: P(A) may take any value in [0.5,1) because
this is sufficient to ensure that 0<1—P(A)<P(A)<1. It however suffices to add
some richness conditions on the state space to obtain a unique probability meas-
ure that agrees with the qualitative probability. The next axiom is dedicated to this

purpose.

AxioM P6 (Small Event Continuity): For any acts f>g and outcome x, we can

find a finite partition {Ay,...,An} of S such that for all i,j€{1,...,n}, £>xAig and xAif>g

P6 means that we can always find very small events such that even if we
modify an act in order to put the most (least) preferred outcome on it, you will not
change your preferences. Take an event B such that B>P@. It means that XBx>x.
We can find a partition {Aj,...,An} of S such that for all i, XBx>XAix and thus such
that B=PA;. Savage says that the qualitative probability is “/ine” when this condi-
tion is fulfilled. It is also “tight” when it satisfies the following condition for all
events B and C: if for all E>F@ and F>F@ such that BNnE=CNF=@, BUE>PC and
CUF>PB, then B~PC. Savage shows that P6 induces tightness. Hence, >P is a fine
and tight qualitative probability. This is sufficient for the existence of a subjective

probability distribution (see Niiniluoto 1972 and Wakker 1981 for the proof).

Moreover, P3 and P2 separate outcomes from events and events between

themselves. They play a major role in the construction of the utility function. This
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result can be proved in two steps: first by showing that the agent is indifferent be-
tween any two acts that generate the same probability measure over outcomes and
then by showing that von Neumann & Morgenstern’s (1944) axioms are satisfied
on these probability distributions over outcomes. (Note that A1 is straightforward

but A2 and A3 are harder to obtain).

That is how we get the following result: under P1-P6, there exist a probabil-
ity measure P and a utility function u such that any finite-outcome act f is
represented by V(=YL P(f~(x;) Ju(x;) where {x1,...xn} is the outcome set of f.
Savage gives also an axiom P7 that enables to deal with acts with an infinite num-

ber of outcomes.

The two next subsections will be dedicated to other axiomatizations of SEU
that will slightly change the framework. The first one deals with acts that are
mapped from a (finite) state space to a set of lotteries instead of sure consequence.
The second will still use Savage’s acts but will transfer the proof from the event
domain to the outcome domain by replacing the richness of the state space by the

richness of the outcome set.

1.3.3. Anscombe & Aumann’s axiomatization

Anscombe & Aumann (1963) propose a simple derivation of SEU from ex-
pected utility under risk. By using acts that map states to lotteries instead of gen-
eral outcomes, they allow for mixture of acts that were not possible for general
outcomes. The presentation that follows is inspired from Fishburn (1970) and
Kreps (1988). Let us consider a finite state space S={1,...,n} and the set L of simple
lotteries over an outcome set X. Acts are mappings from S to L: with #4,...£4EL,
f:S—L can be written (#3,..,£n). It gives lottery ¥; if state i obtains. ¥ is the set of

such maps.

When f=(#4, ..., #,) and g=(¥3, ..., £y) and a€[0,1], a mixed act af+(1—a)g is
defined by (af+(1—a)g)(i)= ofi+(1—a)?'i. Let us now reuse von Neumann &

Morgenstern axioms on & (instead of using them on L):
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AxioM AA1 (Weak Ordering): the preference relation > over § is transitive

and complete

AxioM AA2 (Independence): for all acts f, g, he and a€[0,1], f>g implies
af+(1—a)hZzag+(1—a)h

AxioM AA3 (Jensen Continuity): for all acts f, g, heg;, if f>g then there exist
a,€(0,1) such that af+(1—a)h>g and f>Bg+(1—p)h.

These axioms are equivalent to expected utility under each state. However,
there is no reason for utility to be constant across states. This corresponds to
state-dependent preferences, whose representation is: fr— Y csU(£5) where
f=(#4, ..., ¥y) and Us is an expected value function that depends on state s. As a
consequence, if we want you to have a state-independent utility, we need an axiom
that says that if you prefer a lottery £ to another lottery ¢' when state i obtains
(what you get when other states occur remaining constant), you must also have
the same preference between ¢ and ¢' when another state j (j#i) occurs. Axiom
AAS achieves this goal and axiom AA4 ensures that at least one state is not null
(recall that a state s is non-null when you are not indifferent between at least two

acts that differ only on s).

AxioM AA4 (Nondegeneracy): there exist f and g from § such that f>g.

AxioM AAS (State-Independence): 1f f=(¢4, ..., £y)and g=(¥1, ..., ) from &
and 9, $' from L are such that
1 or s, D lsits or L) =1, s 051, D Poiny o En)

for some s, then for all non-null s'€S

1y s lor1 9, Larsts o 8) (B s B 1y S ity oo 1)

AA1-AAS holds if and only if SEU holds, i.e. V€, fr—Y.cs P(s)U(£s). It is
noteworthy that probabilities are generated thanks to the hypothesis of expected
utility over lotteries (implied by A1-A3 over constant acts), which is replicated

over acts and not anymore by the existence of a fine and tight qualitative probabili-
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ty. The last axiomatization we are presenting directly uses the richness of the out-

come set (and not the richness of a set of lotteries over the outcome set).

1.3.4. Another axiomatization with richness of outcomes

The following result comes from Kébberling & Wakker (2003, 2004). This
result will be used in chapter 2; that is why we want to present it now. For sim-
plicity, let us restrict our presentation to a simple case: the state space’ S={1,...,n}
has n elementary states of the world and the outcome set is now R. Acts are maps
from S to R. They will be denoted by f=(x1,....xn) ER" (where x; is the outcome on
state i) and the binary act that gives outcome x on event E, a subset of {1,...,n}, and
y otherwise will be still denoted by xEy. Constant acts will be still denoted by their

outcome.

The preference relation > needs to satisfy weak ordering since we know
that weak ordering is implied by the existence of a representation. Let us assume
nondegeneracy: for some event E and some outcomes x and y, x>xEy>y. This
avoids the partition of S containing only null events and S. We then assume conti-
nuity: for all act f, {g: g=f} and {g: f>>g} are closed subsets of Rn. It prevents small
changes of outcomes from creating large changes in preferences. Under the pre-
vious assumptions and assuming SEU, continuity of > is equivalent to continuity of
the utility function. Eventually > also verifies monotonicity: if for all i, xi>y; then
(X1,--%Xn) Z(y1,---yn) and if for all i, x;>yi then (x1,...Xn)>(y1,.-,¥n). It simply means

that the more you have, the happier you are.

The previous assumptions seem technical and are not really controversial.
We have thus defined a framework such that we can derive expected utility from a
simple axiom: Tradeoff consistency. Let us first define a tradeoff (TO) relation ~*.

For outcomes x, y, x' and y', we will write that xy~*x'y' whenever we can find an

7 A generalization of Kébberling & Wakker’s (2003, 2004) result to general acts over a fi-

nite or infinite state space is provided in chapter 2.
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event E and two acts f and g such that xEf~yEg and x'Ef~y'Eg. This means that

going from y to x is worth going from y' to x'.

AXioM (7O consistency): Any change in a ~* breaks the relationship
ie. xEf~yEg & x'Ef~y'Eg & xFh~yFk = x'Fh~y'Fk

This axiom says that if we found that going from y to x or from y' to x' on E
compensates having f instead of g when E does not occur, then we must not found
any other cases, in which going from y to x is the same tradeoff as going from y' to
x" where x" is different from x'. If the tradeoff xy is worth x'y’, then it must not be
worth x"y' (or x'y'"") for some other x" or y". Under the previous assumptions, TO-
consistency is equivalent to SEU (with u, a continuous and strictly increasing utility
function and P, an additive probability measure). Let us give a sketch of the proof

when n=2.

Assuming SEU, xy~*x'y" and xy~*x'y". These TO-relationships imply that
for some events G, FE{1,2} and some outcomes z, 7', t and t’, xGz~yGt, x'Gz~y'Gt,
xFz'~yFt' and x'Fz'~y"Ft'. S and @ are neglected because monotonicity implies
that TO-consistency is trivially satisfied. Under subjective expected utility, these

indifferences imply respectively:

P(Q)u(x)+(1-P(G))u(z)=P(G)u(y)+(1—P(G))u(t) (1.3.5)
P(GQux")+(1-P(G)u(z)=P(G)u(y")+(1—P(G))u(t) (1.3.6)
P(Fu(x)+(1-P(F))u(z")=P(F)u(y)+(1-P(F))u(t) (1.3.7)
P(Fu(x)+(1—-P(F))u(z)=P(F)u(y")+(1—-P(F))u(t") (1.3.8)

Recall that G and F are not @ and that under SEU, nondegeneracy implies

that each state has a non-null probability.
Eq. 1.3.5 & Eq. 1.3.6=>u(x)—u(y)=u(x")—u(y")=(1-P(G))/P(G) (u(z)—u(t))

Eq. 1.3.7 & Eq. 1.3.8=>u(x)—u(y)=u(x")—u(y")=(1-P(F)) /P(F) (u(z")—u(t"))
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Thus, we obtain u(y")=u(y") and thus y'=y" because u is a strictly increas-

ing function. SEU implies TO-consistency.

Let us now deal with the most difficult part of the proof: how does TO-
consistency imply SEU? To understand the mechanism behind the proof, remark

that TO-consistency implies a weaker axiom:

AxioM (Hexagonal condition): For all real numbers Xo,y0,X1,y1,%X2,y2,

(Xo,y1)~(X1,y0) & (X0,y2)~(x1,y1) & (X1,y1)~(X2,y0) => (X1,y2)~(X2,y1)

When n=2, TO-consistency can be rewritten:
xGz~yGt & x'Gz~y'Gt & xFz'~yFt' =  X'Fz'~y'Ft"
The hexagonal condition obviously corresponds to the case F=G=E, x=y' and z=t'.

Let us now start the elaboration by using this hexagonal condition. Under
our assumptions and with n=2, this condition is known to be equivalent to an ad-
ditive representation. We have indeed to show that we can build an additive func-
tion V such that V(x,y)=V1(x)+V2(y). Let us choose some xo=yo that will charac-
terize the origin of the indifference curve graph. Similarly x1>xo defines a unit of
good in state 1. Let us define a unit y; in state 2 such that (xo,y1)~(x1,y0). In the
graph, those two acts are on the same indifference curve. Let us fix
Vi(x0)=V2(y0)=0 and Vi(x1)=1. As a consequence Vz(y1)=1. Find x; and y; such
that (x2,y0)~(x1,y1) and (Xo,y2)~(x1,y1). (Remark also that it implies x2x1~*X1Xo
and y2y1~*y1yo.) Hence, additivity would imply Vi(x2)=V2(y2)= Vi(x1)+V2(y1)=2.
However, we have to check that our measure is consistent: indeed,
Vi(x2)+V2(y1)=3 and V1i(x1)+V2(y2)=3 should imply (x1,y2)~(X2,y1). This is guar-
anteed by the Hexagonal Condition; Figure 1.3.1 represents this condition. Note
that we could carry on, by constructing two sequences (xi) and (y;) such that
Xi+1Xi~*XiXi-1 and yj+1yj~*y;yj-1 where the indexes designate the utility of the out-

come, and that we would never find any inconsistencies in these utilities.

79



State 2
A

T e

W@ NZNE

X, State 1

Figure 1.3.1: Indifference Curves and the Hexagonal Condition

Wakker (1989) shows how the complete representation can be obtained.
Once it is reached, we need to decompose V1 and V; such that Vi/p=V,/(1—p)=U.
In other words, V1 and V2 must be proportional and the constant ratio V,/V1 de-
termines the odds in favor of the first event p/(1—p). This proportionality is what

TO-consistency brings in addition to the Hexagonal Condition.

[t is remarkable that subjective probabilities are generated by regularities
in attitudes towards outcomes and not by conditions on the state space. TO-
consistency generates both additivity that separates states between themselves
and proportionality that defines the odds. A dual approach is proposed by Abdel-
laoui & Wakker (2005), where consistency requirements are applied on likelihood
(and thus events) instead of tradeoffs (and outcomes), or by Abdellaoui (2002)

under risk where such requirements are applied on probabilities.
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1.4. Paradoxes

This section presents the two most common violations of SEU.

1.4.1. The Allais paradox

Allais (1953) proposes a paradox that clearly proves the limitations of ex-
pected utility models. This paradox is initially enunciated under risk but is then
generalized under uncertainty by MacCrimmon & Larsson (1979) and Tversky &
Kahneman (1992). Let us start with the original paradox and consider the four
lotteries (€1, £2, 3 and ¥4) described in table 1.4.1. The first column represents the
probability levels used in the paradox through an urn containing 89 black balls, 10
blue balls and 1 green ball.

Table 1.4.1. Allais Paradox

/ \ p=89% p=1%
U 2 €1,000,000 €1,000,000 €1,000,000
Ce%0000%e®
S0000002%42 v €1,000,000 €5,000,000 €0
:.:z..::.: 2 ) ) ) ]
0%052%%¢%,
;:gggggg:g 2 €0 €1,000,000 €1,000,000
% %

020000%,
\W\zzzzy 2 €0 €5,000,000 €0

Allais showed that for most people, £1>¢2 but £3<£4. Under expected utility,

with u(0)=0 and u(1)=1 (outcomes are expressed in millions of €):
89xu(1)+.10xu(1)+.01xu(1l) > .89xu(1)+.10xu(5)+.01xu(0)
and
89xu(0)+.10xu(1)+.01xu(l) < .89xu(0)+.10xu(5)+.01xu(0)

imply .11>.10Xu(5) and .11<.10Xu(5), a contradiction. To understand what fails,
let us define the lotteries 5=(10/11:5,1/11:0) and £s=(1:0). Note that:

£1=0.11%x£1+0.89%x ¢,
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£,=0.11%X£5+0.89%x ¢,
£3=0.11%£1+0.89% ¥4
£4=0.11X%X£5+0.89% ¢

According to the Independence axiom, not(£:2%£1) implies not(£s>¥1) but
not(#3=%4) implies not(£1>¥s). We can conclude that under completeness, the
Allais paradox is a violation of the Independence axiom. We can already infer that
SEU will be violated because Anscombe & Aumann'’s axiomatization is based on the

same axiom.

Generalizations of the Allais paradox by MacCrimmon & Larsson (1979)
and Tversky & Kahneman (1992) consist in showing that the same certainty effect
appears when probabilities are unknown. In a Savagean framework, if we replace
probabilities by events K (blacK), B (Blue) and G (Green) and if we denote by 0 the

constant act that gives 0 no matter which event occurs,
f=(K:1,B:1,G:1)=fKf
and
g=(K:1,B:5G:0)=fKg,

then we have fKf>fKg and 0Kf<0Kg, which violates the Sure Thing Principle. In-
deed, the outcome if K obtains is equal in the two options of the first (second)
choice and should not influence this choice. However, changing this common con-
sequence change the preference. Intuitively, f is a constant act and amending it has
a great impact because the obtained act becomes risky. That is what is often called
the certainty effect. However, does it mean that subjective probabilities do not
exist? That is not sure, because a violation of what we presented as the 3 pillar of
SEU does not mean that the second one (probabilistic sophistication) must be re-
jected. Indeed, this paradox violates the Sure Thing Principle for acts with 3 out-
comes. But remember that we did not use more than 2 outcomes when we proved
the existence of a fine and tight qualitative probability. As a consequence, some

restriction of the Sure-Thing Principle to 2-outcome acts may not be violated by
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the Allais paradox and may still make it possible to prove probabilistic sophistica-

tion. We will discuss this in section 1.5.1.

1.4.2. The Elisberg paradox

The second paradox, due to Ellsberg (1961), that we will be discussing now

/

is much more a problem

for the existence of prob-

Known Unknown
o o - abilities. Let us consider
e o _
50 - :::::::::: | 100—n | (/0 urns: the first one
o e o @
= :::EE;E::: 7 contains 50 black balls
° °
50 s:s;::;s:s - and 50 red balls (this de-
- ’:..::0.:. ) fine probability 1/2)
®¢o000°® ’

Figure 1.4.2. Two-Color Ellsberg Paradox whereas we do not know

the proportion of red (R)

and black (K) balls among the eight balls contained in the second urn.

Whatever the color, most people prefer bets that deal with the known urn
to bets on the unknown urn. Formally, for some positive outcome x, x(1/2)0>xR0
and x(1/2)0>xK0 implies 1/2Xu(x) > P(R)xXu(x) and 1/2Xu(x)>P(K)Xu(x). Asa
consequence, P(K)+P(R)<1. To better understand the Ellsberg paradox, let us

study another version that matches better with the Savagean framework.

One urn contains 90 balls: 30 Red balls (R), and 60 balls that can be yellow
(Y) or black (K). Table 1.4.3. displays the acts; the proportion of black balls is re-

ferred to as n in the picture:

Table 1.4.3. Three-color Ellsberg Paradox

B
f €1,000 €0 €0
g €0 €1,000 €0
f €1,000 €0 €1,000
g €0 €1,000 €1,000
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The common findings are that f>g but f'<g'. Intuitively, in act f the exact probabili-
ty of winning is known (1/3) but we do not exactly know it in act g (between 0 and
2/3). Inversely, in act g' the exact probability of winning is known (2/3) but we do
not exactly know it in act f' (between 1/3 and 1). Under SEU with outcomes in
thousands of Euros and u(1)=1 and u(0)=0, we can first see that P(R)>P(K) but
P(R)+P(Y)<P(K)+P(Y), a contradiction. Remark that f=f(RUK)0, g=g(RUK)O,
f'=f(RUK)1 and g'=g(RUK)1.

f(RUK)0>g(RUK)0
and
f(RUK)1<g(RUK)1

constitute a violation of the Sure Thing Principle. Having €1,000 or not on Y makes
f and g alternatively ambiguous. This is a second example, in which we are influ-
enced by a common consequence of two acts and in which this common conse-
quence determines our choice. What is a real issue for us is that this three color
Ellsberg paradox violates the Sure Thing Principle for acts having only two conse-
quences. And it thus violates what we needed for getting subjective probabilities.
With Allais, we lost Expected Utility. With Ellsberg, we are now loosing Subjective
Probabilities.

The next sections are now going to propose generalizations of SEU that are

compatible with these two paradoxes.

1.5. Generalizing SEU

The three subsections of this section will propose several generalizations
that accommodate at least one of these paradoxes with at least one of the two ma-

jor elements of SEU: probability or utility.
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1.5.1. Probability without utility

If we want to keep subjective probabilities in a way that does not violate the
Allais paradox, we already saw that we may have to restrict the Sure-Thing Prin-
ciple to two-outcome prospects only. Machina & Schmeidler (1992) propose ‘“a
more robust definition of subjective probability” than Savage. They asked: “What
does it take for choice behavior that does not necessarily conform to the expected
utility hypothesis to nonetheless be based on probabilistic beliefs?” They axioma-

tized probabilistic sophistication by removing P2 and replacing P4 by:

AxioMm P4* (Strong Comparative Probability): For all disjoint events A and B,
outcomes X>x and y>y, and acts g and h,

XAxBg > XBxAg = yAyBh > yByAh

Note first that XAxBf means X on A, x on B and f on S—A—B. Obviously, this
axiom implies Weak Comparative Probability that permitted us to be sure that if
the agent prefers to bet on an event than on another, this should be the case what-
ever the outcomes are. Intuitively, this axiom has the same meaning but it must
hold, whatever the outcomes are and whatever there is on the rest of the state
space. In other words, what the agent is certain to have (act f on S—A—B in the
first pair or act g on S—A—B in the second pair of prospects) must not influence
likelihood perception. It is thus transparent that it is violated by the three-color
Ellsberg paradox in which 1ROK0>1KORO0 but 1ROK1<1KO0R1. But how can we see

that this axiom is compatible with the Allais paradox?

Grant, Polak & Ozsoy (2007) propose to decompose P4* into P4 and the fol-
lowing P2":

AxioM P2' (Two-outcome Sure-Thing Principle): For all disjoint events A and
B, outcomes X>x, and acts g and h,

XAxBg = XBxAg = XAxBh > xBxAh

Recall that the Sure-Thing Principle says that for all events E and acts f, g, h and k,
fEg>kEg implies fEh>>kEh. P2' means that the Sure-Thing Principle must only hold

for events f and k that only differ on two outcomes. It is obvious that P4*=P2'
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because P2' is the restriction of P4* with Xx=y and x=y as P4 is the restriction of

P4* with AUB=S. Grant, Polak & Ozsoy (2007) also shows that P4&P2'=P4*,

We can remark that the Allais paradox, i.e. 1B1G1>5B0G1 and
1B1G0O<5B0GO violates the Sure-Thing Principle but does not violates the Two-
Outcome Sure-Thing Principle because there are alternatively 3 outcomes on B and
G. Hence, the Allais paradox is compatible with P1, P2', P3, P4, P5 &P6 (or equiva-
lently P1, P3, P4*, P5 &P6).

What interests us is that P2' (instead of P2) suffices to prove Eq. 1.3.4 (addi-
tivity of qualitative probability). We had to show that if ANC=BNC=@, then A>"B
iff AUC=PBUC. Assume that for some A, B and C such that ANC=BNC=0@, A>FB. It

is equivalent to:
X(A—B)x(B—A)X(ANB)xCx = X(B—A)x(A—B)X(ANB)xCx .
P2’ is sufficient to ensure that this is equivalent to
X(A—B)x(B—A)X(ANB)XCx z X(B—A)x(A—B)X(ANB)XCx
and thus to AUC>=PBUC.

Machina & Schmeidler (1992) show that under P1, P2', P3, P4, P5 &P6 (or
equivalently P1, P3, P4* P5 &P6) there exists a probability measure such that the
agent is indifferent between two acts that have the same probability distribution
over outcomes. Moreover, these axioms are equivalent to a functional representa-
tion of preferences that satisfies first order stochastic dominance with respect to

the probability measure.

Chew & Sagi (2006a) propose a derivation of probabilistic sophistication
with weaker axioms. They provide axioms that are necessary and sufficient for the
basic version of probabilistic sophistication (without stochastic dominance) that
they expressed with these words: “As long as the decision maker is indifferent be-
tween two acts that induce the same lottery, it seems reasonable to conclude that
she is probabilistically sophisticated”. They start from Ramsey (1926) and de Fi-

netti's (1937) first attempts to characterize subjective probability using “ethically
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neutral” or “exchangeable” events. Given the state-space S and an algebra X on S,
acts are maps from X to X, the outcome set. The preference relation is a weak or-

der and at least two acts lead to a strict preference.

DEFINITION (Exchangeability): For any disjoint A,BEX, A~B (A and B are ex-
changeable) if Vx,x'€X and act f, xAx'Bf ~ x'AxBf

Two events are exchangeable if any payoff permutation between these two
events does not change the preference value of the prospect. Chew & Sagi base

their definition of a qualitative probability on exchangeability:

DEFINITION (Comparative Likelihood): For any A,BEX, A>CB whenever there

exists EE(A—B) such that Ex(B—A). (E is called the comparison event.)

For two disjoint events A and B, A is revealed more likely than B whenever
A contains a subevent that is exchangeable with B. The previous definition just
allows comparing non-disjoint events A and B by applying the same logic to the
differences of A and B. Note that this definition directly generates Eq. 1.3.4 of qua-
litative probability (additivity). Assume that for some events A>CB. Take now
AUC and BUC such that ANC=BNC=@. It is obvious that the comparison of A and B
also works for AUC and BUC. Then A>‘B&AUC>CBUC. Chew & Sagi then add the

three following axioms:

AxioM A (Event Archimedean Property): Any sequence of pairwise disjoint
and nonnull events {e;}iL, such that e; = e;,, for every i from 0 to n—1 is necessar-

ily finite.

AxioM C (Completeness of =€): Given any two-disjoint events, one of the two

must contain a subevent that is exchangeable with the other, i.e. =€ is complete.

AxioM N (Event Nonsatiation): For any pairwise disjoint A, B and EEX with E

nonnull, A~B implies that no subevent of A is exchangeable with BUE.
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S>C@ (Eq. 1.3.2) and A*>C@ (Eq. 1.3.3) are induced by this last axiom and
nondegeneracy (at least one f and one g such that f>g). Axiom C directly assumes
that the likelihood relation is complete and transitivity is a non-trivial conse-
quence of the three axioms. Eq. 1.3.1 of qualitative probability is thus satisfied. We
know that the qualitative probability must be fine and tight so as to get the proba-
bility measure: axioms A and N provide the requisite conditions . Chew and Sagi
conclude that axioms A, C and N are satisfied if and only if there exists a unique

solvable and finitely additive probability measure that agrees with >C.

Nevertheless, this axiomatization is still not compatible with the Ellsberg
paradox. 1ROK0>1KORO and 1R0OK1<1KOR1 means that R and K are not exchan-
geable and that they cannot contain a subevent that is exchangeable with the other.

Consequently, axiom C is violated.

As a conclusion of this subsection, we saw that we can accommodate subjec-
tive probability with the Allais paradox. But what would a generalization of SEU

that allows for both Allais and Ellsberg paradoxes look like?

1.5.2. Utility without probability

In this subsection, we will not look for the conditions for the existence of
subjective probabilities but we will try to understand what occurs if we relax our
hypothesis such that Allais and Ellsberg paradoxes are taken into account. We will
answer this question by modifying the main axioms of subsections 1.3.3 and 1.3.4.
Throughout this subsection, a finite state space is considered, i.e. S={1,...n}. But
first of all, we need to define what comonotonicacts are: f and g are comonotonic if
for no s and tin S, f(s)>f(t) and g(t)>g(s). It means that there exists a permuta-
tion {si,..,sn} of the n states of the world such that f(s1)>...>f(sn) and
g(s1)*...#g(sn). Note that we can define the set of all acts h that also satisfy
h(s1)>...=2h(sn). The n! such sets are called comoncones. Remark that in the Allais
and Ellsberg paradoxes, acts are not comonotonic. That is why restricting proper-
ties, which were violated by those paradoxes, to comonotonic acts allows a deriva-

tion of a more general model that is compatible with such behaviors.

88



Let us now replace in Anscombe-Aumann’s approach (subsection 1.3.3)
AAS by the following axiom (keeping AA1 (Weak Ordering), AA3 (Jensen Continui-
ty), AA4 (Non-degeneracy)):

AxioM AAS' (Monotonicity): ¥V acts f and g, if f(s)=g(s) V s€S, then f>g
and restrict AA2 to comonotonic acts:

AxioM AA2' (Comonotonic Independence): AA2 applies only to acts that be-

long to the same comoncone.

Schmeidler (1989) proves that these five axioms are equivalent to Choquet Ex-

pected Utility (CEU):

n
(flr ""‘gn) = Z 11T51U(£Si)
i=

where U(.) is the expected utility of a lottery, s; is defined such that ¢5 >..2f

nl

and g, is a decision weight that is derived from a function W (called weighting
function) with g, = W({sy, ..., s;}) = W({sy, ..., si_1}) and g, = W({s,}). W(S)=1,
W(@)=0 and W is an increasing function: for two sets of state spaces ACB,

W(A)<W(B). Straightforwardly, if W is additive, then we are back to SEU.

However, even if this derivation of CEU is robust to the Allais paradox that
is defined on events, it is still violated for lotteries. Indeed, in this framework, con-
stant acts are lotteries and are obviously comonotonic. The Independence axiom

holds for lotteries and thus is still violated by the Allais paradox for lotteries.

Let us use the framework that we defined in subsection 1.3.4. Assume now
that acts are mapping from the same S but directly to outcomes. Recall that the
preference relation is a continuous, monotone, nondegenerate weak order.

Koébberling & Wakker (2003) showed that under these conditions:

AxioM (Comonotonic TO Consistency): if a TO relation af3~*y$ is elicited in a
comoncone, then there does not exist a'#a such that a'B~*y6 in the same or in

another comoncone.
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is equivalent to the CEU representation

n
(X1, eee) Xp) — E . 11Tsiu(xsi)
1=

where T, are defined as previously and u is unique up to an affine transformation.

Under CEU, the Ellsberg paradox (like the Allais paradox) only means that
decision weights are not additive. Choquet Expected Utility corresponds to the
generalization of Rank Dependent Utility (RDU) from risk to uncertainty. Indeed,
under risk, Quiggin (1981) proposed a generalization of Expected Utility that ac-
commodates the Allais paradox. A lottery £=(p;:Xq, ..., Pm: Xm) Where Xi>xit+1 for

alli from 1 to m-1 is represented by:

m
(pl: X1y ey Pm* Xm) = z 1(DiU(Xi)
i=

where w; is a decision weight that is defined such that wi=w(pi1) and
wi=w(p1+...+pi)—w(p1+...+pi-1). The weighting function w transforms probabili-
ties such that w(0)=0, w(1)=1 and w is increasing. If w is linear, RDU corres-

ponds to EU.

The weighting function usually exhibit subadditivity, i.e. w is inverse-S
shaped. This corresponds to a strong sensitivity to departure from 0 and 1, and
consequently it accommodates Allais’s certainty effect quite well. Tversky &
Kahneman (1992) propose a sign dependent version of these models: Cumulative
Prospect Theory. Under their model, utility functions and weighting functions are

different for gains and for losses.

As a conclusion to this subsection, we can say that CEU (or CPT) matches
observed behavior very well but loses sight of our main topic of concern, the exis-
tence of subjective probability. Is it possible to reconcile subjective probability

with the Ellsberg paradox?
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1.5.3. Sources of uncertainty

Let us try to understand where the Ellsberg paradox comes from. A first in-

tuition may be found in Keynes’s Treatise on Probabilities (1921). He wrote:

“The magnitude of the probability of an argument [...] depends upon a bal-
ance between what may be termed the favourable and the unfavourable evidence;
a new piece of evidence which leaves the balance unchanged, also leaves the prob-
ability of the argument unchanged. But it seems that there may be another respect
in which some kind of quantitative comparison between arguments is possible.
This comparison turns upon a balance, not between the favourable and the unfa-
vourable evidence, but between the absolute amounts of relevant knowledge and

of relevant ignorance respectively.”

The determination of the probability of an event is based on a balance be-
tween multiple pieces of evidence but the total amount of evidence is also crucial
in the confidence one can have in the assessed probability. Fellner (1961) says
that we cannot compare all probabilities; he explains the “distortion of Subjective
Probabilities as a reaction to uncertainty”. This intuition was formalized and stu-
died by Tversky in the 90s using the concept of sources of uncertainty (Heath &
Tversky 1991; Tversky & Kahneman 1992; Tversky & Fox 1995; Tversky & Wakk-
er 1995).

A source of uncertainty is a set of events that are generated by a common
mechanism of uncertainty (e.g. events about the temperature in Paris constitute a
source, election results are another). We could think of sources as set of events for
which the amount of evidence is perceived as similar for the agent. In the two-
color Ellsberg paradox, each urn constitutes a source. In the three-color Ellsberg
paradox, the events whose probability is given (because of knowing that there are
20 red balls) constitute a source. The events whose probability is vague (because
we do not know the proportion of black and yellow balls) constitute another

source.

Chew & Sagi (2006b) propose an axiomatization of sources such that prob-

abilistic sophistication holds inside each source. Indeed, recall that for general
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probabilistic sophistication, they assume that all events are comparable (Axiom C):
for every pair of events, one must contain a subevent that is exchangeable with the
other. Now, they do not assume that for all events but they define a source as a
maximal set of comparable events. As a conclusion, under some richness and topo-

logical conditions, probabilistic sophistication holds for each source.

This result constitutes the current frontier of the research on subjective
probability. Chapters 4 and 5 will further analyze this direction. SEU, CEU/CPT
and probabilistic sophistication will be the basis of the major part of this disserta-
tion. That is why they have been extensively presented. Nevertheless, we must
not neglect that many other models are proposed to represent attitudes under un-
certainty. We will often have to refer to them. The next section is dedicated to

them.

1.6. Alternative models

1.6.1. The multiple priors approach

Throughout this subsection, we will describe models that represent beha-
viors through the attitudes towards a set of possible probability distribution that
would be in the agent’s mind. Let us assume again that acts are maps from states
to lotteries over X and that the preference relation satisfies weak ordering (AA1),
continuity (AA3), nondegeneracy (AA4) and monotonicity (AA5'). Gilboa &
Schmeidler (1989) showed that these axioms together with

AxioM AA2" (Certainty Independence): for all acts f and g, constant act £ and
all a€(0,1), fzg & af+(1—-a)f=ag+(1—a)f

and

AxioM AA6 (Uncertainty Aversion):for all acts fand g and all a€[0,1],
f~g=af+(1-a)g>g

are equivalent to
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(f3, ., £4) > min <Z P(S)U({’S)>

SES

where C is a uniquely determined convex set of priors. This model is called Max-

min Expected Utility (MEU).

It is clear that Certainty Independence is a weakening of AA2. Under this
model, the agent has a set of priors and uses the worst case to make her decision.
This pessimism is implied by the assumption of uncertainty aversion. Ghirardato
et al. (2004) remove this assumption in order to propose a more general model.
Then, they propose a special case that authorizes both uncertainty aversion and

uncertainty seeking, which they call a-MEU:

(€5, -, £4) — ccpin (2 P(s)U({’S)> + (1 - o) max (Z P(s)U(fs))

SES SES

MEU corresponds to the case where a=1; a=0 is the opposite case (optimism or
risk seeking). However, when C is not a singleton, there may be no a that corres-

ponds to SEU.

An alternative approach is proposed by Gajdos et al. (2007) in a slightly dif-
ferent framework since the subjective set of priors is replaced by a given family of
possible distributions. They also provide a general model (yet assuming uncer-
tainty aversion), whose a special case is a linear combination of MEU and SEU. As a
consequence, contrarily to a-MEU, this model does not rule out Bayesians that
would think that all possible distributions are equally likely. Furthermore, it is
also directly observable in experiments without further assumptions while mea-
suring other multiple prior models need to assume that the subjective set of priors
matches a given external set of possible distributions (e.g. Potamites & Zhang

2007).

Eventually, Maccheroni et al (2006) weaken the certainty independence
axiom of Gilboa & Schmeidler (1989) to obtain what they call a “Variational Repre-

sentation of Preferences’. Indeed, the preference relation satisfies weak ordering
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(AA1), continuity (AA3), nondegeneracy (AA4) and monotonicity (AA5'), uncer-
tainty aversion (AA6) and

AxioM AA2"' (Weak Certainty Independence): for all acts f and g, all constant
acts £ and ¢' and all a€(0,1),

af+(1—a)?zag+(1—a)? = af+(1—a) ' zag+(1—a)?'

if and only if it can be represented by

(b, o1 80) = min Z P(s)U(L,) + ¢ (P)

SeS

where A(Z) is the set of all possible probability distribution over X (an algebra
over S) and c a function from A(Z) to [0,+]. The function c is a function that as-
sociates a weight to each probability distribution. MEU is the special case where

c(P)=+0o0 V P¢C and c(P)=0 V P&C for some subset C of A(Z).

Even if these models have been proposed to better describe behaviors un-
der uncertainty (and above all to accommodate the Ellsberg paradox), a main limi-
tation of this family of model is that they are violated by both the Allais paradox
under risk and its generalization under uncertainty. Recall that we derived from

the Allais paradox that
0.11x#1+0.89%£120.11x£5+0.89x ¢

and
0.11x#1+0.89%£6<0.11X£5+0.89%¥s
which straightforwardly contradict Weak Certainty Independence and consequent-

ly its strengthening, Certainty Independence.

1.6.2. The multi-stage approach

Kreps & Porteus (1978) suggest that non-neutrality towards the timing of
the resolution of uncertainty should be modeled through non-reduction of several-

stage lotteries. Nau (2006) and Ergin & Gul (2004) propose to use the same ap-
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proach so as to model ambiguity attitude. In the first stage, a first event occurs and
determines which unambiguous probability distribution will apply on the second
stage. Non-reduction of these two-stage lotteries is reinterpreted as ambiguity
aversion. Klibanoff, Marinacci & Mukerji (2005), denoted KMM hereafter, provide

an endogenous decomposition of acts between the two-stages.
AxioM KMM1: Expected Utility holds over lotteries;

AxioM KMM2: Subjective Expected Utility holds over second-order acts (that

associate a possible probability measure with a consequence);

AxioM KMM3: Preferences over acts f and g are consistent with preferences
over second-order acts f2 and g® where f? (g%) affects the certainty equivalent of
the lottery generated by f, when a possible distribution occurs, to this possible dis-

tribution.

According to KMV, these three axioms imply the reinterpreted endogenous ver-

sion of Kreps & Porteus’ result:

fio ZPEA(E) W(P) X @ (Zsesu(f(s)) X P(s))

where @ is unique up to an affine transformation (for a given u) and represents

ambiguity attitudes.

Ambiguity neutrality, i.e. lottery reduction in this framework, corresponds
to ¢ being linear, while ¢ being concave generates ambiguity aversion. It is possi-
ble to derive from this model similar concepts as those that are used under risk,
like the Arrow-Pratt coefficient. KMM also suggest a version of their model that is

robust to the Allais paradox, by replacing EU under risk by RDU.

As a conclusion of this approach, Halevy (2007) provides experimental evi-
dence that tends to show some correlation between the non-reduction of com-

pound lotteries and ambiguity aversion.
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1.6.3. Preference-based definitions of ambiguity

To complete our overview of the representations of behaviors under uncer-
tainty, we must focus on the literature that tries to provide a definition of ambigui-

ty: how can we determine that a decision maker is facing ambiguity?

A first attempt is due to Ghirardato & Marinacci (2001). Assuming that
agents are expected value maximizers under risk, they proposed to say that a deci-
sion maker is ambiguity averse whenever there exists a hypothetical decision
maker who has the same attitude under risk and who is ambiguity neutral such
that the first agent prefers more certainty than the hypothetical one under uncer-
tainty. The main limit of this original and interesting proposition is that it assumes

a specific behavior under risk and does not encompass the Allais paradox.

Epstein & Zhang (2001) built a list of 4 desiderata which must be fulfilled
by a definition of ambiguity: it should be expressed in terms of preferences, it must
be model-free, explicit and constructive (“given an event, it should be possible to
check whether or not it is ambiguous”), and eventually it should be consistent with
probabilistic sophistication on unambiguous acts. This last requirement aims to
capture the Knightian distinction between measurable and unmeasurable uncer-

tainty.

DEFINITION (Unambiguous Event): An event T is unambiguous if (a) for all
disjoint subevents A and B of S-T, act f, and outcomes X, y, z and t
zTxAyBf>zTyAxBf = tTxAyBf=tTyAxBf

and (b) if the same condition is satisfied on S—T.

