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INTRODUCTION DÉTAILLÉE

Contribution

Segmenter un objet dans une image numérique consiste à labéliser les pixels qui appartiennent à
cet objet et ceux qui appartiennent au fond. La segmentation est une étape préliminaire à l’analyse
du contenu de l’image, et est nécessaire dans nombre d’applications telles que le diagnostique en
imagerie médicale, ou la reconnaissance d’objet. Le nombre d’images à interpréter ayant augmenté
de façon exponentielle ces vingt dernières années, l’analyse automatique est devenue une nécessité
à cause de contraintes de temps et d’argent. De plus, dans beaucoup de cas, une évaluation quan-
titative pour le diagnostique ou la surveillance n’est possible qu’après avoir délimité les contours
de l’objet d’intérêt. Les récentes avancées dans ces domaines ont rendu possibles certaines appli-
cations telles que: la sécurité et la vidéosurveillance dans les lieux publics (aéroports, hôpitaux et
stades sportifs), la reconnaissance automatique de visages pour l’identification ou la lutte contre
la criminalité, le controle de trafic depuis l’analyse comportementale des clients dans les centres
d’achat à la gestion de trafic routier, l’édition d’image et de vidéo du dessin assisté par ordinateur
aux effets spéciaux de l’industrie des jeux et cinématographique, ou du diagnostique et planifica-
tion de traitement en radiologie.

Les techniques de segmentation se basent sur l’information de l’image (aussi appelée sup-
port de l’image dans cette thèse) pour détecter soit les regions qui font partie de l’objet d’intérêt,
soit les bords entre l’objet et le fond. Dans le contexte des images de scènes naturelles (e.g. les
images médicales), la faible résolution des images et des données corrompues ou pathologiques
rendent souvent nécessaires l’utilisation d’une connaissance à priori à propos de l’objet à seg-
menter. Cette connaissance à priori est utilisée pour construire un modèle et contre-balancer les
régions de l’image qui ne supportent que faiblement la segmentation ou la conduisent vers une so-
lution fausse. Ces vingt dernières années ont vu beaucoup de techniques se développer autour de
ce problème, nottament les modèles de formes et d’apparence (intensité des pixels). Une analyse
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de la distribution statistique de la forme et de l’apparence de l’objet réduit la complexité de la
segmentation et guide la solution vers les formes les plus probables statistiquement.

Le travail présenté ici introduit comment des modèles statistiques peuvent être construits et
exploités à partir d’une quantité limitée d’information. Cette quantité limitée d’information (aussi
appelé information clairsemée) doit être sélectionnée avec soin afin qu’elle soit facilement identi-
fiable dans l’image et permette une reconstruction efficace du reste de l’information. Puisque les
images naturelles ont des régions qui supportent mieux la segmentation que d’autres, il est raison-
able d’identifier ces régions dans l’ensemble d’apprentissage, et d’apprendre à interpoler le reste de
la segmentation, au lieu d’essayer d’extraire le contenu de l’image en incluant des régions qui sont
notoirement pauvres en information ou qui conduisent au mauvais résultat. Puisque ces modèles
statistiques peuvent être statiques ou non, nous avons examiner les deux cas. Les techniques les
plus utilisées pour le suivi d’objet dans des séquences d’images consistent à isoler et suivre ses
caractéristiques, ou estimer le champ de déplacement appelé flot optique qui lie une image dans la
séquence à l’image successive. L’approche proposée dans cette thèse est plus directe ; elle consiste
à modéliser le déplacement de l’objet d’intérêt à partir de la connaissance à priori. Dans la plupart
des cas, les caracteristiques de l’objet sont déjà connues (localisation, forme, apparence, ...), ainsi
que son déplacement approximativement. En prédisant les caractéristiques de l’objet dans des
temps futures, sa segmentation devient plus précise et l’on peut même segmenter toute la séquence
d’images à la fois si elle est disponible. Ces modèles de suivi peuvent même être utilisés pour la
segmentation classique avec une approche progressive. Dans ce cas, un temps fictif est introduit,
et l’état de la solution à un moment donné est utilisé pour prédire le prochain état. Enfin, la seg-
mentation progressive qui consiste à déterminer les caractéristiques les plus probables de l’objet
à chaque pas de temps ne permet pas de résoudre certains problèmes les plus difficiles. Pour l’un
d’entre eux, nous proposons une nouvelle méthode qui consiste à considérer les caractéristiques
de l’objet comme une variable aléatoire et échantilloner l’espace de cette variable aléatoire. Ainsi,
des caractéristiques faiblement probables à un temps donné sont conservées et peuvent donner lieu
plus tard à la solution correcte.

En travaillant à Siemens Corporate Research, à Princeton, NJ , quatorze certificats d’invention
et brevets ont été déposés, et les travaux relatifs à cette thèse ont été publiés dans des conférences
renommées dans le domaine de la vision par ordinateur et de l’imagerie médicale:

Time-Varying Linear Autoregressive Models for Segmentation, Charles Florin, Nikos Paragios,
Gareth Funka-Lea et James Williams, ICIP 2007, San Antonio, Texas, USA
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Liver Segmentation Using Sparse 3D Prior Models with Optimal Data Support, Charles Florin,
Nikos Paragios, Gareth Funka-Lea et James Williams, IPMI 2007, Kerkrade, Pays-Bas

Locally Adaptive Autoregressive Active Models for Segmentation of 3d Anatomical Structures,
Charles Florin, Nikos Paragios, et James Williams, ISBI 2007, Arlington, VA, E-U

Globally Optimal Active Contours, Sequential Monte Carlo and On-line Learning for Vessel

Segmentation, Charles Florin, Nikos Paragios, et James Williams, ECCV 2006, Graz, Autriche

Automatic Heart Isolation for CT Coronary Visualization using Graph-Cuts, Gareth Funka-
Lea, Yuri Boykov, Charles Florin, Marie-Pierre Jolly, Romain Moreau-Gobard, Rama Ramaraj et
Daniel Rinck, ISBI 2006, Arlington, VA, E-U

Registration of 3D angiographic and X-ray images using Sequential Monte Carlo sampling,
Charles Florin, James Williams, Ali Khamene et Nikos Paragios, CVBIA 2005, pages 427-436,
Beijing, Chine

Particle Filters, a Quasi-Monte Carlo Solution for Segmentation of Coronaries, Charles Florin,
Nikos Paragios et James Williams, MICCAI 2005, pages 246-253, Palm Springs, CA, E-U

Automatic heart peripheral vessels segmentation based on a normal MIP ray casting technique,
Charles Florin, Romain Moreau-Gobard et James Williams, MICCAI 2004, vol. 1, pages 483-490,
Saint-Malo, France

Présentation Générale de la Thèse

Chapitre 1: Revue de l’Etat de l’Art en Segmentation et Suivi d’Objet

Le premier chapitre effectue une revue des techniques les plus connues de segmentation et suivi
d’objet. Il est divisé en trois parties ; dans la première sont présentées les méthodes sans modèle ou
à modèle de faible niveau. Les modèles à faible niveau ne dépendent que d’observations directes de
l’image tels que l’intensité des pixels, les gradients, ... La seconde partie présente les techniques se
basant sur des modèles qui représentent l’objet d’intérêt d’une manière plus avancée telles que des
patrons, ou des distributions statistiques. Les techniques à modèle contraignent l’information de
l’image avec la connaissance à priori afin de produire une solution au problème de segmentation qui
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soit plus robuste aux informations manquantes ou corrompues dans l’image. La troisième partie
présente les méthodes de suivi et de segmentation séquentielle. Globalement, il est intéressant
de remarquer que les techniques actuelles ne hiérarchisent pas l’information selon le degré de
support effectif qu’elle apporte à la segmentation. Pour la segmentation, cela signifie apprendre
à partir de la connaissance à priori quelles sont les régions de l’image qui supportent au mieux
la solution. Pour le suivi d’objet, cela signifie modéliser les changements de charactéristiques de
l’objet au travers du temps. Finallement, il est constaté que les techniques actuelles sous-utilisent
les modèles d’incertitude de telle sorte que le résultat de la segmentation séquentielle n’est que la
succession des solutions locales les plus probables. Ces trois aspects sont examinés en détail dans
la suite de la thèse.

Chapitre 2: Modèle à Information Clairsemée pour la Réduction de Dimension et de Complexité

Ce chapitre examine les modèles de segmentation à partir d’information claisemée. L’image est
divisée en régions, et une mesure est associée à chaque région pour quantifier la façon dont elle sup-
porte la segmentation. Ensuite, est introduit un modèle qui n’utilise que les régions qui supportent
fortement la segmentation. Le reste de la solution est reconstruit à partir d’une interpolation dirigée
par un modèle. Après une généralisation théorique, cette méthode est appliquée à trois problèmes
differents d’intérêt majeur en vision par ordinateur. Le premier de ces problèmes est la segmen-
tation d’objet dans une image volumétrique, dans lequel le modèle à information clairsemée est
comparé à une technique bien connue de décomposition linéaire afin de mesurer les bénéfices de
cette nouvelle approche en termes de réduction de dimension. Le second problème est le suivi et la
segmentation du ventricule gauche en échocardiographie, et montre l’efficacité de cette approche
dans les cas de haute variance statistique. Une analyse statistique est menée sur les résultats de
cette méthode et comparée à la variabilité inter-experts. Finallement, le troisième problème est la
reconstruction de surface à partir de distances pointées par laser, dans lequel la robustesse de la
nouvelle méthode est analysée avec la précense de bruit sel et poivre.

Chapitre 3: Modèles de Déplacement pour des Dynamismes non-Stationaires par Autoregression

Le troisième chapitre introduit les modèles de déplacement appris à partir de connaissance à pri-
ori, et présente comment les adapter à la volée afin qu’à la fois la représentation des formes et
celle des dynamismes soient mises à jour avec l’information la plus récente dans la séquence.
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En conséquence, l’utilisation de modèles de déplacement n’est pas restreinte à des déplacements
qui fassent partie d’un ensemble d’apprentissage, telles que toutes les scènes naturelles par ex-
emple. Ce concept est présenté avec des modèles autoregressifs linéaires par souci de simplcité
mathématique, et à cause du grand nombre de cas couverts par ces modèles. Cette technique est
appliquée à l’étude de cas d’une silhouette d’un homme qui marche puis court. Des occlusions sont
ajoutées numériquements afin d’étudier l’accumulation d’erreur. Cette méthode est également ap-
pliquée á des problèmes stationaires pour modéliser toute la séquence à la fois. Enfin, elle est
étendue à une technique d’interpolation temporelle basée sur la théorie de restauration de signaux
audio.

Chapitre 4: Modèles d’Incertitude pour la Segmentation Séquentielle

Le quatrième chapitre présente la dernière contribution de cette thèse. Le problème de segmen-
tation de structures tubulaires dans des images volumétriques est reformulé comme un problème
de suivi en introduisant un temps fictif. Les charactéristiques de ce tube à un temps donné sont
représentées par une distribution statistique afin que non seulement la solution la plus probable
soit déterminée, mais aussi d’autres solutions hypothétiques de plus faible probabilité. Dans le
cas d’images de pathologies ou avec des artefacts d’acquisition, il est prouvé que garder unique-
ment les solutions les plus probables ne méne pas à la solution globale correcte, alors que des
solutions localement imparfaites peuvent mener à la bonne solution globale. Cette technique est
implémentée en effectuant un échantillonage séquentiel aléatoire, appelé filtrage particulaire. Puis,
afin de comparer le filtrage particulaire avec des techniques de descente du gradient couramment
utilisées, un problème statique et paramétrique est examiné: le recalage 2D-3D.
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EXTENDED INTRODUCTION

Contribution

The segmentation of an object from a digital image consists in labeling the pixels that belong to
this object and those that belong to the background, or alternatively in defining a boundary that
encloses the object. Segmentation is a fundamental step to image content analysis whose outcome
has numerous potential applications such as diagnosis in medical images or object recognition.
The number of images to process in these fields have grown exponentially these past two decades,
and have made computer-aided image analysis a major field of study because of time and finan-
cial constrains. Furthermore, in most cases, quantitative assessment for diagnosis requires the
delineation of the object of interest. Recent advances in this field have allowed new applications
to appear such as: security and surveillance in crowded areas (airports, hospitals and stadiums
security), automatic face recognition for identification and anti-terrorism, traffic control from cus-
tomer behavior analysis in shopping malls to road traffic management, image and video editing
from computer assisted design to movies special effects, cinematography, or diagnosis and therapy
planning from radiology.

Segmentation techniques rely on image information (also called image support in this thesis)
to detect either regions that are part of the object of interest, or edges between the object and
the background. In the context of images that depict natural scenes (e.g. medical images), low
resolution images and corrupted or pathological data often require prior knowledge about the object
to segment. Prior knowledge is used to build a model and counter-balance image regions where
insufficient support could mislead the segmentation. In the past two decades, many techniques have
been developed to tackle this problem, which includes model priors based on shape or appearance
(pixel intensities). A statistical distribution analysis of the object’s shape and appearance is used
to reduce the segmentation problem complexity and guide the solution toward likely shapes.
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The present work investigates how statistical models are built and exploited from a limited
amount of information. This limited amount of information (also referred to as sparse information)
has to be carefully chosen so that it is easily identifiable in the input image and could efficiently
be used to reconstruct the remaining information. Since natural images have regions that support
the segmentation task in a stronger way than others, it makes sense to identify these regions from
prior knowledge, and learn how to express the remaining information used to represent the object
instead of trying to extract content from image regions that are known to poorly support or mislead
the segmentation. These statistical models may be either static or time-variant in cases where
the object geometry changes according to some temporal process; we have investigated both. In
image sequences, common approaches to object tracking consists in isolating and tracking features
or estimating the velocity field called optical flow that wraps an image to the successive image. A
more direct approach is proposed in this thesis; it consists in modeling the object of interest’s
motion using prior knowledge. In most cases, one already knows the characteristics (e.g. location,
shape, appearance, ...) of the object to track and roughly how it moves. By predicting the object’s
characteristics in future frames, one may segment it more accurately and may even segment the
whole sequence of images at once if it is available. Models for tracking in images sequences
may even be applied to regular segmentation by progressively solving this problem. A virtual
timeline is introduced and the solution’s state at one time is used to predict the next state. Finally,
progressive segmentation that consists in determining the most probable object features at each
time step does not allow the solving of some of the most difficult problems. Such cases refer to
important deformations of the object that cannot not be represented by simple linear models. In
such cases a more complex probabilistic interpretation of the object dynamics is required. To this
end,, we propose a novel approach that consists in representing the object’s features as a random
variable and sampling the feature space. Thus, features that have a low probability to be exact at a
given time step are kept and may correspond to the correct solution at a later time step.

While working for Siemens Corporate Research, Princeton NJ, fourteen invention disclosures
and patents relevant to the present thesis were filed. Also, relevant publications were presented in
renowned computer vision and medical images conferences:

Time-Varying Linear Autoregressive Models for Segmentation, Charles Florin, Nikos Paragios,
Gareth Funka-Lea et James Williams, ICIP 2007, San Antonio, Texas, USA

Liver Segmentation Using Sparse 3D Prior Models with Optimal Data Support, Charles Florin,
Nikos Paragios, Gareth Funka-Lea et James Williams, IPMI 2007, Kerkrade, Pays-Bas
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Locally Adaptive Autoregressive Active Models for Segmentation of 3d Anatomical Structures,
Charles Florin, Nikos Paragios, and James Williams, ISBI 2007, Arlington, VA, USA

Globally Optimal Active Contours, Sequential Monte Carlo and On-line Learning for Vessel

Segmentation, Charles Florin, James Williams, and Nikos Paragios, ECCV 2006, Graz, Austria

Automatic Heart Isolation for CT Coronary Visualization using Graph-Cuts, Gareth Funka-
Lea, Yuri Boykov, Charles Florin, Marie-Pierre Jolly, Romain Moreau-Gobard, Rama Ramaraj
and Daniel Rinck, ISBI 2006, Arlington, VA, USA

Registration of 3D angiographic and X-ray images using Sequential Monte Carlo sampling,
Charles Florin, James Williams, Ali Khamene and Nikos Paragios, CVBIA 2005, pages 427-436,
Beijing, China

Particle Filters, a Quasi-Monte Carlo Solution for Segmentation of Coronaries, Charles Florin,
Nikos Paragios and James Williams, MICCAI 2005, pages 246-253, Palm Springs, CA, USA

Automatic heart peripheral vessels segmentation based on a normal MIP ray casting technique,
Charles Florin, Romain Moreau-Gobard and James Williams, MICCAI 2004, vol. 1, pages 483-
490, Saint-Malo, France

Thesis Overview

Chapter 1: Review of Prior Art in Segmentation and Tracking

The first chapter reviews the most common techniques for segmentation and tracking. It is divided
into three parts; in the first part, model-free and low level models are presented. Low-level mod-
els only rely on direct observations from the image such as pixel intensities, image gradients, ...
The second part introduces model-based techniques that represent the object of interest in a more
advanced fashion using templates, or statistical distributions. Model-based techniques integrate
the image information with prior knowledge in order to produce a solution to the segmentation
problem that is more robust to missing or corrupt image data. The third part is devoted to tracking
techniques and sequential segmentation. Overall, it is noted that current techniques do not hier-
archize input information with respect to the amount of information they effectively provide for
solving the segmentation problem. For segmentation, this means learning from prior knowledge
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which image regions best support the solution. For tracking, this means modeling the changes of
the object’s characteristics across time. Finally, current segmentation techniques underuse uncer-
tainty models so that the solution of a sequential segmentation is the succession of the most likely
individual solutions. These three aspects are investigated in the three following chapters.

Chapter 2: Sparse Information Models for Dimensionality and Complexity Reduction

This chapter examines segmentation models based on sparse information. The input image or
shape is divided into regions, and a measure is associated to each region to quantify how it sup-
ports the segmentation. Then, a model that uses only the best supported regions is introduced.
The solution’s remaining is reconstructed using a model-driven interpolation. After a theoretical
introduction, this method is applied to three different problems of significant interest in computer
vision. The first problem is organ segmentation in medical volumetric images, in which the sparse
information model is compared to a common linear decomposition technique to test the benefits
of the novel approach in terms of dimensionality reduction. The second problem is tracking and
segmentation of the left ventricle in ultrasonic sequences, and proves the effectiveness of this ap-
proach in case of high statistical variance. A statistical analysis is conducted to compare the sparse
information models with inter-expert variability. Finally, the third problem is surface reconstruc-
tion from laser pointed distances, in which the robustness of the novel method is analyzed in the
context of salt and pepper input noise.

Chapter 3: Motion Models for Non-Stationary Dynamics via Autoregressive Models

The third chapter introduces motion models learned from prior knowledge and presents how to
adapt them on-the-fly so that both the representation of the shapes and the dynamics are updated
with the newest information available in the sequence. Consequently, the use of motion models
is not constrained to behaviors that are part of the learning set, as merely all natural scenes. This
concept is presented with linear autoregressive models for the simplicity of the mathematics and
the high number of cases covered by such models. This technique is applied to the study case of a
walking silhouette that starts to run. Digital occlusions are added to test the accumulation of errors.
This technique is also applied to stationary problems to model the motion in all the sequence at
once. It is then extended to a temporal interpolation technique based on audio signal restoration
theory.
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Chapter 4: Uncertainty Models for Progressive Segmentation

The fourth chapter presents the last contribution of this thesis. In the context of tubular structures
segmentation, the multi-hypothesis framework is introduced and implemented with a sequential
random sampling procedure called particle filters. Segmentation of tubular structures in volumetric
images is reformulated as a geometric tracking problem using a virtual timeline. The characteris-
tics of the tube at one point in the timeline are represented by a statistical distribution so that not
only the most likely solution is preserved but also hypothetical solutions of lower probabilities. In
the case of pathological data or images with acquisition artifacts, one can claim that the approach
consisting in keeping only the most probable solution fails, while some of the less probable solu-
tions may give rise to the correct global solution. This technique is implemented using a sequential
Monte-Carlo sampling method called particle filters. The outcome of this method is used to seg-
ment highly non-linear structures such as the coronary arteries. Then, in order to compare this
framework with commonly used gradient descent approaches, it is extended to a static parametric
problem: 2D-3D registration.
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Chapter 1

Learning to Segment and to Track

Abstract – This chapter intends to review the scientific literature in segmentation and tracking with and without models

and prior learning. First, techniques based solely on low level information (pixels intensity, image gradient, ...) are

presented when the image is modeled by a continuous function and when it is represented in a discreet way. Second,

model-based methods are introduced starting by rigid models of few parameters, with none or little adaption, to the soft

models that represent the object of interest using probability distributions. Then, these soft models are integrated into

low level techniques. Finally, in the context of image sequences, common frameworks combining stochastic modelling

and time-series are introduced.
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1.1 Introduction

Object segmentation is equivalent to labelling the pixels in the image that belong to the object
and those that belong to the background. Segmentation is the prime step of content extraction and
content analysis; therefore a tremendous effort is put on developing algorithms that best segment
with respect to human experts, as quickly as possible.

One may distinguish different ways to segment an image. The first is to analyze the pixels
intensity value directly and to group the pixels according to intensity similarity, texture or higher
order statistical properties and/or detect strong intensity gradients. This method regroups the model

free and low level model techniques. The second method is to use a model (e.g. appearance or
shape) and to detect the image regions that best match the model. The third is to transform the
segmentation problem into a dynamic problem in which the solution (the labeling of the pixels
belonging to the object of interest) is progressively achieved using Bayesian processes. When the
input images form a time sequence, the object’s segmentation across time is called tracking.

1.2 Model-Free and Low-Level Model Based Segmentation

1.2.1 Active Contours Model

Active contours and snakes

Active contours and snakes models were first introduced by Kass, Witkin and Terzopoulos in 1987
[104]. In many cases, an object distinguishes itself from the background by a boundary: a strong
edge, a particular color, ... A general way to note that is to call g a function to minimize locally.
Typically, if an object is defined by a strong edge, g is inversely proportional to the image gradi-
ent. In the following, the object boundary is denoted by a curve C, parameterized by p ∈ [0, 1].
The curve C that defines the object’s boundary theoretically minimizes the following energy E in
equation (1.1) that combines a smoothness term and an image term:

E(C) =

∫ 1

0

α

∥∥∥∥
∂C
∂p

∥∥∥∥
2

+ β

∥∥∥∥
∂2C
∂p2

∥∥∥∥
2

︸ ︷︷ ︸
smoothing term

+ λg(C(p))︸ ︷︷ ︸
image term

dp. (1.1)



Chapter 1 29

The smoothness term stands for regularity/smoothness along the curve and has two components
(resisting to stretching and bending). The image term g guides the active contour toward the
desired image properties (strong gradients). Other terms may be added to take into account user-
defined points or other external constraints such as prior knowledge [83][204][192]. External
constraints were introduced because the need for models was felt very early. The basic approach
for active contours is a local optimization, which makes the method quite sensitive to local minima,
occlusions and missing/corrupted data.

The general approach for active contours is to consider a discrete variant of the curve using a
number of control points, and evolve that curve C by minimizing the energy in equation (1.1) at
each time step until convergence. Due to the fact that this method was a significant breakthrough
in image segmentation, a large part of the following work in the domain is mainly influenced by
the idea of designing ever-better energies, to minimize them by more and more efficient numerical
schemes to get the globally optimum segmentation result, with respect to that particular energy
and that particular scheme. However, this expression may lead to poor results and the snake may
shrink to a point in certain regions of the image. In [36] et al. introduced a balloon force ν1 that
avoids the shrinking when no edge information is present.

The main advantages of Active Contour models are their low complexity, the fact that it is easy
to introduce prior knowledge, and that they could account for open as well as closed structures. It is
also a well established technique, and numerous publications are available. Finally, user interactiv-
ity is naturally handled by introducing an extra energy term in the equation. However, they suffer
from being myopic (only local image information is taken into account), cannot handle topological
changes and the solution to the segmentation problem depends on the selected parameterization.

Geodesic Active Contours

Caselles et al. [31] and Kichenassamy et al. [105][106] reformulated the active contour equation
in a more rigorous way starting back from the snakes equation (equation (1.1)) and omitting certain
terms:

E(C) = α

∫ 1

0

∥∥∥∥
∂C(p)

∂p

∥∥∥∥
2

dp

︸ ︷︷ ︸
intrinsic energy

+λ

∫ 1

0

g (|∇I (C(p))|) dp

︸ ︷︷ ︸
extrinsic energy

. (1.2)

1 ν is generally a small positive constant designed to inflate the curve like a balloon to prevent it from shrinking
when no edge information is present.
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By reparameterizing the curve using the Euclidean arc-length ds,
∥∥∥∂C(p)

∂p

∥∥∥ dp = ds, and using the
Malpertuis’ Principle, Caselles et al. proved in [31] that, when α = 0, to find the curve C that
minimizes equation (1.2) is equivalent to find the curve of minimal length Lg in a Riemannian
space that depends on the function g:

Lg =

∫ L(C)

0

g (|∇I (C(s))|) ds, (1.3)

where L (C) is the Euclidean length of the curve C. The curve of minimum Riemannian length is
determined by taking the first derivative of equation (1.3), and using an iterative method with time
step ∂t [30][35][125][107]:

∂C
∂t

= g (|∇I (C)|)KN︸ ︷︷ ︸
boundary force

− (∇g (|∇I (C)|) .N )N︸ ︷︷ ︸
refinement force

. (1.4)

The main drawbacks of active contours are their sensitivity to initialization (the curve always
converges to the nearest local minimum), to parameterization and to the chosen topology. If a
topology change occurs (e.g. the curve has been initialized as one single piece, but the actual object
to segment is composed of two disjoint pieces), a complex heuristic has to break the curve into
multiple pieces and reparameterize each piece independently. To overcome this drawback, level-

sets were introduced by Dervieux and Thomasset [58][57], before been rediscovered independently
by Osher and Sethian [137] for flame propagation, then applied to image segmentation by Malladi
et al. in 1995 [126]. However, this expression may lead to poor results and the curve may shrink
to a point in certain regions of the image. In order to cope with that, a force similar to the balloon
[36] was also introduced for the case of geometric active contours.

