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INTRODUCTION 

Research subject 

The European corn borer (ECB, Ostrinia nubilalis Hübner) is one of the 

most damaging insect pests of maize in many countries: for instance, in the North 

America the economic losses resulting from this pest and control costs exceed 1 

billion dollars every year (Bt corn and European corn borer…, 1997). Genetically 

modified (transgenic) insecticidal crops that produce protein being toxic for the 

pest larvae due to the presence of the gene of soil bacterium Bacillus thuringiensis 

(Bt) in the plant tissues have been designed to control infestations of primary target 

pests in fields. Bt-transgenic plants are highly toxic to pest larvae and the high 

concentrations of Bt toxin they contain can almost entirely wipe out the pest during 

the growing season and, thus, protect the crop not only in the vegetation period but 

also its yield (see Velkov et al. 2003). 

The Bt-plant technology provides an advantageous alternative to the widely 

used synthetic chemical insecticides and even the microbial Bt insecticides. All 

sprayed insecticides have the common drawbacks: incomplete cover of leaf 

surfaces, reduced influence on adult larvae, degradation by sunlight, sensitivity to 

heat and desiccation, and hence, the diminished toxin efficiency. Besides, the 

larvae bore into plant tissues shortly after hatching and the later stages of ECB 

bore deep into the plant stalks or ears, making traditional insecticide treatment 

useless (Capinera 2000; Magg et al. 2001). Bt plant-hybrids are deprived of these 

shortcomings, providing the highest levels of pest control in fields up to 100% 

efficiency (Magg et al. 2001, Velkov et al. 2003, Candolfi et al. 2004). However, 

the long-term exposure of the pest population to Bt toxins produced by transgenic 

crops may lead to the rapid genetic pest adaptation due to the selection of insects 

that are more fit to the toxic habitat, i.e. Bt-resistant insects and then in the absence 

of competition to the rapid propagation of Bt-resistant population. Due to the 

evolution of the Bt-resistance gene in the pest population the individuals that are 

susceptible to Bt-crops may be forced out by the Bt-resistant ones, what may 
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eventually limit the Bt-crops application in agriculture and even lead to the full 

loss of efficiency of so expensive transgenic technology (Sharma & Ortiz 2000, 

Velkov et al. 2003, Bourguet et al. 2005).  

It is thought likely that target insect species will eventually develop 

resistance as 

(i) pests are known to develop resistance to the chemical insecticides applied to 

crops, at high concentration, every year (Scott 1995, Taylor & Feyereisen 

1996), 

(ii) several generations of pests are produced each year (up to four for the 

European corn borer in favourable conditions (Thomas et al. 2003)), 

potentially accelerating the selection of Bt-resistant insects, 

(iii) resistance to Bt-toxins has been selected in the laboratory, in some pest 

species (Huang et al. 1999a; Chaufaux et al. 2001;Tabashnik et al. 2003). 

The potential threat of the emergence of Bt-resistance was discussed long 

before the first Bt-plant was registered. A resistance management strategy was 

clearly required to avoid the rapid genetic adaptation of the pest. Comins (1977) 

provided the first theoretical demonstration that random gene exchange between 

insect subpopulations exposed and not exposed to an insecticide can delay the 

development of resistance if the resistant allele is recessive. He also formulated 

two basic concepts that have later underlain a mechanism of resistance 

management to transgenic crops (Alstad & Andow 1995, 1998, Bourguet et al. 

2004): 

1) the frequency of resistant genes in the population treated by the toxin can be 

decreased due to an intense influx of susceptible genes from an untreated 

area (referred to as the refuge); 

2) very intense insecticide treatment coupled with technology of reservation of 

untreated areas should lead to suppression of the toxin resistance in pest 

populations. 
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The evolution of the Bt-resistance gene in the genetic structure of pest 

population represents a complex transient non-equilibrium process which is under 

influence of many important factors (the dominance level and initial frequency of 

resistant gene, the efficiency of Bt-toxin application, the intensity of insect 

migration into and out of toxic area). This process may occur very rapidly, during 

some pest generations or, vice versa, for several decades or even hundreds of years 

in dependence on the above-mentioned factors. Hence, the study of problem cannot 

be entirely carried out in the laboratory conditions or by means of field 

experiments. Besides, in many countries including Russia and France the 

cultivation of transgenic crops is limited by the law. Thus, mathematical modelling 

remains one of the basic methods for investigation of spatio-temporal dynamics of 

agricultural ecosystems consisting of transgenic plants and insect pests. Most of 

the mathematical models in this area of study have been developed for identifying 

the mechanisms underlying the development of resistance in pest populations and 

predicting the rate of spread of this phenomenon. 

By now, based on the results of simulation models, the “high dose-refuge” 

(HDR) strategy is recommended as one of the best resistance management 

strategies for transgenic crops (Alstad & Andow 1995; Tabashnik et al. 2004). The 

term the “high dose” means that Bt concentration in genetically modified plants is 

high enough to provide the survival of only few (less than one of a million) 

resistant insects. The exact definition of high dose is “25 times of the toxin 

concentration needed to kill susceptible larvae” (FIFRA 1998). Low levels of Bt-

toxin expression in the transgenic plants is believed to be inefficient because too 

many Bt-resistant individuals will survive and, hence, Bt-resistance can develop 

much faster (Sharma & Ortiz 2000). If the “high dose” was applied as an 

independent strategy, several (less than one of a million) completely Bt-resistant 

individuals could survive on Bt fields. If these individuals not only survive but 

have time to mate then Bt-modified crops can quickly lose efficiency after several 

insect generations (Gould & Cohen 2000). Plots planted with a non-Bt crop that 
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can serve as a host crop for the target pest, in the close proximity of Bt fields, 

should act as a “refuge” for pests susceptible to Bt toxin. Their goal is to prevent or 

to weaken the negative effect of the “high dose”, i.e., to reduce the selection 

pressure on the Bt-susceptible insects and thereby to limit the Bt-resistance 

evolution. In this case the time period required for insect adaptation to Bt toxins is 

expected to be 10 up to 100 times longer than in case with no “refuges” (Gould & 

Cohen 2000). 

In most models of the development of resistance to Bt crops it is assumed 

that resistance is governed by a single diallelic locus1 with a Bt-susceptible allele s 

and a Bt-resistance allele r. Assuming that the Bt-resistance allele is inherited in an 

autosomal manner, any diploid population exposed to Bt-toxin selection consists of 

the homozygous genotypes ss and rr and the heterozygous genotype rs. The HDR 

strategy is based on three assumptions, which must hold true for this strategy to be 

effective (Bourguet 2004): 

1) the Bt-resistance gene must be rare in natural insect populations so that only 

few homozygous rr individuals possessing two copies of the Bt-resistant 

gene are likely to survive on Bt-crops; 

2) the Bt-resistance gene must be recessive so that the heterozygous rs 

individuals are entirely or partially susceptible to Bt-crops; 

3) spatial configuration and location of refuges within the Bt-fields must be 

optimal to increase the probability of breeding between Bt-resistant 

homozygotes rr emerging from Bt-crops and Bt-susceptible homozygotes ss 

emerging from refuge so that to decrease the frequency of resistance allele r 

in every subsequent generation due to their Bt-susceptible heterozygous rs 

progeny. 

If all three conditions ensuring the HDR success are satisfied, the Bt-

resistance evolution in the ECB population may be delayed over an economically 

                                                
1 See Appendix 1 “Abridged dictionary of main genetic terms” 
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feasible time period (Guse et al. 2002; Ives & Andow 2002; Onstad et al. 2002; 

Vacher et al. 2003). 

Let us consider each of these conditions as applied to the ECB population in 

more details. 

Initial frequency of the resistance allele. Rare resistance genes can occur in 

natural population due to recurrent mutations and already exist at low frequency 

prior to any exposure to a toxicant (Scott 1995). Surveys of the European corn 

borer have not yet detected alleles conferring resistance to Bt maize. The extreme 

scarcity of Bt-resistance allele for natural populations of O. nubilalis was 

confirmed by studies of Andow et al. (2000) and later Bourguet et al. (2003). In 

general, the frequency of the resistance allele for O. nubilalis does not exceed 10-3, 

i.e., it is very low and satisfies the condition of efficiency of the HDR strategy. 

Resistance inheritance. The second hypothesis of the HDR strategy, 

namely, recessive inheritance of the Bt-resistance allele in natural ECB populations 

is still not confirmed by laboratory analyses (Bourguet et al. 2005). However, 

earlier Huang et al. (1999) reported that resistance in laboratory-selected ECB 

population appears to be inherited as an incompletely dominant autosomal 

resistance gene. As far as we know, these results have not yet been observed in the 

field or elsewhere. 

Refuges. To be effective in managing resistance, refuges must produce large 

number of susceptible adults relative to the number of resistant adults produced in 

transgenic fields. A 500:1 ratio has been recommended by Federal Insecticide, 

Fungicide, and Rodenticide Act (FIFRA, 1998). The size of refuges and their 

arrangement within transgenic fields are crucial and impact the efficiency of 

refuges. The problem of the optimal refuge size and configuration is still the source 

of debates. There is no single-valued opinion regarding this question. 

General review of the HDR strategy problems. Bt maize being the second 

after Bt soybean among the most important Bt crops was put into production in 

1996. In 2004 it occupied 23% or 19.3 million ha of the global area planted by 
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transgenic crops (James 2004). The following eight countries keep leadership in 

producing transgenic maize occupying altogether 11.2 million ha: USA, Argentine, 

Canada, Philippines, Uruguay, Spain, Germany and Honduras. Such widespread 

and prolonged (since 1996) exposure to Bt toxin has exerted strong selection 

pressure, favouring the development of resistance in the target pest populations. To 

decrease this selection pressure, the US Environmental Protection Agency decided 

to put in place the HDR strategy and mandatory requirements to farmers planting 

Bt crops were implemented in 1995 for Bt cotton and 2000 for Bt maize (Bourguet 

et al. 2005). “All suitable non-Bt host plants for a targeted pest that are planted and 

managed by people” may be used as a refuge (US EPA, 1998). However, despite 

the fact that ECB is remarkably polyphagous and has more than 200 documented 

host plants, this common refuge recommendation does not fit for the ECB 

resistance management in Bt maize. Recent studies in the USA (Losey et al. 2001) 

and in northern France (Bourguet et al. 2000b; Thomas et al. 2003; Bethenod et al. 

2004; Bontemps et al. 2004) have provided evidence that ECB populations on non-

maize host plants cannot be viewed as alternative refuge populations because they 

generate races genetically differentiated from population developing on maize. 

Hence, solely regular non-Bt maize should be planted to ensure compatible 

refuges. 

The US EPA stipulates that each grower planting Bt crops should couple 

them with some non-Bt refuge area located near the Bt field. According to the 

requirements of the US EPA (1998) and A Grower’s Handbook… (2004), the size 

of non-Bt maize refuge should be between 20% to 50% of total cultivated area 

depending on the levels of ECB infestations. In addition, the large area of refuge is 

recommended to treat with insecticides to increase the crop capacity of the non-Bt 

field. 

The current sizes of these mandatory refuges result from numerous computer 

simulations demonstrating that smaller refuges accelerate total population 

extinction and increase the rate of resistance evolution (Caprio 2001; Guse et al. 
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2002; Ives & Andow 2002). According to studies of Onstad et al. (2002), even 

infrequent use of insecticide treatment in a refuge of 20% (or less) accelerates the 

Bt-resistance development in the ECB population whereas for 30% refuge (or 

larger) such treatment does not practically influence the resistance development to 

Bt maize. However, growers have no economic benefit to voluntarily comply with 

EPA guidelines because refuge crops are less productive on average and are more 

risky. Most growers prefer to ignore all recommendations (Hurley et al. 1999; 

Mitchell et al. 2000; Jaffe 2003). The size and spatial arrangement of refuge 

relative to Bt fields still remain the source of debates. 

More than 10 years other key questions concerning practical use of the HDR 

strategy remain unsolvable. How quickly will the Bt-resistance evolve in 

transgenic maize? What factors influence the rate of the Bt-resistance 

development? What size of the refuge will be enough to delay the Bt-resistance 

evolution? What configuration of the refuge will be optimal for HDR strategy to be 

effective? Is it possible to entirely prevent the resistance development to Bt toxin? 

All these and many other questions have no single-valued answer so far. Despite 

the fact that results of laboratory selection for the Bt-resistance and some model 

simulations predict that European corn borer has potential to rapidly develop the 

resistance to Bt maize (Huang et al. 1999; Guse et al. 2002; Ives & Andow 2002; 

Onstad et al. 2002), since 1996 when the first Bt maize crop has been planted in 

the USA none of Bt-resistant ECB individuals have been documented yet in Bt-

fields (Andow et al. 2000; Bourguet et al. 2003). The difference between observed 

data and model forecasts is an amazing fact requiring the development of new 

approaches and new mathematical models being able to explain the observed 

phenomena and providing reliable forecasts. 

Combination of the HDR strategy with biocontrol by means of pest 

parasitoids. Parasitoid insects are one of the major natural enemies of many pest 

insects. It is known that some native parasitoid-species that attack the ECB larvae 

are able to provide the considerable reduction of the pest density and used as the 



 

 

14

 

biological control agents in the numerous Integrated Pest Management (IPM) 

programs (Charlet et al. 2002). Transgenic plants providing extremely high levels 

of resistance to invasions of pest insects (100% efficiency of Bt-maize for corn 

borer O. nubilalis according to data of Candolfi et al. 2004) may affect indirectly 

the parasitoid ability to control the pest density (Losey et al. 2004). For instance, in 

France ECB larvae collected from Bt maize displayed a lower level of parasitism 

by larval parasitoid Lydella thompsoni than did larvae collected from non-Bt 

maize: 0-3.17% compared to 0.60-6.28% (Bourguet at al. 2002). The field studies 

in the USA have also confirmed the difference of parasitism in Bt and non-Bt 

maize for other larval ECB parasitoid Macrocentrus grandii (Venditti & Steffey 

2002). One of the possible reasons explaining the results obtained is the 

appreciable reduction of larval hosts in Bt maize. Therefore, refuges of non-Bt 

maize in close proximity of Bt maize fields may be required not only for Bt-

resistance management of the pest but also for conservation of natural enemies 

(Sharma & Ortiz 2000; Venditti & Steffey 2002). Besides, reduced parasitism in 

Bt-fields may cause the Bt-resistance to develop more quickly than in the absence 

of natural enemies because isolated resistant pest in Bt maize may gain benefit 

from reduced parasitism, thus promoting the spread of the resistant genotype. In 

this case, refuges could minimize the effects of differential parasitism due to the 

reducing the isolation of resistant hosts within the Bt fields (White & Andow 

2003). 

Biological control of the ECB population by means of natural parasitoids 

may be extremely perspective since the refuge productivity is low due to the heavy 

ECB infestations that make damaged maize unfit for sale (according to Onstad et 

al. (2002), the carrying capacity of ECB is estimated as 22 ind/plant). 

Understanding the interaction between biological control and biotechnology 

(transgenic plants) may greatly facilitate the integration of these two important pest 

management strategies and increase the probability of avoiding the problems 

associated with the rapid pest adaptation to Bt toxin (Losey et al. 2004). 
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The larval parasitoid – fly Lydella thompsoni Herting is distinguished among 

the potentially important parasitoid species. This parasitoid may kill up to 30% of 

the second generation borers in some areas of the USA (Capinera 2000). However, 

in France the effectiveness of this species is much lower, the level of parasitism 

does not exceed 2.16% (Agusti et al. 2005). 

Other ECB larval parasitoid successfully established in the United States is 

the wasp Macrocentrus cingulum Brischke (formerly grandii Giodanich) which 

not only possesses the well synchronism of adult parasitoids with preferred stages 

of their host but also shows sufficiently high average level of parasitism up to 45% 

with peak of 61% (Sked & Calvin 2005). 

However, the egg parasitoid Trichogramma ostriniae Pang et Chen which 

attacks the Asian corn borer (Ostrinia furnacalis Guenée) with 47% natural 

parasitism and even 70-90% parasitism due to the both inoculative and inundative 

releases of the wasp is considered as the most perspective ECB parasitoid (Wang et 

al. 1997). T. ostriniae may be also effective for controlling the European corn 

borer because of its biological similarity to Asian species. Using an inundative 

release approach in sweet corn, Wang et al. (1999) achieved >40% parasitism of 

ECB eggs and supposed that egg parasitism of the European corn borer can reach 

85%. 

Thus, mathematical modelling of dynamics of system “pest – parasitoid” in 

heterogeneous habitat is required to understand the interaction between 

biotechnology and biocontrol, to investigate, whether the efficiency of the HDR 

strategy can be increased due to the introduction of parasitoid species into 

biological system in which pest is exposed to the Bt-toxin selection. 

Thesis goal and problems 

The goal of the PhD project is to develop and investigate the models of 

resistance evolution to genetically modified maize in the European corn borer 

(Ostrinia nubilalis Hubner) population. Such models should take into account the 

key elements of ecology and genetics of insects, adequately describe the dynamics 
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of pest population in the case of spatial heterogeneity caused by the use of the 

HDR strategy and allow investigating the efficiency of the HDR strategy both as 

an independent strategy and in combination with biocontrol by means of natural 

parasitoids. 

To achieve the posed goal the following problems were formulated: 

1. to develop and investigate the spatio-temporal demo-genetic model taking 

into account both genetics and spatial structure of the pest population; 

2. to compare the demo-genetic with the conventional Fisherian approaches; to 

justify the validation and advantages of the demo-genetic approach, used for 

modelling the Bt-resistance evolution in the pest population controlled with 

the “high dose – refuge” strategy; 

3. to find steady-state conditions of the constructed model; to investigate the 

stability of the stationary regimes numerically; 

4. to develop bi-trophic models of systems “pest – parasitoid” and “plant 

resource – pest” and investigate the efficiency of the “high dose – refuge” 

strategy in such systems. 

Research methods 

We propose spatial demo-genetic models based on a reaction-diffusion 

system of partial differential equations (PDEs) (Murray 1983; Okubo & Levin 

2001), with the modified Kostitzin model used to describe the local kinetics of 

competitive genotypes (Kostitzin 1936, 1937, 1938a, b, c). Diffusion describes the 

random movements of individuals in the habitat. In our demo-genetic models, we 

have slightly modified Kostitzin’s equations, so as to assess genotype fitness in 

terms of larval survival rather than overall genotype fecundity. We also assume 

that all ecological characteristics of the pest (birth and mortality rates, competition 

coefficient) are equal for different genotypes excepting genotype fitness 

(Zhadanovskaya & Tyutyunov 2004; Zhadanovskaya et al. 2004a, b, 2005a, b, 

2006а, b; Tyutyunov et al. 2007). 
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To investigate the spatio-temporal dynamics of the genetic structure of the 

ECB population when using different scenarios of management strategies (the 

HDR strategy, biocontrol and their combination), simulation models were 

constructed in the integrated development environment Delphi 7.0. These models 

allow varying all modelled characteristics of plant resource, pest and its parasitoid, 

defining their initial distributions in space, fixing different sizes of the ECB 

habitat, various sizes, arrangement and configuration of refuges. 

In order to carry out numerical simulations, we discretized in space the 

continuous demo-genetic models with a regular grid along the spatial coordinates 

x, y, approximating the spatial derivatives with the central difference in each node. 

The obtained system of ordinary differential equations with the preset initial 

conditions was integrated by the Runge-Kutta method of the fourth order with 

automatic time step selection. The accuracy of calculations was checked on the 

doubled spatial grid. 

The existence theorems of stationary solutions for one-level demo-genetic 

model in one-dimensional space were proved with methods of mathematical 

analysis and analysis of phase space structure created by model variables. For 

constructing spatially heterogeneous stationary solutions we used a shooting 

method, modified so that to sew together solutions obtained for two qualitatively 

different domains of pest habitat: Bt field and refuge. Using Matlab 7.0 and 

developed simulation models, we analysed numerically the stability of spatially 

homogeneous and heterogeneous stationary solutions. 

For numerical simulations we identified model parameters on the basis of 

the biological characteristics estimated by Onstad et al. (2002) and Onstad & 

Kornkven (1999) for corn borer Ostrinia nubilalis and its parasitoid Macrocentrus 

grandii. For maize we used the estimates of Kovalev (2003) for. 

Scientific novelty 

In dissertation we validate new demo-genetic approach to modelling of the 

Bt-resistance evolution in pest populations. We show that the use of the classical 
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population genetics model (Fisher – Haldane – Wright model) coupled with 

diffusion terms can lead to substantial errors when predicting the evolution of the 

genetic structure in a spatially distributed diploid population. Developed demo-

genetic models were investigated analytically and numerically. Results obtained do 

not contradict the observed data for the natural European corn borer populations in 

transgenic maize fields. 

Practical value 

The proposed models may be used as a basis for management techniques 

and development of recommendations for optimal management of Bt-resistance in 

natural pest populations, for solving optimization and applied problems to rational 

control of wildlife areas and national parks, agro-ecosystems and invasions in 

natural ecosystems. 

Abstract of thesis chapters 

The first chapter contains review of current methods of modelling of genetic 

processes described within the problem of resistance evolution to genetically 

modified insecticidal crops in pest populations, and also of spatio-temporal 

dynamics of populations. Advantages and disadvantages of considered modelling 

methods are discussed. The chapter ends with statement of scientific objectives. 

The second chapter is devoted to the constructing and analytical and 

numerical study of demo-genetic diffusion model of Bt-resistance evolution in the 

European corn borer population. We show here the adequacy and advantages of the 

demo-genetic approach to modelling of the Bt-resistance evolution in pest 

population when using the HDR strategy. It is proved analytically that spatial 

heterogeneity caused by refuges induces the advective flux of Bt-resistance genes, 

and this flux delays the diffusion dispersal of Bt-resistance genes in pest 

population. The stationary solutions of the model were found; their stability is 

investigated numerically. For different scenarios of the HDR strategy the model 

dynamics is studied numerically. We examined the efficiency of the HDR strategy 

depending on the size and configuration of refuge, and pest mobility. It is shown 
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that with particular combinations of refuge size and pest dispersal, the HDR 

strategy can delay the development of Bt resistance by several hundreds or even 

thousands of years, and refuge aggregation increases the strategy efficiency for the 

middle size of ECB habitat. 

The third chapter describes demo-genetic diffusion models of the two-level 

linear trophic chains. In the first part of the chapter we develop a demo-genetic 

model of system “pest-parasitoid” that allows combining the HDR strategy with 

biological control by means of pest parasitoid. We investigate the efficiency of 

combination of two strategies depending on the ECB dispersal and parasitism 

level. It is shown that with moderate ECB dispersal and small refuge, biocontrol 

can increase the efficiency of the HDR strategy. 

In the second part of the chapter a bi-trophic model of system “plant 

resource – pest” is described. In this model the dynamics of the plant biomass is 

taken into account explicitly. The long-term efficiency of the HDR strategy is 

studied numerically. The results obtained with two-level demo-genetic model 

coincide qualitatively with results of one-level demo-genetic model, confirming 

importance of directed gene flux in frequency form of the demo-genetic model. 
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DEFENDED STATEMENTS 

1. Spatial demo-genetic model of resistance evolution to transgenic maize in 

the European corn borer population is developed. The mechanism of the 

“high dose – refuge” strategy is modelled; 

2. The stability of stationary solutions for the demo-genetic model is 

investigated for one-dimensional habitat. It is proved analytically that spatial 

heterogeneity caused by refuges induces the advective flux of Bt-resistance 

genes, and this flux delays the diffusion dispersal of Bt-resistance genes in 

pest population; 

3. The model dynamics is investigated numerically for various scenarios of the 

HDR strategy. It is examined the efficiency of the HDR strategy depending 

on the size and configuration of refuge, and pest mobility; 

4. Two-level demo-genetic model “plant resource – pest” that explicitly takes 

into account the dynamics of the plant biomass is developed. The long-term 

efficiency of the HDR strategy is studied numerically; 

5. Two-level demo-genetic model “pest – parasitoid” that allows combining 

the HDR strategy with biological control by means of pest parasitoid is 

developed. It is investigated how the efficiency of combination of two 

strategies depends on the ECB dispersal and parasitism level. 
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CHAPTER 1 

GENERAL REVIEW OF MODELLING METHODS APPLIED TO THE 

PROBLEM OF RESISTANCE EVOLUTION TO TRANSGENIC 

INSECTICIDAL CROPS IN PEST POPULATION 

Modelling the dispersal of the Bt-resistance gene in the pest population 

focuses on two key components: 

- evolution of the genetic structure of the pest population in space and in time; 

- spatially heterogeneous environment caused by the subdivision of pest 

habitat on Bt and non-Bt patches. 

1.1 Modelling population genetics 

The first component concerning the evolution of the genetic structure in the 

pest population should take into account the important details of an insect’s 

ecology and genetics controlling Bt-resistance. Let’s consider three basic 

approaches to the description of the genetic processes in a population: (i) complex 

simulation models using extremely detailed biological assumptions about the 

population genetics and life history of the insect species (Peck et al. 1999; Caprio 

2001; Guse et al. 2002; Ives & Andow 2002; Onstad et al. 2002; Storer et al. 2003; 

Heimpel et al. 2005), (ii) diffusion models based on the classical population 

genetics model of selection (Fisher-Haldane-Wright equations) ignoring most 

demographic factors and focus solely on genetic processes (Alstad & Andow 1995; 

Vacher et al. 2003; Cerda & Wright 2004; Tabashnik et al. 2004, 2005), (iii) demo-

genetic models taking into account both ecology and genetics of the species 

(Kostitzin 1936, 1937, 1938a, b, c; Svirezhev & Pasekov 1982; Abrosov & 

Bogolyubov 1988; Hillier & Birch 2002a, b; Richter & Seppelt 2004; 

Zhadanovskaya & Tyutyunov 2004; Zhadanovskaya et al. 2004, 2005, 2006a, b; 

Tyutyunov et al. 2007). 

Let’s examine the advantages and disadvantages of each approach in details. 
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1.1.1 Complex simulation models 

Onstad (1988) states that an excessive complexity is required to achieve 

realism in ecological models. He advocates the idea that we have to use all 

available information about modelling object. The complex, computer-intensive 

models of Bt-resistance development in insect species follow this modelling 

approach (Peck et al. 1999; Caprio 2001; Guse et al. 2002; Ives & Andow 2002; 

Onstad et al. 2002; Storer et al. 2003; Crowder et al. 2005; Heimpel et al. 2005). 