This definition means that what is sure on T (or S—T) must not influence compari-
son of likelihoods (comparison of having a good outcome on A or on B) in its com-
plement. An ambiguous event (for instance the Yellow event of the three-color
Ellsberg paradox) has such an impact. Under some conditions, they show that

probabilistic sophistication holds on the set of unambiguous events.
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Wakker (2006) provides some critical

arguments against this definition. Let us derive

Assume that an urn contains 100 balls. We do

}n balls the following examples from Wakker’s (2006).
}100—n balls | not know the proportion of balls that have a

cool or a warm color but we know that cool-

color balls are equally shared between green

Figure 1.6.1. A violation and blue and that half of the warm-color balls
of Epstein & Zhang's

definition of ambiguity are red, the others being orange. In other

words, there is an even integer n<100 such that
n/2 balls are Green (G), n/2 balls are Blue (B), (100—n)/2 balls are orAnge (A)
and (100—n)/2 are Red (R). Intuitively, we would say that (in addition to the null
event and the universe) events GUA, BUA, GUR and BUR are unambiguous because
they have probability 1/2 for sure. On the contrary, events G, B, A, R, BUG, RUA,
GURUA, GURUB, GUBUA and RUBUA seem ambiguous because their probability

depends on n.

Let us try to apply Epstein & Zhang's definition with the outcome set
X={0,20}. We can reasonably assume that for you, 0G20BORO~0GOB20RO0 (in both
acts, the probability of winning is unknown) but 20G20BOR0<20G0B20R0 be-
cause the second act gives you €20 with probability 1/2 while the first one’s prob-
ability of winning is n/100 (vague probability). The definition works well and
identifies G as ambiguous. But it seems even more plausible that you do not care
about betting on red or on orange balls, or similarly on green or on blue balls be-
cause they have the same probability ((100—n)/200 and n/200 respectively). So,
let us assume that this is the case and that you have to choose between
0(RUA)0OB20G and 0(RUA)20BOG. You should be indifferent between the two acts,
because your probability is n/200 (and thus vague) in both cases. If you have to
choose now between 20(RUA)0B20G and 20(RUA)20B0G, you may be also indiffe-
rent because the two acts display the same vague probability of winning, 1—n/200.
And we could repeat the same reasoning for (RUA)C and obtain that
z(BUG)20R0A~z(BUG)OR20A for any z. Hence, according to Epstein & Zhang, RUA

and BUG are unambiguous. Their definition fails in capturing ambiguity of events
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(RUA and BUG) containing subevents (R and A, G and B respectively) that are not

ambiguous with respect to them.

Furthermore, this definition may even fail to capture unambiguous events.
Assume that we add 90 blue balls in Ellsberg’s three-color urn (see figure 1.6.2).
This urn now contains 90 blues balls (P(B)=1/2), 30 red balls (P(R)=1/6), n<60
black balls (P(K)=n/180) and 60-n yellow balls (P(Y)=(60-n)/180). It is clear
that event B is unambiguous. Now, you have to choose between 0B20R0YO and
0BOR20Y0. Your probability of winning €20 is 1/6 for sure in the first act and
[0,1/3] in the second one. For such small probabilities, you may be ambiguity

seeking even if you are ambiguity averse for higher probabilities. This assumption

would be completely consistent with the
experimental literature on ambiguity (e.g.
Hogarth & Einhorn 1990). Assume thus
that 0B20R0Y0>0BOR20YO.

Now you must choose between

20B20R0Y0 and 20BOR20YO and there-

9b ’ 9'0 . fore, between winning with probability
Figure 1.6.2. Another violation 2/3 or [1/2,5/6]. For these higher proba-
of Epstein & Zhang’s definition of bilities, you may have become ambiguity

2
ambiguity? averse and 20B20R0Y0O<20BOR20Y0. As

a consequence B is ambiguous according
to Epstein & Zhang’s definition. If ambiguity attitudes depend on probability level,
their definition may erroneously identify unambiguous events as being ambiguous.
We must repeat that this assumption is not at all arbitrary and that experimental
findings corroborate it. Moreover, chapters 3, 4 and 5 of this dissertation will pro-

vide three different experimental studies that support it.

Finally, we must report that an alternative definition is due to Chew & Sagi
(2006b), who suggest an exchangeability-based definition of ambiguity that satis-
fies Epstein & Zhang’s four desiderata. Events are said unambiguous if they be-
longs to a source whose envelop is the universe. Yet, they agree that their defini-

tion fails if several sources have the universe as envelop. We can conclude that
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even if those definitions are promising, they do not catch the diversity of ambiguity
and ambiguity attitudes. That is why we will keep our basic definitions, risk being
associated with objective (or external or given or known) probabilities and ambi-
guity including all other uncertain situations (events with unknown probability or

sets of possible probabilities...).

1.7. Conclusion

Our introductory examples showed that distinguishing between beliefs, atti-
tudes towards risk and attitudes towards ambiguity is not obvious. The different
attempts that have been proposed in the literature do not completely reach this
goal. Despite of its limits, SEU remains the most used model because of its simplic-
ity. And yet, in a descriptive viewpoint, it is not convincing. We have thus to take
into account these limits, and the different questions and issues that appear in this
introductory chapter: do subjective probabilities (always) exist? Can they be com-
patible with Allais and Ellsberg paradoxes? How can we observe and describe atti-

tudes towards ambiguity?

Let us define some desiderata that will guide our approach in contributing
to the literature on uncertainty. They are based on our analysis of SEU. We do not
argue that they have a general value, but they may help the reader to understand

the theoretical choices that will be made in the following chapters.

D1 (Bayesianism): The model must be consistent with Bayesian beliefs, i.e.
with additive subjective probabilities, or at least it must make it possible to test for

their existence.

Savage’s main contribution is an axiomatization of subjective probabilities. We
saw that there are still debates about their existence and that several models re-

move them. One of our goals consists in testing their existence.

D2 (Robustness): The model must be robust to Allais or/and Ellsberg para-

doxes.
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This desideratum simply means that the model must better describe behavior than

SEU.

D3 (Observability/Measurability): The model must be directly testable or,

even better, directly measurable.

This desideratum contains a methodological issue: we want our models to satisfy
the Popperian criterion of falsifiability. Furthermore we would like to be able to
observe and measure behaviors directly. SEU was simply testable and measurable.
It is not obvious that all its generalizations are (e.g. we said that measuring mul-

tiple prior models may imply unobservable assumptions about those priors).

D4 (Prediction): The model must allow predictions.

Eventually, a model in economics and management is not really interesting if eve-
rything depends on everything. We have to remember that a model is more valua-
ble if it permits us to predict decisions, attitude and behavior. SEU is still very used
because of its powerful ability to assess simple attitudes (risk aversion/risk seek-

ing) and to forecast decisions through combinations of beliefs and attitudes.

The four next chapters will work on models that aim to fulfill these deside-
rata. They will provide theoretical arguments and/or experimental evidences in
favor of them, eventually assuming that the best way to evaluate a model remains

to let the data speak.

100



References

Abdellaoui, Mohammed (2002), “A Genuine Rank-Dependent Generalization of the
von Neumann-Morgenstern Expected Utility Theorem,” Econometrica 70,

717-736.

Abdellaoui, Mohammed & Peter P. Wakker (2005), “The Likelihood Method for

Decision under Uncertainty,” Theory and Decision 58, 3—-76.

Allais, Maurice (1953), “Le Comportement de 'Homme Rationnel devant le Risque:
Critique des Postulats et Axiomes de I'Ecole Américaine,” Econometrica21,

503-546.

Anscombe, Frank J. & Robert J. Aumann (1963), “A Definition of Subjective Proba-
bility,” Annals of Mathematical Statistics 34, 199-205.

Bernoulli, Daniel (1738), “Specimen Theoriae Novae de Mensura Sortis”. Transla-
tion in “Exposition of a New Measurement of Risk”, (1954) Econometrica, vol.

22, (pp. 23-36).
Bernoulli, Jacob (1713), “Ars Conjectandi.”

Bernstein, Peter L. (1996), “Against the Gods. The Remarkable Story of Risk.” Wi-
ley, New York.

Borel, Emile (1924), “A Propos d’'un Traité de Probabilités”, Revue Philosophique
98, 321-336. Translation in “Apropos of a treatise on probability”. In H. Ky-
burg & H. Smokler (eds), Studies in Subjective Probability (pp. 46-60). New
York: Wiley.

Cardan, Jerome (1663), “Liber de Ludo Aleae”

Chew, Soo Hong & Jacob Sagi (2006a), “Event Exchangeability: Small Worlds Prob-
abilistic Sophistication without Continuity or Monotonicity,” Econometrica74,

771-786.

Chew, Soo Hong & Jacob Sagi (2006b), “Small Worlds: Modeling Attitudes towards
Sources of Uncertainty,” Haas School of Business, University of California,

Berkeley, CA; version of June 2006.

101



Davidson, Paul (1991), “Is Probability Theory Relevant for Uncertainty? A Post
Keynesian Perspective,” Journal of Economic Perspectives, vol 5.1

(pp.129—143)

de Finetti, Bruno (1931), “Sul Significato Soggettivo della Probabilita,” Fundamenta
Mathematicae 17, 298-329. Translated into English as “On the Subjective
Meaning of Probability,” in Paola Monari & Daniela Cocchi (Eds, 1993) “Proba-
bilita e Induzione,” Clueb, Bologna, 291-321.

de Finetti, Bruno (1937), “La Prévision: Ses Lois Logiques, ses Sources Subjec-
tives,” Annales de l'Institut Henri Poincaré 7, 1-68. Translated into English by
Henry E. Kyburg Jr., “Foresight: Its Logical Laws, its Subjective Sources,” in
Henry E. Kyburg Jr. & Howard E. Smokler (1964, Eds), Studies in Subjective
Probability, 93—158, Wiley, New York; 2rd edition 1980, 53—-118, Krieger, New
York.

de Finetti, Bruno (1974) “The Value of Studying Subjective Evaluations of Proba-
bility,” in C-A S. Staél von Holstein (ed.), The Concept of Probability in Psycho-
logical Experiments, D. Reidel Publishing Company, Dordrecht-Holland.

Dekel, Eddie, Bart Lipman and Aldo Rustichini, "Standard State-Space Models Prec-

lude Unawareness," Econometrica, 66, January 1998, 159-173.

Ellsberg, Daniel (1961), “Risk, Ambiguity and the Savage Axioms,” Quarterly Jour-
nal of Economics 75, 643—669.

Epstein, Larry G. & Jiangkang Zhang (2001), “Subjective Probabilities on Subjec-

tively Unambiguous Events,” Econometrica 69, 265-306.

Ergin, Haluk & Faruk Gul (2004), “A Subjective Theory of Compound Lotteries”,
MIT, Cambridge, MA.

Fellner, Wiliam (1961), “Distortion of Subjective Probabilities as a Reaction to Un-

certainty,” Quarterly Journal of Economics75, 670—-689.
Fishburn, Peter C. (1970), “ Utility Theory for Decision Making.” Wiley, New York.

Gajdos, Thibault, Takashi Hayashi, Jean-Marc Tallon and Jean-Christophe Vergnaud

(2007), “Attitude toward Imprecise Information” working paper.

102



Ghirardato, Paolo, Fabio Maccheroni, & Massimo Marinacci (2004), “Differentiating
Ambiguity and Ambiguity Attitude,” Journal of Economic Theory 118,
133-173.

Ghirardato, Paolo & Massimo Marinacci (2001), “Risk, Ambiguity, and the Separa-
tion of Utility and Beliefs,” Mathematics of Operations Research 26, 864—890.

Gilboa, Itzhak & David Schmeidler (1989), “Maxmin Expected Utility with a Non-

Unique Prior,” Journal of Mathematical Economics 18, 141-153.

Grant, Simon, Ben Polak and Hatice ()zsoy (2007), “Probabilistic Sophistication and

Stochastic Monotonicity in the Savage Framework,” working paper

Hacking, L., “Jacques Bernoulli's ‘Art of Conjecturing’ , British Journal for the Phi-

losophy of Science, 22 (1971) p.209

Halevy, Yoram (2007), “Ellsberg Revisited: An Experimental Study,” Econometrica,

forthcoming.

Heath, Chip & Amos Tversky (1991), “Preference and Belief: Ambiguity and Com-

petence in Choice under Uncertainty,” Journal of Risk and Uncertainty 4, 5-28.

Hogarth, Robin M. & Hillel J. Einhorn (1990), “Venture Theory: A Model of Decision
Weights,” Management Science 36, 780-803.

Keynes, John Maynard (1921), “4 Treatise on Probability.” McMillan, London. 2nd
edition 1948.

Keynes, John Maynard (1936), The General Theory of Employment, Interest and

Money, New York: Harcourt Brace

Klibanoff, Peter, Massimo Marinacci, & Sujoy Mukerji (2005), “A Smooth Model of
Decision Making under Ambiguity,” Econometrica73, 1849-1892.

Knight, Frank H. (1921), “Risk, Uncertainty, and Profit.” Houghton Mifflin, New
York.

Koébberling, Veronika & Peter P. Wakker (2003), “Preference Foundations for Non-
expected Utility: A Generalized and Simplified Technique,” Mathematics of Op-
erations Research 28, 395-423.

103



Koébberling, Veronika & Peter P. Wakker (2004), “A Simple Tool for Qualitatively
Testing, Quantitatively Measuring, and Normatively Justifying Savage’s Subjec-

tive Expected Utility,” Journal of Risk and Uncertainty 28, 135-145.

Kreps, David M. (1988), “Notes on the Theory of Choice.” Westview Press, Boulder,

Colorado.

Kreps, David M. & Evan L. Porteus (1978), “Temporal Resolution of Uncertainty
and Dynamic Choice Theory,” Econometrica 46, 185-200.

Maccheroni, Fabio, Massimo Marinacci, & Aldo Rustichini (2006), “Ambiguity
Aversion, Robustness, and the Variational Representation of Preferences,”

Econometrica74, 1447-1498.

MacCrimmon, Kenneth R. & Stig Larsson (1979), “Utility Theory: Axioms versus

“Paradoxes”.” InMaurice Allais & Ole Hagen (eds.), Expected Utility Hypothes-
es and the Allais Paradox, 333-409, Reidel, Dordrecht, the Netherlands.

Machina, Mark J. & David Schmeidler (1992), “A More Robust Definition of Subjec-

tive Probability,” Fconometrica 60, 745-780.

Nau, Robert F. (2006), “The Shape of Incomplete Preferences,” Annals of Statistics
34, 2430-2448.

Niiniluoto, Ilkka (1972), “A Note on Fine and Tight Qualitative Probabilities,” 7he
Annals of Mathematical Statistics 43, 1581-1591.

Poirier, Dale J. (1988), “Frequentist and Subjective Perspectives on the Problems of
Model Building in Economics,” The Journal of Economic Perspectives 2 no. 1,

121-144.

Potamites, Elizabeth and Bei Zhang (2007) “Measuring Ambiguity Attitudes: a field
experiment among small-scale stock investors in China” New York University

Department of Economics, work in progress.

Quiggin, John (1981), “Risk Perception and Risk Aversion among Australian Far-

mers,” Australian Journal of Agricultural Economics 25, 160—-169.

104



Ramsey, Frank P. (1926) “Truth and Probability,” in (1931) The Foundations of
Mathematics and Other Logical Essays, ed. by R. B. Braithwaite. London: Rout-
ledge, Chapter 7, 156-198.

Savage, Leonard ]. (1954), “ The Foundations of Statistics.” Wiley, New York. (2nd
edition 1972, Dover Publications, New York.)

Schmeidler, David (1989), “Subjective Probability and Expected Utility without
Additivity,” Econometrica57,571-587.

Tversky, Amos & Craig R. Fox (1995), “Weighing Risk and Uncertainty,” Psycholog-
ical Review 102, 269-283.

Tversky, Amos & Daniel Kahneman (1992), “Advances in Prospect Theory: Cumu-
lative Representation of Uncertainty,” Journal of Risk and Uncertainty 5,

297-323.

Tversky, Amos & Peter P. Wakker (1995), “Risk Attitudes and Decision Weights,”
Econometrica 63, 1255-1280.

von Neumann, John & Oskar Morgenstern (1944), “ Theory of Games and Economic

Behavior.” Princeton University Press, Princeton NJ

Wakker, Peter P. (1981), “Agreeing Probability Measures for Comparative Proba-
bility Structures,” The Annals of Statistics 9, 658—662.

Wakker, Peter P. (1989), “Additive Representations of Preferences, A New Founda-
tion of Decision Analysis.” Kluwer Academic Publishers, Dordrecht, the Neth-

erlands.

Wakker, Peter P. (2006), “Uncertainty.” /nLawrence Blume & Steven N. Durlauf
(Eds.), The New Palgrave: A Dictionary of Economics, forthcoming. The Mac-

Millan Press, London.

105



Chapter 2.
Modeling
Risk and Ambiguity Aversion
through Diminishing Marginal Utility

Abstract.

This chapter presents a general technique for comparing concavity of differ-
ent utility functions under expected utility when probabilities need not be known.
The technique is used to generalize several classical results on risk and ambiguity.
We obtain: (a) Yaari’'s between-person comparisons of risk aversion without his re-
striction that the persons should have identical beliefs; (b) Kreps & Porteus’ prefe-
rence for the timing of the resolution of uncertainty without their commitment to
violations of reduction of compound lotteries and while allowing for unknown (sub-
jective) probabilities; (c) Klibanoff, Marinacci, & Mukerji’s (absolute) smooth ambi-
guity aversion without their commitment to violations of reduction of compound
lotteries and without need to use (the theoretical construct of) subjective probabili-
ty as an input in the preference condition; (d) Klibanoff, Marinacci, & Mukerji’s com-
parative results on ambiguity aversion are generalized similarly, where we further
do not need the restriction that the different decision makers have the same risk
attitude or have the same second-order subjective probabilities over what the true
first-order probability measure is. Our results shed new light on the properness of

modeling risk and ambiguity attitudes through utility.
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2.1. Introduction

Bernoulli (1738) introduced expected utility and concave utility to explain
risk aversion. Since then, risk aversion and diminishing marginal utility have
commonly been equated in the literature. Indexes of risk aversion, such as the ab-
solute and relative Arrow-Pratt indexes, refer exclusively to marginal utility. Kreps
& Porteus (1978) explained preference for early resolution of uncertainty by let-
ting marginal utility depend on the time of resolution; Klibanoff, Marinacci & Mu-
kerji (2005), Nau (2006), and Neilson (1993) explained ambiguity attitudes such
as exhibited by the Ellsberg paradox by letting marginal utility be different under

ambiguity than under risk.

In this chapter, we consider a preference-based tradeoff relation to analyze
marginal utility and we apply it to the models of the afore-mentioned references.
First, we obtain new and more general axiomatizations of the corresponding mod-
els. Second, we can derive properties of those models in a more general and a
more easily observable way. Our tradeoff relation puts marginal utility very cen-
tral, and thus sheds new light on the question to what extent marginal utility can
capture attitudes towards the timing of the resolution of uncertainty and towards

ambiguity.

Section 2.2 gives basic definitions and section 2.3 presents the tradeoff rela-
tion and states the main results. An application of these results to Yaari’s (1969)
comparative risk aversion appears in section 2.4. Section 2.5 axiomatizes a two-
stage model trough the tradeoff relation and derives some concavity results. Com-
parative results for the two-stage model are in section 2.6, and section 2.7 com-
pares our results to related results in the literature. Section 2.8 contains a discus-

sion and section 2.9 concludes.

2.2. Definitions

We first give some basic definitions. S denotes the state space, which can be

finite or infinite. Exactly one state seS is true, the other states are not true, and it
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is uncertain which state is the true one. Events will be particular subsets of S. For
the purposes of this chapter it is convenient to work with sources, which are vary-
ing collections of subsets of S. We will assume that they are algebras. An algebrais
a collection of subsets of S containing & and S and closed under complement tak-
ing and finite unions and intersections. We assume that A is an algebra of subsets
of S, the elements of which are called events. All sources considered later will be

subalgebras of A.

The outcome set C is a nondegenerate subinterval of R, with outcomes be-
ing monetary. Outcomes are denoted by Greek letters o, B, etc. Preferences will be
defined over a set X of prospects. Prospects, denoted x, y, ..., and called acts in Sa-
vage (1954), are measurable mappings from states to outcomes; x assigns outcome
x(s) to each state seS. Measurability means that the inverse of every subinterval
of € is contained in A. Readers not interested in measure theory may assume that
A contains all subsets of S, in which case all functions from S to € are measurable

so that all measurability considerations are trivially satisfied and can be ignored.

Each outcome a is identified with the constant prospect x with x(s)=a for
all s. We assume that all finite-valued measurable mappings from S to € (called
simple prospects) are contained in X. (E1:xy, ..., En:Xn) denotes the simple prospect
assigning x; to each s in Ej; the Ejs partition S. Other than that, we allow X to be al-
most any subset of the set of measurable mappings from S to €. One more restric-
tion on X, to ensure that all expected utilities considered hereafter are well-defined

and finite, will be added later.

A preference relation of a decision maker is a binary relation over X, de-
noted by =. The notation >, ~, <, and < is as usual. Expected utility (EU) holds if
there exist a (finitely additive) probability measure P on A, and a strictly increas-
ing utility function U: R — R, such that EU(x) = f sU(x)dP (the expected utility of
prospect x) is well-defined and finite for all x in X, and we have x > y if and only if
EU(x) > EU(y). EU implies that = is a weak order, i.e. it is complete (for all X,y, x>y

or y >x) and transitive.
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A certainty equivalent of a prospect x is an outcome a such that a ~ x. Un-
der EU with continuous strictly increasing utility, a = U1(EU(x)) is unique. For
outcome a, event E, and prospect %, agx denotes the prospect assigning outcome o
to each state in event E and the same outcome as x to each state off E. Thus, given
that B can denote a constant prospect, agff denotes the two-outcome prospect (E:a,

not-E:p).

An event E is nullif agx ~ Bex for all prospects x and outcomes o and 3, and
nonnull otherwise. Under EU, an event E is null if and only if P(E) = 0. We assume
nondegeneracy throughout, implying that there exists a nonnull event E for which
the complement is also nonnull. Under EU nondegeneracy is equivalent to 0 <
P(E) < 1. We also assume monotonicity, i.e. X = y if x(s) 2 y(s) for each state s,
with x > y if x(s) > y(s) for each state s. Monotonicity implies that a > 3 if and only

if a > 3 for all outcomes o, 3. EU implies monotonicity.

In the rest of this section we define technical conditions. This part can be
skipped by readers interested primarily in empirical implications. We avoid infi-
nite-dimensional topological complications by restricting continuity to finite-
dimensional subspaces: = is continuous if, for every partition (Ey,...,En) of S, the
preference relation restricted to prospects (E1:x1,...En:xn) satisfies the usual Eucli-
dean continuity. Under EU, continuity of preference can be seen to be equivalent

to continuity of utility.

To avoid undefined or infinite EU values, and to express this requirement in
directly observable preference conditions, we define truncations of prospects, fol-
lowing Wakker (1993). All truncation conditions defined hereafter are trivially
satisfied if all prospects xeX are bounded in the sense that there exists an outcome
preferred to all x(s) and one less preferred than all x(s). This includes the case
where X contains only the simple prospects. Readers only interested in those spe-
cial cases may skip the following definitions concerning truncations. For prospect
x and outcome p, XAp, the above truncation of x at p, assigns x(s) to s whenever
x(s) < p and it assigns p to s whenever x(s) > pn. For prospect x and outcome 7,
xv1, the below truncation of x at n, assigns x(s) to s whenever x(s) = n and it as-

signs n to s whenever x(s) < n. X is truncation-closed if all (above and below)
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truncations of all of its prospects are contained in X. 7runcation continuity holds if,
whenever x > yfor a simple prospect y, then xAp > y for some outcome p and,

whenever x < y for a simple prospecty, then xvn <y for some outcome 7.

It is sometimes convenient if probability measures are countably additive.
A probability measure is countably additive if AN & (Aj > Aj+1 and the intersection
of these sets is empty) implies that P(A;) converges to 0. It is equivalent to the
probability of a countable disjoint union being the sum of the individual probabili-
ties whenever that countable union is contained in the algebra. The condition is
most useful if the algebra A is a sigma-algebra (an algebra closed under countable
unions). A preference condition necessary and sufficient for countable additivity is

set-continuity (similar to Wakker 1993, section 4):
Ifp <y, Al@, and x > B

then, for some natural number |, x > yaf forallj>].  (2.2.1)

STRUCTURAL ASSUMPTION 2.2.1 [ Decision under Uncertainty]. S is a state space
endowed with an algebra A of subsets called events, and €, a subinterval of R, is
the outcome set. X, the set of prospects, contains all simple measurable mappings
from S to C, and possibly some other measurable mappings from S to C. > is a bi-
nary relation on X. Truncation closedness holds, and for every prospect there ex-

ists a certainty equivalent. Nondegeneracy holds. O

We will sometimes assume that objective probabilities of the events are
available, in which case by common assumptions of decision under risk the pros-
pect can be identified with the probability distribution generated over the out-
comes. Then a3 denotes the probability distribution yielding o with probability p
and 3 with probability 1-p.
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STRUCTURAL ASSUMPTION 2.2.2 [Decision under Risk]. Structural Assumption
2.2.1 holds. An (objective) probability measure is given on A. The preference val-
ue of a prospect depends only on the probability distribution generated over the
outcomes, and every finite probability distribution over outcomes is generated by

some prospect. O

2.3. A tool for analyzing utility

The following definition can be used to elicit equalities of utility differences
which, given the usual uniqueness of utility up to level and unit, completely deter-

mines utility. We write

[o; B] ~* [v; 8] or af ~* y& (2.3.1)
if

aex ~ Bry (2.3.2)
and

Yix ~ Ogy (2.3.3)

for some nonnull event E and simple prospects x and y. The intuitive interpreta-
tion of the condition is, in short, that receiving a instead of § can offset the same
outcome-pattern over other events as receiving y instead of 9, so that the former is
as big an improvement as the latter. Kobberling & Wakker (2004) present a de-

tailed discussion of the interpretation and intuition of this relation.

LEMMA 2.3.1. Under EU, ap ~*y3 if and only if U(o) — U(B) = U(y) — U().
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By measuring a sequence of indifferences (with E a nonnull event)

Wgx~ o lgyj=1,..n, (2.3.4)
we obtain a sequence

ab,...,or with aitla) ~* alad for all j. (2.3.5)

Such a sequence is called a standard sequence. By Lemma 2.3.1 it is equally-
spaced in utility units. By normalizing U(a%) = 0 and U(a?) = 1, we get U(o¥) =j/n
for all j. Thus, n indifferences yield n—1 data points of utility. We can then obtain
the graph of U (Wakker & Deneffe 1996), even if we do not know the subjective

probabilities of the relevant events, as in Figure 2.3.1.

u 1
3/4
2/4
1/4 AAAAAA ;
af al a? o3 at
€

Figure 2.3.1. Utility graph derived from ~* observations

The following consistency condition for utility measurement is obviously
necessary for EU to hold, given that utility is strictly increasing. It implies that
standard sequences as in Eq. 2.3.5, when elicited from different events E and from
different auxiliary prospects x and y, should agree and give the same utility graph

in Figure 2.3.1.

DEFINITION 2.3.2. Tradeoff consistency holds if improving an outcome in any

af} ~* yo relationship breaks that relationship. O
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Whenever derived concepts such as ~* above are used in a preference
foundation, it should be verified that the corresponding preference conditions can
be restated directly in terms of empirical primitives. Tradeoff consistency can in-
deed be reformulated in this manner, simply by substituting the definition of ~*,

as:

OLEX ~ BEy & o' gf ~ BFg &
Yex ~8py & Yrf~8rg
implies o” = . (2.3.6)

Thus, the condition can be used in preference foundations (Kébberling &
Wakker 2004, p. 142). Following preference conditions expressed in terms of ~*
can similarly be restated directly in terms of preferences. For brevity, we do not

make those restatements explicit in what follows.

For finite state spaces Kobberling & Wakker (2003, 2004) showed that tra-
deoff consistency is not only necessary, but also sufficient, for EU, providing a pre-
ference foundation of EU. The following theorem provides a generalization to gen-

eral, possibly infinite, state spaces.

THEOREM 2.3.3. Under the Structural Assumption 2.2.1, the following two

statements are equivalent.
() Expected utility holds with continuous strictly increasing utility.

(ii) = satisfies:
(a) weak ordering;
(b) monotonicity;
() continuity;
(d) truncation continuity;

(e) tradeoff consistency.
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In Statement (i), the probabilities are unique and the utility function is
unique up to level and unit. The probability in Statement (i) is countably additive

if and only if set-continuity holds. O

Koébberling & Wakker (2004) showed that instead of tradeoff consistency in
(e) in the theorem, we can also impose transitivity of ~*. Utility need not be
bounded in the above theorem. Given that utility is determined only up to level
and unit, we will throughout equate utility functions, and for instance write Ul =
U2 when in fact these functions are only in the same interval-scale class, so that U!
= 1 + oU? for a real t and a positive . The following corollary adapts the above

result to decision under risk.

COROLLARY 2.3.4. Under the Structural Assumption 2.2.2, the following two

statements are equivalent.

(i) Expected utility holds with continuous strictly increasing utility and the (sub-
jective) probabilities used in the EU model of Theorem 2.3.3 identical to the

objective probabilities.

(ii) = satisfies:
(a) weak ordering;
(b) monotonicity;
(¢) continuity;
(d) truncation continuity;

(e) tradeoff consistency.

The utility function in Statement (i) is unique up to level and unit. O

The above corollary can be considered an alternative to the well-known
preference foundation of EU by von Neumann and Morgenstern (1944) with conti-

nuity of utility added, with the possibility added to deal with nonsimple probability
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distributions, and, relative to Fishburn (1970, Theorem 10.1), without a restriction
to bounded utility. Although the main condition to be used in the von Neumann-
Morgenstern theorem, independence, is very appealing, we have presented the
above alternative version because we need the ~* relation for later purposes. We
will use this relation here for the main topic of interest in this chapter, diminishing
marginal utility. The above theorem further illustrates that the ~* relation cap-

tures the essence of expected utility.

Risk aversion is defined as preference for expected values over prospects.
This definition refers to expected value, which can only be defined if probabilities
over the state space S are available. This happens for instance for decision under
risk and for decision under uncertainty if EU holds. For decision under risk, the
condition is directly observable because the probabilities are objectively given.
Then it is well known that, under EU, risk aversion holds if and only if utility is

concave.

For uncertainty with EU, the analysis of risk aversion is more complex.
First, probabilities in EU reflect subjective beliefs that are not directly observable
and, hence, cannot be easily used as inputs in preference foundations. Hence,
Statement (ii) in the following theorem is not an easily observable preference con-
dition in this strict sense. A second complication is that it is less plausible to as-
sume that all probability distributions over outcomes are available in the domain

of preference, for instance if S is finite, which complicates the proof somewhat.

Quasi-concavity of preferences in terms of outcome mixing provides an al-
ternative characterization of risk aversion for unknown probabilities (Chateauneuf
& Tallon 2002; Debreu & Koopmans 1982). This condition is appealing for deci-
sion under uncertainty because there it is directly observable, unlike risk aversion,
in that it does not use theoretical constructs as inputs. Formally, for any 0<A<1
and prospects x, y, Ax + (1-A)y is the prospect that assigns to each s the outcome
Ax(s) + (1-N)y(s). Quasi-concavity holds if Ax + (1-L)y = x whenever x ~y. We
can also obtain a directly observable preference condition for risk aversion under

uncertainty using ~*. The following theorem presents the various results.
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THEOREM 2.3.5. Assume that all assumptions and results of Theorem 2.3.3

hold. Then the following four statements are equivalent.
(D) Utility is concave;

(i)  Riskaversion holds;

(iii)  Quasi-concavity holds;

(iv) Ifap ~*By, thenB<(a+7)/2.

Note that each triple a1, o, ai*! in Eq. 2.3.5 entails a test of condition (iv)
above, so that n indifferences in Eq. 2.3.4 give n—2 tests of the condition. This illu-
strates that preference conditions in terms of ~* are easily observable. Also note
that condition (iv) transparently corresponds with concavity of U in Figure 2.3.1,

where atla) ~* ada ™1 with o < (a+1+a-1) /2 for all j.

We next derive a comparative result using the ~* relation. We are not
aware of similar comparative results using quasi-concavity or other conditions. In
the following result, as throughout this chapter, superscripts indicate indexes and

not powers.

THEOREM 2.3.6. Assume that for both j =1 and j = 2: Al is a subalgebra of A;
the outcome set is € < R; =i is a preference relation over the prospects that are
measurable with respect to Aj; ~* refers to the corresponding tradeoff relation; all
assumptions and results of Theorem 2.3.3 hold with algebra Aj, subjective proba-
bility Pi on AJ, and utility function U.. Then the following two statements are

equivalent:
(D) Ul = ¢poU? for a concave transformation ¢;
(i) Ifap ~*2Byand af” ~*1 B, then f"<B.
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Following sections will present many applications of Theorem 2.3.6. The
following figure illustrates how the condition in Statement (ii) above can directly
be tested empirically. In step 1, the value of f is elicited that gives indifference.
Next, in step 2, where f is used as an input, the value of a is elicited to give indiffe-
rence. We have thus obtained af§ ~*2 y. Then we similarly measure ¢ and o’ to
give the indifferences in steps 3 and 4, implying o' ~*1 By. Then " < B if and only

if o < a” because utility is strictly increasing.

Step 1 | Step 2 |
€p? €100 €a? €3
E2 E? (=Y) E2 E2
2 2
_EZ _EZ _EZ _EZ
€50 €0 €50 €0
Step 3 | Step 4 |
€ €100 €a’? €
- Bl = o o
1 1
_El _El _El _El
€50 €g? €50 €e
Figure 2.3.2. The observability of Statement (ii) in Theorem 2.3.6.

The special case where =1 and =2 are preferences of the same decision mak-
er and Al and A? are different sources yields a within-person between-source
comparison, similar to the Ellsberg two-color paradox. The special case where =1
and =2 concern different decision makers and A! = A2 concerns a between-person

within-source comparison.

117




2.4. Yaari’s comparative risk aversion results

It is well known that for decision under risk, decision maker 2 has a more
concave utility function than decision maker 1, as in Statement (i) of Theorem
2.3.6, if and only if decision maker 2’s risk premium (difference between expected
value and certainty equivalent) exceeds that of decision maker 1 for every pros-
pect. This condition is more difficult to handle for uncertainty for reasons as dis-
cussed above: subjective probabilities are not easily observable so that expected
value and risk premium are so neither. Yaari (1969) showed that comparisons are
still possible in terms of certainty equivalents (he used an equivalent formulation
in terms of acceptance sets) under a restrictive condition. In other words, he

showed equivalence of Statements (i) and (ii) below.

THEOREM 2.4.1. Assume that for both j = 1 and j = 2: the outcome set is the
nondegenerate interval CcR; = is a preference relation over the prospects; all as-
sumptions and results of Theorem 2.3.3 hold with algebra A = A, subjective prob-
ability PJ on AJ, and utility function Ul. Then the following three statements are

equivalent:
(D Ul = @oU? for a concave transformation ¢ and P! = P%;

ii For each prospect, the certainty equivalent for =2 is at least as large as that
prosp y €eq g

for =1;

(i) Ifap ~*2 Byand ap’ ~*1 B’y, then p’ < B; further, P = P2.

Our results have brought a separation of beliefs and tastes. Under EU,
probabilities are commonly taken to reflect beliefs, and utilities reflect attitudes
towards risk. A typical feature of our condition in Statement (ii) of Theorem 2.3.6

is that it obtained a comparative risk-attitude result irrespective of what the be-
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liefs are. Yaari’'s (1969) result did not obtain such a separation of risk attitude and
belief. As he showed, the risk attitudes of different decision makers could only be

compared through his condition for the special case of identical beliefs.

2.5. Two-stage models

This section turns to multi-stage models where in the first stage probabili-
ties may be unknown but in the second stage probabilities are known. Thus, all
following models can be considered to be special cases of Anscombe and Aumann’s

(1963) model. L denotes the set of /otteries, where lotteries (typically denoted by

/) are probability distributions over C. A typical prospect x maps a state space S to
L, assigning a lottery x(s) to each state s. (E1:/1, ..., Em:/m) denotes a prospect with

E1, .., Em partitioning the state space S, and each /; designating a lottery. First-

stage prospects x have their outcomes depend only on first-stage events, i.e., all

lotteries x(s) are degenerate. Second-stage prospects x have their outcomes de-

pend only on the second-stage uncertainty, i.e. there exists a lottery ¢ such that

x(s)=/ for all seS. First-stage prospects are identified with the corresponding

mappings from S to €, and second-stage prospects are identified with the lottery
that they generate. The restrictions of the preference relation = to first- and
second-stage prospects are denoted =1 and >=2. We will impose the richness as-
sumptions of preceding sections on first- and second-stage prospects. We do not
need further richness assumptions. In particular, we need not assume the pres-
ence of every (measurable) allocation of lotteries to states s. This point will be
crucial in the application to the model by Klibanoff, Marinacci, and Mukerji (2005).

The following assumptions will be assumed sometimes, but not always.

AsSsSUMPTION 2.5.1 [Within-Source EU]. For both j =1 and j = 2, >/ satisfies
all assumptions and results of Theorem 2.3.3/Corollary 2.3.4 with respect to P!

and U! for =1 and U2 for =2. O

119



AssuMPTION 2.5.2 [Backward Induction]. The preference value of prospect x
is not affected if each lottery x(s) is replaced by its =2 certainty equivalent, i.e. an

outcome os with as ~2 x(s). O

By backward induction, a preference between any pair of prospects can be
derived from the preference between the first-stage prospects that result after the
substitutions of certainty equivalents. This implies, in particular, that = inherits
weak ordering from >1. EU? denotes expected utility with respect to U2 and the

objectively given probabilities of stage 2.

THEOREM 2.5.3. Let the Structural Assumptions 2.2.1 and 2.2.2 hold for >!

and =2, respectively. Then the following two statements are equivalent.

i) There exist continuous strictly increasing functions U2 and ¢, and a probabilit
y g ¢ p y

measure P on S, such that prospects are evaluated through

x > [s¢ (EU2(x(s))) dP(s);

(i)  Assumption 2.5.2 holds and, for each j = 1,2, >/ satisfies:
(a) weak ordering;
(b) monotonicity;
(¢) continuity;
(d) truncation continuity;

(e) tradeoff consistency.
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Statement (i) above means that Assumptions 2.5.1 and 2.5.2 hold. Several
papers have studied conditions that imply concavity of ¢ in the above theorem.

They all need richness assumptions at least as strong as the following one.

