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Illustrations on the front page:

Top : cupola of the Théâtre des Champs-Elysées (detail),
Perret brothers, 1913

Bottom : in red, streamlines of the total flow (basic swept
Hiemenz flow plus perturbation) in a two-dimensional
x, y−plane at z = zmax for an optimal spatial perturba-
tion when zmax = 200, Re = 550, ω = 0 and L = 3. The
streamlines have been computed from the same simulation
as in Figure 4.9 and Figure 4.10. Arrows represent the
two-dimensional perturbation u, v−velocity field.
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moments de doute et de remise en cause. Je les remercie de tout coeur !
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Chapter 1

Introduction

1.1 A general introduction to viscous flow and

boundary-layer instabilities

1.1.1 Flying in a viscous fluid

Rockets and zeppelins set aside (Figure 1.1), flying is achieved in the vast major-
ity of cases by making air flow at considerable speed around a carefully designed
solid obstacle - a wing or a propeller for instance. A vertical force strong enough
to overcome gravity is generated owing to a property of air that in many other
circumstances is negligible: viscosity.

However negligibly small viscous forces may be in the outer flow, they cause
the fluid to adhere to the surface of a solid obstacle. On an airplane, for instance,
air molecules actually stick to the wing surface, although the aircraft may move
with respect to the ambient air at an average of a thousand kilometers per hour in
cruising flight.

Ludwig Prandtl (1875-1953) was the first to propose a satisfactory theoretical
approach to investigate viscous flow around solid obstacles. Prandtl assumed that
the surface is coated with a thin layer of fluid called the boundary layer (Figure 1.2).
In the immediate vicinity of an obstacle, within the boundary layer thickness δ,
viscous effects force the flow velocity to zero at the solid boundary. Further away,
where fluid velocity is high, the flow is governed by inertial effects and viscosity is
negligible.

The boundary layer thickness δ typically depends on the outer flow velocity U∞,
the kinematic viscosity ν, and the geometry of the obstacle. For instance, in the
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Figure 1.1: Three man-made flying machines. Zeppelins are less dense than air;
they float according to Archimedes’ principle. Rockets throw massive quantities of
matter downward at high speed; Newton’s action-reaction law helps them escape
gravity. Planes take advantage of air viscosity to fly.

U

δ

Figure 1.2: Sketch of the boundary layer around a wing. The boundary-layer thick-
ness δ decreases as the outer velocity U increases.
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case of a flat plate (Blasius (1908)), δ develops with distance L from the leading
edge as the inverse of the square root of the Reynolds number:

δ ∼ Re
−1/2
L , (1.1)

with the Reynolds number being

ReL =
U∞L
ν

. (1.2)

One meter downstream of the leading edge of a flat plate, the boundary layer formed
by an air stream at U = 1 ms−1 is less than one millimeter thick; within this distance
from the plate, the flow velocity drops from U = 1 ms−1 in the outer stream to zero
at the surface. The wall-normal velocity gradient ∂U

∂n
is large and shear forces are

intense in the vicinity of solid surfaces.

The velocity gradient within the boundary layer also induces cross-stream vor-
ticity Ω = curl U . Airfoils are specifically designed so that the integrated vorticity
around their profile is non-zero. The lift generated by an airfoil may be related to
its net vorticity production through arguments from potential flow theory.

A “perfect”, i.e. non-viscous fluid would not adhere to solid surfaces, but rather
would slip on them without forming a boundary layer. Unlike the viscous setting,
vorticity is conserved in a perfect fluid. As a consequence, regardless of the obstacle
shape, a perfect fluid cannot generate lift – as puzzling as it may seem, planes only
fly because air is viscous.

1.1.2 On the stability of shear flows

Maximum efficiency, in the sense of a maximum lift-to-drag ratio, is achieved when
the flow around the wing is laminar. As the flow becomes turbulent, more kinetic
energy is dissipated and drag increases.

Shear flows such as boundary layer flows are notoriously unstable to disturbances
(see, e.g. Schmid and Henningson (2001)). This means that infinitesimal perturba-
tions originating from outside or inside the boundary layer may be amplified by the
ambient shear. Large perturbations may disrupt laminar flows and lead to turbulent
states. Figure 1.3 shows transition to turbulence on a flat plate.

Transition to turbulence has still not met a satisfactory, generally-accepted ex-
planation. One hypothesis is that small disturbances are linearly amplified up to
energy levels at which non-linear effects set in and drive the flow to turbulence.
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Figure 1.3: Boundary-layer transition on the surface of a flat plate, seen from the
top. Flow is from left to right and dye visalization shows the transition from laminar
(on the left) to turbulent flow (on the right). (Photograph courtesy of ONERA)

Linear energy amplification occurs either because the perturbations take the
shape of linearly unstable modes or because of non-normal effects (see, e.g. Schmid
and Henningson (2001)). In the latter case, non-normal eigenmodes interact in
such a way that energy is transiently amplified, even if the flow is linearly stable;
transition to turbulence is then qualified as by-pass transition.

The energy amplification of a given disturbance may be readily evaluated by
means of numerical simulations: once its temporal evolution has been computed,
initial and final measures of the kinetic energy are compared. Optimization theory
provides strategies to identify the optimal perutrbation of maximum energy growth.
These linear disturbances the energy of which is the most amplified over finite times
or distances are called optimal perturbations; they are suspected to play a major role
in the transition process.

1.1.3 Controlling shear flows

In recent years considerable effort has been spent in controlling the growth of
boundary-layer disturbances. Significant progress in this field has recently been
achieved by the group of Dan Henningson at KTH, Stockholm in 2006. Fransson
et al. (2006) excited optimally-growing streaks in a flat-plate experiment by placing
small cylinders spaced at the optimal spanwise wavelength inside the boundary-layer.
Optimal streaks quickly reach a non-linearly saturated state; Fransson et al. (2006)
showed theoretically that, contrary to the unperturbed boundary layer, amplitude-
saturated streaks are stable to linear disturbances. In agreement with theoretical
predictions, the streaky boundary layer in the experiment remained laminar across
the entire plate, whereas in the absence of streak generators, turbulence set in at a
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short distance behind the leading edge.

A number of other strategies to prevent turbulent transition on a wing surface
have been proposed. Novel numerical techniques and increased computing perfor-
mance have made it possible to investigate wall-normal blowing and suction control
strategies. In such configurations, blowing and suction devices as well as flow sensors
are assumed to be distributed over the wing surface. Suitable synchronization of
the blowing/suction pattern with the measured flow structures has been numerically
demonstrated to relaminarize a turbulent channel flow (Bewley et al. (2001)).

Numerical experiments allow much more precise flow control than real-life labo-
ratory experiments. A number of issues still have to be resolved before closed-loop
real-time wall blowing and suction strategies may be implemented in an experiment.
These strategies have theoretically been proven to be efficient, but despite rapid in-
novation in the design of experimental devices, their direct application to flows of
industrial interest is still out of reach. For a numerical investigation of active control,
wall-normal blowing and suction remains a convenient model.

1.2 Disturbances and control of the attachment-

line boundary layer

1.2.1 Flow configuration at the leading-edge of swept wings

To facilitate visualization of the flow configuration, a swept wing has been sketched
in Figure 1.4. The three directions of reference are the spanwise z−direction parallel
to the attachment-line, the chordwise x−, and the wall-normal y−direction. The
attachment-line boundary layer is characterized by a single flow parameter, the
Reynolds number

Re =
W∞δ
ν

. (1.3)

The free stream sweep velocity W∞ is proportional to the angle of attack; the length
scale δ is based on the strain rate of the irrotational outer flow S = (dU/dx)y→∞
and the kinematic viscosity ν according to:

δ = (ν/S)
1
2 . (1.4)
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z
y

Figure 1.4: Sketch of a swept wing with the spanwise z−, the wall-normal y− and
the chordwise x−direction. Crossflow vortices appear as black lines on the inserted
photograph (see Poll (1978)). Turbulent contamination of the upper wing surface is
triggered by disturbing the attachment-line boundary layer with a trip wire.

1.2.2 Previous experimental and theoretical results

Most of the investigations of transient growth and boundary-layer control have fo-
cused on the upper surface or airfoils (Andersson et al. (1999), Corbett and Bot-
taro (2001b), Pralits et al. (2002), etc.). By contrast, the knowledge of transient
phenomena in the leading-edge boundary layer is quite sparse. The inherently three-
dimensional nature of the flow makes it difficult to approach theoretically, and even
numerically, while a comprehensive experimental database is lacking.

Some thirty years ago, Poll’s assessment of leading-edge boundary layer research
was not very different from where we stand today (see Poll (1978)). Interest in the
swept attachment line was first prompted when Gray observed that two-dimensional
criteria failed to predict transition very close to the leading edge of swept wings (see
Gray (1952a), Gray (1952b)). Theoretical and experimental investigations suggested
that cross-flow instability was responsible for early transition on swept wings.

In 1963 Handley Page Ltd and Northrop Norair attempted to design fully laminar
swept wings. Although suction devices had been placed close to the leading edge in
order to prevent crossflow-induced transition, laminar flow could not be maintained.
Turbulence originating at the wing-body junction was swept along the leading edge

14



and produced a turbulent attachment-line boundary layer that contaminated the
upper wing surface. Attachment-line contamination artificially triggered by placing
a trip wire onto the leading edge of a swept wing can be seen in the photograph
in Figure 1.4. Pfenninger and Bacon (1969) as well as Gaster (1967) investigated
this phenomenon, but, as Poll (1978) remarks with a touch of bitterness, “despite
the fact that the contamination mechanism was of obvious practical significance the
work ceased when the respective laminar flow projects were cancelled and the physics
of the transition process was never completely investigated.”

Today, contamination of the attachment-line boundary layer is still not fully
understood; still, significant theoretical progress has been made since 1978. The
most important stability result is due to Hall et al. (1984), who found the incom-
pressible leading-edge boundary layer to be linearly unstable above a critical sweep
angle, corresponding to a Reynolds number Re = 583.1. The least stable eigen-
mode takes the shape of two-dimensional Görtler-Hämmerlin perturbations, which
has been found to hold true also in compressible attachment-line boundary layers
(see Robitaillié-Montané (2005)). Furthermore, Obrist and Schmid (2003b) have
shown, in the context of Hermite polynomial decompositions, that the leading-edge
boundary layer exhibits transient growth phenomena.

Pfenninger and Bacon (1969) demonstrated experimentally that attachment-line
boundary layers support spanwise-travelling, two-dimensional disturbances when the
leading edge is smooth. When a sufficiently thick trip wire is placed perpendicular
to the attachment-line, Poll (1979) found the boundary-layer to become turbulent.
In the presence of strong free-stream turbulence, spanwise-travelling disturbances
are not observed; instead, stationary cross-flow vortices develop across the upper
wing surface, at a moderate distance from the attachment-line.

Indeed, the community today seems to be in a situation similar to the one faced
by Poll in 1978, where the knowledge of (transient) stability properties of the flow
on the wing surface is significantly more advanced than the knowledge of (transient)
stability properties of the attachment-line boundary layer. The goal of the present
PhD thesis is to complement the knowledge of the flow along swept leading edges
by characterizing transient growth phenomena in this configuration.

1.2.3 Control strategies

The turbulent boundary-layer at the surface of the fuselage may enter the attachment-
line boundary-layer at the junction with the wing. To prevent turbulence from
spreading along the entire leading edge it is necessary to isolate the attachment-line
boundary layer from the fuselage’s own boundary layer. Gaster (1965) suggested to
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place a protuberance along the leading edge in the vicinity of the wing-body junc-
tion. When this “Gaster bump” is suitably designed, a stagnation point appears on
the protuberance, and a new, turbulence-free attachment-line boundary layer forms
downstream of the bump. Reneaux (2004) reports that experiments carried out at
ONERA showed that such devices delayed contamination up to Re = 400 instead
of Re = 250 for the smooth leading-edge.

Open-loop control of the attachment-line boundary layer has also been tested
by applying suction at the leading-edge. Flight tests were carried out in 1998 on
the vertical fin of an A-320 equipped with laser-drilled panels, connected to suction
chambers. The gain in total aircraft drag reduction was on the order of 1% as
reported by Joslin (1998) and Reneaux (2004).

More complex time-varying blowing and suction strategies have never been tested
on the attachment-line boundary layer. Although maintenance costs are still pro-
hibitive for active devices to be implemented on commercial airplanes, assessing
active control in numerical experiments could provide an interesting starting point
for the future development of swept leading-edge flow control.

1.3 Outline

In chapter 2 the concepts of optimal energy growth and optimal control are applied
in the context of Görtler-Hämmerlin perturbations. A gradient-based optimization
algorithm is derived directly from the reduced set of equations for the chordwise u−
and the wall-normal v−velocity components. The derivation of the adjoint prob-
lem is described in detail and an exhaustive investigation of the control parameters
that appear in the objective functional, made possible in the context of this one-
dimensional problem, is provided. The present study is based on and complements
previously published work: Corbett and Bottaro (2001a) derived adjoint equations
from the reduced Orr-Sommerfeld system of equations in a similar fashion, but with-
out stating the objective functional gradients. Corbett and Bottaro (2001b), Bewley
and Liu (1998) among others, studied the influence of the objective functional con-
trol parameters on the control efficiency, but an exhaustive parameter study was
lacking to unambiguously determine the optimal set of parameters.

The optimal initial disturbances and the optimal wall-normal blowing and suc-
tion strategy are computed under the Görtler-Hämmerlin assumption. A new phys-
ical mechanism is described that is responsible for large energy growth at low span-
wise wavenumbers. Optimal control is shown to efficiently damp temporal Görtler-
Hämmerlin disturbances. Chapter 2 has been published in the Journal of Fluid
Mechanics (see Guégan et al. (2006)).
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In chapter 3 the restrictive Görtler-Hämmerlin hypothesis is relaxed in order to
find optimal temporal perturbations of arbitrary shape. A direct numerical simula-
tion algorithm similar to that of Obrist (2000) is described. A fringe region technique
has been introduced in order to allow spectral discretization of non-periodic domains,
and caveats of this boundary treatment in the context of adjoint-based optimiza-
tion are discussed. The optimization algorithm that was used in chapter 2 is now
adapted to compute the optimal temporal growth of arbitrary spanwise-periodic
perturbations. Results are compared with the study of Hoepffner et al. (2005),
who computed optimal temporal perturbations in the context of a streaky bound-
ary layer. Discrepancies and similarities between Görtler-Hämmerlin perturbations
and temporal disturbances of arbitrary shape are discussed in light of Guégan et al.
(2006). Chapter 4 has been published in the Journal of Fluid Mechanics (see Guégan
et al. (2007)).

Chapter 4 focuses on optimal spatial disturbances, as opposed to the temporal
analyses of the previous chapters. The spatial framework provides a more accu-
rate description of the spanwise amplification of disturbances originating from the
junction of the wing with the fuselage, as compared to the temporal framework
investigated in chapter 2 and chapter 3. A model problem based on the Ginzburg-
Landau equation is devised in order to validate the parabolization assumption in
the context of the search for optimal disturbances. Then, parabolized spatial per-
turbation equations for swept Hiemenz flow are derived and the adjoint problem is
formulated. Numerical techniques are validated by reproducing the results of An-
dersson et al. (1999), Luchini (2000) and Tumin and Reshotko (2001). Optimal
spatial disturbances are analyzed in section 4.5 and results are compared with the
papers of Andersson et al. (1999) and Luchini (2000).

Chapter 5 summarizes the key findings and conclusions to be drawn from this
study and provides perspectives for future work.
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Chapter 2

Optimal perturbations and
optimal control in the
Görtler-Hämmerlin framework

Preamble - The main purpose of this chapter is to introduce the reader to gradient
optimization techniques. The derivation of the adjoint problem and the computation
of gradients are described in detail. The optimization algorithm is applied to the
search of optimal disturbances and optimal control in the simplified framework of
Görtler-Hämmerlin disturbances.

The Görtler-Hämmerlin assumption can be viewed as the analogue in swept
Hiemenz flow of two-dimensional perturbation assumptions in classical two-dimensional
boundary layers. The wall-normal v and spanwise w perturbation velocity compo-
nents are assumed to be homogeneous in the chordwise x−direction; mass conser-
vation requires that the chordwise u−component increases linearly away from the
attachment-line.

In two-dimensional shear flows the two-dimensional assumption may be justi-
fied by Squire’s theorem according to which the first unstable mode is itself two-
dimensional. In a developing Blasius boundary layer, for instance, the first unstable
mode takes the shape of two-dimensional Tollmien-Schlichting waves. Although
Squire’s theorem does not apply to swept Hiemenz flow, which is three-dimensional,
the most unstable mode takes the shape of a Görtler-Hämmerlin mode. Experiments
by Pfenninger and Bacon (1969) showed that disturbances along the swept leading
edge of a blunt body were essentially two-dimensional when the ambient turbulence
level was low. Thus, in addition to providing a simplified framework within which
gradient optimization techniques may be introduced, the ’two-dimensional’ Görtler-
Hämmerlin assumption is expected to render a trueful picture of early instabilities
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in swept Hiemenz flow.

Optimal energy growth and optimal control in
swept Hiemenz flow

Alan Guégan1, Peter J. Schmid12 and Patrick Huerre1

1Laboratoire d’Hydrodynamique (LadHyX), CNRS – École Polytechnique,
F-91128 Palaiseau, France

2Department of Applied Mathematics, University of Washington, Seattle, WA
98195–2420, USA

Published in the Journal of Fluid Mechanics, vol. 566, pp. 11–45.

Abstract

The objective of the study is first to examine the optimal transient growth of Görtler-
Hämmerlin perturbations in swept Hiemenz flow. This configuration constitutes a
model of the flow in the attachment-line boundary layer at the leading-edge of swept
wings. The optimal blowing and suction at the wall which minimizes the energy of
the optimal perturbations is then determined. An adjoint-based optimization pro-
cedure applicable to both problems is devised, which relies on the maximization or
minimization of a suitable objective functional. The variational analysis is carried
out in the framework of the set of linear partial differential equations governing
the chordwise and wall-normal velocity fluctuations. Energy amplifications of up
to three orders of magnitude are achieved at low spanwise wavenumbers (k ∼ 0.1)
and large sweep Reynolds number (Re ∼ 2000). Optimal perturbations consist of
spanwise travelling chordwise vortices, with a vorticity distribution which is inclined
against the sweep. Transient growth arises from the tilting of the vorticity distribu-
tion by the spanwise shear via a two-dimensional Orr mechanism acting in the basic
flow dividing plane. Two distinct régimes have been identified: for k . 0.25, vortex
dipoles are formed which induce large spanwise perturbation velocities; for k & 0.25,
dipoles are not observed and only the Orr mechanism remains active. The optimal
wall blowing control yields for instance an 80% decrease of the maximum pertur-
bation kinetic energy reached by optimal disturbances at Re = 550 and k = 0.25.
The optimal wall blowing pattern consists of spanwise travelling waves which follow
the naturally occurring vortices and qualitatively act in the same manner as a more
simple constant gain feedback control strategy.
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2.1 Introduction

Fundamental studies of hydrodynamic instabilities in boundary layers have been
motivated by the need to suppress or delay transition to turbulence over aircraft
lift-generating devices. Most classical investigations have been concerned with the
boundary layers on the upper and lower surfaces when the flow may be regarded
as weakly non parallel and disturbances governed by the Orr-Sommerfeld equation
or any of its extensions. Relatively little attention has been given to the highly
three-dimensional region at the leading-edge. The main objective of the present
study is to determine the optimal energy growth sustainable by disturbances in the
swept-attachment line boundary layer otherwise known as swept Hiemenz flow. An
optimal control strategy based on blowing and suction at the wall is then devised in
order to quench these perturbations.

Early experimental studies of swept wing attachment-line boundary layers (Gre-
gory 1960, Gaster (1967), Cumpsty and Head (1969), Pfenninger and Bacon (1969),
Pfenninger (1977)) were motivated by the need to keep the flow in this region lam-
inar, in order to prevent premature transition downstream over the wing surface.
Cross-flow instabilities appearing away from the attachment line were then thought
to be responsible for early transition. The reader is referred to Koch et al. (2000)
for a recent thoretical and numerical study of crossflow vortices in three-dimensional
boundary layers and their secondary instability. Poll (1979) emphasized that insta-
bilities at the attachment line, intrinsic to the leading-edge boundary layer, could
also play a significant role in this process. The present investigation focuses on the
naturally occurring instability originating at the attachment-line and its control.

A satisfactory model of the steady flow near the attachment-line is given by
the Hiemenz (1911) stagnation point solution to which is superimposed a spanwise
velocity component. The linear instability properties of this highly non-parallel
basic flow have been the subject of conflicting statements regarding the assumed
behavior of fluctuations outside the boundary layer. The main conclusions may be
summarized as follows.

Under the so-called Görtler (1955)-Hämmerlin (1955) separation of variables
assumption (2.5) and exponential decay of the perturbations in the wall-normal di-
rection, Hiemenz stagnation flow without sweep was conclusively demonstrated to
be linearly stable by Wilson and Gladwell (1978). Lyell and Huerre (1985) showed
that the previously suspected centrifugal instability mechanism was indeed present
but too weak to counteract the stabilizing effect of viscous diffusion. They further
concluded to the possibility of a finite-amplitude instability on the basis of a highly
truncated Galerkin model of the nonlinear dynamics. The direct numerical simula-
tions of Spalart (1988) failed to detect any evidence for such a nonlinear instability
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in pure Hiemenz flow. The restrictive Görtler-Hämmerlin assumption was first re-
laxed in the study of Brattkus and Davis (1991) by expanding perturbations in
series of Hermite polynomials along the chordwise direction. Algebraically decaying
disturbances in the wall-normal direction, which are associated to the continuous
spectrum, were shown by Dhanak and Stuart (1995) to arise from fluctuations forced
from outside the boundary layer.

The presence of sweep significantly modifies the above results. According to Hall,
Malik & Poll (1984), who led a study under the Görtler-Hämmerlin assumption,
there exists a critical value Rec = 583.1 of the sweep Reynolds number (defined in
section 2.2) above which swept Hiemenz flow becomes linearly unstable. Sufficiently
strong steady wall suction makes the flow stable while blowing has a destabilizing
effect. Furthermore, a weakly nonlinear analysis (Hall and Malik (1986)) reveals
the bifurcation to be subcritical close to Rec. This result is in qualitative agreement
with the direct numerical simulations of Spalart (1988) for swept Hiemenz flow where
subcritical turbulent states were observed below Rec. Lin and Malik (1996), The-
ofilis et al. (2003) and Obrist and Schmid (2003a) have extended the linear analysis
to more general chordwise polynomial expansions in the same spirit as Brattkus and
Davis (1991). The Görtler-Hämmerlin modes are then found to be the least stable.
According to the direct numerical simulations of Joslin (1995), the nonlinear spa-
tial evolution of two-dimensional and three-dimensional disturbances is in line with
the temporal instability results of Hall et al. (1986). Swept Hiemenz flow indeed
becomes linearly unstable at sufficiently large Reynolds numbers and wall suction
strongly stabilizes the flow. However, no definite evidence for the subcritical insta-
bility was found. Theofilis (1998) carried out a comprehensive comparison between
simulations of the full nonlinear equations and the linear instability analysis both
under the Görtler-Hämmerlin separation of variable assumption. Excellent agree-
ment was obtained in the supercritical range. Again, no finite amplitude subcritical
instability was clearly exhibited, which was ascribed to the restrictive nature of the
Görtler-Hämmerlin assumption.

It is now well established that classical linear instability analyses need to be
complemented with a study of the transient growth properties of non-modal pertur-
bations (Gustavsson (1991), Butler and Farrell (1992), Trefethen et al. (1993)). For
a general account of the underlying theoretical framework, the reader is referred to
the book of Schmid and Henningson (2001). In the specific context of swept Hiemenz
flow, Obrist and Schmid (2003b) demonstrated that, within the limitations of a fi-
nite eigenfunction basis, Görtler-Hämmerlin perturbations could support an energy
amplification of the order of 100 in the linearly stable régime, both at low and high
spanwise wavenumbers, provided that the Reynolds number is large enough. The
investigation was carried out by resorting to a standard Singular Value Decompo-
sition method applied to the gain matrix over a finite time interval. In the present
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study, the issue of transient temporal growth is examined anew by implementing
an adjoint-based optimization formulation (see, for instance, Gunzburger 1997) in
order to determine the perturbation of maximum growth. A similar methodology
has been used in Andersson et al. (1999) and Luchini (2000) to examine optimal
streamwise amplification in the Blasius boundary layer. The analysis developed in
section 2.3 is inspired by the procedure proposed by Corbett and Bottaro (2001b)
to identify optimal disturbances in swept boundary layers in a temporal setting.

For an assessment of the current status of laminar flow control technology in an
aeronautical context, the reader is referred to the comprehensive review of Joslin
(1998) and the book of Gad-el Hak (2000). At a more fundamental level, applica-
tions of control theory (Abergel and Témam (1990)) to the delay of boundary layer
transition have recently led to very encouraging results. For general accounts and
reviews of the applications of control theory to transitional or turbulent flows, the
reader is referred to Gunzburger (1997), Lumley and Blossey (1998) and Bewley
(2001) among others. We restrict here the discussion to studies that are directly
relevant to this investigation, namely optimal control methodologies involving ad-
joint formulations in a continuous setting and applied to boundary layer transition.
More specifically, the optimal control problem for perturbations within the flow is
viewed as the minimization of an objective functional involving a measure of the
perturbation energy, under the constraint that disturbances satisfy for instance the
linear Navier-Stokes equations (Gunzburger 1997, Joslin et al. (1997)). For that
purpose, an iterative method based on the calculation of the gradient of the ob-
jective functional with respect to the control variables, e.g. wall blowing/suction,
is implemented in order to reach a local minimum in function space. The gradi-
ent vector of the objective functional may conveniently be expressed in terms of
an adjoint state which is solution of an adjoint system of equations and boundary
conditions. Such a formulation is carried out in the context of continuous linear in-
stability partial differential equations. Discretization is only performed a posteriori
in order to effectively solve numerically the direct and adjoint systems. Other for-
mulations, which are not considered here, involve instead an a priori discretization
before resorting to an optimization scheme. Such approaches are appropriate when
the evaluation of the gradient of th objective functional in terms of the adjoint is
numerically delicate.

