
HAL Id: pastel-00003064
https://pastel.hal.science/pastel-00003064

Submitted on 5 Nov 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design and implementation of real time computer vision
algorithms for video surveillance applications

Hicham Ghorayeb

To cite this version:
Hicham Ghorayeb. Design and implementation of real time computer vision algorithms for video
surveillance applications. Mathematics [math]. École Nationale Supérieure des Mines de Paris, 2007.
English. �NNT : 2007ENMP1463�. �pastel-00003064�

https://pastel.hal.science/pastel-00003064
https://hal.archives-ouvertes.fr

Collège doctoral

N° attribué par la bibliothèque

 |__|__|__|__|__|__|__|__|__|__|

T H E S E

pour obtenir le grade de

Docteur de l’Ecole des Mines de Paris

Spécialité «Informatique temps réel – Robotique - Automatique»

présentée et soutenue publiquement

par

Hicham GHORAYEB

le 12/ 09/2007

CONCEPTION ET MISE EN ŒUVRE D'ALGORITHMES DE VISION

TEMPS REEL POUR LA VIDEO SURVEILLANCE INTELLIGENTE

Directeur de thèse : Claude LAURGEAU

Jury

 M. Patrick MEYRUEIS (Univ. Strasbourg) Rapporteur

M. Patrick SIARRY (Paris XII) Rapporteur

M. Mohamed AKIL (ESIEE) Examinateur

M. Bruno STEUX (EMP) Examinateur

M. Claude LAURGEAU (EMP) Examinateur

M. Fernand MEYER (EMP) Examinateur

M. Karl SCHWERDT (VIDATIS) Examinateur

Á
Hussein et Najah
mes parents

i

Remerciements

Cette thèse n’aurait vu le jour sans la confiance, la patience et la générosité de mon
directeur de thèse, Monsieur Claude Laurgeau, directeur du centre de robotique de
l’Ecole des Mines de Paris. Je voudrais aussi le remercier pour le temps et la pa-
tience qu’il m’a accordé tout au long de ces années, d’avoir cru en mes capacités et
de m’avoir fourni d’excellentes conditions logistiques et financières.

Mes plus sincères remerciements vont également à Monsieur Bruno Steux, qui en agis-
sant à titre d’encadrant a fortement enrichi ma formation. Ses conseils techniques et
ses commentaires auront été fort utiles. De plus, les conseils qu’il m’a divulgu’e tout
au long de la rédaction, ont toujours été clairs et succincts, me facilitant grandement
la tâche et me permettant d’aboutir à la production de cette thèse.

J’aimerais par ailleurs souligner la collaboration importante avec Monsieur Mohamed
Akil, professeur à l’ESIEE. Notre collaboration dans le cadre de l’accélération des
détecteurs visuels d’objets sur des cartes graphiques et des cartes FPGA. Dans le
cadre de cette collaboration j’ai encadré trois groupes d’étudiants de l’ESIEE dans
leurs stages. Les stages ont aboutit à des prototypes de validation de l’idée.

Je voudrais également remercier de tout mon coeur Monsieur Fawzi Nashashibi, pour
ses précieux conseils et son support moral tout le long de la thèse.

Je remercie Monsieur Patrick Siarry, professeur á l’université Paris XII, pour l’intérrêt
qu’il a apporté à mon travail en me consacrant de son temps pour rapporter sur le
présent travail.
Je remercie également Monsieur Patrick Meyrueis, professeur à l’université de Stras-
bourg, pour la rapidité avec laquelle il m’a accordé du temps pour rapporter sur le
présent travail.

Je remercie Monsieur Karl Schwerdt, et monsieur Didier Maman, fondateurs de la
société VIDATIS pour leur collaboration dans le co-encadrement du stage de Khattar
Assaf.

Je remercie les stagiaires avec qui j’ai travaillé: Khattar Assaf, Hamid Medjahed,
et Marc-andré Lureau.

Enfin une pensée émue pour mes amis avec qui j’ai partagé la L007 pendant ces
années de thèse: Jacky, Clement, Jorge, Marc et Amaury. Et n’oubliant pas les
autres collègues dans l’aquarium: Safwan, Xavier, Rasul et Laure. Et surtout, ceux
qui sont dans des bureaux avec une salle de réunion: Fawzi, Francois, Samer, Iyad et
Ayoub. Et les collègues qui sont dans des bureaux éparpillès comme Bogdan.

iii

Résumé

Mots clés: Reconnaissance des formes, analyse vidéo intélligente, systèmes de trans-
port intélligents, vidéo surveillance intelligente, GPGPU, apprentissage automatique,
boosting, LibAdaBoost, soustraction du fond adaptative, projet PUVAME.

Ce travail de thèse a pour sujet l’étude des algorithmes de vision temps réel pour
l’analyse vidéo intelligente. Ces travaux ont eut lieu au laboratoire de robotique de
l’Ecole des Mines de Paris (CAOR).
Notre objectif est d’étudier les algorithmes de vision utilisés aux différents niveaux
dans une châıne de traitement vidéo intelligente. On a prototypé une châıne de
traitement générique dédiée à l’analyse du contenu du flux vidéo. En se basant sur
cette châıne de traitement, on a développé une application de détection et de suivi de
piétons. Cette application est une partie intégrante du projet PUVAME. Ce projet a
pour objectif d’améliorer la sécurité des personnes dans des zones urbaines près des
arrêts de bus.
Cette châıne de traitement générique est composée de plusieurs étapes : d’une part
détection d’objets, classification d’objets et suivi d’objets. D’autres étapes de plus
haut niveau sont envisagées comme la reconnaissance d’actions, l’identification, la
description sémantique ainsi que la fusion des données de plusieurs caméras. On s’est
intéressé aux deux premières étapes. On a exploré des algorithmes de segmentation
du fond dans un flux vidéo avec caméra fixe. On a implémenté et comparé des algo-
rithmes basés sur la modélisation adaptative du fond.

On a aussi exploré la détection visuelle d’objets basé sur l’apprentissage automatique
en utilisant la technique du boosting. Cependant, On a développé une librairie inti-
tulée LibAdaBoost qui servira comme un environnement de prototypage d’algorithmes
d’apprentissage automatique. On a prototypé la technique du boosting au sein de
cette librairie. On a distribué LibAdaBoost sous la licence LGPL. Cette librarie est
unique avec les fonctionnalités qu’elle offre.

On a exploré l’utilisation des cartes graphiques pour l’accélération des algorithmes
de vision. On a effectué le portage du détecteur visuel d’objets basé sur un clas-
sifieur généré par le boosting pour qu’il s’exécute sur le processeur graphique. On
était les premiers à effectuer ce portage. On a trouvé que l’architecture du processeur
graphique est la mieux adaptée pour ce genre d’algorithmes.

La châıne de traitement a été implémentée et intégrée à l’environnement RTMaps.
On a évalué ces algorithmes sur des scénarios bien définis. Ces scénarios ont été
définis dans le cadre de PUVAME.

v

Abstract

Keywords: Intelligent video analysis, intelligent transportation systems, intelligent
video surveillance, GPGPU, boosting, LibAdaBoost, adaptive background subtraction,
PUVAME project.

In this dissertation, we present our research work held at the Center of Robotics
(CAOR) of the Ecole des Mines de Paris which tackles the problem of intelligent
video analysis.

The primary objective of our research is to prototype a generic framework for in-
telligent video analysis. We optimized this framework and configured it to cope with
specific application requirements. We consider a people tracker application extracted
from the PUVAME project. This application aims to improve people security in ur-
ban zones near to bus stations.
Then, we have improved the generic framework for video analysis mainly for back-
ground subtraction and visual object detection. We have developed a library for
machine learning specialized in boosting for visual object detection called LibAd-
aBoost. To the best of our knowledge LibAdaBoost is the first library in its kind. We
make LibAdaBoost available for the machine learning community under the LGPL
license.

Finally we wanted to adapt the visual object detection algorithm based on boost-
ing so that it could run on the graphics hardware. To the best of our knowledge
we were the first to implement visual object detection with sliding technique on the
graphics hardware. The results were promising and the prototype performed three to
nine times better than the CPU.

The framework was successfully implemented and integrated to the RTMaps envi-
ronment. It was evaluated at the final session of the project PUVAME and demon-
strated its fiability over various test scenarios elaborated specifically for the PUVAME
project.

vii

Contents

I Introduction and state of the art 1

1 French Introduction 2

1.1 Algorithmes . 4

1.2 Architecture . 4

1.3 Application . 5

2 Introduction 6

2.1 Contributions . 6

2.2 Outline . 7

3 Intelligent video surveillance systems (IVSS) 9

3.1 What is IVSS? . 10

3.1.1 Introduction . 10

3.1.2 Historical background . 10

3.2 Applications of intelligent surveillance 11

3.2.1 Real time alarms . 11

3.2.2 User defined alarms . 11

3.2.3 Automatic unusual activity alarms 12

3.2.4 Automatic Forensic Video Retrieval (AFVR) 12

3.2.5 Situation awareness . 13

3.3 Scenarios and examples . 13

3.3.1 Public and commercial security 13

3.3.2 Smart video data mining . 14

3.3.3 Law enforcement . 14

3.3.4 Military security . 14

3.4 Challenges . 14

3.4.1 Technical aspect . 14

3.4.2 Performance evaluation . 15

3.5 Choice of implementation methods 15

3.6 Conclusion . 16

x Table of Contents

II Algorithms 17

4 Generic framework for intelligent visual surveillance 18
4.1 Object detection . 19
4.2 Object classification . 19
4.3 Object tracking . 20
4.4 Action recognition . 20
4.5 Semantic description . 21
4.6 Personal identification . 21
4.7 Fusion of data from multiple cameras 21

5 Moving object detection 22
5.1 Challenge of detection . 23
5.2 Object detection system diagram . 25

5.2.1 Foreground detection . 26
5.2.2 Pixel level post-processing (Noise removal) 27
5.2.3 Detecting connected components 28
5.2.4 Region level post-processing 28
5.2.5 Extracting object features . 28

5.3 Adaptive background differencing . 29
5.3.1 Basic Background Subtraction (BBS) 29
5.3.2 W4 method . 30
5.3.3 Single Gaussian Model (SGM) 31
5.3.4 Mixture Gaussian Model (MGM) 32
5.3.5 Lehigh Omni-directional Tracking System (LOTS): 33

5.4 Shadow and light change detection 35
5.4.1 Methods and implementation 36

5.5 High level feedback to improve detection methods 46
5.5.1 The modular approach . 47

5.6 Performance evaluation . 48
5.6.1 Ground truth generation . 48
5.6.2 Datasets . 48
5.6.3 Evaluation metrics . 49
5.6.4 Experimental results . 54
5.6.5 Comments on the results . 56

6 Machine learning for visual object-detection 57
6.1 Introduction . 58
6.2 The theory of boosting . 58

6.2.1 Conventions and definitions 58
6.2.2 Boosting algorithms . 60
6.2.3 AdaBoost . 61
6.2.4 Weak classifier . 63
6.2.5 Weak learner . 63

Table of Contents xi

6.3 Visual domain . 66
6.3.1 Static detector . 67
6.3.2 Dynamic detector . 68
6.3.3 Weak classifiers . 68
6.3.4 Genetic weak learner interface 75
6.3.5 Cascade of classifiers . 76
6.3.6 Visual finder . 77

6.4 LibAdaBoost: Library for Adaptive Boosting 80
6.4.1 Introduction . 80
6.4.2 LibAdaBoost functional overview 81
6.4.3 LibAdaBoost architectural overview 85
6.4.4 LibAdaBoost content overview 86
6.4.5 Comparison to previous work 87

6.5 Use cases . 88
6.5.1 Car detection . 89
6.5.2 Face detection . 90
6.5.3 People detection . 91

6.6 Conclusion . 92

7 Object tracking 98
7.1 Initialization . 98
7.2 Sequential Monte Carlo tracking . 99
7.3 State dynamics . 100
7.4 Color distribution Model . 100
7.5 Results . 101
7.6 Incorporating Adaboost in the Tracker 102

7.6.1 Experimental results . 102

III Architecture 107

8 General purpose computation on the GPU 108
8.1 Introduction . 108
8.2 Why GPGPU? . 109

8.2.1 Computational power . 109
8.2.2 Data bandwidth . 110
8.2.3 Cost/Performance ratio . 112

8.3 GPGPU’s first generation . 112
8.3.1 Overview . 112
8.3.2 Graphics pipeline . 114
8.3.3 Programming language . 119
8.3.4 Streaming model of computation 120
8.3.5 Programmable graphics processor abstractions 121

8.4 GPGPU’s second generation . 123

xii Table of Contents

8.4.1 Programming model . 124
8.4.2 Application programming interface (API) 124

8.5 Conclusion . 125

9 Mapping algorithms to GPU 126
9.1 Introduction . 126
9.2 Mapping visual object detection to GPU 128
9.3 Hardware constraints . 130
9.4 Code generator . 131
9.5 Performance analysis . 133

9.5.1 Cascade Stages Face Detector (CSFD) 133
9.5.2 Single Layer Face Detector (SLFD) 134

9.6 Conclusion . 135

IV Application 137

10 Application: PUVAME 138
10.1 Introduction . 138
10.2 PUVAME overview . 139
10.3 Accident analysis and scenarios . 140
10.4 ParkNav platform . 141

10.4.1 The ParkView platform . 142
10.4.2 The CyCab vehicule . 144

10.5 Architecture of the system . 144
10.5.1 Interpretation of sensor data relative to the intersection 145
10.5.2 Interpretation of sensor data relative to the vehicule 149
10.5.3 Collision Risk Estimation . 149
10.5.4 Warning interface . 150

10.6 Experimental results . 151

V Conclusion and future work 153

11 Conclusion 154
11.1 Overview . 154
11.2 Future work . 155

12 French conclusion 157

VI Appendices 161

A Hello World GPGPU 162

Table of Contents xiii

B Hello World Brook 170

C Hello World CUDA 181

Part I

Introduction and state of the art

Chapter 1

French Introduction

Contents
1.1 Algorithmes . 4

1.2 Architecture . 4

1.3 Application . 5

Pour accentuer la bonne lisibilité de cette thèse, et pour permettre au lecteur de se
créer une vision globale du contenu avant même d’entamer la lecture, nous voudrions
brièvement exposer à cette place les points clés de la thèse acompagnés de quelques
remarques. Ces quelques lignes vont, comme nous le croyons, servir à une meilleure
orientation dans l’ensemble de ce traité.

Cette thèse étudie les algorithmes de vision temps réel pour l’analyse vidéo intel-
ligente. Ces travaux ont eut lieu au laboratoire de robotique de l’Ecole des Mines de
Paris (CAOR).
Notre objectif est d’étudier les algorithmes de vision utilisés aux différents niveaux
dans une châıne de traitement vidéo intelligente. On a prototypé une châıne de
traitement générique dédiée à l’analyse du contenu du flux vidéo. En se basant sur
cette châıne de traitement, on a développé une application de détection et de suivi de
piétons. Cette application est une partie intégrante du projet PUVAME. Ce projet a
pour objectif d’améliorer la sécurité des personnes dans des zones urbaines près des
arrêts de bus.
Cette châıne de traitement générique est composée de plusieurs étapes : d’une part
détection d’objets, classification d’objets et suivi d’objets. D’autres étapes de plus
haut niveau sont envisagées comme la reconnaissance d’actions, l’identification, la
description sémantique ainsi que la fusion des données de plusieurs caméras. On s’est
intéressé aux deux premières étapes. On a exploré des algorithmes de segmentation
du fond dans un flux vidéo avec caméra fixe. On a implémenté et comparé des algo-
rithmes basés sur la modélisation adaptative du fond.

On a aussi exploré la détection visuelle d’objets basé sur l’apprentissage automatique

Part I: Introduction and state of the art 3

en utilisant la technique du boosting. Cependant, On a développé une librairie inti-
tulée LibAdaBoost qui servira comme un environnement de prototypage d’algorithmes
d’apprentissage automatique. On a prototypé la technique du boosting au sein de
cette librairie. On a distribué LibAdaBoost sous la licence LGPL. Cette librarie est
unique avec les fonctionnalités qu’elle offre.

On a exploré l’utilisation des cartes graphiques pour l’accéléraction des algorithmes
de vision. On a effectué le portage du détecteur visuel d’objets basé sur un clas-
sifieur généré par le boosting pour qu’il s’exécute sur le processeur graphique. On
était les premiers à effectuer ce portage. On a trouvé que l’architecture du processeur
graphique est la mieux adaptée pour ce genre d’algorithmes.

La châıne de traitement a été implementée et integrée à l’environnement RTMaps.
On a évalué ces algorithmes sur des scénarios bien définis. Ces scénarios ont été
définis dans le cadre de PUVAME.

Le document est divisé en quatre parties principales derrière lesquelles nous rajoutons
une conclusion générale suivie par les annexes:

1. Nous commençons dans Chapitre 2 par une introduction en anglais du manuscrit.
Chapitre 3 prèsente une discussion générale sur les systèmes d’analyse vidéo in-
telligente pour la vidéo surveillance.

2. Dans Chapitre 4 on décrit une châıne de traitement générique pour l’analyse
vidéo intelligent. Cette châıne de traitement pourra être utilisée pour proto-
typer des applications de vidéo surveillance intelligente. On commence par la
description de certaines parties de cette châıne de traitement dans lec chapitres
qui suivent: on discute dans Chapitre 5 des difféfrentes implémentations pour
l’algorithme de modélisation adaptative du fond pour la ségmentation des objets
en mouvement dans une scène dynamique avec caméra fixe. Dans Chapitre 6
on décrit une technique d’apprentissage automatique nommée boosting qui est
utilisée pour la détection visuelle d’objets. Le suivi d’objets est introduit dans
le Chapitre 7.

3. Dans Chapitre 8 on présente la programmation par flux de données. On présente
ainsi l’architecture des processeurs graphiques. La modélisation en utilisant le
modèle par flux de données est décrite dans Chapitre 9.

4. On décrit le projet PUVAME1 dans Chapitre 10.

5. Finalement, on décrit dans Chapitre 11 la conclusion de nos traveaux, et notre
vision sur le futur travail à munir. Une conclusion en français est fournie dans
Chapitre 12.

1Protection des Vulnérables par Alarmes ou Manoeuvres

4 Part I: Introduction and state of the art

1.1 Algorithmes

Cette patie est consacrée, en cinq chapitres, aux algorithmes destinés à être consti-
tutifs d’une plateforme générique pour la vidéo surveillance.

L’organisation opérationnelle d’une plateforme logicielle pour la vidéo surveillance
est d’abord présentée dans un chapitre. La détection d’objets en mouvement est
ensuite traitée dans le chapitre suivant avec des méthodes statistiques et d’autres
non linéaires. Des algorithmes sont présentés basés sur une approche adaptative
d’extraction de l’arrière plan. La détection d’objets est dépendante de la scène et doit
prendre en compte l’ombrage et le changement de luminosité. La question des fausses
alarmes se pose pour renforcer la robustesse. A cet effet, deux approches sont traitées,
l’approche statistique non paramétrable et l’approche déterministe. L’évaluation des
algorithmes considérés se base sur des métriques prises en compte dans deux cas de
scènes: un interne et un externe.

L’apprentissage pour la détection d’objets est considérée dans un avant dernier
chapitre. Des algorithmes de Boosting sont introduits notamment AdaBoost avec un
Algorithme génétique pour l’apprentissage faible. Un ensemble de classifieurs faibles
est étudié et implémenté allant des classifieurs rectangulaires de Viola and Jones aux
classifieurs de points de control et d’autres.

On présente la librairie logicielle LibAdaBoost. LibAdaBoost constitue un envi-
ronnement unifié pour le boosting. Cet environnement est ouvert et exploitable par
ceux ayant à valider des algorithmes d’apprentissage.

Le dernier chapitre traite du tracking d’objets avec une méthode Monte Carlo
Tracking. La méthode est robuste sous différentes situations d’illumination et est
renforcée par l’intégration du détecteur visuel par boosting.

1.2 Architecture

Cette partie en deux chapitres propose une application temps réel de la détection
de visage avec implémentation spécifique pour accéleration des algorithmes sur pro-
cesseur graphique. L’accent est mis sur l’implémentation GPU, travail de recherche
en plein développement et notemment pour paralléliser et accélérer des algorithmes
généraux sur un proceseur graphique. Après une description succinte et pédagogique
aussi bien de l’architecture du GPU, de son modèle de programmation que des logiciels
de programmation des GPUs, on décrit avec détails: l’omplémentation, les optimi-
sations, les différentes stratégies possibles de partitionnement de l’application entre
CPU et GPU. La solution adoptée est d’implanter le classifieur sur le GPU, les autres
étapes de l’application sont programmées sur le CPU. Les résultats obtenus sont très
prometteurs et permettent d’accélérer d’un facteur 10.

Part I: Introduction and state of the art 5

1.3 Application

Cette partie applicative est consacrée à une application des traveaux de la thèse dans
le cadre du projet PUVAME, qui vise à concevoir une alarme de bord pour alerter
les chauffeurs de bus, en cas de risque de collision avec des piétons, aux abords des
stations d’autobus et aux intersections.

Chapter 2

Introduction

Contents
2.1 Contributions . 6

2.2 Outline . 7

While researching the materials presented in this thesis I have had the pleasure
of covering a wider range of the discipline of Computer Science than most graduate
students.

My research began with the european project CAMELLIA1. CAMELLIA aims
to prototype a smart imaging core dedicated for mobile and automotive domains. I
was in charge of the implementation of image stabilization and motion estimation
algorithms [SAG03a]. As well as the design of a motion estimator core [SAG03b].
I was soon drawn into studying the details of data parallel computing on stream
architectures and more specially on graphics hardware. I focused also on intelligent
video analysis with machine learning tools.

In this dissertation, we are primarily concerned with studying intelligent video
analysis framework. We focused on object detection and background segmentation.
We explored the usage of graphics hardware for accelerating computer vision algo-
rithms as low cost solution. We evaluated our algorithms in several contexts: video
surveillance and urban road safety.

2.1 Contributions

This dissertation makes several contributions to the areas of computer vision and
general purpose computation on graphics hardware:

• We have evaluated several implementations of state of the art adaptive back-
ground subtraction algorithms. We have compared their performance and we
have tried to improve these algorithms using high level feedback.

1Core for Ambient and Mobile intELLigent Imaging Applications

Part I: Introduction and state of the art 7

• We present boosting for computer vision community as a tool for building vi-
sual detectors. The pedagogic presentation is based on boosting as a machine
learning framework. Thus, we start from abstract machine learning concepts
and we develop computer vision concepts for features, finders and others.

• We have also developed a software library called LibAdaBoost. This library is
a machine learning library which is extended with a boosting framework. The
boosting framework is extended to support visual objects. To the best of our
knowledge this is the first library specialized in boosting and which provides
both: a SDK for the development of new algorithms and a user toolkit for
launching learnings and validations.

• We present a streaming formulation for visual object detector based on visual
features. Streaming is a natural way to express low-level and medium-level
computer vision algorithms. Modern high performance computing hardware is
well suited for the stream programming model. The stream programming model
helps to organize the visual object detector computation optimally to execute
on graphics hardware.

• We present an integration of intelligent video analysis block within a large
framework for urban area safety.

Efficient implementation of low-level computer vision algorithms is an active re-
search area in the computer vision community, and is beyond the scope of this thesis.
Our analysis started from a general framework for intelligent video analysis. We fac-
torized a set of algorithms at several levels: pixel-level, object-level and frame-level.
We focused on pixel-level algorithms and we integrated these algorithms to a generic
framework. In the generic framework we developed state of the art approaches to
instantiate the different stages.

2.2 Outline

We begin in Chapter 3 with a background discussion of Intelligent Video Surveillance
Systems.

In Chapter 4 we describe a generic framework for intelligent video analysis that
can be used in a video surveillance context. We started to detail some stages of this
generic framework in the next chapters: we discuss in Chapter 5 different implemen-
tations of adaptive background modeling algorithms for moving object detection. In
Chapter 6 we describe machine learning for visual object detection with boosting.
Object tracking is discussed in Chapter 7.

In Chapter 8 we present stream programming model, and programmable graphics
hardware. Streaming formulation and implementation for visual object detection is
described in Chapter 9.

8 Part I: Introduction and state of the art

We describe the PUVAME2 application in Chapter 10.
Finally, we suggest areas for future research, reiterate our contributions, and con-

clude this dissertation in Chapter 11.
This thesis is a testament to the multi-faceted nature of computer science and

the many and varied links within this relatively new discipline. I hope you will enjoy
reading it as much as I enjoyed the research which it describes.

2Protection des Vulnérables par Alarmes ou Manoeuvres

Chapter 3

Intelligent video surveillance
systems (IVSS)

Contents
3.1 What is IVSS? . 10

3.1.1 Introduction . 10

3.1.2 Historical background . 10

3.2 Applications of intelligent surveillance 11

3.2.1 Real time alarms . 11

3.2.2 User defined alarms . 11

3.2.3 Automatic unusual activity alarms 12

3.2.4 Automatic Forensic Video Retrieval (AFVR) 12

3.2.5 Situation awareness . 13

3.3 Scenarios and examples . 13

3.3.1 Public and commercial security 13

3.3.2 Smart video data mining 14

3.3.3 Law enforcement . 14

3.3.4 Military security . 14

3.4 Challenges . 14

3.4.1 Technical aspect . 14

3.4.2 Performance evaluation . 15

3.5 Choice of implementation methods 15

3.6 Conclusion . 16

10 Part I: Introduction and state of the art

3.1 What is IVSS?

3.1.1 Introduction

Intelligent video surveillance addresses the use of automatic video analysis technolo-
gies in video surveillance applications. This chapter attempts to answer a number
of questions about intelligent surveillance: what are the applications of intelligent
surveillance? what are the system architectures for intelligent surveillance? what are
the key technologies? and what are the key technical challenges?

3.1.2 Historical background

It is because of the advance in computing power, availability of large-capacity storage
devices and high-speed network infrastructure, that we find inexpensive multi sensor
video surveillance systems. Traditionally, the video outputs are processed online by
human operators and are usually saved to tapes for later use only after a forensic event.
The increase in the number of cameras in ordinary surveillance systems overloaded
both the number of operators and the storage devices and made it impossible to
ensure proper monitoring of sensitive areas for long times. In order to filter out
redundant information and increase the response time to forensic events, helping the
human operators by detecting important events in video by the use of smart video
surveillance systems has become an important requirement.

In the following sections we group video surveillance systems into three generations
as in [Ded04].

• (1GSS, 1960-1980) were based on analog sub systems for image acquisition,
transmission and processing. They extended human eye in spatial sense by
transmitting the outputs of several cameras monitoring a set of sites to the
displays in a central control room. They had major drawbacks like requiring
high bandwidth, difficult archiving and retrieval of events due to large num-
ber of video tape requirements and difficult online event detection which only
depended on human operators with limited attention span.

• (2GSS, 1980-2000) The next generation surveillance systems were hybrids in
the sense that they used both analog and digital sub systems to resolve some
drawbacks of their predecessors. They made use of the early advances in digital
video processing methods that provide assistance to the human operators by
filtering out spurious events. Most of the work during 2GSS is focused on real
time event detection.

• (3GSS, 2000-) Third generation surveillance systems provide end-to-end digital
systems. Image acquisition and processing at the sensor level, communication
through mobile and fixed heterogeneous broadband networks and image stor-
age at the central servers benefit from low cost digital infrastructure. Unlike
previous generations, in 3GSS some part of the image processing is distributed

Part I: Introduction and state of the art 11

toward the sensor level by the use of intelligent cameras that are able to dig-
itize and compress acquired analog image signals and perform image analysis
algorithms.

Third generation surveillance systems (3GSS) assist human operators with online
alarm generation defined on complex events and with offline inspection as well. 3GSS
also handle distributed storage and content-based retrieval of video data. It can be
used both for providing the human operator with high level data to help him to
make the decisions more accurately and in a shorter time and for offline indexing and
searching stored video data effectively. The advances in the development of these
algorithms would lead to breakthroughs in applications that use visual surveillance.

3.2 Applications of intelligent surveillance

In this section we describe a few applications of smart surveillance technology [HBC+03].
We group the applications into three broad categories: real time alarms, automatic
forensic video retrieval, and situation awareness.

3.2.1 Real time alarms

We can define two types of alerts that can be generated by a smart surveillance
system, user defined alarms and automatic unusual activity alarms.

3.2.2 User defined alarms

In this type the system detects a variety of user defined events that occur in the
monitored space and notifies the user in real time. So it is up to the user to evaluate
the situation and to take preventive actions. Some typical events are presented.

Generic alarms

These alerts depend on the movement properties of objects in the monitored space.
Following are a few common examples:

• Motion Detection: This alarms detects movement of any object within a speci-
fied zone.

• Motion Characteristic Detection: These alarms detect a variety of motion prop-
erties of objects, including specific direction of object movement (entry through
exit lane), object velocity bounds checking (object moving too fast).

• Abandoned Object alarm: This detects objects which are abandoned, e.g., a
piece of unattended baggage in an airport, or a car parked in a loading zone.

• Object Removal: This detects movements of a user-specified object that is not
expected to move, for example, a painting in a museum.

12 Part I: Introduction and state of the art

Class specific alarms

These alarms use the type of object in addition to its movement properties. As
examples:

• Type Specific Movement Detection: Consider a camera that is monitoring run-
ways at an airport. In such a scene, the system could provide an alert on the
presence or movement of people on the tarmac but not those of aircrafts.

• Statistics: Example applications include, alarms based on people counts (e.g.,
more than one person in security locker) or people densities (e.g., discotheque
crowded beyond an acceptable level).

Behavioral alarms

when detecting adherence to, or deviation from, learnt models of motion patterns.
Such models are based on training and analyzing movement patterns over extended
periods of time. These alarms are used in specific applications and use a significant
amount of context information, for example:

• Detecting shopping groups at retail checkout counters, and alerting the store
manager when the length of the queue at a counter exceeds a specified number.

• Detecting suspicious behavior in parking lots, for example, a person stopping
and trying to open multiple cars.

High Value Video Capture

This is an application which augments real time alarms by capturing selected clips of
video based on pre-specified criteria. This becomes highly relevant in the context of
smart camera networks, which use wireless communication.

3.2.3 Automatic unusual activity alarms

Unlike the user-defined alarms, here the system generates alerts when it detects activ-
ity that deviates from the norm. The smart surveillance system achieves this based on
learning normal activity patterns. For example: when monitoring a street the system
learns that vehicles move about on the road and people move about on the side walk.
Based on this pattern the system will provide an alarm when a car drives on the
sidewalk. Such unusual activity detection is the key to effective smart surveillance,
as the user cannot manually specify all the events of interest.

3.2.4 Automatic Forensic Video Retrieval (AFVR)

The capability to support forensic video retrieval is based on the rich video index
generated by automatic tracking technology. This is a critical value-add from using

Part I: Introduction and state of the art 13

smart surveillance technologies. Typically the index consists of such measurements as
object shape, size and appearance information, temporal trajectories of objects over
time, object type information, in some cases specific object identification information.
In advanced systems, the index may contain object activity information.

During the incident the investigative agencies had access to hundreds of hours of
video surveillance footage drawn from a wide variety of surveillance cameras covering
the areas in the vicinity of the various incidents. However, the task of manually sifting
through hundreds of hours of video for investigative purposes is almost impossible.
However if the collection of videos were indexed using visual analysis, it would enable
the following ways of retrieving the video

• Spatio-Temporal Video Retrieval: An example query in this class would be,
Retrieve all clips of video where a blue car drove in front of the 7/11 Store
on 23rd street between the 26th of July 2pm and 27th of July 9am at speeds >
25mph.

3.2.5 Situation awareness

To ensure a total security at a facility requires systems that continuously track the
identity, location and activity of objects within the monitored space. Typically
surveillance systems have focused on tracking location and activity, while biometrics
systems have focused on identifying individuals. As smart surveillance technologies
mature, it becomes possible to address all these three key challenges in a single unified
framework giving rise to, joint location identity and activity awareness, which when
combined with the application context becomes the basis for situation awareness.

3.3 Scenarios and examples

Below are some scenarios that smart surveillance systems and algorithms might han-
dle:

3.3.1 Public and commercial security

• Monitoring of banks, department stores, airports, museums, stations, private
properties and parking lots for crime prevention and detection

• Patrolling of highways and railways for accident detection

• Surveillance of properties and forests for fire detection

• Observation of the activities of elderly and infirm people for early alarms and
measuring effectiveness of medical treatments

• Access control

14 Part I: Introduction and state of the art

3.3.2 Smart video data mining

• Measuring traffic flow, pedestrian congestion and athletic performance

• Compiling consumer demographics in shopping centers and amusement parks

• Extracting statistics from sport activities

• Counting endangered species

• Logging routine maintenance tasks at nuclear and industrial facilities

• Artistic performance evaluation and self learning

3.3.3 Law enforcement

• Measuring speed of vehicles

• Detecting red light crossings and unnecessary lane occupation

3.3.4 Military security

• Patrolling national borders

• Measuring flow of refugees

• Monitoring peace treaties

• Providing secure regions around bases

• Assisting battlefield command and control

3.4 Challenges

Probably the most important types of challenges in the future development of smart
video surveillance systems are:

3.4.1 Technical aspect

A large number of technical challenges exists especially in visual analysis technolo-
gies. These include challenges in robust object detection, tracking objects in crowded
environments, challenges in tracking articulated bodies for activity understanding,
combining biometric technologies like face recognition with surveillance to generate
alerts.

Part I: Introduction and state of the art 15

Figure 3.1: Block diagram of a basic surveillance system architecture

3.4.2 Performance evaluation

This is a very significant challenge in smart surveillance system. To evaluate the
performance of video analysis systems a lot of annotated data are required. Plus
it is a very expensive and tedious process. Also, there can be significant errors in
annotation. Therefore it is obvious that these issues make performance evaluation a
significant challenge

3.5 Choice of implementation methods

A surveillance system depends on the subsequent architecture: sensors, computing
units and media of communication. In the near future, the basic surveillance system
architecture presented in Figure 3.5 is likely to be the most ubiquitous in the near
future. In this architecture, cameras are mounted in different parts in a facility, all of
which are connected to a central control room. The actual revolution in the industry
of cameras and the improvements in the media made a revolution in the architectures
and open doors for new applications (see Figure 3.5).

16 Part I: Introduction and state of the art

Figure 3.2: Block diagram of an advanced surveillance system architecture

3.6 Conclusion

In this chapter we presented an overview of intelligent video surveillance systems. It
consists in an architecture based on cameras and computing servers and visualization
terminals. The surveillance application is built upon this architecture and is adapted
to the monitored scene domain. In the next chapters we consider a basic intelligent
surveillance architecture and the subsequent algorithms are easily transported to more
advanced architectures as described in the next paragraph.

Surveillance applications can be described formally regardless the distribution on
the computing units (servers or embedded processors in the case of smart cameras).
We can abstract this notion using a high level application prototyping system as
RTMaps. An application consists in a diagram of components connected to each
other. Cameras are represented by source components and servers as processing com-
ponents, and all visualization and archiving tasks are represented as sink components.
Once the application is prototyped it is easy to do the implementation on the real
architecture and to distribute the processing modules to the different computing units.

Part II

Algorithms

Chapter 4

Generic framework for intelligent
visual surveillance

Contents
4.1 Object detection . 19

4.2 Object classification . 19

4.3 Object tracking . 20

4.4 Action recognition . 20

4.5 Semantic description . 21

4.6 Personal identification . 21

4.7 Fusion of data from multiple cameras 21

The primary objective of this chapter is to give a general overview of the overall
process of an intelligent visual surveillance system. Fig. 4 shows the general framework
of visual surveillance in dynamic scenes. The prerequisites for effective automatic
surveillance using a single camera include the following stages: object detection,
object classification, object tracking, object identification, action recognition and
semantic description. Although, some stages require interchange of information with
other stages, this generic framework provides a good structure for the discussion
throughout this chapter. In order to extend the surveillance area and overcome
occlusion, fusion of data from multiple cameras is needed. This fusion can involve all
the above stages. This chapter is organized as follows: section 4.1 describes the object
detection stage. Section 4.2 introduces the object classification stage. Object tracking
is presented in section 4.3. Section 4.4 presents action recognition stage. Section 4.6
describes the personal identification stage. Section 4.7 describes the fusion of data
from multiple cameras stage.

Part II: Algorithms 19

Figure 4.1: A generic framework for intelligent visual surveillance

4.1 Object detection

The first step in nearly every visual surveillance system is moving object detection.
Object detection aims at segmenting regions corresponding to moving objects from
the rest of the image. Subsequent processes such as classification and tracking are
greatly dependent on it. The process of object detection usually involves background
modeling and motion segmentation, which intersect each other during processing.
Due to dynamic changes in natural scenes such as sudden illumination and weather
changes, repetitive motions that cause clutter, object detection is a difficult problem
to process reliably.

4.2 Object classification

In real-world scenes, different moving objects may correspond to different moving tar-
gets. For instance, the image sequences captured by surveillance cameras mounted in
outdoor parking scenes probably include humans, vehicles and other moving objects
such as flying birds and moving clouds, etc. It is very important to recognize the
type of a detected object in order to track reliably and analyze its activities correctly.
Object classification can be considered as a standard pattern recognition issue. At
present, there are two major categories of approaches toward moving object classi-

20 Part II: Algorithms

fication which are shape-based and motion-based methods [WHT03]. Shape-based
classification makes use of the objects’2D spatial information whereas motion-based
classification uses temporally tracked features of objects for the classification solution.

4.3 Object tracking

After object detection, visual surveillance systems generally track moving objects
from one frame to another in an image sequence. The objective of tracking is to
establish correspondence of objects and object parts between consecutive frames of
video stream. The tracking algorithms usually have considerable intersection with
lower stages (object detection) and higher stages (action recognition) during process-
ing: they provide cohesive temporal data about moving objects which are used both
to enhance lower level processing such as object detection and to enable higher level
data extraction such as action recognition.

Tracking in video can be categorized according to the needs of the applications
it is used in or according to the methods used for its solution. For instance, in the
case of human tracking, whole body tracking is generally adequate for outdoor video
surveillance whereas objects’ part tracking is necessary for some indoor surveillance
and higher level action recognition applications. There are two common approaches
in tracking objects as a whole [Ame03]: one is based on correspondence matching and
another carries out explicit tracking by making use of position prediction or motion
estimation. Useful mathematical tools for tracking include the Kalman filter, the
Condensation algorithm, the dynamic Bayesian network, the Geodesic method, etc.

Tracking methods are divided into four major categories: region-based tracking,
active-contour-based tracking, feature-based tracking and model-based tracking. It
should be pointed out that this classification is not absolute in that algorithms from
different categories can be integrated together.

4.4 Action recognition

After successfully tracking the moving objects from one frame to another in an image
sequence, the problem of understanding objects’ behaviors (action recognition) from
image sequences follows naturally. Behavior understanding involves the analysis and
recognition of motion patterns.

Understanding of behaviors may simply be thought as the classification of time
varying feature data, i.e., matching an unknown test sequence with a group of la-
beled reference sequences representing typical behavior understanding is to learn the
reference behavior sequences from training samples, and to devise both training and
matching methods for coping effectively with small variations of the feature data
within each class of motion patterns. This stage is out of the focus of this thesis.
Otherwise the boosting technique presented in Chapter 6 could be used to learn the
typical behavior and to detect unusual behaviors. The boosting technique developed

Part II: Algorithms 21

within LibAdaBoost is made generic and could be extended to cover the data model
of behaviors and trajectories and other types of data.

4.5 Semantic description

Semantic description aims at describing object behaviors in a natural language suit-
able for nonspecialist operator of visual surveillance. Generally there are two major
categories of behavior description methods: statistical models and formalized reason-
ing. This stage is out of the focus of this thesis.