Complex simulation models give quite realistic prognosis of the Bt-resistance 

development. In bivoltine ECB population the Bt-resistance develops within 56 

years for a 10% refuge when the resistance allele is recessive. If the refuge area 

exceeds 20% the time period for the Bt-resistance evolution exceeds 100 years 

(Guse et al. 2002; Onstad et al. 2002). The patch model of Ives and Andow (2002) 

indicates less optimistic results: only 80 generations is needed for Bt-resistance 

evolution with 10% refuge, or taking into account that the ECB population usually 

has multiple generations per year (up to 4), the time required for the resistance 

development may be estimated as 40 years or less. Nevertheless, the model of Ives 

and Andow also allows to conclude about the economic expediency of the “high 

dose - refuge” strategy. 

However, the realism of simulation models based on their exaggerated 

complexity due to the over-parameterization is not justified (Ginzburg and Jensen, 

2004). Ginzburg and Jensen (2004) claim that if the complexity of proposed 

models greatly exceeds the complexity of the problem that they seek to address, 

such models should be rejected. Indeed, the attempt to build the models with as 

much complexity and realism as possible is unreasonable because too many 

parameters should be measured, because some of parameters are very difficult or 

impossible to evaluate on the basis of existing data and because the data necessary 

for the estimation of all parameters are usually unavailable. In some cases, 

detailing of model can fall into absurdity, for instance, when the model consists of 

more than 17600 equations with 41000 coefficients (Onstad, 1988). The reasons 
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listed above strongly limit the validation of the model predictions on the basis of 

complex simulation models when investigating the dynamics of agro-ecosystems 

and ways of their management. 

1.1.2 Fisher-Haldane-Wright model 

In other models of the Bt-resistance evolution in pest populations within the 

framework of conceptual approach the authors neglect the insect demography and 

focus solely on genetic processes. They describe the pest genetics by the classical 

population genetics model of selection, i.e., by Fisher-Haldane-Wright model 

(Lenormand, Raymond, 1998; Vacher et al, 2003; Cerda, Wright, 2004; Tabashnik 

et al., 2004, 2005). The approach based on such conceptual model leads at least to 

two problems analysed by Abrosov and Bogolyubov (1988) in details. 

The Fisher-Haldane-Wright model was initially developed for species with 

life cycles involving an alternation of the non-overlapping haploid and diploid 

phases (Abrosov & Bogolyubov 1988; Hastings 1997; Neal 2004; see also Fig. 

1.1). When constructing the equations it is assumed that haploid and diploid 

individuals cannot exist simultaneously and, hence, cannot interact with each other 

at the ecological level, in other words, the haploid and diploid generations do not 

overlap. Then to describe the dynamics of the genetic structure of the whole 

population it is quite enough to use the equations derived only for one of the 

phases, haploid or diploid, but the description at the haploid (allelic) level is much 

simpler, and instead of the dynamics of the genotype frequencies one may consider 

the dynamics of allelic frequencies. This fact hampers the application of the Fisher-

Haldane-Wright equations to studying the genetic processes in any diploid 

population because in most diploid organisms including insects, the diplophase 

predominates while the haplophase is strongly reduced and deprived of ecological 

independence (it represents gametes), i.e., it cannot persist out of diploid organism, 

so, diploid and haploid generations do overlap. Thus, the use of the conventional 

frequently-based Fisherian model for modelling the Bt-resistance development in 

insect populations, in particular, in the ECB population seems inadequate. 
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Fig. 1.1. Life cycle of a diploid organism (Abrosov & Bogolyubov 1988). 

Extending the initial area of application of haploid Fisher-Haldane-Wright 

model is based on the inclusion of the additional hypothesis of ‘gametic reservoir’ 

according to which mating of diploid organisms and the copulation of gametes for 

the single parental couple are equivalent to the panmictic copulation of gametes 

(haploid forms). In other words, it is assumed that all gametes form the 

ecologically independent “pool”. This allows operating the abstraction “gametic 

population”. Under certain conditions, in a panmictic diploid population after one 

generation, the genotype frequencies at a single gene locus will become fixed at a 

particular equilibrium value (Hardy-Weinberg equilibrium). It also specifies that 

those equilibrium frequencies can be represented as a simple function of the allele 

frequencies at that locus. In the simplest case of a single diallelic locus the Hardy-

Weinberg principle predicts: 
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where iju  is the frequency of genotype ij, ip  is the frequency of allele i ( sji =,  or 

r). The ratio (1:1) will remain constant from generation to generation. 

In addition, the hypothesis of ‘gametic reservoir’ requires implementation of 

special conditions for a diploid population: 

(i) infinite population size (or sufficiently large so as to minimize the effect of 

genetic drift); 

(ii) sexual reproduction; 

(iii) no mutation; 

(iv) no selection; 

(v) no migration (gene flow). 

For the most of insect species, including Ostrinia nubilalis only items (i) and 

(ii) are generally satisfied. In such populations, one may sometimes assume item 

(iii). However, items (iv) and (v) contradict properties of modelled species and 

character of a-priori non-equilibrium transient process of the Bt-resistance 

development in pest population. Hence, in this case both the hypothesis of 

‘gametic reservoir’ and the assumption of Hardy-Weinberg equilibrium seem 

inadequate. 

Moreover, it is often assumed incorrectly that the continuous Fisher-

Haldane-Wright model (see, for example, Crow, 1969; Ginzburg, 1983; Ginzburg, 

Golenberg, 1985; Hastings, 1997; Neal, 2004) describes the dynamics of the 

genetic structure of population with overlapping generations: 
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where rrrsrsr pWpWW +=  can be called the mean fitness of the resistance allele r 

(although the concept of “allelic fitness” in itself has little sense in a diploid 

population), 22 2 rrrrsrssss pWppWpWW ++=  is the mean population fitness. Here 

the case of single diallelic locus is considered: ( )tpp ss = , ( )tpp rr =  are the 

frequencies of alleles s and r, respectevely, ( )tNN =  is the total population 

density, ijW  is the fitness of genotype ij ( sji =,  or r), b  is the birth rate, ( )Nd  is 

the mortality function. 

Still, system (1.2) is only the continuous approximation of the classical 

discrete Fisher-Haldane-Wright model for the species with non-overlapping 

generations and nothing more (Abrosov & Bogolyubov 1988). In itself the 

continuity of the model (1.2) does not give grounds to claim that the model is 

intended for the description of the dynamics of genetic structure in the population 

with overlapping generations. 

As early as in 1937, V.A. Kostitzin pointed out the limitations of the 

application area of the classical population genetics model. He claimed that in a 

diploid population the selection works due to the competition of genotypes at the 

level of genotypic densities rather than at the level of allelic frequencies (see 

Abrosov & Bogolyubov 1988). Despite these limitations, the Fisher-Haldane-

Wright equations and Hardy-Weinberg law remain the most commonly used. In 

particular, such models were used for modelling the spatio-temporal dynamics of 

Bt-resistance genes in insect populations (Lenormand & Raymond 1998; Peck et 

al. 1999; Ives & Andow 2002; Guse et al. 2002; Onstad et al. 2002; Storer et al. 

2003; Vacher et al 2003; Cerda & Wright 2004; Tabashnik et al. 2004, 2005). In 

addition, the problem of evolution and dispersal of resistance gene in fields under 

the Bt-toxin selection pressure requires taking into account the spatial 

heterogeneity of the pest habitat. That’s why models of the Bt-resistance evolution 

based on the classical equations of population genetics include the formal 

description of spatial gene dispersal, using diffusion components (Lenormand & 

Raymond 1998; Vacher et al 2003) or migration of fixed portion of individuals 
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from each cell in cellular automaton (Cerda & Wright 2004). As far as such 

approach to modelling the gene dispersal in spatially heterogeneous environment is 

justified? The above-mentioned restrictions of the Fisher-Haldane-Wright model 

allow us to doubt that the diffusion version of this model correctly describe the 

development and dispersal of the Bt-resistance gene in spatially heterogeneous pest 

population, and that non-spatial panmictic Fisher-Haldane-Wright model (1.2) can 

correctly describe the delay of resistance development to transgenic crops in insect 

species (see Tabashnik et al., 2004, 2005). 

Indeed, models based on the Fisher-Haldane-Wright equations give the 

pessimistic forecast, supposing the rapid Bt-resistance development which, 

however, is not still confirmed in fields for the ECB population. According to this 

approach, the resistance develops within only 10 years with relatively large 26% 

refuge (e.g. Vacher et al 2003). Note that the recommended standard is that a good 

resistance management strategy should provide efficacy of the Bt-toxin for more 

than 10 years (FIFRA, 1998). However, it is clear that the guaranteed ten-year 

period of the efficacy of the Bt-crops is unlikely to be acceptable for the producers 

of genetically modified crop hybrids. 

Note that most of complex simulation models of Bt-resistance evolution also 

follow a basic principle of classical population genetics, the Hardy-Weinberg law 

(Peck et al. 1999; Caprio 2001; Guse et al. 2002; Ives & Andow 2002; Onstad et 

al. 2002; Storer et al. 2003; Neuhauser et al. 2003; Crowder et al. 2005; Heimpel et 

al. 2005). 

The correct application of both considered approaches to the problem of 

resistance development to Bt-modified crops in pest populations dwelling in 

spatially heterogeneous habitat is problematic. Hence, it is necessary to modify the 

conceptual models so that to extend their area of application for the adequate 

description of agro-ecosystems, taking into account both genetic transformations 

and ecological interactions between pest insects and plants. 
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Demo-genetic models meet entirely these requirements. Now let’s consider 

demo-genetic approach in details. 

1.1.3 Demo-genetic models 

V.A. Kostitzin (1937) was the first to criticize unjustified wide use of the 

Fisher-Haldane-Wright model and to claim that the selection works at the level of 

genotypic densities rather than at the level of allelic frequencies as with Fisherian 

equations (Kostitzin 1936; 1937; 1938a, b, c; see also Svirezhev & Pasekov 1982; 

Abrosov & Bogolyubov 1988). He proposed a demo-genetic approach in non-

spatial cases, using Volterra's competition theory to describe interactions between 

genotypes in a diploid population and the evolutionary selection of more adapted 

genotypes as a direct result of intraspecific competition: 

 ( ) ,,...,1,
1

niNNNNf
dt

dN n

j
jijiiii

i =−−= ∑
=

αµ  (1.3) 

where ( )tNN ii =  is the density of genotype i; iµ  is the mortality rate of genotype 

i; ijα  is the competition coefficient, intraspecific ( ji = ) and interspecific ( ji ≠ ); 

the reproduction function of genotype i, if , satisfies the Mendelian Inheritance 

(Table 1.1); n is the number of genotypes. For a diploid population in which some 

heritable trait is coded with diallelic gene the total number of genotypes 3=n . 

Then the reproduction functions if  ( 1=i , 2, 3) are: 
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where ijϕ  is the birth rate for pair consisting of individual of genotype i and 

individual of genotype j ( 1, =ji , 2, 3); here it is implicitly assumed that all 
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population consists of males and females and the birth rates of pairs ♀(i), ♂(j) and 

♀(j), ♂(i)  may be different; 321 NNNN ++=  is the total density of population. 

Numerical coefficients in (1.4) correspond to the portions of individuals of 

genotype k in the progeny of each pair (Table 1.1). One can readily see from Table 

1.1 that in a case of single diallelic locus the order numbers of genotypes {1, 2, 3} 

in model (1.3), (1.4) are simply associated with more widely used designation of 

genotypes in genetics by letters {АА, Аа, аа}. We will use the last way of notation 

hereinafter. 

Kostitzin’s model (1.3), (1.4) allows considering influence of various 

ecological factors of selection on the genotypic dynamics of a population. Here the 

fact that the modelled biological species has no ecologically independent 

haplophase is crucial. It is also reasonable to assume that the sex ratio is 1:1 (see 

Svirezhev & Pasekov 1982; Abrosov & Bogolyubov 1988). 

 

Table 1.1. Interaction of dominant and recessive genes (alleles) by Mendelian 
Inheritance for the case of single diallelic locus: portion of genotype ij in 
offspring ( Aji =,  or а). Two alleles, dominant А and recessive а, form three 

genotypes in any diploid population: homozygote genotypes АА and аа and 
heterozygote genotype Аа. 

Variants of mating  Portion of genotype in offspring 

♀  ♂  АА Аа аа 

АА × АА = 1   

АА × Аа = 21  21   

АА × аа =  1  

Аа × АА = 21  21   

Аа × Аа = 41  21  41  

Аа × аа =  21  21  

аа × АА =  1  

аа × Аа =  21  21  

аа × аа =   1 
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Thus, in contrast to the two previous modelling approaches, the demo-

genetic approach proposed by Kostitzin allows more adequately describing the 

genetic processes in a diploid population for species with reduced haplophase and 

overlapping generations, i.e., for most of diploid organisms including corn borer 

Ostrinia nubilalis. Kostitzin’s model (1.3), (1.4) underlies our research. 

Note that attempts to develop demo-genetic diffusion models of Bt-

resistance evolution in pest populations on basis of the Lotka-Volterra competition 

equations were made by Hillier & Birch (2002a, b) and Richter & Seppelt (2004). 

But these models are incorrect since the genetic pest structure used in them does 

not correspond to the Mendelian Inheritance. 

To take into account simultaneously both genetics and demography of a 

species in the model it should be kept in mind that both processes will take place 

on the same temporal scale. In Darwin’s theory (1859) natural selection is regarded 

as a weak force which becomes apparent only on the geological time scale while 

ecological changes in a population may be observed within one generation of 

animals. However, as a result of Bt-crops application more than 99.9% of 

susceptible insects die in each generation (Magg et al. 2001; Velkov et al. 2003; 

Candolfi et al. 2004), i.e., the selection is strong. In this case the changes in the 

genetic structure of the population will take place on the same temporal scale as 

ecological dynamics of population. The idea that evolutionary changes can occur 

on relatively short time scales can be also traced back to work of Dobzhansky 

(1943) who demonstrated rapid evolutionary changes coinciding with seasonal 

cycles in population of Drosophila. The conceptual model of Neuhauser et al. 

(2003) based on the integration of ecological and evolutionary processes in the 

population being under the strong selection can serve as one more argument for the 

justification of the adequacy of the demo-genetic approach to modelling the Bt-

resistance development in insect pest populations. 

All models of Bt-resistance evolution, mentioned in §§ 1.1.1-1.1.3, show 

that the main strategy of Bt-resistance management called the high dose – refuge 
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strategy and used in Bt-fields can delay the adaptation of pests to transgenic crops 

within time period ranging from the couple of years to several centuries (Guse et 

al. 2002; Ives & Andow 2002; Onstad et al. 2002; Neuhauser et al. 2003; Vacher et 

al. 2003; Heimpel et al. 2005), depending on several key factors such as the 

presence of the refuges within the Bt-fields and their size (Comins 1977; Alstad & 

Andow 1995; Peck et al. 1999; Guse et al. 2002; Hillier & Birch 2002б; Ives & 

Andow 2002; Onstad et al. 2002; Vacher et al. 2003; Cerda & Wright 2004; 

Tabashnik et al. 2004, 2005; Crowder et al. 2005; Heimpel et al. 2005), spatial 

and/or temporal distribution of refuges (Peck et al. 1999; Guse et al. 2002; Vacher 

et al. 2003; Cerda & Wright 2004; Crowder et al. 2005), mating behaviour 

(random or not) (Guse et al. 2002), the initial frequency of the Bt-resistance gene 

(Peck et al. 1999; Crowder et al. 2005), genotype fitness (Tabashnik et al. 2004, 

2005), type of inheritance of the Bt-resistance gene (Tabashnik et al. 2005), 

dispersal of the pests (Comins 1977; Peck et al. 1999; Caprio 2001; Guse et al. 

2002; Ives & Andow 2002; Onstad et al. 2002; Cerda & Wright, 2004; Heimpel et 

al. 2005), concentration of the Bt-toxin in tissues of transgenic crops (Caprio 2001; 

Guse et al. 2002; Onstad et al. 2002; Vacher et al. 2003; Tabashnik et al. 2004; 

Crowder et al. 2005), insecticide treatments (Ives & Andow 2002; Onstad et al. 

2002; Cerda & Wright 2004), natural enemy attack (Neuhauser et al. 2003; 

Heimpel et al. 2005). 

Two major perspectives of the Bt-resistance development in pest populations 

are investigated in mentioned works. One is focused on individual farms and the 

behaviour of individual growers (see, for example, Peck et al. 1999; Vacher et al. 

2003). The other perspective addresses the area-wide or regional approaches to 

resistance management (e.g., Guse et al. 2002; Onstad et al. 2002; Crowder et al. 

2005). The study of the problem at a regional scale implies that the mobility of the 

pest should be high enough. Unfortunately, by now there are no sufficient data 

about the mobility of corn borer O.nubilalis. The reason of data deficiency is that 

the estimation of such characteristic of pest spatial activity requires the complex 
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investigations of the large-scale movements of population density patches rather 

than simple observations of the fast flights of ECB adults (Hunt et al. 2001; 

Qureshi et al. 2005). However, among all the above-mentioned factors influencing 

the efficiency of the “high dose – refuge” strategy only refuge sizes, their spatial 

shapes within the Bt-fields, frequency of refuge rotation, the toxic level of the Bt-

crops and the artificial introduction of parasitoids in Bt-fields can be really used as 

the management parameters while the gemographic and genetic characteristics of 

the pest are not actually available for modifications although they also influence 

the estimation of the risk of pest adaptation to Bt-toxins. 

Analysis of results obtained allows the US Environmental Protection 

Agency to conclude (EPA 1998; EPA and USDA 1999; FIFRA 1998, 2004) that 

the “high dose – refuge” strategy is one of the best resistance management 

strategies for transgenic Bt crops (see the description of the strategy mechanism in 

Introduction). 

The economic aspect of applying the “high dose – refuge” strategy is also 

important. As discussed in Introduction, refuges are much less productive than 

transgenic fields. From this point of view, the optimal management is required to 

find a compromise between short-term losses and long-term profits concerned with 

refuges. Hurley et al. (1999, 2001) examined the current recommendations of the 

US Environmental Protection Agency for the European corn borer population and 

found that the refuge with size exceeding 21% is economically inexpedient but a 

too small refuge (below 13%) is not only unprofitable but also essentially enhances 

the risk of the Bt-resistance development in the pest population. This group of 

researchers also investigated the problem whether it is profitable to use the 

insecticides to increase productivity of refuges. Besides, they studied the influence 

of the refuge sizes on the compliance of farmers with EPA recommendations of 

refuges and also showed that non-random mating in ECB population requires 

increasing the refuge size by several percents. In contrast to Hurley et al. (1999, 

2001), in order to find an optimal strategy of Bt-resistance management, 



 

 

33

 

Laxminarayan & Simpson (2002) and Linacre & Thompson (2004) propose 

extremely simple models of Bt-resistance evolution in pest population based on the 

classical logistic growth model. However, the excessive simplicity of Linacre & 

Thompson model (Linacre, Thompson 2004) and the evident errors in analytical 

computations made by Laxminarayan and Simpson (2002) give us a firm ground to 

doubt results and conclusions obtained by these researchers. 

1.2 Modelling spatial population dynamics 

The second major component in models of Bt-resistance evolution is the 

spatial heterogeneity emerging as a result of applying the “high dose – refuge” 

strategy in pest population. There are several ways to incorporate spatial structure 

into models and describe spatial population interactions. Here we take into 

consideration only spatially explicit models describing dynamics of gene fluxes in 

space: systems of partial differential equations of type “reaction-diffusion” (Hillier 

& Birch 2002b; Medvinsky et al. 2004, 2005, 2006; Richter & Seppelt 2004; 

Zhadanovskaya et al., 2004a, b, 2005a, b, 2006a, b; Tyutyunov et al. 2007), 

cellular automata (Peck et al., 1999; Caprio, 2001; Vacher et al., 2003; Cerda, 

Wright, 2004) and patch models (Comins, 1977; Alstad, Andow, 1995; Guse et al., 

2002; Ives, Andow, 2002; Onstad et al., 2002; Crowder et al., 2005; Heimpel et al., 

2005). In all these models a space is explicitly represented using continuous spatial 

coordinates or discrete patches (see rewiews of Karieva 1990; Hastings 1990; 

Czárán 1998). Despite the fact that an explicit representation generates plenty 

difficulties regarding formalization of spatial species behaviour, this method is a 

powerful tool for studying spatial aspects of population dynamics due to their 

mechanistic presentation. 

1.2.1 Patch models 

The simplest way of modelling of spatial population structure underlays 

patch models in which a population consists of local subpopulations connected by 

the migration fluxes. Key factors of local habitat determine the dynamics of each 
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subpopulation. In the simple case, a continuous-time general model for a single 

species dwelling in n-patch habitat is: 

 ( ) ( ) ( ) ,,...,1,,,...,1 njixxhxexF
dt

dx

ij
nijiiii

i =+−= ∑
≠

 (1.5) 

where ( )txx ii =  is the subpopulation abundance in patch i; ( )ii xF  is the 

autonomous growth term for subpopulation in patch i; ( )ii xe  and ( )nij xxh ,...,1  are 

the emigration and immigration terms, respectively. 

Within the framework of such models, studying of migration mechanism 

assisting the population adaptation to abrupt random environmental fluctuations 

and demographic stochasticity have shown that even random diffusive dispersal of 

individuals in spatially structured habitat allows significantly decreasing the risk of 

subpopulation extinction due to a recolonization being a process of occupying 

empty patchs by migrants (Roff 1974; Dombrovsky & Tyutyunov 1985, 1987a, b; 

Akçakaya 1991; Burgman et al. 1993). This approach developing in theory of 

island biogeography (Darlington 1966; MacArthur & Wilson, 1967) has caused a 

so called problem SLOSS* concerning a choice of sizes and structures of wildlife 

areas. The rescue effect is also studied within metapopulation approach (Levins 

1970; Metapopulation dynamics... 1991; Hanski 1999), the main idea of which is 

to investigate the birth/death processes in more complex metapopulation system 

“population of populations” than simple population of animals. The dynamics of 

such metapopulation is described by the fraction of those habitat patches that are 

occupied by the species (when the spatial pattern and migration nature are 

ignored). However, it is noteworthy that for patch models and metapopulation 

systems a spatial structure is given a-priori, i.e., it is assumed that spatial 

heterogeneity of a habitat accounts for the patch colonization and, finally, the 

efficiency of adaptation mechanisms of spatial behaviour. These models do not 

take into account and do not explain the mechanisms and primary reasons of 

autonomous appearance of heterogeneity. 
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This simplest method of modelling of the spatial dynamics is commonly 

used to describe the spatial dynamics of Bt-resistance gene in insect-pest 

populations (Comins 1977; Alstad & Andow 1995; Guse et al. 2002; Ives & 

Andow 2002; Onstad et al. 2002; Crowder et al. 2005; Heimpel et al. 2005). 

1.2.2 Cellular automata 

The authors of other models of Bt-resistance gene dispersal in heterogeneous 

habitat use the theory of cellular automata. This is the second popular modelling 

method applying to this problem (Peck et al. 1999; Caprio 2001; Vacher et al. 

2003; Cerda & Wright 2004). Cellular automaton represents a set of rules, i.e., it is 

an algorithm that determines the interactions between spatial cells and their 

possible states. Such kind of models provides almost unlimited opportunities for 

carrying out computer simulations (Czárán, 1998). 

More exact definition is that cellular automata are dynamic models that are 

discrete in space, time and state. A simple cellular automaton is defined by a lattice 

L, a state space Q, a neighbourhood template γ and a local transition function f. 

Each cell of L can be in a discrete state out of Q. The cells can be linked in 

different ways. In the simplest case they are connected geometrically according to 

a spatial order, such as in a one- or two-dimensional square grid or in hexagonal 

plots. Cells can change their states in discrete time steps. Usually cellular automata 

are synchronous, i.e. all cells change their states simultaneously. The fate of a cell 

is dependent on its neighbourhood (first-order neighbourhood consisting of the 

central cell and eight adjacent cells and second-order neighbourhood containing 

the central cell and four adjacent cells) and the corresponding transition function f. 

The transition rules are denoted in the following form: 

 ( )lk
t

k
t

lk
t

k
t aaafa +−
+ = ,...,...,1 , (1.6) 

where k
ta  is the state of cell k at time t; l is the range of the neighbourhood of cell 

k; f is the local transition function representing the transition rules. The set of 
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values }{ Ikak
t ∈∀  called a configuration of the cellular automaton at time t (I is the 

index set) (Balzter et al, 1998). 

The description of the cellular automaton with neighbourhood of second 

order by means of Markov chain may be found in works of Balzter et al. (1998) 

and Logofet & Lesnaya (2000). 

This an extremely attractive (especially for modellers non-mathematicians) 

approach certainly deserves attention in a case of modelling of population systems 

that are defined by patchiness with small intensity of individual movements. 

However, for the mobile animals this modelling method is of little use. To describe 

the dispersal of mobile pests in models of Bt-resistance evolution, developers 

consider comparatively large cells in cellular automaton, assuming that each cell 

corresponds to one field the size of which may be equal to 2 km by 2 km (Peck et 

al., 1999; Vacher et al., 2003). Note that cellular automata constructed in such a 

way represent, per ce, patch models considered above in details. It is assumed that 

within such large cell its spatial structure is homogeneous and, actually, 

inaccessible to consideration. Decreasing the cell size will mean reducing pest 

mobility which is not a controlled parameter, in fact. Note that the essential 

shortcoming of cellular automata is not only the arbitrary rule of cell size 

determination but also fundamental impossibility to apply the analytical methods 

for their studying and difficulties of their use when modelling the dynamics of 

biological systems in continuous environment. 

1.2.3 Reaction-diffusion models 

Mathematical models based on a system of partial differential equations 

(PDEs) provide an opportunity of the most complete combination of analytical and 

simulation approaches. In theoretical biology such systems became widely used 

after the pioneer papers of Kolmogorov et al. (1937) and Fisher (1937) who 

proposed a reaction-diffusion equation describing diffusive spread of one 

advantageous gene in one-dimensional environment (see also Skalski 2004): 
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where ( )txp ,  is the frequency of the mutant gene at position х at time t ( [ ]Lx ,0∈ ), 

pq −=1 ; s is the intensity of selection in favour of the mutant gene, supposed to 

be independent of p; δ  is the diffusion coefficient. 

Note that model (1.7) assumes the weak selection, the uniform distribution 

of population density, and that at each spatial point the population is in the Hardy-

Weinberg equilibrium (Fisher 1937; Svirezhev & Pasekov 1982). 

This modelling method has been applied to the description not only of the 

genetic structures of populations but also of many complex population systems and 

communities (Murray 1983; Svirezhev 1987; Okubo & Levin, 2001). A general 

model of diffusive spread of population density is: 

 ( ) ,NNF
t

N
∆+=

∂

∂
δ  (1.8) 

where ( )tN ,x  is the population density at position x  at time t ( Ω∈x , Ω is the 

population habitat); ( )NF  is the reaction term, i.e., function describing 

demographic processes in population; just as in model (1.7) the second term at the 

right-hand part of equation (1.8) describes the random movements of individuals in 

the habitat, the diffusion coefficient δ  characterizes the intensity of such 

movements; graddiv=∆  is the Laplacian of scalar variable. 