Another issue concerns the so-called off-line versus on-line formulation of control
problems. In the present investigation the optimization is performed off-line, i.e. the
optimal control is determined once and for all for a given initial state. By contrast,
on-line formulations rely on the determination of feedback laws. The procedure then
often involves solving a Riccati equation, thereby leading to a gain matrix directly
relating the control to the state of the system, as extensively reviewed in Bewley
(2001). Such approaches lead to efficient feedback control laws in plane channel
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flow, as demonstrated for a single Fourier mode in two dimensions by Joshi et al.
(1997) and in three dimensions by Bewley and Liu (1998). Högberg et al. (2003)
successfully generalized the procedure to arbitrary initial disturbances in physical
space. A similar framework has been adopted by Högberg and Henningson (2002)
to control various unstable perturbations in spatially-evolving three dimensional
boundary layers.

In the continuous framework and following the general adjoint-based optimiza-
tion methodology put forward by Joslin et al. (1997), Cathalifaud and Luchini
(2000) determined the optimal streamwise distribution of wall blowing and suction
which minimizes the perturbation energy of the incoming disturbance of maximum
growth in two-dimensional boundary layers on a flat or curved plate. Walther et al.
(2001) implemented a similar formulation to compute the optimal wall transpira-
tion capable of quenching the streamwise development of two-dimensional Tollmien-
Schlichting waves in a spatially developing boundary layer. The evolution of insta-
bility waves was assumed to be governed by the linear parabolic stability equations.
Several orders of magnitude reductions in perturbation energy were achieved. A
similar methodology has been applied by Pralits et al. (2002) to control the growth
of various classes of disturbances in three-dimensional boundary layers. A sophis-
ticated generalization of this type of approach has been proposed by Bewley et al.
(2001) in order to control turbulence in direct numerical simulations of plane channel
flow at Reynolds numbers of 1712 and 3247. A so-called ’receding-horizon’ predictive
control strategy was devised, in which the optimal blowing/suction control sequence
is calculated on a given short time horizon, the flow being frozen. This short-time
optimal control is then applied to advance the flow during a fraction of this time
horizon. This process is repeated until the flow is fully relaminarized. The optimal
control framework has also been applied in a linear setting by Corbett and Bot-
taro (2001a) to attenuate via unsteady suction and blowing the optimal temporally
evolving perturbation in swept boundary layers calculated by Corbett and Bottaro
(2001b). The perturbation kinetic energy amplification was shown to be reduced by
an order of magnitude in accelerated boundary layers.

The present investigation differs from previous optimal control analyses in the
following aspects. The optimization scheme, used for the determination of both the
optimal disturbance and the optimal suction/blowing control sequence is developed
for a highly non-parallel basic flow, instead of the strictly parallel plane Poiseuille
flow or weakly non-parallel boundary layers. Disturbances are assumed to satisfy the
Görtler-Hämmerlin separation of variable assumption (2.5). As in previous studies
discussed above, the optimization procedure is carried out in a continuous setting
on a reduced set of linear partial differential equations governing the evolution of
the chordwise (u) and wall-normal (v) velocity perturbations, in the same spirit as
for instance Corbett & Bottaro (2001a,b). However, it is argued that the reduc-
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tion to a u− v formulation requires a non-trivial adaptation of existing approaches,
namely, the introduction of a suitable set of scalar products. As a result, the dif-
ferent components of the gradient of the objective functional are directly accessible
in a reduced u− v setting. Gradient algorithms are then readily available to home
in on a local optimum of the objective function. Finally, a new physical mecha-
nism responsible for the growth of non-modal perturbations is identified which also
provides a qualitative explanation for the efficiency of the control.

The paper is organized as follows. The basic flow and the Görtler-Hämmerlin
linear perturbation model are introduced and defined in section 2.2. The optimiza-
tion approach common to the optimal perturbation and optimal control analyses is
detailed in section 2.3. Application to swept Hiemenz flow and numerical issues are
addressed in section 2.4. Section 2.5 provides the underlying physical mechanisms
at low and high spanwise wavenumbers respectively. Optimal control is examined in
section 2.6 and compared with a constant gain feedback control law reminiscent of
opposition control. A summary of the main findings is given in section 2.7 and addi-
tional remarks are made regarding the particular features of the growth mechanism,
as compared to its classical boundary layer counterpart.

2.2 Linear perturbation model

As a uniform flow impinges on the swept leading edge of an airfoil (Figure 2.1),
or any blunt body, an attachment-line boundary layer forms in the vicinity of the
stagnation line. In the neighborhood of the stagnation line, the leading edge can
be modeled locally by a flat wall perpendicular to the main stream. Cartesian co-
ordinates (x, y, z) are then introduced where the normal coordinate direction y is
perpendicular to the wall and points upstream, z and x denote the spanwise and
chordwise direction, respectively (Figure 2.1), and the base flow divides symmet-
rically over each side of the (y, z) dividing plane. This model, known as swept
Hiemenz flow, provides a widely accepted description of the steady flow near the
stagnation region.

The Reynolds number of the flow is based on the free stream sweep velocity W∞,
the kinematic viscosity ν and the length scale δ = (ν/S)

1
2 , with S = (dU/dx)y→∞

denoting the strain rate of the irrotational outer flow and U the chordwise velocity
of the base flow. The Reynolds number thus defined

Re =
W∞δ
ν

(2.1)

represents a measure of the sweep angle where Re = 0 corresponds to unswept
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Figure 2.1: Sketch of the leading-edge boundary layer forming near the stagnation
region of a swept wing. The inset further simplifies the flow geometry by neglecting
curvature effects of the leading edge. Both the basic profile and streamlines are
displayed.

Hiemenz flow.

The base flow (U, V,W ) is assumed to be steady and independent of the spanwise
z coordinate. Following Hiemenz (1911), the chordwise velocity U is taken to be
linearly dependent on x, while the normal velocity V depends on y only, as does the
spanwise velocity W. Under these assumptions, the base flow takes the form

U = xRe−1F ′(y) , (2.2a)

V = −Re−1F (y) , (2.2b)

W = W (y) , (2.2c)

where the prime denotes differentiation with respect to y, and F (y) and W (y) satisfy
the ordinary differential equations

F ′′′ − (F ′)2 + FF ′′ + 1 = 0 , (2.3a)

FW ′ +W ′′ = 0 , (2.3b)

with the boundary conditions
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F (0) = F ′(0) = W (0) = 0, (2.4a)

F ′(∞) = 1, W (∞) = 1. (2.4b)

Swept Hiemenz flow constitutes an exact solution of the steady incompressible
Navier-Stokes equations; its general shape and streamlines are sketched in Figure 2.1.
For further reference, the thickness of the boundary layer based on the spanwise
velocity profile is 3.05 in non-dimensional units. This model is valid only close to
the attachment line since the chordwise velocity component becomes unbounded for
increasing x. Despite these limitations, the above model is in good agreement with
experiments (Gaster (1967), Poll 1979).

In the following analysis we further assume the perturbations (û, v̂, ŵ, p̂) of
the basic flow to display the same chordwise structure, i.e. û scales linearly in
the chordwise x direction and v̂ and ŵ are independent of x. This assumption is
commonly referred to as the Görtler (1955)-Hämmerlin (1955) assumption. The
total velocity and pressure fields therefore read




u
v
w
p


 =




xRe−1F ′(y)
−Re−1F (y)

W (y)
P (x, y)


 +




xû(y, z, t)
v̂(y, z, t)
ŵ(y, z, t)
p̂(x, y, z, t)


 . (2.5)

Translational invariance in the spanwise z−direction allows to expand perturbations
into Fourier series in z. The Fourier coefficients (ǔ, v̌, w̌, p̌) corresponding to a given
spanwise wavenumber k satisfy the linear system of perturbation equations

(
∂

∂t
− F

∂

∂y
−∆ + ikReW + 2F ′

)
ǔ+ F ′′v̌ = 0, (2.6a)

(
∂

∂t
− F

∂

∂y
−∆ + ikReW − F ′

)
v̌ +

∂p̌

∂y
= 0, (2.6b)

(
∂

∂t
− F

∂

∂y
−∆ + ikReW

)
w̌ +ReW ′v̌ + ikp̌ = 0, (2.6c)

ǔ+
∂v̌

∂y
+ ikw̌ = 0, (2.6d)

with ∆ = ∂2/∂y2 − k2.
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The above equations (2.6) are referred to as the direct system. The no-slip
condition at the wall and the requirement that perturbations vanish for large y
imply the following direct boundary conditions:

ǔ = w̌ = 0 at y = 0 , (2.7a)

v̌ = v̌w(t) at y = 0 , (2.7b)

ǔ = v̌ = w̌ = 0 at y = ∞ , (2.7c)

where v̌w(t) stands for the imposed wall-normal blowing/suction velocity in the
flow control context. When the optimal perturbation problem is considered, it is
understood that v̂w(t) = 0.

Upon eliminating the pressure and spanwise velocity perturbations, the system
(2.6) reduces to

A ∂

∂t

[
v̌
ǔ

]
+ B

[
v̌
ǔ

]
= 0, (2.8)

where the y−differential operators A and B stand for

A =

[
∆ 0
0 1

]
, (2.9a)

B =




(−F ′ − F ∂
∂y
−∆ + ikReW )∆ −2F ′′ − 2F ′ ∂

∂y

− F ′′′ − F ′′ ∂
∂y
− ikReW ′′

F ′′ −F ∂
∂y
−∆ + ikReW + 2F ′


 ,(2.9b)

with the boundary conditions

ǔ =
∂v̌

∂y
= 0 at y = 0, (2.10a)

v̌ = v̌w(t) at y = 0, (2.10b)

ǔ = v̌ =
∂v̌

∂y
= 0 at y = ∞. (2.10c)

The linear stability properties of (2.8)-(2.10) have previously been studied by Hall et
al. (1984). The possibility of non-modal transient energy growth has been demon-
strated in Obrist and Schmid (2003b).
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Quantity Symbol Meaning
kinetic energy of the perturbations at time t integrated over

E(t) a box centered about the attachment-line,

E(t) =
√

3
2

∫ √3

−√3

∫∞
0

∫ 1/k
0 (x2u∗u +

v∗v + w∗w) dxdydz , i.e.
E(t) =

∫∞
0 (u∗u + v∗v + w∗w) dy

Energy Emax maximum kinetic energy reached by the overall optimal
perturbation

Gmax maximum kinetic energy growth sustainable by a combination
of eigenfunctions as computed by Obrist and Schmid (2003b)

Tp optimization time used to compute finite-time optimal
perturbations

Time Tc optimization time used to compute the optimal control
T optimization time, Tp or Tc, depending on the context
Tmax time when the energy maximum Emax is reached

Table 2.1: Nomenclature for energy and time quantities.

In what follows the ˇ sign is omitted. The state vector and the applied wall
blowing/suction are denoted q = (v, u)T and qw = (vw, uw = 0)T respectively.

2.3 Elements of optimization theory

Two general goals are pursued in this study: first, the initial perturbation that
results in a maximum energy growth over a specified time interval [0, Tp] is deter-
mined; second, the optimal wall blowing and suction sequence applied over a given
time interval [0, Tc] is sought so that the energy growth of this initial perturbation
is minimized. In general, the time interval Tp may differ from Tc. We use the con-
vention that T, with no subscript, can equally represent Tp or Tc. For the sake of
clarity, Table 2.1 summarizes the principal notations.

The general approach is fairly straightforward (Gunzburger 1997, Bewley 2001
among others): given the governing linear equations (2.8)-(2.10) and a quantified
objective, standard optimization techniques are employed to find the optimal per-
turbation, or the optimal control wall-normal blowing to suppress the growth of
perturbations. Optimization variables – such as, in our case, the initial condition
q(y, 0) or the blowing/suction time series qw(t) – are iteratively improved until the
stated objective – such as maximum or minimum energy growth over a finite time
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span – is achieved. Gradient-based optimization techniques (Press et al. (1992))
have been widely used for this purpose, as they are very efficient and applicable to
large-scale systems. In general, gradient-based optimization algorithms require the
following three essential components: (i) an objective functional I that provides a
performance measure with respect to the adjustable optimization variables; (ii) an
algorithm to compute the gradient of the objective functional with respect to the
optimization variables; (iii) a technique to improve the previous set of optimization
variables based on the objective functional gradient.

An iterative algorithm based on these three steps leads, when carefully designed,
to a locally optimal set of optimization variables. The present section provides
the foundations underlying the design of the optimization procedure. Andersson et
al. (1999) and Corbett and Bottaro (2001b) provided a very convenient framework
which is used as a starting point for the analysis. However, significant extensions and
improvements proved to be necessary in order to arrive at a workable formulation,
as outlined below.

2.3.1 Objective functional and scalar products

The objective functional represents a measure of how well the objectives of the
optimization procedure have been attained. In our case the functional

I =
E(T )

E(0)
+
α2

2

1

T

∫ T

0

E(t)dt+
l2

2
¿ qw, qw À (2.11)

is used. The scalar product ¿ ., .À appearing in (2.11) is defined as

¿ q1, q2 À=
1

T

∫ T

0

q∗1M♦q2 dt+ c.c., (2.12)

where the symbol c.c. denotes the complex conjugate. The scalar product ¿
qw, qw À is then a suitably weighted measure of the wall-blowing energy, as fur-
ther discussed below. Similarly, the scalar product

[[q1, q2]] =

∫ ∞

0

q∗1M¤q2 dy + c.c. (2.13)

is introduced so that the perturbation kinetic energy at time t defined in Table 2.1
may be expressed as E(t) = [[q(y, t), q(y, t)]], i.e. solely in terms of the velocity
components u and v.
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The linear differential operators M¤ and M♦ appearing in the definitions of the
perturbation energy and the wall blowing energy via the scalar products (2.12) and
(2.13) arise from the following considerations: by taking advantage of the conti-
nuity equation and the boundary conditions (2.10), one finds through successive
integrations by parts applied to E(t) defined in Table 2.1 that

M¤ = − 1

k2

[
∆ ∂

∂y

− ∂
∂y

−1− k2

]
. (2.14)

The operator M♦ appearing in (2.12) is chosen to be

M♦ =

[
s♦(t) 0

0 0

]
, (2.15)

where the switch function s♦(t) is a suitably chosen scalar function. If s♦ were
set to unity between t = 0 and t = Tc, the control energy appearing in (2.11)

would simply be the kinetic energy ¿ qw, qw À=
1

Tc

∫ Tc

0
v∗wvw dt of the wall-normal

velocity vw. However, strong blowing at t = 0 or t = Tc results in numerical
difficulties. By setting s♦(t) to take very high values at both ends of the control
time interval (Corbett & Bottaro 2001b), strong blowing or suction at t = 0 or Tc is
automatically discarded by the optimization algorithm since their weighted blowing
energy ¿ qw, qw À is too high. In the present computations, a function of the form
s♦(t) = 1/(1 − exp[−t2] − exp[−(Tc − t)2]) has been chosen, which is nearly unity
for most of the control time interval [0, Tc], but tends to infinity at both end points.

As outlined in section 2.3.2, the optimization procedure requires the introduction
of Lagrange multipliers, or so-called adjoint variables q̃(y, t), q̃0(y) and q̃w(t), and
three additional scalar products

(q̃1, q̃2) =

∫ T

0

∫ ∞

0

q̃∗1.q̃2 dydt+ c.c. , (2.16a)

[q̃1, q̃2] =

∫ ∞

0

q̃∗1.q̃2 dy + c.c. , (2.16b)

< q̃1, q̃2 > =

∫ T

0

q̃∗1.q̃2 dt+ c.c. . (2.16c)

A single vector space Ω = q × q0 × qw × q̃ × q̃0 × q̃w including all the direct and
adjoint variables may naturally be introduced. A scalar product combining all the
previous ones
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{Q1, Q2} = (q1, q2) + [[q1
0, q

2
0]]+ ¿ q1

w, q
2
w À +(q̃1, q̃2) + [q̃1

0, q̃
2
0]+ < q̃1

w, q̃
2
w > (2.17)

is then conveniently defined for arbitrary elements Qi = (qi, qi
0, q

i
w, q̃

i, q̃i
0, q̃

i
w) of Ω. In

section 2.3.2 it is demonstrated that the six scalar products (2.12), (2.13), (2.16a),
(2.16b), (2.16c) and (2.17) are indeed necessary to correctly formulate the optimiza-
tion procedure in the reduced u− v setting.

The form of the objective functional (2.11) has been suggested by Corbett &
Bottaro (2001b), among others. The first term E(T )/E(0) stands for the energy am-
plification between t = 0 and T . In searching for optimal initial perturbations, one
tries to maximize this term; by contrast, in searching for optimal control strategies,
the objective is to minimize it. One should notice that, as the optimal perturbation
is the initial disturbance, the energy of which increases the most between t = 0
and Tp, the control parameters α and l are set to zero when computing the opti-
mal perturbation. The objective functional then reduces to the energy amplification
term.

The control problem may similarly be regarded as the minimization of the energy
ratio E(T )/E(0) for a given initial condition. This procedure does not necessarily
yield acceptable results since it does not take into consideration the energy evolution
over the full time interval. Substantial energy levels may still be reached between
t = 0 and t = Tc (Corbett & Bottaro 2001b) unless one also includes the term
α2

2

1

T

∫ T

0
E(t)dt which acts as a penalty for excessive transient energy growth within

the optimization interval. In the sequel the quantity
1

T

∫ T

0
E(t)dt is referred to as

the mean energy.

It is also important to include the third term
l2

2
¿ qw, qw À in (2.11), which

is a measure of the control cost, in order to avoid excessively strong blowing. The
penalty parameter l allows us to set the ’price’ of any control effort by weighing the
control energy ¿ qw, qw À within the objective functional.

The two penalty parameters α and l thus aid in refining and tuning the objective
functional by suitably weighing each of its terms.

2.3.2 Lagrangian formulation

To compute the gradient of I both with respect to the initial condition q0 and
the wall-normal blowing sequence qw, a Lagrangian-based approach (Gunzburger
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1997) is used. This method has the advantage to not only provide the optimality
conditions (Corbett & Bottaro 2001a), but also an expression for the gradient of the
objective functional I.

Following Andersson et al. (1999), Corbett & Bottaro (2001a,b) and Pralits et
al. (2002) it is convenient to rewrite the linear system (2.8)-(2.10) governing the
reduced state vector q = (v, u)T in the form

reduced system of equations F (q) =
∂

∂t
(Ai

∂iq

∂yi
) + Bj

∂jq

∂yj
= 0,(2.18a)

initial conditions G(q, q0) = q(y, 0)− q0(y) = 0, (2.18b)

boundary conditions H(q, qw) = q(0, t)− qw(t) = 0, (2.18c)

where the Einstein summation convention has been introduced to yield a compact
as well as general form for the partial differential equations. The y-dependent ma-
trices Ai and Bj give the respective weights on each of the derivatives ∂i./∂yi and
∂j./∂yj applied to the variables u, v. In the direct problem (2.8)-(2.10) the sub-
and superscripts i and j range from zero to two and from zero to four, respectively.
In addition, it is further assumed that the boundary conditions at infinity, as well
as the remaining boundary conditions at the wall are satisfied.

The linear system (2.18), can be viewed as a set of equality constraints associ-
ated with the optimization problem for the objective functional I. For sufficiently
smooth functions F , G, H, the constrained problem can be transformed into an
unconstrained one by introducing the Lagrangian

L(q, q0, qw, q̃, q̃0, q̃w) = I − (q̃, F (q))− [q̃0, G(q, q0)]− < q̃w, H(q, qw) > . (2.19)

The Lagrange multipliers q̃ = (ṽ, ũ)T , q̃0 = (ṽ0, ũ0)
T , q̃w = (ṽw, ũw)T are referred to

as the adjoint variables. The Lagrangian (2.19) is defined even when the constraints
are not enforced. For this reason, the variables q, q0, qw, q̃, q̃0, q̃w can be considered
as mutually independent.

The Lagrangian L is assumed to be differentiable on the vector space Ω intro-
duced in section 2.3.1 and may then have stationary points where all its derivatives
are equal to zero. We will see next that at these stationary points the system of
equations (2.18) is satisfied, and the objective functional I is stationary. In other
words, the solutions of the optimization problem lie at the stationary points of the
Lagrangian. At such points the components of the vector Q = {q, q0, qw, q̃, q̃0, q̃w}
satisfy equations that are referred to as the optimality conditions.
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The advantage of the Lagrangian-based formulation is that L is defined on the
entire vector space Ω whereas I is only defined on the subdomain Ωc of Ω, where the
system (2.18) is satisfied. An analytic expression for the gradient of the Lagrangian
is available at every point in Ω, from which an analytic expression of the gradient
of I on Ωc can be derived. This gradient information is then used to implement the
main step in the gradient-based optimization algorithm.

2.3.3 Gradient of the objective functional

The Gateau differential dL of the Lagrangian evaluated at point Q is defined as

dL|Q(δQ) = lim
ε→0

L(Q+ εδQ)− L(Q)

ε
. (2.20)

Assuming that L is Fréchet-differentiable the gradient of the Lagrangian at point
Q, denoted ∇L(Q), is such that for any vector δQ the following expression holds :

{∇L(Q), δQ} = dL|Q(δQ) , (2.21)

with the scalar product introduced in (2.17). The projections of ∇L(Q) onto the
subspaces span{q, 0, 0, 0, 0, 0}, span{0, q0, 0, 0, 0, 0}, etc. are denoted by the more
convenient symbols ∇qL, ∇q0L, . . . and referred to as either “ the q, q0, etc. com-
ponent of the gradient” or “the gradient with respect to q, q0, etc.”

The common procedure in flow control (Gunzburger 1997, Andersson et al. 1999,
Corbett & Bottaro 2001a,b and Pralits et al. 2002) is to compute, first, the gradients
of the Lagrangian with respect to the adjoint variables q̃, q̃0, q̃w, and, second, the
gradient with respect to the flow field q. From these calculations, one can recover the
direct and adjoint systems, as well as the direct and adjoint boundary conditions.
The gradients of the Lagrangian with respect to the control variables q0 and qw,
i.e., the initial perturbation and the wall blowing/suction velocity, are computed
last and yield analytic expressions for the gradients of the objective functional with
respect to q0 and qw.

Differentiating (2.19) with respect to the adjoint variables yields

(∇q̃L(Q), δq̃) = −(δq̃, F (q)), (2.22a)

[∇q̃0L(Q), δq̃0] = −[δq̃0, G(q, q0)], (2.22b)

< ∇q̃wL(Q), δq̃w > = − < δq̃w, H(q, qw) > . (2.22c)

34



At the stationary points of the Lagrangian L all three gradients are by definition
equal to zero. As the variational terms δq̃, δq̃0, δq̃w may be chosen arbitrarily, F ,
G, and H necessarily have to vanish thus satisfying the direct system of equations
(2.18).

Differentiating (2.19) with respect to the control qw yields

¿ ∇qwL(Q), δqw À= l2 ¿ qw, δqw À + < q̃w, δqw > . (2.23)

Bearing in mind the definitions (2.12) and (2.16c) of the scalar products ¿ ., . À
and < ., . >, we may write

< q̃w, δqw >=¿ q̃w,M
−1
♦ δqw À=¿M−1

♦ q̃w, δqw À, (2.24)

where M−1
♦ denotes the matrix

[
(1/s♦) 0

0 0

]
. Equation (2.23) may then be rewritten

as

¿ ∇qwL(Q), δqw À= l2 ¿ qw, δqw À + ¿M−1
♦ q̃w, δqw À . (2.25)

This expression has to hold true for any δqw which entails

∇qwL(Q) = l2qw +M−1
♦ q̃w. (2.26)

At the stationary points of L, the gradient ∇qwL vanishes, thereby yielding the first
optimality condition

l2qw +M−1
♦ q̃w = 0. (2.27)

Differentiation of (2.19) with respect to the initial perturbation q0 leads to

[[∇q0L(Q), δq0]] = −2
E(T )

E(0)2
[[q0, δq0]] + [q̃0, δq0], (2.28)

which, according to definitions (2.13) and (2.16b), is equivalent to

[[∇q0L(Q), δq0]] = −2
E(T )

E(0)2
[[q0, δq0]] + [[M−1

¤ q̃0, δq0]], (2.29)
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where M−1
¤ is the inverse of the matrix differential operator M¤. The gradient of

the Lagrangian with respect to the initial perturbation is then

∇q0L(Q) = −2
E(T )

E(0)2
q0 +M−1

¤ q̃0, (2.30)

and the second optimality condition readily follows:

−2
E(T )

E(0)2
q0 +M−1

¤ q̃0 = 0. (2.31)

There remains to calculate the derivative of L with respect to the direct state
variable q. The procedure is straightforward but algebraically involved. Only the
final result is given here. At the stationary points of the Lagrangian L, the gradient
∇qL vanishes and the adjoint variables are found, through successive integrations
by parts, to satisfy

(−1)i+1∂
i+1(A∗i q̃)
∂yi∂t

+ (−1)j
∂j(B∗

j q̃)

∂yj
− α2M−1

¤ q = 0, (2.32)

with the adjoint boundary conditions

ṽ = ũ =
∂ṽ

∂y
= 0 at y = 0,∞, (2.33)

and the adjoint terminal condition

(−1)i∂
i(A∗i q̃)
∂yi

(T ) =
2

E(0)
M¤q(T ). (2.34)

The ∗ superscript applied to a matrix stands for its conjugate transpose. The adjoint
system (2.32), (2.33) is similar to the direct system but it is only well-posed if it is
integrated backward in time. For a nonzero parameter α, a forcing term involving
the direct state vector q appears in equation (2.32).