∂C
∂t

= g (|∇I (C)|) (K + ν)N − (∇g (|∇I (C)|) .N )N . (1.5)

Implicit Active Contours: Level Sets

The basic idea of level sets is to represent a given contour C by the zero level-set of a function2 ψ

(see figure (1.1)) , as written in equation (1.6) where Γ (resp. Γ̄) is the image region inside (resp.

2 the Euclidean distance function is used in most of the cases due to certain desired geometric properties



Chapter 1 31

(a) (b) (c)

Fig. 1.1: Distance function that represents a shape (blue curve), positive inside the shape and negative
outside. (a) Original image. (b) Binary shape. (c) Distance function isolines.

outside) the object, and D(x) is the Euclidean distance between point p and the curve C:

ψ(p) =





0 ,p ∈ C
+D(p) > 0 ,p ∈ Γ

−D(p) < 0 ,p ∈ Γ̄

(1.6)

One can embed in a straightforward fashion [137] the flow described in equation (1.4) in the
level-set framework as described in equation (1.6), toward obtaining the following partial derivative
equation that guides the propagation of ψ:

∂ψ

∂t
= g (|∇I (C)|)K |∇ψ|+∇g (|∇I (C)|) .∇ψ (1.7)

The popularity of level-sets method is largely due to the simplicity with which one may im-
plement them. They do not require any specific parameterization, and implicitly handle topologi-
cal changes. By a snow-ball effect, an abundant literature [167][141] reviews their mathematical
convergence and stability as well as their solution existence and uniqueness, which leads to the
level-sets been even more popular.

Region-based active contours started with the work of Zhu and Yuille in [203] where an energy
formulation for segmentation of multiple regions was derived from a Bayesian/minimum descrip-
tive length (i.d. posterior probability) expression. Then, Chan and Vese introduced in [33] a
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multi-region scheme where each region was defined by the logical combination of several level-set
functions’ sign. This expression guarantees only log(n) level-set functions are necessary to repre-
sent n regions. This scheme was reformulated for the geodesic active contours in [144] under the
name of geodesic active regions. In [198], Yezzi et al. reformulated the multi-object segmentation
using a coupled evolution of any arbitrary number of geodesic active contours that is obtained from
the definition of binary and trinary flows.

Geodesic active contours aim at representing the segmentation problem in an energetic fashion
and optimizing the solution with partial derivative equations. However, the energy terms cor-
respond to a low level model (on curvature, gradient structure, pixels intensity, ...) that, when
established once and for all, may poorly fit the image and let the active contour converge to a local
solution. To overcome that issue, Juan, Kerivan and Postelnicu [102] propose to add a simulated
annealing procedure. Paragios [145] and Rousson [156] use statistical models of shape and ap-
pearance that result in softer constrains for the active contours. For more details about level-sets,
variational methods and implementations one may refer to [136].

1.2.2 Markov Random Fields and Gibbs Distributions

The probabilistic nature of image acquisition, noise and motion often drive the segmentation to-
ward a low-level statistical model. In this case, instead of representing the solution by a continuous
curve and solving partial derivative equations to determine the solution of minimal energy, one de-
scribes the probability measure that associates the segmentation to a likelihood given the low-level
model’s parameters (often based on pixels intensity) and the input image. Different techniques
exist to determine the most likely solution. One consists in associating an energy function to the
probability function and solving partial derivative equations (see previous sections). Another con-
sists in sampling the random variable space and estimate directly the probability density function
(see particle filters in section (1.4) for instance). A third solution consists in using Gibbs distribu-

tions, Markov random fields (MRF for short) equivalence, for segmentation.

The basic idea of MRF is to divide the image into homogeneous regions with respect to certain
parameters [78][139][13][54]. To that end, it is assumed a random variable z describes the ob-
served (corrupted) image, a random variable x describes the label of the image regions (i.e. object,
background, and so on) and a third random variable y is related to the (a priori unknown) charac-
teristics of each region. The main idea is to determine the labeling x and characteristics y that best
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fit the image z, or in other words to maximize the a posteriori probability:

p (x,y|z) =
p (z|x,y) p (x,y)

p (z)
. (1.8)

The above equation (1.8) is referred to as the Bayesian rule equation, and relates the posterior

probability p (x,y|z) to the conditional p (z|x,y) and prior p (z) probabilities.

MRF uses stochastic relaxation and annealing to generate a sequence of random variables that
converges toward the maximum a posteriori3. An energy is defined by the negative logarithm of
the posterior probability function
E = −log (p (z|x,y)) − log (p (x,y)); the parameters {x,y} are locally adapted in the image to
maximize this energy. The amplitude allowed for those changes are controlled by the annealing
temperature parameter T that slowly decreases with respect to the number of iterations.

This technique has many advantages over hard constrained energies, especially in the pres-
ence of noisy images that do not fit any pixels intensity model from prior knowledge. However,
simulated annealing avoids certain local minima, but MRF remains a local optimization and the
optimum solution cannot be guaranteed in a finite amount of time. In certain problems (denoising
for instance), a local solution is sufficient; in others, a global minimum is critical. That is the
reason why more efficient numerical schemes that guarantee a global solution are investigated.
One example is the max flow/min path principle which has emerged in computer vision using an
efficient implementation like the graph-cuts.

Although not exclusively used for computer vision, other discrete optimization techniques are
of particular interest. Among them, dynamic programing plays a significant role. Dynamic pro-
graming consists in dividing a general problem into a set of overlapping problems, iteratively
solving each subproblem and recomposition the general solution. An important example of dy-
namic programing is provided by Dijkstra [63] for computing shortest paths on a directed graph
with non-negative edge weights, such as an image.

Belief propagation networks are a particular instance of belief networks used to optimize one
or several probability distribution functions (such as the one in equation (1.8)) using graph theory.
A particular example is the expectation-maximization algorithm [53] that is used to iteratively
estimate a model’s parameters to maximize the likelihood of that model given observations.

3 This method is often referred to as Simulated Annealing.
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Last, linear programming [50] aims at solving linear minimization problems subject to con-
straints. A popular solution to the linear programming problems is given by the simplex algorithm
[50]. Another algorithm of the same name, also called the downhill simplex algorithm is intro-
duced by Nelder and Mead [130], and consists in iteratively estimating the solution for different
values of the variables and modifying the worst set of variables according to the other possible
estimated solutions.

Graph-Cuts

Graph-cuts is a very active field of study that is applied to different problems of computer vision
such as segmentation [21][171][189][197][22], image restoration [23], texture synthesis [113] or
stereo vision [159][109]. Let G = 〈V , E〉 be an undirected graph whose set of vertices is noted
V and contains two special nodes called terminal, and whose set of edges is noted E and has non
negative weights we, ∀e ∈ E . A cut, noted C, is a subset of edges C ∈ E that partitions the original
set E in two such that each partition has one and only one terminal node. The cost of the cut |C| is
the sum of the edges in C:

|C| =
∑
c∈C

wc. (1.9)

The graph-cut algorithm consists in finding the cut of minimal cost, and several implementations
exist to determine such a cut in a polynomial time (e.g. max-flow and push-relabel [37]). It is of
particular interest in the context of segmentation, where each image pixel represents a vertice in
the graph, and each edge’s weight is related to the relationship between two pixels intensity. For
instance, if the edge’s weight weij

between two vertices/image pixels ei and ej is defined as

weij
=

1

1 + |I(ei)− I(ej)| , (1.10)

where I(ep) is the image intensity for the pixel ep, the minimum cut includes vertices/image pixels
that have a low weight weij

, that is neighboring pixels that are very dissimilar. In [22], Boykov and
Kolmogorov used graph-cuts to solve a geodesic problem and to include the types of energy that
were previously solved using PDEs.
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(a) (b) (c)

Fig. 1.2: (a) Original image (b) Template to match using the original image (c) Result of matching

1.2.3 Advantages and Drawbacks of Model Free Segmentation

With model free and low-level model techniques, one does not need to construct a model for the
object of interest, which was a considerable advantage when data was not as widely available as
it is now. In the particular context of organ segmentation in medical imaging, the inter patient
variability of shape and appearance due to various image qualities and pathologies make certain
modeling hazardous. The model free techniques are also often simpler to implement and may be
quicker to compute. On the other hand, now that imaging data is commonly accessible (in 2005,
about 60 millions CT and 1 million PET scans were performed in the US), robust models may be
built to direct the segmentation.

1.3 Model-Based Segmentation

Template Matching

The simplest and most straightforward way to use a model for segmentation is template matching.
Template matching consists in optimizing few parameters (position, rotation angle, scale factors)
so that a template best matches the image (see figure (1.2)) according to a certain image measure
whose global minimum corresponds to the best template alignment. If the only parameters to be
optimized are position, rotation angle, scale factors, the template is called rigid template. This
optimization is usually performed either using exhaustive search or gradient descent. For further
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Fig. 1.3: An articulated model of the hand controlled by parameters to control angles and lengths. Courtesy
of M. de la Gorce [52].

investigation, one may refer to [26] to study the effectiveness of exhaustive search and template
matching in the particular context of watermarking and image security.

Unlike rigid templates, deformable template and articulated templates are models that can
be adapted depending on parameters. An example is given in figure (1.3) where the stick-man
shape is controlled by few parameters to adjust the members angle and length to the input image.
Articulated models are of particular interest for surveillance and behavior analysis [94]. In the
context of medical image analysis, deformable organisms [85] combine sensors and a framework
to optimize (deform) a template (organism) with respect to the image.

In many applications, the templates are derived from physical data in a straightforward way.
However, in most cases, the templates cannot be defined explicitly, but have to be learned from
prior knowledge. A solution consists in establishing a low-dimension basis onto which the object
to segment are projected.
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1.3.1 Decomposition using Linear Operators

A second approach is to represent the object’s model (shape and/or appearance) Y in a high dimen-
sional space, then project the object’s model onto a lower dimension feature space, and optimize
the feature vector X with respect to the image measure:

X = (g1(Y), g2(Y), ..., gm(Y)). (1.11)

In the following, different choices concerning the linear operators gis are exposed.

Linear discriminant analysis (or LDA) consists in finding the projection space that best sepa-
rates two classes/exemplars p (X|Y = Y1) and p (X|Y = Y2). LDA commonly relies on Fisher’s
linear discriminant [72] and assumes the probability density functions (pdfs) are Gaussian with
means Y1 and Y2 and the same covariance Γ. Fisher’s discriminant S is the ratio of the two
variances between and within the two classes Y1 and Y2 after been projected along the vector w:

S =
σ2

between
σ2

within
=

(
w.Y1 −w.Y2

)2

2wT .Γ.w
(1.12)

It can be shown that the vector w that maximizes the Fischer ratio is

w =
1

2
Γ−1.

(
Y1 −Y2

)
. (1.13)

LDA is commonly applied to classification and recognition problems [10]. In a first step, a training
set of samples is gathered to estimate the classes distribution properties (mean and variance). Then
equation (1.13) is applied to determine the optimal projection.

Recent developments in LDA include a probabilistic LDA [96] that generates a model to extract
image features and automatically assigns a weight to each feature according to their discriminative
power.

Principal component analysis (PCA) [38] [186] assumes a Gaussian distribution of the train-
ing samples. The main idea of PCA is to re-write a high dimensional vector Y as the sum of
a mean vector Y and a linear combination of the principal modes of variation (see figure (1.4).
Eigenanalysis of the covariance matrix is used to determine the orthogonal basis formed by the
matrix eigenvectors, and the eigenvalues associated to them. This orthogonal basis is composed by
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Fig. 1.4: Three principal modes of shape variations for the left ventricle in echocardiography.

the modes of variation, and the variations amplitude is given by the eigenvalues associated to each
eigenvector/mode.

Let {Yi, i ∈ [|1, N |]} be the set of high dimensional vectors, Y be the mean of these vectors,
and Γ = [(Y1 −Y)(Y2 −Y)...(YN −Y)][(Y1 −Y)(Y2 −Y)...(YN −Y)]T be the covariance
matrix. Given that Γ is a symmetric real positive definite matrix, its eigenvalues are noted λ1 >

λ2 > ... > λN > 0 and the corresponding eigenvectors {Ui, i ∈ [|1, N |]}. Noting Λ the diagonal
matrix composed by the eigenvalues, and U = [U1U2...UN ],

Γ = UΛUT . (1.14)

Any centered vector (Y −Y) may be projected onto the eigenvectors orthogonal basis using
the similarity matrix U such that

Y −Y = UX, or noting X = [x1...xN ]T ,Y = Y +
N∑

q=1

xqUq. (1.15)

However, in practical cases, many eigenvectors relates to small eigenvalues (compared to the
largest ones); that means these vectors relate to low amplitude variations. Therefore it makes sense
to draw a threshold and keep only the eigenvectors whose linear combination approximates up to
p percent of the total variation.
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However, in some cases, the Gaussian distribution of the data does not stand. PCA extensions
have been proposed to solve these cases, the most noticeable of which is Kernel PCA. Another
decomposition technique that has been developed for non-Gaussian distributions is the independent

component analysis.

Independent component analysis (ICA) [95] aims at decomposing the input signal into decor-
related non-Gaussian components. Given a signal Y, ICA retrieves the underlying decorrelated
non-Gaussian signals Si (called sources) such that Y =

∑N
i=1 AiSi by optimizing a cost function

(neg-entropy, kurtosis, ...) that is minimal when the sources are the farthest away from Gaussian
distributions. Among the several methods that exist depending on the cost function, the prominent
ones are FastICA [15], InfoMax [11] and JADE [28].

In a practical case, the multiple dimensions of Y are often correlated which makes the ICA de-
composition theoretically impossible. For that reason, the signal is ”whitened” by estimating a lin-
ear transformation L such that Y′ = LY and the transformed signal auto-correlation E[Y′TY′] =

I. This property is achieved with L =
√

E[YTY]
−1

since E[Y′TY′] = E[YTLTLY] = I.

It is worth noting that, unlike PCA, ICA does not provide any ordering of the different com-
ponents; therefore, ICA’s application to dimensionality reduction is not straightforward. In [187],
Uzumcu et al. investigate the ordering of the sources for dimensionality purposes. LDA, PCA and
ICA retrieve independent components that are intrinsic to the input signal and project the signal
onto these components. Another way to proceed is to project the signal onto a canonical orthogonal
basis of the functional space.

1.3.2 Decomposition using Non-Linear Operators

Fourier descriptors Let us assume a shape is represented in a parameterized way: Y(p), p ∈
[0, P ]; then, a Fourier analysis may be run over that input signal to retrieve the Fourier coefficients
uk, so that the Fourier transform of the input signal Ŷ is written as:

Ŷ(ν) =

∫ ∞

t=0

u(t)e2πjtνdt, (1.16)
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or, sampling the shape function on N points, FFT is used to retrieve the discrete FD

uk =
N∑

k=1

Y(p)e−2πj kp
N . (1.17)

In the context of shape analysis, these Fourier coefficients are referred to as Fourier descriptors

(FD). FD are used in the context of shape classification [112] and denoising. No need to say that
the FD depend on the choice of shape representation; for a comparative study of FD with different
shape signatures, one may refer to [201].

Radial basis functions (RBF) [29][64][121][110] is another decomposition basis in the func-
tional space. Just like FD, RBF decomposes the input signal Y(p) into a linear combination of
primitive functions called kernels ρ:

Y(p) =
N∑

i=1

akρ (|p− ck|) , (1.18)

where the ck are called basis function centers.

Zernike moments have been proposed by Teague [177] to decompose a discrete image. Teague
introduced a set of complex polynomials that form an orthogonal basis onto which an image (ap-
proximated by a piecewise function) is decomposed. The projection of the image function on a
particular Zernike polynomial is called a Zernike moment. The set of moments characterizes an
image, therefore Zernike moments are of particular interest for image retrieval [132], denoising
[9] and image classification [193]. The main limitation of these methods is that establishing a con-
nection between the prior model and the image domain where the data support is available is not
straightforward.

1.3.3 Prior Models for Geodesic Active Contours

Geodesic active contours (see section (1.2.1)) offer two main advantages: they can be embedded in
the level-sets framework for an implicit shape representation, and additional energy terms can be
introduced to the equation (1.4). These extra energy terms may be intrinsic to the shape (curvature,
length, ...) or extrinsic (e.g. referring to the image or to prior knowledge). If a shape constrain
is available, it is added as an extrinsic energy (e.g. the L2 distance between the current solution’s
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level-sets and the prior constrain’s).

Since the level-sets are local optimization techniques, they are sensitive to initialization. Con-
sequently, many model based methods [44][140] use a prior about the initial contour’s location,
while others [30][105] use geometric models. Active shape models [38][186] use the modes of
variation to constrain the shape evolution during the energy minimization. These modes of varia-
tion are computed from prior knowledge by using PCA built from prior knowledge. In this basis, a
shape is characterized by its distance to the mean shape along statistical modes of variation. How-
ever, the shapes’ distribution on the modes may have very different variances that depend on the
Eigenvalues of the covariance matrix (see section (1.14)). Thus, instead of using the Euclidean
distance between the solution’s level-sets Y1 = {x1

i } and the prior constrain’s Y2 = {x2
i }, the

Mahalanobis distance is preferred:

Dmahal(Y1,Y2) =

√∑
i λ

2
i (x

1
i − x2

i )
2

∑
i λ

2
i

. (1.19)

In [114], prior statistical shape analysis is combined with the geodesic active contours to con-
strain the solution to the most likelihood solutions. When the prior dataset’s samples distribution
in the PCA space does not fit a Gaussian, a solution consists in using a kernel distance in the PCA
space [155], or in using a kernel method for dimensionality reduction [48][44].

1.3.4 Model-Based Segmentation Limitations

Compared to model-free segmentation, model based segmentation uses a priori knowledge mostly
in the geometry space about the object to detect. This makes the segmentation process generally
more robust but also introduces two main limitations. The first inherent limitation is the constraint
one introduces by using a model. By limiting the segmentation to certain degrees of freedom, the
role of local variations and image support is diminished. Also, in most cases, models are built
from training sets where the available information (geometry and apperance) is treated equally,
regardless of the image support. This problem is addressed in chapter 2 where a method is proposed
to build a model on carefully chosen sparse information. Furthermore, the models presented in
section (1.3) are time-invariant and are insufficient to solve tracking problems such as the one
presented in chapter 3. Last, in the context of optimization in time or space, the global solution may
not just consist of the collection of locally most likely solutions. Since only the optimal solution
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is looked for at each time step, or space scale, and no uncertainty model is used to represent
other potential solutions, nothing guarantees the global solution is achieved when the full time
or space information is considered. This issue is dealt with in chapter 4, where a segmentation
problem is turned into a geometric tracking problem, and an uncertainty model is integrated into
the segmentation framework.

1.4 Bayesian Processes for Modeling Temporal Variations

Many segmentation problems contain a time variable either real or virtual. A simple geometric
model does not contain time information, which has to be modeled aside. This section introduces
time sequence models starting from regression on deterministic variables, then presenting para-
metric and non-parametric models for random variables with and without linear state transition.

Autoregressive models. Let Xt be a state variable at time t, and Yt be the observation variable.
The general form of regression is a function f such that

Xt = f(Xt−1,Xt−2, ...Xt−p,Yt−1, ...Yt−q). (1.20)

However, many physical time-series are approximated using autoregression laws such as:

Xt = A[Xt−1
TXt−2

T ...Xt−p
T ] + W + ε, (1.21)

such that the random noise ε is zero-mean with minimal covariance determinant. This regression
law is established from prior knowledge and used to predict and constrain future states. In a general
context, the regression law is not updated, therefore this technique is unable to sustain variations
in the dynamic system.

The success of autoregressive (AR) models lies in the vast literature dealing with the subject
and their easy implementation. However, AR models are mono-modal and poorly suit natural
scene problems where the objects to track rarely moves according to one single time-invariant
mode. Consequently, either a complex heuristic is developed to mix models, or Markov fields are
introduced for multimodality, such as in [1].

In [42], a static autoregressive model was developed to produce a prior for level-set based seg-
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mentation using PCA (see section (1.3.1)). This allows the dynamic modeling of shape variations
such that future shapes are predicted using the past shapes. The main limitation of such models
refers to their time-invariant nature. Neither the PCA nor the AR model can sustain changes of
dynamism or shapes that have not been learned a priori.

Optimum linear filters: Kalman. As described in [194], the Kalman filter [103] is a set of
mathematical equations that estimates the state variables of a process in the least square sense. The
filter is very powerful in several aspects: it supports estimations of past, present, and future states,
and it can even do so when the precise nature of the modeled system is unknown. In some cases,
Kalman filter may track non linear processes [150]; nevertheless, as we shall see in chapter 4, the
Kalman filter fails to track tubular structures with inhomogeneities (e.g. branchings, pathologies
or corrupt data) such as coronary arteries.

Such a filter assumes that the posterior density is Gaussian at each time step, and that the
current state xt and observation yt are linearly dependent on the past state xt−1. Such assumptions
simplify the Bayesian equations to the following form:





xt = Ftxt−1 + vt−1

yt = Htxt + nt,
(1.22)

where vt−1 and nt refer to zero mean Gaussian noise with covariance matrices Qt−1 and Rt that
are assumed to be statistically independent. The matrix Ft is considered known and relates the
former state xt−1 to the current state xt. The matrix Ht is also known and relates the state xt to the
observation yt. The pdfs are computed recursively according to the formulas that may be found in
Kalman’s seminal paper [103].





p(xt−1|y1:t−1) = N(xt−1; mt−1|t−1, Pt−1|t−1)

p(xt|y1:t−1) = N(xt; mt|t−1, Pt|t−1)

p(xt|y1:t) = N(xt; mt|t, Pt|t)

(1.23)



44 Overview of Segmentation and Tracking Techniques

with 



mt|t−1 = Ftmt−1|t−1

Pt|t−1 = Qt−1 + FtPt−1|t−1F
T
t

mt|t = mt|t−1 + Kt(yt − Htmt|t−1)

Pt|t = Pt|t−1 − KtHtPt|t−1

(1.24)

where
Kt = Pt|t−1H

T
t

(
HtPt|t−1H

T
t + Rt

)−1
(1.25)

When the Gaussian distribution assumption does not hold, the distribution may be approxi-
mated by a sum of Gaussians [99]. When the transition between the states or when the observation
function is not linear, a first order Taylor approximation is used; in this context, the Kalman filter
is referred to as Extended Kalman filter. When a Taylor development is not sufficient, Unscented
Kalman filter [190] consists in a deterministic sampling of states (called sigma-points) that are
propagated according to the non-linear transition function to update the states’ distribution model.

When the state space is discrete and consists only of a finite number of possibilities, the Grid
technique is a convenient alternative to Kalman filter [24]. When the number of possibilities is
too high, or when the state space is continuous, a different sampling strategy is developed, such as
Gibbs sampling and Particle filtering.

Gibbs sampling was developed by Geman & Geman [78] in 1984 as a sampling strategy for
the joint distribution of two or more variables when only the conditional distributions are known.
Let the state xt be composed by n parameters {ai}i=1..n. Given an initial value of {a(0)

i }i=1..n at
iteration 0, the algorithm updates a

(t)
i for each i according to p(a

(t)
i |a(t)

1 ...a
(t)
i−1, a

(t)
i+1...a

(t)
n ).

This algorithm is of particular interest to sample the posterior distribution of a Bayesian net-
work since it depends only on the conditional distributions. In the context of computer vision, the
Gibbs sampler is used to learn image statistics and models of noise or texture for image denoising
[181] or segmentation [55] [191] and tracking. An interesting work [154] uses the Gibbs sampler
to model the response of a region of interest to different filters.

However, the Gibbs sampler only converges toward the state of local maximum entropy and
cannot sustain multi-modes problems. Furthermore, the iteration time does not correspond to a
physical time; therefore the Gibbs sampling can only be used for static models. Particle filtering is
an alternative to Metropolis-Hastings based algorithms for a dynamic estimation of non-parametric
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multi-mode distributions.

Particle filtering [67][122] is a sequential Monte Carlo simulation to recursively estimate the
Bayesian posterior probability p(xt|y1:t) with samples {xi

t}i=1..N associated to weights {wi
t}i=1..N ,

such that

p(xt|y1:t) ≈
N∑

i=1

wi
tδ(xt − xi

t). (1.26)

Using the Importance Sampling principle, with Importance Density q, the weights are estimated
by

wi
t ∝

p(xi
t|y1:t)

q(xi
t|y1:t)

, (1.27)

and the following sequential estimation is derived with the Bayesian rule:

wi
t ∝ wi

t−1

p(yt|xi
t)p(xi

t|xi
t−1)

q(xi
t|xi

t−1, yt)
. (1.28)

When p(xi
t|xi

t−1, yt) is approximated by a Gaussian, the extended Kalman filter provides the
optimum estimation of the posterior probability, see above paragraph on Kalman filter. A solution
is presented in [99] when p(xi

t|xi
t−1, yt) is approximated by a sum of Gaussians. In the most general

case, a sub-optimal solution consists in taking the transition probability as importance density ; in
this case,

wi
t ∝ wi

t−1p(yt|xi
t). (1.29)

Since particle filtering requires neither a parametric model for the probability density function,
nor a linear transition between states, it has become a very popular technique for multi-object [122]
[134] and robust tracking [158]. However, sequential Monte Carlo sampling is computationally
intensive, especially for large dimension systems, as the number of particle grows exponentially
with the dimension [51].

1.5 Limitations of current models

Models are commonly used twofold: either by constraining the solution so that the final result
is a trade off between a priori information and actual observation, or by constraining the prob-
lem’s resolution to follow the statistics of prior knowledge. These statistics are learned over the
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whole training set, therefore the models are representative of the training set as a whole and not
of each individual exemplar. These approaches are sub-optimal: when the total solution can be
divided into subcomponents (in space, time, or feature space), the inter-dependence of these sub-
components may be used to intrinsically constrain the solution. The method presented in chapter 2
aims at formulating the relationship between information components and modeling uncertainties
to reconstruct the whole information from its sub-components.