4.6 Personal identification

The problem of who is now entering the area under surveillance? is of increasing
importance for visual surveillance. Such personal identification can be treated as a
special behavior understanding problem. For instance, human face and gait are now
regarded as the main biometric features that can be used for people identification in
visual surveillance systems [SEN98]. In recent years, great progress in face recogni-
tion has been achieved. The main steps in the face recognition for visual surveillance
are face detection, face tracking, face feature detection and face recognition. Usually,
these steps are studied separately. Therefore, developing an integrated face recogni-
tion system involving all of the above steps is critical for visual surveillance. This
stage is out of the focus of this thesis.

4.7 Fusion of data from multiple cameras

Motion detection, tracking, behavior understanding, and personal identification dis-
cussed above can be realized by single camera-based visual surveillance systems. Mul-
tiple camera-based visual surveillance systems can be extremely helpful because the
surveillance area is expanded and multiple view information can overcome occlusion.
Tracking with a single camera easily generates ambiguity due to occlusion or depth.
This ambiguity may be eliminated from another view. However, visual surveillance
using multi cameras also brings problems such as camera installation (how to cover
the entire scene with the minimum number of cameras), camera calibration, object
matching, automated camera switching and data fusion.

Chapter 5

Moving object detection

Contents
5.1 Challenge of detection . 23

5.2 Object detection system diagram 25

5.2.1 Foreground detection . 26

5.2.2 Pixel level post-processing (Noise removal) 27

5.2.3 Detecting connected components 28

5.2.4 Region level post-processing 28

5.2.5 Extracting object features 28

5.3 Adaptive background differencing 29

5.3.1 Basic Background Subtraction (BBS) 29

5.3.2 W4 method . 30

5.3.3 Single Gaussian Model (SGM) 31

5.3.4 Mixture Gaussian Model (MGM) 32

5.3.5 Lehigh Omni-directional Tracking System (LOTS): 33

5.4 Shadow and light change detection 35

5.4.1 Methods and implementation 36

5.5 High level feedback to improve detection methods . . . 46

5.5.1 The modular approach . 47

5.6 Performance evaluation . 48

5.6.1 Ground truth generation . 48

5.6.2 Datasets . 48

5.6.3 Evaluation metrics . 49

5.6.4 Experimental results . 54

5.6.5 Comments on the results 56

Part II: Algorithms 23

Detection of moving objects and performing segmentation between background
and moving objects is an important step in visual surveillance. Errors made at this
abstraction level are very difficult to correct at higher levels. For example, when an
object is not detected at the lowest level, it cannot be tracked and classified at the
higher levels. The more accurate the segmentation at the lowest level, the better
the object shape is known and consequently, the easier the (shape based) object
recognition tasks become.

Frequently used techniques for moving object detection are background subtrac-
tion, statistical methods, temporal differencing and optical flow. Our system adopts
a method based on combining different object detection algorithms of background
modeling and subtraction, to achieve robust and accurate motion detection and to
reduce false alarms. This approach is suitable for both color and infra-red sequences
and based on the assumption of a stationary surveillance camera, which is the case
in many surveillance applications.

Figure 5.1 shows an illustration of intermediate results within a moving object
detection stage. Each new frame (Figure 5.1a) is used to update existing background
image (Figure 5.1b). A threshold is applied to difference image between the current
frame and the background image, and a binary image is produced (Figure 5.1c) which
indicates the areas of activities. Finally, segmentation methods, applied on the binary
image, can extract the moving objects (Figure 5.1d).

This chapter is organized as follows: section 5.1 provides a non exhaustive list of
challenges that any object detection algorithm has to handle. Section 5.2 presents
a generic template for an object detection system. In section 5.3 we describe our
implementation of state of the art methods for adaptive background differencing.
Shadows and light change detection elimination are described in section 5.4. The
improvement of these methods using high level feedback is presented in section 5.5.
To comparison of the different approaches on benchmarked datasets is presented in
section 5.6.

5.1 Challenge of detection

There are several problems that a moving object detection algorithm must solve
correctly. A non exhaustive list of problems would be the following [TKBM99]:

• Moved objects: A background object can be moved. These objects should not
be considered part of the foreground forever after.

• Time of day: Gradual illumination changes alter the appearance of the back-
ground.

• Light switch: Sudden changes in illumination and other scene parameters alter
the appearance of the background.

24 Part II: Algorithms

Figure 5.1: Object detection example: (a) input frame, (b) background image model,
(c) foreground pixel-image, (d) detected objects

• Waving trees: Backgrounds can vacillate, requiring models which can represent
disjoint sets of pixel values.

• Camouflage: A foreground object’s pixel characteristics may be subsumed by
the modeled background.

• Bootstrapping: A training period absent of foreground objects is not available
in some environments.

• Foreground aperture: When a homogeneously colored object moves, change in
the interior pixels cannot be detected. Thus, the entire object may not appear
as foreground.

• Sleeping person: A foreground object that becomes motionless cannot be dis-
tinguished from a background object that moves and then becomes motionless.

• Waking person: When an object initially in the background moves, both it and
the newly revealed parts of the background appear to change.

• Shadows: Foreground objects often cast shadows which appear different from
the modeled background.

Part II: Algorithms 25

5.2 Object detection system diagram

Figure 5.2: Object detection system diagram

Figure 5.2 shows a generic system diagram for our object detection method. The
system starts by background scene initialization step. Next step is detecting the
foreground pixels by using the background model and current frame from the video
stream. This pixel-level detection method is dependent on the background model
in use and it is used to update the background model to adapt to dynamic scene
changes. The foreground detection step is followed by a pixel-level post-processing
stage to perform some noise removal filters. Once the result enhanced foreground

26 Part II: Algorithms

pixel-map is ready, in the next step, connected components analysis is used to the
labeling of the connected regions. The labeled regions are then filtered to eliminate
small regions caused by environmental noise in the region-level post-processing step.
More advanced filters are considered for merging overlapping isolated regions and
will be detailed later. In the final step of the detection process, a number of object
features are extracted for subsequent use by high level stages.

5.2.1 Foreground detection

A common approach to detecting the foreground regions is adaptive background dif-
ferencing, where each video frame is compared against a reference, often called the
background image or background model. The major steps in an adaptive background
differencing algorithm are background modeling and foreground detection. Back-
ground modeling uses the new frame to calculate and update a background model.
This background model provides a pixel-wise statistical representation of the entire
background scene. Foreground detection then identifies pixels in the video frame that
cannot be adequately explained by the background model, and outputs them as a
binary candidate foreground mask.

Several methods for adaptive background differencing have been proposed in the
recent literature. All of these methods try to effectively estimate the background
model from the temporal sequence of the frames. However, there are a wide variety
of techniques and both the expert and the newcomer to this area can be confused
about the benefits and limitations of each method. In our video surveillance system
we have selected five algorithms for modeling the background :

1. Basic Background Segmentation (BBS).

2. W4 method (W4).

3. Single Gaussian Model (SGM).

4. Mixture Gaussian Model (MGM).

5. Lehigh omni-directional Tracking System (LOTS).

The first method is a basic background subtraction algorithm (BBS) [HA05]. This
is the simplest algorithm and it provides a lower benchmark for the other algorithms
which are more complex but based on the same principle.

The second algorithm is denoted as W4 and operates on gray scale images. Three
parameters are learned for each pixel to model the background: minimum intensity,
maximum intensity and maximum absolute difference in consecutive frames. This
algorithm incorporates the noise variations into the background model.

The third method is used in Pfinder [WATA97] denoted here as SGM (Single
Gaussian Model). This method assumes that each pixel is a realization of a random
variable with a Gaussian distribution. The first and second order statistics of this
distribution are independently estimated for each pixel.

Part II: Algorithms 27

The fourth method is an adaptive mixture of multiple Gaussian (MGM) as pro-
posed by Stauffer and Grimson in [CG00]. Every pixel of the background is modeled
using a mixture of Gaussian. The weights of the mixture and the parameters of the
Gaussian are adapted with respect to the current frame. This method has the advan-
tage that multi modal backgrounds (such as moving trees) can be modeled. Among
the tested techniques, this is the one with the most complex background model.

The fifth approach (LOTS) proposed by Boult in [BMGE01] is an efficient method
designed for military applications that presumes a two background model. In addi-
tion, the approach uses high and low per-pixel thresholds. The method adapts the
background by incorporating the current image with a small weight. At the end of
each cycle, pixels are classified as false detection, missed detection and correct detec-
tion. The original point of this algorithm is that the per-pixel thresholds are updated
as a function of the classification.

5.2.2 Pixel level post-processing (Noise removal)

The outputs of foreground region detection algorithms generally contain noise and
therefore are not appropriate for further processing without special post-processing.
There are various factors that cause the noise in foreground detection, such as:

1. Camera noise: This is the noise caused by the cameras image acquisition com-
ponents. The intensity of a pixel that corresponds to an edge between two
different colored objects in the scene may be set to one of the object color in
one frame and to the other object color in the next frame.

2. Reflectance noise: When a source of light, for instance sun, moves it makes
some parts in the background scene to reflect light. This phenomenon makes
the foreground detection algorithms fail and detect reflectance as foreground
regions.

3. Background colored object noise: Some parts of the objects may have the same
color as the reference background behind them. This resemblance causes some of
the algorithms to detect the corresponding pixels as non-foreground and objects
to be segmented inaccurately.

4. Shadows and sudden illumination change: Shadows cast on objects are detected
as foreground by most of the detection algorithms. Also, sudden illumination
changes (e.g. turning on lights in a monitored room) makes the algorithms fail
to detect actual foreground objects accurately.

Morphological operations, erosion and dilation [Hei96], are applied to the foreground
pixel map in order to remove noise that is caused by the first three of the items listed
above. Our aim in applying these operations is removing noisy foreground pixels that
do not correspond to actual foreground regions and to remove the noisy background
pixels near and inside object regions that are actually foreground pixels. Erosion,

28 Part II: Algorithms

as its name implies, erodes one-unit thick boundary pixels of foreground regions.
Dilation is the reverse of erosion and expands the foreground region boundaries with
one-unit thick pixels. The subtle point in applying these morphological filters is
deciding on the order and amount of these operations. The order of these operations
affects the quality and the amount affects both the quality and the computational
complexity of noise removal.

Removal of shadow regions and detecting and adapting to sudden illumination
changes require more advanced methods which are explained in section 5.4.

5.2.3 Detecting connected components

After detecting foreground regions and applying post-processing operations to remove
noise and shadow regions, the filtered foreground pixels are grouped into connected
regions (blobs) and labeled by using a two-level connected component labeling algo-
rithm presented in [Hei96]. After finding individual blobs that correspond to objects,
the bounding boxes of these regions are calculated.

5.2.4 Region level post-processing

Even after removing pixel-level noise, some artificial small regions remain due to
inaccurate object segmentation. In order to eliminate this type of regions, the average
region size (γ) in terms of pixels is calculated for each frame and regions that have
smaller sizes than a fraction (α) of the average region size (Size(region) < α ∗ γ) are
deleted from the foreground pixel map.

Also, due to segmentation errors, some parts of the objects are found as discon-
nected from the main body. In order to correct this effect, the bounding boxes of
regions that are close to each other are merged together and the region labels are
adjusted.

5.2.5 Extracting object features

Once we have segmented regions we extract features of the corresponding objects
from the current image. These features are size (S), center of mass (Cm), color
histogram (Hc) and silhouette contour of the objects blob. Calculating the size of the
object is trivial and we just count the number of foreground pixels that are contained
in the bounding box of the object. In order to calculate the center of mass point,
Cm = (xCm , yCm), of an object O, we use the following equation 5.1:

xCm =

∑
xi

n
, yCm =

∑
yi

n
(5.1)

where n is the number of pixels in O. The color histogram, Hc is calculated over
monochrome intensity values of object pixels in current image. In order to reduce
computational complexity of operations that use Hc, the color values are quantized.
Let N be the number of bins in the histogram, then every bin covers 255

N
color values.

Part II: Algorithms 29

The color histogram is calculated by iterating over pixels of O and incrementing
the stored value of the corresponding color bin in the histogram, Hc. So for an object
O the color histogram is updated as follows:

Hc[
ci

N
] = Hc[

ci

N
] + 1,∀ci ∈ O (5.2)

where ci represents the color value of ith pixel. In the next step the color histogram
is normalized to enable appropriate comparison with other histograms in later steps.
The normalized histogram Ĥc is calculated as follows:

Ĥc[i] =
Hc[i]∑
Hc[i]

(5.3)

5.3 Adaptive background differencing

This section describes object detection algorithms based on adaptive background
differencing technique used in this work: BBS, W4, SGM, MGM and LOTS. The
BBS, SGM, MGM algorithms use color images while W4 and LOTS use gray scale
images.

5.3.1 Basic Background Subtraction (BBS)

There are different approaches to this basic scheme of background subtraction in
terms of foreground region detection, background maintenance and post processing.
This method detects targets by computing the difference between the current frame
and a background image for each color channel RGB. The implementation can be
summarized as follows:

• Background initialization and threshold: motion detection starts by com-
puting a pixel based absolute difference between each incoming frame It and
an adaptive background frame Bt. The pixels are assumed to contain motion
if the absolute difference exceeds a predefined threshold level τ . As a result, a
binary image is formed if (5.4) is satisfied, where active pixels are labeled with
1 and non-active ones with 0.

|It(φ)−Bt(φ)| > τ (5.4)

where τ is a predefined threshold. The operation in (5.4) is performed for all
image pixels φ.

• Filtering: the resulting thresholded image usually contains a significant amount
of noise. Then a morphological filtering step is applied with a 3x3 mask (dilation
and erosion) that eliminates isolated pixels.

30 Part II: Algorithms

• Background adaptation: to take into account slow illumination changes
which is necessary to ensure longterm tracking, the background image is subse-
quently updated by:

Bt+1
i (φ) = αI t

i (φ) + (1− α)Bt
i(φ) (5.5)

where α is the learning rate. In our experiments we use α = 0.15 and the
threshold τ = 0.2. These parameters stay constant during the experiment.

The following figure shows the results

Figure 5.3: The BBS results (a) current frame (b)(c) Foreground detection

5.3.2 W4 method

This algorithm was proposed by Haritaoglu in [CG00]. W4 has been designed to
work with only monochromatic stationary video sources, either visible or infrared. It
is designed for outdoor detection tasks, and particularly for night-time or other low
light level situations.

• Background scene modeling: W4 obtains the background model even if
there are moving foreground objects in the field of view, such as walking people
moving cars, etc. The background scene is modeled by representing each pixel by
three values; minimum intensity(m), maximum intensity (M), and the maximum
intensity difference (D) between consecutive frames. In our implementation we
selected an array V containing N consecutive images, V i(φ) is the intensity of a
pixel location φ in the ith image of V. The initial background model for a pixel
location [m(φ), M(φ), D(φ)], is obtained as follows: m(φ)

M(φ)
D(φ)

 =

 minV (φ)
maxV (φ)

max|V i(φ)− V i−1(φ)|

 (5.6)

• Classification: each pixel is classified as background or foreground according
to (5.7). Giving the values of Min, Max and D, a pixel I(φ) is considered as
foreground pixel if :

|m(φ)− I(φ)| > D(φ)or|M(φ)− I(φ)| > D(φ) (5.7)

Part II: Algorithms 31

• Filtering: after classification the resulting image usually contains a significant
amount of noise. A region based noise cleaning algorithm is applied that is
composed of an erosion operation followed by connected component analysis
that allows to remove regions with less than 50 pixels. The morphological
operations dilatation and erosion are now applied.

Figure 5.4: The w4 results (a) current frame (b)(c) Foreground detection

5.3.3 Single Gaussian Model (SGM)

The Single Gaussian Model algorithm is proposed by Wren in [WWT03]. In this
section we describe the different steps to implement this method.

• Modeling the background: we model the background as a texture surface;
each point on the texture surface is associated with a mean color value and a
distribution about that mean. The color distribution of each pixel is modeled
with the Gaussian described by a full covariance matrix. The intensity and color
of each pixel are represented by a vector [Y, U, V]T . We define µ(φ) to be the
mean [Y, U, V] of a point on the texture surface, and U(φ) to be the covariance
of that point’s distribution.

• Update models: we update the mean and covariance of each pixel φ as follows:

µ(φ) = (1− α)µt−1(φ) + αI t(φ), (5.8)

U t(φ) = (1− α)U t−1(φ) + αν(φ)ν(φ)T (5.9)

Where I t(φ) is the pixel of the current frame in YUV color space, α is the
learning rate; in the experiments we have used α = 0.005 and ν(φ) = I t(φ) −
µt(φ).

• Detection: for each image pixel I t(φ) we must measure the likelihood that it is
a member of each of the blob models and the scene model. We compute for each
pixel at the position φ the log likelihood L(φ) of the difference ν(φ). This value
gives rise to a classification of individual pixels as background or foreground.

L(φ) = −1

2
ν(φ)T (U t)−1 − 1

2
ln |U t| − 3

2
ln(2π). (5.10)

32 Part II: Algorithms

A pixel φ is classified as foreground if L(φ) > τ otherwise it is classified as
background. Where τ is a threshold, in the experiment we consider τ = −300.
We have obtained the following results (see on Figure 5.5)

Figure 5.5: The SGM results (a) current frame (b)(c) Foreground detection

5.3.4 Mixture Gaussian Model (MGM)

In this section we present the implementation of the original version of the adaptive
Mixture of multiple Gaussians Model for background modeling. This model was
proposed by Stauffer and Grimson in [HA05]. It can robustly deal with lighting
changes, repetitive motions, clutter, introducing or removing objects from the scene
and slowly moving objects. Due to its promising features, this model has been a
popular choice for modeling complex and dynamic backgrounds. The steps of the
algorithm can be summarised as:

• Background modeling: in this model, the value of an individual pixel (e.g.
scalars for gray values or vectors for color images) over time is considered as a
pixel process and the recent history of each pixel, {X1, ..., Xt}, is modeled by a
mixture of K Gaussian distributions. The probability of observing current pixel
value then becomes:

P (Xt) =
k∑

i=1

wi,t ∗ η(Xt, µi,t, σ
2
i,t) (5.11)

where k is the number of distributions, wi,t is an estimate of the weight (what
portion of the data is accounted for this Gaussian) of the ith Gaussian Gi,t in
the mixture at time t, µi,t is the mean value of Gi,t and σ2

i,t is the covariance
matrix of Gi,t and η is a Gaussian probability density function:

η(Xt, µ, σ2) =
1

(2π)
n
2 |σ2| 12

e−
1
2
(Xt−µt)T (σ2)−1(Xt−µt). (5.12)

Decision on K depends on the available memory and computational power. Also,
the covariance matrix is assumed to be of the following form for computational
efficiency

σ2
k,t = α2

kI (5.13)

Part II: Algorithms 33

which assumes that red, green and blue color components are independent and
have the same variance.

• Update equations: the procedure for detecting foreground pixels is as follows:
when the system starts, the K Gaussian distributions for a pixel are initialized
with predefined mean, high variance and low prior weight. When a new pixel is
observed in the image sequence, to determine its type, its RGB vector is checked
against the K Gaussians, until a match is found. A match is defined if the pixel
value is within γ = 2.5 standard deviations of a distribution. Next, the prior
weights of the K distributions at time t, wk,t, are updated as follows:

wk,t = (1− α)wk,t−1 + α(Mk,t) (5.14)

Where α is the learning rate and Mk,t is 1 for the model which matched the
pixel and 0 for the remaining models. After this approximation the weights are
renormalised. The changing rate in the model is defined by 1

α
. The parameters

µ and σ2 for unmatched distribution are updated as follows:

µt = (1− α)µt−1 + ρXt (5.15)

σ2
t = (1− ρ)σ2

t−1 + ρ(Xt − µ)T (5.16)

ρ = αν(Xt|µk, σk) (5.17)

If no match is found for the new observed pixel, the Gaussian distribution with
the least probability is replaced with a new distribution with the current pixel
value as its mean value, an initially high variance and low prior weight.

• Classification: in order to classify (foreground or background) a new pixel,
the K Gaussian distributions are sorted by the value of w/σ. This ordered list of
distributions reflects the most probable backgrounds from top to bottom since
by 5.14, background pixel processes make the corresponding Gaussian distribu-
tion have larger prior weight and less variance. Then the first B distributions
are defined as background.

B = arg minb(
b∑

k=1

wk > T) (5.18)

T is the minimum portion of the pixel data that should be accounted for by
the background. If a small value is chosen for T, the background is generally
unimodal. Figure 5.6 shows the results.

5.3.5 Lehigh Omni-directional Tracking System (LOTS):

The target detector proposed in [WATA97] operates on gray scale images. It uses two
background images and two per-pixel thresholds. The steps of the algorithm can be
summarized as:

34 Part II: Algorithms

Figure 5.6: The MGM results (a) Current frame (b) (c) Foreground detection

• Background and threshold initialization: the first step of the algorithm,
performed only once, assumes that during a period of time there are no targets
in the image. In this ideal scenario, the two backgrounds are computed easily.
The image sequences used in our experiment do not have target-free images, so
B1 is initialized as the mean of 20 consecutive frames and B2 is given by :

B2 = B1 + µ (5.19)

Where µ is an additive Gaussian noise with η(µ = 10, σ = 20) The per-pixel
threshold TL, is then initialized to the difference between the two backgrounds:

TL(φ) = |B1(φ)−B2(φ)|+ ν(φ) (5.20)

Where ν represents noise with an uniform distribution in [1,10], and φ an image
pixel. Then the higher threshold TH is computed by:

TH(φ) = TL(φ) + V (5.21)

Where V is the sensitivity of the algorithm, we have chosen V = 40 in our
implementation.

• Detection: we create D, which contains the minimum of the differences be-
tween the new image I, and the backgrounds B1 and B2:

D(φ) = minj|Ij(φ)−Bj(φ)|, j = 1, 2. (5.22)

D is then compared with the threshold images. Two binary images DL and DH

are created. The active pixels of DL and DH are the pixels of D that are higher
than the thresholds TL and TH respectively.

• Quasi connected components analysis (QCC): QCC computes for each
thresholded image DL and DH images DsL and DsH with 16 times smaller
resolution. Each element in these reduced images, DsL and DsH , has the num-
ber of active pixels in a 4x4 block of DL and DH respectively. Both images
are then merged into a single image that labels pixels as detected, missed or
insertions. This process labels every pixel, and also deals with targets that are
not completely connected, considering them as only one region.

Part II: Algorithms 35

• Labeling and cleaning: a 4-neighbor connected components analyzer is then
applied to this image (DsL and DsH) and, the regions with less than Λ pixels
are eliminated. The remaining regions are considered as detected. The detected
pixels are the ones from DL that correspond to detected regions. The insertions
are the active pixels in DL, but do not correspond to detected regions, and the
missed pixels are the inactive pixels in DL.

• Background and threshold adaptation: The backgrounds are updated as
follows:

Bt+1
i (φ) =

{
(1− α2)B

t
i(φ) + α2I

t(φ) φ ∈ T t

(1− α1)B
t
i(φ) + α1I

t(φ) φ ∈ N t (5.23)

Where φ ∈ T t represents a pixel that is labeled as detected and φ ∈ N t rep-
resents a missed pixel. Generally α2 is smaller than α1, In our experiment we
have chosen α1 = 0.000306 and α2 = α1

4
, and only the background correspond-

ing to the smaller difference D is updated. Using the pixel labels, thresholds
are updated as follows:

T t+1
L (φ) =


T t

L(φ) + 10 φ ∈ insertion
T t

L(φ)− 1 φ ∈ missed
T t

L(φ) φ ∈ detected
(5.24)

We have obtained the following results (see on Figure 5.7).

Figure 5.7: The LOTS results (a) Current frame (b)(c) Foreground detection

5.4 Shadow and light change detection

The algorithms described above for motion detection perform well on indoor and out-
door environments and have been used for real-time surveillance for years. However,
most of these algorithms are susceptible to both local (e.g. shadows and highlights)
and global illumination changes (e.g. sun being covered/uncovered by clouds). Shad-
ows cause the motion detection methods fail in segmenting only the moving objects

36 Part II: Algorithms

and make the upper levels such as object classification to perform inaccurately. Many
existing shadow detection algorithms mostly use either chromaticity or a stereo infor-
mation to cope with shadows and sudden light changes. In our video surveillance sys-
tem we have implemented two methods based on chromaticity: Horprasert [TDD99]
and Chen [CL04].

Shadows are due to the occlusion of the light source by an object in the scene
(Figure 5.8). The part of an object that is not illuminated is called self-shadow,
while the area projected on the scene by the object is called cast shadow and is
further classified into umbra and penumbra. The umbra corresponds to the area
where the direct light is totally blocked by the object, whereas in the penumbra area
it is partially blocked. The umbra is easier to be seen and detected, but is more
likely to be misclassified as moving object. If the object is moving, the cast shadow
is more properly called moving cast shadow [JRO99], otherwise is called still shadow.
Human visual system seems to utilize the following observations for reliable shadow
detection:

1. Shadow is dark but does not change significantly neither the color nor the
texture of the background covered.

2. Shadow is always associated with the object that casts it and to the behavior
of that object.

3. Shadow shape is the projection of the object shape on the background. For an
extended light source,the projection is unlikely to be perspective.

4. Both the position and strength of the light source are known.

5. Shadow boundaries tend to change direction according to the geometry of the
surfaces on which they are cast.

Figure 5.8: Illumination of an object surface

5.4.1 Methods and implementation

Shadow detection processes can be classified in two ways. One, they are either deter-
ministic or statistical, and two, they are either parametric or non-parametric. This

Part II: Algorithms 37

particular approach for shadow detection is statistical and non-parametric which im-
plies that it uses probabilistic functions to describe the class membership and pa-
rameter selection is not a critical issue. In the current work, to cope with shadows,
we selected implemented and evaluated two methods: a statistical non-parametric
approach introduced by Horprasert et al. in [TDD99] and a deterministic non-model
based approach proposed by Chen et al. [CL04]. Our objective is to complete our
video surveillance prototype with shadow removal cores with known performance and
limitations.

Statistical non-parametric approach

A good understanding of this approach requires the introduction of some mathemat-
ical tools for image processing:

• Computational color model: based on the fact that humans tend to assign
a constant color to an object even under changing illumination over time and
space (color constancy), the color model used here separates the brightness from
the chromaticity component. Figure 5.9 illustrates the proposed color model in

Figure 5.9: Proposed color model in three dimensional RGB color space

three-dimensional RGB color space. Consider a pixel, i, in the image let Ei =
[ER(i), EG(i), EB(i)] represent the pixel’s expected RGB color in the background
image. Next, let Ii = [IR(i), IG(i), IB(i)] denotes the pixel’s RGB color value in
a current image that we want to subtract from the background. The line OEi

is called expected chromaticity line whereas OIi is the observed color value.
Basically, we want to measure the distortion of Ii from Ei. The proposed color
model separates the brightness from the chromaticity component. We do this

38 Part II: Algorithms

by decomposing the distortion measurement into two components, brightness
distortion and chromaticity distortion, which will be described below.

• Brightness distortion: the brightness distortion (α) is a scalar value that
brings the observed color close to the expected chromaticity line. It is obtained
by minimizing (5.25):

φ(αi) = (Ii − αiEi)
2 (5.25)

• Color distortion: color distortion is defined as the orthogonal distance be-
tween the observed color and the expected chromaticity line. The color distor-
tion of a pixel i is given by (5.26).

CDi = ||Ii − αiEi|| (5.26)

• Color characteristics: the CCD sensors linearly transform infinite-dimensional
spectral color space to a three-dimensional RGB color space via red, green, and
blue color filters. There are some characteristics of the output image, influenced
by typical CCD cameras, that we should account for in designing the algorithm,
as follows:

– color variation: the RGB color value for a given pixel varies over a period
of time due to camera noise and illumination fluctuation by light sources.

– band unbalancing: cameras typically have different sensitivities to different
colors. Thus, in order to make the balance weights on the three color bands
(R,G,B), the pixel values need to be rescaled or normalized by weight
values. Here, the pixel color is normalized by its standard deviation (si)
which is given by (5.27)

si = [σR(i), σG(i), σB(i)] (5.27)

where σR(i), σG(i), and σB(i) are the standard deviation of the ith pixel’s
red, green, blue values computed over N frames of the background frames.

– clipping: since the sensors have limited dynamic range of responsiveness,
this restricts the varieties of color into a RGB color cube, which is formed
by red, green, and blue primary colors as orthogonal axes. On 24-bit
images, the gamut of color distribution resides within the cube range from
[0, 0, 0] to [255, 255, 255]. Color outside the cube (negative or greater than
255 color) cannot be represented. As a result, the pixel value is clipped in
order to lie entirely inside the cube.

The algorithm is based on pixel modeling and background subtraction and its flowchart
is shown in Figure 5.10. Typically, the algorithm consists of three basic steps:

1. Background modeling: the background is modeled statistically on a pixel
by pixel basis. A pixel is modeled by a 4-tuple < Ei, si, ai, bi > where Ei is

Part II: Algorithms 39

Figure 5.10: Flowchart of the Statistical Non Parametric approach. The first N
frames are used to compute, for each pixel, the means and the variances of each color
channel, Ei and Si respectively (1). Then, the distortion of the brightness αi and the
distortion of the chrominance CDi of the difference between expected color of a pixel
and its value in the current image are computed and normalized (2,4). Finally, each
pixel is classified into four classes C(i) (5) using a decision rule based on thresholds
τCD, ταlo

, τα1 and τα2 automatically computed (3).

40 Part II: Algorithms

the expected color value, si is the standard deviation of color value , ai is the
variation of the brightness distortion, and bi is the variation of the chromaticity
distortion of the ith pixel. The background image and some other associated
parameters are calculated over a number of static background frames. The
expected color value of pixel i is given by (5.28)

Ei = [µR(i), µG(i), µB(i)] (5.28)

where µR(i), µG(i), and µB(i) are the arithmetic means of the ith pixel’s red,
green, blue values computed over N background frames. Since the color bands
have to be balanced by rescaling color values by pixel variation factors, the
formula for calculating brightness distortion and chromaticity distortion can be
written as:

αi =

IR(i)µR(i)
σR

2(i)
+ IG(i)µG(i)

σG
2(i)

+ IB(i)µB(i)
σB

2(i)

[µR(i)
σR(i)

]2 + [µG(i)
σG(i)

]2 + [µB(i)
σB(i)

]2
(5.29)

CDi =

√
(
IR(i)− αiµR(i)

σR(i)
)2 + (

IG(i)− αiµG(i)

σG(i)
)2 + (

IB(i)− αiµB(i)

σB(i)
)2

(5.30)

Since different pixels yield different distributions of brightness and chromaticity
distortions, these variations are embedded in the background model as ai and
bi respectively which are used as normalization factors.

The variation in the brightness distortion of the ith pixel is given by ai, which
is given by:

ai = RMS(αi) =

√∑N
i=0(αi − 1)2

N
(5.31)

The variation in the chromaticity distortion of the ith pixel is given by bi which
is defined as:

bi = RMS(CDi) =

√∑N
i=0(CDi)2

N
(5.32)

In order to use a single threshold for all pixels, we need to rescale i and CDi.
Therefore, let

α̂i =
αi − i− 1

ai

(5.33)

and

ĈDi =
CDi

bi

(5.34)

be normalized brightness distortion and normalized chromaticity distortion re-
spectively.

Part II: Algorithms 41

Figure 5.11: Histogram of Normalized
alpha

Figure 5.12: Histogram of Normalized
CD

2. Threshold selection: a statistical learning procedure is used to automatically
determine the appropriate thresholds. The histograms of both α̂i and the ĈDi

are built and the thresholds are computed by fixing a certain detection rate. τCD

is a threshold value used to determine the similarity in chromaticity between
the background image and the current observed image and τalpha1 and τalpha2

are selected threshold values used to determine the similarities in brightness.
ταlo is described in the classification step.

According to histograms of normalized α (Figure 5.11) and CD (Figure 5.12)
the values selected for the various thresholds to be utilized for pixel classification
are as follows (see on Table 5.1).

Threshold Value

τCD 100
ταlo

-50
τα1 15
τα2 -15

Table 5.1: Shadow detection thresholds learning result

3. Pixel classification: chromaticity and brightness distortion components are
calculated based on the difference between the background image and the cur-
rent image. Suitable threshold values are applied to these components to de-
termine the classification of each pixel i according to the following definitions:

• Background (B): if it has both brightness and chromaticity similar to those
of the same pixel in the background image.

• Shaded background or Shadow (S): if it has similar chromaticity but lower
brightness than those of the same pixel in the background image. This
is based on the notion of the shadow as a semi-transparent region in the

42 Part II: Algorithms

image, which retains a representation of the underlying surface pattern,
texture or color value.

• Highlighted background (H): if it has similar chromaticity but higher bright-
ness than the background image.

• Foreground (F): if the pixel has chromaticity different from the expected
values in the background image.

Based on these definitions, a pixel is classified into one of the four categories
C(i) ∈ {F, B, S,H} by the following decision procedure.

C(i) =


F : ĈDi > τCD, else
B : α̂i < τα1 and α̂i > τα2 , else
S : α̂i < 0, else
H : otherwize

(5.35)

A problem encountered here is that if a moving object in a current image con-
tains very low RGB values, this dark pixel will always be misclassified as a
shadow. This is because the color point of the dark pixel is close to the origin
in RGB space and the fact that all chromaticity lines in RGB space meet at
the origin, which causes the color point to be considered close or similar to any
chromaticity line. To avoid this problem, we introduce a lower bound for the
normalized brightness distortion (ταlo). Then, the decision procedure becomes:

C(i) =


F : ĈDi > τCDorα̂i < ταlo, else
B : α̂i < τα1 and α̂i > τα2 , else
S : α̂i < 0, else
H : otherwize

(5.36)

Deterministic non-model based approach

A shadow cast on a background does not change its hue significantly, but mostly
lower the saturation of the points. We observe that the relationship between pixels
when illuminated and the same pixels under shadows is roughly linear. Based on
those observations, we exploit the brightness distortion and chrominance distortion
of the difference between the expected color of a pixel and its value in the current
image; otherwise the saturation component information and the ratios of brightness
between the current image and the reference image is employed as well to determine
the shadowed background pixels. This method is close to the method proposed by
Chen et al [CL04] which presents a background model initiation and maintenance
algorithm by exploiting HSV color information.

This method differs from the previously described statistical non-parametric ap-
proach in Section 5.4.1 by the way it handles its background model. This approach
does not provide a special procedure for updating the initial background model but

Part II: Algorithms 43

Figure 5.13: Result of Statistical non-parametric approach:(a) current frame, (b)
without shadow detection result (c) shadows

it uses instead, a similar procedure to create the background model periodically each
N frames. In other words, it provides a newest background model periodically. Fig-
ure 5.14 shows the flowchart of this approach. Typically, the algorithm consists of
three basic steps:

1. Background maintenance: the initial background model is obtained even if
there are moving foreground objects in the field of view, such as walking people,
moving cars, etc. In the algorithm, the frequency ratios of the intensity values
for each pixel at the same position in the frames are calculated using N frames
to distinguish moving pixels from stationary ones, and the intensity values for
each pixel with the biggest ratios are incorporated to model the background
scene. We extend this idea to the RGB color space. Each component of RGB
is respectively treated with the same scheme. A RGB histogram is created to
record the frequency of each component of the pixel. This process is illustrated
in Figure 5.15.

The RGB component value with the biggest frequency ratio estimated in the
histogram is assigned as the corresponding component value of the pixel in the
background model. In order to maintain the Background model we reinitialize

44 Part II: Algorithms

Figure 5.14: Flowchart of the Deterministic non-model based approach. Periodically,
each N frames are used to compute, for each pixel, the most representative RGB
pixel values with higher frequencies fR, fG and fB (5). For each frame (1), a conver-
sion from RGB to HSV is applied (2), then each pixel is classified using two stages
pixel process into three classes C(i) ∈ {F, B, S} (3) using a decision rule based on
thresholds τH , τs, R, M , Mmin and Mn(x, y) periodically computed (6).

Part II: Algorithms 45

Figure 5.15: RGB histogram of pixel (x, y) over the learning period for background
initiation.

it periodically each N frames (N = 100-200 frames) to adapt to the illumination
changes and scene geometry changes in the background scene.

Figure 5.16: (A) frame 106, (B) frame 202, (C) estimated background

2. Pixel classification: pixel classification is a two-stage process. The first stage
aims at segmenting the foreground pixels. The distortion of brightness for each
pixel between the incoming frame and the reference image is computed. This

46 Part II: Algorithms

stage is performed according to the following equation:

F (x, y) =


1 if |Iv(x, y)−Bv(x, y)| ≥ 1.1Mn(x, y)

∨|Iv(x, y)−Bv(x, y)| > Mmin

0 otherwise
(5.37)

The second stage consists in the segmentation of the shadow pixels. This is
done by introducing the hue and saturation information of the candidate pixels,
as well as the division of brightness between the pixels and the same pixels
in background image. Thus, the shadow points are classified by the following
decision procedure:

S(x, y) =


1 if Iv(x, y)−Bv(x, y) < M

∧L < |Iv(x, y)/Bv(x, y)| < R
∧|IH(x, y)−BH(x, y)| > τH

∧Is(x, y)−Bs(x, y) < τs

0 otherwise

(5.38)

3. Threshold selection: equation 5.37 introduces two thresholds: Mn(x, y) and
Mmin. Mn(x, y) is the mean value of the distortion of brightness for the pixel at
the position (x, y) over the last N frames. Mmin is a minimum mean value which
is introduced as a noise threshold to prevent the mean value from decreasing
below a minimum should the background measurements remain strictly constant
over a long period of time. Mmin is set at 40.

Equation 5.38 involves four thresholds: M , R, τH and τs. R is the ratio between
pixels when illuminated and the same pixels. This ratio is linear according
to [RE95]. We experimentally fixed the value of R to 2.2 which is coherent with
the range that has been experimentally found by Chen et al. [CL04]. L and M
have been empirically set respectively to 1.2 and 20.

τH and τs are selected threshold values used to measure the similarities of the
hue and saturation between the background image and the current observed
image. τH is set at 30 and τs is set at -10.

5.5 High level feedback to improve detection meth-

ods

Background models are usually designed to be task independent, and this often means
that they can use very little high-level information. Several approaches to incor-
porating information about foreground objects into background maintenance have
been proposed. They may be broadly separated into two categories: probabilistic
frameworks that jointly model scene and foreground object evolution, and systems
consisting of separate modules for scene modeling and high level inference.

Part II: Algorithms 47

Figure 5.17: Result of deterministic non-model based approach:(a) current frame, (b)
without shadow detection result (c) shadows

5.5.1 The modular approach

The usage of high level information in the background modeling framework is present
at the model update level. Instead of updating the background model using the
classification result, the background model is updated using the classification result
postprocessed using the high level algorithms (tracking, shadow detection...).

The advantage of the modular approach is that it conserves the known algorithms
for adaptive background differencing. It only intercepts the model update step. It
provides a corrected mask using the high level information. Thus, the usage of the
previous algorithms is ease to take in hand. Otherwise, the usage of the high level
information depends on the sensibility of the subsequent background model.

In our work we use the tracking and shadow detection as high level information
provider. We do not explain all the implementation in the present thesis (this part is
well explained in the library developed in C++ for implementing the different algo-
rithms), we concentrate on the comparison of several algorithms and the integration
to the rest of the framework.

48 Part II: Algorithms

5.6 Performance evaluation

Performance evaluation is an important issue in the development of object detection
algorithms. Quantitative measures are useful for optimizing, evaluating and compar-
ing different algorithms. For object detection, we believe there is no single measure
for quantifying the different aspects of performance. In this section, we present a
set of performance measures for determining how well a detection algorithm output
matches the ground truth.