The above integrations by parts further yield the following expressions for q̃w
and q̃0 in terms of the adjoint variable q̃ evaluated at y = 0 and t = 0:
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q̃w = (−1)j−1
∂j−1(B∗

j q̃)

∂yj−1
(y = 0) + (−1)i∂

i(A∗i q̃)
∂yi−1∂t

(y = 0), (2.35a)

q̃0 = (−1)i∂
i(A∗i q̃)
∂yi

(t = 0). (2.35b)

Substitution of (2.35a) and (2.35b) into (2.26) and (2.30) leads to the final equations
for the gradients with respect to the control variable qw and the initial perturbation
q0 in terms of the adjoint field q̃:

∇qwL(Q) = l2qw +M−1
♦

(
(−1)j−1

∂j−1(B∗
j q̃)

∂yj−1
(y=0) + (−1)i∂

i(A∗i q̃)
∂yi−1∂t

(y=0)

)
, (2.36a)

∇q0L(Q) = (−1)iM¤
−1∂

i(A∗i q̃)
∂yi

(t = 0)− 2
E(T )

E(0)2
q0. (2.36b)

The gradients of the Lagrangian with respect to the initial disturbance and with
respect to the wall-normal blowing/suction sequence are therefore given as explicit
functions of the direct variables q, q0, qw and the adjoint field q̃ at t = 0. In the
constrained subspace Ωc where equations (2.18b,c) are satisfied, the gradient of the
Lagrangian simply reduces to

∇q0L(Q) = ∇q0I(Q), (2.37a)

∇qwL(Q) = ∇qwI(Q). (2.37b)

The local shape of the objective functional I is thus the same as the shape of the
Lagrangian L in the constrained space Ωc. In particular, at the points of Ωc where
the objective functional is maximal or minimal, the gradient ∇L of the Lagrangian
and the gradient ∇I of the objective functional are identically zero. The solutions
of the optimization problem thus lie at the stationary points of the Lagrangian.

Knowledge of the gradient of the objective functional for any given value of q0
and qw forms the basis of the numerical optimization algorithm. The local direction
of steepest ascent/descent of the objective functional with respect to q0 or qw is used
to iteratively improve upon a guess value q0

0 or q0
w: if the optimal perturbation is

sought, one has to explore the constrained space ’uphill’ along the direction defined
by ∇q0I; if an optimal control qw is sought, the minimum of I is approached by
exploring the constrained space ’downhill’ along the direction of steepest descent
given by −∇qwI.
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2.3.4 Optimization procedure

The optimal control procedure is detailed here. The algorithm is based on the
gradient information given in the previous section. The control is only applied
during the time interval [0, Tc] and the goal is to minimize the objective functional
(2.11) with T = Tc. The gradient-based optimization algorithm to minimize I
improves iteratively the wall-blowing sequence qk

w at each iteration k, by modifying
it along a well-chosen direction of descent ∇k

descI.

The simplest choice is to proceed along the gradient of I, by using ∇k
descI =

−∇k
qw
I; this direction should lead, at least locally, to the strongest decrease in the

objective functional. The drawback of such a steepest descent technique is that the
information used is only local, even though, after a few iterations, a more global
picture of the objective functional emerges. Conjugate gradient techniques, which
take into account the directions of descent evaluated in previous steps (Greenbaum
(1997)), typically increase the convergence rate of the algorithm at a very low addi-
tional computational cost; in many cases they are necessary to ensure convergence
of the procedure. The optimization algorithm is summarized in Table 2.2.

2.4 Application to swept Hiemenz flow and nu-

merical implementation

By gathering the results of the previous section, the adjoint system associated to
the direct system (2.8)-(2.10) may be written as:

Ã
∂

∂t

[
ṽ
ũ

]
+ B̃

[
ṽ
ũ

]
− α2

2
M−1

¤

[
v
u

]
= 0, (2.38)

where the adjoint operators Ã and B̃ are

Ã =

[
∆ 0
0 1

]
, (2.39a)

B̃ =




(−F ∂
∂y

+ ∆ + ikReW )∆

− 2F ′ ∂2

∂y2 + 2(ikReW ′−F ′′) ∂
∂y

−F ′′

−2F ′ ∂
∂y

(−F ∂
∂y

+ ∆ + ikReW − 3F ′)


 , (2.39b)
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• 1. Start from a guess value q0
w(t) for the temporal evolution of

the blowing/suction velocity
’No blowing’ is an acceptable guess value for the control since it is com-
patible with the wall-normal velocity boundary condition for the initial
perturbation.

• 2. Solve the direct problem (2.8)-(2.10)
Using standard numerical techniques the direct problem is solved forward
in time from t = 0 to t = Tc with initial condition q0(y) and wall boundary
condition qk

w(t) for the (k + 1)th optimization step.

• 3. Compute the terminal condition q̃k(Tc) for the adjoint field
using equation (2.34)
Solving (2.34) requires the integration of an ordinary differential equation
subject to the adjoint boundary conditions (2.33).

• 4. Solve the adjoint problem (2.32)-(2.33)
The adjoint problem has to be solved backward in time from t = Tc to
t = 0 starting with the terminal value q̃k(Tc) from step 3.

• 5. Compute the gradient of the objective functional with respect
to the control variable qw using equation (2.34a)
Solving equation (2.34a) is simplified by our choice of the operator M−1

♦ .

• 6. Compute the direction of descent
The direction of descent ∇k

descI is based on the gradient of the objective
functional computed in step 5. A conjugate gradient method is used to
determine the direction of descent.

• 7. Change qk
w(t) into qk+1

w (t) = qk
w(t) + sk∇k

descI
The previous estimate qk

w(t) is improved by stepping in the direction of
descent computed in step 6. The amount of correction, given by sk, is
determined by a line search algorithm (Press et al. 1992) which computes
sk > 0 so that I(qk

w(t)+ sk∇k
descI) reaches a minimum with respect to sk.

• 8. Return to step 2 and iterate until converged.

Table 2.2: Structure of the optimization algorithm for the optimal control problem.
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with adjoint boundary conditions (2.33). According to (2.34), the terminal condition
of the adjoint system is related to the terminal value of the direct state vector via

q̃(y, T ) =
−1

E(0)
A−1M¤q(T ). (2.40)

The operators A and M¤ are given in (2.9a) and (2.14), respectively. The boundary
conditions (2.33) are needed to invert the second-order operator A, in order to
compute q̃(y, T ) from (2.40).

The gradients of the objective functional with respect to the control variable, ∇qwI,
and with respect to the initial perturbations, ∇q0I, defined in (2.37) and given by
(2.36) become

∇qwI = l2qw +M−1
♦ (

∂3

∂y3
− F

∂2

∂y2
)q̃(y = 0, t), (2.41a)

∇q0I = M¤
−1A q̃(y, t = 0)− E(T )

E(0)2
q0, (2.41b)

where the operator M♦ is given in (2.15). The ’numerical difficulties’ alluded to in
section 2.3.1 which resulted in the introduction of the switch function s♦ now become
clear. The initial disturbance q(t = 0) on which control is applied is computed under
the assumption of zero wall-normal velocity at the wall. Since no boundary condition
at the wall is imposed on the higher derivatives of the adjoint field q̃, the gradient
∇k

qw
I may not vanish at t = 0. Thus the wall-blowing sequence qk

w computed at
optimization step k, augmented by a fraction of the gradient sk∇k

qw
I, may not satisfy

the homogeneous wall condition at t = 0. Similarly, at t = Tc the adjoint terminal
condition is computed from the direct terminal condition and its spatial derivatives
up to second order. If the wall-normal velocity vw or its derivatives do not vanish
at the end of the temporal control interval, the terminal condition for the adjoint
problem may not satisfy the boundary condition ṽ(y = 0, Tc) = 0. The scalar switch
function s♦(t) introduced in section 2.3.1 allows a smooth introduction and fading
of the wall-normal control velocity vw at both ends of the control time interval.
The control effort at t = 0 and t = Tc is brought to zero and any mismatch in the
boundary conditions is avoided.

Spatial derivatives have been computed by using a pseudospectral method based
on Chebyshev polynomials with a rational function mapping that allows a flexible
placement of collocation points within the boundary layer and in the free stream.
The temporal evolution is accomplished by a second-order backward-differentiation
scheme, after time has been rescaled by k.
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In step 6 of the optimization scheme (Table 2.2), the Polak-Ribière conjugate
gradient algorithm is implemented to compute the direction of descent. This is
followed in step 7 by a line search algorithm based on Brent’s method for the com-
putation of optimal perturbations as well as optimal control. The reader is referred
to Press et al. (1992) for a detailed description of these computational techniques.

In order to generate grid-independent results, it was sufficient to use 150 colloca-
tion points in the wall-normal direction and a time step ∆t = 0.1. In the majority of
computations presented here it took less than five iterations of the conjugate gradi-
ent algorithm to converge to an optimum for both the optimal control and optimal
perturbation problems, with the first step often coming to within 5% of the optimal
value of the objective functional.

2.5 Optimal perturbations

In their study of non-modal effects in swept Hiemenz flow, Obrist and Schmid
(2003b) present several computations at a Reynolds number Re = 550 and a span-
wise wavenumber k = 0.25. Their approach is based on an eigenfunction expansion
of the linear initial value problem. With these parameter settings the flow is found
to be asymptotically stable but susceptible to short-term energy growth. Compu-
tations have been performed at the same parameter settings, but additional results
are also presented at a Reynolds number Re = 850 where the flow is linearly un-
stable. Even higher Reynolds numbers (Re = 2000) have also been investigated
to probe the physical mechanisms responsible for transient energy amplification,
which was found to take place throughout the parameter range under consideration
(100 ≤ Re ≤ 2500, 0.05 ≤ k ≤ 0.45).

2.5.1 Energy amplification

The optimal perturbation is defined as the initial disturbance exhibiting the largest
energy amplification over a given time interval. Minor modifications to the algorithm
outlined in Table 2.2 — i.e. setting qw = 0 (no blowing/suction), using q0 as the
control variable and ∇q0I as the associated objective functional gradient — yield a
fast and efficient algorithm to determine both the maximum energy amplification
and the initial condition that produces it.

In Figure 2.2a the temporal energy evolution of such initial perturbations for the
case of a linearly stable (solid line) or unstable (dashed line) basic flow is displayed.
In the linearly stable case (Re = 550, k = 0.25), transient energy growth amounts to
123 times the initial energy before perturbations eventually decay. In the unstable
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Figure 2.2: (a) Disturbance energy E versus time for optimal perturbations in the
linearly stable parameter régime (Re = 550, k = 0.25, solid line), and in the linearly
unstable parameter régime (Re = 850, k = 0.25, dashed line). The optimization
time has been set to Tp = 14.3 (cross). (b) Disturbance energy versus time for
the initial perturbations which yield the maximum energy growth at time Tp = 5
(dotted line), Tp = 14.3 (solid line), and Tp = 42 (dashed line). The respective
optimization times are indicated by a cross. The parameters have been chosen as
Re = 550, k = 0.25.

case (Re = 850, k = 0.25), high energy levels may be reached significantly earlier
than would be possible by a purely exponential growth of the unstable eigenmode
only. The time required to amplify the initial energy by a factor 220 is only 15
time units which should be compared to the 200 time units required to amplify the
energy of the most unstable mode by the same amount.

Figure 2.2b illustrates how the optimization time Tp influences the energy evo-
lution of the optimal perturbations. At a Reynolds number Re = 550 and spanwise
wavenumber k = 0.25, the maximum energy amplification can be achieved by setting
the optimization time to Tp = 14.3 (solid line). The energy at t = Tp is then 123
times the initial energy. Optimal perturbations for shorter optimization times, e.g.
Tp = 5, are slightly more amplified initially. Their overall amplification, however,
is lower than for the case Tp = 14.3. Beyond a specific value of the optimization
time, the least stable mode (or the most unstable mode in the linearly unstable
parameter régime) prevails. Any optimization time larger than Tp = 25 results in a
very similar optimal initial condition — the one that excites the least stable mode
most efficiently during the early stages of the energy amplification.

Surprisingly, large-time optimal perturbations reach nearly the same maximum
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amplification, at nearly the same time, as the one found for Tp = 14.3. Several
computations performed at Reynolds numbers ranging from Re = 500 to Re = 2000
and spanwise wavenumbers ranging from k = 0.05 to k = 0.4 have confirmed this
property. The initial condition yielding the maximum energy at large times can be
identified as the adjoint of the least stable mode (Hill 1995). The overall optimal
perturbation thus differs only insignificantly from the adjoint of the least stable
mode.

2.5.2 Parameter study

The initial disturbance leading to the maximum energy amplification Emax, regard-
less of the time Tmax when it is reached, has been computed for several Reynolds
numbers and spanwise wavenumbers. In practice this overall optimal perturba-
tion has been obtained by bracketing the time Tmax when the maximum energy
amplification is reached for different Tp. Figure 2.3a displays isocontours of the
maximum energy achieved by overall optimal perturbations; the corresponding time
Tmax is shown in Figure 2.3b. In both figures, the thick solid line represents the
neutral stability curve for swept Hiemenz flow. At low Reynolds numbers or span-
wise wavenumbers the optimal perturbation could not be determined satisfactorily
due to numerical difficulties in evaluating the gradient of the objective function. No
gain curves could therefore be obtained in the range kRe . 100. The blank area
inside the neutral stability curve identifies the parameter régime where the energy of
the optimal perturbation grows monotonically and thus does not exhibit a transient
maximum.

We observe that the energy amplification increases with Reynolds number but
decreases when the spanwise wavenumber is increased. The time at which the max-
imum amplification is reached increases both with Reynolds number and spanwise
wavenumber. Energy amplifications ranging from 50 times (for Re ≈ 300, 0.2 .
k . 0.4) up to 1500 times the initial energy ( for Re ≈ 2500, k ≈ 0.1) have been
obtained. At low Reynolds numbers the energy amplification is nearly indepen-
dent of the spanwise wavenumber; as the Reynolds number increases, however, low-
wavenumber perturbations clearly outperform higher-wavenumber disturbances.

At Reynolds numbers higher than 500, two distinct behaviors of the maximum
energy amplification with respect to the spanwise wavenumber may be distinguished,
as illustrated in Figure 2.4a. At small spanwise wavenumbers the maximum energy
amplification decreases slowly with spanwise wavenumber k while at higher span-
wise wavenumbers the maximum energy amplification decreases strongly. The data
closely match cubic (at low spanwise wavenumber k) and quadratic (at high k) fit-
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Figure 2.3: (a) Isocontours of the maximum energy amplification Emax achieved
by optimal perturbations (thin lines) in the (Re, k)-plane. The ’+’ signs denote
the parameter values (Re, k) = (550, 0.25), (850, 0.25), (2000, 0.1) and (2000, 0.4)
where most of the calculations have been performed. (b) Isocontours of the time
Tmax/k when the maximum energy is reached by optimal perturbations (thin lines)
in the (Re, k)-plane. In both figures, the thick solid line represents the neutral
stability boundary, and the thick dashed curve is the dividing line separating the
two amplification mechanisms discussed in section 2.5.
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Figure 2.4: (a) Maximum energy amplification Emax of optimal perturbations versus
k for Reynolds numbers ranging from Re = 500 (lowest curve) to Re = 2450 (highest
curve). The scale is logarithmic on both axes. The maximum energy amplification
Emax decreases slowly with k at small spanwise wavenumbers and strongly with
k at high wavenumbers. To guide the eye, least-squares curve fits are displayed
by thin solid lines: the data follow a cubic and a quadratic fit at low and high
wavenumbers, respectively. The thick dashed line located at k ∼ 0.25 delineates
the two scaling behaviors and the thick solid line represents the neutral stability
boundary. (b) Maximum energy amplification Emax of optimal perturbations versus
Reynolds number for spanwise wavenumbers ranging from k = 0.08 (highest curve)
to k = 0.44 (lowest curve). The maximum energy amplification Emax increases
linearly with the Reynolds number above Re = 1000 (thin solid lines). The low and
high-k behaviours are delimited by the thick dashed line, and the thick solid line
represents the neutral stability boundary.
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ting curves indicated by thin solid lines. Along the thick dashed line at k ∼ 0.25
both fits are equally close to the data, which reveals a change in the flow behavior
as one proceeds from low to high wavenumbers. In both cases the maximum energy
amplification exhibits a linear dependence with respect to the Reynolds number as
shown in Figure 2.4b.

The thick dashed line in Figure 2.4a has been represented in Figure 2.4b and
Figure 2.3a,b to delineate the high- and low-k parameter régimes. Two distinct
physical mechanisms responsible for the energy amplification are suspected to en-
tail the different scalings with the spanwise wavenumber, as further investigated in
section 2.5.4.

Comparison with results from eigenfunction expansions

A similar parameter study based on an eigenfunction expansion analysis has
been performed by Obrist and Schmid (2003b) in their Figure 3. The maximum
energy growth obtained by linear combinations of eigenfunctions from the discrete
spectrum, denoted Gmax to distinguish it from Emax, is then shown to range from
0 to about 100 as the Reynolds number and spanwise wavenumber vary from 0
to 2500 and from 0.05 to 0.45, respectively. The energy growth Gmax is found to
increase strongly with Reynolds number but shows little dependence on the span-
wise wavenumber at small Reynolds numbers. At higher Reynolds numbers, Gmax

decreases as k tends to 0 or 0.45 with its maximum located inside the neutral curve.

The parameter study by Obrist and Schmid (2003b) has the disadvantage of
neglecting the continuous part of the spectrum which has a strong quantitative
effect on transient growth in swept Hiemenz flow. It is thus not surprising that the
energy growth Gmax computed by an expansion in discrete eigenmodes is up to two
orders of magnitude lower than the maximum energy Emax calculated by using the
present adjoint method. There is also disagreement as to the behavior of Emax at
high Reynolds numbers and low spanwise wavenumbers.

Obrist and Schmid (2003a) show that the discrete part of the spectrum consists
of three branches, two of which have eigenmodes with a strong wall-normal velocity
component. Eigenmodes from the continuous spectrum show no specific prevalence
of any velocity component. The computation of the optimal purely wall-normal
velocity perturbation might thus give an insight into the role of the v-dominant
branches of the discrete spectrum in the transient growth process. To this end, the
[., .] scalar product has to be redefined as

[q1, q2] =

∫ ∞

0

v∗1.v2 dy + c.c., (2.42)
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and a purely wall-normal initial guess q0
0 = (v0

0, 0)T has to be used.

The resulting optimal perturbations then display energy amplifications in agree-
ment with Obrist and Schmid (2003b), ranging from less than 1 at low Reynolds
numbers to around 102 at Re = 2500. The spanwise-wavenumber dependence is also
recovered, displaying little influence of the wavenumber at low Reynolds numbers;
moreover, Emax decreases as k tends to 0 or 0.45.

The purely chordwise optimal velocity perturbation has also been computed,
but no transient growth could be found. A comparison of these results and the
observations of Obrist & Scmid (2003b) suggests that (i) the eigenmodes of the two
v-dominant branches of the discrete spectrum are the only modes responsible for
transient growth, (ii) the u-dominant continuous modes play a merely catalytic role
in transient energy growth with a more pronounced efficiency at high Re and low k.

2.5.3 Energy transfer analysis

It is both instructive and straightforward to analyze the flow of energy between var-
ious perturbation components in the transient energy growth process. New insight
into the dominant terms may lead to a model of the physical mechanism responsible
for the observed perturbation dynamics.

By multiplying each of the disturbance equations (2.6a)-(2.6c) by the appropriate
velocity component and subsequently adding the three equations, one obtains a
temporal evolution equation for the local kinetic energy density e = u2 + v2 +w2 of
the perturbation, namely,

∂e

∂t
= Fu

∂u

∂y
+ u∆u−ReWu

∂u

∂z
− 2F ′u2 − F ′′uv

+Fv
∂v

∂y
+ v∆v −ReWv

∂v

∂z
+ F ′v2 − v

∂p

∂y
(2.43)

+Fw
∂w

∂y
+ w∆w −ReWw

∂w

∂z
−ReW ′wv − w

∂p

∂z
.

During the transient energy growth phase, terms involving the chordwise velocity
component u as well as all pressure gradient terms are found to be negligible com-
pared to the remaining components. The above energy balance may thus be reduced
to an equation involving only eight essential terms on the right hand side:
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Figure 2.5: Temporal evolution of the dominant terms in the energy equation (2.44)
for optimal perturbations, integrated over the (y, z)-plane and normalized with re-
spect to the maximum time derivative of the energy. The production term−ReW ′wv
(dashed line) is responsible for most of the energy amplification (solid line). The
dissipation term w∆w is displayed as a dotted line. Parameter settings are (a)
Re = 2000, k = 0.1, Tp = 12.9 and (b) Re = 2000, k = 0.4, Tp = 22.2.

∂e

∂t
≈ Fv

∂v

∂y
+ v∆v −ReWv

∂v

∂z
+ F ′v2

+Fw
∂w

∂y
+ w∆w −ReWw

∂w

∂z
−ReW ′wv. (2.44)

Integrating each term of equation (2.44) separately over the computational (y, z)-
domain reveals that the production term (−ReW ′wv) clearly dominates at small
times (Figure 2.5). At large times, the linear stability property of the flow deter-
mines the dominant term in equation (2.44). For linearly stable configurations, the
viscous term w∆w dominates, thus damping the perturbations. For linearly un-
stable configurations, the viscous term w∆w remains below the production term
(−ReW ′wv), and, as a consequence, perturbations grow exponentially. Since the
dominant production term during the early stage has been identified as (−ReW ′wv),
the mechanism responsible for transient growth is suspected to be inviscid and two-
dimensional in the (y − z)-plane.

The contour plot of
∫
2π/k

∂e
∂t
dz in the (t, y)-plane (Figure 2.6a) indicates that at

low wavenumbers (the case k = 0.1 is displayed), energy is amplified in an area
located at roughly one third of the boundary layer thickness from the wall. The
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Figure 2.6: Isocontours of
∫

2π/k
∂e
∂t
dz (normalized with respect to its maximum)

in the (t, y) plane for optimal perturbations. At low wavenumbers (a), energy pro-
duction is localized and occurs at a distance of about one third of the boundary
layer thickness from the wall. At high wavenumbers (b), energy production oc-
curs over a wider area and farther away from the wall. Parameter settings are (a)
Re = 2000, k = 0.1, Tp = 12.9 and (b) Re = 2000, k = 0.4, Tp = 22.2.

strongest energy amplification rate (contour level labelled ′1′) occurs at t = 13.9,
that is, shortly after the perturbation has reached its maximum energy growth
(Tmax = 13.6 for Re = 2000, k = 0.1). At high wavenumbers, disturbance energy
production is less localized (Figure 2.6b); it is also less intense. Two local maxima
appear, one close to the wall (y ≈ 0.5) and a weaker one located at the outer
edge of the boundary layer (y ≈ 3). Again, the most intense energy amplification
rate is found at t = 25.6, that is, shortly after the perturbation has reached its
maximum energy growth (Tmax = 25.5). In contrast to the low-wavenumber case,
where the entire energy amplification mechanism is confined inside the boundary
layer, a significant amount of energy is produced in the outer flow.

2.5.4 Physical mechanisms leading to transient energy growth

Both the k-dependence of the maximum energy amplification displayed in figure 2.4
and the location of maximum energy transfer from the basic flow to the perturbation
at low or high wavenumbers, imply the existence of two distinct physical mechanisms
at work.

Solutions of the linear initial value problem provide further support for this
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proposition. Figures 2.7 and 2.8 show the temporal evolution of optimal perturba-
tions at Re = 2000 for a representative low (k = 0.1) and high (k = 0.4) spanwise
wavenumber, respectively. Snapshots of the chordwise vorticity and spanwise veloc-
ity fields in the (x = 0)-plane have been displayed at t = 0, Tmax/3, 2Tmax/3, Tmax,
4Tmax/3 (from top to bottom). The color scheme and contour scales are the same
in both figures and for all snapshots, thus aiding in the quantitative comparison
between the low and high spanwise wavenumber régimes. For any Reynolds num-
ber and spanwise wavenumber, the optimal perturbation resembles a distribution
of elongated chordwise vorticity patches inclined against the sweep z-direction as
displayed in Figures 2.7a and 2.8a. The vorticity patches are advected by the sweep
velocity W and propagate from left to right between two consecutive snapshots. Un-
der the influence of the basic shear they tilt up in a manner reminiscent of the Orr
mechanism (Figures 2.7a,b and 2.8a,b): the vorticity distribution initially inclined
against the shear is compressed, thereby inducing transient energy growth (Haynes
(1987), Vanneste (1999)).

In the case of low spanwise wavenumber k = 0.1 (Figure 2.7), the chordwise
vortices are distorted until rectangular vortical cells appear (Figure 2.7c). As the
’heads’ of the chordwise vortices of one sign pass above the ’feet’ of the vortices of the
opposite sign, a two-layered array of counter-rotating vortices forms (Figure 2.7c).
This dipole structure is aligned parallel to the wall at a distance of roughly one third
of the boundary layer thickness. This region is therefore characterized by strong
spanwise velocity excesses and deficits; for example, as the upper-layer vortex of
a specific dipole rotates counterclockwise (displayed by solid vorticity contours in
Figure 2.7), the center of the dipole produces a region of strong spanwise excess
velocity (displayed in red). Interestingly, the dipole structure forms at the time
when

∫
1/k

∂e
∂t
dz reaches a maximum (Figure 2.5a) and it is located at the wall distance

where the disturbance energy density is amplified the most according to Figure 2.6a.