There are different types of boundary conditions determining population 

dynamics on the boundaries of habitat Ω. We will consider here three main types 

(Czárán, 1998): 

Passive boundary, i.e., the system is open, nothing special happens to those 

individuals who reach the boundaries of the area of interest. 

Absorbent boundary, i.e., individuals disappear from the habitat immediately 

after having encountered with the edge. It is specified by the condition that the 
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population density is always zero at the boundary, e.g., for system (1.8) the 

absorbing boundary is 

 ( ) 0, =tN x , Ω∂∈x .  

Reflective boundary, i.e., the boundary of an isolated habitat is impenetrable 

for the members of a population so that they have to turn back soon after they 

reach it. The appropriate formal condition to be incorporated into the models of 

such situations should express the fact that there are no density fluxes through the 

boundaries: 

 ( ) 0, =∇⋅ tN xn , Ω∂∈x ,  

where n is the external normal to the boundary Ω∂ . 

Note that habitat isolation does not necessarily mean presence of the 

physical boundaries preventing the animal dispersal mechanically. Such isolation 

can be also interpreted as reluctance of individuals to leave the comfortable habitat 

area. 

The hypothesis of random animal movements underlying reaction-diffusion 

models allows giving a theoretical explanation of such phenomena as patchiness of 

populations, appearance of dissipative stationary structures and wave regimes in 

spatially distributed population systems (Svirezhev & Logofet 1978; Dombrovsky 

& Markman 1983; Murray 1983; Svirezhev 1987; Dombrovsky et al. 1990; 

Ivanitsky et al. 1994). The central result obtained with reaction-diffusion models of 

population dynamics is the possibility of appearance of diffusion-driven instability 

or Turing instability (Turing, 1952): in the absence of diffusion the spatially 

homogeneous system is stable to small perturbations but when diffusion is non-

zero the homogeneous distribution violates and stable spatial pattern arises. 

However, the getting the spatially heterogeneous patterns in reaction-

diffusion models requires to use non-trivial, nonlinear (which are never used in 

point models) functions of local kinetics (Turing 1952; Levin & Segel, 1976; 

Levin 1977; Mimura & Murray 1978; Svirezhev & Logofet 1978; Mimura & 
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Kawasaki 1980; Mimura & Yamaguti 1982; Murray 1993) or to accept the 

hypothesis that the system is not autonomous, i.e., there is some external periodic 

perturbation (Petrovskii & Malchow 1999, 2001; Savill & Hogeweg 1999; Durrett 

& Levin 2000; Feltham & Chaplain 2000; Malchow 2000; Venturino & 

Medvinsky 2001). 

Note that in contrast to the frequency-based Fisherian model (1.2) the 

Kostitzin’s model (1.3), (1.4) uses the genotype densities to describe the 

population dynamics, therefore one can naturally incorporate the diffusion density 

fluxes into this model that will be transformed into reaction-diffusion system. The 

local kinetics of such diffusion model will be characterized by strong non-linearity 

that will limit the analytical study of the model by the examination of the special 

cases, and the principal investigation of model dynamics will be carried out with 

computer simulations. To solve the proposed model numerically it is necessary to 

construct a difference scheme, using a discrete grid introduced in domain of spatial 

variable x (and, perhaps, in domain of time variable t, for example, in the finite-

difference method). The system of equations obtained in such a way is, in fact, the 

cellular automaton but in contrast to the cellular automata considered in § 1.2.2, 

the spatial discretization at numerical research of reaction-diffusion models is well-

grounded and the grid step is determined so that to provide the stability of used 

numerical method and does not depend on the biological traits of pest mobility. 
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Thesis problems 

Based on the analysis of modelling approaches to the problem of an 

adequate description of the complex biological system considered above, the 

following tasks have been formulated: 

1. to develop and investigate the spatio-temporal demo-genetic model taking 

into account both genetics and spatial structure of the pest population; 

2. to compare the demo-genetic and the conventional Fisherian approaches; to 

justify the validation and advantages of the demo-genetic approach, used for 

modelling the Bt-resistance evolution in the pest population controlled with 

the “high dose – refuge” strategy; 

3. to find steady-state conditions of the developed model; to investigate their 

stability numerically; 

4. to develop bi-trophic models of systems “pest – parasitoid” and “plant 

resource – pest” and investigate the efficiency of the “high dose – refuge” 

strategy in such systems. 
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CHAPTER 2 

DEMO-GENETIC MODEL OF THE RESISTANCE EVOLUTION TO 

TRANSGENIC MAIZE IN EUROPEAN CORN BORER POPULATION 

2.1 The model 

2.1.1 Population genetics 

As in most models of the development of resistance to Bt crops (e.g., Alstad 

& Andow 1995; Peck et al. 1999; Caprio 2001; Guse et al. 2002; Hillier & Birch 

2002b; Ives & Andow 2002; Vacher et al. 2003; Cerda & Wright 2004; Tabashnik 

et al. 2004, 2005; Heimpel et al. 2005), we assume that resistance is recessive and 

governed by a single diallelic locus with a Bt-susceptible allele s and a Bt-

resistance allele r. Assuming that the resistance allele inherited in an autosomal 

manner, the pest population consists of the Bt-susceptible genotypes ss and rs and 

the Bt-resistant genotype rr. Mating is assumed to be random. Unlike the 

conventional approach based on the FHW model, we do not follow the Hardy-

Weinberg principle to determine the relationships between allele and genotype 

frequencies in the pest population (see § 1.1.2). 

2.1.2  Modelling the demo-genetic dynamics of the population 

We propose a spatial demo-genetic model based on a reaction-diffusion 

system of PDEs, with the modified Kostitzin model (1.3), (1.4) used to describe 

the local kinetics of competitive genotypes. Diffusion terms specify the random 

movements of individuals in the habitat. In our demo-genetic model, we have 

slightly modified Kostitzin’s equations, so as to assess genotype fitness in terms of 

larval survival rather than overall genotype fecundity. Peculiarity of the problem 

concerned with modelling of Bt-resistance gene dispersal in heterogeneous habitat 

stipulates such modifications. In this case, we assume that fecundity of single pair 

is constant and does not depend on genotypes of male and female, i.e., in 

Kostitzin’s model (1.3), (1.4) constbjiij === ϕϕ , where b can be interpreted as 

the birth rate. Note that the birth rate is assumed to be the same for all genotypes. 
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Taking into account the assumptions made in § 2.1.1 about genetics of modelled 

pest species, let us denote the index set {1, 2, 3} as {ss, rs, rr}. Then in model 

(1.3), (1.4) ssNN =1 , rsNN =2 , rrNN =3  are the densities of corresponding 

genotypes. The term ‘density of genotype’ means the density of individuals 

pertaining to the genotype. Introducing the genotypic fitness Wss, Wrs, Wrr [ ]1,0∈  

associated with the genotype survival, let us assume that Bt-plants influence only 

the reproduction of genotypes and not the natural mortality genotypes and the 

competition interactions between them. 

Taking into account assumptions of both demography and genetics of the 

pest, and assuming that insect infestation in the crop field Ω  is controlled by the Bt 

plants, we propose a model: 
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where functions ssf , rsf , rrf  describe reproduction processes of pest genotypes: 
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In model (2.1) ),( tNN ssss x= , ),( tNN rsrs x= , ),( tNN rrrr x=  are the 

genotype densities at position Ω∈x  at time t; rrrsss NNNN ++=  is the total 

population density; ijW  is the genotypic fitness; b  is the birth rate; it is assumed 

that mortality rates ijµ , competition coefficients ijα  and diffusion coefficients ijδ  

may differ between genotypes ( rji =,  or s ); ∆  is Laplacian. Fitness ( )xijij WW =  
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can be interpreted as the survival coefficient of larvae of genotype ij as a function 

of location in the habitat (toxic or non-toxic plant tissues). 

The diffusion coefficient characterizes the intensity of the random 

movements of individuals in the habitat. We assume that there are no density 

fluxes through the boundaries, i.e., 

 Ω∂∈=⋅∇=⋅∇=⋅∇ xnnn ,0rrrsss NNN , (2.3) 

where n  is the external normal to the boundary Ω∂ , ∇  is the gradient. 

Model (2.1), (2.3) is autonomous, and therefore does not take into account 

seasonal variations in environmental conditions. The model should be considered 

as an initial approximation to real agro-ecosystems. It does not take into account 

the stage structure of the pest population either, assuming instead that death and 

reproduction occur continuously, at constant rates. In system (2.1), the random 

movements of individuals take place on the large spatio-temporal scale of lifetime 

dispersal; micro-scale movements of pest insects are ignored. 

Note that as in the original model (1.3), (1.4), in the demo-genetic model 

(2.1), (2.3) the sex structure is not explicitly taken into account but it is implicitly 

assumed that each genotype is represented by males and females. We also assume 

a constant 1:1 sex ratio and Mendelian inheritance. It should be kept in mind that 

in system (2.1) both genetic and demographic processes in the pest population and 

spatial movements of pest insects take place on the same temporal scale. 

Validation of such approach that allows considering ecological and 

evolutionary processes in the population being under the strong selection on the 

same temporal scale is discussed above (see § 1.1.3). 

2.1.3. Modelling the “high dose - refuge” strategy 

We assume that the Bt-resistance evolution in the pest population is 

managed by the HDR strategy (see Introduction). Spatial heterogeneity caused by 

the HDR strategy is taken into account by assuming that the whole pest habitat Ω  

composes of several plots, each planted with a Bt or non-Bt crop. BtΩ  denotes the 
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set of plots of Bt crop and RefΩ  the refuge domain of non-Bt crop. BtΩ  and RefΩ  

are disjoint. Any pattern of refuges can be considered. 

As appears from the definition of the HDR strategy, the genotype fitness ijW  

should be different for the Bt-crop and refuge. Let us derive explicit formulas for 

calculating the coefficients ijW . Bourguet et al. (2000c) and Tabashnik et al. (2004) 

determine the dominance level of Bt-resistance as 
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Values of h range from 0 (completely recessive Bt-resistance) to 1 

(completely dominant Bt-resistance). Bourguet et al. (2000c) introduce the terms 

‘dominance level of Bt-toxin selection σ ’ and ‘dominance level of the fitness cost 

с’ which is paid by the genotype possessing the Bt-resistance gene for the 

advantage in toxic Bt-fields, defining them, respectively, as: 
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Like Lenormand & Raymond (1998) and Vacher et al. (2003), we assume that 

σ−=1Bt
ssW , 1=ref

ssW , cWW ref
rr

Bt
rr −== 1 . Then from (2.4) we obtain: 
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 (2.5) 

where σ  is the fitness loss due to the Bt toxin; c  is the fitness cost of resistance; 

σh  is the dominance level of Bt-toxin selection; ch  is the dominance level of the 

fitness cost. Parameters σ , c , σh , [ ]1,0∈ch . Note that hh −=1σ , where h is the 

effective dominance level estimated by Tabashnik et al. (2004) (see also Vacher et 

al. 2004). 
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In particular case when (a) the selection intensity in the Bt area is maximum 

(i.e., 100% of susceptible insects are killed by the Bt-toxin) and (b) the resistance 

is recessive (i.e., all heterozygotes die in Bt-crop), 1=σ , 1=σh . If, in addition, it is 

assumed that there is no resistance cost, fitness of ss and rs genotypes become 

equal to zero in BtΩ , i.e., the offspring of the Bt-susceptible genotypes cannot 

survive in the Bt-crop while the Bt-resistant insects rr will have the maximum 

fitness 1=rrW  in both Bt- and non-Bt domains: 
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However, this case is extreme. In the present work we will assume that the 

Bt-resistance is partially recessive and the Bt-toxin has 100% efficiency of 

influence on the Bt-susceptible insects: 0≥σh , 1=σ . These assumptions do not 

contradict field observations because investigations confirm neither expressed cost 

of Bt-resistance in the ECB population nor recessive inheritance of Bt-resistance 

allele (Bourguet et al. 2005; see also Introduction). 

Thus, the difference between the refuge and the Bt domains is therefore 

determined solely on the basis of differences in pest survival coefficients between 

these two types of domain, according to conditions (2.5). Note that we set 

conditions (2.3) only for the outer boundary Ω∂ , whereas the boundaries between 

adjacent refuges and Bt domains are permeable. 

2.1.4. Ecological simplifications in the demo-genetic model 

To better understand the influence of the HDR strategy on the Bt-resistance 

evolution in the pest population and to single out its effect, let us introduce some 

simplifications in model (2.1), (2.3). We will assume that natural mortality and 

competition do not depend on the genotype of individual constij == µµ , 

constij == αα  and the mobility of different pest genotypes are the same 
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constij == δδ  ( rji =,  or s ), i.e., pest genotypes differ from each other only by 

their ability to survive depending on the location in the habitat Ω. 

Then model (2.1), (2.3) reduces to: 
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 (2.6) 

where reproduction functions ijf  is defined by formula (2.2). 

In an entirely non-transgenic area (i.e., all 1=ijW ) and in the case of the 

uniformly distributed pest genotypes, summing the three equations of (2.6) 

generates the simple logistic equation for the growth of the whole pest population: 

2NNbN
dt

dN
αµ −−= , where rrrsss NNNN ++= , b  and µ  are the constant rates 

of birth and death, respectively. If µ>b , then the ratio 
α

ρ

α

µ
=

−
=
b

K  (ρ is the 

reproduction rate of pest genotypes) is the carrying capacity of the pest population 

(Svirezhev & Pasekov 1982; Ginzburg & Golenberg 1985). In particular, K is the 

carrying capacity even in the case when all population consists of homozygotes of 

ss or rr genotype. 

Despite the fact that we will consider solely the case of µ>b , let us note 

that if µ<b  zero equilibrium gets stable and determines the ‘carrying capacity’ in 

the model (2.6) while 
α

µ−
=
b

K  becomes negative and unstable (see also Gabriel 

et al. 2005). 

It is noteworthy that a population cannot consist solely of heterozygotes and 

the term ‘carrying capacity’ for rs genotype is artificial. However, formally, 
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K
b

K rs <
−

=
α

µ2
. It means that heterozygous genotype “pays” for the 

reproduction of homozygote genotypes ss and rr. 

Note that the demo-genetic model (2.6) can be simplified by the use of 

dimensionless variables and parameters: btt =~ , 
K

N
N ss

ss =
~

, 
K

N
N rs

rs =
~

, 

K

N
N rr

rr =
~

, 
b

µ
µ =~ , µ

α
α ~1~ −==

b

K
, 

b

δ
δ =
~

. In this parameterization, 1
~~

== Kb . 

Thereafter, omitting tildes, we obtain: 
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 (2.7) 

If the whole pest habitat is a rectangle [ ] [ ]yx LL ,0,0 ×=Ω , one of its sides 

can be normalised to any constant (e.g., Lx to 1). So, the dynamical properties of 

spatial solutions of model (2.6) will actually depend on three parameters: the 

mortality rate µ, the pest dispersal δ and the ratio of yx LL  (Lx and Ly are the 

lengthes of the habitat sides). If LLL yx == , i.e., Ω is a square, then 
2

~

bL

δ
δ = , 

[ ] [ ]1,01,0 ×=Ω . 

2.1.5 Estimation of demographic model parameters for the European corn borer 

We identified the parameters of the continuous model (2.6) on the basis of 

the parameter values estimated in Guse et al. (2002) for the detailed discrete model 

taking into account the seasonality and stage transitions of the life history of the 

ECB. 
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Let time unit be one year (365 days) and the length unit be a kilometre. The 

ECB is assumed to produce two generations per year. We also assume that the life 

span of each generation covers the period from the egg stage to the end of the adult 

stage (egg-to-egg cycle). The life span of the second generation is longer than the 

first as it includes overwintering of the larval stage. 

According to Guse et al. (2002), one adult ECB female lays an average of 

288 eggs during her lifetime. For estimating the instantaneous birth rate b in the 

continuous-time model (2.6) we use the rule λ
τ
ln

1
=b , where λ  is the lifetime 

fecundity in an appropriate discrete-time model and τ is the lifetime duration.  

Thus, taking into account the production of two pest generations per year, 

the average annual birth rate b of the ECB is estimated by the weighted sum of the 

birth rates for the first generation 1b  and for the second generation 2b : 

 ,2211 ττ bbb +=  (2.8) 

where λ
τ
ln

1

1
1 =b , λ

τ
ln

1

2
2 =b , 1τ  and 2τ  are the durations of the first and second 

generations, respectively. Then λln2=b . Assuming that the sex ratio is 1:1 (i.e., 

144=λ ), we obtain 94.9≈b  yr-1. 

Similarly, we estimated the mean instantaneous mortality rate of the ECB µ  

as the sum of the mortalities of both generations: 

 2211 τµτµµ += . (2.9) 

Mortalities 1µ  and 2µ  are determined under the assumption that the decrease 

of the population density over a particular period of time iτ  follows the Malthusian 

law: 

 
( )
( )

)exp(
0

ii
i

N

N
τµ

τ
−= , 2,1=i ,  (2.10) 

where ( )0N  is the population abundance at the initial time of the i-th period. 
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Then ( ) ( ) 84.618.0077.0ln077.0ln =⋅−−=µ  -1yr , where natural ECB 

survival coefficients are 0.077 in the summer, through the larval stages of both 

generations, and 0.18 in the winter diapause, for the diapausing larvae of the 

second generation (Guse et al. 2002). Like Guse et al. (2002), we also ignore 

mortality at the egg and pupal stages. 

In line with Guse’s model (Guse et al. 2002), we set a maximum of 22 ECB 

larvae/plant and 67,000 plants/ha, giving an estimate of carrying capacity 

6104.147 ×=K  larvae/ 2km . The competition coefficient is therefore determined 

by the formula 
K

b µ
α

−
= , so 8101.2 −×=α  km2yr-1ind-1. 

As the large-scale diffusion coefficient δ  of insect species is difficult to 

estimate from a small number of field observations, we will vary this coefficient 

from 0 to ∞, with irregular increments. 

2.2 Qualitative analysis of the demo-genetic model 

Let us make a qualitative investigation of system (2.6) and determine 

whether the stationary states of the system exist, find their number and kind of 

stationary distributions in space, study a problem of their stability. 

Before we will pass on to the analysis of model (2.6) in spatially 

heterogeneous environment, let us study the behaviour of considered biological 

system in homogeneous habitat. 

2.2.1 Homogeneous pest habitat 

In spatially homogeneous case the dynamics of system (2.6) is entirely 

described by the non-spatial demo-genetic model: 
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Let us consider two subcases: 

I. Let us assume that the pest habitat consists solely of conventional (non-

modified genetically) crop plants, and there are no Bt-hybrids on a cultivated field. 

Then all fitness 1=ijW  and model (2.11) coincide with the particular case of 

Kostitzin demo-genetic model (1.3), (1.4). Let us show that in such case the 

equilibria family of system (2.11) represents a parabola in three-dimensional space 

of phase variables ( )rrrsss NNN ,, . This parabola is made up of intersection of three 

surfaces defined by a condition of equality of right-hand parts of equations (2.11) 

to zero. 

Basis in phase space of model (2.11) is determined by the system of three 

linear-independent vectors i , j, k : ( )1,0,0i , ( )0,1,0j , ( )0,0,1k  that specify 

directions of coordinate axes ssON , rsON , rrON , respectively (see Fig. 2.1). All 

equilibriums of system (2.11) lie in the plane ABC corresponding to the condition 

KNNN rrrsss =++ . Let us proceed to the new basis of the system, using the rule: 

the origin of the new coordinate system xyzO '  is located at point 








2
,0,

2
' KK

O  

and the new basis vectors '
i , '

j , '
k  specify directions of new coordinate axes xO

' , 

yO ' , zO
'  so that vector '

i  is collinear and codirectional to vector CA, vector '
j  is 

collinear and codirectional to vector BO
' , vector '

k  is the cross product of ''
ji ×  

(Fig. 2.1).  

Performing in series the operations of parallel transport and rotation of 

system 




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




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






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







1

**

1

z
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x

N

N

N

rr

rs

ss

ST , where matrix of parallel transport T  and rotation 

matrix S  are: 
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Fig. 2.1. Transition from the old basis ( )kji ,,  to the new one ( )''' ,, kji . ssN , rsN , 

rrN  are the densities of corresponding pest genotypes. 
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we obtain: 

 ( ) ( )( )
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;36
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 (2.12) 

Note that in system (2.12) the differential equations for z does not depend on 

other variables x and y and 0=z  is a unique non-negative equilibrium of variable z 

if µ>b . Then equilibriums of system (2.12) is defined by the equation of parabola 

located on plane ABC (Fig. 2.2): 







+−=
26

3 2 K

K

x
y  that also defines the 

equilibria family of system (2.11). 
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Fig. 2.2. Equilibrium family of system (2.11) is a parabola (thick solid line) on 
plane ABC. ssN , rsN , rrN  are the densities of corresponding pest 

genotypes. 

Let us examine the stability of obtained equilibrium states. Jacobean matrix 

of system (2.12) is: 

( ) ( )
( )
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
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Then, using the formula 0
0,

26

3
,

2 =−
=














+−= z
K

K

x
yx

EJ λ , where E  is the unit 

matrix with appropriate size, we get the characteristic equation: 

 ( ) ( ) 0223 =−+−+ µλµλλ bbb . (2.13) 

Thus, the stability conditions following from the negativity of real parts of 

eigenvalues of (2.13) b−=1λ , b−= µλ2  are determined by the strict positivity of 
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the birth rate b and the strict prevalence of birth rate over death rate µ>b . Note 

that 00 =λ  is also a root of characteristic equation (2.13). 

Let us introduce the definition of allelic frequencies, expressing them via 

genotype densities: 
N

NN
p

rsss

s
2

1
+

=  is the frequency of the susceptible allele, 

N

NN
p

rsrr

r
2

1
+

=  is the frequency of the resistance allele, 1=+ rs pp . Then the 

following theorems of a invariability of allelic frequencies when there is no 

selection are true. 

Theorem 1. If in demo-genetic model (2.6) refΩ=Ω  then for any initial point 

( )000 ,, rrrsss NNN  lying on the plane ABC defined by equation KNNN rrrsss =++  

(Fig. 2.2) the allelic frequencies are invariable with time: ( ) ( )0rr ptp = , 

( ) ( )0ss ptp =  [ )∞∈∀ ,0t . 

It means that system reaches the equilibrium point located on the parabola 

and moving to the equilibrium occurs along axis yO '  with invariable allelic 

frequencies in population. 

Proof. Let us express the new basic variables ( )zyx ,,  via old ones 

( )rrrsss NNN ,, : 
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Note that if the initial point belongs to the plane ABC, i.e., it has coordinates 

( )0,, 00 yx , then with time the trajectory of the system does not leave the plane: 
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( ) 0=tz , 0>∀ t . Therefore, fixing some arbitrary point constxx == ~  on axis xO '  

and assuming 0=z , we get: 

 

.62

;~2

;
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Then the allelic frequencies 
K

x

N

NN

p
rsss

s
2

~

2

12

1

+=
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=  and 

K

x

N

NN

p
rsrr

r
2

~

2

12

1

−=
+

= , where KNNNN rrrsss =++=  on the plane ABC. 

Moreover, owing to the arbitrary choice of value x~  these expressions for the allelic 

frequencies will be true for any 





−∈

2
,

2
~ KK
x  on axis xO

' . 

Thus, Theorem 1 is proved ■ 

We will also prove a more general form of Theorem 1. 

Theorem 2. If in demo-genetic model (2.6) refΩ=Ω  then for any initial point 

( )000 ,, rrrsss NNN : 00 ≥ssN , 00 ≥rsN , 00 ≥rrN , the allelic frequencies are invariable 

with time: ( ) ( )0rr ptp = , ( ) ( )0ss ptp =  [ )∞∈∀ ,0t . 

In other words, even if the initial point does not belong to the plane ABC 

(Fig. 2.2), then during the evolution of the system to one point of the equilibrium 

family located on the parabola, the allelic frequencies also remain invariable in the 

population. However, in contrast to the previous case, transition to the equilibrium 

occurs with displacement along axis xO '  regarding the initial position. 

Proof. Let the initial point do not belong to the plane ABC and have coordinates 

( )000 ,, rrrsss NNN , where 00 ≥ssN , 00 ≥rsN , 00 ≥rrN , or ( )000 ,, zyx  in new coordinate 

system xyzO ' . Since in system (2.12) the differential equation for z does not 
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depend on other variables of the system, x and y, given the initial condition 

( ) 00 zz = , we have: 

 ( ) ( ) ( )00

0

33 zKez

Kz
tz

tb ++−
=

−µ
.  

Then, substituting this expression into the differential equation zxx α3−=&  

and solving the Cauchy problem obtained, we find: 

 ( ) ( )
00

0

33 zKez

Kx
tx

tb ++−
=

−− µ
.  

If ∞→t  and µ>b , ( ) 0→tz  and ( )
0

0

3zK

Kx
tx

+
→ . This means that with 

time the system evolves to the point located on the plane ABC, deviating from 0x  

in 
03zK

K

+
 times. 

Let us show that the allelic frequencies, sp  and rp , do not change with 

time. From equality 
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Then the allelic frequencies are: 
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 (2.14) 

Substituting the initial point ( )000 ,, rrrsss NNN  with coordinates in new basis 

( )000 ,, zyx  and limit point ( )*** ,, rrrsss NNN  with coordinates 










+
0,,

3 0

0 y
zK

Kx
 into 

expressions for the allelic frequencies (2.14), we obtain: 
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Moreover, for the arbitrary initial point ( )000 ,, zyx  the ratio of the allelic 

frequencies is constant at any instant of time t . Denoting 

( ) ( )00 33 zKez tb ++−= −µη , let us substitute expressions for ( )tx  and ( )tz  into 

(2.14): 
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Similarly, ( )Kz

x
pr

+
−=

0

0

322

1
, 0≥∀ t . 

This completes the proof ■ 

From Theorem 1, the deviation from the equilibrium point ( )0,, ** yx  lying 

on the parabola in the x-direction leads the system to the new equilibrium point 
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( )0,, **** yyxx ∆+∆+ . The deviation from the equilibrium point ( )0,, ** yx  in the 

y-direction leads the system to the same point ( )0,, ** yx . According to Theorem 2, 

the deviation from the equilibrium point ( )0,, ** yx  in the z-direction leads the 

system to the new equilibrium point 







∆+

∆+
0,,

3

**

*

*

yy
zK

Kx
. 