Furthermore, in the context of tracking in time sequences, the methods described in section
(1.3) model the spatial variation of the structure of interest in a probabilistic fashion. Then, dur-
ing the inference process a constrain on recovering shapes that belong to the learned family is
imposed. The methods of section (1.4) introduce a novel dimension by modeling the system dy-
namics. However, their application field is limited to time-invariant dynamic systems; for a system
whose dynamics change with time - the majority of cases - an adaptive mechanism is to be set
up. Adaptive statistical schemes such as Kalman filter updates the statistical distribution of the
object’s features (mean and covariance matrix), but the transition model needs to be updated ex-
ternally. In [151], particle filtering, combined with shape model, allows changes of dynamics but
such a framework is computationally intensive. Chapter 3 demonstrates how time-information is
used to build and adapt on-the-fly a dynamic model for tracking that is computationally lighter
than particle filtering under the assumption of mono-modality. This model may even be used for
stationary problems to model a whole sequence of images without a sequential procedure.

Last but not least, uncertainties modeling with particle filtering has not been used for volu-
metric segmentation yet. In chapter 4, we introduce a novel application of particle filtering for
a segmentation problem that is not solved by other deterministic methods. An object - coronary
vessels in our case - is progressively segmented, such that at a given time, the current segmenta-
tion’s uncertainties are modeled and used for a robust segmentation of the remaining section of
the object. Instead of progressively building the segmentation’s solution by considering the most
likely local solutions only, lower probability hypothesis are also generated.
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Sparse Information Models for Dimensionality and
Complexity Reduction

Abstract – In this chapter, a novel technique for model-based vision is proposed that performs dimensionality re-

duction while taking into account explicitly the image support. The central assumption of this approach is that one

describes/reconstructs an object of interest using a small number of its elements through interpolation. Therefore this

method consists of finding the smallest possible set of robust, most representative, best supported components/features

which could provide an optimal reconstruction of the original object through a data-driven interpolation method. Such

an objective is met through the use of a variational method that involves the selection of features, and the correspond-

ing interpolation strategy. Toward validation of such a concept, three important applications in computer vision are

considered: surface reconstruction from laser range data, object segmentation in image sequences and volumetric

segmentation in medical imaging. This method performs better than well known linear models in the case of corrupted

data and high statistical variance.
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2.1 Motivation and Overview of the Chapter

Computer vision methods often rely on information given by the whole image to solve problems;
however, different image regions may have different qualities. In some regions, the pixel intensity
gradients may consistently be low or the object to segment/track/reconstruct may sometimes be
occluded, while other regions may have consistently strong gradients and the object easily detaches
itself out of the background. We call the first low support regions, and the second high support

regions. Intuitively, instead of using the information provided by the full image, one would like
to favor the information provided by the high support regions. One may even go further, in most
cases of statistical modeling, the training set consists of examples with varying support/quality.
Therefore, one may extend the notion of image support toward being associated with the quality
of the samples in general. In this chapter, we propose a straightforward approach: the explicit
selection of high support regions to extract elements of the solution, and the reconstruction of the
rest of the solution from these elements.

To motivate the learning of data support and its use in prior models, let us consider in section
(2.3) an example in segmentation where a shape model that does not account for image support
constrains the segmentation toward poorly supported regions. Then, we will introduce the novel
technique using sparse information. Section (2.4) generalizes this approach and introduces the no-
tations. Then, this general method is applied to three major problems in computer vision: volumet-
ric segmentation in section (2.5), temporal tracking in section (2.6) and 3D surface reconstruction
in section (2.7).

2.2 Prior Art on Image Support Analysis and Interpolation

Confidence measures in the image fall into two classes: measures based on the statistical analysis
of the contours and their variability, and analysis of the image support, such as the gradient or the
pixels intensity. When the distribution of contours from a learning set is modeled by a Gaussian,
the average shape and principal axis are computed with Principal Component Analysis, detailed in
chapter 1 section (1.3.1). In [34, 45], only the average shape constrains the segmentation, while in
[114] the shape constraint includes the principal modes of variation derived from the PCA. Other
distribution models either parametric (Gaussian, multi-Gaussian, kernels, ...) or non-parametric
may be used to constrain the segmentation with statistical likelihood from prior knowledge as in
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[155, 48]. In [157], the statistical shape variability is compounded in a confidence map so that the
local image information weights more in the regions with high statistical shape variability in the
training set and less where the shape does not change. The second class of confidence measure is a
local likelihood of detecting the contour at a particular location on the image. No exhaustive list of
image support measures can be drawn here, but they generally falls into two classes: contour-based
or region-based. In the latter, it is usually a function of the gradient (high gradient meaning high
probability of contour); in the case of region-based measure, the segmentation favors piecewise
smooth regions of similar intensities. Recent works, such as [157], not only take the global shape
variability and also use the local variability as a confidence measure in the prior. However, all
these methods assume an homogeneous image support. Furthermore, even though PCA is used as
a complexity dimension scheme, it still requires the complete reconstruction of the shape during
the segmentation process; in other words, the image measure is computed over the whole image,
even in regions with notorious low image support. In this chapter, the work focuses on combining
both image-based confidence measures and statistical analysis on the contours so that the regions
of the image that best support the segmentation and the most stable regions of the contour are
selected as a basis to reconstruct the overall surface.

Image interpolation and surface reconstruction have been studied before. The simplest and
most common method is to use a spline or piecewise polynomial function [149, 178] that inter-
polates the contour between explicit points. Other methods use an implicit representation of the
contour (a continuous function that takes a zero value on the contour) and interpolating functions
such as thin-plate splines [185]. In the context of surface fitting for reconstruction, the main class of
fitting method is the Functional Fitting: to optimize parameters so that a function best interpolates
input points [16]. When the noise is small compared to the data spacing, Triangulation methods,
such as Delaunay [135], are often preferred. Volumetric methods refer to extracting the surface
information by computing the volume first. An example of application is the work of Hoppe et

al. [91] who computed a signed distance function in 3D which is the distance in R3 to any input
point. Then, from the zero levelset of this function is extracted the surface using the Marching
Cubes [119]. At last, Deformable Models [116] are used to minimize an energy function of the
mesh by deforming the mesh so that the mesh is simultaneously attracted to the data by an image
term, kept smooth by a tension term and by an optional prior term. More recently, combinations
of classic splines and flows of diffeomorphisms have been under study [101], and Younes [200]
proposed a numerically more stable solution using affine transformations. For more information
on Interpolation for Image Interpolation, Resampling and Registration, the reader may refer to



50 Sparse Information Models

(a) (b) (c) (d)

Fig. 2.1: Synthetic example where only the image top half contains relevant information. (a) Correct shape.
(b) Corrupted image. (c) PCA result. (d) Sparse information result.

[180][79][123][153].

2.3 Introduction with an Ad Hoc Example

A standard shape model technique consists in using principal component analysis (PCA) [38] (see
section (1.3.1)) to project the shape space onto axes that correspond to statistical modes of variation
for that class of shapes. The image energy function is optimized in that projected subspace. PCA
presents two main advantages: first, the optimization in the subspace depends on few parameters
(compared to the original shape space) which makes it faster and less sensitive to local minima,
second PCA guarantees the segmentation’s result is constrained by statistical modes of variation
from the training set. Consequently, the segmentation’s result is a trade off between information
from the image and statistical coherence. However, missing or corrupted image data may interfere
with statistics from the training set and lead to poor results. Let us illustrate this point with a simple
example.

Let us consider a synthetic example consisting of sets of two circles with equal but varying
radius. The mean shape corresponds to the average radius circles, and the modes of variations
account for the circles’ radius. Let us further assume the image is only relevant for the top circle;
the bottom half of the image may be occluded or corrupted. When the image bottom half section
corresponds to a mode of variation (a circle), the prior model leads to false results, results that are
incoherent with the image top section (see figure (2.1)). Therefore, data support must be accounted
for in choosing which measurements are optimal for the processing of the image. Then, depending
on these observations, a learned prior is used to analyze the image and extract the region of interest.
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In the present synthetic case, it is clear (see figure (2.1)) that the bottom half section of the
image is a low support region that should not be considered; only the partial information contained
in the top half is relevant. Therefore, the sparse information technique consists first in dividing the
image into m elements (e.g. 2 elements in our case: top and bottom halves) and assigning image
support weights w = (w1, ...,wm) to these elements (e.g. wtop = 1 and wbottom = 0). Second,
one selects the elements, also called key elements, best supported by the image (e.g. the top half in
our case), and a function φ to reconstruct the rest of the solution (e.g. a symmetric reflexion in our
case, see figure (2.1)).

Three main criticisms may be objected against this technique: first, time constrains aside,
does the selection of measurements provide better results than common dimensionality reduction
techniques? Second, since the number of measurements is reduced, what is the sensibility of the
solution with respect to input noise? Third, what is the performance of sparse information models
in the presence of outliers and salt and pepper noise? These three questions drive us to slightly
modify the way we select the key elements: we need an image support measure Esup to select
the elements best supported by the input image, we also need a metric Eint to measure the quality
of reconstruction, and finally a measure Evar to avoid selecting key elements that vary a lot with
respect to their location. After a general introduction to sparse information models is given in
section (2.4), three different experiments are conducted in sections (2.5) to (2.7) to study these
questions.

2.4 General Introduction to Sparse Information Models

Let us consider a training set of exemplars X = {x1, x2, ..., xP} registered in a reference space Ωr.
Each exemplar is divided into m sub-elements x = (x1, ..., xm) (see figure (2.2) for an example on
volumetric shapes) associated to m measures w = (w1, ...,wm) which reflect the data support for
the observations.

Without loss of generality, we assume the m sub-elements are obtained by a discretization
process along one or several axis v0 using an operator ρ : [Ωr × R] → Ωr/v0:

∀ i ∈ [1,m], xi = ρ(x, i) (2.1)

In the remaining of the chapter, this continuous parameterization is assumed when not specified.
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Fig. 2.2: Example of a 3d liver surface x whose subcomponents (x1, ..., xm) are obtained by intersecting the
3d shape with the axial plane (dark contours) at specific slice indices s1, s2, ...sK .

The aim of our approach is to recover a minimal description length set of |B| = K sub-elements
B = {xtk}k∈[|1,K|] with K small compared to m, and a continuous operator φ, from which the
whole data x is deducted:

∀ k ∈ [1,m], φ(xt1 , ..., xtK , k) = x(k). (2.2)

Given such a model, one has to address three important aspects: (i) the number of basis com-
ponents |B| = K, (ii) the form of these components and (iii) the interpolation strategy φ used to
reconstruct the training set examples. We have at our disposal the training set X which consists of
many samples associated with certain image support w. Three criteria are now developed to opti-
mize the sparse information model with respect to X , w and the three important aspects presented
above in section (2.3).

Optimal reconstruction of the training set. Toward optimal reconstruction of the training
set from the basis B, the distance between the reconstruction and the existing samples is a natural
criterion/metric that determines the quality of our model. To this end, let a metric d : [Ω×Ω] → R+

measures the distance between two corresponding sub-elements. Then, assuming the number of
components of the training set is fixed, such reconstruction minimizes

Eint(B, φ) =
P∑

p=1

m∑
i=1

d
(
xp

i , φi(xp
t1 , ..., xp

tK
)
)
. (2.3)
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Such an approach is purely geometric and does not account for the image support of each sub-
element. In the case of shape/surface modeling for example such a distance measures the distance
between the reconstructed surface and the one being part of the training set. More advanced mea-
surements like the Hausdorff distance or the metrics comparing the implicit representations of the
surfaces can be considered.

Optimal image support. We recall that the sub-elements of a given exemplar have some un-
derlying image support noted w = (w1, ...,wm). Such simplistic notation is equivalent with saying
that the more important the value w is, the best extraction of the solution in this particular location
can be obtained using the data associated with it. The optimum basis B consists of elements that
are confidently extracted from the data; therefore, the basis minimizes

Esup(B) =
P∑

p=1

K∑

k=1

f
(
wk

(T −1
θ (xtk)

))
(2.4)

where f is a monotonically decreasing function, and T −1
θ (xtk) is the inverse mapping between the

basis B and the observation space. This term is evaluated within the entire training set and in other
words for a simple surface modeling, we are seeking for the indexes of 2D shapes used to form
this surface for which one determines optimally for the corresponding contours for all samples of
the training set. The use of such inverse mapping is also to be considered during the application
of the model to new data. Therefore, it is critical to have a selection of B that is relative robust to
errors when locating the basis’ elements in a new exemplar.

Robustness to parameters variability. Let us consider a slight variation on the selection of
the basis, noted δx̄. Such a variation can be either on the indexes/positions of the key slices or
related with the form of the shapes being present on the key slices. For the interpolation precision
of the model not to be significantly affected,

lim
|δx̄| → 0

Eint(B, φ)− Eint(B + δx̄, φ)

δx̄
= 0 (2.5)

that is reformulated in terms of a cost by defining a smoothness function η(), like the error-two
norm,

Evar(B, φ) = η
(∇BEint(B, φ)

)
. (2.6)

Such a penalty term introduces robustness in the basis selection step, as well to the reconstruction
process. More precisely, since the aim of our model is to perform knowledge-based segmentation,
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one expects that errors will be present in the inference step. Therefore, it is reasonable to assume
that when a key element is found in the neighborhood of the optimal position its form slightly
deviates from the expected value. The model should be capable to cope with that. Now, one
integrates these three constraints into a single cost function:

E(B, φ) = Eint(B, φ) + αEsup(B) + βEvar(B, φ) (2.7)

The cost function E is minimized with respect to the interpolation function φ and the basis B.
Such a process cannot be described in a general fashion, but a gradient descent is an excellent
choice when considering linear interpolation models, while more advanced non-linear optimization
methods like neural networks can be considered for non-linear cases. Last, but not least the residual
cost that characterizes the sparse information model is used to determine the best number |B| of
key components that optimizes the minimum description length [86]. In order to demonstrate
the efficiency of such a model, we consider three different applications: 3D knowledge-based
segmentation, multi-frame object segmentation and surface reconstruction from range data.

2.5 Sparse Knowledge-based Segmentation: Automatic Liver Delineation

As mentioned earlier, the example of knowledge-based segmentation is the most direct application
of such a dimensionality reduction technique. In this case, the sparse model is built by selecting
a minimal set of key element indices B of 2D contours (represented in an explicit or an implicit
fashion) along with an interpolation function φ to reconstruct the whole 3D surface in the reference
space Ωr. During the segmentation, one should expect that the pose of the object is different than
the one used to learn the model. Therefore, segmentation is equivalent with finding this pose in
the new volume, and at the same time determining the geometry of the 2D curves that correspond
to the key slices. Therefore, the global transformation Tθ that relates the reconstructed model to
the volume in the observation space is to be determined, along with the set of 2D key contours
that fit the observation. Medical image segmentation is a perfect scenario to demonstrate such a
framework. Training sets are available, often manually delineated from experts, and the image
support varies according to the physical properties of the organs.

Computerized medical imaging analysis aims at detecting and delineating anatomical structures
for diagnosis and therapy. It has gained significant attention in hepatic procedures, specially in
oncology. The main aim is to detect tumors and lesions, quantify the ratio of tumors’ volume
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(a) (b) (c)

Fig. 2.3: Slices of liver dataset with a poor edge regions. (a) Intercostal muscles and neighboring organs
have a similar appearance (b) The lowest part of the heart juxtaposes the liver in a way that could
correspond to a PCA shape variation (c) Slice with strong image support.

and liver’s volume (future liver remnant volume and total liver volume), their localization with
respect to the liver’s vasculature and the different lobes of the liver [127][152]. Also, in the context
of liver transplantation, graft from living donors is increasingly performed due to the shortage of
cadaveric donors. This particular procedure requires a pre-operative quantification of the donor’s
liver volume [89]. However, the segmentation of the liver is an arduous task for two main reasons.
First, the liver’s appearance and shape has a large inter-patient variability; it is one of the largest
organ of the human body, after the skin, and imaged patients may suffer from heavy diseases
such as cancer. Second, the neighboring structures have similar appearance in CT and MR, and
may juxtapose the liver in a way that corresponds to a statistical shape variation, or without clear
edge between the two (see figure (2.3)). In this section, we propose a novel method for liver
segmentation that combines a statistical analysis of the data with a reconstruction model from
sparse information: only the most reliable information in the volume is used, and the rest of the
liver’s shape is inferred from the model and the sparse observation.

2.5.1 Prior art on liver segmentation

Given the difficulty of segmenting the liver, a model is commonly used, either as a localization,
a shape or an appearance constraint. In [172], a cascading segmentation scheme sequentially de-
tects the different abdominal structures for hepatic surgery planning. In [147][166], the liver is
detected by a classification procedure based on the pixels intensity. A semi-automatic procedure
is presented in [164] where a live-wire based on dynamic programming assists the user in drawing
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the liver’s contour slice by slice. In the context of deformable models, the reason for using prior
knowledge is that this segmentation method is a local optimization, and therefore is sensitive to
local minima. Therefore, the prior work on liver segmentation includes models based on shape
variations, and constrains on pixel intensities learned from classification. Intensity based methods
are used in [118] with snakes segmenting the liver’s contour in a slice-by-slice fashion. However,
the vicinity of the liver to neighboring structures of similar appearance makes models attractive
for this task [88]. The models used in [88] are based on Cootes et al.’s active shape models [38].
The results obtained in [88] demonstrate active shape models may represent to a certain extent the
liver’s shape. However, they fall short of accurately segmenting the liver because of the large shape
variability of this organ. Furthermore, active shape models are highly dependent on initialization,
that is dealt with a multi-resolution approach. Nonlinear models, such as shape-based kernel PCA
[49] or Fourier coefficients [56] have been investigated more recently for segmentation. The main
limitation of these methods (linear or non-linear) is the explicit assumption of the data distribution
that, for example, forms a linear subspace in the case of PCA. These methods process the total
amount of data and find the optimum trade-off between an image term and a prior term. Further-
more, the quality of image support is at no point taken into account; it is assumed that should
an image region quality be low, another region would compensate. This assumption leads to er-
rors (see section (2.3)) since most of these methods treat segmentation as a statistical estimation
problem, where the quality and the support of the training set’s exemplars is ignored.

Instead, the approach presented in this section relies on observation at key locations, and on
a reconstruction model ; both the key locations and the reconstruction models are learned from a
training set that consists of registered manually segmented liver volumes.. This technique provides
better results because the segmentation is only supported by the data with the strongest image sup-
port, and is also of low complexity because it uses the data in an optimal fashion. We propose a
liver model that encodes the shape variations using a small number of carefully chosen key-slices
where the organ’s contours can be optimally recovered. First, the image or shape to reconstruct is
discretized along the longitudinal axis, and all the liver exemplars are registered rigidly so that they
fit into the same reference region. Then, a set of slice indices are determined so that it minimizes
three different criteria: image support, quality of the reconstruction and sensibility to variations in
the projection’s subspace. Finally, the reconstruction operator itself is learned over the given liver
exemplars. To present this approach, section (2.5.2) is devoted to explicit this model to the partic-
ular problem of 3D liver segmentation. Then, to validate the methodology, section (2.5.6) aims at
proving the liver’s shape is indeed well recovered from few contours at key-slices, and quantifying
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the quality of the segmentation obtained in this way. The choice of interpolation function, general-
ized linear function, is performed empirically by comparing different interpolation functions. The
results are reported in appendix A not to interfere with the presentation of the sparse information
models.

2.5.2 Model Estimation

The experiment is conducted on segmentation for medical imaging for the case of liver in Com-
puted Tomography (CT). We represent the training set exemplars x through an implicit model (see
section (1.2.1)). A distance function ψ is defined as

∀p ∈ Ω, ψ(p) =





0 , p ∈ C
+D(p) ≥ 0 , p ∈ Γ

−D(p) < 0 , p ∈ Γ̄

(2.8)

and x is defined as a column vector by aligning the distance value of each pixel in lexicographic
order. In the following, the role of ψ and x may be interchanged by abuse of notation. Such a
selection is motivated by the direct ability to determine the properties of such a representation,
as well as the ability to introduce surface-based as well as area based criteria in the segmentation
process. Furthermore, the liver’s topology on the axial plane may change, which is implicitly
accounted for by using this representation. Classic explicit parameterizations like triangulated
surfaces, or other form of parametric snakes can also be considered.

The acquisition process guides our choice for the definition of the sub-elements: since the
image volume is reconstructed slice by slice, with maximum resolution in the slice plane, the axis
of projection v0 is the longitudinal axis. Therefore, a sub-element xi corresponds to a particular
slice (see figure (2.2)). The geometric transformation Tθ is a translation-scaling that sets x in a
reference space Ωr with m slices (x1, ...xm). The choice of the interpolation is rather trivial: we
have assumed that any surface slice is determined through a generalized linear interpolation of the
key slices.

Optimal Reconstruction. From the experiments of appendix A, it is concluded that general-
ized linear interpolation for each slice i is a good compromise between complexity and interpo-
lation quality. In other words, the solution (2D contour) at each slice xi is reconstructed using a
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Fig. 2.4: Interpolation quality Eint (equation (2.9)) with respect to the first key contour index, with K = 5
and the four other contours indices at (0.13, 0.45, 0.73, 1).

particular linear combination Hi of the key contours xt1 , ...xtK . This notation is kept in the remain-
ing of the chapter: φ = H and φi = Hi. One now defines the objective function component which
corresponds to the optimal reconstruction criterion of the training set. The interpolation quality is
defined according to the sum of squares difference between the reconstructed distance map and the
observed shape’s distance map in the reference space Ωr:

Eint(B, H) =
m∑

i=1

∫

Ωr

∣∣∣Hi [xt1 , ...xtK ]T − xi

∣∣∣
2

(2.9)

This term is often considered to account for prior knowledge within level sets through a direct
comparison between the distance function of the model and the one evolving in the image. Eint is
a quadratic function with global minimum (see figure (2.4)), and since the reference space Ωr is a
continuous space, the minimization of Eint benefits from the large literature on quadratic functions
minimization. For a particular set of key contours xt1 , ...xtK , the vector Hi is obtained through a
least squares minimization of equation (2.9) for each individual i. To keep notations simple, let
Xt = [xt1 , ...xtK ]. First, HiXT

t = xi is rewritten as XtHT
i = xT

i . Then, a QR decomposition of
Xt is performed from Householder reflections: Xt = QR where Q is orthogonal and R is upper
triangular. The optimization of Hi is then straightforward.

The derivative of Eint with respect to the key contours indices is computed directly as

∂Eint
∂k0

=
m∑

i=1

∫

Ωr

2Hi[0...1...0]T
(
HiXT

t − xi

)
.
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Quality of Image Support. The next step consists of defining a qualitative metric of the image
support for a given slice. In the introduction we have reviewed the state of the art in segmentation.
Edge-driven or region-based methods have been considered with the later being less sensitive to
noise and initial conditions. To separate the statistical properties of the object from the background
has been a common choice to implement region-based terms. Driven from that, the image support
wi at slice i is defined by the Kullback-Leibler distance between the pixels intensity distributions
inside and outside the 2D contour and the a priori learned histograms. Knowing a priori the distri-
butions pin (resp. pout) of the pixels intensity inside (resp. outside) the liver, and computing the
normalized pixels intensity histograms hin and hout inside and outside of the reconstructed shape
on the key slices,

Esup(B) =
K∑

k=1

∫
hin(k, s)log

(
hin(k, s)

pin(s)

)
ds

+
K∑

k=1

∫
hout(k, s)log

(
hout(k, s)

pout(s)

)
ds.

(2.10)

This term seeks slices for which the separation of liver/background is the best possible using the
observed image intensities. The normalized pixels intensity histograms hin and hout depend on
the contour and image index that is to be optimized. Let h′in and h′out be the derivative of these
histograms with respect to the contour index. Then, the derivative of Esup(B) with respect to a
particular contour index k0 is

∂Esup(B)

∂k0

=

∫
h′in(k0, s)log

(
hin(k, s)

pin(s)

)(
hin(k, s) + pin(s)

pin(s)

)
ds

+

∫
h′out(k0, s)log

(
hout(k0, s)

pout(s)

)(
hout(k0, s) + pout(s)

pin(s)

)
ds

(2.11)

Figure (2.5) displays the global minimum of Esup with respect to any key contour index tk.

Robustness to Key-Contours Variability. Finally, the key contours are chosen so as to min-
imize the impact of little variations in their position, and of little errors in the contours extraction
in the key slices. Since a continuous interpolation of the 2D contours is introduced in equation
(2.1), the impact of an infinitesimal change ∂k in the slice index may be written as the squared
magnitude of the gradient of xtk with respect to tk: ‖∇tkxtk‖2. In practice, since the contours are
represented using distance functions (see equation (2.8)), the derivative of the distance function at
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Fig. 2.5: Image support quality Esup (equation (2.10)) with respect to one particular contour index.

index tk, with respect to the index, is a field of 2d vectors whose squared magnitude is ‖∇tkxtk‖2.

The second criterion consists in applying a small variation ∂x to the key contour xtk and eval-
uate how the reconstructed 3D surface changes. For each i ∈ [|1,m|], let us note the interpolation
vector Hi = [h1

i h
2
i ...h

K
i ]T . Then, for a particular k0 ∈ {1, ...K}, the difference between the recon-

structed surface before and after adding ∂x is

m∑
i=1

∫

Ωr

∣∣∣∣Hi

[
xt1 , ...xtk0

+ ∂x, ...xtK

]T

−Hi [xt1 , ...xtK ]T
∣∣∣∣
2

=
m∑

i=1

∫

Ωr

∣∣∣Hi [01:k0−1∂x 0k0+1:K ]T
∣∣∣
2

=
m∑

i=1

∫

Ωr

∣∣hk0
i ∂x

∣∣2

Therefore, the key contours are chosen so as to minimize the integral over the image space of
the distance map’s gradient at the key locations and the interpolation vector magnitude:

Evar(B) =
K∑

k=1

∫

Ωr

‖∇tkxtk‖2 +
m∑

i=1

HT
i Hi. (2.12)

Figure (2.6) displays the global minimum of Evar with respect to any key contour index x̄i.