Two mechanisms of transient growth are therefore operating at low spanwise
wavenumbers: the Orr mechanism via the tilting of the initial vorticity distribution
by the basic shear on the one hand and vortex dipole-induced spanwise velocities
on the other, the latter being dominant. In the final stage, the rectangular cells
split and rearrange — with the ’head’ of each vortex merging with the ’foot’ of the
neighboring upstream vortex of equal orientation. This event, which is incidental to
the transient growth process, occurs at approximately t = 2

3
Tmax (Figures 2.7c,d).

The evolution of chordwise vortices at higher spanwise wavenumbers displays a
different scenario. Most significantly, even if the vortices are still heavily distorted,
rectangular vortical dipoles are no longer prominent (Figure 2.8). The vorticity
distribution initially inclined against the shear is still tilted by the spanwise shear and
the energy amplification mainly arises from the Orr mechanism, as illustrated by the
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Figure 2.7: Time evolution of the overall optimal perturbation displayed in snapshots
of the perturbation field in the (z, y)-plane over three spanwise wavelengths at t = 0,
1
3
Tmax,

2
3
Tmax, Tmax,

4
3
Tmax (from top to bottom). The sweep W is from left to

right. Isocontours of the chordwise vorticity are displayed in solid (positive vorticity)
and dashed lines (negative vorticity). The spanwise velocity amplitude w of the
disturbance is displayed in color (red: positive, blue: negative). Symbols have been
added to aid the reader in tracking the features of the evolving vortices. The time
of maximum energy is Tmax = 12.9 and the parameters have been set to Re = 2000,
k = 0.1, Tp = 12.9.
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Figure 2.8: Same as in Figure 2.7 for Re = 2000, k = 0.4 and Tp = 22.2; the contour
levels and the color map are the same. The time of maximum energy is Tmax = 22.2.
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symbols indicating the relative position of the ’head’ and ’foot’ of the evolving vortex
in Figure 2.8. The vortex ’head’ overtakes its ’foot’, and the disturbance energy
reaches a maximum when the vortex is the most compressed, that is, when the ’head’
is exactly above the ’foot’ (Figure 2.8d). In the later stages, vortex splitting never
occurs. To provide additional support for the above scenario, computations were
performed at even higher spanwise wavenumbers (k ≥ 0.8). The Orr-mechanism
has been found to be dominant over vortex dipole-induced spanwise velocities in all
high wavenumber cases.

Examination of the temporal evolution of disturbances in the linearly unstable
region, within the neutral stability boundary of Figure 2.3a, reveals the presence of
the same physical mechanisms at low and high spanwise wavenumbers respectively.

2.6 Optimal control

Within the scope of this study control is applied via wall-normal blowing and suction
given by the normal velocity vw(t). The influence of the control time Tc on the energy
growth of controlled perturbations is investigated and a parameter study in the (α, l)
plane is conducted in order to find the best setting for the control parameters. A
physical interpretation of the control mechanisms follows, with particular emphasis
on similarities between optimal and constant gain feedback control.

2.6.1 Control of optimal perturbations

In this section the Reynolds number is set to either Re = 550 or Re = 850 with
a fixed spanwise wavenumber k = 0.25 in order to address the control of linearly
stable or unstable flows. For all computations, the initial state is taken as the
optimal perturbation for Tp = 14.3, and wall-blowing or -suction is applied between
t = 0 and t = Tc.

To investigate the influence of the control time Tc, the control parameters α and
l in the objective functional (2.11) have been set equal to α = 0.5, l = 1. As will be
shown later, such moderate values of α and l lead to satisfactory control strategies.

The control efficiency depends strongly on the control time Tc. The natural
choice is to set Tc close to the time at which the uncontrolled optimal perturbation
reaches an energy maximum. For a spanwise wavenumber k = 0.25 and a Reynolds
number Re = 550 (Figure 2.9a), it amounts to setting Tc = 14.3 (diamond). In this
case the optimal wall-normal blowing and suction sequence decreases the energy
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Figure 2.9: (a) Disturbance energy E as a function of time for linearly stable (a)
or unstable (b) flow. The dashed line shows the uncontrolled optimal perturbation
computed with Tp = 14.3. The solid lines display the energy of the same perturbation
when control is applied from t = 0 to Tc = 7 (upper triangle), Tc = 14.3 (diamond),
Tc = 28 (lower triangle). The remaining parameters have been set to Re = 550 (a)
and Re = 850 (b), k = 0.25, α = 0.5, l = 1.

maximum to 75% of its initial value, while the energy at time Tc is decreased by one
order of magnitude from E(Tc)/E(0) = 123 to E(Tc)/E(0) = 12.

For lower values of Tc the control is less effective in decreasing the energy am-
plification since the energy transiently increases shortly after the wall-blowing has
terminated. For higher values of Tc the energy amplification can be suppressed even
further. For example, by choosing Tc = 28, i.e., about twice the time at which
the energy maximum is reached, the energy decreases to 0.5 times its initial value
between t = 0 and t = Tc. In this case, however, the energy transiently reaches half
the level reached by the uncontrolled optimal perturbation between t = 0 and Tc.

Similar conclusions hold in the linearly unstable case at Re = 850, k = 0.25
shown in Figure 2.9b. Only the case Re = 550, k = 0.25 will be discussed in the
following study of the influence of the control parameters.

The objective functional (2.11) penalizes both transient energy amplification
between t = 0 and Tc via the α weighting parameter and excessive wall-blowing
via the l weighting parameter. Figure 2.10 reveals the dependence of the objective
functional I (Figure 2.10a), the energy amplification E(Tc)/E(0) (Figure 2.10b),

the mean energy
1

Tc

∫ Tc

0
E(t)dt (Figure 2.10c) and the control energy ¿ qw, qw À
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(Figure 2.10d) on the weighting parameters α and l. Note that the view angle may
be different for different subfigures to ensure the best perspective on the surface
plot.

When both α and l are low, the perturbation energy grows by a few orders
of magnitude between t = 0 and Tc (Figure 2.10c) due to a very strong input of
control energy (Figure 2.10d). The lowest energy amplification is indeed achieved
at these parameter settings (Figure 2.10b) where wall-blowing can be arbitrarily
strong because of the low penalty applied to the control effort, but the very large
transient energy peak (Figure 2.10c) precludes such control strategies for practical
applications.

By assigning a moderate cost, either to the mean energy amplification (by setting
α between 0.3 and 1) or to the control energy (by setting l between 0.1 and 2), the
mean energy and the spent control energy are dramatically lowered (Figure 2.10c,d)
with only a small increase in the energy amplification (hardly noticeable in Fig-
ure 2.10b). Such moderate values for α and l are located near the ’shoulder’ of the
objective function in Figure 2.10a, where the thick solid line (α = 0.5) crosses the
thick dashed line (l = 1).

As the control cost l increases along the thick solid line, wall-normal blowing or
suction becomes too expensive when compared to the resulting gain in the mean
energy or in the energy amplification. Beyond the cut-off value lcut ∼ 2 the control
energy drops precipitously (Figure 2.10d). Since very little energy is dedicated to
control, the energy amplification (Figure 2.10b) and the mean energy (Figure 2.10c)
are nearly the same as for the uncontrolled optimal perturbation.

The mean energy weight α has little influence on the control strategy besides
suppressing high transient energy growth between t = 0 and Tc. As α increases along
the thick dashed line from α = 0.5 to α = 40 the energy amplification E(Tc)/E(0)
remains unchanged (Figure 2.10b). When α is very high (α ∼ 40) the mean energy
1

Tc

∫ Tc

0
E(t)dt decreases only slightly (Figure 2.10c), the dependence on l, however, is

much stronger. Since the mean energy is almost constant with respect to α along the
thick dashed line, the objective functional (Figure 2.10a) grows nearly quadratically

at large α, owing to its dominant term
α2

2

1

Tc

∫ Tc

0
E(t)dt.

When both α and l are large, the E(Tc)/E(0) term in the objective functional
is negligible. In this case, the goal of the optimal control is not so much to damp
the energy amplification at t = Tc but rather to decrease the mean perturbation
energy between t = 0 and Tc while balancing the control energy expenses. Even

55



10
−110

0 10
1 10

2 10
3

10
−210

−110
010

1
10

1

10
2

10
3

10
4

Control cost l

Objective functional

Mean energy weight α 10
−110

010
110

210
3

10
−2

10
−1

10
0

10
1

10

20

50

100

Mean energy weight α

Energy amplification

Control cost l

(a) (b)

10
−110

010
110

210
3

10
−2

10
−1

10
0

10
1

30

100

300

Mean energy weight α

Mean energy

Control cost l

10
−1

10
0

10
1

10
2

10
3

10
−2 10

−1 10
0 10

1

10
−10

10
−7

10
−4

10
−1

10
2

Mean energy weight α

Control energy

Control cost l

(c) (d)

Figure 2.10: Magnitude of the objective functional and its various components as
a function of mean energy weight α and control cost l. (a) Objective functional I,

(b) Energy amplification E(Tc)/E(0), (c) Mean energy
1

Tc

∫ Tc

0
E(t)dt, (d) Control

energy ¿ qw, qw À. Along the thick solid line α is equal to 0.5 and along the thick
dashed line l is equal to 1. The parameters have been set to Re = 550, k = 0.25,
Tp = 14.3, Tc = 14.3.

56



when the control cost parameter l is beyond the cut-off lcut, the cost of transient
energy growth between t = 0 and Tc may be so high that it is worth blowing at
the wall (Figure 2.10d) in order to decrease the mean energy between t = 0 and Tc

(Figure 2.10c). A decrease in the energy amplification E(Tc)/E(0) (Figure 2.10b)
can be observed as a consequence of the overall damping of the energy prior to Tc.

Three régimes are thus delimited by the thick lines in Figure 2.10.

• the case αÀ 0.5: the primary goal of our control strategy, which was to damp
the energy amplification at a given time E(Tc)/E(0), is overruled by a strong

weighting of the mean energy term
1

Tc

∫ Tc

0
E(t)dt in the objective functional.

• the case α¿ 0.5, l ¿ 1: unrealistic amounts of control energy can be spent to
damp the energy amplification at time Tc. The resulting energy peaks between
t = 0 and Tc render such control strategies undesirable.

• the case α ≤ 0.5, l À 1: the control is so expensive with respect to the
expected gain in the energy amplification that wall-blowing is prohibited. The
weak control efforts result in plateaus (Figures 2.10b,c) consistent with the
uncontrolled case.

By choosing moderate values of α and l, such as α = 0.5, l = 1, the energy
amplification is efficiently damped with a reasonable amount of wall-normal blowing
and suction; these parameter settings may be regarded to deliver both an attractive
and realistic control strategy. In what follows, the parameters α and l are set to
α = 0.5 and l = 1, and the manipulation of the underlying physical mechanisms
under the corresponding control strategy is investigated.

2.6.2 Physical mechanisms

The effect of optimal control on the dynamics of initial disturbances at Re = 2000
is now examined from a physical point of view. Weight parameters have been set
equal to α = 0.5 and l = 1. A parameter study indicates that such values of α and
l also yield an efficient control strategy at Re = 2000. Snapshots of the evolution of
the optimal perturbation, as control is applied, are depicted in Figures 2.11 and 2.12
and should be compared to the corresponding Figures 2.7 and 2.8. A new layer of
vortices confined to the wall is detected which travels with the naturally occurring
vortices; the latter are observed to tilt more rapidly. In the wavenumber régime
where vortex dipoles are not observed naturally (Figure 2.8), vortex dipoles may be
introduced by the control (Figure 2.12). For wavenumbers at which vortex dipoles
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Figure 2.11: Time evolution of the overall optimal perturbation with optimal control
applied, displayed in snapshots of the perturbation field in the (z, y)-plane over
three spanwise wavelengths, at times t = 0, 1

3
Tc,

2
3
Tc, Tc,

4
3
Tc (from top to bottom).

The sweep W is from left to right. The same field variables as in Figure 2.7 are
represented and the contour levels and the color map are the same. The optimization
time Tc has been set to Tp = Tmax = 12.9 and the other parameters have been set
to Re = 2000, k = 0.1, α = 0.5 and l = 1. Vortex splitting occurs between b and
c, which should be compared to the uncontrolled case in Figure 2.7 when vortices
split between c and d.
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Figure 2.12: Same as Figure 2.11 for Re = 2000, k = 0.4., Tc = Tmax = 22.2, α = 0.5
and l = 1. Vortex splitting is observed between b and c, while in the uncontrolled
case in Figure 2.8, the vortices do not split.

occur naturally, blowing and suction at the wall tend to accelerate this process
(Figure 2.11).
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Transient vortex compression due to the spanwise shear is inevitable since the
initial vorticity distribution inclined against the shear has to evolve into the least
stable eigenmode configuration where the vorticity distribution is inclined in the
direction of the shear. Moderate wall-normal blowing or suction, obtained with
α = 0.5 and l = 1, is unable to prevent this tilting process. However, the associated
transient energy growth may be weakened by accelerating the disturbance evolution
into the least stable eigenmode. Using this acceleration strategy, disturbances are
given less time to extract energy from the basic flow; hence, not only the energy at
t = Tc but also the energy maximum between t = 0 and Tc are decreased.

2.6.3 Constant gain feedback control

The optimal control strategy designed above requires to compute the flow evolution
from t = 0 to Tc several times, which may be computationally prohibitive for im-
plementation in a real experiment. A more realistic, constant gain feedback control
strategy can be devised which performs nearly as well as optimal control at a much
lower computational cost.

Assuming that a sensor is located at a distance ym from the wall, one may design
a control law of the form

vw(t) = κv(ym, t) , (2.45)

where κ is a constant scalar gain and v(ym, t) is the wall-normal velocity measured
at the height ym from the wall. The gain κ and the height ym can be tuned so
as to minimize the objective functional (2.11). By setting κ = 0.6 and ym = 1.8,
the objective functional is decreased to I = 21.8 in the linearly stable case Re =
550, k = 0.25, which should be compared to I = 18.9 when optimal control is
applied. In the linearly unstable case Re = 850, k = 0.25, the constant gain
control strategy with κ = 0.6 and ym = 1.6 yields I = 35.2 whereas optimal control
decreases the objective functional to I = 32.7.

Figures 2.13a,b display the wall-blowing and suction sequences for constant gain
and optimal control. In both the linearly stable and unstable case, the wall-blowing
pattern takes the form of travelling waves which follow the vortical structures. The
spatio-temporal evolution of the control pattern displays a nearly perfect phase
match between both control sequences in time and space which also have amplitudes
of the same order. This observation shows that constant gain feedback control
provides a good approximation to the optimal control strategy.

The disturbance energy evolution with time is displayed in Figures 2.14a,b. The
perturbations are efficiently damped by the constant gain feedback control (2.45)
both for linearly stable and linearly unstable flow. The energy peak transiently
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Figure 2.13: Isocontours of the wall-normal velocity vw at the wall in the (t, z)-plane
for (a) linearly stable (Re = 550, k = 0.25) and (b) linearly unstable (Re = 850, k =
0.25) flow. Shaded contours represent constant gain control (light: blowing, dark:
suction) whereas line contours represent optimal control (solid lines: blowing, dashed
lines: suction). The constant gain and the location of the sensor have been set to
(a) κ = 0.6, ym = 1.8, (b) κ = 0.6, ym = 1.6 in order to minimize the objective
functional I. The remaining parameters have been set equal to Tp = 14.3, Tc = 14.3,
α = 0.5, l = 1.
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Figure 2.14: Disturbance energy as a function of time for (a) linearly stable (Re =
550, k = 0.25) and (b) linearly unstable (Re = 850, k = 0.25) flow. The thick
solid line represents the uncontrolled optimal perturbation. The thin solid line
displays the energy of the same perturbation when constant gain control is applied,
the dashed line its counterpart when optimal control is applied. The constant gain
and the location of the sensor have been set to (a) κ = 0.6, ym = 1.8, (b) κ = 0.6,
ym = 1.6 in order to minimize the objective functional I. The remaining parameters
have been set equal to Tp = 14.3, Tc = 14.3, α = 0.5, l = 1.
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reached between t = 0 and Tc = 14.3 is of the same order of magnitude with both
control strategies.

Eventhough the gain κ and the sensor location ym have been tuned to minimize
the objective functional I only on a finite-time interval, simulations show that the
linearly unstable flow is stabilized for large times: after a short transient amplifi-
cation the perturbation energy decreases exponentially as long as control is applied
(Figure 2.14b). The decay rate of the disturbance energy in the linearly stable case
(Figure 2.14a) is enhanced by constant gain control.

The numerical experiments indicate that constant gain feedback control is able
to decrease the objective functional I very efficiently at a rather low computational
cost when suitably tuned, and that it restabilizes linearly unstable perturbations in
the long term. By contrast, evaluating the objective functional gradient requires
the computation of the direct and adjoint problems from t = 0 and Tc, which is
computationally expensive; this computation also loses accuracy as Tc becomes large.
Thus, the advantage of optimal control over constant gain feedback control may be
lost for long-term optimizations. Constant gain feedback control strategies should,
therefore, not be hastily discarded, but rather be considered as a viable option for
controlling swept attachment-line boundary layers under realistic conditions.

2.7 Concluding remarks

An adjoint-based optimization procedure applicable to both the determination of
the optimal perturbation and its optimal control has been developed, which relies
on the introduction of a Lagrangian functional in the reduced u − v setting (2.8)-
(2.10). Although the formulation bears similarities to the previous investigations of
Andersson et al. (1999) and Corbett & Bottaro (2001a,b), essential modifications
have been introduced as outlined in section 2.3. In addition to the three scalar
products (2.16a-c), the double-bracketed scalar product (2.13) needs to be defined
in order to express the kinetic energy of the perturbations in terms of the (u, v)
components only. Had the analysis been conducted in primitive variables u, v, w, p,
the scalar product (2.13) would have been superfluous and the usual Eulerian scalar
product would have been sufficient. In the reduced u − v setting, however, its
double-bracketed counterpart (2.13), which takes into consideration the continuity
equation, has to be used both to calculate the kinetic energy and the gradient of
the objective functional. Provided attention is given to these points, the gradients
of the objective functional readily follow from the Lagrangian formulation.

Two-dimensional (y, z)-mechanisms in the flow dividing plane have been demon-
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strated (section 2.5) to be responsible for most of the energy amplification of Görtler-
Hämmerlin perturbations in swept Hiemenz flow. They involve spanwise-travelling
vortices aligned in the chordwise direction that undergo a tilting of their vorticity
distribution reminiscent of the Orr mechanism (Haynes (1987), Vanneste (1999)):
the vorticity distribution, initially inclined against the sweep, is compressed by the
shear, which causes the associated energy to transiently increase before it eventu-
ally decreases exponentially (for the linearly stable case) or increases exponentially
(for the unstable case). The growth of optimal perturbations exhibits two essential
features that are specific to the swept attachment-line boundary layer. First, the
transient growth does not rely on a lift-up process (Landahl (1980)) as in classical
boundary layers but on tilting of the vorticity distribution induced by the span-
wise shear. Second, the resulting chordwise vortices are distorted by the basic flow
to form dipole structures which, at low spanwise wavenumbers, result in increased
levels of spanwise velocity perturbations. These issues are discussed in more detail
below.

The lift-up mechanism associated with streamwise momentum transport by vor-
tices aligned with the flow is primarily responsible for the energy amplification in
weakly non-parallel shear flows (Schmid & Henningson 2001). In the present study,
the Görtler-Hämmerlin assumption does not allow for chordwise modulations of the
spanwise velocity w, thus precluding any lift-up associated with the spanwise shear
W ′(y). The optimal perturbation has been shown to consist of chordwise vortices
aligned with the chordwise shear ∂U/∂y(x, y). However, according to Figure 2.15a,
lift-up effects associated with the chordwise shear ∂U/∂y(x, y) are weak: the maxi-
mum kinetic energy of the chordwise velocity perturbation,

∫∞
0
u∗u dy, accounts for

only one thousandth of the total maximum energy amplification E(Tmax) reached
by optimal disturbances.

In contrast to weakly non-parallel boundary layers, the chordwise vortices in-
volved in the lift-up mechanism are advected in the spanwise direction by the sweep
W (Figure 2.15b); as a result, they do not coherently transport low-momentum
fluid from the wall to the edge of the boundary layer and high-momentum fluid
from the boundary layer toward the wall. Rather, up- and down-welling regions
work in opposition as they are swept along the attachment-line. Figure 2.15a fur-
ther illustrates the role of the basic sweep velocity in rendering the chordwise lift-up
mechanism ineffective: higher Reynolds numbers, i.e. larger sweep velocities, lead
to lower chordwise disturbance energy when compared to the total energy achieved
by optimal perturbations. The only remaining amplification processes are therefore
the Orr mechanism and vortex dipole formation.

The combined action of the spanwise shear W ′(y) and the compression by the
impinging basic flow results in the tilting of the chordwise vorticity distribution and
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Figure 2.15: (a) Fraction of the chordwise velocity perturbation energy
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in the maximum total energy E(Tmax) reached by optimal perturbations versus
Reynolds number. Spanwise wavenumbers range from k = 0.45 (top curve) to
k = 0.1 (bottom curve) in 0.05 increments. (b) Sketch illustrating the inefficiency of
’laterally swept’ lift-up. The up- and down-welling regions aligned in the chordwise
direction x work in opposition as they are swept in the z direction.
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in the compression of the chordwise vortices into dipole structures, respectively. This
process is the most effective at large spanwise wavelengths (low k) which allow for
more elongated initial vorticity distributions. The vortices are confined to the span-
wise boundary layer, the thickness of which is constant. When k is decreased below
k ∼ 0.25 vorticity patches can no longer be tilted up by the basic shear and time
remain inside the boundary layer without undergoing vortex splitting (Figure 2.7).
When k is above 0.25, the process is incomplete: vortices are merely distorted and
dipolar structures are not observed (Figure 2.8). The optimal wall blowing/suction
sequence which has been shown to resemble constant gain feedback control (sec-
tion 2.6.3), enhances the above compression process by pushing the vortices against
the impinging flow.

The present study was solely aimed at describing Görtler-Hämmerlin distur-
bances near the attachment-line within the context of the idealized swept Hiemenz
flow model. The optimal growth of arbitrary disturbances in swept Hiemenz flow re-
mains to be determined: according to the studies of Theofilis et al. (2003) and Obrist
and Schmid (2003b), higher-order chordwise polynomial expansions may be expected
to (a) yield stronger amplifications than Görtler-Hämmerlin perturbations and (b)
introduce additional unstable modes. The stronger growth is caused by the superpo-
sition of modes with very similar wall-normal shapes (Obrist & Schmid 2003b). The
additional unstable modes, although less unstable than Görtler-Hämmerlin modes,
may compromise the efficiency of constant gain feedback control schemes which are
unable to stabilize multiple modes.

Moreover, the precise relationship between the present spanwise travelling chord-
wise vortices generated by transiently amplified or genuinely unstable perturbations
at the attachment-line and the steady crossflow vortices produced in the three-
dimensional boundary layer on the wing surfaces (Arnal et al. (1984), Bertolotti
(1999), Koch et al. 2000, among others) remains to be determined.
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Chapter 3

Optimal temporal disturbances of
arbitrary shape

3.1 Introduction

In the Görtler-Hämmerlin framework the wall-normal and spanwise v, w perturba-
tion velocity components are assumed to be homogeneous in the chordwise x−di-
rection, whereas the chordwise u velocity component increases linearly away from
the dividing plane x = 0. The least stable eigenmode in swept Hiemenz flow takes
the peculiar shape of a Görtler-Hämmerlin mode but there is no reason to assume
that this will apply to optimal disturbances. In order to find the disturbance whose
energy is amplified most over a finite time interval, it is necessary to relax the
Görtler-Hämmerlin assumption and to compute directly the three-dimensional per-
turbation equations by resorting to a Direct Numerical Simulation (DNS) code.

The computational bottleneck of gradient-based optimization algorithms lies in
the large number of objective functional evaluations. In the temporal framework,
for each evaluation the linearized Navier-Stokes equations are solved from t = 0
to T . Since several evaluations of the objective functional are involved during the
optimization process, it is crucial to devise an efficient simulation algorithm to keep
computational costs reasonably low.

Obrist (2000) has adapted a well-documented spectral simulation code devel-
oped at KTH by Lundbladh et al. (1992) to assess the temporal evolution of three-
dimensional perturbations in swept Hiemenz flow. This numerical scheme can be
used in conjunction with the optimization algorithm derived in chapter 2 to deter-
mine optimal temporal disturbances in swept Hiemenz flow.
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In section 3.2 the Direct Numerical Simulation code is described. Perturbation
equations are presented in a velocity-vorticity form which is particularly well suited
for numerical treatment. The temporal discretization scheme and the spatial dis-
cretization are briefly described; the reader is referred to Obrist (2000) for further
detail. The use of the fringe region technique in the context of adjoint-based flow op-
timization is discussed in section 3.3. Optimal temporal perturbations are computed
and analyzed in section 3.4.

3.2 Direct numerical simulation

3.2.1 Direct perturbation equations

The perturbation equations for u, v, w, p are not solved in their ’primitive variable’
form, with three momentum equations and the continuity equation. Instead, a
velocity-vorticity ∇2v, ω formulation is derived in which only two time-dependent
equations have to be marched in time.

In non-dimensional form the Navier Stokes equations read

∂tui = −∂xi
p+Hi − ∂xi

(
1

2
ujuj) +

1

Re
∇2ui , (3.1a)

∂xi
ui = 0 (3.1b)

with

Hi = εijkujωk , (3.2a)

∇2 = ∂xx + ∂yy + ∂zz . (3.2b)

Spatial coordinates xi = (x1, x2, x3) refer to the x, y, z coordinates sketched in Fig-
ure 3.1. The corresponding velocity and vorticity ui− and ωi−vectors are denoted
u, v, w and ψ, ω, θ, respectively.