Thus, due to the absence of the Bt-modified plants in the pest habitat there is 

no Bt-toxin selection and co-existence of all three pest genotypes is possible, i.e., 

the polymorphism exists for all points of parabola excepting end-points A and C. 

However, here the matter concerns Lyapunov stability rather than asymptotic 

stability. Note that moving along the parabola from the point A to the point C 

corresponds to the variation of the allelic frequencies in the pest population from 

the complete absence of the Bt-resistant genotype rr (the extreme case of r allele 

absence corresponds to the point A) to the complete elimination of Bt-susceptible 

genotype ss (the extreme case of complete dominance of r allele corresponds to the 

point C). 

Theorems of invariability of the allelic frequencies sp  and rp  in model 

(2.11) in the case of homogeneous non-Bt habitat may be proved by another way. 

Lemma 1. The point demo-genetic model (2.11) in the frequency notation 

coincides with the Fisher-Haldane-Wright model (1.2) (where ( ) NNd αµ += ). 

However, in the general case, the genetic structure of a population does not 

necessarily evolve to the Hardy-Weinberg equilibrium (1.1). 

Proof. Summing all equations of system (2.11) and denoting the frequency of each 

genotype ( )
( )
( )tN

tN
tu

ij

ij = , we obtain an equation describing the dynamics of the total 

population density N: 

 ( )( ),NbWN
dt

dN
αµ +−=  (2.15) 
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Let us pass to the frequency form of demo-genetic model (2.11) according to 

the method proposed by Svirezhev & Pasekov (1982). Expressing the density of 

each genotype via its frequency and total population density of the pest NuN ijij = , 

the original system (2.11) can be rewritten as follows: 
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 (2.16) 

where 1=++ rrrsss uuu . 

Let us denote the reproduction function of each genotype by ijf : 
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 (2.17) 

Then system (2.16) can be rewritten as: 

 NuNuf
dt

dN
u

dt

du
N ijijijij

ij µα −−=+ 2 , (2.18) 

Substituting in (2.18) the expression for the derivative of the total pest 

density (2.15), we have: 

 bWuf
Ndt

du
ijij

ij
−=

1
. (2.19) 
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Let us pass from (2.19) to the equations for the allelic frequencies 

rsrrr uup
2

1
+= , rssss uup

2

1
+= . Due to 1=+ sr pp , it is quite enough to consider 

solely the equation for the Bt-resistance allele rp : 

 bWpff
Ndt

du

dt

du

dt

dp
rrsrr

rsrrr −







+=+=
2

11

2

1
. (2.20) 

Taking into account equation (2.15) and the fact that 

( )srsrrrrrsrr pWpWbNpff +=+
2

1
, we obtain the following system of equations: 
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NbWN
dt

dN

WWbp
dt

dp

αµ  (2.21) 

where rrrsrsr pWpWW +=  is the mean fitness of the Bt-resistance allele. W  can be 

interpreted as the mean population fitness and be written via allelic frequencies as 

.2 22
rrrrsrssss pWppWpWW ++=  

Note that in the general case, system (2.21) does not necessarily evolve to 

the Hardy-Weinberg equilibrium (1.1): 2*
sss pu = , rsrs ppu 2* = , 2*

rrr pu = . 

Introducing the additional variable 
4

2
rs

rrss

u
uu −=ξ  to quantify the deviation of 

system (2.21) from Hardy-Weinberg equilibrium (see Svirezhev & Pasekov 1982) 

and expressing the genotype frequencies as ξ+= 2
sss pu , ξ22 −= rsrs ppu , 

ξ+= 2
rrr pu , we obtain an differential equation describing the spatio-temporal 

dynamics of the deviation ξ : 
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We can see that, for genotypes differing in fitness, the deviation ξ  tends to 

zero (i.e., system (2.21) tends to the Hardy-Weinberg equilibrium) only if the 

frequency of one of the two alleles –r or s – tends to zero. Otherwise, in a general 

polymorphic case, e.g., if rsW  exceeds ssW  and rrW , system (2.21) evolves beyond 

the Hardy-Weinberg equilibrium. 

Lemma 1 is proved ▲ 

Let us come back to the question of the invariability of the allelic 

frequencies when there is no Bt-toxin selection in the crop field. In this case, 

1=== rrrsss WWW . According to Lemma 1, we find: 0=
dt

dps , 0=
dt

dpr , 

b
dt

d
ξ

ξ
−= . Then constpp rs =−=1  and the deviation of system (2.11) from 

Hardy-Weinberg equilibrium exponentially decays. 

 

Fig. 2.3. The Hardy-Weinberg equilibrium 
4

2
rs

rrss

u
uu =  in three-dimensional space 

of phase variables ( )rrrsss NNN ,,  defines the surface of cone (marked in 

white), where 
N

N
u

ij

ij = , KNNNN rrrsss =++=  (the grey plane), ssN , 

rsN , rrN  are the densities of corresponding genotypes. 
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Note that Kostitzin model (2.11) can evolve in the whole phase space of variables 

0≥ijN , i.e., it has more degrees of freedom than the Fisher-Haldane-Wright model 

(1.2), according to which the system never leaves the surface defined by the 

equation of the Hardy-Weinberg equilibrium 
4

2
rs

rrss

u
uu =  (white cone in Fig. 2.3). 

Theorem 3. All equilibrium states of point demo-genetic model (2.11) satisfy 

Hardy-Weinberg equilibrium (1.1) if 1=ijW  (i, j = r or s). 

Proof. Let 1=ijW  (i, j = r or s) and ssu , rsu , rru  be the frequencies of 

corresponding genotypes. Taking into account that 
N

N
u

ij

ij =  and ijiii uup
2

1
+= , 

we transform system (2.11) to the frequency form and find the equilibrium states 

of modified model: 

 

( )
( )

( ) .0

;02

;0

2

2

=+−

=+−

=+−

Kupb

Kuppb

Kupb

rrr

rsrs

sss

αµ

αµ

αµ

 (2.23) 

Note that bK =+ αµ . Then system (2.23) gives the Hardy-Weinberg 

equilibrium condition (1.1): 

 

.

;2

;

2

2

rrr

rsrs

sss

pu

ppu

pu

=

=

=

  

So, the proof is complete ■ 

II. Let us consider now the subcase when the pest habitat consists solely of 

toxic Bt-crop. According to the concept of the HDR strategy, we will consider the 

extreme case: the offspring of the Bt-resistant genotypes ss and rs dies on Bt-plants 

while rr insects are entirely resistant to Bt-toxin. Then fitness of the Bt-susceptible 

insects 0=ssW  and 0=rsW  and Bt-resistant insects 1=rrW . Let us show that in 

this case, selection favours the fixation of Bt-resistance allele r and the complete 
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elimination of Bt-susceptible genotypes ss and rs, i.e., point C in Fig. 2.2 is the 

unique and stable equilibrium of system (2.11). 

Modified system (2.11) is: 

 

.
2

;

;

2

rrrrrr
rsrr

rsrs
rs

ssss
ss

NNNN
N

N

b

dt

dN

NNN
dt

dN

NNN
dt

dN

µα

µα

µα

−−







+=

−−=

−−=

 (2.24) 

According to system (2.24), the Bt-susceptible genotypes become extinct 

and s allele is entirely eliminated with time. It is clear that point ( )K,0,0  is a 

unique stable equilibrium of system (2.24). The equilibrium densities of genotypes 

are: 0* =ssN , 0* =rsN , KN rr =* . There are no other equilibrium states in system 

(2.24). 

The total extinction of the Bt-susceptible insects in the Bt-area corresponds 

to the extreme case and is not always justified in practice. For instance, in the ECB 

population about 0.01% of susceptibles can survive on some Bt-maize hybrids. 

Moreover, if the genotype possessing the Bt-resistance gene has to ‘pay’ for the 

advantage in the toxic Bt-fields, the proportion of genotypic fitnesses ijW  will 

determine the dynamics of the allelic frequencies in the biological system, 

according to the Fisher’s Fundamental Theorem of natural selection (Fisher, 1930). 

Indeed, system (2.21) under constant selection has three equilibrium states 

of the allelic frequencies which are also the equilibriums of the Fisher-Haldane-

Wright model (Ginzburg & Golenberg 1985): 

 (i) 1* =rp , 0* =sp ;  

 (ii) 0* =rp , 1* =sp ;  

 (iii) 
rrssrs

ssrs
r

WWW

WW
p

−−

−
=
2

* , ** 1 rs pp −= .  
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It follows from (2.22) that in the stationary state the deviation of the system 

from the Hardy-Weinberg equilibrium ξ  is: 

 
( )

0
2

2
22

22
* ≤

++

−−
−=

rrrrsrssss

rrssrsrs

pWppWpW

WWWpp
ξ . 

Let us determine the stability of each equilibrium depending on the 

proportion of fitnesses that are, in fact, the survival coefficients of genotypes in our 

biological system. If ssrsrr WWW >> , equilibrium (i) is stable, i.e., the population 

consists solely of homozygotes rr. Case ssrsrr WWW <<  is similar to the previous 

one and equilibrium (ii) is stable. Moreover, for both cases the equilibrium 

deviation from the Hardy-Weinberg equilibrium 0* =ξ . If the heterozygous 

genotype has the maximum fitness in the population, i.e., ssrsrr WWW >< , the 

system evolves to the polymorphic state (iii) and 0* <ξ . Otherwise, if 

ssrsrr WWW <> , system (2.21) reaches the equilibrium which satisfies the Hardy-

Weinberg equilibrium (i.e., 0* =ξ ) at (i) or (ii) depending on the initial allelic 

frequencies. 

By accepting the hypothesis of weak selection, i.e., of small difference 

between genotypic fitnesses: 

 ssss WAW
~ε+= , rsrs WAW

~ε+= , rrrr WAW
~ε+= , 

where 1<<ε , system (2.21), (2.22) can be written as: 

 

( )

( )

( )( ) .~~2~~

;~

;~~

22 bAWWWWppb
dt

d

WbNNbAN
dt

dN

WWbp
dt

dp

rsrrssrs

rr
r

ξξε
ξ

εαµ

ε

−−−+=

+−−=

−=

 (2.25) 

In (2.25) we use ijW
~  instead of ijW  in all expressions with tildes. Under weak 

selection and small ε  the dynamics of system (2.25) quickly reaches the 
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neighborhood of plane 0=ξ  and the total population density also quickly becomes 

close to ‘carrying capacity’ 
α

µ−
==
bA

NK * . Then in the neighborhood of 0=ξ  

the allelic frequencies slowly evolve and the total population density N is retained 

in the neighborhood of equilibrium *
N , approaching it monotonically.  

2.2.2 Heterogeneous pest habitat. 

In this case, the dynamics of studied biological system is entirely described by the 

spatial demo-genetic model (2.6). 

Theorem 4. In the frequency form the spatial demo-genetic model is descibed by 

the following system of equations: 

 

( )

( )( )

.,0

;

;ln2

Ω∂∈=⋅∇=⋅∇

∆++−=
∂

∂

∇⋅∇+∆+−=
∂

∂

xnn Np

NNbWN
t

N

NppWWbp
t

p

r

rrrr
r

δαµ

δδ

  

Proof. Using Lemma 1, in (2.6) the functions of local kinetics in terms of 

frequencies will be defined by the right-hand parts of equations (2.21). 

Eliminating the local kinetics from (2.6), let us consider reduced system: 

 ij

ij
N

t

N
∆=

∂

∂
δ , (2.26) 

where i, j = r or s. 

Summing all equations of system (2.26) and denoting the frequency of each 

genotype ( )
( )
( )txN

txN
txu

ij

ij
,

,
, = , we obtain N

t

N
∆=

∂

∂
δ . Then the dynamics of the total 

population density N is described by the following differential equation: 

 ( )( ) NNbWN
t

N
∆++−=

∂

∂
δαµ , (2.27) 

where the mean population fitness .2 22
rrrrsrssss pWppWpWW ++=  
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Transforming (2.26) to the frequency form in the same way as in Lemma 1, 

we get: 

 

( )

,
ln

2
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 (2.28) 

where 1=++ rrrsss uuu . 

Then, taking into account expression (2.28) and the equality 

rsrrsr uupp
2

1
1 +=−= , we have: 
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2
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2

2

1

Npp
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N
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p
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∂
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∂

∂
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∂

∂
+

∂

∂
=

∂

∂

δδ

δ
 (2.29) 

Adding the local kinetics of system (2.21) into (2.29), we obtain the equation 

describing the spatio-temporal dynamics of the frequency of the Bt-resistance 

allele pr in spatial demo-genetic model (2.6): 

 ( ) NppWWbp
t

p
rrrr

r ln2 ∇⋅∇+∆+−=
∂

∂
δδ , (2.30) 

where the mean fitness of the Bt-resistance allele rrrsrsr pWpWW += . 

Equations (2.27), (2.30) with the boundary conditions 

 Ω∂∈=⋅∇=⋅∇ xnn ,0Npr , (2.31) 

where n  is the external normal to the boundary Ω∂ , entirely describe the evolution 

of the frequency of the Bt-resistance allele and the dynamics of the total population 

density. 

So, in the frequency form the spatial demo-genetic model (2.6) is: 
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( )

( )( )

.,0
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;ln2

Ω∂∈=⋅∇=⋅∇
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∂
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δδ

 (2.32) 

Model (2.32) differs from the classical population genetics model (1.2) coupled 

with diffusion (the spatial Fisher-Haldane-Wright model) only by the term 

Npr ln2 ∇⋅∇δ , which, together with the diffusion term, describes the dispersal of 

the resistance allele. Clearly, this term can be interpreted as an ‘advective’ term 

describing a directed flow of the allelic frequency rp  with velocity Nln2 ∇− δ . 

This advection, which is never taken into account in spatial Fisher-Haldane-Wright 

models, results from the heterogeneity of the spatial distribution of N and rp  and 

disappears if either N or rp  is uniformly distributed. 

Theorem 4 is proved ■ 

Consequence. Diffusion Fisher-Haldane-Wright model correctly describes spatial 

gene dispersal in a diploid population only in the idealistic and unrealistic case of 

homogeneous distribution of the total population density throughout the entire 

farming area Ω . 

Theorem 5. The deviation of spatial demo-genetic system (2.6) from the Hardy-

Weinberg equilibrium (1.1) is given by the differential equation: 

 ( )( ) 222 2ln22 rrsrrssrs pNWWWWppb
t

∇+∇⋅∇+∆+−−+=
∂

∂
δξδξδξ

ξ
. (2.33) 

Proof. As in Lemma 1, let us introduce the additional variable 
4

2
rs

rrss

u
uu −=ξ  to 

quantify the deviation of system (2.6) from the Hardy-Weinberg equilibrium (1.1) 

and express the genotypic frequencies via the deviation ξ  and the allelic 

frequencies: ξ+= 2
sss pu , ξ22 −= rsrs ppu , ξ+= 2

rrr pu . Then the differential 

equation of spatio-temporal dynamics of deviation ξ  can be written as (2.33). 
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As well as in the point model, system (2.6) tends to Hardy-Weinberg 

equilibrium (1.1) ( 0→ξ , ∞→t ) only if the frequency of one of the two alleles – 

r  or s  – tends to zero. Otherwise, if rsW  exceeds ssW  and rrW , system (2.6) 

evolves beyond the Hardy-Weinberg equilibrium to the polymorphic state. 

Moreover, the deviation ξ  increases due to the spatial heterogeneity of allelic 

frequencies. 

Theorem 5 is proved ■ 

In the pest population the intensity of density fluxes providing a connection 

between Bt-domains and refuges is determined by the value of diffusion coefficient 

δ . Let us consider two extreme cases: the complete panmixia ( ∞=δ ) and the 

complete isolation ( 0=δ ) of insects dwelling in the farming area Ω  that consists 

of two continuous disjoint domains of Bt-crop BtΩ  and refuge refΩ . Let the 

fraction of the refuge be refP : 10 ≤≤ refP . Then the fraction of domain planted 

with Bt-crop is refP−1 . 

I. The pest population is panmictic ( ∞=δ ). This means that the diffusion 

between Bt-domain and refuge is infinitely large. Then the population is uniformly 

distributed in the whole area Ω, and from (2.5) we have the spatially averaged 

genotypic fitness: 

 ( ) ( ) ( )( )

( )( ).11

;111

;1

σ

σσ σ

−−+=

−+−−+−=

−=

refrefss

refcrefrs

rr

PPW

chPchPW

cW

 (2.34) 

It follows from Theorem 4-5 that with infinite diffusion, the dynamics of the 

spatial demo-genetic model (2.6) coincides with the dynamics of the non-spatial 

system (2.21) that is also the Fisher-Haldane-Wright model. Without loss of 

generality, let b in (2.21) be 1. Then 

 ( ) ( ),rrr
r pfWWp

dt

dp
=−=  (2.35) 

where  
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( )
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rssrrrsrrr
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−+−+=

−+=
  

Note that the right-hand part of equation (2.35) ( )rpf  is a cubic polynomial: 

( ) ( ) ( )rrrr pgpppf −= 1 , where ( )rpg  is the linear function of pr. Then equation 

( ) 0=rpf  has 3 real roots that give the equilibrium states of system (2.35): 
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 (2.36) 

where the value of 2
rp  depends on 5 parameters: ( )refcrr Phchpp ,,,,22

σσ= . Note 

that the allelic frequency makes sense only on segment [ ]1,0 . Let us fix 4 of 5 

parameters. Following Vacher et al. (2003), we assume that the intensity of the Bt-

toxin selection is 100% ( 1=σ ) and the Bt-resistance cost is small ( 2.0=c  with the 

dominance level 2.0=ch ). Let us show that the dominance level associated with 

the Bt-toxin selection, hσ, that is called also the effective dominance (Tabashnik et 

al., 2004) and defined by Lenormand & Raymond (1998) and Vacher et al. (2003, 

2004) as the quantity σh−1 , stipulates qualitatively different behaviour of system 

(2.35) when varying parameter Pref. 

Let us consider two subcases: 

(а) low dominance level 05.0=σh . 

It follows from (2.36) that depending on the values of refP  for the given 

genetic parameters, 2
rp  may be negative, positive or be equal to zero. Let the range 

of refP  such that ( ) [ ]1,022 ∈= refrr Ppp , i.e., 2
rp  has the physical sense, be 

[ ]21 , refref PP . Note that if 12 << refref PP , the critical case of ±∞=2
rp  appears. We 

will use symbol ∞
refP  to denote such refuge fraction. The value of 2

rp  becomes 
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negative if 1
refref PP <  or ∞> refref PP , positive if ( )∞∈ refrefref PPP ,1  and zero if 

1
refref PP = . 

Let us draw a diagram of the right-hand part of equation (2.35) ( )rpf  for 

the following values of the refuge fraction Pref (Fig. 2.4): 1
refref PP = , 

( )21 , refrefref PPP ∈  and 2
refref PP > . We will study the stability of the equilibrium 

states (2.36) of system (2.35), using the graphic method (e.g., Rubin 2004). 

 

Fig. 2.4. Right-hand part of equation (2.35) ( )rpf  as a function of the frequency 

of the Bt-resistance allele, pr, for various refuge fractions refP : (а) 

1
refref PP = ; (b) ( )21 , refrefref PPP ∈ ; (c) 2

refref PP > . The stable equilibriums of 

system (2.35) are marked with black circles and the unstable equilibriums 
are marked with white circles. The given set of genetic parameters ( 1=σ , 

2.0=c , 2.0=ch ) corresponds to the HDR strategy with low dominance 

level of the Bt-toxin selection 05.0=σh . 

Let ( )21 , refrefref PPP ∈  (Fig. 2.4b). Then with growth of argument rp , at 

points 00 =rp  and 11 =rp  function ( )rpf  changes its sign from plus to minus, i.e., 

both equilibriums 00 =rp  and 11 =rp  are stable, and vice versa, at point ( )1,02 ∈rp  
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function ( )rpf  changes sign from minus to plus, and, hence, equilibrium 2
rp  is 

unstable. In this case, the evolution of the system is defined by the initial value of 

the allelic frequency rp : if ( )0=tpr  is below the critical value 2
r

cr
r pp = , the Bt-

resistance allele is eliminated with time, otherwise, it forces out the Bt-susceptible 

allele. Therefore, if ( )21 , refrefref PPP ∈ , it means only the local stability of 

equilibriums 00 =rp  and 11 =rp . In other cases, if ( )21 , refrefref PPP ∉  (Fig. 2.4a, c), 

the evolution of the genetic structure is determined by the stability of equilibriums 

00 =rp  and 11 =rp . Note that when varying parameter refP  from 0 to 1, 

equilibrium 2
rp  changes its sign and nature of the stability: when crossing the point 

1
refP  the negative equilibrium 2

rp  that has no meaning in population genetics, loses 

its stability and becomes positive. Besides, within segment [ ]21 , refref PP  the 

condition [ ]1,02 ∈rp  is satisfied. When crossing the point 2
refP  the unstable 

equilibrium 2
rp  becomes stable again but its value exceeds 1 (it is not illustrated). 

And, finally, at bifurcating point ∞
refP  the equilibrium 2

rp  loses its stability and its 

value becomes negative (Fig. 2.4c). Case (a) in Fig. 2.4 shows that independently 

of the initial values of allelic frequencies sp  and rp , the refuge fraction refP  is too 

small ( 1
refref PP ≤ ) and the selection favours the fixation of the Bt-resistance allele r 

and the elimination of the Bt-susceptible allele s. In that case, the equilibrium 

11 =rp  is stable while 00 =rp  is unstable. If the refuge fraction is large enough 

( 2
refref PP ≥ ), the equilibrium 11 =rp  becomes unstable and with time the s allele 

entirely sweeps out the r allele (Fig. 2.4c). 

With given set of genetic parameters ( 1=σ , 05.0=σh , 2.0=c , 2.0=ch ), 

for any refuge fraction [ ]1,0∈refP  the fitness of heterozygous insects rs is lower 

than fitness of both homozygotes ss and/or rr (Fig. 2.5a): rrrsss WWW <<  if 
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[ )1,0 refref PP ∈ , rrssrs WWW <≤  if [ )31 , refrefref PPP ∈ , ssrrrs WWW ≤<  if 

[ )23 , refrefref PPP ∈  and ssrsrr WWW <≤  if [ ]1,2
refref PP ∈ . It means that for any refuge 

size, the heterozygous genotype has no advantage compared to homozygous 

genotypes. Therefore, following the Fisher’s Fundamental Theorem (Fisher 1930), 

in such population the stable polymorphism can not exist. 

The bifurcation diagram (Fig. 2.5b) shows the equilibrium states of system 

(2.35) as functions of parameter refP , and equalities rsss WW =  and rrrs WW =  

determine the bifurcation values of refP : 1
refref PP =  and 2

refref PP =  at which 

equilibriums collide and exchange their stability. 

 

Fig. 2.5. (а) Spatially averaged genotypic fitness ijW  as a function of the refuge 

fraction refP . Dotted line corresponds to the fitness of ss genotype; thin solid 

line – to the fitness of rs genotype; thick solid line – to the fitness of rr 
genotype. (b) Frequency of the Bt-resistance allele rp  as a function of the 

refuge fraction refP . The stable equilibrium branches of system (2.35) are 

marked by thick solid line, unstable equilibrium branches are marked by 

dotted line. 1
refP  and 2

refP  are the bifurcation values of parameter refP . Given 

set of genetic parameters ( 1=σ , 2.0=c , 2.0=ch ) corresponds to the HDR 

strategy with low dominance level of Bt-toxin selection 05.0=σh . 

Assume that for the certain value of [ )2,0 refref PP ∈ , the system is at point 

corresponding to the upper stable branch 11 =rp , i.e., the refuge fraction is small to 
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suppress the Bt-resistance allele (Fig. 2.5b). When increasing parameter refP , the 

system moves along the branch of stable equilibrium 11 =rp  up to the bifurcation 

point 2
refref PP = , and then the stiff step-wise transition of the system to the bottom 

stable branch 00 =rp  occurs. Being the system at equilibrium 00 =rp  means that 

sufficiently large size of the refuge provides the elimination of the r allele. When 

decreasing parameter refP , the system moves to the left along the branch 00 =rp  

up to the bifurcation point 21
refrefref PPP <= , after that it returns step-wise to the 

starting branch 11 =rp . Thus, in varying parameter refP , the closed hysteresis cycle 

is implemented in the system. 

So, with low dominance levels of Bt-toxin selection σh , the bifurcation in 

system (2.35) occurs stiffly. Smooth adaptive control of the system by the small 

variations of the refuge size is impossible due to the presence of hysteresis: when 

as a result of decrease of the refuge percentage 1
refref PP <  the Bt-resistance allele r 

entirely sweeps out the Bt-susceptible allele s, the Bt-resistance gene can be 

suppressed again only if the refuge fraction will exceed 2
refP , i.e., refP  become 

large enough. Actually, it may be a question of the total stop of the Bt-crop using. 

If ( )21 , refrefref PPP ∈ , the branch of unstable equilibriums of system (2.35) 

( ) 10 2 <=< refrr Ppp  corresponding to the polymorphism in the pest population 

divides the domain of the initial values of the allelic frequency pr into the basins of 

attractions of equilibriums 00 =rp  and 11 =rp , respectively. In this case, both 

equilibriums 0
rp  and 1

rp  are locally stable if 10 2 << rp . Therefore, with any given 

refuge fraction ( )21 , refrefref PPP ∈ , the success of the HDR strategy use depends on 

the initial frequency of the r allele: if ( ) 200 rr ptp <=< , the r  allele is eliminated 

with time. If the refuge fraction refP  exceeds 2
refP , the elimination of the r allele 
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occurs at any initial frequency ( )0=tpr . Note that the branch of the stable 

equilibrium [ ]1,02 ∉rp  has no biological sense; in this case, in the system the stable 

equilibrium 11 =rp  is stabilized if the refuge fraction does not exceed 1
refP . 

 

Fig. 2.6. Right-hand part of equation (2.35) ( )rpf  as a function of the frequency 

of the Bt-resistance allele, pr, for various refuge fractions refP : (a) 

1
refref PP < ; (b) ( )21 , refrefref PPP ∈ ; (c) 2

refref PP > . The stable equilibriums of 

system (2.35) are marked with black circles and the unstable equilibriums 
are marked with white circles. Given set of genetic parameters ( 1=σ , 

2.0=c , 2.0=ch ) corresponds to the HDR strategy with high dominance 

level of the Bt-toxin selection 7.0=σh . 

(b) high dominance level 7.0=σh . 