2.5.3 Estimation of the Model Parameters

Esup solely depends on the key contours indices; however, Eint and Evar depend on both the
key contours indices and the interpolation matrix. Therefore, the optimization strategy consists
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Fig. 2.6: Image support quality Evar (equation (2.12)) with respect to one particular contour index.

in alternating a gradient descent step with respect to the indices on Esup + Evar + Eint with H
constant and the least squares optimization of H, followed by the estimation of the residual error
Eint. With H constant, the derivative of Esup with respect to a particular key contour index k0 is

∂Esup
∂k0

=

∫
∂hin
∂k

(k0, s)log
(

hin(k0, s)

pin(s)

)(
hin(k0, s) + pin(s)

pin(s)

)

+
∂hout

∂k
(k0, s)log

(
hout(k0, s)

pout(s)

)(
hout(k0, s) + pout(s)

pout(s)

)
ds.

(2.13)

The derivative of Evar with respect to k0 with H constant is straightforward:

∂Evar
∂k0

=

∫

Ωr

2
∂2xtk

∂k2

∂xtk

∂k
.

As one may see in figures (2.5) and (2.6), Esup + Evar + Eint is sufficiently smooth to solve
this problem with gradient descent. This smoothness is guaranteed to a certain extent by the large
size of the training set (31 liver volumes). Should the training set be reduced, or a different type
of image be considered, gradient descent may not be suitable anymore. Other techniques such as
the simplex optimization [130] should be considered should that situation happen. Furthermore,
the factors that depend on the {t1, t2, ...tK} in Esup + Evar + Eint are independent with each
other except for the optimization of H. Therefore, it is reasonable to optimize them independently
for each key contour index tk instead of using global optimization schemes such as Gibbs sam-
pling optimization (see chapter 1 section (1.4)). Last but not least, the energy to optimize for H
in equation (2.9) is quadratic. In such a case, a linear least squares optimization scheme is ap-
propriate. The orthogonality constraint on

∑m
i=1 HT

i Hi is transformed into a spherical constraint:
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Initialize {t1, t2, ...tK}
for τ = 1..Tτ do

foreach i = 1..m do
Compute Jacobian J of H(τ)

i X(τ)T − xi

G =
(
JT J

)−1 JT (H(τ)
i X(τ)T − xi)

H(τ)
i = H(τ)

i −G + H(τ)
i GT H(τ)

i

end
foreach tk do

tk = tk −
∂Esup

∂k0
− ∂Evar

∂k0
− ∂Eint

∂k0

end
end

Algorithm 1: - General pseudo-code for the estimation of the sparse information models para-
meters.

∀i = [1,m] HT
i Hi = 1. If a Gauss-Newton strategy is followed for Eint, there is no guarantee that

the intermediate solution remains on the sphere. Therefore, it is necessary to project the Newton
gradient G on the sphere, so that each step displacement in the Newton optimization is actually
G−HiGT Hi.

A general pseudo-code for the estimation of the sparse information models parameters is given
in the algorithm 1. For simplicity, [xt1 , ...xtK ] at iteration step τ is noted X(τ).

The optimum number K of key contours is estimated using the Schwarz Bayesian Criterion
[86] on the residual energy remaining after the minimization is completed. More details on
Schwarz Bayesian Criterion are given in the following application, in section (2.6.3).

Using this set of equations one recovers the optimal basis, the optimal interpolation strategy
and the optimal number of key elements. In order to validate this process, the first step consists of
comparing the sparse information model with standard dimensionality reduction techniques like
PCA, ICA, etc.

2.5.4 Comparative Study between PCA and Sparse Information Models for Dimensionality
Reduction

To this end, one needs to quantify the error introduced by the sparse models dimension reduction
and compare it with common techniques such as PCA. The volumetric data is acquired on Sen-
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method PCA (5 modes) PCA (30 modes) Linear interp. SIM
median symmetric diff. 16.97% 11.70% 10.72% 8.35%

maximum symmetric diff. 29.15% 23.32% 16.13% 13.14%
minimum symmetric diff. 8.61% 6.56% 7.69% 6.28%

Tab. 2.1: Results table showing the median, maximum and minimum symmetric difference between ground
truth volumes and reconstructed volumes using PCA (5 and 30 modes), linear interpolation from
5 key slices and sparse information model (SIM) with 5 key slices.

sation 16 CT scanners, with an average resolution of 1 mm in axial plane and 3 mm along the
longitudinal axis. 31 volumes (different oncology patients, with or without pathologies such as
tumors) are used in our experiments on a leave-one-out basis: 30 volumes are used to build the
models (sparse and PCA) and the last one is used for testing.

Table (2.1) summarizes the error introduced by dimensionality reduction for PCA (5 and 30
modes), linear interpolation and sparse information model with 5 slices. This error measure is
defined as the symmetric difference [164] between the two volumes V1 and V2:

ε = 1− |V1 ∩ V2|
0.5 ∗ (|V1|+ |V2|) (2.14)

The results clearly demonstrate that the sparse information model with 5 key elements provides
a far better reconstruction quality as linear PCA with 5 modes of variation, and slightly better than
PCA with 30 modes. The PCA results have a large variance because diseased organs are poorly
represented by a Gaussian model in the linear PCA space. A larger study with different pathologies
and the use of kernel PCA [114] could improve the reconstruction of the shapes.

Figure (2.7) illustrates different error measures for liver segmentation with linear PCA, liner
interpolation and sparse information model. The quality assessment is performed with four error
measures: the volumetric error in %, the average surface distance, the root mean square (RMS)
distance, and the percentage of surface father than 5mm from the ground truth.

2.5.5 Segmentation Scheme

With sparse model in hand, the volumetric segmentation is boiled down to the segmentation of the
shape at key slices; in other words, the whole 3D segmentation problem is reduced to a small set
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Volumetric error [%] Avg. Distance [mm]

RMS Distance [mm] Deviations > 5mm [%]

Fig. 2.7: Segmentation result boxplots comparing PCA (5 and 30 modes), linear interpolation and Sparse
Information Model. The box has lines at the lower quartile, median, and upper quartile values.
The whiskers are lines extending from each end of the box to show the extent of the rest of the data.
Outliers are data with values beyond the ends of the whiskers.

of parallel 2D contours to be segmented at specific locations. Therefore, one needs to optimize
an image-based cost function with respect to both the set of key contours B = xt1 , ...xtK in the
reference space and the transformation Tθ simultaneously. In an iterative optimization scheme, the
transformation Tθ at a given iteration is used to relate the current set of 2D contours xt1 , ...xtK to the
image so that both the transformation and the sparse set of contours are optimized concomitantly.

To this end, the cost function consists of the intensity-based likelihood of each pixel, assum-
ing that normalized histograms inside (hin) and outside (hout) the liver are available (if not, one
recovers them on-the-fly). Then, the posterior likelihood of the partition with respect to the two
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classes is maximized to obtain the key contours B and the transformation Tθ:

Eseg (B, Tθ) =
K∑

k=1

∫

Ω

−log
(
hin(I(s))

)H(xtk(Tθ(s))) ds

+
K∑

k=1

∫

Ω

−log (hout(I(s))) (1−H(xtk(Tθ(s)))) ds,

(2.15)

where H(xtk(s)) denotes the Heaviside function that is equal to 1 inside the contour xtk , and 0

outside. During the sparse model’s construction the image support has been taken into account
in the selection of the key slices. This information has been inherited to the segmentation and, in
principle, the slices where one best separates liver from the rest of the background are used (see
equation (2.10)). Deriving Eseg with respect to each key contour xtk , one obtains

∂Eseg
∂xtk

=

∫

Ω

−log
(

hin(I(s))

hout(I(s))

)
δxtk

(Tθ(s))ds, (2.16)

where δxtk
(s) = 1 if and only if s is on the contour xtk , and 0 elsewhere. Representing the con-

tour using distance functions (see equation (2.8)) one derives Eseg with respect to the geometric
transformation parameters θ:

∂Eseg
∂θ

=
K∑

k=1

∫

Ω

−log
(

hin(I(s))

hout(I(s))

)
δxtk

(Tθ(s))∇xtk(Tθ(s)).
∂Tθ

∂θ
(s)ds. (2.17)

Using equations (2.16) and (2.17), ones minimizes Eseg by gradient descent. When (B, Tθ)

have reached the energy minimum, the whole volumetric shape x is reconstructed in Ωr by applying
the linear combination Hi for each slice i. Finally, the inverse of Tθ is used to transform the
reconstructed volume from Ωr to the image space Ω. Some examples of segmented volumes using
such a principle are shown in figure (2.8). In a subsequent step, one may consider refining the
results by locally optimizing the solution x on each slice i, using the sparse model’s result as a
prior such as [156].
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2.5.6 Comparative Study with PCA & kernels for Segmentation

In order to demonstrate that sparse information models can efficiently be used for segmentation a
methodology similar to the one considered for the interpolation will be studied.. For that purpose,
it is assumed an expert (i.e. either a human expert, or an expert system such as the ones described
in the literature) roughly initializes the rigid transformation and the key contours. When no user
interaction is available, a preprocessing step, such as exhaustive search or coarse-to-fine search,
could be developed. In the case of PCA [155], the segmentation problem is solved by minimiz-
ing the cost function resulting from the intensity-based likelihood of each pixel in the volumetric
image:

Eseg =

∫

Ω

−log
(
hin(I(s))

)H(x(Tθ(s))) dΩ

+

∫

Ω

−log (hout(I(s))) (1−H(x(Tθ(s)))) dΩ,

(2.18)

For the PCA segmentation, all the m slices of the volume are used, whereas the sparse information
model only segments the K slices determined during the model construction (see equation (2.15)).
Let us project the shape x onto the PCA basis {Uq} (see section (1.3.1)), after subtracting the mean
shape x

x = x +
N∑

q=1

xqUq. (2.19)

As in [155], equation (2.18) is minimized in the PCA’s parametric space, where the shapes’ dis-
tribution is modeled using kernels. The kernels are justified by the poor modeling of the samples
distribution by a Gaussian. Using N kernels1 noted Kn, the likelihood p (Λ) of Λ = {xq} is

p (Λ) ∝
N∑

n=1

Kn(Λ).

Therefore, the energy to minimize is

Eseg =

∫

Ω

−log
(
hin(I(s))

)H(x(Tθ(s))) dΩ

+

∫

Ω

−log (hout(I(s))) (1−H(x(Tθ(s)))) dΩ− log

(
N∑

n=1

Kn(Λ)

)
,

(2.20)

1 Only Gaussian kernels are considered in [155], but the method stands for any other type of kernels.
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method PCA (30 modes) SIM IOV
median symmetric diff. 26.41% 11.49% 5.56%

maximum symmetric diff. 36.84% 17.13% 7.83%
minimum symmetric diff. 16.68% 9.49% 2.96%

Tab. 2.2: Results table showing the average symmetric difference and maximum symmetric between hand-
segmented livers and automatic segmentation with PCA and sparse information model (SIM). Also,
is also given the Inter-Observer Variability (IOV) statistics.

Then, the derivative of Eseg according to a particular xq is given by

Eseg
∂xq

=

∫

Ω

−log
(

hin(I(s))

hout(I(s))

)
δx(Tθ(s))Uqds−

∑N
n=1

∂Kn(Λ)
∂xq∑N

n=1 Kn(Λ)
(2.21)

and the derivative with respect to the geometric transformation Tθ is

Eseg
∂θ

=

∫

Ω

−log
(

hin(I(s))

hout(I(s))

)
δx(Tθ(s))∇x(Tθ(s)).

∂Tθ

∂θ
(s)ds. (2.22)

Table (2.2) summarizes the symmetric difference (see equation (2.14)) between ground truth
and the segmented liver obtained using the sparse information model and the PCA-based method
[155] (see figure (2.8)). Neighboring structures of similar intensities juxtapose the liver in a way
that PCA estimates as a shape variation. On the contrary, the sparse model ignores the regions with
low support, and reconstructs the information in these regions based on other visual clues elsewhere
in the image. For comparison purposes, the inter-observer symmetric difference in table (2.2)
indicates the symmetric difference between livers segmented by different experts using the same
semi-automatic tool. Overall, when compared with [88], the results seem to demonstrate sparse
information models outperform active shape models. Nevertheless, it must be underlined that the
training and evaluation datasets are different. Furthermore, in [88], the shape model is built from
smoothed surface meshes, while the training shapes used in this chapter are represented by distance
functions (see equation (2.8)) and are not smoothed. However, as one suspects, sparse information
models are sensitive to initialization. To quantify this, two different sparse segmentations were
performed by segmenting by hand the key slices in the datasets, and comparing the reconstruction
results with the ground truth. The difference in quality (symmetric difference with ground truth)
between the different reconstructions ranges from 0.02% to 6.73%. Moreover, this variance is not
correlated to the IOV (correlation coefficient of 0.47); otherwise stated, a volume with high inter-
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observer variability may be segmented by the SIM in a way that is robust to initialization, and
reciprocal may be true. Indeed, the IOV depends on the whole organ’s structure while the SIM’s
quality only depends on the key slices. Furthermore, the maximum quality difference of 6.73% is
below the maximum IOV symmetric difference (7.83% in table (2.2)).

2.5.7 Discussion on Segmentation from Sparse Information

In this section, we have introduced a novel family of dimensionality reduction techniques based
on intelligent selection of key sub-elements with respect to reconstruction quality, image support
and variability of these key sub-elements. It is demonstrated that sparse information models can
be used to model shape variations, and can efficiently be integrated into a segmentation framework
in the context of volumetric organ segmentation. We have applied this technique to the problem
of liver segmentation in volumetric images with satisfactory results when compared to standard
dimensionality reduction techniques based on linear projections and kernel distributions. On top
of interpolation and segmentation quality, this method is also very fast since only the most impor-
tant and most reliable information is processed for the reconstruction of the whole information.
However, as noted in [88], a statistical shape model may not be sufficient to represent the exact
shape of the liver ; in a post-processing step, a local optimization - using active contours for in-
stance - may be necessary for better results. This local optimization would not be computed from
sparse information. Further work will investigate the use of non-linear models for the interpolation
function, as well as a subsequent refinement step that will locally adjust the reconstruction from
the model to the actual image information by taking into account the confidence in the reconstruc-
tion. More advanced prior models using axial coronal and sagittal sparse information would be
an interesting extension of our approach, as it would diminish the quality difference between two
differently initialized segmentations. Last, but not least, the use of such methods for feature ex-
traction, classification and content-based image indexing and retrieval is a natural extension on the
application side.

Spatial volume segmentation refer to a challenging problem for dimensionality reduction. Sim-
ilar concept can be created using 2D+time volumes which can be considered to form a surface. In
the case of periodic motions, spatio-temporal segmentation consists of recovering the solution for
all frames at the same time. In such a scenario one can imagine that the support is varying among
the images of the cycle. Cardiac segmentation is an example where such an assumption is valid
due to the periodicity of the heart beating.
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Fig. 2.8: Comparison of liver segmentation obtained by SIM (left column) and expert segmentation (right
column).

2.6 Semi-automatic Segmentation of Time Sequence Images using Optimal

Information

2.6.1 Medical Motivation

Cardiac ultrasound is a common diagnostic tool for a variety of pathologies. The echocardio-
graphic equipment is cheaper than other imaging devices, and non invasive as the images are
acquired by processing the echo of ultrasound waves reflected by the tissues. The most common
protocol consists in studying phenotypic and functional abnormalities of the heart’s four chambers,
valves and aorta to detect and quantify pathologies such as poor function, regurgitation, mitral
stenosis, ... An accurate diagnosis demands various measures based on the the difference between
the volume of the heart in the systolic and diastolic phase as well as the ventricular wall motion,
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which requires the ventricles to be previously segmented [138].

In a broader context, this section presents a possible application of sparse information models
to segmentation in time-sequences. The study case consists of 2D left ventricle contours in four
chambers view ultrasonic images (see figure (2.9)), but the same concept may be extended to higher
dimensions for a 3D tracking such as PET , CT or tagged MR sequences. The only constraint is to
work on sequences that are registrable along one particular axis, such as time. The main object of
this application is twofold: first, to demonstrate the robustness of sparse information models with
respect to noise in the sparse information, and second to compare sparse information model results
with interobserver variability.

2.6.2 Prior Art on Segmentation in Echocardiographic Sequences

Shape tracking in time sequences is performed either by taking the object’s location and shape at
one time step as a prior for the following time step, or by processing the optical flow between con-
secutive images [93], or by introducing a dynamic model from prior knowledge. A fourth solution
consists in modeling the uncertainties of the object’s segmentation at one time step, and integrating
this model in a sequential Bayesian procedure for a more robust segmentation at the following time
step (see section (1.4) in chapter 1), and chapter 4). Geiser and Wilson and their group [170] have
developed an automated contour detection scheme in echocardiography by detecting shape seg-
ments with arc template filters. Their useful method combines a high-level model of the anatomy
with low-level image features; however, the overall method is unstable: the scheme consists of
cascading steps, each one of which could fail and cause the whole system to break down. There-
fore, a simpler model to represent the contours is often preferred. A common way to represent the
shape statistics is to use Cootes’ [38] active shape model [18] and active appearance model [17].
A fifth solution consists in representing the time axis as a geometrical axis, and modeling the full
sequence of shapes [19].

Nevertheless, these models suffer the same limitation whether they are used for object’s track-
ing or segmentation: since they do not take the local image reliability into account, an image
region that consistently contains low information (no edge, neighboring structures, high statistical
variance...) may attract the solution toward erroneous results. On the contrary, sparse information
models consists in reconstructing the shape at every time steps from the contours at selected key
time steps.
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Fig. 2.9: Four chambers views in ultrasound.

2.6.3 Sparse Information Models in Time Sequence Images

For time sequence images, the natural discretization axis v0 is the time axis. This means the
sub-elements of the sequence are defined as the intersections of the shape with the time axis at
time t. Let Ct represent the tth contour in the sequence represented though an implicit model
ψCt , such as in equation (2.8). This implicit function ψCt is rewritten as a column vector Y by
aligning the distance value of each pixel in lexicographic order. As in [18], a PCA is performed
to represent the contour Ct in a parametric way, after registering the contours with a scaling-
translation transformation T ; using n modes of variations {Ui}i∈[|1,n|] (n=10 in the experiments
below), let the column vector xt = [x1, x2, ...xn]T denote the contour parameters’ vector:

Y = Y +
n∑

q=1

xqUq, (2.23)

where Y stands for the mean contour in the reference space.
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The error between the ground truth and PCA with 10 modes of variation (99% of total variation)
corresponds to the inter-observer variability (0.1mm reported in [100]). The scaling-translation
transformation T registers the first contour of each sequence together and is applied to all suc-
cessive contours in the sequence. The key time steps B = {t1, t2, ...tK} are determined by min-
imizing the sum of the three energies (image support Esup, reconstruction quality Eint and con-
tour variability Evar) after registering the sequences together in time with the retrospective ECG
(ElectroCardioGram) signal to a reference interval that is discretized into T time steps. Several
interpolating function were tried and generalized linear interpolation has outperformed the others
(median distance between ground truth and reconstruction with generalized linear: 0.19mm, linear
interpolation: 0.21mm and cubic splines: 0.22mm).

Unlike in section (2.5), the contours are represented implicitly and projected onto the PCA
space (equation (2.23)). The reconstruction quality is computed with the Mahalanobis distance ‖.‖
between reconstructed contours and ground truth in the PCA feature space:

Eint(B, H) =
P∑

p=1

T∑
i=1

∥∥∥Hi [xt1 , ...xtK ]T − xti

∥∥∥
2

. (2.24)

This formula differs from equation (2.9) since the distance is computed in the parametric PCA
space. However, the optimization of H, given a particular set of t1, ..., tK , is performed the same
way, using a QR-decomposition on the over-constrained system of equations.

The image support energy is computed from the image gradient norm |∇Itk,p| along the con-
tour, for the p-th sequence in the training set, at time tk. For a set of P echocardiographic sequences
registered in time

Esup(B) =
P∑

p=1

K∑

k=1

∫

Ctk

1

1 + |∇Itk,p|2 . (2.25)

Such a choice is motivated by the fact that the ventricular tissue is not visible all the time and the
LV is neighboring structures which also are filled in with blood, therefore a statistical separation
between the intensities of the LV and the background is rather challenging. Noting the parallel
with equation (1.2)) for geodesic active contours when g(x) = 1

1+x2 , and deriving equation (2.25)
the same way, one obtains the following derivative:

∂Esup(B)

∂Ctk

=
P∑

p=1

−1

1 + |∇Itk,p|2 div

(
∇ψCtk

|∇ψCtk
|

)
(2.26)
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Finally, the contours’ sensitivity to small variations of the time index is computed with the
magnitude of the derivative of xt at {t1, t2, ...tk}:

Evar(B) =
P∑

p=1

K∑

k=1

∣∣∣∣
∂xp

t

∂t
(tk)

∣∣∣∣
2

. (2.27)

This expression is motivated by two factors. First, the contours selected as basis should not be
sensitive to small errors in the interpolation of the {t1, t2, ...tk}, therefore, their derivative with
respect to t should be minimal. Furthermore, in the particular case of diagnostic echocardiography,
the images are obtained by interpolating the echo sent back by the structures over time, see equation
(2.1). Therefore, when the contours (i.d. the left ventricle endocardium) have minimal variation
with respect to time, the integration of the images gives edges with higher contrasts, so better
defined contours.

The total energy is defined as the sum of Esup, Eint and Evar, as in equation (2.7). The
derivatives of Eint and Evar with respect to the key time steps are immediate; however, in a
cardiac ultrasound, some images may be of lower quality than others. Thus, a gradient descent
following equation (2.26) may lead to local minimums. For this reason, the sum of Esup, Eint and
Evar is minimized using the simplex method [130].

SIC = TP log
(

RSS

TP

)
+ Klog(TP ). (2.28)

The residuals are defined as the integral of the Euclidean distance D between the reconstructed
contours and the ground truth:

RSS =
P∑

p=1

K∑

k=1

∫

Ctk

D(xp
tk

, Hk [xt1 , ...xtK ]T ).

It measures how the normalized residual sum of squares increases with respect to the number of
key contours, therefore the minimum is preferred.

2.6.4 Reconstruction Scheme & Results

Ultrasound images are difficult to segment individually because of the speckle noise, whereas to
consider the whole image sequence allows motion estimation to approximate a 2D contour in re-
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Fig. 2.10: Schwarz information criterion (equation (2.28)) for ultrasound sparse segmentation with respect
to the number of key time steps.

Fig. 2.11: Breakdown of the rms distance for each one of the examplars used in sparse segmentation for
ultrasound sequences and median. Cycles 22, 23 and 24 refer to the ungated sequence.

lation with the others. However, either a proper initialization (close to solution) is required for the
contours, or a statistical model is to be provided as a regularization constraint for the interpola-
tion of the contours between consecutive frames. The sparse information model provides such a
statistical framework so that the segmentation of the full sequence is reduced to the segmentation
of few contours. With 4 key contours given using the ground truth, the root mean square (rms)
error average distance between the reconstructed contours and the ground truth over 27 different
heart cycles in a leave-one-out basis is 5.34 pixels (or 0.25mm average distance) (see figure (2.11)-
(2.12)); therefore, it is reasonable to assume that the whole segmentation problem is reduced to
the segmentation of the key contours. Segmentation of the left ventricle in ultrasound images in
a well investigated field of study (see section (2.6.2)), and is beyond the scope of this section. A
semi-automatic method such as [100] could be used to detect the key contours.
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Fig. 2.12: Sparse segmentation results overlayed on ultrasound images sequence.

As segmentation of the whole sequence is reduced to segmentation or initialization on few im-
ages, one may suspect a high sensibility to initialization. However, as illustrated in figure (2.13),
the mean distance between reconstructed contours and ground truth does not increase exponen-
tially with respect to the mean distance between input contours and ground truth. On the contrary,
the correlation stays linear as the amount of error between input contours and ground truth in-
creases. For instance, for input contours with a mean distance of 0.20mm to ground truth, the
mean distance over the whole interpolated sequence is 0.24mm to ground truth. Figure (2.14) de-
scribes the cumulative distribution of distances between 2 clinicians’ contour; the segmentation of
70% of clinicians are consistent up to 0.2mm. The median distance error of 0.15mm (see figure
(2.14)) on the key contours produces a mean error of 0.2mm for the whole sequence, which is still
lower than 30% of clinicians. This, obviously, does not mean that the automatic method presented
in this section ”beats” 30% of clinicians, a claim that does not make any sense. It simply means
that 30% of contours drawn by clinicians have a larger distance. The last comment one can make
about this application is that inhomogeneities in the image support is only taken along the time
axis. However, as one sees in figure (2.12), at a given time, the image gradient is not homogeneous
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Fig. 2.13: Mean distance between ground truth and interpolated sequence using the sparse information
model with respect to the mean distance between ground truth and the initialized contours.

(the pixel intensity gradient is higher on the interventricular septum than on the posterior left ven-
tricular wall, in part because of the papillary muscles). Thus, the method presented above would
benefit from a generalization by discretizing the information along the time axis and dividing the
2D images into regions of different support. Both applications considered up to now, refer to well
defined problems of recovering smooth surfaces with sufficient data support. The last application
considered to evaluate the applicability of the method refers to a problem where the data support
is really partial.

2.7 Surface Reconstruction using Sparse Measurement

The aim of this application is to address laser face reconstruction using the 3D RMA dataset
benchmark [14] that contains measurement errors and a high data variance. The dataset consists
of laser pointed distances between the light source and the subject’s face acquired by rows (see
figure (2.15)). The image is defined as a volume I whose pixels’ value is equal to the distance of
these pixels to the nearest laser point. In a common approach to surface reconstruction, the surface
to reconstruct is determined by minimizing the sum of the pixels’ value on the surface, optionally
using PCA-based models [108] or surface meshes to interpolate. On the contrary, Sparse Model is
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Fig. 2.14: Cumulative distribution of distances between clinicians’ contours, and between contours seg-
mented with SIM and ground truth. Curve extracted from Fig. (6) in [100].

used to determine which sub-elements are critical to the reconstruction, and from which the whole
surface may be interpolated.

