
Thèse
présentée pour obtenir le grade de docteur de

l’Ecole nationale Supérieure des Télécommunications

Spécialité : Informatique et Réseaux

Frédéric MONTAGUT

Processus Collaboratifs Ubiquitaires
Architecture, Fiabilité et Sécurité

soutenue le 15 Octobre 2007 devant le jury composé de

Président Elie Najm Professeur, Télécom Paris
Rapporteurs Elisa Bertino Professeur, Purdue University

Yves Deswarte Directeur de Recherche, L.A.A.S. CNRS
Examinateurs Frédéric Cuppens Professeur, ENST-Bretagne

Volkmar Lotz Directeur de Programme de Recherche, SAP
Directeur de thèse Refik Molva Professeur, Institut Eurecom

PhD thesis
Ecole Nationale Supérieure des Télécommunications

Computer Science and Networks

Frédéric Montagut

Pervasive Workflows
Architecture, Reliability and Security

Defense date: October, 15th 2007

Committee in charge:

Chairman Elie Najm Professeur, Télécom Paris
Reporters Elisa Bertino Professor, Purdue University

Yves Deswarte Research Director, L.A.A.S. CNRS
Examiners Frédéric Cuppens Professor, ENST-Bretagne

Volkmar Lotz Research Program Manager, SAP
Advisor Refik Molva Professor, Institut Eurecom

. . . A mes parents.

The secret to creativity is knowing how to hide your sources.
- Albert Einstein -

i

Acknowledgments

My thesis work having come to an end it is time to look back over the past three years and
thank the people without the support of whom conducting my PhD research would not have
been possible.

I would like first to express my gratitude to my supervisor Refik Molva. I learned a lot from
our discussions and without his support these past three years would not have been successful.
I will always be grateful to him.

I would like then to thank the SAP Research team in France for giving me the opportu-
nity to perform my PhD thesis in the best possible conditions. I am especially thankful to
the MOSQUITO team: Konrad Wrona, Annett Laube, Jean-Christophe Pazzaglia and Laurent
Gomez. Working with you was a pleasure. Collaborating with the other SAP team members
was also inspiring. Special thanks to Cedric Ulmer, Cedric Hebert and Laurent Gomez for the
daily jokes and the new fancy expressions I got to learn. Many thanks go also to the PhD stu-
dent crew Alessandro Sorniotti, Paul El Khoury, Azzedine Benameur and Mohammad Ashiqur
Rahaman for their continuous support and to Bettina, Julien and Silvan for their help on the
implementation.

I would like also to thank the team members of the Eurecom CE department with whom I
had the chance to collaborate, in particular Slim Trabelsi and Yves Roudier. Thank you for the
valuable feedbacks.

Last but not least, I would like to thank Elie Najm, Elisa Bertino, Yves Deswarte, Frédéric
Cuppens and Volkmar Lotz for accepting to be part of the thesis committee.

Funds for this work were provided by SAP Labs France and by the European Commission
(FP6 MOSQUITO project).

Frédéric Montagut, October 2007

ii ACKNOWLEDGMENTS

iii

Résumé en Français

Toute avancée des connaissances génère autant d’interrogations qu’elle apporte de réponses.
- Pierre Joliot -

La notion de processus collaboratif ou workflow se définit par l’exécution automatisée
d’un ensemble de tâches nécessaire à l’exécution d’une procédure d’entreprise ou processus
métier tel que la réservation d’un billet d’avion ou la planification de congés au sein d’une
entreprise. Durant l’exécution d’un processus collaboratif des documents et des données sont
échangés entre les participants de cette collaboration qui peuvent être des machines ou de sim-
ples utilisateurs humains. Un système de gestion workflow assure le contrôle et la gestion
de l’exécution d’un processus collaboratif d’après la spécification du workflow qui définit la
séquence des opérations à exécuter pour terminer le processus métier associé au processus col-
laboratif. Comme toutes applications collaboratives, l’exécution de processus collaboratifs doit
satisfaire des contraintes rigoureuses en termes de sécurité informatique et de consistance trans-
actionnelle. La majorité des systèmes de gestion de workflow implémente une infrastructure de
coordination centralisée pour répondre à ces contraintes. Les performances des applications
collaboratives sont cependant limitées par le système de coordination centralisé et ceci d’autant
plus que les applications les plus récentes requièrent une flexibilité importante lors de leur
exécution. Dans cette thèse de doctorat, nous présentons un système de gestion de workflow
décentralisé afin d’apporter une solution à ce problème de flexibilité.

La principale contribution de cette thèse est le design et l’implémentation d’un système
de gestion de workflow distribué ainsi que des protocoles de coordination transactionnelle et
de sécurité informatique pour répondre aux contraintes identifiées ci-dessus. L’architecture de
gestion de workflow que nous avons développée, appelée processus collaboratif ubiquitaire ou
workflow ubiquitaire, permet d’exécuter des processus collaboratifs de manière distribuée entre
acteurs qui peuvent partager leurs ressources par le biais d’un protocole de découverte. Cette
infrastructure de gestion de workflow permet entre autre la sélection des acteurs qui exécuteront
les tâches du processus collaboratif au moment même de son exécution sans assignation préal-
able.

La suite de ce résumé en Français est organisé comme suit. Nous résumons dans un premier
temps les contributions scientifiques de cette thèse. Nous développons ensuite les trois axes

iv RÉSUMÉ EN FRANÇAIS

principaux de la thèse : le design de l’architecture de workflow ubiquitaire, la fiabilité du work-
flow ubiquitaire et la sécurité du workflow ubiquitaire. Ce résumé est conclu par une analyse
des perspectives pour la poursuite de ces travaux de recherche.

Introduction

Avec l’émergence de l’Internet, le commerce électronique et les applications exécutées en ligne
sont devenus incontournables pour tous types d’échanges commerciaux. Ces applications “e-
commerce” intègrent souvent de complexes applications telles que des outils de gestion de stock
ou des plateformes de paiement sécurisées et ceci de manière transparente pour l’utilisateur. La
technologie du workflow permet l’exécution de telles collaborations qui mettent en commun les
ressources de plusieurs fournisseurs dans le but de créer des applications à forte valeur ajoutée.
A ce titre le concept de processus collaboratif est devenu le standard pour assurer l’orchestration
de services fournis par différentes organisations dans le cadre d’applications collaboratives.

Les principaux concepteurs de logiciels tels que Microsoft, IBM ou SAP [MBB+03, KH05,
biz05] ont encouragé le développement d’applications utilisant la technologie du workflow au
cours des dernières années. Les sites de commerce en ligne ou les systèmes de réservation
de billets d’avion qui permettent à des utilisateurs de remplir un caddie virtuel et de payer des
commandes en lignes sont autant d’exemples d’applications construites autour de la technologie
du workflow. On distingue deux principaux types d’infrastructures permettant l’exécution de ces
applications collaboratives:

• Centralisées: une infrastructure dédiée s’occupe des tâches de gestion de l’exécution
d’une application collaborative telles que le routage des messages entre les participants
ou le stockage des données.

• Décentralisées: la gestion de l’exécution d’une application collaborative est partagée en-
tre les participants qui exécutent tour à tour une sous partie de l’application globale. C’est
l’infrastructure standard pour assurer la gestion de l’exécution d’applications collabora-
tives impliquant des acteurs appartenant à différentes organisations.

Ces infrastructures de gestion de workflow manquent cependant de flexilité pour permettre
l’exécution des processus collaboratifs les plus récents. Par exemple, elles sont statiques en
celà qu’elles ne supportent pas l’assignation d’acteurs du workflow en cours d’exécution, le
processus de sélection a en effet souvent lieu avant l’instanciation du workflow. Par conséquent,
les systèmes de gestion de workflow actuellement disponibles ne semblent pas être adaptés à la
gestion de l’exécution des processus collaboratifs les plus récents comme celui présenté en
annexe D par le biais duquel un médecin, un pharmacien et un travailleur social collaborent afin
de porter assistance à une personne hospitalisée à domicile et dont l’état de santé est surveillé
à distance. L’exécution de telles applications collaboratives pose cependant de nouveaux défis
technologiques et introduit de nouvelles contraintes en matière de sécurité informatique et de
coordination transactionnelle. Ces aspects sont développés dans la suite de cette introduction.

RÉSUMÉ EN FRANÇAIS v

Architecture Orientée Services
Le concept d’Architecture Orientée Services et les technologies “Web services” sur lesquelles
reposent son implémentation apparaissent de facto comme le standard pour permettre l’exécution
des applications collaboratives les plus récentes étant donné qu’elles ont été adoptées par les
principaux acteurs du monde informatique comme SAP, IBM ou Microsoft [BS06, KH05,
biz05]. Reposant sur un socle de technologies utilisant le langage [XML], la technologie “Web
services” permet aux fournisseurs de services de publier et combiner leurs fonctionnalités à
faible coût sur l’Internet. Le but de la technologie “Web services” est en effet d’offrir un envi-
ronnement d’exécution pour les relations “clients - fourniseurs de services” qui soit à la fois sûr,
fiable, interopérable et faiblement couplé. En particulier, le paradigme d’Architecture Orientée
Services offre un ensemble de principes d’exécution qui sont en adéquation avec les prérequis
fonctionnels des infrastructures de gestion de workflow.

• Interactions faiblement couplées: les échanges entre collaborateurs ne dépendent pas
de l’implémentation sur laquelle les applications offertes par ces derniers reposent.

• Composition de services: les fonctionnalités offertes par les fournisseurs de services
peuvent être combinées pour offrir des services à forte valeur ajoutée aux clients.

• Protocole de découverte: les fournisseurs de services peuvent publier les fonctionnalités
qu’ils offrent de sorte que des clients potentiels peuvent les contacter très facilement.

Ces trois principes sont en fait les fonctionnalités requises pour supporter les prérequis fonc-
tionnels associés au design d’une architecture de gestion de workflow supportant les applications
collaboratives les plus récentes. Dans ce cadre, l’orientation service et l’ensemble des technolo-
gies “Web services” sur lequel elle repose apparaissent comme la solution la plus appropriée
pour implémenter les résultats théoriques présentés dans cette thèse.

Prérequis de sécurité informatique et consistance transactionnelle
Le design d’une infrastructure de gestion de workflow ne doit pas seulement respecter des con-
traintes fonctionnelles mais doit aussi prendre en compte des contraintes en termes de sécurité
informatique et consistance transactionnelle afin que les processus collaboratifs qu’elle sup-
porte s’exécutent de manière sécurisée et sans inconsistance au niveau des données échangées.
Les applications collaboratives les plus récentes requièrent une certaine flexibilité qui intro-
duit de nouveaux problèmes de recherche en termes de sécurité informatique et coordination
transactionnelle.

Fiabilité et consistance transactionnelle

Une des principales propriétés que doit vérifier un système de gestion de workflow est d’assurer
que le résultat atteint par les processus collaboratifs dont il gère l’exécution produisent des
résultats qui sont consistants au niveau des données. Etant donné le manque de fiabilité des sys-
tèmes distribués, assurer la consistance transactionnelle des plus récents processus collaboratifs
est un problème difficile. Il y a en fait deux propriétés qui doivent être prises en compte par
un protocole de coordination transactionnelle afin que celui-ci soit adapté à la coordination des
applications collaboratives modernes:

vi RÉSUMÉ EN FRANÇAIS

• Atomicité relachée: certains résultats intermédiaires produits par l’exécution d’un work-
flow peuvent être conservés intacts bien que l’exécution d’autres tâches du workflow n’ait
pas réussi.

• Assignation dynamique des acteurs du workflow: les dernières applications collabora-
tives sont dynamiques dans le sens où ses exécutants peuvent être sélectionnés durant son
exécution en fonction par exemple d’informations contextuelles.

Les protocoles de coordination transactionnels existants n’offrent pas les propriétés suff-
isantes pour satisfaire ces deux exigences. De nouvelles solutions doivent donc être envisagées
et dans cette thèse, nous proposons le design d’un protocole de coordination transactionnelle
qui satisfait les contraintes que nous avons identifiées.

Sécurité informatique

Le support d’exécution distribué nécessaire à l’exécution des applications collaboratives mod-
ernes introduit de nouvelles contraintes en termes de sécurité informatique. Les acteurs de
celles-ci ne reposent pas, en effet, sur un acteur de confiance pour assurer la gestion de l’exécution
du workflow. Par conséquent, certaines propriétés vérifiées par les applications traditionnelles
telles que la conformité de l’exécution du workflow avec la spécification de celui-ci ne sont
plus assurées. Par ailleurs, étant donné l’aspect distribué de l’exécution, l’ensemble des don-
nées sont transférées entre les participants d’un workflow même si ceux-ci ne doivent accéder
qu’à un sous-ensemble de ces données pour exécuter les tâches auxquelles ils sont assignés.
De ce fait, il devient difficile d’appliquer les politiques de sécurité définissant les droits d’accès
des acteurs potentiels du workflow sur chaque donnée. Les protocoles de sécurité définis pour
les applications collaboratives traditionnelles ne permettent malheuresement pas de résoudre
les problèmes identifiés ci-dessus et dans cette thèse de doctorat, nous proposons le design et
l’implémentation de protocoles de sécurité qui satisfont les prérequis de sécurité informatique
que nous avons identifiés pour les applications collaboratives récentes.

Organisation et contribution de la thèse
Chaque chapitre de cette thèse introduit un composant de l’infrastructure de gestion de workflow
que nous avons conçue pour supporter l’exécution des applications collaboratives modernes.
Les trois principaux composants de l’architecture de workflow ubiquitaire sont représentés par
la figure 1. Le composant central est en fait le système de gestion de workflow distribué qui doit
satisfaire les contraintes fonctionnelles que nous avons identifiées pour supporter l’exécution
d’applications collaboratives dans des environnements qui n’offrent pas d’infrastructure dédiée.
Afin de garantir une exécution fiable et sécurisée, ce système de gestion de workflow est sup-
porté par un protocole de coordination transactionnel dont le rôle est de garantir la consistante
des données du workflow et par des mécanismes de sécurité. Le reste du rapport est organisé de
la manière suivante.

Chapitre 1 Le premier chapitre introduit les concepts technologiques nécessaires à la com-
préhension de la thèse. La notion de workflow et les technologies “Web services” sont en
particulier abordées.

RÉSUMÉ EN FRANÇAIS vii

Système de gestion
de workflow

distribué

Protocoles de sécurité

Protocole de coordination

Figure 1: Organisation de la thèse en fonction des composants de l’architecture

Les chapitres 2, 3 et 4 constituent le coeur de cette thèse. Ils spécifient en effet les solutions
que nous avons conçues pour remplir les objectifs fixés dans cette partie introductive. Le lecteur
est invité à les lire de manière linéaire même s’ils décrivent chacun des solutions indépendantes
applicables dans d’autres contextes.

Chapitre 2 A l’inverse des systèmes de gestion de workflow traditionnels, l’exécution des plus
récentes applications collaboratives exploitant le concept de workflow ne reposent pas for-
cément sur une infrastructure dédiée. Par conséquent, de nouveaux problèmes se posent
quant au design d’une infrastructure de gestion de workflow capable d’assurer l’exécution
de celles-ci. Le chapitre 2 présente l’architecture de workflow ubiquitaire que nous avons
conçue. Celle-ci répond aux contraintes fonctionnelles suivantes:

• Exécution décentralisée: la gestion de l’exécution d’une application collabora-
tive est partagée entre les participants qui exécutent tour à tour une sous partie de
l’application globale.

• Assignation dynamique des acteurs du workflow: les acteurs du workflow peuvent
être sélectionnés durant son exécution.

Par ailleurs, une implémentation de cette architecture basée sur les technologies “Web
services” est aussi présentée.

Chapitre 3 Le chapitre 3 traite des problèmes de fiabilité durant l’exécution d’un processus
collaboratif ubiquitaire. Nous présentons en particulier un protocole de coordination
transactionnel. L’exécution de ce dernier se déroule en deux phases. Au cours de la
première phase, un algorithme de sélection d’acteurs transactionnels est exécuté grâce

viii RÉSUMÉ EN FRANÇAIS

auquel les acteurs du workflow sont sélectionnés en fonction de leurs propriétés transac-
tionnelles telles que la possibilité d’annuler les effets d’une tâche (compensation) ou la
capacité de relancer une exécution après un échec (rejeu). Ainsi construite une instance
de workflow satisfait aux contraintes transactionnelles spécifiées au moment du design du
workflow. Le workflow est ensuite à proprement parlé exécuté et son exécution est sup-
porté par un protocole de coordination transactionnel dont les règles de coordination sont
dérivées de l’instance de workflow construite grâce à l’algorithme de sélection d’acteurs
transactionnels que nous avons développé.

Une implémentation de ce protocole transactionnel est aussi présenté dans ce chapitre.

Chapitre 4 Ce chapitre présente les solutions que nous avons développées pour répondre aux
contraintes de sécurité informatique que nous avons identifiées pour l’exécution de work-
flow ubiquitaire. Ces solutions exploitent les concepts d’encryption concétrique (oignons)
et les modèles de politique de sécurité pour assurer entre autre la conformité de l’exécution
du workflow distribué avec sa spécification. Le design de ces protocoles de sécurité
est fortement couplé à l’exécution du workflow et de ce fait peut-être facilement inté-
gré à d’autres systèmes de gestion de workflow distribués. Nous spécifions aussi dans
ce chapitre comment les protocoles de sécurité que nous avons développés peuvent être
intégrés dans l’exécution du protocole transactionnel discuté dans le chapitre 3.

Une implémentation de ce travail utilisant le concept de cryptographie à base d’identité
est enfin présentée.

Appendices Les appendices présentent en détail les travaux d’implémentation réalisés au cours
de cette thèse de doctorat.

Les travaux de recherche réalisés dans le cadre cette thèse ont donné lieu à différentes pub-
lications [MM05, MM06a, MM06b, MM07a, MM07b, MMG08b, MMG08a, Kha08] où sont
détaillées les principales idées développées dans ce rapport.

Architecture du workflow ubiquitaire
Les applications collaboratives exploitant les ressources de l’informatique ubiquitaire permet-
tent à des utilisateurs nomades d’accéder à des fonctionnalités offertes par des fournisseurs de
services ambiants. La plupart de ces applications n’offrent cependant pas à l’heure actuelle la
possibilité à leurs clients de collaborer ensemble et se limitent seulement à l’accès à des applica-
tions fournies par une infrastructure dédiée. Afin de rendre possible l’exécution d’applications
collaboratives entre clients nomades, nous avons défini une architecture distribuée permettant
l’exécution d’un processus collaboratif ubiquitaire. Dans un tel environnement d’exécution,
les utilisateurs nomades collaborent grâce à de complexes interactions qui peuvent être vues
comme une extension du concept de processus collaboratif centralisé. L’architecture de pro-
cessus collaboratif ubiquitaire introduit un support d’exécution permettant à des utilisateurs
nomades travaillant à proximité les uns des autres de partager leurs ressources et d’accéder à
celles des autres selon un plan d’exécution prédéfini ou workflow. Ce support d’exécution est
caractérisé par les points suivants :

RÉSUMÉ EN FRANÇAIS ix

Service de
découverte

Transfert de
données

Requête

2b1b 3b(1)

(2)

(3)

(4)

(5)

(6)

(7)Exécution Exécution

Figure 2: Principes d’exécution du workflow ubiquitaire

• Une architecture distribuée: la gestion des échanges ayant lieu au cours de l’exécution
du processus collaboratif entre clients nomades est assurée par les clients eux-mêmes de
telle sorte qu’aucune infrastructure dédiée ne soit nécessaire.

• Un processus dynamique d’assignation des acteurs aux différentes étapes d’exécution:
les ressources mises à disposition par les clients peuvent être découvertes au moyen
d’un service spécialisé suivant les besoins fonctionnels nécessaires à la poursuite de
l’exécution d’un processus collaboratif donné.

Les étapes de l’exécution d’un processus collaboratif ubiquitaire sont décrites à la figure
2. Ayant défini une représentation abstraite d’un processus collaboratif, c’est à dire l’ensemble
des étapes fonctionnelles nécessaires à l’exécution d’un processus collaboratif, un utilisateur dé-
marre le processus. Il exécute un premier ensemble de tâches (1) avant de rechercher dans son
environnement immédiat, via le service de découverte, un collaborateur susceptible d’exécuter
le sous ensemble d’opérations suivant dans le plan d’exécution de son processus collaboratif (2).
Dès cette phase de découverte achevée, l’ensemble des données nécessaires au processus col-
laboratif est transmis par l’utilisateur à ce nouveau collaborateur (3) permettant la poursuite de
l’exécution du processus (4). L’enchaînement précédent : découverte d’un utilisateur nomade,
transfert de données entre utilisateurs et exécution d’un ensemble de tâches se répète itérative-
ment jusqu’à ce que l’ensemble des opérations prévu par le plan du processus collaboratif soit
achevé. Afin d’optimiser les ressources des utilisateurs nomades, le mode d’exécution est sans
mémoire de telle sorte que les acteurs d’une instance d’un processus collaboratif ne gardent au-
cune information résiduelle nécessaire à la suite de son exécution et puissent se déconnecter dès
qu’ils en ont terminé avec l’exécution des opérations qui leur ont été assignées. Toutes les don-
nées nécessaires à l’exécution d’une telle collaboration sont donc transférées entre chaque étape
d’exécution d’un utilisateur vers le suivant. Les échanges de données entre acteurs nomades in-
cluent le plan d’exécution du processus collaboratif pour permettre une exécution cohérente de
celui-ci.

La section suivante décrit une implémentation de cette architecture basée sur les technolo-
gies “Web services”.

x RÉSUMÉ EN FRANÇAIS

BPEL
processus

public

W SDL
 processus

public

BPEL
processus

privée

WSDL
processus privé

Applications

Engine
wrapper

publication

résultats

M oteur BPEL

requête

réponse résu ltats

Figure 3: Implémentation de l’architecture de workflow ubiquitaire

Implémentation basée sur le paradigme d’Architecture Orientée Services

Les acteurs impliqués dans une instance d’un processus collaboratif ubiquitaire sont en général
membres d’une organisation (entreprise, hôpital, etc.) et doivent s’assurer qu’aucune informa-
tion sensible n’est divulguée par leur participation à un processus collaboratif. En étant acteur
de l’exécution d’un processus collaboratif, ils partagent d’une part leurs ressources applica-
tives et doivent d’autre part assurer la gestion locale de leur participation au processus. Chaque
acteur implémente de ce fait deux modules logiciels : le premier regroupe l’ensemble des ap-
plications dont il dispose et le second est un moteur de processus collaboratif. Les applications
logicielles implémentées par un utilisateur donné doivent rester la propriété de l’organisation
à laquelle il appartient et donc demeurer privées. Elles ne peuvent être appelées que par cet
utilisateur et le moteur de processus collaboratif local doit donc jouer le rôle d’une interface
entre ces applications et les autres acteurs impliqués dans l’exécution d’un processus collab-
oratif. Notre implémentation décrite par la figure 3 se base sur le langage Business Process
Execution Language (BPEL) qui permet de spécifier des processus collaboratifs. Deux proces-
sus BPEL, un public et un autre privé, sont déployés sur le moteur de workflow afin de remplir
ce rôle d’interface. Le processus public est contacté par les autres acteurs nomades tandis que
le processus privé ne reçoit de requêtes que du processus public. Le processus public met donc
à disposition les ressources d’un utilisateur et assure l’interface avec les acteurs potentiels alors
que le processus privé implémente les logiciels fournissant ces ressources.

Par ailleurs, afin de ne pas modifier l’implémentation d’un moteur de workflow déjà existant,
nous avons choisi de développer un module externe appelé “engine wrapper” afin d’implémenter
les primitives d’exécution liées au design de l’architecture de workflow ubiquitaire.

Consistance transactionnelle du workflow ubiquitaire

L’architecture de workflow de par sa nature distribuée et dynamique n’offre aucune garantie
en ce qui concerne la fiabilité et la tolérance aux pannes. Nous présentons dans cette partie les
solutions que nous avons mises en oeuvre pour répondre à cette limitation. Nous décrivons dans
un premier temps les prérequis en termes de consistance transactionnelle associés à l’exécution

RÉSUMÉ EN FRANÇAIS xi

Algorithm e de
com position

transactionnel

Fourn isseurs de services
disponib les o ffrant d iffé rentes
proprié tés transactionnelles

1 2

W orkflow
1 2

Instance satisfa isant
les prérequis P rérequis

transactionnels

1 2

Execution supportée
par le pro toco le de

coord ination

Figure 4: Methodologie

d’un processus collaboratif ubiquitaire avant de présenter les solutions que nous avons conçues
pour y répondre.

Prérequis trasanctionnels
L’exécution d’un processus collaboratif ubiquitaire doit principalement satisfaire les deux con-
traintes transactionnelles suivantes:

• Atomicité relachée: certains résultats intermédiaires produits par l’exécution d’un work-
flow peuvent être conservés bien que l’exécution d’autres tâches du workflow ait été un
échec. Les contraintes d’atomicité strictes des systèmes de base de données traditionnels
ne sont en effet pas adaptés à l’exécution d’un workflow.

• Assignation dynamique des acteurs du workflow: les exécutants du workflow peuvent
être sélectionnés durant son exécution en fonction de différents paramètres.

Les solutions existantes en matière de coordination transactionnelle sont inadaptées pour
satisfaire, par exemple, la deuxième contrainte. Il n’existe en effet pas de solution pour com-
biner les fonctionnalités offertes par différents fournisseurs de services et prenant en compte les
prérequis transactionnels fixés par les designers d’un workflow. Il est en effet seulement possible
de valider une instance de workflow une fois que celle-ci a été formée mais malheuresement pas
au moment de sa construction. Nous proposons dans cette thèse un algorithme de composition
transactionnel résolvant ce problème.

Méthodologie
Notre but est d’assurer la coordination transactionnelle de certaines tâches du workflow lorsque
l’exécution le requiert. Notre approche consiste en la partition du workflow en différentes zones
appelées zones critiques dont les tâches nécessitent une coordination transactionnelle. Afin
d’assurer la coordination transactionnelle de ces tâches, nous choisissons un protocole hiérar-
chisé dont la gestion est assurée de manière centralisée par l’initiateur d’une zone critique. Un
workflow ubiquitaire est exécuté par des acteurs qui peuvent être sélectionnés au cours de son
exécution. Considérant la variété des propriétés offertes par les acteurs potentiels qui peuvent
être assignés à l’exécution du workflow, nous supposons que ces acteurs peuvent offrir en plus

xii RÉSUMÉ EN FRANÇAIS

de fonctionnalités différentes, des propriétés transactionnelles différentes. Par exemple, un ac-
teur peut offrir la possibilité d’annuler les effets d’une exécution alors que d’autres n’offrent
pas cette propriété. Il devient par conséquent nécessaire de choisir les acteurs du workflow non
seulement en fonction de leurs fonctionnalités mais aussi en tenant compte des propriétés trans-
actionnelles qu’ils offrent. Dans ce but, nous proposons un algorithme de composition trans-
actionnelle dont le but est de créer une instance de workflow satisfaisant des prérequis transac-
tionnels fixés par les designers de ce workflow afin d’assurer que l’exécution de ce dernier soit
consistante. Cette approche suppose donc que tous les acteurs du workflow soient découverts
avant son instanciation.

Afin de remplir ces objectifs, nous proposons dans le chapitre 3 la méthodologie suivante.
Nous présentons dans un premier temps une sémantique permettant de spécifier les propriétés
transactionnelles offertes par les fournisseurs de services. Cette sémantique est nécessaire afin
de mettre en relation les propriétés transactionnelles requises par l’exécution d’une tâche et
celles offertes par les acteurs potentiels pouvant être assignés à celle-ci. Nous définissons en-
suite un outil basé sur cette sémantique qui permet aux designers d’un workflow de définir les
contraintes transactionnelles que l’exécution de ce dernier doit vérifier. Les acteurs sont ensuite
assignés aux différentes tâches du workflow en fonction des prérequis définis par les designers.
Enfin, l’instance du workflow résultant de l’algorithme de composition transactionnelle peut
être coordonnée en fonction de règles de coordination dérivées du processus de composition.
Cette méthodologie est résumée par la figure 4.

Implémentation

Les contributions théoriques décrites ci-dessus ont été implémentées dans le cadre du paradigme
d’Architecture Orientée Services en utilisant les technologies suivantes : OWL-S [OWL03],
BPEL [BPE], et WS-Coordination [La05c]. En particulier, nous avons développé une infras-
tructure de coordination transactionnelle composée de deux modules. Le premier module intè-
gre un “matchmaker” OWL-S auquel nous avons rajouté des fonctionnalités transactionnelles
implémentant notre algorithme de composition. Le deuxième module est l’implémentation du
protocole de coordination qui a été développé en suivant un modèle similaire à celui du standard
WS-Coordination.

Sécurité du workflow ubiquitaire

Cette section présente le design de protocoles de sécurité permettant d’assurer une exécution
sécurisée des processus collaboratifs ubiquitaires. Dans un premier temps, nous présentons
les prérequis de sécurité associés à l’exécution de workflow ubiquitaire avant de présenter la
solution que nous avons développée afin de satisfaire à ces contraintes.

Prérequis de sécurité

Par rapport aux processus collaboratifs centralisés classiques, l’exécution distribuée de proces-
sus collaboratifs introduit des contraintes en termes de sécurité informatique dues à l’absence

RÉSUMÉ EN FRANÇAIS xiii

d’un point de coordination prenant en charge la gestion des échanges entre les acteurs im-
pliqués. Par conséquent, de simples primitives d’exécution vérifiées dans le cas centralisé
comme l’adhérence de l’exécution d’un processus avec un plan prédéfini ne sont plus assurées.
Nous avons classifié les prérequis que nous avons identifiés vis-à-vis de la sécurité informatique
en trois catégories : autorisation, preuves d’exécution et protection des données du processus
collaboratif.

Autorisation La principale contrainte pour un processus collaboratif est d’assurer que seuls des
acteurs autorisés sont assignés aux différentes étapes d’exécution. Dans le cas décentral-
isé et ubiquitaire, ces acteurs peuvent être sélectionnés au moment même de l’exécution
par d’autres acteurs au moyen d’un service de découverte. La procédure de sélection de
ces acteurs potentiels doit faire ici correspondre les contraintes de sécurité spécifiées par
le plan d’exécution du processus collaboratif avec les droits que possèdent les acteurs
disponibles.

Preuves d’exécution Comme mentionné plus haut, l’adhérence de l’exécution d’un processus
avec un plan prédéfini n’est pas assurée dans le cas de processus collaboratifs décen-
tralisés. Sans aucun coordinateur de confiance auquel se référer, les acteurs impliqués
doivent avoir la possibilité de vérifier au cours de l’exécution d’un processus que cette
dernière satisfait le plan qui a été au préalable défini afin qu’aucun acteur malveillant ne
puisse fabriquer un faux processus collaboratif dans le but de nuire à des tiers.

Protection des données Dans le cas décentralisé, toutes les données du processus collaboratif
sont transférées entre les acteurs impliqués. Ceci nécessite des mécanismes spécifiques
pour en assurer l’intégrité, la confidentialité et en contrôler l’accès dans la mesure où
l’intégrité de l’exécution doit être assurée :

• Le contrôle d’accès sur les données du processus collaboratif est basé sur le plan
d’exécution qui spécifie pour chaque étape le sous-ensemble de ces données qui
sont accessibles en lecture,

• Seul un sous-ensemble de ces données doit être modifié par l’exécution d’une étape
donnée.

La solution que nous avons développée pour satisfaire à ces contraintes est décrite dans la
section suivante.

La solution
Assurer la protection des données du processus collaboratif est au coeur des mécanismes de
sécurité nécessaires pour satisfaire les contraintes que nous avons identifiées. Nous associons
à chaque étape de l’exécution d’un processus distribué deux paires de clefs : la première ap-
pelée “paire de clefs politique de sécurité” est utilisée dans le processus de sélection des acteurs
potentiels au cours d’un processus collaboratif, la seconde appelée “paire de clefs d’étape” pro-
tège l’accès aux données du processus collaboratif. Nous proposons un procédé de distribution
de clefs au cours duquel les clefs privés d’étape (SKi)[1,n] sont mises à disposition des acteurs
sélectionnés au moment même de l’exécution de l’étape qui leur a été assignée. Il est à noter que

xiv RÉSUMÉ EN FRANÇAIS1+iSKiSK1−iSK iv1−iv 1+iv1−ipolPK ipolPKiSK 1+ipolPK1−iSK 1+iSK ipolPKiSK 1+ipolPK 1+iSK 1+ipolPK 1+iSK 1−iSK iSK 1−iSK1−iSK iSK 1+iSK(O d)

(O p)

Récupère via (O d):

Figure 5: Protocoles de sécurité: principes

l’identité de ces acteurs n’est a priori connue qu’au moment même de l’exécution du processus
: une distribution de clefs au préalable n’est donc pas une solution envisageable. La conception
de ce mécanisme se base sur les techniques de chiffrement concentriques ou chiffrement en
oignon utilisant les clefs publiques de politique PKpoli associées à chaque étape de l’exécution
du processus collaboratif. En outre, des preuves d’exécution doivent être produites au cours
de l’exécution d’un processus collaboratif pour assurer la conformité de ce dernier avec le plan
d’exécution préalablement défini. Dans ce but, nous utilisons aussi les techniques de chiffre-
ment concentrique pour construire une structure regroupant les signatures des différents acteurs
calculées avec les clefs privées d’étape.

La figure 5 présente les principes de ces deux mécanismes. A chaque étape de l’exécution
du workflow les acteurs du workflow pèlent une couche de l’oignon Od afin de récupérer la clef
privée d’étape qui leur permettra de lire et de modifier les données auxquelles ils ont accès.
Dès qu’un acteur termine l’exécution de l’étape à laquelle il a été assigné, il signe un oignon de
preuve Op avec la clef privée d’étape qu’il a récupérée en pelant Od.

Propriétés de sécurité

L’ensemble des mécanismes de sécurité que nous avons développés vérifient plusieurs pro-
priétés détaillées dans le chapitre 4 de cette thèse. Ces propriétés concernent en particulier la
conformité de l’exécution du workflow ubiquitaire avec sa spécification ainsi que l’intégrité des
données échangées durant une instance de processus collaboratif ubiquitaire. Il est cependant
à noter que ces propriétés dépendent du protocole de distribution des clefs privées de politique
aux acteurs potentiels d’une instance de workflow ubiquitaire.

Conclusion

Dans cette thèse de doctorat nous avons présenté le design et l’implémentation d’une infrastruc-
ture de gestion de workflow distribuée supportant l’assignation d’acteurs en cours d’instance.
Nous avons aussi proposé des protocoles de sécurité informatique et de coordination transac-
tionnelle afin de garantir une exécution sécurisée et fiable pour les instances de workflow sup-
portée par cette infrastructure. Cette infrastructure satisfait les contraintes d’exécution posées
par les applications collaboratives modernes tout en leur offrant la flexibilité qu’elles requièrent.

RÉSUMÉ EN FRANÇAIS xv

Les travaux de recherche présentés dans cette thèse peuvent être poursuivis suivant différents
axes. Tout d’abord notre étude se limite aux plus simples modèles d’exécution de workflow tels
que l’exécution séquentielle ou concurrente. Cet aspect pourrait être étendu à des modèles plus
complexes incluant par exemple la synchronisation entre branches parallèles. D’autre part, les
aspects de sécurité informatique ayant trait à la composition sécurisée d’acteurs d’un workflow
ne sont que brièvement traités dans cette thèse et une piste possible pourrait être la prise en
compte, par le biais d’un algorithme de composition à la manière de ce qui a été présenté
dans ce travail pour les aspects transactionnels, des assertions de sécurité satisfaites par les
acteurs potentiels d’un workflow. Enfin, notre approche de sécurité pourrait être étendue à des
modèles de politiques de sécurité plus complexes pour pallier les problèmes liés par exemple à
la concurrence entre deux acteurs participant à une même instance de workflow.

xvi RÉSUMÉ EN FRANÇAIS

xvii

Abstract

With the emergence of the Internet, electronic commerce and Web-based applications have
become the standard support for Business-to-Business and Business-to-Costumer collabora-
tions. The concept of workflow or business process has been the main enabler concept for
such collaborative applications. Workflow technologies indeed make it possible to leverage the
functionalities of multiple service providers to build value-added services. Typical business pro-
cesses however rely on a centralized coordinator that is in charge of assuring the management
and the control tasks of the process execution. New trends in collaborative business applica-
tions call for flexibility to enable for instance the execution of business collaborations that can
be built on the fly without the need of a dedicated coordination infrastructure. As a result,
the usual centralized coordination paradigm is no longer suitable to adequately support the ex-
ecution of most recent business applications. In this dissertation we present a decentralized
workflow management system to overcome this limitation.