ASSUMPTION 2.5.4 [Richness]. Under the within-source EU Assumption 2.5.1,

there exists an event E — S with 0 < P(E) = p < 1 such that for all a and B in the

image of U2, there exists a prospect (E:/1, not-E:/2) in the preference domain with

EU2(/1)=0, and EU2({2)=B. O

Preference for second-stage resolution (PSR) of uncertainty holds if, for
each first-stage prospect o3 and second-stage prospect a3 with P(E) = p, agf <
apf. In practice, preference for first-stage resolution of uncertainty is more plausi-
ble and more interesting. Nevertheless, to be consistent with some later results on
ambiguity, where concavity rather than convexity of ¢ is interesting, we analyze
preference for second-stage resolution and the implied concavity of ¢ in our theo-
rems. The analysis of preference for first-stage resolution of uncertainty is com-
pletely analogous, with the above preference reversed and with convexity of ¢ ra-

ther than concavity.

(E{}a :p—a
S

not _

B B 1-p— B

Figure 2.5.1. P(E) = p. Preference for second-stage
resolution of uncertainty.

Preference for second-stage resolution can be interpreted as an aversion to
mean-preserving spreads in terms of second-stage prospects because the second-
stage prospect o, is a mix of the two (degenerate) second-stage prospects that
can arise from the first-stage prospect agf. In other words, and assuming a = f3, in

the first-stage prospect the second-stage probability at the good outcome a is 1
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with probability P(E) = p and 0 with probability 1-p, whereas in the second-stage
prospect it is p with certainty. The condition can be reinforced into a general aver-
sion to mean-preserving spreads for mixtures of second-stage prospects (Ergin &
Gul 2004), but we will not pursue this point. The condition is equivalent to
pe(U2(a)) + (1-p)o(U2(B)) < o(p(U2(a) + (1-p)(U2(B)) which, given sufficient

richness of U?’s image, is equivalent to concavity of ¢ (Lemma 2.A.1).

An alternative preference condition can be obtained if we use an alterna-
tive-outcome interpretation, taking the EU values of the second-stage prospects as
outcomes. Consider the lotteries x(s) in prospect x, their EU2 values®, and then the
P-weighted average of those EUZ values; call this value EV(EU2). It is the value of
the prospect x that would result if ¢ were the identity function, and it is the ex-
pected value of the prospect under the alternative interpretation. Klibanoff, Mari-

nacci, & Mukerji (2005), abbreviated KMM hereafter, introduced smooth ambigui-

ty aversion: any lottery ¢ with EU2(/) = EV(EU?2) is preferred to the original pros-
pect x. This condition is risk aversion in the traditional sense under the alterna-
tive-outcome interpretation. Given sufficient richness, the risk aversion men-

tioned is equivalent to concavity of o.

The two above conditions, PSR and smooth ambiguity aversion, used the

first-stage subjective probabilities as inputs. The following condition does not
need such inputs. For 0<A<1, and lotteries ¢, /", A/ + (1-A){” denotes a probabilis-

tic mixture defined in the usual way. For prospects x, y, and 0<A<1, the probabilis-
tic mixture of prospects Ax + (1-A)y is defined through statewise mixing, assigning
lottery Ax(s) + (1-A)y(s) to each s. Given EU preferences over second-stage pros-
pects, the probabilistic mixture of prospects just defined is equivalent to outcome
mixing under the alternative-outcome interpretation. Gilboa & Schmeidler (1989)

and Schmeidler (1989) defined uncertainty aversion: Ax + (1-1)y = x whenever x

8 generating the “alternative” first-stage prospect assigning the real number EU2(x(s)) to

each state s).
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~y. The condition is equivalent to quasi-concavity under the alternative-outcome

interpretation. We now summarize various ways to get concavity of ¢.

THEOREM 2.5.5. Assume the conditions and assumptions of Theorem 2.3.6

for =1 and >=2. The following two statements are equivalent:
(i) ¢ is concave;
(ii) Statement (ii) of Theorem 2.3.6 holds.

If we further have Assumptions 2.5.2 and 2.5.4, then the following three

statements are also equivalent to the above two statements:
(iii) Smooth ambiguity aversion holds;
(iv) PSR (preference for second-stage resolution of uncertainty) holds;

(v) Uncertainty aversion holds.

In the above theorem, the condition in (ii) is more generally applicable than
those in (iii), (iv), and (v). It shares with condition (v) the advantage over the
conditions (iii) and (iv) that it does not need subjective first-stage probabilities as

inputs, which is important if the first-stage probabilities are not objectively given.

2.6. Comparative results for two-stage models

We now turn to comparative results. KMM proposed the following condi-
tion. The condition is only defined for decision maker >4 and =B with same first-
stage beliefs PA = PB; then >4 is more smooth-ambiguity averse than decision mak-

er =B if
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Xx=Al=>x>B/( (2.6.1)

for all prospects x and second-stage prospects /. As pointed out by KMM,

this condition implies that =4 and = are identical on lotteries, as follows by substi-
tuting lotteries for x. Although for general preference relations the resulting condi-
tion need not imply identical preferences, it does so for nondegenerate preferences

that maximize EU, such as =42 and =B2. Given the same preferences over lotteries,

we may restrict Eq. 2.6.1 to degenerate lotteries /, i.e. sure outcomes, these being

the same for =4 and =B. Thus, comparative smooth ambiguity aversion amounts to
the requirement of identical preferences over lotteries plus Yaari's certainty-

equivalent condition (ii) in Theorem 2.4.1.

THEOREM 2.6.1. For both =2 and =8, assume the conditions and assumptions
of Theorem 2.5.3, with the notation =14, =24, =1B, and =2B as before. The following

two statements are equivalent:
(i) ¢?is a concave transformation of ¢B and U2A=U2B;
(i) If ap ~*1B By and af” ~*14 By, then " < 3; further, ~*2A = ~*2B,

If we further have Assumptions 2.5.2 and 2.5.4 for both >4 and =5, and if
PA=PB, then the following statement is also equivalent to the above two state-

ments:

(iii) A is more smooth-ambiguity averse than B.

We are not aware of similar comparative results using uncertainty aversion.
The above results compared ambiguity attitudes only under the restrictive as-
sumption of identical preferences over lotteries. We next show how ambiguity

attitude can be compared without this restriction.
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THEOREM 2.6.2. For both >4 and =8, assume the conditions and assumptions
of Theorem 2.5.3, with the notation =14, =24, =1B and >=2B as before. The following

two statements are equivalent:

(i) @# is a concave transformation of ¢5;

(i) If ap ~*1B By and o’ ~*1 B’y, then B’ < p whenever B ~24 o,y and p ~28

opy for some p.? O

In the above theorem, identical preferences over lotteries can be imposed

by adding the requirement of ~*2A = ~*2B, or by requiring that always p = B in

Condition (ii) above. Thus, the restriction of identical preferences under risk is
optional in the above theorem. The condition p ~28 o,y and B ~2B apy in Statement

(ii) above ensures that p has the same position relative to a. and y in terms of U2A as
B has in terms of U2B. In other words, Statement (ii) in Theorem 2.6.2 is Statement

(ii) of Theorem 2.3.6 reformulated for the alternative-outcome interpretation.

2.7. Alternative two-stage models

We show how the above results generalize a number of classical multi-stage
results in the literature. All of these models make the within-source EU Assump-

tion 2.5.1 and we will maintain this assumption in the following discussion. The

9 There always exists a probability p with B ~2B o,y because, by Lemma 2.3.1, U2B(B) is be-

tween U2B(c) and U2B(y), and (unless the trivial case of U(a) = U(y), when B =B = o. = y and p can
be anything) p is uniquely determined by U28() = pU28(a) + (1-p)U2B(y). Then by continuity of

UZB there exists a f3; B is unique because U2B is strictly increasing.
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first study that used a representation as in Statement (i) of Theorem 2.5.3 was
Kreps & Porteus (1978) (they only considered bounded utility). They obtained the
equivalence of Statements (i) and (iv) in Theorem 2.5.5. Their result was applied
to intertemporal decision making, assuming that the first-stage uncertainty was
resolved before the second-stage uncertainty. Then preference for first-stage reso-
lution amounts to a preference for an early resolution of uncertainty. Statement
(ii) in Theorem 2.5.5 is the equivalence resulting from our Theorem 2.3.3. Section
2.6 has provided comparative extensions of Kreps & Porteus’ results, where one
decision maker has a stronger preference for late (or early) resolution of uncer-
tainty than another decision maker. Under Assumptions 2.5.2 and 2.5.4, Statement
(i) can be used as an alternative to the condition of Kreps & Porteus. It, however,

extends to cases where Assumptions 2.5.2 and 2.5.4 need not hold.

For nonexpected utility it is desirable that Assumption 2.5.2, necessitating a
violation of the reduction of compound lotteries, be relaxed. It is well known that
one of some desirable dynamic-decision principles has to be abandoned under
nonexpected utility (Hammond 1988). Machina (1989) strongly argued for aban-
doning consequentialism rather than the reduction of compound lotteries or dy-
namic consistency. Karni & Safra (1989) argued for abandoning, in modern termi-
nology, dynamic consistency. Our analysis in terms of ~* leaves all these options

open, and does not commit to the violation of reduction of compound lotteries.

Kreps & Porteus (1978) considered multi-stage models; their results follow
from repeated application of the two-stage results. They formulated their result
for the special case of decision under risk, where the probability measure P in the
first-stage is also objective and given beforehand, so that it can easily be used as
input for obtaining testable preference conditions. For decision under uncertainty,
where P is subjective and has to be derived from choice in the revealed preference
approach, their condition of PSR is not easy to observe. Then an equality P(E) = p

can only be derived from observed choice, which need not always be easy to do.

For exampe, if S = (s1,s2} and P(s1) =+/0.5, then we are not aware of a finite num-

ber of observed preferences within the model assumed that can reveal this proba-
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bility.10 Our conditions are directly observable even if first-stage probabilities are

subjective.

Neilson (1993) (brought to our attention by a reference in KMM) presented
the equivalence of Statements (i) and (iii) in Theorem 2.5.5. To obtain the repre-
sentation in Theorem 2.5.3, he imposed the von Neumann-Morgenstern axioms on
lotteries, and Savage’s (1954) axioms on first-stage prospects, where he added a
weak continuity axiom to imply continuity of utility; it also implies boundedness of
utility. He applied his result to ambiguity, with the first-stage events ambiguous.
Then smooth ambiguity aversion and concavity of ¢ can be interpreted as ambigui-
ty aversion. In this approach the first-stage probabilities P are not objective or
known but are subjective and must be derived from choice. Then the first-stage
probabilities P in smooth ambiguity aversion are not easy to observe, which makes
smooth ambiguity aversion not so easy to observe empirically. This problem is
similar to the problem of PSR. In addition, smooth ambiguity aversion uses the
utility function U2, which must similarly be derived from preference.l’ We have

relaxed these restrictions and have added comparative results.

Theorem 2.5.3 provides a complete preference foundation for the basic de-
cision model of KMM.12 These authors indicated that such a foundation was possi-

ble but for brevity did not elaborate on it. We can present the entire preference

10 We recall that the objective probabilities of the second stage involve different utilities so

that they cannot be used for calibration purposes.

11 This problem can be mitigated. Assume that there are a maximal outcome M and a mi-
nimal outcome m, and normalize U2(M) = 1 and U2(m) = 0. We can replace every second-stage
prospect by the prospect (p:M, 1-p:m) equivalent to it, and the EU2 value of that second-stage
prospect then is p, which makes EUZ relatively easy to observe so that it can be used in behavioral
preference axioms. In this manner, utilities are converted into probabilities and smooth ambiguity
aversion, i.e. risk aversion with respect to second-stage EU, can be seen to be stronger than a prefe-

rence for first-stage resolution of uncertainty.

12 These authors assumed countably additive probability measures. This condition can be

ensured by adding set-continuity as in Theorem 2.3.3.
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foundation and at the same time maintain brevity because we use the same ~* tool
in all our results. Whereas in KMM’s model utility must be bounded for each pros-

pect, we also allow for prospects with unbounded utility.

KMM obtained the equivalence of Statements (i) and (iii) in Theorem 2.5.5.
A major step forward in KMM'’s analysis was that through subtle interpretations of
the concepts involved they opened a new way to analyze ambiguity. We discuss
their interpretations in some detail. At the outset, the uncertainty in the second
stage in their model concerns a Savagean state space T rather than given probabili-
ties as in our approach. The uncertainty in the first stage concerns what is the ap-
propriate subjective second-stage probability measure to use for the Savage state
space; this uncertainty entails a psychologically realistic modeling of ambiguity.
Thus, in our notation, every state seS specifies what the subjective probability
measure over T is. First-stage prospects (called second-order acts in their model)
assign outcomes contingent on what the appropriate second-stage subjective
probability measure on T is. KMM assume that the two-stage decomposition is
endogenous. By nevertheless assuming preferences between first-stage prospects
to be available, they make it possible to have this endogenous two-stage decompo-
sition observable. Thus, their model becomes considerably more broadly applica-
ble while at the same time coming close to our psychological perceptions of ambi-
guity. By assuming the second-stage probabilities over T to be completely speci-
fied by the first-stage states, KMM achieve that subjective probabilities over the
state space T can be treated as known probabilities in the second stage (KMM,
Lemma 1, Definition 2, and Assumption 3). This leads to the paradoxical but ex-
tremely useful result that the Savagean second-stage uncertainty can be treated as
objective risk, as in the second stage of the Anscombe-Aumann model as we do. All
aspects of ambiguity are controled in the first stage. The following remark pre-

pares for explaining our generalization of the required richness of KMM’s model.

REMARK 7.1 [Richness in KMM]. Not all mappings from S to L need to be
available in the preference domain of KMM. They do assume that all first-stage

prospects (called second-order acts) are available. They also assume that there is
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a subalgebra of events on T that have objective probabilities (being the same under
all second-stage probability measures P2 considered) and that is rich enough to
generate all probability distributions over outcomes, so that there is also richness
for the second-stage prospects. They, further, assume that T = Qx(0,1] where the
second component (0,1] generates these objective probabilities, leading to an Ans-
combe-Aumann-like two-stage decomposition of T. This composition only serves
to calibrate risk attitude and should not be confused with our Anscombe-Aumann

decomposition. The second stage of our decomposition concerns the whole space

T.

Using Assumption 2.5.2, we can generate the preference values of all map-
pings from S to L in the KMM model. KMM impose some richness assumptions on
the set of prospects, i.e. two-stage prospects with nondegenerate Savagean pros-
pects/lotteries assigned to first-stage states of nature, with thought experiments
involving two different first-stage subjective probability measures with disjoint
supports. In this manner, they derive the richness of Assumption 2.5.4 in the proof

of their Proposition 1. O

The contribution of Theorem 2.3.5 (Statement (ii) in Theorem 2.5.5) to the
ambiguity-aversion characterization of KMM is that it, again, avoids the need to use
subjective probabilities or second-stage utilities as inputs in a preference condi-
tion, and that it does not need Assumptions 2.5.2 and 2.5.4. All it needs is that all
simple first-stage prospects (“second-order acts”) are available, and those second-
stage prospects in the model of KMM that have their outcomes depend only on
events with known probabilities (called lotteries by KMM). In particular, we do
not impose any richness on the objects of primary interest in the KMM model], i.e.
the mappings from Q to outcomes (i.e. Savagean acts). We do not need the rich-
ness assumptions in the second paragraph of Remark 7.1. Thus, we leave complete
flexibility regarding the important Savagean acts. Also, we require no commitment
to a violation of reduction of compound lotteries. We hope that these generaliza-

tions can enhance the applicability of KMM’s approach to ambiguity.
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We also generalized KMM’s results on comparative ambiguity aversion. We
did not use the subjective first-stage probabilities as inputs and, in particular, need
not assume that these are the same for different decision makers. We also did not
require same preferences over lotteries. Thus, ambiguity attitude can be analyzed

as a component completely independent from beliefs and risk attitudes.

Nau (2006) assumed the two-stage decomposition of Figure 2.5.1 to be ex-
ogenous. He considered a state-dependent generalization of EU for first- and
second-stage prospects, and then used a local version of PSR (called local uncer-
tainty aversion) to characterize concavity of his analog of ¢. He also expressed this
condition in terms of generalized Pratt-Arrow measures. State-dependent ver-
sions of our results could be obtained by using event-dependent relations ~*g in
Egs. 2.3.1-2.3.3, but we will not pursue this point here. Grant, Kajii, & Polak (2001)

used a two-stage model as in theorem 2.5.3 in a game-theory context.

2.8. Discussion

A Discussion Assuming that within-source EU (Assumption 2.5.1) is valid.
We first discuss the above results for readers who accept EU as an appropriate
model for =1 and =2, which was the assumption underlying our analysis and the
literature cited above. It then is very convenient that we can analyze risk attitudes,
intertemporal attitudes, and even ambiguity attitudes, using techniques to analyze
utility, i.e., techniques that are well known in traditional economic analyses. Thus,
KMM wrote: “One advantage of this model is that the well-developed machinery
for dealing with risk attitudes can be applied as well to ambiguity attitudes” (p.
1849). See also Neilson (1993, p. 7). We have presented a convenient tool to ana-
lyze marginal utility independently from beliefs. We applied it to some classic re-
sults where we obtained conditions that are more general and more easily observ-

able.

A Discussion Assuming that within-source EU (Assumption 2.5.1) is not va-
lid. For readers who believe that EU is not an appropriate model for risk and un-

certainty (say the intended applications are descriptive), the interpretation of our
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preference axiomatizations will be different than the interpretations considered
above. In Theorem 2.3.5 it may be felt that the preference condition in Statement
(ii) (always preferring a prospect less than its expected value) intuitively concerns
aspects of risk attitudes, but our condition in Statement (iv) does less so. The lat-
ter condition seems to concern primarily the value of outcomes rather than atti-
tudes towards risk. The fact that Statements (ii) and (iv) are equivalent under EU
but are not perceived to be so intuitively, then turns into an argument against EU.
This intuition was the basis for the development of many nonexpected utility mod-
els (Schoemaker 1982; Schmeidler 1989). Similar observations can be made for

Yaari’s model in Theorem 2.4.1.

Note that when probabilities are known, Wakker (1994) gives tradeoff con-
ditions characterizing concavity of the utility function even when probabilities are
distorted and Abdellaoui (2002) applies a similar tradeoff consistency on probabil-
ities to axiomatize a nonexpected utility model and to give concavity/convexity

conditions for the probability distortion.

In the intertemporal model of Kreps & Porteus in section 2.5, the conditions
of PSR and smooth ambiguity aversion intuitively capture the attitude towards the
timing of the resolution of uncertainty. For our condition in Statement (ii) of
Theorem 2.5.5, the intuitive relation with time is less clear. Our condition does not
need the Backward Induction Assumption 2.5.2 and, more strongly, it does not
seem to involve any of the dynamic structure in the model at all. Prospects with
outcomes depending both on first- and second-stage events, even if available, need
not be considered, and it does not matter whether the first-stage events really
come first or not. Yet, under EU, our condition is equivalent to conditions consi-
dered in the literature. It may be felt that EU for >=! and >2 deprives the conditions
used in the literature from their intuitive content. Under this view, such an intui-
tive content could better be modeled through different models, such as with anxie-
ty as an additional component of utility if rationally relevant. If preference for ear-
ly or late resolution of uncertainty and the violation of reduction of compound lot-
teries are driven by irrational factors, then it may be more suited to use irrational

nonEU models instead of the within-source EU Assumption 2.5.1.
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In the models of ambiguity in sections 2.5-2.7, it may likewise be felt that,
whereas conditions advanced in the literature intuitively concern attitudes to-
wards ambiguity, our conditions in terms of ~* do not and they exclusively con-
cern the value of outcomes. For example, our condition already implies concavity
of ¢ if we maintain the richness of outcomes but consider only one nondegenerate
first-stage event E. That is, first-stage events, which should capture all ambiguity,
hardly play any role in our preference condition and the condition is based almost
exclusively on outcomes. From this perspective, the within-source EU Assumption
2.5.1, by equating our conditions with the intuitive conditions put forward in the
literature, seems to deprive those intuitive conditions from their intuitive content.
[t suggests that ambiguity is better not analyzed in terms of the utility of outcomes,
and is better analyzed through functions that apply to events such as the nonaddi-
tive measures of Schmeidler (1989) and the set of multiple priors in Gilboa &

Schmeidler (1989).

The criticism of EU advanced here can be compared to that advanced by
Rabin (2000). He derived unacceptable implications of taking utility as index of
risk attitude. We have added undesirable implications of EU when utility is used to
model ambiguity. The criticisms described here add to the violations of within-

source EU revealed by Allais’ (1953) paradoxes.

2.9. Conclusion

We have presented a convenient tool for analyzing marginal utility. It led to
many generalizations of classical results and to alternative preference foundations
and interpretations. Readers who have doubts about the appropriateness of EU to
model risk and ambiguity attitudes can test their confidence in EU by inspecting if
the alternative preference conditions put forward in this chapter can convey the
same intuition as preceding preference conditions used in the literature. If they
do, then EU is appropriate. If they do not, then EU must be questioned. For exam-
ple, if the reader expects that smooth ambiguity aversion is found empirically in

the two-stage model of section 2.5, but that the standard sequences in Eq. 2.3.5 will
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be the same and will exhibit the same utility graphs (Figure 2.3.1) for stage 1 and

stage 2 uncertainty, then this amounts to EU not being valid.

133



Appendix - Proofs

We begin with two lemmas that will be useful for the elaboration of our

main results.

LEMMA 2.A.1. Letf: I — R be continuous, with I =R an interval. Then f is

concave if and only if, for every o, € I, there exists a pqp with 0 < ps < 1 and

f(papot + (1-Pup)B) = Pugf(a) + (1-pup)f(P).

PRrOOF. This follows from Hardy, Littlewood, & Polya (1934, Observation

88). We will only need the case where p,g = p is independent of o,8. O

LEMMA 2.A.2. Let IcR be an interval. A continuous and strictly increasing
function f : I - R is concave if and only if [f(a) — f(B) = f(B) —f(y) = B =<
(at+y)/2].

PRrROOF. The condition between brackets is equivalent to midpoint concavity,
which is the case of Lemma 2.A.1 with p,g = 0.5 for all o,3, and is equivalent to

concavity of f by Lemma 2.A.1. O

PROOF OF LEMMA 2.3.1. Follows from substitution of EU (Koébberling &
Wakker 2004, Observation 1). O
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PROOF OF THEOREM 2.3.3.

PART I [The Implication (i) = (ii)]. This follows from substitution. For sim-
ple prospects and conditions (a)-(c) and (e), it was established by Kobberling &
Wakker (2003, Corollary 10). For general prospects and condition (e), it was es-
tablished by Wakker (1993, Lemma 1.8, Corollary 2.14, and section 4.4).

PART Il [The Implication (ii) = (i)].

Assume (ii). We first restrict attention to simple prospects, for which we
will not use truncation continuity. For finite state spaces the result was obtained
by Kobberling & Wakker (2003). The extension to all simple prospects for a gen-

eral state space is routine.

The extension of the representation to general, possibly unbounded, pros-
pects follows from Theorem 2.5 in Wakker (1993). Note here that EU is a special
case of Wakker’s CEU (Choquet expected utility), and that Wakker’s step equiva-

lent assumption is implied by the existence of certainty equivalents.

PART III [Further Results]. The uniqueness results follow from Kébberling &
Wakker (2003, Corollary 10). The set-continuity is necessary and sufficient for
countable additivity follows from substitution, similar to Wakker (1993, section
4.1; for additive measures we only need Wakker’s (1993) Eq. 4.2, and only for A =
). O

PROOF OF COROLLARY 2.3.4. The only thing to be added to the proof of Theo-
rem 2.3.3 is that subjective probabilities must agree with objective probabilities.
This follows first for equally likely events in n-fold partitions with objective proba-
bility 1/n, which because of symmetry should also have subjective probability 1/n.
Then it follows for every event with rational probability j/n by comparing to a un-

ion of j events with probability 1/n. It follows for events with real probabilities
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from the previous result plus monotonicity of both probability and preference.

Note that the latter extension does not use countable additivity. O

PROOF OF THEOREM 2.3.5. (i) = (ii) is exactly as for decision under risk.

For (ii) = (i) assume (i). By nondegeneracy, there exists an event E with 0
< P(E) = p < 1. Risk aversion implies agf < (pa + (1-p)B) (the latter taken as
degenerate) and thus, under EU, U(pa+(1-p)B) = p X U(a) + (1-p) x U(B). By

Lemma 2.A.1, U is concave.
(i) < (iii) is due to Debreu & Koopmans (1982).

(i) < (iv) follows from Lemmas 2.3.1 and 2.A.2 O

PROOF OF THEOREM 2.3.6. Express outcomes in U! units, and apply Theorem

2.3.5 to ¢ instead of U with ¢ such that U2 = o UL O

PROOF OF THEOREM 2.4.1. (i) < (ii) is by Yaari (1969). (i) < (iii) is by Theo-
rem 2.3.6, with equality of probabilities added. O

PROOF OF THEOREM 2.5.3. For (i) = (ii), assume (i). EU with P and U
represents >I for j = 1 (because ¢ is strictly increasing) and 2 (with Ul = @0 U?),
which by Theorem 2.3.3 implies Conditions (a)-(d) in Statement (ii). Assumption

2.5.2 follows because all ai have the same EUZ value as the prospects they replace.

We now assume (ii) and derive (i). Theorem 2.3.3 applied to both =1 and >2

implies that there exist continuous and strictly increasing functions U! and U? and

a probability measure P such that first stage prospects (El:x1y, ..., EL:xm1) are eva-

luated through Zir:lP(Ei)Ul(Xu), and second-stage prospects are evaluated through
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EUZ, being EU with respect to U2. Define the continuous strictly increasing ¢ = Ulo

(UZ)inv_

Consider any prospect x. By continuity and strict increasingness of U2, we
can obtain s such that as ~2 x(s) (i.e., these have the same EU2 value) for all s. By
backward induction, x ~ y with y(s) = as for all s. Thus, the evaluation of x must

equal:

JsUuiy(s) dP(s) = [s@(U2(y(s)))dP(s) = [s¢ (EU2(x(s))) dP(s). O

PROOF OF THEOREM 2.5.5. (i) < (ii) is by Theorem 2.3.6.

(i) < (iii) is due to KMM (Proposition 1) In our setup, the derivation is as
follows. (i) = (iii) is the traditional risk aversion implication. For (iii) = (i),
smooth ambiguity aversion applied to event E from Assumption 2.5.4 implies that

o(pa+(1-p)B) = pe(a) + (1-p)e(B) which, by Lemma 2.A.1, implies (i).

For (i) « (iv), make Assumption 2.5.2, and assume that 0 < P(E) =p <1
for some first-stage event E. Take some arbitrary U2(a) and U2(3). Then agP < apf3
implies pe(U2(a)) + (1-p)o(U2(a)) < ¢(pU2(a) + (1-p)U2(ar)). By Lemma 2.A.1,

¢ is concave.

(i) & (v) follows from the equivalence (i) < (iii) of Theorem 2.3.5 under

the alternative-outcome interpretation. O

PROOF OF THEOREM 2.6.1. For (i) < (ii), we note that ~*24 = ~*2B s equiva-
lent to U2A and U2B having same equalities of utility differences, which, given that
they are defined on an interval and are continuous and strictly increasing, is equiv-

alent to them being the same in the sense of being in the same interval class.
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By Theorem 2.3.5, the first part of condition (ii) is equivalent to UlA being
more concave than U!B. Because UlA = Ao U24, U1B = @Bo U2B, and U2A = U2B, it is

equivalent to @A being more concave than 8.

(i) < (iii) is due to KMM (Theorem 2), and follows from the equivalence of

(i) and (ii) in Theorem 2.4.1 under the alternative-outcome interpretation. O

PROOF OF THEOREM 2.6.2. First, ¢ and @B being continuous and strictly in-
creasing functions, there exist a continuous and strictly increasing function ¥ such
that @A=WopB. Let us fix U2A(a)=U2B(a)=a, U2A(y)=U2B(y)=c and U?A(")=b".
Then f ~2A o,y and B ~2B o,y imply U2B(B)=U2A(B)=b (where b=pa+(1-p)c).

Statement (ii) can be rewritten:

¢B(a) —98(b) = ¢¥(b) —9°(c) and We@B(a) — WeB(b") = WoeP(b") — WopP(c)
imply @B(b")<¢pB(b). By Lemma 2.A.2, ¥ must be concave. The theorem follows. O
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Chapter 3.

Combining Experts’ Judgments:

A Choice-Based Study

Abstract

For many decisions, from environmental policy to strategic investments of
firms, decision makers seek advice from experts. Hence, a major issue concerns
the aggregation of multiple opinions by decision makers. This chapter provides an
experimental study of the impact on decision of imprecision and conflict in experts’
probabilistic forecasts. Three contexts are defined: when experts agree on a pre-
cise probability, when they agree on an interval of probability (imprecise ambigui-
ty) and when they disagree (conflicting ambiguity), each of them having a different
estimation. We use Cumulative Prospect Theory to describe behavior when a
unique probability is given and certainty equivalents under (conflicting or impre-
cise) ambiguity are corrected for risk attitudes so as to obtain the impact of con-
flict and imprecision. Our results show that decision makers do not always use the
mean estimation, even without any knowledge about the reliability of the sources.
Furthermore, both the informational context (conflicting or imprecise ambiguity)
and the probability level strongly influence the decision. Eventually, extremeness

of advisors seems to have an impact on decision.
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3.1. Introduction

When facing a new problem, a decision maker may have to seek advice from
experts. For instance, as consumers of fossil fuels or activities emitting carbon
dioxide, we may have an impact on global warming and we have to choose whether
or not we carry on the same way of life. We can find information and advice from
different groups of experts on Wikipedial3. The first group says that there is “90
percent certainty that global warming is caused by man's burning of fossil fuels’.
The second group of experts tells us that “Detailed examination of current climate
data strongly suggests that current observations do not correlate with the assump-
tions or supportable projections of human-induced greenhouse effects”. Now, we
have to decide: Should we apply the Kyoto protocol? Should we decrease our con-
sumption of fossil fuels? Are ecological policies for decreasing our carbon dioxide

emission really useful?

This chapter aims at understanding how decisions are made in such cases.
Without any information about the reliability of the sources, what do we do? On
which probability do we base our decision? Do we decide by taking into account
our fuel consumption having an impact on the environment with a probability that
belongs to [0%,90%]? Or do we consider that the probability is either 0 or 90%?
Or eventually, do we use the mean probability 45% or another linear combination
of the two boundaries? This chapter addresses these questions. It defines a
choice-based method to deal with them and presents the results of an experimen-
tal study that compares these three possibilities so as to identify the main charac-
teristics of decision processes when the decision maker asks experts for probabili-

ty judgments.

In decision analysis, an important field of research concerns combinations
of experts’ judgments. Budescu (2006) distinguishes three approaches in this lite-

rature: the two first orientations are mostly normative and consist in providing a

13 See http://en.wikipedia.org/wiki/Scientific_opinion_on_climate_change for much more

advices than the two ones we are using.
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unique judgment, either by computation or by group discussion (see also Clemen &
Winkler 1999). On the contrary, the third approach is mainly descriptive and pre-
vails in the behavioral decision literature. Our study belongs to this last research
direction and tries to understand what it takes for a complex informational setting
to be reduced to a single probability. Do we really reduce important information
such as experts’ imprecision or even experts’ disagreement into a single probabili-
ty? It thus seems relevant to test whether or not the information structure consti-

tutes a key element in the decision process.

The impact of conflict and/or imprecision does not just concern managers’
decision-making, it also affects their communication. When a rumor or a critical
report threaten a firm'’s existence by describing a potential risk and when the
managers of the firm have reliable information that contradicts this risk, will they
induce the same effect by enhancing imprecision as by focusing on conflict in risk
evaluations? Will they be equivalently trusted? Such questions directly concern
risk communication. For instance Slovic (1993) highlights that open debates
among experts may decrease the trust the public have in their risk evaluations.
More recently, Dean and Shepherd (2007) study the effect of conflict and consen-

sus in risk communication about genetically modified food.

In order to provide some answers to these various questions, we develop a
technique and conduct an experimental study with three contexts: when experts
agree on a precise probability, when they agree on an (imprecise) interval of prob-
ability and when they disagree, each of them having different estimations. We first
introduce the concept of revealed belief (the probability that a decision maker’s
choices reveal as being associated to an ambiguous risk description) and then we
define some behavioral conditions and indexes characterizing attitudes towards
ambiguity. Eventually, we elicit both the revealed beliefs and the indexes in an

experiment.
Based on this experiment, we claim that:

i) Under both imprecise and conflicting ambiguity, agents do not simply use
the mean estimation. There are significant cases, in which agents act as if the ‘true’

probability were closer to one expert’s estimation than the other’s (or to one of the
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two boundaries of the interval) even without any information on experts’ respec-

tive reliability.

ii) The information structure (imprecision/conflict) has a significant impact
on attitudes. Depending on the probability level, presenting the information as

being imprecise or conflicting may lead to different behaviors.

iii) Between two conflicting assessments, an extreme probability (0 or
100%) has a higher impact than an intermediate probability. When an expert
gives an extreme judgment (“the event is sure” or “the event is impossible”) then
(s)he has a stronger effect on the decision, as if this expert was more trustworthy

or more reliable.

The structure of the article is as follows. Section 3.2 consists of a review of
the literature. Section 3.3 sets up the theoretical framework. Section 3.4 describes
the experimental design. The key results are presented in section 3.5, section 3.6

discusses and section 3.7 concludes.

3.2. Review of the literature

Aggregation of experts’ opinions represents a key issue in decision analysis
and consequently, several orientations have been studied so as to deal with it. The
first research direction aims at developing formal models for combining assess-
ments from multiple sources into a unique probability. Those models are based
either on axioms (e.g. Stone 1961, Genest 1984), or directly on Bayes’ rule (e.g.
Winkler 1968, Clemen & Winkler 1993). The second approach is behavioral and
consists in finding how group discussion or interaction between experts can lead
to a consensual evaluation; the Delphi method (Dalkey, 1969) or the Nominal
Group Technique (Delbecq, Van de Ven & Gustafson 1975), for instance, are based
on a first individual evaluation followed by a discussion and then by another indi-
vidual assessment. In the Delphi method, first evaluations remain anonymous
while they are presented by their author in the Nominal Group Technique. Clemen
& Winkler (1999) provide a review of the literature about these two first (mathe-
matical and behavioral) approaches. Eventually, the third and last part of this lite-
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rature on aggregation of multiple sources is descriptive and study how a unique
decision maker combines information. Studies are based on judgments (e.g. Snie-
zek & Buckley 1995) or on choices (e.g. Du & Budescu 2005). This chapter clearly
wants to contribute to this choice-based descriptive literature on combining judg-

ments of experts.

We can more generally relate our study to the literature on ambiguity.
Since Ellberg (1961) the impact of ambiguity (or vaguely known probabilities) on
choices has been well-documented (cf. Camerer and Weber 1992 for a review of
the literature). Contrary to what the Subjective Expected Utility framework says
(Savage 1954), there is much evidence that ambiguity affects decision-making in
some systematic ways: decision makers usually exhibit ambiguity aversion for low
probabilities of loss and large probabilities of gain but become ambiguity seeking
for large probabilities of loss and small probabilities of gain (e.g., Cohen, Jaffray
and Said 1985, 1987; Hogarth and Einhorn 1990; Lauriola and Levin 2001; Viscusi
and Chesson 1999).

In addition, recent experimental research on ambiguity has shown that de-
cision-makers are sensitive to the sources of ambiguity (Cabantous 2007; Smith-
son 1999). In the literature, ambiguity is commonly implemented by either pro-
viding the participants with ranges of probabilities (cf. Budescu et al. 2002; Cohen,
Jaffray and Said 1985; Ho, Keller and Keltika 2002) or by providing them with con-
flicting probabilistic estimates (cf. Einhorn and Hogarth 1985; Kunreuther, Mesza-
ros and Spranca 1995; Viscusi and Chesson 1999 for examples of expert disagree-
ment as a source of ambiguity). Those two implementations of ambiguity are
usually assumed to be equivalent. Smithson (1999) however has recently shown
that decision-makers disentangle these two sorts of ambiguity and are most of the
time averse to conflict: they tend to exhibit a preference for imprecise ambiguity
(i.e.,, ranges of probability) over conflicting ambiguity (i.e. disagreement over the

probability value of an uncertain target event).

In a model with nonlinear probability weighing, such as Cumulative Pros-
pect Theory (CPT) (Tversky and Kahneman 1992), the finding that attitude to-
wards ambiguity depends on the location of the probability implies that the
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weighting function is more “inverse-S shape” for events with vaguely known prob-
ability (i.e. ambiguous events) than for their counterparts with precisely known
probability (i.e. risky events). We will indeed use CPT because it allows attitudes
to depend on probabilities. In so doing, it accommodates the pattern of behaviors
to ambiguity observed in most empirical research. Tversky and Wakker (1995)
formalize preference-based conditions for the “less sensitivity to uncertainty than
to risk” effect and their equivalent formulation under CPT. In addition, assuming
source dependence and greater subadditivity of the weighting functions for uncer-
tainty than for risk have been established as the way to study the effects of various
sources of uncertainty on decision weights (e.g., Abdellaoui 2000; Abdellaoui,
Vossman and Weber 2005; Kilka and Weber 2001; Tversky and Fox 1995; Tversky
and Wakker 1995; Wakker 2004). A novelty of our research is that it extends this
literature on decomposition of decision weights so as to bridge the gap with both
the experimental literature about ambiguity represented by sets or intervals of

probabilities and the literature about aggregation of probability judgments.

Note that there exist alternative models for representing attitudes towards
ambiguity, above all models with multiple priors. Maxmin Expected Utility (Gilboa
& Schmeidler 1989) represents behaviors by the worst possible case (in terms of
expected utility) among a subjective set of priors. This corresponds to ambiguity
aversion. Some generalizations of this model allow for ambiguity seeking (a-MEU
of Ghirardato et al 2004) or for a linear combination of the worst case and the av-
erage one (Gajdos et al, 2007; in their model, the set of possible probability distri-
bution is yet objective). Even if we will not use this family of models in the analysis

of our experiment, we will discuss about them regarding our results in section 3.6.

3.3. Theoretical framework

3.3.1. Behavioral definitions

For simplicity of presentation we restrict the present treatment to a single
domain of outcomes and we consider that the objects of choice are binary pros-

pects on the outcome set R~ (non-mixed negative binary prospects). This article

147



focuses on losses because vagueness of probabilistic information is quite common
in the loss domain (e.g. insurance decision or all the examples we gave in introduc-
tion). Moreover, only a few studies have looked at probability weighing, beliefs
and ambiguity attitudes in this domain (e.g., Etchart-Vincent for probability weigh-
ing). We assume that the decision-maker’s preferences on prospects are
represented by a binary preference relation. As usual, > denotes weak preference,
~ and > respectively denote indifference and strict preference among binary

prospects.