Let the other genetic parameters be the same as in the subcase (a): 1=σ , 

2.0=c , 2.0=ch . Denoting the range of the refuge fraction [ ]21 , refref PP , for which 

the allelic frequency ( ) [ ]1,022 ∈= refrr Ppp , from formulas (2.36) we obtain that the 
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value of 2
rp  becomes negative if ( ]1,2

refref PP ∈ , zero if 2
refref PP =  and positive if 

[ )2,0 refref PP ∈ . 

Let us analyse the stability of equilibriums of system (2.35) with high 

dominance level of the Bt-toxin selection. Let ( )21 , refrefref PPP ∈ . Then with growth 

of argument rp , at points 00 =rp  and 11 =rp  function ( )rpf  changes its sign from 

minus to plus, i.e., both equilibriums 00 =rp  and 11 =rp  are unstable; and vice 

versa, at point ( )1,02 ∈rp  function ( )rpf  changes sign from plus to minus, and, 

hence, 2
rp  is the stable equilibrium (Fig. 2.6b). 

The stability of equilibrium 2
rp  means the existence of the stable 

polymorphism in the pest population. Such case is possible only if the 

heterozygous genotype rs has the advantage. Indeed, as shown in Fig 2.7a, if 

( )21 , refrefref PPP ∈  the fitness of heterozygotes rs is higher than those of 

homozygotes ss and rr. In other cases, if ( )21 , refrefref PPP ∉ , homozygotes have 

higher fitness than heterozygotes do, and, moreover, selection favours the 

elimination of the s allele if 1
refref PP ≤  (Fig. 2.6a) and the elimination of the r 

allele if 2
refref PP ≥  (Fig. 2.6c). 

In contrast to the stiff bifurcation appearing with the low dominance level of 

the Bt-toxin selection (e.g., 05.0=σh  in Fig. 2.5b), with high dominance level 

(e.g., 7.0=σh  in Fig. 2.7b), bifurcation of the system that moves along the 

branches of stable equilibriums 00 =rp , 11 =rp  and ( )refrr Ppp =2 , occurs softly at 

the critical points 1
refP  and 2

refP . Such behaviour of the system seems more 

preferential because varying the refuge fraction Pref, one can safely manage the 

HDR strategy, gradually decreasing the frequency of the Bt-resistant homozygotes 

rr up to the reasonable level. 
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Note that in both cases (low and high dominance of selection), increase in 

cost of resistance c reduces the interval [ )1,0 refP  in which the selection favours the 

fixation of the Bt-resistance allele r and the complete elimination of the Bt-

susceptible allele s. 

 

Fig. 2.7. (a) Spatially averaged genotypic fitness ijW  as a function of the refuge 

fraction refP . Dotted line corresponds to the fitness of ss genotype; thin solid 

line – to the fitness of rs genotype; thick solid line – to the fitness of rr 
genotype. (b) Frequency of the Bt-resistance allele rp  as a function of the 

refuge fraction refP . The stable equilibrium branches of system (2.35) are 

marked by thick solid line, unstable equilibrium branches are marked by 

dotted line. 1
refP  and 2

refP  are the bifurcation values of parameter refP . Given 

set of genetic parameters ( 1=σ , 2.0=c , 2.0=ch ) corresponds to the HDR 

strategy with high dominance level of Bt-toxin selection 7.0=σh . 

II. Insects dwelling in Bt-field are entirely isolated from insects dwelling in 

refuge ( 0=δ ). In this case, there is no diffusion flux between Bt-field and refuge, 

i.e., pest population consists of two territorially independent panmictic 

subpopulations. Such isolation barriers may often appear in spatially distributed 

populations, for instance, due to the geographical obstacles or isolation by a 

distance. Since we assume that each subpopulation is panmictic, in each of 

domains BtΩ  and refΩ  the evolution of the genetic structure of the pest is 

described by system (2.35). 
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We assume that in the Bt-field the fitness of the Bt-resistant genotype rr is 

higher than the fitness of the Bt-susceptible genotypes ss and rs and in the refuge 

the Bt-susceptible genotype ss has the maximum fitness. Due to the isolation, the 

homozygotization occurs in each subpopulation: in the Bt-field the genetic 

structure of the population is presented only by rr homozygote insects, in the 

refuge – only by ss homozygotes. Then with time, the frequency of the Bt-

resistance allele in the whole population reaches the following value (Fig. 2.8): 

 
( )

( ).1

1

refrrrefss

refrr

r
PNPN

PN
p

−+

−
=  (2.37) 

If the genotypic fitness is calculated by formulas (2.5), then (2.37) is 

modified to: 

 
( )( )

( ) ( )( )ref
Bt
rrref

ref
ss

ref
Bt
rr

r
PbWPbW

PbW
p

−−+−

−−
=

1

1

µµ

µ
, (2.38) 

where ( )
refxss

ref
ss xWW

Ω∈
= , ( )

Btxrr
Bt
rr xWW

Ω∈
= . 

 

Fig. 2.8. The frequency of the Bt-resistance allele rp  as a function of the refuge 

fraction refP : case of the complete isolation of panmictic subpopulations in 

BtΩ  and refΩ  domains. Here 1=ref
ssW , 9.0=Bt

rrW , 1=b , 69.0=µ . 

Thus, we investigated two opposite extreme cases – infinitely large and zero 

diffusion density fluxes between Bt-field and refuge or, in other words, panmixia 
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and isolation in the ECB population. The question naturally arises: how will the 

genetic structure of the pest evolve in the heterogeneous habitat with intermediate 

values of diffusion ( )∞∈ ,0δ ? In order to find an answer, it is required to study 

qualitatively the behaviour of the spatial demo-genetic model (2.6). 

Let the whole pest habitat be a rectangle [ ] [ ]yx LL ,0,0 ×=Ω . This is the 

simplest two-dimensional (2D) configuration of Ω . Without loss of generality, we 

will consider a one-dimensional (1D) case of system (2.6). The use of a 1D model 

essentially simplifies the mathematical notations. In particular, such 1D habitat 

corresponds to a single-strip pattern for the refuge (Fig. 2.9). 

If initially all genotypes are uniformly distributed along the side Ly of this 

refuge pattern, there are no density fluxes in this direction. Therefore, the dynamics 

of system (2.6) does not depend on the size Ly, and it is entirely described by the 

1D model. 

 

Fig. 2.9. (a) Border single-strip refuge pattern for the rectangular habitat Ω. (b) 
Its 1D simplification in the absence of the density fluxes of the pest 
genotypes along the side yL . 

In order to find stationary states of system (2.6) from condition 0=
∂

∂

t

N ij
 (i, j 

= r or s), in fact, we must solve the following boundary-value problem: 

Lx 

Lx 

ΩRef, 
refuge 

Ly 

b) 

a) 

ΩBt, 
Bt-field 

ΩRef, 
refuge 

ΩBt, 
Bt-field 

xref 

xref 
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 (2.39) 

Let us find the conditions under which the solutions of boundary-value 

problem (2.39) exist. 

Theorem 6. Spatially homogeneous stationary solutions of system (2.6) such that 

( ) 0* =xN ss , ( ) 0* =xN rs , ( )
α

µ−
= rr

rr

bW
xN * , [ ]xLx ,0∈∀ , where cWrr −=1  from 

formulas (2.5), always exist. 

Proof. Indeed, as a result of substitution of ( )*** ,, rrrsss NNN  into system (2.39) each 

equation of (2.39) becomes identical. 

Theorem 6 is proved ■ 

Theorem 7. If such spatially heterogeneous stationary solutions of system (2.6) 

that [ ]xLx ,0∈∀  ( ) ( )KxNss ,0* ∈  and ( ) ( ) 0** == xNxN rrrs , exist for the habitat 

configuration presented in Fig. 2.9 and if ( ) 0=xWss  for Btx Ω∈  and ( ) 1=xWss  for 

refx Ω∈ , then the following condition holds: 

 
α

b
NNKN ref

2
0

2
0

3

2
<







− ,  

where 0NNref < , ( )00 NN = , ( )refref xNN =  ( ( )xref Lx ,0∈  is the boundary point 

between Bt-field and refuge). 



 

 

79

 

Note that Theorem 7 gives only the necessary condition for existence of 

such solutions but not sufficient. In Theorem 7 the matter concerns the genetic 

structure of the pest population which consists only of insects of the ss genotype 

while the rs and rr genotypes possessing the Bt-resistance gene r are absent. The 

proof of Theorem 7 will also provide the method of construction of such solutions. 

Proof. If the HDR strategy provides a 100% efficiency of the Bt-toxin selection 

( 1=σ ), from formulas (2.5) we get the fitness of ss genotype: 

 




Ω∈

Ω∈
=

.,1

;,0

ref

Bt

ss
x

x
W  (2.40) 

According to the condition of the theorem, such a solution of boundary-value 

problem (2.39) that the pest population consists only of individuals of the ss 

genotype exists. If in (2.39) the densities of rs and rr genotypes are set to zero for 

any [ ]xLx ,0∈ , the problem (2.39) reduces to: 

 

( ) ( ) ,00

,

==








 −
−=

x

ss

LNN

bW
NNN

&&

&&

α

µ

δ

α

 (2.41) 

where ( )xN  is the total density of the population consisting only of homozygotes 

ss. Hereinafter, the operator of differentiation by x is denoted as a dot above the 

variable. 

Note that the solution of (2.41) will define some density distribution of the 

ss genotype on the segment [ ]xL,0 . Such distribution coupled with the zero 

distributions of rs and rr genotypes will be the sought-for solution of the stationary 

boundary-value problem (2.39). 

Since the fitness ssW  in (2.41) determines the qualitative difference in the 

dynamics in the Bt-field and refuge, we will consider problem (2.41) for each of 

these domains separately. Recall that in the initial problem (2.6) there are no 

boundary conditions between Bt-field and refuge. Therefore, in each domain the 

solving of (2.41) reduces, in fact, to the Cauchy problem (with additionally given 
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initial conditions that define the population density at the boundaries of habitat Ω ). 

However, constructing the solution of (2.41) in the whole habitat Ω , we should 

choose the initial and terminal densities ( )0N  and ( )xLN  so that at the interface 

between Bt-field and refuge such solution and its spatial gradient have no 

discontinuity and the values of ( )xN œ ( )K,0  [ ]xLx ,0∈∀ . 

Let us consider problem (2.41) for the refuge ( 1=ssW ), reducing the second 

order equation to the normal system of differential equations: 

 ( )

( ) [ ],,0,00

,

;

1

111

11

refxxY

KNNY

YN

∈=








−=

=

δ

α
&

&

 (2.42) 

where ( )xN1  is the population density in the refuge, ( )xY1  is its spatial gradient, 

( )xref Lx ,0∈  is the interface point between Bt-field and refuge (Fig. 2.9). 

We find the stationary states of system (2.42). There always exist two of them: 

 (i) 0*
1 =N , ( ) 0*

1
*
1 == NY & ; 

 (ii) KN =*
1 , ( ) 0*

1
*
1 == NY & . 

The characteristic equation of (2.42) is: 

 ( ) 022 =−− KN
δ

α
λ . (2.43) 

Then from (2.43) equilibrium (i) is a centre (
δ

α
λ Ki±=2,1 ), and equilibrium (ii) 

is a saddle (
δ

α
λ K±=2,1 ). Phase portrait of system (2.42) is shown in Fig. 2.10a. 

As evident from Fig. 2.10a, if we complete the Cauchy problem (2.42) by 

the initial condition for the population density 1N  such that ( ) KNN <=< 00 10 , 

the generating point will be describing the closed phase trajectory as long as the 

condition [ ]refxx ,0∈  holds, i.e., while system remains in the refuge. With a given 
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initial condition ( )KN ,00 ∈  and ( ) 001 =Y , the population density ( )xN1  and its 

derivative ( )xY1  are decreasing monotonically as long as ( ) 01 >xN  (i.e., while the 

population density makes biological sense), derivative ( )xY1  is negative at that. In 

general, with any given ( )KN ,00 ∈ , the density ( )ref
ref xNN 11 =  at some point 

( )xref Lx ,0∈  may be not only positive but also zero and even be negative. 

However, the condition of the theorem supposes the existence of such solution of 

stationary problem (2.39) that makes physical sense. Then [ ]refxx ,0∈∀  

( ) ( )KxN ,01 ∈ , and ( )xref Lx ,0∈∀  ( )KN ref ,01 ∈∃ . Thus, on the phase plane for 

the point lying above the separatrix and having coordinates ( ):, 11
refref YN  

( )KN ref ,01 ∈  and ( ) 011 <= ref
ref xYY  one can always find ( ):,10 KNN ref∈  ( ) 001 =Y  

( )00 =N& . 

  

Fig. 2.10. Phase portraits of the stationary system for the population consisting 
solely of insects of ss genotype dwelling in the refuge (а) and in the Bt-field 
(b). Some phase trajectories are marked with thick lines; separatrices are 
marked with grey thick lines. Arrows define the directional field of the 
system. 
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Since the function ( ) ( )KxN ,01 ∈  on the whole half-open interval [ )refx,0 , it 

follows from (2.42) that its second derivative ( ) ( ) 011 <= xNxY &&&  on [ )refx,0 . Then 

( )xN1  is a decreasing and concave (convex upwards) function on [ )refx,0 . 

Let us consider now the problem (2.41) for the Bt-field ( 0=ssW ): 

 

( ) [ ],,,0

,

;

2

222
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xrefx LxxLY

NNY

YN

∈=


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+=

=

α

µ

δ
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&

&

 (2.44) 

where ( )xN2  is the population density in the Bt-field, ( )xY2  is its spatial gradient. 

Such system has two equilibriums: 

 (iii) 0*
2 =N , ( ) 0*

2
*
2 == NY & ; 

 (iv) 
α

µ
−=*

2N , ( ) 0*
2

*
2 == NY & . 

It follows from the characteristic equation of (2.44) 022 =







+−

α

µ

δ

α
λ N  that 

equilibrium (iii) is a saddle (
δ

µ
λ ±=2,1 ), and equilibrium (iv) is a centre 

(
δ

µ
λ i±=2,1 ). 

Phase portrait of system (2.44) is shown in Fig. 2.10b. 

If we complete the problem (2.44) by the condition for the population 

density on the right end of segment [ ]xref Lx ,  such that ( ) 02 >= xLx LNN , the 

system will draw an unclosed trajectory of hyperbolic type (Fig. 2.10b) as long as 

[ ]xref Lxx ,∈ , i.e., while system remains in the Bt-field. Moreover, for 0>LxN  the 

condition ( ) 02 >xN  holds. For any :0>LxN  ( ) 02 =xLY  the population density in 

the Bt-field ( )xN2  decreases monotonically with growth of x but its derivative 
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( )xY2  increases monotonically, ( ) 02 >xN  and ( ) 02 <xY  at that. Then for 

:0>∀ LxN  ( ) 02 =xLY  ( )0=LxN&  and ( )xref Lx ,0∈∀  ( ) :22 Lxref
ref NxNN >=∃  

( ) 02 <refxY  ( )02 <refN& . Note that with any given ( ):,0 KNLx ∈  ( ) 02 =xLY  the 

density refN2  does not necessarily belong to ( )K,0 . It follows from the condition of 

the theorem that [ ]xref Lxx ,∈∀  ( ) ( )KxN ,02 ∈  and ( )xref Lx ,0∈∀  ( )KN ref ,02 ∈∃ . 

Thus, on the phase plane for the point lying above the separatrix and having 

coordinates ( ):, 22
refref YN  ( )KN ref ,02 ∈  and ( ) 022 <= ref

ref xYY , one can always find 

( ):,0 2
ref

Lx NN ∈  ( ) 02 =xLY . 

For any function ( ) 02 >xN , ( ]xref Lxx ,∈  its second derivative 

( ) ( ) 022 >= xNxY &&&  for all ( ]xref Lxx ,∈ . Then ( ) 02 >xN  is decreasing and convex 

(convex downwards) function on ( ]xref Lx , . 

If 021 >== ref
refref NNN  and 021 <== ref

refref NNN &&& , point ( )xref Lx ,0∈  is 

the point of inflection of function ( )xN  in (2.41), as this function is concave on 

[ )refx,0  and convex on ( ]xref Lx ,  (Fig. 2.11). 

 

Fig. 2.11. Stationary solution of system (2.6) such that the genetic structure of the 
pest population consists only of individuals of ss genotype while rs and rr 
genotypes possessing Bt-resistance gene are absent. refx  is the interface 

point between Bt-field (80%) and refuge (20%). 
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Let us find the necessary condition under which the solution ( )xN  of the 

boundary-value problem (2.41) is continuous and continuously differentiable at 

point ( )xref Lx ,0∈ . To construct a solution, we choose such initial and terminal 

densities 0N  and LxN  from interval ( )K,0  that at point ( )xref Lx ,0∈  the solution 

of system (2.42) coincides with the solution of system (2.44), i.e., 

ref
refref NNN == 21  and ref

refref NNN &&& == 21 , and, moreover, ( )KNref ,0∈ , 

0<refN& . Then solution of (2.41) will be continuous and continuously 

differentiable on the whole 1D habitat Ω . 

We will analyse the dynamics of system (2.41) on the phase plane. Starting 

from the initial point with coordinates ( )0,0N : ( )KN ,00 ∈  (Fig. 2.10a, point A in 

Fig. 2.12), system (2.41) will draw an appropriate closed trajectory of system 

(2.42) as long as refxx ≤ , i.e., up to point with coordinates ( )refref NN &, , then at 

point ( )refref NN &, , system (2.41) will proceed to some phase trajectory of system 

(2.44) and continue moving as long as xLx ≤ . If point with coordinates 

( )refref NN &, : ( )KNref ,0∈ , 0<refN&  (point B in Fig. 2.12) lies above incoming 

separatrix of the saddle of system (2.44) in the fourth quadrant of the phase plane 

(grey dotted line in Fig. 2.12), after the transiting from the refuge to the Bt-field, 

system (2.41) will continue drawing a non-closed trajectory of hyperbolic type up 

to point ( )0,LxN : ( )KNLx ,0∈  (point C in Fig. 2.12). The solution constructed in 

such a way will be continuous and continuously differentiable on whole domain 

[ ]xL,0  and, in addition, all its values on [ ]xL,0  will lie in interval ( )K,0 . 

We will find the phase trajectories of (2.42) in an explicit form, using the 

first integral of equation 

 ( ) ( )1111 NFKNNN =−=
δ

α
&& . (2.45) 
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Fig. 2.12. Phase portrait of system (2.41). Phase trajectories of system are marked 
with black lines in the refuge refΩ  and with grey lines in the Bt-field BtΩ . 

Separatrices are marked with dotted lines. Arc AB corresponds to the section 
of the closed phase trajectory which is generated by system within the 
refuge. Arc BC corresponds to the section of the non-closed phase trajectory 
of hyperbolic type, which is generated by system within the Bt-field. 

Denoting ( ) ( ) ηηη
δ

α
dKNV

N

∫ 







−=

1

0

1 , we obtain ( ) ( )11 NVNF &=  and can 

rewrite equation (2.45) as: 

 ( ) 011 =− NVN &&& . (2.46) 

We multiply equation (2.46) by 1N
&  and rewrite its left-hand part as the total 

derivative: 

α

µ
−  
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 ( ) 0
2

1

2
1 =








− NV

N

dx

d &

. 

The expression under the sign of first derivative must be constant: 

 ( ) 11

2
1

2
CNV

N
=−

&

. (2.47) 

At each value of constant 1C  this equation determines some trajectory on the phase 

plane for system (2.42). 

Evaluating ( )1NV  and substituting it into (2.47), we find the first integral 

describing the trajectories of system (2.42) on the phase plane: 

 







−+±= K

N
NCN

3

2 12
111

δ

α
& . (2.48) 

Among all phase trajectories given by equation (2.48), let us choose such 

trajectory that satisfies the boundary condition of problem (2.42), i.e., it passes 

through point ( )0,0N : ( )KN ,00 ∈ . Then in (2.48) 







−−= K

N
NC

3

2 02
01 δ

α
 and the 

phase trajectory of the system within the refuge domain is closed (Fig. 2.10a, 

2.12). 

Substituting refNN =1  into (2.48), we evaluate derivative refN&  at point 

refxx = : 

 

















−−








−±= K

N
NK

N
NN

ref

refref
3

2

3

2
02

0
2

δ

α
& . (2.49) 

The expression under the square-root sign is non-negative if 0NNref < . Indeed, 
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( ) ( )

( ) ( ) ( )( )
( ) ( ) ( )( )
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Let us choose ( )KN ,00 ∈  such that at the interface between the refuge and 

the Bt-field 0>refN  and 0<refN& . 

In order that the point with coordinates ( )refref NN &,  lies above incoming 

separatrix of the saddle of system (2.44) in the fourth quadrant of the phase plane, 

it is necessary for the ordinate of this point refN&  to be less than the ordinate of the 

point belonging to the separatrix and having the same abscissa refN . We will find 

the equation of the separatrix of system (2.44), using its first integral. We multiply 

equation 







+=

α

µ

δ

α
222 NNN&&  by 2N& , transfer all terms into the left-hand part and 

rewrite it as the total derivative. Taking into account that the expression under the 

sign of the first derivative must be constant, we obtain the first integral describing 

the move of system (2.44) on the phase plane: 

 







++±=

α

µ

δ

α

3

2 22
222

N
NCN& , (2.50) 

where constC =2 . 

Equation (2.50) defines the family of phase trajectories of system (2.44). We 

substitute 02 =C  into (2.50). Then equation 

 







+±=

α

µ

δ

α

3

2 22
22

N
NN&  (2.51) 

defines the curve consisting of a couple of incoming separatrices and a couple of 

outgoing separatrices and, in addition, the saddle point. However, the separatrix of 

system (2.44) does not include the saddle point ( )0,0  but converges asymptotically 
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to it if ∞→x  (Fig. 2.10b, 2.12). We are interested only in the separatrix located in 

the fourth quadrant of the phase plane. Substituting ( )02 ,0 NNN ref ∈=  into (2.51), 

and discarding the positive value of appropriate derivative, we obtain: 

 







+−=

α

µ

δ

α

3

22 ref

ref
sep
ref

N
NN& . (2.52) 

Then in order that solution ( )xN  of system (2.41) be continuous and 

continuously differentiable in [ ]xL,0 , and all its values belong to the interval 

( )K,0 , it is necessary that sep
refref NN && > , i.e. 

 
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

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+−>
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
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α

µ

δ

α
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3
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0
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ref

ref

ref

N
NK

N
NK

N
N   

or 

 







−> 0

2
0

2

3

2
NKN

b
N ref α

. (2.53) 

Thus, we construct spatially heterogeneous stationary solution of system 

(2.6) for the habitat configuration presented in Fig. 2.9 such that the genetic 

structure of the pest consists solely of insects of ss genotype. Such solution is 

continuous and continuously differentiable in the whole segment [ ]xL,0 , and its 

values belong to the interval ( )K,0  and, moreover, zero-flux boundary conditions 

hold. 

Theorem 7 is completely proved ■ 

Remark: In the proof of Theorem 7 we require not only the continuity of function 

( )xN ss  at point refx  but also the continuity of its first derivative because the 

density flux 
x

Nss

∂

∂
−δ  through this point must be constant. However, the second 

derivative of this function at point refx  cannot be continuous because the function 
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of local kinetics of system (2.6) is not continuous at the interface between the 

refuge and the Bt-field. 

A more general theorem is true: 

Theorem 8. If the spatially heterogeneous stationary solutions of system (2.6), 

such that [ ]xLx ,0∈∀  ( ) 






 −
∈

α

µbW
xN

ref
ss

ss ,0*  and ( ) ( ) 0** == xNxN rrrs , exist for 

the habitat configuration presented in Fig. 2.9 and if Bt
ss

ref
ss WW >  and 

b
W ref

ss

µ
>  

( ( ) ( )
Btref xss
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where 0NNref < , ( )00 NN = , ( )refref xNN =  ( ( )xref Lx ,0∈  is the interface point 

between Bt-field and refuge). 

Proof. As in Theorem 7, let in (2.39) the densities of rs and rr genotypes be zero 

for all [ ]xLx ,0∈ . Then the boundary-value problem (2.39) reduces to (2.41). 

Note that here we do not suppose that the genotypic fitness [ ]1,0∈ijW  satisfies 

formulas (2.5). Let us analyse the singular points of system (2.41) in the refuge 

refΩ  and in the Bt-field BtΩ : 
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System (2.54) has four singular points: 

 0* =jN , 0* =jY ; 
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The characteristic equation for (2.54) is 022 =
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Let us consider three cases: 

a) 
b

W ref
ss

µ
> , 

b
W Bt

ss

µ
< . Then 0* =refN , 0* =refY  is a centre; 0* =BtN , 0* =BtY  is a 

saddle; 0* >
−

=
α

µbW
N

ref
ss

ref , 0* =refY  is a saddle; 0* <
−

=
α

µbW
N

Bt
ss

Bt , 0* =BtY  is a 

centre (Fig. 2.13a). This case is similar to considered one in Theorem 7. Repeating 

the scheme of constructing the stationary solution of Theorem 7, we obtain the 

necessary condition for existence of the solution of Theorem 8: 

 
( )

αα

µ Bt
ss

ref
ss

ref

ref
ss WWb

NN
bW

N
−

<







−

− 2
0

2
0

3

2
, (2.55) 

where 0NNref < , ( )00 NN = , ( )refref xNN =  ( ( )xref Lx ,0∈ is the boundary point 

between Bt-field and refuge). 

b) 
b

W ref
ss

µ
> , 

b
W Bt

ss

µ
> . Then 0* =refN , 0* =refY  is a centre; 0* =BtN , 0* =BtY  is a 

centre; 0* >
−

=
α

µbW
N

ref
ss

ref , 0* =refY  is a saddle; 0* >
−

=
α

µbW
N

Bt
ss

Bt , 0* =BtY  is a 

saddle (Fig. 2.13b). One can see from Fig. 2.13b that in this case, the necessary 

condition for existence of the solution of Theorem 8 is also defined by condition 

(2.55). 

c) 
b

WW ref
ss

Bt
ss

µ
<< . Then 0* =refN , 0* =refY  is a saddle; 0* =BtN , 0* =BtY  is a 

saddle; 0* <
−

=
α

µbW
N

ref
ss

ref , 0* =refY  is a centre; 0* <
−

=
α

µbW
N

Bt
ss

Bt , 0* =BtY  is a 

centre (Fig. 2.13c). In this case, the stationary solution of system (2.6) is as 

follows: ( ) ( ) ( ) 0*** === xNxNxN rrrsss  [ ]xLx ,0∈∀ , that corresponds to the saddle 
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Fig. 2.13. Phase portraits of system (2.41) in the case of ref
ss

Bt
ss WW < . Here 

( ) αµ−= bWN ref
ss

*
1 , ( ) αµ−= bWN Bt

ss
*
2 . (a) bW ref

ss µ> , bW Bt
ss µ< ; (b) 

bW ref
ss µ> , bW Bt

ss µ> ; (c) bWW ref
ss

Bt
ss µ<< . Phase trajectories of system 

are marked with black lines in the refuge refΩ  and with grey lines in the Bt-

field BtΩ . Separatrices are marked with dotted lines. Arc AB corresponds to 

the section of the closed phase trajectory of the system within the refuge. 
Arc BC corresponds to the section of the non-closed phase trajectory of 
hyperbolic type that is generated by system within the Bt-field. Point A 
corresponds to the left boundary condition of problem (2.41), point C – to 
the right-hand one. Point B is the point of sewing together the solutions in 
the refuge and in the Bt-field. 

a) 

b) 

c) 



 

 

92

 

point (0, 0) on the phase plane (Fig. 2.13c), i.e., to the unstable equilibrium. 