The main contribution of this thesis is the design and implementation of a full-fledged de-
centralized workflow management system. The workflow architecture denoted pervasive work-
flow architecture that we developed supports the execution of business processes in environ-
ments whereby computational resources offered by each business partner can potentially be
used by any party within the surroundings of that business partner. It also features the runtime
assignment of business partners to workflow tasks in order to provide the adequate flexibility
to support dynamic collaborations of business partners. This flexibility however comes at the
expense of security and reliability and introduces new research challenges as opposed to usual
workflow management systems in terms of security and fault management. To cope with the
latter, we first propose an adaptive transactional protocol to support the execution of pervasive
workflows. This transactional protocol features an algorithm enabling the selection of partners
not only according to functional requirements but also to transactional ones. Besides, we intro-
duce new security mechanisms capitalizing on onion encryption techniques and security policy
models in order to assure the integrity of the pervasive workflow execution and to prevent work-
flow instance forging.

xviii ABSTRACT

xix

Contents

Acknowledgments i

Résumé en Français iii

Abstract xvii

Contents xix

List of Figures xxiii

List of Tables xxvii

Notations and Accronyms xxix

Publications based on this Thesis xxxi

Introduction 1
Workflow-based collaborative business applications 2
New Paradigms in Collaborative Business Applications 3
Service Orient or Be Doomed! [BS06] . 4
New requirements for security and reliability . 5

Reliability and transactional consistency . 6
Security . 6

Structure and contributions . 7

1 Preliminaries and Technical Background 11
1.1 Workflows . 11

1.1.1 Definition and basic principles . 12
1.1.2 Deployment architectures . 13

1.2 Service Oriented Architecture and Web services 14
1.2.1 Service Oriented Architecture . 14
1.2.2 Implementation based on Web services technologies 16
1.2.3 Web services stack overview . 16
1.2.4 Web service description . 17
1.2.5 Web services discovery . 18
1.2.6 Web services based workflow applications 18

xx CONTENTS

1.3 Conclusion . 21

2 Pervasive Workflow Architecture 23
2.1 Introduction . 23
2.2 Pervasive workflow architecture . 24

2.2.1 Problem statement and definitions . 25
2.2.2 Runtime specifications . 28
2.2.3 Cross-organizational aspects . 31
2.2.4 Complete architecture mechanisms 34

2.3 Web services application . 35
2.3.1 Infrastructure components . 35
2.3.2 Specification of W . 37
2.3.3 Internal process specification in BPEL 46
2.3.4 Data management . 47
2.3.5 Execution scheme of a distributed workflow in the infrastructure 48
2.3.6 Performance considerations . 49

2.4 Related work . 50
2.4.1 Decentralized workflow architectures 50
2.4.2 Execution of workflows in the pervasive setting 51
2.4.3 Web services composition . 52

2.5 Conclusion . 52

3 Consistency of Pervasive Workflows 55
3.1 Introduction . 55
3.2 Definitions and Problem statement . 57

3.2.1 Assuring consistency of pervasive workflows 57
3.2.2 Methodology . 59

3.3 Motivating example . 59
3.4 Transactional model . 60

3.4.1 Transactional properties of business partners 60
3.4.2 Termination states . 64
3.4.3 Transactional consistency tool . 65

3.5 Analysis of TS(C) . 65
3.5.1 Inherent properties of TS(C) . 65
3.5.2 Classification within TS(C) . 66

3.6 Forming ATS(C) . 69
3.7 Assigning business partners using ATS . 70

3.7.1 Acceptability of Cd with respect to ATS(C) 70
3.7.2 Transaction-aware assignment procedure 71
3.7.3 Actual termination states of Cd . 75
3.7.4 Discussion and performance evaluation 76
3.7.5 Examples . 77

3.8 Coordination Protocol Specification . 79
3.8.1 Protocol actors . 79
3.8.2 Coordination scenarios . 80

CONTENTS xxi

3.8.3 Coordination decisions and recovery 83
3.8.4 Discussion . 84

3.9 Implementation . 85
3.9.1 OWL-S transactional and functional matchmaker 86
3.9.2 Internal communication within a business partner infrastructure 88
3.9.3 Specification of transactional BPEL processes 90

3.10 Related work . 92
3.10.1 Integration of transactional requirements into workflows 92
3.10.2 Transactional protocols and frameworks 94

3.11 Conclusion . 95

4 Security of Pervasive Workflows 97
4.1 Introduction . 97
4.2 Security requirements . 98

4.2.1 Authorization . 98
4.2.2 Execution proofs and traceability . 99
4.2.3 Workflow data protection . 99

4.3 The solution . 100
4.3.1 Key management . 101
4.3.2 Data protection . 102
4.3.3 Vertex private key distribution mechanism 103
4.3.4 Execution proofs and traceability . 107
4.3.5 Vertex key pair generation . 109
4.3.6 Communication protocol . 111

4.4 Secure execution of decentralized workflows 112
4.4.1 Execution process overview . 112
4.4.2 Workflow initiation . 112
4.4.3 Workflow message processing . 113

4.5 Security analysis . 114
4.5.1 Inherent security properties . 114
4.5.2 Revocation of a business partner anonymity 116
4.5.3 Discussion . 117

4.6 Integration within the transactional protocol 117
4.6.1 Security faults . 118
4.6.2 Business partner registration . 120
4.6.3 Workflow message backup process . 121
4.6.4 Recovering from security-faults . 121
4.6.5 Handling security-faults when the recovery procedure fails 122

4.7 Implementation . 123
4.7.1 Performance analysis . 124

4.8 Related work . 124
4.8.1 Separation of duty and conflict of interests 125
4.8.2 Access control within workflow management systems 125
4.8.3 Mobile agents and distributed applications 126
4.8.4 Secure composition of business partners 127

xxii TABLE OF CONTENTS

4.9 Conclusion . 127

Conclusions and Perspectives 129
Theory . 129
Implementation . 131
Execution modes supported by the pervasive workflow model 132
Perspectives . 133

A Engine wrapper implementation 135
A.1 Engine wrapper interface and UML [UML] diagrams 135

A.1.1 Class and sequence diagrams . 135
A.1.2 Engine wrapper interface . 137

A.2 Workflow visualization tool . 140
A.3 Deployment . 141

B Transactional framework implementation 143
B.1 Transaction-aware composition algorithm . 143
B.2 Demonstrator . 146

C Security library implementation 151
C.1 Integration of security primitives into the business logic of the engine wrapper . 151
C.2 Integration of security primitives into the visualization tool 155
C.3 Onion processing . 155

C.3.1 Onion Od building process . 155
C.3.2 Onion Op peeling off process . 156

D Prototype developed in the context of the MOSQUITO project 161
D.1 Scenario . 161
D.2 Demonstrator execution . 162

D.2.1 Workflow instantiation . 162
D.2.2 Doctor Vertex . 162
D.2.3 Pharmacist Vertex . 163
D.2.4 Social worker Vertex . 163

E Curriculum Vitae 167

Bibliography 173

xxiii

List of Figures

1 Organisation de la thèse en fonction des composants de l’architecture vii
2 Principes d’exécution du workflow ubiquitaire ix
3 Implémentation de l’architecture de workflow ubiquitaire x
4 Methodologie . xi
5 Protocoles de sécurité: principes . xiv
6 Thesis organization in terms of architectural building blocks 7

1.1 SEQUENCE execution pattern . 12
1.2 AND-SPLIT/AND-JOIN execution patterns 12
1.3 OR-SPLIT/OR-JOIN execution patterns . 13
1.4 Centralized setting . 13
1.5 Decentralized setting . 14
1.6 Service Oriented Architecture concepts . 15
1.7 Service Oriented Architecture implementation based on Web services technolo-

gies . 15
1.8 Web services stack . 16
1.9 Service discovery mechanism . 18
1.10 BPEL centralized paradigm . 19
1.11 BPEL decentralized paradigm . 20

2.1 Process with two branches . 27
2.2 Pervasive workflow runtime specification . 29
2.3 Workflow message format . 30
2.4 Distributed workflow management system . 31
2.5 Device representation . 33
2.6 Architecture sequence diagram . 34
2.7 Web services infrastructure deployed on business partners’ devices 35
2.8 Complex business process . 41
2.9 Private and public processes (Process graphs from ActiveBPEL engine [AEwe07]) 45
2.10 Data structure . 47
2.11 Workflow data lifecycle . 48
2.12 Infrastructure sequence diagram . 48
2.13 Workflow message size . 49
2.14 Centralized vs decentralized workflow systems 50

3.1 Protocol actors . 57

xxiv LIST OF FIGURES

3.2 Methodology . 58
3.3 Workflow example: Deal at a fair . 59
3.4 Termination states of C1 . 61
3.5 State model . 61
3.6 State diagrams of business partners bvk and bmk 63
3.7 ATS(C1) and available business partners . 69
3.8 TS(C1d) . 78
3.9 Notification messages . 79
3.10 Business partner registration . 80
3.11 Normal execution . 81
3.12 Failure of a business partner bvk . 82
3.13 Failure of a business partner bmk . 82
3.14 Architecture . 86
3.15 OWL-S transactional matchmaker . 87
3.16 Infrastructure internal communications . 88
3.17 Transactional BPEL processes (Process graphs from ActiveBPEL engine) . . . 93

4.1 Key management . 99
4.2 Policy private key distribution schemes . 100
4.3 Workflow example . 101
4.4 Access to workflow data . 103
4.5 SEQUENCE pattern . 104
4.6 AND-SPLIT pattern . 105
4.7 AND-JOIN pattern . 106
4.8 Workflow message structure . 109
4.9 Business partner registration when security mechanisms are used 120
4.10 Workflow message backup when security mechanisms are used 121
4.11 Integration of the security mechanisms within the engine wrapper implementation123
4.12 Security mechanisms execution overhead . 124

A.1 Pervasive Workflow: class diagram . 136
A.2 Process message: sequence diagram . 138
A.3 Callback: sequence diagram . 139
A.4 Pervasive workflow visualization application principles 141
A.5 Pervasive workflow execution: Screen shot of the visualization application . . . 142
A.6 Engine wrapper business logic: Screen shot of the visualization application . . 142

B.1 Transaction-aware business partner assignment procedure 145
B.2 Simple workflow example . 146
B.3 Service registration . 147
B.4 Service completion . 148
B.5 Service failure . 148
B.6 Service cancellation . 149

C.1 Security library class diagram . 152
C.2 Process message with security mechanisms: sequence diagram 153

LIST OF FIGURES xxv

C.3 Callback with security mechanisms: sequence diagram 154
C.4 Od peeling off process andOp building process: Screen shot of the visualization

application . 156
C.5 Integration of the security mechanisms into the engine wrapper business logic:

Screen shot of the visualization application 157
C.6 Onion Od building process . 158
C.7 Onion Op peeling off process . 159

D.1 Prototype demonstration scenario . 162
D.2 Medical Information Portal login . 163
D.3 Alert received by a physician . 164
D.4 Access to patient data . 164
D.5 Prescription management page . 165
D.6 Pharmacist interface . 165

xxvi LIST OF FIGURES

xxvii

List of Tables

2.1 Listing distBPEL associated with the workflow depicted in figure 2.1 38
2.2 Listing distBPEL associated with a workflow message 38
2.3 Listing distBPEL associated with a task activity 39
2.4 Listing distBPEL associated with the workflow depicted in figure 2.8 40
2.5 Listing distBPEL after the first step of the extraction procedure 42
2.6 Listing distBPEL after the second step of the extraction procedure 42
2.7 Listing distBPEL after the third step of the extraction procedure 43
2.8 Listing BPEL associated with the Internal Process specification 46

3.1 Listing OWL-S specifying the possible transactional properties 88
3.2 Listing BPEL associated with the process instantiation 90
3.3 Listing BPEL associated with the cancel message 90
3.4 Listing BPEL associated with an operation that can fail 91
3.5 Listing BPEL associated with the leave message 91

A.1 Workflow message XML schema . 140

B.1 Service providers assigned to the vertices of the workflow depicted in figure B.2 146
B.2 Transactional requirements associated with the workflow depicted in figure B.2 147

C.1 Workflow message XML schema integrating security mechanisms 155

xxviii LIST OF TABLES

xxix

Notations and Accronyms

Mathematical notations

M Message space
C Ciphertext space
K Key space
(G1,+) Additive group of order q for a prime q
(G2, .) Multiplicative group of order q for a prime q
ê Bilinear map
Zq Integers modulo q: the set of integers 0, 1, ..., n− 1
Z∗q The multiplicative group of Zq

h Cryptographic hash function
PK Public key
SK Private key
{m}PK Using public key PK on a message m (e.g. encryption)
{m}SK Using private key SK on a message m (e.g. signature)
W Workflow
vi Workflow vertex
bi Business partner

Accronyms

UML Unified Modeling Language
DOM Document Object Model
JSP Java Server Pages
SVG Scalable Vector Graphic
XML Extensible Markup Language
Ajax Asynchonous Java script and XML

xxx NOTATIONS AND ACCRONYMS

BPEL Business Process Execution Language
CDL Choreography Description Language
WSDL Web Service Definition Language
UDDI Universal Description, Discovery and Integration
SOAP Simple Object Access Protocol
HTTP Hypertext Transfer Protocol
SMTP Simple Mail Transfer Protocol
RSA Rivest Shamir Adleman
IBE Identity-Based Encryption
ECB Electronic CodeBook
CBC Cipher Block Chaining
JCE Java Cryptographic Extension
SOA Service Oriented Architecture
SOC Service Oriented Computing
PDA Personal Digital Assistant
RFID Radio Frequency IDentification
URI Uniform Resource Identifier

xxxi

Publications based on this Thesis

Here is the list of papers that have been written since the beginning of this Ph.D. thesis.

International Conferences

[MM05] “Enabling pervasive execution of workflows”1 2

F. Montagut and R. Molva, in the proceedings of CollaborateCom 2005, 1st IEEE
International Conference on Collaborative Computing:Networking, Applications
and Worksharing, December 19-21, 2005, San Jose, USA.
Pervasive workflow architecture (Chapter 2)

[MM06a] “Augmenting Web services composition with transactional requirements”1 2

F. Montagut and R. Molva, in the proceedings of ICWS 2006, IEEE International
Conference on Web Services, September 18-22, 2006, Chicago, USA. This paper
received the conference runners-up award.
Theoretical grounds of our work on reliability issues (Chapter 3)

[MM06b] “Towards transactional pervasive workflows” 1 2

F. Montagut and R. Molva, in the proceedings of EDOC 2006, 10th IEEE Interna-
tional EDOC Conference “The Enterprise Computing Conference", 16-20 October
2006, Hong-Kong.
Specification of the coordination protocol we designed (Chapter 3)

[MM07a] “Enforcing Integrity of Execution in Distributed Workflow Management Sys-
tems” 1 2

F. Montagut and R. Molva, in the proceedings of SCC 2007, 2007 IEEE Interna-
tional Conference on Services Computing, 9-13 July 2007, Salt Lake City, USA.
Specification of the security solutions we designed (Chapter 4)

xxxii PUBLICATIONS BASED ON THIS THESIS

[MM07b] “Traceability and Integrity of Execution in Distributed Workflow Manage-
ment Systems” 1 2

F. Montagut and R. Molva, in the proceedings of ESORICS 2007, 12th European
Symposium On Research In Computer Security, Dresden, Germany, September
24-26, 2007.
Specification of the security solutions we designed (Chapter 4)

Journal Papers
[MMG08b] “The Pervasive Workflow: A Decentralized Workflow System Supporting

Long Running Transactions” 1

F. Montagut, R. Molva and S. Golega, to appear in IEEE Transactions on Sys-
tems, Man and Cybernetics, Part C: Applications and Reviews. Special Issue on
Enterprise Service Computing and Industrial Applications.
Extended version of [MM06b]

[MMG08a] “Automating the composition of transactional Web services” 1

F. Montagut, R. Molva and S. Golega, To appear in International Journal on Web
Services Research, Idea Publishing, 2008.
Extended version of [MM06a]

Book chapters
[PWL+07] “Utilisation des informations contextuelles pour assurer la sécurité d’un pro-

cessus collaboratif distribué : un exemple dans l’e-Santé”
J.-C. Pazzaglia, K. Wrona, A. Laube, F. Montagut, L. Gomez, Y. Roudier, and S.
Trabelsi. OFTA, Paris, France, 2007.
Book chapter in French including a presentation of the pervasive workflow

[Kha08] “Automating the composition of transactional Web services” (book chapter) 1

F. Montagut, R. Molva and S. Golega, “Managing Web Services Quality: Measur-
ing Outcomes and Effectiveness”, IGI Global, to appear in 2008
Invited book chapter based on the results presented in Chapter 3

1The paper was presented in a conference by the author of this dissertation
2The main author of the paper is the author of this dissertation

1

Introduction

The skill of writing is to create a context in which other people can think.
- Edwin Schlossberg -

The notion of workflow or business process refers to the automation of business procedures
towards reaching a business goal such as for instance, “booking an airline ticket", and exe-
cuted based on a pre-defined plan specifying the overall sequence of operations required to be
performed in order to achieve the defined goal [Hol95]. Within the execution of a workflow,
documents or data are transferred between participants that can be simple human users or ma-
chines and in order to support these business interactions, a workflow management system is
usually in charge of routing messages between participants based on the defined sequence of
operations. As for any business applications, workflow-based applications require stringent ap-
proaches to provide appropriate security and transactional mechanisms in order to assure their
sound execution. Typical business processes rely on a centralized coordinator that is in charge
of assuring the management and the control tasks of the process execution. This coordinator
is however considered a performance bottleneck to enable the execution of business collabo-
rations that can be built on the fly without the need of a dedicated coordination infrastructure.
In this dissertation we present a decentralized workflow management system to overcome this
limitation.

The main contribution of this thesis is the design and implementation of a decentralized
workflow management system and that of the underlying security and transactional protocols.
The workflow architecture denoted pervasive workflow architecture that we developed supports
the execution of business processes in environments whereby computational resources offered
by each business partner can potentially be used by any party within the surroundings of that
business partner. It also features the runtime assignment of business partners to workflow tasks
in order to provide the adequate flexibility to support dynamic collaborations of business part-
ners.

2 INTRODUCTION

The remainder of this introductory chapter is organized as follows. We first provide an
overview the concept of workflow on which rely modern business applications. We then moti-
vate the need of decentralized workflow infrastructure to offer the adequate flexibility required
by state of the art business applications. Our choice of relying on the Service Oriented Com-
puting paradigm whose underlying technologies are today’s de facto standard to support collab-
orative applications is later on motivated. We finally outline the new requirements in terms of
reliability and security introduced by the execution of collaborative business applications in the
decentralized setting, before highlighting the structure and contributions of this thesis.

Workflow-based collaborative business applications

With the emergence of the Internet, electronic commerce and Web-based applications have be-
come the standard support for Business-to-Business and Business-to-Costumer collaborations.
Relying on inexpensive communication means and dynamic graphical interfaces, these collabo-
rative business applications integrate complex services ranging from stock management compo-
nents to secure payment platforms in a way that is perfectly seamless for end-users. The concept
of workflow or business process has been the main enabler concept for such collaborative ap-
plications. Workflow technologies indeed make it possible to leverage the functionalities of
multiple service providers to build value-added services so that workflows are today’s standard
for the orchestration of both inter and cross-organizational collaborative applications.

Major software vendors including IBM, Microsoft and SAP have promoted the development
of workflow-based applications [MBB+03, KH05, biz05] over the past years. In fact, one of
the key feature offered by workflow technologies lies within the automation of the sequence
of operations necessary to reach a business goal. As a result, multiple instances of a single
business process can be launched concurrently easing the management and control of business
applications. Examples of workflow-based applications range from quite simple applications
such as airline booking systems, electronic shopping on a merchant website, etc. that enable
users to select goods remotely, manage their orders with their electronic cart, pay electronically
and track the shipment to complex cross-organizational collaborations involving many different
parties. The execution support of these collaborative applications usually relies on dedicated
infrastructure whose deployment can take place based on two main types of architecture:

• Centralized: a dedicated coordinator is in charge of routing messages between the busi-
ness partners or services involved in a workflow instance based on the workflow speci-
fication that states the sequence of operations necessary to complete the workflow. This
architecture is the most common one.

• Distributed: each business partner involved in the workflow instance implements a part
of the complete workflow corresponding to the tasks he is assigned to within the work-
flow. This is the standard architecture for complex collaborations that span over organi-
zational boundaries.

INTRODUCTION 3

These typical workflow architectures have however major drawbacks that limit the high
number of applications that could potentially leverage on the concept of workflow. First, these
workflow systems are quite static in that the business partners or organizations involved in the
execution of a workflow instance are often assigned to workflow tasks prior to the process
instantiation thus restricting the flexibility at runtime. In the centralized setting, the centralized
point of coordination may be a performance bottleneck for some collaborative applications
and may raise scalability issues when used concurrently by several clients. In the decentralized
setting, the deployment of the business processes on peers’ side is often done prior to the process
instantiation and requires a kind of agreement between business partners beforehand. Finally,
no solution combining both runtime business partner assignment and runtime deployment of
business processes has yet been designed. As a result, current architectures available in the
field of workflow management systems do not seem to offer the adequate flexibility to meet the
requirements introduced by modern collaborative applications such as the ones outlined in the
next section.

New paradigms in collaborative business applications

Mark Weiser described sixteen years ago [Wei91] a world wherein computers would be seam-
lessly integrated into everyday life: the pervasive or ubiquitous computing paradigm. What
was foreseen by Weiser has nowadays become a reality [Den01] with the increasing comput-
ing power available on devices such as personal assistants or sensors and RFID whose size
gets smaller and smaller. Software vendors have identified quite early the new business oppor-
tunities associated with the ubiquitous computing trend and developed new products wherein
artifacts (i.e. devices with embedded computational and communication functionalities) play
central role in the business logic of collaborative applications. These artifacts can be integrated
at different levels within the business logic of applications:

• Graphical User Interface: handheld devices such as PDA can be integrated to serve as
the interface between users and ambient services provided for example by an intelligent
home or a shop [RM04]. At this level no complex interactions are taking place between
artifacts and other ambient systems, the main goal of these applications is just to enhance
user experience.

• Information provider: sensors can for instance deliver contextual information at run-
time so that the application business logic is modified dynamically based on the changes
occurring within its execution environment. Such applications are called context-aware
applications. At this level, artifacts have a direct impact on application business logic yet
the interactions between applications and artifacts are quite limited.

• Service provider: the ever increasing capacity of artifacts allows them play the role of
application provider themselves. Many pieces of work have recently been presented to
study the feasibility of deploying a Web service on different devices such as for instance

4 INTRODUCTION

a watch or a PDA [BMNR03, WTK02, LW05, CYT04, LCY+04]. At this level, complex
interactions take place between mobile users who can share their applications available
on their devices including phones, MP3 readers and the like, anywhere at any moment.
These interactions may not in fact require any dedicated server infrastructure and can use
transmission mediums such as bluetooth or wireless LAN.

Interactions between artifacts within these examples do not extend beyond data and resource
sharing. In this thesis, our objective is to reach a further stage of interaction by enabling the
collaboration amongst users so that the latter can actively participate in the execution of complex
collaborative applications in order to build value-added services. There are many different use
cases for such flexible collaborative applications, as illustrated by the following examples:

• Emergency response team management: in this example, workflow technologies can
be used to coordinate the efforts between some actors assigned to manage an accident
without the need of a dedicated infrastructure deployed on site. In this case, team mem-
bers can be dynamically assigned to tasks depending on contextual information including
their availability or proximity to the accident location. A concrete example of such a sce-
nario is depicted in appendix D whereby a physician, a pharmacist and a social worker
collaborate to treat a patient whose health condition is remotely monitored.

• Dynamic collaboration within an airport: in this example, workflow technologies can
be used to initiate the dynamic collaboration of mobile workers that meet in an airport
and decide to do business together without the need of knowing each other beforehand or
relying on any infrastructure implemented within the airport.

• Peer-to-peer collaboration over the Internet: flexible collaborations are in fact not only
limited to pervasive environments but can also take place over the Internet, in this case
as for the previous example, business partners can initiate dynamic cross-organizational
workflows over the Internet.

We present in this dissertation the design of a distributed workflow management system
that meets the requirements associated with the execution of dynamic collaborations between
business partners without the need of a dedicated infrastructure or that of knowing each others’
identities beforehand. In the next two sections we introduce the set of technologies most appro-
priate for the deployment of such dynamic collaborations before examining the challenges in
terms of security and reliability raised by this new collaboration paradigm.

Service Orient or Be Doomed! [BS06]

The title “Service Orient or Be Doomed!” of a recent book on the state of the art in software
technologies [BS06] perfectly describes the current trend in the Information Technology indus-
try. The Service Oriented Computing paradigm [AHMS06, MBB+03] and the underlying Web

INTRODUCTION 5

services technologies are indeed the current industry standards to implement collaborative busi-
ness applications. Promoted by leading industry vendors including SAP [KH05] or Microsoft
[biz05], service orientation has become the de facto standard for service providers to imple-
ment and advertise the services they offer. Relying on simple standards such as XML [XML]
or HTTP protocol, Web services technologies offer basic primitives that allow service providers
to leverage their business functionalities by providing them with the means to expose, combine,
integrate and coordinate their services at low cost over the Web. Web services technologies
encompass a lot of specifications aiming at providing reliable and secure message-based ex-
changes between software components in a loosely-coupled way. The ultimate goal of Web
services indeed is to offer an interoperable framework that does not depend on any specific
implementation for Business-to-Business and Business-to-Consumer interactions. In fact, one
major advantage of Web services technologies lies within their capability to enable the cross-
organizational cooperation of distant Web-based services without the need to adapt component
interfaces to any specific implementation paradigm.

The Service Oriented Architecture paradigm and the design of a workflow management
system supporting dynamic collaborations of business partners in particular are governed by a
set of principles as follows.

• Loosely coupled interactions: interoperability of business platforms is a major require-
ment to enable seamless interactions between business partners.

• Service composition: services can be combined or composed in order to build value-
added services offering complex functionalities to clients.

• Service discovery: service providers can be easily contacted by clients based on a match-
making process between the functionalities they expose and what is requested in terms of
functionalities by the latter.

These three principles are the basic functionalities required to meet the architectural require-
ments identified above for the design of a workflow system supporting dynamic collaborations.
To that respect, service orientation and the underlying Web services technologies appear to
be the most appropriate solution to implement the theoretical results that are presented in this
thesis.

New requirements for security and reliability

The design of a workflow management system should not only take into account functional
requirements derived from the workflow applications whose execution it is meant to support
but it should also meet security and reliability requirements raised by the distributed workflow
system. Based on the architectural requirements we identified above, the flexibility required

6 INTRODUCTION

by modern collaborative applications comes at the expense of security and reliability and intro-
duces new research challenges as opposed to usual workflow management systems in terms of
security and fault management. These new requirements are presented in this section.

Reliability and transactional consistency

One key requirement for a workflow management system is to ensure that the outcome reached
by business processes whose execution it supports are consistent. Considering the lack of relia-
bility akin to distributed or pervasive environments, assuring data and transactional consistency
of the outcome reached by workflow instances supported by the proposed workflow manage-
ment system is a challenging issue. There are in fact mainly two requirements that are brought
up by the design of a suitable coordination protocol assuring the consistency of modern collab-
orative applications:

• Relaxed atomicity: some intermediate results produced within the execution of a collab-
orative application may be kept despite the failure to execute some other operation.

• Dynamic assignment of business partners: modern collaborative applications are dy-
namic in that the peers who can be assigned to the execution of some tasks can be selected
at runtime depending on, for instance, contextual information.

Transactional protocols designed so far to support the execution of traditional collaborative
applications do not offer the adequate flexibility to cope for example with the runtime assign-
ment of computational tasks to business partners. As a result, new solutions have to be designed
and we propose in this thesis a transactional coordination protocol that offer adequate features
to support the execution of flexible collaborative applications.

Security

Modern workflow-based applications raise new security requirements compared to traditional
collaborative applications because of their dynamicity and in some cases unusual execution en-
vironments. Being dynamically composed without the need of a dedicated infrastructure, they
may not indeed rely on a trusted centralized coordination mechanism to manage their execution.
As a result, basic security features including the assurance that the collaboration is executed ac-
cording to a sequence of operations specified by the collaboration initiator or agreed upon by
the participants may no longer be enforced within the execution. In addition, enforcing ac-
cess control policies on the documents processed by business partners or keeping track of the
identity of the different actors involved in the execution of a collaborative application become
critical issues when relying on a business partner selection process that can be performed at
runtime based on some contextual information. Existing security mechanisms designed for the

INTRODUCTION 7

Distributed
Workflow

Management
System

Security Mechanisms

Transactional Protocol

Figure 6: Thesis organization in terms of architectural building blocks

execution of traditional business applications do not offer adequate solutions to solve these new
security issues introduced by state-of-the-art collaborative applications. In this thesis, we thus
suggest the design of appropriate security mechanisms in order to meet the security require-
ments associated with the execution of flexible workflow-based applications.

Structure and contributions

Each chapter of this report introduces a building block in the design of a complete solution
to support the execution of modern workflow-based collaborative applications. The three main
architectural components we mentioned in this section are depicted in figure 6. The central com-
ponent is in fact the workflow management system that should meet the functional requirements
we identified in order to offer adequate support for the execution of collaborative applications
in environments that may not offer a dedicated infrastructure. In order to provide adequate
guarantees in terms of security and reliability for the execution of collaborative applications,
the workflow system is supported on the one hand by a transactional protocol that is in charge
of managing faults that may occur during business process executions and on the other hand
security mechanisms that enforce security requirements. The remainder of this manuscript is
outlined as follows.

Chapter 1 In the first chapter, we give some introductory information on the technical back-
ground material that will be used throughout this thesis. We especially introduce some

8 INTRODUCTION

basic definitions associated with the concept of workflow and give a broad overview of the
Service Oriented Architecture paradigm and the underlying Web services technologies.

Chapters 2, 3 and 4 are the core of this thesis and specify the solutions we designed towards
reaching the objectives we set in this introductory chapter. The reader is invited to read them
linearly, even though they describe solutions that can be used independently in other context.
There are in each of these chapters some cross references that require a basic understanding of
the concepts specified in previous chapters.

Chapter 2 As opposed to traditional workflow management systems, the execution of mod-
ern workflow-based applications may not rely on a dedicated infrastructure to assure the
workflow coordination task. As a result, there are many challenging issues and require-
ments relevant to the execution of business processes in the pervasive setting that will be
developed in the course of this thesis. In chapter 2, we focus on the workflow coordina-
tion and management tasks and suggest the design of a workflow management system,
denoted pervasive workflow, supporting distributed execution of workflows in pervasive
environments. The pervasive workflow architecture features a fully decentralized con-
trol and supports dynamic assignment of workflow tasks to business partners so that it
meets the following target requirements raised by the execution of flexible collaborative
applications:

• Fully decentralized: the management of the workflow execution is distributed
amongst the business partners taking part in a workflow instance in order to cope
with the lack of dedicated infrastructure,

• Dynamic assignment of business partners to workflow tasks: the business part-
ners in charge of executing the workflow can be discovered at runtime based on
available resources or contextual information.

In addition, we also present in this chapter the implementation of the pervasive workflow
model based on Web services technologies.

Chapter 3 In chapter 3, we tackle the issue of reliability within pervasive workflow instances
and propose an adaptive transactional protocol to assure their coordination from the trans-
actional point of view. The execution of this protocol takes place in two phases. First,
business partners are assigned to tasks using an algorithm whereby workflow partners
are selected based on functional and transactional requirements. Given an abstract repre-
sentation of a process wherein business partners are not yet assigned to workflow tasks,
this algorithm enables the selection of partners not only according to functional require-
ments but also based on transactional ones. The resulting workflow instance is compliant
with the defined consistency requirements and its execution can be easily coordinated as
our algorithm also provides coordination rules. The workflow execution further proceeds
through a hierarchical coordination protocol managed by the workflow initiator and con-
trolled using the coordination rules computed as an outcome of the partner assignment
procedure.

INTRODUCTION 9

We also describe an implementation of the theoretical results presented in this chapter
based on Web services technologies.

Chapter 4 In this chapter, we present security solutions in order to assure the secure execution
of the pervasive workflow instances. These mechanisms capitalize on onion encryption
techniques [SGR97] and security policy models in order to assure the integrity of the
distributed execution of workflows, to prevent business partners from being involved in a
workflow instance forged by a malicious peer and to provide business partners’ identity
traceability for sensitive workflow instances. The design of the suggested mechanisms is
strongly coupled with the runtime specification of decentralized workflow management
systems in order to ease their integration into existing distributed workflow management
solutions. We also specify how the security mechanisms presented in this chapter can
be integrated into the transactional coordination protocol outlined in chapter 3. An im-
plementation of the security mechanisms presented in this chapter is also specified using
identity based encryption techniques and Web services technologies.

Appendices Appendix D presents an example of an actual collaborative application whose
execution is supported by the pervasive workflow architecture. The other appendices
provide details on the implementation of the architectural building blocks presented in
this thesis. The reader is also invited to read appendices in a linear fashion.

The research work performed by the author in the scope of this thesis resulted in a number of
scientific publications that contain the main ideas presented in this manuscript [MM05, MM06a,
MM06b, MM07a, MM07b, MMG08b, MMG08a, Kha08].

10 INTRODUCTION

11

Chapter 1

Preliminaries and Technical Background

The path to our destination is not always a straight one. We go down the wrong road, we get
lost, we turn back. Maybe it doesn’t matter which road we embark on. Maybe what matters is

that we embark.
- Barbara Hall -

In this chapter we introduce some preliminary definitions related to the concepts under-
pinning the results of this thesis. The main architectural concepts associated with workflow
technologies are first presented. We then review some technical background related to the Ser-
vice Oriented Architecture (SOA) paradigm and Web services technologies on which is based
the implementation work we pursued in this thesis.

1.1 Workflows

The concept of workflow is defined as follows by the Workflow Management Coalition [Hol95].
“Workflow is concerned with the automation of procedures where documents, information or
tasks are passed between participants according to a defined set of rules to achieve, or contribute
to, an overall business goal”. In this section a formal definition of the notion of workflow is first
presented, we then give an overview of the existing architectures to support the execution of
workflows namely centralized and decentralized workflow architectures.

12 1. PRELIMINARIES AND TECHNICAL BACKGROUND

1t 2t 3t

Figure 1.1: SEQUENCE execution pattern

AND-
JOIN

AND-
SPLIT1t

2t

3t

4t

5t

Concurrent branches

Figure 1.2: AND-SPLIT/AND-JOIN execution patterns

1.1.1 Definition and basic principles

Definition 1.1 (Workflow). In its common form a workflow Wf is a finite set defined by:

Wf = {(ti)i∈[1,n], δ} where:

• ti denotes a task executed by a business partner within the workflow,

• δ is the set of execution dependencies between these tasks.

The workflow therefore specifies the sequence of operations that should be performed by
a set of business partners in order to achieve the business goal associated with the workflow
execution. The set δ specifies the dependencies between workflow tasks in terms of execution
patterns. The concepts developed in this thesis rely on most common execution patterns namely:

• SEQUENCE: a set of tasks is executed sequentially as depicted in figure 1.1.

• AND-SPLIT/AND-JOIN: this pattern corresponds to the execution of concurrent branches
as depicted in figure 1.2. The branches split at the AND-SPLIT and merge at the AND-
JOIN. The execution right after the AND-JOIN is carried out if only if the execution of
all merging branches has been performed.

• OR-SPLIT/OR-JOIN: this pattern corresponds to an exclusive choice, a single branch
is executed based on a condition associated with the OR-SPLIT as depicted in figure 1.3.

In the course of this thesis, the definition of workflow will be however extended so that it
better suits the requirements associated with our architectural design.

1.1. WORKFLOWS 13

OR-
JOIN

OR-
SPLIT1t

2t

3t

4t

5t

A single branch is executed

Figure 1.3: OR-SPLIT/OR-JOIN execution patterns

Wfe

Figure 1.4: Centralized setting

1.1.2 Deployment architectures

There are mainly two types of architectural settings to assure the coordination and management
tasks within the execution of workflows: the centralized and the decentralized ones. Both spec-
ifications however rely on the same basic component that implements workflow coordination
primitives, the workflow engine.

Definition 1.2 (Workflow engine). A workflow engine is a piece of software in charge of
interpreting the representation of a workflow using a computational form called workflow de-
scription language.

Centralized workflow coordination

In the centralized setting, a dedicated coordinator implementing a single workflow engine (Wfe)
is in charge of routing messages between business partners based on the execution patterns
specified within the workflow, as depicted in figure 1.4.

Decentralized workflow coordination

In the decentralized setting, the management and control tasks are distributed amongst business
partners that directly communicate between each others based on the execution patterns speci-

14 1. PRELIMINARIES AND TECHNICAL BACKGROUND

W fe

Wfe

W fe W fe W fe W fe

Figure 1.5: Decentralized setting

fied within the workflow as depicted in figure 1.5. In this case, each business partner implements
a workflow engine that manages the workflow execution locally.

1.2 Service Oriented Architecture and Web services

Web services are becoming the de facto industry standard in Web enabled middleware architec-
tures that support the execution of collaborative applications. They indeed offer crucial features
including: data representation and transport, service description and discovery, service compo-
sition and orchestration. In addition, they only rely on simple standards and protocols including
XML, SOAP or HTTP. In this section we first give an overview of the Service Oriented Archi-
tecture concepts. We then analyse how Web services technologies implement these architectural
concepts.

1.2.1 Service Oriented Architecture

This section describes the Service Oriented Architecture concepts on which the Web services
technologies rely. The main goal of the Service Oriented Architecture paradigm is to ease
the “client-service provider” relationship providing service providers with means to advertise
their business functionalities and providing clients with means to search for service providers
matching their business needs. The basic concepts of the SOA paradigm are depicted in figure
1.6. SOA features three main actors:

• a service provider offers access to some business functionalities.

• a client would like to access some business functionalities.

• the service repository makes the glue between clients and service providers. Service
providers can register their business functionalities while clients can browse the reposi-
tory listings.

1.2. SERVICE ORIENTED ARCHITECTURE AND WEB SERVICES 15

Client Service Provider

Repository

2. Lookup

3. Matching
services

1. Advertisement

4. Request

5. Response

Figure 1.6: Service Oriented Architecture concepts

Client Service Provider

Repository

UDDI

WSDL WSDL

SOAP

Figure 1.7: Service Oriented Architecture implementation based on Web services technologies

16 1. PRELIMINARIES AND TECHNICAL BACKGROUND

Transport Protocol
HTTP, SMTP

SOAP

Security
Reliable

Messaging
Transaction

Description, Discovery
WSDL, UDDI

Composition, Choreography
WS-BPEL, WS-CDL

Figure 1.8: Web services stack

Once a client has found a service provider that matches his functional needs, he can directly
invoke the operations exposed by the service provider.

Now that we have a clear idea of the SOA basic principles, we present how the latter are
implemented using Web services technologies.

1.2.2 Implementation based on Web services technologies

The Web services enabling technologies towards implementing the SOA paradigm are depicted
in figure 1.7. Service providers expose their service interface using the WSDL [CCMW01] stan-
dard that is an XML-based language [XML] specifying the communication protocols and URIs
required to interact with a service provider. WSDL interfaces are stored into service reposito-
ries that are generally implemented using the UDDI standard [Ca04]. Clients can browse UDDI
repositories in order to retrieve the WDSL interfaces of the service providers that match their
business needs. Once clients have retrieved relevant WSDL interfaces, they are able to contact
service providers relying on the SOAP protocol [SOA] that is the standard protocol for Web
services communications.

1.2.3 Web services stack overview

The Web services stack [WSa] and the associated technologies are depicted in figure 1.8. The
Web services stack consists of the following layers.

1.2. SERVICE ORIENTED ARCHITECTURE AND WEB SERVICES 17

• Transport layer: Web services communications can be supported by various transport
protocols including HTTP or SMTP.

• Messaging: Web services communications are implemented by means of the SOAP pro-
tocol [SOA] that is an XML-based message exchange protocol.

• Message level specifications: various Web services specifications have been proposed to
enhance the SOAP protocol in order to provide SOAP message exchanges with adequate
security mechanisms [WSS] or reliability features [WSR05].

• Description, Discovery: the interface of a Web service is specified based on the WSDL
specification [CCMW01] that is an XML-based language specifying the syntax to de-
scribe the communication protocols supported by a Web service. Web service WSDL
interfaces are often published in UDDI [Ca04] registries. The UDDI specification is an
XML-based registry wherein service providers can register their available Web services
and whose content can be browsed by clients.

• Composition, Choreography: Web services can be combined in order to build value-
added services. The business logic of so-called composite applications can be specified
using the BPEL specification [BPE] that is an XML-based workflow description lan-
guage. BPEL constructs specify the sequence of operations in terms of Web service
invocations required to complete the execution of composite applications. Web services
choreography [WSC] is a possible alternative to the BPEL language when it comes to
specifying distributed business collaborations as it offers adequate means to describe pos-
sible interactions between business participants in a peer-to-peer manner whereas BPEL
only offers a centralized view of Web service interactions.

More details on the technologies that will be used later on in this thesis are provided in the
next sections.

1.2.4 Web service description

The WSDL specification is used to describe how to interact with a given Web service. Basically
it includes the definition of the following parameters:

• Data structure: the data types required to interact with a Web service are specified using
XML schema [XML04].

• Operations: these are the operations offered by a Web service. They are specified in
terms of input and output data.

• Service endpoint reference: this is the URI of a Web service, i.e. for instance its location
on the Internet.

18 1. PRELIMINARIES AND TECHNICAL BACKGROUND

Service
discovery

Repository

Request

Register

Lookup

Results

Figure 1.9: Service discovery mechanism

• Bindings: message bindings specify the communication protocols that should be used by
a client to interact with a Web service.

1.2.5 Web services discovery

The principles of a typical service discovery mechanism are depicted in figure 1.9. A basic
service discovery mechanism offers the two following primitives to its clients:

• Register: service providers register themselves and advertise their functionalities that are
stored in a repository.

• Request: clients can send requests to the service discovery mechanism in order to get a
list of service providers that match their requirements. In this case, the service discovery
mechanism performs a lookup on available repositories by matching incoming requests
against the functionalities that business partners advertise and outputs the resulting list of
business partners.

There are various types of deployment architectures available to implement a service dis-
covery mechanism ranging from centralized to peer-to-peer solutions.

1.2.6 Web services based workflow applications

The BPEL language has become the industry standard to assure the coordination of Web ser-
vices composite applications. As we specified in section 1.1 there are two main types of work-
flow architectures and BPEL processes can be as well deployed based on these two architecture
settings. In the centralized setting that is depicted in figure 1.10, the BPEL engine acts as the
centralized point of coordination to manage the collaboration of component services. The BPEL
engine presents itself as a Web service whose WSDL specification is derived from the BPEL

1.2. SERVICE ORIENTED ARCHITECTURE AND WEB SERVICES 19

BPEL
process

Web
service

Web
service

Web
service

Centralized BPEL process

Figure 1.10: BPEL centralized paradigm

process specification. As a result, the BPEL engine is in charge of routing SOAP messages
between component services based on the BPEL process specification.

In the decentralized setting, process communications take place between BPEL engines
as depicted in figure 1.11. In this case, BPEL engines are also in charge of coordinating the
local execution of each business partner involved in the workflow. BPEL processes are locally
executed on BPEL engines which expose themselves as Web services. Thus the different BPEL
engines involved in the distributed workflow execution see each others as simple Web services
and thus communicate by means of SOAP message exchanges.

BPEL processes are strongly linked to the WSDL standard used to specify Web service
interfaces. We thus present the role of WSDL within the deployment and execution of BPEL
processes before giving details on the BPEL language.

Role of WSDL within BPEL processes

The deployment procedure of a BPEL process includes that of the WSDL interfaces of the
Web services involved in the process execution. The latter are indeed used by the underlying
BPEL engine to generate the Web service clients to interact with component Web services.
In the context of BPEL, WSDL is also used to define communication channels between the
BPEL engine and component Web services by means of the <partnerlinkType> construct.
The latter associates a <portType> (a WSDL <portType> defines a set of operations) of
each service to form a channel composed of two unidirectional links. Each service part of this
channel is assigned to a unique role and can send information to the other using the latter’s
specified <portType>.

20 1. PRELIMINARIES AND TECHNICAL BACKGROUND

BPEL
process

Web
service

Web
service

BPEL
process

BPEL
process

Web
service

Web
service

Web
service

Decentralized BPEL processes

Figure 1.11: BPEL decentralized paradigm

BPEL process specification

BPEL is an XML-based workflow description language that specifies the execution of Web
services composite applications in a centralized perspective. As depicted in figures 1.10 and
1.11, Web services part of a BPEL workflow indeed only have interactions with the BPEL
engine in charge of managing and interpreting the whole process execution and that even in the
decentralized setting whereby BPEL engines consider each others simple Web services. The
interactions within the process are described in terms of <partnerLink> which associates
two Web services in a WSDL <partnerlinkType> by assigning the <partnerlinkType>
roles to them. The BPEL language uses a set of activities to represent the workflow amongst
which are the following:

• <Invoke> Web service invocation: the BPEL engine issues a request (SOAP message)
to a Web service. The Web service invocation can either be synchronous (the Web service
that has been invoked should reply within a few minutes) or asynchronous (the execution
of the operation invoked on the targeted Web service can span over days).

• <Receive> Waiting state: the BPEL engine waits for a message from a distant Web
service. This construct is especially used to instantiate a BPEL process.

• <Sequence> Sequential execution: this corresponds to the SEQUENCE workflow exe-
cution pattern.

• <Flow> Concurrent execution: this corresponds to the AND-SPLIT / AND-JOIN work-
flow execution patterns.

• <Switch>Conditional scheme: this corresponds to the OR-SPLIT / OR-JOIN workflow
execution patterns.

• <Pick> Conditional scheme based on external events: a decision is made based on the
content of an incoming message.

1.3. CONCLUSION 21

• <While> Iterative process: this corresponds to a loop.

• <faultHandlers> Fault-handling mechanism: if an error occurs during the execu-
tion of an operation, the content specified within the <faultHandlers> construct is
executed.

• <eventHandlers> Event-handling mechanism: if the BPEL engine catches a mes-
sage specified within the <eventHandlers> construct, the content specified within the
<eventHandlers> construct is executed.

1.3 Conclusion

We introduced in this chapter most of the background information used in the remainder of this
thesis. We especially introduced the concept of workflow that is the underpinning concept to
the work presented in the manuscript and outlined the Service Oriented Architecture paradigm
that is the implementation framework of the theoretical results detailed later on.

22 1. PRELIMINARIES AND TECHNICAL BACKGROUND

23

Chapter 2

Pervasive Workflow Architecture

To create architecture is to put in order. Put what in order? Function and objects.
- Le Corbusier -

2.1 Introduction

Pervasive environments feature complex computer applications that allow users to access ambi-
ent services. These services range from residential temperature control to customer assistance
in a shopping centre [RM04]. In most existing examples of pervasive services, the end-users
only act as clients of complex business processes executed by the ambient infrastructure and
none of the existing pervasive service examples allows end-users to share their resources to be-
come themselves service providers. In this thesis, we propose to go beyond this simple client
- ambient infrastructure relationship and suggest a distributed computation paradigm wherein
users do not act merely as clients but can also share their resources and actively participate in
the execution of complex collaborations aiming at building value-added services. Using such a
distributed execution environment, complex interoperations between mobile business partners
can therefore be envisioned as an extension of the classical workflow concept. The execution
of a workflow in a fully decentralized fashion raises of course new issues in terms of work-
flow control and management, security or reliability. For instance, the dynamic nature of the
pervasive environments does not allow permanent assignment of workflow tasks to business
partners. Business partners can in fact be assigned to tasks dynamically based on the resources
available at runtime. In addition, the compliance of the overall sequence of operations with
the pre-defined workflow execution plan is no longer assured without a centralized point of
coordination to manage the workflow execution.