We note xpy the usual “risky” binary prospect yielding the outcome x with
probability p and the outcome y (with 0>y>x) with probability (1—p). We then
define two special cases of ambiguity: imprecise ambiguity (A’) and conflicting
ambiguity (Ac). Imprecise ambiguity, where the uncertain target event is characte-
rized by an imprecise probability (i.e. a probability interval) is probably the most
common operationalization of ambiguity in the literature (e.g., Budescu et al.
2002). In this article, we denote x[p—r,p+r]y an Al prospect that gives x with an
imprecise probability that belongs to the interval [p—r,p+r] and y (with 0>y>x)
otherwise. The other typical way to implement ambiguity is to provide the partici-
pants with conflicting probability estimates (e.g. Viscusi and Chesson 1999). We
denote x{p—r,p+r}y the Ac prospect which gives x with a probability which can be
either (p—r) or (p+r) and y (with 0>y>x) otherwise. Throughout, r will be as-
sumed as fixed and strictly positive. Studying the impact of variations of r is left

for future research. The sets
Al={p-rp+rlir<p<i-r}
and
AN={{p-rp+rkr<p<1-r}

represent the two different ambiguous contexts.
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DEFINITION (Revealed Belief): A revealed belief q is a probability such that
the certainty equivalent for a risky prospect xqy is equal to the certainty equiva-
lent for the Ai (A°) prospect X[p—r,p+r]y (X{p—r,p+r}y). Formally, we write
[p—r,p+r]~Rq whenever there exist x<y and z from R~ such that x[p—r,p+r]y~z
and xqy~z. Similarly {p—r,p+r}=~Rq whenever there exist x<y and z from R~ such

that x{p—r,p+r}y~z and xqy~z.

The binary relation =R constitutes a useful tool to study attitudes towards
ambiguity since it allows defining several testable preference conditions, analog-
ous to the ones Wakker (2004) introduces (see also Tversky and Fox 1995;
Tversky and Wakker 1995). By analogy with researches on weighting functions
(e.g., Wu and Gonzalez 1996 and 1999), this chapter focuses on two noticeable
physical features of revealed beliefs: their degree of curvature and their degree of
elevation. In addition, it considers that each characteristic reflects a specific psy-
chological process at play when decision makers evaluate uncertain gambles: the
degree of curvature measures the decision maker’s degree of sensitivity whereas
the degree of elevation reflects the decision maker’s perception of attractiveness of

the lottery (Gonzalez and Wu 1999).

We first focus on the degree of curvature of the revealed beliefs. Eq. 3.3.1
(resp. 3.3.2) defines the testable preference conditions for /ess sensitivity to A

(resp. A€) than to risk’%.
If [p—r,p+r]=Rq and [p'—r,p'+r]=Rq’, then |q—q'|<|p—Dp'|- (3.3.1)
If {p—r,p+r}=Rq and {p'—r,p'+r}=Rq’, then |q—q'|<|p—p'|- (3.3.2)

These two equations mean that Al and Ac revealed beliefs vary less than the
attached intervals. Typically, this indicates that a decision maker reacts less to a

change in the probability level when the probabilities are ambiguous than when

14 Note that for a given 1>r>0, revealed beliefs are defined over [r,1—r]. This domain does
not contain 0 and 1. Because we automatically stay away from the bounds and only deal with in-

termediate probabilities, we do not use any boundary constant (unlike Tversky & Wakker 1995).
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they are precise. This is the reason why these equations define less sensitivity to
ambiguity than to risk. On the contrary, when the revealed beliefs vary more than
the attached intervals, opposite inequalities hold, and decision makers exhibit
more sensitivity to ambiguity (A', A¢) than to risk. Furthermore, as decision mak-
ers might disentangle the two sources of ambiguity and set up different certainty
equivalents for Ai and A¢ gambles, Al and Ac revealed beliefs can also differ in terms
of sensitivity. Eq. 3.3.3 defines the testable preference condition for /ess sensitivity
to A’ than to A<. Note that the inverse inequality defines more sensitivity to A’ than

to A
If [p—r,p+r]=Rq, [p'—1,p'+1r]=Rq’, {p—r,p+r}=Rh and {p'—r,p'+r}=Rh’,
then |g—q'|<|h—h'|. (3.3.3)

The second noticeable physical feature of revealed beliefs is their degree of
elevation usually referred to as the degree of ambiguity aversion. The next equa-
tions are concerned with this effect and define respectively “ambiguity aversion

under A” and “ambiguity aversion under A<’ for negative prospects.
If [p—r,p+r]=Rq, then g=p. (3.3.4)
If {p—r,p+r}=Rq, then q=p. (3.3.5)
Similarly, “more ambiguity aversion under A’ than under A¢”is defined by:
If [p—r,p+r]=Rq and {p'—1,p'+r}=Rq’, then q=q". (3.3.6)

In the loss domain indeed, when a revealed belief q of an Al prospect, giving
x with {p—r:p+r}, is greater (smaller) than midpoint probability p, this means that
the decision-maker finds the Al prospect less attractive (more attractive) than a
risky prospect that gives x with probability p. This should lead him/her to exhibit
ambiguity aversion (ambiguity seeking). Note that we use the midpoint p, that is
the simple arithmetic mean of [p—r,p+r] and {p—r,p+r}, to define the degree of
ambiguity aversion/seeking of revealed beliefs. Since no information about ex-

perts’ competence is available, the midpoint p, which is the solution of lottery re-
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duction when uniform partition holds, is indeed a useful benchmark to which we

can compare revealed beliefs.

3.3.2. Representation

We assume Cumulative Prospect Theory (Tversky and Kahneman 1992) for
risky and ambiguous contexts, with a single utility function. According to CPT, the

value of a prospect xpy with x<y<0 is:

xpy — w(p)ux) + (1 — w(p))u(y)

where, u(.) is the value function satisfying u(0)=0, and w(.), called the
probability weighting function, is a continuous and strictly increasing function
from [0,1] to [0,1] satisfying w(0)=0 and w(1)=1. Similarly, we define the values

of Al and Ac prospects as follows:

x[p = 1,p +rly > Wi([p = 1,p + rDu) + (1 = Wi([p = 1,p + 1)) u(y)
and

x{p—1,p+1ly = W({p —1,p+rHu@ + (1 = W({p — 1, p + 1} )u®)
where Wi and We¢ are the weighting functions for Al and A¢ prospects.

Under these assumptions we know that there exists a unique revealed belief
for each element of Aior Ac. There therefore exists a unique function q' from Al to
[0,1] such that [p—r,p+r]=Rq is equivalent to qi([p—r,p+r])=q and there also ex-

ists a similar function q¢ on Ac¢ such that {p—r,p+r}=Rq is equivalent to

q‘({p—r,p+rh=q.

The CPT value for imprecisely ambiguous prospects can thus be rewritten:

x[p = 1,p + rly > w(q®([p — 1, p + rD)u) + (1 = w(q®(lp — r,p + 1)) ) u(y)

Finally, if the prospect is a A¢ prospect, its CPT value is given by:
x{p - 1,p + rly = w(q°(lp — r,p + r)u) + (1 - w(a*Up — r,p + ) u(y)
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Knowing the value function u (defined under risk) and the individual prob-
ability weighting function w of a participant (defined under risk as well), the At and
Ac revealed beliefs can be deduced from the certainty equivalents for Al and Ac
prospects respectively. To complement the non-parametric analysis, which high-
lights the impact of probability levels on revealed beliefs, the study also relies on a
regression line to characterize the general properties of revealed beliefs. We use a
linear approximation of the functions q' and q¢ in order to define the sensitivity
and ambiguity aversion indexes. These indexes are directly adapted from Kilka

and Weber (2002).
First, we determine two values a and b for each context such that
qi([p—r,p+r]) is approximated by ai+bip
and
q*({p—r,p+r}) is approximated by ac+bep.

Then, b is considered as a sensitivity index (since this slope measures the
decision-maker’s sensitivity to changes in probability) and the index of ambiguity
aversion is defined as the average elevation (a+b/2) of the estimation. Because
the linear estimation goes from 0 to 1, the value of the estimation at p=%% gives a
good estimate of the elevation of the function. We can therefore determine the
degree of ambiguity aversion of the revealed beliefs by assessing the departure of
the ambiguity aversion index, a+b/2, from the benchmark %. Note that those in-
dexes will not only enable us to study attitudes under each kind of ambiguity but
also to compare together the degrees of sensitivity and aversion under Al and A

(Appendix furthers the explanations of those indexes.)

3.4. Method

3.4.1. Participants

The participants in this study were 61 post-graduate students (60 men, 1

woman, median age = 22) in civil engineering at the Ecole Nationale Supérieure
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d’Arts et Métiers (ENSAM) in Paris, France. They were invited by email to partici-
pate in a study on decision-making, and guaranteed a 10€ flat participation fee.

None of them had already participated in an experiment in decision making.

3.4.2. Procedure

The experiment was conducted in the form of computer-based individual
interview sessions, using software specifically developed for the experiment. The
experimenter and the participant were seated in front of a laptop and the experi-
menter entered the participant’s statements into the computer after clear confir-
mation. After a brief explanation of the task, where the participants were asked to
assume their own role and give their own preferences and a series of three trial
choices, the experiment started. On average, the participants required about 30
minutes to complete the experiment. There was absolutely no time pressure, the
participants were given the time they needed and encouraged to think carefully

about the questions.

3.4.3. Stimuli

We designed the experiment to estimate participants’ certainty equivalents
(CEs) for three kinds of negative binary prospects: conventional risky prospects,
imprecisely ambiguous (A') prospects and, conflictingly ambiguous (Ac) prospects

(see Table 3.4.1).

In Table 3.4.1 below, the first ten prospects are risky prospects of the form
xpy. For instance, prospect 1 is a risky prospect yielding the outcome —1000€
with probability 10% and the outcome 0€ with probability 90%. The five next
prospects are Al prospects with probability intervals. Prospect 11 for instance, is
an Al prospect, of the form x[p—r,p+r]y, that gives the outcome —1000€ with (a)
probability belonging to the range 0% and 20%. Last, prospects 16 to 20 are Ac
prospects are of the form x{p—r,p+r}y. They give x with probability which can be
either (p—r) or (p+r) and y (with y>x) otherwise. Prospect 20 for instance gives
the outcome —1000€ with probability that is either 80% or 100% and 0 otherwise.

It is noteworthy that the 20 prospects are such that the probabilities varied all
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over the probability interval [0,1]. In addition, and so as to simplify matters, in all

Aland A< prospects we fixed the width of the probability interval 2r to 20.

Table 3.4.1: The twenty prospects

# Context p X y | # Context p-r p+r X y
1 Risk 10 —1000 011 Al 0 20 -—1000 O
2 Risk 30 —1000 0112 Al 20 40 —-1000 O
3 Risk 50 —1000 0113 Al 40 60 —1000 O
4 Risk 70 —1000 0|14 Al 60 80 —-1000 O
5 Risk 90 —-1000 0|15 Al 80 100 -—-1000 O
6 Risk 50 -500 016 Ac 0 20 -—1000 O
7 Risk 50 -500 —250 |17 Ac 20 40 —-1000 O
8 Risk 50 —750 =500 | 18 Ac 40 60 —1000 O
9 Risk 50 —-1000 -500]19 Ac 60 80 -—1000 O
10 Risk 50 —1000 -—750]20 Ac 80 100 -—1000 O

#: prospect number

To estimate subjects’ CEs for the twenty prospects, we constructed a bisec-
tion-like process. Such a method does not require the participants to state a pre-
cise value such that they would be indifferent between losing that amount for sure
and playing a two-outcome negative lottery. It involves choices only, and is there-
fore easier for the participants to answer than the direct matching method. More-
over, choice method has been found to generate more reliable data (Bostic et al,,
1990). With a bisection-like process, from 3 to 7 choices between a given prospect
and a sure loss are required to estimate the CE of a prospect. The CE of a prospect
is then determined by computing the average of the highest sure loss accepted and

the lowest sure loss rejected.

In this experiment, each trial started with a choice between a prospect and
its expected value. Figure 3.4.2 illustrates the task the participants were presented
with. To simplify the participants’ task, the risky, Al and Ac screenshots had exactly
the same structure: option 1 (the prospect) was systematically displayed at the
left-hand side, option 2 (the sure loss) was displayed at the right-hand side of the

computer screen and, whatever the informational context, x was in purple and y in
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yellow. In the risky context (screenshot A), we used a typical pie with a fixed line
to provide the participants with a visual representation of the task. For these risky
prospects the participants, who were told they had received advice from two inde-
pendent experts, could read: “The two experts agree on the risk you are facing:

loosing X euros with p% probability (and loosing €0 otherwise).”

In the Al context, the participants could read the following “The two experts
agree on the risk you are facing: loosing X euros with probability belonging to the
range (p—r)% and (p+r)% (and loosing €0 otherwise).” In addition, to help the
participants understand Al prospects, we introduced a dynamic pie. This means
that the program made the size of the pie vary slowly between (p—r)and (p+r).
Eventually, screenshot B displays the typical choice-task in the Accontext. In that
context, we introduced two different fixed pies to make clear to the participants
that the two sources of information did not have the same estimate of the probabil-
ity of the loss and, we told them that “The two experts disagree on the risk you are
facing. Expert A: loosing X euros with (p—r)% probability (and 0 otherwise). Ex-
pert B: loosing X euros with (p+r)% probability (and 0 otherwise).”
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Which option do you prefer?

Option 1
The two experts agree on the risk you are facing: loosing 1000 euros with ~ 10%
probability (and 0 otherwise).

T = W 10%
P Option 2

|| Lossing 100 euros for sure.

\\\ ’/'I‘
% \\.._ = //’
0% —— -100 €
1000 €
7 o
Iprefer: oOptionl o©Option2
Screenshot A: Risky context
Which option do you prefer?
Option 1
The two experts disagree on the risk you are facing.
Expert A: loosing 1000 euros with  40% Expert B: loosing 1000 euros with = 60%
probability (and 0 otherwise). probability (and 0 otherwise).
> a rm40% w W 60% Option 2

Lossing 500 euros for sure.

-500€

1000 ¢
[] oe

Iprefer: oOptionl ©Option2

Screenshot B: Ac context

Figure 3.4.2: Screenshots of typical choice tasks

In addition to this series of about 100 choices (i.e., 20 prospects times a
number of choices between 3 and 7), we introduced 6 choice questions, at the end
of the questionnaire, to check the reliability of the data. The participants were
asked to give their preference for the following six choice questions: prospects 1-3-
16-18-11-13 vs. their expected value. We then can check for the consistency of the
answers the respondents gave to the six questions for which we have two state-

ments per subject.
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The sequence of presentation of the twenty prospects (prospects 1-18-10-
12-4-16-7-15-11-3-20-9-14) was chosen to have questions with different contexts
alternating and with different magnitudes of losses and different probability levels.
It was the same for all the subjects who thus completed exactly the same question-
naire. The program did not enforce dominance and allowed the participants to

modify their answer after confirmation if they wish.

3.4.4. Elicitation technique

In this experiment, five risky prospects of the form x.50y and five risky
prospects of the form —1000p0, where the probability p of losing —1000€ varied
from 10 to 90 were used to simultaneously elicit parametric estimations of the
value function u(.) and of the probability weighting function w(.). We used the five
Al prospects and the five Ac prospects, with the normalization conditions
u(—1000)=-1 and u(0)=0, to estimate the decision weights under imprecise am-
biguity (W') and under conflicting ambiguity (W¢). Note that under the represen-
tation previously assumed (see 3.3.2), Xx[p—r,p+r]y~z is equivalent to
Wi([p—r,p+r]))=—u(z) and x{p—-rp+r}y~z is also equivalent to
We({p—r,p+r})=—u(z). This means that decision weights are equal to the utility of
the certainty equivalents. Then, to proceed with the analysis, revealed beliefs can

be computed using the following equivalence:

Wi([p—r,p+r]) = —u(z)
& w(d([p-rp+r])) = —u(z)
& q([p—rp+r]) = w(—u(z))
and
We({p—r,p+r}) = —u(z)
=  w(q({p-rp+r})) = —u(z)
q({p—rptr}) = wi(—u(z)).

Consequently, knowing w, we can deduce revealed beliefs from decision

weights. We will thus be able to study revealed beliefs for several levels of proba-
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bility. Lastly, we will use these values to obtain a linear approximation of q' and q¢

so as to compute the sensitivity indexes and the ambiguity aversion indexes.

3.5. Results

3.5.1. Data reliability

In this article reliability refers to participants’ stability (or consistency) for
the six questions that were presented twice (prospects 1-3-16-18-11-13 in Table
3.4.1). Across questions the mean reliability rate is 77.32%. This means that on
average about 3/4 of the participants gave the same answer when the identical
choice task was presented twice. Table 3.5.1 gives the consistency rate for each
question. A Friedman test reveals that the consistency rate does not significantly
depend on the informational context (x*;=2.15; p=0.341). Similarly, a Cochran
test for dichotomous data shows that reliability does not significantly depend on
the question (x?s=9.98; p=0.076). The overall picture thus suggests that partici-
pants were consistent in their responses and that the elicited preferences are reli-

able.

Table 3.5.1. Consistency check

Context Risk Ac Al
Prospect number 1 3 16 18 11 13
Number of consistent subjects 42 54 45 44 51 47
Consistency rate 69% 89% 74% 72% 84% 77%

3.5.2. Utility function

For each participant, the utility function and the probability transformation
function were simultaneously obtained from the ten certainty equivalents under
risk using standard nonlinear least square regression (Levendberg-Marquadt algo-
rithm). Parametric estimation of the utility function in the loss domain was con-
ducted using the power functional form u(x)=—(—x)#, x<0. The median is 1.13,

the mean 1.26 and the standard deviation 0.52. A two-tailed #test on the mean
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estimate [3 reveals that it is significantly greater than 1 (ts0=3.99; p=0.000) indi-
cating concavity of the utility functions. Though one might expect to obtain a con-
vex utility function, it is noteworthy that in the loss domain, results on utility func-
tions tend to be rather mixed. Recent experimental studies for instance have re-
ported convex utility functions but have also show that, at the individual level,
there are always some subjects exhibiting concave utility functions (e.g., Abdel-
laoui, Bleichrodt and Paraschiv 2007; Abdellaoui 2000; Tversky and Kahneman
1992; Fennema and Van Assen 1999; Etchart-Vincent 2004). Abdellaoui, Bleich-
rodt and L’'Haridon (2007) for instance have reported linear utility functions for
losses between 0 and —10,000€; and in Abdellaoui, Bleichrodt and Paraschiv
(2007), the utility function is convex between 0 and —100,000FF (0 and
—15,000€). More generally, in the loss domain, two phenomena generate different
effects: one effect, called diminishing sensitivity (Tversky and Kahneman 1992)
implies convexity of the utility function and is strongly related to the numerosity
effect (see Kobberling et al. 2007), but the neoclassical decreasing marginal utility
- the second effect - generates concavity. Our results therefore suggest that for
small amounts (between 0 and —1000€), the impact of diminishing marginal utili-

ty exceed the impact of diminishing sensitivity.

3.5.3. Weighting function

Parametric estimations of individual weighting functions were conducted
using Goldstein and Einhorn’s (1987) two-parameter specification,
w(p)=6pY/(8pY)+(1—p)v. This specification has been frequently employed in re-
cent experimental studies (e.g., Latimore et al. 1992; Tversky and Fox 1995; Abdel-
laoui 2000; Etchart-Vincent 2004) because it provides a clear separation between
two physical properties of the function, elevation and curvature, each of which is
captured independently by a parameter (Gonzalez and Wu 1999). The § parame-
ter mainly controls the elevation of the function and thus the attractiveness of the
gamble, whereas the y parameter essentially governs the curvature of the function
and captures the decision-makers’ ability to discriminate between probabilities.

Table 3.5.2 gives the median and mean estimates of the parameters.
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Table 3.5.2. Summary statistics for parameters of the weighting function

Parameter Median Mean SD
1) 0.72 0.75 0.33
y 0.73 0.86 0.49

A two-tailed t-test shows that § is significantly smaller than 1 (teo=—6.00;
p=0.000). This indicates that the probability weighting function exhibits a small
degree of elevation and reflects the fact that on average the participants perceived
the negative risky gambles as attractive ones. Although such a small degree of ele-
vation may be surprising in the loss domain, Abdellaoui (2000) obtained a similar
result with § = 0.84; and Etchart-Vincent (2004) reported § smaller than 1 for
both small and large losses (6 = 0.84 and 6 = 0.85 respectively). Concerning the
curvature of the probability weighting function, the estimate of y is significantly
smaller than 1 (teo=—2.24; p=0.029, two-tailed t-test), indicating that the proba-
bility weighting function exhibits the usual inverse S-shape. This estimate of y is in
accordance with previous empirical estimates in the loss domain: Abdellaoui
(2000) for instance reported y = 0.65 and Etchart-Vincent found y = 0.836 and y

=(0.853 for small and large losses respectively.

3.5.4. Revealed beliefs

One novelty of this study is that estimated degrees of beliefs are not “judged
probabilities” (i.e., a subjective probability given through a direct judgment) but
revealed beliefs (i.e., a belief component derived from choices). In this article, par-
ticipants’ beliefs are indeed determined through choices and directly inferred from
certainty equivalents using Wakker’s (2004) theorem. Table 3.5.4 reports the re-
vealed beliefs’ mean and median values (as well as the standard deviations) of the
revealed beliefs in the two ambiguous contexts (called q' and q¢). It also gives the

results of two-tailed ¢tests with midpoint probabilities.
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Table 3.5.4. Mean, Median (SD) values for revealed beliefs

Midpoint Revealed Belief
Probability qc qi

0.1 Mean 0.06™ (AS) 0.19"" (AA)
0.3 0.31 0.33

0.5 0.49 0.53

0.7 0.73 0.73

0.9 0.90 0.86™ (AS)
0.1 Median  0.04 (0.07) 0.13 (0.16)
0.3 0.30 (0.15) 0.31 (0.15)
0.5 0.50 (0.19) 0.54 (0.13)
0.7 0.75 (0.13) 0.73 (0.15)
0.9 0.92 (0.08) 0.88 (0.11)
*p<0.05, #p<0.01 ; #0%p <0.001.

AA/AC: Ambiguity Aversion/ Ambiguity Seeking

Patterns depicted in Table 3.5.4 show that for medium probabilities, re-
vealed beliefs do not differ from midpoint probabilities. In such cases, revealed
beliefs are almost equal to p, the probability of the risky loss, leading participants
to be “neutral to ambiguity” (cf. We¢ and Wi are not different from w). However,
such neutrality to ambiguity is no more present when participants are exposed to
ambiguous losses with extremes probabilities. This is true in particular in the Al
context, where the revealed belief associated with the lowest range of probability
is significantly above the corresponding midpoint probability, indicating that par-
ticipants acted “as if” the probability of the Al loss was higher than the probability
of the risky loss (inducing ambiguity aversion). On the contrary, the Al revealed
belief associated with the highest range of probability is significantly below the

corresponding midpoint probability, inducing ambiguity seeking behavior.

Concerning the Ac context, the series of two-tailed #test reveals that re-
vealed beliefs associated with medium probability losses are not significantly dif-
ferent from the midpoint probability. This indicates, once again, that ambiguity
does not have any impact for medium probabilities losses (neutrality to ambiguity)
but does affect extreme probability losses. More specifically, the participants are
ambiguity seeking for low probability losses but are ambiguity neutral for high
probability losses - q¢<({0,0.2}) is significantly below p=0.1 but q({0.8,1}) is not

significantly different from midpoint probability.
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To complement the analysis of the impact of ambiguity on revealed beliefs,
we also tested for differences between the two revealed beliefs. The series of -
tests for paired samples reported in Table 3.5.5 confirm previous findings on deci-
sion weights. They show again that for extreme events, where ambiguity has an
impact on revealed beliefs, the kind of ambiguity matters. For instance, for very
unlikely losses, qi is significantly greater than g, reflecting a net preference for Ac
(over Ab). For very likely losses, the kind of ambiguity also matters but the respec-
tive effects of Al and Ac on revealed-beliefs are reversed: q' is significantly smaller
than q¢, suggesting that participants prefer Al over A¢ (conflict aversion) when fac-

ing very likely losses.

Table 3.5.5. Revealed beliefs:

results of two-tailed paired #tests

Midpoint Revealed beliefs
probability q¢<— ¢!

0.1 teo=—6.37"" (CS)
0.3 teo=—0.91

0.5 teo=—1.43

0.7 t60=0.05

0.9 teo=3.5"" (CA)

*p<0.05;  *p<0.01; *#*p<0.001.
CA/CS: Conflict Aversion/ Seeking

Figure 3.5.3 (below) illustrates these results graphically. It first shows that
for medium probabilities, revealed beliefs are not different from midpoint proba-
bilities. This means that ambiguity has no impact on revealed beliefs associated
with medium probabilities. Second, the figure makes clear that for extreme proba-
bility losses (i.e., very likely and very unlikely losses), where ambiguity has an im-
pact on revealed beliefs, the source of ambiguity does matter. The figure indeed
shows that whereas q' starts above the 45° (leading to ambiguity aversion),
crosses the line near 0.9 and ends below the 45° diagonal (leading to ambiguity
seeking); qc starts below the 45° line (leading to ambiguity seeking) and tends to
finish above it (reflecting a tendency to ambiguity aversion). Third, the figure also
clearly depicts the finding that even if both the qi and q¢ revealed beliefs belong to

the range [p—r,p+r], represented by the two parallel dashed lines above and below
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the 45° line, they do not look like a constant linear combination of the two end
points of the range or set of probabilities. This finding will be confirmed by the

analysis of the sensitivity indexes in paragraph 4.5.
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Figure 3.5.3: Revealed beliefs (q' and q¢ median values)

3.5.5. Indexes of sensitivity and ambiguity aversion

This subsection proceeds with the analysis conducted in 3.5.4 and tries to
understand something of the causes of participants’ attitude to ambiguity by ana-
lysing the sensitivity index and the ambiguity aversion index (see 3.3.2). Partici-
pants’ non neutrality to ambiguity can indeed result from two distinct but com-
plementary mechanisms (see Wakker 2004): they can exhibit a dispreference (or a
preference) for ambiguity because they consider that ambiguous gambles are in-
herently less (or more) attractive than risky gambles (cf. ambiguity aversion). But,
their reaction to ambiguous gambles can also result from a more “cognitive” effect
of vaguely known probabilities on their ability to discriminate between different
levels of likelihood (cf. sensitivity index). Table 3.5.6 (below) reports the mean
and median values of the sensitivity and ambiguity aversion indexes we obtained
using linear optimization: qi([p—r,p+r]) is approximated by ai+bi*p and
q°({p—r,p+r}) by a“+b*p.
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First, a series of two-tailed #test on the ambiguity aversion index, which
measures the global elevation of revealed beliefs, indicates that Al generates signif-
icant ambiguity aversion (ai+bi/2 is significantly higher than %; te0=2.94;
p=0.005). In the loss domain indeed, the higher the index, the more ambiguity
averse the participants are. These #tests also show that contrary to A}, the Ac con-
text does not induce any specific effect (ac+bc/2=0.50; ts0=0.04; p=0.97). An ad-
ditional #-test for paired sample confirms that participants are significantly more
ambiguity averse under Al than under Ac (ai+bi/2>ac+b</2; teo=2.75; p=0.008).
In this experiment, thus, Ai clearly generates higher beliefs than risk and Ac do.
Since the participants were presented with negative outcome, this finding indi-
cates that participants found, on average, the Al prospects less attractive than the

Ac and risky prospects.

Table 3.5.6: Ambiguity aversion and Sensitivity indexes

mean, median (SD) values and results of two-tailed #test

Index of Comparison to Ac Al

Mean Median (SD) Mean Median (SD)
Ambiguity 1/2 0.50 0.50(0.06) 0.53" 0.53(0.08)
aversion (a+b/2)
Sensitivity(b) 1 1.05° 1.04 (0.20) 0.87™ 0.94 (0.27)

 p<0.05; " : p<0.01; " : p<0.001.

Second, the analysis reveals that the two sensitivity indexes are significantly
different from 1. This indicates that both sources of ambiguity had an impact on
participants’ discriminability. There is nevertheless a key difference between the
two sensitivity indexes: while the sensitivity index is significantly smaller than 1 in
the Al context (tso=—3.84; p=0.000), it is significantly higher than 1 in the Ac con-
text (ts0=2.07, p=0.042). This finding suggests that Al decreases the participants’
ability to distinguish among various levels of likelihoods (by comparison with their
ability to discriminate between precise probabilities). The effect of Al on revealed
beliefs therefore corresponds to “less sensitivity under imprecise ambiguity than
under risk”. On the other hand, the finding that the sensitivity index is greater than
1 in the A¢ means that the participants are more sensitive to changes in conflicting
probabilities than they are to changes in precise probabilities. This “over-

sensitivity” phenomenon results from a strong sensitivity to extreme cases (i.e.,
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cases where one expert says that the loss is sure and cases when one expert says it
is impossible). An additional #test (for paired sample) confirms that both indexes
are significantly different from each other (t=6.83; p=0.000). We can therefore
conclude that, in this experiment, the participants are less sensitive to changes of
probability levels when receiving imprecise probabilities of the form “both sources
agree that the probability of loosing belongs to the interval [p—r,p+r]” than when
they face an Ac situation where one source of information says that the probability

of the target event is p—r but the other source says it is p+r.

To conclude, the analysis interestingly reveals that the results we obtained
for decision weights and revealed beliefs can be explained by i) the negative im-
pact of imprecision on the attractiveness of prospects and ii) by the opposite im-
pacts of imprecise and conflicting ambiguities on sensitivity. In other words, under
Ac, the “non-neutrality” towards ambiguity is mainly due to a stronger sensitivity;
but under Aj, it results from the combined effects of imprecise probability on both
the attractiveness of the gamble (i.e., ambiguity aversion) and on participants’ abil-
ity to discriminate between different levels of likelihood (i.e., weaker sensitivity

than under risk).

3.6. Discussion

The experimental design we used to study the properties of decision
weights and revealed beliefs might raise some objections as it did not involve any
real incentive mechanism. In addition to Camerer and Hogarth (1999)’s argument
that for simple tasks (such as a certainty equivalent task without any performance
measure) real incentives do not systematically make any difference, there is
another reason for this methodological choice: in this study, the use of real incen-
tives would have confounded the description of the informational contexts by in-
troducing strategic interaction between the subject and the experimenter. Consid-
er for instance an experiment in which a subject receives x€ as an initial endow-
ment and then is asked for his/her certainty equivalent of the prospect
—x[0.6,0.8]0. The subject can anticipate that an experimenter facing his/her bud-

getary constraint will minimize the cost of the experiment by implementing the
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worst case. Consequently, the subject may consider [0.6,0.8] as being 0.8 for sure.
This kind of anticipations would have prevented us from studying the effects of

ambiguity on decision weighs and beliefs.

There exist several alternatives in the literature for this kind of problems:
the first one consists in using balls and urns with an adequate display but we
wanted to study the impact of the informational contexts (imprecision and conflict
of experts). Some experimental displays used participants as experts (e.g. Budescu
&Yu 2007) but cannot control for experts beliefs: agreement or not, imprecision or
not, width of the estimations. As a conclusion of this point, we chose hypothetical
choices so as to control for amounts (significant losses), for contexts and for prob-

abilities.

The experimental design might raise a second critique: in this research, re-
vealed beliefs are derived from certainty equivalents, whereas in Abdellaoui et al.
(2005), choice-based probabilities are directly obtained by finding indifference
between a risky and an uncertain prospect. Since revealed beliefs and choice-
based probabilities should be equivalent assuming transitivity of preferences, it
could be asked why the same technique was not applied here. The answer to that
question is that during a pilot study, it appeared that asking participants for
choice-based probability made them focus on the probability dimension (see
Tversky, Sattath and Slovic 1988 for the effects on preferences of the response
scale used). As a result, they tended to systematically compute the midpoint of the
ambiguous probabilities [p—r,p+r] and {p—r,p+r}; and the averaging strategy
ended up to be very common. Consequently, we introduced a certainty equivalents
task to allow the participants to consider the two dimensions of the choice. It is
noteworthy that this methodological strategy also contributes to prevent subjects

from easily guessing what the main purpose of the experiment was.

In the literature review, we introduced an alternative family of models: mul-
tiple priors. We would like to stress three points that explain why we did not use
them. First, the only model that is directly observable is Gajdos et al.’s (2007) one
because they postulate the existence of a given family of possible distributions

while other multiple prior models have a nonobservable subjective set of priors.
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Indeed, estimations, which assume that the subjective set corresponds to the given
one, are quite abusive (e.g.. Then, multiple prior models are founded on Expected
Utility under risk while we found significant probability weighting, i.e., significant
deviation from a linear treatment of probabilities. Eventually, we found that atti-
tudes (ambiguity aversion or ambiguity seeking) depend both on probability and
on contexts while these models assume a constant attitude (e.g. Gilboa & Schmeid-
ler 1989; Gajdos et al 2007). In our data, we can observe significant these changes

of behaviors even at the certainty equivalent level.

3.7. Conclusion and further research

The purpose of this chapter was to investigate the potential effects on deci-
sion of imprecision or conflict of experts. These situations were modeled through
Imprecise Ambiguity or Al (where the decision maker learns that the probability of
the uncertain target event belongs to a probability interval) and, Conflicting Ambi-
guity or Ac¢ (where the decision-maker receives precise but different estimates of
the likelihood of an uncertain target event). To achieve its objective, the chapter
first provided a general framework based on the Cumulative Prospect Theory for
studying revealed beliefs under different informational contexts. By providing a
coherent framework that is able to accommodate the pattern of behavior under
ambiguity observed in most experimental studies, this chapter contributes to the
literature on ambiguity (Camerer and Weber 1992; Ellsberg 1961). Another con-
tribution of the chapter is to extend Wakker (2004)’s revealed-preference study of
decision weights and beliefs to two specific kinds of uncertain contexts which, even
though they are common operationalizations of ambiguity in the experimental lite-
rature on ambiguity, have been neglected in the literature on decomposition of
decision weights. The chapter therefore also contributes to the literature on deci-
sion weights (e.g. Abdellaoui et al. 2005) by extending its scope of investigation to

new informational contexts.

Eventually, let us return to the series of claims stated in the introduction to

assess the contributions of the research.
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i) Agents do not use the mean estimation.

Research on attitude towards ambiguity has speculated that nonneutrality
to ambiguity (i.e. ambiguity aversion or ambiguity seeking) results from the fact
that decision-makers probability judgments of ambiguous events are different
from the precise probability of their risky counterpart (i.e., the midpoint of the
range of probability). Budescu et al. (2002) for instance have suggested that deci-
sion-makers’ probability judgments under ambiguity are a weighted combination
of the two end points of the range of probability. To estimate participants’ attitude
to ambiguity, they estimated, for each participant, a single “probability vagueness
coefficient”. In the loss domain, for instance, if the estimated probability vague-
ness coefficient of a participant is below % (resp. above), this means that the par-
ticipant gives more weight to the upper bound of the probability interval and then,

is ambiguity averse (resp. ambiguity seeking).

One limitation of that approach is that it cannot capture the common finding
that attitude towards ambiguity depends on the location of the probability (Ca-
merer and Weber 1992; Viscusi and Chesson 1999). In this article, we therefore
adopted a different viewpoint: we introduce the notion of revealed belief to allow
the weighted combination of the two end points to vary along the probability in-
terval. Our experiment confirms the need for such an approach as it shows that
the weighted combination of the two end points depends on the location of the
midpoint probability. In the Ac context for instance, revealed beliefs for very un-
likely events are above the midpoint probability (i.e., more weight is given to the
upper bound of the probability interval) but they are below the midpoint probabil-
ity for very likely events (i.e. weight is given to the lower bound of the probability

interval).

[t is noteworthy that the highest sensitivity of decision weights for extreme
probabilities we observed in this experiment is in line with previous research on
decision weights. Wu and Gonzalez (1996, 1999) in particular highlight that dimi-
nishing sensitivity (i.e. sensitivity decreases when the distance from the reference
points “impossibility” and “certainty” increases) affects both decision weights un-

der risk and uncertainty. As a consequence, it is more likely to observe significant
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changes in sensitivity near those reference points than for medium probability
events. For such events indeed the distance from the reference points is higher

and thus the sensitivity to changes in likelihood is smaller.

ii) The information structure (imprecision/conflict) has a significant impact

on the agents’ attitudes

Until Smithson (1999), the experimental literature on ambiguity has as-
sumed that the type of ambiguity, conflict or imprecision, does not matter. In this
research, we experimentally tested this assumption and we compared revealed
beliefs in two different sorts of ambiguity commonly used in the literature: impre-
cise ambiguity (A!) and conflicting ambiguity (Ac). Our experimental results sup-
port Smithson (1999) as they make clear that decision-makers do not equivalently
react to the two kinds of ambiguity. We indeed found that the way extreme proba-

bilities are weighted significantly depends on the kind of ambiguity.

In particular, tests on the Al and Ac revealed beliefs strongly suggest that the
Al and A< revealed beliefs could be modelled as slightly different non-additive li-
near combinations of the upper and lower bounds of the probability set (or range):
the Al revealed belief function would tend to be inverse S-shape (sub-additive

function) but the Ac revealed belief function would rather have an S-shaped form.

Lastly, analysis of the ambiguity aversion and sensitivity indexes hig-
hlighted the fact that implementing ambiguity through imprecision decreases par-
ticipants’ discriminability and makes them more pessimistic while conflicting am-
biguity generates “over-sensitivity”. These results, all pointing in the same direc-
tion, therefore strongly suggest that ambiguity does not correspond to a unique,
homogeneous set but congregates informational contexts that are differently
treated by decision makers and induce different responses. In this article, by
stressing the impact of the source of ambiguity (i.e., imprecision or conflict) on
revealed beliefs we therefore contributed to further the analysis of source depen-

dency (Tversky and Fox 1995, Tversky and Wakker 1995, Kilka and Weber 2001).

iii) Between two conflicting probability assessments, an extreme probabili-

ty (0 or 100%) has a higher impact than an intermediate one.
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Under ambiguity, we found that conflict decreases revealed beliefs for low
probabilities and increases them for high probabilities. This result should be asso-
ciated with recent findings in the literature: Budescu & Yu (2007) find that deci-
sion makers’ confidence is positively correlated with extremeness of advisors (an
advisor that says the probability is 0 or 1). It seems that extremeness gives more
weight to the expert in terms of advisor’s confidence. It is noteworthy that this
effect counterbalances the usual “less sensitivity under ambiguity” effect. The re-
veal belief for {0.8,1} being not significantly different from the mean evaluation can
be explained by the combination of the less sensitivity effect and of the extreme-
ness effect that cancel each other. Further research to disentangle those two ef-

fects has still to be conducted.
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Appendix

Table 3.A.1 (below) - based on Wakker (2004) - visually presents the in-
dexes of sensitivity and ambiguity aversion and illustrates how the combination of
the two different psychological processes combine together to create(s) a non ad-

ditive revealed-belief exhibiting some elevation.