2.7.1 Prior Art on Surface Reconstruction

Surface fitting and surface reconstruction from range data is a well studied field of computer graph-
ics and mainly used for face identification, reverse engineering, CAD, urbanism/architecture or
even plastic surgery. Surface extraction from range data is derived from two steps: first the points
cloud must be integrated into a common representation, and surfaces are then extracted from that
representation. On the one hand, some authors suggest to progressively construct a mesh from the
points [162, 184, 169] and then form the surface either by directly connecting the meshes together
or by grouping them by regions first [174]. These techniques are sensitive to outliers since any
smoothing operations are to be processed on the mesh itself, or on the distance function obtained
from the mesh. Others [92, 47, 90] prefer to first integrate the range data into a common repre-
sentation using a signed distance function, before using the marching cubes algorithm to extract
the surface. In [92] Hoppe et al. estimate the local surface tangent plane for each point and then
estimate the global surface using a minimum spanning tree of the points. In [47], a signed dis-
tance function is estimated from the range data and the surface is defined as the zero-level set of
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this function. In [47], this distance function is estimated on a regular 3D grid which facilitates
the extraction of the surface. In the following, as far as the estimation of the distance function is
concerned, an approach similar to [47] is taken and simplified for the particular case of face recon-
struction (e.g. no space carving is needed here). Then, the sparse information model is applied on
the distance function to reduce the problem’s complexity.

2.7.2 Model Construction

Following the technique presented in [47], we integrate the range data into a common represen-
tation using a distance function estimated with a 3D grid. Each laser pointed range defines a 3D
point; the points set is projected in a reference space, where the 3D grid is defined, using a geo-
metric transformation Tθ. Then, to each point on the grid is associated the minimal distance to
the laser points. To keep the issue induced by the different orientations of the head, the geometric
transformation Tθ is defined as a homothety-translation so that all the range volumes x have the
same dimensions in the reference space Ωr with N rows of M points. The missing points are
replaced by the same background range value dback. After projecting the laser points into the
reference space, the distance map ψ is estimated on the 3D grid.

Since the acquisition process is sequential (row by row), it is natural to divide the surface x into
sub-elements xi by projecting x onto the rows’ axis. A sub-element xi is a 2D curve defined as the
intersection of the face with the particular row plane i; this 2D curve is represented by a distance
map ψi (see figure (2.17)).

In the context of surface reconstruction, the interpolation quality measure Eint is simply the
sum over the N rows of the distance between the reconstructed surface φn (xt1 , ..., xtK ) and the
observation ψn:

Eint =
N∑

n=1

ψn

(
T−1

θ (φn (xt1 , ..., xtK ))
)
. (2.29)

Since ψn is a Euclidean distance function, the distance between the reconstructed surface and the
observation is simply the value of ψn at the reconstructed surface location.

Given that some rows contain more background points than others, Esup is chosen so as to be



Chapter 2 79

Fig. 2.15: A stripped image of a face and its 3D reconstruction from profile. Courtesy of Charles Beumier,
Université Libre de Bruxelles.

proportional to the number of background points in the row:

Esup =
K∑

k=1

M∑
j=1

δ(ψk

(
T−1

θ (xtk(j))
)− dback). (2.30)

Finally, the parameters’ variability Evar refers to the sensibility of the curves x̄k to infinitesimal
changes in k, and the sensibility of the reconstructed surface to infinitesimal changes in x̄k (see
equation (2.12)):

Evar =
K∑

k=1

M∑
j=1

∥∥∥∥
∂xtk(j)

∂k

∥∥∥∥
2

+ HT
i Hi. (2.31)

Several interpolation operators have been tested over the dataset (splines, linear and polynomial
interpolation) and, once again, the best results are achieved using generalized linear interpolation:
each curve xi is a linear combination Hi of all the key sub-elements {xtk , k ∈ [|1, N |]}.

Once all these problem-related variables are defined, the sparse problem consists in determining
the K row indices and the generalized linear operator φ that optimize the three criteria introduced
above, equation (2.29)-(2.30)-(2.31). Since all the criteria have a discrete expression, it is reason-
able to pre-compute the terms that do not depend on the interpolation function Hi and perform
an exhaustive search. Similar to the segmentation case, an MDL and the calculus of variations
with respect to the unknown parameters is used to determine the optimal sparse model. The best
description length is achieved with 5% of the rows (see figure (2.17).
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2.7.3 Validation

Using the sparse model, the reconstruction problem is simplified: one needs to determine the
geometric transformation Tθ between the model space and the range data volume, and the 2D
curves xt1 , ..., xtK at key locations. To determine Tθ, one minimizes the distance values taken
along the estimated key curves B = xt1 ...xtK in the range volume after geometric transformation
Tθ:

Erec(B, Tθ) =
K∑

k=1

∫

xtk

ψ
(
T−1

θ (p)
)

dp. (2.32)

To this end, once the range data has been acquired, we apply a fast distance transform [175]. Then,
the reconstruction’s cost function (equation (2.32)) is defined in this artificial volumetric data and
consists of the Chamfer [25] transform of the model. Gradient descent is used to determine the
optimal parameters of the transformation. A leave-one-out procedure over the 720 faces provides
twice better results than Eigenfaces [186] and linear interpolation, see table (2.3) and figure (2.16).
These results demonstrate the robustness of sparse information models to outliers and salt and
pepper noise.

method Eigenfaces Linear interp. SIM
average dist. 4.53 % 60.79% 2.09%

maximum dist. 97.73 % 100% 95.11%

Tab. 2.3: Results table showing the average distance difference and maximum distance between acquired
and reconstructed faces with Eigenfaces, linear interpolation and Sparse Information Model (SIM)
as percentage of the maximum range.

2.8 Conclusion and Discussion

In this chapter, a novel family of dimensionality and complexity reduction techniques are intro-
duced. The solution (segmentation, surface) is discretized along one of its dimension v0, and key
elements along that direction are selected with respect to their image support, their low variability
when their index v0 is slightly changed, and the final reconstruction of the whole solution. Only
the most reliable information in the image is used, and the rest of the solution is inferred from the
model and the sparse observation. The resulting process is more efficient than standard segmenta-
tion/reconstruction since most of the workload is concentrated on the critical points, but also more
robust, since the interpolated volume or surface is consistent with the prior knowledge statistics.
In the study case of liver segmentation, it is proved that Sparse Information Models have a better
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Fig. 2.16: Cumulative histograms of reconstructed surface distances with respect to ground truth. The X axis
denotes the distance between reconstructed face and ground truth in percentage of the maximum
distance, and the Y axis denotes the percentage of points whose distance is below that value.

dimensionality reduction power than linear decomposition techniques such as PCA. The volumet-
ric surface is efficiently represented by few sparse contours. Moreover, because sparse information
models are less sensitive to local minima in low image supported regions, they lead to a better seg-
mentation. The study case of left ventricle segmentation in echocardiography proves that sparse
information models perform well even for heavy pathologies and high dynamics variance. Finally,
the third study case, surface reconstruction from laser pointed distances, proves the effectiveness
of this method for cases with high measurement errors.

However, this method remains static, in the sense that the model is learned once and for all. It
is unable to capture new dynamics. The following chapter, chapter 3, introduces a way to model
the shape variation statistics using an autoregression scheme, and to adapt this model as new obser-
vations are introduced. Thus, the resulting framework is able to capture both new shape variations
and changes of dynamics.

Despite the efforts put on generalizing this method as much as possible, certain constrains
remain. The major one is in the deterministic procedure of assigning image support and choosing
the key elements. Instead of associating a measure wi to each sub-element xi, one could assign
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(a) (b) (c)

Fig. 2.17: (a) Signed distance function in the 3D grid, colors representing the distance between the points in
the 3D grid and the input laser points; (b) the 3D distance function is estimated using the sparse
information model, colors representing the distance between the surface and the laser source; (c)
Schwarz Bayesian Criterion with respect to the number of key rows.

a probability for xi to be selected as measurement. The main advantage of this method is that
prior knowledge specific to the particular image of interest could be easily added in the sampling
process. The second advantage of sampling information instead of selecting which information to
use from training is robustness. Elements of lower interest with respect to the training data may
actually be of strong interest for a particular case if this case is an outlier. By randomly sampling
the key elements, one randomly allows some of these low interest points to be selected, and makes
the sparse information method much more robust. This would mean that, instead of reconstructing
the rest of the information from sub-elements using an interpolation function, one would predict the
statistical distribution of the total information x given a statistical analysis of some of its elements.
This aspect is studied in more details in chapter 4 in the context of geometric tracking with particle
filters.

The second field of study concerns the repartition of the sub-elements. In the three applications
above, the sub-elements are chosen along a particular axis, either geometrical or temporal. How-
ever, nothing prevents a different approach like selecting partial elements such as surface patches
instead of 2D contours in the case of liver segmentation, image region of high gradients in echocar-
diography, or points of interest instead of rows in the case of surface reconstruction. This would
require to develop a more flexible method to register partial elements together. Once again, a statis-
tical analysis of the partial elements distribution in the image would favor the partial elements that
best respond to both the three criterias developed in section (2.4) and to measurements of image
support in the image of interest.
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Motion Models for Non-Stationary Dynamics via
Autoregressive Models

Abstract – This chapter intends to present the use of autoregressive (or AR for short) models for segmentation. The

main contribution is the use of on-the-fly adapting AR models for tracking; however, stationary models are also

introduced in the context of a regular (i.e. stationary) cardiac ultrasound sequence, and may even be used to solve

static problems such as volumetric segmentation. Tracking highly deforming structures in space and time arises in

numerous applications in computer vision. Static models are often referred to as linear combinations of a mean model

and modes of variations learned from training examples. In dynamic modeling, the shape is represented as a function

of shapes at previous time steps. In this chapter, we introduce a novel technique that uses the spatial and the temporal

information on the object deformation. Tracking is reformulated as a high order time series prediction mechanism

that adapts itself on-line to the newest results. Samples (toward dimensionality reduction) are represented in an

orthogonal basis and are introduced in an auto-regressive model that is determined through an optimization process

in appropriate metric spaces. Toward capturing evolving deformations as well as cases that have not been part of the

learning stage, a process that updates on-line both the orthogonal basis decomposition as well as the parameters of

the autoregressive model is proposed. Promising experimental results in tracking explicit shapes in a video sequence

that could be used to impose prior knowledge in segmentation are presented.
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3.1 Introduction

Motion perception is a fundamental task of biological vision, with motion estimation and tracking
being the most popular and well-addressed applications. To this end, given a sequence of images,
one would like to recover the 2D temporal position of objects of particular interest. These appli-
cations often serve as input to high-level vision tasks, like 3D reconstruction, etc. The solutions
currently available for this problem consists either in learning a stationary1 regression law from
prior knowledge, or representing the object to track by a random variable and applying a Bayesian
framework. However, the Bayesian framework assumes the transition probability density function
is known from prior knowledge, and the stationary regression does not handle dynamic changes.
Furthermore, in the Bayesian framework, the random variable is defined in a vector space that re-
mains unchanged, which means the model of the object to track is stationary. If the object to track
changes its shape into something that has not been learned before, the model cannot represent it.
This chapter addresses these questions and proposes a method to dynamically update the regression
law and the feature space, and to integrate this dynamic model into a tracking framework based on
level-sets. Then, we demonstrate that sequences of shape variations across time and space may be
modeled in their totality using stationary autoregressive laws. Two applications are considered: a
purely vision-based application that is tracking shape deformations of 2D humans projections, and
one that refers to tracking shape deformations of the Left Ventricle in ultrasound sequences.

3.1.1 Prior Art

Tracking non-rigid objects is a task that has gained particular attention in computational vision.
Starting from the pioneering formulation of the snake model [104] several attempts to address
tracking through the deformation of contours can be found in the literature either model-free [97]
or model-based [38]. Level set methods [137] is an alternative technique [136] to track moving
interfaces through model-free [143] or model-based [41] methods with the advantage of being
implicit, intrinsic and parameter-free. Such methods are able to capture important non-linear de-
formations.

Introducing prior knowledge within visual perception has been an on-going effort to a number
of vision tasks, like segmentation, motion analysis, 3D reconstruction, etc. Tracking was a domain

1 Stationary means whose law does not change with time.
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that has benefited from such an effort, in particular when dealing with objects and structures of
limited variation in space and time. To this end, different approaches were considered either based
on snakes [46], active shape and appearance models [40, 39], level sets [202] etc. Such approaches
model spatial variation of the structure of interest in a probabilistic fashion. Then, during the
inference process a constraint on recovering shapes that belong to the learned family is imposed.

Temporal models like Kalman snakes [179], Markov chains, hidden Markov models or multiple
hypotheses trackers [97, 182] address tracking in a difference dimension. Constraints/models are
imposed in the temporal evolution of the target and prediction mechanisms are used to perform
tracking. Shape tracking with autoregressive dynamic models is a step forward in this direction,
with different shape spaces being investigated. In [129], a first-order model is used to track cardiac
cycles echocardiographic sequences while in [117], Fourier descriptors are used to describe shapes,
and a LDM tracks their evolution on time. Tracking articulated structures is problem well suited
for autoregressive models and therefore in [2] a method based on a linear dynamic model was
proposed. The main limitation of such models refers to their time-invariant nature. Temporal
models as well as shape representations have been learned from previous sequences, used within
tracking and not updated. Consequently, either a complex heuristic is developed to mix models, or
Markov fields are introduced for multimodality.

To address this issue, adaptive dynamic models such as adaptive Kalman filter [65] integrate a
Kalman filter that estimates additive noise properties (mean and variance) to an AR model. Except
for the noise properties, no adaption is made for the signal itself if its own properties change (e.g.
new properties cannot be captured by the current feature space) or if the system dynamism (the
regression) is modified. On the other hand, in the context of classification and learning, adaptive
feature spaces such as adaptive principal component analysis (PCA) [84][115] were developed to
take into account the newest results to estimate the feature space. Nevertheless, even if the feature
space is adapted to the most recent exemplars, in the context of segmentation and tracking, one
also needs an adaptive predictive model to relate segmentation results across time, and to adapt the
prediction scheme if changes in the dynamic system occur.

In this chapter, we would like to address these limitations and determine a predictive model that
is incrementally adapted to changes both in the system dynamics (and not only the noise properties)
and in the feature space. Sparse information models presented in chapter 2 are not sufficient
because they need to be trained on whole sequences, and sequences that contain the dynamisms
one needs to track. In other words, sparse information models do not sustain unlearned shape
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deformations. For that purpose, we propose an on-line technique for tracking based on higher order
autoregressive models. Such a technique is based on dimensionality reduction of the parameter
space using an orthogonal decomposition of the training set. Then, a linear autoregressive model
is built in such space capable of predicting current states from the prior ones. Such a model and its
feature space (the orthogonal decomposition of shapes) are updated on-line using new evidence.
To this end, a proper geometric distance is used in a robust framework to optimize the parameters
of the model.

Section (3.2) introduces the notations and theory of dynamic models, and presents how this
model may be update on-the-fly with the study case of a walker silhouette. Section (3.2.4) presents
the experiment and results on the silhouette tracking problem. Two other applications are exposed
in section (3.3) to demonstrate that stationary AR frameworks may be used to model contours
deformation in image sequences or in static volumetric segmentation.

3.2 Autoregressive Models and non-Stationary Dynamic Modeling of

Deformations

Time series models are very popular in a number of domains like signal processing. They may be
either linear or non-linear; however, for simpler derivations, only the linear case is exposed. Let
us assume a set of temporal observations Y = {Yt; t ∈ [0, T ]}, where each observation Yt ∈ Ω

is a column vector of the N -dimension observation space Ω. In the context of this chapter, these
observations are shape representations in the image space. Linear autoregressive models - of order
k - consist of expressing the current observation, as a combination of previous samples perturbed
by some noise model, as written in equation (3.1)

Yt = A
[
YT

t−1 YT
t−2 ... YT

t−k

]T
+ w + η(0, Σ) (3.1)

with N -by-kN matrix A called the prediction matrix and η(0, Σ) being the noise model vector.
A constant vector w is introduced so that η is assumed to be zero-meaned. For any matrix M,
MT denotes the matrix transpose. In the most general case, one assumes that the input variable
Y is defined in a high-dimensional space, and therefore some dimensionality reduction is to be
performed. Without loss of generality, we assume a set of either linear or non-linear operators
gi(); i ∈ [1,m], referred to collectively as g, that, when applied to the input variable Y, form a new
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basis of observations, as written in equation (3.2).

X = (g1(Y), g2(Y), ..., gm(Y)) (3.2)

X is therefore a new random variable. We further assume that such operators are invertible, or
otherwise stated, from a feature vector X one recovers the original observation Y. In that case one
restates the autoregressive model in a lower dimensional space, and equation (3.1) is rewritten in
equation (3.3).

Xt = Ag

[
XT

t−1 XT
t−2 ... XT

t−k

]T
+ wg + ηg(0, Σ), (3.3)

where .T stands for the vector transpose. Ag differs from A since Ag depends on the decomposition
g. The same reasoning holds for ηg; in that case, the noise is defined in the feature space and does
not account for the noise introduced by the projection with g. The estimation of Ag is performed
from a set of training examples and robust regression. Let us assume that T >> k observations are
available. Once such observations have gone through dimensionality reduction with the operators
g, we obtain an over-constrained linear system written in equation (3.4).

XT ← X̂T =Ag

[
XT

T−1 XT
T−2 ... XT

T−k

]T
+ wg

...

Xk ← X̂k =Ag

[
XT

k−1 XT
k−2 ... XT

0

]T
+ wg

(3.4)

The unknown parameters of such over-constrained system can be determined through a robust least
square minimization, equation (3.5),

(Ag,wg) = argminAg ,wg

{
T∑

t=k

ρ
(
Xt,Ag

[
XT

t−1 XT
t−2 ... XT

t−k

]T
+ wg

)}
(3.5)

where ρ is an error metric, in the observation space. Since the reduced space is potentially highly
non-uniform (in the case of PCA, this means the variations along one mode are larger than the
others), performing the minimization in the observation space greatly reduces the prediction error.
In order to simplify the notation, we assume that ρ is the L-2 norm (see equation (3.11)) in the
observation space, which transforms equation (3.5) into a linear least square optimization. The
number of constraints used in such a procedure is determined off-line using the Schwartz Bayesian
criterion (SBC). Following the approach introduced in [131], the least squares estimate of Ag is
estimated for all orders from 1 to kmax and the SBC is computed from the residual errors at each
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order. For a particular k, let us note
Ãg = [wgAg],

and

X̃t =




1

Xt−1

Xt−2

...

Xt−k




(3.6)

After noting the moment matrices as Γ =
∑T

t=k X̃tX̃
T
t and Γx =

∑T
t=k XtX̃

T
t , the least squares

estimate of Ãg is computed as Ãg = ΓxΓ
−1. With this estimate, the residual sum of squared errors

(RSS) and the SBC are computed:

SBC(k) = (T − k)mlog
(

RSS
(T − k)m

)
+ (km2 + m)log((T − k)m).

3.2.1 Online Adaption of Predictive Model

Let us now assume that new observations are present. Two cases need to be distinguished; in the
first case, the dynamics are time-invariant and the new observations are directly integrated into
equation 3.5. In the second case, the dynamics are time-variant and more importance is given to
the latest obtained observations. Once the prediction matrix has been estimated, new observations
are introduced in the system toward decreasing the prediction error. To this end, one would like to
find the lowest potential of

E(Ag) = minAg ,wg

{
T∑

t=k

ρ(Xt,Ag

[
XT

t−1 XT
t−2 ... XT

t−k

]T
+ wg)

}
(3.7)

With ρ defined as the L-2 norm (see equation (3.11)), equation (3.7) is solved with an iterative
least squares estimation, with iterative Gauss-Newton method being the most popular technique to
address such optimization. In [12], the result is obtained by dividing the sum of squares into blocks,
solving the problem for the first block and using this result as initialization once the following
block is added to the previous block. Unlike the method presented here, [12] solved the Gauss-
Newton iterations using extended Kalman filter for nonlinear measures E(A,w, Σ). Experiments
have shown that few (a couple of dozen) Gauss-Newton iterations are required to achieve far better
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results than a simple time-invariant dynamic model.

For non-linear time processes, the local approximation of (AT+1,wT+1, ΣT+1) may not well
correspond to the state transition in a very early time step. For that reason, exponential forgetting

is introduced;

E(Ag,T+1,wg,T+1) = minAg ,wg,T+1

{
T∑

t=k

wT−tρ(Xt,Ag,T+1 [Xt−1 Xt−2 ... Xt−k] + wg,T+1)

}

(3.8)
with exponential weights wt = e−t/τ , where τ is the exponential forgetting window size. The
smaller τ the more reactive but also the more sensitive to noise is the non-stationary autoregressive
model.

3.2.2 Feature Space

Before developing the feature space in details, let some notations be introduced straight off. To
summarize the notations:

• the shapes are represented implicitly by level-set functions ψi (equation (3.9))

• the level-set functions are discretized and represented by observation vectors Yi

• PCA dimensionality reduction is applied to the observation vectors, after affine transforma-
tion, and the resulting parameter vectors (PCA+affine parameters) are noted Xi (equation
(3.10))

• a prediction mechanism Ag,wg is estimated to sequentially predict the future parameter
vectors. This prediction mechanism depends on the PCA projection and the transformation
since it is optimized in the observation space (equation (3.8)).

When no topology constrains are given, implicit methods are popular shape representations.
Let us consider a number of training examples to track C = {Ci, i ∈ [1, n]}. In [146] a distance
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Fig. 3.1: Registered training examples used for initial principal components analysis.

transform representation ψi was considered for a given shape Ci, equation (3.9),

∀p ∈ Ω, ψi(p) =





0 , p ∈ Ci

+D(p) > 0 , p ∈ Γ

−D(p) < 0 , p ∈ Γ

(3.9)

where Ω defines the image domain partitioned in 2 (inside the contour Γ and outside Γ), and D(p)

the Euclidean distance between point p ∈ Ω and the exemplar’s contour Ci. We call abusively
”shape” the distance function ψ. The resulting function is then represented by a column vector
Yi of dimension n after discreetizing the region of interest in the image domain Ω with n control
points. Global registration between shapes is now performed by determining the affine transfor-
mationA that minimizes the integral of squared difference between the alignment shape’s distance
function and the reference distance function [142].

Since the implicit representation of shapes increases dimensionality, n is usually too large for
the computation of A in equation (3.5); therefore principal component analysis (PCA) is applied
for an efficient dimensionality reduction and a more tractable solution (equation (3.3)). PCA has
already been introduced in section 1.3.1; a brief outline is given in this chapter to introduce the
online updating scheme of section 3.2.3. PCA refers to a linear transformation of variables that
retains - for a given number m of operators gi(); i ∈ [1,m] - the largest amount of variation
within the training data. Without loss of generality, a zero mean assumption is considered for the
{Yi} by estimating the mean vector Y and subtracting it from the training samples {Yi}. The
n-by-n covariance matrix Γ =

∑m
i=1 YiY

T
i associated to the m training vectors Yi is used for an

Eigendecomposition. The n Eigenvectors Uq form an orthonormal basis onto which the vectors Yi

are projected. Only the m Eigenvectors associated to the highest Eigenvalues are kept, so that the
operator g is defined by the affine transformationA and the projection from the n-dimension space
to the m major Eigenvectors, and is invertible if one approximates the n−m smallest Eigenvalues
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by 0. The projected vector g(Yi) is defined by the coefficients {xq}q=1..m so that:

Yi = A(Y) +
m∑

q=1

xqUq. (3.10)

Let us note X the feature vector [A, Λ] related to the shape Y in the observation space.

The affine transformation and the PCA decrease the problem dimensionality, but the overall
feature space is highly non-uniform since it is composed by PCA parameters and affine transfor-
mation factors. In order to overcome such a limitation, we propose to use a metric defined on the
original space (i.e. the observation space Ω) to recover the prediction mechanism in the reduced
space (i.e. affine transformation from section (3.2.2) and linear factors from equation (3.10)). The
simplest metric between two level-sets is the L2 norm between the two distance functions that
correspond to the observation Yt and the prediction Ŷt.

ρ(Xt, X̂t) =

∫

Ω

(
ψYt(p)− ψŶt

(p)
)2

dp (3.11)

refers to a well behaved distance between observations, and predictions and implicitly accounts
for the range of parameters of the autoregressive model. This guarantees that the feature space
and autoregressive models are optimum for the L2 norm for the training set. However, in order to
captures changes in shape or varying regression, an explicit on-the-fly update scheme is required.

Once new observations have been introduced to the process, the prediction matrix as well as the
orthogonal basis are to be updated. Incremental principal component analysis can be used for the
basis, while an exponential forgetting method is more suitable for the prediction matrix. However,
in cases where the feature space changes too rapidly, the past basis may not suffice to predict a
shape close enough to the solution for convergence. These cases are considered outliers for which
either extra prior knowledge has to be integrated in the model, or else a model-free tracking may
be more relevant.

3.2.3 Online Adaption of Feature Space

Incremental PCA[84, 115] consists of adding the latest observation to the PCA learning set. Thus,
a new feature space is to be used to represent the basis that includes the mean observation and
the principal modes of variation X. Using these new variation modes, and the corrected state X̂t,
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the transition model is then updated and is used to predict the following state Xt+1. The method
presented in [84] can be summarized as follows: given a PCA state at time t-1, that is a mean Yt−1,
a set of eigenvectors Ut−1 = [ui], and their corresponding eigenvalues Dt−1 = diag (λ1, λ2, ...),
given a new state Yt, the PCA is updated at time t starting by the mean:

Yt =
(t− 1)Yt−1 + Yt

t
.