24 2. PERVASIVE WORKFLOW ARCHITECTURE

As opposed to existing workflow management systems, the distributed execution of work-
flows in pervasive environments can not rely on a dedicated infrastructure to assure the workflow
coordination. There are many issues and requirements relevant to the execution of business pro-
cesses in the pervasive setting that will be developed in the course of this report. In this chapter
however, we focus on the workflow coordination and management tasks and suggest an archi-
tecture, denoted pervasive workflow, supporting distributed execution of workflows in pervasive
environments. The pervasive workflow architecture features a fully decentralized control and
supports dynamic assignment of workflow tasks to business partners so that it meets the follow-
ing requirements brought up by the pervasive execution environment:

• Fully decentralized: the management of the workflow execution is distributed amongst
the business partners taking part in a workflow instance in order to cope with the lack of
dedicated infrastructure in the pervasive setting,

• Dynamic assignment of business partners to workflow tasks: the business partners
in charge of executing the workflow can be discovered at runtime based on available
resources.

It should be noted that the architecture design proposed in this thesis is not only suited for
the execution of workflows in the pervasive setting but also offers adequate support for the
execution of cross-organizational workflows over traditional mediums including the Internet.

The remainder of this chapter is organized as follows. In section 2.2 the architecture is
defined in terms of data structures associated with the workflow execution plan and dynamic
information, a protocol for the exchange of the workflow data amongst business partners and
a new function called role discovery dealing with the dynamic assignment of workflow tasks
to business partners. Section 2.3 depicts a detailed application of the conceptual model that
we implemented based on the Web services technologies and an extension of the workflow
description language BPEL. Section 2.4 discusses the related work and section 2.5 gives some
concluding remarks.

2.2 Pervasive workflow architecture

The challenges raised by pervasive execution of workflows mainly result from the lack of a
dedicated infrastructure to perform workflow management tasks. The main objective of our
architecture is to cope with these challenges through distributed mechanisms. We first intro-
duce some preliminary definitions and present the requirements underpinning the design of the
pervasive workflow architecture. The architecture is then outlined in terms of the runtime and
cross-organizational specifications. The architecture lifecycle is finally described.

2.2. PERVASIVE WORKFLOW ARCHITECTURE 25

2.2.1 Problem statement and definitions

We first introduce the requirements underpinning the pervasive workflow architecture design
before defining the pervasive workflow model.

Requirements

The pervasive nature of the execution environment is characterized by the two following as-
sumptions mostly derived from the lack of a dedicated infrastructure to manage the workflow
execution:

• Distributed control: no single business partner is in charge of managing the workflow
execution and the overall control is assured through the collaboration of the business
partners involved in the workflow execution,

• Dynamic task assignment: the business partners that will be taking part in the instance
of a given workflow are not known in advance, they can be selected at runtime.

These two assumptions basically define the requirements our architecture design will have
to meet.

Our second assumption raises the need of a mechanism enabling the discovery of business
partners executing a workflow instance. In this chapter, we focus on the workflow execution
support, the main features of this service discovery mechanism are therefore detailed but its
specification is out of the scope of this work. The solution specified in [TPR06] featuring a
distributed service discovery mechanism can be used to implement this functionality. We define
two modes within the business partner selection process:

• Source discovery: all the business partners are assigned to tasks before the workflow
instantiation. This is a requirement whenever the execution of a workflow has specific
requirements such as reliability requirements as detailed later on in chapter 3.

• Runtime discovery: business partners are selected along with the workflow execution,
this is the default mode.

Workflow model

A pervasive workflow W is represented using a directed graph. In the graphical workflow
model, each vertex represents all workflow actions contiguously performed by a business part-
ner, whereas the edges represent the sequence of workflow steps among business partners. We
distinguish the following elements associated with the graph definition:

26 2. PERVASIVE WORKFLOW ARCHITECTURE

• tni: task activities consisting of actions performed by the business partners involved in the
workflow. Each task activity is locally executed by a given business partner and a vertex
vi represents the set of task activities locally executed by the same business partner. As a
result, each vertex is linked to a single business partner and two neighbor vertices in the
graph are linked to two different business partners. Each task activity is identified by an
index n and the index i of the vertex where it is executed.

• Mi→j: workflow messages used to transfer control and data between business partners.
These are the graph edges and represent the message exchanged between the business
partners linked to two consecutive vertices during the execution of a workflow instance.
i and j are the indices of the vertices linked by this edge. We note (Mi→jp)p∈[1,zi] the
set of workflow messages issued by the business partner assigned to vi to the zi partners
assigned to the vertices (vjp)p∈[1,zi] executed right after vi.

• d: process control activities specifying execution patterns or dependencies between work-
flow tasks. The set of dependencies between tasks within a workflow is denoted δ. In the
scope of this thesis, we consider three types of dependencies or workflow patterns as they
are defined in [Hol95]:

– Sequential execution: abstract interpretation of the directed graph,

– AND-SPLIT/AND-JOIN: branches executed concurrently,

– OR-SPLIT/OR-JOIN: branches based on a conditional choice.

W is therefore a finite set of vi, Mi→j and d. In addition, we also consider the notion of role
derived from usual workflows. A role Ri is defined as a set of attributes required to execute the
task activities associated with a vertex vi. As we stated before, we assume that the execution of a
workflow instance is not a priori assigned to any business partners, the latter can be discovered
at runtime. Our workflow model is therefore an abstract one. We consider that a roleRi consists
of two categories of attributes:

• Functional requirements: these are the functionalities a candidate business partner needs
to implement in order to be able to execute the vertex vi.

• Non functional requirements: these are the other requirements specified for the execu-
tion of the vertex vi including for instance, security credentials or transactional character-
istics as developed later on in this thesis.

In fact, the notion of role is associated with the service discovery mechanism that is indeed
in charge of assigning business partners to vertices through a match-making procedure in such
a way that the functional and non functional properties offered by selected business partners
meet the requirements defined for vertices.

We can for instance model a simple process with two branches of sequential vertices us-
ing the graph depicted in Figure 2.1. The business partner assigned to the vertex v1 sends the

2.2. PERVASIVE WORKFLOW ARCHITECTURE 27

AND-
Split

AND-
Join1v

2v 3v

6v

4v 5v
7v

21→M
1R

2R 3R

4R 5R

6R 7R

Figure 2.1: Process with two branches

workflow messages M1→2 and M1→4 to the business partners assigned to the vertices v2 and v4,
respectively. Two branches are then executed concurrently and the business partner assigned
to the vertex v6 gathers the data resulting from the execution of the concurrent branches. The
business partners involved in that workflow instance of course satisfy the set of roles specified
for the workflow. In this thesis, we only consider simple workflow scenarios with no synchro-
nization between concurrent branches.

The notations we introduced in this section are summarized in the following definition.

Definition 2.1 (Pervasive Workflow). A pervasive workflow W is a finite set defined by:

W = {(vi)i∈[1,n], (Ri)i∈J , (Mi→j)i,j∈K , δ} where:

• vi denotes a vertex which is a set of workflow tasks that are performed by a business
partner from the receipt of workflow data till the transfer of data to the next partner,

• δ is the set of execution dependencies between those vertices,

• (Ri)i∈J is the set of roles defining for each workflow vertex the attributes required for the
vertex execution. J is a subset of [1, n],

• (Mi→j)(i,j)∈K is the set of workflow messages linking two consecutive vertices in the
workflow. K is a subset of [1, n]2.

The instance of the workflow W wherein a set of k < n business partners (bi)i∈[1,k] are
assigned to the vertices (vi)i∈[1,n] is denoted Wd.

Definition 2.2 (Adjacency matrix of a pervasive workflow). The adjacency matrix of a per-
vasive workflow denotes the n× n matrix A := (ai,j)(i,j)∈[1,n]2 defined by:

ai,j :

{
1 if Mi→j ∈ (Mi→j)(i,j)∈K
0 otherwise

28 2. PERVASIVE WORKFLOW ARCHITECTURE

2.2.2 Runtime specifications

The runtime specifications of our architecture are detailed in this section. We first specify the
components required to support the distributed execution of pervasive workflows. The appropri-
ate messaging protocols ensuring the proper deployment and execution of the workflow within
the pervasive workflow management system are then examined.

A distributed workflow management system

The design of a distributed workflow management system that does not rely on any dedi-
cated workflow management system requires that the workflow management task is distributed
amongst all involved business partners. As a result, as we mentioned in chapter 1, a part of the
workflow management infrastructure should be deployed on each business partner. A workflow
engine is therefore pre-installed on business partners that wish to take part in the execution of
a pervasive workflow. The role of local workflow engines consists in assuring the management
of the workflow execution on business partners’ devices. With respect to the workflow model
introduced in the previous section, it basically consists in the following sequence of operations:

• Receipt of all incoming workflow messages,

• Execution of the required task activities associated with the vertex to which the business
partner has been assigned,

• Assignment of business partners to the next vertices to be executed within the workflow,

• Sending workflow messages to the next business partners.

Overall, the complete runtime specification of the pervasive workflow architecture is de-
picted in figure 2.2. Having designed an abstract representation of the workflow whereby busi-
ness partners are not yet assigned to functional tasks, the workflow initiator launches the execu-
tion. He executes a first vertex (1) before discovering in its surrounding environment a business
partner able to perform the next set of workflow tasks (2). Once the discovery phase is com-
plete, workflow data are transferred from the business partner that performed the discovery to
the discovered one (3) and the workflow execution further proceeds with the processing of a set
of tasks (4). The sequence composed of the discovery procedure, the transfer of data and the
execution of a set of tasks is iterated till the final set of tasks.

Due to availability issues introduced within the pervasive setting, we choose by default a
stateless execution model. A single vertex can only be linked to a business partner at a time,
meaning that after the execution of a given vertex, no residual information are stored on a
business partner’s device, they are all transferred to the next one. In the previous section, we
defined the pervasive workflowW which specifies the complete workflow execution pattern. At

2.2. PERVASIVE WORKFLOW ARCHITECTURE 29

Serv ice discovery

D ata
transfer

R equest

2b1b 3v2v1v 3b(1)

(2)

(3)

(4)

(5)

(6)

(7)E xecution of

Figure 2.2: Pervasive workflow runtime specification

the local workflow engine level, we need to specify the subset Wi of W locally executed by the
business partner bi assigned to the vertex vi. The local workflow Wi of a vertex vi consists of
the following set of operations:

• Receipt of the workflow messages that the business partner should wait for before starting
the vertex execution,

• The task activities tni associated with the execution of vi,

• Sending outgoing workflow messages upon completion of the vertex execution,

• The set of process control activities d describing the dependencies between the operations
required to complete the vertex execution.

The complete execution of W thus corresponds to the execution of the different local work-
flows (Wi)[1,n] by the local workflow engines deployed on the devices of the business partners
involved in the workflow instance. We need now to specify the messaging protocols used in the
communications between the different workflow engines to allow a coherent execution of the
set of local workflows (Wi)[1,n] with respect to the complete workflow W .

Messaging protocols within the architecture

The communications between the business partners are managed at the workflow engine level
based on the complete workflow while the management task of the local workflows is performed
by workflow engines as depicted in figure 2.4. The message exchanges between the engines
refers to the workflow messages introduced in the previous section. Each workflow message
should include the data required to enable a coherent workflow execution. The main objective
of the message exchanges within the architecture is first to allow business partners which may
not have any a priori knowledge about a running instance of a workflow to be part of it and

30 2. PERVASIVE WORKFLOW ARCHITECTURE

W iiidW M ap D ata

Figure 2.3: Workflow message format

execute what it is requested upon their assignment to a vertex. Business partners should then be
able to forward operation requests to the appropriate recipients which are next in the workflow
execution. The data carried by a workflow message should therefore enable the following set of
operations:

• Identify the vertex vi of the workflow instance that the business partner is assigned to,

• Retrieve the local workflow Wi associated with the considered vertex to actually know
what to execute,

• Identify the workflow instance to which the received message belongs,

• Retrieve the identity of the business partners already assigned to a vertex when source
discovery is used,

• Retrieve workflow data to process them during the execution of vi.

In order to meet these functional requirements, the workflow message format is defined as
depicted in figure 2.3 and includes the following information:

• W : Complete workflow definition, which is a representation of the directed graph defined
in 2.2.1,

• Wiid: Workflow instance identifier, unique string to identify an instance of a workflow.
The instance identifier can be built for instance using some random numbers and the
workflow initiator identity,

• i: Workflow vertex number i that the message recipient has to execute,

• Map: Mapping table between vertices and business partners’ URIs. This table is updated
with respect to the discovery mode used; it can either be complete at the workflow ini-
tialization phase with source discovery or updated at each workflow vertex with runtime
discovery,

• Data: Workflow data to be processed by business partners.

The workflow message format defined this way meets the functional requirements we iden-
tified:

2.2. PERVASIVE WORKFLOW ARCHITECTURE 31

Workflow engine

Device’s applications

Figure 2.4: Distributed workflow management system

• The vertex index i is included in the message, the vertex vi can thus be retrieved,

• Wi can be derived from W with the knowledge of i,

• The workflow instance is identified with Wiid,

• The association vertices to business partners is stored in Map,

• Workflow data are included in the message and can be processed.

2.2.3 Cross-organizational aspects

The business partners involved in a workflow instance are an extension of the organization they
belong to. They take part in the workflow execution with respect to their available applica-
tions and are also in charge of managing their participation to the workflow instance. We thus
consider that the business partners’ devices consist of two parts:

• A set of mobile applications available on the device,

• An embedded workflow engine.

The mobile applications of each device may be required to be kept private, they should
therefore only be invoked by the device itself. The workflow engine thus acts as a proxy between
these applications and the other devices of the collaboration. In this section, we detail how the
access to mobile applications through the workflow engine is performed.

32 2. PERVASIVE WORKFLOW ARCHITECTURE

Device representation

To cope with the requirements introduced by cross-organizational collaborative workflows, we
adopt the representation of “private-public” processes introduced in [SO01]. As a result, the
embedded workflow engine mainly assumes the two following roles:

• Management of the device internal applications: the local workflow engine invokes
appropriate applications based on functional requirements defined for the vertex to which
the business partner is assigned.

• Coordinating the execution of Wi: Wi is deployed on the local workflow engine.

Thus, two processes corresponding to these roles are deployed on local workflow engines:

• A public process: this is the subset Wi of W specified in section 2.2.2. This process
definition includes the activities the business partner is asked to perform to complete the
execution of the vertex vi to which he is assigned.

• A private process: this is an internal one developed by the business partner or his or-
ganization based on the applications available on his device. The internal process of the
business partner bi assigned to the vertex vi is noted IPi and it is not considered to be
distributed but coordinated in a centralized manner by the local workflow engine.

We consider in fact a hierarchical model with two levels to represent the task activities the
business partners will have to perform during a pervasive workflow instance. The first level
corresponds to the public definition of the workflow provided by the global process definition
W and the subsetsWi derived from it. At this level, the specification of task activities are known
by all involved business partners.

These public task activities can themselves be complex processes involving many execution
steps. The atomic definitions of these public tasks are specified within the private processes
implemented by business partners; this constitutes the second level. The atomic definition of
a given task activity is thus only known by the business partner in charge of executing this
specific task within the workflow. The link between these two levels is done by means of
message exchanges between the public and private processes deployed on a business partner’s
local workflow engine.

Private-public processes link specification

The internal process IPi is itself a workflow and thus consists of a set of the following elements:

2.2. PERVASIVE WORKFLOW ARCHITECTURE 33

Internal
process

Public
process

nit

kit

Device's
applications

iiM →−1

1+→iiM

Results

Results

Figure 2.5: Device representation

• Internal task activities itk specifying the atomic tasks performed by the device,

• Process control activities d specifying the execution schemes of the internal task activities.

This process is centralized, and thus workflow messages are in this case not defined. The
internal process of a business partner implements all the task activities that his device is able to
perform and a public task activity tni can be associated with a subset Tn of the internal process
composed of internal task activities and dependencies. The internal process implemented by a
business partner thus consists of different subsets Tn corresponding to the public task activities
tni that can be performed by the business partner’s device.

The internal communications resulting from this description are depicted in figure 2.5.
Whenever a business partner’s device is asked to perform a task activity tni upon receipt of
a set of workflow messages, the public process forwards the request to the internal process
which executes the subset Tn corresponding to tni. The local applications required to achieve
that subset are thus invoked. The results are transferred to the other business partners by the
public process which issues a set of workflow messages.

34 2. PERVASIVE WORKFLOW ARCHITECTURE

S e rv ic e d is c o v e ry
m e c h a n is m

R e tr ie v e

G e n e ra te

D e p lo y

L o o k u p

R e q u e s t

A c k

U p d a te D a ta
a n d M a p

1−ib ib 1+ib

i

iW

iW

1+iR

E x e c u te
iW

1+ib

iiM →−1

1+→ iiM

Figure 2.6: Architecture sequence diagram

2.2.4 Complete architecture mechanisms

We detailed so far the behavioral characteristics of the elements part of our pervasive workflow
architecture. In this section, we present how these elements work together and the basic mech-
anisms of this architecture. Figure 2.6 presents a sequence diagram depicting the interactions
between three business partners bi−1, bi and bi+1 in charge of executing the vertices vi−1, vi and
vi+1 and the ambient service discovery mechanism. We assume a runtime discovery scenario.
Upon receipt of a workflow message Mi−1→i, the business partner bi first retrieves the index i
and generates the workflow Wi associated with the vertex to which he is assigned. The process
Wi is then dynamically deployed on the business partner’s local workflow engine and instanti-
ated. In the meantime, the business partner makes a request to the service discovery mechanism
in order to select a business partner that matches the requirements set for the vertex vi+1. Once
the execution of Wi is complete and the business partner bi+1 is assigned to vi+1, Data and Map
fields are updated, and bi sends the workflow message Mi→i+1 to bi+1.

There are two specific issues relevant to the AND-SPLIT, AND-JOIN patterns that we
did not mention so far. First, the business partner assigned to a vertex into which concurrent
branches (AND-JOIN) merge is discovered by the business partner assigned to the vertex during
the execution of which these concurrent branches split (AND-SPLIT). Second, we consider that
when concurrent branches merge the update of data that have been concurrently modified dur-
ing the execution of these branches is an issue that is handled by the applications implemented
by business partners.

2.3. WEB SERVICES APPLICATION 35

BPEL
public process

WSDL
public process

BPEL
private process

WSDL
private process

 Specification
 of

Device's
applications

Engine
wrapper

Advertisement

Forwards
the results

nit iit

results

nit
BPEL engine

iiM →−1

1+→ iiM

Figure 2.7: Web services infrastructure deployed on business partners’ devices

2.3 Web services application

Section 2.2 presented the characteristics of the pervasive workflow architecture we designed.
We now present its implementation based on the Web services technologies whose composition
properties are appropriate for distributed workflow applications. Web services technologies can
make use of BPEL [BPE] as workflow description language and WSDL [CCMW01] standard
to enable the composition of services within workflows. We first give an overview of the in-
frastructure components we implemented to enable the execution of pervasive workflows in a
Web services environment. We then analyze the deployment of the architectural mechanisms
which include the specification of the pervasive workflow W , cross-organizational aspects and
data management. Finally, some performance aspects are discussed.

2.3.1 Infrastructure components

In the architecture definition we analyzed the requirements on the workflow management sys-
tem to enable the execution of our pervasive workflow model. Our conclusion was the de-
ployment on each device of workflow engines. When using Web services technologies, these
workflow engines are BPEL enabled and communicate via Web service interfaces. Each device
executing a vertex of a workflow instance will have to support this infrastructure. Figure 2.7
presents the infrastructure components that business partners willing to be involved in perva-
sive workflow instances have to implement. The implementation is composed of the following
modules:

• Engine wrapper: this module implements the pervasive workflow intelligence and is in
charge of the following execution primitives:

– Workflow message processing,

36 2. PERVASIVE WORKFLOW ARCHITECTURE

– Public process generation and deployment,

– Business partner discovery,

– BPEL engine invocation.

The engine wrapper is contacted by other business partners involved in a workflow with
workflow messages and acts as the business partner’s device interface. As such it adver-
tises the business partner’s available task activities.

• BPEL workflow engine: as specified in the architecture design section, two BPEL pro-
cesses are deployed on the BPEL workflow engine. The BPEL public process Wi is
deployed at runtime and specifies the task activities that a business partner has to execute
to complete the execution of a vertex. The BPEL public process is instantiated by the
engine wrapper. The BPEL private process IPi is implemented by the business partner
and specifies the sequence of invocations required to perform the task activities imple-
mented by a business partner. The BPEL private process is instantiated by the BPEL
public process.

• Device’s applications: the set of applications available on a business partner’s device.
They are contacted by the BPEL private process only.

The communications within this infrastructure including workflow messages, process in-
stantiations and application invocations are asynchronous so that workflows that span over hours
or days can be supported. The workflow instance identifier is in this case used to identify the
workflow instance to which asynchronous messages belong. Wiid is especially used within
BPEL processes to initiate correlation sets.

In addition to the infrastructure that business partners should support, the pervasive work-
flow model relies on a service discovery mechanism that enables the assignment of business
partners to workflow vertices. There are many service discovery systems implemented us-
ing Web services technologies [Ca04, DGA04, LH03, Ba05, SLM04] that can be either cen-
tralized or distributed. In our implementation, we worked with two of them, WS-Discovery
[Ba05, TPR06] featuring a distributed solution based on multicast communications and a cen-
tralized one based on the Web service ontology OWL-S [OWL03] (section 3.9 provides details
on this work). The WS-Discovery specification implements a simple string based match-making
procedure between functionalities advertised by service providers and requests issued by clients.
In the OWL-S solution the match-making procedure is more complex and details about semantic
match-making can be found in [DGA04, LH03].

The integration of either solutions into the pervasive workflow infrastructure, consists in the
specification of roles associated with workflow vertices and that of the advertisement of task
activities. In the case of WS-Discovery, this is simply done by means of strings whereas in
the case of OWL-S, OWL-S profiles are used. Both solutions however requires that business
partners that may be involved in a pervasive workflow instance share a common semantics or
ontology to express functional requirements and advertise their functionalities. If the service
discovery mechanism finds a set of business partners that matches the requirements specified

2.3. WEB SERVICES APPLICATION 37

by clients, it outputs the WSDL interfaces exposed by the selected partners so that they can be
later on contacted.

Now that we have a clear idea of the components part of the Web services infrastructure, we
need to specify the deployment of the runtime mechanisms presented in the architecture design.
This includes first the computational representation ofW to enable a business partner to retrieve
Wi expressed in BPEL so that he can execute a given vertex vi.

2.3.2 Specification of W

The specification of W is a crucial point in the infrastructure implementation since it is used by
all involved business partners to determine what to execute. We want to specify pervasive work-
flows using the characteristics of the BPEL language so that BPEL private processes Wi can be
easily derived from W . The solution we designed features a monolithic workflow file speci-
fying pervasive workflows based on an extension BPEL denoted distBPEL. When a business
partner is assigned to a vertex vi, the BPEL public process Wi is extracted from this monolithic
specification and the process is dynamically deployed on the local workflow engine of the busi-
ness partner. In this section we thus describe how a pervasive workflow W is specified before
detailing the deployment process of a BPEL public process Wi derived from W .

distBPEL pervasive workflow representation

The main concepts underpinning the extension of BPEL we define are first presented; the dis-
tBPEL language is then specified. Our goal is to use BPEL constructs to represent a distributed
workflow W specified using a directed graph. We first translate the task activities, process
control activities and workflow messages that are defined in section 2.2 into standard BPEL
activities:

• tni: task activities are associated with <invoke> activities that correspond to the invoca-
tion of the BPEL private process implemented by a business partner.

• Mi→j: workflow messages are also <invoke> activities, the device of the business part-
ner assigned to the vertex vi invokes the device of the business partner assigned to the
next vertex. This is a Web service call.

• δ: the set of dependencies between operations. These are <flow>, <sequence>, <pick>
and <switch> BPEL constructs.

We use the basic concepts of the BPEL language and map them to the directed graph ap-
proach presented in section 2.2 in order to define a workflow description language capable to

38 2. PERVASIVE WORKFLOW ARCHITECTURE

<sequence>
<t11>
<flow>

<sequence>
<M12>
<t12>
<M23>
<t13>
<M36>

</sequence>
<sequence>
<M14>
<t14>
<M45>
<t15>
<M56>

</sequence>
</flow>
<t16>
<M67>
<t17>

</sequence>

Table 2.1: Listing distBPEL associated with the workflow depicted in figure 2.1

<invoke type="WorkflowMessage" source="i" recipient="j"/>

Table 2.2: Listing distBPEL associated with a workflow message

completely specify pervasive workflows W . We call this representation distBPEL standing for
distributed BPEL. The goal of this extension is therefore to represent distributed processes from
a global perspective whereas BPEL is currently limited to depict processes from a centralized
perspective. BPEL control activities are used to represent graph dependencies. For instance,
the <flow> construct represents AND-SPLIT, AND-JOIN workflow patterns, <sequence>
construct represents sequential execution and <switch> construct represents OR-SPLIT, OR-
JOIN workflow patterns. Figure 2.1 can therefore be represented by the XML listing depicted
in table 2.1. We assume that each vertex of this process specifies a single task activity.

The task activity of v1 is first executed; a concurrent execution of two sequence branches is
then performed.

In order to provide a full XML representation of a distBPEL workflow, we now specify the
representation of workflow messages and task activities in distBPEL. Workflow messages and
task activities are standard BPEL <invoke> activities as they correspond to Web service calls.
A workflow message Mi→j has the form depicted in table 2.2. We simply specify the source
and recipient vertices of the workflow message.

2.3. WEB SERVICES APPLICATION 39

<invoke partnerlink="internal" portType="internalportType"
operation="signature" inputVariable="DataIn"
outputVariable="DataOut" vertex="i"/>

Table 2.3: Listing distBPEL associated with a task activity

We define a specific XML schema for the workflow message invocation as it is only relevant
to the engine wrapper component of our infrastructure and will not be part of the BPEL public
process dynamically deployed on the BPEL engine. As we indeed explained above, the process-
ing of workflow messages is done by the engine wrapper. The specification of a task activity
tni is an abstract one based on the common semantics shared between business partners and
we adopt the representation depicted in table 2.3 in case, for example, of a signature operation.
The vertex attribute defines the vertex to which the task activity belongs. This representation
mainly translates the idea of a task executed internally since the partnerLink and portType
associated with the operation signature are not known by other business partners.

Example of process representation in distBPEL

We provide a complex example of a distBPEL workflow specification based on the workflow
depicted in figure 2.8.

Example 2.1. We consider a process with concurrent execution of two branches between activ-
ities and dependencies between the branches. The workflow proposes two parallel branches of
activities executed in sequence, the process control activities <sequence> and <flow> are thus
used. This example is particular due to the workflow message M2→5 which links two vertices
from different branches. To have a coherent and consistent process definition, this workflow
message is specified twice in the distBPEL process definition. The computational representa-
tion of the directed graph has indeed to take into account all dependencies between workflow
messages and task activities. In that specific case, M2→5 and M2→3 are sent concurrently by the
business partner assigned to the vertex v2 while it also has to be received by the business partner
assigned to the vertex v5 before executing the task activity t15. This workflow message appears
as a result twice in the process representation. The distBPEL listing of the workflow is depicted
in table 2.4.

Deployment of the public process Wi

As we stated in our architecture, the execution of a vertex vi described in W is linked to its
local description Wi. Based on the distBPEL workflow representation we depicted in the last
section, we now present an extraction procedure enabling the retrieval of the public business
process Wi associated with a vertex vi with the only knowledge of the vertex index i. In our
infrastructure, the deployment of Wi includes the retrieval of information that are relevant to
the engine wrapper and the deployment of the BPEL public process. The deployment of the

40 2. PERVASIVE WORKFLOW ARCHITECTURE

<sequence>
<invoke partnerlink="internal" portType="internalportType"

operation="11" inputVariable="DataIn1"
outputVariable="DataOut1" vertex="1"/>

<flow>
<sequence>

<invoke type="WorkflowMessage" source="1" recipient="2"/>
<invoke partnerlink="internal" portType="internalportType"

operation="12" inputVariable="DataOut1"
outputVariable="DataOut2" vertex="2"/>

<flow>
<invoke type="WorkflowMessage" source="2" recipient="3"/>
<invoke type="WorkflowMessage" source="2" recipient="5"/>

</flow>
<invoke partnerlink="internal" portType="internalportType"

operation="13" inputVariable="DataOut2"
outputVariable="DataOut3" vertex="3"/>

<invoke type="WorkflowMessage" source="3" recipient="6"/>
</sequence>
<sequence>

<invoke type="WorkflowMessage" source="1" recipient="4"/>
<invoke partnerlink="internal" portType="internalportType"

operation="14" inputVariable="DataOut1"
outputVariable="DataOut4" vertex="4"/>

<flow>
<invoke type="WorkflowMessage" source="4" recipient="5"/>
<invoke type="WorkflowMessage" source="2" recipient="5"/>

</flow>
<invoke partnerlink="internal" portType="internalportType"

operation="15" inputVariable="DataOut4"
outputVariable="DataOut5" vertex="5"/>

<invoke type="WorkflowMessage" source="5" recipient="6"/>
</sequence>
</flow>

<invoke partnerlink="internal" portType="internalportType"
operation="16" inputVariable="DataOut5"
outputVariable="DataOut6" vertex="6"/>

</sequence>

Table 2.4: Listing distBPEL associated with the workflow depicted in figure 2.8

2.3. WEB SERVICES APPLICATION 41

AND
-Split

AND
-Join

AND
-Split

AND
-Join1v 2v 3v 6v4v 5v21→M 41→M 52→M 54→M 32→M 63→M 65→M

Figure 2.8: Complex business process

BPEL public process requires both WSDL and BPEL specifications. The WSDL definitions to
be deployed are the ones from the three following modules: the BPEL public process, the BPEL
private processes and the engine wrapper. These WSDL definitions can be easily retrieved and
we thus focus first on the BPEL public process extraction procedure. The procedure towards
the extraction of Wi consists of three steps and is illustrated considering the vertex v5 in the
workflow depicted in Figure 2.8.

Step 1: Focus on the considered vertex The input of this procedure is the global process de-
scription specified in section 2.3.2. We want to derive from this input the local vision of
vertex v5 and only consider the incoming and outgoing workflow messages as well as the
task activities that have to be performed for vertex v5. The first step of our procedure is
therefore to focus on those specific activities and delete the activities in which vertex v5

is not involved. The other aspect is also to keep the dependencies specified by the process
control activities. According to our procedure, M2→5, M4→5, t15, M5→6 are only kept as
depicted in table 2.5.

Step 2: Simplification of redundant workflow messages. As we stated in the description of
distBPEL, all dependencies between tasks need to be specified in a distBPEL process
description. As a result, in case of dependencies between concurrent branches, tasks
creating these dependencies are specified twice. When focusing on a single vertex, we
only keep the instance of a redundant workflow message that creates dependencies on the
task activities or workflow messages concerning the vertex. In our example, the second
instance of M2→5 introduces dependencies (sequential dependency) with the other tasks
of vertex v5. The first instance is thus erased as depicted in table 2.6.

Step 3: Simplification of process control activities. So far, we restricted the global process
description to the tasks involving a given vertex. This created inconsistencies with the
process control activities. A process control activity indeed specifies an execution scheme
between at least two workflow messages or task activities. Process control activities
which do not verify this property are deleted from the specification. To do so, we per-
form an iterative procedure till all process control activities properly specify an execution
scheme of at least two activities and we get the listing depicted in figure 2.7. There is

42 2. PERVASIVE WORKFLOW ARCHITECTURE

<sequence>
<flow>
<sequence>
<flow>
<invoke type="WorkflowMessage" source="2" recipient="5"/>

</flow>
</sequence>
<sequence>
<flow>

<invoke type="WorkflowMessage" source="4" recipient="5"/>
<invoke type="WorkflowMessage" source="2" recipient="5"/>

</flow>
<invoke partnerlink="internal" portType="internalportType"

operation="15" inputVariable="DataOut4"
outputVariable="DataOut5" vertex="5"/>

<invoke type="WorkflowMessage" source="5" recipient="6"/>
</sequence>
</flow>
</sequence>

Table 2.5: Listing distBPEL after the first step of the extraction procedure

<sequence>
<flow>
<sequence>
<flow>
</flow>
</sequence>
<sequence>
<flow>
<invoke type="WorkflowMessage" source="4" recipient="5"/>
<invoke type="WorkflowMessage" source="2" recipient="5"/>

</flow>
<invoke partnerlink="internal" portType="internalportType"

operation="15" inputVariable="DataOut4"
outputVariable="DataOut5" vertex="5"/>

<invoke type="WorkflowMessage" source="5" recipient="6"/>
</sequence>
</flow>
</sequence>

Table 2.6: Listing distBPEL after the second step of the extraction procedure

2.3. WEB SERVICES APPLICATION 43

<sequence>
<flow>

<invoke type="WorkflowMessage" source="4" recipient="5"/>
<invoke type="WorkflowMessage" source="2" recipient="5"/>

</flow>
<invoke partnerlink="internal" portType="internalportType"

operation="15" inputVariable="DataOut4"
outputVariable="DataOut5" vertex="5"/>

<invoke type="WorkflowMessage" source="5" recipient="6"/>
</flow>
</sequence>

Table 2.7: Listing distBPEL after the third step of the extraction procedure

no example depicting the procedure associated with the OR-SPLIT pattern but of course
in this case once the condition is evaluated there is no need to keep the branch of the
workflow that won’t be executed in the public process, it is however kept in the pervasive
workflow W in order to keep track of the process execution.

The three-step procedure we just presented outputs a distBPEL workflow including incom-
ing and outgoing workflow messages and task activities. In our implementation we have chosen
not to modify an existing BPEL engine to make it compliant with our distBPEL representation
but rather to add an engine wrapper to implement the pervasive workflow intelligence. The
distBPEL representation that is obtained can not be directly deployed on the BPEL engine and
some of the information that it contains are used by the engine wrapper while some others are
used to derive the BPEL public process that will be deployed on the BPEL engine. In the listing
provided in table 2.7, the process Wi would be interpreted as follows.

1. Wait for two workflow messages sent by the business partners assigned to v2 and v4,

2. Execute the operation “15”,

3. Send a workflow message to the business partner assigned to v6.

Step 1 and 3 are only relevant to the engine wrapper that is in charge of workflow message
processing while step 2 is used in order to build the BPEL public process deployed on the BPEL
engine. The generation of the BPEL public process based on the set of tasks that the business
partner is required to perform is only an implementation issue, we thus only describe the global
structure of a standard BPEL public process based on the example depicted in figure 2.9. The
BPEL public process is composed of five parts:

• Process instantiation: data that should be processed during the execution of the vertex
are transferred by the engine wrapper to the public process. This is an asynchronous Web
service call.

44 2. PERVASIVE WORKFLOW ARCHITECTURE

• Variable assignments: data are prepared to match the input formatting of the task activ-
ities that will process them.

• Task activity execution: the task activities implemented by the BPEL private process are
invoked based on the specification defined in Wi. These are asynchronous Web service
calls.

• Result gathering: modified data are sent back by the BPEL private process and variable
assignments take place to match the data formatting expected by the engine wrapper.

• Engine wrapper callback: modified data are transferred to the engine wrapper for pro-
cessing.

The complete deployment of the BPEL public process includes that of WSDL definitions.
In order to ease the deployment process, generic WSDL definitions can be defined using arrays
for the input and output data of the BPEL public process, the WSDL can otherwise be generated
based on the generated BPEL public process. The WSDL definitions of the engine wrapper and
the BPEL private process can be retrieved since these modules are not dynamically deployed.

Actual implementation

The actual implementation work we pursued does not implement the complete distBPEL speci-
fication we presented. In order to ease the workflow specification process since we do not have
a distBPEL workflow modeler available, the pervasive workflow specification we implemented
consists of two pieces of data:

• Control flow: This is the adjacency matrix associated with the workflow graph. This
basically specifies the execution patterns between workflow vertices.

• Vertex public workflows: BPEL code snippets are associated with workflow vertices.
These pieces of BPEL code are almost the complete specifications of vertex public pro-
cesses.

This workflow is processed as follows. The business partner analyses the matrix to de-
termine on the one hand the workflow messages he should wait for before starting the vertex
execution and on the other hand the workflow messages he will have to issue once the vertex
execution is complete. The business partner then retrieves the BPEL code snippet associated
with the vertex he is assigned to.

2.3. WEB SERVICES APPLICATION 45

BPEL Public Process BPEL Private Process

Figure 2.9: Private and public processes (Process graphs from ActiveBPEL engine [AEwe07])

46 2. PERVASIVE WORKFLOW ARCHITECTURE

<pick createInstance="yes" name="TaskActivitySelection">
<onMessage operation="signature192" partnerLink="privatepublicPLT"

portType="privatePT" variable="Data">
<sequence>
<invoke inputVariable="document" operation="signature192"

partnerLink="privatePLT" portType="signPT">
<correlations>
<correlation initiate="yes" pattern="out" set="CS1"/>
</correlations>

</invoke>
...
</sequence>

</onMessage>
<onMessage operation="encryption192" partnerLink="privatepublicPLT"

portType="privatePT" variable="Data">
<sequence>
<invoke inputVariable="data" operation="encryption192"

partnerLink="privatePLT" portType="encryptPT">
<correlations>
<correlation initiate="yes" pattern="out" set="CS1"/>
</correlations>

</invoke>
...
</sequence>

</onMessage>
</pick>

Table 2.8: Listing BPEL associated with the Internal Process specification

2.3.3 Internal process specification in BPEL

We present in this section a template for the internal process specification. As part of our archi-
tecture each business partner has an internal process deployed on his device that manages the
invocation of its embedded applications. This process is defined by the business partner himself
and describes the operations his device is able to perform. It is only invoked inside the device
by the public process. Hence, the internal process definition is organized based on this role and
divided into subsets Tn as defined in section 2.2.3. The process control function <pick> of
BPEL that implements an IF statement based on external events is used to implement this divi-
sion into subsets. In that case the external events are indeed the incoming invocations associated
with task activities that are performed by the public process in order to execute specific opera-
tions. The BPEL code is thus organized in different sections delimited by <onMessage> tags.
Each section corresponds to a specific subset Tn and is activated based on incoming requests
as depicted in table 2.8. Besides, the BPEL code associated with the gathering process of the
results that are sent back by the device’s applications can be common to the different subsets as
depicted in figure 2.9.

2.3. WEB SERVICES APPLICATION 47

Figure 2.10: Data structure

2.3.4 Data management

The management of data is a crucial aspect of a pervasive workflow instance. There are indeed
many different data types ranging from pictures to text documents that can be exchanged and
modified during the execution of a workflow and that should be transparent for the underlying
workflow management system. The data structure defined to meet this requirement is first spec-
ified, we then precise the workflow data lifecycle within the pervasive workflow infrastructure.

Data structure

The data structure we defined is presented in figure 2.10. An abstract data type is defined so that
the workflow infrastructure does not have to implement specific operations to handle different
data types. In the fashion of MIME attachments [NWG96], data types are identified by means
of the “content-type” field associated with the file extension of the data content.

Data lifecycle

Figure 2.11 depicts how workflow data are handled locally by business partners. The engine
wrapper receives workflow data in a serialized form [ASF06] and forwards the ones that should
be processed by the device’s applications to the BPEL engine in the same serialized form so
that the process execution does not depend on any data type. Upon receipt of data, device’s
applications deserialize data based on the the type specified in the “content-type” field, update
data contents and serialize them again before sending back these serialized data to the private

48 2. PERVASIVE WORKFLOW ARCHITECTURE

BPEL
public process

BPEL
private process

BPEL engine

Serialized
data

Engine wrapper

Data
processing

Serialized
data

Serialized
data

Data
processing

Device’s
applications

Serialized
data

Deserialization

Processing

Serialization

Figure 2.11: Workflow data lifecycle

W S -D is c o v e ry

R e tr ie v e

G e n e ra te

D e p lo y B P E L
p u b l ic p ro c e s s

M a tc h -m a k in g

R e q u e s t

A c k

U p d a te D a ta
a n d M a p

1−ib ib 1+ib

i

iW

1+iR

1+ib

In v o k e

In s ta n t ia te B P E L
p u b lic p ro c e s s

(S tr in g)

In v o k e

Figure 2.12: Infrastructure sequence diagram

business process.

2.3.5 Execution scheme of a distributed workflow in the infrastructure

In section 2.2.4 we have provided a sequence diagram of the conceptual architecture, we detail
in this section the mapping of the latter with the concepts we have just presented. Figure 2.12
depicts the sequence diagram associated with the infrastructure we implemented:

• Workflow messages correspond to Web service asynchronous calls,

• The generation of the public process Wi is performed with the procedure of section 2.3.2,

2.3. WEB SERVICES APPLICATION 49

W Workflow control data Small-size data MIME attachments

50 kB ≈Size Size of attachments

SOAP envelope

Figure 2.13: Workflow message size

• The discovery procedure is based on a match-making procedure between the OWL-S
profile or a string specifying the functional and non functional requirements associated
with a vertex and the characteristics advertised by candidate business partners.

Additional details on the engine wrapper design and implementation can be found in ap-
pendix A.

2.3.6 Performance considerations

We detail in this section some elements that are relevant to the performances of the pervasive
workflow architecture. The size of workflow messages is first evaluated, the pros and cons of a
decentralized workflow model vis a vis a centralized one are then discussed.

Workflow message size

Workflow message size is in fact equivalent to that of an email when the SOAP with Attach-
ments [Ba00] specification is implemented to transfer large pieces of data such as pictures or
text documents. Large-size data are indeed handled as MIME attachment [NWG96] within the
SOAP envelope of workflow messages and it is not required in this case to serialize them us-
ing UTF-8 encoding [UTF03] which would lead to a message size explosion. The workflow
message implementation is depicted in figure 2.13.

Centralized vs decentralized

Figure 2.14 depicts the execution of a workflow in both centralized and decentralized settings.
Less messages are of course required to complete the workflow execution in the decentralized
setting than in the centralized one without a centralized point of coordination. The amount of

50 2. PERVASIVE WORKFLOW ARCHITECTURE

Figure 2.14: Centralized vs decentralized workflow systems

data transferred between partners depends on the workflow specification and no general conclu-
sion can be drawn about this parameter.

The centralized coordinator is in fact a performance bottleneck especially if this dedicated
infrastructure is in charge of managing concurrent workflow instances. Therefore this execution
setting does not seem to offer sufficient flexibility to support the execution of state of the art
business processes. The lack of a dedicated infrastructure comes however at the expense of
security and reliability, topics that are developed in the next chapters.

2.4 Related work

The distributed execution of workflows has been long ago foreseen [AM97, AAAM97] as the
enabler of complex collaborations crossing organizational boundaries in order to deliver value-
added applications to business partners. With the pervasive workflow architecture, we propose
to go one step beyond by making it possible to execute cross-organizational workflow-based
applications in environments whose ambient infrastructure may not offer the appropriate sup-
port of execution. The areas of research tackled by the design work presented in this chapter
include:

• Execution of workflows in the pervasive setting and more generally in environments that
do not offer any dedicated infrastructure,

• Web services composition,

• Distributed execution of workflows.