Table 3.A.1. Representations of the degrees of sensitivity and ambiguity aversion of
revealed beliefs

Less sensitivity to Same sensitivity to More sensitivity to
ambiguity than to ambiguity as torisk ~ ambiguity than to
risk b<1 b=1 risk b>1

Ambiguity
Seeking in
the loss
domain
a+b/2<1/
2

Ambiguity
Neutrality
a+b/2=1/
2

Ambiguity
Aversion
a+b/2>1/
2
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The box in the middle of the table depicts a revealed-belief without any am-
biguity aversion or ambiguity seeking and with the same sensitivity to ambiguity
as to risk. The rows above and below the neutrality row then depict the preference
or dispreference for ambiguous lotteries (over risky lotteries) that could arise, in-
dependently of any effect of ambiguity on the ability to discriminate between dif-
ferent levels of likelihoods. The interpretation of the attractiveness obviously de-
pends on the domain of the outcome. In the loss domain, a shift-down of the re-
vealed belief (a+b/2<1/2) reflects ambiguity seeking because the revealed-belief
for the ambiguous lottery is below the midpoint probability p at all levels. On the
contrary a shift-up of the revealed belief (a+b/2>1/2) (in the loss domain) tra-
duces the fact that the participant(s) considers the probability of losing with the
ambiguous lottery is larger than the probability of losing with the risky lottery at
all levels. The participant thus exhibits ambiguity aversion. The opposite interpre-

tation holds in the gain domain.

By moving now from the column in the middle to the left-hand column or
the right-hand column, we consider another kind of deviation: b, the slope of the
function q, measures the decision-maker’s sensitivity to changes in probabilities. b
equals 1 reflects the fact that the participant exhibits exactly the same sensitivity
to ambiguity as to risk: ambiguity does not affect the his/her ability to distinguish
among various likelihood levels. On the contrary, when ambiguity affects the par-
ticipant’s discriminability, b is different from 1. In that case, the participant is said
to have less sensitivity to ambiguity than to risk when b<1 (right-hand column)
and to have more sensitivity to ambiguity than to risk when b>1 (left-hand col-

umn).

According to subsection 3.5.5, there is significant ambiguity aversion under
imprecise ambiguity only and revealed beliefs exhibit significantly less sensitivity
to Ai than to risk and more sensitivity to Ac than to risk. Table 3.A.2 displays these

results:
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Table 3.A.2. Our results

Less sensitivity to Same sensitivity to  More sensitivity to
ambiguity than to risk ambiguity as to risk ambiguity than to risk
b<1 b=1 b>1
Ambiguity
Seeking in
the loss
domain
a+b/2<1/2
Ambiguity //2
Neutrality o 4
a+b/2=1/2 /!
03 P4

Ambiguity
Aversion -
a+b/2>1/2 .,

173



References

Abdellaoui, Mohammed (2000), “Parameter-free elicitation of utility and probabili-
ty weighting functions,” Management Science 46(11): 1497-1512.

Abdellaoui, Mohammed, Frank Vossmann & Martin Weber (2005), “Choice-Based
Elicitation and Decomposition of Decision Weights for Gains and Losses Under

Uncertainty,” Management Science 51(9): 1384-1399.

Abdellaoui, Mohammed, Han Bleichrodt & Olivier L'Haridon (2007), “A Tractable
Method to Measure Utility and Loss Aversion under Prospect Theory,” In prep-

aration, iMTA/iBMG, Erasmus University, Rotterdam, the Netherlands.

Abdellaoui, Mohammed, Han Bleichrodt & Corina Paraschiv (2007), “Measuring
Loss Aversion under Prospect Theory: A Parameter-Free Approach,” Manage-

ment Science: forthcoming.

Bostic, Raphael, Richard |J. Herrnstein, & R. Duncan Luce (1990), “The Effect on the
Preference-Reversal Phenomenon of Using Choice Indifferences,” Journal of

Economic Behavior and Organization 13, 193-212.

Budescu, David V. (2006), “Confidence in aggregation of opinions from multiple
sources,” In K. Fiedler, & P. Juslin (Eds.), /nformation sampling and adaptive

cognition (pp. 327-354). Cambridge: Cambridge University Press.

Budescu, David V., Kristine M. Kuhn, Karen M. Kramer, & Timothy R. Johnson
(2002), “Modeling Certainty Equivalent for Imprecise Gambles,” Organization-

al Behavior and Human Decision Processes 88, 748—768.

Budescu, David V. & Hsiu-Ting Yu (2007), “Aggregation of Opinions Based on Cor-
related Cues and Advisors,” Journal of Behavioral Decision Making 20: 153-

177.

Cabantous, Laure (2007), “Ambiguity aversion in the field of insurance: insurers’
attitude to imprecise and conflicting probability estimates,” Theory and Deci-

sion, 62:219-240.

174



Camerer, Colin & Robin Hogarth (1999), “The effect of financial incentives in expe-
riments: A review and capital-labor-production framework,” Journal of Risk

and Uncertainty, 19: 7-42.

Camerer, Colin & Martin Weber (1992), “Recent developments in Modeling Prefe-
rences: Uncertainty and Ambiguity,” Journal of Risk and Uncertainty 5(4): 325-
370.

Clemen, Robert T. & Robert L. Winkler (1993), “Aggregating point estimates: A
flexible modeling approach,” Management Science, 39:501-515.

Clemen, Robert T. & Robert L. Winkler (1999), “Combining probability distribu-
tions from experts in risk analysis” Risk Analysis 19(2): 187-203.

Cohen, Michele, Jean-Yves Jaffray & Tanios Said (1985), “Individual behavior under
risk and uncertainty: an experimental study,” Theory and Decision 18: 203-

228.

Cohen, Michele, Jean-Yves Jaffray & Tanios Said (1987), “Experimental comparison
of individual behavior under risk and under uncertainty for gains and for

losses,” Organizational Behavior and Human Decision Processes 39(1): 1-22.

Dalkey, Norman C. (1969), “The Delphi method: An experimental study of group
opinions,”Report No. RM-5888-PR. The Rand Corporation.

Dean, Moira & Richard Shepherd, (2007), “Effects of information from sources in
conflict and in consensus on perceptions of genetically modified food,” Food

Quality and Preference 18(2):460-469

Delbecq, Andre L., Andrew H. Van de Ven & David H. Gustafson (1975), “Group

Techniques for Program Planning’, Glenview, IL:Scott Foresman.

Du, Ning & David .V. Budescu, (2005), “The Effects of Imprecise Probabilities and
Outcomes in Evaluating Investment Options,” Management Science 51:1791-
1803.

Einhorn, Hillel J. & Robin M. Hogarth (1985), “Ambiguity and Uncertainty in Prob-
abilistic Inference,” Psychological Review 92, 433—-461.

Ellsberg, Daniel (1961), “Risk, Ambiguity and the Savage Axioms,” Quarterly Jour-
nal of Economics 75, 643—669.

175



Etchart-Vincent, Nathalie (2004), “Is Probability Weighting Sensitive to the Magni-
tude of Consequences? An Experimental Investigation on Losses,” Journal of

Risk and Uncertainty 28(3): 217-235.

Fennema, Hein & Marcel A.L.M. van Assen (1998), “Measuring the Utility of Losses
by Means of the Tradeoff Method,” Journal of Risk and Uncertainty 17,
277-295.

Gajdos, Thibault, Takashi Hayashi, Jean-Marc Tallon and Jean-Christophe Vergnaud
(2007), “Attitude toward Imprecise Information” working paper, Université de

Paris 1.

Genest, Christian (1984), “Pooling operators with the marginalization property,”

Canadian Journal of Statistics, 12:153-163.

Ghirardato, Paolo, Fabio Maccheroni, & Massimo Marinacci (2004), “Differentiating
Ambiguity and Ambiguity Attitude,” Journal of Economic Theory 118,
133-173.

Gilboa, Itzhak & David Schmeidler (1989), “Maxmin Expected Utility with a Non-

Unique Prior,” Journal of Mathematical Economics 18, 141-153.

Goldstein, William M. & Hillel ]. Einhorn (1987), “Expression Theory and the Prefe-

rence Reversal Phenomena,” Psychological Review 94, 236—-254.

Gonzalez, Richard & George Wu (1999), “On the shape of the probability weighting
function,” Cognitive Psychology, 38: 129-166.

Ho, Joanna L.Y,, L. Robin Keller, & Pamela Keltyka (2002), “Effects of Outcome and
Probabilistic Ambiguity on Managerial Choices,” Journal of Risk and Uncertain-

ty24, 47-74.

Hogarth, Robin M. & Hillel ]. Einhorn (1990), “Venture Theory: A Model of Decision
Weights,” Management Science 36, 780—-803.

Kilka, Michael & Martin Weber (2001), “What Determines the Shape of the Proba-
bility Weighting Function under Uncertainty,” Management Science 47,

1712-1726.

Koébberling, Veronika, Christiane Schwieren, & Peter P. Wakker (2006), “Prospect-

Theory’s Diminishing Sensitivity versus Economics’ Intrinsic Utility of Money:

176



How the Introduction of the Euro Can Be Used to Disentangle the Two Empiri-

cally,” Theory and Decision, forthcoming.

Kunreuther, Howard C., Jacqueline Meszaros, Robin M. Hogarth, & Mark Spranca
(1995), “Ambiguity and Underwriter Decision Processes,” Journal of Economic

Behavior and Organization 26, 337-352.

Lauriola, Marco & Irwin P. Levin (2001), “Relating individual differences in Atti-
tude toward Ambiguity to risky choices,” Journal of Behavioral Decision Mak-

ing14(2): 107-122.

Savage, Leonard ]. (1954), “ The Foundations of Statistics.” Wiley, New York. (2nd
edition 1972, Dover Publications, New York.)

Slovic, Paul (1993), “Perceived Risk, Trust and Democracy,” Risk Analysis
13(6):675-682.

Smithson, Michael ]. (1999), “Conflict aversion: preference for ambiguity vs conflict
in sources and evidence,” Organizational Behavior and Human Decision

Processes79(3): 179-198.

Sniezek, Janet A. & Timothy Buckley (1995), “Cueing and cognitive conflict in
judge-advisor decision making,” Organizational Behavior and Human Decision

Processes 62:159-174.

Stone, Mervyn (1961), “The opinion pool,” Annals of Mathematical Statistics,
32:1339-1342.

Tversky, Amos & Craig R. Fox (1995), “Weighing Risk and Uncertainty,” Psycholog-
ical Review 102, 269-283.

Tversky, Amos & Daniel Kahneman (1992), “Advances in Prospect Theory: Cumu-
lative Representation of Uncertainty,” Journal of Risk and Uncertainty 5,

297-323.

Tversky, Amos, Shmuel Sattath, & Paul Slovic (1988), “Contingent Weighting in
Judgment and Choice,” Psychological Review 95, 371-384.

Tversky, Amos & Peter P. Wakker (1995), “Risk Attitudes and Decision Weights,”
Econometrica 63, 1255-1280.

177



Viscusi, W. Kip & Harrell Chesson (1999), “Hopes and Fears: the Conflicting Effects
of Risk Ambiguity,” Theory and Decision47(2): 157.

Wakker, Peter P. (2004), “On the composition of risk preference and belief,” Psy-
chological review 111(1): 236-241.

Winkler, Robert L. (1968), “The consensus of subjective probability distributions,”
Management Science 15:361-375.

Wu, George & Richard Gonzalez (1996), “Curvature of the probability weighting
function,” Management Science, 42: 1676-1690.

Wu, George & Richard Gonzalez (1999), “Nonlinear decision weights in choice un-

der uncertainty,” Management Science, 45(1), 74-85.

178



Chapter 4.
Combining Bayesian Beliefs
and Willingness to Bet
to Analyze Attitudes towards

Uncertainty

Abstract

Many deviations from Bayesianism have been found for choices under un-
certainty with unknown probabilities (“ambiguity”). General choice-based models
and qualitative tests have been developed in the economic literature. However,
tractable quantitative measurements of uncertainty- and ambiguity-attitudes pro-
vided so far were based on introspective psychological inputs, such as the anchor
probabilities in the influential venture theory of Einhorn and Hogarth. We provide
a choice-basis for the psychological approaches, thus introducing their tractable
quantitative measurements into economic models. To do so, we identify proper
sources of uncertainty, comprising events generated by a common mechanism and
with a uniform degree of ambiguity. For such sources we can define choice-based
probabilities and then (source-dependent) probability transformations. The latter
display attitudes towards uncertainty and ambiguity in tractable graphs. We dem-
onstrate the implementability of our approach in an experiment. The prevailing
phenomena towards uncertainty and ambiguity that we find comprise both aver-

sion and insensitivity.
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4.1. Introduction

Whereas most analyses of decision under uncertainty assume that risks can
be quantified through probabilities, most uncertainties in economics concern one-
shot events for which no probabilities are available (Keynes 1921, Knight 1921).
De Finetti (1931), Ramsey (1931), and Savage (1954) subsequently showed that
probabilities can still be defined for such one-shot events. These probabilities are
derived from observed willingness to bet, and express subjective (“Bayesian”) de-
grees of belief rather than objective frequentist data. Decisions are derived using
the expected utility model. Despite the early criticisms by Allais (1953) and
Ellsberg (1961), the Bayesian expected utility model has become the standard tool

for analyzing decision under uncertainty in economics.

Recent developments in behavioral and experimental economics have,
however, demonstrated the need to introduce more realistic and sophisticated
models that do account for Allais’ and Ellsberg’s criticisms. While Machina &
Schmeidler (1992) demonstrated, in their probabilistic sophistication model, that
Bayesian beliefs can still be reconciled with non-Bayesian decision attitudes as in
the Allais paradox, the problems posed by the Ellsberg paradox are more funda-
mental and have usually been taken to imply that beliefs must be non-Bayesian.
This chapter shows that a recent generalization of Machina & Schmeidler (1992)
by Chew & Sagi (2006a,b) can be used to nevertheless reconcile the Ellsberg para-
dox with Bayesian beliefs in many settings of interest to economic analyses. This
reconciliation can be used to greatly facilitate the analysis of uncertainty and am-
biguity. We need not develop new mathematical results to achieve our goals, but

we do develop new concepts to obtain our goals.

The first step to obtain our reconciliation is to distinguish between different
sources of uncertainty. A source of uncertainty concerns a group of events that is
generated by a common mechanism of uncertainty. In Ellsberg’s (1961) classical
two-color paradox, one source of uncertainty concerns the color of a ball drawn
randomly from an urn with 50 black and 50 red balls, and another source concerns
the color of a ball drawn randomly from an urn with 100 black and red balls in un-

known proportion. Alternatively, one source of uncertainty can concern the Dow
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Jones index, and another source the Nikkei index. Whereas probabilistic sophisti-
cation is usually violated across sources, as first demonstrated by the Ellsberg pa-
radox (explained later), within single sources it is often satisfied.!> Then, and this
is contrary to what has commonly been thought, probabilities can still be compa-
rable across sources. Key in this comparability, and the resulting reconciliation
with Bayesian beliefs, is to allow for different decision attitudes rather than differ-

ent beliefs across different sources.

The usefulness of distinguishing between different sources of uncertainty
was first advanced by Tversky in the early 1990s (Heath & Tversky 1991; Tversky
& Kahneman 1992; Tversky & Fox 1995). Hsu et al. (2005) found different brain
activities for different sources of uncertainty. Several studies have demonstrated
that decision behavior can be affected by the degree to which an agent feels com-
petent regarding the source (Fox & Tversky 1998, Kilka & Weber 2001). Grieco &
Hogarth (2007) re-examined a recent study by Camerer & Lovalla (1999), separat-
ing a belief component (overconfidence) from a general decision-component (per-
ceived competence). They found that the excess entry of entrepreneurial activities

is primarily driven by the decision-component rather than by beliefs.

Probabilistic sophistication within a source entails a uniform degree of am-
biguity for that source (Wakker 2007), which is why we call such sources uniform.
For such sources we can obtain probabilities that are not introspective as the anc-
hor-probabilities of Einhorn & Hogarth (2005, 2006), Kilka & Weber (2001), and
others, but that are entirely choice-based. Thus, by identifying uniform sources,
we give a economic (revealed-preference) basis to the psychological approaches,
and we introduce the tractability of these psychological approaches into the mod-

els popular in the economic literature today.

With choice-based probabilities available, we can define source-dependent

probability transformations. Thus we can completely capture attitudes towards

15 This combination of phenomena is supported by empirical evidence in Fox & Clemen

(2005) and Halevy (2007).
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uncertainty and ambiguity through convenient graphs. Quantitative measure-
ments of uncertainty attitudes through choice-based weighting functions were
presented before by Abdellaoui, Vossman, & Weber (2005) and Diecidue, Wakker,
& Zeelenberg (2007). These, however, concerned general weighting function that
do not achieve the tractability of the psychological measurements and that become
intractable for large state spaces.1® In our approach, the dimensionality of general

weighting functions is reduced, which makes them tractable.

Uniform sources can resolve a well known problem of classical Bayesian de-
cision models. This problem concerns the impossibility to distinguish between
symmetry based on information and symmetry based on absence of information
(Aragones, Gilboa, Postlewaite, & Schmeidler 2005). In our approach, we can
make this distinction while maintaining Bayesian beliefs, by allowing different de-
cision attitudes for different sources. All uniform sources satisfy the symmetry
mentioned, but parameters that we will introduce in this chapter can distinguish
between different levels of information for different sources. They will, for in-
stance, demonstrate that there is more information for risk than for the ambiguous

sources considered.

In an experimental implementation, we first introduce a new method for
measuring subjective probabilities. By using Chew & Sagi’s (2006a) exchangeabili-
ty, our method need not commit to any decision model. In this way we can identify
uniform sources while allowing for different decision attitudes across sources.
Unlike traditional measurements of beliefs from the psychological literature that
are based on introspective or hypothetical judgments, our method is based on re-
vealed preferences implemented through real incentives. We, therefore, call the
obtained probabilities choice-based. We applied our method to sources of uncer-
tainty taken from daily life, where we tested for uniformity. In five of the six cases
considered, uniformity was satisfied. The one violation that we found was similar

to the three-color Ellsberg paradox, where more than one mechanism of uncertain-

16 For a state space S a general weighting function requires 25-2 evaluations and is of a

higher cardinality.
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ty is involved. In the five cases where uniformity was verified, the obtained proba-
bility estimates were well calibrated relative to objective statistics that became

available later, supporting the validity of our elicitation method.

Our measurements of weighting functions can be applied to Choquet ex-
pected utility of Gilboa (1987) and Schmeidler (1989) and prospect theory of
Tversky & Kahneman (1992), where we completely capture attitudes towards un-
certainty and ambiguity for all prospects. Because we only use binary prospects,
for which virtually all nonexpected utility models coincide, such as the multiple
priors model (Gilboa & Schmeidler 1989), our findings are also relevant for those

other nonexpected utility models.

Most traditional methods for measuring utility are essentially based on ex-
pected utility, and the resulting utilities are distorted by deviations from expected
utility. We use a method introduced by Abdellaoui, Bleichrodt, & I’'Haridon (2007)
that gives correct utilities also if expected utility is violated. Whereas the mea-
surement of Bayesian beliefs and utility would suffice to completely capture deci-
sions under uncertainty under the traditional expected utility, additional mea-
surements are needed to capture decisions under uncertainty for the modern non-
expected utility models. Those additional measurements are provided through our

source-dependent probability transformations.

With Bayesian beliefs, utility, and source-dependent probability transfor-
mations measured, we can completely predict the behavior under uncertainty of
agents. We illustrate this point in an example concerning the homebias (French &
Poterba 1991), with investors systematically preferring domestic stocks to foreign
stocks beyond beliefs (subjective probabilities) or tastes (utilities). The bias is
explained by the different uncertainty attitudes displayed in our graphs. These
attitudes reflect interactions between beliefs and tastes that cannot be captured by
expected utility and that are typical of the modern non-Bayesian nonexpected utili-

ty models.

The main difference with alternative approaches in the recent economic li-
terature is that our approach is descriptive, whereas most of the recent economic

approaches have primarily been normatively oriented. They, for instance, usually
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assume expected utility for given probabilities, an assumption that is empirically
violated. In this sense our approach is closer to the descriptive approach of Ein-
horn & Hogarth (1985), Hogarth & Einhorn (1990), and a number of follow-up
papers, summarized hereafter as Hogarth et al. These authors developed an in-
fluential psychological theory of ambiguity, with tractable graphs similar to the
ones that we will introduce later. This chapter can be interpreted as a decision-
theoretic foundation of Hogarth et al.’s model and the probabilities used therein
(Hogarth & Einhorn 1990, p. 799). Section 4.10 will demonstrate how our ap-
proach can indeed be used to predict decisions. The phenomena that will come out
as major components of uncertainty attitudes from our revealed-preference based
data, aversion and likelihood insensitivity, agree with the psychological phenome-

na advanced by Hogarth et al.

The organization of this chapter is as follows. Section 4.2 presents prelimi-
naries, and §4.3 informally introduces sources of uncertainty, showing that they
lead to a reconciliation of the two-color Ellsberg urn with Bayesian beliefs. The
particularly tractable uniform sources are introduced in §4.4, with the ways to
model different attitudes towards uncertainty and ambiguity displayed in §4.5.
Section 4.6 presents indexes of aversion and insensitivity towards uncertainty.
Section 4.7 describes the method of our experiment, and §4.8 gives results on the
Bayesian concepts of subjective probabilities and utilities. Results on the novel,
non-Bayesian, concepts of this chapter, concerning attitudes towards uncertainty
and ambiguity, are in §4.9. Section 4.10 demonstrates how predictions about deci-
sion making can be derived in a convenient manner using our approach. Section

4.11 contains a discussion and §4.12 concludes.

4.2. Preliminaries

In our theoretical analysis, we assume the usual model of decision under
uncertainty of Savage (1954). Here S denotes a state space. One state is true, the
other states are not true, and the decision maker does not know for sure which
state is true. Subsets of S are events. The outcome setis R+, designating nonnega-

tive amounts of money. (Ei:xi,...En:Xn) denotes an act, which is a mapping from S

184



to R+. The Ejs are events that partition S, the x;s are outcomes, and the act assigns
xj to each state in event E;. Acts take only finitely many different values (nelN). >
denotes the preference relation of a decision maker over the acts. We assume
weak ordering throughout, i.e. > is complete and transitive. The symbols > (strict
preference), ~ (indifference or equivalence), and < and < (reversed preferences)
are as usual. For each act, the certainty equivalentis the sure amount that is indif-
ferent to the act. Expected utility holds if there exist a utility functionU : R+ - R

and a probability measure P on S such that preferences maximize (E1:x1,....En:Xn) —

jilp(E]‘)U(X]‘), the expected utility of the act.

In the analyses of nonexpected utility for uncertainty and ambiguity, we will
only need two-outcome acts with gains. We use xEy as shorthand for (E:x, S-Y:y).
For these acts, virtually all static and transitive nonexpected utility theories known
today use the following evaluation. These theories include: (a) Kahneman &
Tversky’s (1979) original prospect theory; (b) Luce & Fishburn’s (1991) and
Tversky & Kahneman'’s (1992) new prospect theory; (c) Quiggin’s (1981), Gilboa's
(1987), and Schmeidler’s (1989) rank-dependent utility theory; (d) Gul's (1991)
disappointment theory, (e) Wald’s (1950) and Gilboa & Schmeidler’s (1989) mul-
tiple priors model. The major theory not incorporated is the one of Maccheroni,
Marinacci, & Rustichini (2006). Hence, the results of this chapter apply to virtually
all nonexpected utilities known today. This convenient feature of binary acts was
demonstrated most clearly by Ghirardato & Marinacci (2001). Luce (1991) and
Miyamoto (1988) also used the generality of binary acts. Any of these theories can
be used to derive predictions from our findings for acts with more than two out-

comes (Gonzalez & Wu 2003).

We first define nonexpected utility for uncertainty, when no probabilities
need to be given. A weighting function W assigns to each event E a number W(E)

between 0 and 1, such that:
() W(ZD) =0and W(S) =1;

(i) E>oF implies W(E) > W(F).
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Nonexpected utility holds for binary acts if there exist a strictly increasing utility

functionU : R — R and a weighting function W such that preferences maximize
for x>y, xEy » W(E)U(x) + (1-W(E))U(y). (4.2.1)
Obviously, if x < y then we interchange E and its complement S—E.

For calibrations of likelihoods of events, we arbitrarily fix a “good” and a
“bad” outcome. We take these to be 1000 and 0, the values used in the experiment
reported later. A bet on event E designates the act 1000EOQ, yielding 1000 if E and
nil otherwise. E and F are revealed equally likely, denoted E ~ F, if 1000E0 ~

1000F0. We next consider a stronger condition.

DEFINITION 4.2.1. Two disjoint events E1 and E; are exchangeable if exchang-
ing the outcomes under the events E1 and E; does not affect the preference value of
an act, i.e., always (E1:x1,E2:x2, ..., En:xn) ~ (E1:x2,E2:X3,...EniXn). A partition (Eq,...,.En)

is exchangeable if all of its elements are mutually exchangeable. O

Exchangeability of events implies that they are equally likely. Exchangeable
partitions were called uniform by Savage (1954), and they played a central role in
his analysis. We will use his term uniform for a slightly different and more general

concept.

Probabilistic sophistication holds if there exists a probability measure P on
S such that for each act (E1:xy,...,En:xn) the only relevant aspect for its preference
value is the probability distribution (p1:x1,...,pn:Xn) that it generates over the out-
comes, where p; = P(E)) for all j. In other words, two different acts that generate
the same probability distribution over outcomes are equivalent in terms of >=. The
probability of an event then captures everything relevant for preference evalua-
tions. Probabilistic sophistication maintains the probability measure P from ex-
pected utility but does not restrict the decision model over probability distribu-

tions, and this model may deviate from expected utility. In this chapter we also
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maintain the assumption that outcomes are state-independent. For state-
dependent generalizations of probabilistic sophistication, see Grant & Karni

(2004).

Under probabilistic sophistication, revealed equal likelihood is not only ne-
cessary, but also sufficient for exchangeability. That is, two events are exchangea-
ble if and only if they have the same probability. Under probabilistic sophistica-

tion, all events in an exchangeable partition (Ej,...,.En) have probability 1/n.

4.3. Reconciling the Ellsberg two-color paradox with Bayesian beliefs

Because the two-color Ellsberg paradox is well known, we use it to intro-
duce the main concepts of this chapter. We will demonstrate that this paradox can

be reconciled with Bayesian beliefs.

EXAMPLE 4.3.1 [Ellsberg two-color paradox]. Imagine a “known” urn con-
taining 50 Rk (Red from known) and 50 Bk (Black from known) balls, and an “un-
known” urn containing 100 R, (Red from unknown) and By (Black from unknown)
balls in unknown proportions. One ball is drawn randomly from each urn. People
commonly prefer to bet on colors from the known urn, i.e. 1000Rx0 > 1000R,0 and

1000Bx0 > 1000B,0.17 Under probabilistic sophistication we have

1000Rk0 > 1000R,0 = P(Rk) > P(Ry), (4.3.1)
and
1000Bx0 > 1000B,0 = P(Bk) > P(B.). (4.3.2)

17 This holds also if the color to bet on is their own choice, so that there is no reason to sus-

pect unfavorable compositions of the urn.
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However, Egs. 4.3.1 and 4.3.2 generate a contradiction in view of P(Rk) + P(Bx) = 1
= P(Ru) + P(Bu). The left-hand large probabilities cannot sum to the same as the
right-hand small probabilities. O

The above reasoning has traditionally been interpreted as a falsification of
the Bayesian modeling of beliefs. A first step in the reconciliation of the above ex-
ample with Bayesian beliefs concerns the distinction between different sources of
uncertainty. The uncertainties regarding the unknown urn in the above Ellsberg
example constitute one source, and the uncertainties regarding the known urn
constitute another source. The decision maker has a general dislike for the former

source relative to the latter..

For convenience, we will assume that sources are algebras, which means
that they contain S, &, they contain the complement of each of their elements, and
they contain the union of each pair of their elements. Then they also contain every
finite union and intersection of their elements. Extensions to domains other than

algebras are left to future works.

[t is conceivable that people do not have different beliefs for the known and
the unknown urn, but that instead they have different tastes for, and different de-
cision attitudes towards the two sources. People may simply dis/ike compositions
being kept secret, also if their beliefs about levels of likelihoods of favorable out-
comes are the same. In general, people may dislike unknown probabilities relative
to known probabilities for reasons beyond perceived differences of likelihood (Fox
& Tversky 1995). Hence, we no longer accept the implications in Egs. 4.3.1 and
4.3.2. Because of the symmetry in the known urn, Bx and Rk are exchangeable. Si-
milarly, By and Uy are exchangeable for the unknown urn. These exchangeabilities
suggest that all the events in question have subjective probability 0.5. Indeed, it is
hard to argue that the belief in a color from the unknown urn would be anything
other than fifty-fifty. The exchangeability used in this discussion is central in Chew

& Sagi’s (2006a, 2006b) model.
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Several authors have argued that beliefs should still be quantified through

probabilities 0.5 in the unknown Ellsberg urn. For example, Smith (1969) wrote:

“l grant the right of a man to have systematic and deliberate preferences for
rewards based on dice game contingencies over the same rewards based on Dow-
Jones stock price contingencies. ... But if he insists also that he is less than certain
that the Dow-Jones average will either rise or not rise by five points tomorrow,
then so far as I am concerned he is now making a “mistake.” He is entitled to his
tastes, but not to any new definitions of probability. Fortunately, this is not what
subject violators do. They merely violate the axioms, without the necessity for the
probabilistic interpretation [probabilistic interpretation refers to models that ab-

andon Bayesian beliefs].

[--.] As I see it, it is much more plausible to say that violators in “nonstan-
dard process” contingencies, such as the stock price example, suffer utility losses

(or gains) relative to what is experienced in less controversial “standard process

contingencies, such as dice games.” (p. 325)

A similar viewpoint, and many other citations, are in Winkler (1991). These
authors would usually seek to model ambiguity as an extra attribute of outcomes,
quantified through utility, a classical integral of which evaluates acts. We will not
follow this route, but leave utility unaffected, following Hogarth & Einhorn (1990)

in this respect:

“The view adopted here is that the value of an outcome received following a
choice made under certainty does not differ intrinsically from the value of the
same outcome received following a choice made under risk or uncertainty.” (p.

708)

We will use probability transformations rather than modifications of prob-
abilities (beliefs) or utilities (“tastes”) to capture ambiguity attitudes. These prob-
ability transformations need not reflect beliefs, in agreement with the views of
Smith, Winkler, and others, as they need not reflect tastes, in agreement with the

views of Hogarth et al. We prefer to interpret them as interactions between beliefs
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and tastes that take place at the level of decision attitudes and that are typical of

nonexpected utility.

4.4, Uniform sources

We call a source uniform if probabilistic sophistication holds with respect to
that source. Formally, this means that there exists a probability measure on the
events of the source such that the preference value of each act (E1:x1,...,.En:xn) with
all events Ej from the source depends only on the probability distribution that it
generates over outcomes. Such probability distributions are denoted
(p1:X1,...,.pn:Xn) With p; the probability P(E;), and are called /otteries. Under unifor-
mity, P will usually denote the relevant probability measure on the source without

further mention.

If a finite partition (E4,...,En) is exchangeable then the generated source
(consisting of unions of events from that partition) is uniform. Chew & Sagi
(2006a,b) showed that, under some regularity and richness conditions!8, a source

is uniform if and only if the following conditions hold.

E ~ F implies that E and F are exchangeable (holds for all uniform parti-

tions). (4.4.1)

For each pair of disjoint events, one contains a subset that is exchangeable

with the other. (4.4.2)

For each n there exists an exchangeable n-fold partition. (4.4.3)

18 Satisfied if the probability measure is atomless and countably additive on a sigma alge-

bra.
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This result shows that uniformity is a natural extension of exchangeability

from finite sources to rich (continuum) structures.

For a rich uniform source, we can elicit probabilities to any desired degree
of precision using a bisection method and Eq. 4.4.2 (see section 4.7). We can, for

example, partition S into two equally likely events E} and E3 that then must have
probability 0.5. We next partition E} into two equally likely events EZ and E3 that
must both have probability %, and we partition El into two equally likely events E3
and EZ that also have probability %. We continue likewise. This method will be

used in the experiment described later. We will then test some implications of the
displayed equations. The most well-known example of a nonuniform source is the

Ellsberg three-color example.

EXAMPLE 4.4.1 [Ellsberg three-color paradox]. Assume that an urn contains
30 R (red) balls, and 60 B (black) and Y (yellow) balls in unknown proportion.
People prefer betting on R to betting on B, which in classical analyses is taken to
imply that P(R) > P(B). People also prefer betting on [B or Y] to betting on [R or
Y], usually taken to imply P(B) + P(Y) > P(R) + P(Y), and then implying P(B) >
P(R) which contradicts the inequality derived before. The (ambiguity of the) urn
is not uniform, and events have different effects and interactions in different confi-
gurations, with the weight of Y particularly high in the presence of B but low in the

absence of B.

It may be argued that the three-color urn events concern the intersections
of events from two different uniform sources (Chew & Sagi 2006b; Ergin & Gul
2004). The events of the color being R or not-R can be embedded in a rich uniform
(and unambiguous) source. Whether the color is B or Y involves another random
mechanism concerning the composition of the urn, which in turn can be embedded
in a rich and uniform source. Our technique would then assign probability 1/3 to

the color R, and probabilities 2/3 x 1/2 = 1/3 to the other two colors. This is the
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most plausible Bayesian belief corresponding with the behavior of the decision

maker. O

We next consider an implication of probabilistic sophistication (with prob-
ability measure P) that will be useful for the analysis of ambiguity for uniform
sources in the next subsection. Under probabilistic sophistication, there exists a

function w such that?®

W() = w(P()). (4.4.4)

We call w the (choice-based) probability transformation (function). We call w a
weighting function only if the probabilities are objective and extraneously given.
Thus, a probability transformation w depends on the source considered, but the

weighting function w exclusively concerns the special case of given probabilities.

Under usual regularity conditions, w(0) = 0, w(1) = 1, and w is continuous
and strictly increasing. Substituting Eq. 4.4.4 in Eq. 4.2.1 results in the following
evaluation of lotteries, capturing all nonexpected utility theories for risk used to-

day. Writing p for P(E) and xpy for (p:x, 1-p:y), preferences maximize

forx>y, xpy » w(p)U() + (1-w(p))U(¥). (4.4.5)

If x < y then we interchange p and 1-p.

4.5. Uncertainty attitudes as modeled in the literature

Figure 4.5.1 depicts the main properties of W and probability transforma-
tions w (c.f. Hogarth & Einhorn 1990, Figure 1). The x-axis designates probabili-

19 The implication can be derived as follows. If P(E) = P(F), then 1000E0 ~ 1000F0. Subs-
tituting Eq. 4.2.1 shows that then W(E) = W(F). Thus, equality of P implies equality of W. It is well
known that then Eq. 4.4.4 follows.
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ties p, which need not be objective but can be choice-based. The y-axis designates
weights w(p), i.e. transformed probabilities. Fig. 4.5.1a displays expected utility
with a linear probability transformation. Fig. 4.5.1b displays a convex probability
transformation, where all probabilities are underweighted. For later purposes we

give one of the many equivalent ways to define convexity:
w is convexif w(q+p)-w(p)<w(q+p+e)-w(p+e)
for all >0 and £>0. (4.5.1)

Convexity of w implies low values of w, leading to low weights for good out-
comes and enhancing risk aversion. The more convex w is, the more risk averse
the person is and the more he will pay to obtain insurance. The overweighting of

unfavorable outcomes is also called pessimism.

Figure 4.5.1. Shapes of probability

transformations
1 1
W(p)T

% 0
Figure4.5.1a. P Figure4.5.1b.
Expected uti- Pessimism:
lity: linearity

convexity

Figure 4.5.1c. Figure 4.5.1d.
likelihood Common
insensitivity: finding
inverse-S

Fig. 4.5.1c displays an inverse-S shaped probability transformation w. For-
mally, it is often defined as concave in a left region and convex thereafter. Alterna-

tive definitions, called subadditivity, are in Tversky & Fox (1995) and Tversky &
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Wakker (1995). Because w is steep and generates large differences for both high
probabilities associated with the least favorable outcomes (see above) and for low
probabilities associated with the most favorable outcomes, such functions lead to
an extremity-orientedness of overweighting the best and worst outcomes and un-

derweighting the intermediate outcomes.

The inverse-S shaped probability transformations reflect a lack of sensitivi-
ty towards intermediate changes in likelihood, so that all intermediate likelihoods
are moved in the direction of fifty-fifty and the jumps from certainty to uncertainty
are overweighted. Hence, this phenomenon is also called /ikelihood insensitivity.
It enhances both the long-shot effect of risk seeking for low-probability high-gain
options, as in gambling, and risk aversion for small probabilities of unfavorable
outcomes as in insurance. That is, it resolves the classical economic paradox of the
coexistence of gambling and insurance (Hogarth & Einhorn 1990, p. 800; Tversky
& Kahneman 1992. p. 316). It also suggests that decisions will not be influenced
much by the updating of probabilities. These phenomena will be illustrated by
Example 4.10.2. Likelihood insensitivity resembles regression to the mean. It is,
however, not a statistical artefact, but a perceptual phenomenon that occurs in
actual decisions. Fig. 4.5.1d combines the two deviations from expected utility,

pessimism and likelihood insensitivity.

For general uncertainty we cannot draw graphs because the x-axis consists
of general events. (Resolving this problem for many cases will be a major contri-
bution of this chapter; see later.) The relevant properties of weighting functions

can, however, be defined analogously. For instance,

W is convexif W(AUB) — W(B) < W(AUBUE) — W(BUE) (4.5.2)

whenever all unions are disjoint, which naturally extends Eq. 4.5.1 to uncertainty.

Under usual richness, Eq. 4.5.2 agrees with Eq. 4.5.1 if W(-) = w(P(-)) for a proba-

bility measure P, illustrating once more that Eq. 4.5.2 is the natural analog of Eq.
4.5.1. Eq. 4.5.2 can be seen to be equivalent to the conventional definition of con-
vexity (W(AUB) + W(ANB) 2 W(A) + W(B)). Concavityresults if the inequalities

in Egs. 4.5.1 and 4.5.2 are reversed. Inverse-S can be defined as concavity for all
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events less likely than some threshold event, and convexity for all more likely
events. (It can also be defined in terms of subadditivity.) The properties for un-
certainty generate the same phenomena as for risk, with convexity related to pes-
simism and inverse-S to extremity-orientedness and likelihood insensitivity. Em-
pirical evidence suggests that uncertainty displays phenomena similar as risk does,
but to a more pronounced degree (Hansen, Sargent, & Tallarini 1999; Hogarth &

Einhorn 1990; Kilka & Weber 2001).