5.6.1 Ground truth generation

A number of semi-automatic tools are currently available for generating ground truth
from pre-recorded video. The Open development environment for evaluation of video
systems (ODViS) [JWSX02] allows the user to generate ground truth, incorporate new
tracking algorithm into the environment and define any error metric through a graph-
ical user interface. The Video Performance Evaluation Resource (ViPER) [DM00] is
directed more toward performance evaluation for video analysis systems. It also pro-
vides an interface to generate ground truth, metrics for evaluation and visualization
of video analysis results.

In our experiments the comparison is based on manually annotated ground truth.
We used to draw a bounding box around each individual and also around each group
of individuals. Individuals are labeled only once they start moving. Groups are
defined as two or more individuals that interact. Groups cannot be determined only
by analyzing the spatial relations between individuals which makes the detection and
tracking very difficult for artificial systems. For this reason, we decide to restrict
the evaluation only to individual bounding boxes. On the other hand we labeled
the shape of the given individual. We define two labels: one label for the individual
and another for the moving cast shadow. This two-level labeling (pixel based and
object based) is useful to compare the object detection algorithms using adaptive
background differencing.

5.6.2 Datasets

We evaluated the performance of the different algorithms on a collection of datasets
for outdoor and indoor scenes. The outdoor scenes are mainly focused on people
moving in parking. The acquisition took place in INRIA (Grenoble). Figure 5.18
shows an example of the parking scene with the appropriate visual labeling (we can
distinguish the main object and the casted shadow).

Figure 5.19 shows the well known example of indoor dataset: the intelligent room.
the usage of this dataset was useful to compare our results with published results and
to verify the correctness of other results as well.

Part II: Algorithms 49

Figure 5.18: Example frame of the
parking ground truth

Figure 5.19: Example frame of intelli-
gent room ground truth

5.6.3 Evaluation metrics

In order to evaluate the performance of object detection algorithms, we adopted some
of the performance metrics proposed in [HA05] and [BER03]. We used also other
metrics introduced in [VJJR02]. These metrics and their significance are described
below.

Let G(t) be the set of ground truth objects in a single frame t and let D(t) be
the set of the output boxes produced by the algorithm. NG(t) and ND(t) are their
respective values in frame t.

1. Precision(FAR) and Recall(TRDR):

TRDR =
TP

TP + FN
(5.39)

FAR =
TP

TP + FP
(5.40)

Where a True Positive (TP) is defined as a ground truth point that is located
within the bounding box of an object detected by the algorithm. A False neg-
ative (FN) is a ground truth point that is not located within the bounding box
of any object detected by the algorithm. A False positive (FP) is an object that
is detected by the algorithm that has not a matching ground truth point. A
correct match is registered, when the bounding boxes of the targets Aobs and
Atruth overlap T .

Aobs ∩ Atruth

Aobs ∪ Atruth

≥ T (5.41)

2. Area-Based Recall for Frame(ABRF):
This metric measures how well the algorithm covers the pixel regions of the
ground truth. Initially it is computed for each frame and it is the weighted
average for the whole data set. Let UG(t) and UD(t) be the spatial union of the

50 Part II: Algorithms

Method Room Parking
Recall at T=50%

LOTS 0.3800 0.7500
W4 0.3900 0.0789
MGM 0.3799 0.5132
SGM 0.0000 0.0000
BBS 0.0000 0.0000
BBS-R 0.0092 0.0078

Precision at T=50%
LOTS 0.0800 0.0600
W4 0.0115 0.0001
MGM 0.0000 0.0088
SGM 0.0000 0.0000
BBS 0.0000 0.0000
BBS-R 0.0092 0.0022

Table 5.2: Comparison of recall and precision of the algorithms evaluated on the
indoor and outdoor datasets

boxes in G(t) and D(t):

UG(t) =

N
G(t)⋃
i=1

G
(t)
i (5.42)

UD(t) =

N
D(t)⋃
i=1

D
(t)
i (5.43)

For a single frame t, we define Rec(t) as the ratio of the detected areas in the
ground truth with the total ground truth area:

Rec(t) =

{
undefined if UG(t) = ∅
|U

G(t)∩U
D(t) |

|U
G(t) |

otherwise
(5.44)

OverallRec =

 undefined if
∑Nf

t=1 |UG(t) | = 0∑Nf
t=1 |UG(t) |×Rec(t)∑Nf

t=1 |UG(t) |
otherwise

(5.45)

where Nf is the number of frames in the ground-truth data set and the | operator
denotes the number of pixels in the area.

3. Area-Based Precision for Frame(ABPF):
This metric measures how well the algorithm minimized false alarms. Initially

Part II: Algorithms 51

Method Room Parking
LOTS 0.3731 0.7374
W4 0.8464 0.6614
MGM 0.5639 0.8357
SGM 0.6434 0.5579
BBS 0.8353 0.9651
BBS-R 0.7000 0.5911

Table 5.3: ABRF metric evaluation of the different algorithms

it is computed for each frame and it is the weighted average for the whole data
set. Let UG(t) and UD(t) be the spatial union of the boxes in G(t) and D(t):

UG(t) =

N
G(t)⋃
i=1

G
(t)
i (5.46)

UD(t) =

N
D(t)⋃
i=1

D
(t)
i (5.47)

For a single frame t, we define Prec(t) as the ratio of the detected areas in the
ground truth with the total ground truth area:

Prec(t) =

{
undefined if UD(t) = ∅

1− |U
G(t)∩U

D(t) |
|U

D(t) |
otherwise

(5.48)

OverallPrec is the weighted average precision of all the frames.

OverallPrec =

 undefined if
∑Nf

t=1 |UD(t) | = 0∑Nf
t=1 |UG(t) |×Rec(t)∑Nf

t=1 |UD(t) |
otherwise

(5.49)

where Nf is the number of frames in the ground-truth data set and the | operator
denotes the number of pixels in the area.

Method Room Parking
LOTS 0.1167 0.3883
W4 0.5991 0.7741
MGM 0.5652 0.6536
SGM 0.8801 0.8601
BBS 0.9182 0.9526
BBS-R 0.5595 0.4595

Table 5.4: ABPF metric evaluation of the different algorithms

52 Part II: Algorithms

4. Average Fragmentation(AF):
This metric is intended to penalize an algorithm for multiple output boxes
covering a single ground-truth object. Multiple detections include overlapping
and non-overlapping boxes. For a ground-truth object G

(t)
i in frame t, the

fragmentation of the output boxes overlapping the object G
(t)
i is measured by:

Frag(G
(t)
i) =

 undefined if N
D(t)∩G

(t)
i

= 0
1

1+log10(N
D(t)∩G

(t)
i

)
otherwise (5.50)

where N
D(t)∩G

(t)
i

is the number of output boxes in D(t) that overlap with the

ground truth object G
(t)
i .

Overall fragmentation is defined as average fragmentation for all ground-truth
objects in the entire data set.

5. Average Object Area Recall(AOAR):
This metric is intended to measure the average area recall of all the ground-
truth objects in the data set. The recall for an object is the proportion of its
area that is covered by the algorithm’s output boxes. The objects are treated
equally regardless of size.

For a single frame t, we define Recall(t) as the average recall for all the objects
in the ground truth G(t):

Recall(t) =

∑
∀G

(t)
i

ObjectRecall(G
(t)
i)

NG(t)

(5.51)

Where

ObjectRecall(Gi(t)) =
|G(t)

i ∩ UD(t)|
|G(t)

i |
(5.52)

OverallRecall(Gi(t)) =

∑Nf

t=1 NG(t) ×Recall(t)∑Nf

t=1 |NG(t) |
(5.53)

Method Room Parking
LOTS 0.1500 0.7186
W4 0.5555 0.6677
MGM 0.2920 0.8468
SGM 0.4595 0.5418
BBS 0.7026 0.9575
BBS-R 0.3130 0.1496

Table 5.5: AOAR metric evaluation of the different algorithms

Part II: Algorithms 53

6. Average Detected Box Area Precision(ADBAP):
This metric is a counterpart of the previous metric 5.51 where the output boxes
are examined instead of the ground-truth objects. Precision is computed for
each output box and averaged for the whole frame. The precision of a box is
the proportion of its area that covers the ground truth objects.

Precision(t) =

∑
∀D

(t)
i

BoxPrecision(D
(t)
i)

ND(t)

(5.54)

BoxPrecision(D
(t)
i) =

|D(t)
i ∩ UG(t)|
|D(t)

i |
(5.55)

OverallPrecision =

∑Nf

t=1 ND(t) × Precision(t)∑Nf

t=1 |ND(t) |
(5.56)

Method Room Parking
LOTS 0.0053 0.1453
W4 0.0598 0.0417
MGM 0.0534 0.0177
SGM 0.0133 0.0192
BBS 0.0048 0.0002
BBS-R 0.1975 0.0192

Table 5.6: ADBAP metric evaluation of the different algorithms

7. Localized Object Count Recall(LOCR):
In this metric, a ground-truth object is considered as detected if a minimum
proportion of its area is covered by the output boxes. Recall is computed as the
ratio of the number of detected objects with the total number of ground-truth
objects.

LocObjRecall(t) =
∑
∀G

(t)
i

ObjDetect(G
(t)
i) (5.57)

ObjDetect(G
(t)
i) =

 1 if
|G(t)

i ∩U
D(t)

|

|G(t)
i |

> OverlapMin

0 otherwise
(5.58)

OverallLocObjRecall =

∑Nf

t=1 LocObjRecall(t)∑Nf

t=1 N
G

(t)
i

(5.59)

54 Part II: Algorithms

Method Room Parking
LOTS 0.0056 0.0190
W4 0.0083 0.0127
MGM 0.0083 0.0253
SGM 0.0056 0.0190
BBS 0.0083 0.0253
BBS-R 0.0028 0.0063

Table 5.7: LOCR metric evaluation of the different algorithms

8. Localized Output Box Count Precision(LOBCP):
This is a counterpart of metric 5.56. It counts the number of output boxes that
significantly covered the ground truth. An output box D

(t)
i significantly covers

the ground truth if a minimum proportion of its area overlaps with UG(t) .

LocBoxCount(t) =
∑
∀D

(t)
i

BoxPrec(D
(t)
i) (5.60)

BoxPrec(D
(t)
i) =

 1 if
|D(t)

i ∩U
G(t)

|

|D(t)
i |

> OverlapMin

0 otherwise
(5.61)

OverallOutputBoxPrec =

∑Nf

t=1 LocBoxCount(t)∑Nf

t=1 N
D

(t)
i

(5.62)

Method Room Parking
LOTS 0.5919 0.1729
W4 0.0592 0.0427
MGM 0.0541 0.0206
SGM 0.0124 0.0186
BBS 0.0043 0.0001
BBS-R 0.1900 0.0174

Table 5.8: LOCBP metric evaluation of the different algorithms

5.6.4 Experimental results

Figure 5.20(a) and figure 5.20(b) display respectively precision and recall of differ-
ent methods evaluated on the experimental indoor dataset. Figure 5.21(a) and fig-
ure 5.21(b) display respectively precision and recall of different methods evaluated
on the experimental outdoor dataset. Table 5.2 shows precision and recall with an
overlap requirement of T=50% (see eq 5.41).

According to those results we can introduce the following remarks: the simple
method BBS gives the lower benchmark on precision, since it produces a very high

Part II: Algorithms 55

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
 =

 T
P

/(
T

P
+

F
P

)

Overlap

LOTS
W4

MGM
SGM
BBS

BBS-R

(a) precision with respect to overlap

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.2 0.4 0.6 0.8 1

R
ec

al
l =

 T
P

/(
T

P
+

F
N

)

Overlap

LOTS
W4

MGM
SGM
BBS

BBS-R

(b) recall with respect to overlap

Figure 5.20: Room sequence

0

0.05

0.1

0.15

0.2

0.25

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on
 =

 T
P

/(
T

P
+

F
P

)

Overlap

LOTS
W4

MGM
SGM
BBS

BBS-R

(a) precision with respect to overlap

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
ec

al
l =

 T
P

/(
T

P
+

F
N

)

Overlap

LOTS
W4

MGM
SGM
BBS

BBS-R

(b) recall with respect to overlap

Figure 5.21: Parking sequence

number of false detections. The method MGM has the best recall for high overlap
thresholds (T > 0.6) and for low overlap thresholds (T < 0.2) LOTS get the best
one for indoor dataset, but for outdoor dataset (parking) LOTS has already the best
recall. Which means that the size estimates are quite good. This is due to the
connected component analysis of the methods.

In the case of indoor scene, BBS-R performs better than BBS, and BBS-R has
also higher precision for T < 0.4 but it still has lower recall. This method seems as
well as BBS not appropriate for the task in the indoor scenes. On the other side it
performs better in the case of outdoor scenes.

The new method performs better than the original BBS algorithm. It outperforms
SGM and W4, but it still not two performant as the complex algorithms MGM and
LOTS. Thus, the new approach is modular, we can imagine to apply the same method
to those complex algorithms.

For some of the evaluated sequences there was the problem of sudden camera
jitter, which can be caused by a flying object or strong wind. This sudden motion
causes the motion detector to fail and identify the whole scene as a moving object,
although the system readjusts itself after a while but this causes a large drop in the
performance.

56 Part II: Algorithms

5.6.5 Comments on the results

The evaluation results shown above were affected by some very important factors:

1. For some of the evaluated sequences there was the problem of sudden camera
jitter, which can be caused by a flying object or strong wind. This sudden
motion cause the motion detector to fail and identify the whole scene as a
moving object, although the system readjusts itself after a while but this cause
a large drop in the performance.

2. The number of objects in the sequence alters the performance significantly where
the optimum performance occurs in the case of a few independent objects in
the scene. Increasing the number of objects increases the dynamic occlusion
and loss of track.

Chapter 6

Machine learning for visual
object-detection

Contents
6.1 Introduction . 58

6.2 The theory of boosting . 58

6.2.1 Conventions and definitions 58

6.2.2 Boosting algorithms . 60

6.2.3 AdaBoost . 61

6.2.4 Weak classifier . 63

6.2.5 Weak learner . 63

6.3 Visual domain . 66

6.3.1 Static detector . 67

6.3.2 Dynamic detector . 68

6.3.3 Weak classifiers . 68

6.3.4 Genetic weak learner interface 75

6.3.5 Cascade of classifiers . 76

6.3.6 Visual finder . 77

6.4 LibAdaBoost: Library for Adaptive Boosting 80

6.4.1 Introduction . 80

6.4.2 LibAdaBoost functional overview 81

6.4.3 LibAdaBoost architectural overview 85

6.4.4 LibAdaBoost content overview 86

6.4.5 Comparison to previous work 87

6.5 Use cases . 88

6.5.1 Car detection . 89

58 Part II: Algorithms

6.5.2 Face detection . 90

6.5.3 People detection . 91

6.6 Conclusion . 92

6.1 Introduction

In this chapter we present a machine learning framework for visual object-detection.
We called this framework LibAdaBoost as an abreviation of Library for Adaptive
Boosting. This framework is specialized in boosting.

LibAdaBoost supports visual data types, and provides a set of tools which are
ready for use by computer vision community. These tools are useful for the generation
of visual detectors using state of the art boosting algorithms.

This chapter is organized as follows: section 6.2 gives a general introduction for
boosting. Section 6.3 describes the usage of boosting for visual object-detection.
Section 6.4 introduces LibAdaBoost and its software architecture and the subsequent
workflows for learning tasks, validation tasks and test tasks. Section 6.5 describes
use cases for examples of visual object-detection with LibAdaBoost. Each use case
is described by its learning part, its validation part and its test on benchmarked
datasets. Section 6.6 concludes the chapter.

6.2 The theory of boosting

Boosting has been presented as a very effective technique to help learning algorithms.
This method allows, as its name implies, to boost the hypotheses given by a weak
learner. AdaBoost, one of the most interesting boosting algorithm, has first been
proposed by Schapire and Freund [FS95a] in the 90’s. It has further grown in the
works of Schapire and Singer [SS98] where it was generalized making the first version
a specific one of the second. A good introduction to AdaBoost is also available
in [FS99].

Boosting has been used first for visual object detection by Viola and Jones [VJ01b],
for detecting faces since 2000. Other works for detection of pedestrians [VJS03],
cars [KNAL05], license plates [ZJHW06], and others [ASG05]. This increasing usage
of Boosting motivated us for developing a unified platform for different boosting
algorithms, data types, and subsequent weak learners and classifiers.

6.2.1 Conventions and definitions

In this section we will introduce some definitions related to learning process. These
definitions are useful for easily understanding section 6.2.2. Whether we are talking
about machines or humans the learning process could be decomposed into two main
parts as shown in Figure 6.1. First of all one has to be able to retain previously seen

Part II: Algorithms 59

Figure 6.1: Learning process: first step consists in retaining previously seen data
so that one is able to identify it when it is seen again. The second step consists in
applying the knowledge, gained from previous step, to new data, this step is called
generalization.

data so that it is able to identify it when it is seen again. The second step consists in
applying the knowledge, gained from previous step, to new data. This fact is known
as generalization and is the main goal of the learner. Thus we introduce the definition
of the generalization error in Definition 1.

Definition 1 (Generalization error). The generalization error is the error rate of an
algorithm trying to apply its expertise to new samples.

Formally we can define a learning algorithm as in Definition 2.

Definition 2 (Learning algorithm). A learning algorithm is a procedure which can
reduce the error on a set of training data [DHS00] as well as have the capacity of
minimizing the generalization error.

The training set is the input data for the learning algorithm. It is defined as in
Definition 3.

Definition 3 (Training set). A training set S is defined by (x1, y1), ..., (xn, yn) where
each xi belongs to some domain or instance space X, and each label yi belongs to
some label set Y .

In this work we focus on learning using classifiers defined in Definition 4. An
example of a classifier would be a voting system which, given an email, would be able
to classify it as spam email or safe email.

Definition 4 (Knowledge). We define the knowledge as a classifier C : X → Y which
calculates, for a given sample x, the appropriate label y.

In the following sections we will be using binary classifiers. A binary classifier is
defined in Definition 5.

Definition 5 (Binary Classifier). C is a binary classifier if Y = {−1, +1}.

60 Part II: Algorithms

6.2.2 Boosting algorithms

To understand boosting we will use the horse-racing gambler example which is taken
from [FS99].

A horse-racing gambler, hoping to maximize his winnings, decides to create a
computer program that will accurately predict the winner of a horse race based on
the usual information (number of races recently won by each horse, betting odds for
each horse, etc.). To create such a program, he asks a highly successful expert gambler
to explain his betting strategy. Not surprisingly, the expert is unable to articulate
a grand set of rules for selecting a horse. On the other hand, when presented with
the data for a specific set of races, the expert has no trouble coming up with a
”rule of thumb” for that set of races (such as, ”Bet on the horse that has recently
won the most races” or ”Bet on the horse with the most favored odds”). Although
such a rule of thumb, by itself, is obviously very rough and inaccurate, it is not
unreasonable to expect it to provide predictions that are at least a little bit better
than random guessing. Furthermore, by repeatedly asking the expert’s opinion on
different collections of races, the gambler is able to extract many rules of thumb.

In order to use these rules of thumb to maximum advantage, there are two prob-
lems faced by the gambler: first, how should he choose the collections of races pre-
sented to the expert so as to extract rules of thumb from the expert that will be the
most useful? Second, once he has collected many rules of thumb, how can they be
combined into a single, highly accurate prediction rule?

Boosting refers to a general and provably effective method of producing a very
accurate prediction rule by combining rough and moderately inaccurate rules of thumb
in a manner similar to that suggested above.

Figure 6.2: Boosting algorithm framework

Part II: Algorithms 61

Historical overview

The following summary is based on [FS99]: originally, boosting started from a theory
of machine learning called ”Probably Approximately Correct” (PAC) [Val84, KV94].
This model allows us to derive bounds on estimation error for a choice of model
space and given training data. In [KV88, KV89] the question was asked if a ”weak”
learning algorithm, which works just slightly better than random guessing (according
to the PAC model) can be made stronger (or ”boosted”) to create a ”strong” learning
algorithm. The first researcher to develop an algorithm and to prove its correctness is
Schapire [Sch89]. Later, Freund [Fre90] developed a more efficient boosting algorithm
that was optimal but had several practical problems. Some experiments with these
algorithms were done by Drucker, Schapire and Simard [DSS93] on an OCR task.

6.2.3 AdaBoost

The AdaBoost algorithm was introduced in 1995 by Freund and Schapire [FS95a].
AdaBoost solved many of the practical problems that existed in the previous boosting
algorithms [FS95a]. In Algorithm 1 we bring the original AdaBoost algorithm. The
algorithm takes as input a training set {(x1, y1), . . . (xm, ym)} where each xi belongs
to some domain X and each label yi is in some label set Y . To our purposes we need
only binary classification and thus can assume Y = {+1,−1}. Generalization to the
multi-class case is out of the focus of this thesis. AdaBoost calls a given weak learning

Algorithm 1 The Adaboost algorithm in its original form

Require: a sequence of N labeled samples {(x1, y1), . . . , (xm, ym)} where xi ∈ X and
yi ∈ Y = {−1, +1}

1: Initialize the weight vector: D1(i) = 1
m

2: for t = 1 to T do
3: Train weak learner, providing it with the distribution Dt.
4: Get weak classifier (weak hypothesis) ht : X → {−1, +1} with error

εt = Pri∼Dt [ht(xi) 6= yi].

5: Choose αt = 1
2
ln

(
1−εt

εt

)
6: Update:

Dt+1(i) = Dt(i)×
{

e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi

7: Normalize the weights so that Dt+1 will be a distribution:∑N
i=1 Dt+1(i) = 1.

8: end for
Ensure: Strong classifier H(x) = sign(

∑T
t=1 αtht(x))

algorithm repeatedly in a series of ”cycles” t = 1 . . . T . The most important idea of
the algorithm is that it holds at all times a distribution over the training set (i.e. a
weight for each sample). We will denote the weight of this distribution on training
sample (xi, yi) on round t by Dt(i). At the beginning, all weights are set equally, but

62 Part II: Algorithms

on each round, the weights of incorrectly classified samples are increased so that the
weak learner is forced to focus on the hard samples in the training set.

The role of the weak learner is to find a weak rule (classifier) ht : X → Y appro-
priate for the distribution Dt. But what is ”appropriate”? The ”quality” of a weak
classifier is measured by its error, according to the weights:

εt =
∑

i:ht(xi) 6=yi

Dt(i) (6.1)

The error is measured, of course, with respect to the distribution Dt on which the
weak learner was trained, so each time the weak learner finds a different weak classifier.
In practice, the weak learner is an algorithm - doesn’t matter which algorithm - that
is allowed to use the weights Dt on the training samples.

Coming back to the horse-racing example given above, the instances xi correspond
to descriptions of horse races (such as which horses are running, what are the odds,
the track records of each horse, etc.) and the label yi gives a binary outcome (i.e.,
if your horse won or not) of each race. The weak classifiers are the rules of thumb
provided by the expert gambler, where he chooses each time a different set of races,
according to the distribution Dt. Algorithm 2 shows the AdaBoost algorithm running
in the head of the gambler.

Algorithm 2 The Adaboost algorithm running in the head of the gambler

1: If I look at the entire set of races I’ve seen in my life, I can tell that it is very
important that the other horses (other than the one I gamble on) will not be too
strong. This is an important rule.

2: I will now concentrate on the races where my horse was the strongest horse, but
nevertheless it didn’t win. I recall that in some of these races, it was because
there was a lot of wind, and even a strong horse might be sensitive to wind. This
cannot be known in advance about a certain horse.

3: In another case the horse I chose was not the strongest, but even though, it won.
This was because it was in the outer lane, and it is easier to run there.

Ensure: Resulting strong classifier
The other horses (other than the one I gamble on) should not be too strong.
Importance of rule: 7 (on a scale of 1 to 10).
These should not be wind in the day of the race. Importance: 3.
The horse should be in the outer lane. Importance: 2.

Note that the importances of the weak hypothesis are calculated according to
their error in the execution of AdaBoost. This corresponds to the α of the rule in the
algorithm (see Algorithm 1). Once the weak hypothesis ht has been received from
the weak learner, AdaBoost chooses a parameter αt. Intuitively, αt measures the
importance that is assigned to ht.

Note that αt ≥ 0 if εt < 1
2

(which we can assume without loss of generality),
and that αt gets larger as εt gets smaller. The distribution Dt is then updated using

Part II: Algorithms 63

the rule shown in Algorithm 1. This rule actually increases the weight of samples
misclassified by ht , and decreases the weight of correctly classified samples. Thus,
the weight tends to concentrate on ”hard” samples.

The final hypothesis H is a weighted majority vote of the T weak hypotheses where
αt is the weight assigned to ht .

Variations on AdaBoost

AdaBoost as it was showed in the previous section could only classify binary discrete
problems. Various extensions have been created (for multi-class and multi-label)
such as the ones described in [FS95b] known as AdaBoost.M1, AdaBoost.M2. Sim-
pler forms of these can also be found in [SS98]. There have also been several very
important additions to AdaBoost. one of the most interesting used in language recog-
nition problems is prior knowledge [RSR+02]. It enables to add human knowledge
to maximize the classification properties of the algorithm. It basically gives some
knowledge to the learner before training. This is showed to be especially useful when
the number of training samples is limited.

6.2.4 Weak classifier

A weak classifier depends on the Domain X. In this thesis we focus on the Visual
Domain. Therefore, Definition 6 represents the description of the weak classifier in a
generic boosting framework. In section 6.3.3 we present a set of weak classifiers for
the visual domain.

Definition 6 (Weak classifier). Let X as given Domain. Let Y as a set of labels. We
consider a binary classification case :Y = {−1, +1}. A weak classifier h : X → Y is
a classifier that is used as an hypothesis in the boosting framework.

6.2.5 Weak learner

The AdaBoost algorithm needs a weak classifier provider, this is called the weak
learner. As described in Definition 8 the weak learner is a learning algorithm which
will provide a ”good” feature at each boosting cycle, when the goodness is measured
according to the current weights of the samples. Obviously, choosing the best weak
classifier at each boosting cycle cannot be done by testing all the possibilities in the
weak classifier’s space. Therefore, a partial search (selective search) strategy can be
used to search a good weak classifier. This weak classifier is not always the best
according to the whole space. Thus, partial strategies can be based on genetic-like
approaches or other heuristics.

Definition 7 (Weak Learner). A Weak Learner is a learning algorithm responsible of
the generation of a weak classifier (weak hypothesis). A weak learner is independent
of the Domain X. AdaBoost needs a weak learner with an error rate better than
random.

64 Part II: Algorithms

In this section we will describe an improvement of a Genetic-Like algorithm that
was first introduced by Abramson [Abr06]. In our work we implemented a generic
implementation of the algorithm that is completely independent of the domain X.

Genetic-like weak learner

The genetic-like algorithm, given in Algorithm 3, maintains a set of weak classifiers
which are initialized as random ones. At each step of the algorithm, a new ”gener-
ation” of weak classifiers is produced by applying a set of mutations on each of the
weak classifiers. All the mutations are tested and the one with the lowest error might
replace the ”parent” if it has a lower error. In addition, some random weak classifiers
are added at each step.

Algorithm 3 The Genetic-Like algorithm from [Abr06]

Require: An error measurement Γ that matches an error to every weak classifier, a
number G of generations to run, and a number N of ”survivors” at each genera-
tion.

1: Let Υ be a generator of random weak classifiers. Initialize the first generation’s
weak classifiers vector c1 as:
c1
i ← Υ i = 1 . . . N

2: for g = 1 to G do
3: Build the next generation vector cg+1 as:

cg+1
i ← cg

i i = 1 . . . N
4: for m as Mutation in MutationSet do
5: if =m(cg

i) is valid and Γ(=m(cg
i)) < Γ(cg+1

i) then
6: cg+1

i ← =m(cg
i) i = 1 . . . N

7: end if
8: end for
9: Enlarge the vector Cg+1 with N additional weak classifiers, chosen randomly:

cg+1
i ← Υ i = N + 1, . . . , 2N

10: Sort the vector Cg+1 such that
Γ(cg+1

1) ≤ Γ(cg+1
2) ≤ · · · ≤ Γ(cg+1

2N)
11: end for
12: return the weak classifier cG+1

1 .

The genetic algorithm continues to evolve the generations until there is no im-
provement during G consecutive generations. An improvement for that matter is of
course a reduction in the error of the best feature in the generation.

Definition 8 (Error measurment). Given a learning sample set Ω, and a classifier Ψ.
An error measurement relative to Ω is a function ΓΩ that matches for Ψ a weighted
error relative to the weights in Ω.

In our work, we implemented an advanced instance of the previous weak learner
(Algorithm 3). The new advanced genetic-like algorithm (AGA) is shown in Algo-

Part II: Algorithms 65

Algorithm 4 AGA: Advanced version of Genetic-like Algorithm

Require: A learning sample set Ω and its associated error measurement ΓΩ (see
Definition 8).

1: Let C as a vector of N classifiers. Ck is the kth element in C.
2: Let Cg the status of C at the gth iteration.
3: Let Υ be a generator of random weak classifiers.
4: C1

i ← Υ, i = 1 . . . N
5: INoImprovement ← 0, g ← 1
6: Ψ← C1

1

7: while true do
8: g ← g + 1
9: Sort the vector Cg such that ΓΩ(Cg

1) ≤ ΓΩ(Cg
2) ≤ · · · ≤ ΓΩ(Cg

N)
10: if ΓΩ(Ψ) ≥ ΓΩ(Cg

1) then
11: INoImprovement ← 0
12: Ψ← Cg

1

13: else
14: INoImprovement ← INoImprovement + 1
15: end if
16: if INoImprovement = Nmaxgen then
17: return Ψ
18: end if
19: for i = 1 to Nbest do
20: if Γ(=m(Cg

i)) < Γ(Cg
i) then

21: Cg
i ← =m(Cg

i)
22: end if
23: end for
24: for i = Nbest + 1 to Nbest + Nlooser do
25: if Γ(Υ(Cg

i)) < Γ(Cg
i) then

26: Cg
i ← Υ(Cg

i)
27: end if
28: end for
29: for i = Nbest + Nlooser + 1 to N do
30: Cg

i ← Υ
31: end for
32: end while
33: return Ψ
Ensure: the result weak classifier Ψ has the lowest weighted error on the learning

sample set.

66 Part II: Algorithms

rithm 4. The main differences introduced with AGA (see on Algorithm 4) are as
follows:

• The size of the population is fixed to N. The population is partitioned into three
classes: best to keep, looser to keep, and looser.

The best to keep part is of size Nbest. It represents the classifiers with lowest
error. These classifiers will be replaced by the result of the Mutation operation
with several mutation types.(see Algorithm 4(line.19))

The looser to keep part is of size Nlooser. It represents the classifiers which
will be replaced by randomized classifiers. A randomized classifier is a random
classifier that is generated by simple modifications to an initial classifier. The
result classifier is not completely random.(see Algorithm 4(line.24))

The looser part is of size N− (Nbest +Nlooser). It represents the classifiers which
will be rejected from the population and replaced by new random ones.(see
Algorithm 4(line.29))

• The number of iterations is not fixed to a maximum number of generations G.
Otherwise, we introduce the notion of maximum number of iterations without
improvement Nmaxgen. This means that the loop stopped once there are no
improvement of Ψ during Nmaxgen iterations of the weak learner.

Parameter Description

N Size of the Population
Nbest Number of classifiers to Mutate
Nlooser Number of classifiers to Randomize
Nmaxgen Max number of iterations without improvement

Table 6.1: AGA: parameters description

The AGA algorithm has a set of parameters which are summarized in Table 6.1.
We have elaborated an experimental study to find a set of best parameters for this
algorithm. Our experimental tests show how the AGA algorithm performs better
than the previous GA algorithm.

6.3 Visual domain

Visual domain consists in working with images. The objective is to find visual objects
in a given image. A visual object can be a face, a car, a pedestrian or whatever
we want. Figure 6.3 shows some examples of visual objects: a visual object has a
width and a height, and is characterized by a knowledge generated using a learning
procedure.

In this context we consider a sliding window technique for finding visual objects
in input images. Sliding window techniques follow a top-down approach. These

Part II: Algorithms 67

(a) (b) (c)

Figure 6.3: Visual object-detection examples

techniques use a detection window of a fixed size and place this detection window
over the input image. Next the algorithm determines whether the content of the
image inside the window represents an object of interest or not. When it finishes
processing the window content, the window slides to another location on the input
image and the algorithm again tries to determine whether the content of the detection
window represents an object of interest or not. This procedure continues until all
image locations are checked. To detect an object of interest at different scales the
image is usually scaled down a number of times to form a so-called image pyramid
and the detection procedure is repeated.

In this section we will discuss the different elements of a visual detector: sec-
tion 6.3.1 and section 6.3.2 describe static and dynamic detectors. Section 6.3.3
presents the different visual weak classifiers, from the state of the art as well as
from our work. The learning procedure with these weak classifiers is presented in
section 6.3.4. Section 6.3.6 describes the test procedure so called finder.

6.3.1 Static detector

A static detector uses spacial information only, and doesn’t take into account the
temporal information. Thus, the visual object is represented only by an image with
dimensions Height×Width. This image sample is called static image sample and is
formally presented in Definition 9.

Definition 9 (Static image sample). A static Image Sample Is is a visual sample
which represents an image of dimensions Height×Width. The static image sample
is used as input for static detectors.

The static detector can be applied to single images, as well as on video streams. It
handles the video stream, each image independently of the others. The information
on the motion is not used, otherwise it becomes a dynamic detector presented in the
next section.

68 Part II: Algorithms

6.3.2 Dynamic detector

In order to use the motion information in a video stream, we introduce the notion
of dynamic detector. The dynamic detector can be applied on video streams only.
The detector uses the current image I and a buffer of p next images. Thus, the
image sample contains image information from multiple images sources as described
in Definition 10.

Definition 10 (Dynamic image sample). A dynamic Image Sample Id is a visual
sample which represents a collection of images Id

t , Id
t+1 . . . Id

t+p with similar dimensions
Height ×Width . These images correspond to the same window in a video stream.
These images distributed on the temporal space contain information on the motion of
the visual object. This information will be integrated to the knowledge on the visual
object. The dynamic image sample is used as input for dynamic detectors.

6.3.3 Weak classifiers

A visual weak classifier (visual feature) has a two stage architecture (see Figure 6.4):
the first stage does the preprocessing on the input image sample (static or dynamic).
The preprocessing result is then used as an input to the classification rule. The
classification rule is a simple computation function which decides whether the input
corresponds to the object of interest or not. In the following sections we describe

Figure 6.4: Visual weak classifier (Visual Feature) pattern

the most common visual features. We map these features to the architecture pattern
described in Figure 6.4. This projection is useful for subsequent complexity analysis
and generic implementation as described in section 6.4.

Viola and Jones Rectangular Features

In [VJ01b] Paul Viola and Michael Jones learned a visual detector for face detection
using AdaBoost. The learned detector is based on rectangular features (visual weak
classifiers) which span a rectangular area of pixels within the detection window, and
can be computed rapidly when using a new image representation called the integral
image. This section will discuss the rectangular features used by Viola and Jones
as shown in Figure 6.5. First we will discuss the classification rules. Then we will

Part II: Algorithms 69

Figure 6.5: Viola and jones rectangular features

describe the preprocessing stage which introduces the integral image. Next, how these
features can be computed using the integral image is discussed.

(a) FvEdge (b) FhEdge (c) FvLine (d) FhLine (e) FDiagonal

Figure 6.6: The five classification rules used by Viola and Jones placed in the detection
window.

1. Rectangular features: Figure 6.12 shows the five rectangular features used
by Viola and Jones placed in the detection window. To compute a feature, the
sum of the pixels in the dark area is subtracted from the sum of the pixels in the
light area. Notice that we could also subtract the light area from the dark area,
the only difference is the sign of the result. The vertical and horizontal two-
rectangle features FvEdge and FhEdge are shown in Figure 6.6(a) and Figure 6.6(b)
respectively, and tend to focus on edges. The vertical and horizontal three-
rectangle filters FvLine and FhLine are shown in Figure 6.6(c) and Figure 6.6(d)
respectively, and tend to focus on lines. The four rectangle feature FDiagonal in
Figure 6.6(e) tends to focus on diagonal lines.

2. Integral image:Viola and Jones propose a special image representation called
the integral image to compute the rectangular filters very rapidly. The integral
image is in fact equivalent to the Summed Area Table (SAT) that is used as a
texture mapping technique, first presented by Crow in [Cro84]. Viola and Jones

70 Part II: Algorithms

Figure 6.7: Integral image

renamed the SAT to integral image to distinguish between the purpose of use:
texture mapping versus image analysis.

The integral image at location (x, y) is defined as the sum of all pixels above
and to the left of (x, y) (see Figure 6.7):

ii(x, y) =
x∑

j=0

y∑
k=0

(I(j, k))

where ii(x, y) is the integral image value at (x, y), and I(x, y) is the original
image value.

3. Feature computation: When using integral image representation previously
described, any pixel sum of a rectangular region (see Figure 6.8) can be com-
puted with only four lookups, two subtractions and one addition, as shown in
the following equation:∑

= (ii(x + w, y + h) + ii(x, y))− (ii(x + w, y) + ii(x, y + h))

We note that this sum is done in constant time regardless of the size of the
rectangle region. The five features as proposed by Viola and Jones consist of

(a) (b)

Figure 6.8: Calculation of the pixel sum in a rectangular region using integral image

two or more rectangular regions which need to be added together or subtracted

Part II: Algorithms 71

from each other. Thus, the computation of a feature is reduced to a finite
number of pixel sums of rectangular regions. Which can be done easily and in
a constant time regardless the size and position of the features.

4. Image normalization: Viola and Jones normalized the images to unit vari-
ance during training to minimize the effect of different lighting conditions. To
normalize the image during detection they post multiply the filter results by the
standard deviation σ of the image in the detector window, rather than operating
directly on the pixel values. Viola and Jones compute the standard deviation
of the pixel values in the detection window by using the following equation:

σ =

√
µ2 − 1

N

∑
x2

where µ is the mean, x is the pixel value and N is the total number of pixels
inside the detection window. The mean can be computed by using the integral
image. To calculate

∑
x2 Viola and Jones use a squared integral image, which

is an integral image only with squared image values. Computing σ only requires
eight lookups and a few instructions.

Control-points features

Figure 6.9: Control-points features

Figure 6.9 shows visual features proposed by Abramson et al [ASG05]. These
features work on gray images as in [VJ01b]. Given an image of width W and height
H (or a sub-window of a larger image, having these dimensions), we define a control
point to be an image location in the form 〈i, j〉, where 0 ≤ i < H and 0 ≤ j < W .
Given an image location z, we denote by val(z) the pixel value in that location.

Control-points feature consists of two sets of control-points, x1 . . . xn and y1 . . . ym,
where n, m ≤ K. The choice of the upper bound K influences the performance of the

72 Part II: Algorithms

system in a way which cand be experimented using LibAdaBoost, and in our system
we chose K = 6. Each feature either works on the original W ×H image, on a half-
resolution 1

2
W × 1

2
H image, or on a quarter resolution 1

4
W × 1

4
H image. These two

additional scales have to be prepared in advance by downscaling the original image.
To classify a given image, a feature examines the pixel values in the control-points

x1 . . . xn and y1 . . . ym in the relevant image (original, half or quarter). The feature
answers ”yes” if and only if for every control-point x ∈ x1 . . . xn and every control-
point y ∈ y1 . . . ym, we have val(x) > val(y). Some examples are given in Figure 6.10.

The control-points feature is testing the relations between pixels. It seeks for
a predefined set of pixels in the image in a certain order. If such is not found, it
labels negatively. Because it is order-based and not intensity-based, it does not care
about what is the difference between two pixels’ values; all it cares about is the
sign of that difference. It is therefore insensitive to luminance normalization. In
fact, the feature is insensitive to any order-preserving change of the image histogram,
including histogram equalization, which is used by Papageorgiou et al [OPS+97]. The

(a) (b) (c)

Figure 6.10: Control-Points features

3-resolution method helps to make the feature less sensitive to noise; a single control-
point in the lower resolutions can be viewed as a region and thus detects large image
components, thus offering an implicit smoothing of the input data.