Theorem 8 is completely proved ■ 

2.3 Simulation results 

To investigate the spatio-temporal dynamics of the genetic structure of the 

ECB population when using different scenarios of management strategies (the 

HDR strategy, biocontrol and their combination), simulation models were 

constructed in the integrated development environment Delphi 7.0. These models 

allow varying all considered characteristics of plant resource, pest and its 

parasitoid, defining their initial distributions in space, fixing different sizes of the 

ECB habitat, various sizes, arrangement and configuration of refuges. The bi-

trophic models “pest – parasitoid” and “plant resource – pest” and the appropriate 

simulation results will be described in details in the third chapter. 

For carrying out numerical simulations, we discretized in space the original 

continuous diffusion models (demo-genetic models in the density form (2.6) and in 

the frequency form (2.32) and also Fisher-Haldane-Wright model which is actually 

model (2.32) less the advective term) with a regular grid along the spatial 

coordinates x, y, approximating the spatial derivatives with the central difference in 

each node (see Appendix 2). The obtained system of ordinary differential 

equations with the preset initial conditions was integrated by the Runge-Kutta 

method of the fourth order with automatic time step selection. The accuracy of 

calculations was checked on the doubled spatial grid. 

In all our simulations, the initial total density of the pest was taken as 2% of 

the carrying capacity 6104.147 ⋅=K  ind/km2 (see § 2.1.5), corresponding to 

60 10948.2 ×=N  ind/km2 (or 0.44 ind/plant). We assume that as a result of 

recurrent mutations, the Bt-resistance allele already exists in the pest population at 

an initial frequency of 0015.00 =rp , which is somewhat higher than the estimate of 

310−<rp  for the ECB population in the US Corn Belt (Andow et al. 2000; 

Bourguet et al. 2003). Such initial conditions correspond to a pessimistic scenario 
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leading to more cautious forecasts for resistance development in the pest 

population. We also assume that, before planting the Bt maize, there were no 

resistant homozygous individuals rr and only a small number of heterozygotes rs 

possessing one copy of the Bt-resistance allele. These assumptions are consistent 

with the results of field investigations in natural ECB populations (Andow et al. 

2000; Bourguet et al. 2003). If we assume that the initial genotype densities are 

uniformly distributed in space, given that 
N

NN
p rsrr
r

5.0+
= , we obtain the 

following initial densities of pest genotypes: 29391560 =ssN  ind/km2 (0.439 

ind/plant), 88440 =rsN  ind/km2 (0.001 ind/plant), 00 =rrN . 

2.3.1 Stability analysis of the homogeneous and heterogeneous spatial states of 

the model 

Varying the size of the single-strip refuge (Fig. 2.9b) in a one-dimensional 

habitat 16 km long, we investigated the stability of stationary states of model 

(2.32) and Fisherian diffusion model under the assumption that the insects 

possessing the Bt-resistance gene ‘pays’ 10% of the fitness rrW  ( 1.0=c ) for the 

advantage in the toxic Bt-fields. The genetic parameters of the model corresponds 

to the HDR strategy (see Fig. 2.14), the ecological parameters – to the modelled 

pest species Ostrinia nubilalis (§ 2.1.5). As the large-scale diffusion coefficient δ  

of insect species is difficult to estimate from a small number of field observations, 

we will vary this coefficient from 0 to ∞, with irregular increments. 

Note that spatially homogeneous stationary state of system (2.6): ( ) 0* =xN ss , 

( ) 0* =xN rs , ( ) ( )
α

µ−−
=

cb
xNrr

1*  [ ]xLx ,0∈∀ , the existence of which was proved 

in Theorem 6, corresponds to the spatially homogeneous stationary state 1=rp  of 

system (2.32). The spatially heterogeneous stationary solutions of model (2.6) such 

that ( ) ( )KxNss ,0* ∈ , ( ) ( ) 0** == xNxN rrrs  [ ]xLx ,0∈∀ , correspond to the 

equilibrium 0=rp  in model (2.32). For constructing such solutions, we used a 
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shooting method modified according to Theorem 7 so that to sew together 

solutions obtained for two qualitatively different domains of pest habitat: Bt field 

and refuge (Appendix 3A). Then, using Matlab 7.0, we found numerically the 

bifurcation values of the refuge percentage at which the equilibriums 0=rp , 

1=rp  lose their stability in model (2.32) (Appendix 3B). The location of 

eigenvalues of Jacobian of system (2.6) on the complex plane characterises the 

occurring bifurcations. When varying the bifurcation parameter (refuge 

percentage), the equilibriums 0=rp  and 1=rp  lose their stability monotonically 

because only one eigenvalue crosses the imaginary axis from the left-hand to the 

right-hand of the complex plane while the imaginary part of this eigenvalue 

remains zero. Each branch of stable non-trivial equilibrium ( )1,0∈rp  of model 

(2.32) that corresponds to the stable polymorphic stationary state of system (2.6) 

( )xNss
* , ( )xNrs

* , ( ) ( )KxNrr ,0* ∈  [ ]xLx ,0∈∀ , is constructed by means of numerical 

simulations. We supplemented the bifurcation diagram with the branches of 

equilibriums arising from the extreme cases – panmixia ( ∞=δ ) and isolation 

( 0=δ ) between Bt-field and refuge – considered in details in § 2.2.2. With 

sufficiently high diffusion coefficient δ (for instance, with 1=δ  km2yr−1 and 

higher, up to ∞=δ ), the branch corresponding to the polymorphic state of the 

population ( ( )1,0∈rp ) becomes unstable and the hysteresis cycle appears in the 

system (Fig. 2.14a). 

We also constructed the bifurcation diagram for the Fisher-Haldane-Wright 

model (Fig. 2.14b), using the same method for the determination of the bifurcation 

values of the refuge percentage as in demo-genetic model (2.32). Note that 

according to Lemma 1 and Consequence of Theorem 4, spatially homogeneous 

stationary state of demo-genetic model (2.32) 1=rp  is also an equilibrium of the 

Fisher-Haldane-Wright model. Therefore, the bifurcation values of the refuge 

percentage at which such equilibrium loses its stability coincide for both models. 
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Fig. 2.14. Frequency of the Bt-resistance allele pr as a function of refuge 
percentage for (a) the demo-genetic model (2.6) and (b) the Fisher-Haldane-
Wright model. The branches of stable equilibriums are marked with solid 
lines. The branches of unstable equilibriums are marked with dotted lines. A 
given set of genetic parameters corresponds to the HDR strategy: 1=σ , 

1.0=c , 14.0=σh , 2.0=ch . 

It is noteworthy that with a cost of Bt-resistance, the HDR strategy allows 

not only delaying as in case of 0=c  but also entirely preventing the pest 

adaptation to the Bt-modified crop. Let us compare the stationary regimes 

emerging in both diffusion models – demo-genetic model and Fisherian – 

depending on the possibility to solve this applied problem. 

Bifurcation analysis of the demo-genetic model (2.32) has shown that with 

small-to-high diffusion coefficient δ, the stiff bifurcation in (2.32) occurs 

(Fig. 2.14a). With high pest dispersal ( 1≥δ  km2yr−1), there exists a closed 

hysteresis cycle which does not allow to manage system (2.32) smoothly via the 

small variation of the refuge percentage. For instance, with 10=δ  km2yr−1, if the 
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refuge size becomes less than 1P , the Bt-resistance allele r entirely sweeps out the 

Bt-susceptible allele s (all population will consist solely of the Bt-resistant insects 

of rr genotype) and the Bt-resistance gene can be suppressed again only owing to 

the excessive increase of the refuge percentage (> 2P ), i.e., here this is a question of 

the really large refuges. In this case, it is most likely that growers will have to stop 

the Bt-crop using in fields, thereby losing profit. 

With low pest dispersal ( 1.0<δ  km2yr−1), we may smoothly manage the 

system, adaptively varying the refuge size, despite the gaps in the critical points in 

motion along the stable branch 0=rp . For instance, with 1.0=δ  km2yr−1, 

crossing the critical point 2P  with decrease of the refuge size, one can always 

return to the stable regime 0=rp  when in the population there is no Bt-resistance 

gene, just slightly having increased the refuge size. Thus, the pest dispersal plays 

an important role in ensuring the efficiency of the HDR strategy. 

Bifurcation analysis of the Fisher-Haldane-Wright model has shown (Fig. 

2.14b) that only in cases of zero and of infinitely large pest mobility ( 0=δ  and ∞) 

this model gives the same prognosis as the demo-genetic model (2.32). In other 

cases, the Fisherian model predicts that the effective use of the HDR strategy 

aimed at preventing the pest adaptation to Bt-maize ( 0=rp ) will require too large 

refuges close to 100% (98% of the whole cultivated area Ω with 1.0=δ  km2yr−1) 

while in the demo-genetic model (2.32) one may entirely prevent the Bt-resistance 

evolution in the ECB population with much less refuge sizes (21% of the whole 

cultivated area Ω with 1.0=δ  km2yr−1). 

2.3.2 Analysis of the efficiency of the “high dose-refuge” strategy for 1D and 

2D habitats 

For solving the posed problem, we have carried out a series of simulations 

with the demo-genetic model (2.32) under the assumption that there is no Bt-

resistance cost which is paid by the insects possessing the Bt-resistance gene for 

their advantage in toxic Bt-plants ( 0=c ). It is evident that without cost of 
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resistance, it is impossible to prevent the pest adaptation to the Bt-crop. In this 

case, the HDR strategy may only delay the Bt-resistance development in the pest 

population, i.e., spatially homogeneous distribution ( ) ( ) 0== xNxN rsss , 

( ) KxN rr =  Ω∈∀x  is a unique stable stationary state of model (2.6), or ( ) 1=xpr , 

( ) ( ) KxNxN rr == , ( ) 0=xξ  Ω∈∀x  in model (2.32). 

The proposed model (2.32) was used for three purposes:  

- to investigate the spatio-temporal patterns of Bt-resistance development in 

the ECB population; 

- to study the influence of refuge size and ECB dispersal on delaying Bt-

resistance; 

- to compare the effectiveness of refuge configurations. 

Let us consider the simplest case of the pest habitat [ ] [ ]yx LL ,0,0 ×=Ω  

where 16=xL  km, 16=yL  km, i.e., we fix the modelled field Ω  as a square. 

We used two criteria for assessing the efficiency of Bt-resistance 

management and pest control strategies: 

1) time taken to develop Bt-resistance, evaluated as the time 10T  required for 

the frequency of the resistance allele to reach 10% over the total ECB 

population; 

2) spatially averaged ECB density: ( )∫>=<
xL

x

dxtxN
L

N
0

,
1

 for the 1D habitat 

and ( )∫ ∫>=<
y x

L L

yx

dydxtyxN
LL

N
0 0

,,
1

 for the rectangle 2D habitat. 

In all simulations, we assumed the partial Bt-resistance of the heterozygous 

genotype, having determined the “high dose” as ability of Bt-toxin to kill 100% of 

Bt-susceptible homozygous insects and 95% of heterozygous insects ( 1=σ , 

05.0=σh ). According to formulas (2.5), in the absence of the Bt-resistance cost 

( 0=c ) the fitness of each genotype in the ECB population is defined as: 
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(а) spatio-temporal patterns of Bt-resistance development 

Using a fixed refuge percentage (20% of Ω) and a fixed diffusion coefficient 

1.0=δ  km2yr-1, we analysed the genotypic dynamics and the rate of Bt-resistance 

invasion in the ECB population, using a single-strip pattern for the refuge 

(Fig. 2.9a). 

Simulations with the demo-genetic model (2.32) indicated that the HDR 

strategy has an immediate effect, disrupting the initial homogeneity of genotype 

densities. However, the frequency of the Bt-resistance allele rp  slowly increases, 

reaching 0.002 only after 11 years (Fig. 2.15a). At this stage, pest density in the 

refuge reaches levels slightly below the carrying capacity whereas the pest is 

virtually absent from the Bt area. In the refuge and also in the cultivated area as a 

whole, the pest population consists principally of insects of the ss genotype (about 

99%). With given set of model parameters, this distribution persists for almost 560 

years. Nevertheless, the rr genotype has a high coefficient of survival on Bt plants 

and, despite the influx of large numbers of Bt-susceptible potential mates from the 

refuge, the frequency of the Bt-resistance allele rp  slowly but steadily increases. 

As a result, the system tends ultimately to spatially homogeneous state 

corresponding to complete invasion with the resistant rr genotype in the whole 

cultivated area Ω (Fig. 2.15e). ). Once the frequency of the Bt-resistance gene 

reaches some critical value ( 10≈rp %), complete invasion of the Bt area by the rr 

genotype takes only five years (Fig. 2.15d), the Bt-susceptible genotypes from the 

refuge being completely replaced by the resistant genotype within 36 years 

(Fig. 2.15e). 
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Fig. 2.15. Density distribution of ECB genotypes in a one-dimensional area 16 km 
long at the time (years) at which the frequency of the resistance allele rp  

sequentially reaches 0.002, 0.1, 0.7, 0.85 and 1, for a 20% refuge area, in 
both diffusion models: demo-genetic and Fisherian. 
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We carried out similar simulations with the Fisher-Haldane-Wright diffusion 

model. In contrast to what was observed with the demo-genetic model (2.32), 

when rp  reaches 0.2% in the Fisherian model, Bt-susceptible genotypes occupy 

only 30% of the carrying capacity of the refuge (Fig. 2.15f). However, the spatially 

heterogeneous distribution of Bt-susceptible genotypes (as in Fig. 2.15a) emerges 

very rapidly (within 4 years) but persists for only five years (contrary to 560 years 

in the demo-genetic model). Complete invasion by the Bt-resistant genotype rr 

requires a further 36 years (Fig. 2.15j). 

The difference between two modelling approaches – demo-genetic and 

Fisherian – lies in both the duration of the process of the pest adaptation to Bt-crop 

and the nature of the spatio-temporal dynamics. In the demo-genetic diffusion 

model (2.32), the conditions favouring the appearance of rr individuals are at the 

extreme right-hand side of the Bt domain (Fig. 2.15b). In the Fisherian diffusion 

model, these conditions occur near the border between the refuge and the Bt field 

areas (Fig. 2.15g). 

(b) influence of refuge size and ECB dispersal 

We determined the period of time 10T  during which the frequency of the 

resistance allele remained below 10% in a series of simulations with the demo-

genetic diffusion model and Fisherian diffusion model, varying the size of the 

single-strip refuge (Fig. 2.9b) and the diffusion coefficient δ . The results are 

reported in Table 2.1. 

The data for the demo-genetic model showed that in cases of low pest 

dispersal ( 01.0≤δ -12 yrkm ) or panmixia ( ∞=δ ), the increasing of the size of the 

refuge has little effect despite the monotonic increase of time 10T , as it does not 

delay the development of Bt resistance (Bt resistance develops within 7 to 26 

years). For intermediate values of diffusion coefficient δ  (0.01 to 1 -12 yrkm ), 10T  

steeply increases with increasing of refuge size in the demo-genetic model (2.32), 

and may even reach several  hundreds  and  thousands  of  years,  providing  strong 



 

 

101

 

Table 2.1. Time 10T  (years) in the demo-genetic and Fisherian diffusion models, 

for various combinations of refuge size and diffusion coefficient, with a 
single-strip border refuge as in Fig. 2.9b. 

 Refuge percentage (%) Diffusion,  

δ ( -12 yrkm )  5 10 15 20 25 30 35 40 45 50 

  Demo-genetic diffusion model 

0  24 24 24 24 24 24 24 25 25 25 

0.01  24 24 24 24 25 25 25 25 25 26 

0.02  24 24 24 25 25 25 26 2034 2483 2968 

0.03  24 25 25 25 992 1294 1627 1988 2376 2791 

0.04  24 25 485 720 979 1262 1567 1894 2242 2610 

0.05  92 266 473 700 947 1213 1496 1798 2116 2451 

0.1  67 205 382 574 776 988 1208 1437 1675 1920 

0.5  20 69 140 229 329 435 545 657 771 881 

1  13 37 78 130 192 261 335 410 487 564 

2  10 21 43 72 106 146 191 239 289 341 

3  9 16 30 51 75 103 135 170 207 246 

4  8 14 24 39 59 80 105 132 161 192 

5  8 12 20 32 48 66 86 108 132 156 

10  7 9 13 18 26 35 46 57 69 80 

20  7 8 10 12 15 19 24 29 35 41 

…  … … … … … … … … … … 

∞  7 7 8 8 9 9 10 11 12 13 

  Fisher-Haldane-Wright diffusion model 

0  24 24 24 24 24 24 24 25 25 25 

0.01  8 9 9 9 9 9 9 10 10 10 

0.02  8 9 9 9 9 9 9 9 9 9 

0.03  8 8 9 9 9 9 9 9 9 9 

0.04  8 8 9 9 9 9 9 9 9 9 

0.05  8 8 9 9 9 9 9 9 9 9 

0.1  8 8 8 9 9 9 9 9 9 9 

0.5  7 8 8 8 8 8 9 9 9 9 

1  7 7 8 8 8 8 9 9 9 9 

2  7 7 8 8 8 8 9 9 9 9 

3  7 7 8 8 8 9 9 9 10 10 

4  5 7 8 8 8 9 9 10 10 11 

5  5 7 8 8 8 9 9 10 11 12 

10  5 6 8 8 9 9 10 10 11 12 

20  4 5 6 8 9 9 10 11 12 13 

…  … … … … … … … … … … 

∞  7 7 8 8 9 9 10 11 12 13 
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evidence that the HDR strategy is efficient. However, for a given refuge size, 10T  

increases considerably at a particular value of the diffusion coefficient, then 

decreases monotonically with further increases in δ . At high levels of pest 

dispersal ( 1>δ  -12 yrkm ), 10T  increases only weakly with refuge size. Note that 

the monotonic dependence of 10T  on the refuge percentage holds at any δ. 

Demo-genetic model (2.32) also indicates that in the total absence of a 

refuge in the toxic Bt-field ( BtΩ=Ω ) the Bt-resistance develops within 7 years at 

any ECB mobility. 

For comparison, we performed the same simulations at the same parameters 

in the conventional frequency-based model (Table 2.1). One can see that 

throughout the range of δ variation the time 10T  monotonically (but slightly) 

increases with the refuge size. On the other hand, the increasing pest mobility at 

fixed refuge size violates the monotony: the delay time first declines with 

increasing mobility and then tends to rise again. However, all the 10T  values thus 

obtained are too low to support the HDR strategy: mostly less than 10 years, and 

within 25 years at any combinations. 

(c) effectiveness of refuge configurations 

We investigated the effects of refuge shape and their spatial arrangement 

relative to the Bt-field on the efficiency of the HDR strategy with different fixed 

values of refuge percentage and pest dispersal δ (Fig. 2.16, 2.17). Simulations with 

the demo-genetic model (2.32) showed that for a field size of 16 km by 16 km, the 

single-strip border refuge (Fig. 2.16a) was the most effective of the refuge forms 

tested (Figs. 2.16a-f). Locating the single-strip refuge in the middle of the maize 

field (Fig. 2.16b) approximately halved 10T , resulting in significantly higher levels 

of ECB infestation in the Bt area than with the refuge at the border, as in Fig. 

2.16a. Note that the efficiency of this pattern is similar to the efficiency evaluated 

with two refuge strips located along the opposite sides of the Bt-field (Fig. 2.16c). 

Splitting a one-strip refuge into several strips located within the Bt-field even 
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greater decreased the efficiency of the refuge (Figs. 2.16d,e). However, four strips 

planted with conventional maize in the frame refuge pattern (Fig. 2.16 f) almost in 

10 times are more effective in the delay time 10T  than pattern (e) in Fig. 2.16. 

Field size Field 
pattern 

16 km by 16 km 32 km by 32 km 

(a) 

 

  

(b) 

 

  

(c) 

 

  

(d) 

 

  

(e) 

 

  

(f) 

 

  
 - years by which the development of Bt-resistance is delayed 

 - <N>, ind/plant in Ω  

 - <NBt>, ind/plant in BtΩ  

Fig. 2.16. Time 10T  (years) required for the frequency of the resistance allele to 

reach 10% over the whole farming area Ω  and the levels of ECB invasion 
(ind/plant) of the whole maize area and the Bt area, with 1.0<rp  (during 

10T ), in the demo-genetic diffusion model. The refuge area is shown in black 

and the Bt area is shown in white. Refuges account for 20% of total area for 

all patterns. Pest dispersal -12yrkm07.0=δ . 

Simulations with square refuge structures also indicated that, for the same 

field size of 16 km by 16 km and the same proportion (20%) of refuge, increasing 

the number of refuge patches by decreasing their size greatly decreased the 
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efficiency of the HDR strategy (Fig. 2.17). Note that as with strip refuges 

(Fig. 2.16), the aggregation of square refuges along the border of habitat Ω, in 

particular, in one of its corners (Fig. 2.17a) allows much longer to suppress the Bt-

resistance development in the ECB population and provide lower infestation level 

of the Bt-field by the pest than  the  refuge  located  in  the  middle  of  the  Bt-field  

Field size Field 
pattern 

16 km by 16 km 32 km by 32 km 

(a) 

 

  

(b) 

 

  

(c) 

 

  

(d) 

 

 

(e) 

 

 

(f) 

 

 
 - years by which the development of Bt-resistance is delayed 

 - <N>, ind/plant in Ω  

 - <NBt>, ind/plant in BtΩ  

Fig. 2.17. Time 10T  (years) required for the frequency of the resistance allele to 

reach 10% over the whole farming area Ω  and the levels of ECB invasion 
(ind/plant) of the whole maize area and the Bt area, with 1.0<rp  (during 

10T ), in the demo-genetic diffusion model. The refuge area is shown in black 

and the Bt area is shown in white. Refuges account for 20% of total area for 

all patterns. Pest dispersal -12yrkm07.0=δ . 
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(Fig. 2.17b). In addition, the efficiency of patterns (b) and (c) in Fig. 2.17 virtually 

coincides. 

Note that pest dispersal and field area are interrelated quantities. The 

diffusion coefficient δ  can be normalised with respect to field size, if a decrease in 

δ  is considered equivalent to an increase in field size. Thus, our conclusions 

concerning the maximal efficiency of aggregated refuges (Figs. 2.16a and 2.17a) 

depend on the fixed value of δ  and/or field size. For analysing this dependence, 

we enlarged the total area of modelled habitat Ω in 4 times (see second columns in 

Figs. 2.16-17), keeping the proportion between refuge and Bt-field as 20% and 

80%, respectively. In this case, those refuge patterns that were more effective with 

smaller field area (16 km by 16 km) demonstrate the significant reduction of time 

required for the Bt-adaptation of the ECB: from 646 and 841 to 23 and 24 years, 

respectively, for patterns in Figs. 2.16a and 2.17a. However, regarding time 10T  the 

efficiency of other spatial refuge structures doubled and even tripled (Figs. 2.16 b-

d,f and 2.17b-f) and for four-strip pattern (e) in Fig. 2.16 10T  increased almost in 

10 times. At the same time, the level of ECB infestation decreased: for some 

patterns this characteristic became nearly two times less (Figs. 2.16 b,c,f and 

2.17 b,c). Moreover, with the ECB habitat of 32 km by 32 km as well as with the 

habitat of 16 km by 16 km, model (2.32) predicts virtually the same efficiency of 

strip refuge patterns (b) and (c) in Fig. 2.16, which virtually coincides with the 

efficiency of pattern (a) for the habitat of 16 km by 16 km (Fig. 2.16). We also 

obtain the similar result with the square refuges (compare patterns (b) and (c) for 

the habitat of 32 km by 32 km and pattern (a) for the habitat of 16 km by 16 km in 

Fig. 2.17). Such fact of results congruence is not surprising and for the refuge 

patterns (b) and (c) in Figs. 2.16 and 2.17 it is entirely explained by the 

equivalence of location of these patterns within the Bt-field in regard to the same 

number and direction of diffusive density fluxes connecting a refuge and Bt-field 

in the habitat with reflective boundaries. Besides, refuge patterns (b) and (c) for the 

habitat of 32 km by 32 km virtually implement fourfold iteration of pattern (a) for 
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the habitat of 16 km by 16 km, since the intensity of the diffusion flux δ remained 

constant in all simulations. 

It is evident that with larger farming area, at the regional scale for example, 

(or with a lower pest dispersal) the refuge patches (e.g., Figs. 2.16e,f and 2.17e,f) 

may delay Bt-resistance in the ECB population more efficiently than aggregated 

refuges (e.g., Figs. 2.16b-d and 2.17b-d). 

In all simulations, the pest population was much smaller within the Bt area, 

but the density of the pest over the entire area of cultivated maize remained high, 

essentially due to high levels of ECB infestation in the refuge. 

2.3.3 Calculation of profit when using the “high dose-refuge” strategy for 1D 

habitat 

It follows from the above-considered problems (§ 2.3.2) that two introduced 

criteria evaluating the efficiency of the HDR strategy (time 10T  taken to develop 

Bt-resistance and spatially averaged ECB density <N>) are not enough to find 

optimal parameters of the best strategy. As shown in Table 2.1, it is impossible to 

simultaneously maximize the time 10T  and minimize <N> because these goals are 

mutually exclusive: maximizing time 10T  owing to the extension of the refuge, we 

enlarge the favourable region for the reproduction and development of the pest and 

thereby we enhance the total pest density within the whole farming area. The 

natural necessity to introduce the additional criterion appears. As such criterion we 

have chosen a profit on a sale of a harvest which could be reaped from the whole 

area over some period of time. The profit is evaluated as the total difference 

between proceeds from crop sale and costs including only purchase of seeds. Such 

formula is very simple as it does not take into account a list of other costs (for 

instance, technological expenses for field cultivation) and, thus, it may be 

considered as the first approximation to constructing the more complex function of 

profit (see, e.g., Hurley et al. 1999, 2001). 