By applying the Laplace operator to momentum equation (3.1a) for u2 = v, and
taking advantage of the continuity equation to simplify the resulting equation, one
gets an equation for the Laplacian of v,

∂tφ = (∂xx + ∂zz)H2 − ∂y(∂xH1 + ∂zH3) +
1

Re
∇2φ , (3.3)
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Figure 3.1: Sketch of the computational domain with streamlines of the base flow
in the (x, y) and (y, z) planes.

with

φ = ∇2v . (3.4)

Taking the curl of equation (3.1a) yields an equation for the wall-normal vorticity
ω:

∂tω = ∂zH1 − ∂xH3 +
1

Re
∇2ω . (3.5)

Equations (3.3), (3.4) and (3.5) make up the velocity-vorticity formulation of the
Navier Stokes equations.

Swept Hiemenz flow U, V,W is an exact solution of the Navier Stokes equations.
It can be subtracted from the velocity components u, v, w to get the perturbation
velocities

(u′, v′, w′) = (u− U, v − V,w −W ) . (3.6)

Similarly, the perturbation vorticity is obtained by subtracting the vorticity field
Ψ,Ω,Θ associated with swept Hiemenz flow from the vorticity field ψ, ω, θ ,
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(ψ′ω′, θ′) = (ψ −Ψ, ω − Ω, θ −Θ) . (3.7)

In terms of perturbation variables φ′, ω′ the velocity-vorticity formulation reads

∂tφ
′ = (∂xx + ∂zz)H

′
2 − ∂y(∂xH

′
1 + ∂zH

′
3) +

1

Re
∇2φ′ , (3.8a)

∂tω
′ = ∂zH

′
1 − ∂xH

′
3 +

1

Re
∇2ω′ , (3.8b)

∇2v′ = φ′ , (3.8c)

with

H ′
1 = H1 − VΘ +WΩ , (3.9a)

H ′
2 = H2 −WΨ + UΘ , (3.9b)

H ′
3 = H3 − UΩ + VΨ . (3.9c)

Upon gathering the advective and non-linear terms in hφ′ and hω′ defined as

hφ′ = (∂xx + ∂zz)H
′
2 − ∂y(∂xH

′
1 + ∂zH

′
3) , (3.10a)

hω′ = ∂zH
′
1 − ∂xH

′
3 , (3.10b)

(3.10c)

the Navier-Stokes equations take the symmetrical and compact form

∂tφ
′ = hφ′ +

1

Re
∇2φ′ , (3.11a)

∂tω
′ = hω′ +

1

Re
∇2ω′ , (3.11b)

∇2v′ = φ′ . (3.11c)

The Direct Numerical Simulation algorithm that will be described in sections 3.2.3
and 3.2.4 aims at solving equations (3.11a,b,c). Since no further reference will be
made to the unperturbed non-dimensional variables u, v, w, φ, ω, θ, φ, the primes
denoting perturbation fields are subsequently dropped. In particular the velocity-
vorticity variables φ′, ω′, v′ are now denoted φ, ω, v.
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3.2.2 Adjoint perturbation equations

Numerically speaking, solving both time-dependent equations (3.11a) and (3.11b)
in the reduced φ, ω setting is more efficient than solving the four equations in the
primitive variable u, v, w, p setting. As for the adjoint equations, one can either
derive the adjoint problem for φ̃, ω̃ directly from the reduced setting, or derive
the adjoint problem ũ, ṽ, w̃, p̃ from the primitive variable setting and then find an
analogous reduced setting from the four adjoint equations.

In chapter 2 the Görtler-Hämmerlin equations could be reduced to a set of two
equations that involved only the chordwise u− and wall-normal v−velocities. Ad-
joint equations for ũ, ṽ could be derived directly from the u, v setting. By contrast,
equations in the reduced setting φ, ω involve not only φ and ω but also velocity and
vorticity fields u, v, w, ψ, θ; these variables are required to compute the hφ, hω right-
hand-side terms. It is impossible to derive a reduced set of equations that involve
φ, ω only, from which one could derive adjoint equations for φ̃, ω̃. If the adjoint
problem were to be derived from equations (3.11a,b,c) it would involve not only the
adjoint ũ, ṽ, w̃ velocity fields but also the adjoint ψ̃, ω̃, θ̃ vorticity fields.

By contrast, it is a fairly straightforward task to derive the adjoint problem in
primitive variables first, and then derive a reduced set of adjoint equations through
algebraic manipulations similar to those that yielded the φ, ω setting for the direct
problem. Adjoint equations derived in the primitive variable setting read:

(
∂t + U∂x + V ∂y +W∂z +Re−1∇2

)
ũ

−∂xUũ− ∂xp̃ = 0 , (3.12a)(
∂t + U∂x + V ∂y +W∂z +Re−1∇2

)
ṽ

−V ′ṽ − U ′ũ−W ′w̃ − ∂yp̃ = 0 , (3.12b)(
∂t + U∂x + V ∂y +W∂z +Re−1∇2

)
w̃ − ∂zp̃ = 0 , (3.12c)

∂xũ+ ∂yṽ + ∂zw̃ = 0 . (3.12d)

The adjoint equations (3.12) can be recast into a reduced set of equations similar
to the vorticity-velocity formulation of the Navier-Stokes equations, by introducing
the Laplacian φ̃ of the wall-normal velocity ṽ and the adjoint vorticity ω̃,

φ̃ = ∇2ṽ , (3.13a)

ω̃ = ∂zũ− ∂xw̃ . (3.13b)

The adjoint velocity-vorticity equations read:
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(
∂t+ U∂x + V ∂y +W∂z +Re−1∇2

)
φ̃

−3V ′∂xxṽ + 2V ′′∂xũ− U ′(2∂xxũ+ ∂zzũ+ ∂xzw̃)

−V ′(∂zzṽ + ∂xyũ+ ∂zyw̃)−W ′(∂xxw̃ + ∂xzũ) = 0 , (3.14a)(
∂t+ U∂x + V ∂y +W∂z +Re−1∇2

)
ω̃ + V ′(∂zũ+ ∂xw̃) = 0 , (3.14b)

which can be cast in the general form of equations (3.11a,b,c), i.e.

∂tφ̃ = h̃φ +
1

Re
∇2φ̃ , (3.15a)

∂tω̃ = h̃ω +
1

Re
∇2ω̃ , (3.15b)

∇2ṽ = φ , (3.15c)

with

h̃φ = − (U∂x + V ∂y +W∂z) φ̃

− 3V ′∂xxṽ + 2V ′′∂xũ− U ′(2∂xxũ+ ∂zzũ+ ∂xzw̃)

− V ′(∂zzṽ + ∂xyũ+ ∂zyw̃)−W ′(∂xxw̃ + ∂xzũ) , (3.16a)

h̃ω =
(
U∂x + V ∂y +W∂z +Re−1∇2

)
ω̃ + V ′(∂zũ+ ∂xw̃) . (3.16b)

Equations (3.15) are identical to direct equations 3.11 and can be solved using the
same numerical scheme. Programming efforts are substantially reduced by resorting
to the counterpart φ̃, ω̃ of the velocity-vorticity formulation φ, ω.

3.2.3 Temporal scheme

Equations (3.11a,b) are solved with a combined implicit-explicit time integration
scheme. The advective and non-linear terms hφ, hω are integrated explicitly using
the three-stage, third-order Runge-Kutta scheme by Williamson (1980). The viscous
terms are solved implicitly using a Crank-Nicolson scheme. The solution φn+1, ωn+1

to equations (3.11a,b) at timestep n + 1 is computed from fields φ, ω, hφ, hω at
timesteps n and n− 1 according to

φn+1 = φn + anh
n
φ + bnh

n−1
φ +

an + bn
2Re

(∇2φn+1 +∇2φn) , (3.17a)

ωn+1 = ωn + anh
n
ω + bnh

n−1
ω +

an + bn
2Re

(∇2ωn+1 +∇2ωn) . (3.17b)
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Coefficients an, bn are given in Table 3.1.

Stage number an bn

0 8
15
δt 0

1 5
12
δt −17

60
δt

2 3
4
δt −5

12
δt

Table 3.1: Coefficients for the three-stage time integration scheme

Following Obrist (2000) the step size δt is determined by the CFL condition

δt =
π

µ

( |umax|
δx

+
|wmax|
δz

+

∣∣∣∣
v

δy

∣∣∣∣
max

)
, (3.18)

with µ = 0.8 .

Using the time-integration scheme (3.17a,b), marching the solution forward in
time amounts to solving a set of spatial Helmholtz equations

(
1− an + bn

2Re
∇2

)
φn+1 =

(
1 +

an + bn
2Re

∇2

)
φn + anh

n
φ + bnh

n−1
φ , (3.19a)

(
1− an + bn

2Re
∇2

)
ωn+1 =

(
1 +

an + bn
2Re

∇2

)
ωn + anh

n
ω + bnh

n−1
ω , (3.19b)

∇2vn+1 = φn+1 . (3.19c)

Although only φ, ω, v are explicitly solved for, the computation of the advec-
tive and non-linear terms hφ, hω defined in equations (3.10) requires the additional
knowledge of u,w, ψ, θ. These quantities are computed a posteriori from φn+1, ωn+1,
vn+1, by solving

(∂xx+ ∂zz)u
n+1 = −∂x∂yv

n+1 + ∂zω
n+1 , (3.20a)

(∂xx+ ∂zz)w
n+1 = −∂z∂yv

n+1 − ∂xω
n+1 , (3.20b)

(∂xx+ ∂zz)ψ
n+1 = −∂x∂yω

n+1 − ∂zφ
n+1 , (3.20c)

(∂xx+ ∂zz)θ
n+1 = −∂z∂yω

n+1 + ∂xφ
n+1 . (3.20d)
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3.2.4 Spatial discretization

It is not our intention to provide a thorough description of the spatial discretization
techniques employed here since they have been extensively used in the past. For
a detailed description of the spatial discretization, the reader is referred to Obrist
(2000) and Lundbladh et al. (1992).

The DNS algorithm is based on pseudo-spectral methods; spatial differentiation
is achieved in spectral space and the advective and nonlinear terms are computed in
physical space. Converting variables from spectral to physical space is very efficient
in terms of computational cost; differentiation, which is more efficient in Fourier
space, is achieved in spectral space whereas physical fields are multiplied in physical
space to yield advective and non-linear terms.

Computational domain

Swept Hiemenz flow is defined over the semi-infinite domain y ≥ 0 but the com-
putational domain sketched in Figure 3.1 is of finite extent. In the wall-normal
y−direction the Navier-Stokes equations are solved between y = 0 and ymax, where
the farthest wall-normal point ymax is set at about 30 times the boundary-layer
thickness to prevent any influence on the inner solution. In the chordwise direction,
the domain stretches from −xmax to +xmax. Since the basic flow is homogeneous
in z, the disturbances may be Fourier transformed in the spanwise direction with
periodic boundary conditions in the spanwise z−direction.

Since Fourier modes decouple in the spanwise z−direction, linear temporal per-
turbations of spanwise wavenumber k may be computed separately; each simulation
then involves a single Fourier mode k in the spanwise z−direction.

The full, non-linear Navier-Stokes equations are solved in the DNS code. To
achieve linearity in practice, very-low-energy disturbances are computed; non-linear
terms are virtually zero and the disturbance evolution is driven by the linear terms
only.

Spatial discretization techniques

Chordwise x−direction Since we want to use Fourier transforms in the chord-
wise x−direction, periodic boundary conditions are required at ±xmax. In order to
enforce periodicity a damping term −λx(x)(φ, ω) is added to equations (3.11a,b) to
drive perturbations to zero as they approach the chordwise boundary ±xmax. The
modified equations read
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∂tφ = hφ +
1

Re
∇2φ− λx(x)φ , (3.21a)

∂tω = hω +
1

Re
∇2ω − λx(x)ω , (3.21b)

∇2v = φ , (3.21c)

where the damping parameter is taken to be

λx(x) = λx max

(
1− S

(
x+ xmax

dx

)
+ S

(
x− xmax

dx

))
, (3.22)

with λx max as the amplitude of the damping and dx as the width of the fringe. The
smooth step function S is defined as

S(x) =





0 , if x ≤ 0
(1 + exp( 1

x−1
+ 1

x
))−1 , if 0 < x < 1

1 , if x ≥ 1



 . (3.23)

The so-called ’fringe region technique’ was first introduced by Spalart and Yang
(1987) to study transition in the Blasius boundary layer; it was theoretically studied
by Nordström et al. (1999). In the context of swept Hiemenz flow, Obrist (2000)
has shown that the Navier-Stokes equations are solved exactly outside the fringe,
in the region −xmax + dx < x < xmax − dx, with the perturbations vanishing at
x = ±xmax.

Introducing a linear damping term at the outer boundaries is an efficient way to
ensure periodicity of the disturbances in x. For that purpose, the physical equations
have been modified; the adjoint equations will also be affected by the procedure. The
application of the fringe region technique in adjoint-based optimization schemes is
discussed in section 3.3.

Spanwise z−direction In the temporal framework the disturbances are periodic
along the spanwise direction. Perturbations are Fourier-transformed in the spanwise
z−direction with periodic boundary conditions in z.

Wall-normal y−direction The presence of a wall at y = 0 suggests the use of
Chebyshev polynomials associated with an algebraic coordinate mapping to cluster
the discretization points near y = 0. A total of ny points are distributed in the
wall-normal y−direction according to

75



yj = A
1 + ηj

B − ηj

, (3.24)

where ηj represents the jth Gauss-Lobatto point defined by

ηj = cos

(
j − 1

ny − 1
π

)
. (3.25)

The mapping is defined by the two parameters A,B which set the location ymax

of the point farthest from the wall and the location yhalf below which half of the
Gauss-Lobatto points are mapped according to

ymax =
2A

B − 1
, (3.26a)

yhalf =
A

B
. (3.26b)

(3.26c)

3.3 Optimization techniques in swept Hiemenz flow

The perturbation equations and the temporal and spatial discretizations have been
described. Before computing optimal disturbances a few comments should be made
on the definition of the energy and the use of the fringe region technique together
with adjoint-based optimization algorithms.

3.3.1 Definition of the energy

The kinetic energy is commonly defined as

E =
1

2

∫

y≥0

(
u2 + v2 + w2

)
dx dy dz . (3.27)

The evolution of the kinetic energy E with time should give a reasonable picture
of perturbation amplification.

In swept Hiemenz flow the chordwise u−velocity and the associated shear in-
crease indefinitely along the chordwise direction as x tends to infinity: this flow
model is an accurate representation of the leading-edge boundary layer close to the
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attachment-line only; it fails, however, as x tends to infinity. As a consequence, only
disturbances located at moderate values of x should be investigated.

As was the case in previously investigated flows, the strongest energy amplifica-
tion is expected at locations where the shear is highest. Therefore, optimal pertur-
bations in swept Hiemenz flow should be located at x = ±∞, which contradicts the
small-x requirement.

In order to check this hypothesis the optimization algorithm was initialized with
random disturbances q0

0 located close to the attachment line, and the location of
the iterates of the optimization algorithm was monitored. After the first two steps
of the optimization the ’optimal guess’ initial disturbance qk

0 was located strictly
inside the boundary layer at nearly the same x−location as the initial guess q0

0, and
it started to take on the vorticity-sheet shape of the optimal disturbances described
in section 3.4: the optimal modification of q0

0, or the steepest slope at that stage of
the gradient algorithm, consisted in concentrating the initial perturbation inside the
boundary-layer where the shear is considerably stronger than outside and putting it
into the vorticity-sheet-like shape.

Once the first optimization steps had been taken, the optimal modification to the
initial disturbance was to move it into regions where stronger shear could be used to
grow the disturbances. Indeed, as the optimization continued, the successive iterates
qk
0 drifted away from the attachment-line towards regions of stronger chordwise

shear. Accordingly, the energy amplification (E(T )/E(0))k grew without bounds as
the initial disturbance reached regions of ever stronger shear.

To avoid optimal perturbations drifting away indefinitely from the attachment
line the degeneracy of the swept Hiemenz flow model has to be taken into account
in the definition of the energy. For instance, Obrist and Schmid (2003a) considered
the weighted energy

E =
1

2

∫

y>0

λE(x)
(
u2 + v2 + w2

)
dx dy dz (3.28)

where λE(x) is a Gaussian weight. Perturbations located at x = 0 contribute fully
to the kinetic energy; the contribution of disturbances located far away from the
attachment line tends to zero. This energy norm arises naturally in the definition of
the scalar product for Hermite polynomials which represent the best-suited basis to
describe disturbances in swept Hiemenz flow (see, e.g., Obrist and Schmid (2003a)).
Besides its mathematical justification, this norm has the advantage of deemphasizing
perturbations located far away from the attachment line.

The chordwise extent of the weighing function has to be chosen judiciously; we
took λE to be ten times the boundary-layer thickness to allow a rich physical behav-
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ior and, at the same time, constrain disturbances to the vicinity of the symmetry
plane x = 0.

3.3.2 Adjoint-based optimization and the fringe region tech-
nique

The damping term −λx(φ, ω) was introduced in equations (3.21) after the direct
equations had been reduced to the velocity-vorticity φ, ω form. Since the reduced
variables are derivatives of the primitive variables u, v, w, p and the damping weight
λx itself depends on the chordwise coordinate x, there is no straightforward way to
express the modified equations (3.21a,b,c) in a primitive variable form similar to
equations (3.1a,b). In particular, equations (3.21a,b,c) are not a reduced form of,
say,

∂tui = −∂xi
p+Hi − ∂xi

(
1

2
ujuj) +

1

Re
∇2ui − λxui , (3.29a)

∂xi
ui = 0 . (3.29b)

There is no a priori justification for introducing linear damping in the reduced
rather than in the primitive variable equations. It is a natural choice since the
temporal equations solved in the numerical simulation are those for φ and ω. In
practice, if the linear damping terms λx(u, v, w) are introduced in the primitive
variable setting, derivatives of λx appear in the reduced set of equations (3.11) and
the numerical scheme becomes unstable.

The adjoint equations have been derived in the primitive variable form (see
section 3.2.2). Since one does not know a priori the primitive-variable form of the
modified perturbation equations (3.21a,b,c), the adjoint problem may not be derived
directly from the modified problem with damping in x.

However, as long as perturbations are far from the fringe region, their evolution
is governed by the original undamped Navier-Stokes equations. Introducing a linear
damping term −λx(φ, ω) should leave perturbations far from the outer chordwise
x−boundary unaltered. In the end, the fringe region is merely a method to enforce
boundary conditions and should not be taken into account when deriving the adjoint
formulation.

The correct way to derive an optimization algorithm is, first, to derive the adjoint
equations and the entire optimization scheme with the original direct equations
without damping and, second, introduce damping terms independently in the direct
and adjoint problems to solve both sets of equations numerically. The equations may
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then be recast into the reduced velocity-vorticity setting or left in primitive variable
form; the crucial point is that perturbations are localized far from the fringe region,
so that the artificial linear damping does not alter the results. Such a scheme can
be found in, e.g., Högberg and Henningson (2002). The direct and adjoint equations
in reduced form, with the fringe region, read

∂tφ = hφ +
1

Re
∇2φ− λxφ , (3.30a)

∂tω = hω +
1

Re
∇2ω − λxω , (3.30b)

∇2v = φ , (3.30c)

∂tφ̃ = h̃φ +
1

Re
∇2φ̃− λxφ̃ , (3.31a)

∂tω̃ = h̃ω +
1

Re
∇2ω̃ − λxω̃ , (3.31b)

∇2ṽ = φ . (3.31c)
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Abstract

The initial perturbation with the largest transient energy growth is computed in the
context of the swept leading edge boundary layer. The highest energy amplifica-
tion is found for perturbations which are homogeneous in the spanwise z direction
although on shorter time scales the most amplified disturbances have a finite span-
wise wavenumber. In both cases the production term associated with the shear of
the spanwise velocity is responsible for the energy amplification in the perturbation
energy equation. A connection is made with the amplification mechanism exhibited

79



by optimal perturbations in streaky boundary layers (Hoepffner et al. (2005)) and
the results are compared to the optimal Görtler-Hämmerlin disturbances computed
by Guégan et al. (2006).

3.4.1 Introduction

Linear stability analysis falls short of explaining the mechanisms that lead to tur-
bulence because it focuses only on the long-term behaviour of infinitesimal distur-
bances, whereas short-term phenomena may be crucial to transition. The interest in
transient growth has been boosted by the possibility to compute the initial pertur-
bation of a given shear flow that is most amplified over a finite time span, referred
to as the optimal perturbation. It has been shown in several prototypical flows that
the energy of initially infinitesimal disturbances may be amplified by several orders
of magnitude, reaching levels at which nonlinear effects become significant.

The boundary layer at the leading edge of swept wings sketched in Figure 3.2 is
one among many examples of shear flows that can sustain transient energy amplifi-
cation, such as Couette, Poiseuille and Blasius velocity profiles (Butler and Farrell
(1992)). Guégan et al (2006) have demonstrated that the energy of a particular
class of perturbations with a spatial structure that satisfies the so-called Görtler-
Hämmerlin assumption may be amplified by up to three orders of magnitude over
finite time.

The strength of the sweep velocity W in the spanwise z−direction is a crucial
parameter for perturbation growth. In commercial airplanes with a sweep angle
close to 30◦, the vicinity of the attachment-line is characterized by strong advection
in the spanwise direction, which may therefore be referred to as the streamwise di-
rection. The associated Reynolds number based on the sweep velocity lies around
Re = 103. In two-dimensional (Butler and Farrell (1992)) and three-dimensional
(Corbett and Bottaro (2001a)) boundary layers the optimal perturbations take the
shape of vortical structures aligned with the mean streamwise advection and peri-
odically distributed along the wall, perpendicular to the main stream. The so-called
lift-up mechanism (Landahl (1980)) is responsible for the energy amplification of
such disturbances. The restrictive Görtler-Hämmerlin assumption, however, cannot
describe streamwise vortices periodically distributed in the chordwise x−direction,
since this assumption requires the chordwise u−velocity component of the pertur-
bations to grow linearly away from the attachment-line. It can be suspected that
relaxing the Görtler-Hämmerlin hypothesis one may expect stronger energy growth
than has been found by Guégan et al (2006).

In the present study, direct numerical simulations have been used in conjunction
with a gradient optimization algorithm in order to determine the general three-
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Wx

y

z
Figure 3.2: Sketch of swept Hiemenz flow showing the dividing streamlines in the
chordwise x direction and the sweep velocity W in the spanwise z direction.

dimensional optimal perturbation in swept Hiemenz flow. The dependence of the
energy growth on the Reynolds number and the spanwise wavenumber has been
investigated and the spatial structure of the optimal perturbation has been deter-
mined. The results are discussed in light of the previous studies of Hoepffner et al
(2005) on optimal perturbations of nonlinearly saturated streamwise streaks and of
Guégan et al (2006) on optimal perturbations within the Görtler-Hämmerlin frame-
work.

3.4.2 Flow configuration and numerical techniques

Linear perturbations in swept Hiemenz flow

Swept Hiemenz flow is an exact solution of the Navier-Stokes equations. It models
the flow near the leading edge of a swept wing in the neighborhood of the attachment-
line, on each side of which the impinging flow divides symmetrically (Figure 3.2).
The stretching chordwise velocity U(x, y) is assumed to increase linearly with the
chordwise x−direction, whereas the wall-normal velocity V (y) and the spanwise
sweep velocity W (y) are assumed to be homogeneous in x. The only flow parameter
is the Reynolds number

Re =
W∞(ν/S)

1
2

ν
(3.32)
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based on the stretching rate S = (dU/dx)y→∞, the sweep velocity at infinity W∞
and the kinematic viscosity ν. The Reynolds number quantifies the sweep angle and
vanishes when the leading edge is perpendicular to the impinging flow.

Infinitesimal perturbations (u, v, w, p) periodic in the spanwise z−direction with
a spanwise wavenumber k are superimposed on this steady base flow. The pertur-
bation energy is taken to be

E =
1

2

∫

y>0

λE(x)(u2 + v2 + w2) dxdydz (3.33)

where λE(x) is a weighing function. The reason for introducing λE is that swept
Hiemenz flow is a degenerate model that does not take into account the leading-edge
curvature. In particular the chordwise velocity U increases linearly away from the
attachment-line. The proper way to avoid this singularity is to include a Gaussian
energy weight in x as in Obrist and Schmid (2003a). In addition to focusing on
the perturbations of most interest which are located close to the attachment-line,
a Gaussian weight function finds its mathematical justification in that it defines a
proper scalar product for Hermite polynomial decompositions in x, thereby allowing
the comprehensive analysis of the stability equations (Obrist & Schmid 2003a).
Here, the width of the Gaussian weight is ten times the boundary-layer thickness.
It allows for a very rich dynamical behaviour while ruling out disturbances that
develop too far away from the attachment-line, where the relevance of the swept
Hiemenz flow model becomes questionable.

A spectral numerical scheme closely inspired from the one used by Obrist &
Schmid (2003b) to study the receptivity of the boundary layer has been implemented
to solve the perturbation equations. It involves Chebyshev polynomials in the wall-
normal direction and two Fourier transforms of the disturbances in the spanwise
and chordwise directions. The latter requires periodic boundary conditions that are
obtained by introducing a fringe region which smoothly drives disturbances to zero
at ±xmax.