One can immediately notice that for computing the result of an individual feature,
an efficient implementation has not always to check all the m+n control points. The
calculation can be stopped once the condition of the feature is broken, and this usually
happens much before all the control-points are checked.

Viola and Jones motion-based features

In [VJS03] Viola et al introduced the first dynamic visual feature which mixes patterns
of motion and appearance for pedestrian detection. This section will explain these
features which are considered as a natural generalization of the rectangular visual
features presented above. Figure 6.11 shows a system block representation of the
motion-based features. These features operate on a pair of images [It, It+1]. Motion
is extracted from pairs of images using the following filters:

1. ∆ = abs(It − It+1)

Part II: Algorithms 73

Figure 6.11: Viola and Jones motion-based rectangular features

2. U = abs(It − It+1 ↑)

3. L = abs(It − It+1 ←)

4. R = abs(It − It+1 →)

5. D = abs(It − It+1 ↓)

(a) (b) (c) (d) (e)

Figure 6.12: Viola and Jones motion-based rectangular features

where It and It+1 are images in time, and {↑,←,→, ↓} are image shift operators.
One type of filter compares sums of absolute differences between ∆ and one of

{U,L,R,D}
fi = ri(∆)− ri(S)

74 Part II: Algorithms

where S is one of {U,L,R,D} and ri() is a single box rectangular sum within the
detection window. These filters extract information related to the likelihood that a
particular region is moving in a given direction.

The second type of filter compares sums within the same motion image:

fj = Φj(S)

where Φ is one of the rectangle filters shown in Figure 6.12. These features measure
something closer to motion shear.

Finally, a third type of filter measures the magnitude of motion in one of the
motion images:

fk = rk(S)

where S is one of {U,L,R,D} and rk is a single box rectangular sum within the
detection window.

We also use appearance filters which are simply rectangle filters that operate on
the first input image, It:

fm = Φ(It)

The motion filters as well as appearance filters can be evaluated rapidly using the
integral image previously described in Section 6.3.3.

A feature, F , is simply a thresholded filter that outputs one of two votes.

Fi(It, It+1) =

{
α if fi(It, ∆, U, L, R, D) > ti
β otherwise

(6.2)

where ti ∈ < is a feature threshold and fi is one of the motion or appearance filters
defined above. The real-valued α and β are computed during AdaBoost learning (as
is the filter, filter threshold θ and classifier threshold).

In order to support detection at multiple scales, the image shift operators {↑,←
,→, ↓} must be defined with respect to the detection scale.

Extended rectangular features

In this section we focus on the question whether more complex visual features based
on rectangular features would increase the performance of the classifier. Therefore, we
propose two categories of features based on the same pattern as rectangular features.
This means that these features use the integral image representation as well as the
image normalization using the integral square image representation (see Figure 6.13).
The visual filters introduced by these features are as follows:

• Box-based rectangular features: These features are based on a basic box
which encapsulates another box. The internal box is located in the middle as
in Fbox or at the corner as in {FUL, FDL, FDR, FUR}.(see Figure 6.14)

• Grid-based rectangular features: These features are based on the previous
rectangular features FvLine, FhLine, and FDiagonal. We introduced lower granular-
ity to these features by decomposing each rectangular region to several smaller
regions.(see Figure 6.15)

Part II: Algorithms 75

Figure 6.13: Extended rectangular features

(a) FUL (b) FDL (c) FDR (d) FUR (e) Fbox

Figure 6.14: Classification rules used within extended rectangular features

6.3.4 Genetic weak learner interface

The genetic like weak learner described in section 6.2.5 operates on weak classifiers
through a genetic interface. The genetic interface provides three operations: ran-
domize, mutate and crossover. In this work we only handled the two first operations
randomize and mutate. In this section we will describe the genetic interface for each
of the previous visual features.

The visual features are decomposed into two categories: the rectangular features
(Viola and Jones rectangular features, motion-based rectangular features and the
extended rectangular features) and the control-points features. The first category
consists in a set of filters with a generic pattern defined by a rectangular region at a
given position in the detection window. This rectangular region is decomposed into
multiple rectangular regions. This will generate the different filters. So the genetic
interface is based on this rectangular region, so it will be used by all these features
in the category. The second category is the control-points features, and it will be
described separately.

Rectangular filters

Given an image sample I of width W and height H. Given a rectangular filter F t
c of

category c and type t. where c and t are given in Table 6.2. The randomize operation

76 Part II: Algorithms

(a) FV Grid (b) FHGrid (c) FGrid

Figure 6.15: Extended rectangular features

Figure 6.16: Attentional cascade of classifiers

consists in moving the rectangular region randomly within a limited area around the
current position. The randomize operation conserves the type and the category of the
filter. The mutate operation consists in modifying the dimensions of the rectangular
region (scale operation) and to modify the type of the filter without changing the
category of the filter.

Control-points filters

Given an image sample I of width W and height H. Given a control-points feature
Fr, r ∈ {R0, R1, R2}. The randomize operation consists in modifying the position
of a red point or a blue point within a limited local area. The randomize conserves
the resolution r. The mutation consists in add, remove, move a control-point (red or
blue).

6.3.5 Cascade of classifiers

The attentional cascade of classifiers was first introduced by Viola and Jones [VJ01b]
as an optimization issue. In a single image, there are very large amount of sliding
windows of which the vast majority does not correspond to the object of interest.
These sliding windows have to be rejected as soon as possible. The cascade, as shown
in Figure 6.16, is composed of a sequence of strong classifiers so called stages (or
layers). The first layers contain few weak classifiers and are very fast. The last layers
are more complex and contain more weak classifiers. The cascade is learned in such
a way: the first layer rejects a large amount of input sliding windows and accepts all
positive sliding windows. The next layers are tuned to reduce the amount of false
positive rates while still maintaining a high detection rate.

Part II: Algorithms 77

The cascade of classifiers accelerates the detection process. Therefore the single
layer classifiers maintain a better accuracy and false detection rate. In this thesis we
focus on single layer classifiers and the acceleration of these classifiers using specialized
hardware.

6.3.6 Visual finder

Definition 11 (Visual data). Visual data can be seen as a collection of samples at
the abstract level. In the visual domain, the Visual data encapsulates It, [It+1, . . . It+p]
where p = 0 in the case of static detector and p > 0 in the case of dynamic detector.
The Visual data encapsulates also all the subsequent visual data obtained from these
images. To obtain the samples (static or dynamic image samples) we use an iterator
called search strategy.

Given a knowledge Cζ relative to a visual object ζ. Given a visual data (see Defini-
tion 11) source π. A visual finder is a component that first builds the visual pyramid
for the visual data π(t) and does some preprocessing on π(t). This preprocessing is
required by the classification step. Next it iterates over the sliding windows available
through an iterator named search strategy. Each sliding window is classified using
Cζ . Visual finder ends by a postprocessing step which consists in some spatial and
temporal filters on the positively classified sliding windows. In the following sections
we will detail each of these functional blocks. We start by the generic patterns that
could be used to group all these blocks together.

Visual finder patterns

In this section we focus on the question where to put the preprocessing block relative
to the search strategy? because it influences the performance of the total process in
term of memory space and computation time. Figure 6.17(a) shows the first config-
uration called Global Preprocessing. Figure 6.17(b) shows the second configuration
called Local Preprocessing.

Local preprocessing consists in iterating over the input visual data first. For
each sliding window it builds the required preprocessing defined by Cζ . The sliding
window is responsible of the storage of the preprocessing data. This pattern requires
less memory size with the cost of more computation time.

Global preprocessing consists in building a global preprocessing data which is
shared between all the sliding windows. Each sliding window maintains a reference
to the shared preprocessing interface, and a position (sx, sy). This pattern requires
larger memory space and lower computation time.

These two patterns are constrained by the subsequent architecture. From the
functional point of view these two patterns are similar. Thus, in next sections we
refer to the visual finder regardless its pattern.

78 Part II: Algorithms

(a) Global Preprocessing (b) Local Preprocessing

Figure 6.17: Generic Finder Patterns

Visual pyramid

In the generic design of the visual detector, we focus on the question how to find
objects at different scales in the same image? First let us remember that the knowl-
edge Cζ is specialized on an object ζ with dimensions h× w. The dimensions h× w
represent the dimensions of the smallest object ζ that can be recognized by Cζ . To
detect objects of same category ζ with higher dimensions h0 × w0 constrained by
h
w

= h0

w0
, the classifier Cζ is applied to the scaled image with factor α = h

h0
.

(a) Object to scale association (b) Face example

Figure 6.18: Visual Pyramid: ζ corresponds to ’A’, and the largest object found in
the image is ’E’.

Given a visual data π(t) with embedded image It(in case of dynamic detector
then we consider same pyramid for all It+p, p = 0 . . . n). Let H ×W the dimensions

Part II: Algorithms 79

of It. The largest object ζ that can be recognized in It has as dimensions H ×W .
Therefore, the objects ζ that could be found in this image have dimensions hk × wk

constrained by: hk = H . . . h, wk = W . . . w and hk

wk
= h

w
.

We build a set of N images obtained from It by a scaling factor α, where αN =
min(h

H
, w

W
). This set of images is called visual pyramid (see Figure 6.18(a)). The size

of the visual pyramid is N . N is calculated by:

N = min(

⌊
logα(

h

H
)

⌋
,
⌊
logα(

w

W
)
⌋
)

Table 6.3 represents the size of the pyramid for a quarter-pal image with several
values of α. The choise of α depends on the requirements of the application.

Visual finder preprocessing

Given a knowledge Cζ . Let Ψ be a category of visual features. Let fΨ denote a visual
feature based on Ψ. For each Ψ, if Cζ contains at least a visual feature fΨ, then the
preprocessing block must prepare the required data, as shown in Table 6.4.

Visual finder search strategy

Definition 12 (Visual search strategy). Given a visual data π(t). A search strategy
is an iterator on the sliding windows present in π(t). The search may cover all the
available sliding windows and then we speak in term of full-search, and otherwise it
is called partial-search.

We have introduced the notion of search strategy as an abstraction of the scan
method presented by Viola and Jones [VJ01b]. We call the previous method the
generic visual search. It is fully customizable: this will help us to compare the per-
formance of different visual features without doubts. We can configure the horizontal
and vertical steps to zero and then it is similar to full-search strategy as shown in Fig-
ure 6.19. Otherwise, Figure 6.19 shows that these parameters decrease dramatically
the number of sliding windows in the image. The accuracy of the detection decreases
as well. The ideal case is to cover all the sliding windows but this is a heavy task for
the traditional processors.

The notion of search strategy is useful, since it can be extended to untraditional
search methods. For example in some applications, the objects of interest are located
in some regions at different layers in the pyramid. These informations could be
measured using statistics on some detection results applied to recorded sequences.

Visual finder postprocessing

Given a knowledge Cζ and a visual data π(t). The detector based on Cζ is insensi-
tive to small variations in scale and position, usually a large number of detections
occur around an object of interest ζ (see Figure 6.20(a)). To incorporate these mul-
tiple detections into a single detection, which is more practical, we apply a simple

80 Part II: Algorithms

Figure 6.19: Generic Visual Search Strategy

grouping algorithm as in [VJ01b]. This algorithm combines overlapping detection
rectangles into a single detection rectangle. Two detections are placed in the same
set if their bounding rectangles overlap. For each set the average size and position is
determined, resulting in a single detection rectangle per set of overlapping detections
(see Figure 6.20(b)).

(a) Before (b) After

Figure 6.20: Visual postprocessing: grouping

6.4 LibAdaBoost: Library for Adaptive Boosting

6.4.1 Introduction

We started developing LibAdaBoost as a unified framework for boosting. This frame-
work implements an extension to the computer vision domain. We have designed the
boosting framework using a basic abstraction called ”open machine learning frame-
work”. Thus, we consider LibAdaBoost as an open machine learning framework which

Part II: Algorithms 81

provides a boosting framework as well as an extension of this framework for the vision
domain.

Boosting is for instance used for signal processing (analysis and prediction), image
and video processing (face, people, cars ..) or speech processing (speech recognition
...).

Every year, many new algorithms (boosting algorithms, weak learners and weak
classifiers) are proposed in various international conferences and journals. It is of-
ten difficult for scientists interested in solving a particular task (say visual object
detection) to implement them and compare them to their usual tools.

The aim of this section is to present LibAdaBoost, a new machine learning software
library available to the scientific community under the Less GPL license, and which
implements a boosting framework and a specialized extension for computer vision.

The objective is to ease the comparison between boosting algorithms and simplify
the process of extending them through extending weak classifiers, weak learners and
learners or even adding new ones.

We implemented LibAdaBoost in C++. We designed LibAdaBoost using well-
known patterns. This makes LibAdaBoost easy to take in hand by the majority of
the researchers. LibAdaBoost is too large, it consists in more than twenty pack-
ages with more than two hundred classes. In this section we focus on the functional
description of the different parts of LibAdaBoost. And we give also a sufficient pre-
sentation of the global architecture. More advanced technical details are available
in [Gho06].

This section is organized as follows: Section 6.4.2 presents the machine learn-
ing framework abstraction as exposed in LibAdaBoost. Section 6.4.2 presents the
boosting framework built upon the machine learning framework. Section 6.4.2 de-
scribes the computer vision extension of the boosting framework. An architecture
overview of LibAdaBoost is given in Section 6.4.3, in this section we present both
the plugin-based and service oriented approaches. Section 6.4.4 covers the different
plugins within LibAdaBoost, and regroups them into four levels: architecture, ma-
chine learning framework, boosting framework, and computer vision extension. We
compare LibAdaBoost with other available tools in Section 6.4.5; this is followed by
a quick conclusion.

6.4.2 LibAdaBoost functional overview

Figure 6.21 shows a high level functional view of LibAdaBoost. It consists in three
conceptual levels: machine learning framework, boosting framework and computer
vision extension of this boosting framework. The potential users of LibAdaBoost
come from two large communities: machine learning community and computer vision
community. The machine learning community can improve the first two layers and the
computer vision users are more specialized in deploying these algorithms in computer
vision domain. In the following we will describe the main concepts that we introduced
in each of these frameworks.

82 Part II: Algorithms

Figure 6.21: LibAdaBoost high level functional diagram

Machine learning framework

Figure 6.22: Machine learning framework principal concepts

A machine learning framework consists in providing concepts for describing learn-
ing algorithms. We focus on statistical machine learning algorithms. These algorithms
can be used to build systems able to learn to solve tasks given both a set of samples of
that task which were drawn from an unknown probability distribution and with some
a priori knowledge of the task. In addition, it must provide means for measuring the
expected performance of generalization capabilities. Thus, in this machine learning
framework (see Figure 6.22), we provide the following main concepts:

• DataSet, Sample and Pre-Interface: these concepts cover data representation.
A Sample represents an elementary data input and a DataSet represents a set
of Samples which is used as input for the learning system. The preprocessing

Part II: Algorithms 83

interface represents a way for extending the capabilities of a Sample to be able
to communicate with high level concepts, such that the learning system.

• Classifier: This concept represents the knowledge that is used to classify a given
Sample. A classifier can be an instance of neural network, a support vector
machine, a Hidden Markov Model or a boosted strong classifier.

• Learner and Learner Interface: A learner is used to generate a Classifier accord-
ing to a given criterion and a given DataSet. It will test its generalization using
another DataSet (or the same DataSet).

• Metric and Measure Operator: a metric represents a measure of interest such
as classification error, or more advanced as AUC of a ROC curve or others. a
Measure operator is the functional block that is responsible of the generation
of a given metric.

Boosting framework

Figure 6.23: Boosting framework principal concepts

A boosting framework as shown in Figure 6.23 consists in few collaborating con-
cepts: the ”Boosting algorithm”, as AdaBoost [Ref to Shapire and Freund] train
several models from a given ”Weak Learner” using variations of the original DataSet
and then combine the obtained models by a ”weighted sum of classifiers”. This first
procedure is called training procedure. The second procedure in the boosting frame-
work is the test procedure which consists in applying the classifier on sets of samples
as input. These sets have specific organization of the samples, thus we use a kind of
Finder which once given a classifier and a source of generic data, consists in applying
the classifier to each sample present in the generic data. This sample is given by a
search strategy implemented in the Finder. the finder has three stages preprocessing,
classification and post processing. A non exhaustive list of new introduced concepts
is as follows:

• Boosting algorithm (AdaBoost)

84 Part II: Algorithms

• Weak Learner , Genetic Weak Learner and Genetic Interface

• Weak classifier and Weighted sum classifier

• Generic Data

• Finder, Finder preprocessor and Finder post processor

Boosting vision extension

Figure 6.24: Boosting vision extension framework principal concepts

An extension of the boosting framework for the visual domain (see Figure 6.24)
consists in extending the notion of sample to support the visual object representation
ImageSample used. An image sample can be static (see Definition 9) or dynamic
(see Definition 10). The generic Data is extended to Visual Data which represents
an image with the pyramid and the set of preprocessing implemented by the different
images at the different scales. The weak classifier is extended to visual weak classifier
called Feature. In LibAdaBoost we implemented the rectangular features, the control-
points features and the VJ motion-based features. The Visual Finder is responsible
for finding patterns corresponding to a given object of interest in the input image or
video stream. A non exhaustive list of new introduced concepts is as follows:

• Image sample

• Visual Data and Visual Pyramid

• Feature

• Visual Finder, Visual post and pre processors

• VJ, CP and VJM

Part II: Algorithms 85

6.4.3 LibAdaBoost architectural overview

Plugin-based architecture

A design key in LibAdaBoost is the extensibility. We have adopted an architecture
which favorates the extensibility and eases the adding or extending algorithms. The
architecture has three granularity levels: modules, components and environments.
The lowest granularity is the module and the highest granularity is the environment.
A module can be accessed in LibAdaBoost if it is registered to a given module manager
(similar pattern for components and environments).

Figure 6.25: Plugin-based architecture objects instantiation

Figure 6.25 shows this plugin-based architecture. We can figure out the following
blocks:

86 Part II: Algorithms

• Algorithm module manager, which handles a set of modules implementing the
same given interface (example: a learner).

• The kernel is responsible of handling the set of algorithm module managers. It
defines the different families of modules available in the system. The component
manager handles the set of available components.

• The options manager is used to handle the options required to pass the pa-
rameters to these different modules. The environment manager handles the
environments objects.

• The console is responsible of the execution of a command handled by the com-
mand factory within a given environment.

• The loader is the part responsible of the initialization of the system, it is re-
sponsible of loading and doing registration of the different available plugins
(modules, components, and environments).

Service oriented tools

LibAdaBoost presents two levels: SDK and toolkit. The toolkit is based on a set
of services. These services provide high level functionalities called tasks. We imple-
mented three major services: learning service, validation service and test service.

The service oriented architecture is characterized by the following properties:

• The service is automatically updated to support new functionalities introduced
by plugins.

• The service is an extensible part of LibAdaBoost. The developer can easily add
more services.

• The different services encode results in a common format.

• A service can be invoked from both: command line and graphical user interface.

Figure 6.26 shows more functional blocks as Launcher and Modeler. Both tools consist
in more advanced environments for launching learning tasks, validation tasks and test
tasks. We have partially implemented these tools as a web application.

6.4.4 LibAdaBoost content overview

Figure 6.27 presents the fusion of both : the functional analysis and the architectural
analysis. We identify four categories of building blocks: the blocks related to the
plugin-based architecture, which serve to handle the different modules, and the com-
munication between the different modules, as well within the framework. The blocks
related to machine learning framework: these blocks are mostly module managers or
component managers and environment managers. The boosting framework consists

Part II: Algorithms 87

Figure 6.26: LibAdaBoost Service oriented environment

in a set of module managers and modules as plugins. The boosting for vision is a set
of plugins implemented upon the boosting framework.

6.4.5 Comparison to previous work

LibAdaBoost is comparable to Torch and Torch Vision [Put reference of Torch]. Thus
we provide more advanced abstraction of the machine learning framework, and the
fact that LibAdaBoost is specialized in boosting make it in advanced step compared
to torch but in the same time we don’t implement the other learning algorithms such
as SVM, ... LibAdaBoost is rich in boosting oriented algorithms. Another advantage
of LibAdaBoost is the service oriented approach, thus we provide ready to use tools
to benefit from the existing algorithms. The plugin based approach make it easy to
share and distribute modules.

88 Part II: Algorithms

Figure 6.27: LibAdaBoost content overview

6.5 Use cases

In this section we illustrate three use cases for visual object detection: face, car
and people. We used LibAdaBoost to solve the task of learning a visual detector
for each pattern. We compared several features for this task. We introduced some
optimizations to the visual finder in some cases (car detection). We tried to present
in each use case a special functionality in LibAdaBoost. These use cases are part
of larger projects in the domain of video surveillance and intelligent transportation
systems.

Part II: Algorithms 89

6.5.1 Car detection

In this section we illustrate how to use LibAdaBoost for learning a visual detector
specialized in cars. The car detection is an important task within a wide application
area related to intelligent transportation systems. Vision systems based on frontal
cameras, embedded on a vehicle, provide realtime video streams. This video stream
is analyzed with special algorithms in the aim to detect cars, people...

We use boosting for learning a special detector specialized in cars. The learning
task starts by collecting a set of car samples (1224 samples) and non car samples
(2066 samples). These samples are labeled positive and negative respectively. Some
examples of these samples are shown in Figure 6.28. A car sample consists in a rear
view of a car. The shape of the car is labeled using a bounding box manually selected
from the training dataset. The basic size of a car is 48x48 pixels in RGB space.

Figure 6.28: Car examples from the learning set: upper line for the positive samples
and lower line for the negative examples

(a) Rectangular Features (b) Control Points

Figure 6.29: Car detection: training error and generalization error

Figure 6.29 shows the evolution of both training and generalization errors for two
learning tasks: (a) shows the evolution of the training using rectangular features and

90 Part II: Algorithms

(b) shows the evolution of the training using control points.

(a) Step 15 (b) Step 160

Figure 6.30: Car detection: Voting histogram for training and validation datasets

LibAdaBoost offers a log utility which permits to spy the evolution of the voting
values distribution using histograms. Figure 6.30 shows the status of the voting
histogram at two moments: the first view on step 15 where we find that the positive
and negative histograms are mixed. The second view takes place on step 160. It
shows that the histograms are separated for the training dataset and still have a
small mixed part for the generalization dataset.

Finally, Figure 6.31 shows the validation step of the result knowledge: the ROC
curve is plotted as well as the precision/recall curve. The accuracy variation according
to the voting threshold shows that the standard 0.5 value is the best for this detector.
The validation result of the detector on the validation dataset is shown as a histogram
distribution of the votes which shows a relatively small error zone.

6.5.2 Face detection

In this section we illustrate how to use LibAdaBoost for learning a visual detector
specialized in faces. The face detection is an important task within a wide application
area related to mobile and video surveillance domains.

We use boosting for learning a special detector specialized in faces. The learning
task starts by collecting a set of face samples (4870) and non face samples (14860).
These samples are labeled positive and negative respectively. Some examples of these
samples are shown in Figure 6.32. A face sample consists in a frontal view of a face.
The shape of the face is labeled using a bounding box manually selected from the
training dataset. The basic size of a face is 24x24 pixels in RGB space.

Figure 6.33 shows the evolution of both training and generalization errors for two
learning tasks: (a) shows the evolution of the training using rectangular features and
(b) shows the evolution of the training using control points.

LibAdaBoost offers a log utility which permits to spy the evolution of the voting
values distribution using histograms. Figure 6.34 shows the status of the voting
histogram at two moments: the first view on step 15 where we find that the positive
and negative histograms are mixed. The second view takes place on step 160. It
shows that the histograms are separated for the training dataset and still have a
small mixed part for the generalization dataset.

Part II: Algorithms 91

Figure 6.31: Car detection: LibAdaBoost validation result

Finally, Figure 6.35 shows the validation step of the result knowledge: the ROC
curve is plotted as well as the precision/recall curve. The accuracy variation according
to the voting threshold shows that the standard 0.5 value is the best for this detector.
The validation result of the detector on the validation dataset is shown as a histogram
distribution of the votes which shows a relatively small error zone.

6.5.3 People detection

In this section we illustrate how to use LibAdaBoost for learning a visual detector
specialized in people. The people detection is an important task within a wide appli-
cation area related to intelligent video surveillance systems. Real time video streams
are analyzed with special algorithms in the aim to detect people and then track them
and do further post processing and high level analysis.

We use boosting for learning a special detector specialized in people. The learning
task starts by collecting a set of people samples and non people samples. These sam-
ples are labeled positive and negative respectively. Some examples of these samples
are shown in Figure 6.36. A people sample consists in a complete view of a person.
The shape of the person is labeled using a bounding box manually selected from the

92 Part II: Algorithms

Figure 6.32: Face examples from the learning set: upper line for the positive samples
and lower line for the negative examples

(a) Rectangular Features (b) Control Points

Figure 6.33: Face detection: earning and generalization error

training dataset. The basic size of a person is 36x48 pixels in RGB space.
People knowledge depends on the camera installation, the view angle is closely

correlated to the knowledge. Thus for each camera we dispose of a special learning
process. This is a disadvantage of the current features (Control Points and rectangular
features). This can be resolved by motion based features which is not used in this
present use case since some technical bugs still have to be fixed.

We present as in the previous sections the evolution of the error for training as
well as for the generalization step. This is shown in Figure 6.37.

6.6 Conclusion

In this chapter we presented a new framework for machine learning. We built a
boosting framework based on this framework. We exposed the boosting framework
to the computer vision domain.

We made this framework public under the LGPL license. To the best of our knowl-

Part II: Algorithms 93

(a) Step 15 (b) Step 160

Figure 6.34: Face detection: Voting histogram for learning and validation datasets

edge this is a new framework which will serve as a reference for the implementation
and comparison of various weak classifiers and learning algorithms.

We showed some examples of how using LibAdaBoost for the generation of knowl-
edge. We did not go deeply inside the technical details. These details are explained
in tutorials and programming documentation.

The framework is operational and is ready to be integrated in larger projects as
a tool for boosting based detectors.

94 Part II: Algorithms

Figure 6.35: Face detection: LibAdaBoost validation result

Category Type

Viola and Jones Rectangular Feature FvEdge, FhEdge, FvLine, FhLine, FDiagonal

Viola and Jones Motion-based features motion: fj, fk

appearance: fm

mixture: fi

Extended Rectangular features FUL, FDL, FDR, FUR, Fbox

FV Grid, FHGrid, FGrid

Table 6.2: Category and types association

Part II: Algorithms 95

α N

0.95 48
0.90 23
0.85 15
0.8 11
0.75 8
0.70 6
0.50 3
0.25 1

Table 6.3: Pyramid size for different values of α, image dimensions 384× 288, ζ size
24× 24

Visual feature Required preprocessing

Viola and Jones rectangular features IIIt , III2
t

Control-points R0, R1, R2

Motion-based rectangular features IIIt , III2
t

∆, II∆, II∆2

U, IIU , IIU2

D, IID, IID2

L, IIL, IIL2

R, IIR, IIR2

Table 6.4: Required preprocessing for each visual feature

Figure 6.36: People examples from the learning set: upper line for the positive samples
and lower line for the negative examples

96 Part II: Algorithms

(a) Rectangular Features (b) Control Points

Figure 6.37: People detection: learning and generalization error

(a) Step 15 (b) Step 160

Figure 6.38: People detection: Voting histogram for learning and validation datasets

Part II: Algorithms 97

Figure 6.39: People detection: LibAdaBoost validation result

Chapter 7

Object tracking

Contents
7.1 Initialization . 98

7.2 Sequential Monte Carlo tracking 99

7.3 State dynamics . 100

7.4 Color distribution Model 100

7.5 Results . 101

7.6 Incorporating Adaboost in the Tracker 102

7.6.1 Experimental results . 102

The aim of object tracking is to establish a correspondence between objects or
object parts in consecutive frames and to extract temporal information about objects
such as trajectory, posture, speed and direction. Tracking detected objects frame by
frame in video is a significant and difficult task. It is a crucial part of our video surveil-
lance systems since without object tracking, the system could not extract cohesive
temporal information about objects and higher level behavior analysis steps would
not be possible. On the other hand, inaccurate foreground object segmentation due
to shadows, reflectance and occlusions makes tracking a difficult research problem.

Our tracking method is an improved and extended version of the state of art
color-based sequential Monte Carlo tracking method proposed in [JM02].

7.1 Initialization

In order to perform the tracking of objects, it is necessary to know where they are
initially. We have three possibilities to consider: either manual initialization, semiau-
tomatic initialization, or automatic initialization. For complicated models or objects
with a constantly moving background, manual initialization is often preferred. How-
ever, even with a moving background, if the background is a uniformly colored region,
then semi-automatic initialization can be implemented. Automatic initialization is

Part II: Algorithms 99

possible in many circumstances, such as smart environments, surveillance, sports
tracking with a fixed background or other situations with a fixed camera and a fixed
background by using the background model and detect targets based on a large in-
tensity change in the scene and the distribution of color on the appearance of an
object.

7.2 Sequential Monte Carlo tracking

Sequential Monte Carlo methods have become popular and already been applied
to numerous problems in time series analysis, econometrics and object tracking.In
non-Gaussian, hidden Markov (or state-space) models (HMM), the state sequence
{xt; t

∈N},xt ∈ Rnx , is assumed to be an unobserved (hidden) Markov process with
initial distribution p(x0) and transition distribution p(xt/p(xt−1), where nx is the
dimension of the state vector. The observations {yt; t

∈N∗},yt ∈ Rny are conditionally
independent given the process {xt; t

∈N} with marginal distribution p(yt/xt), where
ny is the dimension of the observation vector. We denote the state vectors and
observation vectors up to time t by x0:t ≡ {x0...xt} and similarly for y0:t. Given the
model, we can obtain the sequence of filtering density to be tracked by the recursive
Bayesian estimation:

p(xt/y0:t) =
p(yt/xt)p(xt/y0:t−1)

p(yt/y0:t−1)
(7.1)

where p(yt/xt) is likelihood in terms of the observation model, p(xt/y0:t−1) is a prior
the propagates part state to future and p(yt/y0:t−1) is evidence. The Kalman filter
can handle Eq (7.1) Analytically if the model is based on the linear Gaussian state
space. However, in the case of visual tracking, the likelihood is non-linear and often
multi-modal with respect to the hidden states. As a result, the Kalman filter and its
approximation work poorly for our case.

With sequential Monte Carlo techniques, we can approximate the posterior p(xt/y0:t−1)
by a finite set of M particles (or samples), {xi

t}i=1...M . In order to generate samples
from p(xt/y0:t−1), we propagate samples based on an appropriate proposal transition
function f(xt/xt−1, yt). We set f(xt/xt−1, yt) = p(xt/xt−1), which is the bootstrap
filter. We denote {xi

t}i=1...M as fair samples from the filtering distribution at time
t, then the new particles, denoted by x̃i

t+1, have the following association with the
importance weights:

πi
t+1 ∝

p(t+1/x̃
i
t+1p(x̃i

t+1/x
i
t

f(x̃t + 1i/xi
t, yt+1)

(7.2)

where
∑M

i=1 πi
t+1 = 1. We resample these particles with their corresponding im-

portance weights to generate a set of fair samples {xi
t+1}i=1...M from the posterior

p(xt/y0:t). With the discrete approximation of p(xt/y0:t), the tracker output is ob-
tained by the Monte Carlo approximation of the expectation:

100 Part II: Algorithms

x̂t ≡ E(xt/yt) (7.3)

where E(xt/yt) = 1
M

∑M
i=1 xi

t.

7.3 State dynamics

We formulate the state to describe a region of interest to be tracked. We assume that
the shape, size, and position of the region are known a priori and define a rectangular
window W. The shape of the region could also be an ellipse or any other appropriate
shapes to be described, which depends mostly on what kind of object to track. In
our case,we use a rectangle . The state consists of the location and the scale of the
window W.

The state dynamics varies and depends on the type of motion to deal with. Due to
the constant, yet often random, nature of objects motion, we choose the second-order
auto-regressive dynamics to be the best approximating their motion as in [JM02].
If we define the state at time t as a vector xt = (lTt , lTt−1, st, st−1), where T denotes
the transpose, lt = (x, y)T is the position of the window W at time t in the image
coordinate, and st is the scale of W at time t. We apply the following state dynamics:

xt+1 = Axt + Bxt−1 + Cvt, vt ≡ N(0, Σ). (7.4)

Matrices A,B,C and Σ control the effect of the dynamics. In our experiments, we
define those matrices in ad-hoc way by assuming the constant velocity on object’s
motion.

7.4 Color distribution Model

This section explains how we incorporate the global nature of color in visual percep-
tion into our sequential Monte Carlo framework. We follow the implementation of
HSV color histograms used in [JM02], and extend it to our adaptive color model.

We use histograming techniques in the Hue-Saturation-Value (HSV) color space
for our color model. Since HSV decouples the intensity (i.e., Value) from color (i.e.,
Hue and Saturation), it becomes reasonably insensitive to illumination effects. An
HSV histogram is composed of N = NhNs + Nv bins and we denote bt(k) ∈ 1, ...N
as the bin index associated with the color vector yt(k) at a pixel location k at time
t. As it is pointed out in [JM02] that the pixels with low saturation and value are
not useful to be included in HSV histogram, we populate the HSV histogram without
those pixels with low saturation and value.

If we define the candidate region in which we formulate the HSV histogram as
R(xt) ≡ lt + stW , then a kernel density estimate Q(xt) ≡ q(n; xt)n=1,...,N of the color

Part II: Algorithms 101

distribution at time t is given by :

q(n; xt) = η
∑

k∈R(xt)

δ[bt(k)− n] (7.5)

where δ is the Kronecker delta function, η is a normalizing constant which ensures∑N
n=1 q(n; xt) = 1, and a location k could be any pixel location within R(xt). Eq(7.5)

defines q(n; xt) as a probability of a color bin n at time t.
If we denote Q∗ = q∗(n; x0)n=1,...,N as the reference color model and Q(xt) as a

candidate color model, then we need to measure the data likelihood (i.e., similar-
ity) between Q∗ and Q(xt). As in [JM02], we apply the Bhattacharyya similarity
coefficient to define a distance ζ on HSV histograms and its formulation given by:

ζ[Q∗, Q(xt)] =

[
1−

N∑
n=1

√
q∗(n; x0)q(n; xt)

] 1
2

(7.6)

Once we obtain a distance ζ on the HSV color histograms, we use the following
likelihood distribution given by:

p(yt/xt) ∝ exp−λζ2[Q∗,Q(xt)] (7.7)

where λ = 20. λ is determined based on our experiments. Also, we set the size of
bins Nh, Ns, and Nv as 10.

7.5 Results

This section presents the tracking results by our tracker for a single object. Our
tracker tracks a target for many frames if a good initialization were made. The
following figures show the result.

These figures show the robustness of our tracker under a severe illumination change
with a similar object closely, and the robustness in a cluttered scenes and partial
occlusion, the tracker never loses the target.

Figure 7.1 shows illumination insensitive performance of our tracker which does
not lose the target even if there is a drastic illumination change due to camera flashes.
The same figure shows that the second-order AR dynamics tends to fail to approx-
imate the target’s velocity and our tracker may not locate the object exactly, when
the object moves by a small amount.

Figure 7.1 and Figure 7.2 show the successful performance of our tracker in a
cluttered scene with similar objects nearby (frame 390). These figures also show that
the second order AR dynamics makes our tracker robust in a scene when targets make
a sudden direction change.

Our Tracker fails when there are identical objects such as players in the same
team nearby the target, for the tracker does not know the association between two
identical objects without any prior information. This is one open problem that we
need to deal with in the future.

102 Part II: Algorithms

7.6 Incorporating Adaboost in the Tracker

This method is introduced in [Ka04]. They adopt the cascaded Adaboost algorithm
of Viola and Jones [VJ01a], originally developed for detecting faces. The Adaboost
results could be improved if we considered the motion models of objects. In particular,
by considering plausible motions, the number of false positives could be reduced. For
this reason, we incorporated Adaboost in the proposal mechanism of our tracker.
For this the expression for the proposal distribution will be given by the following
mixture.

Q∗
b(xt/x0:t−1, yt) = αQada(xt/xt−1, yt) + (1− α)p(xt/xt−1) (7.8)

where Qada is a Gaussian distribution that we discuss in the subsequent paragraph.
The parameter α can be set dynamically without affecting the convergence of the
particle filter (it is only a parameter of the proposal distribution and therefore its in
hence is corrected in the calculation of the importance weights).

Note that the Adaboost proposal mechanism depends on the current observation
yt. It is, therefore, robust to peaked likelihoods. Still, there is another critical issue
to be discussed: determining how close two different proposal distributions need to
be for creating their mixture proposal. We can always apply the mixture proposal
when Qada is overlaid on a transition distribution modeled by autoregressive state
dynamics. However, if these two different distributions are not overlapped, there is a
distance between the mean of these distributions.

If a Monte Carlo estimation of a mixture component by a mixture particle filter
overlaps with the nearest cluster given by the Adaboost detection algorithm, we
sample from the mixture proposal distribution. If there is no overlap between the
Monte Carlo estimation of a mixture particle filter for each mixture component and
cluster given by the Adaboost detection, then we set α = 0, so that our proposal
distribution takes only a transition distribution of a mixture particle filter.

7.6.1 Experimental results

We have used for our experiments an implementation in Matlab and initialized our
tracker to track three targets. Figure 7.3 shows the results. In this figure, it is
important to note that no matter how many objects are in the scene, the mixture
representation of the tracker is not affected and successfully adapts to the change.
For objects coming into the scene, Adaboost quickly detects a new object in the
scene within a short time sequence of only two frames. Then the tracker immediately
assigns particles to an object and starts tracking it.

Part II: Algorithms 103

Figure 7.1: Tracking results with displaying all particles

104 Part II: Algorithms

Figure 7.2: Tracking results with displaying the most likely particles

Part II: Algorithms 105

Figure 7.3: Tracker + Adaboost results

Part III

Architecture

Chapter 8

General purpose computation on
the GPU

Contents
8.1 Introduction . 108

8.2 Why GPGPU? . 109

8.2.1 Computational power . 109

8.2.2 Data bandwidth . 110

8.2.3 Cost/Performance ratio . 112

8.3 GPGPU’s first generation 112

8.3.1 Overview . 112

8.3.2 Graphics pipeline . 114

8.3.3 Programming language . 119

8.3.4 Streaming model of computation 120

8.3.5 Programmable graphics processor abstractions 121

8.4 GPGPU’s second generation 123

8.4.1 Programming model . 124

8.4.2 Application programming interface (API) 124

8.5 Conclusion . 125

8.1 Introduction

In this part, we focus on hardware acceleration of computer vision algorithms. As a
choice of architecture we selected a low cost solution generally available on all comput-
ers. We selected the graphics card. This approach became an attractive solution for
computer vision community. To the best of our knowledge, we implemented the first

Part III: Architecture 109

visual object detection algorithm on the graphics card. The implemented algorithm
performs better than the traditional implementation on general purpose processor. It
is possible now to implement large detectors and to maintain a real time run.

This part is organized as follow: Chapter 8 presents the graphics hardware as
well as the abstraction of the graphics hardware as stream co-processor. Chapter 9
presents the mapping of the visual object detection on the graphics hardware as
in [HBC06].

The remainder of this chapter is organized as follows: in Section 8.2 we give
an answer to the question why GPGPU?. Section 8.3 presents the GPGPU’s first
generation. The GPGPU’s second generation is presented in Section 8.4. Section 8.5
concludes the chapter.