Comparative concepts can be defined, with one weighting function being
more convex or more inverse-S shaped than another. It can be done in a within-
person way (this person is more averse to investing in foreign stocks than in
home-country stocks; cf. Fox & Tversky 1995, p. 162) and in a between-person
way (Mr. A is more averse to investing in Dutch stocks than Mr. W). Formal defini-
tions and results are in Tversky & Fox (1995), Kilka & Weber (2001), Prelec
(1998), and Tversky & Wakker (1995). Illustrations are in §4.10.

Ambiguity is often taken as what uncertainty comprises beyond risk. Ambi-
guity attitudes can be examined in our analysis by applying the comparative con-
cepts to ambiguous sources versus given probabilities. More general comparisons,
between different sources that are all ambiguous, are possible this way. This will

be illustrated in §§4.9 and 4.10.

Theoretical studies in the economic literature, often normatively oriented,
have focused on aversion to risk and ambiguity, i.e. the phenomenon illustrated in
Fig. 4.5.1b (Dow & Werlang 1992; Mukerji & Tallon 2001; and many others). It is
often explained by a rational suspicion in social interactions that is transferred to
games against nature (Morris 1997, §3.) Empirical studies have found that the
phenomenon in Fig. 4.5.1c plays an important role too, both for risk (Abdellaoui
2000; Bleichrodt & Pinto 2000; Gonzalez & Wu 1999) and for ambiguity (Einhorn
& Hogarth 1986; Di Mauro & Maffioletti 2002; Tversky & Fox 1995; Wu & Gonzalez
1999).
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4.6. Indexes of aversion and insensitivity

The approach taken in this chapter will be not to commit to any of the phe-
nomena described in the preceding section. Instead, we will empirically observe
what uncertainty attitudes are, comprising both risk and ambiguity, basing our
analysis on a general decision theory for uncertainty. We will show that general
properties of ambiguity attitudes can be inferred visually from graphs without any
restriction imposed on what these properties are. Convenient quantitative indexes
will then be introduced for the two main properties suggested by preceding empir-

ical studies and illustrated in Figure 4.5.1, and we will let the “data speak.”

We can obtain global quantitative indexes of pessimism and likelihood in-
sensitivity using linear regression, illustrated in Figure 4.5.2. Assume that the re-
gression line of the probability transformation on the open interval (0,1)isp~ c +
sp, with c the intercept and s the slope. Letd = 1 — c — s be the distance from 1 of

the regression line at p=1, i.e. the “dual intercept.” We propose

a=c+d (= 1-s) as an index of likelihood insensitivity, (4.5.3)
and

b=d-c(=1-s-2c)as an index of pessimism. (4.5.4)

These indexes can be considered to be special cases of more general indexes used
by Kilka & Weber (2001; they used the term subadditivity for our term likelihood
insensitivity), which in turn were based on tests by Tversky & Fox (1995).20 Simi-

lar quantitative indexes were considered for somewhat different contexts by Pre-

20 The summary of the data that we propose here amounts to finding the best-fitting neo-
additive weighting functions, an appealing family examined by Chateauneuf, Eichberger, & Grant
(2005). These functions are linear in the middle and discontinuous at 0 and 1. They are tractable
but capture the main deviations from Bayesianism. For this reason, the boundary points p=0 and
p=1 should not be incorporated in the regression. Kilka & Weber (2001) and Tversky & Fox
(1995) proposed measures for general weighting functions that, for neo-additive weighting func-

tions, agree with the measures that we propose.
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lec (1998) and Tversky & Wakker (1995). An elaborate discussion and theoretical

analysis of these measures, and of alternative measures, is outside the scope of this

chapter, and is a topic for future research.

Figure 4.5.2. Quantitative indexes of pessimism and likelihood insensitivity
w
®) d d= d= d=
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— 01 0 0
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Insensitivity Insensitivity Insensitivity Insensitivity
index a: 0; index a: 0; index a: 0.22; index a: 0.22;
pessimism pessimism pessimism pessimism
index b: 0. index b: 0.22. index b: 0. index b: 0.06.

Alternative ways to obtain graphs as above have been considered in the li-
terature. Several authors considered a “two-stage model” for this purpose (Ein-
horn & Hogarth 1985; Fox & Tversky 1998; Kilka & Weber 2001; Wu & Gonzalez
1999). Quantitative direct judgments of probabilities are then elicited verbally,
and these are on the x-axis. Decision weights are derived from these judged prob-
abilities in graphs similar to those above. For many economists it will be proble-
matic that such judged probabilities are not based on revealed preference but on
introspection. Further, the direct judgments themselves will not be additive and
they comprise part of the deviation from Bayesianism that, accordingly, is not cap-
tured by the graphs of the probability transformations. Other authors generated
uncertainty by giving subjects probability intervals for events (Cabantous 2005;
Curley & Yates 1989; Di Mauro & Maffioletti 2002; Dolan & Jones 2004; Maffioletti
& Santoni 2005; a behavioral foundation is in Hellman 2007). Then graphs as
above can be displayed by taking arithmetic midpoints of those probability inter-
vals on the x-axis. One drawback is, obviously, that the status of these midpoints
again is not clear. Another drawback is that uncertainty usually cannot be fully
captured through probability intervals, so that the applicability of this approach is

limited.
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EXAaMPLE 4.5.1 [Ellsberg two-color paradox continued]. We elaborate on Ex-
ample 4.3.1. We assume that P(Rx) = P(Bx) = P(Ry) = P(By) = 0.5. For the events
Rk and By, the weight is wi(0.5) = 0.4, and for events Ry and B, the weight is
wu(0.5) = 0.3. Under nonexpected utility (Eq. 4.2.1), the preferences in Egs. 4.3.1
and 4.3.2 hold, but the probabilities of the four colors are not different. It is, in-
stead, the decision attitude generated by different weighting that explains the dif-
ferent preferences. Note that our reconciliation does not need payments contin-

gent on both drawings, unlike some models discussed in §4.11. O

4.7. Experimental method

We now describe the experiment to measure the concepts described above,

in particular the source-dependent probability transformations.

Subjects—N=62 students (54 male, 8 female) of the Ecole Nationale
Supérieure d’Arts et Métiers (one of the leading French engineering schools) parti-
cipated, all living in or near Paris. They were mathematically sophisticated and
well acquainted with probability theory, but had no training in economics or deci-
sion theory. They were sampled through an e-newsletter and an internet-based

registration.

Stimuli; unknown probabilities—We considered three sources of uncer-
tainty with unknown probabilities, first concerning the French Stock Index
(CAC40) (how much it would change on a given day), then concerning the temper-
ature in Paris, and, finally, concerning the temperature in a randomly drawn re-
mote country (different for each subject). All these events concerned one fixed day
(May 31, 2005) about three months after the experiment. For each subject and
each source we first elicited boundary values bg < b1 such that according to the
subject there was “almost no chance” that the value to be observed would be out-
side the interval [bo,b1]. These bounds served only in graphical presentations for
the subjects, and to help them get familiar with the stimuli, and their actual values

do not play any role in our analysis. To obtain bp and b1, we made subjects choose
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between bets with probability 1/1000 and bets on the events “< bo” and “> b1”,

using $1000 as the prize to be won. We write El = (—o0,00).21

We next determined ai/2 such that bo < a1z < by and (—w,a1/2] ~ [a1/2,%).
We write E} = (-w,a1/2] and E3 = [a1/2,), which under uniformity yields the two-
fold exchangeable partition {E}, E2}. We determined a1/4 such that bo < a1/2 < a1,2
and El = (—w,a1/4] ~ [a1/s,a1/2] = E4, and we determined a3/ such that a1z < az/a <
b1 and E3 = [a1/2,a3/4] ~ [a3/4,0) = Ef. Under uniformity, it yields the fourfold ex-
changeable partition {E}, E2, E3, E{}. We, finally, determined a1/s and a7/s such that
E} = (—»o,a1/8] ~ [aissai4] = E3and E} = [azjs,a7/s] ~ [a7/s0) = E5. We did not
measure az/g and as;g so as to reduce the burden of the subjects, and because the
literature on risk and uncertainty suggests that the most interesting phenomena
occur at extreme values. In other words, we did not determine the middle events
of the exchangeable partition {E}, ...E8}. Thus, we have ended up with

ai/s,a1/4,d1/2,a3/4,a7/8 and the corresponding intervals
E} = [aa-1y ai] -

In the notation E}, the lower index j indicates the level, i.e. the number of
events in the related exchangeable partition under uniformity, and the upper index
is the number of the event in a left-to-right reading. In the notation ajj;, the sub-

script i/j designates the probability of not exceeding ai;; under uniformity. E]i can
be divided into E?,' and E3. According to this notation, we can write ap = —o and

a1 = o. The values bo and b1 are approximations of ap and a; sometimes used in
graphs and displays, where infinity obviously cannot be depicted. Figure 4.7.1 dis-
plays the design.

21 For simplicity, we do not express in notation that temperature is physically bounded be-

low.
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Figure 4.7.1. Decomposition of the universal
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The italicized numbers and events in the bottom row were not elicited

Having measured these values, we carried out a second and third measure-
ment of ay/2, the second one (re)measuring ai/; as the midpoint of [a1/4,a3/4], and
the third (re)measuring it as midpoint of the real axis. The value aj,; is important
because the other measurements of events are derived from it, which is why we

measured a2 extensively.

Next, to test exchangeability, we asked subjects two choice questions, each
time choosing between bets on intervals (receiving €1000 for the interval and nil

otherwise), where the pairs of intervals to choose from were:

(—,a1/8] versus [a7/s,0) and [ai/s,a1/4] versus [a3/4,a7/8]

We measured certainty equivalents for bets on intervals, for the intervals (—,a1/s],

(—o,a1/4], (—o,a1/2], (—,a3/4], (—0,a7/8], and [a1/2,0).

Stimuli; known probabilities.—After the CAC40 elicitations, we measured
certainty equivalents of lotteries yielding a prize of €1000 with probability 1/8,
1/4, 1/2, 3/4, and 7/8, respectively, and nil otherwise. We explained that the
probabilities were generated by random numbers from a computer, with which
our subjects were well acquainted. We followed the same procedure here as for
unknown probabilities, so as to treat the source of known probability similarly as

the sources of unknown probabilities. After the Paris-temperature elicitations, we
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measured certainty equivalents of fifty-fifty lotteries yielding the following pairs of

prizes: (0,500), (500, 1000), (250,500), (500,750), and, finally, (750,1000).

Measuring indifterences.—All indifferences were elicited through repeated
choices and bisection until a satisfactory degree of precision had been reached. In
each case, the second choice of the bisection was repeated later as a consistency
check. No matching questions were used. Although bisection is more time con-
suming than matching, it has been found to provide more reliable results (Bostic,
Herrnstein, & Luce 1990). When measuring the midpoint of an interval [a,b], we
always started with a/3 + 2b/3 and then 2a/3 + b/3 as the first two choice ques-
tions, and only then continued with usual bisection. Certainty equivalents were

always measured using traditional bisection, starting with the expected value.

Procedure—Each subject was interviewed individually. The interview con-
sisted of five minutes of instructions, 10 minutes of practice questions, and 70 mi-
nutes of experimental questions, interrupted for small breaks and cakes when
deemed desirable. After finishing all questions pertaining to one source, we did
not immediately start with the next source, but asked intermediate questions eli-
citing risk attitudes so as to prevent that subjects continued to think of one source

when dealing with the next one.

Motivating subjects.—All subjects received a flat payment of €20. For the
hypothetical treatment (n=31), all choices were hypothetical. For the real treat-
ment (n=31), real incentives were implemented through the random lottery in-
centive system in addition to the flat payment. One of the 31 subjects was random-
ly selected at the end, and one of his choices was selected randomly to be played
for real. Given that the high prize was usually €1000, and that subjects would
usually choose the more likely gain, the expected value of the subject selected ex-
ceeded 1000/2 = €500, and the expected gain (in addition to the €20) per subject
in the real treatment exceeded 500/31 ~ €16.

The money earned could be collected about three months later, after the
uncertainty had been resolved. The subjects in the hypothetical treatment did not

know that later a real-incentive treatment would follow with other subjects.
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Pilots.—Pilots were done with 18 subjects, to determine which sources and
which incentive system to use in the real experiment. The pilots suggested that
randomized and mixed orders of presentation, with choice questions pertaining to
one source or aiming at one indifference question not asked in a row, were tiring
and confusing for subjects. Hence we grouped related questions together in the

real experiment.

Analysis.—Unless stated otherwise, all statistical tests hereafter concern t-
tests with o = 0.05 as level of significance. For fitting the data of the risky ques-
tions we used a method introduced by Abdellaoui, Bleichrodt, & L’Haridon (2007).
We first used the certainty equivalents of the fifty-fifty lottery regarding the prize-
pairs (0,500), (500, 1000), (250,500), (500,750), and (750,1000) to optimally fit
Eq. 4.2.1 with as free parameters the decision weight at p = 0.5, i.e. w(0.5), and the
power p of utility in U(x) = x". With the utility function thus determined, we used
the certainty equivalents of the lottery that yielded prize €1000 with probabilities
1/8,1/4,1/2, 3/4, and 7/8 to determine the decision weights of these probabili-
ties, with CE ~ 1000p0 implying the equality w(p) = CEP/1000" for all relevant p.

We similarly used the certainty equivalents of the events (—w,a1/s],
(—o,a1/4], (—o,a1/2], (—©,a3/4], and (—=,a7/8], and the power utility function obtained
above to determine the W values of these events, with CE ~ 1000E0 implying the
equality W(E) = CE”/1000°.

4.8. Results on subjective probability and utility (Bayesian results)

Uniformity—We can define subjective probabilities only for uniform
sources and, hence, we first discuss tests of uniformity for the sources considered.
For these tests there were no irregularities in the answers that subjects supplied,
so that we used the whole sample to carry out our tests. The third measurement of
a1/2 (as midpoint of (—o0,00)) was identical to the first measurement, and served as
a reliability test. Pairwise t-tests never rejected the null hypothesis of equal values

(for neither treatment nor for the whole group), and the correlations exceeded
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0.85 for all three sources and both treatments. These results suggest that the mea-

surements were reliable.

The most refined level of partitioning for which we obtained observations
concerned the eight-fold partition of the events E}, which we observed fori =1, 2,
7, 8. The equivalences E} ~ EZ and E} ~ E§ hold by definition. Assuming transitivi-
ty of indifference, it suffices to verify the equivalence E3 ~ E} to obtain equivalence
of all E} available. For no case did a binomial test reject the null hypothesis of in-
difference between bets on E3 and E}. The choices between E} and E3 serve as an

extra test of exchangeability joint with transitivity of indifference. Again, a bi-

nomial test never rejected indifference.

We made no observations of the eight-fold partition {E}} between ai/4 and
as/s, but in this region we can test exchangeability for the four-fold partition {E}}.
Given the equivalences E} ~ EZ and E3 ~ E} that hold by definition, and transitivity
of indifference, it suffices to verify the indifference EZ ~ E3. We did not directly test
choices between bets on E3 and E3. Our second measurement of ai/2, as midpoint
of [a1/4,a3/4], entails a test of the equivalence EZ ~ E3 though. The correlations be-

tween the first and second measurement of a1/2 exceeded 0.75 for all three sources
and both treatments as well as the whole group, exceeding 0.90 in all but one case.
Pairwise t-tests never rejected the null hypothesis of equal values of a1,z (for nei-
ther treatment nor for the whole group) with one exception: For the hypothetical

group and foreign temperature the difference was significant (t3o = 2.10, p = 0.04).

Another test of exchangeability can be derived from comparing the certain-
ty equivalents of bets on events E] to those on events E3. Under exchangeability,
these should all be the same. Pairwise t-tests never rejected the null hypothesis of
equal values (for neither treatment nor for the whole group), with correlations of

approximately 0.5 and more. Hence these tests do not reject exchangeability.

The tests suggest that exchangeability is least satisfied for foreign tempera-
ture with hypothetical choice, with no violations found for the other five cases.

Because our techniques have been developed primarily for uniform sources, we
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will report our analyses of risk and ambiguity attitudes only for the five remaining
cases in what follows. We use the term case to specify both the source and the

treatment (real incentives or hypothetical choice).

Subjective Probabilities—Figures 4.8.1 and 4.8.2 display median subjective
probability estimations for the real and hypothetical treatments contrasted with
historical frequencies. The medians are always derived from the medians of the
aj/j. Figure 4.8.1 displays the median subjective probability distribution functions
for CAC40. Both curves show that our subjects were optimistic in the sense that
they considered increases of the index to be more probable than decreases. The
figure also displays the real probability distribution over the year 2006.22 Our sub-
jects expected extreme, primarily positive, changes to be more likely than they

were in 2006.

Figure 4.8.2 displays the median subjective distribution function for Paris
temperature. The historical distribution for the time considered (May 31, 1 PM)
has been added too. The curves are very well calibrated. Our subjects are appar-
ently better acquainted with temperature volatility than with stock volatility. The
data also suggest that subjects did not expect higher temperatures than the histor-
ical distribution over the past century. They were apparently not influenced by the
effects of global warming. We do not report the subjective probabilities for foreign
cities because the cities were different for different subjects so that this distribu-

tion did not concern the same random event for all subjects.

22 Details are as follows. The distribution is based on 254 days. The estimates concern in-
crease rates from 5:30 PM one day until 1 PM the next day (the time period considered in our expe-

riment), which can be estimated as (daily rates to the power 19.5/24) — 1.
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Utility—For the certainty-equivalence measurements used to analyze risk
attitudes, one subject was removed from the group with hypothetical choice be-
cause he always chose the sure option, suggesting that he did not seriously consid-
er the choice options. To avoid introducing a bias towards risk seeking (the sub-
ject removed was obviously the most risk averse one), we also removed the most
risk seeking subject from this group. In the group of real incentives, we similarly
removed one subject who always chose the safe option and one subject who al-
ways chose the risky option, for similar reasons. Thus, 4 subjects were removed

and 58 subjects remained, 29 in each treatment.

The certainty equivalents (statistics not reported) suggest risk seeking for
low probabilities and risk aversion for moderate and high probabilities, with more
risk aversion for the real treatment than for the hypothetical treatment. All these
findings agree with common findings in the literature (Abdellaoui 2000; Bleichrodt
& Pinto 2000; Camerer & Hogarth 1999; Gonzalez & Wu 1999), and will be con-
firmed by the parametric estimations given hereafter. Figure 4.8.3 displays the
empirical distribution of the individual powers of utility. The majority of powers is
below 1, suggesting concavity in agreement with common findings (61.2% for the
hypothetical treatment and 72.4 % for the real treatment). Median, mean, and
standard deviations are 0.9244, 1.0078, and 0.5911 for the hypothetical treatment
and 0.7458, 0.8495, and 0.5594 for the real treatment. The powers of utility were

lower for the real-incentive group than for the hypothetical group, but the differ-
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ence was not significant. A lower power entails more concavity which will gener-
ate more risk aversion again (given a fixed weighting function), in agreement with

the common finding of more risk aversion for real incentives.

Figure 4.8.3. Cumulative distribution of powers

> Hypothetical
0.5

4.9. Results on uncertainty and ambiguity for uniform sources (non-

Bayesian results)

This section reports results on source dependence, describing the attitudes
found. It does so only for the five cases where uniformity is satisfied, i.e. where the
techniques of this chapter apply. The only case where uniformity was violated,

foreign temperature with hypothetical choice, will not be analyzed further.

4.9.1. Overall results

The following figures display probability transformations. In each figure,
part a displays probability transformations obtained from the raw data through
linear interpolation, and part b displays the best-fitting function from Prelec’s

(1998) compound invariance family

w(p) = (exp(-(-In)®)". (49.1)

The parameters o and § have meanings similar to our parameters a and b (Egs.
4.5.3 and 4.5.4), respectively, but less clearly so, depending on numerical aspects

of the functional. The correlations between a and o, and b and B, were strong. The
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statistical results for o and B were similar to those for a and b, but with less power,

and we will not report them.

The indexes a and b were calculated for each individual and each source.
The correlations between the individual parameters a for sensitivity and b for pes-
simism were not significantly different from 0 in all cases, suggesting that these

concern two independent components in risk and ambiguity attitudes.

The parameters displayed in Figures 4.9.1 and 4.9.2 are calculated to fit the
group averages, and will not be used in statistical analyses. Their orderings agree
with all qualitative findings made below. Note how these figures compactly
present much information. Together with utility and subjective probabilities they
completely capture attitudes towards uncertainty, exactly quantified, for three or
four sources or persons at the same time. They make it possible to immediately
and visually compare these attitudes. In particular, through comparisons with

graphs for given probabilities, they immediately reveal attitudes towards ambigui-

ty.

The hypothetical-treatment curves (Figure 4.9.2) are similar to those of the
real-payment treatment (Figure 4.9.1), but hypothetical choices were subject to
more noise. All curves display the basic inverse-S shape of Fig. 4.5.1d with low
probabilities overweighted and high probabilities underweighted. Most observed
points w(p) deviate significantly from linearity, i.e. the null hypothesis w(p) = p is
usually rejected if we take the whole sample joining hypothetical choice and real
incentives, except at p= 0.5, in agreement with inverse-S. For hypothetical choice
and real incentives separately, for about half the observed points the deviation is
not significant. The insensitivity parameter a was significantly higher for real in-
centives than for hypothetical choice for CAC40 and foreign temperature, and mar-
ginally so for Paris temperature (p = 0.053). The pessimism parameter b was not

different for the two treatments.
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Figure 4.9.1. Average probability transformations for real payment
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Fig.a. Raw data and linear interpolation. Fig.b. Best-fitting (exp(— (—/n(p))*))P.

Regarding source dependence of probability transformation, no significant
differences are found for different sources under hypothetical payment, and we
focus on real payment. We first consider probability transformations w(p) at sin-
gle probabilities p. With risk included, a repeated-measures analysis of variance
(corrected by the Huynh-Feldt €) finds significant source dependence for w(p) and
real payment except at p=0.5. Figure 4.9.1 shows that there is source preference
(less pessimism and higher curve) for risk over all other sources. Indeed, paired t-
tests for risk against each of the three sources indicate that the values w(p) are
significantly higher for risk than for foreign temperature at all probabilities (i.e.
ambiguity aversion at all probabilities), for CAC40 at p=0.125 and p > 0.50 and for
Paris temperature at p>0.5 (i.e. ambiguity aversion for high probabilities). If we
exclude risk, then the analysis of variance finds significant source dependence for p
= 0.25. The figure suggests source preference for Paris temperature over CAC40
and foreign temperature, and more pronounced inverse-S for CAC40 than for for-
eign temperature, but the differences between the curves at the various probabili-

ties were not significant except for Paris against foreign temperature at p < 0.5.
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Figure 4.9.2. Average probability transformations for hypothetical payment
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We next consider tests of pessimism and likelihood insensitivity through
the global parameters a and b. A repeated-measures analysis of variance (cor-
rected by the Huynh-Feldt €) reveals a clear source dependence of the pessimism
index b. The sensitivity parameter appears to be non-significantly different across
sources at 5% once the Huynh-Feldt correction is applied. In pairwise t-tests the
pessimism index b for risk is significantly lower than for all sources with unknown
probabilities. For the sources with unknown probabilities, the parameters b do
not differ significantly. Parameter a, the index of likelihood insensitivity, is signifi-
cantly lower for foreign temperature than for CAC40 and Paris temperature. The

other differences were not significant.

4.9.2. Results at the individual level

To illustrate that our techniques can be used at the individual level, Figure
4.9.3 displays the curves for the four sources of one individual, subject 2 from the
real-payment treatment. This subject thought long and seriously about each ques-
tion, and the interview took almost two hours. He exhibits source preference for
all sources over foreign temperature. Further, risk is less likelihood insensitive
than CAC40 and Paris temperature. In the raw data, the subject slightly violates

monotonicity for CAC40, showing that there is noise in the data.
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Figure 4.9.3. Probability transformations for subject 2 for real payment
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Behavioral implications are that the subject will be more prudent, invest
less, and take more insurance, for foreign temperature events than for the other
events. The subject will be more open to long shots for Paris temperature and
CAC40 than for risk but, on the other hand, will also rather insure for Paris tem-
perature and CAC40 than for risk. An updating of probabilities will affect the sub-
ject less for Paris temperature and CAC40 than it will for risk under usual gradual

changes of moderate likelihood.

Figure 4.9.4. Probability transformations for Paris temperature and 4 subjects for real payment
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Figures 4.9.1 and 4.9.3 concerned a within-person comparison of different
attitudes towards uncertainty for different sources, which we take as the main no-
velty initiated by the Ellsberg paradoxes. We can also use probability transforma-
tions and the above indexes of pessimism and likelihood insensitivity for the—
more traditional—between-person comparisons of uncertainty attitudes. Figure
4.9.4 displays some comparisons. We selected four subjects for the purpose of an
illustration with clearly distinct curves. All curves concern the same source, being
Paris temperature. The lowest curve (subject 18) is more pessimistic than all oth-
er subjects. This subject will buy more insurance, for instance. The dark middle
curve (subject 2) clearly displays more pronounced likelihood insensitivity than
the dashed curve that is close to linear (subject 48). Hence, simultaneous gam-
bling and insurance is more likely to be found for subject 2 than for subject 48, and
subject 2’s decisions will be influenced less by new information (updating proba-

bilities) than those of subject 48.

In general, there was more variation in the individual parameter estimates
for the ambiguous sources than for risk. It is not surprising, indeed, that risk is
perceived more homogeneously across individuals than ambiguity. The pessim-
ism-parameters b were strongly correlated over different sources (usually exceed-
ing 0.8), suggesting that this parameter depends primarily on the individual and
less on the source. The sensitivity-parameters a were less strongly correlated over
different sources (usually about 0.65), suggesting that this parameter depended

more on the source of uncertainty than b.

4.9.3. Results regarding ambiguity

Ambiguity attitudes are usually taken to reflect the differences between
sources with unknown probabilities and sources with known probabilities. We
can infer those comparisons from comparing the curves for risk with the other
curves, in Figures 4.9.1-4.9.3. Those comparisons have been discussed above, with

mostly the risk-curves dominating the other curves suggesting aversion to ambigu-

ity.4.10. Using our approach to derive predictions

The following examples illustrate applications of our techniques.
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EXAMPLE 4.10.1 [Homebias; Within-Person Comparisons]. Consider options

yielding $40000 or nil, as follows.
Foreign-option: (Favorable Foreign temperature: 40000, otherwise: 0).
Paris-option: (Favorable Paris temperature: 40000, otherwise: 0);

We assume that, both for Paris temperature and for foreign temperature, subject 2
(living in Paris) considers favorable and unfavorable temperatures to be equally
likely, and that his utility function on the domain relevant for this example is well
approximated by U(x) = x088, Wheras under expected utility this information
would completely determine the preference values of the options considered, un-
der nonexpected utility we need more information. This information is captured in

Figure 4.9.3, leading to the following predictions.

Because the decision weight of outcome 40000 is 0.20 for foreign tempera-
ture, the certainty equivalent for the foreign option is U1(0.20 x U(40000)) =
$6424. We use the term wuncertainty premium as the analog of risk premium, re-
ferring to the context of uncertainty with unknown probabilities. Assuming prob-
ability 0.50, the uncertainty premium for the foreign option is $20000 — $6424 =
$13576. For risk with known probability p = 0.50, the decision weight is 0.40, giv-
ing a certainty equivalent of $14121 and a risk premium of $5879. Subject 2 exhi-
bits ambiguity aversion for foreign temperature because he evaluates the choice-
based probability 0.50 lower than the objective probability 0.50. We interpret the
difference between the uncertainty premium and the risk premium, $13576 —

$5879 = $7697, as an ambiguity premium.

Table 4.10.1 gives similar calculations for Paris temperature, for which sub-
ject 2 exhibits considerably more favorable evaluations and is even ambiguity
seeking, with a negative ambiguity premium. Subject 2 exhibits a strong homebias
for temperature-related investments. This bias cannot be ascribed to beliefs or
tastes because they are the same for the investments in Paris and foreign tempera-
ture. The homebias is explained by the different uncertainty attitudes displayed in

Figure 4.9.3.
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Table 4.10.1. Calculations for Subject 2

Paris temperature | Foreign temperature
Decision weight 0.49 0.20
Expectation 20000 20000
Certainty equivalent 17783 6424
Uncertainty premium 2217 13576
Risk premium 5879 5879
Ambiguity premium -3662 7697

EXAMPLE 4.10.2 [Less likelihood Sensitivitity, and More Gambling & Insur-

ance; Between-Person Comparisons]. Consider an option (Favorable Paris tem-

perature: 40000, otherwise: 0). Assume that there are eight exhaustive and mu-

tually exclusive Paris-temperature events that are equally likely according to both

Subjects 2 and 48. We assume, for clarity of exposition, that the utility function on

the domain relevant for this example is well approximated with U(x) = x088 for

both subjects.

Table 4.10.2. Calculations for Paris Temperature

Subject 2, Subject 48, Subject 2, Subject 48,

p=0.125 p=0.125 p=0.875 p=0.875

Decision weight 0.35 0.08 0.52 0.67
Expectation 5000 5000 35000 35000
Certainty equivalent 12133 2268 19026 25376
Uncertainty premium -7133 2732 15974 9624
Risk premium -4034 2078 5717 -39
Ambiguity premium -3099 654 10257 9663

We consider two cases.
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CASE 1. Assume that one of the eight events is favorable and seven are unfa-
vorable, so that the choice-based probability at 40000 is 0.125. Figure 4.9.4 shows
that the favorable event has weight 0.35 for subject 2, yielding certainty equivalent
$12133. The columns in Table 4.10.2 with p = 0.125 give this number, and several

other results that were calculated similarly as in Table 4.10.1.

CASE 2. Assume that seven of the eight events are favorable and one is unfa-
vorable, so that the choice-based probability at 40000 is 0.875. The right two col-

umns in Table 4.10.2 give results for this case.

Subject 2 has a higher certainty equivalent for p = 0.125 than subject 48,
but a lower one for p = 0.875. Thus, at the same time he exhibits more proneness
to gambling (small probability at favorable outcome as in Case 1) and to insurance
(small probability at unfavorable outcome as in Case 2) than Subject 48. Both the
risk and the ambiguity attitudes contribute to these differences between the two

subjects, as the premiums show.

It is interesting to consider the changes in evaluations if the number of fa-
vorable events changes from one (Case 1) to seven (Case 2). Subject 2 exhibits
little sensitivity to this big change in likelihood. His certainty equivalent of the in-
vestment changes only by approximately $7000 and does not even double, whe-
reas the certainty equivalent of subject 48 changes drastically and is increased 11-
fold. We can conclude that subject 48 exhibits considerably more sensitivity to

likelihood changes than Subject 2 in the domain considered here.

Subjects 2 and 48 have the same beliefs, as argued by Smith (1969) and
Winkler (1991), and the same tastes, as argued by Hogarth & Einhorn (1990).
Their different behavior is generated by differences in uncertainty and ambiguity

attitudes, displayed in the graphs in Figure 4.9.4.

O
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4.11. Discussion

In our approach to uncertainty, three components are needed to describe
decision under uncertainty for uniform sources: (a) utility of outcomes; (b) Baye-
sian beliefs for each source; (c) the source-dependent probability transformations.
Component (c) comprises the deviations from Bayesianism in a tractable manner,
generating Allais’ and Ellsberg’s paradoxes, the homebias, ambiguity aversion, and
other deviations from expected utility. Attitudes towards ambiguity can be meas-
ured by comparing (c) for known and unknown probabilities. We next discuss

some details of these measurements, and then discuss some other issues.

Measuring utility—Our utility measurements are valid for virtually all pre-
sently existing models. In particular, they are not distorted by violations of ex-
pected utility, contrary to traditional methods based on the latter theory. Abdel-
laoui, Barrios, & Wakker (2007) review the implications of nonexpected utility for

utility measurement.

Measuring subjective probabilities.—This chapter has introduced a new
way to empirically measure subjective probabilities. Unlike traditional psycholog-
ical elicitations (Manski 2004; McClelland & Bolger 1994), we have elicited subjec-
tive probabilities exclusively from revealed choices with real incentives imple-
mented. And unlike the proper scoring rules that are popular in experimental eco-
nomics today, our measurements do not require the assumption of expected value
maximization (Camerer 1995, pp. 592-593; Nyarko & Schotter 2002) so that they
are not biased by empirical violations thereof. They do not even require the as-
sumption of expected utility maximization and are virtually theory-free. They are
based exclusively on elementary revelations of equal likelihood and exchangeable
partitions as put forward in the theoretical counterpart to our empirical measure-
ment, being Chew & Sagi (2006a). A generalization of proper scoring rules to vi-
olations of expected value and expected utility is in Offerman et al. (2006). Their
approach obtains decision weights under uncertainty as functions of decision
weights under risk, where the latter need not be additive as are our choice-based
probabilities so that they comprise part of the ambiguity attitude. Abdellaoui,

Vossman, & Weber (2005) also analyzed general decision weights under uncer-
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tainty as functions of decision weights under risk. They used the term choice-
based probability to refer to such functions that, again, did not have to be additive.
Unlike Offerman et al. they did not use proper scoring rules but they carried out a

full decision analysis to elicit these values.

The choice-based probabilities that we derive need not reflect the subjec-
tive beliefs held by the decision maker. The actual subjective beliefs of the decision
maker can deviate from Bayesianism,and according to some authors such devia-
tions are even rational. These deviations may generate (part of) the nonadditivity
comprised in the source-dependent probability transformation. The choice-based
probabilities are, however, the best Bayesian beliefs to reflect the information held
by the decision maker, as simply follows from the symmetry implied by exchan-
geability. They will be useful in normative applications where the decision maker
is, for instance, an expert whose observed decisions we want to use as a basis for

our own decisions if we take Bayesianism of belief as a normative desideratum.

Uniformity.—Consistency checks of probability measurements yielded con-
sistent subjective probabilities in five out of six cases, with one violation of un-
iformity in only one of the six cases considered, the case of foreign temperature

with hypothetical choice.

We chose Savage’s (1954) term uniform instead of exchangeable for two
reasons. First, it is slightly more general than exchangeability when imposed on
finite sources, not requiring that all states of nature be equally likely, so that a dif-
ferent term had to be chosen. Second, the condition suggests a uniform ambiguity
of the source where, once two events have been revealed equally likely, they be-
come completely substitutable in every relevant aspect. It is immaterial what their
precise location and configuration is relative to other events. There are also some
formal differences between our concept of uniformity and Chew & Sagi's (2006b)
concept of homogeneity. The main difference is that our sources span the whole
state space S and are not conditioned on subevents of S. We prefer to separate the

static concept of uniformity from dynamic issues regarding conditioning.

Reducing complexity—General nonexpected utility models have many pa-

rameters to assess, which make predictions intractable without proper restric-
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tions. For general weighting functions, not only for every singleton event (as for
Bayesian probabilities), but for every subevent, a weight has to be chosen, which
for large and infinite state spaces quickly becomes intractable. Our approach
greatly simplifies this complexity. We identify uniform sources, and for each have
to add one function, the probability transformation, to what is required for Baye-
sian analyses (utilities and probabilities). Such a procedure remains within trac-

tability bounds for a large class of sources.

Source comparisons.—The Ellsberg paradoxes have mostly been inter-
preted as evidence showing that people are more averse to unknown probabilities
and ambiguity than to known probabilities. This chapter contributes to a line of
research that extends this interpretation: People behave differently towards dif-
ferent sources of uncertainty, also if none of these sources concern known proba-

bilities (Tversky & Fox 1995).

Uncertainty is a rich domain where many kinds of incomplete information
with many different characteristics can be found, and many different kinds of phe-
nomena can be discovered. Thus, our data show that besides a general tendency to
be more or less averse to some source of uncertainty (of which ambiguity aversion
is a special case), another dimension of uncertainty attitudes concerns whether
people are more or less sensitive to likelihood information about sources. For uni-
form sources the latter dimension corresponds with more or less pronounced in-
verse-S shaped probability transformations. The two dimensions mentioned are
also central in the psychological works of Hogarth et al., referenced in §4.1. Other
studies finding this phenomenon include Curley & Yates (1989), Dolan & Jones
(2004), Di Mauro & Maffioletti (2002) Fox & Tversky (1998), and Wu & Gonzalez
(1999).

Multistage models of uncertainty—We next discuss some promising multis-
tage models of uncertainty that have been introduced recently, and for which me-
thods for empirical measurement remain to be developed. These models present

alternative ways to reconcile beliefs in the two-color Ellsberg paradox, adapting
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Kreps & Porteus’ (1978) two-stage model from intertemporal preference to uncer-
tainty.23 These papers assume Bayesian beliefs in each stage, so that such beliefs
can hold both for the known and for the unknown urn in the Ellsberg example.
Ambiguity is modeled by assuming that the multiplication rule for conditional

probability is violated, so that in this respect they still abandon Bayesian beliefs.

Klibanoff, Marinacci, & Mukerji (2005), Nau (2006), and Neilson (1993) as-
sume expected utility at each stage, and different uncertainty or ambiguity atti-
tudes at different stages are modeled through different utilities of outcomes. In
our approach, uncertainty and ambiguity attitudes are modeled through functions
that directly operate on the uncertain events, such as the weighting functions in
Schmeidler’s Choquet expected utility and prospect theory. The latter may be
more natural from a psychological perspective. Unlike the aforementioned ex-
pected-utility approaches, Allais-type violations of expected utility are allowed
within sources24, which is desirable for descriptive purposes. Existing empirical
evidence that aversion or attraction to ambiguity depends on events, in particular
on whether the events are likely or unlikely (Tversky & Fox 1995; also supported
by our data), can then be accommodated. Further, utility then is not linked inex-
tricably to risk and ambiguity attitudes so that psychological interpretations of

utility as an index of well being are not ruled out a priori (Mandler 2006).

Ergin & Gul (2004) assume general probabilistic sophistication (uniform
sources) at each stage. As we do, they interpret events at different stages as differ-
ent sources of uncertainty, using the term issue instead of source. They abandon
the probability-multiplication rule and, in this sense, deviate from Bayesian beliefs.
The paper closest to our way of reconciling the two-color Ellsberg paradox with

Bayesian beliefs is Chew & Sagi (2006b). They avoid sequential decisions as we

23 The same functional form appeared in Grant, Kajii, & Polak (2001) in an application to

game theory.

24 Kilbanoff, Marinacci, & Mukerji (2005, end of §2) suggest a generalization of their model
where Allais-type choices can be allowed for in their second-stage (unambiguous) events. Such

choices cannot, however, appear in their first-stage events, the events that comprise ambiguity.
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do, and extend their derivation of probabilistic sophistication from Chew & Sagi
(2006a) to so-called Dynkin systems or lambda systems of events. They then in-
troduce small worlds that, apart from some formal differences, play a role similar
to sources in this chapter. This chapter has taken their model as point of depar-

ture.