Optimization

The initial perturbation with an energy which is the most amplified over a finite
time span 0 < t < T is called the optimal perturbation. It maximizes the objective
functional

I =
E(T )

E(0)
. (3.34)
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Figure 3.3: (a) Time evolution of the perturbation energy for k = 0.25 optimal
disturbances at times T = 20, 70, 120 (dashed), at a Reynolds number Re =
550. The envelope (solid) represents the maximum energy amplification that can be
reached by k = 0.25 disturbances in the time interval 20 < t < 120. (b) Maximum
energy amplification in the time interval 15 < t < 1500 for perturbations at k = 0
(solid), k = 0.25 (dashed), k = 0.5 (dash-dotted) and Re = 550.

A gradient algorithm described in Guégan et al (2006) was used to determine
the maxima of I. The energy amplification of an arbitrary initial disturbance is
iteratively improved by computing the gradient of the objective functional with
respect to the initial disturbance.

In the present study the optimization algorithm is initialized with an initial
disturbance in the shape of a random vorticity patch. After less than a dozen
iterations, each additional iteration improves the objective functional by less than
10−4 times its current value, at which point the algorithm is considered to have
converged. It should be mentioned that the algorithm consistently converges to the
same solution starting from a variety of initial guess values, which tends to show
that a global maximum is reached independently from the initial guess disturbance.

3.4.3 Three-dimensional optimal disturbances

Transient energy growth

Figure 3.3a displays the energy growth of the k = 0.25 perturbations which yield
optimal amplification at times T = 20, 70, 120, for a Reynolds number Re = 550.
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The envelope of all energy curves represents the maximum energy amplification
that k = 0.25 disturbances may experience at time T at this Reynolds number.
The growth is seen to be maximum at Tmax = 72 where the energy of the optimal
perturbations experiences a total gain of Gmax = 210.

The envelopes of the energy curves for spanwise wavenumbers k = 0 , k = 0.25
and k = 0.5 are displayed in Figure 3.3b. The maximum energy growth Gmax

and the associated time Tmax both decrease with wavenumber k. The maximum
amplification is observed for homogeneous perturbations in the spanwise z−direction
in which case the energy growth is Gmax = 600 at Tmax = 675. It should be
emphasized that perturbations at non-zero wavenumbers must not be discarded
since they are more amplified than homogeneous ones on shorter time scales.

Optimal perturbations structure

The optimal homogeneous perturbation consists of spanwise vortices identified with
the Q-criterion (Hunt et al. (1988)) and displayed in Figure 3.4a. The initial distur-
bance almost exclusively consists of spanwise vorticity, as shown in Figure 3.5a.
Through a mechanism similar to the lift-up mechanism (Landahl (1980)) high-
spanwise momentum fluid is pushed toward the wall, and low-spanwise momentum
fluid is pulled away from the wall as shown in Figure 3.6. Positive spanwise pertur-
bation velocity w is created where the jet between two spanwise vortices is directed
toward the wall; outward jets generate negative w. As a consequence wall-normal
ωy− and chordwise ωx−vorticity components are amplified and dominate over the
spanwise ωz−vorticity component at the time when the energy is maximum (Fig-
ure 3.5b). Due to the stretching induced by the base flow the disturbances initially
localized about the flow-dividing plane x = 0 spread in the chordwise x−direction.
This phenomenon is not observed in the paradigmatic lift-up configuration in a two-
dimensional boundary layer, where the perturbation takes the shape of streamwise
vortices periodically spaced in the transverse direction.

At finite k the optimal disturbances take the shape of spanwise vortices mean-
dering in the wall-normal direction as displayed in Figure 3.4c. At the maximum
amplification time T = 72 the vortices are wider and more intense (Figure 3.4d).
Isosurfaces of the vorticity components displayed in Figure 3.7a reveal elongated
structures initially bent against the spanwise shear W ′ as in Hoepffner et al (2005).
The structures are initially bent in the direction of the weaker chordwise shear,
which also seems to be the case in Hoepffner et al, but no explanation could be
found as for why this leads to optimal energy growth.

When the perturbation energy is maximal (Figure 3.7b) the structures have
flipped over and are bent in the same direction as the spanwise shear but in the
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(a) (c)

(b) (d)

Figure 3.4: Homogeneous k = 0 optimal perturbations at t = 0 (a) and at maximum
amplification time T = 675 (b) and periodic k = 0.25 optimal perturbations at
t = 0 (c) and at maximum amplification time T = 72 (d), identified with the
Q-criterion method. The isosurfaces are located at 20% of the maximum of Q =
1
2
(ΩijΩij −SijSij) where Ωij and Sij are the components of the vorticity and rate of

strain tensor respectively. The Reynolds number is Re = 550.
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(a)

(b)

Figure 3.5: From left to right, chordwise, wall-normal and spanwise vorticity com-
ponents of homogeneous k = 0 optimal perturbations at t = 0 (a) and at maximum
amplification time T = 675 (b). The isosurfaces correspond to 0.1 (red) and −0.1
(blue) times the maximum of the strongest vorticity component. At t = 0 the vor-
ticity maxima are ωx0 = 0, ωy0 = 0.01, ωz0 = 1, and at t = T , ωxT = 23.8, ωyT = 6.5,
ωzT = 0.7. The Reynolds number is Re = 550.
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Figure 3.6: Vector plot of the chordwise and wall-normal (u, v) velocity components
in the x − y plane and contours of spanwise perturbation velocity w for a homo-
geneous k = 0 optimal perturbation. The snapshots are taken at time t = 0 (a),
t = 333 (b) and at maximum amplification time T = 675 (c). Positive (negative)
values of w are displayed in thick solid (dashed) lines, and the contour levels and
vector scale are the same in all three plots. To guide the eye, one streamline of each
spanwise vortex is displayed as a thin solid line. The Reynolds number is Re = 550.
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(a)

(b)

Figure 3.7: From left to right, chordwise, wall-normal and spanwise vorticity compo-
nents of k = 0.25 optimal perturbations at t = 0 (a) and at maximum amplification
time T = 72 (b). The isosurfaces correspond to 0.1 (red) and −0.1 (blue) times the
maximum of the strongest vorticity component. At t = 0 the vorticity maxima are
ωx0 = 0.31, ωy0 = 0.01, ωz0 = 1, and at t = T , ωxT = 9.4, ωyT = 3.9, ωzT = 3.3.
The Reynolds number is Re = 550.
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direction opposite to the chordwise shear. The chordwise vorticity component ωx is
the most amplified in the process.

3.4.4 Discussion

Perturbation energy equation

To further analyse the amplification mechanism one may extract the production
and the dissipation terms from the energy equation. The time derivative of the
total perturbation energy reads

∂tE =

∫

y>0

λE(−wv∂yW −uv∂yU+Re−1u.∆u−u.U∇u−∂xUu
2−∂yV v

2) dxdydz .

(3.35)

The stretching direction x and the sweep direction z are associated with the
production terms −uv∂yU and −wv∂yW displayed in Figure 3.8a along with the
dissipation term Re−1u∆u and the time derivative of the energy ∂tE. The energy
amplification may be mainly attributed to the spanwise production term −wv∂yW
balanced by the dissipation term Re−1u∆u while the chordwise production term
−uv∂yU and the other remaining terms are negligible.

A parallel can be drawn between the present analysis and the study of Hoepffner
et al (2005), who computed optimal perturbations of boundary-layer streaks. In
both configurations the advection is stronger in a particular direction, respectively
the direction of the streaks (referred to as the “x” direction) or the direction of the
sweep (denoted by z throughout the present study), which thus defines a preferential
downstream direction. As in the present case, Hoepffner et al (2005) observe that the
optimal perturbation with a finite streamwise wavenumber is initially tilted against
the main shear and points downstream when its energy is maximum. The main
contributor to the energy amplification in their study is the term “−uw∂zU“. The
equivalent term here would read −wu∂xW but since the sweep W is homogeneous in
the chordwise x direction, it is equal to zero. The other production term “−uv∂yU“
in the streaky base flow contributes moderately to the energy growth but its coun-
terpart −wv∂yW is responsible for most of the amplification in swept Hiemenz flow.
The chordwise production term −uv∂yU has a counterpart “−wv∂yW” which is zero
in the boundary layer with streaks. Here it is negligible.
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Figure 3.8: (a) Temporal evolution of the time derivative of the energy (∂tE, solid),
of the viscous dissipation (Re−1u∆u, dotted line) and of the two production terms
−uv∂yU (dash-dotted line) and −wv∂yW (dashed line), for the optimal disturbance
at Re = 550, k = 0.25, T = 70. (b) Maximum energy growth of Görtler-Hämmerlin
(dashed lines) and general optimal perturbations (solid lines) as a function of span-
wise wavenumber k, for different Reynolds numbers.

Transient growth mechanisms

Two distinct mechanisms are classically held responsible for energy amplification
in shear flows, namely the Orr mechanism (Orr (1907)) and the lift-up mechanism
(Landahl (1980)). In the Orr mechanism counter-rotating vortices parallel to the
main stream vorticity and tilted against the mean shear are amplified by the ba-
sic shear; this mechanism is efficient at high streamwise wavenumbers, on short
time scales as demonstrated by Butler & Farrell (1992). In the so-called lift-up
mechanism streamwise vortices interact with the basic shear to generate streamwise
perturbation velocity; this mechanism operates at smaller wavenumbers, on larger
time scales (Butler and Farrell (1992)). At medium wavenumbers both mechanisms
work in conjunction and the optimal perturbation is a combination of streamwise
and transverse vorticity.

Figure 3.9a displays the ratio of the initial chordwise enstrophy
∫

XY Z
ω2

x(t =
0) dxdydz over the initial spanwise enstrophy

∫
XY Z

ω2
z(t = 0) dxdydz for optimal

disturbances at different spanwise wavenumbers k, and Re = 550. This ratio gives a
complete picture of the balance between vorticity components in the initial distur-
bance since the wall-normal vorticity component accounts for less than 1% of the
total enstrophy at all wavenumbers investigated. At zero spanwise wavenumber the
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Figure 3.9: (a) Ratio of the initial enstrophy
∫

XY Z
ω2

x(t = 0) dxdydz associ-
ated with vorticity in the chordwise x direction, divided by initial enstrophy∫

XY Z
ω2

z(t = 0) dxdydz associated with vorticity in the spanwise z direction, versus
spanwise wavenumber k. The chordwise vorticity component of the optimal per-
turbation increases with k compared to the spanwise component and the maximum
amplification time decreases with k. (b) Optimal perturbation amplification time
versus k. It is maximum at k = 0. The Reynolds number is Re = 550.

chordwise x−enstrophy is negligible compared to the spanwise z−enstrophy, and
the optimal perturbation consists of spanwise vortices, in line with the results of
Butler & Farrell (1992). As the spanwise wavenumber k is increased the chord-
wise ωx−component accounts for an increasing fraction of the initial enstrophy; at
k = 0.4 the chordwise x−enstrophy is a fifth of the spanwise z−enstrophy.

Chordwise vorticity amplification via an Orr-like mechanism clearly gains ground
on lift-up as k is increased. Consistently (Butler & Farrell 1992), the maximum
amplification time dramatically decreases as k is increased from k = 0 to k = 0.4
(Figure 3.9b).

Comparison with Görtler-Hämmerlin disturbances

Optimal Görtler-Hämmerlin perturbations consist of chordwise vortices amplified
by a two-dimensional mechanism reminiscent of the Orr mechanism (Guégan et al
2006). At high spanwise wavenumbers k general optimal disturbances are amplified
by the same type of mechanism. The amplification levels displayed in Figure 3.8b are
of the same order of magnitude as those of Görtler-Hämmerlin optimal perturbations
for k > 0.1, and the optimal energy amplification has a similar k-dependence. Note
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Figure 3.10: Chordwise vorticity contours in z − y plane of (a) an optimal Görtler-
Hämmerlin perturbation and (b) a general optimal perturbation at k = 0.25 and
Re = 550. The successive snapshots have been taken (from top to bottom) at times
t = 0, t = T/2 and t = T . For visualization convenience the levels have been set at
2% and 20% of the maximum chordwise vorticity in (a) and (b) respectively.
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that a strict quantitative comparison cannot be made since amplification in the
Görtler-Hämmerlin case is defined with a top-hat weight function in the chordwise
direction (Guégan et al 2006).

Chordwise vorticity contours in z − y planes (Figure 3.10b) display similar
features as optimal Görtler-Hämmerlin disturbances (Figure 3.10a), although on
shorter time scales. In the latter case an array of counter-rotating chordwise vor-
tices initially bent against the spanwise shear eventually tilts in the direction of
the shear. Similarly in the general case, optimal perturbations are initially bent
against the spanwise shear (Figure 3.10b, t = 0 snapshot) and tilt in the direction
of the shear (Figure 3.10b, t = 70 snapshot). For intermediate times (Figure 3.10b,
t = 35 snapshot) the occasional vortex splitting observed by Guégan et al (2006) is
recovered as well.

The Görtler-Hämmerlin assumption has been extensively used in the past, and
it is here demonstrated to yield realistic energy amplification levels for spanwise
wavenumbers k > 0.1 and short time scales. The optimal mechanism at finite k
consists partly in amplification of the chordwise vorticity by the main shear W ′

in a similar way as optimal Görtler-Hämmerlin perturbations. However, in order
to obtain the true shape of the optimal perturbations, it is necessary to relax the
Görtler-Hämmerlin assumption: the optimal perturbations take the shape of span-
wise vortices (Figure 3.4a) whereas their Görtler-Hämmerlin counterparts consist of
chordwise vortices. For similar reasons, the lift-up mechanism and the high ampli-
fication levels at k = 0 can only be observed if the Görtler-Hämmerlin assumption
has been relaxed.
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Chapter 4

Optimal spatial perturbations

4.1 Introduction

From a theoretical point of view, temporally evolving disturbances are usually eas-
ier to investigate than spatially developing perturbations. Unfortunately, physical
configurations that can be described in a temporal framework are seldom found,
whereas spatially developing flows are ubiquitous (see, e.g. a nice example of spa-
tially developing disturbances in hot jets in Lesshafft (2006)).

In the spatial framework a base flow dominated by advection in the stream-
wise x−direction is submitted to upstream excitations at, say, x = 0. Disturbances
develop downstream of the forcing location. In the spatial context optimal distur-
bances are the perturbations whose energy is amplified most between the location
of the periodic forcing x = 0 and a given output location xmax > 0. Our objective
in this chapter is to compute optimal spatial disturbances in swept Hiemenz flow.

Performing spatial computations is not as straightforward as computing the tem-
poral evolution of an initial disturbance. In the temporal context, causality ensures
that a given initial condition u0, v0, w0, p0 will result in a unique disturbance at later
times. In the spatial framework, a localized forcing in a plane orthogonal to the
main advection direction will give rise to both upstream- and downstream-travelling
waves. This is due to the elliptic part 1

Re
∂xx(u, v, w) in the linearized Navier-Stokes

equations; the second streamwise derivative allows information travelling upstream
of the forcing location. In order for the objective functional I = E(Z)

E(0)
to be uniquely

defined one has to be able to compute the unique downstream-travelling wave asso-
ciated to a given velocity input u0, v0, w0. Otherwise, an infinite number of combina-
tions between upstream- and downstream-travelling disturbances may be associated
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to the same velocity input u0, v0, w0, with distinct spatial energy amplifications.

One possibility is to force disturbances u0, v0, w0 upstream of the computational
domain and let them free to evolve in time and to develop downwstream of the
forcing location. The perturbations eventually reach a steady state in the domain
of interest 0 < x < L. Besides the fact that forcing arbitrary disturbances in the
DNS code described in chapter 3 is itself problematic (see Appendix), the procedure
would be extremely expensive in terms of computer time since the three-dimensional
perturbation equations would have to be solved several times over long time intervals.

Another way to achieve downstream-travelling disturbances is to use parabolized
equations (see e.g. Andersson et al. (1999), Luchini (2000)). Parabolization of the
linearized Navier-Stokes equations is justified when optimal perturbations are sought
in the shape of streamwise elongated structures that vary slowly in the streamwise
direction; a major advantage of parabolic equations is that upstream-travelling waves
are discarded and downstream disturbances are uniquely defined by the upstream
forcing. Furthermore, disturbances can be computed by a one-shot marching scheme
starting from the upstream velocity input (u0, v0, w0). The computational cost is
dramatically reduced compared to, e.g., solving the entire three-dimensional Navier-
Stokes equations over a time interval large enough so that perturbations have had
time to settle.

At reasonably high Reynolds numbers and close to the attachment line, swept
Hiemenz flow is dominated by spanwise advection. Consequently, optimal temporal
disturbances are highly elongated in the spanwise direction (see section 3.4.3). By
extension, optimal spatial perturbations developing in the spanwise z−direction are
also expected to be elongated in the spanwise direction and optimal disturbances will
be computed with perturbation equations parabolized in the spanwise z−direction.

In this chapter we first demonstrate in section 4.2 that parabolization does not
significantly alter results on optimal disturbances for a model system based on the
Ginzburg-Landau equation. In section 4.3 the parabolized perturbation equations
for swept Hiemenz flow are derived; the adjoint system and the numerical scheme
are described in detail. To validate the code and the optimization procedure swept
Hiemenz flow is replaced in section 4.4 by the parallel Blasius velocity profile. Opti-
mal perturbations are computed for the Blasius velocity profile and compared with
the results of Andersson et al. (1999), Luchini (2000) and Tumin and Reshotko
(2001). Optimal energy growth and optimal spatial disturbances for swept Hiemenz
flow are computed in section 4.5.
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4.2 Spatial energy amplification and the Ginzburg-

Landau equation

Many features of the linear stability of open shear flows (see, e.g., Huerre (2000))
are captured by the one-dimensional linear Ginzburg-Landau equation

∂tφ+ U∂xφ− µφ− 1

Re
∂xxφ = 0 . (4.1)

For instance, the steady spatial Ginzburg-Landau equation

U∂xφ− µφ− 1

Re
∂xxφ = 0 (4.2)

may be used to investigate the spatial stability of steady, spatially-developing dis-
turbances. Transient spatial growth phenomena cannot be observed with equa-
tion (4.2). Depending on parameters U , µ, Re, the energy of steady disturbances

E(x) = φ∗(x)φ(x) (4.3)

increases or decreases exponentially from x = 0 to infinity as shown in Figure 4.1a.

We would like to study optimal energy amplification in the spatial framework;
the Ginzburg-Landau equation needs to be modified in order to display transient
growth. For this purpose, one may introduce the new variable ψ coupled with φ
through the additional equation

U∂xψ + ψ = φ . (4.4)

The new variable ψ is governed by the stable spatial equation U∂xψ + ψ = 0
forced by φ. For simplicity, ψ is set equal to zero at x = 0. The two-equation model
problem

U∂xφ− µφ− 1

Re
∂xxφ = 0 , (4.5a)

U∂xψ + ψ − φ = 0 , (4.5b)

is non-normal due to the coupling term φ in equation (4.5b). As shown in Fig-
ure 4.1b, the total energy

97



0 1 2 3 4 5

10
0

10
1

X

E
ne

rg
y

0 1 2 3 4 5

10
0

10
1

X

E
ne

rg
y

(a) (b)

Figure 4.1: Total energy versus streamwise x−coordinate for the one-dimensional,
steady Ginzburg-Landau equation (left) and the model problem (4.5) (right). The
latter displays transient growth whereas the Ginzburg-Landau equation does not.
The parameters are : U = 1, Re = 100, µ = 0.1 (solid lines) and µ = −0.1 (dashed
lines).

E(x) = φ∗(x)φ(x) + ψ∗(x)ψ(x) (4.6)

grows transiently in space when the damping parameter µ is negative.

Since equations (4.5a,b) are linear the solution φ(x) is defined by the value φ0

up to a muliplicative factor which is divided out in the objective functional

I =
E(L)

E(0)
. (4.7)

As a consequence, energy amplification I depends only on the parameters U , µ and
Re.

Optimization is made non-trivial by introducing a spanwise z−coordinate. Vari-
ables φ and ψ are taken to be functions of z and the advection velocity U is set
equal to:

U(z) = Umax

(
1 +

1

2
sin(

2πz

zmax

)

)
(4.8)
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with zmax as a spanwise reference length. The two-dimensional model system takes
the form

U(z)∂xφ− µφ− 1

Re
(∂xx + ∂zz)φ = 0 , (4.9a)

U(z)∂xψ + ψ − φ = 0 , (4.9b)

and energy is redefined as

E(x) =

∫

z

(φ∗(x, z)φ(x, z) + ψ∗(x, z)ψ(x, z)) dz . (4.10)

The optimization problem now consists in maximizing the energy amplification

I =

∫
z
(φ∗(L, z)φ(L, z) + ψ∗(L, z)ψ(L, z))dz∫

z
(φ0(z)∗φ0(z))dz

=
EL

E0

(4.11)

with respect to the condition at the entrance

φ(x = 0, z) = φ0(z) . (4.12)

The objective functional I(φ0) is evaluated by computing the steady disturbance
φ, ψ that satisfies equations (4.9a,b) with initial condition φ(x = 0, z) = φ0, ψ(x =
0, z) = 0. Transient growth phenomena are preserved and the optimization is still
non-trivial under the assumptions that the coupled variable ψ is zero at x = 0 and
that all variables are periodic in z.

In order to select only the downstream-travelling waves the objective functional
is evaluated by computing long-term solutions of the signalling problem

∂tφ+ U(z)∂xφ− µφ− 1

Re
(∂xx + ∂zz)φ = 0 , (4.13a)

∂tψ + U(z)∂xψ + ψ − φ = 0 (4.13b)

with initial and boundary conditions

φ(x = 0, z, t) = H(t)φ0(z) , (4.14a)

ψ(x = 0, z, t) = 0 , (4.14b)

∂xφ(x→∞, z, t) = 0 . (4.14c)
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The resulting optimal spatial perturbations can be compared to the optimal spatial
perturbations for the parabolized problem

U(z)∂xφ− µφ− 1

Re
∂zzφ = 0 , (4.15a)

U(z)∂xψ + ψ − φ = 0 (4.15b)

where the second streamwise derivative has been dropped. The initial and boundary
conditions for the parabolized problem read:

φ(x = 0, z) = φ0(z) , (4.16a)

ψ(x = 0, z) = 0 . (4.16b)

4.2.1 Parabolized versus non-parabolized spatially develop-
ing perturbations

Setting up the spatial optimization problem

Let us consider the following objective functional

I =

∫
z
(φ∗(L)φ(L) + ψ∗(L)ψ(L))dz∫

z
φ∗0φ0dz

=
EL

E0

(4.17)

which represents the energy amplification between streamwise locations x = 0 and
x = L. Let us assume that the variables φ, ψ are solutions to the parabolized
(respectively, genuine steady perturbation) equations (4.15a,b) (resp. (4.9a,b) with
initial condition φ(x = 0, z) = φ0(z), ψ(x = 0, z) = 0. Similar to the temporal
optimization performed in chapters 2 and 3 the optimal condition φopt

0 is determined
iteratively from an initial guess value φ0

0 using a steepest descent algorithm. Each
iterate of the optimization loop reads

φk+1
0 = φk

0 + αk+1
opt ∇I . (4.18a)

The optimal descent parameter αk+1
opt is found by a line search algorithm. Our

model (4.9) has few degrees of freedom and the gradient ∇I can either be derived
analytically, as in Andersson et al. (1999), or evaluated numerically as in Cossu
et al. (2000).
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Gradient evaluation for the parabolized case

For the parabolized case, the gradient can be derived analytically and evaluated
from the computation of an adjoint problem. Equations (4.15) are re-written as

F (Φ) =

{
U(z)∂xφ− µφ− 1

Re
∂zzφ

U(z)∂xψ + ψ − φ

}
, (4.19a)

G(Φ, φ0) = φ(x = 0, z)− φ0(z) , (4.19b)

with Φ = (φ, ψ). The Lagrangian

L = I −
(
F (Φ), Φ̃

)
−

[
G(Φ, φ0), φ̃0

]
(4.20)

is introduced, using the scalar products

(
F (Φ), Φ̃

)
=

∫

z

∫ L

0

F (Φ)∗Φ̃dxdz , (4.21a)

[
G(Φ, φ0), φ̃0

]
=

∫

z

G(Φ, φ0)
∗φ̃0dz . (4.21b)

Differentiating the Lagrangian with respect to φ0 yields

∂φ0Lδφ0 = −2
EL

E2
0

∫

z

δφ∗0φ0dz +

∫

z

δφ∗0φ̃0dz , (4.22a)

from which one obtains the gradient of the objective functional with respect to the
initial condition

∇φ0I = −2
EL

E2
0

φ0 + φ̃0 . (4.23a)

Differentiating the Lagrangian with respect to Φ yields
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∂ΦLδΦ =
2

E0

∫

z

(
δφ∗(L)φ(L)
δψ∗(L)ψ(L)

)
dz −

∫

z

δφ∗(x = 0)φ̃0dz

−
∫

z

[
Uδφ∗φ̃
Uδψ∗ψ̃

]L

0

dz

+

∫

z

∫ L

0

(
δφ∗

δψ∗

)(
U(z)∂xφ̃+ µφ̃+ 1

Re
∂zzφ̃+ ψ

U(z)∂xψ − ψ

)
dx dz . (4.24a)

The adjoint equations arising from the last integral reads:

U(z)∂xφ̃+ µφ̃+
1

Re
∂zzφ̃+ ψ = 0 , (4.25a)

U(z)∂xψ − ψ = 0 . (4.25b)

The boundary terms that involve δφ(x = 0) yield an equation for φ̃0,

φ̃0 = Uφ̃(x = 0) . (4.26a)

The boundary terms that involve δφ(L), δψ(L) yield the adjoint conditions at x = L:

Uφ̃(L) =
2

E0

φ(L) , (4.27a)

Uψ̃(L) =
2

E0

ψ(L) . (4.27b)

Finally, the gradient of the objective functional (4.17) with respect to the initial
condition φ0 reads

∇φ0I = −2
EL

E2
0

φ0 + Uφ̃(x = 0) , (4.28)

where the adjoint variable φ̃(x = 0) satisfies the adjoint equations

U(z)∂xφ̃+ µφ̃+
1

Re
∂zzφ̃+ ψ = 0 , (4.29a)

U(z)∂xψ − ψ = 0 , (4.29b)
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with downstream conditions

Uφ̃(L) =
2

E0

φ(L) , (4.30a)

Uψ̃(L) =
2

E0

ψ(L) . (4.30b)

Gradient evaluation in the non-parabolized case

It has been argued in section 4.1 that in the non-parabolized case perturbations to
develop from the upstream forcing location x = 0 to a downstream x−location until
a steady state has been reached between x = 0 and x = L.