8.2 Why GPGPU?

Commodity computer graphics chips, known generically as Graphics Processing Units
or GPUs, are probably todays most powerful computational hardware for the dol-
lar. Researchers and developers have become interested in harnessing this power for
general-purpose computing, an effort known collectively as GPGPU (for General-
Purpose computing on the GPU). In this chapter we summarize the principal devel-
opments to date in the hardware and software behind GPGPU, give an overview of
the techniques and computational building blocks used to map general-purpose com-
putation to graphics hardware, and survey the various general-purpose computing
tasks to which GPUs have been applied. We begin by reviewing the motivation for
and challenges of general-purpose GPU computing. Why GPGPU?

8.2.1 Computational power

Recent graphics architectures provide tremendous memory bandwidth and compu-
tational horsepower. For example, the flagship NVIDIA GeForce 7900 GTX ($378
on October 2006) boasts 51.2 GB/sec memory bandwidth; the similarly priced ATI
Radeon X1900 XTX can sustain a measured 240 GFLOPS, both measured with
GPUBench [BFH04a]. Compare to 8.5 GB/sec and 25.6 GFLOPS theoretical peak
for the SSE units of a dual-core 3.7 GHz Intel Pentium Extreme Edition 965 [Int06].
GPUs also use advanced processor technology; for example, the ATI X1900 contains
384 million transistors and is built on a 90-nanometer fabrication process.

Graphics hardware is fast and getting faster quickly. For example, the arith-
metic throughput (again measured by GPUBench) of NVIDIAs current-generation
launch product, the GeForce 7800 GTX (165 GFLOPS), more than triples that of its
predecessor, the GeForce 6800 Ultra (53 GFLOPS). In general, the computational ca-
pabilities of GPUs, measured by the traditional metrics of graphics performance, have
compounded at an average yearly rate of 1.7 (pixels/second) to 2.3 (vertices/second).
This rate of growth significantly outpaces the often-quoted Moore’s Law as applied

110 Part III: Architecture

Figure 8.1: CPU to GPU GFLOPS comparison

to traditional microprocessors; compare to a yearly rate of roughly 1.4 for CPU per-
formance [EWN04](Figure 8.1). Why is graphics hardware performance increasing
more rapidly than that of CPUs? Semiconductor capability, driven by advances in
fabrication technology, increases at the same rate for both platforms. The disparity
can be attributed to fundamental architectural differences (Figure 8.2): CPUs are
optimized for high performance on sequential code, with many transistors dedicated
to extracting instruction-level parallelism with techniques such as branch prediction
and out-of-order execution. On the other hand, the highly data-parallel nature of
graphics computations enables GPUs to use additional transistors more directly for
computation, achieving higher arithmetic intensity with the same transistor count.
We discuss the architectural issues of GPU design further in Section 8.3.2.

8.2.2 Data bandwidth

Component Bandwidth

GPU Memory Interface 35 GB/sec
PCI Express Bus (16) 8 GB/sec

CPU Memory Interface (800 MHz Front-Side Bus) 6.4 GB/sec

Table 8.1: Available Memory Bandwidth in Different Parts of the Computer System

The CPU in a modern computer system (Figure 8.3) communicates with the GPU
through a graphics connector such as a PCI Express or AGP slot on the motherboard.
Because the graphics connector is responsible for transferring all command, texture,
and vertex data from the CPU to the GPU, the bus technology has evolved alongside
GPUs over the past few years. The original AGP slot ran at 66 MHz and was 32 bits
wide, giving a transfer rate of 264 MB/sec. AGP 2, 4, and 8 followed, each doubling

Part III: Architecture 111

Figure 8.2: CPU to GPU Transistors

Figure 8.3: The overall system architecture of a PC

112 Part III: Architecture

the available bandwidth, until finally the PCI Express standard was introduced in
2004, with a maximum theoretical bandwidth of 4 GB/sec simultaneously available to
and from the GPU. (Your mileage may vary; currently available motherboard chipsets
fall somewhat below this limitaround 3.2 GB/sec or less.) It is important to note the
vast differences between the GPUs memory interface bandwidth and bandwidth in
other parts of the system, as shown in Table 8.1.

Table 8.1 shows that there is a vast amount of bandwidth available internally
on the GPU. Algorithms that run on the GPU can therefore take advantage of this
bandwidth to achieve dramatic performance improvements.

8.2.3 Cost/Performance ratio

Graphics hardware industry is driven by the game market. The price of the top
graphics card is about 600$. The motherboard required for the setup of this graphics
card is general public and has a low price. Otherwise, the required motherboard for
the installation of multiple processors is too high. The graphics card is considered as
a free component. This is due to the fact that it is a basic component in a standard
PC configuration.

8.3 GPGPU’s first generation

8.3.1 Overview

Flexible and precise

Modern graphics architectures have become flexible as well as powerful. Early GPUs
were fixed-function pipelines whose output was limited to 8-bit-per-channel color val-
ues, whereas modern GPUs now include fully programmable processing units that
support vectorized floating-point operations on values stored at full IEEE single pre-
cision (but note that the arithmetic operations themselves are not yet perfectly IEEE-
compliant). High level languages have emerged to support the new programmability
of the vertex and pixel pipelines [BFH.04b,MGAK03,MDP.04]. Additional levels of
programmability are emerging with every major generation of GPU (roughly every
18 months). For example, current generation GPUs introduced vertex texture access,
full branching support in the vertex pipeline, and limited branching capability in the
fragment pipeline. The next generation will expand on these changes and add geom-
etry shaders, or programmable primitive assembly, bringing flexibility to an entirely
new stage in the pipeline [Bly06]. The raw speed, increasing precision, and rapidly
expanding programmability of GPUs make them an attractive platform for general
purpose computation.

Part III: Architecture 113

Figure 8.4: First Generation GPGPU framework

114 Part III: Architecture

Limitations and difficulties

Power results from a highly specialized architecture, evolved and tuned over years to
extract maximum performance on the highly parallel tasks of traditional computer
graphics. The increasing flexibility of GPUs, coupled with some ingenious uses of that
flexibility by GPGPU developers, has enabled many applications outside the original
narrow tasks for which GPUs were originally designed, but many applications still ex-
ist for which GPUs are not (and likely never will be) well suited.Word processing, for
example, is a classic example of a pointer chasing application, dominated by memory
communication and difficult to parallelize. Todays GPUs also lack some fundamental
computing constructs, such as efficient scatter memory operations (i.e., indexed-write
array operations) and integer data operands. The lack of integers and associated oper-
ations such as bit-shifts and bitwise logical operations (AND, OR, XOR, NOT) makes
GPUs ill-suited for many computationally intense tasks such as cryptography (though
upcoming Direct3D 10-class hardware will add integer support and more generalized
instructions [Bly06]). Finally, while the recent increase in precision to 32-bit floating
point has enabled a host of GPGPU applications, 64-bit double precision arithmetic
remains a promise on the horizon. The lack of double precision prevents GPUs from
being applicable to many very large-scale computational science problems. Further-
more, graphics hardware remains difficult to apply to non-graphics tasks. The GPU
uses an unusual programming model (Section 2.3), so effective GPGPU programming
is not simply a matter of learning a new language. Instead, the computation must be
recast into graphics terms by a programmer familiar with the design, limitations, and
evolution of the underlying hardware. Today, harnessing the power of a GPU for sci-
entific or general-purpose computation often requires a concerted effort by experts in
both computer graphics and in the particular computational domain. But despite the
programming challenges, the potential benefits leap forward in computing capability,
and a growth curve much faster than traditional CPUs are too large to ignore.

The potential of GPGPU

A vibrant community of developers has emerged around GPGPU (http://GPGPU.org/),
and much promising early work has appeared in the literature.We survey GPGPU ap-
plications, which range from numeric computing operations, to non-traditional com-
puter graphics processes, to physical simulations and game physics, to data mining.
We cover these and more applications in Section 5.

8.3.2 Graphics pipeline

The graphics pipeline is a conceptual architecture, showing the basic data flow from
a high level programming point of view. It may or may not coincide with the real
hardware design, though the two are usually quite similar. The diagram of a typi-
cal graphics pipeline is shown in Figure 8.5. The pipeline is composed of multiple
functional stages. Again, each functional stage is conceptual, and may map to one or

Part III: Architecture 115

multiple hardware pipeline stages. The arrows indicate the directions of major data
flow. We now describe each functional stage in more detail.

Application

The application usually resides on a CPU rather than GPU. The application handles
high level stuff, such as artificial intelligence, physics, animation, numerical compu-
tation, and user interaction. The application performs necessary computations for all
these activities, and sends necessary command plus data to GPU for rendering.

Host and command

The host is the gate keeper for a GPU. Its main functionality is to receive commands
from the outside world, and translate them into internal commands for the rest of
the pipeline. The host also deals with error condition (e.g. a new glBegin is issued
without first issuing glEnd) and state management (including context switch). These
are all very important functionalities, but most programmers probably do not worry
about these (unless some performance issues pop up).

Geometry

The main purpose of the geometry stage is to transform and light vertices. It also
performs clipping, culling, viewport transformation, and primitive assembly. We now
describe these functionalities in detail.

The programmable Vertex Processor

The vertex processor has two major responsibilities: transformation and lighting.
In transformation, the position of a vertex is transformed from the object or world

coordinate system into the eye (i.e. camera) coordinate system. Transformation can
be concisely expressed as follows:

(xo, yo, zo, wo) = (xi, yi, zi, wi)M
T

Where (xi, yi, zi, wi) is the input coordinate, and (xo, yo, zo, wo) is the transformed
coordinate. M is the 4×4 transformation matrix. Note that both the input and out-
put coordinates have 4 components. The first three are the familiar x, y, z cartesian
coordinates. The fourth component, w, is the homogeneous component, and this 4-
component coordinate is termed homogeneous coordinate. Homogeneous coordinates
are invented mainly for notational convenience. Without them, the equation above
will be more complicated. For ordinary vertices, the w component is simply 1.

Let we give you some more concrete statements of how all these means. Assuming
the input vertex has a world coordinate (xi, yi, zi). Our goal is to compute its location
in the camera coordinate system, with the camera/eye center located at (xe, ye, ze)
in the world space. After some mathematical derivations which are best shown on

116 Part III: Architecture

Figure 8.5: Graphics pipeline

Part III: Architecture 117

a white board, you can see that the 4 × 4 matrix M above is composed of several
components: the upper-left 3 × 3 portion the rotation sub-matrix, the upper right
3× 1 portion the translation vector, and the bottom 1× 4 vector the projection part.
In lighting, the color of the vertex is computed from the position and intensity of
the light sources, the eye position, the vertex normal, and the vertex color. The
computation also depends on the shading model used. In the simple Lambertian
model, the lighting can be computed as follows:

(n.l)c

Where n is the vertex normal, l is the position of the light source relative to the vertex,
and c is the vertex color. In old generation graphics machines, these transformation
and lighting computations are performed in fixed-function hardware. However, since
NV20, the vertex engine has become programmable, allowing you to customize the
transformation and lighting computation in assembly code [Lindholm et al. 2001]. In
fact, the instruction set does not even dictate what kind of semantic operation needs
to be done, so you can actually perform arbitrary computation in a vertex engine.
This allows us to utilize the vertex engine to perform non-traditional operations, such
as solving numerical equations. Later, we will describe the programming model and
applications in more detail.

Primitive assembly

Here, vertices are assembled back into triangles (plus lines or points), in preparation
for further operation. A triangle cannot be processed until all the vertices have been
transformed as lit. As a result, the coherence of the vertex stream has great impact
on the efficiency of the geometry stage. Usually, the geometry stage has a cache for
a few recently computed vertices, so if the vertices are coming down in a coherent
manner, the efficient will be better. A common way to improve vertex coherency is
via triangle stripes.

Clipping and Culling

After transformation, vertices outside the viewing frustum will be clipped away. In
addition, triangles with wrong orientation (e.g. back face) will be culled.

Viewport Transformation

The transformed vertices have floating point eye space coordinates in the range
[−1, 1]. We need to transform this range into window coordinates for rasteriza-
tion. In viewport stage, the eye space coordinates are scaled and offseted into
[0, height− 1]× [0, width− 1].

118 Part III: Architecture

Rasterization

The primary function of the rasterization stage is to convert a triangle (or line or
point) into a set of covered screen pixels. The rasterization operation can be divided
into two major stages. First, it determines which pixels are part of the triangle.
Second, rasterization interpolates the vertex attributes, such as color, normal, and
texture coordinates, into the covered pixels.

Fragment

Before we introduce the fragment stage, let us first define what fragment is. Basically,
a fragment corresponds to a single pixel and includes color, depth, and sometimes
texture coordinate values. For an input fragment, all these values are interpolated
from vertex attributes in the rasterization stage, as described earlier. The role of
the fragment stage is to process each input fragment so that a new color or depth
value is computed. In old generation graphics machines, the fragment stage has fixed
function and performed mainly texture mapping. Between NV20 and NV30, the
fragment stage has become reconfigurable via register combiners. But this is all old
stuff and I dont think you need to worry about it. Since NV30, the fragment stage
has become fully programmable just like the vertex processor. In fact, the instruction
set of vertex and fragment programs are very similar. The major exception is that
the vertex processor has more branching capability while the fragment processor
has more texturing capability, but this distinction might only be transitory. Given
their programmability and computation power, fragment processors have been both
embraced by the gaming community for advanced rendering effects, as well scientific
computing community for general purpose computation such as numerical simulation
[Harris 2005]. Later, we will describe the programming model and applications in
more detail.

Raster Operation

ROP (Raster Operation) is the unit that writes fragments into the frame-buffer. The
main functionality of ROP is to efficiently write batches of fragments into the frame-
buffer via compression. It also performs alpha, depth, and stencil tests to determine if
the fragments should be written or discarded. ROP deals with several buffers residing
in the frame-buffer, including color, depth, and stencil buffers.

Frame Buffer

The frame-buffer is the main storage for the graphics pipeline, in addition to a few
scattered caches and FIFOs throughout the pipe. The frame-buffer stores vertex
arrays, textures, and color, depth, stencil buffers. The content of the color buffer is
fed to display for viewing. Frame-buffer has several major characteristics: size, width,
latency, and clock speed. The size determines how much and how big textures and
buffers you can store on chip, the width determines how much data maximum you

Part III: Architecture 119

can transfer in one clock cycle, the latency determines how long you have to wait
for a data to come back, and the clock speed determines how fast you can access
the memory. The product of width and clock speed is often termed bandwidth,
which is one of the most commonly referred jargon in comparing DRAMs. However,
for graphics applications, latency is probably at least as important as bandwidth,
since it dedicates the length and size of all internal FIFOs and caches for hiding
latency. (Without latency hiding, we would see bubbles in the graphics pipeline,
wasting performance.) Although frame-buffer appears to be mundane, it is crucial in
determining the performance of a graphics chip. Various tricks have been invented to
hide frame-buffer latency. If frame-buffers had zero latency, the graphics architecture
would be much simpler; we can have a much smaller shader register file and we don’t
even need a texture cache anymore.

8.3.3 Programming language

Standard 3D programming interfaces

The graphics hardware is accessible using a standard 3D application programming
interface (API). Two APIs are actually available. The first API is DirectX from Mi-
crosoft. The second API is OpenGL from Silicon Graphics Incorporated. Both APIs
provide an interface to handle GPU. Each API has a different phylosophy. DirectX
depends directly on Microsoft’s technology. OpenGL is modular and extensible. Each
3D hardware provider can extend OpenGL to support the new functionalities pro-
vided by the new GPU. OpenGL is standardized by OpenGL Architectural Review
Board (ARB) which is composed of the main graphics constructors.

OpenGL based solutions have a major advantage relative to DirectX based solu-
tions - these solutions are cross platform. This advantage motivated our choice of
OpenGL for 3D programming. We were interested in general programming on the
GPU. We started our development on Linux platform, and we moved backward to
Windows recently.

For more details on these APIs, you can find advanced materials in the literature
covering OpenGL and DirectX.

High level shading languages

A shading language is a domain-specific programming language for specifying shading
computations in graphics. In a shading language, a program is specified for computing
the color of each pixel as a function of light direction, surface position, orientation, and
other parameters made available by rendering system. Typically shading languages
are focused on color computation, but some shading systems also support limited
modeling capabilities, such as support for displacement mapping.

Shading languages developped specifically for programmable GPUs include the
OpenGL Shading Language (GLSL), the Stanford Real-Time Shading Language (RTSL),
Microsoft’s High-level Shading Language (HLSL), and NVIDIA’s Cg. Of these lan-

120 Part III: Architecture

guages, HLSL is DirectX-specific, GLSL is OpenGL-specific, Cg is multiplatform and
API neutral, but developed by NVIDIA (and not well supported by ATI), and RTSL
is no longer under active development.

8.3.4 Streaming model of computation

Streaming architecture

Stream architectures are a topic of great interest in computer architecture. For ex-
ample, the Imagine stream processor demonstrated the effectiveness of streaming for
a wide range of media applications, including graphics and imaging. The Stream/K-
ernelC programming environment provides an abstraction which allows programmers
to map applications to the Imagine processor.

Although, these architectures are specific and cope well with computer vision
algorithms previously presented in Part II. These architectures will not be our prin-
cipal interest. Otherwise, we mention these architectures to give a total sight of the
problem. Since, as we described our motivation in Part I, we are interested particu-
larly in architectures with similar functionalities which are available for general public
graphics hardware.

Stream programming model

The stream programming model exposes the locality and concurrency in media pro-
cessing applications. In this model, applications are expressed as a sequence of com-
putation kernels that operate on streams of data. A kernel is a small program that is
repeated for each successive element in its input streams to produce output streams
that are fed to subsequent kernels. Each data stream is a variable length collection of
records, where each record is a logical grouping of media data. For example, a record
could represent a triangle vertex in a polygon rendering application or a pixel in an
image processing application. A data stream would then be a sequence of hundreds of
these vertices or pixels. In the stream programming model, locality and concurrency
are exposed both within kernel and between kernels.

Definition 13 (Streams). A stream is a collection of data which can be operated on in
parallel. A stream is made up of elements. Access to stream elements is restricted to
kernels (Definition 14) and the streamRead and streamWrite operators, that transfer
data between memory and streams.

Definition 14 (Kernels). A kernel is a special function which operates on streams.
Calling a kernel on a stream performs an implicit loop over the elements of the stream,
invoking the body of the kernel for each element.

Definition 15 (Reductions). A reduction is a special kernel which accepts a single
input stream. It provides a data-parallel method for calculating either a smaller stream
of the same type, or a single element value.

Part III: Architecture 121

8.3.5 Programmable graphics processor abstractions

From abstract point of view, the GPU is a streaming processor (Figure 8.6), par-
ticularly suitable for the fast processing of large arrays [SDK05]. Thus, graphics
processors have been used by researchers to enhance the performance of specific,
non-graphic applications and simulations. Researchers started to use the graphics
hardware for general purpose computation using traditional graphics programming
languages: a graphics Application Programming Interface (API), and a graphics lan-
guage for the kernels well known as Shaders. In Appendix A we describe a hello world
example of using the GPU for general purpose computing, using graphics APIs and
Shading language.

The graphics API was previously described in Section 8.3.3. It understands func-
tion calls used to configure the graphics hardware. Implementations of these APIs
are available for a variety of languages, e.g. C, C++, Java, Python. These APIs
target always graphics programming and thus one must encapsulate the native API
in a library to make the code looks modular.

As described in Section 8.3.3, shading languages can be used with DirectX (HLSL)
or OpenGL (GLSL), or both of them (Cg). The programming model of a Shader is
described in Section 8.3.5.

Figure 8.6: The graphics hardware abstraction as a streaming coprocessor

It is not always easy to use graphics APIs and Shading languages for non graphics
community. That is why several projects try to further abstract the graphics hardware
as a slave coprocessor, and to develop a suitable model of computation. Ian Buck et
al. [BFH+04b] describe a stream programming language called Brook for GPU. Brook
extends C++ to provide simple data-parallel constructs to allow using the GPU as a
streaming coprocessor. It consists in two components: a kernel compiler brcc, which
compiles kernel functions into legal Cg code, and a runtime system built on top of
OpenGL (and DirectX) which implements the Brook API. In Appendix B we provide
a hello world example of Brook for image processing similar to Appendix A.

122 Part III: Architecture

The programming model of fragment processor

The execution environment of a fragment (or vertex) processor is illustrated in Fig-
ure 8.7. For every vertex or fragment to be processed, the shader program receives
from the previous stage the graphics primitives in the read-only input registers. The
shader is then executed and the result of rendering is written on the output registers.
During execution, the shader can read a number of constant values set by the host
processor, read from texture memory (latest GPUs started to add the support for ver-
tex processors to access texture memory), and read and write a number of temporary
registers.

Figure 8.7: Programming model for current programmable graphics hardware. A
shader program operates on a single input element (vertex or fragment) stored in the
input registers and writes the execution result into the output registers.

Implementation constraints

This section discusses basic properties of GPUs which are decisive for the design
of efficient algorithms on this architecture. Table 8.2 presents a summary of these
properties. Note that these properties depend on the graphics hardware and are
changing each 6 months. In Table 8.2 we consider the nVIDIA G7 family and the
first Geforce FX (5200) [nVI07a].

Property CPU GFX5200 GF7800GTX

Input Streams native 1D native 1D, 2D, 3D native 1D, 2D, 3D
Output Streams native 1D native 2D native 2D

Gathers arbitrary arbitrary arbitrary
Scatters arbitrary global global, emulated

Dynamic Branching yes no yes
Maximum Kernel Length unlimited 1024 unlimited

Table 8.2: Graphics hardware constraints

In the new GPUs generation these properties completely changed. This global
change is made by the fact that the GPU emerged recently to a general multiprocessor

Part III: Architecture 123

on chip architecture. This will be highlighted in the next section.

8.4 GPGPU’s second generation

Figure 8.8 shows a new GPGPU diagram template. This new diagram is characterized
by a novel approach: the GPGPU application bypasses the graphics API (OpenGL,
DirectX). This novel functionality is provided by CUDA. CUDA is the new product
released by nVIDIA. CUDA stands for Compute Unified Device Architecture
and is a new hardware and software architecture issuing and managing computations
on the GPU as a data-parallel computing device without the need of mapping them
to a graphics API.

Figure 8.8: Second Generation GPGPU framework

The CUDA software stack is illustrated in Figure 8.8. It consists in several layers:
a hardware driver, an application programing interface (API) and its runtile, and two
high-level mathematical libraries of common usage, CUFFT and CUBLAS.

The CUDA API is an extension of the ANSI C programming language for a
minimum learning curve.

The operating system’s multitasking mechanism is responsible for managing the
access to the GPU by several CUDA and graphics applications running concurrently.

124 Part III: Architecture

CUDA provides general DRAM memory addressing and supports an arbitrary
scatter operation.

The CUDA software will have a great impact on the GPGPU research. Re-
searchers can now concentrate on writing applications on a multiprocessor using
standard C programming language. They don’t have to try to abstract the graphics
hardware through graphics APIs and shading languages. Researchers can now put
their effort on mapping their algorithms on the data-parallel architecture using a
data-parallel model of computation. This justifies the decomposition of the GPGPU
into two generations.

In the remainder sections we will give you an overview of the CUDA software based
on CUDA documentation [nVI07b]. The reader is invited to read the documentation
for more details on the architecture. CUDA was released recently, and we did not
use it in our work. We mention it in this thesis with the aim to show the importance
as well as the evolution of the GPGPU approach. GPGPU is now supported by the
graphics hardware constructor nVIDIA itself.

8.4.1 Programming model

CUDA models the GPU as a computing device capable of executing a very high
number of threads in parallel. The GPU operates as a coprocessor to the host CPU.
Both, the host and the device maintain their own DRAM, referred to as host memory
and device memory respectively. DMA engines are used to accelerate the memory
copy transactions between the two DRAMs.

The device is implemented as a set of multiprocessors on chip. Each multiprocessor
consists in several SIMD processors with on-ship shared memory. At any given clock
cycle each processor executes the same instruction, but operates on different data.

The adequate programming model for this architecture is as follows: the thread
is the elementary unit in the execution model. Threads are grouped into batch of
threads called blocks. Blocks are grouped together and form what is called grids.
Thus, each thread is identified by its grid id, its block id and its id within the block.

Only threads in the same block can safely communicate. The maximum number of
threads in a block, and the maximum number of blocks in a grid, as well as the number
of grids in the device are parameters of the implementations. These parameters are
varying from a model to another.

8.4.2 Application programming interface (API)

The goal of the CUDA programming interface is to provide for C programmers the
possibility to easily write a program for execution on the device. The implementation
of algorithms on the device with CUDA is out of the focus of the present work,
otherwise, we provide in Appendix C a hello word example of a CUDA program for
image processing similar to the previous hello worlds for Brook and OpenGL/Cg. For
more information on the application programming interface, the reader is invited to
refer to CUDA programming guide [nVI07b] (Chapter 4).

Part III: Architecture 125

8.5 Conclusion

In this chapter we introduced the architecture of the graphics hardware. This archi-
tecture is in a migration phase: from an architecture completely based on the graphics
pipeline toward a generic architecture based on a programmable multiprocessor on
chip. This migration is motivated by the recent usage of the graphics hardware for
general purpose computing.

In this thesis, we experimented with the first generation of the programmable
graphics hardware (GeforceFX5200, GeforceFX6600GT and GeforceFX7800GTX).
Thus we had to work with graphics APIs (OpenGL) and shaders (Cg) to implement
programs for general purpose computing. We introduced research activities launched
for the best abstraction of the graphics hardware as a streaming coprocessor (Brook).

Chapter 9

Mapping algorithms to GPU

Contents
9.1 Introduction . 126

9.2 Mapping visual object detection to GPU 128

9.3 Hardware constraints . 130

9.4 Code generator . 131

9.5 Performance analysis . 133

9.5.1 Cascade Stages Face Detector (CSFD) 133

9.5.2 Single Layer Face Detector (SLFD) 134

9.6 Conclusion . 135

9.1 Introduction

In this chapter we describe our experience on writing computer vision applications
(see Part II) for execution on GPU. We started the GPGPU activity since 2004 from
scratch. What do we mean by scratch, that we were newbies for GPU programming
without any previous experience with shading languages and a little experience with
OpenGL. We were motivated by the performance of these architectures and with
possibility to implement parallel algorithms on a commodity PC.

Our first source of inspiration was OpenVidia [FM05] where Fung and Mann
presented an innovative platform which uses multiple graphics cards to accelerate
computer vision algorithms. The platform was targeted to a Linux platform only.
We took this platform in hands and we succeeded to make it operational after several
weeks of configuration on a Fedora 4 box, with GeforceFX5200 on AGP bus and
three GeforceFX5200 on PCI bus. We used OpenGL and Cg during this part of
work. This first part was for us a training period for graphics APIs as well as for Cg
Shading language. The graphics cards market was and still is too dynamic, and we
found that new graphics cards (Geforce5900, Geforce6800...) performs better than

Part III: Architecture 127

the whole OpenVIDIA platform. And no more graphics cards provided for the PCI
bus. Thus we left back the OpenVIDIA platform and we focused on single graphics
card architecture.

Once we became familiar with graphics languages, we started to search for more
abstraction of the GPUs. Our objective was to find an abstraction of the GPU
with the aim to implement portable applications for several graphics cards models.
And to design applications for a stream model of computation. This will be useful
for the future implementation of these applications for execution on stream proces-
sors. We found several approaches (see Section 8.3.5) and we were motivated for
Brook [BFH+04b]. Brook initially developed for stream processors and adapted for
GPUs by Buck et al. was a good choice because it copes with our objectives: Brook
applications are cross platform, and could be compiled to run on several architec-
tures (nv30, nv35, nv40). Brook applications are stream based and give a stream
coprocessor abstraction of the GPU.

We implemented image processing filters available in Camellia image processing li-
brary [BS03]. These filters perform better on GPU than the CPU. The main handicap
was the communication time on the AGP bus. For this first part we had not a special
complete application to accelerate. The idea was to accelerate the Camellia library on
the GPU. And thus any application based on Camellia could benefit from the GPU
acceleration. We accelerated mathematical morphology operators, linear filters, edge
detection filters and color transformation filters. This work is comparable to another
approach elaborated by Farrugia and Horain [FH06]. In their work Farrugia and Ho-
rain tried to develop a framework for the execution of OpenCV filters on the GPU
using OpenGL and GLSL shading language. In their release, they provided the accel-
eration of the previous described filters, and they developed a framework comparable
to OpenVIDIA [FM05]. This approach requires graphics programming knowledge
to add a new filter. It is too dependent on the subsequent architecture, and can’t
resolve automatically hardware constraints: register number, shader length, output
registers... Thus we find that the usage of Brook to accelerate a stack of algorithmic
filters could be a more durable solution and could be adapted to new technologies
bringed up by the new GPUs.

After image processing filters we focused in more complex algorithms which can’t
perform in real time on standard PC. We were particularly interested in visual object
detection with sliding window technique. This algorithm requires some optimiza-
tions to perform in real time, and these optimizations decrease the final accuracy as
described in Abramson’s thesis [Abr06].

We developed a framework for mapping the visual detectors on the GPU. To the
best of our knowledge we were the first to implement a sliding window detector for
visual objects on the GPU [HBC06]. The first framework was based on OpenGL/Cg
and targeted to nv30 based GPU (Geforce5200). This framework performs poorly
on the Geforce5200, but it performs in real time on newer nv40 based GPUs as
Geforce6600. We also developed an implementation of the framework using Brook.
The Brook framework has similar performance to the previous one.

128 Part III: Architecture

In this chapter we focus on mapping visual object detectors on the GPU. The
remainder of this chapter is organized as follows: Section 9.2 presents the design
of the visual detector as a stream application. Section 9.3 presents the hardware
constraints and their impact on the stream application design. Section 9.4 presents
the code generator framework. A performance analysis task is described in Section 9.5.
Section 9.6 concludes the chapter.

9.2 Mapping visual object detection to GPU

In this section we focus on the design of the algorithm using a stream model of
computation previously described in Section 8.3.4.

Some parts of the application are not suitable for a streaming model of compu-
tation. Thus the first question while writing the application is: which computation
to move to the GPU?. To answer to this question we need to study the code of the
application searching for possible functions that could be accelerated by the GPU
and more generally the computation part which is rich in data parallelism.

This is a pure algorithmic activity which consists in modeling the application using
streams and kernels. We adopted a hierarchical approach. This approach consists in
identifying the initial streams, and the main functional parts as blocks with inputs
and outputs. These inputs and outputs represent data streams.

We consider the visual detector as described in Section 6.3.6. We consider the
global processing pattern (see Figure 6.17(a)). For this first implementation we con-
sider the Control-Points features as visual weak classifiers. We made this choice
because we used this configuration for a large set of problems, and it was under our
focus. Therefore, the major part of the subsequent analysis can be used for other
type of features, and only the preprocessing part will change.

While reviewing the main parts of the detector based on the Control-Points fea-
tures (Figure 9.1) we distinguish the following operations:

Internal Resolution Tree The Control-Points Features are applied to the three
resolutions of the input frame. This operation is undertaken for each input
frame.

Preprocessing The preprocessing step consists in preparing the three resolutions of
the input image as described in Section 6.3.3.

Binary Classifier The binary classifier is a pixel wise operation. It consists in a
sliding window operation, at each pixel of the input frame, we test the possibility
to have an object at this position defined by its upper left corner and object
dimensions.

Detection Grouping Due to multiple detections for a given object at a given posi-
tion, the gather operation is applied to group multiple detections corresponding
to an unique object.

Part III: Architecture 129

(a) All CPU (b) GPU light

(c) CPU/GPU compromise (d) GPU heavy

Figure 9.1: Application codesign, split between CPU and GPU

The adequation between the CPU/GPU architecture and the visual detector al-
gorithm can be represented by the four logical partitions as follows:

All CPU (see Figure 9.1(a)) All the functional blocks are executed on the CPU.
This is the case of the golden reference of the detector.

Light GPU (see Figure 9.1(b)) It consists in executing the classification operation
on the GPU. The preprocessing and the post processing are done on the CPU.
The hierarchical tree is constructed on the host processor. This is the minimal
configuration for the GPU.

CPU/GPU Compromise (see Figure 9.1(c)) If the preprocessing copes well with
the data parallel architecture then the preprocessing is mapped to the GPU and
then we can obtain a compromised functional decomposition between CPU and
GPU.

Heavy GPU (see Figure 9.1(d)) The graphics hardware provides functionalities for
building multiscale image representations, so only the post processing operation
is executed on the CPU.

The internal resolution tree could be accelerated using a traditional API from
OpenGL for rendering a texture to a given Quad of Size smaller than the dimensions
of the given texture. This can be done using specific GL Options.

The gathering operation is a global operation and not adapted to data parallelism.
It will be implemented on the CPU side.

130 Part III: Architecture

Figure 9.2: Graphics Pipeline used as Streaming Coprocessor. Three services are
available: StreamRead, StreamWrite and RunKernel

We adopted the light GPU (see Figure 9.1(b)) partition. The main part moved
to the GPU is the binary classifier which consists in applying the same computation
to each pixel in the input frame. We present in Algorithm 5 the implementation of
the cascade as a streaming application. The input streams are R0,R1,R2 and V . The
different layers are called successively and the result of each layer is transmitted to
the next layer using the V stream. This part of the implementation is running on the
CPU (Figure 9.2). In Algorithm 6 we present the pseudo-code of the implementation
of the layer into several kernels (shaders) running on the GPU (Figure 9.2).

Algorithm 5 Cascade of classifiers

Require: Intensity Image R0

Ensure: a voting matrix

1: Build R1 and R2

2: Initialize V from Mask
3: StreamRead R0, R1, R2 and V
4: for all i such that 0 ≤ i ≤ 11 do
5: V ⇐ RunLayer i, R0, R1, R2, V
6: end for
7: StreamWrite V

9.3 Hardware constraints

The Graphics Hardware has many constraints on the shaders. On the graphics cards
implementing NV30 shaders, shader size is limited to 1024 instructions and the con-

Part III: Architecture 131

Algorithm 6 Layer: Weighted Sum Classifier

Require: Iterator, R0, R1, R2 and V
Ensure: a voting stream.

1: if V [Iterator] = true then
2: S ⇐ 0
3: for each feature Fj in the layer do
4: A⇐ RunFeature j, R0, R1, R2, V
5: S ⇐ S + A∗ WeightOf(Fj)
6: end for
7: if S ≤Threshold then
8: return false
9: else

10: return true
11: end if
12: else
13: return false
14: end if

stant registers are limited up to 16. On more advanced graphics cards implementing
NV40, shader size is unlimited, but the constant registers are limited to 32. These
constraints have an influence on the design of the application in terms of streaming
application. Thus, to implement a cascade of binary classifiers, we were obliged to
decompose the cascade into several kernels, each kernel corresponds to a layer. To
achieve an homogenous decomposition of the application, we decomposed each layer
into several kernels, called scans, and the whole cascade is the equivalent to a list of
successive scans as shown in Figure 9.3. As shown in Figure 9.3, the data transmission
between layers is done using the V Stream, and the intra-layer data transmission is
done using the A stream to accumulate the intermediate features calculations.

9.4 Code generator

Our code generator is implemented in the Perl script language to generate BrookGPU
and Cg/openGL programs according to input Adaboost learning knowledge.

Brook Implementation

We decided to generate the code of the application in BrookGPU language, mainly
for two reasons. First, the generated code should be portable to various architectures,
even future architectures that are not yet defined. Generating high level programs
will allow fundamental changes in hardware and graphics API as long as the compiler
and runtime for high level language compilers keep up with those changes. Second,
the transparency provided by Brook, which makes it easier to write a streaming

132 Part III: Architecture

Figure 9.3: Multiscans technique. We consider the CSFD detector. Layer L0 is
composed of two features, it is implemented using only one scan S0. Layer L9 is
composed of 58 features, it is implemented using two scans S10 and S11. S10 produces
an intermediate voting result, and S11 produces the vote of L9

application. The programmer can concentrate on the application design in terms of
kernels and streams without any focus on the Graphics related languages and libraries
(Cg, openGL). In Figure 9.4 we show the final system developed with BrookGPU.
The Adaboost knowledge description serves as an input to the Code Generator which
generates the Brook kernels as well as the main C++ code for streams initialization
and read/run/write calls handling. The generated code is a ”.br”, this file is compiled
by brcc to generate the C++ code as well as the assembly language targeted to the
GPU. This C++ file is then compiled and linked to the other libraries to build the
executable. The main disadvantage of the brook solution is that we are obliged to
enter the compile/link chain each time we modify the Adaboost knowledge input.

Cg/OpenGL Implementation

In order to test the performance of the BrookGPU runtime, as well as to benefit from
additional features provided by the OpenGL library, we decided to implement a hand
written version of the application using Cg to code the kernels as pixel shaders, and
we used OpenGL as an API to communicate with the graphics card. The advantage
of this solution is that we are not obliged to enter the compile/link chain once we
change the input Adaboost knowledge. In fact, the Cg code generator generates the
Cg code used to represent the visual detector, and this code is loaded dynamically
using the Cg library. The Cg library enables loading Cg code on runtime from files

Part III: Architecture 133

Figure 9.4: Final System, Brook Runtime

stored on disk. The abstraction of the graphics hardware provided by Brook, is not
present, so we have to manage our data using textures and our kernel using pixel
shaders manually.

9.5 Performance analysis

We tested our GPU implementation on a nVIDIA Geforce 6600GT on PCI-Express.
The host is an Athlon 64 3500+, 2.21 Ghz with 512M DDR.

9.5.1 Cascade Stages Face Detector (CSFD)

As shown in Figure 9.6, the CPU version of the CSFD spends most of its time on the
first 6 layers, which is related to the fact that the number of windows to test at these
layers is still considerable. In the last 6 layers, even if the layers are too complex,
the number of windows to classify is not great. Conversely, the GPU implementation
spends most of its time on the last layers, and less time on the first 6 layers. This is
related to the fact that, in the first layers, the number of features is not too big, so
each layer requires a single pass on the GPU, which is too fast. But, the last layers
are too complex, and require up to 30 scans per layer (layer 11), so the GPU spends
more time classifying the frame.

134 Part III: Architecture

Figure 9.5: Final System, Cg/OpenGL Runtime

In Figure 9.7(a), we present a speedup for each layer of the cascade. We deduce
that for the first 6 layers, the GPU is running faster than on CPU; this is due to the
high data parallelism support on the GPU. The last 6 layers are running faster on
the CPU, due to the small number of windows to classify and the high number of
features within the layers.

In Figure 9.7(b) we present the profiling of the mixed solution: the first 6 layers
are running on the GPU and the next 6 layers are running on the CPU. Using this
decomposition, we reach a real time classification with 15 fps for 415x255 frames.

9.5.2 Single Layer Face Detector (SLFD)

As shown in Table 9.1, on the x86 processor, the SLFD with 1600 features requires
18.8s to classify 92k windows in a 415x255 frame. The CSFD with 12 layer, needs
only 175ms (Table 9.1).

The implementation of the SLFD on the GPU requires 2s to classify 100k windows
in a 415x255 frame. Which means that the GPU produces a speedup of 9.4 compared
to the pure CPU implementation, but it is still not running in real time.

Part III: Architecture 135

Figure 9.6: Processing Time Profiling

(a) (b)

Figure 9.7: (a) Cascaded Face Detection, Speedup plot for GPU to CPU implemen-
tation. We show that the GPU performs better than CPU for the first five layers; (b)
Processing Time Profiling for the heterogeneous solution

9.6 Conclusion

In this chapter we described the mapping of the visual object detector to the graphics
hardware. We designed the algorithm using the streaming model of computation. We
identified the streams and the kernels. Then, we explained how we generated the code
for the kernels and how we handled the storage of the images in streams. We faced
some technical challenges. We explained these challenges, specially with the limited
graphics hardware (GeforceFX5200): memory size and shader length.