One should note that the prediction mechanism provides direct registration between the new ex-
ample and the basis. The eigenvector matrix is updated by adding the new vector’s residual h and
applying a rotation R on the former eigenbasis:

Ut =

[
Ut−1

h

‖h‖2

]
R. (3.12)

For a covariance matrix Γt, the following relation is assumed ΓtUt = Dt−1Ut, which is solved
analytically:

Γt =
t− 1

t
Γt−1 +

t− 1

t2
(Yt −Yt)(Yt −Yt)

T ,

then, one can conclude that (R,Dt), (equation (3.12)) is the solution of the eigenproblem

GR = RDt,

where

G =
t− 1

t

[
Dt−1 0

0 0

]
+

t− 1

t2

[
ggT γg
γgT γ2

]
,

with γ = hT
(
Yt −Yt

)
and g = UT

(
Yt −Yt

)
. Such an iterative procedure updates both the pre-

diction mechanism parameters as well as the PCA basis. These parameters are applied to describe
the temporal evolution of the state vector.

The last question to be addressed is the frequency/sampling rate of such a time series. Several
constraints are to be satisfied since on one hand, one would expect a model which is capable
to express the long-term dynamics. On the other hand, the model should be accurate enough to
capture local deformations. One should note that this is a critical component of the model since in
the most general case one cannot expect the same frequencies in different sequences.

Linear autoregressive models learned from a training set with a certain temporal sampling
rate (i.e. frames per second in video sequences, interslice spacing for volumetric images) are
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Fig. 3.2: Vertical occlusion added to the original dataset

Fig. 3.3: Horizontal occlusion added to the original dataset

applicable to any sequence with another sampling rate through a simple conversion. Let X[t] =

AgX[t − 1] + wg be the autoregressive model learned from prior knowledge (for the sake of
simplicity, the example is a first order AR model). Let X′ be a new sequence, and let α be the
ratio between the training sequence’s sampling rate and the new sequence’s, so that X′[t] = X[αt].
Then, the AR model for X′ is obtained immediately with X′[t] = AgX

′[t − 1/α] + wg. When
1/α is not an integer, the new sequence needs to be interpolated. In section 3.3, a model-guided
interpolation procedure will be presented for the case of AR model, but until then, it is assumed
that all exemplars have the same sampling rate.

3.2.4 Multi-frame Segmentation and Tracking with Dynamic Models

In order to evaluate the performance of such a model, we have considered multi-segmentation and
tracking of highly deforming objects (walking pedestrians). Let Y1:t be the sequence of shapes
between time 1 and t that we are looking for, and I1:t the sequence of images. In a Bayesian frame-
work, the general probability that one wants to maximize is P (Y1:t|I1:t), which can be expressed
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prior method (1) Stationary AR (2) Global AR (3) Adaptive AR

(a) Original Dataset
correctly seg. 95.20 %

under-seg. 2.76 %
over-seg. 2.03 %

failed
correctly seg. 96.19 %

under-seg. 2.32 %
over-seg. 1.49 %

(b) Horizontal Occlusion failed failed
correctly seg. 96.66 %

under-seg. 2.08 %
over-seg. 1.26 %

(c) Vertical Occlusion failed failed
correctly seg. 96.04 %

under-seg. 1.47 %
over-seg. 2.48 %

Tab. 3.1: Percentage of correctly segmented, oversegmented and undersegmented pixels for diverse prior,
same energy. Method (1) uses the stationary AR, learned from the first frames. Method (2) uses
the stationary AR learned from the whole sequence. Method (3) uses the Adaptive AR described in
this chapter. Dataset (a) is the original dataset. Dataset(b) is the original dataset with a horizontal
occlusion, and dataset (c) presents a vertical occlusion.

in terms of P (It|Yt), P (Y1:t−1|I1:t−1) and P (Yt|Y1:t−1):

P (Y1:t|I1:t) =
P (It| (Y1:t|I1:t−1)) P (Y1:t|I1:t−1)

P (It|I1:t−1)

=
P (It| (Y1:t|I1:t−1)) P (Yt|Y1:t−1|I1:t−1)

P (It|I1:t−1)

× P (Y1:t−1|I1:t−1)

∝ P (It|Yt) P (Yt|Yt−1) P (Y1:t−1|I1:t−1)

Noting Esup the image energy to be minimized, P (It|Yt) refers to the likelihood of the image
given the contour: exp(−Esup). In the present experiment, Esup refers to the Kullback-Leibler
distance between the pixels intensity inside hin (resp. outside hout) the contour Yt given the a
priori intensity distribution inside pin (resp. outside pout):

Esup(Yt) =

∫
hin(s,Yt)log

(
hin(s,Yt)

pin(s)

)
ds

+

∫
hout(s,Yt)log

(
hout(s,Yt)

pout(s)

)
ds.

(3.13)

P (Y1:t−1|I1:t−1) is the likelihood of the previous contours, and P (Yt|Yt−1) is the likelihood
of Yt given the prediction from the AR model. Since the contours are represented in the PCA
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space, P (Yt|Yt−1) refers to the mahalanobis distance between the contour Yt and the contour
predicted using the AR model. With a first-order Markovian assumption, the probability actually
maximized is:

P (Yt|Y1:t−1, It) =
P (It| (Yt|Y1:t−1)) P (Yt|Y1:t−1)

P (It)
. (3.14)

Equation (3.14) is translated in energy terms by taking the negative logarithm, and the energy to
minimized with respect to the PCA parameters is E (Yt) = Esup (Yt) + Epredict (Yt), where
Eobs has been previously described and Epredict is the Mahalanobis distance between the AR-

prediction Ŷt and the current contour Yt:

Epredict =
(
Yt − Ŷt

)T

Γ−1
(
Yt − Ŷt

)
. (3.15)

One minimizes this cost function using a gradient descend approach (the equations are given in the
appendix B). The main innovation of our approach is the dynamic behavior of the model both in
the basis and the prediction space. Therefore, it is natural first to compare the performance of such
a model with respect to a stationary model as presented in [42].

Comparison with stationary AR models

For comparison purposes we use the same dataset with and without digital occlusions, which shows
a man silhouette walking and then running, and test different priors for level-sets [136] evolv-
ing according to the same energy. This energy corresponds to the sum of a data-driven term (a
histogram-based Chan & Vese functional [32]), and a term associated to the shape prior provided
by the dynamic model. The silhouette moves in front of a uniform light colored background so that
the data support for the segmentation is optimal which allows to evaluate the performance of the
prediction mechanism (one is not interested in the segmentation quality so much as in the dynamic
system itself). Furthermore, to properly test the model adaptability, the system dynamic do change;
therefore the silhouette walks then runs. The validation is performed by counting the overlap of the
ground truth and the tracking result in a region-of-interest centered on the target silhouette. When
the predicted contour totally escapes the region-of-interest, it remains in the background for the
remaining of the sequence; in this case, the tracking is declared ”failed”. As the results shown in
Table (3.1) demonstrate, the adaptive AR model systematically performs better than the stationary
AR model, when both are initialized with the first 18 frames (in a 58 frames video sequence).
The stationary model learns the dynamic of the walking pace, but is unable to sustain the dynamic
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changes when the silhouette starts to run. On the contrary, the adaptive model learns the new dy-
namics on-line, and is able to make optimal predictions. The learning a stationary AR from the
whole sequence (walking and running) drives the model toward an average behavior that does not
correspond neither to the walking or the running state. Consequently, it does not stick to the local
temporal dynamics. This proves the non-stationary AR model is well adapted to this problem.

In the same way, incremental PCA improves the prediction by 6 % in non-occlusion cases
compared to a non-updated PCA (correctly segmented pixels without incremental PCA: 90.23%,
correctly segmented pixels with incremental PCA: 95.98 %); but updated PCA alone is not suffi-
cient, and the dynamic model must be updated as well (correctly segmented pixels with incremental
PCA but with stationary dynamic model: 91.14%).

Robustness to Occlusion

The main drawback one expects from a locally adaptive method is the potential accumulation
of errors. To test that, we introduce occlusions, as shown in figures (3.2-3.3) (one horizontal
occlusion that covers one third of the character during 20 frames, and then one vertical of the same
width as the character) of the background mean color, and run the tracking scheme with stationary
and adaptive priors. Once again, the results demonstrate that the adaptive model sustains these
occlusions. Nevertheless, for larger occlusions, errors accumulate and the tracking is lost. Once
the performance of the method with respect to highly deforming objects has been proved, the next
open issue is the usefulness of such a model to address segmentation. Without loss of generality
we consider a stationary case.

3.3 AR Models for Stationary Modeling

Left Ventricle Segmentation in Echocardiography Four Chambers View with Stationary
Autoregressive Models

In this section, we propose to use the autoregressive framework to model the dependence of con-
tours in a sequence at one time step with respect to the others. Using the autoregressive model,
the segmentation scheme may be developed either sequentially by using the contours at previous
frames to predict the following ones, or by using the contours at various frames and interpolating
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so as to minimize the variance and bias for the estimation of the remaining contours. The dataset
considered in this section is the same as in chapter 2 section (2.6): 27 heart cycles in ultrasound,
all ECG-gated but one.

Segmentation with Stationary Autoregressive Models

A sequential segmentation would use the results at previous frames and the AR model to predict
the future frames by maximizing the likelihood presented in equation (3.14). The image support
energy Eobs used in the case of ultrasound images is the weighted sum of a region-based energy
and the image gradient energy:

Eobs(Y) =α

∫

ΩY

−log
(
hin(I(x))

)
HY(x)− log (hout(I(x))) (1−HY(x)) dx

+ (1− α)

∫

ΩY

1

1 + |∇I(x)|dx.

(3.16)

To measure the performance of the autoregressive model, one assumes the contours at each
step are corrected using the image and equation (3.16), and the error measure is defined as the
difference between the ground truth and the predicted (not yet corrected) contours. The regression
order is obtained using Schwarz Bayesian criterion (see figure (3.4)). figure (3.5) presents the
boxplot2 results (mean distance between ground truth and predicted contours using the AR model)
with respect to the regression order. Several conclusions may be drawn from figure (3.5): first, the
order that gives the best results is 2, second, the AR model fails to predict outliers independently
of the order, and third non-outliers are consistently well predicted with a 0.2mm mean distance to
ground truth. As illustrated in chapter 2 figure (2.14), the mean distance between contours drawn
by two different clinicians has 30% chance to be 0.2mm or more, so the results for non-outliers is
acceptable for an actual application.

However, the previous results are obtained by optimizing each contour with respect to the
image. This method may be subject to accumulation of errors. To measure this, an experiment
consists in not optimizing the contours and measuring the quality of prediction with respect to
ground truth. In this situation, the errors accumulate without correction and the mean distance be-

2 The box has lines at the lower quartile, median, and upper quartile values. The whiskers are lines extending from
each end of the box to show the extent of the rest of the data. Outliers are data with values beyond the ends of the
whiskers.
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Fig. 3.4: Schwarz Bayesian criterion for autoregressive sequential segmentation of ultrasound sequences.

tween the predicted contours and ground truth is 0.4mm, corresponding to only 10% of clinicians’
contours in figure (2.14). The main limitation of this method lies in the assumption of modeling
temporal dynamics using a specific order in a sequential fashion. In this particular case, like in
many other applications, the full sequence is available at once. Therefore, the autoregression can
be used to model the full sequence; that is the object of the following section.

Interpolation with Stationary Autoregressive Models

The accumulation of error described above comes from the fact the initialized contours are all
located in the beginning of the sequence. However, the order-k autoregression model indicates
that k initial contours suffice to constrain the whole sequence; actually, these k contours do not
need to be the first ones in the sequence. Given k contours anywhere in the sequence, the rest
of the contours may be interpolated using the autoregression. This technique has been known for
long in audio restoration [80], and consists in determining in the least square sense the sequence
that best fits the autoregressive model and the input constrains. Let us assume the contours Ys are
represented in a parametric space such as PCA (see equation (3.2)) and let us note the regression
law for the input signal Xt as follows:

Xt = A1Xt−1 + A2Xt−2 + ...AkXt−k + εt, (3.17)
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Fig. 3.5: Boxplot results of sequential segmentation of ultrasound images with respect to the regression
order (1 to 7).

where εt denotes the noise between the predicted and actual signal. When each matrix Ai is
diagonal, the parameters of Xt are totally independent. In the case of left ventricle contours in
echocardiography, the hypothesis of independence between the PCA coefficient is justified by the
low cross-correlation values compared to the auto-correlations (see figure (3.7)). For the sake of
simplicity, Xt is then assumed to be mono-dimensional, and equation (3.17) may be rewritten as

ε = AX,

where ε is a column vector whose tth element is Xt − (A1Xt−1 + A2Xt−2 + ...AkXt−k), X =

[XTXT−1...X1], and A is composed by the diagonal elements of the Ais. The contours sequence
that best follows the autoregression law minimizes εT ε. When only k contours are initialized in
the sequence, all but these k Xi are zero vectors; let s be the set of indices of initialized contours.
Let Xs be the input signal composed by the elements of X that are initialized, and Xo the vector
composed by the elements to be determined. Then, one rewrites the prediction model as follows

ε = A (UXs + KXo) ,

where U (resp. K) is a rearrangement matrix of identity matrix I composed by the k columns of I

whose indices are (resp. are not) in s. The minimum of εT ε is obtained by deriving this expression
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Fig. 3.6: Ultrasound sequence segmented sequentially using an autoregressive model, top row with correc-
tion, bottom row without correction.

with respect to Xo:

∂εT ε

∂Xo
= 2εT ∂ε

∂Xo
(3.18)

= 2 (AUXs + AKXo)T AK (3.19)

= 0 ⇐⇒ Xo = − (
AKKTAT

)−1
KTATAUXs (3.20)

As illustrated by the boxplot results in figure (3.9), a mean distance of 0.2mm between inter-
polated contours and ground truth is achieved with a second-order AR model and 4 input contours.
4 input contours are certainly too much to ask for a practical application, furthermore, the issue
of outliers remain (see figure (3.9)). However, similar results are obtained with a generalized lin-
ear interpolation (see section (2.6.3)) using also 4 contours (see figure (3.8)). The same idea can
be considered to segment 3D volumes which can be described slices+space sequences. In such a
context, we will study the development of an algorithm for liver segmentation.

3.3.1 Sequential Segmentation of volumes using Stationary AR Models

In this application, 3D volumes are discretized along the axial planes; the axial planes are con-
sidered as a temporal sequence of images. Volumetric segmentation is considered sequentially on
the 2D slices, starting from the ones with strong data support toward the ones of limited support.
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Fig. 3.7: Cross-correlation of PCA coefficients in a logarithmic scale for left ventricle contours in echocar-
diography. The low correlation between the different PCA coefficients justifies an independent AR
model for each component.

Just as in the previous section, section (3.3), the volume may be segmented in a successive fashion
by linking the segmentation maps through a locally adaptive autoregressive prediction mechanism
- that is learned through training - where confidence in the data from prior slices constrains the
results, or else, by interpolating segmentation maps at sparse locations using the AR model.

In this case, the 2D contours Y are represented in a parametric fashion, using PCA on distance
maps for instance, and the contour feature vectors Xt are predicted using equation (3.3). In order
to determine the AR parameters, we have considered 34 manually segmented volumes which have
been registered to the same pose. Then, the geometric distance between the prediction and the
observation is minimized. The optimal order for the model is 2. In the case of liver segmentation,
the image support is measured using a region-based metric Eobs using the a priori knowledge of
the pixels intensity distribution inside hin and outside hout the liver.

Eobs(Y) =

∫

ΩY

−log
(
hin(I(x))

)
HY(x)− log (hout(I(x))) (1−HY(x)) dx, (3.21)

where HY is the Heavyside function equal to 1 inside the contour Y and 0 outside. The segmen-
tation scheme follows the one presented in section (3.2.4) and equation (3.14). Epredict is the
Mahalanobis distance between the AR-prediction and the current contour Yt. The minimization
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Fig. 3.8: Cumulative distribution of distances between clinicians’ contours, SIM and causal AR tracking
and AR-Interpolation. X axis in mm, Y axis in percentage of contours. Inter-observer variability
curve extracted from Fig. (6) in [100].

of Epredict by gradient descent is straightforward, and Eobs’s PDE with respect to a particular
PCA coefficient xq may be written as

∂Eobs
∂xq

=
∂Eobs
∂Y

∂Y

∂xq

=

∫∫

Ω

(
−log

(
hin(I(x))

hout(I(x))

))
δY(x)

∂Y

∂xq

dx, (3.22)

where the Kronecker operator δY(x) is equal to one if x is on the contour, and zero elsewhere.

The validation is based on a 34 liver dataset (Siemens Somatom Sensation 16, 0.6-0.8 mm
planar resolution and 1-5 mm interslice spacing), hand-segmented by experts, with all-but-one
framework. For each test, 33 livers were used for modeling and one for testing. The percentage of
correctly labeled pixels are displayed in table (3.2), along with the mean shape, and active shape
model [38] results for comparison (see figure (3.10)). The same observation metric (see equation
(3.21)) was used for Autoregressive active models (explicit contours) and 3D active shape model
(implicit distance function). For the latter, P (Yt|Y1:t−1) was estimated using the Mahalanobis
distance and the PCA eigenvalues. All datasets were registered rigidly, for a direct comparison
with the mean shape (distance function) procedure.

Table (3.2) demonstrates that active models (both ASM and autoregressive active models) im-
proves the segmentation, compared to simply taking the registered mean distance function. Fur-
thermore, since Autoregressive Active Models perform better than ASM (AAM reduces the num-
ber of the undersegmented pixels by more than 7%), it demonstrates that, for certain types of 3D
organs that undergo large shape variations and with weak image support, a local segmentation,
constrained by a 3D statistical model (the 3D autoregression) performs better than a global 3D
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Fig. 3.9: Boxplot results of interpolation using the 2-order autoregressive model with respect to the number
of contours inputs (3 to 7).

segmentation method Mean Shape 3D-ASM AAR
% of overseg. pixels 1.73% 0.67% 0.24%

% of underseg. pixels 30.7% 18.57% 11.47%
% of object true positives 69.33% 81.43% 88.63%

% of full image true positives 95.21% 96.58% 99.63%

Tab. 3.2: Results table showing the percentage of pixels correctly segmented, over a dataset of 34 patients,
using autoregressive active model (AAR), 3D mean shape, 3D active shape model (ASM). Over-
segmented pixels are background pixels labeled as liver, and undersegmented pixels are liver pixels
labeled as background.

approach. The autoregression provides a local update in the sequential segmentation, along with a
measure of confidence in the image support, that ASM does not.

3.4 Conclusion and Discussion

In this chapter we have demonstrated that a non-stationary approach introduces novel perspectives
within the AR models and shape priors. The present method benefits from the same advantages as
stationary models, described in [43], but does not rely on any stationary assumptions. Datasets with
time-varying dynamics, that stationary ARs are not able to track, are now successfully processed
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(1) (2) (3) (4)

Fig. 3.10: Liver at same slice segmented, from left to right, by expert (1), mean shape (2), ASM (3) and
autoregressive active model (4).

by the locally adaptive AR model. Furthermore, to some extent, the non-stationary models handle
occlusions and missing data.

In the case of stationary problems, the autoregressive processes are successfully used to model
the relationship between consecutive elements of the solution. However, they are subject to ac-
cumulation of errors without a correction at each step of the sequence. In order to overcome this
limitation, an interpolation procedure is presented so that the difference between the interpolated
sequence and the sequence predicted by the autoregression is minimal in the least squares sense.
Furthermore, the autoregressive interpolation allows a flexible choice in the indices of the initial
constrains which represents an incidental advantage for numerous applications.

The selection of an appropriate representation of the target as well as its dimensionality re-
duction are open problems in this context. In this chapter we have used an implicit representation
for the registration, an explicit representation for the modeling and a PCA for the dimensionality
reduction. In terms of registration, being able to account for open structures is an open challenge.
In terms of contour representation and parameterization, and distance between observation and
prediction more advanced techniques that the Euclidean metric are to be investigated. Last, but
not least more appropriate dimensionality reduction techniques like LDA, Fourier or splines bases
that could encode a continuous representation of the contour are to be investigated. In order to
increase robustness and reactivity, with the same Gaussian noise assumption, the framework pro-
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vided by Kalman filter to model the non-stationary characteristics of the noise could be integrated.
Furthermore, in the case of occlusions, when the Gaussian assumption does not hold, one might be
tempted to use a much heavier nonparametric representation for the distribution, such as particle
filtering. A last interesting perspective might also be to incorporate the quality of the segmenta-
tion into the on-line learning (in sections (3.2.3)-(3.2.1)) to favor the time steps that gave the best
results.

In chapter 2, a method is proposed for solving a class of Computer Vision problems using
sparse elements and reconstructing the other solution’s elements. In the present chapter, this re-
construction is performed using an adaptive regression law and a segmentation procedure. How-
ever, the segmentation uncertainties are not explicitly taken into account, whereas the uncertainty
statistics could be modeled from prior learning both in time and space. Chapter 4 presents how
a segmentation problem is turned into a geometric tracking problem, and how uncertainties are
modeled using a Bayesian framework.
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Chapter 4

Uncertainty Models for Progressive Segmentation

Abstract – This chapter introduces a novel approach in the use of uncertainty models to solve computer vision prob-

lems. In the context of tubular structures segmentation, the multi-hypothesis framework is introduced and implemented

with a sequential random sampling procedure called particle filters. First, it is shown that the global solution to this

problem cannot be achieved by sequentially optimizing the local most likely solution. Then, the structures are mod-

eled by a template of few parameters and segmented in a sequential fashion by randomly sampling the feature space

and assigning a probability measure to each sample based on shape and appearance. This probability field is then

propagated geometrically along the vessel. The resulting solution performs better than other methods based on front

propagation and Hessian analysis. Thanks to the multi-hypothesis framework the pathologies, acquisition artifacts

and branchings are successfully segmented. Then, in order to compare this framework with commonly used gradient

descent approaches, it is extended to a static parametric problem: 2D-3D registration.



108 Bayesian Processes

4.1 Introduction to Uncertainty Models: Static Problem Solved with

Condensation

Gaussian assumptions are frequently considered in computer vision and medical imaging. The
central idea is that the space manifold of the solution forms a Gaussian density. Even though such
an assumption was not made explicitly, it was implicitly encoded in the sparse information models
in chapter 2 as well the stationary auto-regressive process in chapter 3. Similar concept was consid-
ered in the dynamic ARs, where a succession of such models was considered. Furthermore, these
models were mostly presented in terms of mean states with their uncertainties being neglected. In
medical imaging and computer vision one expects great benefit from a qualitative interpretation
of the results. Therefore, introducing the notion of uncertainties as well as their direct estimation
is a quite promising direction. Furthermore, in particularly difficult problems local information
may conflict with the global solution; for instance, in the case of coronary arteries segmentation
presented below in section (4.2), the global solution is not composed of locally optimum solutions,
therefore a multi-hypothesis framework has to be developed.

Since the main focus of our research was single and multi-image segmentation, we consider a
particular problem in this area to review the state of the art and introduce the notion of multiple
hypotheses testing and uncertainties estimation. In particular we are interested in the segmentation
of tubular structures that is a rather tractable problem from parametric perspective which allows
easily the study of statistical variations. Furthermore, the outcome of such a process has important
clinical value and can be used as a low-level primitive in a number of clinical tools.

4.2 Introduction to Tubular Structures Segmentation using Models of

Uncertainty

4.2.1 Medical Motivation

Cardiovascular diseases are the leading cause of death in the western world (more than 30%) and
therefore there is a constant demand for improvement of diagnostic tools to detect and measure
anomalies in the coronary tree. Such tools could provide early diagnosis of potential vascular
anomalies and therefore prevention that can significantly decrease the mortality rate due to cardiac
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diseases. Coronary arteries are narrow vessels (between 3 to 5 mms adjacent to the aorta, between
1.5 to 2.5 mms after two branchings) whose role is to feed the heart muscle with oxygenated
blood. Their segmentation provides a valuable tool for clinicians to diagnose pathologies such
as calcifications and stenoses. Nevertheless, their segmentation is a difficult task because of the
low contrast conditions, bifurcations, intensity distortions produced by pathologies and scanner
artifacts, and the coronaries’ proximity to the heart chambers [160].

Since Computer Tomography (CT) and Magnetic Resonance (MR) imaging of the heart are
now widely available, the number of patients scanned has significantly increased in the past few
years. Clinicians are now interested in longitudinal studies to measure the development and sever-
ity of vascular diseases and their effects on the heart function. Such information is used to deter-
mine the time of surgical operation and the effectiveness of treatments. Furthermore, the major
diagnosis performed on the coronary arteries involves their diameter (e.g. identification of calci-
fications and stenoses quantification); consequently CT Angiography’s use in quantifying luminal
stenosis is growing exponentially [165]. To make actual measurements of the 3D vessel diameter,
the clinicians need more than just volume rendering; they need the arteries to be segmented.

4.2.2 Previous work in Tubular Structures Segmentation

Model-free

Tubular structures segmentation techniques consist of model-free and model-based methods. Skeleton-
based techniques are the most fundamental among the model-free [173] and aim at detecting the
vessel centerlines, from which the whole vessel tree is reconstructed. Region growing methods
[199] progressively segment the vessels from a seed point, based on intensity similarity between
adjacent pixels. These methods are successful for homogeneous regions, but pathological vessels
are more challenging, and may leak into other structures of similar intensity. Morphological op-
erators [71] can be applied to correct a segmentation, smooth its edges or eventually fill holes in
the structure of interest, but fail to account for prior knowledge. Tracking approaches [97, 182]
are based on the application of local operators to track the vessel. Given a starting condition, such
methods recover the vessel centerline through processing vessel cross section information [87].
Various forms of edge-driven techniques, similarity/matching terms between the vessel profile in
successive planes, as well as their combination, have been considered to perform tracking. In par-
ticular a method that relies on the average outward flux of the gradient vector field of the Euclidean
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distance from the vessel boundary to recover skeleton points has been developed in [20]. In [4],
a multiscale method to segment thin nets (lines where the gray level is locally extremum). First,
the image is filtered by a Gaussian at a certain scale is considered. For each scale, the image
maximum curvature is computed and based on differential properties, the points that belong to the
vessels centerline are kept.