This section is organized based on these three topics.

2.4. RELATED WORK 51

2.4.1 Decentralized workflow architectures

Several pieces of work provide an architecture for distributed execution of workflows. These
architectures are almost all based on the design of a communication protocol that is used to
transfer workflow data between business partners. They however all suffer from a static design
and a lack of flexibility in the business partner selection process which is a critical issue towards
meeting the requirements of pervasive environments.

In [BMR96, BMR94] the concept of information carrier (INCA) is introduced which is
somehow equivalent to the notion of workflow message we introduced and makes the design
of INCA close to that of the pervasive workflow architecture. The INCA system is however
not integrated with any service discovery mechanism which makes it not suited for dynamic
collaborative applications. The distributed architectures specified in [AAA+95, GAC+97] focus
as well on the distributed execution of workflows between identified peers rather than enabling
the execution of dynamic collaborations.

In [NCS03] a decentralized orchestration scheme for Web services is proposed. Starting
from a centralized BPEL process specification, a distributed one is produced and deployed on
already designated Web services. The solution presented in [MWW+98] proposes a similar
approach using state chart based workflow specifications. Self-Serv [BDS05] implements a dis-
tributed orchestration platform for composite Web services. These solutions propose distributed
composition of Web services chosen at the process designing phase. Our solution on the con-
trary introduces an extension of the BPEL language interpreting distributed processes to allow
a runtime discovery of involved business partners.

Agent based solutions [CR04, VBS04, Wan00] are also well adapted to support the exe-
cution of distributed workflows. Mobile agents travel between sites implementing the tasks
required to complete workflow instances. As opposed to the pervasive workflow architecture,
they however rely on pieces of mobile code transferred between business partners and thus
require stringent security solutions to protect both the workflow management system and the
business partners against malicious software.

Finally, the primary goal of the decentralized workflow architecture described in [SWSS03]
is to ensure scalability of workflow executions by means of load balancing mechanisms. The
concepts developed in this work could be well applied to the pervasive workflow architecture to
improve the business partner selection process when concurrent instances of a same workflow
are executed.

2.4.2 Execution of workflows in the pervasive setting

Most of the research in the area of collaborative applications in pervasive environments concerns
the interaction between end-users and an ambient infrastructure. In [RM04] a workflow-based

52 2. PERVASIVE WORKFLOW ARCHITECTURE

architecture to help mobile users of unfamiliar pervasive environments is proposed. Human
interactions within BPEL processes are studied in [CL04] wherein an architecture adapting
to workflow users’ mobility is introduced. These architectures still consider workflow end-
users with a low level of implication within the workflow execution managed by the ambient
infrastructure. In comparison, we propose a self-managing architecture enabling a completely
distributed workflow execution wherein business partners that can of course be mobile workers
can be dynamically selected.

More complex collaborative applications have been recently studied [SGS+04, DSBW+06]
to offer the possibility to dedicated workflow systems to dispatch subsets of workflow instances
to end-users in a distributed fashion. These pieces of work however implement a stateful execu-
tion model that is less flexible than our pervasive workflow architecture and thus still requires
the support of a dedicated infrastructure.

2.4.3 Web services composition

Despite quite extensive work [RS04, MM04] the semantic composition of Web services falls in
one of two approaches: assignment of Web services instances at process design time [ADK+05]
or at runtime [MM03].

Our architecture leverages the runtime approach and the results specified in [MM03] can be
used to increase the flexibility of the pervasive workflow model in the business partner selection
process. The integration of this work in our workflow management system would have to be
pursued within a centralized service discovery mechanism offering semantic functionalities.

2.5 Conclusion

We presented in this chapter an architecture and its implementation based on Web services
technologies to support the execution of workflows in pervasive environments. Our solution
meets the requirements raised in the pervasive setting namely distributed control to cope with
the lack of dedicated workflow management infrastructure and dynamic task assignment to take
into account the dynamic nature of pervasive environments wherein available computational re-
sources constantly change. The implementation of the pervasive workflow architecture we have
pursued within the Service Oriented Computing paradigm identifies the required adaptations so
that existing Web services technologies such as the BPEL workflow description language can
be easily integrated to meet the constraints of our architectural design.

We believe that thanks to the fully decentralized control that is the underpinnings of the ex-
ecution model, the pervasive workflow architecture will foster the development of new business
cases suited to pervasive environments. An actual pervasive workflow example in the eHealth-

2.5. CONCLUSION 53

care field is in fact presented in appendix D as a proof of concept. This prototype that we
implemented features a collaborative business application between doctors, pharmacists, social
workers and hospitals towards providing medical care to a patient whose health condition is
remotely monitored.

Lack of centralized control to perform workflow control and management tasks on the other
hand raises serious concerns about security and fault recovery. These specific issues are studied
in the next chapters in order to build a secure and reliable workflow management system.

54 2. PERVASIVE WORKFLOW ARCHITECTURE

55

Chapter 3

Consistency of Pervasive Workflows

The transaction concept has emerged as the key structuring technique for distributed data and
distributed computations

- Jim Gray -

3.1 Introduction

In chapter 2 we presented the pervasive workflow architecture that we designed in order to
support the execution of worfklows in environments that do not offer any dedicated infrastruc-
ture. Featuring a dynamic assignment of tasks to workflow partners, the pervasive workflow
architecture allows users to initiate workflows in any environment where surrounding users’
resources can be advertised by various means including a service discovery mechanism. Yet,
this architecture does not provide any guarantee on the consistency of the outcome reached by
the process execution. Considering the lack of reliability akin to distributed environments, as-
suring data and transaction consistency of the outcome of workflow instances supported by the
pervasive workflow infrastructure is necessary. The requirements that are relevant to assuring
consistency of the execution of processes on top of the pervasive workflow infrastructure are
mainly twofold:

• Relaxed atomicity: atomicity of the workflow execution can be relaxed as intermediate
results produced by the workflow may be kept despite the failure of one partner. The
specification process of transactional requirements associated with workflows has to be
flexible enough to support coordination scenarios more complex than the coordination

56 3. CONSISTENCY OF PERVASIVE WORKFLOWS

rule “all or nothing” specified for the two phase commit protocol [2PC].

• Dynamic assignment of business partners: the workflow execution is dynamic in that
the workflow partners offering different characteristics can be assigned to tasks depending
on the resources available at runtime. Business partners’ characteristics have thus to be
combined or composed in a way such that the transactional requirements specified for the
workflow are met.

Existing transactional protocols [Elm92, GFJK03] are not adapted to meet these two require-
ments as they do not offer enough flexibility to cope for instance with the runtime assignment
of computational tasks. In addition, existing solutions to combine or compose business part-
ners based on the characteristics they offer appear to be limited when it comes to integrating
at the composition phase the consistency requirements defined by workflow designers. These
solutions indeed only offer means to validate transactional requirements once the workflow
business partners have been selected but no solution to integrate these requirements as part of
the workflow partner selection process.

In this chapter, we propose an adaptive transactional protocol for the pervasive workflow
architecture. The execution of this protocol takes place in two phases. First, business partners
are assigned to tasks using an algorithm whereby workflow partners are selected based on func-
tional and transactional requirements. Given an abstract representation of a process wherein
business partners are not yet assigned to workflow tasks, this algorithm enables the selection
of partners not only according to functional requirements but also to transactional ones. In
our approach, these transactional requirements are defined at the workflow design stage using
the Acceptable Termination States (ATS) model. The resulting workflow instance is compliant
with the defined consistency requirements and its execution can be easily coordinated as our
algorithm also provides coordination rules. The workflow execution further proceeds through a
hierarchical coordination protocol managed by the workflow initiator and controlled using the
coordination rules computed as an outcome of the partner assignment procedure. Besides, it
should be noted that the practical solutions that are presented in this chapter do not only answer
specific requirements introduced by the pervasive workflow model but are sufficiently generic
to be applied to other workflow architectures supporting long-running transactions.

The remainder of the chapter is organized as follows. Section 3.2 introduces preliminary
definitions and the methodology underpinning our approach. We present an example of per-
vasive workflow execution in section 3.3 for the purpose of illustrating our results throughout
the chapter. Section 3.4 introduces a detailed description of the transactional model used to
represent the characteristics offered by business partners. In section 3.5, we provide details on
the termination states of a workflow then section 3.6 describes how transactional requirements
expressed by means of the ATS model are derived from the inherent properties of termina-
tion states. Section 3.7 and section 3.8 present the transaction-aware business partner assign-
ment procedure and the associated coordination protocol, respectively. An implementation of
our theoretical results based on Web services technologies including OWL-S [OWL03] and
BPEL [BPE] is presented in section 3.9. Section 3.10 discusses related work while section 3.11
presents concluding remarks.

3.2. DEFINITIONS AND PROBLEM STATEMENT 57

��
��
��
��

���
���
���

AND
-Split

AND
-Join

vb1

vb2
mb1

mb2

mb3
mb4

vb3

mb 2,1

mb 4,3

Abstract business partner Reports to

�������������
�������������

Figure 3.1: Protocol actors

3.2 Definitions and Problem statement

Defining a transactional protocol for pervasive workflows raises challenges that are mainly due
to the flexibility of their execution and their lack of dedicated infrastructure in charge of man-
agement and control tasks. In this section, we specify the set of requirements in terms of trans-
actional consistency that must be met by the execution of pervasive workflows before outlining
our methodology towards meeting these requirements.

3.2.1 Assuring consistency of pervasive workflows

As a first step towards assuring workflow consistency one has to be able to express transac-
tional requirements as part of the workflow model. We therefore want to offer the possibility
to coordinate some tasks of a pervasive workflow instance in order to assure the consistency of
termination states. Our approach consists in partitioning the specification of a pervasive work-
flow into subsets or zones and identifying some zones called critical zones wherein transactional
requirements defined by designers have to be fulfilled.

Definition 3.1 (Critical zone). We define a critical zone C of a workflow W as a subset of W
composed of contiguous vertices which require to meet some transactional requirements. We
distinguish within C:

• (mk)k∈[1,i] the i vertices whose tasks only modify mobile or volatile data,

• (vk)k∈[1,j] the j vertices whose tasks modify data other than mobile ones, v1 being the first
vertex of C.

The business partner assigned to the vertex vk (resp. mk) is noted bvk (resp. bmk) and the
instance of C is noted Cd.

58 3. CONSISTENCY OF PERVASIVE WORKFLOWS

Assignment
procedure

Available business partners offering
different Transactional Properties

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

1 2

Critical Zone C
1 2

Cd

Instance of C
consistent with TR

��
��
��

Transactional Requirements
defined for C

1 2

Execution of Cd

coordinated w.r.t TR

Figure 3.2: Methodology

We adopt a simple transactional protocol wherein the coordination is managed in a central-
ized manner by bv1 assigned to v1. The role of the coordinator consists in making decisions based
on the transactional requirements defined for the critical zone given the overall state of work-
flow execution so that the critical zone execution can reach a consistent state of termination.
The coordination is assured in a hierarchical way and the business partners (bvk)k∈[1,j] which are
subcoordinators report directly to bv1 whereas the partners bmk report to the business partner bvx
most recently executed 1. For the sake of simplicity, we consider that the set of business partners
{bml , bml+1, ...b

m
p } reporting to the business partner bvx form an abstract partner named bml,p that is

assigned to the abstract vertex ml,p. C therefore denotes a set of n vertices (abstract or not)
C = (ca)a∈[1,n]. This reporting strategy based on the type of business partners is depicted in
figure 3.1.

Within the pervasive workflow model, the workflow execution is performed by business
partners which are assigned to vertices at runtime. Considering the diversity of business part-
ners encountered in the pervasive setting, we assume that these partners might offer various
transactional properties, in addition to different functional capabilities. For instance, a business
partner can have the capability to compensate the effects of a given operation or to re-execute the
operation after failure as possible transactional properties whereas some other business partner
does not have any of these capabilities. It thus becomes necessary to select the business partners
executing a critical zone of a pervasive workflow not only based on functional requirements but
also according to transactional ones. The business partner assignment procedure through which
business partners are assigned to vertices based on functional requirements has to be augmented
to integrate transactional ones. The assignment procedure based on transactional requirements
follows the same strategy as the one based on functional requirements. It is a match-making
procedure between the transactional properties offered by business partners and the transac-
tional requirements associated to each task. The purpose of the business partner assignment
procedure consists in building an instance of C consistent with the transactional requirements
imposed by designers. It is thus required to discover first all the business partners that will be
involved in the execution of a given critical zone prior to the execution in order to verify the
existence of a set of business partners that can be assigned to C i.e. use the source discovery
mode during a critical zone execution. Once the instance of C has been created, the execution
supported by the coordination protocol can start. The coordination process is based on rules

1business partner of type bv
k that is located on the same branch of the workflow as these bm

k business partners
and that has most recently completed its execution.

3.3. MOTIVATING EXAMPLE 59

AND-
Split

AND-
Join

1C

Process
Order

Client
Payment

Order
hardware

Payment
to provider

Shiping
Contact

cheapest
retailer

AND-
Split

AND-
Join

Call for
offer

Retailer 1

Retailer 2

Retailer 3

1v

1m 3v

2v

4v

Figure 3.3: Workflow example: Deal at a fair

deduced from the transactional requirements and that specify the final states of execution or ter-
mination states each business partner has to reach so that the overall process reaches a consistent
termination state. The execution of the coordination protocol therefore consists of two phases:
the first phase that includes the discovery and assignment of business partners to vertices and
the second one with the actual execution.

3.2.2 Methodology

As described in section 3.2.1, a coordination protocol designed to support the execution of
pervasive workflows has to meet two basic requirements. First, business partners have to be
assigned based on a transaction-aware process. Second, a runtime mechanism should process
and assure the coordination of the execution in the face of failure scenarios. In our approach,
the partners part of a critical zone instance Cd are selected according to their transactional prop-
erties by means of a matchmaking procedure. We therefore need to specify first the semantic
associated with the transactional properties offered by business partners. The matchmaking
procedure is indeed based on this semantic. This semantic is also used in order to define a
tool allowing workflow designers to specify their transactional requirements for a given critical
zone. Based on these transactional requirements, business partners can be assigned to workflow
vertices. Finally, once Cd is formed we can proceed towards the second goal by expressing
the coordination rules inherent to Cd and designing the actual coordination protocol in charge
of processing those rules. This methodology basically follows the steps of the transactional
pervasive workflow lifecyle from the instantiation to the execution as depicted in figure 3.2.

3.3 Motivating example

In this section we describe a motivating example that will be used throughout the chapter to
illustrate the design methodology. We consider a workflow executed during a computer fair
where clients, retailers and hardware providers can exchange electronically orders and invoices.
The workflow used in this example is depicted in figure 3.3. Alice would like to buy a new
computer and makes a call for offer to three available retailers. After having received some

60 3. CONSISTENCY OF PERVASIVE WORKFLOWS

offers, she decides to go for the cheapest one and therefore contacts the corresponding retailer
Bob. Bob initiates the critical zone C1 by sending an invoice to Alice and contacting his hard-
ware provider Jack (vertex v1). Alice pays using Bob’s trusted payment platform (vertex v2).
In the meantime Jack receives the order from Bob and sends him an invoice (vertex m1) which
he pays (vertex v3) using Jack’s trusted payment platform. Afterwards, Bob starts to build the
computer and ships it to Alice (vertex v4).

Of course in this example, we need to define transactional requirements as for instance Bob
would like to have the opportunity to cancel his payment to Jack if Alice’s payment is not done.
Likewise, Alice would like to be refunded if Bob does not manage to assemble and ship the
computer. These different scenarios refer to characteristics offered by the business partners or
services assigned to the workflow tasks. For example, the payment platform should be able
to compensate Alice’s payment and Jack’s payment platform should offer the possibility to
cancel an order. Yet, it is no longer necessary for Jack to provide the cancellation option if the
payment platform claims that it is reliable and not prone to transaction errors. In this example
we do not focus on the trust relationship between the different entities and therefore assume the
trustworthiness of each of them yet we are rather interested in the transactional characteristics
offered by each participant.

3.4 Transactional model

In this section, we provide the semantic specifying the transactional properties offered by busi-
ness partners before specifying the consistency evaluation tool associated with this semantic.
The semantic model is based on the “transactional Web service description" defined in [BPG05].

3.4.1 Transactional properties of business partners

In [BPG05] a model specifying semantically the transactional properties of Web services is
presented. This model is based on the classification of computational tasks made in [MRSK92,
SAS99] which considers three different types of transactional properties. A task and by exten-
sion a business partner executing this task can be of type:

• Compensatable: the data modified by the task can be rolled back,

• Retriable: the task is sure to complete successfully after a finite number of tries,

• Pivot: the task is neither compensatable nor retriable.

In the definition of a critical zone, we distinguish two sets of business partners: (bmk)k∈[1,i]

which only modify mobile or volatile data and (bvk)k∈[1,j] which only modify data other than

3.4. TRANSACTIONAL MODEL 61

TS(C1) v1 v2 m1 v3 v4

ts1 completed completed completed completed completed

ts2 completed completed completed completed failed

ts3 completed completed completed compensated failed

ts4 completed compensated completed completed failed

ts5 completed compensated completed compensated failed

ts6 compensated completed completed completed failed

ts7 compensated completed completed compensated failed

ts8 compensated compensated completed completed failed

ts9 compensated compensated completed compensated failed

ts10 completed completed completed failed aborted

ts11 completed compensated completed failed aborted

ts12 completed canceled completed failed aborted

ts13 compensated completed completed failed aborted

ts14 compensated compensated completed failed aborted

ts15 compensated canceled completed failed aborted

ts16 completed completed hfailed aborted aborted

ts17 completed compensated hfailed aborted aborted

ts18 completed canceled hfailed aborted aborted

ts19 compensated completed hfailed aborted aborted

ts20 compensated compensated hfailed aborted aborted

ts21 compensated canceled hfailed aborted aborted

ts22 completed failed completed aborted aborted

ts23 completed failed canceled aborted aborted

ts24 compensated failed completed aborted aborted

ts25 compensated failed canceled aborted aborted

ts26 completed failed completed completed aborted

ts27 completed failed completed compensated aborted

ts28 completed failed completed canceled aborted

ts29 compensated failed completed completed aborted

ts30 compensated failed completed compensated aborted

ts31 compensated failed completed canceled aborted

ts32 failed aborted aborted aborted aborted

Figure 3.4: Termination states of C1

0

1

X

Initial

Active

Completed

CompensatedAborted

Failed CancelledHFailed

Figure 3.5: State model

62 3. CONSISTENCY OF PERVASIVE WORKFLOWS

mobile ones, e.g. remote database, production of an item, etc. Based on this distinction, the
above mentioned transactional model has to be extended. This model describes the modifi-
cation of permanent data and is thus only relevant to database systems whereas the pervasive
setting introduces in addition transactional properties representing business partners’ hardware
characteristics such as battery level, reliability, connectivity, etc. A new transactional property
representing the reliability of a business partner is therefore introduced.

• A business partner is reliable (resp. unreliable) if it is highly unlikely (resp. likely)
that the business partner will fail due to hardware failures (battery level, communication
medium access, etc.).

To properly detail this model, we can map the transactional properties with the state of data
modified by the business partners during the execution of computational tasks. This mapping is
depicted in figure 3.5. Basically, data can be in three different states: initial (0), unknown (x),
completed (1):

• In the state (0), it means either that the vertex execution has not yet started initial, the
execution has been aborted before starting, or the data modified have been compensated
after completion.

• In state (1), it means that the vertex has been properly completed.

• In state (x), it means either that the execution is active, the execution has been stopped,
canceled before completion, the execution has failed or an hardware failure, Hfailed
happened.

These transactional properties allow to define eight types of business partners:

• (Reliable,Retriable): (rl,rt),

• (Reliable,Compensatable): (rl,c),

• (Reliable,Retriable and Compensatable): (rl,rtc),

• (Reliable,Pivot): (rl,p),

• the four others Unreliable: (url).

Besides, we must distinguish within this model:

• Inherent termination states: failed, completed and Hfailed which result from the
normal course of the task execution,

3.4. TRANSACTIONAL MODEL 63

Initial

Active

Completed

CompensatedAborted

Failed Canceled

Initial

Active

Completed

Aborted

Failed Canceled

Initial

Active

Completed

CompensatedAborted

Failed Canceled

Reliable , Retriable/Compensatable Reliable , Retriable Reliable , Compensatable

Initial

Active

Completed

Aborted

Failed Canceled

Reliable , Retriable

Initial

Active

Completed

Aborted

Failed Canceled

Unreliable , Retriable

Hfailed

Initial

Active

Completed

Aborted

Failed Canceled

Reliable , Pivot

Figure 3.6: State diagrams of business partners bvk and bmk

• Forced termination states: compensated, aborted and canceled which result from a
coordination message received during a coordination protocol instance and forcing a task
execution to either stop or rollback.

In the state diagrams of figures 3.5 and 3.6 plain and dashed lines represent the inherent
transitions leading to inherent states and the forced transitions leading to forced states, respec-
tively.

The transactional properties of the business partners are only differentiated by the states
failed, compensated and Hfailed which indeed respectively specify the retriability, compe-
satability and reliability aspects.

Definition 3.2 (Transactional properties). We have for a given partner b:

• failed is not a termination state of b⇔ b is retriable

• compensated is a termination state of b⇔ b is compensatable

• Hfailed is not a termination state of b⇔ b is reliable

From the state transition diagram, we can also derive some simple rules:

(R1) The states failed, completed, Hfailed and canceled can only be reached if the business
partner is in the state active

(R2) The state compensated can only be reached if the partner is in the state completed

(R3) The state aborted can only be reached if the partner is in the state initial

64 3. CONSISTENCY OF PERVASIVE WORKFLOWS

Regarding the distinction made on the nature of vertices within a critical zone, we specify
some requirements for the business partners selected for a critical zone execution.

On the one hand, as the partners (bvk)k∈[1,j] modify sensitive and permanent data, we consider
that they are required to be reliable. There are therefore four types of bvk partners: (rl,rt), (rl,c),
(rl,rtc) and (rl,p).

On the other hand, as the business partners of type bmk only modify mobile and volatile data,
we consider first that they are retriable besides compensatability is not required for volatile data.
Second, we assume that these tasks can be executed by unreliable partners and there are as a
result only two types of bmk partners: (rl,rt) and (url,rt). If one of the bmk partners part of the
abstraction bml,p is unreliable then bml,p is unreliable, otherwise bml,p is reliable. Figure 3.6 depicts
the transition diagram for the six types of transactional partners that can be encountered.

3.4.2 Termination states

The crucial point of the transactional model specifying the transactional properties of business
partners is the analysis of their possible termination states. The ultimate goal is indeed to be
able to define consistent termination states for a critical zone i.e. determining for each partner
executing a critical zone vertex which termination states it is allowed to reach.

Definition 3.3 (Termination state operator). We define the operator termination state ts(x)
which specifies the possible termination states of the element x. This element x can be:

• a partner b and ts(b) ∈ {aborted, canceled, failed,Hfailed, completed, compensated}

• a vertex c and ts(c) ∈ {aborted, canceled, failed, Hfailed, completed, compensated}

• a critical zone composed of n vertices C = (ca)a∈[1,n] and ts(C) = (ts(c1), ts(c2), ...,
ts(cn))

• an instanceCd ofC composed of n partnersCd = (ba)a∈[1,n] and ts(Cd) = (ts(b1), ts(b2),
..., ts(bn))

The operator TS(x) represents the finite set of all possible termination states of the element
x, TS(x) = (tsk(x))k∈[1,j]. We have especially, TS(Cd) ⊆ TS(C) since the set TS(Cd) rep-
resents the actual termination states that can be reached by Cd according to the transactional
properties of the partners assigned to C. We also define for x critical zone or critical zone
instance and a ∈ [1, n]:

• ts(x, ca): the value of ts(ca) in ts(x)

• tscomp(x): the termination state of x such that ∀a ∈ [1, n] ts(x, ca) = completed.

3.5. ANALYSIS OF TS(C) 65

For the remaining of the chapter, C = (ca)a∈[1,n] denotes a critical zone of n vertices and
Cd = (ba)a∈[1,n] an instance of C.

3.4.3 Transactional consistency tool

We use the Acceptable Termination States (ATS) [RS95] model as the consistency evaluation
tool for the critical zone. ATS defines the termination states a critical zone is allowed to reach
so that its execution is deemed consistent.

Definition 3.4 (Acceptable Termination States). An ATS(C) is a subset of TS(C) whose
elements are considered consistent by workflow designers for a specific execution of C. A con-
sistent termination state of C is called an acceptable termination state atsk(C), thusATS(C) =
(atsk(C))k∈[1,i]. A set ATS(C) specifies the transactional requirements defined by designers
associated with a specific execution of C.

ATS(C) and TS(C) can be represented by a table which defines for each termination state
the tuple of termination states reached by each vertex as depicted in figures 3.4 and 3.7. De-
pending on the application different ATS tables can of course be specified by designers for the
same critical zone C, and for the sake of readability we do not introduce in this chapter an index
(as in ATSi(C)) in the notation ATS(C). As mentioned in the definition, the specification of
the set ATS(C) is done at the workflow design phase. ATS(C) is mainly used as a decision
table for a coordination protocol so that Cd can reach an acceptable termination state knowing
the termination state of at least one vertex. The coordination decision, i.e. the termination state
that has to be reached, made given a state of the critical zone execution has to be unique, this
is the main characteristic of a coordination protocol. In order to cope with this requirement,
ATS(C) which is used as input for the coordination decision-making process has thus to verify
some properties that are specified later on.

3.5 Analysis of TS(C)

SinceATS(C) ⊆ TS(C),ATS(C) inherits the characteristics of TS(C) and we logically need
to analyze first TS(C). In this section, we first precise some basic properties of TS(C) derived
from inherent execution rules of a workflow C before examining TS(C) from a coordination
perspective.

3.5.1 Inherent properties of TS(C)

We state here some basic properties relevant to the elements of TS(C) and derived from
the transactional model presented above. TS(C) is the set of all possible termination states

66 3. CONSISTENCY OF PERVASIVE WORKFLOWS

of C based on the termination states model we chose for business partners. Yet, within a
workflow execution, it is not possible to reach all the combinations represented by a n-tuple
(ts(c1), ts(c2), ..., ts(cn)) assuming ∀a ∈ [1, n] ts(ca) ∈ {aborted,canceled,failed,completed,
compensated}. The first restriction is introduced by the sequential aspect of a workflow:

(P1) A vertex becomes activated ⇔ all the vertices executed beforehand according to the
execution plan of C have reached the state completed.

(P1) simply means that to start the execution of a workflow task, it is required to have properly
completed all the workflow vertices required to be executed beforehand.

Second, for the sake of clarity in what follows we consider that only one single vertex can
fail at a time. Our approach can indeed be easily extended to concurrent failure scenarios as
discussed later on in section 3.7.4. The states aborted, compensated and canceled can only be
reached by a vertex in a given tsk(C) if one of the partners assigned to a vertex of C has failed.
This means that the coordination protocol is allowed to force the abortion, the compensation or
the cancellation only in case of failure of a business partner. We get (P2):

(P2) if ∃a, k such that tsk(C, ca) ∈ {compensated, aborted, canceled} ⇒ ∃! l such that
tsk(C, cl) = failed.

3.5.2 Classification within TS(C)

As we explained above the unicity of the coordination decision during the execution of a coor-
dination protocol is a major requirement. We try here to identify the elements of TS(C) that
correspond to different coordination decisions given the same state of a workflow execution.
The goal is to use this classification to determine ATS(C). Using the properties P1 and P2,
a simple analysis of the state transition model reveals that there are two situations whereby a
protocol coordination has different possibilities of coordination given the state of a workflow
task. Assume that the vertex cb has failed:

• the task ca is in the state completed and either it remains in this state or it is compensated

• the task ca is in the state active and either it is canceled or the coordinator lets it reach
the state completed

From these two statements, we define the incompatibility from a coordination perspective
and the flexibility.

Definition 3.5 (Incompatibility from a coordination perspective). Two termination states
tsk(C) and tsl(C) are said incompatible from a coordination perspective⇔ ∃ two vertices ca,
cb such that:

3.5. ANALYSIS OF TS(C) 67

tsk(C, ca) = completed
tsk(C, cb) = tsl(C, cb) = failed
tsl(C, ca) = compensated

Otherwise, tsl(C) and tsk(C) are said compatible from a coordination perspective.

The value in {compensated, completed} reached by a vertex ca in a termination state
tsk(C) whereby tsk(C, cb) = failed is called recovery strategy of ca against cb in tsk(C).

If two termination states are compatible, they correspond to the same recovery strategy
against a given vertex. In fact, we have two cases for the compatibility of two termination states
tsk(C) and tsl(C). Given two vertices ca and cb such that tsk(C, cb) = tsl(C, cb) = failed:

• tsk(C, ca) = tsl(C, ca)

• tsk(C, ca) ∈ {compensated, completed} and tsl(C, ca) ∈ {aborted, canceled}

The second case is only possible to reach if ca and cb are executed concurrently. Intuitively, the
failure of the business partner assigned to cb occurs at different instants in tsk(C) and tsl(C).

Definition 3.6 (Flexibility from a coordination perspective). A vertex ca is flexible against
cb⇔ ∃tsk(C) such that:

{
tsk(C, cb) = failed
tsk(C, ca) = canceled

Such a termination state is said to be flexible to ca against cb. The set of termination states of C
flexible to ca against cb is denoted FTS(ca, cb).

From these definitions, we now study the termination states of C according to the compat-
ibility and flexibility criteria in order to identify the termination states that follow a common
strategy of coordination.

Definition 3.7 (Termination state generator). A termination state of C tsk(C) is called gen-
erator of ca⇔ tsk(C, ca) = failed and for all vertices cb executed before or in parallel with ca,
tsk(C, cb) ∈ {completed, compensated}. The set of termination states of C compatible with
tsk(C) generator of ca is denoted CTS(tsk(C), ca).

The set CTS(tsk(C), ca) specifies all the termination states of C that follow the same re-
covery strategy as tsk(C) against ca.

68 3. CONSISTENCY OF PERVASIVE WORKFLOWS

Definition 3.8 (Coordination strategy). Let tsk(C) ∈ TS(C) be a generator of ca. Coor-
dinating an instance Cd of C in case of the failure of ca consists in choosing the recovery
strategy of each task of C against ca and the za < n vertices (cai

)i∈[1,za] flexible to ca whose
execution is not canceled when ca fails. We call coordination strategy of Cd against ca the set
CS(Cd, tsk(C), (cai

)i∈[1,za], ca) defined as follows.

CS(Cd, tsk(C), (cai
)i∈[1,za], ca) = CTS(tsk(C), ca)−

za⋃
i=1

FTS(cai
, ca)

If the business partner ca assigned to ca is retriable then CS(Cd, tsk(C), (cai
)i∈[1,za], ca) = ∅.

The instance Cd is said to be coordinated according to CS(Cd, tsk(C), (cai
)i∈[1,za], ca) if in

case of the failure of ca, Cd reaches a termination state in CS(Cd, tsk(C), (cai
)i∈[1,za], ca). Of

course, it assumes that the transactional properties of Cd are sufficient to reach tsk(C).

From these definitions, we can deduce a set of properties:

Theorem 3.1. Cd can only be coordinated according to a unique coordination strategy at a
time.

Proof. Two termination states tsk(C) and tsl(C) generator of a vertex ca are incompatible.

Theorem 3.2. Let tsk(C) such that tsk(C, ca) = failed but not generator of ca. If tsk(C) ∈
TS(Cd)⇒ ∃tsl(C) such that:

{
tsl(C) ∈ TS(Cd)
tsl(C) is a generator of ca compatible with tsk(C)

Proof. We can define tsl(C) by:

tsl(C, ca) = failed
tsl(C, ci) = tsk(C, ci) if tsk(C, ci) ∈ {completed, compensated, aborted}
tsl(C, ci) = completed otherwise

which satisfies the required properties.

Given a vertex ca the idea is to classify the elements of TS(C) using the sets of termination
states compatible with the generators of ca. Using this approach, we can identify the different
recovery strategies and the coordination strategies associated with the failure of ca as we decide
which vertices can be canceled.

3.6. FORMING ATS(C) 69

v1 v2 m1 v3 v4

ats1 ts1 completed completed completed completed completed

ats2 ts4 completed compensated completed completed failed

ats3 ts11 completed compensated completed failed aborted

ats4 ts12 completed canceled completed failed aborted

ats5 ts17 completed compensated hfailed aborted aborted

ats6 ts18 completed canceled hfailed aborted aborted

ats7 ts22 completed failed completed aborted aborted

ats8 ts23 completed failed canceled aborted aborted

ats9 ts27 completed failed completed compensated aborted

ats10 ts28 completed failed completed canceled aborted

ats11 ts32 failed aborted aborted aborted aborted

ATS(C1)

v1 b11 yes no yes

v2 b21 no yes yes

b22 yes no yes

m1 b31 yes no no

v3 b41 no yes yes

v4 b51 yes no yes

b52 yes yes yes

Available Business
partners

Retriable Compensatable Reliable

Set 1

v1 b11 yes no yes

v2 b21 no yes yes

b22 yes no yes

m1 b31 yes no no

b32 yes no yes

v3 b41 yes no yes

v4 b51 yes no yes

Reliable

Set 2
Available Business

partners
Retriable Compensatable

Figure 3.7: ATS(C1) and available business partners

3.6 Forming ATS(C)

Defining ATS(C) is deciding at design time the termination states of C that are consistent.
ATS(C) is to be inputted to a coordination protocol in order to provide it with a set of rules
which leads to a unique coordination decision in any cases. According to the definitions and
properties we have introduced above, we can now explicit some rules on ATS(C) so that the
unicity requirement of coordination decisions is respected.

Definition 3.9 (Validity of ATS). Let ca and tsk(C) such that tsk(C, ca) = failed and tsk(C)
belongs to ATS(C). ATS(C) is valid ⇔ ∃! tsl(C) generator of ca compatible with tsk(C)
such that:

CTS(tsl(C), ca)−
za⋃
i=1

FTS(cai
, ca) ⊂ ATS(C)

for a set of vertices (cai
)i∈[1,za] flexible to ca.

The unicity of the termination state generator of a given vertex comes from the incompati-
bility definition and the unicity of the coordination strategy. A validATS(C) therefore contains
for all tsk(C) in which a vertex fails a unique coordination strategy associated with this failure
and the termination states contained in this coordination strategy are compatible with tsk(C).
In figure 3.7, an example of possible ATS is presented for the critical zone C1. It just consists
in selecting the termination states of the table TS(C1) that we consider consistent and respect
the validity rule for the created ATS(C1). For example here the payment of Alice has to be
compensated if Bob fails to deliver the computer as specified in ats2 = ts4.

70 3. CONSISTENCY OF PERVASIVE WORKFLOWS

3.7 Assigning business partners using ATS

In this section, we introduce a new type of business partner assignment procedure: the transaction-
aware partner assignment procedure which aims at assigning n business partners to the n ver-
tices ca in order to create an instance of C acceptable with respect to a valid ATS(C). The
goal of this procedure is to integrate within the instantiation process of workflows a systematic
method ensuring the transactional consistency of the obtained workflow instance. We first de-
fine a validity criteria for the instance Cd of C with respect to ATS(C), the business partner
assignment algorithm is then detailed. In a third time, we specify the coordination strategy as-
sociated with the instance created from our assignment scheme and finally discuss and illustrate
our results.

3.7.1 Acceptability of Cd with respect to ATS(C)

Definition 3.10 (Acceptability of an instance). Cd is an acceptable instance of C with respect
to ATS(C) iff TS(Cd) ⊆ ATS(C).

Now we express the condition TS(Cd) ⊆ ATS(C) in terms of coordination strategies. The
termination state generator of ca present inATS(C) is noted tska(C). The set of vertices whose
execution is not canceled when ca fails is noted (vai

)i∈[1,za].

Theorem 3.3. TS(Cd) ⊆ ATS(C)⇔ ∀a ∈ [1, n] CS(Cd, tska(C), (vai
)i∈[1,za], ca) ⊂ ATS(C)

Proof. straightforward derivation from the theorem 3.2 and the definition 3.9.

An instance Cd of C is therefore an acceptable one⇔ it is coordinated according to a set of n
coordination strategies contained in ATS(C). It should be noted that if failed 6∈ ATS(C, ca)
where ATS(C, ca) represents the acceptable termination states of the task ca in ATS(C) then
CS(Cd, tska(C), (cai

)i∈[1,za], ca) = ∅. From the theorem 3.2 and the definition 3.10, we can
derive the existence condition of an acceptable instance of C with respect to a valid ATS(C).

Theorem 3.4. Let tsk(C) and ca such that tsk(C, ca) = failed and tsk(C) ∈ ATS(C). ∃Cd
acceptable instance of C with respect to ATS(C) such that tsk(C) ∈ TS(Cd) ⇔ ∃! tsl(C)
such that: {

tsl(C) ∈ TS(Cd)
tsl(C) is a generator of ca compatible with tsk(C) in ATS(C)

This theorem only states that an ATS(C) allowing the failure of a given vertex can be used
to coordinate a workflow instance also allowing the failure of the same vertex ⇔ ATS(C)
contains a complete coordination strategy associated to this vertex, i.e. it is valid.

3.7. ASSIGNING BUSINESS PARTNERS USING ATS 71

3.7.2 Transaction-aware assignment procedure

In this section, we present the procedure that is used to assign business partners to vertices
based on transactional requirements. The business partner assignment algorithm uses ATS(C)
as a set of requirements during the partner assignment procedure and thus identifies from a pool
of available partners those whose transactional properties match the transactional requirements
associated with vertices defined in ATS(C). The assignment procedure is an iterative process,
partners are assigned to vertices sequentially. At each step i, the assignment procedure therefore
generates a partial instance of C noted Ci

d. TS(Ci
d) refers to the termination states of C that can

be reached based on the transactional properties of the i partners that are already assigned. Intu-
itively the acceptable termination states refer to the degree of flexibility offered when choosing
the partners with respect to the different coordination strategies complying with ATS(C). This
degree of flexibility is influenced by two parameters:

• The list of acceptable termination states for each workflow vertex. This list can be deter-
mined based on ATS(C). Using this list, the requirements on the transactional properties
of a candidate partner can be derived since this partner can only reach the states defined
in ATS(C) for the considered vertex.

• The assignment process is iterative and therefore, as new partners are assigned to ver-
tices, both TS(Ci

s) and the transactional properties required for the assignment of further
partners are updated. For instance, we are sure to no longer reach the termination states
CTS(tsk(C), ca) allowing the failure of the vertex ca in ATS(C) when we assign a part-
ner of type retriable and reliable to ca. In this specific case, we no longer care about the
states reached by other vertices inCTS(tsk(C), ca) and therefore there is no transactional
requirements introduced for the vertices to which business partners have not already been
assigned.

We therefore need to define first the transactional requirements for the assignment of a
partner after i steps in the assignment procedure.

Extraction of transactional requirements

From the two requirements above, we define for a vertex ca :

• ATS(C, ca): Set of acceptable termination states of ca which is derived from ATS(C)

• DIS(ca, C
i
d): Set of transactional requirements that the partner assigned to ca must meet

based on previous assignments. This set is determined based on the following reasoning:

(DIS1): the partner must be compensatable iff compensated ∈ DIS(ca, C
i
d)

(DIS2): the partner must be retriable iff failed 6∈ DIS(ca, C
i
d)

72 3. CONSISTENCY OF PERVASIVE WORKFLOWS

(DIS3): the partner must be reliable iff Hfailed 6∈ DIS(ca, C
i
d)

Using these two sets, we are able to compute the set MinTP (ba, ca, C
i
d) defined by:

MinTP (ba, ca, C
i
d) = ATS(C, ca) ∩DIS(ca, C

i
d)

which defines the minimal transactional properties a partner ba has at least to comply with in
order to be assigned to the vertex ca at the i+1 assignment step. We simply check the retriability
and compensatability properties for the set MinTP (ba, ca, C

i
d):

• failed 6∈MinTP (ba, ca, C
i
d)⇔ ba has to verify the retriability property

• Hfailed 6∈MinTP (ba, ca, C
i
d)⇔ ba has to verify the reliability property

• compensated ∈MinTP (ba, ca, C
i
d)⇔ ba has to verify the compensatability property

The setATS(C, ca) is easily derived fromATS(C). We need now to computeDIS(ca, C
i
d).

We assume that we are at the i + 1 step of an assignment procedure, i.e. the current partial
instance ofC isCi

d. ComputingDIS(ca, C
i
d) means determining if (DIS1), (DIS2) and (DIS3)

are true. From these three statements we can derive four properties:

1. (DIS1) implies that state compensated can definitely be reached by ca

2. (DIS2) implies that ca can not fail

3. (DIS2) implies that ca can not be canceled

4. (DIS3) implies that ca can not Hfail

The third property is derived from the fact that if a vertex can not be canceled when the
failure of a vertex has occurred, then it has to finish its execution and reach at least the state
completed. In this case, if a business partner can not be canceled then it can not fail, which
is the third property. To verify whether 1., 2., 3. and 4. are true, we present the following
theorems.

Theorem 3.5. The state compensated can definitely be reached by ca iff ∃b ∈ [1, n] − {a}
verifying: {

bb not retriable (resp. reliable) is assigned to cb
∃atsk(C) generator of cb such that atsk(C, ca) = compensated

(3.5b)

Proof. ⇐ : Since the partner bb is not retriable (resp. reliable), it can fail (resp. hfail) and
atsk(C) generator of cb such that atsk(C, ca) = compensated is in TS(Cd).

⇒ : Derived from (P2) and 3.2.

3.7. ASSIGNING BUSINESS PARTNERS USING ATS 73

The two following theorems are proved similarly:

Theorem 3.6. ca can not fail (resp. Hfail) iff ∃b ∈ [1, n]− {a} verifying:{
bb not compensatable is assigned to cb
∃atsk(C) generator of ca such that atsk(C, cb) = compensated

or

(3.6b)
cb is flexible to ca
bb not retriable is assigned to cb
∀atsk(C) such that atsk(C, ca) = failed (resp. Hfailed), atsk(C, cb) 6= canceled

Theorem 3.7. Let ca, cb such that ca is flexible to cb. ca is not canceled when cb fails (resp.
Hfail) iff the following holds:

{
bb not retriable (resp. reliable) is assigned to cb
∀atsk(C) such that atsk(C, cb) = failed (resp. Hfailed), atsk(C, ca) 6= canceled

(3.7b)

Based on the theorems 3.5, 3.6 and 3.7, in order to compute DIS(ca, C
i
d), we have to com-

pare ca with each of the i vertices cb ∈ C−{ca} to which a business partner bb has been already
assigned. Two cases have to be considered: either we assign a business partner to a vertex vk
or to an abstract vertex ml,p. This is an iterative procedure. At the initialization phase in the
first case we have: since no vertex has been yet compared to ca = vk, ba can be of type (rl, p):
DIS(ca, C

i
d) = {failed}.