We accomplished a successful mapping of the algorithm. We considered a complex
knowledge result issued from LibAdaBoost learning task. This knowledge is for face
detection based on the control point features. The methodology that we have used
in the mapping is generic enough to support other kind of detectors with other type
of features.

In the present chapter, we demonstrated that, for a given visual detector, we can

136 Part III: Architecture

Time(ms) ClassificationRate(WPS)

CPU 18805.04 4902.73
GPU 2030.12 53122.06

Table 9.1: Single Layer FD with 1600 features, the GPU implementation is 10 times
faster than the CPU implementation

associate several runtimes: the CPU runtime and the GPU runtime. The performance
tests showed that the GPU architecture performs better than the traditional CPU
for the visual detector.

We can conclude that the GPU architecture with a streaming model of computa-
tion modeling is a promising solution for accelerating computer vision algorithms.

Part IV

Application

Chapter 10

Application: PUVAME

Contents
10.1 Introduction . 138

10.2 PUVAME overview . 139

10.3 Accident analysis and scenarios 140

10.4 ParkNav platform . 141

10.4.1 The ParkView platform . 142

10.4.2 The CyCab vehicule . 144

10.5 Architecture of the system 144

10.5.1 Interpretation of sensor data relative to the intersection . . 145

10.5.2 Interpretation of sensor data relative to the vehicule 149

10.5.3 Collision Risk Estimation 149

10.5.4 Warning interface . 150

10.6 Experimental results . 151

10.1 Introduction

In this part we focus on applications. An application is the adequation of a given algo-
rithmic pipeline and a given architecture. The general framework for intelligent video
analysis described in Chapter 4 will be parametrized to cope with the requirements.
Some of the optimizations presented in Chapter 8 could occur if the architecture is
composed of programmable graphics cards.

In this chapter we present an application for intelligent video analysis which con-
sists in people detection in urban area. It consists in the analysis of video streams
from fixed cameras. This analysis aims at detecting people in the video and com-
municating this information to a global fusion system, which performs tracking and
collision estimation.

Part IV: Applications 139

This application is an integrated part of the French PREDIT1 project PUVAME2.
A non exhaustive list of our contributions to this project is as follows:

• We contributed to the different technical meetings around requirements defini-
tion.

• We contributed to the design of the application using RTMaps3 as a develop-
ment and deployment environment.

• We provided the people detection module based on adaptive background sub-
traction and machine learning for people detection.

• We created datasets for synchronized multiple cameras acquisition.

The remainder of this chapter is organized as follows: in next section, we give
a brief overview of the PUVAME project. In Section 10.3 we detail the accident
analysis done by Connex-Eurolum in 2003 and also we describe the chosen use cases.
Section 10.4 presents the experimental platform used to evaluate the solutions we
propose. Section 10.5 details the architecture of the system. Experimental results are
reported in section 10.6. We give some conclusions and perspectives in section 3.6.

10.2 PUVAME overview

In France, about 33% of roads victims are Vulnerable Road Users (VRU). In its
3rd framework, the French PREDIT includes VRU Safety. The PUVAME project
was created to generate solutions to avoid collisions between VRU and Bus in urban
traffic. This objective will be achieved by:

• Improvement of driver’s perception capabilities close to his vehicle; This ob-
jective will be achieved using a combination of offboard cameras, observing
intersections or bus stops, to detect and track VRU present at intersection or
bus stop, as well as onboard sensors for localisation of the bus;

• Detection and assessment of dangerous situations, analyzing position of the
vehicule and of the VRU and estimating their future trajectories;

• Triggering alarms and related processes inside the vehicule;

• Integration on experimental vehicules.

Furthermore, there is a communication between the infrastructure and the bus to
exchange information about the position of the bus and position of VRU present in
the environment. These informations are used to compute a risk of collisions between

1National Research and Innovation Program for Ground Transport Systems
2Protection des Vulnérables par Alarmes ou Manoeuvres
3www.intempora.com

140 Part IV: Applications

the bus and VRU. In case of an important risk, a warning strategy is defined to
prevent the bus driver and the VRU. The project started on October 2003 and was
achieved on April 2006.

The partners are:

INRIA Responsible of the following tasks: project management, providing the hard-
ware platform, tracking using grid occupation server, system integration.

EMP-CAOR Responsible of people detection, system architecture under RTMaps
and system integration.

Connex-Eurolum Responsible of Accident analysis and system validation.

Robosoft Responsible of vehicle equipment.

ProBayes Provided and supported ProBayes software.

Intempora Provided and supported RTMaps.

INRETS LESCOT Responsible of the design of the warning interface for the bus.

10.3 Accident analysis and scenarios

In the scope of the project, we’ve analysed accidents occured in 2003 between vul-
nerables (pedestrians, cyclists) and buses in a French town. Three kinds of accidents
arrised from this study. In 25.6% of the accidents, the vulnerable was struck while the
bus was leaving or approaching a bus stop. In 38.5% of the accidents, the pedestrian
was attempting to cross at an intersection when he was struck by a bus turning left
or right. Finally, 33.3% of the accidents occured when the pedestrian lost balance on
the sidewalk when he was running for the bus, or was struck by a lateral part of a
bus or one of its rear view mirrors. It was also noticed that in all these cases, most
of the impacts occurred on the right side or the front of the bus.

In the aim of reducing these kinds of accidents, we proposed 3 scenarios to re-
produce the most frequent accidents’ situations and find ways to overcome the lack
of security. The first scenario aims at reproducing vulnerables struck while the bus
arrives or leaves its bus stop (see Figure 10.1(a)). The second scenario aims at repro-
ducing vulnerables struck at an intersection (see Figure 10.1(b)). The third scenario
aims at reproducing vulnerables struck by the lateral part of the bus, surprised by the
sweeping zone. In this thesis, we proposed to focus on the first two scenarios when a
pedestrian is struck by the right part of the bus. In these 2 cases, it has been decided
to use fixed cameras placed at the bus stop or at the road junction in order to detect
potentially dangerous behaviors. As most of the right part of the bus is unseen by the
driver, it is very important to give him information about the fact that a vulnerable
is placed in this blind spot. The cameras will cover the entire blind zone.

Part IV: Applications 141

(a) Bus Station (b) Cross Intersection

Figure 10.1: (a) The bus arrives or leaves its bus stop. The vulnerables situated in
the blind spot near the bus are in danger because they are not seen by the driver and
have a good probability to enter in collision with the bus; (b) The pedestrian crosses
at an intersection when the bus turns right. The vulnerable who starts crossing the
road may be unseen by the driver.

Information given by cameras will be analyzed and merged with information about
the position of the bus. A collision risk estimation will be done and an interface will
alert the driver about the danger. A more detailed description of the process will be
done in section 10.5. Next section presents the experimental site set up at INRIA
Rhône-Alpes, where these two scenarios are under test.

10.4 ParkNav platform

The experimental setup used to evaluate the PUVAME system is composed of 2
distinctive parts: the ParkView platform used to simulate an intersection or a bus
stop and the Cycab vehicule used to simulate a bus.

P4 2.4Ghz
1Go RAM
GNU/Linux Fedora Core 2

2Go RAM
Xeon 3Ghz

GNU/Linux Fedora FC2
1Go RAM
P4 1.5Ghz

GNU/Linux Fedora FC2

R
ig

ht
0

R
ig

ht
1

L
ef

t1

router
WiFi

C
ha

n1

C
ha

n4

L
ef

t0

MapServerDetector1
ParkView network

Dectector2

Figure 10.2: The ParkView platform hardware

142 Part IV: Applications

10.4.1 The ParkView platform

The ParkView platform is composed of a set of six off-board analog cameras, installed
in a car-park setup such as their field-of-view partially overlap (see figure 10.3), and
three Linux(tm) workstations in charge of the data processing, connected by a stan-
dard Local Area Network (figure 10.2).

(a) (b)

(c) “left0” (d) “right0”

Figure 10.3: (a) Location of the cameras on the parking; (b) Field-of-view of the
cameras projected on the ground; (c) and (d) View from the two cameras used

The workstations are running a specifically developed client-server software com-
posed of three main parts, called the map server, the map clients and the connectors
(figure 10.4).

The map server processes all the incoming observations, provided by the different
clients, in order to maintain a global high-level representation of the environment;
this is where the data fusion occurs. A single instance of the server is running.

The map clients connect to the server and provide the users with a graphical rep-
resentation of the environment (figure 10.5); they can also process this data further
and perform application-dependent tasks. For example, in a driving assistance ap-
plication, the vehicle on-board computer will be running such a client specialized in
estimating the collision risk.

The connectors are feeded with the raw sensor-data, perform the pre-processing,
and send the resulting observations to the map server. Each of the computer con-
nected with one or several sensors is running such a connector. For the applica-
tion described here, all data preprocessing basically consist in detecting pedestrians.
Therefore, the video stream of each camera is processed independently by a dedicated
detector. The role of the detectors is to convert each incoming video frame to a set
of bounding rectangles, one by target detected in the image plane (figure 10.14). The

Part IV: Applications 143

Map server

­ Observations
 scheduling

­ Buffering for
later processing

Fusion, association

 Graphical
visualisation

 Collision risk
 estimation

Tracker.

fo
rm

at
ag

e
 d

on
ne

es

Transformation :
plan image, plan carte
 pour :
­ centre
­ variance
­ vitesses

prendre en compte :
­ distorsion
­ erreur conjuguees

Offboard detector module

Pe
de

st
ri

an
 D

et
ec

to
r

da
ta

 tr
an

sl
at

io
n

Data preprocessing:

­ transform to map
coordinate system

­ distortion correction

­ ...

 pour :

 pour :

 pour :

Figure 10.4: The ParkView platform software organization

Figure 10.5: A graphical map client showing the CyCab and a pedestrian on the
parking

set of rectangles detected at a given time constitutes the detector observation, and is
sent to the map server.

Since the fusion system operates in a fixed coordinate system, distinct from each
of the camera’s local systems, a coordinate transformation must be performed. For
this purpose, each of the cameras has been calibrated beforehand. The result of this
calibration consists in a set of parameters:

• The intrinsic parameters contain the information about the camera optics and
CCD sensor: the focal length and focal axis, the distorsion parameters,

• The extrinsic parameters consist of the homography matrix: this is the 3x3
homogeneous matrix which transforms the coordinates of an image point to the
ground coordinate system.

In such a multi-sensor system, special care must be taken of proper timestamp-
ing and synchronization of the observations. This is especially true in a networked
environment, where the standard TCP/IP protocol would incur its own latencies.

The ParkView platform achieves the desired effect by using a specialized transfer

144 Part IV: Applications

protocol, building on the low-latency properties of UDP while guaranteeing in-order,
synchronised delivery of the sensor observations to the server.

10.4.2 The CyCab vehicule

Figure 10.6: The CyCab vehicule

The CyCab (figure 10.6) has been designed to transport up to two persons in
downtown areas, pedestrian malls, large industrial or amusement parks and airports,
at a maximum of 30km/h speed. It has a length of 1.9 meter, a width of 1.2 meter
and weights about 300 kg. It is equipped with 4 steer and drive wheels powered by
four 1 kW electric motors. To control the cycab, we can manually drive it with a
joystick or fully-automatic operate it. It is connected to the ParkView platform by
a wireless connection: we can send it motors commands and collect odometry and
sensors data: the Cycab is considered as a client of the ParkNav platform. It perceives
the environment with a sick laser used to detect and avoid the obstacles.

10.5 Architecture of the system

In this section, we detail the PUVAME software architecture (figure 10.7) we choose
for the intersection and bus stop. This architecture is composed of 4 main parts:

1. First of all, the images of the different offboard camera are used to estimate the
position and speed of each pedestrian present in the crossroadmap;

2. The odometry and the Global Positionning System are used to determine the
position and speed of the vehicule in the crossroad map;

3. Third, the position and speed of the different objects present in the intersection
are used to estimate a risk of collision between the bus and each pedestrian;

4. Finally, the level of risk and the direction of the risk are sent to the Human
Machine Interface (HMI) inside the bus to warn the bus driver.

In the next subsections, we detail these 4 modules.

Part IV: Applications 145

HMI

Odometry

GPS

Offboard
camera

Offboard
camera

Interpretation

of sensor data

relative to the vehicule

relative to the intersection

Interpretation

of sensor data

Collision risk estimation

in the crossroad map

Position & speed of the vehicule

Position & speed of each pedestrian

in the crossroad map

Risk level

Figure 10.7: System diagram

10.5.1 Interpretation of sensor data relative to the intersec-
tion

Our objective is to have a robust perception using multi-sensor approaches to track the
different pedestrians present at the intersection. The whole architecture is depicted
in figure 10.8. As mentioned in section 10.4, the video camera feed is processed
independently by a dedicated detector. The role of the detectors is to convert each
incoming video frame to a set of bounding rectangles, one by target detected in the
image plane. The set of rectangles detected at a given time constitutes the detector
observations. Then, the information about the position of each VRU given by each
offboard camera are merged, using an occupancy grid approach, in order to compute
a better estimation of the position of each VRU. We use the output of this stage of
fusion process in order to extract new observations on the VRU currently present in
the environment. We use data association algorithms to update the different VRU
position with extracted observations. Finally, we update the list of VRU present
in the environment. The different parts of the process are detailed in the following
paragraphs.

Pedestrian detector

To detect VRUs present at the intersection, a pedestrian detector subsystem is used.
The detector is composed of three components: the first component consists in a
foreground segmentation based on Multiple Gaussian Model as described in Sec-
tion 5.3.4. The second component is a sliding window binary classifier for pedestrians
using AdaBoost-based learning methods previously described in Chapter 6. The third
component is a tracking algorithm using image based criteria of similarity.

Occupancy grid

The construction of the occupancy grid as a result of the fusion of the detector
observations given by different cameras is detailed in [YARL06]. In this paragraph,
we only give an overview of the construction of this occupancy grid.

Occupancy grid is a generic framework for multi-sensor fusion and modelling of
the environment. It has been introduced by Elfes and Moravec [Elf89] at the end

146 Part IV: Applications

Figure 10.8: Architecture of the pedestrians tracker

of the 1980s. An occupancy grid is a stochastic tesselated representation of spatial
information that maintains probabilistic estimates of the occupancy state of each cell
in a lattice. The main advantage of this approach is the ability to integrate several
sensors in the same framework taking the inherent uncertainty of each sensor reading
into account, in opposite to the Geometric Paradigm whose method is to categorize
the world features into a set of geometric primitives [CSW03]. The alternative that
OGs offer is a regular sampling of the space occupancy, that is a very generic system
of space representation when no knowledge about the shapes of the environment is
available. On the contrary of a feature based environment model, the only require-
ment for an OG building is a bayesian sensor model for each cell of the grid and
each sensor. This sensor model is the description of the probabilistic relation that
links sensor measurement to space state, that OG necessitates to make the sensor
integration.

In [YARL06], we propose there two different sensor models that are suitable for
different purposes, but which underline the genericity of the occupancy grid approach.
The problem is that motion detectors give information in the image space and that

Part IV: Applications 147

we search to have knowledge in the ground plan. We solve this problem projecting
the bounding box in the ground plan using some hypothesis: in the first model, we
mainly suppose that the ground is a plan, all the VRU stand on the ground and
the complete VRU is visible for the camera. The second model is more general as
we consider that a VRU could be partially hidden but has a maximum height of 3
meters.

(a) (b) (c) (d)

(e) (f)

Figure 10.9: (a) An image of a moving object acquired by one of the offboard video
cameras and the associated bounding box found by the detector. (b) The occulted
zone as the intersection of the viewing cone associated with the bounding box and the
ground plan. (c) The associated ground image produce by the system. (d) Ground
image after gaussian convolution with a support size of 7 pixels. (e) Probability of
the ground image pixel value, knowing that the pixel corresponds to an empty cell:
P (Z|emp) for each cell. (f) Probability of the ground image pixel value, knowing that
the pixel corresponds to an occupied cell: P (Z|occ) for each cell.

In both of the models we first search to segment the ground plan in three types
of region: occupied, occulted and free zones using the bounding boxes informations.
Then we introduce an uncertainty management, using a gaussian convolution, to deal
with the position errors in the detector. Finally, we convert this information into
probability distributions. Figure 10.9 illustrates the whole construction of the first
model and figure 10.10 shows the first phase for the second model.

Figure 10.11 shows experiments (ie, the resulting occupancy grid) with the first
model. The first model is precise, but only when its hypothesis holds. In such cases
this model will be the most suitable for position estimation. With the second model,
the position uncertainty allows to surround the real position of the detected object,
such that with other viewing points or other sensors, like laser range-finders or radar
it is possible to obtain a good hull of the ground object occupation. Thanks to the
uncertainty, this last model will never give wrong information about the emptiness of
an area, which is a guarantee for safety applications.

148 Part IV: Applications

(a) (b) (c) (d)

Figure 10.10: (a) Moving object whom the contact points with the ground are oc-
culted. (b) The intersection of the viewing cone associated with the bounding box
and the ground plan which is far from the position of the object. (c) Projection of
the entire view cone on the ground in yellow. (d) Projection of the part of view cone
that fits the object height hypothesis (in green).

Figure 10.11: The resulting probability that the cells are occupied after the inference
process.

Object extraction

Based on the occupancy grid, we extract the objects in the grid: we extract mov-
ing obstacles by first identifying the moving area. We proceed by differencing two
consecutive occupancy grids in time, as in [BA04].

Prediction

To track VRUs, a Kalman filter [Kal60] is used for each VRU present in the environ-
ment. The speed needed for the prediction phase of each Kalman filter is computed
making a difference between the actual and the previous position.

Part IV: Applications 149

Track to track association

To reestimate the position of each VRU using a Kalman filter, we first need to asso-
ciate the observations of VRUs extracted from the occupancy grid to the predicted
position. As there could be at most one observation associated to a given predicted
position, we use a gating procedure which is enough for correct assignments. The
association is also useful to manage the list of VRUs present in the environment, as
described in the next paragraph.

Track management

Each VRU is tagged with a specific ID and its position in the environment. At the
beginning of the process, the list of VRUs present in the environment is empty. The
result of the association phase is used to update this list. Several cases could appear:

1. An observation is associated to a VRU: the reestimated position of this VRU is
computed with a Kalman filter the predicted position and this observation;

2. A VRU has no observation associated to itself: the reestimated position of this
VRU is equal to the predicted position;

3. An observation is not associated to any VRU: a new temporary VRU ID is
created and its position is initialized as the value of the observation. To avoid to
create VRU corresponding to false alarms, the temporary VRU is only confirmed
(ie, becomes a definitive VRU) if it is seen during 3 consecutive instants.

As we are using offboard cameras observing always the same environment, to delete
a VRU of the list, 2 conditions are needed: it has to be unseen (ie, no observation
has been associated to himself) since at least the last 5 instants and its position has
to be outside of the intersection.

10.5.2 Interpretation of sensor data relative to the vehicule

The goal of this module [KDdlF+04] is to compute a precise position of the bus at
the intersection. This position is computed using an extended Kalman filter with
odometry data for predicting the position of the vehicule and a GPS to estimate its
position. The localisation is based on a precise datation of the data to minimize the
effect of latency.

10.5.3 Collision Risk Estimation

The risk of collision is computed with the Closest Point of Approach and the Time
to Closest Point of Approach method. The Closest Point of Approach is the point
where two moving objects are at a minimum distance. To compute this distance, we
suppose that these two moving objects are moving at a constant speed. So at each
time, we are able to compute the distance between these two objects. To know when

150 Part IV: Applications

Figure 10.12: interface (left) and different warning functions

Figure 10.13: interface (left) and different warning functions

this distance is minimal, we search the instant where the derivative of the square of
this distance is null. This instant is named the Time to Closest Point of Approach
and the respective distance is named the Closest Point of Approach.

In our application, at each time, we compute the Time to Closest Point of Ap-
proach and the respective distance (ie, Closest Point of Approach) between each VRU
and the bus. If this distance is below a given threshold in less than 5 seconds, we
compute the orientation of the VRU relative to the bus and generate an alarm for
the HMI.

10.5.4 Warning interface

The interface (figure 10.12) is made of two parts. One is the bus outline (center of
the interface), and the other is the possible position of vulnerables (the 6 circles).
These circles can be fullfilled by warning pictograms. These pictograms show the
place where a vulnerable could be struck by the bus : in front, middle, back, left
or right side of the bus. The representation needs to be very simple in order to be

Part IV: Applications 151

Figure 10.14: (left) two pedestrians are crossing the road. They are detected by our
system. The Cycab is arriving turning right. (center) The system estimates that
there is a high probability of collision between the pedestrian starting crossing the
road. (right) It alerts the driver with a signal on the interface

understood immediately by the driver. Moreover, two speakers are added in order to
warn rapidly the driver about the danger (figure 10.13).

10.6 Experimental results

We reproduced the scenario shown (see Figure 10.1(b)) in our experimental site. The
bus is a Cycab, two pedestrians crossing the road are detected by our system. One is
in danger because it has a high probability to be struck by the Cycab. The driver is
alerted by the interface that a pedestrian is potentially in danger (see Figure 10.14).

Part V

Conclusion and future work

Chapter 11

Conclusion

Contents
11.1 Overview . 154

11.2 Future work . 155

11.1 Overview

In the present thesis we have presented a generic framework for intelligent video
analysis. We have focused on the development of several stages within this framework:
adaptive background subtraction and visual object detection. We have developed
basic implementations for the rest of the stages in this framework (tracking module).
We have accelerated some algorithms using a low cost solution. We have prototyped
an application for urban zone safety. This application is built on the top of the given
medium level algorithms and the low cost architecture.

This work is composed of four main parts: the development of medium level
algorithms specialized in background subtraction and object detection, the usage of
the graphics hardware as a target for some algorithms, the design of the algorithms
for the execution on the graphics hardware and finally the integration of the different
algorithms within an application.

We have worked with state of the art algorithms for background subtraction and
visual object detection. We have implemented several approaches for background
subtraction. We have compared the performance of these methods and we have
enhanced their accuracy using high level feedback.

We have developed LibAdaBoost, a generic software library for machine learning.
We have extended this library to implement a boosting framework. We have adopted
a plugin oriented architecture for this library. We have extended this framework for
the visual domain and implemented the state of the art features as well as we have
developed new features. With LibAdaBoost it has been easy to work with the dif-
ferent actors of the boosting framework. Thus, we have easily enhanced the genetic

Part V: Conclusion and future work 155

algorithm (previously developed by Y. Abramson) as a weak learner. LibAdaBoost
makes it possible to objectively compare the different features (performance and ac-
curacy). For the best of our knowledge, LibAdaBoost is the first machine learning
library specialized in boosting for the visual domain.

The low cost solution is based on using the graphics hardware for computer vision
purpose. This has been a good choice according to the performance profile of the ap-
plication. The graphics hardware has a data-parallelism oriented architecture. This
architecture is interfaced through a streaming model of computation. We have intro-
duced a streaming design of the visual object detection algorithm. This design was
used to map the algorithm on the graphics hardware. For the best of our knowledge,
we were the first to implement a visual object detector on the graphics hardware.

Finally, we integrated those algorithms within a large application in an industrial
context. The PUVAME project was a good opportunity to evaluate those algorithms
and to experiment with the integration issues. The results still are at a proof of
concept stage. We aimed at validating the system on some elementary scenarios
where we have done some simplifications. We have got promising results, accuracy
speaking as well as performance speaking.

11.2 Future work

Beside the various contributions in the present thesis, the complete framework for
intelligent video analysis still is non perfect. Many improvements could be introduced
at several levels. In this section we will present a non exhaustive list of improvements
as future work issues:

• The generic framework for intelligent video analysis as presented in Chapter 4
still is uncomplete. We have explored in our research some stages of this frame-
work and not all the stages. The exploration of the other stages (object track-
ing, action recognition, semantic description, personal identification and fusion
of multiple cameras) makes the application range wider. Thus, we can consider
more advanced applications based on fusion of multiple sensors as well as a
recognition system for controlling high security areas.

• The adaptive background subtraction algorithms presented in Chapter 5 are
not perfect. They have the advantage of being generic. This means that they
have not special preprocessing for a given installation. Otherwise, those algo-
rithms require fusion with other algorithms (visual object detection or motion
detection) to perform a good accuracy. Recently, new approaches for back-
ground subtraction are proposed. The new approaches are based on machine
learning techniques. In their work, Parag et al. [PEM06] used boosting for se-
lecting the features to represent a given scene background at the pixel level. We
propose to explore this possibility using the boosting framework LibAdaBoost
(cf. Chapter 6).

156 Part V: Conclusion and future work

• LibAdaBoost is a complete machine learning framework. LibAdaBoost provides
a boosting framework. This boosting framework is extended for the visual
object detection domain. It could be extended for other domains (as described
above, for pixel classification domain). It has two major points: extensibility
and robustness. This library could be used as a reference for any boosting
related algorithms.

• In our research, we explored the GPGPU for accelerating computer vision algo-
rithms. We reached promising performance results for the visual object detec-
tion. The new graphics hardware generation starting by the G8 series (NVIDIA)
offers a complete solution for general purpose computing. NVIDIA proposes
CUDA as software solution for GPGPU. We propose to continue the develop-
ment on the CUDA framework to accelerate the different algorithms introduced
in this thesis.

• The PUVAME project is a promising project for improving pedestrian safety
in urban zones. The pedestrian detection and tracking system was validated on
special scenarios, and still has lackings to be fully operational in real condition
scenes. Thus, more advanced research must continue on the object detection
part, as well as on the object tracking part.

• Video surveillance applications for large scale installations are migrating to
third generation. The usage of smart cameras as distributed agents imposes new
architecture and new problematics related to the cooperation and the computing
distribution as well as the fusion of information from multiple cameras. The
implementation of computer vision algorithms on these cameras is a special
task, the onboard embedded processors have generally special architectures.
The mapping of the algorithms to smart cameras could be guided by a codesign
activity which aims to develop new cores for accelerating computer vision tasks
using special hardware. We believe that second generation video surveillance
systems still have a long life, and we still have to develop systems upon second
generation architectures. Thus, the methodology used within this thesis still
has to be optimized and has a promising market.

Chapter 12

French conclusion

Dans le présent manuscrit, on a présenté une châıne de traitement générique pour
l’analyse vidéo intelligente. On a exploré plusieurs implémentations relatives aux
différents étages dans cette châıne: modèles adaptatifs du fond d’une scène dynamique
à camèra fixe ainsi que la détection visuelle d’objets par apprentissage automatique
en utilisant le boosting. On a pu développer des implémentations de base pour le
reste des étapes de la châıne de traitement. On a accéléré une partie de ces algo-
rithmes en utilisant des architectures â faible coût basées sur les cartes graphiques
programmables. On a prototypé une application pour améliorer la sécurité des piétons
dans les zones urbaines près des arrêts du bus.

Ce travail est composé de quatres parties principales: le développement d’algorithmes
spécialisés dans la segmentation du fond et la détection visuelle d’objets, l’utilisation
des cartes graphiques pour l’accélération de certains algorithmes de vision, la modélisation
des algorithmes pour l’exécustion sur des processeurs graphiques comme cible et fi-
nalement, l’intégration des diffèrents algorithmes dans le cadre d’une application.

On a travaillé sur des algorithmes relevant de l’état de l’art sur la ségmentation
du fond et sur la détection visuelle d’objets. On a implémenté plusieurs mèthodes
pour la segmentation du fond. Ces mèthodes sont basées sur le modèle adaptatif.
On a étudié la performance de chacune de ces mèthodes et on a essayé d’améliorer la
robustesse en utilisant le retour d’informations de haut niveau.

On a développé LibAdaBoost, une librairie pour l’apprentissage automatique
implémentant la technique du boosting en utilisant un modèle générique des données.
Cette librairie est étendue pour suporter le domaine visuel. On a implémenté les
classifieurs faibles publiés dans l’état de l’art ainsi que nos propres classifieurs faibles.
LibAdaBoost a facilité l’utilisation de la technique du boosting pour le domaine vi-
suel. On a pu améliorer facilement l’algorithme génétique (développé par Y. Abram-
son). LibAdaBoost fournitdes fonctionnalités qui permettent une comparaison ob-
jective des diffèrents classifierus faibles ainsi que les algorithmes d’apprentissage et
tout autre degrès de liberté. A nos connaissances LibAdaBoost est la premiére li-
brarie d’apprentissage automatique qui fournit une implémentation du boosting qui
est robuste, extensible et qui supporte un modèle de données générique.

La solution à faible coût est basée sur les processeurs graphiques qui seront ex-

158 Part V: Conclusion and future work

ploités pour l’exécution des algorithmes de vision. Il s’est avèré que cette solution est
une solution adaptée à ce type d’algorithmes. Le processeur graphique est basé sur
une architecture qui favorise le parallélisme de données. Les applications ciblés sur ce
processeur sont modélisés en utilisant un modèle de calcul orienté flux de données. Ce
modèle de calcul est basé sur deux élements structureaux qui sont les flux de données
streams et les noyaux de calcul kernels. A nos connaissances, nous sommes les pre-
miers qui ont implémenté le premier detecteur visuel d’objets basé sur le boosting sur
un processeur graphique.

Finalement, on a intégré ces algorithmes dans une large application dans un con-
texte industriel. Le projet PUVAME était une bonne oportunité pour évaluer ces
algorithmes. On a pu aussi expérimenté la phase d’intégration avec les autres sous
systèmes développés par les autres partenaires. Les résultats restent au niveau de
l’étude de faisabilité. On a fait recours á une validation ponctuelle des algorithmes
sur des scénarios simplifiés. On a obtenu des résultats encourageant, au niveau de la
robustesse et des performances.

Pourtant les diffèrentes contributions à travers ce travail, la totalité de la chaine
de traitement reste inparfaite. Plusieurs améliorations pourront avoir lieu. Une liste
non exhaustive de potentielle améliorations pourra être la suivante:

• La châıne de traitement pour l’analyse vidéo intelligente présentée dans Chapitre 4
est incompl‘éte. On a exploré quelques étapes de cette châıne, et il nous reste en-
cors plusieurs comme le suivi d’objets, la reconnaisance des objets, la description
sémantique du contenu, l’analyse des actions et la collaboration entre plusieurs
caméras sous forme de fusion de données. Cependant, cette exploration des
autres étapes permettra d’élargir le spectre des applications qui pourraient être
utilisés dans le controle d’accés dans des zones à fortes contraintes de sécurité.

• Les algorithmes de segmentation du fond adaptatifs présentés dans Chapitre 5
ne sont pas parfaits. Ils ont l’avantage d’être génériques. Cela veut dire que
ces algorithmes ne demandent pas un paramétrage préalable en fonction de
la scéne surveillée, mais ils ont besoins d’être fusionnés avec d’autres algo-
rithmes pour arriver à une meilleure performance. Une nouvelle approche basée
sur l’apprentissage automatique en utilisant le boosting au niveau du pixel est
utilisée par Parag et al. [PEM06]. On propose d’esplorer cette solution. Ceci
est facilité par notre librairie de boosting LibAdaBoost (cf. Chapitre 6).

• LibAdaBoost est une librairie complète dédiée pour l’apprentissage automa-
tique. Cette librairie implémente la technique de boosting d’une maniére générique.
Cette technique est étendu au domaine visuel. Elle pourra être étendue pour
d’autres types de données (comme décrit ci dessus au niveau des pixels pour la
segmentation du fond). Cette librairie a deux points avantageux: l’extensibilité
et la robustesse. Cette librairie servira comme environnement de référence pour
la recherche sur la technique du boosting.

• On a exploré l’utilisation des processeurs graphiques pour l’accélération des

Part V: Conclusion and future work 159

algorithmes de vision qui reprèsentent un parallélisme de données fonction-
nel. On a obtenu des résultats meilleurs que le processeur traditionnel. Les
nouvelles cartes graphiques chez NVIDIA de la série G8 sont programmables
moyennant une solution logiciele révolutionnaire qui s’appelle CUDA. Cette so-
lution logicielle permettant la programmation des processeurs graphiques avec
le langage C ANSI sans passer par les couches de rendu 3D comme OpenGL et
DirectX couplés aux langages de shader comme Cg. On propose de continuer le
développement sur les cartes graphique sur les processeurs G8 avec la solution
CUDA.

• Le projet PUVAME est prometeur pour l’amélioration de la sécurité des piétons
dans les zones urbaines. Malgrès la validation sur des scénarios élémentaires,
les algorithmes de détection et de suivi devront être améliorés pour obtenir un
système operationnel dans les conditions réelles.

• Les systèmes de vidéo surveillance de grande envergure sont en migration vers
la troisiéme génération. L’utilisation des caméra intelligentes comme des agents
distribués impose une nouvelle méthode de pensée et drelèves de nouvelle problématique
au niveau de la coopération entre ces agents et de la distribution du calcul entre
eux. L’écriture des algorithmes de vision pour ces caméras comme cibles est
tout un art. Les processeurs embarqués sur ces caméras ont des architectures
spéciales. Et pour le moment il n’y a pas des normes qui unifient ces aspects
architecturaux. On pense que malgrès cette migration, la deuxiéme génération
des systèmes de vidéo surveillance a un temps de vie assez long qui justifie la
poursuite des dévelopements dédiés pour ces systèmes. La méthodologie utilisée
dans le cadre de cette thése devra être améliorée. Auccune crainte budgétaire,
le marché est prometteur.

Part VI

Appendices

Appendix A

Hello World GPGPU

Listing A.1: Hello world GPGPU OpenGL/GLSL

1 //−−−
2 // www.GPGPU. org
3 // Sample Code
4 //−−−
5 // Copyright (c) 2004 Mark J . Harr i s and GPGPU. org
6 // Copyright (c) 2004 3Dlabs Inc . Ltd .
7 //−−−
8 // This so f tware i s provided ’ as−i s ’ , without any expre s s or impl i ed
9 // warranty . In no event w i l l the authors be he ld l i a b l e f o r any

10 // damages a r i s i n g from the use o f t h i s so f tware .
11 //
12 // Permiss ion i s granted to anyone to use t h i s so f tware f o r any
13 // purpose , i n c l ud ing commercial app l i c a t i on s , and to a l t e r i t and
14 // r e d i s t r i b u t e i t f r e e l y , sub j e c t to the f o l l ow i ng r e s t r i c t i o n s :
15 //
16 // 1 . The o r i g i n o f t h i s so f tware must not be mis repre sented ; you
17 // must not c la im that you wrote the o r i g i n a l so f tware . I f you use
18 // t h i s so f tware in a product , an acknowledgment in the product
19 // documentation would be apprec ia t ed but i s not r equ i r ed .
20 //
21 // 2 . Altered source v e r s i on s must be p l a i n l y marked as such , and
22 // must not be mis repre sented as being the o r i g i n a l so f tware .
23 //
24 // 3 . This no t i c e may not be removed or a l t e r e d from any source
25 // d i s t r i b u t i o n .
26 //
27 //−−−
28 // Author : Mark Harr i s (harrism@gpgpu . org) − o r i g i n a l helloGPGPU
29 // Author : Mike Weiblen (mike . weiblen@3dlabs . com) − GLSL ve r s i on
30 //−−−
31 // GPGPU Lesson 0 : ”helloGPGPU GLSL” (a GLSL ve r s i on o f ”helloGPGPU”)
32 //−−−
33 //
34 // GPGPU CONCEPTS Introduced :
35 //

Part VI: Appendix 163

36 // 1 .) Texture = Array
37 // 2 .) Fragment Program = Computational Kernel .
38 // 3 .) One−to−one P ixe l to Texel Mapping :
39 // a) Data−Dimensioned Viewport , and
40 // b) Orthographic Pro j e c t i on .
41 // 4 .) Viewport−Sized Quad = Data Stream Generator .
42 // 5 .) Copy To Texture = feedback .
43 //
44 // For d e t a i l s o f each o f the se concepts , s e e the exp lanat i ons in the
45 // i n l i n e ”GPGPU CONCEPT” comments in the code below .
46 //
47 // APPLICATION Demonstrated : A s imple post−proce s s edge de t e c t i on f i l t e r .
48 //
49 //−−−
50 // Notes regard ing t h i s ”helloGPGPU GLSL” source code :
51 //
52 // This example was der ived from the o r i g i n a l ”helloGPGPU . cpp” v1 . 0 . 1
53 // by Mark J . Harr i s . I t demonstrates the same s imple post−proce s s edge
54 // de t e c t i on f i l t e r , but in s t ead implemented us ing the OpenGL Shading Language
55 // (a l s o known as ”GLSL”) , an extens i on o f the OpenGL v1 . 5 s p e c i f i c a t i o n .
56 // Because the GLSL compi le r i s an i n t e g r a l part o f a vendor ’ s OpenGL dr ive r ,
57 // no add i t i ona l GLSL development t o o l s are r equ i r ed .
58 // This example was developed / t e s t ed on 3Dlabs Wildcat Realizm .
59 //
60 // I i n t e n t i o n a l l y minimized changes to the s t r u c tu r e o f the o r i g i n a l code
61 // to support a s ide−by−s i d e comparison o f the implementat ions .
62 //
63 // Thanks to Mark f o r making the o r i g i n a l helloGPGPU example a v a i l a b l e !
64 //
65 // −− Mike Weiblen , May 2004
66 //
67 //
68 // [MJH:]
69 // This example has a l s o been t e s t ed on NVIDIA GeForce FX and GeForce 6800 GPUs.
70 //
71 // Note that the example r e qu i r e s glew . h and glew32s . l i b , a v a i l a b l e at
72 // http :// glew . s ou r c e f o r g e . net .
73 //
74 // Thanks to Mike f o r modifying the example . I have a c tua l l y changed my
75 // o r i g i n a l code to match ; f o r example the i n l i n e Cg code in s t ead o f an
76 // ex t e rna l f i l e .
77 //
78 // −− Mark Harr is , June 2004
79 //
80 // Re fe rences :
81 // http :// gpgpu . s ou r c e f o r g e . net /
82 // http :// glew . s ou r c e f o r g e . net /
83 // http ://www. xmiss ion . com/˜ nate / g lu t . html
84 //−−−
85

86 #inc lude <s t d i o . h>
87 #inc lude <a s s e r t . h>

164 Part VI: Appendix

88 #inc lude <s t d l i b . h>
89 #de f i n e GLEW STATIC 1
90 #inc lude <GL/glew . h>
91 #inc lude <GL/ g lu t . h>
92

93 // forward d e c l a r a t i o n s
94 c l a s s HelloGPGPU ;
95 void reshape (i n t w, i n t h) ;
96

97 // g l oba l s
98 HelloGPGPU ∗ g pHe l lo ;
99

100

101 // This shader performs a 9−tap Laplac ian edge de t e c t i on f i l t e r .
102 // (converted from the separa te ” edges . cg” f i l e to embedded GLSL s t r i n g)
103 s t a t i c const char ∗ edgeFragSource = {
104 ”uniform sampler2D texUnit ; ”
105 ” void main (void)”
106 ”{”
107 ” const f l o a t o f f s e t = 1 .0 / 512 . 0 ; ”
108 ” vec2 texCoord = gl TexCoord [0] . xy ; ”
109 ” vec4 c = texture2D (texUnit , texCoord) ; ”
110 ” vec4 b l = texture2D (texUnit , texCoord + vec2(− o f f s e t , −o f f s e t)) ; ”
111 ” vec4 l = texture2D (texUnit , texCoord + vec2(− o f f s e t , 0 . 0)) ; ”
112 ” vec4 t l = texture2D (texUnit , texCoord + vec2(− o f f s e t , o f f s e t)) ; ”
113 ” vec4 t = texture2D (texUnit , texCoord + vec2 (0 . 0 , o f f s e t)) ; ”
114 ” vec4 ur = texture2D (texUnit , texCoord + vec2 (o f f s e t , o f f s e t)) ; ”
115 ” vec4 r = texture2D (texUnit , texCoord + vec2 (o f f s e t , 0 . 0)) ; ”
116 ” vec4 br = texture2D (texUnit , texCoord + vec2 (o f f s e t , o f f s e t)) ; ”
117 ” vec4 b = texture2D (texUnit , texCoord + vec2 (0 . 0 , −o f f s e t)) ; ”
118 ” g l FragCo lor = 8 .0 ∗ (c + −0.125 ∗ (b l + l + t l + t + ur + r + br + b)) ; ”
119 ”}”
120 } ;
121