Deformable models may either be parametric or geometric. Parametric deformable models
[161] can be viewed as elastic surfaces (often called snakes), and can handle topological changes
with some difficulties. Geometric deformable models [30, 167], on the contrary, can change their
topology during the process and may eventually leak into neighboring structures or vasculature.
Like snakes, deformable models aim at minimizing the energy computed along the model. Level
sets [136] are a way to apply deformable models to non-linear problems, such as vessel segmen-
tation [124]. One may use the fast marching algorithm and its variant for vessel segmentation
using the minimal path principle [6, 60, 196] to determine the path of minimal length between two
points, backtracking from one point toward the other crossing the isosurfaces perpendicularly. To
discourage leaking, a local shape term that constrains the diameter of the vessel was introduced
in [128]. One should also mention the method introduced in [120], where the optimization of a
co-dimension two active contour was presented to segment brain vessels.

To account for the snake’s sensitivity to initialization, in [70] the initial conditions of snakes
are determined after a learning process based on a non-parametric estimator. The learning function
uses a Parzen window estimator, with a Gaussian kernel. The Parzen window estimator relies on
feature value observations, and compare these values with model values. The objective function is
then chosen to maximize the probability distribution of these observable quantities.

The maximization of flux was introduced in [188] and was exploited for vessel segmentation
in [62] in low contrast conditions using vessel measures introduced in [76]. The vectors normal to
the vessel boundaries are collected using the Hessian matrix eigenvectors collected on the points
satisfying the vessel measures. The geometric maximizing flux algorithm is then applied to recover
the vessel boundaries.

Model-based

Model-based techniques, on the other hand, use prior knowledge and features to match a model
with the input image and extract the vessels. The knowledge may concern the whole structure, or
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consist of a local region of the vessel. Along this direction, vessel template matching techniques
(deformable template matcher) [148] have been investigated. The template model consists of a
series of connected nodes that is deformed to best match the input image. Generalized Cylindrical
models are modified in Extruded Generalized Cylinders in [133] to recover vessels in angiograms.
For highly curved vessels, the local basis used for classical generalized cylinders may be twisted,
and a non-orthogonality issue may occur. This problem is solved by keeping the vessel cross
section orthogonal to the centerline and the two normal vectors always on the same side of the
tangent vector spine as the algorithm moves along the vessel. In [111], the vessel is modeled by
a tubular structure, and segmented by filtering the image with a multiscale-structural term derived
from the image intensity Hessian matrix [163, 76].

In [27], an anisotropic filtering technique, called Vesselness Enhancement Diffusion, is intro-
duced that can be used to filter noisy images preserving vessels boundaries. The diffusivity func-
tion relies on the vesselness function introduced in [76] to filter along the vessel principal direction
and not across. In the resulting image, the background is smoothed, whereas the vessel remains un-
changed. Although it is not a segmentation method per se, it dramatically changes the visualization
of the vessels and allows filtering based on scale so that only the smallest or biggest structures may
be seen. A complete review of tubular structure segmentation in the case of vasculature imaging
for MR may be found in [176].

4.2.3 Overview of our method

Existing approaches suffer from certain limitations. Techniques such as local operators, region
growing, morphological filters and geometric contours are prone to be sensitive to local minima
and fail to take into account prior knowledge on the form of the vessel. Alternatively, cylindrical
models, parametric active contours and template matching techniques may not be well suited to
account for the eventual distortions of vessel appearance produced by pathologies or scanner ar-
tifacts, and require special handling of bifurcations. Tracking methods, on the other hand, may
often fail in the presence of missing and corrupted data, or sudden changes. Level sets are time-
consuming when they are implemented in the most general way. On the other hand, their efficient
implementation using the fast marching method [168, 183] reduces computational burden at the
cost of loosing the local implicit function properties.

To improve the segmentation results, one should be able to account for bifurcations, sudden
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changes of pixels intensity (pathologies) and missing or corrupt data (motion blur in MR and CT
beam hardening). This excludes most of the methods based on parametric models, or linear models,
which would require special handling for bifurcations and intensity artifacts.

The segmentation problem is replaced by a tracking problem: the course of the vessel is fol-
lowed by obtaining the set of 2D planar (tangential to the centerline) segmentation (see figure
(4.1)). On a particular plane, the vessel is represented by a model (see section 4.3.1), whose pa-
rameters are optimized to fit the image data according to a shape and an appearance measure.
However, to follow the centerline by always selecting the maximum likelihood in the parameter
space is not sufficient, as demonstrated by the experiment in section 4.3.2. That is the reason why
the authors are driven toward a method that would handle multiple hypotheses, and keep only the
few most probable following [74, 75]. At each step, a scheme based on particle filtering [98][67]
is used to sample the parameters probability density function (pdf). The final segmentation is ob-
tained using the maximum a posteriori of this pdf, and a 2D contour extraction technique called
Circular Shortest Path [3].

The remainder of this chapter is organized as follows. In section 4.3, we start by describing
the image model in section 4.3.1, then in section 4.3.2, we demonstrate the insufficiency of the
Kalman filter and the linear Gaussian model, which leads us to introduce a non parametric method
known as particle filtering in section 4.3.3 and define different resampling strategies. In section
4.3.4, we give the details of the image measure used to estimate the pdf. Section 4.3.6 introduces
the Circular Shortest Path with which the final segmentation results are obtained. In section 4.4,
the experimental method is explained and the results are presented in section 4.4.3. Finally, section
4.6 concludes the chapter with a discussion.

4.3 Segmentation Model & Theoretical Foundations

4.3.1 Description of the Segmentation Model

The vessel is described as a feature space consisting of a series of cross-sections (see figure (4.1)
and figure (4.2)). Each cross-section is defined by:

x = (x1, x2, x3)︸ ︷︷ ︸
position

,Θ = (θ1, θ2)︸ ︷︷ ︸
orientation

, pvessel︸ ︷︷ ︸
appearance

(4.1)
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Fig. 4.1: The vessels are tracked by sequentially segmenting their cross-sections.

Fig. 4.2: The feature space is defined by the cross-section center position x = (x1, x2, x3), the cross-section
tangential direction Θ = (θ1, θ2, θ3) and the lumen pixel intensity distribution pvessel.

where the vessel state vector consists of the 3D location of the vessel x at the cross-section, the
orientation vector Θ defined by two angles, and the parameters required for the pdf estimation of
the appearance of the vessel, pvessel, as a mixture of two Gaussians:

pvessel = ((PB, µB, σB), (PC , µC , σC)) (4.2)

It is reasonable to assume a rather non uniform structure in the appearance of the vessel because
of the presence of calcifications, stents, stenosis and diseased vessel wall (see figure (4.3)). There-
fore simple parametric statistical models on the appearance space will fail to account for the statis-
tical properties of the vessel and more complex distributions are to be considered. We consider a
Gaussian mixture model that consists of two components to represent the evolving distribution of
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(a) (b)

(c) (d)

Fig. 4.3: (a) calcification, (b) stent (high intensity prosthesis), (c) branching with obtuse angles, (d) stenosis
(sudden reduction of vessel cross section diameter).

the vessel: first, the contrast enhanced blood (mixture weight : PB, mean : µB, variance : σB) and
next, the high density components, such as calcifications or stent, (mixture weight : PC , mean :

µC , variance : σC). This mixture is subject to the constraint [PC + PB = 1]. Then, the vessel may
be described at a single cross-section by the following state vector:

xt = (x,Θ, (PB, µB, σB), (PC , µC , σC)) (4.3)

The number of Gaussians in the mixture is justified empirically by the pixel intensity distrib-
ution observed in the lumen of different patients. Such a state vector is to be estimated for con-
secutive planes leading to complete reconstruction of the vessel tree. A simple solution consists
in optimizing the state vector in the feature space, and to regularize the centerline with a common
tracking procedure (the Kalman filer). However, section 4.3.2 demonstrates why this approach
is insufficient, and justifies a process based on multi-hypothesis (see particle filtering in section
4.3.3).
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Fig. 4.4: Overview of the different steps involved in the tubular structures sequential segmentation using
particle filters.

4.3.2 Introduction to Linear/Gaussian Prediction Models and Limitations

Vessel segmentation is represented by a probability density function in the state vector feature
space (see section 4.3.1). A simple representation of a probability field is to model it by a Gaussian,
and to assume a linear transition between consecutive states.

As described in [194], the Kalman filter [103] is a set of mathematical equations that estimates
the state variables of a process in the least square sense. The filter is very powerful in several
aspects: it supports estimations of past, present, and even future states, and it can do so even
when the precise nature of the modeled system is unknown. In some cases, Kalman Filter may
track non linear processes [150]; nevertheless, as we shall see, the Kalman Filter fails to track
inhomogeneous tubular structures (e.g. branchings, pathologies or corrupt data) such as coronary
arteries.

Such a filter assumes that the posterior density is Gaussian at each time step, and that the
current state xt and observation zt are linearly dependent on the past state xt−1. Such assumptions
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Fig. 4.5: With the Kalman filter, the tubular structure is tracked by optimizing the model’s parameters in the
feature space, and sequentially determining a set of 2d cross-sectional planes.

Fig. 4.6: Vessels are segmented by tracking their cross-sections (white bars) using Kalman Filter. The
Kalman Filter is unable to track bifurcations and appearance inhomogeneities (artherosclerosis).

simplify the Bayesian equations to the following form:





xt = Ftxt−1 + vt−1

zt = Htxt + nt,
(4.4)

where vt−1 and nt refer to zero mean Gaussian noise with covariance matrices Qt−1 and Rt that
are assumed to be statistically independent. The matrix Ft is considered known and relates the
former vessel state xt−1 to the current state xt. The matrix Ht is also known and relates the vessel
state xt to the observation zt. In the case of tubular structure segmentation, the vessel’s state xt is
described in equation (4.3), the state transition Ft refers to the translation of xt’s location along its
orientation vector, all other features remaining unchanged. The observation zt refers to the image
intensities on the cross-section defined by xt. The pdfs are computed recursively according to the
formulas that may be found in Kalman’s seminal paper [103].

Kalman filters have been considered to track vessels in retinal images [150] combined with a
deterministic step to handle branchings. Such a model requires strong assumptions of Gaussian
noise and linearity in the state transitions which make their use in vessel segmentation quite prob-
lematic. Some (negative) examples of the application of such a linear model to vessel segmentation
are shown in figure (4.6), using the state space earlier introduced and the Kullback-Leibler infor-
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mation criterion to measure the distance between prediction and observation. One may claim that
neither the observation space (figure (4.3)), nor the structure/geometric space of the vessel (figure
(4.6)) are sufficiently homogeneous to allow parametric linear state transitions, and such a method
will fail to account for pathological cases where such linearity is absent. These reasons naturally
drive us toward a non parametric and non linear approach, such as the particle filters.

4.3.3 Non-linear Systems and Introduction to Particle Filters

Generalities

Particle filters [67, 5, 98] are a sequential Monte-Carlo technique that is used to estimate the
Bayesian posterior probability density function (pdf) with a set of samples [81, 195]. In terms
of a mathematical formulation, such a method approximates the posterior pdf by M random mea-
sures {xm

t ,m = 1..M} associated to M weights {wm
t ,m = 1..M} such that, given a sequence of

observation {z1:t}

p(xt|z1:t) ≈
M∑

m=1

wm
t δ(xt − xm

t ). (4.5)

where each weight wm
t reflects the importance of the sample xm

t in the pdf, given the observations
sequence z1:t, as shown in figure (4.7). δ(x) is the Kronecker function equal to 1 when x = 0

and 0 elsewhere. Using the Bayes rule, one sequentially estimates p(xt|z1:t) from p(xt−1|z1:t−1),
knowing p(xt|xt−1) and measuring p(zt|xt):

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1)

∝ p(zt|xt)

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

p(zt|xt) is discussed in section 4.3.4, while a novel method to locally estimate p(xt|xt−1) is pre-
sented below under the name of reinforced SIR. The samples xm

t are drawn using the principle
of importance density [82] of pdf q(xt|xm

1:t, zt). The principle of importance density consists in
drawing the samples xm

t following the distribution q, and assigning their weight according to

wm
t =

p(xm
t |z1:t)

q(xm
t |z1:t)

.
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Fig. 4.7: The resampling process: a random selection chooses the samples with the highest weights where a
local perturbation is applied.

In the framework of sequential estimation, these weights wm
t are better expressed in a sequential

way by updating them:

wm
t ∝ wm

t−1

p(zt|xm
t )p(xm

t |xm
t−1)

q(xm
t |xm

t−1, zt)
, with

∑
m

wm
t = 1. (4.6)

The importance density reflects the way the particles are distributed in the feature space; for in-
stance, a uniform importance density means the samples are uniformly sampled in the feature space
regardless of the distribution p. Once a set of samples has been drawn, p(xm

t |xm
t−1, zt) is computed

out of the observation zt for each sample xm
t , and the estimation of the posteriori pdf is sequen-

tially updated using equation (4.6). With such a process many particle weights quickly converge
to zero and only the ones that represent the data will present significant weights. Consequently the
model will lose its ability to track significant changes on the pdf; therefore a resampling procedure
has to be executed on a regular basis. Such a process will preserve as many samples as possible
with significant weights. One may find in the literature several resampling techniques [67]. We
chose the most prominent one, sampling importance resampling, for its simplicity to implement,
and because it allows more hypothesis with low probability to survive, compared to more selective
techniques such as stratified resampling [69].

Sampling Importance Resampling

The Sampling Importance Resampling (SIR) algorithm [81] consists of choosing the prior density
p(xt|xt−1) as importance density q(xt|xm

1:t, zt). This leads to the following condition, from equation
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(4.6)
wm

t ∝ wm
t−1p(zt|xm

t ). (4.7)

The samples are updated by drawing xm
t from the distribution p(xt|xm

t−1), and perturbed according
to a random noise vector ε, so that xm

t ∝ p(xt|xm
t−1). The SIR algorithm is the most widely used

resampling method because of its simplicity from the implementation point of view. Nevertheless,
the SIR uses mostly the prior knowledge p(xt|xt−1), and does not take into account the most
recent observations zt. Such a strategy could lead to an overestimation of outliers. On the other
hand, because SIR resampling is performed at each step, fewer samples are required, and thus the
computational cost may be reduced compared to other resampling algorithms. Finally, in practice,
the estimation of ε’s law is difficult, and prior knowledge is usually required. A novel method is
proposed in the paragraph below to address this issue, by locally estimating p(xt|xm

t−1).

Reinforced SIR: the State Transition Noise pdf

One overcomes some of the above limitations through the improvement of the perturbation model.
Such a step leads to a more effective use of samples and should be driven from the data, or prior
knowledge on the form of the vessel. The idea of reinforced SIR is to update the noise model for
the random noise vector ε added to each sampled during the SIR process. This noise vector refers
to p(xt|xm

t−1).

Let us assume the state transition from xt−1 to xt is known and modeled by

xt = f(xt−1) + ε (4.8)

In the case of tubular structures, f represents the location x displacement along the tangential
direction Θ (see equation (4.3)). From ground truth segmentation, or from previous steps in the
current segmentation, the distribution law of ε is learned so that the model correctly approximates
the noise.

After a particle xm
t−1 has been selected by the SIR algorithm, a random noise vector ε is added

(see previous section paragraph). A straightforward solution consists in using prior knowledge to
estimate the law of ε (i.d. p(xt|xm

t−1)) once for all. This method presents two difficulties: first,
prior knowledge may be limited and/or hard to obtain, second, vessels are linear structures only
very locally, therefore the law of ε may greatly vary from one part of the vessel to another. That
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is the reason why an intermediate step in introduced before the resampling to estimate p(xt|xm
t−1).

This step consists in drawing uniformly distributed samples - called here auxiliary samples - around
f(xm

t−1) (i.d. the sample’s location x at the previous step displaced along its tangential direction
Θ), estimating the probability of each auxiliary sample, and updating the model for p(xt|xm

t−1).
Then, in the subsequent step, SIR is performed as above with the updated model for ε.

The final paradigm for resampling follows the procedure:

1. particles xm
t−1 are selected randomly according to their probability, as in any SIR procedure

2. the selected particles generate N new offspring uniformly distributed

3. these offspring probabilities are estimated, and a pdf p(xt|xm
t−1) is then drawn for each SIR

selected particle

4. this pdf p(xt|xm
t−1) is used to generate a random noise vector ε that perturbs the SIR selected

particles

In other words, once the SIR selected a particle xm
t−1 to be resampled, p(xt|xm

t−1, zt) is estimated in
a way similar to equation (4.5):

p(xt|xm
t−1, zt) ≈

N∑
i=1

wi
tδ(xt − xi

t), (4.9)

where the xi
t are generated from xm

t−1 + εi, with the εi uniformly distributed. The weights wi
t are

estimated from the observation zt.

This method presents two main advantages. First, as the noise vector ε is random, the ad-
vantages of SIR over exhaustive search are preserved. Second, the distribution of ε is updated at
every time step, and for every particle, avoiding the disadvantages of having a noise distribution
that would be determined once for all from prior knowledge. Vessels can be straight and suddenly
become tortuous, or can have a very homogeneous shape/appearance before encountering a very
inhomogeneous region. This Reinforced SIR captures the conditions change and adapts the noise
vector distribution.
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Fig. 4.8: With the particle filter, the model parameters’ pdf is estimated at each time step. The maximum a
posteriori is then taken to obtain the segmentation

4.3.4 Prediction & Observation: Distance

Particle filtering theory is now applied to estimate the pdf of the feature vector (see equation (4.3))
during the vessel tracking process. Each one of the particles xm

t represents a hypothetic state
of the vessel; a probability measure p(zt|xm

t ) is used to quantify how the image data zt fits the
vessel model xm

t . To this end, we are using the image terms, and in particular the intensities
that do correspond to the vessel in the current cross-section. The observed distribution of this
set is approximated using a Gaussian mixture model according to the expectancy-maximization
principle. Each hypothesis is composed by the features given in equation (4.3), therefore, the
probability measure is essentially the likelihood of the observation z, given the appearance A

model. The following measures (loosely called probabilities) are normalized so that their sum over
all particles is equal to one. Assuming statistical independence between shape S and appearance
model A, p(zt|xt) = p(zt|S)p(zt|A).

• Probability measure for shape based on contrast

Given the vessel model (see equation (4.3)), whose parameters are specified by the particle
xt, a measure of contrast, that we call the ribbon measure R, is computed:

{
R = −∞ , µint ≤ µext

R = µint−µext

µint+µext
, otherwise

(4.10)

while the correctness of the prediction is given by:

p(z|S) = e
− |R|

R0 (4.11)
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where R0 is a normalizing constant (the average value of R from ground truth), µint is the
mean intensity value for the voxels in the vessel, and µext is the intensities mean value for
the voxels in a band outside the vessel, such that the band and the vessel’s lumen have the
same area. This measure is normalized to be equivalent to model a probability measure.

Since the coronary arteries are brighter than the background, the best match maximizes R

(see figure (4.11)).

• Probability measure for appearance

For the vessel lumen pixels distribution pvessel equation (4.2), the probability is measured as
the distance between the hypothesized distribution and the distribution actually observed.

The distance we use is the symmetrized Kullback-Leibler distance D(p, q) between the
model p(x) = pvessel and the observation q(x):

D(p, q) =

∫
p(x)log(

p(x)

q(x)
) + q(x)log(

q(x)

p(x)
)dx, (4.12)

p(z|A) = e
− |D(p,q)|

D0 , (4.13)

where D0 is a normalizing constant, equal to the average value of D from prior knowledge.
Once again, this measure p(z|A) is normalized to be equivalent to a probability measure.

The combination of edge-driven and region-based metrics measures the fitness of the observa-
tion to the prior knowledge included in the state vector.

4.3.5 Branching Detection

When a branching occurs, the particles naturally split up in the two daughter branches (the case of
trifurcation is not studied here), and then track them separately (see figure (4.9)). As branchings
are never perfectly balanced, one of them attracts the majority of the particles after few resampling
steps. To avoid the collapse of one of the modes, two techniques are available: either to increase
the number of particles in the weakest branch, or to treat the two branches separately. The second
approach is preferred in this chapter, for the particular context of vessel segmentation. To this end,
a simple K-means clustering in the joint space (position+orientation) of the particles is considered
at each iteration. When the two clusters are well separated (when the distance between the clus-
ters center is above a certain threshold), the number of particles is doubled and they are equally
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(a)

(b)

Fig. 4.9: (a) branching points between LCX and LAD for three patients with the particles’ mean state over-
laid, (b) the particles are clustered at each time step. The branching is detected when the distance
between the two clusters center is above a certain threshold.

dispatched in the two branches. The segmentation goes on, according to equation (4.6), with a
bi-modal distribution.

The K-means algorithm [68] partitions N points, xn, into K disjoined clusters, of centers µj ,
minimizing the sum-of-squares

J =
K∑

j=0

N∑
n=0

|xn − µj|2. (4.14)

The K-mean procedure alternates two steps: first each point is associated to the nearest center µj ,
then each center is moved in the barycenter of the cluster.

As illustrated in figure (4.4), the branching detection algorithm is fired at each iteration. Nev-
ertheless, this algorithm is limited in several ways: first, the number of branches at a junction (2 in
our case) has to be fixed in advance. In one case (out of 34 tested, see section 4.4.3), one branch is
missed because of a 3-branches junction.

4.3.6 Circular Shortest Paths & 2D Vessel Segmentation

The Circular Shortest Paths by Branch and Bound (CSP) [3] is a binary search-tree technique to
recover the globally optimal active contour, given a point inside the contour and a potential map.
First of all, let us note that the problem of finding the globally optimal active contour is equivalent
to computing the minimal weight path (given a Riemannian metric) that connects a point at angle
θ = 0 to its equivalent at θ = 2π across the log-polar transform of the original image. Given a
Riemannian metric g (usually inversely proportional to the image gradient), the weight W of a path
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P is defined as:
W (P) =

∫

P
g (P(s)) ds. (4.15)

Given a start point p0 at θ = 0, the end point p2π at θ = 2π of the minimal non-circular path is
defined as

p = argminP(2π)=pW (P). (4.16)

This end point p2π is very quickly found using the well-known Dijkstra [63] algorithm, with the
Riemannian metric g (equation (4.15)) playing the role of potential map. To demonstrate the use
of a binary search-tree, a property needs to be stated at this point, whose proof is straightforward
(see [3]):

for two sets S1 ⊆ S2, the minimal path P2 of S2 has a lower or equal weight than the
minimal path P1 of S1, otherwise stated as W (P2) ≤ W (P1).

A corollary is:

for any point set S, the weight of the minimal path P (circular or not) is a lower
bound of the minimal circular path weight. Therefore, if {S1, S2} is a partition of S,
and W (P1) ≤ W (P2), the minimal circular path of S has its starting point p0 (and
obviously ending point p2π as well) in the subset S1.

Consequently, a binary search-tree is used in the CSP algorithm. First, the tree’s root consists of
any set of initial points S = {p0} which is divided into two subsets S1 = {p0}1 and S2 = {p0}2;
second, the minimal non-circular paths P1 and P2 are computed using equation (4.16) for the two
subsets. Each set of vertices is represented by a node in the tree, and has two children nodes (the
two subsets). This procedure is then repeated until the subsets are reduced to a single point. At the
bottom of the binary search-tree, the subsets are reduced to singletons, and their minimal path are
naturally circular. The Globally Optimal Circular Shortest Path is summarized in the algorithm 2.

The low cost complexity (for width u and height v, O (u1.6v) average time, or less than a
millisecond for 15x15 pixels cross section profile, see figures 4.10 and 4.11) makes this method
very attractive for repetitive testings, such as the particle filters presented in section 4.3.3. The
metric g in equation (4.15) is equal to the inverse of the image gradient magnitude.
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Data: vessel cross-section I
Compute I inverse gradient and its log-polar transform
Initialize shortest part = [ ]
Initialize S1 = {[1, v/2]} and S2 = {[v/2 + 1, v]}
while shortest part is not circular do

Compute shortest path1 for S1 using Dijkstra’s algorithm [63]
Compute shortest path2 for S2 using Dijkstra’s algorithm [63]
if shortest path1 shorter than shortest path2 then

Partition S1 into S1 and S2

else
Partition S2 into S1 and S2

end
end
Result: circular shortest part over S

Algorithm 2: - General pseudo-code for the CSP.

(a) (b) (c)
Fig. 4.10: (a) Vessel cross section, (b) cross-section’s log-polar transform and minimal weight circular path,

(c) CSP in Cartesian view

The CSP algorithm is an efficient technique for image segmentation for closed structures under
the assumption that a point is given in the structure interior to compute the log-polar image. One
assumes that the maximum a posteriori of the centerline position’s pdf provides the start point to
the CSP at each step.
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(a) (b) (c)
Fig. 4.11: (a) Vessel cross section, (b) elliptic models only roughly represent the cross-section, (c) therefore,

CSP’s end result is needed for the final segmentation.

4.4 Experimental Validation

4.4.1 Image Modality and Algorithm Specifications

The algorithm was tested on 34 CT images coming from different scanners (SOMATON Emotion,
SOMATON Sensation 16 and 64 and SOMATON Definition) and different patients who presented
different or no pathologies. A typical voxel resolution is 0.3mm × 0.3mm × 1mm. Contrast
agent was used for all images, with different concentration and different products. Table 4.4.1
summarizes the typical intensity range for different tissues, as they are found in a CT angiography
volume, with pixels’ value coded on 12 bits. No preprocessing is applied before the segmentation
procedure described in this article.

myocardium vessel lumen / ventricles calcification lungs

intensity 900-1100 1100-1300 1400-2000 0-200

Tab. 4.1: Pixel intensity range for different organs coded on 12 bits.

Regarding the initial configuration, the use of approximatively 1, 000 particles gave sufficient
results for our experiments. We performed a systematic resampling according to the SIR every time
the effective sampling size Neff =

∑
i 1/w

2
i (where wi is the weight of the ith particle) falls below

half the number of particles. As mentioned in Section 4.3.3, the preference for SIR, compared
to Stratified Resampling [69], is motivated by the robustness of the segmentation. The reinforced

SIR strategy exposed in section 4.3.3 gives better results, for a constant number of particles. The
tracking stops when the sum of image measures at a given iteration falls below a given threshold.
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4.4.2 Comparison with Front Propagation

For comparison purposes, our method is compared with Front Propagation, implemented using
the Fast Marching algorithm [59], based on a curvilinear structures detection [163]. The Hessian
analysis is used to detect tubular structures; this measure (called ”vesselness” in [77]) is integrated
into a potential map on which the Fast Marching algorithm is run such as in [61]. Two high and
one low amplitude eigenvalues in the Hessian indicate local tubular structure. In few words, Front
Propagation computes isosurfaces in a Riemanian space, whose metric is based on the image: the
vesselness measure in our case. The front propagates faster along the vessel than in other non-
tubular structures. However, in the case of inhomogeneities (either pathologies or bifurcations),
this vesselness measure drops and the front propagation either stops or leaks into neighboring
structures.