Real incentives.—We used both a real-incentive treatment and a hypotheti-
cal-choice treatment so as to investigate the effects of real incentives when ex-
amining uncertainty and ambiguity attitudes. Throughout, we find more aversion,
and less noise, for real incentives, in agreement with other studies (Hogarth & Ein-
horn 1990; Keren & Gerritsen 1999), and in agreement with findings in other do-
mains (Camerer & Hogarth 1999). Our finding supports the principle that real in-

centives should be implemented whenever possible.

The random-lottery incentive system.—The random-lottery incentive sys-
tem has become the almost exclusively used incentive system for individual choice
in experimental economics (Holt & Laury 2002).2> We used a form where not for
each subject one choice is played for real, but only for some randomly selected
subjects. This form was also used by Harrison, Lau, & Williams (2002). Two stu-
dies examined whether there was a difference between this form and the original
form where each subject is paid, and did not find a difference (Armantier 2006, p.

406; Harrison, Lau, & Rutstrom 2007).

In the pilot study we asked subjects which form of the random lottery in-
centive system would motivate them better, the one that we later implemented
(with a high possible payment), or a traditional form paying one randomly se-
lected choice for each subject, in which case prizes will be moderate. The subjects

expressed a clear preference for the single-large prize system that accordingly was

25 A detailed discussion is at

http://people.few.eur.nl/wakker/miscella/debates/randomlinc.htm.
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implemented in our experiment.26 The expected gain per subject, €16, is in
agreement with common payments for experimental subjects used in the tradi-
tional random-lottery incentive system and in other contexts. The data for the
real-incentive treatment were of higher quality than the data for the hypothetical-

choice treatment, confirming the effectiveness of the incentive system used.

Real incentives and chaining—1It is well known that real incentives can be
problematic in chained experiments (Harrison 1986). Because in our construction
of the aj/'s with one aj/;; obtained influencing the questions asked next, one may be
concerned about it being advantageous for subjects to not answer according to
their true preferences in a question but instead to seek to improve the stimuli that

will occur in future questions.

We organized our chaining of the aj;’s as follows so as to minimize the
chaining problem for our real incentives. First, our subjects did not know about
this chaining. In addition, we paid attention during the interviews, all done indivi-
dually, to whether subjects were aware of this chaining. No interview suggested
any such awareness. The indifference values used in follow-up questions were
midpoints of intervals, so that these values had not occurred before and could not
be recognized. Second, even if subjects would know that this chaining took place,
they would not know how this was done, so that they would not know in which
direction to manipulate their choices. Even for someone who knows the actual
organization of the aj;'s (such as the reader), it is not clear in which direction to

manipulate answers so as to improve future stimuli.

As regards the chained bisection method used to measure indifferences, we
compared the questions used there with consistency-check questions that were
not part of a chained procedure. We found no differences, which again suggests no
strategically-driven biases. The parameters found for utility and probability trans-

formation, and the discrepancies found between real and hypothetical choice, are

26 In the decision actually played, the subject preferred a certainty equivalent of €400 to the

chance mentioned, and this is what he received.
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all in agreement with common findings in the literature, and the subjective proba-
bilities elicited are very well calibrated. These findings further suggest that our

data were not distorted by strategic considerations generated by chaining.

An application of our approach.—In a neuroeconomic study, Hsu et al.
(2005) considered three sources of uncertainty, being a card-deck with known
composition, temperature in New York, and temperature in Dushanbe (Tajikstan).
They estimated judged probabilities, in a role similar to our choice-based probabil-
ities, to be 0.5 for the respective events. As explained by Camerer (2007, sections
3.3 and 4), they then estimated what they called probability weighting functions
and what we call probability transformations. Not only did they do within-person
comparisons as in Figures 4.9.1 and 4.9.3, finding more pessimism for the more
ambiguous source, but also between-person comparisons as in Figures 4.9.2 and
4.9.4. They compared two groups of patients with different brain lesions. The

“frontal” patients transformed probabilities less than the other group.

Topics for future research.—An obviously important topic for future re-
search concerns the development of tractable tools for analyzing and measuring
attitudes for sources that are not uniform. A further development of theory re-
garding the phenomena found, such as likelihood insensitivity, and properties of

the measures a and b for sensitivity and pessimism, is also desirable.

We have reported basic tests of exchangeability, restricting attention to two
outcomes so as to focus on the likelihood aspects of decision making. We also re-
stricted attention to noncomposite events. More elaborate tests, for instance re-
garding composite events and more general outcomes, are planned for future re-
search. Empirical violations of uniformity can then be expected that are not based
on intrinsic non-uniformity, but on perceptual biases. For example, convex unions
of intervals may be underestimated relative to nonconvex unions because, in the
terminology of Tversky & Koehler (1994), the former may be perceived as implicit
unions and the latter as explicit unions. Machina’s (2004) almost objective events
constitute an extreme case of “nonconvex” events. Those events concern for in-
stance whether the 10t digit of temperature is odd or even. Similarly, events re-

lated to extreme values (such as E]) may be perceived differently than events re-
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lated to intermediate values (such as EZ U E3). The purpose of this chapter has

been to demonstrate the conceptual usefulness of sources of uncertainty, and the
tractable way in which sources allow for the analysis of attitudes towards uncer-

tainty and ambiguity.

4.12. Conclusion

We have demonstrated that uniform sources and source-dependent proba-
bility transformations can be used to analyze uncertainty and ambiguity in a tract-
able manner. Some examples that have traditionally been put forward as demon-
strations that beliefs cannot be modeled through subjective probabilities, can be
reconciled with subjective probabilities after all by properly identifying different
sources of uncertainty. We demonstrated the implementability of our approach in

an experiment.

For most sources of uncertainty choice-based (subjective) probabilities ex-
isted (in particular, for all under real incentives). For those we showed how
graphs can easily be drawn that capture everything relevant about uncertainty
attitude, with exact quantifications provided. This approach is, to the best of our
knowledge, the first one that can obtain such exact and complete quantifications,

entirely choice-based, empirically.

The phenomena that we observed in the data confirm descriptive theories
of ambiguity put forward in the psychological literature (Einhorn & Hogarth 1985;
Tversky & Fox 1995). Besides the important component of ambiguity aversion,
extensively studied in theoretical economic analyses, and often taken as normative,
we also find likelihood insensitivity, a cognitive component that underlies the
coexistence of gambling and insurance. We hope that our study will enhance the

operationalizability of theories of uncertainty and ambiguity.
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Chapter 5.
A Robust Choice-Based Technique

for Eliciting Subjective Probabilities

Abstract

In the literature, several choice-based techniques have been proposed to
elicit subjective probabilities: scoring rules, certainty equivalents or canonical
probability. All of them are equivalent when the agent who has to express her be-
lief is an expected value maximizer. However, we will observe that these tech-
niques are not robust to some of the most common deviations from expected value
(St Petersburg, Allais and Ellsberg paradoxes). Assuming the existence of additive
beliefs, we describe a robust technique (the exchangeability method), which is
based on subsequent decompositions of the state space into equally likely events.
The feasibility of this technique is then confirmed in an experiment, in which sub-

jacent assumptions of the exchangeability method are tested.
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“But it seems that the method of betting permits us in the
majority of cases a numerical evaluation of probabilities that has
exactly the same characteristics as the evaluation of prices by the

method of exchange”

(Borel 1924).

5.1. Introduction

Several fields of the literature in economics and management are concerned
by probability assessment. In decision analysis, decision makers often have to
seek advice from experts for a probabilistic description of the risk they are facing.
Experimental economists sometimes need to know what subjects believe (e.g.
Nyarko & Schotter 2002). In behavioral decision making, testing whether subjec-
tive probabilities exist and are updated using Bayes’ rules is a topic of major inter-
est. Even if subjective probability assessment may be done through simple direct
judgment, a particular credence is given to probabilities derived from choices. The
former viewpoint is developed in the psychological literature, in which belief mea-
surements are based on introspective judgments; the latter viewpoint is defined as
the revealed preference approach and is prevalent in economics. Through choices,
agents have incentives to tell the truth. This is why several choice-based methods

have been proposed to elicit beliefs. Let us successively present four techniques.

The first and simple method consists in asking a person for her canonical
probability of event E, i.e. the probability p such that she is indifferent between
winning €x with probability p or if E occurs (e.g. Raiffa 1968 p110, Wright 1988,
Holt 2006). A second method is based on the certainty equivalent of the prospect
“winning €1 if E occurs”. Under expected value, it is obvious that the subjective
probability must be equal to the certainty equivalent (Chesley 1978 tests this me-
thod). The most used elicitation techniques are proper scoring rules (and above
all the quadratic scoring rule). The agent should give her subjective probability
and receive a score that depends on the assessed probability and on the event that

occurs. The score, which can correspond to a monetary payment, is computed
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such that the agent has an incentive to tell the truth if she wants to maximize her

expected gain.

The last technique is based on a bisection process, i.e. subsequent partition
of the state space into two subevents that the agent is indifferent to bet on. We can
find the intuition of this method in Ramsey (1926) or Fellner (1961), and a com-
plete description of a judgment-based equivalent in Raiffa (1968) (see Chesley
1978 or Wright 1988 for some tests of the judged version). Chapter 4 presented a
choice-based implementation of this technique, which will be referred to as the
exchangeability methodbecause it is founded on the Ramsey-de Finetti’s basic idea
of event exchangeability. More recently, Chew & Sagi (2006a) derived the exis-
tence of probabilistic beliefs from this concept. Eventually, the four above-
mentioned techniques are supposed to give the same result when applied to a per-

son that is an expected value maximizer.

However, it is well-known that most agents’ behavior under uncertainty
does not match with expected value. First of all, Bernoulli (1738) proposes to ac-
commodate the St Petersburg paradox (that will be described in the next section)
by introducing expected utility, in which the expected satisfaction rather than the
expected gain is maximized. Then, Allais (1953) highlights what he called the “dis-
tortion of objective probabilities’, and especially the fact that departure from cer-
tainty has a higher impact than an equivalent change in intermediate probabilities.
Finally, Ellsberg (1961) shows that people would rather bet on known probabili-
ties than on vague, imprecise, or even unknown probabilities. This third and latest
deviation from expected value is a crucial point in probability assessment since it
obviously deals with events having unknown probabilities. From these three devi-
ations, the ability of the different techniques to elicit Bayesian beliefs (beliefs veri-

fying probability laws) is examined.

By comparing these methods under the three just mentioned behavioral vi-
olations of expected value, we show that the exchangeability method is more ro-
bust to the three paradoxes than the alternative techniques, especially to the two-
color Ellsberg paradox. However, the exchangeability method is crucially based on

the hypothesis that subjective probabilities satisfy additivity. However, several
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studies show that (judged) probabilities exhibit subadditivity. For instance, Tei-
gen (1974) showed that the judged probability of a union of disjoint events may be
lower than the sum of the judged probability of each event. Fox & Tversky (1998)
found similar subadditivity of beliefs. Tversky & Koehler (1994) proposed their
Support Theory in order to explain non-additivity of beliefs: beliefs are influenced
by the description of the concerned events and different descriptions of the same

event can lead to different beliefs.

We thus have to test the existence of additive probabilities that some pre-
vious results find to be a potential Achilles’ heel. This is why we first implement
the exchangeability method in an experiment, which challenged the hypothesis of
additive probabilities. Some tests are also built to provide further information
about reliability and predictability. Eventually, our data confirm Ellsberg-type be-
havior (differing treatments between risk and uncertainty), on which the exchan-

geability method is supposed to do better than alternative techniques.

Section 5.2 presents the elicitation techniques and confronts them with the
St Petersburg, Allais and Ellsberg paradoxes. Section 5.3 describes the method
used in the experiment while section 5.4 exposes the results. Section 5.5 discusses

and concludes.

5.2. Comparing the robustness of the elicitation techniques

5.2.1. FElicitation techniques under expected value

Throughout section 5.2, only decision models that include a subjective
probability distribution over the state space (denoted by S) will be considered.
The simplest model among these is expected value. To begin with its presentation,
we must define the binary actxEy: it gives x€R* if an event ECS occurs and anoth-
er positive real outcome y otherwise. We restrict our presentation to outcomes
from R* for the sake of simplicity. For some events from S, probabilities are

%known’ or ‘objective’. Acts on such events will be written xpy, they yield xeR+
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with probability p and yER* otherwise??. For all x and E, the constant act xEx (or
equivalently xpx) will be referred to as x. The nondegenerate preference relation
on the set of acts is denoted by > (with the usual strict preference > and indiffe-
rence ~). In this first part, we will assume that the decision maker is an expected
value maximizer: her preferences over the set of acts are represented by
P(E)x+(1—P(E))y. P is a subjective probability measure and assigns P(E)€[0,1] to
each event E with P(S)=1; for all events E and F such that ENF=0,
P(EUF)=P(E)+P(F). For acts with known probability (acts that can be rewritten
as xpy), the representation function obviously becomes px+(1—p)y. Lastly, an
elicitation technique will be said to be robust or unbiased if it would allows us to

find the subjective probability of an event.

The first elicitation technique consists in finding the probability p, for each
event E and for some nonzero outcome x, such that xpO~xE0. Under expected val-
ue, px=P(E)x. Consequently, the subjective probability of E is equal to the canoni-

cal probability p.

The second technique, the certainty equivalent method, is based on the de-
termination of c such that c~xE0. Under expected value, c=P(E)x and thus

P(E)=c/x. This can be simply implemented using x=1, such that P(E)=c.

Scoring rules (the third challenger in our robustness comparison) are built
on a score (the payoff) that is determined as a function of the reported probability
r and of the occurring of the event E. According to Winkler (1969), “a payoff func-
tion which depends on the assessor’s stated probabilities and on the event which
actually occurs may be used (1) to keep the assessor honest or (2) [...] to evaluate
assessors and to help them to become “better” assessors.” Formally, a decision

maker assessing that the probability of E is r will receive an act x;Eyr, where x, and

27 Sarin & Wakker (1997) proposed such a framework, in which some events have known
probabilities, and expressed one main condition for consistency: if events E and F have the same
known probability p, then xEy~xFy for all x and y. It induces that when both acts are rewritten xpy

and xpy, then we cannot have xpy>xpy.
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yr depend on r. For instance, the quadratic scoring rule (the most used scoring

rule) corresponds to the act:
[1—-(1-r)?]E[1-r?].

Under expected value, telling the truth is the optimal strategy. Indeed, maximizing
P(E)[1—(1-1)?]+(1—P(E))[1—r?] with respect to r gives the following necessary
and sufficient conditions: P(E)=r and —2<0 (which is trivially satisfied).

Finally, let us present the exchangeability method. According to Chew & Sa-
gi (2006a), events A and B are exchangeable if permuting the outcomes between
these two events does not change the preference value of a prospect. The exchan-
geability method thus consists in partitioning the state space S into events E and
(S—E) such that for some nonnull x, XEO~x(S—E)O0: the agent bets indifferently on
E or its complement. Under expected value, P(E)x=(1—P(E))x implies that
P(E)=1/2. Splitting E into F and (E—F) such that xFO~x(E—F)0 enables us to de-
termine that each event F and (E—F) has probability 1/4. Carrying on this proce-
dure completes the distribution. However this method requires rich state space: it
must be possible to remove a small “part” of an event to add it to another one in

order to obtain equally likely events.

OBSERVATION 5.2.1: Under Expected Value, the four techniques would allow

us to robustly elicit subjective probability. O

5.2.2. First deviation: St Petersburg paradox

Daniel Bernoulli (1738) proposed expected utility as an explanation to the
St Petersburg Paradox that was suggested by his cousin Nicolas Bernoulli. The
story is the following: why does any player refuse to pay more than a limited (fi-
nite) amount of money €x to play a game that gives 2n if the first head side of a coin
appears in the nth toss, while this game has an infinite expected value? Daniel Ber-

noulli argues that players maximize some expected utility instead of the expected
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value, taking into account the satisfaction (i.e. the psychological value) they can get
instead of the monetary value of outcomes. As seen in chapter 1, von Neumann &
Morgenstern (1944) axiomatized this model with known probability and Savage
(1954) generalized expected utility to unknown probabilities. Using the same
framework as in the previous subsection, it will now assumed that the decision
maker is an expected utility maximizer: her preferences over the set of acts are
represented by P(E)u(x)+(1—P(E))u(y) with P the subjective probability function
and u the utility function. It will assumed throughout that u(0)=0.

Under Expected Utility, the canonical probability method still works:
xp0~xEQ implies that pu(x)=P(E)u(x) and thus P(E)=p. This is also true for the
exchangeability method, for which P(E)u(x)=(1—P(E))u(x) still implies that
P(E)=1/2. Obviously, the certainty equivalent method is now biased, because
c~xEQ implies that c is no longer equal to P(E) but c=u~1(P(E)u(x)). Using x=1
and fixing u(1)=1, c=u=1(P(E)). A decision maker who is risk averse will give a
certainty equivalent lower than her subjective probability. Indeed, assuming that
u(x)=x2 with a<1 (risk aversion), and that P(E)=q (0<q<1), EO~q®/a. So, if the
certainty equivalent is used to elicit the subjective probability, the decision mak-

er’s true belief is now underestimated: q(1/2<q.

Now, as regards the scoring rules, they are based on the maximization of the
expected gain. It is thus obvious that, under expected utility, the obtained proba-
bility is biased. To be more specific, Offerman et al (2007) prove that the reported
probability r satisfies

P(E)

r= .
PE) + (1-P(B) =7 -t 3)2)

Murphy & Winkler (1970) already showed that, if the subjective probability P(E) is

lower (higher) than 1/2, the reported probability r is higher (lower) than P(E). So,

small probabilities are overestimated and large probabilities are underestimated.

OBSERVATION 5.2.2: Under expected utility, only the canonical probability

method and the exchangeability method are unbiased. O
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5.2.3. Second deviation: Allais paradox

In a famous paradox, Allais (1953) presents a violation of expected utility
(and consequently of expected value) with known probabilities. MacCrimmon &
Larsson (1979) and Tversky & Kahneman (1992) generalize this paradox to un-
known probabilities. For instance, Tversky and Kahneman interview 156 money
managers about daily variations of the Dow Jones index, using the following three
cases: L (variation strictly lower than 30), M (variation between 30 and 35) and H

(strictly larger than 35). It appears that:

(L:$25000,M:$25000,H:$25000) >  (L:$25000,M:0,H:$75000)
(5.2.1) (5.2.2)

in 68% of answers, but that:

(L:$0,M:$25000,H:$25000) < (L:$0,M:$0,H:$75000)
(5.2.3) (5.2.4)

for 77% of the subjects. Under expected utility, these preferences imply:
P(H)u(75000)>[P(M)+P(H)]u(25000)

and
P(L)u(25000)+P(H)u(75000)<u(25000),

which result in the following contradictory inequality:
P(L)u(25000)<P(L)u(25000).

The intuition under this paradox is that removing the opportunity of winning
$25000 if L occurs has a greater impact if it is applied on certainty (from prospect
5.2.1 to prospect 5.2.3) than if it is applied on an (already) uncertain act (from
prospect 5.2.2 to prospect 5.2.4). More generally, this phenomenon is known as
diminishing likelihood sensitivity (Wu & Gonzalez 1999): the closer to impossibili-
ty or certainty a variation of likelihood is, the stronger the reaction is. This implies
that most people overweight the less likely events and underweight the more like-

ly ones (Fox & Tversky 1995).

238



Non-expected utility theories are developed in order to take into account
the Allais paradox. Generalizations of expected utility accommodating this kind of
behavior include Schmeidler’'s (1989) Choquet Expected Utility, Tversky &
Kahneman’s (1992) Cumulative Prospect Theory, Gilboa & Schmeidler’s (1989)
Maxmin Expected Utility. In our framework and according to Ghirardato & Mari-
nacci (2001), these theories coincide with a common representation. From now, it
will thus be assumed that that the decision maker’s preferences over the set of acts
are represented by a non-expected utility functional that assigns
W(E)u(x)+(1-W(E))u(y) to act xEy where x>y. W is the weighting function with
W(@)=0, W(S)=1 and W(A)<W(B) for all ASB. The weighting function may be
additive or not. Note that every positive binary act can be written as xEy for some
event E and outcomes x>y: this is important because the representation depends
on which event the highest consequence is affected to. Since this chapter deals
with probability elicitation, we will also assume that decision makers are probabil-
istically sophisticated, i.e. that preferences satisfy first order stochastic dominance
with respect to a subjective probability measure. As a consequence, W(E) can be

rewritten w(P(E)).

Under this model, it is obvious that the certainty equivalent c of XEQ is still
different from P(E): it is now equal to u=1(w(P(E))u(x)). As regards to scoring
rules, it is not sure that the highest outcome is associated to E because outcomes
depend on the reported probability. To ensure that the outcome on E is larger
than the outcome on S—E and that the above-mentioned representation can be
directly applied, Offerman et al (2007) point out that we can add a unit if E occurs

such that the rule becomes:
[2—(1-1)?*]E[1-1?]

This act always gives the highest outcome on E, and r is such that (according to

Offerman et al 2007):

o w(P(E))
- S
w(P(E)) + (1 - w(P(E))) u'(lzl 51(1 = 3)2)
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On the contrary, the canonical probability still corresponds to the true be-
lief: w(p)u(x)=w(P(E))u(x) implies P(E)=p. The exchangeability method does
not suffer from this paradox either: w(P(E))u(x)=w(1—P(E))u(x) still implies that
P(E)=1/2.

OBSERVATION 5.2.3: Under the postulated non-expected utility model and
probabilistic sophistication, the canonical probability method and the exchangea-

bility method are unbiased. O

Offerman et al (2007) propose a method that corrects the quadratic scoring
rule for the two previous biases, by applying the scoring rules to known probabili-
ties, in order to evaluate the bias at each probability. Knowing the reported prob-
ability of event E and removing the bias, they obtained the belief. In other words,

they elicit a function R such that R(p) is the reported probability of
[1-(1-r)*]p[1-r”].

Second, they show that if R(p)=rg where r¢ is the reported probability of
[1-(1-r)*]E[1-17],

then P(E)=p.

5.2.4. Third deviation: Ellsberg paradox

Ellsberg (1961) proposes a paradox that has already been extensively dis-
cussed in this dissertation: an urn contains 50 red balls and 50 black balls (these
events will be referred as 1/2), while another urn contains red (R) and black (B)
balls in unknown proportion. When people are asked for indicating an urn such
that they can win €x if a red (black) ball is drawn in the urn they choose, most of
them prefer the known urn. Consequently x(1/2)0>xR0 and x(1/2)0>xB0. Under
the three previously assumed models, these preferences imply P(R)<1/2,
P(B)<1/2 and thus P(R)+P(B)<1: this is a violation of the additivity property of
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probabilities. It may be argued that additive subjective probabilities do not exit or
that beliefs are not additive. However, it seems that most people do believe that
the probability of drawing a red (black) ball in the unknown urn is one half, even if
they prefer to bet on the urn about which they have more information. This was

already suggested by Fellner (1961).

This dependency on information implies the necessity of defining a source
of uncertainty, which is a set of events that are generated by a common mechanism
of uncertainty. The necessity of this concept was introduced in Heath & Tversky
(1991), Tversky & Kahneman (1992), Tversky & Fox (1995) and Tversky & Wakk-
er (1995). For instance, football games correspond to events that belong to a first
source of uncertainty, while results of basketball games belong to another source.
The football fan has high knowledge about the chance of winning of a given foot-
ball team, but very little knowledge for a basketball team. A decision maker having
the same level of knowledge for all the events from one source is indifferent be-
tween betting on equally likely events from this source. For instance, considering
the source of uncertainty that corresponds to the events of the unknown urn, most
people are indifferent between betting on red or black balls. Their preferences
within the unknown wurn are consistent with additive probabilities
(P(R)=P(B)=0.5), but attitudes that differ across urns explain the Ellsberg para-

dox.

As a consequence, agents can be probabilistically sophisticated within a
source of uncertainty, even if their attitudes differ across sources. In the previous
subsection decision weights W(E) were decomposed into a probabilistic belief
P(E) and a general weighting function w(.) that was independent from the source.
But many experimental findings are consistent with source dependent weighting
functions, i.e. source dependent attitudes (Dolan & Jones 2004; Fox & See 2003;
Fox & Tversky 1998; Kilka & Weber 2001). The same dependency result has been

found in chapter 4 with choice-based probabilities instead of judged probabilities.

Let us slightly modify the framework that was previously assumed in order
to add sources of uncertainty. Unlike Chew & Sagi (2006b) who propose an endo-

genous definition of sources of uncertainty (see chapter 1), only exogenously de-
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fined sources (like events concerning the French stock index CAC40) will be consi-
dered here (as in chapter 4). For the simplicity of presentation, each of the m
sources will be represented by a different state space S;, for i=1,...m. Doing so,
intersections of events from two different sources, e.g. the three-color Ellsberg pa-
radox, are rule out. This paradox is the replication of a similar mechanism of the
two-color problem, but with only one urn containing 30 red balls, as well as 60
black and yellow balls in unknown proportion. The event “a red ball is drawn” and
its complementary event belong to a first source of uncertainty, a second source is
generated by not knowing the proportion of black and yellow balls. The event “the
ball is black” is thus at the intersection between the two sources. Even if ruling out
such cases limits the generality of the model we intend to introduce, it still takes

into account significant deviations like the two-color Ellsberg paradox.

The same canonical representation as in the previous section is still as-
sumed, but probabilistic sophistication only holds in each source, i.e. on each §;, but
not between sources, i.e. between different Sis. In other words, the decision mak-
er’s preferences within each source are only explained by her subjective probabili-
ty distribution over outcomes, while her preferences across sources depend on
likelihood considerations as well as on her attitude towards each source. Probabil-
istic sophistication restricted to sources is recently appeared in the literature

(Chew & Sagi 2006b, Ergin & Gul 2004).

So, we keep on assuming non-expected utility, but probabilistic sophistica-
tion is now restricted to each source. As a consequence, the preferences over the
set of acts xEy (with x>y), where E belongs to a source S;, are represented by
wi(P(E))u(x)+(1—wi(P(E)))u(y). The source dependent probability transforma-
tion function of source i is denoted wi. Let us consider that source So contains all
events the probability of which is known and rewrite wo without its lower index.
The weighting function when probabilities are known is thus denoted w. Because
w and w; are one-to-one functions from [0,1] to [0,1], the decision weights can be
rewritten: wi(P(E))=w(@i(P(E))), where w is the weighting function when proba-
bilities are known and the one-to-one function i describes the specific attitude

towards source S;. Similar decomposition of decision weights into three functions
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can be found in Fox & Tversky (1998) or Wakker (2004), even if they do not as-

sumed that beliefs are represented by additive probabilities.

Let us come back to our elicitation techniques and begin with the canonical
probability p such that xpy~xEy. It is clear that p=@i(P(E)) (considering that
E€Si). Consequently, the canonical probability does not only contain a belief but
also an attitude component that is generated by source i. The Ellsberg paradox
clearly suggests this point. The certainty equivalent of xEy is equal to
u~Y(w(@i(P(E)))u(x)). It should be noted that, even if obtaining u and w is possi-
ble when probabilities are known, correcting the certainty equivalent from risk
attitude will not be sufficient to obtain the subjective probability. The combination

of belief and attitude towards source S; remains.

Now, regarding the scoring rules, the reported probability?8 of the quadratic

scoring rule is given by r such that

w (CPi(P(E)))
w ((pi(P(E))) + (1 -w ((Pi(P(E)))) uf(lzllgl(z 123.)2)

r=

The corrected version of Offerman et al. (2007) suffers from the same limitation as
canonical probability. Under the assumed model, with R(p) (resp. rg) the reported
probability of [1—(1-r)*]p[1—r?] (resp. [1—(1-r)?*]E[1-r?]), rg=R(p) implies
p=¢i(P(E)).

None of these methods is able to correct for attitude towards sources. On
the contrary, the exchangeability method still works. For events E and S;—E that

belong to source i, xEO~x(S;—E)0 induces

w(@i(P(E)))u()=w(ei(1-P(E)))u(x)

28 Recall that a 1 unit is added if E occurs, to ensure that the outcome on E is always higher

than on its complement.
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and thus ¢i(P(E))=¢i(1-P(E)). As a consequence, @; being a one-to-one function
implies that P(E)=P(Si—E)=1/2. Equivalently, in the two-color Ellsberg paradox,
indifference between bets on red or black balls in the unknown urn can be inter-
preted as a subjective probability of 1/2 for both events. Note that richness has to
be assumed for each source, i.e. if XEO>xFO0 for some disjoint E and F from source i,
a small subevent e can always be removed from E to be added to F so that E—e and
FUe are equally likely. This assumption may be seen as a too strong limitation and

will be discussed later.

OBSERVATION 5.2.4: Among the four techniques under consideration, the ex-
changeability method is the only unbiased one under the model we chose to en-

compass the St Petersburg, Allais and (two-color) Ellsberg paradoxes. O

This result generates several questions: even if the exchangeability method
is theoretically safer and sounder, is it yet feasible? Its good properties are due to
two main hypotheses: additivity of subjective probabilities and source dependent
behaviors. Could these hypotheses be empirically supported? The two following
sections are devoted to the presentation of an experimental study that aims at giv-

ing some answers to these questions.

5.3. Method

5.3.1. Subjects

Fifty-two subjects (25 women and 27 men) participated to the experiment
during March-May 2005. All participants were studying in Economics and Man-
agement (27 subjects) or Social Sciences (25 subjects) at Ecole Normale
Supérieure de Cachan (France). They were enrolled thanks to posters and presen-
tations at the beginning of their courses. None of them knew the true goal of the

experiment. They were only told that the experimenter wanted to collect their
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choices in an uncertain framework. The computer-based experiment was con-
ducted through individual interviews, using software specifically developed for the
experiment. Each participant was seated in front of a screen in the presence of the
experimenter, who entered the participant’s statements into the computer and

submitted it after clear confirmation.

5.3.2. Elicitation technique

Consider a source Sa and then determine two complementary events such
that they are revealed equally likely. Let us denote those events AL and A3. They
are such that for some x, xA30~xA20. From this 2-fold partition of S, a 4-fold one
can be generated by splitting each of these two events into two equally likely sub-
events, i.e. by finding A}, A%Z,A3 and A} satisfying ALNA3=0, A3NA%2=0, xAL0~xA30
and xA30~xA%0. An 8-fold partition of S can be done by splitting AL, A%,A3 and A%
in the same way. If probabilistic sophistication holds in this source, the A}s will
constitute an exchangeable partition of the state space, i.e. a partition the events of
which are all exchangeable. The whole subjective probability distribution that is
associated to the source can thus be inferred. Indeed, as seen in chapter 4, the
events of an exchangeable n-fold partition have the same subjective probability:

1/n. The following picture describes the process and the notations.
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Figure 5.3.1: Decomposition of the state space

Let us explain the intuition that underlies the notation A}: the lower index j
indicates in how many exchangeable events the state space is split. The upper in-

dex i is the number of the event in a left-to-right reading. Each A}- is then divided
into A3}~" and A3}. We may remark that i/j gives the cumulative probability of the
right-hand boundary, which is called aj;;. As a consequence, A} = (3(1—1)/]',31/1]' ex-

cept for A} = (=o0,a,;] and A} = (a5, +).

5.3.3. Implementation

The experiment begins with the presentation of the sources of uncertainty,
some calibration questions and several trials. Three sources are used: the temper-
ature in Paris (this source will be referred to as St, and the corresponding events
as T]-i = (t(i—l) it /]-] ), the Euro/Dollar exchange rate (with events E]-i =
(eqi—1)/.€i/;]€SE) and the French stock index CAC40 (with Cf = (cgi_1)/5,¢i/5] €S).

Note that the generic notation Sa and A} will be kept for general comments. For
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each source, uncertainty resolution occurs exactly four weeks after the experi-

ment.

The experiment starts with a 15 minutes calibration task. For each variable,
calibration consists in asking the subject for bo and by such that she thinks that
there is almost no chance that the value of the variable will be out of the interval
[bo,b1]. The result of the calibration task has strictly no impact on the state space,
which remains (—o0,400)29 but is necessary for graphical reasons and to avoid
influencing the participant’s belief. Indeed, the state space is displayed as a gradu-
ated ruler, and [bo,bi] determines the part of (—oo,+0) that is drawn on the
screen. After this calibration task, the main part of the experiment begins with no

time pressure. On the average, this part lasts 50 minutes.

After the training/calibration, we first determine ti/2 to obtain T} and TZ.
The first question is built on those bg and b; that are previously determined for
this particular source, and the subject is proposed to bet either on (—oo,(bo+b1)/2]
or on ((bo+b1)/2,+00). Then the determination of indifferences is done through a
bisection process. After this first elicitation step, e1/2, €12, t1/4, €3/4, C1/4, t1/4,..., tiss,
es/s, C7/8... are determined, switching between sources and probability levels, until
an 8-fold partition is obtained for the three sources. In order to introduce diversi-
ty, x is randomly drawn between €130, €140 and €150. On the screen (see figure
5.3.2), the position of bets on the right-hand event and on the left-hand one is ran-

domly mixed across questions.

29 Note that the real minima are not -0 but -273.15°C, 0% and -100% for Paris temperature,

Euro/dollar and CAC40 respectively.
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Figure 5.3.2: Screenshot

5.3.4. Tests

Once the partition is obtained, tests are implemented. We want to provide
some further information about the reliability of this technique and to challenge
the two major hypotheses Observation 5.2.4 is based on: additivity of beliefs and
Ellsberg-type behavior.

A test of reliability is implemented by repeating the fourth choice that has
been made during the bisection process of ti/, ti/4 and tz/4 (resp. e1/2, €14, €374, and
c1/2, €174 and c3/4) and by computing the rate of identical answers across questions.
Then, a topic of interest is the possibility of inferring new exchangeable events
from the obtained probability distribution: it is done using the subjective probabil-
ities to determine t'1/3 and t'z/3, and then testing whether T3 = (—oo,t’1/3] and
T2 = (t’1 /3t /3] are revealed equally likely. The same thing is done for the two
other sources. This test is implemented using a bisection process, in order to de-
termine a new indifference and to compare the obtained boundary with the theo-
retical one. In other words, testing the exchangeability of Ts and TZ is done by
splitting T+ UTZ into two equally likely subevents with a common boundary called

t1/3, and by comparing it with the theoretical value t'i/3.
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Tversky & Koehler (1994) point out that subadditivity of subjective proba-
bilities may come from the description of each event. In the same vein, Starmer &
Sugden (1993) and Humphrey (1995) show the so-called event-splitting effect, i.e.
the fact that two incompatible sub-events look more attractive than their union. In
our experiment, exchangeability is confronted with unions of events by checking
whether T}UT, and T?UT; are also exchangeable. This test compares a convex
event (T?UT;) with a non convex one (T}UTS). If probabilistic sophistication
holds, these events will be equally likely but the event-splitting effect predicts that
the non convex event will be more attractive than the convex one. We of course
implement similar tests with Euro/Dollar exchange rate and with CAC40. Alike
predictability, subadditivity is tested by eliciting two exchangeable events, namely
TAUTY = (=0, t1/4| U (t'3/4, +90) and T2UT; = (ty/4,t'3/4], such that t's/s has then

to be compared with the original value t3/4.

Eventually, the crucial point of Observation 5.2.4 is that behavior depends
on the source. It is thus necessary to test for violations of probabilistic sophistica-
tion across sources, i.e. if an event from one source can be strictly preferred to an
equally likely event from another source. Chapter 4 achieves it using willingness-

to-bet. Here, preferences are elicited between bets on some event A} from one

source and bets on the same event from another source. The participants are thus
asked for their preferences among bets, either on an event with known probability
p=1/4, or on T}, E}, or C1. They thus have to rank 140p0, 140T;0, 140E10 and
140C10. This question is replicated with p=1/2, T}, E} and C}, and then with
p=7/8,S—T¢, S—E8 and S—C§.

5.3.5. Real incentives

There is no flat payment in this experiment. During the presentation, the
participants are told that some questions will be played for real. First, a subject
will be randomly drawn and then, one of her answers (except the answers for the

ranking between bets on the different sources3?) will be played for real. Then the

30 See the last paragraph of the previous subsection.
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same process will be applied for another subject. Subjects are told that at most
one question per subject will be drawn and that the process will stop as soon as
four subjects won. This implies that at most €600 will be distributed to the sub-
jects. Four weeks after each experiment, the values taken by the variables are rec-
orded. After the last record, the payments are determined.3! It could be argued
that, even if real incentives are implemented, the process may not be incentive
compatible because of the presence of chaining between questions and because of
the use of bisection (Harrison 1986). However, there exist several strong argu-
ments suggesting that these problems did not appear. First, the randomization of
questions between sources of uncertainty makes the chaining unclear. Second, in
our experiment, no simple alternative strategy exists that dominates telling the
truth for sure, even for a participant that completely knows the elicitation process.
Moreover, we argue that telling the truth is the simplest strategy for any subject,
who decides to maximize her gains and minimize the cognitive cost implied by the
experiment. Eventually, the reliability questions, which are not chained with later

questions, prove consistency of the data (see next subsection).

5.4. Results

5.4.1. Subjective probabilities and reliability

Through the experiment, 156 probability distributions are obtained. Be-
cause each distribution concerns a particular day, mean or median results are not
interesting. To give an idea of what is obtained, the following figure displays the

probability distributions of Subject 26.

31In June 2005, two participants received €140, and two received €150.
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One of our topics of interest is the reliability of the method. For 70.51% of
the repeated questions, the second answer is identical to the first one. Those ques-
tions concern the three sources and the determination of ai/2, ai/4 and asz;s. Ac-
cording to Cochran tests, reliability is not significantly different across question
types ai/2, a1/4 or azss (y2=2.16, p=0.34), nor across sources (y5=0.53, p=0.77).
To further analyze reliability, the rate of identical second answers has to be related
to the distance from indifference: when a participant is indifferent between two
bets, she is supposed to randomly choose on which events she bets. Thus if the

repeated questions only concern those indifferent bets, reliability will be close to
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50%. This is why the distance from the indifference is measured as the difference
between the common boundary of the two events on which the participant can bet,
and the previously obtained value ty,z,..., c3/2. Units are 0.5°C, 0.01€ and 0.1% for
temperature in Paris, Euro/Dollar exchange rate and CAC40 respectively. The fol-
lowing graphs display the proportion of consistent second answers; abscises

represent the distance from indifference.