122 // This c l a s s encapsu la t e s a l l o f the GPGPU fun c t i o n a l i t y o f the example .
123 c l a s s HelloGPGPU
124 {
125 pub l i c : // methods
126 HelloGPGPU(in t w, i n t h)
127 : rAngle (0) ,
128 iWidth (w) ,
129 iHe i gh t (h)
130 {
131 // Create a s imple 2D texture . This example does not use
132 // render to t ex ture −− i t j u s t c op i e s from the f ramebu f f e r to the
133 // tex ture .
134

135 // GPGPU CONCEPT 1 : Texture = Array .
136 // Textures are the GPGPU equ iva l en t o f a r rays in standard
137 // computation . Here we a l l o c a t e a t ex ture l a r g e enough to f i t our
138 // data (which i s a r b i t r a r y in t h i s example) .
139 glGenTextures (1 , & iTexture) ;

Part VI: Appendix 165

140 glBindTexture (GL TEXTURE 2D, iTexture) ;
141 glTexParameteri (GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL NEAREST) ;
142 glTexParameteri (GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL NEAREST) ;
143 glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP S, GL CLAMP) ;
144 glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP T, GL CLAMP) ;
145 glTexImage2D (GL TEXTURE 2D, 0 , GL RGBA8, iWidth , iHe ight ,
146 0 , GL RGB, GL FLOAT, 0) ;
147

148 // GPGPU CONCEPT 2 : Fragment Program = Computational Kernel .
149 // A fragment program can be thought o f as a smal l computat ional
150 // ke rne l that i s app l i ed in p a r a l l e l to many fragments
151 // s imul taneous ly . Here we load a ke rne l that performs an edge
152 // de t e c t i on f i l t e r on an image .
153

154 programObject = glCreateProgramObjectARB () ;
155

156 // Create the edge de t e c t i on fragment program
157 f ragmentShader = glCreateShaderObjectARB (GL FRAGMENT SHADER ARB) ;
158 glShaderSourceARB (fragmentShader , 1 , &edgeFragSource , NULL) ;
159 glCompileShaderARB (fragmentShader) ;
160 glAttachObjectARB (programObject , fragmentShader) ;
161

162 // Link the shader in to a complete GLSL program .
163 glLinkProgramARB(programObject) ;
164 GLint progLinkSuccess ;
165 glGetObjectParameterivARB (programObject , GL OBJECT LINK STATUS ARB,
166 &progLinkSuccess) ;
167 i f (! progLinkSuccess)
168 {
169 f p r i n t f (s tde r r , ” F i l t e r shader could not be l i nked \n ”) ;
170 e x i t (1) ;
171 }
172

173 // Get l o c a t i o n o f the sampler uniform
174 texUni t = glGetUniformLocationARB (programObject , ” texUnit ”) ;
175 }
176

177 ˜HelloGPGPU()
178 {
179 }
180

181 // This method updates the t ex ture by render ing the geometry (a teapot
182 // and 3 r o t a t i n g t o r i) and copying the image to a tex ture .
183 // I t then render s a second pass us ing the t ex ture as input to an edge
184 // de t e c t i on f i l t e r . I t c op i e s the r e s u l t s o f the f i l t e r to the t ex ture .
185 // The tex ture i s used in HelloGPGPU : : d i sp l ay () f o r d i s p l ay i ng the
186 // r e s u l t s .
187 void update ()
188 {
189 rAngle += 0 .5 f ;
190

191 // s t o r e the window viewport dimensions so we can r e s e t them ,

166 Part VI: Appendix

192 // and s e t the viewport to the dimensions o f our t ex ture
193 i n t vp [4] ;
194 g lGet Intege rv (GL VIEWPORT, vp) ;
195

196 // GPGPU CONCEPT 3a : One−to−one P ixe l to Texel Mapping : A Data−
197 // Dimensioned Viewport .
198 // We need a one−to−one mapping o f p i x e l s to t e x e l s in order to
199 // ensure every element o f our t ex ture i s proce s s ed . By s e t t i n g our
200 // viewport to the dimensions o f our d e s t i n a t i on tex ture and drawing
201 // a screen−s i z e d quad (see below) , we ensure that every p i x e l o f our
202 // t e x e l i s generated and proce s s ed in the fragment program .
203 glViewport (0 , 0 , iWidth , iHe i gh t) ;
204

205 // Render a teapot and 3 t o r i
206 g lC l ea r (GL COLOR BUFFER BIT) ;
207 glMatrixMode (GL MODELVIEW) ;
208 glPushMatrix () ;
209 g lRota t e f (− rAngle , 0 , 1 , 0 . 2 5) ;
210 g lutSo l idTeapot (0 . 5) ;
211 glPopMatrix () ;
212 glPushMatrix () ;
213 g lRota t e f (2 . 1 ∗ rAngle , 1 , 0 . 5 , 0) ;
214 g lu tSo l idTorus (0 . 0 5 , 0 . 9 , 64 , 6 4) ;
215 glPopMatrix () ;
216 glPushMatrix () ;
217 g lRota t e f (−1.5 ∗ rAngle , 0 , 1 , 0 . 5) ;
218 g lu tSo l idTorus (0 . 0 5 , 0 . 9 , 64 , 6 4) ;
219 glPopMatrix () ;
220 glPushMatrix () ;
221 g lRota t e f (1 . 78 ∗ rAngle , 0 . 5 , 0 , 1) ;
222 g lu tSo l idTorus (0 . 0 5 , 0 . 9 , 64 , 6 4) ;
223 glPopMatrix () ;
224

225 // copy the r e s u l t s to the t ex ture
226 glBindTexture (GL TEXTURE 2D, iTexture) ;
227 glCopyTexSubImage2D (GL TEXTURE 2D, 0 , 0 , 0 , 0 , 0 , iWidth , iHe i gh t) ;
228

229

230 // run the edge de t e c t i on f i l t e r over the geometry t ex ture
231 // Act ivate the edge de t e c t i on f i l t e r program
232 glUseProgramObjectARB (programObject) ;
233

234 // i d e n t i f y the bound texture un i t as input to the f i l t e r
235 glUniform1iARB (texUnit , 0) ;
236

237 // GPGPU CONCEPT 4 : Viewport−Sized Quad = Data Stream Generator .
238 // In order to execute fragment programs , we need to generate p i x e l s .
239 // Drawing a quad the s i z e o f our viewport (s e e above) gene ra t e s a
240 // fragment f o r every p i x e l o f our d e s t i n a t i on tex ture . Each fragment
241 // i s proce s s ed i d e n t i c a l l y by the fragment program . Not ice that in
242 // the reshape () funct ion , below , we have s e t the frustum to
243 // orthographic , and the frustum dimensions to [−1 ,1] . Thus , our

Part VI: Appendix 167

244 // viewport−s i z e d quad v e r t i c e s are at [−1 ,−1] , [1 , −1] , [1 , 1] , and
245 // [−1 ,1] : the co rne r s o f the viewport .
246 g lBeg in (GL QUADS) ;
247 {
248 glTexCoord2f (0 , 0) ; g lVe r t ex3 f (−1 , −1, −0.5 f) ;
249 glTexCoord2f (1 , 0) ; g lVe r t ex3 f (1 , −1, −0.5 f) ;
250 glTexCoord2f (1 , 1) ; g lVe r t ex3 f (1 , 1 , −0.5 f) ;
251 glTexCoord2f (0 , 1) ; g lVe r t ex3 f (−1 , 1 , −0.5 f) ;
252 }
253 glEnd () ;
254

255 // d i s ab l e the f i l t e r
256 glUseProgramObjectARB (0) ;
257

258 // GPGPU CONCEPT 5 : Copy To Texture (CTT) = Feedback .
259 // We have j u s t invoked our computation (edge de t e c t i on) by apply ing
260 // a fragment program to a viewport−s i z e d quad . The r e s u l t s are now
261 // in the frame bu f f e r . To s t o r e them , we copy the data from the
262 // frame bu f f e r to a t ex ture . This can then be fed back as input
263 // f o r d i sp l ay (in t h i s case) or more computation (see
264 // more advanced samples .)
265

266 // update the t ex ture again , t h i s time with the f i l t e r e d scene
267 glBindTexture (GL TEXTURE 2D, iTexture) ;
268 glCopyTexSubImage2D (GL TEXTURE 2D, 0 , 0 , 0 , 0 , 0 , iWidth , iHe i gh t) ;
269

270 // r e s t o r e the s to r ed viewport dimensions
271 glViewport (vp [0] , vp [1] , vp [2] , vp [3]) ;
272 }
273

274 void d i sp l ay ()
275 {
276 // Bind the f i l t e r e d t ex ture
277 glBindTexture (GL TEXTURE 2D, iTexture) ;
278 glEnable (GL TEXTURE 2D) ;
279

280 // render a f u l l −s c r e en quad textured with the r e s u l t s o f our
281 // computation . Note that t h i s i s not part o f the computation : t h i s
282 // i s only the v i s u a l i z a t i o n o f the r e s u l t s .
283 g lBeg in (GL QUADS) ;
284 {
285 glTexCoord2f (0 , 0) ; g lVe r t ex3 f (−1 , −1, −0.5 f) ;
286 glTexCoord2f (1 , 0) ; g lVe r t ex3 f (1 , −1, −0.5 f) ;
287 glTexCoord2f (1 , 1) ; g lVe r t ex3 f (1 , 1 , −0.5 f) ;
288 glTexCoord2f (0 , 1) ; g lVe r t ex3 f (−1 , 1 , −0.5 f) ;
289 }
290 glEnd () ;
291

292 g lD i s ab l e (GL TEXTURE 2D) ;
293 }
294

295 protec ted : // data

168 Part VI: Appendix

296 i n t iWidth , iHe i gh t ; // The dimensions o f our array
297 f l o a t rAngle ; // used f o r animation
298

299 unsigned i n t iTexture ; // The tex ture used as a data array
300

301 GLhandleARB programObject ; // the program used to update
302 GLhandleARB fragmentShader ;
303

304 GLint texUnit ; // a parameter to the fragment program
305 } ;
306

307 // GLUT i d l e func t i on
308 void i d l e ()
309 {
310 g lutPostRed i sp lay () ;
311 }
312

313 // GLUT d i sp l ay func t i on
314 void d i sp l ay ()
315 {
316 g pHel lo−>update () ; // update the scene and run the edge de t e c t f i l t e r
317 g pHel lo−>d i sp l ay () ; // d i sp l ay the r e s u l t s
318 glutSwapBuf fers () ;
319 }
320

321 // GLUT reshape func t i on
322 void reshape (i n t w, i n t h)
323 {
324 i f (h == 0) h = 1 ;
325

326 glViewport (0 , 0 , w, h) ;
327

328 // GPGPU CONCEPT 3b : One−to−one P ixe l to Texel Mapping : An Orthographic
329 // Pro j e c t i on .
330 // This code s e t s the p r o j e c t i o n matrix to or thograph ic with a range o f
331 // [−1 ,1] in the X and Y dimensions . This a l l ows a t r i v i a l mapping o f
332 // p i x e l s to t e x e l s .
333 glMatrixMode (GL PROJECTION) ;
334 g lLoadIdent i ty () ;
335 gluOrtho2D(−1 , 1 , −1, 1) ;
336 glMatrixMode (GL MODELVIEW) ;
337 g lLoadIdent i ty () ;
338 }
339

340 // Cal led at s ta r tup
341 void i n i t i a l i z e ()
342 {
343 // I n i t i a l i z e the ”OpenGL Extension Wrangler” l i b r a r y
344 g l ew In i t () ;
345

346 // Ensure we have the nece s sa ry OpenGL Shading Language ex t en s i on s .
347 i f (glewGetExtension (” GL ARB fragment shader ”) != GL TRUE | |

Part VI: Appendix 169

348 glewGetExtension (” GL ARB vertex shader ”) != GL TRUE | |
349 glewGetExtension (” GL ARB shader objects ”) != GL TRUE | |
350 glewGetExtension (” GL ARB shading language 100 ”) != GL TRUE)
351 {
352 f p r i n t f (s tde r r , ”Driver does not support OpenGL Shading Language\n ”) ;
353 e x i t (1) ;
354 }
355

356 // Create the example ob j e c t
357 g pHe l lo = new HelloGPGPU(512 , 512) ;
358 }
359

360 // The main func t i on
361 i n t main ()
362 {
363 g lut In i tDisp layMode (GLUT DOUBLE | GLUT RGBA) ;
364 glutInitWindowSize (512 , 512) ;
365 glutCreateWindow (” Hel lo , GPGPU! (GLSL ve r s i on) ”) ;
366

367 g lut Id l eFunc (i d l e) ;
368 glutDisplayFunc (d i sp l ay) ;
369 glutReshapeFunc (reshape) ;
370

371 i n i t i a l i z e () ;
372

373 glutMainLoop () ;
374 re turn 0 ;
375 }

Appendix B

Hello World Brook

Listing B.1: BR file

1 /∗−−−
2 GPGPU − Computer Vis ion
3 Adaptive Background Subtract ion on Graphics Hardware
4 −−−
5 Copyright (c) 2005 − 2006 Hicham Ghorayeb
6 −−−
7 This so f tware i s provided ’ as−i s ’ , without any expre s s or impl i ed
8 warranty . In no event w i l l the authors be he ld l i a b l e f o r any
9 damages a r i s i n g from the use o f t h i s so f tware .

10

11 Permiss ion i s granted to anyone to use t h i s so f tware f o r any
12 purpose , i n c l ud ing commercial app l i c a t i on s , and to a l t e r i t and
13 r e d i s t r i b u t e i t f r e e l y , s ub j e c t to the f o l l ow i ng r e s t r i c t i o n s :
14

15 1 . The o r i g i n o f t h i s so f tware must not be mis repre sented ; you
16 must not c la im that you wrote the o r i g i n a l so f tware . I f you use
17 t h i s so f tware in a product , an acknowledgment in the product
18 documentation would be apprec ia t ed but i s not r equ i r ed .
19

20 2 . Altered source v e r s i on s must be p l a i n l y marked as such , and
21 must not be mis repre sented as being the o r i g i n a l so f tware .
22

23 3 . This no t i c e may not be removed or a l t e r e d from any source
24 d i s t r i b u t i o n .
25

26 −−−
27 Author : Hicham Ghorayeb (hicham . ghorayeb@ensmp . f r)
28 −−−
29 Notes regard ing t h i s ”GPU based Adaptive Background Subtract ion ” source code :
30

31

32 Note that the example r e qu i r e s OpenCV and Brook
33

34 −− Hicham Ghorayeb , Apr i l 2006
35

Part VI: Appendix 171

36 Refe rences :
37 http ://www. gpgpu . org /
38 −−−∗/
39

40 #inc lude <s t d i o . h>
41 #inc lude <s t d i o . h>
42 #inc lude <s t d l i b . h>
43 #inc lude <s t r i n g . h>
44 #inc lude ” . . / bbs . h”
45 #inc lude <cv . h>
46 #inc lude ”TimeUti ls / t ime t o o l s . h”
47 #de f i n e BBS ALGO STR ”BASIC BACKGROUND SUBTRACTION”
48 #de f i n e BBS ALGO STR D ”BASIC BACKGROUND SUBTRACTION: Download”
49 #de f i n e BBS ALGO STR K CLASSIFY ”BASIC BACKGROUND SUBTRACTION: Kernel : C l a s s i f y ”
50 #de f i n e BBS ALGO STR K UPDATE ”BASIC BACKGROUND SUBTRACTION: Kernel : Update”
51 #de f i n e BBS ALGO STR K INIT ”BASIC BACKGROUND SUBTRACTION: Kernel : I n i t ”
52 #de f i n e BBS ALGO STR U ”BASIC BACKGROUND SUBTRACTION: Upload”
53

54 /∗∗
55 ∗ STREAMS DECLARATION
56 ∗∗/
57 i n t i n s i z e x = BBS FRAME WIDTH;
58 i n t i n s i z e y = BBS FRAME HEIGHT;
59 i n t ou t s i z ex = BBS FRAME WIDTH;
60 i n t ou t s i z ey = BBS FRAME HEIGHT;
61

62 i t e r f l o a t 2 i t <outs i z ex , out s i z ey> =
63 i t e r (f l o a t 2 (0 . 0 f , 0 . 0 f) , f l o a t 2 (i n s i z ey , i n s i z e x)) ;
64

65 f l o a t 3 backgroundModel<i n s i z e x , i n s i z ey >;
66 f l o a t 3 inputFrame<i n s i z e x , i n s i z ey >;
67 f l o a t foregroundMask<i n s i z e x , i n s i z ey >;
68

69 f l o a t alpha = BBS ALPHA;
70 f l o a t th r e sho ld = BBS THRESHOLD;
71

72 /∗∗
73 ∗ KERNELS DECLARATION
74 ∗∗/
75 ke rne l
76 void b r k e r n e l b b s i n i t (
77 f l o a t 3 iImg [] [] ,
78 i t e r f l o a t 2 i t <>,
79 out f l o a t 3 oModel<>)
80 {
81 oModel = iImg [i t] ;
82 }
83

84 ke rne l
85 void b r k e r n e l b b s c l a s s i f y (
86 f l o a t 3 iImg [] [] ,
87 f l o a t 3 iModel [] [] ,

172 Part VI: Appendix

88 i t e r f l o a t 2 i t <>,
89 f l o a t thresho ld ,
90 out f l o a t oMask<>)
91 {
92 f l o a t 3 regAbsDi f f ;
93 f l o a t 3 i nP i x e l s = iImg [i t] ;
94 f l o a t 3 inModel = iModel [i t] ;
95 regAbsDi f f = abs (i nP i x e l s − inModel) ;
96

97 i f (a l l (s t ep (thresho ld , regAbsDi f f)))
98 oMask = 255 .0 f ;
99 e l s e

100 oMask = 0 .0 f ;
101 }
102

103 ke rne l
104 void br ke rne l bbs update (
105 f l o a t 3 iImg [] [] ,
106 f l o a t 3 iModel [] [] ,
107 i t e r f l o a t 2 i t <>,
108 f l o a t alpha ,
109 out f l o a t 3 oModel<>)
110 {
111 f l o a t 3 i nP i x e l s = iImg [i t] ;
112 f l o a t 3 inModel = iModel [i t] ;
113 f l o a t 3 a = f l o a t 3 (alpha , alpha , alpha) ;
114

115 oModel = a ∗ i nP i x e l s + (1−a) ∗ inModel ;
116 }
117

118 /∗∗
119 ∗ BRIDGES TO KERNELS
120 ∗∗/
121 void bbs r ead input s t r eams (f l o a t ∗ image)
122 {
123 INIT BRMM PERFORMANCE MEASURE(BBS ALGO STR) ;
124 START BRMMPERFORMANCEMEASURE(BBS ALGO STR D) ;
125 streamRead (inputFrame , image) ;
126 STOP BRMM PERFORMANCE MEASURE(BBS ALGO STR D) ;
127 }
128

129 void bbs wr i t e output s t r eams (f l o a t ∗ image)
130 {
131 INIT BRMM PERFORMANCE MEASURE(BBS ALGO STR) ;
132 START BRMMPERFORMANCEMEASURE(BBS ALGO STR U) ;
133 streamWrite (foregroundMask , image) ;
134 STOP BRMM PERFORMANCE MEASURE(BBS ALGO STR U) ;
135 }
136

137 void run bbs In i t ()
138 {
139 INIT BRMM PERFORMANCE MEASURE(BBS ALGO STR) ;

Part VI: Appendix 173

140 START BRMMPERFORMANCEMEASURE(BBS ALGO STR K INIT) ;
141 b r k e r n e l b b s i n i t (inputFrame , i t , backgroundModel) ;
142 STOP BRMM PERFORMANCE MEASURE(BBS ALGO STR K INIT) ;
143 }
144

145 void run bbsC la s s i f y ()
146 {
147 INIT BRMM PERFORMANCE MEASURE(BBS ALGO STR) ;
148 START BRMMPERFORMANCEMEASURE(BBS ALGO STR K CLASSIFY) ;
149 b r k e r n e l b b s c l a s s i f y (
150 inputFrame ,
151 backgroundModel ,
152 i t ,
153 thresho ld ,
154 foregroundMask) ;
155 STOP BRMM PERFORMANCE MEASURE(BBS ALGO STR K CLASSIFY) ;
156 }
157

158 void run bbsUpdate ()
159 {
160 INIT BRMM PERFORMANCE MEASURE(BBS ALGO STR) ;
161 START BRMMPERFORMANCEMEASURE(BBS ALGO STR K UPDATE) ;
162 br ke rne l bbs update (
163 inputFrame ,
164 backgroundModel ,
165 i t ,
166 alpha ,
167 backgroundModel) ;
168 STOP BRMM PERFORMANCE MEASURE(BBS ALGO STR K UPDATE) ;
169 }

Listing B.2: GPU subsystem
1 //−−−
2 // GPGPU − Computer Vis ion
3 // Adaptive Background Subtract ion on Graphics Hardware
4 //−−−
5 // Copyright (c) 2005 − 2006 Hicham Ghorayeb
6 //−−−
7 // This so f tware i s provided ’ as−i s ’ , without any expre s s or impl i ed
8 // warranty . In no event w i l l the authors be he ld l i a b l e f o r any
9 // damages a r i s i n g from the use o f t h i s so f tware .

10 //
11 // Permiss ion i s granted to anyone to use t h i s so f tware f o r any
12 // purpose , i n c l ud ing commercial app l i c a t i on s , and to a l t e r i t and
13 // r e d i s t r i b u t e i t f r e e l y , sub j e c t to the f o l l ow i ng r e s t r i c t i o n s :
14 //
15 // 1 . The o r i g i n o f t h i s so f tware must not be mis repre sented ; you
16 // must not c la im that you wrote the o r i g i n a l so f tware . I f you use
17 // t h i s so f tware in a product , an acknowledgment in the product
18 // documentation would be apprec ia t ed but i s not r equ i r ed .
19 //
20 // 2 . Altered source v e r s i on s must be p l a i n l y marked as such , and

174 Part VI: Appendix

21 // must not be mis repre sented as being the o r i g i n a l so f tware .
22 //
23 // 3 . This no t i c e may not be removed or a l t e r e d from any source
24 // d i s t r i b u t i o n .
25 //
26 //−−−
27 // Author : Hicham Ghorayeb (hicham . ghorayeb@ensmp . f r)
28 //−−−
29 // Notes regard ing t h i s ”GPU based Adaptive Background Subtract ion ” source code :
30 //
31 //
32 // Note that the example r e qu i r e s OpenCV and Brook
33 //
34 // −− Hicham Ghorayeb , Apr i l 2006
35 //
36 // Re fe rences :
37 // http ://www. gpgpu . org /
38 //−−−
39

40 #inc lude ”gpu subsystem . h”
41

42 #inc lude ”bbs . h”
43

44 // I n i t Subsystem
45 i n t gpu in i t subsys t em ()
46 {
47 // A l l o c a t e s Float Buf f e r
48 re turn 0 ;
49 }
50

51 // Release Subsystem
52 void gpu re l ea s e subsys t em ()
53 {
54 // Release Float Buf f e r
55 }
56

57 // I n i t i a l i z a t i o n o f the Background Image
58 void gpu InitBackground (s t r u c t Ip l Image ∗ image)
59 {
60 a s s e r t ((image−>width == BBS FRAME WIDTH) &&
61 (image−>he ight == BBS FRAME HEIGHT) &&
62 (image−>nChannels == 3)) ;
63

64 f l o a t ∗ bu f f e r = NULL;
65

66 bu f f e r = (f l o a t ∗) mal loc (
67 image−>width ∗ image−>he ight ∗ image−>nChannels ∗ s i z e o f (f l o a t)) ;
68

69 // I n i t Buf f e r from IplImage
70 f o r (i n t i =0; i<image−>he ight ; i++){
71 f o r (i n t j =0; j<image−>width ; j++){
72 bu f f e r [i ∗ image−>width ∗ 3 + j ∗ 3 + 0] =

Part VI: Appendix 175

73 (f l o a t) image−>imageData [i ∗ image−>widthStep+j ∗ 3+ 0] ;
74 bu f f e r [i ∗ image−>width ∗ 3 + j ∗ 3 + 1] =
75 (f l o a t) image−>imageData [i ∗ image−>widthStep+j ∗ 3+ 1] ;
76 bu f f e r [i ∗ image−>width ∗ 3 + j ∗ 3 + 2] =
77 (f l o a t) image−>imageData [i ∗ image−>widthStep+j ∗ 3+ 2] ;
78 }
79 }
80

81 bbs r ead input s t r eams (bu f f e r) ;
82 run bbs In i t () ;
83

84 f r e e (bu f f e r) ;
85 }
86

87 // Cal l The Algorithm to c l a s s i f y p i x e l s i n to Foreground and background
88 void gpu Class i fy Image (s t r u c t Ip l Image ∗ image)
89 {
90 a s s e r t ((image−>width == BBS FRAME WIDTH) &&
91 (image−>he ight == BBS FRAME HEIGHT) &&
92 (image−>nChannels == 3)) ;
93

94 f l o a t ∗ bu f f e r = NULL;
95

96 bu f f e r = (f l o a t ∗) mal loc (
97 image−>width ∗ image−>he ight ∗ image−>nChannels ∗ s i z e o f (f l o a t)) ;
98

99 // I n i t Buf f e r from IplImage
100 f o r (i n t i =0; i<image−>he ight ; i++){
101 f o r (i n t j =0; j<image−>width ; j++){
102 bu f f e r [i ∗ image−>width ∗ 3 + j ∗ 3 + 0] =
103 (f l o a t) image−>imageData [i ∗ image−>widthStep+j ∗ 3+ 0] ;
104 bu f f e r [i ∗ image−>width ∗ 3 + j ∗ 3 + 1] =
105 (f l o a t) image−>imageData [i ∗ image−>widthStep+j ∗ 3+ 1] ;
106 bu f f e r [i ∗ image−>width ∗ 3 + j ∗ 3 + 2] =
107 (f l o a t) image−>imageData [i ∗ image−>widthStep+j ∗ 3+ 2] ;
108 }
109 }
110

111 bbs r ead input s t r eams (bu f f e r) ;
112 run bbsC la s s i f y () ;
113

114 f r e e (bu f f e r) ;
115 }
116

117 // Retr i eve the r e s u l t o f background/ foreground segmentat ion
118 void gpu Retr i eveResu l t (s t r u c t Ip l Image ∗ image)
119 {
120 a s s e r t ((image−>width == BBS FRAME WIDTH) &&
121 (image−>he ight == BBS FRAME HEIGHT) &&
122 (image−>nChannels == 1)) ;
123

124 f l o a t ∗ bu f f e r = NULL;

176 Part VI: Appendix

125

126 bu f f e r = (f l o a t ∗) mal loc (
127 image−>width ∗ image−>he ight ∗ image−>nChannels ∗ s i z e o f (f l o a t)) ;
128

129 bbs wr i t e output s t r eams (bu f f e r) ;
130

131 // Update IplImage from the Buf f e r
132 f o r (i n t i =0; i<image−>he ight ; i++){
133 f o r (i n t j =0; j<image−>width ; j++){
134 image−>imageData [i ∗ image−>widthStep+j +0] =
135 ((bu f f e r [i ∗ image−>width + j + 0] > 0 .0 f)? 2 5 5 : 0) ;
136 }
137 }
138

139 f r e e (bu f f e r) ;
140 }
141

142 // Update the Background Model
143 void gpu UpdateBackgroundModel ()
144 {
145 run bbsUpdate () ;
146 }

Listing B.3: CPU subsystem
1 //−−−
2 // GPGPU − Computer Vis ion
3 // Adaptive Background Subtract ion on Graphics Hardware
4 //−−−
5 // Copyright (c) 2005 − 2006 Hicham Ghorayeb
6 //−−−
7 // This so f tware i s provided ’ as−i s ’ , without any expre s s or impl i ed
8 // warranty . In no event w i l l the authors be he ld l i a b l e f o r any
9 // damages a r i s i n g from the use o f t h i s so f tware .

10 //
11 // Permiss ion i s granted to anyone to use t h i s so f tware f o r any
12 // purpose , i n c l ud ing commercial app l i c a t i on s , and to a l t e r i t and
13 // r e d i s t r i b u t e i t f r e e l y , sub j e c t to the f o l l ow i ng r e s t r i c t i o n s :
14 //
15 // 1 . The o r i g i n o f t h i s so f tware must not be mis repre sented ; you
16 // must not c la im that you wrote the o r i g i n a l so f tware . I f you use
17 // t h i s so f tware in a product , an acknowledgment in the product
18 // documentation would be apprec ia t ed but i s not r equ i r ed .
19 //
20 // 2 . Altered source v e r s i on s must be p l a i n l y marked as such , and
21 // must not be mis repre sented as being the o r i g i n a l so f tware .
22 //
23 // 3 . This no t i c e may not be removed or a l t e r e d from any source
24 // d i s t r i b u t i o n .
25 //
26 //−−−
27 // Author : Hicham Ghorayeb (hicham . ghorayeb@ensmp . f r)
28 //−−−

Part VI: Appendix 177

29 // Notes regard ing t h i s ”GPU based Adaptive Background Subtract ion ” source code :
30 //
31 //
32 // Note that the example r e qu i r e s OpenCV and Brook
33 //
34 // −− Hicham Ghorayeb , Apr i l 2006
35 //
36 // Re fe rences :
37 // http ://www. gpgpu . org /
38 //−−−
39 #inc lude ” cpu subsystem . h”
40

41 i n t cpu in i t subsy s t em ()
42 {
43 re turn 0 ;
44 }
45

46 void cpu re l ea s e subsy s t em ()
47 {
48 }

Listing B.4: Main function
1 //−−−
2 // GPGPU − Computer Vis ion
3 // Adaptive Background Subtract ion on Graphics Hardware
4 //−−−
5 // Copyright (c) 2005 − 2006 Hicham Ghorayeb
6 //−−−
7 // This so f tware i s provided ’ as−i s ’ , without any expre s s or impl i ed
8 // warranty . In no event w i l l the authors be he ld l i a b l e f o r any
9 // damages a r i s i n g from the use o f t h i s so f tware .

10 //
11 // Permiss ion i s granted to anyone to use t h i s so f tware f o r any
12 // purpose , i n c l ud ing commercial app l i c a t i on s , and to a l t e r i t and
13 // r e d i s t r i b u t e i t f r e e l y , sub j e c t to the f o l l ow i ng r e s t r i c t i o n s :
14 //
15 // 1 . The o r i g i n o f t h i s so f tware must not be mis repre sented ; you
16 // must not c la im that you wrote the o r i g i n a l so f tware . I f you use
17 // t h i s so f tware in a product , an acknowledgment in the product
18 // documentation would be apprec ia t ed but i s not r equ i r ed .
19 //
20 // 2 . Altered source v e r s i on s must be p l a i n l y marked as such , and
21 // must not be mis repre sented as being the o r i g i n a l so f tware .
22 //
23 // 3 . This no t i c e may not be removed or a l t e r e d from any source
24 // d i s t r i b u t i o n .
25 //
26 //−−−
27 // Author : Hicham Ghorayeb (hicham . ghorayeb@ensmp . f r)
28 //−−−
29 // Notes regard ing t h i s ”GPU based Adaptive Background Subtract ion ” source code :
30 //

178 Part VI: Appendix

31 //
32 // Note that the example r e qu i r e s OpenCV and Brook
33 //
34 // −− Hicham Ghorayeb , Apr i l 2006
35 //
36 // Re fe rences :
37 // http ://www. gpgpu . org /
38 //−−−
39

40 #inc lude <cv . h>
41 #inc lude <highgu i . h>
42

43 #inc lude <s t d i o . h>
44 #inc lude <s t d l i b . h>
45 #inc lude <s t r i n g . h>
46 #inc lude <a s s e r t . h>
47 #inc lude <math . h>
48 #inc lude < f l o a t . h>
49 #inc lude < l im i t s . h>
50 #inc lude <time . h>
51 #inc lude <ctype . h>
52

53 #inc lude ”BasicBackgroundSubtract ion . h”
54 #inc lude ” cpu subsystem . h”
55 #inc lude ”gpu subsystem . h”
56

57 void do proc e s s i ng (IplImage ∗ frame) ;
58

59 i n t main (i n t argc , char ∗∗ argv)
60 {
61 /∗∗∗
62 ∗ Dec la ra t i on s
63 ∗∗/
64 CvCapture∗ capture = NULL;
65 IplImage ∗ frame , ∗ frame copy = NULL;
66

67 /∗∗∗
68 ∗ I n i t Video Source
69 ∗∗/
70

71 #i f d e f USE WEBCAM
72 capture = cvCaptureFromCAM(0) ;
73 #e l s e
74 capture = cvCaptureFromAVI (argv [1]) ;
75 #end i f
76

77 /∗∗∗
78 ∗ I n i t Video Sink
79 ∗∗/
80 cvNamedWindow(” video ” , 1) ;
81 cvNamedWindow(” foreground ” , 1) ;
82

Part VI: Appendix 179

83 /∗∗∗
84 ∗ Main Video Ana lys i s Loop
85 ∗∗/
86 i f (capture){
87 f o r (; ;) {
88 i f (! cvGrabFrame (capture))
89 break ;
90 frame = cvRetrieveFrame (capture) ;
91 i f (! frame)
92 break ;
93 i f (! frame copy){
94 p r i n t f (
95 ” Input Video Dimensions : Width = %d , Height = %d\n” ,
96 frame−>width , frame−>he ight) ;
97 frame copy = cvCreateImage (
98 cvS i z e (frame−>width , frame−>he ight) ,
99 IPL DEPTH 8U , frame−>nChannels) ;

100 }
101

102 i f (frame−>o r i g i n == IPL ORIGIN TL)
103 cvCopy (frame , frame copy , 0) ;
104 e l s e
105 cvFl ip (frame , frame copy , 0) ;
106

107 do proc e s s i ng (frame copy) ;
108

109 i f (cvWaitKey (10) >= 0)
110 break ;
111 }
112

113 cvReleaseImage (&frame copy) ;
114 cvReleaseCapture (&capture) ;
115 }
116

117 cvDestroyWindow (” video ”) ;
118 cvDestroyWindow (” foreground ”) ;
119 re turn 0 ;
120 }
121

122 void do proc e s s i ng (IplImage ∗ frame)
123 {
124 s t a t i c bool f i r s t f r a m e = true ;
125

126 // Show Input Image
127 cvShowImage (” video ” , frame) ;
128

129 IplImage ∗ foreground = NULL;
130

131 foreground = cvCreateImage (
132 cvS i z e (frame−>width , frame−>he ight) , IPL DEPTH 8U , 1) ;
133

134 i f (f i r s t f r a m e)

180 Part VI: Appendix

135 {
136 gpu InitBackground (frame) ;
137 f i r s t f r a m e = f a l s e ;
138 re turn ;
139 }
140

141 gpu Class i fy Image (frame) ;
142

143 gpu Retr i eveResu l t (foreground) ;
144

145 gpu UpdateBackgroundModel () ;
146

147 // Show Result Of Proce s s ing
148 cvShowImage (” foreground ” , foreground) ;
149

150 cvReleaseImage (&foreground) ;
151 }

Appendix C

Hello World CUDA

Listing C.1: Kernels file

1 /∗
2 ∗ Copyright 1993−2007 NVIDIA Corporat ion . Al l r i g h t s r e s e rved .
3 ∗
4 ∗ NOTICE TO USER:
5 ∗
6 ∗ This source code i s sub j e c t to NVIDIA ownership r i g h t s under U. S . and
7 ∗ i n t e r n a t i o n a l Copyright laws . Users and po s s e s s o r s o f t h i s source code
8 ∗ are hereby granted a nonexc lus ive , roya l ty−f r e e l i c e n s e to use t h i s code
9 ∗ in i nd i v i dua l and commercial so f tware .