1. if cb verifies (3.5b)⇒ compensated ∈ DIS(ca, C
i
d)

2. if cb verifies (3.6b)⇒ failed 6∈ DIS(ca, C
i
d)

3. if cb is flexible to ca and verifies (3.7b)⇒ failed 6∈ DIS(ca, C
i
d)

In this case, the verification stops if{
failed 6∈ DIS(ca, C

i
d)

compensated ∈ DIS(ca, C
i
d)

For the vertices of type vk, we indeed only need to check the retriability and compensatability
properties.

In the second case, we have at the initialization phase: since no vertex has been yet compared
to ca = ml,p, ba can be of type (url): DIS(ca, C

i
d) = {Hfailed}.

74 3. CONSISTENCY OF PERVASIVE WORKFLOWS

4. if cb verifies (3.6b)⇒ Hfailed 6∈ DIS(ca, C
i
d)

In that case, the verification stops if Hfailed 6∈ DIS(ca, C
i
d). For the vertices of type ml,p

we only need to check the reliability property.

Finally, when MinTP (ba, ca, C
i
d) is computed, we are able to select the appropriate business

partner to be assigned to a given vertex according to transactional requirements.

Business partner assignment process

Business partners are assigned to each vertex based on an iterative process. Depending on the
transactional requirements and the transactional properties of the business partners available for
each vertex, different scenarios can occur:

(i) Business partners of type (rl, rtc) are available in the case of a vertex vk or business part-
ners of type (rl) are available in the case of a vertex ml,p (i.e. all the business partners of
the abstraction are of type (rl)). It is not necessary to compute any transactional require-
ments as such partners match all transactional requirements.

(ii) A single partner is available for the considered vertex. We need to compute the trans-
actional requirements associated with the vertex and either the transactional properties
offered by this partner are sufficient or there is no solution.

(iii) Business partners of type (rl, rt) and (rl, c) but none of type (rl, rtc) are available for a
vertex vk. We need to compute the transactional requirements associated with the vertex
and we have three cases. First, (rl, rtc) is required and therefore there is no solution.
Second, (rl, rt) (resp. (rl, c)) is required and we assign a business partner of type (rl, rt)
(resp. (rl, c)) to the vertex. Third, there is no requirement.

The assignment procedure is performed by the coordinator c1. Business partners have to be
assigned to all vertices prior to the beginning of the critical zone execution. The first vertex is
de facto assigned to the critical zone initiator. The idea is then to assign first business partners
to the vertices verifying (i) and (ii) since there is no flexibility in the choice of the business
partner. Vertices verifying (iii) are finally analyzed. Based on the transactional requirements
raised by the remaining vertices, we first assign partners to vertices with a non-empty transac-
tional requirements. We then handle the assignment for vertices with an empty transactional
requirements. Note that the transactional requirements of all the vertices to which partners are
not yet assigned are also affected (updated) as a result of the current partner assignment. If no
vertex has transactional requirements then we assign the partners of type (rl, rt) to assure the
completion of the remaining vertices’ execution.

Theorem 3.8. The business partner assignment procedure creates an instance of C that is
acceptable with respect to a valid ATS(C).

3.7. ASSIGNING BUSINESS PARTNERS USING ATS 75

Proof. LetCd be an instance ofC resulting from the service assignment procedure and a service
ba assigned to a task ca in Cd. The definition 3.10 has to be verified and we therefore consider
(A) and (B) using the notations of theorem 3.3:

(A) ∀a ∈ [1, n], failed ∈ ATS(C, ca)⇒ CS(Cd, tska(C), (cai
)i∈[1,za], ca) ⊂ ATS(C)

(B) ∀a ∈ [1, n], failed 6∈ ATS(C, ca)⇒ CS(Cd, tska(C), (cai
)i∈[1,za], ca) ⊂ ATS(C)

(A): We suppose that failed ∈ ATS(C, ca) then we have two possibilities: ba is retriable
and CS(Cd, tska(C), (cai

)i∈[1,za], ca) = ∅ ⊂ ATS(C). ba can fail and with 1, 2 and 3 we get
tska(C) ∈ TS(Cd) and therefore CS(Cd, tska(C), (cai

)k∈[1,za], ca) ⊂ ATS(C) since ATS(C)
is valid.

(B): We suppose that failed 6∈ ATS(C, ca) then failed 6∈ MinTP (ba, ca, C
i
d) and ba is

retriable. Therefore, CS(Cd, tska(C), (cai
)i∈[1,za], ca) = ∅ ⊂ ATS(C).

Finally, we getCS(Cd, tska(C), (cai
)i∈[1,za], ca)⊂ATS(C) andCd is an acceptable instance

of C with respect to ATS(C). In this proof we only consider the failed case for the sake of
simplicity, the hfailed case can be proved similarly.

3.7.3 Actual termination states of Cd

Once all the business partners have been assigned to vertices we can coordinate their execution
so that they respect the defined transactional requirements. In order to do so, we need to know
the actual termination states subset of ATS(C) that can be reached by the defined instance of C.
Having computed TS(Cd), we can deduce the coordination rules associated with the execution
of Cd. This subset is determined using the following theorem.

Theorem 3.9. Let Cd be an acceptable instance of C with respect to ATS(C). We note
(cai

)i∈[1,nr] the set of vertices to which neither a retriable nor a reliable business partner has
been assigned. tskai

(C) is the generator of cai
present in ATS(C) and (vaij

)j∈[1,zai]
denotes

the set of vertices which are not canceled when cai
fails.

TS(Cd) = {tscomp(Cd)}∪
nr⋃
i=1

(CTS(tskai
(C), cai

)−
zai⋃
j=1

FTS(vaij
, cai

))

TS(Cd) is indeed derived from ATS(C) which contains for all vertices at most a single
coordination strategy as specified in definition 3.9. As a result, whenever the failure of a ver-
tex ca is detected, a transactional protocol in charge of coordinating an instance Cd resulting
from our approach reacts as follows. The coordination strategy CS(Cd, tsk(C), (vai

)i∈[1,za], ca)
corresponding to ca is identified and a unique termination state belonging to the coordination
strategy CS(Cd, tsk(C), (vai

)i∈[1,za], ca) can be reached given the current state of the critical
zone execution.

76 3. CONSISTENCY OF PERVASIVE WORKFLOWS

3.7.4 Discussion and performance evaluation

In order to handle the scenarios wherein more than one business partner can fail at a time, one
would need to extend the definition of the termination state generator to take into account the
failure of a set of partners. The compatibility definition would be also defined for termination
states in which exactly the same set of partners fail at the same time so that coordination strate-
gies are defined for possible concurrent failures. In this case, two termination states such that
the set of failures in the first is a subset of the set of failures in the second are not incompatible.
The composition algorithm and the coordination protocol are not affected by this configuration.

The operations that are relevant from the complexity point of view are twofold: the defini-
tion of transactional requirements by means of the acceptable termination states model and the
execution of the transaction-aware business partner assignment procedure.

One can argue that building an ATS table specifying the transactional requirements of a
business process W consists of computing the whole TS(W) table, yet this is not the case.
Building a ATS(C) set in fact only requires for designers to identify the vertices of C that
they allow to fail as part of the process execution and to select the termination state generator
associated with each of those vertices that meet their requirements in terms of failure atomicity.
Once this phase is complete, designers only need to select the vertices whose execution can be
canceled when the former vertices may fail and complete the associated coordination strategy.

The second aspect concerns the complexity of the transaction aware assignment procedure
that we presented in section 3.7.

Theorem 3.10. Let C = (ca)a∈[1,n] a critical zone. The complexity of the transaction-aware
assignment procedure is O(n3).

Proof. We can show that the number of operations necessary to compute the step i of the as-
signment procedure for a vertex ca is bounded by 4×n×i. Computing the step i indeed consists
of verifying the theorems 3.5, 3.6 and 3.7 and determining ATS(C, ca). On the one hand, per-
forming the operations part of theorems 3.5 (one comparison), 3.6 (two comparisons) and 3.7
(one comparison) requires at most 4 comparisons. On the other hand, building ATS(C, ca) re-
quires at most n operations (there is at most n generators in a ATS(C) set). Therefore, we can
derive that the number of operations that needs to be performed in order to compute the n steps

of the assignment procedure for a critical zone composed of n tasks is bounded by 4×n×
n∑
j=1

j

which is equivalent to n3 as n −→∞.

3.7. ASSIGNING BUSINESS PARTNERS USING ATS 77

3.7.5 Examples

Two examples are outlined in this section to illustrate the transaction-aware assignment proce-
dure presented in this chapter.

Example 3.1. We consider the critical zone C1 of figure 3.3. Designers have defined ATS(C1)
of figure 3.7 as the transactional requirements. The set of available business partners for each
vertex of C1 is the set 1 depicted in figure 3.7. The goal is to assign business partners to
vertices so that the instance of C1 is valid with respect to ATS(C1) and we apply the presented
assignment procedure. The critical zone initiator assigned to v1 uses a business partner of type
(rl, rt) matching the transactional requirements.

We now start to assign the business partners of type (rl, rtc) and (rl) for which it is not
necessary to compute any transactional requirements. b52 which is the only available business
partner of type (rl, rtc) is therefore assigned to v4.

We then try to assign business partners to tasks for which there is no choice, and we verify
whether b31 can be assigned to m1. We compute:

MinTP (ba,m1, C
2
1d) = ATS(C1,m1) ∩DIS(m1, C

2
1d) we have:

ATS(C1,m1) = {completed,Hfailed}
DIS(m1, C

2
1d) = {Hfailed}

as b52 and b11 are the only business partners already assigned and the theorems 3.5, 3.6 and 3.7
are not verified. Thus MinTP (ca,m1, C

2
1d) = {Hfailed} and b31 can be assigned to m1 as it

matches the transactional requirements.

We get for v3:
MinTP (ba, v3, C

3
1d) = {failed}

The business partner b41 which is of type (rl, c) verifies the transactional requirements is as-
signed to v3.

Now we compute the transactional requirements of v2 and we get:

MinTP (ba, v2, C
4
1d) = {failed, compensated}

as theorem 3.5 is verified with the business partners b31. The partner b21 can thus be assigned to
v2 as it matches the transactional requirements of the task. Using the created instance of C1 we
get the set TS(C1d) of figure 3.8.

Example 3.2. We consider the critical zone C1 of figure 3.3. Designers have defined ATS(C1)
of figure 3.7 as the transactional requirements. The set of available business partners for each
vertex of C1 is the set 2 depicted in figure 3.7. The critical zone initiator assigned to v1 uses a
business partner of type (rl, rt) matching the transactional requirements.

We now assign the business partners of type (rl, rtc) and (rl) that meet any transactional
requirements. b32 which is of type (rl) is therefore assigned to m1.

78 3. CONSISTENCY OF PERVASIVE WORKFLOWS

TS(C1d) b11 b21 b31 b41 b51

ts1 com pleted com pleted completed completed completed

ts11 com pleted com pensated completed failed aborted
ts12 com pleted canceled completed failed aborted

ts17 com pleted com pensated hfailed aborted aborted

ts18 com pleted canceled hfailed aborted aborted

ts22 com pleted fa iled completed aborted aborted

ts23 com pleted fa iled canceled aborted aborted

ts27 com pleted fa iled completed compensated aborted
ts28 com pleted fa iled completed canceled aborted

Figure 3.8: TS(C1d)

We then try to assign business partners to tasks for which there is no choice, and we verify
whether b41 can be assigned to v3. We compute:

MinTP (ba, v3, C
2
1d) = ATS(C1, v3) ∩DIS(v3, C

2
1d) we have:

ATS(C1, v3) = {completed, failed, compensated}
DIS(v3, C

2
1d) = {failed}

as b11 and b31 are the only business partners already assigned and the theorems 3.5, 3.6 and
3.7 are not verified. Thus MinTP (ca, v3, C

2
1d) = {failed} and b41 can be assigned to v3 as it

matches the transactional requirements.

We verify whether b51 can be assigned to v4. We compute:

MinTP (ba, v4, C
3
1d) = ATS(C1, v4) ∩DIS(v4, C

3
1d) we have:

ATS(C1, v4) = {completed, failed}
DIS(v4, C

3
1d) = {failed}

as b11, b31, b41 are the only business partners already assigned and the theorems 3.5, 3.6 and
3.7 are not verified. Thus MinTP (ca, v3, C

2
1d) = {failed} and b51 can be assigned to v4 as it

matches the transactional requirements.

Now we compute the transactional requirements of v2 and we get:

MinTP (ba, v2, C
4
1d) = {failed}

as theorems 3.5, 3.6 and 3.7 are not verified. We have the choice for the assignment of the
business partner and we choose b22 that is retriable.

3.8. COORDINATION PROTOCOL SPECIFICATION 79

vb1
v
kb

Receives Sends Receives Sends Receives Sends

Completed Compensate Compensate Abort Leave Aborted

Failed Cancel Cancel Aborted Cancel Canceled

Aborted Abort Abort Canceled Ack Alive

Canceled Leave Leave Cancel Abort Ack

Compensated Ping Aborted Leave Ping Completed

Ack Alive Ping

Hfailed Ack Ack

Alive Ping Hfailed

Canceled Alive

Completed Compensated

Failed

Completed

m
kb

Figure 3.9: Notification messages

3.8 Coordination Protocol Specification

Having introduced the method through which an instance of C is obtained by assigning partners
to workflow vertices according to the transactional requirements of C, we turn to the actual co-
ordination of partners during the execution of the critical zone. The protocol that is in charge of
the coordination is specified in terms of the different actors, notification messages and coordina-
tion cases. We finally motivate the chosen solution by comparing it with existing coordination
protocols.

3.8.1 Protocol actors

As mentioned in section 3.2.1 and figure 3.1 we distinguish three main entities within the coor-
dination protocol execution:

• The business partner bv1 = c1: this business partner is the critical zone initiator and is
in charge of performing the business partner assignment procedure and coordinating the
execution of C. The coordination decisions are made using the table TS(Cd) specifying
the subset of termination states belonging toATS(C) that the instance Cd is actually able
to reach.

• Business partners bvk: these business partners modify sensitive data and play the role of
subcoordinators. They report their state of execution and the state of execution of the
business partners bmk to bv1 .

• Business partners bmk : these partners modify volatile data and report to the business
partner bvx most recently executed.

80 3. CONSISTENCY OF PERVASIVE WORKFLOWS

vb1 kb

OfferToParticipate(a,WIid)

Ack(WIid)

Registered(,WIid)
v
xb

Figure 3.10: Business partner registration

Actors exchange messages for the purpose of decision making and forwarding as listed in
figure 3.9. These messages are mostly derived from the state diagram of the transactional model
and the respective role of the partners in the protocol. The flow of notification messages within
the protocol execution and the mechanisms involved in the processing of these notification
messages are stated in the next section.

3.8.2 Coordination scenarios

In this section, we detail the different phases and coordination scenarios that can be encountered
during the execution of the protocol. First, we explain how partners are registered with the
coordination protocol during the partner assignment phase. Then, we analyze the message
flow between the different actors of the protocol in three different scenarios: normal course of
execution, failure of a partner bvk and failure of a partner bmk .

Business partner registration

The first phase of the coordination protocol consists of the discovery and registration of the
business partners that will be involved in the critical zone execution. The discovery process
through which business partners that can be assigned to critical zone vertices are identified is
performed by the business partner c1 = bv1. The transactional requirements extraction procedure,
specified in section 3.7.2 provides the coordinator with a list of suitable business partners that
match the computed transactional requirements. It is then necessary to contact the business
partners of this list in order to receive from of one of them the commitment to execute the
requested vertex. Based on the registration handshake depicted in figure 3.10, the coordinator
bv1 contacts a business partner asking it whether it agrees to commit to execute the operation a of
the workflow whose identifier is Wiid. Once the newly assigned business partner’s coordinator
is known, bv1 sends the information. In the case of business partners bvk this information is
known from the beginning since bv1 is their coordinator whereas for the business partners bmk ,
the information is known when bvx the business partner bvk most recently executed has been
assigned to a vertex.

3.8. COORDINATION PROTOCOL SPECIFICATION 81

vb1
vb2

mb1
mb2

vb3

Activate(W,2,WIid) Activate(W,5,WIid)

Completed(4,WIid,D)

Completed(5,WIid)

Ack(WIid)

Completed(2,WIid)

Leave(WIid)

Figure 3.11: Normal execution

Normal course of execution

Once all involved business partners are known, the critical zone execution can start supported by
the coordination protocol. Business partners are sequentially activated based on the workflow
specification. A sample for normal execution of C is depicted in figure 3.11.

The Activate(W,k,Wiid, D) message is in fact a simple workflow message as defined in
chapter 2, it especially contains the workflow specification W , the requested vertex k to be
executed, the workflow data D modified during the execution and the workflow identifier Wiid.

Within the critical zone execution local acknowledgments Ack(Wiid) are used. Each busi-
ness partner bmk reports its status to the business partner bvx most recently executed and once its
execution is complete it can leave the critical zone execution.

The Completed(k,Wiid, D) message sent by a business partner bmk includes a backup copy
of the volatile data modified by the business partner that can be reused later on for the recovery
procedure in case of failure of a business partner bmk specified in section 3.8.2.

Once in the state completed, business partners of type bmk can leave the coordination as they
will not be asked to compensate their execution. Depending on the transactional requirements
defined for C, business partners bvk may leave the critical zone before the end of the critical
zone execution. A business partner bvk is indeed able to leave the coordination if it reaches the
state completed regardless of possible failures in the sequel of the critical zone execution. The
condition allowing a business partner bvk to leave the coordination is therefore stated as follows.

Theorem 3.11. A partner bvk assigned to a vertex cl can leave the execution of a critical zone
C iff the partner bvk is in the state completed and ∀i ∈ [1, n] such that a business partner
bi not retriable (resp. not reliable) is assigned to the vertex ci, bi is in the state initial and
tsk(C, cl) = completed where tsk(C) is the termination state generator of ci in TS(Cd).

82 3. CONSISTENCY OF PERVASIVE WORKFLOWS

vb1
vb2

mb1
mb2

vb3
Ack

Failed(2,WIid)

Activate(W,2,WIid) Abort(3,WIid)
Abort(5,WIid)

Aborted(3,WIid)

Aborted(4,WIid)Timeout

Figure 3.12: Failure of a business partner bvk

Timeout

vb1
vb2

mb1
mb2

vb3

Compensate(W,2,WIid)

Abort(5,WIid)

HFailed(4,WIid)

Activate(W,2,WIid) Activate(W,4,WIid)

Figure 3.13: Failure of a business partner bmk

Failure of a business partner bvk

This scenario is only possible with business partners of type (rl, p). We can encounter two
situations:

• the failure is total and the business partner is not able to communicate any longer,

• the business partner is still alive and can forward a failure message to bv1.

Figure 3.12 depicts the two cases whereby the total failure is detected using a simple timeout
in Ping/Alive message exchanges. Once the failure has been detected, the coordinator forwards
the coordination decision to all involved business partners. It should be noted here that business
partners of type (rl, rt) can also reach the state failed but the retriability property implies that
they have at their disposal recovery solutions ensuring that the contact is never permanently lost.
Thus, the failure of business partners of type (rl, rt) is transparent to the rest of the coordination
and does not have to be handled.

3.8. COORDINATION PROTOCOL SPECIFICATION 83

Failure of a business partner bmk

The failure of a business partner bmk is detected by its subcoordinator with a timeout. As spec-
ified in the transactional model, we indeed consider that business partners of type bmk can only
fail because of hardware problems and failure of such partners therefore implies a loss of con-
tact with their coordinator. The failure of a partner bmk is reported by its subcoordinator to the
partner bv1. The failure detection and forwarding of the Hfailed message are depicted in figure
3.13.

3.8.3 Coordination decisions and recovery

Having detailed various coordination scenarios that can occur during the execution of a critical
zone, we analyze the possible recovery strategies, in particular the replacement of failed partners
bvk and bmk and how coordination decisions are made upon detection of a failure.

Replacement of failed partners bvk

During the course of the execution new partners can be discovered and assigned to vertices in
order to replace failed ones. In fact two situations can happen:

• the failure of a partner occurs while executing its assigned vertex

• the coordinator loses contact (timeout detection) prior to the activation of the partner

The first situation is specified in the previous section and no backup solution is possible as the
data modified by the failed business partner are in an unknown state. In the second situation, it
is possible on the contrary to assign a new business partner matching the transactional require-
ments to the vertex which has not yet been activated. Once the loss of contact with a business
partner bvk is detected, no coordination decision is yet sent to business partners and the execution
continues. If no business partner is found to be assigned to the vertex when its execution should
be activated, the protocol coordinator considers the business partner it has lost contact with as
failed.

Replacement of failed business partners bmk

In case of failure of a business partner bmk , be it before or after its activation, a recovery pro-
cedure can be executed prior to informing the coordinator of the hardware failure. It is indeed
possible to assign to the vertex a new business partner so that the execution can go on. This is

84 3. CONSISTENCY OF PERVASIVE WORKFLOWS

possible as on the one hand the partners bmk only modify volatile data and on the other hand,
we have a backup copy of the data modified by the partners that are part of the abstract vertex
bml,p. Once the failure is detected, the subcoordinator of the failed partner tries to assign a new
partner to the failed vertex. In this case, only volatile data are being modified, transactional
requirements are not a concern and the assignment procedure can be repeated till a business
partner manages to execute the requested vertex.

Reaching consistent termination states

Once all possible recovery mechanisms have been attempted, a coordination decision is made
by the coordination bv1. The table TS(Cd) is the input to the coordination decisions that are made
throughout the execution of a critical zone. Once the failure of a vertex ca has been detected, the
protocol coordinator reads in TS(Cd) the setCS(Cd, tsk(C), (vai

)i∈[1,za], ca) listing the possible
termination states reachable by Cd whereby ca is failed. There is a unique element of this set
that is reachable by Cd with respect to its current state of execution and bv1 sends the appropriate
messages so that the overall critical zone can reach this consistent termination state. The unicity
of the termination state reachable by Cd given its current state of execution is ensured by the
building process of the Acceptable Terminate State table that is presented in section 3.6.

3.8.4 Discussion

The coordination protocol integrates the semantic description of involved business partners and
relies on an adaptive decision table which is computed during the assignment procedure. The
coordination protocol is flexible as it completely depends on the designers’ choice for the speci-
fication of Acceptable Termination States. This solution therefore offers a full support of relaxed
atomicity constraints for workflow based applications and is also self-adaptable to the business
partners’ characteristics, which is not the case with recent efforts [La05a],[La05b].

The organization of the coordination is based on a simple hierarchical approach as in BTP
[Aa05]. In that respect, the central point of the coordination is the business partner bv1 on which
relies the whole coordination. This is the main weakness of the protocol, as a failure of this
business partner would cause the complete failure of the workflow execution. The role of crit-
ical zone initiator of the coordination is therefore reserved to business partners that are both
reliable and retriable. Nonetheless, this centralized and hierarchical approach facilitates the
management of the coordination process.

In addition to usual coordination phases such as coordination registration, business partner
completion and failure, our protocol offers the possibility to replace participants at runtime
depending on their role within the coordination and the volatility degree of data they have to
modify during the workflow execution. This makes the protocol flexible and adapted to the
pervasive paradigm whereas such recovery procedure is not specified in other transactional

3.9. IMPLEMENTATION 85

protocols.

In the protocol description, we do not specify the data recovery strategy especially for the
compensated states. Different approaches can be integrated with our work to support either
forward error recovery or backward error recovery [LA90]. The choice of the recovery strategy
basically depends on the application and its fault-handling protocol. For instance, a simple
backward error recovery strategy is sufficient for workflows used for payment in the example of
the chapter whereas a forward recovery strategy might be required for a hotel booking system.
Existing mechanisms in this area can therefore be used to augment our transactional protocol to
specify complex fault-handling and compensation scenarios [BPE], [TIRL03, TI05, BCCT05].

3.9 Implementation

In this section an implementation of the work presented in this chapter is described. The overall
system architecture is depicted in figure 3.14. The basic pervasive workflow infrastructure
spans over the business partners taking part in a workflow instance. A local workflow engine
developed on top of BPEL [BPE] is in charge of handling, for each involved business partner,
the workflow management and control tasks which mainly consist of:

• Receiving and forwarding workflow requests,

• Issuing discovery requests,

• Invoking the appropriate local services to execute workflow tasks.

In order to support the execution of pervasive workflows, we implemented in the fashion of the
WS-Coordination initiative [La05c] a transactional stack composed of the following compo-
nents:

• Transactional coordinator: this component is supported by a critical zone initiator. On
the one hand it implements the transaction-aware business partner assignment procedure
as part of the composition manager module and on the other hand it is in charge of assur-
ing the coordinator role of the transactional protocol relying on the set TS(Cd) outcome
of the assignment procedure.

• Transactional submanager: this component is deployed on the other partners and is in
charge of forwarding coordination messages from the local workflow to the appropriate
subcoordinator or coordinator and conversely.

In the remainder of this section, our implementation is described in terms of the implementation
of the transaction-aware partner assignment procedure, the internal communications that take

86 3. CONSISTENCY OF PERVASIVE WORKFLOWS

Transactional Coordinator

Local Workflow

Transactional
service

Composition
Manager

R

R

Transactional Submanager

Local Workflow

Transactional
service

Transactional Submanager

Local Workflow

Transactional
service

)(dCTS

1b ib 1+ib

Figure 3.14: Architecture

place between the elements deployed on a business partner and the structure that the BPEL
processes deployed on each business partner’s workflow engine should be compliant with in
order to support the coordination protocol execution.

3.9.1 OWL-S transactional and functional matchmaker

To implement the assignment procedure presented in this chapter we augmented an existing
functional OWL-S matchmaker [TLJ03] with transactional matchmaking capabilities. In or-
der to achieve our goal, the matchmaking procedure has been split into two phases. First, the
functional matchmaking based on OWL-S semantic matching is performed in order to identify
subsets of the available partners that meet the functional requirements for each workflow ver-
tex. Second, the implementation of the transaction-aware partner assignment procedure is run
against the selected sets of partners in order to build an acceptable instance fulfilling defined
transactional requirements.

The structure of the matchmaker consists of several components whose dependencies are
displayed in figure 3.15. The composition manager implements the matchmaking process and
provides a Java API that can be invoked to start the selection process. It gets as input an
abstract process description specifying the functional requirements for the candidate partners
and a table of acceptable termination states. The registry stores OWL-S profiles of partners that
are available. Those OWL-S profiles have been augmented with the transactional properties
offered by business partners. This has been done by adding to the non-functional information
of the OWL-S profiles a new element called transactionalproperties that specifies three Boolean
attributes that are retriable, reliable and compensatable as depicted in table 3.1.

3.9. IMPLEMENTATION 87

Composition manager

R

Business
partner

manager

Transactional
composer

Functional
matchmaker

Transactional
matchmaker

Registry

R

R R

R

Figure 3.15: OWL-S transactional matchmaker

In the first phase of the selection procedure, the business partner manager is invoked with a
set of OWL-S profiles that specify the functional requirements for each workflow vertex. The
business partner manager gets access to the registry, where all published profiles are available
and to the functional matchmaker which is used to match the available profiles against the func-
tional requirements specified in the workflow. For each workflow vertex, the business partner
manager returns a set of functionally matching profiles along with their transactional properties.
The composition manager then initiates the second phase, passing these sets along with the pro-
cess description, and the table of acceptable termination states to the transactional composer.
The transactional composer starts the transaction-aware business partner assignment procedure
using the transactional matchmaker by classifying first those sets into six groups:

• sets including only business partners of type (url,rt)

• sets including only business partners of type (rl,rt)

• sets including only business partners of type (rl,p)

• sets including only business partners of type (rl,c)

• sets including business partners of types (rl,rt) and (rl,c)

• sets including business partners of type (rl,rtc)

Once those sets are formed the iterative transactional composition process takes place as
specified above based on the table of acceptable termination states. Depending on the set of

88 3. CONSISTENCY OF PERVASIVE WORKFLOWS

<tp:transactionalproperties retriable="true"
reliable="true"
compensatable="true"/>

Table 3.1: Listing OWL-S specifying the possible transactional properties

Transactional
(sub)coordinator

Local Workflow

Transactional service

Failed Completed
Cancel

Compensated
Compensate

Compensate

Cancel

Canceled

Failed Completed

Compensated

Canceled

Activate

AbortCompensate

Cancel

Failed Completed

Compensated

Canceled

Activate

Aborted
Leave

Leave

Figure 3.16: Infrastructure internal communications

available services and the specified acceptable termination states, the algorithm may terminate
without finding a solution.

3.9.2 Internal communication within a business partner infrastructure

In the infrastructure that is deployed on each business partner to implement the transactional
protocol presented in this chapter, the transactional coordinator or subcoordinator plays the role
of interface between the business process and the other business partners when it comes to man-
aging the notification messages exchanged during the execution of the transactional protocol.
Some of these messages received by the transactional coordinator should be forwarded to the
local business process to take appropriate actions while some others are only relevant to the
local transactional (sub)coordinator. The business process may also require to issue a notifi-
cation to its local transactional (sub)coordinator when a failure occurs. As for the notification
messages exchanged between the business partners involved in a workflow, the messages ex-
changed between these three layers are derived from the state model depicted in figure 3.5. The
infrastructure deployed on a given business partner basically consists of three layers:

3.9. IMPLEMENTATION 89

• The transactional service layer representing the business partner’s available operations,

• The local workflow layer corresponding to the local workflow engine,

• The coordination layer implementing the local (sub)coordinator module.

The message exchanges that can take place on a given business partner between these three
layer are depicted in figure 3.16.

• Activate: the activate message is basically issued by the local workflow engine to the
local workflow engine of the next business partner involved in the workflow. In fact this
message instantiates the process execution on the business partner side.

• Compensate, Cancel: the compensate and cancel messages are received at the coordina-
tion layer and forwarded to the local workflow layer that forwards them in a second time
to the transactional service layer to perform to corresponding functions i.e. compensation
or cancellation of an operation.

• Compensated, Canceled, Completed: these messages simply notify that the correspond-
ing events have occurred: compensation, cancellation, or completion of an operation. Is-
sued at the transactional service layer, they are forwarded to the coordination layer in
order to be dispatched to the coordinator associated with the business partner.

• Failed: issued at the transactional service layer, the failed message is forwarded to the co-
ordination layer in order to be dispatched to the coordinator associated with the business
partner. If the operation performed at the transactional service layer is retriable, no failed
message is forwarded to the local workflow layer as we consider that the retry primitive
is inherent to any retriable operation.

• Leave: the leave message is received at the coordination layer and the business partner
can leave the execution of the pervasive workflow execution. The leave message is for-
warded to the local workflow layer if the business partner implements an operation that
is compensatable. In this case, the business process deployed on the local workflow en-
gine can have two possible outcomes, either the results produced by its execution are
compensated or it can leave the process execution.

• Abort, Aborted: the abortion message is received at the coordination layer and acknowl-
edged with an aborted message. Upon receipt of this message, the business simply leaves
the pervasive workflow execution, no message is forwarded to the other layers since the
local workflow has not yet been instantiated.

The other types of notification messages specified in figure 3.9 are only processed by the
local coordinator and are as a result not propagated within the infrastructure deployed on a
business partner.

90 3. CONSISTENCY OF PERVASIVE WORKFLOWS

<receive createInstance="yes" operation="launch" partnerLink="PLT"
portType="PT" variable="Data">

<correlations>
<correlation initiate="yes" pattern="in" set="CS1"/>

</correlations>
</receive>

Table 3.2: Listing BPEL associated with the process instantiation

<eventHandlers>
<onMessage partnerLink="PLT" portType="PT"

operation="Cancel" variable="workflowid">
<correlations>

<correlation set="CS1"/>
</correlations>

<terminate/>
</onMessage>

</eventHandlers>

Table 3.3: Listing BPEL associated with the cancel message

3.9.3 Specification of transactional BPEL processes

In our implementation, the local workflow engine is implemented using BPEL as the workflow
specification language. In order to support the message exchanges identified in section 3.9.2
the structure of BPEL business processes has to match some templates that we describe in
this section. Using the constructs available in the BPEL language, the specification of these
transactional BPEL processes is straightforward.

The business process activation is performed using the usual BPEL process instantiation
construct <receive> described in table 3.2.

The cancel message can be received at any moment during the execution of the process and
is thus handle using the <eventHandlers> construct as depicted in table 3.3. Of course the
BPEL process has to expose a dedicated operation to receive the cancel message.

In order to detect the failure of an operation that is not retriable, the <scope> and the
<faultHandlers> constructs are used as depicted in table 3.4. The failure of the operation is
forwarded to the transactional coordination layer inside the <faultHandlers>.

Finally, if the business process implements an operation that is compensatable, the process
execution can lead to two possible outcomes depending on whether a compensate or a leave
message is received. We use the <pick> construct to express this choice as depicted in table
3.5. It should be noted that in the listings depicted in this section, we use BPEL correlation sets
because the coordination messages are received asynchronously during the process execution
and need to be mapped to the appropriate instance of the workflow to be processed by the

3.9. IMPLEMENTATION 91

<scope name="invokation_try">
<faultHandlers>
<catchAll>

<invoke inputVariable="failedid" name="1"
operation="transacFailed" partnerLink="PLT"
portType="LocalAdminImpl"/>

</catchAll>
</faultHandlers>
<invoke inputVariable="DataInc" outputVariable="DataOut"

name="invoke1" operation="Addition"
partnerLink="PLT" portType="Add">

</invoke>
</scope>

Table 3.4: Listing BPEL associated with an operation that can fail

<pick>
<onMessage partnerLink="PLT" portType="publicPT"

operation="Leave" variable="workflowid">
<correlations>
<correlation set="CS1"/>

</correlations>
<empty/>

</onMessage>
<onMessage partnerLink="PLT" portType="PT"

operation="Compensate" variable="workflowid">
<correlations>

<correlation set="CS1"/>
</correlations>
<invoke inputVariable="serviceid" name="invoke1"

operation="Compensate" partnerLink="PLT" portType="Add"/>
</onMessage>

</pick>

Table 3.5: Listing BPEL associated with the leave message

92 3. CONSISTENCY OF PERVASIVE WORKFLOWS

engine.

These BPEL listings can be combined in the design of transactional BPEL processes de-
pending of course on the transactional properties offered by business partners. Two examples
of transactional BPEL processes are depicted in figure 3.17. For instance, if the task executed
by a business partner is not compensatable, the associated BPEL process only ends with the
completed notification since it is not required to wait for a leave message. Similarly, a task
which is retriable is not surrounded by <scope> constructs as there is no fault to catch.

3.10 Related work

Transactional consistency of distributed systems such as workflows and database systems has
been an active research topic over the last 15 years [GR93] yet it is still an open issue in the area
of distributed processes within the Service Oriented Computing paradigm (SOC) [CKM+03,
Gud04, Lit03, TKM04, SK02]. In this chapter we specified a composition algorithm that makes
it possible to build consistent workflow instances with respect to transactional requirements and
a transactional protocol for the pervasive workflow architecture presented in chapter 2. In this
section, we compare our results with existing solutions in these two research fields.

3.10.1 Integration of transactional requirements into workflows

The execution of distributed processes wherein business partners are not assigned at design
time raises new requirements for transactional systems such as dynamicity, semantic descrip-
tion and relaxed atomicity [SABS02]. Existing transactional models for advanced applications
and workflows [ERS99, Elm92] do not offer sufficient flexibility to integrate these requirements
[AAA+96, GC02] especially when it comes to handling long-running transactions. For instance
in the saga [GMGK+91] model, it is required to identify the subtransactions of an application
to support its execution and of course this is not compatible with composite applications that
are built on the fly. Moreover, the saga model assumes that subtransactions are compensatable
which is not an assumption adapted to current business applications. In contrast, our solution
allows the specification of transactional requirements supporting relaxed atomicity for an ab-
stract workflow specification and the selection of semantically described business partners or
services fulfilling the defined transactional requirements. In addition, we provide the means to
compute a coordination protocol suited to the workflow instance resulting from our business
partner assignment procedure.

In [BPG05, BGP05], the first approach specifying relaxed atomicity requirements for Web
services based workflow applications using the ATS tool and a transactional semantic is pre-
sented. Despite a solid contribution, this work provides only some means to verify the con-
sistency of composite services but it does not take into account transactional requirements at

3.10. RELATED WORK 93

Reliable, Compensatable

Reliable, Retriable

Figure 3.17: Transactional BPEL processes (Process graphs from ActiveBPEL engine)

94 3. CONSISTENCY OF PERVASIVE WORKFLOWS

the composition phase. This work therefore appears to be limited when it comes to the possi-
ble integration into dynamic and distributed business processes. In this approach, transactional
requirements do not play any role in the component business partners selection process which
may result in several attempts to determine a valid workflow instance. As opposed to this work,
our solution provides a systematic procedure enabling the creation of valid workflow instances
by means of a transaction-aware business partner assignment procedure. Transactional Web ser-
vice composition framework are also presented in [FDDB05] and [LZ04] yet these approaches
do not allow to define coordination strategies as fine-grained as the termination state model un-
derpinning our composition algorithm. A hierarchical approach based on nested transactions
[WS92] has been recently presented in [HMR07] to handle concurrency issues in composite
applications. The results of this work can perfectly be used to extend our transaction-aware
composition procedure when it comes to the selection of component business partners that
themselves implement composite applications. This way fine-grained transactional require-
ments spanning over each and every component service part of a workflow instance could be
specified.

3.10.2 Transactional protocols and frameworks

The transactional protocol proposed in this chapter offers suitable means to respond to the
constraints introduced by environments where heterogeneous business partners share resources
in a collaborative manner. Using relaxed atomicity features, the protocol indeed offers the
flexibility for business partners to release their resources as soon as their participation to the
workflow is no longer required. Moreover using a flexible semantic, business partners are
able to advertise their capabilities so that they can assume a role suited to any workflow in
which their resources can be used. Current efforts in the design of transactional framework
supporting the coordination of business processes in a Service Oriented Computing paradigm
[La05a, La05b, ACKM03, Pap03] do not offer such flexibility. They suffer from the lack of
tools for the specification of transactional requirements and their integration into a dynamic
business partners’ selection process. Furthermore, no recovery procedure is specified as part of
the protocol for the replacement of business partners in case of failure.

Fault handling within BPEL processes has also been an active research area over the past
years [FHF05]. In [CCKM05, NK03] a procedure is specified for the placement of fault han-
dlers and event handlers in decentralized executions of BPEL processes. Starting from a cen-
tralized BPEL process wherein transactional requirements are specified, this work presents a
procedure that outputs a decentralized execution of BPEL processes that is equivalent in terms
of fault and exception to the centralized one. Transactional properties of the component BPEL
processes within the decentralized execution are however not integrated in this procedure as
opposed to the approach we have presented in this chapter.

In [MTR02] the WSTx framework is proposed that is a transactional framework support-
ing the execution of composite applications. WSTx implements a transactional protocol that is
based on the transactional properties or transactional attitudes offered by the business partners

3.11. CONCLUSION 95

involved in a collaborative application. In contrast to our work, this framework does not pro-
pose any systematic procedure to automate the composite application building process based on
transactional requirements specified by clients or designers.

3.11 Conclusion

This chapter presents an adaptive transactional protocol to support the execution of pervasive
workflows. Our solution enables first the selection of the business partners taking part in the
workflow execution based on transactional requirements defined at the workflow design phase.
Transactional requirements are defined by designers and serve as an input to define reliable
workflow instance. Using transactional properties offered by selected business partners and the
defined transactional requirements, a decision table is computed as a basis for the coordination
of the execution. The coordination protocol itself offers a framework that supports relaxed
atomicity requirements and takes into account the respective role and characteristics of each
business partner involved in the workflow execution.

Besides, a complete transactional framework based on the Web services technologies has
been implemented as a proof of concept of our theoretical results. On the one hand the business
partner assignment procedure we designed can be used to augment existing composition sys-
tems [ADK+05] as it can be fully integrated in existing functional match-making procedures.
On the other hand, our approach defines adaptive coordination rules that can be deployed on
recent coordination specifications [La05c] in order to increase their flexibility.

96 3. CONSISTENCY OF PERVASIVE WORKFLOWS

97

Chapter 4

Security of Pervasive Workflows

If your enemy is secure at all points, be prepared for him. If he is in superior strength, evade
him. If your opponent is temperamental, seek to irritate him. Pretend to be weak, that he may

grow arrogant. If he is taking his ease, give him no rest. If his forces are united, separate them.
If sovereign and subject are in accord, put division between them. Attack him where he is

unprepared, appear where you are not expected.
- Sun Tzu -

4.1 Introduction

In this thesis so far, we introduced the pervasive workflow concept that is a fully decentralized
workflow management system and a transactional framework providing reliability to pervasive
workflow instances. However, in order to build a complete workflow management system, se-
curity solutions are required. Because of their dynamicity and unusual execution environments,
pervasive workflows raise new security requirements as opposed to usual centralized workflow
management systems. Pervasive workflows can not indeed rely on a trusted centralized coor-
dination mechanism to manage the most basic execution primitives such as message routing
between business partners. As a result, basic security features such as integrity of workflow
execution assuring the compliance of the overall sequence of operations with the pre-defined
workflow execution plan are no longer guaranteed. In addition, tracing back the identity of the
business partners involved in a pervasive workflow instance becomes an issue without a trusted
centralized coordination mechanism selecting workflow participants. Yet, existing decentral-
ized workflow management systems do not incorporate the appropriate mechanisms to meet
the new security requirements in addition to the ones identified in the centralized setting. Even

98 4. SECURITY OF PERVASIVE WORKFLOWS

though some recent research efforts in the field of distributed workflow security have indeed
been focusing on issues related to the management of rights in business partner assignment or
detecting conflicts of interest [ACM01],[CLW05],[KPF01], basic security issues related to the
security of the overall workflow execution such as integrity and evidence of execution have not
yet been addressed.