In order to prevent any contamination of the flow between x = 0 and x = L
by the downstream boundary condition the computational domain should extend
some distance downstream of x = L. In this case, it is difficult to match the output
measure of the energy at x = L with an explicit boundary condition at x = L.

As an alternative, it should be possible to prescribe more complex boundary
conditions at x = L that select outgoing waves only. Deriving an adjoint problem
under such conditions is not straightforward, since the treatment of boundary terms
at x = L is considerably more involved than in the parabolized case.

Taking a different approach, the gradient can be evaluated numerically. The
value of the gradient at each discretization point zn can be evaluated by changing
slightly each component of the guess value φk

0 separately, computing φ and ψ, and
tracing the subsequent changes in the objective functional. For instance, if the kth

guess value φk
0 is increased by δφ0,n ¿ 1 at spanwise discretization point n, the nth

component of the gradient at optimization loop k is equal to

∇k
φ0,nI =

I(φk
0)− I(φk

0 + δφ0,n)

δφ0,n

. (4.31a)

The model equations (4.9) are two-dimensional and the upstream condition φ0 is
one-dimensional in space; evaluating φ, ψ between x = 0 and x = L takes a fraction
of a second on a standard PC for reasonable resolutions (nx = 100 points in the
streamwise x−direction and nz = 50 in the spanwise z−direction). Evaluating the
objective functional nz times is affordable and an excellent numerical evaluation of
the gradient can be obtained this way.
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This method is very attractive since the adjoint problem is completely bypassed.
It also yields excellent results in terms of convergence of the optimization algorithm
since the error made computing the gradient is on the order of the PDE solver’s
error when small enough test variations δφ0,n are considered.

The method has been used previously by Cossu et al. (2000) to compute optimal
Görtler vortices periodically spaced in the transverse direction; however, it becomes
impracticable as the dimension of the upstream forcing condition increases. For a
two-dimensional upstream condition such as the one we are planning to investigate
in swept Hiemenz flow, discretized on a 100 × 100 mesh, the gradient computation
would require 104 evaluations of the objective functional, versus two evaluations for
the adjoint-based technique.

Still, the low-dimensional parabolized and non-parabolized versions of the mo-
del (4.9a,b) can be compared using this technique. The parabolization assumption
will be shown to have a negligible influence on the optimal spatial energy growth
and the shape of the optimal spatial perturbations.

Results

The original model (4.9a,b) and its parabolized counterpart (4.15) are solved using
a finite-difference scheme. For both models the objective functional is maximized
with respect to the initial condition φ0(z). The gradient of the objective functional
is derived analytically from the parabolized equations and evaluated numerically in
the non-parabolized case.

At all steps of the optimization procedure the non-parabolized equations should
be solved as a signalling problem by forcing φ at x = 0 and letting it evolve in time
until perturbations are steady between x = 0 and x = L. In order to speed up the
procedure we take advantage of the fact that the streamwise derivatives of φ, ψ are
expected to be small. We make a ’local parabolic assumption’ by assuming zero
derivatives at the inlet of the domain. Therefore, the non-parabolic equations can
be solved at each time step by marching the equations in space from x = 0 to x = L,
starting with φ(x = 0) = φ0 and ∂xφ(x = 0) = 0, ∂xψ(x = 0) = 0. In order to check
that this assumption does not significantly alter the solution we compare φ, ψ with
the true signalling problem computed a posteriori with the optimal φ0.

The objective functional displayed in Figure 4.2a increases with the number of
optimization iterations from less than 0.2 to more than 1 in both the parabolized
and the non-parabolized case, for parameters U = 1, Re = 100, µ = −0.05, L = 9.
When the optimization algorithm has converged both, energy amplifications differ
by as little as one percent.
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Figure 4.2: (a) Objective functional versus the optimization iteration number for the
parabolized (triangles) and the non-parabolized problem (solid line). The difference
(dashed line) is on the order of one percent after the optimization has converged. (b)
Energy evolution versus the streamwise x−coordinate for optimal disturbances of the
parabolized (dashed line) and the non-parabolized problem (solid line). The energy
amplification is almost identical in both cases and closely matches the signalling
problem computed for comparison (dots). The parameters are : Umax = 1, Re = 100,
µ = −0.05, L = 9.

As shown in Figure 4.2b the energy of the optimal spatial perturbation increases
transiently from x = 0 to x = 4; it eventually decays, consistent with the negative
damping parameter µ = −0.05. The signalling problem and the spatial equation
solved with the assumption of a zero slope at the inlet yield almost identical energy
evolutions, which confirms the validity of assuming zero-slope at x = 0. The energy
of optimal perturbations in the parabolized system follows closely the energy of the
full spatial problem from x = 0 to x = 9, which provides a strong argument in favor
of the parabolic assumption.

Figures 4.3a,b confirm that the parabolization assumption has little influence on
the optimal spatial perturbations. To the eye, it is difficult to detect a difference
in the contours of φ(x, z) between the parabolized and non-parabolized cases. Both
cases differ by less than 0.1%.

The condition at the inlet φ0(z) and the perturbation at the exit φ(L, z) are
displayed in Figure 4.4a,b for all three computations. The optimal forcing φ0(z) has
the same spanwise period as the mean flow U(z) and the maxima of φ0(z) coincide
with the maxima of the advection velocity U(z). This result matches our physical
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Figure 4.3: Contour plot of φ in the (x, z) plane for (a) the parabolized problem,
(b) the non-parabolized case. The velocity profile U is displayed as a thick dashed
line, and the parameters are : Umax = 1, Re = 100, µ = −0.05, L = 9.

intuition, since in regions of stronger advection disturbances are more rapidly ad-
vected downstream and are not subjected to the damping µ < 0 for as long a time
as in regions of weaker advection where disturbances experience stronger damping.

4.2.2 Conclusion

A low-dimensional model problem based on the Ginzburg-Landau equation has been
derived in order to quantify the error on optimal perturbations induced by parab-
olization. Gradient-based optimization has been implemented based on the com-
putation of an adjoint problem in a parabolized version of the model and on the
numerical evaluation of the gradient in the original non-parabolized case.

Parameters typical of strongly advective flows, U ∼ 1, Re ∼ 102, µ ∼ 10−1 re-
spectively, have been used. Results show that parabolizing the equations by omitting
the second streamwise derivative 1

Re
∂xxφ has little influence on the optimal spatial

disturbances and their energy amplification. Both the optimal inlet condition φ0

and the energy amplification differ by less than 1% between both cases.

At Reynolds numbers above approximatively 102 swept Hiemenz flow is strongly
advective in the spanwise direction. Similar to the Ginzburg-Landau model, parabo-
lizing the perturbation equations is expected to induce negligible errors in the shape
of the optimal disturbances and their spatial amplification. Once the equations have
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Figure 4.4: (a) Inlet condition φ0(z) and (b) disturbance at the exit φ(x = L, z)
for the parabolized problem (upper triangles), the non-parabolized equations (solid
line) and the signalling problem (lower triangles). The velocity profile U is displayed
as a thick dashed line, and the parameters are : Umax = 1, Re = 100, µ = −0.05,
L = 9.

been parabolized, the gradient of the objective functional can be derived analytically
and computed by solving an adjoint problem.

4.3 Parabolized spatial equations and numerical

techniques

4.3.1 Direct and adjoint parabolized equations in swept Hiemenz
flow

In swept Hiemenz flow the spanwise sweep W∞ as y tends to ∞ may be taken
as the reference velocity. After renormalization by W∞ the chordwise velocity
component xU scales like x/Re whereas the spanwise W−component is of order
unity. As a consequence, at Reynolds numbers higher than about 102 and chordwise
x−distances from the attachment-line of the order of the boundary-layer thickness
δ = 3, the sweep velocity W is more than a hundred times higher than the chord-
wise xU−velocity. The flow is thus strongly advective in the spanwise direction,
and optimal disturbances are expected to be highly elongated in the streamwise
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direction.

Inside the boundary layer of thickness δ and close to the attachment-line the
typical length scales are

x ∼ δ , (4.32a)

y ∼ δ , (4.32b)

z ∼ 1 . (4.32c)

The continuity equation

∂xu+ ∂yv + ∂zw = 0 (4.33)

implies that the velocity fields u, v, w scale like

u ∼ δ , (4.34a)

v ∼ δ , (4.34b)

w ∼ 1 . (4.34c)

Keeping these scalings in mind and discarding second-order terms of the lin-
earized Navier-Stokes equations in the spanwise z−direction, as well as the span-
wise pressure gradient, one obtains the parabolized perturbation equations for swept
Hiemenz flow,

(
∂t + xU∂x + V ∂y +W∂z − 1

Re
(∂xx + ∂yy)

)
u+ Uu+ xU ′v + ∂xp = 0 , (4.35a)

(
∂t + xU∂x + V ∂y +W∂z − 1

Re
(∂xx + ∂yy)

)
v + V ′v + ∂yp = 0 , (4.35b)

(
∂t + xU∂x + V ∂y +W∂z − 1

Re
(∂xx + ∂yy)

)
w + V ′w = 0 , (4.35c)

∂xu+ ∂yv + ∂zw = 0 . (4.35d)

In the spatial framework disturbances are assumed to be time-harmonic and
the temporal derivative ∂t can be replaced by the imaginary frequency term −iω
in equations (4.35a,b,c). The spatial development of harmonic disturbances in the
spanwise direction is computed from the parabolic set of equations
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W∂zu =

(
iω − xU∂x − V ∂y +

1

Re
(∂xx + ∂yy)

)
u− Uu− xU ′v − ∂xp , (4.36a)

W∂zv =

(
iω − xU∂x − V ∂y +

1

Re
(∂xx + ∂yy)

)
v − V ′v − ∂yp , (4.36b)

W∂zw =

(
iω − xU∂x − V ∂y +

1

Re
(∂xx + ∂yy)

)
w − V ′w , (4.36c)

0 = ∂xu+ ∂yv + ∂zw . (4.36d)

Optimal energy amplification between the streamwise locations z = 0 and z = zmax

is investigated. The objective functional reads

I =
E(zmax)

E(z = 0)
, (4.37)

with

E(z) =
1

2

∫

y≥0

λE(x)
(
u(z)2 + v(z)2 +Re2w(z)2

)
dxdydz. (4.38)

The Re2 factor in front of the w component has been introduced to account
for the scaling of u, v, w, respectively. Cossu et al. (2000) qualified as ’physical’ a
similar definition of the energy of Görtler vortices over a concave wall.

The Gaussian weight function λE has been introduced in the temporal framework
(see section 3.3.1) in order to remove the unboundedness of the base flow as x→ ±∞.
The reason for introducing an energy weight function, namely, that shear is infinite in
the limit of infinite chordwise x−coordinates, is also valid in the spatial framework;
again, the divergence of the energy integral is efficiently removed by introducing λE.

The adjoint problem is derived by applying a procedure similar to the one used
in the temporal framework in chapters 2 and 3 or with the parabolized Ginzburg-
Landau model (4.15a,b) in section 4.2. The adjoint equations read
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W∂zũ =

(
−iω − xU∂x − V ∂y − U − V ′ − 1

Re
(∂xx + ∂yy)

)
ũ

+ Uũ− ∂xp̃ , (4.39a)

W∂zṽ =

(
−iω − xU∂x − V ∂y − U − V ′ − 1

Re
(∂xx + ∂yy)

)
ṽ

+ xU ′ũ+ V ′ṽ +W ′w̃ − ∂yp̃ , (4.39b)

W∂zw̃ =

(
−iω − xU∂x − V ∂y − U − V ′ − 1

Re
(∂xx + ∂yy)

)
w̃ − ∂zp̃ , (4.39c)

0 = ∂xũ+ ∂yṽ . (4.39d)

The terminal condition for the adjoint problem reads

Wũ(zmax) =
2

E0

λEu(zmax) , (4.40a)

Wṽ(zmax) =
2

E0

λEv(zmax) , (4.40b)

Ww̃(zmax) + p̃(zmax) =
2

E0

Re2λEw(zmax) , (4.40c)

and the gradient of the objective functional is obtained from

∇u0I = −2
E(zmax)

E2
0

λEu0 +Wũ(z = 0) , (4.41a)

∇v0I = −2
E(zmax)

E2
0

λEv0 +Wṽ(z = 0) , (4.41b)

∇w0I = −2
E(zmax)

E2
0

Re2λEw0 +Ww̃(z = 0) + p̃(z = 0) . (4.41c)

It is important to note that, in the parabolized framework, the direct and adjoint
equations show marked differences. Most significantly, in the adjoint problem mass
is conserved in (x, y)−planes only and continuity equation (4.39d) is reduced to
the intrinsically two-dimensional equation ∂xu + ∂yv = 0. Also, in contrast to the
direct equation (4.36c) the third adjoint momentum equation includes the spanwise
derivative of the adjoint pressure p̃.

In the process of deriving the adjoint problem one finds that the adjoint conti-
nuity equation lacks the spanwise velocity term since the third direct momentum
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equation is void of the ∂zp term. In a symmetric fashion, the three-term direct
continuity equation causes a ∂zp̃ pressure term to appear in the adjoint equations.

The λE energy weight has been introduced in order to confine disturbances close
to the attachment-line. Although disturbances should be equal to zero at ±xmax,
the same fringe region damping λ(x) as in chapter 3 has been introduced in order
to avoid error accumulation at outermost chordwise locations.

4.3.2 Numerical techniques

For both the direct and adjoint problems the numerical domain (−xmax, xmax) ×
(0, ymax)×(0, zmax) is discretized using an equispaced grid in the x, z directions, with
cells of size δx, δz. Chebyshev polynomials are used in the wall-normal y−direction.

Direct equations (4.36a,b,c,d) and adjoint equations (4.39a,b,c,d) are similar to
the boundary-layer equations used by Andersson et al. (1999), Luchini (2000) and
Tumin and Reshotko (2001) to compute optimal spatial disturbances in a Blasius
boundary layer. From a numerical point of view, the present study is most closely
related to Andersson et al. (1999) where the optimization is performed using an
adjoint-based algorithm. In addition to parabolization Andersson et al. (1999)
made the assumption that perturbations were periodic in the transverse direction,
which in the present study would amount to considering periodic perturbations in x.
By doing so, Andersson et al. (1999) ended up with a system of four one-dimensional
equations in the wall-normal y−direction that could be marched in the streamwise
direction, in our case z, using a fully implicit scheme.

In swept Hiemenz flow the chordwise basic velocity field depends on the chordwise
x−coordinate. Chordwise Fourier modes are coupled in equations (4.36a,b,c) and
one cannot divide the problem into a set of nx one-dimensional equations in y.
Instead, marching equations (4.36a,b,c,d) involves solving a two-dimensional elliptic
problem in x and y at each step. The fully implicit scheme developed by Andersson
et al. (1999) that was well suited for one-dimensional parabolic equations has thus
to be modified to accommodate the chordwise coupling.

In the direct problem, the momentum equations (4.36a,b,c) may be advanced
using a mixed Adams-Bashforth/Crank-Nicolson scheme. The velocity fields un+1

i

at the spanwise discretization point (n+ 1) are computed according to

(
W − δz

2Re
∇2

x,y

)
un+1

i =

(
W +

δz

2Re
∇2

x,y

)
un

i + δz

(
3

2
fun

i
− 1

2
fun−1

i

)
, (4.42)
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with

fn
u = (iω − xU∂x − V ∂y)u

n − Uun − xU ′vn − ∂xp
n , (4.43a)

fn
v = (iω − xU∂x − V ∂y)v

n − V ′vn − ∂yp
n , (4.43b)

fn
w = (iω − xU∂x − V ∂y)w

n −W ′wn . (4.43c)

(4.43d)

Marching the momentum equations according to (4.42) does not ensure mass
conservation at step n + 1, which can be achieved by solving simultaneously the
continuity equation

∂xu
n+1 + ∂yv

n+1 + ∂zw
n+1 = 0 . (4.44)

The four variables u, v, w, p can be computed simultaneously at step n + 1 by
treating pressure implicitly according to

(
W − δz

2Re
∇2

x,y

)
un+1 + ∂xp

n+1 =

(
W +

δz

2Re
∇2

x,y

)
un + δz

(
3

2
gun − 1

2
gun−1

)
, (4.45a)

(
W − δz

2Re
∇2

x,y

)
vn+1 + ∂yp

n+1 =

(
W +

δz

2Re
∇2

x,y

)
vn + δz

(
3

2
gvn − 1

2
gvn−1

)
, (4.45b)

(
W − δz

2Re
∇2

x,y

)
wn+1 =

(
W +

δz

2Re
∇2

x,y

)
wn + δz

(
3

2
gwn − 1

2
gwn−1

)
,(4.45c)

∂xu
n+1 + ∂yv

n+1 + ∂zw
n+1 = 0, (4.45d)

with

gn
u = (iω − xU∂x − V ∂y)u

n − Uun − xU ′vn , (4.46a)

gn
v = (iω − xU∂x − V ∂y)v

n − V ′vn , (4.46b)

gn
w = (iω − xU∂x − V ∂y)w

n −W ′wn . (4.46c)

(4.46d)

No chordwise coupling terms appear on the left-hand side of system (4.45a,b,c,d).
The solution of the set of equations can be found by solving the set of one-dimensional
equations (4.47) at each kx Fourier mode separately:

112



(
W − δz

2Re
(∂yy − k2

x)

)
ûn+1 + ikxδzp

n+1 = Ĝn,n−1
u , (4.47a)

(
W − δz

2Re
(∂yy − k2

x)

)
v̂n+1 + δz∂yp

n+1 = Ĝn,n−1
v , (4.47b)

(
W − δz

2Re
(∂yy − k2

x)

)
ŵn+1 = Ĝn,n−1

w , (4.47c)

ikxû
n+1 + ∂yv̂

n+1 + ∂zŵ
n+1 = 0 , (4.47d)

with

Gn,n−1
ui

=

(
W +

δz

2Re
∇2

x,y

)
un

i + δz

(
3

2
gun

i
− 1

2
gun−1

i

)
. (4.48)

Equations (4.47) are solved as in Andersson et al. (1999) by discretizing the nx

one-dimensional left-hand-side operators in equations (4.47a,b,c,d) into nx matrices
of size (4ny)

2 and then inverting these matrices. It should be mentioned that, for
the first spatial step, the equations are solved using a first-order scheme by setting
gn−1

ui
= gn

ui
.

The mixed implicit-explicit scheme described above has good stability properties
and will be compared with previously published optimal disturbance results by An-
dersson et al. (1999), Luchini (2000) and Tumin and Reshotko (2001) in section 4.4.

The adjoint equation is similar to the direct equation and is solved using the
same marching scheme in the reverse spanwise direction. The adjoint pressure term
∂zp̃ is discretized using first-order upwind finite differences, and each adjoint Fourier
mode ǔ, v̌, w̌, p̌ is solved according to

(
W − δz

2Re
(∂yy − k2

x)

)
ǔn−1 + ikxδzp

n−1 = Ǧn,n+1
u , (4.49a)

(
W − δz

2Re
(∂yy − k2

x)

)
v̌n−1 + δz∂yp

n−1 = Ǧn,n+1
v , (4.49b)

(
W − δz

2Re
(∂yy − k2

x)

)
w̌n−1 + p̌n−1 = p̌n + Ǧn,n+1

w , (4.49c)

ikxǔ
n−1 + ∂yv̌

n−1 + ∂zw̌
n−1 = 0 . (4.49d)

It remains to compute the adjoint terminal condition. The adjoint variables
ũ, ṽ, w̃, p̃ at zmax should satisfy
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Wũ(zmax) =
2

E0

λEu(zmax) , (4.50a)

Wṽ(zmax) =
2

E0

λEv(zmax) , (4.50b)

Ww̃(zmax) + p̃(zmax) =
2

E0

Re2λEw(zmax) . (4.50c)

In the fully-implicit scheme used by Andersson et al. (1999) the terminal con-
dition (4.50a,b,c) is exactly the right-hand side of equations (4.49). In the mixed
implicit-explicit scheme used in the present study the right-hand-side of equations (4.49)
remains undetermined because the condition (4.50a,b,c) is given in the form of an
underdetermined linear system.

The first step of the adjoint computation may be treated implicitely if the cou-
pling terms involving the chordwise stretching are assumed to be negligible. In this
case adjoint equations (4.39) are marched from the discretization point n at z = zmax

to point n− 1 at z = zmax − δz by solving the linear system

(
W

δz
− iω − V ∂y − U − V ′ − 1

Re
(∂xx + ∂yy)

)
ũn−1

+Uũn−1 − ∂xp̃
n−1 =

λE

δz
un , (4.51a)

(
W

δz
− iω − V ∂y − U − V ′ − 1

Re
(∂xx + ∂yy)

)
ṽn−1

+V ′ṽn−1 +W ′w̃n−1 − ∂yp̃
n−1 =

λE

δz
vn , (4.51b)

(
W

δz
− iω − V ∂y − U − V ′ − 1

Re
(∂xx + ∂yy)

)
w̃n−1 − ∂zp̃

n−1 = Re2λE

δz
wn , (4.51c)

∂xũ
n−1 + ∂yṽ

n−1 = 0 . (4.51d)

This assumption is necessary at the first step only and does not seem to alter
the optimal disturbances significantly, since the results of Andersson et al. (1999),
Luchini (2000) and Tumin and Reshotko (2001) have been accurately reproduced.

4.4 Validation of the numerical scheme

Optimal spatial disturbances in a parallel Blasius boundary layer have been com-
puted by Tumin and Reshotko (2001). The numerical scheme described in sec-
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tion 4.3.2 may be validated by replacing the swept Hiemenz flow base profile by
the simpler two-dimensional Blasius velocity profile and then reproduce the results
of Tumin and Reshotko (2001). Some qualitative results can also be compared to
Andersson et al. (1999) and Luchini (2000) although they used a developing Blasius
boundary layer as a base flow. In the latter case, their objective functional differs
from ours but qualitative results are mostly unaffected.

In all three investigations (Andersson et al. (1999), Luchini (2000) and Tumin
and Reshotko (2001)) the optimization distance between x0 and xmax is the stream-
wise reference length. In terms of scaled coordinates, the inlet is located at x = 0
and the exit is at xmax = 1. The boundary-layer equations used by Tumin and
Reshotko (2001) are exactly recovered by setting U = 0, V = 0, W = UBL and
Re = 1 in equations (4.36), with UBL denoting the Blasius velocity profile. To avoid
confusing the coordinate systems, the spanwise wavenumber β of Andersson et al.
(1999) will be called the transverse wavenumber.

The energy amplification is displayed as a function of the transverse wavenumber
β in Figure 4.5a. Several optimizations have been performed with xmax varying
from xmax = 0.2 to xmax = 1. For xmax = 1, the maximum energy amplification is
obtained for β = 0.43 which is within 5% of Andersson et al. (1999), Luchini (2000)
and Tumin and Reshotko (2001). The maximum energy amplification increases with
xmax whereas the optimal wavenumber decreases monotonically as xmax increases
(see Figure 4.5b). The maximum energy amplification at xmax = 1, β = 0.45 is
equal to 4.5 · 10−3 which closely matches the results of Tumin and Reshotko (2001).

As in Andersson et al. (1999), Luchini (2000) and Tumin and Reshotko (2001),
the optimal disturbances take the shape of streamwise vortices, displayed in Fig-
ure 4.6a. Streamwise streaks, displayed in Figure 4.6b, are generated downstream
of the forcing location. Consistently with Luchini (2000) the maximum of the wall-
normal velocity profile increases with the transverse wavenumber β and approaches
the wall as β increases. In contrast, the maximum of the transverse velocity profile
decreases as β increases. Also, the resulting downstream streak is mostly unaffected
by changes in the transverse wavenumber β.

The optimal perturbation results of Andersson et al. (1999), Luchini (2000) and
Tumin and Reshotko (2001) for a Blasius boundary layer have been recovered with
very good agreement. The Blasius velocity profile may now be replaced by the swept
Hiemenz base flow to determine the optimal spatial disturbances in the vicinity of
the attachment-line.
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Figure 4.5: (a) Energy amplification versus the transverse wavenumber for the Bla-
sius velocity profile as a base flow. The maximum energy amplification observed at
β = 0.45 by Tumin et al. (2001) is marked with a cross symbol. (b) The optimal
wavenumber versus xmax (circles). The optimal wavenumber β = 0.45 found by
Andersson et al. (1999), Luchini (2000) and Tumin et al. (2001) at xmax = 1 is
marked with a cross symbol.
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Figure 4.6: (a) v−, w−velocity profiles of the optimal inlet perturbation at entrance
and (b) the resulting downstream streak for zmax = 1. The streamwise u−velocity
component is equal to zero at the inlet x = 0 and dominates at the exit x = xmax.
Several profiles are shown for the transverse wavenumber β varying from 0.3 to 0.8
(arrows). The basic Blasius velocity profile is displayed as a dashed line.
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4.5 Optimal spatial perturbations in swept Hiemenz

flow

4.5.1 Flow parameters in the spatial framework

Swept Hiemenz flow is characterized by a single non-dimensional parameter, the
Reynolds number

Re =
W∞δ
ν

. (4.52)

For a given flow stretching rate ∂U/∂x in the chordwise direction, the Reynolds
number is proportional to the spanwise sweep W∞ at infinite y.