10 ∗
11 ∗ NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
12 ∗ CODE FOR ANY PURPOSE. IT IS PROVIDED ”AS IS” WITHOUT EXPRESS OR
13 ∗ IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
14 ∗ REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
15 ∗ MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
16 ∗ IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
17 ∗ OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
18 ∗ OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
19 ∗ OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
20 ∗ OR PERFORMANCE OF THIS SOURCE CODE.
21 ∗
22 ∗ U. S . Government End Users . This source code i s a ” commercial item” as
23 ∗ that term i s de f ined at 48 C.F .R. 2 .101 (OCT 1995) , c o n s i s t i n g o f
24 ∗ ” commercial computer so f tware ” and ” commercial computer so f tware
25 ∗ documentation” as such terms are used in 48 C.F .R. 12 .212 (SEPT 1995)
26 ∗ and i s provided to the U. S . Government only as a commercial end item .
27 ∗ Cons i s t ent with 48 C.F .R. 12 . 2 12 and 48 C.F .R. 227.7202−1 through
28 ∗ 227.7202−4 (JUNE 1995) , a l l U. S . Government End Users acqu i r e the
29 ∗ source code with only those r i g h t s s e t f o r th he re in .
30 ∗
31 ∗ Any use o f t h i s source code in i nd i v i dua l and commercial so f tware must
32 ∗ inc lude , in the user documentation and i n t e r n a l comments to the code ,
33 ∗ the above Di sc la imer and U. S . Government End Users Not ice .
34 ∗/
35

182 Part VI: Appendix

36 #inc lude <s t d i o . h>
37 #inc lude <s t d l i b . h>
38 #inc lude ” S o b e l F i l t e r k e r n e l s . h”
39

40 #de f i n e SV 0.003921 f
41 #de f i n e IV 255 . f
42

43 // Texture r e f e r e n c e f o r read ing image
44 texture<unsigned char , 2> tex ;
45 extern s h a r e d unsigned char LocalBlock [] ;
46

47 #de f i n e Radius 1
48

49 #i f d e f FIXED BLOCKWIDTH
50 #de f i n e BlockWidth 80
51 #de f i n e SharedPitch 384
52 #end i f
53

54 d e v i c e unsigned char
55 ComputeSobel (unsigned char ul , // upper l e f t
56 unsigned char um, // upper middle
57 unsigned char ur , // upper r i g h t
58 unsigned char ml , // middle l e f t
59 unsigned char mm, // middle (unused)
60 unsigned char mr , // middle r i g h t
61 unsigned char l l , // lower l e f t
62 unsigned char lm , // lower middle
63 unsigned char l r , // lower r i g h t
64 f l o a t f S c a l e)
65 {
66 shor t Horz = ur + 2∗mr + l r − ul − 2∗ml − l l ;
67 shor t Vert = ul + 2∗um + ur − l l − 2∗ lm − l r ;
68 shor t Sum = (shor t) (f S c a l e ∗(abs (Horz)+abs (Vert))) ;
69 i f (Sum < 0) re turn 0 ; e l s e i f (Sum > 0 x f f) re turn 0 x f f ;
70 re turn (unsigned char) Sum;
71 }
72

73 g l o b a l void
74 SobelShared (uchar4 ∗ pSobe lOr ig ina l , unsigned shor t SobelPitch ,
75 #i f n d e f FIXED BLOCKWIDTH
76 shor t BlockWidth , shor t SharedPitch ,
77 #end i f
78 shor t w, shor t h , f l o a t f S c a l e)
79 {
80 shor t u = 4∗ blockIdx . x∗BlockWidth ;
81 shor t v = blockIdx . y∗blockDim . y + threadIdx . y ;
82 shor t ib ;
83

84 i n t SharedIdx = threadIdx . y ∗ SharedPitch ;
85

86 f o r (ib = threadIdx . x ; ib < BlockWidth+2∗Radius ; ib += blockDim . x) {
87 LocalBlock [SharedIdx+4∗ ib +0] = tex2D (tex ,

Part VI: Appendix 183

88 (f l o a t) (u+4∗ ib−Radius+0) , (f l o a t) (v−Radius)) ;
89 LocalBlock [SharedIdx+4∗ ib +1] = tex2D (tex ,
90 (f l o a t) (u+4∗ ib−Radius+1) , (f l o a t) (v−Radius)) ;
91 LocalBlock [SharedIdx+4∗ ib +2] = tex2D (tex ,
92 (f l o a t) (u+4∗ ib−Radius+2) , (f l o a t) (v−Radius)) ;
93 LocalBlock [SharedIdx+4∗ ib +3] = tex2D (tex ,
94 (f l o a t) (u+4∗ ib−Radius+3) , (f l o a t) (v−Radius)) ;
95 }
96 i f (threadIdx . y < Radius∗2) {
97 //
98 // copy t r a i l i n g Radius∗2 rows o f p i x e l s i n to shared
99 //

100 SharedIdx = (blockDim . y+threadIdx . y) ∗ SharedPitch ;
101 f o r (ib = threadIdx . x ; ib < BlockWidth+2∗Radius ; ib += blockDim . x) {
102 LocalBlock [SharedIdx+4∗ ib +0] = tex2D (tex ,
103 (f l o a t) (u+4∗ ib−Radius+0) , (f l o a t) (v+blockDim . y−Radius)) ;
104 LocalBlock [SharedIdx+4∗ ib +1] = tex2D (tex ,
105 (f l o a t) (u+4∗ ib−Radius+1) , (f l o a t) (v+blockDim . y−Radius)) ;
106 LocalBlock [SharedIdx+4∗ ib +2] = tex2D (tex ,
107 (f l o a t) (u+4∗ ib−Radius+2) , (f l o a t) (v+blockDim . y−Radius)) ;
108 LocalBlock [SharedIdx+4∗ ib +3] = tex2D (tex ,
109 (f l o a t) (u+4∗ ib−Radius+3) , (f l o a t) (v+blockDim . y−Radius)) ;
110 }
111 }
112

113 sync th r ead s () ;
114

115 u >>= 2 ; // index as uchar4 from here
116 uchar4 ∗pSobel = (uchar4 ∗) (((char ∗) pSobe lOr ig ina l)+v∗ Sobe lPitch) ;
117 SharedIdx = threadIdx . y ∗ SharedPitch ;
118

119 f o r (ib = threadIdx . x ; ib < BlockWidth ; ib += blockDim . x) {
120

121 unsigned char pix00 = LocalBlock [SharedIdx+4∗ ib+0∗SharedPitch +0] ;
122 unsigned char pix01 = LocalBlock [SharedIdx+4∗ ib+0∗SharedPitch +1] ;
123 unsigned char pix02 = LocalBlock [SharedIdx+4∗ ib+0∗SharedPitch +2] ;
124 unsigned char pix10 = LocalBlock [SharedIdx+4∗ ib+1∗SharedPitch +0] ;
125 unsigned char pix11 = LocalBlock [SharedIdx+4∗ ib+1∗SharedPitch +1] ;
126 unsigned char pix12 = LocalBlock [SharedIdx+4∗ ib+1∗SharedPitch +2] ;
127 unsigned char pix20 = LocalBlock [SharedIdx+4∗ ib+2∗SharedPitch +0] ;
128 unsigned char pix21 = LocalBlock [SharedIdx+4∗ ib+2∗SharedPitch +1] ;
129 unsigned char pix22 = LocalBlock [SharedIdx+4∗ ib+2∗SharedPitch +2] ;
130

131 uchar4 out ;
132

133 out . x = ComputeSobel (pix00 , pix01 , pix02 ,
134 pix10 , pix11 , pix12 ,
135 pix20 , pix21 , pix22 , f S c a l e) ;
136

137 pix00 = LocalBlock [SharedIdx+4∗ ib+0∗SharedPitch +3] ;
138 pix10 = LocalBlock [SharedIdx+4∗ ib+1∗SharedPitch +3] ;
139 pix20 = LocalBlock [SharedIdx+4∗ ib+2∗SharedPitch +3] ;

184 Part VI: Appendix

140 out . y = ComputeSobel (pix01 , pix02 , pix00 ,
141 pix11 , pix12 , pix10 ,
142 pix21 , pix22 , pix20 , f S c a l e) ;
143

144 pix01 = LocalBlock [SharedIdx+4∗ ib+0∗SharedPitch +4] ;
145 pix11 = LocalBlock [SharedIdx+4∗ ib+1∗SharedPitch +4] ;
146 pix21 = LocalBlock [SharedIdx+4∗ ib+2∗SharedPitch +4] ;
147 out . z = ComputeSobel (pix02 , pix00 , pix01 ,
148 pix12 , pix10 , pix11 ,
149 pix22 , pix20 , pix21 , f S c a l e) ;
150

151 pix02 = LocalBlock [SharedIdx+4∗ ib+0∗SharedPitch +5] ;
152 pix12 = LocalBlock [SharedIdx+4∗ ib+1∗SharedPitch +5] ;
153 pix22 = LocalBlock [SharedIdx+4∗ ib+2∗SharedPitch +5] ;
154 out .w = ComputeSobel (pix00 , pix01 , pix02 ,
155 pix10 , pix11 , pix12 ,
156 pix20 , pix21 , pix22 , f S c a l e) ;
157 i f (u+ib < w/4 && v < h) {
158 pSobel [u+ib] = out ;
159 }
160 }
161

162 sync th r ead s () ;
163 }
164

165 g l o b a l void
166 SobelCopyImage (unsigned char ∗ pSobe lOr ig ina l , unsigned i n t Pitch ,
167 i n t w, i n t h)
168 {
169 unsigned char ∗pSobel =
170 (unsigned char ∗) (((char ∗) pSobe lOr ig ina l)+blockIdx . x∗Pitch) ;
171 f o r (i n t i = threadIdx . x ; i < w; i += blockDim . x) {
172 pSobel [i] = tex2D (tex , (f l o a t) i , (f l o a t) b lockIdx . x) ;
173 }
174 }
175

176 g l o b a l void
177 SobelTex (unsigned char ∗ pSobe lOr ig ina l , unsigned i n t Pitch ,
178 i n t w, i n t h , f l o a t f S c a l e)
179 {
180 unsigned char ∗pSobel =
181 (unsigned char ∗) (((char ∗) pSobe lOr ig ina l)+blockIdx . x∗Pitch) ;
182 f o r (i n t i = threadIdx . x ; i < w; i += blockDim . x) {
183 unsigned char pix00 = tex2D (tex , (f l o a t) i −1, (f l o a t) b lockIdx . x−1) ;
184 unsigned char pix01 = tex2D (tex , (f l o a t) i +0, (f l o a t) b lockIdx . x−1) ;
185 unsigned char pix02 = tex2D (tex , (f l o a t) i +1, (f l o a t) b lockIdx . x−1) ;
186 unsigned char pix10 = tex2D (tex , (f l o a t) i −1, (f l o a t) b lockIdx . x+0) ;
187 unsigned char pix11 = tex2D (tex , (f l o a t) i +0, (f l o a t) b lockIdx . x+0) ;
188 unsigned char pix12 = tex2D (tex , (f l o a t) i +1, (f l o a t) b lockIdx . x+0) ;
189 unsigned char pix20 = tex2D (tex , (f l o a t) i −1, (f l o a t) b lockIdx . x+1) ;
190 unsigned char pix21 = tex2D (tex , (f l o a t) i +0, (f l o a t) b lockIdx . x+1) ;
191 unsigned char pix22 = tex2D (tex , (f l o a t) i +1, (f l o a t) b lockIdx . x+1) ;

Part VI: Appendix 185

192 pSobel [i] = ComputeSobel (pix00 , pix01 , pix02 ,
193 pix10 , pix11 , pix12 ,
194 pix20 , pix21 , pix22 , f S c a l e) ;
195 }
196 }

Listing C.2: Main file
1 /∗
2 ∗ Copyright 1993−2007 NVIDIA Corporat ion . Al l r i g h t s r e s e rved .
3 ∗
4 ∗ NOTICE TO USER:
5 ∗
6 ∗ This source code i s sub j e c t to NVIDIA ownership r i g h t s under U. S . and
7 ∗ i n t e r n a t i o n a l Copyright laws . Users and po s s e s s o r s o f t h i s source code
8 ∗ are hereby granted a nonexc lus ive , roya l ty−f r e e l i c e n s e to use t h i s code
9 ∗ in i nd i v i dua l and commercial so f tware .

10 ∗
11 ∗ NVIDIA MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THIS SOURCE
12 ∗ CODE FOR ANY PURPOSE. IT IS PROVIDED ”AS IS” WITHOUT EXPRESS OR
13 ∗ IMPLIED WARRANTY OF ANY KIND. NVIDIA DISCLAIMS ALL WARRANTIES WITH
14 ∗ REGARD TO THIS SOURCE CODE, INCLUDING ALL IMPLIED WARRANTIES OF
15 ∗ MERCHANTABILITY, NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
16 ∗ IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL,
17 ∗ OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
18 ∗ OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
19 ∗ OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE
20 ∗ OR PERFORMANCE OF THIS SOURCE CODE.
21 ∗
22 ∗ U. S . Government End Users . This source code i s a ” commercial item” as
23 ∗ that term i s de f ined at 48 C.F .R. 2 .101 (OCT 1995) , c o n s i s t i n g o f
24 ∗ ” commercial computer so f tware ” and ” commercial computer so f tware
25 ∗ documentation” as such terms are used in 48 C.F .R. 12 .212 (SEPT 1995)
26 ∗ and i s provided to the U. S . Government only as a commercial end item .
27 ∗ Cons i s t ent with 48 C.F .R. 12 . 2 12 and 48 C.F .R. 227.7202−1 through
28 ∗ 227.7202−4 (JUNE 1995) , a l l U. S . Government End Users acqu i r e the
29 ∗ source code with only those r i g h t s s e t f o r th he re in .
30 ∗
31 ∗ Any use o f t h i s source code in i nd i v i dua l and commercial so f tware must
32 ∗ inc lude , in the user documentation and i n t e r n a l comments to the code ,
33 ∗ the above Di sc la imer and U. S . Government End Users Not ice .
34 ∗/
35

36 #inc lude <s t d l i b . h>
37 #inc lude <s t d i o . h>
38 #inc lude <s t r i n g . h>
39 #inc lude <GL/glew . h>
40 #inc lude <GL/ g lu t . h>
41 #inc lude <c u t i l . h>
42 #inc lude <c u t i l i n t e r o p . h>
43 #inc lude <cuda g l i n t e r op . h>
44

45 #inc lude ” S o b e l F i l t e r k e r n e l s . cu”

186 Part VI: Appendix

46

47 //
48 // Cuda example code that implements the Sobel edge de t e c t i on
49 // f i l t e r . This code works f o r 8−b i t monochrome images .
50 //
51 // Use the ’− ’ and ’= ’ keys to change the s c a l e f a c t o r .
52 //
53 // Other keys :
54 // I : d i sp l ay image
55 // T: d i sp l ay Sobel edge de t e c t i on (computed s o l e l y with t ex ture)
56 // S : d i sp l ay Sobel edge de t e c t i on (computed with tex ture and shared memory)
57

58 void cleanup (void) ;
59 void i n i t i a l i z e D a t a (i n t w, i n t h) ;
60

61 s t a t i c i n t wWidth = 512 ; // Window width
62 s t a t i c i n t wHeight = 512 ; // Window he ight
63 s t a t i c i n t imWidth = 0 ; // Image width
64 s t a t i c i n t imHeight = 0 ; // Image he ight
65

66 s t a t i c i n t fpsCount = 0 ; // FPS count f o r averag ing
67 s t a t i c i n t fpsL imi t = 1 ; // FPS l im i t f o r sampling
68 unsigned i n t t imer ;
69

70 // Display Data
71 s t a t i c GLuint pbu f f e r = 0 ; // Front and back CA bu f f e r s
72 s t a t i c GLuint t ex id = 0 ; // Texture f o r d i sp l ay
73 Pixe l ∗ p i x e l s = NULL; // Image p i x e l data on the host
74 f l o a t imageScale = 1 . f ; // Image exposure
75 enum SobelDisplayMode g SobelDisplayMode ;
76

77 s t a t i c cudaArray ∗ array = NULL;
78

79

80 #de f i n e OFFSET(i) ((char ∗)NULL + (i))
81

82 // Wrapper f o r the g l o b a l c a l l that s e t s up the t ex ture and threads
83 void
84 s o b e l F i l t e r (P ixe l ∗odata , i n t iw , i n t ih , enum SobelDisplayMode mode ,
85 f l o a t f S c a l e) {
86

87 CUDA SAFE CALL(cudaBindTextureToArray (tex , array)) ;
88

89 switch (mode) {
90 case SOBELDISPLAY IMAGE:
91 SobelCopyImage<<<ih , 384>>>(odata , iw , iw , ih) ;
92 break ;
93 case SOBELDISPLAY SOBELTEX:
94 SobelTex<<<ih , 384>>>(odata , iw , iw , ih , f S c a l e) ;
95 break ;
96 case SOBELDISPLAY SOBELSHARED:
97 {

Part VI: Appendix 187

98 dim3 threads (1 6 , 4) ;
99 #i f n d e f FIXED BLOCKWIDTH

100 i n t BlockWidth = 80 ; // must be d i v i s i b l e by 16 f o r c o a l e s c i n g
101 #end i f
102 dim3 b locks = dim3 (iw /(4∗BlockWidth)+
103 (0!= iw %(4∗BlockWidth)) ,
104 ih / threads . y+
105 (0!= ih%threads . y)) ;
106 i n t SharedPitch = ˜0 x3f &(4∗(BlockWidth+2∗Radius)+0x3f) ;
107 i n t sharedMem = SharedPitch ∗(threads . y+2∗Radius) ;
108

109 // f o r the shared kerne l , width must be d i v i s i b l e by 4
110 iw &= ˜3 ;
111

112 SobelShared<<<blocks , threads , sharedMem>>>
113 ((uchar4 ∗) odata ,
114 iw ,
115 #i f n d e f FIXED BLOCKWIDTH
116 BlockWidth , SharedPitch ,
117 #end i f
118 iw , ih , f S c a l e) ;
119 }
120 break ;
121 }
122

123 CUDA SAFE CALL(cudaUnbindTexture (tex)) ;
124 }
125

126 void d i sp l ay (void) {
127

128 // Sobel operat i on
129 Pixe l ∗data = NULL;
130 CUDA SAFE CALL(cudaGLMapBufferObject ((void ∗∗)&data , pbu f f e r)) ;
131 CUT SAFE CALL(cutStartTimer (t imer)) ;
132 s o b e l F i l t e r (data , imWidth , imHeight , g SobelDisplayMode , imageScale) ;
133 CUT SAFE CALL(cutStopTimer (t imer)) ;
134 CUDA SAFE CALL(cudaGLUnmapBufferObject (pbu f f e r)) ;
135

136 g lC l ea r (GL COLOR BUFFER BIT) ;
137

138 glBindTexture (GL TEXTURE 2D, t ex id) ;
139 g lB indBuf f e r (GL PIXEL UNPACK BUFFER, pbu f f e r) ;
140 glTexSubImage2D (GL TEXTURE 2D, 0 , 0 , 0 , imWidth , imHeight ,
141 GL LUMINANCE, GL UNSIGNED BYTE, OFFSET(0)) ;
142 g lB indBuf f e r (GL PIXEL UNPACK BUFFER, 0) ;
143

144 g lD i s ab l e (GL DEPTH TEST) ;
145 glEnable (GL TEXTURE 2D) ;
146 glTexParameterf (GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL LINEAR) ;
147 glTexParameterf (GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL LINEAR) ;
148 glTexParameterf (GL TEXTURE 2D, GL TEXTURE WRAP S, GL REPEAT) ;
149 glTexParameterf (GL TEXTURE 2D, GL TEXTURE WRAP T, GL REPEAT) ;

188 Part VI: Appendix

150

151 g lBeg in (GL QUADS) ;
152 g lVer t ex2 f (0 , 0) ; glTexCoord2f (0 , 0) ;
153 g lVer t ex2 f (0 , 1) ; glTexCoord2f (1 , 0) ;
154 g lVer t ex2 f (1 , 1) ; glTexCoord2f (1 , 1) ;
155 g lVer t ex2 f (1 , 0) ; glTexCoord2f (0 , 1) ;
156 glEnd () ;
157 glBindTexture (GL TEXTURE 2D, 0) ;
158

159 glutSwapBuf fers () ;
160

161 fpsCount++;
162 i f (fpsCount == fpsL imi t) {
163 char fp s [2 5 6] ;
164 f l o a t i f p s = 1 . f / (cutGetAverageTimerValue (t imer) / 1000 . f) ;
165 s p r i n t f (fps , ”Cuda Edge Detect ion : %3.1 f f p s ” , i f p s) ;
166 glutSetWindowTitle (fp s) ;
167 fpsCount = 0 ;
168 fp sL imi t = (i n t)max(i f p s , 1 . f) ;
169 CUT SAFE CALL(cutResetTimer (t imer)) ;
170 }
171

172 g lutPostRed i sp lay () ;
173 }
174

175 void i d l e (void) {
176 g lutPostRed i sp lay () ;
177 }
178

179 void keyboard (unsigned char key , i n t x , i n t y) {
180 switch (key) {
181 case 27 :
182 e x i t (0) ;
183 break ;
184 case ’− ’ :
185 imageScale −= 0.1 f ;
186 break ;
187 case ’= ’ :
188 imageScale += 0 .1 f ;
189 break ;
190 case ’ i ’ : case ’ I ’ :
191 g SobelDisplayMode = SOBELDISPLAY IMAGE;
192 break ;
193 case ’ s ’ : case ’S ’ :
194 g SobelDisplayMode = SOBELDISPLAY SOBELSHARED;
195 break ;
196 case ’ t ’ : case ’T ’ :
197 g SobelDisplayMode = SOBELDISPLAY SOBELTEX;
198 de f au l t : break ;
199 }
200 g lutPostRed i sp lay () ;
201 }

Part VI: Appendix 189

202

203 void reshape (i n t x , i n t y) {
204 glViewport (0 , 0 , x , y) ;
205 glMatrixMode (GL PROJECTION) ;
206 g lLoadIdent i ty () ;
207 glOrtho (0 , 1 , 0 , 1 , 0 , 1) ;
208 glMatrixMode (GL MODELVIEW) ;
209 g lLoadIdent i ty () ;
210 g lutPostRed i sp lay () ;
211 }
212

213 void setupTexture (i n t iw , i n t ih , P ixe l ∗data)
214 {
215 cudaChannelFormatDesc desc = cudaCreateChannelDesc<unsigned char >() ;
216 CUDA SAFE CALL(cudaMallocArray(&array , &desc , iw , ih)) ;
217 CUDA SAFE CALL(cudaMemcpyToArray (array , 0 , 0 ,
218 data , s i z e o f (P ixe l)∗ iw∗ ih , cudaMemcpyHostToDevice)) ;
219 }
220

221 void de l e t eTexture (void)
222 {
223 CUDA SAFE CALL(cudaFreeArray (array)) ;
224 }
225

226 void cleanup (void) {
227 CUDA SAFE CALL(cudaGLUnregisterBufferObject (pbu f f e r)) ;
228

229 g lB indBuf f e r (GL PIXEL UNPACK BUFFER, 0) ;
230 g lDe l e t eBu f f e r s (1 , &pbu f f e r) ;
231 g lDe l e t eTexture s (1 , &tex id) ;
232

233 de l e teTexture () ;
234

235 CUT SAFE CALL(cutDeleteTimer (t imer)) ;
236 }
237

238 void i n i t i a l i z e D a t a (char ∗ f i l e) {
239 GLint b s i z e ;
240 unsigned i n t w, h ;
241 i f (cutLoadPGMub(f i l e , &p ix e l s , &w, &h) != CUTTrue) {
242 p r i n t f (” Fa i l ed to load image f i l e : %s \n” , f i l e) ;
243 e x i t (−1);
244 }
245 imWidth = (i n t)w; imHeight = (i n t)h ;
246 setupTexture (imWidth , imHeight , p i x e l s) ;
247 memset (p i x e l s , 0x0 , s i z e o f (P ixe l) ∗ imWidth ∗ imHeight) ;
248

249 g lGenBuf fers (1 , &pbu f f e r) ;
250 g lB indBuf f e r (GL PIXEL UNPACK BUFFER, pbu f f e r) ;
251 g lBuf fe rData (GL PIXEL UNPACK BUFFER,
252 s i z e o f (P ixe l) ∗ imWidth ∗ imHeight ,
253 p ix e l s , GL STREAM DRAW) ;

190 Part VI: Appendix

254

255 g lGetBuf ferParameter iv (GL PIXEL UNPACK BUFFER, GL BUFFER SIZE , &b s i z e) ;
256 i f (b s i z e != (s i z e o f (P ixe l) ∗ imWidth ∗ imHeight)) {
257 p r i n t f (” Buf f e r ob j e c t (%d) has i n c o r r e c t s i z e (%d) . \ n” , pbuf fe r , b s i z e) ;
258 e x i t (−1);
259 }
260

261 g lB indBuf f e r (GL PIXEL UNPACK BUFFER, 0) ;
262 CUDA SAFE CALL(cudaGLRegisterBufferObject (pbu f f e r)) ;
263

264 glGenTextures (1 , &tex id) ;
265 glBindTexture (GL TEXTURE 2D, t ex id) ;
266 glTexImage2D (GL TEXTURE 2D, 0 , GL LUMINANCE, imWidth , imHeight ,
267 0 , GL LUMINANCE, GL UNSIGNED BYTE, NULL) ;
268 glBindTexture (GL TEXTURE 2D, 0) ;
269

270 g l P i x e l S t o r e i (GL UNPACK ALIGNMENT, 1) ;
271 g l P i x e l S t o r e i (GL PACK ALIGNMENT, 1) ;
272 }
273

274 void loadDefaultImage (char ∗ l o c e x e c) {
275

276 p r i n t f (” Reading image l ena .pgm.\n ”) ;
277 const char ∗ image f i l ename = ” lena .pgm” ;
278 char ∗ image path = cutFindFi lePath (image f i l ename , l o c e x e c) ;
279 i f (image path == 0) {
280 p r i n t f (”Reading image f a i l e d .\n ”) ;
281 e x i t (EXIT FAILURE) ;
282 }
283 i n i t i a l i z e D a t a (image path) ;
284 cutFree (image path) ;
285 }
286

287 i n t main (i n t argc , char ∗∗ argv) {
288

289 #i f n d e f DEVICE EMULATION
290 i f (CUTFalse == is Inte ropSuppor ted ()) {
291 re turn 1 ;
292 }
293 #end i f // DEVICE EMULATION
294

295 CUT DEVICE INIT () ;
296

297 CUT SAFE CALL(cutCreateTimer(&timer)) ;
298 CUT SAFE CALL(cutResetTimer (t imer)) ;
299

300 g l u t I n i t (&argc , argv) ;
301 g lut In i tDisp layMode (GLUT RGB | GLUT DOUBLE) ;
302 glutInitWindowSize (wWidth , wHeight) ;
303 glutCreateWindow (”Cuda Edge Detect ion ”) ;
304 glutDisplayFunc (d i sp l ay) ;
305 glutKeyboardFunc (keyboard) ;

Part VI: Appendix 191

306 glutReshapeFunc (reshape) ;
307 g lut Id l eFunc (i d l e) ;
308

309 g l ew In i t () ;
310 i f (! g lewIsSupported (”GL VERSION 2 0 GL VERSION 1 5 GL ARB vertex buf fer object GL ARB pixe l buf fe r object ”)) {
311 f p r i n t f (s tde r r , ”Required OpenGL ext en s i on s miss ing . ”) ;
312 e x i t (−1);
313 }
314

315 i f (argc > 1) {
316 // t e s t i f in r e g r e s s i o n mode
317 i f (0 != strcmp (”−noprompt ” , argv [1])) {
318 i n i t i a l i z e D a t a (argv [1]) ;
319 }
320 e l s e {
321 loadDefaultImage (argv [0]) ;
322 }
323 } e l s e {
324 loadDefaultImage (argv [0]) ;
325 }
326 p r i n t f (” I : d i sp l ay image\n ”) ;
327 p r i n t f (”T: d i sp l ay Sobel edge de t e c t i on (computed with tex)\n ”) ;
328 p r i n t f (”S : d i sp l ay Sobel edge de t e c t i on (computed with tex+shared memory)\n ”) ;
329 p r i n t f (”Use the ’− ’ and ’= ’ keys to change the b r i gh tne s s .\n ”) ;
330 f f l u s h (stdout) ;
331 a t e x i t (c leanup) ;
332 glutMainLoop () ;
333

334 re turn 0 ;
335 }

Bibliography

[Abr06] Y. Abramson. Pedestrian detection for intelligent transportation sys-
tems. EMP Press, 2006.

[Ame03] A. Amer. Voting-based simultaneous tracking of multiple video objects.
In Proc. SPIE Int. Symposium on Electronic Imaging, pages 500–511,
2003.

[ASG05] Y. Abramson, B. Steux, and H. Ghorayeb. Yef real-time object detec-
tion. In ALART’05:International workshop on Automatic Learning and
Real-Time, pages 5–13, 2005.

[BA04] J. Bobruk and D. Austin. Laser motion detection and hypothesis track-
ing from a mobile platform. In Australasian Conference on Robotics and
Automation (ACRA), 2004.

[BER03] J. Black, T. Ellis, and P. Rosin. A novel method for video tracking
performance evaluation. In International Workshop on Visual Surveil-
lance and Performance Evaluation of Tracking and Surveillance, pages
125–132, 2003.

[BFH04a] I. Buck, K. Fatahalian, and Hanrahan. Gpubench: Evaluating gpu per-
formance for numerical and scientific applications. Proceedings of the
2004 ACM Workshop on General-Purpose Computing on Graphics Pro-
cessors, pages C–20, Aug 2004.

[BFH+04b] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Mike, and H. Pat. Brook
for gpus: Stream computing on graphics hardware, 2004.

[BMGE01] T. Boult, R. Micheals, X. Gao, and M. Eckmann. Into the woods:
visual surveillance of noncooperative and camouflaged targets in complex
outdoor settings, 2001.

[BS03] H. Ghorayeb B. Steux, Y. Abramson. Camellia image processing library,
2003.

[CG00] C.Stauffer and W.E.L. Grimson. Adaptive background mixture mod-
els for real-time tracking. IEEE Transactions on pattern analysis and
machine intelligence, pages 747–757, August 2000.

References 193

[CL04] B. Chen and Y. Lei. Indoor and outdoor people detection and shadow
suppression by exploiting hsv color information. cit, 00:137–142, 2004.

[Cro84] F. C. Crow. Summed-area tables for texture mapping. In SIGGRAPH
’84: Proceedings of the 11th annual conference on Computer graphics
and interactive techniques, pages 207–212, New York, NY, USA, 1984.
ACM Press.

[CSW03] H. Cramer, U. Scheunert, and G. Wanielik. Multi sensor fusion for object
detection using generalized feature models. In International Conference
on Information Fusion, 2003.

[Ded04] Y Dedeoglu. Moving object detection, tracking and classification for
smart video surveillance, 2004.

[DHS00] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classifi-
cation (2nd Edition). Wiley-Interscience, 2000.

[DM00] D. Doermann and D. Mihalcik. Tools and techniques for video per-
formance evaluation. Proceedings of the International Conference on
Pattern Recognition (ICPR00), pages 4167–4170, September 2000.

[DSS93] H. Drucker, R. Schapire, and P. Simard. Boosting performance in neural
networks. International Journal of Pattern Recognition and Artificial
Intelligence, 7(4):705–719, 1993.

[Elf89] A. Elfes. Using occupancy grids for mobile robot perception and navi-
gation. Computer, 22:46–57, June 1989.

[EWN04] Magnus Ekman, Fredrik Warg, and Jim Nilsson. An in-depth look at
computer performance growth. Technical Report 04-9, Department of
Computer Science and Engineering, Chalmers University of Technology,
2004.

[FH06] J.P. Farrugia and P. Horain. Gpucv: A framework for image processing
acceleration with graphics processors. In International Conference on
Multimedia and Expo (ICME), Toronto, Ontario, Canada, July 9–12
2006.

[FM05] J. Fung and S. Mann. Openvidia: parallel gpu computer vision. In
MULTIMEDIA ’05: Proceedings of the 13th annual ACM international
conference on Multimedia, pages 849–852, New York, NY, USA, 2005.
ACM Press.

[Fre90] Y. Freund. Boosting a weak learning algorithm by majority. In Proceed-
ings of the Third Annual Workshop on Computational Learning Theory,
pages 202–216, August 1990.

194 References

[FS95a] Y. Freund and R. E. Schapire. A decision-theoretic generalization of
on-line learning and an application to boosting. In European Conference
on Computational Learning Theory, pages 23–37, 1995.

[FS95b] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. In Computational Learn-
ing Theory: Second European Conference, EuroCOLT ’95, pages 23–37.
Springer-Verlag, 1995.

[FS99] Yoav Freund and R. E. Schapire. A short introduction to boosting.
Journal of Japanese Society for Artificial Intelligence, 14(5):771–780,
Sep 1999. Appearing in Japanese, translation by Naoki Abe.

[Gho06] H. Ghorayeb. Libadaboost: developer guide, 2006.

[HA05] D. Hall and Al. Comparison of target detection algorithms using adap-
tive background models. INRIA Rhone-Alpes, France and IST Lis-
bon,Portugal and University of Edinburgh,UK, pages 585–601, 2005.

[HBC+03] A. Hampapur, L. Brown, J. Connell, S. Pankanti, A. Senior, and Y. Tian.
Smart surveillance: Applications, technologies and implications, 2003.

[HBC06] Ghorayeb H., Steux B., and Laurgeau C. Boosted algorithms for visual
object detection on graphics processing units. In ACCV06: Asian Con-
ference on Computer Vision 2006, pages 254–263, Hyderabad, India,
2006.

[Hei96] F. Heijden. Image Based Measurement Systems: Object Recognition and
Parameter Estimation. Wiley, 1996.

[Int06] Intel. Intel processors product list, 2006.

[JM02] P.Perez C.Hue J.Vermaak and M.Gangnet. Color-based probabilistic
tracking. IEEE Transactions on multimedia, 2002.

[JRO99] J.Staufer, R.Mech, and J. Ostermann. Detection of moving cast shadows
for object segmentation. IEEE Transactions on multimedia, pages 65–
76, March 1999.

[JWSX02] C. Jaynes, S. Webb, R. Steele, and Q. Xiong. An open development
environment for evaluation of video surveillance systems, 2002.

[Ka04] Kenji.O and all. A boosted particle filter multi–target detection and
tracking. ICCV, 2004.

[Kal60] E. Kalman. A new approach to linear filtering and prediction prob-
lems. Transactions of the ASME-Journal of Basic Engineering, 82:35–
45, 1960.

References 195

[KDdlF+04] M. Kais, S. Dauvillier, A. de la Fortelle, I. Masaki, and C. Laugier.
Towards outdoor localization using gis, vision system and stochastic
error propagation. In International Conference on Autonomous Robots
and Agents, December 2004.

[KNAL05] A. Khammari, F. Nashashibi, Y. Abramson, and C. Laurgeau. Vehicle
detection combining gradient analysis and adaboost classification. In
Intelligent Transportation Systems, 2005. Proceedings. 2005 IEEE, pages
66– 71, September 2005.

[KV88] M. Kearns and L. G. Valiant. Learning boolean formula or finite au-
tomate is as hard as factoring. Technical Report TR-14-88, Harvard
University Aiken Computation Laboratory, August 1988.

[KV89] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on
learning boolean formula and finite automate. In Proceedings of the
Twenty First Annual ACM Symposium on Theory of Computing, pages
433–444, May 1989.

[KV94] Michael J. Kearns and Umesh V. Vazirani. An Introduction to Compu-
tational Learning Theory. MIT Press, 1994.

[nVI07a] nVIDIA. nvidia graphic cards, 2007.

[nVI07b] nVIDIA. Cuda programming guide: Nvidia confidential, prepared and
provided under nda, 21 nov 2007.

[OPS+97] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio. Pedes-
trian detection using wavelet templates. In Proc. Computer Vision and
Pattern Recognition, pages 193–199, June 1997.

[PEM06] T. Parag, A. Elgammal, and A. Mittal. A framework for feature se-
lection for background subtraction. In CVPR ’06: Proceedings of the
2006 IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, pages 1916–1923, Washington, DC, USA, 2006. IEEE
Computer Society.

[RE95] P.L. Rosin and T. Ellis. Image difference threshold strategies and shadow
detection. In Proc: 6th BMVC 1995 conf., pages 347–356, 1995.

[RSR+02] M. Rochery, R. Schapire, M. Rahim, N. Gupta, G. Riccardi, S. Ban-
galore, H. Alshawi, and S. Douglas. Combining prior knowledge and
boosting for call classification in spoken language dialogue. In Interna-
tional Conference on Accoustics, Speech and Signal Processing, 2002.

[SAG03a] B. Steux, Y. Abramson, and H. Ghorayeb. Initial algorithms 1, deliv-
rable 3.2b, project ist-2001-34410, public report, 2003.

196 References

[SAG03b] B. Steux, Y. Abramson, and H. Ghorayeb. Report on mapped algo-
rithms, delivrable 3.5, projet ist-2001-34410, internal report, 2003.

[Sch89] R. E. Schapire. The strength of weak learnability. In 30th Annual Sympo-
sium on Foundations of Computer Science, pages 28–33, October 1989.

[SDK05] R. Strzodka, M. Doggett, and A. Kolb. Scientific computation for sim-
ulations on programmable graphics hardware. Simulation Modelling
Practice and Theory, Special Issue: Programmable Graphics Hardware,
13(8):667–680, Nov 2005.

[SEN98] J. Steffens, E. Elagin, and H. Neven. Person spotter-fast and robust
system for human detection. In Proc. of IEEE Intl. Conf. on Automatic
Face and Gesture Recognition, pages 516–521, 1998.

[SS98] R. E. Schapire and Y. Singer. Improved boosting algorithms using
confidence-rated predictions. In Proceedings of the Eleventh Annual
Conference on Computational Learning Theory, pages 80–91, 1998. To
appear, Machine Learning.

[TDD99] T.Horprasert, D.Harwood, and L.S. Davis. A statistical approach for
real-time robust background subtraction and shadow detection. Pro-
ceedings of International Conference on computer vision, 1999.

[TKBM99] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Princi-
ples and practice of background maintenance. In International Confer-
ence on Computer Vision (ICCV), volume 1, pages 255–261, 1999.

[Val84] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, November 1984.

[VJ01a] P. Viola and M. Jones. Rapid object detection using a boosted cascade
of simple features. European Conference on Computational Learning
Theory, 2001.

[VJ01b] Paul Viola and Michael Jones. Rapid object detection using a boosted
cascade of simple features. In Proceedings IEEE Conf. on Computer
Vision and Pattern Recognition, pages 511–518, 2001.

[VJJR02] V.Y.Marianoand, J.Min, JH.Park, and R.Kasturi. Performance evalua-
tion of object detection algorithms. In International Workshop on Visual
Surveillance and Performance Evaluation of Tracking and Surveillance,
pages 965–969, 2002.

[VJS03] Paul Viola, Michael J. Jones, and Daniel Snow. Detecting pedestri-
ans using patterns of motion and appearance. In IEEE International
Conference on Computer Vision, pages 734–741, Nice, France, October
2003.

References 197

[WATA97] C. Wren, A.Azarbayejani, T.Darrell, and A.Pentland. Pfinder:real-time
tracking of the human body. IEEE Transactions on pattern analysis and
machine intelligence, 19:780–785, July 1997.

[WHT03] L. Wang, W. Hu, and T. Tan. Recent developments in human motion
analysis. In Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition, page 585601, 2003.

[WWT03] L. Wang, W.HU, and T.Tan. Recent developments in human motion
analysis. Pattern Recognition, 36:585–601, March 2003.

[YARL06] M. Yguel, O. Aycard, D. Raulo, and C. Laugier. Grid based fusion
of offboard cameras. In IEEE International Conference on Intelligent
Vehicules, 2006.

[ZJHW06] H. Zhang, W. Jia, X. He, and Q. Wu. Learning-based license plate
detection using global and local features. In Pattern Recognition, 2006.
ICPR 2006. 18th International Conference on, pages 1102–1105, August
2006.

Résumé

Notre objectif est d'étudier les algorithmes de vision utilisés aux différents niveaux dans une chaîne de
traitement vidéo intelligente. On a prototypé une chaîne de traitement générique dédiée à l'analyse du
contenu du flux vidéo. En se basant sur cette chaîne de traitement, on a développé une application de
détection et de suivi de piétons. Cette application est une partie intégrante du projet PUVAME.

Cette chaîne de traitement générique est composée de plusieurs étapes: détection, classification et
suivi d'objets. D'autres étapes de plus haut niveau sont envisagées comme la reconnaissance
d'actions, l'identification, la description sémantique ainsi que la fusion des données de plusieurs
caméras. On s'est intéressé aux deux premières étapes. On a exploré des algorithmes de
segmentation du fond dans un flux vidéo avec caméra fixe. On a implémenté et comparé des
algorithmes basés sur la modélisation adaptative du fond.

On a aussi exploré la détection visuelle d'objets basée sur l'apprentissage automatique en utilisant la
technique du boosting. Cependant, On a développé une librairie intitulée LibAdaBoost qui servira
comme un environnement de prototypage d'algorithmes d'apprentissage automatique. On a prototypé
la technique du boosting au sein de cette librairie. On a distribué LibAdaBoost sous la licence LGPL.
Cette librairie est unique avec les fonctionnalités qu'elle offre.

On a exploré l'utilisation des cartes graphiques pour l'accélération des algorithmes de vision. On a
effectué le portage du détecteur visuel d'objets basé sur un classifieur généré par le boosting pour
qu'il s'exécute sur le processeur graphique. On était les premiers à effectuer ce portage. On a trouvé
que l'architecture du processeur graphique est la mieux adaptée pour ce genre d'algorithmes.

La chaîne de traitement a été implémentée et intégrée à l'environnement RTMaps.

On a évalué ces algorithmes sur des scénarios bien définis. Ces scénarios ont été définis dans le
cadre de PUVAME.

Abstract

In this dissertation, we present our research work held at the Center of Robotics (CAOR) of the Ecole
des Mines de Paris which tackles the problem of intelligent video analysis.

The primary objective of our research is to prototype a generic framework for intelligent video analysis.
We optimized this framework and configured it to cope with specific application requirements. We
consider a people tracker application extracted from the PUVAME project. This application aims to
improve people security in urban zones near to bus stations.

Then, we have improved the generic framework for video analysis mainly for background subtraction
and visual object detection. We have developed a library for machine learning specialized in boosting
for visual object detection called LibAdaBoost.

To the best of our knowledge LibAdaBoost is the first library in its kind. We make LibAdaBoost
available for the machine learning community under the LGPL license.

Finally we wanted to adapt the visual object detection algorithm based on boosting so that it could run
on the graphics hardware. To the best of our knowledge we were the first to implement visual object
detection with sliding technique on the graphics hardware. The results were promising and the
prototype performed three to nine times better than the CPU.

The framework was successfully implemented and integrated to the RTMaps environment.

It was evaluated at the final session of the project PUVAME and demonstrated its fiability over various
test scenarios elaborated specifically for the PUVAME project.