According to the common formula for calculation of Net Present Value 

(NPV), we propose a formula of profit evaluation as applied to our problem: 
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=

 (2.56) 

where ( )NYY =  is the function of maize yield harvested from the whole area Ω, N 

is the total density of pest population, VY is the market price of grain yield, VBt is 

the market price of Bt-seeds, Vref is the market price of conventional (non-

transgenic) seeds, BtΩ  is the total area planted with Bt-crop, refΩ  is the total area  

planted with conventional crop, ρ  is the discount rate, Т is the time period. 

Using the simple logistic equation for the growth of plant resource 

consumed by pest with the Lotka–Volterra linear trophic function, we obtain a 

formula for evaluation of the yield Y: 

 aNR
K

R
RbR

R

R −







−= 1  (2.57) 

where R is the biomass of plant resource, Rb  is the growth rate of plant biomass, 

RK  is the “carrying capacity” of plant resource; a  is the searching efficiency of 

the pest. 

Nontrivial equilibrium value of the plant biomass 







−= ** 1 N
b

a
KR

R

R . 

Without loss of generality, let coefficients а and Rb  be 1. Then the yield function Y 

is: 

 ( )NKY R −= 1 . (2.58) 

We estimated parameters in (2.56), (2.58). According to Benbrook (2001), 

average retail price of conventional seeds and Bt-seeds was 31.21 $ per acre and 

40.76 $ per acre, respectively, in 2000, i.e., 2km/$26.7705=refV , 

2km/$02.10063=BtV . The average market price of maize was 2.10 $ per bushel 

(Benbrook, 2001). Then tonne/$67.82=YV . 



 

 

108

 

The potential grain yield of maize can reach 12.6 tonne/ha if the density of 

maize population is 6.7 plants/m2 (Jacobs & Pearson 1991). In our measure units 

the carrying capacity of plant resource 1260=RK  tonne km-2. 

 

Fig. 2.18. A Pareto diagram for two criteria: time 10T  (years) required for the 

frequency of the resistance allele to reach 10% over the whole farming area 
Ω  and the levels of ECB invasion (ind/plant) of the whole maize area, with 

1.0<rp  (during 10T ). (a) %75.5=ρ ; (b) 0=ρ . The optimal refuge sizes 

Ωref which provide the maximum of profit Π with different fixed habitat 

sizes Ω are marked with black circles. The optimal parameters ( )refΩΩ,  

with respect to three criteria ( 10T , <N>, Π) are marked with triangles. 
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The discount rate ρ on 28.03.2006 was 5.75% (Federal Reserve Bank of San 

Fransisco, http://www.frbsf.org/banking/data/discount/index.html).  

Let 100=T  years. We fix one-strip refuge pattern presented in Fig. 2.19. 

Let us consider three-criterial search problem of optimal combination of the 

pest habitat area and refuge percentage ),( refΩΩ . Note that the use of this 

optimising criteria maximizes the delay time of Bt-resistance development 10T  and 

profit on a sale of maize yield Π and simultaneously minimizes the ECB 

infestation level <N> of the whole habitat Ω. 

The result of multi-criterial analysis is presented in Pareto diagram 

(Fig. 2.18). Each point of the diagram is a result of the implementation of the HDR 

strategy with given refuge percentage and pest dispersal δ (in the previous section 

we discussed the correlation of δ with habitat size in details, see also Table 2.1). 

Refuge percentage varied from 0 to 30% with step 5%; the pest dispersal – from 

0.001 to 5 km2yr-1 with irregular step. The tradeoff between three criteria 

( 10T , <N>, Π) is achieved at km15km15 ×=Ω  and Ω=Ω %5ref  for 8610 =T  yr, 

58.0>=< N  ind/plant and $15815=Π /ha if 0=ρ  (triangle in Fig. 2.18a); at 

km61km61 ×=Ω  and Ω=Ω %10ref  for 20510 =T  yr, 64.1>=< N  ind/plant 

and $86570=Π /ha if %75.5=ρ  (triangle in Fig. 2.18b). 

Discussion 

In this section we have demonstrated that formal addition of a diffusion term 

into a classical population genetics model (Fisher-Haldane-Wright model) may 

lead to serious errors in forecasting the evolution of the genetic structure of a 

spatially distributed population. The source of this fallacy is clear. The Fisherian 

concept initially concerned species with an ecologically autonomous haplophase 

(Abrosov & Bogolyubov 1988). Application of such a model to population 

dynamics of diploid organisms implies a number of auxiliary conditions that would 

ensure panmictic reproduction, specifically, uniform spatial distribution of the 

population and absence of density fluxes. Nonetheless, the approach relying on 
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Fisherian diffusional models remains quite popular, and it has been used to 

describe the spatiotemporal dynamics of the Bt-resistance allele in pest populations 

(Lenormand & Raymond 1998; Vacher et al 2003; Cerda & Wright 2004; 

Tabashnik et al. 2004, 2005). 

An alternative is the demo-genetic approach put forward by V.A. Kostitzin 

(1883–1963), a disciple of V.I. Vernadsky and an outstanding Russian 

mathematician, astrophysicist, and biophysicist. He was the first to recognize that 

the competition theory developed by Volterra for interaction between species can 

also be applied to interaction between genotypes in a diploid population (Kostitzin 

1936, 1937, 1938a,b,c). This approach allows explicit description of the 

evolutionary selection of the fittest genotype as an immediate result of intraspecific 

competition. Regretfully, Kostizin’s works (which were highly commended by 

Volterra, see preface in (Kostitzin 1937), p. 6-7) and, particularly, his criticism of 

the unjustified used of Fisherian frequency models, are now known into few 

(Bogolyubov 2002; Scudo & Ziegler 1976), though in Russia his demo-genetic 

approach was furthered by some authors (Svirezhev & Pasekov 1982 and also 

Abrosov & Bogolyubov 1988). 

By contrast to the Fisherian frequency-based models, the Kostitzin model 

describes the population dynamics at the level of genotype densities and thus can 

most naturally be used in spatial reaction–diffusion modelling. We hope that this 

circumstance will attract the attention of researchers; which should be spurred by 

the currently growing interest in studies on spatially distributed ecosystems. 

Local interaction of pest genotypes in the demo-genetic model (2.6) is 

described by Kostitzin equations that are somewhat modified according to the 

specific features of the modelled system; namely, genotype fitness is considered 

here in terms of larvae survival instead of genotype fertility (see details in § 2.1.2). 

It should once again be stressed that the use of differential equations makes 

model (2.6) a continuous approximation of the processes of pest reproduction and 

succession of generations, which under clearly seasonal conditions are actually 
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discrete rather than continuous. However, since the model is intended exclusively 

for long-term forecasting, its continuity is a natural simplification that should be 

taken into account when interpreting the results. 

An accurate transition of the initial density form (2.6) into the frequency 

form (2.32) reveals its basic distinction from the diffusional version of the Fisher-

Haldane-Wright model: along with the diffusive propagation of allele frequency, 

the demo-genetic model considers a directed gene flux induced by the 

heterogeneity of the pest density distribution. This means that a Fisherian 

diffusional model would adequately describe the spatial gene dispersal in a diploid 

population only in the idealistic and unrealistic case of homogeneous total 

population density distribution throughout the entire farming area Ω that is 

heterogeneous owing to the HDR strategy application. 

How large can be the influence of the advective term Npr ln2 ∇⋅∇δ  in 

(2.32) becomes obvious upon comparison of the simulation results obtained with 

the two models (Tables 2.1). With certain combinations of the refuge size and pest 

mobility, the HDR strategy modelled with coefficients of genotype fitness in (2.5) 

can delay the spread of Bt-resistance by hundreds and even thousands of years — 

an effect not nearly attainable with the diffusional version of Fisherian model 

(Table 2.1). The delays predicted by the demo-genetic model can easily explain 

why, despite the broad cultivation of transgenic maize over a decade in the USA 

and some other countries, no Bt-resistant homozygous ECB has yet been detected. 

Thus, our quite simple demo-genetic model (2.6), unlike Fisherian, can 

reproduce and substantiate the efficacy of the refuge in delaying the evolution of 

pest resistance to the Bt crop. 

Note that in all simulations, we used the initial frequency of the Bt-

resistance gene in the ECB population 30 105.1 −×=rp . This value is, at least, an 

order more than the observed value in the natural ECB populations (see Andow et 

al. 2000; Bourguet et al. 2003). With given 0
rp  and intermediate values of the 

diffusion coefficient, the Fisherian model predicts the Bt-resistance delay for 8-9 
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years (unlike several hundreds years in the demo-genetic model). However, the 

simple simulation test with two diffusional models (demo-genetic and Fisherian) 

with much lower initial frequency of the Bt-resistance allele 60 105.1 −×=rp  also 

indicated the weak efficiency of the HDR strategy in the Fisher-Haldane-Wright 

model: 2310 =T  years with 20% refuge and 1.0=δ  km2yr-1 compared to 2221 

years in the demo-genetic model. Thus, even with very low initial frequency of the 

Bt-resistance gene in the pest population and sufficiently large refuge, the 

diffusional Fisherian model cannot give the realistic prognosis regarding the rate of 

the Bt-resistance evolution. 

The success of the HDR strategy is determined not just by the existence of a 

refuge for susceptible insects but by the intensity of their flux from the refuge onto 

the Bt-field, which provides for mating between Bt-resistant insects migrating 

from the Bt-field and the Bt-susceptible insects from the refuge, thereby decreasing 

the frequency of the resistance allele in every next generation. It is this flux that 

allows the system (2.6) to persist for a long time in the vicinity of an unstable 

spatially heterogeneous steady state corresponding to the absence of rr and rs 

genotypes (Fig. 2.15a) before transition to a stable homogeneous steady state 

( ) 0=xNss ; ( ) 0=xNrs ; ( ) KxNrr =  (Fig. 2e). It is important that over this time 

throughout the field the spatial gradients of total density ( )xN  and resistance gene 

frequency ( )xpr  are opposite (Fig. 2.19a), so the advective flux counteracts the 

growth of rp  because 0ln2 <∇⋅∇ Nprδ . As the ecological characteristics of all 

ECB genotypes are identical, in the refuge proper the rr genotype is simply 

outnumbered by the susceptible ones and thus completely displaced by 

competition. In the Bt area, especially at the refuge border, rr is suppressed by ss 

and sr coming from the refuge. Remarkably, as soon as the number of resistant 

homozygotes in the Bt area becomes large enough (Fig. 2.15b), the advective flux 

of gene frequency theretofore opposing its diffusive flow reverses its direction 
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(Fig. 2.19b) and promotes the spatial spread of the resistance allele (Fig. 2c-e) in 

the final stage of the transition process. 

 

Fig. 2.19. Scheme of spatial distribution of frequency rp  and total density N in the 

demo-genetic model (2.32) in 1D habitat when (a) the density of resistant 
insects in the Bt-field is very low ( 0≈ ) and (b) the density of resistant 
insects in the Bt-field increased due to the spatial dispersal of the Bt-
resistance gene in the pest population. 

Thus, one of the key factors determining effectiveness of the refuge as a 

source of susceptible insects is the pest mobility. As already noted in analysis of 

Table 2.1, very low mobility does not ensure an efflux of susceptible genotypes 

that would be sufficient to overwhelm the resistant genotype in the Bt area. In this 

case, such weak diffusion simply subtracts from the ss density in the refuge, 

increasing the chances of its replacement by rr immigrants from the Bt area and 

thus speeding up the spread of resistance. Interestingly, refuge efficacy also 

declines when the pest mobility (i.e., diffusion exchange between refuge and Bt 

area) is infinitely high, resulting in system homogenization and panmixia. One can 

see that in both extreme cases the demo-genetic and the Fisherian models give 

similar prognoses (Table 2.1). 

Another key factor determining the efficiency of the refuge is the refuge 

size. If refuges are too small, they are unable to delay the development of 

resistance for very long. The intensity of the diffusive density flux due to the 

spatial heterogeneity of the habitat acts as a negative force, resulting in sweeping 

out all susceptible individuals from the small refuge, increasing the probability of 

their replacement by Bt-resistant individuals invading from the Bt area. The results 
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presented in Table 2.1 with a 5% refuge, and also in Figs. 2.16 and 2.17 for 16=Ω  

km by 16 km illustrate our conclusions. The inefficiency of small refuges is related 

to the classical problem of a critical habitat size, below which populations 

spreading by diffusion cannot persist. 

Although we consider here the demo-genetic processes occurring in the ECB 

population, the proposed model (2.6) and its frequency version (2.32) are universal 

and could be applied for explaining the evolutionary and spatial phenomena in any 

diploid population. The theoretical value of the model lies in its ability to reveal 

the role of spatial heterogeneity in maintaining genetic diversity in dispersing 

populations. The practical use of the results obtained with conceptual model 

offered here requires field observations and identification of the parameters for a 

particular agro-ecosystem. A most important factor determining the success of the 

HDR strategy is the diffusion coefficient δ, which is hard to specify. Evaluation of 

this parameter requires monitoring of large-scale movements of the pest density 

spots rather than rapid motion of adult moths; there are examples of such field 

studies (Sharov et al. 1995; Winder et al. 2005). Although we cannot really 

manipulate pest dispersal to increase the efficiency of the HDR strategy, our results 

suggest that the same goal could be achieved by controlling the size, proportion 

and spatial arrangement of Bt areas and refuges (Table 2.1, Figs. 2.16 and 2.17). 
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CHAPTER 3 

BI-TROPHIC DEMO-GENETIC MODELS 

3.1 Model “pest −−−− parasitoid” 

As reported above (see Introduction), some natural enemies of the European 

corn borer, for example, larval parasitoids Macrocentrus grandii, Lydella 

thompsoni and other, are the effective biological control agents of this pest. They 

are successfully used in many Integrated Pest Management programs (Charlet et al. 

2002). However, the ability of parasitoids to control the ECB density in Bt-fields is 

a controversial point as their efficiency may be reduced due to the mass death of 

pest larvae which are the main feed of parasitoid larvae. This fact is supported by 

some laboratory studies (Bourguet et al. 2002; Venditti & Steffey 2003; Losey et 

al. 2004). In this case, refuges can be necessary not only for the struggle against 

the pest adaptation to Bt-toxin but also for maintaining the parasitoid population at 

the required level in the Bt-field owing to its migration from the refuge. 

Additionally, this strategy should lower the pest density throughout the entire 

farming area and is likely to delay the Bt-resistance development in the pest 

population longer than the autonomous use of the HDR strategy. For studying the 

effectiveness of combination of the HDR strategy and biocontrol by means of 

natural ECB parasitoid we developed a bi-trophic spatial demo-genetic model 

“pest – parasitoid”. 

3.1.1 The model 

Let the trophic interaction between pest and its parasitoid be described by 

the simplest linear Lotka-Volterra function; the local kinetics of competing pest 

genotypes is given by the modified Kostitzin’s model (see equations (2.2)). We 

also assume that both insects’ species can move randomly within the modelled pest 

habitat Ω  with reflective boundaries. Then the model is as follows: 
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 (3.1) 

where ),( tPP x=  is the parasitoid density at position Ω∈x  at time t; the 

functional response ( ) aNNg =  is considered as a Lotka-Volterra trophic function; 

а is the searching efficiency of parasitoid; е is the parasitoid conversion efficiency; 

Pµ  и Pδ  are the mortality rate and diffusion coefficient of parasitoid, respectively. 

The other parameters and variables in (3.1) are similar to those in (2.6). The 

reproduction function fij ( rji =,  or s) sets the proportions of progeny distribution 

over the three genotypes according to formulas (2.2). The HDR strategy is 

modelled by genotypic fitness ijW  defining the survival of larvae depending on the 

spatial localization (see formulas (2.5)). 

Transiting to the frequency form, we get (see also the proofs of Lemma 1 

and Theorem 4): 
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where rrrsrsr pWpWW += , 22 2 rrrrsrssss pWppWpWW ++= . Meaning of 

parameters and variables in (3.2) is interpreted as in the frequency version of one-
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level demo-genetic model (2.32). Note that the deviation of system from the 

Hardy-Weinberg equilibrium (1.1) is described by equation (2.33). 

As in model (2.6), besides diffusion here we have directed fluxes of rp  with 

the advection velocity Nln2 ∇− δ  that are induced due to spatial heterogeneity of 

the total pest density N and allelic frequency rp . Note also “conventional” bi-

trophic Fisher-Haldane-Wright model is given by model (3.2) less the advective 

term rpN ∇⋅∇ ln2δ  in the balance equation for the allele frequency rp . 

3.1.2 Estimation of demographic model parameters for the larval parasitoid 

Macrocentrus grandii 

For bi-trophic models (demo-denetic (2.32) and Fisherian) we additionally 

estimated parameters corresponding to the parasitoid species Macrocentrus grandii 

Goidanich. This polyembryonic wasp is a larval parasitoid of ECB. 

The life history of the parasitoid M. grandii is characterized by 3 essential 

phases: internal, external and adult. The survival during the first 2 stages depends 

significantly on the daily temperature. According to Onstad & Kornkven (1999), 

the survival in the internal phase is 0.33 if the temperature is below 20°C and 1 

otherwise; for the external phase, it is 0.90 if the temperature fluctuates from 18 to 

25°C and 0.50 otherwise. All adults survive independently of temperature. 

It is assumed that M. grandii as well as its host has two generations that are 

well synchronized with two generations of the ECB, i.e., the adult stage of this 

parasitoid concurs the preferential larval stages of the ECB. Such assumption does 

not contradict field observations (Orr & Pleasants 1995; Sked & Calvin2005). The 

development of the first parasitoid generation is considered to take place in the 

favourable temperature period 18-25°C while the second generation develops in 

colder period as it overwinters in the ECB diapausing larvae. Applying the same 

technique for estimating the model parameters in (2.32) as in model (2.6) (see § 

2.1.5), we obtain the average instantaneous mortality rate of the parasitoid 

M. grandii: 1
2211 yr91.1 −=+= PPPPP τµτµµ , where 

( )

P

P

1
1

9.0ln

τ
µ

−
=  is the mortality 
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of the first parasitoid generation, 
( )

P

P

2
2

5.033.0ln

τ
µ

⋅−
=  is the mortality of the 

second parasitoid generation (see formulas (2.9), (2.10)). 

In the USA the mean number of Macrocentrus cingulum Brichke (formerly 

Macrocentrus grandii Giodanich) per brood emerged from a single host is 16.4 

individuals (Sked & Calvin 2005). Then the conversion coefficient is estimated as 

-1ind4.16=e . 

As the efficiency of M. grandii significantly depends on the geographical 

location: in the northern France the level of parasitism does not exceed 5% 

(Bourguet et al. 2003; Agusti et al. 2005) but in the USA it can reach 45% with 

peak 61% (Sked and Calvin, 2005), we vary the percentage of parasitism from 0 to 

75%. 

In the ECB population the level of parasitism is defined via coefficient of 

searching efficiency of parasitoid, a. In order to set 25% parasitism level in model 

(2.32), the equilibrium value of the total ECB density *
N  is set to 75% of the 

carrying capacity K: KN 75.0* = . We obtain the equilibrium *N  from the simple 

Lotka-Volterra host-parasitoid model with the logistic growth of the host: 

 

( )( ) ( )

( ) .

;

PPNeg
dt

dP

PNgNbN
dt

dN

pµ

αµ

−=

−+−=

  

Note that this model is a result of summation of the first three equations in 

(3.2) under the assumption that the entire pest habitat is a refuge, i.e., refΩ=Ω  

(see also § 2.2.1). 

Then K
ea

N P 75.0* ==
µ

 and 91005.1 −×=a  yr−1km2. We also set 

91058.1 −×=a  yr−1km2 and 91016.3 −×=a  yr−1km2 that correspond to 50% and 

75% levels of parasitism in the ECB population, respectively. 
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In simulations, we have been varying the diffusion coefficient of parasitoid 

Pδ  under the assumption that parasitoid dispersal cannot be less than pest 

dispersal. 

The other model parameters were estimated earlier (§ 2.1.5). 

3.1.3 Results of numerical simulations 

In order to investigate the efficiency of biocontrol in the ECB population 

whose density is controlled by transgenic maize, and adaptation to Bt-toxin is 

governed by the HDR strategy, we have carried out a series of simulations with bi-

trophic demo-genetic model (3.2). 

As in one-level model (2.32), the efficiency of the strategies combination is 

estimated by two criteria: (i) the time taken to develop Bt-resistance, evaluated as 

the time 10T  required for the frequency of the resistance allele to reach 10% over 

the total ECB population; (ii) the spatially averaged ECB density <N>. 

It is assumed that the initial densities of the pest 60 10948.2 ×=N  ind/km2 

and its parasitoid 200 NP =  are uniformly distributed in space. We set the initial 

frequency of the Bt-resistance allele 0015.00 =rp . Let 0.3% of the initial pest 

population be Bt-susceptible heterozygotes rs and there are no Bt-resistant rr 

insects in the pest population. 

Simulations indicated that with a single-strip refuge (Fig. 2.9b) in 1D area 

16 km long, the biocontrol by means of parasitoids can increase the efficiency of 

refuges, additionally delaying the ECB adaptation to Bt-maize only if the pest is 

mobile enough (0.07, 1 km2yr−1) (Fig. 3.1c-f). With 07.0=δ  km2yr−1 and small 

refuges (less than 10% with δδ 2=P  and <18% with δδ 6=P ), the higher the level 

of parasitism, the more effective the combination of two strategies, and, vice versa, 

when increasing the refuge size, the refuge efficiency decreases with growth of 

parasitism level (Fig. 3.1c,d). However, if the refuge is small, biocontrol very 

slightly increases the delay time T10 whereas with large refuge, the harmful effect 

of parasitoids lowering the ability of refuge to produce the Bt-susceptible insects 
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leads to the significant shortening of T10. Note that in the absence of parasitoid in 

system (3.2) the autonomous application of the HDR strategy demonstrates a 

tendency: the higher the pest dispersal, the faster the Bt-resistance development in 

the ECB population (thick solid line in Fig. 3.1, see also Table 2.1). 

 

Fig. 3.1. Time 10T  (years) required for the frequency of the resistance allele to 

reach 10% over the entire farming area Ω  in the demo-genetic model (3.2) 
with different dispersals of pest δ and its parasitoid δP. 

If the pest dispersal is high ( 1=δ  km2yr−1) for the given habitat size Ω, the 

presence of highly mobile parasitoid ( δδ 6=P ) in the biological system can 

significantly increase the refuge efficiency (Fig. 3.1f) provided that the refuge size 

δ = 0.03 km2yr-1 

δР = 0.06 km2yr-1 

 

δ = 0.03 km2yr-1 

δР = 0.18 km2yr-1 

 

δ = 0.07 km2yr-1 

δР = 0.14 km2yr-1 

 

δ = 0.07 km2yr-1 

δР = 0.42 km2yr-1 

 

δ = 1 km2yr-1 

δР = 2 km2yr-1 

 

δ = 1 km2yr-1 

δР = 6 km2yr-1 
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exceeds 20%. If 1=δ  km2yr−1 and the refuge size is small (less than 20%), the 

refuge efficiency does not depend on the parasitism level in the ECB population 

(Fig. 3.1e,f). 

With very low pest mobility ( 03.0=δ  km2yr−1), the higher the level of 

parasitism, the faster the Bt-resistance adaptation of the ECB to Bt-maize 

(Fig. 3.1a,b). The maximum refuge efficiency is reached in the absence of 

parasitoid in system (3.2). 

 

Fig. 3.2. Spatially averaged pest density, maintained in the ECB population 
throughout the entire habitat Ω as long as %10<rp  in the demo-genetic 

model (3.2) with different dispersals of pest δ and its parasitoid δP. 
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According to the second criterion (spatially averaged pest density <N>), the 

high pest dispersal ( 1=δ  km2yr−1) influences negatively the efficiency of the 

combination of the HDR strategy with biocontrol by means of parasitoids 

(Fig. 3.2e,f): the low parasitism levels (less than 25%) cannot control the 

population of mobile insects while the high levels of parasitism provides a higher 

ECB invasion <N> than with less mobile pest ( 07.0=δ , 0.03 km2yr−1). Note that 

with 03.0=δ  km2yr−1 and 07.0=δ  km2yr−1, one can see almost linear growth of 

<N> when increasing the refuge size (Fig. 3.2a-d). Nevertheless, with 75% level of 

parasitism, the combination of two management strategies decreases the mean 

density of the pest on average in 4 times as compared with results obtained with 

autonomous use of the HDR strategy and on average in 7 time regarding the 

carrying capacity (22 ind/plant). It is noteworthy that in each simulation the mean 

pest number per plant, in fact, signifies the mean invasion level of the refuge by the 

ECB since the values of <N> are close to zero in the Bt-field (in ΩBt the population 

density is strongly reduced due to the Bt-toxin and consumption of pests  by 

parasitoid). 

3.2 Model “crop – pest” 

3.2.1 The model 

Model (2.6) as well its equivalent (2.32), allows one to solve purposeful 

problems related to efficient and long-term pest control. Accounting for the spatio-

temporal dynamics of the plant resource expands the applicability of the model and 

brings it closer to real agro-ecosystems. 

Let the growth of plant (maize) biomass ( )tRR ,x=  at position x at time t 

obey the logistic law. Also let the consumption of the biomass by the pest (ECB) 

be described by a trophic function g(R) defining the individual rations. In the 

simplest case, ( ) aRRg =  is the Lotka–Volterra linear trophic function. 

Considering the genetic heterogeneity of the ECB population arising through 

selection pressure for Bt-resistance as well as the possibility of active diffusional 
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movements of the pest within the 1D habitat, we obtain a two-level demo-genetic 

model describing the dynamic processes of resource – pest interactions: 

 

( )
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where ∑= ijNN  ( )srji or, = ; Rr  is the Maltusian coefficient for plant biomass 

growth; RK  is the “carrying capacity” of the plant resource; a is the coefficient of 

the pest searching efficiency; e is the coefficient of the pest conversion efficiency; 

function ijf  sets the proportions of progeny distribution over the three genotypes 

and the survival of larvae depending on the spatial localization, as above in model 

(2.6): 
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 (3.4) 

The other parameters and variables in (3.3) are similar to those in (2.6). 

In the frequency form, we get: 
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 (3.5) 

where rrrsrsr pWpWW += , 22 2 rrrrsrssss pWppWpWW ++= . 
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Note that the local kinetics term in the balance equation for the allele 

frequency rp  differs from the continuous form of the Fisherian equation in that the 

pest birth rate is not constant but depends on the individual rations ( ) aRRg = , 

increasing with the resource density as specified by the Lotka–Volterra function. In 

the absence of feed, the pest does not reproduce, and the local variations in rp  are 

caused solely by spatial flows. The deviation of (3.3) from the Hardy-Weinberg 

equilibrium is described by equation (2.33) where eaRb = . 