In this chapter, we present security solutions supporting the secure execution of pervasive
workflows. These solutions do not only answer specific requirements introduced by the perva-
sive workflow model but are sufficiently generic to be applied to other workflow architectures
in the decentralized setting such as [BMR96, BM04]. These mechanisms capitalize on onion
encryption techniques [SGR97] and security policy models in order to assure the integrity of
the distributed execution of workflows, to prevent business partners from being involved in a
workflow instance forged by a malicious peer and to provide business partners’ identity trace-
ability for sensitive workflow instances. The design of the suggested mechanisms is strongly
coupled with the runtime specification of decentralized workflow management systems which
eases their integration into existing distributed workflow management solutions.

The remainder of the chapter is organized as follows. Section 4.2 outlines the security
requirements associated with the pervasive workflow model. In section 4.3 our solution is spec-
ified while in section 4.4 the runtime specification of the secure distributed workflow execution
is presented. Section 4.5 presents the security analysis of the proposed mechanisms. In section
4.6 we present how the security solutions we propose in this chapter can be integrated within
the transactional protocol we specified in chapter 3. Finally section 4.8 discusses related work
and section 4.9 presents the conclusion.

4.2 Security requirements

As opposed to centralized workflow management systems the distributed execution of work-
flows raises security constraints due to the lack of a dedicated infrastructure assuring the man-
agement and control of the workflow execution. As a result, security features such as com-
pliance of the workflow execution with the pre-defined plan are no longer assured. We group
the security requirements we identified for the pervasive workflow system into three main cate-
gories: authorization, proofs of execution and data protection.

4.2.1 Authorization

The main security requirement for a workflow management system is to ensure that only autho-
rized business partners are assigned to workflow tasks during an instance. In the decentralized
setting, the assignment of workflow tasks is managed by partners themselves relying on a ser-
vice discovery mechanism. In this case, the business partner assignment procedure enforces

4.2. SECURITY REQUIREMENTS 99

1+iSK

iSK

1−iSK

iv1−iv 1+iv
1−ipolPK

ipolPK

iSK
1+ipolPK

1−iSK

1+iSK

ipolPK

iSK
1+ipo lPK

1+iSK

1+ipolPK
1+iSK

1−iSK

iSK
1−iSK

1−iSK iSK 1+iSK

(Od)

(O p)

Retrieve from (Od):

Figure 4.1: Key management

a matchmaking procedure whereby business partners’ security credentials are matched against
security requirements for tasks.

4.2.2 Execution proofs and traceability

A decentralized workflow management system does not offer any guarantee regarding the com-
pliance of actual execution of workflow tasks with the pre-defined execution plan. Without any
trusted coordinator to refer to, the business partner bi assigned to the vertex vi needs to be able
to verify that the vertices scheduled to be executed beforehand were actually executed according
to the workflow plan. This is a crucial requirement to prevent any malicious peer from forging
a workflow instance.

In our workflow execution model, candidate business partners are selected at runtime based
on their compliance with a security policy. Partners’ involvement in a business process can thus
remain anonymous as their identity is not assessed in the partner selection process. In some
critical business scenarios however, disclosing partners’ identity may be required so that in
case of dispute or conflict on the outcome of a sensitive task the stakeholders can be identified.
In this case, the revocation of business partners’ anonymity should only be feasible for some
authorized party in charge of arbitrating conflicts, preserving the anonymity of identity traces is
thus necessary.

4.2.3 Workflow data protection

In the case of decentralized workflow execution, the set of workflow data denotedD = (dk)k∈[1,j]

is transferred from one business partner to another. This raises major requirements for workflow
data security in terms of integrity, confidentiality and access control as follows:

• Data confidentiality: for each vertex vi, the business partner bi assigned to vi should only
be authorized to read a subset Dr

i of D

100 4. SECURITY OF PERVASIVE WORKFLOWS

Key Server

ipol

2b1b ib

ipolSK
ipolSK

ipolSK

ipolPKEncryption key :

Group manager

ipol

2b1b ib

1b
poli

SK

ipolPKEncryption key :

2b
pol i

SK
i

i

b
polSK

Key sharing Group cryptography

Trusted Authority

kξ

2b1b ib

ipolPKEncryption key :

Policy-based cryptography

Trusted Authority

lξ

2b1b ib

),(
lki

SKSKgSK pol ξξ=

lkipol ξξ ∧=

l
SK ξ

l
SK ξ l

SK ξ
k

SKξ
k

SKξ k
SKξ

),(lkpol fPK
i

ξξ=

Figure 4.2: Policy private key distribution schemes

• Data integrity: for each vertex vi, the business partner bi assigned to vi should only be
authorized to modify a subset Dw

i of Dr
i

• Access control: the subsets Dr
i and Dw

i associated with each vertex vi should be deter-
mined based on the security policy of the workflow

The solution we developed towards meeting these security requirements is presented in the
next section.

4.3 The solution

In this section the mechanisms we designed in order to meet the security requirements we iden-
tified for the pervasive workflow management system are specified. The solution is mainly
described in terms of the key management, data protection, execution proofs and communica-
tion protocol.

4.3. THE SOLUTION 101

AND
-Split

AND
-Join1v

2v 3v

6v

4v 5v
7v

wDd 11 ∈

rDd 21 ∈ wDd 31 ∈
wDd 61 ∈

rDd 51 ∈

Figure 4.3: Workflow example

4.3.1 Key management

Two types of key pairs are introduced in our approach. Each vertex vi is first associated with
a policy poli defining the set of credentials a candidate partner needs to satisfy in order to be
assigned to vi. The policy poli is mapped to a key pair (PKpoli , SKpoli) where SKpoli is the
policy private key and PKpoli the policy public key. Thus satisfying the policy poli means
knowing the private key SKpoli , the inverse may however not be true depending on the policy
private key distribution scheme as explained later on in section 4.5. The policy private key
SKpoli can indeed be distributed by different means amongst which we distinguish three main
types depicted in figure 4.2:

• Key sharing: a policy poli is associated with a single policy private key that is shared
amongst principals satisfying poli. A simple key server KSpoli associated with poli can
be used to distribute the policy private key SKpoli based on the compliance of business
partners with the policy poli. In this case, the business partners satisfying poli thus share
the same policy private key SKpoli associated with the encryption key PKpoli .

• Policy-based cryptography: a policy poli is expressed in a conjunctive-disjunctive form
specifying the combinations of credentials ξk a principal is required to satisfy to be com-
pliant with the policy:

poli = ∧mi=1[∨
mi
j=1[∧

mi,j

k=1ξi,j,k]]

where ∧ represents a conjunction (AND) and ∨ a disjunction (OR). A cryptographic
scheme [BM05] is used to map credentials to keys denoted credential keys SKξk that can
be combined to encrypt, decrypt and sign messages based on a given policy. Some trusted
authorities TA are in charge of distributing credential keys to requesters when the latter
satisfies some assertions (that can be expressed in a conjunctive-disjunctive form e.g.
(jobtittle=director)∧(company=xcorp)). This scheme provides direct mapping between
a policy and some key material and thus eases policy management as opposed to key
sharing. No anonymity-preserving traceability solution is however offered as principals
satisfying a given assertion may possess the same credential key.

102 4. SECURITY OF PERVASIVE WORKFLOWS

• Group cryptography: a policy poli is mapped to a group structure in which a group
manager distributes different policy private keys to group members satisfying the policy
poli. A single encryption key PKpoli is used to communicate with group members who
however use their personal private key to decrypt and sign messages. This mechanism
offers an identity traceability feature as only the group manager can retrieve the identity
of a group member using a signature issued by the latter [ACJT00]. The policy private
key of the business partner bk is denoted SKbk

poli
. We note GMpoli the group manager of

the group whose members satisfy the policy poli. The management of policy key pairs
is as complex as for the key server solution since a group structure is required for each
specified policy.

Second, we introduce vertex key pairs (PKi, SKi)i∈[1,n] to protect the access to workflow
data. We suggest a key distribution scheme wherein a business partner bi whose identity is a
priori unknown retrieves the vertex private key SKi upon his assignment to the vertex vi. Onion
encryption techniques with policy public keys PKpoli are used to distribute vertex private keys.
Furthermore, execution proofs have to be issued along with the workflow execution in order
to ensure the compliance of the execution with the pre-defined plan. To that effect, we also
leverage onion encryption techniques in order to build an onion structure with vertex private
keys to assure the integrity of the workflow execution. The suggested key distribution scheme
(Od) and the execution proof mechanism (Op) are depicted in figure 4.1 and specified later on
in the paper.

In the sequel of the chapter,M denotes the message space, C the ciphertext space andK the
key space. Using a key K ∈ K on a message m ∈ M is noted {m}K (e.g. encryption with a
public key, signature with a private key) and h, h1, h2, h3, h4 denote one-way hash functions.

4.3.2 Data protection

The role of a business partner bi assigned to a vertex vi consists in processing the workflow data
that are granted read-only and read-write access during the execution of vi. We define a specific
structure depicted in figure 4.4 called data block to protect workflow data accordingly. Each
data block consists of two fields:

• the actual data: dk

• a signature: signa(dk) = {h(dk)}SKa

We note Ba
k = (dk, signa(dk)) the data block including the data segment dk that has last

been modified during the execution of va. The data block Ba
k is also associated with a set of

signatures denoted Ha
k that is computed by ba assigned to va.

Ha
k =

{
{h({Ba

k}PKl
)}SKa |l ∈ Ra

k

}

4.3. THE SOLUTION 103

aPK
kd

)(1 kdh

kd

)(1 kdh

aSK

iPK

iSK kd

)(1 kdh

aSK

Figure 4.4: Access to workflow data

where Ra
k is the set defined as follows. Let l ∈ [1, n].

l ∈ Ra
k ⇔ l satisfies

dk ∈ Dr

l

vl is executed after va
vl is not executed after vp(a,l,k)

where vp(a,l,k)
denotes the first vertex executed after va such that dk ∈ Dw

p(a,l,k)
and that is located

on the same branch of the workflow as va and vl. For instance, consider the example of figure
4.3 whereby d1 is in Dw

1 , Dr
2, Dw

3 , Dr
5 and Dw

6 , v(1,2,1) = v3, R1
1 = {2, 3, 5, 6} and R3

1 = {6}.

When the business partner bi receives the data block Ba
k three cases can occur:

• bi is granted read access on dk: Ba
k is encrypted with PKi and bi decrypts the structure

using SKi in order to get access to dk and signa(dk). bi is then able to verify the integrity
of dk using PKa, i.e. that dk was last modified after the execution of va.

• bi is granted write access on dk: bi can (in addition to what is possible in the first case
since write access implies read access) update the value of dk and compute signi(dk)
yielding a new data block Bi

k and a new set H i
k.

• bi has no right on dk: bi receivesBa
k encrypted with PKm (in this case vm is executed after

vi) and he can only verify the integrity of {Ba
k}PKm by matching h({Ba

k}PKm) against
the value contained in Ha

k .

The integrity and confidentiality of data access thus relies on the fact that the private key
SKi is made available to bi only, prior to the execution of vi. The corresponding distribution
mechanism is presented in the next section.

4.3.3 Vertex private key distribution mechanism

The objective of the vertex private key distribution mechanism is to ensure that only the business
partner bi assigned to vi at runtime and whose identity is a priori unknown can access the vertex

104 4. SECURITY OF PERVASIVE WORKFLOWS

v i−1 v i v i1

Figure 4.5: SEQUENCE pattern

private key SKi. To that effect, the workflow structure in terms of execution patterns is mapped
with an onion structure Od so that at each step of the execution a layer of Od is peeled off using
SKpoli and SKi is revealed.

Definition 4.1 (Onion Structure). Let X a set. An onion O is a multilayered structure com-
posed of a set of n subsets of X (lk)k∈[1,n], such that ∀k ∈ [1, n] lk ⊆ lk+1. The elements of
(lk)k∈[1,n] are called layers of O, in particular, l1 and ln are the lowest and upper layers of O,
respectively. We note lp(O) the layer p of an onion O.

Definition 4.2 (Onion wrapping). Let A = (ak)k∈[1,j] and B = (bk)k∈[1,l] two onion structures,
A is said to be wrapped by B, when ∃k ∈ [1, l] such that aj ⊆ bk.

We first present how vertex private keys are distributed to partners with respect to various
workflow patterns including SEQUENCE, AND-SPLIT, AND-JOIN, OR-SPLIT and OR-JOIN
before describing how those are combined in the execution of a complete workflow.

SEQUENCE workflow pattern

Vertex private keys are sequentially distributed to business partners. In this case, an onion
structure assuring the distribution of vertex private keys is sequentially peeled off by business
partners. Considering a sequence of n vertices (vi)i∈[1,n], the business partner b1 assigned to the
vertex v1 initiates the workflow execution with the onion structure O defined as follows.

O :

l1 = {SKn}
li =

{
{li−1}PKpoln−i+2

, SKn−i+1

}
for i ∈ [2, n]

ln+1 =
{
{ln}PKpol1

}

The onion layers are iteratively wrapped to match the SEQUENCE pattern and the workflow
execution proceeds as depicted in figure 4.5. For i ∈ [2, n− 1] the business partner bi assigned
to the vertex vi receives {ln−i+1(O)}PKpoli

, peels one layer off by decrypting it using SKpoli ,
reads ln−i+1(O) to retrieve SKi and sends {ln−i(O)}PKpoli+1

to bi+1.

4.3. THE SOLUTION 105

AND-
SPLITv1

v2

v i

vn
{SK 1,O 2, ... ,O n}

Figure 4.6: AND-SPLIT pattern

AND-SPLIT workflow pattern

In the case of the AND-SPLIT pattern, the business partners (bi)i∈[2,n] assigned to the vertices
(vi)i∈[2,n] are contacted concurrently by b1 assigned to the vertex v1. In this case, n − 1 vertex
private keys should be delivered to (bi)i∈[2,n] and the upper layer of the onion O1 available to b1
therefore wraps SK1 and n − 1 onions (Oi)i∈[2,n] to be sent to (bi)i∈[2,n] as depicted in figure
4.6.

O1 = {SK1, O2, O3, .., On}
Oi =

{
{SKi}PKpoli

}
for i ∈ [2, n]

AND-JOIN workflow pattern

Since there is a single workflow initiator, the AND-JOIN pattern is preceded in the workflow
by an AND-SPLIT pattern. In this case, the vertex vn is executed by the business partner bn if
and only if the latter receives n − 1 messages as depicted in figure 4.7. In order to meet this
requirement, the vertex private key SKn is divided into n− 1 parts and defined by

SKn = SKn1 ⊕ SKn2 ⊕ ...⊕ SKnn−1

The key SKni
is simply included in the onion Oi sent by bi to bn. Besides, in order to avoid

redundancy, the onion structure λ associated with the sequel of the workflow execution right
after vn is only included in one of the onions received by bn. Each (bi)i∈[1,n−1] therefore sends
the onion Oi defined as follows to bn.

O1 = {{λ, SKn1}PKpoln
}

Oi =
{
{SKni

}PKpoln

}
for i ∈ [2, n− 1]

OR-SPLIT workflow pattern

This is an exclusive choice and the business partner b1 assigned to the vertex v1 only needs to
send one message.

106 4. SECURITY OF PERVASIVE WORKFLOWS

AND-
JOIN

v1

v i

vn−1

vn
On−1={{SK nn−1

}poln}

Oi={{SK ni
}pol n}

O1={{ , SK n1
}pol n }

{ , SK n }

Figure 4.7: AND-JOIN pattern

O1 = {SK1, O2, O3, .., On}
Oi =

{
{SKi}PKpoli

}
for i ∈ [2, n]

The onion O1 is available to the business partner b1. This is the same structure as the AND-
SPLIT pattern, yet the latter only sends the appropriate onionOi to the business partner assigned
to the vertex vi depending on the result of the condition associated with the OR-SPLIT pattern.

OR-JOIN workflow pattern

Since there is a single workflow initiator, the OR-JOIN is preceded in the workflow by an OR-
SPLIT pattern. The business partner assigned to vn receives in any cases a single message thus
a single vertex private key is required that is sent by one of the business partners (bi)[1,n−1]

depending on the choice made at the previous OR-SPLIT in the workflow. the business partner
bn thus receives in any cases the onion O defined as follows.

O =
{
{λ, SKn}PKpoln

}
where λ is an onion structure associated with the sequel of the workflow execution right after
vn.

Complete key distribution scheme

The procedure towards building an onion structure corresponding to the workflow structure can
be implemented using for instance a breath first search algorithm starting from the last vertex of
the workflow and wherein the workflow graph is read backward. This is rather straightforward
and the procedure is only sketched throughout an example. Let’s consider the workflow depicted
in figure 4.3. The onion Od enabling the vertex private key distribution during the execution of
the workflow is defined as follows.

4.3. THE SOLUTION 107

Od = {{SK1, {SK2, {SK3, {SK61 ,

Sequel after v6︷ ︸︸ ︷
{SK7}PKpol7

}PKpol6
}PKpol3

}PKpol2︸ ︷︷ ︸
First AND-SPLIT branch

,

{SK4, {SK5, {SK62}PKpol6
}PKpol5

}PKpol4︸ ︷︷ ︸
Second AND-SPLIT branch

}PKpol1
}

The onions associated with the two branches forming the AND-SPLIT pattern are wrapped
by the layer corresponding to the vertex v1. Only the first AND-SPLIT branch includes the
sequel of the workflow after v6. The overall structure of the onion is of course based on the
SEQUENCE pattern.

4.3.4 Execution proofs and traceability

Along with the workflow execution, an onion structure Opi
is built at each execution step i with

vertex private keys in order to allow business partners to verify the integrity of the workflow
execution and optionally to gather anonymity-preserving traces when traceability is required
during the execution of a workflow. Based on the properties we introduced in section 4.3.1,
group cryptography is the only mechanism that meets the needs of the policy private key distri-
bution when identity traceability is needed. In that case, we define for a workflow instance, the
workflow arbitrator role that is assumed by a trusted third party.

Definition 4.3 (Workflow arbitrator). The workflow arbitrator, denoted War, is a trusted third
party able to disclose business partners’ identity in case of dispute. The workflow arbitrator is
contacted to revoke the anonymity of some business partners only in case of dispute, this is an
optimistic mechanism.

The onion structure Op is initialized by the business partner b1 assigned to v1 who computes
Op1 =

{
{h(PW)}SKpol1

}
where PW is called workflow policy and is defined as follows.

Definition 4.4 (Workflow Policy). The workflow specification SW denotes the set SW defined
by SW = {W, (Jri , Jwi , poli)i∈[1,n], h} where

Jri = {k ∈ [1, j]|dk ∈ Dr
i } and Jwi = {k ∈ [1, j]|dk ∈ Dw

i }

The sets Jri and Jwi basically specify for each vertex the set of data that are granted read-only
and read-write access, respectively. SW is defined at workflow design phase.

The workflow policy PW denotes the set defined by:

PW = SW ∪ {Wiid,War, h1, h2, h3, h4} ∪ {PKi|i ∈ [1, n]}

PW is a public parameter computed by the workflow initiator b1 and that is available to the
business partners involved in the execution of W .

108 4. SECURITY OF PERVASIVE WORKFLOWS

The onion structure Op is initialized this way so that it cannot be replayed as it is defined for
a specific instance of a workflow specification. If traceability is required during the execution
of some business processes, the signatures of business partners with policy private keys are
collected during the building process of Op so that anonymity can be later on revoked in case of
dispute. Group encryption is used in this case to distribute policy private keys and the business
partner b1 is in charge of contacting a trusted third party when the workflow is instantiated,
sending it (h(PW), PW) to play the role of workflow arbitrator for the instance.

At the step i of the workflow execution, bi receives Opi−1
and encrypts its upper layer with

SKi to build an onion Opi
which he sends to bi+1 upon completion of vi. If traceability is re-

quired, bi signs {Opi−1
, {h(PW)}

SK
bi
poli

} with SKi instead. Considering a set (vi)[1,n] of vertices

executed in sequence assigned to the business partners (bi)[1,n] and assuming that traceability is
needed (i.e. group cryptography is used) we get:

Op1 =
{
{h(PW)}

SK
b1
pol1

}
Op2 =

{
{Op1 , {h(PW)}

SK
b2
pol2

}SK2

}
Opi

=
{
{Opi−1

, {h(PW)}
SK

bi
poli

}
SKi

}
for i ∈ [3, n]

The building process of Opi
is based on workflow execution patterns ; yet since it is built at

runtime contrary to the onion Od, this is straightforward:

• There is no specific rule for OR-SPLIT and OR-JOIN patterns as during the workflow
execution, this will result in the execution of a single branch (exclusive choice),

• When encountering an AND-SPLIT pattern, the same structure Opi
is concurrently sent

while in case of an AND-JOIN, the n− 1 onions received by a partner bn are wrapped by
a single structure: Opn =

{
{Op1 , Op2 , .., Opn−1 , {h(PW)}SKbn

poln

}
SKn

}
.

Considering the example depicted in figure 4.3 and assuming traceability is not required, at
the end of the workflow execution the onion Op is defined as follows.

Op = {{{{{{h(PW)}SKpol1
}SK2}SK3︸ ︷︷ ︸

First AND-SPLIT branch

, {{{h(PW)}SKpol1
}SK4}SK5︸ ︷︷ ︸

Second AND-SPLIT branch

}SK6}SK7}

{h(PW)}SKpol1
is sent by b1 assigned to v1 to both b2 and b4 assigned to v2 and v4, respec-

tively. The onion structure associated with the two branches forming the AND-SPLIT pattern
thus includes {h(PW)}SKpol1

twice. The overall structure is mapped to the SEQUENCE pattern
and layers are iteratively wrapped by a new layer as the workflow instance proceeds further.

4.3. THE SOLUTION 109

dO
)(1 WPsign

WP
PO

iPK iP K 1+iPK

a
kH

)(1+ka dsign
1+kd

)(ka dsign
kd

a
kH 1+

Figure 4.8: Workflow message structure

In order to verify that the workflow execution is compliant with the pre-defined plan when
he starts the execution of the vertex vi, the business partner bi assigned to vi just peels off the
layers of Opi−1

using the vertex public keys of the vertices previously executed based on SW .
Doing so he retrieves the value {h(PW)}SKpol1

that should be equal to the one he can compute
given PW , if the workflow execution has been so far executed according to the plan. In case
traceability is required by the execution, bi also verifies the signatures of the business partners
assigned to the vertices (vjp)p∈[1,ki] executed right before him i.e. bi verifies {h(PW)}

SK
bp
polp

for all p ∈ [1, ki]. If bi detects that a signature is missing he contacts the workflow arbitrator
War to declare the workflow instance inconsistent. In fact, business partners are in charge of
contacting the workflow arbitrator when a signature is not valid and those who do not declare
corrupted signatures are held responsible in place of partners whose signature is missing. In
case of conflict on the outcome of some workflow tasks, the onion Op is sent to the workflow
arbitrator who is able to retrieve the signatures with policy private key of the stakeholders using
PW and with the help of some group managers the corresponding identities.

4.3.5 Vertex key pair generation

Vertex key pairs have to be defined for a single instance of a workflow specification in order to
avoid replay attacks. To that effect, we capitalize on identity-based encryption (IBE) techniques
[BF01] in the specification of the set (PKi, SKi)i∈[1,n]. We start with a short description of the
main concepts of the IBE cryptosystem before specifying the vertex key pairs. In what follows,
(G1,+) and (G2, .) denote two groups of order q for a prime q.

Definition 4.5 (Admissible bilinear map). A map ê : G1×G1 −→ G2 is an admissible bilinear
map iff ê satisfies the following properties:

• Bilinear: for P,Q ∈ G1 and for a, b ∈ Z∗q , ê(aP, bQ) = ê(P,Q)ab

• Non-degenerate: for P generator of G1, e(P, P) 6= 1 and therefore ê(P, P) is a generator
of G2

• Computable: there exists an efficient algorithm to compute ê(P,Q) for all P,Q ∈ G1

110 4. SECURITY OF PERVASIVE WORKFLOWS

The IBE cryptosystem [BF01] consists of the following four algorithms:

Setup : Given a security parameter k ∈ Z+,

Step 1: Generate a tuple (q,G1,G2, ê) using a Bilinear Diffie-Hellman parameter genera-
tor [BF01] and pick P a random generator of G1. The Bilinear Diffie-Hellman
parameter generator ensures that the generated tuple (q,G1,G2, ê) is such that the
BDH-assumption [BF01] is valid.

Step 2: Pick a random s ∈ Z∗q and set Ppub = sP

Step 3: Define two hash functions: h1 : {0, 1}∗ −→ G∗1 and h2 : G2 −→ {0, 1}n for some
n ∈ N∗

Step 4: Set P = (q,G1,G2, ê, P, n, h1, h2) to be the system public parameters

Extract : For a given string ID ∈ {0, 1}∗,

Step 1: Compute QID = h1(ID) ∈ G∗1
Step 2: Set the private key dID = sQID where s is called master key

Encrypt : In order to encrypt a message M with the public key ID,

Step 1: Compute QID = h1(ID)

Step 2: Define a random r ∈ Z∗q
Step 3: Set the ciphertext to be C = 〈rP,M ⊕ h2(g

r
ID)〉 where grID = ê(QID, Ppub) ∈ G∗2

Decrypt : Let C = 〈U, V 〉 be a ciphertext encrypted using the public key ID. In order to
decrypt C using the private key dID ∈ G∗1,

Step 1: Compute V ⊕ h2(ê(dID, U)) = M

We define for all i ∈ [1, n], IDi = Wiid ⊕ SW ⊕ vi. Using the notations defined in the
description of the IBE cryptosystem, the vertex key pair (PKi, SKi) is specified as follows.

{
PKi = h3(Wiid ⊕ SW ⊕ vi)
SKi = sh1(PKi)

where h3 is a hash function defined by: h3 : {0, 1}∗ −→ {0, 1}n for some n ∈ N∗

The master key s is held by the vertex private key generator who is in our case the workflow
initiator. The signature scheme proposed in [Pat02] can be used to compute the ID-based sig-
natures required by the mechanisms we proposed. Having run the Setup algorithm of the IBE
cryptosystem, the signature scheme consists of the two following algorithms:

4.3. THE SOLUTION 111

Sign : In order to sign a message M with the vertex private key SKi,

Step 1 : Pick a random k ∈ Z∗q and define a hash function h4 : {0, 1}∗ −→ Z∗q
Step 2 : Set the signature to be {M}SKi

= 〈kP, k−1(h4(M)P + SKi)〉

Verify : Let sign = 〈U, V 〉 be a purported signature on a message M issued using the private
key SKi. To verify the validity of sign,

Step 1 : Compare ê = (U, V) to the value ê(P, P)h4(M).ê(Ppub, PKi)

Step 2 : Return valid if the values match, invalid otherwise

Using this vertex key pair specification, the public parameters P of the IBE cryptosystem
and the hash functions h3 and h4 should be of course included in PW . This vertex key pair
specification has a double advantage. First vertex key pairs cannot be reused during any other
workflow instance and second vertex public keys can be directly retrieved from W and Wiid

when verifying the integrity of workflow data or peeling off the onion Op.

4.3.6 Communication protocol

In order to support a coherent execution of the mechanisms presented so far, workflow messages
exchanged between business partners consist of the set of information that is depicted in figure
4.8.

• Workflow data: the set (dk)k∈[1,j] of workflow data is transported between business part-
ners and each piece of data satisfy the data block specification. A single message may
include several copies of the same data block structure that are encrypted with different
vertex public keys based on the execution plan. This can be the case with AND-SPLIT
patterns. Besides, workflow data can be stored in two different ways depending on the
requirements for the execution. Either we keep the iterations of data resulting from each
modification in workflow messages till the end of the execution or we simply replace data
content upon completion of a vertex. The bandwidth requirements are higher in the first
case since the size of messages increases as the workflow execution proceeds further.

• PW : PW is required to retrieve vertex and policy public keys and specifies the workflow
execution plan.

• Od and Op: the two onion structures Od and Op are also included in the message.

Upon receipt of the message depicted in figure 4.8 a business partner bi assigned to vi re-
trieves first the vertex private key from Od. He then checks that PW is genuine i.e. that it was
initialized by the business partner initiator of the workflow assigned to v1. He is later on able
to verify the compliance of the workflow execution with the plan using Op and the integrity of
workflow data. Finally he can process workflow data.

112 4. SECURITY OF PERVASIVE WORKFLOWS

4.4 Secure execution of decentralized workflows

In this section we specify how the mechanisms presented so far in this chapter are combined to
support the secure execution of a workflow in the decentralized setting. After an overview of the
execution steps, the secure workflow execution is described in terms of the workflow initiation
and runtime specifications.

4.4.1 Execution process overview

Integrating security mechanisms to enforce the security requirements identified for the perva-
sive workflow architecture and decentralized workflow execution in general requires a process
strongly coupled with both workflow design and runtime specifications. At the workflow design
phase, the workflow specification SW is defined in order to specify for each vertex the sets of
data that are accessible in read and write access and the credentials required by potential busi-
ness partners to be assigned to workflow vertices. At workflow initiation phase, the workflow
policy PW is specified and the onion Od is built. The workflow initiator builds then the first set
of workflow messages to be sent to the next partners involved. This message generation process
consists of the initialization of the data blocks and that of the onion Op.

At runtime, a business partner bi chosen to execute a vertex vi receives a set of workflow
messages. Those messages are processed to retrieve SKi from the onion Od and to access
workflow data. Once the vertex execution is complete bi builds a set of workflow messages to
be dispatched to the next partners involved in the execution. In this message building process,
the data and the onion Op are updated.

The set of functional operations composing the workflow initiation and runtime specifica-
tions is precisely specified later on in this section. In what follows N i

k denotes the set defined
as follows. Let l ∈ [1, n]

l ∈ [1, n]⇔ l satisfies
{
dk ∈ Dr

l

vl is executed right after vi

Consider the example of figure 4.3: d1 is accessed during the execution of the vertices v1,
v2 and v5 thus N1

1 = {2, 5}.

4.4.2 Workflow initiation

The workflow is initiated by the business partner b1 assigned to the vertex v1 who issues the
first set of workflow messages (M1→jp)p∈[1,z1]. The workflow initiation mainly consists of the

4.4. SECURE EXECUTION OF DECENTRALIZED WORKFLOWS 113

following steps.

Workflow initiation :

Step 1 : Workflow policy specification: generate (PKi, SKi)i∈[1,n] and assign War

Step 2 : Initialization of the onion Od

Step 3 : Data block initialization: compute ∀k ∈ [1, j] sign1(dk)

Step 4 : compute N1
k and R1

k ∀k ∈ [1, j]

Step 5 : Data block encryption: compute ∀k ∈ [1, j],∀l ∈ N1
k {B1

k}PKl

Step 6 : Data block hash sets: compute ∀k ∈ [1, j],∀l ∈ R1
k {h({B1

k}PKl
)}SK1

Step 7 : Initialization of the onion Op: compute Op1

Step 8 : Message generation based on W and (N1
k)k∈[1,j]

The steps one and two are presented in sections 4.3.5 and 4.3.3, respectively. The workflow
messages are generated with respect to the specification defined in figure 4.8 and sent to the
next business partners involved. This includes the initialization of the onion Op and that of data
blocks which are encrypted with appropriate vertex public keys.

4.4.3 Workflow message processing

A business partner bi being assigned to a vertex vi proceeds as follows upon receipt of the set
of workflow messages (Mjp→i)p∈[1,ki] sent by the ki business partners assigned to the vertices
(vjp)p∈[1,ki] executed right before vi.

Workflow message processing :

Step 1 : Retrieve SKi from Od

Step 2 : Data block decryption with SKi based on Jri
Step 3 : Execution proof verification: peel off the onion Op

Step 4 : Data integrity check based on W and PW
Step 5 : Vertex execution

Step 6 : compute N i
k ∀k ∈ Jri and Ri

k ∀k ∈ Jwi
Step 7 : Data block update: compute ∀k ∈ Jwi signi(dk) and update dk content

Step 8 : Data block encryption: compute ∀k ∈ Jri ,∀l ∈ N i
k {Bi

k}PKl

Step 9 : Data block hash sets: compute ∀k ∈ Jwi ,∀l ∈ Ri
k {h({Bi

k}PKl
)}SKi

Step 10 : Onion Op update: compute Opi

114 4. SECURITY OF PERVASIVE WORKFLOWS

Step 11 : Message generation based on W and (N i
k)k∈[1,j]

After having retrieved SK1 from Od, bi verifies the integrity of workflow data and that the
execution of the workflow up to his vertex is consistent with the onion Op. Workflow data
are then processed during the execution of vi and data blocks are updated and encrypted upon
completion. Finally bi computes Opi

and issues the set of workflow messages (Mi→jp)p∈[1,zi] to
the intended business partners.

4.5 Security analysis

The parameters that are relevant to the security properties offered by the mechanisms presented
in this chapter are mainly twofold. First, there are several alternatives with respect to the man-
agement of the key pair (PKpoli , SKpoli), including simple key distribution based on the policy
compliance, group key management or policy-based cryptography, on which the security prop-
erties verified by our solution depend. In fact, the main difference between the three policy
private key distribution schemes we identified comes from the number of business partners
sharing the same policy private key. As a matter of fact, the more partners share a given private
key the easier it is for some unauthorized peer to get this private key and get access to protected
data. Besides, the trustworthiness of business partners can not be controlled, especially when it
comes to sharing workflow data with unauthorized peers once the vertex private key has been
retrieved. In this context, the mechanisms presented in this chapter verify some properties that
do not depend on the underpinning policy private key distribution scheme while some other do.
In the security evaluation of our solution, we make two assumptions:

• Security of policy keys: the public key encryption scheme used in the specification of
the policy key pair (PKpoli , SKpoli) is semantically secure against a chosen ciphertext
attack and the associated signature scheme achieves signature unforgeability.

• Security of vertex keys: the public key encryption scheme used in the specification of
the vertex key pair (PKi, SKi) is semantically secure against a chosen ciphertext attack
and the associated signature scheme achieves signature unforgeability.

4.5.1 Inherent security properties

Theorem 4.1 (Integrity of execution). Vertex private keys are retrieved by business partners
knowing policy private keys associated with the policies specified in the workflow.

Assuming in addition that business partners do not share vertex private keys, the integrity
of the distributed workflow execution is assured i.e. workflow data are accessed and modified
based on the pre-defined plan specified by means of the sets Jri and Jwi .

4.5. SECURITY ANALYSIS 115

Proof. This property is ensured by the onion Od which assures distribution of the vertex keys
used for accessing workflow data based on the workflow execution plan.

Assuming that a workflow initiator builds Od based on the methodology specified in 4.3.3
and under the policy key security assumption, we claim that it is not feasible for an adversaryA
to extract the vertex private key SKi from Od if A does not know the set of policy private keys
(SKpolik

)k∈[1,l] associated with the set of vertices (vik)k∈[1,l] executed prior to vi in W . This is
true as the structure of Od is mapped to W .

Theorem 4.2 (Resilience to instance forging). Upon receipt of a workflow message, a business
partner is sure that a set of business partners knowing policy private keys associated with the
policies specified in the workflow have been assigned to the vertices executed so far provided
that he trusts the business partners satisfying the policy pol1.

Proof. This property is enforced by the onion Op whose building process is based on the work-
flow structure and vertex private keys. As stated in the previous theorem, vertex private keys
can only be retrieved by business partners knowing some policy private keys. We also claim
that an adversary that does not verify a policy can not forge a workflow instance, i.e. that the
adversary can not produce a workflow message pertaining to a valid workflow instance.

Assuming that a workflow initiator builds Op based on the methodology specified in 4.3.4
and under the policy key security assumption, we claim that the onion structure Op is unforge-
able. The unforgeability property relies on two further properties:

1. a genuine onion structure Op built during a previous instance of a workflow can not be
replayed ;

2. an onion structure Op can not be built by an adversary that is not trusted by business
partners.

The first property is enforced by the fact that an onion structure Op properly built is bound
to a specific workflow policy PW and thus can not be reused during an attempt to execute
a malicious workflow instance. The second property is straightforward under the policy key
security assumption as the policy-based signature scheme achieves signature unforgeability.
Thus an adversary can not produce a valid onion Op1 =

{
{h(PW)}SKpol1

}
.

Theorem 4.3 (Data Integrity). Assuming that business partners do not share vertex private
keys they retrieve from the onion Od, our solution achieves the following data integrity proper-
ties:

• Data truncation and insertion resilience: any business partner can detect the deletion or
the insertion of a piece of data in a workflow message

• Data content integrity: any business partner can detect the integrity violation of a data
block content in a workflow message

116 4. SECURITY OF PERVASIVE WORKFLOWS

Proof. The first property is ensured as the set of workflow data blocks that should be present
in a workflow message is specified in PW , the workflow message formatting has thus to be
compliant with the workflow specification. The second property is assured by the fact that an
adversary can not modify a given data block without providing a valid signature on this data
block. This property relies on the unforgeability of the signature scheme used in the data block
and hash set specifications.

These three security properties are sufficient to enable a coherent and secure execution of
distributed workflows provided that business partners are trustworthy and do not share their
policy or vertex private keys. The latter assumption is in fact hard to assess when sensitive
information are manipulated during the workflow. We therefore introduced the traceability
mechanism to meet the requirements of sensitive workflow executions.

4.5.2 Revocation of a business partner anonymity

The main flaw of the basic security mechanisms we outlined is that the involvement of busi-
ness partners in a workflow can remain anonymous thus preventing the detection of potential
malicious peers who somehow got access to some policy private keys. To overcome this limi-
tation when required, traceability with group cryptography has to be used during the execution
of a business process. In this case the anonymity revocation mechanism provided with group
cryptography can be seen as a penalty for business partners thus preventing potential malicious
behaviors such as vertex private key sharing with unauthorized peers. Besides, policy private
keys distributed by a group manager are intended for individual use which makes key leakage
highly unlikely.

The following theorems hold when the policy private key distribution scheme is based on
group encryption techniques and traceability is required in the execution of workflows. As
corollary of this assumption, we assume that vertex private keys are not shared with unautho-
rized peers, theorem 4.3 is thus verified.

Theorem 4.4 (Integrity of execution). The integrity of the distributed workflow execution is
ensured or the workflow instance is declared inconsistent by the selected workflow arbitrator.
Integrity of the distributed workflow execution consists in this case in performing the following
tasks:

• workflow data are accessed and modified based on the pre-defined plan specified by
means of the sets Jri and Jwi ;

• signatures with policy private key are stored by the business partners involved in the
workflow execution.

Proof. Anonymity revocation is here a means to force business partners to behave properly
during the execution of a workflow. If any malicious business partner is involved, he will

4.6. INTEGRATION WITHIN THE TRANSACTIONAL PROTOCOL 117

not store his signature and we claim that the workflow instance will no longer be a valid one.
The mechanism we proposed for anonymity revocation is as we mentioned optimistic and four
scenarios can actually occur:

• A business partner detects that a signature is missing during the course of the workflow
execution

• Each business partner stored his signature

• A set of business partners did not store their signature while some other partners did not
declare the missing signatures to the workflow arbitrator

• A set of business partners assigned to vertices contiguously executed till the end of the
workflow did not store their signature

In the first case, the workflow instance will be declared inconsistent by the workflow arbi-
trator. In the second case, trustworthy business partners have been involved in the workflow and
their identity can be easily traced back by the workflow arbitrator. In the third case which is in
fact highly unlikely to occur, the business partners who have not declared the missing signatures
become responsible in place of the business partners who cheated. In the last case, nobody can
be held responsible as apparently a group of untrustworthy business partners was involved in a
fraud attempt and the workflow instance is declared inconsistent.

4.5.3 Discussion

As mentioned in the security analysis, group cryptography associated with anonymity revoca-
tion provides a full-fledged solution that meets the requirements of sensitive workflow instances.
The other policy private key distribution schemes can be in fact used when the workflow execu-
tion is not sensitive or the partners satisfying the policies required by the workflow are deemed
trustworthy. Our solution can still be optimized to avoid the replication of workflow messages.
A business partner may indeed send the same workflow message several times to different part-
ners satisfying the same security policy resulting in concurrent executions of a given workflow
instance. Multiple instances can be detected by the workflow arbitrator when traceability is
required or a solution based on a stateful service discovery mechanism can be also envisioned
to solve this problem.

4.6 Integration within the transactional protocol

In this section we discuss the possible integration of the security mechanisms specified in this
chapter within the transactional protocol presented in chapter 3. We thus assume in what follows

118 4. SECURITY OF PERVASIVE WORKFLOWS

that the term pervasive workflow instance refers to the execution of a pervasive workflow that is
supported by the transactional protocol presented in chapter 3 and that implements the security
mechanisms outlined in this chapter.

There are various types of security faults that can be raised during the execution of the se-
curity mechanisms we have just specified and that need to be handled by the coordination layer
so that a pervasive workflow instance can recover when these security faults are caught. In the
fashion of the ATS model a failure recovery strategy has to be defined for security faults. In a
first approach, one could regard security faults as failures to execute and directly integrate them
into the transactional protocol execution. This approach would however lead to consider a strict
atomicity within a workflow instance as the security mechanisms we specified are executed by
all the business partners involved in a workflow instance thus making the latter prone to failures.
As a consequence, no business partner would in this case claim that he verifies the retriability
property. This approach is as a result not suited to meet the requirements that are relevant to
assuring consistency of a pervasive workflow instance with respect to relaxed atomicity con-
straints. We thus choose to define security-fault handling mechanisms that rely on the workflow
arbitrator and thus group cryptography techniques introduced in section 4.3.4, in order to man-
age the recovery procedure when security faults occur. In this case, the failure recovery strategy
associated with the complete failure of a workflow instance due to a security fault consists in
penalizing the business partner that caused the fault. The specification of possible penalties that
can be issued to business partner is out of the scope of this thesis but one could think to legal
compensations.

The security-fault handling mechanisms that we designed are integrated into the ones de-
fined in the context of transactional failures in order to first recover from security faults that do
not lead to the complete failure of a workflow instance without canceling the workflow instance
as well as penalize business partners that may cause security faults from which it is not possible
to recover. This approach not only enables the detection of security faults but also their recov-
ery whenever possible while preserving relaxed atomicity constraints identified in chapter 3.
Security solutions are indeed often only considered a means to detect inconsistencies within the
execution of applications but the way to properly handle these inconsistencies is left aside. On
the contrary, we consider in this work these two aspects, security inconsistencies do not indeed
always imply complete failure within the pervasive workflow architecture.

We first describe the different types of security faults that can be raised during the security
mechanism execution before specifying the recovery mechanisms designed to handle the latter.

4.6.1 Security faults

There are six main types of security faults that can be encountered during the execution of a
pervasive workflow instance as follows.