In the synthetic case, the error measure ∆ is defined as the symmetric difference between
ground truth G and segmentation S:

∆ = 1− 2 |G ∩ S|
|G|+ |S| .

Since ground truth is not available for the real case studies, an expert visually validates the number
of branches correctly segmented and missed.
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(a) (b) (c)

Fig. 4.12: Comparison between hand-labeled ground truth (b) and particle filters results (c) for four short
sections. The final segmentation is obtained with CSP, using the centerline provided by the max-
imum a posteriori.
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(a)

(b)

(c)

(d)
(1) (2) (3) (4)

Fig. 4.13: Segmentation of the Left anterior descending coronary artery and Right coronary artery in CTA
(in red) for four patients ; (a) coronary tree, (b,c,d) Different 3D views super-imposed to the
cardiac volume are presented.



130 Bayesian Processes

vessel name RCA Acute Marginal LAD First Septal LCX Obtuse Marginal

# cases missed, using PF none 5 none 2 none 2

# cases missed, using FP 12 28 16 23 21 26

Tab. 4.2: Results table showing the number of cases for which branches are incorrectly segmented, over a
dataset of 34 patients, using Particle Filters (PF) and Front Propagation (FP), with respect to expert
ground truth.

4.4.3 Results

Validation is a difficult part for any coronary segmentation method. The algorithm has been eval-
uated on 34 patients, and has successfully recovered all the main arteries (RCA, LAD, LCX) for
each patient as shown in table 4.2, while a small portion of visual results are also presented in
figure (4.13).

The results in table 4.2 corresponds to the number of branches segmented by particle filters
and identified by a human expert. For comparison purposes, the same test is performed using
Front Propagation based on the image Hessian matrix [163]. These results were achieved with
a one-click initialization; the Hessian’s eigenvector that corresponds to the smallest eigenvalue
gives the approximative initial direction. All patients present some kind of artery pathologies in
one, at least, of their coronary vessels (12 cases with calcification, 8 stenosis, 4 stent, 2 bypasses),
and many present intensity artifacts (7 stepping, 5 hardening effects). Our approach has success-
fully segmented both healthy and unhealthy coronaries without leaking into neighboring structures
(over-segmentation). The method seems to outperform regarding the detection of the main branch-
ings, while in some cases branching of lower clinical importance at the distal part of the tree have
been missed. However, current studies focus on the issue of branchings for narrow vessels in very
low contrast conditions. The comparative study demonstrate the proposed framework has the abil-
ity to outperform a deterministic Hessian based method in cases with corrupt data (pathologies).
Figure (4.12) displays the results for a short section of coronary with corresponding hand-labeled
ground truth.
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(a)

(b)

(c)

(d)

Fig. 4.14: 2 synthetic examples: (left) with total lumen obstruction, (right) with high curvature. (a) Original
image. (b) Estimation of the pdf. (c) Cross-sections overlaid on the image. (d) Sum of particles’
weight over the steps.
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Radius of curvature 3.5 7 10.5 13.3 14

symmetric difference 7.80% 9.29% 9.24% 12.11% 11.07%

Gap width 4 6 8 12 16

symmetric difference 0 2.22% 7.11% 11.56% 24.44%

Tab. 4.3: Results table showing the symmetric difference between maximum likelihood segmentation result
(particle with maximum probability at each step), and ground truth on synthetic data.

A second test is performed on a 2D synthetic dataset (see figure (4.14)) with Gaussian pixel
intensity distributions (vessel: mean = 1200, standard deviation = 50; background: mean = 1000,
standard deviation = 100) noisier and with less contrast than real cases. Using real cases radiuses
(3-4 pixels lumen diameters), and using the segmentation provided by the particle of maximum
weight (the CSP is not used for the CSP’s performance not to interfere with the particle filter’s),
the symmetric difference between segmentation and ground truth is 11.07% for a tubular structure
with a 14 pixels radius of curvature, and 2.22% for a 6 pixels wide simulated lumen obstruction.
The results in table 4.3 displays the symmetric differences between ground truth and segmentation.
In all these cases, the tracking procedure never jumped completely out of the vessel into the back-
ground. The algorithm is stopped when the sum of the particles’ weight falls below a threshold
(see figure (4.14).

4.5 Comparison between Particle Filters and Deterministic Approaches for

2D-3D Registration

Let us consider a problem that is ill-posed in the general form: 2D-3D registration on corrupt
images between pre-operative digitally subtraction angiography (DSA) and intra-operative fluoro-
scopic images.. 2D-3D registration consists in finding the limited number of parameters that define
the perspective projection from a given 3D volume to a 2D image (see figure (4.15)). A perspective
projection from a 3D homogeneous point P to a 2D homogeneous point p is defined with matrix
as

p = PCTP, (4.17)

where T is a 4 × 4 matrix of the pose relating the pre-operative (3D) coordinate frame to the
iso-centric coordinate frame of intra-operative imaging device. C is a 4 × 4 matrix defining the
transformation between the iso-centric coordinate frame and the coordinate frame centered at the
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(X-ray) (CT)

Fig. 4.15: Contrast enhanced X-ray and CT image of right hemisphere vessels.

x-ray imaging source, which also depends on gantry angles. P is a 3×4 projection matrix defining
the projection cone related to the source-detector geometry. We assume P and C are known from
a calibration step. T is the unknown pose that encodes the three translation and three rotation
parameters. The problem thus consists in optimizing T, with respect to a pose fitness measure.

4.5.1 Pose fitness measure

Intensity based registration approaches require digitally reconstructed radiographs (DRR) genera-
tion, which is then compared with the x-ray or fluoro images at each step of the process. The main
bottleneck for intensity based approaches is speed. In [205], the authors mentioned several minutes
for registering the whole intensity volume, most of the time spent on generating the DRR. For this
application, we use the vascular structures as features for registration. Vascular structures are easy
to segment in most of cases, sparse enough for the registration to be faster than intensity-based
methods, but yet generally well distributed throughout the organs to capture potential misalign-
ments. One obstacle here is to define a fast and robust measure that characterizes the fitness of the
pose. The proposed method uses a prior segmentation of the vessels in the 3D volume of interest
and the 2D image. From the 2D segmentation result, a distance map [73] is computed (see figure
(4.16)). For a given pose matrix T, the measure of fitness is the sum of distances (i.e. D) to the
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Fig. 4.16: The projected vascular structure and the distance map associated with it.

2D structure for each projected 3D point from the segmented vessel tree:

F (T) =

∫

P∈vessel

D(PCTP ). (4.18)

To optimize T, gradient descent is a very common technique [205][73]. However, it is very
sensitive to initialization; therefore, in the case of highly corrupted data (see figure (4.17)), gradient
descent often fails due to the lack of image support as well as the non-convex cost function. One
overcomes these limitations through a multi-hypothesis framework, such as condensation [98][67],
presented in section (4.3.3). In this problem, a particle xt is a vector of pose parameters that define
a particular pose matrix T, and the observation zt is the projection of the vascular tree onto the
fluoroscopic image. Each pose matrix (particle) is associated to its fitness measure F (T) defined
in equation (4.18); this fitness measure plays the role of conditional probability p(zt|xt) once
normalized:

p(zt|xt) ∝ e−F (T)/F0 .

Then, the SIR algorithm presented in section (4.3.3) is applied: the hypothesis are sampled
according to their fitness measure so that hypothesis with high measure are neglected, and those
with low measure are selected several times. A random vector is then added to the newly selected
hypothesis, and the process is iterated until no better hypothesis can be found, or the maximum
number of iteration is reached.
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Fig. 4.17: Corrupted X-ray image

First, experiments were conducted to compare the method presented in this chapter with a
purely random search, and the results proved that condensation used with x particles during z time
steps reach a better registration than x× z random trials (in the experiments, x=64 and z=100).

4.5.2 Multiple Hypotheses Testing Evaluation in the Context of 2D/3D Registration,
Comparison with Levenberg-Marquardt Gradient Descent

Second, experiments were conducted to compare condensation performance (with respect to the
measure presented in section (4.5.1)) with classic nonlinear least square methods to find the min-
imum of a nonlinear function: Levenberg-Marquardt [8] and Gauss-Newton algorithms. Both
Levenberg-Marquardt and Gauss-Newton highly depend on initialization, and never led to better
results than condensation (over 100 experiments were made with synthetic portal images from real
pre-operative volumes, and random patient poses).

The perspective projection may not be perfect, and for optimal parameters, the subtraction
of the two registered images may not be exactly null in real cases. For that matter, white noise
has been added to the portal image to test the sensibility of the two algorithms, condensation and
gradient descent. The results are presented in figures (4.18) and (4.20).

Tests have been performed about the method sensitivity to segmentation error, and the conclu-
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Fig. 4.18: Comparison of condensation (blue) and Levenberg-Marquardt (red) performances when Gaussian
noise is introduced in the portal image

sions are presented in figure (4.19). Whereas the gradient descent performances decrease as the
segmentation error increases (in Hounsfield units), the condensation results do not vary. As the
error level increases, the global minimum’s basin of attraction (for gradient descent) diminishes;
consequently, the probability for the gradient descent to be correctly initialized diminishes. Since
the particles are uniformly initialized in any case, the results are independent of the segmentation
error.

For a similar reason, condensation is independent of the capture range, while any Gauss-
Newton / gradient descent method inherently depends on the global minimum’s basin of attraction
width. Furthermore, when features are missing, local minima are created, which are likely to at-
tract the gradient descent method. Particle filters still converge toward the global minimum (see
figure (4.17)).

One concludes from this experiment that models of uncertainty may be used to represent a
problem’s unknown for global optimization. Some hypothesis of lower interest with respect to
equation (4.18) survive randomly and are driven toward the global minimum. In this sense, it par-
tially answers the comments made in chapter 2 section (2.8). However, as the problem described
here in section (4.1) is essentially static, particle filters resemble simulated annealing. The follow-
ing section tackles the more difficult problem of segmentation of coronary arteries, using particle
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Fig. 4.19: Comparison of condensation (blue) and Levenberg-Marquardt (red) performances when segmen-
tation error is introduced

filters for a progressive segmentation: the model of uncertainty at one point of the segmentation is
used to predict the statistical distribution of the artery at a later point.

4.6 Conclusion

In this section, we have shown that Monte-Carlo sampling and multiple hypotheses testing can be
used for the segmentation of tubular structures as well as for 2D/3D registration. In the context of
vascular segmentation, particle filters sequentially estimate the pdf of segmentations in a particular
feature space. The case of coronary arteries was considered to validate such an approach where
the ability to handle discontinuities on the structural (branching) as well as appearance space (cal-
cifications, pathological cases, etc.) was demonstrated. The main advantage of such methods lies
in their capability to handle intensity inhomogeneities from pathologies and bifurcations. Experi-
ments were conducted on several healthy and diseased patients CTA data sets, segmenting the Left

Main Coronary Artery and the Right Coronary Artery figure (4.13). Another interesting applica-
tion concerns MR Angiography, as motion artifacts make most deterministic vessel segmentation
methods impossible to apply.

As a final remark, it may be underlined that particle filters require heavy computational time in
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Fig. 4.20: (L) Comparison between Condensation and Levenberg-Marquardt method performance. (R) Reg-
istered vascular structure with 2D projection simulated from original CT data

a general context (around an hour for a CT 512×512×300 volumetric image), compared to front
propagation. However, in the case of non linear problems, with missing or corrupt data, particle
filters provide a better segmentation than deterministic methods. In the particular case of coro-
nary arteries segmentation, due to pathologies, contrast agent heterogeneities and branchings, the
use of non deterministic methods have been proved successful. Therefore, when time is a con-
straint, a compromise is to be found to apply deterministic methods in linear cases and statistical
modelization, such as particle filtering, in all other cases.

For the problem of 2D/3D registration, the bootstrap algorithm performs better than Levenberg-
Marquardt and Gauss-Newton algorithms, which demonstrates the advantages of using a multi-
hypothesis framework. Furthermore, it compares favorably with simulated annealing both in terms
of computational time and robustness since the multi-hypothesis framework covers the full feature
space in the initialization. Also, if the same problem were to be considered in a temporal sequence,
it would naturally provide at convergence an uncertainty model that could be integrated as a prior
for the next time step.

Introducing further prior knowledge in the segmentation process is a future direction. One
can see such a contribution in two parallel paths. First, building better models that account for
the appearance of the vessel seems to be a necessity toward capturing the coronaries at the lowest
parts of the vessel tree. The current model is based on the global statistics of the appearance
of the vessel and one can claim is a meaningful measure for vessel cross-sections with a certain
area. Another extension of this method would include an implicit way to detect branchings during
the resampling step, and would avoid using any particle clustering or thresholding the distance
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between the clusters. Finally, other non deterministic sampling strategies could reduce the number
of particles while keeping the accuracy of the results.
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Chapter 5

Conclusion

This thesis intends to motivate the use of models and partial elements of information to extract the
desired content of an image. The reconstruction of the global solution may either be performed
by the mean of model-guided interpolation (chapter 2), or may be performed in a progressive way
(chapter 3 and 4). When the solution is built progressively, the transition step from one state of the
solution to the next is either guided by a stationary or a non-stationary model, or the state of the
solution is represented by an uncertainty model propagated through time.

Chapter 1
The first chapter has reviewed the literature on segmentation and tracking. It has been shown
that model free and low level methods (e.g. based on simple observations such as pixel intensi-
ties and image gradients) are of particular interest when the solution cannot be constrained with
statistics from prior learning. However, due to the increasing number of images acquired every
year, the statistical models built from prior learning are becoming more and more reliable. Thus,
the techniques to constrain the solution with shape or appearance statistics have gained popularity
in the past decades. Certain optimization methods developed in the context of model-free tech-
niques, such as the level-sets and the graph cuts, have been adapted to include statistical models
learned on-the-fly or from prior learning. However, the statistics included in the framework drive
the optimization procedure toward a trade-off between prior learning and image information and
the resulting solution may poorly fit both the prior and the input image. The uncertainty model
proposed in chapter 4 bypasses this problem by estimating the statistics directly from image in-
formation in a non parametric fashion. Furthermore, while the reliability of the prior learning
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statistics is clearly modeled, the image input is assumed to perfectly support the solution which is
not the case in most computer vision problems. In chapter 2, we proposed a model that explicitly
accounts for inhomogeneities of the image support reliability. Last but not least, the prior art in
dynamic models is presented in chapter 1 and exposes two main limitations: first the dynamic
models learned from prior knowledge are static in the sense that they are not adapted to new in-
formation provided by the particular case of study. Furthermore, in many sequential problems, the
whole sequence of images is available. Therefore, instead of using a dynamic system to model
the motion on a frame-to-frame basis, the dynamic system may be used to model and segment the
whole sequence at once. This framework is developed in chapter 3.

Chapter 2
The second chapter has introduced a novel method that partitions an input image into different
regions and associates a reliability measure to them depending how the image regions support the
solution to the segmentation problem. This allows the automatic selection of few image regions
that are more reliable than others and from which the whole segmentation solution is recovered
using a model driven reconstruction scheme. This procedure is applied to three different problems
of computer vision. The first problem -segmentation in volumetric images- is developed in order
to prove sparse information models effectively decrease problems’ dimensionality compared to
common dimensionality reduction techniques such as PCA. Sparse information models are then
integrated into a segmentation scheme for the case of three dimensional liver dataset. The second
problem -object tracking in time sequences- proves this method is robust to large variances and
the reconstruction is roughly similar to human expert’s. A comparison between this method and
a method based on autoregressive models is presented in the following chapter. The third and last
problem -surface reconstruction from laser pointed distances- demonstrates how well this method
performs in the case of salt and pepper noise.

Chapter 3
The third chapter has presented the use of autoregressive (or AR for short) models for segmen-
tation. The main contribution was the use of on-the-fly adapting, non-stationary, AR models for
tracking; however, stationary models were also introduced in the context of a regular (i.e. station-
ary) cardiac ultrasound sequence, and may even be used to solve static problems such as volumetric
segmentation. Tracking highly deforming structures in space and time arises in numerous appli-
cations in computer vision. Static models are often referred to as linear combinations of a mean
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model and modes of variations learned from training examples. In dynamic modeling, the shape
is represented as a function of shapes at previous time steps. In this chapter, we have introduced
a novel technique that uses the spatial and the temporal information on the object deformation.
Tracking is reformulated as a high order time series prediction mechanism that adapts itself on-line
to the newest results. Samples (toward dimensionality reduction) are represented in an orthogonal
basis and are introduced in an auto-regressive model that is determined through an optimization
process in appropriate metric spaces. Toward capturing evolving deformations as well as cases
that have not been part of the learning stage, a process that updates on-line both the orthogonal
basis decomposition as well as the parameters of the autoregressive model is proposed. Promising
experimental results in tracking explicit shapes in a video sequence that could be used to impose
prior knowledge in segmentation are presented.

Chapter 4
The fourth and last chapter has introduced a novel approach in the use of uncertainty models to
solve computer vision problems. In the context of tubular structures segmentation, the multi-
hypothesis framework is introduced and implemented with a sequential random sampling proce-
dure called particle filters. First, it is shown that the global solution to this problem cannot be
achieved by sequentially optimizing the local most likely solution. Then, the multi-hypothesis
framework is introduced and implemented with a sequential random sampling procedure called
particle filters. The structures are modeled by a template of few parameters and segmented in a
sequential fashion by randomly sampling the feature space and assigning a probability measure to
each sample based on shape and appearance. This probability field is then propagated geometri-
cally along the vessel. The resulting solution performs better than other methods based on front
propagation and Hessian analysis. Thanks to the multi-hypothesis framework the pathologies,
acquisition artifacts and branchings are successfully segmented. Then, in order to compare this
framework with commonly used gradient descent approaches, it is extended to a static parametric
problem: 2D-3D registration.

Several questions remain open, the first of which is how the sparse information models may
be generalized to bypass the need for one or several axis of discretization. Furthermore, since the
autoregressive models provide a statistical linkage between the states of the solution at different
time, the integration of AR models to the framework of particle filtering seems apropos. The last
questions concern practical applications to medical imaging and future perspective of research in
that field. There is a trend in the recent studies that tend to demonstrate early diagnostic has a
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limited impact on survival rate in a number of pathologies such as certain types of cancer and,
noticeably, lung cancer [7]. For these types of pathology the main medical contribution remain
therapy. This means that the need for therapy planning software will significantly increase in
the near future. Furthermore, expert systems are being developed to assist the clinicians in the
decision process, from drug prescription to complementary testings and surgery. These expert
systems require statistical models and decision processes that rely only on partial measurements.
Measure theory and sparse information models are therefore to be extended into these fields.



Appendix A

Volume Interpolation

A.1 Prior Art on Volume Interpolation

Interpolation models have been studied before. The simplest and most common method is to use a
spline or piecewise polynomial function [149, 178] that interpolates the contour between explicit
points. Other methods use an implicit representation of the contour (a continuous function that
takes a zero value on the contour) and interpolating functions such as thin-plate splines [185]. An
example of surface reconstruction is the work of Hoppe et al. [91] who computed a signed distance
function in 3D which is the distance in R3 to any input point. Then, from the zero levelset of this
function is extracted the surface using the marching cubes [119]. At last, deformable models [116]
are used to minimize an energy function of the mesh by deforming the mesh so that the mesh is
simultaneously attracted to the data by an image term, kept smooth by a tension term and by an
optional prior term.

A.2 Comparative Study for Different Interpolation Models

Table (A.1) resumes the quantitative comparison between the different methods for the same
benchmark of hand-segmented livers, and the same key contours regularly sampled between the
bottom and top slices. The contours on the axial plane are represented a the zero levelsets of a
distance function, and the average distance between the ground truth surface and the reconstructed
surface is reported in table (A.1). It clearly motivates a preference for nonlinear interpolation. The
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nonlinear interpolation, also called generalized linear model [66], consists in decomposing each
contour independently as a linear combination of the key contours. Although it seems like a very
straightforward interpolation procedure, it is the one that gave the best experimental results.
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modelization method Piecewise Cubic Spline Linear Interpolation Non Linear Model PCA on features curve
Volume 1 6.53e-2 1.84e-1 2.58e-3 3.38e-3
Volume 2 2.87e-2 2.85e-2 6.24e-2 4.51e-2
Volume 3 1.44e-6 5.65e-2 2.21e-4 5.03e-2
Volume 4 1.95e-4 2.47e-2 2.13e-3 1.63e-1
Volume 5 4.15e-2 2.20e-2 3.35e-2 2.50e-3
Volume 6 1.84e-1 2.60e-2 2.05e-4 9.02e-3
Volume 7 2.10e-3 3.02e-2 6.00e-3 3.23e-2
Volume 9 2.07e-2 1.01e-2 4.77e-5 4.85e-2

Volume 10 4.58e-2 1.52e-1 4.11e-2 2.98e-2
Volume 11 9.75e-2 3.73e-2 4.33e-6 3.73e-2
Volume 12 4.54e-2 8.47e-2 4.24e-3 1.22e-1
Volume 13 3.78e-1 7.31e-2 1.12e-2 1.07e-1
Volume 14 3.36e-2 1.29e-2 2.55e-2 1.21e-5
Volume 15 5.67e-2 1.76e-1 1.52e-2 6.20e-3
Volume 16 4.33e-2 2.41e-1 2.81e-2 8.60e-2
Volume 17 2.10e-3 4.90e-3 3.26e-2 6.27e-3
Volume 19 2.04e-1 6.46e-2 5.19e-4 1.04e-2
Volume 20 1.52e-1 1.56e-2 1.74e-2 2.71e-6
Volume 21 1.52e-1 5.70e-3 2.34e-3 1.24e-2
Volume 22 9.66e-2 1.50e-1 1.06e-2 3.57e-3
Volume 24 1.54e-1 2.99e-3 2.06e-2 3.87e-2
Volume 25 1.39e-1 1.31e-1 3.08e-3 1.43e-2
Volume 26 3.22e-2 1.20e-6 2.10e-4 8.38e-2
Volume 27 9.10e-2 1.75e-3 2.89e-3 4.28e-2
Volume 28 4.73e-2 5.04e-2 2.87e-2 1.29e-1
Volume 29 1.62e-3 2.74e-3 4.08e-4 1.31e-1
Volume 30 1.53e-2 2.26e-4 3.84e-2 2.70e-1
Volume 31 5.37e-2 1.52e-5 3.16e-3 5.90e-3
Volume 32 1.54e-2 7.34e-2 2.67e-6 4.42e-2
Volume 33 3.56e-2 5.90e-7 1.29e-2 4.58e-2
Volume 34 1.88e-4 1.29e-2 3.85e-3 8.36e-2

Mean 7.21e-2 5.40e-2 1.32e-2 5.37e-2
Standard Deviation 8.15e-2 6.55e-2 1.59e-2 6.05e-2
Maximum Deviation 3.78e-1 2.41e-1 6.24e-2 2.70e-1
Minimum Deviation 1.44e-6 5.90e-7 2.67e-6 2.71e-6

Tab. A.1: Results table showing the average distance (in mm) between modeled contours and ground truth
contours, for different types of models. Cubic Spline and Linear Interpolation are purely interpo-
lation models, while Non Linear and PCA are trained over the whole dataset.
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Appendix B

Partial Derivative Equations, for equations (3.13)
and (3.15)

Equation (3.13) states the image support energy with respect to the contour Yt, by computing
the Kullback-Leibler distance between the observed pixels intensity histograms inside (hin) and
outside (hout) the contour and the a priori learned histograms pin and pout:

Esup(Yt) =

∫
hin(s,Yt)log

(
hin(s,Yt)

pin(s)

)
ds

+

∫
hout(s,Yt)log

(
hout(s,Yt)

pout(s)

)
ds.

(B.1)

The contour Yt is represented by an implicit function on which PCA is performed. The ex-
pression of this PCA is given here:

Yi = A(Y) +
m∑

q=1

xqUq, (B.2)

where the Uqs stand for the modes of variation (Eigenvectors of the covariance matrix), the xqs
are the PCA coefficients, Y is the mean contour and A(Y) is an affine transformation performed
on the mean contour. A low-dimension parametric representation of the contour is thus given by
the PCA coefficients and the affine transformation parameters.

The partial derivative of equation (3.13) with respect to the PCA coefficient is computed thanks
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to the chain rule:

∂Esup
∂xq

=

∫
∂hin
∂xq

log
(

hin(s,Yt)

pin(s)

) (
hin(s,Yt) + pin(s)

pin(s)

)
ds

+

∫
∂hout
∂xq

log
(

hout(s,Yt)

pout(s)

)(
hout(s,Yt) + pout(s)

pout(s)

)
ds

(B.3)

From an implementation point-of-view,
∂hin
∂xq

in equation (B.3) is easily computed by consider-
ing it reflects the change of the histogram for an infinitesimal change of the contour along the PCA
q-th mode of variation. Mathematically, for a particular pixel intensity s, this is expressed by

∂hin
∂xq

(s) =

∫
Ω

ψq(p)δ(ψ(p))δ (I(p)− s) dp∫ ∫
Ω

ψq(p)δ(ψ(p))δ (I(p)− s) dp ds
.

where ψ stands for the distance map associated to the contour, and ψq stands for the function
associated to the q-th mode of variation Uq in the image domain Ω.

The derivation of equation (3.15) is straightforward:

Epredict =
(
Yt − Ŷt

)T

Γ−1
(
Yt − Ŷt

)

Epredict
∂xq

=
∂Yt

∂xq

T

Γ−1
(
Yt − Ŷt

)
.

The derivatives with respect to the affine transformation parameters are obtained the same way.
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