100% 100%

80% 80%

60% A 60% A

40% - 40% -

20% - 20% A

0% - 0% -

0 1 2 3 >=4 0 1 2 3 >=4
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CAC40

Because any departure from indifference hugely increases the rate of iden-
tical second answers, our results strongly suggest that the exchangeability method
is able to catch true indifferences, and therefore, under our assumptions, subjec-

tive probabilities.
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5.4.2. Testing predictability

Are we able to predict beliefs thanks to the elicited subjective probabilities?
Our exchangeability method aims at extracting beliefs from choices. But in fact, we
do not know whether what we obtain really corresponds to beliefs or not. None-
theless, a probabilistically sophisticated agent is supposed to act in a consistent
way with respect to a subjective probability distribution. This is why a way of eva-
luating the exchangeability method consists in predicting subjective probabilities
of events and then testing for consistency of the agent’s behavior with respect to
those probabilities. Figure 5.4.3 schematizes the implementation of our predicta-

bility test.

ay/8 A1,4 Q33 Q12 Agpg az/4 A7/8

Ay Al Al AY A AL Al AL

1- Linear
interpolation
a'ys a'y3
l l
=t? 3- Test
Ay3 a'y;3
l I
A
~
2 s e e
A ; A 3 2- Elicitation

Figure 5.4.3: Testing predictability

A linear interpolation gives theoretical values a'i/3 and a'z/3. Then ay3 is
elicited such that A} = (—,a, /5] and A3 = (a;/3,a';3] are revealed equally likely
and is finally confronted with a'i/3. However, a'1/3 and a'z/3 have to be corrected
for some approximations: because of the graduations of the rulers (0.5°C, $0.01
and 0.1%), we only estimate a', such that p is as close as possible to 2/3, given the

scale units, and then a'y/2 is computed. Eventually, a'p,2 is rounded off with the

253



scale units and compared with the elicited boundary. Table 5.4.4 gives some statis-

tics.

Table 5.4.4: Testing predictability, the results

Temperature Euro / Dollar CAC40
Difference mean 0.1442°C —0.0038€ —0.0346%
Correlation 0.9366 0.9511 0.8089
p-values (paired t-test) 0.4957 0.2356 0.3409
N 52 52 52

For all sources, p-values are higher than 5%. High correlations confirm that
this acceptation of the null-hypothesis is not caused by noise in the data. As a con-
clusion of this test, we can say that participants’ behavior looks consistent with

respect to the elicited probability distribution.

5.4.3. Exchangeability and Event-Splitting Effect

Let us challenge our method with the Achilles’ heels of subjective probabili-
ty elicitation, namely non-additivity of beliefs and sensitivity to the description of
the events. The test deals with two events, one being a convex union of disjoint
exchangeable subevents, the other one a non-convex union of such events. Does
Event-Splitting Effect (ESE) occur and induce a violation of exchangeability? For
each source, two events (—oo, a1/4] U (a'3/4, +0) and (a1/4,a1/2] U (ay/2, a’3/4] =
(a1/4,a"3/4] are elicited such that they are revealed equally likely. Then, a3/ and

the original value asz/4 are compared. Table 5.4.5 displays the results.

Table 5.4.5: Exchangeability versus ESE

Temperature Euro / Dollar CAC40
a'sj4—az/a 0.3800 0.0170 0.0500
Correlation 0.9258 0.9306 0.6017
p-values (paired t-test) 0.1200 0.0177 0.5241
N 50 46 42

Let us first explain why there are less than 52 observations. A few partici-
pants change their mind during the experiment, and their beliefs change especially
when they do not have enough knowledge about the source. Those who think they

have overestimated ai/s clearly always preferred (—00,a1 /4] U (a’3 /4,+00) even
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when a'z/s tends to infinity. This is the case when the new belief coincides with a
subjective probability of (—00,31/4] higher than 1/2. This problem appears once
for the temperature in Paris but five times for the stock index, which subjects were
less familiar with. In order to compensate the bias generated by the absence of
those observations, the same number of participants exhibiting the opposite beha-
vior (i.e. participants who think they have underestimated a1,4) are removed. This
is why ten subjects are missing for the stock index. Note that a'3;s—a3z/4+>0 indi-
cates that AL U A} is preferred to A3 U A3 and consequently, that the non-convex
events appears more attractive. This corresponds to ESE and happens for the
three sources, even if it reaches significance only for the exchange rate source. We
can conclude that, even with the exchangeability method, belief can be manipu-
lated through the description of the events: a non-convex event appears to have
more support than a convex one. However, we could argue that the original elicita-
tion does not suffer from such limitation because it consists in comparing similar

convex events.

5.4.4. Testing source dependency

Let us recall that probabilistic sophistication is assumed under each source
of uncertainty but violated for the whole state space, according to Ellsberg para-
dox. Since the interest of this method (and the non-robustness of alternative me-
thods) is grounded on violations of probabilistic sophistication across sources, a
test, which aims at comparing events that are supposed to have the same subjec-
tive probability, is implemented. This test is built on four bets, one on an event
from each source and a bet with an explicit probability of winning. Each bet is dis-
playing the same (subjective) probability distribution over outcomes and partici-
pants are asked for ranking them. A Friedman test on ranks shows significantly
different ranks between the three sources and the known probability source for
each of the three probabilities under consideration (p=0.016 at probability 1/4,
p=0.000 at probabilities 1/2 and 7/8). Removing known probabilities from the
analysis, subjects are still significantly influenced by the source at probability 1/4

(p=0.0352) but not at higher probabilities.
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Table 5.4.6: Comparison of ranks between a source of uncertainty and the known

probability source

(p-values, 1/4 1/2 7/8
Wilcoxon test)

Temperature 0.001 (AS) 0.001 (AA) 0.000 (AA)
Euro/Dollar 0.002 (AS) 0.341 (AN) 0.000 (AA)
CAC40 0.000 (AS) 0.122 (AN) 0.000 (AA)

The former table displays the results of a signed rank test (Wilcoxon test)
comparing the rank of each source with the rank of the known probability source
at the three probability levels under consideration. Assuming that the three
sources are more ambiguous than the source with objective probability, such a
comparison highlights ambiguity attitude. If a subject bets on an ambiguous event
rather than on a known probability, she is ambiguity seeking (AS). The opposite
preference characterizes ambiguity aversion (AA). Indifference between those
bets means ambiguity neutrality (AN). Our results clearly show that ambiguity
aversion increases with probability, which is consistent with previous literature on

ambiguity (e.g. Hogarth & Einhorn 1990).

As a conclusion, recall that source dependency is the phenomenon that
makes the other choice-based methods that were considered in section 5.2 biased.

This is how the current results support the exchangeability method.

5.5. Discussion and conclusion

5.5.1. Discussion

A first limitation of all choice-based elicitation techniques under considera-
tion is that they all assume Savage’s separation between utilities and conse-
quences. Thus, they do not work when utilities are state-dependent, i.e. when the
decision maker associates an intrinsic utility to the states of the world. For in-
stance, even if you think that the probability of raining tomorrow is one half, you
may not be indifferent between winning an umbrella if it rains and winning an
umbrella if it does not rain. This issue also occurs when the decision maker has

“stakes” in an event. Assume that an ice cream seller must choose between win-
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ning €1000 if the temperature is higher than 20°C and winning the same amount if
the temperature is lower than 20°C. She must prefer the second gamble, not be-
cause she thinks the event is more likely, but because she wants to cover a possible
loss. Karni (1999) proposes a method to deal with state-dependent preferences.
However, the choice-based techniques that are discussed in this chapter, and
above all the exchangeability technique, remain valid if choice situations, in which
the decision maker has either state-dependent preferences or “stakes” in the

events, are excluded.

Subadditivity of beliefs constitutes another limitation of our study. Howev-
er, if beliefs are not additive, separating non-additive attitude from non-additive
beliefs seems to be impossible without assuming some parametric functional, ei-
ther for the probability distribution or for a weighting function that represents this
attitude. Clearly, additivity of probabilities was introduced to allow the disentan-
gling of beliefs and attitudes towards sources. It is thus important to carry on the
analysis of belief additivity. To this respect, two distinct orientations are left for
future studies. First, what tests should be conducted to challenge the additivity
hypothesis of the exchangeability method? We conducted such a kind of test by
confronting exchangeability with ESE, but various tests would bring some more
information. Second, what is the relation between subadditive judged probabili-
ties and the subjective probabilities we obtained with the exchangeability tech-

nique (and their built-in additivity)?

However, a strong argument can be put forward in favor of our additive be-
liefs: “Objective rules of coherence (the axioms and theorems of probability
theory) must be strictly obeyed in any subjective probability evaluation. Cohe-
rence is necessary to prevent substantial contradictions, such as the possibility of
incurring sure losses as a result of an action” (de Finetti 1974). As a subjective
probability evaluation, exchangeability guarantees a built-in kind of additivity that
may be useful to prevent actions that could be based on this evaluation from vi-

olating rationality rules.

Finally, it could be argued that alternative methods work for discrete

events, while the exchangeability technique requires richness of the state space. A
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solution to this problem is suggested by Chew & Sagi (2006b). They propose to
use an auxiliary draw (a random number from [0,1)) that is used to transform the
“poor” state space into a rich one. They apply it to the Ellsberg two-color paradox:
instead of betting on red or black balls, the decision maker is asked for her prefe-
rences on events such that “a red ball is drawn and the random number belongs to
[0,p)”. If she bets on this event rather than on its complement, then varying p
makes the event less attractive. However, a limitation could be the cognitive cost
implied by such a compounded source. Such events that mix a probability and an
event could be difficult to understand for the agent. The evaluation of the feasibili-

ty of this procedure is left for future research.

5.5.2 Conclusion

The first contribution of this chapter is to show that the exchangeability me-
thod, which is a way of eliciting probabilities without making explicit reference to
them, is a probability elicitation technique that is robust to the three most-known
paradoxes in decision making. The key issue in belief elicitation consists in sepa-
rating beliefs from attitudes. Indeed, decisions under uncertainty cumulate vari-

ous effects that make the extraction of beliefs from choices more difficult.

First of all, outcomes are not considered linearly by the decision makers and
it is thus necessary to correct for utility. Second, attitude towards risk does not
reduce to this attitude towards outcomes but also comes from the subjective
treatment of probabilities. Models like cumulative prospect theory capture it
through a probability weighting function. If the effect of this weighting is ignored,
then elicitation of subjective probabilities could imply an overestimation of small

probabilities and an underestimation of large ones.

The last effect that should be separated from belief is the source-dependent
attitude. Indeed, agents do not act in the same way when probabilities are known
or unknown; and, even if we only consider unknown probabilities, they act diffe-
rently depending on the knowledge they have about the events under considera-
tion. From expected value to a source dependent and probabilistically sophisti-

cated cumulative prospect theory, the impact of all these deviations on the various
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elicitation techniques was investigated. Our conclusion is that the exchangeability
technique better ensures the separation of beliefs from attitudes towards out-

comes, probabilities and knowledge about the events than the alternative methods.

An experiment was run in order to investigate the empirical accuracy of the
exchangeability method, namely its reliability and its ability to predict. Even if it
was possible to violate exchangeability using event-splitting effect, our data con-
firm that the notion of source of uncertainty constitutes a major concept to under-
stand behavior under uncertainty. As a consequence, they precisely reinforce the
arguments in favor of the exchangeability method, which is able to deal with

source dependency.
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Chapter 6.

General Conclusion

This last chapter is dedicated to a general and critical overview of this dis-
sertation. The first section summarizes every chapter and confronts them with the
desiderata posited in the introduction. Section 6.2 discusses the main findings, the
methodology and the main assumptions of the dissertation. At last, further re-

search that should follow this work is announced in section 6.3.

6.1. Are the goals reached?

Let us first recall the desiderata we defined in Chapter 1. Indeed, after hav-
ing presented the main model of individual choice under uncertainty, i.e. Subjec-
tive Expected Utility (SEU), we exposed and discussed different characteristics that

an alternative model should have to be at least as interesting as SEU.

D1 (Bayesianism): The model must be consistent with Bayesian beliefs, i.e.
with additive subjective probabilities, or at least it must make it possible to test for

their existence.
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The existence of subjective probabilities remains a major topic because they are
widely used in the economic literature to represent beliefs. One of the main inter-

ests of SEU consists in representing beliefs through additive probabilities.

D2 (Robustness): The model must be robust to Allais or/and Ellsberg para-

doxes.

These two paradoxes are the main limitations of SEU. This is why allowing for

them is necessary for a new model to improve the descriptive abilities of SEU.

D3 (Observability/Measurability): The model must be directly testable or,

even better, directly measurable.

Falsifiability of a model is an important requirement in science and its measurabili-
ty is useful for instance in decision analysis or in order to calibrate an economic

model.

D4 (Prediction): The model must allow predictions.

We do not only want to represent a decision maker’s behavior in a given situation,
but we would also like being able to predict future decisions or attitudes thanks to

our analysis.

We wanted these desiderata to be guidelines for the dissertation. We have

now to evaluate each chapter with regards to them.

6.1.1. Modeling risk and ambiguity aversion through diminishing
marginal utility

Chapter 2 develops a preference-based tool characterizing marginal utility,
and uses it to provide axiomatizations for models such as SEU or the smooth model
of ambiguity of Klibanoff, Marinacci & Mukerji (2005). This tool, called tradeoff

relation, permits to simply represent a wide range of models and it is used in chap-

ter 2 to define necessary and sufficient conditions for two-stage models. The main
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advantage of such an approach is to enhance simple preference conditions that are

equivalent to risk or ambiguity attitudes in those models.

Bayesianism: Chapter 2 first studies Subjective Expected Utility (SEU) and
consequently, Bayesianism is assumed. A two-stage model is then introduced, in
which even if (subjective and objective) probabilities are considered at each stage,
they are associated to a different utility function. Such models encompass Baye-
sianism at each stage while allowing for violations of reduction of compound lotte-

ries.

Robustness: The two-stage model studied in sections 2.5 and 2.6 of chapter
2 accommodates the Ellsberg paradox by dealing with the uncertainty on the right
probability distribution. This model is thus robust with regards to the Ellsberg
paradox. However, the assumption of expected utility applying at each stage is
violated by the Allais paradox. Remember that this paradox can be explained by a
certainty effect: departures from certainty (e.g. a sure gain x becomes a lottery that
yields x with probability 99% and 0 otherwise) have a higher impact than equiva-
lent changes in intermediate probabilities (e.g. a lottery that yields x with probabil-
ity 50% and 0 otherwise becomes a new lottery that gives the same amount x with
probability 49% and 0 otherwise). Hence, the perception of certain amounts dif-
fers from the perception of lotteries, i.e. sure amounts are not perceived as special
cases of lotteries. This is why reducing behavior under risk to marginal utility de-
prives intuitive contents of risk attitudes. Similarly, the results of chapter 2 can be
reinterpreted to show that EU-based models restrict all attitudes to (differences
of) marginal utilities and thus lose their intuitive contents. For instance, it may be
felt that tradeoff conditions mostly catch the value of outcomes while being sup-
posed to characterize risk or ambiguity attitude. As a conclusion, robustness of
models with respect to the Allais paradox seems even more crucial after this chap-

ter and is satisfied in all other contributions of the dissertation.

Observability: One of the main topics of chapter 2 is to provide observable
conditions that characterize or compare attitudes towards risk and ambiguity. The
tradeoff conditions are easily testable and do not make use of any reference to a

theoretical construct like subjective probability. Indeed, several contributions in
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the literature on ambiguity define attitude through references to expected value
(or expected utility) of acts, which are based on subjective probabilities and are
thus not directly observable. Chapter 2 aims at avoiding such references. Moreo-
ver, the tradeoff conditions we define do not need the restriction that the different
decision makers have the same belief or that they have the same behavior when
probabilities are known. We can conclude that this chapter clearly contributes to

increase the observability of EU-based models.

Prediction: The models under consideration associate attitudes towards
risk or ambiguity to (differences of) marginal utility. We propose tools that only
characterize marginal utility to observe a decision maker’s behavior. Under these
models, it is then easy to deduce attitude and predict behavior from simple obser-

vations of tradeoff relations.

After this first theoretical contribution to the EU theory, the other chapters
are dedicated to analyzing and eliciting non-EU models for behavior under uncer-

tainty.

6.1.2. Combining experts’judgments

In chapter 3, we implement an experiment in order to understand how
agents incorporate experts’ judgment into their decision making. This experiment
is based on the revealed belief associated to a given ambiguous context, i.e. the
probability q such that the agent makes the same decision when facing a loss with
probability q or the same loss with the ambiguous probability set. We implement
two ambiguous situations: experts either agree on an imprecise probability inter-
val [p—r,p+r] or disagree and each of them gives his/her own judgment (this is
represented by a set {p—r,p+r}). Observations of revealed beliefs enable us to un-

derstand the impact of conflict or imprecision of experts.

Bayesianism: If we consider that Bayesians having no information about
experts’ respective reliability should have a uniform distribution over the ambi-
guous probability set and thus, should use the mean distribution, our experiment
reveals that subjects exhibit significant discrepancies with respect to Bayesianism.

However, we do not look for subjective probabilities. We can only conclude that
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even if agents think as Bayesians, they however distort the mean distribution in

their choices.

Robustness: Our method is founded on Cumulative Prospect Theory in or-
der to take account of deviations from EU like the Allais paradox. We indeed find
significant nonlinear probability weighing, suggesting that such a model is neces-
sary. The model is also robust to the Ellsberg paradox and aims at measuring
Ellsberg-type phenomena through indexes describing the impact of ambiguity. For
instance, when probabilities are imprecise, we find that prospects are significantly

less attractive than when probabilities are clearly defined.

Observability: We assume CPT because it is easily observable, but once this
is accepted, revealed beliefs are estimated without any further assumption. For
example, we assume neither ambiguity aversion nor that revealed beliefs should
be a constant linear combination of the two extreme possible probabilities. Our
model allows for attitudes depending on probability levels. Then, we conduct an
experiment, in which we measure the impact of different types of ambiguity, name-

ly imprecise and conflicting ambiguity.

Prediction: Finally, an interesting feature of revealed beliefs is that they can
be directly interpreted in terms of prediction. For example, the median revealed
beliefs of the ambiguous contexts [0,.20] and {0,.20} are equal to .19 and .06 re-
spectively. This means that the median agent takes more risks when the experts
disagree than when they agree on the mean estimation .10 or when they agree but

give an imprecise statement.

6.1.3. Exchangeability and source dependence

In chapters 4 and 5, we work on the combination of a general non-EU repre-
sentation for binary acts and probabilistic sophistication restricted to sources of
uncertainty. Probabilistic beliefs hold inside each collection of events generated by
a common mechanism of uncertainty, and attitudes depend on these collections. In
two experiments, we obtain subjective probabilities through the exchangeability
method, i.e. through subsequent partitions of the state space into events the agent

is indifferent to bet on. Then, we combine those probabilities with willingness-to-
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bet so as to elicit source-dependent probability transformation functions that de-

scribe attitude towards uncertainty.

Bayesianism: Our model is based on the existence of uniform sources, i.e.
sources of uncertainty in which probabilistic sophistication holds. By testing ex-
changeability, from which probabilistic sophistication is derived, we provide new

arguments in favor of Bayesianism.

Robustness: The combination of a non-EU representation and uniform
sources of uncertainty permits us to get a model that accommodates traditional
violations of SEU: the Allais paradox and the (two-color) Ellsberg paradox. The
source-dependent probability transformations encompass these phenomena
through attitudes depending on probabilities and on knowledge about probabili-
ties. We also observe in chapter 5 that the elicitation technique for subjective
probabilities we use is robust to the Allais and (two-color) Ellsberg paradoxes un-
like common alternative techniques. However, the three-color Ellsberg paradox

remains an issue because it is based on a non-uniform state space.

Observability: An interesting particularity of our model consists in being di-
rectly observable as we show in two experiments. Moreover, we quantify Bayesian
beliefs and several psychological phenomena such as pessimism and likelihood

insensitivity.

Prediction: Eventually, we dedicate a section of chapter 4 to show how our
measurements induce computable predictions on agents’ behavior. In chapter 5,

we also test whether the elicited subjective probabilities well predict new choices.

6.1.4. A few comments on the desiderata

When we posited the 4 desiderata in chapter 1, we gave some intuitions or
arguments for them. However, we did not say that every study should follow them
or that they have a particular value. They just expressed some goals and the dif-
ferent studies we conducted were oriented so as to reach them. Of course, these

studies suffered from limitations and we already presented some of them. Moreo-
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ver, the next section is dedicated to several critical points, which we wish to devel-

op.

6.2.Discussion

6.2.1.Beliefs and choice-based probabilities

There are several cases in which the choice-based technique for eliciting

subjective probabilities we propose in chapters 4 and 5 (and also the other tech-

niques discussed in chapter 5) may be not relevant. We have already introduced

some examples in the previous chapter but let us enunciate the main issues:

When events have an intrinsic value: for instance, E is the event “it
rains” and the agent does not like rain. If she is willing to pay a high
amount of money for an act that makes her win when E occurs, does it
mean that she thinks E is very likely or that the act would be a kind of
insurance that would compensate the disutility of the rain? In such cas-
es, preferences are said to be state-dependent. 1f both the utility part
and the belief part of the representation function are defined on the
state space, the traditional choice-based methods we discussed in chap-
ter 5 do not apply anymore.

When the decision maker has ‘stakes’ in the events: this case is really
close to the previous one. It appears when the agent, from whom we
want to elicit beliefs, has some interests in the event occurring. For ex-
ample, you cannot elicit beliefs about the future sales from the sales
manager using bets if you do not take into account that her wages may
depend on those sales. It is even more difficult if the consequences are
also nonmonetary, e.g. career progression or reputation. The problem is
even more complex here: a bet on bad sales has an insurance effect
while a bet on good sales is a way of appearing sure and confident. The
induced preferences are also state-dependent.

When uncertainty is resolved long after the elicitation: a choice-based

technique is founded on the fact that the agent faces consequences of
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her decisions. However, if the resolution takes place in the far future,
how can the agent be paid? Revealed preferences would remain hypo-
thetical.

e When resolution is itself uncertain: How much would you bet on the ex-
istence of extraterrestrial life? This is typically a situation, in which we

do not know if we will know someday.

We can first conclude that in several significant situations, choice-based
techniques may be irrelevant. Alternatively, judged probabilities may remain
possible. We can always ask somebody for what she thinks. However, we do not
know whether or not she is answering seriously. Furthermore, we are never sure
whether she is telling the truth or whether she wants us to think she believes what
she says (e.g. recall or argument about career progression and reputation; it also

works for judged probabilities).

Furthermore, we would like to come back to a term we use in this disserta-
tion: “belief”. We use it to designate subjective probabilities in chapter 2, and it is
associated to “revealed” and then “Bayesian” in chapters 3 and 4. We have to add
that we never know if what we elicit matches with what people think. In the re-
vealed preference approach that prevails in economics, beliefs are inferred from
choices. The first limitation is thus the link between what an agent does and what
she really thinks. Furthermore, even if acts and thoughts go together, what does
exactly correspond to a belief? Is it the decision weight? Maybe it is the revealed
belief, which contains attitude towards ambiguity but does not include attitude
towards risk. Should beliefs only be additive subjective probabilities? We do not

(and even cannot) have a straight answer.

6.2.2. Limits of rank dependent models

In section 1.4 of our introduction, we present paradoxes that violate EU or
SEU through the independence axiom or the Sure Thing Principle. We show then
that rank dependent models, such as Rank Dependent Utility (RDU), Choquet Ex-
pect Utility (CEU) and Cumulative Prospect Theory (CPT), are robust to these pa-

radoxes. In chapters 3, 4 and 5, we work on two-outcome acts and used models
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that are equivalent to RDU/CEU/CPT. The use of weighting functions suggests that
a direct extension of our work to general acts would go through rank-dependence.

But are there violations of the rank-dependent models?

Let us first study some tests that were conducted under risk (with known
probabilities). Birnbaum (2007) decomposes the Allais paradox into violations of
two possible properties: coalescing and Restricted Branch Independence. Coalesc-
ing means that branches of a lottery yielding to a common consequence can be
combined by adding their probabilities. According to Restricted Branch Indepen-
dence, if two gambles have a common branch (i.e. a common consequence and
probability on this consequence), changing the common consequence does not

affect the preference between the gambles.
Thus
1>(.10:5,.89:1,.01:0)
< (by coalescing and transitivity)
(.10:1,.89:1,.01:1)>(.10:5,.89:7,.01:0)
< (by Restricted Branch Independence)
(.10:1,.89:0.01:1)>(.10:5,.89:0.01:0)
< (by coalescing and transitivity)
(.11:1,.89:0)>(.10:5,.90:0).

The Allais paradox may come from a violation of one or both of these two proper-
ties. If RDU allows for violations of Restricted Branch Independence, it yet as-
sumes coalescing. Birnbaum (2007) shows that coalescing is also violated in expe-
riments. Note that he runs a series of tests of rank dependence (e.g. Birnbaum et
al. 1999; Birnbaum 2004), in which several properties of RDU like stochastic do-

minance are violated.

Moreover, Machina (2007) suggests that there may also be Ellsberg para-

doxes for CEU. He gives the following example. An urn contains 20 balls. 10 are
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either blue or green. The others are either yellow or red. Four acts are displayed

in the following table.

Table 6.2.1: The Modified Ellsberg Paradox?

.
f €0 €200 €100 €100
g €0 €100 €200 €100
f €100 €200 €100 €0
g' €100 €100 €200 €0

Machina argues that according to Informational Symmetry, f>g should be
equivalent to g'>f' and f<g to g'<f'. Indeed, we do not have more information
about the proportion of yellow balls than about the proportion of green balls. Con-

sequently, (fand g') and (g and ") are respectively symmetric.

Under CEU, if f>g and g'>f' (the symmetric reasoning applies for f<g and
g'<f") with u(0)=0, we would have

W(R)xu(200)+[W(BURUG)—W/(R)]xu(100) >

W(B)xu(200)+[W(BURUG)—W/(R)]xu(100) (6.2.1)
and

W(R)*u(200)+[W(BURUY)—W(R)]xu(100) <
W(B)xu(200)+[W(BURUY)—W(B)]*xu(100) (6.2.2)

(6.2.1)= W(R)*[u(200)—u(100)] >
W(B)*[u(200)—u(100)] (6.2.3)

(6.2.2)= W(R)X[u(200)—u(100)] <
W(B)X[u(200)—u(100)] (6.2.4)

Egs 6.2.3 and 6.2.4 are contradictive. Hence, what Machina calls the Modified
Ellsberg Paradox constitutes a violation of CEU. As a consequence, a necessary
condition for CEU to accommodate informational symmetry is f~g and f'~g'. It can
be justified by the fact that in a decumulative viewpoint, f and g (f' and g') asso-

ciate consequences to events with the same information level: €200 on R or B (R
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or B), 100 € on BURUG (BURUY). However, Machina highlights alternative non-
cumulative notions of ambiguity that could justify f>g and g'<f". CEU fails to cap-

ture these ambiguities.
As a conclusion, Machina or Birnbaum'’s work raises some major issues:

e Is cumulative vision of ambiguity validated by experiment? On the con-
trary, is this paradox that is only suggested by Machina confirmed by da-
ta? We cannot confer the same weight to it as to Allais and Ellsberg pa-
radoxes if it is not established by observations.

e Which level of generality should we reach so as to accommodate these
paradoxes? What does it take for a model to be compatible with all
these new paradoxes?

e  Which minimal consistency rules should we require in a model? For in-
stance, Birnbaum (2007) compares RDU with models that allow for vi-
olations of coalescing and stochastic dominance that could appear as

major rationality requirements.

In order to conclude, we must recall that we only use binary prospects in
chapters 3, 4 and 5. We have already explained that for those acts, the model we
use is not only CEU/CPT but is also consistent with MEU and other models. The
paradoxes mentioned in this section do not apply on binary acts. It is though true
that they raise doubts on the ability of rank-dependence to correctly model beha-

viors for general acts with more than two outcomes.

6.2.3. Normative, prescriptive or descriptive models

In this part, we would like to compare the model developed in chapter 4
with SEU. Particular credence has been given to SEU as a normative theory be-
cause it prevents from inconsistencies (e.g. Kahneman & Tversky 1979 p277; Sa-
vage 1954 p97-104). Let us focus on an argument in favor of SEU given by Ham-
mond (1988). Assume that a decision maker prefers fEh to gEh for some g, f, h and
E. She learns that the event E will occur: we could think that she would still prefer

f to g. This rationality property is called dynamic consistency (for any acts,
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fEh>gEh implies fEh>EgEh where >E is the preference when the agent knows that
E obtains).

Let us introduce another consistency property, called consequentialism:
fEg~Ef. When E obtains, the agent does not care about what she could have had
otherwise. A non-consequentialist decision maker agrees to pay for something she
knows she will not have. That is why we may want to exclude this type of irration-
al behavior. If consequentialism holds, dynamic consistency is required by ratio-
nality because it is possible to build a money pump on a consequentialist but dy-
namically inconsistent agent: assume fEh>gEh and fEh<EgEh. By consequential-
ism, fEh~S-EgEh. The agent is initially willing to pay to have fEh instead of gEh. If
she learns that E occurs, she is now willing to pay to have gEh back. If E does not
obtain, she accepts to have gEh instead of fEh for free. As a conclusion, she has the

same ex postact as the ex ante act, but she pays for that.

Now, let us assume that an agent’s preference does not satisfy the Sure-
Thing Principle (remember that this principle states that for any acts f, g, h and h'
and event E, fEh>>gEh implies fEh'>gEh"). Consequently, there exist at least four
acts such that fEh>gEh and fEh'<gEh'. If preferences when E has occurred are
complete, dynamic consistency implies fEh>EgEh and fEh'<EgEh' while consequen-
tialism implies fEh~Ef, gEh~Eg, fEh'~Ef and gEh'~Eg. We thus have f>Eg and f<Eg.
We can conclude that consequentialism and dynamic consistency imply the Sure

Thing Principle. This result is due to Hammond (1988)32.

If we do think that a normative model must satisfy rationality and thus con-
sequentialism and dynamic consistency, then the models we used in chapter 3, 4
and 5 must not be used in normative or prescriptive applications because they are
based on weakened version of the Sure Thing Principle. Nonetheless, we did not
work on them for normative or prescriptive purposes but we aimed at describing

behaviors.

32 Weakened versions of dynamic consistency that allow for non-EU models are proposed

for instance by Hanany & Klibanoff (2007), Sarin & Wakker (1998) and Tallon & Vergnaud (2002).
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Moreover, these good descriptive abilities may even be interesting when
they are combined with the prescriptive advantages of SEU. Bleichrodt, Pinto &
Wakker (2001) suggest that a descriptive use of Prospect Theory can improve the
prescriptive use of EU, by avoiding biases. Through the same logic, the model de-
veloped in chapter 4 and the robust elicitation technique for subjective probabili-
ties (chapter 4 and 5) allow us to find unbiased probabilities that could be used in

a prescriptive setting.

6.3. Further Research

6.3.1. Ambiguity and new paradoxes

In Chapter 1, we present Epstein & Zhang’s (2001) definition of ambiguity
and we give two examples (based on Wakker 2006), in which it could lead to mi-
scharacterize ambiguous or unambiguous events. In subsection 6.2.2 of the cur-
rent chapter, we study Machina’s (2007) modified Ellsberg paradox. None of them
has already been tested and it seems necessary to confront them with data. This

would constitute a further step in apprehending ambiguity.

In addition, some paradoxes are based on two contradicting preferences
and it appears interesting to study whether or not this contradiction is caused or
avoided by the direct comparison of the two choice situations, e.g. the Ellsberg pa-
radox is stronger when the agent knows the two urns according to Fox & Tversky

(1995).

The results of such an experiment should be related to the common findings
on previous paradoxes. This comparison would endeavor to obtain a ranking
among paradoxes so as to evaluate each model in terms of violation rate. Choosing
a model could then be based on a more conscious tradeoff between tractability and

representativeness.
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6.3.2. Exchangeability and Incentive compatibility

A main point that we discuss in chapters 4 and 5 is that our technique might
not satisfy incentive compatibility because of chained questions. Improving it thus
remains a major topic of research. We can already put forward three directions
that should be studied. The first one would consist in asking a high number of sys-
tematic questions so as to find some indifference. We can also try to hide the
chaining by a complex mixing of questions. The last direction is based on assuming
a parametric form for the probability distribution and/or for the source-dependent
probability transformation so as to minimize the number of questions. These dif-
ferent possibilities must be carefully studied and compared in terms of efficiency

and assumptions.

For instance, in a work in progress with Mohammed Abdellaoui and Leetitia
Placido, we test if subjects’ behavior is consistent with a uniform subjective proba-
bility distribution in Ellsberg’s unknown urn and we elicit probability transforma-
tion functions that depend on urn. In other words, we apply techniques developed
in chapter 4 except that we test a particular subjective probability distribution in-
stead of completely inferring Bayesian beliefs from choices. Thus, we avoid chain-

ing and improve incentive compatibility of our experiment.

6.3.3. Beliefs, decision weights and updating

In a descriptive viewpoint, it should be interesting to study how exchangea-
bility-based probabilities are updated. Do they satisfy Bayes’ rule? And what
about the decision weights? Through the combination of willingness-to-bet and
subjective probabilities, the impact of learning on decision weights can be decom-

posed into belief updating and changes in attitude.

In chapter 4, we obtain that probability transformation functions exhibit
more pessimism under uncertainty with unknown probability than under risk.

Keynes (1921) wrote:

“The magnitude of the probability of an argument /...] depends upon a bal-

ance between what may be termed the favourable and the unfavourable evidence;
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a new piece of evidence which leaves the balance unchanged, also leaves the prob-
ability of the argument unchanged. But it seems that there may be another respect
in which some kind of quantitative comparison between arguments is possible.
This comparison turns upon a balance, not between the favourable and the unfa-
vourable evidence, but between the absolute amounts of relevant knowledge and

of relevant ignorance respectively.”

Keynes distinguished the evidence in favor of an argument and the total
amount of evidence. The first one was related to the likelihood, the second one to
what Keynes called the “weight” of an event. It is clear that the methods we pro-
posed in chapter 4 and 5 can separate the likelihood part from the impact of the
“weight”. Assume that E is an independently and identically distributed event and
that an agent has a certainty equivalent equal to €y for a bet that would make her
win €x if E occurs in period 2 (and nothing otherwise). She learns that E does not
obtain in period 1 and being Bayesian, she updates her beliefs. But even if there is
less evidence in favor of E (its likelihood is lower), the event has more “weight”.
An increase of weight may make the agent less pessimistic (see the impact of un-
known probability with respect to known probability in chapters 3, 4 and 5). A
lower likelihood decreases the certainty equivalent; less pessimism increases it.
Put differently, the negative evidence can decrease the subjective probability but
increase the elevation of the probability transformation. That follows Keynes’ in-
tuition and the method developed in chapter 4 can further analyze the combina-

tion of the two effects.

6.3.4. Experts, ambiguity and health

In all the experiments of this dissertation, outcomes are monetary. Study-
ing the impact of alternative outcomes on ambiguity attitudes would provide fur-
ther information on its determinant. Such nonmonetary outcomes could be well-
being, environment or health. For instance, if outcomes are quality-adjusted life-
years (QALY, an index measure that combines life duration and quality of life),
what does ambiguity attitude become? How does an agent react to ambiguity

when probabilities are over her health status?
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Furthermore, we could complete our analysis of combination of experts’
judgments (chapter 3) in the same direction. What is the impact of conflicting
judgments when they are medical advices? Before having surgery, most inpatients
like to have several opinions, but how do they decide when opinions differ? In oth-
er words, does disagreement between doctors lead to more or less surgery? The
fact that monetary outcomes are replaced by health or/and life may change atti-

tude towards ambiguity and this has to be studied.
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Résumé de la these :

La these porte sur la théorie de la décision individuelle en situation d’incertitude. Elle vise
a comprendre, décrire et représenter les décisions, en différenciant ce qui provient des
croyances du décideur de ce qui se rattache a son attitude face a l'incertitude. Elle est
principalement composée de quatre contributions complémentaires. La premiére est
théorique et caractérise l'attitude face au risque et a I'ambiguité via 'utilisation de
relations d’arbitrage portant sur les conséquences, dans la lignée des modeéles de type
utilité espérée, représentant I'aversion au risque et/ou a 'ambiguité par la décroissance
de l'utilité marginale. Le reste de la thése s’appuie sur des modéles généralisant l'utilité
espérée ou les probabilités sont transformées par le décideur. La deuxiéme contribution
est alors expérimentale et s’intéresse au décideur disposant d’avis d’experts lui indiquant
le risque encouru. Il est proposé une méthode, basée sur 'observation des choix, pour
étudier comment le décideur combine les avis a sa disposition. Cette méthode est
appliquée pour comparer des situations ou les experts donnent une évaluation imprécise
du risque a des situations ou leurs évaluations du risque encouru sont conflictuelles. Le
troisieme travail introduit le concept de source uniforme d’incertitude, c’est-a-dire
d’ensemble d’événements générés par un méme mécanisme d’'incertitude et pour lesquels
il existe une mesure de probabilité subjective. Une expérience est conduite dans laquelle
de telles probabilités subjectives sont obtenues. Est ensuite étudié le consentement a
parier des individus sur des événements de probabilité (subjective) équivalente mais
provenant de sources différentes. La derniére contribution revient sur la méthode
d’obtention des probabilités subjectives et la compare (théoriquement) aux autres
méthodes. Sa faisabilité et ses limites sont ensuite étudiées dans une nouvelle expérience.

Mots clés: incertitude, ambiguité, probabilité subjective, décision, croyances, utilité non-
espérée.

Abstract:

This dissertation deals with the theory of decision making under uncertainty. It aims at
describing and modeling decisions in order to disentangle beliefs and attitudes towards
uncertainty. It is made of four main contributions. The first one is theoretical and
characterize risk and ambiguity attitude through tradeoff relations. Indeed, expected
utility and some of its generalization represents risk (and ambiguity) aversion through
decreasing marginal utility. The tradeoff relation is defined on consequences and allows
us to compare concavity of different utility functions under expected utility when
probabilities need not be known. The other parts of the dissertation are based on
nonexpected utility models including probability weighting functions. The second
contribution is an experimental study of how decision makers combine experts’
probability judgments. A new choice-based method is proposed and applied to the
comparison of two typical situations. In the first one, the experts give an imprecise
evaluation of the risk and in the second one, they disagree and each of them gives his/her
own evaluation. The third work is based on uniform sources of uncertainty, i.e. set of
events that pertain to a similar mechanism of uncertainty and on which a probability
measure exists. In an experiment, such probabilities are elicited. Then willingness-to-bet
on events having the same subjective probabilities but from different sources are
obtained. The last work is specifically dedicated to the technique for eliciting subjective
probability. It observes that this technique is more robust than several well-known
techniques and provides new evidence regarding its feasibility.

Keywords: uncertainty, ambiguity, subjective probability, decision, beliefs, nonexpected
utility.
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