• Data decryption fault: a business partner is not able to decrypt a piece of data that

4.6. INTEGRATION WITHIN THE TRANSACTIONAL PROTOCOL 119

he is allowed to access based on the workflow specification during the execution of the
vertex to which he is assigned. The data decryption fault can be raised at anytime during a
workflow instance and is forwarded to the coordination layer as it keeps a business partner
from carrying out a vertex execution.

• Data integrity fault: a business partner detects that a piece of data has been altered
in the workflow message he has just received. The data integrity fault can be raised at
anytime during a workflow instance and is forwarded to the coordination layer as it keeps
a business partner from carrying out a vertex execution.

• Vertex private key retrieval fault: a business partner can not retrieve a vertex private key
from the onion Od. The vertex private key retrieval fault can be raised at anytime during a
workflow instance and is forwarded to the coordination layer as it keeps a business partner
from carrying out a vertex execution.

• Proof of execution fault: a business partner can not assess the validity of the onionOp i.e.
that all signatures are valid. The proof of execution fault can be raised at anytime during a
workflow instance and is forwarded to the coordination layer as it keeps a business partner
from carrying out a vertex execution.

• Discovery fault: no candidate business partner satisfying the policy associated with a
vertex can be found. The discovery fault can only be raised during the replacement of
business partners of type bvk that are not retriable or these of type bmk that are not reliable
since the transactional protocol execution requires source discovery mode. This fault is
in fact equivalent to the failure of the associated vertex and of course is critical enough
to be forwarded to the coordination layer, we however consider it a transactional failure
rather than a security fault.

• Encryption, decryption or signature fault: an error occurred during the encryption, the
decryption or the signature process of some data that is not due to an invalid signature
or a key material issue. The “Encryption, decryption or signature fault” only refers to
computational or accidental faults that may occur during the operation execution and we
consider that these operations are retriable. This fault is therefore not forwarded to the
coordination layer.

These various types of faults are basically derived from the sequence of operations specified
in section 4.4.3 and that is executed by all business partners involved in a pervasive workflow
instance. The four types of security faults that are forwarded to the coordination layer, can be
in some cases handled without having to declare the complete failure of a workflow instance if
these faults occurred accidentally. The workflow execution can indeed recover using a simple
backup of corrupted workflow messages since the operations that can raise these faults are
executed prior to any workflow data processing. When however it is not possible to recover
from them using basic fault handling mechanisms, the workflow arbitrator has to be contacted.
Our goal towards designing appropriate security-fault handling mechanisms therefore consists
in the enforcement of the following property:

120 4. SECURITY OF PERVASIVE WORKFLOWS

b1
v bi

{OfferToParticipate a ,PW }PK pol i

{Ack {hPW }SK pol i
bi }PK pol 1

{Registered bv
x , {hPW }SK pol 1

b1 }PK pol i

Figure 4.9: Business partner registration when security mechanisms are used

(P3) Should a security fault from which it is not possible to recover occur, the identity of the
business partner that made an error or behaved maliciously can be traced back

The design of the corresponding security-fault handling mechanism that is presented next
thus assumes that the policy private key distribution scheme implemented is group cryptography
so that business partners’ identities can be easily traced back using the mechanisms specified in
this chapter.

4.6.2 Business partner registration

During the course of the normal business partner registration phase that takes place within
the transactional protocol execution, we add a security handshake wherein the business part-
ner selected to execute a given vertex transmits to the critical zone initiator his signature with
policy private key of the workflow policy. This handshake can be seen as a commitment that
the business partner will behave correctly during the workflow instance. The business partner
registration is depicted in figure 4.9. The critical zone initiator contacts a candidate business
partner asking him whether he agrees to commit to execute the operation a of the workflow
whose workflow policy is PW . In case he accepts and this means that he trusts the business
partner initiator of the critical zone who satisfies the policy pol1, the candidate business part-
ner acknowledges with a signature on the workflow policy with his policy private key SKbi

poli
.

Once the newly assigned business partner’s coordinator for the transactional protocol execution
is known, bv1 sends the information and acknowledges the registration with a signature on PW
with his policy private key. The following registration mechanism assumes as for the basic
security mechanisms that the selected business partner trusts business partners satisfying the
policy associated with the first vertex of a critical zone.

4.6. INTEGRATION WITHIN THE TRANSACTIONAL PROTOCOL 121

bx
v bi

m

{M i j , {hM i j}SK poli
bi }PK pol x

{{h M i j }SK pol x
bx }PK pol i

Figure 4.10: Workflow message backup when security mechanisms are used

4.6.3 Workflow message backup process

The workflow data backup procedure implemented by the basic transactional protocol is also
modified in order to handle the security faults we identified. In this case, we store the workflow
message that has been issued by a business partner of type bmk to the next business partner
involved in the workflow instance. The workflow message backup copy is still handled by
the business partner bvx most recently executed. The workflow message backup procedure is
depicted in figure 4.10. The business partner bmi is in charge of assessing the validity of the
message that he sends to the business partner bvx most recently executed, this is why he signs
the message he sends with his policy private key SKbi

poli
. The business partner bvx acknowledges

the receipt of the workflow message signing it with his policy private key SKbx
polx

. Of course at
each step of the procedure both business partners verify the validity of the signature provided
by the other and may ask for a new transmission if they do not match.

4.6.4 Recovering from security-faults

Security faults which occur accidentally, such as these that result from transmission errors and
the like, can be simply recovered using backup workflow messages that are stored by the busi-
ness partners of type bvx and that should be valid. It is indeed the responsibility of the business
partner that backed up the workflow message that should be retransmitted to ensure the validity
of the latter. This statement is actually enforced by the signature provided by business partners
during the message backup procedure. If backup workflow messages are valid, there exists a
restoration point in the workflow execution such that the execution is still consistent from both
transactional and security perspectives so that the worfklow execution can be restarted from that
point if required. If the backup workflow message is however not valid, the recovery procedure
fails and the workflow instance arbitrator is contacted to mediate the case as specified in the
next section.

122 4. SECURITY OF PERVASIVE WORKFLOWS

4.6.5 Handling security-faults when the recovery procedure fails

When security faults can not be recovered after several retransmissions of a backup workflow
message, the mediation of the workflow instance arbitrator is required. The reasons why the re-
covery procedure fails are in fact not limited to malicious behaviors and our procedure to handle
recovery failures does not depend on these various reasons as our primary goal is the anonymity
revocation of the business partner that caused the fault. There are mainly four situations that
require the mediation of the workflow arbitrator:

• Failure to recover from a “Data decryption fault”: based on the signatures and work-
flow messages sent by the two business partners that were involved in the backup proce-
dure of the corrupted workflow message, the workflow arbitrator determines whether the
business partner of type bvx that stored this message has caused the corruption or whether
the other business partner backed up a message wherein a piece of data was not properly
encrypted with the appropriate vertex public key. Based on the outcome of the mediation,
the workflow arbitrator can either ask for a new generation of the corrupted workflow
message with workflow data correctly encrypted or declare the workflow instance incon-
sistent and penalize the business partner who caused the fault.

• Failure to recover from a “Vertex private key retrieval fault”: based on the signa-
tures and workflow messages sent by the two business partners that were involved in the
backup procedure of the corrupted workflow message, the workflow arbitrator determines
whether the business partner of type bvx that stored this message has caused the corruption,
whether the other business partner backed up a message that was corrupted or whether
the workflow initiator generated an onion Od that was corrupted in the first place. Based
on the outcome of the mediation, the workflow arbitrator can either ask for a retransmis-
sion of the corrupted workflow message should a valid copy of it be available, ask the
workflow initiator to generate a new onion Od corresponding to the current state of the
workflow execution (i.e. the upper layer of this onion is associated with the vertex during
the execution of which the fault was raised) or declare the workflow instance inconsistent
and penalize the business partner that caused the fault.

• Failure to recover from a “Data integrity fault”: based on the signatures and workflow
messages sent by the two business partners that were involved in the backup procedure of
the corrupted workflow message, the workflow arbitrator determines whether the business
partner of type bvx that stored this message has caused the corruption or whether the other
business partner backed up a message that was corrupted in the first place. Based on
the outcome of the mediation, the workflow arbitrator can either ask for a retransmission
of the corrupted workflow message should a valid copy of it be available or declare the
workflow instance inconsistent and penalize the business partner that caused the fault.

• Failure to recover from a “Proof of execution fault”: based on the signatures and work-
flow messages sent by the two business partners that were involved in the backup proce-
dure of the corrupted workflow message, the workflow arbitrator determines whether the
business partner of type bvx that stored this message has caused the corruption or whether

4.7. IMPLEMENTATION 123

BPEL
public process

BPEL
private process

Device's
applications

iiM →−1

1+→iiM

Retrieve vertex
private key

Data
decryption

Data Integrity
verification

Execution proof
verification

Process
invocation

Data update
and encryption

Execution proof
update

Figure 4.11: Integration of the security mechanisms within the engine wrapper implementation

the other business partner backed up a message that was corrupted in the first place. Based
on the outcome of the mediation, the workflow arbitrator can either ask for a retransmis-
sion of the corrupted workflow message should a valid copy of it be available or declare
the workflow instance inconsistent and penalize the business partner that caused the fault.
In case the fault is the result of a signature missing in the onion Op, the business part-
ner that did not store it can be easily identified since the workflow initiator gathers all
signatures prior to the workflow instantiation.

It should be noted that these situations wherein workflow message retransmission is not
sufficient to recover are in fact highly unlikely to occur since the integration within the business
partner registration process of a signature retrieval mechanism enabling anonymity revocation
can be seen as a penalty for business partners that may cause security faults.

4.7 Implementation

We developed a security library in order to implement the mechanisms presented in this chapter.
The implementation supports the following encryption algorithms:

• IBE: we use the Java Cryptography Extension (JCE) provider presented in [ODD04] that
is an implementation of the ID-based cryptosystem specified in [BF01],

• RSA-ECB: we use the Bouncy Castle [Bou07] JCE provider that implements the RSA-
ECB algorithm.

The RSA-ECB encryption algorithm is only used for demonstration purposes as the IBE
implementation is resource-consuming ; the RSA-CBC scheme would be more suitable for de-

124 4. SECURITY OF PERVASIVE WORKFLOWS

IBE RSA/ECB W ithout security
4 vertices 2 data 25'31 1'39 1'10
4 vertices 4 data 35'44 2'01 1'16
4 vertices 6 data 51'18 2'07 1'21

2 vertices 2 data 8'30 0'48 0'37
4 vertices 2 data 25'31 1'39 1'10
6 vertices 2 data 46'50 4'28 2'03

Figure 4.12: Security mechanisms execution overhead

ployment but is unfortunately not implemented by the JCE provider we have used. The security
library has been integrated into the engine wrapper implementation based on the sequence of
operations specified in the sections 4.4.2 and 4.4.3. The basic principles of this implementation
are depicted in figure 4.11. The complete security mechanism execution is handled by the en-
gine wrapper that forwards decrypted data only to the BPEL workflow engine. Once the results
are sent back by the BPEL engine to the engine wrapper, the latter processes data and builds
the workflow messages that are sent to the next business partners involved in the workflow
execution.

A complete specification of the implementation work can be found in appendix C.

4.7.1 Performance analysis

In order to evaluate the execution overhead resulting from the integration within the perva-
sive workflow runtime of the security mechanisms presented in this chapter, we measured the
time required to complete the execution of different workflow specifications. The results are
presented in figure 4.12. We basically performed two sets of measurements: the number of
workflow vertices remains constant while the number of data processed by workflow changes
and conversely. One needs to compare these results with the application that the pervasive work-
flow architecture is meant to support. For long running workflows that can span over days, the
overhead introduced by the IBE encryption scheme is negligible whereas RSA based encryption
schemes are more suitable for short running workflows.

4.8 Related work

Security of cross-organizational workflows in both centralized and decentralized settings has
been an active research field over the past years [Coa98, KR01, LP03, BFA99] mainly focusing
on access control, separation of duty and conflict of interests issues. However, in the decentral-
ized setting issues related to the integrity of workflow execution and workflow instance forging,
which are presented in this chapter have been left aside. This section discusses related work in
the access control, separation of duty and conflict of interests research fields, before presenting

4.8. RELATED WORK 125

related work in the area of mobile agents and analysing how our results can leverage existing
work in secure service composition.

4.8.1 Separation of duty and conflict of interests

The management of conflict of interests within a workflow execution consists in enforcing that
workflow data which are sensitive for a business partner can not be accessed by business part-
ners that are competitors (in the marketing sense) of the latter within the workflow instance. In
the centralized setting whereby workflow management and control tasks rely on a trusted co-
ordinator, solutions can be found to manage workflow data accordingly, however in the decen-
tralized setting wherein all workflow data are transferred between partners this is a challenging
issue.

In [CLW05],[ACM01] mechanisms are proposed for the management of conflict of interests
[BN89] during the distributed execution of workflows. These pieces of work specify solutions in
the design of access control policies to prevent business partners from accessing data that are not
part of their classes of interest. These approaches do not address the issue of policy enforcement
with respect to integrity of execution in fully decentralized workflow management systems yet
they appear to complement our security mechanism design. The access control policy models
suggested in [CLW05],[ACM01] can indeed be used to augment our work especially in the
specification of the sets Jri and Jwi at workflow design time so that the mechanisms we designed
to enforce access control on workflow data integrate solutions for the management of conflict
of interests.

The separation of duty principle within a workflow execution consists in ensuring that two or
more distinct business partners should be involved in the completion of a set of related workflow
tasks [SZ97]. As for the management of conflict of interests, existing solutions such as the
one presented in [Hun04] can be used to augment our work at workflow design time in the
specification of more fine-grained workflow policies associated with vertices.

4.8.2 Access control within workflow management systems

The enforcement of access control policies within workflow management systems has been a
quite active research field over the past years especially in the centralized setting, only few
contributions do however tackle this issue in the decentralized setting.

Most approaches rely on the Role Based Access Control model [SCFY96, WT04] to imple-
ment access control policies within the execution of a workflow [ASKP00]. In the centralized
setting, many access control infrastructures have been as well proposed for business processes
executed in the Service Oriented Architecture paradigm [TLC05, WT04, AkH96].

126 4. SECURITY OF PERVASIVE WORKFLOWS

In [KM03, KPF01] centralized infrastructures are proposed which protect resources that
should be accessed during the execution of a workflow based on credentials provided by busi-
ness partners involved in the workflow instance. In [BCP06] a similar approach based on
XACML [XAC05] is presented to enforce access control policies so that BPEL activities are
executed by authorized users during the execution of BPEL processes. A methodology is speci-
fied in [WKRL06] that allows to determine the set of credentials required by a user to be able to
execute some tasks of a workflow based on requirements specified in terms of security policies.
Despite solid contributions, these approaches do not however meet the requirements introduced
in the decentralized setting as they rely on a centralized component to issue access control de-
cisions. They are as a matter fact designed to protect local resources rather than workflow data
that are transferred between business partners without a centralized point of coordination in
charge of business partner assignment and access control policy enforcement.

Some pieces of work have also tackled security issues within distributed collaborative ap-
plications. In [PH03] a solution enforcing RBAC policies is presented to protect the access to
peers part of a peer-to-peer community. In this approach peers are able to make access con-
trol decisions autonomously without relying on an external policy decision point. In [TAK03]
an access control model enabling the definition of dynamic RBAC policies enforcing dynamic
separation of duties constraints is presented. The enforcement of these access control policies
however relies on a dedicated middleware which acts as a centralized component to issue ac-
cess control decision in the overall approach. Finally in [HK03] an access control model is also
proposed that however do not include the notion of role and thus is not appropriate to meet the
requirements we identified for distributed workflows.

4.8.3 Mobile agents and distributed applications

Onion encryption techniques have been introduced in [SGR97] and are widely used to enforce
anonymity in network routing protocols [KH03] or mobile agents [KSY02]. In the approach
presented in this chapter, we apply onion encryption techniques within a new application do-
main that is workflow-based applications and that introduces new requirements. We map onion
structures with workflow execution patterns in order to build proofs of execution and enforce
access control on workflow data. As a result, more complex business scenarios are supported by
our solution than usual onion routing solutions. Furthermore, combined with policy encryption
techniques, our solution provides a secure runtime environment for the execution of fully de-
centralized workflows supporting runtime assignment of business partners, a feature which had
not been tackled so far. Existing solutions based on onion ring encryption developed in other
application domains can not indeed be directly used to meet security requirements specified
within decentralized workflow management systems.

A lot of secure data collection protocols have been designed in the mobile code research
field [LMP01]. However these solutions do not offer an adequate support to assure that data
transferred between sites or business partners are modified based on a predefined plan, their
only purpose is as a matter of fact to enforce that once a piece of data has been stored by a peer

4.9. CONCLUSION 127

within the mobile agent it can only be modified an identified recipient.

4.8.4 Secure composition of business partners

The integration of security requirements within the building process of workflow instances is
also of interest to the work presented in this chapter. In the fashion of the approach we specified
in chapter 3 for transactional requirements, the pieces of work presented in [CAA04, Liu05,
YHLC05] specify workflow instance building processes wherein parameters such as trust eval-
uation are integrated into the business partner selection process so that security requirements
specified for a given workflow are met. The business partner selection algorithms specified in
there can be used to augment our approach and integrated into the workflow vertex assignment
procedure.

4.9 Conclusion

We presented mechanisms towards meeting the security requirements raised by the execution
of workflows in the decentralized setting. Our solution, capitalizing on onion encryption tech-
niques and security policy models, protects the access to workflow data with respect to the
pre-defined workflow execution plan and provides proofs of execution to business partners. In
addition, those mechanisms combined with group cryptography provide business partners’ iden-
tity traceability for sensitive workflow instances and can easily be integrated into the runtime
specification of decentralized workflows. Our approach is suitable for any business scenarios in
which business roles can be mapped to security policies that can be associated with key pairs.
It can thus be easily integrated into existing security policy models such as the chinese wall
[BN89] security model.

We also showed how these security mechanisms can be integrated into the transactional
framework that we presented in chapter 3. The goal of this approach is to make sure that
detecting security faults does not necessarily mean the complete failure of the process execution.
We presented the corresponding security-fault mechanisms relying on the workflow arbitrator
to handle critical situations.

Finally, an implementation work based on Web services technologies and identity-based
encryption techniques has been pursued as a proof of concept of our theoretical work.

128 4. SECURITY OF PERVASIVE WORKFLOWS

129

Conclusions and Perspectives

The best way to predict the future is to invent it.
- Alan Kay -

In this thesis we presented the design of the pervasive workflow architecture, a decentralized
workflow management system supporting runtime assignment of business partners to workflow
tasks. We also specified solutions to offer the guarantees required by the execution of workflow-
based applications supported by the pervasive workflow infrastructure in terms of security and
transactional consistency. This conclusion chapter summarizes the contributions described in
this report and is organized as follows. We first outline our theoretical results and their practical
implementation. The possible modes of execution supported by the pervasive workflow model
are then specified and we finally present some possible research directions.

Theory

The theoretical results presented in this thesis encompass the three following research areas.

Design of distributed workflow management systems As opposed to existing workflow man-
agement systems, the distributed execution of workflows in environments that do not offer
a dedicated infrastructure can not rely on a centralized component to assure the workflow
coordination task. To that effect, we suggested an architecture, denoted pervasive work-
flow, supporting distributed execution of workflows without the need of an ambient in-
frastructure implementing pre-configured services. The pervasive workflow architecture
features a fully decentralized control and supports dynamic assignment of workflow tasks
to business partners so that it meets the following requirements:

130 CONCLUSIONS AND PERSPECTIVES

• Fully decentralized: the management of the workflow execution is distributed
amongst the business partners taking part in a workflow instance in order to cope
with the lack of dedicated infrastructure in the pervasive setting,

• Dynamic assignment of business partners to workflow tasks: the business part-
ners in charge of executing the workflow can be discovered at runtime based on
available resources or context.

The architecture design we presented is not only suited for the execution of workflows in
the pervasive setting but also offer adequate support for the execution of workflows that
cross organizational boundaries over traditional mediums including the Internet.

Composition and coordination of transactional business partners We presented an adaptive
transactional protocol to support the execution of cross-organizational workflows. This
approach actually meets the requirements that are relevant to assuring consistency of the
execution of cross-organizational processes which are mainly twofold:

• Relaxed atomicity: atomicity of the workflow execution can be relaxed as interme-
diate results produced by the workflow may be kept intact despite the failure of one
partner.

• Dynamic selection of business partners: the execution of cross-organizational
workflows may require the execution of a composition procedure wherein candidate
business partners offering different characteristics are assigned to tasks depending
on functional and non-functional requirements associated with the workflow speci-
fication.

The execution of the protocol we proposed takes place in two phases. First, business
partners are assigned to workflow tasks using an algorithm whereby partners are selected
based on functional and transactional requirements. Given an abstract representation of
a process wherein business partners are not yet assigned to workflow tasks, this algo-
rithm enables the selection of partners not only according to functional requirements but
also to transactional ones. The resulting workflow instance is compliant with the defined
consistency requirements and its execution can be easily coordinated as our algorithm
also provides coordination rules. The workflow execution further proceeds through a
hierarchical coordination protocol managed by the workflow initiator and controlled us-
ing the coordination rules computed as an outcome of the partner assignment procedure.
This transactional protocol thus offers a full support of relaxed atomicity constraints for
workflow-based applications and is also self-adaptable to business partners’ characteris-
tics.

Security of distributed workflow management systems We specified the design of security
mechanisms that support the secure execution of decentralized workflows. The latter
meets the security requirements associated with the execution of distributed workflows
that we identified. As opposed to traditional workflow management systems the dis-
tributed execution of workflows raises security constraints due to the lack of a dedicated
infrastructure assuring the management and control of the workflow execution. These
security requirements mainly consists of three categories:

CONCLUSIONS AND PERSPECTIVES 131

• Authorization: only authorized business partners should be assigned to workflow
tasks during a workflow instance,

• Proofs of execution and traceability: the workflow execution should be compliant
with the workflow specification and it should be possible to trace back the business
partners’ identity,

• Data protection: this consists of assuring data confidentiality, ensuring data in-
tegrity and enforcing access control on data.

The mechanisms we presented capitalize on onion encryption techniques and security
policy models in order to assure the integrity of the distributed execution of workflows,
to prevent business partners from being involved in a workflow instance forged by a ma-
licious peer and to provide business partners’ identity traceability for sensitive workflow
instances. The design of the suggested mechanisms is strongly coupled with the runtime
specification of decentralized workflow management systems which eases their integra-
tion into existing distributed workflow management solutions.

Implementation

The theoretical results presented in thesis have been implemented based on the Service Oriented
Architecture paradigm and Web services technologies. The implementation work we pursued
is summarized in this section.

Pervasive workflow infrastructure Featuring a dynamic assignment of tasks to workflow part-
ners, the pervasive workflow architecture allows users to initiate workflows in any en-
vironment where surrounding users’ resources can be advertised by various means in-
cluding a service discovery mechanism. The implementation of the pervasive workflow
architecture we have pursued within the Service Oriented Computing paradigm is based
on existing Web services technologies including BPEL that are adapted to meet the con-
straints of our architectural design. We designed a BPEL engine wrapper that implements
the mechanisms and communication protocols we designed towards enabling the execu-
tion of workflows in the decentralized setting. This engine wrapper should be deployed
on each business partner that wants to support the pervasive workflow model. In addition,
we proposed an extension of the BPEL workflow description language that makes it pos-
sible to specify distributed workflows whereas the standard BPEL language can be only
used in the specification of centralized workflows.

Pervasive workflow transactional coordination framework We implemented a transactional
framework in the fashion of the WS-Coordination specification that enables on the one
hand the composition of transactional business partners based on the OWL-S language
and on the other hand the transactional coordination of cross-organizational business pro-
cesses. The coordination protocol we implemented is adaptive in that the coordination

132 CONCLUSIONS AND PERSPECTIVES

rules it is based on depend on the transactional properties that the business partners in-
volved in a workflow instance offer. In fact, it overcomes the current limitations of recent
efforts [La05a],[La05b] as our protocol offers the adequate flexibility to meet the re-
quirements of the Service Oriented Architecture paradigm in terms of relaxed atomicity.
We also presented transactional BPEL process specifications that match the transactional
model underpinning our theoretical results.

Deployment of security mechanisms within the pervasive workflow infrastructure We de-
veloped a security library that implements the security mechanisms we designed to sup-
port the execution of decentralized workflows. The implementation is based on a Java
Cryptography Extension provider that implements the ID-based cryptosystem. The se-
curity library has been integrated into the engine wrapper implementation based on the
mechanism design. Our implementation can also be used with the RSA-ECB encryption
scheme to optimize performances when required.

Execution modes supported by the pervasive workflow model

Based on the mechanisms we introduced in chapters 2, 3 and 4, we can now summarize the
various execution modes that are supported by the pervasive workflow infrastructure.

• Lightweight pervasive workflow infrastructure: neither the transactional protocol nor
the security mechanisms are implemented during the execution of workflow instances.
The discovery mode can either be runtime or source mode.

• Secure pervasive workflow infrastructure: Security mechanisms are implemented dur-
ing the execution of workflow instances. The discovery mode can either be runtime or
source mode.

• Secure pervasive workflow infrastructure with traceability: security mechanisms with
group cryptography are implemented during the execution of workflow instances. The
discovery mode can either be runtime or source mode.

• Transactional pervasive workflow infrastructure: the transactional protocol supports
the execution of workflow critical zones. The discovery mode is by default source mode.

• Secure and Transactional pervasive workflow infrastructure: the transactional pro-
tocol and the security mechanisms with group cryptography support the execution of
workflow critical zones. The discovery mode is by default source mode.

These possible execution modes are basically selected based on the requirements associated
with the workflow specification.

CONCLUSIONS AND PERSPECTIVES 133

Perspectives

Finally, we give an overview of the possible lines of research that could be carried out based on
the results presented in this thesis.

Workflow modeling Within this thesis we only considered workflows featuring simple execu-
tion patterns namely the SEQUENCE, AND-SPLIT/JOIN and OR-SPLIT/JOIN patterns.
Besides, we did not consider synchronization issues between concurrent branches. It
could interesting to study how the infrastructure and the solutions we designed could be
extended to support more complex execution scenarios and to define the corresponding
extensions within our distBPEL language.

Secure business partner composition The business partner selection process in terms of se-
curity credentials is in the scope of this thesis limited to a simple match-making process
between the security credentials required by the workflow execution and those provided
by business partners. We could in addition integrate some other parameters such as trust
evaluation in the fashion of the methodology we designed for transactional properties
offered by business partners.

Integration of complex security policies As we mentioned in the related work section of chap-
ter 4, it would be interesting to integrate complex security policy models at workflow
design time to avoid conflict of interests between business partners and satisfy separation
of duty constraints.

134 CONCLUSIONS AND PERSPECTIVES

135

Appendix A

Engine wrapper implementation

We present in this appendix the pervasive workflow implementation we developed as a proof of
concept for the theoretical results presented in chapter 2. The implementation work we pursued
consists of the development of the engine wrapper whose design is outlined in chapter 2 and
that of an Ajax-based workflow visualization tool that enables the runtime visualization of a
pervasive workflow execution.

A.1 Engine wrapper interface and UML [UML] diagrams

We first outline the overall classes that are implemented in order to support the pervasive work-
flow architecture execution. The interactions between those classes are then illustrated within
two sequence diagrams. Finally the Application Programming Interface (API) exposed by the
workflow engine wrapper is commented and justified based on the model design.

A.1.1 Class and sequence diagrams

Figure A.1 depicts the engine wrapper class diagram. The engine wrapper interface is imple-
mented by the MessageHandler class. The workflow execution on a given business partner is
initialized upon receipt of a WorkflowMessage sent to the processMessage operation. This re-
sults in the instantiation of the MessageHandler class. This instance of MessageHandler then
contacts the InstanceAdministration class and retrieves the corresponding WorkflowInstance
that is a class wherein workflow control data for a given instance of a workflow are stored. The
InstanceAdministration class is implemented based on the singleton design pattern [GHJV07]
in order to make sure that a single instance of this class is created regardless of the number of
workflow messages received by a given business partner. The main goal of this design is in

136 A. ENGINE WRAPPER IMPLEMENTATION

Figure A.1: Pervasive Workflow: class diagram

A.1. ENGINE WRAPPER INTERFACE AND UML [UML] DIAGRAMS 137

fact to support asynchronous message exchanges within workflow instances that can span over
hours or days.

Each WorkflowInstance is wrapped by a WorkflowSynchronizer class that serves as an ac-
cess guard and prevents that several instances of the MessageHandler class try access to same
instance concurrently e.g. in the case of an AND-Join workflow pattern. The WorkflowMessage
is then transferred to the WorkflowInstance it belongs to. One should notice here that thanks
to this design, the InstanceAdminstration class is able to handle different instances of the same
workflow at the same time. The main thread of the program for a given workflow instance takes
place in the WorkflowSynchronizer class, implemented within the processMessage operation.
The latter consists of the update of workflow data handled by the VariableAdmin class and the
deployment and invocation of the public BPEL process implemented within the BPELProcess-
Manager class.

The communications between the engine wrapper and the BPEL engine at the business
partner level are asynchronous in order to support the execution of processes that can span over
hours. The MessageHandler class therefore implements a callback procedure which simply
resumes the execution of a workflow instance upon completion of the BPEL processes. The
workflow execution further proceeds with the discovery of the next business partners involved
in the workflow execution (Discoverymodule class) and the invocation of the business partners
that have just been discovered and assigned to further workflow tasks (ContactHostsHandler
class).

The sequence diagrams corresponding to the processMessage and callback operations of
the MessageHandler class that specify the engine wrapper business logic are depicted in figures
A.2 and A.3, respectively.

A.1.2 Engine wrapper interface

The engine wrapper communicates with other business partners involved in a workflow through
the MessageHandler interface which is thus exposed as a Web service. This interface imple-
ments the two following asynchronous operations:

• ProcessMessage that takes as input a WorkflowMessage compliant with the XML schema
depicted in table A.1,

• CallbackResume that resumes the workflow execution upon completion of the BPEL
processes locally executed by a business partner. This callback procedure takes as input
the workflow instance identifier and the data sent back by the local applications.

138 A. ENGINE WRAPPER IMPLEMENTATION

Figure A.2: Process message: sequence diagram

A.1. ENGINE WRAPPER INTERFACE AND UML [UML] DIAGRAMS 139

Figure A.3: Callback: sequence diagram

140 A. ENGINE WRAPPER IMPLEMENTATION

<complexType name="WorkflowMessage">
<sequence>
<element name="data" type="ArrayOf_xsd_string" />
<element name="edges" type="ArrayOfArrayOf_xsd_int" />
<element name="localWorkflows" type="ArrayOf_xsd_base64Binary" />
<element name="numberVertices" type="xsd:int" />
<element name="receiverVertex" type="xsd:int" />
<element name="roles" type="ArrayOf_xsd_string" />
<element name="senderVertex" type="xsd:int" />
<element name="workflowID" type="xsd:string" />
</sequence>

</complexType>

Table A.1: Workflow message XML schema

A.2 Workflow visualization tool

In order to visualize the execution and the business logic of a pervasive workflow instance,
we developed a graphical tool leveraging Web technologies including SVG [SVG07] and Ajax
[Aja]. The principles of this visualization application are depicted in figure A.4. The visualiza-
tion application is composed of the two following components:

• Application server: the application server is the core of the visualization application.
It publishes an SVG/Ajax document that is a graphical representation of the workflow
execution and implements JSP pages that are used to store the state of pervasive workflow
executions.

• Web browser: this is the client side that allows to visualize the events occurring during
a pervasive workflow instance. The browser displays an SVG document whose structure
(DOM [DOM05]) is dynamically updated by an Ajax script based on the state of the
workflow execution. The SVG document and the Ajax script are downloaded once from
the application server, the browser then locally executes Ajax routines.

At runtime, the business partners involved in a workflow instance update the state of the
workflow execution communicating with the application server by means of JSP pages [JSP05].
On the client side, the Ajax script periodically queries the application server by means as well of
JSP pages in order to retrieve the current state of the workflow execution and updates the SVG
document structure accordingly. We designed two SVG documents to monitor the execution
of pervasive workflow instances. The first SVG document depicted in figure A.5 is a graphical
representation of the execution steps of a pervasive workflow. Of course, the graphical layout
depends on the execution patterns of the particular workflow whose execution is monitored.
The second SVG document depicted in figure A.6 illustrates the business logic of the engine
wrapper we implemented.

A.3. DEPLOYMENT 141

Web browser

SVG
rendering

Ajax scriptupdates

Application server

JSP pages

Engine
wrapper

updates

queries

Engine
wrapper

Business partner 1 Business partner 2

Visualization application

Figure A.4: Pervasive workflow visualization application principles

A.3 Deployment

The implementation presented in this chapter has been developed based on the following tech-
nologies:

• J2EE: The prototype has been implemented based on Java [Jav]

• Tomcat: Application server [Tom]

• AXIS: SOAP processing engine [AXI]

• Active-BPEL: BPEL engine

142 A. ENGINE WRAPPER IMPLEMENTATION

Figure A.5: Pervasive workflow execution: Screen shot of the visualization application

Figure A.6: Engine wrapper business logic: Screen shot of the visualization application

143

Appendix B

Transactional framework implementation

Chapter 3 already provides a complete specification of the coordination framework we designed
and implemented towards meeting the consistency requirements we identified for the pervasive
workflow management system. In this section we thus only give some details on the composi-
tion algorithm we designed and on the demonstrator we implemented to illustrate the coordina-
tion protocol execution.

B.1 Transaction-aware composition algorithm

The transaction-aware composition algorithm we implemented is presented in figure B.1. As
specified in chapter 3, the algorithm (limited to the assignment of business partners to vertices
of type vk) consists of the following steps:

1. Assign business partners of type (rl, rtc).

2. Compute the transactional requirements associated with vertices for which only business
partners of type (rl, p) are available, return false if (rl, p) is not sufficient.

3. Compute the transactional requirements associated with vertices for which only business
partners of type (rl, rt) are available, return false if (rl, rt) is not sufficient.

4. Compute the transactional requirements associated with vertices for which only business
partners of type (rl, c) are available, return false if (rl, c) is not sufficient.

5. For each remaining vertex to which no business partner has been assigned yet compute
transactional requirements:

• If (rl, rtc) is required return false.

144 B. TRANSACTIONAL FRAMEWORK IMPLEMENTATION

• If (rl, rt) is required assign a business partner of type (rl, rt).

• If (rl, c) is required assign a business partner of type (rl, c).

Each new assignment of a business partner to a vertex changes the transactional require-
ments associated with vertices to which no business partner has been assigned yet; thus
repeat this step until only vertices requiring (rl, p) remain.

6. For each remaining vertex to which no business partner has been assigned yet assign a
business partner of type (rl, rt).

B.1. TRANSACTION-AWARE COMPOSITION ALGORITHM 145

Figure B.1: Transaction-aware business partner assignment procedure

146 B. TRANSACTIONAL FRAMEWORK IMPLEMENTATION

Figure B.2: Simple workflow example

B.2 Demonstrator

We implemented a stand alone prototype to demonstrate the transactional framework whose
design is presented in chapter 3. The demonstrator features a simple workflow depicted in
figure B.2 and the scenario execution takes place in two phases. Service providers are first
selected based on the transaction-aware selection algorithm we designed and integrated into an
OWL-S matchmaker (refer to section 3.9.1 for details). The resulting workflow instance is then
executed, supported by the transactional coordination protocol presented in chapter 3. Chapter
3 already provides a thorough description of the implementation work we pursued we thus
only comment some screen shots from the visualization application that we adapted to monitor
message exchanges between the components of the transactional framework. The following
execution scenario is based on the acceptable termination state table depicted in table B.2 and
assumes that the set of service providers depicted in table B.1 is assigned to the workflow
vertices. Furthermore, we consider that service provider 4 fails to complete the vertex it is
assigned to.

Retriable Compensatable Reliable
Service 1 yes no yes
Service 2 yes yes yes
Service 3 yes yes yes
Service 4 no yes yes
Service 5 yes no yes
Service 6 yes no yes

Table B.1: Service providers assigned to the vertices of the workflow depicted in figure B.2

Business partner registration In the first phase of the coordination protocol execution, busi-
ness partners register to the coordinator as depicted in figure B.3.

Runtime At runtime, service providers are sequentially activated and complete the execution

B.2. DEMONSTRATOR 147

Service 1 Service 2 Service 3 Service 4 Service 5 Service 6
ats1 completed completed completed completed completed completed
ats2 completed failed aborted aborted aborted aborted
ats3 completed compens. compens. failed aborted aborted
ats4 completed compens. canceled failed aborted aborted
ats5 completed compens. compens. compens. failed aborted

Table B.2: Transactional requirements associated with the workflow depicted in figure B.2

Figure B.3: Service registration

of the vertex they have been assigned to as depicted in figure B.4. Upon failure of service
provider 4, a failure message is forwarded to the coordinator as depicted in figure B.5.

Coordination strategy Upon receipt of the failure notification sent by service provider 4, the
coordinator sends appropriate abortion, cancellation and compensation messages to ser-
vice providers based on the ATS table specifying the transactional requirements associ-
ated with the workflow. For instance, the execution of the vertex assigned to the service
provider 3 is canceled as depicted in figure B.6.

148 B. TRANSACTIONAL FRAMEWORK IMPLEMENTATION

Figure B.4: Service completion

Figure B.5: Service failure

B.2. DEMONSTRATOR 149

Figure B.6: Service cancellation

150 B. TRANSACTIONAL FRAMEWORK IMPLEMENTATION

151

Appendix C

Security library implementation

We present in this appendix the implementation of the security solutions specified in chapter
4 to secure the execution of pervasive workflows. The security mechanisms we designed have
been integrated within the engine wrapper implementation presented in appendix A. In what
follows, insights are provided on this integration work and on the algorithms associated with
the management of the onion structures specified in chapter 4.

C.1 Integration of security primitives into the business logic
of the engine wrapper

The implementation of the security mechanisms we designed is composed of the classes de-
picted in figure C.1. The latter can be grouped as follows.

• Key management: the InitKeyManger class implements the operations required by the
workflow initiator to create the set of keys and security parameters required by the work-
flow execution. The KeyManagerRSA and KeyManagerIBE classes implement the en-
cryption and signature primitives associated with the RSA and IBE cryptosystems, re-
spectively.

• Onion management: the ManagementOpRSA, ManagementOdRSA, ManagementOpIBE
and ManagementOdIBE classes implement the execution primitives associated with the
onion structures Od and Op.

• Workflow data management: the integration of the security mechanisms into the engine
wrapper business logic required to modify data structures and to design operations to
manage the latter. The DataBlock, DataWorkflowManagement, EncryptedDataStructure
implement these new functionalities.

152 C. SECURITY LIBRARY IMPLEMENTATION

Figure C.1: Security library class diagram

• Workflow policy: the PW class defines the data type associated with the workflow policy
PW .

The SecurityAdmin class makes the glue between this set of classes and the engine wrapper
classes when it comes to integrating the primitives associated with the execution of the security
mechanisms, as depicted in the sequence diagrams of figures C.2 and C.3.

The workflow message structure has been also modified to match the one defined in figure
4.8 as depicted in table C.1. Some workflow control data including the workflow adjacency
matrix (edges element), the workflow instance identifier (workflowID element), the message
sender and recipient vertices are sent as clear text in order to support AND-JOIN workflow pat-
terns. The engine wrapper should indeed be able in this case to determine how many workflow
messages it has to wait for prior to executing a vertex.

C.1. INTEGRATION OF SECURITY PRIMITIVES INTO THE BUSINESS LOGIC OF THE ENGINE

WRAPPER 153

Figure C.2: Process message with security mechanisms: sequence diagram

154 C. SECURITY LIBRARY IMPLEMENTATION

Figure C.3: Callback with security mechanisms: sequence diagram

C.2. INTEGRATION OF SECURITY PRIMITIVES INTO THE VISUALIZATION TOOL 155

<complexType name="WorkflowMessage">
<sequence>
<element name="PW" type="xsd:string"/>
<element name="edges" type="impl:ArrayOfArrayOf_xsd_int"/>
<element name="encryptedDataBlock" type="impl:ArrayOf_xsd_string"/>
<element name="HashSets" type="xsd:string"/>
<element name="encryptionSystemParameters" type="xsd:string"/>
<element name="encryptionType" type="xsd:string"/>
<element name="localWorkflows" type="impl:ArrayOf_DataHandler"/>
<element name="od" type="impl:ArrayOf_xsd_string"/>
<element name="op" type="impl:ArrayOfArrayOf_xsd_string"/>
<element name="receiverVertex" type="xsd:int"/>
<element name="senderVertex" type="xsd:int"/>
<element name="workflowID" type="xsd:string"/>

</sequence>
</complexType>

Table C.1: Workflow message XML schema integrating security mechanisms

C.2 Integration of security primitives into the visualization
tool

The visualization tool we implemented to monitor the execution of a pervasive workflow has
been adapted in order to visualize the execution of the security mechanisms we developed. The
corresponding SVG pictures are shown in figures C.4 and C.5. The former illustrates the peeling
off process of Od and the building process of Op throughout the workflow execution while the
latter shows how the security mechanisms are integrated into the engine wrapper business logic.

C.3 Onion processing

In this section the algorithms we designed to assure the management of the onion structures Od

and Op are specified. The building process of the onion Od is first presented, the peeling off
process of the onion Op is then described.

C.3.1 Onion Od building process

We implemented the building process of the onion structure Od that is performed by the work-
flow initiator using a breath-first algorithm. Starting from the last vertex of the workflow, the
layers ofOd are sequentially encrypted based on the workflow execution pattern associated with
the current vertex, as depicted in figure C.6. The peeling off process of Od only consists of the

156 C. SECURITY LIBRARY IMPLEMENTATION

Figure C.4: Od peeling off process and Op building process: Screen shot of the visualization
application

decryption of a single layer and is thus not mentioned.

C.3.2 Onion Op peeling off process

Upon receipt of a workflow message requesting the execution of a vertex, business partners
verify the integrity of the workflow execution by completely peeling off the onion Op. We
implemented the peeling off process of Op using a recursive procedure as depicted in figure
C.7. The latter is a depth-first algorithm: starting from the last vertex of the workflow, this
procedure identifies all workflow execution branches and verifies the integrity of each of the
latter.