Stationary disturbances are characterized by their frequency ω. In the developing
Blasius boundary layer, for instance, Luchini (2000) showed that the most amplified
disturbances are steady perturbations at ω = 0.

In swept Hiemenz flow chordwise Fourier modes are coupled by the chordwise
component xU of the basic velocity field. In contrast with two-dimensional boundary
layers, perturbations that are initially periodic along the chordwise x−direction do
not remain periodic downstream of the inlet. As a consequence, perturbations in
swept Hiemenz flow may not be classified based on their chordwise wavenumber as
in two-dimensional boundary layers. Depending on the width parameter L of the
chordwise energy weight function

λE(x) = e−(x/L)2 , (4.53)

perturbations are expected to extend over a finite distance in the chordwise direction.
In this sense, the width of the energy weight provides the chordwise parameter
missing from the two-dimensional case.

Optimal disturbances also depend on the spanwise distance zmax over which
energy amplification is optimized. In Andersson et al. (1999) and Luchini (2000)
the optimization length zmax is taken to be the streamwise reference length. There
is no streamwise reference length in swept Hiemenz flow and zmax is included as an
independent parameter in the present study.
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Figure 4.7: (a) Optimal energy amplification versus spanwise optimization distance
zmax for Reynolds numbers Re = 400 (lower curve), Re = 550 and Re = 700
(top curve). The other parameters have been set equal to L = 3, ω = 0. (b)
Optimal energy amplification versus Reynolds number Re for zmax = 60 (lower
curve), zmax = 80, zmax = 120 and zmax = 140 (higher curve), at L = 3, ω = 0.

4.5.2 Optimal spatial energy amplification

Let us set the chordwise parameter toL = 3; the energy weight function is then
twice as wide as the boundary layer thickness. At Reynolds number Re = 550 and
zero frequency ω = 0 the perturbation energy is amplified up to Emax = 1.48 ·108 at
zmax = 240 as shown in Figure 4.7a. Beyond this critical distance dissipation begins
to overcome energy production.

In the boundary-layer approximation the three non-dimensional velocity compo-
nents u, v, w are of the same order of magnitude, so that when the Reynolds number
Re is large, wherever the spanwise velocity component w is not equal to zero the
energy

E(z) =
1

2

∫

y≥0

λE(x)
(
u(z)2 + v(z)2 +Re2w(z)2

)
dxdydz (4.54)

is equal at leading order to
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E(z) = Re2 1

2

∫

y≥0

λE(x)w(z)2 dxdydz . (4.55)

In particular, w is expected to be different from zero at the downstream end zmax of
the optimization domain, so that the objective functional is equal at first order to

I = Re2

∫
y≥0

λE(x)w(zmax)
2 dxdydz∫

y≥0
λE(x) (u(z = 0)2 + v(z = 0)2 +Re2w(z = 0)2) dxdydz

. (4.56)

Due to the Re2 factor in the denominator of the objective functional I, of all possible
disturbances, the ones that have zero initial spanwise velocity w(z = 0) will be the
most amplified at large Reynolds numbers. The objective functional is therefore
equal at leading order to

I = Re2

∫
y≥0

λE(x)w(zmax)
2 dxdydz∫

y≥0
λE(x) (u(z = 0)2 + v(z = 0)2) dxdydz

. (4.57)

According to equation (4.57) the optimal energy amplification at a given span-
wise location zmax is expected to scale as Re2 at large Reynolds numbers. With a
similar reasoning Luchini (2000) found that the optimal energy amplification in the
developing Blasius boundary layer scales linearly with Reynolds number. Energy
amplification is displayed as a function of the Reynolds number Re in Figure 4.7b
at several spanwise locations zmax. The Re2−scaling appears to be recovered for
higher Reynolds numbers.

The optimal energy amplification is plotted against the forcing frequency ω in
Figure 4.8a for L = 3, zmax = 100 and Re = 550. As in Luchini (2000), steady
disturbances are found to be more amplified than perturbations of non-zero ω fre-
quency.

At Reynolds number Re = 550 and spanwise optimization distances zmax varying
from zmax = 75 to 150 the optimal energy amplification, displayed in Figure 4.8b,
increases slightly with the chordwise extent L of the energy weight function λE. This
is in contrast with the results of Andersson et al. (1999) and Luchini (2000), who
found an optimal wavenumber β = 0.45. A physical interpretation that actually
matches spatial optimization results in the Blasius boundary layer, based on the
shape of optimal spatial disturbances, is suggested in section 4.5.3.
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Figure 4.8: Energy amplification levels versus (a) forcing frequency ω for L = 3,
zmax = 100 (b) width L of the chordwise energy weight function at forcing frequency
ω = 0 for zmax = 75, zmax = 100 and zmax = 125. The Reynolds number has been
set equal to Re = 550.
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4.5.3 Optimal spatial disturbances

Optimal spatial disturbances take the shape of spanwise counter-rotating vortices
as shown in Figure 4.9a. Spanwise streaks, displayed in Figure 4.9b, are generated
downstream by the so-called lift-up mechanism.

Isosurfaces of the velocity components, displayed in Figure 4.10, give a striking
picture of the production of spanwise w−velocity from chordwise u− and wall-
normal v−initial velocity. The isosurfaces of u and v that represent the inlet optimal
spanwise vortices at y = 2.5 both end before the outlet zmax, showing that both
velocity components are damped to less than 20% of their initial value between
the inlet z = 0 and the outlet z = zmax. By contrast, the isosurface at 20% of
the spanwise w−velocity component expand from z slightly superior to z = 0 to
z = zmax.

When the chordwise length parameter is set equal to the boundary-layer thick-
ness L = 3, three streamwise vortices are formed only (see Figure 4.9a and Fig-
ure 4.11, L = 3 plot). When L is increased, more streamwise rolls of approximately
constant width are observed, as shown in Figure 4.11 for L varying from L = 3 to
L = 12.

The number of streamwise vortices may be estimated by counting the local max-
ima of the wall-normal v−velocity along the chordwise x−axis. The maxima that
are located further away from the attachment-line are not well-defined since they
take very low values, and the number of vortices actually measured is subject to sig-
nificant error. However, the estimated number of vortices displayed in Figure 4.12a
exhibits a clear tendency to increase with L. The chordwise width of optimal stream-
wise vortices, displayed in Figure 4.12b, increases slightly with L.

4.5.4 Discussion

It has been shown that optimal spatial disturbances in swept Hiemenz flow take
the shape of spanwise counter-rotating vortices. Perturbation energy is amplified
due to the interaction of spanwise vortices with the basic spanwise shear W ′, which
generates spanwise perturbation velocity w via the lift-up mechanism.

By analogy with the Blasius boundary layer where there exists an optimal trans-
verse wavenumber β, lift-up associated to the spanwise shear W ′ is expected to
exhibit an optimal chordwise wavenumber γ. Since disturbances are not ascribed
any particular chordwise wavelength in the present study, optimal perturbations in
swept Hiemenz flow are expected to arise at the optimal chordwise wavenumber γ.

Our interpretation of the results of this section is that the Gaussian energy weight
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Figure 4.9: Isocontours of spanwise vorticity in an (x, y) plane at (a) z = 0, (b)
z = zmax for an optimal disturbance at zmax = 200, Re = 550, L = 3, ω = 0.
Velocity field (arrows) and isocontours of spanwise velocity (contours) in an (x, y)
plane at (c) z = 0, (d) z = zmax for the same optimal disturbance at zmax = 200,
Re = 550, L = 3, ω = 0. Spanwise velocity is equal to zero at z = 0. The energy
weight function λE is sketched as a thin solid line.
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(a)

(b)

(c)

Figure 4.10: Isosurface at 20% of the maximum for (a) the chordwise u−velocity, (b)
the wall-normal v−velocity, (c) the spanwise w−velocity components of an optimal
disturbance developing from z = 0 to zmax = 200. Blue and red denote negative and
positive values, respectively. The remaining parameters are set equal to Re = 550,
L = 3, ω = 0. Energy weight function λE is sketched as a thin dashed line and
streamlines of the basic flow are displayed as thin lines on the right-hand side of
each picture.
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Figure 4.11: Profiles in the chordwise x−direction of the wall-normal v−velocity for
an optimal disturbance taken at z = 0, for L = 3, L = 6, L = 9 and L = 12 (top to
bottom). Flow parameters are set equal to zmax = 125, Re = 550, ω = 0. Energy
weight function λE is sketched as a thin dashed line.
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Figure 4.12: (a) Number of initial spanwise vortices and (b) mean vortex width in
the chordwise x−direction versus L for optimal disturbances with zmax varying for
zmax = 75 (in both plots, bottom curve), zmax = 100 and zmax = 125 (top curve).
The remaining parameters are Re = 550, ω = 0.
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Figure 4.13: (a) Mean width Λ of optimal streaks at zmax and (b) the associated
wavenumber 2π/Λ as functions of the chordwise length L for zmax = 75, zmax = 100
and zmax = 125. The remaining parameters are set equal to Re = 550 and ω = 0.

function λE(x) acts as a filter by selecting only part of an ’ideal’ optimal disturbance
that takes the shape of an infinite array of counter-rotating spanwise vortices with
a chordwise wavenumber γ. As the chordwise parameter L increases the Gaussian
weight broadens and more spanwise vortices are selected (see Figure 4.12a); since
each of these rolls induces the same amount of amplification, the energy amplification
is mostly unchanged as L increases (see Figure 4.8b).

The basic spanwise velocity component W in swept Hiemenz flow resembles the
Blasius velocity profile, except that the non-dimensional boundary-layer thickness
is δ = 3 instead of d = 5 for the Blasius profile. The spanwise sweep W in swept
Hiemenz flow is almost exactly recovered by stretching the Blasius velocity profile
by δ/d = 3/5 along the wall-normal direction.

According to Andersson et al. (1999) and Luchini (2000), optimal streaks in
the developing Blasius boundary layer experience the largest energy amplification
at the optimal transverse wavenumber β = 0.45. Since the spanwise sweep W ,
which is responsible for spanwise lift-up phenomena in swept Hiemenz flow, is closely
approximated by scaling the Blasius velocity profile by δ/d = 3/5, the optimal
wavenumber γ of spatial disturbances in swept Hiemenz flow may be compared to
β scaled by d/δ = 5/3.
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Due to the chordwise stretching and to viscous diffusion, optimal disturbances
in swept Hiemenz flow spread in the chordwise direction from the inlet z = 0 to
the outlet z = zmax. The chordwise spacing of the downstream streaks displayed in
Figure 4.13a differs from the chordwise width of the initial spanwise rolls, displayed
in Figure 4.12b. Since terminal streaks at z = zmax display significantly larger
energy levels than initial spanwise vortices, the wavenumber selection of optimal
disturbances should be based on the downstream wavenumber at zmax. The ’optimal
chordwise wavenumber’ γ therefore reads

γ =
2π

Λ
, (4.58)

where Λ is the chordwise spacing, i.e. twice the mean width, of the spanwise streaks
generated downstream of an optimal perturbation. Figure 4.13b shows that, as
the optimal disturbance comprises a larger number of initial spanwise vortices (or
equivalently, spanwise streaks), i.e. as the width L of the Gaussian energy weight
increases, the optimal wavenumber γ indeed approaches the optimal wavenumber β
for the Blasius boundary layer rescaled by d/δ.

At Reynolds numbers higher than Re ∼ 102, swept Hiemenz flow behaves simi-
larly to the two-dimensional Blasius boundary layer in the vicinity of the attachment-
line. Optimal spatial disturbances consist of steady counter-rotating spanwise vor-
tices that generate spanwise streaks via the lift-up mechanism. The chordwise width
of the resulting streaks is selected to match the optimal transverse wavenumber
found in the Blasius boundary layer, suitably scaled by d/δ, whereas the number of
streaks depends on the width of the Gaussian energy weight function λE(x).
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Chapter 5

Conclusion : research on the
attachment-line boundary layer in
a historical perspective

The attachment-line boundary layer has been known to be linearly unstable to two-
dimensional Görtler-Hämmerlin disturbances since Hall et al. (1984). Also, two-
dimensional waves travelling in the spanwise direction have been observed experi-
mentally by Pfenninger and Bacon (1969) on smooth leading edges. The attachment-
line boundary layer is likely to sustain turbulence originating from the fuselage or
when it is excited with a trip wire of sufficient thickness, as demonstrated by Poll
(1978).

These long-known features of the attachment-line boundary layer are strikingly
similar to what is observed in two-dimensional boundary layers. Squire’s theo-
rem states that the most unstable mode in two-dimensional shear flows is two-
dimensional itself and, indeed, the developing Blasius boundary-layer is known
to support exponentially growing, two-dimensional Tollmien-Schlichting travelling
waves. Also, a two-dimensional cross-stream trip wire is efficient as a turbulence
generator in two-dimensional boundary layers.

Following the experiments of Poll (1978), it could have been tempting to con-
tinue the analogy between attachment-line boundary layers and two-dimensional
shear flows. However, the three-dimensional nature of the flow at the leading edge
could neither be ignored in experiments nor in linear stability investigations. Ex-
periments focused on contamination of the upper surface by attachment-line distur-
bances, which is a three-dimensional phenomenon. Linear stability studies demon-
strated that the most unstable perturbations are two-dimensional in the chordwise
x−direction; for sufficiently large x, the chordwise base velocity xU(y) is at least as
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large as the spanwise sweep W and three-dimensional effects have to be taken into
account.

Over the last fifteen years, advances in the field of shear flow stability came in
large measure from the investigation of transient phenomena. In the same spirit,
the present study has focused on short-term (temporal) or localized (spatial) energy
amplification in the attachment-line boundary layer. In this context, it has been
shown in the present work that three-dimensional effects do not play a major role
in the vicinity of the attachment-line.

In the framework of the Görtler-Hämmerlin hypothesis, which assumes that per-
turbations are two-dimensional in the spanwise-wall-normal (z, y)−plane, optimal
temporal disturbances are transiently amplified by a mechanism that resembles the
classical two-dimensional Orr mechanism: two-dimensional chordwise vortices are
compressed and amplified in the spanwise shear W ′.

When the Görtler-Hämmerlin assumption is relaxed, optimal temporal distur-
bances take the shape of spanwise counter-rotating vortices. In the temporal frame-
work, lift-up in the spanwise direction is the optimal energy amplification mecha-
nism.

Spatial optimal disturbances take the shape of steady spanwise vortices. As
optimal temporal perturbations, optimal spatial perturbations are amplified by lift-
up in the spanwise direction.

Perturbations localized near the attachment line (x = 0) are indeed subject
to very low strain in the chordwise x−direction, since the chordwise base velocity
xU(y) is proportional to the distance from the attachment line. Temporal transient
energy growth, as investigated in chapter 3, has been shown to reach a maximum
on rather short characteristic time scales (in scaled units, τ ∼ 100). On such short
times perturbations have not moved significantly far away from the attachment-
line. Similarly, spatial energy amplification is maximum at moderate downstream
distances (zmax ∼ 200). No significant spreading in the chordwise direction takes
place before optimal spatial perturbations reach zmax.

As a consequence, maximum transient temporal or spatial energy amplification
takes place within a region close to the attachment-line, where chordwise stretching
is still negligible. The agreement between the present results on optimal energy
amplification in swept Hiemenz flow and previously published results pertaining to
the two-dimensional Blasius boundary layer is therefore not surprising.

Optimal disturbances have previously been computed in the two-dimensional de-
veloping Blasius boundary layer (Andersson et al. (1999)) and the three-dimensional
Falkner-Skan-Cooke configuration (Corbett and Bottaro (2001a)). The present the-
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sis completes the picture of transient growth phenomena inside the boundary layer
that surrounds a swept wing.

In my opinion, a complete understanding of flow stability around swept wings
would require, on the one hand, that a connection be made between the attachment-
line boundary layer considered in the present thesis and previously published find-
ings on energy amplification in the three-dimensional swept boundary-layer; on the
other hand, receptivity of the entire leading-edge – attachment-line plus downstream
boundary-layer – to external disturbances should be investigated in light of the
physichal mechanisms unveiled in the present study. With a lot of work and a
little luck, an answer may be found to the intriguing question: how may the two
attachment-line scenarios – chordwise vortices travelling in the spanwise direction or
spatially developing, counter-rotating vortices parallel to the leading edge – be con-
nected with stationary, co-rotating crossflow vortices observed on the upper surface
of swept wings ?
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Appendix

A.1 Enforcing non-trivial boundary conditions with

the fringe region technique

One may consider investigating spatially developing disturbances with the spectral
DNS code described in chapter 3, although spatially developing disturbances are
intrinsically not periodic in the streamwise direction. Perturbations can be made
periodic with a damping fringe region at zmax. Berlin et al. (1999) further suggested
the use of the fringe technique to force outgoing disturbances to non-trivial pertur-
bations at z = 0 instead of forcing them to zero. In this case equations (3.21a,b)
are replaced by

∂tφ = hφ +
1

Re
∇2φ− λx(x)φ− λz(z)(φ− φ0) , (A.1a)

∂tω = hω +
1

Re
∇2ω − λx(x)ω − λz(z)(ω − ω0) , (A.1b)

where the damping parameter λz iz taken to be

λz(z) = λz max

(
1− S

(
z + zmax

dz

)
+ S

(
z − zmax

dz

))
, (A.2)

with λz max as the amplitude of the damping and dz as the width of the fringe.

Starting from the trivial solution φ(x, y, z, t = 0) = 0, ω(x, y, z, t = 0) = 0,
equations (A.1a,b) are marched forward in time. Disturbances propagate from the
forcing location z = 0 to the damping region located beyond z = zmax until a steady
state is reached; the temporal computation is then stopped.

Berlin et al. (1999) compared five different techniques designed to generate
oblique waves in a two-dimensional boundary layer. Three different types of blowing
and suction at the wall, an artificial body force and the fringe region forcing tech-
nique have been tested. The simulations compare well with experimental results in
all five cases, as measured by the downstream development of urms, streak amplitude,
etc.. All five methods, including the fringe region technique, seem to be reliable.
However, it may be argued that oblique-wave-induced transition simulations are not
very sensitive to the ’quality’ of initial conditions; even if the least-damped Orr-
Sommerfeld mode forced via the fringe region technique is poorly rendered at the
inflow location, the flow will quickly approach this dominant eigenmode.
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Nordström et al. (1999) investigated in detail the efficiency of the fringe region
technique by computing the velocity profile of a spatially evolving boundary layer.
They present a theoretical analysis of the error the fringe region induces, and they
provide numerical results from several pseudo-spectral simulations. The approx-
imated boundary-layer profile uBL computed via the boundary-layer equations is
forced in a fairly wide fringe region. The induced velocity profile v is compared to
the target uBL throughout both the fringe region and the physical domain. The
developing profile uBL is made periodic in the streamwise x−direction by smoothly
reconnecting uBL(x = 0) with uBL(x = xmax) over a fraction of the fringe region.
The agreement is indeed excellent, and the computed velocity v coincides with the
Blasius solution uBL to five significant digits. We will show in the following that
this result is not surprising since the Blasius profile itself is a very accurate approx-
imation of the true, physical velocity profile.

Let us analyze the fringe region technique in more detail. Berlin et al. (1999)
generated disturbances φ0, ω0 in the shape of the least stable Orr-Sommerfeld mode
by introducing a fringe region with a weight function λz(z) according to

∂tφ = hφ +
1

Re
∇2φ− λz(z)(φ− φ0) , (A.3a)

∂tω = hω +
1

Re
∇2ω − λz(z)(ω − ω0) , (A.3b)

∇2v = φ . (A.3c)

Equations (A.3a,b,c) are marched in time starting from the trivial initial condi-
tion (φ, ω) = (0, 0). The spatially developing perturbation with upstream condition
(φ(z = 0), ω(z = 0)) = (φ0, ω0) is found when a steady state has been reached.
Then, the left-hand side of equations (A.3a,b) is zero and (φ, ω) satisfy

λz(z)(φ− φ0) = hφ +
1

Re
∇2φ , (A.4a)

λz(z)(ω − ω0) = hω +
1

Re
∇2ω . (A.4b)

If (φ0, ω0) is a solution, or at least a good approximation, of a solution to the
steady Navier Stokes equations, equations (A.4) may be reformulated as
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λz(z)(φ− φ0) =

(
hφ +

1

Re
∇2φ

)
−

(
hφ0 +

1

Re
∇2φ0

)
, (A.5a)

λz(z)(ω − ω0) =

(
hω +

1

Re
∇2ω

)
−

(
hω0 +

1

Re
∇2ω0

)
. (A.5b)

In this case (φ, ω) = (φ0, ω0) is a solution of equations (A.5), and a steady state may
indeed be reached where (φ, ω) is equal to the target (φ0, ω0) at the exit of the fringe
region. In particular, if (φ0, ω0) is the least stable spatial Orr-Sommerfeld mode as
in Berlin et al. (1999) then (φ, ω) converge smoothly toward (φ0, ω0) throughout
the fringe region due to the action of both the forcing and the natural selection of
the least stable eigenmode.

In the case where (φ0, ω0) is not a solution to the Navier-Stokes equations, the
steady disturbance (φ, ω) is necessarily distinct from the target (φ0, ω0) wherever
λz is not equal to zero. Where (φ, ω) is equal to (φ0, ω0), the right-hand side of
equations (A.4a,b) is zero, which contradicts the fact that (φ0, ω0) is not a solution
to the steady Navier-Stokes equations. As a consequence, when the target forcing
is not a solution to the Navier-Stokes equations the resulting steady disturbance
differs from the target (φ0, ω0).

A way to ensure that the steady state will be fairly close to the target is to in-
crease the damping weight λz. The stronger the damping, the closer the steady-state
perturbation will be to the target. Still, equality is difficult to achieve in practice
since stronger damping requires smaller numerical time steps and the amplitude of
λz is increased at the expense of computational speed.

During the optimization process, one has to enforce a variety of initial condi-
tions (φ0, ω0) at z = 0. The corresponding steady flow is unknown in the region
located upstream of z = 0. Unless an independent DNS is run upstream of z = 0,
one cannot prescribe a target (φ0, ω0) that will be a solution of the Navier-Stokes
equations throughout the fringe. The fringe region technique is not efficient in prac-
tice to enforce a given, arbitrary, initial condition stemming from the optimization
process. Adapting the temporal DNS code described in chapter 3 to the spatial
problem is more demanding than simply adding a fringe region in the spanwise
z−direction. The spatial problem may instead be addressed with the parabolized
approach described in chapter 4.
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Abstract

The flow at the leading edge of a swept wing is accurately modelled by swept
Hiemenz flow. At large enough sweep angles swept Hiemenz flow is linearly unsta-
ble to Görtler-Hämmerlin (GH) disturbances, which are essentially two-dimensional.
Obrist and Schmid (2003) have shown that even at moderate sweep angles at which
the flow is linearly stable, GH disturbances may be considerably amplified on short
time scales. The goal of the present thesis is to quantify transient growth phenom-
ena in swept Hiemenz flow and study the underlying physical mechanisms. GH
perturbations are used as a model problem to set up and validate a very general
gradient-based optimization algorithm. Temporal amplification of up to three orders
of magnitude has been observed in GH disturbances, which is due to an analogue
of the well-known two-dimensional Orr mechanism in two-dimensional shear flows.
The optimal amplification of temporal disturbances has been observed for counter-
rotating spanwise vortices that do not satisfy the GH assumption; the amplification
mechanism could be linked with the classical lift-up mechanism. Transient spatial
energy growth in the spanwise direction has also been investigated. The results in
terms of optimal spatial disturbances, spatial energy amplification and the underly-
ing mechanism have been successfully linked with lift-up induced spatial growth in
two-dimensional Blasius boundary layers.

Keywords : optimal perturbations, transient growth, attachment-line, adjoint
techniques, optimal control

Résumé

L’écoulement de Hiemenz balayé latéralement est un modèle fidèle de l’écoulement
sur le bord d’attaque d’une aile en flèche. Pour des angles de flèche importants
l’écoulement de Hiemenz balayé latéralement est instable pour des perturbations
de Görtler-Hämmerlin (GH), qui sont de nature essentiellement bi-dimensionnelle.
Obrist et Schmid (2003) ont montré que, même à des angles de flèche modérés
auxquels l’écoulement est linéairement stable, des perturbations GH peuvent être
amplifiées considérablement sur un intervalle de temps court. Le but de cette
thèse est de quantifier les phénomènes de croissance transitoire dans l’écoulement de
Hiemenz balayé et d’étudier les mécanismes physiques sous-jacents. Le modèle de
perturbations GH est utilisé pour la mise au point et la validation d’un algorithme
d’optimisation de type ’gradient’. Des amplifications temporelles de trois ordres de
grandeur ont été observées pour des perturbations GH, dont l’origine physique est
un analogue du mécanisme bidimensionnel d’Orr, connu pour les écoulements ci-
saillés bidimensionnels. L’amplification optimale de perturbations temporelles a été
observée pour des tourbillons contra-rotatifs parallèles à la ligne d’arrêt, qui ne sat-
isfont pas l’hypothèse de Görtler-Hämmerlin; le mécanisme d’amplification est alors
semblable au mécanisme classique de ’lift-up’. La croissance transitoire spatiale le
long du bord d’attaque a aussi fait l’objet d’une étude. Il a été montré que les per-
turbations spatiales optimales, leur taux d’amplification et le mécanisme physique
responsable sont étroitement liés aux phénomènes de croissance transitoire induits
par le mécanisme de lift-up dans une couche limite bidimensionnelle de Blasius.

Mots-clef : perturbations optimales, croissance transitoire, ligne d’arrêt, méthodes
adjointes, contrôle optimal