As in model (2.6), besides diffusion here we have directed fluxes of allelic 

frequency rp  at the advection rate Nln2 ∇− δ  due to spatial heterogeneity of pest 

density and allelic frequency. 

3.2.2 Estimation of demographic model parameters for the maize  

For the two-level resource – pest model (3.3) we additionally estimated the 

biomass growth coefficient Rr , assuming for maize a biomass-doubling time of 10 

days: 3.252ln
10

365
==Rr  yr–1, which agrees with the generalized literature data on 

the growth of dry above-ground plant mass and the average values observed for 

cereals (Kovalev 2003). 

The yield of dry above-ground mass for maize may exceed 400 q/ha (quintal 

of 100 kg) (Kovalev 2003), we assumed a maximum of 500 q/ha. In our units of 

measurement, the carrying capacity in the plant resource is 4105 ⋅=RK q km–2. 

We fit other model parameters so that the equilibrium value of plant biomass 

would be 60% of the capacity, RKR 6.0* = . 

The complete development of ECB larvae takes about one month. In this 

time the larvae can eat 10 times the pupal weight (ca. 5 g), i.e., nearly 50 g. Hence 

the conversion efficiency coefficient can be estimated at 5=e  q–1. 

The searching efficiency coefficient a is chosen so as to allow collation of 

models (2.6) and (3.3); namely, in (3.3) the pest growth eaR  at functions ijf  in the 
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pest density equation should correspond to the birth rate b in (2.6). With 

RKR 6.0* = , we get ReaKeaRb 6.0* ==  or 

6
4

1027.66
10556.0

94.9

6.0
−⋅=

⋅⋅⋅
==

ReK

b
a  km2 yr–1. 

3.2.3 Results of numerical simulations 

For the resource – pest model, the initial density of the plant dry biomass 

was taken to be 15000 =R  q km–2, also assuming uniform space distribution. 

 

Fig. 3.3 Time 10T  (years) required for the frequency of the resistance allele to 

reach 10% as a function of pest mobility δ  predicted by (A): the bi-trophic 
demo-genetic model “resource – pest” (3.5) and (B) the diffusional model 
based on the Fisherian equations (model (3.5) without the advective term in 
equation for rp ) with 10% (solid line) and 20% (dashed line) single-strip 

refuge. 

To assess the influence of the plant resource, we compared the delays 

predicted by our two-level demo-genetic model (3.5) and a two-level Fisher-

Haldane-Wright diffusional model (corresponding to (3.5) without the advective 

term Npr ln2 ∇∇δ , see above) with 10% and 20% refuge. Just as in simulations 

without the resource, the demo-genetic model predicts far longer times to Bt 

resistance evolution than the Fisherian model, as well as a dramatic jump of 10T  

followed by a monotonic decline with increasing pest mobility δ  (Fig. 3.3). For 

complete mixing between the Bt and refuge areas, the two models give a similar 

outcome: quite quick (within 10 yr) spreading of the rr genotype in the pest 

population (not shown). 
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Discussion 

Incorporation of an explicit description for the spatio-temporal dynamics of 

maize biomass in the demo-genetic model (3.3) allows account of the dependence 

of pest reproduction on the state of the plant resource, thereby making the model 

more realistic. The results of numerical simulations with (3.3) qualitatively agree 

with those for the basic model (2.6). This confirms the importance of considering 

the directed gene flux in the frequency form (3.5). Comparing Fig. 3.3 with the 

corresponding columns in Table 2.1, one can see that Bt-resistance in the two-level 

model (3.5) emerges somewhat faster than in (2.6). Indeed, in the Bt-field where 

infestation is largely suppressed by the Bt-toxin the density of maize biomass 

exceeds the equilibrium KR 6.0* = . This raises the pest feeding rations so that its 

reproduction rate in (3.3) becomes higher than in (2.6). Recall that in (3.3) the pest 

reproduction intensity determines the rate of evolution of the population genetic 

structure, see (3.5). Probably the use of a more realistic trophic function accounting 

for saturation of the pest rations with increasing the available resource, e.g., a 

Holling type II function ( ) ( )ahRaRRg += 1 , would extend the delay 10T . 

To bring the model closer to reality, one should perhaps also consider the 

seasonal events in the system, in particular, regular replanting and harvesting (see. 

e.g., Medvinsky et al. 2004). How can this influence the 10T  estimates? On the one 

hand, any events resulting in periodic reduction of plant biomass and pest density, 

especially in the beginning of the crop year, should additionally delay the 

evolution of Bt-resistance. On the other hand, periodical homogenization of the 

system is likely to accelerate the spreading of the Bt-resistance gene. A definite 

answer awaits further studies. 

Two-level model (3.1) and its equivalent (3.2) proposed in this chapter allow 

investigating another linear trophic chain “pest – parasitoid”. By means of 

simulations, we showed the dual effect of biocontrol in the ECB population whose 

density is controlled by transgenic maize, and adaptation to Bt-toxin is governed 

by the HDR strategy (Fig. 3.1 and 3.2). On the one hand, parasitoid can 
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significantly reduce the pest density throughout the entire habitat, thereby 

decreasing the damage of the maize crop (Fig. 3.2). On the other hand, due to the 

high toxicity of Bt-maize, almost zero density of the ECB in Bt-fields results in 

that the refuges rich in insects become the main feeding area of parasitoids and 

with time, cannot reproduce the sufficient number of Bt-susceptible insects to 

suppress the Bt-resistant subpopulation of the ECB in Bt-fields, thereby 

accelerating the ECB adaptation to Bt-maize (Fig. 3.1 a-d). It is clear that this 

situation will appear in those cases when the long-term application (>100 years) of 

the HDR strategy occurs, i.e., with moderate pest mobility. If the pest is highly 

mobile, the Bt-resistant insects shortly emerge in Bt-fields even with the HDR 

strategy application but they are attacked by parasitoids. Then if the subpopulation 

of Bt-susceptibles persists by that time at the level required to suppress the Bt-

resistance gene in Bt-field, the combination of the HDR strategy and biocontrol 

delays Bt-adaptation of the ECB more efficiently than the HDR strategy applied 

separately. 

Note that we did not investigate the efficiency of the two-level Fisherian 

model “pest – parasitoid” as in this model due to the absence of advective term 

Npr ln2 ∇∇δ  the equation for rp  does not depend on the variable N the value of 

which is controlled by parasitoid. Therefore, the presence of parasitoid in the 

biological system will not influence the time of Bt-resistance development in the 

pest population. 
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CONCLUSIONS 

1. Spatial demo-genetic model of resistance evolution to transgenic maize in the 

European corn borer population is developed. The mechanism of the “high 

dose – refuge” strategy is modelled; 

2. The stability of stationary solutions for the demo-genetic model is 

investigated for one-dimensional habitat. It is proved analytically that spatial 

heterogeneity caused by refuges induces the advective flux of Bt-resistance 

genes, and this flux delays the diffusion dispersal of Bt-resistance genes in 

pest population; 

3. The model dynamics is investigated numerically for various scenarios of the 

HDR strategy. It is examined the efficiency of the HDR strategy depending 

on the size and configuration of refuge and pest mobility; 

4. Two-level demo-genetic model “plant resource – pest” that explicitly takes 

into account the dynamics of the plant biomass is developed. The long-term 

efficiency of the HDR strategy is studied numerically; 

5. Two-level demo-genetic model “pest – parasitoid” that allows combining the 

HDR strategy with biological control by means of pest parasitoid is 

developed. It is investigated how the efficiency of combination of two 

strategies depends on the ECB dispersal and parasitism level. 
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APPENDIX 1 

ABRIDGED DICTIONARY OF MAIN GENETIC TERMS 

ALLELE (from Greek αλληλος each other) is one of the alternative forms of 

a gene occupying a given locus (position) on a chromosome. New alleles arise 

from existing ones by mutation. Diploid organisms have paired homologous 

chromosomes in their somatic cells, and these contain two copies of each gene. In 

a diploid organism two alleles make up the individual's genotype. 

AUTOSOMAL is a non-sex. 

CHROMOSOME is a threadlike linear strand of DNA and associated 

proteins in the nucleus of animal and plant cells; it carries the genes and functions 

in the transmission of hereditary information. 

DIPLOID is having two sets of chromosomes or the double haploid number 

of chromosomes in the germ cell, with one member of each chromosome pair 

derived from the maternal gamete and one from the paternal gamete. A diploid 

individual is HOMOZYGOUS if the same allele is present twice, or 

HETEROZYGOUS if two different alleles are present. 

DNA is a deoxyribonucleic acid. It is a nucleic acid that carries the genetic 

information in the cell and is capable of self-replication and synthesis of RNA 

(ribonucleic acid). 

DOMINANCE is an expression of a trait in both the homozygous and the 

heterozygous condition. 

DOMINANT ALLELE is a member of a pair of alleles which is 

phenotypically indistinguishable in both the homozygous and heterozygous 

condition. 

GAMETE is a specialized germ cell that fuses with another gamete during 

fertilization (conception) in multicellular organisms that reproduce sexually. 

Gametes of a diploid organism are haploid cells; that is, they contain one complete 

set of chromosomes. When two gametes fuse (in animals typically involving a 
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sperm and an egg), they form a zygote — a cell that has two complete sets of 

chromosomes and therefore is diploid. 

GENE is a hereditary unit consisting of a sequence of DNA that occupies a 

specific location on a chromosome and determines a particular characteristic in an 

organism. Genes undergo mutation when their DNA sequence changes. 

GENETICS is the science of genes, heredity, and the variation of organisms. 

GENOTYPE is a combination of alleles located on homologous 

chromosomes that determines a specific characteristic or trait. 

HAPLOID is a term denoting an organism (e.g., virus or bacterium) or a cell 

(e.g., gametic) with haploid set of chromosomes. 

HARDY-WEINBERG LAW (principle, equilibrium) is the equation that 

describes genetic balance within a population. It may be stated as follows: In a 

large, random-mating population, the proportion of dominant and recessive genes 

(see dominance and recessiveness) tends to remain constant from generation to 

generation unless outside forces act to change it. Forces that can disturb this 

natural balance are selection, mutation, gene flow, and natural selection. 

HETEROZYGOTE is an organism that has different alleles at a particular 

gene locus on homologous chromosomes. 

HOMOZYGOTE is an organism that has the same alleles at a particular 

gene locus on homologous chromosomes. 

LOCUS is a position that a given gene occupies on a chromosome. 

MEIOSIS is the process of cell division in sexually reproducing organisms 

that reduces the number of chromosomes in reproductive cells from diploid to 

haploid, leading to the production of gametes in animals and spores in plants 

MENDELIAN INHERITANCE (or Mendelian genetics or Mendelism) is a 

set of primary tenets relating to the transmission of hereditary characteristics from 

parent organisms to their children. 

MUTATIONS are the changes to the genetic material (either DNA or RNA). 

Mutations create variation in the gene pool, and the less favorable (or deleterious) 
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mutations are removed from the gene pool by natural selection, while more 

favorable (beneficial or advantageous) ones tend to accumulate, resulting in 

evolutionary change. 

PANMIXIA is random mating within a breeding population. In a closed 

population this results in a high degree of uniformity. Complete panmixia is 

possible only in ideal, infinitely large and well mixed homogeneous populations. 

POLYMORPHISM is a simultaneous coexistence of more than one 

genotype with non-zero frequency in a population. 

RECESSIVENESS is a failure of one of a pair of genes (alleles) presented in 

an individual to express itself in an observable manner because of the greater 

influence, or dominance, of its opposite-acting partner. Both alleles affect the same 

inherited characteristic, but the presence of the recessive gene cannot be 

determined by observation of the organism; that is, though present in the 

organism's genotype (gene makeup), the recessive trait is not evident in its 

phenotype (observable characteristics). 

RECESSIVE GENE is a gene that is phenotypically expressed in the 

homozygous state but masked in the presence of a dominant gene. 

ZIGOTE is a cell that is the result of fertilization (including the organism 

that develops from that cell). That is, two haploid cells (gametes)—usually (but not 

always) an ovum from a female and a sperm cell from a male—merge into a single 

diploid cell called the zygote. 
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APPENDIX 2 

NUMERICAL SOLUTIONS OF THE DEMO-GENETIC MODEL IN THE 

DENSITY FORM (2.6) AND IN THE FREQUENCY FORM (2.32) FOR 2D 

HABITAT 

We construct the differential-difference scheme for integration of systems 

(2.6) and (2.32) in the 2D case of area Ω, passing on to the grid approximation of 

models in space. Let the pest habitat be rectangle [ ] [ ]yx LL ,0,0 ×=Ω . In area Ω we 

introduce the regular grid of intersecting lines ( ) xi hix 1−=  ( xni ≤≤1 ) and 

( ) yj hjy 1−=  ( ynj ≤≤1 ), where 
1−

=
x

x
x

n

L
h  and 

1−
=

y

y

y
n

L
h  are the grid steps in the x- and y-directions, 

respectively. We use the conventional five-point stencil. 

Each spatial derivative was approximated by the 

appropriate second-order central difference for each node. For some function 

( )tyxuu ,,=  we adduce formulas that were applied for approximating the spatial 

derivatives in models (2.6) and (2.32): 

(a) approximation of the first derivative in the internal points of Ω: 
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Thus, at the boundary of area Ω we used the method of the fictive point in 

the formulas of central difference: jnjn xx uu
,1,1 −+ = , 

1,1, −+
= yy nini
uu . 

Let us denote the values of functions in system (2.6) at grid nodes as 

( ) ( )tyxNtN jiss
ji

ss ,,, = , ( ) ( )tyxNtN jirs
ji

rs ,,, = , ( ) ( )tyxNtN jirr
ji

rr ,,, =  and in system 

(2.32) ( ) ( )tyxptp jir
ji

r ,,, = , ( ) ( )tyxNtN ji
ji ,,, = , ( ) ( )tyxt ji

ji ,,, ξξ = . 

According to the approximation formulas adduced above, we obtain a 

differential-difference scheme for integration of system (2.6) for ss genotype, that 

is a system of ordinary differential equations: 
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where ( )ji
rr

ji
rs

ji
ssss

ji
ss NNNff ,,,, ,,=  (see formulas 2.2). Similarly, we can get the 

difference equations for rs and rr genotypes. At the boundary points of Ω we 

substitute the appropriate difference approximations. 

Differential-difference scheme for integration of system (2.32) in the 

internal grid nodes ( yx njni <<<< 1,1 ) is:  
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where ( ) ji
rrr

ji
rrs

ji
r pWpWW ,,, 1 +−= , 

( ) ( ) ( ) .121
2,,,2,, ji

rrr
ji

r
ji

rrs
ji

rss
ji pWppWpWW +−+−=  

At the boundary points of Ω we substitute the appropriate difference 

approximations. 

The obtained systems of ordinary differential equations (ODEs) was then 

integrated by the fourth-order Runge-Kutta method with automatic time step and 

accuracy control (see Kalitkin 1978). Note that excluding the advective term in 

scheme (A2.2) in the equation for rp , we obtain the differential-difference scheme 

for integration of system in Fisher-Haldane-Wright model. 
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APPENDIX 3 

A) NUMERICAL METHOD FOR FINDING THE SPATIALLY 

HETEROGENEOUS STATIONARY SOLUTIONS OF PROBLEM (2.6) IN 

1D AREA 

In order to find spatially heterogeneous stationary solutions of (2.6) in 1D 

habitat [ ]xL,0=Ω  consisting of two segments: refuge [ ]refx,0  and Bt-field 

[ ]xref Lx ,  (Fig. 2.9b), the appropriate stationary boundary-value problem (2.39) was 

solved numerically. For solving (2.39) we used the shooting method, applying the 

same constructing scheme of solutions (2.39) as in proof of Theorem 7. Taking 

into account the sewing together of solutions at point refx  (Fig. 2.11), we modified 

the shooting method in the following way. As the shooting parameters we took the 

genotype densities at the ends of habitat segment: ( )00
1 ssN=β , ( )00

2 rsN=β , 

( )00
3 rrN=β , ( )xss

L
LNx =1β , ( )xrs

L
LNx =2β , ( )xrr

L
LNx =3β , obtained by the 

simulation model at that moment when the spatially heterogeneous close to 

stationary regime was set at large t. Let us pass to the normal form of system 

(2.39): 
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where 
dx

du
u i
i =& , ssNu =1 , rsNu =2 , rrNu =3 , 

dx

dN
u ss=4 , 

dx

dN
u rs=5 , 

dx

dN
u rr=6 , 

321 uuuu ++= . 

Taking into account the boundary conditions (zero flux of genotype densities 

at the habitat boundary Ω) of (2.39), we expand the set of shooting parameters for 

(A3.1): 00
6

0
5

0
4 === βββ , 0654 === xxx LLL βββ . Note that this parameter values 

are strictly fixed. Using shooting method, we select only 6 parameters: 0
1β , 0

2β , 

0
3β , xL

1β , xL
2β , xL

3β . 

According to the constructing scheme of solutions (2.39) described in the 

proof of Theorem 7, we considered problem (A3.1) on each segment, [ ]refx,0  and 

[ ]xref Lx , , separately. Thus, the boundary-value problem (2.39) was reduced to two 

Cauchy problems for the system of differential equations (A3.1) with initial 

conditions 0
iβ  on [ ]refx,0  and xL

iβ  on [ ]xref Lx ,  ( 6,...,1=i ). Then each of the 

Cauchy problems was integrated by the fourth-order Runge-Kutta method with 

automatic step in х-direction with consideration of integration direction (positive 

direction on [ ]refx,0  and negative one on [ ]xref Lx , ). The values of shooting 

parameters were chosen so that to satisfy the boundary conditions of problem 

(2.39). However, it is not sufficient in order to the solutions of Cauchy problems 

for (A3.1) coincided at point refx , i.e., in general, ( ) ( )
ref

x

ref xx

L
i

xx
i uu

==
≠ ββ

*0*  

( 6,...,1=i ). Using Newton’s method, we have been changing the shooting 

parameters on each of the segment ends [ ]xL,0  until we got values for which 

( ) ( ) 0*0* ≈−
== ref

x

ref xx

L
i

xx
i uu ββ  with prescribed accuracy. 

In fact, we need to solve a system of 6 nonlinear equations with 6 unknown 

0
iβ  and xL

iβ ( 3,...,1=i ): 

 ( ) 0=βF , (A3.2) 
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where vector ( ) ( ) ( )xL
iii uuF βββ
*0* −=  ( 6,...,1=i ), 

( )0,0,0,,,,0,0,0,,, 321
0
3

0
2

0
1

xxx LLL ββββββ=β .  

We find the solution of system (A3.2) by the Newton’s method. For this 

purpose, we estimate the next approximation of shooting parameters at each k-th 

iteration, solving the auxiliary linear problem by Gauss method: 

( )( ) ( )kkkk
βFβββF −=−′ +1 , where ( )

j

iF

β∂

∂
=′ βF . The exit condition of 

iterative process is ε<−+ kk
ββ

1 . 

Such method allows finding the spatially heterogeneous stationary solutions 

of problem (2.6) in one-dimensional area [ ]xL,0=Ω  (Fig. 2.9b) with fixed refuge 

percentage (i.e., with fixed segment length [ ]refx,0 ). In order to construct such 

solutions for the whole range of refuge percentage (0 to 100%), we use one-

parameter continuation method: 

Step 1: Using shooting method, we find the solution of system (2.39) with 

some arbitrary refuge percentage. At this step, the initial shooting parameters β  

were obtained by simulation model when the spatial close to stationary regime was 

set ( 1>>t ). 

Step 2: Varying the refuge percentage (increasing or decreasing) with a 

small step (e.g., 1%), we find the solution of system (2.39) with new value of the 

refuge percentage, using the shooting method. However, here the initial shooting 

parameters are the values of β  obtained as the solution of system (A3.2) at the 

previous Step. 

We continue the process (Step 2) until we find all existing spatially 

heterogeneous stationary solitions of (2.39) in [ ]xL,0=Ω . 
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Substituting the stationary solutions of system (2.6) into Jacobian (A3.3), we 

find its eigenvalues for each solution. Note that the spatially heterogeneous 

stationary solutions of (2.6), the finding algorithm of which is described in details 

in Appendix 3A, were obtained by the fourth-order Runge-Kutta method with 

automatic step in х-direction, i.e., with irregular step by х. For the correct 

substitution of such stationary solution into Jacobian, we interpolated it by the 

cubic spline, using the regular grid with xn  nodes. 
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For analysing the stability of spatially heterogeneous stationary solutions of (2.6) 

such that ( ) ( ) 0== xNxN rsss , ( )
α

µ−
= rr

rr

bW
xN  the following Matlab 7.0 script 

has been used: 

clear all; 

b=1, delta=0.001; mu=0.688129, alpha=0.311871; 

survBt=[0 0.09 0.9], survRef=[1 0.98 0.9], 

N=100; L=50, h=L/(N-1),step=10; k=1; 

 

% spatially homogeneous stationary solution 

for i=1:N, 

    u(i)=0; 

    u(i+N)=0; 

    u(i+2*N)=(b*0.9-mu)/alpha; 

end 

 

% cycle by diffusion 

while delta<=100, 

    g=zeros(N*3); 

    % segment boundary j=1 

    for i=1:3,  

        g(1+(i-1)*N,1+(i-1)*N)=-2*delta/h^2; 

        g(1+(i-1)*N,2+(i-1)*N)=2*delta/h^2; 

    end 

    % segment boundary j=N 

    for i=1:3,  

        g(N+(i-1)*N,N+(i-1)*N)=-2*delta/h^2; 

        g(N+(i-1)*N, N-1+(i-1)*N)=2*delta/h^2;  

    end 

    % internal points of segment 1<j<N 

    for i=2:N-1,  

     for j=1:3,  

       g(i+(j-1)*N,i+1+(j-1)*N)=delta/h^2; 

       g(i+(j-1)*N,i+(j-1)*N)=-2*delta/h^2; 

       g(i+(j-1)*N,i-1+(j-1)*N)=delta/h^2;  

     end 

    end   

 

    % cycle by refuge percentage iRef  

    for iRef=0:100, 

        flag=0; 

        for i=1:3, W(i)=survRef(i); end 

        Pref=iRef*N/100; 

        f=g; 

 

        % fill in the Jacobian matrix 

        for i=1:N, 

           if (flag==0)   

             if (Pref<i) for j=1:3, W(j)=survBt(j); flag=1; end  

             end 

           end 

  

f(i,i)=f(i,i)+2*W(1)*b*(u(i)+1/2*u(i+N))/(u(i)+u(i+N)+u(i+2*N))- 

       W(1)*b*(u(i)+1/2*u(i+N))^2/(u(i)+u(i+N)+u(i+2*N))^2-mu- 

       alpha*(u(i)+u(i+N)+u(i+2*N))-alpha*u(i); 

           

f(i,i+N)=f(i,i+N)+W(1)*b*(u(i)+1/2*u(i+N))/(u(i)+u(i+N)+u(i+2*N))-  
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         W(1)*b*(u(i)+1/2*u(i+N))^2/(u(i)+u(i+N)+u(i+2*N))^2-alpha*u(i);  

 

f(i,i+2*N)=f(i,i+2*N)-W(1)*b*(u(i)+1/2*u(i+N))^2/ 

          (u(i)+u(i+N)+u(i+2*N))^2-alpha*u(i);  

      

            f(i+N,i)=f(i+N,i)+2*W(2)*b*(1/2*u(i+N)+u(i+2*N))/(u(i)+u(i+N)+u(i+2*N))- 

                     2*W(2)*b*(u(i)+1/2*u(i+N))*(1/2*u(i+N)+u(i+2*N))/ 

                     (u(i)+u(i+N)+u(i+2*N))^2-alpha*u(i+N); 

             

f(i+N,i+N)=f(i+N,i+N)+W(2)*b*(1/2*u(i+N)+u(i+2*N))/(u(i)+u(i+N)+u(i+2*N))+    

           W(2)*b*(u(i)+1/2*u(i+N))/(u(i)+u(i+N)+u(i+2*N))-     

           2*W(2)*b*(u(i)+1/2*u(i+N))*(1/2*u(i+N)+u(i+2*N))/ 

           (u(i)+u(i+N)+u(i+2*N))^2-mu 

           -alpha*(u(i)+u(i+N)+u(i+2*N))-alpha*u(i+N); 

           

f(i+N,i+2*N)=f(i+N,i+2*N)+2*W(2)*b*(u(i)+1/2*u(i+N))/(u(i)+u(i+N)+u(i+2*N)   

             )-2*W(2)*b*(u(i)+1/2*u(i+N))*(1/2*u(i+N)+u(i+2*N))/ 

             (u(i)+u(i+N)+u(i+2*N))^2-alpha*u(i+N); 

      

f(i+2*N,i)=f(i+2*N,i)-W(3)*b*(1/2*u(i+N)+u(i+2*N))^2/ 

                       (u(i)+u(i+N)+u(i+2*N))^2-alpha*u(i+2*N); 

           

f(i+2*N,i+N)=f(i+2*N,i+N)+W(3)*b*(1/2*u(i+N)+u(i+2*N))/(u(i)+u(i+N)+u(i+2* 

             N))-W(3)*b*(1/2*u(i+N)+u(i+2*N))^2/(u(i)+u(i+N)+u(i+2*N))^2- 

             alpha*u(i+2*N);  

           

f(i+2*N,i+2*N)=f(i+2*N,i+2*N)+2*W(3)*b*(1/2*u(i+N)+u(i+2*N))/(u(i)+u(i+N)+ 

               u(i+2*N))-W(3)*b*(1/2*u(i+N)+u(i+2*N))^2/ 

               (u(i)+u(i+N)+u(i+2*N))^2-mu 

               -alpha*(u(i)+u(i+N)+u(i+2*N))-alpha*u(i+2*N); 

 

        end % end for 

 

        E=eig(f); 

 

        maxEV(k,iRef+1)=max(E);  

        minEV(k,iRef+1)=min(E); 

 

   end % end of cycle by iRef 

 

   k=k+1; 

   delta=delta*step; 

    

end; % end of cycle by diffusion 

 

x=0:100;  

% results (maximum eigenvalues for each stationary solution) 

for i=0:100,  

    EV1(i+1)=maxEV(1,i+1); 

    EV2(i+1)=maxEV(2,i+1); 

    EV3(i+1)=maxEV(3,i+1); 

    EV4(i+1)=maxEV(4,i+1); 

    EV5(i+1)=maxEV(5,i+1); 

    EV6(i+1)=maxEV(6,i+1); 

    EV7(i+1)=0; 

end 

 

plot(x,EV1,'-',x,EV2,'-',x,EV3,'-',x,EV4,'-',x,EV5,'-',x,EV6,'-',x,EV7), 
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