C.3. ONION PROCESSING 157

Figure C.5: Integration of the security mechanisms into the engine wrapper business logic:
Screen shot of the visualization application

158 C. SECURITY LIBRARY IMPLEMENTATION

Figure C.6: Onion Od building process

C.3. ONION PROCESSING 159

Figure C.7: Onion Op peeling off process

160 C. SECURITY LIBRARY IMPLEMENTATION

161

Appendix D

Prototype developed in the context of the
MOSQUITO project

The pervasive workflow infrastructure was designed in the context of the MOSQUITO IST Eu-
ropean project [mos]. The main outcome of the MOSQUITO project was the development of a
collaborative application in the eHealthcare application domain, whose enabling technology is
the pervasive workflow management system. In this appendix, we present the prototype devel-
oped within the project as a proof of concept. The prototype demonstration scenario outlines
the execution of a workflow wherein a physician, a pharmacist and a social worker collaborate
to provide medical care to a patient. The demonstrator scenario is first detailed. The prototype
infrastructure components are then described. Finally, we provide technical details on each step
of the workflow execution.

D.1 Scenario

A patient Bob, who has a restricted mobility and stays more or less at home, has subscribed a
monitoring service that assures assistance in case of illness. Bob’s health status is monitored by
several sensors, e.g. temperature or pulse sensors. A monitoring application analyses the data
so that a workflow is initiated to schedule a house visit to the patient and provide medication
whenever necessary. The first step of this workflow consists in finding physicians available to
make a house visit. A list of physicians is selected for the task by means of a discovery service.
Once one of them has committed to perform the task, the assigned physician visits the patient
and issues a prescription. The physician may require access to the patient’s medical record
which is stored in a Medical Information Portal (MIP) in order to store the prescription. The
latter is issued electronically and sent automatically to the nearest pharmacy. As soon as the
medication is ready for dispatch, a social worker is assigned for delivery to the patient. The
prototype demonstration scenario is depicted in figure D.1.

162 D. PROTOTYPE DEVELOPED IN THE CONTEXT OF THE MOSQUITO PROJECT

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Alert notification

Prescription

Pr
es

cr
ip

tio
n

Examination

Medecine retrieval

Delivery

Sensor d
ata

Figure D.1: Prototype demonstration scenario

D.2 Demonstrator execution

The different actors involved in the scenario presented in section D.1 can be seen as business
partners assigned to the vertices of the pervasive workflow depicted in figure C.4. We detail in
this section the execution steps of this workflow.

D.2.1 Workflow instantiation

The workflow is initiated by a medical center when a patient is in need of medical care. The
medical center thus assigns a physician to the case using a discovery service mechanism and
builds a workflow message that it sends to the discovered physician. The workflow instance is
here identified using the patient’s identity.

D.2.2 Doctor Vertex

Upon receipt of a new assignment the physician being logged on his healthcare application
receives a new message in his mail box, as depicted in figures D.2 and D.3. He is able to browse
the patient’s medical record and add a prescription once the patient examination is finished as
shown in figures D.4 and D.5. The prescription issued by the physician is transferred to the

D.2. DEMONSTRATOR EXECUTION 163

Figure D.2: Medical Information Portal login

engine wrapper and handled as any workflow data. A pharmacy having the required medicines
in stock is then assigned to the sequel of the workflow by the physician.

D.2.3 Pharmacist Vertex

Upon receipt of the request the pharmacist assigned to the case gets a new item in his “to-do”
list and prepares the medicines specified by the physician as depicted in figure D.6. Once the
prescribed medicines are ready for dispatch, he assigns a social worker to deliver the latter to
the patient.

D.2.4 Social worker Vertex

The social worker assigned to the case retrieves the medicines and delivers them to the patient.

164 D. PROTOTYPE DEVELOPED IN THE CONTEXT OF THE MOSQUITO PROJECT

Figure D.3: Alert received by a physician

Figure D.4: Access to patient data

D.2. DEMONSTRATOR EXECUTION 165

Figure D.5: Prescription management page

Figure D.6: Pharmacist interface

166 D. PROTOTYPE DEVELOPED IN THE CONTEXT OF THE MOSQUITO PROJECT

167

Appendix E

Curriculum Vitae

Frederic Montagut Phone: +33 (0)4 97 21 96 55
8, rue Max Jacob Mobile: +33 (0)6 86 73 67 43
81100 Castres, France fred.montagut@googlemail.com

Date of birth: May, 7th 1981
Citizenship: French

Education

• Oct. 2004 - Oct. 2007. Ph.D. in Computer Science, Ecole Nationale Superieure des
Telecommunications, Paris. joint programme with Institut Eurecom, Sophia-Antipolis,
France.
Supervisor: Pr. Refik Molva, Institut Eurecom.
Thesis contributions: design of a distributed workflow management system, design of
solutions to provide transactional consistency and security within distributed workflow
executions.

• Sept. 2001 - Sept. 2004. Engineering diploma in Telecommunications, Institut Na-
tional des Telecommunications, Evry, France. joint programme with Institut Eurecom.
Relevant courses: Network processing, Network Security, Web technologies, Project
Management.

• Oct. 2003 - Sept. 2004. M.Sc in Networks and Distributed Systems, Université de
Nice Sophia-Antipolis, France. joint programme with Institut Eurecom.

168 E. CURRICULUM VITAE

Research Experience

• Oct. 2004 - Oct. 2007. Research Associate at SAP Labs France SAS Sophia-Antipolis,
France.
I was part of the Security and Trust Research program at SAP Research, as a PhD student
funded by the French CIFRE programme. My research activities focused on topics related
to the execution of decentralized workflows including architecture design, security and
transactional consistency. The research results were implemented using Web services
technologies.

• Mar. 2004 - Aug. 2004. Master’s Student, Intern at BMW Forschung und Technik,
GmbH Munich, Germany.
I wrote my Master’s thesis during my six-month stay within the Wireless Technology
group at BMW on the topic “Predictive model for seamless handover". The project I was
involved in focused on wireless communications between cars and a wireless LAN infras-
tructure. In the scope of this thesis I designed a signal strength prediction algorithm for
wireless LAN connections based on fuzzy logic theory in order to provide an estimation
of a connection lifetime. The result of this work was implemented using Matlab.

Research Projects

• From 2007. R4eGov: Towards e-Administration in the large. EU IP Project involving
twenty institutions. This project consists in designing a secure collaborative framework
supporting the execution of business processes involving different European institutions.
This project capitalizes on the results of my thesis with respect to transactional coordina-
tion and security solutions.
http://www.r4egov.info/

• Oct. 2004 - Dec. 2006. MOSQUITO: Mobile Workers’ Secure Business Applications in
Ubiquitous Environments. EU STREP Project involving seven institutions. This project
focused on the integration of contextual information within business applications exe-
cuted in the pervasive setting. I was leading the workpackage dealing with the design of a
Web services based middleware. My contributions were based on the results of my thesis.
http://www.mosquito-online.org

Academic teaching and supervision

• Supervision of some labs on IPsec protocol at Institut Eurecom

• Supervision of two master’s students at SAP Labs France

E. CURRICULUM VITAE 169

Software development activities

• 2004-2007. In the scope of my PhD thesis, I implemented a prototype presenting my re-
search results. This prototype mainly consists of four modules: a decentralized workflow
engine, a framework supporting the execution of transactional workflows, a set of security
protocols for the execution of distributed workflows and a SVG based workflow monitor-
ing tool. These development tasks used the following technologies: Java / Tomcat, Axis
Web Services framework (synchronous and asynchronous WS calls), BPEL, ActiveBPEL
workflow engine, WS-Coordination, OWL-S, WS-Discovery, Identity based Encryption
Java Libraries, SVG, Ajax.

• 2004. In the scope of my master’s thesis, I implemented a simulation framework based
on Matlab Simulink for the algorithm I designed.

• 2001-2004. Student projects including a C++/GTK graphical interface for a domino game
and a Java course scheduler for teachers and students.

Work experiences

• Oct. 2004 - Oct. 2007. Research Associate at SAP Labs France SAS Sophia-Antipolis,
France.
I was mainly involved in two European IST Research projects namely MOSQUITO and
R4eGov to which I contributed with my PhD thesis results. My work also involved pre-
sentations to SAP internal and external events as well as identifying funding opportuni-
ties (I took part in the proposal writing process of the project NEUROLOG funded by the
French government).

• Mar. 2004 - Aug. 2004. Master’s Student, Intern at BMW Forschung und Technik,
GmbH Munich, Germany.
Six-month internship in the Wireless Technology group at BMW.

• Summer 2002. Intern at Cap Laser Castres, France.
Set-up, Maintenance and Administration of computer parks.

Conference Papers

“A secure public sector workflow management system”, S. Crosta, F. Montagut, J.C. Pazza-
glia, Y. Reznichenko, M. Rits, A. Schaad, ACSA 2005, 21st Annual Computer Security Appli-
cations Conference - Case Study session, December 5-9, 2005, Tucson, USA.

170 E. CURRICULUM VITAE

“Enabling pervasive execution of workflows”, F. Montagut and R. Molva, in the proceed-
ings of CollaborateCom 2005, 1st IEEE International Conference on Collaborative Comput-
ing:Networking, Applications and Worksharing, December 19-21, 2005, San Jose, USA.

“Augmenting Web services composition with transactional requirements”, F. Montagut
and R. Molva, in the proceedings of ICWS 2006, IEEE International Conference on Web Ser-
vices, September 18-22, 2006, Chicago, USA. This paper received the conference runners-
up award.

“Towards transactional pervasive workflows”, F. Montagut and R. Molva, in the proceed-
ings of EDOC 2006, 10th IEEE International EDOC Conference “The Enterprise Computing
Conference", 16-20 October 2006, Hong-Kong.

“Enforcing Integrity of Execution in Distributed Workflow Management Systems”, F.
Montagut and R. Molva, in the proceedings of SCC 2007, 2007 IEEE International Conference
on Services Computing, 9-13 July 2007, Salt Lake City , USA.

“Traceability and Integrity of Execution in Distributed Workflow Management Sys-
tems”, F. Montagut and R. Molva, in the proceedings of ESORICS 2007, 12th European Sym-
posium On Research In Computer Security, Dresden, Germany, September 24-26, 2007.

Journal Papers

“The Pervasive Workflow: A Decentralized Workflow System Supporting Long Running
Transactions”, F. Montagut, R. Molva and S. Golega, to appear in IEEE Transactions on Sys-
tems, Man and Cybernetics, Part C: Applications and Reviews.

“Automating the composition of transactional Web services”, F. Montagut, R. Molva
and S. Golega, To appear in International Journal on Web Services Research, Idea Publishing.

Book chapters

“Utilisation des informations contextuelles pour assurer la sécurité d’un processus col-
laboratif distribué : un exemple dans l’e-Santé”, J.-C. Pazzaglia, K. Wrona, A. Laube, F.
Montagut, L. Gomez, Y. Roudier, and S. Trabelsi. OFTA, Paris, France, 2007.

“Automating the composition of transactional Web services”, F. Montagut, R. Molva
and S. Golega, in “Managing Web Services Quality: Measuring Outcomes and Effectiveness”,
IGI Global, to appear in 2008.

E. CURRICULUM VITAE 171

Patents (Filed with INPI by SAP)

• 05.04.2007 Enforcing Integrity of Execution in Distributed Workflow Management Sys-
tems

• 30.03.2007 Architecture for seamless display of application event

• 30.01.2007 Method and Apparatus for Sealing Electronic Documents

• 13.09.2006 Towards Transactional Pervasive Workflows

• 05.04.2006 Augmenting Web Services Composition with Transactional Requirements

• 14.12.2005 Automatic Robots Assembly

• 29.09.2005 Support for execution of workflow in pervasive environments

Professional activities

• PC member of the 11th IEEE International EDOC Conference (EDOC 2007)

• Editorial Advisory Board of the book “Managing Web Services Quality: Measuring Out-
comes and Effectiveness”, IGI Global, USA

Languages

Native French, Fluent English, basic knowledge of German.

Computer Skills

• Unix and Windows 9x

• C/C++, Java, Php, HTML, SQL

• Eclipse, Aptana, Visual C++

• Ms Office, Open Office, Latex, Matlab

172 E. CURRICULUM VITAE

Honors and Awards

• International Conference on Web Services 2006 (ICWS’06) “runners-up" award

• 2007 SAP Research Award for exceptional contributions to SAP

Extracurricular activities

• Sports: Ski (French "chamois de bronze"), Chess (Elo 1500), Golf.

• Music (Original Soundtracks), Reading, Cinema, Internet

173

Bibliography

[2PC] Open system interconnection- distributed transaction processing (osi-tp) model.
iso is 100261.

[Aa05] M. Abbott and al. Business transaction protocol, 2005.

[AAA+95] G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan, R. Gunthor, and M. Kamath.
Exotica/fmqm: A persistent message-based architecture for distributed workflow
managemen. In Proceedings of the IFIP WG8.1 Working Conference on Informa-
tion Systems Development for Decentralized Organizations. Trondheim, Norway,
August 1995., 1995.

[AAA+96] G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Günthör, and C. Mohan.
Advanced transaction models in workflow contexts. In Proc. 12th International
Conference on Data Engineering, New Orleans, February 1996.

[AAAM97] G. Alonso, D. Agrawal, A. El Abbadi, and C. Mohan. Functionality and lim-
itations of current workflow management systems. submitted to IEEE Expert,
1997.

[ACJT00] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably
secure coalition-resistant group signature scheme. Lecture Notes in Computer
Science, 1880:255–271, 2000.

[ACKM03] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web services: Concepts, Ar-
chitectures, and Applications. Springer Verlag, 2003.

[ACM01] V. Atluri, S. A. Chun, and P. Mazzoleni. A chinese wall security model for decen-
tralized workflow systems. In CCS ’01: Proceedings of the 8th ACM conference
on Computer and Communications Security, pages 48–57, 2001.

[ADK+05] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu, S. Mittal, and B. Sri-
vastava. A service creation environment based on end to end composition of web
services. In Proceedings of the WWW conference, 2005.

[AEwe07] Active Endpoints www.active endpoints.com. ACTIVE BPEL Engine, 2007.

174 BIBLIOGRAPHY

[AHMS06] P. Allen, S. Higgins, P. McRae, and H. Schlamann. Service Orientation: Winning
Strategies and Best Practices. Cambridge University Press, Cambridge, UK,
2006.

[Aja] Ajax: Asynchronous javascript and xml.

[AkH96] Vijayalakshmi Atluri and Wei kuang Huang. An authorization model for work-
flows. In Proceedings of the Fourth European Symposium on Research in Com-
puter Security, pages 44–64, 1996.

[AM97] G. Alonso and C. Mohan. Workflow management systems: The next generation
of distributed procesing tools. Advanced Transaction Models and Architectures
(Jajodia and L. Kerschberg, eds.), pages 35–62, 1997.

[ASF06] Apache Software Fundation. XMLBeans, July 2006.

[ASKP00] G.-J. Ahn, R. Sandhu, M. H. Kang, and J. S. Park. Injecting RBAC to secure
a web-based workflow system. In Proceedings of 5th ACM Workshop on Role-
Based Access Control, pages 1–10, 2000.

[AXI] Axis - apache software foundation. http://ws.apache.org/axis/.

[Ba00] J. J. Barton and al. W3c - soap messages with attachments, 2000.
http://www.w3.org/TR/SOAP-attachments.

[Ba05] J. Beatty and al. Web services dynamic discovery (ws-discovery), April 2005.

[BCCT05] M. Brambilla, S. Ceri, S. Comai, and C. Tziviskou. Exception handling in
workflow-driven web applications. In WWW ’05: Proceedings of the 14th inter-
national conference on World Wide Web, pages 170–179, New York, NY, USA,
2005. ACM Press.

[BCP06] E. Bertino, J. Crampton, and F. Paci. Access control and authorization constraints
for ws-bpel. In ICWS ’06: Proceedings of the IEEE International Conference on
Web Services (ICWS’06), pages 275–284, Washington, DC, USA, 2006. IEEE
Computer Society.

[BDS05] B. Benatallah, M. Dumas, and Q. Z. Sheng. Facilitating the rapid development
and scalable orchestration of composite web services. Distributed and Parallel
Databases, 17(1):5–37, 2005.

[BF01] D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In
Advances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology
Conference, Santa Barbara, CA, USA, pages 213–229, 2001.

[BFA99] E. Bertino, E. Ferrari, and V. Atluri. The specification and enforcement of au-
thorization constraints in workflow management systems. ACM Trans. Inf. Syst.
Secur., 2(1):65–104, 1999.

BIBLIOGRAPHY 175

[BGP05] S. Bhiri, C. Godart, and O. Perrin. Reliable web services composition using
a transactional approach. In Proc. of the IEEE International Conference on e-
Technology, e-Commerce, and e-Services (EEE), Hong Kong, China, 2005.

[biz05] Microsoft Biztalk - http://www.microsoft.com/biztalk/, 2005.

[BM04] D. J. Bradley and D. P. Maher. The nemo p2p service orchestration framework.
In Proceedings of the 37th Hawaii International Conference on System Sciences,
2004.

[BM05] W. Bagga and R. Molva. Policy-based cryptography and applications. In FC’
2005, 9th International Conference on Financial Cryptography and Data Secu-
rity, Roseau, The Commonwealth of Dominica, Mar 2005.

[BMNR03] S. Berger, S. McFaddin, C. Narayanaswami, and M. Raghunath. Web services
on mobile devices - implementation and experience. In Fifth IEEE Workshop on
Mobile Computing Systems and Applications, 2003.

[BMR94] D. Barbara, S. Mehrotra, and M. Rusinkiewicz. Incas: A computation model for
dynamic workflows in autonomous distributed environments. Technical report,
Department of Computer Science, University of Houston, May 1994.

[BMR96] D. Barbara, S. Mehrotra, and M. Rusinkiewicz. Incas: Managing dynamic work-
flows in distributed environments. Journal of Database Management, 7(1), 1996.

[BN89] D. F. C. Brewer and M. J. Nash. The chinese wall security policy. In IEEE
Symposium on Security and Privacy, pages 206 –214, 1989.

[Bou07] Bouncy Castle - http://www.bouncycastle.org/, 2007.

[BPE] Business process execution language for web sevices.
http://www.ibm.com/developerworks/library/ws-bpel/.

[BPG05] S. Bhiri, O. Perrin, and C. Godart. Ensuring required failure atomicity of com-
posite web services. In Proc. of the 14th international conference on World Wide
Web, 2005.

[BS06] J. Bloomberg and R. Schmelzer. Service Orient or Be Doomed!: How Service
Orientation Will Change Your Business. WILEY, Hoboken, New Yersey, USA,
2006.

[Ca04] L. Clement and al. Uddi version 3.0.2, October 2004.

[CAA04] S. Ae Chun, V. Atluri, and N. R. Adam. Policy-based web service composition.
In RIDE ’04: Proceedings of the 14th International Workshop on Research Issues
on Data Engineering: Web Services for E-Commerce and E-Government Appli-
cations (RIDE’04), pages 85–92, Washington, DC, USA, 2004. IEEE Computer
Society.

176 BIBLIOGRAPHY

[CCKM05] G. Chafle, S. Chandra, P. Kankar, and V. Mann. Handling faults in decentralized
orchestration of composite web services. In Lecture Notes in Computer Science,
Volume 3826, 2005.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services
description language (wsdl) 1.1, http://www.w3.org/TR/wsdl 2001.

[CKM+03] F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The next step in
web services. Commun. ACM, 46(10), 2003.

[CL04] D. Chakraborty and H. Lei. Pervasive enablement of business processes. In
Proceedings of the Second IEEE Annual Conference on Pervasive Computing
and Communications 2004. PerCom 2004, pages 87– 97, March 2004.

[CLW05] S. Chou, A. Liu, and C. Wu. Preventing information leakage within workflows
that execute among competing organizations. J. Syst. Softw., 75(1-2):109–123,
2005.

[Coa98] Workflow Management Coalition. Workflow security considerations - white pa-
per. Technical Report WFMC-TC-1019, Workflow Management Coalition, 1998.

[CR04] A. Cichocki and M. Rusinkiewicz. Providing transactional properties for migrat-
ing workflows. Mob. Netw. Appl., 9(5):473–480, 2004.

[CYT04] H. Chu, C. You, and C. Teng. Challenges: Wireless web services. In ICPADS ’04:
Proceedings of the Parallel and Distributed Systems, Tenth International Confer-
ence on (ICPADS’04), page 657, Washington, DC, USA, 2004. IEEE Computer
Society.

[Den01] P. J. Denning. Invisible Future: The Seamless Integration of Technology Into
Everyday Life. McGraw-Hill, 2001.

[DGA04] P. Doshi, R. Goodwin, and R. Akkiraju. Parameterized semantic matching for
workflow composition. Technical Report RC23133, IBM, 2004.

[DOM05] Document object model - http://www.w3.org/dom/, 2005.

[DSBW+06] J. Davis, D. Sow, D. Bourges-Waldegg, C. Jie Guo, C. Hoertnag, M. Stolze,
B. White Eagle, and Y. Yin. Supporting mobile business workflow with com-
mune. wmcsa, 0:10–18, 2006.

[Elm92] A. K. Elmagarmid. Database Transaction Models for Advanced Applications.
Morgan Kaufmann, 1992.

[ERS99] A. Elmagarmid, M. Rusinkiewicz, and A. Sheth. Management of heterogeneous
and autonomous database systems. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1999.

BIBLIOGRAPHY 177

[FDDB05] M. C. Fauvet, H. Duarte, M. Dumas, and B. Benatallah. Handling transactional
properties in web service composition. In Web Information Systems Engineering
- WISE 2005, 6th International Conference on Web Information Systems Engi-
neering, New York, NY, USA, pages 273–289, 2005.

[FHF05] C. K. Fung, P. C. K. Hung, and D. H. Folger. Achieving survivability in business
process execution language for web services (bpel) with exception-flows. In EEE
’05: Proceedings of the 2005 IEEE International Conference on e-Technology, e-
Commerce and e-Service (EEE’05) on e-Technology, e-Commerce and e-Service,
pages 68–74, Washington, DC, USA, 2005. IEEE Computer Society.

[GAC+97] E. Gokkoca, M. Altinel, I. Cingil, N. Tatbul, P. Koksal, and A. Dogac. Design
and implementation of a distributed workflow enactment service. In COOPIS
’97: Proceedings of the Second IFCIS International Conference on Cooperative
Information Systems, pages 89–98, Washington, DC, USA, 1997. IEEE Com-
puter Society.

[GC02] N. Gioldasis and S. Christodoulakis. Utml: Unified transaction modeling lan-
guage. In WISE ’02: Proceedings of the 3rd International Conference on Web
Information Systems Engineering, pages 115–126, Washington, DC, USA, 2002.
IEEE Computer Society.

[GFJK03] P. Greenfield, A. Fekete, J. Jang, and D. Kuo. Compensation is not enough. In
Proc. of the 7th International Enterprise Distributed Object Computing Confer-
ence (EDOC’03), 2003.

[GHJV07] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 2007.

[GMGK+91] H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, and K. Salem. Modeling
long-running activities as nested sagas. Data Eng., 14(1):14–18, 1991.

[GR93] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques. Mor-
gan Kaufmann, 1993.

[Gud04] M. Gudgin. Secure, reliable, transacted; innovation in web services architecture.
In Proc. of the ACM International Conference on Management of Data, Paris,
France, 2004.

[HK03] P. C. K. Hung and K. Karlapalem. A secure workflow model. In ACSW Frontiers
’03: Proceedings of the Australasian information security workshop conference
on ACSW frontiers, pages 33–41, 2003.

[HMR07] J. El Haddad, M. Manouvrier, and M. Rukoz. A Hierarchical Model for Transac-
tional Web Service Composition in P2P Networks. In ICWS 2007, IEEE Inter-
national Conference on Web Services, July 9-13, 2006, Salt Lake City, USA, July
2007.

178 BIBLIOGRAPHY

[Hol95] D. Hollingsworth. The workflow reference model. Technical Report WFMC-
TC-1003, The Workflow Management Coalition, 1995.

[Hun04] P. C. K. Hung. From conflict of interest to separation of duties in ws-policy for
web services matchmaking process. In HICSS ’04: Proceedings of the Proceed-
ings of the 37th Annual Hawaii International Conference on System Sciences
(HICSS’04) - Track 3, page 30066.2, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[Jav] J2ee 1.5 (java 2 enterprise edition).

[JSP05] Java server pages - http://java.sun.com/products/jsp/index.jsp, 2005.

[KH03] J. Kong and X. Hong. Anodr: anonymous on demand routing with untraceable
routes for mobile ad-hoc networks. In MobiHoc ’03: Proceedings of the 4th ACM
international symposium on Mobile ad hoc networking & computing, pages 291–
302, 2003.

[KH05] S. Karch and L. Heilig. SAP NetWeaver Roadmap. Galileo Press, 2005.

[Kha08] K. Khan. Managing Web Services Quality: Measuring Outcomes and Effective-
ness. IGI Global, Hershey, PA, USA, 2008.

[KM03] H. Koshutanski and F. Massacci. An access control framework for business pro-
cesses for web services. In XMLSEC ’03: Proceedings of the 2003 ACM work-
shop on XML security, pages 15–24, New York, NY, USA, 2003. ACM Press.

[KPF01] M. H. Kang, J. S. Park, and J. N. Froscher. Access control mechanisms for
inter-organizational workflow. In SACMAT ’01: Proceedings of the sixth ACM
symposium on Access control models and technologies, pages 66–74, 2001.

[KR01] K. Knorr and S. Rohrig. Security requirements of e-business processes. In Pro-
ceedings of the IFIP Conference on Towards The E-Society: E-Commerce, E-
Business, E-Government, pages 73–86, 2001.

[KSY02] L. Korba, R. Song, and G. Yee. Anonymous communications for mobile
agents. In MATA ’02: Proceedings of the 4th International Workshop on Mo-
bile Agents for Telecommunication Applications, pages 171–181, London, UK,
2002. Springer-Verlag.

[LA90] P. A. Lee and T. Anderson. Fault Tolerance: Principles and Practice. Morgan
Kaufmann, 1990.

[La05a] D. Langworthy and al. Ws-atomictransaction, 2005.

[La05b] D. Langworthy and al. Ws-businessactivity, 2005.

[La05c] D. Langworthy and al. Ws-coordination, 2005.

BIBLIOGRAPHY 179

[LCY+04] R. Liu, F. Chen, H. Yang, W. C. Chu, and Y. Lai. Agent-based web services
evolution for pervasive computing. In APSEC ’04: Proceedings of the 11th Asia-
Pacific Software Engineering Conference (APSEC’04), pages 726–731, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[LH03] M. Laukkanen and H. Helin. Composing workflows of semantic web services.
In Workshop on Web Services and Agent-based Engineering, 2003.

[Lit03] M. Little. Transactions and web services. Commun. ACM, 46(10):49–54, 2003.

[Liu05] W. Liu. Trustworthy service selection and composition - reducing the entropy of
service-oriented web. In 3rd IEEE International Conference on Industrial Infor-
matics, 2005. INDIN ’05, pages 104–109, Perth, Australia, 2005. IEEE Computer
Society.

[LMP01] S. Loureiro, R. Molva, and A. Pannetrat. Secure data collection with updates.
Electronic Commerce Research, Volume 1 Nř1-2, February/March 2001, 2001.

[LP03] C. Li and C. Pahl. Security in the web services framework. In ISICT ’03: Pro-
ceedings of the 1st international symposium on Information and communication
technologies, pages 481–486. Trinity College Dublin, 2003.

[LW05] Z. Leo Liang and R. K. Wong. A lightweight mobile platform for business ser-
vices networks. In BSN ’05: Proceedings of the IEEE EEE05 international work-
shop on Business services networks, pages 12–12, Piscataway, NJ, USA, 2005.
IEEE Press.

[LZ04] B. Limthanmaphon and Y. Zhang. Web service composition transaction manage-
ment. In ADC ’04: Proceedings of the 15th Australasian database conference,
pages 171–179, Darlinghurst, Australia, Australia, 2004. Australian Computer
Society, Inc.

[MBB+03] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. H. Ngu, and A. K. Elma-
garmid. Business-to-business interactions: issues and enabling technologies. The
VLDB Journal, 12(1):59–85, 2003.

[MM03] D. J. Mandell and S. A. McIlraith. Adapting bpel4ws for the semantic web: The
bottom-up approach to web service interoperation. In Proceedings of Interna-
tional Semantic Web Conference, October 2003.

[MM04] N. Milanovic and M. Malek. Current solutions for web service composition.
IEEE Internet Computing, 8(6):51–59, 2004.

[MM05] F. Montagut and R. Molva. Enabling pervasive execution of workflows. In Pro-
ceedings of the 1st IEEE International Conference on Collaborative Computing:
Networking, Applications and Worksharing, CollaborateCom, 2005.

[MM06a] F. Montagut and R. Molva. Augmenting Web services composition with trans-
actional requirements. In ICWS 2006, IEEE International Conference on Web
Services, September 18-22, 2006, Chicago, USA, Sep 2006.

180 BIBLIOGRAPHY

[MM06b] F. Montagut and R. Molva. Towards transactional pervasive workflows. In EDOC
2006, 10th IEEE International EDOC Conference "The Enterprise Computing
Conference", 16-20 October 2006, Hong-Kong, Oct 2006.

[MM07a] F. Montagut and R. Molva. Enforcing integrity of execution in distributed work-
flow management systems. In SCC 2007, 2007 International Conference on Ser-
vices Computing, July 9-13 2007, Salt Lake City, USA, July 2007.

[MM07b] F. Montagut and R. Molva. Traceability and integrity of execution in distributed
workflow management systems. In ESORICS 2007, European Symposium On
Research In Computer Security,Dresden, Germany, September 24 - 26, 2007,
Sep 2007.

[MMG08a] F. Montagut, R. Molva, and S. T. Golega. Automating the composition of trans-
actional web services. To appear in International Journal of Web Services Re-
search, Idea Publishing, 2008.

[MMG08b] F. Montagut, R. Molva, and S. T. Golega. The pervasive workflow: A decentral-
ized workflow system supporting long running transactions. IEEE Transactions
on Systems, Man and Cybernetics, Part C: Applications and Reviews. Special
Issue on Enterprise Service Computing and Industrial Applications (to appear),
2008.

[mos] Eu ist project mosquito. http://www.mosquito-online.org.

[MRSK92] S. Mehrotra, R. Rastogi, A. Silberschatz, and H. Korth. A transaction model for
multidatabase systems. In Proc. of the 12th IEEE International Conference on
Distributed Computing Systems (ICDCS92), 1992.

[MTR02] T. Mikalsen, S. Tai, and I. Rouvellou. Transactional attitudes: Reliable compo-
sition of autonomous web services. In Workshop on Dependable Middleware-
based Systems, 2002.

[MWW+98] P. Muth, D. Wodtke, J. Weisenfels, A. Kotz Dittrich, and G. Weikum. From
centralized workflow specification to distributed workflow execution. Journal of
Intelligent Information Systems, 10(2):159–184, 1998.

[NCS03] M. G. Nanda, S. Chandra, and V. Sarkar. Decentralizing composite web services.
In Proceedings of Workshop on Compilers for Parallel Computing, January 2003.

[NK03] M. G. Nanda and N. Karnik. Synchronization analysis for decentralizing com-
posite web services. In SAC ’03: Proceedings of the 2003 ACM symposium on
Applied computing, pages 407–414, 2003.

[NWG96] IETF Network Working Group. Multipurpose Internet Mail Extensions RFC
2045, November 1996.

[ODD04] L. Owens, A. Duffy, and T. Dowling. An identity based encryption system. In
PPPJ ’04: Proceedings of the 3rd international symposium on Principles and
practice of programming in Java, pages 154–159. Trinity College Dublin, 2004.

BIBLIOGRAPHY 181

[OWL03] OWL-S specifications, http://www.daml.org/services 2003.

[Pap03] M. P. Papazoglou. Web services and business transactions. World Wide Web,
6(1):49–91, 2003.

[Pat02] K. Paterson. Id-based signatures from pairings on elliptic curves. Electronics
Letters, 38(18):1025–1026, 2002.

[PH03] J. S. Park and J. Hwang. Role-based access control for collaborative enterprise
in peer-to-peer computing environments. In SACMAT ’03: Proceedings of the
eighth ACM symposium on Access control models and technologies, pages 93–
99, New York, NY, USA, 2003. ACM Press.

[PWL+07] J.-C. Pazzaglia, K. Wrona, A. Laube, F. Montagut, L. Gomez, Y. Roudier, and
S. Trabelsi. Utilisation des informations contextuelles pour assurer la sécurité
d’un processus collaboratif distribué : un exemple dans l’e-Santé, chapter 14,
pages 345–370. OFTA, Paris, France, 2007.

[RM04] A. Ranganathan and S. McFaddin. Using workflows to coordinate web services
in pervasive computing environments. In Proceedings of the IEEE International
Conference on Web Services 2004, pages 288–295, July 2004.

[RS95] M. Rusinkiewicz and A. Sheth. Specification and execution of transactional
workflows. In Modern database systems: the object model, interoperability, and
beyond, 1995.

[RS04] J. Rao and X. Su. A survey of automated web service composition methods. In
First International Workshop on Semantic Web Services and Web Process Com-
position, pages 43–54, 2004.

[SABS02] H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek. Atomicity and isolation for
transactional processes. Database Systems, 27(1):63–116, 2002.

[SAS99] H. Schuldt, G. Alonso, and H. Schek. Concurrency control and recovery in trans-
actional process management. In Proc. of the 18th ACM symposium on Principles
of Database Systems, 1999.

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, 1996.

[SGR97] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous connections and
onion routing. In IEEE Symposium on Security and Privacy, pages 44–54, USA,
1997.

[SGS+04] J. Sairamesh, S. Goh, I. Stanoi, S. Padmanabhan, and C. S. Li. Disconnected
processes, mechanisms and architecture for mobile e-business. Mob. Netw. Appl.,
9(6):651–662, 2004.

[SK02] T. Strandenæs and R. Karlsen. Transaction compensation in web services. In The
Norwegian Computer Science Conference, 2002.

182 BIBLIOGRAPHY

[SLM04] Z. Song, Y. Labrou, and R. Masuoka. Dynamic service discovery and manage-
ment in task computing. Mobiquitous, 00:310–318, 2004.

[SO01] K. A. Schulz and M. E. Orlowska. Architectural issues for cross-organisational
b2b interactions. In 21st International Conference on Distributed Computing
Systems Workshops (ICDCSW ’01), pages 79–87, 2001.

[SOA] Soap - simple object access protocol. http://www.w3.org/TR/SOAP/.

[SVG07] W3c - scalable vector graphics (svg), 2007.

[SWSS03] C. Schuler, R. Weber, H. Schuldt, and H. Schek. Peer-to-peer process execution
with osiris. In First International Conference on Service-Oriented Computing
ICSOC (2003), 2003.

[SZ97] R. T. Simon and M. E. Zurko. Separation of duty in role-based environments. In
IEEE Computer Security Foundations Workshop, pages 183–194, 1997.

[TAK03] A. R. Tripathi, T. Ahmed, and R. Kumar. Specification of secure distributed
collaboration systems. In ISADS ’03: Proceedings of the The Sixth International
Symposium on Autonomous Decentralized Systems (ISADS’03), page 149, 2003.

[TI05] F. Tartanoglu and V. Issarny. Specifying web service recovery support with con-
versations. In HICSS ’05: Proceedings of the Proceedings of the 38th Annual
Hawaii International Conference on System Sciences (HICSS’05) - Track 7, page
167.2, Washington, DC, USA, 2005. IEEE Computer Society.

[TIRL03] F. Tartanoglu, V. Issarny, A. Romanovsky, and N. Levy. Coordinated forward
error recovery for composite web services. In 22nd Symposium on Reliable Dis-
tributed Systems (SRDS), 2003.

[TKM04] S. Tai, R. Khalaf, and T. Mikalsen. Composition of coordinated web services. In
Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX international con-
ference on Middleware, pages 294–310, New York, NY, USA, 2004.

[TLC05] W. T. Tsai, X. Liu, and Y. Chen. Distributed policy specification and enforcement
in service-oriented business systems. In ICEBE ’05: Proceedings of the IEEE
International Conference on e-Business Engineering, pages 10–17, Washington,
DC, USA, 2005. IEEE Computer Society.

[TLJ03] S. Tang, C. Liebetruth, and M. C. Jaeger. The owl-s matcher software,
http://flp.cs.tu-berlin.de/, 2003.

[Tom] Apache software foundation - tomcat application server.
http://tomcat.apache.org/.

[TPR06] S. Trabelsi, J.-C. Pazzaglia, and Y. Roudier. Enabling secure discovery in a
pervasive environment. In SPC 2006, 3rd International Conference on Security
in Pervasive Computing, April 18 - 21, 2006, York, UK - also published in LNCS
Volume 3934, Apr 2006.

BIBLIOGRAPHY 183

[UML] Object management group - unified modeling language specification.

[UTF03] Ietf - utf-8, a transformation format of iso 10646 - rfc 3629, 2003.

[VBS04] J. Vidal, P. Buhler, and C. Stahl. Multiagent systems with workflows. Internet
Computing, 8(1), 8(1):76–82, 2004.

[Wan00] A. I. Wang. Using software agents to support evolution of distributed workflow
models. In Proc. International ICSC Symposium on Interactive and Collabora-
tive Computing (ICC’2000), 2000.

[Wei91] M. Weiser. The computer for the 21st century. Scientific American, pages 94–
110, September 1991.

[WKRL06] M. Wimmer, A. Kemper, M. Rits, and V. Lotz. Consolidating the access control
of composite applications and workflows. In DBSec, pages 44–59, 2006.

[WS92] G. Weikum and H.-J. Schek. Concepts and applications of multilevel transactions
and open nested transactions. In Database Transaction Models for Advanced
Applications, pages 515–553. Morgan Kaufmann Publishers Inc, 1992.

[WSa] W3c - web services architecture. http://www.w3.org/TR/2004/NOTE-ws-arch-
20040211/.

[WSC] W3c - web services choreography description language.
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217/.

[WSR05] Web Services Reliable Messaging Protocol -
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-rm/ws-
reliablemessaging200502.pdf, 2005.

[WSS] Ws-security - web services security. http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.

[WT04] R. Wonohoesodo and Z. Tari. A role based access control for web services. In
SCC ’04: Proceedings of the 2004 IEEE International Conference on Services
Computing, pages 49–56, Washington, DC, USA, 2004. IEEE Computer Society.

[WTK02] Web services tool kit for mobile devices,
http://www.alphaworks.ibm.com/tech/wstkmd 2002.

[XAC05] OASIS eXtensible Access Control Markup Language (XACML), 2005.

[XML] Xml - extensible markup language. www.w3.org/XML/.

[XML04] XML schema - http://www.w3.org/XML/Schema, 2004.

[YHLC05] S. J. H. Yang, J. S. F. Hsieh, B. C. W. Lan, and J.-Y. Chung. Composition and
evaluation of trustworthy web services. In BSN ’05: Proceedings of the IEEE
EEE05 international workshop on Business services networks, pages 5–5, Pis-
cataway, NJ, USA, 2005. IEEE Press.

184 BIBLIOGRAPHY

	Acknowledgments
	Résumé en Français
	Abstract
	Contents
	List of Figures
	List of Tables
	Notations and Accronyms
	Publications based on this Thesis
	Introduction
	Workflow-based collaborative business applications
	New Paradigms in Collaborative Business Applications
	Service Orient or Be Doomed! citation
	New requirements for security and reliability
	Reliability and transactional consistency
	Security

	Structure and contributions

	Preliminaries and Technical Background
	Workflows
	Definition and basic principles
	Deployment architectures

	Service Oriented Architecture and Web services
	Service Oriented Architecture
	Implementation based on Web services technologies
	Web services stack overview
	Web service description
	Web services discovery
	Web services based workflow applications

	Conclusion

	Pervasive Workflow Architecture
	Introduction
	Pervasive workflow architecture
	Problem statement and definitions
	Runtime specifications
	Cross-organizational aspects
	Complete architecture mechanisms

	Web services application
	Infrastructure components
	Specification of W
	Internal process specification in BPEL
	Data management
	Execution scheme of a distributed workflow in the infrastructure
	Performance considerations

	Related work
	Decentralized workflow architectures
	Execution of workflows in the pervasive setting
	Web services composition

	Conclusion

	Consistency of Pervasive Workflows
	Introduction
	Definitions and Problem statement
	Assuring consistency of pervasive workflows
	Methodology

	Motivating example
	Transactional model
	Transactional properties of business partners
	Termination states
	Transactional consistency tool

	Analysis of TS(C)
	Inherent properties of TS(C)
	Classification within TS(C)

	Forming ATS(C)
	Assigning business partners using ATS
	Acceptability of cd with respect to ATS(C)
	Transaction-aware assignment procedure
	Actual termination states of cd
	Discussion and performance evaluation
	Examples

	Coordination Protocol Specification
	Protocol actors
	Coordination scenarios
	Coordination decisions and recovery
	Discussion

	Implementation
	OWL-S transactional and functional matchmaker
	Internal communication within a business partner infrastructure
	Specification of transactional BPEL processes

	Related work
	Integration of transactional requirements into workflows
	Transactional protocols and frameworks

	Conclusion

	Security of Pervasive Workflows
	Introduction
	Security requirements
	Authorization
	Execution proofs and traceability
	Workflow data protection

	The solution
	Key management
	Data protection
	Vertex private key distribution mechanism
	Execution proofs and traceability
	Vertex key pair generation
	Communication protocol

	Secure execution of decentralized workflows
	Execution process overview
	Workflow initiation
	Workflow message processing

	Security analysis
	Inherent security properties
	Revocation of a business partner anonymity
	Discussion

	Integration within the transactional protocol
	Security faults
	Business partner registration
	Workflow message backup process
	Recovering from security-faults
	Handling security-faults when the recovery procedure fails

	Implementation
	Performance analysis

	Related work
	Separation of duty and conflict of interests
	Access control within workflow management systems
	Mobile agents and distributed applications
	Secure composition of business partners

	Conclusion

	Conclusions and Perspectives
	Theory
	Implementation
	Execution modes supported by the pervasive workflow model
	Perspectives

	Engine wrapper implementation
	Engine wrapper interface and UML uml diagrams
	Class and sequence diagrams
	Engine wrapper interface

	Workflow visualization tool
	Deployment

	Transactional framework implementation
	Transaction-aware composition algorithm
	Demonstrator

	Security library implementation
	Integration of security primitives into the business logic of the engine wrapper
	Integration of security primitives into the visualization tool
	Onion processing
	Onion Od building process
	Onion Op peeling off process

	Prototype developed in the context of the MOSQUITO project
	Scenario
	Demonstrator execution
	Workflow instantiation
	Doctor Vertex
	Pharmacist Vertex
	Social worker Vertex

	Curriculum Vitae
	Bibliography

